1 /* Altera Triple-Speed Ethernet MAC driver
2  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
3  *
4  * Contributors:
5  *   Dalon Westergreen
6  *   Thomas Chou
7  *   Ian Abbott
8  *   Yuriy Kozlov
9  *   Tobias Klauser
10  *   Andriy Smolskyy
11  *   Roman Bulgakov
12  *   Dmytro Mytarchuk
13  *   Matthew Gerlach
14  *
15  * Original driver contributed by SLS.
16  * Major updates contributed by GlobalLogic
17  *
18  * This program is free software; you can redistribute it and/or modify it
19  * under the terms and conditions of the GNU General Public License,
20  * version 2, as published by the Free Software Foundation.
21  *
22  * This program is distributed in the hope it will be useful, but WITHOUT
23  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
25  * more details.
26  *
27  * You should have received a copy of the GNU General Public License along with
28  * this program.  If not, see <http://www.gnu.org/licenses/>.
29  */
30 
31 #include <linux/atomic.h>
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_vlan.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/netdevice.h>
41 #include <linux/of_device.h>
42 #include <linux/of_mdio.h>
43 #include <linux/of_net.h>
44 #include <linux/of_platform.h>
45 #include <linux/phy.h>
46 #include <linux/platform_device.h>
47 #include <linux/skbuff.h>
48 #include <asm/cacheflush.h>
49 
50 #include "altera_utils.h"
51 #include "altera_tse.h"
52 #include "altera_sgdma.h"
53 #include "altera_msgdma.h"
54 
55 static atomic_t instance_count = ATOMIC_INIT(~0);
56 /* Module parameters */
57 static int debug = -1;
58 module_param(debug, int, S_IRUGO | S_IWUSR);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 					NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 					NETIF_MSG_IFDOWN);
64 
65 #define RX_DESCRIPTORS 64
66 static int dma_rx_num = RX_DESCRIPTORS;
67 module_param(dma_rx_num, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
69 
70 #define TX_DESCRIPTORS 64
71 static int dma_tx_num = TX_DESCRIPTORS;
72 module_param(dma_tx_num, int, S_IRUGO | S_IWUSR);
73 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
74 
75 
76 #define POLL_PHY (-1)
77 
78 /* Make sure DMA buffer size is larger than the max frame size
79  * plus some alignment offset and a VLAN header. If the max frame size is
80  * 1518, a VLAN header would be additional 4 bytes and additional
81  * headroom for alignment is 2 bytes, 2048 is just fine.
82  */
83 #define ALTERA_RXDMABUFFER_SIZE	2048
84 
85 /* Allow network stack to resume queueing packets after we've
86  * finished transmitting at least 1/4 of the packets in the queue.
87  */
88 #define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
89 
90 #define TXQUEUESTOP_THRESHHOLD	2
91 
92 static const struct of_device_id altera_tse_ids[];
93 
94 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
95 {
96 	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
97 }
98 
99 /* MDIO specific functions
100  */
101 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
102 {
103 	struct net_device *ndev = bus->priv;
104 	struct altera_tse_private *priv = netdev_priv(ndev);
105 
106 	/* set MDIO address */
107 	csrwr32((mii_id & 0x1f), priv->mac_dev,
108 		tse_csroffs(mdio_phy1_addr));
109 
110 	/* get the data */
111 	return csrrd32(priv->mac_dev,
112 		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
113 }
114 
115 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
116 				 u16 value)
117 {
118 	struct net_device *ndev = bus->priv;
119 	struct altera_tse_private *priv = netdev_priv(ndev);
120 
121 	/* set MDIO address */
122 	csrwr32((mii_id & 0x1f), priv->mac_dev,
123 		tse_csroffs(mdio_phy1_addr));
124 
125 	/* write the data */
126 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
127 	return 0;
128 }
129 
130 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
131 {
132 	struct altera_tse_private *priv = netdev_priv(dev);
133 	int ret;
134 	int i;
135 	struct device_node *mdio_node = NULL;
136 	struct mii_bus *mdio = NULL;
137 	struct device_node *child_node = NULL;
138 
139 	for_each_child_of_node(priv->device->of_node, child_node) {
140 		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
141 			mdio_node = child_node;
142 			break;
143 		}
144 	}
145 
146 	if (mdio_node) {
147 		netdev_dbg(dev, "FOUND MDIO subnode\n");
148 	} else {
149 		netdev_dbg(dev, "NO MDIO subnode\n");
150 		return 0;
151 	}
152 
153 	mdio = mdiobus_alloc();
154 	if (mdio == NULL) {
155 		netdev_err(dev, "Error allocating MDIO bus\n");
156 		return -ENOMEM;
157 	}
158 
159 	mdio->name = ALTERA_TSE_RESOURCE_NAME;
160 	mdio->read = &altera_tse_mdio_read;
161 	mdio->write = &altera_tse_mdio_write;
162 	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
163 
164 	mdio->irq = kcalloc(PHY_MAX_ADDR, sizeof(int), GFP_KERNEL);
165 	if (mdio->irq == NULL) {
166 		ret = -ENOMEM;
167 		goto out_free_mdio;
168 	}
169 	for (i = 0; i < PHY_MAX_ADDR; i++)
170 		mdio->irq[i] = PHY_POLL;
171 
172 	mdio->priv = dev;
173 	mdio->parent = priv->device;
174 
175 	ret = of_mdiobus_register(mdio, mdio_node);
176 	if (ret != 0) {
177 		netdev_err(dev, "Cannot register MDIO bus %s\n",
178 			   mdio->id);
179 		goto out_free_mdio_irq;
180 	}
181 
182 	if (netif_msg_drv(priv))
183 		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
184 
185 	priv->mdio = mdio;
186 	return 0;
187 out_free_mdio_irq:
188 	kfree(mdio->irq);
189 out_free_mdio:
190 	mdiobus_free(mdio);
191 	mdio = NULL;
192 	return ret;
193 }
194 
195 static void altera_tse_mdio_destroy(struct net_device *dev)
196 {
197 	struct altera_tse_private *priv = netdev_priv(dev);
198 
199 	if (priv->mdio == NULL)
200 		return;
201 
202 	if (netif_msg_drv(priv))
203 		netdev_info(dev, "MDIO bus %s: removed\n",
204 			    priv->mdio->id);
205 
206 	mdiobus_unregister(priv->mdio);
207 	kfree(priv->mdio->irq);
208 	mdiobus_free(priv->mdio);
209 	priv->mdio = NULL;
210 }
211 
212 static int tse_init_rx_buffer(struct altera_tse_private *priv,
213 			      struct tse_buffer *rxbuffer, int len)
214 {
215 	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
216 	if (!rxbuffer->skb)
217 		return -ENOMEM;
218 
219 	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
220 						len,
221 						DMA_FROM_DEVICE);
222 
223 	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
224 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
225 		dev_kfree_skb_any(rxbuffer->skb);
226 		return -EINVAL;
227 	}
228 	rxbuffer->dma_addr &= (dma_addr_t)~3;
229 	rxbuffer->len = len;
230 	return 0;
231 }
232 
233 static void tse_free_rx_buffer(struct altera_tse_private *priv,
234 			       struct tse_buffer *rxbuffer)
235 {
236 	struct sk_buff *skb = rxbuffer->skb;
237 	dma_addr_t dma_addr = rxbuffer->dma_addr;
238 
239 	if (skb != NULL) {
240 		if (dma_addr)
241 			dma_unmap_single(priv->device, dma_addr,
242 					 rxbuffer->len,
243 					 DMA_FROM_DEVICE);
244 		dev_kfree_skb_any(skb);
245 		rxbuffer->skb = NULL;
246 		rxbuffer->dma_addr = 0;
247 	}
248 }
249 
250 /* Unmap and free Tx buffer resources
251  */
252 static void tse_free_tx_buffer(struct altera_tse_private *priv,
253 			       struct tse_buffer *buffer)
254 {
255 	if (buffer->dma_addr) {
256 		if (buffer->mapped_as_page)
257 			dma_unmap_page(priv->device, buffer->dma_addr,
258 				       buffer->len, DMA_TO_DEVICE);
259 		else
260 			dma_unmap_single(priv->device, buffer->dma_addr,
261 					 buffer->len, DMA_TO_DEVICE);
262 		buffer->dma_addr = 0;
263 	}
264 	if (buffer->skb) {
265 		dev_kfree_skb_any(buffer->skb);
266 		buffer->skb = NULL;
267 	}
268 }
269 
270 static int alloc_init_skbufs(struct altera_tse_private *priv)
271 {
272 	unsigned int rx_descs = priv->rx_ring_size;
273 	unsigned int tx_descs = priv->tx_ring_size;
274 	int ret = -ENOMEM;
275 	int i;
276 
277 	/* Create Rx ring buffer */
278 	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
279 				GFP_KERNEL);
280 	if (!priv->rx_ring)
281 		goto err_rx_ring;
282 
283 	/* Create Tx ring buffer */
284 	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
285 				GFP_KERNEL);
286 	if (!priv->tx_ring)
287 		goto err_tx_ring;
288 
289 	priv->tx_cons = 0;
290 	priv->tx_prod = 0;
291 
292 	/* Init Rx ring */
293 	for (i = 0; i < rx_descs; i++) {
294 		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
295 					 priv->rx_dma_buf_sz);
296 		if (ret)
297 			goto err_init_rx_buffers;
298 	}
299 
300 	priv->rx_cons = 0;
301 	priv->rx_prod = 0;
302 
303 	return 0;
304 err_init_rx_buffers:
305 	while (--i >= 0)
306 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
307 	kfree(priv->tx_ring);
308 err_tx_ring:
309 	kfree(priv->rx_ring);
310 err_rx_ring:
311 	return ret;
312 }
313 
314 static void free_skbufs(struct net_device *dev)
315 {
316 	struct altera_tse_private *priv = netdev_priv(dev);
317 	unsigned int rx_descs = priv->rx_ring_size;
318 	unsigned int tx_descs = priv->tx_ring_size;
319 	int i;
320 
321 	/* Release the DMA TX/RX socket buffers */
322 	for (i = 0; i < rx_descs; i++)
323 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
324 	for (i = 0; i < tx_descs; i++)
325 		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
326 
327 
328 	kfree(priv->tx_ring);
329 }
330 
331 /* Reallocate the skb for the reception process
332  */
333 static inline void tse_rx_refill(struct altera_tse_private *priv)
334 {
335 	unsigned int rxsize = priv->rx_ring_size;
336 	unsigned int entry;
337 	int ret;
338 
339 	for (; priv->rx_cons - priv->rx_prod > 0;
340 			priv->rx_prod++) {
341 		entry = priv->rx_prod % rxsize;
342 		if (likely(priv->rx_ring[entry].skb == NULL)) {
343 			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
344 				priv->rx_dma_buf_sz);
345 			if (unlikely(ret != 0))
346 				break;
347 			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
348 		}
349 	}
350 }
351 
352 /* Pull out the VLAN tag and fix up the packet
353  */
354 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
355 {
356 	struct ethhdr *eth_hdr;
357 	u16 vid;
358 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
359 	    !__vlan_get_tag(skb, &vid)) {
360 		eth_hdr = (struct ethhdr *)skb->data;
361 		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
362 		skb_pull(skb, VLAN_HLEN);
363 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
364 	}
365 }
366 
367 /* Receive a packet: retrieve and pass over to upper levels
368  */
369 static int tse_rx(struct altera_tse_private *priv, int limit)
370 {
371 	unsigned int count = 0;
372 	unsigned int next_entry;
373 	struct sk_buff *skb;
374 	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
375 	u32 rxstatus;
376 	u16 pktlength;
377 	u16 pktstatus;
378 
379 	/* Check for count < limit first as get_rx_status is changing
380 	* the response-fifo so we must process the next packet
381 	* after calling get_rx_status if a response is pending.
382 	* (reading the last byte of the response pops the value from the fifo.)
383 	*/
384 	while ((count < limit) &&
385 	       ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
386 		pktstatus = rxstatus >> 16;
387 		pktlength = rxstatus & 0xffff;
388 
389 		if ((pktstatus & 0xFF) || (pktlength == 0))
390 			netdev_err(priv->dev,
391 				   "RCV pktstatus %08X pktlength %08X\n",
392 				   pktstatus, pktlength);
393 
394 		/* DMA trasfer from TSE starts with 2 aditional bytes for
395 		 * IP payload alignment. Status returned by get_rx_status()
396 		 * contains DMA transfer length. Packet is 2 bytes shorter.
397 		 */
398 		pktlength -= 2;
399 
400 		count++;
401 		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
402 
403 		skb = priv->rx_ring[entry].skb;
404 		if (unlikely(!skb)) {
405 			netdev_err(priv->dev,
406 				   "%s: Inconsistent Rx descriptor chain\n",
407 				   __func__);
408 			priv->dev->stats.rx_dropped++;
409 			break;
410 		}
411 		priv->rx_ring[entry].skb = NULL;
412 
413 		skb_put(skb, pktlength);
414 
415 		/* make cache consistent with receive packet buffer */
416 		dma_sync_single_for_cpu(priv->device,
417 					priv->rx_ring[entry].dma_addr,
418 					priv->rx_ring[entry].len,
419 					DMA_FROM_DEVICE);
420 
421 		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
422 				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
423 
424 		if (netif_msg_pktdata(priv)) {
425 			netdev_info(priv->dev, "frame received %d bytes\n",
426 				    pktlength);
427 			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
428 				       16, 1, skb->data, pktlength, true);
429 		}
430 
431 		tse_rx_vlan(priv->dev, skb);
432 
433 		skb->protocol = eth_type_trans(skb, priv->dev);
434 		skb_checksum_none_assert(skb);
435 
436 		napi_gro_receive(&priv->napi, skb);
437 
438 		priv->dev->stats.rx_packets++;
439 		priv->dev->stats.rx_bytes += pktlength;
440 
441 		entry = next_entry;
442 
443 		tse_rx_refill(priv);
444 	}
445 
446 	return count;
447 }
448 
449 /* Reclaim resources after transmission completes
450  */
451 static int tse_tx_complete(struct altera_tse_private *priv)
452 {
453 	unsigned int txsize = priv->tx_ring_size;
454 	u32 ready;
455 	unsigned int entry;
456 	struct tse_buffer *tx_buff;
457 	int txcomplete = 0;
458 
459 	spin_lock(&priv->tx_lock);
460 
461 	ready = priv->dmaops->tx_completions(priv);
462 
463 	/* Free sent buffers */
464 	while (ready && (priv->tx_cons != priv->tx_prod)) {
465 		entry = priv->tx_cons % txsize;
466 		tx_buff = &priv->tx_ring[entry];
467 
468 		if (netif_msg_tx_done(priv))
469 			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
470 				   __func__, priv->tx_prod, priv->tx_cons);
471 
472 		if (likely(tx_buff->skb))
473 			priv->dev->stats.tx_packets++;
474 
475 		tse_free_tx_buffer(priv, tx_buff);
476 		priv->tx_cons++;
477 
478 		txcomplete++;
479 		ready--;
480 	}
481 
482 	if (unlikely(netif_queue_stopped(priv->dev) &&
483 		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
484 		netif_tx_lock(priv->dev);
485 		if (netif_queue_stopped(priv->dev) &&
486 		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
487 			if (netif_msg_tx_done(priv))
488 				netdev_dbg(priv->dev, "%s: restart transmit\n",
489 					   __func__);
490 			netif_wake_queue(priv->dev);
491 		}
492 		netif_tx_unlock(priv->dev);
493 	}
494 
495 	spin_unlock(&priv->tx_lock);
496 	return txcomplete;
497 }
498 
499 /* NAPI polling function
500  */
501 static int tse_poll(struct napi_struct *napi, int budget)
502 {
503 	struct altera_tse_private *priv =
504 			container_of(napi, struct altera_tse_private, napi);
505 	int rxcomplete = 0;
506 	unsigned long int flags;
507 
508 	tse_tx_complete(priv);
509 
510 	rxcomplete = tse_rx(priv, budget);
511 
512 	if (rxcomplete < budget) {
513 
514 		napi_complete(napi);
515 
516 		netdev_dbg(priv->dev,
517 			   "NAPI Complete, did %d packets with budget %d\n",
518 			   rxcomplete, budget);
519 
520 		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
521 		priv->dmaops->enable_rxirq(priv);
522 		priv->dmaops->enable_txirq(priv);
523 		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
524 	}
525 	return rxcomplete;
526 }
527 
528 /* DMA TX & RX FIFO interrupt routing
529  */
530 static irqreturn_t altera_isr(int irq, void *dev_id)
531 {
532 	struct net_device *dev = dev_id;
533 	struct altera_tse_private *priv;
534 
535 	if (unlikely(!dev)) {
536 		pr_err("%s: invalid dev pointer\n", __func__);
537 		return IRQ_NONE;
538 	}
539 	priv = netdev_priv(dev);
540 
541 	spin_lock(&priv->rxdma_irq_lock);
542 	/* reset IRQs */
543 	priv->dmaops->clear_rxirq(priv);
544 	priv->dmaops->clear_txirq(priv);
545 	spin_unlock(&priv->rxdma_irq_lock);
546 
547 	if (likely(napi_schedule_prep(&priv->napi))) {
548 		spin_lock(&priv->rxdma_irq_lock);
549 		priv->dmaops->disable_rxirq(priv);
550 		priv->dmaops->disable_txirq(priv);
551 		spin_unlock(&priv->rxdma_irq_lock);
552 		__napi_schedule(&priv->napi);
553 	}
554 
555 
556 	return IRQ_HANDLED;
557 }
558 
559 /* Transmit a packet (called by the kernel). Dispatches
560  * either the SGDMA method for transmitting or the
561  * MSGDMA method, assumes no scatter/gather support,
562  * implying an assumption that there's only one
563  * physically contiguous fragment starting at
564  * skb->data, for length of skb_headlen(skb).
565  */
566 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
567 {
568 	struct altera_tse_private *priv = netdev_priv(dev);
569 	unsigned int txsize = priv->tx_ring_size;
570 	unsigned int entry;
571 	struct tse_buffer *buffer = NULL;
572 	int nfrags = skb_shinfo(skb)->nr_frags;
573 	unsigned int nopaged_len = skb_headlen(skb);
574 	enum netdev_tx ret = NETDEV_TX_OK;
575 	dma_addr_t dma_addr;
576 
577 	spin_lock_bh(&priv->tx_lock);
578 
579 	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
580 		if (!netif_queue_stopped(dev)) {
581 			netif_stop_queue(dev);
582 			/* This is a hard error, log it. */
583 			netdev_err(priv->dev,
584 				   "%s: Tx list full when queue awake\n",
585 				   __func__);
586 		}
587 		ret = NETDEV_TX_BUSY;
588 		goto out;
589 	}
590 
591 	/* Map the first skb fragment */
592 	entry = priv->tx_prod % txsize;
593 	buffer = &priv->tx_ring[entry];
594 
595 	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
596 				  DMA_TO_DEVICE);
597 	if (dma_mapping_error(priv->device, dma_addr)) {
598 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
599 		ret = NETDEV_TX_OK;
600 		goto out;
601 	}
602 
603 	buffer->skb = skb;
604 	buffer->dma_addr = dma_addr;
605 	buffer->len = nopaged_len;
606 
607 	/* Push data out of the cache hierarchy into main memory */
608 	dma_sync_single_for_device(priv->device, buffer->dma_addr,
609 				   buffer->len, DMA_TO_DEVICE);
610 
611 	priv->dmaops->tx_buffer(priv, buffer);
612 
613 	skb_tx_timestamp(skb);
614 
615 	priv->tx_prod++;
616 	dev->stats.tx_bytes += skb->len;
617 
618 	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
619 		if (netif_msg_hw(priv))
620 			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
621 				   __func__);
622 		netif_stop_queue(dev);
623 	}
624 
625 out:
626 	spin_unlock_bh(&priv->tx_lock);
627 
628 	return ret;
629 }
630 
631 /* Called every time the controller might need to be made
632  * aware of new link state.  The PHY code conveys this
633  * information through variables in the phydev structure, and this
634  * function converts those variables into the appropriate
635  * register values, and can bring down the device if needed.
636  */
637 static void altera_tse_adjust_link(struct net_device *dev)
638 {
639 	struct altera_tse_private *priv = netdev_priv(dev);
640 	struct phy_device *phydev = priv->phydev;
641 	int new_state = 0;
642 
643 	/* only change config if there is a link */
644 	spin_lock(&priv->mac_cfg_lock);
645 	if (phydev->link) {
646 		/* Read old config */
647 		u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
648 
649 		/* Check duplex */
650 		if (phydev->duplex != priv->oldduplex) {
651 			new_state = 1;
652 			if (!(phydev->duplex))
653 				cfg_reg |= MAC_CMDCFG_HD_ENA;
654 			else
655 				cfg_reg &= ~MAC_CMDCFG_HD_ENA;
656 
657 			netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
658 				   dev->name, phydev->duplex);
659 
660 			priv->oldduplex = phydev->duplex;
661 		}
662 
663 		/* Check speed */
664 		if (phydev->speed != priv->oldspeed) {
665 			new_state = 1;
666 			switch (phydev->speed) {
667 			case 1000:
668 				cfg_reg |= MAC_CMDCFG_ETH_SPEED;
669 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
670 				break;
671 			case 100:
672 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
673 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
674 				break;
675 			case 10:
676 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
677 				cfg_reg |= MAC_CMDCFG_ENA_10;
678 				break;
679 			default:
680 				if (netif_msg_link(priv))
681 					netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
682 						    phydev->speed);
683 				break;
684 			}
685 			priv->oldspeed = phydev->speed;
686 		}
687 		iowrite32(cfg_reg, &priv->mac_dev->command_config);
688 
689 		if (!priv->oldlink) {
690 			new_state = 1;
691 			priv->oldlink = 1;
692 		}
693 	} else if (priv->oldlink) {
694 		new_state = 1;
695 		priv->oldlink = 0;
696 		priv->oldspeed = 0;
697 		priv->oldduplex = -1;
698 	}
699 
700 	if (new_state && netif_msg_link(priv))
701 		phy_print_status(phydev);
702 
703 	spin_unlock(&priv->mac_cfg_lock);
704 }
705 static struct phy_device *connect_local_phy(struct net_device *dev)
706 {
707 	struct altera_tse_private *priv = netdev_priv(dev);
708 	struct phy_device *phydev = NULL;
709 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
710 
711 	if (priv->phy_addr != POLL_PHY) {
712 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
713 			 priv->mdio->id, priv->phy_addr);
714 
715 		netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
716 
717 		phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
718 				     priv->phy_iface);
719 		if (IS_ERR(phydev))
720 			netdev_err(dev, "Could not attach to PHY\n");
721 
722 	} else {
723 		int ret;
724 		phydev = phy_find_first(priv->mdio);
725 		if (phydev == NULL) {
726 			netdev_err(dev, "No PHY found\n");
727 			return phydev;
728 		}
729 
730 		ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
731 				priv->phy_iface);
732 		if (ret != 0) {
733 			netdev_err(dev, "Could not attach to PHY\n");
734 			phydev = NULL;
735 		}
736 	}
737 	return phydev;
738 }
739 
740 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
741 {
742 	struct altera_tse_private *priv = netdev_priv(dev);
743 	struct device_node *np = priv->device->of_node;
744 	int ret = 0;
745 
746 	priv->phy_iface = of_get_phy_mode(np);
747 
748 	/* Avoid get phy addr and create mdio if no phy is present */
749 	if (!priv->phy_iface)
750 		return 0;
751 
752 	/* try to get PHY address from device tree, use PHY autodetection if
753 	 * no valid address is given
754 	 */
755 
756 	if (of_property_read_u32(priv->device->of_node, "phy-addr",
757 			 &priv->phy_addr)) {
758 		priv->phy_addr = POLL_PHY;
759 	}
760 
761 	if (!((priv->phy_addr == POLL_PHY) ||
762 		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
763 		netdev_err(dev, "invalid phy-addr specified %d\n",
764 			priv->phy_addr);
765 		return -ENODEV;
766 	}
767 
768 	/* Create/attach to MDIO bus */
769 	ret = altera_tse_mdio_create(dev,
770 					 atomic_add_return(1, &instance_count));
771 
772 	if (ret)
773 		return -ENODEV;
774 
775 	return 0;
776 }
777 
778 /* Initialize driver's PHY state, and attach to the PHY
779  */
780 static int init_phy(struct net_device *dev)
781 {
782 	struct altera_tse_private *priv = netdev_priv(dev);
783 	struct phy_device *phydev;
784 	struct device_node *phynode;
785 	bool fixed_link = false;
786 	int rc = 0;
787 
788 	/* Avoid init phy in case of no phy present */
789 	if (!priv->phy_iface)
790 		return 0;
791 
792 	priv->oldlink = 0;
793 	priv->oldspeed = 0;
794 	priv->oldduplex = -1;
795 
796 	phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
797 
798 	if (!phynode) {
799 		/* check if a fixed-link is defined in device-tree */
800 		if (of_phy_is_fixed_link(priv->device->of_node)) {
801 			rc = of_phy_register_fixed_link(priv->device->of_node);
802 			if (rc < 0) {
803 				netdev_err(dev, "cannot register fixed PHY\n");
804 				return rc;
805 			}
806 
807 			/* In the case of a fixed PHY, the DT node associated
808 			 * to the PHY is the Ethernet MAC DT node.
809 			 */
810 			phynode = of_node_get(priv->device->of_node);
811 			fixed_link = true;
812 
813 			netdev_dbg(dev, "fixed-link detected\n");
814 			phydev = of_phy_connect(dev, phynode,
815 						&altera_tse_adjust_link,
816 						0, priv->phy_iface);
817 		} else {
818 			netdev_dbg(dev, "no phy-handle found\n");
819 			if (!priv->mdio) {
820 				netdev_err(dev, "No phy-handle nor local mdio specified\n");
821 				return -ENODEV;
822 			}
823 			phydev = connect_local_phy(dev);
824 		}
825 	} else {
826 		netdev_dbg(dev, "phy-handle found\n");
827 		phydev = of_phy_connect(dev, phynode,
828 			&altera_tse_adjust_link, 0, priv->phy_iface);
829 	}
830 
831 	if (!phydev) {
832 		netdev_err(dev, "Could not find the PHY\n");
833 		return -ENODEV;
834 	}
835 
836 	/* Stop Advertising 1000BASE Capability if interface is not GMII
837 	 * Note: Checkpatch throws CHECKs for the camel case defines below,
838 	 * it's ok to ignore.
839 	 */
840 	if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
841 	    (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
842 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
843 					 SUPPORTED_1000baseT_Full);
844 
845 	/* Broken HW is sometimes missing the pull-up resistor on the
846 	 * MDIO line, which results in reads to non-existent devices returning
847 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
848 	 * device as well. If a fixed-link is used the phy_id is always 0.
849 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
850 	 */
851 	if ((phydev->phy_id == 0) && !fixed_link) {
852 		netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
853 		phy_disconnect(phydev);
854 		return -ENODEV;
855 	}
856 
857 	netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
858 		   phydev->addr, phydev->phy_id, phydev->link);
859 
860 	priv->phydev = phydev;
861 	return 0;
862 }
863 
864 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
865 {
866 	u32 msb;
867 	u32 lsb;
868 
869 	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
870 	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
871 
872 	/* Set primary MAC address */
873 	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
874 	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
875 }
876 
877 /* MAC software reset.
878  * When reset is triggered, the MAC function completes the current
879  * transmission or reception, and subsequently disables the transmit and
880  * receive logic, flushes the receive FIFO buffer, and resets the statistics
881  * counters.
882  */
883 static int reset_mac(struct altera_tse_private *priv)
884 {
885 	int counter;
886 	u32 dat;
887 
888 	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
889 	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
890 	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
891 	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
892 
893 	counter = 0;
894 	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
895 		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
896 				     MAC_CMDCFG_SW_RESET))
897 			break;
898 		udelay(1);
899 	}
900 
901 	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
902 		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
903 		dat &= ~MAC_CMDCFG_SW_RESET;
904 		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
905 		return -1;
906 	}
907 	return 0;
908 }
909 
910 /* Initialize MAC core registers
911 */
912 static int init_mac(struct altera_tse_private *priv)
913 {
914 	unsigned int cmd = 0;
915 	u32 frm_length;
916 
917 	/* Setup Rx FIFO */
918 	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
919 		priv->mac_dev, tse_csroffs(rx_section_empty));
920 
921 	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
922 		tse_csroffs(rx_section_full));
923 
924 	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
925 		tse_csroffs(rx_almost_empty));
926 
927 	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
928 		tse_csroffs(rx_almost_full));
929 
930 	/* Setup Tx FIFO */
931 	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
932 		priv->mac_dev, tse_csroffs(tx_section_empty));
933 
934 	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
935 		tse_csroffs(tx_section_full));
936 
937 	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
938 		tse_csroffs(tx_almost_empty));
939 
940 	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
941 		tse_csroffs(tx_almost_full));
942 
943 	/* MAC Address Configuration */
944 	tse_update_mac_addr(priv, priv->dev->dev_addr);
945 
946 	/* MAC Function Configuration */
947 	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
948 	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
949 
950 	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
951 		tse_csroffs(tx_ipg_length));
952 
953 	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
954 	 * start address
955 	 */
956 	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
957 		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
958 
959 	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
960 		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
961 		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
962 
963 	/* Set the MAC options */
964 	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
965 	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
966 	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
967 	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
968 					 * with CRC errors
969 					 */
970 	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
971 	cmd &= ~MAC_CMDCFG_TX_ENA;
972 	cmd &= ~MAC_CMDCFG_RX_ENA;
973 
974 	/* Default speed and duplex setting, full/100 */
975 	cmd &= ~MAC_CMDCFG_HD_ENA;
976 	cmd &= ~MAC_CMDCFG_ETH_SPEED;
977 	cmd &= ~MAC_CMDCFG_ENA_10;
978 
979 	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
980 
981 	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
982 		tse_csroffs(pause_quanta));
983 
984 	if (netif_msg_hw(priv))
985 		dev_dbg(priv->device,
986 			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
987 
988 	return 0;
989 }
990 
991 /* Start/stop MAC transmission logic
992  */
993 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
994 {
995 	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
996 
997 	if (enable)
998 		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
999 	else
1000 		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
1001 
1002 	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
1003 }
1004 
1005 /* Change the MTU
1006  */
1007 static int tse_change_mtu(struct net_device *dev, int new_mtu)
1008 {
1009 	struct altera_tse_private *priv = netdev_priv(dev);
1010 	unsigned int max_mtu = priv->max_mtu;
1011 	unsigned int min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1012 
1013 	if (netif_running(dev)) {
1014 		netdev_err(dev, "must be stopped to change its MTU\n");
1015 		return -EBUSY;
1016 	}
1017 
1018 	if ((new_mtu < min_mtu) || (new_mtu > max_mtu)) {
1019 		netdev_err(dev, "invalid MTU, max MTU is: %u\n", max_mtu);
1020 		return -EINVAL;
1021 	}
1022 
1023 	dev->mtu = new_mtu;
1024 	netdev_update_features(dev);
1025 
1026 	return 0;
1027 }
1028 
1029 static void altera_tse_set_mcfilter(struct net_device *dev)
1030 {
1031 	struct altera_tse_private *priv = netdev_priv(dev);
1032 	int i;
1033 	struct netdev_hw_addr *ha;
1034 
1035 	/* clear the hash filter */
1036 	for (i = 0; i < 64; i++)
1037 		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1038 
1039 	netdev_for_each_mc_addr(ha, dev) {
1040 		unsigned int hash = 0;
1041 		int mac_octet;
1042 
1043 		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1044 			unsigned char xor_bit = 0;
1045 			unsigned char octet = ha->addr[mac_octet];
1046 			unsigned int bitshift;
1047 
1048 			for (bitshift = 0; bitshift < 8; bitshift++)
1049 				xor_bit ^= ((octet >> bitshift) & 0x01);
1050 
1051 			hash = (hash << 1) | xor_bit;
1052 		}
1053 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1054 	}
1055 }
1056 
1057 
1058 static void altera_tse_set_mcfilterall(struct net_device *dev)
1059 {
1060 	struct altera_tse_private *priv = netdev_priv(dev);
1061 	int i;
1062 
1063 	/* set the hash filter */
1064 	for (i = 0; i < 64; i++)
1065 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1066 }
1067 
1068 /* Set or clear the multicast filter for this adaptor
1069  */
1070 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1071 {
1072 	struct altera_tse_private *priv = netdev_priv(dev);
1073 
1074 	spin_lock(&priv->mac_cfg_lock);
1075 
1076 	if (dev->flags & IFF_PROMISC)
1077 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1078 			    MAC_CMDCFG_PROMIS_EN);
1079 
1080 	if (dev->flags & IFF_ALLMULTI)
1081 		altera_tse_set_mcfilterall(dev);
1082 	else
1083 		altera_tse_set_mcfilter(dev);
1084 
1085 	spin_unlock(&priv->mac_cfg_lock);
1086 }
1087 
1088 /* Set or clear the multicast filter for this adaptor
1089  */
1090 static void tse_set_rx_mode(struct net_device *dev)
1091 {
1092 	struct altera_tse_private *priv = netdev_priv(dev);
1093 
1094 	spin_lock(&priv->mac_cfg_lock);
1095 
1096 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1097 	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1098 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1099 			    MAC_CMDCFG_PROMIS_EN);
1100 	else
1101 		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1102 			      MAC_CMDCFG_PROMIS_EN);
1103 
1104 	spin_unlock(&priv->mac_cfg_lock);
1105 }
1106 
1107 /* Open and initialize the interface
1108  */
1109 static int tse_open(struct net_device *dev)
1110 {
1111 	struct altera_tse_private *priv = netdev_priv(dev);
1112 	int ret = 0;
1113 	int i;
1114 	unsigned long int flags;
1115 
1116 	/* Reset and configure TSE MAC and probe associated PHY */
1117 	ret = priv->dmaops->init_dma(priv);
1118 	if (ret != 0) {
1119 		netdev_err(dev, "Cannot initialize DMA\n");
1120 		goto phy_error;
1121 	}
1122 
1123 	if (netif_msg_ifup(priv))
1124 		netdev_warn(dev, "device MAC address %pM\n",
1125 			    dev->dev_addr);
1126 
1127 	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1128 		netdev_warn(dev, "TSE revision %x\n", priv->revision);
1129 
1130 	spin_lock(&priv->mac_cfg_lock);
1131 	ret = reset_mac(priv);
1132 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1133 	 * due to the PHY being put into isolation or power down mode.
1134 	 * This is not an error if reset fails due to no clock.
1135 	 */
1136 	if (ret)
1137 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1138 
1139 	ret = init_mac(priv);
1140 	spin_unlock(&priv->mac_cfg_lock);
1141 	if (ret) {
1142 		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1143 		goto alloc_skbuf_error;
1144 	}
1145 
1146 	priv->dmaops->reset_dma(priv);
1147 
1148 	/* Create and initialize the TX/RX descriptors chains. */
1149 	priv->rx_ring_size = dma_rx_num;
1150 	priv->tx_ring_size = dma_tx_num;
1151 	ret = alloc_init_skbufs(priv);
1152 	if (ret) {
1153 		netdev_err(dev, "DMA descriptors initialization failed\n");
1154 		goto alloc_skbuf_error;
1155 	}
1156 
1157 
1158 	/* Register RX interrupt */
1159 	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1160 			  dev->name, dev);
1161 	if (ret) {
1162 		netdev_err(dev, "Unable to register RX interrupt %d\n",
1163 			   priv->rx_irq);
1164 		goto init_error;
1165 	}
1166 
1167 	/* Register TX interrupt */
1168 	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1169 			  dev->name, dev);
1170 	if (ret) {
1171 		netdev_err(dev, "Unable to register TX interrupt %d\n",
1172 			   priv->tx_irq);
1173 		goto tx_request_irq_error;
1174 	}
1175 
1176 	/* Enable DMA interrupts */
1177 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1178 	priv->dmaops->enable_rxirq(priv);
1179 	priv->dmaops->enable_txirq(priv);
1180 
1181 	/* Setup RX descriptor chain */
1182 	for (i = 0; i < priv->rx_ring_size; i++)
1183 		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1184 
1185 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1186 
1187 	if (priv->phydev)
1188 		phy_start(priv->phydev);
1189 
1190 	napi_enable(&priv->napi);
1191 	netif_start_queue(dev);
1192 
1193 	priv->dmaops->start_rxdma(priv);
1194 
1195 	/* Start MAC Rx/Tx */
1196 	spin_lock(&priv->mac_cfg_lock);
1197 	tse_set_mac(priv, true);
1198 	spin_unlock(&priv->mac_cfg_lock);
1199 
1200 	return 0;
1201 
1202 tx_request_irq_error:
1203 	free_irq(priv->rx_irq, dev);
1204 init_error:
1205 	free_skbufs(dev);
1206 alloc_skbuf_error:
1207 phy_error:
1208 	return ret;
1209 }
1210 
1211 /* Stop TSE MAC interface and put the device in an inactive state
1212  */
1213 static int tse_shutdown(struct net_device *dev)
1214 {
1215 	struct altera_tse_private *priv = netdev_priv(dev);
1216 	int ret;
1217 	unsigned long int flags;
1218 
1219 	/* Stop the PHY */
1220 	if (priv->phydev)
1221 		phy_stop(priv->phydev);
1222 
1223 	netif_stop_queue(dev);
1224 	napi_disable(&priv->napi);
1225 
1226 	/* Disable DMA interrupts */
1227 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1228 	priv->dmaops->disable_rxirq(priv);
1229 	priv->dmaops->disable_txirq(priv);
1230 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1231 
1232 	/* Free the IRQ lines */
1233 	free_irq(priv->rx_irq, dev);
1234 	free_irq(priv->tx_irq, dev);
1235 
1236 	/* disable and reset the MAC, empties fifo */
1237 	spin_lock(&priv->mac_cfg_lock);
1238 	spin_lock(&priv->tx_lock);
1239 
1240 	ret = reset_mac(priv);
1241 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1242 	 * due to the PHY being put into isolation or power down mode.
1243 	 * This is not an error if reset fails due to no clock.
1244 	 */
1245 	if (ret)
1246 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1247 	priv->dmaops->reset_dma(priv);
1248 	free_skbufs(dev);
1249 
1250 	spin_unlock(&priv->tx_lock);
1251 	spin_unlock(&priv->mac_cfg_lock);
1252 
1253 	priv->dmaops->uninit_dma(priv);
1254 
1255 	return 0;
1256 }
1257 
1258 static struct net_device_ops altera_tse_netdev_ops = {
1259 	.ndo_open		= tse_open,
1260 	.ndo_stop		= tse_shutdown,
1261 	.ndo_start_xmit		= tse_start_xmit,
1262 	.ndo_set_mac_address	= eth_mac_addr,
1263 	.ndo_set_rx_mode	= tse_set_rx_mode,
1264 	.ndo_change_mtu		= tse_change_mtu,
1265 	.ndo_validate_addr	= eth_validate_addr,
1266 };
1267 
1268 static int request_and_map(struct platform_device *pdev, const char *name,
1269 			   struct resource **res, void __iomem **ptr)
1270 {
1271 	struct resource *region;
1272 	struct device *device = &pdev->dev;
1273 
1274 	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1275 	if (*res == NULL) {
1276 		dev_err(device, "resource %s not defined\n", name);
1277 		return -ENODEV;
1278 	}
1279 
1280 	region = devm_request_mem_region(device, (*res)->start,
1281 					 resource_size(*res), dev_name(device));
1282 	if (region == NULL) {
1283 		dev_err(device, "unable to request %s\n", name);
1284 		return -EBUSY;
1285 	}
1286 
1287 	*ptr = devm_ioremap_nocache(device, region->start,
1288 				    resource_size(region));
1289 	if (*ptr == NULL) {
1290 		dev_err(device, "ioremap_nocache of %s failed!", name);
1291 		return -ENOMEM;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /* Probe Altera TSE MAC device
1298  */
1299 static int altera_tse_probe(struct platform_device *pdev)
1300 {
1301 	struct net_device *ndev;
1302 	int ret = -ENODEV;
1303 	struct resource *control_port;
1304 	struct resource *dma_res;
1305 	struct altera_tse_private *priv;
1306 	const unsigned char *macaddr;
1307 	void __iomem *descmap;
1308 	const struct of_device_id *of_id = NULL;
1309 
1310 	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1311 	if (!ndev) {
1312 		dev_err(&pdev->dev, "Could not allocate network device\n");
1313 		return -ENODEV;
1314 	}
1315 
1316 	SET_NETDEV_DEV(ndev, &pdev->dev);
1317 
1318 	priv = netdev_priv(ndev);
1319 	priv->device = &pdev->dev;
1320 	priv->dev = ndev;
1321 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1322 
1323 	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1324 
1325 	if (of_id)
1326 		priv->dmaops = (struct altera_dmaops *)of_id->data;
1327 
1328 
1329 	if (priv->dmaops &&
1330 	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1331 		/* Get the mapped address to the SGDMA descriptor memory */
1332 		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1333 		if (ret)
1334 			goto err_free_netdev;
1335 
1336 		/* Start of that memory is for transmit descriptors */
1337 		priv->tx_dma_desc = descmap;
1338 
1339 		/* First half is for tx descriptors, other half for tx */
1340 		priv->txdescmem = resource_size(dma_res)/2;
1341 
1342 		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1343 
1344 		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1345 						     priv->txdescmem));
1346 		priv->rxdescmem = resource_size(dma_res)/2;
1347 		priv->rxdescmem_busaddr = dma_res->start;
1348 		priv->rxdescmem_busaddr += priv->txdescmem;
1349 
1350 		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1351 			dev_dbg(priv->device,
1352 				"SGDMA bus addresses greater than 32-bits\n");
1353 			goto err_free_netdev;
1354 		}
1355 		if (upper_32_bits(priv->txdescmem_busaddr)) {
1356 			dev_dbg(priv->device,
1357 				"SGDMA bus addresses greater than 32-bits\n");
1358 			goto err_free_netdev;
1359 		}
1360 	} else if (priv->dmaops &&
1361 		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1362 		ret = request_and_map(pdev, "rx_resp", &dma_res,
1363 				      &priv->rx_dma_resp);
1364 		if (ret)
1365 			goto err_free_netdev;
1366 
1367 		ret = request_and_map(pdev, "tx_desc", &dma_res,
1368 				      &priv->tx_dma_desc);
1369 		if (ret)
1370 			goto err_free_netdev;
1371 
1372 		priv->txdescmem = resource_size(dma_res);
1373 		priv->txdescmem_busaddr = dma_res->start;
1374 
1375 		ret = request_and_map(pdev, "rx_desc", &dma_res,
1376 				      &priv->rx_dma_desc);
1377 		if (ret)
1378 			goto err_free_netdev;
1379 
1380 		priv->rxdescmem = resource_size(dma_res);
1381 		priv->rxdescmem_busaddr = dma_res->start;
1382 
1383 	} else {
1384 		goto err_free_netdev;
1385 	}
1386 
1387 	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1388 		dma_set_coherent_mask(priv->device,
1389 				      DMA_BIT_MASK(priv->dmaops->dmamask));
1390 	else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1391 		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1392 	else
1393 		goto err_free_netdev;
1394 
1395 	/* MAC address space */
1396 	ret = request_and_map(pdev, "control_port", &control_port,
1397 			      (void __iomem **)&priv->mac_dev);
1398 	if (ret)
1399 		goto err_free_netdev;
1400 
1401 	/* xSGDMA Rx Dispatcher address space */
1402 	ret = request_and_map(pdev, "rx_csr", &dma_res,
1403 			      &priv->rx_dma_csr);
1404 	if (ret)
1405 		goto err_free_netdev;
1406 
1407 
1408 	/* xSGDMA Tx Dispatcher address space */
1409 	ret = request_and_map(pdev, "tx_csr", &dma_res,
1410 			      &priv->tx_dma_csr);
1411 	if (ret)
1412 		goto err_free_netdev;
1413 
1414 
1415 	/* Rx IRQ */
1416 	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1417 	if (priv->rx_irq == -ENXIO) {
1418 		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1419 		ret = -ENXIO;
1420 		goto err_free_netdev;
1421 	}
1422 
1423 	/* Tx IRQ */
1424 	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1425 	if (priv->tx_irq == -ENXIO) {
1426 		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1427 		ret = -ENXIO;
1428 		goto err_free_netdev;
1429 	}
1430 
1431 	/* get FIFO depths from device tree */
1432 	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1433 				 &priv->rx_fifo_depth)) {
1434 		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1435 		ret = -ENXIO;
1436 		goto err_free_netdev;
1437 	}
1438 
1439 	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1440 				 &priv->tx_fifo_depth)) {
1441 		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1442 		ret = -ENXIO;
1443 		goto err_free_netdev;
1444 	}
1445 
1446 	/* get hash filter settings for this instance */
1447 	priv->hash_filter =
1448 		of_property_read_bool(pdev->dev.of_node,
1449 				      "altr,has-hash-multicast-filter");
1450 
1451 	/* Set hash filter to not set for now until the
1452 	 * multicast filter receive issue is debugged
1453 	 */
1454 	priv->hash_filter = 0;
1455 
1456 	/* get supplemental address settings for this instance */
1457 	priv->added_unicast =
1458 		of_property_read_bool(pdev->dev.of_node,
1459 				      "altr,has-supplementary-unicast");
1460 
1461 	/* Max MTU is 1500, ETH_DATA_LEN */
1462 	priv->max_mtu = ETH_DATA_LEN;
1463 
1464 	/* Get the max mtu from the device tree. Note that the
1465 	 * "max-frame-size" parameter is actually max mtu. Definition
1466 	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1467 	 */
1468 	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1469 			     &priv->max_mtu);
1470 
1471 	/* The DMA buffer size already accounts for an alignment bias
1472 	 * to avoid unaligned access exceptions for the NIOS processor,
1473 	 */
1474 	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1475 
1476 	/* get default MAC address from device tree */
1477 	macaddr = of_get_mac_address(pdev->dev.of_node);
1478 	if (macaddr)
1479 		ether_addr_copy(ndev->dev_addr, macaddr);
1480 	else
1481 		eth_hw_addr_random(ndev);
1482 
1483 	/* get phy addr and create mdio */
1484 	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1485 
1486 	if (ret)
1487 		goto err_free_netdev;
1488 
1489 	/* initialize netdev */
1490 	ndev->mem_start = control_port->start;
1491 	ndev->mem_end = control_port->end;
1492 	ndev->netdev_ops = &altera_tse_netdev_ops;
1493 	altera_tse_set_ethtool_ops(ndev);
1494 
1495 	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1496 
1497 	if (priv->hash_filter)
1498 		altera_tse_netdev_ops.ndo_set_rx_mode =
1499 			tse_set_rx_mode_hashfilter;
1500 
1501 	/* Scatter/gather IO is not supported,
1502 	 * so it is turned off
1503 	 */
1504 	ndev->hw_features &= ~NETIF_F_SG;
1505 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1506 
1507 	/* VLAN offloading of tagging, stripping and filtering is not
1508 	 * supported by hardware, but driver will accommodate the
1509 	 * extra 4-byte VLAN tag for processing by upper layers
1510 	 */
1511 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1512 
1513 	/* setup NAPI interface */
1514 	netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1515 
1516 	spin_lock_init(&priv->mac_cfg_lock);
1517 	spin_lock_init(&priv->tx_lock);
1518 	spin_lock_init(&priv->rxdma_irq_lock);
1519 
1520 	netif_carrier_off(ndev);
1521 	ret = register_netdev(ndev);
1522 	if (ret) {
1523 		dev_err(&pdev->dev, "failed to register TSE net device\n");
1524 		goto err_register_netdev;
1525 	}
1526 
1527 	platform_set_drvdata(pdev, ndev);
1528 
1529 	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1530 
1531 	if (netif_msg_probe(priv))
1532 		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1533 			 (priv->revision >> 8) & 0xff,
1534 			 priv->revision & 0xff,
1535 			 (unsigned long) control_port->start, priv->rx_irq,
1536 			 priv->tx_irq);
1537 
1538 	ret = init_phy(ndev);
1539 	if (ret != 0) {
1540 		netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1541 		goto err_init_phy;
1542 	}
1543 	return 0;
1544 
1545 err_init_phy:
1546 	unregister_netdev(ndev);
1547 err_register_netdev:
1548 	netif_napi_del(&priv->napi);
1549 	altera_tse_mdio_destroy(ndev);
1550 err_free_netdev:
1551 	free_netdev(ndev);
1552 	return ret;
1553 }
1554 
1555 /* Remove Altera TSE MAC device
1556  */
1557 static int altera_tse_remove(struct platform_device *pdev)
1558 {
1559 	struct net_device *ndev = platform_get_drvdata(pdev);
1560 	struct altera_tse_private *priv = netdev_priv(ndev);
1561 
1562 	if (priv->phydev)
1563 		phy_disconnect(priv->phydev);
1564 
1565 	platform_set_drvdata(pdev, NULL);
1566 	altera_tse_mdio_destroy(ndev);
1567 	unregister_netdev(ndev);
1568 	free_netdev(ndev);
1569 
1570 	return 0;
1571 }
1572 
1573 static const struct altera_dmaops altera_dtype_sgdma = {
1574 	.altera_dtype = ALTERA_DTYPE_SGDMA,
1575 	.dmamask = 32,
1576 	.reset_dma = sgdma_reset,
1577 	.enable_txirq = sgdma_enable_txirq,
1578 	.enable_rxirq = sgdma_enable_rxirq,
1579 	.disable_txirq = sgdma_disable_txirq,
1580 	.disable_rxirq = sgdma_disable_rxirq,
1581 	.clear_txirq = sgdma_clear_txirq,
1582 	.clear_rxirq = sgdma_clear_rxirq,
1583 	.tx_buffer = sgdma_tx_buffer,
1584 	.tx_completions = sgdma_tx_completions,
1585 	.add_rx_desc = sgdma_add_rx_desc,
1586 	.get_rx_status = sgdma_rx_status,
1587 	.init_dma = sgdma_initialize,
1588 	.uninit_dma = sgdma_uninitialize,
1589 	.start_rxdma = sgdma_start_rxdma,
1590 };
1591 
1592 static const struct altera_dmaops altera_dtype_msgdma = {
1593 	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1594 	.dmamask = 64,
1595 	.reset_dma = msgdma_reset,
1596 	.enable_txirq = msgdma_enable_txirq,
1597 	.enable_rxirq = msgdma_enable_rxirq,
1598 	.disable_txirq = msgdma_disable_txirq,
1599 	.disable_rxirq = msgdma_disable_rxirq,
1600 	.clear_txirq = msgdma_clear_txirq,
1601 	.clear_rxirq = msgdma_clear_rxirq,
1602 	.tx_buffer = msgdma_tx_buffer,
1603 	.tx_completions = msgdma_tx_completions,
1604 	.add_rx_desc = msgdma_add_rx_desc,
1605 	.get_rx_status = msgdma_rx_status,
1606 	.init_dma = msgdma_initialize,
1607 	.uninit_dma = msgdma_uninitialize,
1608 	.start_rxdma = msgdma_start_rxdma,
1609 };
1610 
1611 static const struct of_device_id altera_tse_ids[] = {
1612 	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1613 	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1614 	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1615 	{},
1616 };
1617 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1618 
1619 static struct platform_driver altera_tse_driver = {
1620 	.probe		= altera_tse_probe,
1621 	.remove		= altera_tse_remove,
1622 	.suspend	= NULL,
1623 	.resume		= NULL,
1624 	.driver		= {
1625 		.name	= ALTERA_TSE_RESOURCE_NAME,
1626 		.of_match_table = altera_tse_ids,
1627 	},
1628 };
1629 
1630 module_platform_driver(altera_tse_driver);
1631 
1632 MODULE_AUTHOR("Altera Corporation");
1633 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1634 MODULE_LICENSE("GPL v2");
1635