xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80 
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT		(5*HZ)
83 
84 static char version[] =
85 	"QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87 
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90 		   "BCM57710/57711/57711E/"
91 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92 		   "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98 
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
101 MODULE_PARM_DESC(num_queues,
102 		 " Set number of queues (default is as a number of CPUs)");
103 
104 static int disable_tpa;
105 module_param(disable_tpa, int, 0444);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107 
108 static int int_mode;
109 module_param(int_mode, int, 0444);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 				"(1 INT#x; 2 MSI)");
112 
113 static int dropless_fc;
114 module_param(dropless_fc, int, 0444);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116 
117 static int mrrs = -1;
118 module_param(mrrs, int, 0444);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120 
121 static int debug;
122 module_param(debug, int, 0444);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124 
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127 
128 struct bnx2x_mac_vals {
129 	u32 xmac_addr;
130 	u32 xmac_val;
131 	u32 emac_addr;
132 	u32 emac_val;
133 	u32 umac_addr[2];
134 	u32 umac_val[2];
135 	u32 bmac_addr;
136 	u32 bmac_val[2];
137 };
138 
139 enum bnx2x_board_type {
140 	BCM57710 = 0,
141 	BCM57711,
142 	BCM57711E,
143 	BCM57712,
144 	BCM57712_MF,
145 	BCM57712_VF,
146 	BCM57800,
147 	BCM57800_MF,
148 	BCM57800_VF,
149 	BCM57810,
150 	BCM57810_MF,
151 	BCM57810_VF,
152 	BCM57840_4_10,
153 	BCM57840_2_20,
154 	BCM57840_MF,
155 	BCM57840_VF,
156 	BCM57811,
157 	BCM57811_MF,
158 	BCM57840_O,
159 	BCM57840_MFO,
160 	BCM57811_VF
161 };
162 
163 /* indexed by board_type, above */
164 static struct {
165 	char *name;
166 } board_info[] = {
167 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
169 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
170 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
171 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
174 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
177 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
180 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
181 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
184 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189 
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
252 #endif
253 
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 	{ 0 }
280 };
281 
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283 
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288 
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293 
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297 
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299 
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301 				       u32 addr, dma_addr_t mapping)
302 {
303 	REG_WR(bp,  addr, U64_LO(mapping));
304 	REG_WR(bp,  addr + 4, U64_HI(mapping));
305 }
306 
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308 				  dma_addr_t mapping, u16 abs_fid)
309 {
310 	u32 addr = XSEM_REG_FAST_MEMORY +
311 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312 
313 	__storm_memset_dma_mapping(bp, addr, mapping);
314 }
315 
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317 				  u16 pf_id)
318 {
319 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320 		pf_id);
321 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322 		pf_id);
323 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324 		pf_id);
325 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326 		pf_id);
327 }
328 
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330 				 u8 enable)
331 {
332 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333 		enable);
334 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335 		enable);
336 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337 		enable);
338 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339 		enable);
340 }
341 
342 static void storm_memset_eq_data(struct bnx2x *bp,
343 				 struct event_ring_data *eq_data,
344 				u16 pfid)
345 {
346 	size_t size = sizeof(struct event_ring_data);
347 
348 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349 
350 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352 
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354 				 u16 pfid)
355 {
356 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357 	REG_WR16(bp, addr, eq_prod);
358 }
359 
360 /* used only at init
361  * locking is done by mcp
362  */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 			       PCICFG_VENDOR_ID_OFFSET);
369 }
370 
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373 	u32 val;
374 
375 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378 			       PCICFG_VENDOR_ID_OFFSET);
379 
380 	return val;
381 }
382 
383 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE	"dst_addr [none]"
388 
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390 			  struct dmae_command *dmae, int msglvl)
391 {
392 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393 	int i;
394 
395 	switch (dmae->opcode & DMAE_COMMAND_DST) {
396 	case DMAE_CMD_DST_PCI:
397 		if (src_type == DMAE_CMD_SRC_PCI)
398 			DP(msglvl, "DMAE: opcode 0x%08x\n"
399 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
404 			   dmae->comp_val);
405 		else
406 			DP(msglvl, "DMAE: opcode 0x%08x\n"
407 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
408 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 			   dmae->opcode, dmae->src_addr_lo >> 2,
410 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
412 			   dmae->comp_val);
413 		break;
414 	case DMAE_CMD_DST_GRC:
415 		if (src_type == DMAE_CMD_SRC_PCI)
416 			DP(msglvl, "DMAE: opcode 0x%08x\n"
417 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420 			   dmae->len, dmae->dst_addr_lo >> 2,
421 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
422 			   dmae->comp_val);
423 		else
424 			DP(msglvl, "DMAE: opcode 0x%08x\n"
425 			   "src [%08x], len [%d*4], dst [%08x]\n"
426 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
427 			   dmae->opcode, dmae->src_addr_lo >> 2,
428 			   dmae->len, dmae->dst_addr_lo >> 2,
429 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
430 			   dmae->comp_val);
431 		break;
432 	default:
433 		if (src_type == DMAE_CMD_SRC_PCI)
434 			DP(msglvl, "DMAE: opcode 0x%08x\n"
435 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
436 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 			   dmae->comp_val);
440 		else
441 			DP(msglvl, "DMAE: opcode 0x%08x\n"
442 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
443 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
444 			   dmae->opcode, dmae->src_addr_lo >> 2,
445 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446 			   dmae->comp_val);
447 		break;
448 	}
449 
450 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452 		   i, *(((u32 *)dmae) + i));
453 }
454 
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458 	u32 cmd_offset;
459 	int i;
460 
461 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464 	}
465 	REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467 
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471 			   DMAE_CMD_C_ENABLE);
472 }
473 
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476 	return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478 
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480 			     bool with_comp, u8 comp_type)
481 {
482 	u32 opcode = 0;
483 
484 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
486 
487 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488 
489 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493 
494 #ifdef __BIG_ENDIAN
495 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499 	if (with_comp)
500 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501 	return opcode;
502 }
503 
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505 				      struct dmae_command *dmae,
506 				      u8 src_type, u8 dst_type)
507 {
508 	memset(dmae, 0, sizeof(struct dmae_command));
509 
510 	/* set the opcode */
511 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512 					 true, DMAE_COMP_PCI);
513 
514 	/* fill in the completion parameters */
515 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517 	dmae->comp_val = DMAE_COMP_VAL;
518 }
519 
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522 			       u32 *comp)
523 {
524 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525 	int rc = 0;
526 
527 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528 
529 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
530 	 * as long as this code is called both from syscall context and
531 	 * from ndo_set_rx_mode() flow that may be called from BH.
532 	 */
533 
534 	spin_lock_bh(&bp->dmae_lock);
535 
536 	/* reset completion */
537 	*comp = 0;
538 
539 	/* post the command on the channel used for initializations */
540 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541 
542 	/* wait for completion */
543 	udelay(5);
544 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545 
546 		if (!cnt ||
547 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549 			BNX2X_ERR("DMAE timeout!\n");
550 			rc = DMAE_TIMEOUT;
551 			goto unlock;
552 		}
553 		cnt--;
554 		udelay(50);
555 	}
556 	if (*comp & DMAE_PCI_ERR_FLAG) {
557 		BNX2X_ERR("DMAE PCI error!\n");
558 		rc = DMAE_PCI_ERROR;
559 	}
560 
561 unlock:
562 
563 	spin_unlock_bh(&bp->dmae_lock);
564 
565 	return rc;
566 }
567 
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569 		      u32 len32)
570 {
571 	int rc;
572 	struct dmae_command dmae;
573 
574 	if (!bp->dmae_ready) {
575 		u32 *data = bnx2x_sp(bp, wb_data[0]);
576 
577 		if (CHIP_IS_E1(bp))
578 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579 		else
580 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
581 		return;
582 	}
583 
584 	/* set opcode and fixed command fields */
585 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586 
587 	/* fill in addresses and len */
588 	dmae.src_addr_lo = U64_LO(dma_addr);
589 	dmae.src_addr_hi = U64_HI(dma_addr);
590 	dmae.dst_addr_lo = dst_addr >> 2;
591 	dmae.dst_addr_hi = 0;
592 	dmae.len = len32;
593 
594 	/* issue the command and wait for completion */
595 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596 	if (rc) {
597 		BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599 		bnx2x_panic();
600 #endif
601 	}
602 }
603 
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606 	int rc;
607 	struct dmae_command dmae;
608 
609 	if (!bp->dmae_ready) {
610 		u32 *data = bnx2x_sp(bp, wb_data[0]);
611 		int i;
612 
613 		if (CHIP_IS_E1(bp))
614 			for (i = 0; i < len32; i++)
615 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616 		else
617 			for (i = 0; i < len32; i++)
618 				data[i] = REG_RD(bp, src_addr + i*4);
619 
620 		return;
621 	}
622 
623 	/* set opcode and fixed command fields */
624 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625 
626 	/* fill in addresses and len */
627 	dmae.src_addr_lo = src_addr >> 2;
628 	dmae.src_addr_hi = 0;
629 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631 	dmae.len = len32;
632 
633 	/* issue the command and wait for completion */
634 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635 	if (rc) {
636 		BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638 		bnx2x_panic();
639 #endif
640 	}
641 }
642 
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644 				      u32 addr, u32 len)
645 {
646 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647 	int offset = 0;
648 
649 	while (len > dmae_wr_max) {
650 		bnx2x_write_dmae(bp, phys_addr + offset,
651 				 addr + offset, dmae_wr_max);
652 		offset += dmae_wr_max * 4;
653 		len -= dmae_wr_max;
654 	}
655 
656 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658 
659 enum storms {
660 	   XSTORM,
661 	   TSTORM,
662 	   CSTORM,
663 	   USTORM,
664 	   MAX_STORMS
665 };
666 
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669 
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671 					      enum storms storm,
672 					      int entry)
673 {
674 	switch (storm) {
675 	case XSTORM:
676 		return XSTORM_ASSERT_LIST_OFFSET(entry);
677 	case TSTORM:
678 		return TSTORM_ASSERT_LIST_OFFSET(entry);
679 	case CSTORM:
680 		return CSTORM_ASSERT_LIST_OFFSET(entry);
681 	case USTORM:
682 		return USTORM_ASSERT_LIST_OFFSET(entry);
683 	case MAX_STORMS:
684 	default:
685 		BNX2X_ERR("unknown storm\n");
686 	}
687 	return -EINVAL;
688 }
689 
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692 	char last_idx;
693 	int i, j, rc = 0;
694 	enum storms storm;
695 	u32 regs[REGS_IN_ENTRY];
696 	u32 bar_storm_intmem[STORMS_NUM] = {
697 		BAR_XSTRORM_INTMEM,
698 		BAR_TSTRORM_INTMEM,
699 		BAR_CSTRORM_INTMEM,
700 		BAR_USTRORM_INTMEM
701 	};
702 	u32 storm_assert_list_index[STORMS_NUM] = {
703 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
704 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
705 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
706 		USTORM_ASSERT_LIST_INDEX_OFFSET
707 	};
708 	char *storms_string[STORMS_NUM] = {
709 		"XSTORM",
710 		"TSTORM",
711 		"CSTORM",
712 		"USTORM"
713 	};
714 
715 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717 				   storm_assert_list_index[storm]);
718 		if (last_idx)
719 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720 				  storms_string[storm], last_idx);
721 
722 		/* print the asserts */
723 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724 			/* read a single assert entry */
725 			for (j = 0; j < REGS_IN_ENTRY; j++)
726 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727 					  bnx2x_get_assert_list_entry(bp,
728 								      storm,
729 								      i) +
730 					  sizeof(u32) * j);
731 
732 			/* log entry if it contains a valid assert */
733 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735 					  storms_string[storm], i, regs[3],
736 					  regs[2], regs[1], regs[0]);
737 				rc++;
738 			} else {
739 				break;
740 			}
741 		}
742 	}
743 
744 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745 		  CHIP_IS_E1(bp) ? "everest1" :
746 		  CHIP_IS_E1H(bp) ? "everest1h" :
747 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
748 		  BCM_5710_FW_MAJOR_VERSION,
749 		  BCM_5710_FW_MINOR_VERSION,
750 		  BCM_5710_FW_REVISION_VERSION);
751 
752 	return rc;
753 }
754 
755 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
756 #define SCRATCH_BUFFER_SIZE(bp)	\
757 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758 
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761 	u32 addr, val;
762 	u32 mark, offset;
763 	__be32 data[9];
764 	int word;
765 	u32 trace_shmem_base;
766 	if (BP_NOMCP(bp)) {
767 		BNX2X_ERR("NO MCP - can not dump\n");
768 		return;
769 	}
770 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771 		(bp->common.bc_ver & 0xff0000) >> 16,
772 		(bp->common.bc_ver & 0xff00) >> 8,
773 		(bp->common.bc_ver & 0xff));
774 
775 	if (pci_channel_offline(bp->pdev)) {
776 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
777 		return;
778 	}
779 
780 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
781 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
782 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
783 
784 	if (BP_PATH(bp) == 0)
785 		trace_shmem_base = bp->common.shmem_base;
786 	else
787 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
788 
789 	/* sanity */
790 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
791 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
792 				SCRATCH_BUFFER_SIZE(bp)) {
793 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
794 			  trace_shmem_base);
795 		return;
796 	}
797 
798 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
799 
800 	/* validate TRCB signature */
801 	mark = REG_RD(bp, addr);
802 	if (mark != MFW_TRACE_SIGNATURE) {
803 		BNX2X_ERR("Trace buffer signature is missing.");
804 		return ;
805 	}
806 
807 	/* read cyclic buffer pointer */
808 	addr += 4;
809 	mark = REG_RD(bp, addr);
810 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
811 	if (mark >= trace_shmem_base || mark < addr + 4) {
812 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
813 		return;
814 	}
815 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
816 
817 	printk("%s", lvl);
818 
819 	/* dump buffer after the mark */
820 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
821 		for (word = 0; word < 8; word++)
822 			data[word] = htonl(REG_RD(bp, offset + 4*word));
823 		data[8] = 0x0;
824 		pr_cont("%s", (char *)data);
825 	}
826 
827 	/* dump buffer before the mark */
828 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
829 		for (word = 0; word < 8; word++)
830 			data[word] = htonl(REG_RD(bp, offset + 4*word));
831 		data[8] = 0x0;
832 		pr_cont("%s", (char *)data);
833 	}
834 	printk("%s" "end of fw dump\n", lvl);
835 }
836 
837 static void bnx2x_fw_dump(struct bnx2x *bp)
838 {
839 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
840 }
841 
842 static void bnx2x_hc_int_disable(struct bnx2x *bp)
843 {
844 	int port = BP_PORT(bp);
845 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
846 	u32 val = REG_RD(bp, addr);
847 
848 	/* in E1 we must use only PCI configuration space to disable
849 	 * MSI/MSIX capability
850 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
851 	 */
852 	if (CHIP_IS_E1(bp)) {
853 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
854 		 * Use mask register to prevent from HC sending interrupts
855 		 * after we exit the function
856 		 */
857 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
858 
859 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
861 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862 	} else
863 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
864 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
865 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867 
868 	DP(NETIF_MSG_IFDOWN,
869 	   "write %x to HC %d (addr 0x%x)\n",
870 	   val, port, addr);
871 
872 	/* flush all outstanding writes */
873 	mmiowb();
874 
875 	REG_WR(bp, addr, val);
876 	if (REG_RD(bp, addr) != val)
877 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
878 }
879 
880 static void bnx2x_igu_int_disable(struct bnx2x *bp)
881 {
882 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
883 
884 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
885 		 IGU_PF_CONF_INT_LINE_EN |
886 		 IGU_PF_CONF_ATTN_BIT_EN);
887 
888 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
889 
890 	/* flush all outstanding writes */
891 	mmiowb();
892 
893 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
894 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
895 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
896 }
897 
898 static void bnx2x_int_disable(struct bnx2x *bp)
899 {
900 	if (bp->common.int_block == INT_BLOCK_HC)
901 		bnx2x_hc_int_disable(bp);
902 	else
903 		bnx2x_igu_int_disable(bp);
904 }
905 
906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
907 {
908 	int i;
909 	u16 j;
910 	struct hc_sp_status_block_data sp_sb_data;
911 	int func = BP_FUNC(bp);
912 #ifdef BNX2X_STOP_ON_ERROR
913 	u16 start = 0, end = 0;
914 	u8 cos;
915 #endif
916 	if (IS_PF(bp) && disable_int)
917 		bnx2x_int_disable(bp);
918 
919 	bp->stats_state = STATS_STATE_DISABLED;
920 	bp->eth_stats.unrecoverable_error++;
921 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
922 
923 	BNX2X_ERR("begin crash dump -----------------\n");
924 
925 	/* Indices */
926 	/* Common */
927 	if (IS_PF(bp)) {
928 		struct host_sp_status_block *def_sb = bp->def_status_blk;
929 		int data_size, cstorm_offset;
930 
931 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
932 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
933 			  bp->spq_prod_idx, bp->stats_counter);
934 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
935 			  def_sb->atten_status_block.attn_bits,
936 			  def_sb->atten_status_block.attn_bits_ack,
937 			  def_sb->atten_status_block.status_block_id,
938 			  def_sb->atten_status_block.attn_bits_index);
939 		BNX2X_ERR("     def (");
940 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
941 			pr_cont("0x%x%s",
942 				def_sb->sp_sb.index_values[i],
943 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
944 
945 		data_size = sizeof(struct hc_sp_status_block_data) /
946 			    sizeof(u32);
947 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
948 		for (i = 0; i < data_size; i++)
949 			*((u32 *)&sp_sb_data + i) =
950 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
951 					   i * sizeof(u32));
952 
953 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
954 			sp_sb_data.igu_sb_id,
955 			sp_sb_data.igu_seg_id,
956 			sp_sb_data.p_func.pf_id,
957 			sp_sb_data.p_func.vnic_id,
958 			sp_sb_data.p_func.vf_id,
959 			sp_sb_data.p_func.vf_valid,
960 			sp_sb_data.state);
961 	}
962 
963 	for_each_eth_queue(bp, i) {
964 		struct bnx2x_fastpath *fp = &bp->fp[i];
965 		int loop;
966 		struct hc_status_block_data_e2 sb_data_e2;
967 		struct hc_status_block_data_e1x sb_data_e1x;
968 		struct hc_status_block_sm  *hc_sm_p =
969 			CHIP_IS_E1x(bp) ?
970 			sb_data_e1x.common.state_machine :
971 			sb_data_e2.common.state_machine;
972 		struct hc_index_data *hc_index_p =
973 			CHIP_IS_E1x(bp) ?
974 			sb_data_e1x.index_data :
975 			sb_data_e2.index_data;
976 		u8 data_size, cos;
977 		u32 *sb_data_p;
978 		struct bnx2x_fp_txdata txdata;
979 
980 		if (!bp->fp)
981 			break;
982 
983 		if (!fp->rx_cons_sb)
984 			continue;
985 
986 		/* Rx */
987 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
989 			  fp->rx_comp_prod,
990 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992 			  fp->rx_sge_prod, fp->last_max_sge,
993 			  le16_to_cpu(fp->fp_hc_idx));
994 
995 		/* Tx */
996 		for_each_cos_in_tx_queue(fp, cos)
997 		{
998 			if (!fp->txdata_ptr[cos])
999 				break;
1000 
1001 			txdata = *fp->txdata_ptr[cos];
1002 
1003 			if (!txdata.tx_cons_sb)
1004 				continue;
1005 
1006 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1007 				  i, txdata.tx_pkt_prod,
1008 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1009 				  txdata.tx_bd_cons,
1010 				  le16_to_cpu(*txdata.tx_cons_sb));
1011 		}
1012 
1013 		loop = CHIP_IS_E1x(bp) ?
1014 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1015 
1016 		/* host sb data */
1017 
1018 		if (IS_FCOE_FP(fp))
1019 			continue;
1020 
1021 		BNX2X_ERR("     run indexes (");
1022 		for (j = 0; j < HC_SB_MAX_SM; j++)
1023 			pr_cont("0x%x%s",
1024 			       fp->sb_running_index[j],
1025 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1026 
1027 		BNX2X_ERR("     indexes (");
1028 		for (j = 0; j < loop; j++)
1029 			pr_cont("0x%x%s",
1030 			       fp->sb_index_values[j],
1031 			       (j == loop - 1) ? ")" : " ");
1032 
1033 		/* VF cannot access FW refelection for status block */
1034 		if (IS_VF(bp))
1035 			continue;
1036 
1037 		/* fw sb data */
1038 		data_size = CHIP_IS_E1x(bp) ?
1039 			sizeof(struct hc_status_block_data_e1x) :
1040 			sizeof(struct hc_status_block_data_e2);
1041 		data_size /= sizeof(u32);
1042 		sb_data_p = CHIP_IS_E1x(bp) ?
1043 			(u32 *)&sb_data_e1x :
1044 			(u32 *)&sb_data_e2;
1045 		/* copy sb data in here */
1046 		for (j = 0; j < data_size; j++)
1047 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1048 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1049 				j * sizeof(u32));
1050 
1051 		if (!CHIP_IS_E1x(bp)) {
1052 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1053 				sb_data_e2.common.p_func.pf_id,
1054 				sb_data_e2.common.p_func.vf_id,
1055 				sb_data_e2.common.p_func.vf_valid,
1056 				sb_data_e2.common.p_func.vnic_id,
1057 				sb_data_e2.common.same_igu_sb_1b,
1058 				sb_data_e2.common.state);
1059 		} else {
1060 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1061 				sb_data_e1x.common.p_func.pf_id,
1062 				sb_data_e1x.common.p_func.vf_id,
1063 				sb_data_e1x.common.p_func.vf_valid,
1064 				sb_data_e1x.common.p_func.vnic_id,
1065 				sb_data_e1x.common.same_igu_sb_1b,
1066 				sb_data_e1x.common.state);
1067 		}
1068 
1069 		/* SB_SMs data */
1070 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1071 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1072 				j, hc_sm_p[j].__flags,
1073 				hc_sm_p[j].igu_sb_id,
1074 				hc_sm_p[j].igu_seg_id,
1075 				hc_sm_p[j].time_to_expire,
1076 				hc_sm_p[j].timer_value);
1077 		}
1078 
1079 		/* Indices data */
1080 		for (j = 0; j < loop; j++) {
1081 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1082 			       hc_index_p[j].flags,
1083 			       hc_index_p[j].timeout);
1084 		}
1085 	}
1086 
1087 #ifdef BNX2X_STOP_ON_ERROR
1088 	if (IS_PF(bp)) {
1089 		/* event queue */
1090 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1091 		for (i = 0; i < NUM_EQ_DESC; i++) {
1092 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1093 
1094 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1095 				  i, bp->eq_ring[i].message.opcode,
1096 				  bp->eq_ring[i].message.error);
1097 			BNX2X_ERR("data: %x %x %x\n",
1098 				  data[0], data[1], data[2]);
1099 		}
1100 	}
1101 
1102 	/* Rings */
1103 	/* Rx */
1104 	for_each_valid_rx_queue(bp, i) {
1105 		struct bnx2x_fastpath *fp = &bp->fp[i];
1106 
1107 		if (!bp->fp)
1108 			break;
1109 
1110 		if (!fp->rx_cons_sb)
1111 			continue;
1112 
1113 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1114 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1115 		for (j = start; j != end; j = RX_BD(j + 1)) {
1116 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1117 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1118 
1119 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1120 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1121 		}
1122 
1123 		start = RX_SGE(fp->rx_sge_prod);
1124 		end = RX_SGE(fp->last_max_sge);
1125 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1126 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1127 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1128 
1129 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1130 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1131 		}
1132 
1133 		start = RCQ_BD(fp->rx_comp_cons - 10);
1134 		end = RCQ_BD(fp->rx_comp_cons + 503);
1135 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1136 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1137 
1138 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1139 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1140 		}
1141 	}
1142 
1143 	/* Tx */
1144 	for_each_valid_tx_queue(bp, i) {
1145 		struct bnx2x_fastpath *fp = &bp->fp[i];
1146 
1147 		if (!bp->fp)
1148 			break;
1149 
1150 		for_each_cos_in_tx_queue(fp, cos) {
1151 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1152 
1153 			if (!fp->txdata_ptr[cos])
1154 				break;
1155 
1156 			if (!txdata->tx_cons_sb)
1157 				continue;
1158 
1159 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1160 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1161 			for (j = start; j != end; j = TX_BD(j + 1)) {
1162 				struct sw_tx_bd *sw_bd =
1163 					&txdata->tx_buf_ring[j];
1164 
1165 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1166 					  i, cos, j, sw_bd->skb,
1167 					  sw_bd->first_bd);
1168 			}
1169 
1170 			start = TX_BD(txdata->tx_bd_cons - 10);
1171 			end = TX_BD(txdata->tx_bd_cons + 254);
1172 			for (j = start; j != end; j = TX_BD(j + 1)) {
1173 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1174 
1175 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1176 					  i, cos, j, tx_bd[0], tx_bd[1],
1177 					  tx_bd[2], tx_bd[3]);
1178 			}
1179 		}
1180 	}
1181 #endif
1182 	if (IS_PF(bp)) {
1183 		bnx2x_fw_dump(bp);
1184 		bnx2x_mc_assert(bp);
1185 	}
1186 	BNX2X_ERR("end crash dump -----------------\n");
1187 }
1188 
1189 /*
1190  * FLR Support for E2
1191  *
1192  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1193  * initialization.
1194  */
1195 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1196 #define FLR_WAIT_INTERVAL	50	/* usec */
1197 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1198 
1199 struct pbf_pN_buf_regs {
1200 	int pN;
1201 	u32 init_crd;
1202 	u32 crd;
1203 	u32 crd_freed;
1204 };
1205 
1206 struct pbf_pN_cmd_regs {
1207 	int pN;
1208 	u32 lines_occup;
1209 	u32 lines_freed;
1210 };
1211 
1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1213 				     struct pbf_pN_buf_regs *regs,
1214 				     u32 poll_count)
1215 {
1216 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1217 	u32 cur_cnt = poll_count;
1218 
1219 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1220 	crd = crd_start = REG_RD(bp, regs->crd);
1221 	init_crd = REG_RD(bp, regs->init_crd);
1222 
1223 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1224 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1225 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1226 
1227 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1228 	       (init_crd - crd_start))) {
1229 		if (cur_cnt--) {
1230 			udelay(FLR_WAIT_INTERVAL);
1231 			crd = REG_RD(bp, regs->crd);
1232 			crd_freed = REG_RD(bp, regs->crd_freed);
1233 		} else {
1234 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1235 			   regs->pN);
1236 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1237 			   regs->pN, crd);
1238 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1239 			   regs->pN, crd_freed);
1240 			break;
1241 		}
1242 	}
1243 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1244 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1245 }
1246 
1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1248 				     struct pbf_pN_cmd_regs *regs,
1249 				     u32 poll_count)
1250 {
1251 	u32 occup, to_free, freed, freed_start;
1252 	u32 cur_cnt = poll_count;
1253 
1254 	occup = to_free = REG_RD(bp, regs->lines_occup);
1255 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1256 
1257 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1258 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1259 
1260 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1261 		if (cur_cnt--) {
1262 			udelay(FLR_WAIT_INTERVAL);
1263 			occup = REG_RD(bp, regs->lines_occup);
1264 			freed = REG_RD(bp, regs->lines_freed);
1265 		} else {
1266 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1267 			   regs->pN);
1268 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1269 			   regs->pN, occup);
1270 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1271 			   regs->pN, freed);
1272 			break;
1273 		}
1274 	}
1275 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1276 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1277 }
1278 
1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1280 				    u32 expected, u32 poll_count)
1281 {
1282 	u32 cur_cnt = poll_count;
1283 	u32 val;
1284 
1285 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1286 		udelay(FLR_WAIT_INTERVAL);
1287 
1288 	return val;
1289 }
1290 
1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1292 				    char *msg, u32 poll_cnt)
1293 {
1294 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1295 	if (val != 0) {
1296 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1297 		return 1;
1298 	}
1299 	return 0;
1300 }
1301 
1302 /* Common routines with VF FLR cleanup */
1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1304 {
1305 	/* adjust polling timeout */
1306 	if (CHIP_REV_IS_EMUL(bp))
1307 		return FLR_POLL_CNT * 2000;
1308 
1309 	if (CHIP_REV_IS_FPGA(bp))
1310 		return FLR_POLL_CNT * 120;
1311 
1312 	return FLR_POLL_CNT;
1313 }
1314 
1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1316 {
1317 	struct pbf_pN_cmd_regs cmd_regs[] = {
1318 		{0, (CHIP_IS_E3B0(bp)) ?
1319 			PBF_REG_TQ_OCCUPANCY_Q0 :
1320 			PBF_REG_P0_TQ_OCCUPANCY,
1321 		    (CHIP_IS_E3B0(bp)) ?
1322 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1323 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1324 		{1, (CHIP_IS_E3B0(bp)) ?
1325 			PBF_REG_TQ_OCCUPANCY_Q1 :
1326 			PBF_REG_P1_TQ_OCCUPANCY,
1327 		    (CHIP_IS_E3B0(bp)) ?
1328 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1329 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1330 		{4, (CHIP_IS_E3B0(bp)) ?
1331 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1332 			PBF_REG_P4_TQ_OCCUPANCY,
1333 		    (CHIP_IS_E3B0(bp)) ?
1334 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1335 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1336 	};
1337 
1338 	struct pbf_pN_buf_regs buf_regs[] = {
1339 		{0, (CHIP_IS_E3B0(bp)) ?
1340 			PBF_REG_INIT_CRD_Q0 :
1341 			PBF_REG_P0_INIT_CRD ,
1342 		    (CHIP_IS_E3B0(bp)) ?
1343 			PBF_REG_CREDIT_Q0 :
1344 			PBF_REG_P0_CREDIT,
1345 		    (CHIP_IS_E3B0(bp)) ?
1346 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1347 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1348 		{1, (CHIP_IS_E3B0(bp)) ?
1349 			PBF_REG_INIT_CRD_Q1 :
1350 			PBF_REG_P1_INIT_CRD,
1351 		    (CHIP_IS_E3B0(bp)) ?
1352 			PBF_REG_CREDIT_Q1 :
1353 			PBF_REG_P1_CREDIT,
1354 		    (CHIP_IS_E3B0(bp)) ?
1355 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1356 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1357 		{4, (CHIP_IS_E3B0(bp)) ?
1358 			PBF_REG_INIT_CRD_LB_Q :
1359 			PBF_REG_P4_INIT_CRD,
1360 		    (CHIP_IS_E3B0(bp)) ?
1361 			PBF_REG_CREDIT_LB_Q :
1362 			PBF_REG_P4_CREDIT,
1363 		    (CHIP_IS_E3B0(bp)) ?
1364 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1365 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1366 	};
1367 
1368 	int i;
1369 
1370 	/* Verify the command queues are flushed P0, P1, P4 */
1371 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1372 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1373 
1374 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1375 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1376 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1377 }
1378 
1379 #define OP_GEN_PARAM(param) \
1380 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1381 
1382 #define OP_GEN_TYPE(type) \
1383 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1384 
1385 #define OP_GEN_AGG_VECT(index) \
1386 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1387 
1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1389 {
1390 	u32 op_gen_command = 0;
1391 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1392 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1393 	int ret = 0;
1394 
1395 	if (REG_RD(bp, comp_addr)) {
1396 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1397 		return 1;
1398 	}
1399 
1400 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1401 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1402 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1403 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1404 
1405 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1406 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1407 
1408 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1409 		BNX2X_ERR("FW final cleanup did not succeed\n");
1410 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1411 		   (REG_RD(bp, comp_addr)));
1412 		bnx2x_panic();
1413 		return 1;
1414 	}
1415 	/* Zero completion for next FLR */
1416 	REG_WR(bp, comp_addr, 0);
1417 
1418 	return ret;
1419 }
1420 
1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1422 {
1423 	u16 status;
1424 
1425 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1426 	return status & PCI_EXP_DEVSTA_TRPND;
1427 }
1428 
1429 /* PF FLR specific routines
1430 */
1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1432 {
1433 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1434 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1435 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1436 			"CFC PF usage counter timed out",
1437 			poll_cnt))
1438 		return 1;
1439 
1440 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1441 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1442 			DORQ_REG_PF_USAGE_CNT,
1443 			"DQ PF usage counter timed out",
1444 			poll_cnt))
1445 		return 1;
1446 
1447 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1448 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1450 			"QM PF usage counter timed out",
1451 			poll_cnt))
1452 		return 1;
1453 
1454 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1455 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1457 			"Timers VNIC usage counter timed out",
1458 			poll_cnt))
1459 		return 1;
1460 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1462 			"Timers NUM_SCANS usage counter timed out",
1463 			poll_cnt))
1464 		return 1;
1465 
1466 	/* Wait DMAE PF usage counter to zero */
1467 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1468 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1469 			"DMAE command register timed out",
1470 			poll_cnt))
1471 		return 1;
1472 
1473 	return 0;
1474 }
1475 
1476 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1477 {
1478 	u32 val;
1479 
1480 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1481 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1482 
1483 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1484 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1485 
1486 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1487 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1488 
1489 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1490 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1491 
1492 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1493 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1494 
1495 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1496 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1497 
1498 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1499 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1500 
1501 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1502 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1503 	   val);
1504 }
1505 
1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1507 {
1508 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1509 
1510 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1511 
1512 	/* Re-enable PF target read access */
1513 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1514 
1515 	/* Poll HW usage counters */
1516 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1517 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1518 		return -EBUSY;
1519 
1520 	/* Zero the igu 'trailing edge' and 'leading edge' */
1521 
1522 	/* Send the FW cleanup command */
1523 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1524 		return -EBUSY;
1525 
1526 	/* ATC cleanup */
1527 
1528 	/* Verify TX hw is flushed */
1529 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1530 
1531 	/* Wait 100ms (not adjusted according to platform) */
1532 	msleep(100);
1533 
1534 	/* Verify no pending pci transactions */
1535 	if (bnx2x_is_pcie_pending(bp->pdev))
1536 		BNX2X_ERR("PCIE Transactions still pending\n");
1537 
1538 	/* Debug */
1539 	bnx2x_hw_enable_status(bp);
1540 
1541 	/*
1542 	 * Master enable - Due to WB DMAE writes performed before this
1543 	 * register is re-initialized as part of the regular function init
1544 	 */
1545 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1546 
1547 	return 0;
1548 }
1549 
1550 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1551 {
1552 	int port = BP_PORT(bp);
1553 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1554 	u32 val = REG_RD(bp, addr);
1555 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1556 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1557 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1558 
1559 	if (msix) {
1560 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1561 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1562 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1563 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1564 		if (single_msix)
1565 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1566 	} else if (msi) {
1567 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1568 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571 	} else {
1572 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1573 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1574 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1575 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576 
1577 		if (!CHIP_IS_E1(bp)) {
1578 			DP(NETIF_MSG_IFUP,
1579 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1580 
1581 			REG_WR(bp, addr, val);
1582 
1583 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1584 		}
1585 	}
1586 
1587 	if (CHIP_IS_E1(bp))
1588 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1589 
1590 	DP(NETIF_MSG_IFUP,
1591 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1592 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1593 
1594 	REG_WR(bp, addr, val);
1595 	/*
1596 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1597 	 */
1598 	mmiowb();
1599 	barrier();
1600 
1601 	if (!CHIP_IS_E1(bp)) {
1602 		/* init leading/trailing edge */
1603 		if (IS_MF(bp)) {
1604 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1605 			if (bp->port.pmf)
1606 				/* enable nig and gpio3 attention */
1607 				val |= 0x1100;
1608 		} else
1609 			val = 0xffff;
1610 
1611 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1612 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1613 	}
1614 
1615 	/* Make sure that interrupts are indeed enabled from here on */
1616 	mmiowb();
1617 }
1618 
1619 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1620 {
1621 	u32 val;
1622 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1623 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1624 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1625 
1626 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1627 
1628 	if (msix) {
1629 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1630 			 IGU_PF_CONF_SINGLE_ISR_EN);
1631 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1632 			IGU_PF_CONF_ATTN_BIT_EN);
1633 
1634 		if (single_msix)
1635 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1636 	} else if (msi) {
1637 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1638 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1639 			IGU_PF_CONF_ATTN_BIT_EN |
1640 			IGU_PF_CONF_SINGLE_ISR_EN);
1641 	} else {
1642 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1643 		val |= (IGU_PF_CONF_INT_LINE_EN |
1644 			IGU_PF_CONF_ATTN_BIT_EN |
1645 			IGU_PF_CONF_SINGLE_ISR_EN);
1646 	}
1647 
1648 	/* Clean previous status - need to configure igu prior to ack*/
1649 	if ((!msix) || single_msix) {
1650 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651 		bnx2x_ack_int(bp);
1652 	}
1653 
1654 	val |= IGU_PF_CONF_FUNC_EN;
1655 
1656 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1657 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1658 
1659 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660 
1661 	if (val & IGU_PF_CONF_INT_LINE_EN)
1662 		pci_intx(bp->pdev, true);
1663 
1664 	barrier();
1665 
1666 	/* init leading/trailing edge */
1667 	if (IS_MF(bp)) {
1668 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1669 		if (bp->port.pmf)
1670 			/* enable nig and gpio3 attention */
1671 			val |= 0x1100;
1672 	} else
1673 		val = 0xffff;
1674 
1675 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1676 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1677 
1678 	/* Make sure that interrupts are indeed enabled from here on */
1679 	mmiowb();
1680 }
1681 
1682 void bnx2x_int_enable(struct bnx2x *bp)
1683 {
1684 	if (bp->common.int_block == INT_BLOCK_HC)
1685 		bnx2x_hc_int_enable(bp);
1686 	else
1687 		bnx2x_igu_int_enable(bp);
1688 }
1689 
1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1691 {
1692 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1693 	int i, offset;
1694 
1695 	if (disable_hw)
1696 		/* prevent the HW from sending interrupts */
1697 		bnx2x_int_disable(bp);
1698 
1699 	/* make sure all ISRs are done */
1700 	if (msix) {
1701 		synchronize_irq(bp->msix_table[0].vector);
1702 		offset = 1;
1703 		if (CNIC_SUPPORT(bp))
1704 			offset++;
1705 		for_each_eth_queue(bp, i)
1706 			synchronize_irq(bp->msix_table[offset++].vector);
1707 	} else
1708 		synchronize_irq(bp->pdev->irq);
1709 
1710 	/* make sure sp_task is not running */
1711 	cancel_delayed_work(&bp->sp_task);
1712 	cancel_delayed_work(&bp->period_task);
1713 	flush_workqueue(bnx2x_wq);
1714 }
1715 
1716 /* fast path */
1717 
1718 /*
1719  * General service functions
1720  */
1721 
1722 /* Return true if succeeded to acquire the lock */
1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1724 {
1725 	u32 lock_status;
1726 	u32 resource_bit = (1 << resource);
1727 	int func = BP_FUNC(bp);
1728 	u32 hw_lock_control_reg;
1729 
1730 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 	   "Trying to take a lock on resource %d\n", resource);
1732 
1733 	/* Validating that the resource is within range */
1734 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1735 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1736 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1737 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1738 		return false;
1739 	}
1740 
1741 	if (func <= 5)
1742 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1743 	else
1744 		hw_lock_control_reg =
1745 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1746 
1747 	/* Try to acquire the lock */
1748 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1749 	lock_status = REG_RD(bp, hw_lock_control_reg);
1750 	if (lock_status & resource_bit)
1751 		return true;
1752 
1753 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1754 	   "Failed to get a lock on resource %d\n", resource);
1755 	return false;
1756 }
1757 
1758 /**
1759  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1760  *
1761  * @bp:	driver handle
1762  *
1763  * Returns the recovery leader resource id according to the engine this function
1764  * belongs to. Currently only only 2 engines is supported.
1765  */
1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1767 {
1768 	if (BP_PATH(bp))
1769 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1770 	else
1771 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1772 }
1773 
1774 /**
1775  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1776  *
1777  * @bp: driver handle
1778  *
1779  * Tries to acquire a leader lock for current engine.
1780  */
1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1782 {
1783 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1784 }
1785 
1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1787 
1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1790 {
1791 	/* Set the interrupt occurred bit for the sp-task to recognize it
1792 	 * must ack the interrupt and transition according to the IGU
1793 	 * state machine.
1794 	 */
1795 	atomic_set(&bp->interrupt_occurred, 1);
1796 
1797 	/* The sp_task must execute only after this bit
1798 	 * is set, otherwise we will get out of sync and miss all
1799 	 * further interrupts. Hence, the barrier.
1800 	 */
1801 	smp_wmb();
1802 
1803 	/* schedule sp_task to workqueue */
1804 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1805 }
1806 
1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1808 {
1809 	struct bnx2x *bp = fp->bp;
1810 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1811 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1812 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1813 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1814 
1815 	DP(BNX2X_MSG_SP,
1816 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1817 	   fp->index, cid, command, bp->state,
1818 	   rr_cqe->ramrod_cqe.ramrod_type);
1819 
1820 	/* If cid is within VF range, replace the slowpath object with the
1821 	 * one corresponding to this VF
1822 	 */
1823 	if (cid >= BNX2X_FIRST_VF_CID  &&
1824 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1825 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1826 
1827 	switch (command) {
1828 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1829 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1830 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1831 		break;
1832 
1833 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1834 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1835 		drv_cmd = BNX2X_Q_CMD_SETUP;
1836 		break;
1837 
1838 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1839 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1840 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1841 		break;
1842 
1843 	case (RAMROD_CMD_ID_ETH_HALT):
1844 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1845 		drv_cmd = BNX2X_Q_CMD_HALT;
1846 		break;
1847 
1848 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1849 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1850 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1851 		break;
1852 
1853 	case (RAMROD_CMD_ID_ETH_EMPTY):
1854 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1855 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1856 		break;
1857 
1858 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1859 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1860 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1861 		break;
1862 
1863 	default:
1864 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1865 			  command, fp->index);
1866 		return;
1867 	}
1868 
1869 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1870 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1871 		/* q_obj->complete_cmd() failure means that this was
1872 		 * an unexpected completion.
1873 		 *
1874 		 * In this case we don't want to increase the bp->spq_left
1875 		 * because apparently we haven't sent this command the first
1876 		 * place.
1877 		 */
1878 #ifdef BNX2X_STOP_ON_ERROR
1879 		bnx2x_panic();
1880 #else
1881 		return;
1882 #endif
1883 
1884 	smp_mb__before_atomic();
1885 	atomic_inc(&bp->cq_spq_left);
1886 	/* push the change in bp->spq_left and towards the memory */
1887 	smp_mb__after_atomic();
1888 
1889 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1890 
1891 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1892 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1893 		/* if Q update ramrod is completed for last Q in AFEX vif set
1894 		 * flow, then ACK MCP at the end
1895 		 *
1896 		 * mark pending ACK to MCP bit.
1897 		 * prevent case that both bits are cleared.
1898 		 * At the end of load/unload driver checks that
1899 		 * sp_state is cleared, and this order prevents
1900 		 * races
1901 		 */
1902 		smp_mb__before_atomic();
1903 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1904 		wmb();
1905 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1906 		smp_mb__after_atomic();
1907 
1908 		/* schedule the sp task as mcp ack is required */
1909 		bnx2x_schedule_sp_task(bp);
1910 	}
1911 
1912 	return;
1913 }
1914 
1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1916 {
1917 	struct bnx2x *bp = netdev_priv(dev_instance);
1918 	u16 status = bnx2x_ack_int(bp);
1919 	u16 mask;
1920 	int i;
1921 	u8 cos;
1922 
1923 	/* Return here if interrupt is shared and it's not for us */
1924 	if (unlikely(status == 0)) {
1925 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1926 		return IRQ_NONE;
1927 	}
1928 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1929 
1930 #ifdef BNX2X_STOP_ON_ERROR
1931 	if (unlikely(bp->panic))
1932 		return IRQ_HANDLED;
1933 #endif
1934 
1935 	for_each_eth_queue(bp, i) {
1936 		struct bnx2x_fastpath *fp = &bp->fp[i];
1937 
1938 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1939 		if (status & mask) {
1940 			/* Handle Rx or Tx according to SB id */
1941 			for_each_cos_in_tx_queue(fp, cos)
1942 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1943 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1944 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1945 			status &= ~mask;
1946 		}
1947 	}
1948 
1949 	if (CNIC_SUPPORT(bp)) {
1950 		mask = 0x2;
1951 		if (status & (mask | 0x1)) {
1952 			struct cnic_ops *c_ops = NULL;
1953 
1954 			rcu_read_lock();
1955 			c_ops = rcu_dereference(bp->cnic_ops);
1956 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1957 				      CNIC_DRV_STATE_HANDLES_IRQ))
1958 				c_ops->cnic_handler(bp->cnic_data, NULL);
1959 			rcu_read_unlock();
1960 
1961 			status &= ~mask;
1962 		}
1963 	}
1964 
1965 	if (unlikely(status & 0x1)) {
1966 
1967 		/* schedule sp task to perform default status block work, ack
1968 		 * attentions and enable interrupts.
1969 		 */
1970 		bnx2x_schedule_sp_task(bp);
1971 
1972 		status &= ~0x1;
1973 		if (!status)
1974 			return IRQ_HANDLED;
1975 	}
1976 
1977 	if (unlikely(status))
1978 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1979 		   status);
1980 
1981 	return IRQ_HANDLED;
1982 }
1983 
1984 /* Link */
1985 
1986 /*
1987  * General service functions
1988  */
1989 
1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1991 {
1992 	u32 lock_status;
1993 	u32 resource_bit = (1 << resource);
1994 	int func = BP_FUNC(bp);
1995 	u32 hw_lock_control_reg;
1996 	int cnt;
1997 
1998 	/* Validating that the resource is within range */
1999 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2000 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2001 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2002 		return -EINVAL;
2003 	}
2004 
2005 	if (func <= 5) {
2006 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2007 	} else {
2008 		hw_lock_control_reg =
2009 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2010 	}
2011 
2012 	/* Validating that the resource is not already taken */
2013 	lock_status = REG_RD(bp, hw_lock_control_reg);
2014 	if (lock_status & resource_bit) {
2015 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2016 		   lock_status, resource_bit);
2017 		return -EEXIST;
2018 	}
2019 
2020 	/* Try for 5 second every 5ms */
2021 	for (cnt = 0; cnt < 1000; cnt++) {
2022 		/* Try to acquire the lock */
2023 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2024 		lock_status = REG_RD(bp, hw_lock_control_reg);
2025 		if (lock_status & resource_bit)
2026 			return 0;
2027 
2028 		usleep_range(5000, 10000);
2029 	}
2030 	BNX2X_ERR("Timeout\n");
2031 	return -EAGAIN;
2032 }
2033 
2034 int bnx2x_release_leader_lock(struct bnx2x *bp)
2035 {
2036 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2037 }
2038 
2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2040 {
2041 	u32 lock_status;
2042 	u32 resource_bit = (1 << resource);
2043 	int func = BP_FUNC(bp);
2044 	u32 hw_lock_control_reg;
2045 
2046 	/* Validating that the resource is within range */
2047 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2048 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2049 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2050 		return -EINVAL;
2051 	}
2052 
2053 	if (func <= 5) {
2054 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2055 	} else {
2056 		hw_lock_control_reg =
2057 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2058 	}
2059 
2060 	/* Validating that the resource is currently taken */
2061 	lock_status = REG_RD(bp, hw_lock_control_reg);
2062 	if (!(lock_status & resource_bit)) {
2063 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2064 			  lock_status, resource_bit);
2065 		return -EFAULT;
2066 	}
2067 
2068 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2069 	return 0;
2070 }
2071 
2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2073 {
2074 	/* The GPIO should be swapped if swap register is set and active */
2075 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2076 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2077 	int gpio_shift = gpio_num +
2078 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2079 	u32 gpio_mask = (1 << gpio_shift);
2080 	u32 gpio_reg;
2081 	int value;
2082 
2083 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2084 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2085 		return -EINVAL;
2086 	}
2087 
2088 	/* read GPIO value */
2089 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2090 
2091 	/* get the requested pin value */
2092 	if ((gpio_reg & gpio_mask) == gpio_mask)
2093 		value = 1;
2094 	else
2095 		value = 0;
2096 
2097 	return value;
2098 }
2099 
2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2101 {
2102 	/* The GPIO should be swapped if swap register is set and active */
2103 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2104 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2105 	int gpio_shift = gpio_num +
2106 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2107 	u32 gpio_mask = (1 << gpio_shift);
2108 	u32 gpio_reg;
2109 
2110 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2111 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2112 		return -EINVAL;
2113 	}
2114 
2115 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2116 	/* read GPIO and mask except the float bits */
2117 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2118 
2119 	switch (mode) {
2120 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2121 		DP(NETIF_MSG_LINK,
2122 		   "Set GPIO %d (shift %d) -> output low\n",
2123 		   gpio_num, gpio_shift);
2124 		/* clear FLOAT and set CLR */
2125 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2127 		break;
2128 
2129 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2130 		DP(NETIF_MSG_LINK,
2131 		   "Set GPIO %d (shift %d) -> output high\n",
2132 		   gpio_num, gpio_shift);
2133 		/* clear FLOAT and set SET */
2134 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2136 		break;
2137 
2138 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2139 		DP(NETIF_MSG_LINK,
2140 		   "Set GPIO %d (shift %d) -> input\n",
2141 		   gpio_num, gpio_shift);
2142 		/* set FLOAT */
2143 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144 		break;
2145 
2146 	default:
2147 		break;
2148 	}
2149 
2150 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2151 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2152 
2153 	return 0;
2154 }
2155 
2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2157 {
2158 	u32 gpio_reg = 0;
2159 	int rc = 0;
2160 
2161 	/* Any port swapping should be handled by caller. */
2162 
2163 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2164 	/* read GPIO and mask except the float bits */
2165 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2166 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2167 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2168 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2169 
2170 	switch (mode) {
2171 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2172 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2173 		/* set CLR */
2174 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2175 		break;
2176 
2177 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2178 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2179 		/* set SET */
2180 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2181 		break;
2182 
2183 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2184 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2185 		/* set FLOAT */
2186 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2187 		break;
2188 
2189 	default:
2190 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2191 		rc = -EINVAL;
2192 		break;
2193 	}
2194 
2195 	if (rc == 0)
2196 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2197 
2198 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2199 
2200 	return rc;
2201 }
2202 
2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2204 {
2205 	/* The GPIO should be swapped if swap register is set and active */
2206 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2207 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2208 	int gpio_shift = gpio_num +
2209 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2210 	u32 gpio_mask = (1 << gpio_shift);
2211 	u32 gpio_reg;
2212 
2213 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2214 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2215 		return -EINVAL;
2216 	}
2217 
2218 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2219 	/* read GPIO int */
2220 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2221 
2222 	switch (mode) {
2223 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2224 		DP(NETIF_MSG_LINK,
2225 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2226 		   gpio_num, gpio_shift);
2227 		/* clear SET and set CLR */
2228 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2230 		break;
2231 
2232 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2233 		DP(NETIF_MSG_LINK,
2234 		   "Set GPIO INT %d (shift %d) -> output high\n",
2235 		   gpio_num, gpio_shift);
2236 		/* clear CLR and set SET */
2237 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2239 		break;
2240 
2241 	default:
2242 		break;
2243 	}
2244 
2245 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2246 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2247 
2248 	return 0;
2249 }
2250 
2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2252 {
2253 	u32 spio_reg;
2254 
2255 	/* Only 2 SPIOs are configurable */
2256 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2257 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2258 		return -EINVAL;
2259 	}
2260 
2261 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2262 	/* read SPIO and mask except the float bits */
2263 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2264 
2265 	switch (mode) {
2266 	case MISC_SPIO_OUTPUT_LOW:
2267 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2268 		/* clear FLOAT and set CLR */
2269 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2270 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2271 		break;
2272 
2273 	case MISC_SPIO_OUTPUT_HIGH:
2274 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2275 		/* clear FLOAT and set SET */
2276 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2278 		break;
2279 
2280 	case MISC_SPIO_INPUT_HI_Z:
2281 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2282 		/* set FLOAT */
2283 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2284 		break;
2285 
2286 	default:
2287 		break;
2288 	}
2289 
2290 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2291 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2292 
2293 	return 0;
2294 }
2295 
2296 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2297 {
2298 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2299 
2300 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2301 					   ADVERTISED_Pause);
2302 	switch (bp->link_vars.ieee_fc &
2303 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2304 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2305 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2306 						  ADVERTISED_Pause);
2307 		break;
2308 
2309 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2310 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2311 		break;
2312 
2313 	default:
2314 		break;
2315 	}
2316 }
2317 
2318 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2319 {
2320 	/* Initialize link parameters structure variables
2321 	 * It is recommended to turn off RX FC for jumbo frames
2322 	 *  for better performance
2323 	 */
2324 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2325 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2326 	else
2327 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2328 }
2329 
2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2331 {
2332 	u32 pause_enabled = 0;
2333 
2334 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2335 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2336 			pause_enabled = 1;
2337 
2338 		REG_WR(bp, BAR_USTRORM_INTMEM +
2339 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2340 		       pause_enabled);
2341 	}
2342 
2343 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2344 	   pause_enabled ? "enabled" : "disabled");
2345 }
2346 
2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2348 {
2349 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2350 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2351 
2352 	if (!BP_NOMCP(bp)) {
2353 		bnx2x_set_requested_fc(bp);
2354 		bnx2x_acquire_phy_lock(bp);
2355 
2356 		if (load_mode == LOAD_DIAG) {
2357 			struct link_params *lp = &bp->link_params;
2358 			lp->loopback_mode = LOOPBACK_XGXS;
2359 			/* Prefer doing PHY loopback at highest speed */
2360 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2361 				if (lp->speed_cap_mask[cfx_idx] &
2362 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2363 					lp->req_line_speed[cfx_idx] =
2364 					SPEED_20000;
2365 				else if (lp->speed_cap_mask[cfx_idx] &
2366 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2367 						lp->req_line_speed[cfx_idx] =
2368 						SPEED_10000;
2369 				else
2370 					lp->req_line_speed[cfx_idx] =
2371 					SPEED_1000;
2372 			}
2373 		}
2374 
2375 		if (load_mode == LOAD_LOOPBACK_EXT) {
2376 			struct link_params *lp = &bp->link_params;
2377 			lp->loopback_mode = LOOPBACK_EXT;
2378 		}
2379 
2380 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2381 
2382 		bnx2x_release_phy_lock(bp);
2383 
2384 		bnx2x_init_dropless_fc(bp);
2385 
2386 		bnx2x_calc_fc_adv(bp);
2387 
2388 		if (bp->link_vars.link_up) {
2389 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2390 			bnx2x_link_report(bp);
2391 		}
2392 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2393 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2394 		return rc;
2395 	}
2396 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2397 	return -EINVAL;
2398 }
2399 
2400 void bnx2x_link_set(struct bnx2x *bp)
2401 {
2402 	if (!BP_NOMCP(bp)) {
2403 		bnx2x_acquire_phy_lock(bp);
2404 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2405 		bnx2x_release_phy_lock(bp);
2406 
2407 		bnx2x_init_dropless_fc(bp);
2408 
2409 		bnx2x_calc_fc_adv(bp);
2410 	} else
2411 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2412 }
2413 
2414 static void bnx2x__link_reset(struct bnx2x *bp)
2415 {
2416 	if (!BP_NOMCP(bp)) {
2417 		bnx2x_acquire_phy_lock(bp);
2418 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2419 		bnx2x_release_phy_lock(bp);
2420 	} else
2421 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2422 }
2423 
2424 void bnx2x_force_link_reset(struct bnx2x *bp)
2425 {
2426 	bnx2x_acquire_phy_lock(bp);
2427 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2428 	bnx2x_release_phy_lock(bp);
2429 }
2430 
2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2432 {
2433 	u8 rc = 0;
2434 
2435 	if (!BP_NOMCP(bp)) {
2436 		bnx2x_acquire_phy_lock(bp);
2437 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2438 				     is_serdes);
2439 		bnx2x_release_phy_lock(bp);
2440 	} else
2441 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2442 
2443 	return rc;
2444 }
2445 
2446 /* Calculates the sum of vn_min_rates.
2447    It's needed for further normalizing of the min_rates.
2448    Returns:
2449      sum of vn_min_rates.
2450        or
2451      0 - if all the min_rates are 0.
2452      In the later case fairness algorithm should be deactivated.
2453      If not all min_rates are zero then those that are zeroes will be set to 1.
2454  */
2455 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2456 				      struct cmng_init_input *input)
2457 {
2458 	int all_zero = 1;
2459 	int vn;
2460 
2461 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2462 		u32 vn_cfg = bp->mf_config[vn];
2463 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2464 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2465 
2466 		/* Skip hidden vns */
2467 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2468 			vn_min_rate = 0;
2469 		/* If min rate is zero - set it to 1 */
2470 		else if (!vn_min_rate)
2471 			vn_min_rate = DEF_MIN_RATE;
2472 		else
2473 			all_zero = 0;
2474 
2475 		input->vnic_min_rate[vn] = vn_min_rate;
2476 	}
2477 
2478 	/* if ETS or all min rates are zeros - disable fairness */
2479 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2480 		input->flags.cmng_enables &=
2481 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2483 	} else if (all_zero) {
2484 		input->flags.cmng_enables &=
2485 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486 		DP(NETIF_MSG_IFUP,
2487 		   "All MIN values are zeroes fairness will be disabled\n");
2488 	} else
2489 		input->flags.cmng_enables |=
2490 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 }
2492 
2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2494 				    struct cmng_init_input *input)
2495 {
2496 	u16 vn_max_rate;
2497 	u32 vn_cfg = bp->mf_config[vn];
2498 
2499 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2500 		vn_max_rate = 0;
2501 	else {
2502 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2503 
2504 		if (IS_MF_PERCENT_BW(bp)) {
2505 			/* maxCfg in percents of linkspeed */
2506 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2507 		} else /* SD modes */
2508 			/* maxCfg is absolute in 100Mb units */
2509 			vn_max_rate = maxCfg * 100;
2510 	}
2511 
2512 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2513 
2514 	input->vnic_max_rate[vn] = vn_max_rate;
2515 }
2516 
2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2518 {
2519 	if (CHIP_REV_IS_SLOW(bp))
2520 		return CMNG_FNS_NONE;
2521 	if (IS_MF(bp))
2522 		return CMNG_FNS_MINMAX;
2523 
2524 	return CMNG_FNS_NONE;
2525 }
2526 
2527 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2528 {
2529 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2530 
2531 	if (BP_NOMCP(bp))
2532 		return; /* what should be the default value in this case */
2533 
2534 	/* For 2 port configuration the absolute function number formula
2535 	 * is:
2536 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2537 	 *
2538 	 *      and there are 4 functions per port
2539 	 *
2540 	 * For 4 port configuration it is
2541 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2542 	 *
2543 	 *      and there are 2 functions per port
2544 	 */
2545 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2546 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2547 
2548 		if (func >= E1H_FUNC_MAX)
2549 			break;
2550 
2551 		bp->mf_config[vn] =
2552 			MF_CFG_RD(bp, func_mf_config[func].config);
2553 	}
2554 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2555 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2556 		bp->flags |= MF_FUNC_DIS;
2557 	} else {
2558 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2559 		bp->flags &= ~MF_FUNC_DIS;
2560 	}
2561 }
2562 
2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2564 {
2565 	struct cmng_init_input input;
2566 	memset(&input, 0, sizeof(struct cmng_init_input));
2567 
2568 	input.port_rate = bp->link_vars.line_speed;
2569 
2570 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2571 		int vn;
2572 
2573 		/* read mf conf from shmem */
2574 		if (read_cfg)
2575 			bnx2x_read_mf_cfg(bp);
2576 
2577 		/* vn_weight_sum and enable fairness if not 0 */
2578 		bnx2x_calc_vn_min(bp, &input);
2579 
2580 		/* calculate and set min-max rate for each vn */
2581 		if (bp->port.pmf)
2582 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2583 				bnx2x_calc_vn_max(bp, vn, &input);
2584 
2585 		/* always enable rate shaping and fairness */
2586 		input.flags.cmng_enables |=
2587 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2588 
2589 		bnx2x_init_cmng(&input, &bp->cmng);
2590 		return;
2591 	}
2592 
2593 	/* rate shaping and fairness are disabled */
2594 	DP(NETIF_MSG_IFUP,
2595 	   "rate shaping and fairness are disabled\n");
2596 }
2597 
2598 static void storm_memset_cmng(struct bnx2x *bp,
2599 			      struct cmng_init *cmng,
2600 			      u8 port)
2601 {
2602 	int vn;
2603 	size_t size = sizeof(struct cmng_struct_per_port);
2604 
2605 	u32 addr = BAR_XSTRORM_INTMEM +
2606 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2607 
2608 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2609 
2610 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2611 		int func = func_by_vn(bp, vn);
2612 
2613 		addr = BAR_XSTRORM_INTMEM +
2614 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2615 		size = sizeof(struct rate_shaping_vars_per_vn);
2616 		__storm_memset_struct(bp, addr, size,
2617 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2618 
2619 		addr = BAR_XSTRORM_INTMEM +
2620 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2621 		size = sizeof(struct fairness_vars_per_vn);
2622 		__storm_memset_struct(bp, addr, size,
2623 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2624 	}
2625 }
2626 
2627 /* init cmng mode in HW according to local configuration */
2628 void bnx2x_set_local_cmng(struct bnx2x *bp)
2629 {
2630 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2631 
2632 	if (cmng_fns != CMNG_FNS_NONE) {
2633 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2634 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2635 	} else {
2636 		/* rate shaping and fairness are disabled */
2637 		DP(NETIF_MSG_IFUP,
2638 		   "single function mode without fairness\n");
2639 	}
2640 }
2641 
2642 /* This function is called upon link interrupt */
2643 static void bnx2x_link_attn(struct bnx2x *bp)
2644 {
2645 	/* Make sure that we are synced with the current statistics */
2646 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2647 
2648 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2649 
2650 	bnx2x_init_dropless_fc(bp);
2651 
2652 	if (bp->link_vars.link_up) {
2653 
2654 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2655 			struct host_port_stats *pstats;
2656 
2657 			pstats = bnx2x_sp(bp, port_stats);
2658 			/* reset old mac stats */
2659 			memset(&(pstats->mac_stx[0]), 0,
2660 			       sizeof(struct mac_stx));
2661 		}
2662 		if (bp->state == BNX2X_STATE_OPEN)
2663 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2664 	}
2665 
2666 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2667 		bnx2x_set_local_cmng(bp);
2668 
2669 	__bnx2x_link_report(bp);
2670 
2671 	if (IS_MF(bp))
2672 		bnx2x_link_sync_notify(bp);
2673 }
2674 
2675 void bnx2x__link_status_update(struct bnx2x *bp)
2676 {
2677 	if (bp->state != BNX2X_STATE_OPEN)
2678 		return;
2679 
2680 	/* read updated dcb configuration */
2681 	if (IS_PF(bp)) {
2682 		bnx2x_dcbx_pmf_update(bp);
2683 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2684 		if (bp->link_vars.link_up)
2685 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2686 		else
2687 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2688 			/* indicate link status */
2689 		bnx2x_link_report(bp);
2690 
2691 	} else { /* VF */
2692 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2693 					  SUPPORTED_10baseT_Full |
2694 					  SUPPORTED_100baseT_Half |
2695 					  SUPPORTED_100baseT_Full |
2696 					  SUPPORTED_1000baseT_Full |
2697 					  SUPPORTED_2500baseX_Full |
2698 					  SUPPORTED_10000baseT_Full |
2699 					  SUPPORTED_TP |
2700 					  SUPPORTED_FIBRE |
2701 					  SUPPORTED_Autoneg |
2702 					  SUPPORTED_Pause |
2703 					  SUPPORTED_Asym_Pause);
2704 		bp->port.advertising[0] = bp->port.supported[0];
2705 
2706 		bp->link_params.bp = bp;
2707 		bp->link_params.port = BP_PORT(bp);
2708 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2709 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2710 		bp->link_params.req_line_speed[0] = SPEED_10000;
2711 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2712 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2713 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2714 		bp->link_vars.line_speed = SPEED_10000;
2715 		bp->link_vars.link_status =
2716 			(LINK_STATUS_LINK_UP |
2717 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2718 		bp->link_vars.link_up = 1;
2719 		bp->link_vars.duplex = DUPLEX_FULL;
2720 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2721 		__bnx2x_link_report(bp);
2722 
2723 		bnx2x_sample_bulletin(bp);
2724 
2725 		/* if bulletin board did not have an update for link status
2726 		 * __bnx2x_link_report will report current status
2727 		 * but it will NOT duplicate report in case of already reported
2728 		 * during sampling bulletin board.
2729 		 */
2730 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2731 	}
2732 }
2733 
2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2735 				  u16 vlan_val, u8 allowed_prio)
2736 {
2737 	struct bnx2x_func_state_params func_params = {NULL};
2738 	struct bnx2x_func_afex_update_params *f_update_params =
2739 		&func_params.params.afex_update;
2740 
2741 	func_params.f_obj = &bp->func_obj;
2742 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2743 
2744 	/* no need to wait for RAMROD completion, so don't
2745 	 * set RAMROD_COMP_WAIT flag
2746 	 */
2747 
2748 	f_update_params->vif_id = vifid;
2749 	f_update_params->afex_default_vlan = vlan_val;
2750 	f_update_params->allowed_priorities = allowed_prio;
2751 
2752 	/* if ramrod can not be sent, response to MCP immediately */
2753 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2754 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2755 
2756 	return 0;
2757 }
2758 
2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2760 					  u16 vif_index, u8 func_bit_map)
2761 {
2762 	struct bnx2x_func_state_params func_params = {NULL};
2763 	struct bnx2x_func_afex_viflists_params *update_params =
2764 		&func_params.params.afex_viflists;
2765 	int rc;
2766 	u32 drv_msg_code;
2767 
2768 	/* validate only LIST_SET and LIST_GET are received from switch */
2769 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2770 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2771 			  cmd_type);
2772 
2773 	func_params.f_obj = &bp->func_obj;
2774 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2775 
2776 	/* set parameters according to cmd_type */
2777 	update_params->afex_vif_list_command = cmd_type;
2778 	update_params->vif_list_index = vif_index;
2779 	update_params->func_bit_map =
2780 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2781 	update_params->func_to_clear = 0;
2782 	drv_msg_code =
2783 		(cmd_type == VIF_LIST_RULE_GET) ?
2784 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2785 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2786 
2787 	/* if ramrod can not be sent, respond to MCP immediately for
2788 	 * SET and GET requests (other are not triggered from MCP)
2789 	 */
2790 	rc = bnx2x_func_state_change(bp, &func_params);
2791 	if (rc < 0)
2792 		bnx2x_fw_command(bp, drv_msg_code, 0);
2793 
2794 	return 0;
2795 }
2796 
2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2798 {
2799 	struct afex_stats afex_stats;
2800 	u32 func = BP_ABS_FUNC(bp);
2801 	u32 mf_config;
2802 	u16 vlan_val;
2803 	u32 vlan_prio;
2804 	u16 vif_id;
2805 	u8 allowed_prio;
2806 	u8 vlan_mode;
2807 	u32 addr_to_write, vifid, addrs, stats_type, i;
2808 
2809 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2810 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2811 		DP(BNX2X_MSG_MCP,
2812 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2813 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2814 	}
2815 
2816 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2817 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2819 		DP(BNX2X_MSG_MCP,
2820 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2821 		   vifid, addrs);
2822 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2823 					       addrs);
2824 	}
2825 
2826 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2827 		addr_to_write = SHMEM2_RD(bp,
2828 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2829 		stats_type = SHMEM2_RD(bp,
2830 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2831 
2832 		DP(BNX2X_MSG_MCP,
2833 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2834 		   addr_to_write);
2835 
2836 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2837 
2838 		/* write response to scratchpad, for MCP */
2839 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2840 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2841 			       *(((u32 *)(&afex_stats))+i));
2842 
2843 		/* send ack message to MCP */
2844 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2845 	}
2846 
2847 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2848 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2849 		bp->mf_config[BP_VN(bp)] = mf_config;
2850 		DP(BNX2X_MSG_MCP,
2851 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2852 		   mf_config);
2853 
2854 		/* if VIF_SET is "enabled" */
2855 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2856 			/* set rate limit directly to internal RAM */
2857 			struct cmng_init_input cmng_input;
2858 			struct rate_shaping_vars_per_vn m_rs_vn;
2859 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2860 			u32 addr = BAR_XSTRORM_INTMEM +
2861 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2862 
2863 			bp->mf_config[BP_VN(bp)] = mf_config;
2864 
2865 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2866 			m_rs_vn.vn_counter.rate =
2867 				cmng_input.vnic_max_rate[BP_VN(bp)];
2868 			m_rs_vn.vn_counter.quota =
2869 				(m_rs_vn.vn_counter.rate *
2870 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2871 
2872 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2873 
2874 			/* read relevant values from mf_cfg struct in shmem */
2875 			vif_id =
2876 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2878 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2879 			vlan_val =
2880 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2881 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2882 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2883 			vlan_prio = (mf_config &
2884 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2885 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2886 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2887 			vlan_mode =
2888 				(MF_CFG_RD(bp,
2889 					   func_mf_config[func].afex_config) &
2890 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2891 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2892 			allowed_prio =
2893 				(MF_CFG_RD(bp,
2894 					   func_mf_config[func].afex_config) &
2895 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2896 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2897 
2898 			/* send ramrod to FW, return in case of failure */
2899 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2900 						   allowed_prio))
2901 				return;
2902 
2903 			bp->afex_def_vlan_tag = vlan_val;
2904 			bp->afex_vlan_mode = vlan_mode;
2905 		} else {
2906 			/* notify link down because BP->flags is disabled */
2907 			bnx2x_link_report(bp);
2908 
2909 			/* send INVALID VIF ramrod to FW */
2910 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2911 
2912 			/* Reset the default afex VLAN */
2913 			bp->afex_def_vlan_tag = -1;
2914 		}
2915 	}
2916 }
2917 
2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2919 {
2920 	struct bnx2x_func_switch_update_params *switch_update_params;
2921 	struct bnx2x_func_state_params func_params;
2922 
2923 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2924 	switch_update_params = &func_params.params.switch_update;
2925 	func_params.f_obj = &bp->func_obj;
2926 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2927 
2928 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2929 		int func = BP_ABS_FUNC(bp);
2930 		u32 val;
2931 
2932 		/* Re-learn the S-tag from shmem */
2933 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2934 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2935 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2936 			bp->mf_ov = val;
2937 		} else {
2938 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2939 			goto fail;
2940 		}
2941 
2942 		/* Configure new S-tag in LLH */
2943 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2944 		       bp->mf_ov);
2945 
2946 		/* Send Ramrod to update FW of change */
2947 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2948 			  &switch_update_params->changes);
2949 		switch_update_params->vlan = bp->mf_ov;
2950 
2951 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2952 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2953 				  bp->mf_ov);
2954 			goto fail;
2955 		} else {
2956 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2957 			   bp->mf_ov);
2958 		}
2959 	} else {
2960 		goto fail;
2961 	}
2962 
2963 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2964 	return;
2965 fail:
2966 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2967 }
2968 
2969 static void bnx2x_pmf_update(struct bnx2x *bp)
2970 {
2971 	int port = BP_PORT(bp);
2972 	u32 val;
2973 
2974 	bp->port.pmf = 1;
2975 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2976 
2977 	/*
2978 	 * We need the mb() to ensure the ordering between the writing to
2979 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2980 	 */
2981 	smp_mb();
2982 
2983 	/* queue a periodic task */
2984 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2985 
2986 	bnx2x_dcbx_pmf_update(bp);
2987 
2988 	/* enable nig attention */
2989 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2990 	if (bp->common.int_block == INT_BLOCK_HC) {
2991 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2992 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2993 	} else if (!CHIP_IS_E1x(bp)) {
2994 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2995 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2996 	}
2997 
2998 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2999 }
3000 
3001 /* end of Link */
3002 
3003 /* slow path */
3004 
3005 /*
3006  * General service functions
3007  */
3008 
3009 /* send the MCP a request, block until there is a reply */
3010 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3011 {
3012 	int mb_idx = BP_FW_MB_IDX(bp);
3013 	u32 seq;
3014 	u32 rc = 0;
3015 	u32 cnt = 1;
3016 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3017 
3018 	mutex_lock(&bp->fw_mb_mutex);
3019 	seq = ++bp->fw_seq;
3020 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3021 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3022 
3023 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3024 			(command | seq), param);
3025 
3026 	do {
3027 		/* let the FW do it's magic ... */
3028 		msleep(delay);
3029 
3030 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3031 
3032 		/* Give the FW up to 5 second (500*10ms) */
3033 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3034 
3035 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3036 	   cnt*delay, rc, seq);
3037 
3038 	/* is this a reply to our command? */
3039 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3040 		rc &= FW_MSG_CODE_MASK;
3041 	else {
3042 		/* FW BUG! */
3043 		BNX2X_ERR("FW failed to respond!\n");
3044 		bnx2x_fw_dump(bp);
3045 		rc = 0;
3046 	}
3047 	mutex_unlock(&bp->fw_mb_mutex);
3048 
3049 	return rc;
3050 }
3051 
3052 static void storm_memset_func_cfg(struct bnx2x *bp,
3053 				 struct tstorm_eth_function_common_config *tcfg,
3054 				 u16 abs_fid)
3055 {
3056 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3057 
3058 	u32 addr = BAR_TSTRORM_INTMEM +
3059 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3060 
3061 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3062 }
3063 
3064 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3065 {
3066 	if (CHIP_IS_E1x(bp)) {
3067 		struct tstorm_eth_function_common_config tcfg = {0};
3068 
3069 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3070 	}
3071 
3072 	/* Enable the function in the FW */
3073 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3074 	storm_memset_func_en(bp, p->func_id, 1);
3075 
3076 	/* spq */
3077 	if (p->spq_active) {
3078 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3079 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3080 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3081 	}
3082 }
3083 
3084 /**
3085  * bnx2x_get_common_flags - Return common flags
3086  *
3087  * @bp		device handle
3088  * @fp		queue handle
3089  * @zero_stats	TRUE if statistics zeroing is needed
3090  *
3091  * Return the flags that are common for the Tx-only and not normal connections.
3092  */
3093 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3094 					    struct bnx2x_fastpath *fp,
3095 					    bool zero_stats)
3096 {
3097 	unsigned long flags = 0;
3098 
3099 	/* PF driver will always initialize the Queue to an ACTIVE state */
3100 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3101 
3102 	/* tx only connections collect statistics (on the same index as the
3103 	 * parent connection). The statistics are zeroed when the parent
3104 	 * connection is initialized.
3105 	 */
3106 
3107 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3108 	if (zero_stats)
3109 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3110 
3111 	if (bp->flags & TX_SWITCHING)
3112 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3113 
3114 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3115 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3116 
3117 #ifdef BNX2X_STOP_ON_ERROR
3118 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3119 #endif
3120 
3121 	return flags;
3122 }
3123 
3124 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3125 				       struct bnx2x_fastpath *fp,
3126 				       bool leading)
3127 {
3128 	unsigned long flags = 0;
3129 
3130 	/* calculate other queue flags */
3131 	if (IS_MF_SD(bp))
3132 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3133 
3134 	if (IS_FCOE_FP(fp)) {
3135 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3136 		/* For FCoE - force usage of default priority (for afex) */
3137 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3138 	}
3139 
3140 	if (fp->mode != TPA_MODE_DISABLED) {
3141 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3142 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3143 		if (fp->mode == TPA_MODE_GRO)
3144 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3145 	}
3146 
3147 	if (leading) {
3148 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3149 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3150 	}
3151 
3152 	/* Always set HW VLAN stripping */
3153 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3154 
3155 	/* configure silent vlan removal */
3156 	if (IS_MF_AFEX(bp))
3157 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3158 
3159 	return flags | bnx2x_get_common_flags(bp, fp, true);
3160 }
3161 
3162 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3163 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3164 	u8 cos)
3165 {
3166 	gen_init->stat_id = bnx2x_stats_id(fp);
3167 	gen_init->spcl_id = fp->cl_id;
3168 
3169 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3170 	if (IS_FCOE_FP(fp))
3171 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3172 	else
3173 		gen_init->mtu = bp->dev->mtu;
3174 
3175 	gen_init->cos = cos;
3176 
3177 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3178 }
3179 
3180 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3181 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3182 	struct bnx2x_rxq_setup_params *rxq_init)
3183 {
3184 	u8 max_sge = 0;
3185 	u16 sge_sz = 0;
3186 	u16 tpa_agg_size = 0;
3187 
3188 	if (fp->mode != TPA_MODE_DISABLED) {
3189 		pause->sge_th_lo = SGE_TH_LO(bp);
3190 		pause->sge_th_hi = SGE_TH_HI(bp);
3191 
3192 		/* validate SGE ring has enough to cross high threshold */
3193 		WARN_ON(bp->dropless_fc &&
3194 				pause->sge_th_hi + FW_PREFETCH_CNT >
3195 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3196 
3197 		tpa_agg_size = TPA_AGG_SIZE;
3198 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3199 			SGE_PAGE_SHIFT;
3200 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3201 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3202 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3203 	}
3204 
3205 	/* pause - not for e1 */
3206 	if (!CHIP_IS_E1(bp)) {
3207 		pause->bd_th_lo = BD_TH_LO(bp);
3208 		pause->bd_th_hi = BD_TH_HI(bp);
3209 
3210 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3211 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3212 		/*
3213 		 * validate that rings have enough entries to cross
3214 		 * high thresholds
3215 		 */
3216 		WARN_ON(bp->dropless_fc &&
3217 				pause->bd_th_hi + FW_PREFETCH_CNT >
3218 				bp->rx_ring_size);
3219 		WARN_ON(bp->dropless_fc &&
3220 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3221 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3222 
3223 		pause->pri_map = 1;
3224 	}
3225 
3226 	/* rxq setup */
3227 	rxq_init->dscr_map = fp->rx_desc_mapping;
3228 	rxq_init->sge_map = fp->rx_sge_mapping;
3229 	rxq_init->rcq_map = fp->rx_comp_mapping;
3230 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3231 
3232 	/* This should be a maximum number of data bytes that may be
3233 	 * placed on the BD (not including paddings).
3234 	 */
3235 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3236 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3237 
3238 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3239 	rxq_init->tpa_agg_sz = tpa_agg_size;
3240 	rxq_init->sge_buf_sz = sge_sz;
3241 	rxq_init->max_sges_pkt = max_sge;
3242 	rxq_init->rss_engine_id = BP_FUNC(bp);
3243 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3244 
3245 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3246 	 *
3247 	 * For PF Clients it should be the maximum available number.
3248 	 * VF driver(s) may want to define it to a smaller value.
3249 	 */
3250 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3251 
3252 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3253 	rxq_init->fw_sb_id = fp->fw_sb_id;
3254 
3255 	if (IS_FCOE_FP(fp))
3256 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3257 	else
3258 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3259 	/* configure silent vlan removal
3260 	 * if multi function mode is afex, then mask default vlan
3261 	 */
3262 	if (IS_MF_AFEX(bp)) {
3263 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3264 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3265 	}
3266 }
3267 
3268 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3269 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3270 	u8 cos)
3271 {
3272 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3273 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3274 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3275 	txq_init->fw_sb_id = fp->fw_sb_id;
3276 
3277 	/*
3278 	 * set the tss leading client id for TX classification ==
3279 	 * leading RSS client id
3280 	 */
3281 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3282 
3283 	if (IS_FCOE_FP(fp)) {
3284 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3285 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3286 	}
3287 }
3288 
3289 static void bnx2x_pf_init(struct bnx2x *bp)
3290 {
3291 	struct bnx2x_func_init_params func_init = {0};
3292 	struct event_ring_data eq_data = { {0} };
3293 
3294 	if (!CHIP_IS_E1x(bp)) {
3295 		/* reset IGU PF statistics: MSIX + ATTN */
3296 		/* PF */
3297 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3298 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3299 			   (CHIP_MODE_IS_4_PORT(bp) ?
3300 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3301 		/* ATTN */
3302 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3303 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3304 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3305 			   (CHIP_MODE_IS_4_PORT(bp) ?
3306 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3307 	}
3308 
3309 	func_init.spq_active = true;
3310 	func_init.pf_id = BP_FUNC(bp);
3311 	func_init.func_id = BP_FUNC(bp);
3312 	func_init.spq_map = bp->spq_mapping;
3313 	func_init.spq_prod = bp->spq_prod_idx;
3314 
3315 	bnx2x_func_init(bp, &func_init);
3316 
3317 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3318 
3319 	/*
3320 	 * Congestion management values depend on the link rate
3321 	 * There is no active link so initial link rate is set to 10 Gbps.
3322 	 * When the link comes up The congestion management values are
3323 	 * re-calculated according to the actual link rate.
3324 	 */
3325 	bp->link_vars.line_speed = SPEED_10000;
3326 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3327 
3328 	/* Only the PMF sets the HW */
3329 	if (bp->port.pmf)
3330 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3331 
3332 	/* init Event Queue - PCI bus guarantees correct endianity*/
3333 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3334 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3335 	eq_data.producer = bp->eq_prod;
3336 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3337 	eq_data.sb_id = DEF_SB_ID;
3338 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3339 }
3340 
3341 static void bnx2x_e1h_disable(struct bnx2x *bp)
3342 {
3343 	int port = BP_PORT(bp);
3344 
3345 	bnx2x_tx_disable(bp);
3346 
3347 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3348 }
3349 
3350 static void bnx2x_e1h_enable(struct bnx2x *bp)
3351 {
3352 	int port = BP_PORT(bp);
3353 
3354 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3355 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3356 
3357 	/* Tx queue should be only re-enabled */
3358 	netif_tx_wake_all_queues(bp->dev);
3359 
3360 	/*
3361 	 * Should not call netif_carrier_on since it will be called if the link
3362 	 * is up when checking for link state
3363 	 */
3364 }
3365 
3366 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3367 
3368 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3369 {
3370 	struct eth_stats_info *ether_stat =
3371 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3372 	struct bnx2x_vlan_mac_obj *mac_obj =
3373 		&bp->sp_objs->mac_obj;
3374 	int i;
3375 
3376 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3377 		ETH_STAT_INFO_VERSION_LEN);
3378 
3379 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3380 	 * mac_local field in ether_stat struct. The base address is offset by 2
3381 	 * bytes to account for the field being 8 bytes but a mac address is
3382 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3383 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3384 	 * allocated by the ether_stat struct, so the macs will land in their
3385 	 * proper positions.
3386 	 */
3387 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3388 		memset(ether_stat->mac_local + i, 0,
3389 		       sizeof(ether_stat->mac_local[0]));
3390 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3391 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3392 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3393 				ETH_ALEN);
3394 	ether_stat->mtu_size = bp->dev->mtu;
3395 	if (bp->dev->features & NETIF_F_RXCSUM)
3396 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3397 	if (bp->dev->features & NETIF_F_TSO)
3398 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3399 	ether_stat->feature_flags |= bp->common.boot_mode;
3400 
3401 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3402 
3403 	ether_stat->txq_size = bp->tx_ring_size;
3404 	ether_stat->rxq_size = bp->rx_ring_size;
3405 
3406 #ifdef CONFIG_BNX2X_SRIOV
3407 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3408 #endif
3409 }
3410 
3411 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3412 {
3413 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3414 	struct fcoe_stats_info *fcoe_stat =
3415 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3416 
3417 	if (!CNIC_LOADED(bp))
3418 		return;
3419 
3420 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3421 
3422 	fcoe_stat->qos_priority =
3423 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3424 
3425 	/* insert FCoE stats from ramrod response */
3426 	if (!NO_FCOE(bp)) {
3427 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3428 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429 			tstorm_queue_statistics;
3430 
3431 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3432 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433 			xstorm_queue_statistics;
3434 
3435 		struct fcoe_statistics_params *fw_fcoe_stat =
3436 			&bp->fw_stats_data->fcoe;
3437 
3438 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3439 			  fcoe_stat->rx_bytes_lo,
3440 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3441 
3442 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3444 			  fcoe_stat->rx_bytes_lo,
3445 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3446 
3447 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3449 			  fcoe_stat->rx_bytes_lo,
3450 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3451 
3452 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3454 			  fcoe_stat->rx_bytes_lo,
3455 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3456 
3457 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458 			  fcoe_stat->rx_frames_lo,
3459 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3460 
3461 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462 			  fcoe_stat->rx_frames_lo,
3463 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3464 
3465 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466 			  fcoe_stat->rx_frames_lo,
3467 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3468 
3469 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470 			  fcoe_stat->rx_frames_lo,
3471 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3472 
3473 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3474 			  fcoe_stat->tx_bytes_lo,
3475 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3476 
3477 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3479 			  fcoe_stat->tx_bytes_lo,
3480 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3481 
3482 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3484 			  fcoe_stat->tx_bytes_lo,
3485 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3486 
3487 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3489 			  fcoe_stat->tx_bytes_lo,
3490 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3491 
3492 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493 			  fcoe_stat->tx_frames_lo,
3494 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3495 
3496 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497 			  fcoe_stat->tx_frames_lo,
3498 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3499 
3500 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501 			  fcoe_stat->tx_frames_lo,
3502 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3503 
3504 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505 			  fcoe_stat->tx_frames_lo,
3506 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3507 	}
3508 
3509 	/* ask L5 driver to add data to the struct */
3510 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3511 }
3512 
3513 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3514 {
3515 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3516 	struct iscsi_stats_info *iscsi_stat =
3517 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3518 
3519 	if (!CNIC_LOADED(bp))
3520 		return;
3521 
3522 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3523 	       ETH_ALEN);
3524 
3525 	iscsi_stat->qos_priority =
3526 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3527 
3528 	/* ask L5 driver to add data to the struct */
3529 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3530 }
3531 
3532 /* called due to MCP event (on pmf):
3533  *	reread new bandwidth configuration
3534  *	configure FW
3535  *	notify others function about the change
3536  */
3537 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3538 {
3539 	/* Workaround for MFW bug.
3540 	 * MFW is not supposed to generate BW attention in
3541 	 * single function mode.
3542 	 */
3543 	if (!IS_MF(bp)) {
3544 		DP(BNX2X_MSG_MCP,
3545 		   "Ignoring MF BW config in single function mode\n");
3546 		return;
3547 	}
3548 
3549 	if (bp->link_vars.link_up) {
3550 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3551 		bnx2x_link_sync_notify(bp);
3552 	}
3553 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3554 }
3555 
3556 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3557 {
3558 	bnx2x_config_mf_bw(bp);
3559 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3560 }
3561 
3562 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3563 {
3564 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3565 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3566 }
3567 
3568 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3569 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3570 
3571 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3572 {
3573 	enum drv_info_opcode op_code;
3574 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3575 	bool release = false;
3576 	int wait;
3577 
3578 	/* if drv_info version supported by MFW doesn't match - send NACK */
3579 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3580 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3581 		return;
3582 	}
3583 
3584 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3585 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3586 
3587 	/* Must prevent other flows from accessing drv_info_to_mcp */
3588 	mutex_lock(&bp->drv_info_mutex);
3589 
3590 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3591 	       sizeof(union drv_info_to_mcp));
3592 
3593 	switch (op_code) {
3594 	case ETH_STATS_OPCODE:
3595 		bnx2x_drv_info_ether_stat(bp);
3596 		break;
3597 	case FCOE_STATS_OPCODE:
3598 		bnx2x_drv_info_fcoe_stat(bp);
3599 		break;
3600 	case ISCSI_STATS_OPCODE:
3601 		bnx2x_drv_info_iscsi_stat(bp);
3602 		break;
3603 	default:
3604 		/* if op code isn't supported - send NACK */
3605 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3606 		goto out;
3607 	}
3608 
3609 	/* if we got drv_info attn from MFW then these fields are defined in
3610 	 * shmem2 for sure
3611 	 */
3612 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3613 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3614 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3615 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3616 
3617 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3618 
3619 	/* Since possible management wants both this and get_driver_version
3620 	 * need to wait until management notifies us it finished utilizing
3621 	 * the buffer.
3622 	 */
3623 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3624 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3625 	} else if (!bp->drv_info_mng_owner) {
3626 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3627 
3628 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3629 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3630 
3631 			/* Management is done; need to clear indication */
3632 			if (indication & bit) {
3633 				SHMEM2_WR(bp, mfw_drv_indication,
3634 					  indication & ~bit);
3635 				release = true;
3636 				break;
3637 			}
3638 
3639 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3640 		}
3641 	}
3642 	if (!release) {
3643 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3644 		bp->drv_info_mng_owner = true;
3645 	}
3646 
3647 out:
3648 	mutex_unlock(&bp->drv_info_mutex);
3649 }
3650 
3651 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3652 {
3653 	u8 vals[4];
3654 	int i = 0;
3655 
3656 	if (bnx2x_format) {
3657 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3658 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3659 		if (i > 0)
3660 			vals[0] -= '0';
3661 	} else {
3662 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3663 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3664 	}
3665 
3666 	while (i < 4)
3667 		vals[i++] = 0;
3668 
3669 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3670 }
3671 
3672 void bnx2x_update_mng_version(struct bnx2x *bp)
3673 {
3674 	u32 iscsiver = DRV_VER_NOT_LOADED;
3675 	u32 fcoever = DRV_VER_NOT_LOADED;
3676 	u32 ethver = DRV_VER_NOT_LOADED;
3677 	int idx = BP_FW_MB_IDX(bp);
3678 	u8 *version;
3679 
3680 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3681 		return;
3682 
3683 	mutex_lock(&bp->drv_info_mutex);
3684 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3685 	if (bp->drv_info_mng_owner)
3686 		goto out;
3687 
3688 	if (bp->state != BNX2X_STATE_OPEN)
3689 		goto out;
3690 
3691 	/* Parse ethernet driver version */
3692 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3693 	if (!CNIC_LOADED(bp))
3694 		goto out;
3695 
3696 	/* Try getting storage driver version via cnic */
3697 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3698 	       sizeof(union drv_info_to_mcp));
3699 	bnx2x_drv_info_iscsi_stat(bp);
3700 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3701 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3702 
3703 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3704 	       sizeof(union drv_info_to_mcp));
3705 	bnx2x_drv_info_fcoe_stat(bp);
3706 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3707 	fcoever = bnx2x_update_mng_version_utility(version, false);
3708 
3709 out:
3710 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3711 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3712 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3713 
3714 	mutex_unlock(&bp->drv_info_mutex);
3715 
3716 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3717 	   ethver, iscsiver, fcoever);
3718 }
3719 
3720 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3721 {
3722 	u32 drv_ver;
3723 	u32 valid_dump;
3724 
3725 	if (!SHMEM2_HAS(bp, drv_info))
3726 		return;
3727 
3728 	/* Update Driver load time, possibly broken in y2038 */
3729 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3730 
3731 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3732 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3733 
3734 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3735 
3736 	/* Check & notify On-Chip dump. */
3737 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3738 
3739 	if (valid_dump & FIRST_DUMP_VALID)
3740 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3741 
3742 	if (valid_dump & SECOND_DUMP_VALID)
3743 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3744 }
3745 
3746 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3747 {
3748 	u32 cmd_ok, cmd_fail;
3749 
3750 	/* sanity */
3751 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3752 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3753 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3754 		return;
3755 	}
3756 
3757 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3758 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3759 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3760 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3761 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3762 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3763 	}
3764 
3765 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3766 
3767 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3768 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3769 		/* This is the only place besides the function initialization
3770 		 * where the bp->flags can change so it is done without any
3771 		 * locks
3772 		 */
3773 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3774 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3775 			bp->flags |= MF_FUNC_DIS;
3776 
3777 			bnx2x_e1h_disable(bp);
3778 		} else {
3779 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3780 			bp->flags &= ~MF_FUNC_DIS;
3781 
3782 			bnx2x_e1h_enable(bp);
3783 		}
3784 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3785 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3786 	}
3787 
3788 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3789 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3790 		bnx2x_config_mf_bw(bp);
3791 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3792 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3793 	}
3794 
3795 	/* Report results to MCP */
3796 	if (event)
3797 		bnx2x_fw_command(bp, cmd_fail, 0);
3798 	else
3799 		bnx2x_fw_command(bp, cmd_ok, 0);
3800 }
3801 
3802 /* must be called under the spq lock */
3803 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3804 {
3805 	struct eth_spe *next_spe = bp->spq_prod_bd;
3806 
3807 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3808 		bp->spq_prod_bd = bp->spq;
3809 		bp->spq_prod_idx = 0;
3810 		DP(BNX2X_MSG_SP, "end of spq\n");
3811 	} else {
3812 		bp->spq_prod_bd++;
3813 		bp->spq_prod_idx++;
3814 	}
3815 	return next_spe;
3816 }
3817 
3818 /* must be called under the spq lock */
3819 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3820 {
3821 	int func = BP_FUNC(bp);
3822 
3823 	/*
3824 	 * Make sure that BD data is updated before writing the producer:
3825 	 * BD data is written to the memory, the producer is read from the
3826 	 * memory, thus we need a full memory barrier to ensure the ordering.
3827 	 */
3828 	mb();
3829 
3830 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3831 			 bp->spq_prod_idx);
3832 	mmiowb();
3833 }
3834 
3835 /**
3836  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3837  *
3838  * @cmd:	command to check
3839  * @cmd_type:	command type
3840  */
3841 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3842 {
3843 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3844 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3845 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3846 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3847 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3848 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3849 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3850 		return true;
3851 	else
3852 		return false;
3853 }
3854 
3855 /**
3856  * bnx2x_sp_post - place a single command on an SP ring
3857  *
3858  * @bp:		driver handle
3859  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3860  * @cid:	SW CID the command is related to
3861  * @data_hi:	command private data address (high 32 bits)
3862  * @data_lo:	command private data address (low 32 bits)
3863  * @cmd_type:	command type (e.g. NONE, ETH)
3864  *
3865  * SP data is handled as if it's always an address pair, thus data fields are
3866  * not swapped to little endian in upper functions. Instead this function swaps
3867  * data as if it's two u32 fields.
3868  */
3869 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3870 		  u32 data_hi, u32 data_lo, int cmd_type)
3871 {
3872 	struct eth_spe *spe;
3873 	u16 type;
3874 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3875 
3876 #ifdef BNX2X_STOP_ON_ERROR
3877 	if (unlikely(bp->panic)) {
3878 		BNX2X_ERR("Can't post SP when there is panic\n");
3879 		return -EIO;
3880 	}
3881 #endif
3882 
3883 	spin_lock_bh(&bp->spq_lock);
3884 
3885 	if (common) {
3886 		if (!atomic_read(&bp->eq_spq_left)) {
3887 			BNX2X_ERR("BUG! EQ ring full!\n");
3888 			spin_unlock_bh(&bp->spq_lock);
3889 			bnx2x_panic();
3890 			return -EBUSY;
3891 		}
3892 	} else if (!atomic_read(&bp->cq_spq_left)) {
3893 			BNX2X_ERR("BUG! SPQ ring full!\n");
3894 			spin_unlock_bh(&bp->spq_lock);
3895 			bnx2x_panic();
3896 			return -EBUSY;
3897 	}
3898 
3899 	spe = bnx2x_sp_get_next(bp);
3900 
3901 	/* CID needs port number to be encoded int it */
3902 	spe->hdr.conn_and_cmd_data =
3903 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3904 				    HW_CID(bp, cid));
3905 
3906 	/* In some cases, type may already contain the func-id
3907 	 * mainly in SRIOV related use cases, so we add it here only
3908 	 * if it's not already set.
3909 	 */
3910 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3911 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3912 			SPE_HDR_CONN_TYPE;
3913 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3914 			 SPE_HDR_FUNCTION_ID);
3915 	} else {
3916 		type = cmd_type;
3917 	}
3918 
3919 	spe->hdr.type = cpu_to_le16(type);
3920 
3921 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3922 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3923 
3924 	/*
3925 	 * It's ok if the actual decrement is issued towards the memory
3926 	 * somewhere between the spin_lock and spin_unlock. Thus no
3927 	 * more explicit memory barrier is needed.
3928 	 */
3929 	if (common)
3930 		atomic_dec(&bp->eq_spq_left);
3931 	else
3932 		atomic_dec(&bp->cq_spq_left);
3933 
3934 	DP(BNX2X_MSG_SP,
3935 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3936 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3937 	   (u32)(U64_LO(bp->spq_mapping) +
3938 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3939 	   HW_CID(bp, cid), data_hi, data_lo, type,
3940 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3941 
3942 	bnx2x_sp_prod_update(bp);
3943 	spin_unlock_bh(&bp->spq_lock);
3944 	return 0;
3945 }
3946 
3947 /* acquire split MCP access lock register */
3948 static int bnx2x_acquire_alr(struct bnx2x *bp)
3949 {
3950 	u32 j, val;
3951 	int rc = 0;
3952 
3953 	might_sleep();
3954 	for (j = 0; j < 1000; j++) {
3955 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3956 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3957 		if (val & MCPR_ACCESS_LOCK_LOCK)
3958 			break;
3959 
3960 		usleep_range(5000, 10000);
3961 	}
3962 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3963 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3964 		rc = -EBUSY;
3965 	}
3966 
3967 	return rc;
3968 }
3969 
3970 /* release split MCP access lock register */
3971 static void bnx2x_release_alr(struct bnx2x *bp)
3972 {
3973 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3974 }
3975 
3976 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3977 #define BNX2X_DEF_SB_IDX	0x0002
3978 
3979 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3980 {
3981 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3982 	u16 rc = 0;
3983 
3984 	barrier(); /* status block is written to by the chip */
3985 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3986 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3987 		rc |= BNX2X_DEF_SB_ATT_IDX;
3988 	}
3989 
3990 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3991 		bp->def_idx = def_sb->sp_sb.running_index;
3992 		rc |= BNX2X_DEF_SB_IDX;
3993 	}
3994 
3995 	/* Do not reorder: indices reading should complete before handling */
3996 	barrier();
3997 	return rc;
3998 }
3999 
4000 /*
4001  * slow path service functions
4002  */
4003 
4004 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4005 {
4006 	int port = BP_PORT(bp);
4007 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4008 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4009 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4010 				       NIG_REG_MASK_INTERRUPT_PORT0;
4011 	u32 aeu_mask;
4012 	u32 nig_mask = 0;
4013 	u32 reg_addr;
4014 
4015 	if (bp->attn_state & asserted)
4016 		BNX2X_ERR("IGU ERROR\n");
4017 
4018 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4019 	aeu_mask = REG_RD(bp, aeu_addr);
4020 
4021 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4022 	   aeu_mask, asserted);
4023 	aeu_mask &= ~(asserted & 0x3ff);
4024 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4025 
4026 	REG_WR(bp, aeu_addr, aeu_mask);
4027 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4028 
4029 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4030 	bp->attn_state |= asserted;
4031 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4032 
4033 	if (asserted & ATTN_HARD_WIRED_MASK) {
4034 		if (asserted & ATTN_NIG_FOR_FUNC) {
4035 
4036 			bnx2x_acquire_phy_lock(bp);
4037 
4038 			/* save nig interrupt mask */
4039 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4040 
4041 			/* If nig_mask is not set, no need to call the update
4042 			 * function.
4043 			 */
4044 			if (nig_mask) {
4045 				REG_WR(bp, nig_int_mask_addr, 0);
4046 
4047 				bnx2x_link_attn(bp);
4048 			}
4049 
4050 			/* handle unicore attn? */
4051 		}
4052 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4053 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4054 
4055 		if (asserted & GPIO_2_FUNC)
4056 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4057 
4058 		if (asserted & GPIO_3_FUNC)
4059 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4060 
4061 		if (asserted & GPIO_4_FUNC)
4062 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4063 
4064 		if (port == 0) {
4065 			if (asserted & ATTN_GENERAL_ATTN_1) {
4066 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4067 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4068 			}
4069 			if (asserted & ATTN_GENERAL_ATTN_2) {
4070 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4071 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4072 			}
4073 			if (asserted & ATTN_GENERAL_ATTN_3) {
4074 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4075 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4076 			}
4077 		} else {
4078 			if (asserted & ATTN_GENERAL_ATTN_4) {
4079 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4080 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4081 			}
4082 			if (asserted & ATTN_GENERAL_ATTN_5) {
4083 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4084 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4085 			}
4086 			if (asserted & ATTN_GENERAL_ATTN_6) {
4087 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4088 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4089 			}
4090 		}
4091 
4092 	} /* if hardwired */
4093 
4094 	if (bp->common.int_block == INT_BLOCK_HC)
4095 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4096 			    COMMAND_REG_ATTN_BITS_SET);
4097 	else
4098 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4099 
4100 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4101 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4102 	REG_WR(bp, reg_addr, asserted);
4103 
4104 	/* now set back the mask */
4105 	if (asserted & ATTN_NIG_FOR_FUNC) {
4106 		/* Verify that IGU ack through BAR was written before restoring
4107 		 * NIG mask. This loop should exit after 2-3 iterations max.
4108 		 */
4109 		if (bp->common.int_block != INT_BLOCK_HC) {
4110 			u32 cnt = 0, igu_acked;
4111 			do {
4112 				igu_acked = REG_RD(bp,
4113 						   IGU_REG_ATTENTION_ACK_BITS);
4114 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4115 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4116 			if (!igu_acked)
4117 				DP(NETIF_MSG_HW,
4118 				   "Failed to verify IGU ack on time\n");
4119 			barrier();
4120 		}
4121 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4122 		bnx2x_release_phy_lock(bp);
4123 	}
4124 }
4125 
4126 static void bnx2x_fan_failure(struct bnx2x *bp)
4127 {
4128 	int port = BP_PORT(bp);
4129 	u32 ext_phy_config;
4130 	/* mark the failure */
4131 	ext_phy_config =
4132 		SHMEM_RD(bp,
4133 			 dev_info.port_hw_config[port].external_phy_config);
4134 
4135 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4136 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4137 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4138 		 ext_phy_config);
4139 
4140 	/* log the failure */
4141 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4142 			    "Please contact OEM Support for assistance\n");
4143 
4144 	/* Schedule device reset (unload)
4145 	 * This is due to some boards consuming sufficient power when driver is
4146 	 * up to overheat if fan fails.
4147 	 */
4148 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4149 }
4150 
4151 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4152 {
4153 	int port = BP_PORT(bp);
4154 	int reg_offset;
4155 	u32 val;
4156 
4157 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4158 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4159 
4160 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4161 
4162 		val = REG_RD(bp, reg_offset);
4163 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4164 		REG_WR(bp, reg_offset, val);
4165 
4166 		BNX2X_ERR("SPIO5 hw attention\n");
4167 
4168 		/* Fan failure attention */
4169 		bnx2x_hw_reset_phy(&bp->link_params);
4170 		bnx2x_fan_failure(bp);
4171 	}
4172 
4173 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4174 		bnx2x_acquire_phy_lock(bp);
4175 		bnx2x_handle_module_detect_int(&bp->link_params);
4176 		bnx2x_release_phy_lock(bp);
4177 	}
4178 
4179 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4180 
4181 		val = REG_RD(bp, reg_offset);
4182 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4183 		REG_WR(bp, reg_offset, val);
4184 
4185 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4186 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4187 		bnx2x_panic();
4188 	}
4189 }
4190 
4191 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4192 {
4193 	u32 val;
4194 
4195 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4196 
4197 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4198 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4199 		/* DORQ discard attention */
4200 		if (val & 0x2)
4201 			BNX2X_ERR("FATAL error from DORQ\n");
4202 	}
4203 
4204 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4205 
4206 		int port = BP_PORT(bp);
4207 		int reg_offset;
4208 
4209 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4210 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4211 
4212 		val = REG_RD(bp, reg_offset);
4213 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4214 		REG_WR(bp, reg_offset, val);
4215 
4216 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4217 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4218 		bnx2x_panic();
4219 	}
4220 }
4221 
4222 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4223 {
4224 	u32 val;
4225 
4226 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4227 
4228 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4229 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4230 		/* CFC error attention */
4231 		if (val & 0x2)
4232 			BNX2X_ERR("FATAL error from CFC\n");
4233 	}
4234 
4235 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4236 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4237 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4238 		/* RQ_USDMDP_FIFO_OVERFLOW */
4239 		if (val & 0x18000)
4240 			BNX2X_ERR("FATAL error from PXP\n");
4241 
4242 		if (!CHIP_IS_E1x(bp)) {
4243 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4244 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4245 		}
4246 	}
4247 
4248 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4249 
4250 		int port = BP_PORT(bp);
4251 		int reg_offset;
4252 
4253 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4254 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4255 
4256 		val = REG_RD(bp, reg_offset);
4257 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4258 		REG_WR(bp, reg_offset, val);
4259 
4260 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4261 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4262 		bnx2x_panic();
4263 	}
4264 }
4265 
4266 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4267 {
4268 	u32 val;
4269 
4270 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4271 
4272 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4273 			int func = BP_FUNC(bp);
4274 
4275 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4276 			bnx2x_read_mf_cfg(bp);
4277 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4278 					func_mf_config[BP_ABS_FUNC(bp)].config);
4279 			val = SHMEM_RD(bp,
4280 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4281 
4282 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4283 				   DRV_STATUS_OEM_EVENT_MASK))
4284 				bnx2x_oem_event(bp,
4285 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4286 						DRV_STATUS_OEM_EVENT_MASK)));
4287 
4288 			if (val & DRV_STATUS_SET_MF_BW)
4289 				bnx2x_set_mf_bw(bp);
4290 
4291 			if (val & DRV_STATUS_DRV_INFO_REQ)
4292 				bnx2x_handle_drv_info_req(bp);
4293 
4294 			if (val & DRV_STATUS_VF_DISABLED)
4295 				bnx2x_schedule_iov_task(bp,
4296 							BNX2X_IOV_HANDLE_FLR);
4297 
4298 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4299 				bnx2x_pmf_update(bp);
4300 
4301 			if (bp->port.pmf &&
4302 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4303 				bp->dcbx_enabled > 0)
4304 				/* start dcbx state machine */
4305 				bnx2x_dcbx_set_params(bp,
4306 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4307 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4308 				bnx2x_handle_afex_cmd(bp,
4309 					val & DRV_STATUS_AFEX_EVENT_MASK);
4310 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4311 				bnx2x_handle_eee_event(bp);
4312 
4313 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4314 				bnx2x_handle_update_svid_cmd(bp);
4315 
4316 			if (bp->link_vars.periodic_flags &
4317 			    PERIODIC_FLAGS_LINK_EVENT) {
4318 				/*  sync with link */
4319 				bnx2x_acquire_phy_lock(bp);
4320 				bp->link_vars.periodic_flags &=
4321 					~PERIODIC_FLAGS_LINK_EVENT;
4322 				bnx2x_release_phy_lock(bp);
4323 				if (IS_MF(bp))
4324 					bnx2x_link_sync_notify(bp);
4325 				bnx2x_link_report(bp);
4326 			}
4327 			/* Always call it here: bnx2x_link_report() will
4328 			 * prevent the link indication duplication.
4329 			 */
4330 			bnx2x__link_status_update(bp);
4331 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4332 
4333 			BNX2X_ERR("MC assert!\n");
4334 			bnx2x_mc_assert(bp);
4335 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4336 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4337 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4338 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4339 			bnx2x_panic();
4340 
4341 		} else if (attn & BNX2X_MCP_ASSERT) {
4342 
4343 			BNX2X_ERR("MCP assert!\n");
4344 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4345 			bnx2x_fw_dump(bp);
4346 
4347 		} else
4348 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4349 	}
4350 
4351 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4352 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4353 		if (attn & BNX2X_GRC_TIMEOUT) {
4354 			val = CHIP_IS_E1(bp) ? 0 :
4355 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4356 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4357 		}
4358 		if (attn & BNX2X_GRC_RSV) {
4359 			val = CHIP_IS_E1(bp) ? 0 :
4360 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4361 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4362 		}
4363 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4364 	}
4365 }
4366 
4367 /*
4368  * Bits map:
4369  * 0-7   - Engine0 load counter.
4370  * 8-15  - Engine1 load counter.
4371  * 16    - Engine0 RESET_IN_PROGRESS bit.
4372  * 17    - Engine1 RESET_IN_PROGRESS bit.
4373  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4374  *         on the engine
4375  * 19    - Engine1 ONE_IS_LOADED.
4376  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4377  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4378  *         just the one belonging to its engine).
4379  *
4380  */
4381 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4382 
4383 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4384 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4385 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4386 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4387 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4388 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4389 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4390 
4391 /*
4392  * Set the GLOBAL_RESET bit.
4393  *
4394  * Should be run under rtnl lock
4395  */
4396 void bnx2x_set_reset_global(struct bnx2x *bp)
4397 {
4398 	u32 val;
4399 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4400 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4401 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4402 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4403 }
4404 
4405 /*
4406  * Clear the GLOBAL_RESET bit.
4407  *
4408  * Should be run under rtnl lock
4409  */
4410 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4411 {
4412 	u32 val;
4413 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4414 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4415 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4416 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4417 }
4418 
4419 /*
4420  * Checks the GLOBAL_RESET bit.
4421  *
4422  * should be run under rtnl lock
4423  */
4424 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4425 {
4426 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4427 
4428 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4429 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4430 }
4431 
4432 /*
4433  * Clear RESET_IN_PROGRESS bit for the current engine.
4434  *
4435  * Should be run under rtnl lock
4436  */
4437 static void bnx2x_set_reset_done(struct bnx2x *bp)
4438 {
4439 	u32 val;
4440 	u32 bit = BP_PATH(bp) ?
4441 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4442 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4443 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4444 
4445 	/* Clear the bit */
4446 	val &= ~bit;
4447 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4448 
4449 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4450 }
4451 
4452 /*
4453  * Set RESET_IN_PROGRESS for the current engine.
4454  *
4455  * should be run under rtnl lock
4456  */
4457 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4458 {
4459 	u32 val;
4460 	u32 bit = BP_PATH(bp) ?
4461 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4462 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4463 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464 
4465 	/* Set the bit */
4466 	val |= bit;
4467 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4468 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4469 }
4470 
4471 /*
4472  * Checks the RESET_IN_PROGRESS bit for the given engine.
4473  * should be run under rtnl lock
4474  */
4475 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4476 {
4477 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4478 	u32 bit = engine ?
4479 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4480 
4481 	/* return false if bit is set */
4482 	return (val & bit) ? false : true;
4483 }
4484 
4485 /*
4486  * set pf load for the current pf.
4487  *
4488  * should be run under rtnl lock
4489  */
4490 void bnx2x_set_pf_load(struct bnx2x *bp)
4491 {
4492 	u32 val1, val;
4493 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4494 			     BNX2X_PATH0_LOAD_CNT_MASK;
4495 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4496 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4497 
4498 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4499 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4500 
4501 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4502 
4503 	/* get the current counter value */
4504 	val1 = (val & mask) >> shift;
4505 
4506 	/* set bit of that PF */
4507 	val1 |= (1 << bp->pf_num);
4508 
4509 	/* clear the old value */
4510 	val &= ~mask;
4511 
4512 	/* set the new one */
4513 	val |= ((val1 << shift) & mask);
4514 
4515 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4516 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4517 }
4518 
4519 /**
4520  * bnx2x_clear_pf_load - clear pf load mark
4521  *
4522  * @bp:		driver handle
4523  *
4524  * Should be run under rtnl lock.
4525  * Decrements the load counter for the current engine. Returns
4526  * whether other functions are still loaded
4527  */
4528 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4529 {
4530 	u32 val1, val;
4531 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4532 			     BNX2X_PATH0_LOAD_CNT_MASK;
4533 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4534 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4535 
4536 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4537 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4538 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4539 
4540 	/* get the current counter value */
4541 	val1 = (val & mask) >> shift;
4542 
4543 	/* clear bit of that PF */
4544 	val1 &= ~(1 << bp->pf_num);
4545 
4546 	/* clear the old value */
4547 	val &= ~mask;
4548 
4549 	/* set the new one */
4550 	val |= ((val1 << shift) & mask);
4551 
4552 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4553 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4554 	return val1 != 0;
4555 }
4556 
4557 /*
4558  * Read the load status for the current engine.
4559  *
4560  * should be run under rtnl lock
4561  */
4562 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4563 {
4564 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4565 			     BNX2X_PATH0_LOAD_CNT_MASK);
4566 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4567 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4568 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4569 
4570 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4571 
4572 	val = (val & mask) >> shift;
4573 
4574 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4575 	   engine, val);
4576 
4577 	return val != 0;
4578 }
4579 
4580 static void _print_parity(struct bnx2x *bp, u32 reg)
4581 {
4582 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4583 }
4584 
4585 static void _print_next_block(int idx, const char *blk)
4586 {
4587 	pr_cont("%s%s", idx ? ", " : "", blk);
4588 }
4589 
4590 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4591 					    int *par_num, bool print)
4592 {
4593 	u32 cur_bit;
4594 	bool res;
4595 	int i;
4596 
4597 	res = false;
4598 
4599 	for (i = 0; sig; i++) {
4600 		cur_bit = (0x1UL << i);
4601 		if (sig & cur_bit) {
4602 			res |= true; /* Each bit is real error! */
4603 
4604 			if (print) {
4605 				switch (cur_bit) {
4606 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4607 					_print_next_block((*par_num)++, "BRB");
4608 					_print_parity(bp,
4609 						      BRB1_REG_BRB1_PRTY_STS);
4610 					break;
4611 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4612 					_print_next_block((*par_num)++,
4613 							  "PARSER");
4614 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4615 					break;
4616 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4617 					_print_next_block((*par_num)++, "TSDM");
4618 					_print_parity(bp,
4619 						      TSDM_REG_TSDM_PRTY_STS);
4620 					break;
4621 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4622 					_print_next_block((*par_num)++,
4623 							  "SEARCHER");
4624 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4625 					break;
4626 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4627 					_print_next_block((*par_num)++, "TCM");
4628 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4629 					break;
4630 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4631 					_print_next_block((*par_num)++,
4632 							  "TSEMI");
4633 					_print_parity(bp,
4634 						      TSEM_REG_TSEM_PRTY_STS_0);
4635 					_print_parity(bp,
4636 						      TSEM_REG_TSEM_PRTY_STS_1);
4637 					break;
4638 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4639 					_print_next_block((*par_num)++, "XPB");
4640 					_print_parity(bp, GRCBASE_XPB +
4641 							  PB_REG_PB_PRTY_STS);
4642 					break;
4643 				}
4644 			}
4645 
4646 			/* Clear the bit */
4647 			sig &= ~cur_bit;
4648 		}
4649 	}
4650 
4651 	return res;
4652 }
4653 
4654 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4655 					    int *par_num, bool *global,
4656 					    bool print)
4657 {
4658 	u32 cur_bit;
4659 	bool res;
4660 	int i;
4661 
4662 	res = false;
4663 
4664 	for (i = 0; sig; i++) {
4665 		cur_bit = (0x1UL << i);
4666 		if (sig & cur_bit) {
4667 			res |= true; /* Each bit is real error! */
4668 			switch (cur_bit) {
4669 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4670 				if (print) {
4671 					_print_next_block((*par_num)++, "PBF");
4672 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4673 				}
4674 				break;
4675 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4676 				if (print) {
4677 					_print_next_block((*par_num)++, "QM");
4678 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4679 				}
4680 				break;
4681 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4682 				if (print) {
4683 					_print_next_block((*par_num)++, "TM");
4684 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4685 				}
4686 				break;
4687 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4688 				if (print) {
4689 					_print_next_block((*par_num)++, "XSDM");
4690 					_print_parity(bp,
4691 						      XSDM_REG_XSDM_PRTY_STS);
4692 				}
4693 				break;
4694 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4695 				if (print) {
4696 					_print_next_block((*par_num)++, "XCM");
4697 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4698 				}
4699 				break;
4700 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4701 				if (print) {
4702 					_print_next_block((*par_num)++,
4703 							  "XSEMI");
4704 					_print_parity(bp,
4705 						      XSEM_REG_XSEM_PRTY_STS_0);
4706 					_print_parity(bp,
4707 						      XSEM_REG_XSEM_PRTY_STS_1);
4708 				}
4709 				break;
4710 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4711 				if (print) {
4712 					_print_next_block((*par_num)++,
4713 							  "DOORBELLQ");
4714 					_print_parity(bp,
4715 						      DORQ_REG_DORQ_PRTY_STS);
4716 				}
4717 				break;
4718 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4719 				if (print) {
4720 					_print_next_block((*par_num)++, "NIG");
4721 					if (CHIP_IS_E1x(bp)) {
4722 						_print_parity(bp,
4723 							NIG_REG_NIG_PRTY_STS);
4724 					} else {
4725 						_print_parity(bp,
4726 							NIG_REG_NIG_PRTY_STS_0);
4727 						_print_parity(bp,
4728 							NIG_REG_NIG_PRTY_STS_1);
4729 					}
4730 				}
4731 				break;
4732 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4733 				if (print)
4734 					_print_next_block((*par_num)++,
4735 							  "VAUX PCI CORE");
4736 				*global = true;
4737 				break;
4738 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4739 				if (print) {
4740 					_print_next_block((*par_num)++,
4741 							  "DEBUG");
4742 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4743 				}
4744 				break;
4745 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4746 				if (print) {
4747 					_print_next_block((*par_num)++, "USDM");
4748 					_print_parity(bp,
4749 						      USDM_REG_USDM_PRTY_STS);
4750 				}
4751 				break;
4752 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4753 				if (print) {
4754 					_print_next_block((*par_num)++, "UCM");
4755 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4756 				}
4757 				break;
4758 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4759 				if (print) {
4760 					_print_next_block((*par_num)++,
4761 							  "USEMI");
4762 					_print_parity(bp,
4763 						      USEM_REG_USEM_PRTY_STS_0);
4764 					_print_parity(bp,
4765 						      USEM_REG_USEM_PRTY_STS_1);
4766 				}
4767 				break;
4768 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4769 				if (print) {
4770 					_print_next_block((*par_num)++, "UPB");
4771 					_print_parity(bp, GRCBASE_UPB +
4772 							  PB_REG_PB_PRTY_STS);
4773 				}
4774 				break;
4775 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4776 				if (print) {
4777 					_print_next_block((*par_num)++, "CSDM");
4778 					_print_parity(bp,
4779 						      CSDM_REG_CSDM_PRTY_STS);
4780 				}
4781 				break;
4782 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4783 				if (print) {
4784 					_print_next_block((*par_num)++, "CCM");
4785 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4786 				}
4787 				break;
4788 			}
4789 
4790 			/* Clear the bit */
4791 			sig &= ~cur_bit;
4792 		}
4793 	}
4794 
4795 	return res;
4796 }
4797 
4798 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4799 					    int *par_num, bool print)
4800 {
4801 	u32 cur_bit;
4802 	bool res;
4803 	int i;
4804 
4805 	res = false;
4806 
4807 	for (i = 0; sig; i++) {
4808 		cur_bit = (0x1UL << i);
4809 		if (sig & cur_bit) {
4810 			res = true; /* Each bit is real error! */
4811 			if (print) {
4812 				switch (cur_bit) {
4813 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4814 					_print_next_block((*par_num)++,
4815 							  "CSEMI");
4816 					_print_parity(bp,
4817 						      CSEM_REG_CSEM_PRTY_STS_0);
4818 					_print_parity(bp,
4819 						      CSEM_REG_CSEM_PRTY_STS_1);
4820 					break;
4821 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4822 					_print_next_block((*par_num)++, "PXP");
4823 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4824 					_print_parity(bp,
4825 						      PXP2_REG_PXP2_PRTY_STS_0);
4826 					_print_parity(bp,
4827 						      PXP2_REG_PXP2_PRTY_STS_1);
4828 					break;
4829 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4830 					_print_next_block((*par_num)++,
4831 							  "PXPPCICLOCKCLIENT");
4832 					break;
4833 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4834 					_print_next_block((*par_num)++, "CFC");
4835 					_print_parity(bp,
4836 						      CFC_REG_CFC_PRTY_STS);
4837 					break;
4838 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4839 					_print_next_block((*par_num)++, "CDU");
4840 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4841 					break;
4842 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4843 					_print_next_block((*par_num)++, "DMAE");
4844 					_print_parity(bp,
4845 						      DMAE_REG_DMAE_PRTY_STS);
4846 					break;
4847 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4848 					_print_next_block((*par_num)++, "IGU");
4849 					if (CHIP_IS_E1x(bp))
4850 						_print_parity(bp,
4851 							HC_REG_HC_PRTY_STS);
4852 					else
4853 						_print_parity(bp,
4854 							IGU_REG_IGU_PRTY_STS);
4855 					break;
4856 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4857 					_print_next_block((*par_num)++, "MISC");
4858 					_print_parity(bp,
4859 						      MISC_REG_MISC_PRTY_STS);
4860 					break;
4861 				}
4862 			}
4863 
4864 			/* Clear the bit */
4865 			sig &= ~cur_bit;
4866 		}
4867 	}
4868 
4869 	return res;
4870 }
4871 
4872 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4873 					    int *par_num, bool *global,
4874 					    bool print)
4875 {
4876 	bool res = false;
4877 	u32 cur_bit;
4878 	int i;
4879 
4880 	for (i = 0; sig; i++) {
4881 		cur_bit = (0x1UL << i);
4882 		if (sig & cur_bit) {
4883 			switch (cur_bit) {
4884 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4885 				if (print)
4886 					_print_next_block((*par_num)++,
4887 							  "MCP ROM");
4888 				*global = true;
4889 				res = true;
4890 				break;
4891 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4892 				if (print)
4893 					_print_next_block((*par_num)++,
4894 							  "MCP UMP RX");
4895 				*global = true;
4896 				res = true;
4897 				break;
4898 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4899 				if (print)
4900 					_print_next_block((*par_num)++,
4901 							  "MCP UMP TX");
4902 				*global = true;
4903 				res = true;
4904 				break;
4905 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4906 				(*par_num)++;
4907 				/* clear latched SCPAD PATIRY from MCP */
4908 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4909 				       1UL << 10);
4910 				break;
4911 			}
4912 
4913 			/* Clear the bit */
4914 			sig &= ~cur_bit;
4915 		}
4916 	}
4917 
4918 	return res;
4919 }
4920 
4921 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4922 					    int *par_num, bool print)
4923 {
4924 	u32 cur_bit;
4925 	bool res;
4926 	int i;
4927 
4928 	res = false;
4929 
4930 	for (i = 0; sig; i++) {
4931 		cur_bit = (0x1UL << i);
4932 		if (sig & cur_bit) {
4933 			res = true; /* Each bit is real error! */
4934 			if (print) {
4935 				switch (cur_bit) {
4936 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4937 					_print_next_block((*par_num)++,
4938 							  "PGLUE_B");
4939 					_print_parity(bp,
4940 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4941 					break;
4942 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4943 					_print_next_block((*par_num)++, "ATC");
4944 					_print_parity(bp,
4945 						      ATC_REG_ATC_PRTY_STS);
4946 					break;
4947 				}
4948 			}
4949 			/* Clear the bit */
4950 			sig &= ~cur_bit;
4951 		}
4952 	}
4953 
4954 	return res;
4955 }
4956 
4957 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4958 			      u32 *sig)
4959 {
4960 	bool res = false;
4961 
4962 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4963 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4964 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4965 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4966 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4967 		int par_num = 0;
4968 
4969 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4970 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4971 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4972 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4973 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4974 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4975 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4976 		if (print) {
4977 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4978 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4979 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4980 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4981 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4982 				netdev_err(bp->dev,
4983 					   "Parity errors detected in blocks: ");
4984 			} else {
4985 				print = false;
4986 			}
4987 		}
4988 		res |= bnx2x_check_blocks_with_parity0(bp,
4989 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4990 		res |= bnx2x_check_blocks_with_parity1(bp,
4991 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4992 		res |= bnx2x_check_blocks_with_parity2(bp,
4993 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4994 		res |= bnx2x_check_blocks_with_parity3(bp,
4995 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4996 		res |= bnx2x_check_blocks_with_parity4(bp,
4997 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4998 
4999 		if (print)
5000 			pr_cont("\n");
5001 	}
5002 
5003 	return res;
5004 }
5005 
5006 /**
5007  * bnx2x_chk_parity_attn - checks for parity attentions.
5008  *
5009  * @bp:		driver handle
5010  * @global:	true if there was a global attention
5011  * @print:	show parity attention in syslog
5012  */
5013 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5014 {
5015 	struct attn_route attn = { {0} };
5016 	int port = BP_PORT(bp);
5017 
5018 	attn.sig[0] = REG_RD(bp,
5019 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5020 			     port*4);
5021 	attn.sig[1] = REG_RD(bp,
5022 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5023 			     port*4);
5024 	attn.sig[2] = REG_RD(bp,
5025 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5026 			     port*4);
5027 	attn.sig[3] = REG_RD(bp,
5028 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5029 			     port*4);
5030 	/* Since MCP attentions can't be disabled inside the block, we need to
5031 	 * read AEU registers to see whether they're currently disabled
5032 	 */
5033 	attn.sig[3] &= ((REG_RD(bp,
5034 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5035 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5036 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5037 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5038 
5039 	if (!CHIP_IS_E1x(bp))
5040 		attn.sig[4] = REG_RD(bp,
5041 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5042 				     port*4);
5043 
5044 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5045 }
5046 
5047 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5048 {
5049 	u32 val;
5050 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5051 
5052 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5053 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5054 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5055 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5056 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5057 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5058 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5059 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5060 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5061 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5062 		if (val &
5063 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5064 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5065 		if (val &
5066 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5067 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5068 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5069 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5070 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5071 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5072 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5073 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5074 	}
5075 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5076 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5077 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5078 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5079 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5080 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5081 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5082 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5083 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5084 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5085 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5086 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5087 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5088 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5089 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5090 	}
5091 
5092 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5093 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5094 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5095 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5096 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5097 	}
5098 }
5099 
5100 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5101 {
5102 	struct attn_route attn, *group_mask;
5103 	int port = BP_PORT(bp);
5104 	int index;
5105 	u32 reg_addr;
5106 	u32 val;
5107 	u32 aeu_mask;
5108 	bool global = false;
5109 
5110 	/* need to take HW lock because MCP or other port might also
5111 	   try to handle this event */
5112 	bnx2x_acquire_alr(bp);
5113 
5114 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5115 #ifndef BNX2X_STOP_ON_ERROR
5116 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5117 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5118 		/* Disable HW interrupts */
5119 		bnx2x_int_disable(bp);
5120 		/* In case of parity errors don't handle attentions so that
5121 		 * other function would "see" parity errors.
5122 		 */
5123 #else
5124 		bnx2x_panic();
5125 #endif
5126 		bnx2x_release_alr(bp);
5127 		return;
5128 	}
5129 
5130 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5131 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5132 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5133 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5134 	if (!CHIP_IS_E1x(bp))
5135 		attn.sig[4] =
5136 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5137 	else
5138 		attn.sig[4] = 0;
5139 
5140 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5141 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5142 
5143 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5144 		if (deasserted & (1 << index)) {
5145 			group_mask = &bp->attn_group[index];
5146 
5147 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5148 			   index,
5149 			   group_mask->sig[0], group_mask->sig[1],
5150 			   group_mask->sig[2], group_mask->sig[3],
5151 			   group_mask->sig[4]);
5152 
5153 			bnx2x_attn_int_deasserted4(bp,
5154 					attn.sig[4] & group_mask->sig[4]);
5155 			bnx2x_attn_int_deasserted3(bp,
5156 					attn.sig[3] & group_mask->sig[3]);
5157 			bnx2x_attn_int_deasserted1(bp,
5158 					attn.sig[1] & group_mask->sig[1]);
5159 			bnx2x_attn_int_deasserted2(bp,
5160 					attn.sig[2] & group_mask->sig[2]);
5161 			bnx2x_attn_int_deasserted0(bp,
5162 					attn.sig[0] & group_mask->sig[0]);
5163 		}
5164 	}
5165 
5166 	bnx2x_release_alr(bp);
5167 
5168 	if (bp->common.int_block == INT_BLOCK_HC)
5169 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5170 			    COMMAND_REG_ATTN_BITS_CLR);
5171 	else
5172 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5173 
5174 	val = ~deasserted;
5175 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5176 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5177 	REG_WR(bp, reg_addr, val);
5178 
5179 	if (~bp->attn_state & deasserted)
5180 		BNX2X_ERR("IGU ERROR\n");
5181 
5182 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5183 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5184 
5185 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5186 	aeu_mask = REG_RD(bp, reg_addr);
5187 
5188 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5189 	   aeu_mask, deasserted);
5190 	aeu_mask |= (deasserted & 0x3ff);
5191 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5192 
5193 	REG_WR(bp, reg_addr, aeu_mask);
5194 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5195 
5196 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5197 	bp->attn_state &= ~deasserted;
5198 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5199 }
5200 
5201 static void bnx2x_attn_int(struct bnx2x *bp)
5202 {
5203 	/* read local copy of bits */
5204 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5205 								attn_bits);
5206 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5207 								attn_bits_ack);
5208 	u32 attn_state = bp->attn_state;
5209 
5210 	/* look for changed bits */
5211 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5212 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5213 
5214 	DP(NETIF_MSG_HW,
5215 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5216 	   attn_bits, attn_ack, asserted, deasserted);
5217 
5218 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5219 		BNX2X_ERR("BAD attention state\n");
5220 
5221 	/* handle bits that were raised */
5222 	if (asserted)
5223 		bnx2x_attn_int_asserted(bp, asserted);
5224 
5225 	if (deasserted)
5226 		bnx2x_attn_int_deasserted(bp, deasserted);
5227 }
5228 
5229 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5230 		      u16 index, u8 op, u8 update)
5231 {
5232 	u32 igu_addr = bp->igu_base_addr;
5233 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5234 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5235 			     igu_addr);
5236 }
5237 
5238 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5239 {
5240 	/* No memory barriers */
5241 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5242 	mmiowb(); /* keep prod updates ordered */
5243 }
5244 
5245 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5246 				      union event_ring_elem *elem)
5247 {
5248 	u8 err = elem->message.error;
5249 
5250 	if (!bp->cnic_eth_dev.starting_cid  ||
5251 	    (cid < bp->cnic_eth_dev.starting_cid &&
5252 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5253 		return 1;
5254 
5255 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5256 
5257 	if (unlikely(err)) {
5258 
5259 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5260 			  cid);
5261 		bnx2x_panic_dump(bp, false);
5262 	}
5263 	bnx2x_cnic_cfc_comp(bp, cid, err);
5264 	return 0;
5265 }
5266 
5267 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5268 {
5269 	struct bnx2x_mcast_ramrod_params rparam;
5270 	int rc;
5271 
5272 	memset(&rparam, 0, sizeof(rparam));
5273 
5274 	rparam.mcast_obj = &bp->mcast_obj;
5275 
5276 	netif_addr_lock_bh(bp->dev);
5277 
5278 	/* Clear pending state for the last command */
5279 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5280 
5281 	/* If there are pending mcast commands - send them */
5282 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5283 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5284 		if (rc < 0)
5285 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5286 				  rc);
5287 	}
5288 
5289 	netif_addr_unlock_bh(bp->dev);
5290 }
5291 
5292 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5293 					    union event_ring_elem *elem)
5294 {
5295 	unsigned long ramrod_flags = 0;
5296 	int rc = 0;
5297 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5298 	u32 cid = echo & BNX2X_SWCID_MASK;
5299 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5300 
5301 	/* Always push next commands out, don't wait here */
5302 	__set_bit(RAMROD_CONT, &ramrod_flags);
5303 
5304 	switch (echo >> BNX2X_SWCID_SHIFT) {
5305 	case BNX2X_FILTER_MAC_PENDING:
5306 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5307 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5308 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5309 		else
5310 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5311 
5312 		break;
5313 	case BNX2X_FILTER_VLAN_PENDING:
5314 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5315 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5316 		break;
5317 	case BNX2X_FILTER_MCAST_PENDING:
5318 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5319 		/* This is only relevant for 57710 where multicast MACs are
5320 		 * configured as unicast MACs using the same ramrod.
5321 		 */
5322 		bnx2x_handle_mcast_eqe(bp);
5323 		return;
5324 	default:
5325 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5326 		return;
5327 	}
5328 
5329 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5330 
5331 	if (rc < 0)
5332 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5333 	else if (rc > 0)
5334 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5335 }
5336 
5337 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5338 
5339 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5340 {
5341 	netif_addr_lock_bh(bp->dev);
5342 
5343 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5344 
5345 	/* Send rx_mode command again if was requested */
5346 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5347 		bnx2x_set_storm_rx_mode(bp);
5348 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5349 				    &bp->sp_state))
5350 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5351 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5352 				    &bp->sp_state))
5353 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5354 
5355 	netif_addr_unlock_bh(bp->dev);
5356 }
5357 
5358 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5359 					      union event_ring_elem *elem)
5360 {
5361 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5362 		DP(BNX2X_MSG_SP,
5363 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5364 		   elem->message.data.vif_list_event.func_bit_map);
5365 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5366 			elem->message.data.vif_list_event.func_bit_map);
5367 	} else if (elem->message.data.vif_list_event.echo ==
5368 		   VIF_LIST_RULE_SET) {
5369 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5370 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5371 	}
5372 }
5373 
5374 /* called with rtnl_lock */
5375 static void bnx2x_after_function_update(struct bnx2x *bp)
5376 {
5377 	int q, rc;
5378 	struct bnx2x_fastpath *fp;
5379 	struct bnx2x_queue_state_params queue_params = {NULL};
5380 	struct bnx2x_queue_update_params *q_update_params =
5381 		&queue_params.params.update;
5382 
5383 	/* Send Q update command with afex vlan removal values for all Qs */
5384 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5385 
5386 	/* set silent vlan removal values according to vlan mode */
5387 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5388 		  &q_update_params->update_flags);
5389 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5390 		  &q_update_params->update_flags);
5391 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5392 
5393 	/* in access mode mark mask and value are 0 to strip all vlans */
5394 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5395 		q_update_params->silent_removal_value = 0;
5396 		q_update_params->silent_removal_mask = 0;
5397 	} else {
5398 		q_update_params->silent_removal_value =
5399 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5400 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5401 	}
5402 
5403 	for_each_eth_queue(bp, q) {
5404 		/* Set the appropriate Queue object */
5405 		fp = &bp->fp[q];
5406 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5407 
5408 		/* send the ramrod */
5409 		rc = bnx2x_queue_state_change(bp, &queue_params);
5410 		if (rc < 0)
5411 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5412 				  q);
5413 	}
5414 
5415 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5416 		fp = &bp->fp[FCOE_IDX(bp)];
5417 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5418 
5419 		/* clear pending completion bit */
5420 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5421 
5422 		/* mark latest Q bit */
5423 		smp_mb__before_atomic();
5424 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5425 		smp_mb__after_atomic();
5426 
5427 		/* send Q update ramrod for FCoE Q */
5428 		rc = bnx2x_queue_state_change(bp, &queue_params);
5429 		if (rc < 0)
5430 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5431 				  q);
5432 	} else {
5433 		/* If no FCoE ring - ACK MCP now */
5434 		bnx2x_link_report(bp);
5435 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5436 	}
5437 }
5438 
5439 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5440 	struct bnx2x *bp, u32 cid)
5441 {
5442 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5443 
5444 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5445 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5446 	else
5447 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5448 }
5449 
5450 static void bnx2x_eq_int(struct bnx2x *bp)
5451 {
5452 	u16 hw_cons, sw_cons, sw_prod;
5453 	union event_ring_elem *elem;
5454 	u8 echo;
5455 	u32 cid;
5456 	u8 opcode;
5457 	int rc, spqe_cnt = 0;
5458 	struct bnx2x_queue_sp_obj *q_obj;
5459 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5460 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5461 
5462 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5463 
5464 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5465 	 * when we get the next-page we need to adjust so the loop
5466 	 * condition below will be met. The next element is the size of a
5467 	 * regular element and hence incrementing by 1
5468 	 */
5469 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5470 		hw_cons++;
5471 
5472 	/* This function may never run in parallel with itself for a
5473 	 * specific bp, thus there is no need in "paired" read memory
5474 	 * barrier here.
5475 	 */
5476 	sw_cons = bp->eq_cons;
5477 	sw_prod = bp->eq_prod;
5478 
5479 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5480 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5481 
5482 	for (; sw_cons != hw_cons;
5483 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5484 
5485 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5486 
5487 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5488 		if (!rc) {
5489 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5490 			   rc);
5491 			goto next_spqe;
5492 		}
5493 
5494 		opcode = elem->message.opcode;
5495 
5496 		/* handle eq element */
5497 		switch (opcode) {
5498 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5499 			bnx2x_vf_mbx_schedule(bp,
5500 					      &elem->message.data.vf_pf_event);
5501 			continue;
5502 
5503 		case EVENT_RING_OPCODE_STAT_QUERY:
5504 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5505 			       "got statistics comp event %d\n",
5506 			       bp->stats_comp++);
5507 			/* nothing to do with stats comp */
5508 			goto next_spqe;
5509 
5510 		case EVENT_RING_OPCODE_CFC_DEL:
5511 			/* handle according to cid range */
5512 			/*
5513 			 * we may want to verify here that the bp state is
5514 			 * HALTING
5515 			 */
5516 
5517 			/* elem CID originates from FW; actually LE */
5518 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5519 
5520 			DP(BNX2X_MSG_SP,
5521 			   "got delete ramrod for MULTI[%d]\n", cid);
5522 
5523 			if (CNIC_LOADED(bp) &&
5524 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5525 				goto next_spqe;
5526 
5527 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5528 
5529 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5530 				break;
5531 
5532 			goto next_spqe;
5533 
5534 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5535 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5536 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5537 			if (f_obj->complete_cmd(bp, f_obj,
5538 						BNX2X_F_CMD_TX_STOP))
5539 				break;
5540 			goto next_spqe;
5541 
5542 		case EVENT_RING_OPCODE_START_TRAFFIC:
5543 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5544 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5545 			if (f_obj->complete_cmd(bp, f_obj,
5546 						BNX2X_F_CMD_TX_START))
5547 				break;
5548 			goto next_spqe;
5549 
5550 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5551 			echo = elem->message.data.function_update_event.echo;
5552 			if (echo == SWITCH_UPDATE) {
5553 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5554 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5555 				if (f_obj->complete_cmd(
5556 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5557 					break;
5558 
5559 			} else {
5560 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5561 
5562 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5563 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5564 				f_obj->complete_cmd(bp, f_obj,
5565 						    BNX2X_F_CMD_AFEX_UPDATE);
5566 
5567 				/* We will perform the Queues update from
5568 				 * sp_rtnl task as all Queue SP operations
5569 				 * should run under rtnl_lock.
5570 				 */
5571 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5572 			}
5573 
5574 			goto next_spqe;
5575 
5576 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5577 			f_obj->complete_cmd(bp, f_obj,
5578 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5579 			bnx2x_after_afex_vif_lists(bp, elem);
5580 			goto next_spqe;
5581 		case EVENT_RING_OPCODE_FUNCTION_START:
5582 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5583 			   "got FUNC_START ramrod\n");
5584 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5585 				break;
5586 
5587 			goto next_spqe;
5588 
5589 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5590 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5591 			   "got FUNC_STOP ramrod\n");
5592 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5593 				break;
5594 
5595 			goto next_spqe;
5596 
5597 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5598 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5599 			   "got set_timesync ramrod completion\n");
5600 			if (f_obj->complete_cmd(bp, f_obj,
5601 						BNX2X_F_CMD_SET_TIMESYNC))
5602 				break;
5603 			goto next_spqe;
5604 		}
5605 
5606 		switch (opcode | bp->state) {
5607 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5608 		      BNX2X_STATE_OPEN):
5609 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5610 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5611 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5612 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5613 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5614 			   SW_CID(elem->message.data.eth_event.echo));
5615 			rss_raw->clear_pending(rss_raw);
5616 			break;
5617 
5618 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5619 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5620 		case (EVENT_RING_OPCODE_SET_MAC |
5621 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5622 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5623 		      BNX2X_STATE_OPEN):
5624 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5625 		      BNX2X_STATE_DIAG):
5626 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5627 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5628 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5629 			bnx2x_handle_classification_eqe(bp, elem);
5630 			break;
5631 
5632 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5633 		      BNX2X_STATE_OPEN):
5634 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5635 		      BNX2X_STATE_DIAG):
5636 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5637 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5638 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5639 			bnx2x_handle_mcast_eqe(bp);
5640 			break;
5641 
5642 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5643 		      BNX2X_STATE_OPEN):
5644 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5645 		      BNX2X_STATE_DIAG):
5646 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5647 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5648 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5649 			bnx2x_handle_rx_mode_eqe(bp);
5650 			break;
5651 		default:
5652 			/* unknown event log error and continue */
5653 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5654 				  elem->message.opcode, bp->state);
5655 		}
5656 next_spqe:
5657 		spqe_cnt++;
5658 	} /* for */
5659 
5660 	smp_mb__before_atomic();
5661 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5662 
5663 	bp->eq_cons = sw_cons;
5664 	bp->eq_prod = sw_prod;
5665 	/* Make sure that above mem writes were issued towards the memory */
5666 	smp_wmb();
5667 
5668 	/* update producer */
5669 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5670 }
5671 
5672 static void bnx2x_sp_task(struct work_struct *work)
5673 {
5674 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5675 
5676 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5677 
5678 	/* make sure the atomic interrupt_occurred has been written */
5679 	smp_rmb();
5680 	if (atomic_read(&bp->interrupt_occurred)) {
5681 
5682 		/* what work needs to be performed? */
5683 		u16 status = bnx2x_update_dsb_idx(bp);
5684 
5685 		DP(BNX2X_MSG_SP, "status %x\n", status);
5686 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5687 		atomic_set(&bp->interrupt_occurred, 0);
5688 
5689 		/* HW attentions */
5690 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5691 			bnx2x_attn_int(bp);
5692 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5693 		}
5694 
5695 		/* SP events: STAT_QUERY and others */
5696 		if (status & BNX2X_DEF_SB_IDX) {
5697 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5698 
5699 			if (FCOE_INIT(bp) &&
5700 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5701 				/* Prevent local bottom-halves from running as
5702 				 * we are going to change the local NAPI list.
5703 				 */
5704 				local_bh_disable();
5705 				napi_schedule(&bnx2x_fcoe(bp, napi));
5706 				local_bh_enable();
5707 			}
5708 
5709 			/* Handle EQ completions */
5710 			bnx2x_eq_int(bp);
5711 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5712 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5713 
5714 			status &= ~BNX2X_DEF_SB_IDX;
5715 		}
5716 
5717 		/* if status is non zero then perhaps something went wrong */
5718 		if (unlikely(status))
5719 			DP(BNX2X_MSG_SP,
5720 			   "got an unknown interrupt! (status 0x%x)\n", status);
5721 
5722 		/* ack status block only if something was actually handled */
5723 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5724 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5725 	}
5726 
5727 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5728 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5729 			       &bp->sp_state)) {
5730 		bnx2x_link_report(bp);
5731 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5732 	}
5733 }
5734 
5735 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5736 {
5737 	struct net_device *dev = dev_instance;
5738 	struct bnx2x *bp = netdev_priv(dev);
5739 
5740 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5741 		     IGU_INT_DISABLE, 0);
5742 
5743 #ifdef BNX2X_STOP_ON_ERROR
5744 	if (unlikely(bp->panic))
5745 		return IRQ_HANDLED;
5746 #endif
5747 
5748 	if (CNIC_LOADED(bp)) {
5749 		struct cnic_ops *c_ops;
5750 
5751 		rcu_read_lock();
5752 		c_ops = rcu_dereference(bp->cnic_ops);
5753 		if (c_ops)
5754 			c_ops->cnic_handler(bp->cnic_data, NULL);
5755 		rcu_read_unlock();
5756 	}
5757 
5758 	/* schedule sp task to perform default status block work, ack
5759 	 * attentions and enable interrupts.
5760 	 */
5761 	bnx2x_schedule_sp_task(bp);
5762 
5763 	return IRQ_HANDLED;
5764 }
5765 
5766 /* end of slow path */
5767 
5768 void bnx2x_drv_pulse(struct bnx2x *bp)
5769 {
5770 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5771 		 bp->fw_drv_pulse_wr_seq);
5772 }
5773 
5774 static void bnx2x_timer(struct timer_list *t)
5775 {
5776 	struct bnx2x *bp = from_timer(bp, t, timer);
5777 
5778 	if (!netif_running(bp->dev))
5779 		return;
5780 
5781 	if (IS_PF(bp) &&
5782 	    !BP_NOMCP(bp)) {
5783 		int mb_idx = BP_FW_MB_IDX(bp);
5784 		u16 drv_pulse;
5785 		u16 mcp_pulse;
5786 
5787 		++bp->fw_drv_pulse_wr_seq;
5788 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5789 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5790 		bnx2x_drv_pulse(bp);
5791 
5792 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5793 			     MCP_PULSE_SEQ_MASK);
5794 		/* The delta between driver pulse and mcp response
5795 		 * should not get too big. If the MFW is more than 5 pulses
5796 		 * behind, we should worry about it enough to generate an error
5797 		 * log.
5798 		 */
5799 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5800 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5801 				  drv_pulse, mcp_pulse);
5802 	}
5803 
5804 	if (bp->state == BNX2X_STATE_OPEN)
5805 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5806 
5807 	/* sample pf vf bulletin board for new posts from pf */
5808 	if (IS_VF(bp))
5809 		bnx2x_timer_sriov(bp);
5810 
5811 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5812 }
5813 
5814 /* end of Statistics */
5815 
5816 /* nic init */
5817 
5818 /*
5819  * nic init service functions
5820  */
5821 
5822 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5823 {
5824 	u32 i;
5825 	if (!(len%4) && !(addr%4))
5826 		for (i = 0; i < len; i += 4)
5827 			REG_WR(bp, addr + i, fill);
5828 	else
5829 		for (i = 0; i < len; i++)
5830 			REG_WR8(bp, addr + i, fill);
5831 }
5832 
5833 /* helper: writes FP SP data to FW - data_size in dwords */
5834 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5835 				int fw_sb_id,
5836 				u32 *sb_data_p,
5837 				u32 data_size)
5838 {
5839 	int index;
5840 	for (index = 0; index < data_size; index++)
5841 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5842 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5843 			sizeof(u32)*index,
5844 			*(sb_data_p + index));
5845 }
5846 
5847 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5848 {
5849 	u32 *sb_data_p;
5850 	u32 data_size = 0;
5851 	struct hc_status_block_data_e2 sb_data_e2;
5852 	struct hc_status_block_data_e1x sb_data_e1x;
5853 
5854 	/* disable the function first */
5855 	if (!CHIP_IS_E1x(bp)) {
5856 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5857 		sb_data_e2.common.state = SB_DISABLED;
5858 		sb_data_e2.common.p_func.vf_valid = false;
5859 		sb_data_p = (u32 *)&sb_data_e2;
5860 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5861 	} else {
5862 		memset(&sb_data_e1x, 0,
5863 		       sizeof(struct hc_status_block_data_e1x));
5864 		sb_data_e1x.common.state = SB_DISABLED;
5865 		sb_data_e1x.common.p_func.vf_valid = false;
5866 		sb_data_p = (u32 *)&sb_data_e1x;
5867 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5868 	}
5869 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5870 
5871 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5872 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5873 			CSTORM_STATUS_BLOCK_SIZE);
5874 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5875 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5876 			CSTORM_SYNC_BLOCK_SIZE);
5877 }
5878 
5879 /* helper:  writes SP SB data to FW */
5880 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5881 		struct hc_sp_status_block_data *sp_sb_data)
5882 {
5883 	int func = BP_FUNC(bp);
5884 	int i;
5885 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5886 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5887 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5888 			i*sizeof(u32),
5889 			*((u32 *)sp_sb_data + i));
5890 }
5891 
5892 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5893 {
5894 	int func = BP_FUNC(bp);
5895 	struct hc_sp_status_block_data sp_sb_data;
5896 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5897 
5898 	sp_sb_data.state = SB_DISABLED;
5899 	sp_sb_data.p_func.vf_valid = false;
5900 
5901 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5902 
5903 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5904 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5905 			CSTORM_SP_STATUS_BLOCK_SIZE);
5906 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5907 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5908 			CSTORM_SP_SYNC_BLOCK_SIZE);
5909 }
5910 
5911 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5912 					   int igu_sb_id, int igu_seg_id)
5913 {
5914 	hc_sm->igu_sb_id = igu_sb_id;
5915 	hc_sm->igu_seg_id = igu_seg_id;
5916 	hc_sm->timer_value = 0xFF;
5917 	hc_sm->time_to_expire = 0xFFFFFFFF;
5918 }
5919 
5920 /* allocates state machine ids. */
5921 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5922 {
5923 	/* zero out state machine indices */
5924 	/* rx indices */
5925 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5926 
5927 	/* tx indices */
5928 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5929 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5930 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5931 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5932 
5933 	/* map indices */
5934 	/* rx indices */
5935 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5936 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937 
5938 	/* tx indices */
5939 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5940 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5941 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5942 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5943 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5944 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5945 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5946 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5947 }
5948 
5949 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5950 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5951 {
5952 	int igu_seg_id;
5953 
5954 	struct hc_status_block_data_e2 sb_data_e2;
5955 	struct hc_status_block_data_e1x sb_data_e1x;
5956 	struct hc_status_block_sm  *hc_sm_p;
5957 	int data_size;
5958 	u32 *sb_data_p;
5959 
5960 	if (CHIP_INT_MODE_IS_BC(bp))
5961 		igu_seg_id = HC_SEG_ACCESS_NORM;
5962 	else
5963 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5964 
5965 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5966 
5967 	if (!CHIP_IS_E1x(bp)) {
5968 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5969 		sb_data_e2.common.state = SB_ENABLED;
5970 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5971 		sb_data_e2.common.p_func.vf_id = vfid;
5972 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5973 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5974 		sb_data_e2.common.same_igu_sb_1b = true;
5975 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5976 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5977 		hc_sm_p = sb_data_e2.common.state_machine;
5978 		sb_data_p = (u32 *)&sb_data_e2;
5979 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5980 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5981 	} else {
5982 		memset(&sb_data_e1x, 0,
5983 		       sizeof(struct hc_status_block_data_e1x));
5984 		sb_data_e1x.common.state = SB_ENABLED;
5985 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5986 		sb_data_e1x.common.p_func.vf_id = 0xff;
5987 		sb_data_e1x.common.p_func.vf_valid = false;
5988 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5989 		sb_data_e1x.common.same_igu_sb_1b = true;
5990 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5991 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5992 		hc_sm_p = sb_data_e1x.common.state_machine;
5993 		sb_data_p = (u32 *)&sb_data_e1x;
5994 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5995 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5996 	}
5997 
5998 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5999 				       igu_sb_id, igu_seg_id);
6000 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6001 				       igu_sb_id, igu_seg_id);
6002 
6003 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6004 
6005 	/* write indices to HW - PCI guarantees endianity of regpairs */
6006 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6007 }
6008 
6009 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6010 				     u16 tx_usec, u16 rx_usec)
6011 {
6012 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6013 				    false, rx_usec);
6014 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6015 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6016 				       tx_usec);
6017 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6018 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6019 				       tx_usec);
6020 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6021 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6022 				       tx_usec);
6023 }
6024 
6025 static void bnx2x_init_def_sb(struct bnx2x *bp)
6026 {
6027 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6028 	dma_addr_t mapping = bp->def_status_blk_mapping;
6029 	int igu_sp_sb_index;
6030 	int igu_seg_id;
6031 	int port = BP_PORT(bp);
6032 	int func = BP_FUNC(bp);
6033 	int reg_offset, reg_offset_en5;
6034 	u64 section;
6035 	int index;
6036 	struct hc_sp_status_block_data sp_sb_data;
6037 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6038 
6039 	if (CHIP_INT_MODE_IS_BC(bp)) {
6040 		igu_sp_sb_index = DEF_SB_IGU_ID;
6041 		igu_seg_id = HC_SEG_ACCESS_DEF;
6042 	} else {
6043 		igu_sp_sb_index = bp->igu_dsb_id;
6044 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6045 	}
6046 
6047 	/* ATTN */
6048 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6049 					    atten_status_block);
6050 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6051 
6052 	bp->attn_state = 0;
6053 
6054 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6055 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6056 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6057 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6058 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6059 		int sindex;
6060 		/* take care of sig[0]..sig[4] */
6061 		for (sindex = 0; sindex < 4; sindex++)
6062 			bp->attn_group[index].sig[sindex] =
6063 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6064 
6065 		if (!CHIP_IS_E1x(bp))
6066 			/*
6067 			 * enable5 is separate from the rest of the registers,
6068 			 * and therefore the address skip is 4
6069 			 * and not 16 between the different groups
6070 			 */
6071 			bp->attn_group[index].sig[4] = REG_RD(bp,
6072 					reg_offset_en5 + 0x4*index);
6073 		else
6074 			bp->attn_group[index].sig[4] = 0;
6075 	}
6076 
6077 	if (bp->common.int_block == INT_BLOCK_HC) {
6078 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6079 				     HC_REG_ATTN_MSG0_ADDR_L);
6080 
6081 		REG_WR(bp, reg_offset, U64_LO(section));
6082 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6083 	} else if (!CHIP_IS_E1x(bp)) {
6084 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6085 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6086 	}
6087 
6088 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6089 					    sp_sb);
6090 
6091 	bnx2x_zero_sp_sb(bp);
6092 
6093 	/* PCI guarantees endianity of regpairs */
6094 	sp_sb_data.state		= SB_ENABLED;
6095 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6096 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6097 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6098 	sp_sb_data.igu_seg_id		= igu_seg_id;
6099 	sp_sb_data.p_func.pf_id		= func;
6100 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6101 	sp_sb_data.p_func.vf_id		= 0xff;
6102 
6103 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6104 
6105 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6106 }
6107 
6108 void bnx2x_update_coalesce(struct bnx2x *bp)
6109 {
6110 	int i;
6111 
6112 	for_each_eth_queue(bp, i)
6113 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6114 					 bp->tx_ticks, bp->rx_ticks);
6115 }
6116 
6117 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6118 {
6119 	spin_lock_init(&bp->spq_lock);
6120 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6121 
6122 	bp->spq_prod_idx = 0;
6123 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6124 	bp->spq_prod_bd = bp->spq;
6125 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6126 }
6127 
6128 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6129 {
6130 	int i;
6131 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6132 		union event_ring_elem *elem =
6133 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6134 
6135 		elem->next_page.addr.hi =
6136 			cpu_to_le32(U64_HI(bp->eq_mapping +
6137 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6138 		elem->next_page.addr.lo =
6139 			cpu_to_le32(U64_LO(bp->eq_mapping +
6140 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6141 	}
6142 	bp->eq_cons = 0;
6143 	bp->eq_prod = NUM_EQ_DESC;
6144 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6145 	/* we want a warning message before it gets wrought... */
6146 	atomic_set(&bp->eq_spq_left,
6147 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6148 }
6149 
6150 /* called with netif_addr_lock_bh() */
6151 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6152 			       unsigned long rx_mode_flags,
6153 			       unsigned long rx_accept_flags,
6154 			       unsigned long tx_accept_flags,
6155 			       unsigned long ramrod_flags)
6156 {
6157 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6158 	int rc;
6159 
6160 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6161 
6162 	/* Prepare ramrod parameters */
6163 	ramrod_param.cid = 0;
6164 	ramrod_param.cl_id = cl_id;
6165 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6166 	ramrod_param.func_id = BP_FUNC(bp);
6167 
6168 	ramrod_param.pstate = &bp->sp_state;
6169 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6170 
6171 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6172 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6173 
6174 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6175 
6176 	ramrod_param.ramrod_flags = ramrod_flags;
6177 	ramrod_param.rx_mode_flags = rx_mode_flags;
6178 
6179 	ramrod_param.rx_accept_flags = rx_accept_flags;
6180 	ramrod_param.tx_accept_flags = tx_accept_flags;
6181 
6182 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6183 	if (rc < 0) {
6184 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6185 		return rc;
6186 	}
6187 
6188 	return 0;
6189 }
6190 
6191 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6192 				   unsigned long *rx_accept_flags,
6193 				   unsigned long *tx_accept_flags)
6194 {
6195 	/* Clear the flags first */
6196 	*rx_accept_flags = 0;
6197 	*tx_accept_flags = 0;
6198 
6199 	switch (rx_mode) {
6200 	case BNX2X_RX_MODE_NONE:
6201 		/*
6202 		 * 'drop all' supersedes any accept flags that may have been
6203 		 * passed to the function.
6204 		 */
6205 		break;
6206 	case BNX2X_RX_MODE_NORMAL:
6207 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6208 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6209 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6210 
6211 		/* internal switching mode */
6212 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6213 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6214 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6215 
6216 		if (bp->accept_any_vlan) {
6217 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6218 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6219 		}
6220 
6221 		break;
6222 	case BNX2X_RX_MODE_ALLMULTI:
6223 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6224 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6225 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6226 
6227 		/* internal switching mode */
6228 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6229 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6230 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6231 
6232 		if (bp->accept_any_vlan) {
6233 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6234 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6235 		}
6236 
6237 		break;
6238 	case BNX2X_RX_MODE_PROMISC:
6239 		/* According to definition of SI mode, iface in promisc mode
6240 		 * should receive matched and unmatched (in resolution of port)
6241 		 * unicast packets.
6242 		 */
6243 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6244 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6245 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6246 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6247 
6248 		/* internal switching mode */
6249 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6250 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6251 
6252 		if (IS_MF_SI(bp))
6253 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6254 		else
6255 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6256 
6257 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6258 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6259 
6260 		break;
6261 	default:
6262 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6263 		return -EINVAL;
6264 	}
6265 
6266 	return 0;
6267 }
6268 
6269 /* called with netif_addr_lock_bh() */
6270 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6271 {
6272 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6273 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6274 	int rc;
6275 
6276 	if (!NO_FCOE(bp))
6277 		/* Configure rx_mode of FCoE Queue */
6278 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6279 
6280 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6281 				     &tx_accept_flags);
6282 	if (rc)
6283 		return rc;
6284 
6285 	__set_bit(RAMROD_RX, &ramrod_flags);
6286 	__set_bit(RAMROD_TX, &ramrod_flags);
6287 
6288 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6289 				   rx_accept_flags, tx_accept_flags,
6290 				   ramrod_flags);
6291 }
6292 
6293 static void bnx2x_init_internal_common(struct bnx2x *bp)
6294 {
6295 	int i;
6296 
6297 	/* Zero this manually as its initialization is
6298 	   currently missing in the initTool */
6299 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6300 		REG_WR(bp, BAR_USTRORM_INTMEM +
6301 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6302 	if (!CHIP_IS_E1x(bp)) {
6303 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6304 			CHIP_INT_MODE_IS_BC(bp) ?
6305 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6306 	}
6307 }
6308 
6309 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6310 {
6311 	switch (load_code) {
6312 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6313 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6314 		bnx2x_init_internal_common(bp);
6315 		/* no break */
6316 
6317 	case FW_MSG_CODE_DRV_LOAD_PORT:
6318 		/* nothing to do */
6319 		/* no break */
6320 
6321 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6322 		/* internal memory per function is
6323 		   initialized inside bnx2x_pf_init */
6324 		break;
6325 
6326 	default:
6327 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6328 		break;
6329 	}
6330 }
6331 
6332 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6333 {
6334 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6335 }
6336 
6337 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6338 {
6339 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6340 }
6341 
6342 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6343 {
6344 	if (CHIP_IS_E1x(fp->bp))
6345 		return BP_L_ID(fp->bp) + fp->index;
6346 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6347 		return bnx2x_fp_igu_sb_id(fp);
6348 }
6349 
6350 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6351 {
6352 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6353 	u8 cos;
6354 	unsigned long q_type = 0;
6355 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6356 	fp->rx_queue = fp_idx;
6357 	fp->cid = fp_idx;
6358 	fp->cl_id = bnx2x_fp_cl_id(fp);
6359 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6360 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6361 	/* qZone id equals to FW (per path) client id */
6362 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6363 
6364 	/* init shortcut */
6365 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6366 
6367 	/* Setup SB indices */
6368 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6369 
6370 	/* Configure Queue State object */
6371 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6372 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6373 
6374 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6375 
6376 	/* init tx data */
6377 	for_each_cos_in_tx_queue(fp, cos) {
6378 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6379 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6380 				  FP_COS_TO_TXQ(fp, cos, bp),
6381 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6382 		cids[cos] = fp->txdata_ptr[cos]->cid;
6383 	}
6384 
6385 	/* nothing more for vf to do here */
6386 	if (IS_VF(bp))
6387 		return;
6388 
6389 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6390 		      fp->fw_sb_id, fp->igu_sb_id);
6391 	bnx2x_update_fpsb_idx(fp);
6392 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6393 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6394 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6395 
6396 	/**
6397 	 * Configure classification DBs: Always enable Tx switching
6398 	 */
6399 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6400 
6401 	DP(NETIF_MSG_IFUP,
6402 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6403 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6404 	   fp->igu_sb_id);
6405 }
6406 
6407 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6408 {
6409 	int i;
6410 
6411 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6412 		struct eth_tx_next_bd *tx_next_bd =
6413 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6414 
6415 		tx_next_bd->addr_hi =
6416 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6417 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6418 		tx_next_bd->addr_lo =
6419 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6420 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6421 	}
6422 
6423 	*txdata->tx_cons_sb = cpu_to_le16(0);
6424 
6425 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6426 	txdata->tx_db.data.zero_fill1 = 0;
6427 	txdata->tx_db.data.prod = 0;
6428 
6429 	txdata->tx_pkt_prod = 0;
6430 	txdata->tx_pkt_cons = 0;
6431 	txdata->tx_bd_prod = 0;
6432 	txdata->tx_bd_cons = 0;
6433 	txdata->tx_pkt = 0;
6434 }
6435 
6436 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6437 {
6438 	int i;
6439 
6440 	for_each_tx_queue_cnic(bp, i)
6441 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6442 }
6443 
6444 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6445 {
6446 	int i;
6447 	u8 cos;
6448 
6449 	for_each_eth_queue(bp, i)
6450 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6451 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6452 }
6453 
6454 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6455 {
6456 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6457 	unsigned long q_type = 0;
6458 
6459 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6460 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6461 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6462 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6463 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6464 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6465 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6466 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6467 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6468 			  fp);
6469 
6470 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6471 
6472 	/* qZone id equals to FW (per path) client id */
6473 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6474 	/* init shortcut */
6475 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6476 		bnx2x_rx_ustorm_prods_offset(fp);
6477 
6478 	/* Configure Queue State object */
6479 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6480 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6481 
6482 	/* No multi-CoS for FCoE L2 client */
6483 	BUG_ON(fp->max_cos != 1);
6484 
6485 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6486 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6487 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6488 
6489 	DP(NETIF_MSG_IFUP,
6490 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6491 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6492 	   fp->igu_sb_id);
6493 }
6494 
6495 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6496 {
6497 	if (!NO_FCOE(bp))
6498 		bnx2x_init_fcoe_fp(bp);
6499 
6500 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6501 		      BNX2X_VF_ID_INVALID, false,
6502 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6503 
6504 	/* ensure status block indices were read */
6505 	rmb();
6506 	bnx2x_init_rx_rings_cnic(bp);
6507 	bnx2x_init_tx_rings_cnic(bp);
6508 
6509 	/* flush all */
6510 	mb();
6511 	mmiowb();
6512 }
6513 
6514 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6515 {
6516 	int i;
6517 
6518 	/* Setup NIC internals and enable interrupts */
6519 	for_each_eth_queue(bp, i)
6520 		bnx2x_init_eth_fp(bp, i);
6521 
6522 	/* ensure status block indices were read */
6523 	rmb();
6524 	bnx2x_init_rx_rings(bp);
6525 	bnx2x_init_tx_rings(bp);
6526 
6527 	if (IS_PF(bp)) {
6528 		/* Initialize MOD_ABS interrupts */
6529 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6530 				       bp->common.shmem_base,
6531 				       bp->common.shmem2_base, BP_PORT(bp));
6532 
6533 		/* initialize the default status block and sp ring */
6534 		bnx2x_init_def_sb(bp);
6535 		bnx2x_update_dsb_idx(bp);
6536 		bnx2x_init_sp_ring(bp);
6537 	} else {
6538 		bnx2x_memset_stats(bp);
6539 	}
6540 }
6541 
6542 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6543 {
6544 	bnx2x_init_eq_ring(bp);
6545 	bnx2x_init_internal(bp, load_code);
6546 	bnx2x_pf_init(bp);
6547 	bnx2x_stats_init(bp);
6548 
6549 	/* flush all before enabling interrupts */
6550 	mb();
6551 	mmiowb();
6552 
6553 	bnx2x_int_enable(bp);
6554 
6555 	/* Check for SPIO5 */
6556 	bnx2x_attn_int_deasserted0(bp,
6557 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6558 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6559 }
6560 
6561 /* gzip service functions */
6562 static int bnx2x_gunzip_init(struct bnx2x *bp)
6563 {
6564 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6565 					    &bp->gunzip_mapping, GFP_KERNEL);
6566 	if (bp->gunzip_buf  == NULL)
6567 		goto gunzip_nomem1;
6568 
6569 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6570 	if (bp->strm  == NULL)
6571 		goto gunzip_nomem2;
6572 
6573 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6574 	if (bp->strm->workspace == NULL)
6575 		goto gunzip_nomem3;
6576 
6577 	return 0;
6578 
6579 gunzip_nomem3:
6580 	kfree(bp->strm);
6581 	bp->strm = NULL;
6582 
6583 gunzip_nomem2:
6584 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6585 			  bp->gunzip_mapping);
6586 	bp->gunzip_buf = NULL;
6587 
6588 gunzip_nomem1:
6589 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6590 	return -ENOMEM;
6591 }
6592 
6593 static void bnx2x_gunzip_end(struct bnx2x *bp)
6594 {
6595 	if (bp->strm) {
6596 		vfree(bp->strm->workspace);
6597 		kfree(bp->strm);
6598 		bp->strm = NULL;
6599 	}
6600 
6601 	if (bp->gunzip_buf) {
6602 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6603 				  bp->gunzip_mapping);
6604 		bp->gunzip_buf = NULL;
6605 	}
6606 }
6607 
6608 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6609 {
6610 	int n, rc;
6611 
6612 	/* check gzip header */
6613 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6614 		BNX2X_ERR("Bad gzip header\n");
6615 		return -EINVAL;
6616 	}
6617 
6618 	n = 10;
6619 
6620 #define FNAME				0x8
6621 
6622 	if (zbuf[3] & FNAME)
6623 		while ((zbuf[n++] != 0) && (n < len));
6624 
6625 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6626 	bp->strm->avail_in = len - n;
6627 	bp->strm->next_out = bp->gunzip_buf;
6628 	bp->strm->avail_out = FW_BUF_SIZE;
6629 
6630 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6631 	if (rc != Z_OK)
6632 		return rc;
6633 
6634 	rc = zlib_inflate(bp->strm, Z_FINISH);
6635 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6636 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6637 			   bp->strm->msg);
6638 
6639 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6640 	if (bp->gunzip_outlen & 0x3)
6641 		netdev_err(bp->dev,
6642 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6643 				bp->gunzip_outlen);
6644 	bp->gunzip_outlen >>= 2;
6645 
6646 	zlib_inflateEnd(bp->strm);
6647 
6648 	if (rc == Z_STREAM_END)
6649 		return 0;
6650 
6651 	return rc;
6652 }
6653 
6654 /* nic load/unload */
6655 
6656 /*
6657  * General service functions
6658  */
6659 
6660 /* send a NIG loopback debug packet */
6661 static void bnx2x_lb_pckt(struct bnx2x *bp)
6662 {
6663 	u32 wb_write[3];
6664 
6665 	/* Ethernet source and destination addresses */
6666 	wb_write[0] = 0x55555555;
6667 	wb_write[1] = 0x55555555;
6668 	wb_write[2] = 0x20;		/* SOP */
6669 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6670 
6671 	/* NON-IP protocol */
6672 	wb_write[0] = 0x09000000;
6673 	wb_write[1] = 0x55555555;
6674 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6675 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6676 }
6677 
6678 /* some of the internal memories
6679  * are not directly readable from the driver
6680  * to test them we send debug packets
6681  */
6682 static int bnx2x_int_mem_test(struct bnx2x *bp)
6683 {
6684 	int factor;
6685 	int count, i;
6686 	u32 val = 0;
6687 
6688 	if (CHIP_REV_IS_FPGA(bp))
6689 		factor = 120;
6690 	else if (CHIP_REV_IS_EMUL(bp))
6691 		factor = 200;
6692 	else
6693 		factor = 1;
6694 
6695 	/* Disable inputs of parser neighbor blocks */
6696 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6697 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6698 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6699 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6700 
6701 	/*  Write 0 to parser credits for CFC search request */
6702 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6703 
6704 	/* send Ethernet packet */
6705 	bnx2x_lb_pckt(bp);
6706 
6707 	/* TODO do i reset NIG statistic? */
6708 	/* Wait until NIG register shows 1 packet of size 0x10 */
6709 	count = 1000 * factor;
6710 	while (count) {
6711 
6712 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6713 		val = *bnx2x_sp(bp, wb_data[0]);
6714 		if (val == 0x10)
6715 			break;
6716 
6717 		usleep_range(10000, 20000);
6718 		count--;
6719 	}
6720 	if (val != 0x10) {
6721 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6722 		return -1;
6723 	}
6724 
6725 	/* Wait until PRS register shows 1 packet */
6726 	count = 1000 * factor;
6727 	while (count) {
6728 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6729 		if (val == 1)
6730 			break;
6731 
6732 		usleep_range(10000, 20000);
6733 		count--;
6734 	}
6735 	if (val != 0x1) {
6736 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6737 		return -2;
6738 	}
6739 
6740 	/* Reset and init BRB, PRS */
6741 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6742 	msleep(50);
6743 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6744 	msleep(50);
6745 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6746 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6747 
6748 	DP(NETIF_MSG_HW, "part2\n");
6749 
6750 	/* Disable inputs of parser neighbor blocks */
6751 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6752 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6753 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6754 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6755 
6756 	/* Write 0 to parser credits for CFC search request */
6757 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6758 
6759 	/* send 10 Ethernet packets */
6760 	for (i = 0; i < 10; i++)
6761 		bnx2x_lb_pckt(bp);
6762 
6763 	/* Wait until NIG register shows 10 + 1
6764 	   packets of size 11*0x10 = 0xb0 */
6765 	count = 1000 * factor;
6766 	while (count) {
6767 
6768 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6769 		val = *bnx2x_sp(bp, wb_data[0]);
6770 		if (val == 0xb0)
6771 			break;
6772 
6773 		usleep_range(10000, 20000);
6774 		count--;
6775 	}
6776 	if (val != 0xb0) {
6777 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6778 		return -3;
6779 	}
6780 
6781 	/* Wait until PRS register shows 2 packets */
6782 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6783 	if (val != 2)
6784 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6785 
6786 	/* Write 1 to parser credits for CFC search request */
6787 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6788 
6789 	/* Wait until PRS register shows 3 packets */
6790 	msleep(10 * factor);
6791 	/* Wait until NIG register shows 1 packet of size 0x10 */
6792 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6793 	if (val != 3)
6794 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6795 
6796 	/* clear NIG EOP FIFO */
6797 	for (i = 0; i < 11; i++)
6798 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6799 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6800 	if (val != 1) {
6801 		BNX2X_ERR("clear of NIG failed\n");
6802 		return -4;
6803 	}
6804 
6805 	/* Reset and init BRB, PRS, NIG */
6806 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6807 	msleep(50);
6808 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6809 	msleep(50);
6810 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6811 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6812 	if (!CNIC_SUPPORT(bp))
6813 		/* set NIC mode */
6814 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6815 
6816 	/* Enable inputs of parser neighbor blocks */
6817 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6818 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6819 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6820 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6821 
6822 	DP(NETIF_MSG_HW, "done\n");
6823 
6824 	return 0; /* OK */
6825 }
6826 
6827 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6828 {
6829 	u32 val;
6830 
6831 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6832 	if (!CHIP_IS_E1x(bp))
6833 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6834 	else
6835 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6836 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6837 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6838 	/*
6839 	 * mask read length error interrupts in brb for parser
6840 	 * (parsing unit and 'checksum and crc' unit)
6841 	 * these errors are legal (PU reads fixed length and CAC can cause
6842 	 * read length error on truncated packets)
6843 	 */
6844 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6845 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6846 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6847 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6848 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6849 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6850 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6851 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6852 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6853 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6854 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6855 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6856 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6857 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6858 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6859 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6860 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6861 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6862 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6863 
6864 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6865 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6866 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6867 	if (!CHIP_IS_E1x(bp))
6868 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6869 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6870 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6871 
6872 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6873 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6874 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6875 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6876 
6877 	if (!CHIP_IS_E1x(bp))
6878 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6879 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6880 
6881 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6882 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6883 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6884 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6885 }
6886 
6887 static void bnx2x_reset_common(struct bnx2x *bp)
6888 {
6889 	u32 val = 0x1400;
6890 
6891 	/* reset_common */
6892 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6893 	       0xd3ffff7f);
6894 
6895 	if (CHIP_IS_E3(bp)) {
6896 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6897 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6898 	}
6899 
6900 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6901 }
6902 
6903 static void bnx2x_setup_dmae(struct bnx2x *bp)
6904 {
6905 	bp->dmae_ready = 0;
6906 	spin_lock_init(&bp->dmae_lock);
6907 }
6908 
6909 static void bnx2x_init_pxp(struct bnx2x *bp)
6910 {
6911 	u16 devctl;
6912 	int r_order, w_order;
6913 
6914 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6915 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6916 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6917 	if (bp->mrrs == -1)
6918 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6919 	else {
6920 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6921 		r_order = bp->mrrs;
6922 	}
6923 
6924 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6925 }
6926 
6927 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6928 {
6929 	int is_required;
6930 	u32 val;
6931 	int port;
6932 
6933 	if (BP_NOMCP(bp))
6934 		return;
6935 
6936 	is_required = 0;
6937 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6938 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6939 
6940 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6941 		is_required = 1;
6942 
6943 	/*
6944 	 * The fan failure mechanism is usually related to the PHY type since
6945 	 * the power consumption of the board is affected by the PHY. Currently,
6946 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6947 	 */
6948 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6949 		for (port = PORT_0; port < PORT_MAX; port++) {
6950 			is_required |=
6951 				bnx2x_fan_failure_det_req(
6952 					bp,
6953 					bp->common.shmem_base,
6954 					bp->common.shmem2_base,
6955 					port);
6956 		}
6957 
6958 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6959 
6960 	if (is_required == 0)
6961 		return;
6962 
6963 	/* Fan failure is indicated by SPIO 5 */
6964 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6965 
6966 	/* set to active low mode */
6967 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6968 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6969 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6970 
6971 	/* enable interrupt to signal the IGU */
6972 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6973 	val |= MISC_SPIO_SPIO5;
6974 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6975 }
6976 
6977 void bnx2x_pf_disable(struct bnx2x *bp)
6978 {
6979 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6980 	val &= ~IGU_PF_CONF_FUNC_EN;
6981 
6982 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6983 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6984 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6985 }
6986 
6987 static void bnx2x__common_init_phy(struct bnx2x *bp)
6988 {
6989 	u32 shmem_base[2], shmem2_base[2];
6990 	/* Avoid common init in case MFW supports LFA */
6991 	if (SHMEM2_RD(bp, size) >
6992 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6993 		return;
6994 	shmem_base[0] =  bp->common.shmem_base;
6995 	shmem2_base[0] = bp->common.shmem2_base;
6996 	if (!CHIP_IS_E1x(bp)) {
6997 		shmem_base[1] =
6998 			SHMEM2_RD(bp, other_shmem_base_addr);
6999 		shmem2_base[1] =
7000 			SHMEM2_RD(bp, other_shmem2_base_addr);
7001 	}
7002 	bnx2x_acquire_phy_lock(bp);
7003 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7004 			      bp->common.chip_id);
7005 	bnx2x_release_phy_lock(bp);
7006 }
7007 
7008 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7009 {
7010 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7011 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7012 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7013 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7014 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7015 
7016 	/* make sure this value is 0 */
7017 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7018 
7019 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7020 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7021 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7022 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7023 }
7024 
7025 static void bnx2x_set_endianity(struct bnx2x *bp)
7026 {
7027 #ifdef __BIG_ENDIAN
7028 	bnx2x_config_endianity(bp, 1);
7029 #else
7030 	bnx2x_config_endianity(bp, 0);
7031 #endif
7032 }
7033 
7034 static void bnx2x_reset_endianity(struct bnx2x *bp)
7035 {
7036 	bnx2x_config_endianity(bp, 0);
7037 }
7038 
7039 /**
7040  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7041  *
7042  * @bp:		driver handle
7043  */
7044 static int bnx2x_init_hw_common(struct bnx2x *bp)
7045 {
7046 	u32 val;
7047 
7048 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7049 
7050 	/*
7051 	 * take the RESET lock to protect undi_unload flow from accessing
7052 	 * registers while we're resetting the chip
7053 	 */
7054 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055 
7056 	bnx2x_reset_common(bp);
7057 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7058 
7059 	val = 0xfffc;
7060 	if (CHIP_IS_E3(bp)) {
7061 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7062 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7063 	}
7064 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7065 
7066 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7067 
7068 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7069 
7070 	if (!CHIP_IS_E1x(bp)) {
7071 		u8 abs_func_id;
7072 
7073 		/**
7074 		 * 4-port mode or 2-port mode we need to turn of master-enable
7075 		 * for everyone, after that, turn it back on for self.
7076 		 * so, we disregard multi-function or not, and always disable
7077 		 * for all functions on the given path, this means 0,2,4,6 for
7078 		 * path 0 and 1,3,5,7 for path 1
7079 		 */
7080 		for (abs_func_id = BP_PATH(bp);
7081 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7082 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7083 				REG_WR(bp,
7084 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7085 				    1);
7086 				continue;
7087 			}
7088 
7089 			bnx2x_pretend_func(bp, abs_func_id);
7090 			/* clear pf enable */
7091 			bnx2x_pf_disable(bp);
7092 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7093 		}
7094 	}
7095 
7096 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7097 	if (CHIP_IS_E1(bp)) {
7098 		/* enable HW interrupt from PXP on USDM overflow
7099 		   bit 16 on INT_MASK_0 */
7100 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7101 	}
7102 
7103 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7104 	bnx2x_init_pxp(bp);
7105 	bnx2x_set_endianity(bp);
7106 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7107 
7108 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7109 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7110 
7111 	/* let the HW do it's magic ... */
7112 	msleep(100);
7113 	/* finish PXP init */
7114 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7115 	if (val != 1) {
7116 		BNX2X_ERR("PXP2 CFG failed\n");
7117 		return -EBUSY;
7118 	}
7119 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7120 	if (val != 1) {
7121 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7122 		return -EBUSY;
7123 	}
7124 
7125 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7126 	 * have entries with value "0" and valid bit on.
7127 	 * This needs to be done by the first PF that is loaded in a path
7128 	 * (i.e. common phase)
7129 	 */
7130 	if (!CHIP_IS_E1x(bp)) {
7131 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7132  * (i.e. vnic3) to start even if it is marked as "scan-off".
7133  * This occurs when a different function (func2,3) is being marked
7134  * as "scan-off". Real-life scenario for example: if a driver is being
7135  * load-unloaded while func6,7 are down. This will cause the timer to access
7136  * the ilt, translate to a logical address and send a request to read/write.
7137  * Since the ilt for the function that is down is not valid, this will cause
7138  * a translation error which is unrecoverable.
7139  * The Workaround is intended to make sure that when this happens nothing fatal
7140  * will occur. The workaround:
7141  *	1.  First PF driver which loads on a path will:
7142  *		a.  After taking the chip out of reset, by using pretend,
7143  *		    it will write "0" to the following registers of
7144  *		    the other vnics.
7145  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7146  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7147  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7148  *		    And for itself it will write '1' to
7149  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7150  *		    dmae-operations (writing to pram for example.)
7151  *		    note: can be done for only function 6,7 but cleaner this
7152  *			  way.
7153  *		b.  Write zero+valid to the entire ILT.
7154  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7155  *		    VNIC3 (of that port). The range allocated will be the
7156  *		    entire ILT. This is needed to prevent  ILT range error.
7157  *	2.  Any PF driver load flow:
7158  *		a.  ILT update with the physical addresses of the allocated
7159  *		    logical pages.
7160  *		b.  Wait 20msec. - note that this timeout is needed to make
7161  *		    sure there are no requests in one of the PXP internal
7162  *		    queues with "old" ILT addresses.
7163  *		c.  PF enable in the PGLC.
7164  *		d.  Clear the was_error of the PF in the PGLC. (could have
7165  *		    occurred while driver was down)
7166  *		e.  PF enable in the CFC (WEAK + STRONG)
7167  *		f.  Timers scan enable
7168  *	3.  PF driver unload flow:
7169  *		a.  Clear the Timers scan_en.
7170  *		b.  Polling for scan_on=0 for that PF.
7171  *		c.  Clear the PF enable bit in the PXP.
7172  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7173  *		e.  Write zero+valid to all ILT entries (The valid bit must
7174  *		    stay set)
7175  *		f.  If this is VNIC 3 of a port then also init
7176  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7177  *		    to the last entry in the ILT.
7178  *
7179  *	Notes:
7180  *	Currently the PF error in the PGLC is non recoverable.
7181  *	In the future the there will be a recovery routine for this error.
7182  *	Currently attention is masked.
7183  *	Having an MCP lock on the load/unload process does not guarantee that
7184  *	there is no Timer disable during Func6/7 enable. This is because the
7185  *	Timers scan is currently being cleared by the MCP on FLR.
7186  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7187  *	there is error before clearing it. But the flow above is simpler and
7188  *	more general.
7189  *	All ILT entries are written by zero+valid and not just PF6/7
7190  *	ILT entries since in the future the ILT entries allocation for
7191  *	PF-s might be dynamic.
7192  */
7193 		struct ilt_client_info ilt_cli;
7194 		struct bnx2x_ilt ilt;
7195 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7196 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7197 
7198 		/* initialize dummy TM client */
7199 		ilt_cli.start = 0;
7200 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7201 		ilt_cli.client_num = ILT_CLIENT_TM;
7202 
7203 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7204 		 * Step 2: set the timers first/last ilt entry to point
7205 		 * to the entire range to prevent ILT range error for 3rd/4th
7206 		 * vnic	(this code assumes existence of the vnic)
7207 		 *
7208 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7209 		 * with dummy TM client
7210 		 *
7211 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7212 		 * and his brother are split registers
7213 		 */
7214 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7215 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7216 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7217 
7218 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7219 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7220 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7221 	}
7222 
7223 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7224 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7225 
7226 	if (!CHIP_IS_E1x(bp)) {
7227 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7228 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7229 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7230 
7231 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7232 
7233 		/* let the HW do it's magic ... */
7234 		do {
7235 			msleep(200);
7236 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7237 		} while (factor-- && (val != 1));
7238 
7239 		if (val != 1) {
7240 			BNX2X_ERR("ATC_INIT failed\n");
7241 			return -EBUSY;
7242 		}
7243 	}
7244 
7245 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7246 
7247 	bnx2x_iov_init_dmae(bp);
7248 
7249 	/* clean the DMAE memory */
7250 	bp->dmae_ready = 1;
7251 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7252 
7253 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7254 
7255 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7256 
7257 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7258 
7259 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7260 
7261 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7262 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7263 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7264 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7265 
7266 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7267 
7268 	/* QM queues pointers table */
7269 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7270 
7271 	/* soft reset pulse */
7272 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7273 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7274 
7275 	if (CNIC_SUPPORT(bp))
7276 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7277 
7278 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7279 
7280 	if (!CHIP_REV_IS_SLOW(bp))
7281 		/* enable hw interrupt from doorbell Q */
7282 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7283 
7284 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7285 
7286 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7287 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7288 
7289 	if (!CHIP_IS_E1(bp))
7290 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7291 
7292 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7293 		if (IS_MF_AFEX(bp)) {
7294 			/* configure that VNTag and VLAN headers must be
7295 			 * received in afex mode
7296 			 */
7297 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7298 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7299 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7300 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7301 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7302 		} else {
7303 			/* Bit-map indicating which L2 hdrs may appear
7304 			 * after the basic Ethernet header
7305 			 */
7306 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7307 			       bp->path_has_ovlan ? 7 : 6);
7308 		}
7309 	}
7310 
7311 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7312 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7313 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7314 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7315 
7316 	if (!CHIP_IS_E1x(bp)) {
7317 		/* reset VFC memories */
7318 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7319 			   VFC_MEMORIES_RST_REG_CAM_RST |
7320 			   VFC_MEMORIES_RST_REG_RAM_RST);
7321 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7322 			   VFC_MEMORIES_RST_REG_CAM_RST |
7323 			   VFC_MEMORIES_RST_REG_RAM_RST);
7324 
7325 		msleep(20);
7326 	}
7327 
7328 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7329 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7330 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7331 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7332 
7333 	/* sync semi rtc */
7334 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7335 	       0x80000000);
7336 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7337 	       0x80000000);
7338 
7339 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7340 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7341 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7342 
7343 	if (!CHIP_IS_E1x(bp)) {
7344 		if (IS_MF_AFEX(bp)) {
7345 			/* configure that VNTag and VLAN headers must be
7346 			 * sent in afex mode
7347 			 */
7348 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7349 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7350 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7351 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7352 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7353 		} else {
7354 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7355 			       bp->path_has_ovlan ? 7 : 6);
7356 		}
7357 	}
7358 
7359 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7360 
7361 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7362 
7363 	if (CNIC_SUPPORT(bp)) {
7364 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7365 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7366 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7367 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7368 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7369 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7370 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7371 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7372 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7373 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7374 	}
7375 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7376 
7377 	if (sizeof(union cdu_context) != 1024)
7378 		/* we currently assume that a context is 1024 bytes */
7379 		dev_alert(&bp->pdev->dev,
7380 			  "please adjust the size of cdu_context(%ld)\n",
7381 			  (long)sizeof(union cdu_context));
7382 
7383 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7384 	val = (4 << 24) + (0 << 12) + 1024;
7385 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7386 
7387 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7388 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7389 	/* enable context validation interrupt from CFC */
7390 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7391 
7392 	/* set the thresholds to prevent CFC/CDU race */
7393 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7394 
7395 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7396 
7397 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7398 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7399 
7400 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7401 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7402 
7403 	/* Reset PCIE errors for debug */
7404 	REG_WR(bp, 0x2814, 0xffffffff);
7405 	REG_WR(bp, 0x3820, 0xffffffff);
7406 
7407 	if (!CHIP_IS_E1x(bp)) {
7408 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7409 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7410 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7411 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7412 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7413 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7414 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7415 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7416 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7417 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7418 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7419 	}
7420 
7421 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7422 	if (!CHIP_IS_E1(bp)) {
7423 		/* in E3 this done in per-port section */
7424 		if (!CHIP_IS_E3(bp))
7425 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7426 	}
7427 	if (CHIP_IS_E1H(bp))
7428 		/* not applicable for E2 (and above ...) */
7429 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7430 
7431 	if (CHIP_REV_IS_SLOW(bp))
7432 		msleep(200);
7433 
7434 	/* finish CFC init */
7435 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7436 	if (val != 1) {
7437 		BNX2X_ERR("CFC LL_INIT failed\n");
7438 		return -EBUSY;
7439 	}
7440 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7441 	if (val != 1) {
7442 		BNX2X_ERR("CFC AC_INIT failed\n");
7443 		return -EBUSY;
7444 	}
7445 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7446 	if (val != 1) {
7447 		BNX2X_ERR("CFC CAM_INIT failed\n");
7448 		return -EBUSY;
7449 	}
7450 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7451 
7452 	if (CHIP_IS_E1(bp)) {
7453 		/* read NIG statistic
7454 		   to see if this is our first up since powerup */
7455 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7456 		val = *bnx2x_sp(bp, wb_data[0]);
7457 
7458 		/* do internal memory self test */
7459 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7460 			BNX2X_ERR("internal mem self test failed\n");
7461 			return -EBUSY;
7462 		}
7463 	}
7464 
7465 	bnx2x_setup_fan_failure_detection(bp);
7466 
7467 	/* clear PXP2 attentions */
7468 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7469 
7470 	bnx2x_enable_blocks_attention(bp);
7471 	bnx2x_enable_blocks_parity(bp);
7472 
7473 	if (!BP_NOMCP(bp)) {
7474 		if (CHIP_IS_E1x(bp))
7475 			bnx2x__common_init_phy(bp);
7476 	} else
7477 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7478 
7479 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7480 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7481 
7482 	return 0;
7483 }
7484 
7485 /**
7486  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7487  *
7488  * @bp:		driver handle
7489  */
7490 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7491 {
7492 	int rc = bnx2x_init_hw_common(bp);
7493 
7494 	if (rc)
7495 		return rc;
7496 
7497 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7498 	if (!BP_NOMCP(bp))
7499 		bnx2x__common_init_phy(bp);
7500 
7501 	return 0;
7502 }
7503 
7504 static int bnx2x_init_hw_port(struct bnx2x *bp)
7505 {
7506 	int port = BP_PORT(bp);
7507 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7508 	u32 low, high;
7509 	u32 val, reg;
7510 
7511 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7512 
7513 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7514 
7515 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7516 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7517 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7518 
7519 	/* Timers bug workaround: disables the pf_master bit in pglue at
7520 	 * common phase, we need to enable it here before any dmae access are
7521 	 * attempted. Therefore we manually added the enable-master to the
7522 	 * port phase (it also happens in the function phase)
7523 	 */
7524 	if (!CHIP_IS_E1x(bp))
7525 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7526 
7527 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7528 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7529 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7530 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7531 
7532 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7533 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7534 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7535 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7536 
7537 	/* QM cid (connection) count */
7538 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7539 
7540 	if (CNIC_SUPPORT(bp)) {
7541 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7542 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7543 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7544 	}
7545 
7546 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7547 
7548 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7549 
7550 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7551 
7552 		if (IS_MF(bp))
7553 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7554 		else if (bp->dev->mtu > 4096) {
7555 			if (bp->flags & ONE_PORT_FLAG)
7556 				low = 160;
7557 			else {
7558 				val = bp->dev->mtu;
7559 				/* (24*1024 + val*4)/256 */
7560 				low = 96 + (val/64) +
7561 						((val % 64) ? 1 : 0);
7562 			}
7563 		} else
7564 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7565 		high = low + 56;	/* 14*1024/256 */
7566 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7567 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7568 	}
7569 
7570 	if (CHIP_MODE_IS_4_PORT(bp))
7571 		REG_WR(bp, (BP_PORT(bp) ?
7572 			    BRB1_REG_MAC_GUARANTIED_1 :
7573 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7574 
7575 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7576 	if (CHIP_IS_E3B0(bp)) {
7577 		if (IS_MF_AFEX(bp)) {
7578 			/* configure headers for AFEX mode */
7579 			REG_WR(bp, BP_PORT(bp) ?
7580 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7581 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7582 			REG_WR(bp, BP_PORT(bp) ?
7583 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7584 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7585 			REG_WR(bp, BP_PORT(bp) ?
7586 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7587 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7588 		} else {
7589 			/* Ovlan exists only if we are in multi-function +
7590 			 * switch-dependent mode, in switch-independent there
7591 			 * is no ovlan headers
7592 			 */
7593 			REG_WR(bp, BP_PORT(bp) ?
7594 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7595 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7596 			       (bp->path_has_ovlan ? 7 : 6));
7597 		}
7598 	}
7599 
7600 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7601 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7602 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7603 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7604 
7605 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7606 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7607 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7608 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7609 
7610 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7611 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7612 
7613 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7614 
7615 	if (CHIP_IS_E1x(bp)) {
7616 		/* configure PBF to work without PAUSE mtu 9000 */
7617 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7618 
7619 		/* update threshold */
7620 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7621 		/* update init credit */
7622 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7623 
7624 		/* probe changes */
7625 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7626 		udelay(50);
7627 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7628 	}
7629 
7630 	if (CNIC_SUPPORT(bp))
7631 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7632 
7633 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7634 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7635 
7636 	if (CHIP_IS_E1(bp)) {
7637 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7638 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7639 	}
7640 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7641 
7642 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7643 
7644 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7645 	/* init aeu_mask_attn_func_0/1:
7646 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7647 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7648 	 *             bits 4-7 are used for "per vn group attention" */
7649 	val = IS_MF(bp) ? 0xF7 : 0x7;
7650 	/* Enable DCBX attention for all but E1 */
7651 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7652 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7653 
7654 	/* SCPAD_PARITY should NOT trigger close the gates */
7655 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7656 	REG_WR(bp, reg,
7657 	       REG_RD(bp, reg) &
7658 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7659 
7660 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7661 	REG_WR(bp, reg,
7662 	       REG_RD(bp, reg) &
7663 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7664 
7665 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7666 
7667 	if (!CHIP_IS_E1x(bp)) {
7668 		/* Bit-map indicating which L2 hdrs may appear after the
7669 		 * basic Ethernet header
7670 		 */
7671 		if (IS_MF_AFEX(bp))
7672 			REG_WR(bp, BP_PORT(bp) ?
7673 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7674 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7675 		else
7676 			REG_WR(bp, BP_PORT(bp) ?
7677 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7678 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7679 			       IS_MF_SD(bp) ? 7 : 6);
7680 
7681 		if (CHIP_IS_E3(bp))
7682 			REG_WR(bp, BP_PORT(bp) ?
7683 				   NIG_REG_LLH1_MF_MODE :
7684 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7685 	}
7686 	if (!CHIP_IS_E3(bp))
7687 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7688 
7689 	if (!CHIP_IS_E1(bp)) {
7690 		/* 0x2 disable mf_ov, 0x1 enable */
7691 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7692 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7693 
7694 		if (!CHIP_IS_E1x(bp)) {
7695 			val = 0;
7696 			switch (bp->mf_mode) {
7697 			case MULTI_FUNCTION_SD:
7698 				val = 1;
7699 				break;
7700 			case MULTI_FUNCTION_SI:
7701 			case MULTI_FUNCTION_AFEX:
7702 				val = 2;
7703 				break;
7704 			}
7705 
7706 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7707 						  NIG_REG_LLH0_CLS_TYPE), val);
7708 		}
7709 		{
7710 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7711 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7712 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7713 		}
7714 	}
7715 
7716 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7717 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7718 	if (val & MISC_SPIO_SPIO5) {
7719 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7720 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7721 		val = REG_RD(bp, reg_addr);
7722 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7723 		REG_WR(bp, reg_addr, val);
7724 	}
7725 
7726 	return 0;
7727 }
7728 
7729 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7730 {
7731 	int reg;
7732 	u32 wb_write[2];
7733 
7734 	if (CHIP_IS_E1(bp))
7735 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7736 	else
7737 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7738 
7739 	wb_write[0] = ONCHIP_ADDR1(addr);
7740 	wb_write[1] = ONCHIP_ADDR2(addr);
7741 	REG_WR_DMAE(bp, reg, wb_write, 2);
7742 }
7743 
7744 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7745 {
7746 	u32 data, ctl, cnt = 100;
7747 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7748 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7749 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7750 	u32 sb_bit =  1 << (idu_sb_id%32);
7751 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7752 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7753 
7754 	/* Not supported in BC mode */
7755 	if (CHIP_INT_MODE_IS_BC(bp))
7756 		return;
7757 
7758 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7759 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7760 		IGU_REGULAR_CLEANUP_SET				|
7761 		IGU_REGULAR_BCLEANUP;
7762 
7763 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7764 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7765 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7766 
7767 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7768 			 data, igu_addr_data);
7769 	REG_WR(bp, igu_addr_data, data);
7770 	mmiowb();
7771 	barrier();
7772 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7773 			  ctl, igu_addr_ctl);
7774 	REG_WR(bp, igu_addr_ctl, ctl);
7775 	mmiowb();
7776 	barrier();
7777 
7778 	/* wait for clean up to finish */
7779 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7780 		msleep(20);
7781 
7782 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7783 		DP(NETIF_MSG_HW,
7784 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7785 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7786 	}
7787 }
7788 
7789 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7790 {
7791 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7792 }
7793 
7794 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7795 {
7796 	u32 i, base = FUNC_ILT_BASE(func);
7797 	for (i = base; i < base + ILT_PER_FUNC; i++)
7798 		bnx2x_ilt_wr(bp, i, 0);
7799 }
7800 
7801 static void bnx2x_init_searcher(struct bnx2x *bp)
7802 {
7803 	int port = BP_PORT(bp);
7804 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7805 	/* T1 hash bits value determines the T1 number of entries */
7806 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7807 }
7808 
7809 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7810 {
7811 	int rc;
7812 	struct bnx2x_func_state_params func_params = {NULL};
7813 	struct bnx2x_func_switch_update_params *switch_update_params =
7814 		&func_params.params.switch_update;
7815 
7816 	/* Prepare parameters for function state transitions */
7817 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7818 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7819 
7820 	func_params.f_obj = &bp->func_obj;
7821 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7822 
7823 	/* Function parameters */
7824 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7825 		  &switch_update_params->changes);
7826 	if (suspend)
7827 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7828 			  &switch_update_params->changes);
7829 
7830 	rc = bnx2x_func_state_change(bp, &func_params);
7831 
7832 	return rc;
7833 }
7834 
7835 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7836 {
7837 	int rc, i, port = BP_PORT(bp);
7838 	int vlan_en = 0, mac_en[NUM_MACS];
7839 
7840 	/* Close input from network */
7841 	if (bp->mf_mode == SINGLE_FUNCTION) {
7842 		bnx2x_set_rx_filter(&bp->link_params, 0);
7843 	} else {
7844 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7845 				   NIG_REG_LLH0_FUNC_EN);
7846 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7847 			  NIG_REG_LLH0_FUNC_EN, 0);
7848 		for (i = 0; i < NUM_MACS; i++) {
7849 			mac_en[i] = REG_RD(bp, port ?
7850 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7851 					      4 * i) :
7852 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7853 					      4 * i));
7854 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7855 					      4 * i) :
7856 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7857 		}
7858 	}
7859 
7860 	/* Close BMC to host */
7861 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7862 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7863 
7864 	/* Suspend Tx switching to the PF. Completion of this ramrod
7865 	 * further guarantees that all the packets of that PF / child
7866 	 * VFs in BRB were processed by the Parser, so it is safe to
7867 	 * change the NIC_MODE register.
7868 	 */
7869 	rc = bnx2x_func_switch_update(bp, 1);
7870 	if (rc) {
7871 		BNX2X_ERR("Can't suspend tx-switching!\n");
7872 		return rc;
7873 	}
7874 
7875 	/* Change NIC_MODE register */
7876 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7877 
7878 	/* Open input from network */
7879 	if (bp->mf_mode == SINGLE_FUNCTION) {
7880 		bnx2x_set_rx_filter(&bp->link_params, 1);
7881 	} else {
7882 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7883 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7884 		for (i = 0; i < NUM_MACS; i++) {
7885 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7886 					      4 * i) :
7887 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7888 				  mac_en[i]);
7889 		}
7890 	}
7891 
7892 	/* Enable BMC to host */
7893 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7894 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7895 
7896 	/* Resume Tx switching to the PF */
7897 	rc = bnx2x_func_switch_update(bp, 0);
7898 	if (rc) {
7899 		BNX2X_ERR("Can't resume tx-switching!\n");
7900 		return rc;
7901 	}
7902 
7903 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7904 	return 0;
7905 }
7906 
7907 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7908 {
7909 	int rc;
7910 
7911 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7912 
7913 	if (CONFIGURE_NIC_MODE(bp)) {
7914 		/* Configure searcher as part of function hw init */
7915 		bnx2x_init_searcher(bp);
7916 
7917 		/* Reset NIC mode */
7918 		rc = bnx2x_reset_nic_mode(bp);
7919 		if (rc)
7920 			BNX2X_ERR("Can't change NIC mode!\n");
7921 		return rc;
7922 	}
7923 
7924 	return 0;
7925 }
7926 
7927 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7928  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7929  * the addresses of the transaction, resulting in was-error bit set in the pci
7930  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7931  * to clear the interrupt which detected this from the pglueb and the was done
7932  * bit
7933  */
7934 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7935 {
7936 	if (!CHIP_IS_E1x(bp))
7937 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7938 		       1 << BP_ABS_FUNC(bp));
7939 }
7940 
7941 static int bnx2x_init_hw_func(struct bnx2x *bp)
7942 {
7943 	int port = BP_PORT(bp);
7944 	int func = BP_FUNC(bp);
7945 	int init_phase = PHASE_PF0 + func;
7946 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7947 	u16 cdu_ilt_start;
7948 	u32 addr, val;
7949 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7950 	int i, main_mem_width, rc;
7951 
7952 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7953 
7954 	/* FLR cleanup - hmmm */
7955 	if (!CHIP_IS_E1x(bp)) {
7956 		rc = bnx2x_pf_flr_clnup(bp);
7957 		if (rc) {
7958 			bnx2x_fw_dump(bp);
7959 			return rc;
7960 		}
7961 	}
7962 
7963 	/* set MSI reconfigure capability */
7964 	if (bp->common.int_block == INT_BLOCK_HC) {
7965 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7966 		val = REG_RD(bp, addr);
7967 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7968 		REG_WR(bp, addr, val);
7969 	}
7970 
7971 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7972 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7973 
7974 	ilt = BP_ILT(bp);
7975 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7976 
7977 	if (IS_SRIOV(bp))
7978 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7979 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7980 
7981 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7982 	 * those of the VFs, so start line should be reset
7983 	 */
7984 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7985 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7986 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7987 		ilt->lines[cdu_ilt_start + i].page_mapping =
7988 			bp->context[i].cxt_mapping;
7989 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7990 	}
7991 
7992 	bnx2x_ilt_init_op(bp, INITOP_SET);
7993 
7994 	if (!CONFIGURE_NIC_MODE(bp)) {
7995 		bnx2x_init_searcher(bp);
7996 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7997 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7998 	} else {
7999 		/* Set NIC mode */
8000 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8001 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8002 	}
8003 
8004 	if (!CHIP_IS_E1x(bp)) {
8005 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8006 
8007 		/* Turn on a single ISR mode in IGU if driver is going to use
8008 		 * INT#x or MSI
8009 		 */
8010 		if (!(bp->flags & USING_MSIX_FLAG))
8011 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8012 		/*
8013 		 * Timers workaround bug: function init part.
8014 		 * Need to wait 20msec after initializing ILT,
8015 		 * needed to make sure there are no requests in
8016 		 * one of the PXP internal queues with "old" ILT addresses
8017 		 */
8018 		msleep(20);
8019 		/*
8020 		 * Master enable - Due to WB DMAE writes performed before this
8021 		 * register is re-initialized as part of the regular function
8022 		 * init
8023 		 */
8024 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8025 		/* Enable the function in IGU */
8026 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8027 	}
8028 
8029 	bp->dmae_ready = 1;
8030 
8031 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8032 
8033 	bnx2x_clean_pglue_errors(bp);
8034 
8035 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8036 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8037 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8038 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8039 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8040 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8041 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8042 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8043 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8044 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8045 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8046 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8047 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8048 
8049 	if (!CHIP_IS_E1x(bp))
8050 		REG_WR(bp, QM_REG_PF_EN, 1);
8051 
8052 	if (!CHIP_IS_E1x(bp)) {
8053 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8054 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8055 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8056 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8057 	}
8058 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8059 
8060 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8061 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8062 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8063 
8064 	bnx2x_iov_init_dq(bp);
8065 
8066 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8067 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8068 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8069 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8070 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8071 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8072 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8073 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8074 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8075 	if (!CHIP_IS_E1x(bp))
8076 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8077 
8078 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8079 
8080 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8081 
8082 	if (!CHIP_IS_E1x(bp))
8083 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8084 
8085 	if (IS_MF(bp)) {
8086 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8087 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8088 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8089 			       bp->mf_ov);
8090 		}
8091 	}
8092 
8093 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8094 
8095 	/* HC init per function */
8096 	if (bp->common.int_block == INT_BLOCK_HC) {
8097 		if (CHIP_IS_E1H(bp)) {
8098 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8099 
8100 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8101 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8102 		}
8103 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8104 
8105 	} else {
8106 		int num_segs, sb_idx, prod_offset;
8107 
8108 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8109 
8110 		if (!CHIP_IS_E1x(bp)) {
8111 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8112 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8113 		}
8114 
8115 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8116 
8117 		if (!CHIP_IS_E1x(bp)) {
8118 			int dsb_idx = 0;
8119 			/**
8120 			 * Producer memory:
8121 			 * E2 mode: address 0-135 match to the mapping memory;
8122 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8123 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8124 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8125 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8126 			 * 144-147 reserved.
8127 			 *
8128 			 * E1.5 mode - In backward compatible mode;
8129 			 * for non default SB; each even line in the memory
8130 			 * holds the U producer and each odd line hold
8131 			 * the C producer. The first 128 producers are for
8132 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8133 			 * producers are for the DSB for each PF.
8134 			 * Each PF has five segments: (the order inside each
8135 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8136 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8137 			 * 144-147 attn prods;
8138 			 */
8139 			/* non-default-status-blocks */
8140 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8141 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8142 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8143 				prod_offset = (bp->igu_base_sb + sb_idx) *
8144 					num_segs;
8145 
8146 				for (i = 0; i < num_segs; i++) {
8147 					addr = IGU_REG_PROD_CONS_MEMORY +
8148 							(prod_offset + i) * 4;
8149 					REG_WR(bp, addr, 0);
8150 				}
8151 				/* send consumer update with value 0 */
8152 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8153 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8154 				bnx2x_igu_clear_sb(bp,
8155 						   bp->igu_base_sb + sb_idx);
8156 			}
8157 
8158 			/* default-status-blocks */
8159 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8160 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8161 
8162 			if (CHIP_MODE_IS_4_PORT(bp))
8163 				dsb_idx = BP_FUNC(bp);
8164 			else
8165 				dsb_idx = BP_VN(bp);
8166 
8167 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8168 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8169 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8170 
8171 			/*
8172 			 * igu prods come in chunks of E1HVN_MAX (4) -
8173 			 * does not matters what is the current chip mode
8174 			 */
8175 			for (i = 0; i < (num_segs * E1HVN_MAX);
8176 			     i += E1HVN_MAX) {
8177 				addr = IGU_REG_PROD_CONS_MEMORY +
8178 							(prod_offset + i)*4;
8179 				REG_WR(bp, addr, 0);
8180 			}
8181 			/* send consumer update with 0 */
8182 			if (CHIP_INT_MODE_IS_BC(bp)) {
8183 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8184 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8185 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8186 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8187 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8188 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8189 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8190 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8191 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8192 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8193 			} else {
8194 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8196 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8198 			}
8199 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8200 
8201 			/* !!! These should become driver const once
8202 			   rf-tool supports split-68 const */
8203 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8204 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8205 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8206 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8207 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8208 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8209 		}
8210 	}
8211 
8212 	/* Reset PCIE errors for debug */
8213 	REG_WR(bp, 0x2114, 0xffffffff);
8214 	REG_WR(bp, 0x2120, 0xffffffff);
8215 
8216 	if (CHIP_IS_E1x(bp)) {
8217 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8218 		main_mem_base = HC_REG_MAIN_MEMORY +
8219 				BP_PORT(bp) * (main_mem_size * 4);
8220 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8221 		main_mem_width = 8;
8222 
8223 		val = REG_RD(bp, main_mem_prty_clr);
8224 		if (val)
8225 			DP(NETIF_MSG_HW,
8226 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8227 			   val);
8228 
8229 		/* Clear "false" parity errors in MSI-X table */
8230 		for (i = main_mem_base;
8231 		     i < main_mem_base + main_mem_size * 4;
8232 		     i += main_mem_width) {
8233 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8234 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8235 					 i, main_mem_width / 4);
8236 		}
8237 		/* Clear HC parity attention */
8238 		REG_RD(bp, main_mem_prty_clr);
8239 	}
8240 
8241 #ifdef BNX2X_STOP_ON_ERROR
8242 	/* Enable STORMs SP logging */
8243 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8244 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8245 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8246 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8247 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8248 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8249 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8250 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8251 #endif
8252 
8253 	bnx2x_phy_probe(&bp->link_params);
8254 
8255 	return 0;
8256 }
8257 
8258 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8259 {
8260 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8261 
8262 	if (!CHIP_IS_E1x(bp))
8263 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8264 			       sizeof(struct host_hc_status_block_e2));
8265 	else
8266 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8267 			       sizeof(struct host_hc_status_block_e1x));
8268 
8269 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8270 }
8271 
8272 void bnx2x_free_mem(struct bnx2x *bp)
8273 {
8274 	int i;
8275 
8276 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8277 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8278 
8279 	if (IS_VF(bp))
8280 		return;
8281 
8282 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8283 		       sizeof(struct host_sp_status_block));
8284 
8285 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8286 		       sizeof(struct bnx2x_slowpath));
8287 
8288 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8289 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8290 			       bp->context[i].size);
8291 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8292 
8293 	BNX2X_FREE(bp->ilt->lines);
8294 
8295 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8296 
8297 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8298 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8299 
8300 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8301 
8302 	bnx2x_iov_free_mem(bp);
8303 }
8304 
8305 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8306 {
8307 	if (!CHIP_IS_E1x(bp)) {
8308 		/* size = the status block + ramrod buffers */
8309 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8310 						    sizeof(struct host_hc_status_block_e2));
8311 		if (!bp->cnic_sb.e2_sb)
8312 			goto alloc_mem_err;
8313 	} else {
8314 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8315 						     sizeof(struct host_hc_status_block_e1x));
8316 		if (!bp->cnic_sb.e1x_sb)
8317 			goto alloc_mem_err;
8318 	}
8319 
8320 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8321 		/* allocate searcher T2 table, as it wasn't allocated before */
8322 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8323 		if (!bp->t2)
8324 			goto alloc_mem_err;
8325 	}
8326 
8327 	/* write address to which L5 should insert its values */
8328 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8329 		&bp->slowpath->drv_info_to_mcp;
8330 
8331 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8332 		goto alloc_mem_err;
8333 
8334 	return 0;
8335 
8336 alloc_mem_err:
8337 	bnx2x_free_mem_cnic(bp);
8338 	BNX2X_ERR("Can't allocate memory\n");
8339 	return -ENOMEM;
8340 }
8341 
8342 int bnx2x_alloc_mem(struct bnx2x *bp)
8343 {
8344 	int i, allocated, context_size;
8345 
8346 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8347 		/* allocate searcher T2 table */
8348 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8349 		if (!bp->t2)
8350 			goto alloc_mem_err;
8351 	}
8352 
8353 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8354 					     sizeof(struct host_sp_status_block));
8355 	if (!bp->def_status_blk)
8356 		goto alloc_mem_err;
8357 
8358 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8359 				       sizeof(struct bnx2x_slowpath));
8360 	if (!bp->slowpath)
8361 		goto alloc_mem_err;
8362 
8363 	/* Allocate memory for CDU context:
8364 	 * This memory is allocated separately and not in the generic ILT
8365 	 * functions because CDU differs in few aspects:
8366 	 * 1. There are multiple entities allocating memory for context -
8367 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8368 	 * its own ILT lines.
8369 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8370 	 * for the other ILT clients), to be efficient we want to support
8371 	 * allocation of sub-page-size in the last entry.
8372 	 * 3. Context pointers are used by the driver to pass to FW / update
8373 	 * the context (for the other ILT clients the pointers are used just to
8374 	 * free the memory during unload).
8375 	 */
8376 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8377 
8378 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8379 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8380 					  (context_size - allocated));
8381 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8382 						      bp->context[i].size);
8383 		if (!bp->context[i].vcxt)
8384 			goto alloc_mem_err;
8385 		allocated += bp->context[i].size;
8386 	}
8387 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8388 				 GFP_KERNEL);
8389 	if (!bp->ilt->lines)
8390 		goto alloc_mem_err;
8391 
8392 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8393 		goto alloc_mem_err;
8394 
8395 	if (bnx2x_iov_alloc_mem(bp))
8396 		goto alloc_mem_err;
8397 
8398 	/* Slow path ring */
8399 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8400 	if (!bp->spq)
8401 		goto alloc_mem_err;
8402 
8403 	/* EQ */
8404 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8405 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8406 	if (!bp->eq_ring)
8407 		goto alloc_mem_err;
8408 
8409 	return 0;
8410 
8411 alloc_mem_err:
8412 	bnx2x_free_mem(bp);
8413 	BNX2X_ERR("Can't allocate memory\n");
8414 	return -ENOMEM;
8415 }
8416 
8417 /*
8418  * Init service functions
8419  */
8420 
8421 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8422 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8423 		      int mac_type, unsigned long *ramrod_flags)
8424 {
8425 	int rc;
8426 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8427 
8428 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8429 
8430 	/* Fill general parameters */
8431 	ramrod_param.vlan_mac_obj = obj;
8432 	ramrod_param.ramrod_flags = *ramrod_flags;
8433 
8434 	/* Fill a user request section if needed */
8435 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8436 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8437 
8438 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8439 
8440 		/* Set the command: ADD or DEL */
8441 		if (set)
8442 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8443 		else
8444 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8445 	}
8446 
8447 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8448 
8449 	if (rc == -EEXIST) {
8450 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8451 		/* do not treat adding same MAC as error */
8452 		rc = 0;
8453 	} else if (rc < 0)
8454 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8455 
8456 	return rc;
8457 }
8458 
8459 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8460 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8461 		       unsigned long *ramrod_flags)
8462 {
8463 	int rc;
8464 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8465 
8466 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8467 
8468 	/* Fill general parameters */
8469 	ramrod_param.vlan_mac_obj = obj;
8470 	ramrod_param.ramrod_flags = *ramrod_flags;
8471 
8472 	/* Fill a user request section if needed */
8473 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8474 		ramrod_param.user_req.u.vlan.vlan = vlan;
8475 		/* Set the command: ADD or DEL */
8476 		if (set)
8477 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8478 		else
8479 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8480 	}
8481 
8482 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8483 
8484 	if (rc == -EEXIST) {
8485 		/* Do not treat adding same vlan as error. */
8486 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8487 		rc = 0;
8488 	} else if (rc < 0) {
8489 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8490 	}
8491 
8492 	return rc;
8493 }
8494 
8495 int bnx2x_del_all_macs(struct bnx2x *bp,
8496 		       struct bnx2x_vlan_mac_obj *mac_obj,
8497 		       int mac_type, bool wait_for_comp)
8498 {
8499 	int rc;
8500 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8501 
8502 	/* Wait for completion of requested */
8503 	if (wait_for_comp)
8504 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8505 
8506 	/* Set the mac type of addresses we want to clear */
8507 	__set_bit(mac_type, &vlan_mac_flags);
8508 
8509 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8510 	if (rc < 0)
8511 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8512 
8513 	return rc;
8514 }
8515 
8516 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8517 {
8518 	if (IS_PF(bp)) {
8519 		unsigned long ramrod_flags = 0;
8520 
8521 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8522 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8523 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8524 					 &bp->sp_objs->mac_obj, set,
8525 					 BNX2X_ETH_MAC, &ramrod_flags);
8526 	} else { /* vf */
8527 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8528 					     bp->fp->index, set);
8529 	}
8530 }
8531 
8532 int bnx2x_setup_leading(struct bnx2x *bp)
8533 {
8534 	if (IS_PF(bp))
8535 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8536 	else /* VF */
8537 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8538 }
8539 
8540 /**
8541  * bnx2x_set_int_mode - configure interrupt mode
8542  *
8543  * @bp:		driver handle
8544  *
8545  * In case of MSI-X it will also try to enable MSI-X.
8546  */
8547 int bnx2x_set_int_mode(struct bnx2x *bp)
8548 {
8549 	int rc = 0;
8550 
8551 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8552 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8553 		return -EINVAL;
8554 	}
8555 
8556 	switch (int_mode) {
8557 	case BNX2X_INT_MODE_MSIX:
8558 		/* attempt to enable msix */
8559 		rc = bnx2x_enable_msix(bp);
8560 
8561 		/* msix attained */
8562 		if (!rc)
8563 			return 0;
8564 
8565 		/* vfs use only msix */
8566 		if (rc && IS_VF(bp))
8567 			return rc;
8568 
8569 		/* failed to enable multiple MSI-X */
8570 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8571 			       bp->num_queues,
8572 			       1 + bp->num_cnic_queues);
8573 
8574 		/* fall through */
8575 	case BNX2X_INT_MODE_MSI:
8576 		bnx2x_enable_msi(bp);
8577 
8578 		/* fall through */
8579 	case BNX2X_INT_MODE_INTX:
8580 		bp->num_ethernet_queues = 1;
8581 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8582 		BNX2X_DEV_INFO("set number of queues to 1\n");
8583 		break;
8584 	default:
8585 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8586 		return -EINVAL;
8587 	}
8588 	return 0;
8589 }
8590 
8591 /* must be called prior to any HW initializations */
8592 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8593 {
8594 	if (IS_SRIOV(bp))
8595 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8596 	return L2_ILT_LINES(bp);
8597 }
8598 
8599 void bnx2x_ilt_set_info(struct bnx2x *bp)
8600 {
8601 	struct ilt_client_info *ilt_client;
8602 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8603 	u16 line = 0;
8604 
8605 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8606 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8607 
8608 	/* CDU */
8609 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8610 	ilt_client->client_num = ILT_CLIENT_CDU;
8611 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8612 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8613 	ilt_client->start = line;
8614 	line += bnx2x_cid_ilt_lines(bp);
8615 
8616 	if (CNIC_SUPPORT(bp))
8617 		line += CNIC_ILT_LINES;
8618 	ilt_client->end = line - 1;
8619 
8620 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8621 	   ilt_client->start,
8622 	   ilt_client->end,
8623 	   ilt_client->page_size,
8624 	   ilt_client->flags,
8625 	   ilog2(ilt_client->page_size >> 12));
8626 
8627 	/* QM */
8628 	if (QM_INIT(bp->qm_cid_count)) {
8629 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8630 		ilt_client->client_num = ILT_CLIENT_QM;
8631 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8632 		ilt_client->flags = 0;
8633 		ilt_client->start = line;
8634 
8635 		/* 4 bytes for each cid */
8636 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8637 							 QM_ILT_PAGE_SZ);
8638 
8639 		ilt_client->end = line - 1;
8640 
8641 		DP(NETIF_MSG_IFUP,
8642 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8643 		   ilt_client->start,
8644 		   ilt_client->end,
8645 		   ilt_client->page_size,
8646 		   ilt_client->flags,
8647 		   ilog2(ilt_client->page_size >> 12));
8648 	}
8649 
8650 	if (CNIC_SUPPORT(bp)) {
8651 		/* SRC */
8652 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8653 		ilt_client->client_num = ILT_CLIENT_SRC;
8654 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8655 		ilt_client->flags = 0;
8656 		ilt_client->start = line;
8657 		line += SRC_ILT_LINES;
8658 		ilt_client->end = line - 1;
8659 
8660 		DP(NETIF_MSG_IFUP,
8661 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8662 		   ilt_client->start,
8663 		   ilt_client->end,
8664 		   ilt_client->page_size,
8665 		   ilt_client->flags,
8666 		   ilog2(ilt_client->page_size >> 12));
8667 
8668 		/* TM */
8669 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8670 		ilt_client->client_num = ILT_CLIENT_TM;
8671 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8672 		ilt_client->flags = 0;
8673 		ilt_client->start = line;
8674 		line += TM_ILT_LINES;
8675 		ilt_client->end = line - 1;
8676 
8677 		DP(NETIF_MSG_IFUP,
8678 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8679 		   ilt_client->start,
8680 		   ilt_client->end,
8681 		   ilt_client->page_size,
8682 		   ilt_client->flags,
8683 		   ilog2(ilt_client->page_size >> 12));
8684 	}
8685 
8686 	BUG_ON(line > ILT_MAX_LINES);
8687 }
8688 
8689 /**
8690  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8691  *
8692  * @bp:			driver handle
8693  * @fp:			pointer to fastpath
8694  * @init_params:	pointer to parameters structure
8695  *
8696  * parameters configured:
8697  *      - HC configuration
8698  *      - Queue's CDU context
8699  */
8700 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8701 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8702 {
8703 	u8 cos;
8704 	int cxt_index, cxt_offset;
8705 
8706 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8707 	if (!IS_FCOE_FP(fp)) {
8708 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8709 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8710 
8711 		/* If HC is supported, enable host coalescing in the transition
8712 		 * to INIT state.
8713 		 */
8714 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8715 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8716 
8717 		/* HC rate */
8718 		init_params->rx.hc_rate = bp->rx_ticks ?
8719 			(1000000 / bp->rx_ticks) : 0;
8720 		init_params->tx.hc_rate = bp->tx_ticks ?
8721 			(1000000 / bp->tx_ticks) : 0;
8722 
8723 		/* FW SB ID */
8724 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8725 			fp->fw_sb_id;
8726 
8727 		/*
8728 		 * CQ index among the SB indices: FCoE clients uses the default
8729 		 * SB, therefore it's different.
8730 		 */
8731 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8732 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8733 	}
8734 
8735 	/* set maximum number of COSs supported by this queue */
8736 	init_params->max_cos = fp->max_cos;
8737 
8738 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8739 	    fp->index, init_params->max_cos);
8740 
8741 	/* set the context pointers queue object */
8742 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8743 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8744 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8745 				ILT_PAGE_CIDS);
8746 		init_params->cxts[cos] =
8747 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8748 	}
8749 }
8750 
8751 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8752 			struct bnx2x_queue_state_params *q_params,
8753 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8754 			int tx_index, bool leading)
8755 {
8756 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8757 
8758 	/* Set the command */
8759 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8760 
8761 	/* Set tx-only QUEUE flags: don't zero statistics */
8762 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8763 
8764 	/* choose the index of the cid to send the slow path on */
8765 	tx_only_params->cid_index = tx_index;
8766 
8767 	/* Set general TX_ONLY_SETUP parameters */
8768 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8769 
8770 	/* Set Tx TX_ONLY_SETUP parameters */
8771 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8772 
8773 	DP(NETIF_MSG_IFUP,
8774 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8775 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8776 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8777 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8778 
8779 	/* send the ramrod */
8780 	return bnx2x_queue_state_change(bp, q_params);
8781 }
8782 
8783 /**
8784  * bnx2x_setup_queue - setup queue
8785  *
8786  * @bp:		driver handle
8787  * @fp:		pointer to fastpath
8788  * @leading:	is leading
8789  *
8790  * This function performs 2 steps in a Queue state machine
8791  *      actually: 1) RESET->INIT 2) INIT->SETUP
8792  */
8793 
8794 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8795 		       bool leading)
8796 {
8797 	struct bnx2x_queue_state_params q_params = {NULL};
8798 	struct bnx2x_queue_setup_params *setup_params =
8799 						&q_params.params.setup;
8800 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8801 						&q_params.params.tx_only;
8802 	int rc;
8803 	u8 tx_index;
8804 
8805 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8806 
8807 	/* reset IGU state skip FCoE L2 queue */
8808 	if (!IS_FCOE_FP(fp))
8809 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8810 			     IGU_INT_ENABLE, 0);
8811 
8812 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8813 	/* We want to wait for completion in this context */
8814 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8815 
8816 	/* Prepare the INIT parameters */
8817 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8818 
8819 	/* Set the command */
8820 	q_params.cmd = BNX2X_Q_CMD_INIT;
8821 
8822 	/* Change the state to INIT */
8823 	rc = bnx2x_queue_state_change(bp, &q_params);
8824 	if (rc) {
8825 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8826 		return rc;
8827 	}
8828 
8829 	DP(NETIF_MSG_IFUP, "init complete\n");
8830 
8831 	/* Now move the Queue to the SETUP state... */
8832 	memset(setup_params, 0, sizeof(*setup_params));
8833 
8834 	/* Set QUEUE flags */
8835 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8836 
8837 	/* Set general SETUP parameters */
8838 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8839 				FIRST_TX_COS_INDEX);
8840 
8841 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8842 			    &setup_params->rxq_params);
8843 
8844 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8845 			   FIRST_TX_COS_INDEX);
8846 
8847 	/* Set the command */
8848 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8849 
8850 	if (IS_FCOE_FP(fp))
8851 		bp->fcoe_init = true;
8852 
8853 	/* Change the state to SETUP */
8854 	rc = bnx2x_queue_state_change(bp, &q_params);
8855 	if (rc) {
8856 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8857 		return rc;
8858 	}
8859 
8860 	/* loop through the relevant tx-only indices */
8861 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8862 	      tx_index < fp->max_cos;
8863 	      tx_index++) {
8864 
8865 		/* prepare and send tx-only ramrod*/
8866 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8867 					  tx_only_params, tx_index, leading);
8868 		if (rc) {
8869 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8870 				  fp->index, tx_index);
8871 			return rc;
8872 		}
8873 	}
8874 
8875 	return rc;
8876 }
8877 
8878 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8879 {
8880 	struct bnx2x_fastpath *fp = &bp->fp[index];
8881 	struct bnx2x_fp_txdata *txdata;
8882 	struct bnx2x_queue_state_params q_params = {NULL};
8883 	int rc, tx_index;
8884 
8885 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8886 
8887 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8888 	/* We want to wait for completion in this context */
8889 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8890 
8891 	/* close tx-only connections */
8892 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8893 	     tx_index < fp->max_cos;
8894 	     tx_index++){
8895 
8896 		/* ascertain this is a normal queue*/
8897 		txdata = fp->txdata_ptr[tx_index];
8898 
8899 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8900 							txdata->txq_index);
8901 
8902 		/* send halt terminate on tx-only connection */
8903 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8904 		memset(&q_params.params.terminate, 0,
8905 		       sizeof(q_params.params.terminate));
8906 		q_params.params.terminate.cid_index = tx_index;
8907 
8908 		rc = bnx2x_queue_state_change(bp, &q_params);
8909 		if (rc)
8910 			return rc;
8911 
8912 		/* send halt terminate on tx-only connection */
8913 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8914 		memset(&q_params.params.cfc_del, 0,
8915 		       sizeof(q_params.params.cfc_del));
8916 		q_params.params.cfc_del.cid_index = tx_index;
8917 		rc = bnx2x_queue_state_change(bp, &q_params);
8918 		if (rc)
8919 			return rc;
8920 	}
8921 	/* Stop the primary connection: */
8922 	/* ...halt the connection */
8923 	q_params.cmd = BNX2X_Q_CMD_HALT;
8924 	rc = bnx2x_queue_state_change(bp, &q_params);
8925 	if (rc)
8926 		return rc;
8927 
8928 	/* ...terminate the connection */
8929 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8930 	memset(&q_params.params.terminate, 0,
8931 	       sizeof(q_params.params.terminate));
8932 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8933 	rc = bnx2x_queue_state_change(bp, &q_params);
8934 	if (rc)
8935 		return rc;
8936 	/* ...delete cfc entry */
8937 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8938 	memset(&q_params.params.cfc_del, 0,
8939 	       sizeof(q_params.params.cfc_del));
8940 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8941 	return bnx2x_queue_state_change(bp, &q_params);
8942 }
8943 
8944 static void bnx2x_reset_func(struct bnx2x *bp)
8945 {
8946 	int port = BP_PORT(bp);
8947 	int func = BP_FUNC(bp);
8948 	int i;
8949 
8950 	/* Disable the function in the FW */
8951 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8952 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8953 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8954 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8955 
8956 	/* FP SBs */
8957 	for_each_eth_queue(bp, i) {
8958 		struct bnx2x_fastpath *fp = &bp->fp[i];
8959 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8960 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8961 			   SB_DISABLED);
8962 	}
8963 
8964 	if (CNIC_LOADED(bp))
8965 		/* CNIC SB */
8966 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8967 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8968 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8969 
8970 	/* SP SB */
8971 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8972 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8973 		SB_DISABLED);
8974 
8975 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8976 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8977 		       0);
8978 
8979 	/* Configure IGU */
8980 	if (bp->common.int_block == INT_BLOCK_HC) {
8981 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8982 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8983 	} else {
8984 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8985 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8986 	}
8987 
8988 	if (CNIC_LOADED(bp)) {
8989 		/* Disable Timer scan */
8990 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8991 		/*
8992 		 * Wait for at least 10ms and up to 2 second for the timers
8993 		 * scan to complete
8994 		 */
8995 		for (i = 0; i < 200; i++) {
8996 			usleep_range(10000, 20000);
8997 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8998 				break;
8999 		}
9000 	}
9001 	/* Clear ILT */
9002 	bnx2x_clear_func_ilt(bp, func);
9003 
9004 	/* Timers workaround bug for E2: if this is vnic-3,
9005 	 * we need to set the entire ilt range for this timers.
9006 	 */
9007 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9008 		struct ilt_client_info ilt_cli;
9009 		/* use dummy TM client */
9010 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9011 		ilt_cli.start = 0;
9012 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9013 		ilt_cli.client_num = ILT_CLIENT_TM;
9014 
9015 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9016 	}
9017 
9018 	/* this assumes that reset_port() called before reset_func()*/
9019 	if (!CHIP_IS_E1x(bp))
9020 		bnx2x_pf_disable(bp);
9021 
9022 	bp->dmae_ready = 0;
9023 }
9024 
9025 static void bnx2x_reset_port(struct bnx2x *bp)
9026 {
9027 	int port = BP_PORT(bp);
9028 	u32 val;
9029 
9030 	/* Reset physical Link */
9031 	bnx2x__link_reset(bp);
9032 
9033 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9034 
9035 	/* Do not rcv packets to BRB */
9036 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9037 	/* Do not direct rcv packets that are not for MCP to the BRB */
9038 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9039 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9040 
9041 	/* Configure AEU */
9042 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9043 
9044 	msleep(100);
9045 	/* Check for BRB port occupancy */
9046 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9047 	if (val)
9048 		DP(NETIF_MSG_IFDOWN,
9049 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9050 
9051 	/* TODO: Close Doorbell port? */
9052 }
9053 
9054 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9055 {
9056 	struct bnx2x_func_state_params func_params = {NULL};
9057 
9058 	/* Prepare parameters for function state transitions */
9059 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9060 
9061 	func_params.f_obj = &bp->func_obj;
9062 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9063 
9064 	func_params.params.hw_init.load_phase = load_code;
9065 
9066 	return bnx2x_func_state_change(bp, &func_params);
9067 }
9068 
9069 static int bnx2x_func_stop(struct bnx2x *bp)
9070 {
9071 	struct bnx2x_func_state_params func_params = {NULL};
9072 	int rc;
9073 
9074 	/* Prepare parameters for function state transitions */
9075 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9076 	func_params.f_obj = &bp->func_obj;
9077 	func_params.cmd = BNX2X_F_CMD_STOP;
9078 
9079 	/*
9080 	 * Try to stop the function the 'good way'. If fails (in case
9081 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9082 	 * not in a debug mode, perform a state transaction in order to
9083 	 * enable further HW_RESET transaction.
9084 	 */
9085 	rc = bnx2x_func_state_change(bp, &func_params);
9086 	if (rc) {
9087 #ifdef BNX2X_STOP_ON_ERROR
9088 		return rc;
9089 #else
9090 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9091 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9092 		return bnx2x_func_state_change(bp, &func_params);
9093 #endif
9094 	}
9095 
9096 	return 0;
9097 }
9098 
9099 /**
9100  * bnx2x_send_unload_req - request unload mode from the MCP.
9101  *
9102  * @bp:			driver handle
9103  * @unload_mode:	requested function's unload mode
9104  *
9105  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9106  */
9107 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9108 {
9109 	u32 reset_code = 0;
9110 	int port = BP_PORT(bp);
9111 
9112 	/* Select the UNLOAD request mode */
9113 	if (unload_mode == UNLOAD_NORMAL)
9114 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9115 
9116 	else if (bp->flags & NO_WOL_FLAG)
9117 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9118 
9119 	else if (bp->wol) {
9120 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9121 		u8 *mac_addr = bp->dev->dev_addr;
9122 		struct pci_dev *pdev = bp->pdev;
9123 		u32 val;
9124 		u16 pmc;
9125 
9126 		/* The mac address is written to entries 1-4 to
9127 		 * preserve entry 0 which is used by the PMF
9128 		 */
9129 		u8 entry = (BP_VN(bp) + 1)*8;
9130 
9131 		val = (mac_addr[0] << 8) | mac_addr[1];
9132 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9133 
9134 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9135 		      (mac_addr[4] << 8) | mac_addr[5];
9136 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9137 
9138 		/* Enable the PME and clear the status */
9139 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9140 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9141 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9142 
9143 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9144 
9145 	} else
9146 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9147 
9148 	/* Send the request to the MCP */
9149 	if (!BP_NOMCP(bp))
9150 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9151 	else {
9152 		int path = BP_PATH(bp);
9153 
9154 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9155 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9156 		   bnx2x_load_count[path][2]);
9157 		bnx2x_load_count[path][0]--;
9158 		bnx2x_load_count[path][1 + port]--;
9159 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9160 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9161 		   bnx2x_load_count[path][2]);
9162 		if (bnx2x_load_count[path][0] == 0)
9163 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9164 		else if (bnx2x_load_count[path][1 + port] == 0)
9165 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9166 		else
9167 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9168 	}
9169 
9170 	return reset_code;
9171 }
9172 
9173 /**
9174  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9175  *
9176  * @bp:		driver handle
9177  * @keep_link:		true iff link should be kept up
9178  */
9179 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9180 {
9181 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9182 
9183 	/* Report UNLOAD_DONE to MCP */
9184 	if (!BP_NOMCP(bp))
9185 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9186 }
9187 
9188 static int bnx2x_func_wait_started(struct bnx2x *bp)
9189 {
9190 	int tout = 50;
9191 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9192 
9193 	if (!bp->port.pmf)
9194 		return 0;
9195 
9196 	/*
9197 	 * (assumption: No Attention from MCP at this stage)
9198 	 * PMF probably in the middle of TX disable/enable transaction
9199 	 * 1. Sync IRS for default SB
9200 	 * 2. Sync SP queue - this guarantees us that attention handling started
9201 	 * 3. Wait, that TX disable/enable transaction completes
9202 	 *
9203 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9204 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9205 	 * received completion for the transaction the state is TX_STOPPED.
9206 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9207 	 * transaction.
9208 	 */
9209 
9210 	/* make sure default SB ISR is done */
9211 	if (msix)
9212 		synchronize_irq(bp->msix_table[0].vector);
9213 	else
9214 		synchronize_irq(bp->pdev->irq);
9215 
9216 	flush_workqueue(bnx2x_wq);
9217 	flush_workqueue(bnx2x_iov_wq);
9218 
9219 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9220 				BNX2X_F_STATE_STARTED && tout--)
9221 		msleep(20);
9222 
9223 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9224 						BNX2X_F_STATE_STARTED) {
9225 #ifdef BNX2X_STOP_ON_ERROR
9226 		BNX2X_ERR("Wrong function state\n");
9227 		return -EBUSY;
9228 #else
9229 		/*
9230 		 * Failed to complete the transaction in a "good way"
9231 		 * Force both transactions with CLR bit
9232 		 */
9233 		struct bnx2x_func_state_params func_params = {NULL};
9234 
9235 		DP(NETIF_MSG_IFDOWN,
9236 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9237 
9238 		func_params.f_obj = &bp->func_obj;
9239 		__set_bit(RAMROD_DRV_CLR_ONLY,
9240 					&func_params.ramrod_flags);
9241 
9242 		/* STARTED-->TX_ST0PPED */
9243 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9244 		bnx2x_func_state_change(bp, &func_params);
9245 
9246 		/* TX_ST0PPED-->STARTED */
9247 		func_params.cmd = BNX2X_F_CMD_TX_START;
9248 		return bnx2x_func_state_change(bp, &func_params);
9249 #endif
9250 	}
9251 
9252 	return 0;
9253 }
9254 
9255 static void bnx2x_disable_ptp(struct bnx2x *bp)
9256 {
9257 	int port = BP_PORT(bp);
9258 
9259 	/* Disable sending PTP packets to host */
9260 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9261 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9262 
9263 	/* Reset PTP event detection rules */
9264 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9265 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9266 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9267 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9268 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9269 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9270 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9271 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9272 
9273 	/* Disable the PTP feature */
9274 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9275 	       NIG_REG_P0_PTP_EN, 0x0);
9276 }
9277 
9278 /* Called during unload, to stop PTP-related stuff */
9279 static void bnx2x_stop_ptp(struct bnx2x *bp)
9280 {
9281 	/* Cancel PTP work queue. Should be done after the Tx queues are
9282 	 * drained to prevent additional scheduling.
9283 	 */
9284 	cancel_work_sync(&bp->ptp_task);
9285 
9286 	if (bp->ptp_tx_skb) {
9287 		dev_kfree_skb_any(bp->ptp_tx_skb);
9288 		bp->ptp_tx_skb = NULL;
9289 	}
9290 
9291 	/* Disable PTP in HW */
9292 	bnx2x_disable_ptp(bp);
9293 
9294 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9295 }
9296 
9297 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9298 {
9299 	int port = BP_PORT(bp);
9300 	int i, rc = 0;
9301 	u8 cos;
9302 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9303 	u32 reset_code;
9304 
9305 	/* Wait until tx fastpath tasks complete */
9306 	for_each_tx_queue(bp, i) {
9307 		struct bnx2x_fastpath *fp = &bp->fp[i];
9308 
9309 		for_each_cos_in_tx_queue(fp, cos)
9310 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9311 #ifdef BNX2X_STOP_ON_ERROR
9312 		if (rc)
9313 			return;
9314 #endif
9315 	}
9316 
9317 	/* Give HW time to discard old tx messages */
9318 	usleep_range(1000, 2000);
9319 
9320 	/* Clean all ETH MACs */
9321 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9322 				false);
9323 	if (rc < 0)
9324 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9325 
9326 	/* Clean up UC list  */
9327 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9328 				true);
9329 	if (rc < 0)
9330 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9331 			  rc);
9332 
9333 	/* Disable LLH */
9334 	if (!CHIP_IS_E1(bp))
9335 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9336 
9337 	/* Set "drop all" (stop Rx).
9338 	 * We need to take a netif_addr_lock() here in order to prevent
9339 	 * a race between the completion code and this code.
9340 	 */
9341 	netif_addr_lock_bh(bp->dev);
9342 	/* Schedule the rx_mode command */
9343 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9344 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9345 	else if (bp->slowpath)
9346 		bnx2x_set_storm_rx_mode(bp);
9347 
9348 	/* Cleanup multicast configuration */
9349 	rparam.mcast_obj = &bp->mcast_obj;
9350 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9351 	if (rc < 0)
9352 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9353 
9354 	netif_addr_unlock_bh(bp->dev);
9355 
9356 	bnx2x_iov_chip_cleanup(bp);
9357 
9358 	/*
9359 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9360 	 * this function should perform FUNC, PORT or COMMON HW
9361 	 * reset.
9362 	 */
9363 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9364 
9365 	/*
9366 	 * (assumption: No Attention from MCP at this stage)
9367 	 * PMF probably in the middle of TX disable/enable transaction
9368 	 */
9369 	rc = bnx2x_func_wait_started(bp);
9370 	if (rc) {
9371 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9372 #ifdef BNX2X_STOP_ON_ERROR
9373 		return;
9374 #endif
9375 	}
9376 
9377 	/* Close multi and leading connections
9378 	 * Completions for ramrods are collected in a synchronous way
9379 	 */
9380 	for_each_eth_queue(bp, i)
9381 		if (bnx2x_stop_queue(bp, i))
9382 #ifdef BNX2X_STOP_ON_ERROR
9383 			return;
9384 #else
9385 			goto unload_error;
9386 #endif
9387 
9388 	if (CNIC_LOADED(bp)) {
9389 		for_each_cnic_queue(bp, i)
9390 			if (bnx2x_stop_queue(bp, i))
9391 #ifdef BNX2X_STOP_ON_ERROR
9392 				return;
9393 #else
9394 				goto unload_error;
9395 #endif
9396 	}
9397 
9398 	/* If SP settings didn't get completed so far - something
9399 	 * very wrong has happen.
9400 	 */
9401 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9402 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9403 
9404 #ifndef BNX2X_STOP_ON_ERROR
9405 unload_error:
9406 #endif
9407 	rc = bnx2x_func_stop(bp);
9408 	if (rc) {
9409 		BNX2X_ERR("Function stop failed!\n");
9410 #ifdef BNX2X_STOP_ON_ERROR
9411 		return;
9412 #endif
9413 	}
9414 
9415 	/* stop_ptp should be after the Tx queues are drained to prevent
9416 	 * scheduling to the cancelled PTP work queue. It should also be after
9417 	 * function stop ramrod is sent, since as part of this ramrod FW access
9418 	 * PTP registers.
9419 	 */
9420 	if (bp->flags & PTP_SUPPORTED)
9421 		bnx2x_stop_ptp(bp);
9422 
9423 	/* Disable HW interrupts, NAPI */
9424 	bnx2x_netif_stop(bp, 1);
9425 	/* Delete all NAPI objects */
9426 	bnx2x_del_all_napi(bp);
9427 	if (CNIC_LOADED(bp))
9428 		bnx2x_del_all_napi_cnic(bp);
9429 
9430 	/* Release IRQs */
9431 	bnx2x_free_irq(bp);
9432 
9433 	/* Reset the chip, unless PCI function is offline. If we reach this
9434 	 * point following a PCI error handling, it means device is really
9435 	 * in a bad state and we're about to remove it, so reset the chip
9436 	 * is not a good idea.
9437 	 */
9438 	if (!pci_channel_offline(bp->pdev)) {
9439 		rc = bnx2x_reset_hw(bp, reset_code);
9440 		if (rc)
9441 			BNX2X_ERR("HW_RESET failed\n");
9442 	}
9443 
9444 	/* Report UNLOAD_DONE to MCP */
9445 	bnx2x_send_unload_done(bp, keep_link);
9446 }
9447 
9448 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9449 {
9450 	u32 val;
9451 
9452 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9453 
9454 	if (CHIP_IS_E1(bp)) {
9455 		int port = BP_PORT(bp);
9456 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9457 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9458 
9459 		val = REG_RD(bp, addr);
9460 		val &= ~(0x300);
9461 		REG_WR(bp, addr, val);
9462 	} else {
9463 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9464 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9465 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9466 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9467 	}
9468 }
9469 
9470 /* Close gates #2, #3 and #4: */
9471 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9472 {
9473 	u32 val;
9474 
9475 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9476 	if (!CHIP_IS_E1(bp)) {
9477 		/* #4 */
9478 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9479 		/* #2 */
9480 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9481 	}
9482 
9483 	/* #3 */
9484 	if (CHIP_IS_E1x(bp)) {
9485 		/* Prevent interrupts from HC on both ports */
9486 		val = REG_RD(bp, HC_REG_CONFIG_1);
9487 		REG_WR(bp, HC_REG_CONFIG_1,
9488 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9489 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9490 
9491 		val = REG_RD(bp, HC_REG_CONFIG_0);
9492 		REG_WR(bp, HC_REG_CONFIG_0,
9493 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9494 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9495 	} else {
9496 		/* Prevent incoming interrupts in IGU */
9497 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9498 
9499 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9500 		       (!close) ?
9501 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9502 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9503 	}
9504 
9505 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9506 		close ? "closing" : "opening");
9507 	mmiowb();
9508 }
9509 
9510 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9511 
9512 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9513 {
9514 	/* Do some magic... */
9515 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9516 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9517 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9518 }
9519 
9520 /**
9521  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9522  *
9523  * @bp:		driver handle
9524  * @magic_val:	old value of the `magic' bit.
9525  */
9526 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9527 {
9528 	/* Restore the `magic' bit value... */
9529 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9530 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9531 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9532 }
9533 
9534 /**
9535  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9536  *
9537  * @bp:		driver handle
9538  * @magic_val:	old value of 'magic' bit.
9539  *
9540  * Takes care of CLP configurations.
9541  */
9542 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9543 {
9544 	u32 shmem;
9545 	u32 validity_offset;
9546 
9547 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9548 
9549 	/* Set `magic' bit in order to save MF config */
9550 	if (!CHIP_IS_E1(bp))
9551 		bnx2x_clp_reset_prep(bp, magic_val);
9552 
9553 	/* Get shmem offset */
9554 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9555 	validity_offset =
9556 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9557 
9558 	/* Clear validity map flags */
9559 	if (shmem > 0)
9560 		REG_WR(bp, shmem + validity_offset, 0);
9561 }
9562 
9563 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9564 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9565 
9566 /**
9567  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9568  *
9569  * @bp:	driver handle
9570  */
9571 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9572 {
9573 	/* special handling for emulation and FPGA,
9574 	   wait 10 times longer */
9575 	if (CHIP_REV_IS_SLOW(bp))
9576 		msleep(MCP_ONE_TIMEOUT*10);
9577 	else
9578 		msleep(MCP_ONE_TIMEOUT);
9579 }
9580 
9581 /*
9582  * initializes bp->common.shmem_base and waits for validity signature to appear
9583  */
9584 static int bnx2x_init_shmem(struct bnx2x *bp)
9585 {
9586 	int cnt = 0;
9587 	u32 val = 0;
9588 
9589 	do {
9590 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9591 
9592 		/* If we read all 0xFFs, means we are in PCI error state and
9593 		 * should bail out to avoid crashes on adapter's FW reads.
9594 		 */
9595 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9596 			bp->flags |= NO_MCP_FLAG;
9597 			return -ENODEV;
9598 		}
9599 
9600 		if (bp->common.shmem_base) {
9601 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9602 			if (val & SHR_MEM_VALIDITY_MB)
9603 				return 0;
9604 		}
9605 
9606 		bnx2x_mcp_wait_one(bp);
9607 
9608 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9609 
9610 	BNX2X_ERR("BAD MCP validity signature\n");
9611 
9612 	return -ENODEV;
9613 }
9614 
9615 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9616 {
9617 	int rc = bnx2x_init_shmem(bp);
9618 
9619 	/* Restore the `magic' bit value */
9620 	if (!CHIP_IS_E1(bp))
9621 		bnx2x_clp_reset_done(bp, magic_val);
9622 
9623 	return rc;
9624 }
9625 
9626 static void bnx2x_pxp_prep(struct bnx2x *bp)
9627 {
9628 	if (!CHIP_IS_E1(bp)) {
9629 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9630 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9631 		mmiowb();
9632 	}
9633 }
9634 
9635 /*
9636  * Reset the whole chip except for:
9637  *      - PCIE core
9638  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9639  *              one reset bit)
9640  *      - IGU
9641  *      - MISC (including AEU)
9642  *      - GRC
9643  *      - RBCN, RBCP
9644  */
9645 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9646 {
9647 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9648 	u32 global_bits2, stay_reset2;
9649 
9650 	/*
9651 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9652 	 * (per chip) blocks.
9653 	 */
9654 	global_bits2 =
9655 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9656 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9657 
9658 	/* Don't reset the following blocks.
9659 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9660 	 *            reset, as in 4 port device they might still be owned
9661 	 *            by the MCP (there is only one leader per path).
9662 	 */
9663 	not_reset_mask1 =
9664 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9665 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9666 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9667 
9668 	not_reset_mask2 =
9669 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9670 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9671 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9672 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9673 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9674 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9675 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9676 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9677 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9678 		MISC_REGISTERS_RESET_REG_2_PGLC |
9679 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9680 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9681 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9682 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9683 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9684 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9685 
9686 	/*
9687 	 * Keep the following blocks in reset:
9688 	 *  - all xxMACs are handled by the bnx2x_link code.
9689 	 */
9690 	stay_reset2 =
9691 		MISC_REGISTERS_RESET_REG_2_XMAC |
9692 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9693 
9694 	/* Full reset masks according to the chip */
9695 	reset_mask1 = 0xffffffff;
9696 
9697 	if (CHIP_IS_E1(bp))
9698 		reset_mask2 = 0xffff;
9699 	else if (CHIP_IS_E1H(bp))
9700 		reset_mask2 = 0x1ffff;
9701 	else if (CHIP_IS_E2(bp))
9702 		reset_mask2 = 0xfffff;
9703 	else /* CHIP_IS_E3 */
9704 		reset_mask2 = 0x3ffffff;
9705 
9706 	/* Don't reset global blocks unless we need to */
9707 	if (!global)
9708 		reset_mask2 &= ~global_bits2;
9709 
9710 	/*
9711 	 * In case of attention in the QM, we need to reset PXP
9712 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9713 	 * because otherwise QM reset would release 'close the gates' shortly
9714 	 * before resetting the PXP, then the PSWRQ would send a write
9715 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9716 	 * read the payload data from PSWWR, but PSWWR would not
9717 	 * respond. The write queue in PGLUE would stuck, dmae commands
9718 	 * would not return. Therefore it's important to reset the second
9719 	 * reset register (containing the
9720 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9721 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9722 	 * bit).
9723 	 */
9724 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9725 	       reset_mask2 & (~not_reset_mask2));
9726 
9727 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9728 	       reset_mask1 & (~not_reset_mask1));
9729 
9730 	barrier();
9731 	mmiowb();
9732 
9733 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9734 	       reset_mask2 & (~stay_reset2));
9735 
9736 	barrier();
9737 	mmiowb();
9738 
9739 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9740 	mmiowb();
9741 }
9742 
9743 /**
9744  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9745  * It should get cleared in no more than 1s.
9746  *
9747  * @bp:	driver handle
9748  *
9749  * It should get cleared in no more than 1s. Returns 0 if
9750  * pending writes bit gets cleared.
9751  */
9752 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9753 {
9754 	u32 cnt = 1000;
9755 	u32 pend_bits = 0;
9756 
9757 	do {
9758 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9759 
9760 		if (pend_bits == 0)
9761 			break;
9762 
9763 		usleep_range(1000, 2000);
9764 	} while (cnt-- > 0);
9765 
9766 	if (cnt <= 0) {
9767 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9768 			  pend_bits);
9769 		return -EBUSY;
9770 	}
9771 
9772 	return 0;
9773 }
9774 
9775 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9776 {
9777 	int cnt = 1000;
9778 	u32 val = 0;
9779 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9780 	u32 tags_63_32 = 0;
9781 
9782 	/* Empty the Tetris buffer, wait for 1s */
9783 	do {
9784 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9785 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9786 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9787 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9788 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9789 		if (CHIP_IS_E3(bp))
9790 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9791 
9792 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9793 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9794 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9795 		    (pgl_exp_rom2 == 0xffffffff) &&
9796 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9797 			break;
9798 		usleep_range(1000, 2000);
9799 	} while (cnt-- > 0);
9800 
9801 	if (cnt <= 0) {
9802 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9803 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9804 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9805 			  pgl_exp_rom2);
9806 		return -EAGAIN;
9807 	}
9808 
9809 	barrier();
9810 
9811 	/* Close gates #2, #3 and #4 */
9812 	bnx2x_set_234_gates(bp, true);
9813 
9814 	/* Poll for IGU VQs for 57712 and newer chips */
9815 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9816 		return -EAGAIN;
9817 
9818 	/* TBD: Indicate that "process kill" is in progress to MCP */
9819 
9820 	/* Clear "unprepared" bit */
9821 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9822 	barrier();
9823 
9824 	/* Make sure all is written to the chip before the reset */
9825 	mmiowb();
9826 
9827 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9828 	 * PSWHST, GRC and PSWRD Tetris buffer.
9829 	 */
9830 	usleep_range(1000, 2000);
9831 
9832 	/* Prepare to chip reset: */
9833 	/* MCP */
9834 	if (global)
9835 		bnx2x_reset_mcp_prep(bp, &val);
9836 
9837 	/* PXP */
9838 	bnx2x_pxp_prep(bp);
9839 	barrier();
9840 
9841 	/* reset the chip */
9842 	bnx2x_process_kill_chip_reset(bp, global);
9843 	barrier();
9844 
9845 	/* clear errors in PGB */
9846 	if (!CHIP_IS_E1x(bp))
9847 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9848 
9849 	/* Recover after reset: */
9850 	/* MCP */
9851 	if (global && bnx2x_reset_mcp_comp(bp, val))
9852 		return -EAGAIN;
9853 
9854 	/* TBD: Add resetting the NO_MCP mode DB here */
9855 
9856 	/* Open the gates #2, #3 and #4 */
9857 	bnx2x_set_234_gates(bp, false);
9858 
9859 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9860 	 * reset state, re-enable attentions. */
9861 
9862 	return 0;
9863 }
9864 
9865 static int bnx2x_leader_reset(struct bnx2x *bp)
9866 {
9867 	int rc = 0;
9868 	bool global = bnx2x_reset_is_global(bp);
9869 	u32 load_code;
9870 
9871 	/* if not going to reset MCP - load "fake" driver to reset HW while
9872 	 * driver is owner of the HW
9873 	 */
9874 	if (!global && !BP_NOMCP(bp)) {
9875 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9876 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9877 		if (!load_code) {
9878 			BNX2X_ERR("MCP response failure, aborting\n");
9879 			rc = -EAGAIN;
9880 			goto exit_leader_reset;
9881 		}
9882 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9883 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9884 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9885 			rc = -EAGAIN;
9886 			goto exit_leader_reset2;
9887 		}
9888 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9889 		if (!load_code) {
9890 			BNX2X_ERR("MCP response failure, aborting\n");
9891 			rc = -EAGAIN;
9892 			goto exit_leader_reset2;
9893 		}
9894 	}
9895 
9896 	/* Try to recover after the failure */
9897 	if (bnx2x_process_kill(bp, global)) {
9898 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9899 			  BP_PATH(bp));
9900 		rc = -EAGAIN;
9901 		goto exit_leader_reset2;
9902 	}
9903 
9904 	/*
9905 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9906 	 * state.
9907 	 */
9908 	bnx2x_set_reset_done(bp);
9909 	if (global)
9910 		bnx2x_clear_reset_global(bp);
9911 
9912 exit_leader_reset2:
9913 	/* unload "fake driver" if it was loaded */
9914 	if (!global && !BP_NOMCP(bp)) {
9915 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9916 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9917 	}
9918 exit_leader_reset:
9919 	bp->is_leader = 0;
9920 	bnx2x_release_leader_lock(bp);
9921 	smp_mb();
9922 	return rc;
9923 }
9924 
9925 static void bnx2x_recovery_failed(struct bnx2x *bp)
9926 {
9927 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9928 
9929 	/* Disconnect this device */
9930 	netif_device_detach(bp->dev);
9931 
9932 	/*
9933 	 * Block ifup for all function on this engine until "process kill"
9934 	 * or power cycle.
9935 	 */
9936 	bnx2x_set_reset_in_progress(bp);
9937 
9938 	/* Shut down the power */
9939 	bnx2x_set_power_state(bp, PCI_D3hot);
9940 
9941 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9942 
9943 	smp_mb();
9944 }
9945 
9946 /*
9947  * Assumption: runs under rtnl lock. This together with the fact
9948  * that it's called only from bnx2x_sp_rtnl() ensure that it
9949  * will never be called when netif_running(bp->dev) is false.
9950  */
9951 static void bnx2x_parity_recover(struct bnx2x *bp)
9952 {
9953 	bool global = false;
9954 	u32 error_recovered, error_unrecovered;
9955 	bool is_parity;
9956 
9957 	DP(NETIF_MSG_HW, "Handling parity\n");
9958 	while (1) {
9959 		switch (bp->recovery_state) {
9960 		case BNX2X_RECOVERY_INIT:
9961 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9962 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9963 			WARN_ON(!is_parity);
9964 
9965 			/* Try to get a LEADER_LOCK HW lock */
9966 			if (bnx2x_trylock_leader_lock(bp)) {
9967 				bnx2x_set_reset_in_progress(bp);
9968 				/*
9969 				 * Check if there is a global attention and if
9970 				 * there was a global attention, set the global
9971 				 * reset bit.
9972 				 */
9973 
9974 				if (global)
9975 					bnx2x_set_reset_global(bp);
9976 
9977 				bp->is_leader = 1;
9978 			}
9979 
9980 			/* Stop the driver */
9981 			/* If interface has been removed - break */
9982 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9983 				return;
9984 
9985 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9986 
9987 			/* Ensure "is_leader", MCP command sequence and
9988 			 * "recovery_state" update values are seen on other
9989 			 * CPUs.
9990 			 */
9991 			smp_mb();
9992 			break;
9993 
9994 		case BNX2X_RECOVERY_WAIT:
9995 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9996 			if (bp->is_leader) {
9997 				int other_engine = BP_PATH(bp) ? 0 : 1;
9998 				bool other_load_status =
9999 					bnx2x_get_load_status(bp, other_engine);
10000 				bool load_status =
10001 					bnx2x_get_load_status(bp, BP_PATH(bp));
10002 				global = bnx2x_reset_is_global(bp);
10003 
10004 				/*
10005 				 * In case of a parity in a global block, let
10006 				 * the first leader that performs a
10007 				 * leader_reset() reset the global blocks in
10008 				 * order to clear global attentions. Otherwise
10009 				 * the gates will remain closed for that
10010 				 * engine.
10011 				 */
10012 				if (load_status ||
10013 				    (global && other_load_status)) {
10014 					/* Wait until all other functions get
10015 					 * down.
10016 					 */
10017 					schedule_delayed_work(&bp->sp_rtnl_task,
10018 								HZ/10);
10019 					return;
10020 				} else {
10021 					/* If all other functions got down -
10022 					 * try to bring the chip back to
10023 					 * normal. In any case it's an exit
10024 					 * point for a leader.
10025 					 */
10026 					if (bnx2x_leader_reset(bp)) {
10027 						bnx2x_recovery_failed(bp);
10028 						return;
10029 					}
10030 
10031 					/* If we are here, means that the
10032 					 * leader has succeeded and doesn't
10033 					 * want to be a leader any more. Try
10034 					 * to continue as a none-leader.
10035 					 */
10036 					break;
10037 				}
10038 			} else { /* non-leader */
10039 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10040 					/* Try to get a LEADER_LOCK HW lock as
10041 					 * long as a former leader may have
10042 					 * been unloaded by the user or
10043 					 * released a leadership by another
10044 					 * reason.
10045 					 */
10046 					if (bnx2x_trylock_leader_lock(bp)) {
10047 						/* I'm a leader now! Restart a
10048 						 * switch case.
10049 						 */
10050 						bp->is_leader = 1;
10051 						break;
10052 					}
10053 
10054 					schedule_delayed_work(&bp->sp_rtnl_task,
10055 								HZ/10);
10056 					return;
10057 
10058 				} else {
10059 					/*
10060 					 * If there was a global attention, wait
10061 					 * for it to be cleared.
10062 					 */
10063 					if (bnx2x_reset_is_global(bp)) {
10064 						schedule_delayed_work(
10065 							&bp->sp_rtnl_task,
10066 							HZ/10);
10067 						return;
10068 					}
10069 
10070 					error_recovered =
10071 					  bp->eth_stats.recoverable_error;
10072 					error_unrecovered =
10073 					  bp->eth_stats.unrecoverable_error;
10074 					bp->recovery_state =
10075 						BNX2X_RECOVERY_NIC_LOADING;
10076 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10077 						error_unrecovered++;
10078 						netdev_err(bp->dev,
10079 							   "Recovery failed. Power cycle needed\n");
10080 						/* Disconnect this device */
10081 						netif_device_detach(bp->dev);
10082 						/* Shut down the power */
10083 						bnx2x_set_power_state(
10084 							bp, PCI_D3hot);
10085 						smp_mb();
10086 					} else {
10087 						bp->recovery_state =
10088 							BNX2X_RECOVERY_DONE;
10089 						error_recovered++;
10090 						smp_mb();
10091 					}
10092 					bp->eth_stats.recoverable_error =
10093 						error_recovered;
10094 					bp->eth_stats.unrecoverable_error =
10095 						error_unrecovered;
10096 
10097 					return;
10098 				}
10099 			}
10100 		default:
10101 			return;
10102 		}
10103 	}
10104 }
10105 
10106 static int bnx2x_udp_port_update(struct bnx2x *bp)
10107 {
10108 	struct bnx2x_func_switch_update_params *switch_update_params;
10109 	struct bnx2x_func_state_params func_params = {NULL};
10110 	struct bnx2x_udp_tunnel *udp_tunnel;
10111 	u16 vxlan_port = 0, geneve_port = 0;
10112 	int rc;
10113 
10114 	switch_update_params = &func_params.params.switch_update;
10115 
10116 	/* Prepare parameters for function state transitions */
10117 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10118 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10119 
10120 	func_params.f_obj = &bp->func_obj;
10121 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10122 
10123 	/* Function parameters */
10124 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10125 		  &switch_update_params->changes);
10126 
10127 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10128 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10129 		geneve_port = udp_tunnel->dst_port;
10130 		switch_update_params->geneve_dst_port = geneve_port;
10131 	}
10132 
10133 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10134 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10135 		vxlan_port = udp_tunnel->dst_port;
10136 		switch_update_params->vxlan_dst_port = vxlan_port;
10137 	}
10138 
10139 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10140 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10141 		  &switch_update_params->changes);
10142 
10143 	rc = bnx2x_func_state_change(bp, &func_params);
10144 	if (rc)
10145 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10146 			  vxlan_port, geneve_port, rc);
10147 	else
10148 		DP(BNX2X_MSG_SP,
10149 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10150 		   vxlan_port, geneve_port);
10151 
10152 	return rc;
10153 }
10154 
10155 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10156 				 enum bnx2x_udp_port_type type)
10157 {
10158 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10159 
10160 	if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10161 		return;
10162 
10163 	if (udp_port->count && udp_port->dst_port == port) {
10164 		udp_port->count++;
10165 		return;
10166 	}
10167 
10168 	if (udp_port->count) {
10169 		DP(BNX2X_MSG_SP,
10170 		   "UDP tunnel [%d] -  destination port limit reached\n",
10171 		   type);
10172 		return;
10173 	}
10174 
10175 	udp_port->dst_port = port;
10176 	udp_port->count = 1;
10177 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10178 }
10179 
10180 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10181 				 enum bnx2x_udp_port_type type)
10182 {
10183 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10184 
10185 	if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10186 		return;
10187 
10188 	if (!udp_port->count || udp_port->dst_port != port) {
10189 		DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10190 		   type);
10191 		return;
10192 	}
10193 
10194 	/* Remove reference, and make certain it's no longer in use */
10195 	udp_port->count--;
10196 	if (udp_port->count)
10197 		return;
10198 	udp_port->dst_port = 0;
10199 
10200 	if (netif_running(bp->dev))
10201 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10202 	else
10203 		DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10204 		   type, port);
10205 }
10206 
10207 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10208 				 struct udp_tunnel_info *ti)
10209 {
10210 	struct bnx2x *bp = netdev_priv(netdev);
10211 	u16 t_port = ntohs(ti->port);
10212 
10213 	switch (ti->type) {
10214 	case UDP_TUNNEL_TYPE_VXLAN:
10215 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10216 		break;
10217 	case UDP_TUNNEL_TYPE_GENEVE:
10218 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10219 		break;
10220 	default:
10221 		break;
10222 	}
10223 }
10224 
10225 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10226 				 struct udp_tunnel_info *ti)
10227 {
10228 	struct bnx2x *bp = netdev_priv(netdev);
10229 	u16 t_port = ntohs(ti->port);
10230 
10231 	switch (ti->type) {
10232 	case UDP_TUNNEL_TYPE_VXLAN:
10233 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10234 		break;
10235 	case UDP_TUNNEL_TYPE_GENEVE:
10236 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10237 		break;
10238 	default:
10239 		break;
10240 	}
10241 }
10242 
10243 static int bnx2x_close(struct net_device *dev);
10244 
10245 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10246  * scheduled on a general queue in order to prevent a dead lock.
10247  */
10248 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10249 {
10250 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10251 
10252 	rtnl_lock();
10253 
10254 	if (!netif_running(bp->dev)) {
10255 		rtnl_unlock();
10256 		return;
10257 	}
10258 
10259 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10260 #ifdef BNX2X_STOP_ON_ERROR
10261 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10262 			  "you will need to reboot when done\n");
10263 		goto sp_rtnl_not_reset;
10264 #endif
10265 		/*
10266 		 * Clear all pending SP commands as we are going to reset the
10267 		 * function anyway.
10268 		 */
10269 		bp->sp_rtnl_state = 0;
10270 		smp_mb();
10271 
10272 		bnx2x_parity_recover(bp);
10273 
10274 		rtnl_unlock();
10275 		return;
10276 	}
10277 
10278 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10279 #ifdef BNX2X_STOP_ON_ERROR
10280 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10281 			  "you will need to reboot when done\n");
10282 		goto sp_rtnl_not_reset;
10283 #endif
10284 
10285 		/*
10286 		 * Clear all pending SP commands as we are going to reset the
10287 		 * function anyway.
10288 		 */
10289 		bp->sp_rtnl_state = 0;
10290 		smp_mb();
10291 
10292 		/* Immediately indicate link as down */
10293 		bp->link_vars.link_up = 0;
10294 		bp->force_link_down = true;
10295 		netif_carrier_off(bp->dev);
10296 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10297 
10298 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10299 		/* When ret value shows failure of allocation failure,
10300 		 * the nic is rebooted again. If open still fails, a error
10301 		 * message to notify the user.
10302 		 */
10303 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10304 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10305 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10306 				BNX2X_ERR("Open the NIC fails again!\n");
10307 		}
10308 		rtnl_unlock();
10309 		return;
10310 	}
10311 #ifdef BNX2X_STOP_ON_ERROR
10312 sp_rtnl_not_reset:
10313 #endif
10314 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10315 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10316 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10317 		bnx2x_after_function_update(bp);
10318 	/*
10319 	 * in case of fan failure we need to reset id if the "stop on error"
10320 	 * debug flag is set, since we trying to prevent permanent overheating
10321 	 * damage
10322 	 */
10323 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10324 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10325 		netif_device_detach(bp->dev);
10326 		bnx2x_close(bp->dev);
10327 		rtnl_unlock();
10328 		return;
10329 	}
10330 
10331 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10332 		DP(BNX2X_MSG_SP,
10333 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10334 		bnx2x_vfpf_set_mcast(bp->dev);
10335 	}
10336 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10337 			       &bp->sp_rtnl_state)){
10338 		if (netif_carrier_ok(bp->dev)) {
10339 			bnx2x_tx_disable(bp);
10340 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10341 		}
10342 	}
10343 
10344 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10345 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10346 		bnx2x_set_rx_mode_inner(bp);
10347 	}
10348 
10349 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10350 			       &bp->sp_rtnl_state))
10351 		bnx2x_pf_set_vfs_vlan(bp);
10352 
10353 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10354 		bnx2x_dcbx_stop_hw_tx(bp);
10355 		bnx2x_dcbx_resume_hw_tx(bp);
10356 	}
10357 
10358 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10359 			       &bp->sp_rtnl_state))
10360 		bnx2x_update_mng_version(bp);
10361 
10362 	if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10363 			       &bp->sp_rtnl_state)) {
10364 		if (bnx2x_udp_port_update(bp)) {
10365 			/* On error, forget configuration */
10366 			memset(bp->udp_tunnel_ports, 0,
10367 			       sizeof(struct bnx2x_udp_tunnel) *
10368 			       BNX2X_UDP_PORT_MAX);
10369 		} else {
10370 			/* Since we don't store additional port information,
10371 			 * if no ports are configured for any feature ask for
10372 			 * information about currently configured ports.
10373 			 */
10374 			if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10375 			    !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10376 				udp_tunnel_get_rx_info(bp->dev);
10377 		}
10378 	}
10379 
10380 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10381 	 * can be called from other contexts as well)
10382 	 */
10383 	rtnl_unlock();
10384 
10385 	/* enable SR-IOV if applicable */
10386 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10387 					       &bp->sp_rtnl_state)) {
10388 		bnx2x_disable_sriov(bp);
10389 		bnx2x_enable_sriov(bp);
10390 	}
10391 }
10392 
10393 static void bnx2x_period_task(struct work_struct *work)
10394 {
10395 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10396 
10397 	if (!netif_running(bp->dev))
10398 		goto period_task_exit;
10399 
10400 	if (CHIP_REV_IS_SLOW(bp)) {
10401 		BNX2X_ERR("period task called on emulation, ignoring\n");
10402 		goto period_task_exit;
10403 	}
10404 
10405 	bnx2x_acquire_phy_lock(bp);
10406 	/*
10407 	 * The barrier is needed to ensure the ordering between the writing to
10408 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10409 	 * the reading here.
10410 	 */
10411 	smp_mb();
10412 	if (bp->port.pmf) {
10413 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10414 
10415 		/* Re-queue task in 1 sec */
10416 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10417 	}
10418 
10419 	bnx2x_release_phy_lock(bp);
10420 period_task_exit:
10421 	return;
10422 }
10423 
10424 /*
10425  * Init service functions
10426  */
10427 
10428 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10429 {
10430 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10431 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10432 	return base + (BP_ABS_FUNC(bp)) * stride;
10433 }
10434 
10435 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10436 					 u8 port, u32 reset_reg,
10437 					 struct bnx2x_mac_vals *vals)
10438 {
10439 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10440 	u32 base_addr;
10441 
10442 	if (!(mask & reset_reg))
10443 		return false;
10444 
10445 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10446 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10447 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10448 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10449 	REG_WR(bp, vals->umac_addr[port], 0);
10450 
10451 	return true;
10452 }
10453 
10454 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10455 					struct bnx2x_mac_vals *vals)
10456 {
10457 	u32 val, base_addr, offset, mask, reset_reg;
10458 	bool mac_stopped = false;
10459 	u8 port = BP_PORT(bp);
10460 
10461 	/* reset addresses as they also mark which values were changed */
10462 	memset(vals, 0, sizeof(*vals));
10463 
10464 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10465 
10466 	if (!CHIP_IS_E3(bp)) {
10467 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10468 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10469 		if ((mask & reset_reg) && val) {
10470 			u32 wb_data[2];
10471 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10472 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10473 						: NIG_REG_INGRESS_BMAC0_MEM;
10474 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10475 						: BIGMAC_REGISTER_BMAC_CONTROL;
10476 
10477 			/*
10478 			 * use rd/wr since we cannot use dmae. This is safe
10479 			 * since MCP won't access the bus due to the request
10480 			 * to unload, and no function on the path can be
10481 			 * loaded at this time.
10482 			 */
10483 			wb_data[0] = REG_RD(bp, base_addr + offset);
10484 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10485 			vals->bmac_addr = base_addr + offset;
10486 			vals->bmac_val[0] = wb_data[0];
10487 			vals->bmac_val[1] = wb_data[1];
10488 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10489 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10490 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10491 		}
10492 		BNX2X_DEV_INFO("Disable emac Rx\n");
10493 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10494 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10495 		REG_WR(bp, vals->emac_addr, 0);
10496 		mac_stopped = true;
10497 	} else {
10498 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10499 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10500 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10501 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10502 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10503 			       val & ~(1 << 1));
10504 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10505 			       val | (1 << 1));
10506 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10507 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10508 			REG_WR(bp, vals->xmac_addr, 0);
10509 			mac_stopped = true;
10510 		}
10511 
10512 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10513 							    reset_reg, vals);
10514 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10515 							    reset_reg, vals);
10516 	}
10517 
10518 	if (mac_stopped)
10519 		msleep(20);
10520 }
10521 
10522 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10523 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10524 					0x1848 + ((f) << 4))
10525 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10526 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10527 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10528 
10529 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10530 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10531 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10532 
10533 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10534 {
10535 	/* UNDI marks its presence in DORQ -
10536 	 * it initializes CID offset for normal bell to 0x7
10537 	 */
10538 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10539 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10540 		return false;
10541 
10542 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10543 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10544 		return true;
10545 	}
10546 
10547 	return false;
10548 }
10549 
10550 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10551 {
10552 	u16 rcq, bd;
10553 	u32 addr, tmp_reg;
10554 
10555 	if (BP_FUNC(bp) < 2)
10556 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10557 	else
10558 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10559 
10560 	tmp_reg = REG_RD(bp, addr);
10561 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10562 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10563 
10564 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10565 	REG_WR(bp, addr, tmp_reg);
10566 
10567 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10568 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10569 }
10570 
10571 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10572 {
10573 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10574 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10575 	if (!rc) {
10576 		BNX2X_ERR("MCP response failure, aborting\n");
10577 		return -EBUSY;
10578 	}
10579 
10580 	return 0;
10581 }
10582 
10583 static struct bnx2x_prev_path_list *
10584 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10585 {
10586 	struct bnx2x_prev_path_list *tmp_list;
10587 
10588 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10589 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10590 		    bp->pdev->bus->number == tmp_list->bus &&
10591 		    BP_PATH(bp) == tmp_list->path)
10592 			return tmp_list;
10593 
10594 	return NULL;
10595 }
10596 
10597 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10598 {
10599 	struct bnx2x_prev_path_list *tmp_list;
10600 	int rc;
10601 
10602 	rc = down_interruptible(&bnx2x_prev_sem);
10603 	if (rc) {
10604 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10605 		return rc;
10606 	}
10607 
10608 	tmp_list = bnx2x_prev_path_get_entry(bp);
10609 	if (tmp_list) {
10610 		tmp_list->aer = 1;
10611 		rc = 0;
10612 	} else {
10613 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10614 			  BP_PATH(bp));
10615 	}
10616 
10617 	up(&bnx2x_prev_sem);
10618 
10619 	return rc;
10620 }
10621 
10622 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10623 {
10624 	struct bnx2x_prev_path_list *tmp_list;
10625 	bool rc = false;
10626 
10627 	if (down_trylock(&bnx2x_prev_sem))
10628 		return false;
10629 
10630 	tmp_list = bnx2x_prev_path_get_entry(bp);
10631 	if (tmp_list) {
10632 		if (tmp_list->aer) {
10633 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10634 			   BP_PATH(bp));
10635 		} else {
10636 			rc = true;
10637 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10638 				       BP_PATH(bp));
10639 		}
10640 	}
10641 
10642 	up(&bnx2x_prev_sem);
10643 
10644 	return rc;
10645 }
10646 
10647 bool bnx2x_port_after_undi(struct bnx2x *bp)
10648 {
10649 	struct bnx2x_prev_path_list *entry;
10650 	bool val;
10651 
10652 	down(&bnx2x_prev_sem);
10653 
10654 	entry = bnx2x_prev_path_get_entry(bp);
10655 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10656 
10657 	up(&bnx2x_prev_sem);
10658 
10659 	return val;
10660 }
10661 
10662 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10663 {
10664 	struct bnx2x_prev_path_list *tmp_list;
10665 	int rc;
10666 
10667 	rc = down_interruptible(&bnx2x_prev_sem);
10668 	if (rc) {
10669 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10670 		return rc;
10671 	}
10672 
10673 	/* Check whether the entry for this path already exists */
10674 	tmp_list = bnx2x_prev_path_get_entry(bp);
10675 	if (tmp_list) {
10676 		if (!tmp_list->aer) {
10677 			BNX2X_ERR("Re-Marking the path.\n");
10678 		} else {
10679 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10680 			   BP_PATH(bp));
10681 			tmp_list->aer = 0;
10682 		}
10683 		up(&bnx2x_prev_sem);
10684 		return 0;
10685 	}
10686 	up(&bnx2x_prev_sem);
10687 
10688 	/* Create an entry for this path and add it */
10689 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10690 	if (!tmp_list) {
10691 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10692 		return -ENOMEM;
10693 	}
10694 
10695 	tmp_list->bus = bp->pdev->bus->number;
10696 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10697 	tmp_list->path = BP_PATH(bp);
10698 	tmp_list->aer = 0;
10699 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10700 
10701 	rc = down_interruptible(&bnx2x_prev_sem);
10702 	if (rc) {
10703 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10704 		kfree(tmp_list);
10705 	} else {
10706 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10707 		   BP_PATH(bp));
10708 		list_add(&tmp_list->list, &bnx2x_prev_list);
10709 		up(&bnx2x_prev_sem);
10710 	}
10711 
10712 	return rc;
10713 }
10714 
10715 static int bnx2x_do_flr(struct bnx2x *bp)
10716 {
10717 	struct pci_dev *dev = bp->pdev;
10718 
10719 	if (CHIP_IS_E1x(bp)) {
10720 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10721 		return -EINVAL;
10722 	}
10723 
10724 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10725 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10726 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10727 			  bp->common.bc_ver);
10728 		return -EINVAL;
10729 	}
10730 
10731 	if (!pci_wait_for_pending_transaction(dev))
10732 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10733 
10734 	BNX2X_DEV_INFO("Initiating FLR\n");
10735 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10736 
10737 	return 0;
10738 }
10739 
10740 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10741 {
10742 	int rc;
10743 
10744 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10745 
10746 	/* Test if previous unload process was already finished for this path */
10747 	if (bnx2x_prev_is_path_marked(bp))
10748 		return bnx2x_prev_mcp_done(bp);
10749 
10750 	BNX2X_DEV_INFO("Path is unmarked\n");
10751 
10752 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10753 	if (bnx2x_prev_is_after_undi(bp))
10754 		goto out;
10755 
10756 	/* If function has FLR capabilities, and existing FW version matches
10757 	 * the one required, then FLR will be sufficient to clean any residue
10758 	 * left by previous driver
10759 	 */
10760 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10761 
10762 	if (!rc) {
10763 		/* fw version is good */
10764 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10765 		rc = bnx2x_do_flr(bp);
10766 	}
10767 
10768 	if (!rc) {
10769 		/* FLR was performed */
10770 		BNX2X_DEV_INFO("FLR successful\n");
10771 		return 0;
10772 	}
10773 
10774 	BNX2X_DEV_INFO("Could not FLR\n");
10775 
10776 out:
10777 	/* Close the MCP request, return failure*/
10778 	rc = bnx2x_prev_mcp_done(bp);
10779 	if (!rc)
10780 		rc = BNX2X_PREV_WAIT_NEEDED;
10781 
10782 	return rc;
10783 }
10784 
10785 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10786 {
10787 	u32 reset_reg, tmp_reg = 0, rc;
10788 	bool prev_undi = false;
10789 	struct bnx2x_mac_vals mac_vals;
10790 
10791 	/* It is possible a previous function received 'common' answer,
10792 	 * but hasn't loaded yet, therefore creating a scenario of
10793 	 * multiple functions receiving 'common' on the same path.
10794 	 */
10795 	BNX2X_DEV_INFO("Common unload Flow\n");
10796 
10797 	memset(&mac_vals, 0, sizeof(mac_vals));
10798 
10799 	if (bnx2x_prev_is_path_marked(bp))
10800 		return bnx2x_prev_mcp_done(bp);
10801 
10802 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10803 
10804 	/* Reset should be performed after BRB is emptied */
10805 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10806 		u32 timer_count = 1000;
10807 
10808 		/* Close the MAC Rx to prevent BRB from filling up */
10809 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10810 
10811 		/* close LLH filters for both ports towards the BRB */
10812 		bnx2x_set_rx_filter(&bp->link_params, 0);
10813 		bp->link_params.port ^= 1;
10814 		bnx2x_set_rx_filter(&bp->link_params, 0);
10815 		bp->link_params.port ^= 1;
10816 
10817 		/* Check if the UNDI driver was previously loaded */
10818 		if (bnx2x_prev_is_after_undi(bp)) {
10819 			prev_undi = true;
10820 			/* clear the UNDI indication */
10821 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10822 			/* clear possible idle check errors */
10823 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10824 		}
10825 		if (!CHIP_IS_E1x(bp))
10826 			/* block FW from writing to host */
10827 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10828 
10829 		/* wait until BRB is empty */
10830 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10831 		while (timer_count) {
10832 			u32 prev_brb = tmp_reg;
10833 
10834 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10835 			if (!tmp_reg)
10836 				break;
10837 
10838 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10839 
10840 			/* reset timer as long as BRB actually gets emptied */
10841 			if (prev_brb > tmp_reg)
10842 				timer_count = 1000;
10843 			else
10844 				timer_count--;
10845 
10846 			/* If UNDI resides in memory, manually increment it */
10847 			if (prev_undi)
10848 				bnx2x_prev_unload_undi_inc(bp, 1);
10849 
10850 			udelay(10);
10851 		}
10852 
10853 		if (!timer_count)
10854 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10855 	}
10856 
10857 	/* No packets are in the pipeline, path is ready for reset */
10858 	bnx2x_reset_common(bp);
10859 
10860 	if (mac_vals.xmac_addr)
10861 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10862 	if (mac_vals.umac_addr[0])
10863 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10864 	if (mac_vals.umac_addr[1])
10865 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10866 	if (mac_vals.emac_addr)
10867 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10868 	if (mac_vals.bmac_addr) {
10869 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10870 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10871 	}
10872 
10873 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10874 	if (rc) {
10875 		bnx2x_prev_mcp_done(bp);
10876 		return rc;
10877 	}
10878 
10879 	return bnx2x_prev_mcp_done(bp);
10880 }
10881 
10882 static int bnx2x_prev_unload(struct bnx2x *bp)
10883 {
10884 	int time_counter = 10;
10885 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10886 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10887 
10888 	/* clear hw from errors which may have resulted from an interrupted
10889 	 * dmae transaction.
10890 	 */
10891 	bnx2x_clean_pglue_errors(bp);
10892 
10893 	/* Release previously held locks */
10894 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10895 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10896 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10897 
10898 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10899 	if (hw_lock_val) {
10900 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10901 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10902 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10903 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10904 		}
10905 
10906 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10907 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10908 	} else
10909 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10910 
10911 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10912 		BNX2X_DEV_INFO("Release previously held alr\n");
10913 		bnx2x_release_alr(bp);
10914 	}
10915 
10916 	do {
10917 		int aer = 0;
10918 		/* Lock MCP using an unload request */
10919 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10920 		if (!fw) {
10921 			BNX2X_ERR("MCP response failure, aborting\n");
10922 			rc = -EBUSY;
10923 			break;
10924 		}
10925 
10926 		rc = down_interruptible(&bnx2x_prev_sem);
10927 		if (rc) {
10928 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10929 				  rc);
10930 		} else {
10931 			/* If Path is marked by EEH, ignore unload status */
10932 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10933 				 bnx2x_prev_path_get_entry(bp)->aer);
10934 			up(&bnx2x_prev_sem);
10935 		}
10936 
10937 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10938 			rc = bnx2x_prev_unload_common(bp);
10939 			break;
10940 		}
10941 
10942 		/* non-common reply from MCP might require looping */
10943 		rc = bnx2x_prev_unload_uncommon(bp);
10944 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10945 			break;
10946 
10947 		msleep(20);
10948 	} while (--time_counter);
10949 
10950 	if (!time_counter || rc) {
10951 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10952 		rc = -EPROBE_DEFER;
10953 	}
10954 
10955 	/* Mark function if its port was used to boot from SAN */
10956 	if (bnx2x_port_after_undi(bp))
10957 		bp->link_params.feature_config_flags |=
10958 			FEATURE_CONFIG_BOOT_FROM_SAN;
10959 
10960 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10961 
10962 	return rc;
10963 }
10964 
10965 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10966 {
10967 	u32 val, val2, val3, val4, id, boot_mode;
10968 	u16 pmc;
10969 
10970 	/* Get the chip revision id and number. */
10971 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10972 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10973 	id = ((val & 0xffff) << 16);
10974 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10975 	id |= ((val & 0xf) << 12);
10976 
10977 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10978 	 * the configuration space (so we need to reg_rd)
10979 	 */
10980 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10981 	id |= (((val >> 24) & 0xf) << 4);
10982 	val = REG_RD(bp, MISC_REG_BOND_ID);
10983 	id |= (val & 0xf);
10984 	bp->common.chip_id = id;
10985 
10986 	/* force 57811 according to MISC register */
10987 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10988 		if (CHIP_IS_57810(bp))
10989 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10990 				(bp->common.chip_id & 0x0000FFFF);
10991 		else if (CHIP_IS_57810_MF(bp))
10992 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10993 				(bp->common.chip_id & 0x0000FFFF);
10994 		bp->common.chip_id |= 0x1;
10995 	}
10996 
10997 	/* Set doorbell size */
10998 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10999 
11000 	if (!CHIP_IS_E1x(bp)) {
11001 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
11002 		if ((val & 1) == 0)
11003 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
11004 		else
11005 			val = (val >> 1) & 1;
11006 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
11007 						       "2_PORT_MODE");
11008 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
11009 						 CHIP_2_PORT_MODE;
11010 
11011 		if (CHIP_MODE_IS_4_PORT(bp))
11012 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
11013 		else
11014 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
11015 	} else {
11016 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
11017 		bp->pfid = bp->pf_num;			/* 0..7 */
11018 	}
11019 
11020 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
11021 
11022 	bp->link_params.chip_id = bp->common.chip_id;
11023 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
11024 
11025 	val = (REG_RD(bp, 0x2874) & 0x55);
11026 	if ((bp->common.chip_id & 0x1) ||
11027 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11028 		bp->flags |= ONE_PORT_FLAG;
11029 		BNX2X_DEV_INFO("single port device\n");
11030 	}
11031 
11032 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11033 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11034 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11035 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11036 		       bp->common.flash_size, bp->common.flash_size);
11037 
11038 	bnx2x_init_shmem(bp);
11039 
11040 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11041 					MISC_REG_GENERIC_CR_1 :
11042 					MISC_REG_GENERIC_CR_0));
11043 
11044 	bp->link_params.shmem_base = bp->common.shmem_base;
11045 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11046 	if (SHMEM2_RD(bp, size) >
11047 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11048 		bp->link_params.lfa_base =
11049 		REG_RD(bp, bp->common.shmem2_base +
11050 		       (u32)offsetof(struct shmem2_region,
11051 				     lfa_host_addr[BP_PORT(bp)]));
11052 	else
11053 		bp->link_params.lfa_base = 0;
11054 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11055 		       bp->common.shmem_base, bp->common.shmem2_base);
11056 
11057 	if (!bp->common.shmem_base) {
11058 		BNX2X_DEV_INFO("MCP not active\n");
11059 		bp->flags |= NO_MCP_FLAG;
11060 		return;
11061 	}
11062 
11063 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11064 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11065 
11066 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11067 					SHARED_HW_CFG_LED_MODE_MASK) >>
11068 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11069 
11070 	bp->link_params.feature_config_flags = 0;
11071 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11072 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11073 		bp->link_params.feature_config_flags |=
11074 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11075 	else
11076 		bp->link_params.feature_config_flags &=
11077 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11078 
11079 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11080 	bp->common.bc_ver = val;
11081 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11082 	if (val < BNX2X_BC_VER) {
11083 		/* for now only warn
11084 		 * later we might need to enforce this */
11085 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11086 			  BNX2X_BC_VER, val);
11087 	}
11088 	bp->link_params.feature_config_flags |=
11089 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11090 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11091 
11092 	bp->link_params.feature_config_flags |=
11093 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11094 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11095 	bp->link_params.feature_config_flags |=
11096 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11097 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11098 	bp->link_params.feature_config_flags |=
11099 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11100 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11101 
11102 	bp->link_params.feature_config_flags |=
11103 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11104 		FEATURE_CONFIG_MT_SUPPORT : 0;
11105 
11106 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11107 			BC_SUPPORTS_PFC_STATS : 0;
11108 
11109 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11110 			BC_SUPPORTS_FCOE_FEATURES : 0;
11111 
11112 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11113 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11114 
11115 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11116 			BC_SUPPORTS_RMMOD_CMD : 0;
11117 
11118 	boot_mode = SHMEM_RD(bp,
11119 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11120 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11121 	switch (boot_mode) {
11122 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11123 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11124 		break;
11125 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11126 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11127 		break;
11128 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11129 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11130 		break;
11131 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11132 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11133 		break;
11134 	}
11135 
11136 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11137 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11138 
11139 	BNX2X_DEV_INFO("%sWoL capable\n",
11140 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11141 
11142 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11143 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11144 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11145 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11146 
11147 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11148 		 val, val2, val3, val4);
11149 }
11150 
11151 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11152 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11153 
11154 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11155 {
11156 	int pfid = BP_FUNC(bp);
11157 	int igu_sb_id;
11158 	u32 val;
11159 	u8 fid, igu_sb_cnt = 0;
11160 
11161 	bp->igu_base_sb = 0xff;
11162 	if (CHIP_INT_MODE_IS_BC(bp)) {
11163 		int vn = BP_VN(bp);
11164 		igu_sb_cnt = bp->igu_sb_cnt;
11165 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11166 			FP_SB_MAX_E1x;
11167 
11168 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11169 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11170 
11171 		return 0;
11172 	}
11173 
11174 	/* IGU in normal mode - read CAM */
11175 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11176 	     igu_sb_id++) {
11177 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11178 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11179 			continue;
11180 		fid = IGU_FID(val);
11181 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11182 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11183 				continue;
11184 			if (IGU_VEC(val) == 0)
11185 				/* default status block */
11186 				bp->igu_dsb_id = igu_sb_id;
11187 			else {
11188 				if (bp->igu_base_sb == 0xff)
11189 					bp->igu_base_sb = igu_sb_id;
11190 				igu_sb_cnt++;
11191 			}
11192 		}
11193 	}
11194 
11195 #ifdef CONFIG_PCI_MSI
11196 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11197 	 * optional that number of CAM entries will not be equal to the value
11198 	 * advertised in PCI.
11199 	 * Driver should use the minimal value of both as the actual status
11200 	 * block count
11201 	 */
11202 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11203 #endif
11204 
11205 	if (igu_sb_cnt == 0) {
11206 		BNX2X_ERR("CAM configuration error\n");
11207 		return -EINVAL;
11208 	}
11209 
11210 	return 0;
11211 }
11212 
11213 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11214 {
11215 	int cfg_size = 0, idx, port = BP_PORT(bp);
11216 
11217 	/* Aggregation of supported attributes of all external phys */
11218 	bp->port.supported[0] = 0;
11219 	bp->port.supported[1] = 0;
11220 	switch (bp->link_params.num_phys) {
11221 	case 1:
11222 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11223 		cfg_size = 1;
11224 		break;
11225 	case 2:
11226 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11227 		cfg_size = 1;
11228 		break;
11229 	case 3:
11230 		if (bp->link_params.multi_phy_config &
11231 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11232 			bp->port.supported[1] =
11233 				bp->link_params.phy[EXT_PHY1].supported;
11234 			bp->port.supported[0] =
11235 				bp->link_params.phy[EXT_PHY2].supported;
11236 		} else {
11237 			bp->port.supported[0] =
11238 				bp->link_params.phy[EXT_PHY1].supported;
11239 			bp->port.supported[1] =
11240 				bp->link_params.phy[EXT_PHY2].supported;
11241 		}
11242 		cfg_size = 2;
11243 		break;
11244 	}
11245 
11246 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11247 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11248 			   SHMEM_RD(bp,
11249 			   dev_info.port_hw_config[port].external_phy_config),
11250 			   SHMEM_RD(bp,
11251 			   dev_info.port_hw_config[port].external_phy_config2));
11252 			return;
11253 	}
11254 
11255 	if (CHIP_IS_E3(bp))
11256 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11257 	else {
11258 		switch (switch_cfg) {
11259 		case SWITCH_CFG_1G:
11260 			bp->port.phy_addr = REG_RD(
11261 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11262 			break;
11263 		case SWITCH_CFG_10G:
11264 			bp->port.phy_addr = REG_RD(
11265 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11266 			break;
11267 		default:
11268 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11269 				  bp->port.link_config[0]);
11270 			return;
11271 		}
11272 	}
11273 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11274 	/* mask what we support according to speed_cap_mask per configuration */
11275 	for (idx = 0; idx < cfg_size; idx++) {
11276 		if (!(bp->link_params.speed_cap_mask[idx] &
11277 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11278 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11279 
11280 		if (!(bp->link_params.speed_cap_mask[idx] &
11281 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11282 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11283 
11284 		if (!(bp->link_params.speed_cap_mask[idx] &
11285 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11286 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11287 
11288 		if (!(bp->link_params.speed_cap_mask[idx] &
11289 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11290 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11291 
11292 		if (!(bp->link_params.speed_cap_mask[idx] &
11293 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11294 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11295 						     SUPPORTED_1000baseT_Full);
11296 
11297 		if (!(bp->link_params.speed_cap_mask[idx] &
11298 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11299 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11300 
11301 		if (!(bp->link_params.speed_cap_mask[idx] &
11302 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11303 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11304 
11305 		if (!(bp->link_params.speed_cap_mask[idx] &
11306 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11307 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11308 	}
11309 
11310 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11311 		       bp->port.supported[1]);
11312 }
11313 
11314 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11315 {
11316 	u32 link_config, idx, cfg_size = 0;
11317 	bp->port.advertising[0] = 0;
11318 	bp->port.advertising[1] = 0;
11319 	switch (bp->link_params.num_phys) {
11320 	case 1:
11321 	case 2:
11322 		cfg_size = 1;
11323 		break;
11324 	case 3:
11325 		cfg_size = 2;
11326 		break;
11327 	}
11328 	for (idx = 0; idx < cfg_size; idx++) {
11329 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11330 		link_config = bp->port.link_config[idx];
11331 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11332 		case PORT_FEATURE_LINK_SPEED_AUTO:
11333 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11334 				bp->link_params.req_line_speed[idx] =
11335 					SPEED_AUTO_NEG;
11336 				bp->port.advertising[idx] |=
11337 					bp->port.supported[idx];
11338 				if (bp->link_params.phy[EXT_PHY1].type ==
11339 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11340 					bp->port.advertising[idx] |=
11341 					(SUPPORTED_100baseT_Half |
11342 					 SUPPORTED_100baseT_Full);
11343 			} else {
11344 				/* force 10G, no AN */
11345 				bp->link_params.req_line_speed[idx] =
11346 					SPEED_10000;
11347 				bp->port.advertising[idx] |=
11348 					(ADVERTISED_10000baseT_Full |
11349 					 ADVERTISED_FIBRE);
11350 				continue;
11351 			}
11352 			break;
11353 
11354 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11355 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11356 				bp->link_params.req_line_speed[idx] =
11357 					SPEED_10;
11358 				bp->port.advertising[idx] |=
11359 					(ADVERTISED_10baseT_Full |
11360 					 ADVERTISED_TP);
11361 			} else {
11362 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11363 					    link_config,
11364 				    bp->link_params.speed_cap_mask[idx]);
11365 				return;
11366 			}
11367 			break;
11368 
11369 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11370 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11371 				bp->link_params.req_line_speed[idx] =
11372 					SPEED_10;
11373 				bp->link_params.req_duplex[idx] =
11374 					DUPLEX_HALF;
11375 				bp->port.advertising[idx] |=
11376 					(ADVERTISED_10baseT_Half |
11377 					 ADVERTISED_TP);
11378 			} else {
11379 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11380 					    link_config,
11381 					  bp->link_params.speed_cap_mask[idx]);
11382 				return;
11383 			}
11384 			break;
11385 
11386 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11387 			if (bp->port.supported[idx] &
11388 			    SUPPORTED_100baseT_Full) {
11389 				bp->link_params.req_line_speed[idx] =
11390 					SPEED_100;
11391 				bp->port.advertising[idx] |=
11392 					(ADVERTISED_100baseT_Full |
11393 					 ADVERTISED_TP);
11394 			} else {
11395 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11396 					    link_config,
11397 					  bp->link_params.speed_cap_mask[idx]);
11398 				return;
11399 			}
11400 			break;
11401 
11402 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11403 			if (bp->port.supported[idx] &
11404 			    SUPPORTED_100baseT_Half) {
11405 				bp->link_params.req_line_speed[idx] =
11406 								SPEED_100;
11407 				bp->link_params.req_duplex[idx] =
11408 								DUPLEX_HALF;
11409 				bp->port.advertising[idx] |=
11410 					(ADVERTISED_100baseT_Half |
11411 					 ADVERTISED_TP);
11412 			} else {
11413 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11414 				    link_config,
11415 				    bp->link_params.speed_cap_mask[idx]);
11416 				return;
11417 			}
11418 			break;
11419 
11420 		case PORT_FEATURE_LINK_SPEED_1G:
11421 			if (bp->port.supported[idx] &
11422 			    SUPPORTED_1000baseT_Full) {
11423 				bp->link_params.req_line_speed[idx] =
11424 					SPEED_1000;
11425 				bp->port.advertising[idx] |=
11426 					(ADVERTISED_1000baseT_Full |
11427 					 ADVERTISED_TP);
11428 			} else if (bp->port.supported[idx] &
11429 				   SUPPORTED_1000baseKX_Full) {
11430 				bp->link_params.req_line_speed[idx] =
11431 					SPEED_1000;
11432 				bp->port.advertising[idx] |=
11433 					ADVERTISED_1000baseKX_Full;
11434 			} else {
11435 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11436 				    link_config,
11437 				    bp->link_params.speed_cap_mask[idx]);
11438 				return;
11439 			}
11440 			break;
11441 
11442 		case PORT_FEATURE_LINK_SPEED_2_5G:
11443 			if (bp->port.supported[idx] &
11444 			    SUPPORTED_2500baseX_Full) {
11445 				bp->link_params.req_line_speed[idx] =
11446 					SPEED_2500;
11447 				bp->port.advertising[idx] |=
11448 					(ADVERTISED_2500baseX_Full |
11449 						ADVERTISED_TP);
11450 			} else {
11451 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11452 				    link_config,
11453 				    bp->link_params.speed_cap_mask[idx]);
11454 				return;
11455 			}
11456 			break;
11457 
11458 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11459 			if (bp->port.supported[idx] &
11460 			    SUPPORTED_10000baseT_Full) {
11461 				bp->link_params.req_line_speed[idx] =
11462 					SPEED_10000;
11463 				bp->port.advertising[idx] |=
11464 					(ADVERTISED_10000baseT_Full |
11465 						ADVERTISED_FIBRE);
11466 			} else if (bp->port.supported[idx] &
11467 				   SUPPORTED_10000baseKR_Full) {
11468 				bp->link_params.req_line_speed[idx] =
11469 					SPEED_10000;
11470 				bp->port.advertising[idx] |=
11471 					(ADVERTISED_10000baseKR_Full |
11472 						ADVERTISED_FIBRE);
11473 			} else {
11474 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11475 				    link_config,
11476 				    bp->link_params.speed_cap_mask[idx]);
11477 				return;
11478 			}
11479 			break;
11480 		case PORT_FEATURE_LINK_SPEED_20G:
11481 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11482 
11483 			break;
11484 		default:
11485 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11486 				  link_config);
11487 				bp->link_params.req_line_speed[idx] =
11488 							SPEED_AUTO_NEG;
11489 				bp->port.advertising[idx] =
11490 						bp->port.supported[idx];
11491 			break;
11492 		}
11493 
11494 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11495 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11496 		if (bp->link_params.req_flow_ctrl[idx] ==
11497 		    BNX2X_FLOW_CTRL_AUTO) {
11498 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11499 				bp->link_params.req_flow_ctrl[idx] =
11500 							BNX2X_FLOW_CTRL_NONE;
11501 			else
11502 				bnx2x_set_requested_fc(bp);
11503 		}
11504 
11505 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11506 			       bp->link_params.req_line_speed[idx],
11507 			       bp->link_params.req_duplex[idx],
11508 			       bp->link_params.req_flow_ctrl[idx],
11509 			       bp->port.advertising[idx]);
11510 	}
11511 }
11512 
11513 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11514 {
11515 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11516 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11517 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11518 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11519 }
11520 
11521 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11522 {
11523 	int port = BP_PORT(bp);
11524 	u32 config;
11525 	u32 ext_phy_type, ext_phy_config, eee_mode;
11526 
11527 	bp->link_params.bp = bp;
11528 	bp->link_params.port = port;
11529 
11530 	bp->link_params.lane_config =
11531 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11532 
11533 	bp->link_params.speed_cap_mask[0] =
11534 		SHMEM_RD(bp,
11535 			 dev_info.port_hw_config[port].speed_capability_mask) &
11536 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11537 	bp->link_params.speed_cap_mask[1] =
11538 		SHMEM_RD(bp,
11539 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11540 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11541 	bp->port.link_config[0] =
11542 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11543 
11544 	bp->port.link_config[1] =
11545 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11546 
11547 	bp->link_params.multi_phy_config =
11548 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11549 	/* If the device is capable of WoL, set the default state according
11550 	 * to the HW
11551 	 */
11552 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11553 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11554 		   (config & PORT_FEATURE_WOL_ENABLED));
11555 
11556 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11557 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11558 		bp->flags |= NO_ISCSI_FLAG;
11559 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11560 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11561 		bp->flags |= NO_FCOE_FLAG;
11562 
11563 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11564 		       bp->link_params.lane_config,
11565 		       bp->link_params.speed_cap_mask[0],
11566 		       bp->port.link_config[0]);
11567 
11568 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11569 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11570 	bnx2x_phy_probe(&bp->link_params);
11571 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11572 
11573 	bnx2x_link_settings_requested(bp);
11574 
11575 	/*
11576 	 * If connected directly, work with the internal PHY, otherwise, work
11577 	 * with the external PHY
11578 	 */
11579 	ext_phy_config =
11580 		SHMEM_RD(bp,
11581 			 dev_info.port_hw_config[port].external_phy_config);
11582 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11583 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11584 		bp->mdio.prtad = bp->port.phy_addr;
11585 
11586 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11587 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11588 		bp->mdio.prtad =
11589 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11590 
11591 	/* Configure link feature according to nvram value */
11592 	eee_mode = (((SHMEM_RD(bp, dev_info.
11593 		      port_feature_config[port].eee_power_mode)) &
11594 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11595 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11596 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11597 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11598 					   EEE_MODE_ENABLE_LPI |
11599 					   EEE_MODE_OUTPUT_TIME;
11600 	} else {
11601 		bp->link_params.eee_mode = 0;
11602 	}
11603 }
11604 
11605 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11606 {
11607 	u32 no_flags = NO_ISCSI_FLAG;
11608 	int port = BP_PORT(bp);
11609 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11610 				drv_lic_key[port].max_iscsi_conn);
11611 
11612 	if (!CNIC_SUPPORT(bp)) {
11613 		bp->flags |= no_flags;
11614 		return;
11615 	}
11616 
11617 	/* Get the number of maximum allowed iSCSI connections */
11618 	bp->cnic_eth_dev.max_iscsi_conn =
11619 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11620 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11621 
11622 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11623 		       bp->cnic_eth_dev.max_iscsi_conn);
11624 
11625 	/*
11626 	 * If maximum allowed number of connections is zero -
11627 	 * disable the feature.
11628 	 */
11629 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11630 		bp->flags |= no_flags;
11631 }
11632 
11633 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11634 {
11635 	/* Port info */
11636 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11637 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11638 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11639 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11640 
11641 	/* Node info */
11642 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11643 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11644 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11645 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11646 }
11647 
11648 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11649 {
11650 	u8 count = 0;
11651 
11652 	if (IS_MF(bp)) {
11653 		u8 fid;
11654 
11655 		/* iterate over absolute function ids for this path: */
11656 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11657 			if (IS_MF_SD(bp)) {
11658 				u32 cfg = MF_CFG_RD(bp,
11659 						    func_mf_config[fid].config);
11660 
11661 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11662 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11663 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11664 					count++;
11665 			} else {
11666 				u32 cfg = MF_CFG_RD(bp,
11667 						    func_ext_config[fid].
11668 								      func_cfg);
11669 
11670 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11671 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11672 					count++;
11673 			}
11674 		}
11675 	} else { /* SF */
11676 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11677 
11678 		for (port = 0; port < port_cnt; port++) {
11679 			u32 lic = SHMEM_RD(bp,
11680 					   drv_lic_key[port].max_fcoe_conn) ^
11681 				  FW_ENCODE_32BIT_PATTERN;
11682 			if (lic)
11683 				count++;
11684 		}
11685 	}
11686 
11687 	return count;
11688 }
11689 
11690 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11691 {
11692 	int port = BP_PORT(bp);
11693 	int func = BP_ABS_FUNC(bp);
11694 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11695 				drv_lic_key[port].max_fcoe_conn);
11696 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11697 
11698 	if (!CNIC_SUPPORT(bp)) {
11699 		bp->flags |= NO_FCOE_FLAG;
11700 		return;
11701 	}
11702 
11703 	/* Get the number of maximum allowed FCoE connections */
11704 	bp->cnic_eth_dev.max_fcoe_conn =
11705 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11706 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11707 
11708 	/* Calculate the number of maximum allowed FCoE tasks */
11709 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11710 
11711 	/* check if FCoE resources must be shared between different functions */
11712 	if (num_fcoe_func)
11713 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11714 
11715 	/* Read the WWN: */
11716 	if (!IS_MF(bp)) {
11717 		/* Port info */
11718 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11719 			SHMEM_RD(bp,
11720 				 dev_info.port_hw_config[port].
11721 				 fcoe_wwn_port_name_upper);
11722 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11723 			SHMEM_RD(bp,
11724 				 dev_info.port_hw_config[port].
11725 				 fcoe_wwn_port_name_lower);
11726 
11727 		/* Node info */
11728 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11729 			SHMEM_RD(bp,
11730 				 dev_info.port_hw_config[port].
11731 				 fcoe_wwn_node_name_upper);
11732 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11733 			SHMEM_RD(bp,
11734 				 dev_info.port_hw_config[port].
11735 				 fcoe_wwn_node_name_lower);
11736 	} else if (!IS_MF_SD(bp)) {
11737 		/* Read the WWN info only if the FCoE feature is enabled for
11738 		 * this function.
11739 		 */
11740 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11741 			bnx2x_get_ext_wwn_info(bp, func);
11742 	} else {
11743 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11744 			bnx2x_get_ext_wwn_info(bp, func);
11745 	}
11746 
11747 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11748 
11749 	/*
11750 	 * If maximum allowed number of connections is zero -
11751 	 * disable the feature.
11752 	 */
11753 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11754 		bp->flags |= NO_FCOE_FLAG;
11755 }
11756 
11757 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11758 {
11759 	/*
11760 	 * iSCSI may be dynamically disabled but reading
11761 	 * info here we will decrease memory usage by driver
11762 	 * if the feature is disabled for good
11763 	 */
11764 	bnx2x_get_iscsi_info(bp);
11765 	bnx2x_get_fcoe_info(bp);
11766 }
11767 
11768 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11769 {
11770 	u32 val, val2;
11771 	int func = BP_ABS_FUNC(bp);
11772 	int port = BP_PORT(bp);
11773 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11774 	u8 *fip_mac = bp->fip_mac;
11775 
11776 	if (IS_MF(bp)) {
11777 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11778 		 * FCoE MAC then the appropriate feature should be disabled.
11779 		 * In non SD mode features configuration comes from struct
11780 		 * func_ext_config.
11781 		 */
11782 		if (!IS_MF_SD(bp)) {
11783 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11784 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11785 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11786 						 iscsi_mac_addr_upper);
11787 				val = MF_CFG_RD(bp, func_ext_config[func].
11788 						iscsi_mac_addr_lower);
11789 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11790 				BNX2X_DEV_INFO
11791 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11792 			} else {
11793 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11794 			}
11795 
11796 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11797 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11798 						 fcoe_mac_addr_upper);
11799 				val = MF_CFG_RD(bp, func_ext_config[func].
11800 						fcoe_mac_addr_lower);
11801 				bnx2x_set_mac_buf(fip_mac, val, val2);
11802 				BNX2X_DEV_INFO
11803 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11804 			} else {
11805 				bp->flags |= NO_FCOE_FLAG;
11806 			}
11807 
11808 			bp->mf_ext_config = cfg;
11809 
11810 		} else { /* SD MODE */
11811 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11812 				/* use primary mac as iscsi mac */
11813 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11814 
11815 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11816 				BNX2X_DEV_INFO
11817 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11818 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11819 				/* use primary mac as fip mac */
11820 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11821 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11822 				BNX2X_DEV_INFO
11823 					("Read FIP MAC: %pM\n", fip_mac);
11824 			}
11825 		}
11826 
11827 		/* If this is a storage-only interface, use SAN mac as
11828 		 * primary MAC. Notice that for SD this is already the case,
11829 		 * as the SAN mac was copied from the primary MAC.
11830 		 */
11831 		if (IS_MF_FCOE_AFEX(bp))
11832 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11833 	} else {
11834 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11835 				iscsi_mac_upper);
11836 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11837 			       iscsi_mac_lower);
11838 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11839 
11840 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11841 				fcoe_fip_mac_upper);
11842 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11843 			       fcoe_fip_mac_lower);
11844 		bnx2x_set_mac_buf(fip_mac, val, val2);
11845 	}
11846 
11847 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11848 	if (!is_valid_ether_addr(iscsi_mac)) {
11849 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11850 		eth_zero_addr(iscsi_mac);
11851 	}
11852 
11853 	/* Disable FCoE if MAC configuration is invalid. */
11854 	if (!is_valid_ether_addr(fip_mac)) {
11855 		bp->flags |= NO_FCOE_FLAG;
11856 		eth_zero_addr(bp->fip_mac);
11857 	}
11858 }
11859 
11860 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11861 {
11862 	u32 val, val2;
11863 	int func = BP_ABS_FUNC(bp);
11864 	int port = BP_PORT(bp);
11865 
11866 	/* Zero primary MAC configuration */
11867 	eth_zero_addr(bp->dev->dev_addr);
11868 
11869 	if (BP_NOMCP(bp)) {
11870 		BNX2X_ERROR("warning: random MAC workaround active\n");
11871 		eth_hw_addr_random(bp->dev);
11872 	} else if (IS_MF(bp)) {
11873 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11874 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11875 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11876 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11877 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11878 
11879 		if (CNIC_SUPPORT(bp))
11880 			bnx2x_get_cnic_mac_hwinfo(bp);
11881 	} else {
11882 		/* in SF read MACs from port configuration */
11883 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11884 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11885 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11886 
11887 		if (CNIC_SUPPORT(bp))
11888 			bnx2x_get_cnic_mac_hwinfo(bp);
11889 	}
11890 
11891 	if (!BP_NOMCP(bp)) {
11892 		/* Read physical port identifier from shmem */
11893 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11894 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11895 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11896 		bp->flags |= HAS_PHYS_PORT_ID;
11897 	}
11898 
11899 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11900 
11901 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11902 		dev_err(&bp->pdev->dev,
11903 			"bad Ethernet MAC address configuration: %pM\n"
11904 			"change it manually before bringing up the appropriate network interface\n",
11905 			bp->dev->dev_addr);
11906 }
11907 
11908 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11909 {
11910 	int tmp;
11911 	u32 cfg;
11912 
11913 	if (IS_VF(bp))
11914 		return false;
11915 
11916 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11917 		/* Take function: tmp = func */
11918 		tmp = BP_ABS_FUNC(bp);
11919 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11920 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11921 	} else {
11922 		/* Take port: tmp = port */
11923 		tmp = BP_PORT(bp);
11924 		cfg = SHMEM_RD(bp,
11925 			       dev_info.port_hw_config[tmp].generic_features);
11926 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11927 	}
11928 	return cfg;
11929 }
11930 
11931 static void validate_set_si_mode(struct bnx2x *bp)
11932 {
11933 	u8 func = BP_ABS_FUNC(bp);
11934 	u32 val;
11935 
11936 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11937 
11938 	/* check for legal mac (upper bytes) */
11939 	if (val != 0xffff) {
11940 		bp->mf_mode = MULTI_FUNCTION_SI;
11941 		bp->mf_config[BP_VN(bp)] =
11942 			MF_CFG_RD(bp, func_mf_config[func].config);
11943 	} else
11944 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11945 }
11946 
11947 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11948 {
11949 	int /*abs*/func = BP_ABS_FUNC(bp);
11950 	int vn, mfw_vn;
11951 	u32 val = 0, val2 = 0;
11952 	int rc = 0;
11953 
11954 	/* Validate that chip access is feasible */
11955 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11956 		dev_err(&bp->pdev->dev,
11957 			"Chip read returns all Fs. Preventing probe from continuing\n");
11958 		return -EINVAL;
11959 	}
11960 
11961 	bnx2x_get_common_hwinfo(bp);
11962 
11963 	/*
11964 	 * initialize IGU parameters
11965 	 */
11966 	if (CHIP_IS_E1x(bp)) {
11967 		bp->common.int_block = INT_BLOCK_HC;
11968 
11969 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11970 		bp->igu_base_sb = 0;
11971 	} else {
11972 		bp->common.int_block = INT_BLOCK_IGU;
11973 
11974 		/* do not allow device reset during IGU info processing */
11975 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11976 
11977 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11978 
11979 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11980 			int tout = 5000;
11981 
11982 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11983 
11984 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11985 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11986 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11987 
11988 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11989 				tout--;
11990 				usleep_range(1000, 2000);
11991 			}
11992 
11993 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11994 				dev_err(&bp->pdev->dev,
11995 					"FORCING Normal Mode failed!!!\n");
11996 				bnx2x_release_hw_lock(bp,
11997 						      HW_LOCK_RESOURCE_RESET);
11998 				return -EPERM;
11999 			}
12000 		}
12001 
12002 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12003 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
12004 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
12005 		} else
12006 			BNX2X_DEV_INFO("IGU Normal Mode\n");
12007 
12008 		rc = bnx2x_get_igu_cam_info(bp);
12009 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12010 		if (rc)
12011 			return rc;
12012 	}
12013 
12014 	/*
12015 	 * set base FW non-default (fast path) status block id, this value is
12016 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
12017 	 * determine the id used by the FW.
12018 	 */
12019 	if (CHIP_IS_E1x(bp))
12020 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
12021 	else /*
12022 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12023 	      * the same queue are indicated on the same IGU SB). So we prefer
12024 	      * FW and IGU SBs to be the same value.
12025 	      */
12026 		bp->base_fw_ndsb = bp->igu_base_sb;
12027 
12028 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12029 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12030 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12031 
12032 	/*
12033 	 * Initialize MF configuration
12034 	 */
12035 
12036 	bp->mf_ov = 0;
12037 	bp->mf_mode = 0;
12038 	bp->mf_sub_mode = 0;
12039 	vn = BP_VN(bp);
12040 	mfw_vn = BP_FW_MB_IDX(bp);
12041 
12042 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12043 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12044 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12045 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12046 
12047 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12048 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12049 		else
12050 			bp->common.mf_cfg_base = bp->common.shmem_base +
12051 				offsetof(struct shmem_region, func_mb) +
12052 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12053 		/*
12054 		 * get mf configuration:
12055 		 * 1. Existence of MF configuration
12056 		 * 2. MAC address must be legal (check only upper bytes)
12057 		 *    for  Switch-Independent mode;
12058 		 *    OVLAN must be legal for Switch-Dependent mode
12059 		 * 3. SF_MODE configures specific MF mode
12060 		 */
12061 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12062 			/* get mf configuration */
12063 			val = SHMEM_RD(bp,
12064 				       dev_info.shared_feature_config.config);
12065 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12066 
12067 			switch (val) {
12068 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12069 				validate_set_si_mode(bp);
12070 				break;
12071 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12072 				if ((!CHIP_IS_E1x(bp)) &&
12073 				    (MF_CFG_RD(bp, func_mf_config[func].
12074 					       mac_upper) != 0xffff) &&
12075 				    (SHMEM2_HAS(bp,
12076 						afex_driver_support))) {
12077 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12078 					bp->mf_config[vn] = MF_CFG_RD(bp,
12079 						func_mf_config[func].config);
12080 				} else {
12081 					BNX2X_DEV_INFO("can not configure afex mode\n");
12082 				}
12083 				break;
12084 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12085 				/* get OV configuration */
12086 				val = MF_CFG_RD(bp,
12087 					func_mf_config[FUNC_0].e1hov_tag);
12088 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12089 
12090 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12091 					bp->mf_mode = MULTI_FUNCTION_SD;
12092 					bp->mf_config[vn] = MF_CFG_RD(bp,
12093 						func_mf_config[func].config);
12094 				} else
12095 					BNX2X_DEV_INFO("illegal OV for SD\n");
12096 				break;
12097 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12098 				bp->mf_mode = MULTI_FUNCTION_SD;
12099 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12100 				bp->mf_config[vn] =
12101 					MF_CFG_RD(bp,
12102 						  func_mf_config[func].config);
12103 
12104 				if (SHMEM2_HAS(bp, mtu_size)) {
12105 					int mtu_idx = BP_FW_MB_IDX(bp);
12106 					u16 mtu_size;
12107 					u32 mtu;
12108 
12109 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12110 					mtu_size = (u16)mtu;
12111 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12112 					   mtu_size, mtu);
12113 
12114 					/* if valid: update device mtu */
12115 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12116 					    (mtu_size <=
12117 					     ETH_MAX_JUMBO_PACKET_SIZE))
12118 						bp->dev->mtu = mtu_size;
12119 				}
12120 				break;
12121 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12122 				bp->mf_mode = MULTI_FUNCTION_SD;
12123 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12124 				bp->mf_config[vn] =
12125 					MF_CFG_RD(bp,
12126 						  func_mf_config[func].config);
12127 				break;
12128 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12129 				bp->mf_config[vn] = 0;
12130 				break;
12131 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12132 				val2 = SHMEM_RD(bp,
12133 					dev_info.shared_hw_config.config_3);
12134 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12135 				switch (val2) {
12136 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12137 					validate_set_si_mode(bp);
12138 					bp->mf_sub_mode =
12139 							SUB_MF_MODE_NPAR1_DOT_5;
12140 					break;
12141 				default:
12142 					/* Unknown configuration */
12143 					bp->mf_config[vn] = 0;
12144 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12145 						       val);
12146 				}
12147 				break;
12148 			default:
12149 				/* Unknown configuration: reset mf_config */
12150 				bp->mf_config[vn] = 0;
12151 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12152 			}
12153 		}
12154 
12155 		BNX2X_DEV_INFO("%s function mode\n",
12156 			       IS_MF(bp) ? "multi" : "single");
12157 
12158 		switch (bp->mf_mode) {
12159 		case MULTI_FUNCTION_SD:
12160 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12161 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12162 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12163 				bp->mf_ov = val;
12164 				bp->path_has_ovlan = true;
12165 
12166 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12167 					       func, bp->mf_ov, bp->mf_ov);
12168 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12169 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12170 				dev_err(&bp->pdev->dev,
12171 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12172 					func);
12173 				bp->path_has_ovlan = true;
12174 			} else {
12175 				dev_err(&bp->pdev->dev,
12176 					"No valid MF OV for func %d, aborting\n",
12177 					func);
12178 				return -EPERM;
12179 			}
12180 			break;
12181 		case MULTI_FUNCTION_AFEX:
12182 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12183 			break;
12184 		case MULTI_FUNCTION_SI:
12185 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12186 				       func);
12187 			break;
12188 		default:
12189 			if (vn) {
12190 				dev_err(&bp->pdev->dev,
12191 					"VN %d is in a single function mode, aborting\n",
12192 					vn);
12193 				return -EPERM;
12194 			}
12195 			break;
12196 		}
12197 
12198 		/* check if other port on the path needs ovlan:
12199 		 * Since MF configuration is shared between ports
12200 		 * Possible mixed modes are only
12201 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12202 		 */
12203 		if (CHIP_MODE_IS_4_PORT(bp) &&
12204 		    !bp->path_has_ovlan &&
12205 		    !IS_MF(bp) &&
12206 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12207 			u8 other_port = !BP_PORT(bp);
12208 			u8 other_func = BP_PATH(bp) + 2*other_port;
12209 			val = MF_CFG_RD(bp,
12210 					func_mf_config[other_func].e1hov_tag);
12211 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12212 				bp->path_has_ovlan = true;
12213 		}
12214 	}
12215 
12216 	/* adjust igu_sb_cnt to MF for E1H */
12217 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12218 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12219 
12220 	/* port info */
12221 	bnx2x_get_port_hwinfo(bp);
12222 
12223 	/* Get MAC addresses */
12224 	bnx2x_get_mac_hwinfo(bp);
12225 
12226 	bnx2x_get_cnic_info(bp);
12227 
12228 	return rc;
12229 }
12230 
12231 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12232 {
12233 	int cnt, i, block_end, rodi;
12234 	char vpd_start[BNX2X_VPD_LEN+1];
12235 	char str_id_reg[VENDOR_ID_LEN+1];
12236 	char str_id_cap[VENDOR_ID_LEN+1];
12237 	char *vpd_data;
12238 	char *vpd_extended_data = NULL;
12239 	u8 len;
12240 
12241 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12242 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12243 
12244 	if (cnt < BNX2X_VPD_LEN)
12245 		goto out_not_found;
12246 
12247 	/* VPD RO tag should be first tag after identifier string, hence
12248 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12249 	 */
12250 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12251 			     PCI_VPD_LRDT_RO_DATA);
12252 	if (i < 0)
12253 		goto out_not_found;
12254 
12255 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12256 		    pci_vpd_lrdt_size(&vpd_start[i]);
12257 
12258 	i += PCI_VPD_LRDT_TAG_SIZE;
12259 
12260 	if (block_end > BNX2X_VPD_LEN) {
12261 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12262 		if (vpd_extended_data  == NULL)
12263 			goto out_not_found;
12264 
12265 		/* read rest of vpd image into vpd_extended_data */
12266 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12267 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12268 				   block_end - BNX2X_VPD_LEN,
12269 				   vpd_extended_data + BNX2X_VPD_LEN);
12270 		if (cnt < (block_end - BNX2X_VPD_LEN))
12271 			goto out_not_found;
12272 		vpd_data = vpd_extended_data;
12273 	} else
12274 		vpd_data = vpd_start;
12275 
12276 	/* now vpd_data holds full vpd content in both cases */
12277 
12278 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12279 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12280 	if (rodi < 0)
12281 		goto out_not_found;
12282 
12283 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12284 
12285 	if (len != VENDOR_ID_LEN)
12286 		goto out_not_found;
12287 
12288 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12289 
12290 	/* vendor specific info */
12291 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12292 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12293 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12294 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12295 
12296 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12297 						PCI_VPD_RO_KEYWORD_VENDOR0);
12298 		if (rodi >= 0) {
12299 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12300 
12301 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12302 
12303 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12304 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12305 				bp->fw_ver[len] = ' ';
12306 			}
12307 		}
12308 		kfree(vpd_extended_data);
12309 		return;
12310 	}
12311 out_not_found:
12312 	kfree(vpd_extended_data);
12313 	return;
12314 }
12315 
12316 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12317 {
12318 	u32 flags = 0;
12319 
12320 	if (CHIP_REV_IS_FPGA(bp))
12321 		SET_FLAGS(flags, MODE_FPGA);
12322 	else if (CHIP_REV_IS_EMUL(bp))
12323 		SET_FLAGS(flags, MODE_EMUL);
12324 	else
12325 		SET_FLAGS(flags, MODE_ASIC);
12326 
12327 	if (CHIP_MODE_IS_4_PORT(bp))
12328 		SET_FLAGS(flags, MODE_PORT4);
12329 	else
12330 		SET_FLAGS(flags, MODE_PORT2);
12331 
12332 	if (CHIP_IS_E2(bp))
12333 		SET_FLAGS(flags, MODE_E2);
12334 	else if (CHIP_IS_E3(bp)) {
12335 		SET_FLAGS(flags, MODE_E3);
12336 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12337 			SET_FLAGS(flags, MODE_E3_A0);
12338 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12339 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12340 	}
12341 
12342 	if (IS_MF(bp)) {
12343 		SET_FLAGS(flags, MODE_MF);
12344 		switch (bp->mf_mode) {
12345 		case MULTI_FUNCTION_SD:
12346 			SET_FLAGS(flags, MODE_MF_SD);
12347 			break;
12348 		case MULTI_FUNCTION_SI:
12349 			SET_FLAGS(flags, MODE_MF_SI);
12350 			break;
12351 		case MULTI_FUNCTION_AFEX:
12352 			SET_FLAGS(flags, MODE_MF_AFEX);
12353 			break;
12354 		}
12355 	} else
12356 		SET_FLAGS(flags, MODE_SF);
12357 
12358 #if defined(__LITTLE_ENDIAN)
12359 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12360 #else /*(__BIG_ENDIAN)*/
12361 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12362 #endif
12363 	INIT_MODE_FLAGS(bp) = flags;
12364 }
12365 
12366 static int bnx2x_init_bp(struct bnx2x *bp)
12367 {
12368 	int func;
12369 	int rc;
12370 
12371 	mutex_init(&bp->port.phy_mutex);
12372 	mutex_init(&bp->fw_mb_mutex);
12373 	mutex_init(&bp->drv_info_mutex);
12374 	sema_init(&bp->stats_lock, 1);
12375 	bp->drv_info_mng_owner = false;
12376 	INIT_LIST_HEAD(&bp->vlan_reg);
12377 
12378 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12379 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12380 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12381 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12382 	if (IS_PF(bp)) {
12383 		rc = bnx2x_get_hwinfo(bp);
12384 		if (rc)
12385 			return rc;
12386 	} else {
12387 		eth_zero_addr(bp->dev->dev_addr);
12388 	}
12389 
12390 	bnx2x_set_modes_bitmap(bp);
12391 
12392 	rc = bnx2x_alloc_mem_bp(bp);
12393 	if (rc)
12394 		return rc;
12395 
12396 	bnx2x_read_fwinfo(bp);
12397 
12398 	func = BP_FUNC(bp);
12399 
12400 	/* need to reset chip if undi was active */
12401 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12402 		/* init fw_seq */
12403 		bp->fw_seq =
12404 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12405 							DRV_MSG_SEQ_NUMBER_MASK;
12406 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12407 
12408 		rc = bnx2x_prev_unload(bp);
12409 		if (rc) {
12410 			bnx2x_free_mem_bp(bp);
12411 			return rc;
12412 		}
12413 	}
12414 
12415 	if (CHIP_REV_IS_FPGA(bp))
12416 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12417 
12418 	if (BP_NOMCP(bp) && (func == 0))
12419 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12420 
12421 	bp->disable_tpa = disable_tpa;
12422 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12423 	/* Reduce memory usage in kdump environment by disabling TPA */
12424 	bp->disable_tpa |= is_kdump_kernel();
12425 
12426 	/* Set TPA flags */
12427 	if (bp->disable_tpa) {
12428 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12429 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12430 	}
12431 
12432 	if (CHIP_IS_E1(bp))
12433 		bp->dropless_fc = 0;
12434 	else
12435 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12436 
12437 	bp->mrrs = mrrs;
12438 
12439 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12440 	if (IS_VF(bp))
12441 		bp->rx_ring_size = MAX_RX_AVAIL;
12442 
12443 	/* make sure that the numbers are in the right granularity */
12444 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12445 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12446 
12447 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12448 
12449 	timer_setup(&bp->timer, bnx2x_timer, 0);
12450 	bp->timer.expires = jiffies + bp->current_interval;
12451 
12452 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12453 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12454 	    SHMEM2_HAS(bp, dcbx_en) &&
12455 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12456 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12457 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12458 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12459 		bnx2x_dcbx_init_params(bp);
12460 	} else {
12461 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12462 	}
12463 
12464 	if (CHIP_IS_E1x(bp))
12465 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12466 	else
12467 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12468 
12469 	/* multiple tx priority */
12470 	if (IS_VF(bp))
12471 		bp->max_cos = 1;
12472 	else if (CHIP_IS_E1x(bp))
12473 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12474 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12475 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12476 	else if (CHIP_IS_E3B0(bp))
12477 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12478 	else
12479 		BNX2X_ERR("unknown chip %x revision %x\n",
12480 			  CHIP_NUM(bp), CHIP_REV(bp));
12481 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12482 
12483 	/* We need at least one default status block for slow-path events,
12484 	 * second status block for the L2 queue, and a third status block for
12485 	 * CNIC if supported.
12486 	 */
12487 	if (IS_VF(bp))
12488 		bp->min_msix_vec_cnt = 1;
12489 	else if (CNIC_SUPPORT(bp))
12490 		bp->min_msix_vec_cnt = 3;
12491 	else /* PF w/o cnic */
12492 		bp->min_msix_vec_cnt = 2;
12493 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12494 
12495 	bp->dump_preset_idx = 1;
12496 
12497 	if (CHIP_IS_E3B0(bp))
12498 		bp->flags |= PTP_SUPPORTED;
12499 
12500 	return rc;
12501 }
12502 
12503 /****************************************************************************
12504 * General service functions
12505 ****************************************************************************/
12506 
12507 /*
12508  * net_device service functions
12509  */
12510 
12511 /* called with rtnl_lock */
12512 static int bnx2x_open(struct net_device *dev)
12513 {
12514 	struct bnx2x *bp = netdev_priv(dev);
12515 	int rc;
12516 
12517 	bp->stats_init = true;
12518 
12519 	netif_carrier_off(dev);
12520 
12521 	bnx2x_set_power_state(bp, PCI_D0);
12522 
12523 	/* If parity had happen during the unload, then attentions
12524 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12525 	 * want the first function loaded on the current engine to
12526 	 * complete the recovery.
12527 	 * Parity recovery is only relevant for PF driver.
12528 	 */
12529 	if (IS_PF(bp)) {
12530 		int other_engine = BP_PATH(bp) ? 0 : 1;
12531 		bool other_load_status, load_status;
12532 		bool global = false;
12533 
12534 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12535 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12536 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12537 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12538 			do {
12539 				/* If there are attentions and they are in a
12540 				 * global blocks, set the GLOBAL_RESET bit
12541 				 * regardless whether it will be this function
12542 				 * that will complete the recovery or not.
12543 				 */
12544 				if (global)
12545 					bnx2x_set_reset_global(bp);
12546 
12547 				/* Only the first function on the current
12548 				 * engine should try to recover in open. In case
12549 				 * of attentions in global blocks only the first
12550 				 * in the chip should try to recover.
12551 				 */
12552 				if ((!load_status &&
12553 				     (!global || !other_load_status)) &&
12554 				      bnx2x_trylock_leader_lock(bp) &&
12555 				      !bnx2x_leader_reset(bp)) {
12556 					netdev_info(bp->dev,
12557 						    "Recovered in open\n");
12558 					break;
12559 				}
12560 
12561 				/* recovery has failed... */
12562 				bnx2x_set_power_state(bp, PCI_D3hot);
12563 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12564 
12565 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12566 					  "If you still see this message after a few retries then power cycle is required.\n");
12567 
12568 				return -EAGAIN;
12569 			} while (0);
12570 		}
12571 	}
12572 
12573 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12574 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12575 	if (rc)
12576 		return rc;
12577 
12578 	if (IS_PF(bp))
12579 		udp_tunnel_get_rx_info(dev);
12580 
12581 	return 0;
12582 }
12583 
12584 /* called with rtnl_lock */
12585 static int bnx2x_close(struct net_device *dev)
12586 {
12587 	struct bnx2x *bp = netdev_priv(dev);
12588 
12589 	/* Unload the driver, release IRQs */
12590 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12591 
12592 	return 0;
12593 }
12594 
12595 struct bnx2x_mcast_list_elem_group
12596 {
12597 	struct list_head mcast_group_link;
12598 	struct bnx2x_mcast_list_elem mcast_elems[];
12599 };
12600 
12601 #define MCAST_ELEMS_PER_PG \
12602 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12603 	sizeof(struct bnx2x_mcast_list_elem))
12604 
12605 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12606 {
12607 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12608 
12609 	while (!list_empty(mcast_group_list)) {
12610 		current_mcast_group = list_first_entry(mcast_group_list,
12611 				      struct bnx2x_mcast_list_elem_group,
12612 				      mcast_group_link);
12613 		list_del(&current_mcast_group->mcast_group_link);
12614 		free_page((unsigned long)current_mcast_group);
12615 	}
12616 }
12617 
12618 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12619 				      struct bnx2x_mcast_ramrod_params *p,
12620 				      struct list_head *mcast_group_list)
12621 {
12622 	struct bnx2x_mcast_list_elem *mc_mac;
12623 	struct netdev_hw_addr *ha;
12624 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12625 	int mc_count = netdev_mc_count(bp->dev);
12626 	int offset = 0;
12627 
12628 	INIT_LIST_HEAD(&p->mcast_list);
12629 	netdev_for_each_mc_addr(ha, bp->dev) {
12630 		if (!offset) {
12631 			current_mcast_group =
12632 				(struct bnx2x_mcast_list_elem_group *)
12633 				__get_free_page(GFP_ATOMIC);
12634 			if (!current_mcast_group) {
12635 				bnx2x_free_mcast_macs_list(mcast_group_list);
12636 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12637 				return -ENOMEM;
12638 			}
12639 			list_add(&current_mcast_group->mcast_group_link,
12640 				 mcast_group_list);
12641 		}
12642 		mc_mac = &current_mcast_group->mcast_elems[offset];
12643 		mc_mac->mac = bnx2x_mc_addr(ha);
12644 		list_add_tail(&mc_mac->link, &p->mcast_list);
12645 		offset++;
12646 		if (offset == MCAST_ELEMS_PER_PG)
12647 			offset = 0;
12648 	}
12649 	p->mcast_list_len = mc_count;
12650 	return 0;
12651 }
12652 
12653 /**
12654  * bnx2x_set_uc_list - configure a new unicast MACs list.
12655  *
12656  * @bp: driver handle
12657  *
12658  * We will use zero (0) as a MAC type for these MACs.
12659  */
12660 static int bnx2x_set_uc_list(struct bnx2x *bp)
12661 {
12662 	int rc;
12663 	struct net_device *dev = bp->dev;
12664 	struct netdev_hw_addr *ha;
12665 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12666 	unsigned long ramrod_flags = 0;
12667 
12668 	/* First schedule a cleanup up of old configuration */
12669 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12670 	if (rc < 0) {
12671 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12672 		return rc;
12673 	}
12674 
12675 	netdev_for_each_uc_addr(ha, dev) {
12676 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12677 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12678 		if (rc == -EEXIST) {
12679 			DP(BNX2X_MSG_SP,
12680 			   "Failed to schedule ADD operations: %d\n", rc);
12681 			/* do not treat adding same MAC as error */
12682 			rc = 0;
12683 
12684 		} else if (rc < 0) {
12685 
12686 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12687 				  rc);
12688 			return rc;
12689 		}
12690 	}
12691 
12692 	/* Execute the pending commands */
12693 	__set_bit(RAMROD_CONT, &ramrod_flags);
12694 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12695 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12696 }
12697 
12698 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12699 {
12700 	LIST_HEAD(mcast_group_list);
12701 	struct net_device *dev = bp->dev;
12702 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12703 	int rc = 0;
12704 
12705 	rparam.mcast_obj = &bp->mcast_obj;
12706 
12707 	/* first, clear all configured multicast MACs */
12708 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12709 	if (rc < 0) {
12710 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12711 		return rc;
12712 	}
12713 
12714 	/* then, configure a new MACs list */
12715 	if (netdev_mc_count(dev)) {
12716 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12717 		if (rc)
12718 			return rc;
12719 
12720 		/* Now add the new MACs */
12721 		rc = bnx2x_config_mcast(bp, &rparam,
12722 					BNX2X_MCAST_CMD_ADD);
12723 		if (rc < 0)
12724 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12725 				  rc);
12726 
12727 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12728 	}
12729 
12730 	return rc;
12731 }
12732 
12733 static int bnx2x_set_mc_list(struct bnx2x *bp)
12734 {
12735 	LIST_HEAD(mcast_group_list);
12736 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12737 	struct net_device *dev = bp->dev;
12738 	int rc = 0;
12739 
12740 	/* On older adapters, we need to flush and re-add filters */
12741 	if (CHIP_IS_E1x(bp))
12742 		return bnx2x_set_mc_list_e1x(bp);
12743 
12744 	rparam.mcast_obj = &bp->mcast_obj;
12745 
12746 	if (netdev_mc_count(dev)) {
12747 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12748 		if (rc)
12749 			return rc;
12750 
12751 		/* Override the curently configured set of mc filters */
12752 		rc = bnx2x_config_mcast(bp, &rparam,
12753 					BNX2X_MCAST_CMD_SET);
12754 		if (rc < 0)
12755 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12756 				  rc);
12757 
12758 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12759 	} else {
12760 		/* If no mc addresses are required, flush the configuration */
12761 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12762 		if (rc < 0)
12763 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12764 				  rc);
12765 	}
12766 
12767 	return rc;
12768 }
12769 
12770 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12771 static void bnx2x_set_rx_mode(struct net_device *dev)
12772 {
12773 	struct bnx2x *bp = netdev_priv(dev);
12774 
12775 	if (bp->state != BNX2X_STATE_OPEN) {
12776 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12777 		return;
12778 	} else {
12779 		/* Schedule an SP task to handle rest of change */
12780 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12781 				       NETIF_MSG_IFUP);
12782 	}
12783 }
12784 
12785 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12786 {
12787 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12788 
12789 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12790 
12791 	netif_addr_lock_bh(bp->dev);
12792 
12793 	if (bp->dev->flags & IFF_PROMISC) {
12794 		rx_mode = BNX2X_RX_MODE_PROMISC;
12795 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12796 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12797 		    CHIP_IS_E1(bp))) {
12798 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12799 	} else {
12800 		if (IS_PF(bp)) {
12801 			/* some multicasts */
12802 			if (bnx2x_set_mc_list(bp) < 0)
12803 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12804 
12805 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12806 			netif_addr_unlock_bh(bp->dev);
12807 			if (bnx2x_set_uc_list(bp) < 0)
12808 				rx_mode = BNX2X_RX_MODE_PROMISC;
12809 			netif_addr_lock_bh(bp->dev);
12810 		} else {
12811 			/* configuring mcast to a vf involves sleeping (when we
12812 			 * wait for the pf's response).
12813 			 */
12814 			bnx2x_schedule_sp_rtnl(bp,
12815 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12816 		}
12817 	}
12818 
12819 	bp->rx_mode = rx_mode;
12820 	/* handle ISCSI SD mode */
12821 	if (IS_MF_ISCSI_ONLY(bp))
12822 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12823 
12824 	/* Schedule the rx_mode command */
12825 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12826 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12827 		netif_addr_unlock_bh(bp->dev);
12828 		return;
12829 	}
12830 
12831 	if (IS_PF(bp)) {
12832 		bnx2x_set_storm_rx_mode(bp);
12833 		netif_addr_unlock_bh(bp->dev);
12834 	} else {
12835 		/* VF will need to request the PF to make this change, and so
12836 		 * the VF needs to release the bottom-half lock prior to the
12837 		 * request (as it will likely require sleep on the VF side)
12838 		 */
12839 		netif_addr_unlock_bh(bp->dev);
12840 		bnx2x_vfpf_storm_rx_mode(bp);
12841 	}
12842 }
12843 
12844 /* called with rtnl_lock */
12845 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12846 			   int devad, u16 addr)
12847 {
12848 	struct bnx2x *bp = netdev_priv(netdev);
12849 	u16 value;
12850 	int rc;
12851 
12852 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12853 	   prtad, devad, addr);
12854 
12855 	/* The HW expects different devad if CL22 is used */
12856 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12857 
12858 	bnx2x_acquire_phy_lock(bp);
12859 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12860 	bnx2x_release_phy_lock(bp);
12861 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12862 
12863 	if (!rc)
12864 		rc = value;
12865 	return rc;
12866 }
12867 
12868 /* called with rtnl_lock */
12869 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12870 			    u16 addr, u16 value)
12871 {
12872 	struct bnx2x *bp = netdev_priv(netdev);
12873 	int rc;
12874 
12875 	DP(NETIF_MSG_LINK,
12876 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12877 	   prtad, devad, addr, value);
12878 
12879 	/* The HW expects different devad if CL22 is used */
12880 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12881 
12882 	bnx2x_acquire_phy_lock(bp);
12883 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12884 	bnx2x_release_phy_lock(bp);
12885 	return rc;
12886 }
12887 
12888 /* called with rtnl_lock */
12889 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12890 {
12891 	struct bnx2x *bp = netdev_priv(dev);
12892 	struct mii_ioctl_data *mdio = if_mii(ifr);
12893 
12894 	if (!netif_running(dev))
12895 		return -EAGAIN;
12896 
12897 	switch (cmd) {
12898 	case SIOCSHWTSTAMP:
12899 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12900 	default:
12901 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12902 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12903 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12904 	}
12905 }
12906 
12907 static int bnx2x_validate_addr(struct net_device *dev)
12908 {
12909 	struct bnx2x *bp = netdev_priv(dev);
12910 
12911 	/* query the bulletin board for mac address configured by the PF */
12912 	if (IS_VF(bp))
12913 		bnx2x_sample_bulletin(bp);
12914 
12915 	if (!is_valid_ether_addr(dev->dev_addr)) {
12916 		BNX2X_ERR("Non-valid Ethernet address\n");
12917 		return -EADDRNOTAVAIL;
12918 	}
12919 	return 0;
12920 }
12921 
12922 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12923 				  struct netdev_phys_item_id *ppid)
12924 {
12925 	struct bnx2x *bp = netdev_priv(netdev);
12926 
12927 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12928 		return -EOPNOTSUPP;
12929 
12930 	ppid->id_len = sizeof(bp->phys_port_id);
12931 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12932 
12933 	return 0;
12934 }
12935 
12936 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12937 					      struct net_device *dev,
12938 					      netdev_features_t features)
12939 {
12940 	/*
12941 	 * A skb with gso_size + header length > 9700 will cause a
12942 	 * firmware panic. Drop GSO support.
12943 	 *
12944 	 * Eventually the upper layer should not pass these packets down.
12945 	 *
12946 	 * For speed, if the gso_size is <= 9000, assume there will
12947 	 * not be 700 bytes of headers and pass it through. Only do a
12948 	 * full (slow) validation if the gso_size is > 9000.
12949 	 *
12950 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12951 	 * validation in that case.)
12952 	 */
12953 	if (unlikely(skb_is_gso(skb) &&
12954 		     (skb_shinfo(skb)->gso_size > 9000) &&
12955 		     !skb_gso_validate_mac_len(skb, 9700)))
12956 		features &= ~NETIF_F_GSO_MASK;
12957 
12958 	features = vlan_features_check(skb, features);
12959 	return vxlan_features_check(skb, features);
12960 }
12961 
12962 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12963 {
12964 	int rc;
12965 
12966 	if (IS_PF(bp)) {
12967 		unsigned long ramrod_flags = 0;
12968 
12969 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12970 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12971 					add, &ramrod_flags);
12972 	} else {
12973 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12974 	}
12975 
12976 	return rc;
12977 }
12978 
12979 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12980 {
12981 	struct bnx2x_vlan_entry *vlan;
12982 	int rc = 0;
12983 
12984 	/* Configure all non-configured entries */
12985 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12986 		if (vlan->hw)
12987 			continue;
12988 
12989 		if (bp->vlan_cnt >= bp->vlan_credit)
12990 			return -ENOBUFS;
12991 
12992 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12993 		if (rc) {
12994 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12995 			return rc;
12996 		}
12997 
12998 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12999 		vlan->hw = true;
13000 		bp->vlan_cnt++;
13001 	}
13002 
13003 	return 0;
13004 }
13005 
13006 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
13007 {
13008 	bool need_accept_any_vlan;
13009 
13010 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
13011 
13012 	if (bp->accept_any_vlan != need_accept_any_vlan) {
13013 		bp->accept_any_vlan = need_accept_any_vlan;
13014 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
13015 		   bp->accept_any_vlan ? "raised" : "cleared");
13016 		if (set_rx_mode) {
13017 			if (IS_PF(bp))
13018 				bnx2x_set_rx_mode_inner(bp);
13019 			else
13020 				bnx2x_vfpf_storm_rx_mode(bp);
13021 		}
13022 	}
13023 }
13024 
13025 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
13026 {
13027 	struct bnx2x_vlan_entry *vlan;
13028 
13029 	/* The hw forgot all entries after reload */
13030 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13031 		vlan->hw = false;
13032 	bp->vlan_cnt = 0;
13033 
13034 	/* Don't set rx mode here. Our caller will do it. */
13035 	bnx2x_vlan_configure(bp, false);
13036 
13037 	return 0;
13038 }
13039 
13040 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13041 {
13042 	struct bnx2x *bp = netdev_priv(dev);
13043 	struct bnx2x_vlan_entry *vlan;
13044 
13045 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13046 
13047 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13048 	if (!vlan)
13049 		return -ENOMEM;
13050 
13051 	vlan->vid = vid;
13052 	vlan->hw = false;
13053 	list_add_tail(&vlan->link, &bp->vlan_reg);
13054 
13055 	if (netif_running(dev))
13056 		bnx2x_vlan_configure(bp, true);
13057 
13058 	return 0;
13059 }
13060 
13061 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13062 {
13063 	struct bnx2x *bp = netdev_priv(dev);
13064 	struct bnx2x_vlan_entry *vlan;
13065 	bool found = false;
13066 	int rc = 0;
13067 
13068 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13069 
13070 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13071 		if (vlan->vid == vid) {
13072 			found = true;
13073 			break;
13074 		}
13075 
13076 	if (!found) {
13077 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13078 		return -EINVAL;
13079 	}
13080 
13081 	if (netif_running(dev) && vlan->hw) {
13082 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13083 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13084 		bp->vlan_cnt--;
13085 	}
13086 
13087 	list_del(&vlan->link);
13088 	kfree(vlan);
13089 
13090 	if (netif_running(dev))
13091 		bnx2x_vlan_configure(bp, true);
13092 
13093 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13094 
13095 	return rc;
13096 }
13097 
13098 static const struct net_device_ops bnx2x_netdev_ops = {
13099 	.ndo_open		= bnx2x_open,
13100 	.ndo_stop		= bnx2x_close,
13101 	.ndo_start_xmit		= bnx2x_start_xmit,
13102 	.ndo_select_queue	= bnx2x_select_queue,
13103 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13104 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13105 	.ndo_validate_addr	= bnx2x_validate_addr,
13106 	.ndo_do_ioctl		= bnx2x_ioctl,
13107 	.ndo_change_mtu		= bnx2x_change_mtu,
13108 	.ndo_fix_features	= bnx2x_fix_features,
13109 	.ndo_set_features	= bnx2x_set_features,
13110 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13111 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13112 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13113 	.ndo_setup_tc		= __bnx2x_setup_tc,
13114 #ifdef CONFIG_BNX2X_SRIOV
13115 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13116 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13117 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13118 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13119 #endif
13120 #ifdef NETDEV_FCOE_WWNN
13121 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13122 #endif
13123 
13124 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13125 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13126 	.ndo_features_check	= bnx2x_features_check,
13127 	.ndo_udp_tunnel_add	= bnx2x_udp_tunnel_add,
13128 	.ndo_udp_tunnel_del	= bnx2x_udp_tunnel_del,
13129 };
13130 
13131 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13132 {
13133 	struct device *dev = &bp->pdev->dev;
13134 
13135 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13136 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13137 		dev_err(dev, "System does not support DMA, aborting\n");
13138 		return -EIO;
13139 	}
13140 
13141 	return 0;
13142 }
13143 
13144 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13145 {
13146 	if (bp->flags & AER_ENABLED) {
13147 		pci_disable_pcie_error_reporting(bp->pdev);
13148 		bp->flags &= ~AER_ENABLED;
13149 	}
13150 }
13151 
13152 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13153 			  struct net_device *dev, unsigned long board_type)
13154 {
13155 	int rc;
13156 	u32 pci_cfg_dword;
13157 	bool chip_is_e1x = (board_type == BCM57710 ||
13158 			    board_type == BCM57711 ||
13159 			    board_type == BCM57711E);
13160 
13161 	SET_NETDEV_DEV(dev, &pdev->dev);
13162 
13163 	bp->dev = dev;
13164 	bp->pdev = pdev;
13165 
13166 	rc = pci_enable_device(pdev);
13167 	if (rc) {
13168 		dev_err(&bp->pdev->dev,
13169 			"Cannot enable PCI device, aborting\n");
13170 		goto err_out;
13171 	}
13172 
13173 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13174 		dev_err(&bp->pdev->dev,
13175 			"Cannot find PCI device base address, aborting\n");
13176 		rc = -ENODEV;
13177 		goto err_out_disable;
13178 	}
13179 
13180 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13181 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13182 		rc = -ENODEV;
13183 		goto err_out_disable;
13184 	}
13185 
13186 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13187 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13188 	    PCICFG_REVESION_ID_ERROR_VAL) {
13189 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13190 		rc = -ENODEV;
13191 		goto err_out_disable;
13192 	}
13193 
13194 	if (atomic_read(&pdev->enable_cnt) == 1) {
13195 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13196 		if (rc) {
13197 			dev_err(&bp->pdev->dev,
13198 				"Cannot obtain PCI resources, aborting\n");
13199 			goto err_out_disable;
13200 		}
13201 
13202 		pci_set_master(pdev);
13203 		pci_save_state(pdev);
13204 	}
13205 
13206 	if (IS_PF(bp)) {
13207 		if (!pdev->pm_cap) {
13208 			dev_err(&bp->pdev->dev,
13209 				"Cannot find power management capability, aborting\n");
13210 			rc = -EIO;
13211 			goto err_out_release;
13212 		}
13213 	}
13214 
13215 	if (!pci_is_pcie(pdev)) {
13216 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13217 		rc = -EIO;
13218 		goto err_out_release;
13219 	}
13220 
13221 	rc = bnx2x_set_coherency_mask(bp);
13222 	if (rc)
13223 		goto err_out_release;
13224 
13225 	dev->mem_start = pci_resource_start(pdev, 0);
13226 	dev->base_addr = dev->mem_start;
13227 	dev->mem_end = pci_resource_end(pdev, 0);
13228 
13229 	dev->irq = pdev->irq;
13230 
13231 	bp->regview = pci_ioremap_bar(pdev, 0);
13232 	if (!bp->regview) {
13233 		dev_err(&bp->pdev->dev,
13234 			"Cannot map register space, aborting\n");
13235 		rc = -ENOMEM;
13236 		goto err_out_release;
13237 	}
13238 
13239 	/* In E1/E1H use pci device function given by kernel.
13240 	 * In E2/E3 read physical function from ME register since these chips
13241 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13242 	 * (depending on hypervisor).
13243 	 */
13244 	if (chip_is_e1x) {
13245 		bp->pf_num = PCI_FUNC(pdev->devfn);
13246 	} else {
13247 		/* chip is E2/3*/
13248 		pci_read_config_dword(bp->pdev,
13249 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13250 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13251 				  ME_REG_ABS_PF_NUM_SHIFT);
13252 	}
13253 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13254 
13255 	/* clean indirect addresses */
13256 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13257 			       PCICFG_VENDOR_ID_OFFSET);
13258 
13259 	/* Set PCIe reset type to fundamental for EEH recovery */
13260 	pdev->needs_freset = 1;
13261 
13262 	/* AER (Advanced Error reporting) configuration */
13263 	rc = pci_enable_pcie_error_reporting(pdev);
13264 	if (!rc)
13265 		bp->flags |= AER_ENABLED;
13266 	else
13267 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13268 
13269 	/*
13270 	 * Clean the following indirect addresses for all functions since it
13271 	 * is not used by the driver.
13272 	 */
13273 	if (IS_PF(bp)) {
13274 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13275 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13276 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13277 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13278 
13279 		if (chip_is_e1x) {
13280 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13281 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13282 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13283 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13284 		}
13285 
13286 		/* Enable internal target-read (in case we are probed after PF
13287 		 * FLR). Must be done prior to any BAR read access. Only for
13288 		 * 57712 and up
13289 		 */
13290 		if (!chip_is_e1x)
13291 			REG_WR(bp,
13292 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13293 	}
13294 
13295 	dev->watchdog_timeo = TX_TIMEOUT;
13296 
13297 	dev->netdev_ops = &bnx2x_netdev_ops;
13298 	bnx2x_set_ethtool_ops(bp, dev);
13299 
13300 	dev->priv_flags |= IFF_UNICAST_FLT;
13301 
13302 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13303 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13304 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13305 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13306 	if (!chip_is_e1x) {
13307 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13308 				    NETIF_F_GSO_IPXIP4 |
13309 				    NETIF_F_GSO_UDP_TUNNEL |
13310 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13311 				    NETIF_F_GSO_PARTIAL;
13312 
13313 		dev->hw_enc_features =
13314 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13315 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13316 			NETIF_F_GSO_IPXIP4 |
13317 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13318 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13319 			NETIF_F_GSO_PARTIAL;
13320 
13321 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13322 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13323 	}
13324 
13325 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13326 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13327 
13328 	if (IS_PF(bp)) {
13329 		if (chip_is_e1x)
13330 			bp->accept_any_vlan = true;
13331 		else
13332 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13333 	}
13334 	/* For VF we'll know whether to enable VLAN filtering after
13335 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13336 	 */
13337 
13338 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13339 	dev->features |= NETIF_F_HIGHDMA;
13340 	if (dev->features & NETIF_F_LRO)
13341 		dev->features &= ~NETIF_F_GRO_HW;
13342 
13343 	/* Add Loopback capability to the device */
13344 	dev->hw_features |= NETIF_F_LOOPBACK;
13345 
13346 #ifdef BCM_DCBNL
13347 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13348 #endif
13349 
13350 	/* MTU range, 46 - 9600 */
13351 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13352 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13353 
13354 	/* get_port_hwinfo() will set prtad and mmds properly */
13355 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13356 	bp->mdio.mmds = 0;
13357 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13358 	bp->mdio.dev = dev;
13359 	bp->mdio.mdio_read = bnx2x_mdio_read;
13360 	bp->mdio.mdio_write = bnx2x_mdio_write;
13361 
13362 	return 0;
13363 
13364 err_out_release:
13365 	if (atomic_read(&pdev->enable_cnt) == 1)
13366 		pci_release_regions(pdev);
13367 
13368 err_out_disable:
13369 	pci_disable_device(pdev);
13370 
13371 err_out:
13372 	return rc;
13373 }
13374 
13375 static int bnx2x_check_firmware(struct bnx2x *bp)
13376 {
13377 	const struct firmware *firmware = bp->firmware;
13378 	struct bnx2x_fw_file_hdr *fw_hdr;
13379 	struct bnx2x_fw_file_section *sections;
13380 	u32 offset, len, num_ops;
13381 	__be16 *ops_offsets;
13382 	int i;
13383 	const u8 *fw_ver;
13384 
13385 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13386 		BNX2X_ERR("Wrong FW size\n");
13387 		return -EINVAL;
13388 	}
13389 
13390 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13391 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13392 
13393 	/* Make sure none of the offsets and sizes make us read beyond
13394 	 * the end of the firmware data */
13395 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13396 		offset = be32_to_cpu(sections[i].offset);
13397 		len = be32_to_cpu(sections[i].len);
13398 		if (offset + len > firmware->size) {
13399 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13400 			return -EINVAL;
13401 		}
13402 	}
13403 
13404 	/* Likewise for the init_ops offsets */
13405 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13406 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13407 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13408 
13409 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13410 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13411 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13412 			return -EINVAL;
13413 		}
13414 	}
13415 
13416 	/* Check FW version */
13417 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13418 	fw_ver = firmware->data + offset;
13419 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13420 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13421 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13422 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13423 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13424 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13425 		       BCM_5710_FW_MAJOR_VERSION,
13426 		       BCM_5710_FW_MINOR_VERSION,
13427 		       BCM_5710_FW_REVISION_VERSION,
13428 		       BCM_5710_FW_ENGINEERING_VERSION);
13429 		return -EINVAL;
13430 	}
13431 
13432 	return 0;
13433 }
13434 
13435 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13436 {
13437 	const __be32 *source = (const __be32 *)_source;
13438 	u32 *target = (u32 *)_target;
13439 	u32 i;
13440 
13441 	for (i = 0; i < n/4; i++)
13442 		target[i] = be32_to_cpu(source[i]);
13443 }
13444 
13445 /*
13446    Ops array is stored in the following format:
13447    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13448  */
13449 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13450 {
13451 	const __be32 *source = (const __be32 *)_source;
13452 	struct raw_op *target = (struct raw_op *)_target;
13453 	u32 i, j, tmp;
13454 
13455 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13456 		tmp = be32_to_cpu(source[j]);
13457 		target[i].op = (tmp >> 24) & 0xff;
13458 		target[i].offset = tmp & 0xffffff;
13459 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13460 	}
13461 }
13462 
13463 /* IRO array is stored in the following format:
13464  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13465  */
13466 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13467 {
13468 	const __be32 *source = (const __be32 *)_source;
13469 	struct iro *target = (struct iro *)_target;
13470 	u32 i, j, tmp;
13471 
13472 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13473 		target[i].base = be32_to_cpu(source[j]);
13474 		j++;
13475 		tmp = be32_to_cpu(source[j]);
13476 		target[i].m1 = (tmp >> 16) & 0xffff;
13477 		target[i].m2 = tmp & 0xffff;
13478 		j++;
13479 		tmp = be32_to_cpu(source[j]);
13480 		target[i].m3 = (tmp >> 16) & 0xffff;
13481 		target[i].size = tmp & 0xffff;
13482 		j++;
13483 	}
13484 }
13485 
13486 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13487 {
13488 	const __be16 *source = (const __be16 *)_source;
13489 	u16 *target = (u16 *)_target;
13490 	u32 i;
13491 
13492 	for (i = 0; i < n/2; i++)
13493 		target[i] = be16_to_cpu(source[i]);
13494 }
13495 
13496 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13497 do {									\
13498 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13499 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13500 	if (!bp->arr)							\
13501 		goto lbl;						\
13502 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13503 	     (u8 *)bp->arr, len);					\
13504 } while (0)
13505 
13506 static int bnx2x_init_firmware(struct bnx2x *bp)
13507 {
13508 	const char *fw_file_name;
13509 	struct bnx2x_fw_file_hdr *fw_hdr;
13510 	int rc;
13511 
13512 	if (bp->firmware)
13513 		return 0;
13514 
13515 	if (CHIP_IS_E1(bp))
13516 		fw_file_name = FW_FILE_NAME_E1;
13517 	else if (CHIP_IS_E1H(bp))
13518 		fw_file_name = FW_FILE_NAME_E1H;
13519 	else if (!CHIP_IS_E1x(bp))
13520 		fw_file_name = FW_FILE_NAME_E2;
13521 	else {
13522 		BNX2X_ERR("Unsupported chip revision\n");
13523 		return -EINVAL;
13524 	}
13525 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13526 
13527 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13528 	if (rc) {
13529 		BNX2X_ERR("Can't load firmware file %s\n",
13530 			  fw_file_name);
13531 		goto request_firmware_exit;
13532 	}
13533 
13534 	rc = bnx2x_check_firmware(bp);
13535 	if (rc) {
13536 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13537 		goto request_firmware_exit;
13538 	}
13539 
13540 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13541 
13542 	/* Initialize the pointers to the init arrays */
13543 	/* Blob */
13544 	rc = -ENOMEM;
13545 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13546 
13547 	/* Opcodes */
13548 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13549 
13550 	/* Offsets */
13551 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13552 			    be16_to_cpu_n);
13553 
13554 	/* STORMs firmware */
13555 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13556 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13557 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13558 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13559 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13560 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13561 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13562 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13563 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13564 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13565 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13566 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13567 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13568 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13569 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13570 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13571 	/* IRO */
13572 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13573 
13574 	return 0;
13575 
13576 iro_alloc_err:
13577 	kfree(bp->init_ops_offsets);
13578 init_offsets_alloc_err:
13579 	kfree(bp->init_ops);
13580 init_ops_alloc_err:
13581 	kfree(bp->init_data);
13582 request_firmware_exit:
13583 	release_firmware(bp->firmware);
13584 	bp->firmware = NULL;
13585 
13586 	return rc;
13587 }
13588 
13589 static void bnx2x_release_firmware(struct bnx2x *bp)
13590 {
13591 	kfree(bp->init_ops_offsets);
13592 	kfree(bp->init_ops);
13593 	kfree(bp->init_data);
13594 	release_firmware(bp->firmware);
13595 	bp->firmware = NULL;
13596 }
13597 
13598 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13599 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13600 	.init_hw_cmn      = bnx2x_init_hw_common,
13601 	.init_hw_port     = bnx2x_init_hw_port,
13602 	.init_hw_func     = bnx2x_init_hw_func,
13603 
13604 	.reset_hw_cmn     = bnx2x_reset_common,
13605 	.reset_hw_port    = bnx2x_reset_port,
13606 	.reset_hw_func    = bnx2x_reset_func,
13607 
13608 	.gunzip_init      = bnx2x_gunzip_init,
13609 	.gunzip_end       = bnx2x_gunzip_end,
13610 
13611 	.init_fw          = bnx2x_init_firmware,
13612 	.release_fw       = bnx2x_release_firmware,
13613 };
13614 
13615 void bnx2x__init_func_obj(struct bnx2x *bp)
13616 {
13617 	/* Prepare DMAE related driver resources */
13618 	bnx2x_setup_dmae(bp);
13619 
13620 	bnx2x_init_func_obj(bp, &bp->func_obj,
13621 			    bnx2x_sp(bp, func_rdata),
13622 			    bnx2x_sp_mapping(bp, func_rdata),
13623 			    bnx2x_sp(bp, func_afex_rdata),
13624 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13625 			    &bnx2x_func_sp_drv);
13626 }
13627 
13628 /* must be called after sriov-enable */
13629 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13630 {
13631 	int cid_count = BNX2X_L2_MAX_CID(bp);
13632 
13633 	if (IS_SRIOV(bp))
13634 		cid_count += BNX2X_VF_CIDS;
13635 
13636 	if (CNIC_SUPPORT(bp))
13637 		cid_count += CNIC_CID_MAX;
13638 
13639 	return roundup(cid_count, QM_CID_ROUND);
13640 }
13641 
13642 /**
13643  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13644  *
13645  * @dev:	pci device
13646  *
13647  */
13648 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13649 {
13650 	int index;
13651 	u16 control = 0;
13652 
13653 	/*
13654 	 * If MSI-X is not supported - return number of SBs needed to support
13655 	 * one fast path queue: one FP queue + SB for CNIC
13656 	 */
13657 	if (!pdev->msix_cap) {
13658 		dev_info(&pdev->dev, "no msix capability found\n");
13659 		return 1 + cnic_cnt;
13660 	}
13661 	dev_info(&pdev->dev, "msix capability found\n");
13662 
13663 	/*
13664 	 * The value in the PCI configuration space is the index of the last
13665 	 * entry, namely one less than the actual size of the table, which is
13666 	 * exactly what we want to return from this function: number of all SBs
13667 	 * without the default SB.
13668 	 * For VFs there is no default SB, then we return (index+1).
13669 	 */
13670 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13671 
13672 	index = control & PCI_MSIX_FLAGS_QSIZE;
13673 
13674 	return index;
13675 }
13676 
13677 static int set_max_cos_est(int chip_id)
13678 {
13679 	switch (chip_id) {
13680 	case BCM57710:
13681 	case BCM57711:
13682 	case BCM57711E:
13683 		return BNX2X_MULTI_TX_COS_E1X;
13684 	case BCM57712:
13685 	case BCM57712_MF:
13686 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13687 	case BCM57800:
13688 	case BCM57800_MF:
13689 	case BCM57810:
13690 	case BCM57810_MF:
13691 	case BCM57840_4_10:
13692 	case BCM57840_2_20:
13693 	case BCM57840_O:
13694 	case BCM57840_MFO:
13695 	case BCM57840_MF:
13696 	case BCM57811:
13697 	case BCM57811_MF:
13698 		return BNX2X_MULTI_TX_COS_E3B0;
13699 	case BCM57712_VF:
13700 	case BCM57800_VF:
13701 	case BCM57810_VF:
13702 	case BCM57840_VF:
13703 	case BCM57811_VF:
13704 		return 1;
13705 	default:
13706 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13707 		return -ENODEV;
13708 	}
13709 }
13710 
13711 static int set_is_vf(int chip_id)
13712 {
13713 	switch (chip_id) {
13714 	case BCM57712_VF:
13715 	case BCM57800_VF:
13716 	case BCM57810_VF:
13717 	case BCM57840_VF:
13718 	case BCM57811_VF:
13719 		return true;
13720 	default:
13721 		return false;
13722 	}
13723 }
13724 
13725 /* nig_tsgen registers relative address */
13726 #define tsgen_ctrl 0x0
13727 #define tsgen_freecount 0x10
13728 #define tsgen_synctime_t0 0x20
13729 #define tsgen_offset_t0 0x28
13730 #define tsgen_drift_t0 0x30
13731 #define tsgen_synctime_t1 0x58
13732 #define tsgen_offset_t1 0x60
13733 #define tsgen_drift_t1 0x68
13734 
13735 /* FW workaround for setting drift */
13736 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13737 					  int best_val, int best_period)
13738 {
13739 	struct bnx2x_func_state_params func_params = {NULL};
13740 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13741 		&func_params.params.set_timesync;
13742 
13743 	/* Prepare parameters for function state transitions */
13744 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13745 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13746 
13747 	func_params.f_obj = &bp->func_obj;
13748 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13749 
13750 	/* Function parameters */
13751 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13752 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13753 	set_timesync_params->add_sub_drift_adjust_value =
13754 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13755 	set_timesync_params->drift_adjust_value = best_val;
13756 	set_timesync_params->drift_adjust_period = best_period;
13757 
13758 	return bnx2x_func_state_change(bp, &func_params);
13759 }
13760 
13761 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13762 {
13763 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13764 	int rc;
13765 	int drift_dir = 1;
13766 	int val, period, period1, period2, dif, dif1, dif2;
13767 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13768 
13769 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13770 
13771 	if (!netif_running(bp->dev)) {
13772 		DP(BNX2X_MSG_PTP,
13773 		   "PTP adjfreq called while the interface is down\n");
13774 		return -ENETDOWN;
13775 	}
13776 
13777 	if (ppb < 0) {
13778 		ppb = -ppb;
13779 		drift_dir = 0;
13780 	}
13781 
13782 	if (ppb == 0) {
13783 		best_val = 1;
13784 		best_period = 0x1FFFFFF;
13785 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13786 		best_val = 31;
13787 		best_period = 1;
13788 	} else {
13789 		/* Changed not to allow val = 8, 16, 24 as these values
13790 		 * are not supported in workaround.
13791 		 */
13792 		for (val = 0; val <= 31; val++) {
13793 			if ((val & 0x7) == 0)
13794 				continue;
13795 			period1 = val * 1000000 / ppb;
13796 			period2 = period1 + 1;
13797 			if (period1 != 0)
13798 				dif1 = ppb - (val * 1000000 / period1);
13799 			else
13800 				dif1 = BNX2X_MAX_PHC_DRIFT;
13801 			if (dif1 < 0)
13802 				dif1 = -dif1;
13803 			dif2 = ppb - (val * 1000000 / period2);
13804 			if (dif2 < 0)
13805 				dif2 = -dif2;
13806 			dif = (dif1 < dif2) ? dif1 : dif2;
13807 			period = (dif1 < dif2) ? period1 : period2;
13808 			if (dif < best_dif) {
13809 				best_dif = dif;
13810 				best_val = val;
13811 				best_period = period;
13812 			}
13813 		}
13814 	}
13815 
13816 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13817 					    best_period);
13818 	if (rc) {
13819 		BNX2X_ERR("Failed to set drift\n");
13820 		return -EFAULT;
13821 	}
13822 
13823 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13824 	   best_period);
13825 
13826 	return 0;
13827 }
13828 
13829 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13830 {
13831 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13832 
13833 	if (!netif_running(bp->dev)) {
13834 		DP(BNX2X_MSG_PTP,
13835 		   "PTP adjtime called while the interface is down\n");
13836 		return -ENETDOWN;
13837 	}
13838 
13839 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13840 
13841 	timecounter_adjtime(&bp->timecounter, delta);
13842 
13843 	return 0;
13844 }
13845 
13846 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13847 {
13848 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13849 	u64 ns;
13850 
13851 	if (!netif_running(bp->dev)) {
13852 		DP(BNX2X_MSG_PTP,
13853 		   "PTP gettime called while the interface is down\n");
13854 		return -ENETDOWN;
13855 	}
13856 
13857 	ns = timecounter_read(&bp->timecounter);
13858 
13859 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13860 
13861 	*ts = ns_to_timespec64(ns);
13862 
13863 	return 0;
13864 }
13865 
13866 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13867 			     const struct timespec64 *ts)
13868 {
13869 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13870 	u64 ns;
13871 
13872 	if (!netif_running(bp->dev)) {
13873 		DP(BNX2X_MSG_PTP,
13874 		   "PTP settime called while the interface is down\n");
13875 		return -ENETDOWN;
13876 	}
13877 
13878 	ns = timespec64_to_ns(ts);
13879 
13880 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13881 
13882 	/* Re-init the timecounter */
13883 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13884 
13885 	return 0;
13886 }
13887 
13888 /* Enable (or disable) ancillary features of the phc subsystem */
13889 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13890 			    struct ptp_clock_request *rq, int on)
13891 {
13892 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13893 
13894 	BNX2X_ERR("PHC ancillary features are not supported\n");
13895 	return -ENOTSUPP;
13896 }
13897 
13898 static void bnx2x_register_phc(struct bnx2x *bp)
13899 {
13900 	/* Fill the ptp_clock_info struct and register PTP clock*/
13901 	bp->ptp_clock_info.owner = THIS_MODULE;
13902 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13903 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13904 	bp->ptp_clock_info.n_alarm = 0;
13905 	bp->ptp_clock_info.n_ext_ts = 0;
13906 	bp->ptp_clock_info.n_per_out = 0;
13907 	bp->ptp_clock_info.pps = 0;
13908 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13909 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13910 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13911 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13912 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13913 
13914 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13915 	if (IS_ERR(bp->ptp_clock)) {
13916 		bp->ptp_clock = NULL;
13917 		BNX2X_ERR("PTP clock registration failed\n");
13918 	}
13919 }
13920 
13921 static int bnx2x_init_one(struct pci_dev *pdev,
13922 				    const struct pci_device_id *ent)
13923 {
13924 	struct net_device *dev = NULL;
13925 	struct bnx2x *bp;
13926 	int rc, max_non_def_sbs;
13927 	int rx_count, tx_count, rss_count, doorbell_size;
13928 	int max_cos_est;
13929 	bool is_vf;
13930 	int cnic_cnt;
13931 
13932 	/* Management FW 'remembers' living interfaces. Allow it some time
13933 	 * to forget previously living interfaces, allowing a proper re-load.
13934 	 */
13935 	if (is_kdump_kernel()) {
13936 		ktime_t now = ktime_get_boottime();
13937 		ktime_t fw_ready_time = ktime_set(5, 0);
13938 
13939 		if (ktime_before(now, fw_ready_time))
13940 			msleep(ktime_ms_delta(fw_ready_time, now));
13941 	}
13942 
13943 	/* An estimated maximum supported CoS number according to the chip
13944 	 * version.
13945 	 * We will try to roughly estimate the maximum number of CoSes this chip
13946 	 * may support in order to minimize the memory allocated for Tx
13947 	 * netdev_queue's. This number will be accurately calculated during the
13948 	 * initialization of bp->max_cos based on the chip versions AND chip
13949 	 * revision in the bnx2x_init_bp().
13950 	 */
13951 	max_cos_est = set_max_cos_est(ent->driver_data);
13952 	if (max_cos_est < 0)
13953 		return max_cos_est;
13954 	is_vf = set_is_vf(ent->driver_data);
13955 	cnic_cnt = is_vf ? 0 : 1;
13956 
13957 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13958 
13959 	/* add another SB for VF as it has no default SB */
13960 	max_non_def_sbs += is_vf ? 1 : 0;
13961 
13962 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13963 	rss_count = max_non_def_sbs - cnic_cnt;
13964 
13965 	if (rss_count < 1)
13966 		return -EINVAL;
13967 
13968 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13969 	rx_count = rss_count + cnic_cnt;
13970 
13971 	/* Maximum number of netdev Tx queues:
13972 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13973 	 */
13974 	tx_count = rss_count * max_cos_est + cnic_cnt;
13975 
13976 	/* dev zeroed in init_etherdev */
13977 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13978 	if (!dev)
13979 		return -ENOMEM;
13980 
13981 	bp = netdev_priv(dev);
13982 
13983 	bp->flags = 0;
13984 	if (is_vf)
13985 		bp->flags |= IS_VF_FLAG;
13986 
13987 	bp->igu_sb_cnt = max_non_def_sbs;
13988 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13989 	bp->msg_enable = debug;
13990 	bp->cnic_support = cnic_cnt;
13991 	bp->cnic_probe = bnx2x_cnic_probe;
13992 
13993 	pci_set_drvdata(pdev, dev);
13994 
13995 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13996 	if (rc < 0) {
13997 		free_netdev(dev);
13998 		return rc;
13999 	}
14000 
14001 	BNX2X_DEV_INFO("This is a %s function\n",
14002 		       IS_PF(bp) ? "physical" : "virtual");
14003 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
14004 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
14005 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
14006 		       tx_count, rx_count);
14007 
14008 	rc = bnx2x_init_bp(bp);
14009 	if (rc)
14010 		goto init_one_exit;
14011 
14012 	/* Map doorbells here as we need the real value of bp->max_cos which
14013 	 * is initialized in bnx2x_init_bp() to determine the number of
14014 	 * l2 connections.
14015 	 */
14016 	if (IS_VF(bp)) {
14017 		bp->doorbells = bnx2x_vf_doorbells(bp);
14018 		rc = bnx2x_vf_pci_alloc(bp);
14019 		if (rc)
14020 			goto init_one_freemem;
14021 	} else {
14022 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14023 		if (doorbell_size > pci_resource_len(pdev, 2)) {
14024 			dev_err(&bp->pdev->dev,
14025 				"Cannot map doorbells, bar size too small, aborting\n");
14026 			rc = -ENOMEM;
14027 			goto init_one_freemem;
14028 		}
14029 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
14030 						doorbell_size);
14031 	}
14032 	if (!bp->doorbells) {
14033 		dev_err(&bp->pdev->dev,
14034 			"Cannot map doorbell space, aborting\n");
14035 		rc = -ENOMEM;
14036 		goto init_one_freemem;
14037 	}
14038 
14039 	if (IS_VF(bp)) {
14040 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14041 		if (rc)
14042 			goto init_one_freemem;
14043 
14044 #ifdef CONFIG_BNX2X_SRIOV
14045 		/* VF with OLD Hypervisor or old PF do not support filtering */
14046 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14047 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14048 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14049 		}
14050 #endif
14051 	}
14052 
14053 	/* Enable SRIOV if capability found in configuration space */
14054 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14055 	if (rc)
14056 		goto init_one_freemem;
14057 
14058 	/* calc qm_cid_count */
14059 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14060 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14061 
14062 	/* disable FCOE L2 queue for E1x*/
14063 	if (CHIP_IS_E1x(bp))
14064 		bp->flags |= NO_FCOE_FLAG;
14065 
14066 	/* Set bp->num_queues for MSI-X mode*/
14067 	bnx2x_set_num_queues(bp);
14068 
14069 	/* Configure interrupt mode: try to enable MSI-X/MSI if
14070 	 * needed.
14071 	 */
14072 	rc = bnx2x_set_int_mode(bp);
14073 	if (rc) {
14074 		dev_err(&pdev->dev, "Cannot set interrupts\n");
14075 		goto init_one_freemem;
14076 	}
14077 	BNX2X_DEV_INFO("set interrupts successfully\n");
14078 
14079 	/* register the net device */
14080 	rc = register_netdev(dev);
14081 	if (rc) {
14082 		dev_err(&pdev->dev, "Cannot register net device\n");
14083 		goto init_one_freemem;
14084 	}
14085 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14086 
14087 	if (!NO_FCOE(bp)) {
14088 		/* Add storage MAC address */
14089 		rtnl_lock();
14090 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14091 		rtnl_unlock();
14092 	}
14093 	BNX2X_DEV_INFO(
14094 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14095 	       board_info[ent->driver_data].name,
14096 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14097 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14098 	pcie_print_link_status(bp->pdev);
14099 
14100 	bnx2x_register_phc(bp);
14101 
14102 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14103 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14104 
14105 	return 0;
14106 
14107 init_one_freemem:
14108 	bnx2x_free_mem_bp(bp);
14109 
14110 init_one_exit:
14111 	bnx2x_disable_pcie_error_reporting(bp);
14112 
14113 	if (bp->regview)
14114 		iounmap(bp->regview);
14115 
14116 	if (IS_PF(bp) && bp->doorbells)
14117 		iounmap(bp->doorbells);
14118 
14119 	free_netdev(dev);
14120 
14121 	if (atomic_read(&pdev->enable_cnt) == 1)
14122 		pci_release_regions(pdev);
14123 
14124 	pci_disable_device(pdev);
14125 
14126 	return rc;
14127 }
14128 
14129 static void __bnx2x_remove(struct pci_dev *pdev,
14130 			   struct net_device *dev,
14131 			   struct bnx2x *bp,
14132 			   bool remove_netdev)
14133 {
14134 	if (bp->ptp_clock) {
14135 		ptp_clock_unregister(bp->ptp_clock);
14136 		bp->ptp_clock = NULL;
14137 	}
14138 
14139 	/* Delete storage MAC address */
14140 	if (!NO_FCOE(bp)) {
14141 		rtnl_lock();
14142 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14143 		rtnl_unlock();
14144 	}
14145 
14146 #ifdef BCM_DCBNL
14147 	/* Delete app tlvs from dcbnl */
14148 	bnx2x_dcbnl_update_applist(bp, true);
14149 #endif
14150 
14151 	if (IS_PF(bp) &&
14152 	    !BP_NOMCP(bp) &&
14153 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14154 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14155 
14156 	/* Close the interface - either directly or implicitly */
14157 	if (remove_netdev) {
14158 		unregister_netdev(dev);
14159 	} else {
14160 		rtnl_lock();
14161 		dev_close(dev);
14162 		rtnl_unlock();
14163 	}
14164 
14165 	bnx2x_iov_remove_one(bp);
14166 
14167 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14168 	if (IS_PF(bp)) {
14169 		bnx2x_set_power_state(bp, PCI_D0);
14170 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14171 
14172 		/* Set endianity registers to reset values in case next driver
14173 		 * boots in different endianty environment.
14174 		 */
14175 		bnx2x_reset_endianity(bp);
14176 	}
14177 
14178 	/* Disable MSI/MSI-X */
14179 	bnx2x_disable_msi(bp);
14180 
14181 	/* Power off */
14182 	if (IS_PF(bp))
14183 		bnx2x_set_power_state(bp, PCI_D3hot);
14184 
14185 	/* Make sure RESET task is not scheduled before continuing */
14186 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14187 
14188 	/* send message via vfpf channel to release the resources of this vf */
14189 	if (IS_VF(bp))
14190 		bnx2x_vfpf_release(bp);
14191 
14192 	/* Assumes no further PCIe PM changes will occur */
14193 	if (system_state == SYSTEM_POWER_OFF) {
14194 		pci_wake_from_d3(pdev, bp->wol);
14195 		pci_set_power_state(pdev, PCI_D3hot);
14196 	}
14197 
14198 	bnx2x_disable_pcie_error_reporting(bp);
14199 	if (remove_netdev) {
14200 		if (bp->regview)
14201 			iounmap(bp->regview);
14202 
14203 		/* For vfs, doorbells are part of the regview and were unmapped
14204 		 * along with it. FW is only loaded by PF.
14205 		 */
14206 		if (IS_PF(bp)) {
14207 			if (bp->doorbells)
14208 				iounmap(bp->doorbells);
14209 
14210 			bnx2x_release_firmware(bp);
14211 		} else {
14212 			bnx2x_vf_pci_dealloc(bp);
14213 		}
14214 		bnx2x_free_mem_bp(bp);
14215 
14216 		free_netdev(dev);
14217 
14218 		if (atomic_read(&pdev->enable_cnt) == 1)
14219 			pci_release_regions(pdev);
14220 
14221 		pci_disable_device(pdev);
14222 	}
14223 }
14224 
14225 static void bnx2x_remove_one(struct pci_dev *pdev)
14226 {
14227 	struct net_device *dev = pci_get_drvdata(pdev);
14228 	struct bnx2x *bp;
14229 
14230 	if (!dev) {
14231 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14232 		return;
14233 	}
14234 	bp = netdev_priv(dev);
14235 
14236 	__bnx2x_remove(pdev, dev, bp, true);
14237 }
14238 
14239 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14240 {
14241 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14242 
14243 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14244 
14245 	if (CNIC_LOADED(bp))
14246 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14247 
14248 	/* Stop Tx */
14249 	bnx2x_tx_disable(bp);
14250 	/* Delete all NAPI objects */
14251 	bnx2x_del_all_napi(bp);
14252 	if (CNIC_LOADED(bp))
14253 		bnx2x_del_all_napi_cnic(bp);
14254 	netdev_reset_tc(bp->dev);
14255 
14256 	del_timer_sync(&bp->timer);
14257 	cancel_delayed_work_sync(&bp->sp_task);
14258 	cancel_delayed_work_sync(&bp->period_task);
14259 
14260 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14261 		bp->stats_state = STATS_STATE_DISABLED;
14262 		up(&bp->stats_lock);
14263 	}
14264 
14265 	bnx2x_save_statistics(bp);
14266 
14267 	netif_carrier_off(bp->dev);
14268 
14269 	return 0;
14270 }
14271 
14272 /**
14273  * bnx2x_io_error_detected - called when PCI error is detected
14274  * @pdev: Pointer to PCI device
14275  * @state: The current pci connection state
14276  *
14277  * This function is called after a PCI bus error affecting
14278  * this device has been detected.
14279  */
14280 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14281 						pci_channel_state_t state)
14282 {
14283 	struct net_device *dev = pci_get_drvdata(pdev);
14284 	struct bnx2x *bp = netdev_priv(dev);
14285 
14286 	rtnl_lock();
14287 
14288 	BNX2X_ERR("IO error detected\n");
14289 
14290 	netif_device_detach(dev);
14291 
14292 	if (state == pci_channel_io_perm_failure) {
14293 		rtnl_unlock();
14294 		return PCI_ERS_RESULT_DISCONNECT;
14295 	}
14296 
14297 	if (netif_running(dev))
14298 		bnx2x_eeh_nic_unload(bp);
14299 
14300 	bnx2x_prev_path_mark_eeh(bp);
14301 
14302 	pci_disable_device(pdev);
14303 
14304 	rtnl_unlock();
14305 
14306 	/* Request a slot reset */
14307 	return PCI_ERS_RESULT_NEED_RESET;
14308 }
14309 
14310 /**
14311  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14312  * @pdev: Pointer to PCI device
14313  *
14314  * Restart the card from scratch, as if from a cold-boot.
14315  */
14316 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14317 {
14318 	struct net_device *dev = pci_get_drvdata(pdev);
14319 	struct bnx2x *bp = netdev_priv(dev);
14320 	int i;
14321 
14322 	rtnl_lock();
14323 	BNX2X_ERR("IO slot reset initializing...\n");
14324 	if (pci_enable_device(pdev)) {
14325 		dev_err(&pdev->dev,
14326 			"Cannot re-enable PCI device after reset\n");
14327 		rtnl_unlock();
14328 		return PCI_ERS_RESULT_DISCONNECT;
14329 	}
14330 
14331 	pci_set_master(pdev);
14332 	pci_restore_state(pdev);
14333 	pci_save_state(pdev);
14334 
14335 	if (netif_running(dev))
14336 		bnx2x_set_power_state(bp, PCI_D0);
14337 
14338 	if (netif_running(dev)) {
14339 		BNX2X_ERR("IO slot reset --> driver unload\n");
14340 
14341 		/* MCP should have been reset; Need to wait for validity */
14342 		if (bnx2x_init_shmem(bp)) {
14343 			rtnl_unlock();
14344 			return PCI_ERS_RESULT_DISCONNECT;
14345 		}
14346 
14347 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14348 			u32 v;
14349 
14350 			v = SHMEM2_RD(bp,
14351 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14352 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14353 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14354 		}
14355 		bnx2x_drain_tx_queues(bp);
14356 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14357 		bnx2x_netif_stop(bp, 1);
14358 		bnx2x_free_irq(bp);
14359 
14360 		/* Report UNLOAD_DONE to MCP */
14361 		bnx2x_send_unload_done(bp, true);
14362 
14363 		bp->sp_state = 0;
14364 		bp->port.pmf = 0;
14365 
14366 		bnx2x_prev_unload(bp);
14367 
14368 		/* We should have reseted the engine, so It's fair to
14369 		 * assume the FW will no longer write to the bnx2x driver.
14370 		 */
14371 		bnx2x_squeeze_objects(bp);
14372 		bnx2x_free_skbs(bp);
14373 		for_each_rx_queue(bp, i)
14374 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14375 		bnx2x_free_fp_mem(bp);
14376 		bnx2x_free_mem(bp);
14377 
14378 		bp->state = BNX2X_STATE_CLOSED;
14379 	}
14380 
14381 	rtnl_unlock();
14382 
14383 	return PCI_ERS_RESULT_RECOVERED;
14384 }
14385 
14386 /**
14387  * bnx2x_io_resume - called when traffic can start flowing again
14388  * @pdev: Pointer to PCI device
14389  *
14390  * This callback is called when the error recovery driver tells us that
14391  * its OK to resume normal operation.
14392  */
14393 static void bnx2x_io_resume(struct pci_dev *pdev)
14394 {
14395 	struct net_device *dev = pci_get_drvdata(pdev);
14396 	struct bnx2x *bp = netdev_priv(dev);
14397 
14398 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14399 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14400 		return;
14401 	}
14402 
14403 	rtnl_lock();
14404 
14405 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14406 							DRV_MSG_SEQ_NUMBER_MASK;
14407 
14408 	if (netif_running(dev))
14409 		bnx2x_nic_load(bp, LOAD_NORMAL);
14410 
14411 	netif_device_attach(dev);
14412 
14413 	rtnl_unlock();
14414 }
14415 
14416 static const struct pci_error_handlers bnx2x_err_handler = {
14417 	.error_detected = bnx2x_io_error_detected,
14418 	.slot_reset     = bnx2x_io_slot_reset,
14419 	.resume         = bnx2x_io_resume,
14420 };
14421 
14422 static void bnx2x_shutdown(struct pci_dev *pdev)
14423 {
14424 	struct net_device *dev = pci_get_drvdata(pdev);
14425 	struct bnx2x *bp;
14426 
14427 	if (!dev)
14428 		return;
14429 
14430 	bp = netdev_priv(dev);
14431 	if (!bp)
14432 		return;
14433 
14434 	rtnl_lock();
14435 	netif_device_detach(dev);
14436 	rtnl_unlock();
14437 
14438 	/* Don't remove the netdevice, as there are scenarios which will cause
14439 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14440 	 * rootfs is mounted from SAN.
14441 	 */
14442 	__bnx2x_remove(pdev, dev, bp, false);
14443 }
14444 
14445 static struct pci_driver bnx2x_pci_driver = {
14446 	.name        = DRV_MODULE_NAME,
14447 	.id_table    = bnx2x_pci_tbl,
14448 	.probe       = bnx2x_init_one,
14449 	.remove      = bnx2x_remove_one,
14450 	.suspend     = bnx2x_suspend,
14451 	.resume      = bnx2x_resume,
14452 	.err_handler = &bnx2x_err_handler,
14453 #ifdef CONFIG_BNX2X_SRIOV
14454 	.sriov_configure = bnx2x_sriov_configure,
14455 #endif
14456 	.shutdown    = bnx2x_shutdown,
14457 };
14458 
14459 static int __init bnx2x_init(void)
14460 {
14461 	int ret;
14462 
14463 	pr_info("%s", version);
14464 
14465 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14466 	if (bnx2x_wq == NULL) {
14467 		pr_err("Cannot create workqueue\n");
14468 		return -ENOMEM;
14469 	}
14470 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14471 	if (!bnx2x_iov_wq) {
14472 		pr_err("Cannot create iov workqueue\n");
14473 		destroy_workqueue(bnx2x_wq);
14474 		return -ENOMEM;
14475 	}
14476 
14477 	ret = pci_register_driver(&bnx2x_pci_driver);
14478 	if (ret) {
14479 		pr_err("Cannot register driver\n");
14480 		destroy_workqueue(bnx2x_wq);
14481 		destroy_workqueue(bnx2x_iov_wq);
14482 	}
14483 	return ret;
14484 }
14485 
14486 static void __exit bnx2x_cleanup(void)
14487 {
14488 	struct list_head *pos, *q;
14489 
14490 	pci_unregister_driver(&bnx2x_pci_driver);
14491 
14492 	destroy_workqueue(bnx2x_wq);
14493 	destroy_workqueue(bnx2x_iov_wq);
14494 
14495 	/* Free globally allocated resources */
14496 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14497 		struct bnx2x_prev_path_list *tmp =
14498 			list_entry(pos, struct bnx2x_prev_path_list, list);
14499 		list_del(pos);
14500 		kfree(tmp);
14501 	}
14502 }
14503 
14504 void bnx2x_notify_link_changed(struct bnx2x *bp)
14505 {
14506 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14507 }
14508 
14509 module_init(bnx2x_init);
14510 module_exit(bnx2x_cleanup);
14511 
14512 /**
14513  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14514  *
14515  * @bp:		driver handle
14516  * @set:	set or clear the CAM entry
14517  *
14518  * This function will wait until the ramrod completion returns.
14519  * Return 0 if success, -ENODEV if ramrod doesn't return.
14520  */
14521 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14522 {
14523 	unsigned long ramrod_flags = 0;
14524 
14525 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14526 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14527 				 &bp->iscsi_l2_mac_obj, true,
14528 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14529 }
14530 
14531 /* count denotes the number of new completions we have seen */
14532 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14533 {
14534 	struct eth_spe *spe;
14535 	int cxt_index, cxt_offset;
14536 
14537 #ifdef BNX2X_STOP_ON_ERROR
14538 	if (unlikely(bp->panic))
14539 		return;
14540 #endif
14541 
14542 	spin_lock_bh(&bp->spq_lock);
14543 	BUG_ON(bp->cnic_spq_pending < count);
14544 	bp->cnic_spq_pending -= count;
14545 
14546 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14547 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14548 				& SPE_HDR_CONN_TYPE) >>
14549 				SPE_HDR_CONN_TYPE_SHIFT;
14550 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14551 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14552 
14553 		/* Set validation for iSCSI L2 client before sending SETUP
14554 		 *  ramrod
14555 		 */
14556 		if (type == ETH_CONNECTION_TYPE) {
14557 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14558 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14559 					ILT_PAGE_CIDS;
14560 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14561 					(cxt_index * ILT_PAGE_CIDS);
14562 				bnx2x_set_ctx_validation(bp,
14563 					&bp->context[cxt_index].
14564 							 vcxt[cxt_offset].eth,
14565 					BNX2X_ISCSI_ETH_CID(bp));
14566 			}
14567 		}
14568 
14569 		/*
14570 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14571 		 * and in the air. We also check that number of outstanding
14572 		 * COMMON ramrods is not more than the EQ and SPQ can
14573 		 * accommodate.
14574 		 */
14575 		if (type == ETH_CONNECTION_TYPE) {
14576 			if (!atomic_read(&bp->cq_spq_left))
14577 				break;
14578 			else
14579 				atomic_dec(&bp->cq_spq_left);
14580 		} else if (type == NONE_CONNECTION_TYPE) {
14581 			if (!atomic_read(&bp->eq_spq_left))
14582 				break;
14583 			else
14584 				atomic_dec(&bp->eq_spq_left);
14585 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14586 			   (type == FCOE_CONNECTION_TYPE)) {
14587 			if (bp->cnic_spq_pending >=
14588 			    bp->cnic_eth_dev.max_kwqe_pending)
14589 				break;
14590 			else
14591 				bp->cnic_spq_pending++;
14592 		} else {
14593 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14594 			bnx2x_panic();
14595 			break;
14596 		}
14597 
14598 		spe = bnx2x_sp_get_next(bp);
14599 		*spe = *bp->cnic_kwq_cons;
14600 
14601 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14602 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14603 
14604 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14605 			bp->cnic_kwq_cons = bp->cnic_kwq;
14606 		else
14607 			bp->cnic_kwq_cons++;
14608 	}
14609 	bnx2x_sp_prod_update(bp);
14610 	spin_unlock_bh(&bp->spq_lock);
14611 }
14612 
14613 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14614 			       struct kwqe_16 *kwqes[], u32 count)
14615 {
14616 	struct bnx2x *bp = netdev_priv(dev);
14617 	int i;
14618 
14619 #ifdef BNX2X_STOP_ON_ERROR
14620 	if (unlikely(bp->panic)) {
14621 		BNX2X_ERR("Can't post to SP queue while panic\n");
14622 		return -EIO;
14623 	}
14624 #endif
14625 
14626 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14627 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14628 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14629 		return -EAGAIN;
14630 	}
14631 
14632 	spin_lock_bh(&bp->spq_lock);
14633 
14634 	for (i = 0; i < count; i++) {
14635 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14636 
14637 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14638 			break;
14639 
14640 		*bp->cnic_kwq_prod = *spe;
14641 
14642 		bp->cnic_kwq_pending++;
14643 
14644 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14645 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14646 		   spe->data.update_data_addr.hi,
14647 		   spe->data.update_data_addr.lo,
14648 		   bp->cnic_kwq_pending);
14649 
14650 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14651 			bp->cnic_kwq_prod = bp->cnic_kwq;
14652 		else
14653 			bp->cnic_kwq_prod++;
14654 	}
14655 
14656 	spin_unlock_bh(&bp->spq_lock);
14657 
14658 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14659 		bnx2x_cnic_sp_post(bp, 0);
14660 
14661 	return i;
14662 }
14663 
14664 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14665 {
14666 	struct cnic_ops *c_ops;
14667 	int rc = 0;
14668 
14669 	mutex_lock(&bp->cnic_mutex);
14670 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14671 					  lockdep_is_held(&bp->cnic_mutex));
14672 	if (c_ops)
14673 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14674 	mutex_unlock(&bp->cnic_mutex);
14675 
14676 	return rc;
14677 }
14678 
14679 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14680 {
14681 	struct cnic_ops *c_ops;
14682 	int rc = 0;
14683 
14684 	rcu_read_lock();
14685 	c_ops = rcu_dereference(bp->cnic_ops);
14686 	if (c_ops)
14687 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14688 	rcu_read_unlock();
14689 
14690 	return rc;
14691 }
14692 
14693 /*
14694  * for commands that have no data
14695  */
14696 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14697 {
14698 	struct cnic_ctl_info ctl = {0};
14699 
14700 	ctl.cmd = cmd;
14701 
14702 	return bnx2x_cnic_ctl_send(bp, &ctl);
14703 }
14704 
14705 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14706 {
14707 	struct cnic_ctl_info ctl = {0};
14708 
14709 	/* first we tell CNIC and only then we count this as a completion */
14710 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14711 	ctl.data.comp.cid = cid;
14712 	ctl.data.comp.error = err;
14713 
14714 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14715 	bnx2x_cnic_sp_post(bp, 0);
14716 }
14717 
14718 /* Called with netif_addr_lock_bh() taken.
14719  * Sets an rx_mode config for an iSCSI ETH client.
14720  * Doesn't block.
14721  * Completion should be checked outside.
14722  */
14723 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14724 {
14725 	unsigned long accept_flags = 0, ramrod_flags = 0;
14726 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14727 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14728 
14729 	if (start) {
14730 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14731 		 * because it's the only way for UIO Queue to accept
14732 		 * multicasts (in non-promiscuous mode only one Queue per
14733 		 * function will receive multicast packets (leading in our
14734 		 * case).
14735 		 */
14736 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14737 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14738 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14739 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14740 
14741 		/* Clear STOP_PENDING bit if START is requested */
14742 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14743 
14744 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14745 	} else
14746 		/* Clear START_PENDING bit if STOP is requested */
14747 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14748 
14749 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14750 		set_bit(sched_state, &bp->sp_state);
14751 	else {
14752 		__set_bit(RAMROD_RX, &ramrod_flags);
14753 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14754 				    ramrod_flags);
14755 	}
14756 }
14757 
14758 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14759 {
14760 	struct bnx2x *bp = netdev_priv(dev);
14761 	int rc = 0;
14762 
14763 	switch (ctl->cmd) {
14764 	case DRV_CTL_CTXTBL_WR_CMD: {
14765 		u32 index = ctl->data.io.offset;
14766 		dma_addr_t addr = ctl->data.io.dma_addr;
14767 
14768 		bnx2x_ilt_wr(bp, index, addr);
14769 		break;
14770 	}
14771 
14772 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14773 		int count = ctl->data.credit.credit_count;
14774 
14775 		bnx2x_cnic_sp_post(bp, count);
14776 		break;
14777 	}
14778 
14779 	/* rtnl_lock is held.  */
14780 	case DRV_CTL_START_L2_CMD: {
14781 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14782 		unsigned long sp_bits = 0;
14783 
14784 		/* Configure the iSCSI classification object */
14785 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14786 				   cp->iscsi_l2_client_id,
14787 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14788 				   bnx2x_sp(bp, mac_rdata),
14789 				   bnx2x_sp_mapping(bp, mac_rdata),
14790 				   BNX2X_FILTER_MAC_PENDING,
14791 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14792 				   &bp->macs_pool);
14793 
14794 		/* Set iSCSI MAC address */
14795 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14796 		if (rc)
14797 			break;
14798 
14799 		mmiowb();
14800 		barrier();
14801 
14802 		/* Start accepting on iSCSI L2 ring */
14803 
14804 		netif_addr_lock_bh(dev);
14805 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14806 		netif_addr_unlock_bh(dev);
14807 
14808 		/* bits to wait on */
14809 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14810 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14811 
14812 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14813 			BNX2X_ERR("rx_mode completion timed out!\n");
14814 
14815 		break;
14816 	}
14817 
14818 	/* rtnl_lock is held.  */
14819 	case DRV_CTL_STOP_L2_CMD: {
14820 		unsigned long sp_bits = 0;
14821 
14822 		/* Stop accepting on iSCSI L2 ring */
14823 		netif_addr_lock_bh(dev);
14824 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14825 		netif_addr_unlock_bh(dev);
14826 
14827 		/* bits to wait on */
14828 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14829 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14830 
14831 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14832 			BNX2X_ERR("rx_mode completion timed out!\n");
14833 
14834 		mmiowb();
14835 		barrier();
14836 
14837 		/* Unset iSCSI L2 MAC */
14838 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14839 					BNX2X_ISCSI_ETH_MAC, true);
14840 		break;
14841 	}
14842 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14843 		int count = ctl->data.credit.credit_count;
14844 
14845 		smp_mb__before_atomic();
14846 		atomic_add(count, &bp->cq_spq_left);
14847 		smp_mb__after_atomic();
14848 		break;
14849 	}
14850 	case DRV_CTL_ULP_REGISTER_CMD: {
14851 		int ulp_type = ctl->data.register_data.ulp_type;
14852 
14853 		if (CHIP_IS_E3(bp)) {
14854 			int idx = BP_FW_MB_IDX(bp);
14855 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14856 			int path = BP_PATH(bp);
14857 			int port = BP_PORT(bp);
14858 			int i;
14859 			u32 scratch_offset;
14860 			u32 *host_addr;
14861 
14862 			/* first write capability to shmem2 */
14863 			if (ulp_type == CNIC_ULP_ISCSI)
14864 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14865 			else if (ulp_type == CNIC_ULP_FCOE)
14866 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14867 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14868 
14869 			if ((ulp_type != CNIC_ULP_FCOE) ||
14870 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14871 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14872 				break;
14873 
14874 			/* if reached here - should write fcoe capabilities */
14875 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14876 			if (!scratch_offset)
14877 				break;
14878 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14879 						   fcoe_features[path][port]);
14880 			host_addr = (u32 *) &(ctl->data.register_data.
14881 					      fcoe_features);
14882 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14883 			     i += 4)
14884 				REG_WR(bp, scratch_offset + i,
14885 				       *(host_addr + i/4));
14886 		}
14887 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14888 		break;
14889 	}
14890 
14891 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14892 		int ulp_type = ctl->data.ulp_type;
14893 
14894 		if (CHIP_IS_E3(bp)) {
14895 			int idx = BP_FW_MB_IDX(bp);
14896 			u32 cap;
14897 
14898 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14899 			if (ulp_type == CNIC_ULP_ISCSI)
14900 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14901 			else if (ulp_type == CNIC_ULP_FCOE)
14902 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14903 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14904 		}
14905 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14906 		break;
14907 	}
14908 
14909 	default:
14910 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14911 		rc = -EINVAL;
14912 	}
14913 
14914 	/* For storage-only interfaces, change driver state */
14915 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14916 		switch (ctl->drv_state) {
14917 		case DRV_NOP:
14918 			break;
14919 		case DRV_ACTIVE:
14920 			bnx2x_set_os_driver_state(bp,
14921 						  OS_DRIVER_STATE_ACTIVE);
14922 			break;
14923 		case DRV_INACTIVE:
14924 			bnx2x_set_os_driver_state(bp,
14925 						  OS_DRIVER_STATE_DISABLED);
14926 			break;
14927 		case DRV_UNLOADED:
14928 			bnx2x_set_os_driver_state(bp,
14929 						  OS_DRIVER_STATE_NOT_LOADED);
14930 			break;
14931 		default:
14932 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14933 		}
14934 	}
14935 
14936 	return rc;
14937 }
14938 
14939 static int bnx2x_get_fc_npiv(struct net_device *dev,
14940 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14941 {
14942 	struct bnx2x *bp = netdev_priv(dev);
14943 	struct bdn_fc_npiv_tbl *tbl = NULL;
14944 	u32 offset, entries;
14945 	int rc = -EINVAL;
14946 	int i;
14947 
14948 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14949 		goto out;
14950 
14951 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14952 
14953 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14954 	if (!tbl) {
14955 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14956 		goto out;
14957 	}
14958 
14959 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14960 	if (!offset) {
14961 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14962 		goto out;
14963 	}
14964 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14965 
14966 	/* Read the table contents from nvram */
14967 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14968 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14969 		goto out;
14970 	}
14971 
14972 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14973 	 * the number of entries back to cpu endianness.
14974 	 */
14975 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14976 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14977 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14978 
14979 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14980 		DP(BNX2X_MSG_MCP,
14981 		   "No FC-NPIV table [valid, simply not present]\n");
14982 		goto out;
14983 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14984 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14985 			  tbl->fc_npiv_cfg.num_of_npiv);
14986 		goto out;
14987 	} else {
14988 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14989 		   tbl->fc_npiv_cfg.num_of_npiv);
14990 	}
14991 
14992 	/* Copy the data into cnic-provided struct */
14993 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14994 	for (i = 0; i < cnic_tbl->count; i++) {
14995 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14996 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14997 	}
14998 
14999 	rc = 0;
15000 out:
15001 	kfree(tbl);
15002 	return rc;
15003 }
15004 
15005 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
15006 {
15007 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15008 
15009 	if (bp->flags & USING_MSIX_FLAG) {
15010 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
15011 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
15012 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
15013 	} else {
15014 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
15015 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
15016 	}
15017 	if (!CHIP_IS_E1x(bp))
15018 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15019 	else
15020 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15021 
15022 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
15023 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15024 	cp->irq_arr[1].status_blk = bp->def_status_blk;
15025 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15026 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15027 
15028 	cp->num_irq = 2;
15029 }
15030 
15031 void bnx2x_setup_cnic_info(struct bnx2x *bp)
15032 {
15033 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15034 
15035 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15036 			     bnx2x_cid_ilt_lines(bp);
15037 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15038 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15039 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15040 
15041 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15042 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15043 	   cp->iscsi_l2_cid);
15044 
15045 	if (NO_ISCSI_OOO(bp))
15046 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15047 }
15048 
15049 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15050 			       void *data)
15051 {
15052 	struct bnx2x *bp = netdev_priv(dev);
15053 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15054 	int rc;
15055 
15056 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15057 
15058 	if (ops == NULL) {
15059 		BNX2X_ERR("NULL ops received\n");
15060 		return -EINVAL;
15061 	}
15062 
15063 	if (!CNIC_SUPPORT(bp)) {
15064 		BNX2X_ERR("Can't register CNIC when not supported\n");
15065 		return -EOPNOTSUPP;
15066 	}
15067 
15068 	if (!CNIC_LOADED(bp)) {
15069 		rc = bnx2x_load_cnic(bp);
15070 		if (rc) {
15071 			BNX2X_ERR("CNIC-related load failed\n");
15072 			return rc;
15073 		}
15074 	}
15075 
15076 	bp->cnic_enabled = true;
15077 
15078 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15079 	if (!bp->cnic_kwq)
15080 		return -ENOMEM;
15081 
15082 	bp->cnic_kwq_cons = bp->cnic_kwq;
15083 	bp->cnic_kwq_prod = bp->cnic_kwq;
15084 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15085 
15086 	bp->cnic_spq_pending = 0;
15087 	bp->cnic_kwq_pending = 0;
15088 
15089 	bp->cnic_data = data;
15090 
15091 	cp->num_irq = 0;
15092 	cp->drv_state |= CNIC_DRV_STATE_REGD;
15093 	cp->iro_arr = bp->iro_arr;
15094 
15095 	bnx2x_setup_cnic_irq_info(bp);
15096 
15097 	rcu_assign_pointer(bp->cnic_ops, ops);
15098 
15099 	/* Schedule driver to read CNIC driver versions */
15100 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15101 
15102 	return 0;
15103 }
15104 
15105 static int bnx2x_unregister_cnic(struct net_device *dev)
15106 {
15107 	struct bnx2x *bp = netdev_priv(dev);
15108 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15109 
15110 	mutex_lock(&bp->cnic_mutex);
15111 	cp->drv_state = 0;
15112 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15113 	mutex_unlock(&bp->cnic_mutex);
15114 	synchronize_rcu();
15115 	bp->cnic_enabled = false;
15116 	kfree(bp->cnic_kwq);
15117 	bp->cnic_kwq = NULL;
15118 
15119 	return 0;
15120 }
15121 
15122 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15123 {
15124 	struct bnx2x *bp = netdev_priv(dev);
15125 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15126 
15127 	/* If both iSCSI and FCoE are disabled - return NULL in
15128 	 * order to indicate CNIC that it should not try to work
15129 	 * with this device.
15130 	 */
15131 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15132 		return NULL;
15133 
15134 	cp->drv_owner = THIS_MODULE;
15135 	cp->chip_id = CHIP_ID(bp);
15136 	cp->pdev = bp->pdev;
15137 	cp->io_base = bp->regview;
15138 	cp->io_base2 = bp->doorbells;
15139 	cp->max_kwqe_pending = 8;
15140 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15141 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15142 			     bnx2x_cid_ilt_lines(bp);
15143 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15144 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15145 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15146 	cp->drv_ctl = bnx2x_drv_ctl;
15147 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15148 	cp->drv_register_cnic = bnx2x_register_cnic;
15149 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15150 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15151 	cp->iscsi_l2_client_id =
15152 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15153 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15154 
15155 	if (NO_ISCSI_OOO(bp))
15156 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15157 
15158 	if (NO_ISCSI(bp))
15159 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15160 
15161 	if (NO_FCOE(bp))
15162 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15163 
15164 	BNX2X_DEV_INFO(
15165 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15166 	   cp->ctx_blk_size,
15167 	   cp->ctx_tbl_offset,
15168 	   cp->ctx_tbl_len,
15169 	   cp->starting_cid);
15170 	return cp;
15171 }
15172 
15173 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15174 {
15175 	struct bnx2x *bp = fp->bp;
15176 	u32 offset = BAR_USTRORM_INTMEM;
15177 
15178 	if (IS_VF(bp))
15179 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15180 	else if (!CHIP_IS_E1x(bp))
15181 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15182 	else
15183 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15184 
15185 	return offset;
15186 }
15187 
15188 /* called only on E1H or E2.
15189  * When pretending to be PF, the pretend value is the function number 0...7
15190  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15191  * combination
15192  */
15193 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15194 {
15195 	u32 pretend_reg;
15196 
15197 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15198 		return -1;
15199 
15200 	/* get my own pretend register */
15201 	pretend_reg = bnx2x_get_pretend_reg(bp);
15202 	REG_WR(bp, pretend_reg, pretend_func_val);
15203 	REG_RD(bp, pretend_reg);
15204 	return 0;
15205 }
15206 
15207 static void bnx2x_ptp_task(struct work_struct *work)
15208 {
15209 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15210 	int port = BP_PORT(bp);
15211 	u32 val_seq;
15212 	u64 timestamp, ns;
15213 	struct skb_shared_hwtstamps shhwtstamps;
15214 
15215 	/* Read Tx timestamp registers */
15216 	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15217 			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15218 	if (val_seq & 0x10000) {
15219 		/* There is a valid timestamp value */
15220 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15221 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15222 		timestamp <<= 32;
15223 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15224 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15225 		/* Reset timestamp register to allow new timestamp */
15226 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15227 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15228 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15229 
15230 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15231 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15232 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15233 		dev_kfree_skb_any(bp->ptp_tx_skb);
15234 		bp->ptp_tx_skb = NULL;
15235 
15236 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15237 		   timestamp, ns);
15238 	} else {
15239 		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15240 		/* Reschedule to keep checking for a valid timestamp value */
15241 		schedule_work(&bp->ptp_task);
15242 	}
15243 }
15244 
15245 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15246 {
15247 	int port = BP_PORT(bp);
15248 	u64 timestamp, ns;
15249 
15250 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15251 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15252 	timestamp <<= 32;
15253 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15254 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15255 
15256 	/* Reset timestamp register to allow new timestamp */
15257 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15258 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15259 
15260 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15261 
15262 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15263 
15264 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15265 	   timestamp, ns);
15266 }
15267 
15268 /* Read the PHC */
15269 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15270 {
15271 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15272 	int port = BP_PORT(bp);
15273 	u32 wb_data[2];
15274 	u64 phc_cycles;
15275 
15276 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15277 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15278 	phc_cycles = wb_data[1];
15279 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15280 
15281 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15282 
15283 	return phc_cycles;
15284 }
15285 
15286 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15287 {
15288 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15289 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15290 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15291 	bp->cyclecounter.shift = 0;
15292 	bp->cyclecounter.mult = 1;
15293 }
15294 
15295 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15296 {
15297 	struct bnx2x_func_state_params func_params = {NULL};
15298 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15299 		&func_params.params.set_timesync;
15300 
15301 	/* Prepare parameters for function state transitions */
15302 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15303 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15304 
15305 	func_params.f_obj = &bp->func_obj;
15306 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15307 
15308 	/* Function parameters */
15309 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15310 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15311 
15312 	return bnx2x_func_state_change(bp, &func_params);
15313 }
15314 
15315 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15316 {
15317 	struct bnx2x_queue_state_params q_params;
15318 	int rc, i;
15319 
15320 	/* send queue update ramrod to enable PTP packets */
15321 	memset(&q_params, 0, sizeof(q_params));
15322 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15323 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15324 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15325 		  &q_params.params.update.update_flags);
15326 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15327 		  &q_params.params.update.update_flags);
15328 
15329 	/* send the ramrod on all the queues of the PF */
15330 	for_each_eth_queue(bp, i) {
15331 		struct bnx2x_fastpath *fp = &bp->fp[i];
15332 
15333 		/* Set the appropriate Queue object */
15334 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15335 
15336 		/* Update the Queue state */
15337 		rc = bnx2x_queue_state_change(bp, &q_params);
15338 		if (rc) {
15339 			BNX2X_ERR("Failed to enable PTP packets\n");
15340 			return rc;
15341 		}
15342 	}
15343 
15344 	return 0;
15345 }
15346 
15347 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15348 {
15349 	int port = BP_PORT(bp);
15350 	int rc;
15351 
15352 	if (!bp->hwtstamp_ioctl_called)
15353 		return 0;
15354 
15355 	switch (bp->tx_type) {
15356 	case HWTSTAMP_TX_ON:
15357 		bp->flags |= TX_TIMESTAMPING_EN;
15358 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15359 		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15360 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15361 		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15362 		break;
15363 	case HWTSTAMP_TX_ONESTEP_SYNC:
15364 		BNX2X_ERR("One-step timestamping is not supported\n");
15365 		return -ERANGE;
15366 	}
15367 
15368 	switch (bp->rx_filter) {
15369 	case HWTSTAMP_FILTER_NONE:
15370 		break;
15371 	case HWTSTAMP_FILTER_ALL:
15372 	case HWTSTAMP_FILTER_SOME:
15373 	case HWTSTAMP_FILTER_NTP_ALL:
15374 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15375 		break;
15376 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15377 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15378 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15379 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15380 		/* Initialize PTP detection for UDP/IPv4 events */
15381 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15382 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15383 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15384 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15385 		break;
15386 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15387 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15388 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15389 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15390 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15391 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15392 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15393 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15394 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15395 		break;
15396 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15397 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15398 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15399 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15400 		/* Initialize PTP detection L2 events */
15401 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15402 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15403 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15404 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15405 
15406 		break;
15407 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15408 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15409 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15410 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15411 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15412 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15413 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15414 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15415 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15416 		break;
15417 	}
15418 
15419 	/* Indicate to FW that this PF expects recorded PTP packets */
15420 	rc = bnx2x_enable_ptp_packets(bp);
15421 	if (rc)
15422 		return rc;
15423 
15424 	/* Enable sending PTP packets to host */
15425 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15426 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15427 
15428 	return 0;
15429 }
15430 
15431 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15432 {
15433 	struct hwtstamp_config config;
15434 	int rc;
15435 
15436 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15437 
15438 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15439 		return -EFAULT;
15440 
15441 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15442 	   config.tx_type, config.rx_filter);
15443 
15444 	if (config.flags) {
15445 		BNX2X_ERR("config.flags is reserved for future use\n");
15446 		return -EINVAL;
15447 	}
15448 
15449 	bp->hwtstamp_ioctl_called = 1;
15450 	bp->tx_type = config.tx_type;
15451 	bp->rx_filter = config.rx_filter;
15452 
15453 	rc = bnx2x_configure_ptp_filters(bp);
15454 	if (rc)
15455 		return rc;
15456 
15457 	config.rx_filter = bp->rx_filter;
15458 
15459 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15460 		-EFAULT : 0;
15461 }
15462 
15463 /* Configures HW for PTP */
15464 static int bnx2x_configure_ptp(struct bnx2x *bp)
15465 {
15466 	int rc, port = BP_PORT(bp);
15467 	u32 wb_data[2];
15468 
15469 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15470 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15471 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15472 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15473 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15474 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15475 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15476 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15477 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15478 
15479 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15480 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15481 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15482 
15483 	/* Enable the PTP feature */
15484 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15485 	       NIG_REG_P0_PTP_EN, 0x3F);
15486 
15487 	/* Enable the free-running counter */
15488 	wb_data[0] = 0;
15489 	wb_data[1] = 0;
15490 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15491 
15492 	/* Reset drift register (offset register is not reset) */
15493 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15494 	if (rc) {
15495 		BNX2X_ERR("Failed to reset PHC drift register\n");
15496 		return -EFAULT;
15497 	}
15498 
15499 	/* Reset possibly old timestamps */
15500 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15501 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15502 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15503 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15504 
15505 	return 0;
15506 }
15507 
15508 /* Called during load, to initialize PTP-related stuff */
15509 void bnx2x_init_ptp(struct bnx2x *bp)
15510 {
15511 	int rc;
15512 
15513 	/* Configure PTP in HW */
15514 	rc = bnx2x_configure_ptp(bp);
15515 	if (rc) {
15516 		BNX2X_ERR("Stopping PTP initialization\n");
15517 		return;
15518 	}
15519 
15520 	/* Init work queue for Tx timestamping */
15521 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15522 
15523 	/* Init cyclecounter and timecounter. This is done only in the first
15524 	 * load. If done in every load, PTP application will fail when doing
15525 	 * unload / load (e.g. MTU change) while it is running.
15526 	 */
15527 	if (!bp->timecounter_init_done) {
15528 		bnx2x_init_cyclecounter(bp);
15529 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15530 				 ktime_to_ns(ktime_get_real()));
15531 		bp->timecounter_init_done = 1;
15532 	}
15533 
15534 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15535 }
15536