1 /* Altera Triple-Speed Ethernet MAC driver
2  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
3  *
4  * Contributors:
5  *   Dalon Westergreen
6  *   Thomas Chou
7  *   Ian Abbott
8  *   Yuriy Kozlov
9  *   Tobias Klauser
10  *   Andriy Smolskyy
11  *   Roman Bulgakov
12  *   Dmytro Mytarchuk
13  *   Matthew Gerlach
14  *
15  * Original driver contributed by SLS.
16  * Major updates contributed by GlobalLogic
17  *
18  * This program is free software; you can redistribute it and/or modify it
19  * under the terms and conditions of the GNU General Public License,
20  * version 2, as published by the Free Software Foundation.
21  *
22  * This program is distributed in the hope it will be useful, but WITHOUT
23  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
25  * more details.
26  *
27  * You should have received a copy of the GNU General Public License along with
28  * this program.  If not, see <http://www.gnu.org/licenses/>.
29  */
30 
31 #include <linux/atomic.h>
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_vlan.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/mii.h>
41 #include <linux/netdevice.h>
42 #include <linux/of_device.h>
43 #include <linux/of_mdio.h>
44 #include <linux/of_net.h>
45 #include <linux/of_platform.h>
46 #include <linux/phy.h>
47 #include <linux/platform_device.h>
48 #include <linux/skbuff.h>
49 #include <asm/cacheflush.h>
50 
51 #include "altera_utils.h"
52 #include "altera_tse.h"
53 #include "altera_sgdma.h"
54 #include "altera_msgdma.h"
55 
56 static atomic_t instance_count = ATOMIC_INIT(~0);
57 /* Module parameters */
58 static int debug = -1;
59 module_param(debug, int, S_IRUGO | S_IWUSR);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
63 					NETIF_MSG_LINK | NETIF_MSG_IFUP |
64 					NETIF_MSG_IFDOWN);
65 
66 #define RX_DESCRIPTORS 64
67 static int dma_rx_num = RX_DESCRIPTORS;
68 module_param(dma_rx_num, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
70 
71 #define TX_DESCRIPTORS 64
72 static int dma_tx_num = TX_DESCRIPTORS;
73 module_param(dma_tx_num, int, S_IRUGO | S_IWUSR);
74 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
75 
76 
77 #define POLL_PHY (-1)
78 
79 /* Make sure DMA buffer size is larger than the max frame size
80  * plus some alignment offset and a VLAN header. If the max frame size is
81  * 1518, a VLAN header would be additional 4 bytes and additional
82  * headroom for alignment is 2 bytes, 2048 is just fine.
83  */
84 #define ALTERA_RXDMABUFFER_SIZE	2048
85 
86 /* Allow network stack to resume queueing packets after we've
87  * finished transmitting at least 1/4 of the packets in the queue.
88  */
89 #define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
90 
91 #define TXQUEUESTOP_THRESHHOLD	2
92 
93 static const struct of_device_id altera_tse_ids[];
94 
95 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
96 {
97 	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
98 }
99 
100 /* PCS Register read/write functions
101  */
102 static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum)
103 {
104 	return csrrd32(priv->mac_dev,
105 		       tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff;
106 }
107 
108 static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum,
109 				u16 value)
110 {
111 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4);
112 }
113 
114 /* Check PCS scratch memory */
115 static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value)
116 {
117 	sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value);
118 	return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value);
119 }
120 
121 /* MDIO specific functions
122  */
123 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
124 {
125 	struct net_device *ndev = bus->priv;
126 	struct altera_tse_private *priv = netdev_priv(ndev);
127 
128 	/* set MDIO address */
129 	csrwr32((mii_id & 0x1f), priv->mac_dev,
130 		tse_csroffs(mdio_phy1_addr));
131 
132 	/* get the data */
133 	return csrrd32(priv->mac_dev,
134 		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
135 }
136 
137 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
138 				 u16 value)
139 {
140 	struct net_device *ndev = bus->priv;
141 	struct altera_tse_private *priv = netdev_priv(ndev);
142 
143 	/* set MDIO address */
144 	csrwr32((mii_id & 0x1f), priv->mac_dev,
145 		tse_csroffs(mdio_phy1_addr));
146 
147 	/* write the data */
148 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
149 	return 0;
150 }
151 
152 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
153 {
154 	struct altera_tse_private *priv = netdev_priv(dev);
155 	int ret;
156 	struct device_node *mdio_node = NULL;
157 	struct mii_bus *mdio = NULL;
158 	struct device_node *child_node = NULL;
159 
160 	for_each_child_of_node(priv->device->of_node, child_node) {
161 		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
162 			mdio_node = child_node;
163 			break;
164 		}
165 	}
166 
167 	if (mdio_node) {
168 		netdev_dbg(dev, "FOUND MDIO subnode\n");
169 	} else {
170 		netdev_dbg(dev, "NO MDIO subnode\n");
171 		return 0;
172 	}
173 
174 	mdio = mdiobus_alloc();
175 	if (mdio == NULL) {
176 		netdev_err(dev, "Error allocating MDIO bus\n");
177 		return -ENOMEM;
178 	}
179 
180 	mdio->name = ALTERA_TSE_RESOURCE_NAME;
181 	mdio->read = &altera_tse_mdio_read;
182 	mdio->write = &altera_tse_mdio_write;
183 	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
184 
185 	mdio->priv = dev;
186 	mdio->parent = priv->device;
187 
188 	ret = of_mdiobus_register(mdio, mdio_node);
189 	if (ret != 0) {
190 		netdev_err(dev, "Cannot register MDIO bus %s\n",
191 			   mdio->id);
192 		goto out_free_mdio;
193 	}
194 
195 	if (netif_msg_drv(priv))
196 		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
197 
198 	priv->mdio = mdio;
199 	return 0;
200 out_free_mdio:
201 	mdiobus_free(mdio);
202 	mdio = NULL;
203 	return ret;
204 }
205 
206 static void altera_tse_mdio_destroy(struct net_device *dev)
207 {
208 	struct altera_tse_private *priv = netdev_priv(dev);
209 
210 	if (priv->mdio == NULL)
211 		return;
212 
213 	if (netif_msg_drv(priv))
214 		netdev_info(dev, "MDIO bus %s: removed\n",
215 			    priv->mdio->id);
216 
217 	mdiobus_unregister(priv->mdio);
218 	mdiobus_free(priv->mdio);
219 	priv->mdio = NULL;
220 }
221 
222 static int tse_init_rx_buffer(struct altera_tse_private *priv,
223 			      struct tse_buffer *rxbuffer, int len)
224 {
225 	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
226 	if (!rxbuffer->skb)
227 		return -ENOMEM;
228 
229 	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
230 						len,
231 						DMA_FROM_DEVICE);
232 
233 	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
234 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
235 		dev_kfree_skb_any(rxbuffer->skb);
236 		return -EINVAL;
237 	}
238 	rxbuffer->dma_addr &= (dma_addr_t)~3;
239 	rxbuffer->len = len;
240 	return 0;
241 }
242 
243 static void tse_free_rx_buffer(struct altera_tse_private *priv,
244 			       struct tse_buffer *rxbuffer)
245 {
246 	struct sk_buff *skb = rxbuffer->skb;
247 	dma_addr_t dma_addr = rxbuffer->dma_addr;
248 
249 	if (skb != NULL) {
250 		if (dma_addr)
251 			dma_unmap_single(priv->device, dma_addr,
252 					 rxbuffer->len,
253 					 DMA_FROM_DEVICE);
254 		dev_kfree_skb_any(skb);
255 		rxbuffer->skb = NULL;
256 		rxbuffer->dma_addr = 0;
257 	}
258 }
259 
260 /* Unmap and free Tx buffer resources
261  */
262 static void tse_free_tx_buffer(struct altera_tse_private *priv,
263 			       struct tse_buffer *buffer)
264 {
265 	if (buffer->dma_addr) {
266 		if (buffer->mapped_as_page)
267 			dma_unmap_page(priv->device, buffer->dma_addr,
268 				       buffer->len, DMA_TO_DEVICE);
269 		else
270 			dma_unmap_single(priv->device, buffer->dma_addr,
271 					 buffer->len, DMA_TO_DEVICE);
272 		buffer->dma_addr = 0;
273 	}
274 	if (buffer->skb) {
275 		dev_kfree_skb_any(buffer->skb);
276 		buffer->skb = NULL;
277 	}
278 }
279 
280 static int alloc_init_skbufs(struct altera_tse_private *priv)
281 {
282 	unsigned int rx_descs = priv->rx_ring_size;
283 	unsigned int tx_descs = priv->tx_ring_size;
284 	int ret = -ENOMEM;
285 	int i;
286 
287 	/* Create Rx ring buffer */
288 	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
289 				GFP_KERNEL);
290 	if (!priv->rx_ring)
291 		goto err_rx_ring;
292 
293 	/* Create Tx ring buffer */
294 	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
295 				GFP_KERNEL);
296 	if (!priv->tx_ring)
297 		goto err_tx_ring;
298 
299 	priv->tx_cons = 0;
300 	priv->tx_prod = 0;
301 
302 	/* Init Rx ring */
303 	for (i = 0; i < rx_descs; i++) {
304 		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
305 					 priv->rx_dma_buf_sz);
306 		if (ret)
307 			goto err_init_rx_buffers;
308 	}
309 
310 	priv->rx_cons = 0;
311 	priv->rx_prod = 0;
312 
313 	return 0;
314 err_init_rx_buffers:
315 	while (--i >= 0)
316 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
317 	kfree(priv->tx_ring);
318 err_tx_ring:
319 	kfree(priv->rx_ring);
320 err_rx_ring:
321 	return ret;
322 }
323 
324 static void free_skbufs(struct net_device *dev)
325 {
326 	struct altera_tse_private *priv = netdev_priv(dev);
327 	unsigned int rx_descs = priv->rx_ring_size;
328 	unsigned int tx_descs = priv->tx_ring_size;
329 	int i;
330 
331 	/* Release the DMA TX/RX socket buffers */
332 	for (i = 0; i < rx_descs; i++)
333 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
334 	for (i = 0; i < tx_descs; i++)
335 		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
336 
337 
338 	kfree(priv->tx_ring);
339 }
340 
341 /* Reallocate the skb for the reception process
342  */
343 static inline void tse_rx_refill(struct altera_tse_private *priv)
344 {
345 	unsigned int rxsize = priv->rx_ring_size;
346 	unsigned int entry;
347 	int ret;
348 
349 	for (; priv->rx_cons - priv->rx_prod > 0;
350 			priv->rx_prod++) {
351 		entry = priv->rx_prod % rxsize;
352 		if (likely(priv->rx_ring[entry].skb == NULL)) {
353 			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
354 				priv->rx_dma_buf_sz);
355 			if (unlikely(ret != 0))
356 				break;
357 			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
358 		}
359 	}
360 }
361 
362 /* Pull out the VLAN tag and fix up the packet
363  */
364 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
365 {
366 	struct ethhdr *eth_hdr;
367 	u16 vid;
368 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
369 	    !__vlan_get_tag(skb, &vid)) {
370 		eth_hdr = (struct ethhdr *)skb->data;
371 		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
372 		skb_pull(skb, VLAN_HLEN);
373 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
374 	}
375 }
376 
377 /* Receive a packet: retrieve and pass over to upper levels
378  */
379 static int tse_rx(struct altera_tse_private *priv, int limit)
380 {
381 	unsigned int count = 0;
382 	unsigned int next_entry;
383 	struct sk_buff *skb;
384 	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
385 	u32 rxstatus;
386 	u16 pktlength;
387 	u16 pktstatus;
388 
389 	/* Check for count < limit first as get_rx_status is changing
390 	* the response-fifo so we must process the next packet
391 	* after calling get_rx_status if a response is pending.
392 	* (reading the last byte of the response pops the value from the fifo.)
393 	*/
394 	while ((count < limit) &&
395 	       ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
396 		pktstatus = rxstatus >> 16;
397 		pktlength = rxstatus & 0xffff;
398 
399 		if ((pktstatus & 0xFF) || (pktlength == 0))
400 			netdev_err(priv->dev,
401 				   "RCV pktstatus %08X pktlength %08X\n",
402 				   pktstatus, pktlength);
403 
404 		/* DMA trasfer from TSE starts with 2 aditional bytes for
405 		 * IP payload alignment. Status returned by get_rx_status()
406 		 * contains DMA transfer length. Packet is 2 bytes shorter.
407 		 */
408 		pktlength -= 2;
409 
410 		count++;
411 		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
412 
413 		skb = priv->rx_ring[entry].skb;
414 		if (unlikely(!skb)) {
415 			netdev_err(priv->dev,
416 				   "%s: Inconsistent Rx descriptor chain\n",
417 				   __func__);
418 			priv->dev->stats.rx_dropped++;
419 			break;
420 		}
421 		priv->rx_ring[entry].skb = NULL;
422 
423 		skb_put(skb, pktlength);
424 
425 		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
426 				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
427 
428 		if (netif_msg_pktdata(priv)) {
429 			netdev_info(priv->dev, "frame received %d bytes\n",
430 				    pktlength);
431 			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
432 				       16, 1, skb->data, pktlength, true);
433 		}
434 
435 		tse_rx_vlan(priv->dev, skb);
436 
437 		skb->protocol = eth_type_trans(skb, priv->dev);
438 		skb_checksum_none_assert(skb);
439 
440 		napi_gro_receive(&priv->napi, skb);
441 
442 		priv->dev->stats.rx_packets++;
443 		priv->dev->stats.rx_bytes += pktlength;
444 
445 		entry = next_entry;
446 
447 		tse_rx_refill(priv);
448 	}
449 
450 	return count;
451 }
452 
453 /* Reclaim resources after transmission completes
454  */
455 static int tse_tx_complete(struct altera_tse_private *priv)
456 {
457 	unsigned int txsize = priv->tx_ring_size;
458 	u32 ready;
459 	unsigned int entry;
460 	struct tse_buffer *tx_buff;
461 	int txcomplete = 0;
462 
463 	spin_lock(&priv->tx_lock);
464 
465 	ready = priv->dmaops->tx_completions(priv);
466 
467 	/* Free sent buffers */
468 	while (ready && (priv->tx_cons != priv->tx_prod)) {
469 		entry = priv->tx_cons % txsize;
470 		tx_buff = &priv->tx_ring[entry];
471 
472 		if (netif_msg_tx_done(priv))
473 			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
474 				   __func__, priv->tx_prod, priv->tx_cons);
475 
476 		if (likely(tx_buff->skb))
477 			priv->dev->stats.tx_packets++;
478 
479 		tse_free_tx_buffer(priv, tx_buff);
480 		priv->tx_cons++;
481 
482 		txcomplete++;
483 		ready--;
484 	}
485 
486 	if (unlikely(netif_queue_stopped(priv->dev) &&
487 		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
488 		if (netif_queue_stopped(priv->dev) &&
489 		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
490 			if (netif_msg_tx_done(priv))
491 				netdev_dbg(priv->dev, "%s: restart transmit\n",
492 					   __func__);
493 			netif_wake_queue(priv->dev);
494 		}
495 	}
496 
497 	spin_unlock(&priv->tx_lock);
498 	return txcomplete;
499 }
500 
501 /* NAPI polling function
502  */
503 static int tse_poll(struct napi_struct *napi, int budget)
504 {
505 	struct altera_tse_private *priv =
506 			container_of(napi, struct altera_tse_private, napi);
507 	int rxcomplete = 0;
508 	unsigned long int flags;
509 
510 	tse_tx_complete(priv);
511 
512 	rxcomplete = tse_rx(priv, budget);
513 
514 	if (rxcomplete < budget) {
515 
516 		napi_complete_done(napi, rxcomplete);
517 
518 		netdev_dbg(priv->dev,
519 			   "NAPI Complete, did %d packets with budget %d\n",
520 			   rxcomplete, budget);
521 
522 		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
523 		priv->dmaops->enable_rxirq(priv);
524 		priv->dmaops->enable_txirq(priv);
525 		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
526 	}
527 	return rxcomplete;
528 }
529 
530 /* DMA TX & RX FIFO interrupt routing
531  */
532 static irqreturn_t altera_isr(int irq, void *dev_id)
533 {
534 	struct net_device *dev = dev_id;
535 	struct altera_tse_private *priv;
536 
537 	if (unlikely(!dev)) {
538 		pr_err("%s: invalid dev pointer\n", __func__);
539 		return IRQ_NONE;
540 	}
541 	priv = netdev_priv(dev);
542 
543 	spin_lock(&priv->rxdma_irq_lock);
544 	/* reset IRQs */
545 	priv->dmaops->clear_rxirq(priv);
546 	priv->dmaops->clear_txirq(priv);
547 	spin_unlock(&priv->rxdma_irq_lock);
548 
549 	if (likely(napi_schedule_prep(&priv->napi))) {
550 		spin_lock(&priv->rxdma_irq_lock);
551 		priv->dmaops->disable_rxirq(priv);
552 		priv->dmaops->disable_txirq(priv);
553 		spin_unlock(&priv->rxdma_irq_lock);
554 		__napi_schedule(&priv->napi);
555 	}
556 
557 
558 	return IRQ_HANDLED;
559 }
560 
561 /* Transmit a packet (called by the kernel). Dispatches
562  * either the SGDMA method for transmitting or the
563  * MSGDMA method, assumes no scatter/gather support,
564  * implying an assumption that there's only one
565  * physically contiguous fragment starting at
566  * skb->data, for length of skb_headlen(skb).
567  */
568 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
569 {
570 	struct altera_tse_private *priv = netdev_priv(dev);
571 	unsigned int txsize = priv->tx_ring_size;
572 	unsigned int entry;
573 	struct tse_buffer *buffer = NULL;
574 	int nfrags = skb_shinfo(skb)->nr_frags;
575 	unsigned int nopaged_len = skb_headlen(skb);
576 	enum netdev_tx ret = NETDEV_TX_OK;
577 	dma_addr_t dma_addr;
578 
579 	spin_lock_bh(&priv->tx_lock);
580 
581 	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
582 		if (!netif_queue_stopped(dev)) {
583 			netif_stop_queue(dev);
584 			/* This is a hard error, log it. */
585 			netdev_err(priv->dev,
586 				   "%s: Tx list full when queue awake\n",
587 				   __func__);
588 		}
589 		ret = NETDEV_TX_BUSY;
590 		goto out;
591 	}
592 
593 	/* Map the first skb fragment */
594 	entry = priv->tx_prod % txsize;
595 	buffer = &priv->tx_ring[entry];
596 
597 	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
598 				  DMA_TO_DEVICE);
599 	if (dma_mapping_error(priv->device, dma_addr)) {
600 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
601 		ret = NETDEV_TX_OK;
602 		goto out;
603 	}
604 
605 	buffer->skb = skb;
606 	buffer->dma_addr = dma_addr;
607 	buffer->len = nopaged_len;
608 
609 	priv->dmaops->tx_buffer(priv, buffer);
610 
611 	skb_tx_timestamp(skb);
612 
613 	priv->tx_prod++;
614 	dev->stats.tx_bytes += skb->len;
615 
616 	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
617 		if (netif_msg_hw(priv))
618 			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
619 				   __func__);
620 		netif_stop_queue(dev);
621 	}
622 
623 out:
624 	spin_unlock_bh(&priv->tx_lock);
625 
626 	return ret;
627 }
628 
629 /* Called every time the controller might need to be made
630  * aware of new link state.  The PHY code conveys this
631  * information through variables in the phydev structure, and this
632  * function converts those variables into the appropriate
633  * register values, and can bring down the device if needed.
634  */
635 static void altera_tse_adjust_link(struct net_device *dev)
636 {
637 	struct altera_tse_private *priv = netdev_priv(dev);
638 	struct phy_device *phydev = dev->phydev;
639 	int new_state = 0;
640 
641 	/* only change config if there is a link */
642 	spin_lock(&priv->mac_cfg_lock);
643 	if (phydev->link) {
644 		/* Read old config */
645 		u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
646 
647 		/* Check duplex */
648 		if (phydev->duplex != priv->oldduplex) {
649 			new_state = 1;
650 			if (!(phydev->duplex))
651 				cfg_reg |= MAC_CMDCFG_HD_ENA;
652 			else
653 				cfg_reg &= ~MAC_CMDCFG_HD_ENA;
654 
655 			netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
656 				   dev->name, phydev->duplex);
657 
658 			priv->oldduplex = phydev->duplex;
659 		}
660 
661 		/* Check speed */
662 		if (phydev->speed != priv->oldspeed) {
663 			new_state = 1;
664 			switch (phydev->speed) {
665 			case 1000:
666 				cfg_reg |= MAC_CMDCFG_ETH_SPEED;
667 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
668 				break;
669 			case 100:
670 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
671 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
672 				break;
673 			case 10:
674 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
675 				cfg_reg |= MAC_CMDCFG_ENA_10;
676 				break;
677 			default:
678 				if (netif_msg_link(priv))
679 					netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
680 						    phydev->speed);
681 				break;
682 			}
683 			priv->oldspeed = phydev->speed;
684 		}
685 		iowrite32(cfg_reg, &priv->mac_dev->command_config);
686 
687 		if (!priv->oldlink) {
688 			new_state = 1;
689 			priv->oldlink = 1;
690 		}
691 	} else if (priv->oldlink) {
692 		new_state = 1;
693 		priv->oldlink = 0;
694 		priv->oldspeed = 0;
695 		priv->oldduplex = -1;
696 	}
697 
698 	if (new_state && netif_msg_link(priv))
699 		phy_print_status(phydev);
700 
701 	spin_unlock(&priv->mac_cfg_lock);
702 }
703 static struct phy_device *connect_local_phy(struct net_device *dev)
704 {
705 	struct altera_tse_private *priv = netdev_priv(dev);
706 	struct phy_device *phydev = NULL;
707 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
708 
709 	if (priv->phy_addr != POLL_PHY) {
710 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
711 			 priv->mdio->id, priv->phy_addr);
712 
713 		netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
714 
715 		phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
716 				     priv->phy_iface);
717 		if (IS_ERR(phydev))
718 			netdev_err(dev, "Could not attach to PHY\n");
719 
720 	} else {
721 		int ret;
722 		phydev = phy_find_first(priv->mdio);
723 		if (phydev == NULL) {
724 			netdev_err(dev, "No PHY found\n");
725 			return phydev;
726 		}
727 
728 		ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
729 				priv->phy_iface);
730 		if (ret != 0) {
731 			netdev_err(dev, "Could not attach to PHY\n");
732 			phydev = NULL;
733 		}
734 	}
735 	return phydev;
736 }
737 
738 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
739 {
740 	struct altera_tse_private *priv = netdev_priv(dev);
741 	struct device_node *np = priv->device->of_node;
742 	int ret = 0;
743 
744 	priv->phy_iface = of_get_phy_mode(np);
745 
746 	/* Avoid get phy addr and create mdio if no phy is present */
747 	if (!priv->phy_iface)
748 		return 0;
749 
750 	/* try to get PHY address from device tree, use PHY autodetection if
751 	 * no valid address is given
752 	 */
753 
754 	if (of_property_read_u32(priv->device->of_node, "phy-addr",
755 			 &priv->phy_addr)) {
756 		priv->phy_addr = POLL_PHY;
757 	}
758 
759 	if (!((priv->phy_addr == POLL_PHY) ||
760 		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
761 		netdev_err(dev, "invalid phy-addr specified %d\n",
762 			priv->phy_addr);
763 		return -ENODEV;
764 	}
765 
766 	/* Create/attach to MDIO bus */
767 	ret = altera_tse_mdio_create(dev,
768 					 atomic_add_return(1, &instance_count));
769 
770 	if (ret)
771 		return -ENODEV;
772 
773 	return 0;
774 }
775 
776 /* Initialize driver's PHY state, and attach to the PHY
777  */
778 static int init_phy(struct net_device *dev)
779 {
780 	struct altera_tse_private *priv = netdev_priv(dev);
781 	struct phy_device *phydev;
782 	struct device_node *phynode;
783 	bool fixed_link = false;
784 	int rc = 0;
785 
786 	/* Avoid init phy in case of no phy present */
787 	if (!priv->phy_iface)
788 		return 0;
789 
790 	priv->oldlink = 0;
791 	priv->oldspeed = 0;
792 	priv->oldduplex = -1;
793 
794 	phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
795 
796 	if (!phynode) {
797 		/* check if a fixed-link is defined in device-tree */
798 		if (of_phy_is_fixed_link(priv->device->of_node)) {
799 			rc = of_phy_register_fixed_link(priv->device->of_node);
800 			if (rc < 0) {
801 				netdev_err(dev, "cannot register fixed PHY\n");
802 				return rc;
803 			}
804 
805 			/* In the case of a fixed PHY, the DT node associated
806 			 * to the PHY is the Ethernet MAC DT node.
807 			 */
808 			phynode = of_node_get(priv->device->of_node);
809 			fixed_link = true;
810 
811 			netdev_dbg(dev, "fixed-link detected\n");
812 			phydev = of_phy_connect(dev, phynode,
813 						&altera_tse_adjust_link,
814 						0, priv->phy_iface);
815 		} else {
816 			netdev_dbg(dev, "no phy-handle found\n");
817 			if (!priv->mdio) {
818 				netdev_err(dev, "No phy-handle nor local mdio specified\n");
819 				return -ENODEV;
820 			}
821 			phydev = connect_local_phy(dev);
822 		}
823 	} else {
824 		netdev_dbg(dev, "phy-handle found\n");
825 		phydev = of_phy_connect(dev, phynode,
826 			&altera_tse_adjust_link, 0, priv->phy_iface);
827 	}
828 	of_node_put(phynode);
829 
830 	if (!phydev) {
831 		netdev_err(dev, "Could not find the PHY\n");
832 		if (fixed_link)
833 			of_phy_deregister_fixed_link(priv->device->of_node);
834 		return -ENODEV;
835 	}
836 
837 	/* Stop Advertising 1000BASE Capability if interface is not GMII
838 	 * Note: Checkpatch throws CHECKs for the camel case defines below,
839 	 * it's ok to ignore.
840 	 */
841 	if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
842 	    (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
843 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
844 					 SUPPORTED_1000baseT_Full);
845 
846 	/* Broken HW is sometimes missing the pull-up resistor on the
847 	 * MDIO line, which results in reads to non-existent devices returning
848 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
849 	 * device as well. If a fixed-link is used the phy_id is always 0.
850 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
851 	 */
852 	if ((phydev->phy_id == 0) && !fixed_link) {
853 		netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
854 		phy_disconnect(phydev);
855 		return -ENODEV;
856 	}
857 
858 	netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
859 		   phydev->mdio.addr, phydev->phy_id, phydev->link);
860 
861 	return 0;
862 }
863 
864 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
865 {
866 	u32 msb;
867 	u32 lsb;
868 
869 	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
870 	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
871 
872 	/* Set primary MAC address */
873 	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
874 	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
875 }
876 
877 /* MAC software reset.
878  * When reset is triggered, the MAC function completes the current
879  * transmission or reception, and subsequently disables the transmit and
880  * receive logic, flushes the receive FIFO buffer, and resets the statistics
881  * counters.
882  */
883 static int reset_mac(struct altera_tse_private *priv)
884 {
885 	int counter;
886 	u32 dat;
887 
888 	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
889 	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
890 	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
891 	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
892 
893 	counter = 0;
894 	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
895 		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
896 				     MAC_CMDCFG_SW_RESET))
897 			break;
898 		udelay(1);
899 	}
900 
901 	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
902 		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
903 		dat &= ~MAC_CMDCFG_SW_RESET;
904 		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
905 		return -1;
906 	}
907 	return 0;
908 }
909 
910 /* Initialize MAC core registers
911 */
912 static int init_mac(struct altera_tse_private *priv)
913 {
914 	unsigned int cmd = 0;
915 	u32 frm_length;
916 
917 	/* Setup Rx FIFO */
918 	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
919 		priv->mac_dev, tse_csroffs(rx_section_empty));
920 
921 	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
922 		tse_csroffs(rx_section_full));
923 
924 	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
925 		tse_csroffs(rx_almost_empty));
926 
927 	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
928 		tse_csroffs(rx_almost_full));
929 
930 	/* Setup Tx FIFO */
931 	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
932 		priv->mac_dev, tse_csroffs(tx_section_empty));
933 
934 	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
935 		tse_csroffs(tx_section_full));
936 
937 	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
938 		tse_csroffs(tx_almost_empty));
939 
940 	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
941 		tse_csroffs(tx_almost_full));
942 
943 	/* MAC Address Configuration */
944 	tse_update_mac_addr(priv, priv->dev->dev_addr);
945 
946 	/* MAC Function Configuration */
947 	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
948 	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
949 
950 	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
951 		tse_csroffs(tx_ipg_length));
952 
953 	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
954 	 * start address
955 	 */
956 	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
957 		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
958 
959 	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
960 		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
961 		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
962 
963 	/* Set the MAC options */
964 	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
965 	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
966 	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
967 	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
968 					 * with CRC errors
969 					 */
970 	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
971 	cmd &= ~MAC_CMDCFG_TX_ENA;
972 	cmd &= ~MAC_CMDCFG_RX_ENA;
973 
974 	/* Default speed and duplex setting, full/100 */
975 	cmd &= ~MAC_CMDCFG_HD_ENA;
976 	cmd &= ~MAC_CMDCFG_ETH_SPEED;
977 	cmd &= ~MAC_CMDCFG_ENA_10;
978 
979 	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
980 
981 	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
982 		tse_csroffs(pause_quanta));
983 
984 	if (netif_msg_hw(priv))
985 		dev_dbg(priv->device,
986 			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
987 
988 	return 0;
989 }
990 
991 /* Start/stop MAC transmission logic
992  */
993 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
994 {
995 	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
996 
997 	if (enable)
998 		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
999 	else
1000 		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
1001 
1002 	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
1003 }
1004 
1005 /* Change the MTU
1006  */
1007 static int tse_change_mtu(struct net_device *dev, int new_mtu)
1008 {
1009 	if (netif_running(dev)) {
1010 		netdev_err(dev, "must be stopped to change its MTU\n");
1011 		return -EBUSY;
1012 	}
1013 
1014 	dev->mtu = new_mtu;
1015 	netdev_update_features(dev);
1016 
1017 	return 0;
1018 }
1019 
1020 static void altera_tse_set_mcfilter(struct net_device *dev)
1021 {
1022 	struct altera_tse_private *priv = netdev_priv(dev);
1023 	int i;
1024 	struct netdev_hw_addr *ha;
1025 
1026 	/* clear the hash filter */
1027 	for (i = 0; i < 64; i++)
1028 		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1029 
1030 	netdev_for_each_mc_addr(ha, dev) {
1031 		unsigned int hash = 0;
1032 		int mac_octet;
1033 
1034 		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1035 			unsigned char xor_bit = 0;
1036 			unsigned char octet = ha->addr[mac_octet];
1037 			unsigned int bitshift;
1038 
1039 			for (bitshift = 0; bitshift < 8; bitshift++)
1040 				xor_bit ^= ((octet >> bitshift) & 0x01);
1041 
1042 			hash = (hash << 1) | xor_bit;
1043 		}
1044 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1045 	}
1046 }
1047 
1048 
1049 static void altera_tse_set_mcfilterall(struct net_device *dev)
1050 {
1051 	struct altera_tse_private *priv = netdev_priv(dev);
1052 	int i;
1053 
1054 	/* set the hash filter */
1055 	for (i = 0; i < 64; i++)
1056 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1057 }
1058 
1059 /* Set or clear the multicast filter for this adaptor
1060  */
1061 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1062 {
1063 	struct altera_tse_private *priv = netdev_priv(dev);
1064 
1065 	spin_lock(&priv->mac_cfg_lock);
1066 
1067 	if (dev->flags & IFF_PROMISC)
1068 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1069 			    MAC_CMDCFG_PROMIS_EN);
1070 
1071 	if (dev->flags & IFF_ALLMULTI)
1072 		altera_tse_set_mcfilterall(dev);
1073 	else
1074 		altera_tse_set_mcfilter(dev);
1075 
1076 	spin_unlock(&priv->mac_cfg_lock);
1077 }
1078 
1079 /* Set or clear the multicast filter for this adaptor
1080  */
1081 static void tse_set_rx_mode(struct net_device *dev)
1082 {
1083 	struct altera_tse_private *priv = netdev_priv(dev);
1084 
1085 	spin_lock(&priv->mac_cfg_lock);
1086 
1087 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1088 	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1089 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1090 			    MAC_CMDCFG_PROMIS_EN);
1091 	else
1092 		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1093 			      MAC_CMDCFG_PROMIS_EN);
1094 
1095 	spin_unlock(&priv->mac_cfg_lock);
1096 }
1097 
1098 /* Initialise (if necessary) the SGMII PCS component
1099  */
1100 static int init_sgmii_pcs(struct net_device *dev)
1101 {
1102 	struct altera_tse_private *priv = netdev_priv(dev);
1103 	int n;
1104 	unsigned int tmp_reg = 0;
1105 
1106 	if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII)
1107 		return 0; /* Nothing to do, not in SGMII mode */
1108 
1109 	/* The TSE SGMII PCS block looks a little like a PHY, it is
1110 	 * mapped into the zeroth MDIO space of the MAC and it has
1111 	 * ID registers like a PHY would.  Sadly this is often
1112 	 * configured to zeroes, so don't be surprised if it does
1113 	 * show 0x00000000.
1114 	 */
1115 
1116 	if (sgmii_pcs_scratch_test(priv, 0x0000) &&
1117 		sgmii_pcs_scratch_test(priv, 0xffff) &&
1118 		sgmii_pcs_scratch_test(priv, 0xa5a5) &&
1119 		sgmii_pcs_scratch_test(priv, 0x5a5a)) {
1120 		netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n",
1121 				sgmii_pcs_read(priv, MII_PHYSID1),
1122 				sgmii_pcs_read(priv, MII_PHYSID2));
1123 	} else {
1124 		netdev_err(dev, "SGMII PCS Scratch memory test failed.\n");
1125 		return -ENOMEM;
1126 	}
1127 
1128 	/* Starting on page 5-29 of the MegaCore Function User Guide
1129 	 * Set SGMII Link timer to 1.6ms
1130 	 */
1131 	sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40);
1132 	sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03);
1133 
1134 	/* Enable SGMII Interface and Enable SGMII Auto Negotiation */
1135 	sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3);
1136 
1137 	/* Enable Autonegotiation */
1138 	tmp_reg = sgmii_pcs_read(priv, MII_BMCR);
1139 	tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE);
1140 	sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1141 
1142 	/* Reset PCS block */
1143 	tmp_reg |= BMCR_RESET;
1144 	sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1145 	for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) {
1146 		if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) {
1147 			netdev_info(dev, "SGMII PCS block initialised OK\n");
1148 			return 0;
1149 		}
1150 		udelay(1);
1151 	}
1152 
1153 	/* We failed to reset the block, return a timeout */
1154 	netdev_err(dev, "SGMII PCS block reset failed.\n");
1155 	return -ETIMEDOUT;
1156 }
1157 
1158 /* Open and initialize the interface
1159  */
1160 static int tse_open(struct net_device *dev)
1161 {
1162 	struct altera_tse_private *priv = netdev_priv(dev);
1163 	int ret = 0;
1164 	int i;
1165 	unsigned long int flags;
1166 
1167 	/* Reset and configure TSE MAC and probe associated PHY */
1168 	ret = priv->dmaops->init_dma(priv);
1169 	if (ret != 0) {
1170 		netdev_err(dev, "Cannot initialize DMA\n");
1171 		goto phy_error;
1172 	}
1173 
1174 	if (netif_msg_ifup(priv))
1175 		netdev_warn(dev, "device MAC address %pM\n",
1176 			    dev->dev_addr);
1177 
1178 	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1179 		netdev_warn(dev, "TSE revision %x\n", priv->revision);
1180 
1181 	spin_lock(&priv->mac_cfg_lock);
1182 	/* no-op if MAC not operating in SGMII mode*/
1183 	ret = init_sgmii_pcs(dev);
1184 	if (ret) {
1185 		netdev_err(dev,
1186 			   "Cannot init the SGMII PCS (error: %d)\n", ret);
1187 		spin_unlock(&priv->mac_cfg_lock);
1188 		goto phy_error;
1189 	}
1190 
1191 	ret = reset_mac(priv);
1192 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1193 	 * due to the PHY being put into isolation or power down mode.
1194 	 * This is not an error if reset fails due to no clock.
1195 	 */
1196 	if (ret)
1197 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1198 
1199 	ret = init_mac(priv);
1200 	spin_unlock(&priv->mac_cfg_lock);
1201 	if (ret) {
1202 		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1203 		goto alloc_skbuf_error;
1204 	}
1205 
1206 	priv->dmaops->reset_dma(priv);
1207 
1208 	/* Create and initialize the TX/RX descriptors chains. */
1209 	priv->rx_ring_size = dma_rx_num;
1210 	priv->tx_ring_size = dma_tx_num;
1211 	ret = alloc_init_skbufs(priv);
1212 	if (ret) {
1213 		netdev_err(dev, "DMA descriptors initialization failed\n");
1214 		goto alloc_skbuf_error;
1215 	}
1216 
1217 
1218 	/* Register RX interrupt */
1219 	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1220 			  dev->name, dev);
1221 	if (ret) {
1222 		netdev_err(dev, "Unable to register RX interrupt %d\n",
1223 			   priv->rx_irq);
1224 		goto init_error;
1225 	}
1226 
1227 	/* Register TX interrupt */
1228 	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1229 			  dev->name, dev);
1230 	if (ret) {
1231 		netdev_err(dev, "Unable to register TX interrupt %d\n",
1232 			   priv->tx_irq);
1233 		goto tx_request_irq_error;
1234 	}
1235 
1236 	/* Enable DMA interrupts */
1237 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1238 	priv->dmaops->enable_rxirq(priv);
1239 	priv->dmaops->enable_txirq(priv);
1240 
1241 	/* Setup RX descriptor chain */
1242 	for (i = 0; i < priv->rx_ring_size; i++)
1243 		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1244 
1245 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1246 
1247 	if (dev->phydev)
1248 		phy_start(dev->phydev);
1249 
1250 	napi_enable(&priv->napi);
1251 	netif_start_queue(dev);
1252 
1253 	priv->dmaops->start_rxdma(priv);
1254 
1255 	/* Start MAC Rx/Tx */
1256 	spin_lock(&priv->mac_cfg_lock);
1257 	tse_set_mac(priv, true);
1258 	spin_unlock(&priv->mac_cfg_lock);
1259 
1260 	return 0;
1261 
1262 tx_request_irq_error:
1263 	free_irq(priv->rx_irq, dev);
1264 init_error:
1265 	free_skbufs(dev);
1266 alloc_skbuf_error:
1267 phy_error:
1268 	return ret;
1269 }
1270 
1271 /* Stop TSE MAC interface and put the device in an inactive state
1272  */
1273 static int tse_shutdown(struct net_device *dev)
1274 {
1275 	struct altera_tse_private *priv = netdev_priv(dev);
1276 	int ret;
1277 	unsigned long int flags;
1278 
1279 	/* Stop the PHY */
1280 	if (dev->phydev)
1281 		phy_stop(dev->phydev);
1282 
1283 	netif_stop_queue(dev);
1284 	napi_disable(&priv->napi);
1285 
1286 	/* Disable DMA interrupts */
1287 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1288 	priv->dmaops->disable_rxirq(priv);
1289 	priv->dmaops->disable_txirq(priv);
1290 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1291 
1292 	/* Free the IRQ lines */
1293 	free_irq(priv->rx_irq, dev);
1294 	free_irq(priv->tx_irq, dev);
1295 
1296 	/* disable and reset the MAC, empties fifo */
1297 	spin_lock(&priv->mac_cfg_lock);
1298 	spin_lock(&priv->tx_lock);
1299 
1300 	ret = reset_mac(priv);
1301 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1302 	 * due to the PHY being put into isolation or power down mode.
1303 	 * This is not an error if reset fails due to no clock.
1304 	 */
1305 	if (ret)
1306 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1307 	priv->dmaops->reset_dma(priv);
1308 	free_skbufs(dev);
1309 
1310 	spin_unlock(&priv->tx_lock);
1311 	spin_unlock(&priv->mac_cfg_lock);
1312 
1313 	priv->dmaops->uninit_dma(priv);
1314 
1315 	return 0;
1316 }
1317 
1318 static struct net_device_ops altera_tse_netdev_ops = {
1319 	.ndo_open		= tse_open,
1320 	.ndo_stop		= tse_shutdown,
1321 	.ndo_start_xmit		= tse_start_xmit,
1322 	.ndo_set_mac_address	= eth_mac_addr,
1323 	.ndo_set_rx_mode	= tse_set_rx_mode,
1324 	.ndo_change_mtu		= tse_change_mtu,
1325 	.ndo_validate_addr	= eth_validate_addr,
1326 };
1327 
1328 static int request_and_map(struct platform_device *pdev, const char *name,
1329 			   struct resource **res, void __iomem **ptr)
1330 {
1331 	struct resource *region;
1332 	struct device *device = &pdev->dev;
1333 
1334 	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1335 	if (*res == NULL) {
1336 		dev_err(device, "resource %s not defined\n", name);
1337 		return -ENODEV;
1338 	}
1339 
1340 	region = devm_request_mem_region(device, (*res)->start,
1341 					 resource_size(*res), dev_name(device));
1342 	if (region == NULL) {
1343 		dev_err(device, "unable to request %s\n", name);
1344 		return -EBUSY;
1345 	}
1346 
1347 	*ptr = devm_ioremap_nocache(device, region->start,
1348 				    resource_size(region));
1349 	if (*ptr == NULL) {
1350 		dev_err(device, "ioremap_nocache of %s failed!", name);
1351 		return -ENOMEM;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 /* Probe Altera TSE MAC device
1358  */
1359 static int altera_tse_probe(struct platform_device *pdev)
1360 {
1361 	struct net_device *ndev;
1362 	int ret = -ENODEV;
1363 	struct resource *control_port;
1364 	struct resource *dma_res;
1365 	struct altera_tse_private *priv;
1366 	const unsigned char *macaddr;
1367 	void __iomem *descmap;
1368 	const struct of_device_id *of_id = NULL;
1369 
1370 	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1371 	if (!ndev) {
1372 		dev_err(&pdev->dev, "Could not allocate network device\n");
1373 		return -ENODEV;
1374 	}
1375 
1376 	SET_NETDEV_DEV(ndev, &pdev->dev);
1377 
1378 	priv = netdev_priv(ndev);
1379 	priv->device = &pdev->dev;
1380 	priv->dev = ndev;
1381 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1382 
1383 	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1384 
1385 	if (of_id)
1386 		priv->dmaops = (struct altera_dmaops *)of_id->data;
1387 
1388 
1389 	if (priv->dmaops &&
1390 	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1391 		/* Get the mapped address to the SGDMA descriptor memory */
1392 		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1393 		if (ret)
1394 			goto err_free_netdev;
1395 
1396 		/* Start of that memory is for transmit descriptors */
1397 		priv->tx_dma_desc = descmap;
1398 
1399 		/* First half is for tx descriptors, other half for tx */
1400 		priv->txdescmem = resource_size(dma_res)/2;
1401 
1402 		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1403 
1404 		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1405 						     priv->txdescmem));
1406 		priv->rxdescmem = resource_size(dma_res)/2;
1407 		priv->rxdescmem_busaddr = dma_res->start;
1408 		priv->rxdescmem_busaddr += priv->txdescmem;
1409 
1410 		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1411 			dev_dbg(priv->device,
1412 				"SGDMA bus addresses greater than 32-bits\n");
1413 			ret = -EINVAL;
1414 			goto err_free_netdev;
1415 		}
1416 		if (upper_32_bits(priv->txdescmem_busaddr)) {
1417 			dev_dbg(priv->device,
1418 				"SGDMA bus addresses greater than 32-bits\n");
1419 			ret = -EINVAL;
1420 			goto err_free_netdev;
1421 		}
1422 	} else if (priv->dmaops &&
1423 		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1424 		ret = request_and_map(pdev, "rx_resp", &dma_res,
1425 				      &priv->rx_dma_resp);
1426 		if (ret)
1427 			goto err_free_netdev;
1428 
1429 		ret = request_and_map(pdev, "tx_desc", &dma_res,
1430 				      &priv->tx_dma_desc);
1431 		if (ret)
1432 			goto err_free_netdev;
1433 
1434 		priv->txdescmem = resource_size(dma_res);
1435 		priv->txdescmem_busaddr = dma_res->start;
1436 
1437 		ret = request_and_map(pdev, "rx_desc", &dma_res,
1438 				      &priv->rx_dma_desc);
1439 		if (ret)
1440 			goto err_free_netdev;
1441 
1442 		priv->rxdescmem = resource_size(dma_res);
1443 		priv->rxdescmem_busaddr = dma_res->start;
1444 
1445 	} else {
1446 		goto err_free_netdev;
1447 	}
1448 
1449 	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1450 		dma_set_coherent_mask(priv->device,
1451 				      DMA_BIT_MASK(priv->dmaops->dmamask));
1452 	else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1453 		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1454 	else
1455 		goto err_free_netdev;
1456 
1457 	/* MAC address space */
1458 	ret = request_and_map(pdev, "control_port", &control_port,
1459 			      (void __iomem **)&priv->mac_dev);
1460 	if (ret)
1461 		goto err_free_netdev;
1462 
1463 	/* xSGDMA Rx Dispatcher address space */
1464 	ret = request_and_map(pdev, "rx_csr", &dma_res,
1465 			      &priv->rx_dma_csr);
1466 	if (ret)
1467 		goto err_free_netdev;
1468 
1469 
1470 	/* xSGDMA Tx Dispatcher address space */
1471 	ret = request_and_map(pdev, "tx_csr", &dma_res,
1472 			      &priv->tx_dma_csr);
1473 	if (ret)
1474 		goto err_free_netdev;
1475 
1476 
1477 	/* Rx IRQ */
1478 	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1479 	if (priv->rx_irq == -ENXIO) {
1480 		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1481 		ret = -ENXIO;
1482 		goto err_free_netdev;
1483 	}
1484 
1485 	/* Tx IRQ */
1486 	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1487 	if (priv->tx_irq == -ENXIO) {
1488 		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1489 		ret = -ENXIO;
1490 		goto err_free_netdev;
1491 	}
1492 
1493 	/* get FIFO depths from device tree */
1494 	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1495 				 &priv->rx_fifo_depth)) {
1496 		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1497 		ret = -ENXIO;
1498 		goto err_free_netdev;
1499 	}
1500 
1501 	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1502 				 &priv->tx_fifo_depth)) {
1503 		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1504 		ret = -ENXIO;
1505 		goto err_free_netdev;
1506 	}
1507 
1508 	/* get hash filter settings for this instance */
1509 	priv->hash_filter =
1510 		of_property_read_bool(pdev->dev.of_node,
1511 				      "altr,has-hash-multicast-filter");
1512 
1513 	/* Set hash filter to not set for now until the
1514 	 * multicast filter receive issue is debugged
1515 	 */
1516 	priv->hash_filter = 0;
1517 
1518 	/* get supplemental address settings for this instance */
1519 	priv->added_unicast =
1520 		of_property_read_bool(pdev->dev.of_node,
1521 				      "altr,has-supplementary-unicast");
1522 
1523 	priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1524 	/* Max MTU is 1500, ETH_DATA_LEN */
1525 	priv->dev->max_mtu = ETH_DATA_LEN;
1526 
1527 	/* Get the max mtu from the device tree. Note that the
1528 	 * "max-frame-size" parameter is actually max mtu. Definition
1529 	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1530 	 */
1531 	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1532 			     &priv->dev->max_mtu);
1533 
1534 	/* The DMA buffer size already accounts for an alignment bias
1535 	 * to avoid unaligned access exceptions for the NIOS processor,
1536 	 */
1537 	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1538 
1539 	/* get default MAC address from device tree */
1540 	macaddr = of_get_mac_address(pdev->dev.of_node);
1541 	if (macaddr)
1542 		ether_addr_copy(ndev->dev_addr, macaddr);
1543 	else
1544 		eth_hw_addr_random(ndev);
1545 
1546 	/* get phy addr and create mdio */
1547 	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1548 
1549 	if (ret)
1550 		goto err_free_netdev;
1551 
1552 	/* initialize netdev */
1553 	ndev->mem_start = control_port->start;
1554 	ndev->mem_end = control_port->end;
1555 	ndev->netdev_ops = &altera_tse_netdev_ops;
1556 	altera_tse_set_ethtool_ops(ndev);
1557 
1558 	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1559 
1560 	if (priv->hash_filter)
1561 		altera_tse_netdev_ops.ndo_set_rx_mode =
1562 			tse_set_rx_mode_hashfilter;
1563 
1564 	/* Scatter/gather IO is not supported,
1565 	 * so it is turned off
1566 	 */
1567 	ndev->hw_features &= ~NETIF_F_SG;
1568 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1569 
1570 	/* VLAN offloading of tagging, stripping and filtering is not
1571 	 * supported by hardware, but driver will accommodate the
1572 	 * extra 4-byte VLAN tag for processing by upper layers
1573 	 */
1574 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1575 
1576 	/* setup NAPI interface */
1577 	netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1578 
1579 	spin_lock_init(&priv->mac_cfg_lock);
1580 	spin_lock_init(&priv->tx_lock);
1581 	spin_lock_init(&priv->rxdma_irq_lock);
1582 
1583 	netif_carrier_off(ndev);
1584 	ret = register_netdev(ndev);
1585 	if (ret) {
1586 		dev_err(&pdev->dev, "failed to register TSE net device\n");
1587 		goto err_register_netdev;
1588 	}
1589 
1590 	platform_set_drvdata(pdev, ndev);
1591 
1592 	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1593 
1594 	if (netif_msg_probe(priv))
1595 		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1596 			 (priv->revision >> 8) & 0xff,
1597 			 priv->revision & 0xff,
1598 			 (unsigned long) control_port->start, priv->rx_irq,
1599 			 priv->tx_irq);
1600 
1601 	ret = init_phy(ndev);
1602 	if (ret != 0) {
1603 		netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1604 		goto err_init_phy;
1605 	}
1606 	return 0;
1607 
1608 err_init_phy:
1609 	unregister_netdev(ndev);
1610 err_register_netdev:
1611 	netif_napi_del(&priv->napi);
1612 	altera_tse_mdio_destroy(ndev);
1613 err_free_netdev:
1614 	free_netdev(ndev);
1615 	return ret;
1616 }
1617 
1618 /* Remove Altera TSE MAC device
1619  */
1620 static int altera_tse_remove(struct platform_device *pdev)
1621 {
1622 	struct net_device *ndev = platform_get_drvdata(pdev);
1623 	struct altera_tse_private *priv = netdev_priv(ndev);
1624 
1625 	if (ndev->phydev) {
1626 		phy_disconnect(ndev->phydev);
1627 
1628 		if (of_phy_is_fixed_link(priv->device->of_node))
1629 			of_phy_deregister_fixed_link(priv->device->of_node);
1630 	}
1631 
1632 	platform_set_drvdata(pdev, NULL);
1633 	altera_tse_mdio_destroy(ndev);
1634 	unregister_netdev(ndev);
1635 	free_netdev(ndev);
1636 
1637 	return 0;
1638 }
1639 
1640 static const struct altera_dmaops altera_dtype_sgdma = {
1641 	.altera_dtype = ALTERA_DTYPE_SGDMA,
1642 	.dmamask = 32,
1643 	.reset_dma = sgdma_reset,
1644 	.enable_txirq = sgdma_enable_txirq,
1645 	.enable_rxirq = sgdma_enable_rxirq,
1646 	.disable_txirq = sgdma_disable_txirq,
1647 	.disable_rxirq = sgdma_disable_rxirq,
1648 	.clear_txirq = sgdma_clear_txirq,
1649 	.clear_rxirq = sgdma_clear_rxirq,
1650 	.tx_buffer = sgdma_tx_buffer,
1651 	.tx_completions = sgdma_tx_completions,
1652 	.add_rx_desc = sgdma_add_rx_desc,
1653 	.get_rx_status = sgdma_rx_status,
1654 	.init_dma = sgdma_initialize,
1655 	.uninit_dma = sgdma_uninitialize,
1656 	.start_rxdma = sgdma_start_rxdma,
1657 };
1658 
1659 static const struct altera_dmaops altera_dtype_msgdma = {
1660 	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1661 	.dmamask = 64,
1662 	.reset_dma = msgdma_reset,
1663 	.enable_txirq = msgdma_enable_txirq,
1664 	.enable_rxirq = msgdma_enable_rxirq,
1665 	.disable_txirq = msgdma_disable_txirq,
1666 	.disable_rxirq = msgdma_disable_rxirq,
1667 	.clear_txirq = msgdma_clear_txirq,
1668 	.clear_rxirq = msgdma_clear_rxirq,
1669 	.tx_buffer = msgdma_tx_buffer,
1670 	.tx_completions = msgdma_tx_completions,
1671 	.add_rx_desc = msgdma_add_rx_desc,
1672 	.get_rx_status = msgdma_rx_status,
1673 	.init_dma = msgdma_initialize,
1674 	.uninit_dma = msgdma_uninitialize,
1675 	.start_rxdma = msgdma_start_rxdma,
1676 };
1677 
1678 static const struct of_device_id altera_tse_ids[] = {
1679 	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1680 	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1681 	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1682 	{},
1683 };
1684 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1685 
1686 static struct platform_driver altera_tse_driver = {
1687 	.probe		= altera_tse_probe,
1688 	.remove		= altera_tse_remove,
1689 	.suspend	= NULL,
1690 	.resume		= NULL,
1691 	.driver		= {
1692 		.name	= ALTERA_TSE_RESOURCE_NAME,
1693 		.of_match_table = altera_tse_ids,
1694 	},
1695 };
1696 
1697 module_platform_driver(altera_tse_driver);
1698 
1699 MODULE_AUTHOR("Altera Corporation");
1700 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1701 MODULE_LICENSE("GPL v2");
1702