1 /* Altera Triple-Speed Ethernet MAC driver 2 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved 3 * 4 * Contributors: 5 * Dalon Westergreen 6 * Thomas Chou 7 * Ian Abbott 8 * Yuriy Kozlov 9 * Tobias Klauser 10 * Andriy Smolskyy 11 * Roman Bulgakov 12 * Dmytro Mytarchuk 13 * Matthew Gerlach 14 * 15 * Original driver contributed by SLS. 16 * Major updates contributed by GlobalLogic 17 * 18 * This program is free software; you can redistribute it and/or modify it 19 * under the terms and conditions of the GNU General Public License, 20 * version 2, as published by the Free Software Foundation. 21 * 22 * This program is distributed in the hope it will be useful, but WITHOUT 23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 25 * more details. 26 * 27 * You should have received a copy of the GNU General Public License along with 28 * this program. If not, see <http://www.gnu.org/licenses/>. 29 */ 30 31 #include <linux/atomic.h> 32 #include <linux/delay.h> 33 #include <linux/etherdevice.h> 34 #include <linux/if_vlan.h> 35 #include <linux/init.h> 36 #include <linux/interrupt.h> 37 #include <linux/io.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/mii.h> 41 #include <linux/netdevice.h> 42 #include <linux/of_device.h> 43 #include <linux/of_mdio.h> 44 #include <linux/of_net.h> 45 #include <linux/of_platform.h> 46 #include <linux/phy.h> 47 #include <linux/platform_device.h> 48 #include <linux/skbuff.h> 49 #include <asm/cacheflush.h> 50 51 #include "altera_utils.h" 52 #include "altera_tse.h" 53 #include "altera_sgdma.h" 54 #include "altera_msgdma.h" 55 56 static atomic_t instance_count = ATOMIC_INIT(~0); 57 /* Module parameters */ 58 static int debug = -1; 59 module_param(debug, int, S_IRUGO | S_IWUSR); 60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 61 62 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 63 NETIF_MSG_LINK | NETIF_MSG_IFUP | 64 NETIF_MSG_IFDOWN); 65 66 #define RX_DESCRIPTORS 64 67 static int dma_rx_num = RX_DESCRIPTORS; 68 module_param(dma_rx_num, int, S_IRUGO | S_IWUSR); 69 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list"); 70 71 #define TX_DESCRIPTORS 64 72 static int dma_tx_num = TX_DESCRIPTORS; 73 module_param(dma_tx_num, int, S_IRUGO | S_IWUSR); 74 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list"); 75 76 77 #define POLL_PHY (-1) 78 79 /* Make sure DMA buffer size is larger than the max frame size 80 * plus some alignment offset and a VLAN header. If the max frame size is 81 * 1518, a VLAN header would be additional 4 bytes and additional 82 * headroom for alignment is 2 bytes, 2048 is just fine. 83 */ 84 #define ALTERA_RXDMABUFFER_SIZE 2048 85 86 /* Allow network stack to resume queueing packets after we've 87 * finished transmitting at least 1/4 of the packets in the queue. 88 */ 89 #define TSE_TX_THRESH(x) (x->tx_ring_size / 4) 90 91 #define TXQUEUESTOP_THRESHHOLD 2 92 93 static const struct of_device_id altera_tse_ids[]; 94 95 static inline u32 tse_tx_avail(struct altera_tse_private *priv) 96 { 97 return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1; 98 } 99 100 /* PCS Register read/write functions 101 */ 102 static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum) 103 { 104 return csrrd32(priv->mac_dev, 105 tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff; 106 } 107 108 static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum, 109 u16 value) 110 { 111 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4); 112 } 113 114 /* Check PCS scratch memory */ 115 static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value) 116 { 117 sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value); 118 return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value); 119 } 120 121 /* MDIO specific functions 122 */ 123 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 124 { 125 struct net_device *ndev = bus->priv; 126 struct altera_tse_private *priv = netdev_priv(ndev); 127 128 /* set MDIO address */ 129 csrwr32((mii_id & 0x1f), priv->mac_dev, 130 tse_csroffs(mdio_phy1_addr)); 131 132 /* get the data */ 133 return csrrd32(priv->mac_dev, 134 tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff; 135 } 136 137 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 138 u16 value) 139 { 140 struct net_device *ndev = bus->priv; 141 struct altera_tse_private *priv = netdev_priv(ndev); 142 143 /* set MDIO address */ 144 csrwr32((mii_id & 0x1f), priv->mac_dev, 145 tse_csroffs(mdio_phy1_addr)); 146 147 /* write the data */ 148 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4); 149 return 0; 150 } 151 152 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id) 153 { 154 struct altera_tse_private *priv = netdev_priv(dev); 155 int ret; 156 struct device_node *mdio_node = NULL; 157 struct mii_bus *mdio = NULL; 158 struct device_node *child_node = NULL; 159 160 for_each_child_of_node(priv->device->of_node, child_node) { 161 if (of_device_is_compatible(child_node, "altr,tse-mdio")) { 162 mdio_node = child_node; 163 break; 164 } 165 } 166 167 if (mdio_node) { 168 netdev_dbg(dev, "FOUND MDIO subnode\n"); 169 } else { 170 netdev_dbg(dev, "NO MDIO subnode\n"); 171 return 0; 172 } 173 174 mdio = mdiobus_alloc(); 175 if (mdio == NULL) { 176 netdev_err(dev, "Error allocating MDIO bus\n"); 177 return -ENOMEM; 178 } 179 180 mdio->name = ALTERA_TSE_RESOURCE_NAME; 181 mdio->read = &altera_tse_mdio_read; 182 mdio->write = &altera_tse_mdio_write; 183 snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id); 184 185 mdio->priv = dev; 186 mdio->parent = priv->device; 187 188 ret = of_mdiobus_register(mdio, mdio_node); 189 if (ret != 0) { 190 netdev_err(dev, "Cannot register MDIO bus %s\n", 191 mdio->id); 192 goto out_free_mdio; 193 } 194 195 if (netif_msg_drv(priv)) 196 netdev_info(dev, "MDIO bus %s: created\n", mdio->id); 197 198 priv->mdio = mdio; 199 return 0; 200 out_free_mdio: 201 mdiobus_free(mdio); 202 mdio = NULL; 203 return ret; 204 } 205 206 static void altera_tse_mdio_destroy(struct net_device *dev) 207 { 208 struct altera_tse_private *priv = netdev_priv(dev); 209 210 if (priv->mdio == NULL) 211 return; 212 213 if (netif_msg_drv(priv)) 214 netdev_info(dev, "MDIO bus %s: removed\n", 215 priv->mdio->id); 216 217 mdiobus_unregister(priv->mdio); 218 mdiobus_free(priv->mdio); 219 priv->mdio = NULL; 220 } 221 222 static int tse_init_rx_buffer(struct altera_tse_private *priv, 223 struct tse_buffer *rxbuffer, int len) 224 { 225 rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len); 226 if (!rxbuffer->skb) 227 return -ENOMEM; 228 229 rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data, 230 len, 231 DMA_FROM_DEVICE); 232 233 if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) { 234 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 235 dev_kfree_skb_any(rxbuffer->skb); 236 return -EINVAL; 237 } 238 rxbuffer->dma_addr &= (dma_addr_t)~3; 239 rxbuffer->len = len; 240 return 0; 241 } 242 243 static void tse_free_rx_buffer(struct altera_tse_private *priv, 244 struct tse_buffer *rxbuffer) 245 { 246 struct sk_buff *skb = rxbuffer->skb; 247 dma_addr_t dma_addr = rxbuffer->dma_addr; 248 249 if (skb != NULL) { 250 if (dma_addr) 251 dma_unmap_single(priv->device, dma_addr, 252 rxbuffer->len, 253 DMA_FROM_DEVICE); 254 dev_kfree_skb_any(skb); 255 rxbuffer->skb = NULL; 256 rxbuffer->dma_addr = 0; 257 } 258 } 259 260 /* Unmap and free Tx buffer resources 261 */ 262 static void tse_free_tx_buffer(struct altera_tse_private *priv, 263 struct tse_buffer *buffer) 264 { 265 if (buffer->dma_addr) { 266 if (buffer->mapped_as_page) 267 dma_unmap_page(priv->device, buffer->dma_addr, 268 buffer->len, DMA_TO_DEVICE); 269 else 270 dma_unmap_single(priv->device, buffer->dma_addr, 271 buffer->len, DMA_TO_DEVICE); 272 buffer->dma_addr = 0; 273 } 274 if (buffer->skb) { 275 dev_kfree_skb_any(buffer->skb); 276 buffer->skb = NULL; 277 } 278 } 279 280 static int alloc_init_skbufs(struct altera_tse_private *priv) 281 { 282 unsigned int rx_descs = priv->rx_ring_size; 283 unsigned int tx_descs = priv->tx_ring_size; 284 int ret = -ENOMEM; 285 int i; 286 287 /* Create Rx ring buffer */ 288 priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer), 289 GFP_KERNEL); 290 if (!priv->rx_ring) 291 goto err_rx_ring; 292 293 /* Create Tx ring buffer */ 294 priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer), 295 GFP_KERNEL); 296 if (!priv->tx_ring) 297 goto err_tx_ring; 298 299 priv->tx_cons = 0; 300 priv->tx_prod = 0; 301 302 /* Init Rx ring */ 303 for (i = 0; i < rx_descs; i++) { 304 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i], 305 priv->rx_dma_buf_sz); 306 if (ret) 307 goto err_init_rx_buffers; 308 } 309 310 priv->rx_cons = 0; 311 priv->rx_prod = 0; 312 313 return 0; 314 err_init_rx_buffers: 315 while (--i >= 0) 316 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 317 kfree(priv->tx_ring); 318 err_tx_ring: 319 kfree(priv->rx_ring); 320 err_rx_ring: 321 return ret; 322 } 323 324 static void free_skbufs(struct net_device *dev) 325 { 326 struct altera_tse_private *priv = netdev_priv(dev); 327 unsigned int rx_descs = priv->rx_ring_size; 328 unsigned int tx_descs = priv->tx_ring_size; 329 int i; 330 331 /* Release the DMA TX/RX socket buffers */ 332 for (i = 0; i < rx_descs; i++) 333 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 334 for (i = 0; i < tx_descs; i++) 335 tse_free_tx_buffer(priv, &priv->tx_ring[i]); 336 337 338 kfree(priv->tx_ring); 339 } 340 341 /* Reallocate the skb for the reception process 342 */ 343 static inline void tse_rx_refill(struct altera_tse_private *priv) 344 { 345 unsigned int rxsize = priv->rx_ring_size; 346 unsigned int entry; 347 int ret; 348 349 for (; priv->rx_cons - priv->rx_prod > 0; 350 priv->rx_prod++) { 351 entry = priv->rx_prod % rxsize; 352 if (likely(priv->rx_ring[entry].skb == NULL)) { 353 ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry], 354 priv->rx_dma_buf_sz); 355 if (unlikely(ret != 0)) 356 break; 357 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]); 358 } 359 } 360 } 361 362 /* Pull out the VLAN tag and fix up the packet 363 */ 364 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb) 365 { 366 struct ethhdr *eth_hdr; 367 u16 vid; 368 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 369 !__vlan_get_tag(skb, &vid)) { 370 eth_hdr = (struct ethhdr *)skb->data; 371 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2); 372 skb_pull(skb, VLAN_HLEN); 373 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 374 } 375 } 376 377 /* Receive a packet: retrieve and pass over to upper levels 378 */ 379 static int tse_rx(struct altera_tse_private *priv, int limit) 380 { 381 unsigned int count = 0; 382 unsigned int next_entry; 383 struct sk_buff *skb; 384 unsigned int entry = priv->rx_cons % priv->rx_ring_size; 385 u32 rxstatus; 386 u16 pktlength; 387 u16 pktstatus; 388 389 /* Check for count < limit first as get_rx_status is changing 390 * the response-fifo so we must process the next packet 391 * after calling get_rx_status if a response is pending. 392 * (reading the last byte of the response pops the value from the fifo.) 393 */ 394 while ((count < limit) && 395 ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) { 396 pktstatus = rxstatus >> 16; 397 pktlength = rxstatus & 0xffff; 398 399 if ((pktstatus & 0xFF) || (pktlength == 0)) 400 netdev_err(priv->dev, 401 "RCV pktstatus %08X pktlength %08X\n", 402 pktstatus, pktlength); 403 404 /* DMA trasfer from TSE starts with 2 aditional bytes for 405 * IP payload alignment. Status returned by get_rx_status() 406 * contains DMA transfer length. Packet is 2 bytes shorter. 407 */ 408 pktlength -= 2; 409 410 count++; 411 next_entry = (++priv->rx_cons) % priv->rx_ring_size; 412 413 skb = priv->rx_ring[entry].skb; 414 if (unlikely(!skb)) { 415 netdev_err(priv->dev, 416 "%s: Inconsistent Rx descriptor chain\n", 417 __func__); 418 priv->dev->stats.rx_dropped++; 419 break; 420 } 421 priv->rx_ring[entry].skb = NULL; 422 423 skb_put(skb, pktlength); 424 425 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr, 426 priv->rx_ring[entry].len, DMA_FROM_DEVICE); 427 428 if (netif_msg_pktdata(priv)) { 429 netdev_info(priv->dev, "frame received %d bytes\n", 430 pktlength); 431 print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET, 432 16, 1, skb->data, pktlength, true); 433 } 434 435 tse_rx_vlan(priv->dev, skb); 436 437 skb->protocol = eth_type_trans(skb, priv->dev); 438 skb_checksum_none_assert(skb); 439 440 napi_gro_receive(&priv->napi, skb); 441 442 priv->dev->stats.rx_packets++; 443 priv->dev->stats.rx_bytes += pktlength; 444 445 entry = next_entry; 446 447 tse_rx_refill(priv); 448 } 449 450 return count; 451 } 452 453 /* Reclaim resources after transmission completes 454 */ 455 static int tse_tx_complete(struct altera_tse_private *priv) 456 { 457 unsigned int txsize = priv->tx_ring_size; 458 u32 ready; 459 unsigned int entry; 460 struct tse_buffer *tx_buff; 461 int txcomplete = 0; 462 463 spin_lock(&priv->tx_lock); 464 465 ready = priv->dmaops->tx_completions(priv); 466 467 /* Free sent buffers */ 468 while (ready && (priv->tx_cons != priv->tx_prod)) { 469 entry = priv->tx_cons % txsize; 470 tx_buff = &priv->tx_ring[entry]; 471 472 if (netif_msg_tx_done(priv)) 473 netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n", 474 __func__, priv->tx_prod, priv->tx_cons); 475 476 if (likely(tx_buff->skb)) 477 priv->dev->stats.tx_packets++; 478 479 tse_free_tx_buffer(priv, tx_buff); 480 priv->tx_cons++; 481 482 txcomplete++; 483 ready--; 484 } 485 486 if (unlikely(netif_queue_stopped(priv->dev) && 487 tse_tx_avail(priv) > TSE_TX_THRESH(priv))) { 488 if (netif_queue_stopped(priv->dev) && 489 tse_tx_avail(priv) > TSE_TX_THRESH(priv)) { 490 if (netif_msg_tx_done(priv)) 491 netdev_dbg(priv->dev, "%s: restart transmit\n", 492 __func__); 493 netif_wake_queue(priv->dev); 494 } 495 } 496 497 spin_unlock(&priv->tx_lock); 498 return txcomplete; 499 } 500 501 /* NAPI polling function 502 */ 503 static int tse_poll(struct napi_struct *napi, int budget) 504 { 505 struct altera_tse_private *priv = 506 container_of(napi, struct altera_tse_private, napi); 507 int rxcomplete = 0; 508 unsigned long int flags; 509 510 tse_tx_complete(priv); 511 512 rxcomplete = tse_rx(priv, budget); 513 514 if (rxcomplete < budget) { 515 516 napi_complete_done(napi, rxcomplete); 517 518 netdev_dbg(priv->dev, 519 "NAPI Complete, did %d packets with budget %d\n", 520 rxcomplete, budget); 521 522 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 523 priv->dmaops->enable_rxirq(priv); 524 priv->dmaops->enable_txirq(priv); 525 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 526 } 527 return rxcomplete; 528 } 529 530 /* DMA TX & RX FIFO interrupt routing 531 */ 532 static irqreturn_t altera_isr(int irq, void *dev_id) 533 { 534 struct net_device *dev = dev_id; 535 struct altera_tse_private *priv; 536 537 if (unlikely(!dev)) { 538 pr_err("%s: invalid dev pointer\n", __func__); 539 return IRQ_NONE; 540 } 541 priv = netdev_priv(dev); 542 543 spin_lock(&priv->rxdma_irq_lock); 544 /* reset IRQs */ 545 priv->dmaops->clear_rxirq(priv); 546 priv->dmaops->clear_txirq(priv); 547 spin_unlock(&priv->rxdma_irq_lock); 548 549 if (likely(napi_schedule_prep(&priv->napi))) { 550 spin_lock(&priv->rxdma_irq_lock); 551 priv->dmaops->disable_rxirq(priv); 552 priv->dmaops->disable_txirq(priv); 553 spin_unlock(&priv->rxdma_irq_lock); 554 __napi_schedule(&priv->napi); 555 } 556 557 558 return IRQ_HANDLED; 559 } 560 561 /* Transmit a packet (called by the kernel). Dispatches 562 * either the SGDMA method for transmitting or the 563 * MSGDMA method, assumes no scatter/gather support, 564 * implying an assumption that there's only one 565 * physically contiguous fragment starting at 566 * skb->data, for length of skb_headlen(skb). 567 */ 568 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev) 569 { 570 struct altera_tse_private *priv = netdev_priv(dev); 571 unsigned int txsize = priv->tx_ring_size; 572 unsigned int entry; 573 struct tse_buffer *buffer = NULL; 574 int nfrags = skb_shinfo(skb)->nr_frags; 575 unsigned int nopaged_len = skb_headlen(skb); 576 enum netdev_tx ret = NETDEV_TX_OK; 577 dma_addr_t dma_addr; 578 579 spin_lock_bh(&priv->tx_lock); 580 581 if (unlikely(tse_tx_avail(priv) < nfrags + 1)) { 582 if (!netif_queue_stopped(dev)) { 583 netif_stop_queue(dev); 584 /* This is a hard error, log it. */ 585 netdev_err(priv->dev, 586 "%s: Tx list full when queue awake\n", 587 __func__); 588 } 589 ret = NETDEV_TX_BUSY; 590 goto out; 591 } 592 593 /* Map the first skb fragment */ 594 entry = priv->tx_prod % txsize; 595 buffer = &priv->tx_ring[entry]; 596 597 dma_addr = dma_map_single(priv->device, skb->data, nopaged_len, 598 DMA_TO_DEVICE); 599 if (dma_mapping_error(priv->device, dma_addr)) { 600 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 601 ret = NETDEV_TX_OK; 602 goto out; 603 } 604 605 buffer->skb = skb; 606 buffer->dma_addr = dma_addr; 607 buffer->len = nopaged_len; 608 609 priv->dmaops->tx_buffer(priv, buffer); 610 611 skb_tx_timestamp(skb); 612 613 priv->tx_prod++; 614 dev->stats.tx_bytes += skb->len; 615 616 if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) { 617 if (netif_msg_hw(priv)) 618 netdev_dbg(priv->dev, "%s: stop transmitted packets\n", 619 __func__); 620 netif_stop_queue(dev); 621 } 622 623 out: 624 spin_unlock_bh(&priv->tx_lock); 625 626 return ret; 627 } 628 629 /* Called every time the controller might need to be made 630 * aware of new link state. The PHY code conveys this 631 * information through variables in the phydev structure, and this 632 * function converts those variables into the appropriate 633 * register values, and can bring down the device if needed. 634 */ 635 static void altera_tse_adjust_link(struct net_device *dev) 636 { 637 struct altera_tse_private *priv = netdev_priv(dev); 638 struct phy_device *phydev = dev->phydev; 639 int new_state = 0; 640 641 /* only change config if there is a link */ 642 spin_lock(&priv->mac_cfg_lock); 643 if (phydev->link) { 644 /* Read old config */ 645 u32 cfg_reg = ioread32(&priv->mac_dev->command_config); 646 647 /* Check duplex */ 648 if (phydev->duplex != priv->oldduplex) { 649 new_state = 1; 650 if (!(phydev->duplex)) 651 cfg_reg |= MAC_CMDCFG_HD_ENA; 652 else 653 cfg_reg &= ~MAC_CMDCFG_HD_ENA; 654 655 netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n", 656 dev->name, phydev->duplex); 657 658 priv->oldduplex = phydev->duplex; 659 } 660 661 /* Check speed */ 662 if (phydev->speed != priv->oldspeed) { 663 new_state = 1; 664 switch (phydev->speed) { 665 case 1000: 666 cfg_reg |= MAC_CMDCFG_ETH_SPEED; 667 cfg_reg &= ~MAC_CMDCFG_ENA_10; 668 break; 669 case 100: 670 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED; 671 cfg_reg &= ~MAC_CMDCFG_ENA_10; 672 break; 673 case 10: 674 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED; 675 cfg_reg |= MAC_CMDCFG_ENA_10; 676 break; 677 default: 678 if (netif_msg_link(priv)) 679 netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n", 680 phydev->speed); 681 break; 682 } 683 priv->oldspeed = phydev->speed; 684 } 685 iowrite32(cfg_reg, &priv->mac_dev->command_config); 686 687 if (!priv->oldlink) { 688 new_state = 1; 689 priv->oldlink = 1; 690 } 691 } else if (priv->oldlink) { 692 new_state = 1; 693 priv->oldlink = 0; 694 priv->oldspeed = 0; 695 priv->oldduplex = -1; 696 } 697 698 if (new_state && netif_msg_link(priv)) 699 phy_print_status(phydev); 700 701 spin_unlock(&priv->mac_cfg_lock); 702 } 703 static struct phy_device *connect_local_phy(struct net_device *dev) 704 { 705 struct altera_tse_private *priv = netdev_priv(dev); 706 struct phy_device *phydev = NULL; 707 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 708 709 if (priv->phy_addr != POLL_PHY) { 710 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, 711 priv->mdio->id, priv->phy_addr); 712 713 netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt); 714 715 phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link, 716 priv->phy_iface); 717 if (IS_ERR(phydev)) 718 netdev_err(dev, "Could not attach to PHY\n"); 719 720 } else { 721 int ret; 722 phydev = phy_find_first(priv->mdio); 723 if (phydev == NULL) { 724 netdev_err(dev, "No PHY found\n"); 725 return phydev; 726 } 727 728 ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link, 729 priv->phy_iface); 730 if (ret != 0) { 731 netdev_err(dev, "Could not attach to PHY\n"); 732 phydev = NULL; 733 } 734 } 735 return phydev; 736 } 737 738 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev) 739 { 740 struct altera_tse_private *priv = netdev_priv(dev); 741 struct device_node *np = priv->device->of_node; 742 int ret = 0; 743 744 priv->phy_iface = of_get_phy_mode(np); 745 746 /* Avoid get phy addr and create mdio if no phy is present */ 747 if (!priv->phy_iface) 748 return 0; 749 750 /* try to get PHY address from device tree, use PHY autodetection if 751 * no valid address is given 752 */ 753 754 if (of_property_read_u32(priv->device->of_node, "phy-addr", 755 &priv->phy_addr)) { 756 priv->phy_addr = POLL_PHY; 757 } 758 759 if (!((priv->phy_addr == POLL_PHY) || 760 ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) { 761 netdev_err(dev, "invalid phy-addr specified %d\n", 762 priv->phy_addr); 763 return -ENODEV; 764 } 765 766 /* Create/attach to MDIO bus */ 767 ret = altera_tse_mdio_create(dev, 768 atomic_add_return(1, &instance_count)); 769 770 if (ret) 771 return -ENODEV; 772 773 return 0; 774 } 775 776 /* Initialize driver's PHY state, and attach to the PHY 777 */ 778 static int init_phy(struct net_device *dev) 779 { 780 struct altera_tse_private *priv = netdev_priv(dev); 781 struct phy_device *phydev; 782 struct device_node *phynode; 783 bool fixed_link = false; 784 int rc = 0; 785 786 /* Avoid init phy in case of no phy present */ 787 if (!priv->phy_iface) 788 return 0; 789 790 priv->oldlink = 0; 791 priv->oldspeed = 0; 792 priv->oldduplex = -1; 793 794 phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0); 795 796 if (!phynode) { 797 /* check if a fixed-link is defined in device-tree */ 798 if (of_phy_is_fixed_link(priv->device->of_node)) { 799 rc = of_phy_register_fixed_link(priv->device->of_node); 800 if (rc < 0) { 801 netdev_err(dev, "cannot register fixed PHY\n"); 802 return rc; 803 } 804 805 /* In the case of a fixed PHY, the DT node associated 806 * to the PHY is the Ethernet MAC DT node. 807 */ 808 phynode = of_node_get(priv->device->of_node); 809 fixed_link = true; 810 811 netdev_dbg(dev, "fixed-link detected\n"); 812 phydev = of_phy_connect(dev, phynode, 813 &altera_tse_adjust_link, 814 0, priv->phy_iface); 815 } else { 816 netdev_dbg(dev, "no phy-handle found\n"); 817 if (!priv->mdio) { 818 netdev_err(dev, "No phy-handle nor local mdio specified\n"); 819 return -ENODEV; 820 } 821 phydev = connect_local_phy(dev); 822 } 823 } else { 824 netdev_dbg(dev, "phy-handle found\n"); 825 phydev = of_phy_connect(dev, phynode, 826 &altera_tse_adjust_link, 0, priv->phy_iface); 827 } 828 of_node_put(phynode); 829 830 if (!phydev) { 831 netdev_err(dev, "Could not find the PHY\n"); 832 if (fixed_link) 833 of_phy_deregister_fixed_link(priv->device->of_node); 834 return -ENODEV; 835 } 836 837 /* Stop Advertising 1000BASE Capability if interface is not GMII 838 * Note: Checkpatch throws CHECKs for the camel case defines below, 839 * it's ok to ignore. 840 */ 841 if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) || 842 (priv->phy_iface == PHY_INTERFACE_MODE_RMII)) 843 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 844 SUPPORTED_1000baseT_Full); 845 846 /* Broken HW is sometimes missing the pull-up resistor on the 847 * MDIO line, which results in reads to non-existent devices returning 848 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 849 * device as well. If a fixed-link is used the phy_id is always 0. 850 * Note: phydev->phy_id is the result of reading the UID PHY registers. 851 */ 852 if ((phydev->phy_id == 0) && !fixed_link) { 853 netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id); 854 phy_disconnect(phydev); 855 return -ENODEV; 856 } 857 858 netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n", 859 phydev->mdio.addr, phydev->phy_id, phydev->link); 860 861 return 0; 862 } 863 864 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr) 865 { 866 u32 msb; 867 u32 lsb; 868 869 msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; 870 lsb = ((addr[5] << 8) | addr[4]) & 0xffff; 871 872 /* Set primary MAC address */ 873 csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0)); 874 csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1)); 875 } 876 877 /* MAC software reset. 878 * When reset is triggered, the MAC function completes the current 879 * transmission or reception, and subsequently disables the transmit and 880 * receive logic, flushes the receive FIFO buffer, and resets the statistics 881 * counters. 882 */ 883 static int reset_mac(struct altera_tse_private *priv) 884 { 885 int counter; 886 u32 dat; 887 888 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 889 dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 890 dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET; 891 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 892 893 counter = 0; 894 while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 895 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config), 896 MAC_CMDCFG_SW_RESET)) 897 break; 898 udelay(1); 899 } 900 901 if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 902 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 903 dat &= ~MAC_CMDCFG_SW_RESET; 904 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 905 return -1; 906 } 907 return 0; 908 } 909 910 /* Initialize MAC core registers 911 */ 912 static int init_mac(struct altera_tse_private *priv) 913 { 914 unsigned int cmd = 0; 915 u32 frm_length; 916 917 /* Setup Rx FIFO */ 918 csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY, 919 priv->mac_dev, tse_csroffs(rx_section_empty)); 920 921 csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev, 922 tse_csroffs(rx_section_full)); 923 924 csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev, 925 tse_csroffs(rx_almost_empty)); 926 927 csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev, 928 tse_csroffs(rx_almost_full)); 929 930 /* Setup Tx FIFO */ 931 csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY, 932 priv->mac_dev, tse_csroffs(tx_section_empty)); 933 934 csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev, 935 tse_csroffs(tx_section_full)); 936 937 csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev, 938 tse_csroffs(tx_almost_empty)); 939 940 csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev, 941 tse_csroffs(tx_almost_full)); 942 943 /* MAC Address Configuration */ 944 tse_update_mac_addr(priv, priv->dev->dev_addr); 945 946 /* MAC Function Configuration */ 947 frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN; 948 csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length)); 949 950 csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev, 951 tse_csroffs(tx_ipg_length)); 952 953 /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit 954 * start address 955 */ 956 tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat), 957 ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16); 958 959 tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat), 960 ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 | 961 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC); 962 963 /* Set the MAC options */ 964 cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 965 cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */ 966 cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */ 967 cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames 968 * with CRC errors 969 */ 970 cmd |= MAC_CMDCFG_CNTL_FRM_ENA; 971 cmd &= ~MAC_CMDCFG_TX_ENA; 972 cmd &= ~MAC_CMDCFG_RX_ENA; 973 974 /* Default speed and duplex setting, full/100 */ 975 cmd &= ~MAC_CMDCFG_HD_ENA; 976 cmd &= ~MAC_CMDCFG_ETH_SPEED; 977 cmd &= ~MAC_CMDCFG_ENA_10; 978 979 csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config)); 980 981 csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev, 982 tse_csroffs(pause_quanta)); 983 984 if (netif_msg_hw(priv)) 985 dev_dbg(priv->device, 986 "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd); 987 988 return 0; 989 } 990 991 /* Start/stop MAC transmission logic 992 */ 993 static void tse_set_mac(struct altera_tse_private *priv, bool enable) 994 { 995 u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 996 997 if (enable) 998 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA; 999 else 1000 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 1001 1002 csrwr32(value, priv->mac_dev, tse_csroffs(command_config)); 1003 } 1004 1005 /* Change the MTU 1006 */ 1007 static int tse_change_mtu(struct net_device *dev, int new_mtu) 1008 { 1009 if (netif_running(dev)) { 1010 netdev_err(dev, "must be stopped to change its MTU\n"); 1011 return -EBUSY; 1012 } 1013 1014 dev->mtu = new_mtu; 1015 netdev_update_features(dev); 1016 1017 return 0; 1018 } 1019 1020 static void altera_tse_set_mcfilter(struct net_device *dev) 1021 { 1022 struct altera_tse_private *priv = netdev_priv(dev); 1023 int i; 1024 struct netdev_hw_addr *ha; 1025 1026 /* clear the hash filter */ 1027 for (i = 0; i < 64; i++) 1028 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 1029 1030 netdev_for_each_mc_addr(ha, dev) { 1031 unsigned int hash = 0; 1032 int mac_octet; 1033 1034 for (mac_octet = 5; mac_octet >= 0; mac_octet--) { 1035 unsigned char xor_bit = 0; 1036 unsigned char octet = ha->addr[mac_octet]; 1037 unsigned int bitshift; 1038 1039 for (bitshift = 0; bitshift < 8; bitshift++) 1040 xor_bit ^= ((octet >> bitshift) & 0x01); 1041 1042 hash = (hash << 1) | xor_bit; 1043 } 1044 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4); 1045 } 1046 } 1047 1048 1049 static void altera_tse_set_mcfilterall(struct net_device *dev) 1050 { 1051 struct altera_tse_private *priv = netdev_priv(dev); 1052 int i; 1053 1054 /* set the hash filter */ 1055 for (i = 0; i < 64; i++) 1056 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 1057 } 1058 1059 /* Set or clear the multicast filter for this adaptor 1060 */ 1061 static void tse_set_rx_mode_hashfilter(struct net_device *dev) 1062 { 1063 struct altera_tse_private *priv = netdev_priv(dev); 1064 1065 spin_lock(&priv->mac_cfg_lock); 1066 1067 if (dev->flags & IFF_PROMISC) 1068 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 1069 MAC_CMDCFG_PROMIS_EN); 1070 1071 if (dev->flags & IFF_ALLMULTI) 1072 altera_tse_set_mcfilterall(dev); 1073 else 1074 altera_tse_set_mcfilter(dev); 1075 1076 spin_unlock(&priv->mac_cfg_lock); 1077 } 1078 1079 /* Set or clear the multicast filter for this adaptor 1080 */ 1081 static void tse_set_rx_mode(struct net_device *dev) 1082 { 1083 struct altera_tse_private *priv = netdev_priv(dev); 1084 1085 spin_lock(&priv->mac_cfg_lock); 1086 1087 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) || 1088 !netdev_mc_empty(dev) || !netdev_uc_empty(dev)) 1089 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 1090 MAC_CMDCFG_PROMIS_EN); 1091 else 1092 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config), 1093 MAC_CMDCFG_PROMIS_EN); 1094 1095 spin_unlock(&priv->mac_cfg_lock); 1096 } 1097 1098 /* Initialise (if necessary) the SGMII PCS component 1099 */ 1100 static int init_sgmii_pcs(struct net_device *dev) 1101 { 1102 struct altera_tse_private *priv = netdev_priv(dev); 1103 int n; 1104 unsigned int tmp_reg = 0; 1105 1106 if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII) 1107 return 0; /* Nothing to do, not in SGMII mode */ 1108 1109 /* The TSE SGMII PCS block looks a little like a PHY, it is 1110 * mapped into the zeroth MDIO space of the MAC and it has 1111 * ID registers like a PHY would. Sadly this is often 1112 * configured to zeroes, so don't be surprised if it does 1113 * show 0x00000000. 1114 */ 1115 1116 if (sgmii_pcs_scratch_test(priv, 0x0000) && 1117 sgmii_pcs_scratch_test(priv, 0xffff) && 1118 sgmii_pcs_scratch_test(priv, 0xa5a5) && 1119 sgmii_pcs_scratch_test(priv, 0x5a5a)) { 1120 netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n", 1121 sgmii_pcs_read(priv, MII_PHYSID1), 1122 sgmii_pcs_read(priv, MII_PHYSID2)); 1123 } else { 1124 netdev_err(dev, "SGMII PCS Scratch memory test failed.\n"); 1125 return -ENOMEM; 1126 } 1127 1128 /* Starting on page 5-29 of the MegaCore Function User Guide 1129 * Set SGMII Link timer to 1.6ms 1130 */ 1131 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40); 1132 sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03); 1133 1134 /* Enable SGMII Interface and Enable SGMII Auto Negotiation */ 1135 sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3); 1136 1137 /* Enable Autonegotiation */ 1138 tmp_reg = sgmii_pcs_read(priv, MII_BMCR); 1139 tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE); 1140 sgmii_pcs_write(priv, MII_BMCR, tmp_reg); 1141 1142 /* Reset PCS block */ 1143 tmp_reg |= BMCR_RESET; 1144 sgmii_pcs_write(priv, MII_BMCR, tmp_reg); 1145 for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) { 1146 if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) { 1147 netdev_info(dev, "SGMII PCS block initialised OK\n"); 1148 return 0; 1149 } 1150 udelay(1); 1151 } 1152 1153 /* We failed to reset the block, return a timeout */ 1154 netdev_err(dev, "SGMII PCS block reset failed.\n"); 1155 return -ETIMEDOUT; 1156 } 1157 1158 /* Open and initialize the interface 1159 */ 1160 static int tse_open(struct net_device *dev) 1161 { 1162 struct altera_tse_private *priv = netdev_priv(dev); 1163 int ret = 0; 1164 int i; 1165 unsigned long int flags; 1166 1167 /* Reset and configure TSE MAC and probe associated PHY */ 1168 ret = priv->dmaops->init_dma(priv); 1169 if (ret != 0) { 1170 netdev_err(dev, "Cannot initialize DMA\n"); 1171 goto phy_error; 1172 } 1173 1174 if (netif_msg_ifup(priv)) 1175 netdev_warn(dev, "device MAC address %pM\n", 1176 dev->dev_addr); 1177 1178 if ((priv->revision < 0xd00) || (priv->revision > 0xe00)) 1179 netdev_warn(dev, "TSE revision %x\n", priv->revision); 1180 1181 spin_lock(&priv->mac_cfg_lock); 1182 /* no-op if MAC not operating in SGMII mode*/ 1183 ret = init_sgmii_pcs(dev); 1184 if (ret) { 1185 netdev_err(dev, 1186 "Cannot init the SGMII PCS (error: %d)\n", ret); 1187 spin_unlock(&priv->mac_cfg_lock); 1188 goto phy_error; 1189 } 1190 1191 ret = reset_mac(priv); 1192 /* Note that reset_mac will fail if the clocks are gated by the PHY 1193 * due to the PHY being put into isolation or power down mode. 1194 * This is not an error if reset fails due to no clock. 1195 */ 1196 if (ret) 1197 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 1198 1199 ret = init_mac(priv); 1200 spin_unlock(&priv->mac_cfg_lock); 1201 if (ret) { 1202 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret); 1203 goto alloc_skbuf_error; 1204 } 1205 1206 priv->dmaops->reset_dma(priv); 1207 1208 /* Create and initialize the TX/RX descriptors chains. */ 1209 priv->rx_ring_size = dma_rx_num; 1210 priv->tx_ring_size = dma_tx_num; 1211 ret = alloc_init_skbufs(priv); 1212 if (ret) { 1213 netdev_err(dev, "DMA descriptors initialization failed\n"); 1214 goto alloc_skbuf_error; 1215 } 1216 1217 1218 /* Register RX interrupt */ 1219 ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED, 1220 dev->name, dev); 1221 if (ret) { 1222 netdev_err(dev, "Unable to register RX interrupt %d\n", 1223 priv->rx_irq); 1224 goto init_error; 1225 } 1226 1227 /* Register TX interrupt */ 1228 ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED, 1229 dev->name, dev); 1230 if (ret) { 1231 netdev_err(dev, "Unable to register TX interrupt %d\n", 1232 priv->tx_irq); 1233 goto tx_request_irq_error; 1234 } 1235 1236 /* Enable DMA interrupts */ 1237 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 1238 priv->dmaops->enable_rxirq(priv); 1239 priv->dmaops->enable_txirq(priv); 1240 1241 /* Setup RX descriptor chain */ 1242 for (i = 0; i < priv->rx_ring_size; i++) 1243 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]); 1244 1245 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 1246 1247 if (dev->phydev) 1248 phy_start(dev->phydev); 1249 1250 napi_enable(&priv->napi); 1251 netif_start_queue(dev); 1252 1253 priv->dmaops->start_rxdma(priv); 1254 1255 /* Start MAC Rx/Tx */ 1256 spin_lock(&priv->mac_cfg_lock); 1257 tse_set_mac(priv, true); 1258 spin_unlock(&priv->mac_cfg_lock); 1259 1260 return 0; 1261 1262 tx_request_irq_error: 1263 free_irq(priv->rx_irq, dev); 1264 init_error: 1265 free_skbufs(dev); 1266 alloc_skbuf_error: 1267 phy_error: 1268 return ret; 1269 } 1270 1271 /* Stop TSE MAC interface and put the device in an inactive state 1272 */ 1273 static int tse_shutdown(struct net_device *dev) 1274 { 1275 struct altera_tse_private *priv = netdev_priv(dev); 1276 int ret; 1277 unsigned long int flags; 1278 1279 /* Stop the PHY */ 1280 if (dev->phydev) 1281 phy_stop(dev->phydev); 1282 1283 netif_stop_queue(dev); 1284 napi_disable(&priv->napi); 1285 1286 /* Disable DMA interrupts */ 1287 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 1288 priv->dmaops->disable_rxirq(priv); 1289 priv->dmaops->disable_txirq(priv); 1290 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 1291 1292 /* Free the IRQ lines */ 1293 free_irq(priv->rx_irq, dev); 1294 free_irq(priv->tx_irq, dev); 1295 1296 /* disable and reset the MAC, empties fifo */ 1297 spin_lock(&priv->mac_cfg_lock); 1298 spin_lock(&priv->tx_lock); 1299 1300 ret = reset_mac(priv); 1301 /* Note that reset_mac will fail if the clocks are gated by the PHY 1302 * due to the PHY being put into isolation or power down mode. 1303 * This is not an error if reset fails due to no clock. 1304 */ 1305 if (ret) 1306 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 1307 priv->dmaops->reset_dma(priv); 1308 free_skbufs(dev); 1309 1310 spin_unlock(&priv->tx_lock); 1311 spin_unlock(&priv->mac_cfg_lock); 1312 1313 priv->dmaops->uninit_dma(priv); 1314 1315 return 0; 1316 } 1317 1318 static struct net_device_ops altera_tse_netdev_ops = { 1319 .ndo_open = tse_open, 1320 .ndo_stop = tse_shutdown, 1321 .ndo_start_xmit = tse_start_xmit, 1322 .ndo_set_mac_address = eth_mac_addr, 1323 .ndo_set_rx_mode = tse_set_rx_mode, 1324 .ndo_change_mtu = tse_change_mtu, 1325 .ndo_validate_addr = eth_validate_addr, 1326 }; 1327 1328 static int request_and_map(struct platform_device *pdev, const char *name, 1329 struct resource **res, void __iomem **ptr) 1330 { 1331 struct resource *region; 1332 struct device *device = &pdev->dev; 1333 1334 *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); 1335 if (*res == NULL) { 1336 dev_err(device, "resource %s not defined\n", name); 1337 return -ENODEV; 1338 } 1339 1340 region = devm_request_mem_region(device, (*res)->start, 1341 resource_size(*res), dev_name(device)); 1342 if (region == NULL) { 1343 dev_err(device, "unable to request %s\n", name); 1344 return -EBUSY; 1345 } 1346 1347 *ptr = devm_ioremap_nocache(device, region->start, 1348 resource_size(region)); 1349 if (*ptr == NULL) { 1350 dev_err(device, "ioremap_nocache of %s failed!", name); 1351 return -ENOMEM; 1352 } 1353 1354 return 0; 1355 } 1356 1357 /* Probe Altera TSE MAC device 1358 */ 1359 static int altera_tse_probe(struct platform_device *pdev) 1360 { 1361 struct net_device *ndev; 1362 int ret = -ENODEV; 1363 struct resource *control_port; 1364 struct resource *dma_res; 1365 struct altera_tse_private *priv; 1366 const unsigned char *macaddr; 1367 void __iomem *descmap; 1368 const struct of_device_id *of_id = NULL; 1369 1370 ndev = alloc_etherdev(sizeof(struct altera_tse_private)); 1371 if (!ndev) { 1372 dev_err(&pdev->dev, "Could not allocate network device\n"); 1373 return -ENODEV; 1374 } 1375 1376 SET_NETDEV_DEV(ndev, &pdev->dev); 1377 1378 priv = netdev_priv(ndev); 1379 priv->device = &pdev->dev; 1380 priv->dev = ndev; 1381 priv->msg_enable = netif_msg_init(debug, default_msg_level); 1382 1383 of_id = of_match_device(altera_tse_ids, &pdev->dev); 1384 1385 if (of_id) 1386 priv->dmaops = (struct altera_dmaops *)of_id->data; 1387 1388 1389 if (priv->dmaops && 1390 priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) { 1391 /* Get the mapped address to the SGDMA descriptor memory */ 1392 ret = request_and_map(pdev, "s1", &dma_res, &descmap); 1393 if (ret) 1394 goto err_free_netdev; 1395 1396 /* Start of that memory is for transmit descriptors */ 1397 priv->tx_dma_desc = descmap; 1398 1399 /* First half is for tx descriptors, other half for tx */ 1400 priv->txdescmem = resource_size(dma_res)/2; 1401 1402 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start; 1403 1404 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap + 1405 priv->txdescmem)); 1406 priv->rxdescmem = resource_size(dma_res)/2; 1407 priv->rxdescmem_busaddr = dma_res->start; 1408 priv->rxdescmem_busaddr += priv->txdescmem; 1409 1410 if (upper_32_bits(priv->rxdescmem_busaddr)) { 1411 dev_dbg(priv->device, 1412 "SGDMA bus addresses greater than 32-bits\n"); 1413 ret = -EINVAL; 1414 goto err_free_netdev; 1415 } 1416 if (upper_32_bits(priv->txdescmem_busaddr)) { 1417 dev_dbg(priv->device, 1418 "SGDMA bus addresses greater than 32-bits\n"); 1419 ret = -EINVAL; 1420 goto err_free_netdev; 1421 } 1422 } else if (priv->dmaops && 1423 priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) { 1424 ret = request_and_map(pdev, "rx_resp", &dma_res, 1425 &priv->rx_dma_resp); 1426 if (ret) 1427 goto err_free_netdev; 1428 1429 ret = request_and_map(pdev, "tx_desc", &dma_res, 1430 &priv->tx_dma_desc); 1431 if (ret) 1432 goto err_free_netdev; 1433 1434 priv->txdescmem = resource_size(dma_res); 1435 priv->txdescmem_busaddr = dma_res->start; 1436 1437 ret = request_and_map(pdev, "rx_desc", &dma_res, 1438 &priv->rx_dma_desc); 1439 if (ret) 1440 goto err_free_netdev; 1441 1442 priv->rxdescmem = resource_size(dma_res); 1443 priv->rxdescmem_busaddr = dma_res->start; 1444 1445 } else { 1446 goto err_free_netdev; 1447 } 1448 1449 if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) 1450 dma_set_coherent_mask(priv->device, 1451 DMA_BIT_MASK(priv->dmaops->dmamask)); 1452 else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) 1453 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32)); 1454 else 1455 goto err_free_netdev; 1456 1457 /* MAC address space */ 1458 ret = request_and_map(pdev, "control_port", &control_port, 1459 (void __iomem **)&priv->mac_dev); 1460 if (ret) 1461 goto err_free_netdev; 1462 1463 /* xSGDMA Rx Dispatcher address space */ 1464 ret = request_and_map(pdev, "rx_csr", &dma_res, 1465 &priv->rx_dma_csr); 1466 if (ret) 1467 goto err_free_netdev; 1468 1469 1470 /* xSGDMA Tx Dispatcher address space */ 1471 ret = request_and_map(pdev, "tx_csr", &dma_res, 1472 &priv->tx_dma_csr); 1473 if (ret) 1474 goto err_free_netdev; 1475 1476 1477 /* Rx IRQ */ 1478 priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq"); 1479 if (priv->rx_irq == -ENXIO) { 1480 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n"); 1481 ret = -ENXIO; 1482 goto err_free_netdev; 1483 } 1484 1485 /* Tx IRQ */ 1486 priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq"); 1487 if (priv->tx_irq == -ENXIO) { 1488 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n"); 1489 ret = -ENXIO; 1490 goto err_free_netdev; 1491 } 1492 1493 /* get FIFO depths from device tree */ 1494 if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", 1495 &priv->rx_fifo_depth)) { 1496 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n"); 1497 ret = -ENXIO; 1498 goto err_free_netdev; 1499 } 1500 1501 if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", 1502 &priv->tx_fifo_depth)) { 1503 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n"); 1504 ret = -ENXIO; 1505 goto err_free_netdev; 1506 } 1507 1508 /* get hash filter settings for this instance */ 1509 priv->hash_filter = 1510 of_property_read_bool(pdev->dev.of_node, 1511 "altr,has-hash-multicast-filter"); 1512 1513 /* Set hash filter to not set for now until the 1514 * multicast filter receive issue is debugged 1515 */ 1516 priv->hash_filter = 0; 1517 1518 /* get supplemental address settings for this instance */ 1519 priv->added_unicast = 1520 of_property_read_bool(pdev->dev.of_node, 1521 "altr,has-supplementary-unicast"); 1522 1523 priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; 1524 /* Max MTU is 1500, ETH_DATA_LEN */ 1525 priv->dev->max_mtu = ETH_DATA_LEN; 1526 1527 /* Get the max mtu from the device tree. Note that the 1528 * "max-frame-size" parameter is actually max mtu. Definition 1529 * in the ePAPR v1.1 spec and usage differ, so go with usage. 1530 */ 1531 of_property_read_u32(pdev->dev.of_node, "max-frame-size", 1532 &priv->dev->max_mtu); 1533 1534 /* The DMA buffer size already accounts for an alignment bias 1535 * to avoid unaligned access exceptions for the NIOS processor, 1536 */ 1537 priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE; 1538 1539 /* get default MAC address from device tree */ 1540 macaddr = of_get_mac_address(pdev->dev.of_node); 1541 if (macaddr) 1542 ether_addr_copy(ndev->dev_addr, macaddr); 1543 else 1544 eth_hw_addr_random(ndev); 1545 1546 /* get phy addr and create mdio */ 1547 ret = altera_tse_phy_get_addr_mdio_create(ndev); 1548 1549 if (ret) 1550 goto err_free_netdev; 1551 1552 /* initialize netdev */ 1553 ndev->mem_start = control_port->start; 1554 ndev->mem_end = control_port->end; 1555 ndev->netdev_ops = &altera_tse_netdev_ops; 1556 altera_tse_set_ethtool_ops(ndev); 1557 1558 altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode; 1559 1560 if (priv->hash_filter) 1561 altera_tse_netdev_ops.ndo_set_rx_mode = 1562 tse_set_rx_mode_hashfilter; 1563 1564 /* Scatter/gather IO is not supported, 1565 * so it is turned off 1566 */ 1567 ndev->hw_features &= ~NETIF_F_SG; 1568 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 1569 1570 /* VLAN offloading of tagging, stripping and filtering is not 1571 * supported by hardware, but driver will accommodate the 1572 * extra 4-byte VLAN tag for processing by upper layers 1573 */ 1574 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1575 1576 /* setup NAPI interface */ 1577 netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT); 1578 1579 spin_lock_init(&priv->mac_cfg_lock); 1580 spin_lock_init(&priv->tx_lock); 1581 spin_lock_init(&priv->rxdma_irq_lock); 1582 1583 netif_carrier_off(ndev); 1584 ret = register_netdev(ndev); 1585 if (ret) { 1586 dev_err(&pdev->dev, "failed to register TSE net device\n"); 1587 goto err_register_netdev; 1588 } 1589 1590 platform_set_drvdata(pdev, ndev); 1591 1592 priv->revision = ioread32(&priv->mac_dev->megacore_revision); 1593 1594 if (netif_msg_probe(priv)) 1595 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n", 1596 (priv->revision >> 8) & 0xff, 1597 priv->revision & 0xff, 1598 (unsigned long) control_port->start, priv->rx_irq, 1599 priv->tx_irq); 1600 1601 ret = init_phy(ndev); 1602 if (ret != 0) { 1603 netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret); 1604 goto err_init_phy; 1605 } 1606 return 0; 1607 1608 err_init_phy: 1609 unregister_netdev(ndev); 1610 err_register_netdev: 1611 netif_napi_del(&priv->napi); 1612 altera_tse_mdio_destroy(ndev); 1613 err_free_netdev: 1614 free_netdev(ndev); 1615 return ret; 1616 } 1617 1618 /* Remove Altera TSE MAC device 1619 */ 1620 static int altera_tse_remove(struct platform_device *pdev) 1621 { 1622 struct net_device *ndev = platform_get_drvdata(pdev); 1623 struct altera_tse_private *priv = netdev_priv(ndev); 1624 1625 if (ndev->phydev) { 1626 phy_disconnect(ndev->phydev); 1627 1628 if (of_phy_is_fixed_link(priv->device->of_node)) 1629 of_phy_deregister_fixed_link(priv->device->of_node); 1630 } 1631 1632 platform_set_drvdata(pdev, NULL); 1633 altera_tse_mdio_destroy(ndev); 1634 unregister_netdev(ndev); 1635 free_netdev(ndev); 1636 1637 return 0; 1638 } 1639 1640 static const struct altera_dmaops altera_dtype_sgdma = { 1641 .altera_dtype = ALTERA_DTYPE_SGDMA, 1642 .dmamask = 32, 1643 .reset_dma = sgdma_reset, 1644 .enable_txirq = sgdma_enable_txirq, 1645 .enable_rxirq = sgdma_enable_rxirq, 1646 .disable_txirq = sgdma_disable_txirq, 1647 .disable_rxirq = sgdma_disable_rxirq, 1648 .clear_txirq = sgdma_clear_txirq, 1649 .clear_rxirq = sgdma_clear_rxirq, 1650 .tx_buffer = sgdma_tx_buffer, 1651 .tx_completions = sgdma_tx_completions, 1652 .add_rx_desc = sgdma_add_rx_desc, 1653 .get_rx_status = sgdma_rx_status, 1654 .init_dma = sgdma_initialize, 1655 .uninit_dma = sgdma_uninitialize, 1656 .start_rxdma = sgdma_start_rxdma, 1657 }; 1658 1659 static const struct altera_dmaops altera_dtype_msgdma = { 1660 .altera_dtype = ALTERA_DTYPE_MSGDMA, 1661 .dmamask = 64, 1662 .reset_dma = msgdma_reset, 1663 .enable_txirq = msgdma_enable_txirq, 1664 .enable_rxirq = msgdma_enable_rxirq, 1665 .disable_txirq = msgdma_disable_txirq, 1666 .disable_rxirq = msgdma_disable_rxirq, 1667 .clear_txirq = msgdma_clear_txirq, 1668 .clear_rxirq = msgdma_clear_rxirq, 1669 .tx_buffer = msgdma_tx_buffer, 1670 .tx_completions = msgdma_tx_completions, 1671 .add_rx_desc = msgdma_add_rx_desc, 1672 .get_rx_status = msgdma_rx_status, 1673 .init_dma = msgdma_initialize, 1674 .uninit_dma = msgdma_uninitialize, 1675 .start_rxdma = msgdma_start_rxdma, 1676 }; 1677 1678 static const struct of_device_id altera_tse_ids[] = { 1679 { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, }, 1680 { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, }, 1681 { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, }, 1682 {}, 1683 }; 1684 MODULE_DEVICE_TABLE(of, altera_tse_ids); 1685 1686 static struct platform_driver altera_tse_driver = { 1687 .probe = altera_tse_probe, 1688 .remove = altera_tse_remove, 1689 .suspend = NULL, 1690 .resume = NULL, 1691 .driver = { 1692 .name = ALTERA_TSE_RESOURCE_NAME, 1693 .of_match_table = altera_tse_ids, 1694 }, 1695 }; 1696 1697 module_platform_driver(altera_tse_driver); 1698 1699 MODULE_AUTHOR("Altera Corporation"); 1700 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver"); 1701 MODULE_LICENSE("GPL v2"); 1702