1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 static bool devices_handle_discard_safely = false; 65 module_param(devices_handle_discard_safely, bool, 0644); 66 MODULE_PARM_DESC(devices_handle_discard_safely, 67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 68 static struct workqueue_struct *raid5_wq; 69 70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 71 { 72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 73 return &conf->stripe_hashtbl[hash]; 74 } 75 76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 77 { 78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 79 } 80 81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 82 __acquires(&conf->device_lock) 83 { 84 spin_lock_irq(conf->hash_locks + hash); 85 spin_lock(&conf->device_lock); 86 } 87 88 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 89 __releases(&conf->device_lock) 90 { 91 spin_unlock(&conf->device_lock); 92 spin_unlock_irq(conf->hash_locks + hash); 93 } 94 95 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 96 __acquires(&conf->device_lock) 97 { 98 int i; 99 spin_lock_irq(conf->hash_locks); 100 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 101 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 102 spin_lock(&conf->device_lock); 103 } 104 105 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 106 __releases(&conf->device_lock) 107 { 108 int i; 109 spin_unlock(&conf->device_lock); 110 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 111 spin_unlock(conf->hash_locks + i); 112 spin_unlock_irq(conf->hash_locks); 113 } 114 115 /* Find first data disk in a raid6 stripe */ 116 static inline int raid6_d0(struct stripe_head *sh) 117 { 118 if (sh->ddf_layout) 119 /* ddf always start from first device */ 120 return 0; 121 /* md starts just after Q block */ 122 if (sh->qd_idx == sh->disks - 1) 123 return 0; 124 else 125 return sh->qd_idx + 1; 126 } 127 static inline int raid6_next_disk(int disk, int raid_disks) 128 { 129 disk++; 130 return (disk < raid_disks) ? disk : 0; 131 } 132 133 /* When walking through the disks in a raid5, starting at raid6_d0, 134 * We need to map each disk to a 'slot', where the data disks are slot 135 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 136 * is raid_disks-1. This help does that mapping. 137 */ 138 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 139 int *count, int syndrome_disks) 140 { 141 int slot = *count; 142 143 if (sh->ddf_layout) 144 (*count)++; 145 if (idx == sh->pd_idx) 146 return syndrome_disks; 147 if (idx == sh->qd_idx) 148 return syndrome_disks + 1; 149 if (!sh->ddf_layout) 150 (*count)++; 151 return slot; 152 } 153 154 static void print_raid5_conf (struct r5conf *conf); 155 156 static int stripe_operations_active(struct stripe_head *sh) 157 { 158 return sh->check_state || sh->reconstruct_state || 159 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 160 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 161 } 162 163 static bool stripe_is_lowprio(struct stripe_head *sh) 164 { 165 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 166 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 167 !test_bit(STRIPE_R5C_CACHING, &sh->state); 168 } 169 170 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 171 __must_hold(&sh->raid_conf->device_lock) 172 { 173 struct r5conf *conf = sh->raid_conf; 174 struct r5worker_group *group; 175 int thread_cnt; 176 int i, cpu = sh->cpu; 177 178 if (!cpu_online(cpu)) { 179 cpu = cpumask_any(cpu_online_mask); 180 sh->cpu = cpu; 181 } 182 183 if (list_empty(&sh->lru)) { 184 struct r5worker_group *group; 185 group = conf->worker_groups + cpu_to_group(cpu); 186 if (stripe_is_lowprio(sh)) 187 list_add_tail(&sh->lru, &group->loprio_list); 188 else 189 list_add_tail(&sh->lru, &group->handle_list); 190 group->stripes_cnt++; 191 sh->group = group; 192 } 193 194 if (conf->worker_cnt_per_group == 0) { 195 md_wakeup_thread(conf->mddev->thread); 196 return; 197 } 198 199 group = conf->worker_groups + cpu_to_group(sh->cpu); 200 201 group->workers[0].working = true; 202 /* at least one worker should run to avoid race */ 203 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 204 205 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 206 /* wakeup more workers */ 207 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 208 if (group->workers[i].working == false) { 209 group->workers[i].working = true; 210 queue_work_on(sh->cpu, raid5_wq, 211 &group->workers[i].work); 212 thread_cnt--; 213 } 214 } 215 } 216 217 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 218 struct list_head *temp_inactive_list) 219 __must_hold(&conf->device_lock) 220 { 221 int i; 222 int injournal = 0; /* number of date pages with R5_InJournal */ 223 224 BUG_ON(!list_empty(&sh->lru)); 225 BUG_ON(atomic_read(&conf->active_stripes)==0); 226 227 if (r5c_is_writeback(conf->log)) 228 for (i = sh->disks; i--; ) 229 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 230 injournal++; 231 /* 232 * In the following cases, the stripe cannot be released to cached 233 * lists. Therefore, we make the stripe write out and set 234 * STRIPE_HANDLE: 235 * 1. when quiesce in r5c write back; 236 * 2. when resync is requested fot the stripe. 237 */ 238 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 239 (conf->quiesce && r5c_is_writeback(conf->log) && 240 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 241 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 242 r5c_make_stripe_write_out(sh); 243 set_bit(STRIPE_HANDLE, &sh->state); 244 } 245 246 if (test_bit(STRIPE_HANDLE, &sh->state)) { 247 if (test_bit(STRIPE_DELAYED, &sh->state) && 248 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 249 list_add_tail(&sh->lru, &conf->delayed_list); 250 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 251 sh->bm_seq - conf->seq_write > 0) 252 list_add_tail(&sh->lru, &conf->bitmap_list); 253 else { 254 clear_bit(STRIPE_DELAYED, &sh->state); 255 clear_bit(STRIPE_BIT_DELAY, &sh->state); 256 if (conf->worker_cnt_per_group == 0) { 257 if (stripe_is_lowprio(sh)) 258 list_add_tail(&sh->lru, 259 &conf->loprio_list); 260 else 261 list_add_tail(&sh->lru, 262 &conf->handle_list); 263 } else { 264 raid5_wakeup_stripe_thread(sh); 265 return; 266 } 267 } 268 md_wakeup_thread(conf->mddev->thread); 269 } else { 270 BUG_ON(stripe_operations_active(sh)); 271 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 272 if (atomic_dec_return(&conf->preread_active_stripes) 273 < IO_THRESHOLD) 274 md_wakeup_thread(conf->mddev->thread); 275 atomic_dec(&conf->active_stripes); 276 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 277 if (!r5c_is_writeback(conf->log)) 278 list_add_tail(&sh->lru, temp_inactive_list); 279 else { 280 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 281 if (injournal == 0) 282 list_add_tail(&sh->lru, temp_inactive_list); 283 else if (injournal == conf->raid_disks - conf->max_degraded) { 284 /* full stripe */ 285 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 286 atomic_inc(&conf->r5c_cached_full_stripes); 287 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 288 atomic_dec(&conf->r5c_cached_partial_stripes); 289 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 290 r5c_check_cached_full_stripe(conf); 291 } else 292 /* 293 * STRIPE_R5C_PARTIAL_STRIPE is set in 294 * r5c_try_caching_write(). No need to 295 * set it again. 296 */ 297 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 298 } 299 } 300 } 301 } 302 303 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 304 struct list_head *temp_inactive_list) 305 __must_hold(&conf->device_lock) 306 { 307 if (atomic_dec_and_test(&sh->count)) 308 do_release_stripe(conf, sh, temp_inactive_list); 309 } 310 311 /* 312 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 313 * 314 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 315 * given time. Adding stripes only takes device lock, while deleting stripes 316 * only takes hash lock. 317 */ 318 static void release_inactive_stripe_list(struct r5conf *conf, 319 struct list_head *temp_inactive_list, 320 int hash) 321 { 322 int size; 323 bool do_wakeup = false; 324 unsigned long flags; 325 326 if (hash == NR_STRIPE_HASH_LOCKS) { 327 size = NR_STRIPE_HASH_LOCKS; 328 hash = NR_STRIPE_HASH_LOCKS - 1; 329 } else 330 size = 1; 331 while (size) { 332 struct list_head *list = &temp_inactive_list[size - 1]; 333 334 /* 335 * We don't hold any lock here yet, raid5_get_active_stripe() might 336 * remove stripes from the list 337 */ 338 if (!list_empty_careful(list)) { 339 spin_lock_irqsave(conf->hash_locks + hash, flags); 340 if (list_empty(conf->inactive_list + hash) && 341 !list_empty(list)) 342 atomic_dec(&conf->empty_inactive_list_nr); 343 list_splice_tail_init(list, conf->inactive_list + hash); 344 do_wakeup = true; 345 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 346 } 347 size--; 348 hash--; 349 } 350 351 if (do_wakeup) { 352 wake_up(&conf->wait_for_stripe); 353 if (atomic_read(&conf->active_stripes) == 0) 354 wake_up(&conf->wait_for_quiescent); 355 if (conf->retry_read_aligned) 356 md_wakeup_thread(conf->mddev->thread); 357 } 358 } 359 360 static int release_stripe_list(struct r5conf *conf, 361 struct list_head *temp_inactive_list) 362 __must_hold(&conf->device_lock) 363 { 364 struct stripe_head *sh, *t; 365 int count = 0; 366 struct llist_node *head; 367 368 head = llist_del_all(&conf->released_stripes); 369 head = llist_reverse_order(head); 370 llist_for_each_entry_safe(sh, t, head, release_list) { 371 int hash; 372 373 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 374 smp_mb(); 375 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 376 /* 377 * Don't worry the bit is set here, because if the bit is set 378 * again, the count is always > 1. This is true for 379 * STRIPE_ON_UNPLUG_LIST bit too. 380 */ 381 hash = sh->hash_lock_index; 382 __release_stripe(conf, sh, &temp_inactive_list[hash]); 383 count++; 384 } 385 386 return count; 387 } 388 389 void raid5_release_stripe(struct stripe_head *sh) 390 { 391 struct r5conf *conf = sh->raid_conf; 392 unsigned long flags; 393 struct list_head list; 394 int hash; 395 bool wakeup; 396 397 /* Avoid release_list until the last reference. 398 */ 399 if (atomic_add_unless(&sh->count, -1, 1)) 400 return; 401 402 if (unlikely(!conf->mddev->thread) || 403 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 404 goto slow_path; 405 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 406 if (wakeup) 407 md_wakeup_thread(conf->mddev->thread); 408 return; 409 slow_path: 410 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 411 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 412 INIT_LIST_HEAD(&list); 413 hash = sh->hash_lock_index; 414 do_release_stripe(conf, sh, &list); 415 spin_unlock_irqrestore(&conf->device_lock, flags); 416 release_inactive_stripe_list(conf, &list, hash); 417 } 418 } 419 420 static inline void remove_hash(struct stripe_head *sh) 421 { 422 pr_debug("remove_hash(), stripe %llu\n", 423 (unsigned long long)sh->sector); 424 425 hlist_del_init(&sh->hash); 426 } 427 428 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 429 { 430 struct hlist_head *hp = stripe_hash(conf, sh->sector); 431 432 pr_debug("insert_hash(), stripe %llu\n", 433 (unsigned long long)sh->sector); 434 435 hlist_add_head(&sh->hash, hp); 436 } 437 438 /* find an idle stripe, make sure it is unhashed, and return it. */ 439 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 440 { 441 struct stripe_head *sh = NULL; 442 struct list_head *first; 443 444 if (list_empty(conf->inactive_list + hash)) 445 goto out; 446 first = (conf->inactive_list + hash)->next; 447 sh = list_entry(first, struct stripe_head, lru); 448 list_del_init(first); 449 remove_hash(sh); 450 atomic_inc(&conf->active_stripes); 451 BUG_ON(hash != sh->hash_lock_index); 452 if (list_empty(conf->inactive_list + hash)) 453 atomic_inc(&conf->empty_inactive_list_nr); 454 out: 455 return sh; 456 } 457 458 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 459 static void free_stripe_pages(struct stripe_head *sh) 460 { 461 int i; 462 struct page *p; 463 464 /* Have not allocate page pool */ 465 if (!sh->pages) 466 return; 467 468 for (i = 0; i < sh->nr_pages; i++) { 469 p = sh->pages[i]; 470 if (p) 471 put_page(p); 472 sh->pages[i] = NULL; 473 } 474 } 475 476 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 477 { 478 int i; 479 struct page *p; 480 481 for (i = 0; i < sh->nr_pages; i++) { 482 /* The page have allocated. */ 483 if (sh->pages[i]) 484 continue; 485 486 p = alloc_page(gfp); 487 if (!p) { 488 free_stripe_pages(sh); 489 return -ENOMEM; 490 } 491 sh->pages[i] = p; 492 } 493 return 0; 494 } 495 496 static int 497 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 498 { 499 int nr_pages, cnt; 500 501 if (sh->pages) 502 return 0; 503 504 /* Each of the sh->dev[i] need one conf->stripe_size */ 505 cnt = PAGE_SIZE / conf->stripe_size; 506 nr_pages = (disks + cnt - 1) / cnt; 507 508 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 509 if (!sh->pages) 510 return -ENOMEM; 511 sh->nr_pages = nr_pages; 512 sh->stripes_per_page = cnt; 513 return 0; 514 } 515 #endif 516 517 static void shrink_buffers(struct stripe_head *sh) 518 { 519 int i; 520 int num = sh->raid_conf->pool_size; 521 522 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 523 for (i = 0; i < num ; i++) { 524 struct page *p; 525 526 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 527 p = sh->dev[i].page; 528 if (!p) 529 continue; 530 sh->dev[i].page = NULL; 531 put_page(p); 532 } 533 #else 534 for (i = 0; i < num; i++) 535 sh->dev[i].page = NULL; 536 free_stripe_pages(sh); /* Free pages */ 537 #endif 538 } 539 540 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 541 { 542 int i; 543 int num = sh->raid_conf->pool_size; 544 545 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 546 for (i = 0; i < num; i++) { 547 struct page *page; 548 549 if (!(page = alloc_page(gfp))) { 550 return 1; 551 } 552 sh->dev[i].page = page; 553 sh->dev[i].orig_page = page; 554 sh->dev[i].offset = 0; 555 } 556 #else 557 if (alloc_stripe_pages(sh, gfp)) 558 return -ENOMEM; 559 560 for (i = 0; i < num; i++) { 561 sh->dev[i].page = raid5_get_dev_page(sh, i); 562 sh->dev[i].orig_page = sh->dev[i].page; 563 sh->dev[i].offset = raid5_get_page_offset(sh, i); 564 } 565 #endif 566 return 0; 567 } 568 569 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 570 struct stripe_head *sh); 571 572 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 573 { 574 struct r5conf *conf = sh->raid_conf; 575 int i, seq; 576 577 BUG_ON(atomic_read(&sh->count) != 0); 578 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 579 BUG_ON(stripe_operations_active(sh)); 580 BUG_ON(sh->batch_head); 581 582 pr_debug("init_stripe called, stripe %llu\n", 583 (unsigned long long)sector); 584 retry: 585 seq = read_seqcount_begin(&conf->gen_lock); 586 sh->generation = conf->generation - previous; 587 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 588 sh->sector = sector; 589 stripe_set_idx(sector, conf, previous, sh); 590 sh->state = 0; 591 592 for (i = sh->disks; i--; ) { 593 struct r5dev *dev = &sh->dev[i]; 594 595 if (dev->toread || dev->read || dev->towrite || dev->written || 596 test_bit(R5_LOCKED, &dev->flags)) { 597 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 598 (unsigned long long)sh->sector, i, dev->toread, 599 dev->read, dev->towrite, dev->written, 600 test_bit(R5_LOCKED, &dev->flags)); 601 WARN_ON(1); 602 } 603 dev->flags = 0; 604 dev->sector = raid5_compute_blocknr(sh, i, previous); 605 } 606 if (read_seqcount_retry(&conf->gen_lock, seq)) 607 goto retry; 608 sh->overwrite_disks = 0; 609 insert_hash(conf, sh); 610 sh->cpu = smp_processor_id(); 611 set_bit(STRIPE_BATCH_READY, &sh->state); 612 } 613 614 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 615 short generation) 616 { 617 struct stripe_head *sh; 618 619 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 620 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 621 if (sh->sector == sector && sh->generation == generation) 622 return sh; 623 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 624 return NULL; 625 } 626 627 /* 628 * Need to check if array has failed when deciding whether to: 629 * - start an array 630 * - remove non-faulty devices 631 * - add a spare 632 * - allow a reshape 633 * This determination is simple when no reshape is happening. 634 * However if there is a reshape, we need to carefully check 635 * both the before and after sections. 636 * This is because some failed devices may only affect one 637 * of the two sections, and some non-in_sync devices may 638 * be insync in the section most affected by failed devices. 639 * 640 * Most calls to this function hold &conf->device_lock. Calls 641 * in raid5_run() do not require the lock as no other threads 642 * have been started yet. 643 */ 644 int raid5_calc_degraded(struct r5conf *conf) 645 { 646 int degraded, degraded2; 647 int i; 648 649 rcu_read_lock(); 650 degraded = 0; 651 for (i = 0; i < conf->previous_raid_disks; i++) { 652 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 653 if (rdev && test_bit(Faulty, &rdev->flags)) 654 rdev = rcu_dereference(conf->disks[i].replacement); 655 if (!rdev || test_bit(Faulty, &rdev->flags)) 656 degraded++; 657 else if (test_bit(In_sync, &rdev->flags)) 658 ; 659 else 660 /* not in-sync or faulty. 661 * If the reshape increases the number of devices, 662 * this is being recovered by the reshape, so 663 * this 'previous' section is not in_sync. 664 * If the number of devices is being reduced however, 665 * the device can only be part of the array if 666 * we are reverting a reshape, so this section will 667 * be in-sync. 668 */ 669 if (conf->raid_disks >= conf->previous_raid_disks) 670 degraded++; 671 } 672 rcu_read_unlock(); 673 if (conf->raid_disks == conf->previous_raid_disks) 674 return degraded; 675 rcu_read_lock(); 676 degraded2 = 0; 677 for (i = 0; i < conf->raid_disks; i++) { 678 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 679 if (rdev && test_bit(Faulty, &rdev->flags)) 680 rdev = rcu_dereference(conf->disks[i].replacement); 681 if (!rdev || test_bit(Faulty, &rdev->flags)) 682 degraded2++; 683 else if (test_bit(In_sync, &rdev->flags)) 684 ; 685 else 686 /* not in-sync or faulty. 687 * If reshape increases the number of devices, this 688 * section has already been recovered, else it 689 * almost certainly hasn't. 690 */ 691 if (conf->raid_disks <= conf->previous_raid_disks) 692 degraded2++; 693 } 694 rcu_read_unlock(); 695 if (degraded2 > degraded) 696 return degraded2; 697 return degraded; 698 } 699 700 static bool has_failed(struct r5conf *conf) 701 { 702 int degraded = conf->mddev->degraded; 703 704 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 705 return true; 706 707 if (conf->mddev->reshape_position != MaxSector) 708 degraded = raid5_calc_degraded(conf); 709 710 return degraded > conf->max_degraded; 711 } 712 713 struct stripe_head * 714 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 715 int previous, int noblock, int noquiesce) 716 { 717 struct stripe_head *sh; 718 int hash = stripe_hash_locks_hash(conf, sector); 719 int inc_empty_inactive_list_flag; 720 721 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 722 723 spin_lock_irq(conf->hash_locks + hash); 724 725 do { 726 wait_event_lock_irq(conf->wait_for_quiescent, 727 conf->quiesce == 0 || noquiesce, 728 *(conf->hash_locks + hash)); 729 sh = __find_stripe(conf, sector, conf->generation - previous); 730 if (!sh) { 731 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 732 sh = get_free_stripe(conf, hash); 733 if (!sh && !test_bit(R5_DID_ALLOC, 734 &conf->cache_state)) 735 set_bit(R5_ALLOC_MORE, 736 &conf->cache_state); 737 } 738 if (noblock && sh == NULL) 739 break; 740 741 r5c_check_stripe_cache_usage(conf); 742 if (!sh) { 743 set_bit(R5_INACTIVE_BLOCKED, 744 &conf->cache_state); 745 r5l_wake_reclaim(conf->log, 0); 746 wait_event_lock_irq( 747 conf->wait_for_stripe, 748 !list_empty(conf->inactive_list + hash) && 749 (atomic_read(&conf->active_stripes) 750 < (conf->max_nr_stripes * 3 / 4) 751 || !test_bit(R5_INACTIVE_BLOCKED, 752 &conf->cache_state)), 753 *(conf->hash_locks + hash)); 754 clear_bit(R5_INACTIVE_BLOCKED, 755 &conf->cache_state); 756 } else { 757 init_stripe(sh, sector, previous); 758 atomic_inc(&sh->count); 759 } 760 } else if (!atomic_inc_not_zero(&sh->count)) { 761 spin_lock(&conf->device_lock); 762 if (!atomic_read(&sh->count)) { 763 if (!test_bit(STRIPE_HANDLE, &sh->state)) 764 atomic_inc(&conf->active_stripes); 765 BUG_ON(list_empty(&sh->lru) && 766 !test_bit(STRIPE_EXPANDING, &sh->state)); 767 inc_empty_inactive_list_flag = 0; 768 if (!list_empty(conf->inactive_list + hash)) 769 inc_empty_inactive_list_flag = 1; 770 list_del_init(&sh->lru); 771 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 772 atomic_inc(&conf->empty_inactive_list_nr); 773 if (sh->group) { 774 sh->group->stripes_cnt--; 775 sh->group = NULL; 776 } 777 } 778 atomic_inc(&sh->count); 779 spin_unlock(&conf->device_lock); 780 } 781 } while (sh == NULL); 782 783 spin_unlock_irq(conf->hash_locks + hash); 784 return sh; 785 } 786 787 static bool is_full_stripe_write(struct stripe_head *sh) 788 { 789 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 790 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 791 } 792 793 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 794 __acquires(&sh1->stripe_lock) 795 __acquires(&sh2->stripe_lock) 796 { 797 if (sh1 > sh2) { 798 spin_lock_irq(&sh2->stripe_lock); 799 spin_lock_nested(&sh1->stripe_lock, 1); 800 } else { 801 spin_lock_irq(&sh1->stripe_lock); 802 spin_lock_nested(&sh2->stripe_lock, 1); 803 } 804 } 805 806 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 807 __releases(&sh1->stripe_lock) 808 __releases(&sh2->stripe_lock) 809 { 810 spin_unlock(&sh1->stripe_lock); 811 spin_unlock_irq(&sh2->stripe_lock); 812 } 813 814 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 815 static bool stripe_can_batch(struct stripe_head *sh) 816 { 817 struct r5conf *conf = sh->raid_conf; 818 819 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 820 return false; 821 return test_bit(STRIPE_BATCH_READY, &sh->state) && 822 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 823 is_full_stripe_write(sh); 824 } 825 826 /* we only do back search */ 827 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 828 { 829 struct stripe_head *head; 830 sector_t head_sector, tmp_sec; 831 int hash; 832 int dd_idx; 833 int inc_empty_inactive_list_flag; 834 835 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 836 tmp_sec = sh->sector; 837 if (!sector_div(tmp_sec, conf->chunk_sectors)) 838 return; 839 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 840 841 hash = stripe_hash_locks_hash(conf, head_sector); 842 spin_lock_irq(conf->hash_locks + hash); 843 head = __find_stripe(conf, head_sector, conf->generation); 844 if (head && !atomic_inc_not_zero(&head->count)) { 845 spin_lock(&conf->device_lock); 846 if (!atomic_read(&head->count)) { 847 if (!test_bit(STRIPE_HANDLE, &head->state)) 848 atomic_inc(&conf->active_stripes); 849 BUG_ON(list_empty(&head->lru) && 850 !test_bit(STRIPE_EXPANDING, &head->state)); 851 inc_empty_inactive_list_flag = 0; 852 if (!list_empty(conf->inactive_list + hash)) 853 inc_empty_inactive_list_flag = 1; 854 list_del_init(&head->lru); 855 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 856 atomic_inc(&conf->empty_inactive_list_nr); 857 if (head->group) { 858 head->group->stripes_cnt--; 859 head->group = NULL; 860 } 861 } 862 atomic_inc(&head->count); 863 spin_unlock(&conf->device_lock); 864 } 865 spin_unlock_irq(conf->hash_locks + hash); 866 867 if (!head) 868 return; 869 if (!stripe_can_batch(head)) 870 goto out; 871 872 lock_two_stripes(head, sh); 873 /* clear_batch_ready clear the flag */ 874 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 875 goto unlock_out; 876 877 if (sh->batch_head) 878 goto unlock_out; 879 880 dd_idx = 0; 881 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 882 dd_idx++; 883 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 884 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 885 goto unlock_out; 886 887 if (head->batch_head) { 888 spin_lock(&head->batch_head->batch_lock); 889 /* This batch list is already running */ 890 if (!stripe_can_batch(head)) { 891 spin_unlock(&head->batch_head->batch_lock); 892 goto unlock_out; 893 } 894 /* 895 * We must assign batch_head of this stripe within the 896 * batch_lock, otherwise clear_batch_ready of batch head 897 * stripe could clear BATCH_READY bit of this stripe and 898 * this stripe->batch_head doesn't get assigned, which 899 * could confuse clear_batch_ready for this stripe 900 */ 901 sh->batch_head = head->batch_head; 902 903 /* 904 * at this point, head's BATCH_READY could be cleared, but we 905 * can still add the stripe to batch list 906 */ 907 list_add(&sh->batch_list, &head->batch_list); 908 spin_unlock(&head->batch_head->batch_lock); 909 } else { 910 head->batch_head = head; 911 sh->batch_head = head->batch_head; 912 spin_lock(&head->batch_lock); 913 list_add_tail(&sh->batch_list, &head->batch_list); 914 spin_unlock(&head->batch_lock); 915 } 916 917 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 918 if (atomic_dec_return(&conf->preread_active_stripes) 919 < IO_THRESHOLD) 920 md_wakeup_thread(conf->mddev->thread); 921 922 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 923 int seq = sh->bm_seq; 924 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 925 sh->batch_head->bm_seq > seq) 926 seq = sh->batch_head->bm_seq; 927 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 928 sh->batch_head->bm_seq = seq; 929 } 930 931 atomic_inc(&sh->count); 932 unlock_out: 933 unlock_two_stripes(head, sh); 934 out: 935 raid5_release_stripe(head); 936 } 937 938 /* Determine if 'data_offset' or 'new_data_offset' should be used 939 * in this stripe_head. 940 */ 941 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 942 { 943 sector_t progress = conf->reshape_progress; 944 /* Need a memory barrier to make sure we see the value 945 * of conf->generation, or ->data_offset that was set before 946 * reshape_progress was updated. 947 */ 948 smp_rmb(); 949 if (progress == MaxSector) 950 return 0; 951 if (sh->generation == conf->generation - 1) 952 return 0; 953 /* We are in a reshape, and this is a new-generation stripe, 954 * so use new_data_offset. 955 */ 956 return 1; 957 } 958 959 static void dispatch_bio_list(struct bio_list *tmp) 960 { 961 struct bio *bio; 962 963 while ((bio = bio_list_pop(tmp))) 964 submit_bio_noacct(bio); 965 } 966 967 static int cmp_stripe(void *priv, const struct list_head *a, 968 const struct list_head *b) 969 { 970 const struct r5pending_data *da = list_entry(a, 971 struct r5pending_data, sibling); 972 const struct r5pending_data *db = list_entry(b, 973 struct r5pending_data, sibling); 974 if (da->sector > db->sector) 975 return 1; 976 if (da->sector < db->sector) 977 return -1; 978 return 0; 979 } 980 981 static void dispatch_defer_bios(struct r5conf *conf, int target, 982 struct bio_list *list) 983 { 984 struct r5pending_data *data; 985 struct list_head *first, *next = NULL; 986 int cnt = 0; 987 988 if (conf->pending_data_cnt == 0) 989 return; 990 991 list_sort(NULL, &conf->pending_list, cmp_stripe); 992 993 first = conf->pending_list.next; 994 995 /* temporarily move the head */ 996 if (conf->next_pending_data) 997 list_move_tail(&conf->pending_list, 998 &conf->next_pending_data->sibling); 999 1000 while (!list_empty(&conf->pending_list)) { 1001 data = list_first_entry(&conf->pending_list, 1002 struct r5pending_data, sibling); 1003 if (&data->sibling == first) 1004 first = data->sibling.next; 1005 next = data->sibling.next; 1006 1007 bio_list_merge(list, &data->bios); 1008 list_move(&data->sibling, &conf->free_list); 1009 cnt++; 1010 if (cnt >= target) 1011 break; 1012 } 1013 conf->pending_data_cnt -= cnt; 1014 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1015 1016 if (next != &conf->pending_list) 1017 conf->next_pending_data = list_entry(next, 1018 struct r5pending_data, sibling); 1019 else 1020 conf->next_pending_data = NULL; 1021 /* list isn't empty */ 1022 if (first != &conf->pending_list) 1023 list_move_tail(&conf->pending_list, first); 1024 } 1025 1026 static void flush_deferred_bios(struct r5conf *conf) 1027 { 1028 struct bio_list tmp = BIO_EMPTY_LIST; 1029 1030 if (conf->pending_data_cnt == 0) 1031 return; 1032 1033 spin_lock(&conf->pending_bios_lock); 1034 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1035 BUG_ON(conf->pending_data_cnt != 0); 1036 spin_unlock(&conf->pending_bios_lock); 1037 1038 dispatch_bio_list(&tmp); 1039 } 1040 1041 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1042 struct bio_list *bios) 1043 { 1044 struct bio_list tmp = BIO_EMPTY_LIST; 1045 struct r5pending_data *ent; 1046 1047 spin_lock(&conf->pending_bios_lock); 1048 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1049 sibling); 1050 list_move_tail(&ent->sibling, &conf->pending_list); 1051 ent->sector = sector; 1052 bio_list_init(&ent->bios); 1053 bio_list_merge(&ent->bios, bios); 1054 conf->pending_data_cnt++; 1055 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1056 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1057 1058 spin_unlock(&conf->pending_bios_lock); 1059 1060 dispatch_bio_list(&tmp); 1061 } 1062 1063 static void 1064 raid5_end_read_request(struct bio *bi); 1065 static void 1066 raid5_end_write_request(struct bio *bi); 1067 1068 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1069 { 1070 struct r5conf *conf = sh->raid_conf; 1071 int i, disks = sh->disks; 1072 struct stripe_head *head_sh = sh; 1073 struct bio_list pending_bios = BIO_EMPTY_LIST; 1074 struct r5dev *dev; 1075 bool should_defer; 1076 1077 might_sleep(); 1078 1079 if (log_stripe(sh, s) == 0) 1080 return; 1081 1082 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1083 1084 for (i = disks; i--; ) { 1085 int op, op_flags = 0; 1086 int replace_only = 0; 1087 struct bio *bi, *rbi; 1088 struct md_rdev *rdev, *rrdev = NULL; 1089 1090 sh = head_sh; 1091 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1092 op = REQ_OP_WRITE; 1093 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1094 op_flags = REQ_FUA; 1095 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1096 op = REQ_OP_DISCARD; 1097 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1098 op = REQ_OP_READ; 1099 else if (test_and_clear_bit(R5_WantReplace, 1100 &sh->dev[i].flags)) { 1101 op = REQ_OP_WRITE; 1102 replace_only = 1; 1103 } else 1104 continue; 1105 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1106 op_flags |= REQ_SYNC; 1107 1108 again: 1109 dev = &sh->dev[i]; 1110 bi = &dev->req; 1111 rbi = &dev->rreq; /* For writing to replacement */ 1112 1113 rcu_read_lock(); 1114 rrdev = rcu_dereference(conf->disks[i].replacement); 1115 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1116 rdev = rcu_dereference(conf->disks[i].rdev); 1117 if (!rdev) { 1118 rdev = rrdev; 1119 rrdev = NULL; 1120 } 1121 if (op_is_write(op)) { 1122 if (replace_only) 1123 rdev = NULL; 1124 if (rdev == rrdev) 1125 /* We raced and saw duplicates */ 1126 rrdev = NULL; 1127 } else { 1128 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1129 rdev = rrdev; 1130 rrdev = NULL; 1131 } 1132 1133 if (rdev && test_bit(Faulty, &rdev->flags)) 1134 rdev = NULL; 1135 if (rdev) 1136 atomic_inc(&rdev->nr_pending); 1137 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1138 rrdev = NULL; 1139 if (rrdev) 1140 atomic_inc(&rrdev->nr_pending); 1141 rcu_read_unlock(); 1142 1143 /* We have already checked bad blocks for reads. Now 1144 * need to check for writes. We never accept write errors 1145 * on the replacement, so we don't to check rrdev. 1146 */ 1147 while (op_is_write(op) && rdev && 1148 test_bit(WriteErrorSeen, &rdev->flags)) { 1149 sector_t first_bad; 1150 int bad_sectors; 1151 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1152 &first_bad, &bad_sectors); 1153 if (!bad) 1154 break; 1155 1156 if (bad < 0) { 1157 set_bit(BlockedBadBlocks, &rdev->flags); 1158 if (!conf->mddev->external && 1159 conf->mddev->sb_flags) { 1160 /* It is very unlikely, but we might 1161 * still need to write out the 1162 * bad block log - better give it 1163 * a chance*/ 1164 md_check_recovery(conf->mddev); 1165 } 1166 /* 1167 * Because md_wait_for_blocked_rdev 1168 * will dec nr_pending, we must 1169 * increment it first. 1170 */ 1171 atomic_inc(&rdev->nr_pending); 1172 md_wait_for_blocked_rdev(rdev, conf->mddev); 1173 } else { 1174 /* Acknowledged bad block - skip the write */ 1175 rdev_dec_pending(rdev, conf->mddev); 1176 rdev = NULL; 1177 } 1178 } 1179 1180 if (rdev) { 1181 if (s->syncing || s->expanding || s->expanded 1182 || s->replacing) 1183 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1184 1185 set_bit(STRIPE_IO_STARTED, &sh->state); 1186 1187 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1188 bi->bi_end_io = op_is_write(op) 1189 ? raid5_end_write_request 1190 : raid5_end_read_request; 1191 bi->bi_private = sh; 1192 1193 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1194 __func__, (unsigned long long)sh->sector, 1195 bi->bi_opf, i); 1196 atomic_inc(&sh->count); 1197 if (sh != head_sh) 1198 atomic_inc(&head_sh->count); 1199 if (use_new_offset(conf, sh)) 1200 bi->bi_iter.bi_sector = (sh->sector 1201 + rdev->new_data_offset); 1202 else 1203 bi->bi_iter.bi_sector = (sh->sector 1204 + rdev->data_offset); 1205 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1206 bi->bi_opf |= REQ_NOMERGE; 1207 1208 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1209 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1210 1211 if (!op_is_write(op) && 1212 test_bit(R5_InJournal, &sh->dev[i].flags)) 1213 /* 1214 * issuing read for a page in journal, this 1215 * must be preparing for prexor in rmw; read 1216 * the data into orig_page 1217 */ 1218 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1219 else 1220 sh->dev[i].vec.bv_page = sh->dev[i].page; 1221 bi->bi_vcnt = 1; 1222 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1223 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1224 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1225 /* 1226 * If this is discard request, set bi_vcnt 0. We don't 1227 * want to confuse SCSI because SCSI will replace payload 1228 */ 1229 if (op == REQ_OP_DISCARD) 1230 bi->bi_vcnt = 0; 1231 if (rrdev) 1232 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1233 1234 if (conf->mddev->gendisk) 1235 trace_block_bio_remap(bi, 1236 disk_devt(conf->mddev->gendisk), 1237 sh->dev[i].sector); 1238 if (should_defer && op_is_write(op)) 1239 bio_list_add(&pending_bios, bi); 1240 else 1241 submit_bio_noacct(bi); 1242 } 1243 if (rrdev) { 1244 if (s->syncing || s->expanding || s->expanded 1245 || s->replacing) 1246 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1247 1248 set_bit(STRIPE_IO_STARTED, &sh->state); 1249 1250 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1251 BUG_ON(!op_is_write(op)); 1252 rbi->bi_end_io = raid5_end_write_request; 1253 rbi->bi_private = sh; 1254 1255 pr_debug("%s: for %llu schedule op %d on " 1256 "replacement disc %d\n", 1257 __func__, (unsigned long long)sh->sector, 1258 rbi->bi_opf, i); 1259 atomic_inc(&sh->count); 1260 if (sh != head_sh) 1261 atomic_inc(&head_sh->count); 1262 if (use_new_offset(conf, sh)) 1263 rbi->bi_iter.bi_sector = (sh->sector 1264 + rrdev->new_data_offset); 1265 else 1266 rbi->bi_iter.bi_sector = (sh->sector 1267 + rrdev->data_offset); 1268 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1269 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1270 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1271 rbi->bi_vcnt = 1; 1272 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1273 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1274 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1275 /* 1276 * If this is discard request, set bi_vcnt 0. We don't 1277 * want to confuse SCSI because SCSI will replace payload 1278 */ 1279 if (op == REQ_OP_DISCARD) 1280 rbi->bi_vcnt = 0; 1281 if (conf->mddev->gendisk) 1282 trace_block_bio_remap(rbi, 1283 disk_devt(conf->mddev->gendisk), 1284 sh->dev[i].sector); 1285 if (should_defer && op_is_write(op)) 1286 bio_list_add(&pending_bios, rbi); 1287 else 1288 submit_bio_noacct(rbi); 1289 } 1290 if (!rdev && !rrdev) { 1291 if (op_is_write(op)) 1292 set_bit(STRIPE_DEGRADED, &sh->state); 1293 pr_debug("skip op %d on disc %d for sector %llu\n", 1294 bi->bi_opf, i, (unsigned long long)sh->sector); 1295 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1296 set_bit(STRIPE_HANDLE, &sh->state); 1297 } 1298 1299 if (!head_sh->batch_head) 1300 continue; 1301 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1302 batch_list); 1303 if (sh != head_sh) 1304 goto again; 1305 } 1306 1307 if (should_defer && !bio_list_empty(&pending_bios)) 1308 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1309 } 1310 1311 static struct dma_async_tx_descriptor * 1312 async_copy_data(int frombio, struct bio *bio, struct page **page, 1313 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1314 struct stripe_head *sh, int no_skipcopy) 1315 { 1316 struct bio_vec bvl; 1317 struct bvec_iter iter; 1318 struct page *bio_page; 1319 int page_offset; 1320 struct async_submit_ctl submit; 1321 enum async_tx_flags flags = 0; 1322 struct r5conf *conf = sh->raid_conf; 1323 1324 if (bio->bi_iter.bi_sector >= sector) 1325 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1326 else 1327 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1328 1329 if (frombio) 1330 flags |= ASYNC_TX_FENCE; 1331 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1332 1333 bio_for_each_segment(bvl, bio, iter) { 1334 int len = bvl.bv_len; 1335 int clen; 1336 int b_offset = 0; 1337 1338 if (page_offset < 0) { 1339 b_offset = -page_offset; 1340 page_offset += b_offset; 1341 len -= b_offset; 1342 } 1343 1344 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1345 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1346 else 1347 clen = len; 1348 1349 if (clen > 0) { 1350 b_offset += bvl.bv_offset; 1351 bio_page = bvl.bv_page; 1352 if (frombio) { 1353 if (conf->skip_copy && 1354 b_offset == 0 && page_offset == 0 && 1355 clen == RAID5_STRIPE_SIZE(conf) && 1356 !no_skipcopy) 1357 *page = bio_page; 1358 else 1359 tx = async_memcpy(*page, bio_page, page_offset + poff, 1360 b_offset, clen, &submit); 1361 } else 1362 tx = async_memcpy(bio_page, *page, b_offset, 1363 page_offset + poff, clen, &submit); 1364 } 1365 /* chain the operations */ 1366 submit.depend_tx = tx; 1367 1368 if (clen < len) /* hit end of page */ 1369 break; 1370 page_offset += len; 1371 } 1372 1373 return tx; 1374 } 1375 1376 static void ops_complete_biofill(void *stripe_head_ref) 1377 { 1378 struct stripe_head *sh = stripe_head_ref; 1379 int i; 1380 struct r5conf *conf = sh->raid_conf; 1381 1382 pr_debug("%s: stripe %llu\n", __func__, 1383 (unsigned long long)sh->sector); 1384 1385 /* clear completed biofills */ 1386 for (i = sh->disks; i--; ) { 1387 struct r5dev *dev = &sh->dev[i]; 1388 1389 /* acknowledge completion of a biofill operation */ 1390 /* and check if we need to reply to a read request, 1391 * new R5_Wantfill requests are held off until 1392 * !STRIPE_BIOFILL_RUN 1393 */ 1394 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1395 struct bio *rbi, *rbi2; 1396 1397 BUG_ON(!dev->read); 1398 rbi = dev->read; 1399 dev->read = NULL; 1400 while (rbi && rbi->bi_iter.bi_sector < 1401 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1402 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1403 bio_endio(rbi); 1404 rbi = rbi2; 1405 } 1406 } 1407 } 1408 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1409 1410 set_bit(STRIPE_HANDLE, &sh->state); 1411 raid5_release_stripe(sh); 1412 } 1413 1414 static void ops_run_biofill(struct stripe_head *sh) 1415 { 1416 struct dma_async_tx_descriptor *tx = NULL; 1417 struct async_submit_ctl submit; 1418 int i; 1419 struct r5conf *conf = sh->raid_conf; 1420 1421 BUG_ON(sh->batch_head); 1422 pr_debug("%s: stripe %llu\n", __func__, 1423 (unsigned long long)sh->sector); 1424 1425 for (i = sh->disks; i--; ) { 1426 struct r5dev *dev = &sh->dev[i]; 1427 if (test_bit(R5_Wantfill, &dev->flags)) { 1428 struct bio *rbi; 1429 spin_lock_irq(&sh->stripe_lock); 1430 dev->read = rbi = dev->toread; 1431 dev->toread = NULL; 1432 spin_unlock_irq(&sh->stripe_lock); 1433 while (rbi && rbi->bi_iter.bi_sector < 1434 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1435 tx = async_copy_data(0, rbi, &dev->page, 1436 dev->offset, 1437 dev->sector, tx, sh, 0); 1438 rbi = r5_next_bio(conf, rbi, dev->sector); 1439 } 1440 } 1441 } 1442 1443 atomic_inc(&sh->count); 1444 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1445 async_trigger_callback(&submit); 1446 } 1447 1448 static void mark_target_uptodate(struct stripe_head *sh, int target) 1449 { 1450 struct r5dev *tgt; 1451 1452 if (target < 0) 1453 return; 1454 1455 tgt = &sh->dev[target]; 1456 set_bit(R5_UPTODATE, &tgt->flags); 1457 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1458 clear_bit(R5_Wantcompute, &tgt->flags); 1459 } 1460 1461 static void ops_complete_compute(void *stripe_head_ref) 1462 { 1463 struct stripe_head *sh = stripe_head_ref; 1464 1465 pr_debug("%s: stripe %llu\n", __func__, 1466 (unsigned long long)sh->sector); 1467 1468 /* mark the computed target(s) as uptodate */ 1469 mark_target_uptodate(sh, sh->ops.target); 1470 mark_target_uptodate(sh, sh->ops.target2); 1471 1472 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1473 if (sh->check_state == check_state_compute_run) 1474 sh->check_state = check_state_compute_result; 1475 set_bit(STRIPE_HANDLE, &sh->state); 1476 raid5_release_stripe(sh); 1477 } 1478 1479 /* return a pointer to the address conversion region of the scribble buffer */ 1480 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1481 { 1482 return percpu->scribble + i * percpu->scribble_obj_size; 1483 } 1484 1485 /* return a pointer to the address conversion region of the scribble buffer */ 1486 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1487 struct raid5_percpu *percpu, int i) 1488 { 1489 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1490 } 1491 1492 /* 1493 * Return a pointer to record offset address. 1494 */ 1495 static unsigned int * 1496 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1497 { 1498 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1499 } 1500 1501 static struct dma_async_tx_descriptor * 1502 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1503 { 1504 int disks = sh->disks; 1505 struct page **xor_srcs = to_addr_page(percpu, 0); 1506 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1507 int target = sh->ops.target; 1508 struct r5dev *tgt = &sh->dev[target]; 1509 struct page *xor_dest = tgt->page; 1510 unsigned int off_dest = tgt->offset; 1511 int count = 0; 1512 struct dma_async_tx_descriptor *tx; 1513 struct async_submit_ctl submit; 1514 int i; 1515 1516 BUG_ON(sh->batch_head); 1517 1518 pr_debug("%s: stripe %llu block: %d\n", 1519 __func__, (unsigned long long)sh->sector, target); 1520 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1521 1522 for (i = disks; i--; ) { 1523 if (i != target) { 1524 off_srcs[count] = sh->dev[i].offset; 1525 xor_srcs[count++] = sh->dev[i].page; 1526 } 1527 } 1528 1529 atomic_inc(&sh->count); 1530 1531 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1532 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1533 if (unlikely(count == 1)) 1534 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1535 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1536 else 1537 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1538 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1539 1540 return tx; 1541 } 1542 1543 /* set_syndrome_sources - populate source buffers for gen_syndrome 1544 * @srcs - (struct page *) array of size sh->disks 1545 * @offs - (unsigned int) array of offset for each page 1546 * @sh - stripe_head to parse 1547 * 1548 * Populates srcs in proper layout order for the stripe and returns the 1549 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1550 * destination buffer is recorded in srcs[count] and the Q destination 1551 * is recorded in srcs[count+1]]. 1552 */ 1553 static int set_syndrome_sources(struct page **srcs, 1554 unsigned int *offs, 1555 struct stripe_head *sh, 1556 int srctype) 1557 { 1558 int disks = sh->disks; 1559 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1560 int d0_idx = raid6_d0(sh); 1561 int count; 1562 int i; 1563 1564 for (i = 0; i < disks; i++) 1565 srcs[i] = NULL; 1566 1567 count = 0; 1568 i = d0_idx; 1569 do { 1570 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1571 struct r5dev *dev = &sh->dev[i]; 1572 1573 if (i == sh->qd_idx || i == sh->pd_idx || 1574 (srctype == SYNDROME_SRC_ALL) || 1575 (srctype == SYNDROME_SRC_WANT_DRAIN && 1576 (test_bit(R5_Wantdrain, &dev->flags) || 1577 test_bit(R5_InJournal, &dev->flags))) || 1578 (srctype == SYNDROME_SRC_WRITTEN && 1579 (dev->written || 1580 test_bit(R5_InJournal, &dev->flags)))) { 1581 if (test_bit(R5_InJournal, &dev->flags)) 1582 srcs[slot] = sh->dev[i].orig_page; 1583 else 1584 srcs[slot] = sh->dev[i].page; 1585 /* 1586 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1587 * not shared page. In that case, dev[i].offset 1588 * is 0. 1589 */ 1590 offs[slot] = sh->dev[i].offset; 1591 } 1592 i = raid6_next_disk(i, disks); 1593 } while (i != d0_idx); 1594 1595 return syndrome_disks; 1596 } 1597 1598 static struct dma_async_tx_descriptor * 1599 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1600 { 1601 int disks = sh->disks; 1602 struct page **blocks = to_addr_page(percpu, 0); 1603 unsigned int *offs = to_addr_offs(sh, percpu); 1604 int target; 1605 int qd_idx = sh->qd_idx; 1606 struct dma_async_tx_descriptor *tx; 1607 struct async_submit_ctl submit; 1608 struct r5dev *tgt; 1609 struct page *dest; 1610 unsigned int dest_off; 1611 int i; 1612 int count; 1613 1614 BUG_ON(sh->batch_head); 1615 if (sh->ops.target < 0) 1616 target = sh->ops.target2; 1617 else if (sh->ops.target2 < 0) 1618 target = sh->ops.target; 1619 else 1620 /* we should only have one valid target */ 1621 BUG(); 1622 BUG_ON(target < 0); 1623 pr_debug("%s: stripe %llu block: %d\n", 1624 __func__, (unsigned long long)sh->sector, target); 1625 1626 tgt = &sh->dev[target]; 1627 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1628 dest = tgt->page; 1629 dest_off = tgt->offset; 1630 1631 atomic_inc(&sh->count); 1632 1633 if (target == qd_idx) { 1634 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1635 blocks[count] = NULL; /* regenerating p is not necessary */ 1636 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1637 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1638 ops_complete_compute, sh, 1639 to_addr_conv(sh, percpu, 0)); 1640 tx = async_gen_syndrome(blocks, offs, count+2, 1641 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1642 } else { 1643 /* Compute any data- or p-drive using XOR */ 1644 count = 0; 1645 for (i = disks; i-- ; ) { 1646 if (i == target || i == qd_idx) 1647 continue; 1648 offs[count] = sh->dev[i].offset; 1649 blocks[count++] = sh->dev[i].page; 1650 } 1651 1652 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1653 NULL, ops_complete_compute, sh, 1654 to_addr_conv(sh, percpu, 0)); 1655 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1656 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1657 } 1658 1659 return tx; 1660 } 1661 1662 static struct dma_async_tx_descriptor * 1663 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1664 { 1665 int i, count, disks = sh->disks; 1666 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1667 int d0_idx = raid6_d0(sh); 1668 int faila = -1, failb = -1; 1669 int target = sh->ops.target; 1670 int target2 = sh->ops.target2; 1671 struct r5dev *tgt = &sh->dev[target]; 1672 struct r5dev *tgt2 = &sh->dev[target2]; 1673 struct dma_async_tx_descriptor *tx; 1674 struct page **blocks = to_addr_page(percpu, 0); 1675 unsigned int *offs = to_addr_offs(sh, percpu); 1676 struct async_submit_ctl submit; 1677 1678 BUG_ON(sh->batch_head); 1679 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1680 __func__, (unsigned long long)sh->sector, target, target2); 1681 BUG_ON(target < 0 || target2 < 0); 1682 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1683 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1684 1685 /* we need to open-code set_syndrome_sources to handle the 1686 * slot number conversion for 'faila' and 'failb' 1687 */ 1688 for (i = 0; i < disks ; i++) { 1689 offs[i] = 0; 1690 blocks[i] = NULL; 1691 } 1692 count = 0; 1693 i = d0_idx; 1694 do { 1695 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1696 1697 offs[slot] = sh->dev[i].offset; 1698 blocks[slot] = sh->dev[i].page; 1699 1700 if (i == target) 1701 faila = slot; 1702 if (i == target2) 1703 failb = slot; 1704 i = raid6_next_disk(i, disks); 1705 } while (i != d0_idx); 1706 1707 BUG_ON(faila == failb); 1708 if (failb < faila) 1709 swap(faila, failb); 1710 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1711 __func__, (unsigned long long)sh->sector, faila, failb); 1712 1713 atomic_inc(&sh->count); 1714 1715 if (failb == syndrome_disks+1) { 1716 /* Q disk is one of the missing disks */ 1717 if (faila == syndrome_disks) { 1718 /* Missing P+Q, just recompute */ 1719 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1720 ops_complete_compute, sh, 1721 to_addr_conv(sh, percpu, 0)); 1722 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1723 RAID5_STRIPE_SIZE(sh->raid_conf), 1724 &submit); 1725 } else { 1726 struct page *dest; 1727 unsigned int dest_off; 1728 int data_target; 1729 int qd_idx = sh->qd_idx; 1730 1731 /* Missing D+Q: recompute D from P, then recompute Q */ 1732 if (target == qd_idx) 1733 data_target = target2; 1734 else 1735 data_target = target; 1736 1737 count = 0; 1738 for (i = disks; i-- ; ) { 1739 if (i == data_target || i == qd_idx) 1740 continue; 1741 offs[count] = sh->dev[i].offset; 1742 blocks[count++] = sh->dev[i].page; 1743 } 1744 dest = sh->dev[data_target].page; 1745 dest_off = sh->dev[data_target].offset; 1746 init_async_submit(&submit, 1747 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1748 NULL, NULL, NULL, 1749 to_addr_conv(sh, percpu, 0)); 1750 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1751 RAID5_STRIPE_SIZE(sh->raid_conf), 1752 &submit); 1753 1754 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1755 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1756 ops_complete_compute, sh, 1757 to_addr_conv(sh, percpu, 0)); 1758 return async_gen_syndrome(blocks, offs, count+2, 1759 RAID5_STRIPE_SIZE(sh->raid_conf), 1760 &submit); 1761 } 1762 } else { 1763 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1764 ops_complete_compute, sh, 1765 to_addr_conv(sh, percpu, 0)); 1766 if (failb == syndrome_disks) { 1767 /* We're missing D+P. */ 1768 return async_raid6_datap_recov(syndrome_disks+2, 1769 RAID5_STRIPE_SIZE(sh->raid_conf), 1770 faila, 1771 blocks, offs, &submit); 1772 } else { 1773 /* We're missing D+D. */ 1774 return async_raid6_2data_recov(syndrome_disks+2, 1775 RAID5_STRIPE_SIZE(sh->raid_conf), 1776 faila, failb, 1777 blocks, offs, &submit); 1778 } 1779 } 1780 } 1781 1782 static void ops_complete_prexor(void *stripe_head_ref) 1783 { 1784 struct stripe_head *sh = stripe_head_ref; 1785 1786 pr_debug("%s: stripe %llu\n", __func__, 1787 (unsigned long long)sh->sector); 1788 1789 if (r5c_is_writeback(sh->raid_conf->log)) 1790 /* 1791 * raid5-cache write back uses orig_page during prexor. 1792 * After prexor, it is time to free orig_page 1793 */ 1794 r5c_release_extra_page(sh); 1795 } 1796 1797 static struct dma_async_tx_descriptor * 1798 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1799 struct dma_async_tx_descriptor *tx) 1800 { 1801 int disks = sh->disks; 1802 struct page **xor_srcs = to_addr_page(percpu, 0); 1803 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1804 int count = 0, pd_idx = sh->pd_idx, i; 1805 struct async_submit_ctl submit; 1806 1807 /* existing parity data subtracted */ 1808 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1809 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1810 1811 BUG_ON(sh->batch_head); 1812 pr_debug("%s: stripe %llu\n", __func__, 1813 (unsigned long long)sh->sector); 1814 1815 for (i = disks; i--; ) { 1816 struct r5dev *dev = &sh->dev[i]; 1817 /* Only process blocks that are known to be uptodate */ 1818 if (test_bit(R5_InJournal, &dev->flags)) { 1819 /* 1820 * For this case, PAGE_SIZE must be equal to 4KB and 1821 * page offset is zero. 1822 */ 1823 off_srcs[count] = dev->offset; 1824 xor_srcs[count++] = dev->orig_page; 1825 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1826 off_srcs[count] = dev->offset; 1827 xor_srcs[count++] = dev->page; 1828 } 1829 } 1830 1831 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1832 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1833 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1834 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1835 1836 return tx; 1837 } 1838 1839 static struct dma_async_tx_descriptor * 1840 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1841 struct dma_async_tx_descriptor *tx) 1842 { 1843 struct page **blocks = to_addr_page(percpu, 0); 1844 unsigned int *offs = to_addr_offs(sh, percpu); 1845 int count; 1846 struct async_submit_ctl submit; 1847 1848 pr_debug("%s: stripe %llu\n", __func__, 1849 (unsigned long long)sh->sector); 1850 1851 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1852 1853 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1854 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1855 tx = async_gen_syndrome(blocks, offs, count+2, 1856 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1857 1858 return tx; 1859 } 1860 1861 static struct dma_async_tx_descriptor * 1862 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1863 { 1864 struct r5conf *conf = sh->raid_conf; 1865 int disks = sh->disks; 1866 int i; 1867 struct stripe_head *head_sh = sh; 1868 1869 pr_debug("%s: stripe %llu\n", __func__, 1870 (unsigned long long)sh->sector); 1871 1872 for (i = disks; i--; ) { 1873 struct r5dev *dev; 1874 struct bio *chosen; 1875 1876 sh = head_sh; 1877 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1878 struct bio *wbi; 1879 1880 again: 1881 dev = &sh->dev[i]; 1882 /* 1883 * clear R5_InJournal, so when rewriting a page in 1884 * journal, it is not skipped by r5l_log_stripe() 1885 */ 1886 clear_bit(R5_InJournal, &dev->flags); 1887 spin_lock_irq(&sh->stripe_lock); 1888 chosen = dev->towrite; 1889 dev->towrite = NULL; 1890 sh->overwrite_disks = 0; 1891 BUG_ON(dev->written); 1892 wbi = dev->written = chosen; 1893 spin_unlock_irq(&sh->stripe_lock); 1894 WARN_ON(dev->page != dev->orig_page); 1895 1896 while (wbi && wbi->bi_iter.bi_sector < 1897 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1898 if (wbi->bi_opf & REQ_FUA) 1899 set_bit(R5_WantFUA, &dev->flags); 1900 if (wbi->bi_opf & REQ_SYNC) 1901 set_bit(R5_SyncIO, &dev->flags); 1902 if (bio_op(wbi) == REQ_OP_DISCARD) 1903 set_bit(R5_Discard, &dev->flags); 1904 else { 1905 tx = async_copy_data(1, wbi, &dev->page, 1906 dev->offset, 1907 dev->sector, tx, sh, 1908 r5c_is_writeback(conf->log)); 1909 if (dev->page != dev->orig_page && 1910 !r5c_is_writeback(conf->log)) { 1911 set_bit(R5_SkipCopy, &dev->flags); 1912 clear_bit(R5_UPTODATE, &dev->flags); 1913 clear_bit(R5_OVERWRITE, &dev->flags); 1914 } 1915 } 1916 wbi = r5_next_bio(conf, wbi, dev->sector); 1917 } 1918 1919 if (head_sh->batch_head) { 1920 sh = list_first_entry(&sh->batch_list, 1921 struct stripe_head, 1922 batch_list); 1923 if (sh == head_sh) 1924 continue; 1925 goto again; 1926 } 1927 } 1928 } 1929 1930 return tx; 1931 } 1932 1933 static void ops_complete_reconstruct(void *stripe_head_ref) 1934 { 1935 struct stripe_head *sh = stripe_head_ref; 1936 int disks = sh->disks; 1937 int pd_idx = sh->pd_idx; 1938 int qd_idx = sh->qd_idx; 1939 int i; 1940 bool fua = false, sync = false, discard = false; 1941 1942 pr_debug("%s: stripe %llu\n", __func__, 1943 (unsigned long long)sh->sector); 1944 1945 for (i = disks; i--; ) { 1946 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1947 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1948 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1949 } 1950 1951 for (i = disks; i--; ) { 1952 struct r5dev *dev = &sh->dev[i]; 1953 1954 if (dev->written || i == pd_idx || i == qd_idx) { 1955 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1956 set_bit(R5_UPTODATE, &dev->flags); 1957 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1958 set_bit(R5_Expanded, &dev->flags); 1959 } 1960 if (fua) 1961 set_bit(R5_WantFUA, &dev->flags); 1962 if (sync) 1963 set_bit(R5_SyncIO, &dev->flags); 1964 } 1965 } 1966 1967 if (sh->reconstruct_state == reconstruct_state_drain_run) 1968 sh->reconstruct_state = reconstruct_state_drain_result; 1969 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1970 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1971 else { 1972 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1973 sh->reconstruct_state = reconstruct_state_result; 1974 } 1975 1976 set_bit(STRIPE_HANDLE, &sh->state); 1977 raid5_release_stripe(sh); 1978 } 1979 1980 static void 1981 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1982 struct dma_async_tx_descriptor *tx) 1983 { 1984 int disks = sh->disks; 1985 struct page **xor_srcs; 1986 unsigned int *off_srcs; 1987 struct async_submit_ctl submit; 1988 int count, pd_idx = sh->pd_idx, i; 1989 struct page *xor_dest; 1990 unsigned int off_dest; 1991 int prexor = 0; 1992 unsigned long flags; 1993 int j = 0; 1994 struct stripe_head *head_sh = sh; 1995 int last_stripe; 1996 1997 pr_debug("%s: stripe %llu\n", __func__, 1998 (unsigned long long)sh->sector); 1999 2000 for (i = 0; i < sh->disks; i++) { 2001 if (pd_idx == i) 2002 continue; 2003 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2004 break; 2005 } 2006 if (i >= sh->disks) { 2007 atomic_inc(&sh->count); 2008 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2009 ops_complete_reconstruct(sh); 2010 return; 2011 } 2012 again: 2013 count = 0; 2014 xor_srcs = to_addr_page(percpu, j); 2015 off_srcs = to_addr_offs(sh, percpu); 2016 /* check if prexor is active which means only process blocks 2017 * that are part of a read-modify-write (written) 2018 */ 2019 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2020 prexor = 1; 2021 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2022 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2023 for (i = disks; i--; ) { 2024 struct r5dev *dev = &sh->dev[i]; 2025 if (head_sh->dev[i].written || 2026 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2027 off_srcs[count] = dev->offset; 2028 xor_srcs[count++] = dev->page; 2029 } 2030 } 2031 } else { 2032 xor_dest = sh->dev[pd_idx].page; 2033 off_dest = sh->dev[pd_idx].offset; 2034 for (i = disks; i--; ) { 2035 struct r5dev *dev = &sh->dev[i]; 2036 if (i != pd_idx) { 2037 off_srcs[count] = dev->offset; 2038 xor_srcs[count++] = dev->page; 2039 } 2040 } 2041 } 2042 2043 /* 1/ if we prexor'd then the dest is reused as a source 2044 * 2/ if we did not prexor then we are redoing the parity 2045 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2046 * for the synchronous xor case 2047 */ 2048 last_stripe = !head_sh->batch_head || 2049 list_first_entry(&sh->batch_list, 2050 struct stripe_head, batch_list) == head_sh; 2051 if (last_stripe) { 2052 flags = ASYNC_TX_ACK | 2053 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2054 2055 atomic_inc(&head_sh->count); 2056 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2057 to_addr_conv(sh, percpu, j)); 2058 } else { 2059 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2060 init_async_submit(&submit, flags, tx, NULL, NULL, 2061 to_addr_conv(sh, percpu, j)); 2062 } 2063 2064 if (unlikely(count == 1)) 2065 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2066 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2067 else 2068 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2069 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2070 if (!last_stripe) { 2071 j++; 2072 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2073 batch_list); 2074 goto again; 2075 } 2076 } 2077 2078 static void 2079 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2080 struct dma_async_tx_descriptor *tx) 2081 { 2082 struct async_submit_ctl submit; 2083 struct page **blocks; 2084 unsigned int *offs; 2085 int count, i, j = 0; 2086 struct stripe_head *head_sh = sh; 2087 int last_stripe; 2088 int synflags; 2089 unsigned long txflags; 2090 2091 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2092 2093 for (i = 0; i < sh->disks; i++) { 2094 if (sh->pd_idx == i || sh->qd_idx == i) 2095 continue; 2096 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2097 break; 2098 } 2099 if (i >= sh->disks) { 2100 atomic_inc(&sh->count); 2101 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2102 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2103 ops_complete_reconstruct(sh); 2104 return; 2105 } 2106 2107 again: 2108 blocks = to_addr_page(percpu, j); 2109 offs = to_addr_offs(sh, percpu); 2110 2111 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2112 synflags = SYNDROME_SRC_WRITTEN; 2113 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2114 } else { 2115 synflags = SYNDROME_SRC_ALL; 2116 txflags = ASYNC_TX_ACK; 2117 } 2118 2119 count = set_syndrome_sources(blocks, offs, sh, synflags); 2120 last_stripe = !head_sh->batch_head || 2121 list_first_entry(&sh->batch_list, 2122 struct stripe_head, batch_list) == head_sh; 2123 2124 if (last_stripe) { 2125 atomic_inc(&head_sh->count); 2126 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2127 head_sh, to_addr_conv(sh, percpu, j)); 2128 } else 2129 init_async_submit(&submit, 0, tx, NULL, NULL, 2130 to_addr_conv(sh, percpu, j)); 2131 tx = async_gen_syndrome(blocks, offs, count+2, 2132 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2133 if (!last_stripe) { 2134 j++; 2135 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2136 batch_list); 2137 goto again; 2138 } 2139 } 2140 2141 static void ops_complete_check(void *stripe_head_ref) 2142 { 2143 struct stripe_head *sh = stripe_head_ref; 2144 2145 pr_debug("%s: stripe %llu\n", __func__, 2146 (unsigned long long)sh->sector); 2147 2148 sh->check_state = check_state_check_result; 2149 set_bit(STRIPE_HANDLE, &sh->state); 2150 raid5_release_stripe(sh); 2151 } 2152 2153 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2154 { 2155 int disks = sh->disks; 2156 int pd_idx = sh->pd_idx; 2157 int qd_idx = sh->qd_idx; 2158 struct page *xor_dest; 2159 unsigned int off_dest; 2160 struct page **xor_srcs = to_addr_page(percpu, 0); 2161 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2162 struct dma_async_tx_descriptor *tx; 2163 struct async_submit_ctl submit; 2164 int count; 2165 int i; 2166 2167 pr_debug("%s: stripe %llu\n", __func__, 2168 (unsigned long long)sh->sector); 2169 2170 BUG_ON(sh->batch_head); 2171 count = 0; 2172 xor_dest = sh->dev[pd_idx].page; 2173 off_dest = sh->dev[pd_idx].offset; 2174 off_srcs[count] = off_dest; 2175 xor_srcs[count++] = xor_dest; 2176 for (i = disks; i--; ) { 2177 if (i == pd_idx || i == qd_idx) 2178 continue; 2179 off_srcs[count] = sh->dev[i].offset; 2180 xor_srcs[count++] = sh->dev[i].page; 2181 } 2182 2183 init_async_submit(&submit, 0, NULL, NULL, NULL, 2184 to_addr_conv(sh, percpu, 0)); 2185 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2186 RAID5_STRIPE_SIZE(sh->raid_conf), 2187 &sh->ops.zero_sum_result, &submit); 2188 2189 atomic_inc(&sh->count); 2190 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2191 tx = async_trigger_callback(&submit); 2192 } 2193 2194 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2195 { 2196 struct page **srcs = to_addr_page(percpu, 0); 2197 unsigned int *offs = to_addr_offs(sh, percpu); 2198 struct async_submit_ctl submit; 2199 int count; 2200 2201 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2202 (unsigned long long)sh->sector, checkp); 2203 2204 BUG_ON(sh->batch_head); 2205 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2206 if (!checkp) 2207 srcs[count] = NULL; 2208 2209 atomic_inc(&sh->count); 2210 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2211 sh, to_addr_conv(sh, percpu, 0)); 2212 async_syndrome_val(srcs, offs, count+2, 2213 RAID5_STRIPE_SIZE(sh->raid_conf), 2214 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2215 } 2216 2217 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2218 { 2219 int overlap_clear = 0, i, disks = sh->disks; 2220 struct dma_async_tx_descriptor *tx = NULL; 2221 struct r5conf *conf = sh->raid_conf; 2222 int level = conf->level; 2223 struct raid5_percpu *percpu; 2224 2225 local_lock(&conf->percpu->lock); 2226 percpu = this_cpu_ptr(conf->percpu); 2227 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2228 ops_run_biofill(sh); 2229 overlap_clear++; 2230 } 2231 2232 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2233 if (level < 6) 2234 tx = ops_run_compute5(sh, percpu); 2235 else { 2236 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2237 tx = ops_run_compute6_1(sh, percpu); 2238 else 2239 tx = ops_run_compute6_2(sh, percpu); 2240 } 2241 /* terminate the chain if reconstruct is not set to be run */ 2242 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2243 async_tx_ack(tx); 2244 } 2245 2246 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2247 if (level < 6) 2248 tx = ops_run_prexor5(sh, percpu, tx); 2249 else 2250 tx = ops_run_prexor6(sh, percpu, tx); 2251 } 2252 2253 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2254 tx = ops_run_partial_parity(sh, percpu, tx); 2255 2256 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2257 tx = ops_run_biodrain(sh, tx); 2258 overlap_clear++; 2259 } 2260 2261 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2262 if (level < 6) 2263 ops_run_reconstruct5(sh, percpu, tx); 2264 else 2265 ops_run_reconstruct6(sh, percpu, tx); 2266 } 2267 2268 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2269 if (sh->check_state == check_state_run) 2270 ops_run_check_p(sh, percpu); 2271 else if (sh->check_state == check_state_run_q) 2272 ops_run_check_pq(sh, percpu, 0); 2273 else if (sh->check_state == check_state_run_pq) 2274 ops_run_check_pq(sh, percpu, 1); 2275 else 2276 BUG(); 2277 } 2278 2279 if (overlap_clear && !sh->batch_head) { 2280 for (i = disks; i--; ) { 2281 struct r5dev *dev = &sh->dev[i]; 2282 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2283 wake_up(&sh->raid_conf->wait_for_overlap); 2284 } 2285 } 2286 local_unlock(&conf->percpu->lock); 2287 } 2288 2289 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2290 { 2291 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2292 kfree(sh->pages); 2293 #endif 2294 if (sh->ppl_page) 2295 __free_page(sh->ppl_page); 2296 kmem_cache_free(sc, sh); 2297 } 2298 2299 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2300 int disks, struct r5conf *conf) 2301 { 2302 struct stripe_head *sh; 2303 2304 sh = kmem_cache_zalloc(sc, gfp); 2305 if (sh) { 2306 spin_lock_init(&sh->stripe_lock); 2307 spin_lock_init(&sh->batch_lock); 2308 INIT_LIST_HEAD(&sh->batch_list); 2309 INIT_LIST_HEAD(&sh->lru); 2310 INIT_LIST_HEAD(&sh->r5c); 2311 INIT_LIST_HEAD(&sh->log_list); 2312 atomic_set(&sh->count, 1); 2313 sh->raid_conf = conf; 2314 sh->log_start = MaxSector; 2315 2316 if (raid5_has_ppl(conf)) { 2317 sh->ppl_page = alloc_page(gfp); 2318 if (!sh->ppl_page) { 2319 free_stripe(sc, sh); 2320 return NULL; 2321 } 2322 } 2323 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2324 if (init_stripe_shared_pages(sh, conf, disks)) { 2325 free_stripe(sc, sh); 2326 return NULL; 2327 } 2328 #endif 2329 } 2330 return sh; 2331 } 2332 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2333 { 2334 struct stripe_head *sh; 2335 2336 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2337 if (!sh) 2338 return 0; 2339 2340 if (grow_buffers(sh, gfp)) { 2341 shrink_buffers(sh); 2342 free_stripe(conf->slab_cache, sh); 2343 return 0; 2344 } 2345 sh->hash_lock_index = 2346 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2347 /* we just created an active stripe so... */ 2348 atomic_inc(&conf->active_stripes); 2349 2350 raid5_release_stripe(sh); 2351 conf->max_nr_stripes++; 2352 return 1; 2353 } 2354 2355 static int grow_stripes(struct r5conf *conf, int num) 2356 { 2357 struct kmem_cache *sc; 2358 size_t namelen = sizeof(conf->cache_name[0]); 2359 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2360 2361 if (conf->mddev->gendisk) 2362 snprintf(conf->cache_name[0], namelen, 2363 "raid%d-%s", conf->level, mdname(conf->mddev)); 2364 else 2365 snprintf(conf->cache_name[0], namelen, 2366 "raid%d-%p", conf->level, conf->mddev); 2367 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2368 2369 conf->active_name = 0; 2370 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2371 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2372 0, 0, NULL); 2373 if (!sc) 2374 return 1; 2375 conf->slab_cache = sc; 2376 conf->pool_size = devs; 2377 while (num--) 2378 if (!grow_one_stripe(conf, GFP_KERNEL)) 2379 return 1; 2380 2381 return 0; 2382 } 2383 2384 /** 2385 * scribble_alloc - allocate percpu scribble buffer for required size 2386 * of the scribble region 2387 * @percpu: from for_each_present_cpu() of the caller 2388 * @num: total number of disks in the array 2389 * @cnt: scribble objs count for required size of the scribble region 2390 * 2391 * The scribble buffer size must be enough to contain: 2392 * 1/ a struct page pointer for each device in the array +2 2393 * 2/ room to convert each entry in (1) to its corresponding dma 2394 * (dma_map_page()) or page (page_address()) address. 2395 * 2396 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2397 * calculate over all devices (not just the data blocks), using zeros in place 2398 * of the P and Q blocks. 2399 */ 2400 static int scribble_alloc(struct raid5_percpu *percpu, 2401 int num, int cnt) 2402 { 2403 size_t obj_size = 2404 sizeof(struct page *) * (num + 2) + 2405 sizeof(addr_conv_t) * (num + 2) + 2406 sizeof(unsigned int) * (num + 2); 2407 void *scribble; 2408 2409 /* 2410 * If here is in raid array suspend context, it is in memalloc noio 2411 * context as well, there is no potential recursive memory reclaim 2412 * I/Os with the GFP_KERNEL flag. 2413 */ 2414 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2415 if (!scribble) 2416 return -ENOMEM; 2417 2418 kvfree(percpu->scribble); 2419 2420 percpu->scribble = scribble; 2421 percpu->scribble_obj_size = obj_size; 2422 return 0; 2423 } 2424 2425 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2426 { 2427 unsigned long cpu; 2428 int err = 0; 2429 2430 /* 2431 * Never shrink. And mddev_suspend() could deadlock if this is called 2432 * from raid5d. In that case, scribble_disks and scribble_sectors 2433 * should equal to new_disks and new_sectors 2434 */ 2435 if (conf->scribble_disks >= new_disks && 2436 conf->scribble_sectors >= new_sectors) 2437 return 0; 2438 mddev_suspend(conf->mddev); 2439 cpus_read_lock(); 2440 2441 for_each_present_cpu(cpu) { 2442 struct raid5_percpu *percpu; 2443 2444 percpu = per_cpu_ptr(conf->percpu, cpu); 2445 err = scribble_alloc(percpu, new_disks, 2446 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2447 if (err) 2448 break; 2449 } 2450 2451 cpus_read_unlock(); 2452 mddev_resume(conf->mddev); 2453 if (!err) { 2454 conf->scribble_disks = new_disks; 2455 conf->scribble_sectors = new_sectors; 2456 } 2457 return err; 2458 } 2459 2460 static int resize_stripes(struct r5conf *conf, int newsize) 2461 { 2462 /* Make all the stripes able to hold 'newsize' devices. 2463 * New slots in each stripe get 'page' set to a new page. 2464 * 2465 * This happens in stages: 2466 * 1/ create a new kmem_cache and allocate the required number of 2467 * stripe_heads. 2468 * 2/ gather all the old stripe_heads and transfer the pages across 2469 * to the new stripe_heads. This will have the side effect of 2470 * freezing the array as once all stripe_heads have been collected, 2471 * no IO will be possible. Old stripe heads are freed once their 2472 * pages have been transferred over, and the old kmem_cache is 2473 * freed when all stripes are done. 2474 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2475 * we simple return a failure status - no need to clean anything up. 2476 * 4/ allocate new pages for the new slots in the new stripe_heads. 2477 * If this fails, we don't bother trying the shrink the 2478 * stripe_heads down again, we just leave them as they are. 2479 * As each stripe_head is processed the new one is released into 2480 * active service. 2481 * 2482 * Once step2 is started, we cannot afford to wait for a write, 2483 * so we use GFP_NOIO allocations. 2484 */ 2485 struct stripe_head *osh, *nsh; 2486 LIST_HEAD(newstripes); 2487 struct disk_info *ndisks; 2488 int err = 0; 2489 struct kmem_cache *sc; 2490 int i; 2491 int hash, cnt; 2492 2493 md_allow_write(conf->mddev); 2494 2495 /* Step 1 */ 2496 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2497 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2498 0, 0, NULL); 2499 if (!sc) 2500 return -ENOMEM; 2501 2502 /* Need to ensure auto-resizing doesn't interfere */ 2503 mutex_lock(&conf->cache_size_mutex); 2504 2505 for (i = conf->max_nr_stripes; i; i--) { 2506 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2507 if (!nsh) 2508 break; 2509 2510 list_add(&nsh->lru, &newstripes); 2511 } 2512 if (i) { 2513 /* didn't get enough, give up */ 2514 while (!list_empty(&newstripes)) { 2515 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2516 list_del(&nsh->lru); 2517 free_stripe(sc, nsh); 2518 } 2519 kmem_cache_destroy(sc); 2520 mutex_unlock(&conf->cache_size_mutex); 2521 return -ENOMEM; 2522 } 2523 /* Step 2 - Must use GFP_NOIO now. 2524 * OK, we have enough stripes, start collecting inactive 2525 * stripes and copying them over 2526 */ 2527 hash = 0; 2528 cnt = 0; 2529 list_for_each_entry(nsh, &newstripes, lru) { 2530 lock_device_hash_lock(conf, hash); 2531 wait_event_cmd(conf->wait_for_stripe, 2532 !list_empty(conf->inactive_list + hash), 2533 unlock_device_hash_lock(conf, hash), 2534 lock_device_hash_lock(conf, hash)); 2535 osh = get_free_stripe(conf, hash); 2536 unlock_device_hash_lock(conf, hash); 2537 2538 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2539 for (i = 0; i < osh->nr_pages; i++) { 2540 nsh->pages[i] = osh->pages[i]; 2541 osh->pages[i] = NULL; 2542 } 2543 #endif 2544 for(i=0; i<conf->pool_size; i++) { 2545 nsh->dev[i].page = osh->dev[i].page; 2546 nsh->dev[i].orig_page = osh->dev[i].page; 2547 nsh->dev[i].offset = osh->dev[i].offset; 2548 } 2549 nsh->hash_lock_index = hash; 2550 free_stripe(conf->slab_cache, osh); 2551 cnt++; 2552 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2553 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2554 hash++; 2555 cnt = 0; 2556 } 2557 } 2558 kmem_cache_destroy(conf->slab_cache); 2559 2560 /* Step 3. 2561 * At this point, we are holding all the stripes so the array 2562 * is completely stalled, so now is a good time to resize 2563 * conf->disks and the scribble region 2564 */ 2565 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2566 if (ndisks) { 2567 for (i = 0; i < conf->pool_size; i++) 2568 ndisks[i] = conf->disks[i]; 2569 2570 for (i = conf->pool_size; i < newsize; i++) { 2571 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2572 if (!ndisks[i].extra_page) 2573 err = -ENOMEM; 2574 } 2575 2576 if (err) { 2577 for (i = conf->pool_size; i < newsize; i++) 2578 if (ndisks[i].extra_page) 2579 put_page(ndisks[i].extra_page); 2580 kfree(ndisks); 2581 } else { 2582 kfree(conf->disks); 2583 conf->disks = ndisks; 2584 } 2585 } else 2586 err = -ENOMEM; 2587 2588 conf->slab_cache = sc; 2589 conf->active_name = 1-conf->active_name; 2590 2591 /* Step 4, return new stripes to service */ 2592 while(!list_empty(&newstripes)) { 2593 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2594 list_del_init(&nsh->lru); 2595 2596 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2597 for (i = 0; i < nsh->nr_pages; i++) { 2598 if (nsh->pages[i]) 2599 continue; 2600 nsh->pages[i] = alloc_page(GFP_NOIO); 2601 if (!nsh->pages[i]) 2602 err = -ENOMEM; 2603 } 2604 2605 for (i = conf->raid_disks; i < newsize; i++) { 2606 if (nsh->dev[i].page) 2607 continue; 2608 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2609 nsh->dev[i].orig_page = nsh->dev[i].page; 2610 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2611 } 2612 #else 2613 for (i=conf->raid_disks; i < newsize; i++) 2614 if (nsh->dev[i].page == NULL) { 2615 struct page *p = alloc_page(GFP_NOIO); 2616 nsh->dev[i].page = p; 2617 nsh->dev[i].orig_page = p; 2618 nsh->dev[i].offset = 0; 2619 if (!p) 2620 err = -ENOMEM; 2621 } 2622 #endif 2623 raid5_release_stripe(nsh); 2624 } 2625 /* critical section pass, GFP_NOIO no longer needed */ 2626 2627 if (!err) 2628 conf->pool_size = newsize; 2629 mutex_unlock(&conf->cache_size_mutex); 2630 2631 return err; 2632 } 2633 2634 static int drop_one_stripe(struct r5conf *conf) 2635 { 2636 struct stripe_head *sh; 2637 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2638 2639 spin_lock_irq(conf->hash_locks + hash); 2640 sh = get_free_stripe(conf, hash); 2641 spin_unlock_irq(conf->hash_locks + hash); 2642 if (!sh) 2643 return 0; 2644 BUG_ON(atomic_read(&sh->count)); 2645 shrink_buffers(sh); 2646 free_stripe(conf->slab_cache, sh); 2647 atomic_dec(&conf->active_stripes); 2648 conf->max_nr_stripes--; 2649 return 1; 2650 } 2651 2652 static void shrink_stripes(struct r5conf *conf) 2653 { 2654 while (conf->max_nr_stripes && 2655 drop_one_stripe(conf)) 2656 ; 2657 2658 kmem_cache_destroy(conf->slab_cache); 2659 conf->slab_cache = NULL; 2660 } 2661 2662 /* 2663 * This helper wraps rcu_dereference_protected() and can be used when 2664 * it is known that the nr_pending of the rdev is elevated. 2665 */ 2666 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev) 2667 { 2668 return rcu_dereference_protected(rdev, 2669 atomic_read(&rcu_access_pointer(rdev)->nr_pending)); 2670 } 2671 2672 /* 2673 * This helper wraps rcu_dereference_protected() and should be used 2674 * when it is known that the mddev_lock() is held. This is safe 2675 * seeing raid5_remove_disk() has the same lock held. 2676 */ 2677 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev, 2678 struct md_rdev __rcu *rdev) 2679 { 2680 return rcu_dereference_protected(rdev, 2681 lockdep_is_held(&mddev->reconfig_mutex)); 2682 } 2683 2684 static void raid5_end_read_request(struct bio * bi) 2685 { 2686 struct stripe_head *sh = bi->bi_private; 2687 struct r5conf *conf = sh->raid_conf; 2688 int disks = sh->disks, i; 2689 struct md_rdev *rdev = NULL; 2690 sector_t s; 2691 2692 for (i=0 ; i<disks; i++) 2693 if (bi == &sh->dev[i].req) 2694 break; 2695 2696 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2697 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2698 bi->bi_status); 2699 if (i == disks) { 2700 BUG(); 2701 return; 2702 } 2703 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2704 /* If replacement finished while this request was outstanding, 2705 * 'replacement' might be NULL already. 2706 * In that case it moved down to 'rdev'. 2707 * rdev is not removed until all requests are finished. 2708 */ 2709 rdev = rdev_pend_deref(conf->disks[i].replacement); 2710 if (!rdev) 2711 rdev = rdev_pend_deref(conf->disks[i].rdev); 2712 2713 if (use_new_offset(conf, sh)) 2714 s = sh->sector + rdev->new_data_offset; 2715 else 2716 s = sh->sector + rdev->data_offset; 2717 if (!bi->bi_status) { 2718 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2719 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2720 /* Note that this cannot happen on a 2721 * replacement device. We just fail those on 2722 * any error 2723 */ 2724 pr_info_ratelimited( 2725 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2726 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2727 (unsigned long long)s, 2728 rdev->bdev); 2729 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2730 clear_bit(R5_ReadError, &sh->dev[i].flags); 2731 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2732 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2733 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2734 2735 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2736 /* 2737 * end read for a page in journal, this 2738 * must be preparing for prexor in rmw 2739 */ 2740 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2741 2742 if (atomic_read(&rdev->read_errors)) 2743 atomic_set(&rdev->read_errors, 0); 2744 } else { 2745 int retry = 0; 2746 int set_bad = 0; 2747 2748 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2749 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2750 atomic_inc(&rdev->read_errors); 2751 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2752 pr_warn_ratelimited( 2753 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2754 mdname(conf->mddev), 2755 (unsigned long long)s, 2756 rdev->bdev); 2757 else if (conf->mddev->degraded >= conf->max_degraded) { 2758 set_bad = 1; 2759 pr_warn_ratelimited( 2760 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2761 mdname(conf->mddev), 2762 (unsigned long long)s, 2763 rdev->bdev); 2764 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2765 /* Oh, no!!! */ 2766 set_bad = 1; 2767 pr_warn_ratelimited( 2768 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2769 mdname(conf->mddev), 2770 (unsigned long long)s, 2771 rdev->bdev); 2772 } else if (atomic_read(&rdev->read_errors) 2773 > conf->max_nr_stripes) { 2774 if (!test_bit(Faulty, &rdev->flags)) { 2775 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2776 mdname(conf->mddev), 2777 atomic_read(&rdev->read_errors), 2778 conf->max_nr_stripes); 2779 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2780 mdname(conf->mddev), rdev->bdev); 2781 } 2782 } else 2783 retry = 1; 2784 if (set_bad && test_bit(In_sync, &rdev->flags) 2785 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2786 retry = 1; 2787 if (retry) 2788 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2789 set_bit(R5_ReadError, &sh->dev[i].flags); 2790 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2791 set_bit(R5_ReadError, &sh->dev[i].flags); 2792 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2793 } else 2794 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2795 else { 2796 clear_bit(R5_ReadError, &sh->dev[i].flags); 2797 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2798 if (!(set_bad 2799 && test_bit(In_sync, &rdev->flags) 2800 && rdev_set_badblocks( 2801 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2802 md_error(conf->mddev, rdev); 2803 } 2804 } 2805 rdev_dec_pending(rdev, conf->mddev); 2806 bio_uninit(bi); 2807 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2808 set_bit(STRIPE_HANDLE, &sh->state); 2809 raid5_release_stripe(sh); 2810 } 2811 2812 static void raid5_end_write_request(struct bio *bi) 2813 { 2814 struct stripe_head *sh = bi->bi_private; 2815 struct r5conf *conf = sh->raid_conf; 2816 int disks = sh->disks, i; 2817 struct md_rdev *rdev; 2818 sector_t first_bad; 2819 int bad_sectors; 2820 int replacement = 0; 2821 2822 for (i = 0 ; i < disks; i++) { 2823 if (bi == &sh->dev[i].req) { 2824 rdev = rdev_pend_deref(conf->disks[i].rdev); 2825 break; 2826 } 2827 if (bi == &sh->dev[i].rreq) { 2828 rdev = rdev_pend_deref(conf->disks[i].replacement); 2829 if (rdev) 2830 replacement = 1; 2831 else 2832 /* rdev was removed and 'replacement' 2833 * replaced it. rdev is not removed 2834 * until all requests are finished. 2835 */ 2836 rdev = rdev_pend_deref(conf->disks[i].rdev); 2837 break; 2838 } 2839 } 2840 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2841 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2842 bi->bi_status); 2843 if (i == disks) { 2844 BUG(); 2845 return; 2846 } 2847 2848 if (replacement) { 2849 if (bi->bi_status) 2850 md_error(conf->mddev, rdev); 2851 else if (is_badblock(rdev, sh->sector, 2852 RAID5_STRIPE_SECTORS(conf), 2853 &first_bad, &bad_sectors)) 2854 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2855 } else { 2856 if (bi->bi_status) { 2857 set_bit(STRIPE_DEGRADED, &sh->state); 2858 set_bit(WriteErrorSeen, &rdev->flags); 2859 set_bit(R5_WriteError, &sh->dev[i].flags); 2860 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2861 set_bit(MD_RECOVERY_NEEDED, 2862 &rdev->mddev->recovery); 2863 } else if (is_badblock(rdev, sh->sector, 2864 RAID5_STRIPE_SECTORS(conf), 2865 &first_bad, &bad_sectors)) { 2866 set_bit(R5_MadeGood, &sh->dev[i].flags); 2867 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2868 /* That was a successful write so make 2869 * sure it looks like we already did 2870 * a re-write. 2871 */ 2872 set_bit(R5_ReWrite, &sh->dev[i].flags); 2873 } 2874 } 2875 rdev_dec_pending(rdev, conf->mddev); 2876 2877 if (sh->batch_head && bi->bi_status && !replacement) 2878 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2879 2880 bio_uninit(bi); 2881 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2882 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2883 set_bit(STRIPE_HANDLE, &sh->state); 2884 raid5_release_stripe(sh); 2885 2886 if (sh->batch_head && sh != sh->batch_head) 2887 raid5_release_stripe(sh->batch_head); 2888 } 2889 2890 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2891 { 2892 struct r5conf *conf = mddev->private; 2893 unsigned long flags; 2894 pr_debug("raid456: error called\n"); 2895 2896 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2897 mdname(mddev), rdev->bdev); 2898 2899 spin_lock_irqsave(&conf->device_lock, flags); 2900 set_bit(Faulty, &rdev->flags); 2901 clear_bit(In_sync, &rdev->flags); 2902 mddev->degraded = raid5_calc_degraded(conf); 2903 2904 if (has_failed(conf)) { 2905 set_bit(MD_BROKEN, &conf->mddev->flags); 2906 conf->recovery_disabled = mddev->recovery_disabled; 2907 2908 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2909 mdname(mddev), mddev->degraded, conf->raid_disks); 2910 } else { 2911 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2912 mdname(mddev), conf->raid_disks - mddev->degraded); 2913 } 2914 2915 spin_unlock_irqrestore(&conf->device_lock, flags); 2916 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2917 2918 set_bit(Blocked, &rdev->flags); 2919 set_mask_bits(&mddev->sb_flags, 0, 2920 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2921 r5c_update_on_rdev_error(mddev, rdev); 2922 } 2923 2924 /* 2925 * Input: a 'big' sector number, 2926 * Output: index of the data and parity disk, and the sector # in them. 2927 */ 2928 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2929 int previous, int *dd_idx, 2930 struct stripe_head *sh) 2931 { 2932 sector_t stripe, stripe2; 2933 sector_t chunk_number; 2934 unsigned int chunk_offset; 2935 int pd_idx, qd_idx; 2936 int ddf_layout = 0; 2937 sector_t new_sector; 2938 int algorithm = previous ? conf->prev_algo 2939 : conf->algorithm; 2940 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2941 : conf->chunk_sectors; 2942 int raid_disks = previous ? conf->previous_raid_disks 2943 : conf->raid_disks; 2944 int data_disks = raid_disks - conf->max_degraded; 2945 2946 /* First compute the information on this sector */ 2947 2948 /* 2949 * Compute the chunk number and the sector offset inside the chunk 2950 */ 2951 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2952 chunk_number = r_sector; 2953 2954 /* 2955 * Compute the stripe number 2956 */ 2957 stripe = chunk_number; 2958 *dd_idx = sector_div(stripe, data_disks); 2959 stripe2 = stripe; 2960 /* 2961 * Select the parity disk based on the user selected algorithm. 2962 */ 2963 pd_idx = qd_idx = -1; 2964 switch(conf->level) { 2965 case 4: 2966 pd_idx = data_disks; 2967 break; 2968 case 5: 2969 switch (algorithm) { 2970 case ALGORITHM_LEFT_ASYMMETRIC: 2971 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2972 if (*dd_idx >= pd_idx) 2973 (*dd_idx)++; 2974 break; 2975 case ALGORITHM_RIGHT_ASYMMETRIC: 2976 pd_idx = sector_div(stripe2, raid_disks); 2977 if (*dd_idx >= pd_idx) 2978 (*dd_idx)++; 2979 break; 2980 case ALGORITHM_LEFT_SYMMETRIC: 2981 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2982 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2983 break; 2984 case ALGORITHM_RIGHT_SYMMETRIC: 2985 pd_idx = sector_div(stripe2, raid_disks); 2986 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2987 break; 2988 case ALGORITHM_PARITY_0: 2989 pd_idx = 0; 2990 (*dd_idx)++; 2991 break; 2992 case ALGORITHM_PARITY_N: 2993 pd_idx = data_disks; 2994 break; 2995 default: 2996 BUG(); 2997 } 2998 break; 2999 case 6: 3000 3001 switch (algorithm) { 3002 case ALGORITHM_LEFT_ASYMMETRIC: 3003 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3004 qd_idx = pd_idx + 1; 3005 if (pd_idx == raid_disks-1) { 3006 (*dd_idx)++; /* Q D D D P */ 3007 qd_idx = 0; 3008 } else if (*dd_idx >= pd_idx) 3009 (*dd_idx) += 2; /* D D P Q D */ 3010 break; 3011 case ALGORITHM_RIGHT_ASYMMETRIC: 3012 pd_idx = sector_div(stripe2, raid_disks); 3013 qd_idx = pd_idx + 1; 3014 if (pd_idx == raid_disks-1) { 3015 (*dd_idx)++; /* Q D D D P */ 3016 qd_idx = 0; 3017 } else if (*dd_idx >= pd_idx) 3018 (*dd_idx) += 2; /* D D P Q D */ 3019 break; 3020 case ALGORITHM_LEFT_SYMMETRIC: 3021 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3022 qd_idx = (pd_idx + 1) % raid_disks; 3023 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3024 break; 3025 case ALGORITHM_RIGHT_SYMMETRIC: 3026 pd_idx = sector_div(stripe2, raid_disks); 3027 qd_idx = (pd_idx + 1) % raid_disks; 3028 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3029 break; 3030 3031 case ALGORITHM_PARITY_0: 3032 pd_idx = 0; 3033 qd_idx = 1; 3034 (*dd_idx) += 2; 3035 break; 3036 case ALGORITHM_PARITY_N: 3037 pd_idx = data_disks; 3038 qd_idx = data_disks + 1; 3039 break; 3040 3041 case ALGORITHM_ROTATING_ZERO_RESTART: 3042 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3043 * of blocks for computing Q is different. 3044 */ 3045 pd_idx = sector_div(stripe2, raid_disks); 3046 qd_idx = pd_idx + 1; 3047 if (pd_idx == raid_disks-1) { 3048 (*dd_idx)++; /* Q D D D P */ 3049 qd_idx = 0; 3050 } else if (*dd_idx >= pd_idx) 3051 (*dd_idx) += 2; /* D D P Q D */ 3052 ddf_layout = 1; 3053 break; 3054 3055 case ALGORITHM_ROTATING_N_RESTART: 3056 /* Same a left_asymmetric, by first stripe is 3057 * D D D P Q rather than 3058 * Q D D D P 3059 */ 3060 stripe2 += 1; 3061 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3062 qd_idx = pd_idx + 1; 3063 if (pd_idx == raid_disks-1) { 3064 (*dd_idx)++; /* Q D D D P */ 3065 qd_idx = 0; 3066 } else if (*dd_idx >= pd_idx) 3067 (*dd_idx) += 2; /* D D P Q D */ 3068 ddf_layout = 1; 3069 break; 3070 3071 case ALGORITHM_ROTATING_N_CONTINUE: 3072 /* Same as left_symmetric but Q is before P */ 3073 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3074 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3075 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3076 ddf_layout = 1; 3077 break; 3078 3079 case ALGORITHM_LEFT_ASYMMETRIC_6: 3080 /* RAID5 left_asymmetric, with Q on last device */ 3081 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3082 if (*dd_idx >= pd_idx) 3083 (*dd_idx)++; 3084 qd_idx = raid_disks - 1; 3085 break; 3086 3087 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3088 pd_idx = sector_div(stripe2, raid_disks-1); 3089 if (*dd_idx >= pd_idx) 3090 (*dd_idx)++; 3091 qd_idx = raid_disks - 1; 3092 break; 3093 3094 case ALGORITHM_LEFT_SYMMETRIC_6: 3095 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3096 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3097 qd_idx = raid_disks - 1; 3098 break; 3099 3100 case ALGORITHM_RIGHT_SYMMETRIC_6: 3101 pd_idx = sector_div(stripe2, raid_disks-1); 3102 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3103 qd_idx = raid_disks - 1; 3104 break; 3105 3106 case ALGORITHM_PARITY_0_6: 3107 pd_idx = 0; 3108 (*dd_idx)++; 3109 qd_idx = raid_disks - 1; 3110 break; 3111 3112 default: 3113 BUG(); 3114 } 3115 break; 3116 } 3117 3118 if (sh) { 3119 sh->pd_idx = pd_idx; 3120 sh->qd_idx = qd_idx; 3121 sh->ddf_layout = ddf_layout; 3122 } 3123 /* 3124 * Finally, compute the new sector number 3125 */ 3126 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3127 return new_sector; 3128 } 3129 3130 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3131 { 3132 struct r5conf *conf = sh->raid_conf; 3133 int raid_disks = sh->disks; 3134 int data_disks = raid_disks - conf->max_degraded; 3135 sector_t new_sector = sh->sector, check; 3136 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3137 : conf->chunk_sectors; 3138 int algorithm = previous ? conf->prev_algo 3139 : conf->algorithm; 3140 sector_t stripe; 3141 int chunk_offset; 3142 sector_t chunk_number; 3143 int dummy1, dd_idx = i; 3144 sector_t r_sector; 3145 struct stripe_head sh2; 3146 3147 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3148 stripe = new_sector; 3149 3150 if (i == sh->pd_idx) 3151 return 0; 3152 switch(conf->level) { 3153 case 4: break; 3154 case 5: 3155 switch (algorithm) { 3156 case ALGORITHM_LEFT_ASYMMETRIC: 3157 case ALGORITHM_RIGHT_ASYMMETRIC: 3158 if (i > sh->pd_idx) 3159 i--; 3160 break; 3161 case ALGORITHM_LEFT_SYMMETRIC: 3162 case ALGORITHM_RIGHT_SYMMETRIC: 3163 if (i < sh->pd_idx) 3164 i += raid_disks; 3165 i -= (sh->pd_idx + 1); 3166 break; 3167 case ALGORITHM_PARITY_0: 3168 i -= 1; 3169 break; 3170 case ALGORITHM_PARITY_N: 3171 break; 3172 default: 3173 BUG(); 3174 } 3175 break; 3176 case 6: 3177 if (i == sh->qd_idx) 3178 return 0; /* It is the Q disk */ 3179 switch (algorithm) { 3180 case ALGORITHM_LEFT_ASYMMETRIC: 3181 case ALGORITHM_RIGHT_ASYMMETRIC: 3182 case ALGORITHM_ROTATING_ZERO_RESTART: 3183 case ALGORITHM_ROTATING_N_RESTART: 3184 if (sh->pd_idx == raid_disks-1) 3185 i--; /* Q D D D P */ 3186 else if (i > sh->pd_idx) 3187 i -= 2; /* D D P Q D */ 3188 break; 3189 case ALGORITHM_LEFT_SYMMETRIC: 3190 case ALGORITHM_RIGHT_SYMMETRIC: 3191 if (sh->pd_idx == raid_disks-1) 3192 i--; /* Q D D D P */ 3193 else { 3194 /* D D P Q D */ 3195 if (i < sh->pd_idx) 3196 i += raid_disks; 3197 i -= (sh->pd_idx + 2); 3198 } 3199 break; 3200 case ALGORITHM_PARITY_0: 3201 i -= 2; 3202 break; 3203 case ALGORITHM_PARITY_N: 3204 break; 3205 case ALGORITHM_ROTATING_N_CONTINUE: 3206 /* Like left_symmetric, but P is before Q */ 3207 if (sh->pd_idx == 0) 3208 i--; /* P D D D Q */ 3209 else { 3210 /* D D Q P D */ 3211 if (i < sh->pd_idx) 3212 i += raid_disks; 3213 i -= (sh->pd_idx + 1); 3214 } 3215 break; 3216 case ALGORITHM_LEFT_ASYMMETRIC_6: 3217 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3218 if (i > sh->pd_idx) 3219 i--; 3220 break; 3221 case ALGORITHM_LEFT_SYMMETRIC_6: 3222 case ALGORITHM_RIGHT_SYMMETRIC_6: 3223 if (i < sh->pd_idx) 3224 i += data_disks + 1; 3225 i -= (sh->pd_idx + 1); 3226 break; 3227 case ALGORITHM_PARITY_0_6: 3228 i -= 1; 3229 break; 3230 default: 3231 BUG(); 3232 } 3233 break; 3234 } 3235 3236 chunk_number = stripe * data_disks + i; 3237 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3238 3239 check = raid5_compute_sector(conf, r_sector, 3240 previous, &dummy1, &sh2); 3241 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3242 || sh2.qd_idx != sh->qd_idx) { 3243 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3244 mdname(conf->mddev)); 3245 return 0; 3246 } 3247 return r_sector; 3248 } 3249 3250 /* 3251 * There are cases where we want handle_stripe_dirtying() and 3252 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3253 * 3254 * This function checks whether we want to delay the towrite. Specifically, 3255 * we delay the towrite when: 3256 * 3257 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3258 * stripe has data in journal (for other devices). 3259 * 3260 * In this case, when reading data for the non-overwrite dev, it is 3261 * necessary to handle complex rmw of write back cache (prexor with 3262 * orig_page, and xor with page). To keep read path simple, we would 3263 * like to flush data in journal to RAID disks first, so complex rmw 3264 * is handled in the write patch (handle_stripe_dirtying). 3265 * 3266 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3267 * 3268 * It is important to be able to flush all stripes in raid5-cache. 3269 * Therefore, we need reserve some space on the journal device for 3270 * these flushes. If flush operation includes pending writes to the 3271 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3272 * for the flush out. If we exclude these pending writes from flush 3273 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3274 * Therefore, excluding pending writes in these cases enables more 3275 * efficient use of the journal device. 3276 * 3277 * Note: To make sure the stripe makes progress, we only delay 3278 * towrite for stripes with data already in journal (injournal > 0). 3279 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3280 * no_space_stripes list. 3281 * 3282 * 3. during journal failure 3283 * In journal failure, we try to flush all cached data to raid disks 3284 * based on data in stripe cache. The array is read-only to upper 3285 * layers, so we would skip all pending writes. 3286 * 3287 */ 3288 static inline bool delay_towrite(struct r5conf *conf, 3289 struct r5dev *dev, 3290 struct stripe_head_state *s) 3291 { 3292 /* case 1 above */ 3293 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3294 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3295 return true; 3296 /* case 2 above */ 3297 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3298 s->injournal > 0) 3299 return true; 3300 /* case 3 above */ 3301 if (s->log_failed && s->injournal) 3302 return true; 3303 return false; 3304 } 3305 3306 static void 3307 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3308 int rcw, int expand) 3309 { 3310 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3311 struct r5conf *conf = sh->raid_conf; 3312 int level = conf->level; 3313 3314 if (rcw) { 3315 /* 3316 * In some cases, handle_stripe_dirtying initially decided to 3317 * run rmw and allocates extra page for prexor. However, rcw is 3318 * cheaper later on. We need to free the extra page now, 3319 * because we won't be able to do that in ops_complete_prexor(). 3320 */ 3321 r5c_release_extra_page(sh); 3322 3323 for (i = disks; i--; ) { 3324 struct r5dev *dev = &sh->dev[i]; 3325 3326 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3327 set_bit(R5_LOCKED, &dev->flags); 3328 set_bit(R5_Wantdrain, &dev->flags); 3329 if (!expand) 3330 clear_bit(R5_UPTODATE, &dev->flags); 3331 s->locked++; 3332 } else if (test_bit(R5_InJournal, &dev->flags)) { 3333 set_bit(R5_LOCKED, &dev->flags); 3334 s->locked++; 3335 } 3336 } 3337 /* if we are not expanding this is a proper write request, and 3338 * there will be bios with new data to be drained into the 3339 * stripe cache 3340 */ 3341 if (!expand) { 3342 if (!s->locked) 3343 /* False alarm, nothing to do */ 3344 return; 3345 sh->reconstruct_state = reconstruct_state_drain_run; 3346 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3347 } else 3348 sh->reconstruct_state = reconstruct_state_run; 3349 3350 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3351 3352 if (s->locked + conf->max_degraded == disks) 3353 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3354 atomic_inc(&conf->pending_full_writes); 3355 } else { 3356 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3357 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3358 BUG_ON(level == 6 && 3359 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3360 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3361 3362 for (i = disks; i--; ) { 3363 struct r5dev *dev = &sh->dev[i]; 3364 if (i == pd_idx || i == qd_idx) 3365 continue; 3366 3367 if (dev->towrite && 3368 (test_bit(R5_UPTODATE, &dev->flags) || 3369 test_bit(R5_Wantcompute, &dev->flags))) { 3370 set_bit(R5_Wantdrain, &dev->flags); 3371 set_bit(R5_LOCKED, &dev->flags); 3372 clear_bit(R5_UPTODATE, &dev->flags); 3373 s->locked++; 3374 } else if (test_bit(R5_InJournal, &dev->flags)) { 3375 set_bit(R5_LOCKED, &dev->flags); 3376 s->locked++; 3377 } 3378 } 3379 if (!s->locked) 3380 /* False alarm - nothing to do */ 3381 return; 3382 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3383 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3384 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3385 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3386 } 3387 3388 /* keep the parity disk(s) locked while asynchronous operations 3389 * are in flight 3390 */ 3391 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3392 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3393 s->locked++; 3394 3395 if (level == 6) { 3396 int qd_idx = sh->qd_idx; 3397 struct r5dev *dev = &sh->dev[qd_idx]; 3398 3399 set_bit(R5_LOCKED, &dev->flags); 3400 clear_bit(R5_UPTODATE, &dev->flags); 3401 s->locked++; 3402 } 3403 3404 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3405 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3406 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3407 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3408 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3409 3410 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3411 __func__, (unsigned long long)sh->sector, 3412 s->locked, s->ops_request); 3413 } 3414 3415 /* 3416 * Each stripe/dev can have one or more bion attached. 3417 * toread/towrite point to the first in a chain. 3418 * The bi_next chain must be in order. 3419 */ 3420 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3421 int forwrite, int previous) 3422 { 3423 struct bio **bip; 3424 struct r5conf *conf = sh->raid_conf; 3425 int firstwrite=0; 3426 3427 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3428 (unsigned long long)bi->bi_iter.bi_sector, 3429 (unsigned long long)sh->sector); 3430 3431 spin_lock_irq(&sh->stripe_lock); 3432 /* Don't allow new IO added to stripes in batch list */ 3433 if (sh->batch_head) 3434 goto overlap; 3435 if (forwrite) { 3436 bip = &sh->dev[dd_idx].towrite; 3437 if (*bip == NULL) 3438 firstwrite = 1; 3439 } else 3440 bip = &sh->dev[dd_idx].toread; 3441 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3442 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3443 goto overlap; 3444 bip = & (*bip)->bi_next; 3445 } 3446 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3447 goto overlap; 3448 3449 if (forwrite && raid5_has_ppl(conf)) { 3450 /* 3451 * With PPL only writes to consecutive data chunks within a 3452 * stripe are allowed because for a single stripe_head we can 3453 * only have one PPL entry at a time, which describes one data 3454 * range. Not really an overlap, but wait_for_overlap can be 3455 * used to handle this. 3456 */ 3457 sector_t sector; 3458 sector_t first = 0; 3459 sector_t last = 0; 3460 int count = 0; 3461 int i; 3462 3463 for (i = 0; i < sh->disks; i++) { 3464 if (i != sh->pd_idx && 3465 (i == dd_idx || sh->dev[i].towrite)) { 3466 sector = sh->dev[i].sector; 3467 if (count == 0 || sector < first) 3468 first = sector; 3469 if (sector > last) 3470 last = sector; 3471 count++; 3472 } 3473 } 3474 3475 if (first + conf->chunk_sectors * (count - 1) != last) 3476 goto overlap; 3477 } 3478 3479 if (!forwrite || previous) 3480 clear_bit(STRIPE_BATCH_READY, &sh->state); 3481 3482 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3483 if (*bip) 3484 bi->bi_next = *bip; 3485 *bip = bi; 3486 bio_inc_remaining(bi); 3487 md_write_inc(conf->mddev, bi); 3488 3489 if (forwrite) { 3490 /* check if page is covered */ 3491 sector_t sector = sh->dev[dd_idx].sector; 3492 for (bi=sh->dev[dd_idx].towrite; 3493 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3494 bi && bi->bi_iter.bi_sector <= sector; 3495 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3496 if (bio_end_sector(bi) >= sector) 3497 sector = bio_end_sector(bi); 3498 } 3499 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3500 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3501 sh->overwrite_disks++; 3502 } 3503 3504 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3505 (unsigned long long)(*bip)->bi_iter.bi_sector, 3506 (unsigned long long)sh->sector, dd_idx); 3507 3508 if (conf->mddev->bitmap && firstwrite) { 3509 /* Cannot hold spinlock over bitmap_startwrite, 3510 * but must ensure this isn't added to a batch until 3511 * we have added to the bitmap and set bm_seq. 3512 * So set STRIPE_BITMAP_PENDING to prevent 3513 * batching. 3514 * If multiple add_stripe_bio() calls race here they 3515 * much all set STRIPE_BITMAP_PENDING. So only the first one 3516 * to complete "bitmap_startwrite" gets to set 3517 * STRIPE_BIT_DELAY. This is important as once a stripe 3518 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3519 * any more. 3520 */ 3521 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3522 spin_unlock_irq(&sh->stripe_lock); 3523 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3524 RAID5_STRIPE_SECTORS(conf), 0); 3525 spin_lock_irq(&sh->stripe_lock); 3526 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3527 if (!sh->batch_head) { 3528 sh->bm_seq = conf->seq_flush+1; 3529 set_bit(STRIPE_BIT_DELAY, &sh->state); 3530 } 3531 } 3532 spin_unlock_irq(&sh->stripe_lock); 3533 3534 if (stripe_can_batch(sh)) 3535 stripe_add_to_batch_list(conf, sh); 3536 return 1; 3537 3538 overlap: 3539 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3540 spin_unlock_irq(&sh->stripe_lock); 3541 return 0; 3542 } 3543 3544 static void end_reshape(struct r5conf *conf); 3545 3546 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3547 struct stripe_head *sh) 3548 { 3549 int sectors_per_chunk = 3550 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3551 int dd_idx; 3552 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3553 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3554 3555 raid5_compute_sector(conf, 3556 stripe * (disks - conf->max_degraded) 3557 *sectors_per_chunk + chunk_offset, 3558 previous, 3559 &dd_idx, sh); 3560 } 3561 3562 static void 3563 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3564 struct stripe_head_state *s, int disks) 3565 { 3566 int i; 3567 BUG_ON(sh->batch_head); 3568 for (i = disks; i--; ) { 3569 struct bio *bi; 3570 int bitmap_end = 0; 3571 3572 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3573 struct md_rdev *rdev; 3574 rcu_read_lock(); 3575 rdev = rcu_dereference(conf->disks[i].rdev); 3576 if (rdev && test_bit(In_sync, &rdev->flags) && 3577 !test_bit(Faulty, &rdev->flags)) 3578 atomic_inc(&rdev->nr_pending); 3579 else 3580 rdev = NULL; 3581 rcu_read_unlock(); 3582 if (rdev) { 3583 if (!rdev_set_badblocks( 3584 rdev, 3585 sh->sector, 3586 RAID5_STRIPE_SECTORS(conf), 0)) 3587 md_error(conf->mddev, rdev); 3588 rdev_dec_pending(rdev, conf->mddev); 3589 } 3590 } 3591 spin_lock_irq(&sh->stripe_lock); 3592 /* fail all writes first */ 3593 bi = sh->dev[i].towrite; 3594 sh->dev[i].towrite = NULL; 3595 sh->overwrite_disks = 0; 3596 spin_unlock_irq(&sh->stripe_lock); 3597 if (bi) 3598 bitmap_end = 1; 3599 3600 log_stripe_write_finished(sh); 3601 3602 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3603 wake_up(&conf->wait_for_overlap); 3604 3605 while (bi && bi->bi_iter.bi_sector < 3606 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3607 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3608 3609 md_write_end(conf->mddev); 3610 bio_io_error(bi); 3611 bi = nextbi; 3612 } 3613 if (bitmap_end) 3614 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3615 RAID5_STRIPE_SECTORS(conf), 0, 0); 3616 bitmap_end = 0; 3617 /* and fail all 'written' */ 3618 bi = sh->dev[i].written; 3619 sh->dev[i].written = NULL; 3620 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3621 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3622 sh->dev[i].page = sh->dev[i].orig_page; 3623 } 3624 3625 if (bi) bitmap_end = 1; 3626 while (bi && bi->bi_iter.bi_sector < 3627 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3628 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3629 3630 md_write_end(conf->mddev); 3631 bio_io_error(bi); 3632 bi = bi2; 3633 } 3634 3635 /* fail any reads if this device is non-operational and 3636 * the data has not reached the cache yet. 3637 */ 3638 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3639 s->failed > conf->max_degraded && 3640 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3641 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3642 spin_lock_irq(&sh->stripe_lock); 3643 bi = sh->dev[i].toread; 3644 sh->dev[i].toread = NULL; 3645 spin_unlock_irq(&sh->stripe_lock); 3646 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3647 wake_up(&conf->wait_for_overlap); 3648 if (bi) 3649 s->to_read--; 3650 while (bi && bi->bi_iter.bi_sector < 3651 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3652 struct bio *nextbi = 3653 r5_next_bio(conf, bi, sh->dev[i].sector); 3654 3655 bio_io_error(bi); 3656 bi = nextbi; 3657 } 3658 } 3659 if (bitmap_end) 3660 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3661 RAID5_STRIPE_SECTORS(conf), 0, 0); 3662 /* If we were in the middle of a write the parity block might 3663 * still be locked - so just clear all R5_LOCKED flags 3664 */ 3665 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3666 } 3667 s->to_write = 0; 3668 s->written = 0; 3669 3670 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3671 if (atomic_dec_and_test(&conf->pending_full_writes)) 3672 md_wakeup_thread(conf->mddev->thread); 3673 } 3674 3675 static void 3676 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3677 struct stripe_head_state *s) 3678 { 3679 int abort = 0; 3680 int i; 3681 3682 BUG_ON(sh->batch_head); 3683 clear_bit(STRIPE_SYNCING, &sh->state); 3684 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3685 wake_up(&conf->wait_for_overlap); 3686 s->syncing = 0; 3687 s->replacing = 0; 3688 /* There is nothing more to do for sync/check/repair. 3689 * Don't even need to abort as that is handled elsewhere 3690 * if needed, and not always wanted e.g. if there is a known 3691 * bad block here. 3692 * For recover/replace we need to record a bad block on all 3693 * non-sync devices, or abort the recovery 3694 */ 3695 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3696 /* During recovery devices cannot be removed, so 3697 * locking and refcounting of rdevs is not needed 3698 */ 3699 rcu_read_lock(); 3700 for (i = 0; i < conf->raid_disks; i++) { 3701 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3702 if (rdev 3703 && !test_bit(Faulty, &rdev->flags) 3704 && !test_bit(In_sync, &rdev->flags) 3705 && !rdev_set_badblocks(rdev, sh->sector, 3706 RAID5_STRIPE_SECTORS(conf), 0)) 3707 abort = 1; 3708 rdev = rcu_dereference(conf->disks[i].replacement); 3709 if (rdev 3710 && !test_bit(Faulty, &rdev->flags) 3711 && !test_bit(In_sync, &rdev->flags) 3712 && !rdev_set_badblocks(rdev, sh->sector, 3713 RAID5_STRIPE_SECTORS(conf), 0)) 3714 abort = 1; 3715 } 3716 rcu_read_unlock(); 3717 if (abort) 3718 conf->recovery_disabled = 3719 conf->mddev->recovery_disabled; 3720 } 3721 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3722 } 3723 3724 static int want_replace(struct stripe_head *sh, int disk_idx) 3725 { 3726 struct md_rdev *rdev; 3727 int rv = 0; 3728 3729 rcu_read_lock(); 3730 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3731 if (rdev 3732 && !test_bit(Faulty, &rdev->flags) 3733 && !test_bit(In_sync, &rdev->flags) 3734 && (rdev->recovery_offset <= sh->sector 3735 || rdev->mddev->recovery_cp <= sh->sector)) 3736 rv = 1; 3737 rcu_read_unlock(); 3738 return rv; 3739 } 3740 3741 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3742 int disk_idx, int disks) 3743 { 3744 struct r5dev *dev = &sh->dev[disk_idx]; 3745 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3746 &sh->dev[s->failed_num[1]] }; 3747 int i; 3748 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3749 3750 3751 if (test_bit(R5_LOCKED, &dev->flags) || 3752 test_bit(R5_UPTODATE, &dev->flags)) 3753 /* No point reading this as we already have it or have 3754 * decided to get it. 3755 */ 3756 return 0; 3757 3758 if (dev->toread || 3759 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3760 /* We need this block to directly satisfy a request */ 3761 return 1; 3762 3763 if (s->syncing || s->expanding || 3764 (s->replacing && want_replace(sh, disk_idx))) 3765 /* When syncing, or expanding we read everything. 3766 * When replacing, we need the replaced block. 3767 */ 3768 return 1; 3769 3770 if ((s->failed >= 1 && fdev[0]->toread) || 3771 (s->failed >= 2 && fdev[1]->toread)) 3772 /* If we want to read from a failed device, then 3773 * we need to actually read every other device. 3774 */ 3775 return 1; 3776 3777 /* Sometimes neither read-modify-write nor reconstruct-write 3778 * cycles can work. In those cases we read every block we 3779 * can. Then the parity-update is certain to have enough to 3780 * work with. 3781 * This can only be a problem when we need to write something, 3782 * and some device has failed. If either of those tests 3783 * fail we need look no further. 3784 */ 3785 if (!s->failed || !s->to_write) 3786 return 0; 3787 3788 if (test_bit(R5_Insync, &dev->flags) && 3789 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3790 /* Pre-reads at not permitted until after short delay 3791 * to gather multiple requests. However if this 3792 * device is no Insync, the block could only be computed 3793 * and there is no need to delay that. 3794 */ 3795 return 0; 3796 3797 for (i = 0; i < s->failed && i < 2; i++) { 3798 if (fdev[i]->towrite && 3799 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3800 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3801 /* If we have a partial write to a failed 3802 * device, then we will need to reconstruct 3803 * the content of that device, so all other 3804 * devices must be read. 3805 */ 3806 return 1; 3807 3808 if (s->failed >= 2 && 3809 (fdev[i]->towrite || 3810 s->failed_num[i] == sh->pd_idx || 3811 s->failed_num[i] == sh->qd_idx) && 3812 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3813 /* In max degraded raid6, If the failed disk is P, Q, 3814 * or we want to read the failed disk, we need to do 3815 * reconstruct-write. 3816 */ 3817 force_rcw = true; 3818 } 3819 3820 /* If we are forced to do a reconstruct-write, because parity 3821 * cannot be trusted and we are currently recovering it, there 3822 * is extra need to be careful. 3823 * If one of the devices that we would need to read, because 3824 * it is not being overwritten (and maybe not written at all) 3825 * is missing/faulty, then we need to read everything we can. 3826 */ 3827 if (!force_rcw && 3828 sh->sector < sh->raid_conf->mddev->recovery_cp) 3829 /* reconstruct-write isn't being forced */ 3830 return 0; 3831 for (i = 0; i < s->failed && i < 2; i++) { 3832 if (s->failed_num[i] != sh->pd_idx && 3833 s->failed_num[i] != sh->qd_idx && 3834 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3835 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3836 return 1; 3837 } 3838 3839 return 0; 3840 } 3841 3842 /* fetch_block - checks the given member device to see if its data needs 3843 * to be read or computed to satisfy a request. 3844 * 3845 * Returns 1 when no more member devices need to be checked, otherwise returns 3846 * 0 to tell the loop in handle_stripe_fill to continue 3847 */ 3848 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3849 int disk_idx, int disks) 3850 { 3851 struct r5dev *dev = &sh->dev[disk_idx]; 3852 3853 /* is the data in this block needed, and can we get it? */ 3854 if (need_this_block(sh, s, disk_idx, disks)) { 3855 /* we would like to get this block, possibly by computing it, 3856 * otherwise read it if the backing disk is insync 3857 */ 3858 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3859 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3860 BUG_ON(sh->batch_head); 3861 3862 /* 3863 * In the raid6 case if the only non-uptodate disk is P 3864 * then we already trusted P to compute the other failed 3865 * drives. It is safe to compute rather than re-read P. 3866 * In other cases we only compute blocks from failed 3867 * devices, otherwise check/repair might fail to detect 3868 * a real inconsistency. 3869 */ 3870 3871 if ((s->uptodate == disks - 1) && 3872 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3873 (s->failed && (disk_idx == s->failed_num[0] || 3874 disk_idx == s->failed_num[1])))) { 3875 /* have disk failed, and we're requested to fetch it; 3876 * do compute it 3877 */ 3878 pr_debug("Computing stripe %llu block %d\n", 3879 (unsigned long long)sh->sector, disk_idx); 3880 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3881 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3882 set_bit(R5_Wantcompute, &dev->flags); 3883 sh->ops.target = disk_idx; 3884 sh->ops.target2 = -1; /* no 2nd target */ 3885 s->req_compute = 1; 3886 /* Careful: from this point on 'uptodate' is in the eye 3887 * of raid_run_ops which services 'compute' operations 3888 * before writes. R5_Wantcompute flags a block that will 3889 * be R5_UPTODATE by the time it is needed for a 3890 * subsequent operation. 3891 */ 3892 s->uptodate++; 3893 return 1; 3894 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3895 /* Computing 2-failure is *very* expensive; only 3896 * do it if failed >= 2 3897 */ 3898 int other; 3899 for (other = disks; other--; ) { 3900 if (other == disk_idx) 3901 continue; 3902 if (!test_bit(R5_UPTODATE, 3903 &sh->dev[other].flags)) 3904 break; 3905 } 3906 BUG_ON(other < 0); 3907 pr_debug("Computing stripe %llu blocks %d,%d\n", 3908 (unsigned long long)sh->sector, 3909 disk_idx, other); 3910 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3911 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3912 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3913 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3914 sh->ops.target = disk_idx; 3915 sh->ops.target2 = other; 3916 s->uptodate += 2; 3917 s->req_compute = 1; 3918 return 1; 3919 } else if (test_bit(R5_Insync, &dev->flags)) { 3920 set_bit(R5_LOCKED, &dev->flags); 3921 set_bit(R5_Wantread, &dev->flags); 3922 s->locked++; 3923 pr_debug("Reading block %d (sync=%d)\n", 3924 disk_idx, s->syncing); 3925 } 3926 } 3927 3928 return 0; 3929 } 3930 3931 /* 3932 * handle_stripe_fill - read or compute data to satisfy pending requests. 3933 */ 3934 static void handle_stripe_fill(struct stripe_head *sh, 3935 struct stripe_head_state *s, 3936 int disks) 3937 { 3938 int i; 3939 3940 /* look for blocks to read/compute, skip this if a compute 3941 * is already in flight, or if the stripe contents are in the 3942 * midst of changing due to a write 3943 */ 3944 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3945 !sh->reconstruct_state) { 3946 3947 /* 3948 * For degraded stripe with data in journal, do not handle 3949 * read requests yet, instead, flush the stripe to raid 3950 * disks first, this avoids handling complex rmw of write 3951 * back cache (prexor with orig_page, and then xor with 3952 * page) in the read path 3953 */ 3954 if (s->injournal && s->failed) { 3955 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3956 r5c_make_stripe_write_out(sh); 3957 goto out; 3958 } 3959 3960 for (i = disks; i--; ) 3961 if (fetch_block(sh, s, i, disks)) 3962 break; 3963 } 3964 out: 3965 set_bit(STRIPE_HANDLE, &sh->state); 3966 } 3967 3968 static void break_stripe_batch_list(struct stripe_head *head_sh, 3969 unsigned long handle_flags); 3970 /* handle_stripe_clean_event 3971 * any written block on an uptodate or failed drive can be returned. 3972 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3973 * never LOCKED, so we don't need to test 'failed' directly. 3974 */ 3975 static void handle_stripe_clean_event(struct r5conf *conf, 3976 struct stripe_head *sh, int disks) 3977 { 3978 int i; 3979 struct r5dev *dev; 3980 int discard_pending = 0; 3981 struct stripe_head *head_sh = sh; 3982 bool do_endio = false; 3983 3984 for (i = disks; i--; ) 3985 if (sh->dev[i].written) { 3986 dev = &sh->dev[i]; 3987 if (!test_bit(R5_LOCKED, &dev->flags) && 3988 (test_bit(R5_UPTODATE, &dev->flags) || 3989 test_bit(R5_Discard, &dev->flags) || 3990 test_bit(R5_SkipCopy, &dev->flags))) { 3991 /* We can return any write requests */ 3992 struct bio *wbi, *wbi2; 3993 pr_debug("Return write for disc %d\n", i); 3994 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3995 clear_bit(R5_UPTODATE, &dev->flags); 3996 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3997 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3998 } 3999 do_endio = true; 4000 4001 returnbi: 4002 dev->page = dev->orig_page; 4003 wbi = dev->written; 4004 dev->written = NULL; 4005 while (wbi && wbi->bi_iter.bi_sector < 4006 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4007 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4008 md_write_end(conf->mddev); 4009 bio_endio(wbi); 4010 wbi = wbi2; 4011 } 4012 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4013 RAID5_STRIPE_SECTORS(conf), 4014 !test_bit(STRIPE_DEGRADED, &sh->state), 4015 0); 4016 if (head_sh->batch_head) { 4017 sh = list_first_entry(&sh->batch_list, 4018 struct stripe_head, 4019 batch_list); 4020 if (sh != head_sh) { 4021 dev = &sh->dev[i]; 4022 goto returnbi; 4023 } 4024 } 4025 sh = head_sh; 4026 dev = &sh->dev[i]; 4027 } else if (test_bit(R5_Discard, &dev->flags)) 4028 discard_pending = 1; 4029 } 4030 4031 log_stripe_write_finished(sh); 4032 4033 if (!discard_pending && 4034 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4035 int hash; 4036 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4037 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4038 if (sh->qd_idx >= 0) { 4039 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4040 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4041 } 4042 /* now that discard is done we can proceed with any sync */ 4043 clear_bit(STRIPE_DISCARD, &sh->state); 4044 /* 4045 * SCSI discard will change some bio fields and the stripe has 4046 * no updated data, so remove it from hash list and the stripe 4047 * will be reinitialized 4048 */ 4049 unhash: 4050 hash = sh->hash_lock_index; 4051 spin_lock_irq(conf->hash_locks + hash); 4052 remove_hash(sh); 4053 spin_unlock_irq(conf->hash_locks + hash); 4054 if (head_sh->batch_head) { 4055 sh = list_first_entry(&sh->batch_list, 4056 struct stripe_head, batch_list); 4057 if (sh != head_sh) 4058 goto unhash; 4059 } 4060 sh = head_sh; 4061 4062 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4063 set_bit(STRIPE_HANDLE, &sh->state); 4064 4065 } 4066 4067 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4068 if (atomic_dec_and_test(&conf->pending_full_writes)) 4069 md_wakeup_thread(conf->mddev->thread); 4070 4071 if (head_sh->batch_head && do_endio) 4072 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4073 } 4074 4075 /* 4076 * For RMW in write back cache, we need extra page in prexor to store the 4077 * old data. This page is stored in dev->orig_page. 4078 * 4079 * This function checks whether we have data for prexor. The exact logic 4080 * is: 4081 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4082 */ 4083 static inline bool uptodate_for_rmw(struct r5dev *dev) 4084 { 4085 return (test_bit(R5_UPTODATE, &dev->flags)) && 4086 (!test_bit(R5_InJournal, &dev->flags) || 4087 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4088 } 4089 4090 static int handle_stripe_dirtying(struct r5conf *conf, 4091 struct stripe_head *sh, 4092 struct stripe_head_state *s, 4093 int disks) 4094 { 4095 int rmw = 0, rcw = 0, i; 4096 sector_t recovery_cp = conf->mddev->recovery_cp; 4097 4098 /* Check whether resync is now happening or should start. 4099 * If yes, then the array is dirty (after unclean shutdown or 4100 * initial creation), so parity in some stripes might be inconsistent. 4101 * In this case, we need to always do reconstruct-write, to ensure 4102 * that in case of drive failure or read-error correction, we 4103 * generate correct data from the parity. 4104 */ 4105 if (conf->rmw_level == PARITY_DISABLE_RMW || 4106 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4107 s->failed == 0)) { 4108 /* Calculate the real rcw later - for now make it 4109 * look like rcw is cheaper 4110 */ 4111 rcw = 1; rmw = 2; 4112 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4113 conf->rmw_level, (unsigned long long)recovery_cp, 4114 (unsigned long long)sh->sector); 4115 } else for (i = disks; i--; ) { 4116 /* would I have to read this buffer for read_modify_write */ 4117 struct r5dev *dev = &sh->dev[i]; 4118 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4119 i == sh->pd_idx || i == sh->qd_idx || 4120 test_bit(R5_InJournal, &dev->flags)) && 4121 !test_bit(R5_LOCKED, &dev->flags) && 4122 !(uptodate_for_rmw(dev) || 4123 test_bit(R5_Wantcompute, &dev->flags))) { 4124 if (test_bit(R5_Insync, &dev->flags)) 4125 rmw++; 4126 else 4127 rmw += 2*disks; /* cannot read it */ 4128 } 4129 /* Would I have to read this buffer for reconstruct_write */ 4130 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4131 i != sh->pd_idx && i != sh->qd_idx && 4132 !test_bit(R5_LOCKED, &dev->flags) && 4133 !(test_bit(R5_UPTODATE, &dev->flags) || 4134 test_bit(R5_Wantcompute, &dev->flags))) { 4135 if (test_bit(R5_Insync, &dev->flags)) 4136 rcw++; 4137 else 4138 rcw += 2*disks; 4139 } 4140 } 4141 4142 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4143 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4144 set_bit(STRIPE_HANDLE, &sh->state); 4145 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4146 /* prefer read-modify-write, but need to get some data */ 4147 if (conf->mddev->queue) 4148 blk_add_trace_msg(conf->mddev->queue, 4149 "raid5 rmw %llu %d", 4150 (unsigned long long)sh->sector, rmw); 4151 for (i = disks; i--; ) { 4152 struct r5dev *dev = &sh->dev[i]; 4153 if (test_bit(R5_InJournal, &dev->flags) && 4154 dev->page == dev->orig_page && 4155 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4156 /* alloc page for prexor */ 4157 struct page *p = alloc_page(GFP_NOIO); 4158 4159 if (p) { 4160 dev->orig_page = p; 4161 continue; 4162 } 4163 4164 /* 4165 * alloc_page() failed, try use 4166 * disk_info->extra_page 4167 */ 4168 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4169 &conf->cache_state)) { 4170 r5c_use_extra_page(sh); 4171 break; 4172 } 4173 4174 /* extra_page in use, add to delayed_list */ 4175 set_bit(STRIPE_DELAYED, &sh->state); 4176 s->waiting_extra_page = 1; 4177 return -EAGAIN; 4178 } 4179 } 4180 4181 for (i = disks; i--; ) { 4182 struct r5dev *dev = &sh->dev[i]; 4183 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4184 i == sh->pd_idx || i == sh->qd_idx || 4185 test_bit(R5_InJournal, &dev->flags)) && 4186 !test_bit(R5_LOCKED, &dev->flags) && 4187 !(uptodate_for_rmw(dev) || 4188 test_bit(R5_Wantcompute, &dev->flags)) && 4189 test_bit(R5_Insync, &dev->flags)) { 4190 if (test_bit(STRIPE_PREREAD_ACTIVE, 4191 &sh->state)) { 4192 pr_debug("Read_old block %d for r-m-w\n", 4193 i); 4194 set_bit(R5_LOCKED, &dev->flags); 4195 set_bit(R5_Wantread, &dev->flags); 4196 s->locked++; 4197 } else 4198 set_bit(STRIPE_DELAYED, &sh->state); 4199 } 4200 } 4201 } 4202 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4203 /* want reconstruct write, but need to get some data */ 4204 int qread =0; 4205 rcw = 0; 4206 for (i = disks; i--; ) { 4207 struct r5dev *dev = &sh->dev[i]; 4208 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4209 i != sh->pd_idx && i != sh->qd_idx && 4210 !test_bit(R5_LOCKED, &dev->flags) && 4211 !(test_bit(R5_UPTODATE, &dev->flags) || 4212 test_bit(R5_Wantcompute, &dev->flags))) { 4213 rcw++; 4214 if (test_bit(R5_Insync, &dev->flags) && 4215 test_bit(STRIPE_PREREAD_ACTIVE, 4216 &sh->state)) { 4217 pr_debug("Read_old block " 4218 "%d for Reconstruct\n", i); 4219 set_bit(R5_LOCKED, &dev->flags); 4220 set_bit(R5_Wantread, &dev->flags); 4221 s->locked++; 4222 qread++; 4223 } else 4224 set_bit(STRIPE_DELAYED, &sh->state); 4225 } 4226 } 4227 if (rcw && conf->mddev->queue) 4228 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4229 (unsigned long long)sh->sector, 4230 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4231 } 4232 4233 if (rcw > disks && rmw > disks && 4234 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4235 set_bit(STRIPE_DELAYED, &sh->state); 4236 4237 /* now if nothing is locked, and if we have enough data, 4238 * we can start a write request 4239 */ 4240 /* since handle_stripe can be called at any time we need to handle the 4241 * case where a compute block operation has been submitted and then a 4242 * subsequent call wants to start a write request. raid_run_ops only 4243 * handles the case where compute block and reconstruct are requested 4244 * simultaneously. If this is not the case then new writes need to be 4245 * held off until the compute completes. 4246 */ 4247 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4248 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4249 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4250 schedule_reconstruction(sh, s, rcw == 0, 0); 4251 return 0; 4252 } 4253 4254 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4255 struct stripe_head_state *s, int disks) 4256 { 4257 struct r5dev *dev = NULL; 4258 4259 BUG_ON(sh->batch_head); 4260 set_bit(STRIPE_HANDLE, &sh->state); 4261 4262 switch (sh->check_state) { 4263 case check_state_idle: 4264 /* start a new check operation if there are no failures */ 4265 if (s->failed == 0) { 4266 BUG_ON(s->uptodate != disks); 4267 sh->check_state = check_state_run; 4268 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4269 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4270 s->uptodate--; 4271 break; 4272 } 4273 dev = &sh->dev[s->failed_num[0]]; 4274 fallthrough; 4275 case check_state_compute_result: 4276 sh->check_state = check_state_idle; 4277 if (!dev) 4278 dev = &sh->dev[sh->pd_idx]; 4279 4280 /* check that a write has not made the stripe insync */ 4281 if (test_bit(STRIPE_INSYNC, &sh->state)) 4282 break; 4283 4284 /* either failed parity check, or recovery is happening */ 4285 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4286 BUG_ON(s->uptodate != disks); 4287 4288 set_bit(R5_LOCKED, &dev->flags); 4289 s->locked++; 4290 set_bit(R5_Wantwrite, &dev->flags); 4291 4292 clear_bit(STRIPE_DEGRADED, &sh->state); 4293 set_bit(STRIPE_INSYNC, &sh->state); 4294 break; 4295 case check_state_run: 4296 break; /* we will be called again upon completion */ 4297 case check_state_check_result: 4298 sh->check_state = check_state_idle; 4299 4300 /* if a failure occurred during the check operation, leave 4301 * STRIPE_INSYNC not set and let the stripe be handled again 4302 */ 4303 if (s->failed) 4304 break; 4305 4306 /* handle a successful check operation, if parity is correct 4307 * we are done. Otherwise update the mismatch count and repair 4308 * parity if !MD_RECOVERY_CHECK 4309 */ 4310 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4311 /* parity is correct (on disc, 4312 * not in buffer any more) 4313 */ 4314 set_bit(STRIPE_INSYNC, &sh->state); 4315 else { 4316 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4317 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4318 /* don't try to repair!! */ 4319 set_bit(STRIPE_INSYNC, &sh->state); 4320 pr_warn_ratelimited("%s: mismatch sector in range " 4321 "%llu-%llu\n", mdname(conf->mddev), 4322 (unsigned long long) sh->sector, 4323 (unsigned long long) sh->sector + 4324 RAID5_STRIPE_SECTORS(conf)); 4325 } else { 4326 sh->check_state = check_state_compute_run; 4327 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4328 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4329 set_bit(R5_Wantcompute, 4330 &sh->dev[sh->pd_idx].flags); 4331 sh->ops.target = sh->pd_idx; 4332 sh->ops.target2 = -1; 4333 s->uptodate++; 4334 } 4335 } 4336 break; 4337 case check_state_compute_run: 4338 break; 4339 default: 4340 pr_err("%s: unknown check_state: %d sector: %llu\n", 4341 __func__, sh->check_state, 4342 (unsigned long long) sh->sector); 4343 BUG(); 4344 } 4345 } 4346 4347 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4348 struct stripe_head_state *s, 4349 int disks) 4350 { 4351 int pd_idx = sh->pd_idx; 4352 int qd_idx = sh->qd_idx; 4353 struct r5dev *dev; 4354 4355 BUG_ON(sh->batch_head); 4356 set_bit(STRIPE_HANDLE, &sh->state); 4357 4358 BUG_ON(s->failed > 2); 4359 4360 /* Want to check and possibly repair P and Q. 4361 * However there could be one 'failed' device, in which 4362 * case we can only check one of them, possibly using the 4363 * other to generate missing data 4364 */ 4365 4366 switch (sh->check_state) { 4367 case check_state_idle: 4368 /* start a new check operation if there are < 2 failures */ 4369 if (s->failed == s->q_failed) { 4370 /* The only possible failed device holds Q, so it 4371 * makes sense to check P (If anything else were failed, 4372 * we would have used P to recreate it). 4373 */ 4374 sh->check_state = check_state_run; 4375 } 4376 if (!s->q_failed && s->failed < 2) { 4377 /* Q is not failed, and we didn't use it to generate 4378 * anything, so it makes sense to check it 4379 */ 4380 if (sh->check_state == check_state_run) 4381 sh->check_state = check_state_run_pq; 4382 else 4383 sh->check_state = check_state_run_q; 4384 } 4385 4386 /* discard potentially stale zero_sum_result */ 4387 sh->ops.zero_sum_result = 0; 4388 4389 if (sh->check_state == check_state_run) { 4390 /* async_xor_zero_sum destroys the contents of P */ 4391 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4392 s->uptodate--; 4393 } 4394 if (sh->check_state >= check_state_run && 4395 sh->check_state <= check_state_run_pq) { 4396 /* async_syndrome_zero_sum preserves P and Q, so 4397 * no need to mark them !uptodate here 4398 */ 4399 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4400 break; 4401 } 4402 4403 /* we have 2-disk failure */ 4404 BUG_ON(s->failed != 2); 4405 fallthrough; 4406 case check_state_compute_result: 4407 sh->check_state = check_state_idle; 4408 4409 /* check that a write has not made the stripe insync */ 4410 if (test_bit(STRIPE_INSYNC, &sh->state)) 4411 break; 4412 4413 /* now write out any block on a failed drive, 4414 * or P or Q if they were recomputed 4415 */ 4416 dev = NULL; 4417 if (s->failed == 2) { 4418 dev = &sh->dev[s->failed_num[1]]; 4419 s->locked++; 4420 set_bit(R5_LOCKED, &dev->flags); 4421 set_bit(R5_Wantwrite, &dev->flags); 4422 } 4423 if (s->failed >= 1) { 4424 dev = &sh->dev[s->failed_num[0]]; 4425 s->locked++; 4426 set_bit(R5_LOCKED, &dev->flags); 4427 set_bit(R5_Wantwrite, &dev->flags); 4428 } 4429 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4430 dev = &sh->dev[pd_idx]; 4431 s->locked++; 4432 set_bit(R5_LOCKED, &dev->flags); 4433 set_bit(R5_Wantwrite, &dev->flags); 4434 } 4435 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4436 dev = &sh->dev[qd_idx]; 4437 s->locked++; 4438 set_bit(R5_LOCKED, &dev->flags); 4439 set_bit(R5_Wantwrite, &dev->flags); 4440 } 4441 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4442 "%s: disk%td not up to date\n", 4443 mdname(conf->mddev), 4444 dev - (struct r5dev *) &sh->dev)) { 4445 clear_bit(R5_LOCKED, &dev->flags); 4446 clear_bit(R5_Wantwrite, &dev->flags); 4447 s->locked--; 4448 } 4449 clear_bit(STRIPE_DEGRADED, &sh->state); 4450 4451 set_bit(STRIPE_INSYNC, &sh->state); 4452 break; 4453 case check_state_run: 4454 case check_state_run_q: 4455 case check_state_run_pq: 4456 break; /* we will be called again upon completion */ 4457 case check_state_check_result: 4458 sh->check_state = check_state_idle; 4459 4460 /* handle a successful check operation, if parity is correct 4461 * we are done. Otherwise update the mismatch count and repair 4462 * parity if !MD_RECOVERY_CHECK 4463 */ 4464 if (sh->ops.zero_sum_result == 0) { 4465 /* both parities are correct */ 4466 if (!s->failed) 4467 set_bit(STRIPE_INSYNC, &sh->state); 4468 else { 4469 /* in contrast to the raid5 case we can validate 4470 * parity, but still have a failure to write 4471 * back 4472 */ 4473 sh->check_state = check_state_compute_result; 4474 /* Returning at this point means that we may go 4475 * off and bring p and/or q uptodate again so 4476 * we make sure to check zero_sum_result again 4477 * to verify if p or q need writeback 4478 */ 4479 } 4480 } else { 4481 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4482 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4483 /* don't try to repair!! */ 4484 set_bit(STRIPE_INSYNC, &sh->state); 4485 pr_warn_ratelimited("%s: mismatch sector in range " 4486 "%llu-%llu\n", mdname(conf->mddev), 4487 (unsigned long long) sh->sector, 4488 (unsigned long long) sh->sector + 4489 RAID5_STRIPE_SECTORS(conf)); 4490 } else { 4491 int *target = &sh->ops.target; 4492 4493 sh->ops.target = -1; 4494 sh->ops.target2 = -1; 4495 sh->check_state = check_state_compute_run; 4496 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4497 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4498 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4499 set_bit(R5_Wantcompute, 4500 &sh->dev[pd_idx].flags); 4501 *target = pd_idx; 4502 target = &sh->ops.target2; 4503 s->uptodate++; 4504 } 4505 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4506 set_bit(R5_Wantcompute, 4507 &sh->dev[qd_idx].flags); 4508 *target = qd_idx; 4509 s->uptodate++; 4510 } 4511 } 4512 } 4513 break; 4514 case check_state_compute_run: 4515 break; 4516 default: 4517 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4518 __func__, sh->check_state, 4519 (unsigned long long) sh->sector); 4520 BUG(); 4521 } 4522 } 4523 4524 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4525 { 4526 int i; 4527 4528 /* We have read all the blocks in this stripe and now we need to 4529 * copy some of them into a target stripe for expand. 4530 */ 4531 struct dma_async_tx_descriptor *tx = NULL; 4532 BUG_ON(sh->batch_head); 4533 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4534 for (i = 0; i < sh->disks; i++) 4535 if (i != sh->pd_idx && i != sh->qd_idx) { 4536 int dd_idx, j; 4537 struct stripe_head *sh2; 4538 struct async_submit_ctl submit; 4539 4540 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4541 sector_t s = raid5_compute_sector(conf, bn, 0, 4542 &dd_idx, NULL); 4543 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4544 if (sh2 == NULL) 4545 /* so far only the early blocks of this stripe 4546 * have been requested. When later blocks 4547 * get requested, we will try again 4548 */ 4549 continue; 4550 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4551 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4552 /* must have already done this block */ 4553 raid5_release_stripe(sh2); 4554 continue; 4555 } 4556 4557 /* place all the copies on one channel */ 4558 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4559 tx = async_memcpy(sh2->dev[dd_idx].page, 4560 sh->dev[i].page, sh2->dev[dd_idx].offset, 4561 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4562 &submit); 4563 4564 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4565 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4566 for (j = 0; j < conf->raid_disks; j++) 4567 if (j != sh2->pd_idx && 4568 j != sh2->qd_idx && 4569 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4570 break; 4571 if (j == conf->raid_disks) { 4572 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4573 set_bit(STRIPE_HANDLE, &sh2->state); 4574 } 4575 raid5_release_stripe(sh2); 4576 4577 } 4578 /* done submitting copies, wait for them to complete */ 4579 async_tx_quiesce(&tx); 4580 } 4581 4582 /* 4583 * handle_stripe - do things to a stripe. 4584 * 4585 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4586 * state of various bits to see what needs to be done. 4587 * Possible results: 4588 * return some read requests which now have data 4589 * return some write requests which are safely on storage 4590 * schedule a read on some buffers 4591 * schedule a write of some buffers 4592 * return confirmation of parity correctness 4593 * 4594 */ 4595 4596 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4597 { 4598 struct r5conf *conf = sh->raid_conf; 4599 int disks = sh->disks; 4600 struct r5dev *dev; 4601 int i; 4602 int do_recovery = 0; 4603 4604 memset(s, 0, sizeof(*s)); 4605 4606 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4607 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4608 s->failed_num[0] = -1; 4609 s->failed_num[1] = -1; 4610 s->log_failed = r5l_log_disk_error(conf); 4611 4612 /* Now to look around and see what can be done */ 4613 rcu_read_lock(); 4614 for (i=disks; i--; ) { 4615 struct md_rdev *rdev; 4616 sector_t first_bad; 4617 int bad_sectors; 4618 int is_bad = 0; 4619 4620 dev = &sh->dev[i]; 4621 4622 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4623 i, dev->flags, 4624 dev->toread, dev->towrite, dev->written); 4625 /* maybe we can reply to a read 4626 * 4627 * new wantfill requests are only permitted while 4628 * ops_complete_biofill is guaranteed to be inactive 4629 */ 4630 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4631 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4632 set_bit(R5_Wantfill, &dev->flags); 4633 4634 /* now count some things */ 4635 if (test_bit(R5_LOCKED, &dev->flags)) 4636 s->locked++; 4637 if (test_bit(R5_UPTODATE, &dev->flags)) 4638 s->uptodate++; 4639 if (test_bit(R5_Wantcompute, &dev->flags)) { 4640 s->compute++; 4641 BUG_ON(s->compute > 2); 4642 } 4643 4644 if (test_bit(R5_Wantfill, &dev->flags)) 4645 s->to_fill++; 4646 else if (dev->toread) 4647 s->to_read++; 4648 if (dev->towrite) { 4649 s->to_write++; 4650 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4651 s->non_overwrite++; 4652 } 4653 if (dev->written) 4654 s->written++; 4655 /* Prefer to use the replacement for reads, but only 4656 * if it is recovered enough and has no bad blocks. 4657 */ 4658 rdev = rcu_dereference(conf->disks[i].replacement); 4659 if (rdev && !test_bit(Faulty, &rdev->flags) && 4660 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4661 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4662 &first_bad, &bad_sectors)) 4663 set_bit(R5_ReadRepl, &dev->flags); 4664 else { 4665 if (rdev && !test_bit(Faulty, &rdev->flags)) 4666 set_bit(R5_NeedReplace, &dev->flags); 4667 else 4668 clear_bit(R5_NeedReplace, &dev->flags); 4669 rdev = rcu_dereference(conf->disks[i].rdev); 4670 clear_bit(R5_ReadRepl, &dev->flags); 4671 } 4672 if (rdev && test_bit(Faulty, &rdev->flags)) 4673 rdev = NULL; 4674 if (rdev) { 4675 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4676 &first_bad, &bad_sectors); 4677 if (s->blocked_rdev == NULL 4678 && (test_bit(Blocked, &rdev->flags) 4679 || is_bad < 0)) { 4680 if (is_bad < 0) 4681 set_bit(BlockedBadBlocks, 4682 &rdev->flags); 4683 s->blocked_rdev = rdev; 4684 atomic_inc(&rdev->nr_pending); 4685 } 4686 } 4687 clear_bit(R5_Insync, &dev->flags); 4688 if (!rdev) 4689 /* Not in-sync */; 4690 else if (is_bad) { 4691 /* also not in-sync */ 4692 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4693 test_bit(R5_UPTODATE, &dev->flags)) { 4694 /* treat as in-sync, but with a read error 4695 * which we can now try to correct 4696 */ 4697 set_bit(R5_Insync, &dev->flags); 4698 set_bit(R5_ReadError, &dev->flags); 4699 } 4700 } else if (test_bit(In_sync, &rdev->flags)) 4701 set_bit(R5_Insync, &dev->flags); 4702 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4703 /* in sync if before recovery_offset */ 4704 set_bit(R5_Insync, &dev->flags); 4705 else if (test_bit(R5_UPTODATE, &dev->flags) && 4706 test_bit(R5_Expanded, &dev->flags)) 4707 /* If we've reshaped into here, we assume it is Insync. 4708 * We will shortly update recovery_offset to make 4709 * it official. 4710 */ 4711 set_bit(R5_Insync, &dev->flags); 4712 4713 if (test_bit(R5_WriteError, &dev->flags)) { 4714 /* This flag does not apply to '.replacement' 4715 * only to .rdev, so make sure to check that*/ 4716 struct md_rdev *rdev2 = rcu_dereference( 4717 conf->disks[i].rdev); 4718 if (rdev2 == rdev) 4719 clear_bit(R5_Insync, &dev->flags); 4720 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4721 s->handle_bad_blocks = 1; 4722 atomic_inc(&rdev2->nr_pending); 4723 } else 4724 clear_bit(R5_WriteError, &dev->flags); 4725 } 4726 if (test_bit(R5_MadeGood, &dev->flags)) { 4727 /* This flag does not apply to '.replacement' 4728 * only to .rdev, so make sure to check that*/ 4729 struct md_rdev *rdev2 = rcu_dereference( 4730 conf->disks[i].rdev); 4731 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4732 s->handle_bad_blocks = 1; 4733 atomic_inc(&rdev2->nr_pending); 4734 } else 4735 clear_bit(R5_MadeGood, &dev->flags); 4736 } 4737 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4738 struct md_rdev *rdev2 = rcu_dereference( 4739 conf->disks[i].replacement); 4740 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4741 s->handle_bad_blocks = 1; 4742 atomic_inc(&rdev2->nr_pending); 4743 } else 4744 clear_bit(R5_MadeGoodRepl, &dev->flags); 4745 } 4746 if (!test_bit(R5_Insync, &dev->flags)) { 4747 /* The ReadError flag will just be confusing now */ 4748 clear_bit(R5_ReadError, &dev->flags); 4749 clear_bit(R5_ReWrite, &dev->flags); 4750 } 4751 if (test_bit(R5_ReadError, &dev->flags)) 4752 clear_bit(R5_Insync, &dev->flags); 4753 if (!test_bit(R5_Insync, &dev->flags)) { 4754 if (s->failed < 2) 4755 s->failed_num[s->failed] = i; 4756 s->failed++; 4757 if (rdev && !test_bit(Faulty, &rdev->flags)) 4758 do_recovery = 1; 4759 else if (!rdev) { 4760 rdev = rcu_dereference( 4761 conf->disks[i].replacement); 4762 if (rdev && !test_bit(Faulty, &rdev->flags)) 4763 do_recovery = 1; 4764 } 4765 } 4766 4767 if (test_bit(R5_InJournal, &dev->flags)) 4768 s->injournal++; 4769 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4770 s->just_cached++; 4771 } 4772 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4773 /* If there is a failed device being replaced, 4774 * we must be recovering. 4775 * else if we are after recovery_cp, we must be syncing 4776 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4777 * else we can only be replacing 4778 * sync and recovery both need to read all devices, and so 4779 * use the same flag. 4780 */ 4781 if (do_recovery || 4782 sh->sector >= conf->mddev->recovery_cp || 4783 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4784 s->syncing = 1; 4785 else 4786 s->replacing = 1; 4787 } 4788 rcu_read_unlock(); 4789 } 4790 4791 /* 4792 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4793 * a head which can now be handled. 4794 */ 4795 static int clear_batch_ready(struct stripe_head *sh) 4796 { 4797 struct stripe_head *tmp; 4798 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4799 return (sh->batch_head && sh->batch_head != sh); 4800 spin_lock(&sh->stripe_lock); 4801 if (!sh->batch_head) { 4802 spin_unlock(&sh->stripe_lock); 4803 return 0; 4804 } 4805 4806 /* 4807 * this stripe could be added to a batch list before we check 4808 * BATCH_READY, skips it 4809 */ 4810 if (sh->batch_head != sh) { 4811 spin_unlock(&sh->stripe_lock); 4812 return 1; 4813 } 4814 spin_lock(&sh->batch_lock); 4815 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4816 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4817 spin_unlock(&sh->batch_lock); 4818 spin_unlock(&sh->stripe_lock); 4819 4820 /* 4821 * BATCH_READY is cleared, no new stripes can be added. 4822 * batch_list can be accessed without lock 4823 */ 4824 return 0; 4825 } 4826 4827 static void break_stripe_batch_list(struct stripe_head *head_sh, 4828 unsigned long handle_flags) 4829 { 4830 struct stripe_head *sh, *next; 4831 int i; 4832 int do_wakeup = 0; 4833 4834 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4835 4836 list_del_init(&sh->batch_list); 4837 4838 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4839 (1 << STRIPE_SYNCING) | 4840 (1 << STRIPE_REPLACED) | 4841 (1 << STRIPE_DELAYED) | 4842 (1 << STRIPE_BIT_DELAY) | 4843 (1 << STRIPE_FULL_WRITE) | 4844 (1 << STRIPE_BIOFILL_RUN) | 4845 (1 << STRIPE_COMPUTE_RUN) | 4846 (1 << STRIPE_DISCARD) | 4847 (1 << STRIPE_BATCH_READY) | 4848 (1 << STRIPE_BATCH_ERR) | 4849 (1 << STRIPE_BITMAP_PENDING)), 4850 "stripe state: %lx\n", sh->state); 4851 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4852 (1 << STRIPE_REPLACED)), 4853 "head stripe state: %lx\n", head_sh->state); 4854 4855 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4856 (1 << STRIPE_PREREAD_ACTIVE) | 4857 (1 << STRIPE_DEGRADED) | 4858 (1 << STRIPE_ON_UNPLUG_LIST)), 4859 head_sh->state & (1 << STRIPE_INSYNC)); 4860 4861 sh->check_state = head_sh->check_state; 4862 sh->reconstruct_state = head_sh->reconstruct_state; 4863 spin_lock_irq(&sh->stripe_lock); 4864 sh->batch_head = NULL; 4865 spin_unlock_irq(&sh->stripe_lock); 4866 for (i = 0; i < sh->disks; i++) { 4867 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4868 do_wakeup = 1; 4869 sh->dev[i].flags = head_sh->dev[i].flags & 4870 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4871 } 4872 if (handle_flags == 0 || 4873 sh->state & handle_flags) 4874 set_bit(STRIPE_HANDLE, &sh->state); 4875 raid5_release_stripe(sh); 4876 } 4877 spin_lock_irq(&head_sh->stripe_lock); 4878 head_sh->batch_head = NULL; 4879 spin_unlock_irq(&head_sh->stripe_lock); 4880 for (i = 0; i < head_sh->disks; i++) 4881 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4882 do_wakeup = 1; 4883 if (head_sh->state & handle_flags) 4884 set_bit(STRIPE_HANDLE, &head_sh->state); 4885 4886 if (do_wakeup) 4887 wake_up(&head_sh->raid_conf->wait_for_overlap); 4888 } 4889 4890 static void handle_stripe(struct stripe_head *sh) 4891 { 4892 struct stripe_head_state s; 4893 struct r5conf *conf = sh->raid_conf; 4894 int i; 4895 int prexor; 4896 int disks = sh->disks; 4897 struct r5dev *pdev, *qdev; 4898 4899 clear_bit(STRIPE_HANDLE, &sh->state); 4900 4901 /* 4902 * handle_stripe should not continue handle the batched stripe, only 4903 * the head of batch list or lone stripe can continue. Otherwise we 4904 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4905 * is set for the batched stripe. 4906 */ 4907 if (clear_batch_ready(sh)) 4908 return; 4909 4910 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4911 /* already being handled, ensure it gets handled 4912 * again when current action finishes */ 4913 set_bit(STRIPE_HANDLE, &sh->state); 4914 return; 4915 } 4916 4917 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4918 break_stripe_batch_list(sh, 0); 4919 4920 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4921 spin_lock(&sh->stripe_lock); 4922 /* 4923 * Cannot process 'sync' concurrently with 'discard'. 4924 * Flush data in r5cache before 'sync'. 4925 */ 4926 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4927 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4928 !test_bit(STRIPE_DISCARD, &sh->state) && 4929 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4930 set_bit(STRIPE_SYNCING, &sh->state); 4931 clear_bit(STRIPE_INSYNC, &sh->state); 4932 clear_bit(STRIPE_REPLACED, &sh->state); 4933 } 4934 spin_unlock(&sh->stripe_lock); 4935 } 4936 clear_bit(STRIPE_DELAYED, &sh->state); 4937 4938 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4939 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4940 (unsigned long long)sh->sector, sh->state, 4941 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4942 sh->check_state, sh->reconstruct_state); 4943 4944 analyse_stripe(sh, &s); 4945 4946 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4947 goto finish; 4948 4949 if (s.handle_bad_blocks || 4950 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4951 set_bit(STRIPE_HANDLE, &sh->state); 4952 goto finish; 4953 } 4954 4955 if (unlikely(s.blocked_rdev)) { 4956 if (s.syncing || s.expanding || s.expanded || 4957 s.replacing || s.to_write || s.written) { 4958 set_bit(STRIPE_HANDLE, &sh->state); 4959 goto finish; 4960 } 4961 /* There is nothing for the blocked_rdev to block */ 4962 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4963 s.blocked_rdev = NULL; 4964 } 4965 4966 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4967 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4968 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4969 } 4970 4971 pr_debug("locked=%d uptodate=%d to_read=%d" 4972 " to_write=%d failed=%d failed_num=%d,%d\n", 4973 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4974 s.failed_num[0], s.failed_num[1]); 4975 /* 4976 * check if the array has lost more than max_degraded devices and, 4977 * if so, some requests might need to be failed. 4978 * 4979 * When journal device failed (log_failed), we will only process 4980 * the stripe if there is data need write to raid disks 4981 */ 4982 if (s.failed > conf->max_degraded || 4983 (s.log_failed && s.injournal == 0)) { 4984 sh->check_state = 0; 4985 sh->reconstruct_state = 0; 4986 break_stripe_batch_list(sh, 0); 4987 if (s.to_read+s.to_write+s.written) 4988 handle_failed_stripe(conf, sh, &s, disks); 4989 if (s.syncing + s.replacing) 4990 handle_failed_sync(conf, sh, &s); 4991 } 4992 4993 /* Now we check to see if any write operations have recently 4994 * completed 4995 */ 4996 prexor = 0; 4997 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4998 prexor = 1; 4999 if (sh->reconstruct_state == reconstruct_state_drain_result || 5000 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5001 sh->reconstruct_state = reconstruct_state_idle; 5002 5003 /* All the 'written' buffers and the parity block are ready to 5004 * be written back to disk 5005 */ 5006 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5007 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5008 BUG_ON(sh->qd_idx >= 0 && 5009 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5010 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5011 for (i = disks; i--; ) { 5012 struct r5dev *dev = &sh->dev[i]; 5013 if (test_bit(R5_LOCKED, &dev->flags) && 5014 (i == sh->pd_idx || i == sh->qd_idx || 5015 dev->written || test_bit(R5_InJournal, 5016 &dev->flags))) { 5017 pr_debug("Writing block %d\n", i); 5018 set_bit(R5_Wantwrite, &dev->flags); 5019 if (prexor) 5020 continue; 5021 if (s.failed > 1) 5022 continue; 5023 if (!test_bit(R5_Insync, &dev->flags) || 5024 ((i == sh->pd_idx || i == sh->qd_idx) && 5025 s.failed == 0)) 5026 set_bit(STRIPE_INSYNC, &sh->state); 5027 } 5028 } 5029 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5030 s.dec_preread_active = 1; 5031 } 5032 5033 /* 5034 * might be able to return some write requests if the parity blocks 5035 * are safe, or on a failed drive 5036 */ 5037 pdev = &sh->dev[sh->pd_idx]; 5038 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5039 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5040 qdev = &sh->dev[sh->qd_idx]; 5041 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5042 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5043 || conf->level < 6; 5044 5045 if (s.written && 5046 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5047 && !test_bit(R5_LOCKED, &pdev->flags) 5048 && (test_bit(R5_UPTODATE, &pdev->flags) || 5049 test_bit(R5_Discard, &pdev->flags))))) && 5050 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5051 && !test_bit(R5_LOCKED, &qdev->flags) 5052 && (test_bit(R5_UPTODATE, &qdev->flags) || 5053 test_bit(R5_Discard, &qdev->flags)))))) 5054 handle_stripe_clean_event(conf, sh, disks); 5055 5056 if (s.just_cached) 5057 r5c_handle_cached_data_endio(conf, sh, disks); 5058 log_stripe_write_finished(sh); 5059 5060 /* Now we might consider reading some blocks, either to check/generate 5061 * parity, or to satisfy requests 5062 * or to load a block that is being partially written. 5063 */ 5064 if (s.to_read || s.non_overwrite 5065 || (s.to_write && s.failed) 5066 || (s.syncing && (s.uptodate + s.compute < disks)) 5067 || s.replacing 5068 || s.expanding) 5069 handle_stripe_fill(sh, &s, disks); 5070 5071 /* 5072 * When the stripe finishes full journal write cycle (write to journal 5073 * and raid disk), this is the clean up procedure so it is ready for 5074 * next operation. 5075 */ 5076 r5c_finish_stripe_write_out(conf, sh, &s); 5077 5078 /* 5079 * Now to consider new write requests, cache write back and what else, 5080 * if anything should be read. We do not handle new writes when: 5081 * 1/ A 'write' operation (copy+xor) is already in flight. 5082 * 2/ A 'check' operation is in flight, as it may clobber the parity 5083 * block. 5084 * 3/ A r5c cache log write is in flight. 5085 */ 5086 5087 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5088 if (!r5c_is_writeback(conf->log)) { 5089 if (s.to_write) 5090 handle_stripe_dirtying(conf, sh, &s, disks); 5091 } else { /* write back cache */ 5092 int ret = 0; 5093 5094 /* First, try handle writes in caching phase */ 5095 if (s.to_write) 5096 ret = r5c_try_caching_write(conf, sh, &s, 5097 disks); 5098 /* 5099 * If caching phase failed: ret == -EAGAIN 5100 * OR 5101 * stripe under reclaim: !caching && injournal 5102 * 5103 * fall back to handle_stripe_dirtying() 5104 */ 5105 if (ret == -EAGAIN || 5106 /* stripe under reclaim: !caching && injournal */ 5107 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5108 s.injournal > 0)) { 5109 ret = handle_stripe_dirtying(conf, sh, &s, 5110 disks); 5111 if (ret == -EAGAIN) 5112 goto finish; 5113 } 5114 } 5115 } 5116 5117 /* maybe we need to check and possibly fix the parity for this stripe 5118 * Any reads will already have been scheduled, so we just see if enough 5119 * data is available. The parity check is held off while parity 5120 * dependent operations are in flight. 5121 */ 5122 if (sh->check_state || 5123 (s.syncing && s.locked == 0 && 5124 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5125 !test_bit(STRIPE_INSYNC, &sh->state))) { 5126 if (conf->level == 6) 5127 handle_parity_checks6(conf, sh, &s, disks); 5128 else 5129 handle_parity_checks5(conf, sh, &s, disks); 5130 } 5131 5132 if ((s.replacing || s.syncing) && s.locked == 0 5133 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5134 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5135 /* Write out to replacement devices where possible */ 5136 for (i = 0; i < conf->raid_disks; i++) 5137 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5138 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5139 set_bit(R5_WantReplace, &sh->dev[i].flags); 5140 set_bit(R5_LOCKED, &sh->dev[i].flags); 5141 s.locked++; 5142 } 5143 if (s.replacing) 5144 set_bit(STRIPE_INSYNC, &sh->state); 5145 set_bit(STRIPE_REPLACED, &sh->state); 5146 } 5147 if ((s.syncing || s.replacing) && s.locked == 0 && 5148 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5149 test_bit(STRIPE_INSYNC, &sh->state)) { 5150 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5151 clear_bit(STRIPE_SYNCING, &sh->state); 5152 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5153 wake_up(&conf->wait_for_overlap); 5154 } 5155 5156 /* If the failed drives are just a ReadError, then we might need 5157 * to progress the repair/check process 5158 */ 5159 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5160 for (i = 0; i < s.failed; i++) { 5161 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5162 if (test_bit(R5_ReadError, &dev->flags) 5163 && !test_bit(R5_LOCKED, &dev->flags) 5164 && test_bit(R5_UPTODATE, &dev->flags) 5165 ) { 5166 if (!test_bit(R5_ReWrite, &dev->flags)) { 5167 set_bit(R5_Wantwrite, &dev->flags); 5168 set_bit(R5_ReWrite, &dev->flags); 5169 } else 5170 /* let's read it back */ 5171 set_bit(R5_Wantread, &dev->flags); 5172 set_bit(R5_LOCKED, &dev->flags); 5173 s.locked++; 5174 } 5175 } 5176 5177 /* Finish reconstruct operations initiated by the expansion process */ 5178 if (sh->reconstruct_state == reconstruct_state_result) { 5179 struct stripe_head *sh_src 5180 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 5181 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5182 /* sh cannot be written until sh_src has been read. 5183 * so arrange for sh to be delayed a little 5184 */ 5185 set_bit(STRIPE_DELAYED, &sh->state); 5186 set_bit(STRIPE_HANDLE, &sh->state); 5187 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5188 &sh_src->state)) 5189 atomic_inc(&conf->preread_active_stripes); 5190 raid5_release_stripe(sh_src); 5191 goto finish; 5192 } 5193 if (sh_src) 5194 raid5_release_stripe(sh_src); 5195 5196 sh->reconstruct_state = reconstruct_state_idle; 5197 clear_bit(STRIPE_EXPANDING, &sh->state); 5198 for (i = conf->raid_disks; i--; ) { 5199 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5200 set_bit(R5_LOCKED, &sh->dev[i].flags); 5201 s.locked++; 5202 } 5203 } 5204 5205 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5206 !sh->reconstruct_state) { 5207 /* Need to write out all blocks after computing parity */ 5208 sh->disks = conf->raid_disks; 5209 stripe_set_idx(sh->sector, conf, 0, sh); 5210 schedule_reconstruction(sh, &s, 1, 1); 5211 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5212 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5213 atomic_dec(&conf->reshape_stripes); 5214 wake_up(&conf->wait_for_overlap); 5215 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5216 } 5217 5218 if (s.expanding && s.locked == 0 && 5219 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5220 handle_stripe_expansion(conf, sh); 5221 5222 finish: 5223 /* wait for this device to become unblocked */ 5224 if (unlikely(s.blocked_rdev)) { 5225 if (conf->mddev->external) 5226 md_wait_for_blocked_rdev(s.blocked_rdev, 5227 conf->mddev); 5228 else 5229 /* Internal metadata will immediately 5230 * be written by raid5d, so we don't 5231 * need to wait here. 5232 */ 5233 rdev_dec_pending(s.blocked_rdev, 5234 conf->mddev); 5235 } 5236 5237 if (s.handle_bad_blocks) 5238 for (i = disks; i--; ) { 5239 struct md_rdev *rdev; 5240 struct r5dev *dev = &sh->dev[i]; 5241 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5242 /* We own a safe reference to the rdev */ 5243 rdev = rdev_pend_deref(conf->disks[i].rdev); 5244 if (!rdev_set_badblocks(rdev, sh->sector, 5245 RAID5_STRIPE_SECTORS(conf), 0)) 5246 md_error(conf->mddev, rdev); 5247 rdev_dec_pending(rdev, conf->mddev); 5248 } 5249 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5250 rdev = rdev_pend_deref(conf->disks[i].rdev); 5251 rdev_clear_badblocks(rdev, sh->sector, 5252 RAID5_STRIPE_SECTORS(conf), 0); 5253 rdev_dec_pending(rdev, conf->mddev); 5254 } 5255 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5256 rdev = rdev_pend_deref(conf->disks[i].replacement); 5257 if (!rdev) 5258 /* rdev have been moved down */ 5259 rdev = rdev_pend_deref(conf->disks[i].rdev); 5260 rdev_clear_badblocks(rdev, sh->sector, 5261 RAID5_STRIPE_SECTORS(conf), 0); 5262 rdev_dec_pending(rdev, conf->mddev); 5263 } 5264 } 5265 5266 if (s.ops_request) 5267 raid_run_ops(sh, s.ops_request); 5268 5269 ops_run_io(sh, &s); 5270 5271 if (s.dec_preread_active) { 5272 /* We delay this until after ops_run_io so that if make_request 5273 * is waiting on a flush, it won't continue until the writes 5274 * have actually been submitted. 5275 */ 5276 atomic_dec(&conf->preread_active_stripes); 5277 if (atomic_read(&conf->preread_active_stripes) < 5278 IO_THRESHOLD) 5279 md_wakeup_thread(conf->mddev->thread); 5280 } 5281 5282 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5283 } 5284 5285 static void raid5_activate_delayed(struct r5conf *conf) 5286 __must_hold(&conf->device_lock) 5287 { 5288 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5289 while (!list_empty(&conf->delayed_list)) { 5290 struct list_head *l = conf->delayed_list.next; 5291 struct stripe_head *sh; 5292 sh = list_entry(l, struct stripe_head, lru); 5293 list_del_init(l); 5294 clear_bit(STRIPE_DELAYED, &sh->state); 5295 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5296 atomic_inc(&conf->preread_active_stripes); 5297 list_add_tail(&sh->lru, &conf->hold_list); 5298 raid5_wakeup_stripe_thread(sh); 5299 } 5300 } 5301 } 5302 5303 static void activate_bit_delay(struct r5conf *conf, 5304 struct list_head *temp_inactive_list) 5305 __must_hold(&conf->device_lock) 5306 { 5307 struct list_head head; 5308 list_add(&head, &conf->bitmap_list); 5309 list_del_init(&conf->bitmap_list); 5310 while (!list_empty(&head)) { 5311 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5312 int hash; 5313 list_del_init(&sh->lru); 5314 atomic_inc(&sh->count); 5315 hash = sh->hash_lock_index; 5316 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5317 } 5318 } 5319 5320 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5321 { 5322 struct r5conf *conf = mddev->private; 5323 sector_t sector = bio->bi_iter.bi_sector; 5324 unsigned int chunk_sectors; 5325 unsigned int bio_sectors = bio_sectors(bio); 5326 5327 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5328 return chunk_sectors >= 5329 ((sector & (chunk_sectors - 1)) + bio_sectors); 5330 } 5331 5332 /* 5333 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5334 * later sampled by raid5d. 5335 */ 5336 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5337 { 5338 unsigned long flags; 5339 5340 spin_lock_irqsave(&conf->device_lock, flags); 5341 5342 bi->bi_next = conf->retry_read_aligned_list; 5343 conf->retry_read_aligned_list = bi; 5344 5345 spin_unlock_irqrestore(&conf->device_lock, flags); 5346 md_wakeup_thread(conf->mddev->thread); 5347 } 5348 5349 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5350 unsigned int *offset) 5351 { 5352 struct bio *bi; 5353 5354 bi = conf->retry_read_aligned; 5355 if (bi) { 5356 *offset = conf->retry_read_offset; 5357 conf->retry_read_aligned = NULL; 5358 return bi; 5359 } 5360 bi = conf->retry_read_aligned_list; 5361 if(bi) { 5362 conf->retry_read_aligned_list = bi->bi_next; 5363 bi->bi_next = NULL; 5364 *offset = 0; 5365 } 5366 5367 return bi; 5368 } 5369 5370 /* 5371 * The "raid5_align_endio" should check if the read succeeded and if it 5372 * did, call bio_endio on the original bio (having bio_put the new bio 5373 * first). 5374 * If the read failed.. 5375 */ 5376 static void raid5_align_endio(struct bio *bi) 5377 { 5378 struct md_io_acct *md_io_acct = bi->bi_private; 5379 struct bio *raid_bi = md_io_acct->orig_bio; 5380 struct mddev *mddev; 5381 struct r5conf *conf; 5382 struct md_rdev *rdev; 5383 blk_status_t error = bi->bi_status; 5384 unsigned long start_time = md_io_acct->start_time; 5385 5386 bio_put(bi); 5387 5388 rdev = (void*)raid_bi->bi_next; 5389 raid_bi->bi_next = NULL; 5390 mddev = rdev->mddev; 5391 conf = mddev->private; 5392 5393 rdev_dec_pending(rdev, conf->mddev); 5394 5395 if (!error) { 5396 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue)) 5397 bio_end_io_acct(raid_bi, start_time); 5398 bio_endio(raid_bi); 5399 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5400 wake_up(&conf->wait_for_quiescent); 5401 return; 5402 } 5403 5404 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5405 5406 add_bio_to_retry(raid_bi, conf); 5407 } 5408 5409 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5410 { 5411 struct r5conf *conf = mddev->private; 5412 struct bio *align_bio; 5413 struct md_rdev *rdev; 5414 sector_t sector, end_sector, first_bad; 5415 int bad_sectors, dd_idx; 5416 struct md_io_acct *md_io_acct; 5417 bool did_inc; 5418 5419 if (!in_chunk_boundary(mddev, raid_bio)) { 5420 pr_debug("%s: non aligned\n", __func__); 5421 return 0; 5422 } 5423 5424 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5425 &dd_idx, NULL); 5426 end_sector = bio_end_sector(raid_bio); 5427 5428 rcu_read_lock(); 5429 if (r5c_big_stripe_cached(conf, sector)) 5430 goto out_rcu_unlock; 5431 5432 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5433 if (!rdev || test_bit(Faulty, &rdev->flags) || 5434 rdev->recovery_offset < end_sector) { 5435 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5436 if (!rdev) 5437 goto out_rcu_unlock; 5438 if (test_bit(Faulty, &rdev->flags) || 5439 !(test_bit(In_sync, &rdev->flags) || 5440 rdev->recovery_offset >= end_sector)) 5441 goto out_rcu_unlock; 5442 } 5443 5444 atomic_inc(&rdev->nr_pending); 5445 rcu_read_unlock(); 5446 5447 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad, 5448 &bad_sectors)) { 5449 bio_put(raid_bio); 5450 rdev_dec_pending(rdev, mddev); 5451 return 0; 5452 } 5453 5454 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5455 &mddev->io_acct_set); 5456 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone); 5457 raid_bio->bi_next = (void *)rdev; 5458 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue)) 5459 md_io_acct->start_time = bio_start_io_acct(raid_bio); 5460 md_io_acct->orig_bio = raid_bio; 5461 5462 align_bio->bi_end_io = raid5_align_endio; 5463 align_bio->bi_private = md_io_acct; 5464 align_bio->bi_iter.bi_sector = sector; 5465 5466 /* No reshape active, so we can trust rdev->data_offset */ 5467 align_bio->bi_iter.bi_sector += rdev->data_offset; 5468 5469 did_inc = false; 5470 if (conf->quiesce == 0) { 5471 atomic_inc(&conf->active_aligned_reads); 5472 did_inc = true; 5473 } 5474 /* need a memory barrier to detect the race with raid5_quiesce() */ 5475 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5476 /* quiesce is in progress, so we need to undo io activation and wait 5477 * for it to finish 5478 */ 5479 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5480 wake_up(&conf->wait_for_quiescent); 5481 spin_lock_irq(&conf->device_lock); 5482 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5483 conf->device_lock); 5484 atomic_inc(&conf->active_aligned_reads); 5485 spin_unlock_irq(&conf->device_lock); 5486 } 5487 5488 if (mddev->gendisk) 5489 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk), 5490 raid_bio->bi_iter.bi_sector); 5491 submit_bio_noacct(align_bio); 5492 return 1; 5493 5494 out_rcu_unlock: 5495 rcu_read_unlock(); 5496 return 0; 5497 } 5498 5499 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5500 { 5501 struct bio *split; 5502 sector_t sector = raid_bio->bi_iter.bi_sector; 5503 unsigned chunk_sects = mddev->chunk_sectors; 5504 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5505 5506 if (sectors < bio_sectors(raid_bio)) { 5507 struct r5conf *conf = mddev->private; 5508 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5509 bio_chain(split, raid_bio); 5510 submit_bio_noacct(raid_bio); 5511 raid_bio = split; 5512 } 5513 5514 if (!raid5_read_one_chunk(mddev, raid_bio)) 5515 return raid_bio; 5516 5517 return NULL; 5518 } 5519 5520 /* __get_priority_stripe - get the next stripe to process 5521 * 5522 * Full stripe writes are allowed to pass preread active stripes up until 5523 * the bypass_threshold is exceeded. In general the bypass_count 5524 * increments when the handle_list is handled before the hold_list; however, it 5525 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5526 * stripe with in flight i/o. The bypass_count will be reset when the 5527 * head of the hold_list has changed, i.e. the head was promoted to the 5528 * handle_list. 5529 */ 5530 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5531 __must_hold(&conf->device_lock) 5532 { 5533 struct stripe_head *sh, *tmp; 5534 struct list_head *handle_list = NULL; 5535 struct r5worker_group *wg; 5536 bool second_try = !r5c_is_writeback(conf->log) && 5537 !r5l_log_disk_error(conf); 5538 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5539 r5l_log_disk_error(conf); 5540 5541 again: 5542 wg = NULL; 5543 sh = NULL; 5544 if (conf->worker_cnt_per_group == 0) { 5545 handle_list = try_loprio ? &conf->loprio_list : 5546 &conf->handle_list; 5547 } else if (group != ANY_GROUP) { 5548 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5549 &conf->worker_groups[group].handle_list; 5550 wg = &conf->worker_groups[group]; 5551 } else { 5552 int i; 5553 for (i = 0; i < conf->group_cnt; i++) { 5554 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5555 &conf->worker_groups[i].handle_list; 5556 wg = &conf->worker_groups[i]; 5557 if (!list_empty(handle_list)) 5558 break; 5559 } 5560 } 5561 5562 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5563 __func__, 5564 list_empty(handle_list) ? "empty" : "busy", 5565 list_empty(&conf->hold_list) ? "empty" : "busy", 5566 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5567 5568 if (!list_empty(handle_list)) { 5569 sh = list_entry(handle_list->next, typeof(*sh), lru); 5570 5571 if (list_empty(&conf->hold_list)) 5572 conf->bypass_count = 0; 5573 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5574 if (conf->hold_list.next == conf->last_hold) 5575 conf->bypass_count++; 5576 else { 5577 conf->last_hold = conf->hold_list.next; 5578 conf->bypass_count -= conf->bypass_threshold; 5579 if (conf->bypass_count < 0) 5580 conf->bypass_count = 0; 5581 } 5582 } 5583 } else if (!list_empty(&conf->hold_list) && 5584 ((conf->bypass_threshold && 5585 conf->bypass_count > conf->bypass_threshold) || 5586 atomic_read(&conf->pending_full_writes) == 0)) { 5587 5588 list_for_each_entry(tmp, &conf->hold_list, lru) { 5589 if (conf->worker_cnt_per_group == 0 || 5590 group == ANY_GROUP || 5591 !cpu_online(tmp->cpu) || 5592 cpu_to_group(tmp->cpu) == group) { 5593 sh = tmp; 5594 break; 5595 } 5596 } 5597 5598 if (sh) { 5599 conf->bypass_count -= conf->bypass_threshold; 5600 if (conf->bypass_count < 0) 5601 conf->bypass_count = 0; 5602 } 5603 wg = NULL; 5604 } 5605 5606 if (!sh) { 5607 if (second_try) 5608 return NULL; 5609 second_try = true; 5610 try_loprio = !try_loprio; 5611 goto again; 5612 } 5613 5614 if (wg) { 5615 wg->stripes_cnt--; 5616 sh->group = NULL; 5617 } 5618 list_del_init(&sh->lru); 5619 BUG_ON(atomic_inc_return(&sh->count) != 1); 5620 return sh; 5621 } 5622 5623 struct raid5_plug_cb { 5624 struct blk_plug_cb cb; 5625 struct list_head list; 5626 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5627 }; 5628 5629 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5630 { 5631 struct raid5_plug_cb *cb = container_of( 5632 blk_cb, struct raid5_plug_cb, cb); 5633 struct stripe_head *sh; 5634 struct mddev *mddev = cb->cb.data; 5635 struct r5conf *conf = mddev->private; 5636 int cnt = 0; 5637 int hash; 5638 5639 if (cb->list.next && !list_empty(&cb->list)) { 5640 spin_lock_irq(&conf->device_lock); 5641 while (!list_empty(&cb->list)) { 5642 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5643 list_del_init(&sh->lru); 5644 /* 5645 * avoid race release_stripe_plug() sees 5646 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5647 * is still in our list 5648 */ 5649 smp_mb__before_atomic(); 5650 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5651 /* 5652 * STRIPE_ON_RELEASE_LIST could be set here. In that 5653 * case, the count is always > 1 here 5654 */ 5655 hash = sh->hash_lock_index; 5656 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5657 cnt++; 5658 } 5659 spin_unlock_irq(&conf->device_lock); 5660 } 5661 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5662 NR_STRIPE_HASH_LOCKS); 5663 if (mddev->queue) 5664 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5665 kfree(cb); 5666 } 5667 5668 static void release_stripe_plug(struct mddev *mddev, 5669 struct stripe_head *sh) 5670 { 5671 struct blk_plug_cb *blk_cb = blk_check_plugged( 5672 raid5_unplug, mddev, 5673 sizeof(struct raid5_plug_cb)); 5674 struct raid5_plug_cb *cb; 5675 5676 if (!blk_cb) { 5677 raid5_release_stripe(sh); 5678 return; 5679 } 5680 5681 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5682 5683 if (cb->list.next == NULL) { 5684 int i; 5685 INIT_LIST_HEAD(&cb->list); 5686 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5687 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5688 } 5689 5690 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5691 list_add_tail(&sh->lru, &cb->list); 5692 else 5693 raid5_release_stripe(sh); 5694 } 5695 5696 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5697 { 5698 struct r5conf *conf = mddev->private; 5699 sector_t logical_sector, last_sector; 5700 struct stripe_head *sh; 5701 int stripe_sectors; 5702 5703 /* We need to handle this when io_uring supports discard/trim */ 5704 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5705 return; 5706 5707 if (mddev->reshape_position != MaxSector) 5708 /* Skip discard while reshape is happening */ 5709 return; 5710 5711 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5712 last_sector = bio_end_sector(bi); 5713 5714 bi->bi_next = NULL; 5715 5716 stripe_sectors = conf->chunk_sectors * 5717 (conf->raid_disks - conf->max_degraded); 5718 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5719 stripe_sectors); 5720 sector_div(last_sector, stripe_sectors); 5721 5722 logical_sector *= conf->chunk_sectors; 5723 last_sector *= conf->chunk_sectors; 5724 5725 for (; logical_sector < last_sector; 5726 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5727 DEFINE_WAIT(w); 5728 int d; 5729 again: 5730 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5731 prepare_to_wait(&conf->wait_for_overlap, &w, 5732 TASK_UNINTERRUPTIBLE); 5733 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5734 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5735 raid5_release_stripe(sh); 5736 schedule(); 5737 goto again; 5738 } 5739 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5740 spin_lock_irq(&sh->stripe_lock); 5741 for (d = 0; d < conf->raid_disks; d++) { 5742 if (d == sh->pd_idx || d == sh->qd_idx) 5743 continue; 5744 if (sh->dev[d].towrite || sh->dev[d].toread) { 5745 set_bit(R5_Overlap, &sh->dev[d].flags); 5746 spin_unlock_irq(&sh->stripe_lock); 5747 raid5_release_stripe(sh); 5748 schedule(); 5749 goto again; 5750 } 5751 } 5752 set_bit(STRIPE_DISCARD, &sh->state); 5753 finish_wait(&conf->wait_for_overlap, &w); 5754 sh->overwrite_disks = 0; 5755 for (d = 0; d < conf->raid_disks; d++) { 5756 if (d == sh->pd_idx || d == sh->qd_idx) 5757 continue; 5758 sh->dev[d].towrite = bi; 5759 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5760 bio_inc_remaining(bi); 5761 md_write_inc(mddev, bi); 5762 sh->overwrite_disks++; 5763 } 5764 spin_unlock_irq(&sh->stripe_lock); 5765 if (conf->mddev->bitmap) { 5766 for (d = 0; 5767 d < conf->raid_disks - conf->max_degraded; 5768 d++) 5769 md_bitmap_startwrite(mddev->bitmap, 5770 sh->sector, 5771 RAID5_STRIPE_SECTORS(conf), 5772 0); 5773 sh->bm_seq = conf->seq_flush + 1; 5774 set_bit(STRIPE_BIT_DELAY, &sh->state); 5775 } 5776 5777 set_bit(STRIPE_HANDLE, &sh->state); 5778 clear_bit(STRIPE_DELAYED, &sh->state); 5779 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5780 atomic_inc(&conf->preread_active_stripes); 5781 release_stripe_plug(mddev, sh); 5782 } 5783 5784 bio_endio(bi); 5785 } 5786 5787 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5788 { 5789 struct r5conf *conf = mddev->private; 5790 int dd_idx; 5791 sector_t new_sector; 5792 sector_t logical_sector, last_sector; 5793 struct stripe_head *sh; 5794 const int rw = bio_data_dir(bi); 5795 DEFINE_WAIT(w); 5796 bool do_prepare; 5797 bool do_flush = false; 5798 5799 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5800 int ret = log_handle_flush_request(conf, bi); 5801 5802 if (ret == 0) 5803 return true; 5804 if (ret == -ENODEV) { 5805 if (md_flush_request(mddev, bi)) 5806 return true; 5807 } 5808 /* ret == -EAGAIN, fallback */ 5809 /* 5810 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5811 * we need to flush journal device 5812 */ 5813 do_flush = bi->bi_opf & REQ_PREFLUSH; 5814 } 5815 5816 if (!md_write_start(mddev, bi)) 5817 return false; 5818 /* 5819 * If array is degraded, better not do chunk aligned read because 5820 * later we might have to read it again in order to reconstruct 5821 * data on failed drives. 5822 */ 5823 if (rw == READ && mddev->degraded == 0 && 5824 mddev->reshape_position == MaxSector) { 5825 bi = chunk_aligned_read(mddev, bi); 5826 if (!bi) 5827 return true; 5828 } 5829 5830 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5831 make_discard_request(mddev, bi); 5832 md_write_end(mddev); 5833 return true; 5834 } 5835 5836 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5837 last_sector = bio_end_sector(bi); 5838 bi->bi_next = NULL; 5839 5840 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 5841 if ((bi->bi_opf & REQ_NOWAIT) && 5842 (conf->reshape_progress != MaxSector) && 5843 (mddev->reshape_backwards 5844 ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe) 5845 : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) { 5846 bio_wouldblock_error(bi); 5847 if (rw == WRITE) 5848 md_write_end(mddev); 5849 return true; 5850 } 5851 md_account_bio(mddev, &bi); 5852 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5853 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5854 int previous; 5855 int seq; 5856 5857 do_prepare = false; 5858 retry: 5859 seq = read_seqcount_begin(&conf->gen_lock); 5860 previous = 0; 5861 if (do_prepare) 5862 prepare_to_wait(&conf->wait_for_overlap, &w, 5863 TASK_UNINTERRUPTIBLE); 5864 if (unlikely(conf->reshape_progress != MaxSector)) { 5865 /* spinlock is needed as reshape_progress may be 5866 * 64bit on a 32bit platform, and so it might be 5867 * possible to see a half-updated value 5868 * Of course reshape_progress could change after 5869 * the lock is dropped, so once we get a reference 5870 * to the stripe that we think it is, we will have 5871 * to check again. 5872 */ 5873 spin_lock_irq(&conf->device_lock); 5874 if (mddev->reshape_backwards 5875 ? logical_sector < conf->reshape_progress 5876 : logical_sector >= conf->reshape_progress) { 5877 previous = 1; 5878 } else { 5879 if (mddev->reshape_backwards 5880 ? logical_sector < conf->reshape_safe 5881 : logical_sector >= conf->reshape_safe) { 5882 spin_unlock_irq(&conf->device_lock); 5883 schedule(); 5884 do_prepare = true; 5885 goto retry; 5886 } 5887 } 5888 spin_unlock_irq(&conf->device_lock); 5889 } 5890 5891 new_sector = raid5_compute_sector(conf, logical_sector, 5892 previous, 5893 &dd_idx, NULL); 5894 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5895 (unsigned long long)new_sector, 5896 (unsigned long long)logical_sector); 5897 5898 sh = raid5_get_active_stripe(conf, new_sector, previous, 5899 (bi->bi_opf & REQ_RAHEAD), 0); 5900 if (sh) { 5901 if (unlikely(previous)) { 5902 /* expansion might have moved on while waiting for a 5903 * stripe, so we must do the range check again. 5904 * Expansion could still move past after this 5905 * test, but as we are holding a reference to 5906 * 'sh', we know that if that happens, 5907 * STRIPE_EXPANDING will get set and the expansion 5908 * won't proceed until we finish with the stripe. 5909 */ 5910 int must_retry = 0; 5911 spin_lock_irq(&conf->device_lock); 5912 if (mddev->reshape_backwards 5913 ? logical_sector >= conf->reshape_progress 5914 : logical_sector < conf->reshape_progress) 5915 /* mismatch, need to try again */ 5916 must_retry = 1; 5917 spin_unlock_irq(&conf->device_lock); 5918 if (must_retry) { 5919 raid5_release_stripe(sh); 5920 schedule(); 5921 do_prepare = true; 5922 goto retry; 5923 } 5924 } 5925 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5926 /* Might have got the wrong stripe_head 5927 * by accident 5928 */ 5929 raid5_release_stripe(sh); 5930 goto retry; 5931 } 5932 5933 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5934 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5935 /* Stripe is busy expanding or 5936 * add failed due to overlap. Flush everything 5937 * and wait a while 5938 */ 5939 md_wakeup_thread(mddev->thread); 5940 raid5_release_stripe(sh); 5941 schedule(); 5942 do_prepare = true; 5943 goto retry; 5944 } 5945 if (do_flush) { 5946 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5947 /* we only need flush for one stripe */ 5948 do_flush = false; 5949 } 5950 5951 set_bit(STRIPE_HANDLE, &sh->state); 5952 clear_bit(STRIPE_DELAYED, &sh->state); 5953 if ((!sh->batch_head || sh == sh->batch_head) && 5954 (bi->bi_opf & REQ_SYNC) && 5955 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5956 atomic_inc(&conf->preread_active_stripes); 5957 release_stripe_plug(mddev, sh); 5958 } else { 5959 /* cannot get stripe for read-ahead, just give-up */ 5960 bi->bi_status = BLK_STS_IOERR; 5961 break; 5962 } 5963 } 5964 finish_wait(&conf->wait_for_overlap, &w); 5965 5966 if (rw == WRITE) 5967 md_write_end(mddev); 5968 bio_endio(bi); 5969 return true; 5970 } 5971 5972 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5973 5974 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5975 { 5976 /* reshaping is quite different to recovery/resync so it is 5977 * handled quite separately ... here. 5978 * 5979 * On each call to sync_request, we gather one chunk worth of 5980 * destination stripes and flag them as expanding. 5981 * Then we find all the source stripes and request reads. 5982 * As the reads complete, handle_stripe will copy the data 5983 * into the destination stripe and release that stripe. 5984 */ 5985 struct r5conf *conf = mddev->private; 5986 struct stripe_head *sh; 5987 struct md_rdev *rdev; 5988 sector_t first_sector, last_sector; 5989 int raid_disks = conf->previous_raid_disks; 5990 int data_disks = raid_disks - conf->max_degraded; 5991 int new_data_disks = conf->raid_disks - conf->max_degraded; 5992 int i; 5993 int dd_idx; 5994 sector_t writepos, readpos, safepos; 5995 sector_t stripe_addr; 5996 int reshape_sectors; 5997 struct list_head stripes; 5998 sector_t retn; 5999 6000 if (sector_nr == 0) { 6001 /* If restarting in the middle, skip the initial sectors */ 6002 if (mddev->reshape_backwards && 6003 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6004 sector_nr = raid5_size(mddev, 0, 0) 6005 - conf->reshape_progress; 6006 } else if (mddev->reshape_backwards && 6007 conf->reshape_progress == MaxSector) { 6008 /* shouldn't happen, but just in case, finish up.*/ 6009 sector_nr = MaxSector; 6010 } else if (!mddev->reshape_backwards && 6011 conf->reshape_progress > 0) 6012 sector_nr = conf->reshape_progress; 6013 sector_div(sector_nr, new_data_disks); 6014 if (sector_nr) { 6015 mddev->curr_resync_completed = sector_nr; 6016 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6017 *skipped = 1; 6018 retn = sector_nr; 6019 goto finish; 6020 } 6021 } 6022 6023 /* We need to process a full chunk at a time. 6024 * If old and new chunk sizes differ, we need to process the 6025 * largest of these 6026 */ 6027 6028 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6029 6030 /* We update the metadata at least every 10 seconds, or when 6031 * the data about to be copied would over-write the source of 6032 * the data at the front of the range. i.e. one new_stripe 6033 * along from reshape_progress new_maps to after where 6034 * reshape_safe old_maps to 6035 */ 6036 writepos = conf->reshape_progress; 6037 sector_div(writepos, new_data_disks); 6038 readpos = conf->reshape_progress; 6039 sector_div(readpos, data_disks); 6040 safepos = conf->reshape_safe; 6041 sector_div(safepos, data_disks); 6042 if (mddev->reshape_backwards) { 6043 BUG_ON(writepos < reshape_sectors); 6044 writepos -= reshape_sectors; 6045 readpos += reshape_sectors; 6046 safepos += reshape_sectors; 6047 } else { 6048 writepos += reshape_sectors; 6049 /* readpos and safepos are worst-case calculations. 6050 * A negative number is overly pessimistic, and causes 6051 * obvious problems for unsigned storage. So clip to 0. 6052 */ 6053 readpos -= min_t(sector_t, reshape_sectors, readpos); 6054 safepos -= min_t(sector_t, reshape_sectors, safepos); 6055 } 6056 6057 /* Having calculated the 'writepos' possibly use it 6058 * to set 'stripe_addr' which is where we will write to. 6059 */ 6060 if (mddev->reshape_backwards) { 6061 BUG_ON(conf->reshape_progress == 0); 6062 stripe_addr = writepos; 6063 BUG_ON((mddev->dev_sectors & 6064 ~((sector_t)reshape_sectors - 1)) 6065 - reshape_sectors - stripe_addr 6066 != sector_nr); 6067 } else { 6068 BUG_ON(writepos != sector_nr + reshape_sectors); 6069 stripe_addr = sector_nr; 6070 } 6071 6072 /* 'writepos' is the most advanced device address we might write. 6073 * 'readpos' is the least advanced device address we might read. 6074 * 'safepos' is the least address recorded in the metadata as having 6075 * been reshaped. 6076 * If there is a min_offset_diff, these are adjusted either by 6077 * increasing the safepos/readpos if diff is negative, or 6078 * increasing writepos if diff is positive. 6079 * If 'readpos' is then behind 'writepos', there is no way that we can 6080 * ensure safety in the face of a crash - that must be done by userspace 6081 * making a backup of the data. So in that case there is no particular 6082 * rush to update metadata. 6083 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6084 * update the metadata to advance 'safepos' to match 'readpos' so that 6085 * we can be safe in the event of a crash. 6086 * So we insist on updating metadata if safepos is behind writepos and 6087 * readpos is beyond writepos. 6088 * In any case, update the metadata every 10 seconds. 6089 * Maybe that number should be configurable, but I'm not sure it is 6090 * worth it.... maybe it could be a multiple of safemode_delay??? 6091 */ 6092 if (conf->min_offset_diff < 0) { 6093 safepos += -conf->min_offset_diff; 6094 readpos += -conf->min_offset_diff; 6095 } else 6096 writepos += conf->min_offset_diff; 6097 6098 if ((mddev->reshape_backwards 6099 ? (safepos > writepos && readpos < writepos) 6100 : (safepos < writepos && readpos > writepos)) || 6101 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6102 /* Cannot proceed until we've updated the superblock... */ 6103 wait_event(conf->wait_for_overlap, 6104 atomic_read(&conf->reshape_stripes)==0 6105 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6106 if (atomic_read(&conf->reshape_stripes) != 0) 6107 return 0; 6108 mddev->reshape_position = conf->reshape_progress; 6109 mddev->curr_resync_completed = sector_nr; 6110 if (!mddev->reshape_backwards) 6111 /* Can update recovery_offset */ 6112 rdev_for_each(rdev, mddev) 6113 if (rdev->raid_disk >= 0 && 6114 !test_bit(Journal, &rdev->flags) && 6115 !test_bit(In_sync, &rdev->flags) && 6116 rdev->recovery_offset < sector_nr) 6117 rdev->recovery_offset = sector_nr; 6118 6119 conf->reshape_checkpoint = jiffies; 6120 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6121 md_wakeup_thread(mddev->thread); 6122 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6123 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6124 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6125 return 0; 6126 spin_lock_irq(&conf->device_lock); 6127 conf->reshape_safe = mddev->reshape_position; 6128 spin_unlock_irq(&conf->device_lock); 6129 wake_up(&conf->wait_for_overlap); 6130 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6131 } 6132 6133 INIT_LIST_HEAD(&stripes); 6134 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6135 int j; 6136 int skipped_disk = 0; 6137 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 6138 set_bit(STRIPE_EXPANDING, &sh->state); 6139 atomic_inc(&conf->reshape_stripes); 6140 /* If any of this stripe is beyond the end of the old 6141 * array, then we need to zero those blocks 6142 */ 6143 for (j=sh->disks; j--;) { 6144 sector_t s; 6145 if (j == sh->pd_idx) 6146 continue; 6147 if (conf->level == 6 && 6148 j == sh->qd_idx) 6149 continue; 6150 s = raid5_compute_blocknr(sh, j, 0); 6151 if (s < raid5_size(mddev, 0, 0)) { 6152 skipped_disk = 1; 6153 continue; 6154 } 6155 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6156 set_bit(R5_Expanded, &sh->dev[j].flags); 6157 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6158 } 6159 if (!skipped_disk) { 6160 set_bit(STRIPE_EXPAND_READY, &sh->state); 6161 set_bit(STRIPE_HANDLE, &sh->state); 6162 } 6163 list_add(&sh->lru, &stripes); 6164 } 6165 spin_lock_irq(&conf->device_lock); 6166 if (mddev->reshape_backwards) 6167 conf->reshape_progress -= reshape_sectors * new_data_disks; 6168 else 6169 conf->reshape_progress += reshape_sectors * new_data_disks; 6170 spin_unlock_irq(&conf->device_lock); 6171 /* Ok, those stripe are ready. We can start scheduling 6172 * reads on the source stripes. 6173 * The source stripes are determined by mapping the first and last 6174 * block on the destination stripes. 6175 */ 6176 first_sector = 6177 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6178 1, &dd_idx, NULL); 6179 last_sector = 6180 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6181 * new_data_disks - 1), 6182 1, &dd_idx, NULL); 6183 if (last_sector >= mddev->dev_sectors) 6184 last_sector = mddev->dev_sectors - 1; 6185 while (first_sector <= last_sector) { 6186 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 6187 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6188 set_bit(STRIPE_HANDLE, &sh->state); 6189 raid5_release_stripe(sh); 6190 first_sector += RAID5_STRIPE_SECTORS(conf); 6191 } 6192 /* Now that the sources are clearly marked, we can release 6193 * the destination stripes 6194 */ 6195 while (!list_empty(&stripes)) { 6196 sh = list_entry(stripes.next, struct stripe_head, lru); 6197 list_del_init(&sh->lru); 6198 raid5_release_stripe(sh); 6199 } 6200 /* If this takes us to the resync_max point where we have to pause, 6201 * then we need to write out the superblock. 6202 */ 6203 sector_nr += reshape_sectors; 6204 retn = reshape_sectors; 6205 finish: 6206 if (mddev->curr_resync_completed > mddev->resync_max || 6207 (sector_nr - mddev->curr_resync_completed) * 2 6208 >= mddev->resync_max - mddev->curr_resync_completed) { 6209 /* Cannot proceed until we've updated the superblock... */ 6210 wait_event(conf->wait_for_overlap, 6211 atomic_read(&conf->reshape_stripes) == 0 6212 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6213 if (atomic_read(&conf->reshape_stripes) != 0) 6214 goto ret; 6215 mddev->reshape_position = conf->reshape_progress; 6216 mddev->curr_resync_completed = sector_nr; 6217 if (!mddev->reshape_backwards) 6218 /* Can update recovery_offset */ 6219 rdev_for_each(rdev, mddev) 6220 if (rdev->raid_disk >= 0 && 6221 !test_bit(Journal, &rdev->flags) && 6222 !test_bit(In_sync, &rdev->flags) && 6223 rdev->recovery_offset < sector_nr) 6224 rdev->recovery_offset = sector_nr; 6225 conf->reshape_checkpoint = jiffies; 6226 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6227 md_wakeup_thread(mddev->thread); 6228 wait_event(mddev->sb_wait, 6229 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6230 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6231 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6232 goto ret; 6233 spin_lock_irq(&conf->device_lock); 6234 conf->reshape_safe = mddev->reshape_position; 6235 spin_unlock_irq(&conf->device_lock); 6236 wake_up(&conf->wait_for_overlap); 6237 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6238 } 6239 ret: 6240 return retn; 6241 } 6242 6243 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6244 int *skipped) 6245 { 6246 struct r5conf *conf = mddev->private; 6247 struct stripe_head *sh; 6248 sector_t max_sector = mddev->dev_sectors; 6249 sector_t sync_blocks; 6250 int still_degraded = 0; 6251 int i; 6252 6253 if (sector_nr >= max_sector) { 6254 /* just being told to finish up .. nothing much to do */ 6255 6256 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6257 end_reshape(conf); 6258 return 0; 6259 } 6260 6261 if (mddev->curr_resync < max_sector) /* aborted */ 6262 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6263 &sync_blocks, 1); 6264 else /* completed sync */ 6265 conf->fullsync = 0; 6266 md_bitmap_close_sync(mddev->bitmap); 6267 6268 return 0; 6269 } 6270 6271 /* Allow raid5_quiesce to complete */ 6272 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6273 6274 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6275 return reshape_request(mddev, sector_nr, skipped); 6276 6277 /* No need to check resync_max as we never do more than one 6278 * stripe, and as resync_max will always be on a chunk boundary, 6279 * if the check in md_do_sync didn't fire, there is no chance 6280 * of overstepping resync_max here 6281 */ 6282 6283 /* if there is too many failed drives and we are trying 6284 * to resync, then assert that we are finished, because there is 6285 * nothing we can do. 6286 */ 6287 if (mddev->degraded >= conf->max_degraded && 6288 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6289 sector_t rv = mddev->dev_sectors - sector_nr; 6290 *skipped = 1; 6291 return rv; 6292 } 6293 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6294 !conf->fullsync && 6295 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6296 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6297 /* we can skip this block, and probably more */ 6298 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6299 *skipped = 1; 6300 /* keep things rounded to whole stripes */ 6301 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6302 } 6303 6304 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6305 6306 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6307 if (sh == NULL) { 6308 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6309 /* make sure we don't swamp the stripe cache if someone else 6310 * is trying to get access 6311 */ 6312 schedule_timeout_uninterruptible(1); 6313 } 6314 /* Need to check if array will still be degraded after recovery/resync 6315 * Note in case of > 1 drive failures it's possible we're rebuilding 6316 * one drive while leaving another faulty drive in array. 6317 */ 6318 rcu_read_lock(); 6319 for (i = 0; i < conf->raid_disks; i++) { 6320 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 6321 6322 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6323 still_degraded = 1; 6324 } 6325 rcu_read_unlock(); 6326 6327 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6328 6329 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6330 set_bit(STRIPE_HANDLE, &sh->state); 6331 6332 raid5_release_stripe(sh); 6333 6334 return RAID5_STRIPE_SECTORS(conf); 6335 } 6336 6337 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6338 unsigned int offset) 6339 { 6340 /* We may not be able to submit a whole bio at once as there 6341 * may not be enough stripe_heads available. 6342 * We cannot pre-allocate enough stripe_heads as we may need 6343 * more than exist in the cache (if we allow ever large chunks). 6344 * So we do one stripe head at a time and record in 6345 * ->bi_hw_segments how many have been done. 6346 * 6347 * We *know* that this entire raid_bio is in one chunk, so 6348 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6349 */ 6350 struct stripe_head *sh; 6351 int dd_idx; 6352 sector_t sector, logical_sector, last_sector; 6353 int scnt = 0; 6354 int handled = 0; 6355 6356 logical_sector = raid_bio->bi_iter.bi_sector & 6357 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6358 sector = raid5_compute_sector(conf, logical_sector, 6359 0, &dd_idx, NULL); 6360 last_sector = bio_end_sector(raid_bio); 6361 6362 for (; logical_sector < last_sector; 6363 logical_sector += RAID5_STRIPE_SECTORS(conf), 6364 sector += RAID5_STRIPE_SECTORS(conf), 6365 scnt++) { 6366 6367 if (scnt < offset) 6368 /* already done this stripe */ 6369 continue; 6370 6371 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6372 6373 if (!sh) { 6374 /* failed to get a stripe - must wait */ 6375 conf->retry_read_aligned = raid_bio; 6376 conf->retry_read_offset = scnt; 6377 return handled; 6378 } 6379 6380 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6381 raid5_release_stripe(sh); 6382 conf->retry_read_aligned = raid_bio; 6383 conf->retry_read_offset = scnt; 6384 return handled; 6385 } 6386 6387 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6388 handle_stripe(sh); 6389 raid5_release_stripe(sh); 6390 handled++; 6391 } 6392 6393 bio_endio(raid_bio); 6394 6395 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6396 wake_up(&conf->wait_for_quiescent); 6397 return handled; 6398 } 6399 6400 static int handle_active_stripes(struct r5conf *conf, int group, 6401 struct r5worker *worker, 6402 struct list_head *temp_inactive_list) 6403 __must_hold(&conf->device_lock) 6404 { 6405 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6406 int i, batch_size = 0, hash; 6407 bool release_inactive = false; 6408 6409 while (batch_size < MAX_STRIPE_BATCH && 6410 (sh = __get_priority_stripe(conf, group)) != NULL) 6411 batch[batch_size++] = sh; 6412 6413 if (batch_size == 0) { 6414 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6415 if (!list_empty(temp_inactive_list + i)) 6416 break; 6417 if (i == NR_STRIPE_HASH_LOCKS) { 6418 spin_unlock_irq(&conf->device_lock); 6419 log_flush_stripe_to_raid(conf); 6420 spin_lock_irq(&conf->device_lock); 6421 return batch_size; 6422 } 6423 release_inactive = true; 6424 } 6425 spin_unlock_irq(&conf->device_lock); 6426 6427 release_inactive_stripe_list(conf, temp_inactive_list, 6428 NR_STRIPE_HASH_LOCKS); 6429 6430 r5l_flush_stripe_to_raid(conf->log); 6431 if (release_inactive) { 6432 spin_lock_irq(&conf->device_lock); 6433 return 0; 6434 } 6435 6436 for (i = 0; i < batch_size; i++) 6437 handle_stripe(batch[i]); 6438 log_write_stripe_run(conf); 6439 6440 cond_resched(); 6441 6442 spin_lock_irq(&conf->device_lock); 6443 for (i = 0; i < batch_size; i++) { 6444 hash = batch[i]->hash_lock_index; 6445 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6446 } 6447 return batch_size; 6448 } 6449 6450 static void raid5_do_work(struct work_struct *work) 6451 { 6452 struct r5worker *worker = container_of(work, struct r5worker, work); 6453 struct r5worker_group *group = worker->group; 6454 struct r5conf *conf = group->conf; 6455 struct mddev *mddev = conf->mddev; 6456 int group_id = group - conf->worker_groups; 6457 int handled; 6458 struct blk_plug plug; 6459 6460 pr_debug("+++ raid5worker active\n"); 6461 6462 blk_start_plug(&plug); 6463 handled = 0; 6464 spin_lock_irq(&conf->device_lock); 6465 while (1) { 6466 int batch_size, released; 6467 6468 released = release_stripe_list(conf, worker->temp_inactive_list); 6469 6470 batch_size = handle_active_stripes(conf, group_id, worker, 6471 worker->temp_inactive_list); 6472 worker->working = false; 6473 if (!batch_size && !released) 6474 break; 6475 handled += batch_size; 6476 wait_event_lock_irq(mddev->sb_wait, 6477 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6478 conf->device_lock); 6479 } 6480 pr_debug("%d stripes handled\n", handled); 6481 6482 spin_unlock_irq(&conf->device_lock); 6483 6484 flush_deferred_bios(conf); 6485 6486 r5l_flush_stripe_to_raid(conf->log); 6487 6488 async_tx_issue_pending_all(); 6489 blk_finish_plug(&plug); 6490 6491 pr_debug("--- raid5worker inactive\n"); 6492 } 6493 6494 /* 6495 * This is our raid5 kernel thread. 6496 * 6497 * We scan the hash table for stripes which can be handled now. 6498 * During the scan, completed stripes are saved for us by the interrupt 6499 * handler, so that they will not have to wait for our next wakeup. 6500 */ 6501 static void raid5d(struct md_thread *thread) 6502 { 6503 struct mddev *mddev = thread->mddev; 6504 struct r5conf *conf = mddev->private; 6505 int handled; 6506 struct blk_plug plug; 6507 6508 pr_debug("+++ raid5d active\n"); 6509 6510 md_check_recovery(mddev); 6511 6512 blk_start_plug(&plug); 6513 handled = 0; 6514 spin_lock_irq(&conf->device_lock); 6515 while (1) { 6516 struct bio *bio; 6517 int batch_size, released; 6518 unsigned int offset; 6519 6520 released = release_stripe_list(conf, conf->temp_inactive_list); 6521 if (released) 6522 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6523 6524 if ( 6525 !list_empty(&conf->bitmap_list)) { 6526 /* Now is a good time to flush some bitmap updates */ 6527 conf->seq_flush++; 6528 spin_unlock_irq(&conf->device_lock); 6529 md_bitmap_unplug(mddev->bitmap); 6530 spin_lock_irq(&conf->device_lock); 6531 conf->seq_write = conf->seq_flush; 6532 activate_bit_delay(conf, conf->temp_inactive_list); 6533 } 6534 raid5_activate_delayed(conf); 6535 6536 while ((bio = remove_bio_from_retry(conf, &offset))) { 6537 int ok; 6538 spin_unlock_irq(&conf->device_lock); 6539 ok = retry_aligned_read(conf, bio, offset); 6540 spin_lock_irq(&conf->device_lock); 6541 if (!ok) 6542 break; 6543 handled++; 6544 } 6545 6546 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6547 conf->temp_inactive_list); 6548 if (!batch_size && !released) 6549 break; 6550 handled += batch_size; 6551 6552 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6553 spin_unlock_irq(&conf->device_lock); 6554 md_check_recovery(mddev); 6555 spin_lock_irq(&conf->device_lock); 6556 } 6557 } 6558 pr_debug("%d stripes handled\n", handled); 6559 6560 spin_unlock_irq(&conf->device_lock); 6561 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6562 mutex_trylock(&conf->cache_size_mutex)) { 6563 grow_one_stripe(conf, __GFP_NOWARN); 6564 /* Set flag even if allocation failed. This helps 6565 * slow down allocation requests when mem is short 6566 */ 6567 set_bit(R5_DID_ALLOC, &conf->cache_state); 6568 mutex_unlock(&conf->cache_size_mutex); 6569 } 6570 6571 flush_deferred_bios(conf); 6572 6573 r5l_flush_stripe_to_raid(conf->log); 6574 6575 async_tx_issue_pending_all(); 6576 blk_finish_plug(&plug); 6577 6578 pr_debug("--- raid5d inactive\n"); 6579 } 6580 6581 static ssize_t 6582 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6583 { 6584 struct r5conf *conf; 6585 int ret = 0; 6586 spin_lock(&mddev->lock); 6587 conf = mddev->private; 6588 if (conf) 6589 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6590 spin_unlock(&mddev->lock); 6591 return ret; 6592 } 6593 6594 int 6595 raid5_set_cache_size(struct mddev *mddev, int size) 6596 { 6597 int result = 0; 6598 struct r5conf *conf = mddev->private; 6599 6600 if (size <= 16 || size > 32768) 6601 return -EINVAL; 6602 6603 conf->min_nr_stripes = size; 6604 mutex_lock(&conf->cache_size_mutex); 6605 while (size < conf->max_nr_stripes && 6606 drop_one_stripe(conf)) 6607 ; 6608 mutex_unlock(&conf->cache_size_mutex); 6609 6610 md_allow_write(mddev); 6611 6612 mutex_lock(&conf->cache_size_mutex); 6613 while (size > conf->max_nr_stripes) 6614 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6615 conf->min_nr_stripes = conf->max_nr_stripes; 6616 result = -ENOMEM; 6617 break; 6618 } 6619 mutex_unlock(&conf->cache_size_mutex); 6620 6621 return result; 6622 } 6623 EXPORT_SYMBOL(raid5_set_cache_size); 6624 6625 static ssize_t 6626 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6627 { 6628 struct r5conf *conf; 6629 unsigned long new; 6630 int err; 6631 6632 if (len >= PAGE_SIZE) 6633 return -EINVAL; 6634 if (kstrtoul(page, 10, &new)) 6635 return -EINVAL; 6636 err = mddev_lock(mddev); 6637 if (err) 6638 return err; 6639 conf = mddev->private; 6640 if (!conf) 6641 err = -ENODEV; 6642 else 6643 err = raid5_set_cache_size(mddev, new); 6644 mddev_unlock(mddev); 6645 6646 return err ?: len; 6647 } 6648 6649 static struct md_sysfs_entry 6650 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6651 raid5_show_stripe_cache_size, 6652 raid5_store_stripe_cache_size); 6653 6654 static ssize_t 6655 raid5_show_rmw_level(struct mddev *mddev, char *page) 6656 { 6657 struct r5conf *conf = mddev->private; 6658 if (conf) 6659 return sprintf(page, "%d\n", conf->rmw_level); 6660 else 6661 return 0; 6662 } 6663 6664 static ssize_t 6665 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6666 { 6667 struct r5conf *conf = mddev->private; 6668 unsigned long new; 6669 6670 if (!conf) 6671 return -ENODEV; 6672 6673 if (len >= PAGE_SIZE) 6674 return -EINVAL; 6675 6676 if (kstrtoul(page, 10, &new)) 6677 return -EINVAL; 6678 6679 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6680 return -EINVAL; 6681 6682 if (new != PARITY_DISABLE_RMW && 6683 new != PARITY_ENABLE_RMW && 6684 new != PARITY_PREFER_RMW) 6685 return -EINVAL; 6686 6687 conf->rmw_level = new; 6688 return len; 6689 } 6690 6691 static struct md_sysfs_entry 6692 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6693 raid5_show_rmw_level, 6694 raid5_store_rmw_level); 6695 6696 static ssize_t 6697 raid5_show_stripe_size(struct mddev *mddev, char *page) 6698 { 6699 struct r5conf *conf; 6700 int ret = 0; 6701 6702 spin_lock(&mddev->lock); 6703 conf = mddev->private; 6704 if (conf) 6705 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6706 spin_unlock(&mddev->lock); 6707 return ret; 6708 } 6709 6710 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6711 static ssize_t 6712 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6713 { 6714 struct r5conf *conf; 6715 unsigned long new; 6716 int err; 6717 int size; 6718 6719 if (len >= PAGE_SIZE) 6720 return -EINVAL; 6721 if (kstrtoul(page, 10, &new)) 6722 return -EINVAL; 6723 6724 /* 6725 * The value should not be bigger than PAGE_SIZE. It requires to 6726 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6727 * of two. 6728 */ 6729 if (new % DEFAULT_STRIPE_SIZE != 0 || 6730 new > PAGE_SIZE || new == 0 || 6731 new != roundup_pow_of_two(new)) 6732 return -EINVAL; 6733 6734 err = mddev_lock(mddev); 6735 if (err) 6736 return err; 6737 6738 conf = mddev->private; 6739 if (!conf) { 6740 err = -ENODEV; 6741 goto out_unlock; 6742 } 6743 6744 if (new == conf->stripe_size) 6745 goto out_unlock; 6746 6747 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6748 conf->stripe_size, new); 6749 6750 if (mddev->sync_thread || 6751 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6752 mddev->reshape_position != MaxSector || 6753 mddev->sysfs_active) { 6754 err = -EBUSY; 6755 goto out_unlock; 6756 } 6757 6758 mddev_suspend(mddev); 6759 mutex_lock(&conf->cache_size_mutex); 6760 size = conf->max_nr_stripes; 6761 6762 shrink_stripes(conf); 6763 6764 conf->stripe_size = new; 6765 conf->stripe_shift = ilog2(new) - 9; 6766 conf->stripe_sectors = new >> 9; 6767 if (grow_stripes(conf, size)) { 6768 pr_warn("md/raid:%s: couldn't allocate buffers\n", 6769 mdname(mddev)); 6770 err = -ENOMEM; 6771 } 6772 mutex_unlock(&conf->cache_size_mutex); 6773 mddev_resume(mddev); 6774 6775 out_unlock: 6776 mddev_unlock(mddev); 6777 return err ?: len; 6778 } 6779 6780 static struct md_sysfs_entry 6781 raid5_stripe_size = __ATTR(stripe_size, 0644, 6782 raid5_show_stripe_size, 6783 raid5_store_stripe_size); 6784 #else 6785 static struct md_sysfs_entry 6786 raid5_stripe_size = __ATTR(stripe_size, 0444, 6787 raid5_show_stripe_size, 6788 NULL); 6789 #endif 6790 6791 static ssize_t 6792 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6793 { 6794 struct r5conf *conf; 6795 int ret = 0; 6796 spin_lock(&mddev->lock); 6797 conf = mddev->private; 6798 if (conf) 6799 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6800 spin_unlock(&mddev->lock); 6801 return ret; 6802 } 6803 6804 static ssize_t 6805 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6806 { 6807 struct r5conf *conf; 6808 unsigned long new; 6809 int err; 6810 6811 if (len >= PAGE_SIZE) 6812 return -EINVAL; 6813 if (kstrtoul(page, 10, &new)) 6814 return -EINVAL; 6815 6816 err = mddev_lock(mddev); 6817 if (err) 6818 return err; 6819 conf = mddev->private; 6820 if (!conf) 6821 err = -ENODEV; 6822 else if (new > conf->min_nr_stripes) 6823 err = -EINVAL; 6824 else 6825 conf->bypass_threshold = new; 6826 mddev_unlock(mddev); 6827 return err ?: len; 6828 } 6829 6830 static struct md_sysfs_entry 6831 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6832 S_IRUGO | S_IWUSR, 6833 raid5_show_preread_threshold, 6834 raid5_store_preread_threshold); 6835 6836 static ssize_t 6837 raid5_show_skip_copy(struct mddev *mddev, char *page) 6838 { 6839 struct r5conf *conf; 6840 int ret = 0; 6841 spin_lock(&mddev->lock); 6842 conf = mddev->private; 6843 if (conf) 6844 ret = sprintf(page, "%d\n", conf->skip_copy); 6845 spin_unlock(&mddev->lock); 6846 return ret; 6847 } 6848 6849 static ssize_t 6850 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6851 { 6852 struct r5conf *conf; 6853 unsigned long new; 6854 int err; 6855 6856 if (len >= PAGE_SIZE) 6857 return -EINVAL; 6858 if (kstrtoul(page, 10, &new)) 6859 return -EINVAL; 6860 new = !!new; 6861 6862 err = mddev_lock(mddev); 6863 if (err) 6864 return err; 6865 conf = mddev->private; 6866 if (!conf) 6867 err = -ENODEV; 6868 else if (new != conf->skip_copy) { 6869 struct request_queue *q = mddev->queue; 6870 6871 mddev_suspend(mddev); 6872 conf->skip_copy = new; 6873 if (new) 6874 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 6875 else 6876 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 6877 mddev_resume(mddev); 6878 } 6879 mddev_unlock(mddev); 6880 return err ?: len; 6881 } 6882 6883 static struct md_sysfs_entry 6884 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6885 raid5_show_skip_copy, 6886 raid5_store_skip_copy); 6887 6888 static ssize_t 6889 stripe_cache_active_show(struct mddev *mddev, char *page) 6890 { 6891 struct r5conf *conf = mddev->private; 6892 if (conf) 6893 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6894 else 6895 return 0; 6896 } 6897 6898 static struct md_sysfs_entry 6899 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6900 6901 static ssize_t 6902 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6903 { 6904 struct r5conf *conf; 6905 int ret = 0; 6906 spin_lock(&mddev->lock); 6907 conf = mddev->private; 6908 if (conf) 6909 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6910 spin_unlock(&mddev->lock); 6911 return ret; 6912 } 6913 6914 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6915 int *group_cnt, 6916 struct r5worker_group **worker_groups); 6917 static ssize_t 6918 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6919 { 6920 struct r5conf *conf; 6921 unsigned int new; 6922 int err; 6923 struct r5worker_group *new_groups, *old_groups; 6924 int group_cnt; 6925 6926 if (len >= PAGE_SIZE) 6927 return -EINVAL; 6928 if (kstrtouint(page, 10, &new)) 6929 return -EINVAL; 6930 /* 8192 should be big enough */ 6931 if (new > 8192) 6932 return -EINVAL; 6933 6934 err = mddev_lock(mddev); 6935 if (err) 6936 return err; 6937 conf = mddev->private; 6938 if (!conf) 6939 err = -ENODEV; 6940 else if (new != conf->worker_cnt_per_group) { 6941 mddev_suspend(mddev); 6942 6943 old_groups = conf->worker_groups; 6944 if (old_groups) 6945 flush_workqueue(raid5_wq); 6946 6947 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 6948 if (!err) { 6949 spin_lock_irq(&conf->device_lock); 6950 conf->group_cnt = group_cnt; 6951 conf->worker_cnt_per_group = new; 6952 conf->worker_groups = new_groups; 6953 spin_unlock_irq(&conf->device_lock); 6954 6955 if (old_groups) 6956 kfree(old_groups[0].workers); 6957 kfree(old_groups); 6958 } 6959 mddev_resume(mddev); 6960 } 6961 mddev_unlock(mddev); 6962 6963 return err ?: len; 6964 } 6965 6966 static struct md_sysfs_entry 6967 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6968 raid5_show_group_thread_cnt, 6969 raid5_store_group_thread_cnt); 6970 6971 static struct attribute *raid5_attrs[] = { 6972 &raid5_stripecache_size.attr, 6973 &raid5_stripecache_active.attr, 6974 &raid5_preread_bypass_threshold.attr, 6975 &raid5_group_thread_cnt.attr, 6976 &raid5_skip_copy.attr, 6977 &raid5_rmw_level.attr, 6978 &raid5_stripe_size.attr, 6979 &r5c_journal_mode.attr, 6980 &ppl_write_hint.attr, 6981 NULL, 6982 }; 6983 static const struct attribute_group raid5_attrs_group = { 6984 .name = NULL, 6985 .attrs = raid5_attrs, 6986 }; 6987 6988 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 6989 struct r5worker_group **worker_groups) 6990 { 6991 int i, j, k; 6992 ssize_t size; 6993 struct r5worker *workers; 6994 6995 if (cnt == 0) { 6996 *group_cnt = 0; 6997 *worker_groups = NULL; 6998 return 0; 6999 } 7000 *group_cnt = num_possible_nodes(); 7001 size = sizeof(struct r5worker) * cnt; 7002 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7003 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7004 GFP_NOIO); 7005 if (!*worker_groups || !workers) { 7006 kfree(workers); 7007 kfree(*worker_groups); 7008 return -ENOMEM; 7009 } 7010 7011 for (i = 0; i < *group_cnt; i++) { 7012 struct r5worker_group *group; 7013 7014 group = &(*worker_groups)[i]; 7015 INIT_LIST_HEAD(&group->handle_list); 7016 INIT_LIST_HEAD(&group->loprio_list); 7017 group->conf = conf; 7018 group->workers = workers + i * cnt; 7019 7020 for (j = 0; j < cnt; j++) { 7021 struct r5worker *worker = group->workers + j; 7022 worker->group = group; 7023 INIT_WORK(&worker->work, raid5_do_work); 7024 7025 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7026 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7027 } 7028 } 7029 7030 return 0; 7031 } 7032 7033 static void free_thread_groups(struct r5conf *conf) 7034 { 7035 if (conf->worker_groups) 7036 kfree(conf->worker_groups[0].workers); 7037 kfree(conf->worker_groups); 7038 conf->worker_groups = NULL; 7039 } 7040 7041 static sector_t 7042 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7043 { 7044 struct r5conf *conf = mddev->private; 7045 7046 if (!sectors) 7047 sectors = mddev->dev_sectors; 7048 if (!raid_disks) 7049 /* size is defined by the smallest of previous and new size */ 7050 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7051 7052 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7053 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7054 return sectors * (raid_disks - conf->max_degraded); 7055 } 7056 7057 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7058 { 7059 safe_put_page(percpu->spare_page); 7060 percpu->spare_page = NULL; 7061 kvfree(percpu->scribble); 7062 percpu->scribble = NULL; 7063 } 7064 7065 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7066 { 7067 if (conf->level == 6 && !percpu->spare_page) { 7068 percpu->spare_page = alloc_page(GFP_KERNEL); 7069 if (!percpu->spare_page) 7070 return -ENOMEM; 7071 } 7072 7073 if (scribble_alloc(percpu, 7074 max(conf->raid_disks, 7075 conf->previous_raid_disks), 7076 max(conf->chunk_sectors, 7077 conf->prev_chunk_sectors) 7078 / RAID5_STRIPE_SECTORS(conf))) { 7079 free_scratch_buffer(conf, percpu); 7080 return -ENOMEM; 7081 } 7082 7083 local_lock_init(&percpu->lock); 7084 return 0; 7085 } 7086 7087 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7088 { 7089 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7090 7091 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7092 return 0; 7093 } 7094 7095 static void raid5_free_percpu(struct r5conf *conf) 7096 { 7097 if (!conf->percpu) 7098 return; 7099 7100 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7101 free_percpu(conf->percpu); 7102 } 7103 7104 static void free_conf(struct r5conf *conf) 7105 { 7106 int i; 7107 7108 log_exit(conf); 7109 7110 unregister_shrinker(&conf->shrinker); 7111 free_thread_groups(conf); 7112 shrink_stripes(conf); 7113 raid5_free_percpu(conf); 7114 for (i = 0; i < conf->pool_size; i++) 7115 if (conf->disks[i].extra_page) 7116 put_page(conf->disks[i].extra_page); 7117 kfree(conf->disks); 7118 bioset_exit(&conf->bio_split); 7119 kfree(conf->stripe_hashtbl); 7120 kfree(conf->pending_data); 7121 kfree(conf); 7122 } 7123 7124 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7125 { 7126 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7127 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7128 7129 if (alloc_scratch_buffer(conf, percpu)) { 7130 pr_warn("%s: failed memory allocation for cpu%u\n", 7131 __func__, cpu); 7132 return -ENOMEM; 7133 } 7134 return 0; 7135 } 7136 7137 static int raid5_alloc_percpu(struct r5conf *conf) 7138 { 7139 int err = 0; 7140 7141 conf->percpu = alloc_percpu(struct raid5_percpu); 7142 if (!conf->percpu) 7143 return -ENOMEM; 7144 7145 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7146 if (!err) { 7147 conf->scribble_disks = max(conf->raid_disks, 7148 conf->previous_raid_disks); 7149 conf->scribble_sectors = max(conf->chunk_sectors, 7150 conf->prev_chunk_sectors); 7151 } 7152 return err; 7153 } 7154 7155 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7156 struct shrink_control *sc) 7157 { 7158 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7159 unsigned long ret = SHRINK_STOP; 7160 7161 if (mutex_trylock(&conf->cache_size_mutex)) { 7162 ret= 0; 7163 while (ret < sc->nr_to_scan && 7164 conf->max_nr_stripes > conf->min_nr_stripes) { 7165 if (drop_one_stripe(conf) == 0) { 7166 ret = SHRINK_STOP; 7167 break; 7168 } 7169 ret++; 7170 } 7171 mutex_unlock(&conf->cache_size_mutex); 7172 } 7173 return ret; 7174 } 7175 7176 static unsigned long raid5_cache_count(struct shrinker *shrink, 7177 struct shrink_control *sc) 7178 { 7179 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7180 7181 if (conf->max_nr_stripes < conf->min_nr_stripes) 7182 /* unlikely, but not impossible */ 7183 return 0; 7184 return conf->max_nr_stripes - conf->min_nr_stripes; 7185 } 7186 7187 static struct r5conf *setup_conf(struct mddev *mddev) 7188 { 7189 struct r5conf *conf; 7190 int raid_disk, memory, max_disks; 7191 struct md_rdev *rdev; 7192 struct disk_info *disk; 7193 char pers_name[6]; 7194 int i; 7195 int group_cnt; 7196 struct r5worker_group *new_group; 7197 int ret = -ENOMEM; 7198 7199 if (mddev->new_level != 5 7200 && mddev->new_level != 4 7201 && mddev->new_level != 6) { 7202 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7203 mdname(mddev), mddev->new_level); 7204 return ERR_PTR(-EIO); 7205 } 7206 if ((mddev->new_level == 5 7207 && !algorithm_valid_raid5(mddev->new_layout)) || 7208 (mddev->new_level == 6 7209 && !algorithm_valid_raid6(mddev->new_layout))) { 7210 pr_warn("md/raid:%s: layout %d not supported\n", 7211 mdname(mddev), mddev->new_layout); 7212 return ERR_PTR(-EIO); 7213 } 7214 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7215 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7216 mdname(mddev), mddev->raid_disks); 7217 return ERR_PTR(-EINVAL); 7218 } 7219 7220 if (!mddev->new_chunk_sectors || 7221 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7222 !is_power_of_2(mddev->new_chunk_sectors)) { 7223 pr_warn("md/raid:%s: invalid chunk size %d\n", 7224 mdname(mddev), mddev->new_chunk_sectors << 9); 7225 return ERR_PTR(-EINVAL); 7226 } 7227 7228 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7229 if (conf == NULL) 7230 goto abort; 7231 7232 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7233 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7234 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7235 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7236 #endif 7237 INIT_LIST_HEAD(&conf->free_list); 7238 INIT_LIST_HEAD(&conf->pending_list); 7239 conf->pending_data = kcalloc(PENDING_IO_MAX, 7240 sizeof(struct r5pending_data), 7241 GFP_KERNEL); 7242 if (!conf->pending_data) 7243 goto abort; 7244 for (i = 0; i < PENDING_IO_MAX; i++) 7245 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7246 /* Don't enable multi-threading by default*/ 7247 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7248 conf->group_cnt = group_cnt; 7249 conf->worker_cnt_per_group = 0; 7250 conf->worker_groups = new_group; 7251 } else 7252 goto abort; 7253 spin_lock_init(&conf->device_lock); 7254 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7255 mutex_init(&conf->cache_size_mutex); 7256 7257 init_waitqueue_head(&conf->wait_for_quiescent); 7258 init_waitqueue_head(&conf->wait_for_stripe); 7259 init_waitqueue_head(&conf->wait_for_overlap); 7260 INIT_LIST_HEAD(&conf->handle_list); 7261 INIT_LIST_HEAD(&conf->loprio_list); 7262 INIT_LIST_HEAD(&conf->hold_list); 7263 INIT_LIST_HEAD(&conf->delayed_list); 7264 INIT_LIST_HEAD(&conf->bitmap_list); 7265 init_llist_head(&conf->released_stripes); 7266 atomic_set(&conf->active_stripes, 0); 7267 atomic_set(&conf->preread_active_stripes, 0); 7268 atomic_set(&conf->active_aligned_reads, 0); 7269 spin_lock_init(&conf->pending_bios_lock); 7270 conf->batch_bio_dispatch = true; 7271 rdev_for_each(rdev, mddev) { 7272 if (test_bit(Journal, &rdev->flags)) 7273 continue; 7274 if (bdev_nonrot(rdev->bdev)) { 7275 conf->batch_bio_dispatch = false; 7276 break; 7277 } 7278 } 7279 7280 conf->bypass_threshold = BYPASS_THRESHOLD; 7281 conf->recovery_disabled = mddev->recovery_disabled - 1; 7282 7283 conf->raid_disks = mddev->raid_disks; 7284 if (mddev->reshape_position == MaxSector) 7285 conf->previous_raid_disks = mddev->raid_disks; 7286 else 7287 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7288 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7289 7290 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7291 GFP_KERNEL); 7292 7293 if (!conf->disks) 7294 goto abort; 7295 7296 for (i = 0; i < max_disks; i++) { 7297 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7298 if (!conf->disks[i].extra_page) 7299 goto abort; 7300 } 7301 7302 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7303 if (ret) 7304 goto abort; 7305 conf->mddev = mddev; 7306 7307 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 7308 goto abort; 7309 7310 /* We init hash_locks[0] separately to that it can be used 7311 * as the reference lock in the spin_lock_nest_lock() call 7312 * in lock_all_device_hash_locks_irq in order to convince 7313 * lockdep that we know what we are doing. 7314 */ 7315 spin_lock_init(conf->hash_locks); 7316 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7317 spin_lock_init(conf->hash_locks + i); 7318 7319 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7320 INIT_LIST_HEAD(conf->inactive_list + i); 7321 7322 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7323 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7324 7325 atomic_set(&conf->r5c_cached_full_stripes, 0); 7326 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7327 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7328 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7329 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7330 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7331 7332 conf->level = mddev->new_level; 7333 conf->chunk_sectors = mddev->new_chunk_sectors; 7334 ret = raid5_alloc_percpu(conf); 7335 if (ret) 7336 goto abort; 7337 7338 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7339 7340 ret = -EIO; 7341 rdev_for_each(rdev, mddev) { 7342 raid_disk = rdev->raid_disk; 7343 if (raid_disk >= max_disks 7344 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7345 continue; 7346 disk = conf->disks + raid_disk; 7347 7348 if (test_bit(Replacement, &rdev->flags)) { 7349 if (disk->replacement) 7350 goto abort; 7351 RCU_INIT_POINTER(disk->replacement, rdev); 7352 } else { 7353 if (disk->rdev) 7354 goto abort; 7355 RCU_INIT_POINTER(disk->rdev, rdev); 7356 } 7357 7358 if (test_bit(In_sync, &rdev->flags)) { 7359 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7360 mdname(mddev), rdev->bdev, raid_disk); 7361 } else if (rdev->saved_raid_disk != raid_disk) 7362 /* Cannot rely on bitmap to complete recovery */ 7363 conf->fullsync = 1; 7364 } 7365 7366 conf->level = mddev->new_level; 7367 if (conf->level == 6) { 7368 conf->max_degraded = 2; 7369 if (raid6_call.xor_syndrome) 7370 conf->rmw_level = PARITY_ENABLE_RMW; 7371 else 7372 conf->rmw_level = PARITY_DISABLE_RMW; 7373 } else { 7374 conf->max_degraded = 1; 7375 conf->rmw_level = PARITY_ENABLE_RMW; 7376 } 7377 conf->algorithm = mddev->new_layout; 7378 conf->reshape_progress = mddev->reshape_position; 7379 if (conf->reshape_progress != MaxSector) { 7380 conf->prev_chunk_sectors = mddev->chunk_sectors; 7381 conf->prev_algo = mddev->layout; 7382 } else { 7383 conf->prev_chunk_sectors = conf->chunk_sectors; 7384 conf->prev_algo = conf->algorithm; 7385 } 7386 7387 conf->min_nr_stripes = NR_STRIPES; 7388 if (mddev->reshape_position != MaxSector) { 7389 int stripes = max_t(int, 7390 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7391 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7392 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7393 if (conf->min_nr_stripes != NR_STRIPES) 7394 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7395 mdname(mddev), conf->min_nr_stripes); 7396 } 7397 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7398 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7399 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7400 if (grow_stripes(conf, conf->min_nr_stripes)) { 7401 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7402 mdname(mddev), memory); 7403 ret = -ENOMEM; 7404 goto abort; 7405 } else 7406 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7407 /* 7408 * Losing a stripe head costs more than the time to refill it, 7409 * it reduces the queue depth and so can hurt throughput. 7410 * So set it rather large, scaled by number of devices. 7411 */ 7412 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7413 conf->shrinker.scan_objects = raid5_cache_scan; 7414 conf->shrinker.count_objects = raid5_cache_count; 7415 conf->shrinker.batch = 128; 7416 conf->shrinker.flags = 0; 7417 ret = register_shrinker(&conf->shrinker); 7418 if (ret) { 7419 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7420 mdname(mddev)); 7421 goto abort; 7422 } 7423 7424 sprintf(pers_name, "raid%d", mddev->new_level); 7425 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7426 if (!conf->thread) { 7427 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7428 mdname(mddev)); 7429 ret = -ENOMEM; 7430 goto abort; 7431 } 7432 7433 return conf; 7434 7435 abort: 7436 if (conf) 7437 free_conf(conf); 7438 return ERR_PTR(ret); 7439 } 7440 7441 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7442 { 7443 switch (algo) { 7444 case ALGORITHM_PARITY_0: 7445 if (raid_disk < max_degraded) 7446 return 1; 7447 break; 7448 case ALGORITHM_PARITY_N: 7449 if (raid_disk >= raid_disks - max_degraded) 7450 return 1; 7451 break; 7452 case ALGORITHM_PARITY_0_6: 7453 if (raid_disk == 0 || 7454 raid_disk == raid_disks - 1) 7455 return 1; 7456 break; 7457 case ALGORITHM_LEFT_ASYMMETRIC_6: 7458 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7459 case ALGORITHM_LEFT_SYMMETRIC_6: 7460 case ALGORITHM_RIGHT_SYMMETRIC_6: 7461 if (raid_disk == raid_disks - 1) 7462 return 1; 7463 } 7464 return 0; 7465 } 7466 7467 static void raid5_set_io_opt(struct r5conf *conf) 7468 { 7469 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7470 (conf->raid_disks - conf->max_degraded)); 7471 } 7472 7473 static int raid5_run(struct mddev *mddev) 7474 { 7475 struct r5conf *conf; 7476 int working_disks = 0; 7477 int dirty_parity_disks = 0; 7478 struct md_rdev *rdev; 7479 struct md_rdev *journal_dev = NULL; 7480 sector_t reshape_offset = 0; 7481 int i, ret = 0; 7482 long long min_offset_diff = 0; 7483 int first = 1; 7484 7485 if (acct_bioset_init(mddev)) { 7486 pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev)); 7487 return -ENOMEM; 7488 } 7489 7490 if (mddev_init_writes_pending(mddev) < 0) { 7491 ret = -ENOMEM; 7492 goto exit_acct_set; 7493 } 7494 7495 if (mddev->recovery_cp != MaxSector) 7496 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7497 mdname(mddev)); 7498 7499 rdev_for_each(rdev, mddev) { 7500 long long diff; 7501 7502 if (test_bit(Journal, &rdev->flags)) { 7503 journal_dev = rdev; 7504 continue; 7505 } 7506 if (rdev->raid_disk < 0) 7507 continue; 7508 diff = (rdev->new_data_offset - rdev->data_offset); 7509 if (first) { 7510 min_offset_diff = diff; 7511 first = 0; 7512 } else if (mddev->reshape_backwards && 7513 diff < min_offset_diff) 7514 min_offset_diff = diff; 7515 else if (!mddev->reshape_backwards && 7516 diff > min_offset_diff) 7517 min_offset_diff = diff; 7518 } 7519 7520 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7521 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7522 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7523 mdname(mddev)); 7524 ret = -EINVAL; 7525 goto exit_acct_set; 7526 } 7527 7528 if (mddev->reshape_position != MaxSector) { 7529 /* Check that we can continue the reshape. 7530 * Difficulties arise if the stripe we would write to 7531 * next is at or after the stripe we would read from next. 7532 * For a reshape that changes the number of devices, this 7533 * is only possible for a very short time, and mdadm makes 7534 * sure that time appears to have past before assembling 7535 * the array. So we fail if that time hasn't passed. 7536 * For a reshape that keeps the number of devices the same 7537 * mdadm must be monitoring the reshape can keeping the 7538 * critical areas read-only and backed up. It will start 7539 * the array in read-only mode, so we check for that. 7540 */ 7541 sector_t here_new, here_old; 7542 int old_disks; 7543 int max_degraded = (mddev->level == 6 ? 2 : 1); 7544 int chunk_sectors; 7545 int new_data_disks; 7546 7547 if (journal_dev) { 7548 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7549 mdname(mddev)); 7550 ret = -EINVAL; 7551 goto exit_acct_set; 7552 } 7553 7554 if (mddev->new_level != mddev->level) { 7555 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7556 mdname(mddev)); 7557 ret = -EINVAL; 7558 goto exit_acct_set; 7559 } 7560 old_disks = mddev->raid_disks - mddev->delta_disks; 7561 /* reshape_position must be on a new-stripe boundary, and one 7562 * further up in new geometry must map after here in old 7563 * geometry. 7564 * If the chunk sizes are different, then as we perform reshape 7565 * in units of the largest of the two, reshape_position needs 7566 * be a multiple of the largest chunk size times new data disks. 7567 */ 7568 here_new = mddev->reshape_position; 7569 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7570 new_data_disks = mddev->raid_disks - max_degraded; 7571 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7572 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7573 mdname(mddev)); 7574 ret = -EINVAL; 7575 goto exit_acct_set; 7576 } 7577 reshape_offset = here_new * chunk_sectors; 7578 /* here_new is the stripe we will write to */ 7579 here_old = mddev->reshape_position; 7580 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7581 /* here_old is the first stripe that we might need to read 7582 * from */ 7583 if (mddev->delta_disks == 0) { 7584 /* We cannot be sure it is safe to start an in-place 7585 * reshape. It is only safe if user-space is monitoring 7586 * and taking constant backups. 7587 * mdadm always starts a situation like this in 7588 * readonly mode so it can take control before 7589 * allowing any writes. So just check for that. 7590 */ 7591 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7592 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7593 /* not really in-place - so OK */; 7594 else if (mddev->ro == 0) { 7595 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7596 mdname(mddev)); 7597 ret = -EINVAL; 7598 goto exit_acct_set; 7599 } 7600 } else if (mddev->reshape_backwards 7601 ? (here_new * chunk_sectors + min_offset_diff <= 7602 here_old * chunk_sectors) 7603 : (here_new * chunk_sectors >= 7604 here_old * chunk_sectors + (-min_offset_diff))) { 7605 /* Reading from the same stripe as writing to - bad */ 7606 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7607 mdname(mddev)); 7608 ret = -EINVAL; 7609 goto exit_acct_set; 7610 } 7611 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7612 /* OK, we should be able to continue; */ 7613 } else { 7614 BUG_ON(mddev->level != mddev->new_level); 7615 BUG_ON(mddev->layout != mddev->new_layout); 7616 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7617 BUG_ON(mddev->delta_disks != 0); 7618 } 7619 7620 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7621 test_bit(MD_HAS_PPL, &mddev->flags)) { 7622 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7623 mdname(mddev)); 7624 clear_bit(MD_HAS_PPL, &mddev->flags); 7625 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7626 } 7627 7628 if (mddev->private == NULL) 7629 conf = setup_conf(mddev); 7630 else 7631 conf = mddev->private; 7632 7633 if (IS_ERR(conf)) { 7634 ret = PTR_ERR(conf); 7635 goto exit_acct_set; 7636 } 7637 7638 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7639 if (!journal_dev) { 7640 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7641 mdname(mddev)); 7642 mddev->ro = 1; 7643 set_disk_ro(mddev->gendisk, 1); 7644 } else if (mddev->recovery_cp == MaxSector) 7645 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7646 } 7647 7648 conf->min_offset_diff = min_offset_diff; 7649 mddev->thread = conf->thread; 7650 conf->thread = NULL; 7651 mddev->private = conf; 7652 7653 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7654 i++) { 7655 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 7656 if (!rdev && conf->disks[i].replacement) { 7657 /* The replacement is all we have yet */ 7658 rdev = rdev_mdlock_deref(mddev, 7659 conf->disks[i].replacement); 7660 conf->disks[i].replacement = NULL; 7661 clear_bit(Replacement, &rdev->flags); 7662 rcu_assign_pointer(conf->disks[i].rdev, rdev); 7663 } 7664 if (!rdev) 7665 continue; 7666 if (rcu_access_pointer(conf->disks[i].replacement) && 7667 conf->reshape_progress != MaxSector) { 7668 /* replacements and reshape simply do not mix. */ 7669 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7670 goto abort; 7671 } 7672 if (test_bit(In_sync, &rdev->flags)) { 7673 working_disks++; 7674 continue; 7675 } 7676 /* This disc is not fully in-sync. However if it 7677 * just stored parity (beyond the recovery_offset), 7678 * when we don't need to be concerned about the 7679 * array being dirty. 7680 * When reshape goes 'backwards', we never have 7681 * partially completed devices, so we only need 7682 * to worry about reshape going forwards. 7683 */ 7684 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7685 if (mddev->major_version == 0 && 7686 mddev->minor_version > 90) 7687 rdev->recovery_offset = reshape_offset; 7688 7689 if (rdev->recovery_offset < reshape_offset) { 7690 /* We need to check old and new layout */ 7691 if (!only_parity(rdev->raid_disk, 7692 conf->algorithm, 7693 conf->raid_disks, 7694 conf->max_degraded)) 7695 continue; 7696 } 7697 if (!only_parity(rdev->raid_disk, 7698 conf->prev_algo, 7699 conf->previous_raid_disks, 7700 conf->max_degraded)) 7701 continue; 7702 dirty_parity_disks++; 7703 } 7704 7705 /* 7706 * 0 for a fully functional array, 1 or 2 for a degraded array. 7707 */ 7708 mddev->degraded = raid5_calc_degraded(conf); 7709 7710 if (has_failed(conf)) { 7711 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7712 mdname(mddev), mddev->degraded, conf->raid_disks); 7713 goto abort; 7714 } 7715 7716 /* device size must be a multiple of chunk size */ 7717 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 7718 mddev->resync_max_sectors = mddev->dev_sectors; 7719 7720 if (mddev->degraded > dirty_parity_disks && 7721 mddev->recovery_cp != MaxSector) { 7722 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7723 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7724 mdname(mddev)); 7725 else if (mddev->ok_start_degraded) 7726 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7727 mdname(mddev)); 7728 else { 7729 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7730 mdname(mddev)); 7731 goto abort; 7732 } 7733 } 7734 7735 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7736 mdname(mddev), conf->level, 7737 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7738 mddev->new_layout); 7739 7740 print_raid5_conf(conf); 7741 7742 if (conf->reshape_progress != MaxSector) { 7743 conf->reshape_safe = conf->reshape_progress; 7744 atomic_set(&conf->reshape_stripes, 0); 7745 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7746 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7747 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7748 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7749 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7750 "reshape"); 7751 if (!mddev->sync_thread) 7752 goto abort; 7753 } 7754 7755 /* Ok, everything is just fine now */ 7756 if (mddev->to_remove == &raid5_attrs_group) 7757 mddev->to_remove = NULL; 7758 else if (mddev->kobj.sd && 7759 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7760 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7761 mdname(mddev)); 7762 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7763 7764 if (mddev->queue) { 7765 int chunk_size; 7766 /* read-ahead size must cover two whole stripes, which 7767 * is 2 * (datadisks) * chunksize where 'n' is the 7768 * number of raid devices 7769 */ 7770 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7771 int stripe = data_disks * 7772 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7773 7774 chunk_size = mddev->chunk_sectors << 9; 7775 blk_queue_io_min(mddev->queue, chunk_size); 7776 raid5_set_io_opt(conf); 7777 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7778 /* 7779 * We can only discard a whole stripe. It doesn't make sense to 7780 * discard data disk but write parity disk 7781 */ 7782 stripe = stripe * PAGE_SIZE; 7783 stripe = roundup_pow_of_two(stripe); 7784 mddev->queue->limits.discard_granularity = stripe; 7785 7786 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7787 7788 rdev_for_each(rdev, mddev) { 7789 disk_stack_limits(mddev->gendisk, rdev->bdev, 7790 rdev->data_offset << 9); 7791 disk_stack_limits(mddev->gendisk, rdev->bdev, 7792 rdev->new_data_offset << 9); 7793 } 7794 7795 /* 7796 * zeroing is required, otherwise data 7797 * could be lost. Consider a scenario: discard a stripe 7798 * (the stripe could be inconsistent if 7799 * discard_zeroes_data is 0); write one disk of the 7800 * stripe (the stripe could be inconsistent again 7801 * depending on which disks are used to calculate 7802 * parity); the disk is broken; The stripe data of this 7803 * disk is lost. 7804 * 7805 * We only allow DISCARD if the sysadmin has confirmed that 7806 * only safe devices are in use by setting a module parameter. 7807 * A better idea might be to turn DISCARD into WRITE_ZEROES 7808 * requests, as that is required to be safe. 7809 */ 7810 if (!devices_handle_discard_safely || 7811 mddev->queue->limits.max_discard_sectors < (stripe >> 9) || 7812 mddev->queue->limits.discard_granularity < stripe) 7813 blk_queue_max_discard_sectors(mddev->queue, 0); 7814 7815 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7816 } 7817 7818 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7819 goto abort; 7820 7821 return 0; 7822 abort: 7823 md_unregister_thread(&mddev->thread); 7824 print_raid5_conf(conf); 7825 free_conf(conf); 7826 mddev->private = NULL; 7827 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7828 ret = -EIO; 7829 exit_acct_set: 7830 acct_bioset_exit(mddev); 7831 return ret; 7832 } 7833 7834 static void raid5_free(struct mddev *mddev, void *priv) 7835 { 7836 struct r5conf *conf = priv; 7837 7838 free_conf(conf); 7839 acct_bioset_exit(mddev); 7840 mddev->to_remove = &raid5_attrs_group; 7841 } 7842 7843 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7844 { 7845 struct r5conf *conf = mddev->private; 7846 int i; 7847 7848 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7849 conf->chunk_sectors / 2, mddev->layout); 7850 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7851 rcu_read_lock(); 7852 for (i = 0; i < conf->raid_disks; i++) { 7853 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7854 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7855 } 7856 rcu_read_unlock(); 7857 seq_printf (seq, "]"); 7858 } 7859 7860 static void print_raid5_conf (struct r5conf *conf) 7861 { 7862 struct md_rdev *rdev; 7863 int i; 7864 7865 pr_debug("RAID conf printout:\n"); 7866 if (!conf) { 7867 pr_debug("(conf==NULL)\n"); 7868 return; 7869 } 7870 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7871 conf->raid_disks, 7872 conf->raid_disks - conf->mddev->degraded); 7873 7874 rcu_read_lock(); 7875 for (i = 0; i < conf->raid_disks; i++) { 7876 rdev = rcu_dereference(conf->disks[i].rdev); 7877 if (rdev) 7878 pr_debug(" disk %d, o:%d, dev:%pg\n", 7879 i, !test_bit(Faulty, &rdev->flags), 7880 rdev->bdev); 7881 } 7882 rcu_read_unlock(); 7883 } 7884 7885 static int raid5_spare_active(struct mddev *mddev) 7886 { 7887 int i; 7888 struct r5conf *conf = mddev->private; 7889 struct md_rdev *rdev, *replacement; 7890 int count = 0; 7891 unsigned long flags; 7892 7893 for (i = 0; i < conf->raid_disks; i++) { 7894 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 7895 replacement = rdev_mdlock_deref(mddev, 7896 conf->disks[i].replacement); 7897 if (replacement 7898 && replacement->recovery_offset == MaxSector 7899 && !test_bit(Faulty, &replacement->flags) 7900 && !test_and_set_bit(In_sync, &replacement->flags)) { 7901 /* Replacement has just become active. */ 7902 if (!rdev 7903 || !test_and_clear_bit(In_sync, &rdev->flags)) 7904 count++; 7905 if (rdev) { 7906 /* Replaced device not technically faulty, 7907 * but we need to be sure it gets removed 7908 * and never re-added. 7909 */ 7910 set_bit(Faulty, &rdev->flags); 7911 sysfs_notify_dirent_safe( 7912 rdev->sysfs_state); 7913 } 7914 sysfs_notify_dirent_safe(replacement->sysfs_state); 7915 } else if (rdev 7916 && rdev->recovery_offset == MaxSector 7917 && !test_bit(Faulty, &rdev->flags) 7918 && !test_and_set_bit(In_sync, &rdev->flags)) { 7919 count++; 7920 sysfs_notify_dirent_safe(rdev->sysfs_state); 7921 } 7922 } 7923 spin_lock_irqsave(&conf->device_lock, flags); 7924 mddev->degraded = raid5_calc_degraded(conf); 7925 spin_unlock_irqrestore(&conf->device_lock, flags); 7926 print_raid5_conf(conf); 7927 return count; 7928 } 7929 7930 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7931 { 7932 struct r5conf *conf = mddev->private; 7933 int err = 0; 7934 int number = rdev->raid_disk; 7935 struct md_rdev __rcu **rdevp; 7936 struct disk_info *p; 7937 struct md_rdev *tmp; 7938 7939 print_raid5_conf(conf); 7940 if (test_bit(Journal, &rdev->flags) && conf->log) { 7941 /* 7942 * we can't wait pending write here, as this is called in 7943 * raid5d, wait will deadlock. 7944 * neilb: there is no locking about new writes here, 7945 * so this cannot be safe. 7946 */ 7947 if (atomic_read(&conf->active_stripes) || 7948 atomic_read(&conf->r5c_cached_full_stripes) || 7949 atomic_read(&conf->r5c_cached_partial_stripes)) { 7950 return -EBUSY; 7951 } 7952 log_exit(conf); 7953 return 0; 7954 } 7955 if (unlikely(number >= conf->pool_size)) 7956 return 0; 7957 p = conf->disks + number; 7958 if (rdev == rcu_access_pointer(p->rdev)) 7959 rdevp = &p->rdev; 7960 else if (rdev == rcu_access_pointer(p->replacement)) 7961 rdevp = &p->replacement; 7962 else 7963 return 0; 7964 7965 if (number >= conf->raid_disks && 7966 conf->reshape_progress == MaxSector) 7967 clear_bit(In_sync, &rdev->flags); 7968 7969 if (test_bit(In_sync, &rdev->flags) || 7970 atomic_read(&rdev->nr_pending)) { 7971 err = -EBUSY; 7972 goto abort; 7973 } 7974 /* Only remove non-faulty devices if recovery 7975 * isn't possible. 7976 */ 7977 if (!test_bit(Faulty, &rdev->flags) && 7978 mddev->recovery_disabled != conf->recovery_disabled && 7979 !has_failed(conf) && 7980 (!rcu_access_pointer(p->replacement) || 7981 rcu_access_pointer(p->replacement) == rdev) && 7982 number < conf->raid_disks) { 7983 err = -EBUSY; 7984 goto abort; 7985 } 7986 *rdevp = NULL; 7987 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7988 lockdep_assert_held(&mddev->reconfig_mutex); 7989 synchronize_rcu(); 7990 if (atomic_read(&rdev->nr_pending)) { 7991 /* lost the race, try later */ 7992 err = -EBUSY; 7993 rcu_assign_pointer(*rdevp, rdev); 7994 } 7995 } 7996 if (!err) { 7997 err = log_modify(conf, rdev, false); 7998 if (err) 7999 goto abort; 8000 } 8001 8002 tmp = rcu_access_pointer(p->replacement); 8003 if (tmp) { 8004 /* We must have just cleared 'rdev' */ 8005 rcu_assign_pointer(p->rdev, tmp); 8006 clear_bit(Replacement, &tmp->flags); 8007 smp_mb(); /* Make sure other CPUs may see both as identical 8008 * but will never see neither - if they are careful 8009 */ 8010 rcu_assign_pointer(p->replacement, NULL); 8011 8012 if (!err) 8013 err = log_modify(conf, tmp, true); 8014 } 8015 8016 clear_bit(WantReplacement, &rdev->flags); 8017 abort: 8018 8019 print_raid5_conf(conf); 8020 return err; 8021 } 8022 8023 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8024 { 8025 struct r5conf *conf = mddev->private; 8026 int ret, err = -EEXIST; 8027 int disk; 8028 struct disk_info *p; 8029 struct md_rdev *tmp; 8030 int first = 0; 8031 int last = conf->raid_disks - 1; 8032 8033 if (test_bit(Journal, &rdev->flags)) { 8034 if (conf->log) 8035 return -EBUSY; 8036 8037 rdev->raid_disk = 0; 8038 /* 8039 * The array is in readonly mode if journal is missing, so no 8040 * write requests running. We should be safe 8041 */ 8042 ret = log_init(conf, rdev, false); 8043 if (ret) 8044 return ret; 8045 8046 ret = r5l_start(conf->log); 8047 if (ret) 8048 return ret; 8049 8050 return 0; 8051 } 8052 if (mddev->recovery_disabled == conf->recovery_disabled) 8053 return -EBUSY; 8054 8055 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8056 /* no point adding a device */ 8057 return -EINVAL; 8058 8059 if (rdev->raid_disk >= 0) 8060 first = last = rdev->raid_disk; 8061 8062 /* 8063 * find the disk ... but prefer rdev->saved_raid_disk 8064 * if possible. 8065 */ 8066 if (rdev->saved_raid_disk >= 0 && 8067 rdev->saved_raid_disk >= first && 8068 rdev->saved_raid_disk <= last && 8069 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8070 first = rdev->saved_raid_disk; 8071 8072 for (disk = first; disk <= last; disk++) { 8073 p = conf->disks + disk; 8074 if (p->rdev == NULL) { 8075 clear_bit(In_sync, &rdev->flags); 8076 rdev->raid_disk = disk; 8077 if (rdev->saved_raid_disk != disk) 8078 conf->fullsync = 1; 8079 rcu_assign_pointer(p->rdev, rdev); 8080 8081 err = log_modify(conf, rdev, true); 8082 8083 goto out; 8084 } 8085 } 8086 for (disk = first; disk <= last; disk++) { 8087 p = conf->disks + disk; 8088 tmp = rdev_mdlock_deref(mddev, p->rdev); 8089 if (test_bit(WantReplacement, &tmp->flags) && 8090 p->replacement == NULL) { 8091 clear_bit(In_sync, &rdev->flags); 8092 set_bit(Replacement, &rdev->flags); 8093 rdev->raid_disk = disk; 8094 err = 0; 8095 conf->fullsync = 1; 8096 rcu_assign_pointer(p->replacement, rdev); 8097 break; 8098 } 8099 } 8100 out: 8101 print_raid5_conf(conf); 8102 return err; 8103 } 8104 8105 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8106 { 8107 /* no resync is happening, and there is enough space 8108 * on all devices, so we can resize. 8109 * We need to make sure resync covers any new space. 8110 * If the array is shrinking we should possibly wait until 8111 * any io in the removed space completes, but it hardly seems 8112 * worth it. 8113 */ 8114 sector_t newsize; 8115 struct r5conf *conf = mddev->private; 8116 8117 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8118 return -EINVAL; 8119 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8120 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8121 if (mddev->external_size && 8122 mddev->array_sectors > newsize) 8123 return -EINVAL; 8124 if (mddev->bitmap) { 8125 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8126 if (ret) 8127 return ret; 8128 } 8129 md_set_array_sectors(mddev, newsize); 8130 if (sectors > mddev->dev_sectors && 8131 mddev->recovery_cp > mddev->dev_sectors) { 8132 mddev->recovery_cp = mddev->dev_sectors; 8133 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8134 } 8135 mddev->dev_sectors = sectors; 8136 mddev->resync_max_sectors = sectors; 8137 return 0; 8138 } 8139 8140 static int check_stripe_cache(struct mddev *mddev) 8141 { 8142 /* Can only proceed if there are plenty of stripe_heads. 8143 * We need a minimum of one full stripe,, and for sensible progress 8144 * it is best to have about 4 times that. 8145 * If we require 4 times, then the default 256 4K stripe_heads will 8146 * allow for chunk sizes up to 256K, which is probably OK. 8147 * If the chunk size is greater, user-space should request more 8148 * stripe_heads first. 8149 */ 8150 struct r5conf *conf = mddev->private; 8151 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8152 > conf->min_nr_stripes || 8153 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8154 > conf->min_nr_stripes) { 8155 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8156 mdname(mddev), 8157 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8158 / RAID5_STRIPE_SIZE(conf))*4); 8159 return 0; 8160 } 8161 return 1; 8162 } 8163 8164 static int check_reshape(struct mddev *mddev) 8165 { 8166 struct r5conf *conf = mddev->private; 8167 8168 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8169 return -EINVAL; 8170 if (mddev->delta_disks == 0 && 8171 mddev->new_layout == mddev->layout && 8172 mddev->new_chunk_sectors == mddev->chunk_sectors) 8173 return 0; /* nothing to do */ 8174 if (has_failed(conf)) 8175 return -EINVAL; 8176 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8177 /* We might be able to shrink, but the devices must 8178 * be made bigger first. 8179 * For raid6, 4 is the minimum size. 8180 * Otherwise 2 is the minimum 8181 */ 8182 int min = 2; 8183 if (mddev->level == 6) 8184 min = 4; 8185 if (mddev->raid_disks + mddev->delta_disks < min) 8186 return -EINVAL; 8187 } 8188 8189 if (!check_stripe_cache(mddev)) 8190 return -ENOSPC; 8191 8192 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8193 mddev->delta_disks > 0) 8194 if (resize_chunks(conf, 8195 conf->previous_raid_disks 8196 + max(0, mddev->delta_disks), 8197 max(mddev->new_chunk_sectors, 8198 mddev->chunk_sectors) 8199 ) < 0) 8200 return -ENOMEM; 8201 8202 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8203 return 0; /* never bother to shrink */ 8204 return resize_stripes(conf, (conf->previous_raid_disks 8205 + mddev->delta_disks)); 8206 } 8207 8208 static int raid5_start_reshape(struct mddev *mddev) 8209 { 8210 struct r5conf *conf = mddev->private; 8211 struct md_rdev *rdev; 8212 int spares = 0; 8213 unsigned long flags; 8214 8215 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8216 return -EBUSY; 8217 8218 if (!check_stripe_cache(mddev)) 8219 return -ENOSPC; 8220 8221 if (has_failed(conf)) 8222 return -EINVAL; 8223 8224 rdev_for_each(rdev, mddev) { 8225 if (!test_bit(In_sync, &rdev->flags) 8226 && !test_bit(Faulty, &rdev->flags)) 8227 spares++; 8228 } 8229 8230 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8231 /* Not enough devices even to make a degraded array 8232 * of that size 8233 */ 8234 return -EINVAL; 8235 8236 /* Refuse to reduce size of the array. Any reductions in 8237 * array size must be through explicit setting of array_size 8238 * attribute. 8239 */ 8240 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8241 < mddev->array_sectors) { 8242 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8243 mdname(mddev)); 8244 return -EINVAL; 8245 } 8246 8247 atomic_set(&conf->reshape_stripes, 0); 8248 spin_lock_irq(&conf->device_lock); 8249 write_seqcount_begin(&conf->gen_lock); 8250 conf->previous_raid_disks = conf->raid_disks; 8251 conf->raid_disks += mddev->delta_disks; 8252 conf->prev_chunk_sectors = conf->chunk_sectors; 8253 conf->chunk_sectors = mddev->new_chunk_sectors; 8254 conf->prev_algo = conf->algorithm; 8255 conf->algorithm = mddev->new_layout; 8256 conf->generation++; 8257 /* Code that selects data_offset needs to see the generation update 8258 * if reshape_progress has been set - so a memory barrier needed. 8259 */ 8260 smp_mb(); 8261 if (mddev->reshape_backwards) 8262 conf->reshape_progress = raid5_size(mddev, 0, 0); 8263 else 8264 conf->reshape_progress = 0; 8265 conf->reshape_safe = conf->reshape_progress; 8266 write_seqcount_end(&conf->gen_lock); 8267 spin_unlock_irq(&conf->device_lock); 8268 8269 /* Now make sure any requests that proceeded on the assumption 8270 * the reshape wasn't running - like Discard or Read - have 8271 * completed. 8272 */ 8273 mddev_suspend(mddev); 8274 mddev_resume(mddev); 8275 8276 /* Add some new drives, as many as will fit. 8277 * We know there are enough to make the newly sized array work. 8278 * Don't add devices if we are reducing the number of 8279 * devices in the array. This is because it is not possible 8280 * to correctly record the "partially reconstructed" state of 8281 * such devices during the reshape and confusion could result. 8282 */ 8283 if (mddev->delta_disks >= 0) { 8284 rdev_for_each(rdev, mddev) 8285 if (rdev->raid_disk < 0 && 8286 !test_bit(Faulty, &rdev->flags)) { 8287 if (raid5_add_disk(mddev, rdev) == 0) { 8288 if (rdev->raid_disk 8289 >= conf->previous_raid_disks) 8290 set_bit(In_sync, &rdev->flags); 8291 else 8292 rdev->recovery_offset = 0; 8293 8294 /* Failure here is OK */ 8295 sysfs_link_rdev(mddev, rdev); 8296 } 8297 } else if (rdev->raid_disk >= conf->previous_raid_disks 8298 && !test_bit(Faulty, &rdev->flags)) { 8299 /* This is a spare that was manually added */ 8300 set_bit(In_sync, &rdev->flags); 8301 } 8302 8303 /* When a reshape changes the number of devices, 8304 * ->degraded is measured against the larger of the 8305 * pre and post number of devices. 8306 */ 8307 spin_lock_irqsave(&conf->device_lock, flags); 8308 mddev->degraded = raid5_calc_degraded(conf); 8309 spin_unlock_irqrestore(&conf->device_lock, flags); 8310 } 8311 mddev->raid_disks = conf->raid_disks; 8312 mddev->reshape_position = conf->reshape_progress; 8313 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8314 8315 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8316 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8317 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8318 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8319 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8320 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 8321 "reshape"); 8322 if (!mddev->sync_thread) { 8323 mddev->recovery = 0; 8324 spin_lock_irq(&conf->device_lock); 8325 write_seqcount_begin(&conf->gen_lock); 8326 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8327 mddev->new_chunk_sectors = 8328 conf->chunk_sectors = conf->prev_chunk_sectors; 8329 mddev->new_layout = conf->algorithm = conf->prev_algo; 8330 rdev_for_each(rdev, mddev) 8331 rdev->new_data_offset = rdev->data_offset; 8332 smp_wmb(); 8333 conf->generation --; 8334 conf->reshape_progress = MaxSector; 8335 mddev->reshape_position = MaxSector; 8336 write_seqcount_end(&conf->gen_lock); 8337 spin_unlock_irq(&conf->device_lock); 8338 return -EAGAIN; 8339 } 8340 conf->reshape_checkpoint = jiffies; 8341 md_wakeup_thread(mddev->sync_thread); 8342 md_new_event(); 8343 return 0; 8344 } 8345 8346 /* This is called from the reshape thread and should make any 8347 * changes needed in 'conf' 8348 */ 8349 static void end_reshape(struct r5conf *conf) 8350 { 8351 8352 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8353 struct md_rdev *rdev; 8354 8355 spin_lock_irq(&conf->device_lock); 8356 conf->previous_raid_disks = conf->raid_disks; 8357 md_finish_reshape(conf->mddev); 8358 smp_wmb(); 8359 conf->reshape_progress = MaxSector; 8360 conf->mddev->reshape_position = MaxSector; 8361 rdev_for_each(rdev, conf->mddev) 8362 if (rdev->raid_disk >= 0 && 8363 !test_bit(Journal, &rdev->flags) && 8364 !test_bit(In_sync, &rdev->flags)) 8365 rdev->recovery_offset = MaxSector; 8366 spin_unlock_irq(&conf->device_lock); 8367 wake_up(&conf->wait_for_overlap); 8368 8369 if (conf->mddev->queue) 8370 raid5_set_io_opt(conf); 8371 } 8372 } 8373 8374 /* This is called from the raid5d thread with mddev_lock held. 8375 * It makes config changes to the device. 8376 */ 8377 static void raid5_finish_reshape(struct mddev *mddev) 8378 { 8379 struct r5conf *conf = mddev->private; 8380 struct md_rdev *rdev; 8381 8382 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8383 8384 if (mddev->delta_disks <= 0) { 8385 int d; 8386 spin_lock_irq(&conf->device_lock); 8387 mddev->degraded = raid5_calc_degraded(conf); 8388 spin_unlock_irq(&conf->device_lock); 8389 for (d = conf->raid_disks ; 8390 d < conf->raid_disks - mddev->delta_disks; 8391 d++) { 8392 rdev = rdev_mdlock_deref(mddev, 8393 conf->disks[d].rdev); 8394 if (rdev) 8395 clear_bit(In_sync, &rdev->flags); 8396 rdev = rdev_mdlock_deref(mddev, 8397 conf->disks[d].replacement); 8398 if (rdev) 8399 clear_bit(In_sync, &rdev->flags); 8400 } 8401 } 8402 mddev->layout = conf->algorithm; 8403 mddev->chunk_sectors = conf->chunk_sectors; 8404 mddev->reshape_position = MaxSector; 8405 mddev->delta_disks = 0; 8406 mddev->reshape_backwards = 0; 8407 } 8408 } 8409 8410 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8411 { 8412 struct r5conf *conf = mddev->private; 8413 8414 if (quiesce) { 8415 /* stop all writes */ 8416 lock_all_device_hash_locks_irq(conf); 8417 /* '2' tells resync/reshape to pause so that all 8418 * active stripes can drain 8419 */ 8420 r5c_flush_cache(conf, INT_MAX); 8421 /* need a memory barrier to make sure read_one_chunk() sees 8422 * quiesce started and reverts to slow (locked) path. 8423 */ 8424 smp_store_release(&conf->quiesce, 2); 8425 wait_event_cmd(conf->wait_for_quiescent, 8426 atomic_read(&conf->active_stripes) == 0 && 8427 atomic_read(&conf->active_aligned_reads) == 0, 8428 unlock_all_device_hash_locks_irq(conf), 8429 lock_all_device_hash_locks_irq(conf)); 8430 conf->quiesce = 1; 8431 unlock_all_device_hash_locks_irq(conf); 8432 /* allow reshape to continue */ 8433 wake_up(&conf->wait_for_overlap); 8434 } else { 8435 /* re-enable writes */ 8436 lock_all_device_hash_locks_irq(conf); 8437 conf->quiesce = 0; 8438 wake_up(&conf->wait_for_quiescent); 8439 wake_up(&conf->wait_for_overlap); 8440 unlock_all_device_hash_locks_irq(conf); 8441 } 8442 log_quiesce(conf, quiesce); 8443 } 8444 8445 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8446 { 8447 struct r0conf *raid0_conf = mddev->private; 8448 sector_t sectors; 8449 8450 /* for raid0 takeover only one zone is supported */ 8451 if (raid0_conf->nr_strip_zones > 1) { 8452 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8453 mdname(mddev)); 8454 return ERR_PTR(-EINVAL); 8455 } 8456 8457 sectors = raid0_conf->strip_zone[0].zone_end; 8458 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8459 mddev->dev_sectors = sectors; 8460 mddev->new_level = level; 8461 mddev->new_layout = ALGORITHM_PARITY_N; 8462 mddev->new_chunk_sectors = mddev->chunk_sectors; 8463 mddev->raid_disks += 1; 8464 mddev->delta_disks = 1; 8465 /* make sure it will be not marked as dirty */ 8466 mddev->recovery_cp = MaxSector; 8467 8468 return setup_conf(mddev); 8469 } 8470 8471 static void *raid5_takeover_raid1(struct mddev *mddev) 8472 { 8473 int chunksect; 8474 void *ret; 8475 8476 if (mddev->raid_disks != 2 || 8477 mddev->degraded > 1) 8478 return ERR_PTR(-EINVAL); 8479 8480 /* Should check if there are write-behind devices? */ 8481 8482 chunksect = 64*2; /* 64K by default */ 8483 8484 /* The array must be an exact multiple of chunksize */ 8485 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8486 chunksect >>= 1; 8487 8488 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8489 /* array size does not allow a suitable chunk size */ 8490 return ERR_PTR(-EINVAL); 8491 8492 mddev->new_level = 5; 8493 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8494 mddev->new_chunk_sectors = chunksect; 8495 8496 ret = setup_conf(mddev); 8497 if (!IS_ERR(ret)) 8498 mddev_clear_unsupported_flags(mddev, 8499 UNSUPPORTED_MDDEV_FLAGS); 8500 return ret; 8501 } 8502 8503 static void *raid5_takeover_raid6(struct mddev *mddev) 8504 { 8505 int new_layout; 8506 8507 switch (mddev->layout) { 8508 case ALGORITHM_LEFT_ASYMMETRIC_6: 8509 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8510 break; 8511 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8512 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8513 break; 8514 case ALGORITHM_LEFT_SYMMETRIC_6: 8515 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8516 break; 8517 case ALGORITHM_RIGHT_SYMMETRIC_6: 8518 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8519 break; 8520 case ALGORITHM_PARITY_0_6: 8521 new_layout = ALGORITHM_PARITY_0; 8522 break; 8523 case ALGORITHM_PARITY_N: 8524 new_layout = ALGORITHM_PARITY_N; 8525 break; 8526 default: 8527 return ERR_PTR(-EINVAL); 8528 } 8529 mddev->new_level = 5; 8530 mddev->new_layout = new_layout; 8531 mddev->delta_disks = -1; 8532 mddev->raid_disks -= 1; 8533 return setup_conf(mddev); 8534 } 8535 8536 static int raid5_check_reshape(struct mddev *mddev) 8537 { 8538 /* For a 2-drive array, the layout and chunk size can be changed 8539 * immediately as not restriping is needed. 8540 * For larger arrays we record the new value - after validation 8541 * to be used by a reshape pass. 8542 */ 8543 struct r5conf *conf = mddev->private; 8544 int new_chunk = mddev->new_chunk_sectors; 8545 8546 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8547 return -EINVAL; 8548 if (new_chunk > 0) { 8549 if (!is_power_of_2(new_chunk)) 8550 return -EINVAL; 8551 if (new_chunk < (PAGE_SIZE>>9)) 8552 return -EINVAL; 8553 if (mddev->array_sectors & (new_chunk-1)) 8554 /* not factor of array size */ 8555 return -EINVAL; 8556 } 8557 8558 /* They look valid */ 8559 8560 if (mddev->raid_disks == 2) { 8561 /* can make the change immediately */ 8562 if (mddev->new_layout >= 0) { 8563 conf->algorithm = mddev->new_layout; 8564 mddev->layout = mddev->new_layout; 8565 } 8566 if (new_chunk > 0) { 8567 conf->chunk_sectors = new_chunk ; 8568 mddev->chunk_sectors = new_chunk; 8569 } 8570 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8571 md_wakeup_thread(mddev->thread); 8572 } 8573 return check_reshape(mddev); 8574 } 8575 8576 static int raid6_check_reshape(struct mddev *mddev) 8577 { 8578 int new_chunk = mddev->new_chunk_sectors; 8579 8580 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8581 return -EINVAL; 8582 if (new_chunk > 0) { 8583 if (!is_power_of_2(new_chunk)) 8584 return -EINVAL; 8585 if (new_chunk < (PAGE_SIZE >> 9)) 8586 return -EINVAL; 8587 if (mddev->array_sectors & (new_chunk-1)) 8588 /* not factor of array size */ 8589 return -EINVAL; 8590 } 8591 8592 /* They look valid */ 8593 return check_reshape(mddev); 8594 } 8595 8596 static void *raid5_takeover(struct mddev *mddev) 8597 { 8598 /* raid5 can take over: 8599 * raid0 - if there is only one strip zone - make it a raid4 layout 8600 * raid1 - if there are two drives. We need to know the chunk size 8601 * raid4 - trivial - just use a raid4 layout. 8602 * raid6 - Providing it is a *_6 layout 8603 */ 8604 if (mddev->level == 0) 8605 return raid45_takeover_raid0(mddev, 5); 8606 if (mddev->level == 1) 8607 return raid5_takeover_raid1(mddev); 8608 if (mddev->level == 4) { 8609 mddev->new_layout = ALGORITHM_PARITY_N; 8610 mddev->new_level = 5; 8611 return setup_conf(mddev); 8612 } 8613 if (mddev->level == 6) 8614 return raid5_takeover_raid6(mddev); 8615 8616 return ERR_PTR(-EINVAL); 8617 } 8618 8619 static void *raid4_takeover(struct mddev *mddev) 8620 { 8621 /* raid4 can take over: 8622 * raid0 - if there is only one strip zone 8623 * raid5 - if layout is right 8624 */ 8625 if (mddev->level == 0) 8626 return raid45_takeover_raid0(mddev, 4); 8627 if (mddev->level == 5 && 8628 mddev->layout == ALGORITHM_PARITY_N) { 8629 mddev->new_layout = 0; 8630 mddev->new_level = 4; 8631 return setup_conf(mddev); 8632 } 8633 return ERR_PTR(-EINVAL); 8634 } 8635 8636 static struct md_personality raid5_personality; 8637 8638 static void *raid6_takeover(struct mddev *mddev) 8639 { 8640 /* Currently can only take over a raid5. We map the 8641 * personality to an equivalent raid6 personality 8642 * with the Q block at the end. 8643 */ 8644 int new_layout; 8645 8646 if (mddev->pers != &raid5_personality) 8647 return ERR_PTR(-EINVAL); 8648 if (mddev->degraded > 1) 8649 return ERR_PTR(-EINVAL); 8650 if (mddev->raid_disks > 253) 8651 return ERR_PTR(-EINVAL); 8652 if (mddev->raid_disks < 3) 8653 return ERR_PTR(-EINVAL); 8654 8655 switch (mddev->layout) { 8656 case ALGORITHM_LEFT_ASYMMETRIC: 8657 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8658 break; 8659 case ALGORITHM_RIGHT_ASYMMETRIC: 8660 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8661 break; 8662 case ALGORITHM_LEFT_SYMMETRIC: 8663 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8664 break; 8665 case ALGORITHM_RIGHT_SYMMETRIC: 8666 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8667 break; 8668 case ALGORITHM_PARITY_0: 8669 new_layout = ALGORITHM_PARITY_0_6; 8670 break; 8671 case ALGORITHM_PARITY_N: 8672 new_layout = ALGORITHM_PARITY_N; 8673 break; 8674 default: 8675 return ERR_PTR(-EINVAL); 8676 } 8677 mddev->new_level = 6; 8678 mddev->new_layout = new_layout; 8679 mddev->delta_disks = 1; 8680 mddev->raid_disks += 1; 8681 return setup_conf(mddev); 8682 } 8683 8684 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8685 { 8686 struct r5conf *conf; 8687 int err; 8688 8689 err = mddev_lock(mddev); 8690 if (err) 8691 return err; 8692 conf = mddev->private; 8693 if (!conf) { 8694 mddev_unlock(mddev); 8695 return -ENODEV; 8696 } 8697 8698 if (strncmp(buf, "ppl", 3) == 0) { 8699 /* ppl only works with RAID 5 */ 8700 if (!raid5_has_ppl(conf) && conf->level == 5) { 8701 err = log_init(conf, NULL, true); 8702 if (!err) { 8703 err = resize_stripes(conf, conf->pool_size); 8704 if (err) 8705 log_exit(conf); 8706 } 8707 } else 8708 err = -EINVAL; 8709 } else if (strncmp(buf, "resync", 6) == 0) { 8710 if (raid5_has_ppl(conf)) { 8711 mddev_suspend(mddev); 8712 log_exit(conf); 8713 mddev_resume(mddev); 8714 err = resize_stripes(conf, conf->pool_size); 8715 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8716 r5l_log_disk_error(conf)) { 8717 bool journal_dev_exists = false; 8718 struct md_rdev *rdev; 8719 8720 rdev_for_each(rdev, mddev) 8721 if (test_bit(Journal, &rdev->flags)) { 8722 journal_dev_exists = true; 8723 break; 8724 } 8725 8726 if (!journal_dev_exists) { 8727 mddev_suspend(mddev); 8728 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8729 mddev_resume(mddev); 8730 } else /* need remove journal device first */ 8731 err = -EBUSY; 8732 } else 8733 err = -EINVAL; 8734 } else { 8735 err = -EINVAL; 8736 } 8737 8738 if (!err) 8739 md_update_sb(mddev, 1); 8740 8741 mddev_unlock(mddev); 8742 8743 return err; 8744 } 8745 8746 static int raid5_start(struct mddev *mddev) 8747 { 8748 struct r5conf *conf = mddev->private; 8749 8750 return r5l_start(conf->log); 8751 } 8752 8753 static struct md_personality raid6_personality = 8754 { 8755 .name = "raid6", 8756 .level = 6, 8757 .owner = THIS_MODULE, 8758 .make_request = raid5_make_request, 8759 .run = raid5_run, 8760 .start = raid5_start, 8761 .free = raid5_free, 8762 .status = raid5_status, 8763 .error_handler = raid5_error, 8764 .hot_add_disk = raid5_add_disk, 8765 .hot_remove_disk= raid5_remove_disk, 8766 .spare_active = raid5_spare_active, 8767 .sync_request = raid5_sync_request, 8768 .resize = raid5_resize, 8769 .size = raid5_size, 8770 .check_reshape = raid6_check_reshape, 8771 .start_reshape = raid5_start_reshape, 8772 .finish_reshape = raid5_finish_reshape, 8773 .quiesce = raid5_quiesce, 8774 .takeover = raid6_takeover, 8775 .change_consistency_policy = raid5_change_consistency_policy, 8776 }; 8777 static struct md_personality raid5_personality = 8778 { 8779 .name = "raid5", 8780 .level = 5, 8781 .owner = THIS_MODULE, 8782 .make_request = raid5_make_request, 8783 .run = raid5_run, 8784 .start = raid5_start, 8785 .free = raid5_free, 8786 .status = raid5_status, 8787 .error_handler = raid5_error, 8788 .hot_add_disk = raid5_add_disk, 8789 .hot_remove_disk= raid5_remove_disk, 8790 .spare_active = raid5_spare_active, 8791 .sync_request = raid5_sync_request, 8792 .resize = raid5_resize, 8793 .size = raid5_size, 8794 .check_reshape = raid5_check_reshape, 8795 .start_reshape = raid5_start_reshape, 8796 .finish_reshape = raid5_finish_reshape, 8797 .quiesce = raid5_quiesce, 8798 .takeover = raid5_takeover, 8799 .change_consistency_policy = raid5_change_consistency_policy, 8800 }; 8801 8802 static struct md_personality raid4_personality = 8803 { 8804 .name = "raid4", 8805 .level = 4, 8806 .owner = THIS_MODULE, 8807 .make_request = raid5_make_request, 8808 .run = raid5_run, 8809 .start = raid5_start, 8810 .free = raid5_free, 8811 .status = raid5_status, 8812 .error_handler = raid5_error, 8813 .hot_add_disk = raid5_add_disk, 8814 .hot_remove_disk= raid5_remove_disk, 8815 .spare_active = raid5_spare_active, 8816 .sync_request = raid5_sync_request, 8817 .resize = raid5_resize, 8818 .size = raid5_size, 8819 .check_reshape = raid5_check_reshape, 8820 .start_reshape = raid5_start_reshape, 8821 .finish_reshape = raid5_finish_reshape, 8822 .quiesce = raid5_quiesce, 8823 .takeover = raid4_takeover, 8824 .change_consistency_policy = raid5_change_consistency_policy, 8825 }; 8826 8827 static int __init raid5_init(void) 8828 { 8829 int ret; 8830 8831 raid5_wq = alloc_workqueue("raid5wq", 8832 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8833 if (!raid5_wq) 8834 return -ENOMEM; 8835 8836 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8837 "md/raid5:prepare", 8838 raid456_cpu_up_prepare, 8839 raid456_cpu_dead); 8840 if (ret) { 8841 destroy_workqueue(raid5_wq); 8842 return ret; 8843 } 8844 register_md_personality(&raid6_personality); 8845 register_md_personality(&raid5_personality); 8846 register_md_personality(&raid4_personality); 8847 return 0; 8848 } 8849 8850 static void raid5_exit(void) 8851 { 8852 unregister_md_personality(&raid6_personality); 8853 unregister_md_personality(&raid5_personality); 8854 unregister_md_personality(&raid4_personality); 8855 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8856 destroy_workqueue(raid5_wq); 8857 } 8858 8859 module_init(raid5_init); 8860 module_exit(raid5_exit); 8861 MODULE_LICENSE("GPL"); 8862 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8863 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8864 MODULE_ALIAS("md-raid5"); 8865 MODULE_ALIAS("md-raid4"); 8866 MODULE_ALIAS("md-level-5"); 8867 MODULE_ALIAS("md-level-4"); 8868 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8869 MODULE_ALIAS("md-raid6"); 8870 MODULE_ALIAS("md-level-6"); 8871 8872 /* This used to be two separate modules, they were: */ 8873 MODULE_ALIAS("raid5"); 8874 MODULE_ALIAS("raid6"); 8875