1 /* Altera Triple-Speed Ethernet MAC driver 2 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved 3 * 4 * Contributors: 5 * Dalon Westergreen 6 * Thomas Chou 7 * Ian Abbott 8 * Yuriy Kozlov 9 * Tobias Klauser 10 * Andriy Smolskyy 11 * Roman Bulgakov 12 * Dmytro Mytarchuk 13 * Matthew Gerlach 14 * 15 * Original driver contributed by SLS. 16 * Major updates contributed by GlobalLogic 17 * 18 * This program is free software; you can redistribute it and/or modify it 19 * under the terms and conditions of the GNU General Public License, 20 * version 2, as published by the Free Software Foundation. 21 * 22 * This program is distributed in the hope it will be useful, but WITHOUT 23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 25 * more details. 26 * 27 * You should have received a copy of the GNU General Public License along with 28 * this program. If not, see <http://www.gnu.org/licenses/>. 29 */ 30 31 #include <linux/atomic.h> 32 #include <linux/delay.h> 33 #include <linux/etherdevice.h> 34 #include <linux/if_vlan.h> 35 #include <linux/init.h> 36 #include <linux/interrupt.h> 37 #include <linux/io.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/netdevice.h> 41 #include <linux/of_device.h> 42 #include <linux/of_mdio.h> 43 #include <linux/of_net.h> 44 #include <linux/of_platform.h> 45 #include <linux/phy.h> 46 #include <linux/platform_device.h> 47 #include <linux/skbuff.h> 48 #include <asm/cacheflush.h> 49 50 #include "altera_utils.h" 51 #include "altera_tse.h" 52 #include "altera_sgdma.h" 53 #include "altera_msgdma.h" 54 55 static atomic_t instance_count = ATOMIC_INIT(~0); 56 /* Module parameters */ 57 static int debug = -1; 58 module_param(debug, int, S_IRUGO | S_IWUSR); 59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 60 61 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 62 NETIF_MSG_LINK | NETIF_MSG_IFUP | 63 NETIF_MSG_IFDOWN); 64 65 #define RX_DESCRIPTORS 64 66 static int dma_rx_num = RX_DESCRIPTORS; 67 module_param(dma_rx_num, int, S_IRUGO | S_IWUSR); 68 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list"); 69 70 #define TX_DESCRIPTORS 64 71 static int dma_tx_num = TX_DESCRIPTORS; 72 module_param(dma_tx_num, int, S_IRUGO | S_IWUSR); 73 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list"); 74 75 76 #define POLL_PHY (-1) 77 78 /* Make sure DMA buffer size is larger than the max frame size 79 * plus some alignment offset and a VLAN header. If the max frame size is 80 * 1518, a VLAN header would be additional 4 bytes and additional 81 * headroom for alignment is 2 bytes, 2048 is just fine. 82 */ 83 #define ALTERA_RXDMABUFFER_SIZE 2048 84 85 /* Allow network stack to resume queueing packets after we've 86 * finished transmitting at least 1/4 of the packets in the queue. 87 */ 88 #define TSE_TX_THRESH(x) (x->tx_ring_size / 4) 89 90 #define TXQUEUESTOP_THRESHHOLD 2 91 92 static const struct of_device_id altera_tse_ids[]; 93 94 static inline u32 tse_tx_avail(struct altera_tse_private *priv) 95 { 96 return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1; 97 } 98 99 /* MDIO specific functions 100 */ 101 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 102 { 103 struct net_device *ndev = bus->priv; 104 struct altera_tse_private *priv = netdev_priv(ndev); 105 106 /* set MDIO address */ 107 csrwr32((mii_id & 0x1f), priv->mac_dev, 108 tse_csroffs(mdio_phy1_addr)); 109 110 /* get the data */ 111 return csrrd32(priv->mac_dev, 112 tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff; 113 } 114 115 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 116 u16 value) 117 { 118 struct net_device *ndev = bus->priv; 119 struct altera_tse_private *priv = netdev_priv(ndev); 120 121 /* set MDIO address */ 122 csrwr32((mii_id & 0x1f), priv->mac_dev, 123 tse_csroffs(mdio_phy1_addr)); 124 125 /* write the data */ 126 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4); 127 return 0; 128 } 129 130 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id) 131 { 132 struct altera_tse_private *priv = netdev_priv(dev); 133 int ret; 134 int i; 135 struct device_node *mdio_node = NULL; 136 struct mii_bus *mdio = NULL; 137 struct device_node *child_node = NULL; 138 139 for_each_child_of_node(priv->device->of_node, child_node) { 140 if (of_device_is_compatible(child_node, "altr,tse-mdio")) { 141 mdio_node = child_node; 142 break; 143 } 144 } 145 146 if (mdio_node) { 147 netdev_dbg(dev, "FOUND MDIO subnode\n"); 148 } else { 149 netdev_dbg(dev, "NO MDIO subnode\n"); 150 return 0; 151 } 152 153 mdio = mdiobus_alloc(); 154 if (mdio == NULL) { 155 netdev_err(dev, "Error allocating MDIO bus\n"); 156 return -ENOMEM; 157 } 158 159 mdio->name = ALTERA_TSE_RESOURCE_NAME; 160 mdio->read = &altera_tse_mdio_read; 161 mdio->write = &altera_tse_mdio_write; 162 snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id); 163 164 mdio->irq = kcalloc(PHY_MAX_ADDR, sizeof(int), GFP_KERNEL); 165 if (mdio->irq == NULL) { 166 ret = -ENOMEM; 167 goto out_free_mdio; 168 } 169 for (i = 0; i < PHY_MAX_ADDR; i++) 170 mdio->irq[i] = PHY_POLL; 171 172 mdio->priv = dev; 173 mdio->parent = priv->device; 174 175 ret = of_mdiobus_register(mdio, mdio_node); 176 if (ret != 0) { 177 netdev_err(dev, "Cannot register MDIO bus %s\n", 178 mdio->id); 179 goto out_free_mdio_irq; 180 } 181 182 if (netif_msg_drv(priv)) 183 netdev_info(dev, "MDIO bus %s: created\n", mdio->id); 184 185 priv->mdio = mdio; 186 return 0; 187 out_free_mdio_irq: 188 kfree(mdio->irq); 189 out_free_mdio: 190 mdiobus_free(mdio); 191 mdio = NULL; 192 return ret; 193 } 194 195 static void altera_tse_mdio_destroy(struct net_device *dev) 196 { 197 struct altera_tse_private *priv = netdev_priv(dev); 198 199 if (priv->mdio == NULL) 200 return; 201 202 if (netif_msg_drv(priv)) 203 netdev_info(dev, "MDIO bus %s: removed\n", 204 priv->mdio->id); 205 206 mdiobus_unregister(priv->mdio); 207 kfree(priv->mdio->irq); 208 mdiobus_free(priv->mdio); 209 priv->mdio = NULL; 210 } 211 212 static int tse_init_rx_buffer(struct altera_tse_private *priv, 213 struct tse_buffer *rxbuffer, int len) 214 { 215 rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len); 216 if (!rxbuffer->skb) 217 return -ENOMEM; 218 219 rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data, 220 len, 221 DMA_FROM_DEVICE); 222 223 if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) { 224 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 225 dev_kfree_skb_any(rxbuffer->skb); 226 return -EINVAL; 227 } 228 rxbuffer->dma_addr &= (dma_addr_t)~3; 229 rxbuffer->len = len; 230 return 0; 231 } 232 233 static void tse_free_rx_buffer(struct altera_tse_private *priv, 234 struct tse_buffer *rxbuffer) 235 { 236 struct sk_buff *skb = rxbuffer->skb; 237 dma_addr_t dma_addr = rxbuffer->dma_addr; 238 239 if (skb != NULL) { 240 if (dma_addr) 241 dma_unmap_single(priv->device, dma_addr, 242 rxbuffer->len, 243 DMA_FROM_DEVICE); 244 dev_kfree_skb_any(skb); 245 rxbuffer->skb = NULL; 246 rxbuffer->dma_addr = 0; 247 } 248 } 249 250 /* Unmap and free Tx buffer resources 251 */ 252 static void tse_free_tx_buffer(struct altera_tse_private *priv, 253 struct tse_buffer *buffer) 254 { 255 if (buffer->dma_addr) { 256 if (buffer->mapped_as_page) 257 dma_unmap_page(priv->device, buffer->dma_addr, 258 buffer->len, DMA_TO_DEVICE); 259 else 260 dma_unmap_single(priv->device, buffer->dma_addr, 261 buffer->len, DMA_TO_DEVICE); 262 buffer->dma_addr = 0; 263 } 264 if (buffer->skb) { 265 dev_kfree_skb_any(buffer->skb); 266 buffer->skb = NULL; 267 } 268 } 269 270 static int alloc_init_skbufs(struct altera_tse_private *priv) 271 { 272 unsigned int rx_descs = priv->rx_ring_size; 273 unsigned int tx_descs = priv->tx_ring_size; 274 int ret = -ENOMEM; 275 int i; 276 277 /* Create Rx ring buffer */ 278 priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer), 279 GFP_KERNEL); 280 if (!priv->rx_ring) 281 goto err_rx_ring; 282 283 /* Create Tx ring buffer */ 284 priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer), 285 GFP_KERNEL); 286 if (!priv->tx_ring) 287 goto err_tx_ring; 288 289 priv->tx_cons = 0; 290 priv->tx_prod = 0; 291 292 /* Init Rx ring */ 293 for (i = 0; i < rx_descs; i++) { 294 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i], 295 priv->rx_dma_buf_sz); 296 if (ret) 297 goto err_init_rx_buffers; 298 } 299 300 priv->rx_cons = 0; 301 priv->rx_prod = 0; 302 303 return 0; 304 err_init_rx_buffers: 305 while (--i >= 0) 306 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 307 kfree(priv->tx_ring); 308 err_tx_ring: 309 kfree(priv->rx_ring); 310 err_rx_ring: 311 return ret; 312 } 313 314 static void free_skbufs(struct net_device *dev) 315 { 316 struct altera_tse_private *priv = netdev_priv(dev); 317 unsigned int rx_descs = priv->rx_ring_size; 318 unsigned int tx_descs = priv->tx_ring_size; 319 int i; 320 321 /* Release the DMA TX/RX socket buffers */ 322 for (i = 0; i < rx_descs; i++) 323 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 324 for (i = 0; i < tx_descs; i++) 325 tse_free_tx_buffer(priv, &priv->tx_ring[i]); 326 327 328 kfree(priv->tx_ring); 329 } 330 331 /* Reallocate the skb for the reception process 332 */ 333 static inline void tse_rx_refill(struct altera_tse_private *priv) 334 { 335 unsigned int rxsize = priv->rx_ring_size; 336 unsigned int entry; 337 int ret; 338 339 for (; priv->rx_cons - priv->rx_prod > 0; 340 priv->rx_prod++) { 341 entry = priv->rx_prod % rxsize; 342 if (likely(priv->rx_ring[entry].skb == NULL)) { 343 ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry], 344 priv->rx_dma_buf_sz); 345 if (unlikely(ret != 0)) 346 break; 347 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]); 348 } 349 } 350 } 351 352 /* Pull out the VLAN tag and fix up the packet 353 */ 354 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb) 355 { 356 struct ethhdr *eth_hdr; 357 u16 vid; 358 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 359 !__vlan_get_tag(skb, &vid)) { 360 eth_hdr = (struct ethhdr *)skb->data; 361 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2); 362 skb_pull(skb, VLAN_HLEN); 363 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 364 } 365 } 366 367 /* Receive a packet: retrieve and pass over to upper levels 368 */ 369 static int tse_rx(struct altera_tse_private *priv, int limit) 370 { 371 unsigned int count = 0; 372 unsigned int next_entry; 373 struct sk_buff *skb; 374 unsigned int entry = priv->rx_cons % priv->rx_ring_size; 375 u32 rxstatus; 376 u16 pktlength; 377 u16 pktstatus; 378 379 /* Check for count < limit first as get_rx_status is changing 380 * the response-fifo so we must process the next packet 381 * after calling get_rx_status if a response is pending. 382 * (reading the last byte of the response pops the value from the fifo.) 383 */ 384 while ((count < limit) && 385 ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) { 386 pktstatus = rxstatus >> 16; 387 pktlength = rxstatus & 0xffff; 388 389 if ((pktstatus & 0xFF) || (pktlength == 0)) 390 netdev_err(priv->dev, 391 "RCV pktstatus %08X pktlength %08X\n", 392 pktstatus, pktlength); 393 394 /* DMA trasfer from TSE starts with 2 aditional bytes for 395 * IP payload alignment. Status returned by get_rx_status() 396 * contains DMA transfer length. Packet is 2 bytes shorter. 397 */ 398 pktlength -= 2; 399 400 count++; 401 next_entry = (++priv->rx_cons) % priv->rx_ring_size; 402 403 skb = priv->rx_ring[entry].skb; 404 if (unlikely(!skb)) { 405 netdev_err(priv->dev, 406 "%s: Inconsistent Rx descriptor chain\n", 407 __func__); 408 priv->dev->stats.rx_dropped++; 409 break; 410 } 411 priv->rx_ring[entry].skb = NULL; 412 413 skb_put(skb, pktlength); 414 415 /* make cache consistent with receive packet buffer */ 416 dma_sync_single_for_cpu(priv->device, 417 priv->rx_ring[entry].dma_addr, 418 priv->rx_ring[entry].len, 419 DMA_FROM_DEVICE); 420 421 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr, 422 priv->rx_ring[entry].len, DMA_FROM_DEVICE); 423 424 if (netif_msg_pktdata(priv)) { 425 netdev_info(priv->dev, "frame received %d bytes\n", 426 pktlength); 427 print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET, 428 16, 1, skb->data, pktlength, true); 429 } 430 431 tse_rx_vlan(priv->dev, skb); 432 433 skb->protocol = eth_type_trans(skb, priv->dev); 434 skb_checksum_none_assert(skb); 435 436 napi_gro_receive(&priv->napi, skb); 437 438 priv->dev->stats.rx_packets++; 439 priv->dev->stats.rx_bytes += pktlength; 440 441 entry = next_entry; 442 443 tse_rx_refill(priv); 444 } 445 446 return count; 447 } 448 449 /* Reclaim resources after transmission completes 450 */ 451 static int tse_tx_complete(struct altera_tse_private *priv) 452 { 453 unsigned int txsize = priv->tx_ring_size; 454 u32 ready; 455 unsigned int entry; 456 struct tse_buffer *tx_buff; 457 int txcomplete = 0; 458 459 spin_lock(&priv->tx_lock); 460 461 ready = priv->dmaops->tx_completions(priv); 462 463 /* Free sent buffers */ 464 while (ready && (priv->tx_cons != priv->tx_prod)) { 465 entry = priv->tx_cons % txsize; 466 tx_buff = &priv->tx_ring[entry]; 467 468 if (netif_msg_tx_done(priv)) 469 netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n", 470 __func__, priv->tx_prod, priv->tx_cons); 471 472 if (likely(tx_buff->skb)) 473 priv->dev->stats.tx_packets++; 474 475 tse_free_tx_buffer(priv, tx_buff); 476 priv->tx_cons++; 477 478 txcomplete++; 479 ready--; 480 } 481 482 if (unlikely(netif_queue_stopped(priv->dev) && 483 tse_tx_avail(priv) > TSE_TX_THRESH(priv))) { 484 netif_tx_lock(priv->dev); 485 if (netif_queue_stopped(priv->dev) && 486 tse_tx_avail(priv) > TSE_TX_THRESH(priv)) { 487 if (netif_msg_tx_done(priv)) 488 netdev_dbg(priv->dev, "%s: restart transmit\n", 489 __func__); 490 netif_wake_queue(priv->dev); 491 } 492 netif_tx_unlock(priv->dev); 493 } 494 495 spin_unlock(&priv->tx_lock); 496 return txcomplete; 497 } 498 499 /* NAPI polling function 500 */ 501 static int tse_poll(struct napi_struct *napi, int budget) 502 { 503 struct altera_tse_private *priv = 504 container_of(napi, struct altera_tse_private, napi); 505 int rxcomplete = 0; 506 unsigned long int flags; 507 508 tse_tx_complete(priv); 509 510 rxcomplete = tse_rx(priv, budget); 511 512 if (rxcomplete < budget) { 513 514 napi_complete(napi); 515 516 netdev_dbg(priv->dev, 517 "NAPI Complete, did %d packets with budget %d\n", 518 rxcomplete, budget); 519 520 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 521 priv->dmaops->enable_rxirq(priv); 522 priv->dmaops->enable_txirq(priv); 523 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 524 } 525 return rxcomplete; 526 } 527 528 /* DMA TX & RX FIFO interrupt routing 529 */ 530 static irqreturn_t altera_isr(int irq, void *dev_id) 531 { 532 struct net_device *dev = dev_id; 533 struct altera_tse_private *priv; 534 535 if (unlikely(!dev)) { 536 pr_err("%s: invalid dev pointer\n", __func__); 537 return IRQ_NONE; 538 } 539 priv = netdev_priv(dev); 540 541 spin_lock(&priv->rxdma_irq_lock); 542 /* reset IRQs */ 543 priv->dmaops->clear_rxirq(priv); 544 priv->dmaops->clear_txirq(priv); 545 spin_unlock(&priv->rxdma_irq_lock); 546 547 if (likely(napi_schedule_prep(&priv->napi))) { 548 spin_lock(&priv->rxdma_irq_lock); 549 priv->dmaops->disable_rxirq(priv); 550 priv->dmaops->disable_txirq(priv); 551 spin_unlock(&priv->rxdma_irq_lock); 552 __napi_schedule(&priv->napi); 553 } 554 555 556 return IRQ_HANDLED; 557 } 558 559 /* Transmit a packet (called by the kernel). Dispatches 560 * either the SGDMA method for transmitting or the 561 * MSGDMA method, assumes no scatter/gather support, 562 * implying an assumption that there's only one 563 * physically contiguous fragment starting at 564 * skb->data, for length of skb_headlen(skb). 565 */ 566 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev) 567 { 568 struct altera_tse_private *priv = netdev_priv(dev); 569 unsigned int txsize = priv->tx_ring_size; 570 unsigned int entry; 571 struct tse_buffer *buffer = NULL; 572 int nfrags = skb_shinfo(skb)->nr_frags; 573 unsigned int nopaged_len = skb_headlen(skb); 574 enum netdev_tx ret = NETDEV_TX_OK; 575 dma_addr_t dma_addr; 576 577 spin_lock_bh(&priv->tx_lock); 578 579 if (unlikely(tse_tx_avail(priv) < nfrags + 1)) { 580 if (!netif_queue_stopped(dev)) { 581 netif_stop_queue(dev); 582 /* This is a hard error, log it. */ 583 netdev_err(priv->dev, 584 "%s: Tx list full when queue awake\n", 585 __func__); 586 } 587 ret = NETDEV_TX_BUSY; 588 goto out; 589 } 590 591 /* Map the first skb fragment */ 592 entry = priv->tx_prod % txsize; 593 buffer = &priv->tx_ring[entry]; 594 595 dma_addr = dma_map_single(priv->device, skb->data, nopaged_len, 596 DMA_TO_DEVICE); 597 if (dma_mapping_error(priv->device, dma_addr)) { 598 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 599 ret = NETDEV_TX_OK; 600 goto out; 601 } 602 603 buffer->skb = skb; 604 buffer->dma_addr = dma_addr; 605 buffer->len = nopaged_len; 606 607 /* Push data out of the cache hierarchy into main memory */ 608 dma_sync_single_for_device(priv->device, buffer->dma_addr, 609 buffer->len, DMA_TO_DEVICE); 610 611 priv->dmaops->tx_buffer(priv, buffer); 612 613 skb_tx_timestamp(skb); 614 615 priv->tx_prod++; 616 dev->stats.tx_bytes += skb->len; 617 618 if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) { 619 if (netif_msg_hw(priv)) 620 netdev_dbg(priv->dev, "%s: stop transmitted packets\n", 621 __func__); 622 netif_stop_queue(dev); 623 } 624 625 out: 626 spin_unlock_bh(&priv->tx_lock); 627 628 return ret; 629 } 630 631 /* Called every time the controller might need to be made 632 * aware of new link state. The PHY code conveys this 633 * information through variables in the phydev structure, and this 634 * function converts those variables into the appropriate 635 * register values, and can bring down the device if needed. 636 */ 637 static void altera_tse_adjust_link(struct net_device *dev) 638 { 639 struct altera_tse_private *priv = netdev_priv(dev); 640 struct phy_device *phydev = priv->phydev; 641 int new_state = 0; 642 643 /* only change config if there is a link */ 644 spin_lock(&priv->mac_cfg_lock); 645 if (phydev->link) { 646 /* Read old config */ 647 u32 cfg_reg = ioread32(&priv->mac_dev->command_config); 648 649 /* Check duplex */ 650 if (phydev->duplex != priv->oldduplex) { 651 new_state = 1; 652 if (!(phydev->duplex)) 653 cfg_reg |= MAC_CMDCFG_HD_ENA; 654 else 655 cfg_reg &= ~MAC_CMDCFG_HD_ENA; 656 657 netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n", 658 dev->name, phydev->duplex); 659 660 priv->oldduplex = phydev->duplex; 661 } 662 663 /* Check speed */ 664 if (phydev->speed != priv->oldspeed) { 665 new_state = 1; 666 switch (phydev->speed) { 667 case 1000: 668 cfg_reg |= MAC_CMDCFG_ETH_SPEED; 669 cfg_reg &= ~MAC_CMDCFG_ENA_10; 670 break; 671 case 100: 672 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED; 673 cfg_reg &= ~MAC_CMDCFG_ENA_10; 674 break; 675 case 10: 676 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED; 677 cfg_reg |= MAC_CMDCFG_ENA_10; 678 break; 679 default: 680 if (netif_msg_link(priv)) 681 netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n", 682 phydev->speed); 683 break; 684 } 685 priv->oldspeed = phydev->speed; 686 } 687 iowrite32(cfg_reg, &priv->mac_dev->command_config); 688 689 if (!priv->oldlink) { 690 new_state = 1; 691 priv->oldlink = 1; 692 } 693 } else if (priv->oldlink) { 694 new_state = 1; 695 priv->oldlink = 0; 696 priv->oldspeed = 0; 697 priv->oldduplex = -1; 698 } 699 700 if (new_state && netif_msg_link(priv)) 701 phy_print_status(phydev); 702 703 spin_unlock(&priv->mac_cfg_lock); 704 } 705 static struct phy_device *connect_local_phy(struct net_device *dev) 706 { 707 struct altera_tse_private *priv = netdev_priv(dev); 708 struct phy_device *phydev = NULL; 709 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 710 711 if (priv->phy_addr != POLL_PHY) { 712 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, 713 priv->mdio->id, priv->phy_addr); 714 715 netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt); 716 717 phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link, 718 priv->phy_iface); 719 if (IS_ERR(phydev)) 720 netdev_err(dev, "Could not attach to PHY\n"); 721 722 } else { 723 int ret; 724 phydev = phy_find_first(priv->mdio); 725 if (phydev == NULL) { 726 netdev_err(dev, "No PHY found\n"); 727 return phydev; 728 } 729 730 ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link, 731 priv->phy_iface); 732 if (ret != 0) { 733 netdev_err(dev, "Could not attach to PHY\n"); 734 phydev = NULL; 735 } 736 } 737 return phydev; 738 } 739 740 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev) 741 { 742 struct altera_tse_private *priv = netdev_priv(dev); 743 struct device_node *np = priv->device->of_node; 744 int ret = 0; 745 746 priv->phy_iface = of_get_phy_mode(np); 747 748 /* Avoid get phy addr and create mdio if no phy is present */ 749 if (!priv->phy_iface) 750 return 0; 751 752 /* try to get PHY address from device tree, use PHY autodetection if 753 * no valid address is given 754 */ 755 756 if (of_property_read_u32(priv->device->of_node, "phy-addr", 757 &priv->phy_addr)) { 758 priv->phy_addr = POLL_PHY; 759 } 760 761 if (!((priv->phy_addr == POLL_PHY) || 762 ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) { 763 netdev_err(dev, "invalid phy-addr specified %d\n", 764 priv->phy_addr); 765 return -ENODEV; 766 } 767 768 /* Create/attach to MDIO bus */ 769 ret = altera_tse_mdio_create(dev, 770 atomic_add_return(1, &instance_count)); 771 772 if (ret) 773 return -ENODEV; 774 775 return 0; 776 } 777 778 /* Initialize driver's PHY state, and attach to the PHY 779 */ 780 static int init_phy(struct net_device *dev) 781 { 782 struct altera_tse_private *priv = netdev_priv(dev); 783 struct phy_device *phydev; 784 struct device_node *phynode; 785 bool fixed_link = false; 786 int rc = 0; 787 788 /* Avoid init phy in case of no phy present */ 789 if (!priv->phy_iface) 790 return 0; 791 792 priv->oldlink = 0; 793 priv->oldspeed = 0; 794 priv->oldduplex = -1; 795 796 phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0); 797 798 if (!phynode) { 799 /* check if a fixed-link is defined in device-tree */ 800 if (of_phy_is_fixed_link(priv->device->of_node)) { 801 rc = of_phy_register_fixed_link(priv->device->of_node); 802 if (rc < 0) { 803 netdev_err(dev, "cannot register fixed PHY\n"); 804 return rc; 805 } 806 807 /* In the case of a fixed PHY, the DT node associated 808 * to the PHY is the Ethernet MAC DT node. 809 */ 810 phynode = of_node_get(priv->device->of_node); 811 fixed_link = true; 812 813 netdev_dbg(dev, "fixed-link detected\n"); 814 phydev = of_phy_connect(dev, phynode, 815 &altera_tse_adjust_link, 816 0, priv->phy_iface); 817 } else { 818 netdev_dbg(dev, "no phy-handle found\n"); 819 if (!priv->mdio) { 820 netdev_err(dev, "No phy-handle nor local mdio specified\n"); 821 return -ENODEV; 822 } 823 phydev = connect_local_phy(dev); 824 } 825 } else { 826 netdev_dbg(dev, "phy-handle found\n"); 827 phydev = of_phy_connect(dev, phynode, 828 &altera_tse_adjust_link, 0, priv->phy_iface); 829 } 830 831 if (!phydev) { 832 netdev_err(dev, "Could not find the PHY\n"); 833 return -ENODEV; 834 } 835 836 /* Stop Advertising 1000BASE Capability if interface is not GMII 837 * Note: Checkpatch throws CHECKs for the camel case defines below, 838 * it's ok to ignore. 839 */ 840 if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) || 841 (priv->phy_iface == PHY_INTERFACE_MODE_RMII)) 842 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 843 SUPPORTED_1000baseT_Full); 844 845 /* Broken HW is sometimes missing the pull-up resistor on the 846 * MDIO line, which results in reads to non-existent devices returning 847 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 848 * device as well. If a fixed-link is used the phy_id is always 0. 849 * Note: phydev->phy_id is the result of reading the UID PHY registers. 850 */ 851 if ((phydev->phy_id == 0) && !fixed_link) { 852 netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id); 853 phy_disconnect(phydev); 854 return -ENODEV; 855 } 856 857 netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n", 858 phydev->addr, phydev->phy_id, phydev->link); 859 860 priv->phydev = phydev; 861 return 0; 862 } 863 864 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr) 865 { 866 u32 msb; 867 u32 lsb; 868 869 msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; 870 lsb = ((addr[5] << 8) | addr[4]) & 0xffff; 871 872 /* Set primary MAC address */ 873 csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0)); 874 csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1)); 875 } 876 877 /* MAC software reset. 878 * When reset is triggered, the MAC function completes the current 879 * transmission or reception, and subsequently disables the transmit and 880 * receive logic, flushes the receive FIFO buffer, and resets the statistics 881 * counters. 882 */ 883 static int reset_mac(struct altera_tse_private *priv) 884 { 885 int counter; 886 u32 dat; 887 888 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 889 dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 890 dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET; 891 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 892 893 counter = 0; 894 while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 895 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config), 896 MAC_CMDCFG_SW_RESET)) 897 break; 898 udelay(1); 899 } 900 901 if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 902 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 903 dat &= ~MAC_CMDCFG_SW_RESET; 904 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 905 return -1; 906 } 907 return 0; 908 } 909 910 /* Initialize MAC core registers 911 */ 912 static int init_mac(struct altera_tse_private *priv) 913 { 914 unsigned int cmd = 0; 915 u32 frm_length; 916 917 /* Setup Rx FIFO */ 918 csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY, 919 priv->mac_dev, tse_csroffs(rx_section_empty)); 920 921 csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev, 922 tse_csroffs(rx_section_full)); 923 924 csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev, 925 tse_csroffs(rx_almost_empty)); 926 927 csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev, 928 tse_csroffs(rx_almost_full)); 929 930 /* Setup Tx FIFO */ 931 csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY, 932 priv->mac_dev, tse_csroffs(tx_section_empty)); 933 934 csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev, 935 tse_csroffs(tx_section_full)); 936 937 csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev, 938 tse_csroffs(tx_almost_empty)); 939 940 csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev, 941 tse_csroffs(tx_almost_full)); 942 943 /* MAC Address Configuration */ 944 tse_update_mac_addr(priv, priv->dev->dev_addr); 945 946 /* MAC Function Configuration */ 947 frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN; 948 csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length)); 949 950 csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev, 951 tse_csroffs(tx_ipg_length)); 952 953 /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit 954 * start address 955 */ 956 tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat), 957 ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16); 958 959 tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat), 960 ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 | 961 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC); 962 963 /* Set the MAC options */ 964 cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 965 cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */ 966 cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */ 967 cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames 968 * with CRC errors 969 */ 970 cmd |= MAC_CMDCFG_CNTL_FRM_ENA; 971 cmd &= ~MAC_CMDCFG_TX_ENA; 972 cmd &= ~MAC_CMDCFG_RX_ENA; 973 974 /* Default speed and duplex setting, full/100 */ 975 cmd &= ~MAC_CMDCFG_HD_ENA; 976 cmd &= ~MAC_CMDCFG_ETH_SPEED; 977 cmd &= ~MAC_CMDCFG_ENA_10; 978 979 csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config)); 980 981 csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev, 982 tse_csroffs(pause_quanta)); 983 984 if (netif_msg_hw(priv)) 985 dev_dbg(priv->device, 986 "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd); 987 988 return 0; 989 } 990 991 /* Start/stop MAC transmission logic 992 */ 993 static void tse_set_mac(struct altera_tse_private *priv, bool enable) 994 { 995 u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 996 997 if (enable) 998 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA; 999 else 1000 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 1001 1002 csrwr32(value, priv->mac_dev, tse_csroffs(command_config)); 1003 } 1004 1005 /* Change the MTU 1006 */ 1007 static int tse_change_mtu(struct net_device *dev, int new_mtu) 1008 { 1009 struct altera_tse_private *priv = netdev_priv(dev); 1010 unsigned int max_mtu = priv->max_mtu; 1011 unsigned int min_mtu = ETH_ZLEN + ETH_FCS_LEN; 1012 1013 if (netif_running(dev)) { 1014 netdev_err(dev, "must be stopped to change its MTU\n"); 1015 return -EBUSY; 1016 } 1017 1018 if ((new_mtu < min_mtu) || (new_mtu > max_mtu)) { 1019 netdev_err(dev, "invalid MTU, max MTU is: %u\n", max_mtu); 1020 return -EINVAL; 1021 } 1022 1023 dev->mtu = new_mtu; 1024 netdev_update_features(dev); 1025 1026 return 0; 1027 } 1028 1029 static void altera_tse_set_mcfilter(struct net_device *dev) 1030 { 1031 struct altera_tse_private *priv = netdev_priv(dev); 1032 int i; 1033 struct netdev_hw_addr *ha; 1034 1035 /* clear the hash filter */ 1036 for (i = 0; i < 64; i++) 1037 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 1038 1039 netdev_for_each_mc_addr(ha, dev) { 1040 unsigned int hash = 0; 1041 int mac_octet; 1042 1043 for (mac_octet = 5; mac_octet >= 0; mac_octet--) { 1044 unsigned char xor_bit = 0; 1045 unsigned char octet = ha->addr[mac_octet]; 1046 unsigned int bitshift; 1047 1048 for (bitshift = 0; bitshift < 8; bitshift++) 1049 xor_bit ^= ((octet >> bitshift) & 0x01); 1050 1051 hash = (hash << 1) | xor_bit; 1052 } 1053 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4); 1054 } 1055 } 1056 1057 1058 static void altera_tse_set_mcfilterall(struct net_device *dev) 1059 { 1060 struct altera_tse_private *priv = netdev_priv(dev); 1061 int i; 1062 1063 /* set the hash filter */ 1064 for (i = 0; i < 64; i++) 1065 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 1066 } 1067 1068 /* Set or clear the multicast filter for this adaptor 1069 */ 1070 static void tse_set_rx_mode_hashfilter(struct net_device *dev) 1071 { 1072 struct altera_tse_private *priv = netdev_priv(dev); 1073 1074 spin_lock(&priv->mac_cfg_lock); 1075 1076 if (dev->flags & IFF_PROMISC) 1077 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 1078 MAC_CMDCFG_PROMIS_EN); 1079 1080 if (dev->flags & IFF_ALLMULTI) 1081 altera_tse_set_mcfilterall(dev); 1082 else 1083 altera_tse_set_mcfilter(dev); 1084 1085 spin_unlock(&priv->mac_cfg_lock); 1086 } 1087 1088 /* Set or clear the multicast filter for this adaptor 1089 */ 1090 static void tse_set_rx_mode(struct net_device *dev) 1091 { 1092 struct altera_tse_private *priv = netdev_priv(dev); 1093 1094 spin_lock(&priv->mac_cfg_lock); 1095 1096 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) || 1097 !netdev_mc_empty(dev) || !netdev_uc_empty(dev)) 1098 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 1099 MAC_CMDCFG_PROMIS_EN); 1100 else 1101 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config), 1102 MAC_CMDCFG_PROMIS_EN); 1103 1104 spin_unlock(&priv->mac_cfg_lock); 1105 } 1106 1107 /* Open and initialize the interface 1108 */ 1109 static int tse_open(struct net_device *dev) 1110 { 1111 struct altera_tse_private *priv = netdev_priv(dev); 1112 int ret = 0; 1113 int i; 1114 unsigned long int flags; 1115 1116 /* Reset and configure TSE MAC and probe associated PHY */ 1117 ret = priv->dmaops->init_dma(priv); 1118 if (ret != 0) { 1119 netdev_err(dev, "Cannot initialize DMA\n"); 1120 goto phy_error; 1121 } 1122 1123 if (netif_msg_ifup(priv)) 1124 netdev_warn(dev, "device MAC address %pM\n", 1125 dev->dev_addr); 1126 1127 if ((priv->revision < 0xd00) || (priv->revision > 0xe00)) 1128 netdev_warn(dev, "TSE revision %x\n", priv->revision); 1129 1130 spin_lock(&priv->mac_cfg_lock); 1131 ret = reset_mac(priv); 1132 /* Note that reset_mac will fail if the clocks are gated by the PHY 1133 * due to the PHY being put into isolation or power down mode. 1134 * This is not an error if reset fails due to no clock. 1135 */ 1136 if (ret) 1137 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 1138 1139 ret = init_mac(priv); 1140 spin_unlock(&priv->mac_cfg_lock); 1141 if (ret) { 1142 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret); 1143 goto alloc_skbuf_error; 1144 } 1145 1146 priv->dmaops->reset_dma(priv); 1147 1148 /* Create and initialize the TX/RX descriptors chains. */ 1149 priv->rx_ring_size = dma_rx_num; 1150 priv->tx_ring_size = dma_tx_num; 1151 ret = alloc_init_skbufs(priv); 1152 if (ret) { 1153 netdev_err(dev, "DMA descriptors initialization failed\n"); 1154 goto alloc_skbuf_error; 1155 } 1156 1157 1158 /* Register RX interrupt */ 1159 ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED, 1160 dev->name, dev); 1161 if (ret) { 1162 netdev_err(dev, "Unable to register RX interrupt %d\n", 1163 priv->rx_irq); 1164 goto init_error; 1165 } 1166 1167 /* Register TX interrupt */ 1168 ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED, 1169 dev->name, dev); 1170 if (ret) { 1171 netdev_err(dev, "Unable to register TX interrupt %d\n", 1172 priv->tx_irq); 1173 goto tx_request_irq_error; 1174 } 1175 1176 /* Enable DMA interrupts */ 1177 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 1178 priv->dmaops->enable_rxirq(priv); 1179 priv->dmaops->enable_txirq(priv); 1180 1181 /* Setup RX descriptor chain */ 1182 for (i = 0; i < priv->rx_ring_size; i++) 1183 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]); 1184 1185 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 1186 1187 if (priv->phydev) 1188 phy_start(priv->phydev); 1189 1190 napi_enable(&priv->napi); 1191 netif_start_queue(dev); 1192 1193 priv->dmaops->start_rxdma(priv); 1194 1195 /* Start MAC Rx/Tx */ 1196 spin_lock(&priv->mac_cfg_lock); 1197 tse_set_mac(priv, true); 1198 spin_unlock(&priv->mac_cfg_lock); 1199 1200 return 0; 1201 1202 tx_request_irq_error: 1203 free_irq(priv->rx_irq, dev); 1204 init_error: 1205 free_skbufs(dev); 1206 alloc_skbuf_error: 1207 phy_error: 1208 return ret; 1209 } 1210 1211 /* Stop TSE MAC interface and put the device in an inactive state 1212 */ 1213 static int tse_shutdown(struct net_device *dev) 1214 { 1215 struct altera_tse_private *priv = netdev_priv(dev); 1216 int ret; 1217 unsigned long int flags; 1218 1219 /* Stop the PHY */ 1220 if (priv->phydev) 1221 phy_stop(priv->phydev); 1222 1223 netif_stop_queue(dev); 1224 napi_disable(&priv->napi); 1225 1226 /* Disable DMA interrupts */ 1227 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 1228 priv->dmaops->disable_rxirq(priv); 1229 priv->dmaops->disable_txirq(priv); 1230 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 1231 1232 /* Free the IRQ lines */ 1233 free_irq(priv->rx_irq, dev); 1234 free_irq(priv->tx_irq, dev); 1235 1236 /* disable and reset the MAC, empties fifo */ 1237 spin_lock(&priv->mac_cfg_lock); 1238 spin_lock(&priv->tx_lock); 1239 1240 ret = reset_mac(priv); 1241 /* Note that reset_mac will fail if the clocks are gated by the PHY 1242 * due to the PHY being put into isolation or power down mode. 1243 * This is not an error if reset fails due to no clock. 1244 */ 1245 if (ret) 1246 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 1247 priv->dmaops->reset_dma(priv); 1248 free_skbufs(dev); 1249 1250 spin_unlock(&priv->tx_lock); 1251 spin_unlock(&priv->mac_cfg_lock); 1252 1253 priv->dmaops->uninit_dma(priv); 1254 1255 return 0; 1256 } 1257 1258 static struct net_device_ops altera_tse_netdev_ops = { 1259 .ndo_open = tse_open, 1260 .ndo_stop = tse_shutdown, 1261 .ndo_start_xmit = tse_start_xmit, 1262 .ndo_set_mac_address = eth_mac_addr, 1263 .ndo_set_rx_mode = tse_set_rx_mode, 1264 .ndo_change_mtu = tse_change_mtu, 1265 .ndo_validate_addr = eth_validate_addr, 1266 }; 1267 1268 static int request_and_map(struct platform_device *pdev, const char *name, 1269 struct resource **res, void __iomem **ptr) 1270 { 1271 struct resource *region; 1272 struct device *device = &pdev->dev; 1273 1274 *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); 1275 if (*res == NULL) { 1276 dev_err(device, "resource %s not defined\n", name); 1277 return -ENODEV; 1278 } 1279 1280 region = devm_request_mem_region(device, (*res)->start, 1281 resource_size(*res), dev_name(device)); 1282 if (region == NULL) { 1283 dev_err(device, "unable to request %s\n", name); 1284 return -EBUSY; 1285 } 1286 1287 *ptr = devm_ioremap_nocache(device, region->start, 1288 resource_size(region)); 1289 if (*ptr == NULL) { 1290 dev_err(device, "ioremap_nocache of %s failed!", name); 1291 return -ENOMEM; 1292 } 1293 1294 return 0; 1295 } 1296 1297 /* Probe Altera TSE MAC device 1298 */ 1299 static int altera_tse_probe(struct platform_device *pdev) 1300 { 1301 struct net_device *ndev; 1302 int ret = -ENODEV; 1303 struct resource *control_port; 1304 struct resource *dma_res; 1305 struct altera_tse_private *priv; 1306 const unsigned char *macaddr; 1307 void __iomem *descmap; 1308 const struct of_device_id *of_id = NULL; 1309 1310 ndev = alloc_etherdev(sizeof(struct altera_tse_private)); 1311 if (!ndev) { 1312 dev_err(&pdev->dev, "Could not allocate network device\n"); 1313 return -ENODEV; 1314 } 1315 1316 SET_NETDEV_DEV(ndev, &pdev->dev); 1317 1318 priv = netdev_priv(ndev); 1319 priv->device = &pdev->dev; 1320 priv->dev = ndev; 1321 priv->msg_enable = netif_msg_init(debug, default_msg_level); 1322 1323 of_id = of_match_device(altera_tse_ids, &pdev->dev); 1324 1325 if (of_id) 1326 priv->dmaops = (struct altera_dmaops *)of_id->data; 1327 1328 1329 if (priv->dmaops && 1330 priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) { 1331 /* Get the mapped address to the SGDMA descriptor memory */ 1332 ret = request_and_map(pdev, "s1", &dma_res, &descmap); 1333 if (ret) 1334 goto err_free_netdev; 1335 1336 /* Start of that memory is for transmit descriptors */ 1337 priv->tx_dma_desc = descmap; 1338 1339 /* First half is for tx descriptors, other half for tx */ 1340 priv->txdescmem = resource_size(dma_res)/2; 1341 1342 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start; 1343 1344 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap + 1345 priv->txdescmem)); 1346 priv->rxdescmem = resource_size(dma_res)/2; 1347 priv->rxdescmem_busaddr = dma_res->start; 1348 priv->rxdescmem_busaddr += priv->txdescmem; 1349 1350 if (upper_32_bits(priv->rxdescmem_busaddr)) { 1351 dev_dbg(priv->device, 1352 "SGDMA bus addresses greater than 32-bits\n"); 1353 goto err_free_netdev; 1354 } 1355 if (upper_32_bits(priv->txdescmem_busaddr)) { 1356 dev_dbg(priv->device, 1357 "SGDMA bus addresses greater than 32-bits\n"); 1358 goto err_free_netdev; 1359 } 1360 } else if (priv->dmaops && 1361 priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) { 1362 ret = request_and_map(pdev, "rx_resp", &dma_res, 1363 &priv->rx_dma_resp); 1364 if (ret) 1365 goto err_free_netdev; 1366 1367 ret = request_and_map(pdev, "tx_desc", &dma_res, 1368 &priv->tx_dma_desc); 1369 if (ret) 1370 goto err_free_netdev; 1371 1372 priv->txdescmem = resource_size(dma_res); 1373 priv->txdescmem_busaddr = dma_res->start; 1374 1375 ret = request_and_map(pdev, "rx_desc", &dma_res, 1376 &priv->rx_dma_desc); 1377 if (ret) 1378 goto err_free_netdev; 1379 1380 priv->rxdescmem = resource_size(dma_res); 1381 priv->rxdescmem_busaddr = dma_res->start; 1382 1383 } else { 1384 goto err_free_netdev; 1385 } 1386 1387 if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) 1388 dma_set_coherent_mask(priv->device, 1389 DMA_BIT_MASK(priv->dmaops->dmamask)); 1390 else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) 1391 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32)); 1392 else 1393 goto err_free_netdev; 1394 1395 /* MAC address space */ 1396 ret = request_and_map(pdev, "control_port", &control_port, 1397 (void __iomem **)&priv->mac_dev); 1398 if (ret) 1399 goto err_free_netdev; 1400 1401 /* xSGDMA Rx Dispatcher address space */ 1402 ret = request_and_map(pdev, "rx_csr", &dma_res, 1403 &priv->rx_dma_csr); 1404 if (ret) 1405 goto err_free_netdev; 1406 1407 1408 /* xSGDMA Tx Dispatcher address space */ 1409 ret = request_and_map(pdev, "tx_csr", &dma_res, 1410 &priv->tx_dma_csr); 1411 if (ret) 1412 goto err_free_netdev; 1413 1414 1415 /* Rx IRQ */ 1416 priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq"); 1417 if (priv->rx_irq == -ENXIO) { 1418 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n"); 1419 ret = -ENXIO; 1420 goto err_free_netdev; 1421 } 1422 1423 /* Tx IRQ */ 1424 priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq"); 1425 if (priv->tx_irq == -ENXIO) { 1426 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n"); 1427 ret = -ENXIO; 1428 goto err_free_netdev; 1429 } 1430 1431 /* get FIFO depths from device tree */ 1432 if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", 1433 &priv->rx_fifo_depth)) { 1434 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n"); 1435 ret = -ENXIO; 1436 goto err_free_netdev; 1437 } 1438 1439 if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", 1440 &priv->tx_fifo_depth)) { 1441 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n"); 1442 ret = -ENXIO; 1443 goto err_free_netdev; 1444 } 1445 1446 /* get hash filter settings for this instance */ 1447 priv->hash_filter = 1448 of_property_read_bool(pdev->dev.of_node, 1449 "altr,has-hash-multicast-filter"); 1450 1451 /* Set hash filter to not set for now until the 1452 * multicast filter receive issue is debugged 1453 */ 1454 priv->hash_filter = 0; 1455 1456 /* get supplemental address settings for this instance */ 1457 priv->added_unicast = 1458 of_property_read_bool(pdev->dev.of_node, 1459 "altr,has-supplementary-unicast"); 1460 1461 /* Max MTU is 1500, ETH_DATA_LEN */ 1462 priv->max_mtu = ETH_DATA_LEN; 1463 1464 /* Get the max mtu from the device tree. Note that the 1465 * "max-frame-size" parameter is actually max mtu. Definition 1466 * in the ePAPR v1.1 spec and usage differ, so go with usage. 1467 */ 1468 of_property_read_u32(pdev->dev.of_node, "max-frame-size", 1469 &priv->max_mtu); 1470 1471 /* The DMA buffer size already accounts for an alignment bias 1472 * to avoid unaligned access exceptions for the NIOS processor, 1473 */ 1474 priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE; 1475 1476 /* get default MAC address from device tree */ 1477 macaddr = of_get_mac_address(pdev->dev.of_node); 1478 if (macaddr) 1479 ether_addr_copy(ndev->dev_addr, macaddr); 1480 else 1481 eth_hw_addr_random(ndev); 1482 1483 /* get phy addr and create mdio */ 1484 ret = altera_tse_phy_get_addr_mdio_create(ndev); 1485 1486 if (ret) 1487 goto err_free_netdev; 1488 1489 /* initialize netdev */ 1490 ndev->mem_start = control_port->start; 1491 ndev->mem_end = control_port->end; 1492 ndev->netdev_ops = &altera_tse_netdev_ops; 1493 altera_tse_set_ethtool_ops(ndev); 1494 1495 altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode; 1496 1497 if (priv->hash_filter) 1498 altera_tse_netdev_ops.ndo_set_rx_mode = 1499 tse_set_rx_mode_hashfilter; 1500 1501 /* Scatter/gather IO is not supported, 1502 * so it is turned off 1503 */ 1504 ndev->hw_features &= ~NETIF_F_SG; 1505 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 1506 1507 /* VLAN offloading of tagging, stripping and filtering is not 1508 * supported by hardware, but driver will accommodate the 1509 * extra 4-byte VLAN tag for processing by upper layers 1510 */ 1511 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1512 1513 /* setup NAPI interface */ 1514 netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT); 1515 1516 spin_lock_init(&priv->mac_cfg_lock); 1517 spin_lock_init(&priv->tx_lock); 1518 spin_lock_init(&priv->rxdma_irq_lock); 1519 1520 netif_carrier_off(ndev); 1521 ret = register_netdev(ndev); 1522 if (ret) { 1523 dev_err(&pdev->dev, "failed to register TSE net device\n"); 1524 goto err_register_netdev; 1525 } 1526 1527 platform_set_drvdata(pdev, ndev); 1528 1529 priv->revision = ioread32(&priv->mac_dev->megacore_revision); 1530 1531 if (netif_msg_probe(priv)) 1532 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n", 1533 (priv->revision >> 8) & 0xff, 1534 priv->revision & 0xff, 1535 (unsigned long) control_port->start, priv->rx_irq, 1536 priv->tx_irq); 1537 1538 ret = init_phy(ndev); 1539 if (ret != 0) { 1540 netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret); 1541 goto err_init_phy; 1542 } 1543 return 0; 1544 1545 err_init_phy: 1546 unregister_netdev(ndev); 1547 err_register_netdev: 1548 netif_napi_del(&priv->napi); 1549 altera_tse_mdio_destroy(ndev); 1550 err_free_netdev: 1551 free_netdev(ndev); 1552 return ret; 1553 } 1554 1555 /* Remove Altera TSE MAC device 1556 */ 1557 static int altera_tse_remove(struct platform_device *pdev) 1558 { 1559 struct net_device *ndev = platform_get_drvdata(pdev); 1560 struct altera_tse_private *priv = netdev_priv(ndev); 1561 1562 if (priv->phydev) 1563 phy_disconnect(priv->phydev); 1564 1565 platform_set_drvdata(pdev, NULL); 1566 altera_tse_mdio_destroy(ndev); 1567 unregister_netdev(ndev); 1568 free_netdev(ndev); 1569 1570 return 0; 1571 } 1572 1573 static const struct altera_dmaops altera_dtype_sgdma = { 1574 .altera_dtype = ALTERA_DTYPE_SGDMA, 1575 .dmamask = 32, 1576 .reset_dma = sgdma_reset, 1577 .enable_txirq = sgdma_enable_txirq, 1578 .enable_rxirq = sgdma_enable_rxirq, 1579 .disable_txirq = sgdma_disable_txirq, 1580 .disable_rxirq = sgdma_disable_rxirq, 1581 .clear_txirq = sgdma_clear_txirq, 1582 .clear_rxirq = sgdma_clear_rxirq, 1583 .tx_buffer = sgdma_tx_buffer, 1584 .tx_completions = sgdma_tx_completions, 1585 .add_rx_desc = sgdma_add_rx_desc, 1586 .get_rx_status = sgdma_rx_status, 1587 .init_dma = sgdma_initialize, 1588 .uninit_dma = sgdma_uninitialize, 1589 .start_rxdma = sgdma_start_rxdma, 1590 }; 1591 1592 static const struct altera_dmaops altera_dtype_msgdma = { 1593 .altera_dtype = ALTERA_DTYPE_MSGDMA, 1594 .dmamask = 64, 1595 .reset_dma = msgdma_reset, 1596 .enable_txirq = msgdma_enable_txirq, 1597 .enable_rxirq = msgdma_enable_rxirq, 1598 .disable_txirq = msgdma_disable_txirq, 1599 .disable_rxirq = msgdma_disable_rxirq, 1600 .clear_txirq = msgdma_clear_txirq, 1601 .clear_rxirq = msgdma_clear_rxirq, 1602 .tx_buffer = msgdma_tx_buffer, 1603 .tx_completions = msgdma_tx_completions, 1604 .add_rx_desc = msgdma_add_rx_desc, 1605 .get_rx_status = msgdma_rx_status, 1606 .init_dma = msgdma_initialize, 1607 .uninit_dma = msgdma_uninitialize, 1608 .start_rxdma = msgdma_start_rxdma, 1609 }; 1610 1611 static const struct of_device_id altera_tse_ids[] = { 1612 { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, }, 1613 { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, }, 1614 { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, }, 1615 {}, 1616 }; 1617 MODULE_DEVICE_TABLE(of, altera_tse_ids); 1618 1619 static struct platform_driver altera_tse_driver = { 1620 .probe = altera_tse_probe, 1621 .remove = altera_tse_remove, 1622 .suspend = NULL, 1623 .resume = NULL, 1624 .driver = { 1625 .name = ALTERA_TSE_RESOURCE_NAME, 1626 .of_match_table = altera_tse_ids, 1627 }, 1628 }; 1629 1630 module_platform_driver(altera_tse_driver); 1631 1632 MODULE_AUTHOR("Altera Corporation"); 1633 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver"); 1634 MODULE_LICENSE("GPL v2"); 1635