1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Altera Triple-Speed Ethernet MAC driver
3  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
4  *
5  * Contributors:
6  *   Dalon Westergreen
7  *   Thomas Chou
8  *   Ian Abbott
9  *   Yuriy Kozlov
10  *   Tobias Klauser
11  *   Andriy Smolskyy
12  *   Roman Bulgakov
13  *   Dmytro Mytarchuk
14  *   Matthew Gerlach
15  *
16  * Original driver contributed by SLS.
17  * Major updates contributed by GlobalLogic
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/netdevice.h>
31 #include <linux/of_device.h>
32 #include <linux/of_mdio.h>
33 #include <linux/of_net.h>
34 #include <linux/of_platform.h>
35 #include <linux/pcs-altera-tse.h>
36 #include <linux/phy.h>
37 #include <linux/platform_device.h>
38 #include <linux/skbuff.h>
39 #include <asm/cacheflush.h>
40 
41 #include "altera_utils.h"
42 #include "altera_tse.h"
43 #include "altera_sgdma.h"
44 #include "altera_msgdma.h"
45 
46 static atomic_t instance_count = ATOMIC_INIT(~0);
47 /* Module parameters */
48 static int debug = -1;
49 module_param(debug, int, 0644);
50 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
51 
52 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
53 					NETIF_MSG_LINK | NETIF_MSG_IFUP |
54 					NETIF_MSG_IFDOWN);
55 
56 #define RX_DESCRIPTORS 64
57 static int dma_rx_num = RX_DESCRIPTORS;
58 module_param(dma_rx_num, int, 0644);
59 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
60 
61 #define TX_DESCRIPTORS 64
62 static int dma_tx_num = TX_DESCRIPTORS;
63 module_param(dma_tx_num, int, 0644);
64 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
65 
66 
67 #define POLL_PHY (-1)
68 
69 /* Make sure DMA buffer size is larger than the max frame size
70  * plus some alignment offset and a VLAN header. If the max frame size is
71  * 1518, a VLAN header would be additional 4 bytes and additional
72  * headroom for alignment is 2 bytes, 2048 is just fine.
73  */
74 #define ALTERA_RXDMABUFFER_SIZE	2048
75 
76 /* Allow network stack to resume queuing packets after we've
77  * finished transmitting at least 1/4 of the packets in the queue.
78  */
79 #define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
80 
81 #define TXQUEUESTOP_THRESHHOLD	2
82 
83 static const struct of_device_id altera_tse_ids[];
84 
85 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
86 {
87 	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
88 }
89 
90 /* MDIO specific functions
91  */
92 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
93 {
94 	struct net_device *ndev = bus->priv;
95 	struct altera_tse_private *priv = netdev_priv(ndev);
96 
97 	/* set MDIO address */
98 	csrwr32((mii_id & 0x1f), priv->mac_dev,
99 		tse_csroffs(mdio_phy1_addr));
100 
101 	/* get the data */
102 	return csrrd32(priv->mac_dev,
103 		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
104 }
105 
106 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
107 				 u16 value)
108 {
109 	struct net_device *ndev = bus->priv;
110 	struct altera_tse_private *priv = netdev_priv(ndev);
111 
112 	/* set MDIO address */
113 	csrwr32((mii_id & 0x1f), priv->mac_dev,
114 		tse_csroffs(mdio_phy1_addr));
115 
116 	/* write the data */
117 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
118 	return 0;
119 }
120 
121 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
122 {
123 	struct altera_tse_private *priv = netdev_priv(dev);
124 	struct device_node *mdio_node = NULL;
125 	struct device_node *child_node = NULL;
126 	struct mii_bus *mdio = NULL;
127 	int ret;
128 
129 	for_each_child_of_node(priv->device->of_node, child_node) {
130 		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
131 			mdio_node = child_node;
132 			break;
133 		}
134 	}
135 
136 	if (mdio_node) {
137 		netdev_dbg(dev, "FOUND MDIO subnode\n");
138 	} else {
139 		netdev_dbg(dev, "NO MDIO subnode\n");
140 		return 0;
141 	}
142 
143 	mdio = mdiobus_alloc();
144 	if (mdio == NULL) {
145 		netdev_err(dev, "Error allocating MDIO bus\n");
146 		ret = -ENOMEM;
147 		goto put_node;
148 	}
149 
150 	mdio->name = ALTERA_TSE_RESOURCE_NAME;
151 	mdio->read = &altera_tse_mdio_read;
152 	mdio->write = &altera_tse_mdio_write;
153 	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
154 
155 	mdio->priv = dev;
156 	mdio->parent = priv->device;
157 
158 	ret = of_mdiobus_register(mdio, mdio_node);
159 	if (ret != 0) {
160 		netdev_err(dev, "Cannot register MDIO bus %s\n",
161 			   mdio->id);
162 		goto out_free_mdio;
163 	}
164 	of_node_put(mdio_node);
165 
166 	if (netif_msg_drv(priv))
167 		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
168 
169 	priv->mdio = mdio;
170 	return 0;
171 out_free_mdio:
172 	mdiobus_free(mdio);
173 	mdio = NULL;
174 put_node:
175 	of_node_put(mdio_node);
176 	return ret;
177 }
178 
179 static void altera_tse_mdio_destroy(struct net_device *dev)
180 {
181 	struct altera_tse_private *priv = netdev_priv(dev);
182 
183 	if (priv->mdio == NULL)
184 		return;
185 
186 	if (netif_msg_drv(priv))
187 		netdev_info(dev, "MDIO bus %s: removed\n",
188 			    priv->mdio->id);
189 
190 	mdiobus_unregister(priv->mdio);
191 	mdiobus_free(priv->mdio);
192 	priv->mdio = NULL;
193 }
194 
195 static int tse_init_rx_buffer(struct altera_tse_private *priv,
196 			      struct tse_buffer *rxbuffer, int len)
197 {
198 	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
199 	if (!rxbuffer->skb)
200 		return -ENOMEM;
201 
202 	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
203 						len,
204 						DMA_FROM_DEVICE);
205 
206 	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
207 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
208 		dev_kfree_skb_any(rxbuffer->skb);
209 		return -EINVAL;
210 	}
211 	rxbuffer->dma_addr &= (dma_addr_t)~3;
212 	rxbuffer->len = len;
213 	return 0;
214 }
215 
216 static void tse_free_rx_buffer(struct altera_tse_private *priv,
217 			       struct tse_buffer *rxbuffer)
218 {
219 	dma_addr_t dma_addr = rxbuffer->dma_addr;
220 	struct sk_buff *skb = rxbuffer->skb;
221 
222 	if (skb != NULL) {
223 		if (dma_addr)
224 			dma_unmap_single(priv->device, dma_addr,
225 					 rxbuffer->len,
226 					 DMA_FROM_DEVICE);
227 		dev_kfree_skb_any(skb);
228 		rxbuffer->skb = NULL;
229 		rxbuffer->dma_addr = 0;
230 	}
231 }
232 
233 /* Unmap and free Tx buffer resources
234  */
235 static void tse_free_tx_buffer(struct altera_tse_private *priv,
236 			       struct tse_buffer *buffer)
237 {
238 	if (buffer->dma_addr) {
239 		if (buffer->mapped_as_page)
240 			dma_unmap_page(priv->device, buffer->dma_addr,
241 				       buffer->len, DMA_TO_DEVICE);
242 		else
243 			dma_unmap_single(priv->device, buffer->dma_addr,
244 					 buffer->len, DMA_TO_DEVICE);
245 		buffer->dma_addr = 0;
246 	}
247 	if (buffer->skb) {
248 		dev_kfree_skb_any(buffer->skb);
249 		buffer->skb = NULL;
250 	}
251 }
252 
253 static int alloc_init_skbufs(struct altera_tse_private *priv)
254 {
255 	unsigned int rx_descs = priv->rx_ring_size;
256 	unsigned int tx_descs = priv->tx_ring_size;
257 	int ret = -ENOMEM;
258 	int i;
259 
260 	/* Create Rx ring buffer */
261 	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
262 				GFP_KERNEL);
263 	if (!priv->rx_ring)
264 		goto err_rx_ring;
265 
266 	/* Create Tx ring buffer */
267 	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
268 				GFP_KERNEL);
269 	if (!priv->tx_ring)
270 		goto err_tx_ring;
271 
272 	priv->tx_cons = 0;
273 	priv->tx_prod = 0;
274 
275 	/* Init Rx ring */
276 	for (i = 0; i < rx_descs; i++) {
277 		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
278 					 priv->rx_dma_buf_sz);
279 		if (ret)
280 			goto err_init_rx_buffers;
281 	}
282 
283 	priv->rx_cons = 0;
284 	priv->rx_prod = 0;
285 
286 	return 0;
287 err_init_rx_buffers:
288 	while (--i >= 0)
289 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
290 	kfree(priv->tx_ring);
291 err_tx_ring:
292 	kfree(priv->rx_ring);
293 err_rx_ring:
294 	return ret;
295 }
296 
297 static void free_skbufs(struct net_device *dev)
298 {
299 	struct altera_tse_private *priv = netdev_priv(dev);
300 	unsigned int rx_descs = priv->rx_ring_size;
301 	unsigned int tx_descs = priv->tx_ring_size;
302 	int i;
303 
304 	/* Release the DMA TX/RX socket buffers */
305 	for (i = 0; i < rx_descs; i++)
306 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
307 	for (i = 0; i < tx_descs; i++)
308 		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
309 
310 
311 	kfree(priv->tx_ring);
312 }
313 
314 /* Reallocate the skb for the reception process
315  */
316 static inline void tse_rx_refill(struct altera_tse_private *priv)
317 {
318 	unsigned int rxsize = priv->rx_ring_size;
319 	unsigned int entry;
320 	int ret;
321 
322 	for (; priv->rx_cons - priv->rx_prod > 0;
323 			priv->rx_prod++) {
324 		entry = priv->rx_prod % rxsize;
325 		if (likely(priv->rx_ring[entry].skb == NULL)) {
326 			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
327 				priv->rx_dma_buf_sz);
328 			if (unlikely(ret != 0))
329 				break;
330 			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
331 		}
332 	}
333 }
334 
335 /* Pull out the VLAN tag and fix up the packet
336  */
337 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
338 {
339 	struct ethhdr *eth_hdr;
340 	u16 vid;
341 
342 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
343 	    !__vlan_get_tag(skb, &vid)) {
344 		eth_hdr = (struct ethhdr *)skb->data;
345 		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
346 		skb_pull(skb, VLAN_HLEN);
347 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
348 	}
349 }
350 
351 /* Receive a packet: retrieve and pass over to upper levels
352  */
353 static int tse_rx(struct altera_tse_private *priv, int limit)
354 {
355 	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
356 	unsigned int next_entry;
357 	unsigned int count = 0;
358 	struct sk_buff *skb;
359 	u32 rxstatus;
360 	u16 pktlength;
361 	u16 pktstatus;
362 
363 	/* Check for count < limit first as get_rx_status is changing
364 	* the response-fifo so we must process the next packet
365 	* after calling get_rx_status if a response is pending.
366 	* (reading the last byte of the response pops the value from the fifo.)
367 	*/
368 	while ((count < limit) &&
369 	       ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
370 		pktstatus = rxstatus >> 16;
371 		pktlength = rxstatus & 0xffff;
372 
373 		if ((pktstatus & 0xFF) || (pktlength == 0))
374 			netdev_err(priv->dev,
375 				   "RCV pktstatus %08X pktlength %08X\n",
376 				   pktstatus, pktlength);
377 
378 		/* DMA transfer from TSE starts with 2 additional bytes for
379 		 * IP payload alignment. Status returned by get_rx_status()
380 		 * contains DMA transfer length. Packet is 2 bytes shorter.
381 		 */
382 		pktlength -= 2;
383 
384 		count++;
385 		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
386 
387 		skb = priv->rx_ring[entry].skb;
388 		if (unlikely(!skb)) {
389 			netdev_err(priv->dev,
390 				   "%s: Inconsistent Rx descriptor chain\n",
391 				   __func__);
392 			priv->dev->stats.rx_dropped++;
393 			break;
394 		}
395 		priv->rx_ring[entry].skb = NULL;
396 
397 		skb_put(skb, pktlength);
398 
399 		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
400 				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
401 
402 		if (netif_msg_pktdata(priv)) {
403 			netdev_info(priv->dev, "frame received %d bytes\n",
404 				    pktlength);
405 			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
406 				       16, 1, skb->data, pktlength, true);
407 		}
408 
409 		tse_rx_vlan(priv->dev, skb);
410 
411 		skb->protocol = eth_type_trans(skb, priv->dev);
412 		skb_checksum_none_assert(skb);
413 
414 		napi_gro_receive(&priv->napi, skb);
415 
416 		priv->dev->stats.rx_packets++;
417 		priv->dev->stats.rx_bytes += pktlength;
418 
419 		entry = next_entry;
420 
421 		tse_rx_refill(priv);
422 	}
423 
424 	return count;
425 }
426 
427 /* Reclaim resources after transmission completes
428  */
429 static int tse_tx_complete(struct altera_tse_private *priv)
430 {
431 	unsigned int txsize = priv->tx_ring_size;
432 	struct tse_buffer *tx_buff;
433 	unsigned int entry;
434 	int txcomplete = 0;
435 	u32 ready;
436 
437 	spin_lock(&priv->tx_lock);
438 
439 	ready = priv->dmaops->tx_completions(priv);
440 
441 	/* Free sent buffers */
442 	while (ready && (priv->tx_cons != priv->tx_prod)) {
443 		entry = priv->tx_cons % txsize;
444 		tx_buff = &priv->tx_ring[entry];
445 
446 		if (netif_msg_tx_done(priv))
447 			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
448 				   __func__, priv->tx_prod, priv->tx_cons);
449 
450 		if (likely(tx_buff->skb))
451 			priv->dev->stats.tx_packets++;
452 
453 		tse_free_tx_buffer(priv, tx_buff);
454 		priv->tx_cons++;
455 
456 		txcomplete++;
457 		ready--;
458 	}
459 
460 	if (unlikely(netif_queue_stopped(priv->dev) &&
461 		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
462 		if (netif_queue_stopped(priv->dev) &&
463 		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
464 			if (netif_msg_tx_done(priv))
465 				netdev_dbg(priv->dev, "%s: restart transmit\n",
466 					   __func__);
467 			netif_wake_queue(priv->dev);
468 		}
469 	}
470 
471 	spin_unlock(&priv->tx_lock);
472 	return txcomplete;
473 }
474 
475 /* NAPI polling function
476  */
477 static int tse_poll(struct napi_struct *napi, int budget)
478 {
479 	struct altera_tse_private *priv =
480 			container_of(napi, struct altera_tse_private, napi);
481 	unsigned long int flags;
482 	int rxcomplete = 0;
483 
484 	tse_tx_complete(priv);
485 
486 	rxcomplete = tse_rx(priv, budget);
487 
488 	if (rxcomplete < budget) {
489 
490 		napi_complete_done(napi, rxcomplete);
491 
492 		netdev_dbg(priv->dev,
493 			   "NAPI Complete, did %d packets with budget %d\n",
494 			   rxcomplete, budget);
495 
496 		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
497 		priv->dmaops->enable_rxirq(priv);
498 		priv->dmaops->enable_txirq(priv);
499 		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
500 	}
501 	return rxcomplete;
502 }
503 
504 /* DMA TX & RX FIFO interrupt routing
505  */
506 static irqreturn_t altera_isr(int irq, void *dev_id)
507 {
508 	struct net_device *dev = dev_id;
509 	struct altera_tse_private *priv;
510 
511 	if (unlikely(!dev)) {
512 		pr_err("%s: invalid dev pointer\n", __func__);
513 		return IRQ_NONE;
514 	}
515 	priv = netdev_priv(dev);
516 
517 	spin_lock(&priv->rxdma_irq_lock);
518 	/* reset IRQs */
519 	priv->dmaops->clear_rxirq(priv);
520 	priv->dmaops->clear_txirq(priv);
521 	spin_unlock(&priv->rxdma_irq_lock);
522 
523 	if (likely(napi_schedule_prep(&priv->napi))) {
524 		spin_lock(&priv->rxdma_irq_lock);
525 		priv->dmaops->disable_rxirq(priv);
526 		priv->dmaops->disable_txirq(priv);
527 		spin_unlock(&priv->rxdma_irq_lock);
528 		__napi_schedule(&priv->napi);
529 	}
530 
531 
532 	return IRQ_HANDLED;
533 }
534 
535 /* Transmit a packet (called by the kernel). Dispatches
536  * either the SGDMA method for transmitting or the
537  * MSGDMA method, assumes no scatter/gather support,
538  * implying an assumption that there's only one
539  * physically contiguous fragment starting at
540  * skb->data, for length of skb_headlen(skb).
541  */
542 static netdev_tx_t tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
543 {
544 	struct altera_tse_private *priv = netdev_priv(dev);
545 	unsigned int nopaged_len = skb_headlen(skb);
546 	unsigned int txsize = priv->tx_ring_size;
547 	int nfrags = skb_shinfo(skb)->nr_frags;
548 	struct tse_buffer *buffer = NULL;
549 	netdev_tx_t ret = NETDEV_TX_OK;
550 	dma_addr_t dma_addr;
551 	unsigned int entry;
552 
553 	spin_lock_bh(&priv->tx_lock);
554 
555 	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
556 		if (!netif_queue_stopped(dev)) {
557 			netif_stop_queue(dev);
558 			/* This is a hard error, log it. */
559 			netdev_err(priv->dev,
560 				   "%s: Tx list full when queue awake\n",
561 				   __func__);
562 		}
563 		ret = NETDEV_TX_BUSY;
564 		goto out;
565 	}
566 
567 	/* Map the first skb fragment */
568 	entry = priv->tx_prod % txsize;
569 	buffer = &priv->tx_ring[entry];
570 
571 	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
572 				  DMA_TO_DEVICE);
573 	if (dma_mapping_error(priv->device, dma_addr)) {
574 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
575 		ret = NETDEV_TX_OK;
576 		goto out;
577 	}
578 
579 	buffer->skb = skb;
580 	buffer->dma_addr = dma_addr;
581 	buffer->len = nopaged_len;
582 
583 	priv->dmaops->tx_buffer(priv, buffer);
584 
585 	skb_tx_timestamp(skb);
586 
587 	priv->tx_prod++;
588 	dev->stats.tx_bytes += skb->len;
589 
590 	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
591 		if (netif_msg_hw(priv))
592 			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
593 				   __func__);
594 		netif_stop_queue(dev);
595 	}
596 
597 out:
598 	spin_unlock_bh(&priv->tx_lock);
599 
600 	return ret;
601 }
602 
603 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
604 {
605 	struct altera_tse_private *priv = netdev_priv(dev);
606 	struct device_node *np = priv->device->of_node;
607 	int ret;
608 
609 	ret = of_get_phy_mode(np, &priv->phy_iface);
610 
611 	/* Avoid get phy addr and create mdio if no phy is present */
612 	if (ret)
613 		return 0;
614 
615 	/* try to get PHY address from device tree, use PHY autodetection if
616 	 * no valid address is given
617 	 */
618 
619 	if (of_property_read_u32(priv->device->of_node, "phy-addr",
620 			 &priv->phy_addr)) {
621 		priv->phy_addr = POLL_PHY;
622 	}
623 
624 	if (!((priv->phy_addr == POLL_PHY) ||
625 		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
626 		netdev_err(dev, "invalid phy-addr specified %d\n",
627 			priv->phy_addr);
628 		return -ENODEV;
629 	}
630 
631 	/* Create/attach to MDIO bus */
632 	ret = altera_tse_mdio_create(dev,
633 					 atomic_add_return(1, &instance_count));
634 
635 	if (ret)
636 		return -ENODEV;
637 
638 	return 0;
639 }
640 
641 static void tse_update_mac_addr(struct altera_tse_private *priv, const u8 *addr)
642 {
643 	u32 msb;
644 	u32 lsb;
645 
646 	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
647 	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
648 
649 	/* Set primary MAC address */
650 	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
651 	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
652 }
653 
654 /* MAC software reset.
655  * When reset is triggered, the MAC function completes the current
656  * transmission or reception, and subsequently disables the transmit and
657  * receive logic, flushes the receive FIFO buffer, and resets the statistics
658  * counters.
659  */
660 static int reset_mac(struct altera_tse_private *priv)
661 {
662 	int counter;
663 	u32 dat;
664 
665 	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
666 	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
667 	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
668 	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
669 
670 	counter = 0;
671 	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
672 		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
673 				     MAC_CMDCFG_SW_RESET))
674 			break;
675 		udelay(1);
676 	}
677 
678 	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
679 		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
680 		dat &= ~MAC_CMDCFG_SW_RESET;
681 		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
682 		return -1;
683 	}
684 	return 0;
685 }
686 
687 /* Initialize MAC core registers
688 */
689 static int init_mac(struct altera_tse_private *priv)
690 {
691 	unsigned int cmd = 0;
692 	u32 frm_length;
693 
694 	/* Setup Rx FIFO */
695 	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
696 		priv->mac_dev, tse_csroffs(rx_section_empty));
697 
698 	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
699 		tse_csroffs(rx_section_full));
700 
701 	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
702 		tse_csroffs(rx_almost_empty));
703 
704 	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
705 		tse_csroffs(rx_almost_full));
706 
707 	/* Setup Tx FIFO */
708 	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
709 		priv->mac_dev, tse_csroffs(tx_section_empty));
710 
711 	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
712 		tse_csroffs(tx_section_full));
713 
714 	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
715 		tse_csroffs(tx_almost_empty));
716 
717 	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
718 		tse_csroffs(tx_almost_full));
719 
720 	/* MAC Address Configuration */
721 	tse_update_mac_addr(priv, priv->dev->dev_addr);
722 
723 	/* MAC Function Configuration */
724 	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
725 	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
726 
727 	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
728 		tse_csroffs(tx_ipg_length));
729 
730 	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
731 	 * start address
732 	 */
733 	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
734 		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
735 
736 	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
737 		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
738 		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
739 
740 	/* Set the MAC options */
741 	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
742 	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
743 	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
744 	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
745 					 * with CRC errors
746 					 */
747 	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
748 	cmd &= ~MAC_CMDCFG_TX_ENA;
749 	cmd &= ~MAC_CMDCFG_RX_ENA;
750 
751 	/* Default speed and duplex setting, full/100 */
752 	cmd &= ~MAC_CMDCFG_HD_ENA;
753 	cmd &= ~MAC_CMDCFG_ETH_SPEED;
754 	cmd &= ~MAC_CMDCFG_ENA_10;
755 
756 	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
757 
758 	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
759 		tse_csroffs(pause_quanta));
760 
761 	if (netif_msg_hw(priv))
762 		dev_dbg(priv->device,
763 			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
764 
765 	return 0;
766 }
767 
768 /* Start/stop MAC transmission logic
769  */
770 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
771 {
772 	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
773 
774 	if (enable)
775 		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
776 	else
777 		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
778 
779 	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
780 }
781 
782 /* Change the MTU
783  */
784 static int tse_change_mtu(struct net_device *dev, int new_mtu)
785 {
786 	if (netif_running(dev)) {
787 		netdev_err(dev, "must be stopped to change its MTU\n");
788 		return -EBUSY;
789 	}
790 
791 	dev->mtu = new_mtu;
792 	netdev_update_features(dev);
793 
794 	return 0;
795 }
796 
797 static void altera_tse_set_mcfilter(struct net_device *dev)
798 {
799 	struct altera_tse_private *priv = netdev_priv(dev);
800 	struct netdev_hw_addr *ha;
801 	int i;
802 
803 	/* clear the hash filter */
804 	for (i = 0; i < 64; i++)
805 		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
806 
807 	netdev_for_each_mc_addr(ha, dev) {
808 		unsigned int hash = 0;
809 		int mac_octet;
810 
811 		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
812 			unsigned char xor_bit = 0;
813 			unsigned char octet = ha->addr[mac_octet];
814 			unsigned int bitshift;
815 
816 			for (bitshift = 0; bitshift < 8; bitshift++)
817 				xor_bit ^= ((octet >> bitshift) & 0x01);
818 
819 			hash = (hash << 1) | xor_bit;
820 		}
821 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
822 	}
823 }
824 
825 
826 static void altera_tse_set_mcfilterall(struct net_device *dev)
827 {
828 	struct altera_tse_private *priv = netdev_priv(dev);
829 	int i;
830 
831 	/* set the hash filter */
832 	for (i = 0; i < 64; i++)
833 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
834 }
835 
836 /* Set or clear the multicast filter for this adapter
837  */
838 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
839 {
840 	struct altera_tse_private *priv = netdev_priv(dev);
841 
842 	spin_lock(&priv->mac_cfg_lock);
843 
844 	if (dev->flags & IFF_PROMISC)
845 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
846 			    MAC_CMDCFG_PROMIS_EN);
847 
848 	if (dev->flags & IFF_ALLMULTI)
849 		altera_tse_set_mcfilterall(dev);
850 	else
851 		altera_tse_set_mcfilter(dev);
852 
853 	spin_unlock(&priv->mac_cfg_lock);
854 }
855 
856 /* Set or clear the multicast filter for this adapter
857  */
858 static void tse_set_rx_mode(struct net_device *dev)
859 {
860 	struct altera_tse_private *priv = netdev_priv(dev);
861 
862 	spin_lock(&priv->mac_cfg_lock);
863 
864 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
865 	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
866 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
867 			    MAC_CMDCFG_PROMIS_EN);
868 	else
869 		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
870 			      MAC_CMDCFG_PROMIS_EN);
871 
872 	spin_unlock(&priv->mac_cfg_lock);
873 }
874 
875 /* Open and initialize the interface
876  */
877 static int tse_open(struct net_device *dev)
878 {
879 	struct altera_tse_private *priv = netdev_priv(dev);
880 	unsigned long flags;
881 	int ret = 0;
882 	int i;
883 
884 	/* Reset and configure TSE MAC and probe associated PHY */
885 	ret = priv->dmaops->init_dma(priv);
886 	if (ret != 0) {
887 		netdev_err(dev, "Cannot initialize DMA\n");
888 		goto phy_error;
889 	}
890 
891 	if (netif_msg_ifup(priv))
892 		netdev_warn(dev, "device MAC address %pM\n",
893 			    dev->dev_addr);
894 
895 	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
896 		netdev_warn(dev, "TSE revision %x\n", priv->revision);
897 
898 	spin_lock(&priv->mac_cfg_lock);
899 
900 	ret = reset_mac(priv);
901 	/* Note that reset_mac will fail if the clocks are gated by the PHY
902 	 * due to the PHY being put into isolation or power down mode.
903 	 * This is not an error if reset fails due to no clock.
904 	 */
905 	if (ret)
906 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
907 
908 	ret = init_mac(priv);
909 	spin_unlock(&priv->mac_cfg_lock);
910 	if (ret) {
911 		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
912 		goto alloc_skbuf_error;
913 	}
914 
915 	priv->dmaops->reset_dma(priv);
916 
917 	/* Create and initialize the TX/RX descriptors chains. */
918 	priv->rx_ring_size = dma_rx_num;
919 	priv->tx_ring_size = dma_tx_num;
920 	ret = alloc_init_skbufs(priv);
921 	if (ret) {
922 		netdev_err(dev, "DMA descriptors initialization failed\n");
923 		goto alloc_skbuf_error;
924 	}
925 
926 
927 	/* Register RX interrupt */
928 	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
929 			  dev->name, dev);
930 	if (ret) {
931 		netdev_err(dev, "Unable to register RX interrupt %d\n",
932 			   priv->rx_irq);
933 		goto init_error;
934 	}
935 
936 	/* Register TX interrupt */
937 	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
938 			  dev->name, dev);
939 	if (ret) {
940 		netdev_err(dev, "Unable to register TX interrupt %d\n",
941 			   priv->tx_irq);
942 		goto tx_request_irq_error;
943 	}
944 
945 	/* Enable DMA interrupts */
946 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
947 	priv->dmaops->enable_rxirq(priv);
948 	priv->dmaops->enable_txirq(priv);
949 
950 	/* Setup RX descriptor chain */
951 	for (i = 0; i < priv->rx_ring_size; i++)
952 		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
953 
954 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
955 
956 	ret = phylink_of_phy_connect(priv->phylink, priv->device->of_node, 0);
957 	if (ret) {
958 		netdev_err(dev, "could not connect phylink (%d)\n", ret);
959 		goto tx_request_irq_error;
960 	}
961 	phylink_start(priv->phylink);
962 
963 	napi_enable(&priv->napi);
964 	netif_start_queue(dev);
965 
966 	priv->dmaops->start_rxdma(priv);
967 
968 	/* Start MAC Rx/Tx */
969 	spin_lock(&priv->mac_cfg_lock);
970 	tse_set_mac(priv, true);
971 	spin_unlock(&priv->mac_cfg_lock);
972 
973 	return 0;
974 
975 tx_request_irq_error:
976 	free_irq(priv->rx_irq, dev);
977 init_error:
978 	free_skbufs(dev);
979 alloc_skbuf_error:
980 phy_error:
981 	return ret;
982 }
983 
984 /* Stop TSE MAC interface and put the device in an inactive state
985  */
986 static int tse_shutdown(struct net_device *dev)
987 {
988 	struct altera_tse_private *priv = netdev_priv(dev);
989 	unsigned long int flags;
990 	int ret;
991 
992 	phylink_stop(priv->phylink);
993 	netif_stop_queue(dev);
994 	napi_disable(&priv->napi);
995 
996 	/* Disable DMA interrupts */
997 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
998 	priv->dmaops->disable_rxirq(priv);
999 	priv->dmaops->disable_txirq(priv);
1000 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1001 
1002 	/* Free the IRQ lines */
1003 	free_irq(priv->rx_irq, dev);
1004 	free_irq(priv->tx_irq, dev);
1005 
1006 	/* disable and reset the MAC, empties fifo */
1007 	spin_lock(&priv->mac_cfg_lock);
1008 	spin_lock(&priv->tx_lock);
1009 
1010 	ret = reset_mac(priv);
1011 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1012 	 * due to the PHY being put into isolation or power down mode.
1013 	 * This is not an error if reset fails due to no clock.
1014 	 */
1015 	if (ret)
1016 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1017 	priv->dmaops->reset_dma(priv);
1018 	free_skbufs(dev);
1019 
1020 	spin_unlock(&priv->tx_lock);
1021 	spin_unlock(&priv->mac_cfg_lock);
1022 
1023 	priv->dmaops->uninit_dma(priv);
1024 
1025 	return 0;
1026 }
1027 
1028 static struct net_device_ops altera_tse_netdev_ops = {
1029 	.ndo_open		= tse_open,
1030 	.ndo_stop		= tse_shutdown,
1031 	.ndo_start_xmit		= tse_start_xmit,
1032 	.ndo_set_mac_address	= eth_mac_addr,
1033 	.ndo_set_rx_mode	= tse_set_rx_mode,
1034 	.ndo_change_mtu		= tse_change_mtu,
1035 	.ndo_validate_addr	= eth_validate_addr,
1036 };
1037 
1038 static void alt_tse_mac_an_restart(struct phylink_config *config)
1039 {
1040 }
1041 
1042 static void alt_tse_mac_config(struct phylink_config *config, unsigned int mode,
1043 			       const struct phylink_link_state *state)
1044 {
1045 	struct net_device *ndev = to_net_dev(config->dev);
1046 	struct altera_tse_private *priv = netdev_priv(ndev);
1047 
1048 	spin_lock(&priv->mac_cfg_lock);
1049 	reset_mac(priv);
1050 	tse_set_mac(priv, true);
1051 	spin_unlock(&priv->mac_cfg_lock);
1052 }
1053 
1054 static void alt_tse_mac_link_down(struct phylink_config *config,
1055 				  unsigned int mode, phy_interface_t interface)
1056 {
1057 }
1058 
1059 static void alt_tse_mac_link_up(struct phylink_config *config,
1060 				struct phy_device *phy, unsigned int mode,
1061 				phy_interface_t interface, int speed,
1062 				int duplex, bool tx_pause, bool rx_pause)
1063 {
1064 	struct net_device *ndev = to_net_dev(config->dev);
1065 	struct altera_tse_private *priv = netdev_priv(ndev);
1066 	u32 ctrl;
1067 
1068 	ctrl = csrrd32(priv->mac_dev, tse_csroffs(command_config));
1069 	ctrl &= ~(MAC_CMDCFG_ENA_10 | MAC_CMDCFG_ETH_SPEED | MAC_CMDCFG_HD_ENA);
1070 
1071 	if (duplex == DUPLEX_HALF)
1072 		ctrl |= MAC_CMDCFG_HD_ENA;
1073 
1074 	if (speed == SPEED_1000)
1075 		ctrl |= MAC_CMDCFG_ETH_SPEED;
1076 	else if (speed == SPEED_10)
1077 		ctrl |= MAC_CMDCFG_ENA_10;
1078 
1079 	spin_lock(&priv->mac_cfg_lock);
1080 	csrwr32(ctrl, priv->mac_dev, tse_csroffs(command_config));
1081 	spin_unlock(&priv->mac_cfg_lock);
1082 }
1083 
1084 static struct phylink_pcs *alt_tse_select_pcs(struct phylink_config *config,
1085 					      phy_interface_t interface)
1086 {
1087 	struct net_device *ndev = to_net_dev(config->dev);
1088 	struct altera_tse_private *priv = netdev_priv(ndev);
1089 
1090 	if (interface == PHY_INTERFACE_MODE_SGMII ||
1091 	    interface == PHY_INTERFACE_MODE_1000BASEX)
1092 		return priv->pcs;
1093 	else
1094 		return NULL;
1095 }
1096 
1097 static const struct phylink_mac_ops alt_tse_phylink_ops = {
1098 	.validate = phylink_generic_validate,
1099 	.mac_an_restart = alt_tse_mac_an_restart,
1100 	.mac_config = alt_tse_mac_config,
1101 	.mac_link_down = alt_tse_mac_link_down,
1102 	.mac_link_up = alt_tse_mac_link_up,
1103 	.mac_select_pcs = alt_tse_select_pcs,
1104 };
1105 
1106 static int request_and_map(struct platform_device *pdev, const char *name,
1107 			   struct resource **res, void __iomem **ptr)
1108 {
1109 	struct device *device = &pdev->dev;
1110 	struct resource *region;
1111 
1112 	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1113 	if (*res == NULL) {
1114 		dev_err(device, "resource %s not defined\n", name);
1115 		return -ENODEV;
1116 	}
1117 
1118 	region = devm_request_mem_region(device, (*res)->start,
1119 					 resource_size(*res), dev_name(device));
1120 	if (region == NULL) {
1121 		dev_err(device, "unable to request %s\n", name);
1122 		return -EBUSY;
1123 	}
1124 
1125 	*ptr = devm_ioremap(device, region->start,
1126 				    resource_size(region));
1127 	if (*ptr == NULL) {
1128 		dev_err(device, "ioremap of %s failed!", name);
1129 		return -ENOMEM;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 /* Probe Altera TSE MAC device
1136  */
1137 static int altera_tse_probe(struct platform_device *pdev)
1138 {
1139 	const struct of_device_id *of_id = NULL;
1140 	struct altera_tse_private *priv;
1141 	struct resource *control_port;
1142 	struct resource *dma_res;
1143 	struct resource *pcs_res;
1144 	struct net_device *ndev;
1145 	void __iomem *descmap;
1146 	int pcs_reg_width = 2;
1147 	int ret = -ENODEV;
1148 
1149 	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1150 	if (!ndev) {
1151 		dev_err(&pdev->dev, "Could not allocate network device\n");
1152 		return -ENODEV;
1153 	}
1154 
1155 	SET_NETDEV_DEV(ndev, &pdev->dev);
1156 
1157 	priv = netdev_priv(ndev);
1158 	priv->device = &pdev->dev;
1159 	priv->dev = ndev;
1160 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1161 
1162 	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1163 
1164 	if (of_id)
1165 		priv->dmaops = (struct altera_dmaops *)of_id->data;
1166 
1167 
1168 	if (priv->dmaops &&
1169 	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1170 		/* Get the mapped address to the SGDMA descriptor memory */
1171 		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1172 		if (ret)
1173 			goto err_free_netdev;
1174 
1175 		/* Start of that memory is for transmit descriptors */
1176 		priv->tx_dma_desc = descmap;
1177 
1178 		/* First half is for tx descriptors, other half for tx */
1179 		priv->txdescmem = resource_size(dma_res)/2;
1180 
1181 		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1182 
1183 		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1184 						     priv->txdescmem));
1185 		priv->rxdescmem = resource_size(dma_res)/2;
1186 		priv->rxdescmem_busaddr = dma_res->start;
1187 		priv->rxdescmem_busaddr += priv->txdescmem;
1188 
1189 		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1190 			dev_dbg(priv->device,
1191 				"SGDMA bus addresses greater than 32-bits\n");
1192 			ret = -EINVAL;
1193 			goto err_free_netdev;
1194 		}
1195 		if (upper_32_bits(priv->txdescmem_busaddr)) {
1196 			dev_dbg(priv->device,
1197 				"SGDMA bus addresses greater than 32-bits\n");
1198 			ret = -EINVAL;
1199 			goto err_free_netdev;
1200 		}
1201 	} else if (priv->dmaops &&
1202 		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1203 		ret = request_and_map(pdev, "rx_resp", &dma_res,
1204 				      &priv->rx_dma_resp);
1205 		if (ret)
1206 			goto err_free_netdev;
1207 
1208 		ret = request_and_map(pdev, "tx_desc", &dma_res,
1209 				      &priv->tx_dma_desc);
1210 		if (ret)
1211 			goto err_free_netdev;
1212 
1213 		priv->txdescmem = resource_size(dma_res);
1214 		priv->txdescmem_busaddr = dma_res->start;
1215 
1216 		ret = request_and_map(pdev, "rx_desc", &dma_res,
1217 				      &priv->rx_dma_desc);
1218 		if (ret)
1219 			goto err_free_netdev;
1220 
1221 		priv->rxdescmem = resource_size(dma_res);
1222 		priv->rxdescmem_busaddr = dma_res->start;
1223 
1224 	} else {
1225 		ret = -ENODEV;
1226 		goto err_free_netdev;
1227 	}
1228 
1229 	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) {
1230 		dma_set_coherent_mask(priv->device,
1231 				      DMA_BIT_MASK(priv->dmaops->dmamask));
1232 	} else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) {
1233 		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1234 	} else {
1235 		ret = -EIO;
1236 		goto err_free_netdev;
1237 	}
1238 
1239 	/* MAC address space */
1240 	ret = request_and_map(pdev, "control_port", &control_port,
1241 			      (void __iomem **)&priv->mac_dev);
1242 	if (ret)
1243 		goto err_free_netdev;
1244 
1245 	/* xSGDMA Rx Dispatcher address space */
1246 	ret = request_and_map(pdev, "rx_csr", &dma_res,
1247 			      &priv->rx_dma_csr);
1248 	if (ret)
1249 		goto err_free_netdev;
1250 
1251 
1252 	/* xSGDMA Tx Dispatcher address space */
1253 	ret = request_and_map(pdev, "tx_csr", &dma_res,
1254 			      &priv->tx_dma_csr);
1255 	if (ret)
1256 		goto err_free_netdev;
1257 
1258 	/* SGMII PCS address space. The location can vary depending on how the
1259 	 * IP is integrated. We can have a resource dedicated to it at a specific
1260 	 * address space, but if it's not the case, we fallback to the mdiophy0
1261 	 * from the MAC's address space
1262 	 */
1263 	ret = request_and_map(pdev, "pcs", &pcs_res,
1264 			      &priv->pcs_base);
1265 	if (ret) {
1266 		priv->pcs_base = priv->mac_dev + tse_csroffs(mdio_phy0);
1267 		pcs_reg_width = 4;
1268 	}
1269 
1270 	/* Rx IRQ */
1271 	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1272 	if (priv->rx_irq == -ENXIO) {
1273 		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1274 		ret = -ENXIO;
1275 		goto err_free_netdev;
1276 	}
1277 
1278 	/* Tx IRQ */
1279 	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1280 	if (priv->tx_irq == -ENXIO) {
1281 		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1282 		ret = -ENXIO;
1283 		goto err_free_netdev;
1284 	}
1285 
1286 	/* get FIFO depths from device tree */
1287 	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1288 				 &priv->rx_fifo_depth)) {
1289 		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1290 		ret = -ENXIO;
1291 		goto err_free_netdev;
1292 	}
1293 
1294 	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1295 				 &priv->tx_fifo_depth)) {
1296 		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1297 		ret = -ENXIO;
1298 		goto err_free_netdev;
1299 	}
1300 
1301 	/* get hash filter settings for this instance */
1302 	priv->hash_filter =
1303 		of_property_read_bool(pdev->dev.of_node,
1304 				      "altr,has-hash-multicast-filter");
1305 
1306 	/* Set hash filter to not set for now until the
1307 	 * multicast filter receive issue is debugged
1308 	 */
1309 	priv->hash_filter = 0;
1310 
1311 	/* get supplemental address settings for this instance */
1312 	priv->added_unicast =
1313 		of_property_read_bool(pdev->dev.of_node,
1314 				      "altr,has-supplementary-unicast");
1315 
1316 	priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1317 	/* Max MTU is 1500, ETH_DATA_LEN */
1318 	priv->dev->max_mtu = ETH_DATA_LEN;
1319 
1320 	/* Get the max mtu from the device tree. Note that the
1321 	 * "max-frame-size" parameter is actually max mtu. Definition
1322 	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1323 	 */
1324 	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1325 			     &priv->dev->max_mtu);
1326 
1327 	/* The DMA buffer size already accounts for an alignment bias
1328 	 * to avoid unaligned access exceptions for the NIOS processor,
1329 	 */
1330 	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1331 
1332 	/* get default MAC address from device tree */
1333 	ret = of_get_ethdev_address(pdev->dev.of_node, ndev);
1334 	if (ret)
1335 		eth_hw_addr_random(ndev);
1336 
1337 	/* get phy addr and create mdio */
1338 	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1339 
1340 	if (ret)
1341 		goto err_free_netdev;
1342 
1343 	/* initialize netdev */
1344 	ndev->mem_start = control_port->start;
1345 	ndev->mem_end = control_port->end;
1346 	ndev->netdev_ops = &altera_tse_netdev_ops;
1347 	altera_tse_set_ethtool_ops(ndev);
1348 
1349 	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1350 
1351 	if (priv->hash_filter)
1352 		altera_tse_netdev_ops.ndo_set_rx_mode =
1353 			tse_set_rx_mode_hashfilter;
1354 
1355 	/* Scatter/gather IO is not supported,
1356 	 * so it is turned off
1357 	 */
1358 	ndev->hw_features &= ~NETIF_F_SG;
1359 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1360 
1361 	/* VLAN offloading of tagging, stripping and filtering is not
1362 	 * supported by hardware, but driver will accommodate the
1363 	 * extra 4-byte VLAN tag for processing by upper layers
1364 	 */
1365 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1366 
1367 	/* setup NAPI interface */
1368 	netif_napi_add(ndev, &priv->napi, tse_poll);
1369 
1370 	spin_lock_init(&priv->mac_cfg_lock);
1371 	spin_lock_init(&priv->tx_lock);
1372 	spin_lock_init(&priv->rxdma_irq_lock);
1373 
1374 	netif_carrier_off(ndev);
1375 	ret = register_netdev(ndev);
1376 	if (ret) {
1377 		dev_err(&pdev->dev, "failed to register TSE net device\n");
1378 		goto err_register_netdev;
1379 	}
1380 
1381 	platform_set_drvdata(pdev, ndev);
1382 
1383 	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1384 
1385 	if (netif_msg_probe(priv))
1386 		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1387 			 (priv->revision >> 8) & 0xff,
1388 			 priv->revision & 0xff,
1389 			 (unsigned long) control_port->start, priv->rx_irq,
1390 			 priv->tx_irq);
1391 
1392 	priv->pcs = alt_tse_pcs_create(ndev, priv->pcs_base, pcs_reg_width);
1393 
1394 	priv->phylink_config.dev = &ndev->dev;
1395 	priv->phylink_config.type = PHYLINK_NETDEV;
1396 	priv->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 |
1397 						MAC_100 | MAC_1000FD;
1398 
1399 	phy_interface_set_rgmii(priv->phylink_config.supported_interfaces);
1400 	__set_bit(PHY_INTERFACE_MODE_MII,
1401 		  priv->phylink_config.supported_interfaces);
1402 	__set_bit(PHY_INTERFACE_MODE_GMII,
1403 		  priv->phylink_config.supported_interfaces);
1404 	__set_bit(PHY_INTERFACE_MODE_SGMII,
1405 		  priv->phylink_config.supported_interfaces);
1406 	__set_bit(PHY_INTERFACE_MODE_1000BASEX,
1407 		  priv->phylink_config.supported_interfaces);
1408 
1409 	priv->phylink = phylink_create(&priv->phylink_config,
1410 				       of_fwnode_handle(priv->device->of_node),
1411 				       priv->phy_iface, &alt_tse_phylink_ops);
1412 	if (IS_ERR(priv->phylink)) {
1413 		dev_err(&pdev->dev, "failed to create phylink\n");
1414 		ret = PTR_ERR(priv->phylink);
1415 		goto err_init_phy;
1416 	}
1417 
1418 	return 0;
1419 
1420 err_init_phy:
1421 	unregister_netdev(ndev);
1422 err_register_netdev:
1423 	netif_napi_del(&priv->napi);
1424 	altera_tse_mdio_destroy(ndev);
1425 err_free_netdev:
1426 	free_netdev(ndev);
1427 	return ret;
1428 }
1429 
1430 /* Remove Altera TSE MAC device
1431  */
1432 static int altera_tse_remove(struct platform_device *pdev)
1433 {
1434 	struct net_device *ndev = platform_get_drvdata(pdev);
1435 	struct altera_tse_private *priv = netdev_priv(ndev);
1436 
1437 	platform_set_drvdata(pdev, NULL);
1438 	altera_tse_mdio_destroy(ndev);
1439 	unregister_netdev(ndev);
1440 	phylink_destroy(priv->phylink);
1441 	free_netdev(ndev);
1442 
1443 	return 0;
1444 }
1445 
1446 static const struct altera_dmaops altera_dtype_sgdma = {
1447 	.altera_dtype = ALTERA_DTYPE_SGDMA,
1448 	.dmamask = 32,
1449 	.reset_dma = sgdma_reset,
1450 	.enable_txirq = sgdma_enable_txirq,
1451 	.enable_rxirq = sgdma_enable_rxirq,
1452 	.disable_txirq = sgdma_disable_txirq,
1453 	.disable_rxirq = sgdma_disable_rxirq,
1454 	.clear_txirq = sgdma_clear_txirq,
1455 	.clear_rxirq = sgdma_clear_rxirq,
1456 	.tx_buffer = sgdma_tx_buffer,
1457 	.tx_completions = sgdma_tx_completions,
1458 	.add_rx_desc = sgdma_add_rx_desc,
1459 	.get_rx_status = sgdma_rx_status,
1460 	.init_dma = sgdma_initialize,
1461 	.uninit_dma = sgdma_uninitialize,
1462 	.start_rxdma = sgdma_start_rxdma,
1463 };
1464 
1465 static const struct altera_dmaops altera_dtype_msgdma = {
1466 	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1467 	.dmamask = 64,
1468 	.reset_dma = msgdma_reset,
1469 	.enable_txirq = msgdma_enable_txirq,
1470 	.enable_rxirq = msgdma_enable_rxirq,
1471 	.disable_txirq = msgdma_disable_txirq,
1472 	.disable_rxirq = msgdma_disable_rxirq,
1473 	.clear_txirq = msgdma_clear_txirq,
1474 	.clear_rxirq = msgdma_clear_rxirq,
1475 	.tx_buffer = msgdma_tx_buffer,
1476 	.tx_completions = msgdma_tx_completions,
1477 	.add_rx_desc = msgdma_add_rx_desc,
1478 	.get_rx_status = msgdma_rx_status,
1479 	.init_dma = msgdma_initialize,
1480 	.uninit_dma = msgdma_uninitialize,
1481 	.start_rxdma = msgdma_start_rxdma,
1482 };
1483 
1484 static const struct of_device_id altera_tse_ids[] = {
1485 	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1486 	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1487 	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1488 	{},
1489 };
1490 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1491 
1492 static struct platform_driver altera_tse_driver = {
1493 	.probe		= altera_tse_probe,
1494 	.remove		= altera_tse_remove,
1495 	.suspend	= NULL,
1496 	.resume		= NULL,
1497 	.driver		= {
1498 		.name	= ALTERA_TSE_RESOURCE_NAME,
1499 		.of_match_table = altera_tse_ids,
1500 	},
1501 };
1502 
1503 module_platform_driver(altera_tse_driver);
1504 
1505 MODULE_AUTHOR("Altera Corporation");
1506 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1507 MODULE_LICENSE("GPL v2");
1508