1 /* Altera Triple-Speed Ethernet MAC driver
2  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
3  *
4  * Contributors:
5  *   Dalon Westergreen
6  *   Thomas Chou
7  *   Ian Abbott
8  *   Yuriy Kozlov
9  *   Tobias Klauser
10  *   Andriy Smolskyy
11  *   Roman Bulgakov
12  *   Dmytro Mytarchuk
13  *   Matthew Gerlach
14  *
15  * Original driver contributed by SLS.
16  * Major updates contributed by GlobalLogic
17  *
18  * This program is free software; you can redistribute it and/or modify it
19  * under the terms and conditions of the GNU General Public License,
20  * version 2, as published by the Free Software Foundation.
21  *
22  * This program is distributed in the hope it will be useful, but WITHOUT
23  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
25  * more details.
26  *
27  * You should have received a copy of the GNU General Public License along with
28  * this program.  If not, see <http://www.gnu.org/licenses/>.
29  */
30 
31 #include <linux/atomic.h>
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_vlan.h>
35 #include <linux/init.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/mii.h>
41 #include <linux/netdevice.h>
42 #include <linux/of_device.h>
43 #include <linux/of_mdio.h>
44 #include <linux/of_net.h>
45 #include <linux/of_platform.h>
46 #include <linux/phy.h>
47 #include <linux/platform_device.h>
48 #include <linux/skbuff.h>
49 #include <asm/cacheflush.h>
50 
51 #include "altera_utils.h"
52 #include "altera_tse.h"
53 #include "altera_sgdma.h"
54 #include "altera_msgdma.h"
55 
56 static atomic_t instance_count = ATOMIC_INIT(~0);
57 /* Module parameters */
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
63 					NETIF_MSG_LINK | NETIF_MSG_IFUP |
64 					NETIF_MSG_IFDOWN);
65 
66 #define RX_DESCRIPTORS 64
67 static int dma_rx_num = RX_DESCRIPTORS;
68 module_param(dma_rx_num, int, 0644);
69 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
70 
71 #define TX_DESCRIPTORS 64
72 static int dma_tx_num = TX_DESCRIPTORS;
73 module_param(dma_tx_num, int, 0644);
74 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
75 
76 
77 #define POLL_PHY (-1)
78 
79 /* Make sure DMA buffer size is larger than the max frame size
80  * plus some alignment offset and a VLAN header. If the max frame size is
81  * 1518, a VLAN header would be additional 4 bytes and additional
82  * headroom for alignment is 2 bytes, 2048 is just fine.
83  */
84 #define ALTERA_RXDMABUFFER_SIZE	2048
85 
86 /* Allow network stack to resume queueing packets after we've
87  * finished transmitting at least 1/4 of the packets in the queue.
88  */
89 #define TSE_TX_THRESH(x)	(x->tx_ring_size / 4)
90 
91 #define TXQUEUESTOP_THRESHHOLD	2
92 
93 static const struct of_device_id altera_tse_ids[];
94 
95 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
96 {
97 	return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
98 }
99 
100 /* PCS Register read/write functions
101  */
102 static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum)
103 {
104 	return csrrd32(priv->mac_dev,
105 		       tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff;
106 }
107 
108 static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum,
109 				u16 value)
110 {
111 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4);
112 }
113 
114 /* Check PCS scratch memory */
115 static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value)
116 {
117 	sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value);
118 	return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value);
119 }
120 
121 /* MDIO specific functions
122  */
123 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
124 {
125 	struct net_device *ndev = bus->priv;
126 	struct altera_tse_private *priv = netdev_priv(ndev);
127 
128 	/* set MDIO address */
129 	csrwr32((mii_id & 0x1f), priv->mac_dev,
130 		tse_csroffs(mdio_phy1_addr));
131 
132 	/* get the data */
133 	return csrrd32(priv->mac_dev,
134 		       tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
135 }
136 
137 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
138 				 u16 value)
139 {
140 	struct net_device *ndev = bus->priv;
141 	struct altera_tse_private *priv = netdev_priv(ndev);
142 
143 	/* set MDIO address */
144 	csrwr32((mii_id & 0x1f), priv->mac_dev,
145 		tse_csroffs(mdio_phy1_addr));
146 
147 	/* write the data */
148 	csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
149 	return 0;
150 }
151 
152 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
153 {
154 	struct altera_tse_private *priv = netdev_priv(dev);
155 	int ret;
156 	struct device_node *mdio_node = NULL;
157 	struct mii_bus *mdio = NULL;
158 	struct device_node *child_node = NULL;
159 
160 	for_each_child_of_node(priv->device->of_node, child_node) {
161 		if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
162 			mdio_node = child_node;
163 			break;
164 		}
165 	}
166 
167 	if (mdio_node) {
168 		netdev_dbg(dev, "FOUND MDIO subnode\n");
169 	} else {
170 		netdev_dbg(dev, "NO MDIO subnode\n");
171 		return 0;
172 	}
173 
174 	mdio = mdiobus_alloc();
175 	if (mdio == NULL) {
176 		netdev_err(dev, "Error allocating MDIO bus\n");
177 		return -ENOMEM;
178 	}
179 
180 	mdio->name = ALTERA_TSE_RESOURCE_NAME;
181 	mdio->read = &altera_tse_mdio_read;
182 	mdio->write = &altera_tse_mdio_write;
183 	snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
184 
185 	mdio->priv = dev;
186 	mdio->parent = priv->device;
187 
188 	ret = of_mdiobus_register(mdio, mdio_node);
189 	if (ret != 0) {
190 		netdev_err(dev, "Cannot register MDIO bus %s\n",
191 			   mdio->id);
192 		goto out_free_mdio;
193 	}
194 
195 	if (netif_msg_drv(priv))
196 		netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
197 
198 	priv->mdio = mdio;
199 	return 0;
200 out_free_mdio:
201 	mdiobus_free(mdio);
202 	mdio = NULL;
203 	return ret;
204 }
205 
206 static void altera_tse_mdio_destroy(struct net_device *dev)
207 {
208 	struct altera_tse_private *priv = netdev_priv(dev);
209 
210 	if (priv->mdio == NULL)
211 		return;
212 
213 	if (netif_msg_drv(priv))
214 		netdev_info(dev, "MDIO bus %s: removed\n",
215 			    priv->mdio->id);
216 
217 	mdiobus_unregister(priv->mdio);
218 	mdiobus_free(priv->mdio);
219 	priv->mdio = NULL;
220 }
221 
222 static int tse_init_rx_buffer(struct altera_tse_private *priv,
223 			      struct tse_buffer *rxbuffer, int len)
224 {
225 	rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
226 	if (!rxbuffer->skb)
227 		return -ENOMEM;
228 
229 	rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
230 						len,
231 						DMA_FROM_DEVICE);
232 
233 	if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
234 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
235 		dev_kfree_skb_any(rxbuffer->skb);
236 		return -EINVAL;
237 	}
238 	rxbuffer->dma_addr &= (dma_addr_t)~3;
239 	rxbuffer->len = len;
240 	return 0;
241 }
242 
243 static void tse_free_rx_buffer(struct altera_tse_private *priv,
244 			       struct tse_buffer *rxbuffer)
245 {
246 	struct sk_buff *skb = rxbuffer->skb;
247 	dma_addr_t dma_addr = rxbuffer->dma_addr;
248 
249 	if (skb != NULL) {
250 		if (dma_addr)
251 			dma_unmap_single(priv->device, dma_addr,
252 					 rxbuffer->len,
253 					 DMA_FROM_DEVICE);
254 		dev_kfree_skb_any(skb);
255 		rxbuffer->skb = NULL;
256 		rxbuffer->dma_addr = 0;
257 	}
258 }
259 
260 /* Unmap and free Tx buffer resources
261  */
262 static void tse_free_tx_buffer(struct altera_tse_private *priv,
263 			       struct tse_buffer *buffer)
264 {
265 	if (buffer->dma_addr) {
266 		if (buffer->mapped_as_page)
267 			dma_unmap_page(priv->device, buffer->dma_addr,
268 				       buffer->len, DMA_TO_DEVICE);
269 		else
270 			dma_unmap_single(priv->device, buffer->dma_addr,
271 					 buffer->len, DMA_TO_DEVICE);
272 		buffer->dma_addr = 0;
273 	}
274 	if (buffer->skb) {
275 		dev_kfree_skb_any(buffer->skb);
276 		buffer->skb = NULL;
277 	}
278 }
279 
280 static int alloc_init_skbufs(struct altera_tse_private *priv)
281 {
282 	unsigned int rx_descs = priv->rx_ring_size;
283 	unsigned int tx_descs = priv->tx_ring_size;
284 	int ret = -ENOMEM;
285 	int i;
286 
287 	/* Create Rx ring buffer */
288 	priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
289 				GFP_KERNEL);
290 	if (!priv->rx_ring)
291 		goto err_rx_ring;
292 
293 	/* Create Tx ring buffer */
294 	priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
295 				GFP_KERNEL);
296 	if (!priv->tx_ring)
297 		goto err_tx_ring;
298 
299 	priv->tx_cons = 0;
300 	priv->tx_prod = 0;
301 
302 	/* Init Rx ring */
303 	for (i = 0; i < rx_descs; i++) {
304 		ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
305 					 priv->rx_dma_buf_sz);
306 		if (ret)
307 			goto err_init_rx_buffers;
308 	}
309 
310 	priv->rx_cons = 0;
311 	priv->rx_prod = 0;
312 
313 	return 0;
314 err_init_rx_buffers:
315 	while (--i >= 0)
316 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
317 	kfree(priv->tx_ring);
318 err_tx_ring:
319 	kfree(priv->rx_ring);
320 err_rx_ring:
321 	return ret;
322 }
323 
324 static void free_skbufs(struct net_device *dev)
325 {
326 	struct altera_tse_private *priv = netdev_priv(dev);
327 	unsigned int rx_descs = priv->rx_ring_size;
328 	unsigned int tx_descs = priv->tx_ring_size;
329 	int i;
330 
331 	/* Release the DMA TX/RX socket buffers */
332 	for (i = 0; i < rx_descs; i++)
333 		tse_free_rx_buffer(priv, &priv->rx_ring[i]);
334 	for (i = 0; i < tx_descs; i++)
335 		tse_free_tx_buffer(priv, &priv->tx_ring[i]);
336 
337 
338 	kfree(priv->tx_ring);
339 }
340 
341 /* Reallocate the skb for the reception process
342  */
343 static inline void tse_rx_refill(struct altera_tse_private *priv)
344 {
345 	unsigned int rxsize = priv->rx_ring_size;
346 	unsigned int entry;
347 	int ret;
348 
349 	for (; priv->rx_cons - priv->rx_prod > 0;
350 			priv->rx_prod++) {
351 		entry = priv->rx_prod % rxsize;
352 		if (likely(priv->rx_ring[entry].skb == NULL)) {
353 			ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
354 				priv->rx_dma_buf_sz);
355 			if (unlikely(ret != 0))
356 				break;
357 			priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
358 		}
359 	}
360 }
361 
362 /* Pull out the VLAN tag and fix up the packet
363  */
364 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
365 {
366 	struct ethhdr *eth_hdr;
367 	u16 vid;
368 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
369 	    !__vlan_get_tag(skb, &vid)) {
370 		eth_hdr = (struct ethhdr *)skb->data;
371 		memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
372 		skb_pull(skb, VLAN_HLEN);
373 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
374 	}
375 }
376 
377 /* Receive a packet: retrieve and pass over to upper levels
378  */
379 static int tse_rx(struct altera_tse_private *priv, int limit)
380 {
381 	unsigned int count = 0;
382 	unsigned int next_entry;
383 	struct sk_buff *skb;
384 	unsigned int entry = priv->rx_cons % priv->rx_ring_size;
385 	u32 rxstatus;
386 	u16 pktlength;
387 	u16 pktstatus;
388 
389 	/* Check for count < limit first as get_rx_status is changing
390 	* the response-fifo so we must process the next packet
391 	* after calling get_rx_status if a response is pending.
392 	* (reading the last byte of the response pops the value from the fifo.)
393 	*/
394 	while ((count < limit) &&
395 	       ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
396 		pktstatus = rxstatus >> 16;
397 		pktlength = rxstatus & 0xffff;
398 
399 		if ((pktstatus & 0xFF) || (pktlength == 0))
400 			netdev_err(priv->dev,
401 				   "RCV pktstatus %08X pktlength %08X\n",
402 				   pktstatus, pktlength);
403 
404 		/* DMA trasfer from TSE starts with 2 aditional bytes for
405 		 * IP payload alignment. Status returned by get_rx_status()
406 		 * contains DMA transfer length. Packet is 2 bytes shorter.
407 		 */
408 		pktlength -= 2;
409 
410 		count++;
411 		next_entry = (++priv->rx_cons) % priv->rx_ring_size;
412 
413 		skb = priv->rx_ring[entry].skb;
414 		if (unlikely(!skb)) {
415 			netdev_err(priv->dev,
416 				   "%s: Inconsistent Rx descriptor chain\n",
417 				   __func__);
418 			priv->dev->stats.rx_dropped++;
419 			break;
420 		}
421 		priv->rx_ring[entry].skb = NULL;
422 
423 		skb_put(skb, pktlength);
424 
425 		dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
426 				 priv->rx_ring[entry].len, DMA_FROM_DEVICE);
427 
428 		if (netif_msg_pktdata(priv)) {
429 			netdev_info(priv->dev, "frame received %d bytes\n",
430 				    pktlength);
431 			print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
432 				       16, 1, skb->data, pktlength, true);
433 		}
434 
435 		tse_rx_vlan(priv->dev, skb);
436 
437 		skb->protocol = eth_type_trans(skb, priv->dev);
438 		skb_checksum_none_assert(skb);
439 
440 		napi_gro_receive(&priv->napi, skb);
441 
442 		priv->dev->stats.rx_packets++;
443 		priv->dev->stats.rx_bytes += pktlength;
444 
445 		entry = next_entry;
446 
447 		tse_rx_refill(priv);
448 	}
449 
450 	return count;
451 }
452 
453 /* Reclaim resources after transmission completes
454  */
455 static int tse_tx_complete(struct altera_tse_private *priv)
456 {
457 	unsigned int txsize = priv->tx_ring_size;
458 	u32 ready;
459 	unsigned int entry;
460 	struct tse_buffer *tx_buff;
461 	int txcomplete = 0;
462 
463 	spin_lock(&priv->tx_lock);
464 
465 	ready = priv->dmaops->tx_completions(priv);
466 
467 	/* Free sent buffers */
468 	while (ready && (priv->tx_cons != priv->tx_prod)) {
469 		entry = priv->tx_cons % txsize;
470 		tx_buff = &priv->tx_ring[entry];
471 
472 		if (netif_msg_tx_done(priv))
473 			netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
474 				   __func__, priv->tx_prod, priv->tx_cons);
475 
476 		if (likely(tx_buff->skb))
477 			priv->dev->stats.tx_packets++;
478 
479 		tse_free_tx_buffer(priv, tx_buff);
480 		priv->tx_cons++;
481 
482 		txcomplete++;
483 		ready--;
484 	}
485 
486 	if (unlikely(netif_queue_stopped(priv->dev) &&
487 		     tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
488 		if (netif_queue_stopped(priv->dev) &&
489 		    tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
490 			if (netif_msg_tx_done(priv))
491 				netdev_dbg(priv->dev, "%s: restart transmit\n",
492 					   __func__);
493 			netif_wake_queue(priv->dev);
494 		}
495 	}
496 
497 	spin_unlock(&priv->tx_lock);
498 	return txcomplete;
499 }
500 
501 /* NAPI polling function
502  */
503 static int tse_poll(struct napi_struct *napi, int budget)
504 {
505 	struct altera_tse_private *priv =
506 			container_of(napi, struct altera_tse_private, napi);
507 	int rxcomplete = 0;
508 	unsigned long int flags;
509 
510 	tse_tx_complete(priv);
511 
512 	rxcomplete = tse_rx(priv, budget);
513 
514 	if (rxcomplete < budget) {
515 
516 		napi_complete_done(napi, rxcomplete);
517 
518 		netdev_dbg(priv->dev,
519 			   "NAPI Complete, did %d packets with budget %d\n",
520 			   rxcomplete, budget);
521 
522 		spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
523 		priv->dmaops->enable_rxirq(priv);
524 		priv->dmaops->enable_txirq(priv);
525 		spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
526 	}
527 	return rxcomplete;
528 }
529 
530 /* DMA TX & RX FIFO interrupt routing
531  */
532 static irqreturn_t altera_isr(int irq, void *dev_id)
533 {
534 	struct net_device *dev = dev_id;
535 	struct altera_tse_private *priv;
536 
537 	if (unlikely(!dev)) {
538 		pr_err("%s: invalid dev pointer\n", __func__);
539 		return IRQ_NONE;
540 	}
541 	priv = netdev_priv(dev);
542 
543 	spin_lock(&priv->rxdma_irq_lock);
544 	/* reset IRQs */
545 	priv->dmaops->clear_rxirq(priv);
546 	priv->dmaops->clear_txirq(priv);
547 	spin_unlock(&priv->rxdma_irq_lock);
548 
549 	if (likely(napi_schedule_prep(&priv->napi))) {
550 		spin_lock(&priv->rxdma_irq_lock);
551 		priv->dmaops->disable_rxirq(priv);
552 		priv->dmaops->disable_txirq(priv);
553 		spin_unlock(&priv->rxdma_irq_lock);
554 		__napi_schedule(&priv->napi);
555 	}
556 
557 
558 	return IRQ_HANDLED;
559 }
560 
561 /* Transmit a packet (called by the kernel). Dispatches
562  * either the SGDMA method for transmitting or the
563  * MSGDMA method, assumes no scatter/gather support,
564  * implying an assumption that there's only one
565  * physically contiguous fragment starting at
566  * skb->data, for length of skb_headlen(skb).
567  */
568 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
569 {
570 	struct altera_tse_private *priv = netdev_priv(dev);
571 	unsigned int txsize = priv->tx_ring_size;
572 	unsigned int entry;
573 	struct tse_buffer *buffer = NULL;
574 	int nfrags = skb_shinfo(skb)->nr_frags;
575 	unsigned int nopaged_len = skb_headlen(skb);
576 	enum netdev_tx ret = NETDEV_TX_OK;
577 	dma_addr_t dma_addr;
578 
579 	spin_lock_bh(&priv->tx_lock);
580 
581 	if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
582 		if (!netif_queue_stopped(dev)) {
583 			netif_stop_queue(dev);
584 			/* This is a hard error, log it. */
585 			netdev_err(priv->dev,
586 				   "%s: Tx list full when queue awake\n",
587 				   __func__);
588 		}
589 		ret = NETDEV_TX_BUSY;
590 		goto out;
591 	}
592 
593 	/* Map the first skb fragment */
594 	entry = priv->tx_prod % txsize;
595 	buffer = &priv->tx_ring[entry];
596 
597 	dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
598 				  DMA_TO_DEVICE);
599 	if (dma_mapping_error(priv->device, dma_addr)) {
600 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
601 		ret = NETDEV_TX_OK;
602 		goto out;
603 	}
604 
605 	buffer->skb = skb;
606 	buffer->dma_addr = dma_addr;
607 	buffer->len = nopaged_len;
608 
609 	priv->dmaops->tx_buffer(priv, buffer);
610 
611 	skb_tx_timestamp(skb);
612 
613 	priv->tx_prod++;
614 	dev->stats.tx_bytes += skb->len;
615 
616 	if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
617 		if (netif_msg_hw(priv))
618 			netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
619 				   __func__);
620 		netif_stop_queue(dev);
621 	}
622 
623 out:
624 	spin_unlock_bh(&priv->tx_lock);
625 
626 	return ret;
627 }
628 
629 /* Called every time the controller might need to be made
630  * aware of new link state.  The PHY code conveys this
631  * information through variables in the phydev structure, and this
632  * function converts those variables into the appropriate
633  * register values, and can bring down the device if needed.
634  */
635 static void altera_tse_adjust_link(struct net_device *dev)
636 {
637 	struct altera_tse_private *priv = netdev_priv(dev);
638 	struct phy_device *phydev = dev->phydev;
639 	int new_state = 0;
640 
641 	/* only change config if there is a link */
642 	spin_lock(&priv->mac_cfg_lock);
643 	if (phydev->link) {
644 		/* Read old config */
645 		u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
646 
647 		/* Check duplex */
648 		if (phydev->duplex != priv->oldduplex) {
649 			new_state = 1;
650 			if (!(phydev->duplex))
651 				cfg_reg |= MAC_CMDCFG_HD_ENA;
652 			else
653 				cfg_reg &= ~MAC_CMDCFG_HD_ENA;
654 
655 			netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
656 				   dev->name, phydev->duplex);
657 
658 			priv->oldduplex = phydev->duplex;
659 		}
660 
661 		/* Check speed */
662 		if (phydev->speed != priv->oldspeed) {
663 			new_state = 1;
664 			switch (phydev->speed) {
665 			case 1000:
666 				cfg_reg |= MAC_CMDCFG_ETH_SPEED;
667 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
668 				break;
669 			case 100:
670 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
671 				cfg_reg &= ~MAC_CMDCFG_ENA_10;
672 				break;
673 			case 10:
674 				cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
675 				cfg_reg |= MAC_CMDCFG_ENA_10;
676 				break;
677 			default:
678 				if (netif_msg_link(priv))
679 					netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
680 						    phydev->speed);
681 				break;
682 			}
683 			priv->oldspeed = phydev->speed;
684 		}
685 		iowrite32(cfg_reg, &priv->mac_dev->command_config);
686 
687 		if (!priv->oldlink) {
688 			new_state = 1;
689 			priv->oldlink = 1;
690 		}
691 	} else if (priv->oldlink) {
692 		new_state = 1;
693 		priv->oldlink = 0;
694 		priv->oldspeed = 0;
695 		priv->oldduplex = -1;
696 	}
697 
698 	if (new_state && netif_msg_link(priv))
699 		phy_print_status(phydev);
700 
701 	spin_unlock(&priv->mac_cfg_lock);
702 }
703 static struct phy_device *connect_local_phy(struct net_device *dev)
704 {
705 	struct altera_tse_private *priv = netdev_priv(dev);
706 	struct phy_device *phydev = NULL;
707 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
708 
709 	if (priv->phy_addr != POLL_PHY) {
710 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
711 			 priv->mdio->id, priv->phy_addr);
712 
713 		netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
714 
715 		phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
716 				     priv->phy_iface);
717 		if (IS_ERR(phydev)) {
718 			netdev_err(dev, "Could not attach to PHY\n");
719 			phydev = NULL;
720 		}
721 
722 	} else {
723 		int ret;
724 		phydev = phy_find_first(priv->mdio);
725 		if (phydev == NULL) {
726 			netdev_err(dev, "No PHY found\n");
727 			return phydev;
728 		}
729 
730 		ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
731 				priv->phy_iface);
732 		if (ret != 0) {
733 			netdev_err(dev, "Could not attach to PHY\n");
734 			phydev = NULL;
735 		}
736 	}
737 	return phydev;
738 }
739 
740 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
741 {
742 	struct altera_tse_private *priv = netdev_priv(dev);
743 	struct device_node *np = priv->device->of_node;
744 	int ret = 0;
745 
746 	priv->phy_iface = of_get_phy_mode(np);
747 
748 	/* Avoid get phy addr and create mdio if no phy is present */
749 	if (!priv->phy_iface)
750 		return 0;
751 
752 	/* try to get PHY address from device tree, use PHY autodetection if
753 	 * no valid address is given
754 	 */
755 
756 	if (of_property_read_u32(priv->device->of_node, "phy-addr",
757 			 &priv->phy_addr)) {
758 		priv->phy_addr = POLL_PHY;
759 	}
760 
761 	if (!((priv->phy_addr == POLL_PHY) ||
762 		  ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
763 		netdev_err(dev, "invalid phy-addr specified %d\n",
764 			priv->phy_addr);
765 		return -ENODEV;
766 	}
767 
768 	/* Create/attach to MDIO bus */
769 	ret = altera_tse_mdio_create(dev,
770 					 atomic_add_return(1, &instance_count));
771 
772 	if (ret)
773 		return -ENODEV;
774 
775 	return 0;
776 }
777 
778 /* Initialize driver's PHY state, and attach to the PHY
779  */
780 static int init_phy(struct net_device *dev)
781 {
782 	struct altera_tse_private *priv = netdev_priv(dev);
783 	struct phy_device *phydev;
784 	struct device_node *phynode;
785 	bool fixed_link = false;
786 	int rc = 0;
787 
788 	/* Avoid init phy in case of no phy present */
789 	if (!priv->phy_iface)
790 		return 0;
791 
792 	priv->oldlink = 0;
793 	priv->oldspeed = 0;
794 	priv->oldduplex = -1;
795 
796 	phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
797 
798 	if (!phynode) {
799 		/* check if a fixed-link is defined in device-tree */
800 		if (of_phy_is_fixed_link(priv->device->of_node)) {
801 			rc = of_phy_register_fixed_link(priv->device->of_node);
802 			if (rc < 0) {
803 				netdev_err(dev, "cannot register fixed PHY\n");
804 				return rc;
805 			}
806 
807 			/* In the case of a fixed PHY, the DT node associated
808 			 * to the PHY is the Ethernet MAC DT node.
809 			 */
810 			phynode = of_node_get(priv->device->of_node);
811 			fixed_link = true;
812 
813 			netdev_dbg(dev, "fixed-link detected\n");
814 			phydev = of_phy_connect(dev, phynode,
815 						&altera_tse_adjust_link,
816 						0, priv->phy_iface);
817 		} else {
818 			netdev_dbg(dev, "no phy-handle found\n");
819 			if (!priv->mdio) {
820 				netdev_err(dev, "No phy-handle nor local mdio specified\n");
821 				return -ENODEV;
822 			}
823 			phydev = connect_local_phy(dev);
824 		}
825 	} else {
826 		netdev_dbg(dev, "phy-handle found\n");
827 		phydev = of_phy_connect(dev, phynode,
828 			&altera_tse_adjust_link, 0, priv->phy_iface);
829 	}
830 	of_node_put(phynode);
831 
832 	if (!phydev) {
833 		netdev_err(dev, "Could not find the PHY\n");
834 		if (fixed_link)
835 			of_phy_deregister_fixed_link(priv->device->of_node);
836 		return -ENODEV;
837 	}
838 
839 	/* Stop Advertising 1000BASE Capability if interface is not GMII
840 	 */
841 	if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
842 	    (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
843 		phy_set_max_speed(phydev, SPEED_100);
844 
845 	/* Broken HW is sometimes missing the pull-up resistor on the
846 	 * MDIO line, which results in reads to non-existent devices returning
847 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
848 	 * device as well. If a fixed-link is used the phy_id is always 0.
849 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
850 	 */
851 	if ((phydev->phy_id == 0) && !fixed_link) {
852 		netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
853 		phy_disconnect(phydev);
854 		return -ENODEV;
855 	}
856 
857 	netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
858 		   phydev->mdio.addr, phydev->phy_id, phydev->link);
859 
860 	return 0;
861 }
862 
863 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
864 {
865 	u32 msb;
866 	u32 lsb;
867 
868 	msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
869 	lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
870 
871 	/* Set primary MAC address */
872 	csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
873 	csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
874 }
875 
876 /* MAC software reset.
877  * When reset is triggered, the MAC function completes the current
878  * transmission or reception, and subsequently disables the transmit and
879  * receive logic, flushes the receive FIFO buffer, and resets the statistics
880  * counters.
881  */
882 static int reset_mac(struct altera_tse_private *priv)
883 {
884 	int counter;
885 	u32 dat;
886 
887 	dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
888 	dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
889 	dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
890 	csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
891 
892 	counter = 0;
893 	while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
894 		if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
895 				     MAC_CMDCFG_SW_RESET))
896 			break;
897 		udelay(1);
898 	}
899 
900 	if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
901 		dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
902 		dat &= ~MAC_CMDCFG_SW_RESET;
903 		csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
904 		return -1;
905 	}
906 	return 0;
907 }
908 
909 /* Initialize MAC core registers
910 */
911 static int init_mac(struct altera_tse_private *priv)
912 {
913 	unsigned int cmd = 0;
914 	u32 frm_length;
915 
916 	/* Setup Rx FIFO */
917 	csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
918 		priv->mac_dev, tse_csroffs(rx_section_empty));
919 
920 	csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
921 		tse_csroffs(rx_section_full));
922 
923 	csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
924 		tse_csroffs(rx_almost_empty));
925 
926 	csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
927 		tse_csroffs(rx_almost_full));
928 
929 	/* Setup Tx FIFO */
930 	csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
931 		priv->mac_dev, tse_csroffs(tx_section_empty));
932 
933 	csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
934 		tse_csroffs(tx_section_full));
935 
936 	csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
937 		tse_csroffs(tx_almost_empty));
938 
939 	csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
940 		tse_csroffs(tx_almost_full));
941 
942 	/* MAC Address Configuration */
943 	tse_update_mac_addr(priv, priv->dev->dev_addr);
944 
945 	/* MAC Function Configuration */
946 	frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
947 	csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
948 
949 	csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
950 		tse_csroffs(tx_ipg_length));
951 
952 	/* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
953 	 * start address
954 	 */
955 	tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
956 		    ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
957 
958 	tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
959 		      ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
960 		      ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
961 
962 	/* Set the MAC options */
963 	cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
964 	cmd &= ~MAC_CMDCFG_PAD_EN;	/* No padding Removal on Receive */
965 	cmd &= ~MAC_CMDCFG_CRC_FWD;	/* CRC Removal */
966 	cmd |= MAC_CMDCFG_RX_ERR_DISC;	/* Automatically discard frames
967 					 * with CRC errors
968 					 */
969 	cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
970 	cmd &= ~MAC_CMDCFG_TX_ENA;
971 	cmd &= ~MAC_CMDCFG_RX_ENA;
972 
973 	/* Default speed and duplex setting, full/100 */
974 	cmd &= ~MAC_CMDCFG_HD_ENA;
975 	cmd &= ~MAC_CMDCFG_ETH_SPEED;
976 	cmd &= ~MAC_CMDCFG_ENA_10;
977 
978 	csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
979 
980 	csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
981 		tse_csroffs(pause_quanta));
982 
983 	if (netif_msg_hw(priv))
984 		dev_dbg(priv->device,
985 			"MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
986 
987 	return 0;
988 }
989 
990 /* Start/stop MAC transmission logic
991  */
992 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
993 {
994 	u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
995 
996 	if (enable)
997 		value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
998 	else
999 		value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
1000 
1001 	csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
1002 }
1003 
1004 /* Change the MTU
1005  */
1006 static int tse_change_mtu(struct net_device *dev, int new_mtu)
1007 {
1008 	if (netif_running(dev)) {
1009 		netdev_err(dev, "must be stopped to change its MTU\n");
1010 		return -EBUSY;
1011 	}
1012 
1013 	dev->mtu = new_mtu;
1014 	netdev_update_features(dev);
1015 
1016 	return 0;
1017 }
1018 
1019 static void altera_tse_set_mcfilter(struct net_device *dev)
1020 {
1021 	struct altera_tse_private *priv = netdev_priv(dev);
1022 	int i;
1023 	struct netdev_hw_addr *ha;
1024 
1025 	/* clear the hash filter */
1026 	for (i = 0; i < 64; i++)
1027 		csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1028 
1029 	netdev_for_each_mc_addr(ha, dev) {
1030 		unsigned int hash = 0;
1031 		int mac_octet;
1032 
1033 		for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1034 			unsigned char xor_bit = 0;
1035 			unsigned char octet = ha->addr[mac_octet];
1036 			unsigned int bitshift;
1037 
1038 			for (bitshift = 0; bitshift < 8; bitshift++)
1039 				xor_bit ^= ((octet >> bitshift) & 0x01);
1040 
1041 			hash = (hash << 1) | xor_bit;
1042 		}
1043 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1044 	}
1045 }
1046 
1047 
1048 static void altera_tse_set_mcfilterall(struct net_device *dev)
1049 {
1050 	struct altera_tse_private *priv = netdev_priv(dev);
1051 	int i;
1052 
1053 	/* set the hash filter */
1054 	for (i = 0; i < 64; i++)
1055 		csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1056 }
1057 
1058 /* Set or clear the multicast filter for this adaptor
1059  */
1060 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1061 {
1062 	struct altera_tse_private *priv = netdev_priv(dev);
1063 
1064 	spin_lock(&priv->mac_cfg_lock);
1065 
1066 	if (dev->flags & IFF_PROMISC)
1067 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1068 			    MAC_CMDCFG_PROMIS_EN);
1069 
1070 	if (dev->flags & IFF_ALLMULTI)
1071 		altera_tse_set_mcfilterall(dev);
1072 	else
1073 		altera_tse_set_mcfilter(dev);
1074 
1075 	spin_unlock(&priv->mac_cfg_lock);
1076 }
1077 
1078 /* Set or clear the multicast filter for this adaptor
1079  */
1080 static void tse_set_rx_mode(struct net_device *dev)
1081 {
1082 	struct altera_tse_private *priv = netdev_priv(dev);
1083 
1084 	spin_lock(&priv->mac_cfg_lock);
1085 
1086 	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1087 	    !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1088 		tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1089 			    MAC_CMDCFG_PROMIS_EN);
1090 	else
1091 		tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1092 			      MAC_CMDCFG_PROMIS_EN);
1093 
1094 	spin_unlock(&priv->mac_cfg_lock);
1095 }
1096 
1097 /* Initialise (if necessary) the SGMII PCS component
1098  */
1099 static int init_sgmii_pcs(struct net_device *dev)
1100 {
1101 	struct altera_tse_private *priv = netdev_priv(dev);
1102 	int n;
1103 	unsigned int tmp_reg = 0;
1104 
1105 	if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII)
1106 		return 0; /* Nothing to do, not in SGMII mode */
1107 
1108 	/* The TSE SGMII PCS block looks a little like a PHY, it is
1109 	 * mapped into the zeroth MDIO space of the MAC and it has
1110 	 * ID registers like a PHY would.  Sadly this is often
1111 	 * configured to zeroes, so don't be surprised if it does
1112 	 * show 0x00000000.
1113 	 */
1114 
1115 	if (sgmii_pcs_scratch_test(priv, 0x0000) &&
1116 		sgmii_pcs_scratch_test(priv, 0xffff) &&
1117 		sgmii_pcs_scratch_test(priv, 0xa5a5) &&
1118 		sgmii_pcs_scratch_test(priv, 0x5a5a)) {
1119 		netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n",
1120 				sgmii_pcs_read(priv, MII_PHYSID1),
1121 				sgmii_pcs_read(priv, MII_PHYSID2));
1122 	} else {
1123 		netdev_err(dev, "SGMII PCS Scratch memory test failed.\n");
1124 		return -ENOMEM;
1125 	}
1126 
1127 	/* Starting on page 5-29 of the MegaCore Function User Guide
1128 	 * Set SGMII Link timer to 1.6ms
1129 	 */
1130 	sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40);
1131 	sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03);
1132 
1133 	/* Enable SGMII Interface and Enable SGMII Auto Negotiation */
1134 	sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3);
1135 
1136 	/* Enable Autonegotiation */
1137 	tmp_reg = sgmii_pcs_read(priv, MII_BMCR);
1138 	tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE);
1139 	sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1140 
1141 	/* Reset PCS block */
1142 	tmp_reg |= BMCR_RESET;
1143 	sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1144 	for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) {
1145 		if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) {
1146 			netdev_info(dev, "SGMII PCS block initialised OK\n");
1147 			return 0;
1148 		}
1149 		udelay(1);
1150 	}
1151 
1152 	/* We failed to reset the block, return a timeout */
1153 	netdev_err(dev, "SGMII PCS block reset failed.\n");
1154 	return -ETIMEDOUT;
1155 }
1156 
1157 /* Open and initialize the interface
1158  */
1159 static int tse_open(struct net_device *dev)
1160 {
1161 	struct altera_tse_private *priv = netdev_priv(dev);
1162 	int ret = 0;
1163 	int i;
1164 	unsigned long int flags;
1165 
1166 	/* Reset and configure TSE MAC and probe associated PHY */
1167 	ret = priv->dmaops->init_dma(priv);
1168 	if (ret != 0) {
1169 		netdev_err(dev, "Cannot initialize DMA\n");
1170 		goto phy_error;
1171 	}
1172 
1173 	if (netif_msg_ifup(priv))
1174 		netdev_warn(dev, "device MAC address %pM\n",
1175 			    dev->dev_addr);
1176 
1177 	if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1178 		netdev_warn(dev, "TSE revision %x\n", priv->revision);
1179 
1180 	spin_lock(&priv->mac_cfg_lock);
1181 	/* no-op if MAC not operating in SGMII mode*/
1182 	ret = init_sgmii_pcs(dev);
1183 	if (ret) {
1184 		netdev_err(dev,
1185 			   "Cannot init the SGMII PCS (error: %d)\n", ret);
1186 		spin_unlock(&priv->mac_cfg_lock);
1187 		goto phy_error;
1188 	}
1189 
1190 	ret = reset_mac(priv);
1191 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1192 	 * due to the PHY being put into isolation or power down mode.
1193 	 * This is not an error if reset fails due to no clock.
1194 	 */
1195 	if (ret)
1196 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1197 
1198 	ret = init_mac(priv);
1199 	spin_unlock(&priv->mac_cfg_lock);
1200 	if (ret) {
1201 		netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1202 		goto alloc_skbuf_error;
1203 	}
1204 
1205 	priv->dmaops->reset_dma(priv);
1206 
1207 	/* Create and initialize the TX/RX descriptors chains. */
1208 	priv->rx_ring_size = dma_rx_num;
1209 	priv->tx_ring_size = dma_tx_num;
1210 	ret = alloc_init_skbufs(priv);
1211 	if (ret) {
1212 		netdev_err(dev, "DMA descriptors initialization failed\n");
1213 		goto alloc_skbuf_error;
1214 	}
1215 
1216 
1217 	/* Register RX interrupt */
1218 	ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1219 			  dev->name, dev);
1220 	if (ret) {
1221 		netdev_err(dev, "Unable to register RX interrupt %d\n",
1222 			   priv->rx_irq);
1223 		goto init_error;
1224 	}
1225 
1226 	/* Register TX interrupt */
1227 	ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1228 			  dev->name, dev);
1229 	if (ret) {
1230 		netdev_err(dev, "Unable to register TX interrupt %d\n",
1231 			   priv->tx_irq);
1232 		goto tx_request_irq_error;
1233 	}
1234 
1235 	/* Enable DMA interrupts */
1236 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1237 	priv->dmaops->enable_rxirq(priv);
1238 	priv->dmaops->enable_txirq(priv);
1239 
1240 	/* Setup RX descriptor chain */
1241 	for (i = 0; i < priv->rx_ring_size; i++)
1242 		priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1243 
1244 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1245 
1246 	if (dev->phydev)
1247 		phy_start(dev->phydev);
1248 
1249 	napi_enable(&priv->napi);
1250 	netif_start_queue(dev);
1251 
1252 	priv->dmaops->start_rxdma(priv);
1253 
1254 	/* Start MAC Rx/Tx */
1255 	spin_lock(&priv->mac_cfg_lock);
1256 	tse_set_mac(priv, true);
1257 	spin_unlock(&priv->mac_cfg_lock);
1258 
1259 	return 0;
1260 
1261 tx_request_irq_error:
1262 	free_irq(priv->rx_irq, dev);
1263 init_error:
1264 	free_skbufs(dev);
1265 alloc_skbuf_error:
1266 phy_error:
1267 	return ret;
1268 }
1269 
1270 /* Stop TSE MAC interface and put the device in an inactive state
1271  */
1272 static int tse_shutdown(struct net_device *dev)
1273 {
1274 	struct altera_tse_private *priv = netdev_priv(dev);
1275 	int ret;
1276 	unsigned long int flags;
1277 
1278 	/* Stop the PHY */
1279 	if (dev->phydev)
1280 		phy_stop(dev->phydev);
1281 
1282 	netif_stop_queue(dev);
1283 	napi_disable(&priv->napi);
1284 
1285 	/* Disable DMA interrupts */
1286 	spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1287 	priv->dmaops->disable_rxirq(priv);
1288 	priv->dmaops->disable_txirq(priv);
1289 	spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1290 
1291 	/* Free the IRQ lines */
1292 	free_irq(priv->rx_irq, dev);
1293 	free_irq(priv->tx_irq, dev);
1294 
1295 	/* disable and reset the MAC, empties fifo */
1296 	spin_lock(&priv->mac_cfg_lock);
1297 	spin_lock(&priv->tx_lock);
1298 
1299 	ret = reset_mac(priv);
1300 	/* Note that reset_mac will fail if the clocks are gated by the PHY
1301 	 * due to the PHY being put into isolation or power down mode.
1302 	 * This is not an error if reset fails due to no clock.
1303 	 */
1304 	if (ret)
1305 		netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1306 	priv->dmaops->reset_dma(priv);
1307 	free_skbufs(dev);
1308 
1309 	spin_unlock(&priv->tx_lock);
1310 	spin_unlock(&priv->mac_cfg_lock);
1311 
1312 	priv->dmaops->uninit_dma(priv);
1313 
1314 	return 0;
1315 }
1316 
1317 static struct net_device_ops altera_tse_netdev_ops = {
1318 	.ndo_open		= tse_open,
1319 	.ndo_stop		= tse_shutdown,
1320 	.ndo_start_xmit		= tse_start_xmit,
1321 	.ndo_set_mac_address	= eth_mac_addr,
1322 	.ndo_set_rx_mode	= tse_set_rx_mode,
1323 	.ndo_change_mtu		= tse_change_mtu,
1324 	.ndo_validate_addr	= eth_validate_addr,
1325 };
1326 
1327 static int request_and_map(struct platform_device *pdev, const char *name,
1328 			   struct resource **res, void __iomem **ptr)
1329 {
1330 	struct resource *region;
1331 	struct device *device = &pdev->dev;
1332 
1333 	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1334 	if (*res == NULL) {
1335 		dev_err(device, "resource %s not defined\n", name);
1336 		return -ENODEV;
1337 	}
1338 
1339 	region = devm_request_mem_region(device, (*res)->start,
1340 					 resource_size(*res), dev_name(device));
1341 	if (region == NULL) {
1342 		dev_err(device, "unable to request %s\n", name);
1343 		return -EBUSY;
1344 	}
1345 
1346 	*ptr = devm_ioremap_nocache(device, region->start,
1347 				    resource_size(region));
1348 	if (*ptr == NULL) {
1349 		dev_err(device, "ioremap_nocache of %s failed!", name);
1350 		return -ENOMEM;
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 /* Probe Altera TSE MAC device
1357  */
1358 static int altera_tse_probe(struct platform_device *pdev)
1359 {
1360 	struct net_device *ndev;
1361 	int ret = -ENODEV;
1362 	struct resource *control_port;
1363 	struct resource *dma_res;
1364 	struct altera_tse_private *priv;
1365 	const unsigned char *macaddr;
1366 	void __iomem *descmap;
1367 	const struct of_device_id *of_id = NULL;
1368 
1369 	ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1370 	if (!ndev) {
1371 		dev_err(&pdev->dev, "Could not allocate network device\n");
1372 		return -ENODEV;
1373 	}
1374 
1375 	SET_NETDEV_DEV(ndev, &pdev->dev);
1376 
1377 	priv = netdev_priv(ndev);
1378 	priv->device = &pdev->dev;
1379 	priv->dev = ndev;
1380 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1381 
1382 	of_id = of_match_device(altera_tse_ids, &pdev->dev);
1383 
1384 	if (of_id)
1385 		priv->dmaops = (struct altera_dmaops *)of_id->data;
1386 
1387 
1388 	if (priv->dmaops &&
1389 	    priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1390 		/* Get the mapped address to the SGDMA descriptor memory */
1391 		ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1392 		if (ret)
1393 			goto err_free_netdev;
1394 
1395 		/* Start of that memory is for transmit descriptors */
1396 		priv->tx_dma_desc = descmap;
1397 
1398 		/* First half is for tx descriptors, other half for tx */
1399 		priv->txdescmem = resource_size(dma_res)/2;
1400 
1401 		priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1402 
1403 		priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1404 						     priv->txdescmem));
1405 		priv->rxdescmem = resource_size(dma_res)/2;
1406 		priv->rxdescmem_busaddr = dma_res->start;
1407 		priv->rxdescmem_busaddr += priv->txdescmem;
1408 
1409 		if (upper_32_bits(priv->rxdescmem_busaddr)) {
1410 			dev_dbg(priv->device,
1411 				"SGDMA bus addresses greater than 32-bits\n");
1412 			ret = -EINVAL;
1413 			goto err_free_netdev;
1414 		}
1415 		if (upper_32_bits(priv->txdescmem_busaddr)) {
1416 			dev_dbg(priv->device,
1417 				"SGDMA bus addresses greater than 32-bits\n");
1418 			ret = -EINVAL;
1419 			goto err_free_netdev;
1420 		}
1421 	} else if (priv->dmaops &&
1422 		   priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1423 		ret = request_and_map(pdev, "rx_resp", &dma_res,
1424 				      &priv->rx_dma_resp);
1425 		if (ret)
1426 			goto err_free_netdev;
1427 
1428 		ret = request_and_map(pdev, "tx_desc", &dma_res,
1429 				      &priv->tx_dma_desc);
1430 		if (ret)
1431 			goto err_free_netdev;
1432 
1433 		priv->txdescmem = resource_size(dma_res);
1434 		priv->txdescmem_busaddr = dma_res->start;
1435 
1436 		ret = request_and_map(pdev, "rx_desc", &dma_res,
1437 				      &priv->rx_dma_desc);
1438 		if (ret)
1439 			goto err_free_netdev;
1440 
1441 		priv->rxdescmem = resource_size(dma_res);
1442 		priv->rxdescmem_busaddr = dma_res->start;
1443 
1444 	} else {
1445 		goto err_free_netdev;
1446 	}
1447 
1448 	if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1449 		dma_set_coherent_mask(priv->device,
1450 				      DMA_BIT_MASK(priv->dmaops->dmamask));
1451 	else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1452 		dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1453 	else
1454 		goto err_free_netdev;
1455 
1456 	/* MAC address space */
1457 	ret = request_and_map(pdev, "control_port", &control_port,
1458 			      (void __iomem **)&priv->mac_dev);
1459 	if (ret)
1460 		goto err_free_netdev;
1461 
1462 	/* xSGDMA Rx Dispatcher address space */
1463 	ret = request_and_map(pdev, "rx_csr", &dma_res,
1464 			      &priv->rx_dma_csr);
1465 	if (ret)
1466 		goto err_free_netdev;
1467 
1468 
1469 	/* xSGDMA Tx Dispatcher address space */
1470 	ret = request_and_map(pdev, "tx_csr", &dma_res,
1471 			      &priv->tx_dma_csr);
1472 	if (ret)
1473 		goto err_free_netdev;
1474 
1475 
1476 	/* Rx IRQ */
1477 	priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1478 	if (priv->rx_irq == -ENXIO) {
1479 		dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1480 		ret = -ENXIO;
1481 		goto err_free_netdev;
1482 	}
1483 
1484 	/* Tx IRQ */
1485 	priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1486 	if (priv->tx_irq == -ENXIO) {
1487 		dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1488 		ret = -ENXIO;
1489 		goto err_free_netdev;
1490 	}
1491 
1492 	/* get FIFO depths from device tree */
1493 	if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1494 				 &priv->rx_fifo_depth)) {
1495 		dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1496 		ret = -ENXIO;
1497 		goto err_free_netdev;
1498 	}
1499 
1500 	if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1501 				 &priv->tx_fifo_depth)) {
1502 		dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1503 		ret = -ENXIO;
1504 		goto err_free_netdev;
1505 	}
1506 
1507 	/* get hash filter settings for this instance */
1508 	priv->hash_filter =
1509 		of_property_read_bool(pdev->dev.of_node,
1510 				      "altr,has-hash-multicast-filter");
1511 
1512 	/* Set hash filter to not set for now until the
1513 	 * multicast filter receive issue is debugged
1514 	 */
1515 	priv->hash_filter = 0;
1516 
1517 	/* get supplemental address settings for this instance */
1518 	priv->added_unicast =
1519 		of_property_read_bool(pdev->dev.of_node,
1520 				      "altr,has-supplementary-unicast");
1521 
1522 	priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1523 	/* Max MTU is 1500, ETH_DATA_LEN */
1524 	priv->dev->max_mtu = ETH_DATA_LEN;
1525 
1526 	/* Get the max mtu from the device tree. Note that the
1527 	 * "max-frame-size" parameter is actually max mtu. Definition
1528 	 * in the ePAPR v1.1 spec and usage differ, so go with usage.
1529 	 */
1530 	of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1531 			     &priv->dev->max_mtu);
1532 
1533 	/* The DMA buffer size already accounts for an alignment bias
1534 	 * to avoid unaligned access exceptions for the NIOS processor,
1535 	 */
1536 	priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1537 
1538 	/* get default MAC address from device tree */
1539 	macaddr = of_get_mac_address(pdev->dev.of_node);
1540 	if (macaddr)
1541 		ether_addr_copy(ndev->dev_addr, macaddr);
1542 	else
1543 		eth_hw_addr_random(ndev);
1544 
1545 	/* get phy addr and create mdio */
1546 	ret = altera_tse_phy_get_addr_mdio_create(ndev);
1547 
1548 	if (ret)
1549 		goto err_free_netdev;
1550 
1551 	/* initialize netdev */
1552 	ndev->mem_start = control_port->start;
1553 	ndev->mem_end = control_port->end;
1554 	ndev->netdev_ops = &altera_tse_netdev_ops;
1555 	altera_tse_set_ethtool_ops(ndev);
1556 
1557 	altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1558 
1559 	if (priv->hash_filter)
1560 		altera_tse_netdev_ops.ndo_set_rx_mode =
1561 			tse_set_rx_mode_hashfilter;
1562 
1563 	/* Scatter/gather IO is not supported,
1564 	 * so it is turned off
1565 	 */
1566 	ndev->hw_features &= ~NETIF_F_SG;
1567 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1568 
1569 	/* VLAN offloading of tagging, stripping and filtering is not
1570 	 * supported by hardware, but driver will accommodate the
1571 	 * extra 4-byte VLAN tag for processing by upper layers
1572 	 */
1573 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1574 
1575 	/* setup NAPI interface */
1576 	netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1577 
1578 	spin_lock_init(&priv->mac_cfg_lock);
1579 	spin_lock_init(&priv->tx_lock);
1580 	spin_lock_init(&priv->rxdma_irq_lock);
1581 
1582 	netif_carrier_off(ndev);
1583 	ret = register_netdev(ndev);
1584 	if (ret) {
1585 		dev_err(&pdev->dev, "failed to register TSE net device\n");
1586 		goto err_register_netdev;
1587 	}
1588 
1589 	platform_set_drvdata(pdev, ndev);
1590 
1591 	priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1592 
1593 	if (netif_msg_probe(priv))
1594 		dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1595 			 (priv->revision >> 8) & 0xff,
1596 			 priv->revision & 0xff,
1597 			 (unsigned long) control_port->start, priv->rx_irq,
1598 			 priv->tx_irq);
1599 
1600 	ret = init_phy(ndev);
1601 	if (ret != 0) {
1602 		netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1603 		goto err_init_phy;
1604 	}
1605 	return 0;
1606 
1607 err_init_phy:
1608 	unregister_netdev(ndev);
1609 err_register_netdev:
1610 	netif_napi_del(&priv->napi);
1611 	altera_tse_mdio_destroy(ndev);
1612 err_free_netdev:
1613 	free_netdev(ndev);
1614 	return ret;
1615 }
1616 
1617 /* Remove Altera TSE MAC device
1618  */
1619 static int altera_tse_remove(struct platform_device *pdev)
1620 {
1621 	struct net_device *ndev = platform_get_drvdata(pdev);
1622 	struct altera_tse_private *priv = netdev_priv(ndev);
1623 
1624 	if (ndev->phydev) {
1625 		phy_disconnect(ndev->phydev);
1626 
1627 		if (of_phy_is_fixed_link(priv->device->of_node))
1628 			of_phy_deregister_fixed_link(priv->device->of_node);
1629 	}
1630 
1631 	platform_set_drvdata(pdev, NULL);
1632 	altera_tse_mdio_destroy(ndev);
1633 	unregister_netdev(ndev);
1634 	free_netdev(ndev);
1635 
1636 	return 0;
1637 }
1638 
1639 static const struct altera_dmaops altera_dtype_sgdma = {
1640 	.altera_dtype = ALTERA_DTYPE_SGDMA,
1641 	.dmamask = 32,
1642 	.reset_dma = sgdma_reset,
1643 	.enable_txirq = sgdma_enable_txirq,
1644 	.enable_rxirq = sgdma_enable_rxirq,
1645 	.disable_txirq = sgdma_disable_txirq,
1646 	.disable_rxirq = sgdma_disable_rxirq,
1647 	.clear_txirq = sgdma_clear_txirq,
1648 	.clear_rxirq = sgdma_clear_rxirq,
1649 	.tx_buffer = sgdma_tx_buffer,
1650 	.tx_completions = sgdma_tx_completions,
1651 	.add_rx_desc = sgdma_add_rx_desc,
1652 	.get_rx_status = sgdma_rx_status,
1653 	.init_dma = sgdma_initialize,
1654 	.uninit_dma = sgdma_uninitialize,
1655 	.start_rxdma = sgdma_start_rxdma,
1656 };
1657 
1658 static const struct altera_dmaops altera_dtype_msgdma = {
1659 	.altera_dtype = ALTERA_DTYPE_MSGDMA,
1660 	.dmamask = 64,
1661 	.reset_dma = msgdma_reset,
1662 	.enable_txirq = msgdma_enable_txirq,
1663 	.enable_rxirq = msgdma_enable_rxirq,
1664 	.disable_txirq = msgdma_disable_txirq,
1665 	.disable_rxirq = msgdma_disable_rxirq,
1666 	.clear_txirq = msgdma_clear_txirq,
1667 	.clear_rxirq = msgdma_clear_rxirq,
1668 	.tx_buffer = msgdma_tx_buffer,
1669 	.tx_completions = msgdma_tx_completions,
1670 	.add_rx_desc = msgdma_add_rx_desc,
1671 	.get_rx_status = msgdma_rx_status,
1672 	.init_dma = msgdma_initialize,
1673 	.uninit_dma = msgdma_uninitialize,
1674 	.start_rxdma = msgdma_start_rxdma,
1675 };
1676 
1677 static const struct of_device_id altera_tse_ids[] = {
1678 	{ .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1679 	{ .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1680 	{ .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1681 	{},
1682 };
1683 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1684 
1685 static struct platform_driver altera_tse_driver = {
1686 	.probe		= altera_tse_probe,
1687 	.remove		= altera_tse_remove,
1688 	.suspend	= NULL,
1689 	.resume		= NULL,
1690 	.driver		= {
1691 		.name	= ALTERA_TSE_RESOURCE_NAME,
1692 		.of_match_table = altera_tse_ids,
1693 	},
1694 };
1695 
1696 module_platform_driver(altera_tse_driver);
1697 
1698 MODULE_AUTHOR("Altera Corporation");
1699 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1700 MODULE_LICENSE("GPL v2");
1701