xref: /openbmc/linux/drivers/net/ethernet/altera/altera_tse_main.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /* Altera Triple-Speed Ethernet MAC driver
2  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
3  *
4  * Contributors:
5  *   Dalon Westergreen
6  *   Thomas Chou
7  *   Ian Abbott
8  *   Yuriy Kozlov
9  *   Tobias Klauser
10  *   Andriy Smolskyy
11  *   Roman Bulgakov
12  *   Dmytro Mytarchuk
13  *   Matthew Gerlach
14  *
15  * Original driver contributed by SLS.
16  * Major updates contributed by GlobalLogic
17  *
18  * This program is free software; you can redistribute it and/or modify it
19  * under the terms and conditions of the GNU General Public License,
20  * version 2, as published by the Free Software Foundation.
21  *
22  * This program is distributed in the hope it will be useful, but WITHOUT
23  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
25  * more details.
26  *
27  * You should have received a copy of the GNU General Public License along with
28  * this program.  If not, see <http://www.gnu.org/licenses/>.
29  */
30 
31 #include <linux/atomic.h>
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_vlan.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/of_device.h>
42 #include <linux/of_mdio.h>
43 #include <linux/of_net.h>
44 #include <linux/of_platform.h>
45 #include <linux/phy.h>
46 #include <linux/platform_device.h>
47 #include <linux/skbuff.h>
48 #include <asm/cacheflush.h>
49 
50 #include "altera_utils.h"
51 #include "altera_tse.h"
52 #include "altera_sgdma.h"
53 #include "altera_msgdma.h"
54 
55 static atomic_t instance_count = ATOMIC_INIT(~0);
56 /* Module parameters */
57 static int debug = -1;
58 module_param(debug, int, S_IRUGO | S_IWUSR);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 					NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 					NETIF_MSG_IFDOWN);
64 
65 #define RX_DESCRIPTORS 64
66 static int dma_rx_num = RX_DESCRIPTORS;
67 module_param(dma_rx_num, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
69 
70 #define TX_DESCRIPTORS 64
71 static int dma_tx_num = TX_DESCRIPTORS;
72 module_param(dma_tx_num, int, S_IRUGO | S_IWUSR);
73 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
74 
75 
76 #define POLL_PHY (-1)
77 
78 /* Make sure DMA buffer size is larger than the max frame size
79  * plus some alignment offset and a VLAN header. If the max frame size is
80  * 1518, a VLAN header would be additional 4 bytes and additional
81  * headroom for alignment is 2 bytes, 2048 is just fine.
82  */
83 #define ALTERA_RXDMABUFFER_SIZE	2048
84 
85 /* Allow network stack to resume queueing packets after we've
86  * finished transmitting at least 1/4 of the packets in the queue.
87  */
88 #define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
89 
90 #define TXQUEUESTOP_THRESHHOLD	2
91 
92 static struct of_device_id altera_tse_ids[];
93 
94 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
95 {
96 	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
97 }
98 
99 /* MDIO specific functions
100  */
101 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
102 {
103 	struct net_device *ndev = bus->priv;
104 	struct altera_tse_private *priv = netdev_priv(ndev);
105 
106 	/* set MDIO address */
107 	csrwr32((mii_id & 0x1f), priv->mac_dev,
108 		tse_csroffs(mdio_phy1_addr));
109 
110 	/* get the data */
111 	return csrrd32(priv->mac_dev,
112 		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
113 }
114 
115 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
116 				 u16 value)
117 {
118 	struct net_device *ndev = bus->priv;
119 	struct altera_tse_private *priv = netdev_priv(ndev);
120 
121 	/* set MDIO address */
122 	csrwr32((mii_id & 0x1f), priv->mac_dev,
123 		tse_csroffs(mdio_phy1_addr));
124 
125 	/* write the data */
126 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
127 	return 0;
128 }
129 
130 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
131 {
132 	struct altera_tse_private *priv = netdev_priv(dev);
133 	int ret;
134 	int i;
135 	struct device_node *mdio_node = NULL;
136 	struct mii_bus *mdio = NULL;
137 	struct device_node *child_node = NULL;
138 
139 	for_each_child_of_node(priv->device->of_node, child_node) {
140 		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
141 			mdio_node = child_node;
142 			break;
143 		}
144 	}
145 
146 	if (mdio_node) {
147 		netdev_dbg(dev, "FOUND MDIO subnode\n");
148 	} else {
149 		netdev_dbg(dev, "NO MDIO subnode\n");
150 		return 0;
151 	}
152 
153 	mdio = mdiobus_alloc();
154 	if (mdio == NULL) {
155 		netdev_err(dev, "Error allocating MDIO bus\n");
156 		return -ENOMEM;
157 	}
158 
159 	mdio->name = ALTERA_TSE_RESOURCE_NAME;
160 	mdio->read = &altera_tse_mdio_read;
161 	mdio->write = &altera_tse_mdio_write;
162 	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
163 
164 	mdio->irq = kcalloc(PHY_MAX_ADDR, sizeof(int), GFP_KERNEL);
165 	if (mdio->irq == NULL) {
166 		ret = -ENOMEM;
167 		goto out_free_mdio;
168 	}
169 	for (i = 0; i < PHY_MAX_ADDR; i++)
170 		mdio->irq[i] = PHY_POLL;
171 
172 	mdio->priv = dev;
173 	mdio->parent = priv->device;
174 
175 	ret = of_mdiobus_register(mdio, mdio_node);
176 	if (ret != 0) {
177 		netdev_err(dev, "Cannot register MDIO bus %s\n",
178 			   mdio->id);
179 		goto out_free_mdio_irq;
180 	}
181 
182 	if (netif_msg_drv(priv))
183 		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
184 
185 	priv->mdio = mdio;
186 	return 0;
187 out_free_mdio_irq:
188 	kfree(mdio->irq);
189 out_free_mdio:
190 	mdiobus_free(mdio);
191 	mdio = NULL;
192 	return ret;
193 }
194 
195 static void altera_tse_mdio_destroy(struct net_device *dev)
196 {
197 	struct altera_tse_private *priv = netdev_priv(dev);
198 
199 	if (priv->mdio == NULL)
200 		return;
201 
202 	if (netif_msg_drv(priv))
203 		netdev_info(dev, "MDIO bus %s: removed\n",
204 			    priv->mdio->id);
205 
206 	mdiobus_unregister(priv->mdio);
207 	kfree(priv->mdio->irq);
208 	mdiobus_free(priv->mdio);
209 	priv->mdio = NULL;
210 }
211 
212 static int tse_init_rx_buffer(struct altera_tse_private *priv,
213 			      struct tse_buffer *rxbuffer, int len)
214 {
215 	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
216 	if (!rxbuffer->skb)
217 		return -ENOMEM;
218 
219 	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
220 						len,
221 						DMA_FROM_DEVICE);
222 
223 	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
224 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
225 		dev_kfree_skb_any(rxbuffer->skb);
226 		return -EINVAL;
227 	}
228 	rxbuffer->dma_addr &= (dma_addr_t)~3;
229 	rxbuffer->len = len;
230 	return 0;
231 }
232 
233 static void tse_free_rx_buffer(struct altera_tse_private *priv,
234 			       struct tse_buffer *rxbuffer)
235 {
236 	struct sk_buff *skb = rxbuffer->skb;
237 	dma_addr_t dma_addr = rxbuffer->dma_addr;
238 
239 	if (skb != NULL) {
240 		if (dma_addr)
241 			dma_unmap_single(priv->device, dma_addr,
242 					 rxbuffer->len,
243 					 DMA_FROM_DEVICE);
244 		dev_kfree_skb_any(skb);
245 		rxbuffer->skb = NULL;
246 		rxbuffer->dma_addr = 0;
247 	}
248 }
249 
250 /* Unmap and free Tx buffer resources
251  */
252 static void tse_free_tx_buffer(struct altera_tse_private *priv,
253 			       struct tse_buffer *buffer)
254 {
255 	if (buffer->dma_addr) {
256 		if (buffer->mapped_as_page)
257 			dma_unmap_page(priv->device, buffer->dma_addr,
258 				       buffer->len, DMA_TO_DEVICE);
259 		else
260 			dma_unmap_single(priv->device, buffer->dma_addr,
261 					 buffer->len, DMA_TO_DEVICE);
262 		buffer->dma_addr = 0;
263 	}
264 	if (buffer->skb) {
265 		dev_kfree_skb_any(buffer->skb);
266 		buffer->skb = NULL;
267 	}
268 }
269 
270 static int alloc_init_skbufs(struct altera_tse_private *priv)
271 {
272 	unsigned int rx_descs = priv->rx_ring_size;
273 	unsigned int tx_descs = priv->tx_ring_size;
274 	int ret = -ENOMEM;
275 	int i;
276 
277 	/* Create Rx ring buffer */
278 	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
279 				GFP_KERNEL);
280 	if (!priv->rx_ring)
281 		goto err_rx_ring;
282 
283 	/* Create Tx ring buffer */
284 	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
285 				GFP_KERNEL);
286 	if (!priv->tx_ring)
287 		goto err_tx_ring;
288 
289 	priv->tx_cons = 0;
290 	priv->tx_prod = 0;
291 
292 	/* Init Rx ring */
293 	for (i = 0; i < rx_descs; i++) {
294 		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
295 					 priv->rx_dma_buf_sz);
296 		if (ret)
297 			goto err_init_rx_buffers;
298 	}
299 
300 	priv->rx_cons = 0;
301 	priv->rx_prod = 0;
302 
303 	return 0;
304 err_init_rx_buffers:
305 	while (--i >= 0)
306 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
307 	kfree(priv->tx_ring);
308 err_tx_ring:
309 	kfree(priv->rx_ring);
310 err_rx_ring:
311 	return ret;
312 }
313 
314 static void free_skbufs(struct net_device *dev)
315 {
316 	struct altera_tse_private *priv = netdev_priv(dev);
317 	unsigned int rx_descs = priv->rx_ring_size;
318 	unsigned int tx_descs = priv->tx_ring_size;
319 	int i;
320 
321 	/* Release the DMA TX/RX socket buffers */
322 	for (i = 0; i < rx_descs; i++)
323 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
324 	for (i = 0; i < tx_descs; i++)
325 		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
326 
327 
328 	kfree(priv->tx_ring);
329 }
330 
331 /* Reallocate the skb for the reception process
332  */
333 static inline void tse_rx_refill(struct altera_tse_private *priv)
334 {
335 	unsigned int rxsize = priv->rx_ring_size;
336 	unsigned int entry;
337 	int ret;
338 
339 	for (; priv->rx_cons - priv->rx_prod > 0;
340 			priv->rx_prod++) {
341 		entry = priv->rx_prod % rxsize;
342 		if (likely(priv->rx_ring[entry].skb == NULL)) {
343 			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
344 				priv->rx_dma_buf_sz);
345 			if (unlikely(ret != 0))
346 				break;
347 			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
348 		}
349 	}
350 }
351 
352 /* Pull out the VLAN tag and fix up the packet
353  */
354 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
355 {
356 	struct ethhdr *eth_hdr;
357 	u16 vid;
358 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
359 	    !__vlan_get_tag(skb, &vid)) {
360 		eth_hdr = (struct ethhdr *)skb->data;
361 		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
362 		skb_pull(skb, VLAN_HLEN);
363 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
364 	}
365 }
366 
367 /* Receive a packet: retrieve and pass over to upper levels
368  */
369 static int tse_rx(struct altera_tse_private *priv, int limit)
370 {
371 	unsigned int count = 0;
372 	unsigned int next_entry;
373 	struct sk_buff *skb;
374 	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
375 	u32 rxstatus;
376 	u16 pktlength;
377 	u16 pktstatus;
378 
379 	while (((rxstatus = priv->dmaops->get_rx_status(priv)) != 0) &&
380 	       (count < limit))  {
381 		pktstatus = rxstatus >> 16;
382 		pktlength = rxstatus & 0xffff;
383 
384 		if ((pktstatus & 0xFF) || (pktlength == 0))
385 			netdev_err(priv->dev,
386 				   "RCV pktstatus %08X pktlength %08X\n",
387 				   pktstatus, pktlength);
388 
389 		count++;
390 		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
391 
392 		skb = priv->rx_ring[entry].skb;
393 		if (unlikely(!skb)) {
394 			netdev_err(priv->dev,
395 				   "%s: Inconsistent Rx descriptor chain\n",
396 				   __func__);
397 			priv->dev->stats.rx_dropped++;
398 			break;
399 		}
400 		priv->rx_ring[entry].skb = NULL;
401 
402 		skb_put(skb, pktlength);
403 
404 		/* make cache consistent with receive packet buffer */
405 		dma_sync_single_for_cpu(priv->device,
406 					priv->rx_ring[entry].dma_addr,
407 					priv->rx_ring[entry].len,
408 					DMA_FROM_DEVICE);
409 
410 		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
411 				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
412 
413 		if (netif_msg_pktdata(priv)) {
414 			netdev_info(priv->dev, "frame received %d bytes\n",
415 				    pktlength);
416 			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
417 				       16, 1, skb->data, pktlength, true);
418 		}
419 
420 		tse_rx_vlan(priv->dev, skb);
421 
422 		skb->protocol = eth_type_trans(skb, priv->dev);
423 		skb_checksum_none_assert(skb);
424 
425 		napi_gro_receive(&priv->napi, skb);
426 
427 		priv->dev->stats.rx_packets++;
428 		priv->dev->stats.rx_bytes += pktlength;
429 
430 		entry = next_entry;
431 
432 		tse_rx_refill(priv);
433 	}
434 
435 	return count;
436 }
437 
438 /* Reclaim resources after transmission completes
439  */
440 static int tse_tx_complete(struct altera_tse_private *priv)
441 {
442 	unsigned int txsize = priv->tx_ring_size;
443 	u32 ready;
444 	unsigned int entry;
445 	struct tse_buffer *tx_buff;
446 	int txcomplete = 0;
447 
448 	spin_lock(&priv->tx_lock);
449 
450 	ready = priv->dmaops->tx_completions(priv);
451 
452 	/* Free sent buffers */
453 	while (ready && (priv->tx_cons != priv->tx_prod)) {
454 		entry = priv->tx_cons % txsize;
455 		tx_buff = &priv->tx_ring[entry];
456 
457 		if (netif_msg_tx_done(priv))
458 			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
459 				   __func__, priv->tx_prod, priv->tx_cons);
460 
461 		if (likely(tx_buff->skb))
462 			priv->dev->stats.tx_packets++;
463 
464 		tse_free_tx_buffer(priv, tx_buff);
465 		priv->tx_cons++;
466 
467 		txcomplete++;
468 		ready--;
469 	}
470 
471 	if (unlikely(netif_queue_stopped(priv->dev) &&
472 		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
473 		netif_tx_lock(priv->dev);
474 		if (netif_queue_stopped(priv->dev) &&
475 		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
476 			if (netif_msg_tx_done(priv))
477 				netdev_dbg(priv->dev, "%s: restart transmit\n",
478 					   __func__);
479 			netif_wake_queue(priv->dev);
480 		}
481 		netif_tx_unlock(priv->dev);
482 	}
483 
484 	spin_unlock(&priv->tx_lock);
485 	return txcomplete;
486 }
487 
488 /* NAPI polling function
489  */
490 static int tse_poll(struct napi_struct *napi, int budget)
491 {
492 	struct altera_tse_private *priv =
493 			container_of(napi, struct altera_tse_private, napi);
494 	int rxcomplete = 0;
495 	unsigned long int flags;
496 
497 	tse_tx_complete(priv);
498 
499 	rxcomplete = tse_rx(priv, budget);
500 
501 	if (rxcomplete < budget) {
502 
503 		napi_gro_flush(napi, false);
504 		__napi_complete(napi);
505 
506 		netdev_dbg(priv->dev,
507 			   "NAPI Complete, did %d packets with budget %d\n",
508 			   rxcomplete, budget);
509 
510 		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
511 		priv->dmaops->enable_rxirq(priv);
512 		priv->dmaops->enable_txirq(priv);
513 		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
514 	}
515 	return rxcomplete;
516 }
517 
518 /* DMA TX & RX FIFO interrupt routing
519  */
520 static irqreturn_t altera_isr(int irq, void *dev_id)
521 {
522 	struct net_device *dev = dev_id;
523 	struct altera_tse_private *priv;
524 
525 	if (unlikely(!dev)) {
526 		pr_err("%s: invalid dev pointer\n", __func__);
527 		return IRQ_NONE;
528 	}
529 	priv = netdev_priv(dev);
530 
531 	spin_lock(&priv->rxdma_irq_lock);
532 	/* reset IRQs */
533 	priv->dmaops->clear_rxirq(priv);
534 	priv->dmaops->clear_txirq(priv);
535 	spin_unlock(&priv->rxdma_irq_lock);
536 
537 	if (likely(napi_schedule_prep(&priv->napi))) {
538 		spin_lock(&priv->rxdma_irq_lock);
539 		priv->dmaops->disable_rxirq(priv);
540 		priv->dmaops->disable_txirq(priv);
541 		spin_unlock(&priv->rxdma_irq_lock);
542 		__napi_schedule(&priv->napi);
543 	}
544 
545 
546 	return IRQ_HANDLED;
547 }
548 
549 /* Transmit a packet (called by the kernel). Dispatches
550  * either the SGDMA method for transmitting or the
551  * MSGDMA method, assumes no scatter/gather support,
552  * implying an assumption that there's only one
553  * physically contiguous fragment starting at
554  * skb->data, for length of skb_headlen(skb).
555  */
556 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
557 {
558 	struct altera_tse_private *priv = netdev_priv(dev);
559 	unsigned int txsize = priv->tx_ring_size;
560 	unsigned int entry;
561 	struct tse_buffer *buffer = NULL;
562 	int nfrags = skb_shinfo(skb)->nr_frags;
563 	unsigned int nopaged_len = skb_headlen(skb);
564 	enum netdev_tx ret = NETDEV_TX_OK;
565 	dma_addr_t dma_addr;
566 
567 	spin_lock_bh(&priv->tx_lock);
568 
569 	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
570 		if (!netif_queue_stopped(dev)) {
571 			netif_stop_queue(dev);
572 			/* This is a hard error, log it. */
573 			netdev_err(priv->dev,
574 				   "%s: Tx list full when queue awake\n",
575 				   __func__);
576 		}
577 		ret = NETDEV_TX_BUSY;
578 		goto out;
579 	}
580 
581 	/* Map the first skb fragment */
582 	entry = priv->tx_prod % txsize;
583 	buffer = &priv->tx_ring[entry];
584 
585 	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
586 				  DMA_TO_DEVICE);
587 	if (dma_mapping_error(priv->device, dma_addr)) {
588 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
589 		ret = NETDEV_TX_OK;
590 		goto out;
591 	}
592 
593 	buffer->skb = skb;
594 	buffer->dma_addr = dma_addr;
595 	buffer->len = nopaged_len;
596 
597 	/* Push data out of the cache hierarchy into main memory */
598 	dma_sync_single_for_device(priv->device, buffer->dma_addr,
599 				   buffer->len, DMA_TO_DEVICE);
600 
601 	priv->dmaops->tx_buffer(priv, buffer);
602 
603 	skb_tx_timestamp(skb);
604 
605 	priv->tx_prod++;
606 	dev->stats.tx_bytes += skb->len;
607 
608 	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
609 		if (netif_msg_hw(priv))
610 			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
611 				   __func__);
612 		netif_stop_queue(dev);
613 	}
614 
615 out:
616 	spin_unlock_bh(&priv->tx_lock);
617 
618 	return ret;
619 }
620 
621 /* Called every time the controller might need to be made
622  * aware of new link state.  The PHY code conveys this
623  * information through variables in the phydev structure, and this
624  * function converts those variables into the appropriate
625  * register values, and can bring down the device if needed.
626  */
627 static void altera_tse_adjust_link(struct net_device *dev)
628 {
629 	struct altera_tse_private *priv = netdev_priv(dev);
630 	struct phy_device *phydev = priv->phydev;
631 	int new_state = 0;
632 
633 	/* only change config if there is a link */
634 	spin_lock(&priv->mac_cfg_lock);
635 	if (phydev->link) {
636 		/* Read old config */
637 		u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
638 
639 		/* Check duplex */
640 		if (phydev->duplex != priv->oldduplex) {
641 			new_state = 1;
642 			if (!(phydev->duplex))
643 				cfg_reg |= MAC_CMDCFG_HD_ENA;
644 			else
645 				cfg_reg &= ~MAC_CMDCFG_HD_ENA;
646 
647 			netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
648 				   dev->name, phydev->duplex);
649 
650 			priv->oldduplex = phydev->duplex;
651 		}
652 
653 		/* Check speed */
654 		if (phydev->speed != priv->oldspeed) {
655 			new_state = 1;
656 			switch (phydev->speed) {
657 			case 1000:
658 				cfg_reg |= MAC_CMDCFG_ETH_SPEED;
659 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
660 				break;
661 			case 100:
662 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
663 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
664 				break;
665 			case 10:
666 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
667 				cfg_reg |= MAC_CMDCFG_ENA_10;
668 				break;
669 			default:
670 				if (netif_msg_link(priv))
671 					netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
672 						    phydev->speed);
673 				break;
674 			}
675 			priv->oldspeed = phydev->speed;
676 		}
677 		iowrite32(cfg_reg, &priv->mac_dev->command_config);
678 
679 		if (!priv->oldlink) {
680 			new_state = 1;
681 			priv->oldlink = 1;
682 		}
683 	} else if (priv->oldlink) {
684 		new_state = 1;
685 		priv->oldlink = 0;
686 		priv->oldspeed = 0;
687 		priv->oldduplex = -1;
688 	}
689 
690 	if (new_state && netif_msg_link(priv))
691 		phy_print_status(phydev);
692 
693 	spin_unlock(&priv->mac_cfg_lock);
694 }
695 static struct phy_device *connect_local_phy(struct net_device *dev)
696 {
697 	struct altera_tse_private *priv = netdev_priv(dev);
698 	struct phy_device *phydev = NULL;
699 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
700 
701 	if (priv->phy_addr != POLL_PHY) {
702 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
703 			 priv->mdio->id, priv->phy_addr);
704 
705 		netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
706 
707 		phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
708 				     priv->phy_iface);
709 		if (IS_ERR(phydev))
710 			netdev_err(dev, "Could not attach to PHY\n");
711 
712 	} else {
713 		int ret;
714 		phydev = phy_find_first(priv->mdio);
715 		if (phydev == NULL) {
716 			netdev_err(dev, "No PHY found\n");
717 			return phydev;
718 		}
719 
720 		ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
721 				priv->phy_iface);
722 		if (ret != 0) {
723 			netdev_err(dev, "Could not attach to PHY\n");
724 			phydev = NULL;
725 		}
726 	}
727 	return phydev;
728 }
729 
730 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
731 {
732 	struct altera_tse_private *priv = netdev_priv(dev);
733 	struct device_node *np = priv->device->of_node;
734 	int ret = 0;
735 
736 	priv->phy_iface = of_get_phy_mode(np);
737 
738 	/* Avoid get phy addr and create mdio if no phy is present */
739 	if (!priv->phy_iface)
740 		return 0;
741 
742 	/* try to get PHY address from device tree, use PHY autodetection if
743 	 * no valid address is given
744 	 */
745 
746 	if (of_property_read_u32(priv->device->of_node, "phy-addr",
747 			 &priv->phy_addr)) {
748 		priv->phy_addr = POLL_PHY;
749 	}
750 
751 	if (!((priv->phy_addr == POLL_PHY) ||
752 		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
753 		netdev_err(dev, "invalid phy-addr specified %d\n",
754 			priv->phy_addr);
755 		return -ENODEV;
756 	}
757 
758 	/* Create/attach to MDIO bus */
759 	ret = altera_tse_mdio_create(dev,
760 					 atomic_add_return(1, &instance_count));
761 
762 	if (ret)
763 		return -ENODEV;
764 
765 	return 0;
766 }
767 
768 /* Initialize driver's PHY state, and attach to the PHY
769  */
770 static int init_phy(struct net_device *dev)
771 {
772 	struct altera_tse_private *priv = netdev_priv(dev);
773 	struct phy_device *phydev;
774 	struct device_node *phynode;
775 
776 	/* Avoid init phy in case of no phy present */
777 	if (!priv->phy_iface)
778 		return 0;
779 
780 	priv->oldlink = 0;
781 	priv->oldspeed = 0;
782 	priv->oldduplex = -1;
783 
784 	phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
785 
786 	if (!phynode) {
787 		netdev_dbg(dev, "no phy-handle found\n");
788 		if (!priv->mdio) {
789 			netdev_err(dev,
790 				   "No phy-handle nor local mdio specified\n");
791 			return -ENODEV;
792 		}
793 		phydev = connect_local_phy(dev);
794 	} else {
795 		netdev_dbg(dev, "phy-handle found\n");
796 		phydev = of_phy_connect(dev, phynode,
797 			&altera_tse_adjust_link, 0, priv->phy_iface);
798 	}
799 
800 	if (!phydev) {
801 		netdev_err(dev, "Could not find the PHY\n");
802 		return -ENODEV;
803 	}
804 
805 	/* Stop Advertising 1000BASE Capability if interface is not GMII
806 	 * Note: Checkpatch throws CHECKs for the camel case defines below,
807 	 * it's ok to ignore.
808 	 */
809 	if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
810 	    (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
811 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
812 					 SUPPORTED_1000baseT_Full);
813 
814 	/* Broken HW is sometimes missing the pull-up resistor on the
815 	 * MDIO line, which results in reads to non-existent devices returning
816 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
817 	 * device as well.
818 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
819 	 */
820 	if (phydev->phy_id == 0) {
821 		netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
822 		phy_disconnect(phydev);
823 		return -ENODEV;
824 	}
825 
826 	netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
827 		   phydev->addr, phydev->phy_id, phydev->link);
828 
829 	priv->phydev = phydev;
830 	return 0;
831 }
832 
833 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
834 {
835 	u32 msb;
836 	u32 lsb;
837 
838 	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
839 	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
840 
841 	/* Set primary MAC address */
842 	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
843 	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
844 }
845 
846 /* MAC software reset.
847  * When reset is triggered, the MAC function completes the current
848  * transmission or reception, and subsequently disables the transmit and
849  * receive logic, flushes the receive FIFO buffer, and resets the statistics
850  * counters.
851  */
852 static int reset_mac(struct altera_tse_private *priv)
853 {
854 	int counter;
855 	u32 dat;
856 
857 	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
858 	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
859 	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
860 	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
861 
862 	counter = 0;
863 	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
864 		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
865 				     MAC_CMDCFG_SW_RESET))
866 			break;
867 		udelay(1);
868 	}
869 
870 	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
871 		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
872 		dat &= ~MAC_CMDCFG_SW_RESET;
873 		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
874 		return -1;
875 	}
876 	return 0;
877 }
878 
879 /* Initialize MAC core registers
880 */
881 static int init_mac(struct altera_tse_private *priv)
882 {
883 	unsigned int cmd = 0;
884 	u32 frm_length;
885 
886 	/* Setup Rx FIFO */
887 	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
888 		priv->mac_dev, tse_csroffs(rx_section_empty));
889 
890 	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
891 		tse_csroffs(rx_section_full));
892 
893 	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
894 		tse_csroffs(rx_almost_empty));
895 
896 	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
897 		tse_csroffs(rx_almost_full));
898 
899 	/* Setup Tx FIFO */
900 	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
901 		priv->mac_dev, tse_csroffs(tx_section_empty));
902 
903 	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
904 		tse_csroffs(tx_section_full));
905 
906 	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
907 		tse_csroffs(tx_almost_empty));
908 
909 	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
910 		tse_csroffs(tx_almost_full));
911 
912 	/* MAC Address Configuration */
913 	tse_update_mac_addr(priv, priv->dev->dev_addr);
914 
915 	/* MAC Function Configuration */
916 	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
917 	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
918 
919 	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
920 		tse_csroffs(tx_ipg_length));
921 
922 	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
923 	 * start address
924 	 */
925 	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
926 		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
927 
928 	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
929 		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
930 		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
931 
932 	/* Set the MAC options */
933 	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
934 	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
935 	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
936 	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
937 					 * with CRC errors
938 					 */
939 	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
940 	cmd &= ~MAC_CMDCFG_TX_ENA;
941 	cmd &= ~MAC_CMDCFG_RX_ENA;
942 
943 	/* Default speed and duplex setting, full/100 */
944 	cmd &= ~MAC_CMDCFG_HD_ENA;
945 	cmd &= ~MAC_CMDCFG_ETH_SPEED;
946 	cmd &= ~MAC_CMDCFG_ENA_10;
947 
948 	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
949 
950 	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
951 		tse_csroffs(pause_quanta));
952 
953 	if (netif_msg_hw(priv))
954 		dev_dbg(priv->device,
955 			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
956 
957 	return 0;
958 }
959 
960 /* Start/stop MAC transmission logic
961  */
962 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
963 {
964 	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
965 
966 	if (enable)
967 		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
968 	else
969 		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
970 
971 	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
972 }
973 
974 /* Change the MTU
975  */
976 static int tse_change_mtu(struct net_device *dev, int new_mtu)
977 {
978 	struct altera_tse_private *priv = netdev_priv(dev);
979 	unsigned int max_mtu = priv->max_mtu;
980 	unsigned int min_mtu = ETH_ZLEN + ETH_FCS_LEN;
981 
982 	if (netif_running(dev)) {
983 		netdev_err(dev, "must be stopped to change its MTU\n");
984 		return -EBUSY;
985 	}
986 
987 	if ((new_mtu < min_mtu) || (new_mtu > max_mtu)) {
988 		netdev_err(dev, "invalid MTU, max MTU is: %u\n", max_mtu);
989 		return -EINVAL;
990 	}
991 
992 	dev->mtu = new_mtu;
993 	netdev_update_features(dev);
994 
995 	return 0;
996 }
997 
998 static void altera_tse_set_mcfilter(struct net_device *dev)
999 {
1000 	struct altera_tse_private *priv = netdev_priv(dev);
1001 	int i;
1002 	struct netdev_hw_addr *ha;
1003 
1004 	/* clear the hash filter */
1005 	for (i = 0; i < 64; i++)
1006 		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1007 
1008 	netdev_for_each_mc_addr(ha, dev) {
1009 		unsigned int hash = 0;
1010 		int mac_octet;
1011 
1012 		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1013 			unsigned char xor_bit = 0;
1014 			unsigned char octet = ha->addr[mac_octet];
1015 			unsigned int bitshift;
1016 
1017 			for (bitshift = 0; bitshift < 8; bitshift++)
1018 				xor_bit ^= ((octet >> bitshift) & 0x01);
1019 
1020 			hash = (hash << 1) | xor_bit;
1021 		}
1022 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1023 	}
1024 }
1025 
1026 
1027 static void altera_tse_set_mcfilterall(struct net_device *dev)
1028 {
1029 	struct altera_tse_private *priv = netdev_priv(dev);
1030 	int i;
1031 
1032 	/* set the hash filter */
1033 	for (i = 0; i < 64; i++)
1034 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1035 }
1036 
1037 /* Set or clear the multicast filter for this adaptor
1038  */
1039 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1040 {
1041 	struct altera_tse_private *priv = netdev_priv(dev);
1042 
1043 	spin_lock(&priv->mac_cfg_lock);
1044 
1045 	if (dev->flags & IFF_PROMISC)
1046 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1047 			    MAC_CMDCFG_PROMIS_EN);
1048 
1049 	if (dev->flags & IFF_ALLMULTI)
1050 		altera_tse_set_mcfilterall(dev);
1051 	else
1052 		altera_tse_set_mcfilter(dev);
1053 
1054 	spin_unlock(&priv->mac_cfg_lock);
1055 }
1056 
1057 /* Set or clear the multicast filter for this adaptor
1058  */
1059 static void tse_set_rx_mode(struct net_device *dev)
1060 {
1061 	struct altera_tse_private *priv = netdev_priv(dev);
1062 
1063 	spin_lock(&priv->mac_cfg_lock);
1064 
1065 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1066 	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1067 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1068 			    MAC_CMDCFG_PROMIS_EN);
1069 	else
1070 		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1071 			      MAC_CMDCFG_PROMIS_EN);
1072 
1073 	spin_unlock(&priv->mac_cfg_lock);
1074 }
1075 
1076 /* Open and initialize the interface
1077  */
1078 static int tse_open(struct net_device *dev)
1079 {
1080 	struct altera_tse_private *priv = netdev_priv(dev);
1081 	int ret = 0;
1082 	int i;
1083 	unsigned long int flags;
1084 
1085 	/* Reset and configure TSE MAC and probe associated PHY */
1086 	ret = priv->dmaops->init_dma(priv);
1087 	if (ret != 0) {
1088 		netdev_err(dev, "Cannot initialize DMA\n");
1089 		goto phy_error;
1090 	}
1091 
1092 	if (netif_msg_ifup(priv))
1093 		netdev_warn(dev, "device MAC address %pM\n",
1094 			    dev->dev_addr);
1095 
1096 	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1097 		netdev_warn(dev, "TSE revision %x\n", priv->revision);
1098 
1099 	spin_lock(&priv->mac_cfg_lock);
1100 	ret = reset_mac(priv);
1101 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1102 	 * due to the PHY being put into isolation or power down mode.
1103 	 * This is not an error if reset fails due to no clock.
1104 	 */
1105 	if (ret)
1106 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1107 
1108 	ret = init_mac(priv);
1109 	spin_unlock(&priv->mac_cfg_lock);
1110 	if (ret) {
1111 		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1112 		goto alloc_skbuf_error;
1113 	}
1114 
1115 	priv->dmaops->reset_dma(priv);
1116 
1117 	/* Create and initialize the TX/RX descriptors chains. */
1118 	priv->rx_ring_size = dma_rx_num;
1119 	priv->tx_ring_size = dma_tx_num;
1120 	ret = alloc_init_skbufs(priv);
1121 	if (ret) {
1122 		netdev_err(dev, "DMA descriptors initialization failed\n");
1123 		goto alloc_skbuf_error;
1124 	}
1125 
1126 
1127 	/* Register RX interrupt */
1128 	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1129 			  dev->name, dev);
1130 	if (ret) {
1131 		netdev_err(dev, "Unable to register RX interrupt %d\n",
1132 			   priv->rx_irq);
1133 		goto init_error;
1134 	}
1135 
1136 	/* Register TX interrupt */
1137 	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1138 			  dev->name, dev);
1139 	if (ret) {
1140 		netdev_err(dev, "Unable to register TX interrupt %d\n",
1141 			   priv->tx_irq);
1142 		goto tx_request_irq_error;
1143 	}
1144 
1145 	/* Enable DMA interrupts */
1146 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1147 	priv->dmaops->enable_rxirq(priv);
1148 	priv->dmaops->enable_txirq(priv);
1149 
1150 	/* Setup RX descriptor chain */
1151 	for (i = 0; i < priv->rx_ring_size; i++)
1152 		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1153 
1154 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1155 
1156 	if (priv->phydev)
1157 		phy_start(priv->phydev);
1158 
1159 	napi_enable(&priv->napi);
1160 	netif_start_queue(dev);
1161 
1162 	priv->dmaops->start_rxdma(priv);
1163 
1164 	/* Start MAC Rx/Tx */
1165 	spin_lock(&priv->mac_cfg_lock);
1166 	tse_set_mac(priv, true);
1167 	spin_unlock(&priv->mac_cfg_lock);
1168 
1169 	return 0;
1170 
1171 tx_request_irq_error:
1172 	free_irq(priv->rx_irq, dev);
1173 init_error:
1174 	free_skbufs(dev);
1175 alloc_skbuf_error:
1176 phy_error:
1177 	return ret;
1178 }
1179 
1180 /* Stop TSE MAC interface and put the device in an inactive state
1181  */
1182 static int tse_shutdown(struct net_device *dev)
1183 {
1184 	struct altera_tse_private *priv = netdev_priv(dev);
1185 	int ret;
1186 	unsigned long int flags;
1187 
1188 	/* Stop the PHY */
1189 	if (priv->phydev)
1190 		phy_stop(priv->phydev);
1191 
1192 	netif_stop_queue(dev);
1193 	napi_disable(&priv->napi);
1194 
1195 	/* Disable DMA interrupts */
1196 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1197 	priv->dmaops->disable_rxirq(priv);
1198 	priv->dmaops->disable_txirq(priv);
1199 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1200 
1201 	/* Free the IRQ lines */
1202 	free_irq(priv->rx_irq, dev);
1203 	free_irq(priv->tx_irq, dev);
1204 
1205 	/* disable and reset the MAC, empties fifo */
1206 	spin_lock(&priv->mac_cfg_lock);
1207 	spin_lock(&priv->tx_lock);
1208 
1209 	ret = reset_mac(priv);
1210 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1211 	 * due to the PHY being put into isolation or power down mode.
1212 	 * This is not an error if reset fails due to no clock.
1213 	 */
1214 	if (ret)
1215 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1216 	priv->dmaops->reset_dma(priv);
1217 	free_skbufs(dev);
1218 
1219 	spin_unlock(&priv->tx_lock);
1220 	spin_unlock(&priv->mac_cfg_lock);
1221 
1222 	priv->dmaops->uninit_dma(priv);
1223 
1224 	return 0;
1225 }
1226 
1227 static struct net_device_ops altera_tse_netdev_ops = {
1228 	.ndo_open		= tse_open,
1229 	.ndo_stop		= tse_shutdown,
1230 	.ndo_start_xmit		= tse_start_xmit,
1231 	.ndo_set_mac_address	= eth_mac_addr,
1232 	.ndo_set_rx_mode	= tse_set_rx_mode,
1233 	.ndo_change_mtu		= tse_change_mtu,
1234 	.ndo_validate_addr	= eth_validate_addr,
1235 };
1236 
1237 static int request_and_map(struct platform_device *pdev, const char *name,
1238 			   struct resource **res, void __iomem **ptr)
1239 {
1240 	struct resource *region;
1241 	struct device *device = &pdev->dev;
1242 
1243 	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1244 	if (*res == NULL) {
1245 		dev_err(device, "resource %s not defined\n", name);
1246 		return -ENODEV;
1247 	}
1248 
1249 	region = devm_request_mem_region(device, (*res)->start,
1250 					 resource_size(*res), dev_name(device));
1251 	if (region == NULL) {
1252 		dev_err(device, "unable to request %s\n", name);
1253 		return -EBUSY;
1254 	}
1255 
1256 	*ptr = devm_ioremap_nocache(device, region->start,
1257 				    resource_size(region));
1258 	if (*ptr == NULL) {
1259 		dev_err(device, "ioremap_nocache of %s failed!", name);
1260 		return -ENOMEM;
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 /* Probe Altera TSE MAC device
1267  */
1268 static int altera_tse_probe(struct platform_device *pdev)
1269 {
1270 	struct net_device *ndev;
1271 	int ret = -ENODEV;
1272 	struct resource *control_port;
1273 	struct resource *dma_res;
1274 	struct altera_tse_private *priv;
1275 	const unsigned char *macaddr;
1276 	void __iomem *descmap;
1277 	const struct of_device_id *of_id = NULL;
1278 
1279 	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1280 	if (!ndev) {
1281 		dev_err(&pdev->dev, "Could not allocate network device\n");
1282 		return -ENODEV;
1283 	}
1284 
1285 	SET_NETDEV_DEV(ndev, &pdev->dev);
1286 
1287 	priv = netdev_priv(ndev);
1288 	priv->device = &pdev->dev;
1289 	priv->dev = ndev;
1290 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1291 
1292 	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1293 
1294 	if (of_id)
1295 		priv->dmaops = (struct altera_dmaops *)of_id->data;
1296 
1297 
1298 	if (priv->dmaops &&
1299 	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1300 		/* Get the mapped address to the SGDMA descriptor memory */
1301 		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1302 		if (ret)
1303 			goto err_free_netdev;
1304 
1305 		/* Start of that memory is for transmit descriptors */
1306 		priv->tx_dma_desc = descmap;
1307 
1308 		/* First half is for tx descriptors, other half for tx */
1309 		priv->txdescmem = resource_size(dma_res)/2;
1310 
1311 		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1312 
1313 		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1314 						     priv->txdescmem));
1315 		priv->rxdescmem = resource_size(dma_res)/2;
1316 		priv->rxdescmem_busaddr = dma_res->start;
1317 		priv->rxdescmem_busaddr += priv->txdescmem;
1318 
1319 		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1320 			dev_dbg(priv->device,
1321 				"SGDMA bus addresses greater than 32-bits\n");
1322 			goto err_free_netdev;
1323 		}
1324 		if (upper_32_bits(priv->txdescmem_busaddr)) {
1325 			dev_dbg(priv->device,
1326 				"SGDMA bus addresses greater than 32-bits\n");
1327 			goto err_free_netdev;
1328 		}
1329 	} else if (priv->dmaops &&
1330 		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1331 		ret = request_and_map(pdev, "rx_resp", &dma_res,
1332 				      &priv->rx_dma_resp);
1333 		if (ret)
1334 			goto err_free_netdev;
1335 
1336 		ret = request_and_map(pdev, "tx_desc", &dma_res,
1337 				      &priv->tx_dma_desc);
1338 		if (ret)
1339 			goto err_free_netdev;
1340 
1341 		priv->txdescmem = resource_size(dma_res);
1342 		priv->txdescmem_busaddr = dma_res->start;
1343 
1344 		ret = request_and_map(pdev, "rx_desc", &dma_res,
1345 				      &priv->rx_dma_desc);
1346 		if (ret)
1347 			goto err_free_netdev;
1348 
1349 		priv->rxdescmem = resource_size(dma_res);
1350 		priv->rxdescmem_busaddr = dma_res->start;
1351 
1352 	} else {
1353 		goto err_free_netdev;
1354 	}
1355 
1356 	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1357 		dma_set_coherent_mask(priv->device,
1358 				      DMA_BIT_MASK(priv->dmaops->dmamask));
1359 	else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1360 		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1361 	else
1362 		goto err_free_netdev;
1363 
1364 	/* MAC address space */
1365 	ret = request_and_map(pdev, "control_port", &control_port,
1366 			      (void __iomem **)&priv->mac_dev);
1367 	if (ret)
1368 		goto err_free_netdev;
1369 
1370 	/* xSGDMA Rx Dispatcher address space */
1371 	ret = request_and_map(pdev, "rx_csr", &dma_res,
1372 			      &priv->rx_dma_csr);
1373 	if (ret)
1374 		goto err_free_netdev;
1375 
1376 
1377 	/* xSGDMA Tx Dispatcher address space */
1378 	ret = request_and_map(pdev, "tx_csr", &dma_res,
1379 			      &priv->tx_dma_csr);
1380 	if (ret)
1381 		goto err_free_netdev;
1382 
1383 
1384 	/* Rx IRQ */
1385 	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1386 	if (priv->rx_irq == -ENXIO) {
1387 		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1388 		ret = -ENXIO;
1389 		goto err_free_netdev;
1390 	}
1391 
1392 	/* Tx IRQ */
1393 	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1394 	if (priv->tx_irq == -ENXIO) {
1395 		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1396 		ret = -ENXIO;
1397 		goto err_free_netdev;
1398 	}
1399 
1400 	/* get FIFO depths from device tree */
1401 	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1402 				 &priv->rx_fifo_depth)) {
1403 		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1404 		ret = -ENXIO;
1405 		goto err_free_netdev;
1406 	}
1407 
1408 	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1409 				 &priv->tx_fifo_depth)) {
1410 		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1411 		ret = -ENXIO;
1412 		goto err_free_netdev;
1413 	}
1414 
1415 	/* get hash filter settings for this instance */
1416 	priv->hash_filter =
1417 		of_property_read_bool(pdev->dev.of_node,
1418 				      "altr,has-hash-multicast-filter");
1419 
1420 	/* Set hash filter to not set for now until the
1421 	 * multicast filter receive issue is debugged
1422 	 */
1423 	priv->hash_filter = 0;
1424 
1425 	/* get supplemental address settings for this instance */
1426 	priv->added_unicast =
1427 		of_property_read_bool(pdev->dev.of_node,
1428 				      "altr,has-supplementary-unicast");
1429 
1430 	/* Max MTU is 1500, ETH_DATA_LEN */
1431 	priv->max_mtu = ETH_DATA_LEN;
1432 
1433 	/* Get the max mtu from the device tree. Note that the
1434 	 * "max-frame-size" parameter is actually max mtu. Definition
1435 	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1436 	 */
1437 	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1438 			     &priv->max_mtu);
1439 
1440 	/* The DMA buffer size already accounts for an alignment bias
1441 	 * to avoid unaligned access exceptions for the NIOS processor,
1442 	 */
1443 	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1444 
1445 	/* get default MAC address from device tree */
1446 	macaddr = of_get_mac_address(pdev->dev.of_node);
1447 	if (macaddr)
1448 		ether_addr_copy(ndev->dev_addr, macaddr);
1449 	else
1450 		eth_hw_addr_random(ndev);
1451 
1452 	/* get phy addr and create mdio */
1453 	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1454 
1455 	if (ret)
1456 		goto err_free_netdev;
1457 
1458 	/* initialize netdev */
1459 	ndev->mem_start = control_port->start;
1460 	ndev->mem_end = control_port->end;
1461 	ndev->netdev_ops = &altera_tse_netdev_ops;
1462 	altera_tse_set_ethtool_ops(ndev);
1463 
1464 	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1465 
1466 	if (priv->hash_filter)
1467 		altera_tse_netdev_ops.ndo_set_rx_mode =
1468 			tse_set_rx_mode_hashfilter;
1469 
1470 	/* Scatter/gather IO is not supported,
1471 	 * so it is turned off
1472 	 */
1473 	ndev->hw_features &= ~NETIF_F_SG;
1474 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1475 
1476 	/* VLAN offloading of tagging, stripping and filtering is not
1477 	 * supported by hardware, but driver will accommodate the
1478 	 * extra 4-byte VLAN tag for processing by upper layers
1479 	 */
1480 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1481 
1482 	/* setup NAPI interface */
1483 	netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1484 
1485 	spin_lock_init(&priv->mac_cfg_lock);
1486 	spin_lock_init(&priv->tx_lock);
1487 	spin_lock_init(&priv->rxdma_irq_lock);
1488 
1489 	ret = register_netdev(ndev);
1490 	if (ret) {
1491 		dev_err(&pdev->dev, "failed to register TSE net device\n");
1492 		goto err_register_netdev;
1493 	}
1494 
1495 	platform_set_drvdata(pdev, ndev);
1496 
1497 	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1498 
1499 	if (netif_msg_probe(priv))
1500 		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1501 			 (priv->revision >> 8) & 0xff,
1502 			 priv->revision & 0xff,
1503 			 (unsigned long) control_port->start, priv->rx_irq,
1504 			 priv->tx_irq);
1505 
1506 	ret = init_phy(ndev);
1507 	if (ret != 0) {
1508 		netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1509 		goto err_init_phy;
1510 	}
1511 	return 0;
1512 
1513 err_init_phy:
1514 	unregister_netdev(ndev);
1515 err_register_netdev:
1516 	netif_napi_del(&priv->napi);
1517 	altera_tse_mdio_destroy(ndev);
1518 err_free_netdev:
1519 	free_netdev(ndev);
1520 	return ret;
1521 }
1522 
1523 /* Remove Altera TSE MAC device
1524  */
1525 static int altera_tse_remove(struct platform_device *pdev)
1526 {
1527 	struct net_device *ndev = platform_get_drvdata(pdev);
1528 	struct altera_tse_private *priv = netdev_priv(ndev);
1529 
1530 	if (priv->phydev)
1531 		phy_disconnect(priv->phydev);
1532 
1533 	platform_set_drvdata(pdev, NULL);
1534 	altera_tse_mdio_destroy(ndev);
1535 	unregister_netdev(ndev);
1536 	free_netdev(ndev);
1537 
1538 	return 0;
1539 }
1540 
1541 static const struct altera_dmaops altera_dtype_sgdma = {
1542 	.altera_dtype = ALTERA_DTYPE_SGDMA,
1543 	.dmamask = 32,
1544 	.reset_dma = sgdma_reset,
1545 	.enable_txirq = sgdma_enable_txirq,
1546 	.enable_rxirq = sgdma_enable_rxirq,
1547 	.disable_txirq = sgdma_disable_txirq,
1548 	.disable_rxirq = sgdma_disable_rxirq,
1549 	.clear_txirq = sgdma_clear_txirq,
1550 	.clear_rxirq = sgdma_clear_rxirq,
1551 	.tx_buffer = sgdma_tx_buffer,
1552 	.tx_completions = sgdma_tx_completions,
1553 	.add_rx_desc = sgdma_add_rx_desc,
1554 	.get_rx_status = sgdma_rx_status,
1555 	.init_dma = sgdma_initialize,
1556 	.uninit_dma = sgdma_uninitialize,
1557 	.start_rxdma = sgdma_start_rxdma,
1558 };
1559 
1560 static const struct altera_dmaops altera_dtype_msgdma = {
1561 	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1562 	.dmamask = 64,
1563 	.reset_dma = msgdma_reset,
1564 	.enable_txirq = msgdma_enable_txirq,
1565 	.enable_rxirq = msgdma_enable_rxirq,
1566 	.disable_txirq = msgdma_disable_txirq,
1567 	.disable_rxirq = msgdma_disable_rxirq,
1568 	.clear_txirq = msgdma_clear_txirq,
1569 	.clear_rxirq = msgdma_clear_rxirq,
1570 	.tx_buffer = msgdma_tx_buffer,
1571 	.tx_completions = msgdma_tx_completions,
1572 	.add_rx_desc = msgdma_add_rx_desc,
1573 	.get_rx_status = msgdma_rx_status,
1574 	.init_dma = msgdma_initialize,
1575 	.uninit_dma = msgdma_uninitialize,
1576 	.start_rxdma = msgdma_start_rxdma,
1577 };
1578 
1579 static struct of_device_id altera_tse_ids[] = {
1580 	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1581 	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1582 	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1583 	{},
1584 };
1585 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1586 
1587 static struct platform_driver altera_tse_driver = {
1588 	.probe		= altera_tse_probe,
1589 	.remove		= altera_tse_remove,
1590 	.suspend	= NULL,
1591 	.resume		= NULL,
1592 	.driver		= {
1593 		.name	= ALTERA_TSE_RESOURCE_NAME,
1594 		.of_match_table = altera_tse_ids,
1595 	},
1596 };
1597 
1598 module_platform_driver(altera_tse_driver);
1599 
1600 MODULE_AUTHOR("Altera Corporation");
1601 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1602 MODULE_LICENSE("GPL v2");
1603