1 /* Altera Triple-Speed Ethernet MAC driver
2  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
3  *
4  * Contributors:
5  *   Dalon Westergreen
6  *   Thomas Chou
7  *   Ian Abbott
8  *   Yuriy Kozlov
9  *   Tobias Klauser
10  *   Andriy Smolskyy
11  *   Roman Bulgakov
12  *   Dmytro Mytarchuk
13  *   Matthew Gerlach
14  *
15  * Original driver contributed by SLS.
16  * Major updates contributed by GlobalLogic
17  *
18  * This program is free software; you can redistribute it and/or modify it
19  * under the terms and conditions of the GNU General Public License,
20  * version 2, as published by the Free Software Foundation.
21  *
22  * This program is distributed in the hope it will be useful, but WITHOUT
23  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
25  * more details.
26  *
27  * You should have received a copy of the GNU General Public License along with
28  * this program.  If not, see <http://www.gnu.org/licenses/>.
29  */
30 
31 #include <linux/atomic.h>
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_vlan.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/of_device.h>
42 #include <linux/of_mdio.h>
43 #include <linux/of_net.h>
44 #include <linux/of_platform.h>
45 #include <linux/phy.h>
46 #include <linux/platform_device.h>
47 #include <linux/skbuff.h>
48 #include <asm/cacheflush.h>
49 
50 #include "altera_utils.h"
51 #include "altera_tse.h"
52 #include "altera_sgdma.h"
53 #include "altera_msgdma.h"
54 
55 static atomic_t instance_count = ATOMIC_INIT(~0);
56 /* Module parameters */
57 static int debug = -1;
58 module_param(debug, int, S_IRUGO | S_IWUSR);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 					NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 					NETIF_MSG_IFDOWN);
64 
65 #define RX_DESCRIPTORS 64
66 static int dma_rx_num = RX_DESCRIPTORS;
67 module_param(dma_rx_num, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
69 
70 #define TX_DESCRIPTORS 64
71 static int dma_tx_num = TX_DESCRIPTORS;
72 module_param(dma_tx_num, int, S_IRUGO | S_IWUSR);
73 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
74 
75 
76 #define POLL_PHY (-1)
77 
78 /* Make sure DMA buffer size is larger than the max frame size
79  * plus some alignment offset and a VLAN header. If the max frame size is
80  * 1518, a VLAN header would be additional 4 bytes and additional
81  * headroom for alignment is 2 bytes, 2048 is just fine.
82  */
83 #define ALTERA_RXDMABUFFER_SIZE	2048
84 
85 /* Allow network stack to resume queueing packets after we've
86  * finished transmitting at least 1/4 of the packets in the queue.
87  */
88 #define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
89 
90 #define TXQUEUESTOP_THRESHHOLD	2
91 
92 static const struct of_device_id altera_tse_ids[];
93 
94 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
95 {
96 	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
97 }
98 
99 /* MDIO specific functions
100  */
101 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
102 {
103 	struct net_device *ndev = bus->priv;
104 	struct altera_tse_private *priv = netdev_priv(ndev);
105 
106 	/* set MDIO address */
107 	csrwr32((mii_id & 0x1f), priv->mac_dev,
108 		tse_csroffs(mdio_phy1_addr));
109 
110 	/* get the data */
111 	return csrrd32(priv->mac_dev,
112 		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
113 }
114 
115 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
116 				 u16 value)
117 {
118 	struct net_device *ndev = bus->priv;
119 	struct altera_tse_private *priv = netdev_priv(ndev);
120 
121 	/* set MDIO address */
122 	csrwr32((mii_id & 0x1f), priv->mac_dev,
123 		tse_csroffs(mdio_phy1_addr));
124 
125 	/* write the data */
126 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
127 	return 0;
128 }
129 
130 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
131 {
132 	struct altera_tse_private *priv = netdev_priv(dev);
133 	int ret;
134 	int i;
135 	struct device_node *mdio_node = NULL;
136 	struct mii_bus *mdio = NULL;
137 	struct device_node *child_node = NULL;
138 
139 	for_each_child_of_node(priv->device->of_node, child_node) {
140 		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
141 			mdio_node = child_node;
142 			break;
143 		}
144 	}
145 
146 	if (mdio_node) {
147 		netdev_dbg(dev, "FOUND MDIO subnode\n");
148 	} else {
149 		netdev_dbg(dev, "NO MDIO subnode\n");
150 		return 0;
151 	}
152 
153 	mdio = mdiobus_alloc();
154 	if (mdio == NULL) {
155 		netdev_err(dev, "Error allocating MDIO bus\n");
156 		return -ENOMEM;
157 	}
158 
159 	mdio->name = ALTERA_TSE_RESOURCE_NAME;
160 	mdio->read = &altera_tse_mdio_read;
161 	mdio->write = &altera_tse_mdio_write;
162 	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
163 
164 	mdio->irq = kcalloc(PHY_MAX_ADDR, sizeof(int), GFP_KERNEL);
165 	if (mdio->irq == NULL) {
166 		ret = -ENOMEM;
167 		goto out_free_mdio;
168 	}
169 	for (i = 0; i < PHY_MAX_ADDR; i++)
170 		mdio->irq[i] = PHY_POLL;
171 
172 	mdio->priv = dev;
173 	mdio->parent = priv->device;
174 
175 	ret = of_mdiobus_register(mdio, mdio_node);
176 	if (ret != 0) {
177 		netdev_err(dev, "Cannot register MDIO bus %s\n",
178 			   mdio->id);
179 		goto out_free_mdio_irq;
180 	}
181 
182 	if (netif_msg_drv(priv))
183 		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
184 
185 	priv->mdio = mdio;
186 	return 0;
187 out_free_mdio_irq:
188 	kfree(mdio->irq);
189 out_free_mdio:
190 	mdiobus_free(mdio);
191 	mdio = NULL;
192 	return ret;
193 }
194 
195 static void altera_tse_mdio_destroy(struct net_device *dev)
196 {
197 	struct altera_tse_private *priv = netdev_priv(dev);
198 
199 	if (priv->mdio == NULL)
200 		return;
201 
202 	if (netif_msg_drv(priv))
203 		netdev_info(dev, "MDIO bus %s: removed\n",
204 			    priv->mdio->id);
205 
206 	mdiobus_unregister(priv->mdio);
207 	kfree(priv->mdio->irq);
208 	mdiobus_free(priv->mdio);
209 	priv->mdio = NULL;
210 }
211 
212 static int tse_init_rx_buffer(struct altera_tse_private *priv,
213 			      struct tse_buffer *rxbuffer, int len)
214 {
215 	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
216 	if (!rxbuffer->skb)
217 		return -ENOMEM;
218 
219 	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
220 						len,
221 						DMA_FROM_DEVICE);
222 
223 	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
224 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
225 		dev_kfree_skb_any(rxbuffer->skb);
226 		return -EINVAL;
227 	}
228 	rxbuffer->dma_addr &= (dma_addr_t)~3;
229 	rxbuffer->len = len;
230 	return 0;
231 }
232 
233 static void tse_free_rx_buffer(struct altera_tse_private *priv,
234 			       struct tse_buffer *rxbuffer)
235 {
236 	struct sk_buff *skb = rxbuffer->skb;
237 	dma_addr_t dma_addr = rxbuffer->dma_addr;
238 
239 	if (skb != NULL) {
240 		if (dma_addr)
241 			dma_unmap_single(priv->device, dma_addr,
242 					 rxbuffer->len,
243 					 DMA_FROM_DEVICE);
244 		dev_kfree_skb_any(skb);
245 		rxbuffer->skb = NULL;
246 		rxbuffer->dma_addr = 0;
247 	}
248 }
249 
250 /* Unmap and free Tx buffer resources
251  */
252 static void tse_free_tx_buffer(struct altera_tse_private *priv,
253 			       struct tse_buffer *buffer)
254 {
255 	if (buffer->dma_addr) {
256 		if (buffer->mapped_as_page)
257 			dma_unmap_page(priv->device, buffer->dma_addr,
258 				       buffer->len, DMA_TO_DEVICE);
259 		else
260 			dma_unmap_single(priv->device, buffer->dma_addr,
261 					 buffer->len, DMA_TO_DEVICE);
262 		buffer->dma_addr = 0;
263 	}
264 	if (buffer->skb) {
265 		dev_kfree_skb_any(buffer->skb);
266 		buffer->skb = NULL;
267 	}
268 }
269 
270 static int alloc_init_skbufs(struct altera_tse_private *priv)
271 {
272 	unsigned int rx_descs = priv->rx_ring_size;
273 	unsigned int tx_descs = priv->tx_ring_size;
274 	int ret = -ENOMEM;
275 	int i;
276 
277 	/* Create Rx ring buffer */
278 	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
279 				GFP_KERNEL);
280 	if (!priv->rx_ring)
281 		goto err_rx_ring;
282 
283 	/* Create Tx ring buffer */
284 	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
285 				GFP_KERNEL);
286 	if (!priv->tx_ring)
287 		goto err_tx_ring;
288 
289 	priv->tx_cons = 0;
290 	priv->tx_prod = 0;
291 
292 	/* Init Rx ring */
293 	for (i = 0; i < rx_descs; i++) {
294 		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
295 					 priv->rx_dma_buf_sz);
296 		if (ret)
297 			goto err_init_rx_buffers;
298 	}
299 
300 	priv->rx_cons = 0;
301 	priv->rx_prod = 0;
302 
303 	return 0;
304 err_init_rx_buffers:
305 	while (--i >= 0)
306 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
307 	kfree(priv->tx_ring);
308 err_tx_ring:
309 	kfree(priv->rx_ring);
310 err_rx_ring:
311 	return ret;
312 }
313 
314 static void free_skbufs(struct net_device *dev)
315 {
316 	struct altera_tse_private *priv = netdev_priv(dev);
317 	unsigned int rx_descs = priv->rx_ring_size;
318 	unsigned int tx_descs = priv->tx_ring_size;
319 	int i;
320 
321 	/* Release the DMA TX/RX socket buffers */
322 	for (i = 0; i < rx_descs; i++)
323 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
324 	for (i = 0; i < tx_descs; i++)
325 		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
326 
327 
328 	kfree(priv->tx_ring);
329 }
330 
331 /* Reallocate the skb for the reception process
332  */
333 static inline void tse_rx_refill(struct altera_tse_private *priv)
334 {
335 	unsigned int rxsize = priv->rx_ring_size;
336 	unsigned int entry;
337 	int ret;
338 
339 	for (; priv->rx_cons - priv->rx_prod > 0;
340 			priv->rx_prod++) {
341 		entry = priv->rx_prod % rxsize;
342 		if (likely(priv->rx_ring[entry].skb == NULL)) {
343 			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
344 				priv->rx_dma_buf_sz);
345 			if (unlikely(ret != 0))
346 				break;
347 			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
348 		}
349 	}
350 }
351 
352 /* Pull out the VLAN tag and fix up the packet
353  */
354 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
355 {
356 	struct ethhdr *eth_hdr;
357 	u16 vid;
358 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
359 	    !__vlan_get_tag(skb, &vid)) {
360 		eth_hdr = (struct ethhdr *)skb->data;
361 		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
362 		skb_pull(skb, VLAN_HLEN);
363 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
364 	}
365 }
366 
367 /* Receive a packet: retrieve and pass over to upper levels
368  */
369 static int tse_rx(struct altera_tse_private *priv, int limit)
370 {
371 	unsigned int count = 0;
372 	unsigned int next_entry;
373 	struct sk_buff *skb;
374 	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
375 	u32 rxstatus;
376 	u16 pktlength;
377 	u16 pktstatus;
378 
379 	/* Check for count < limit first as get_rx_status is changing
380 	* the response-fifo so we must process the next packet
381 	* after calling get_rx_status if a response is pending.
382 	* (reading the last byte of the response pops the value from the fifo.)
383 	*/
384 	while ((count < limit) &&
385 	       ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
386 		pktstatus = rxstatus >> 16;
387 		pktlength = rxstatus & 0xffff;
388 
389 		if ((pktstatus & 0xFF) || (pktlength == 0))
390 			netdev_err(priv->dev,
391 				   "RCV pktstatus %08X pktlength %08X\n",
392 				   pktstatus, pktlength);
393 
394 		/* DMA trasfer from TSE starts with 2 aditional bytes for
395 		 * IP payload alignment. Status returned by get_rx_status()
396 		 * contains DMA transfer length. Packet is 2 bytes shorter.
397 		 */
398 		pktlength -= 2;
399 
400 		count++;
401 		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
402 
403 		skb = priv->rx_ring[entry].skb;
404 		if (unlikely(!skb)) {
405 			netdev_err(priv->dev,
406 				   "%s: Inconsistent Rx descriptor chain\n",
407 				   __func__);
408 			priv->dev->stats.rx_dropped++;
409 			break;
410 		}
411 		priv->rx_ring[entry].skb = NULL;
412 
413 		skb_put(skb, pktlength);
414 
415 		/* make cache consistent with receive packet buffer */
416 		dma_sync_single_for_cpu(priv->device,
417 					priv->rx_ring[entry].dma_addr,
418 					priv->rx_ring[entry].len,
419 					DMA_FROM_DEVICE);
420 
421 		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
422 				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
423 
424 		if (netif_msg_pktdata(priv)) {
425 			netdev_info(priv->dev, "frame received %d bytes\n",
426 				    pktlength);
427 			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
428 				       16, 1, skb->data, pktlength, true);
429 		}
430 
431 		tse_rx_vlan(priv->dev, skb);
432 
433 		skb->protocol = eth_type_trans(skb, priv->dev);
434 		skb_checksum_none_assert(skb);
435 
436 		napi_gro_receive(&priv->napi, skb);
437 
438 		priv->dev->stats.rx_packets++;
439 		priv->dev->stats.rx_bytes += pktlength;
440 
441 		entry = next_entry;
442 
443 		tse_rx_refill(priv);
444 	}
445 
446 	return count;
447 }
448 
449 /* Reclaim resources after transmission completes
450  */
451 static int tse_tx_complete(struct altera_tse_private *priv)
452 {
453 	unsigned int txsize = priv->tx_ring_size;
454 	u32 ready;
455 	unsigned int entry;
456 	struct tse_buffer *tx_buff;
457 	int txcomplete = 0;
458 
459 	spin_lock(&priv->tx_lock);
460 
461 	ready = priv->dmaops->tx_completions(priv);
462 
463 	/* Free sent buffers */
464 	while (ready && (priv->tx_cons != priv->tx_prod)) {
465 		entry = priv->tx_cons % txsize;
466 		tx_buff = &priv->tx_ring[entry];
467 
468 		if (netif_msg_tx_done(priv))
469 			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
470 				   __func__, priv->tx_prod, priv->tx_cons);
471 
472 		if (likely(tx_buff->skb))
473 			priv->dev->stats.tx_packets++;
474 
475 		tse_free_tx_buffer(priv, tx_buff);
476 		priv->tx_cons++;
477 
478 		txcomplete++;
479 		ready--;
480 	}
481 
482 	if (unlikely(netif_queue_stopped(priv->dev) &&
483 		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
484 		netif_tx_lock(priv->dev);
485 		if (netif_queue_stopped(priv->dev) &&
486 		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
487 			if (netif_msg_tx_done(priv))
488 				netdev_dbg(priv->dev, "%s: restart transmit\n",
489 					   __func__);
490 			netif_wake_queue(priv->dev);
491 		}
492 		netif_tx_unlock(priv->dev);
493 	}
494 
495 	spin_unlock(&priv->tx_lock);
496 	return txcomplete;
497 }
498 
499 /* NAPI polling function
500  */
501 static int tse_poll(struct napi_struct *napi, int budget)
502 {
503 	struct altera_tse_private *priv =
504 			container_of(napi, struct altera_tse_private, napi);
505 	int rxcomplete = 0;
506 	unsigned long int flags;
507 
508 	tse_tx_complete(priv);
509 
510 	rxcomplete = tse_rx(priv, budget);
511 
512 	if (rxcomplete < budget) {
513 
514 		napi_gro_flush(napi, false);
515 		__napi_complete(napi);
516 
517 		netdev_dbg(priv->dev,
518 			   "NAPI Complete, did %d packets with budget %d\n",
519 			   rxcomplete, budget);
520 
521 		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
522 		priv->dmaops->enable_rxirq(priv);
523 		priv->dmaops->enable_txirq(priv);
524 		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
525 	}
526 	return rxcomplete;
527 }
528 
529 /* DMA TX & RX FIFO interrupt routing
530  */
531 static irqreturn_t altera_isr(int irq, void *dev_id)
532 {
533 	struct net_device *dev = dev_id;
534 	struct altera_tse_private *priv;
535 
536 	if (unlikely(!dev)) {
537 		pr_err("%s: invalid dev pointer\n", __func__);
538 		return IRQ_NONE;
539 	}
540 	priv = netdev_priv(dev);
541 
542 	spin_lock(&priv->rxdma_irq_lock);
543 	/* reset IRQs */
544 	priv->dmaops->clear_rxirq(priv);
545 	priv->dmaops->clear_txirq(priv);
546 	spin_unlock(&priv->rxdma_irq_lock);
547 
548 	if (likely(napi_schedule_prep(&priv->napi))) {
549 		spin_lock(&priv->rxdma_irq_lock);
550 		priv->dmaops->disable_rxirq(priv);
551 		priv->dmaops->disable_txirq(priv);
552 		spin_unlock(&priv->rxdma_irq_lock);
553 		__napi_schedule(&priv->napi);
554 	}
555 
556 
557 	return IRQ_HANDLED;
558 }
559 
560 /* Transmit a packet (called by the kernel). Dispatches
561  * either the SGDMA method for transmitting or the
562  * MSGDMA method, assumes no scatter/gather support,
563  * implying an assumption that there's only one
564  * physically contiguous fragment starting at
565  * skb->data, for length of skb_headlen(skb).
566  */
567 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
568 {
569 	struct altera_tse_private *priv = netdev_priv(dev);
570 	unsigned int txsize = priv->tx_ring_size;
571 	unsigned int entry;
572 	struct tse_buffer *buffer = NULL;
573 	int nfrags = skb_shinfo(skb)->nr_frags;
574 	unsigned int nopaged_len = skb_headlen(skb);
575 	enum netdev_tx ret = NETDEV_TX_OK;
576 	dma_addr_t dma_addr;
577 
578 	spin_lock_bh(&priv->tx_lock);
579 
580 	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
581 		if (!netif_queue_stopped(dev)) {
582 			netif_stop_queue(dev);
583 			/* This is a hard error, log it. */
584 			netdev_err(priv->dev,
585 				   "%s: Tx list full when queue awake\n",
586 				   __func__);
587 		}
588 		ret = NETDEV_TX_BUSY;
589 		goto out;
590 	}
591 
592 	/* Map the first skb fragment */
593 	entry = priv->tx_prod % txsize;
594 	buffer = &priv->tx_ring[entry];
595 
596 	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
597 				  DMA_TO_DEVICE);
598 	if (dma_mapping_error(priv->device, dma_addr)) {
599 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
600 		ret = NETDEV_TX_OK;
601 		goto out;
602 	}
603 
604 	buffer->skb = skb;
605 	buffer->dma_addr = dma_addr;
606 	buffer->len = nopaged_len;
607 
608 	/* Push data out of the cache hierarchy into main memory */
609 	dma_sync_single_for_device(priv->device, buffer->dma_addr,
610 				   buffer->len, DMA_TO_DEVICE);
611 
612 	priv->dmaops->tx_buffer(priv, buffer);
613 
614 	skb_tx_timestamp(skb);
615 
616 	priv->tx_prod++;
617 	dev->stats.tx_bytes += skb->len;
618 
619 	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
620 		if (netif_msg_hw(priv))
621 			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
622 				   __func__);
623 		netif_stop_queue(dev);
624 	}
625 
626 out:
627 	spin_unlock_bh(&priv->tx_lock);
628 
629 	return ret;
630 }
631 
632 /* Called every time the controller might need to be made
633  * aware of new link state.  The PHY code conveys this
634  * information through variables in the phydev structure, and this
635  * function converts those variables into the appropriate
636  * register values, and can bring down the device if needed.
637  */
638 static void altera_tse_adjust_link(struct net_device *dev)
639 {
640 	struct altera_tse_private *priv = netdev_priv(dev);
641 	struct phy_device *phydev = priv->phydev;
642 	int new_state = 0;
643 
644 	/* only change config if there is a link */
645 	spin_lock(&priv->mac_cfg_lock);
646 	if (phydev->link) {
647 		/* Read old config */
648 		u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
649 
650 		/* Check duplex */
651 		if (phydev->duplex != priv->oldduplex) {
652 			new_state = 1;
653 			if (!(phydev->duplex))
654 				cfg_reg |= MAC_CMDCFG_HD_ENA;
655 			else
656 				cfg_reg &= ~MAC_CMDCFG_HD_ENA;
657 
658 			netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
659 				   dev->name, phydev->duplex);
660 
661 			priv->oldduplex = phydev->duplex;
662 		}
663 
664 		/* Check speed */
665 		if (phydev->speed != priv->oldspeed) {
666 			new_state = 1;
667 			switch (phydev->speed) {
668 			case 1000:
669 				cfg_reg |= MAC_CMDCFG_ETH_SPEED;
670 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
671 				break;
672 			case 100:
673 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
674 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
675 				break;
676 			case 10:
677 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
678 				cfg_reg |= MAC_CMDCFG_ENA_10;
679 				break;
680 			default:
681 				if (netif_msg_link(priv))
682 					netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
683 						    phydev->speed);
684 				break;
685 			}
686 			priv->oldspeed = phydev->speed;
687 		}
688 		iowrite32(cfg_reg, &priv->mac_dev->command_config);
689 
690 		if (!priv->oldlink) {
691 			new_state = 1;
692 			priv->oldlink = 1;
693 		}
694 	} else if (priv->oldlink) {
695 		new_state = 1;
696 		priv->oldlink = 0;
697 		priv->oldspeed = 0;
698 		priv->oldduplex = -1;
699 	}
700 
701 	if (new_state && netif_msg_link(priv))
702 		phy_print_status(phydev);
703 
704 	spin_unlock(&priv->mac_cfg_lock);
705 }
706 static struct phy_device *connect_local_phy(struct net_device *dev)
707 {
708 	struct altera_tse_private *priv = netdev_priv(dev);
709 	struct phy_device *phydev = NULL;
710 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
711 
712 	if (priv->phy_addr != POLL_PHY) {
713 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
714 			 priv->mdio->id, priv->phy_addr);
715 
716 		netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
717 
718 		phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
719 				     priv->phy_iface);
720 		if (IS_ERR(phydev))
721 			netdev_err(dev, "Could not attach to PHY\n");
722 
723 	} else {
724 		int ret;
725 		phydev = phy_find_first(priv->mdio);
726 		if (phydev == NULL) {
727 			netdev_err(dev, "No PHY found\n");
728 			return phydev;
729 		}
730 
731 		ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
732 				priv->phy_iface);
733 		if (ret != 0) {
734 			netdev_err(dev, "Could not attach to PHY\n");
735 			phydev = NULL;
736 		}
737 	}
738 	return phydev;
739 }
740 
741 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
742 {
743 	struct altera_tse_private *priv = netdev_priv(dev);
744 	struct device_node *np = priv->device->of_node;
745 	int ret = 0;
746 
747 	priv->phy_iface = of_get_phy_mode(np);
748 
749 	/* Avoid get phy addr and create mdio if no phy is present */
750 	if (!priv->phy_iface)
751 		return 0;
752 
753 	/* try to get PHY address from device tree, use PHY autodetection if
754 	 * no valid address is given
755 	 */
756 
757 	if (of_property_read_u32(priv->device->of_node, "phy-addr",
758 			 &priv->phy_addr)) {
759 		priv->phy_addr = POLL_PHY;
760 	}
761 
762 	if (!((priv->phy_addr == POLL_PHY) ||
763 		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
764 		netdev_err(dev, "invalid phy-addr specified %d\n",
765 			priv->phy_addr);
766 		return -ENODEV;
767 	}
768 
769 	/* Create/attach to MDIO bus */
770 	ret = altera_tse_mdio_create(dev,
771 					 atomic_add_return(1, &instance_count));
772 
773 	if (ret)
774 		return -ENODEV;
775 
776 	return 0;
777 }
778 
779 /* Initialize driver's PHY state, and attach to the PHY
780  */
781 static int init_phy(struct net_device *dev)
782 {
783 	struct altera_tse_private *priv = netdev_priv(dev);
784 	struct phy_device *phydev;
785 	struct device_node *phynode;
786 	bool fixed_link = false;
787 	int rc = 0;
788 
789 	/* Avoid init phy in case of no phy present */
790 	if (!priv->phy_iface)
791 		return 0;
792 
793 	priv->oldlink = 0;
794 	priv->oldspeed = 0;
795 	priv->oldduplex = -1;
796 
797 	phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
798 
799 	if (!phynode) {
800 		/* check if a fixed-link is defined in device-tree */
801 		if (of_phy_is_fixed_link(priv->device->of_node)) {
802 			rc = of_phy_register_fixed_link(priv->device->of_node);
803 			if (rc < 0) {
804 				netdev_err(dev, "cannot register fixed PHY\n");
805 				return rc;
806 			}
807 
808 			/* In the case of a fixed PHY, the DT node associated
809 			 * to the PHY is the Ethernet MAC DT node.
810 			 */
811 			phynode = of_node_get(priv->device->of_node);
812 			fixed_link = true;
813 
814 			netdev_dbg(dev, "fixed-link detected\n");
815 			phydev = of_phy_connect(dev, phynode,
816 						&altera_tse_adjust_link,
817 						0, priv->phy_iface);
818 		} else {
819 			netdev_dbg(dev, "no phy-handle found\n");
820 			if (!priv->mdio) {
821 				netdev_err(dev, "No phy-handle nor local mdio specified\n");
822 				return -ENODEV;
823 			}
824 			phydev = connect_local_phy(dev);
825 		}
826 	} else {
827 		netdev_dbg(dev, "phy-handle found\n");
828 		phydev = of_phy_connect(dev, phynode,
829 			&altera_tse_adjust_link, 0, priv->phy_iface);
830 	}
831 
832 	if (!phydev) {
833 		netdev_err(dev, "Could not find the PHY\n");
834 		return -ENODEV;
835 	}
836 
837 	/* Stop Advertising 1000BASE Capability if interface is not GMII
838 	 * Note: Checkpatch throws CHECKs for the camel case defines below,
839 	 * it's ok to ignore.
840 	 */
841 	if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
842 	    (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
843 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
844 					 SUPPORTED_1000baseT_Full);
845 
846 	/* Broken HW is sometimes missing the pull-up resistor on the
847 	 * MDIO line, which results in reads to non-existent devices returning
848 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
849 	 * device as well. If a fixed-link is used the phy_id is always 0.
850 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
851 	 */
852 	if ((phydev->phy_id == 0) && !fixed_link) {
853 		netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
854 		phy_disconnect(phydev);
855 		return -ENODEV;
856 	}
857 
858 	netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
859 		   phydev->addr, phydev->phy_id, phydev->link);
860 
861 	priv->phydev = phydev;
862 	return 0;
863 }
864 
865 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
866 {
867 	u32 msb;
868 	u32 lsb;
869 
870 	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
871 	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
872 
873 	/* Set primary MAC address */
874 	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
875 	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
876 }
877 
878 /* MAC software reset.
879  * When reset is triggered, the MAC function completes the current
880  * transmission or reception, and subsequently disables the transmit and
881  * receive logic, flushes the receive FIFO buffer, and resets the statistics
882  * counters.
883  */
884 static int reset_mac(struct altera_tse_private *priv)
885 {
886 	int counter;
887 	u32 dat;
888 
889 	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
890 	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
891 	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
892 	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
893 
894 	counter = 0;
895 	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
896 		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
897 				     MAC_CMDCFG_SW_RESET))
898 			break;
899 		udelay(1);
900 	}
901 
902 	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
903 		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
904 		dat &= ~MAC_CMDCFG_SW_RESET;
905 		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
906 		return -1;
907 	}
908 	return 0;
909 }
910 
911 /* Initialize MAC core registers
912 */
913 static int init_mac(struct altera_tse_private *priv)
914 {
915 	unsigned int cmd = 0;
916 	u32 frm_length;
917 
918 	/* Setup Rx FIFO */
919 	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
920 		priv->mac_dev, tse_csroffs(rx_section_empty));
921 
922 	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
923 		tse_csroffs(rx_section_full));
924 
925 	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
926 		tse_csroffs(rx_almost_empty));
927 
928 	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
929 		tse_csroffs(rx_almost_full));
930 
931 	/* Setup Tx FIFO */
932 	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
933 		priv->mac_dev, tse_csroffs(tx_section_empty));
934 
935 	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
936 		tse_csroffs(tx_section_full));
937 
938 	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
939 		tse_csroffs(tx_almost_empty));
940 
941 	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
942 		tse_csroffs(tx_almost_full));
943 
944 	/* MAC Address Configuration */
945 	tse_update_mac_addr(priv, priv->dev->dev_addr);
946 
947 	/* MAC Function Configuration */
948 	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
949 	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
950 
951 	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
952 		tse_csroffs(tx_ipg_length));
953 
954 	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
955 	 * start address
956 	 */
957 	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
958 		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
959 
960 	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
961 		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
962 		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
963 
964 	/* Set the MAC options */
965 	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
966 	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
967 	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
968 	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
969 					 * with CRC errors
970 					 */
971 	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
972 	cmd &= ~MAC_CMDCFG_TX_ENA;
973 	cmd &= ~MAC_CMDCFG_RX_ENA;
974 
975 	/* Default speed and duplex setting, full/100 */
976 	cmd &= ~MAC_CMDCFG_HD_ENA;
977 	cmd &= ~MAC_CMDCFG_ETH_SPEED;
978 	cmd &= ~MAC_CMDCFG_ENA_10;
979 
980 	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
981 
982 	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
983 		tse_csroffs(pause_quanta));
984 
985 	if (netif_msg_hw(priv))
986 		dev_dbg(priv->device,
987 			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
988 
989 	return 0;
990 }
991 
992 /* Start/stop MAC transmission logic
993  */
994 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
995 {
996 	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
997 
998 	if (enable)
999 		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
1000 	else
1001 		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
1002 
1003 	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
1004 }
1005 
1006 /* Change the MTU
1007  */
1008 static int tse_change_mtu(struct net_device *dev, int new_mtu)
1009 {
1010 	struct altera_tse_private *priv = netdev_priv(dev);
1011 	unsigned int max_mtu = priv->max_mtu;
1012 	unsigned int min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1013 
1014 	if (netif_running(dev)) {
1015 		netdev_err(dev, "must be stopped to change its MTU\n");
1016 		return -EBUSY;
1017 	}
1018 
1019 	if ((new_mtu < min_mtu) || (new_mtu > max_mtu)) {
1020 		netdev_err(dev, "invalid MTU, max MTU is: %u\n", max_mtu);
1021 		return -EINVAL;
1022 	}
1023 
1024 	dev->mtu = new_mtu;
1025 	netdev_update_features(dev);
1026 
1027 	return 0;
1028 }
1029 
1030 static void altera_tse_set_mcfilter(struct net_device *dev)
1031 {
1032 	struct altera_tse_private *priv = netdev_priv(dev);
1033 	int i;
1034 	struct netdev_hw_addr *ha;
1035 
1036 	/* clear the hash filter */
1037 	for (i = 0; i < 64; i++)
1038 		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1039 
1040 	netdev_for_each_mc_addr(ha, dev) {
1041 		unsigned int hash = 0;
1042 		int mac_octet;
1043 
1044 		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1045 			unsigned char xor_bit = 0;
1046 			unsigned char octet = ha->addr[mac_octet];
1047 			unsigned int bitshift;
1048 
1049 			for (bitshift = 0; bitshift < 8; bitshift++)
1050 				xor_bit ^= ((octet >> bitshift) & 0x01);
1051 
1052 			hash = (hash << 1) | xor_bit;
1053 		}
1054 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1055 	}
1056 }
1057 
1058 
1059 static void altera_tse_set_mcfilterall(struct net_device *dev)
1060 {
1061 	struct altera_tse_private *priv = netdev_priv(dev);
1062 	int i;
1063 
1064 	/* set the hash filter */
1065 	for (i = 0; i < 64; i++)
1066 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1067 }
1068 
1069 /* Set or clear the multicast filter for this adaptor
1070  */
1071 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1072 {
1073 	struct altera_tse_private *priv = netdev_priv(dev);
1074 
1075 	spin_lock(&priv->mac_cfg_lock);
1076 
1077 	if (dev->flags & IFF_PROMISC)
1078 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1079 			    MAC_CMDCFG_PROMIS_EN);
1080 
1081 	if (dev->flags & IFF_ALLMULTI)
1082 		altera_tse_set_mcfilterall(dev);
1083 	else
1084 		altera_tse_set_mcfilter(dev);
1085 
1086 	spin_unlock(&priv->mac_cfg_lock);
1087 }
1088 
1089 /* Set or clear the multicast filter for this adaptor
1090  */
1091 static void tse_set_rx_mode(struct net_device *dev)
1092 {
1093 	struct altera_tse_private *priv = netdev_priv(dev);
1094 
1095 	spin_lock(&priv->mac_cfg_lock);
1096 
1097 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1098 	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1099 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1100 			    MAC_CMDCFG_PROMIS_EN);
1101 	else
1102 		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1103 			      MAC_CMDCFG_PROMIS_EN);
1104 
1105 	spin_unlock(&priv->mac_cfg_lock);
1106 }
1107 
1108 /* Open and initialize the interface
1109  */
1110 static int tse_open(struct net_device *dev)
1111 {
1112 	struct altera_tse_private *priv = netdev_priv(dev);
1113 	int ret = 0;
1114 	int i;
1115 	unsigned long int flags;
1116 
1117 	/* Reset and configure TSE MAC and probe associated PHY */
1118 	ret = priv->dmaops->init_dma(priv);
1119 	if (ret != 0) {
1120 		netdev_err(dev, "Cannot initialize DMA\n");
1121 		goto phy_error;
1122 	}
1123 
1124 	if (netif_msg_ifup(priv))
1125 		netdev_warn(dev, "device MAC address %pM\n",
1126 			    dev->dev_addr);
1127 
1128 	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1129 		netdev_warn(dev, "TSE revision %x\n", priv->revision);
1130 
1131 	spin_lock(&priv->mac_cfg_lock);
1132 	ret = reset_mac(priv);
1133 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1134 	 * due to the PHY being put into isolation or power down mode.
1135 	 * This is not an error if reset fails due to no clock.
1136 	 */
1137 	if (ret)
1138 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1139 
1140 	ret = init_mac(priv);
1141 	spin_unlock(&priv->mac_cfg_lock);
1142 	if (ret) {
1143 		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1144 		goto alloc_skbuf_error;
1145 	}
1146 
1147 	priv->dmaops->reset_dma(priv);
1148 
1149 	/* Create and initialize the TX/RX descriptors chains. */
1150 	priv->rx_ring_size = dma_rx_num;
1151 	priv->tx_ring_size = dma_tx_num;
1152 	ret = alloc_init_skbufs(priv);
1153 	if (ret) {
1154 		netdev_err(dev, "DMA descriptors initialization failed\n");
1155 		goto alloc_skbuf_error;
1156 	}
1157 
1158 
1159 	/* Register RX interrupt */
1160 	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1161 			  dev->name, dev);
1162 	if (ret) {
1163 		netdev_err(dev, "Unable to register RX interrupt %d\n",
1164 			   priv->rx_irq);
1165 		goto init_error;
1166 	}
1167 
1168 	/* Register TX interrupt */
1169 	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1170 			  dev->name, dev);
1171 	if (ret) {
1172 		netdev_err(dev, "Unable to register TX interrupt %d\n",
1173 			   priv->tx_irq);
1174 		goto tx_request_irq_error;
1175 	}
1176 
1177 	/* Enable DMA interrupts */
1178 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1179 	priv->dmaops->enable_rxirq(priv);
1180 	priv->dmaops->enable_txirq(priv);
1181 
1182 	/* Setup RX descriptor chain */
1183 	for (i = 0; i < priv->rx_ring_size; i++)
1184 		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1185 
1186 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1187 
1188 	if (priv->phydev)
1189 		phy_start(priv->phydev);
1190 
1191 	napi_enable(&priv->napi);
1192 	netif_start_queue(dev);
1193 
1194 	priv->dmaops->start_rxdma(priv);
1195 
1196 	/* Start MAC Rx/Tx */
1197 	spin_lock(&priv->mac_cfg_lock);
1198 	tse_set_mac(priv, true);
1199 	spin_unlock(&priv->mac_cfg_lock);
1200 
1201 	return 0;
1202 
1203 tx_request_irq_error:
1204 	free_irq(priv->rx_irq, dev);
1205 init_error:
1206 	free_skbufs(dev);
1207 alloc_skbuf_error:
1208 phy_error:
1209 	return ret;
1210 }
1211 
1212 /* Stop TSE MAC interface and put the device in an inactive state
1213  */
1214 static int tse_shutdown(struct net_device *dev)
1215 {
1216 	struct altera_tse_private *priv = netdev_priv(dev);
1217 	int ret;
1218 	unsigned long int flags;
1219 
1220 	/* Stop the PHY */
1221 	if (priv->phydev)
1222 		phy_stop(priv->phydev);
1223 
1224 	netif_stop_queue(dev);
1225 	napi_disable(&priv->napi);
1226 
1227 	/* Disable DMA interrupts */
1228 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1229 	priv->dmaops->disable_rxirq(priv);
1230 	priv->dmaops->disable_txirq(priv);
1231 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1232 
1233 	/* Free the IRQ lines */
1234 	free_irq(priv->rx_irq, dev);
1235 	free_irq(priv->tx_irq, dev);
1236 
1237 	/* disable and reset the MAC, empties fifo */
1238 	spin_lock(&priv->mac_cfg_lock);
1239 	spin_lock(&priv->tx_lock);
1240 
1241 	ret = reset_mac(priv);
1242 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1243 	 * due to the PHY being put into isolation or power down mode.
1244 	 * This is not an error if reset fails due to no clock.
1245 	 */
1246 	if (ret)
1247 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1248 	priv->dmaops->reset_dma(priv);
1249 	free_skbufs(dev);
1250 
1251 	spin_unlock(&priv->tx_lock);
1252 	spin_unlock(&priv->mac_cfg_lock);
1253 
1254 	priv->dmaops->uninit_dma(priv);
1255 
1256 	return 0;
1257 }
1258 
1259 static struct net_device_ops altera_tse_netdev_ops = {
1260 	.ndo_open		= tse_open,
1261 	.ndo_stop		= tse_shutdown,
1262 	.ndo_start_xmit		= tse_start_xmit,
1263 	.ndo_set_mac_address	= eth_mac_addr,
1264 	.ndo_set_rx_mode	= tse_set_rx_mode,
1265 	.ndo_change_mtu		= tse_change_mtu,
1266 	.ndo_validate_addr	= eth_validate_addr,
1267 };
1268 
1269 static int request_and_map(struct platform_device *pdev, const char *name,
1270 			   struct resource **res, void __iomem **ptr)
1271 {
1272 	struct resource *region;
1273 	struct device *device = &pdev->dev;
1274 
1275 	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1276 	if (*res == NULL) {
1277 		dev_err(device, "resource %s not defined\n", name);
1278 		return -ENODEV;
1279 	}
1280 
1281 	region = devm_request_mem_region(device, (*res)->start,
1282 					 resource_size(*res), dev_name(device));
1283 	if (region == NULL) {
1284 		dev_err(device, "unable to request %s\n", name);
1285 		return -EBUSY;
1286 	}
1287 
1288 	*ptr = devm_ioremap_nocache(device, region->start,
1289 				    resource_size(region));
1290 	if (*ptr == NULL) {
1291 		dev_err(device, "ioremap_nocache of %s failed!", name);
1292 		return -ENOMEM;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 /* Probe Altera TSE MAC device
1299  */
1300 static int altera_tse_probe(struct platform_device *pdev)
1301 {
1302 	struct net_device *ndev;
1303 	int ret = -ENODEV;
1304 	struct resource *control_port;
1305 	struct resource *dma_res;
1306 	struct altera_tse_private *priv;
1307 	const unsigned char *macaddr;
1308 	void __iomem *descmap;
1309 	const struct of_device_id *of_id = NULL;
1310 
1311 	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1312 	if (!ndev) {
1313 		dev_err(&pdev->dev, "Could not allocate network device\n");
1314 		return -ENODEV;
1315 	}
1316 
1317 	SET_NETDEV_DEV(ndev, &pdev->dev);
1318 
1319 	priv = netdev_priv(ndev);
1320 	priv->device = &pdev->dev;
1321 	priv->dev = ndev;
1322 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1323 
1324 	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1325 
1326 	if (of_id)
1327 		priv->dmaops = (struct altera_dmaops *)of_id->data;
1328 
1329 
1330 	if (priv->dmaops &&
1331 	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1332 		/* Get the mapped address to the SGDMA descriptor memory */
1333 		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1334 		if (ret)
1335 			goto err_free_netdev;
1336 
1337 		/* Start of that memory is for transmit descriptors */
1338 		priv->tx_dma_desc = descmap;
1339 
1340 		/* First half is for tx descriptors, other half for tx */
1341 		priv->txdescmem = resource_size(dma_res)/2;
1342 
1343 		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1344 
1345 		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1346 						     priv->txdescmem));
1347 		priv->rxdescmem = resource_size(dma_res)/2;
1348 		priv->rxdescmem_busaddr = dma_res->start;
1349 		priv->rxdescmem_busaddr += priv->txdescmem;
1350 
1351 		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1352 			dev_dbg(priv->device,
1353 				"SGDMA bus addresses greater than 32-bits\n");
1354 			goto err_free_netdev;
1355 		}
1356 		if (upper_32_bits(priv->txdescmem_busaddr)) {
1357 			dev_dbg(priv->device,
1358 				"SGDMA bus addresses greater than 32-bits\n");
1359 			goto err_free_netdev;
1360 		}
1361 	} else if (priv->dmaops &&
1362 		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1363 		ret = request_and_map(pdev, "rx_resp", &dma_res,
1364 				      &priv->rx_dma_resp);
1365 		if (ret)
1366 			goto err_free_netdev;
1367 
1368 		ret = request_and_map(pdev, "tx_desc", &dma_res,
1369 				      &priv->tx_dma_desc);
1370 		if (ret)
1371 			goto err_free_netdev;
1372 
1373 		priv->txdescmem = resource_size(dma_res);
1374 		priv->txdescmem_busaddr = dma_res->start;
1375 
1376 		ret = request_and_map(pdev, "rx_desc", &dma_res,
1377 				      &priv->rx_dma_desc);
1378 		if (ret)
1379 			goto err_free_netdev;
1380 
1381 		priv->rxdescmem = resource_size(dma_res);
1382 		priv->rxdescmem_busaddr = dma_res->start;
1383 
1384 	} else {
1385 		goto err_free_netdev;
1386 	}
1387 
1388 	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1389 		dma_set_coherent_mask(priv->device,
1390 				      DMA_BIT_MASK(priv->dmaops->dmamask));
1391 	else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1392 		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1393 	else
1394 		goto err_free_netdev;
1395 
1396 	/* MAC address space */
1397 	ret = request_and_map(pdev, "control_port", &control_port,
1398 			      (void __iomem **)&priv->mac_dev);
1399 	if (ret)
1400 		goto err_free_netdev;
1401 
1402 	/* xSGDMA Rx Dispatcher address space */
1403 	ret = request_and_map(pdev, "rx_csr", &dma_res,
1404 			      &priv->rx_dma_csr);
1405 	if (ret)
1406 		goto err_free_netdev;
1407 
1408 
1409 	/* xSGDMA Tx Dispatcher address space */
1410 	ret = request_and_map(pdev, "tx_csr", &dma_res,
1411 			      &priv->tx_dma_csr);
1412 	if (ret)
1413 		goto err_free_netdev;
1414 
1415 
1416 	/* Rx IRQ */
1417 	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1418 	if (priv->rx_irq == -ENXIO) {
1419 		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1420 		ret = -ENXIO;
1421 		goto err_free_netdev;
1422 	}
1423 
1424 	/* Tx IRQ */
1425 	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1426 	if (priv->tx_irq == -ENXIO) {
1427 		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1428 		ret = -ENXIO;
1429 		goto err_free_netdev;
1430 	}
1431 
1432 	/* get FIFO depths from device tree */
1433 	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1434 				 &priv->rx_fifo_depth)) {
1435 		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1436 		ret = -ENXIO;
1437 		goto err_free_netdev;
1438 	}
1439 
1440 	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1441 				 &priv->tx_fifo_depth)) {
1442 		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1443 		ret = -ENXIO;
1444 		goto err_free_netdev;
1445 	}
1446 
1447 	/* get hash filter settings for this instance */
1448 	priv->hash_filter =
1449 		of_property_read_bool(pdev->dev.of_node,
1450 				      "altr,has-hash-multicast-filter");
1451 
1452 	/* Set hash filter to not set for now until the
1453 	 * multicast filter receive issue is debugged
1454 	 */
1455 	priv->hash_filter = 0;
1456 
1457 	/* get supplemental address settings for this instance */
1458 	priv->added_unicast =
1459 		of_property_read_bool(pdev->dev.of_node,
1460 				      "altr,has-supplementary-unicast");
1461 
1462 	/* Max MTU is 1500, ETH_DATA_LEN */
1463 	priv->max_mtu = ETH_DATA_LEN;
1464 
1465 	/* Get the max mtu from the device tree. Note that the
1466 	 * "max-frame-size" parameter is actually max mtu. Definition
1467 	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1468 	 */
1469 	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1470 			     &priv->max_mtu);
1471 
1472 	/* The DMA buffer size already accounts for an alignment bias
1473 	 * to avoid unaligned access exceptions for the NIOS processor,
1474 	 */
1475 	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1476 
1477 	/* get default MAC address from device tree */
1478 	macaddr = of_get_mac_address(pdev->dev.of_node);
1479 	if (macaddr)
1480 		ether_addr_copy(ndev->dev_addr, macaddr);
1481 	else
1482 		eth_hw_addr_random(ndev);
1483 
1484 	/* get phy addr and create mdio */
1485 	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1486 
1487 	if (ret)
1488 		goto err_free_netdev;
1489 
1490 	/* initialize netdev */
1491 	ndev->mem_start = control_port->start;
1492 	ndev->mem_end = control_port->end;
1493 	ndev->netdev_ops = &altera_tse_netdev_ops;
1494 	altera_tse_set_ethtool_ops(ndev);
1495 
1496 	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1497 
1498 	if (priv->hash_filter)
1499 		altera_tse_netdev_ops.ndo_set_rx_mode =
1500 			tse_set_rx_mode_hashfilter;
1501 
1502 	/* Scatter/gather IO is not supported,
1503 	 * so it is turned off
1504 	 */
1505 	ndev->hw_features &= ~NETIF_F_SG;
1506 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1507 
1508 	/* VLAN offloading of tagging, stripping and filtering is not
1509 	 * supported by hardware, but driver will accommodate the
1510 	 * extra 4-byte VLAN tag for processing by upper layers
1511 	 */
1512 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1513 
1514 	/* setup NAPI interface */
1515 	netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1516 
1517 	spin_lock_init(&priv->mac_cfg_lock);
1518 	spin_lock_init(&priv->tx_lock);
1519 	spin_lock_init(&priv->rxdma_irq_lock);
1520 
1521 	ret = register_netdev(ndev);
1522 	if (ret) {
1523 		dev_err(&pdev->dev, "failed to register TSE net device\n");
1524 		goto err_register_netdev;
1525 	}
1526 
1527 	platform_set_drvdata(pdev, ndev);
1528 
1529 	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1530 
1531 	if (netif_msg_probe(priv))
1532 		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1533 			 (priv->revision >> 8) & 0xff,
1534 			 priv->revision & 0xff,
1535 			 (unsigned long) control_port->start, priv->rx_irq,
1536 			 priv->tx_irq);
1537 
1538 	ret = init_phy(ndev);
1539 	if (ret != 0) {
1540 		netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1541 		goto err_init_phy;
1542 	}
1543 	return 0;
1544 
1545 err_init_phy:
1546 	unregister_netdev(ndev);
1547 err_register_netdev:
1548 	netif_napi_del(&priv->napi);
1549 	altera_tse_mdio_destroy(ndev);
1550 err_free_netdev:
1551 	free_netdev(ndev);
1552 	return ret;
1553 }
1554 
1555 /* Remove Altera TSE MAC device
1556  */
1557 static int altera_tse_remove(struct platform_device *pdev)
1558 {
1559 	struct net_device *ndev = platform_get_drvdata(pdev);
1560 	struct altera_tse_private *priv = netdev_priv(ndev);
1561 
1562 	if (priv->phydev)
1563 		phy_disconnect(priv->phydev);
1564 
1565 	platform_set_drvdata(pdev, NULL);
1566 	altera_tse_mdio_destroy(ndev);
1567 	unregister_netdev(ndev);
1568 	free_netdev(ndev);
1569 
1570 	return 0;
1571 }
1572 
1573 static const struct altera_dmaops altera_dtype_sgdma = {
1574 	.altera_dtype = ALTERA_DTYPE_SGDMA,
1575 	.dmamask = 32,
1576 	.reset_dma = sgdma_reset,
1577 	.enable_txirq = sgdma_enable_txirq,
1578 	.enable_rxirq = sgdma_enable_rxirq,
1579 	.disable_txirq = sgdma_disable_txirq,
1580 	.disable_rxirq = sgdma_disable_rxirq,
1581 	.clear_txirq = sgdma_clear_txirq,
1582 	.clear_rxirq = sgdma_clear_rxirq,
1583 	.tx_buffer = sgdma_tx_buffer,
1584 	.tx_completions = sgdma_tx_completions,
1585 	.add_rx_desc = sgdma_add_rx_desc,
1586 	.get_rx_status = sgdma_rx_status,
1587 	.init_dma = sgdma_initialize,
1588 	.uninit_dma = sgdma_uninitialize,
1589 	.start_rxdma = sgdma_start_rxdma,
1590 };
1591 
1592 static const struct altera_dmaops altera_dtype_msgdma = {
1593 	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1594 	.dmamask = 64,
1595 	.reset_dma = msgdma_reset,
1596 	.enable_txirq = msgdma_enable_txirq,
1597 	.enable_rxirq = msgdma_enable_rxirq,
1598 	.disable_txirq = msgdma_disable_txirq,
1599 	.disable_rxirq = msgdma_disable_rxirq,
1600 	.clear_txirq = msgdma_clear_txirq,
1601 	.clear_rxirq = msgdma_clear_rxirq,
1602 	.tx_buffer = msgdma_tx_buffer,
1603 	.tx_completions = msgdma_tx_completions,
1604 	.add_rx_desc = msgdma_add_rx_desc,
1605 	.get_rx_status = msgdma_rx_status,
1606 	.init_dma = msgdma_initialize,
1607 	.uninit_dma = msgdma_uninitialize,
1608 	.start_rxdma = msgdma_start_rxdma,
1609 };
1610 
1611 static const struct of_device_id altera_tse_ids[] = {
1612 	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1613 	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1614 	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1615 	{},
1616 };
1617 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1618 
1619 static struct platform_driver altera_tse_driver = {
1620 	.probe		= altera_tse_probe,
1621 	.remove		= altera_tse_remove,
1622 	.suspend	= NULL,
1623 	.resume		= NULL,
1624 	.driver		= {
1625 		.name	= ALTERA_TSE_RESOURCE_NAME,
1626 		.of_match_table = altera_tse_ids,
1627 	},
1628 };
1629 
1630 module_platform_driver(altera_tse_driver);
1631 
1632 MODULE_AUTHOR("Altera Corporation");
1633 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1634 MODULE_LICENSE("GPL v2");
1635