1 /* Altera Triple-Speed Ethernet MAC driver 2 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved 3 * 4 * Contributors: 5 * Dalon Westergreen 6 * Thomas Chou 7 * Ian Abbott 8 * Yuriy Kozlov 9 * Tobias Klauser 10 * Andriy Smolskyy 11 * Roman Bulgakov 12 * Dmytro Mytarchuk 13 * Matthew Gerlach 14 * 15 * Original driver contributed by SLS. 16 * Major updates contributed by GlobalLogic 17 * 18 * This program is free software; you can redistribute it and/or modify it 19 * under the terms and conditions of the GNU General Public License, 20 * version 2, as published by the Free Software Foundation. 21 * 22 * This program is distributed in the hope it will be useful, but WITHOUT 23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 25 * more details. 26 * 27 * You should have received a copy of the GNU General Public License along with 28 * this program. If not, see <http://www.gnu.org/licenses/>. 29 */ 30 31 #include <linux/atomic.h> 32 #include <linux/delay.h> 33 #include <linux/etherdevice.h> 34 #include <linux/if_vlan.h> 35 #include <linux/init.h> 36 #include <linux/interrupt.h> 37 #include <linux/io.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/mii.h> 41 #include <linux/netdevice.h> 42 #include <linux/of_device.h> 43 #include <linux/of_mdio.h> 44 #include <linux/of_net.h> 45 #include <linux/of_platform.h> 46 #include <linux/phy.h> 47 #include <linux/platform_device.h> 48 #include <linux/skbuff.h> 49 #include <asm/cacheflush.h> 50 51 #include "altera_utils.h" 52 #include "altera_tse.h" 53 #include "altera_sgdma.h" 54 #include "altera_msgdma.h" 55 56 static atomic_t instance_count = ATOMIC_INIT(~0); 57 /* Module parameters */ 58 static int debug = -1; 59 module_param(debug, int, 0644); 60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 61 62 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 63 NETIF_MSG_LINK | NETIF_MSG_IFUP | 64 NETIF_MSG_IFDOWN); 65 66 #define RX_DESCRIPTORS 64 67 static int dma_rx_num = RX_DESCRIPTORS; 68 module_param(dma_rx_num, int, 0644); 69 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list"); 70 71 #define TX_DESCRIPTORS 64 72 static int dma_tx_num = TX_DESCRIPTORS; 73 module_param(dma_tx_num, int, 0644); 74 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list"); 75 76 77 #define POLL_PHY (-1) 78 79 /* Make sure DMA buffer size is larger than the max frame size 80 * plus some alignment offset and a VLAN header. If the max frame size is 81 * 1518, a VLAN header would be additional 4 bytes and additional 82 * headroom for alignment is 2 bytes, 2048 is just fine. 83 */ 84 #define ALTERA_RXDMABUFFER_SIZE 2048 85 86 /* Allow network stack to resume queueing packets after we've 87 * finished transmitting at least 1/4 of the packets in the queue. 88 */ 89 #define TSE_TX_THRESH(x) (x->tx_ring_size / 4) 90 91 #define TXQUEUESTOP_THRESHHOLD 2 92 93 static const struct of_device_id altera_tse_ids[]; 94 95 static inline u32 tse_tx_avail(struct altera_tse_private *priv) 96 { 97 return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1; 98 } 99 100 /* PCS Register read/write functions 101 */ 102 static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum) 103 { 104 return csrrd32(priv->mac_dev, 105 tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff; 106 } 107 108 static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum, 109 u16 value) 110 { 111 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4); 112 } 113 114 /* Check PCS scratch memory */ 115 static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value) 116 { 117 sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value); 118 return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value); 119 } 120 121 /* MDIO specific functions 122 */ 123 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 124 { 125 struct net_device *ndev = bus->priv; 126 struct altera_tse_private *priv = netdev_priv(ndev); 127 128 /* set MDIO address */ 129 csrwr32((mii_id & 0x1f), priv->mac_dev, 130 tse_csroffs(mdio_phy1_addr)); 131 132 /* get the data */ 133 return csrrd32(priv->mac_dev, 134 tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff; 135 } 136 137 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 138 u16 value) 139 { 140 struct net_device *ndev = bus->priv; 141 struct altera_tse_private *priv = netdev_priv(ndev); 142 143 /* set MDIO address */ 144 csrwr32((mii_id & 0x1f), priv->mac_dev, 145 tse_csroffs(mdio_phy1_addr)); 146 147 /* write the data */ 148 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4); 149 return 0; 150 } 151 152 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id) 153 { 154 struct altera_tse_private *priv = netdev_priv(dev); 155 int ret; 156 struct device_node *mdio_node = NULL; 157 struct mii_bus *mdio = NULL; 158 struct device_node *child_node = NULL; 159 160 for_each_child_of_node(priv->device->of_node, child_node) { 161 if (of_device_is_compatible(child_node, "altr,tse-mdio")) { 162 mdio_node = child_node; 163 break; 164 } 165 } 166 167 if (mdio_node) { 168 netdev_dbg(dev, "FOUND MDIO subnode\n"); 169 } else { 170 netdev_dbg(dev, "NO MDIO subnode\n"); 171 return 0; 172 } 173 174 mdio = mdiobus_alloc(); 175 if (mdio == NULL) { 176 netdev_err(dev, "Error allocating MDIO bus\n"); 177 return -ENOMEM; 178 } 179 180 mdio->name = ALTERA_TSE_RESOURCE_NAME; 181 mdio->read = &altera_tse_mdio_read; 182 mdio->write = &altera_tse_mdio_write; 183 snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id); 184 185 mdio->priv = dev; 186 mdio->parent = priv->device; 187 188 ret = of_mdiobus_register(mdio, mdio_node); 189 if (ret != 0) { 190 netdev_err(dev, "Cannot register MDIO bus %s\n", 191 mdio->id); 192 goto out_free_mdio; 193 } 194 195 if (netif_msg_drv(priv)) 196 netdev_info(dev, "MDIO bus %s: created\n", mdio->id); 197 198 priv->mdio = mdio; 199 return 0; 200 out_free_mdio: 201 mdiobus_free(mdio); 202 mdio = NULL; 203 return ret; 204 } 205 206 static void altera_tse_mdio_destroy(struct net_device *dev) 207 { 208 struct altera_tse_private *priv = netdev_priv(dev); 209 210 if (priv->mdio == NULL) 211 return; 212 213 if (netif_msg_drv(priv)) 214 netdev_info(dev, "MDIO bus %s: removed\n", 215 priv->mdio->id); 216 217 mdiobus_unregister(priv->mdio); 218 mdiobus_free(priv->mdio); 219 priv->mdio = NULL; 220 } 221 222 static int tse_init_rx_buffer(struct altera_tse_private *priv, 223 struct tse_buffer *rxbuffer, int len) 224 { 225 rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len); 226 if (!rxbuffer->skb) 227 return -ENOMEM; 228 229 rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data, 230 len, 231 DMA_FROM_DEVICE); 232 233 if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) { 234 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 235 dev_kfree_skb_any(rxbuffer->skb); 236 return -EINVAL; 237 } 238 rxbuffer->dma_addr &= (dma_addr_t)~3; 239 rxbuffer->len = len; 240 return 0; 241 } 242 243 static void tse_free_rx_buffer(struct altera_tse_private *priv, 244 struct tse_buffer *rxbuffer) 245 { 246 struct sk_buff *skb = rxbuffer->skb; 247 dma_addr_t dma_addr = rxbuffer->dma_addr; 248 249 if (skb != NULL) { 250 if (dma_addr) 251 dma_unmap_single(priv->device, dma_addr, 252 rxbuffer->len, 253 DMA_FROM_DEVICE); 254 dev_kfree_skb_any(skb); 255 rxbuffer->skb = NULL; 256 rxbuffer->dma_addr = 0; 257 } 258 } 259 260 /* Unmap and free Tx buffer resources 261 */ 262 static void tse_free_tx_buffer(struct altera_tse_private *priv, 263 struct tse_buffer *buffer) 264 { 265 if (buffer->dma_addr) { 266 if (buffer->mapped_as_page) 267 dma_unmap_page(priv->device, buffer->dma_addr, 268 buffer->len, DMA_TO_DEVICE); 269 else 270 dma_unmap_single(priv->device, buffer->dma_addr, 271 buffer->len, DMA_TO_DEVICE); 272 buffer->dma_addr = 0; 273 } 274 if (buffer->skb) { 275 dev_kfree_skb_any(buffer->skb); 276 buffer->skb = NULL; 277 } 278 } 279 280 static int alloc_init_skbufs(struct altera_tse_private *priv) 281 { 282 unsigned int rx_descs = priv->rx_ring_size; 283 unsigned int tx_descs = priv->tx_ring_size; 284 int ret = -ENOMEM; 285 int i; 286 287 /* Create Rx ring buffer */ 288 priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer), 289 GFP_KERNEL); 290 if (!priv->rx_ring) 291 goto err_rx_ring; 292 293 /* Create Tx ring buffer */ 294 priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer), 295 GFP_KERNEL); 296 if (!priv->tx_ring) 297 goto err_tx_ring; 298 299 priv->tx_cons = 0; 300 priv->tx_prod = 0; 301 302 /* Init Rx ring */ 303 for (i = 0; i < rx_descs; i++) { 304 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i], 305 priv->rx_dma_buf_sz); 306 if (ret) 307 goto err_init_rx_buffers; 308 } 309 310 priv->rx_cons = 0; 311 priv->rx_prod = 0; 312 313 return 0; 314 err_init_rx_buffers: 315 while (--i >= 0) 316 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 317 kfree(priv->tx_ring); 318 err_tx_ring: 319 kfree(priv->rx_ring); 320 err_rx_ring: 321 return ret; 322 } 323 324 static void free_skbufs(struct net_device *dev) 325 { 326 struct altera_tse_private *priv = netdev_priv(dev); 327 unsigned int rx_descs = priv->rx_ring_size; 328 unsigned int tx_descs = priv->tx_ring_size; 329 int i; 330 331 /* Release the DMA TX/RX socket buffers */ 332 for (i = 0; i < rx_descs; i++) 333 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 334 for (i = 0; i < tx_descs; i++) 335 tse_free_tx_buffer(priv, &priv->tx_ring[i]); 336 337 338 kfree(priv->tx_ring); 339 } 340 341 /* Reallocate the skb for the reception process 342 */ 343 static inline void tse_rx_refill(struct altera_tse_private *priv) 344 { 345 unsigned int rxsize = priv->rx_ring_size; 346 unsigned int entry; 347 int ret; 348 349 for (; priv->rx_cons - priv->rx_prod > 0; 350 priv->rx_prod++) { 351 entry = priv->rx_prod % rxsize; 352 if (likely(priv->rx_ring[entry].skb == NULL)) { 353 ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry], 354 priv->rx_dma_buf_sz); 355 if (unlikely(ret != 0)) 356 break; 357 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]); 358 } 359 } 360 } 361 362 /* Pull out the VLAN tag and fix up the packet 363 */ 364 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb) 365 { 366 struct ethhdr *eth_hdr; 367 u16 vid; 368 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 369 !__vlan_get_tag(skb, &vid)) { 370 eth_hdr = (struct ethhdr *)skb->data; 371 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2); 372 skb_pull(skb, VLAN_HLEN); 373 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 374 } 375 } 376 377 /* Receive a packet: retrieve and pass over to upper levels 378 */ 379 static int tse_rx(struct altera_tse_private *priv, int limit) 380 { 381 unsigned int count = 0; 382 unsigned int next_entry; 383 struct sk_buff *skb; 384 unsigned int entry = priv->rx_cons % priv->rx_ring_size; 385 u32 rxstatus; 386 u16 pktlength; 387 u16 pktstatus; 388 389 /* Check for count < limit first as get_rx_status is changing 390 * the response-fifo so we must process the next packet 391 * after calling get_rx_status if a response is pending. 392 * (reading the last byte of the response pops the value from the fifo.) 393 */ 394 while ((count < limit) && 395 ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) { 396 pktstatus = rxstatus >> 16; 397 pktlength = rxstatus & 0xffff; 398 399 if ((pktstatus & 0xFF) || (pktlength == 0)) 400 netdev_err(priv->dev, 401 "RCV pktstatus %08X pktlength %08X\n", 402 pktstatus, pktlength); 403 404 /* DMA trasfer from TSE starts with 2 aditional bytes for 405 * IP payload alignment. Status returned by get_rx_status() 406 * contains DMA transfer length. Packet is 2 bytes shorter. 407 */ 408 pktlength -= 2; 409 410 count++; 411 next_entry = (++priv->rx_cons) % priv->rx_ring_size; 412 413 skb = priv->rx_ring[entry].skb; 414 if (unlikely(!skb)) { 415 netdev_err(priv->dev, 416 "%s: Inconsistent Rx descriptor chain\n", 417 __func__); 418 priv->dev->stats.rx_dropped++; 419 break; 420 } 421 priv->rx_ring[entry].skb = NULL; 422 423 skb_put(skb, pktlength); 424 425 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr, 426 priv->rx_ring[entry].len, DMA_FROM_DEVICE); 427 428 if (netif_msg_pktdata(priv)) { 429 netdev_info(priv->dev, "frame received %d bytes\n", 430 pktlength); 431 print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET, 432 16, 1, skb->data, pktlength, true); 433 } 434 435 tse_rx_vlan(priv->dev, skb); 436 437 skb->protocol = eth_type_trans(skb, priv->dev); 438 skb_checksum_none_assert(skb); 439 440 napi_gro_receive(&priv->napi, skb); 441 442 priv->dev->stats.rx_packets++; 443 priv->dev->stats.rx_bytes += pktlength; 444 445 entry = next_entry; 446 447 tse_rx_refill(priv); 448 } 449 450 return count; 451 } 452 453 /* Reclaim resources after transmission completes 454 */ 455 static int tse_tx_complete(struct altera_tse_private *priv) 456 { 457 unsigned int txsize = priv->tx_ring_size; 458 u32 ready; 459 unsigned int entry; 460 struct tse_buffer *tx_buff; 461 int txcomplete = 0; 462 463 spin_lock(&priv->tx_lock); 464 465 ready = priv->dmaops->tx_completions(priv); 466 467 /* Free sent buffers */ 468 while (ready && (priv->tx_cons != priv->tx_prod)) { 469 entry = priv->tx_cons % txsize; 470 tx_buff = &priv->tx_ring[entry]; 471 472 if (netif_msg_tx_done(priv)) 473 netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n", 474 __func__, priv->tx_prod, priv->tx_cons); 475 476 if (likely(tx_buff->skb)) 477 priv->dev->stats.tx_packets++; 478 479 tse_free_tx_buffer(priv, tx_buff); 480 priv->tx_cons++; 481 482 txcomplete++; 483 ready--; 484 } 485 486 if (unlikely(netif_queue_stopped(priv->dev) && 487 tse_tx_avail(priv) > TSE_TX_THRESH(priv))) { 488 if (netif_queue_stopped(priv->dev) && 489 tse_tx_avail(priv) > TSE_TX_THRESH(priv)) { 490 if (netif_msg_tx_done(priv)) 491 netdev_dbg(priv->dev, "%s: restart transmit\n", 492 __func__); 493 netif_wake_queue(priv->dev); 494 } 495 } 496 497 spin_unlock(&priv->tx_lock); 498 return txcomplete; 499 } 500 501 /* NAPI polling function 502 */ 503 static int tse_poll(struct napi_struct *napi, int budget) 504 { 505 struct altera_tse_private *priv = 506 container_of(napi, struct altera_tse_private, napi); 507 int rxcomplete = 0; 508 unsigned long int flags; 509 510 tse_tx_complete(priv); 511 512 rxcomplete = tse_rx(priv, budget); 513 514 if (rxcomplete < budget) { 515 516 napi_complete_done(napi, rxcomplete); 517 518 netdev_dbg(priv->dev, 519 "NAPI Complete, did %d packets with budget %d\n", 520 rxcomplete, budget); 521 522 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 523 priv->dmaops->enable_rxirq(priv); 524 priv->dmaops->enable_txirq(priv); 525 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 526 } 527 return rxcomplete; 528 } 529 530 /* DMA TX & RX FIFO interrupt routing 531 */ 532 static irqreturn_t altera_isr(int irq, void *dev_id) 533 { 534 struct net_device *dev = dev_id; 535 struct altera_tse_private *priv; 536 537 if (unlikely(!dev)) { 538 pr_err("%s: invalid dev pointer\n", __func__); 539 return IRQ_NONE; 540 } 541 priv = netdev_priv(dev); 542 543 spin_lock(&priv->rxdma_irq_lock); 544 /* reset IRQs */ 545 priv->dmaops->clear_rxirq(priv); 546 priv->dmaops->clear_txirq(priv); 547 spin_unlock(&priv->rxdma_irq_lock); 548 549 if (likely(napi_schedule_prep(&priv->napi))) { 550 spin_lock(&priv->rxdma_irq_lock); 551 priv->dmaops->disable_rxirq(priv); 552 priv->dmaops->disable_txirq(priv); 553 spin_unlock(&priv->rxdma_irq_lock); 554 __napi_schedule(&priv->napi); 555 } 556 557 558 return IRQ_HANDLED; 559 } 560 561 /* Transmit a packet (called by the kernel). Dispatches 562 * either the SGDMA method for transmitting or the 563 * MSGDMA method, assumes no scatter/gather support, 564 * implying an assumption that there's only one 565 * physically contiguous fragment starting at 566 * skb->data, for length of skb_headlen(skb). 567 */ 568 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev) 569 { 570 struct altera_tse_private *priv = netdev_priv(dev); 571 unsigned int txsize = priv->tx_ring_size; 572 unsigned int entry; 573 struct tse_buffer *buffer = NULL; 574 int nfrags = skb_shinfo(skb)->nr_frags; 575 unsigned int nopaged_len = skb_headlen(skb); 576 enum netdev_tx ret = NETDEV_TX_OK; 577 dma_addr_t dma_addr; 578 579 spin_lock_bh(&priv->tx_lock); 580 581 if (unlikely(tse_tx_avail(priv) < nfrags + 1)) { 582 if (!netif_queue_stopped(dev)) { 583 netif_stop_queue(dev); 584 /* This is a hard error, log it. */ 585 netdev_err(priv->dev, 586 "%s: Tx list full when queue awake\n", 587 __func__); 588 } 589 ret = NETDEV_TX_BUSY; 590 goto out; 591 } 592 593 /* Map the first skb fragment */ 594 entry = priv->tx_prod % txsize; 595 buffer = &priv->tx_ring[entry]; 596 597 dma_addr = dma_map_single(priv->device, skb->data, nopaged_len, 598 DMA_TO_DEVICE); 599 if (dma_mapping_error(priv->device, dma_addr)) { 600 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 601 ret = NETDEV_TX_OK; 602 goto out; 603 } 604 605 buffer->skb = skb; 606 buffer->dma_addr = dma_addr; 607 buffer->len = nopaged_len; 608 609 priv->dmaops->tx_buffer(priv, buffer); 610 611 skb_tx_timestamp(skb); 612 613 priv->tx_prod++; 614 dev->stats.tx_bytes += skb->len; 615 616 if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) { 617 if (netif_msg_hw(priv)) 618 netdev_dbg(priv->dev, "%s: stop transmitted packets\n", 619 __func__); 620 netif_stop_queue(dev); 621 } 622 623 out: 624 spin_unlock_bh(&priv->tx_lock); 625 626 return ret; 627 } 628 629 /* Called every time the controller might need to be made 630 * aware of new link state. The PHY code conveys this 631 * information through variables in the phydev structure, and this 632 * function converts those variables into the appropriate 633 * register values, and can bring down the device if needed. 634 */ 635 static void altera_tse_adjust_link(struct net_device *dev) 636 { 637 struct altera_tse_private *priv = netdev_priv(dev); 638 struct phy_device *phydev = dev->phydev; 639 int new_state = 0; 640 641 /* only change config if there is a link */ 642 spin_lock(&priv->mac_cfg_lock); 643 if (phydev->link) { 644 /* Read old config */ 645 u32 cfg_reg = ioread32(&priv->mac_dev->command_config); 646 647 /* Check duplex */ 648 if (phydev->duplex != priv->oldduplex) { 649 new_state = 1; 650 if (!(phydev->duplex)) 651 cfg_reg |= MAC_CMDCFG_HD_ENA; 652 else 653 cfg_reg &= ~MAC_CMDCFG_HD_ENA; 654 655 netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n", 656 dev->name, phydev->duplex); 657 658 priv->oldduplex = phydev->duplex; 659 } 660 661 /* Check speed */ 662 if (phydev->speed != priv->oldspeed) { 663 new_state = 1; 664 switch (phydev->speed) { 665 case 1000: 666 cfg_reg |= MAC_CMDCFG_ETH_SPEED; 667 cfg_reg &= ~MAC_CMDCFG_ENA_10; 668 break; 669 case 100: 670 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED; 671 cfg_reg &= ~MAC_CMDCFG_ENA_10; 672 break; 673 case 10: 674 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED; 675 cfg_reg |= MAC_CMDCFG_ENA_10; 676 break; 677 default: 678 if (netif_msg_link(priv)) 679 netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n", 680 phydev->speed); 681 break; 682 } 683 priv->oldspeed = phydev->speed; 684 } 685 iowrite32(cfg_reg, &priv->mac_dev->command_config); 686 687 if (!priv->oldlink) { 688 new_state = 1; 689 priv->oldlink = 1; 690 } 691 } else if (priv->oldlink) { 692 new_state = 1; 693 priv->oldlink = 0; 694 priv->oldspeed = 0; 695 priv->oldduplex = -1; 696 } 697 698 if (new_state && netif_msg_link(priv)) 699 phy_print_status(phydev); 700 701 spin_unlock(&priv->mac_cfg_lock); 702 } 703 static struct phy_device *connect_local_phy(struct net_device *dev) 704 { 705 struct altera_tse_private *priv = netdev_priv(dev); 706 struct phy_device *phydev = NULL; 707 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 708 709 if (priv->phy_addr != POLL_PHY) { 710 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, 711 priv->mdio->id, priv->phy_addr); 712 713 netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt); 714 715 phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link, 716 priv->phy_iface); 717 if (IS_ERR(phydev)) { 718 netdev_err(dev, "Could not attach to PHY\n"); 719 phydev = NULL; 720 } 721 722 } else { 723 int ret; 724 phydev = phy_find_first(priv->mdio); 725 if (phydev == NULL) { 726 netdev_err(dev, "No PHY found\n"); 727 return phydev; 728 } 729 730 ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link, 731 priv->phy_iface); 732 if (ret != 0) { 733 netdev_err(dev, "Could not attach to PHY\n"); 734 phydev = NULL; 735 } 736 } 737 return phydev; 738 } 739 740 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev) 741 { 742 struct altera_tse_private *priv = netdev_priv(dev); 743 struct device_node *np = priv->device->of_node; 744 int ret = 0; 745 746 priv->phy_iface = of_get_phy_mode(np); 747 748 /* Avoid get phy addr and create mdio if no phy is present */ 749 if (!priv->phy_iface) 750 return 0; 751 752 /* try to get PHY address from device tree, use PHY autodetection if 753 * no valid address is given 754 */ 755 756 if (of_property_read_u32(priv->device->of_node, "phy-addr", 757 &priv->phy_addr)) { 758 priv->phy_addr = POLL_PHY; 759 } 760 761 if (!((priv->phy_addr == POLL_PHY) || 762 ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) { 763 netdev_err(dev, "invalid phy-addr specified %d\n", 764 priv->phy_addr); 765 return -ENODEV; 766 } 767 768 /* Create/attach to MDIO bus */ 769 ret = altera_tse_mdio_create(dev, 770 atomic_add_return(1, &instance_count)); 771 772 if (ret) 773 return -ENODEV; 774 775 return 0; 776 } 777 778 /* Initialize driver's PHY state, and attach to the PHY 779 */ 780 static int init_phy(struct net_device *dev) 781 { 782 struct altera_tse_private *priv = netdev_priv(dev); 783 struct phy_device *phydev; 784 struct device_node *phynode; 785 bool fixed_link = false; 786 int rc = 0; 787 788 /* Avoid init phy in case of no phy present */ 789 if (!priv->phy_iface) 790 return 0; 791 792 priv->oldlink = 0; 793 priv->oldspeed = 0; 794 priv->oldduplex = -1; 795 796 phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0); 797 798 if (!phynode) { 799 /* check if a fixed-link is defined in device-tree */ 800 if (of_phy_is_fixed_link(priv->device->of_node)) { 801 rc = of_phy_register_fixed_link(priv->device->of_node); 802 if (rc < 0) { 803 netdev_err(dev, "cannot register fixed PHY\n"); 804 return rc; 805 } 806 807 /* In the case of a fixed PHY, the DT node associated 808 * to the PHY is the Ethernet MAC DT node. 809 */ 810 phynode = of_node_get(priv->device->of_node); 811 fixed_link = true; 812 813 netdev_dbg(dev, "fixed-link detected\n"); 814 phydev = of_phy_connect(dev, phynode, 815 &altera_tse_adjust_link, 816 0, priv->phy_iface); 817 } else { 818 netdev_dbg(dev, "no phy-handle found\n"); 819 if (!priv->mdio) { 820 netdev_err(dev, "No phy-handle nor local mdio specified\n"); 821 return -ENODEV; 822 } 823 phydev = connect_local_phy(dev); 824 } 825 } else { 826 netdev_dbg(dev, "phy-handle found\n"); 827 phydev = of_phy_connect(dev, phynode, 828 &altera_tse_adjust_link, 0, priv->phy_iface); 829 } 830 of_node_put(phynode); 831 832 if (!phydev) { 833 netdev_err(dev, "Could not find the PHY\n"); 834 if (fixed_link) 835 of_phy_deregister_fixed_link(priv->device->of_node); 836 return -ENODEV; 837 } 838 839 /* Stop Advertising 1000BASE Capability if interface is not GMII 840 */ 841 if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) || 842 (priv->phy_iface == PHY_INTERFACE_MODE_RMII)) 843 phy_set_max_speed(phydev, SPEED_100); 844 845 /* Broken HW is sometimes missing the pull-up resistor on the 846 * MDIO line, which results in reads to non-existent devices returning 847 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 848 * device as well. If a fixed-link is used the phy_id is always 0. 849 * Note: phydev->phy_id is the result of reading the UID PHY registers. 850 */ 851 if ((phydev->phy_id == 0) && !fixed_link) { 852 netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id); 853 phy_disconnect(phydev); 854 return -ENODEV; 855 } 856 857 netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n", 858 phydev->mdio.addr, phydev->phy_id, phydev->link); 859 860 return 0; 861 } 862 863 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr) 864 { 865 u32 msb; 866 u32 lsb; 867 868 msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; 869 lsb = ((addr[5] << 8) | addr[4]) & 0xffff; 870 871 /* Set primary MAC address */ 872 csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0)); 873 csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1)); 874 } 875 876 /* MAC software reset. 877 * When reset is triggered, the MAC function completes the current 878 * transmission or reception, and subsequently disables the transmit and 879 * receive logic, flushes the receive FIFO buffer, and resets the statistics 880 * counters. 881 */ 882 static int reset_mac(struct altera_tse_private *priv) 883 { 884 int counter; 885 u32 dat; 886 887 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 888 dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 889 dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET; 890 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 891 892 counter = 0; 893 while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 894 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config), 895 MAC_CMDCFG_SW_RESET)) 896 break; 897 udelay(1); 898 } 899 900 if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 901 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 902 dat &= ~MAC_CMDCFG_SW_RESET; 903 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 904 return -1; 905 } 906 return 0; 907 } 908 909 /* Initialize MAC core registers 910 */ 911 static int init_mac(struct altera_tse_private *priv) 912 { 913 unsigned int cmd = 0; 914 u32 frm_length; 915 916 /* Setup Rx FIFO */ 917 csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY, 918 priv->mac_dev, tse_csroffs(rx_section_empty)); 919 920 csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev, 921 tse_csroffs(rx_section_full)); 922 923 csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev, 924 tse_csroffs(rx_almost_empty)); 925 926 csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev, 927 tse_csroffs(rx_almost_full)); 928 929 /* Setup Tx FIFO */ 930 csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY, 931 priv->mac_dev, tse_csroffs(tx_section_empty)); 932 933 csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev, 934 tse_csroffs(tx_section_full)); 935 936 csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev, 937 tse_csroffs(tx_almost_empty)); 938 939 csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev, 940 tse_csroffs(tx_almost_full)); 941 942 /* MAC Address Configuration */ 943 tse_update_mac_addr(priv, priv->dev->dev_addr); 944 945 /* MAC Function Configuration */ 946 frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN; 947 csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length)); 948 949 csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev, 950 tse_csroffs(tx_ipg_length)); 951 952 /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit 953 * start address 954 */ 955 tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat), 956 ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16); 957 958 tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat), 959 ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 | 960 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC); 961 962 /* Set the MAC options */ 963 cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 964 cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */ 965 cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */ 966 cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames 967 * with CRC errors 968 */ 969 cmd |= MAC_CMDCFG_CNTL_FRM_ENA; 970 cmd &= ~MAC_CMDCFG_TX_ENA; 971 cmd &= ~MAC_CMDCFG_RX_ENA; 972 973 /* Default speed and duplex setting, full/100 */ 974 cmd &= ~MAC_CMDCFG_HD_ENA; 975 cmd &= ~MAC_CMDCFG_ETH_SPEED; 976 cmd &= ~MAC_CMDCFG_ENA_10; 977 978 csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config)); 979 980 csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev, 981 tse_csroffs(pause_quanta)); 982 983 if (netif_msg_hw(priv)) 984 dev_dbg(priv->device, 985 "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd); 986 987 return 0; 988 } 989 990 /* Start/stop MAC transmission logic 991 */ 992 static void tse_set_mac(struct altera_tse_private *priv, bool enable) 993 { 994 u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 995 996 if (enable) 997 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA; 998 else 999 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 1000 1001 csrwr32(value, priv->mac_dev, tse_csroffs(command_config)); 1002 } 1003 1004 /* Change the MTU 1005 */ 1006 static int tse_change_mtu(struct net_device *dev, int new_mtu) 1007 { 1008 if (netif_running(dev)) { 1009 netdev_err(dev, "must be stopped to change its MTU\n"); 1010 return -EBUSY; 1011 } 1012 1013 dev->mtu = new_mtu; 1014 netdev_update_features(dev); 1015 1016 return 0; 1017 } 1018 1019 static void altera_tse_set_mcfilter(struct net_device *dev) 1020 { 1021 struct altera_tse_private *priv = netdev_priv(dev); 1022 int i; 1023 struct netdev_hw_addr *ha; 1024 1025 /* clear the hash filter */ 1026 for (i = 0; i < 64; i++) 1027 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 1028 1029 netdev_for_each_mc_addr(ha, dev) { 1030 unsigned int hash = 0; 1031 int mac_octet; 1032 1033 for (mac_octet = 5; mac_octet >= 0; mac_octet--) { 1034 unsigned char xor_bit = 0; 1035 unsigned char octet = ha->addr[mac_octet]; 1036 unsigned int bitshift; 1037 1038 for (bitshift = 0; bitshift < 8; bitshift++) 1039 xor_bit ^= ((octet >> bitshift) & 0x01); 1040 1041 hash = (hash << 1) | xor_bit; 1042 } 1043 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4); 1044 } 1045 } 1046 1047 1048 static void altera_tse_set_mcfilterall(struct net_device *dev) 1049 { 1050 struct altera_tse_private *priv = netdev_priv(dev); 1051 int i; 1052 1053 /* set the hash filter */ 1054 for (i = 0; i < 64; i++) 1055 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 1056 } 1057 1058 /* Set or clear the multicast filter for this adaptor 1059 */ 1060 static void tse_set_rx_mode_hashfilter(struct net_device *dev) 1061 { 1062 struct altera_tse_private *priv = netdev_priv(dev); 1063 1064 spin_lock(&priv->mac_cfg_lock); 1065 1066 if (dev->flags & IFF_PROMISC) 1067 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 1068 MAC_CMDCFG_PROMIS_EN); 1069 1070 if (dev->flags & IFF_ALLMULTI) 1071 altera_tse_set_mcfilterall(dev); 1072 else 1073 altera_tse_set_mcfilter(dev); 1074 1075 spin_unlock(&priv->mac_cfg_lock); 1076 } 1077 1078 /* Set or clear the multicast filter for this adaptor 1079 */ 1080 static void tse_set_rx_mode(struct net_device *dev) 1081 { 1082 struct altera_tse_private *priv = netdev_priv(dev); 1083 1084 spin_lock(&priv->mac_cfg_lock); 1085 1086 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) || 1087 !netdev_mc_empty(dev) || !netdev_uc_empty(dev)) 1088 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 1089 MAC_CMDCFG_PROMIS_EN); 1090 else 1091 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config), 1092 MAC_CMDCFG_PROMIS_EN); 1093 1094 spin_unlock(&priv->mac_cfg_lock); 1095 } 1096 1097 /* Initialise (if necessary) the SGMII PCS component 1098 */ 1099 static int init_sgmii_pcs(struct net_device *dev) 1100 { 1101 struct altera_tse_private *priv = netdev_priv(dev); 1102 int n; 1103 unsigned int tmp_reg = 0; 1104 1105 if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII) 1106 return 0; /* Nothing to do, not in SGMII mode */ 1107 1108 /* The TSE SGMII PCS block looks a little like a PHY, it is 1109 * mapped into the zeroth MDIO space of the MAC and it has 1110 * ID registers like a PHY would. Sadly this is often 1111 * configured to zeroes, so don't be surprised if it does 1112 * show 0x00000000. 1113 */ 1114 1115 if (sgmii_pcs_scratch_test(priv, 0x0000) && 1116 sgmii_pcs_scratch_test(priv, 0xffff) && 1117 sgmii_pcs_scratch_test(priv, 0xa5a5) && 1118 sgmii_pcs_scratch_test(priv, 0x5a5a)) { 1119 netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n", 1120 sgmii_pcs_read(priv, MII_PHYSID1), 1121 sgmii_pcs_read(priv, MII_PHYSID2)); 1122 } else { 1123 netdev_err(dev, "SGMII PCS Scratch memory test failed.\n"); 1124 return -ENOMEM; 1125 } 1126 1127 /* Starting on page 5-29 of the MegaCore Function User Guide 1128 * Set SGMII Link timer to 1.6ms 1129 */ 1130 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40); 1131 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03); 1132 1133 /* Enable SGMII Interface and Enable SGMII Auto Negotiation */ 1134 sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3); 1135 1136 /* Enable Autonegotiation */ 1137 tmp_reg = sgmii_pcs_read(priv, MII_BMCR); 1138 tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE); 1139 sgmii_pcs_write(priv, MII_BMCR, tmp_reg); 1140 1141 /* Reset PCS block */ 1142 tmp_reg |= BMCR_RESET; 1143 sgmii_pcs_write(priv, MII_BMCR, tmp_reg); 1144 for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) { 1145 if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) { 1146 netdev_info(dev, "SGMII PCS block initialised OK\n"); 1147 return 0; 1148 } 1149 udelay(1); 1150 } 1151 1152 /* We failed to reset the block, return a timeout */ 1153 netdev_err(dev, "SGMII PCS block reset failed.\n"); 1154 return -ETIMEDOUT; 1155 } 1156 1157 /* Open and initialize the interface 1158 */ 1159 static int tse_open(struct net_device *dev) 1160 { 1161 struct altera_tse_private *priv = netdev_priv(dev); 1162 int ret = 0; 1163 int i; 1164 unsigned long int flags; 1165 1166 /* Reset and configure TSE MAC and probe associated PHY */ 1167 ret = priv->dmaops->init_dma(priv); 1168 if (ret != 0) { 1169 netdev_err(dev, "Cannot initialize DMA\n"); 1170 goto phy_error; 1171 } 1172 1173 if (netif_msg_ifup(priv)) 1174 netdev_warn(dev, "device MAC address %pM\n", 1175 dev->dev_addr); 1176 1177 if ((priv->revision < 0xd00) || (priv->revision > 0xe00)) 1178 netdev_warn(dev, "TSE revision %x\n", priv->revision); 1179 1180 spin_lock(&priv->mac_cfg_lock); 1181 /* no-op if MAC not operating in SGMII mode*/ 1182 ret = init_sgmii_pcs(dev); 1183 if (ret) { 1184 netdev_err(dev, 1185 "Cannot init the SGMII PCS (error: %d)\n", ret); 1186 spin_unlock(&priv->mac_cfg_lock); 1187 goto phy_error; 1188 } 1189 1190 ret = reset_mac(priv); 1191 /* Note that reset_mac will fail if the clocks are gated by the PHY 1192 * due to the PHY being put into isolation or power down mode. 1193 * This is not an error if reset fails due to no clock. 1194 */ 1195 if (ret) 1196 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 1197 1198 ret = init_mac(priv); 1199 spin_unlock(&priv->mac_cfg_lock); 1200 if (ret) { 1201 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret); 1202 goto alloc_skbuf_error; 1203 } 1204 1205 priv->dmaops->reset_dma(priv); 1206 1207 /* Create and initialize the TX/RX descriptors chains. */ 1208 priv->rx_ring_size = dma_rx_num; 1209 priv->tx_ring_size = dma_tx_num; 1210 ret = alloc_init_skbufs(priv); 1211 if (ret) { 1212 netdev_err(dev, "DMA descriptors initialization failed\n"); 1213 goto alloc_skbuf_error; 1214 } 1215 1216 1217 /* Register RX interrupt */ 1218 ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED, 1219 dev->name, dev); 1220 if (ret) { 1221 netdev_err(dev, "Unable to register RX interrupt %d\n", 1222 priv->rx_irq); 1223 goto init_error; 1224 } 1225 1226 /* Register TX interrupt */ 1227 ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED, 1228 dev->name, dev); 1229 if (ret) { 1230 netdev_err(dev, "Unable to register TX interrupt %d\n", 1231 priv->tx_irq); 1232 goto tx_request_irq_error; 1233 } 1234 1235 /* Enable DMA interrupts */ 1236 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 1237 priv->dmaops->enable_rxirq(priv); 1238 priv->dmaops->enable_txirq(priv); 1239 1240 /* Setup RX descriptor chain */ 1241 for (i = 0; i < priv->rx_ring_size; i++) 1242 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]); 1243 1244 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 1245 1246 if (dev->phydev) 1247 phy_start(dev->phydev); 1248 1249 napi_enable(&priv->napi); 1250 netif_start_queue(dev); 1251 1252 priv->dmaops->start_rxdma(priv); 1253 1254 /* Start MAC Rx/Tx */ 1255 spin_lock(&priv->mac_cfg_lock); 1256 tse_set_mac(priv, true); 1257 spin_unlock(&priv->mac_cfg_lock); 1258 1259 return 0; 1260 1261 tx_request_irq_error: 1262 free_irq(priv->rx_irq, dev); 1263 init_error: 1264 free_skbufs(dev); 1265 alloc_skbuf_error: 1266 phy_error: 1267 return ret; 1268 } 1269 1270 /* Stop TSE MAC interface and put the device in an inactive state 1271 */ 1272 static int tse_shutdown(struct net_device *dev) 1273 { 1274 struct altera_tse_private *priv = netdev_priv(dev); 1275 int ret; 1276 unsigned long int flags; 1277 1278 /* Stop the PHY */ 1279 if (dev->phydev) 1280 phy_stop(dev->phydev); 1281 1282 netif_stop_queue(dev); 1283 napi_disable(&priv->napi); 1284 1285 /* Disable DMA interrupts */ 1286 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 1287 priv->dmaops->disable_rxirq(priv); 1288 priv->dmaops->disable_txirq(priv); 1289 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 1290 1291 /* Free the IRQ lines */ 1292 free_irq(priv->rx_irq, dev); 1293 free_irq(priv->tx_irq, dev); 1294 1295 /* disable and reset the MAC, empties fifo */ 1296 spin_lock(&priv->mac_cfg_lock); 1297 spin_lock(&priv->tx_lock); 1298 1299 ret = reset_mac(priv); 1300 /* Note that reset_mac will fail if the clocks are gated by the PHY 1301 * due to the PHY being put into isolation or power down mode. 1302 * This is not an error if reset fails due to no clock. 1303 */ 1304 if (ret) 1305 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 1306 priv->dmaops->reset_dma(priv); 1307 free_skbufs(dev); 1308 1309 spin_unlock(&priv->tx_lock); 1310 spin_unlock(&priv->mac_cfg_lock); 1311 1312 priv->dmaops->uninit_dma(priv); 1313 1314 return 0; 1315 } 1316 1317 static struct net_device_ops altera_tse_netdev_ops = { 1318 .ndo_open = tse_open, 1319 .ndo_stop = tse_shutdown, 1320 .ndo_start_xmit = tse_start_xmit, 1321 .ndo_set_mac_address = eth_mac_addr, 1322 .ndo_set_rx_mode = tse_set_rx_mode, 1323 .ndo_change_mtu = tse_change_mtu, 1324 .ndo_validate_addr = eth_validate_addr, 1325 }; 1326 1327 static int request_and_map(struct platform_device *pdev, const char *name, 1328 struct resource **res, void __iomem **ptr) 1329 { 1330 struct resource *region; 1331 struct device *device = &pdev->dev; 1332 1333 *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); 1334 if (*res == NULL) { 1335 dev_err(device, "resource %s not defined\n", name); 1336 return -ENODEV; 1337 } 1338 1339 region = devm_request_mem_region(device, (*res)->start, 1340 resource_size(*res), dev_name(device)); 1341 if (region == NULL) { 1342 dev_err(device, "unable to request %s\n", name); 1343 return -EBUSY; 1344 } 1345 1346 *ptr = devm_ioremap_nocache(device, region->start, 1347 resource_size(region)); 1348 if (*ptr == NULL) { 1349 dev_err(device, "ioremap_nocache of %s failed!", name); 1350 return -ENOMEM; 1351 } 1352 1353 return 0; 1354 } 1355 1356 /* Probe Altera TSE MAC device 1357 */ 1358 static int altera_tse_probe(struct platform_device *pdev) 1359 { 1360 struct net_device *ndev; 1361 int ret = -ENODEV; 1362 struct resource *control_port; 1363 struct resource *dma_res; 1364 struct altera_tse_private *priv; 1365 const unsigned char *macaddr; 1366 void __iomem *descmap; 1367 const struct of_device_id *of_id = NULL; 1368 1369 ndev = alloc_etherdev(sizeof(struct altera_tse_private)); 1370 if (!ndev) { 1371 dev_err(&pdev->dev, "Could not allocate network device\n"); 1372 return -ENODEV; 1373 } 1374 1375 SET_NETDEV_DEV(ndev, &pdev->dev); 1376 1377 priv = netdev_priv(ndev); 1378 priv->device = &pdev->dev; 1379 priv->dev = ndev; 1380 priv->msg_enable = netif_msg_init(debug, default_msg_level); 1381 1382 of_id = of_match_device(altera_tse_ids, &pdev->dev); 1383 1384 if (of_id) 1385 priv->dmaops = (struct altera_dmaops *)of_id->data; 1386 1387 1388 if (priv->dmaops && 1389 priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) { 1390 /* Get the mapped address to the SGDMA descriptor memory */ 1391 ret = request_and_map(pdev, "s1", &dma_res, &descmap); 1392 if (ret) 1393 goto err_free_netdev; 1394 1395 /* Start of that memory is for transmit descriptors */ 1396 priv->tx_dma_desc = descmap; 1397 1398 /* First half is for tx descriptors, other half for tx */ 1399 priv->txdescmem = resource_size(dma_res)/2; 1400 1401 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start; 1402 1403 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap + 1404 priv->txdescmem)); 1405 priv->rxdescmem = resource_size(dma_res)/2; 1406 priv->rxdescmem_busaddr = dma_res->start; 1407 priv->rxdescmem_busaddr += priv->txdescmem; 1408 1409 if (upper_32_bits(priv->rxdescmem_busaddr)) { 1410 dev_dbg(priv->device, 1411 "SGDMA bus addresses greater than 32-bits\n"); 1412 ret = -EINVAL; 1413 goto err_free_netdev; 1414 } 1415 if (upper_32_bits(priv->txdescmem_busaddr)) { 1416 dev_dbg(priv->device, 1417 "SGDMA bus addresses greater than 32-bits\n"); 1418 ret = -EINVAL; 1419 goto err_free_netdev; 1420 } 1421 } else if (priv->dmaops && 1422 priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) { 1423 ret = request_and_map(pdev, "rx_resp", &dma_res, 1424 &priv->rx_dma_resp); 1425 if (ret) 1426 goto err_free_netdev; 1427 1428 ret = request_and_map(pdev, "tx_desc", &dma_res, 1429 &priv->tx_dma_desc); 1430 if (ret) 1431 goto err_free_netdev; 1432 1433 priv->txdescmem = resource_size(dma_res); 1434 priv->txdescmem_busaddr = dma_res->start; 1435 1436 ret = request_and_map(pdev, "rx_desc", &dma_res, 1437 &priv->rx_dma_desc); 1438 if (ret) 1439 goto err_free_netdev; 1440 1441 priv->rxdescmem = resource_size(dma_res); 1442 priv->rxdescmem_busaddr = dma_res->start; 1443 1444 } else { 1445 goto err_free_netdev; 1446 } 1447 1448 if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) 1449 dma_set_coherent_mask(priv->device, 1450 DMA_BIT_MASK(priv->dmaops->dmamask)); 1451 else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) 1452 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32)); 1453 else 1454 goto err_free_netdev; 1455 1456 /* MAC address space */ 1457 ret = request_and_map(pdev, "control_port", &control_port, 1458 (void __iomem **)&priv->mac_dev); 1459 if (ret) 1460 goto err_free_netdev; 1461 1462 /* xSGDMA Rx Dispatcher address space */ 1463 ret = request_and_map(pdev, "rx_csr", &dma_res, 1464 &priv->rx_dma_csr); 1465 if (ret) 1466 goto err_free_netdev; 1467 1468 1469 /* xSGDMA Tx Dispatcher address space */ 1470 ret = request_and_map(pdev, "tx_csr", &dma_res, 1471 &priv->tx_dma_csr); 1472 if (ret) 1473 goto err_free_netdev; 1474 1475 1476 /* Rx IRQ */ 1477 priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq"); 1478 if (priv->rx_irq == -ENXIO) { 1479 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n"); 1480 ret = -ENXIO; 1481 goto err_free_netdev; 1482 } 1483 1484 /* Tx IRQ */ 1485 priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq"); 1486 if (priv->tx_irq == -ENXIO) { 1487 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n"); 1488 ret = -ENXIO; 1489 goto err_free_netdev; 1490 } 1491 1492 /* get FIFO depths from device tree */ 1493 if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", 1494 &priv->rx_fifo_depth)) { 1495 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n"); 1496 ret = -ENXIO; 1497 goto err_free_netdev; 1498 } 1499 1500 if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", 1501 &priv->tx_fifo_depth)) { 1502 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n"); 1503 ret = -ENXIO; 1504 goto err_free_netdev; 1505 } 1506 1507 /* get hash filter settings for this instance */ 1508 priv->hash_filter = 1509 of_property_read_bool(pdev->dev.of_node, 1510 "altr,has-hash-multicast-filter"); 1511 1512 /* Set hash filter to not set for now until the 1513 * multicast filter receive issue is debugged 1514 */ 1515 priv->hash_filter = 0; 1516 1517 /* get supplemental address settings for this instance */ 1518 priv->added_unicast = 1519 of_property_read_bool(pdev->dev.of_node, 1520 "altr,has-supplementary-unicast"); 1521 1522 priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; 1523 /* Max MTU is 1500, ETH_DATA_LEN */ 1524 priv->dev->max_mtu = ETH_DATA_LEN; 1525 1526 /* Get the max mtu from the device tree. Note that the 1527 * "max-frame-size" parameter is actually max mtu. Definition 1528 * in the ePAPR v1.1 spec and usage differ, so go with usage. 1529 */ 1530 of_property_read_u32(pdev->dev.of_node, "max-frame-size", 1531 &priv->dev->max_mtu); 1532 1533 /* The DMA buffer size already accounts for an alignment bias 1534 * to avoid unaligned access exceptions for the NIOS processor, 1535 */ 1536 priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE; 1537 1538 /* get default MAC address from device tree */ 1539 macaddr = of_get_mac_address(pdev->dev.of_node); 1540 if (!IS_ERR(macaddr)) 1541 ether_addr_copy(ndev->dev_addr, macaddr); 1542 else 1543 eth_hw_addr_random(ndev); 1544 1545 /* get phy addr and create mdio */ 1546 ret = altera_tse_phy_get_addr_mdio_create(ndev); 1547 1548 if (ret) 1549 goto err_free_netdev; 1550 1551 /* initialize netdev */ 1552 ndev->mem_start = control_port->start; 1553 ndev->mem_end = control_port->end; 1554 ndev->netdev_ops = &altera_tse_netdev_ops; 1555 altera_tse_set_ethtool_ops(ndev); 1556 1557 altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode; 1558 1559 if (priv->hash_filter) 1560 altera_tse_netdev_ops.ndo_set_rx_mode = 1561 tse_set_rx_mode_hashfilter; 1562 1563 /* Scatter/gather IO is not supported, 1564 * so it is turned off 1565 */ 1566 ndev->hw_features &= ~NETIF_F_SG; 1567 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 1568 1569 /* VLAN offloading of tagging, stripping and filtering is not 1570 * supported by hardware, but driver will accommodate the 1571 * extra 4-byte VLAN tag for processing by upper layers 1572 */ 1573 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1574 1575 /* setup NAPI interface */ 1576 netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT); 1577 1578 spin_lock_init(&priv->mac_cfg_lock); 1579 spin_lock_init(&priv->tx_lock); 1580 spin_lock_init(&priv->rxdma_irq_lock); 1581 1582 netif_carrier_off(ndev); 1583 ret = register_netdev(ndev); 1584 if (ret) { 1585 dev_err(&pdev->dev, "failed to register TSE net device\n"); 1586 goto err_register_netdev; 1587 } 1588 1589 platform_set_drvdata(pdev, ndev); 1590 1591 priv->revision = ioread32(&priv->mac_dev->megacore_revision); 1592 1593 if (netif_msg_probe(priv)) 1594 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n", 1595 (priv->revision >> 8) & 0xff, 1596 priv->revision & 0xff, 1597 (unsigned long) control_port->start, priv->rx_irq, 1598 priv->tx_irq); 1599 1600 ret = init_phy(ndev); 1601 if (ret != 0) { 1602 netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret); 1603 goto err_init_phy; 1604 } 1605 return 0; 1606 1607 err_init_phy: 1608 unregister_netdev(ndev); 1609 err_register_netdev: 1610 netif_napi_del(&priv->napi); 1611 altera_tse_mdio_destroy(ndev); 1612 err_free_netdev: 1613 free_netdev(ndev); 1614 return ret; 1615 } 1616 1617 /* Remove Altera TSE MAC device 1618 */ 1619 static int altera_tse_remove(struct platform_device *pdev) 1620 { 1621 struct net_device *ndev = platform_get_drvdata(pdev); 1622 struct altera_tse_private *priv = netdev_priv(ndev); 1623 1624 if (ndev->phydev) { 1625 phy_disconnect(ndev->phydev); 1626 1627 if (of_phy_is_fixed_link(priv->device->of_node)) 1628 of_phy_deregister_fixed_link(priv->device->of_node); 1629 } 1630 1631 platform_set_drvdata(pdev, NULL); 1632 altera_tse_mdio_destroy(ndev); 1633 unregister_netdev(ndev); 1634 free_netdev(ndev); 1635 1636 return 0; 1637 } 1638 1639 static const struct altera_dmaops altera_dtype_sgdma = { 1640 .altera_dtype = ALTERA_DTYPE_SGDMA, 1641 .dmamask = 32, 1642 .reset_dma = sgdma_reset, 1643 .enable_txirq = sgdma_enable_txirq, 1644 .enable_rxirq = sgdma_enable_rxirq, 1645 .disable_txirq = sgdma_disable_txirq, 1646 .disable_rxirq = sgdma_disable_rxirq, 1647 .clear_txirq = sgdma_clear_txirq, 1648 .clear_rxirq = sgdma_clear_rxirq, 1649 .tx_buffer = sgdma_tx_buffer, 1650 .tx_completions = sgdma_tx_completions, 1651 .add_rx_desc = sgdma_add_rx_desc, 1652 .get_rx_status = sgdma_rx_status, 1653 .init_dma = sgdma_initialize, 1654 .uninit_dma = sgdma_uninitialize, 1655 .start_rxdma = sgdma_start_rxdma, 1656 }; 1657 1658 static const struct altera_dmaops altera_dtype_msgdma = { 1659 .altera_dtype = ALTERA_DTYPE_MSGDMA, 1660 .dmamask = 64, 1661 .reset_dma = msgdma_reset, 1662 .enable_txirq = msgdma_enable_txirq, 1663 .enable_rxirq = msgdma_enable_rxirq, 1664 .disable_txirq = msgdma_disable_txirq, 1665 .disable_rxirq = msgdma_disable_rxirq, 1666 .clear_txirq = msgdma_clear_txirq, 1667 .clear_rxirq = msgdma_clear_rxirq, 1668 .tx_buffer = msgdma_tx_buffer, 1669 .tx_completions = msgdma_tx_completions, 1670 .add_rx_desc = msgdma_add_rx_desc, 1671 .get_rx_status = msgdma_rx_status, 1672 .init_dma = msgdma_initialize, 1673 .uninit_dma = msgdma_uninitialize, 1674 .start_rxdma = msgdma_start_rxdma, 1675 }; 1676 1677 static const struct of_device_id altera_tse_ids[] = { 1678 { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, }, 1679 { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, }, 1680 { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, }, 1681 {}, 1682 }; 1683 MODULE_DEVICE_TABLE(of, altera_tse_ids); 1684 1685 static struct platform_driver altera_tse_driver = { 1686 .probe = altera_tse_probe, 1687 .remove = altera_tse_remove, 1688 .suspend = NULL, 1689 .resume = NULL, 1690 .driver = { 1691 .name = ALTERA_TSE_RESOURCE_NAME, 1692 .of_match_table = altera_tse_ids, 1693 }, 1694 }; 1695 1696 module_platform_driver(altera_tse_driver); 1697 1698 MODULE_AUTHOR("Altera Corporation"); 1699 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver"); 1700 MODULE_LICENSE("GPL v2"); 1701