1 /*
2  * Marvell 88E6xxx Switch Global (1) Registers support
3  *
4  * Copyright (c) 2008 Marvell Semiconductor
5  *
6  * Copyright (c) 2016-2017 Savoir-faire Linux Inc.
7  *	Vivien Didelot <vivien.didelot@savoirfairelinux.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  */
14 
15 #include <linux/bitfield.h>
16 
17 #include "chip.h"
18 #include "global1.h"
19 
20 int mv88e6xxx_g1_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
21 {
22 	int addr = chip->info->global1_addr;
23 
24 	return mv88e6xxx_read(chip, addr, reg, val);
25 }
26 
27 int mv88e6xxx_g1_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
28 {
29 	int addr = chip->info->global1_addr;
30 
31 	return mv88e6xxx_write(chip, addr, reg, val);
32 }
33 
34 int mv88e6xxx_g1_wait(struct mv88e6xxx_chip *chip, int reg, u16 mask)
35 {
36 	return mv88e6xxx_wait(chip, chip->info->global1_addr, reg, mask);
37 }
38 
39 /* Offset 0x00: Switch Global Status Register */
40 
41 static int mv88e6185_g1_wait_ppu_disabled(struct mv88e6xxx_chip *chip)
42 {
43 	u16 state;
44 	int i, err;
45 
46 	for (i = 0; i < 16; i++) {
47 		err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STS, &state);
48 		if (err)
49 			return err;
50 
51 		/* Check the value of the PPUState bits 15:14 */
52 		state &= MV88E6185_G1_STS_PPU_STATE_MASK;
53 		if (state != MV88E6185_G1_STS_PPU_STATE_POLLING)
54 			return 0;
55 
56 		usleep_range(1000, 2000);
57 	}
58 
59 	return -ETIMEDOUT;
60 }
61 
62 static int mv88e6185_g1_wait_ppu_polling(struct mv88e6xxx_chip *chip)
63 {
64 	u16 state;
65 	int i, err;
66 
67 	for (i = 0; i < 16; ++i) {
68 		err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STS, &state);
69 		if (err)
70 			return err;
71 
72 		/* Check the value of the PPUState bits 15:14 */
73 		state &= MV88E6185_G1_STS_PPU_STATE_MASK;
74 		if (state == MV88E6185_G1_STS_PPU_STATE_POLLING)
75 			return 0;
76 
77 		usleep_range(1000, 2000);
78 	}
79 
80 	return -ETIMEDOUT;
81 }
82 
83 static int mv88e6352_g1_wait_ppu_polling(struct mv88e6xxx_chip *chip)
84 {
85 	u16 state;
86 	int i, err;
87 
88 	for (i = 0; i < 16; ++i) {
89 		err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STS, &state);
90 		if (err)
91 			return err;
92 
93 		/* Check the value of the PPUState (or InitState) bit 15 */
94 		if (state & MV88E6352_G1_STS_PPU_STATE)
95 			return 0;
96 
97 		usleep_range(1000, 2000);
98 	}
99 
100 	return -ETIMEDOUT;
101 }
102 
103 static int mv88e6xxx_g1_wait_init_ready(struct mv88e6xxx_chip *chip)
104 {
105 	const unsigned long timeout = jiffies + 1 * HZ;
106 	u16 val;
107 	int err;
108 
109 	/* Wait up to 1 second for the switch to be ready. The InitReady bit 11
110 	 * is set to a one when all units inside the device (ATU, VTU, etc.)
111 	 * have finished their initialization and are ready to accept frames.
112 	 */
113 	while (time_before(jiffies, timeout)) {
114 		err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STS, &val);
115 		if (err)
116 			return err;
117 
118 		if (val & MV88E6XXX_G1_STS_INIT_READY)
119 			break;
120 
121 		usleep_range(1000, 2000);
122 	}
123 
124 	if (time_after(jiffies, timeout))
125 		return -ETIMEDOUT;
126 
127 	return 0;
128 }
129 
130 /* Offset 0x01: Switch MAC Address Register Bytes 0 & 1
131  * Offset 0x02: Switch MAC Address Register Bytes 2 & 3
132  * Offset 0x03: Switch MAC Address Register Bytes 4 & 5
133  */
134 int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
135 {
136 	u16 reg;
137 	int err;
138 
139 	reg = (addr[0] << 8) | addr[1];
140 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_01, reg);
141 	if (err)
142 		return err;
143 
144 	reg = (addr[2] << 8) | addr[3];
145 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_23, reg);
146 	if (err)
147 		return err;
148 
149 	reg = (addr[4] << 8) | addr[5];
150 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_45, reg);
151 	if (err)
152 		return err;
153 
154 	return 0;
155 }
156 
157 /* Offset 0x04: Switch Global Control Register */
158 
159 int mv88e6185_g1_reset(struct mv88e6xxx_chip *chip)
160 {
161 	u16 val;
162 	int err;
163 
164 	/* Set the SWReset bit 15 along with the PPUEn bit 14, to also restart
165 	 * the PPU, including re-doing PHY detection and initialization
166 	 */
167 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
168 	if (err)
169 		return err;
170 
171 	val |= MV88E6XXX_G1_CTL1_SW_RESET;
172 	val |= MV88E6XXX_G1_CTL1_PPU_ENABLE;
173 
174 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
175 	if (err)
176 		return err;
177 
178 	err = mv88e6xxx_g1_wait_init_ready(chip);
179 	if (err)
180 		return err;
181 
182 	return mv88e6185_g1_wait_ppu_polling(chip);
183 }
184 
185 int mv88e6352_g1_reset(struct mv88e6xxx_chip *chip)
186 {
187 	u16 val;
188 	int err;
189 
190 	/* Set the SWReset bit 15 */
191 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
192 	if (err)
193 		return err;
194 
195 	val |= MV88E6XXX_G1_CTL1_SW_RESET;
196 
197 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
198 	if (err)
199 		return err;
200 
201 	err = mv88e6xxx_g1_wait_init_ready(chip);
202 	if (err)
203 		return err;
204 
205 	return mv88e6352_g1_wait_ppu_polling(chip);
206 }
207 
208 int mv88e6185_g1_ppu_enable(struct mv88e6xxx_chip *chip)
209 {
210 	u16 val;
211 	int err;
212 
213 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
214 	if (err)
215 		return err;
216 
217 	val |= MV88E6XXX_G1_CTL1_PPU_ENABLE;
218 
219 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
220 	if (err)
221 		return err;
222 
223 	return mv88e6185_g1_wait_ppu_polling(chip);
224 }
225 
226 int mv88e6185_g1_ppu_disable(struct mv88e6xxx_chip *chip)
227 {
228 	u16 val;
229 	int err;
230 
231 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
232 	if (err)
233 		return err;
234 
235 	val &= ~MV88E6XXX_G1_CTL1_PPU_ENABLE;
236 
237 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
238 	if (err)
239 		return err;
240 
241 	return mv88e6185_g1_wait_ppu_disabled(chip);
242 }
243 
244 /* Offset 0x10: IP-PRI Mapping Register 0
245  * Offset 0x11: IP-PRI Mapping Register 1
246  * Offset 0x12: IP-PRI Mapping Register 2
247  * Offset 0x13: IP-PRI Mapping Register 3
248  * Offset 0x14: IP-PRI Mapping Register 4
249  * Offset 0x15: IP-PRI Mapping Register 5
250  * Offset 0x16: IP-PRI Mapping Register 6
251  * Offset 0x17: IP-PRI Mapping Register 7
252  */
253 
254 int mv88e6085_g1_ip_pri_map(struct mv88e6xxx_chip *chip)
255 {
256 	int err;
257 
258 	/* Reset the IP TOS/DiffServ/Traffic priorities to defaults */
259 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_0, 0x0000);
260 	if (err)
261 		return err;
262 
263 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_1, 0x0000);
264 	if (err)
265 		return err;
266 
267 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_2, 0x5555);
268 	if (err)
269 		return err;
270 
271 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_3, 0x5555);
272 	if (err)
273 		return err;
274 
275 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_4, 0xaaaa);
276 	if (err)
277 		return err;
278 
279 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_5, 0xaaaa);
280 	if (err)
281 		return err;
282 
283 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_6, 0xffff);
284 	if (err)
285 		return err;
286 
287 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_7, 0xffff);
288 	if (err)
289 		return err;
290 
291 	return 0;
292 }
293 
294 /* Offset 0x18: IEEE-PRI Register */
295 
296 int mv88e6085_g1_ieee_pri_map(struct mv88e6xxx_chip *chip)
297 {
298 	/* Reset the IEEE Tag priorities to defaults */
299 	return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IEEE_PRI, 0xfa41);
300 }
301 
302 /* Offset 0x1a: Monitor Control */
303 /* Offset 0x1a: Monitor & MGMT Control on some devices */
304 
305 int mv88e6095_g1_set_egress_port(struct mv88e6xxx_chip *chip, int port)
306 {
307 	u16 reg;
308 	int err;
309 
310 	err = mv88e6xxx_g1_read(chip, MV88E6185_G1_MONITOR_CTL, &reg);
311 	if (err)
312 		return err;
313 
314 	reg &= ~(MV88E6185_G1_MONITOR_CTL_INGRESS_DEST_MASK |
315 		 MV88E6185_G1_MONITOR_CTL_EGRESS_DEST_MASK);
316 
317 	reg |= port << __bf_shf(MV88E6185_G1_MONITOR_CTL_INGRESS_DEST_MASK) |
318 		port << __bf_shf(MV88E6185_G1_MONITOR_CTL_EGRESS_DEST_MASK);
319 
320 	return mv88e6xxx_g1_write(chip, MV88E6185_G1_MONITOR_CTL, reg);
321 }
322 
323 /* Older generations also call this the ARP destination. It has been
324  * generalized in more modern devices such that more than ARP can
325  * egress it
326  */
327 int mv88e6095_g1_set_cpu_port(struct mv88e6xxx_chip *chip, int port)
328 {
329 	u16 reg;
330 	int err;
331 
332 	err = mv88e6xxx_g1_read(chip, MV88E6185_G1_MONITOR_CTL, &reg);
333 	if (err)
334 		return err;
335 
336 	reg &= ~MV88E6185_G1_MONITOR_CTL_ARP_DEST_MASK;
337 	reg |= port << __bf_shf(MV88E6185_G1_MONITOR_CTL_ARP_DEST_MASK);
338 
339 	return mv88e6xxx_g1_write(chip, MV88E6185_G1_MONITOR_CTL, reg);
340 }
341 
342 static int mv88e6390_g1_monitor_write(struct mv88e6xxx_chip *chip,
343 				      u16 pointer, u8 data)
344 {
345 	u16 reg;
346 
347 	reg = MV88E6390_G1_MONITOR_MGMT_CTL_UPDATE | pointer | data;
348 
349 	return mv88e6xxx_g1_write(chip, MV88E6390_G1_MONITOR_MGMT_CTL, reg);
350 }
351 
352 int mv88e6390_g1_set_egress_port(struct mv88e6xxx_chip *chip, int port)
353 {
354 	u16 ptr;
355 	int err;
356 
357 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_INGRESS_DEST;
358 	err = mv88e6390_g1_monitor_write(chip, ptr, port);
359 	if (err)
360 		return err;
361 
362 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_EGRESS_DEST;
363 	err = mv88e6390_g1_monitor_write(chip, ptr, port);
364 	if (err)
365 		return err;
366 
367 	return 0;
368 }
369 
370 int mv88e6390_g1_set_cpu_port(struct mv88e6xxx_chip *chip, int port)
371 {
372 	u16 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_CPU_DEST;
373 
374 	return mv88e6390_g1_monitor_write(chip, ptr, port);
375 }
376 
377 int mv88e6390_g1_mgmt_rsvd2cpu(struct mv88e6xxx_chip *chip)
378 {
379 	u16 ptr;
380 	int err;
381 
382 	/* 01:80:c2:00:00:00-01:80:c2:00:00:07 are Management */
383 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200000XLO;
384 	err = mv88e6390_g1_monitor_write(chip, ptr, 0xff);
385 	if (err)
386 		return err;
387 
388 	/* 01:80:c2:00:00:08-01:80:c2:00:00:0f are Management */
389 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200000XHI;
390 	err = mv88e6390_g1_monitor_write(chip, ptr, 0xff);
391 	if (err)
392 		return err;
393 
394 	/* 01:80:c2:00:00:20-01:80:c2:00:00:27 are Management */
395 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200002XLO;
396 	err = mv88e6390_g1_monitor_write(chip, ptr, 0xff);
397 	if (err)
398 		return err;
399 
400 	/* 01:80:c2:00:00:28-01:80:c2:00:00:2f are Management */
401 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200002XHI;
402 	err = mv88e6390_g1_monitor_write(chip, ptr, 0xff);
403 	if (err)
404 		return err;
405 
406 	return 0;
407 }
408 
409 /* Offset 0x1c: Global Control 2 */
410 
411 static int mv88e6xxx_g1_ctl2_mask(struct mv88e6xxx_chip *chip, u16 mask,
412 				  u16 val)
413 {
414 	u16 reg;
415 	int err;
416 
417 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL2, &reg);
418 	if (err)
419 		return err;
420 
421 	reg &= ~mask;
422 	reg |= val & mask;
423 
424 	return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL2, reg);
425 }
426 
427 int mv88e6185_g1_set_cascade_port(struct mv88e6xxx_chip *chip, int port)
428 {
429 	const u16 mask = MV88E6185_G1_CTL2_CASCADE_PORT_MASK;
430 
431 	return mv88e6xxx_g1_ctl2_mask(chip, mask, port << __bf_shf(mask));
432 }
433 
434 int mv88e6085_g1_rmu_disable(struct mv88e6xxx_chip *chip)
435 {
436 	return mv88e6xxx_g1_ctl2_mask(chip, MV88E6085_G1_CTL2_P10RM |
437 				      MV88E6085_G1_CTL2_RM_ENABLE, 0);
438 }
439 
440 int mv88e6352_g1_rmu_disable(struct mv88e6xxx_chip *chip)
441 {
442 	return mv88e6xxx_g1_ctl2_mask(chip, MV88E6352_G1_CTL2_RMU_MODE_MASK,
443 				      MV88E6352_G1_CTL2_RMU_MODE_DISABLED);
444 }
445 
446 int mv88e6390_g1_rmu_disable(struct mv88e6xxx_chip *chip)
447 {
448 	return mv88e6xxx_g1_ctl2_mask(chip, MV88E6390_G1_CTL2_RMU_MODE_MASK,
449 				      MV88E6390_G1_CTL2_RMU_MODE_DISABLED);
450 }
451 
452 int mv88e6390_g1_stats_set_histogram(struct mv88e6xxx_chip *chip)
453 {
454 	return mv88e6xxx_g1_ctl2_mask(chip, MV88E6390_G1_CTL2_HIST_MODE_MASK,
455 				      MV88E6390_G1_CTL2_HIST_MODE_RX |
456 				      MV88E6390_G1_CTL2_HIST_MODE_TX);
457 }
458 
459 int mv88e6xxx_g1_set_device_number(struct mv88e6xxx_chip *chip, int index)
460 {
461 	return mv88e6xxx_g1_ctl2_mask(chip,
462 				      MV88E6XXX_G1_CTL2_DEVICE_NUMBER_MASK,
463 				      index);
464 }
465 
466 /* Offset 0x1d: Statistics Operation 2 */
467 
468 static int mv88e6xxx_g1_stats_wait(struct mv88e6xxx_chip *chip)
469 {
470 	return mv88e6xxx_g1_wait(chip, MV88E6XXX_G1_STATS_OP,
471 				 MV88E6XXX_G1_STATS_OP_BUSY);
472 }
473 
474 int mv88e6095_g1_stats_set_histogram(struct mv88e6xxx_chip *chip)
475 {
476 	u16 val;
477 	int err;
478 
479 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_OP, &val);
480 	if (err)
481 		return err;
482 
483 	val |= MV88E6XXX_G1_STATS_OP_HIST_RX_TX;
484 
485 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, val);
486 
487 	return err;
488 }
489 
490 int mv88e6xxx_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
491 {
492 	int err;
493 
494 	/* Snapshot the hardware statistics counters for this port. */
495 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP,
496 				 MV88E6XXX_G1_STATS_OP_BUSY |
497 				 MV88E6XXX_G1_STATS_OP_CAPTURE_PORT |
498 				 MV88E6XXX_G1_STATS_OP_HIST_RX_TX | port);
499 	if (err)
500 		return err;
501 
502 	/* Wait for the snapshotting to complete. */
503 	return mv88e6xxx_g1_stats_wait(chip);
504 }
505 
506 int mv88e6320_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
507 {
508 	port = (port + 1) << 5;
509 
510 	return mv88e6xxx_g1_stats_snapshot(chip, port);
511 }
512 
513 int mv88e6390_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
514 {
515 	int err;
516 
517 	port = (port + 1) << 5;
518 
519 	/* Snapshot the hardware statistics counters for this port. */
520 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP,
521 				 MV88E6XXX_G1_STATS_OP_BUSY |
522 				 MV88E6XXX_G1_STATS_OP_CAPTURE_PORT | port);
523 	if (err)
524 		return err;
525 
526 	/* Wait for the snapshotting to complete. */
527 	return mv88e6xxx_g1_stats_wait(chip);
528 }
529 
530 void mv88e6xxx_g1_stats_read(struct mv88e6xxx_chip *chip, int stat, u32 *val)
531 {
532 	u32 value;
533 	u16 reg;
534 	int err;
535 
536 	*val = 0;
537 
538 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP,
539 				 MV88E6XXX_G1_STATS_OP_BUSY |
540 				 MV88E6XXX_G1_STATS_OP_READ_CAPTURED | stat);
541 	if (err)
542 		return;
543 
544 	err = mv88e6xxx_g1_stats_wait(chip);
545 	if (err)
546 		return;
547 
548 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_COUNTER_32, &reg);
549 	if (err)
550 		return;
551 
552 	value = reg << 16;
553 
554 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_COUNTER_01, &reg);
555 	if (err)
556 		return;
557 
558 	*val = value | reg;
559 }
560 
561 int mv88e6xxx_g1_stats_clear(struct mv88e6xxx_chip *chip)
562 {
563 	int err;
564 	u16 val;
565 
566 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_OP, &val);
567 	if (err)
568 		return err;
569 
570 	/* Keep the histogram mode bits */
571 	val &= MV88E6XXX_G1_STATS_OP_HIST_RX_TX;
572 	val |= MV88E6XXX_G1_STATS_OP_BUSY | MV88E6XXX_G1_STATS_OP_FLUSH_ALL;
573 
574 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, val);
575 	if (err)
576 		return err;
577 
578 	/* Wait for the flush to complete. */
579 	return mv88e6xxx_g1_stats_wait(chip);
580 }
581