1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Marvell 88E6xxx Switch Global (1) Registers support 4 * 5 * Copyright (c) 2008 Marvell Semiconductor 6 * 7 * Copyright (c) 2016-2017 Savoir-faire Linux Inc. 8 * Vivien Didelot <vivien.didelot@savoirfairelinux.com> 9 */ 10 11 #include <linux/bitfield.h> 12 13 #include "chip.h" 14 #include "global1.h" 15 16 int mv88e6xxx_g1_read(struct mv88e6xxx_chip *chip, int reg, u16 *val) 17 { 18 int addr = chip->info->global1_addr; 19 20 return mv88e6xxx_read(chip, addr, reg, val); 21 } 22 23 int mv88e6xxx_g1_write(struct mv88e6xxx_chip *chip, int reg, u16 val) 24 { 25 int addr = chip->info->global1_addr; 26 27 return mv88e6xxx_write(chip, addr, reg, val); 28 } 29 30 int mv88e6xxx_g1_wait_bit(struct mv88e6xxx_chip *chip, int reg, int 31 bit, int val) 32 { 33 return mv88e6xxx_wait_bit(chip, chip->info->global1_addr, reg, 34 bit, val); 35 } 36 37 int mv88e6xxx_g1_wait_mask(struct mv88e6xxx_chip *chip, int reg, 38 u16 mask, u16 val) 39 { 40 return mv88e6xxx_wait_mask(chip, chip->info->global1_addr, reg, 41 mask, val); 42 } 43 44 /* Offset 0x00: Switch Global Status Register */ 45 46 static int mv88e6185_g1_wait_ppu_disabled(struct mv88e6xxx_chip *chip) 47 { 48 return mv88e6xxx_g1_wait_mask(chip, MV88E6XXX_G1_STS, 49 MV88E6185_G1_STS_PPU_STATE_MASK, 50 MV88E6185_G1_STS_PPU_STATE_DISABLED); 51 } 52 53 static int mv88e6185_g1_wait_ppu_polling(struct mv88e6xxx_chip *chip) 54 { 55 return mv88e6xxx_g1_wait_mask(chip, MV88E6XXX_G1_STS, 56 MV88E6185_G1_STS_PPU_STATE_MASK, 57 MV88E6185_G1_STS_PPU_STATE_POLLING); 58 } 59 60 static int mv88e6352_g1_wait_ppu_polling(struct mv88e6xxx_chip *chip) 61 { 62 int bit = __bf_shf(MV88E6352_G1_STS_PPU_STATE); 63 64 return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_STS, bit, 1); 65 } 66 67 static int mv88e6xxx_g1_wait_init_ready(struct mv88e6xxx_chip *chip) 68 { 69 int bit = __bf_shf(MV88E6XXX_G1_STS_INIT_READY); 70 71 /* Wait up to 1 second for the switch to be ready. The InitReady bit 11 72 * is set to a one when all units inside the device (ATU, VTU, etc.) 73 * have finished their initialization and are ready to accept frames. 74 */ 75 return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_STS, bit, 1); 76 } 77 78 void mv88e6xxx_g1_wait_eeprom_done(struct mv88e6xxx_chip *chip) 79 { 80 const unsigned long timeout = jiffies + 1 * HZ; 81 u16 val; 82 int err; 83 84 /* Wait up to 1 second for the switch to finish reading the 85 * EEPROM. 86 */ 87 while (time_before(jiffies, timeout)) { 88 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STS, &val); 89 if (err) { 90 dev_err(chip->dev, "Error reading status"); 91 return; 92 } 93 94 /* If the switch is still resetting, it may not 95 * respond on the bus, and so MDIO read returns 96 * 0xffff. Differentiate between that, and waiting for 97 * the EEPROM to be done by bit 0 being set. 98 */ 99 if (val != 0xffff && 100 val & BIT(MV88E6XXX_G1_STS_IRQ_EEPROM_DONE)) 101 return; 102 103 usleep_range(1000, 2000); 104 } 105 106 dev_err(chip->dev, "Timeout waiting for EEPROM done"); 107 } 108 109 /* Offset 0x01: Switch MAC Address Register Bytes 0 & 1 110 * Offset 0x02: Switch MAC Address Register Bytes 2 & 3 111 * Offset 0x03: Switch MAC Address Register Bytes 4 & 5 112 */ 113 int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr) 114 { 115 u16 reg; 116 int err; 117 118 reg = (addr[0] << 8) | addr[1]; 119 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_01, reg); 120 if (err) 121 return err; 122 123 reg = (addr[2] << 8) | addr[3]; 124 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_23, reg); 125 if (err) 126 return err; 127 128 reg = (addr[4] << 8) | addr[5]; 129 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_45, reg); 130 if (err) 131 return err; 132 133 return 0; 134 } 135 136 /* Offset 0x04: Switch Global Control Register */ 137 138 int mv88e6185_g1_reset(struct mv88e6xxx_chip *chip) 139 { 140 u16 val; 141 int err; 142 143 /* Set the SWReset bit 15 along with the PPUEn bit 14, to also restart 144 * the PPU, including re-doing PHY detection and initialization 145 */ 146 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 147 if (err) 148 return err; 149 150 val |= MV88E6XXX_G1_CTL1_SW_RESET; 151 val |= MV88E6XXX_G1_CTL1_PPU_ENABLE; 152 153 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 154 if (err) 155 return err; 156 157 err = mv88e6xxx_g1_wait_init_ready(chip); 158 if (err) 159 return err; 160 161 return mv88e6185_g1_wait_ppu_polling(chip); 162 } 163 164 int mv88e6250_g1_reset(struct mv88e6xxx_chip *chip) 165 { 166 u16 val; 167 int err; 168 169 /* Set the SWReset bit 15 */ 170 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 171 if (err) 172 return err; 173 174 val |= MV88E6XXX_G1_CTL1_SW_RESET; 175 176 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 177 if (err) 178 return err; 179 180 return mv88e6xxx_g1_wait_init_ready(chip); 181 } 182 183 int mv88e6352_g1_reset(struct mv88e6xxx_chip *chip) 184 { 185 int err; 186 187 err = mv88e6250_g1_reset(chip); 188 if (err) 189 return err; 190 191 return mv88e6352_g1_wait_ppu_polling(chip); 192 } 193 194 int mv88e6185_g1_ppu_enable(struct mv88e6xxx_chip *chip) 195 { 196 u16 val; 197 int err; 198 199 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 200 if (err) 201 return err; 202 203 val |= MV88E6XXX_G1_CTL1_PPU_ENABLE; 204 205 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 206 if (err) 207 return err; 208 209 return mv88e6185_g1_wait_ppu_polling(chip); 210 } 211 212 int mv88e6185_g1_ppu_disable(struct mv88e6xxx_chip *chip) 213 { 214 u16 val; 215 int err; 216 217 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 218 if (err) 219 return err; 220 221 val &= ~MV88E6XXX_G1_CTL1_PPU_ENABLE; 222 223 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 224 if (err) 225 return err; 226 227 return mv88e6185_g1_wait_ppu_disabled(chip); 228 } 229 230 int mv88e6185_g1_set_max_frame_size(struct mv88e6xxx_chip *chip, int mtu) 231 { 232 u16 val; 233 int err; 234 235 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 236 if (err) 237 return err; 238 239 val &= ~MV88E6185_G1_CTL1_MAX_FRAME_1632; 240 241 if (mtu > 1518) 242 val |= MV88E6185_G1_CTL1_MAX_FRAME_1632; 243 244 return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 245 } 246 247 /* Offset 0x10: IP-PRI Mapping Register 0 248 * Offset 0x11: IP-PRI Mapping Register 1 249 * Offset 0x12: IP-PRI Mapping Register 2 250 * Offset 0x13: IP-PRI Mapping Register 3 251 * Offset 0x14: IP-PRI Mapping Register 4 252 * Offset 0x15: IP-PRI Mapping Register 5 253 * Offset 0x16: IP-PRI Mapping Register 6 254 * Offset 0x17: IP-PRI Mapping Register 7 255 */ 256 257 int mv88e6085_g1_ip_pri_map(struct mv88e6xxx_chip *chip) 258 { 259 int err; 260 261 /* Reset the IP TOS/DiffServ/Traffic priorities to defaults */ 262 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_0, 0x0000); 263 if (err) 264 return err; 265 266 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_1, 0x0000); 267 if (err) 268 return err; 269 270 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_2, 0x5555); 271 if (err) 272 return err; 273 274 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_3, 0x5555); 275 if (err) 276 return err; 277 278 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_4, 0xaaaa); 279 if (err) 280 return err; 281 282 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_5, 0xaaaa); 283 if (err) 284 return err; 285 286 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_6, 0xffff); 287 if (err) 288 return err; 289 290 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_7, 0xffff); 291 if (err) 292 return err; 293 294 return 0; 295 } 296 297 /* Offset 0x18: IEEE-PRI Register */ 298 299 int mv88e6085_g1_ieee_pri_map(struct mv88e6xxx_chip *chip) 300 { 301 /* Reset the IEEE Tag priorities to defaults */ 302 return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IEEE_PRI, 0xfa41); 303 } 304 305 int mv88e6250_g1_ieee_pri_map(struct mv88e6xxx_chip *chip) 306 { 307 /* Reset the IEEE Tag priorities to defaults */ 308 return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IEEE_PRI, 0xfa50); 309 } 310 311 /* Offset 0x1a: Monitor Control */ 312 /* Offset 0x1a: Monitor & MGMT Control on some devices */ 313 314 int mv88e6095_g1_set_egress_port(struct mv88e6xxx_chip *chip, 315 enum mv88e6xxx_egress_direction direction, 316 int port) 317 { 318 u16 reg; 319 int err; 320 321 err = mv88e6xxx_g1_read(chip, MV88E6185_G1_MONITOR_CTL, ®); 322 if (err) 323 return err; 324 325 switch (direction) { 326 case MV88E6XXX_EGRESS_DIR_INGRESS: 327 reg &= ~MV88E6185_G1_MONITOR_CTL_INGRESS_DEST_MASK; 328 reg |= port << 329 __bf_shf(MV88E6185_G1_MONITOR_CTL_INGRESS_DEST_MASK); 330 break; 331 case MV88E6XXX_EGRESS_DIR_EGRESS: 332 reg &= ~MV88E6185_G1_MONITOR_CTL_EGRESS_DEST_MASK; 333 reg |= port << 334 __bf_shf(MV88E6185_G1_MONITOR_CTL_EGRESS_DEST_MASK); 335 break; 336 default: 337 return -EINVAL; 338 } 339 340 return mv88e6xxx_g1_write(chip, MV88E6185_G1_MONITOR_CTL, reg); 341 } 342 343 /* Older generations also call this the ARP destination. It has been 344 * generalized in more modern devices such that more than ARP can 345 * egress it 346 */ 347 int mv88e6095_g1_set_cpu_port(struct mv88e6xxx_chip *chip, int port) 348 { 349 u16 reg; 350 int err; 351 352 err = mv88e6xxx_g1_read(chip, MV88E6185_G1_MONITOR_CTL, ®); 353 if (err) 354 return err; 355 356 reg &= ~MV88E6185_G1_MONITOR_CTL_ARP_DEST_MASK; 357 reg |= port << __bf_shf(MV88E6185_G1_MONITOR_CTL_ARP_DEST_MASK); 358 359 return mv88e6xxx_g1_write(chip, MV88E6185_G1_MONITOR_CTL, reg); 360 } 361 362 static int mv88e6390_g1_monitor_write(struct mv88e6xxx_chip *chip, 363 u16 pointer, u8 data) 364 { 365 u16 reg; 366 367 reg = MV88E6390_G1_MONITOR_MGMT_CTL_UPDATE | pointer | data; 368 369 return mv88e6xxx_g1_write(chip, MV88E6390_G1_MONITOR_MGMT_CTL, reg); 370 } 371 372 int mv88e6390_g1_set_egress_port(struct mv88e6xxx_chip *chip, 373 enum mv88e6xxx_egress_direction direction, 374 int port) 375 { 376 u16 ptr; 377 378 switch (direction) { 379 case MV88E6XXX_EGRESS_DIR_INGRESS: 380 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_INGRESS_DEST; 381 break; 382 case MV88E6XXX_EGRESS_DIR_EGRESS: 383 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_EGRESS_DEST; 384 break; 385 default: 386 return -EINVAL; 387 } 388 389 return mv88e6390_g1_monitor_write(chip, ptr, port); 390 } 391 392 int mv88e6390_g1_set_cpu_port(struct mv88e6xxx_chip *chip, int port) 393 { 394 u16 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_CPU_DEST; 395 396 /* Use the default high priority for management frames sent to 397 * the CPU. 398 */ 399 port |= MV88E6390_G1_MONITOR_MGMT_CTL_PTR_CPU_DEST_MGMTPRI; 400 401 return mv88e6390_g1_monitor_write(chip, ptr, port); 402 } 403 404 int mv88e6390_g1_mgmt_rsvd2cpu(struct mv88e6xxx_chip *chip) 405 { 406 u16 ptr; 407 int err; 408 409 /* 01:80:c2:00:00:00-01:80:c2:00:00:07 are Management */ 410 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200000XLO; 411 err = mv88e6390_g1_monitor_write(chip, ptr, 0xff); 412 if (err) 413 return err; 414 415 /* 01:80:c2:00:00:08-01:80:c2:00:00:0f are Management */ 416 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200000XHI; 417 err = mv88e6390_g1_monitor_write(chip, ptr, 0xff); 418 if (err) 419 return err; 420 421 /* 01:80:c2:00:00:20-01:80:c2:00:00:27 are Management */ 422 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200002XLO; 423 err = mv88e6390_g1_monitor_write(chip, ptr, 0xff); 424 if (err) 425 return err; 426 427 /* 01:80:c2:00:00:28-01:80:c2:00:00:2f are Management */ 428 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200002XHI; 429 err = mv88e6390_g1_monitor_write(chip, ptr, 0xff); 430 if (err) 431 return err; 432 433 return 0; 434 } 435 436 /* Offset 0x1c: Global Control 2 */ 437 438 static int mv88e6xxx_g1_ctl2_mask(struct mv88e6xxx_chip *chip, u16 mask, 439 u16 val) 440 { 441 u16 reg; 442 int err; 443 444 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL2, ®); 445 if (err) 446 return err; 447 448 reg &= ~mask; 449 reg |= val & mask; 450 451 return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL2, reg); 452 } 453 454 int mv88e6185_g1_set_cascade_port(struct mv88e6xxx_chip *chip, int port) 455 { 456 const u16 mask = MV88E6185_G1_CTL2_CASCADE_PORT_MASK; 457 458 return mv88e6xxx_g1_ctl2_mask(chip, mask, port << __bf_shf(mask)); 459 } 460 461 int mv88e6085_g1_rmu_disable(struct mv88e6xxx_chip *chip) 462 { 463 return mv88e6xxx_g1_ctl2_mask(chip, MV88E6085_G1_CTL2_P10RM | 464 MV88E6085_G1_CTL2_RM_ENABLE, 0); 465 } 466 467 int mv88e6352_g1_rmu_disable(struct mv88e6xxx_chip *chip) 468 { 469 return mv88e6xxx_g1_ctl2_mask(chip, MV88E6352_G1_CTL2_RMU_MODE_MASK, 470 MV88E6352_G1_CTL2_RMU_MODE_DISABLED); 471 } 472 473 int mv88e6390_g1_rmu_disable(struct mv88e6xxx_chip *chip) 474 { 475 return mv88e6xxx_g1_ctl2_mask(chip, MV88E6390_G1_CTL2_RMU_MODE_MASK, 476 MV88E6390_G1_CTL2_RMU_MODE_DISABLED); 477 } 478 479 int mv88e6390_g1_stats_set_histogram(struct mv88e6xxx_chip *chip) 480 { 481 return mv88e6xxx_g1_ctl2_mask(chip, MV88E6390_G1_CTL2_HIST_MODE_MASK, 482 MV88E6390_G1_CTL2_HIST_MODE_RX | 483 MV88E6390_G1_CTL2_HIST_MODE_TX); 484 } 485 486 int mv88e6xxx_g1_set_device_number(struct mv88e6xxx_chip *chip, int index) 487 { 488 return mv88e6xxx_g1_ctl2_mask(chip, 489 MV88E6XXX_G1_CTL2_DEVICE_NUMBER_MASK, 490 index); 491 } 492 493 /* Offset 0x1d: Statistics Operation 2 */ 494 495 static int mv88e6xxx_g1_stats_wait(struct mv88e6xxx_chip *chip) 496 { 497 int bit = __bf_shf(MV88E6XXX_G1_STATS_OP_BUSY); 498 499 return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_STATS_OP, bit, 0); 500 } 501 502 int mv88e6095_g1_stats_set_histogram(struct mv88e6xxx_chip *chip) 503 { 504 u16 val; 505 int err; 506 507 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_OP, &val); 508 if (err) 509 return err; 510 511 val |= MV88E6XXX_G1_STATS_OP_HIST_RX_TX; 512 513 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, val); 514 515 return err; 516 } 517 518 int mv88e6xxx_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port) 519 { 520 int err; 521 522 /* Snapshot the hardware statistics counters for this port. */ 523 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, 524 MV88E6XXX_G1_STATS_OP_BUSY | 525 MV88E6XXX_G1_STATS_OP_CAPTURE_PORT | 526 MV88E6XXX_G1_STATS_OP_HIST_RX_TX | port); 527 if (err) 528 return err; 529 530 /* Wait for the snapshotting to complete. */ 531 return mv88e6xxx_g1_stats_wait(chip); 532 } 533 534 int mv88e6320_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port) 535 { 536 port = (port + 1) << 5; 537 538 return mv88e6xxx_g1_stats_snapshot(chip, port); 539 } 540 541 int mv88e6390_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port) 542 { 543 int err; 544 545 port = (port + 1) << 5; 546 547 /* Snapshot the hardware statistics counters for this port. */ 548 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, 549 MV88E6XXX_G1_STATS_OP_BUSY | 550 MV88E6XXX_G1_STATS_OP_CAPTURE_PORT | port); 551 if (err) 552 return err; 553 554 /* Wait for the snapshotting to complete. */ 555 return mv88e6xxx_g1_stats_wait(chip); 556 } 557 558 void mv88e6xxx_g1_stats_read(struct mv88e6xxx_chip *chip, int stat, u32 *val) 559 { 560 u32 value; 561 u16 reg; 562 int err; 563 564 *val = 0; 565 566 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, 567 MV88E6XXX_G1_STATS_OP_BUSY | 568 MV88E6XXX_G1_STATS_OP_READ_CAPTURED | stat); 569 if (err) 570 return; 571 572 err = mv88e6xxx_g1_stats_wait(chip); 573 if (err) 574 return; 575 576 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_COUNTER_32, ®); 577 if (err) 578 return; 579 580 value = reg << 16; 581 582 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_COUNTER_01, ®); 583 if (err) 584 return; 585 586 *val = value | reg; 587 } 588 589 int mv88e6xxx_g1_stats_clear(struct mv88e6xxx_chip *chip) 590 { 591 int err; 592 u16 val; 593 594 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_OP, &val); 595 if (err) 596 return err; 597 598 /* Keep the histogram mode bits */ 599 val &= MV88E6XXX_G1_STATS_OP_HIST_RX_TX; 600 val |= MV88E6XXX_G1_STATS_OP_BUSY | MV88E6XXX_G1_STATS_OP_FLUSH_ALL; 601 602 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, val); 603 if (err) 604 return err; 605 606 /* Wait for the flush to complete. */ 607 return mv88e6xxx_g1_stats_wait(chip); 608 } 609