1 /* Altera Triple-Speed Ethernet MAC driver
2  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
3  *
4  * Contributors:
5  *   Dalon Westergreen
6  *   Thomas Chou
7  *   Ian Abbott
8  *   Yuriy Kozlov
9  *   Tobias Klauser
10  *   Andriy Smolskyy
11  *   Roman Bulgakov
12  *   Dmytro Mytarchuk
13  *   Matthew Gerlach
14  *
15  * Original driver contributed by SLS.
16  * Major updates contributed by GlobalLogic
17  *
18  * This program is free software; you can redistribute it and/or modify it
19  * under the terms and conditions of the GNU General Public License,
20  * version 2, as published by the Free Software Foundation.
21  *
22  * This program is distributed in the hope it will be useful, but WITHOUT
23  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
25  * more details.
26  *
27  * You should have received a copy of the GNU General Public License along with
28  * this program.  If not, see <http://www.gnu.org/licenses/>.
29  */
30 
31 #include <linux/atomic.h>
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_vlan.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/of_device.h>
42 #include <linux/of_mdio.h>
43 #include <linux/of_net.h>
44 #include <linux/of_platform.h>
45 #include <linux/phy.h>
46 #include <linux/platform_device.h>
47 #include <linux/skbuff.h>
48 #include <asm/cacheflush.h>
49 
50 #include "altera_utils.h"
51 #include "altera_tse.h"
52 #include "altera_sgdma.h"
53 #include "altera_msgdma.h"
54 
55 static atomic_t instance_count = ATOMIC_INIT(~0);
56 /* Module parameters */
57 static int debug = -1;
58 module_param(debug, int, S_IRUGO | S_IWUSR);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 					NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 					NETIF_MSG_IFDOWN);
64 
65 #define RX_DESCRIPTORS 64
66 static int dma_rx_num = RX_DESCRIPTORS;
67 module_param(dma_rx_num, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
69 
70 #define TX_DESCRIPTORS 64
71 static int dma_tx_num = TX_DESCRIPTORS;
72 module_param(dma_tx_num, int, S_IRUGO | S_IWUSR);
73 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
74 
75 
76 #define POLL_PHY (-1)
77 
78 /* Make sure DMA buffer size is larger than the max frame size
79  * plus some alignment offset and a VLAN header. If the max frame size is
80  * 1518, a VLAN header would be additional 4 bytes and additional
81  * headroom for alignment is 2 bytes, 2048 is just fine.
82  */
83 #define ALTERA_RXDMABUFFER_SIZE	2048
84 
85 /* Allow network stack to resume queueing packets after we've
86  * finished transmitting at least 1/4 of the packets in the queue.
87  */
88 #define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
89 
90 #define TXQUEUESTOP_THRESHHOLD	2
91 
92 static struct of_device_id altera_tse_ids[];
93 
94 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
95 {
96 	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
97 }
98 
99 /* MDIO specific functions
100  */
101 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
102 {
103 	struct altera_tse_mac *mac = (struct altera_tse_mac *)bus->priv;
104 	unsigned int *mdio_regs = (unsigned int *)&mac->mdio_phy0;
105 	u32 data;
106 
107 	/* set MDIO address */
108 	iowrite32((mii_id & 0x1f), &mac->mdio_phy0_addr);
109 
110 	/* get the data */
111 	data = ioread32(&mdio_regs[regnum]) & 0xffff;
112 	return data;
113 }
114 
115 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
116 				 u16 value)
117 {
118 	struct altera_tse_mac *mac = (struct altera_tse_mac *)bus->priv;
119 	unsigned int *mdio_regs = (unsigned int *)&mac->mdio_phy0;
120 
121 	/* set MDIO address */
122 	iowrite32((mii_id & 0x1f), &mac->mdio_phy0_addr);
123 
124 	/* write the data */
125 	iowrite32((u32) value, &mdio_regs[regnum]);
126 	return 0;
127 }
128 
129 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
130 {
131 	struct altera_tse_private *priv = netdev_priv(dev);
132 	int ret;
133 	int i;
134 	struct device_node *mdio_node = NULL;
135 	struct mii_bus *mdio = NULL;
136 	struct device_node *child_node = NULL;
137 
138 	for_each_child_of_node(priv->device->of_node, child_node) {
139 		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
140 			mdio_node = child_node;
141 			break;
142 		}
143 	}
144 
145 	if (mdio_node) {
146 		netdev_dbg(dev, "FOUND MDIO subnode\n");
147 	} else {
148 		netdev_dbg(dev, "NO MDIO subnode\n");
149 		return 0;
150 	}
151 
152 	mdio = mdiobus_alloc();
153 	if (mdio == NULL) {
154 		netdev_err(dev, "Error allocating MDIO bus\n");
155 		return -ENOMEM;
156 	}
157 
158 	mdio->name = ALTERA_TSE_RESOURCE_NAME;
159 	mdio->read = &altera_tse_mdio_read;
160 	mdio->write = &altera_tse_mdio_write;
161 	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
162 
163 	mdio->irq = kcalloc(PHY_MAX_ADDR, sizeof(int), GFP_KERNEL);
164 	if (mdio->irq == NULL) {
165 		ret = -ENOMEM;
166 		goto out_free_mdio;
167 	}
168 	for (i = 0; i < PHY_MAX_ADDR; i++)
169 		mdio->irq[i] = PHY_POLL;
170 
171 	mdio->priv = priv->mac_dev;
172 	mdio->parent = priv->device;
173 
174 	ret = of_mdiobus_register(mdio, mdio_node);
175 	if (ret != 0) {
176 		netdev_err(dev, "Cannot register MDIO bus %s\n",
177 			   mdio->id);
178 		goto out_free_mdio_irq;
179 	}
180 
181 	if (netif_msg_drv(priv))
182 		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
183 
184 	priv->mdio = mdio;
185 	return 0;
186 out_free_mdio_irq:
187 	kfree(mdio->irq);
188 out_free_mdio:
189 	mdiobus_free(mdio);
190 	mdio = NULL;
191 	return ret;
192 }
193 
194 static void altera_tse_mdio_destroy(struct net_device *dev)
195 {
196 	struct altera_tse_private *priv = netdev_priv(dev);
197 
198 	if (priv->mdio == NULL)
199 		return;
200 
201 	if (netif_msg_drv(priv))
202 		netdev_info(dev, "MDIO bus %s: removed\n",
203 			    priv->mdio->id);
204 
205 	mdiobus_unregister(priv->mdio);
206 	kfree(priv->mdio->irq);
207 	mdiobus_free(priv->mdio);
208 	priv->mdio = NULL;
209 }
210 
211 static int tse_init_rx_buffer(struct altera_tse_private *priv,
212 			      struct tse_buffer *rxbuffer, int len)
213 {
214 	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
215 	if (!rxbuffer->skb)
216 		return -ENOMEM;
217 
218 	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
219 						len,
220 						DMA_FROM_DEVICE);
221 
222 	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
223 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
224 		dev_kfree_skb_any(rxbuffer->skb);
225 		return -EINVAL;
226 	}
227 	rxbuffer->len = len;
228 	return 0;
229 }
230 
231 static void tse_free_rx_buffer(struct altera_tse_private *priv,
232 			       struct tse_buffer *rxbuffer)
233 {
234 	struct sk_buff *skb = rxbuffer->skb;
235 	dma_addr_t dma_addr = rxbuffer->dma_addr;
236 
237 	if (skb != NULL) {
238 		if (dma_addr)
239 			dma_unmap_single(priv->device, dma_addr,
240 					 rxbuffer->len,
241 					 DMA_FROM_DEVICE);
242 		dev_kfree_skb_any(skb);
243 		rxbuffer->skb = NULL;
244 		rxbuffer->dma_addr = 0;
245 	}
246 }
247 
248 /* Unmap and free Tx buffer resources
249  */
250 static void tse_free_tx_buffer(struct altera_tse_private *priv,
251 			       struct tse_buffer *buffer)
252 {
253 	if (buffer->dma_addr) {
254 		if (buffer->mapped_as_page)
255 			dma_unmap_page(priv->device, buffer->dma_addr,
256 				       buffer->len, DMA_TO_DEVICE);
257 		else
258 			dma_unmap_single(priv->device, buffer->dma_addr,
259 					 buffer->len, DMA_TO_DEVICE);
260 		buffer->dma_addr = 0;
261 	}
262 	if (buffer->skb) {
263 		dev_kfree_skb_any(buffer->skb);
264 		buffer->skb = NULL;
265 	}
266 }
267 
268 static int alloc_init_skbufs(struct altera_tse_private *priv)
269 {
270 	unsigned int rx_descs = priv->rx_ring_size;
271 	unsigned int tx_descs = priv->tx_ring_size;
272 	int ret = -ENOMEM;
273 	int i;
274 
275 	/* Create Rx ring buffer */
276 	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
277 				GFP_KERNEL);
278 	if (!priv->rx_ring)
279 		goto err_rx_ring;
280 
281 	/* Create Tx ring buffer */
282 	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
283 				GFP_KERNEL);
284 	if (!priv->tx_ring)
285 		goto err_tx_ring;
286 
287 	priv->tx_cons = 0;
288 	priv->tx_prod = 0;
289 
290 	/* Init Rx ring */
291 	for (i = 0; i < rx_descs; i++) {
292 		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
293 					 priv->rx_dma_buf_sz);
294 		if (ret)
295 			goto err_init_rx_buffers;
296 	}
297 
298 	priv->rx_cons = 0;
299 	priv->rx_prod = 0;
300 
301 	return 0;
302 err_init_rx_buffers:
303 	while (--i >= 0)
304 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
305 	kfree(priv->tx_ring);
306 err_tx_ring:
307 	kfree(priv->rx_ring);
308 err_rx_ring:
309 	return ret;
310 }
311 
312 static void free_skbufs(struct net_device *dev)
313 {
314 	struct altera_tse_private *priv = netdev_priv(dev);
315 	unsigned int rx_descs = priv->rx_ring_size;
316 	unsigned int tx_descs = priv->tx_ring_size;
317 	int i;
318 
319 	/* Release the DMA TX/RX socket buffers */
320 	for (i = 0; i < rx_descs; i++)
321 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
322 	for (i = 0; i < tx_descs; i++)
323 		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
324 
325 
326 	kfree(priv->tx_ring);
327 }
328 
329 /* Reallocate the skb for the reception process
330  */
331 static inline void tse_rx_refill(struct altera_tse_private *priv)
332 {
333 	unsigned int rxsize = priv->rx_ring_size;
334 	unsigned int entry;
335 	int ret;
336 
337 	for (; priv->rx_cons - priv->rx_prod > 0;
338 			priv->rx_prod++) {
339 		entry = priv->rx_prod % rxsize;
340 		if (likely(priv->rx_ring[entry].skb == NULL)) {
341 			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
342 				priv->rx_dma_buf_sz);
343 			if (unlikely(ret != 0))
344 				break;
345 			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
346 		}
347 	}
348 }
349 
350 /* Pull out the VLAN tag and fix up the packet
351  */
352 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
353 {
354 	struct ethhdr *eth_hdr;
355 	u16 vid;
356 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
357 	    !__vlan_get_tag(skb, &vid)) {
358 		eth_hdr = (struct ethhdr *)skb->data;
359 		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
360 		skb_pull(skb, VLAN_HLEN);
361 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
362 	}
363 }
364 
365 /* Receive a packet: retrieve and pass over to upper levels
366  */
367 static int tse_rx(struct altera_tse_private *priv, int limit)
368 {
369 	unsigned int count = 0;
370 	unsigned int next_entry;
371 	struct sk_buff *skb;
372 	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
373 	u32 rxstatus;
374 	u16 pktlength;
375 	u16 pktstatus;
376 
377 	while ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0) {
378 		pktstatus = rxstatus >> 16;
379 		pktlength = rxstatus & 0xffff;
380 
381 		if ((pktstatus & 0xFF) || (pktlength == 0))
382 			netdev_err(priv->dev,
383 				   "RCV pktstatus %08X pktlength %08X\n",
384 				   pktstatus, pktlength);
385 
386 		count++;
387 		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
388 
389 		skb = priv->rx_ring[entry].skb;
390 		if (unlikely(!skb)) {
391 			netdev_err(priv->dev,
392 				   "%s: Inconsistent Rx descriptor chain\n",
393 				   __func__);
394 			priv->dev->stats.rx_dropped++;
395 			break;
396 		}
397 		priv->rx_ring[entry].skb = NULL;
398 
399 		skb_put(skb, pktlength);
400 
401 		/* make cache consistent with receive packet buffer */
402 		dma_sync_single_for_cpu(priv->device,
403 					priv->rx_ring[entry].dma_addr,
404 					priv->rx_ring[entry].len,
405 					DMA_FROM_DEVICE);
406 
407 		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
408 				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
409 
410 		if (netif_msg_pktdata(priv)) {
411 			netdev_info(priv->dev, "frame received %d bytes\n",
412 				    pktlength);
413 			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
414 				       16, 1, skb->data, pktlength, true);
415 		}
416 
417 		tse_rx_vlan(priv->dev, skb);
418 
419 		skb->protocol = eth_type_trans(skb, priv->dev);
420 		skb_checksum_none_assert(skb);
421 
422 		napi_gro_receive(&priv->napi, skb);
423 
424 		priv->dev->stats.rx_packets++;
425 		priv->dev->stats.rx_bytes += pktlength;
426 
427 		entry = next_entry;
428 	}
429 
430 	tse_rx_refill(priv);
431 	return count;
432 }
433 
434 /* Reclaim resources after transmission completes
435  */
436 static int tse_tx_complete(struct altera_tse_private *priv)
437 {
438 	unsigned int txsize = priv->tx_ring_size;
439 	u32 ready;
440 	unsigned int entry;
441 	struct tse_buffer *tx_buff;
442 	int txcomplete = 0;
443 
444 	spin_lock(&priv->tx_lock);
445 
446 	ready = priv->dmaops->tx_completions(priv);
447 
448 	/* Free sent buffers */
449 	while (ready && (priv->tx_cons != priv->tx_prod)) {
450 		entry = priv->tx_cons % txsize;
451 		tx_buff = &priv->tx_ring[entry];
452 
453 		if (netif_msg_tx_done(priv))
454 			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
455 				   __func__, priv->tx_prod, priv->tx_cons);
456 
457 		if (likely(tx_buff->skb))
458 			priv->dev->stats.tx_packets++;
459 
460 		tse_free_tx_buffer(priv, tx_buff);
461 		priv->tx_cons++;
462 
463 		txcomplete++;
464 		ready--;
465 	}
466 
467 	if (unlikely(netif_queue_stopped(priv->dev) &&
468 		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
469 		netif_tx_lock(priv->dev);
470 		if (netif_queue_stopped(priv->dev) &&
471 		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
472 			if (netif_msg_tx_done(priv))
473 				netdev_dbg(priv->dev, "%s: restart transmit\n",
474 					   __func__);
475 			netif_wake_queue(priv->dev);
476 		}
477 		netif_tx_unlock(priv->dev);
478 	}
479 
480 	spin_unlock(&priv->tx_lock);
481 	return txcomplete;
482 }
483 
484 /* NAPI polling function
485  */
486 static int tse_poll(struct napi_struct *napi, int budget)
487 {
488 	struct altera_tse_private *priv =
489 			container_of(napi, struct altera_tse_private, napi);
490 	int rxcomplete = 0;
491 	int txcomplete = 0;
492 	unsigned long int flags;
493 
494 	txcomplete = tse_tx_complete(priv);
495 
496 	rxcomplete = tse_rx(priv, budget);
497 
498 	if (rxcomplete >= budget || txcomplete > 0)
499 		return rxcomplete;
500 
501 	napi_gro_flush(napi, false);
502 	__napi_complete(napi);
503 
504 	netdev_dbg(priv->dev,
505 		   "NAPI Complete, did %d packets with budget %d\n",
506 		   txcomplete+rxcomplete, budget);
507 
508 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
509 	priv->dmaops->enable_rxirq(priv);
510 	priv->dmaops->enable_txirq(priv);
511 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
512 	return rxcomplete + txcomplete;
513 }
514 
515 /* DMA TX & RX FIFO interrupt routing
516  */
517 static irqreturn_t altera_isr(int irq, void *dev_id)
518 {
519 	struct net_device *dev = dev_id;
520 	struct altera_tse_private *priv;
521 	unsigned long int flags;
522 
523 
524 	if (unlikely(!dev)) {
525 		pr_err("%s: invalid dev pointer\n", __func__);
526 		return IRQ_NONE;
527 	}
528 	priv = netdev_priv(dev);
529 
530 	/* turn off desc irqs and enable napi rx */
531 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
532 
533 	if (likely(napi_schedule_prep(&priv->napi))) {
534 		priv->dmaops->disable_rxirq(priv);
535 		priv->dmaops->disable_txirq(priv);
536 		__napi_schedule(&priv->napi);
537 	}
538 
539 	/* reset IRQs */
540 	priv->dmaops->clear_rxirq(priv);
541 	priv->dmaops->clear_txirq(priv);
542 
543 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
544 
545 	return IRQ_HANDLED;
546 }
547 
548 /* Transmit a packet (called by the kernel). Dispatches
549  * either the SGDMA method for transmitting or the
550  * MSGDMA method, assumes no scatter/gather support,
551  * implying an assumption that there's only one
552  * physically contiguous fragment starting at
553  * skb->data, for length of skb_headlen(skb).
554  */
555 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
556 {
557 	struct altera_tse_private *priv = netdev_priv(dev);
558 	unsigned int txsize = priv->tx_ring_size;
559 	unsigned int entry;
560 	struct tse_buffer *buffer = NULL;
561 	int nfrags = skb_shinfo(skb)->nr_frags;
562 	unsigned int nopaged_len = skb_headlen(skb);
563 	enum netdev_tx ret = NETDEV_TX_OK;
564 	dma_addr_t dma_addr;
565 	int txcomplete = 0;
566 
567 	spin_lock_bh(&priv->tx_lock);
568 
569 	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
570 		if (!netif_queue_stopped(dev)) {
571 			netif_stop_queue(dev);
572 			/* This is a hard error, log it. */
573 			netdev_err(priv->dev,
574 				   "%s: Tx list full when queue awake\n",
575 				   __func__);
576 		}
577 		ret = NETDEV_TX_BUSY;
578 		goto out;
579 	}
580 
581 	/* Map the first skb fragment */
582 	entry = priv->tx_prod % txsize;
583 	buffer = &priv->tx_ring[entry];
584 
585 	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
586 				  DMA_TO_DEVICE);
587 	if (dma_mapping_error(priv->device, dma_addr)) {
588 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
589 		ret = NETDEV_TX_OK;
590 		goto out;
591 	}
592 
593 	buffer->skb = skb;
594 	buffer->dma_addr = dma_addr;
595 	buffer->len = nopaged_len;
596 
597 	/* Push data out of the cache hierarchy into main memory */
598 	dma_sync_single_for_device(priv->device, buffer->dma_addr,
599 				   buffer->len, DMA_TO_DEVICE);
600 
601 	txcomplete = priv->dmaops->tx_buffer(priv, buffer);
602 
603 	skb_tx_timestamp(skb);
604 
605 	priv->tx_prod++;
606 	dev->stats.tx_bytes += skb->len;
607 
608 	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
609 		if (netif_msg_hw(priv))
610 			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
611 				   __func__);
612 		netif_stop_queue(dev);
613 	}
614 
615 out:
616 	spin_unlock_bh(&priv->tx_lock);
617 
618 	return ret;
619 }
620 
621 /* Called every time the controller might need to be made
622  * aware of new link state.  The PHY code conveys this
623  * information through variables in the phydev structure, and this
624  * function converts those variables into the appropriate
625  * register values, and can bring down the device if needed.
626  */
627 static void altera_tse_adjust_link(struct net_device *dev)
628 {
629 	struct altera_tse_private *priv = netdev_priv(dev);
630 	struct phy_device *phydev = priv->phydev;
631 	int new_state = 0;
632 
633 	/* only change config if there is a link */
634 	spin_lock(&priv->mac_cfg_lock);
635 	if (phydev->link) {
636 		/* Read old config */
637 		u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
638 
639 		/* Check duplex */
640 		if (phydev->duplex != priv->oldduplex) {
641 			new_state = 1;
642 			if (!(phydev->duplex))
643 				cfg_reg |= MAC_CMDCFG_HD_ENA;
644 			else
645 				cfg_reg &= ~MAC_CMDCFG_HD_ENA;
646 
647 			netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
648 				   dev->name, phydev->duplex);
649 
650 			priv->oldduplex = phydev->duplex;
651 		}
652 
653 		/* Check speed */
654 		if (phydev->speed != priv->oldspeed) {
655 			new_state = 1;
656 			switch (phydev->speed) {
657 			case 1000:
658 				cfg_reg |= MAC_CMDCFG_ETH_SPEED;
659 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
660 				break;
661 			case 100:
662 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
663 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
664 				break;
665 			case 10:
666 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
667 				cfg_reg |= MAC_CMDCFG_ENA_10;
668 				break;
669 			default:
670 				if (netif_msg_link(priv))
671 					netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
672 						    phydev->speed);
673 				break;
674 			}
675 			priv->oldspeed = phydev->speed;
676 		}
677 		iowrite32(cfg_reg, &priv->mac_dev->command_config);
678 
679 		if (!priv->oldlink) {
680 			new_state = 1;
681 			priv->oldlink = 1;
682 		}
683 	} else if (priv->oldlink) {
684 		new_state = 1;
685 		priv->oldlink = 0;
686 		priv->oldspeed = 0;
687 		priv->oldduplex = -1;
688 	}
689 
690 	if (new_state && netif_msg_link(priv))
691 		phy_print_status(phydev);
692 
693 	spin_unlock(&priv->mac_cfg_lock);
694 }
695 static struct phy_device *connect_local_phy(struct net_device *dev)
696 {
697 	struct altera_tse_private *priv = netdev_priv(dev);
698 	struct phy_device *phydev = NULL;
699 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
700 	int ret;
701 
702 	if (priv->phy_addr != POLL_PHY) {
703 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
704 			 priv->mdio->id, priv->phy_addr);
705 
706 		netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
707 
708 		phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
709 				     priv->phy_iface);
710 		if (IS_ERR(phydev))
711 			netdev_err(dev, "Could not attach to PHY\n");
712 
713 	} else {
714 		phydev = phy_find_first(priv->mdio);
715 		if (phydev == NULL) {
716 			netdev_err(dev, "No PHY found\n");
717 			return phydev;
718 		}
719 
720 		ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
721 				priv->phy_iface);
722 		if (ret != 0) {
723 			netdev_err(dev, "Could not attach to PHY\n");
724 			phydev = NULL;
725 		}
726 	}
727 	return phydev;
728 }
729 
730 /* Initialize driver's PHY state, and attach to the PHY
731  */
732 static int init_phy(struct net_device *dev)
733 {
734 	struct altera_tse_private *priv = netdev_priv(dev);
735 	struct phy_device *phydev;
736 	struct device_node *phynode;
737 
738 	priv->oldlink = 0;
739 	priv->oldspeed = 0;
740 	priv->oldduplex = -1;
741 
742 	phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
743 
744 	if (!phynode) {
745 		netdev_dbg(dev, "no phy-handle found\n");
746 		if (!priv->mdio) {
747 			netdev_err(dev,
748 				   "No phy-handle nor local mdio specified\n");
749 			return -ENODEV;
750 		}
751 		phydev = connect_local_phy(dev);
752 	} else {
753 		netdev_dbg(dev, "phy-handle found\n");
754 		phydev = of_phy_connect(dev, phynode,
755 			&altera_tse_adjust_link, 0, priv->phy_iface);
756 	}
757 
758 	if (!phydev) {
759 		netdev_err(dev, "Could not find the PHY\n");
760 		return -ENODEV;
761 	}
762 
763 	/* Stop Advertising 1000BASE Capability if interface is not GMII
764 	 * Note: Checkpatch throws CHECKs for the camel case defines below,
765 	 * it's ok to ignore.
766 	 */
767 	if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
768 	    (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
769 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
770 					 SUPPORTED_1000baseT_Full);
771 
772 	/* Broken HW is sometimes missing the pull-up resistor on the
773 	 * MDIO line, which results in reads to non-existent devices returning
774 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
775 	 * device as well.
776 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
777 	 */
778 	if (phydev->phy_id == 0) {
779 		netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
780 		phy_disconnect(phydev);
781 		return -ENODEV;
782 	}
783 
784 	netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
785 		   phydev->addr, phydev->phy_id, phydev->link);
786 
787 	priv->phydev = phydev;
788 	return 0;
789 }
790 
791 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
792 {
793 	struct altera_tse_mac *mac = priv->mac_dev;
794 	u32 msb;
795 	u32 lsb;
796 
797 	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
798 	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
799 
800 	/* Set primary MAC address */
801 	iowrite32(msb, &mac->mac_addr_0);
802 	iowrite32(lsb, &mac->mac_addr_1);
803 }
804 
805 /* MAC software reset.
806  * When reset is triggered, the MAC function completes the current
807  * transmission or reception, and subsequently disables the transmit and
808  * receive logic, flushes the receive FIFO buffer, and resets the statistics
809  * counters.
810  */
811 static int reset_mac(struct altera_tse_private *priv)
812 {
813 	void __iomem *cmd_cfg_reg = &priv->mac_dev->command_config;
814 	int counter;
815 	u32 dat;
816 
817 	dat = ioread32(cmd_cfg_reg);
818 	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
819 	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
820 	iowrite32(dat, cmd_cfg_reg);
821 
822 	counter = 0;
823 	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
824 		if (tse_bit_is_clear(cmd_cfg_reg, MAC_CMDCFG_SW_RESET))
825 			break;
826 		udelay(1);
827 	}
828 
829 	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
830 		dat = ioread32(cmd_cfg_reg);
831 		dat &= ~MAC_CMDCFG_SW_RESET;
832 		iowrite32(dat, cmd_cfg_reg);
833 		return -1;
834 	}
835 	return 0;
836 }
837 
838 /* Initialize MAC core registers
839 */
840 static int init_mac(struct altera_tse_private *priv)
841 {
842 	struct altera_tse_mac *mac = priv->mac_dev;
843 	unsigned int cmd = 0;
844 	u32 frm_length;
845 
846 	/* Setup Rx FIFO */
847 	iowrite32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
848 		  &mac->rx_section_empty);
849 	iowrite32(ALTERA_TSE_RX_SECTION_FULL, &mac->rx_section_full);
850 	iowrite32(ALTERA_TSE_RX_ALMOST_EMPTY, &mac->rx_almost_empty);
851 	iowrite32(ALTERA_TSE_RX_ALMOST_FULL, &mac->rx_almost_full);
852 
853 	/* Setup Tx FIFO */
854 	iowrite32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
855 		  &mac->tx_section_empty);
856 	iowrite32(ALTERA_TSE_TX_SECTION_FULL, &mac->tx_section_full);
857 	iowrite32(ALTERA_TSE_TX_ALMOST_EMPTY, &mac->tx_almost_empty);
858 	iowrite32(ALTERA_TSE_TX_ALMOST_FULL, &mac->tx_almost_full);
859 
860 	/* MAC Address Configuration */
861 	tse_update_mac_addr(priv, priv->dev->dev_addr);
862 
863 	/* MAC Function Configuration */
864 	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
865 	iowrite32(frm_length, &mac->frm_length);
866 	iowrite32(ALTERA_TSE_TX_IPG_LENGTH, &mac->tx_ipg_length);
867 
868 	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
869 	 * start address
870 	 */
871 	tse_clear_bit(&mac->rx_cmd_stat, ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
872 	tse_clear_bit(&mac->tx_cmd_stat, ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
873 					 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
874 
875 	/* Set the MAC options */
876 	cmd = ioread32(&mac->command_config);
877 	cmd |= MAC_CMDCFG_PAD_EN;	/* Padding Removal on Receive */
878 	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
879 	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
880 					 * with CRC errors
881 					 */
882 	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
883 	cmd &= ~MAC_CMDCFG_TX_ENA;
884 	cmd &= ~MAC_CMDCFG_RX_ENA;
885 	iowrite32(cmd, &mac->command_config);
886 
887 	if (netif_msg_hw(priv))
888 		dev_dbg(priv->device,
889 			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
890 
891 	return 0;
892 }
893 
894 /* Start/stop MAC transmission logic
895  */
896 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
897 {
898 	struct altera_tse_mac *mac = priv->mac_dev;
899 	u32 value = ioread32(&mac->command_config);
900 
901 	if (enable)
902 		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
903 	else
904 		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
905 
906 	iowrite32(value, &mac->command_config);
907 }
908 
909 /* Change the MTU
910  */
911 static int tse_change_mtu(struct net_device *dev, int new_mtu)
912 {
913 	struct altera_tse_private *priv = netdev_priv(dev);
914 	unsigned int max_mtu = priv->max_mtu;
915 	unsigned int min_mtu = ETH_ZLEN + ETH_FCS_LEN;
916 
917 	if (netif_running(dev)) {
918 		netdev_err(dev, "must be stopped to change its MTU\n");
919 		return -EBUSY;
920 	}
921 
922 	if ((new_mtu < min_mtu) || (new_mtu > max_mtu)) {
923 		netdev_err(dev, "invalid MTU, max MTU is: %u\n", max_mtu);
924 		return -EINVAL;
925 	}
926 
927 	dev->mtu = new_mtu;
928 	netdev_update_features(dev);
929 
930 	return 0;
931 }
932 
933 static void altera_tse_set_mcfilter(struct net_device *dev)
934 {
935 	struct altera_tse_private *priv = netdev_priv(dev);
936 	struct altera_tse_mac *mac = priv->mac_dev;
937 	int i;
938 	struct netdev_hw_addr *ha;
939 
940 	/* clear the hash filter */
941 	for (i = 0; i < 64; i++)
942 		iowrite32(0, &(mac->hash_table[i]));
943 
944 	netdev_for_each_mc_addr(ha, dev) {
945 		unsigned int hash = 0;
946 		int mac_octet;
947 
948 		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
949 			unsigned char xor_bit = 0;
950 			unsigned char octet = ha->addr[mac_octet];
951 			unsigned int bitshift;
952 
953 			for (bitshift = 0; bitshift < 8; bitshift++)
954 				xor_bit ^= ((octet >> bitshift) & 0x01);
955 
956 			hash = (hash << 1) | xor_bit;
957 		}
958 		iowrite32(1, &(mac->hash_table[hash]));
959 	}
960 }
961 
962 
963 static void altera_tse_set_mcfilterall(struct net_device *dev)
964 {
965 	struct altera_tse_private *priv = netdev_priv(dev);
966 	struct altera_tse_mac *mac = priv->mac_dev;
967 	int i;
968 
969 	/* set the hash filter */
970 	for (i = 0; i < 64; i++)
971 		iowrite32(1, &(mac->hash_table[i]));
972 }
973 
974 /* Set or clear the multicast filter for this adaptor
975  */
976 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
977 {
978 	struct altera_tse_private *priv = netdev_priv(dev);
979 	struct altera_tse_mac *mac = priv->mac_dev;
980 
981 	spin_lock(&priv->mac_cfg_lock);
982 
983 	if (dev->flags & IFF_PROMISC)
984 		tse_set_bit(&mac->command_config, MAC_CMDCFG_PROMIS_EN);
985 
986 	if (dev->flags & IFF_ALLMULTI)
987 		altera_tse_set_mcfilterall(dev);
988 	else
989 		altera_tse_set_mcfilter(dev);
990 
991 	spin_unlock(&priv->mac_cfg_lock);
992 }
993 
994 /* Set or clear the multicast filter for this adaptor
995  */
996 static void tse_set_rx_mode(struct net_device *dev)
997 {
998 	struct altera_tse_private *priv = netdev_priv(dev);
999 	struct altera_tse_mac *mac = priv->mac_dev;
1000 
1001 	spin_lock(&priv->mac_cfg_lock);
1002 
1003 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1004 	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1005 		tse_set_bit(&mac->command_config, MAC_CMDCFG_PROMIS_EN);
1006 	else
1007 		tse_clear_bit(&mac->command_config, MAC_CMDCFG_PROMIS_EN);
1008 
1009 	spin_unlock(&priv->mac_cfg_lock);
1010 }
1011 
1012 /* Open and initialize the interface
1013  */
1014 static int tse_open(struct net_device *dev)
1015 {
1016 	struct altera_tse_private *priv = netdev_priv(dev);
1017 	int ret = 0;
1018 	int i;
1019 	unsigned long int flags;
1020 
1021 	/* Reset and configure TSE MAC and probe associated PHY */
1022 	ret = priv->dmaops->init_dma(priv);
1023 	if (ret != 0) {
1024 		netdev_err(dev, "Cannot initialize DMA\n");
1025 		goto phy_error;
1026 	}
1027 
1028 	if (netif_msg_ifup(priv))
1029 		netdev_warn(dev, "device MAC address %pM\n",
1030 			    dev->dev_addr);
1031 
1032 	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1033 		netdev_warn(dev, "TSE revision %x\n", priv->revision);
1034 
1035 	spin_lock(&priv->mac_cfg_lock);
1036 	ret = reset_mac(priv);
1037 	if (ret)
1038 		netdev_err(dev, "Cannot reset MAC core (error: %d)\n", ret);
1039 
1040 	ret = init_mac(priv);
1041 	spin_unlock(&priv->mac_cfg_lock);
1042 	if (ret) {
1043 		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1044 		goto alloc_skbuf_error;
1045 	}
1046 
1047 	priv->dmaops->reset_dma(priv);
1048 
1049 	/* Create and initialize the TX/RX descriptors chains. */
1050 	priv->rx_ring_size = dma_rx_num;
1051 	priv->tx_ring_size = dma_tx_num;
1052 	ret = alloc_init_skbufs(priv);
1053 	if (ret) {
1054 		netdev_err(dev, "DMA descriptors initialization failed\n");
1055 		goto alloc_skbuf_error;
1056 	}
1057 
1058 
1059 	/* Register RX interrupt */
1060 	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1061 			  dev->name, dev);
1062 	if (ret) {
1063 		netdev_err(dev, "Unable to register RX interrupt %d\n",
1064 			   priv->rx_irq);
1065 		goto init_error;
1066 	}
1067 
1068 	/* Register TX interrupt */
1069 	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1070 			  dev->name, dev);
1071 	if (ret) {
1072 		netdev_err(dev, "Unable to register TX interrupt %d\n",
1073 			   priv->tx_irq);
1074 		goto tx_request_irq_error;
1075 	}
1076 
1077 	/* Enable DMA interrupts */
1078 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1079 	priv->dmaops->enable_rxirq(priv);
1080 	priv->dmaops->enable_txirq(priv);
1081 
1082 	/* Setup RX descriptor chain */
1083 	for (i = 0; i < priv->rx_ring_size; i++)
1084 		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1085 
1086 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1087 
1088 	/* Start MAC Rx/Tx */
1089 	spin_lock(&priv->mac_cfg_lock);
1090 	tse_set_mac(priv, true);
1091 	spin_unlock(&priv->mac_cfg_lock);
1092 
1093 	if (priv->phydev)
1094 		phy_start(priv->phydev);
1095 
1096 	napi_enable(&priv->napi);
1097 	netif_start_queue(dev);
1098 
1099 	return 0;
1100 
1101 tx_request_irq_error:
1102 	free_irq(priv->rx_irq, dev);
1103 init_error:
1104 	free_skbufs(dev);
1105 alloc_skbuf_error:
1106 	if (priv->phydev) {
1107 		phy_disconnect(priv->phydev);
1108 		priv->phydev = NULL;
1109 	}
1110 phy_error:
1111 	return ret;
1112 }
1113 
1114 /* Stop TSE MAC interface and put the device in an inactive state
1115  */
1116 static int tse_shutdown(struct net_device *dev)
1117 {
1118 	struct altera_tse_private *priv = netdev_priv(dev);
1119 	int ret;
1120 	unsigned long int flags;
1121 
1122 	/* Stop and disconnect the PHY */
1123 	if (priv->phydev) {
1124 		phy_stop(priv->phydev);
1125 		phy_disconnect(priv->phydev);
1126 		priv->phydev = NULL;
1127 	}
1128 
1129 	netif_stop_queue(dev);
1130 	napi_disable(&priv->napi);
1131 
1132 	/* Disable DMA interrupts */
1133 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1134 	priv->dmaops->disable_rxirq(priv);
1135 	priv->dmaops->disable_txirq(priv);
1136 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1137 
1138 	/* Free the IRQ lines */
1139 	free_irq(priv->rx_irq, dev);
1140 	free_irq(priv->tx_irq, dev);
1141 
1142 	/* disable and reset the MAC, empties fifo */
1143 	spin_lock(&priv->mac_cfg_lock);
1144 	spin_lock(&priv->tx_lock);
1145 
1146 	ret = reset_mac(priv);
1147 	if (ret)
1148 		netdev_err(dev, "Cannot reset MAC core (error: %d)\n", ret);
1149 	priv->dmaops->reset_dma(priv);
1150 	free_skbufs(dev);
1151 
1152 	spin_unlock(&priv->tx_lock);
1153 	spin_unlock(&priv->mac_cfg_lock);
1154 
1155 	priv->dmaops->uninit_dma(priv);
1156 
1157 	return 0;
1158 }
1159 
1160 static struct net_device_ops altera_tse_netdev_ops = {
1161 	.ndo_open		= tse_open,
1162 	.ndo_stop		= tse_shutdown,
1163 	.ndo_start_xmit		= tse_start_xmit,
1164 	.ndo_set_mac_address	= eth_mac_addr,
1165 	.ndo_set_rx_mode	= tse_set_rx_mode,
1166 	.ndo_change_mtu		= tse_change_mtu,
1167 	.ndo_validate_addr	= eth_validate_addr,
1168 };
1169 
1170 
1171 static int request_and_map(struct platform_device *pdev, const char *name,
1172 			   struct resource **res, void __iomem **ptr)
1173 {
1174 	struct resource *region;
1175 	struct device *device = &pdev->dev;
1176 
1177 	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1178 	if (*res == NULL) {
1179 		dev_err(device, "resource %s not defined\n", name);
1180 		return -ENODEV;
1181 	}
1182 
1183 	region = devm_request_mem_region(device, (*res)->start,
1184 					 resource_size(*res), dev_name(device));
1185 	if (region == NULL) {
1186 		dev_err(device, "unable to request %s\n", name);
1187 		return -EBUSY;
1188 	}
1189 
1190 	*ptr = devm_ioremap_nocache(device, region->start,
1191 				    resource_size(region));
1192 	if (*ptr == NULL) {
1193 		dev_err(device, "ioremap_nocache of %s failed!", name);
1194 		return -ENOMEM;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 /* Probe Altera TSE MAC device
1201  */
1202 static int altera_tse_probe(struct platform_device *pdev)
1203 {
1204 	struct net_device *ndev;
1205 	int ret = -ENODEV;
1206 	struct resource *control_port;
1207 	struct resource *dma_res;
1208 	struct altera_tse_private *priv;
1209 	const unsigned char *macaddr;
1210 	struct device_node *np = pdev->dev.of_node;
1211 	void __iomem *descmap;
1212 	const struct of_device_id *of_id = NULL;
1213 
1214 	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1215 	if (!ndev) {
1216 		dev_err(&pdev->dev, "Could not allocate network device\n");
1217 		return -ENODEV;
1218 	}
1219 
1220 	SET_NETDEV_DEV(ndev, &pdev->dev);
1221 
1222 	priv = netdev_priv(ndev);
1223 	priv->device = &pdev->dev;
1224 	priv->dev = ndev;
1225 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1226 
1227 	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1228 
1229 	if (of_id)
1230 		priv->dmaops = (struct altera_dmaops *)of_id->data;
1231 
1232 
1233 	if (priv->dmaops &&
1234 	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1235 		/* Get the mapped address to the SGDMA descriptor memory */
1236 		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1237 		if (ret)
1238 			goto out_free;
1239 
1240 		/* Start of that memory is for transmit descriptors */
1241 		priv->tx_dma_desc = descmap;
1242 
1243 		/* First half is for tx descriptors, other half for tx */
1244 		priv->txdescmem = resource_size(dma_res)/2;
1245 
1246 		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1247 
1248 		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1249 						     priv->txdescmem));
1250 		priv->rxdescmem = resource_size(dma_res)/2;
1251 		priv->rxdescmem_busaddr = dma_res->start;
1252 		priv->rxdescmem_busaddr += priv->txdescmem;
1253 
1254 		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1255 			dev_dbg(priv->device,
1256 				"SGDMA bus addresses greater than 32-bits\n");
1257 			goto out_free;
1258 		}
1259 		if (upper_32_bits(priv->txdescmem_busaddr)) {
1260 			dev_dbg(priv->device,
1261 				"SGDMA bus addresses greater than 32-bits\n");
1262 			goto out_free;
1263 		}
1264 	} else if (priv->dmaops &&
1265 		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1266 		ret = request_and_map(pdev, "rx_resp", &dma_res,
1267 				      &priv->rx_dma_resp);
1268 		if (ret)
1269 			goto out_free;
1270 
1271 		ret = request_and_map(pdev, "tx_desc", &dma_res,
1272 				      &priv->tx_dma_desc);
1273 		if (ret)
1274 			goto out_free;
1275 
1276 		priv->txdescmem = resource_size(dma_res);
1277 		priv->txdescmem_busaddr = dma_res->start;
1278 
1279 		ret = request_and_map(pdev, "rx_desc", &dma_res,
1280 				      &priv->rx_dma_desc);
1281 		if (ret)
1282 			goto out_free;
1283 
1284 		priv->rxdescmem = resource_size(dma_res);
1285 		priv->rxdescmem_busaddr = dma_res->start;
1286 
1287 	} else {
1288 		goto out_free;
1289 	}
1290 
1291 	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1292 		dma_set_coherent_mask(priv->device,
1293 				      DMA_BIT_MASK(priv->dmaops->dmamask));
1294 	else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1295 		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1296 	else
1297 		goto out_free;
1298 
1299 	/* MAC address space */
1300 	ret = request_and_map(pdev, "control_port", &control_port,
1301 			      (void __iomem **)&priv->mac_dev);
1302 	if (ret)
1303 		goto out_free;
1304 
1305 	/* xSGDMA Rx Dispatcher address space */
1306 	ret = request_and_map(pdev, "rx_csr", &dma_res,
1307 			      &priv->rx_dma_csr);
1308 	if (ret)
1309 		goto out_free;
1310 
1311 
1312 	/* xSGDMA Tx Dispatcher address space */
1313 	ret = request_and_map(pdev, "tx_csr", &dma_res,
1314 			      &priv->tx_dma_csr);
1315 	if (ret)
1316 		goto out_free;
1317 
1318 
1319 	/* Rx IRQ */
1320 	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1321 	if (priv->rx_irq == -ENXIO) {
1322 		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1323 		ret = -ENXIO;
1324 		goto out_free;
1325 	}
1326 
1327 	/* Tx IRQ */
1328 	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1329 	if (priv->tx_irq == -ENXIO) {
1330 		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1331 		ret = -ENXIO;
1332 		goto out_free;
1333 	}
1334 
1335 	/* get FIFO depths from device tree */
1336 	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1337 				 &priv->rx_fifo_depth)) {
1338 		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1339 		ret = -ENXIO;
1340 		goto out_free;
1341 	}
1342 
1343 	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1344 				 &priv->rx_fifo_depth)) {
1345 		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1346 		ret = -ENXIO;
1347 		goto out_free;
1348 	}
1349 
1350 	/* get hash filter settings for this instance */
1351 	priv->hash_filter =
1352 		of_property_read_bool(pdev->dev.of_node,
1353 				      "altr,has-hash-multicast-filter");
1354 
1355 	/* get supplemental address settings for this instance */
1356 	priv->added_unicast =
1357 		of_property_read_bool(pdev->dev.of_node,
1358 				      "altr,has-supplementary-unicast");
1359 
1360 	/* Max MTU is 1500, ETH_DATA_LEN */
1361 	priv->max_mtu = ETH_DATA_LEN;
1362 
1363 	/* Get the max mtu from the device tree. Note that the
1364 	 * "max-frame-size" parameter is actually max mtu. Definition
1365 	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1366 	 */
1367 	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1368 			     &priv->max_mtu);
1369 
1370 	/* The DMA buffer size already accounts for an alignment bias
1371 	 * to avoid unaligned access exceptions for the NIOS processor,
1372 	 */
1373 	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1374 
1375 	/* get default MAC address from device tree */
1376 	macaddr = of_get_mac_address(pdev->dev.of_node);
1377 	if (macaddr)
1378 		ether_addr_copy(ndev->dev_addr, macaddr);
1379 	else
1380 		eth_hw_addr_random(ndev);
1381 
1382 	priv->phy_iface = of_get_phy_mode(np);
1383 
1384 	/* try to get PHY address from device tree, use PHY autodetection if
1385 	 * no valid address is given
1386 	 */
1387 	if (of_property_read_u32(pdev->dev.of_node, "phy-addr",
1388 				 &priv->phy_addr)) {
1389 		priv->phy_addr = POLL_PHY;
1390 	}
1391 
1392 	if (!((priv->phy_addr == POLL_PHY) ||
1393 	      ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
1394 		dev_err(&pdev->dev, "invalid phy-addr specified %d\n",
1395 			priv->phy_addr);
1396 		goto out_free;
1397 	}
1398 
1399 	/* Create/attach to MDIO bus */
1400 	ret = altera_tse_mdio_create(ndev,
1401 				     atomic_add_return(1, &instance_count));
1402 
1403 	if (ret)
1404 		goto out_free;
1405 
1406 	/* initialize netdev */
1407 	ether_setup(ndev);
1408 	ndev->mem_start = control_port->start;
1409 	ndev->mem_end = control_port->end;
1410 	ndev->netdev_ops = &altera_tse_netdev_ops;
1411 	altera_tse_set_ethtool_ops(ndev);
1412 
1413 	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1414 
1415 	if (priv->hash_filter)
1416 		altera_tse_netdev_ops.ndo_set_rx_mode =
1417 			tse_set_rx_mode_hashfilter;
1418 
1419 	/* Scatter/gather IO is not supported,
1420 	 * so it is turned off
1421 	 */
1422 	ndev->hw_features &= ~NETIF_F_SG;
1423 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1424 
1425 	/* VLAN offloading of tagging, stripping and filtering is not
1426 	 * supported by hardware, but driver will accommodate the
1427 	 * extra 4-byte VLAN tag for processing by upper layers
1428 	 */
1429 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1430 
1431 	/* setup NAPI interface */
1432 	netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1433 
1434 	spin_lock_init(&priv->mac_cfg_lock);
1435 	spin_lock_init(&priv->tx_lock);
1436 	spin_lock_init(&priv->rxdma_irq_lock);
1437 
1438 	ret = register_netdev(ndev);
1439 	if (ret) {
1440 		dev_err(&pdev->dev, "failed to register TSE net device\n");
1441 		goto out_free_mdio;
1442 	}
1443 
1444 	platform_set_drvdata(pdev, ndev);
1445 
1446 	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1447 
1448 	if (netif_msg_probe(priv))
1449 		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1450 			 (priv->revision >> 8) & 0xff,
1451 			 priv->revision & 0xff,
1452 			 (unsigned long) control_port->start, priv->rx_irq,
1453 			 priv->tx_irq);
1454 
1455 	ret = init_phy(ndev);
1456 	if (ret != 0) {
1457 		netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1458 		goto out_free_mdio;
1459 	}
1460 	return 0;
1461 
1462 out_free_mdio:
1463 	altera_tse_mdio_destroy(ndev);
1464 out_free:
1465 	free_netdev(ndev);
1466 	return ret;
1467 }
1468 
1469 /* Remove Altera TSE MAC device
1470  */
1471 static int altera_tse_remove(struct platform_device *pdev)
1472 {
1473 	struct net_device *ndev = platform_get_drvdata(pdev);
1474 
1475 	platform_set_drvdata(pdev, NULL);
1476 	altera_tse_mdio_destroy(ndev);
1477 	unregister_netdev(ndev);
1478 	free_netdev(ndev);
1479 
1480 	return 0;
1481 }
1482 
1483 struct altera_dmaops altera_dtype_sgdma = {
1484 	.altera_dtype = ALTERA_DTYPE_SGDMA,
1485 	.dmamask = 32,
1486 	.reset_dma = sgdma_reset,
1487 	.enable_txirq = sgdma_enable_txirq,
1488 	.enable_rxirq = sgdma_enable_rxirq,
1489 	.disable_txirq = sgdma_disable_txirq,
1490 	.disable_rxirq = sgdma_disable_rxirq,
1491 	.clear_txirq = sgdma_clear_txirq,
1492 	.clear_rxirq = sgdma_clear_rxirq,
1493 	.tx_buffer = sgdma_tx_buffer,
1494 	.tx_completions = sgdma_tx_completions,
1495 	.add_rx_desc = sgdma_add_rx_desc,
1496 	.get_rx_status = sgdma_rx_status,
1497 	.init_dma = sgdma_initialize,
1498 	.uninit_dma = sgdma_uninitialize,
1499 };
1500 
1501 struct altera_dmaops altera_dtype_msgdma = {
1502 	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1503 	.dmamask = 64,
1504 	.reset_dma = msgdma_reset,
1505 	.enable_txirq = msgdma_enable_txirq,
1506 	.enable_rxirq = msgdma_enable_rxirq,
1507 	.disable_txirq = msgdma_disable_txirq,
1508 	.disable_rxirq = msgdma_disable_rxirq,
1509 	.clear_txirq = msgdma_clear_txirq,
1510 	.clear_rxirq = msgdma_clear_rxirq,
1511 	.tx_buffer = msgdma_tx_buffer,
1512 	.tx_completions = msgdma_tx_completions,
1513 	.add_rx_desc = msgdma_add_rx_desc,
1514 	.get_rx_status = msgdma_rx_status,
1515 	.init_dma = msgdma_initialize,
1516 	.uninit_dma = msgdma_uninitialize,
1517 };
1518 
1519 static struct of_device_id altera_tse_ids[] = {
1520 	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1521 	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1522 	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1523 	{},
1524 };
1525 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1526 
1527 static struct platform_driver altera_tse_driver = {
1528 	.probe		= altera_tse_probe,
1529 	.remove		= altera_tse_remove,
1530 	.suspend	= NULL,
1531 	.resume		= NULL,
1532 	.driver		= {
1533 		.name	= ALTERA_TSE_RESOURCE_NAME,
1534 		.owner	= THIS_MODULE,
1535 		.of_match_table = altera_tse_ids,
1536 	},
1537 };
1538 
1539 module_platform_driver(altera_tse_driver);
1540 
1541 MODULE_AUTHOR("Altera Corporation");
1542 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1543 MODULE_LICENSE("GPL v2");
1544