1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Altera Triple-Speed Ethernet MAC driver 3 * Copyright (C) 2008-2014 Altera Corporation. All rights reserved 4 * 5 * Contributors: 6 * Dalon Westergreen 7 * Thomas Chou 8 * Ian Abbott 9 * Yuriy Kozlov 10 * Tobias Klauser 11 * Andriy Smolskyy 12 * Roman Bulgakov 13 * Dmytro Mytarchuk 14 * Matthew Gerlach 15 * 16 * Original driver contributed by SLS. 17 * Major updates contributed by GlobalLogic 18 */ 19 20 #include <linux/atomic.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/io.h> 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/mii.h> 30 #include <linux/netdevice.h> 31 #include <linux/of_device.h> 32 #include <linux/of_mdio.h> 33 #include <linux/of_net.h> 34 #include <linux/of_platform.h> 35 #include <linux/pcs-altera-tse.h> 36 #include <linux/phy.h> 37 #include <linux/platform_device.h> 38 #include <linux/skbuff.h> 39 #include <asm/cacheflush.h> 40 41 #include "altera_utils.h" 42 #include "altera_tse.h" 43 #include "altera_sgdma.h" 44 #include "altera_msgdma.h" 45 46 static atomic_t instance_count = ATOMIC_INIT(~0); 47 /* Module parameters */ 48 static int debug = -1; 49 module_param(debug, int, 0644); 50 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 51 52 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 53 NETIF_MSG_LINK | NETIF_MSG_IFUP | 54 NETIF_MSG_IFDOWN); 55 56 #define RX_DESCRIPTORS 64 57 static int dma_rx_num = RX_DESCRIPTORS; 58 module_param(dma_rx_num, int, 0644); 59 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list"); 60 61 #define TX_DESCRIPTORS 64 62 static int dma_tx_num = TX_DESCRIPTORS; 63 module_param(dma_tx_num, int, 0644); 64 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list"); 65 66 67 #define POLL_PHY (-1) 68 69 /* Make sure DMA buffer size is larger than the max frame size 70 * plus some alignment offset and a VLAN header. If the max frame size is 71 * 1518, a VLAN header would be additional 4 bytes and additional 72 * headroom for alignment is 2 bytes, 2048 is just fine. 73 */ 74 #define ALTERA_RXDMABUFFER_SIZE 2048 75 76 /* Allow network stack to resume queuing packets after we've 77 * finished transmitting at least 1/4 of the packets in the queue. 78 */ 79 #define TSE_TX_THRESH(x) (x->tx_ring_size / 4) 80 81 #define TXQUEUESTOP_THRESHHOLD 2 82 83 static const struct of_device_id altera_tse_ids[]; 84 85 static inline u32 tse_tx_avail(struct altera_tse_private *priv) 86 { 87 return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1; 88 } 89 90 /* MDIO specific functions 91 */ 92 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 93 { 94 struct net_device *ndev = bus->priv; 95 struct altera_tse_private *priv = netdev_priv(ndev); 96 97 /* set MDIO address */ 98 csrwr32((mii_id & 0x1f), priv->mac_dev, 99 tse_csroffs(mdio_phy1_addr)); 100 101 /* get the data */ 102 return csrrd32(priv->mac_dev, 103 tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff; 104 } 105 106 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 107 u16 value) 108 { 109 struct net_device *ndev = bus->priv; 110 struct altera_tse_private *priv = netdev_priv(ndev); 111 112 /* set MDIO address */ 113 csrwr32((mii_id & 0x1f), priv->mac_dev, 114 tse_csroffs(mdio_phy1_addr)); 115 116 /* write the data */ 117 csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4); 118 return 0; 119 } 120 121 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id) 122 { 123 struct altera_tse_private *priv = netdev_priv(dev); 124 struct device_node *mdio_node = NULL; 125 struct device_node *child_node = NULL; 126 struct mii_bus *mdio = NULL; 127 int ret; 128 129 for_each_child_of_node(priv->device->of_node, child_node) { 130 if (of_device_is_compatible(child_node, "altr,tse-mdio")) { 131 mdio_node = child_node; 132 break; 133 } 134 } 135 136 if (mdio_node) { 137 netdev_dbg(dev, "FOUND MDIO subnode\n"); 138 } else { 139 netdev_dbg(dev, "NO MDIO subnode\n"); 140 return 0; 141 } 142 143 mdio = mdiobus_alloc(); 144 if (mdio == NULL) { 145 netdev_err(dev, "Error allocating MDIO bus\n"); 146 ret = -ENOMEM; 147 goto put_node; 148 } 149 150 mdio->name = ALTERA_TSE_RESOURCE_NAME; 151 mdio->read = &altera_tse_mdio_read; 152 mdio->write = &altera_tse_mdio_write; 153 snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id); 154 155 mdio->priv = dev; 156 mdio->parent = priv->device; 157 158 ret = of_mdiobus_register(mdio, mdio_node); 159 if (ret != 0) { 160 netdev_err(dev, "Cannot register MDIO bus %s\n", 161 mdio->id); 162 goto out_free_mdio; 163 } 164 of_node_put(mdio_node); 165 166 if (netif_msg_drv(priv)) 167 netdev_info(dev, "MDIO bus %s: created\n", mdio->id); 168 169 priv->mdio = mdio; 170 return 0; 171 out_free_mdio: 172 mdiobus_free(mdio); 173 mdio = NULL; 174 put_node: 175 of_node_put(mdio_node); 176 return ret; 177 } 178 179 static void altera_tse_mdio_destroy(struct net_device *dev) 180 { 181 struct altera_tse_private *priv = netdev_priv(dev); 182 183 if (priv->mdio == NULL) 184 return; 185 186 if (netif_msg_drv(priv)) 187 netdev_info(dev, "MDIO bus %s: removed\n", 188 priv->mdio->id); 189 190 mdiobus_unregister(priv->mdio); 191 mdiobus_free(priv->mdio); 192 priv->mdio = NULL; 193 } 194 195 static int tse_init_rx_buffer(struct altera_tse_private *priv, 196 struct tse_buffer *rxbuffer, int len) 197 { 198 rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len); 199 if (!rxbuffer->skb) 200 return -ENOMEM; 201 202 rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data, 203 len, 204 DMA_FROM_DEVICE); 205 206 if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) { 207 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 208 dev_kfree_skb_any(rxbuffer->skb); 209 return -EINVAL; 210 } 211 rxbuffer->dma_addr &= (dma_addr_t)~3; 212 rxbuffer->len = len; 213 return 0; 214 } 215 216 static void tse_free_rx_buffer(struct altera_tse_private *priv, 217 struct tse_buffer *rxbuffer) 218 { 219 dma_addr_t dma_addr = rxbuffer->dma_addr; 220 struct sk_buff *skb = rxbuffer->skb; 221 222 if (skb != NULL) { 223 if (dma_addr) 224 dma_unmap_single(priv->device, dma_addr, 225 rxbuffer->len, 226 DMA_FROM_DEVICE); 227 dev_kfree_skb_any(skb); 228 rxbuffer->skb = NULL; 229 rxbuffer->dma_addr = 0; 230 } 231 } 232 233 /* Unmap and free Tx buffer resources 234 */ 235 static void tse_free_tx_buffer(struct altera_tse_private *priv, 236 struct tse_buffer *buffer) 237 { 238 if (buffer->dma_addr) { 239 if (buffer->mapped_as_page) 240 dma_unmap_page(priv->device, buffer->dma_addr, 241 buffer->len, DMA_TO_DEVICE); 242 else 243 dma_unmap_single(priv->device, buffer->dma_addr, 244 buffer->len, DMA_TO_DEVICE); 245 buffer->dma_addr = 0; 246 } 247 if (buffer->skb) { 248 dev_kfree_skb_any(buffer->skb); 249 buffer->skb = NULL; 250 } 251 } 252 253 static int alloc_init_skbufs(struct altera_tse_private *priv) 254 { 255 unsigned int rx_descs = priv->rx_ring_size; 256 unsigned int tx_descs = priv->tx_ring_size; 257 int ret = -ENOMEM; 258 int i; 259 260 /* Create Rx ring buffer */ 261 priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer), 262 GFP_KERNEL); 263 if (!priv->rx_ring) 264 goto err_rx_ring; 265 266 /* Create Tx ring buffer */ 267 priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer), 268 GFP_KERNEL); 269 if (!priv->tx_ring) 270 goto err_tx_ring; 271 272 priv->tx_cons = 0; 273 priv->tx_prod = 0; 274 275 /* Init Rx ring */ 276 for (i = 0; i < rx_descs; i++) { 277 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i], 278 priv->rx_dma_buf_sz); 279 if (ret) 280 goto err_init_rx_buffers; 281 } 282 283 priv->rx_cons = 0; 284 priv->rx_prod = 0; 285 286 return 0; 287 err_init_rx_buffers: 288 while (--i >= 0) 289 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 290 kfree(priv->tx_ring); 291 err_tx_ring: 292 kfree(priv->rx_ring); 293 err_rx_ring: 294 return ret; 295 } 296 297 static void free_skbufs(struct net_device *dev) 298 { 299 struct altera_tse_private *priv = netdev_priv(dev); 300 unsigned int rx_descs = priv->rx_ring_size; 301 unsigned int tx_descs = priv->tx_ring_size; 302 int i; 303 304 /* Release the DMA TX/RX socket buffers */ 305 for (i = 0; i < rx_descs; i++) 306 tse_free_rx_buffer(priv, &priv->rx_ring[i]); 307 for (i = 0; i < tx_descs; i++) 308 tse_free_tx_buffer(priv, &priv->tx_ring[i]); 309 310 311 kfree(priv->tx_ring); 312 } 313 314 /* Reallocate the skb for the reception process 315 */ 316 static inline void tse_rx_refill(struct altera_tse_private *priv) 317 { 318 unsigned int rxsize = priv->rx_ring_size; 319 unsigned int entry; 320 int ret; 321 322 for (; priv->rx_cons - priv->rx_prod > 0; 323 priv->rx_prod++) { 324 entry = priv->rx_prod % rxsize; 325 if (likely(priv->rx_ring[entry].skb == NULL)) { 326 ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry], 327 priv->rx_dma_buf_sz); 328 if (unlikely(ret != 0)) 329 break; 330 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]); 331 } 332 } 333 } 334 335 /* Pull out the VLAN tag and fix up the packet 336 */ 337 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb) 338 { 339 struct ethhdr *eth_hdr; 340 u16 vid; 341 342 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 343 !__vlan_get_tag(skb, &vid)) { 344 eth_hdr = (struct ethhdr *)skb->data; 345 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2); 346 skb_pull(skb, VLAN_HLEN); 347 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 348 } 349 } 350 351 /* Receive a packet: retrieve and pass over to upper levels 352 */ 353 static int tse_rx(struct altera_tse_private *priv, int limit) 354 { 355 unsigned int entry = priv->rx_cons % priv->rx_ring_size; 356 unsigned int next_entry; 357 unsigned int count = 0; 358 struct sk_buff *skb; 359 u32 rxstatus; 360 u16 pktlength; 361 u16 pktstatus; 362 363 /* Check for count < limit first as get_rx_status is changing 364 * the response-fifo so we must process the next packet 365 * after calling get_rx_status if a response is pending. 366 * (reading the last byte of the response pops the value from the fifo.) 367 */ 368 while ((count < limit) && 369 ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) { 370 pktstatus = rxstatus >> 16; 371 pktlength = rxstatus & 0xffff; 372 373 if ((pktstatus & 0xFF) || (pktlength == 0)) 374 netdev_err(priv->dev, 375 "RCV pktstatus %08X pktlength %08X\n", 376 pktstatus, pktlength); 377 378 /* DMA transfer from TSE starts with 2 additional bytes for 379 * IP payload alignment. Status returned by get_rx_status() 380 * contains DMA transfer length. Packet is 2 bytes shorter. 381 */ 382 pktlength -= 2; 383 384 count++; 385 next_entry = (++priv->rx_cons) % priv->rx_ring_size; 386 387 skb = priv->rx_ring[entry].skb; 388 if (unlikely(!skb)) { 389 netdev_err(priv->dev, 390 "%s: Inconsistent Rx descriptor chain\n", 391 __func__); 392 priv->dev->stats.rx_dropped++; 393 break; 394 } 395 priv->rx_ring[entry].skb = NULL; 396 397 skb_put(skb, pktlength); 398 399 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr, 400 priv->rx_ring[entry].len, DMA_FROM_DEVICE); 401 402 if (netif_msg_pktdata(priv)) { 403 netdev_info(priv->dev, "frame received %d bytes\n", 404 pktlength); 405 print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET, 406 16, 1, skb->data, pktlength, true); 407 } 408 409 tse_rx_vlan(priv->dev, skb); 410 411 skb->protocol = eth_type_trans(skb, priv->dev); 412 skb_checksum_none_assert(skb); 413 414 napi_gro_receive(&priv->napi, skb); 415 416 priv->dev->stats.rx_packets++; 417 priv->dev->stats.rx_bytes += pktlength; 418 419 entry = next_entry; 420 421 tse_rx_refill(priv); 422 } 423 424 return count; 425 } 426 427 /* Reclaim resources after transmission completes 428 */ 429 static int tse_tx_complete(struct altera_tse_private *priv) 430 { 431 unsigned int txsize = priv->tx_ring_size; 432 struct tse_buffer *tx_buff; 433 unsigned int entry; 434 int txcomplete = 0; 435 u32 ready; 436 437 spin_lock(&priv->tx_lock); 438 439 ready = priv->dmaops->tx_completions(priv); 440 441 /* Free sent buffers */ 442 while (ready && (priv->tx_cons != priv->tx_prod)) { 443 entry = priv->tx_cons % txsize; 444 tx_buff = &priv->tx_ring[entry]; 445 446 if (netif_msg_tx_done(priv)) 447 netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n", 448 __func__, priv->tx_prod, priv->tx_cons); 449 450 if (likely(tx_buff->skb)) 451 priv->dev->stats.tx_packets++; 452 453 tse_free_tx_buffer(priv, tx_buff); 454 priv->tx_cons++; 455 456 txcomplete++; 457 ready--; 458 } 459 460 if (unlikely(netif_queue_stopped(priv->dev) && 461 tse_tx_avail(priv) > TSE_TX_THRESH(priv))) { 462 if (netif_queue_stopped(priv->dev) && 463 tse_tx_avail(priv) > TSE_TX_THRESH(priv)) { 464 if (netif_msg_tx_done(priv)) 465 netdev_dbg(priv->dev, "%s: restart transmit\n", 466 __func__); 467 netif_wake_queue(priv->dev); 468 } 469 } 470 471 spin_unlock(&priv->tx_lock); 472 return txcomplete; 473 } 474 475 /* NAPI polling function 476 */ 477 static int tse_poll(struct napi_struct *napi, int budget) 478 { 479 struct altera_tse_private *priv = 480 container_of(napi, struct altera_tse_private, napi); 481 unsigned long int flags; 482 int rxcomplete = 0; 483 484 tse_tx_complete(priv); 485 486 rxcomplete = tse_rx(priv, budget); 487 488 if (rxcomplete < budget) { 489 490 napi_complete_done(napi, rxcomplete); 491 492 netdev_dbg(priv->dev, 493 "NAPI Complete, did %d packets with budget %d\n", 494 rxcomplete, budget); 495 496 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 497 priv->dmaops->enable_rxirq(priv); 498 priv->dmaops->enable_txirq(priv); 499 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 500 } 501 return rxcomplete; 502 } 503 504 /* DMA TX & RX FIFO interrupt routing 505 */ 506 static irqreturn_t altera_isr(int irq, void *dev_id) 507 { 508 struct net_device *dev = dev_id; 509 struct altera_tse_private *priv; 510 511 if (unlikely(!dev)) { 512 pr_err("%s: invalid dev pointer\n", __func__); 513 return IRQ_NONE; 514 } 515 priv = netdev_priv(dev); 516 517 spin_lock(&priv->rxdma_irq_lock); 518 /* reset IRQs */ 519 priv->dmaops->clear_rxirq(priv); 520 priv->dmaops->clear_txirq(priv); 521 spin_unlock(&priv->rxdma_irq_lock); 522 523 if (likely(napi_schedule_prep(&priv->napi))) { 524 spin_lock(&priv->rxdma_irq_lock); 525 priv->dmaops->disable_rxirq(priv); 526 priv->dmaops->disable_txirq(priv); 527 spin_unlock(&priv->rxdma_irq_lock); 528 __napi_schedule(&priv->napi); 529 } 530 531 532 return IRQ_HANDLED; 533 } 534 535 /* Transmit a packet (called by the kernel). Dispatches 536 * either the SGDMA method for transmitting or the 537 * MSGDMA method, assumes no scatter/gather support, 538 * implying an assumption that there's only one 539 * physically contiguous fragment starting at 540 * skb->data, for length of skb_headlen(skb). 541 */ 542 static netdev_tx_t tse_start_xmit(struct sk_buff *skb, struct net_device *dev) 543 { 544 struct altera_tse_private *priv = netdev_priv(dev); 545 unsigned int nopaged_len = skb_headlen(skb); 546 unsigned int txsize = priv->tx_ring_size; 547 int nfrags = skb_shinfo(skb)->nr_frags; 548 struct tse_buffer *buffer = NULL; 549 netdev_tx_t ret = NETDEV_TX_OK; 550 dma_addr_t dma_addr; 551 unsigned int entry; 552 553 spin_lock_bh(&priv->tx_lock); 554 555 if (unlikely(tse_tx_avail(priv) < nfrags + 1)) { 556 if (!netif_queue_stopped(dev)) { 557 netif_stop_queue(dev); 558 /* This is a hard error, log it. */ 559 netdev_err(priv->dev, 560 "%s: Tx list full when queue awake\n", 561 __func__); 562 } 563 ret = NETDEV_TX_BUSY; 564 goto out; 565 } 566 567 /* Map the first skb fragment */ 568 entry = priv->tx_prod % txsize; 569 buffer = &priv->tx_ring[entry]; 570 571 dma_addr = dma_map_single(priv->device, skb->data, nopaged_len, 572 DMA_TO_DEVICE); 573 if (dma_mapping_error(priv->device, dma_addr)) { 574 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 575 ret = NETDEV_TX_OK; 576 goto out; 577 } 578 579 buffer->skb = skb; 580 buffer->dma_addr = dma_addr; 581 buffer->len = nopaged_len; 582 583 priv->dmaops->tx_buffer(priv, buffer); 584 585 skb_tx_timestamp(skb); 586 587 priv->tx_prod++; 588 dev->stats.tx_bytes += skb->len; 589 590 if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) { 591 if (netif_msg_hw(priv)) 592 netdev_dbg(priv->dev, "%s: stop transmitted packets\n", 593 __func__); 594 netif_stop_queue(dev); 595 } 596 597 out: 598 spin_unlock_bh(&priv->tx_lock); 599 600 return ret; 601 } 602 603 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev) 604 { 605 struct altera_tse_private *priv = netdev_priv(dev); 606 struct device_node *np = priv->device->of_node; 607 int ret; 608 609 ret = of_get_phy_mode(np, &priv->phy_iface); 610 611 /* Avoid get phy addr and create mdio if no phy is present */ 612 if (ret) 613 return 0; 614 615 /* try to get PHY address from device tree, use PHY autodetection if 616 * no valid address is given 617 */ 618 619 if (of_property_read_u32(priv->device->of_node, "phy-addr", 620 &priv->phy_addr)) { 621 priv->phy_addr = POLL_PHY; 622 } 623 624 if (!((priv->phy_addr == POLL_PHY) || 625 ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) { 626 netdev_err(dev, "invalid phy-addr specified %d\n", 627 priv->phy_addr); 628 return -ENODEV; 629 } 630 631 /* Create/attach to MDIO bus */ 632 ret = altera_tse_mdio_create(dev, 633 atomic_add_return(1, &instance_count)); 634 635 if (ret) 636 return -ENODEV; 637 638 return 0; 639 } 640 641 static void tse_update_mac_addr(struct altera_tse_private *priv, const u8 *addr) 642 { 643 u32 msb; 644 u32 lsb; 645 646 msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; 647 lsb = ((addr[5] << 8) | addr[4]) & 0xffff; 648 649 /* Set primary MAC address */ 650 csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0)); 651 csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1)); 652 } 653 654 /* MAC software reset. 655 * When reset is triggered, the MAC function completes the current 656 * transmission or reception, and subsequently disables the transmit and 657 * receive logic, flushes the receive FIFO buffer, and resets the statistics 658 * counters. 659 */ 660 static int reset_mac(struct altera_tse_private *priv) 661 { 662 int counter; 663 u32 dat; 664 665 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 666 dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 667 dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET; 668 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 669 670 counter = 0; 671 while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 672 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config), 673 MAC_CMDCFG_SW_RESET)) 674 break; 675 udelay(1); 676 } 677 678 if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) { 679 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 680 dat &= ~MAC_CMDCFG_SW_RESET; 681 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config)); 682 return -1; 683 } 684 return 0; 685 } 686 687 /* Initialize MAC core registers 688 */ 689 static int init_mac(struct altera_tse_private *priv) 690 { 691 unsigned int cmd = 0; 692 u32 frm_length; 693 694 /* Setup Rx FIFO */ 695 csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY, 696 priv->mac_dev, tse_csroffs(rx_section_empty)); 697 698 csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev, 699 tse_csroffs(rx_section_full)); 700 701 csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev, 702 tse_csroffs(rx_almost_empty)); 703 704 csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev, 705 tse_csroffs(rx_almost_full)); 706 707 /* Setup Tx FIFO */ 708 csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY, 709 priv->mac_dev, tse_csroffs(tx_section_empty)); 710 711 csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev, 712 tse_csroffs(tx_section_full)); 713 714 csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev, 715 tse_csroffs(tx_almost_empty)); 716 717 csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev, 718 tse_csroffs(tx_almost_full)); 719 720 /* MAC Address Configuration */ 721 tse_update_mac_addr(priv, priv->dev->dev_addr); 722 723 /* MAC Function Configuration */ 724 frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN; 725 csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length)); 726 727 csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev, 728 tse_csroffs(tx_ipg_length)); 729 730 /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit 731 * start address 732 */ 733 tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat), 734 ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16); 735 736 tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat), 737 ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 | 738 ALTERA_TSE_TX_CMD_STAT_OMIT_CRC); 739 740 /* Set the MAC options */ 741 cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 742 cmd &= ~MAC_CMDCFG_PAD_EN; /* No padding Removal on Receive */ 743 cmd &= ~MAC_CMDCFG_CRC_FWD; /* CRC Removal */ 744 cmd |= MAC_CMDCFG_RX_ERR_DISC; /* Automatically discard frames 745 * with CRC errors 746 */ 747 cmd |= MAC_CMDCFG_CNTL_FRM_ENA; 748 cmd &= ~MAC_CMDCFG_TX_ENA; 749 cmd &= ~MAC_CMDCFG_RX_ENA; 750 751 /* Default speed and duplex setting, full/100 */ 752 cmd &= ~MAC_CMDCFG_HD_ENA; 753 cmd &= ~MAC_CMDCFG_ETH_SPEED; 754 cmd &= ~MAC_CMDCFG_ENA_10; 755 756 csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config)); 757 758 csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev, 759 tse_csroffs(pause_quanta)); 760 761 if (netif_msg_hw(priv)) 762 dev_dbg(priv->device, 763 "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd); 764 765 return 0; 766 } 767 768 /* Start/stop MAC transmission logic 769 */ 770 static void tse_set_mac(struct altera_tse_private *priv, bool enable) 771 { 772 u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 773 774 if (enable) 775 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA; 776 else 777 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA); 778 779 csrwr32(value, priv->mac_dev, tse_csroffs(command_config)); 780 } 781 782 /* Change the MTU 783 */ 784 static int tse_change_mtu(struct net_device *dev, int new_mtu) 785 { 786 if (netif_running(dev)) { 787 netdev_err(dev, "must be stopped to change its MTU\n"); 788 return -EBUSY; 789 } 790 791 dev->mtu = new_mtu; 792 netdev_update_features(dev); 793 794 return 0; 795 } 796 797 static void altera_tse_set_mcfilter(struct net_device *dev) 798 { 799 struct altera_tse_private *priv = netdev_priv(dev); 800 struct netdev_hw_addr *ha; 801 int i; 802 803 /* clear the hash filter */ 804 for (i = 0; i < 64; i++) 805 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 806 807 netdev_for_each_mc_addr(ha, dev) { 808 unsigned int hash = 0; 809 int mac_octet; 810 811 for (mac_octet = 5; mac_octet >= 0; mac_octet--) { 812 unsigned char xor_bit = 0; 813 unsigned char octet = ha->addr[mac_octet]; 814 unsigned int bitshift; 815 816 for (bitshift = 0; bitshift < 8; bitshift++) 817 xor_bit ^= ((octet >> bitshift) & 0x01); 818 819 hash = (hash << 1) | xor_bit; 820 } 821 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4); 822 } 823 } 824 825 826 static void altera_tse_set_mcfilterall(struct net_device *dev) 827 { 828 struct altera_tse_private *priv = netdev_priv(dev); 829 int i; 830 831 /* set the hash filter */ 832 for (i = 0; i < 64; i++) 833 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4); 834 } 835 836 /* Set or clear the multicast filter for this adapter 837 */ 838 static void tse_set_rx_mode_hashfilter(struct net_device *dev) 839 { 840 struct altera_tse_private *priv = netdev_priv(dev); 841 842 spin_lock(&priv->mac_cfg_lock); 843 844 if (dev->flags & IFF_PROMISC) 845 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 846 MAC_CMDCFG_PROMIS_EN); 847 848 if (dev->flags & IFF_ALLMULTI) 849 altera_tse_set_mcfilterall(dev); 850 else 851 altera_tse_set_mcfilter(dev); 852 853 spin_unlock(&priv->mac_cfg_lock); 854 } 855 856 /* Set or clear the multicast filter for this adapter 857 */ 858 static void tse_set_rx_mode(struct net_device *dev) 859 { 860 struct altera_tse_private *priv = netdev_priv(dev); 861 862 spin_lock(&priv->mac_cfg_lock); 863 864 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) || 865 !netdev_mc_empty(dev) || !netdev_uc_empty(dev)) 866 tse_set_bit(priv->mac_dev, tse_csroffs(command_config), 867 MAC_CMDCFG_PROMIS_EN); 868 else 869 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config), 870 MAC_CMDCFG_PROMIS_EN); 871 872 spin_unlock(&priv->mac_cfg_lock); 873 } 874 875 /* Open and initialize the interface 876 */ 877 static int tse_open(struct net_device *dev) 878 { 879 struct altera_tse_private *priv = netdev_priv(dev); 880 unsigned long flags; 881 int ret = 0; 882 int i; 883 884 /* Reset and configure TSE MAC and probe associated PHY */ 885 ret = priv->dmaops->init_dma(priv); 886 if (ret != 0) { 887 netdev_err(dev, "Cannot initialize DMA\n"); 888 goto phy_error; 889 } 890 891 if (netif_msg_ifup(priv)) 892 netdev_warn(dev, "device MAC address %pM\n", 893 dev->dev_addr); 894 895 if ((priv->revision < 0xd00) || (priv->revision > 0xe00)) 896 netdev_warn(dev, "TSE revision %x\n", priv->revision); 897 898 spin_lock(&priv->mac_cfg_lock); 899 900 ret = reset_mac(priv); 901 /* Note that reset_mac will fail if the clocks are gated by the PHY 902 * due to the PHY being put into isolation or power down mode. 903 * This is not an error if reset fails due to no clock. 904 */ 905 if (ret) 906 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 907 908 ret = init_mac(priv); 909 spin_unlock(&priv->mac_cfg_lock); 910 if (ret) { 911 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret); 912 goto alloc_skbuf_error; 913 } 914 915 priv->dmaops->reset_dma(priv); 916 917 /* Create and initialize the TX/RX descriptors chains. */ 918 priv->rx_ring_size = dma_rx_num; 919 priv->tx_ring_size = dma_tx_num; 920 ret = alloc_init_skbufs(priv); 921 if (ret) { 922 netdev_err(dev, "DMA descriptors initialization failed\n"); 923 goto alloc_skbuf_error; 924 } 925 926 927 /* Register RX interrupt */ 928 ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED, 929 dev->name, dev); 930 if (ret) { 931 netdev_err(dev, "Unable to register RX interrupt %d\n", 932 priv->rx_irq); 933 goto init_error; 934 } 935 936 /* Register TX interrupt */ 937 ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED, 938 dev->name, dev); 939 if (ret) { 940 netdev_err(dev, "Unable to register TX interrupt %d\n", 941 priv->tx_irq); 942 goto tx_request_irq_error; 943 } 944 945 /* Enable DMA interrupts */ 946 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 947 priv->dmaops->enable_rxirq(priv); 948 priv->dmaops->enable_txirq(priv); 949 950 /* Setup RX descriptor chain */ 951 for (i = 0; i < priv->rx_ring_size; i++) 952 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]); 953 954 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 955 956 ret = phylink_of_phy_connect(priv->phylink, priv->device->of_node, 0); 957 if (ret) { 958 netdev_err(dev, "could not connect phylink (%d)\n", ret); 959 goto tx_request_irq_error; 960 } 961 phylink_start(priv->phylink); 962 963 napi_enable(&priv->napi); 964 netif_start_queue(dev); 965 966 priv->dmaops->start_rxdma(priv); 967 968 /* Start MAC Rx/Tx */ 969 spin_lock(&priv->mac_cfg_lock); 970 tse_set_mac(priv, true); 971 spin_unlock(&priv->mac_cfg_lock); 972 973 return 0; 974 975 tx_request_irq_error: 976 free_irq(priv->rx_irq, dev); 977 init_error: 978 free_skbufs(dev); 979 alloc_skbuf_error: 980 phy_error: 981 return ret; 982 } 983 984 /* Stop TSE MAC interface and put the device in an inactive state 985 */ 986 static int tse_shutdown(struct net_device *dev) 987 { 988 struct altera_tse_private *priv = netdev_priv(dev); 989 unsigned long int flags; 990 int ret; 991 992 phylink_stop(priv->phylink); 993 phylink_disconnect_phy(priv->phylink); 994 netif_stop_queue(dev); 995 napi_disable(&priv->napi); 996 997 /* Disable DMA interrupts */ 998 spin_lock_irqsave(&priv->rxdma_irq_lock, flags); 999 priv->dmaops->disable_rxirq(priv); 1000 priv->dmaops->disable_txirq(priv); 1001 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags); 1002 1003 /* Free the IRQ lines */ 1004 free_irq(priv->rx_irq, dev); 1005 free_irq(priv->tx_irq, dev); 1006 1007 /* disable and reset the MAC, empties fifo */ 1008 spin_lock(&priv->mac_cfg_lock); 1009 spin_lock(&priv->tx_lock); 1010 1011 ret = reset_mac(priv); 1012 /* Note that reset_mac will fail if the clocks are gated by the PHY 1013 * due to the PHY being put into isolation or power down mode. 1014 * This is not an error if reset fails due to no clock. 1015 */ 1016 if (ret) 1017 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret); 1018 priv->dmaops->reset_dma(priv); 1019 free_skbufs(dev); 1020 1021 spin_unlock(&priv->tx_lock); 1022 spin_unlock(&priv->mac_cfg_lock); 1023 1024 priv->dmaops->uninit_dma(priv); 1025 1026 return 0; 1027 } 1028 1029 static struct net_device_ops altera_tse_netdev_ops = { 1030 .ndo_open = tse_open, 1031 .ndo_stop = tse_shutdown, 1032 .ndo_start_xmit = tse_start_xmit, 1033 .ndo_set_mac_address = eth_mac_addr, 1034 .ndo_set_rx_mode = tse_set_rx_mode, 1035 .ndo_change_mtu = tse_change_mtu, 1036 .ndo_validate_addr = eth_validate_addr, 1037 }; 1038 1039 static void alt_tse_mac_an_restart(struct phylink_config *config) 1040 { 1041 } 1042 1043 static void alt_tse_mac_config(struct phylink_config *config, unsigned int mode, 1044 const struct phylink_link_state *state) 1045 { 1046 struct net_device *ndev = to_net_dev(config->dev); 1047 struct altera_tse_private *priv = netdev_priv(ndev); 1048 1049 spin_lock(&priv->mac_cfg_lock); 1050 reset_mac(priv); 1051 tse_set_mac(priv, true); 1052 spin_unlock(&priv->mac_cfg_lock); 1053 } 1054 1055 static void alt_tse_mac_link_down(struct phylink_config *config, 1056 unsigned int mode, phy_interface_t interface) 1057 { 1058 } 1059 1060 static void alt_tse_mac_link_up(struct phylink_config *config, 1061 struct phy_device *phy, unsigned int mode, 1062 phy_interface_t interface, int speed, 1063 int duplex, bool tx_pause, bool rx_pause) 1064 { 1065 struct net_device *ndev = to_net_dev(config->dev); 1066 struct altera_tse_private *priv = netdev_priv(ndev); 1067 u32 ctrl; 1068 1069 ctrl = csrrd32(priv->mac_dev, tse_csroffs(command_config)); 1070 ctrl &= ~(MAC_CMDCFG_ENA_10 | MAC_CMDCFG_ETH_SPEED | MAC_CMDCFG_HD_ENA); 1071 1072 if (duplex == DUPLEX_HALF) 1073 ctrl |= MAC_CMDCFG_HD_ENA; 1074 1075 if (speed == SPEED_1000) 1076 ctrl |= MAC_CMDCFG_ETH_SPEED; 1077 else if (speed == SPEED_10) 1078 ctrl |= MAC_CMDCFG_ENA_10; 1079 1080 spin_lock(&priv->mac_cfg_lock); 1081 csrwr32(ctrl, priv->mac_dev, tse_csroffs(command_config)); 1082 spin_unlock(&priv->mac_cfg_lock); 1083 } 1084 1085 static struct phylink_pcs *alt_tse_select_pcs(struct phylink_config *config, 1086 phy_interface_t interface) 1087 { 1088 struct net_device *ndev = to_net_dev(config->dev); 1089 struct altera_tse_private *priv = netdev_priv(ndev); 1090 1091 if (interface == PHY_INTERFACE_MODE_SGMII || 1092 interface == PHY_INTERFACE_MODE_1000BASEX) 1093 return priv->pcs; 1094 else 1095 return NULL; 1096 } 1097 1098 static const struct phylink_mac_ops alt_tse_phylink_ops = { 1099 .mac_an_restart = alt_tse_mac_an_restart, 1100 .mac_config = alt_tse_mac_config, 1101 .mac_link_down = alt_tse_mac_link_down, 1102 .mac_link_up = alt_tse_mac_link_up, 1103 .mac_select_pcs = alt_tse_select_pcs, 1104 }; 1105 1106 static int request_and_map(struct platform_device *pdev, const char *name, 1107 struct resource **res, void __iomem **ptr) 1108 { 1109 struct device *device = &pdev->dev; 1110 struct resource *region; 1111 1112 *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); 1113 if (*res == NULL) { 1114 dev_err(device, "resource %s not defined\n", name); 1115 return -ENODEV; 1116 } 1117 1118 region = devm_request_mem_region(device, (*res)->start, 1119 resource_size(*res), dev_name(device)); 1120 if (region == NULL) { 1121 dev_err(device, "unable to request %s\n", name); 1122 return -EBUSY; 1123 } 1124 1125 *ptr = devm_ioremap(device, region->start, 1126 resource_size(region)); 1127 if (*ptr == NULL) { 1128 dev_err(device, "ioremap of %s failed!", name); 1129 return -ENOMEM; 1130 } 1131 1132 return 0; 1133 } 1134 1135 /* Probe Altera TSE MAC device 1136 */ 1137 static int altera_tse_probe(struct platform_device *pdev) 1138 { 1139 const struct of_device_id *of_id = NULL; 1140 struct altera_tse_private *priv; 1141 struct resource *control_port; 1142 struct resource *dma_res; 1143 struct resource *pcs_res; 1144 struct net_device *ndev; 1145 void __iomem *descmap; 1146 int pcs_reg_width = 2; 1147 int ret = -ENODEV; 1148 1149 ndev = alloc_etherdev(sizeof(struct altera_tse_private)); 1150 if (!ndev) { 1151 dev_err(&pdev->dev, "Could not allocate network device\n"); 1152 return -ENODEV; 1153 } 1154 1155 SET_NETDEV_DEV(ndev, &pdev->dev); 1156 1157 priv = netdev_priv(ndev); 1158 priv->device = &pdev->dev; 1159 priv->dev = ndev; 1160 priv->msg_enable = netif_msg_init(debug, default_msg_level); 1161 1162 of_id = of_match_device(altera_tse_ids, &pdev->dev); 1163 1164 if (of_id) 1165 priv->dmaops = (struct altera_dmaops *)of_id->data; 1166 1167 1168 if (priv->dmaops && 1169 priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) { 1170 /* Get the mapped address to the SGDMA descriptor memory */ 1171 ret = request_and_map(pdev, "s1", &dma_res, &descmap); 1172 if (ret) 1173 goto err_free_netdev; 1174 1175 /* Start of that memory is for transmit descriptors */ 1176 priv->tx_dma_desc = descmap; 1177 1178 /* First half is for tx descriptors, other half for tx */ 1179 priv->txdescmem = resource_size(dma_res)/2; 1180 1181 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start; 1182 1183 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap + 1184 priv->txdescmem)); 1185 priv->rxdescmem = resource_size(dma_res)/2; 1186 priv->rxdescmem_busaddr = dma_res->start; 1187 priv->rxdescmem_busaddr += priv->txdescmem; 1188 1189 if (upper_32_bits(priv->rxdescmem_busaddr)) { 1190 dev_dbg(priv->device, 1191 "SGDMA bus addresses greater than 32-bits\n"); 1192 ret = -EINVAL; 1193 goto err_free_netdev; 1194 } 1195 if (upper_32_bits(priv->txdescmem_busaddr)) { 1196 dev_dbg(priv->device, 1197 "SGDMA bus addresses greater than 32-bits\n"); 1198 ret = -EINVAL; 1199 goto err_free_netdev; 1200 } 1201 } else if (priv->dmaops && 1202 priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) { 1203 ret = request_and_map(pdev, "rx_resp", &dma_res, 1204 &priv->rx_dma_resp); 1205 if (ret) 1206 goto err_free_netdev; 1207 1208 ret = request_and_map(pdev, "tx_desc", &dma_res, 1209 &priv->tx_dma_desc); 1210 if (ret) 1211 goto err_free_netdev; 1212 1213 priv->txdescmem = resource_size(dma_res); 1214 priv->txdescmem_busaddr = dma_res->start; 1215 1216 ret = request_and_map(pdev, "rx_desc", &dma_res, 1217 &priv->rx_dma_desc); 1218 if (ret) 1219 goto err_free_netdev; 1220 1221 priv->rxdescmem = resource_size(dma_res); 1222 priv->rxdescmem_busaddr = dma_res->start; 1223 1224 } else { 1225 ret = -ENODEV; 1226 goto err_free_netdev; 1227 } 1228 1229 if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask))) { 1230 dma_set_coherent_mask(priv->device, 1231 DMA_BIT_MASK(priv->dmaops->dmamask)); 1232 } else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32))) { 1233 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32)); 1234 } else { 1235 ret = -EIO; 1236 goto err_free_netdev; 1237 } 1238 1239 /* MAC address space */ 1240 ret = request_and_map(pdev, "control_port", &control_port, 1241 (void __iomem **)&priv->mac_dev); 1242 if (ret) 1243 goto err_free_netdev; 1244 1245 /* xSGDMA Rx Dispatcher address space */ 1246 ret = request_and_map(pdev, "rx_csr", &dma_res, 1247 &priv->rx_dma_csr); 1248 if (ret) 1249 goto err_free_netdev; 1250 1251 1252 /* xSGDMA Tx Dispatcher address space */ 1253 ret = request_and_map(pdev, "tx_csr", &dma_res, 1254 &priv->tx_dma_csr); 1255 if (ret) 1256 goto err_free_netdev; 1257 1258 /* SGMII PCS address space. The location can vary depending on how the 1259 * IP is integrated. We can have a resource dedicated to it at a specific 1260 * address space, but if it's not the case, we fallback to the mdiophy0 1261 * from the MAC's address space 1262 */ 1263 ret = request_and_map(pdev, "pcs", &pcs_res, 1264 &priv->pcs_base); 1265 if (ret) { 1266 priv->pcs_base = priv->mac_dev + tse_csroffs(mdio_phy0); 1267 pcs_reg_width = 4; 1268 } 1269 1270 /* Rx IRQ */ 1271 priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq"); 1272 if (priv->rx_irq == -ENXIO) { 1273 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n"); 1274 ret = -ENXIO; 1275 goto err_free_netdev; 1276 } 1277 1278 /* Tx IRQ */ 1279 priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq"); 1280 if (priv->tx_irq == -ENXIO) { 1281 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n"); 1282 ret = -ENXIO; 1283 goto err_free_netdev; 1284 } 1285 1286 /* get FIFO depths from device tree */ 1287 if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", 1288 &priv->rx_fifo_depth)) { 1289 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n"); 1290 ret = -ENXIO; 1291 goto err_free_netdev; 1292 } 1293 1294 if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", 1295 &priv->tx_fifo_depth)) { 1296 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n"); 1297 ret = -ENXIO; 1298 goto err_free_netdev; 1299 } 1300 1301 /* get hash filter settings for this instance */ 1302 priv->hash_filter = 1303 of_property_read_bool(pdev->dev.of_node, 1304 "altr,has-hash-multicast-filter"); 1305 1306 /* Set hash filter to not set for now until the 1307 * multicast filter receive issue is debugged 1308 */ 1309 priv->hash_filter = 0; 1310 1311 /* get supplemental address settings for this instance */ 1312 priv->added_unicast = 1313 of_property_read_bool(pdev->dev.of_node, 1314 "altr,has-supplementary-unicast"); 1315 1316 priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; 1317 /* Max MTU is 1500, ETH_DATA_LEN */ 1318 priv->dev->max_mtu = ETH_DATA_LEN; 1319 1320 /* Get the max mtu from the device tree. Note that the 1321 * "max-frame-size" parameter is actually max mtu. Definition 1322 * in the ePAPR v1.1 spec and usage differ, so go with usage. 1323 */ 1324 of_property_read_u32(pdev->dev.of_node, "max-frame-size", 1325 &priv->dev->max_mtu); 1326 1327 /* The DMA buffer size already accounts for an alignment bias 1328 * to avoid unaligned access exceptions for the NIOS processor, 1329 */ 1330 priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE; 1331 1332 /* get default MAC address from device tree */ 1333 ret = of_get_ethdev_address(pdev->dev.of_node, ndev); 1334 if (ret) 1335 eth_hw_addr_random(ndev); 1336 1337 /* get phy addr and create mdio */ 1338 ret = altera_tse_phy_get_addr_mdio_create(ndev); 1339 1340 if (ret) 1341 goto err_free_netdev; 1342 1343 /* initialize netdev */ 1344 ndev->mem_start = control_port->start; 1345 ndev->mem_end = control_port->end; 1346 ndev->netdev_ops = &altera_tse_netdev_ops; 1347 altera_tse_set_ethtool_ops(ndev); 1348 1349 altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode; 1350 1351 if (priv->hash_filter) 1352 altera_tse_netdev_ops.ndo_set_rx_mode = 1353 tse_set_rx_mode_hashfilter; 1354 1355 /* Scatter/gather IO is not supported, 1356 * so it is turned off 1357 */ 1358 ndev->hw_features &= ~NETIF_F_SG; 1359 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 1360 1361 /* VLAN offloading of tagging, stripping and filtering is not 1362 * supported by hardware, but driver will accommodate the 1363 * extra 4-byte VLAN tag for processing by upper layers 1364 */ 1365 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1366 1367 /* setup NAPI interface */ 1368 netif_napi_add(ndev, &priv->napi, tse_poll); 1369 1370 spin_lock_init(&priv->mac_cfg_lock); 1371 spin_lock_init(&priv->tx_lock); 1372 spin_lock_init(&priv->rxdma_irq_lock); 1373 1374 netif_carrier_off(ndev); 1375 ret = register_netdev(ndev); 1376 if (ret) { 1377 dev_err(&pdev->dev, "failed to register TSE net device\n"); 1378 goto err_register_netdev; 1379 } 1380 1381 platform_set_drvdata(pdev, ndev); 1382 1383 priv->revision = ioread32(&priv->mac_dev->megacore_revision); 1384 1385 if (netif_msg_probe(priv)) 1386 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n", 1387 (priv->revision >> 8) & 0xff, 1388 priv->revision & 0xff, 1389 (unsigned long) control_port->start, priv->rx_irq, 1390 priv->tx_irq); 1391 1392 priv->pcs = alt_tse_pcs_create(ndev, priv->pcs_base, pcs_reg_width); 1393 1394 priv->phylink_config.dev = &ndev->dev; 1395 priv->phylink_config.type = PHYLINK_NETDEV; 1396 priv->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 | 1397 MAC_100 | MAC_1000FD; 1398 1399 phy_interface_set_rgmii(priv->phylink_config.supported_interfaces); 1400 __set_bit(PHY_INTERFACE_MODE_MII, 1401 priv->phylink_config.supported_interfaces); 1402 __set_bit(PHY_INTERFACE_MODE_GMII, 1403 priv->phylink_config.supported_interfaces); 1404 __set_bit(PHY_INTERFACE_MODE_SGMII, 1405 priv->phylink_config.supported_interfaces); 1406 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 1407 priv->phylink_config.supported_interfaces); 1408 1409 priv->phylink = phylink_create(&priv->phylink_config, 1410 of_fwnode_handle(priv->device->of_node), 1411 priv->phy_iface, &alt_tse_phylink_ops); 1412 if (IS_ERR(priv->phylink)) { 1413 dev_err(&pdev->dev, "failed to create phylink\n"); 1414 ret = PTR_ERR(priv->phylink); 1415 goto err_init_phy; 1416 } 1417 1418 return 0; 1419 1420 err_init_phy: 1421 unregister_netdev(ndev); 1422 err_register_netdev: 1423 netif_napi_del(&priv->napi); 1424 altera_tse_mdio_destroy(ndev); 1425 err_free_netdev: 1426 free_netdev(ndev); 1427 return ret; 1428 } 1429 1430 /* Remove Altera TSE MAC device 1431 */ 1432 static int altera_tse_remove(struct platform_device *pdev) 1433 { 1434 struct net_device *ndev = platform_get_drvdata(pdev); 1435 struct altera_tse_private *priv = netdev_priv(ndev); 1436 1437 platform_set_drvdata(pdev, NULL); 1438 altera_tse_mdio_destroy(ndev); 1439 unregister_netdev(ndev); 1440 phylink_destroy(priv->phylink); 1441 free_netdev(ndev); 1442 1443 return 0; 1444 } 1445 1446 static const struct altera_dmaops altera_dtype_sgdma = { 1447 .altera_dtype = ALTERA_DTYPE_SGDMA, 1448 .dmamask = 32, 1449 .reset_dma = sgdma_reset, 1450 .enable_txirq = sgdma_enable_txirq, 1451 .enable_rxirq = sgdma_enable_rxirq, 1452 .disable_txirq = sgdma_disable_txirq, 1453 .disable_rxirq = sgdma_disable_rxirq, 1454 .clear_txirq = sgdma_clear_txirq, 1455 .clear_rxirq = sgdma_clear_rxirq, 1456 .tx_buffer = sgdma_tx_buffer, 1457 .tx_completions = sgdma_tx_completions, 1458 .add_rx_desc = sgdma_add_rx_desc, 1459 .get_rx_status = sgdma_rx_status, 1460 .init_dma = sgdma_initialize, 1461 .uninit_dma = sgdma_uninitialize, 1462 .start_rxdma = sgdma_start_rxdma, 1463 }; 1464 1465 static const struct altera_dmaops altera_dtype_msgdma = { 1466 .altera_dtype = ALTERA_DTYPE_MSGDMA, 1467 .dmamask = 64, 1468 .reset_dma = msgdma_reset, 1469 .enable_txirq = msgdma_enable_txirq, 1470 .enable_rxirq = msgdma_enable_rxirq, 1471 .disable_txirq = msgdma_disable_txirq, 1472 .disable_rxirq = msgdma_disable_rxirq, 1473 .clear_txirq = msgdma_clear_txirq, 1474 .clear_rxirq = msgdma_clear_rxirq, 1475 .tx_buffer = msgdma_tx_buffer, 1476 .tx_completions = msgdma_tx_completions, 1477 .add_rx_desc = msgdma_add_rx_desc, 1478 .get_rx_status = msgdma_rx_status, 1479 .init_dma = msgdma_initialize, 1480 .uninit_dma = msgdma_uninitialize, 1481 .start_rxdma = msgdma_start_rxdma, 1482 }; 1483 1484 static const struct of_device_id altera_tse_ids[] = { 1485 { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, }, 1486 { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, }, 1487 { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, }, 1488 {}, 1489 }; 1490 MODULE_DEVICE_TABLE(of, altera_tse_ids); 1491 1492 static struct platform_driver altera_tse_driver = { 1493 .probe = altera_tse_probe, 1494 .remove = altera_tse_remove, 1495 .suspend = NULL, 1496 .resume = NULL, 1497 .driver = { 1498 .name = ALTERA_TSE_RESOURCE_NAME, 1499 .of_match_table = altera_tse_ids, 1500 }, 1501 }; 1502 1503 module_platform_driver(altera_tse_driver); 1504 1505 MODULE_AUTHOR("Altera Corporation"); 1506 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver"); 1507 MODULE_LICENSE("GPL v2"); 1508