1 /* Altera Triple-Speed Ethernet MAC driver
2  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
3  *
4  * Contributors:
5  *   Dalon Westergreen
6  *   Thomas Chou
7  *   Ian Abbott
8  *   Yuriy Kozlov
9  *   Tobias Klauser
10  *   Andriy Smolskyy
11  *   Roman Bulgakov
12  *   Dmytro Mytarchuk
13  *   Matthew Gerlach
14  *
15  * Original driver contributed by SLS.
16  * Major updates contributed by GlobalLogic
17  *
18  * This program is free software; you can redistribute it and/or modify it
19  * under the terms and conditions of the GNU General Public License,
20  * version 2, as published by the Free Software Foundation.
21  *
22  * This program is distributed in the hope it will be useful, but WITHOUT
23  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
25  * more details.
26  *
27  * You should have received a copy of the GNU General Public License along with
28  * this program.  If not, see <http://www.gnu.org/licenses/>.
29  */
30 
31 #include <linux/atomic.h>
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_vlan.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/of_device.h>
42 #include <linux/of_mdio.h>
43 #include <linux/of_net.h>
44 #include <linux/of_platform.h>
45 #include <linux/phy.h>
46 #include <linux/platform_device.h>
47 #include <linux/skbuff.h>
48 #include <asm/cacheflush.h>
49 
50 #include "altera_utils.h"
51 #include "altera_tse.h"
52 #include "altera_sgdma.h"
53 #include "altera_msgdma.h"
54 
55 static atomic_t instance_count = ATOMIC_INIT(~0);
56 /* Module parameters */
57 static int debug = -1;
58 module_param(debug, int, S_IRUGO | S_IWUSR);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 					NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 					NETIF_MSG_IFDOWN);
64 
65 #define RX_DESCRIPTORS 64
66 static int dma_rx_num = RX_DESCRIPTORS;
67 module_param(dma_rx_num, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
69 
70 #define TX_DESCRIPTORS 64
71 static int dma_tx_num = TX_DESCRIPTORS;
72 module_param(dma_tx_num, int, S_IRUGO | S_IWUSR);
73 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
74 
75 
76 #define POLL_PHY (-1)
77 
78 /* Make sure DMA buffer size is larger than the max frame size
79  * plus some alignment offset and a VLAN header. If the max frame size is
80  * 1518, a VLAN header would be additional 4 bytes and additional
81  * headroom for alignment is 2 bytes, 2048 is just fine.
82  */
83 #define ALTERA_RXDMABUFFER_SIZE	2048
84 
85 /* Allow network stack to resume queueing packets after we've
86  * finished transmitting at least 1/4 of the packets in the queue.
87  */
88 #define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
89 
90 #define TXQUEUESTOP_THRESHHOLD	2
91 
92 static const struct of_device_id altera_tse_ids[];
93 
94 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
95 {
96 	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
97 }
98 
99 /* MDIO specific functions
100  */
101 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
102 {
103 	struct net_device *ndev = bus->priv;
104 	struct altera_tse_private *priv = netdev_priv(ndev);
105 
106 	/* set MDIO address */
107 	csrwr32((mii_id & 0x1f), priv->mac_dev,
108 		tse_csroffs(mdio_phy1_addr));
109 
110 	/* get the data */
111 	return csrrd32(priv->mac_dev,
112 		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
113 }
114 
115 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
116 				 u16 value)
117 {
118 	struct net_device *ndev = bus->priv;
119 	struct altera_tse_private *priv = netdev_priv(ndev);
120 
121 	/* set MDIO address */
122 	csrwr32((mii_id & 0x1f), priv->mac_dev,
123 		tse_csroffs(mdio_phy1_addr));
124 
125 	/* write the data */
126 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
127 	return 0;
128 }
129 
130 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
131 {
132 	struct altera_tse_private *priv = netdev_priv(dev);
133 	int ret;
134 	struct device_node *mdio_node = NULL;
135 	struct mii_bus *mdio = NULL;
136 	struct device_node *child_node = NULL;
137 
138 	for_each_child_of_node(priv->device->of_node, child_node) {
139 		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
140 			mdio_node = child_node;
141 			break;
142 		}
143 	}
144 
145 	if (mdio_node) {
146 		netdev_dbg(dev, "FOUND MDIO subnode\n");
147 	} else {
148 		netdev_dbg(dev, "NO MDIO subnode\n");
149 		return 0;
150 	}
151 
152 	mdio = mdiobus_alloc();
153 	if (mdio == NULL) {
154 		netdev_err(dev, "Error allocating MDIO bus\n");
155 		return -ENOMEM;
156 	}
157 
158 	mdio->name = ALTERA_TSE_RESOURCE_NAME;
159 	mdio->read = &altera_tse_mdio_read;
160 	mdio->write = &altera_tse_mdio_write;
161 	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
162 
163 	mdio->priv = dev;
164 	mdio->parent = priv->device;
165 
166 	ret = of_mdiobus_register(mdio, mdio_node);
167 	if (ret != 0) {
168 		netdev_err(dev, "Cannot register MDIO bus %s\n",
169 			   mdio->id);
170 		goto out_free_mdio;
171 	}
172 
173 	if (netif_msg_drv(priv))
174 		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
175 
176 	priv->mdio = mdio;
177 	return 0;
178 out_free_mdio:
179 	mdiobus_free(mdio);
180 	mdio = NULL;
181 	return ret;
182 }
183 
184 static void altera_tse_mdio_destroy(struct net_device *dev)
185 {
186 	struct altera_tse_private *priv = netdev_priv(dev);
187 
188 	if (priv->mdio == NULL)
189 		return;
190 
191 	if (netif_msg_drv(priv))
192 		netdev_info(dev, "MDIO bus %s: removed\n",
193 			    priv->mdio->id);
194 
195 	mdiobus_unregister(priv->mdio);
196 	kfree(priv->mdio->irq);
197 	mdiobus_free(priv->mdio);
198 	priv->mdio = NULL;
199 }
200 
201 static int tse_init_rx_buffer(struct altera_tse_private *priv,
202 			      struct tse_buffer *rxbuffer, int len)
203 {
204 	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
205 	if (!rxbuffer->skb)
206 		return -ENOMEM;
207 
208 	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
209 						len,
210 						DMA_FROM_DEVICE);
211 
212 	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
213 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
214 		dev_kfree_skb_any(rxbuffer->skb);
215 		return -EINVAL;
216 	}
217 	rxbuffer->dma_addr &= (dma_addr_t)~3;
218 	rxbuffer->len = len;
219 	return 0;
220 }
221 
222 static void tse_free_rx_buffer(struct altera_tse_private *priv,
223 			       struct tse_buffer *rxbuffer)
224 {
225 	struct sk_buff *skb = rxbuffer->skb;
226 	dma_addr_t dma_addr = rxbuffer->dma_addr;
227 
228 	if (skb != NULL) {
229 		if (dma_addr)
230 			dma_unmap_single(priv->device, dma_addr,
231 					 rxbuffer->len,
232 					 DMA_FROM_DEVICE);
233 		dev_kfree_skb_any(skb);
234 		rxbuffer->skb = NULL;
235 		rxbuffer->dma_addr = 0;
236 	}
237 }
238 
239 /* Unmap and free Tx buffer resources
240  */
241 static void tse_free_tx_buffer(struct altera_tse_private *priv,
242 			       struct tse_buffer *buffer)
243 {
244 	if (buffer->dma_addr) {
245 		if (buffer->mapped_as_page)
246 			dma_unmap_page(priv->device, buffer->dma_addr,
247 				       buffer->len, DMA_TO_DEVICE);
248 		else
249 			dma_unmap_single(priv->device, buffer->dma_addr,
250 					 buffer->len, DMA_TO_DEVICE);
251 		buffer->dma_addr = 0;
252 	}
253 	if (buffer->skb) {
254 		dev_kfree_skb_any(buffer->skb);
255 		buffer->skb = NULL;
256 	}
257 }
258 
259 static int alloc_init_skbufs(struct altera_tse_private *priv)
260 {
261 	unsigned int rx_descs = priv->rx_ring_size;
262 	unsigned int tx_descs = priv->tx_ring_size;
263 	int ret = -ENOMEM;
264 	int i;
265 
266 	/* Create Rx ring buffer */
267 	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
268 				GFP_KERNEL);
269 	if (!priv->rx_ring)
270 		goto err_rx_ring;
271 
272 	/* Create Tx ring buffer */
273 	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
274 				GFP_KERNEL);
275 	if (!priv->tx_ring)
276 		goto err_tx_ring;
277 
278 	priv->tx_cons = 0;
279 	priv->tx_prod = 0;
280 
281 	/* Init Rx ring */
282 	for (i = 0; i < rx_descs; i++) {
283 		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
284 					 priv->rx_dma_buf_sz);
285 		if (ret)
286 			goto err_init_rx_buffers;
287 	}
288 
289 	priv->rx_cons = 0;
290 	priv->rx_prod = 0;
291 
292 	return 0;
293 err_init_rx_buffers:
294 	while (--i >= 0)
295 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
296 	kfree(priv->tx_ring);
297 err_tx_ring:
298 	kfree(priv->rx_ring);
299 err_rx_ring:
300 	return ret;
301 }
302 
303 static void free_skbufs(struct net_device *dev)
304 {
305 	struct altera_tse_private *priv = netdev_priv(dev);
306 	unsigned int rx_descs = priv->rx_ring_size;
307 	unsigned int tx_descs = priv->tx_ring_size;
308 	int i;
309 
310 	/* Release the DMA TX/RX socket buffers */
311 	for (i = 0; i < rx_descs; i++)
312 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
313 	for (i = 0; i < tx_descs; i++)
314 		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
315 
316 
317 	kfree(priv->tx_ring);
318 }
319 
320 /* Reallocate the skb for the reception process
321  */
322 static inline void tse_rx_refill(struct altera_tse_private *priv)
323 {
324 	unsigned int rxsize = priv->rx_ring_size;
325 	unsigned int entry;
326 	int ret;
327 
328 	for (; priv->rx_cons - priv->rx_prod > 0;
329 			priv->rx_prod++) {
330 		entry = priv->rx_prod % rxsize;
331 		if (likely(priv->rx_ring[entry].skb == NULL)) {
332 			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
333 				priv->rx_dma_buf_sz);
334 			if (unlikely(ret != 0))
335 				break;
336 			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
337 		}
338 	}
339 }
340 
341 /* Pull out the VLAN tag and fix up the packet
342  */
343 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
344 {
345 	struct ethhdr *eth_hdr;
346 	u16 vid;
347 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
348 	    !__vlan_get_tag(skb, &vid)) {
349 		eth_hdr = (struct ethhdr *)skb->data;
350 		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
351 		skb_pull(skb, VLAN_HLEN);
352 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
353 	}
354 }
355 
356 /* Receive a packet: retrieve and pass over to upper levels
357  */
358 static int tse_rx(struct altera_tse_private *priv, int limit)
359 {
360 	unsigned int count = 0;
361 	unsigned int next_entry;
362 	struct sk_buff *skb;
363 	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
364 	u32 rxstatus;
365 	u16 pktlength;
366 	u16 pktstatus;
367 
368 	/* Check for count < limit first as get_rx_status is changing
369 	* the response-fifo so we must process the next packet
370 	* after calling get_rx_status if a response is pending.
371 	* (reading the last byte of the response pops the value from the fifo.)
372 	*/
373 	while ((count < limit) &&
374 	       ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
375 		pktstatus = rxstatus >> 16;
376 		pktlength = rxstatus & 0xffff;
377 
378 		if ((pktstatus & 0xFF) || (pktlength == 0))
379 			netdev_err(priv->dev,
380 				   "RCV pktstatus %08X pktlength %08X\n",
381 				   pktstatus, pktlength);
382 
383 		/* DMA trasfer from TSE starts with 2 aditional bytes for
384 		 * IP payload alignment. Status returned by get_rx_status()
385 		 * contains DMA transfer length. Packet is 2 bytes shorter.
386 		 */
387 		pktlength -= 2;
388 
389 		count++;
390 		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
391 
392 		skb = priv->rx_ring[entry].skb;
393 		if (unlikely(!skb)) {
394 			netdev_err(priv->dev,
395 				   "%s: Inconsistent Rx descriptor chain\n",
396 				   __func__);
397 			priv->dev->stats.rx_dropped++;
398 			break;
399 		}
400 		priv->rx_ring[entry].skb = NULL;
401 
402 		skb_put(skb, pktlength);
403 
404 		/* make cache consistent with receive packet buffer */
405 		dma_sync_single_for_cpu(priv->device,
406 					priv->rx_ring[entry].dma_addr,
407 					priv->rx_ring[entry].len,
408 					DMA_FROM_DEVICE);
409 
410 		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
411 				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
412 
413 		if (netif_msg_pktdata(priv)) {
414 			netdev_info(priv->dev, "frame received %d bytes\n",
415 				    pktlength);
416 			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
417 				       16, 1, skb->data, pktlength, true);
418 		}
419 
420 		tse_rx_vlan(priv->dev, skb);
421 
422 		skb->protocol = eth_type_trans(skb, priv->dev);
423 		skb_checksum_none_assert(skb);
424 
425 		napi_gro_receive(&priv->napi, skb);
426 
427 		priv->dev->stats.rx_packets++;
428 		priv->dev->stats.rx_bytes += pktlength;
429 
430 		entry = next_entry;
431 
432 		tse_rx_refill(priv);
433 	}
434 
435 	return count;
436 }
437 
438 /* Reclaim resources after transmission completes
439  */
440 static int tse_tx_complete(struct altera_tse_private *priv)
441 {
442 	unsigned int txsize = priv->tx_ring_size;
443 	u32 ready;
444 	unsigned int entry;
445 	struct tse_buffer *tx_buff;
446 	int txcomplete = 0;
447 
448 	spin_lock(&priv->tx_lock);
449 
450 	ready = priv->dmaops->tx_completions(priv);
451 
452 	/* Free sent buffers */
453 	while (ready && (priv->tx_cons != priv->tx_prod)) {
454 		entry = priv->tx_cons % txsize;
455 		tx_buff = &priv->tx_ring[entry];
456 
457 		if (netif_msg_tx_done(priv))
458 			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
459 				   __func__, priv->tx_prod, priv->tx_cons);
460 
461 		if (likely(tx_buff->skb))
462 			priv->dev->stats.tx_packets++;
463 
464 		tse_free_tx_buffer(priv, tx_buff);
465 		priv->tx_cons++;
466 
467 		txcomplete++;
468 		ready--;
469 	}
470 
471 	if (unlikely(netif_queue_stopped(priv->dev) &&
472 		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
473 		netif_tx_lock(priv->dev);
474 		if (netif_queue_stopped(priv->dev) &&
475 		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
476 			if (netif_msg_tx_done(priv))
477 				netdev_dbg(priv->dev, "%s: restart transmit\n",
478 					   __func__);
479 			netif_wake_queue(priv->dev);
480 		}
481 		netif_tx_unlock(priv->dev);
482 	}
483 
484 	spin_unlock(&priv->tx_lock);
485 	return txcomplete;
486 }
487 
488 /* NAPI polling function
489  */
490 static int tse_poll(struct napi_struct *napi, int budget)
491 {
492 	struct altera_tse_private *priv =
493 			container_of(napi, struct altera_tse_private, napi);
494 	int rxcomplete = 0;
495 	unsigned long int flags;
496 
497 	tse_tx_complete(priv);
498 
499 	rxcomplete = tse_rx(priv, budget);
500 
501 	if (rxcomplete < budget) {
502 
503 		napi_complete(napi);
504 
505 		netdev_dbg(priv->dev,
506 			   "NAPI Complete, did %d packets with budget %d\n",
507 			   rxcomplete, budget);
508 
509 		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
510 		priv->dmaops->enable_rxirq(priv);
511 		priv->dmaops->enable_txirq(priv);
512 		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
513 	}
514 	return rxcomplete;
515 }
516 
517 /* DMA TX & RX FIFO interrupt routing
518  */
519 static irqreturn_t altera_isr(int irq, void *dev_id)
520 {
521 	struct net_device *dev = dev_id;
522 	struct altera_tse_private *priv;
523 
524 	if (unlikely(!dev)) {
525 		pr_err("%s: invalid dev pointer\n", __func__);
526 		return IRQ_NONE;
527 	}
528 	priv = netdev_priv(dev);
529 
530 	spin_lock(&priv->rxdma_irq_lock);
531 	/* reset IRQs */
532 	priv->dmaops->clear_rxirq(priv);
533 	priv->dmaops->clear_txirq(priv);
534 	spin_unlock(&priv->rxdma_irq_lock);
535 
536 	if (likely(napi_schedule_prep(&priv->napi))) {
537 		spin_lock(&priv->rxdma_irq_lock);
538 		priv->dmaops->disable_rxirq(priv);
539 		priv->dmaops->disable_txirq(priv);
540 		spin_unlock(&priv->rxdma_irq_lock);
541 		__napi_schedule(&priv->napi);
542 	}
543 
544 
545 	return IRQ_HANDLED;
546 }
547 
548 /* Transmit a packet (called by the kernel). Dispatches
549  * either the SGDMA method for transmitting or the
550  * MSGDMA method, assumes no scatter/gather support,
551  * implying an assumption that there's only one
552  * physically contiguous fragment starting at
553  * skb->data, for length of skb_headlen(skb).
554  */
555 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
556 {
557 	struct altera_tse_private *priv = netdev_priv(dev);
558 	unsigned int txsize = priv->tx_ring_size;
559 	unsigned int entry;
560 	struct tse_buffer *buffer = NULL;
561 	int nfrags = skb_shinfo(skb)->nr_frags;
562 	unsigned int nopaged_len = skb_headlen(skb);
563 	enum netdev_tx ret = NETDEV_TX_OK;
564 	dma_addr_t dma_addr;
565 
566 	spin_lock_bh(&priv->tx_lock);
567 
568 	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
569 		if (!netif_queue_stopped(dev)) {
570 			netif_stop_queue(dev);
571 			/* This is a hard error, log it. */
572 			netdev_err(priv->dev,
573 				   "%s: Tx list full when queue awake\n",
574 				   __func__);
575 		}
576 		ret = NETDEV_TX_BUSY;
577 		goto out;
578 	}
579 
580 	/* Map the first skb fragment */
581 	entry = priv->tx_prod % txsize;
582 	buffer = &priv->tx_ring[entry];
583 
584 	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
585 				  DMA_TO_DEVICE);
586 	if (dma_mapping_error(priv->device, dma_addr)) {
587 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
588 		ret = NETDEV_TX_OK;
589 		goto out;
590 	}
591 
592 	buffer->skb = skb;
593 	buffer->dma_addr = dma_addr;
594 	buffer->len = nopaged_len;
595 
596 	/* Push data out of the cache hierarchy into main memory */
597 	dma_sync_single_for_device(priv->device, buffer->dma_addr,
598 				   buffer->len, DMA_TO_DEVICE);
599 
600 	priv->dmaops->tx_buffer(priv, buffer);
601 
602 	skb_tx_timestamp(skb);
603 
604 	priv->tx_prod++;
605 	dev->stats.tx_bytes += skb->len;
606 
607 	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
608 		if (netif_msg_hw(priv))
609 			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
610 				   __func__);
611 		netif_stop_queue(dev);
612 	}
613 
614 out:
615 	spin_unlock_bh(&priv->tx_lock);
616 
617 	return ret;
618 }
619 
620 /* Called every time the controller might need to be made
621  * aware of new link state.  The PHY code conveys this
622  * information through variables in the phydev structure, and this
623  * function converts those variables into the appropriate
624  * register values, and can bring down the device if needed.
625  */
626 static void altera_tse_adjust_link(struct net_device *dev)
627 {
628 	struct altera_tse_private *priv = netdev_priv(dev);
629 	struct phy_device *phydev = priv->phydev;
630 	int new_state = 0;
631 
632 	/* only change config if there is a link */
633 	spin_lock(&priv->mac_cfg_lock);
634 	if (phydev->link) {
635 		/* Read old config */
636 		u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
637 
638 		/* Check duplex */
639 		if (phydev->duplex != priv->oldduplex) {
640 			new_state = 1;
641 			if (!(phydev->duplex))
642 				cfg_reg |= MAC_CMDCFG_HD_ENA;
643 			else
644 				cfg_reg &= ~MAC_CMDCFG_HD_ENA;
645 
646 			netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
647 				   dev->name, phydev->duplex);
648 
649 			priv->oldduplex = phydev->duplex;
650 		}
651 
652 		/* Check speed */
653 		if (phydev->speed != priv->oldspeed) {
654 			new_state = 1;
655 			switch (phydev->speed) {
656 			case 1000:
657 				cfg_reg |= MAC_CMDCFG_ETH_SPEED;
658 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
659 				break;
660 			case 100:
661 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
662 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
663 				break;
664 			case 10:
665 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
666 				cfg_reg |= MAC_CMDCFG_ENA_10;
667 				break;
668 			default:
669 				if (netif_msg_link(priv))
670 					netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
671 						    phydev->speed);
672 				break;
673 			}
674 			priv->oldspeed = phydev->speed;
675 		}
676 		iowrite32(cfg_reg, &priv->mac_dev->command_config);
677 
678 		if (!priv->oldlink) {
679 			new_state = 1;
680 			priv->oldlink = 1;
681 		}
682 	} else if (priv->oldlink) {
683 		new_state = 1;
684 		priv->oldlink = 0;
685 		priv->oldspeed = 0;
686 		priv->oldduplex = -1;
687 	}
688 
689 	if (new_state && netif_msg_link(priv))
690 		phy_print_status(phydev);
691 
692 	spin_unlock(&priv->mac_cfg_lock);
693 }
694 static struct phy_device *connect_local_phy(struct net_device *dev)
695 {
696 	struct altera_tse_private *priv = netdev_priv(dev);
697 	struct phy_device *phydev = NULL;
698 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
699 
700 	if (priv->phy_addr != POLL_PHY) {
701 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
702 			 priv->mdio->id, priv->phy_addr);
703 
704 		netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
705 
706 		phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
707 				     priv->phy_iface);
708 		if (IS_ERR(phydev))
709 			netdev_err(dev, "Could not attach to PHY\n");
710 
711 	} else {
712 		int ret;
713 		phydev = phy_find_first(priv->mdio);
714 		if (phydev == NULL) {
715 			netdev_err(dev, "No PHY found\n");
716 			return phydev;
717 		}
718 
719 		ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
720 				priv->phy_iface);
721 		if (ret != 0) {
722 			netdev_err(dev, "Could not attach to PHY\n");
723 			phydev = NULL;
724 		}
725 	}
726 	return phydev;
727 }
728 
729 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
730 {
731 	struct altera_tse_private *priv = netdev_priv(dev);
732 	struct device_node *np = priv->device->of_node;
733 	int ret = 0;
734 
735 	priv->phy_iface = of_get_phy_mode(np);
736 
737 	/* Avoid get phy addr and create mdio if no phy is present */
738 	if (!priv->phy_iface)
739 		return 0;
740 
741 	/* try to get PHY address from device tree, use PHY autodetection if
742 	 * no valid address is given
743 	 */
744 
745 	if (of_property_read_u32(priv->device->of_node, "phy-addr",
746 			 &priv->phy_addr)) {
747 		priv->phy_addr = POLL_PHY;
748 	}
749 
750 	if (!((priv->phy_addr == POLL_PHY) ||
751 		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
752 		netdev_err(dev, "invalid phy-addr specified %d\n",
753 			priv->phy_addr);
754 		return -ENODEV;
755 	}
756 
757 	/* Create/attach to MDIO bus */
758 	ret = altera_tse_mdio_create(dev,
759 					 atomic_add_return(1, &instance_count));
760 
761 	if (ret)
762 		return -ENODEV;
763 
764 	return 0;
765 }
766 
767 /* Initialize driver's PHY state, and attach to the PHY
768  */
769 static int init_phy(struct net_device *dev)
770 {
771 	struct altera_tse_private *priv = netdev_priv(dev);
772 	struct phy_device *phydev;
773 	struct device_node *phynode;
774 	bool fixed_link = false;
775 	int rc = 0;
776 
777 	/* Avoid init phy in case of no phy present */
778 	if (!priv->phy_iface)
779 		return 0;
780 
781 	priv->oldlink = 0;
782 	priv->oldspeed = 0;
783 	priv->oldduplex = -1;
784 
785 	phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
786 
787 	if (!phynode) {
788 		/* check if a fixed-link is defined in device-tree */
789 		if (of_phy_is_fixed_link(priv->device->of_node)) {
790 			rc = of_phy_register_fixed_link(priv->device->of_node);
791 			if (rc < 0) {
792 				netdev_err(dev, "cannot register fixed PHY\n");
793 				return rc;
794 			}
795 
796 			/* In the case of a fixed PHY, the DT node associated
797 			 * to the PHY is the Ethernet MAC DT node.
798 			 */
799 			phynode = of_node_get(priv->device->of_node);
800 			fixed_link = true;
801 
802 			netdev_dbg(dev, "fixed-link detected\n");
803 			phydev = of_phy_connect(dev, phynode,
804 						&altera_tse_adjust_link,
805 						0, priv->phy_iface);
806 		} else {
807 			netdev_dbg(dev, "no phy-handle found\n");
808 			if (!priv->mdio) {
809 				netdev_err(dev, "No phy-handle nor local mdio specified\n");
810 				return -ENODEV;
811 			}
812 			phydev = connect_local_phy(dev);
813 		}
814 	} else {
815 		netdev_dbg(dev, "phy-handle found\n");
816 		phydev = of_phy_connect(dev, phynode,
817 			&altera_tse_adjust_link, 0, priv->phy_iface);
818 	}
819 
820 	if (!phydev) {
821 		netdev_err(dev, "Could not find the PHY\n");
822 		return -ENODEV;
823 	}
824 
825 	/* Stop Advertising 1000BASE Capability if interface is not GMII
826 	 * Note: Checkpatch throws CHECKs for the camel case defines below,
827 	 * it's ok to ignore.
828 	 */
829 	if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
830 	    (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
831 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
832 					 SUPPORTED_1000baseT_Full);
833 
834 	/* Broken HW is sometimes missing the pull-up resistor on the
835 	 * MDIO line, which results in reads to non-existent devices returning
836 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
837 	 * device as well. If a fixed-link is used the phy_id is always 0.
838 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
839 	 */
840 	if ((phydev->phy_id == 0) && !fixed_link) {
841 		netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
842 		phy_disconnect(phydev);
843 		return -ENODEV;
844 	}
845 
846 	netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
847 		   phydev->mdio.addr, phydev->phy_id, phydev->link);
848 
849 	priv->phydev = phydev;
850 	return 0;
851 }
852 
853 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
854 {
855 	u32 msb;
856 	u32 lsb;
857 
858 	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
859 	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
860 
861 	/* Set primary MAC address */
862 	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
863 	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
864 }
865 
866 /* MAC software reset.
867  * When reset is triggered, the MAC function completes the current
868  * transmission or reception, and subsequently disables the transmit and
869  * receive logic, flushes the receive FIFO buffer, and resets the statistics
870  * counters.
871  */
872 static int reset_mac(struct altera_tse_private *priv)
873 {
874 	int counter;
875 	u32 dat;
876 
877 	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
878 	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
879 	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
880 	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
881 
882 	counter = 0;
883 	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
884 		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
885 				     MAC_CMDCFG_SW_RESET))
886 			break;
887 		udelay(1);
888 	}
889 
890 	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
891 		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
892 		dat &= ~MAC_CMDCFG_SW_RESET;
893 		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
894 		return -1;
895 	}
896 	return 0;
897 }
898 
899 /* Initialize MAC core registers
900 */
901 static int init_mac(struct altera_tse_private *priv)
902 {
903 	unsigned int cmd = 0;
904 	u32 frm_length;
905 
906 	/* Setup Rx FIFO */
907 	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
908 		priv->mac_dev, tse_csroffs(rx_section_empty));
909 
910 	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
911 		tse_csroffs(rx_section_full));
912 
913 	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
914 		tse_csroffs(rx_almost_empty));
915 
916 	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
917 		tse_csroffs(rx_almost_full));
918 
919 	/* Setup Tx FIFO */
920 	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
921 		priv->mac_dev, tse_csroffs(tx_section_empty));
922 
923 	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
924 		tse_csroffs(tx_section_full));
925 
926 	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
927 		tse_csroffs(tx_almost_empty));
928 
929 	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
930 		tse_csroffs(tx_almost_full));
931 
932 	/* MAC Address Configuration */
933 	tse_update_mac_addr(priv, priv->dev->dev_addr);
934 
935 	/* MAC Function Configuration */
936 	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
937 	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
938 
939 	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
940 		tse_csroffs(tx_ipg_length));
941 
942 	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
943 	 * start address
944 	 */
945 	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
946 		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
947 
948 	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
949 		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
950 		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
951 
952 	/* Set the MAC options */
953 	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
954 	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
955 	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
956 	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
957 					 * with CRC errors
958 					 */
959 	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
960 	cmd &= ~MAC_CMDCFG_TX_ENA;
961 	cmd &= ~MAC_CMDCFG_RX_ENA;
962 
963 	/* Default speed and duplex setting, full/100 */
964 	cmd &= ~MAC_CMDCFG_HD_ENA;
965 	cmd &= ~MAC_CMDCFG_ETH_SPEED;
966 	cmd &= ~MAC_CMDCFG_ENA_10;
967 
968 	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
969 
970 	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
971 		tse_csroffs(pause_quanta));
972 
973 	if (netif_msg_hw(priv))
974 		dev_dbg(priv->device,
975 			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
976 
977 	return 0;
978 }
979 
980 /* Start/stop MAC transmission logic
981  */
982 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
983 {
984 	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
985 
986 	if (enable)
987 		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
988 	else
989 		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
990 
991 	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
992 }
993 
994 /* Change the MTU
995  */
996 static int tse_change_mtu(struct net_device *dev, int new_mtu)
997 {
998 	struct altera_tse_private *priv = netdev_priv(dev);
999 	unsigned int max_mtu = priv->max_mtu;
1000 	unsigned int min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1001 
1002 	if (netif_running(dev)) {
1003 		netdev_err(dev, "must be stopped to change its MTU\n");
1004 		return -EBUSY;
1005 	}
1006 
1007 	if ((new_mtu < min_mtu) || (new_mtu > max_mtu)) {
1008 		netdev_err(dev, "invalid MTU, max MTU is: %u\n", max_mtu);
1009 		return -EINVAL;
1010 	}
1011 
1012 	dev->mtu = new_mtu;
1013 	netdev_update_features(dev);
1014 
1015 	return 0;
1016 }
1017 
1018 static void altera_tse_set_mcfilter(struct net_device *dev)
1019 {
1020 	struct altera_tse_private *priv = netdev_priv(dev);
1021 	int i;
1022 	struct netdev_hw_addr *ha;
1023 
1024 	/* clear the hash filter */
1025 	for (i = 0; i < 64; i++)
1026 		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1027 
1028 	netdev_for_each_mc_addr(ha, dev) {
1029 		unsigned int hash = 0;
1030 		int mac_octet;
1031 
1032 		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1033 			unsigned char xor_bit = 0;
1034 			unsigned char octet = ha->addr[mac_octet];
1035 			unsigned int bitshift;
1036 
1037 			for (bitshift = 0; bitshift < 8; bitshift++)
1038 				xor_bit ^= ((octet >> bitshift) & 0x01);
1039 
1040 			hash = (hash << 1) | xor_bit;
1041 		}
1042 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1043 	}
1044 }
1045 
1046 
1047 static void altera_tse_set_mcfilterall(struct net_device *dev)
1048 {
1049 	struct altera_tse_private *priv = netdev_priv(dev);
1050 	int i;
1051 
1052 	/* set the hash filter */
1053 	for (i = 0; i < 64; i++)
1054 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1055 }
1056 
1057 /* Set or clear the multicast filter for this adaptor
1058  */
1059 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1060 {
1061 	struct altera_tse_private *priv = netdev_priv(dev);
1062 
1063 	spin_lock(&priv->mac_cfg_lock);
1064 
1065 	if (dev->flags & IFF_PROMISC)
1066 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1067 			    MAC_CMDCFG_PROMIS_EN);
1068 
1069 	if (dev->flags & IFF_ALLMULTI)
1070 		altera_tse_set_mcfilterall(dev);
1071 	else
1072 		altera_tse_set_mcfilter(dev);
1073 
1074 	spin_unlock(&priv->mac_cfg_lock);
1075 }
1076 
1077 /* Set or clear the multicast filter for this adaptor
1078  */
1079 static void tse_set_rx_mode(struct net_device *dev)
1080 {
1081 	struct altera_tse_private *priv = netdev_priv(dev);
1082 
1083 	spin_lock(&priv->mac_cfg_lock);
1084 
1085 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1086 	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1087 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1088 			    MAC_CMDCFG_PROMIS_EN);
1089 	else
1090 		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1091 			      MAC_CMDCFG_PROMIS_EN);
1092 
1093 	spin_unlock(&priv->mac_cfg_lock);
1094 }
1095 
1096 /* Open and initialize the interface
1097  */
1098 static int tse_open(struct net_device *dev)
1099 {
1100 	struct altera_tse_private *priv = netdev_priv(dev);
1101 	int ret = 0;
1102 	int i;
1103 	unsigned long int flags;
1104 
1105 	/* Reset and configure TSE MAC and probe associated PHY */
1106 	ret = priv->dmaops->init_dma(priv);
1107 	if (ret != 0) {
1108 		netdev_err(dev, "Cannot initialize DMA\n");
1109 		goto phy_error;
1110 	}
1111 
1112 	if (netif_msg_ifup(priv))
1113 		netdev_warn(dev, "device MAC address %pM\n",
1114 			    dev->dev_addr);
1115 
1116 	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1117 		netdev_warn(dev, "TSE revision %x\n", priv->revision);
1118 
1119 	spin_lock(&priv->mac_cfg_lock);
1120 	ret = reset_mac(priv);
1121 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1122 	 * due to the PHY being put into isolation or power down mode.
1123 	 * This is not an error if reset fails due to no clock.
1124 	 */
1125 	if (ret)
1126 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1127 
1128 	ret = init_mac(priv);
1129 	spin_unlock(&priv->mac_cfg_lock);
1130 	if (ret) {
1131 		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1132 		goto alloc_skbuf_error;
1133 	}
1134 
1135 	priv->dmaops->reset_dma(priv);
1136 
1137 	/* Create and initialize the TX/RX descriptors chains. */
1138 	priv->rx_ring_size = dma_rx_num;
1139 	priv->tx_ring_size = dma_tx_num;
1140 	ret = alloc_init_skbufs(priv);
1141 	if (ret) {
1142 		netdev_err(dev, "DMA descriptors initialization failed\n");
1143 		goto alloc_skbuf_error;
1144 	}
1145 
1146 
1147 	/* Register RX interrupt */
1148 	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1149 			  dev->name, dev);
1150 	if (ret) {
1151 		netdev_err(dev, "Unable to register RX interrupt %d\n",
1152 			   priv->rx_irq);
1153 		goto init_error;
1154 	}
1155 
1156 	/* Register TX interrupt */
1157 	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1158 			  dev->name, dev);
1159 	if (ret) {
1160 		netdev_err(dev, "Unable to register TX interrupt %d\n",
1161 			   priv->tx_irq);
1162 		goto tx_request_irq_error;
1163 	}
1164 
1165 	/* Enable DMA interrupts */
1166 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1167 	priv->dmaops->enable_rxirq(priv);
1168 	priv->dmaops->enable_txirq(priv);
1169 
1170 	/* Setup RX descriptor chain */
1171 	for (i = 0; i < priv->rx_ring_size; i++)
1172 		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1173 
1174 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1175 
1176 	if (priv->phydev)
1177 		phy_start(priv->phydev);
1178 
1179 	napi_enable(&priv->napi);
1180 	netif_start_queue(dev);
1181 
1182 	priv->dmaops->start_rxdma(priv);
1183 
1184 	/* Start MAC Rx/Tx */
1185 	spin_lock(&priv->mac_cfg_lock);
1186 	tse_set_mac(priv, true);
1187 	spin_unlock(&priv->mac_cfg_lock);
1188 
1189 	return 0;
1190 
1191 tx_request_irq_error:
1192 	free_irq(priv->rx_irq, dev);
1193 init_error:
1194 	free_skbufs(dev);
1195 alloc_skbuf_error:
1196 phy_error:
1197 	return ret;
1198 }
1199 
1200 /* Stop TSE MAC interface and put the device in an inactive state
1201  */
1202 static int tse_shutdown(struct net_device *dev)
1203 {
1204 	struct altera_tse_private *priv = netdev_priv(dev);
1205 	int ret;
1206 	unsigned long int flags;
1207 
1208 	/* Stop the PHY */
1209 	if (priv->phydev)
1210 		phy_stop(priv->phydev);
1211 
1212 	netif_stop_queue(dev);
1213 	napi_disable(&priv->napi);
1214 
1215 	/* Disable DMA interrupts */
1216 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1217 	priv->dmaops->disable_rxirq(priv);
1218 	priv->dmaops->disable_txirq(priv);
1219 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1220 
1221 	/* Free the IRQ lines */
1222 	free_irq(priv->rx_irq, dev);
1223 	free_irq(priv->tx_irq, dev);
1224 
1225 	/* disable and reset the MAC, empties fifo */
1226 	spin_lock(&priv->mac_cfg_lock);
1227 	spin_lock(&priv->tx_lock);
1228 
1229 	ret = reset_mac(priv);
1230 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1231 	 * due to the PHY being put into isolation or power down mode.
1232 	 * This is not an error if reset fails due to no clock.
1233 	 */
1234 	if (ret)
1235 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1236 	priv->dmaops->reset_dma(priv);
1237 	free_skbufs(dev);
1238 
1239 	spin_unlock(&priv->tx_lock);
1240 	spin_unlock(&priv->mac_cfg_lock);
1241 
1242 	priv->dmaops->uninit_dma(priv);
1243 
1244 	return 0;
1245 }
1246 
1247 static struct net_device_ops altera_tse_netdev_ops = {
1248 	.ndo_open		= tse_open,
1249 	.ndo_stop		= tse_shutdown,
1250 	.ndo_start_xmit		= tse_start_xmit,
1251 	.ndo_set_mac_address	= eth_mac_addr,
1252 	.ndo_set_rx_mode	= tse_set_rx_mode,
1253 	.ndo_change_mtu		= tse_change_mtu,
1254 	.ndo_validate_addr	= eth_validate_addr,
1255 };
1256 
1257 static int request_and_map(struct platform_device *pdev, const char *name,
1258 			   struct resource **res, void __iomem **ptr)
1259 {
1260 	struct resource *region;
1261 	struct device *device = &pdev->dev;
1262 
1263 	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1264 	if (*res == NULL) {
1265 		dev_err(device, "resource %s not defined\n", name);
1266 		return -ENODEV;
1267 	}
1268 
1269 	region = devm_request_mem_region(device, (*res)->start,
1270 					 resource_size(*res), dev_name(device));
1271 	if (region == NULL) {
1272 		dev_err(device, "unable to request %s\n", name);
1273 		return -EBUSY;
1274 	}
1275 
1276 	*ptr = devm_ioremap_nocache(device, region->start,
1277 				    resource_size(region));
1278 	if (*ptr == NULL) {
1279 		dev_err(device, "ioremap_nocache of %s failed!", name);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 /* Probe Altera TSE MAC device
1287  */
1288 static int altera_tse_probe(struct platform_device *pdev)
1289 {
1290 	struct net_device *ndev;
1291 	int ret = -ENODEV;
1292 	struct resource *control_port;
1293 	struct resource *dma_res;
1294 	struct altera_tse_private *priv;
1295 	const unsigned char *macaddr;
1296 	void __iomem *descmap;
1297 	const struct of_device_id *of_id = NULL;
1298 
1299 	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1300 	if (!ndev) {
1301 		dev_err(&pdev->dev, "Could not allocate network device\n");
1302 		return -ENODEV;
1303 	}
1304 
1305 	SET_NETDEV_DEV(ndev, &pdev->dev);
1306 
1307 	priv = netdev_priv(ndev);
1308 	priv->device = &pdev->dev;
1309 	priv->dev = ndev;
1310 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1311 
1312 	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1313 
1314 	if (of_id)
1315 		priv->dmaops = (struct altera_dmaops *)of_id->data;
1316 
1317 
1318 	if (priv->dmaops &&
1319 	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1320 		/* Get the mapped address to the SGDMA descriptor memory */
1321 		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1322 		if (ret)
1323 			goto err_free_netdev;
1324 
1325 		/* Start of that memory is for transmit descriptors */
1326 		priv->tx_dma_desc = descmap;
1327 
1328 		/* First half is for tx descriptors, other half for tx */
1329 		priv->txdescmem = resource_size(dma_res)/2;
1330 
1331 		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1332 
1333 		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1334 						     priv->txdescmem));
1335 		priv->rxdescmem = resource_size(dma_res)/2;
1336 		priv->rxdescmem_busaddr = dma_res->start;
1337 		priv->rxdescmem_busaddr += priv->txdescmem;
1338 
1339 		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1340 			dev_dbg(priv->device,
1341 				"SGDMA bus addresses greater than 32-bits\n");
1342 			goto err_free_netdev;
1343 		}
1344 		if (upper_32_bits(priv->txdescmem_busaddr)) {
1345 			dev_dbg(priv->device,
1346 				"SGDMA bus addresses greater than 32-bits\n");
1347 			goto err_free_netdev;
1348 		}
1349 	} else if (priv->dmaops &&
1350 		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1351 		ret = request_and_map(pdev, "rx_resp", &dma_res,
1352 				      &priv->rx_dma_resp);
1353 		if (ret)
1354 			goto err_free_netdev;
1355 
1356 		ret = request_and_map(pdev, "tx_desc", &dma_res,
1357 				      &priv->tx_dma_desc);
1358 		if (ret)
1359 			goto err_free_netdev;
1360 
1361 		priv->txdescmem = resource_size(dma_res);
1362 		priv->txdescmem_busaddr = dma_res->start;
1363 
1364 		ret = request_and_map(pdev, "rx_desc", &dma_res,
1365 				      &priv->rx_dma_desc);
1366 		if (ret)
1367 			goto err_free_netdev;
1368 
1369 		priv->rxdescmem = resource_size(dma_res);
1370 		priv->rxdescmem_busaddr = dma_res->start;
1371 
1372 	} else {
1373 		goto err_free_netdev;
1374 	}
1375 
1376 	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1377 		dma_set_coherent_mask(priv->device,
1378 				      DMA_BIT_MASK(priv->dmaops->dmamask));
1379 	else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1380 		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1381 	else
1382 		goto err_free_netdev;
1383 
1384 	/* MAC address space */
1385 	ret = request_and_map(pdev, "control_port", &control_port,
1386 			      (void __iomem **)&priv->mac_dev);
1387 	if (ret)
1388 		goto err_free_netdev;
1389 
1390 	/* xSGDMA Rx Dispatcher address space */
1391 	ret = request_and_map(pdev, "rx_csr", &dma_res,
1392 			      &priv->rx_dma_csr);
1393 	if (ret)
1394 		goto err_free_netdev;
1395 
1396 
1397 	/* xSGDMA Tx Dispatcher address space */
1398 	ret = request_and_map(pdev, "tx_csr", &dma_res,
1399 			      &priv->tx_dma_csr);
1400 	if (ret)
1401 		goto err_free_netdev;
1402 
1403 
1404 	/* Rx IRQ */
1405 	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1406 	if (priv->rx_irq == -ENXIO) {
1407 		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1408 		ret = -ENXIO;
1409 		goto err_free_netdev;
1410 	}
1411 
1412 	/* Tx IRQ */
1413 	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1414 	if (priv->tx_irq == -ENXIO) {
1415 		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1416 		ret = -ENXIO;
1417 		goto err_free_netdev;
1418 	}
1419 
1420 	/* get FIFO depths from device tree */
1421 	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1422 				 &priv->rx_fifo_depth)) {
1423 		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1424 		ret = -ENXIO;
1425 		goto err_free_netdev;
1426 	}
1427 
1428 	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1429 				 &priv->tx_fifo_depth)) {
1430 		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1431 		ret = -ENXIO;
1432 		goto err_free_netdev;
1433 	}
1434 
1435 	/* get hash filter settings for this instance */
1436 	priv->hash_filter =
1437 		of_property_read_bool(pdev->dev.of_node,
1438 				      "altr,has-hash-multicast-filter");
1439 
1440 	/* Set hash filter to not set for now until the
1441 	 * multicast filter receive issue is debugged
1442 	 */
1443 	priv->hash_filter = 0;
1444 
1445 	/* get supplemental address settings for this instance */
1446 	priv->added_unicast =
1447 		of_property_read_bool(pdev->dev.of_node,
1448 				      "altr,has-supplementary-unicast");
1449 
1450 	/* Max MTU is 1500, ETH_DATA_LEN */
1451 	priv->max_mtu = ETH_DATA_LEN;
1452 
1453 	/* Get the max mtu from the device tree. Note that the
1454 	 * "max-frame-size" parameter is actually max mtu. Definition
1455 	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1456 	 */
1457 	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1458 			     &priv->max_mtu);
1459 
1460 	/* The DMA buffer size already accounts for an alignment bias
1461 	 * to avoid unaligned access exceptions for the NIOS processor,
1462 	 */
1463 	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1464 
1465 	/* get default MAC address from device tree */
1466 	macaddr = of_get_mac_address(pdev->dev.of_node);
1467 	if (macaddr)
1468 		ether_addr_copy(ndev->dev_addr, macaddr);
1469 	else
1470 		eth_hw_addr_random(ndev);
1471 
1472 	/* get phy addr and create mdio */
1473 	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1474 
1475 	if (ret)
1476 		goto err_free_netdev;
1477 
1478 	/* initialize netdev */
1479 	ndev->mem_start = control_port->start;
1480 	ndev->mem_end = control_port->end;
1481 	ndev->netdev_ops = &altera_tse_netdev_ops;
1482 	altera_tse_set_ethtool_ops(ndev);
1483 
1484 	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1485 
1486 	if (priv->hash_filter)
1487 		altera_tse_netdev_ops.ndo_set_rx_mode =
1488 			tse_set_rx_mode_hashfilter;
1489 
1490 	/* Scatter/gather IO is not supported,
1491 	 * so it is turned off
1492 	 */
1493 	ndev->hw_features &= ~NETIF_F_SG;
1494 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1495 
1496 	/* VLAN offloading of tagging, stripping and filtering is not
1497 	 * supported by hardware, but driver will accommodate the
1498 	 * extra 4-byte VLAN tag for processing by upper layers
1499 	 */
1500 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1501 
1502 	/* setup NAPI interface */
1503 	netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1504 
1505 	spin_lock_init(&priv->mac_cfg_lock);
1506 	spin_lock_init(&priv->tx_lock);
1507 	spin_lock_init(&priv->rxdma_irq_lock);
1508 
1509 	netif_carrier_off(ndev);
1510 	ret = register_netdev(ndev);
1511 	if (ret) {
1512 		dev_err(&pdev->dev, "failed to register TSE net device\n");
1513 		goto err_register_netdev;
1514 	}
1515 
1516 	platform_set_drvdata(pdev, ndev);
1517 
1518 	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1519 
1520 	if (netif_msg_probe(priv))
1521 		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1522 			 (priv->revision >> 8) & 0xff,
1523 			 priv->revision & 0xff,
1524 			 (unsigned long) control_port->start, priv->rx_irq,
1525 			 priv->tx_irq);
1526 
1527 	ret = init_phy(ndev);
1528 	if (ret != 0) {
1529 		netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1530 		goto err_init_phy;
1531 	}
1532 	return 0;
1533 
1534 err_init_phy:
1535 	unregister_netdev(ndev);
1536 err_register_netdev:
1537 	netif_napi_del(&priv->napi);
1538 	altera_tse_mdio_destroy(ndev);
1539 err_free_netdev:
1540 	free_netdev(ndev);
1541 	return ret;
1542 }
1543 
1544 /* Remove Altera TSE MAC device
1545  */
1546 static int altera_tse_remove(struct platform_device *pdev)
1547 {
1548 	struct net_device *ndev = platform_get_drvdata(pdev);
1549 	struct altera_tse_private *priv = netdev_priv(ndev);
1550 
1551 	if (priv->phydev)
1552 		phy_disconnect(priv->phydev);
1553 
1554 	platform_set_drvdata(pdev, NULL);
1555 	altera_tse_mdio_destroy(ndev);
1556 	unregister_netdev(ndev);
1557 	free_netdev(ndev);
1558 
1559 	return 0;
1560 }
1561 
1562 static const struct altera_dmaops altera_dtype_sgdma = {
1563 	.altera_dtype = ALTERA_DTYPE_SGDMA,
1564 	.dmamask = 32,
1565 	.reset_dma = sgdma_reset,
1566 	.enable_txirq = sgdma_enable_txirq,
1567 	.enable_rxirq = sgdma_enable_rxirq,
1568 	.disable_txirq = sgdma_disable_txirq,
1569 	.disable_rxirq = sgdma_disable_rxirq,
1570 	.clear_txirq = sgdma_clear_txirq,
1571 	.clear_rxirq = sgdma_clear_rxirq,
1572 	.tx_buffer = sgdma_tx_buffer,
1573 	.tx_completions = sgdma_tx_completions,
1574 	.add_rx_desc = sgdma_add_rx_desc,
1575 	.get_rx_status = sgdma_rx_status,
1576 	.init_dma = sgdma_initialize,
1577 	.uninit_dma = sgdma_uninitialize,
1578 	.start_rxdma = sgdma_start_rxdma,
1579 };
1580 
1581 static const struct altera_dmaops altera_dtype_msgdma = {
1582 	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1583 	.dmamask = 64,
1584 	.reset_dma = msgdma_reset,
1585 	.enable_txirq = msgdma_enable_txirq,
1586 	.enable_rxirq = msgdma_enable_rxirq,
1587 	.disable_txirq = msgdma_disable_txirq,
1588 	.disable_rxirq = msgdma_disable_rxirq,
1589 	.clear_txirq = msgdma_clear_txirq,
1590 	.clear_rxirq = msgdma_clear_rxirq,
1591 	.tx_buffer = msgdma_tx_buffer,
1592 	.tx_completions = msgdma_tx_completions,
1593 	.add_rx_desc = msgdma_add_rx_desc,
1594 	.get_rx_status = msgdma_rx_status,
1595 	.init_dma = msgdma_initialize,
1596 	.uninit_dma = msgdma_uninitialize,
1597 	.start_rxdma = msgdma_start_rxdma,
1598 };
1599 
1600 static const struct of_device_id altera_tse_ids[] = {
1601 	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1602 	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1603 	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1604 	{},
1605 };
1606 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1607 
1608 static struct platform_driver altera_tse_driver = {
1609 	.probe		= altera_tse_probe,
1610 	.remove		= altera_tse_remove,
1611 	.suspend	= NULL,
1612 	.resume		= NULL,
1613 	.driver		= {
1614 		.name	= ALTERA_TSE_RESOURCE_NAME,
1615 		.of_match_table = altera_tse_ids,
1616 	},
1617 };
1618 
1619 module_platform_driver(altera_tse_driver);
1620 
1621 MODULE_AUTHOR("Altera Corporation");
1622 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1623 MODULE_LICENSE("GPL v2");
1624