xref: /openbmc/linux/drivers/media/i2c/ar0521.c (revision aaeb31c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2021 Sieć Badawcza Łukasiewicz
4  * - Przemysłowy Instytut Automatyki i Pomiarów PIAP
5  * Written by Krzysztof Hałasa
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/pm_runtime.h>
11 
12 #include <media/v4l2-ctrls.h>
13 #include <media/v4l2-fwnode.h>
14 #include <media/v4l2-subdev.h>
15 
16 /* External clock (extclk) frequencies */
17 #define AR0521_EXTCLK_MIN		(10 * 1000 * 1000)
18 #define AR0521_EXTCLK_MAX		(48 * 1000 * 1000)
19 
20 /* PLL and PLL2 */
21 #define AR0521_PLL_MIN			(320 * 1000 * 1000)
22 #define AR0521_PLL_MAX			(1280 * 1000 * 1000)
23 
24 /* Effective pixel sample rate on the pixel array. */
25 #define AR0521_PIXEL_CLOCK_RATE		(184 * 1000 * 1000)
26 #define AR0521_PIXEL_CLOCK_MIN		(168 * 1000 * 1000)
27 #define AR0521_PIXEL_CLOCK_MAX		(414 * 1000 * 1000)
28 
29 #define AR0521_NATIVE_WIDTH		2604u
30 #define AR0521_NATIVE_HEIGHT		1964u
31 #define AR0521_MIN_X_ADDR_START		0u
32 #define AR0521_MIN_Y_ADDR_START		0u
33 #define AR0521_MAX_X_ADDR_END		2603u
34 #define AR0521_MAX_Y_ADDR_END		1955u
35 
36 #define AR0521_WIDTH_MIN		8u
37 #define AR0521_WIDTH_MAX		2592u
38 #define AR0521_HEIGHT_MIN		8u
39 #define AR0521_HEIGHT_MAX		1944u
40 
41 #define AR0521_WIDTH_BLANKING_MIN	572u
42 #define AR0521_HEIGHT_BLANKING_MIN	38u /* must be even */
43 #define AR0521_TOTAL_HEIGHT_MAX		65535u /* max_frame_length_lines */
44 #define AR0521_TOTAL_WIDTH_MAX		65532u /* max_line_length_pck */
45 
46 #define AR0521_ANA_GAIN_MIN		0x00
47 #define AR0521_ANA_GAIN_MAX		0x3f
48 #define AR0521_ANA_GAIN_STEP		0x01
49 #define AR0521_ANA_GAIN_DEFAULT		0x00
50 
51 /* AR0521 registers */
52 #define AR0521_REG_VT_PIX_CLK_DIV		0x0300
53 #define AR0521_REG_FRAME_LENGTH_LINES		0x0340
54 
55 #define AR0521_REG_CHIP_ID			0x3000
56 #define AR0521_REG_COARSE_INTEGRATION_TIME	0x3012
57 #define AR0521_REG_ROW_SPEED			0x3016
58 #define AR0521_REG_EXTRA_DELAY			0x3018
59 #define AR0521_REG_RESET			0x301A
60 #define   AR0521_REG_RESET_DEFAULTS		  0x0238
61 #define   AR0521_REG_RESET_GROUP_PARAM_HOLD	  0x8000
62 #define   AR0521_REG_RESET_STREAM		  BIT(2)
63 #define   AR0521_REG_RESET_RESTART		  BIT(1)
64 #define   AR0521_REG_RESET_INIT			  BIT(0)
65 
66 #define AR0521_REG_ANA_GAIN_CODE_GLOBAL		0x3028
67 
68 #define AR0521_REG_GREEN1_GAIN			0x3056
69 #define AR0521_REG_BLUE_GAIN			0x3058
70 #define AR0521_REG_RED_GAIN			0x305A
71 #define AR0521_REG_GREEN2_GAIN			0x305C
72 #define AR0521_REG_GLOBAL_GAIN			0x305E
73 
74 #define AR0521_REG_HISPI_TEST_MODE		0x3066
75 #define AR0521_REG_HISPI_TEST_MODE_LP11		  0x0004
76 
77 #define AR0521_REG_TEST_PATTERN_MODE		0x3070
78 
79 #define AR0521_REG_SERIAL_FORMAT		0x31AE
80 #define AR0521_REG_SERIAL_FORMAT_MIPI		  0x0200
81 
82 #define AR0521_REG_HISPI_CONTROL_STATUS		0x31C6
83 #define AR0521_REG_HISPI_CONTROL_STATUS_FRAMER_TEST_MODE_ENABLE 0x80
84 
85 #define be		cpu_to_be16
86 
87 static const char * const ar0521_supply_names[] = {
88 	"vdd_io",	/* I/O (1.8V) supply */
89 	"vdd",		/* Core, PLL and MIPI (1.2V) supply */
90 	"vaa",		/* Analog (2.7V) supply */
91 };
92 
93 static const s64 ar0521_link_frequencies[] = {
94 	184000000,
95 };
96 
97 struct ar0521_ctrls {
98 	struct v4l2_ctrl_handler handler;
99 	struct {
100 		struct v4l2_ctrl *gain;
101 		struct v4l2_ctrl *red_balance;
102 		struct v4l2_ctrl *blue_balance;
103 	};
104 	struct {
105 		struct v4l2_ctrl *hblank;
106 		struct v4l2_ctrl *vblank;
107 	};
108 	struct v4l2_ctrl *pixrate;
109 	struct v4l2_ctrl *exposure;
110 	struct v4l2_ctrl *test_pattern;
111 };
112 
113 struct ar0521_dev {
114 	struct i2c_client *i2c_client;
115 	struct v4l2_subdev sd;
116 	struct media_pad pad;
117 	struct clk *extclk;
118 	u32 extclk_freq;
119 
120 	struct regulator *supplies[ARRAY_SIZE(ar0521_supply_names)];
121 	struct gpio_desc *reset_gpio;
122 
123 	/* lock to protect all members below */
124 	struct mutex lock;
125 
126 	struct v4l2_mbus_framefmt fmt;
127 	struct ar0521_ctrls ctrls;
128 	unsigned int lane_count;
129 	struct {
130 		u16 pre;
131 		u16 mult;
132 		u16 pre2;
133 		u16 mult2;
134 		u16 vt_pix;
135 	} pll;
136 
137 	bool streaming;
138 };
139 
to_ar0521_dev(struct v4l2_subdev * sd)140 static inline struct ar0521_dev *to_ar0521_dev(struct v4l2_subdev *sd)
141 {
142 	return container_of(sd, struct ar0521_dev, sd);
143 }
144 
ctrl_to_sd(struct v4l2_ctrl * ctrl)145 static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
146 {
147 	return &container_of(ctrl->handler, struct ar0521_dev,
148 			     ctrls.handler)->sd;
149 }
150 
div64_round(u64 v,u32 d)151 static u32 div64_round(u64 v, u32 d)
152 {
153 	return div_u64(v + (d >> 1), d);
154 }
155 
div64_round_up(u64 v,u32 d)156 static u32 div64_round_up(u64 v, u32 d)
157 {
158 	return div_u64(v + d - 1, d);
159 }
160 
ar0521_code_to_bpp(struct ar0521_dev * sensor)161 static int ar0521_code_to_bpp(struct ar0521_dev *sensor)
162 {
163 	switch (sensor->fmt.code) {
164 	case MEDIA_BUS_FMT_SGRBG8_1X8:
165 		return 8;
166 	}
167 
168 	return -EINVAL;
169 }
170 
171 /* Data must be BE16, the first value is the register address */
ar0521_write_regs(struct ar0521_dev * sensor,const __be16 * data,unsigned int count)172 static int ar0521_write_regs(struct ar0521_dev *sensor, const __be16 *data,
173 			     unsigned int count)
174 {
175 	struct i2c_client *client = sensor->i2c_client;
176 	struct i2c_msg msg;
177 	int ret;
178 
179 	msg.addr = client->addr;
180 	msg.flags = client->flags;
181 	msg.buf = (u8 *)data;
182 	msg.len = count * sizeof(*data);
183 
184 	ret = i2c_transfer(client->adapter, &msg, 1);
185 
186 	if (ret < 0) {
187 		v4l2_err(&sensor->sd, "%s: I2C write error\n", __func__);
188 		return ret;
189 	}
190 
191 	return 0;
192 }
193 
ar0521_write_reg(struct ar0521_dev * sensor,u16 reg,u16 val)194 static int ar0521_write_reg(struct ar0521_dev *sensor, u16 reg, u16 val)
195 {
196 	__be16 buf[2] = {be(reg), be(val)};
197 
198 	return ar0521_write_regs(sensor, buf, 2);
199 }
200 
ar0521_set_geometry(struct ar0521_dev * sensor)201 static int ar0521_set_geometry(struct ar0521_dev *sensor)
202 {
203 	/* Center the image in the visible output window. */
204 	u16 x = clamp((AR0521_WIDTH_MAX - sensor->fmt.width) / 2,
205 		       AR0521_MIN_X_ADDR_START, AR0521_MAX_X_ADDR_END);
206 	u16 y = clamp(((AR0521_HEIGHT_MAX - sensor->fmt.height) / 2) & ~1,
207 		       AR0521_MIN_Y_ADDR_START, AR0521_MAX_Y_ADDR_END);
208 
209 	/* All dimensions are unsigned 12-bit integers */
210 	__be16 regs[] = {
211 		be(AR0521_REG_FRAME_LENGTH_LINES),
212 		be(sensor->fmt.height + sensor->ctrls.vblank->val),
213 		be(sensor->fmt.width + sensor->ctrls.hblank->val),
214 		be(x),
215 		be(y),
216 		be(x + sensor->fmt.width - 1),
217 		be(y + sensor->fmt.height - 1),
218 		be(sensor->fmt.width),
219 		be(sensor->fmt.height)
220 	};
221 
222 	return ar0521_write_regs(sensor, regs, ARRAY_SIZE(regs));
223 }
224 
ar0521_set_gains(struct ar0521_dev * sensor)225 static int ar0521_set_gains(struct ar0521_dev *sensor)
226 {
227 	int green = sensor->ctrls.gain->val;
228 	int red = max(green + sensor->ctrls.red_balance->val, 0);
229 	int blue = max(green + sensor->ctrls.blue_balance->val, 0);
230 	unsigned int gain = min(red, min(green, blue));
231 	unsigned int analog = min(gain, 64u); /* range is 0 - 127 */
232 	__be16 regs[5];
233 
234 	red   = min(red   - analog + 64, 511u);
235 	green = min(green - analog + 64, 511u);
236 	blue  = min(blue  - analog + 64, 511u);
237 	regs[0] = be(AR0521_REG_GREEN1_GAIN);
238 	regs[1] = be(green << 7 | analog);
239 	regs[2] = be(blue  << 7 | analog);
240 	regs[3] = be(red   << 7 | analog);
241 	regs[4] = be(green << 7 | analog);
242 
243 	return ar0521_write_regs(sensor, regs, ARRAY_SIZE(regs));
244 }
245 
calc_pll(struct ar0521_dev * sensor,u32 freq,u16 * pre_ptr,u16 * mult_ptr)246 static u32 calc_pll(struct ar0521_dev *sensor, u32 freq, u16 *pre_ptr, u16 *mult_ptr)
247 {
248 	u16 pre = 1, mult = 1, new_pre;
249 	u32 pll = AR0521_PLL_MAX + 1;
250 
251 	for (new_pre = 1; new_pre < 64; new_pre++) {
252 		u32 new_pll;
253 		u32 new_mult = div64_round_up((u64)freq * new_pre,
254 					      sensor->extclk_freq);
255 
256 		if (new_mult < 32)
257 			continue; /* Minimum value */
258 		if (new_mult > 254)
259 			break; /* Maximum, larger pre won't work either */
260 		if (sensor->extclk_freq * (u64)new_mult < AR0521_PLL_MIN *
261 		    new_pre)
262 			continue;
263 		if (sensor->extclk_freq * (u64)new_mult > AR0521_PLL_MAX *
264 		    new_pre)
265 			break; /* Larger pre won't work either */
266 		new_pll = div64_round_up(sensor->extclk_freq * (u64)new_mult,
267 					 new_pre);
268 		if (new_pll < pll) {
269 			pll = new_pll;
270 			pre = new_pre;
271 			mult = new_mult;
272 		}
273 	}
274 
275 	pll = div64_round(sensor->extclk_freq * (u64)mult, pre);
276 	*pre_ptr = pre;
277 	*mult_ptr = mult;
278 	return pll;
279 }
280 
ar0521_calc_pll(struct ar0521_dev * sensor)281 static void ar0521_calc_pll(struct ar0521_dev *sensor)
282 {
283 	unsigned int pixel_clock;
284 	u16 pre, mult;
285 	u32 vco;
286 	int bpp;
287 
288 	/*
289 	 * PLL1 and PLL2 are computed equally even if the application note
290 	 * suggests a slower PLL1 clock. Maintain pll1 and pll2 divider and
291 	 * multiplier separated to later specialize the calculation procedure.
292 	 *
293 	 * PLL1:
294 	 * - mclk -> / pre_div1 * pre_mul1 = VCO1 = COUNTER_CLOCK
295 	 *
296 	 * PLL2:
297 	 * - mclk -> / pre_div * pre_mul = VCO
298 	 *
299 	 *   VCO -> / vt_pix = PIXEL_CLOCK
300 	 *   VCO -> / vt_pix / 2 = WORD_CLOCK
301 	 *   VCO -> / op_sys = SERIAL_CLOCK
302 	 *
303 	 * With:
304 	 * - vt_pix = bpp / 2
305 	 * - WORD_CLOCK = PIXEL_CLOCK / 2
306 	 * - SERIAL_CLOCK = MIPI data rate (Mbps / lane) = WORD_CLOCK * bpp
307 	 *   NOTE: this implies the MIPI clock is divided internally by 2
308 	 *         to account for DDR.
309 	 *
310 	 * As op_sys_div is fixed to 1:
311 	 *
312 	 * SERIAL_CLOCK = VCO
313 	 * VCO = 2 * MIPI_CLK
314 	 * VCO = PIXEL_CLOCK * bpp / 2
315 	 *
316 	 * In the clock tree:
317 	 * MIPI_CLK = PIXEL_CLOCK * bpp / 2 / 2
318 	 *
319 	 * Generic pixel_rate to bus clock frequencey equation:
320 	 * MIPI_CLK = V4L2_CID_PIXEL_RATE * bpp / lanes / 2
321 	 *
322 	 * From which we derive the PIXEL_CLOCK to use in the clock tree:
323 	 * PIXEL_CLOCK = V4L2_CID_PIXEL_RATE * 2 / lanes
324 	 *
325 	 * Documented clock ranges:
326 	 *   WORD_CLOCK = (35MHz - 120 MHz)
327 	 *   PIXEL_CLOCK = (84MHz - 207MHz)
328 	 *   VCO = (320MHz - 1280MHz)
329 	 *
330 	 * TODO: in case we have less data lanes we have to reduce the desired
331 	 * VCO not to exceed the limits specified by the datasheet and
332 	 * consequentially reduce the obtained pixel clock.
333 	 */
334 	pixel_clock = AR0521_PIXEL_CLOCK_RATE * 2 / sensor->lane_count;
335 	bpp = ar0521_code_to_bpp(sensor);
336 	sensor->pll.vt_pix = bpp / 2;
337 	vco = pixel_clock * sensor->pll.vt_pix;
338 
339 	calc_pll(sensor, vco, &pre, &mult);
340 
341 	sensor->pll.pre = sensor->pll.pre2 = pre;
342 	sensor->pll.mult = sensor->pll.mult2 = mult;
343 }
344 
ar0521_pll_config(struct ar0521_dev * sensor)345 static int ar0521_pll_config(struct ar0521_dev *sensor)
346 {
347 	__be16 pll_regs[] = {
348 		be(AR0521_REG_VT_PIX_CLK_DIV),
349 		/* 0x300 */ be(sensor->pll.vt_pix), /* vt_pix_clk_div = bpp / 2 */
350 		/* 0x302 */ be(1), /* vt_sys_clk_div */
351 		/* 0x304 */ be((sensor->pll.pre2 << 8) | sensor->pll.pre),
352 		/* 0x306 */ be((sensor->pll.mult2 << 8) | sensor->pll.mult),
353 		/* 0x308 */ be(sensor->pll.vt_pix * 2), /* op_pix_clk_div = 2 * vt_pix_clk_div */
354 		/* 0x30A */ be(1)  /* op_sys_clk_div */
355 	};
356 
357 	ar0521_calc_pll(sensor);
358 	return ar0521_write_regs(sensor, pll_regs, ARRAY_SIZE(pll_regs));
359 }
360 
ar0521_set_stream(struct ar0521_dev * sensor,bool on)361 static int ar0521_set_stream(struct ar0521_dev *sensor, bool on)
362 {
363 	int ret;
364 
365 	if (on) {
366 		ret = pm_runtime_resume_and_get(&sensor->i2c_client->dev);
367 		if (ret < 0)
368 			return ret;
369 
370 		/* Stop streaming for just a moment */
371 		ret = ar0521_write_reg(sensor, AR0521_REG_RESET,
372 				       AR0521_REG_RESET_DEFAULTS);
373 		if (ret)
374 			return ret;
375 
376 		ret = ar0521_set_geometry(sensor);
377 		if (ret)
378 			return ret;
379 
380 		ret = ar0521_pll_config(sensor);
381 		if (ret)
382 			goto err;
383 
384 		ret =  __v4l2_ctrl_handler_setup(&sensor->ctrls.handler);
385 		if (ret)
386 			goto err;
387 
388 		/* Exit LP-11 mode on clock and data lanes */
389 		ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_CONTROL_STATUS,
390 				       0);
391 		if (ret)
392 			goto err;
393 
394 		/* Start streaming */
395 		ret = ar0521_write_reg(sensor, AR0521_REG_RESET,
396 				       AR0521_REG_RESET_DEFAULTS |
397 				       AR0521_REG_RESET_STREAM);
398 		if (ret)
399 			goto err;
400 
401 		return 0;
402 
403 err:
404 		pm_runtime_put(&sensor->i2c_client->dev);
405 		return ret;
406 
407 	} else {
408 		/*
409 		 * Reset gain, the sensor may produce all white pixels without
410 		 * this
411 		 */
412 		ret = ar0521_write_reg(sensor, AR0521_REG_GLOBAL_GAIN, 0x2000);
413 		if (ret)
414 			return ret;
415 
416 		/* Stop streaming */
417 		ret = ar0521_write_reg(sensor, AR0521_REG_RESET,
418 				       AR0521_REG_RESET_DEFAULTS);
419 		if (ret)
420 			return ret;
421 
422 		pm_runtime_put(&sensor->i2c_client->dev);
423 		return 0;
424 	}
425 }
426 
ar0521_adj_fmt(struct v4l2_mbus_framefmt * fmt)427 static void ar0521_adj_fmt(struct v4l2_mbus_framefmt *fmt)
428 {
429 	fmt->width = clamp(ALIGN(fmt->width, 4), AR0521_WIDTH_MIN,
430 			   AR0521_WIDTH_MAX);
431 	fmt->height = clamp(ALIGN(fmt->height, 4), AR0521_HEIGHT_MIN,
432 			    AR0521_HEIGHT_MAX);
433 	fmt->code = MEDIA_BUS_FMT_SGRBG8_1X8;
434 	fmt->field = V4L2_FIELD_NONE;
435 	fmt->colorspace = V4L2_COLORSPACE_SRGB;
436 	fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
437 	fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE;
438 	fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT;
439 }
440 
ar0521_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)441 static int ar0521_get_fmt(struct v4l2_subdev *sd,
442 			  struct v4l2_subdev_state *sd_state,
443 			  struct v4l2_subdev_format *format)
444 {
445 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
446 	struct v4l2_mbus_framefmt *fmt;
447 
448 	mutex_lock(&sensor->lock);
449 
450 	if (format->which == V4L2_SUBDEV_FORMAT_TRY)
451 		fmt = v4l2_subdev_get_try_format(&sensor->sd, sd_state, 0
452 						 /* pad */);
453 	else
454 		fmt = &sensor->fmt;
455 
456 	format->format = *fmt;
457 
458 	mutex_unlock(&sensor->lock);
459 	return 0;
460 }
461 
ar0521_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)462 static int ar0521_set_fmt(struct v4l2_subdev *sd,
463 			  struct v4l2_subdev_state *sd_state,
464 			  struct v4l2_subdev_format *format)
465 {
466 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
467 	int max_vblank, max_hblank, exposure_max;
468 	int ret;
469 
470 	ar0521_adj_fmt(&format->format);
471 
472 	mutex_lock(&sensor->lock);
473 
474 	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
475 		struct v4l2_mbus_framefmt *fmt;
476 
477 		fmt = v4l2_subdev_get_try_format(sd, sd_state, 0 /* pad */);
478 		*fmt = format->format;
479 
480 		mutex_unlock(&sensor->lock);
481 
482 		return 0;
483 	}
484 
485 	sensor->fmt = format->format;
486 	ar0521_calc_pll(sensor);
487 
488 	/*
489 	 * Update the exposure and blankings limits. Blankings are also reset
490 	 * to the minimum.
491 	 */
492 	max_hblank = AR0521_TOTAL_WIDTH_MAX - sensor->fmt.width;
493 	ret = __v4l2_ctrl_modify_range(sensor->ctrls.hblank,
494 				       sensor->ctrls.hblank->minimum,
495 				       max_hblank, sensor->ctrls.hblank->step,
496 				       sensor->ctrls.hblank->minimum);
497 	if (ret)
498 		goto unlock;
499 
500 	ret = __v4l2_ctrl_s_ctrl(sensor->ctrls.hblank,
501 				 sensor->ctrls.hblank->minimum);
502 	if (ret)
503 		goto unlock;
504 
505 	max_vblank = AR0521_TOTAL_HEIGHT_MAX - sensor->fmt.height;
506 	ret = __v4l2_ctrl_modify_range(sensor->ctrls.vblank,
507 				       sensor->ctrls.vblank->minimum,
508 				       max_vblank, sensor->ctrls.vblank->step,
509 				       sensor->ctrls.vblank->minimum);
510 	if (ret)
511 		goto unlock;
512 
513 	ret = __v4l2_ctrl_s_ctrl(sensor->ctrls.vblank,
514 				 sensor->ctrls.vblank->minimum);
515 	if (ret)
516 		goto unlock;
517 
518 	exposure_max = sensor->fmt.height + AR0521_HEIGHT_BLANKING_MIN - 4;
519 	ret = __v4l2_ctrl_modify_range(sensor->ctrls.exposure,
520 				       sensor->ctrls.exposure->minimum,
521 				       exposure_max,
522 				       sensor->ctrls.exposure->step,
523 				       sensor->ctrls.exposure->default_value);
524 unlock:
525 	mutex_unlock(&sensor->lock);
526 
527 	return ret;
528 }
529 
ar0521_s_ctrl(struct v4l2_ctrl * ctrl)530 static int ar0521_s_ctrl(struct v4l2_ctrl *ctrl)
531 {
532 	struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
533 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
534 	int exp_max;
535 	int ret;
536 
537 	/* v4l2_ctrl_lock() locks our own mutex */
538 
539 	switch (ctrl->id) {
540 	case V4L2_CID_VBLANK:
541 		exp_max = sensor->fmt.height + ctrl->val - 4;
542 		__v4l2_ctrl_modify_range(sensor->ctrls.exposure,
543 					 sensor->ctrls.exposure->minimum,
544 					 exp_max, sensor->ctrls.exposure->step,
545 					 sensor->ctrls.exposure->default_value);
546 		break;
547 	}
548 
549 	/* access the sensor only if it's powered up */
550 	if (!pm_runtime_get_if_in_use(&sensor->i2c_client->dev))
551 		return 0;
552 
553 	switch (ctrl->id) {
554 	case V4L2_CID_HBLANK:
555 	case V4L2_CID_VBLANK:
556 		ret = ar0521_set_geometry(sensor);
557 		break;
558 	case V4L2_CID_ANALOGUE_GAIN:
559 		ret = ar0521_write_reg(sensor, AR0521_REG_ANA_GAIN_CODE_GLOBAL,
560 				       ctrl->val);
561 		break;
562 	case V4L2_CID_GAIN:
563 	case V4L2_CID_RED_BALANCE:
564 	case V4L2_CID_BLUE_BALANCE:
565 		ret = ar0521_set_gains(sensor);
566 		break;
567 	case V4L2_CID_EXPOSURE:
568 		ret = ar0521_write_reg(sensor,
569 				       AR0521_REG_COARSE_INTEGRATION_TIME,
570 				       ctrl->val);
571 		break;
572 	case V4L2_CID_TEST_PATTERN:
573 		ret = ar0521_write_reg(sensor, AR0521_REG_TEST_PATTERN_MODE,
574 				       ctrl->val);
575 		break;
576 	default:
577 		dev_err(&sensor->i2c_client->dev,
578 			"Unsupported control %x\n", ctrl->id);
579 		ret = -EINVAL;
580 		break;
581 	}
582 
583 	pm_runtime_put(&sensor->i2c_client->dev);
584 	return ret;
585 }
586 
587 static const struct v4l2_ctrl_ops ar0521_ctrl_ops = {
588 	.s_ctrl = ar0521_s_ctrl,
589 };
590 
591 static const char * const test_pattern_menu[] = {
592 	"Disabled",
593 	"Solid color",
594 	"Color bars",
595 	"Faded color bars"
596 };
597 
ar0521_init_controls(struct ar0521_dev * sensor)598 static int ar0521_init_controls(struct ar0521_dev *sensor)
599 {
600 	const struct v4l2_ctrl_ops *ops = &ar0521_ctrl_ops;
601 	struct ar0521_ctrls *ctrls = &sensor->ctrls;
602 	struct v4l2_ctrl_handler *hdl = &ctrls->handler;
603 	int max_vblank, max_hblank, exposure_max;
604 	struct v4l2_ctrl *link_freq;
605 	int ret;
606 
607 	v4l2_ctrl_handler_init(hdl, 32);
608 
609 	/* We can use our own mutex for the ctrl lock */
610 	hdl->lock = &sensor->lock;
611 
612 	/* Analog gain */
613 	v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN,
614 			  AR0521_ANA_GAIN_MIN, AR0521_ANA_GAIN_MAX,
615 			  AR0521_ANA_GAIN_STEP, AR0521_ANA_GAIN_DEFAULT);
616 
617 	/* Manual gain */
618 	ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 0, 511, 1, 0);
619 	ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
620 					       -512, 511, 1, 0);
621 	ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
622 						-512, 511, 1, 0);
623 	v4l2_ctrl_cluster(3, &ctrls->gain);
624 
625 	/* Initialize blanking limits using the default 2592x1944 format. */
626 	max_hblank = AR0521_TOTAL_WIDTH_MAX - AR0521_WIDTH_MAX;
627 	ctrls->hblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK,
628 					  AR0521_WIDTH_BLANKING_MIN,
629 					  max_hblank, 1,
630 					  AR0521_WIDTH_BLANKING_MIN);
631 
632 	max_vblank = AR0521_TOTAL_HEIGHT_MAX - AR0521_HEIGHT_MAX;
633 	ctrls->vblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK,
634 					  AR0521_HEIGHT_BLANKING_MIN,
635 					  max_vblank, 2,
636 					  AR0521_HEIGHT_BLANKING_MIN);
637 	v4l2_ctrl_cluster(2, &ctrls->hblank);
638 
639 	/* Read-only */
640 	ctrls->pixrate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE,
641 					   AR0521_PIXEL_CLOCK_MIN,
642 					   AR0521_PIXEL_CLOCK_MAX, 1,
643 					   AR0521_PIXEL_CLOCK_RATE);
644 
645 	/* Manual exposure time: max exposure time = visible + blank - 4 */
646 	exposure_max = AR0521_HEIGHT_MAX + AR0521_HEIGHT_BLANKING_MIN - 4;
647 	ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 0,
648 					    exposure_max, 1, 0x70);
649 
650 	link_freq = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ,
651 					ARRAY_SIZE(ar0521_link_frequencies) - 1,
652 					0, ar0521_link_frequencies);
653 	if (link_freq)
654 		link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY;
655 
656 	ctrls->test_pattern = v4l2_ctrl_new_std_menu_items(hdl, ops,
657 					V4L2_CID_TEST_PATTERN,
658 					ARRAY_SIZE(test_pattern_menu) - 1,
659 					0, 0, test_pattern_menu);
660 
661 	if (hdl->error) {
662 		ret = hdl->error;
663 		goto free_ctrls;
664 	}
665 
666 	sensor->sd.ctrl_handler = hdl;
667 	return 0;
668 
669 free_ctrls:
670 	v4l2_ctrl_handler_free(hdl);
671 	return ret;
672 }
673 
674 #define REGS_ENTRY(a)	{(a), ARRAY_SIZE(a)}
675 #define REGS(...)	REGS_ENTRY(((const __be16[]){__VA_ARGS__}))
676 
677 static const struct initial_reg {
678 	const __be16 *data; /* data[0] is register address */
679 	unsigned int count;
680 } initial_regs[] = {
681 	REGS(be(0x0112), be(0x0808)), /* 8-bit/8-bit mode */
682 
683 	/* PEDESTAL+2 :+2 is a workaround for 10bit mode +0.5 rounding */
684 	REGS(be(0x301E), be(0x00AA)),
685 
686 	/* corrections_recommended_bayer */
687 	REGS(be(0x3042),
688 	     be(0x0004),  /* 3042: RNC: enable b/w rnc mode */
689 	     be(0x4580)), /* 3044: RNC: enable row noise correction */
690 
691 	REGS(be(0x30D2),
692 	     be(0x0000),  /* 30D2: CRM/CC: enable crm on Visible and CC rows */
693 	     be(0x0000),  /* 30D4: CC: CC enabled with 16 samples per column */
694 	     /* 30D6: CC: bw mode enabled/12 bit data resolution/bw mode */
695 	     be(0x2FFF)),
696 
697 	REGS(be(0x30DA),
698 	     be(0x0FFF),  /* 30DA: CC: column correction clip level 2 is 0 */
699 	     be(0x0FFF),  /* 30DC: CC: column correction clip level 3 is 0 */
700 	     be(0x0000)), /* 30DE: CC: Group FPN correction */
701 
702 	/* RNC: rnc scaling factor = * 54 / 64 (32 / 38 * 64 = 53.9) */
703 	REGS(be(0x30EE), be(0x1136)),
704 	REGS(be(0x30FA), be(0xFD00)), /* GPIO0 = flash, GPIO1 = shutter */
705 	REGS(be(0x3120), be(0x0005)), /* p1 dither enabled for 10bit mode */
706 	REGS(be(0x3172), be(0x0206)), /* txlo clk divider options */
707 	/* FDOC:fdoc settings with fdoc every frame turned of */
708 	REGS(be(0x3180), be(0x9434)),
709 
710 	REGS(be(0x31B0),
711 	     be(0x008B),  /* 31B0: frame_preamble - FIXME check WRT lanes# */
712 	     be(0x0050)), /* 31B2: line_preamble - FIXME check WRT lanes# */
713 
714 	/* don't use continuous clock mode while shut down */
715 	REGS(be(0x31BC), be(0x068C)),
716 	REGS(be(0x31E0), be(0x0781)), /* Fuse/2DDC: enable 2ddc */
717 
718 	/* analog_setup_recommended_10bit */
719 	REGS(be(0x341A), be(0x4735)), /* Samp&Hold pulse in ADC */
720 	REGS(be(0x3420), be(0x4735)), /* Samp&Hold pulse in ADC */
721 	REGS(be(0x3426), be(0x8A1A)), /* ADC offset distribution pulse */
722 	REGS(be(0x342A), be(0x0018)), /* pulse_config */
723 
724 	/* pixel_timing_recommended */
725 	REGS(be(0x3D00),
726 	     /* 3D00 */ be(0x043E), be(0x4760), be(0xFFFF), be(0xFFFF),
727 	     /* 3D08 */ be(0x8000), be(0x0510), be(0xAF08), be(0x0252),
728 	     /* 3D10 */ be(0x486F), be(0x5D5D), be(0x8056), be(0x8313),
729 	     /* 3D18 */ be(0x0087), be(0x6A48), be(0x6982), be(0x0280),
730 	     /* 3D20 */ be(0x8359), be(0x8D02), be(0x8020), be(0x4882),
731 	     /* 3D28 */ be(0x4269), be(0x6A95), be(0x5988), be(0x5A83),
732 	     /* 3D30 */ be(0x5885), be(0x6280), be(0x6289), be(0x6097),
733 	     /* 3D38 */ be(0x5782), be(0x605C), be(0xBF18), be(0x0961),
734 	     /* 3D40 */ be(0x5080), be(0x2090), be(0x4390), be(0x4382),
735 	     /* 3D48 */ be(0x5F8A), be(0x5D5D), be(0x9C63), be(0x8063),
736 	     /* 3D50 */ be(0xA960), be(0x9757), be(0x8260), be(0x5CFF),
737 	     /* 3D58 */ be(0xBF10), be(0x1681), be(0x0802), be(0x8000),
738 	     /* 3D60 */ be(0x141C), be(0x6000), be(0x6022), be(0x4D80),
739 	     /* 3D68 */ be(0x5C97), be(0x6A69), be(0xAC6F), be(0x4645),
740 	     /* 3D70 */ be(0x4400), be(0x0513), be(0x8069), be(0x6AC6),
741 	     /* 3D78 */ be(0x5F95), be(0x5F70), be(0x8040), be(0x4A81),
742 	     /* 3D80 */ be(0x0300), be(0xE703), be(0x0088), be(0x4A83),
743 	     /* 3D88 */ be(0x40FF), be(0xFFFF), be(0xFD70), be(0x8040),
744 	     /* 3D90 */ be(0x4A85), be(0x4FA8), be(0x4F8C), be(0x0070),
745 	     /* 3D98 */ be(0xBE47), be(0x8847), be(0xBC78), be(0x6B89),
746 	     /* 3DA0 */ be(0x6A80), be(0x6986), be(0x6B8E), be(0x6B80),
747 	     /* 3DA8 */ be(0x6980), be(0x6A88), be(0x7C9F), be(0x866B),
748 	     /* 3DB0 */ be(0x8765), be(0x46FF), be(0xE365), be(0xA679),
749 	     /* 3DB8 */ be(0x4A40), be(0x4580), be(0x44BC), be(0x7000),
750 	     /* 3DC0 */ be(0x8040), be(0x0802), be(0x10EF), be(0x0104),
751 	     /* 3DC8 */ be(0x3860), be(0x5D5D), be(0x5682), be(0x1300),
752 	     /* 3DD0 */ be(0x8648), be(0x8202), be(0x8082), be(0x598A),
753 	     /* 3DD8 */ be(0x0280), be(0x2048), be(0x3060), be(0x8042),
754 	     /* 3DE0 */ be(0x9259), be(0x865A), be(0x8258), be(0x8562),
755 	     /* 3DE8 */ be(0x8062), be(0x8560), be(0x9257), be(0x8221),
756 	     /* 3DF0 */ be(0x10FF), be(0xB757), be(0x9361), be(0x1019),
757 	     /* 3DF8 */ be(0x8020), be(0x9043), be(0x8E43), be(0x845F),
758 	     /* 3E00 */ be(0x835D), be(0x805D), be(0x8163), be(0x8063),
759 	     /* 3E08 */ be(0xA060), be(0x9157), be(0x8260), be(0x5CFF),
760 	     /* 3E10 */ be(0xFFFF), be(0xFFE5), be(0x1016), be(0x2048),
761 	     /* 3E18 */ be(0x0802), be(0x1C60), be(0x0014), be(0x0060),
762 	     /* 3E20 */ be(0x2205), be(0x8120), be(0x908F), be(0x6A80),
763 	     /* 3E28 */ be(0x6982), be(0x5F9F), be(0x6F46), be(0x4544),
764 	     /* 3E30 */ be(0x0005), be(0x8013), be(0x8069), be(0x6A80),
765 	     /* 3E38 */ be(0x7000), be(0x0000), be(0x0000), be(0x0000),
766 	     /* 3E40 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
767 	     /* 3E48 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
768 	     /* 3E50 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
769 	     /* 3E58 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
770 	     /* 3E60 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
771 	     /* 3E68 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
772 	     /* 3E70 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
773 	     /* 3E78 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
774 	     /* 3E80 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
775 	     /* 3E88 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
776 	     /* 3E90 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
777 	     /* 3E98 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
778 	     /* 3EA0 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
779 	     /* 3EA8 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000),
780 	     /* 3EB0 */ be(0x0000), be(0x0000), be(0x0000)),
781 
782 	REGS(be(0x3EB6), be(0x004C)), /* ECL */
783 
784 	REGS(be(0x3EBA),
785 	     be(0xAAAD),  /* 3EBA */
786 	     be(0x0086)), /* 3EBC: Bias currents for FSC/ECL */
787 
788 	REGS(be(0x3EC0),
789 	     be(0x1E00),  /* 3EC0: SFbin/SH mode settings */
790 	     be(0x100A),  /* 3EC2: CLK divider for ramp for 10 bit 400MH */
791 	     /* 3EC4: FSC clamps for HDR mode and adc comp power down co */
792 	     be(0x3300),
793 	     be(0xEA44),  /* 3EC6: VLN and clk gating controls */
794 	     be(0x6F6F),  /* 3EC8: Txl0 and Txlo1 settings for normal mode */
795 	     be(0x2F4A),  /* 3ECA: CDAC/Txlo2/RSTGHI/RSTGLO settings */
796 	     be(0x0506),  /* 3ECC: RSTDHI/RSTDLO/CDAC/TXHI settings */
797 	     /* 3ECE: Ramp buffer settings and Booster enable (bits 0-5) */
798 	     be(0x203B),
799 	     be(0x13F0),  /* 3ED0: TXLO from atest/sf bin settings */
800 	     be(0xA53D),  /* 3ED2: Ramp offset */
801 	     be(0x862F),  /* 3ED4: TXLO open loop/row driver settings */
802 	     be(0x4081),  /* 3ED6: Txlatch fr cfpn rows/vln bias */
803 	     be(0x8003),  /* 3ED8: Ramp step setting for 10 bit 400 Mhz */
804 	     be(0xA580),  /* 3EDA: Ramp Offset */
805 	     be(0xC000),  /* 3EDC: over range for rst and under range for sig */
806 	     be(0xC103)), /* 3EDE: over range for sig and col dec clk settings */
807 
808 	/* corrections_recommended_bayer */
809 	REGS(be(0x3F00),
810 	     be(0x0017),  /* 3F00: BM_T0 */
811 	     be(0x02DD),  /* 3F02: BM_T1 */
812 	     /* 3F04: if Ana_gain less than 2, use noise_floor0, multipl */
813 	     be(0x0020),
814 	     /* 3F06: if Ana_gain between 4 and 7, use noise_floor2 and */
815 	     be(0x0040),
816 	     /* 3F08: if Ana_gain between 4 and 7, use noise_floor2 and */
817 	     be(0x0070),
818 	     /* 3F0A: Define noise_floor0(low address) and noise_floor1 */
819 	     be(0x0101),
820 	     be(0x0302)), /* 3F0C: Define noise_floor2 and noise_floor3 */
821 
822 	REGS(be(0x3F10),
823 	     be(0x0505),  /* 3F10: single k factor 0 */
824 	     be(0x0505),  /* 3F12: single k factor 1 */
825 	     be(0x0505),  /* 3F14: single k factor 2 */
826 	     be(0x01FF),  /* 3F16: cross factor 0 */
827 	     be(0x01FF),  /* 3F18: cross factor 1 */
828 	     be(0x01FF),  /* 3F1A: cross factor 2 */
829 	     be(0x0022)), /* 3F1E */
830 
831 	/* GTH_THRES_RTN: 4max,4min filtered out of every 46 samples and */
832 	REGS(be(0x3F2C), be(0x442E)),
833 
834 	REGS(be(0x3F3E),
835 	     be(0x0000),  /* 3F3E: Switch ADC from 12 bit to 10 bit mode */
836 	     be(0x1511),  /* 3F40: couple k factor 0 */
837 	     be(0x1511),  /* 3F42: couple k factor 1 */
838 	     be(0x0707)), /* 3F44: couple k factor 2 */
839 };
840 
ar0521_power_off(struct device * dev)841 static int ar0521_power_off(struct device *dev)
842 {
843 	struct v4l2_subdev *sd = dev_get_drvdata(dev);
844 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
845 	int i;
846 
847 	clk_disable_unprepare(sensor->extclk);
848 
849 	if (sensor->reset_gpio)
850 		gpiod_set_value(sensor->reset_gpio, 1); /* assert RESET signal */
851 
852 	for (i = ARRAY_SIZE(ar0521_supply_names) - 1; i >= 0; i--) {
853 		if (sensor->supplies[i])
854 			regulator_disable(sensor->supplies[i]);
855 	}
856 	return 0;
857 }
858 
ar0521_power_on(struct device * dev)859 static int ar0521_power_on(struct device *dev)
860 {
861 	struct v4l2_subdev *sd = dev_get_drvdata(dev);
862 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
863 	unsigned int cnt;
864 	int ret;
865 
866 	for (cnt = 0; cnt < ARRAY_SIZE(ar0521_supply_names); cnt++)
867 		if (sensor->supplies[cnt]) {
868 			ret = regulator_enable(sensor->supplies[cnt]);
869 			if (ret < 0)
870 				goto off;
871 
872 			usleep_range(1000, 1500); /* min 1 ms */
873 		}
874 
875 	ret = clk_prepare_enable(sensor->extclk);
876 	if (ret < 0) {
877 		v4l2_err(&sensor->sd, "error enabling sensor clock\n");
878 		goto off;
879 	}
880 	usleep_range(1000, 1500); /* min 1 ms */
881 
882 	if (sensor->reset_gpio)
883 		/* deassert RESET signal */
884 		gpiod_set_value(sensor->reset_gpio, 0);
885 	usleep_range(4500, 5000); /* min 45000 clocks */
886 
887 	for (cnt = 0; cnt < ARRAY_SIZE(initial_regs); cnt++) {
888 		ret = ar0521_write_regs(sensor, initial_regs[cnt].data,
889 					initial_regs[cnt].count);
890 		if (ret)
891 			goto off;
892 	}
893 
894 	ret = ar0521_write_reg(sensor, AR0521_REG_SERIAL_FORMAT,
895 			       AR0521_REG_SERIAL_FORMAT_MIPI |
896 			       sensor->lane_count);
897 	if (ret)
898 		goto off;
899 
900 	/* set MIPI test mode - disabled for now */
901 	ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_TEST_MODE,
902 			       ((0x40 << sensor->lane_count) - 0x40) |
903 			       AR0521_REG_HISPI_TEST_MODE_LP11);
904 	if (ret)
905 		goto off;
906 
907 	ret = ar0521_write_reg(sensor, AR0521_REG_ROW_SPEED, 0x110 |
908 			       4 / sensor->lane_count);
909 	if (ret)
910 		goto off;
911 
912 	return 0;
913 off:
914 	ar0521_power_off(dev);
915 	return ret;
916 }
917 
ar0521_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)918 static int ar0521_enum_mbus_code(struct v4l2_subdev *sd,
919 				 struct v4l2_subdev_state *sd_state,
920 				 struct v4l2_subdev_mbus_code_enum *code)
921 {
922 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
923 
924 	if (code->index)
925 		return -EINVAL;
926 
927 	code->code = sensor->fmt.code;
928 	return 0;
929 }
930 
ar0521_enum_frame_size(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_frame_size_enum * fse)931 static int ar0521_enum_frame_size(struct v4l2_subdev *sd,
932 				  struct v4l2_subdev_state *sd_state,
933 				  struct v4l2_subdev_frame_size_enum *fse)
934 {
935 	if (fse->index)
936 		return -EINVAL;
937 
938 	if (fse->code != MEDIA_BUS_FMT_SGRBG8_1X8)
939 		return -EINVAL;
940 
941 	fse->min_width = AR0521_WIDTH_MIN;
942 	fse->max_width = AR0521_WIDTH_MAX;
943 	fse->min_height = AR0521_HEIGHT_MIN;
944 	fse->max_height = AR0521_HEIGHT_MAX;
945 
946 	return 0;
947 }
948 
ar0521_pre_streamon(struct v4l2_subdev * sd,u32 flags)949 static int ar0521_pre_streamon(struct v4l2_subdev *sd, u32 flags)
950 {
951 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
952 	int ret;
953 
954 	if (!(flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP))
955 		return -EACCES;
956 
957 	ret = pm_runtime_resume_and_get(&sensor->i2c_client->dev);
958 	if (ret < 0)
959 		return ret;
960 
961 	/* Set LP-11 on clock and data lanes */
962 	ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_CONTROL_STATUS,
963 			AR0521_REG_HISPI_CONTROL_STATUS_FRAMER_TEST_MODE_ENABLE);
964 	if (ret)
965 		goto err;
966 
967 	/* Start streaming LP-11 */
968 	ret = ar0521_write_reg(sensor, AR0521_REG_RESET,
969 			       AR0521_REG_RESET_DEFAULTS |
970 			       AR0521_REG_RESET_STREAM);
971 	if (ret)
972 		goto err;
973 	return 0;
974 
975 err:
976 	pm_runtime_put(&sensor->i2c_client->dev);
977 	return ret;
978 }
979 
ar0521_post_streamoff(struct v4l2_subdev * sd)980 static int ar0521_post_streamoff(struct v4l2_subdev *sd)
981 {
982 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
983 
984 	pm_runtime_put(&sensor->i2c_client->dev);
985 	return 0;
986 }
987 
ar0521_s_stream(struct v4l2_subdev * sd,int enable)988 static int ar0521_s_stream(struct v4l2_subdev *sd, int enable)
989 {
990 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
991 	int ret;
992 
993 	mutex_lock(&sensor->lock);
994 
995 	ret = ar0521_set_stream(sensor, enable);
996 	if (!ret)
997 		sensor->streaming = enable;
998 
999 	mutex_unlock(&sensor->lock);
1000 	return ret;
1001 }
1002 
1003 static const struct v4l2_subdev_core_ops ar0521_core_ops = {
1004 	.log_status = v4l2_ctrl_subdev_log_status,
1005 };
1006 
1007 static const struct v4l2_subdev_video_ops ar0521_video_ops = {
1008 	.s_stream = ar0521_s_stream,
1009 	.pre_streamon = ar0521_pre_streamon,
1010 	.post_streamoff = ar0521_post_streamoff,
1011 };
1012 
1013 static const struct v4l2_subdev_pad_ops ar0521_pad_ops = {
1014 	.enum_mbus_code = ar0521_enum_mbus_code,
1015 	.enum_frame_size = ar0521_enum_frame_size,
1016 	.get_fmt = ar0521_get_fmt,
1017 	.set_fmt = ar0521_set_fmt,
1018 };
1019 
1020 static const struct v4l2_subdev_ops ar0521_subdev_ops = {
1021 	.core = &ar0521_core_ops,
1022 	.video = &ar0521_video_ops,
1023 	.pad = &ar0521_pad_ops,
1024 };
1025 
ar0521_suspend(struct device * dev)1026 static int __maybe_unused ar0521_suspend(struct device *dev)
1027 {
1028 	struct v4l2_subdev *sd = dev_get_drvdata(dev);
1029 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
1030 
1031 	if (sensor->streaming)
1032 		ar0521_set_stream(sensor, 0);
1033 
1034 	return 0;
1035 }
1036 
ar0521_resume(struct device * dev)1037 static int __maybe_unused ar0521_resume(struct device *dev)
1038 {
1039 	struct v4l2_subdev *sd = dev_get_drvdata(dev);
1040 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
1041 
1042 	if (sensor->streaming)
1043 		return ar0521_set_stream(sensor, 1);
1044 
1045 	return 0;
1046 }
1047 
ar0521_probe(struct i2c_client * client)1048 static int ar0521_probe(struct i2c_client *client)
1049 {
1050 	struct v4l2_fwnode_endpoint ep = {
1051 		.bus_type = V4L2_MBUS_CSI2_DPHY
1052 	};
1053 	struct device *dev = &client->dev;
1054 	struct fwnode_handle *endpoint;
1055 	struct ar0521_dev *sensor;
1056 	unsigned int cnt;
1057 	int ret;
1058 
1059 	sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
1060 	if (!sensor)
1061 		return -ENOMEM;
1062 
1063 	sensor->i2c_client = client;
1064 	sensor->fmt.width = AR0521_WIDTH_MAX;
1065 	sensor->fmt.height = AR0521_HEIGHT_MAX;
1066 
1067 	endpoint = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 0, 0,
1068 						   FWNODE_GRAPH_ENDPOINT_NEXT);
1069 	if (!endpoint) {
1070 		dev_err(dev, "endpoint node not found\n");
1071 		return -EINVAL;
1072 	}
1073 
1074 	ret = v4l2_fwnode_endpoint_parse(endpoint, &ep);
1075 	fwnode_handle_put(endpoint);
1076 	if (ret) {
1077 		dev_err(dev, "could not parse endpoint\n");
1078 		return ret;
1079 	}
1080 
1081 	if (ep.bus_type != V4L2_MBUS_CSI2_DPHY) {
1082 		dev_err(dev, "invalid bus type, must be MIPI CSI2\n");
1083 		return -EINVAL;
1084 	}
1085 
1086 	sensor->lane_count = ep.bus.mipi_csi2.num_data_lanes;
1087 	switch (sensor->lane_count) {
1088 	case 1:
1089 	case 2:
1090 	case 4:
1091 		break;
1092 	default:
1093 		dev_err(dev, "invalid number of MIPI data lanes\n");
1094 		return -EINVAL;
1095 	}
1096 
1097 	/* Get master clock (extclk) */
1098 	sensor->extclk = devm_clk_get(dev, "extclk");
1099 	if (IS_ERR(sensor->extclk)) {
1100 		dev_err(dev, "failed to get extclk\n");
1101 		return PTR_ERR(sensor->extclk);
1102 	}
1103 
1104 	sensor->extclk_freq = clk_get_rate(sensor->extclk);
1105 
1106 	if (sensor->extclk_freq < AR0521_EXTCLK_MIN ||
1107 	    sensor->extclk_freq > AR0521_EXTCLK_MAX) {
1108 		dev_err(dev, "extclk frequency out of range: %u Hz\n",
1109 			sensor->extclk_freq);
1110 		return -EINVAL;
1111 	}
1112 
1113 	/* Request optional reset pin (usually active low) and assert it */
1114 	sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
1115 						     GPIOD_OUT_HIGH);
1116 
1117 	v4l2_i2c_subdev_init(&sensor->sd, client, &ar0521_subdev_ops);
1118 
1119 	sensor->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1120 	sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
1121 	sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1122 	ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
1123 	if (ret)
1124 		return ret;
1125 
1126 	for (cnt = 0; cnt < ARRAY_SIZE(ar0521_supply_names); cnt++) {
1127 		struct regulator *supply = devm_regulator_get(dev,
1128 						ar0521_supply_names[cnt]);
1129 
1130 		if (IS_ERR(supply)) {
1131 			dev_info(dev, "no %s regulator found: %li\n",
1132 				 ar0521_supply_names[cnt], PTR_ERR(supply));
1133 			return PTR_ERR(supply);
1134 		}
1135 		sensor->supplies[cnt] = supply;
1136 	}
1137 
1138 	mutex_init(&sensor->lock);
1139 
1140 	ret = ar0521_init_controls(sensor);
1141 	if (ret)
1142 		goto entity_cleanup;
1143 
1144 	ar0521_adj_fmt(&sensor->fmt);
1145 
1146 	ret = v4l2_async_register_subdev(&sensor->sd);
1147 	if (ret)
1148 		goto free_ctrls;
1149 
1150 	/* Turn on the device and enable runtime PM */
1151 	ret = ar0521_power_on(&client->dev);
1152 	if (ret)
1153 		goto disable;
1154 	pm_runtime_set_active(&client->dev);
1155 	pm_runtime_enable(&client->dev);
1156 	pm_runtime_idle(&client->dev);
1157 	return 0;
1158 
1159 disable:
1160 	v4l2_async_unregister_subdev(&sensor->sd);
1161 	media_entity_cleanup(&sensor->sd.entity);
1162 free_ctrls:
1163 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
1164 entity_cleanup:
1165 	media_entity_cleanup(&sensor->sd.entity);
1166 	mutex_destroy(&sensor->lock);
1167 	return ret;
1168 }
1169 
ar0521_remove(struct i2c_client * client)1170 static void ar0521_remove(struct i2c_client *client)
1171 {
1172 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1173 	struct ar0521_dev *sensor = to_ar0521_dev(sd);
1174 
1175 	v4l2_async_unregister_subdev(&sensor->sd);
1176 	media_entity_cleanup(&sensor->sd.entity);
1177 	v4l2_ctrl_handler_free(&sensor->ctrls.handler);
1178 	pm_runtime_disable(&client->dev);
1179 	if (!pm_runtime_status_suspended(&client->dev))
1180 		ar0521_power_off(&client->dev);
1181 	pm_runtime_set_suspended(&client->dev);
1182 	mutex_destroy(&sensor->lock);
1183 }
1184 
1185 static const struct dev_pm_ops ar0521_pm_ops = {
1186 	SET_SYSTEM_SLEEP_PM_OPS(ar0521_suspend, ar0521_resume)
1187 	SET_RUNTIME_PM_OPS(ar0521_power_off, ar0521_power_on, NULL)
1188 };
1189 static const struct of_device_id ar0521_dt_ids[] = {
1190 	{.compatible = "onnn,ar0521"},
1191 	{}
1192 };
1193 MODULE_DEVICE_TABLE(of, ar0521_dt_ids);
1194 
1195 static struct i2c_driver ar0521_i2c_driver = {
1196 	.driver = {
1197 		.name  = "ar0521",
1198 		.pm = &ar0521_pm_ops,
1199 		.of_match_table = ar0521_dt_ids,
1200 	},
1201 	.probe = ar0521_probe,
1202 	.remove = ar0521_remove,
1203 };
1204 
1205 module_i2c_driver(ar0521_i2c_driver);
1206 
1207 MODULE_DESCRIPTION("AR0521 MIPI Camera subdev driver");
1208 MODULE_AUTHOR("Krzysztof Hałasa <khalasa@piap.pl>");
1209 MODULE_LICENSE("GPL");
1210