1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Altera Triple-Speed Ethernet MAC driver 3 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved 4 * 5 * Contributors: 6 * Dalon Westergreen 7 * Thomas Chou 8 * Ian Abbott 9 * Yuriy Kozlov 10 * Tobias Klauser 11 * Andriy Smolskyy 12 * Roman Bulgakov 13 * Dmytro Mytarchuk 14 * Matthew Gerlach 15 * 16 * Original driver contributed by SLS. 17 * Major updates contributed by GlobalLogic 18 */ 19 20 #include <linux/atomic.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/io.h> 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/mii.h> 30 #include <linux/netdevice.h> 31 #include <linux/of_device.h> 32 #include <linux/of_mdio.h> 33 #include <linux/of_net.h> 34 #include <linux/of_platform.h> 35 #include <linux/phy.h> 36 #include <linux/platform_device.h> 37 #include <linux/skbuff.h> 38 #include <asm/cacheflush.h> 39 40 #include "altera_utils.h" 41 #include "altera_tse.h" 42 #include "altera_sgdma.h" 43 #include "altera_msgdma.h" 44 45 static atomic_t instance_count = ATOMIC_INIT(~0); 46 /* Module parameters */ 47 static int debug = -1; 48 module_param(debug, int, 0644); 49 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 50 51 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 52 NETIF_MSG_LINK | NETIF_MSG_IFUP | 53 NETIF_MSG_IFDOWN); 54 55 #define RX_DESCRIPTORS 64 56 static int dma_rx_num = RX_DESCRIPTORS; 57 module_param(dma_rx_num, int, 0644); 58 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list"); 59 60 #define TX_DESCRIPTORS 64 61 static int dma_tx_num = TX_DESCRIPTORS; 62 module_param(dma_tx_num, int, 0644); 63 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list"); 64 65 66 #define POLL_PHY (-1) 67 68 /* Make sure DMA buffer size is larger than the max frame size 69 * plus some alignment offset and a VLAN header. If the max frame size is 70 * 1518, a VLAN header would be additional 4 bytes and additional 71 * headroom for alignment is 2 bytes, 2048 is just fine. 72 */ 73 #define ALTERA_RXDMABUFFER_SIZE 2048 74 75 /* Allow network stack to resume queueing packets after we've 76 * finished transmitting at least 1/4 of the packets in the queue. 77 */ 78 #define TSE_TX_THRESH(x) (x->tx_ring_size / 4) 79 80 #define TXQUEUESTOP_THRESHHOLD 2 81 82 static const struct of_device_id altera_tse_ids[]; 83 84 static inline u32 tse_tx_avail(struct altera_tse_private *priv) 85 { 86 return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1; 87 } 88 89 /* PCS Register read/write functions 90 */ 91 static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum) 92 { 93 return csrrd32(priv->mac_dev, 94 tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff; 95 } 96 97 static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum, 98 u16 value) 99 { 100 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4); 101 } 102 103 /* Check PCS scratch memory */ 104 static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value) 105 { 106 sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value); 107 return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value); 108 } 109 110 /* MDIO specific functions 111 */ 112 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 113 { 114 struct net_device *ndev = bus->priv; 115 struct altera_tse_private *priv = netdev_priv(ndev); 116 117 /* set MDIO address */ 118 csrwr32((mii_id & 0x1f), priv->mac_dev, 119 tse_csroffs(mdio_phy1_addr)); 120 121 /* get the data */ 122 return csrrd32(priv->mac_dev, 123 tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff; 124 } 125 126 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 127 u16 value) 128 { 129 struct net_device *ndev = bus->priv; 130 struct altera_tse_private *priv = netdev_priv(ndev); 131 132 /* set MDIO address */ 133 csrwr32((mii_id & 0x1f), priv->mac_dev, 134 tse_csroffs(mdio_phy1_addr)); 135 136 /* write the data */ 137 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4); 138 return 0; 139 } 140 141 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id) 142 { 143 struct altera_tse_private *priv = netdev_priv(dev); 144 int ret; 145 struct device_node *mdio_node = NULL; 146 struct mii_bus *mdio = NULL; 147 struct device_node *child_node = NULL; 148 149 for_each_child_of_node(priv->device->of_node, child_node) { 150 if (of_device_is_compatible(child_node, "altr,tse-mdio")) { 151 mdio_node = child_node; 152 break; 153 } 154 } 155 156 if (mdio_node) { 157 netdev_dbg(dev, "FOUND MDIO subnode\n"); 158 } else { 159 netdev_dbg(dev, "NO MDIO subnode\n"); 160 return 0; 161 } 162 163 mdio = mdiobus_alloc(); 164 if (mdio == NULL) { 165 netdev_err(dev, "Error allocating MDIO bus\n"); 166 return -ENOMEM; 167 } 168 169 mdio->name = ALTERA_TSE_RESOURCE_NAME; 170 mdio->read = &altera_tse_mdio_read; 171 mdio->write = &altera_tse_mdio_write; 172 snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id); 173 174 mdio->priv = dev; 175 mdio->parent = priv->device; 176 177 ret = of_mdiobus_register(mdio, mdio_node); 178 if (ret != 0) { 179 netdev_err(dev, "Cannot register MDIO bus %s\n", 180 mdio->id); 181 goto out_free_mdio; 182 } 183 184 if (netif_msg_drv(priv)) 185 netdev_info(dev, "MDIO bus %s: created\n", mdio->id); 186 187 priv->mdio = mdio; 188 return 0; 189 out_free_mdio: 190 mdiobus_free(mdio); 191 mdio = NULL; 192 return ret; 193 } 194 195 static void altera_tse_mdio_destroy(struct net_device *dev) 196 { 197 struct altera_tse_private *priv = netdev_priv(dev); 198 199 if (priv->mdio == NULL) 200 return; 201 202 if (netif_msg_drv(priv)) 203 netdev_info(dev, "MDIO bus %s: removed\n", 204 priv->mdio->id); 205 206 mdiobus_unregister(priv->mdio); 207 mdiobus_free(priv->mdio); 208 priv->mdio = NULL; 209 } 210 211 static int tse_init_rx_buffer(struct altera_tse_private *priv, 212 struct tse_buffer *rxbuffer, int len) 213 { 214 rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len); 215 if (!rxbuffer->skb) 216 return -ENOMEM; 217 218 rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data, 219 len, 220 DMA_FROM_DEVICE); 221 222 if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) { 223 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 224 dev_kfree_skb_any(rxbuffer->skb); 225 return -EINVAL; 226 } 227 rxbuffer->dma_addr &= (dma_addr_t)~3; 228 rxbuffer->len = len; 229 return 0; 230 } 231 232 static void tse_free_rx_buffer(struct altera_tse_private *priv, 233 struct tse_buffer *rxbuffer) 234 { 235 struct sk_buff *skb = rxbuffer->skb; 236 dma_addr_t dma_addr = rxbuffer->dma_addr; 237 238 if (skb != NULL) { 239 if (dma_addr) 240 dma_unmap_single(priv->device, dma_addr, 241 rxbuffer->len, 242 DMA_FROM_DEVICE); 243 dev_kfree_skb_any(skb); 244 rxbuffer->skb = NULL; 245 rxbuffer->dma_addr = 0; 246 } 247 } 248 249 /* Unmap and free Tx buffer resources 250 */ 251 static void tse_free_tx_buffer(struct altera_tse_private *priv, 252 struct tse_buffer *buffer) 253 { 254 if (buffer->dma_addr) { 255 if (buffer->mapped_as_page) 256 dma_unmap_page(priv->device, buffer->dma_addr, 257 buffer->len, DMA_TO_DEVICE); 258 else 259 dma_unmap_single(priv->device, buffer->dma_addr, 260 buffer->len, DMA_TO_DEVICE); 261 buffer->dma_addr = 0; 262 } 263 if (buffer->skb) { 264 dev_kfree_skb_any(buffer->skb); 265 buffer->skb = NULL; 266 } 267 } 268 269 static int alloc_init_skbufs(struct altera_tse_private *priv) 270 { 271 unsigned int rx_descs = priv->rx_ring_size; 272 unsigned int tx_descs = priv->tx_ring_size; 273 int ret = -ENOMEM; 274 int i; 275 276 /* Create Rx ring buffer */ 277 priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer), 278 GFP_KERNEL); 279 if (!priv->rx_ring) 280 goto err_rx_ring; 281 282 /* Create Tx ring buffer */ 283 priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer), 284 GFP_KERNEL); 285 if (!priv->tx_ring) 286 goto err_tx_ring; 287 288 priv->tx_cons = 0; 289 priv->tx_prod = 0; 290 291 /* Init Rx ring */ 292 for (i = 0; i < rx_descs; i++) { 293 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i], 294 priv->rx_dma_buf_sz); 295 if (ret) 296 goto err_init_rx_buffers; 297 } 298 299 priv->rx_cons = 0; 300 priv->rx_prod = 0; 301 302 return 0; 303 err_init_rx_buffers: 304 while (--i >= 0) 305 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 306 kfree(priv->tx_ring); 307 err_tx_ring: 308 kfree(priv->rx_ring); 309 err_rx_ring: 310 return ret; 311 } 312 313 static void free_skbufs(struct net_device *dev) 314 { 315 struct altera_tse_private *priv = netdev_priv(dev); 316 unsigned int rx_descs = priv->rx_ring_size; 317 unsigned int tx_descs = priv->tx_ring_size; 318 int i; 319 320 /* Release the DMA TX/RX socket buffers */ 321 for (i = 0; i < rx_descs; i++) 322 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 323 for (i = 0; i < tx_descs; i++) 324 tse_free_tx_buffer(priv, &priv->tx_ring[i]); 325 326 327 kfree(priv->tx_ring); 328 } 329 330 /* Reallocate the skb for the reception process 331 */ 332 static inline void tse_rx_refill(struct altera_tse_private *priv) 333 { 334 unsigned int rxsize = priv->rx_ring_size; 335 unsigned int entry; 336 int ret; 337 338 for (; priv->rx_cons - priv->rx_prod > 0; 339 priv->rx_prod++) { 340 entry = priv->rx_prod % rxsize; 341 if (likely(priv->rx_ring[entry].skb == NULL)) { 342 ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry], 343 priv->rx_dma_buf_sz); 344 if (unlikely(ret != 0)) 345 break; 346 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]); 347 } 348 } 349 } 350 351 /* Pull out the VLAN tag and fix up the packet 352 */ 353 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb) 354 { 355 struct ethhdr *eth_hdr; 356 u16 vid; 357 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 358 !__vlan_get_tag(skb, &vid)) { 359 eth_hdr = (struct ethhdr *)skb->data; 360 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2); 361 skb_pull(skb, VLAN_HLEN); 362 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 363 } 364 } 365 366 /* Receive a packet: retrieve and pass over to upper levels 367 */ 368 static int tse_rx(struct altera_tse_private *priv, int limit) 369 { 370 unsigned int count = 0; 371 unsigned int next_entry; 372 struct sk_buff *skb; 373 unsigned int entry = priv->rx_cons % priv->rx_ring_size; 374 u32 rxstatus; 375 u16 pktlength; 376 u16 pktstatus; 377 378 /* Check for count < limit first as get_rx_status is changing 379 * the response-fifo so we must process the next packet 380 * after calling get_rx_status if a response is pending. 381 * (reading the last byte of the response pops the value from the fifo.) 382 */ 383 while ((count < limit) && 384 ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) { 385 pktstatus = rxstatus >> 16; 386 pktlength = rxstatus & 0xffff; 387 388 if ((pktstatus & 0xFF) || (pktlength == 0)) 389 netdev_err(priv->dev, 390 "RCV pktstatus %08X pktlength %08X\n", 391 pktstatus, pktlength); 392 393 /* DMA trasfer from TSE starts with 2 aditional bytes for 394 * IP payload alignment. Status returned by get_rx_status() 395 * contains DMA transfer length. Packet is 2 bytes shorter. 396 */ 397 pktlength -= 2; 398 399 count++; 400 next_entry = (++priv->rx_cons) % priv->rx_ring_size; 401 402 skb = priv->rx_ring[entry].skb; 403 if (unlikely(!skb)) { 404 netdev_err(priv->dev, 405 "%s: Inconsistent Rx descriptor chain\n", 406 __func__); 407 priv->dev->stats.rx_dropped++; 408 break; 409 } 410 priv->rx_ring[entry].skb = NULL; 411 412 skb_put(skb, pktlength); 413 414 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr, 415 priv->rx_ring[entry].len, DMA_FROM_DEVICE); 416 417 if (netif_msg_pktdata(priv)) { 418 netdev_info(priv->dev, "frame received %d bytes\n", 419 pktlength); 420 print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET, 421 16, 1, skb->data, pktlength, true); 422 } 423 424 tse_rx_vlan(priv->dev, skb); 425 426 skb->protocol = eth_type_trans(skb, priv->dev); 427 skb_checksum_none_assert(skb); 428 429 napi_gro_receive(&priv->napi, skb); 430 431 priv->dev->stats.rx_packets++; 432 priv->dev->stats.rx_bytes += pktlength; 433 434 entry = next_entry; 435 436 tse_rx_refill(priv); 437 } 438 439 return count; 440 } 441 442 /* Reclaim resources after transmission completes 443 */ 444 static int tse_tx_complete(struct altera_tse_private *priv) 445 { 446 unsigned int txsize = priv->tx_ring_size; 447 u32 ready; 448 unsigned int entry; 449 struct tse_buffer *tx_buff; 450 int txcomplete = 0; 451 452 spin_lock(&priv->tx_lock); 453 454 ready = priv->dmaops->tx_completions(priv); 455 456 /* Free sent buffers */ 457 while (ready && (priv->tx_cons != priv->tx_prod)) { 458 entry = priv->tx_cons % txsize; 459 tx_buff = &priv->tx_ring[entry]; 460 461 if (netif_msg_tx_done(priv)) 462 netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n", 463 __func__, priv->tx_prod, priv->tx_cons); 464 465 if (likely(tx_buff->skb)) 466 priv->dev->stats.tx_packets++; 467 468 tse_free_tx_buffer(priv, tx_buff); 469 priv->tx_cons++; 470 471 txcomplete++; 472 ready--; 473 } 474 475 if (unlikely(netif_queue_stopped(priv->dev) && 476 tse_tx_avail(priv) > TSE_TX_THRESH(priv))) { 477 if (netif_queue_stopped(priv->dev) && 478 tse_tx_avail(priv) > TSE_TX_THRESH(priv)) { 479 if (netif_msg_tx_done(priv)) 480 netdev_dbg(priv->dev, "%s: restart transmit\n", 481 __func__); 482 netif_wake_queue(priv->dev); 483 } 484 } 485 486 spin_unlock(&priv->tx_lock); 487 return txcomplete; 488 } 489 490 /* NAPI polling function 491 */ 492 static int tse_poll(struct napi_struct *napi, int budget) 493 { 494 struct altera_tse_private *priv = 495 container_of(napi, struct altera_tse_private, napi); 496 int rxcomplete = 0; 497 unsigned long int flags; 498 499 tse_tx_complete(priv); 500 501 rxcomplete = tse_rx(priv, budget); 502 503 if (rxcomplete < budget) { 504 505 napi_complete_done(napi, rxcomplete); 506 507 netdev_dbg(priv->dev, 508 "NAPI Complete, did %d packets with budget %d\n", 509 rxcomplete, budget); 510 511 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 512 priv->dmaops->enable_rxirq(priv); 513 priv->dmaops->enable_txirq(priv); 514 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 515 } 516 return rxcomplete; 517 } 518 519 /* DMA TX & RX FIFO interrupt routing 520 */ 521 static irqreturn_t altera_isr(int irq, void *dev_id) 522 { 523 struct net_device *dev = dev_id; 524 struct altera_tse_private *priv; 525 526 if (unlikely(!dev)) { 527 pr_err("%s: invalid dev pointer\n", __func__); 528 return IRQ_NONE; 529 } 530 priv = netdev_priv(dev); 531 532 spin_lock(&priv->rxdma_irq_lock); 533 /* reset IRQs */ 534 priv->dmaops->clear_rxirq(priv); 535 priv->dmaops->clear_txirq(priv); 536 spin_unlock(&priv->rxdma_irq_lock); 537 538 if (likely(napi_schedule_prep(&priv->napi))) { 539 spin_lock(&priv->rxdma_irq_lock); 540 priv->dmaops->disable_rxirq(priv); 541 priv->dmaops->disable_txirq(priv); 542 spin_unlock(&priv->rxdma_irq_lock); 543 __napi_schedule(&priv->napi); 544 } 545 546 547 return IRQ_HANDLED; 548 } 549 550 /* Transmit a packet (called by the kernel). Dispatches 551 * either the SGDMA method for transmitting or the 552 * MSGDMA method, assumes no scatter/gather support, 553 * implying an assumption that there's only one 554 * physically contiguous fragment starting at 555 * skb->data, for length of skb_headlen(skb). 556 */ 557 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev) 558 { 559 struct altera_tse_private *priv = netdev_priv(dev); 560 unsigned int txsize = priv->tx_ring_size; 561 unsigned int entry; 562 struct tse_buffer *buffer = NULL; 563 int nfrags = skb_shinfo(skb)->nr_frags; 564 unsigned int nopaged_len = skb_headlen(skb); 565 enum netdev_tx ret = NETDEV_TX_OK; 566 dma_addr_t dma_addr; 567 568 spin_lock_bh(&priv->tx_lock); 569 570 if (unlikely(tse_tx_avail(priv) < nfrags + 1)) { 571 if (!netif_queue_stopped(dev)) { 572 netif_stop_queue(dev); 573 /* This is a hard error, log it. */ 574 netdev_err(priv->dev, 575 "%s: Tx list full when queue awake\n", 576 __func__); 577 } 578 ret = NETDEV_TX_BUSY; 579 goto out; 580 } 581 582 /* Map the first skb fragment */ 583 entry = priv->tx_prod % txsize; 584 buffer = &priv->tx_ring[entry]; 585 586 dma_addr = dma_map_single(priv->device, skb->data, nopaged_len, 587 DMA_TO_DEVICE); 588 if (dma_mapping_error(priv->device, dma_addr)) { 589 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 590 ret = NETDEV_TX_OK; 591 goto out; 592 } 593 594 buffer->skb = skb; 595 buffer->dma_addr = dma_addr; 596 buffer->len = nopaged_len; 597 598 priv->dmaops->tx_buffer(priv, buffer); 599 600 skb_tx_timestamp(skb); 601 602 priv->tx_prod++; 603 dev->stats.tx_bytes += skb->len; 604 605 if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) { 606 if (netif_msg_hw(priv)) 607 netdev_dbg(priv->dev, "%s: stop transmitted packets\n", 608 __func__); 609 netif_stop_queue(dev); 610 } 611 612 out: 613 spin_unlock_bh(&priv->tx_lock); 614 615 return ret; 616 } 617 618 /* Called every time the controller might need to be made 619 * aware of new link state. The PHY code conveys this 620 * information through variables in the phydev structure, and this 621 * function converts those variables into the appropriate 622 * register values, and can bring down the device if needed. 623 */ 624 static void altera_tse_adjust_link(struct net_device *dev) 625 { 626 struct altera_tse_private *priv = netdev_priv(dev); 627 struct phy_device *phydev = dev->phydev; 628 int new_state = 0; 629 630 /* only change config if there is a link */ 631 spin_lock(&priv->mac_cfg_lock); 632 if (phydev->link) { 633 /* Read old config */ 634 u32 cfg_reg = ioread32(&priv->mac_dev->command_config); 635 636 /* Check duplex */ 637 if (phydev->duplex != priv->oldduplex) { 638 new_state = 1; 639 if (!(phydev->duplex)) 640 cfg_reg |= MAC_CMDCFG_HD_ENA; 641 else 642 cfg_reg &= ~MAC_CMDCFG_HD_ENA; 643 644 netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n", 645 dev->name, phydev->duplex); 646 647 priv->oldduplex = phydev->duplex; 648 } 649 650 /* Check speed */ 651 if (phydev->speed != priv->oldspeed) { 652 new_state = 1; 653 switch (phydev->speed) { 654 case 1000: 655 cfg_reg |= MAC_CMDCFG_ETH_SPEED; 656 cfg_reg &= ~MAC_CMDCFG_ENA_10; 657 break; 658 case 100: 659 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED; 660 cfg_reg &= ~MAC_CMDCFG_ENA_10; 661 break; 662 case 10: 663 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED; 664 cfg_reg |= MAC_CMDCFG_ENA_10; 665 break; 666 default: 667 if (netif_msg_link(priv)) 668 netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n", 669 phydev->speed); 670 break; 671 } 672 priv->oldspeed = phydev->speed; 673 } 674 iowrite32(cfg_reg, &priv->mac_dev->command_config); 675 676 if (!priv->oldlink) { 677 new_state = 1; 678 priv->oldlink = 1; 679 } 680 } else if (priv->oldlink) { 681 new_state = 1; 682 priv->oldlink = 0; 683 priv->oldspeed = 0; 684 priv->oldduplex = -1; 685 } 686 687 if (new_state && netif_msg_link(priv)) 688 phy_print_status(phydev); 689 690 spin_unlock(&priv->mac_cfg_lock); 691 } 692 static struct phy_device *connect_local_phy(struct net_device *dev) 693 { 694 struct altera_tse_private *priv = netdev_priv(dev); 695 struct phy_device *phydev = NULL; 696 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 697 698 if (priv->phy_addr != POLL_PHY) { 699 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, 700 priv->mdio->id, priv->phy_addr); 701 702 netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt); 703 704 phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link, 705 priv->phy_iface); 706 if (IS_ERR(phydev)) { 707 netdev_err(dev, "Could not attach to PHY\n"); 708 phydev = NULL; 709 } 710 711 } else { 712 int ret; 713 phydev = phy_find_first(priv->mdio); 714 if (phydev == NULL) { 715 netdev_err(dev, "No PHY found\n"); 716 return phydev; 717 } 718 719 ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link, 720 priv->phy_iface); 721 if (ret != 0) { 722 netdev_err(dev, "Could not attach to PHY\n"); 723 phydev = NULL; 724 } 725 } 726 return phydev; 727 } 728 729 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev) 730 { 731 struct altera_tse_private *priv = netdev_priv(dev); 732 struct device_node *np = priv->device->of_node; 733 int ret = 0; 734 735 priv->phy_iface = of_get_phy_mode(np); 736 737 /* Avoid get phy addr and create mdio if no phy is present */ 738 if (!priv->phy_iface) 739 return 0; 740 741 /* try to get PHY address from device tree, use PHY autodetection if 742 * no valid address is given 743 */ 744 745 if (of_property_read_u32(priv->device->of_node, "phy-addr", 746 &priv->phy_addr)) { 747 priv->phy_addr = POLL_PHY; 748 } 749 750 if (!((priv->phy_addr == POLL_PHY) || 751 ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) { 752 netdev_err(dev, "invalid phy-addr specified %d\n", 753 priv->phy_addr); 754 return -ENODEV; 755 } 756 757 /* Create/attach to MDIO bus */ 758 ret = altera_tse_mdio_create(dev, 759 atomic_add_return(1, &instance_count)); 760 761 if (ret) 762 return -ENODEV; 763 764 return 0; 765 } 766 767 /* Initialize driver's PHY state, and attach to the PHY 768 */ 769 static int init_phy(struct net_device *dev) 770 { 771 struct altera_tse_private *priv = netdev_priv(dev); 772 struct phy_device *phydev; 773 struct device_node *phynode; 774 bool fixed_link = false; 775 int rc = 0; 776 777 /* Avoid init phy in case of no phy present */ 778 if (!priv->phy_iface) 779 return 0; 780 781 priv->oldlink = 0; 782 priv->oldspeed = 0; 783 priv->oldduplex = -1; 784 785 phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0); 786 787 if (!phynode) { 788 /* check if a fixed-link is defined in device-tree */ 789 if (of_phy_is_fixed_link(priv->device->of_node)) { 790 rc = of_phy_register_fixed_link(priv->device->of_node); 791 if (rc < 0) { 792 netdev_err(dev, "cannot register fixed PHY\n"); 793 return rc; 794 } 795 796 /* In the case of a fixed PHY, the DT node associated 797 * to the PHY is the Ethernet MAC DT node. 798 */ 799 phynode = of_node_get(priv->device->of_node); 800 fixed_link = true; 801 802 netdev_dbg(dev, "fixed-link detected\n"); 803 phydev = of_phy_connect(dev, phynode, 804 &altera_tse_adjust_link, 805 0, priv->phy_iface); 806 } else { 807 netdev_dbg(dev, "no phy-handle found\n"); 808 if (!priv->mdio) { 809 netdev_err(dev, "No phy-handle nor local mdio specified\n"); 810 return -ENODEV; 811 } 812 phydev = connect_local_phy(dev); 813 } 814 } else { 815 netdev_dbg(dev, "phy-handle found\n"); 816 phydev = of_phy_connect(dev, phynode, 817 &altera_tse_adjust_link, 0, priv->phy_iface); 818 } 819 of_node_put(phynode); 820 821 if (!phydev) { 822 netdev_err(dev, "Could not find the PHY\n"); 823 if (fixed_link) 824 of_phy_deregister_fixed_link(priv->device->of_node); 825 return -ENODEV; 826 } 827 828 /* Stop Advertising 1000BASE Capability if interface is not GMII 829 */ 830 if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) || 831 (priv->phy_iface == PHY_INTERFACE_MODE_RMII)) 832 phy_set_max_speed(phydev, SPEED_100); 833 834 /* Broken HW is sometimes missing the pull-up resistor on the 835 * MDIO line, which results in reads to non-existent devices returning 836 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 837 * device as well. If a fixed-link is used the phy_id is always 0. 838 * Note: phydev->phy_id is the result of reading the UID PHY registers. 839 */ 840 if ((phydev->phy_id == 0) && !fixed_link) { 841 netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id); 842 phy_disconnect(phydev); 843 return -ENODEV; 844 } 845 846 netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n", 847 phydev->mdio.addr, phydev->phy_id, phydev->link); 848 849 return 0; 850 } 851 852 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr) 853 { 854 u32 msb; 855 u32 lsb; 856 857 msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; 858 lsb = ((addr[5] << 8) | addr[4]) & 0xffff; 859 860 /* Set primary MAC address */ 861 csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0)); 862 csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1)); 863 } 864 865 /* MAC software reset. 866 * When reset is triggered, the MAC function completes the current 867 * transmission or reception, and subsequently disables the transmit and 868 * receive logic, flushes the receive FIFO buffer, and resets the statistics 869 * counters. 870 */ 871 static int reset_mac(struct altera_tse_private *priv) 872 { 873 int counter; 874 u32 dat; 875 876 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 877 dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 878 dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET; 879 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 880 881 counter = 0; 882 while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 883 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config), 884 MAC_CMDCFG_SW_RESET)) 885 break; 886 udelay(1); 887 } 888 889 if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 890 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 891 dat &= ~MAC_CMDCFG_SW_RESET; 892 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 893 return -1; 894 } 895 return 0; 896 } 897 898 /* Initialize MAC core registers 899 */ 900 static int init_mac(struct altera_tse_private *priv) 901 { 902 unsigned int cmd = 0; 903 u32 frm_length; 904 905 /* Setup Rx FIFO */ 906 csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY, 907 priv->mac_dev, tse_csroffs(rx_section_empty)); 908 909 csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev, 910 tse_csroffs(rx_section_full)); 911 912 csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev, 913 tse_csroffs(rx_almost_empty)); 914 915 csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev, 916 tse_csroffs(rx_almost_full)); 917 918 /* Setup Tx FIFO */ 919 csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY, 920 priv->mac_dev, tse_csroffs(tx_section_empty)); 921 922 csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev, 923 tse_csroffs(tx_section_full)); 924 925 csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev, 926 tse_csroffs(tx_almost_empty)); 927 928 csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev, 929 tse_csroffs(tx_almost_full)); 930 931 /* MAC Address Configuration */ 932 tse_update_mac_addr(priv, priv->dev->dev_addr); 933 934 /* MAC Function Configuration */ 935 frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN; 936 csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length)); 937 938 csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev, 939 tse_csroffs(tx_ipg_length)); 940 941 /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit 942 * start address 943 */ 944 tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat), 945 ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16); 946 947 tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat), 948 ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 | 949 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC); 950 951 /* Set the MAC options */ 952 cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 953 cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */ 954 cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */ 955 cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames 956 * with CRC errors 957 */ 958 cmd |= MAC_CMDCFG_CNTL_FRM_ENA; 959 cmd &= ~MAC_CMDCFG_TX_ENA; 960 cmd &= ~MAC_CMDCFG_RX_ENA; 961 962 /* Default speed and duplex setting, full/100 */ 963 cmd &= ~MAC_CMDCFG_HD_ENA; 964 cmd &= ~MAC_CMDCFG_ETH_SPEED; 965 cmd &= ~MAC_CMDCFG_ENA_10; 966 967 csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config)); 968 969 csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev, 970 tse_csroffs(pause_quanta)); 971 972 if (netif_msg_hw(priv)) 973 dev_dbg(priv->device, 974 "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd); 975 976 return 0; 977 } 978 979 /* Start/stop MAC transmission logic 980 */ 981 static void tse_set_mac(struct altera_tse_private *priv, bool enable) 982 { 983 u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 984 985 if (enable) 986 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA; 987 else 988 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 989 990 csrwr32(value, priv->mac_dev, tse_csroffs(command_config)); 991 } 992 993 /* Change the MTU 994 */ 995 static int tse_change_mtu(struct net_device *dev, int new_mtu) 996 { 997 if (netif_running(dev)) { 998 netdev_err(dev, "must be stopped to change its MTU\n"); 999 return -EBUSY; 1000 } 1001 1002 dev->mtu = new_mtu; 1003 netdev_update_features(dev); 1004 1005 return 0; 1006 } 1007 1008 static void altera_tse_set_mcfilter(struct net_device *dev) 1009 { 1010 struct altera_tse_private *priv = netdev_priv(dev); 1011 int i; 1012 struct netdev_hw_addr *ha; 1013 1014 /* clear the hash filter */ 1015 for (i = 0; i < 64; i++) 1016 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 1017 1018 netdev_for_each_mc_addr(ha, dev) { 1019 unsigned int hash = 0; 1020 int mac_octet; 1021 1022 for (mac_octet = 5; mac_octet >= 0; mac_octet--) { 1023 unsigned char xor_bit = 0; 1024 unsigned char octet = ha->addr[mac_octet]; 1025 unsigned int bitshift; 1026 1027 for (bitshift = 0; bitshift < 8; bitshift++) 1028 xor_bit ^= ((octet >> bitshift) & 0x01); 1029 1030 hash = (hash << 1) | xor_bit; 1031 } 1032 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4); 1033 } 1034 } 1035 1036 1037 static void altera_tse_set_mcfilterall(struct net_device *dev) 1038 { 1039 struct altera_tse_private *priv = netdev_priv(dev); 1040 int i; 1041 1042 /* set the hash filter */ 1043 for (i = 0; i < 64; i++) 1044 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 1045 } 1046 1047 /* Set or clear the multicast filter for this adaptor 1048 */ 1049 static void tse_set_rx_mode_hashfilter(struct net_device *dev) 1050 { 1051 struct altera_tse_private *priv = netdev_priv(dev); 1052 1053 spin_lock(&priv->mac_cfg_lock); 1054 1055 if (dev->flags & IFF_PROMISC) 1056 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 1057 MAC_CMDCFG_PROMIS_EN); 1058 1059 if (dev->flags & IFF_ALLMULTI) 1060 altera_tse_set_mcfilterall(dev); 1061 else 1062 altera_tse_set_mcfilter(dev); 1063 1064 spin_unlock(&priv->mac_cfg_lock); 1065 } 1066 1067 /* Set or clear the multicast filter for this adaptor 1068 */ 1069 static void tse_set_rx_mode(struct net_device *dev) 1070 { 1071 struct altera_tse_private *priv = netdev_priv(dev); 1072 1073 spin_lock(&priv->mac_cfg_lock); 1074 1075 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) || 1076 !netdev_mc_empty(dev) || !netdev_uc_empty(dev)) 1077 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 1078 MAC_CMDCFG_PROMIS_EN); 1079 else 1080 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config), 1081 MAC_CMDCFG_PROMIS_EN); 1082 1083 spin_unlock(&priv->mac_cfg_lock); 1084 } 1085 1086 /* Initialise (if necessary) the SGMII PCS component 1087 */ 1088 static int init_sgmii_pcs(struct net_device *dev) 1089 { 1090 struct altera_tse_private *priv = netdev_priv(dev); 1091 int n; 1092 unsigned int tmp_reg = 0; 1093 1094 if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII) 1095 return 0; /* Nothing to do, not in SGMII mode */ 1096 1097 /* The TSE SGMII PCS block looks a little like a PHY, it is 1098 * mapped into the zeroth MDIO space of the MAC and it has 1099 * ID registers like a PHY would. Sadly this is often 1100 * configured to zeroes, so don't be surprised if it does 1101 * show 0x00000000. 1102 */ 1103 1104 if (sgmii_pcs_scratch_test(priv, 0x0000) && 1105 sgmii_pcs_scratch_test(priv, 0xffff) && 1106 sgmii_pcs_scratch_test(priv, 0xa5a5) && 1107 sgmii_pcs_scratch_test(priv, 0x5a5a)) { 1108 netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n", 1109 sgmii_pcs_read(priv, MII_PHYSID1), 1110 sgmii_pcs_read(priv, MII_PHYSID2)); 1111 } else { 1112 netdev_err(dev, "SGMII PCS Scratch memory test failed.\n"); 1113 return -ENOMEM; 1114 } 1115 1116 /* Starting on page 5-29 of the MegaCore Function User Guide 1117 * Set SGMII Link timer to 1.6ms 1118 */ 1119 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40); 1120 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03); 1121 1122 /* Enable SGMII Interface and Enable SGMII Auto Negotiation */ 1123 sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3); 1124 1125 /* Enable Autonegotiation */ 1126 tmp_reg = sgmii_pcs_read(priv, MII_BMCR); 1127 tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE); 1128 sgmii_pcs_write(priv, MII_BMCR, tmp_reg); 1129 1130 /* Reset PCS block */ 1131 tmp_reg |= BMCR_RESET; 1132 sgmii_pcs_write(priv, MII_BMCR, tmp_reg); 1133 for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) { 1134 if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) { 1135 netdev_info(dev, "SGMII PCS block initialised OK\n"); 1136 return 0; 1137 } 1138 udelay(1); 1139 } 1140 1141 /* We failed to reset the block, return a timeout */ 1142 netdev_err(dev, "SGMII PCS block reset failed.\n"); 1143 return -ETIMEDOUT; 1144 } 1145 1146 /* Open and initialize the interface 1147 */ 1148 static int tse_open(struct net_device *dev) 1149 { 1150 struct altera_tse_private *priv = netdev_priv(dev); 1151 int ret = 0; 1152 int i; 1153 unsigned long int flags; 1154 1155 /* Reset and configure TSE MAC and probe associated PHY */ 1156 ret = priv->dmaops->init_dma(priv); 1157 if (ret != 0) { 1158 netdev_err(dev, "Cannot initialize DMA\n"); 1159 goto phy_error; 1160 } 1161 1162 if (netif_msg_ifup(priv)) 1163 netdev_warn(dev, "device MAC address %pM\n", 1164 dev->dev_addr); 1165 1166 if ((priv->revision < 0xd00) || (priv->revision > 0xe00)) 1167 netdev_warn(dev, "TSE revision %x\n", priv->revision); 1168 1169 spin_lock(&priv->mac_cfg_lock); 1170 /* no-op if MAC not operating in SGMII mode*/ 1171 ret = init_sgmii_pcs(dev); 1172 if (ret) { 1173 netdev_err(dev, 1174 "Cannot init the SGMII PCS (error: %d)\n", ret); 1175 spin_unlock(&priv->mac_cfg_lock); 1176 goto phy_error; 1177 } 1178 1179 ret = reset_mac(priv); 1180 /* Note that reset_mac will fail if the clocks are gated by the PHY 1181 * due to the PHY being put into isolation or power down mode. 1182 * This is not an error if reset fails due to no clock. 1183 */ 1184 if (ret) 1185 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 1186 1187 ret = init_mac(priv); 1188 spin_unlock(&priv->mac_cfg_lock); 1189 if (ret) { 1190 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret); 1191 goto alloc_skbuf_error; 1192 } 1193 1194 priv->dmaops->reset_dma(priv); 1195 1196 /* Create and initialize the TX/RX descriptors chains. */ 1197 priv->rx_ring_size = dma_rx_num; 1198 priv->tx_ring_size = dma_tx_num; 1199 ret = alloc_init_skbufs(priv); 1200 if (ret) { 1201 netdev_err(dev, "DMA descriptors initialization failed\n"); 1202 goto alloc_skbuf_error; 1203 } 1204 1205 1206 /* Register RX interrupt */ 1207 ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED, 1208 dev->name, dev); 1209 if (ret) { 1210 netdev_err(dev, "Unable to register RX interrupt %d\n", 1211 priv->rx_irq); 1212 goto init_error; 1213 } 1214 1215 /* Register TX interrupt */ 1216 ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED, 1217 dev->name, dev); 1218 if (ret) { 1219 netdev_err(dev, "Unable to register TX interrupt %d\n", 1220 priv->tx_irq); 1221 goto tx_request_irq_error; 1222 } 1223 1224 /* Enable DMA interrupts */ 1225 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 1226 priv->dmaops->enable_rxirq(priv); 1227 priv->dmaops->enable_txirq(priv); 1228 1229 /* Setup RX descriptor chain */ 1230 for (i = 0; i < priv->rx_ring_size; i++) 1231 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]); 1232 1233 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 1234 1235 if (dev->phydev) 1236 phy_start(dev->phydev); 1237 1238 napi_enable(&priv->napi); 1239 netif_start_queue(dev); 1240 1241 priv->dmaops->start_rxdma(priv); 1242 1243 /* Start MAC Rx/Tx */ 1244 spin_lock(&priv->mac_cfg_lock); 1245 tse_set_mac(priv, true); 1246 spin_unlock(&priv->mac_cfg_lock); 1247 1248 return 0; 1249 1250 tx_request_irq_error: 1251 free_irq(priv->rx_irq, dev); 1252 init_error: 1253 free_skbufs(dev); 1254 alloc_skbuf_error: 1255 phy_error: 1256 return ret; 1257 } 1258 1259 /* Stop TSE MAC interface and put the device in an inactive state 1260 */ 1261 static int tse_shutdown(struct net_device *dev) 1262 { 1263 struct altera_tse_private *priv = netdev_priv(dev); 1264 int ret; 1265 unsigned long int flags; 1266 1267 /* Stop the PHY */ 1268 if (dev->phydev) 1269 phy_stop(dev->phydev); 1270 1271 netif_stop_queue(dev); 1272 napi_disable(&priv->napi); 1273 1274 /* Disable DMA interrupts */ 1275 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 1276 priv->dmaops->disable_rxirq(priv); 1277 priv->dmaops->disable_txirq(priv); 1278 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 1279 1280 /* Free the IRQ lines */ 1281 free_irq(priv->rx_irq, dev); 1282 free_irq(priv->tx_irq, dev); 1283 1284 /* disable and reset the MAC, empties fifo */ 1285 spin_lock(&priv->mac_cfg_lock); 1286 spin_lock(&priv->tx_lock); 1287 1288 ret = reset_mac(priv); 1289 /* Note that reset_mac will fail if the clocks are gated by the PHY 1290 * due to the PHY being put into isolation or power down mode. 1291 * This is not an error if reset fails due to no clock. 1292 */ 1293 if (ret) 1294 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 1295 priv->dmaops->reset_dma(priv); 1296 free_skbufs(dev); 1297 1298 spin_unlock(&priv->tx_lock); 1299 spin_unlock(&priv->mac_cfg_lock); 1300 1301 priv->dmaops->uninit_dma(priv); 1302 1303 return 0; 1304 } 1305 1306 static struct net_device_ops altera_tse_netdev_ops = { 1307 .ndo_open = tse_open, 1308 .ndo_stop = tse_shutdown, 1309 .ndo_start_xmit = tse_start_xmit, 1310 .ndo_set_mac_address = eth_mac_addr, 1311 .ndo_set_rx_mode = tse_set_rx_mode, 1312 .ndo_change_mtu = tse_change_mtu, 1313 .ndo_validate_addr = eth_validate_addr, 1314 }; 1315 1316 static int request_and_map(struct platform_device *pdev, const char *name, 1317 struct resource **res, void __iomem **ptr) 1318 { 1319 struct resource *region; 1320 struct device *device = &pdev->dev; 1321 1322 *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); 1323 if (*res == NULL) { 1324 dev_err(device, "resource %s not defined\n", name); 1325 return -ENODEV; 1326 } 1327 1328 region = devm_request_mem_region(device, (*res)->start, 1329 resource_size(*res), dev_name(device)); 1330 if (region == NULL) { 1331 dev_err(device, "unable to request %s\n", name); 1332 return -EBUSY; 1333 } 1334 1335 *ptr = devm_ioremap_nocache(device, region->start, 1336 resource_size(region)); 1337 if (*ptr == NULL) { 1338 dev_err(device, "ioremap_nocache of %s failed!", name); 1339 return -ENOMEM; 1340 } 1341 1342 return 0; 1343 } 1344 1345 /* Probe Altera TSE MAC device 1346 */ 1347 static int altera_tse_probe(struct platform_device *pdev) 1348 { 1349 struct net_device *ndev; 1350 int ret = -ENODEV; 1351 struct resource *control_port; 1352 struct resource *dma_res; 1353 struct altera_tse_private *priv; 1354 const unsigned char *macaddr; 1355 void __iomem *descmap; 1356 const struct of_device_id *of_id = NULL; 1357 1358 ndev = alloc_etherdev(sizeof(struct altera_tse_private)); 1359 if (!ndev) { 1360 dev_err(&pdev->dev, "Could not allocate network device\n"); 1361 return -ENODEV; 1362 } 1363 1364 SET_NETDEV_DEV(ndev, &pdev->dev); 1365 1366 priv = netdev_priv(ndev); 1367 priv->device = &pdev->dev; 1368 priv->dev = ndev; 1369 priv->msg_enable = netif_msg_init(debug, default_msg_level); 1370 1371 of_id = of_match_device(altera_tse_ids, &pdev->dev); 1372 1373 if (of_id) 1374 priv->dmaops = (struct altera_dmaops *)of_id->data; 1375 1376 1377 if (priv->dmaops && 1378 priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) { 1379 /* Get the mapped address to the SGDMA descriptor memory */ 1380 ret = request_and_map(pdev, "s1", &dma_res, &descmap); 1381 if (ret) 1382 goto err_free_netdev; 1383 1384 /* Start of that memory is for transmit descriptors */ 1385 priv->tx_dma_desc = descmap; 1386 1387 /* First half is for tx descriptors, other half for tx */ 1388 priv->txdescmem = resource_size(dma_res)/2; 1389 1390 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start; 1391 1392 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap + 1393 priv->txdescmem)); 1394 priv->rxdescmem = resource_size(dma_res)/2; 1395 priv->rxdescmem_busaddr = dma_res->start; 1396 priv->rxdescmem_busaddr += priv->txdescmem; 1397 1398 if (upper_32_bits(priv->rxdescmem_busaddr)) { 1399 dev_dbg(priv->device, 1400 "SGDMA bus addresses greater than 32-bits\n"); 1401 ret = -EINVAL; 1402 goto err_free_netdev; 1403 } 1404 if (upper_32_bits(priv->txdescmem_busaddr)) { 1405 dev_dbg(priv->device, 1406 "SGDMA bus addresses greater than 32-bits\n"); 1407 ret = -EINVAL; 1408 goto err_free_netdev; 1409 } 1410 } else if (priv->dmaops && 1411 priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) { 1412 ret = request_and_map(pdev, "rx_resp", &dma_res, 1413 &priv->rx_dma_resp); 1414 if (ret) 1415 goto err_free_netdev; 1416 1417 ret = request_and_map(pdev, "tx_desc", &dma_res, 1418 &priv->tx_dma_desc); 1419 if (ret) 1420 goto err_free_netdev; 1421 1422 priv->txdescmem = resource_size(dma_res); 1423 priv->txdescmem_busaddr = dma_res->start; 1424 1425 ret = request_and_map(pdev, "rx_desc", &dma_res, 1426 &priv->rx_dma_desc); 1427 if (ret) 1428 goto err_free_netdev; 1429 1430 priv->rxdescmem = resource_size(dma_res); 1431 priv->rxdescmem_busaddr = dma_res->start; 1432 1433 } else { 1434 goto err_free_netdev; 1435 } 1436 1437 if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) 1438 dma_set_coherent_mask(priv->device, 1439 DMA_BIT_MASK(priv->dmaops->dmamask)); 1440 else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) 1441 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32)); 1442 else 1443 goto err_free_netdev; 1444 1445 /* MAC address space */ 1446 ret = request_and_map(pdev, "control_port", &control_port, 1447 (void __iomem **)&priv->mac_dev); 1448 if (ret) 1449 goto err_free_netdev; 1450 1451 /* xSGDMA Rx Dispatcher address space */ 1452 ret = request_and_map(pdev, "rx_csr", &dma_res, 1453 &priv->rx_dma_csr); 1454 if (ret) 1455 goto err_free_netdev; 1456 1457 1458 /* xSGDMA Tx Dispatcher address space */ 1459 ret = request_and_map(pdev, "tx_csr", &dma_res, 1460 &priv->tx_dma_csr); 1461 if (ret) 1462 goto err_free_netdev; 1463 1464 1465 /* Rx IRQ */ 1466 priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq"); 1467 if (priv->rx_irq == -ENXIO) { 1468 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n"); 1469 ret = -ENXIO; 1470 goto err_free_netdev; 1471 } 1472 1473 /* Tx IRQ */ 1474 priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq"); 1475 if (priv->tx_irq == -ENXIO) { 1476 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n"); 1477 ret = -ENXIO; 1478 goto err_free_netdev; 1479 } 1480 1481 /* get FIFO depths from device tree */ 1482 if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", 1483 &priv->rx_fifo_depth)) { 1484 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n"); 1485 ret = -ENXIO; 1486 goto err_free_netdev; 1487 } 1488 1489 if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", 1490 &priv->tx_fifo_depth)) { 1491 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n"); 1492 ret = -ENXIO; 1493 goto err_free_netdev; 1494 } 1495 1496 /* get hash filter settings for this instance */ 1497 priv->hash_filter = 1498 of_property_read_bool(pdev->dev.of_node, 1499 "altr,has-hash-multicast-filter"); 1500 1501 /* Set hash filter to not set for now until the 1502 * multicast filter receive issue is debugged 1503 */ 1504 priv->hash_filter = 0; 1505 1506 /* get supplemental address settings for this instance */ 1507 priv->added_unicast = 1508 of_property_read_bool(pdev->dev.of_node, 1509 "altr,has-supplementary-unicast"); 1510 1511 priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; 1512 /* Max MTU is 1500, ETH_DATA_LEN */ 1513 priv->dev->max_mtu = ETH_DATA_LEN; 1514 1515 /* Get the max mtu from the device tree. Note that the 1516 * "max-frame-size" parameter is actually max mtu. Definition 1517 * in the ePAPR v1.1 spec and usage differ, so go with usage. 1518 */ 1519 of_property_read_u32(pdev->dev.of_node, "max-frame-size", 1520 &priv->dev->max_mtu); 1521 1522 /* The DMA buffer size already accounts for an alignment bias 1523 * to avoid unaligned access exceptions for the NIOS processor, 1524 */ 1525 priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE; 1526 1527 /* get default MAC address from device tree */ 1528 macaddr = of_get_mac_address(pdev->dev.of_node); 1529 if (!IS_ERR(macaddr)) 1530 ether_addr_copy(ndev->dev_addr, macaddr); 1531 else 1532 eth_hw_addr_random(ndev); 1533 1534 /* get phy addr and create mdio */ 1535 ret = altera_tse_phy_get_addr_mdio_create(ndev); 1536 1537 if (ret) 1538 goto err_free_netdev; 1539 1540 /* initialize netdev */ 1541 ndev->mem_start = control_port->start; 1542 ndev->mem_end = control_port->end; 1543 ndev->netdev_ops = &altera_tse_netdev_ops; 1544 altera_tse_set_ethtool_ops(ndev); 1545 1546 altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode; 1547 1548 if (priv->hash_filter) 1549 altera_tse_netdev_ops.ndo_set_rx_mode = 1550 tse_set_rx_mode_hashfilter; 1551 1552 /* Scatter/gather IO is not supported, 1553 * so it is turned off 1554 */ 1555 ndev->hw_features &= ~NETIF_F_SG; 1556 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 1557 1558 /* VLAN offloading of tagging, stripping and filtering is not 1559 * supported by hardware, but driver will accommodate the 1560 * extra 4-byte VLAN tag for processing by upper layers 1561 */ 1562 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1563 1564 /* setup NAPI interface */ 1565 netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT); 1566 1567 spin_lock_init(&priv->mac_cfg_lock); 1568 spin_lock_init(&priv->tx_lock); 1569 spin_lock_init(&priv->rxdma_irq_lock); 1570 1571 netif_carrier_off(ndev); 1572 ret = register_netdev(ndev); 1573 if (ret) { 1574 dev_err(&pdev->dev, "failed to register TSE net device\n"); 1575 goto err_register_netdev; 1576 } 1577 1578 platform_set_drvdata(pdev, ndev); 1579 1580 priv->revision = ioread32(&priv->mac_dev->megacore_revision); 1581 1582 if (netif_msg_probe(priv)) 1583 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n", 1584 (priv->revision >> 8) & 0xff, 1585 priv->revision & 0xff, 1586 (unsigned long) control_port->start, priv->rx_irq, 1587 priv->tx_irq); 1588 1589 ret = init_phy(ndev); 1590 if (ret != 0) { 1591 netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret); 1592 goto err_init_phy; 1593 } 1594 return 0; 1595 1596 err_init_phy: 1597 unregister_netdev(ndev); 1598 err_register_netdev: 1599 netif_napi_del(&priv->napi); 1600 altera_tse_mdio_destroy(ndev); 1601 err_free_netdev: 1602 free_netdev(ndev); 1603 return ret; 1604 } 1605 1606 /* Remove Altera TSE MAC device 1607 */ 1608 static int altera_tse_remove(struct platform_device *pdev) 1609 { 1610 struct net_device *ndev = platform_get_drvdata(pdev); 1611 struct altera_tse_private *priv = netdev_priv(ndev); 1612 1613 if (ndev->phydev) { 1614 phy_disconnect(ndev->phydev); 1615 1616 if (of_phy_is_fixed_link(priv->device->of_node)) 1617 of_phy_deregister_fixed_link(priv->device->of_node); 1618 } 1619 1620 platform_set_drvdata(pdev, NULL); 1621 altera_tse_mdio_destroy(ndev); 1622 unregister_netdev(ndev); 1623 free_netdev(ndev); 1624 1625 return 0; 1626 } 1627 1628 static const struct altera_dmaops altera_dtype_sgdma = { 1629 .altera_dtype = ALTERA_DTYPE_SGDMA, 1630 .dmamask = 32, 1631 .reset_dma = sgdma_reset, 1632 .enable_txirq = sgdma_enable_txirq, 1633 .enable_rxirq = sgdma_enable_rxirq, 1634 .disable_txirq = sgdma_disable_txirq, 1635 .disable_rxirq = sgdma_disable_rxirq, 1636 .clear_txirq = sgdma_clear_txirq, 1637 .clear_rxirq = sgdma_clear_rxirq, 1638 .tx_buffer = sgdma_tx_buffer, 1639 .tx_completions = sgdma_tx_completions, 1640 .add_rx_desc = sgdma_add_rx_desc, 1641 .get_rx_status = sgdma_rx_status, 1642 .init_dma = sgdma_initialize, 1643 .uninit_dma = sgdma_uninitialize, 1644 .start_rxdma = sgdma_start_rxdma, 1645 }; 1646 1647 static const struct altera_dmaops altera_dtype_msgdma = { 1648 .altera_dtype = ALTERA_DTYPE_MSGDMA, 1649 .dmamask = 64, 1650 .reset_dma = msgdma_reset, 1651 .enable_txirq = msgdma_enable_txirq, 1652 .enable_rxirq = msgdma_enable_rxirq, 1653 .disable_txirq = msgdma_disable_txirq, 1654 .disable_rxirq = msgdma_disable_rxirq, 1655 .clear_txirq = msgdma_clear_txirq, 1656 .clear_rxirq = msgdma_clear_rxirq, 1657 .tx_buffer = msgdma_tx_buffer, 1658 .tx_completions = msgdma_tx_completions, 1659 .add_rx_desc = msgdma_add_rx_desc, 1660 .get_rx_status = msgdma_rx_status, 1661 .init_dma = msgdma_initialize, 1662 .uninit_dma = msgdma_uninitialize, 1663 .start_rxdma = msgdma_start_rxdma, 1664 }; 1665 1666 static const struct of_device_id altera_tse_ids[] = { 1667 { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, }, 1668 { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, }, 1669 { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, }, 1670 {}, 1671 }; 1672 MODULE_DEVICE_TABLE(of, altera_tse_ids); 1673 1674 static struct platform_driver altera_tse_driver = { 1675 .probe = altera_tse_probe, 1676 .remove = altera_tse_remove, 1677 .suspend = NULL, 1678 .resume = NULL, 1679 .driver = { 1680 .name = ALTERA_TSE_RESOURCE_NAME, 1681 .of_match_table = altera_tse_ids, 1682 }, 1683 }; 1684 1685 module_platform_driver(altera_tse_driver); 1686 1687 MODULE_AUTHOR("Altera Corporation"); 1688 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver"); 1689 MODULE_LICENSE("GPL v2"); 1690