xref: /openbmc/linux/drivers/media/platform/ti/cal/cal-camerarx.c (revision f5fb5ac7cee29cea9156e734fd652a66417d32fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI Camera Access Layer (CAL) - CAMERARX
4  *
5  * Copyright (c) 2015-2020 Texas Instruments Inc.
6  *
7  * Authors:
8  *	Benoit Parrot <bparrot@ti.com>
9  *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/of_graph.h>
17 #include <linux/platform_device.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 
21 #include <media/v4l2-ctrls.h>
22 #include <media/v4l2-fwnode.h>
23 #include <media/v4l2-subdev.h>
24 
25 #include "cal.h"
26 #include "cal_regs.h"
27 
28 /* ------------------------------------------------------------------
29  *	I/O Register Accessors
30  * ------------------------------------------------------------------
31  */
32 
33 static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset)
34 {
35 	return ioread32(phy->base + offset);
36 }
37 
38 static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val)
39 {
40 	iowrite32(val, phy->base + offset);
41 }
42 
43 /* ------------------------------------------------------------------
44  *	CAMERARX Management
45  * ------------------------------------------------------------------
46  */
47 
48 static s64 cal_camerarx_get_ext_link_freq(struct cal_camerarx *phy)
49 {
50 	struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2;
51 	u32 num_lanes = mipi_csi2->num_data_lanes;
52 	const struct cal_format_info *fmtinfo;
53 	struct v4l2_subdev_state *state;
54 	struct v4l2_mbus_framefmt *fmt;
55 	u32 bpp;
56 	s64 freq;
57 
58 	state = v4l2_subdev_get_locked_active_state(&phy->subdev);
59 
60 	fmt = v4l2_subdev_get_pad_format(&phy->subdev, state, CAL_CAMERARX_PAD_SINK);
61 
62 	fmtinfo = cal_format_by_code(fmt->code);
63 	if (!fmtinfo)
64 		return -EINVAL;
65 
66 	bpp = fmtinfo->bpp;
67 
68 	freq = v4l2_get_link_freq(phy->source->ctrl_handler, bpp, 2 * num_lanes);
69 	if (freq < 0) {
70 		phy_err(phy, "failed to get link freq for subdev '%s'\n",
71 			phy->source->name);
72 		return freq;
73 	}
74 
75 	phy_dbg(3, phy, "Source Link Freq: %llu\n", freq);
76 
77 	return freq;
78 }
79 
80 static void cal_camerarx_lane_config(struct cal_camerarx *phy)
81 {
82 	u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance));
83 	u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
84 	u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
85 	struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 =
86 		&phy->endpoint.bus.mipi_csi2;
87 	int lane;
88 
89 	cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
90 	cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
91 	for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
92 		/*
93 		 * Every lane are one nibble apart starting with the
94 		 * clock followed by the data lanes so shift masks by 4.
95 		 */
96 		lane_mask <<= 4;
97 		polarity_mask <<= 4;
98 		cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
99 		cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1],
100 			      polarity_mask);
101 	}
102 
103 	cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val);
104 	phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
105 		phy->instance, val);
106 }
107 
108 static void cal_camerarx_enable(struct cal_camerarx *phy)
109 {
110 	u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes;
111 
112 	regmap_field_write(phy->fields[F_CAMMODE], 0);
113 	/* Always enable all lanes at the phy control level */
114 	regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1);
115 	/* F_CSI_MODE is not present on every architecture */
116 	if (phy->fields[F_CSI_MODE])
117 		regmap_field_write(phy->fields[F_CSI_MODE], 1);
118 	regmap_field_write(phy->fields[F_CTRLCLKEN], 1);
119 }
120 
121 void cal_camerarx_disable(struct cal_camerarx *phy)
122 {
123 	regmap_field_write(phy->fields[F_CTRLCLKEN], 0);
124 }
125 
126 /*
127  * TCLK values are OK at their reset values
128  */
129 #define TCLK_TERM	0
130 #define TCLK_MISS	1
131 #define TCLK_SETTLE	14
132 
133 static void cal_camerarx_config(struct cal_camerarx *phy, s64 link_freq)
134 {
135 	unsigned int reg0, reg1;
136 	unsigned int ths_term, ths_settle;
137 
138 	/* DPHY timing configuration */
139 
140 	/* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */
141 	ths_term = div_s64(20 * link_freq, 1000 * 1000 * 1000);
142 	phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
143 
144 	/* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */
145 	ths_settle = div_s64(105 * link_freq, 1000 * 1000 * 1000) + 4;
146 	phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
147 
148 	reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0);
149 	cal_set_field(&reg0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
150 		      CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
151 	cal_set_field(&reg0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
152 	cal_set_field(&reg0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
153 
154 	phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0);
155 	camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0);
156 
157 	reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1);
158 	cal_set_field(&reg1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
159 	cal_set_field(&reg1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
160 	cal_set_field(&reg1, TCLK_MISS,
161 		      CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
162 	cal_set_field(&reg1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
163 
164 	phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1);
165 	camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1);
166 }
167 
168 static void cal_camerarx_power(struct cal_camerarx *phy, bool enable)
169 {
170 	u32 target_state;
171 	unsigned int i;
172 
173 	target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON :
174 		       CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF;
175 
176 	cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
177 			target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
178 
179 	for (i = 0; i < 10; i++) {
180 		u32 current_state;
181 
182 		current_state = cal_read_field(phy->cal,
183 					       CAL_CSI2_COMPLEXIO_CFG(phy->instance),
184 					       CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK);
185 
186 		if (current_state == target_state)
187 			break;
188 
189 		usleep_range(1000, 1100);
190 	}
191 
192 	if (i == 10)
193 		phy_err(phy, "Failed to power %s complexio\n",
194 			enable ? "up" : "down");
195 }
196 
197 static void cal_camerarx_wait_reset(struct cal_camerarx *phy)
198 {
199 	unsigned long timeout;
200 
201 	timeout = jiffies + msecs_to_jiffies(750);
202 	while (time_before(jiffies, timeout)) {
203 		if (cal_read_field(phy->cal,
204 				   CAL_CSI2_COMPLEXIO_CFG(phy->instance),
205 				   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
206 		    CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
207 			break;
208 		usleep_range(500, 5000);
209 	}
210 
211 	if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
212 			   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) !=
213 			   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
214 		phy_err(phy, "Timeout waiting for Complex IO reset done\n");
215 }
216 
217 static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy)
218 {
219 	unsigned long timeout;
220 
221 	timeout = jiffies + msecs_to_jiffies(750);
222 	while (time_before(jiffies, timeout)) {
223 		if (cal_read_field(phy->cal,
224 				   CAL_CSI2_TIMING(phy->instance),
225 				   CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0)
226 			break;
227 		usleep_range(500, 5000);
228 	}
229 
230 	if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
231 			   CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0)
232 		phy_err(phy, "Timeout waiting for stop state\n");
233 }
234 
235 static void cal_camerarx_enable_irqs(struct cal_camerarx *phy)
236 {
237 	const u32 cio_err_mask =
238 		CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK |
239 		CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK |
240 		CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK |
241 		CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK;
242 	const u32 vc_err_mask =
243 		CAL_CSI2_VC_IRQ_CS_IRQ_MASK(0) |
244 		CAL_CSI2_VC_IRQ_CS_IRQ_MASK(1) |
245 		CAL_CSI2_VC_IRQ_CS_IRQ_MASK(2) |
246 		CAL_CSI2_VC_IRQ_CS_IRQ_MASK(3) |
247 		CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(0) |
248 		CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(1) |
249 		CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(2) |
250 		CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(3);
251 
252 	/* Enable CIO & VC error IRQs. */
253 	cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0),
254 		  CAL_HL_IRQ_CIO_MASK(phy->instance) |
255 		  CAL_HL_IRQ_VC_MASK(phy->instance));
256 	cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
257 		  cio_err_mask);
258 	cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance),
259 		  vc_err_mask);
260 }
261 
262 static void cal_camerarx_disable_irqs(struct cal_camerarx *phy)
263 {
264 	/* Disable CIO error irqs */
265 	cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0),
266 		  CAL_HL_IRQ_CIO_MASK(phy->instance) |
267 		  CAL_HL_IRQ_VC_MASK(phy->instance));
268 	cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0);
269 	cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 0);
270 }
271 
272 static void cal_camerarx_ppi_enable(struct cal_camerarx *phy)
273 {
274 	cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
275 			1, CAL_CSI2_PPI_CTRL_ECC_EN_MASK);
276 
277 	cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
278 			1, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
279 }
280 
281 static void cal_camerarx_ppi_disable(struct cal_camerarx *phy)
282 {
283 	cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
284 			0, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
285 }
286 
287 static int cal_camerarx_start(struct cal_camerarx *phy)
288 {
289 	s64 link_freq;
290 	u32 sscounter;
291 	u32 val;
292 	int ret;
293 
294 	if (phy->enable_count > 0) {
295 		phy->enable_count++;
296 		return 0;
297 	}
298 
299 	link_freq = cal_camerarx_get_ext_link_freq(phy);
300 	if (link_freq < 0)
301 		return link_freq;
302 
303 	ret = v4l2_subdev_call(phy->source, core, s_power, 1);
304 	if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) {
305 		phy_err(phy, "power on failed in subdev\n");
306 		return ret;
307 	}
308 
309 	cal_camerarx_enable_irqs(phy);
310 
311 	/*
312 	 * CSI-2 PHY Link Initialization Sequence, according to the DRA74xP /
313 	 * DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x /
314 	 * DRA80xM TRMs have a slightly simplified sequence.
315 	 */
316 
317 	/*
318 	 * 1. Configure all CSI-2 low level protocol registers to be ready to
319 	 *    receive signals/data from the CSI-2 PHY.
320 	 *
321 	 *    i.-v. Configure the lanes position and polarity.
322 	 */
323 	cal_camerarx_lane_config(phy);
324 
325 	/*
326 	 *    vi.-vii. Configure D-PHY mode, enable the required lanes and
327 	 *             enable the CAMERARX clock.
328 	 */
329 	cal_camerarx_enable(phy);
330 
331 	/*
332 	 * 2. CSI PHY and link initialization sequence.
333 	 *
334 	 *    a. Deassert the CSI-2 PHY reset. Do not wait for reset completion
335 	 *       at this point, as it requires the external source to send the
336 	 *       CSI-2 HS clock.
337 	 */
338 	cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
339 			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
340 			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
341 	phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n",
342 		phy->instance,
343 		cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
344 
345 	/* Dummy read to allow SCP reset to complete. */
346 	camerarx_read(phy, CAL_CSI2_PHY_REG0);
347 
348 	/* Program the PHY timing parameters. */
349 	cal_camerarx_config(phy, link_freq);
350 
351 	/*
352 	 *    b. Assert the FORCERXMODE signal.
353 	 *
354 	 * The stop-state-counter is based on fclk cycles, and we always use
355 	 * the x16 and x4 settings, so stop-state-timeout =
356 	 * fclk-cycle * 16 * 4 * counter.
357 	 *
358 	 * Stop-state-timeout must be more than 100us as per CSI-2 spec, so we
359 	 * calculate a timeout that's 100us (rounding up).
360 	 */
361 	sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 *  16 * 4);
362 
363 	val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance));
364 	cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
365 	cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
366 	cal_set_field(&val, sscounter,
367 		      CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
368 	cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val);
369 	phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n",
370 		phy->instance,
371 		cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
372 
373 	/* Assert the FORCERXMODE signal. */
374 	cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
375 			1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
376 	phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n",
377 		phy->instance,
378 		cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
379 
380 	/*
381 	 * c. Connect pull-down on CSI-2 PHY link (using pad control).
382 	 *
383 	 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
384 	 * implemented.
385 	 */
386 
387 	/*
388 	 * d. Power up the CSI-2 PHY.
389 	 * e. Check whether the state status reaches the ON state.
390 	 */
391 	cal_camerarx_power(phy, true);
392 
393 	/*
394 	 * Start the source to enable the CSI-2 HS clock. We can now wait for
395 	 * CSI-2 PHY reset to complete.
396 	 */
397 	ret = v4l2_subdev_call(phy->source, video, s_stream, 1);
398 	if (ret) {
399 		v4l2_subdev_call(phy->source, core, s_power, 0);
400 		cal_camerarx_disable_irqs(phy);
401 		phy_err(phy, "stream on failed in subdev\n");
402 		return ret;
403 	}
404 
405 	cal_camerarx_wait_reset(phy);
406 
407 	/* f. Wait for STOPSTATE=1 for all enabled lane modules. */
408 	cal_camerarx_wait_stop_state(phy);
409 
410 	phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n",
411 		phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1));
412 
413 	/*
414 	 * g. Disable pull-down on CSI-2 PHY link (using pad control).
415 	 *
416 	 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
417 	 * implemented.
418 	 */
419 
420 	/* Finally, enable the PHY Protocol Interface (PPI). */
421 	cal_camerarx_ppi_enable(phy);
422 
423 	phy->enable_count++;
424 
425 	return 0;
426 }
427 
428 static void cal_camerarx_stop(struct cal_camerarx *phy)
429 {
430 	int ret;
431 
432 	if (--phy->enable_count > 0)
433 		return;
434 
435 	cal_camerarx_ppi_disable(phy);
436 
437 	cal_camerarx_disable_irqs(phy);
438 
439 	cal_camerarx_power(phy, false);
440 
441 	/* Assert Complex IO Reset */
442 	cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
443 			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL,
444 			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
445 
446 	phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset\n",
447 		phy->instance,
448 		cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
449 
450 	/* Disable the phy */
451 	cal_camerarx_disable(phy);
452 
453 	if (v4l2_subdev_call(phy->source, video, s_stream, 0))
454 		phy_err(phy, "stream off failed in subdev\n");
455 
456 	ret = v4l2_subdev_call(phy->source, core, s_power, 0);
457 	if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
458 		phy_err(phy, "power off failed in subdev\n");
459 }
460 
461 /*
462  *   Errata i913: CSI2 LDO Needs to be disabled when module is powered on
463  *
464  *   Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2
465  *   LDOs on the device are disabled if CSI-2 module is powered on
466  *   (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304
467  *   | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high
468  *   current draw on the module supply in active mode.
469  *
470  *   Errata does not apply when CSI-2 module is powered off
471  *   (0x4845 B304 | 0x4845 B384 [28:27] = 0x0).
472  *
473  * SW Workaround:
474  *	Set the following register bits to disable the LDO,
475  *	which is essentially CSI2 REG10 bit 6:
476  *
477  *		Core 0:  0x4845 B828 = 0x0000 0040
478  *		Core 1:  0x4845 B928 = 0x0000 0040
479  */
480 void cal_camerarx_i913_errata(struct cal_camerarx *phy)
481 {
482 	u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10);
483 
484 	cal_set_field(&reg10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK);
485 
486 	phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10);
487 	camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10);
488 }
489 
490 static int cal_camerarx_regmap_init(struct cal_dev *cal,
491 				    struct cal_camerarx *phy)
492 {
493 	const struct cal_camerarx_data *phy_data;
494 	unsigned int i;
495 
496 	if (!cal->data)
497 		return -EINVAL;
498 
499 	phy_data = &cal->data->camerarx[phy->instance];
500 
501 	for (i = 0; i < F_MAX_FIELDS; i++) {
502 		struct reg_field field = {
503 			.reg = cal->syscon_camerrx_offset,
504 			.lsb = phy_data->fields[i].lsb,
505 			.msb = phy_data->fields[i].msb,
506 		};
507 
508 		/*
509 		 * Here we update the reg offset with the
510 		 * value found in DT
511 		 */
512 		phy->fields[i] = devm_regmap_field_alloc(cal->dev,
513 							 cal->syscon_camerrx,
514 							 field);
515 		if (IS_ERR(phy->fields[i])) {
516 			cal_err(cal, "Unable to allocate regmap fields\n");
517 			return PTR_ERR(phy->fields[i]);
518 		}
519 	}
520 
521 	return 0;
522 }
523 
524 static int cal_camerarx_parse_dt(struct cal_camerarx *phy)
525 {
526 	struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint;
527 	char data_lanes[V4L2_MBUS_CSI2_MAX_DATA_LANES * 2];
528 	struct device_node *ep_node;
529 	unsigned int i;
530 	int ret;
531 
532 	/*
533 	 * Find the endpoint node for the port corresponding to the PHY
534 	 * instance, and parse its CSI-2-related properties.
535 	 */
536 	ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node,
537 						phy->instance, 0);
538 	if (!ep_node) {
539 		/*
540 		 * The endpoint is not mandatory, not all PHY instances need to
541 		 * be connected in DT.
542 		 */
543 		phy_dbg(3, phy, "Port has no endpoint\n");
544 		return 0;
545 	}
546 
547 	endpoint->bus_type = V4L2_MBUS_CSI2_DPHY;
548 	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
549 	if (ret < 0) {
550 		phy_err(phy, "Failed to parse endpoint\n");
551 		goto done;
552 	}
553 
554 	for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) {
555 		unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i];
556 
557 		if (lane > 4) {
558 			phy_err(phy, "Invalid position %u for data lane %u\n",
559 				lane, i);
560 			ret = -EINVAL;
561 			goto done;
562 		}
563 
564 		data_lanes[i*2] = '0' + lane;
565 		data_lanes[i*2+1] = ' ';
566 	}
567 
568 	data_lanes[i*2-1] = '\0';
569 
570 	phy_dbg(3, phy,
571 		"CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n",
572 		endpoint->bus.mipi_csi2.clock_lane, data_lanes,
573 		endpoint->bus.mipi_csi2.flags);
574 
575 	/* Retrieve the connected device and store it for later use. */
576 	phy->source_ep_node = of_graph_get_remote_endpoint(ep_node);
577 	phy->source_node = of_graph_get_port_parent(phy->source_ep_node);
578 	if (!phy->source_node) {
579 		phy_dbg(3, phy, "Can't get remote parent\n");
580 		of_node_put(phy->source_ep_node);
581 		ret = -EINVAL;
582 		goto done;
583 	}
584 
585 	phy_dbg(1, phy, "Found connected device %pOFn\n", phy->source_node);
586 
587 done:
588 	of_node_put(ep_node);
589 	return ret;
590 }
591 
592 /* ------------------------------------------------------------------
593  *	V4L2 Subdev Operations
594  * ------------------------------------------------------------------
595  */
596 
597 static inline struct cal_camerarx *to_cal_camerarx(struct v4l2_subdev *sd)
598 {
599 	return container_of(sd, struct cal_camerarx, subdev);
600 }
601 
602 static int cal_camerarx_sd_s_stream(struct v4l2_subdev *sd, int enable)
603 {
604 	struct cal_camerarx *phy = to_cal_camerarx(sd);
605 	struct v4l2_subdev_state *state;
606 	int ret = 0;
607 
608 	state = v4l2_subdev_lock_and_get_active_state(sd);
609 
610 	if (enable)
611 		ret = cal_camerarx_start(phy);
612 	else
613 		cal_camerarx_stop(phy);
614 
615 	v4l2_subdev_unlock_state(state);
616 
617 	return ret;
618 }
619 
620 static int cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev *sd,
621 					  struct v4l2_subdev_state *state,
622 					  struct v4l2_subdev_mbus_code_enum *code)
623 {
624 	struct cal_camerarx *phy = to_cal_camerarx(sd);
625 
626 	/* No transcoding, source and sink codes must match. */
627 	if (cal_rx_pad_is_source(code->pad)) {
628 		struct v4l2_mbus_framefmt *fmt;
629 
630 		if (code->index > 0)
631 			return -EINVAL;
632 
633 		fmt = v4l2_subdev_get_pad_format(&phy->subdev, state,
634 						 CAL_CAMERARX_PAD_SINK);
635 		code->code = fmt->code;
636 	} else {
637 		if (code->index >= cal_num_formats)
638 			return -EINVAL;
639 
640 		code->code = cal_formats[code->index].code;
641 	}
642 
643 	return 0;
644 }
645 
646 static int cal_camerarx_sd_enum_frame_size(struct v4l2_subdev *sd,
647 					   struct v4l2_subdev_state *state,
648 					   struct v4l2_subdev_frame_size_enum *fse)
649 {
650 	const struct cal_format_info *fmtinfo;
651 
652 	if (fse->index > 0)
653 		return -EINVAL;
654 
655 	/* No transcoding, source and sink formats must match. */
656 	if (cal_rx_pad_is_source(fse->pad)) {
657 		struct v4l2_mbus_framefmt *fmt;
658 
659 		fmt = v4l2_subdev_get_pad_format(sd, state,
660 						 CAL_CAMERARX_PAD_SINK);
661 		if (fse->code != fmt->code)
662 			return -EINVAL;
663 
664 		fse->min_width = fmt->width;
665 		fse->max_width = fmt->width;
666 		fse->min_height = fmt->height;
667 		fse->max_height = fmt->height;
668 	} else {
669 		fmtinfo = cal_format_by_code(fse->code);
670 		if (!fmtinfo)
671 			return -EINVAL;
672 
673 		fse->min_width = CAL_MIN_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
674 		fse->max_width = CAL_MAX_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
675 		fse->min_height = CAL_MIN_HEIGHT_LINES;
676 		fse->max_height = CAL_MAX_HEIGHT_LINES;
677 	}
678 
679 	return 0;
680 }
681 
682 static int cal_camerarx_sd_set_fmt(struct v4l2_subdev *sd,
683 				   struct v4l2_subdev_state *state,
684 				   struct v4l2_subdev_format *format)
685 {
686 	const struct cal_format_info *fmtinfo;
687 	struct v4l2_mbus_framefmt *fmt;
688 	unsigned int bpp;
689 
690 	/* No transcoding, source and sink formats must match. */
691 	if (cal_rx_pad_is_source(format->pad))
692 		return v4l2_subdev_get_fmt(sd, state, format);
693 
694 	/*
695 	 * Default to the first format if the requested media bus code isn't
696 	 * supported.
697 	 */
698 	fmtinfo = cal_format_by_code(format->format.code);
699 	if (!fmtinfo)
700 		fmtinfo = &cal_formats[0];
701 
702 	/* Clamp the size, update the code. The colorspace is accepted as-is. */
703 	bpp = ALIGN(fmtinfo->bpp, 8);
704 
705 	format->format.width = clamp_t(unsigned int, format->format.width,
706 				       CAL_MIN_WIDTH_BYTES * 8 / bpp,
707 				       CAL_MAX_WIDTH_BYTES * 8 / bpp);
708 	format->format.height = clamp_t(unsigned int, format->format.height,
709 					CAL_MIN_HEIGHT_LINES,
710 					CAL_MAX_HEIGHT_LINES);
711 	format->format.code = fmtinfo->code;
712 	format->format.field = V4L2_FIELD_NONE;
713 
714 	/* Store the format and propagate it to the source pad. */
715 
716 	fmt = v4l2_subdev_get_pad_format(sd, state, CAL_CAMERARX_PAD_SINK);
717 	*fmt = format->format;
718 
719 	fmt = v4l2_subdev_get_pad_format(sd, state,
720 					 CAL_CAMERARX_PAD_FIRST_SOURCE);
721 	*fmt = format->format;
722 
723 	return 0;
724 }
725 
726 static int cal_camerarx_sd_init_cfg(struct v4l2_subdev *sd,
727 				    struct v4l2_subdev_state *state)
728 {
729 	struct v4l2_subdev_format format = {
730 		.which = state ? V4L2_SUBDEV_FORMAT_TRY
731 		: V4L2_SUBDEV_FORMAT_ACTIVE,
732 		.pad = CAL_CAMERARX_PAD_SINK,
733 		.format = {
734 			.width = 640,
735 			.height = 480,
736 			.code = MEDIA_BUS_FMT_UYVY8_1X16,
737 			.field = V4L2_FIELD_NONE,
738 			.colorspace = V4L2_COLORSPACE_SRGB,
739 			.ycbcr_enc = V4L2_YCBCR_ENC_601,
740 			.quantization = V4L2_QUANTIZATION_LIM_RANGE,
741 			.xfer_func = V4L2_XFER_FUNC_SRGB,
742 		},
743 	};
744 
745 	return cal_camerarx_sd_set_fmt(sd, state, &format);
746 }
747 
748 static int cal_camerarx_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad,
749 				       struct v4l2_mbus_frame_desc *fd)
750 {
751 	struct cal_camerarx *phy = to_cal_camerarx(sd);
752 	struct v4l2_mbus_frame_desc remote_desc;
753 	const struct media_pad *remote_pad;
754 	int ret;
755 
756 	remote_pad = media_pad_remote_pad_first(&phy->pads[CAL_CAMERARX_PAD_SINK]);
757 	if (!remote_pad)
758 		return -EPIPE;
759 
760 	ret = v4l2_subdev_call(phy->source, pad, get_frame_desc,
761 			       remote_pad->index, &remote_desc);
762 	if (ret)
763 		return ret;
764 
765 	if (remote_desc.type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2) {
766 		cal_err(phy->cal,
767 			"Frame descriptor does not describe CSI-2 link");
768 		return -EINVAL;
769 	}
770 
771 	if (remote_desc.num_entries > 1)
772 		cal_err(phy->cal,
773 			"Multiple streams not supported in remote frame descriptor, using the first one\n");
774 
775 	fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2;
776 	fd->num_entries = 1;
777 	fd->entry[0] = remote_desc.entry[0];
778 
779 	return 0;
780 }
781 
782 static const struct v4l2_subdev_video_ops cal_camerarx_video_ops = {
783 	.s_stream = cal_camerarx_sd_s_stream,
784 };
785 
786 static const struct v4l2_subdev_pad_ops cal_camerarx_pad_ops = {
787 	.init_cfg = cal_camerarx_sd_init_cfg,
788 	.enum_mbus_code = cal_camerarx_sd_enum_mbus_code,
789 	.enum_frame_size = cal_camerarx_sd_enum_frame_size,
790 	.get_fmt = v4l2_subdev_get_fmt,
791 	.set_fmt = cal_camerarx_sd_set_fmt,
792 	.get_frame_desc = cal_camerarx_get_frame_desc,
793 };
794 
795 static const struct v4l2_subdev_ops cal_camerarx_subdev_ops = {
796 	.video = &cal_camerarx_video_ops,
797 	.pad = &cal_camerarx_pad_ops,
798 };
799 
800 static struct media_entity_operations cal_camerarx_media_ops = {
801 	.link_validate = v4l2_subdev_link_validate,
802 };
803 
804 /* ------------------------------------------------------------------
805  *	Create and Destroy
806  * ------------------------------------------------------------------
807  */
808 
809 struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal,
810 					 unsigned int instance)
811 {
812 	struct platform_device *pdev = to_platform_device(cal->dev);
813 	struct cal_camerarx *phy;
814 	struct v4l2_subdev *sd;
815 	unsigned int i;
816 	int ret;
817 
818 	phy = devm_kzalloc(cal->dev, sizeof(*phy), GFP_KERNEL);
819 	if (!phy)
820 		return ERR_PTR(-ENOMEM);
821 
822 	phy->cal = cal;
823 	phy->instance = instance;
824 
825 	spin_lock_init(&phy->vc_lock);
826 
827 	phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
828 						(instance == 0) ?
829 						"cal_rx_core0" :
830 						"cal_rx_core1");
831 	phy->base = devm_ioremap_resource(cal->dev, phy->res);
832 	if (IS_ERR(phy->base)) {
833 		cal_err(cal, "failed to ioremap\n");
834 		return ERR_CAST(phy->base);
835 	}
836 
837 	cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
838 		phy->res->name, &phy->res->start, &phy->res->end);
839 
840 	ret = cal_camerarx_regmap_init(cal, phy);
841 	if (ret)
842 		return ERR_PTR(ret);
843 
844 	ret = cal_camerarx_parse_dt(phy);
845 	if (ret)
846 		return ERR_PTR(ret);
847 
848 	/* Initialize the V4L2 subdev and media entity. */
849 	sd = &phy->subdev;
850 	v4l2_subdev_init(sd, &cal_camerarx_subdev_ops);
851 	sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
852 	sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
853 	snprintf(sd->name, sizeof(sd->name), "CAMERARX%u", instance);
854 	sd->dev = cal->dev;
855 
856 	phy->pads[CAL_CAMERARX_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
857 	for (i = CAL_CAMERARX_PAD_FIRST_SOURCE; i < CAL_CAMERARX_NUM_PADS; ++i)
858 		phy->pads[i].flags = MEDIA_PAD_FL_SOURCE;
859 	sd->entity.ops = &cal_camerarx_media_ops;
860 	ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(phy->pads),
861 				     phy->pads);
862 	if (ret)
863 		goto err_node_put;
864 
865 	ret = v4l2_subdev_init_finalize(sd);
866 	if (ret)
867 		goto err_entity_cleanup;
868 
869 	ret = v4l2_device_register_subdev(&cal->v4l2_dev, sd);
870 	if (ret)
871 		goto err_free_state;
872 
873 	return phy;
874 
875 err_free_state:
876 	v4l2_subdev_cleanup(sd);
877 err_entity_cleanup:
878 	media_entity_cleanup(&phy->subdev.entity);
879 err_node_put:
880 	of_node_put(phy->source_ep_node);
881 	of_node_put(phy->source_node);
882 	return ERR_PTR(ret);
883 }
884 
885 void cal_camerarx_destroy(struct cal_camerarx *phy)
886 {
887 	if (!phy)
888 		return;
889 
890 	v4l2_device_unregister_subdev(&phy->subdev);
891 	v4l2_subdev_cleanup(&phy->subdev);
892 	media_entity_cleanup(&phy->subdev.entity);
893 	of_node_put(phy->source_ep_node);
894 	of_node_put(phy->source_node);
895 }
896