xref: /openbmc/linux/drivers/md/raid5.c (revision cd2538e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 #define RAID5_MAX_REQ_STRIPES 256
65 
66 static bool devices_handle_discard_safely = false;
67 module_param(devices_handle_discard_safely, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely,
69 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct *raid5_wq;
71 
stripe_hash(struct r5conf * conf,sector_t sect)72 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
73 {
74 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
75 	return &conf->stripe_hashtbl[hash];
76 }
77 
stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)78 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
79 {
80 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
81 }
82 
lock_device_hash_lock(struct r5conf * conf,int hash)83 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
84 	__acquires(&conf->device_lock)
85 {
86 	spin_lock_irq(conf->hash_locks + hash);
87 	spin_lock(&conf->device_lock);
88 }
89 
unlock_device_hash_lock(struct r5conf * conf,int hash)90 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
91 	__releases(&conf->device_lock)
92 {
93 	spin_unlock(&conf->device_lock);
94 	spin_unlock_irq(conf->hash_locks + hash);
95 }
96 
lock_all_device_hash_locks_irq(struct r5conf * conf)97 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
98 	__acquires(&conf->device_lock)
99 {
100 	int i;
101 	spin_lock_irq(conf->hash_locks);
102 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
103 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
104 	spin_lock(&conf->device_lock);
105 }
106 
unlock_all_device_hash_locks_irq(struct r5conf * conf)107 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
108 	__releases(&conf->device_lock)
109 {
110 	int i;
111 	spin_unlock(&conf->device_lock);
112 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
113 		spin_unlock(conf->hash_locks + i);
114 	spin_unlock_irq(conf->hash_locks);
115 }
116 
117 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)118 static inline int raid6_d0(struct stripe_head *sh)
119 {
120 	if (sh->ddf_layout)
121 		/* ddf always start from first device */
122 		return 0;
123 	/* md starts just after Q block */
124 	if (sh->qd_idx == sh->disks - 1)
125 		return 0;
126 	else
127 		return sh->qd_idx + 1;
128 }
raid6_next_disk(int disk,int raid_disks)129 static inline int raid6_next_disk(int disk, int raid_disks)
130 {
131 	disk++;
132 	return (disk < raid_disks) ? disk : 0;
133 }
134 
135 /* When walking through the disks in a raid5, starting at raid6_d0,
136  * We need to map each disk to a 'slot', where the data disks are slot
137  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
138  * is raid_disks-1.  This help does that mapping.
139  */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)140 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
141 			     int *count, int syndrome_disks)
142 {
143 	int slot = *count;
144 
145 	if (sh->ddf_layout)
146 		(*count)++;
147 	if (idx == sh->pd_idx)
148 		return syndrome_disks;
149 	if (idx == sh->qd_idx)
150 		return syndrome_disks + 1;
151 	if (!sh->ddf_layout)
152 		(*count)++;
153 	return slot;
154 }
155 
156 static void print_raid5_conf (struct r5conf *conf);
157 
stripe_operations_active(struct stripe_head * sh)158 static int stripe_operations_active(struct stripe_head *sh)
159 {
160 	return sh->check_state || sh->reconstruct_state ||
161 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
162 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
163 }
164 
stripe_is_lowprio(struct stripe_head * sh)165 static bool stripe_is_lowprio(struct stripe_head *sh)
166 {
167 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
168 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
169 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
170 }
171 
raid5_wakeup_stripe_thread(struct stripe_head * sh)172 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
173 	__must_hold(&sh->raid_conf->device_lock)
174 {
175 	struct r5conf *conf = sh->raid_conf;
176 	struct r5worker_group *group;
177 	int thread_cnt;
178 	int i, cpu = sh->cpu;
179 
180 	if (!cpu_online(cpu)) {
181 		cpu = cpumask_any(cpu_online_mask);
182 		sh->cpu = cpu;
183 	}
184 
185 	if (list_empty(&sh->lru)) {
186 		struct r5worker_group *group;
187 		group = conf->worker_groups + cpu_to_group(cpu);
188 		if (stripe_is_lowprio(sh))
189 			list_add_tail(&sh->lru, &group->loprio_list);
190 		else
191 			list_add_tail(&sh->lru, &group->handle_list);
192 		group->stripes_cnt++;
193 		sh->group = group;
194 	}
195 
196 	if (conf->worker_cnt_per_group == 0) {
197 		md_wakeup_thread(conf->mddev->thread);
198 		return;
199 	}
200 
201 	group = conf->worker_groups + cpu_to_group(sh->cpu);
202 
203 	group->workers[0].working = true;
204 	/* at least one worker should run to avoid race */
205 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
206 
207 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
208 	/* wakeup more workers */
209 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
210 		if (group->workers[i].working == false) {
211 			group->workers[i].working = true;
212 			queue_work_on(sh->cpu, raid5_wq,
213 				      &group->workers[i].work);
214 			thread_cnt--;
215 		}
216 	}
217 }
218 
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)219 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
220 			      struct list_head *temp_inactive_list)
221 	__must_hold(&conf->device_lock)
222 {
223 	int i;
224 	int injournal = 0;	/* number of date pages with R5_InJournal */
225 
226 	BUG_ON(!list_empty(&sh->lru));
227 	BUG_ON(atomic_read(&conf->active_stripes)==0);
228 
229 	if (r5c_is_writeback(conf->log))
230 		for (i = sh->disks; i--; )
231 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
232 				injournal++;
233 	/*
234 	 * In the following cases, the stripe cannot be released to cached
235 	 * lists. Therefore, we make the stripe write out and set
236 	 * STRIPE_HANDLE:
237 	 *   1. when quiesce in r5c write back;
238 	 *   2. when resync is requested fot the stripe.
239 	 */
240 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
241 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
242 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
243 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
244 			r5c_make_stripe_write_out(sh);
245 		set_bit(STRIPE_HANDLE, &sh->state);
246 	}
247 
248 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
249 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
250 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
251 			list_add_tail(&sh->lru, &conf->delayed_list);
252 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
253 			   sh->bm_seq - conf->seq_write > 0)
254 			list_add_tail(&sh->lru, &conf->bitmap_list);
255 		else {
256 			clear_bit(STRIPE_DELAYED, &sh->state);
257 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
258 			if (conf->worker_cnt_per_group == 0) {
259 				if (stripe_is_lowprio(sh))
260 					list_add_tail(&sh->lru,
261 							&conf->loprio_list);
262 				else
263 					list_add_tail(&sh->lru,
264 							&conf->handle_list);
265 			} else {
266 				raid5_wakeup_stripe_thread(sh);
267 				return;
268 			}
269 		}
270 		md_wakeup_thread(conf->mddev->thread);
271 	} else {
272 		BUG_ON(stripe_operations_active(sh));
273 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
274 			if (atomic_dec_return(&conf->preread_active_stripes)
275 			    < IO_THRESHOLD)
276 				md_wakeup_thread(conf->mddev->thread);
277 		atomic_dec(&conf->active_stripes);
278 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
279 			if (!r5c_is_writeback(conf->log))
280 				list_add_tail(&sh->lru, temp_inactive_list);
281 			else {
282 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
283 				if (injournal == 0)
284 					list_add_tail(&sh->lru, temp_inactive_list);
285 				else if (injournal == conf->raid_disks - conf->max_degraded) {
286 					/* full stripe */
287 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
288 						atomic_inc(&conf->r5c_cached_full_stripes);
289 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
290 						atomic_dec(&conf->r5c_cached_partial_stripes);
291 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
292 					r5c_check_cached_full_stripe(conf);
293 				} else
294 					/*
295 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
296 					 * r5c_try_caching_write(). No need to
297 					 * set it again.
298 					 */
299 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
300 			}
301 		}
302 	}
303 }
304 
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)305 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
306 			     struct list_head *temp_inactive_list)
307 	__must_hold(&conf->device_lock)
308 {
309 	if (atomic_dec_and_test(&sh->count))
310 		do_release_stripe(conf, sh, temp_inactive_list);
311 }
312 
313 /*
314  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315  *
316  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317  * given time. Adding stripes only takes device lock, while deleting stripes
318  * only takes hash lock.
319  */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)320 static void release_inactive_stripe_list(struct r5conf *conf,
321 					 struct list_head *temp_inactive_list,
322 					 int hash)
323 {
324 	int size;
325 	bool do_wakeup = false;
326 	unsigned long flags;
327 
328 	if (hash == NR_STRIPE_HASH_LOCKS) {
329 		size = NR_STRIPE_HASH_LOCKS;
330 		hash = NR_STRIPE_HASH_LOCKS - 1;
331 	} else
332 		size = 1;
333 	while (size) {
334 		struct list_head *list = &temp_inactive_list[size - 1];
335 
336 		/*
337 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 		 * remove stripes from the list
339 		 */
340 		if (!list_empty_careful(list)) {
341 			spin_lock_irqsave(conf->hash_locks + hash, flags);
342 			if (list_empty(conf->inactive_list + hash) &&
343 			    !list_empty(list))
344 				atomic_dec(&conf->empty_inactive_list_nr);
345 			list_splice_tail_init(list, conf->inactive_list + hash);
346 			do_wakeup = true;
347 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 		}
349 		size--;
350 		hash--;
351 	}
352 
353 	if (do_wakeup) {
354 		wake_up(&conf->wait_for_stripe);
355 		if (atomic_read(&conf->active_stripes) == 0)
356 			wake_up(&conf->wait_for_quiescent);
357 		if (conf->retry_read_aligned)
358 			md_wakeup_thread(conf->mddev->thread);
359 	}
360 }
361 
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)362 static int release_stripe_list(struct r5conf *conf,
363 			       struct list_head *temp_inactive_list)
364 	__must_hold(&conf->device_lock)
365 {
366 	struct stripe_head *sh, *t;
367 	int count = 0;
368 	struct llist_node *head;
369 
370 	head = llist_del_all(&conf->released_stripes);
371 	head = llist_reverse_order(head);
372 	llist_for_each_entry_safe(sh, t, head, release_list) {
373 		int hash;
374 
375 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 		smp_mb();
377 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 		/*
379 		 * Don't worry the bit is set here, because if the bit is set
380 		 * again, the count is always > 1. This is true for
381 		 * STRIPE_ON_UNPLUG_LIST bit too.
382 		 */
383 		hash = sh->hash_lock_index;
384 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
385 		count++;
386 	}
387 
388 	return count;
389 }
390 
raid5_release_stripe(struct stripe_head * sh)391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 	struct r5conf *conf = sh->raid_conf;
394 	unsigned long flags;
395 	struct list_head list;
396 	int hash;
397 	bool wakeup;
398 
399 	/* Avoid release_list until the last reference.
400 	 */
401 	if (atomic_add_unless(&sh->count, -1, 1))
402 		return;
403 
404 	if (unlikely(!conf->mddev->thread) ||
405 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 		goto slow_path;
407 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 	if (wakeup)
409 		md_wakeup_thread(conf->mddev->thread);
410 	return;
411 slow_path:
412 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
413 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
414 		INIT_LIST_HEAD(&list);
415 		hash = sh->hash_lock_index;
416 		do_release_stripe(conf, sh, &list);
417 		spin_unlock_irqrestore(&conf->device_lock, flags);
418 		release_inactive_stripe_list(conf, &list, hash);
419 	}
420 }
421 
remove_hash(struct stripe_head * sh)422 static inline void remove_hash(struct stripe_head *sh)
423 {
424 	pr_debug("remove_hash(), stripe %llu\n",
425 		(unsigned long long)sh->sector);
426 
427 	hlist_del_init(&sh->hash);
428 }
429 
insert_hash(struct r5conf * conf,struct stripe_head * sh)430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
431 {
432 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
433 
434 	pr_debug("insert_hash(), stripe %llu\n",
435 		(unsigned long long)sh->sector);
436 
437 	hlist_add_head(&sh->hash, hp);
438 }
439 
440 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
442 {
443 	struct stripe_head *sh = NULL;
444 	struct list_head *first;
445 
446 	if (list_empty(conf->inactive_list + hash))
447 		goto out;
448 	first = (conf->inactive_list + hash)->next;
449 	sh = list_entry(first, struct stripe_head, lru);
450 	list_del_init(first);
451 	remove_hash(sh);
452 	atomic_inc(&conf->active_stripes);
453 	BUG_ON(hash != sh->hash_lock_index);
454 	if (list_empty(conf->inactive_list + hash))
455 		atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457 	return sh;
458 }
459 
460 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
free_stripe_pages(struct stripe_head * sh)461 static void free_stripe_pages(struct stripe_head *sh)
462 {
463 	int i;
464 	struct page *p;
465 
466 	/* Have not allocate page pool */
467 	if (!sh->pages)
468 		return;
469 
470 	for (i = 0; i < sh->nr_pages; i++) {
471 		p = sh->pages[i];
472 		if (p)
473 			put_page(p);
474 		sh->pages[i] = NULL;
475 	}
476 }
477 
alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)478 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
479 {
480 	int i;
481 	struct page *p;
482 
483 	for (i = 0; i < sh->nr_pages; i++) {
484 		/* The page have allocated. */
485 		if (sh->pages[i])
486 			continue;
487 
488 		p = alloc_page(gfp);
489 		if (!p) {
490 			free_stripe_pages(sh);
491 			return -ENOMEM;
492 		}
493 		sh->pages[i] = p;
494 	}
495 	return 0;
496 }
497 
498 static int
init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)499 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
500 {
501 	int nr_pages, cnt;
502 
503 	if (sh->pages)
504 		return 0;
505 
506 	/* Each of the sh->dev[i] need one conf->stripe_size */
507 	cnt = PAGE_SIZE / conf->stripe_size;
508 	nr_pages = (disks + cnt - 1) / cnt;
509 
510 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
511 	if (!sh->pages)
512 		return -ENOMEM;
513 	sh->nr_pages = nr_pages;
514 	sh->stripes_per_page = cnt;
515 	return 0;
516 }
517 #endif
518 
shrink_buffers(struct stripe_head * sh)519 static void shrink_buffers(struct stripe_head *sh)
520 {
521 	int i;
522 	int num = sh->raid_conf->pool_size;
523 
524 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
525 	for (i = 0; i < num ; i++) {
526 		struct page *p;
527 
528 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
529 		p = sh->dev[i].page;
530 		if (!p)
531 			continue;
532 		sh->dev[i].page = NULL;
533 		put_page(p);
534 	}
535 #else
536 	for (i = 0; i < num; i++)
537 		sh->dev[i].page = NULL;
538 	free_stripe_pages(sh); /* Free pages */
539 #endif
540 }
541 
grow_buffers(struct stripe_head * sh,gfp_t gfp)542 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
543 {
544 	int i;
545 	int num = sh->raid_conf->pool_size;
546 
547 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
548 	for (i = 0; i < num; i++) {
549 		struct page *page;
550 
551 		if (!(page = alloc_page(gfp))) {
552 			return 1;
553 		}
554 		sh->dev[i].page = page;
555 		sh->dev[i].orig_page = page;
556 		sh->dev[i].offset = 0;
557 	}
558 #else
559 	if (alloc_stripe_pages(sh, gfp))
560 		return -ENOMEM;
561 
562 	for (i = 0; i < num; i++) {
563 		sh->dev[i].page = raid5_get_dev_page(sh, i);
564 		sh->dev[i].orig_page = sh->dev[i].page;
565 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
566 	}
567 #endif
568 	return 0;
569 }
570 
571 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
572 			    struct stripe_head *sh);
573 
init_stripe(struct stripe_head * sh,sector_t sector,int previous)574 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
575 {
576 	struct r5conf *conf = sh->raid_conf;
577 	int i, seq;
578 
579 	BUG_ON(atomic_read(&sh->count) != 0);
580 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
581 	BUG_ON(stripe_operations_active(sh));
582 	BUG_ON(sh->batch_head);
583 
584 	pr_debug("init_stripe called, stripe %llu\n",
585 		(unsigned long long)sector);
586 retry:
587 	seq = read_seqcount_begin(&conf->gen_lock);
588 	sh->generation = conf->generation - previous;
589 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
590 	sh->sector = sector;
591 	stripe_set_idx(sector, conf, previous, sh);
592 	sh->state = 0;
593 
594 	for (i = sh->disks; i--; ) {
595 		struct r5dev *dev = &sh->dev[i];
596 
597 		if (dev->toread || dev->read || dev->towrite || dev->written ||
598 		    test_bit(R5_LOCKED, &dev->flags)) {
599 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
600 			       (unsigned long long)sh->sector, i, dev->toread,
601 			       dev->read, dev->towrite, dev->written,
602 			       test_bit(R5_LOCKED, &dev->flags));
603 			WARN_ON(1);
604 		}
605 		dev->flags = 0;
606 		dev->sector = raid5_compute_blocknr(sh, i, previous);
607 	}
608 	if (read_seqcount_retry(&conf->gen_lock, seq))
609 		goto retry;
610 	sh->overwrite_disks = 0;
611 	insert_hash(conf, sh);
612 	sh->cpu = smp_processor_id();
613 	set_bit(STRIPE_BATCH_READY, &sh->state);
614 }
615 
__find_stripe(struct r5conf * conf,sector_t sector,short generation)616 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
617 					 short generation)
618 {
619 	struct stripe_head *sh;
620 
621 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
622 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
623 		if (sh->sector == sector && sh->generation == generation)
624 			return sh;
625 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
626 	return NULL;
627 }
628 
find_get_stripe(struct r5conf * conf,sector_t sector,short generation,int hash)629 static struct stripe_head *find_get_stripe(struct r5conf *conf,
630 		sector_t sector, short generation, int hash)
631 {
632 	int inc_empty_inactive_list_flag;
633 	struct stripe_head *sh;
634 
635 	sh = __find_stripe(conf, sector, generation);
636 	if (!sh)
637 		return NULL;
638 
639 	if (atomic_inc_not_zero(&sh->count))
640 		return sh;
641 
642 	/*
643 	 * Slow path. The reference count is zero which means the stripe must
644 	 * be on a list (sh->lru). Must remove the stripe from the list that
645 	 * references it with the device_lock held.
646 	 */
647 
648 	spin_lock(&conf->device_lock);
649 	if (!atomic_read(&sh->count)) {
650 		if (!test_bit(STRIPE_HANDLE, &sh->state))
651 			atomic_inc(&conf->active_stripes);
652 		BUG_ON(list_empty(&sh->lru) &&
653 		       !test_bit(STRIPE_EXPANDING, &sh->state));
654 		inc_empty_inactive_list_flag = 0;
655 		if (!list_empty(conf->inactive_list + hash))
656 			inc_empty_inactive_list_flag = 1;
657 		list_del_init(&sh->lru);
658 		if (list_empty(conf->inactive_list + hash) &&
659 		    inc_empty_inactive_list_flag)
660 			atomic_inc(&conf->empty_inactive_list_nr);
661 		if (sh->group) {
662 			sh->group->stripes_cnt--;
663 			sh->group = NULL;
664 		}
665 	}
666 	atomic_inc(&sh->count);
667 	spin_unlock(&conf->device_lock);
668 
669 	return sh;
670 }
671 
672 /*
673  * Need to check if array has failed when deciding whether to:
674  *  - start an array
675  *  - remove non-faulty devices
676  *  - add a spare
677  *  - allow a reshape
678  * This determination is simple when no reshape is happening.
679  * However if there is a reshape, we need to carefully check
680  * both the before and after sections.
681  * This is because some failed devices may only affect one
682  * of the two sections, and some non-in_sync devices may
683  * be insync in the section most affected by failed devices.
684  *
685  * Most calls to this function hold &conf->device_lock. Calls
686  * in raid5_run() do not require the lock as no other threads
687  * have been started yet.
688  */
raid5_calc_degraded(struct r5conf * conf)689 int raid5_calc_degraded(struct r5conf *conf)
690 {
691 	int degraded, degraded2;
692 	int i;
693 
694 	rcu_read_lock();
695 	degraded = 0;
696 	for (i = 0; i < conf->previous_raid_disks; i++) {
697 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
698 		if (rdev && test_bit(Faulty, &rdev->flags))
699 			rdev = rcu_dereference(conf->disks[i].replacement);
700 		if (!rdev || test_bit(Faulty, &rdev->flags))
701 			degraded++;
702 		else if (test_bit(In_sync, &rdev->flags))
703 			;
704 		else
705 			/* not in-sync or faulty.
706 			 * If the reshape increases the number of devices,
707 			 * this is being recovered by the reshape, so
708 			 * this 'previous' section is not in_sync.
709 			 * If the number of devices is being reduced however,
710 			 * the device can only be part of the array if
711 			 * we are reverting a reshape, so this section will
712 			 * be in-sync.
713 			 */
714 			if (conf->raid_disks >= conf->previous_raid_disks)
715 				degraded++;
716 	}
717 	rcu_read_unlock();
718 	if (conf->raid_disks == conf->previous_raid_disks)
719 		return degraded;
720 	rcu_read_lock();
721 	degraded2 = 0;
722 	for (i = 0; i < conf->raid_disks; i++) {
723 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
724 		if (rdev && test_bit(Faulty, &rdev->flags))
725 			rdev = rcu_dereference(conf->disks[i].replacement);
726 		if (!rdev || test_bit(Faulty, &rdev->flags))
727 			degraded2++;
728 		else if (test_bit(In_sync, &rdev->flags))
729 			;
730 		else
731 			/* not in-sync or faulty.
732 			 * If reshape increases the number of devices, this
733 			 * section has already been recovered, else it
734 			 * almost certainly hasn't.
735 			 */
736 			if (conf->raid_disks <= conf->previous_raid_disks)
737 				degraded2++;
738 	}
739 	rcu_read_unlock();
740 	if (degraded2 > degraded)
741 		return degraded2;
742 	return degraded;
743 }
744 
has_failed(struct r5conf * conf)745 static bool has_failed(struct r5conf *conf)
746 {
747 	int degraded = conf->mddev->degraded;
748 
749 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 		return true;
751 
752 	if (conf->mddev->reshape_position != MaxSector)
753 		degraded = raid5_calc_degraded(conf);
754 
755 	return degraded > conf->max_degraded;
756 }
757 
758 enum stripe_result {
759 	STRIPE_SUCCESS = 0,
760 	STRIPE_RETRY,
761 	STRIPE_SCHEDULE_AND_RETRY,
762 	STRIPE_FAIL,
763 };
764 
765 struct stripe_request_ctx {
766 	/* a reference to the last stripe_head for batching */
767 	struct stripe_head *batch_last;
768 
769 	/* first sector in the request */
770 	sector_t first_sector;
771 
772 	/* last sector in the request */
773 	sector_t last_sector;
774 
775 	/*
776 	 * bitmap to track stripe sectors that have been added to stripes
777 	 * add one to account for unaligned requests
778 	 */
779 	DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
780 
781 	/* the request had REQ_PREFLUSH, cleared after the first stripe_head */
782 	bool do_flush;
783 };
784 
785 /*
786  * Block until another thread clears R5_INACTIVE_BLOCKED or
787  * there are fewer than 3/4 the maximum number of active stripes
788  * and there is an inactive stripe available.
789  */
is_inactive_blocked(struct r5conf * conf,int hash)790 static bool is_inactive_blocked(struct r5conf *conf, int hash)
791 {
792 	if (list_empty(conf->inactive_list + hash))
793 		return false;
794 
795 	if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
796 		return true;
797 
798 	return (atomic_read(&conf->active_stripes) <
799 		(conf->max_nr_stripes * 3 / 4));
800 }
801 
raid5_get_active_stripe(struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t sector,unsigned int flags)802 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
803 		struct stripe_request_ctx *ctx, sector_t sector,
804 		unsigned int flags)
805 {
806 	struct stripe_head *sh;
807 	int hash = stripe_hash_locks_hash(conf, sector);
808 	int previous = !!(flags & R5_GAS_PREVIOUS);
809 
810 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
811 
812 	spin_lock_irq(conf->hash_locks + hash);
813 
814 	for (;;) {
815 		if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
816 			/*
817 			 * Must release the reference to batch_last before
818 			 * waiting, on quiesce, otherwise the batch_last will
819 			 * hold a reference to a stripe and raid5_quiesce()
820 			 * will deadlock waiting for active_stripes to go to
821 			 * zero.
822 			 */
823 			if (ctx && ctx->batch_last) {
824 				raid5_release_stripe(ctx->batch_last);
825 				ctx->batch_last = NULL;
826 			}
827 
828 			wait_event_lock_irq(conf->wait_for_quiescent,
829 					    !conf->quiesce,
830 					    *(conf->hash_locks + hash));
831 		}
832 
833 		sh = find_get_stripe(conf, sector, conf->generation - previous,
834 				     hash);
835 		if (sh)
836 			break;
837 
838 		if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
839 			sh = get_free_stripe(conf, hash);
840 			if (sh) {
841 				r5c_check_stripe_cache_usage(conf);
842 				init_stripe(sh, sector, previous);
843 				atomic_inc(&sh->count);
844 				break;
845 			}
846 
847 			if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
848 				set_bit(R5_ALLOC_MORE, &conf->cache_state);
849 		}
850 
851 		if (flags & R5_GAS_NOBLOCK)
852 			break;
853 
854 		set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
855 		r5l_wake_reclaim(conf->log, 0);
856 
857 		/* release batch_last before wait to avoid risk of deadlock */
858 		if (ctx && ctx->batch_last) {
859 			raid5_release_stripe(ctx->batch_last);
860 			ctx->batch_last = NULL;
861 		}
862 
863 		wait_event_lock_irq(conf->wait_for_stripe,
864 				    is_inactive_blocked(conf, hash),
865 				    *(conf->hash_locks + hash));
866 		clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
867 	}
868 
869 	spin_unlock_irq(conf->hash_locks + hash);
870 	return sh;
871 }
872 
is_full_stripe_write(struct stripe_head * sh)873 static bool is_full_stripe_write(struct stripe_head *sh)
874 {
875 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
876 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
877 }
878 
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)879 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
880 		__acquires(&sh1->stripe_lock)
881 		__acquires(&sh2->stripe_lock)
882 {
883 	if (sh1 > sh2) {
884 		spin_lock_irq(&sh2->stripe_lock);
885 		spin_lock_nested(&sh1->stripe_lock, 1);
886 	} else {
887 		spin_lock_irq(&sh1->stripe_lock);
888 		spin_lock_nested(&sh2->stripe_lock, 1);
889 	}
890 }
891 
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)892 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
893 		__releases(&sh1->stripe_lock)
894 		__releases(&sh2->stripe_lock)
895 {
896 	spin_unlock(&sh1->stripe_lock);
897 	spin_unlock_irq(&sh2->stripe_lock);
898 }
899 
900 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)901 static bool stripe_can_batch(struct stripe_head *sh)
902 {
903 	struct r5conf *conf = sh->raid_conf;
904 
905 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
906 		return false;
907 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
908 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
909 		is_full_stripe_write(sh);
910 }
911 
912 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh,struct stripe_head * last_sh)913 static void stripe_add_to_batch_list(struct r5conf *conf,
914 		struct stripe_head *sh, struct stripe_head *last_sh)
915 {
916 	struct stripe_head *head;
917 	sector_t head_sector, tmp_sec;
918 	int hash;
919 	int dd_idx;
920 
921 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 	tmp_sec = sh->sector;
923 	if (!sector_div(tmp_sec, conf->chunk_sectors))
924 		return;
925 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926 
927 	if (last_sh && head_sector == last_sh->sector) {
928 		head = last_sh;
929 		atomic_inc(&head->count);
930 	} else {
931 		hash = stripe_hash_locks_hash(conf, head_sector);
932 		spin_lock_irq(conf->hash_locks + hash);
933 		head = find_get_stripe(conf, head_sector, conf->generation,
934 				       hash);
935 		spin_unlock_irq(conf->hash_locks + hash);
936 		if (!head)
937 			return;
938 		if (!stripe_can_batch(head))
939 			goto out;
940 	}
941 
942 	lock_two_stripes(head, sh);
943 	/* clear_batch_ready clear the flag */
944 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 		goto unlock_out;
946 
947 	if (sh->batch_head)
948 		goto unlock_out;
949 
950 	dd_idx = 0;
951 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 		dd_idx++;
953 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955 		goto unlock_out;
956 
957 	if (head->batch_head) {
958 		spin_lock(&head->batch_head->batch_lock);
959 		/* This batch list is already running */
960 		if (!stripe_can_batch(head)) {
961 			spin_unlock(&head->batch_head->batch_lock);
962 			goto unlock_out;
963 		}
964 		/*
965 		 * We must assign batch_head of this stripe within the
966 		 * batch_lock, otherwise clear_batch_ready of batch head
967 		 * stripe could clear BATCH_READY bit of this stripe and
968 		 * this stripe->batch_head doesn't get assigned, which
969 		 * could confuse clear_batch_ready for this stripe
970 		 */
971 		sh->batch_head = head->batch_head;
972 
973 		/*
974 		 * at this point, head's BATCH_READY could be cleared, but we
975 		 * can still add the stripe to batch list
976 		 */
977 		list_add(&sh->batch_list, &head->batch_list);
978 		spin_unlock(&head->batch_head->batch_lock);
979 	} else {
980 		head->batch_head = head;
981 		sh->batch_head = head->batch_head;
982 		spin_lock(&head->batch_lock);
983 		list_add_tail(&sh->batch_list, &head->batch_list);
984 		spin_unlock(&head->batch_lock);
985 	}
986 
987 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 		if (atomic_dec_return(&conf->preread_active_stripes)
989 		    < IO_THRESHOLD)
990 			md_wakeup_thread(conf->mddev->thread);
991 
992 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 		int seq = sh->bm_seq;
994 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 		    sh->batch_head->bm_seq > seq)
996 			seq = sh->batch_head->bm_seq;
997 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 		sh->batch_head->bm_seq = seq;
999 	}
1000 
1001 	atomic_inc(&sh->count);
1002 unlock_out:
1003 	unlock_two_stripes(head, sh);
1004 out:
1005 	raid5_release_stripe(head);
1006 }
1007 
1008 /* Determine if 'data_offset' or 'new_data_offset' should be used
1009  * in this stripe_head.
1010  */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)1011 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012 {
1013 	sector_t progress = conf->reshape_progress;
1014 	/* Need a memory barrier to make sure we see the value
1015 	 * of conf->generation, or ->data_offset that was set before
1016 	 * reshape_progress was updated.
1017 	 */
1018 	smp_rmb();
1019 	if (progress == MaxSector)
1020 		return 0;
1021 	if (sh->generation == conf->generation - 1)
1022 		return 0;
1023 	/* We are in a reshape, and this is a new-generation stripe,
1024 	 * so use new_data_offset.
1025 	 */
1026 	return 1;
1027 }
1028 
dispatch_bio_list(struct bio_list * tmp)1029 static void dispatch_bio_list(struct bio_list *tmp)
1030 {
1031 	struct bio *bio;
1032 
1033 	while ((bio = bio_list_pop(tmp)))
1034 		submit_bio_noacct(bio);
1035 }
1036 
cmp_stripe(void * priv,const struct list_head * a,const struct list_head * b)1037 static int cmp_stripe(void *priv, const struct list_head *a,
1038 		      const struct list_head *b)
1039 {
1040 	const struct r5pending_data *da = list_entry(a,
1041 				struct r5pending_data, sibling);
1042 	const struct r5pending_data *db = list_entry(b,
1043 				struct r5pending_data, sibling);
1044 	if (da->sector > db->sector)
1045 		return 1;
1046 	if (da->sector < db->sector)
1047 		return -1;
1048 	return 0;
1049 }
1050 
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)1051 static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 				struct bio_list *list)
1053 {
1054 	struct r5pending_data *data;
1055 	struct list_head *first, *next = NULL;
1056 	int cnt = 0;
1057 
1058 	if (conf->pending_data_cnt == 0)
1059 		return;
1060 
1061 	list_sort(NULL, &conf->pending_list, cmp_stripe);
1062 
1063 	first = conf->pending_list.next;
1064 
1065 	/* temporarily move the head */
1066 	if (conf->next_pending_data)
1067 		list_move_tail(&conf->pending_list,
1068 				&conf->next_pending_data->sibling);
1069 
1070 	while (!list_empty(&conf->pending_list)) {
1071 		data = list_first_entry(&conf->pending_list,
1072 			struct r5pending_data, sibling);
1073 		if (&data->sibling == first)
1074 			first = data->sibling.next;
1075 		next = data->sibling.next;
1076 
1077 		bio_list_merge(list, &data->bios);
1078 		list_move(&data->sibling, &conf->free_list);
1079 		cnt++;
1080 		if (cnt >= target)
1081 			break;
1082 	}
1083 	conf->pending_data_cnt -= cnt;
1084 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085 
1086 	if (next != &conf->pending_list)
1087 		conf->next_pending_data = list_entry(next,
1088 				struct r5pending_data, sibling);
1089 	else
1090 		conf->next_pending_data = NULL;
1091 	/* list isn't empty */
1092 	if (first != &conf->pending_list)
1093 		list_move_tail(&conf->pending_list, first);
1094 }
1095 
flush_deferred_bios(struct r5conf * conf)1096 static void flush_deferred_bios(struct r5conf *conf)
1097 {
1098 	struct bio_list tmp = BIO_EMPTY_LIST;
1099 
1100 	if (conf->pending_data_cnt == 0)
1101 		return;
1102 
1103 	spin_lock(&conf->pending_bios_lock);
1104 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 	BUG_ON(conf->pending_data_cnt != 0);
1106 	spin_unlock(&conf->pending_bios_lock);
1107 
1108 	dispatch_bio_list(&tmp);
1109 }
1110 
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1111 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 				struct bio_list *bios)
1113 {
1114 	struct bio_list tmp = BIO_EMPTY_LIST;
1115 	struct r5pending_data *ent;
1116 
1117 	spin_lock(&conf->pending_bios_lock);
1118 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 							sibling);
1120 	list_move_tail(&ent->sibling, &conf->pending_list);
1121 	ent->sector = sector;
1122 	bio_list_init(&ent->bios);
1123 	bio_list_merge(&ent->bios, bios);
1124 	conf->pending_data_cnt++;
1125 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127 
1128 	spin_unlock(&conf->pending_bios_lock);
1129 
1130 	dispatch_bio_list(&tmp);
1131 }
1132 
1133 static void
1134 raid5_end_read_request(struct bio *bi);
1135 static void
1136 raid5_end_write_request(struct bio *bi);
1137 
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1138 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139 {
1140 	struct r5conf *conf = sh->raid_conf;
1141 	int i, disks = sh->disks;
1142 	struct stripe_head *head_sh = sh;
1143 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1144 	struct r5dev *dev;
1145 	bool should_defer;
1146 
1147 	might_sleep();
1148 
1149 	if (log_stripe(sh, s) == 0)
1150 		return;
1151 
1152 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153 
1154 	for (i = disks; i--; ) {
1155 		enum req_op op;
1156 		blk_opf_t op_flags = 0;
1157 		int replace_only = 0;
1158 		struct bio *bi, *rbi;
1159 		struct md_rdev *rdev, *rrdev = NULL;
1160 
1161 		sh = head_sh;
1162 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163 			op = REQ_OP_WRITE;
1164 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165 				op_flags = REQ_FUA;
1166 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 				op = REQ_OP_DISCARD;
1168 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169 			op = REQ_OP_READ;
1170 		else if (test_and_clear_bit(R5_WantReplace,
1171 					    &sh->dev[i].flags)) {
1172 			op = REQ_OP_WRITE;
1173 			replace_only = 1;
1174 		} else
1175 			continue;
1176 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 			op_flags |= REQ_SYNC;
1178 
1179 again:
1180 		dev = &sh->dev[i];
1181 		bi = &dev->req;
1182 		rbi = &dev->rreq; /* For writing to replacement */
1183 
1184 		rcu_read_lock();
1185 		rrdev = rcu_dereference(conf->disks[i].replacement);
1186 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1187 		rdev = rcu_dereference(conf->disks[i].rdev);
1188 		if (!rdev) {
1189 			rdev = rrdev;
1190 			rrdev = NULL;
1191 		}
1192 		if (op_is_write(op)) {
1193 			if (replace_only)
1194 				rdev = NULL;
1195 			if (rdev == rrdev)
1196 				/* We raced and saw duplicates */
1197 				rrdev = NULL;
1198 		} else {
1199 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1200 				rdev = rrdev;
1201 			rrdev = NULL;
1202 		}
1203 
1204 		if (rdev && test_bit(Faulty, &rdev->flags))
1205 			rdev = NULL;
1206 		if (rdev)
1207 			atomic_inc(&rdev->nr_pending);
1208 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1209 			rrdev = NULL;
1210 		if (rrdev)
1211 			atomic_inc(&rrdev->nr_pending);
1212 		rcu_read_unlock();
1213 
1214 		/* We have already checked bad blocks for reads.  Now
1215 		 * need to check for writes.  We never accept write errors
1216 		 * on the replacement, so we don't to check rrdev.
1217 		 */
1218 		while (op_is_write(op) && rdev &&
1219 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1220 			sector_t first_bad;
1221 			int bad_sectors;
1222 			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1223 					      &first_bad, &bad_sectors);
1224 			if (!bad)
1225 				break;
1226 
1227 			if (bad < 0) {
1228 				set_bit(BlockedBadBlocks, &rdev->flags);
1229 				if (!conf->mddev->external &&
1230 				    conf->mddev->sb_flags) {
1231 					/* It is very unlikely, but we might
1232 					 * still need to write out the
1233 					 * bad block log - better give it
1234 					 * a chance*/
1235 					md_check_recovery(conf->mddev);
1236 				}
1237 				/*
1238 				 * Because md_wait_for_blocked_rdev
1239 				 * will dec nr_pending, we must
1240 				 * increment it first.
1241 				 */
1242 				atomic_inc(&rdev->nr_pending);
1243 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1244 			} else {
1245 				/* Acknowledged bad block - skip the write */
1246 				rdev_dec_pending(rdev, conf->mddev);
1247 				rdev = NULL;
1248 			}
1249 		}
1250 
1251 		if (rdev) {
1252 			if (s->syncing || s->expanding || s->expanded
1253 			    || s->replacing)
1254 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1255 
1256 			set_bit(STRIPE_IO_STARTED, &sh->state);
1257 
1258 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1259 			bi->bi_end_io = op_is_write(op)
1260 				? raid5_end_write_request
1261 				: raid5_end_read_request;
1262 			bi->bi_private = sh;
1263 
1264 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1265 				__func__, (unsigned long long)sh->sector,
1266 				bi->bi_opf, i);
1267 			atomic_inc(&sh->count);
1268 			if (sh != head_sh)
1269 				atomic_inc(&head_sh->count);
1270 			if (use_new_offset(conf, sh))
1271 				bi->bi_iter.bi_sector = (sh->sector
1272 						 + rdev->new_data_offset);
1273 			else
1274 				bi->bi_iter.bi_sector = (sh->sector
1275 						 + rdev->data_offset);
1276 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1277 				bi->bi_opf |= REQ_NOMERGE;
1278 
1279 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1280 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1281 
1282 			if (!op_is_write(op) &&
1283 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1284 				/*
1285 				 * issuing read for a page in journal, this
1286 				 * must be preparing for prexor in rmw; read
1287 				 * the data into orig_page
1288 				 */
1289 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1290 			else
1291 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1292 			bi->bi_vcnt = 1;
1293 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1294 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1295 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1296 			/*
1297 			 * If this is discard request, set bi_vcnt 0. We don't
1298 			 * want to confuse SCSI because SCSI will replace payload
1299 			 */
1300 			if (op == REQ_OP_DISCARD)
1301 				bi->bi_vcnt = 0;
1302 			if (rrdev)
1303 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1304 
1305 			if (conf->mddev->gendisk)
1306 				trace_block_bio_remap(bi,
1307 						disk_devt(conf->mddev->gendisk),
1308 						sh->dev[i].sector);
1309 			if (should_defer && op_is_write(op))
1310 				bio_list_add(&pending_bios, bi);
1311 			else
1312 				submit_bio_noacct(bi);
1313 		}
1314 		if (rrdev) {
1315 			if (s->syncing || s->expanding || s->expanded
1316 			    || s->replacing)
1317 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1318 
1319 			set_bit(STRIPE_IO_STARTED, &sh->state);
1320 
1321 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1322 			BUG_ON(!op_is_write(op));
1323 			rbi->bi_end_io = raid5_end_write_request;
1324 			rbi->bi_private = sh;
1325 
1326 			pr_debug("%s: for %llu schedule op %d on "
1327 				 "replacement disc %d\n",
1328 				__func__, (unsigned long long)sh->sector,
1329 				rbi->bi_opf, i);
1330 			atomic_inc(&sh->count);
1331 			if (sh != head_sh)
1332 				atomic_inc(&head_sh->count);
1333 			if (use_new_offset(conf, sh))
1334 				rbi->bi_iter.bi_sector = (sh->sector
1335 						  + rrdev->new_data_offset);
1336 			else
1337 				rbi->bi_iter.bi_sector = (sh->sector
1338 						  + rrdev->data_offset);
1339 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1340 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1341 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1342 			rbi->bi_vcnt = 1;
1343 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1344 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1345 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1346 			/*
1347 			 * If this is discard request, set bi_vcnt 0. We don't
1348 			 * want to confuse SCSI because SCSI will replace payload
1349 			 */
1350 			if (op == REQ_OP_DISCARD)
1351 				rbi->bi_vcnt = 0;
1352 			if (conf->mddev->gendisk)
1353 				trace_block_bio_remap(rbi,
1354 						disk_devt(conf->mddev->gendisk),
1355 						sh->dev[i].sector);
1356 			if (should_defer && op_is_write(op))
1357 				bio_list_add(&pending_bios, rbi);
1358 			else
1359 				submit_bio_noacct(rbi);
1360 		}
1361 		if (!rdev && !rrdev) {
1362 			if (op_is_write(op))
1363 				set_bit(STRIPE_DEGRADED, &sh->state);
1364 			pr_debug("skip op %d on disc %d for sector %llu\n",
1365 				bi->bi_opf, i, (unsigned long long)sh->sector);
1366 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1367 			set_bit(STRIPE_HANDLE, &sh->state);
1368 		}
1369 
1370 		if (!head_sh->batch_head)
1371 			continue;
1372 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1373 				      batch_list);
1374 		if (sh != head_sh)
1375 			goto again;
1376 	}
1377 
1378 	if (should_defer && !bio_list_empty(&pending_bios))
1379 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1380 }
1381 
1382 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1383 async_copy_data(int frombio, struct bio *bio, struct page **page,
1384 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1385 	struct stripe_head *sh, int no_skipcopy)
1386 {
1387 	struct bio_vec bvl;
1388 	struct bvec_iter iter;
1389 	struct page *bio_page;
1390 	int page_offset;
1391 	struct async_submit_ctl submit;
1392 	enum async_tx_flags flags = 0;
1393 	struct r5conf *conf = sh->raid_conf;
1394 
1395 	if (bio->bi_iter.bi_sector >= sector)
1396 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1397 	else
1398 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1399 
1400 	if (frombio)
1401 		flags |= ASYNC_TX_FENCE;
1402 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1403 
1404 	bio_for_each_segment(bvl, bio, iter) {
1405 		int len = bvl.bv_len;
1406 		int clen;
1407 		int b_offset = 0;
1408 
1409 		if (page_offset < 0) {
1410 			b_offset = -page_offset;
1411 			page_offset += b_offset;
1412 			len -= b_offset;
1413 		}
1414 
1415 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1416 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1417 		else
1418 			clen = len;
1419 
1420 		if (clen > 0) {
1421 			b_offset += bvl.bv_offset;
1422 			bio_page = bvl.bv_page;
1423 			if (frombio) {
1424 				if (conf->skip_copy &&
1425 				    b_offset == 0 && page_offset == 0 &&
1426 				    clen == RAID5_STRIPE_SIZE(conf) &&
1427 				    !no_skipcopy)
1428 					*page = bio_page;
1429 				else
1430 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1431 						  b_offset, clen, &submit);
1432 			} else
1433 				tx = async_memcpy(bio_page, *page, b_offset,
1434 						  page_offset + poff, clen, &submit);
1435 		}
1436 		/* chain the operations */
1437 		submit.depend_tx = tx;
1438 
1439 		if (clen < len) /* hit end of page */
1440 			break;
1441 		page_offset +=  len;
1442 	}
1443 
1444 	return tx;
1445 }
1446 
ops_complete_biofill(void * stripe_head_ref)1447 static void ops_complete_biofill(void *stripe_head_ref)
1448 {
1449 	struct stripe_head *sh = stripe_head_ref;
1450 	int i;
1451 	struct r5conf *conf = sh->raid_conf;
1452 
1453 	pr_debug("%s: stripe %llu\n", __func__,
1454 		(unsigned long long)sh->sector);
1455 
1456 	/* clear completed biofills */
1457 	for (i = sh->disks; i--; ) {
1458 		struct r5dev *dev = &sh->dev[i];
1459 
1460 		/* acknowledge completion of a biofill operation */
1461 		/* and check if we need to reply to a read request,
1462 		 * new R5_Wantfill requests are held off until
1463 		 * !STRIPE_BIOFILL_RUN
1464 		 */
1465 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1466 			struct bio *rbi, *rbi2;
1467 
1468 			BUG_ON(!dev->read);
1469 			rbi = dev->read;
1470 			dev->read = NULL;
1471 			while (rbi && rbi->bi_iter.bi_sector <
1472 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1473 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1474 				bio_endio(rbi);
1475 				rbi = rbi2;
1476 			}
1477 		}
1478 	}
1479 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1480 
1481 	set_bit(STRIPE_HANDLE, &sh->state);
1482 	raid5_release_stripe(sh);
1483 }
1484 
ops_run_biofill(struct stripe_head * sh)1485 static void ops_run_biofill(struct stripe_head *sh)
1486 {
1487 	struct dma_async_tx_descriptor *tx = NULL;
1488 	struct async_submit_ctl submit;
1489 	int i;
1490 	struct r5conf *conf = sh->raid_conf;
1491 
1492 	BUG_ON(sh->batch_head);
1493 	pr_debug("%s: stripe %llu\n", __func__,
1494 		(unsigned long long)sh->sector);
1495 
1496 	for (i = sh->disks; i--; ) {
1497 		struct r5dev *dev = &sh->dev[i];
1498 		if (test_bit(R5_Wantfill, &dev->flags)) {
1499 			struct bio *rbi;
1500 			spin_lock_irq(&sh->stripe_lock);
1501 			dev->read = rbi = dev->toread;
1502 			dev->toread = NULL;
1503 			spin_unlock_irq(&sh->stripe_lock);
1504 			while (rbi && rbi->bi_iter.bi_sector <
1505 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1506 				tx = async_copy_data(0, rbi, &dev->page,
1507 						     dev->offset,
1508 						     dev->sector, tx, sh, 0);
1509 				rbi = r5_next_bio(conf, rbi, dev->sector);
1510 			}
1511 		}
1512 	}
1513 
1514 	atomic_inc(&sh->count);
1515 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1516 	async_trigger_callback(&submit);
1517 }
1518 
mark_target_uptodate(struct stripe_head * sh,int target)1519 static void mark_target_uptodate(struct stripe_head *sh, int target)
1520 {
1521 	struct r5dev *tgt;
1522 
1523 	if (target < 0)
1524 		return;
1525 
1526 	tgt = &sh->dev[target];
1527 	set_bit(R5_UPTODATE, &tgt->flags);
1528 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1529 	clear_bit(R5_Wantcompute, &tgt->flags);
1530 }
1531 
ops_complete_compute(void * stripe_head_ref)1532 static void ops_complete_compute(void *stripe_head_ref)
1533 {
1534 	struct stripe_head *sh = stripe_head_ref;
1535 
1536 	pr_debug("%s: stripe %llu\n", __func__,
1537 		(unsigned long long)sh->sector);
1538 
1539 	/* mark the computed target(s) as uptodate */
1540 	mark_target_uptodate(sh, sh->ops.target);
1541 	mark_target_uptodate(sh, sh->ops.target2);
1542 
1543 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1544 	if (sh->check_state == check_state_compute_run)
1545 		sh->check_state = check_state_compute_result;
1546 	set_bit(STRIPE_HANDLE, &sh->state);
1547 	raid5_release_stripe(sh);
1548 }
1549 
1550 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1551 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1552 {
1553 	return percpu->scribble + i * percpu->scribble_obj_size;
1554 }
1555 
1556 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1557 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1558 				 struct raid5_percpu *percpu, int i)
1559 {
1560 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1561 }
1562 
1563 /*
1564  * Return a pointer to record offset address.
1565  */
1566 static unsigned int *
to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1567 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1568 {
1569 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1570 }
1571 
1572 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1573 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1574 {
1575 	int disks = sh->disks;
1576 	struct page **xor_srcs = to_addr_page(percpu, 0);
1577 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1578 	int target = sh->ops.target;
1579 	struct r5dev *tgt = &sh->dev[target];
1580 	struct page *xor_dest = tgt->page;
1581 	unsigned int off_dest = tgt->offset;
1582 	int count = 0;
1583 	struct dma_async_tx_descriptor *tx;
1584 	struct async_submit_ctl submit;
1585 	int i;
1586 
1587 	BUG_ON(sh->batch_head);
1588 
1589 	pr_debug("%s: stripe %llu block: %d\n",
1590 		__func__, (unsigned long long)sh->sector, target);
1591 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1592 
1593 	for (i = disks; i--; ) {
1594 		if (i != target) {
1595 			off_srcs[count] = sh->dev[i].offset;
1596 			xor_srcs[count++] = sh->dev[i].page;
1597 		}
1598 	}
1599 
1600 	atomic_inc(&sh->count);
1601 
1602 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1603 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1604 	if (unlikely(count == 1))
1605 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1606 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1607 	else
1608 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1609 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1610 
1611 	return tx;
1612 }
1613 
1614 /* set_syndrome_sources - populate source buffers for gen_syndrome
1615  * @srcs - (struct page *) array of size sh->disks
1616  * @offs - (unsigned int) array of offset for each page
1617  * @sh - stripe_head to parse
1618  *
1619  * Populates srcs in proper layout order for the stripe and returns the
1620  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1621  * destination buffer is recorded in srcs[count] and the Q destination
1622  * is recorded in srcs[count+1]].
1623  */
set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1624 static int set_syndrome_sources(struct page **srcs,
1625 				unsigned int *offs,
1626 				struct stripe_head *sh,
1627 				int srctype)
1628 {
1629 	int disks = sh->disks;
1630 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1631 	int d0_idx = raid6_d0(sh);
1632 	int count;
1633 	int i;
1634 
1635 	for (i = 0; i < disks; i++)
1636 		srcs[i] = NULL;
1637 
1638 	count = 0;
1639 	i = d0_idx;
1640 	do {
1641 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1642 		struct r5dev *dev = &sh->dev[i];
1643 
1644 		if (i == sh->qd_idx || i == sh->pd_idx ||
1645 		    (srctype == SYNDROME_SRC_ALL) ||
1646 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1647 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1648 		      test_bit(R5_InJournal, &dev->flags))) ||
1649 		    (srctype == SYNDROME_SRC_WRITTEN &&
1650 		     (dev->written ||
1651 		      test_bit(R5_InJournal, &dev->flags)))) {
1652 			if (test_bit(R5_InJournal, &dev->flags))
1653 				srcs[slot] = sh->dev[i].orig_page;
1654 			else
1655 				srcs[slot] = sh->dev[i].page;
1656 			/*
1657 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1658 			 * not shared page. In that case, dev[i].offset
1659 			 * is 0.
1660 			 */
1661 			offs[slot] = sh->dev[i].offset;
1662 		}
1663 		i = raid6_next_disk(i, disks);
1664 	} while (i != d0_idx);
1665 
1666 	return syndrome_disks;
1667 }
1668 
1669 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1670 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1671 {
1672 	int disks = sh->disks;
1673 	struct page **blocks = to_addr_page(percpu, 0);
1674 	unsigned int *offs = to_addr_offs(sh, percpu);
1675 	int target;
1676 	int qd_idx = sh->qd_idx;
1677 	struct dma_async_tx_descriptor *tx;
1678 	struct async_submit_ctl submit;
1679 	struct r5dev *tgt;
1680 	struct page *dest;
1681 	unsigned int dest_off;
1682 	int i;
1683 	int count;
1684 
1685 	BUG_ON(sh->batch_head);
1686 	if (sh->ops.target < 0)
1687 		target = sh->ops.target2;
1688 	else if (sh->ops.target2 < 0)
1689 		target = sh->ops.target;
1690 	else
1691 		/* we should only have one valid target */
1692 		BUG();
1693 	BUG_ON(target < 0);
1694 	pr_debug("%s: stripe %llu block: %d\n",
1695 		__func__, (unsigned long long)sh->sector, target);
1696 
1697 	tgt = &sh->dev[target];
1698 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1699 	dest = tgt->page;
1700 	dest_off = tgt->offset;
1701 
1702 	atomic_inc(&sh->count);
1703 
1704 	if (target == qd_idx) {
1705 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1706 		blocks[count] = NULL; /* regenerating p is not necessary */
1707 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1708 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1709 				  ops_complete_compute, sh,
1710 				  to_addr_conv(sh, percpu, 0));
1711 		tx = async_gen_syndrome(blocks, offs, count+2,
1712 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1713 	} else {
1714 		/* Compute any data- or p-drive using XOR */
1715 		count = 0;
1716 		for (i = disks; i-- ; ) {
1717 			if (i == target || i == qd_idx)
1718 				continue;
1719 			offs[count] = sh->dev[i].offset;
1720 			blocks[count++] = sh->dev[i].page;
1721 		}
1722 
1723 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1724 				  NULL, ops_complete_compute, sh,
1725 				  to_addr_conv(sh, percpu, 0));
1726 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1727 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1728 	}
1729 
1730 	return tx;
1731 }
1732 
1733 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1734 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1735 {
1736 	int i, count, disks = sh->disks;
1737 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1738 	int d0_idx = raid6_d0(sh);
1739 	int faila = -1, failb = -1;
1740 	int target = sh->ops.target;
1741 	int target2 = sh->ops.target2;
1742 	struct r5dev *tgt = &sh->dev[target];
1743 	struct r5dev *tgt2 = &sh->dev[target2];
1744 	struct dma_async_tx_descriptor *tx;
1745 	struct page **blocks = to_addr_page(percpu, 0);
1746 	unsigned int *offs = to_addr_offs(sh, percpu);
1747 	struct async_submit_ctl submit;
1748 
1749 	BUG_ON(sh->batch_head);
1750 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1751 		 __func__, (unsigned long long)sh->sector, target, target2);
1752 	BUG_ON(target < 0 || target2 < 0);
1753 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1754 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1755 
1756 	/* we need to open-code set_syndrome_sources to handle the
1757 	 * slot number conversion for 'faila' and 'failb'
1758 	 */
1759 	for (i = 0; i < disks ; i++) {
1760 		offs[i] = 0;
1761 		blocks[i] = NULL;
1762 	}
1763 	count = 0;
1764 	i = d0_idx;
1765 	do {
1766 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1767 
1768 		offs[slot] = sh->dev[i].offset;
1769 		blocks[slot] = sh->dev[i].page;
1770 
1771 		if (i == target)
1772 			faila = slot;
1773 		if (i == target2)
1774 			failb = slot;
1775 		i = raid6_next_disk(i, disks);
1776 	} while (i != d0_idx);
1777 
1778 	BUG_ON(faila == failb);
1779 	if (failb < faila)
1780 		swap(faila, failb);
1781 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1782 		 __func__, (unsigned long long)sh->sector, faila, failb);
1783 
1784 	atomic_inc(&sh->count);
1785 
1786 	if (failb == syndrome_disks+1) {
1787 		/* Q disk is one of the missing disks */
1788 		if (faila == syndrome_disks) {
1789 			/* Missing P+Q, just recompute */
1790 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1791 					  ops_complete_compute, sh,
1792 					  to_addr_conv(sh, percpu, 0));
1793 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1794 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1795 						  &submit);
1796 		} else {
1797 			struct page *dest;
1798 			unsigned int dest_off;
1799 			int data_target;
1800 			int qd_idx = sh->qd_idx;
1801 
1802 			/* Missing D+Q: recompute D from P, then recompute Q */
1803 			if (target == qd_idx)
1804 				data_target = target2;
1805 			else
1806 				data_target = target;
1807 
1808 			count = 0;
1809 			for (i = disks; i-- ; ) {
1810 				if (i == data_target || i == qd_idx)
1811 					continue;
1812 				offs[count] = sh->dev[i].offset;
1813 				blocks[count++] = sh->dev[i].page;
1814 			}
1815 			dest = sh->dev[data_target].page;
1816 			dest_off = sh->dev[data_target].offset;
1817 			init_async_submit(&submit,
1818 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1819 					  NULL, NULL, NULL,
1820 					  to_addr_conv(sh, percpu, 0));
1821 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1822 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1823 				       &submit);
1824 
1825 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1826 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1827 					  ops_complete_compute, sh,
1828 					  to_addr_conv(sh, percpu, 0));
1829 			return async_gen_syndrome(blocks, offs, count+2,
1830 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1831 						  &submit);
1832 		}
1833 	} else {
1834 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1835 				  ops_complete_compute, sh,
1836 				  to_addr_conv(sh, percpu, 0));
1837 		if (failb == syndrome_disks) {
1838 			/* We're missing D+P. */
1839 			return async_raid6_datap_recov(syndrome_disks+2,
1840 						RAID5_STRIPE_SIZE(sh->raid_conf),
1841 						faila,
1842 						blocks, offs, &submit);
1843 		} else {
1844 			/* We're missing D+D. */
1845 			return async_raid6_2data_recov(syndrome_disks+2,
1846 						RAID5_STRIPE_SIZE(sh->raid_conf),
1847 						faila, failb,
1848 						blocks, offs, &submit);
1849 		}
1850 	}
1851 }
1852 
ops_complete_prexor(void * stripe_head_ref)1853 static void ops_complete_prexor(void *stripe_head_ref)
1854 {
1855 	struct stripe_head *sh = stripe_head_ref;
1856 
1857 	pr_debug("%s: stripe %llu\n", __func__,
1858 		(unsigned long long)sh->sector);
1859 
1860 	if (r5c_is_writeback(sh->raid_conf->log))
1861 		/*
1862 		 * raid5-cache write back uses orig_page during prexor.
1863 		 * After prexor, it is time to free orig_page
1864 		 */
1865 		r5c_release_extra_page(sh);
1866 }
1867 
1868 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1869 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1870 		struct dma_async_tx_descriptor *tx)
1871 {
1872 	int disks = sh->disks;
1873 	struct page **xor_srcs = to_addr_page(percpu, 0);
1874 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1875 	int count = 0, pd_idx = sh->pd_idx, i;
1876 	struct async_submit_ctl submit;
1877 
1878 	/* existing parity data subtracted */
1879 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1880 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1881 
1882 	BUG_ON(sh->batch_head);
1883 	pr_debug("%s: stripe %llu\n", __func__,
1884 		(unsigned long long)sh->sector);
1885 
1886 	for (i = disks; i--; ) {
1887 		struct r5dev *dev = &sh->dev[i];
1888 		/* Only process blocks that are known to be uptodate */
1889 		if (test_bit(R5_InJournal, &dev->flags)) {
1890 			/*
1891 			 * For this case, PAGE_SIZE must be equal to 4KB and
1892 			 * page offset is zero.
1893 			 */
1894 			off_srcs[count] = dev->offset;
1895 			xor_srcs[count++] = dev->orig_page;
1896 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1897 			off_srcs[count] = dev->offset;
1898 			xor_srcs[count++] = dev->page;
1899 		}
1900 	}
1901 
1902 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1903 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1904 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1905 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1906 
1907 	return tx;
1908 }
1909 
1910 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1911 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1912 		struct dma_async_tx_descriptor *tx)
1913 {
1914 	struct page **blocks = to_addr_page(percpu, 0);
1915 	unsigned int *offs = to_addr_offs(sh, percpu);
1916 	int count;
1917 	struct async_submit_ctl submit;
1918 
1919 	pr_debug("%s: stripe %llu\n", __func__,
1920 		(unsigned long long)sh->sector);
1921 
1922 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1923 
1924 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1925 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1926 	tx = async_gen_syndrome(blocks, offs, count+2,
1927 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1928 
1929 	return tx;
1930 }
1931 
1932 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1933 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1934 {
1935 	struct r5conf *conf = sh->raid_conf;
1936 	int disks = sh->disks;
1937 	int i;
1938 	struct stripe_head *head_sh = sh;
1939 
1940 	pr_debug("%s: stripe %llu\n", __func__,
1941 		(unsigned long long)sh->sector);
1942 
1943 	for (i = disks; i--; ) {
1944 		struct r5dev *dev;
1945 		struct bio *chosen;
1946 
1947 		sh = head_sh;
1948 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1949 			struct bio *wbi;
1950 
1951 again:
1952 			dev = &sh->dev[i];
1953 			/*
1954 			 * clear R5_InJournal, so when rewriting a page in
1955 			 * journal, it is not skipped by r5l_log_stripe()
1956 			 */
1957 			clear_bit(R5_InJournal, &dev->flags);
1958 			spin_lock_irq(&sh->stripe_lock);
1959 			chosen = dev->towrite;
1960 			dev->towrite = NULL;
1961 			sh->overwrite_disks = 0;
1962 			BUG_ON(dev->written);
1963 			wbi = dev->written = chosen;
1964 			spin_unlock_irq(&sh->stripe_lock);
1965 			WARN_ON(dev->page != dev->orig_page);
1966 
1967 			while (wbi && wbi->bi_iter.bi_sector <
1968 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1969 				if (wbi->bi_opf & REQ_FUA)
1970 					set_bit(R5_WantFUA, &dev->flags);
1971 				if (wbi->bi_opf & REQ_SYNC)
1972 					set_bit(R5_SyncIO, &dev->flags);
1973 				if (bio_op(wbi) == REQ_OP_DISCARD)
1974 					set_bit(R5_Discard, &dev->flags);
1975 				else {
1976 					tx = async_copy_data(1, wbi, &dev->page,
1977 							     dev->offset,
1978 							     dev->sector, tx, sh,
1979 							     r5c_is_writeback(conf->log));
1980 					if (dev->page != dev->orig_page &&
1981 					    !r5c_is_writeback(conf->log)) {
1982 						set_bit(R5_SkipCopy, &dev->flags);
1983 						clear_bit(R5_UPTODATE, &dev->flags);
1984 						clear_bit(R5_OVERWRITE, &dev->flags);
1985 					}
1986 				}
1987 				wbi = r5_next_bio(conf, wbi, dev->sector);
1988 			}
1989 
1990 			if (head_sh->batch_head) {
1991 				sh = list_first_entry(&sh->batch_list,
1992 						      struct stripe_head,
1993 						      batch_list);
1994 				if (sh == head_sh)
1995 					continue;
1996 				goto again;
1997 			}
1998 		}
1999 	}
2000 
2001 	return tx;
2002 }
2003 
ops_complete_reconstruct(void * stripe_head_ref)2004 static void ops_complete_reconstruct(void *stripe_head_ref)
2005 {
2006 	struct stripe_head *sh = stripe_head_ref;
2007 	int disks = sh->disks;
2008 	int pd_idx = sh->pd_idx;
2009 	int qd_idx = sh->qd_idx;
2010 	int i;
2011 	bool fua = false, sync = false, discard = false;
2012 
2013 	pr_debug("%s: stripe %llu\n", __func__,
2014 		(unsigned long long)sh->sector);
2015 
2016 	for (i = disks; i--; ) {
2017 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2018 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2019 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2020 	}
2021 
2022 	for (i = disks; i--; ) {
2023 		struct r5dev *dev = &sh->dev[i];
2024 
2025 		if (dev->written || i == pd_idx || i == qd_idx) {
2026 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2027 				set_bit(R5_UPTODATE, &dev->flags);
2028 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2029 					set_bit(R5_Expanded, &dev->flags);
2030 			}
2031 			if (fua)
2032 				set_bit(R5_WantFUA, &dev->flags);
2033 			if (sync)
2034 				set_bit(R5_SyncIO, &dev->flags);
2035 		}
2036 	}
2037 
2038 	if (sh->reconstruct_state == reconstruct_state_drain_run)
2039 		sh->reconstruct_state = reconstruct_state_drain_result;
2040 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2041 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2042 	else {
2043 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2044 		sh->reconstruct_state = reconstruct_state_result;
2045 	}
2046 
2047 	set_bit(STRIPE_HANDLE, &sh->state);
2048 	raid5_release_stripe(sh);
2049 }
2050 
2051 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2052 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2053 		     struct dma_async_tx_descriptor *tx)
2054 {
2055 	int disks = sh->disks;
2056 	struct page **xor_srcs;
2057 	unsigned int *off_srcs;
2058 	struct async_submit_ctl submit;
2059 	int count, pd_idx = sh->pd_idx, i;
2060 	struct page *xor_dest;
2061 	unsigned int off_dest;
2062 	int prexor = 0;
2063 	unsigned long flags;
2064 	int j = 0;
2065 	struct stripe_head *head_sh = sh;
2066 	int last_stripe;
2067 
2068 	pr_debug("%s: stripe %llu\n", __func__,
2069 		(unsigned long long)sh->sector);
2070 
2071 	for (i = 0; i < sh->disks; i++) {
2072 		if (pd_idx == i)
2073 			continue;
2074 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2075 			break;
2076 	}
2077 	if (i >= sh->disks) {
2078 		atomic_inc(&sh->count);
2079 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2080 		ops_complete_reconstruct(sh);
2081 		return;
2082 	}
2083 again:
2084 	count = 0;
2085 	xor_srcs = to_addr_page(percpu, j);
2086 	off_srcs = to_addr_offs(sh, percpu);
2087 	/* check if prexor is active which means only process blocks
2088 	 * that are part of a read-modify-write (written)
2089 	 */
2090 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2091 		prexor = 1;
2092 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2093 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2094 		for (i = disks; i--; ) {
2095 			struct r5dev *dev = &sh->dev[i];
2096 			if (head_sh->dev[i].written ||
2097 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2098 				off_srcs[count] = dev->offset;
2099 				xor_srcs[count++] = dev->page;
2100 			}
2101 		}
2102 	} else {
2103 		xor_dest = sh->dev[pd_idx].page;
2104 		off_dest = sh->dev[pd_idx].offset;
2105 		for (i = disks; i--; ) {
2106 			struct r5dev *dev = &sh->dev[i];
2107 			if (i != pd_idx) {
2108 				off_srcs[count] = dev->offset;
2109 				xor_srcs[count++] = dev->page;
2110 			}
2111 		}
2112 	}
2113 
2114 	/* 1/ if we prexor'd then the dest is reused as a source
2115 	 * 2/ if we did not prexor then we are redoing the parity
2116 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2117 	 * for the synchronous xor case
2118 	 */
2119 	last_stripe = !head_sh->batch_head ||
2120 		list_first_entry(&sh->batch_list,
2121 				 struct stripe_head, batch_list) == head_sh;
2122 	if (last_stripe) {
2123 		flags = ASYNC_TX_ACK |
2124 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2125 
2126 		atomic_inc(&head_sh->count);
2127 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2128 				  to_addr_conv(sh, percpu, j));
2129 	} else {
2130 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2131 		init_async_submit(&submit, flags, tx, NULL, NULL,
2132 				  to_addr_conv(sh, percpu, j));
2133 	}
2134 
2135 	if (unlikely(count == 1))
2136 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2137 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2138 	else
2139 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2140 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2141 	if (!last_stripe) {
2142 		j++;
2143 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2144 				      batch_list);
2145 		goto again;
2146 	}
2147 }
2148 
2149 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2150 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2151 		     struct dma_async_tx_descriptor *tx)
2152 {
2153 	struct async_submit_ctl submit;
2154 	struct page **blocks;
2155 	unsigned int *offs;
2156 	int count, i, j = 0;
2157 	struct stripe_head *head_sh = sh;
2158 	int last_stripe;
2159 	int synflags;
2160 	unsigned long txflags;
2161 
2162 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2163 
2164 	for (i = 0; i < sh->disks; i++) {
2165 		if (sh->pd_idx == i || sh->qd_idx == i)
2166 			continue;
2167 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2168 			break;
2169 	}
2170 	if (i >= sh->disks) {
2171 		atomic_inc(&sh->count);
2172 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2173 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2174 		ops_complete_reconstruct(sh);
2175 		return;
2176 	}
2177 
2178 again:
2179 	blocks = to_addr_page(percpu, j);
2180 	offs = to_addr_offs(sh, percpu);
2181 
2182 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2183 		synflags = SYNDROME_SRC_WRITTEN;
2184 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2185 	} else {
2186 		synflags = SYNDROME_SRC_ALL;
2187 		txflags = ASYNC_TX_ACK;
2188 	}
2189 
2190 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2191 	last_stripe = !head_sh->batch_head ||
2192 		list_first_entry(&sh->batch_list,
2193 				 struct stripe_head, batch_list) == head_sh;
2194 
2195 	if (last_stripe) {
2196 		atomic_inc(&head_sh->count);
2197 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2198 				  head_sh, to_addr_conv(sh, percpu, j));
2199 	} else
2200 		init_async_submit(&submit, 0, tx, NULL, NULL,
2201 				  to_addr_conv(sh, percpu, j));
2202 	tx = async_gen_syndrome(blocks, offs, count+2,
2203 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2204 	if (!last_stripe) {
2205 		j++;
2206 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2207 				      batch_list);
2208 		goto again;
2209 	}
2210 }
2211 
ops_complete_check(void * stripe_head_ref)2212 static void ops_complete_check(void *stripe_head_ref)
2213 {
2214 	struct stripe_head *sh = stripe_head_ref;
2215 
2216 	pr_debug("%s: stripe %llu\n", __func__,
2217 		(unsigned long long)sh->sector);
2218 
2219 	sh->check_state = check_state_check_result;
2220 	set_bit(STRIPE_HANDLE, &sh->state);
2221 	raid5_release_stripe(sh);
2222 }
2223 
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2224 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2225 {
2226 	int disks = sh->disks;
2227 	int pd_idx = sh->pd_idx;
2228 	int qd_idx = sh->qd_idx;
2229 	struct page *xor_dest;
2230 	unsigned int off_dest;
2231 	struct page **xor_srcs = to_addr_page(percpu, 0);
2232 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2233 	struct dma_async_tx_descriptor *tx;
2234 	struct async_submit_ctl submit;
2235 	int count;
2236 	int i;
2237 
2238 	pr_debug("%s: stripe %llu\n", __func__,
2239 		(unsigned long long)sh->sector);
2240 
2241 	BUG_ON(sh->batch_head);
2242 	count = 0;
2243 	xor_dest = sh->dev[pd_idx].page;
2244 	off_dest = sh->dev[pd_idx].offset;
2245 	off_srcs[count] = off_dest;
2246 	xor_srcs[count++] = xor_dest;
2247 	for (i = disks; i--; ) {
2248 		if (i == pd_idx || i == qd_idx)
2249 			continue;
2250 		off_srcs[count] = sh->dev[i].offset;
2251 		xor_srcs[count++] = sh->dev[i].page;
2252 	}
2253 
2254 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2255 			  to_addr_conv(sh, percpu, 0));
2256 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2257 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2258 			   &sh->ops.zero_sum_result, &submit);
2259 
2260 	atomic_inc(&sh->count);
2261 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2262 	tx = async_trigger_callback(&submit);
2263 }
2264 
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2265 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2266 {
2267 	struct page **srcs = to_addr_page(percpu, 0);
2268 	unsigned int *offs = to_addr_offs(sh, percpu);
2269 	struct async_submit_ctl submit;
2270 	int count;
2271 
2272 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2273 		(unsigned long long)sh->sector, checkp);
2274 
2275 	BUG_ON(sh->batch_head);
2276 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2277 	if (!checkp)
2278 		srcs[count] = NULL;
2279 
2280 	atomic_inc(&sh->count);
2281 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2282 			  sh, to_addr_conv(sh, percpu, 0));
2283 	async_syndrome_val(srcs, offs, count+2,
2284 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2285 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2286 }
2287 
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2288 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2289 {
2290 	int overlap_clear = 0, i, disks = sh->disks;
2291 	struct dma_async_tx_descriptor *tx = NULL;
2292 	struct r5conf *conf = sh->raid_conf;
2293 	int level = conf->level;
2294 	struct raid5_percpu *percpu;
2295 
2296 	local_lock(&conf->percpu->lock);
2297 	percpu = this_cpu_ptr(conf->percpu);
2298 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2299 		ops_run_biofill(sh);
2300 		overlap_clear++;
2301 	}
2302 
2303 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2304 		if (level < 6)
2305 			tx = ops_run_compute5(sh, percpu);
2306 		else {
2307 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2308 				tx = ops_run_compute6_1(sh, percpu);
2309 			else
2310 				tx = ops_run_compute6_2(sh, percpu);
2311 		}
2312 		/* terminate the chain if reconstruct is not set to be run */
2313 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2314 			async_tx_ack(tx);
2315 	}
2316 
2317 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2318 		if (level < 6)
2319 			tx = ops_run_prexor5(sh, percpu, tx);
2320 		else
2321 			tx = ops_run_prexor6(sh, percpu, tx);
2322 	}
2323 
2324 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2325 		tx = ops_run_partial_parity(sh, percpu, tx);
2326 
2327 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2328 		tx = ops_run_biodrain(sh, tx);
2329 		overlap_clear++;
2330 	}
2331 
2332 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2333 		if (level < 6)
2334 			ops_run_reconstruct5(sh, percpu, tx);
2335 		else
2336 			ops_run_reconstruct6(sh, percpu, tx);
2337 	}
2338 
2339 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2340 		if (sh->check_state == check_state_run)
2341 			ops_run_check_p(sh, percpu);
2342 		else if (sh->check_state == check_state_run_q)
2343 			ops_run_check_pq(sh, percpu, 0);
2344 		else if (sh->check_state == check_state_run_pq)
2345 			ops_run_check_pq(sh, percpu, 1);
2346 		else
2347 			BUG();
2348 	}
2349 
2350 	if (overlap_clear && !sh->batch_head) {
2351 		for (i = disks; i--; ) {
2352 			struct r5dev *dev = &sh->dev[i];
2353 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2354 				wake_up(&sh->raid_conf->wait_for_overlap);
2355 		}
2356 	}
2357 	local_unlock(&conf->percpu->lock);
2358 }
2359 
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2360 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2361 {
2362 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2363 	kfree(sh->pages);
2364 #endif
2365 	if (sh->ppl_page)
2366 		__free_page(sh->ppl_page);
2367 	kmem_cache_free(sc, sh);
2368 }
2369 
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2370 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2371 	int disks, struct r5conf *conf)
2372 {
2373 	struct stripe_head *sh;
2374 
2375 	sh = kmem_cache_zalloc(sc, gfp);
2376 	if (sh) {
2377 		spin_lock_init(&sh->stripe_lock);
2378 		spin_lock_init(&sh->batch_lock);
2379 		INIT_LIST_HEAD(&sh->batch_list);
2380 		INIT_LIST_HEAD(&sh->lru);
2381 		INIT_LIST_HEAD(&sh->r5c);
2382 		INIT_LIST_HEAD(&sh->log_list);
2383 		atomic_set(&sh->count, 1);
2384 		sh->raid_conf = conf;
2385 		sh->log_start = MaxSector;
2386 
2387 		if (raid5_has_ppl(conf)) {
2388 			sh->ppl_page = alloc_page(gfp);
2389 			if (!sh->ppl_page) {
2390 				free_stripe(sc, sh);
2391 				return NULL;
2392 			}
2393 		}
2394 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2395 		if (init_stripe_shared_pages(sh, conf, disks)) {
2396 			free_stripe(sc, sh);
2397 			return NULL;
2398 		}
2399 #endif
2400 	}
2401 	return sh;
2402 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2403 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2404 {
2405 	struct stripe_head *sh;
2406 
2407 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2408 	if (!sh)
2409 		return 0;
2410 
2411 	if (grow_buffers(sh, gfp)) {
2412 		shrink_buffers(sh);
2413 		free_stripe(conf->slab_cache, sh);
2414 		return 0;
2415 	}
2416 	sh->hash_lock_index =
2417 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2418 	/* we just created an active stripe so... */
2419 	atomic_inc(&conf->active_stripes);
2420 
2421 	raid5_release_stripe(sh);
2422 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2423 	return 1;
2424 }
2425 
grow_stripes(struct r5conf * conf,int num)2426 static int grow_stripes(struct r5conf *conf, int num)
2427 {
2428 	struct kmem_cache *sc;
2429 	size_t namelen = sizeof(conf->cache_name[0]);
2430 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2431 
2432 	if (conf->mddev->gendisk)
2433 		snprintf(conf->cache_name[0], namelen,
2434 			"raid%d-%s", conf->level, mdname(conf->mddev));
2435 	else
2436 		snprintf(conf->cache_name[0], namelen,
2437 			"raid%d-%p", conf->level, conf->mddev);
2438 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2439 
2440 	conf->active_name = 0;
2441 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2442 			       struct_size_t(struct stripe_head, dev, devs),
2443 			       0, 0, NULL);
2444 	if (!sc)
2445 		return 1;
2446 	conf->slab_cache = sc;
2447 	conf->pool_size = devs;
2448 	while (num--)
2449 		if (!grow_one_stripe(conf, GFP_KERNEL))
2450 			return 1;
2451 
2452 	return 0;
2453 }
2454 
2455 /**
2456  * scribble_alloc - allocate percpu scribble buffer for required size
2457  *		    of the scribble region
2458  * @percpu: from for_each_present_cpu() of the caller
2459  * @num: total number of disks in the array
2460  * @cnt: scribble objs count for required size of the scribble region
2461  *
2462  * The scribble buffer size must be enough to contain:
2463  * 1/ a struct page pointer for each device in the array +2
2464  * 2/ room to convert each entry in (1) to its corresponding dma
2465  *    (dma_map_page()) or page (page_address()) address.
2466  *
2467  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2468  * calculate over all devices (not just the data blocks), using zeros in place
2469  * of the P and Q blocks.
2470  */
scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2471 static int scribble_alloc(struct raid5_percpu *percpu,
2472 			  int num, int cnt)
2473 {
2474 	size_t obj_size =
2475 		sizeof(struct page *) * (num + 2) +
2476 		sizeof(addr_conv_t) * (num + 2) +
2477 		sizeof(unsigned int) * (num + 2);
2478 	void *scribble;
2479 
2480 	/*
2481 	 * If here is in raid array suspend context, it is in memalloc noio
2482 	 * context as well, there is no potential recursive memory reclaim
2483 	 * I/Os with the GFP_KERNEL flag.
2484 	 */
2485 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2486 	if (!scribble)
2487 		return -ENOMEM;
2488 
2489 	kvfree(percpu->scribble);
2490 
2491 	percpu->scribble = scribble;
2492 	percpu->scribble_obj_size = obj_size;
2493 	return 0;
2494 }
2495 
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2496 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2497 {
2498 	unsigned long cpu;
2499 	int err = 0;
2500 
2501 	/*
2502 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2503 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2504 	 * should equal to new_disks and new_sectors
2505 	 */
2506 	if (conf->scribble_disks >= new_disks &&
2507 	    conf->scribble_sectors >= new_sectors)
2508 		return 0;
2509 	mddev_suspend(conf->mddev);
2510 	cpus_read_lock();
2511 
2512 	for_each_present_cpu(cpu) {
2513 		struct raid5_percpu *percpu;
2514 
2515 		percpu = per_cpu_ptr(conf->percpu, cpu);
2516 		err = scribble_alloc(percpu, new_disks,
2517 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2518 		if (err)
2519 			break;
2520 	}
2521 
2522 	cpus_read_unlock();
2523 	mddev_resume(conf->mddev);
2524 	if (!err) {
2525 		conf->scribble_disks = new_disks;
2526 		conf->scribble_sectors = new_sectors;
2527 	}
2528 	return err;
2529 }
2530 
resize_stripes(struct r5conf * conf,int newsize)2531 static int resize_stripes(struct r5conf *conf, int newsize)
2532 {
2533 	/* Make all the stripes able to hold 'newsize' devices.
2534 	 * New slots in each stripe get 'page' set to a new page.
2535 	 *
2536 	 * This happens in stages:
2537 	 * 1/ create a new kmem_cache and allocate the required number of
2538 	 *    stripe_heads.
2539 	 * 2/ gather all the old stripe_heads and transfer the pages across
2540 	 *    to the new stripe_heads.  This will have the side effect of
2541 	 *    freezing the array as once all stripe_heads have been collected,
2542 	 *    no IO will be possible.  Old stripe heads are freed once their
2543 	 *    pages have been transferred over, and the old kmem_cache is
2544 	 *    freed when all stripes are done.
2545 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2546 	 *    we simple return a failure status - no need to clean anything up.
2547 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2548 	 *    If this fails, we don't bother trying the shrink the
2549 	 *    stripe_heads down again, we just leave them as they are.
2550 	 *    As each stripe_head is processed the new one is released into
2551 	 *    active service.
2552 	 *
2553 	 * Once step2 is started, we cannot afford to wait for a write,
2554 	 * so we use GFP_NOIO allocations.
2555 	 */
2556 	struct stripe_head *osh, *nsh;
2557 	LIST_HEAD(newstripes);
2558 	struct disk_info *ndisks;
2559 	int err = 0;
2560 	struct kmem_cache *sc;
2561 	int i;
2562 	int hash, cnt;
2563 
2564 	md_allow_write(conf->mddev);
2565 
2566 	/* Step 1 */
2567 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2568 			       struct_size_t(struct stripe_head, dev, newsize),
2569 			       0, 0, NULL);
2570 	if (!sc)
2571 		return -ENOMEM;
2572 
2573 	/* Need to ensure auto-resizing doesn't interfere */
2574 	mutex_lock(&conf->cache_size_mutex);
2575 
2576 	for (i = conf->max_nr_stripes; i; i--) {
2577 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2578 		if (!nsh)
2579 			break;
2580 
2581 		list_add(&nsh->lru, &newstripes);
2582 	}
2583 	if (i) {
2584 		/* didn't get enough, give up */
2585 		while (!list_empty(&newstripes)) {
2586 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2587 			list_del(&nsh->lru);
2588 			free_stripe(sc, nsh);
2589 		}
2590 		kmem_cache_destroy(sc);
2591 		mutex_unlock(&conf->cache_size_mutex);
2592 		return -ENOMEM;
2593 	}
2594 	/* Step 2 - Must use GFP_NOIO now.
2595 	 * OK, we have enough stripes, start collecting inactive
2596 	 * stripes and copying them over
2597 	 */
2598 	hash = 0;
2599 	cnt = 0;
2600 	list_for_each_entry(nsh, &newstripes, lru) {
2601 		lock_device_hash_lock(conf, hash);
2602 		wait_event_cmd(conf->wait_for_stripe,
2603 				    !list_empty(conf->inactive_list + hash),
2604 				    unlock_device_hash_lock(conf, hash),
2605 				    lock_device_hash_lock(conf, hash));
2606 		osh = get_free_stripe(conf, hash);
2607 		unlock_device_hash_lock(conf, hash);
2608 
2609 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2610 	for (i = 0; i < osh->nr_pages; i++) {
2611 		nsh->pages[i] = osh->pages[i];
2612 		osh->pages[i] = NULL;
2613 	}
2614 #endif
2615 		for(i=0; i<conf->pool_size; i++) {
2616 			nsh->dev[i].page = osh->dev[i].page;
2617 			nsh->dev[i].orig_page = osh->dev[i].page;
2618 			nsh->dev[i].offset = osh->dev[i].offset;
2619 		}
2620 		nsh->hash_lock_index = hash;
2621 		free_stripe(conf->slab_cache, osh);
2622 		cnt++;
2623 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2624 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2625 			hash++;
2626 			cnt = 0;
2627 		}
2628 	}
2629 	kmem_cache_destroy(conf->slab_cache);
2630 
2631 	/* Step 3.
2632 	 * At this point, we are holding all the stripes so the array
2633 	 * is completely stalled, so now is a good time to resize
2634 	 * conf->disks and the scribble region
2635 	 */
2636 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2637 	if (ndisks) {
2638 		for (i = 0; i < conf->pool_size; i++)
2639 			ndisks[i] = conf->disks[i];
2640 
2641 		for (i = conf->pool_size; i < newsize; i++) {
2642 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2643 			if (!ndisks[i].extra_page)
2644 				err = -ENOMEM;
2645 		}
2646 
2647 		if (err) {
2648 			for (i = conf->pool_size; i < newsize; i++)
2649 				if (ndisks[i].extra_page)
2650 					put_page(ndisks[i].extra_page);
2651 			kfree(ndisks);
2652 		} else {
2653 			kfree(conf->disks);
2654 			conf->disks = ndisks;
2655 		}
2656 	} else
2657 		err = -ENOMEM;
2658 
2659 	conf->slab_cache = sc;
2660 	conf->active_name = 1-conf->active_name;
2661 
2662 	/* Step 4, return new stripes to service */
2663 	while(!list_empty(&newstripes)) {
2664 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2665 		list_del_init(&nsh->lru);
2666 
2667 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2668 		for (i = 0; i < nsh->nr_pages; i++) {
2669 			if (nsh->pages[i])
2670 				continue;
2671 			nsh->pages[i] = alloc_page(GFP_NOIO);
2672 			if (!nsh->pages[i])
2673 				err = -ENOMEM;
2674 		}
2675 
2676 		for (i = conf->raid_disks; i < newsize; i++) {
2677 			if (nsh->dev[i].page)
2678 				continue;
2679 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2680 			nsh->dev[i].orig_page = nsh->dev[i].page;
2681 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2682 		}
2683 #else
2684 		for (i=conf->raid_disks; i < newsize; i++)
2685 			if (nsh->dev[i].page == NULL) {
2686 				struct page *p = alloc_page(GFP_NOIO);
2687 				nsh->dev[i].page = p;
2688 				nsh->dev[i].orig_page = p;
2689 				nsh->dev[i].offset = 0;
2690 				if (!p)
2691 					err = -ENOMEM;
2692 			}
2693 #endif
2694 		raid5_release_stripe(nsh);
2695 	}
2696 	/* critical section pass, GFP_NOIO no longer needed */
2697 
2698 	if (!err)
2699 		conf->pool_size = newsize;
2700 	mutex_unlock(&conf->cache_size_mutex);
2701 
2702 	return err;
2703 }
2704 
drop_one_stripe(struct r5conf * conf)2705 static int drop_one_stripe(struct r5conf *conf)
2706 {
2707 	struct stripe_head *sh;
2708 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2709 
2710 	spin_lock_irq(conf->hash_locks + hash);
2711 	sh = get_free_stripe(conf, hash);
2712 	spin_unlock_irq(conf->hash_locks + hash);
2713 	if (!sh)
2714 		return 0;
2715 	BUG_ON(atomic_read(&sh->count));
2716 	shrink_buffers(sh);
2717 	free_stripe(conf->slab_cache, sh);
2718 	atomic_dec(&conf->active_stripes);
2719 	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2720 	return 1;
2721 }
2722 
shrink_stripes(struct r5conf * conf)2723 static void shrink_stripes(struct r5conf *conf)
2724 {
2725 	while (conf->max_nr_stripes &&
2726 	       drop_one_stripe(conf))
2727 		;
2728 
2729 	kmem_cache_destroy(conf->slab_cache);
2730 	conf->slab_cache = NULL;
2731 }
2732 
2733 /*
2734  * This helper wraps rcu_dereference_protected() and can be used when
2735  * it is known that the nr_pending of the rdev is elevated.
2736  */
rdev_pend_deref(struct md_rdev __rcu * rdev)2737 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
2738 {
2739 	return rcu_dereference_protected(rdev,
2740 			atomic_read(&rcu_access_pointer(rdev)->nr_pending));
2741 }
2742 
2743 /*
2744  * This helper wraps rcu_dereference_protected() and should be used
2745  * when it is known that the mddev_lock() is held. This is safe
2746  * seeing raid5_remove_disk() has the same lock held.
2747  */
rdev_mdlock_deref(struct mddev * mddev,struct md_rdev __rcu * rdev)2748 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
2749 					 struct md_rdev __rcu *rdev)
2750 {
2751 	return rcu_dereference_protected(rdev,
2752 			lockdep_is_held(&mddev->reconfig_mutex));
2753 }
2754 
raid5_end_read_request(struct bio * bi)2755 static void raid5_end_read_request(struct bio * bi)
2756 {
2757 	struct stripe_head *sh = bi->bi_private;
2758 	struct r5conf *conf = sh->raid_conf;
2759 	int disks = sh->disks, i;
2760 	struct md_rdev *rdev = NULL;
2761 	sector_t s;
2762 
2763 	for (i=0 ; i<disks; i++)
2764 		if (bi == &sh->dev[i].req)
2765 			break;
2766 
2767 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2768 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2769 		bi->bi_status);
2770 	if (i == disks) {
2771 		BUG();
2772 		return;
2773 	}
2774 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2775 		/* If replacement finished while this request was outstanding,
2776 		 * 'replacement' might be NULL already.
2777 		 * In that case it moved down to 'rdev'.
2778 		 * rdev is not removed until all requests are finished.
2779 		 */
2780 		rdev = rdev_pend_deref(conf->disks[i].replacement);
2781 	if (!rdev)
2782 		rdev = rdev_pend_deref(conf->disks[i].rdev);
2783 
2784 	if (use_new_offset(conf, sh))
2785 		s = sh->sector + rdev->new_data_offset;
2786 	else
2787 		s = sh->sector + rdev->data_offset;
2788 	if (!bi->bi_status) {
2789 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2790 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2791 			/* Note that this cannot happen on a
2792 			 * replacement device.  We just fail those on
2793 			 * any error
2794 			 */
2795 			pr_info_ratelimited(
2796 				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2797 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2798 				(unsigned long long)s,
2799 				rdev->bdev);
2800 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2801 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2802 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2803 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2804 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2805 
2806 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2807 			/*
2808 			 * end read for a page in journal, this
2809 			 * must be preparing for prexor in rmw
2810 			 */
2811 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2812 
2813 		if (atomic_read(&rdev->read_errors))
2814 			atomic_set(&rdev->read_errors, 0);
2815 	} else {
2816 		int retry = 0;
2817 		int set_bad = 0;
2818 
2819 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2820 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2821 			atomic_inc(&rdev->read_errors);
2822 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2823 			pr_warn_ratelimited(
2824 				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2825 				mdname(conf->mddev),
2826 				(unsigned long long)s,
2827 				rdev->bdev);
2828 		else if (conf->mddev->degraded >= conf->max_degraded) {
2829 			set_bad = 1;
2830 			pr_warn_ratelimited(
2831 				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2832 				mdname(conf->mddev),
2833 				(unsigned long long)s,
2834 				rdev->bdev);
2835 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2836 			/* Oh, no!!! */
2837 			set_bad = 1;
2838 			pr_warn_ratelimited(
2839 				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2840 				mdname(conf->mddev),
2841 				(unsigned long long)s,
2842 				rdev->bdev);
2843 		} else if (atomic_read(&rdev->read_errors)
2844 			 > conf->max_nr_stripes) {
2845 			if (!test_bit(Faulty, &rdev->flags)) {
2846 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2847 				    mdname(conf->mddev),
2848 				    atomic_read(&rdev->read_errors),
2849 				    conf->max_nr_stripes);
2850 				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2851 				    mdname(conf->mddev), rdev->bdev);
2852 			}
2853 		} else
2854 			retry = 1;
2855 		if (set_bad && test_bit(In_sync, &rdev->flags)
2856 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2857 			retry = 1;
2858 		if (retry)
2859 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2860 				set_bit(R5_ReadError, &sh->dev[i].flags);
2861 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2862 				set_bit(R5_ReadError, &sh->dev[i].flags);
2863 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2864 			} else
2865 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2866 		else {
2867 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2868 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2869 			if (!(set_bad
2870 			      && test_bit(In_sync, &rdev->flags)
2871 			      && rdev_set_badblocks(
2872 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2873 				md_error(conf->mddev, rdev);
2874 		}
2875 	}
2876 	rdev_dec_pending(rdev, conf->mddev);
2877 	bio_uninit(bi);
2878 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2879 	set_bit(STRIPE_HANDLE, &sh->state);
2880 	raid5_release_stripe(sh);
2881 }
2882 
raid5_end_write_request(struct bio * bi)2883 static void raid5_end_write_request(struct bio *bi)
2884 {
2885 	struct stripe_head *sh = bi->bi_private;
2886 	struct r5conf *conf = sh->raid_conf;
2887 	int disks = sh->disks, i;
2888 	struct md_rdev *rdev;
2889 	sector_t first_bad;
2890 	int bad_sectors;
2891 	int replacement = 0;
2892 
2893 	for (i = 0 ; i < disks; i++) {
2894 		if (bi == &sh->dev[i].req) {
2895 			rdev = rdev_pend_deref(conf->disks[i].rdev);
2896 			break;
2897 		}
2898 		if (bi == &sh->dev[i].rreq) {
2899 			rdev = rdev_pend_deref(conf->disks[i].replacement);
2900 			if (rdev)
2901 				replacement = 1;
2902 			else
2903 				/* rdev was removed and 'replacement'
2904 				 * replaced it.  rdev is not removed
2905 				 * until all requests are finished.
2906 				 */
2907 				rdev = rdev_pend_deref(conf->disks[i].rdev);
2908 			break;
2909 		}
2910 	}
2911 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2912 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2913 		bi->bi_status);
2914 	if (i == disks) {
2915 		BUG();
2916 		return;
2917 	}
2918 
2919 	if (replacement) {
2920 		if (bi->bi_status)
2921 			md_error(conf->mddev, rdev);
2922 		else if (is_badblock(rdev, sh->sector,
2923 				     RAID5_STRIPE_SECTORS(conf),
2924 				     &first_bad, &bad_sectors))
2925 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2926 	} else {
2927 		if (bi->bi_status) {
2928 			set_bit(STRIPE_DEGRADED, &sh->state);
2929 			set_bit(WriteErrorSeen, &rdev->flags);
2930 			set_bit(R5_WriteError, &sh->dev[i].flags);
2931 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2932 				set_bit(MD_RECOVERY_NEEDED,
2933 					&rdev->mddev->recovery);
2934 		} else if (is_badblock(rdev, sh->sector,
2935 				       RAID5_STRIPE_SECTORS(conf),
2936 				       &first_bad, &bad_sectors)) {
2937 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2938 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2939 				/* That was a successful write so make
2940 				 * sure it looks like we already did
2941 				 * a re-write.
2942 				 */
2943 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2944 		}
2945 	}
2946 	rdev_dec_pending(rdev, conf->mddev);
2947 
2948 	if (sh->batch_head && bi->bi_status && !replacement)
2949 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2950 
2951 	bio_uninit(bi);
2952 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2953 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2954 	set_bit(STRIPE_HANDLE, &sh->state);
2955 
2956 	if (sh->batch_head && sh != sh->batch_head)
2957 		raid5_release_stripe(sh->batch_head);
2958 	raid5_release_stripe(sh);
2959 }
2960 
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2961 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2962 {
2963 	struct r5conf *conf = mddev->private;
2964 	unsigned long flags;
2965 	pr_debug("raid456: error called\n");
2966 
2967 	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2968 		mdname(mddev), rdev->bdev);
2969 
2970 	spin_lock_irqsave(&conf->device_lock, flags);
2971 	set_bit(Faulty, &rdev->flags);
2972 	clear_bit(In_sync, &rdev->flags);
2973 	mddev->degraded = raid5_calc_degraded(conf);
2974 
2975 	if (has_failed(conf)) {
2976 		set_bit(MD_BROKEN, &conf->mddev->flags);
2977 		conf->recovery_disabled = mddev->recovery_disabled;
2978 
2979 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2980 			mdname(mddev), mddev->degraded, conf->raid_disks);
2981 	} else {
2982 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2983 			mdname(mddev), conf->raid_disks - mddev->degraded);
2984 	}
2985 
2986 	spin_unlock_irqrestore(&conf->device_lock, flags);
2987 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2988 
2989 	set_bit(Blocked, &rdev->flags);
2990 	set_mask_bits(&mddev->sb_flags, 0,
2991 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2992 	r5c_update_on_rdev_error(mddev, rdev);
2993 }
2994 
2995 /*
2996  * Input: a 'big' sector number,
2997  * Output: index of the data and parity disk, and the sector # in them.
2998  */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2999 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
3000 			      int previous, int *dd_idx,
3001 			      struct stripe_head *sh)
3002 {
3003 	sector_t stripe, stripe2;
3004 	sector_t chunk_number;
3005 	unsigned int chunk_offset;
3006 	int pd_idx, qd_idx;
3007 	int ddf_layout = 0;
3008 	sector_t new_sector;
3009 	int algorithm = previous ? conf->prev_algo
3010 				 : conf->algorithm;
3011 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3012 					 : conf->chunk_sectors;
3013 	int raid_disks = previous ? conf->previous_raid_disks
3014 				  : conf->raid_disks;
3015 	int data_disks = raid_disks - conf->max_degraded;
3016 
3017 	/* First compute the information on this sector */
3018 
3019 	/*
3020 	 * Compute the chunk number and the sector offset inside the chunk
3021 	 */
3022 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
3023 	chunk_number = r_sector;
3024 
3025 	/*
3026 	 * Compute the stripe number
3027 	 */
3028 	stripe = chunk_number;
3029 	*dd_idx = sector_div(stripe, data_disks);
3030 	stripe2 = stripe;
3031 	/*
3032 	 * Select the parity disk based on the user selected algorithm.
3033 	 */
3034 	pd_idx = qd_idx = -1;
3035 	switch(conf->level) {
3036 	case 4:
3037 		pd_idx = data_disks;
3038 		break;
3039 	case 5:
3040 		switch (algorithm) {
3041 		case ALGORITHM_LEFT_ASYMMETRIC:
3042 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3043 			if (*dd_idx >= pd_idx)
3044 				(*dd_idx)++;
3045 			break;
3046 		case ALGORITHM_RIGHT_ASYMMETRIC:
3047 			pd_idx = sector_div(stripe2, raid_disks);
3048 			if (*dd_idx >= pd_idx)
3049 				(*dd_idx)++;
3050 			break;
3051 		case ALGORITHM_LEFT_SYMMETRIC:
3052 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3053 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3054 			break;
3055 		case ALGORITHM_RIGHT_SYMMETRIC:
3056 			pd_idx = sector_div(stripe2, raid_disks);
3057 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3058 			break;
3059 		case ALGORITHM_PARITY_0:
3060 			pd_idx = 0;
3061 			(*dd_idx)++;
3062 			break;
3063 		case ALGORITHM_PARITY_N:
3064 			pd_idx = data_disks;
3065 			break;
3066 		default:
3067 			BUG();
3068 		}
3069 		break;
3070 	case 6:
3071 
3072 		switch (algorithm) {
3073 		case ALGORITHM_LEFT_ASYMMETRIC:
3074 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3075 			qd_idx = pd_idx + 1;
3076 			if (pd_idx == raid_disks-1) {
3077 				(*dd_idx)++;	/* Q D D D P */
3078 				qd_idx = 0;
3079 			} else if (*dd_idx >= pd_idx)
3080 				(*dd_idx) += 2; /* D D P Q D */
3081 			break;
3082 		case ALGORITHM_RIGHT_ASYMMETRIC:
3083 			pd_idx = sector_div(stripe2, raid_disks);
3084 			qd_idx = pd_idx + 1;
3085 			if (pd_idx == raid_disks-1) {
3086 				(*dd_idx)++;	/* Q D D D P */
3087 				qd_idx = 0;
3088 			} else if (*dd_idx >= pd_idx)
3089 				(*dd_idx) += 2; /* D D P Q D */
3090 			break;
3091 		case ALGORITHM_LEFT_SYMMETRIC:
3092 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3093 			qd_idx = (pd_idx + 1) % raid_disks;
3094 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3095 			break;
3096 		case ALGORITHM_RIGHT_SYMMETRIC:
3097 			pd_idx = sector_div(stripe2, raid_disks);
3098 			qd_idx = (pd_idx + 1) % raid_disks;
3099 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3100 			break;
3101 
3102 		case ALGORITHM_PARITY_0:
3103 			pd_idx = 0;
3104 			qd_idx = 1;
3105 			(*dd_idx) += 2;
3106 			break;
3107 		case ALGORITHM_PARITY_N:
3108 			pd_idx = data_disks;
3109 			qd_idx = data_disks + 1;
3110 			break;
3111 
3112 		case ALGORITHM_ROTATING_ZERO_RESTART:
3113 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3114 			 * of blocks for computing Q is different.
3115 			 */
3116 			pd_idx = sector_div(stripe2, raid_disks);
3117 			qd_idx = pd_idx + 1;
3118 			if (pd_idx == raid_disks-1) {
3119 				(*dd_idx)++;	/* Q D D D P */
3120 				qd_idx = 0;
3121 			} else if (*dd_idx >= pd_idx)
3122 				(*dd_idx) += 2; /* D D P Q D */
3123 			ddf_layout = 1;
3124 			break;
3125 
3126 		case ALGORITHM_ROTATING_N_RESTART:
3127 			/* Same a left_asymmetric, by first stripe is
3128 			 * D D D P Q  rather than
3129 			 * Q D D D P
3130 			 */
3131 			stripe2 += 1;
3132 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3133 			qd_idx = pd_idx + 1;
3134 			if (pd_idx == raid_disks-1) {
3135 				(*dd_idx)++;	/* Q D D D P */
3136 				qd_idx = 0;
3137 			} else if (*dd_idx >= pd_idx)
3138 				(*dd_idx) += 2; /* D D P Q D */
3139 			ddf_layout = 1;
3140 			break;
3141 
3142 		case ALGORITHM_ROTATING_N_CONTINUE:
3143 			/* Same as left_symmetric but Q is before P */
3144 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3145 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3146 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3147 			ddf_layout = 1;
3148 			break;
3149 
3150 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3151 			/* RAID5 left_asymmetric, with Q on last device */
3152 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3153 			if (*dd_idx >= pd_idx)
3154 				(*dd_idx)++;
3155 			qd_idx = raid_disks - 1;
3156 			break;
3157 
3158 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3159 			pd_idx = sector_div(stripe2, raid_disks-1);
3160 			if (*dd_idx >= pd_idx)
3161 				(*dd_idx)++;
3162 			qd_idx = raid_disks - 1;
3163 			break;
3164 
3165 		case ALGORITHM_LEFT_SYMMETRIC_6:
3166 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3167 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3168 			qd_idx = raid_disks - 1;
3169 			break;
3170 
3171 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3172 			pd_idx = sector_div(stripe2, raid_disks-1);
3173 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3174 			qd_idx = raid_disks - 1;
3175 			break;
3176 
3177 		case ALGORITHM_PARITY_0_6:
3178 			pd_idx = 0;
3179 			(*dd_idx)++;
3180 			qd_idx = raid_disks - 1;
3181 			break;
3182 
3183 		default:
3184 			BUG();
3185 		}
3186 		break;
3187 	}
3188 
3189 	if (sh) {
3190 		sh->pd_idx = pd_idx;
3191 		sh->qd_idx = qd_idx;
3192 		sh->ddf_layout = ddf_layout;
3193 	}
3194 	/*
3195 	 * Finally, compute the new sector number
3196 	 */
3197 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3198 	return new_sector;
3199 }
3200 
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3201 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3202 {
3203 	struct r5conf *conf = sh->raid_conf;
3204 	int raid_disks = sh->disks;
3205 	int data_disks = raid_disks - conf->max_degraded;
3206 	sector_t new_sector = sh->sector, check;
3207 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3208 					 : conf->chunk_sectors;
3209 	int algorithm = previous ? conf->prev_algo
3210 				 : conf->algorithm;
3211 	sector_t stripe;
3212 	int chunk_offset;
3213 	sector_t chunk_number;
3214 	int dummy1, dd_idx = i;
3215 	sector_t r_sector;
3216 	struct stripe_head sh2;
3217 
3218 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3219 	stripe = new_sector;
3220 
3221 	if (i == sh->pd_idx)
3222 		return 0;
3223 	switch(conf->level) {
3224 	case 4: break;
3225 	case 5:
3226 		switch (algorithm) {
3227 		case ALGORITHM_LEFT_ASYMMETRIC:
3228 		case ALGORITHM_RIGHT_ASYMMETRIC:
3229 			if (i > sh->pd_idx)
3230 				i--;
3231 			break;
3232 		case ALGORITHM_LEFT_SYMMETRIC:
3233 		case ALGORITHM_RIGHT_SYMMETRIC:
3234 			if (i < sh->pd_idx)
3235 				i += raid_disks;
3236 			i -= (sh->pd_idx + 1);
3237 			break;
3238 		case ALGORITHM_PARITY_0:
3239 			i -= 1;
3240 			break;
3241 		case ALGORITHM_PARITY_N:
3242 			break;
3243 		default:
3244 			BUG();
3245 		}
3246 		break;
3247 	case 6:
3248 		if (i == sh->qd_idx)
3249 			return 0; /* It is the Q disk */
3250 		switch (algorithm) {
3251 		case ALGORITHM_LEFT_ASYMMETRIC:
3252 		case ALGORITHM_RIGHT_ASYMMETRIC:
3253 		case ALGORITHM_ROTATING_ZERO_RESTART:
3254 		case ALGORITHM_ROTATING_N_RESTART:
3255 			if (sh->pd_idx == raid_disks-1)
3256 				i--;	/* Q D D D P */
3257 			else if (i > sh->pd_idx)
3258 				i -= 2; /* D D P Q D */
3259 			break;
3260 		case ALGORITHM_LEFT_SYMMETRIC:
3261 		case ALGORITHM_RIGHT_SYMMETRIC:
3262 			if (sh->pd_idx == raid_disks-1)
3263 				i--; /* Q D D D P */
3264 			else {
3265 				/* D D P Q D */
3266 				if (i < sh->pd_idx)
3267 					i += raid_disks;
3268 				i -= (sh->pd_idx + 2);
3269 			}
3270 			break;
3271 		case ALGORITHM_PARITY_0:
3272 			i -= 2;
3273 			break;
3274 		case ALGORITHM_PARITY_N:
3275 			break;
3276 		case ALGORITHM_ROTATING_N_CONTINUE:
3277 			/* Like left_symmetric, but P is before Q */
3278 			if (sh->pd_idx == 0)
3279 				i--;	/* P D D D Q */
3280 			else {
3281 				/* D D Q P D */
3282 				if (i < sh->pd_idx)
3283 					i += raid_disks;
3284 				i -= (sh->pd_idx + 1);
3285 			}
3286 			break;
3287 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3288 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3289 			if (i > sh->pd_idx)
3290 				i--;
3291 			break;
3292 		case ALGORITHM_LEFT_SYMMETRIC_6:
3293 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3294 			if (i < sh->pd_idx)
3295 				i += data_disks + 1;
3296 			i -= (sh->pd_idx + 1);
3297 			break;
3298 		case ALGORITHM_PARITY_0_6:
3299 			i -= 1;
3300 			break;
3301 		default:
3302 			BUG();
3303 		}
3304 		break;
3305 	}
3306 
3307 	chunk_number = stripe * data_disks + i;
3308 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3309 
3310 	check = raid5_compute_sector(conf, r_sector,
3311 				     previous, &dummy1, &sh2);
3312 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3313 		|| sh2.qd_idx != sh->qd_idx) {
3314 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3315 			mdname(conf->mddev));
3316 		return 0;
3317 	}
3318 	return r_sector;
3319 }
3320 
3321 /*
3322  * There are cases where we want handle_stripe_dirtying() and
3323  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3324  *
3325  * This function checks whether we want to delay the towrite. Specifically,
3326  * we delay the towrite when:
3327  *
3328  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3329  *      stripe has data in journal (for other devices).
3330  *
3331  *      In this case, when reading data for the non-overwrite dev, it is
3332  *      necessary to handle complex rmw of write back cache (prexor with
3333  *      orig_page, and xor with page). To keep read path simple, we would
3334  *      like to flush data in journal to RAID disks first, so complex rmw
3335  *      is handled in the write patch (handle_stripe_dirtying).
3336  *
3337  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3338  *
3339  *      It is important to be able to flush all stripes in raid5-cache.
3340  *      Therefore, we need reserve some space on the journal device for
3341  *      these flushes. If flush operation includes pending writes to the
3342  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3343  *      for the flush out. If we exclude these pending writes from flush
3344  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3345  *      Therefore, excluding pending writes in these cases enables more
3346  *      efficient use of the journal device.
3347  *
3348  *      Note: To make sure the stripe makes progress, we only delay
3349  *      towrite for stripes with data already in journal (injournal > 0).
3350  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3351  *      no_space_stripes list.
3352  *
3353  *   3. during journal failure
3354  *      In journal failure, we try to flush all cached data to raid disks
3355  *      based on data in stripe cache. The array is read-only to upper
3356  *      layers, so we would skip all pending writes.
3357  *
3358  */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3359 static inline bool delay_towrite(struct r5conf *conf,
3360 				 struct r5dev *dev,
3361 				 struct stripe_head_state *s)
3362 {
3363 	/* case 1 above */
3364 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3365 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3366 		return true;
3367 	/* case 2 above */
3368 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3369 	    s->injournal > 0)
3370 		return true;
3371 	/* case 3 above */
3372 	if (s->log_failed && s->injournal)
3373 		return true;
3374 	return false;
3375 }
3376 
3377 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3378 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3379 			 int rcw, int expand)
3380 {
3381 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3382 	struct r5conf *conf = sh->raid_conf;
3383 	int level = conf->level;
3384 
3385 	if (rcw) {
3386 		/*
3387 		 * In some cases, handle_stripe_dirtying initially decided to
3388 		 * run rmw and allocates extra page for prexor. However, rcw is
3389 		 * cheaper later on. We need to free the extra page now,
3390 		 * because we won't be able to do that in ops_complete_prexor().
3391 		 */
3392 		r5c_release_extra_page(sh);
3393 
3394 		for (i = disks; i--; ) {
3395 			struct r5dev *dev = &sh->dev[i];
3396 
3397 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3398 				set_bit(R5_LOCKED, &dev->flags);
3399 				set_bit(R5_Wantdrain, &dev->flags);
3400 				if (!expand)
3401 					clear_bit(R5_UPTODATE, &dev->flags);
3402 				s->locked++;
3403 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3404 				set_bit(R5_LOCKED, &dev->flags);
3405 				s->locked++;
3406 			}
3407 		}
3408 		/* if we are not expanding this is a proper write request, and
3409 		 * there will be bios with new data to be drained into the
3410 		 * stripe cache
3411 		 */
3412 		if (!expand) {
3413 			if (!s->locked)
3414 				/* False alarm, nothing to do */
3415 				return;
3416 			sh->reconstruct_state = reconstruct_state_drain_run;
3417 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3418 		} else
3419 			sh->reconstruct_state = reconstruct_state_run;
3420 
3421 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3422 
3423 		if (s->locked + conf->max_degraded == disks)
3424 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3425 				atomic_inc(&conf->pending_full_writes);
3426 	} else {
3427 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3428 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3429 		BUG_ON(level == 6 &&
3430 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3431 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3432 
3433 		for (i = disks; i--; ) {
3434 			struct r5dev *dev = &sh->dev[i];
3435 			if (i == pd_idx || i == qd_idx)
3436 				continue;
3437 
3438 			if (dev->towrite &&
3439 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3440 			     test_bit(R5_Wantcompute, &dev->flags))) {
3441 				set_bit(R5_Wantdrain, &dev->flags);
3442 				set_bit(R5_LOCKED, &dev->flags);
3443 				clear_bit(R5_UPTODATE, &dev->flags);
3444 				s->locked++;
3445 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3446 				set_bit(R5_LOCKED, &dev->flags);
3447 				s->locked++;
3448 			}
3449 		}
3450 		if (!s->locked)
3451 			/* False alarm - nothing to do */
3452 			return;
3453 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3454 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3455 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3456 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3457 	}
3458 
3459 	/* keep the parity disk(s) locked while asynchronous operations
3460 	 * are in flight
3461 	 */
3462 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3463 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3464 	s->locked++;
3465 
3466 	if (level == 6) {
3467 		int qd_idx = sh->qd_idx;
3468 		struct r5dev *dev = &sh->dev[qd_idx];
3469 
3470 		set_bit(R5_LOCKED, &dev->flags);
3471 		clear_bit(R5_UPTODATE, &dev->flags);
3472 		s->locked++;
3473 	}
3474 
3475 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3476 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3477 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3478 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3479 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3480 
3481 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3482 		__func__, (unsigned long long)sh->sector,
3483 		s->locked, s->ops_request);
3484 }
3485 
stripe_bio_overlaps(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite)3486 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3487 				int dd_idx, int forwrite)
3488 {
3489 	struct r5conf *conf = sh->raid_conf;
3490 	struct bio **bip;
3491 
3492 	pr_debug("checking bi b#%llu to stripe s#%llu\n",
3493 		 bi->bi_iter.bi_sector, sh->sector);
3494 
3495 	/* Don't allow new IO added to stripes in batch list */
3496 	if (sh->batch_head)
3497 		return true;
3498 
3499 	if (forwrite)
3500 		bip = &sh->dev[dd_idx].towrite;
3501 	else
3502 		bip = &sh->dev[dd_idx].toread;
3503 
3504 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3505 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3506 			return true;
3507 		bip = &(*bip)->bi_next;
3508 	}
3509 
3510 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3511 		return true;
3512 
3513 	if (forwrite && raid5_has_ppl(conf)) {
3514 		/*
3515 		 * With PPL only writes to consecutive data chunks within a
3516 		 * stripe are allowed because for a single stripe_head we can
3517 		 * only have one PPL entry at a time, which describes one data
3518 		 * range. Not really an overlap, but wait_for_overlap can be
3519 		 * used to handle this.
3520 		 */
3521 		sector_t sector;
3522 		sector_t first = 0;
3523 		sector_t last = 0;
3524 		int count = 0;
3525 		int i;
3526 
3527 		for (i = 0; i < sh->disks; i++) {
3528 			if (i != sh->pd_idx &&
3529 			    (i == dd_idx || sh->dev[i].towrite)) {
3530 				sector = sh->dev[i].sector;
3531 				if (count == 0 || sector < first)
3532 					first = sector;
3533 				if (sector > last)
3534 					last = sector;
3535 				count++;
3536 			}
3537 		}
3538 
3539 		if (first + conf->chunk_sectors * (count - 1) != last)
3540 			return true;
3541 	}
3542 
3543 	return false;
3544 }
3545 
__add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3546 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3547 			     int dd_idx, int forwrite, int previous)
3548 {
3549 	struct r5conf *conf = sh->raid_conf;
3550 	struct bio **bip;
3551 	int firstwrite = 0;
3552 
3553 	if (forwrite) {
3554 		bip = &sh->dev[dd_idx].towrite;
3555 		if (!*bip)
3556 			firstwrite = 1;
3557 	} else {
3558 		bip = &sh->dev[dd_idx].toread;
3559 	}
3560 
3561 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3562 		bip = &(*bip)->bi_next;
3563 
3564 	if (!forwrite || previous)
3565 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3566 
3567 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3568 	if (*bip)
3569 		bi->bi_next = *bip;
3570 	*bip = bi;
3571 	bio_inc_remaining(bi);
3572 	md_write_inc(conf->mddev, bi);
3573 
3574 	if (forwrite) {
3575 		/* check if page is covered */
3576 		sector_t sector = sh->dev[dd_idx].sector;
3577 		for (bi=sh->dev[dd_idx].towrite;
3578 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3579 			     bi && bi->bi_iter.bi_sector <= sector;
3580 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3581 			if (bio_end_sector(bi) >= sector)
3582 				sector = bio_end_sector(bi);
3583 		}
3584 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3585 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3586 				sh->overwrite_disks++;
3587 	}
3588 
3589 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3590 		 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3591 		 sh->dev[dd_idx].sector);
3592 
3593 	if (conf->mddev->bitmap && firstwrite) {
3594 		/* Cannot hold spinlock over bitmap_startwrite,
3595 		 * but must ensure this isn't added to a batch until
3596 		 * we have added to the bitmap and set bm_seq.
3597 		 * So set STRIPE_BITMAP_PENDING to prevent
3598 		 * batching.
3599 		 * If multiple __add_stripe_bio() calls race here they
3600 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3601 		 * to complete "bitmap_startwrite" gets to set
3602 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3603 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3604 		 * any more.
3605 		 */
3606 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3607 		spin_unlock_irq(&sh->stripe_lock);
3608 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3609 				     RAID5_STRIPE_SECTORS(conf), 0);
3610 		spin_lock_irq(&sh->stripe_lock);
3611 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3612 		if (!sh->batch_head) {
3613 			sh->bm_seq = conf->seq_flush+1;
3614 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3615 		}
3616 	}
3617 }
3618 
3619 /*
3620  * Each stripe/dev can have one or more bios attached.
3621  * toread/towrite point to the first in a chain.
3622  * The bi_next chain must be in order.
3623  */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3624 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3625 			   int dd_idx, int forwrite, int previous)
3626 {
3627 	spin_lock_irq(&sh->stripe_lock);
3628 
3629 	if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3630 		set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3631 		spin_unlock_irq(&sh->stripe_lock);
3632 		return false;
3633 	}
3634 
3635 	__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3636 	spin_unlock_irq(&sh->stripe_lock);
3637 	return true;
3638 }
3639 
3640 static void end_reshape(struct r5conf *conf);
3641 
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3642 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3643 			    struct stripe_head *sh)
3644 {
3645 	int sectors_per_chunk =
3646 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3647 	int dd_idx;
3648 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3649 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3650 
3651 	raid5_compute_sector(conf,
3652 			     stripe * (disks - conf->max_degraded)
3653 			     *sectors_per_chunk + chunk_offset,
3654 			     previous,
3655 			     &dd_idx, sh);
3656 }
3657 
3658 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3659 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3660 		     struct stripe_head_state *s, int disks)
3661 {
3662 	int i;
3663 	BUG_ON(sh->batch_head);
3664 	for (i = disks; i--; ) {
3665 		struct bio *bi;
3666 		int bitmap_end = 0;
3667 
3668 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3669 			struct md_rdev *rdev;
3670 			rcu_read_lock();
3671 			rdev = rcu_dereference(conf->disks[i].rdev);
3672 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3673 			    !test_bit(Faulty, &rdev->flags))
3674 				atomic_inc(&rdev->nr_pending);
3675 			else
3676 				rdev = NULL;
3677 			rcu_read_unlock();
3678 			if (rdev) {
3679 				if (!rdev_set_badblocks(
3680 					    rdev,
3681 					    sh->sector,
3682 					    RAID5_STRIPE_SECTORS(conf), 0))
3683 					md_error(conf->mddev, rdev);
3684 				rdev_dec_pending(rdev, conf->mddev);
3685 			}
3686 		}
3687 		spin_lock_irq(&sh->stripe_lock);
3688 		/* fail all writes first */
3689 		bi = sh->dev[i].towrite;
3690 		sh->dev[i].towrite = NULL;
3691 		sh->overwrite_disks = 0;
3692 		spin_unlock_irq(&sh->stripe_lock);
3693 		if (bi)
3694 			bitmap_end = 1;
3695 
3696 		log_stripe_write_finished(sh);
3697 
3698 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3699 			wake_up(&conf->wait_for_overlap);
3700 
3701 		while (bi && bi->bi_iter.bi_sector <
3702 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3703 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3704 
3705 			md_write_end(conf->mddev);
3706 			bio_io_error(bi);
3707 			bi = nextbi;
3708 		}
3709 		if (bitmap_end)
3710 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3711 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3712 		bitmap_end = 0;
3713 		/* and fail all 'written' */
3714 		bi = sh->dev[i].written;
3715 		sh->dev[i].written = NULL;
3716 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3717 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3718 			sh->dev[i].page = sh->dev[i].orig_page;
3719 		}
3720 
3721 		if (bi) bitmap_end = 1;
3722 		while (bi && bi->bi_iter.bi_sector <
3723 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3724 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3725 
3726 			md_write_end(conf->mddev);
3727 			bio_io_error(bi);
3728 			bi = bi2;
3729 		}
3730 
3731 		/* fail any reads if this device is non-operational and
3732 		 * the data has not reached the cache yet.
3733 		 */
3734 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3735 		    s->failed > conf->max_degraded &&
3736 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3737 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3738 			spin_lock_irq(&sh->stripe_lock);
3739 			bi = sh->dev[i].toread;
3740 			sh->dev[i].toread = NULL;
3741 			spin_unlock_irq(&sh->stripe_lock);
3742 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3743 				wake_up(&conf->wait_for_overlap);
3744 			if (bi)
3745 				s->to_read--;
3746 			while (bi && bi->bi_iter.bi_sector <
3747 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3748 				struct bio *nextbi =
3749 					r5_next_bio(conf, bi, sh->dev[i].sector);
3750 
3751 				bio_io_error(bi);
3752 				bi = nextbi;
3753 			}
3754 		}
3755 		if (bitmap_end)
3756 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3757 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3758 		/* If we were in the middle of a write the parity block might
3759 		 * still be locked - so just clear all R5_LOCKED flags
3760 		 */
3761 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3762 	}
3763 	s->to_write = 0;
3764 	s->written = 0;
3765 
3766 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3767 		if (atomic_dec_and_test(&conf->pending_full_writes))
3768 			md_wakeup_thread(conf->mddev->thread);
3769 }
3770 
3771 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3772 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3773 		   struct stripe_head_state *s)
3774 {
3775 	int abort = 0;
3776 	int i;
3777 
3778 	BUG_ON(sh->batch_head);
3779 	clear_bit(STRIPE_SYNCING, &sh->state);
3780 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3781 		wake_up(&conf->wait_for_overlap);
3782 	s->syncing = 0;
3783 	s->replacing = 0;
3784 	/* There is nothing more to do for sync/check/repair.
3785 	 * Don't even need to abort as that is handled elsewhere
3786 	 * if needed, and not always wanted e.g. if there is a known
3787 	 * bad block here.
3788 	 * For recover/replace we need to record a bad block on all
3789 	 * non-sync devices, or abort the recovery
3790 	 */
3791 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3792 		/* During recovery devices cannot be removed, so
3793 		 * locking and refcounting of rdevs is not needed
3794 		 */
3795 		rcu_read_lock();
3796 		for (i = 0; i < conf->raid_disks; i++) {
3797 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3798 			if (rdev
3799 			    && !test_bit(Faulty, &rdev->flags)
3800 			    && !test_bit(In_sync, &rdev->flags)
3801 			    && !rdev_set_badblocks(rdev, sh->sector,
3802 						   RAID5_STRIPE_SECTORS(conf), 0))
3803 				abort = 1;
3804 			rdev = rcu_dereference(conf->disks[i].replacement);
3805 			if (rdev
3806 			    && !test_bit(Faulty, &rdev->flags)
3807 			    && !test_bit(In_sync, &rdev->flags)
3808 			    && !rdev_set_badblocks(rdev, sh->sector,
3809 						   RAID5_STRIPE_SECTORS(conf), 0))
3810 				abort = 1;
3811 		}
3812 		rcu_read_unlock();
3813 		if (abort)
3814 			conf->recovery_disabled =
3815 				conf->mddev->recovery_disabled;
3816 	}
3817 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3818 }
3819 
want_replace(struct stripe_head * sh,int disk_idx)3820 static int want_replace(struct stripe_head *sh, int disk_idx)
3821 {
3822 	struct md_rdev *rdev;
3823 	int rv = 0;
3824 
3825 	rcu_read_lock();
3826 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3827 	if (rdev
3828 	    && !test_bit(Faulty, &rdev->flags)
3829 	    && !test_bit(In_sync, &rdev->flags)
3830 	    && (rdev->recovery_offset <= sh->sector
3831 		|| rdev->mddev->recovery_cp <= sh->sector))
3832 		rv = 1;
3833 	rcu_read_unlock();
3834 	return rv;
3835 }
3836 
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3837 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3838 			   int disk_idx, int disks)
3839 {
3840 	struct r5dev *dev = &sh->dev[disk_idx];
3841 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3842 				  &sh->dev[s->failed_num[1]] };
3843 	int i;
3844 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3845 
3846 
3847 	if (test_bit(R5_LOCKED, &dev->flags) ||
3848 	    test_bit(R5_UPTODATE, &dev->flags))
3849 		/* No point reading this as we already have it or have
3850 		 * decided to get it.
3851 		 */
3852 		return 0;
3853 
3854 	if (dev->toread ||
3855 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3856 		/* We need this block to directly satisfy a request */
3857 		return 1;
3858 
3859 	if (s->syncing || s->expanding ||
3860 	    (s->replacing && want_replace(sh, disk_idx)))
3861 		/* When syncing, or expanding we read everything.
3862 		 * When replacing, we need the replaced block.
3863 		 */
3864 		return 1;
3865 
3866 	if ((s->failed >= 1 && fdev[0]->toread) ||
3867 	    (s->failed >= 2 && fdev[1]->toread))
3868 		/* If we want to read from a failed device, then
3869 		 * we need to actually read every other device.
3870 		 */
3871 		return 1;
3872 
3873 	/* Sometimes neither read-modify-write nor reconstruct-write
3874 	 * cycles can work.  In those cases we read every block we
3875 	 * can.  Then the parity-update is certain to have enough to
3876 	 * work with.
3877 	 * This can only be a problem when we need to write something,
3878 	 * and some device has failed.  If either of those tests
3879 	 * fail we need look no further.
3880 	 */
3881 	if (!s->failed || !s->to_write)
3882 		return 0;
3883 
3884 	if (test_bit(R5_Insync, &dev->flags) &&
3885 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3886 		/* Pre-reads at not permitted until after short delay
3887 		 * to gather multiple requests.  However if this
3888 		 * device is no Insync, the block could only be computed
3889 		 * and there is no need to delay that.
3890 		 */
3891 		return 0;
3892 
3893 	for (i = 0; i < s->failed && i < 2; i++) {
3894 		if (fdev[i]->towrite &&
3895 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3896 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3897 			/* If we have a partial write to a failed
3898 			 * device, then we will need to reconstruct
3899 			 * the content of that device, so all other
3900 			 * devices must be read.
3901 			 */
3902 			return 1;
3903 
3904 		if (s->failed >= 2 &&
3905 		    (fdev[i]->towrite ||
3906 		     s->failed_num[i] == sh->pd_idx ||
3907 		     s->failed_num[i] == sh->qd_idx) &&
3908 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3909 			/* In max degraded raid6, If the failed disk is P, Q,
3910 			 * or we want to read the failed disk, we need to do
3911 			 * reconstruct-write.
3912 			 */
3913 			force_rcw = true;
3914 	}
3915 
3916 	/* If we are forced to do a reconstruct-write, because parity
3917 	 * cannot be trusted and we are currently recovering it, there
3918 	 * is extra need to be careful.
3919 	 * If one of the devices that we would need to read, because
3920 	 * it is not being overwritten (and maybe not written at all)
3921 	 * is missing/faulty, then we need to read everything we can.
3922 	 */
3923 	if (!force_rcw &&
3924 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3925 		/* reconstruct-write isn't being forced */
3926 		return 0;
3927 	for (i = 0; i < s->failed && i < 2; i++) {
3928 		if (s->failed_num[i] != sh->pd_idx &&
3929 		    s->failed_num[i] != sh->qd_idx &&
3930 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3931 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3932 			return 1;
3933 	}
3934 
3935 	return 0;
3936 }
3937 
3938 /* fetch_block - checks the given member device to see if its data needs
3939  * to be read or computed to satisfy a request.
3940  *
3941  * Returns 1 when no more member devices need to be checked, otherwise returns
3942  * 0 to tell the loop in handle_stripe_fill to continue
3943  */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3944 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3945 		       int disk_idx, int disks)
3946 {
3947 	struct r5dev *dev = &sh->dev[disk_idx];
3948 
3949 	/* is the data in this block needed, and can we get it? */
3950 	if (need_this_block(sh, s, disk_idx, disks)) {
3951 		/* we would like to get this block, possibly by computing it,
3952 		 * otherwise read it if the backing disk is insync
3953 		 */
3954 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3955 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3956 		BUG_ON(sh->batch_head);
3957 
3958 		/*
3959 		 * In the raid6 case if the only non-uptodate disk is P
3960 		 * then we already trusted P to compute the other failed
3961 		 * drives. It is safe to compute rather than re-read P.
3962 		 * In other cases we only compute blocks from failed
3963 		 * devices, otherwise check/repair might fail to detect
3964 		 * a real inconsistency.
3965 		 */
3966 
3967 		if ((s->uptodate == disks - 1) &&
3968 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3969 		    (s->failed && (disk_idx == s->failed_num[0] ||
3970 				   disk_idx == s->failed_num[1])))) {
3971 			/* have disk failed, and we're requested to fetch it;
3972 			 * do compute it
3973 			 */
3974 			pr_debug("Computing stripe %llu block %d\n",
3975 			       (unsigned long long)sh->sector, disk_idx);
3976 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3977 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3978 			set_bit(R5_Wantcompute, &dev->flags);
3979 			sh->ops.target = disk_idx;
3980 			sh->ops.target2 = -1; /* no 2nd target */
3981 			s->req_compute = 1;
3982 			/* Careful: from this point on 'uptodate' is in the eye
3983 			 * of raid_run_ops which services 'compute' operations
3984 			 * before writes. R5_Wantcompute flags a block that will
3985 			 * be R5_UPTODATE by the time it is needed for a
3986 			 * subsequent operation.
3987 			 */
3988 			s->uptodate++;
3989 			return 1;
3990 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3991 			/* Computing 2-failure is *very* expensive; only
3992 			 * do it if failed >= 2
3993 			 */
3994 			int other;
3995 			for (other = disks; other--; ) {
3996 				if (other == disk_idx)
3997 					continue;
3998 				if (!test_bit(R5_UPTODATE,
3999 				      &sh->dev[other].flags))
4000 					break;
4001 			}
4002 			BUG_ON(other < 0);
4003 			pr_debug("Computing stripe %llu blocks %d,%d\n",
4004 			       (unsigned long long)sh->sector,
4005 			       disk_idx, other);
4006 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4007 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4008 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
4009 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
4010 			sh->ops.target = disk_idx;
4011 			sh->ops.target2 = other;
4012 			s->uptodate += 2;
4013 			s->req_compute = 1;
4014 			return 1;
4015 		} else if (test_bit(R5_Insync, &dev->flags)) {
4016 			set_bit(R5_LOCKED, &dev->flags);
4017 			set_bit(R5_Wantread, &dev->flags);
4018 			s->locked++;
4019 			pr_debug("Reading block %d (sync=%d)\n",
4020 				disk_idx, s->syncing);
4021 		}
4022 	}
4023 
4024 	return 0;
4025 }
4026 
4027 /*
4028  * handle_stripe_fill - read or compute data to satisfy pending requests.
4029  */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)4030 static void handle_stripe_fill(struct stripe_head *sh,
4031 			       struct stripe_head_state *s,
4032 			       int disks)
4033 {
4034 	int i;
4035 
4036 	/* look for blocks to read/compute, skip this if a compute
4037 	 * is already in flight, or if the stripe contents are in the
4038 	 * midst of changing due to a write
4039 	 */
4040 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
4041 	    !sh->reconstruct_state) {
4042 
4043 		/*
4044 		 * For degraded stripe with data in journal, do not handle
4045 		 * read requests yet, instead, flush the stripe to raid
4046 		 * disks first, this avoids handling complex rmw of write
4047 		 * back cache (prexor with orig_page, and then xor with
4048 		 * page) in the read path
4049 		 */
4050 		if (s->to_read && s->injournal && s->failed) {
4051 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4052 				r5c_make_stripe_write_out(sh);
4053 			goto out;
4054 		}
4055 
4056 		for (i = disks; i--; )
4057 			if (fetch_block(sh, s, i, disks))
4058 				break;
4059 	}
4060 out:
4061 	set_bit(STRIPE_HANDLE, &sh->state);
4062 }
4063 
4064 static void break_stripe_batch_list(struct stripe_head *head_sh,
4065 				    unsigned long handle_flags);
4066 /* handle_stripe_clean_event
4067  * any written block on an uptodate or failed drive can be returned.
4068  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4069  * never LOCKED, so we don't need to test 'failed' directly.
4070  */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)4071 static void handle_stripe_clean_event(struct r5conf *conf,
4072 	struct stripe_head *sh, int disks)
4073 {
4074 	int i;
4075 	struct r5dev *dev;
4076 	int discard_pending = 0;
4077 	struct stripe_head *head_sh = sh;
4078 	bool do_endio = false;
4079 
4080 	for (i = disks; i--; )
4081 		if (sh->dev[i].written) {
4082 			dev = &sh->dev[i];
4083 			if (!test_bit(R5_LOCKED, &dev->flags) &&
4084 			    (test_bit(R5_UPTODATE, &dev->flags) ||
4085 			     test_bit(R5_Discard, &dev->flags) ||
4086 			     test_bit(R5_SkipCopy, &dev->flags))) {
4087 				/* We can return any write requests */
4088 				struct bio *wbi, *wbi2;
4089 				pr_debug("Return write for disc %d\n", i);
4090 				if (test_and_clear_bit(R5_Discard, &dev->flags))
4091 					clear_bit(R5_UPTODATE, &dev->flags);
4092 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4093 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4094 				}
4095 				do_endio = true;
4096 
4097 returnbi:
4098 				dev->page = dev->orig_page;
4099 				wbi = dev->written;
4100 				dev->written = NULL;
4101 				while (wbi && wbi->bi_iter.bi_sector <
4102 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4103 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4104 					md_write_end(conf->mddev);
4105 					bio_endio(wbi);
4106 					wbi = wbi2;
4107 				}
4108 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4109 						   RAID5_STRIPE_SECTORS(conf),
4110 						   !test_bit(STRIPE_DEGRADED, &sh->state),
4111 						   0);
4112 				if (head_sh->batch_head) {
4113 					sh = list_first_entry(&sh->batch_list,
4114 							      struct stripe_head,
4115 							      batch_list);
4116 					if (sh != head_sh) {
4117 						dev = &sh->dev[i];
4118 						goto returnbi;
4119 					}
4120 				}
4121 				sh = head_sh;
4122 				dev = &sh->dev[i];
4123 			} else if (test_bit(R5_Discard, &dev->flags))
4124 				discard_pending = 1;
4125 		}
4126 
4127 	log_stripe_write_finished(sh);
4128 
4129 	if (!discard_pending &&
4130 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4131 		int hash;
4132 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4133 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4134 		if (sh->qd_idx >= 0) {
4135 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4136 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4137 		}
4138 		/* now that discard is done we can proceed with any sync */
4139 		clear_bit(STRIPE_DISCARD, &sh->state);
4140 		/*
4141 		 * SCSI discard will change some bio fields and the stripe has
4142 		 * no updated data, so remove it from hash list and the stripe
4143 		 * will be reinitialized
4144 		 */
4145 unhash:
4146 		hash = sh->hash_lock_index;
4147 		spin_lock_irq(conf->hash_locks + hash);
4148 		remove_hash(sh);
4149 		spin_unlock_irq(conf->hash_locks + hash);
4150 		if (head_sh->batch_head) {
4151 			sh = list_first_entry(&sh->batch_list,
4152 					      struct stripe_head, batch_list);
4153 			if (sh != head_sh)
4154 					goto unhash;
4155 		}
4156 		sh = head_sh;
4157 
4158 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4159 			set_bit(STRIPE_HANDLE, &sh->state);
4160 
4161 	}
4162 
4163 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4164 		if (atomic_dec_and_test(&conf->pending_full_writes))
4165 			md_wakeup_thread(conf->mddev->thread);
4166 
4167 	if (head_sh->batch_head && do_endio)
4168 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4169 }
4170 
4171 /*
4172  * For RMW in write back cache, we need extra page in prexor to store the
4173  * old data. This page is stored in dev->orig_page.
4174  *
4175  * This function checks whether we have data for prexor. The exact logic
4176  * is:
4177  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4178  */
uptodate_for_rmw(struct r5dev * dev)4179 static inline bool uptodate_for_rmw(struct r5dev *dev)
4180 {
4181 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4182 		(!test_bit(R5_InJournal, &dev->flags) ||
4183 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4184 }
4185 
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4186 static int handle_stripe_dirtying(struct r5conf *conf,
4187 				  struct stripe_head *sh,
4188 				  struct stripe_head_state *s,
4189 				  int disks)
4190 {
4191 	int rmw = 0, rcw = 0, i;
4192 	sector_t recovery_cp = conf->mddev->recovery_cp;
4193 
4194 	/* Check whether resync is now happening or should start.
4195 	 * If yes, then the array is dirty (after unclean shutdown or
4196 	 * initial creation), so parity in some stripes might be inconsistent.
4197 	 * In this case, we need to always do reconstruct-write, to ensure
4198 	 * that in case of drive failure or read-error correction, we
4199 	 * generate correct data from the parity.
4200 	 */
4201 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4202 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4203 	     s->failed == 0)) {
4204 		/* Calculate the real rcw later - for now make it
4205 		 * look like rcw is cheaper
4206 		 */
4207 		rcw = 1; rmw = 2;
4208 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4209 			 conf->rmw_level, (unsigned long long)recovery_cp,
4210 			 (unsigned long long)sh->sector);
4211 	} else for (i = disks; i--; ) {
4212 		/* would I have to read this buffer for read_modify_write */
4213 		struct r5dev *dev = &sh->dev[i];
4214 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4215 		     i == sh->pd_idx || i == sh->qd_idx ||
4216 		     test_bit(R5_InJournal, &dev->flags)) &&
4217 		    !test_bit(R5_LOCKED, &dev->flags) &&
4218 		    !(uptodate_for_rmw(dev) ||
4219 		      test_bit(R5_Wantcompute, &dev->flags))) {
4220 			if (test_bit(R5_Insync, &dev->flags))
4221 				rmw++;
4222 			else
4223 				rmw += 2*disks;  /* cannot read it */
4224 		}
4225 		/* Would I have to read this buffer for reconstruct_write */
4226 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4227 		    i != sh->pd_idx && i != sh->qd_idx &&
4228 		    !test_bit(R5_LOCKED, &dev->flags) &&
4229 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4230 		      test_bit(R5_Wantcompute, &dev->flags))) {
4231 			if (test_bit(R5_Insync, &dev->flags))
4232 				rcw++;
4233 			else
4234 				rcw += 2*disks;
4235 		}
4236 	}
4237 
4238 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4239 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4240 	set_bit(STRIPE_HANDLE, &sh->state);
4241 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4242 		/* prefer read-modify-write, but need to get some data */
4243 		if (conf->mddev->queue)
4244 			blk_add_trace_msg(conf->mddev->queue,
4245 					  "raid5 rmw %llu %d",
4246 					  (unsigned long long)sh->sector, rmw);
4247 		for (i = disks; i--; ) {
4248 			struct r5dev *dev = &sh->dev[i];
4249 			if (test_bit(R5_InJournal, &dev->flags) &&
4250 			    dev->page == dev->orig_page &&
4251 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4252 				/* alloc page for prexor */
4253 				struct page *p = alloc_page(GFP_NOIO);
4254 
4255 				if (p) {
4256 					dev->orig_page = p;
4257 					continue;
4258 				}
4259 
4260 				/*
4261 				 * alloc_page() failed, try use
4262 				 * disk_info->extra_page
4263 				 */
4264 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4265 						      &conf->cache_state)) {
4266 					r5c_use_extra_page(sh);
4267 					break;
4268 				}
4269 
4270 				/* extra_page in use, add to delayed_list */
4271 				set_bit(STRIPE_DELAYED, &sh->state);
4272 				s->waiting_extra_page = 1;
4273 				return -EAGAIN;
4274 			}
4275 		}
4276 
4277 		for (i = disks; i--; ) {
4278 			struct r5dev *dev = &sh->dev[i];
4279 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4280 			     i == sh->pd_idx || i == sh->qd_idx ||
4281 			     test_bit(R5_InJournal, &dev->flags)) &&
4282 			    !test_bit(R5_LOCKED, &dev->flags) &&
4283 			    !(uptodate_for_rmw(dev) ||
4284 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4285 			    test_bit(R5_Insync, &dev->flags)) {
4286 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4287 					     &sh->state)) {
4288 					pr_debug("Read_old block %d for r-m-w\n",
4289 						 i);
4290 					set_bit(R5_LOCKED, &dev->flags);
4291 					set_bit(R5_Wantread, &dev->flags);
4292 					s->locked++;
4293 				} else
4294 					set_bit(STRIPE_DELAYED, &sh->state);
4295 			}
4296 		}
4297 	}
4298 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4299 		/* want reconstruct write, but need to get some data */
4300 		int qread =0;
4301 		rcw = 0;
4302 		for (i = disks; i--; ) {
4303 			struct r5dev *dev = &sh->dev[i];
4304 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4305 			    i != sh->pd_idx && i != sh->qd_idx &&
4306 			    !test_bit(R5_LOCKED, &dev->flags) &&
4307 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4308 			      test_bit(R5_Wantcompute, &dev->flags))) {
4309 				rcw++;
4310 				if (test_bit(R5_Insync, &dev->flags) &&
4311 				    test_bit(STRIPE_PREREAD_ACTIVE,
4312 					     &sh->state)) {
4313 					pr_debug("Read_old block "
4314 						"%d for Reconstruct\n", i);
4315 					set_bit(R5_LOCKED, &dev->flags);
4316 					set_bit(R5_Wantread, &dev->flags);
4317 					s->locked++;
4318 					qread++;
4319 				} else
4320 					set_bit(STRIPE_DELAYED, &sh->state);
4321 			}
4322 		}
4323 		if (rcw && conf->mddev->queue)
4324 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4325 					  (unsigned long long)sh->sector,
4326 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4327 	}
4328 
4329 	if (rcw > disks && rmw > disks &&
4330 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4331 		set_bit(STRIPE_DELAYED, &sh->state);
4332 
4333 	/* now if nothing is locked, and if we have enough data,
4334 	 * we can start a write request
4335 	 */
4336 	/* since handle_stripe can be called at any time we need to handle the
4337 	 * case where a compute block operation has been submitted and then a
4338 	 * subsequent call wants to start a write request.  raid_run_ops only
4339 	 * handles the case where compute block and reconstruct are requested
4340 	 * simultaneously.  If this is not the case then new writes need to be
4341 	 * held off until the compute completes.
4342 	 */
4343 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4344 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4345 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4346 		schedule_reconstruction(sh, s, rcw == 0, 0);
4347 	return 0;
4348 }
4349 
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4350 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4351 				struct stripe_head_state *s, int disks)
4352 {
4353 	struct r5dev *dev = NULL;
4354 
4355 	BUG_ON(sh->batch_head);
4356 	set_bit(STRIPE_HANDLE, &sh->state);
4357 
4358 	switch (sh->check_state) {
4359 	case check_state_idle:
4360 		/* start a new check operation if there are no failures */
4361 		if (s->failed == 0) {
4362 			BUG_ON(s->uptodate != disks);
4363 			sh->check_state = check_state_run;
4364 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4365 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4366 			s->uptodate--;
4367 			break;
4368 		}
4369 		dev = &sh->dev[s->failed_num[0]];
4370 		fallthrough;
4371 	case check_state_compute_result:
4372 		sh->check_state = check_state_idle;
4373 		if (!dev)
4374 			dev = &sh->dev[sh->pd_idx];
4375 
4376 		/* check that a write has not made the stripe insync */
4377 		if (test_bit(STRIPE_INSYNC, &sh->state))
4378 			break;
4379 
4380 		/* either failed parity check, or recovery is happening */
4381 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4382 		BUG_ON(s->uptodate != disks);
4383 
4384 		set_bit(R5_LOCKED, &dev->flags);
4385 		s->locked++;
4386 		set_bit(R5_Wantwrite, &dev->flags);
4387 
4388 		clear_bit(STRIPE_DEGRADED, &sh->state);
4389 		set_bit(STRIPE_INSYNC, &sh->state);
4390 		break;
4391 	case check_state_run:
4392 		break; /* we will be called again upon completion */
4393 	case check_state_check_result:
4394 		sh->check_state = check_state_idle;
4395 
4396 		/* if a failure occurred during the check operation, leave
4397 		 * STRIPE_INSYNC not set and let the stripe be handled again
4398 		 */
4399 		if (s->failed)
4400 			break;
4401 
4402 		/* handle a successful check operation, if parity is correct
4403 		 * we are done.  Otherwise update the mismatch count and repair
4404 		 * parity if !MD_RECOVERY_CHECK
4405 		 */
4406 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4407 			/* parity is correct (on disc,
4408 			 * not in buffer any more)
4409 			 */
4410 			set_bit(STRIPE_INSYNC, &sh->state);
4411 		else {
4412 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4413 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4414 				/* don't try to repair!! */
4415 				set_bit(STRIPE_INSYNC, &sh->state);
4416 				pr_warn_ratelimited("%s: mismatch sector in range "
4417 						    "%llu-%llu\n", mdname(conf->mddev),
4418 						    (unsigned long long) sh->sector,
4419 						    (unsigned long long) sh->sector +
4420 						    RAID5_STRIPE_SECTORS(conf));
4421 			} else {
4422 				sh->check_state = check_state_compute_run;
4423 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4424 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4425 				set_bit(R5_Wantcompute,
4426 					&sh->dev[sh->pd_idx].flags);
4427 				sh->ops.target = sh->pd_idx;
4428 				sh->ops.target2 = -1;
4429 				s->uptodate++;
4430 			}
4431 		}
4432 		break;
4433 	case check_state_compute_run:
4434 		break;
4435 	default:
4436 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4437 		       __func__, sh->check_state,
4438 		       (unsigned long long) sh->sector);
4439 		BUG();
4440 	}
4441 }
4442 
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4443 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4444 				  struct stripe_head_state *s,
4445 				  int disks)
4446 {
4447 	int pd_idx = sh->pd_idx;
4448 	int qd_idx = sh->qd_idx;
4449 	struct r5dev *dev;
4450 
4451 	BUG_ON(sh->batch_head);
4452 	set_bit(STRIPE_HANDLE, &sh->state);
4453 
4454 	BUG_ON(s->failed > 2);
4455 
4456 	/* Want to check and possibly repair P and Q.
4457 	 * However there could be one 'failed' device, in which
4458 	 * case we can only check one of them, possibly using the
4459 	 * other to generate missing data
4460 	 */
4461 
4462 	switch (sh->check_state) {
4463 	case check_state_idle:
4464 		/* start a new check operation if there are < 2 failures */
4465 		if (s->failed == s->q_failed) {
4466 			/* The only possible failed device holds Q, so it
4467 			 * makes sense to check P (If anything else were failed,
4468 			 * we would have used P to recreate it).
4469 			 */
4470 			sh->check_state = check_state_run;
4471 		}
4472 		if (!s->q_failed && s->failed < 2) {
4473 			/* Q is not failed, and we didn't use it to generate
4474 			 * anything, so it makes sense to check it
4475 			 */
4476 			if (sh->check_state == check_state_run)
4477 				sh->check_state = check_state_run_pq;
4478 			else
4479 				sh->check_state = check_state_run_q;
4480 		}
4481 
4482 		/* discard potentially stale zero_sum_result */
4483 		sh->ops.zero_sum_result = 0;
4484 
4485 		if (sh->check_state == check_state_run) {
4486 			/* async_xor_zero_sum destroys the contents of P */
4487 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4488 			s->uptodate--;
4489 		}
4490 		if (sh->check_state >= check_state_run &&
4491 		    sh->check_state <= check_state_run_pq) {
4492 			/* async_syndrome_zero_sum preserves P and Q, so
4493 			 * no need to mark them !uptodate here
4494 			 */
4495 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4496 			break;
4497 		}
4498 
4499 		/* we have 2-disk failure */
4500 		BUG_ON(s->failed != 2);
4501 		fallthrough;
4502 	case check_state_compute_result:
4503 		sh->check_state = check_state_idle;
4504 
4505 		/* check that a write has not made the stripe insync */
4506 		if (test_bit(STRIPE_INSYNC, &sh->state))
4507 			break;
4508 
4509 		/* now write out any block on a failed drive,
4510 		 * or P or Q if they were recomputed
4511 		 */
4512 		dev = NULL;
4513 		if (s->failed == 2) {
4514 			dev = &sh->dev[s->failed_num[1]];
4515 			s->locked++;
4516 			set_bit(R5_LOCKED, &dev->flags);
4517 			set_bit(R5_Wantwrite, &dev->flags);
4518 		}
4519 		if (s->failed >= 1) {
4520 			dev = &sh->dev[s->failed_num[0]];
4521 			s->locked++;
4522 			set_bit(R5_LOCKED, &dev->flags);
4523 			set_bit(R5_Wantwrite, &dev->flags);
4524 		}
4525 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4526 			dev = &sh->dev[pd_idx];
4527 			s->locked++;
4528 			set_bit(R5_LOCKED, &dev->flags);
4529 			set_bit(R5_Wantwrite, &dev->flags);
4530 		}
4531 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4532 			dev = &sh->dev[qd_idx];
4533 			s->locked++;
4534 			set_bit(R5_LOCKED, &dev->flags);
4535 			set_bit(R5_Wantwrite, &dev->flags);
4536 		}
4537 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4538 			      "%s: disk%td not up to date\n",
4539 			      mdname(conf->mddev),
4540 			      dev - (struct r5dev *) &sh->dev)) {
4541 			clear_bit(R5_LOCKED, &dev->flags);
4542 			clear_bit(R5_Wantwrite, &dev->flags);
4543 			s->locked--;
4544 		}
4545 		clear_bit(STRIPE_DEGRADED, &sh->state);
4546 
4547 		set_bit(STRIPE_INSYNC, &sh->state);
4548 		break;
4549 	case check_state_run:
4550 	case check_state_run_q:
4551 	case check_state_run_pq:
4552 		break; /* we will be called again upon completion */
4553 	case check_state_check_result:
4554 		sh->check_state = check_state_idle;
4555 
4556 		/* handle a successful check operation, if parity is correct
4557 		 * we are done.  Otherwise update the mismatch count and repair
4558 		 * parity if !MD_RECOVERY_CHECK
4559 		 */
4560 		if (sh->ops.zero_sum_result == 0) {
4561 			/* both parities are correct */
4562 			if (!s->failed)
4563 				set_bit(STRIPE_INSYNC, &sh->state);
4564 			else {
4565 				/* in contrast to the raid5 case we can validate
4566 				 * parity, but still have a failure to write
4567 				 * back
4568 				 */
4569 				sh->check_state = check_state_compute_result;
4570 				/* Returning at this point means that we may go
4571 				 * off and bring p and/or q uptodate again so
4572 				 * we make sure to check zero_sum_result again
4573 				 * to verify if p or q need writeback
4574 				 */
4575 			}
4576 		} else {
4577 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4578 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4579 				/* don't try to repair!! */
4580 				set_bit(STRIPE_INSYNC, &sh->state);
4581 				pr_warn_ratelimited("%s: mismatch sector in range "
4582 						    "%llu-%llu\n", mdname(conf->mddev),
4583 						    (unsigned long long) sh->sector,
4584 						    (unsigned long long) sh->sector +
4585 						    RAID5_STRIPE_SECTORS(conf));
4586 			} else {
4587 				int *target = &sh->ops.target;
4588 
4589 				sh->ops.target = -1;
4590 				sh->ops.target2 = -1;
4591 				sh->check_state = check_state_compute_run;
4592 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4593 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4594 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4595 					set_bit(R5_Wantcompute,
4596 						&sh->dev[pd_idx].flags);
4597 					*target = pd_idx;
4598 					target = &sh->ops.target2;
4599 					s->uptodate++;
4600 				}
4601 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4602 					set_bit(R5_Wantcompute,
4603 						&sh->dev[qd_idx].flags);
4604 					*target = qd_idx;
4605 					s->uptodate++;
4606 				}
4607 			}
4608 		}
4609 		break;
4610 	case check_state_compute_run:
4611 		break;
4612 	default:
4613 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4614 			__func__, sh->check_state,
4615 			(unsigned long long) sh->sector);
4616 		BUG();
4617 	}
4618 }
4619 
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4620 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4621 {
4622 	int i;
4623 
4624 	/* We have read all the blocks in this stripe and now we need to
4625 	 * copy some of them into a target stripe for expand.
4626 	 */
4627 	struct dma_async_tx_descriptor *tx = NULL;
4628 	BUG_ON(sh->batch_head);
4629 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4630 	for (i = 0; i < sh->disks; i++)
4631 		if (i != sh->pd_idx && i != sh->qd_idx) {
4632 			int dd_idx, j;
4633 			struct stripe_head *sh2;
4634 			struct async_submit_ctl submit;
4635 
4636 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4637 			sector_t s = raid5_compute_sector(conf, bn, 0,
4638 							  &dd_idx, NULL);
4639 			sh2 = raid5_get_active_stripe(conf, NULL, s,
4640 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4641 			if (sh2 == NULL)
4642 				/* so far only the early blocks of this stripe
4643 				 * have been requested.  When later blocks
4644 				 * get requested, we will try again
4645 				 */
4646 				continue;
4647 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4648 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4649 				/* must have already done this block */
4650 				raid5_release_stripe(sh2);
4651 				continue;
4652 			}
4653 
4654 			/* place all the copies on one channel */
4655 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4656 			tx = async_memcpy(sh2->dev[dd_idx].page,
4657 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4658 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4659 					  &submit);
4660 
4661 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4662 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4663 			for (j = 0; j < conf->raid_disks; j++)
4664 				if (j != sh2->pd_idx &&
4665 				    j != sh2->qd_idx &&
4666 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4667 					break;
4668 			if (j == conf->raid_disks) {
4669 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4670 				set_bit(STRIPE_HANDLE, &sh2->state);
4671 			}
4672 			raid5_release_stripe(sh2);
4673 
4674 		}
4675 	/* done submitting copies, wait for them to complete */
4676 	async_tx_quiesce(&tx);
4677 }
4678 
4679 /*
4680  * handle_stripe - do things to a stripe.
4681  *
4682  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4683  * state of various bits to see what needs to be done.
4684  * Possible results:
4685  *    return some read requests which now have data
4686  *    return some write requests which are safely on storage
4687  *    schedule a read on some buffers
4688  *    schedule a write of some buffers
4689  *    return confirmation of parity correctness
4690  *
4691  */
4692 
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4693 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4694 {
4695 	struct r5conf *conf = sh->raid_conf;
4696 	int disks = sh->disks;
4697 	struct r5dev *dev;
4698 	int i;
4699 	int do_recovery = 0;
4700 
4701 	memset(s, 0, sizeof(*s));
4702 
4703 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4704 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4705 	s->failed_num[0] = -1;
4706 	s->failed_num[1] = -1;
4707 	s->log_failed = r5l_log_disk_error(conf);
4708 
4709 	/* Now to look around and see what can be done */
4710 	rcu_read_lock();
4711 	for (i=disks; i--; ) {
4712 		struct md_rdev *rdev;
4713 		sector_t first_bad;
4714 		int bad_sectors;
4715 		int is_bad = 0;
4716 
4717 		dev = &sh->dev[i];
4718 
4719 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4720 			 i, dev->flags,
4721 			 dev->toread, dev->towrite, dev->written);
4722 		/* maybe we can reply to a read
4723 		 *
4724 		 * new wantfill requests are only permitted while
4725 		 * ops_complete_biofill is guaranteed to be inactive
4726 		 */
4727 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4728 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4729 			set_bit(R5_Wantfill, &dev->flags);
4730 
4731 		/* now count some things */
4732 		if (test_bit(R5_LOCKED, &dev->flags))
4733 			s->locked++;
4734 		if (test_bit(R5_UPTODATE, &dev->flags))
4735 			s->uptodate++;
4736 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4737 			s->compute++;
4738 			BUG_ON(s->compute > 2);
4739 		}
4740 
4741 		if (test_bit(R5_Wantfill, &dev->flags))
4742 			s->to_fill++;
4743 		else if (dev->toread)
4744 			s->to_read++;
4745 		if (dev->towrite) {
4746 			s->to_write++;
4747 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4748 				s->non_overwrite++;
4749 		}
4750 		if (dev->written)
4751 			s->written++;
4752 		/* Prefer to use the replacement for reads, but only
4753 		 * if it is recovered enough and has no bad blocks.
4754 		 */
4755 		rdev = rcu_dereference(conf->disks[i].replacement);
4756 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4757 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4758 		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4759 				 &first_bad, &bad_sectors))
4760 			set_bit(R5_ReadRepl, &dev->flags);
4761 		else {
4762 			if (rdev && !test_bit(Faulty, &rdev->flags))
4763 				set_bit(R5_NeedReplace, &dev->flags);
4764 			else
4765 				clear_bit(R5_NeedReplace, &dev->flags);
4766 			rdev = rcu_dereference(conf->disks[i].rdev);
4767 			clear_bit(R5_ReadRepl, &dev->flags);
4768 		}
4769 		if (rdev && test_bit(Faulty, &rdev->flags))
4770 			rdev = NULL;
4771 		if (rdev) {
4772 			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4773 					     &first_bad, &bad_sectors);
4774 			if (s->blocked_rdev == NULL
4775 			    && (test_bit(Blocked, &rdev->flags)
4776 				|| is_bad < 0)) {
4777 				if (is_bad < 0)
4778 					set_bit(BlockedBadBlocks,
4779 						&rdev->flags);
4780 				s->blocked_rdev = rdev;
4781 				atomic_inc(&rdev->nr_pending);
4782 			}
4783 		}
4784 		clear_bit(R5_Insync, &dev->flags);
4785 		if (!rdev)
4786 			/* Not in-sync */;
4787 		else if (is_bad) {
4788 			/* also not in-sync */
4789 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4790 			    test_bit(R5_UPTODATE, &dev->flags)) {
4791 				/* treat as in-sync, but with a read error
4792 				 * which we can now try to correct
4793 				 */
4794 				set_bit(R5_Insync, &dev->flags);
4795 				set_bit(R5_ReadError, &dev->flags);
4796 			}
4797 		} else if (test_bit(In_sync, &rdev->flags))
4798 			set_bit(R5_Insync, &dev->flags);
4799 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4800 			/* in sync if before recovery_offset */
4801 			set_bit(R5_Insync, &dev->flags);
4802 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4803 			 test_bit(R5_Expanded, &dev->flags))
4804 			/* If we've reshaped into here, we assume it is Insync.
4805 			 * We will shortly update recovery_offset to make
4806 			 * it official.
4807 			 */
4808 			set_bit(R5_Insync, &dev->flags);
4809 
4810 		if (test_bit(R5_WriteError, &dev->flags)) {
4811 			/* This flag does not apply to '.replacement'
4812 			 * only to .rdev, so make sure to check that*/
4813 			struct md_rdev *rdev2 = rcu_dereference(
4814 				conf->disks[i].rdev);
4815 			if (rdev2 == rdev)
4816 				clear_bit(R5_Insync, &dev->flags);
4817 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4818 				s->handle_bad_blocks = 1;
4819 				atomic_inc(&rdev2->nr_pending);
4820 			} else
4821 				clear_bit(R5_WriteError, &dev->flags);
4822 		}
4823 		if (test_bit(R5_MadeGood, &dev->flags)) {
4824 			/* This flag does not apply to '.replacement'
4825 			 * only to .rdev, so make sure to check that*/
4826 			struct md_rdev *rdev2 = rcu_dereference(
4827 				conf->disks[i].rdev);
4828 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4829 				s->handle_bad_blocks = 1;
4830 				atomic_inc(&rdev2->nr_pending);
4831 			} else
4832 				clear_bit(R5_MadeGood, &dev->flags);
4833 		}
4834 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4835 			struct md_rdev *rdev2 = rcu_dereference(
4836 				conf->disks[i].replacement);
4837 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4838 				s->handle_bad_blocks = 1;
4839 				atomic_inc(&rdev2->nr_pending);
4840 			} else
4841 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4842 		}
4843 		if (!test_bit(R5_Insync, &dev->flags)) {
4844 			/* The ReadError flag will just be confusing now */
4845 			clear_bit(R5_ReadError, &dev->flags);
4846 			clear_bit(R5_ReWrite, &dev->flags);
4847 		}
4848 		if (test_bit(R5_ReadError, &dev->flags))
4849 			clear_bit(R5_Insync, &dev->flags);
4850 		if (!test_bit(R5_Insync, &dev->flags)) {
4851 			if (s->failed < 2)
4852 				s->failed_num[s->failed] = i;
4853 			s->failed++;
4854 			if (rdev && !test_bit(Faulty, &rdev->flags))
4855 				do_recovery = 1;
4856 			else if (!rdev) {
4857 				rdev = rcu_dereference(
4858 				    conf->disks[i].replacement);
4859 				if (rdev && !test_bit(Faulty, &rdev->flags))
4860 					do_recovery = 1;
4861 			}
4862 		}
4863 
4864 		if (test_bit(R5_InJournal, &dev->flags))
4865 			s->injournal++;
4866 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4867 			s->just_cached++;
4868 	}
4869 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4870 		/* If there is a failed device being replaced,
4871 		 *     we must be recovering.
4872 		 * else if we are after recovery_cp, we must be syncing
4873 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4874 		 * else we can only be replacing
4875 		 * sync and recovery both need to read all devices, and so
4876 		 * use the same flag.
4877 		 */
4878 		if (do_recovery ||
4879 		    sh->sector >= conf->mddev->recovery_cp ||
4880 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4881 			s->syncing = 1;
4882 		else
4883 			s->replacing = 1;
4884 	}
4885 	rcu_read_unlock();
4886 }
4887 
4888 /*
4889  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4890  * a head which can now be handled.
4891  */
clear_batch_ready(struct stripe_head * sh)4892 static int clear_batch_ready(struct stripe_head *sh)
4893 {
4894 	struct stripe_head *tmp;
4895 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4896 		return (sh->batch_head && sh->batch_head != sh);
4897 	spin_lock(&sh->stripe_lock);
4898 	if (!sh->batch_head) {
4899 		spin_unlock(&sh->stripe_lock);
4900 		return 0;
4901 	}
4902 
4903 	/*
4904 	 * this stripe could be added to a batch list before we check
4905 	 * BATCH_READY, skips it
4906 	 */
4907 	if (sh->batch_head != sh) {
4908 		spin_unlock(&sh->stripe_lock);
4909 		return 1;
4910 	}
4911 	spin_lock(&sh->batch_lock);
4912 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4913 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4914 	spin_unlock(&sh->batch_lock);
4915 	spin_unlock(&sh->stripe_lock);
4916 
4917 	/*
4918 	 * BATCH_READY is cleared, no new stripes can be added.
4919 	 * batch_list can be accessed without lock
4920 	 */
4921 	return 0;
4922 }
4923 
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4924 static void break_stripe_batch_list(struct stripe_head *head_sh,
4925 				    unsigned long handle_flags)
4926 {
4927 	struct stripe_head *sh, *next;
4928 	int i;
4929 	int do_wakeup = 0;
4930 
4931 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4932 
4933 		list_del_init(&sh->batch_list);
4934 
4935 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4936 					  (1 << STRIPE_SYNCING) |
4937 					  (1 << STRIPE_REPLACED) |
4938 					  (1 << STRIPE_DELAYED) |
4939 					  (1 << STRIPE_BIT_DELAY) |
4940 					  (1 << STRIPE_FULL_WRITE) |
4941 					  (1 << STRIPE_BIOFILL_RUN) |
4942 					  (1 << STRIPE_COMPUTE_RUN)  |
4943 					  (1 << STRIPE_DISCARD) |
4944 					  (1 << STRIPE_BATCH_READY) |
4945 					  (1 << STRIPE_BATCH_ERR) |
4946 					  (1 << STRIPE_BITMAP_PENDING)),
4947 			"stripe state: %lx\n", sh->state);
4948 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4949 					      (1 << STRIPE_REPLACED)),
4950 			"head stripe state: %lx\n", head_sh->state);
4951 
4952 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4953 					    (1 << STRIPE_PREREAD_ACTIVE) |
4954 					    (1 << STRIPE_DEGRADED) |
4955 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4956 			      head_sh->state & (1 << STRIPE_INSYNC));
4957 
4958 		sh->check_state = head_sh->check_state;
4959 		sh->reconstruct_state = head_sh->reconstruct_state;
4960 		spin_lock_irq(&sh->stripe_lock);
4961 		sh->batch_head = NULL;
4962 		spin_unlock_irq(&sh->stripe_lock);
4963 		for (i = 0; i < sh->disks; i++) {
4964 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4965 				do_wakeup = 1;
4966 			sh->dev[i].flags = head_sh->dev[i].flags &
4967 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4968 		}
4969 		if (handle_flags == 0 ||
4970 		    sh->state & handle_flags)
4971 			set_bit(STRIPE_HANDLE, &sh->state);
4972 		raid5_release_stripe(sh);
4973 	}
4974 	spin_lock_irq(&head_sh->stripe_lock);
4975 	head_sh->batch_head = NULL;
4976 	spin_unlock_irq(&head_sh->stripe_lock);
4977 	for (i = 0; i < head_sh->disks; i++)
4978 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4979 			do_wakeup = 1;
4980 	if (head_sh->state & handle_flags)
4981 		set_bit(STRIPE_HANDLE, &head_sh->state);
4982 
4983 	if (do_wakeup)
4984 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4985 }
4986 
handle_stripe(struct stripe_head * sh)4987 static void handle_stripe(struct stripe_head *sh)
4988 {
4989 	struct stripe_head_state s;
4990 	struct r5conf *conf = sh->raid_conf;
4991 	int i;
4992 	int prexor;
4993 	int disks = sh->disks;
4994 	struct r5dev *pdev, *qdev;
4995 
4996 	clear_bit(STRIPE_HANDLE, &sh->state);
4997 
4998 	/*
4999 	 * handle_stripe should not continue handle the batched stripe, only
5000 	 * the head of batch list or lone stripe can continue. Otherwise we
5001 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
5002 	 * is set for the batched stripe.
5003 	 */
5004 	if (clear_batch_ready(sh))
5005 		return;
5006 
5007 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
5008 		/* already being handled, ensure it gets handled
5009 		 * again when current action finishes */
5010 		set_bit(STRIPE_HANDLE, &sh->state);
5011 		return;
5012 	}
5013 
5014 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
5015 		break_stripe_batch_list(sh, 0);
5016 
5017 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
5018 		spin_lock(&sh->stripe_lock);
5019 		/*
5020 		 * Cannot process 'sync' concurrently with 'discard'.
5021 		 * Flush data in r5cache before 'sync'.
5022 		 */
5023 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
5024 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
5025 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
5026 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
5027 			set_bit(STRIPE_SYNCING, &sh->state);
5028 			clear_bit(STRIPE_INSYNC, &sh->state);
5029 			clear_bit(STRIPE_REPLACED, &sh->state);
5030 		}
5031 		spin_unlock(&sh->stripe_lock);
5032 	}
5033 	clear_bit(STRIPE_DELAYED, &sh->state);
5034 
5035 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
5036 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
5037 	       (unsigned long long)sh->sector, sh->state,
5038 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
5039 	       sh->check_state, sh->reconstruct_state);
5040 
5041 	analyse_stripe(sh, &s);
5042 
5043 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
5044 		goto finish;
5045 
5046 	if (s.handle_bad_blocks ||
5047 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
5048 		set_bit(STRIPE_HANDLE, &sh->state);
5049 		goto finish;
5050 	}
5051 
5052 	if (unlikely(s.blocked_rdev)) {
5053 		if (s.syncing || s.expanding || s.expanded ||
5054 		    s.replacing || s.to_write || s.written) {
5055 			set_bit(STRIPE_HANDLE, &sh->state);
5056 			goto finish;
5057 		}
5058 		/* There is nothing for the blocked_rdev to block */
5059 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
5060 		s.blocked_rdev = NULL;
5061 	}
5062 
5063 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5064 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5065 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5066 	}
5067 
5068 	pr_debug("locked=%d uptodate=%d to_read=%d"
5069 	       " to_write=%d failed=%d failed_num=%d,%d\n",
5070 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5071 	       s.failed_num[0], s.failed_num[1]);
5072 	/*
5073 	 * check if the array has lost more than max_degraded devices and,
5074 	 * if so, some requests might need to be failed.
5075 	 *
5076 	 * When journal device failed (log_failed), we will only process
5077 	 * the stripe if there is data need write to raid disks
5078 	 */
5079 	if (s.failed > conf->max_degraded ||
5080 	    (s.log_failed && s.injournal == 0)) {
5081 		sh->check_state = 0;
5082 		sh->reconstruct_state = 0;
5083 		break_stripe_batch_list(sh, 0);
5084 		if (s.to_read+s.to_write+s.written)
5085 			handle_failed_stripe(conf, sh, &s, disks);
5086 		if (s.syncing + s.replacing)
5087 			handle_failed_sync(conf, sh, &s);
5088 	}
5089 
5090 	/* Now we check to see if any write operations have recently
5091 	 * completed
5092 	 */
5093 	prexor = 0;
5094 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5095 		prexor = 1;
5096 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
5097 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5098 		sh->reconstruct_state = reconstruct_state_idle;
5099 
5100 		/* All the 'written' buffers and the parity block are ready to
5101 		 * be written back to disk
5102 		 */
5103 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5104 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5105 		BUG_ON(sh->qd_idx >= 0 &&
5106 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5107 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5108 		for (i = disks; i--; ) {
5109 			struct r5dev *dev = &sh->dev[i];
5110 			if (test_bit(R5_LOCKED, &dev->flags) &&
5111 				(i == sh->pd_idx || i == sh->qd_idx ||
5112 				 dev->written || test_bit(R5_InJournal,
5113 							  &dev->flags))) {
5114 				pr_debug("Writing block %d\n", i);
5115 				set_bit(R5_Wantwrite, &dev->flags);
5116 				if (prexor)
5117 					continue;
5118 				if (s.failed > 1)
5119 					continue;
5120 				if (!test_bit(R5_Insync, &dev->flags) ||
5121 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5122 				     s.failed == 0))
5123 					set_bit(STRIPE_INSYNC, &sh->state);
5124 			}
5125 		}
5126 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5127 			s.dec_preread_active = 1;
5128 	}
5129 
5130 	/*
5131 	 * might be able to return some write requests if the parity blocks
5132 	 * are safe, or on a failed drive
5133 	 */
5134 	pdev = &sh->dev[sh->pd_idx];
5135 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5136 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5137 	qdev = &sh->dev[sh->qd_idx];
5138 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5139 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5140 		|| conf->level < 6;
5141 
5142 	if (s.written &&
5143 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5144 			     && !test_bit(R5_LOCKED, &pdev->flags)
5145 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5146 				 test_bit(R5_Discard, &pdev->flags))))) &&
5147 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5148 			     && !test_bit(R5_LOCKED, &qdev->flags)
5149 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5150 				 test_bit(R5_Discard, &qdev->flags))))))
5151 		handle_stripe_clean_event(conf, sh, disks);
5152 
5153 	if (s.just_cached)
5154 		r5c_handle_cached_data_endio(conf, sh, disks);
5155 	log_stripe_write_finished(sh);
5156 
5157 	/* Now we might consider reading some blocks, either to check/generate
5158 	 * parity, or to satisfy requests
5159 	 * or to load a block that is being partially written.
5160 	 */
5161 	if (s.to_read || s.non_overwrite
5162 	    || (s.to_write && s.failed)
5163 	    || (s.syncing && (s.uptodate + s.compute < disks))
5164 	    || s.replacing
5165 	    || s.expanding)
5166 		handle_stripe_fill(sh, &s, disks);
5167 
5168 	/*
5169 	 * When the stripe finishes full journal write cycle (write to journal
5170 	 * and raid disk), this is the clean up procedure so it is ready for
5171 	 * next operation.
5172 	 */
5173 	r5c_finish_stripe_write_out(conf, sh, &s);
5174 
5175 	/*
5176 	 * Now to consider new write requests, cache write back and what else,
5177 	 * if anything should be read.  We do not handle new writes when:
5178 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5179 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5180 	 *    block.
5181 	 * 3/ A r5c cache log write is in flight.
5182 	 */
5183 
5184 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5185 		if (!r5c_is_writeback(conf->log)) {
5186 			if (s.to_write)
5187 				handle_stripe_dirtying(conf, sh, &s, disks);
5188 		} else { /* write back cache */
5189 			int ret = 0;
5190 
5191 			/* First, try handle writes in caching phase */
5192 			if (s.to_write)
5193 				ret = r5c_try_caching_write(conf, sh, &s,
5194 							    disks);
5195 			/*
5196 			 * If caching phase failed: ret == -EAGAIN
5197 			 *    OR
5198 			 * stripe under reclaim: !caching && injournal
5199 			 *
5200 			 * fall back to handle_stripe_dirtying()
5201 			 */
5202 			if (ret == -EAGAIN ||
5203 			    /* stripe under reclaim: !caching && injournal */
5204 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5205 			     s.injournal > 0)) {
5206 				ret = handle_stripe_dirtying(conf, sh, &s,
5207 							     disks);
5208 				if (ret == -EAGAIN)
5209 					goto finish;
5210 			}
5211 		}
5212 	}
5213 
5214 	/* maybe we need to check and possibly fix the parity for this stripe
5215 	 * Any reads will already have been scheduled, so we just see if enough
5216 	 * data is available.  The parity check is held off while parity
5217 	 * dependent operations are in flight.
5218 	 */
5219 	if (sh->check_state ||
5220 	    (s.syncing && s.locked == 0 &&
5221 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5222 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5223 		if (conf->level == 6)
5224 			handle_parity_checks6(conf, sh, &s, disks);
5225 		else
5226 			handle_parity_checks5(conf, sh, &s, disks);
5227 	}
5228 
5229 	if ((s.replacing || s.syncing) && s.locked == 0
5230 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5231 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5232 		/* Write out to replacement devices where possible */
5233 		for (i = 0; i < conf->raid_disks; i++)
5234 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5235 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5236 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5237 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5238 				s.locked++;
5239 			}
5240 		if (s.replacing)
5241 			set_bit(STRIPE_INSYNC, &sh->state);
5242 		set_bit(STRIPE_REPLACED, &sh->state);
5243 	}
5244 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5245 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5246 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5247 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5248 		clear_bit(STRIPE_SYNCING, &sh->state);
5249 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5250 			wake_up(&conf->wait_for_overlap);
5251 	}
5252 
5253 	/* If the failed drives are just a ReadError, then we might need
5254 	 * to progress the repair/check process
5255 	 */
5256 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5257 		for (i = 0; i < s.failed; i++) {
5258 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5259 			if (test_bit(R5_ReadError, &dev->flags)
5260 			    && !test_bit(R5_LOCKED, &dev->flags)
5261 			    && test_bit(R5_UPTODATE, &dev->flags)
5262 				) {
5263 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5264 					set_bit(R5_Wantwrite, &dev->flags);
5265 					set_bit(R5_ReWrite, &dev->flags);
5266 				} else
5267 					/* let's read it back */
5268 					set_bit(R5_Wantread, &dev->flags);
5269 				set_bit(R5_LOCKED, &dev->flags);
5270 				s.locked++;
5271 			}
5272 		}
5273 
5274 	/* Finish reconstruct operations initiated by the expansion process */
5275 	if (sh->reconstruct_state == reconstruct_state_result) {
5276 		struct stripe_head *sh_src
5277 			= raid5_get_active_stripe(conf, NULL, sh->sector,
5278 					R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5279 					R5_GAS_NOQUIESCE);
5280 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5281 			/* sh cannot be written until sh_src has been read.
5282 			 * so arrange for sh to be delayed a little
5283 			 */
5284 			set_bit(STRIPE_DELAYED, &sh->state);
5285 			set_bit(STRIPE_HANDLE, &sh->state);
5286 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5287 					      &sh_src->state))
5288 				atomic_inc(&conf->preread_active_stripes);
5289 			raid5_release_stripe(sh_src);
5290 			goto finish;
5291 		}
5292 		if (sh_src)
5293 			raid5_release_stripe(sh_src);
5294 
5295 		sh->reconstruct_state = reconstruct_state_idle;
5296 		clear_bit(STRIPE_EXPANDING, &sh->state);
5297 		for (i = conf->raid_disks; i--; ) {
5298 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5299 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5300 			s.locked++;
5301 		}
5302 	}
5303 
5304 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5305 	    !sh->reconstruct_state) {
5306 		/* Need to write out all blocks after computing parity */
5307 		sh->disks = conf->raid_disks;
5308 		stripe_set_idx(sh->sector, conf, 0, sh);
5309 		schedule_reconstruction(sh, &s, 1, 1);
5310 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5311 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5312 		atomic_dec(&conf->reshape_stripes);
5313 		wake_up(&conf->wait_for_overlap);
5314 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5315 	}
5316 
5317 	if (s.expanding && s.locked == 0 &&
5318 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5319 		handle_stripe_expansion(conf, sh);
5320 
5321 finish:
5322 	/* wait for this device to become unblocked */
5323 	if (unlikely(s.blocked_rdev)) {
5324 		if (conf->mddev->external)
5325 			md_wait_for_blocked_rdev(s.blocked_rdev,
5326 						 conf->mddev);
5327 		else
5328 			/* Internal metadata will immediately
5329 			 * be written by raid5d, so we don't
5330 			 * need to wait here.
5331 			 */
5332 			rdev_dec_pending(s.blocked_rdev,
5333 					 conf->mddev);
5334 	}
5335 
5336 	if (s.handle_bad_blocks)
5337 		for (i = disks; i--; ) {
5338 			struct md_rdev *rdev;
5339 			struct r5dev *dev = &sh->dev[i];
5340 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5341 				/* We own a safe reference to the rdev */
5342 				rdev = rdev_pend_deref(conf->disks[i].rdev);
5343 				if (!rdev_set_badblocks(rdev, sh->sector,
5344 							RAID5_STRIPE_SECTORS(conf), 0))
5345 					md_error(conf->mddev, rdev);
5346 				rdev_dec_pending(rdev, conf->mddev);
5347 			}
5348 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5349 				rdev = rdev_pend_deref(conf->disks[i].rdev);
5350 				rdev_clear_badblocks(rdev, sh->sector,
5351 						     RAID5_STRIPE_SECTORS(conf), 0);
5352 				rdev_dec_pending(rdev, conf->mddev);
5353 			}
5354 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5355 				rdev = rdev_pend_deref(conf->disks[i].replacement);
5356 				if (!rdev)
5357 					/* rdev have been moved down */
5358 					rdev = rdev_pend_deref(conf->disks[i].rdev);
5359 				rdev_clear_badblocks(rdev, sh->sector,
5360 						     RAID5_STRIPE_SECTORS(conf), 0);
5361 				rdev_dec_pending(rdev, conf->mddev);
5362 			}
5363 		}
5364 
5365 	if (s.ops_request)
5366 		raid_run_ops(sh, s.ops_request);
5367 
5368 	ops_run_io(sh, &s);
5369 
5370 	if (s.dec_preread_active) {
5371 		/* We delay this until after ops_run_io so that if make_request
5372 		 * is waiting on a flush, it won't continue until the writes
5373 		 * have actually been submitted.
5374 		 */
5375 		atomic_dec(&conf->preread_active_stripes);
5376 		if (atomic_read(&conf->preread_active_stripes) <
5377 		    IO_THRESHOLD)
5378 			md_wakeup_thread(conf->mddev->thread);
5379 	}
5380 
5381 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5382 }
5383 
raid5_activate_delayed(struct r5conf * conf)5384 static void raid5_activate_delayed(struct r5conf *conf)
5385 	__must_hold(&conf->device_lock)
5386 {
5387 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5388 		while (!list_empty(&conf->delayed_list)) {
5389 			struct list_head *l = conf->delayed_list.next;
5390 			struct stripe_head *sh;
5391 			sh = list_entry(l, struct stripe_head, lru);
5392 			list_del_init(l);
5393 			clear_bit(STRIPE_DELAYED, &sh->state);
5394 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5395 				atomic_inc(&conf->preread_active_stripes);
5396 			list_add_tail(&sh->lru, &conf->hold_list);
5397 			raid5_wakeup_stripe_thread(sh);
5398 		}
5399 	}
5400 }
5401 
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5402 static void activate_bit_delay(struct r5conf *conf,
5403 		struct list_head *temp_inactive_list)
5404 	__must_hold(&conf->device_lock)
5405 {
5406 	struct list_head head;
5407 	list_add(&head, &conf->bitmap_list);
5408 	list_del_init(&conf->bitmap_list);
5409 	while (!list_empty(&head)) {
5410 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5411 		int hash;
5412 		list_del_init(&sh->lru);
5413 		atomic_inc(&sh->count);
5414 		hash = sh->hash_lock_index;
5415 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5416 	}
5417 }
5418 
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5419 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5420 {
5421 	struct r5conf *conf = mddev->private;
5422 	sector_t sector = bio->bi_iter.bi_sector;
5423 	unsigned int chunk_sectors;
5424 	unsigned int bio_sectors = bio_sectors(bio);
5425 
5426 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5427 	return  chunk_sectors >=
5428 		((sector & (chunk_sectors - 1)) + bio_sectors);
5429 }
5430 
5431 /*
5432  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5433  *  later sampled by raid5d.
5434  */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5435 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5436 {
5437 	unsigned long flags;
5438 
5439 	spin_lock_irqsave(&conf->device_lock, flags);
5440 
5441 	bi->bi_next = conf->retry_read_aligned_list;
5442 	conf->retry_read_aligned_list = bi;
5443 
5444 	spin_unlock_irqrestore(&conf->device_lock, flags);
5445 	md_wakeup_thread(conf->mddev->thread);
5446 }
5447 
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5448 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5449 					 unsigned int *offset)
5450 {
5451 	struct bio *bi;
5452 
5453 	bi = conf->retry_read_aligned;
5454 	if (bi) {
5455 		*offset = conf->retry_read_offset;
5456 		conf->retry_read_aligned = NULL;
5457 		return bi;
5458 	}
5459 	bi = conf->retry_read_aligned_list;
5460 	if(bi) {
5461 		conf->retry_read_aligned_list = bi->bi_next;
5462 		bi->bi_next = NULL;
5463 		*offset = 0;
5464 	}
5465 
5466 	return bi;
5467 }
5468 
5469 /*
5470  *  The "raid5_align_endio" should check if the read succeeded and if it
5471  *  did, call bio_endio on the original bio (having bio_put the new bio
5472  *  first).
5473  *  If the read failed..
5474  */
raid5_align_endio(struct bio * bi)5475 static void raid5_align_endio(struct bio *bi)
5476 {
5477 	struct bio *raid_bi = bi->bi_private;
5478 	struct md_rdev *rdev = (void *)raid_bi->bi_next;
5479 	struct mddev *mddev = rdev->mddev;
5480 	struct r5conf *conf = mddev->private;
5481 	blk_status_t error = bi->bi_status;
5482 
5483 	bio_put(bi);
5484 	raid_bi->bi_next = NULL;
5485 	rdev_dec_pending(rdev, conf->mddev);
5486 
5487 	if (!error) {
5488 		bio_endio(raid_bi);
5489 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5490 			wake_up(&conf->wait_for_quiescent);
5491 		return;
5492 	}
5493 
5494 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5495 
5496 	add_bio_to_retry(raid_bi, conf);
5497 }
5498 
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5499 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5500 {
5501 	struct r5conf *conf = mddev->private;
5502 	struct bio *align_bio;
5503 	struct md_rdev *rdev;
5504 	sector_t sector, end_sector, first_bad;
5505 	int bad_sectors, dd_idx;
5506 	bool did_inc;
5507 
5508 	if (!in_chunk_boundary(mddev, raid_bio)) {
5509 		pr_debug("%s: non aligned\n", __func__);
5510 		return 0;
5511 	}
5512 
5513 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5514 				      &dd_idx, NULL);
5515 	end_sector = sector + bio_sectors(raid_bio);
5516 
5517 	rcu_read_lock();
5518 	if (r5c_big_stripe_cached(conf, sector))
5519 		goto out_rcu_unlock;
5520 
5521 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5522 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5523 	    rdev->recovery_offset < end_sector) {
5524 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5525 		if (!rdev)
5526 			goto out_rcu_unlock;
5527 		if (test_bit(Faulty, &rdev->flags) ||
5528 		    !(test_bit(In_sync, &rdev->flags) ||
5529 		      rdev->recovery_offset >= end_sector))
5530 			goto out_rcu_unlock;
5531 	}
5532 
5533 	atomic_inc(&rdev->nr_pending);
5534 	rcu_read_unlock();
5535 
5536 	if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5537 			&bad_sectors)) {
5538 		rdev_dec_pending(rdev, mddev);
5539 		return 0;
5540 	}
5541 
5542 	md_account_bio(mddev, &raid_bio);
5543 	raid_bio->bi_next = (void *)rdev;
5544 
5545 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5546 				    &mddev->bio_set);
5547 	align_bio->bi_end_io = raid5_align_endio;
5548 	align_bio->bi_private = raid_bio;
5549 	align_bio->bi_iter.bi_sector = sector;
5550 
5551 	/* No reshape active, so we can trust rdev->data_offset */
5552 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5553 
5554 	did_inc = false;
5555 	if (conf->quiesce == 0) {
5556 		atomic_inc(&conf->active_aligned_reads);
5557 		did_inc = true;
5558 	}
5559 	/* need a memory barrier to detect the race with raid5_quiesce() */
5560 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5561 		/* quiesce is in progress, so we need to undo io activation and wait
5562 		 * for it to finish
5563 		 */
5564 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5565 			wake_up(&conf->wait_for_quiescent);
5566 		spin_lock_irq(&conf->device_lock);
5567 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5568 				    conf->device_lock);
5569 		atomic_inc(&conf->active_aligned_reads);
5570 		spin_unlock_irq(&conf->device_lock);
5571 	}
5572 
5573 	if (mddev->gendisk)
5574 		trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5575 				      raid_bio->bi_iter.bi_sector);
5576 	submit_bio_noacct(align_bio);
5577 	return 1;
5578 
5579 out_rcu_unlock:
5580 	rcu_read_unlock();
5581 	return 0;
5582 }
5583 
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5584 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5585 {
5586 	struct bio *split;
5587 	sector_t sector = raid_bio->bi_iter.bi_sector;
5588 	unsigned chunk_sects = mddev->chunk_sectors;
5589 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5590 
5591 	if (sectors < bio_sectors(raid_bio)) {
5592 		struct r5conf *conf = mddev->private;
5593 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5594 		bio_chain(split, raid_bio);
5595 		submit_bio_noacct(raid_bio);
5596 		raid_bio = split;
5597 	}
5598 
5599 	if (!raid5_read_one_chunk(mddev, raid_bio))
5600 		return raid_bio;
5601 
5602 	return NULL;
5603 }
5604 
5605 /* __get_priority_stripe - get the next stripe to process
5606  *
5607  * Full stripe writes are allowed to pass preread active stripes up until
5608  * the bypass_threshold is exceeded.  In general the bypass_count
5609  * increments when the handle_list is handled before the hold_list; however, it
5610  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5611  * stripe with in flight i/o.  The bypass_count will be reset when the
5612  * head of the hold_list has changed, i.e. the head was promoted to the
5613  * handle_list.
5614  */
__get_priority_stripe(struct r5conf * conf,int group)5615 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5616 	__must_hold(&conf->device_lock)
5617 {
5618 	struct stripe_head *sh, *tmp;
5619 	struct list_head *handle_list = NULL;
5620 	struct r5worker_group *wg;
5621 	bool second_try = !r5c_is_writeback(conf->log) &&
5622 		!r5l_log_disk_error(conf);
5623 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5624 		r5l_log_disk_error(conf);
5625 
5626 again:
5627 	wg = NULL;
5628 	sh = NULL;
5629 	if (conf->worker_cnt_per_group == 0) {
5630 		handle_list = try_loprio ? &conf->loprio_list :
5631 					&conf->handle_list;
5632 	} else if (group != ANY_GROUP) {
5633 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5634 				&conf->worker_groups[group].handle_list;
5635 		wg = &conf->worker_groups[group];
5636 	} else {
5637 		int i;
5638 		for (i = 0; i < conf->group_cnt; i++) {
5639 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5640 				&conf->worker_groups[i].handle_list;
5641 			wg = &conf->worker_groups[i];
5642 			if (!list_empty(handle_list))
5643 				break;
5644 		}
5645 	}
5646 
5647 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5648 		  __func__,
5649 		  list_empty(handle_list) ? "empty" : "busy",
5650 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5651 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5652 
5653 	if (!list_empty(handle_list)) {
5654 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5655 
5656 		if (list_empty(&conf->hold_list))
5657 			conf->bypass_count = 0;
5658 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5659 			if (conf->hold_list.next == conf->last_hold)
5660 				conf->bypass_count++;
5661 			else {
5662 				conf->last_hold = conf->hold_list.next;
5663 				conf->bypass_count -= conf->bypass_threshold;
5664 				if (conf->bypass_count < 0)
5665 					conf->bypass_count = 0;
5666 			}
5667 		}
5668 	} else if (!list_empty(&conf->hold_list) &&
5669 		   ((conf->bypass_threshold &&
5670 		     conf->bypass_count > conf->bypass_threshold) ||
5671 		    atomic_read(&conf->pending_full_writes) == 0)) {
5672 
5673 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5674 			if (conf->worker_cnt_per_group == 0 ||
5675 			    group == ANY_GROUP ||
5676 			    !cpu_online(tmp->cpu) ||
5677 			    cpu_to_group(tmp->cpu) == group) {
5678 				sh = tmp;
5679 				break;
5680 			}
5681 		}
5682 
5683 		if (sh) {
5684 			conf->bypass_count -= conf->bypass_threshold;
5685 			if (conf->bypass_count < 0)
5686 				conf->bypass_count = 0;
5687 		}
5688 		wg = NULL;
5689 	}
5690 
5691 	if (!sh) {
5692 		if (second_try)
5693 			return NULL;
5694 		second_try = true;
5695 		try_loprio = !try_loprio;
5696 		goto again;
5697 	}
5698 
5699 	if (wg) {
5700 		wg->stripes_cnt--;
5701 		sh->group = NULL;
5702 	}
5703 	list_del_init(&sh->lru);
5704 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5705 	return sh;
5706 }
5707 
5708 struct raid5_plug_cb {
5709 	struct blk_plug_cb	cb;
5710 	struct list_head	list;
5711 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5712 };
5713 
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5714 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5715 {
5716 	struct raid5_plug_cb *cb = container_of(
5717 		blk_cb, struct raid5_plug_cb, cb);
5718 	struct stripe_head *sh;
5719 	struct mddev *mddev = cb->cb.data;
5720 	struct r5conf *conf = mddev->private;
5721 	int cnt = 0;
5722 	int hash;
5723 
5724 	if (cb->list.next && !list_empty(&cb->list)) {
5725 		spin_lock_irq(&conf->device_lock);
5726 		while (!list_empty(&cb->list)) {
5727 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5728 			list_del_init(&sh->lru);
5729 			/*
5730 			 * avoid race release_stripe_plug() sees
5731 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5732 			 * is still in our list
5733 			 */
5734 			smp_mb__before_atomic();
5735 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5736 			/*
5737 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5738 			 * case, the count is always > 1 here
5739 			 */
5740 			hash = sh->hash_lock_index;
5741 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5742 			cnt++;
5743 		}
5744 		spin_unlock_irq(&conf->device_lock);
5745 	}
5746 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5747 				     NR_STRIPE_HASH_LOCKS);
5748 	if (mddev->queue)
5749 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5750 	kfree(cb);
5751 }
5752 
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5753 static void release_stripe_plug(struct mddev *mddev,
5754 				struct stripe_head *sh)
5755 {
5756 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5757 		raid5_unplug, mddev,
5758 		sizeof(struct raid5_plug_cb));
5759 	struct raid5_plug_cb *cb;
5760 
5761 	if (!blk_cb) {
5762 		raid5_release_stripe(sh);
5763 		return;
5764 	}
5765 
5766 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5767 
5768 	if (cb->list.next == NULL) {
5769 		int i;
5770 		INIT_LIST_HEAD(&cb->list);
5771 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5772 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5773 	}
5774 
5775 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5776 		list_add_tail(&sh->lru, &cb->list);
5777 	else
5778 		raid5_release_stripe(sh);
5779 }
5780 
make_discard_request(struct mddev * mddev,struct bio * bi)5781 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5782 {
5783 	struct r5conf *conf = mddev->private;
5784 	sector_t logical_sector, last_sector;
5785 	struct stripe_head *sh;
5786 	int stripe_sectors;
5787 
5788 	/* We need to handle this when io_uring supports discard/trim */
5789 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5790 		return;
5791 
5792 	if (mddev->reshape_position != MaxSector)
5793 		/* Skip discard while reshape is happening */
5794 		return;
5795 
5796 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5797 	last_sector = bio_end_sector(bi);
5798 
5799 	bi->bi_next = NULL;
5800 
5801 	stripe_sectors = conf->chunk_sectors *
5802 		(conf->raid_disks - conf->max_degraded);
5803 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5804 					       stripe_sectors);
5805 	sector_div(last_sector, stripe_sectors);
5806 
5807 	logical_sector *= conf->chunk_sectors;
5808 	last_sector *= conf->chunk_sectors;
5809 
5810 	for (; logical_sector < last_sector;
5811 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5812 		DEFINE_WAIT(w);
5813 		int d;
5814 	again:
5815 		sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5816 		prepare_to_wait(&conf->wait_for_overlap, &w,
5817 				TASK_UNINTERRUPTIBLE);
5818 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5819 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5820 			raid5_release_stripe(sh);
5821 			schedule();
5822 			goto again;
5823 		}
5824 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5825 		spin_lock_irq(&sh->stripe_lock);
5826 		for (d = 0; d < conf->raid_disks; d++) {
5827 			if (d == sh->pd_idx || d == sh->qd_idx)
5828 				continue;
5829 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5830 				set_bit(R5_Overlap, &sh->dev[d].flags);
5831 				spin_unlock_irq(&sh->stripe_lock);
5832 				raid5_release_stripe(sh);
5833 				schedule();
5834 				goto again;
5835 			}
5836 		}
5837 		set_bit(STRIPE_DISCARD, &sh->state);
5838 		finish_wait(&conf->wait_for_overlap, &w);
5839 		sh->overwrite_disks = 0;
5840 		for (d = 0; d < conf->raid_disks; d++) {
5841 			if (d == sh->pd_idx || d == sh->qd_idx)
5842 				continue;
5843 			sh->dev[d].towrite = bi;
5844 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5845 			bio_inc_remaining(bi);
5846 			md_write_inc(mddev, bi);
5847 			sh->overwrite_disks++;
5848 		}
5849 		spin_unlock_irq(&sh->stripe_lock);
5850 		if (conf->mddev->bitmap) {
5851 			for (d = 0;
5852 			     d < conf->raid_disks - conf->max_degraded;
5853 			     d++)
5854 				md_bitmap_startwrite(mddev->bitmap,
5855 						     sh->sector,
5856 						     RAID5_STRIPE_SECTORS(conf),
5857 						     0);
5858 			sh->bm_seq = conf->seq_flush + 1;
5859 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5860 		}
5861 
5862 		set_bit(STRIPE_HANDLE, &sh->state);
5863 		clear_bit(STRIPE_DELAYED, &sh->state);
5864 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5865 			atomic_inc(&conf->preread_active_stripes);
5866 		release_stripe_plug(mddev, sh);
5867 	}
5868 
5869 	bio_endio(bi);
5870 }
5871 
ahead_of_reshape(struct mddev * mddev,sector_t sector,sector_t reshape_sector)5872 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5873 			     sector_t reshape_sector)
5874 {
5875 	return mddev->reshape_backwards ? sector < reshape_sector :
5876 					  sector >= reshape_sector;
5877 }
5878 
range_ahead_of_reshape(struct mddev * mddev,sector_t min,sector_t max,sector_t reshape_sector)5879 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5880 				   sector_t max, sector_t reshape_sector)
5881 {
5882 	return mddev->reshape_backwards ? max < reshape_sector :
5883 					  min >= reshape_sector;
5884 }
5885 
stripe_ahead_of_reshape(struct mddev * mddev,struct r5conf * conf,struct stripe_head * sh)5886 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5887 				    struct stripe_head *sh)
5888 {
5889 	sector_t max_sector = 0, min_sector = MaxSector;
5890 	bool ret = false;
5891 	int dd_idx;
5892 
5893 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5894 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5895 			continue;
5896 
5897 		min_sector = min(min_sector, sh->dev[dd_idx].sector);
5898 		max_sector = max(max_sector, sh->dev[dd_idx].sector);
5899 	}
5900 
5901 	spin_lock_irq(&conf->device_lock);
5902 
5903 	if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5904 				     conf->reshape_progress))
5905 		/* mismatch, need to try again */
5906 		ret = true;
5907 
5908 	spin_unlock_irq(&conf->device_lock);
5909 
5910 	return ret;
5911 }
5912 
add_all_stripe_bios(struct r5conf * conf,struct stripe_request_ctx * ctx,struct stripe_head * sh,struct bio * bi,int forwrite,int previous)5913 static int add_all_stripe_bios(struct r5conf *conf,
5914 		struct stripe_request_ctx *ctx, struct stripe_head *sh,
5915 		struct bio *bi, int forwrite, int previous)
5916 {
5917 	int dd_idx;
5918 	int ret = 1;
5919 
5920 	spin_lock_irq(&sh->stripe_lock);
5921 
5922 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5923 		struct r5dev *dev = &sh->dev[dd_idx];
5924 
5925 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5926 			continue;
5927 
5928 		if (dev->sector < ctx->first_sector ||
5929 		    dev->sector >= ctx->last_sector)
5930 			continue;
5931 
5932 		if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5933 			set_bit(R5_Overlap, &dev->flags);
5934 			ret = 0;
5935 			continue;
5936 		}
5937 	}
5938 
5939 	if (!ret)
5940 		goto out;
5941 
5942 	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5943 		struct r5dev *dev = &sh->dev[dd_idx];
5944 
5945 		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5946 			continue;
5947 
5948 		if (dev->sector < ctx->first_sector ||
5949 		    dev->sector >= ctx->last_sector)
5950 			continue;
5951 
5952 		__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5953 		clear_bit((dev->sector - ctx->first_sector) >>
5954 			  RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5955 	}
5956 
5957 out:
5958 	spin_unlock_irq(&sh->stripe_lock);
5959 	return ret;
5960 }
5961 
reshape_inprogress(struct mddev * mddev)5962 static bool reshape_inprogress(struct mddev *mddev)
5963 {
5964 	return test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
5965 	       test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5966 	       !test_bit(MD_RECOVERY_DONE, &mddev->recovery) &&
5967 	       !test_bit(MD_RECOVERY_INTR, &mddev->recovery);
5968 }
5969 
reshape_disabled(struct mddev * mddev)5970 static bool reshape_disabled(struct mddev *mddev)
5971 {
5972 	return is_md_suspended(mddev) || !md_is_rdwr(mddev);
5973 }
5974 
make_stripe_request(struct mddev * mddev,struct r5conf * conf,struct stripe_request_ctx * ctx,sector_t logical_sector,struct bio * bi)5975 static enum stripe_result make_stripe_request(struct mddev *mddev,
5976 		struct r5conf *conf, struct stripe_request_ctx *ctx,
5977 		sector_t logical_sector, struct bio *bi)
5978 {
5979 	const int rw = bio_data_dir(bi);
5980 	enum stripe_result ret;
5981 	struct stripe_head *sh;
5982 	sector_t new_sector;
5983 	int previous = 0, flags = 0;
5984 	int seq, dd_idx;
5985 
5986 	seq = read_seqcount_begin(&conf->gen_lock);
5987 
5988 	if (unlikely(conf->reshape_progress != MaxSector)) {
5989 		/*
5990 		 * Spinlock is needed as reshape_progress may be
5991 		 * 64bit on a 32bit platform, and so it might be
5992 		 * possible to see a half-updated value
5993 		 * Of course reshape_progress could change after
5994 		 * the lock is dropped, so once we get a reference
5995 		 * to the stripe that we think it is, we will have
5996 		 * to check again.
5997 		 */
5998 		spin_lock_irq(&conf->device_lock);
5999 		if (ahead_of_reshape(mddev, logical_sector,
6000 				     conf->reshape_progress)) {
6001 			previous = 1;
6002 		} else {
6003 			if (ahead_of_reshape(mddev, logical_sector,
6004 					     conf->reshape_safe)) {
6005 				spin_unlock_irq(&conf->device_lock);
6006 				ret = STRIPE_SCHEDULE_AND_RETRY;
6007 				goto out;
6008 			}
6009 		}
6010 		spin_unlock_irq(&conf->device_lock);
6011 	}
6012 
6013 	new_sector = raid5_compute_sector(conf, logical_sector, previous,
6014 					  &dd_idx, NULL);
6015 	pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
6016 		 new_sector, logical_sector);
6017 
6018 	if (previous)
6019 		flags |= R5_GAS_PREVIOUS;
6020 	if (bi->bi_opf & REQ_RAHEAD)
6021 		flags |= R5_GAS_NOBLOCK;
6022 	sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
6023 	if (unlikely(!sh)) {
6024 		/* cannot get stripe, just give-up */
6025 		bi->bi_status = BLK_STS_IOERR;
6026 		return STRIPE_FAIL;
6027 	}
6028 
6029 	if (unlikely(previous) &&
6030 	    stripe_ahead_of_reshape(mddev, conf, sh)) {
6031 		/*
6032 		 * Expansion moved on while waiting for a stripe.
6033 		 * Expansion could still move past after this
6034 		 * test, but as we are holding a reference to
6035 		 * 'sh', we know that if that happens,
6036 		 *  STRIPE_EXPANDING will get set and the expansion
6037 		 * won't proceed until we finish with the stripe.
6038 		 */
6039 		ret = STRIPE_SCHEDULE_AND_RETRY;
6040 		goto out_release;
6041 	}
6042 
6043 	if (read_seqcount_retry(&conf->gen_lock, seq)) {
6044 		/* Might have got the wrong stripe_head by accident */
6045 		ret = STRIPE_RETRY;
6046 		goto out_release;
6047 	}
6048 
6049 	if (test_bit(STRIPE_EXPANDING, &sh->state) ||
6050 	    !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
6051 		/*
6052 		 * Stripe is busy expanding or add failed due to
6053 		 * overlap. Flush everything and wait a while.
6054 		 */
6055 		md_wakeup_thread(mddev->thread);
6056 		ret = STRIPE_SCHEDULE_AND_RETRY;
6057 		goto out_release;
6058 	}
6059 
6060 	if (stripe_can_batch(sh)) {
6061 		stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6062 		if (ctx->batch_last)
6063 			raid5_release_stripe(ctx->batch_last);
6064 		atomic_inc(&sh->count);
6065 		ctx->batch_last = sh;
6066 	}
6067 
6068 	if (ctx->do_flush) {
6069 		set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6070 		/* we only need flush for one stripe */
6071 		ctx->do_flush = false;
6072 	}
6073 
6074 	set_bit(STRIPE_HANDLE, &sh->state);
6075 	clear_bit(STRIPE_DELAYED, &sh->state);
6076 	if ((!sh->batch_head || sh == sh->batch_head) &&
6077 	    (bi->bi_opf & REQ_SYNC) &&
6078 	    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6079 		atomic_inc(&conf->preread_active_stripes);
6080 
6081 	release_stripe_plug(mddev, sh);
6082 	return STRIPE_SUCCESS;
6083 
6084 out_release:
6085 	raid5_release_stripe(sh);
6086 out:
6087 	if (ret == STRIPE_SCHEDULE_AND_RETRY && !reshape_inprogress(mddev) &&
6088 	    reshape_disabled(mddev)) {
6089 		bi->bi_status = BLK_STS_IOERR;
6090 		ret = STRIPE_FAIL;
6091 		pr_err("md/raid456:%s: io failed across reshape position while reshape can't make progress.\n",
6092 		       mdname(mddev));
6093 	}
6094 
6095 	return ret;
6096 }
6097 
6098 /*
6099  * If the bio covers multiple data disks, find sector within the bio that has
6100  * the lowest chunk offset in the first chunk.
6101  */
raid5_bio_lowest_chunk_sector(struct r5conf * conf,struct bio * bi)6102 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6103 					      struct bio *bi)
6104 {
6105 	int sectors_per_chunk = conf->chunk_sectors;
6106 	int raid_disks = conf->raid_disks;
6107 	int dd_idx;
6108 	struct stripe_head sh;
6109 	unsigned int chunk_offset;
6110 	sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6111 	sector_t sector;
6112 
6113 	/* We pass in fake stripe_head to get back parity disk numbers */
6114 	sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6115 	chunk_offset = sector_div(sector, sectors_per_chunk);
6116 	if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6117 		return r_sector;
6118 	/*
6119 	 * Bio crosses to the next data disk. Check whether it's in the same
6120 	 * chunk.
6121 	 */
6122 	dd_idx++;
6123 	while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6124 		dd_idx++;
6125 	if (dd_idx >= raid_disks)
6126 		return r_sector;
6127 	return r_sector + sectors_per_chunk - chunk_offset;
6128 }
6129 
raid5_make_request(struct mddev * mddev,struct bio * bi)6130 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6131 {
6132 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
6133 	struct r5conf *conf = mddev->private;
6134 	sector_t logical_sector;
6135 	struct stripe_request_ctx ctx = {};
6136 	const int rw = bio_data_dir(bi);
6137 	enum stripe_result res;
6138 	int s, stripe_cnt;
6139 
6140 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6141 		int ret = log_handle_flush_request(conf, bi);
6142 
6143 		if (ret == 0)
6144 			return true;
6145 		if (ret == -ENODEV) {
6146 			if (md_flush_request(mddev, bi))
6147 				return true;
6148 		}
6149 		/* ret == -EAGAIN, fallback */
6150 		/*
6151 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6152 		 * we need to flush journal device
6153 		 */
6154 		ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6155 	}
6156 
6157 	if (!md_write_start(mddev, bi))
6158 		return false;
6159 	/*
6160 	 * If array is degraded, better not do chunk aligned read because
6161 	 * later we might have to read it again in order to reconstruct
6162 	 * data on failed drives.
6163 	 */
6164 	if (rw == READ && mddev->degraded == 0 &&
6165 	    mddev->reshape_position == MaxSector) {
6166 		bi = chunk_aligned_read(mddev, bi);
6167 		if (!bi)
6168 			return true;
6169 	}
6170 
6171 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6172 		make_discard_request(mddev, bi);
6173 		md_write_end(mddev);
6174 		return true;
6175 	}
6176 
6177 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6178 	ctx.first_sector = logical_sector;
6179 	ctx.last_sector = bio_end_sector(bi);
6180 	bi->bi_next = NULL;
6181 
6182 	stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6183 					   RAID5_STRIPE_SECTORS(conf));
6184 	bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6185 
6186 	pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6187 		 bi->bi_iter.bi_sector, ctx.last_sector);
6188 
6189 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6190 	if ((bi->bi_opf & REQ_NOWAIT) &&
6191 	    (conf->reshape_progress != MaxSector) &&
6192 	    !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6193 	    ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
6194 		bio_wouldblock_error(bi);
6195 		if (rw == WRITE)
6196 			md_write_end(mddev);
6197 		return true;
6198 	}
6199 	md_account_bio(mddev, &bi);
6200 
6201 	/*
6202 	 * Lets start with the stripe with the lowest chunk offset in the first
6203 	 * chunk. That has the best chances of creating IOs adjacent to
6204 	 * previous IOs in case of sequential IO and thus creates the most
6205 	 * sequential IO pattern. We don't bother with the optimization when
6206 	 * reshaping as the performance benefit is not worth the complexity.
6207 	 */
6208 	if (likely(conf->reshape_progress == MaxSector))
6209 		logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6210 	s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6211 
6212 	add_wait_queue(&conf->wait_for_overlap, &wait);
6213 	while (1) {
6214 		res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6215 					  bi);
6216 		if (res == STRIPE_FAIL)
6217 			break;
6218 
6219 		if (res == STRIPE_RETRY)
6220 			continue;
6221 
6222 		if (res == STRIPE_SCHEDULE_AND_RETRY) {
6223 			/*
6224 			 * Must release the reference to batch_last before
6225 			 * scheduling and waiting for work to be done,
6226 			 * otherwise the batch_last stripe head could prevent
6227 			 * raid5_activate_delayed() from making progress
6228 			 * and thus deadlocking.
6229 			 */
6230 			if (ctx.batch_last) {
6231 				raid5_release_stripe(ctx.batch_last);
6232 				ctx.batch_last = NULL;
6233 			}
6234 
6235 			wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6236 				   MAX_SCHEDULE_TIMEOUT);
6237 			continue;
6238 		}
6239 
6240 		s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6241 		if (s == stripe_cnt)
6242 			break;
6243 
6244 		logical_sector = ctx.first_sector +
6245 			(s << RAID5_STRIPE_SHIFT(conf));
6246 	}
6247 	remove_wait_queue(&conf->wait_for_overlap, &wait);
6248 
6249 	if (ctx.batch_last)
6250 		raid5_release_stripe(ctx.batch_last);
6251 
6252 	if (rw == WRITE)
6253 		md_write_end(mddev);
6254 	bio_endio(bi);
6255 	return true;
6256 }
6257 
6258 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6259 
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6260 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6261 {
6262 	/* reshaping is quite different to recovery/resync so it is
6263 	 * handled quite separately ... here.
6264 	 *
6265 	 * On each call to sync_request, we gather one chunk worth of
6266 	 * destination stripes and flag them as expanding.
6267 	 * Then we find all the source stripes and request reads.
6268 	 * As the reads complete, handle_stripe will copy the data
6269 	 * into the destination stripe and release that stripe.
6270 	 */
6271 	struct r5conf *conf = mddev->private;
6272 	struct stripe_head *sh;
6273 	struct md_rdev *rdev;
6274 	sector_t first_sector, last_sector;
6275 	int raid_disks = conf->previous_raid_disks;
6276 	int data_disks = raid_disks - conf->max_degraded;
6277 	int new_data_disks = conf->raid_disks - conf->max_degraded;
6278 	int i;
6279 	int dd_idx;
6280 	sector_t writepos, readpos, safepos;
6281 	sector_t stripe_addr;
6282 	int reshape_sectors;
6283 	struct list_head stripes;
6284 	sector_t retn;
6285 
6286 	if (sector_nr == 0) {
6287 		/* If restarting in the middle, skip the initial sectors */
6288 		if (mddev->reshape_backwards &&
6289 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6290 			sector_nr = raid5_size(mddev, 0, 0)
6291 				- conf->reshape_progress;
6292 		} else if (mddev->reshape_backwards &&
6293 			   conf->reshape_progress == MaxSector) {
6294 			/* shouldn't happen, but just in case, finish up.*/
6295 			sector_nr = MaxSector;
6296 		} else if (!mddev->reshape_backwards &&
6297 			   conf->reshape_progress > 0)
6298 			sector_nr = conf->reshape_progress;
6299 		sector_div(sector_nr, new_data_disks);
6300 		if (sector_nr) {
6301 			mddev->curr_resync_completed = sector_nr;
6302 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6303 			*skipped = 1;
6304 			retn = sector_nr;
6305 			goto finish;
6306 		}
6307 	}
6308 
6309 	/* We need to process a full chunk at a time.
6310 	 * If old and new chunk sizes differ, we need to process the
6311 	 * largest of these
6312 	 */
6313 
6314 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6315 
6316 	/* We update the metadata at least every 10 seconds, or when
6317 	 * the data about to be copied would over-write the source of
6318 	 * the data at the front of the range.  i.e. one new_stripe
6319 	 * along from reshape_progress new_maps to after where
6320 	 * reshape_safe old_maps to
6321 	 */
6322 	writepos = conf->reshape_progress;
6323 	sector_div(writepos, new_data_disks);
6324 	readpos = conf->reshape_progress;
6325 	sector_div(readpos, data_disks);
6326 	safepos = conf->reshape_safe;
6327 	sector_div(safepos, data_disks);
6328 	if (mddev->reshape_backwards) {
6329 		BUG_ON(writepos < reshape_sectors);
6330 		writepos -= reshape_sectors;
6331 		readpos += reshape_sectors;
6332 		safepos += reshape_sectors;
6333 	} else {
6334 		writepos += reshape_sectors;
6335 		/* readpos and safepos are worst-case calculations.
6336 		 * A negative number is overly pessimistic, and causes
6337 		 * obvious problems for unsigned storage.  So clip to 0.
6338 		 */
6339 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6340 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6341 	}
6342 
6343 	/* Having calculated the 'writepos' possibly use it
6344 	 * to set 'stripe_addr' which is where we will write to.
6345 	 */
6346 	if (mddev->reshape_backwards) {
6347 		BUG_ON(conf->reshape_progress == 0);
6348 		stripe_addr = writepos;
6349 		BUG_ON((mddev->dev_sectors &
6350 			~((sector_t)reshape_sectors - 1))
6351 		       - reshape_sectors - stripe_addr
6352 		       != sector_nr);
6353 	} else {
6354 		BUG_ON(writepos != sector_nr + reshape_sectors);
6355 		stripe_addr = sector_nr;
6356 	}
6357 
6358 	/* 'writepos' is the most advanced device address we might write.
6359 	 * 'readpos' is the least advanced device address we might read.
6360 	 * 'safepos' is the least address recorded in the metadata as having
6361 	 *     been reshaped.
6362 	 * If there is a min_offset_diff, these are adjusted either by
6363 	 * increasing the safepos/readpos if diff is negative, or
6364 	 * increasing writepos if diff is positive.
6365 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6366 	 * ensure safety in the face of a crash - that must be done by userspace
6367 	 * making a backup of the data.  So in that case there is no particular
6368 	 * rush to update metadata.
6369 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6370 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6371 	 * we can be safe in the event of a crash.
6372 	 * So we insist on updating metadata if safepos is behind writepos and
6373 	 * readpos is beyond writepos.
6374 	 * In any case, update the metadata every 10 seconds.
6375 	 * Maybe that number should be configurable, but I'm not sure it is
6376 	 * worth it.... maybe it could be a multiple of safemode_delay???
6377 	 */
6378 	if (conf->min_offset_diff < 0) {
6379 		safepos += -conf->min_offset_diff;
6380 		readpos += -conf->min_offset_diff;
6381 	} else
6382 		writepos += conf->min_offset_diff;
6383 
6384 	if ((mddev->reshape_backwards
6385 	     ? (safepos > writepos && readpos < writepos)
6386 	     : (safepos < writepos && readpos > writepos)) ||
6387 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6388 		/* Cannot proceed until we've updated the superblock... */
6389 		wait_event(conf->wait_for_overlap,
6390 			   atomic_read(&conf->reshape_stripes)==0
6391 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6392 		if (atomic_read(&conf->reshape_stripes) != 0)
6393 			return 0;
6394 		mddev->reshape_position = conf->reshape_progress;
6395 		mddev->curr_resync_completed = sector_nr;
6396 		if (!mddev->reshape_backwards)
6397 			/* Can update recovery_offset */
6398 			rdev_for_each(rdev, mddev)
6399 				if (rdev->raid_disk >= 0 &&
6400 				    !test_bit(Journal, &rdev->flags) &&
6401 				    !test_bit(In_sync, &rdev->flags) &&
6402 				    rdev->recovery_offset < sector_nr)
6403 					rdev->recovery_offset = sector_nr;
6404 
6405 		conf->reshape_checkpoint = jiffies;
6406 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6407 		md_wakeup_thread(mddev->thread);
6408 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6409 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6410 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6411 			return 0;
6412 		spin_lock_irq(&conf->device_lock);
6413 		conf->reshape_safe = mddev->reshape_position;
6414 		spin_unlock_irq(&conf->device_lock);
6415 		wake_up(&conf->wait_for_overlap);
6416 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6417 	}
6418 
6419 	INIT_LIST_HEAD(&stripes);
6420 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6421 		int j;
6422 		int skipped_disk = 0;
6423 		sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6424 					     R5_GAS_NOQUIESCE);
6425 		set_bit(STRIPE_EXPANDING, &sh->state);
6426 		atomic_inc(&conf->reshape_stripes);
6427 		/* If any of this stripe is beyond the end of the old
6428 		 * array, then we need to zero those blocks
6429 		 */
6430 		for (j=sh->disks; j--;) {
6431 			sector_t s;
6432 			if (j == sh->pd_idx)
6433 				continue;
6434 			if (conf->level == 6 &&
6435 			    j == sh->qd_idx)
6436 				continue;
6437 			s = raid5_compute_blocknr(sh, j, 0);
6438 			if (s < raid5_size(mddev, 0, 0)) {
6439 				skipped_disk = 1;
6440 				continue;
6441 			}
6442 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6443 			set_bit(R5_Expanded, &sh->dev[j].flags);
6444 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6445 		}
6446 		if (!skipped_disk) {
6447 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6448 			set_bit(STRIPE_HANDLE, &sh->state);
6449 		}
6450 		list_add(&sh->lru, &stripes);
6451 	}
6452 	spin_lock_irq(&conf->device_lock);
6453 	if (mddev->reshape_backwards)
6454 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6455 	else
6456 		conf->reshape_progress += reshape_sectors * new_data_disks;
6457 	spin_unlock_irq(&conf->device_lock);
6458 	/* Ok, those stripe are ready. We can start scheduling
6459 	 * reads on the source stripes.
6460 	 * The source stripes are determined by mapping the first and last
6461 	 * block on the destination stripes.
6462 	 */
6463 	first_sector =
6464 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6465 				     1, &dd_idx, NULL);
6466 	last_sector =
6467 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6468 					    * new_data_disks - 1),
6469 				     1, &dd_idx, NULL);
6470 	if (last_sector >= mddev->dev_sectors)
6471 		last_sector = mddev->dev_sectors - 1;
6472 	while (first_sector <= last_sector) {
6473 		sh = raid5_get_active_stripe(conf, NULL, first_sector,
6474 				R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6475 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6476 		set_bit(STRIPE_HANDLE, &sh->state);
6477 		raid5_release_stripe(sh);
6478 		first_sector += RAID5_STRIPE_SECTORS(conf);
6479 	}
6480 	/* Now that the sources are clearly marked, we can release
6481 	 * the destination stripes
6482 	 */
6483 	while (!list_empty(&stripes)) {
6484 		sh = list_entry(stripes.next, struct stripe_head, lru);
6485 		list_del_init(&sh->lru);
6486 		raid5_release_stripe(sh);
6487 	}
6488 	/* If this takes us to the resync_max point where we have to pause,
6489 	 * then we need to write out the superblock.
6490 	 */
6491 	sector_nr += reshape_sectors;
6492 	retn = reshape_sectors;
6493 finish:
6494 	if (mddev->curr_resync_completed > mddev->resync_max ||
6495 	    (sector_nr - mddev->curr_resync_completed) * 2
6496 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6497 		/* Cannot proceed until we've updated the superblock... */
6498 		wait_event(conf->wait_for_overlap,
6499 			   atomic_read(&conf->reshape_stripes) == 0
6500 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6501 		if (atomic_read(&conf->reshape_stripes) != 0)
6502 			goto ret;
6503 		mddev->reshape_position = conf->reshape_progress;
6504 		mddev->curr_resync_completed = sector_nr;
6505 		if (!mddev->reshape_backwards)
6506 			/* Can update recovery_offset */
6507 			rdev_for_each(rdev, mddev)
6508 				if (rdev->raid_disk >= 0 &&
6509 				    !test_bit(Journal, &rdev->flags) &&
6510 				    !test_bit(In_sync, &rdev->flags) &&
6511 				    rdev->recovery_offset < sector_nr)
6512 					rdev->recovery_offset = sector_nr;
6513 		conf->reshape_checkpoint = jiffies;
6514 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6515 		md_wakeup_thread(mddev->thread);
6516 		wait_event(mddev->sb_wait,
6517 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6518 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6519 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6520 			goto ret;
6521 		spin_lock_irq(&conf->device_lock);
6522 		conf->reshape_safe = mddev->reshape_position;
6523 		spin_unlock_irq(&conf->device_lock);
6524 		wake_up(&conf->wait_for_overlap);
6525 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6526 	}
6527 ret:
6528 	return retn;
6529 }
6530 
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6531 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6532 					  int *skipped)
6533 {
6534 	struct r5conf *conf = mddev->private;
6535 	struct stripe_head *sh;
6536 	sector_t max_sector = mddev->dev_sectors;
6537 	sector_t sync_blocks;
6538 	int still_degraded = 0;
6539 	int i;
6540 
6541 	if (sector_nr >= max_sector) {
6542 		/* just being told to finish up .. nothing much to do */
6543 
6544 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6545 			end_reshape(conf);
6546 			return 0;
6547 		}
6548 
6549 		if (mddev->curr_resync < max_sector) /* aborted */
6550 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6551 					   &sync_blocks, 1);
6552 		else /* completed sync */
6553 			conf->fullsync = 0;
6554 		md_bitmap_close_sync(mddev->bitmap);
6555 
6556 		return 0;
6557 	}
6558 
6559 	/* Allow raid5_quiesce to complete */
6560 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6561 
6562 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6563 		return reshape_request(mddev, sector_nr, skipped);
6564 
6565 	/* No need to check resync_max as we never do more than one
6566 	 * stripe, and as resync_max will always be on a chunk boundary,
6567 	 * if the check in md_do_sync didn't fire, there is no chance
6568 	 * of overstepping resync_max here
6569 	 */
6570 
6571 	/* if there is too many failed drives and we are trying
6572 	 * to resync, then assert that we are finished, because there is
6573 	 * nothing we can do.
6574 	 */
6575 	if (mddev->degraded >= conf->max_degraded &&
6576 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6577 		sector_t rv = mddev->dev_sectors - sector_nr;
6578 		*skipped = 1;
6579 		return rv;
6580 	}
6581 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6582 	    !conf->fullsync &&
6583 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6584 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6585 		/* we can skip this block, and probably more */
6586 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6587 		*skipped = 1;
6588 		/* keep things rounded to whole stripes */
6589 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6590 	}
6591 
6592 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6593 
6594 	sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6595 				     R5_GAS_NOBLOCK);
6596 	if (sh == NULL) {
6597 		sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6598 		/* make sure we don't swamp the stripe cache if someone else
6599 		 * is trying to get access
6600 		 */
6601 		schedule_timeout_uninterruptible(1);
6602 	}
6603 	/* Need to check if array will still be degraded after recovery/resync
6604 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6605 	 * one drive while leaving another faulty drive in array.
6606 	 */
6607 	rcu_read_lock();
6608 	for (i = 0; i < conf->raid_disks; i++) {
6609 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
6610 
6611 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6612 			still_degraded = 1;
6613 	}
6614 	rcu_read_unlock();
6615 
6616 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6617 
6618 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6619 	set_bit(STRIPE_HANDLE, &sh->state);
6620 
6621 	raid5_release_stripe(sh);
6622 
6623 	return RAID5_STRIPE_SECTORS(conf);
6624 }
6625 
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6626 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6627 			       unsigned int offset)
6628 {
6629 	/* We may not be able to submit a whole bio at once as there
6630 	 * may not be enough stripe_heads available.
6631 	 * We cannot pre-allocate enough stripe_heads as we may need
6632 	 * more than exist in the cache (if we allow ever large chunks).
6633 	 * So we do one stripe head at a time and record in
6634 	 * ->bi_hw_segments how many have been done.
6635 	 *
6636 	 * We *know* that this entire raid_bio is in one chunk, so
6637 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6638 	 */
6639 	struct stripe_head *sh;
6640 	int dd_idx;
6641 	sector_t sector, logical_sector, last_sector;
6642 	int scnt = 0;
6643 	int handled = 0;
6644 
6645 	logical_sector = raid_bio->bi_iter.bi_sector &
6646 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6647 	sector = raid5_compute_sector(conf, logical_sector,
6648 				      0, &dd_idx, NULL);
6649 	last_sector = bio_end_sector(raid_bio);
6650 
6651 	for (; logical_sector < last_sector;
6652 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6653 		     sector += RAID5_STRIPE_SECTORS(conf),
6654 		     scnt++) {
6655 
6656 		if (scnt < offset)
6657 			/* already done this stripe */
6658 			continue;
6659 
6660 		sh = raid5_get_active_stripe(conf, NULL, sector,
6661 				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6662 		if (!sh) {
6663 			/* failed to get a stripe - must wait */
6664 			conf->retry_read_aligned = raid_bio;
6665 			conf->retry_read_offset = scnt;
6666 			return handled;
6667 		}
6668 
6669 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6670 			raid5_release_stripe(sh);
6671 			conf->retry_read_aligned = raid_bio;
6672 			conf->retry_read_offset = scnt;
6673 			return handled;
6674 		}
6675 
6676 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6677 		handle_stripe(sh);
6678 		raid5_release_stripe(sh);
6679 		handled++;
6680 	}
6681 
6682 	bio_endio(raid_bio);
6683 
6684 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6685 		wake_up(&conf->wait_for_quiescent);
6686 	return handled;
6687 }
6688 
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6689 static int handle_active_stripes(struct r5conf *conf, int group,
6690 				 struct r5worker *worker,
6691 				 struct list_head *temp_inactive_list)
6692 		__must_hold(&conf->device_lock)
6693 {
6694 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6695 	int i, batch_size = 0, hash;
6696 	bool release_inactive = false;
6697 
6698 	while (batch_size < MAX_STRIPE_BATCH &&
6699 			(sh = __get_priority_stripe(conf, group)) != NULL)
6700 		batch[batch_size++] = sh;
6701 
6702 	if (batch_size == 0) {
6703 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6704 			if (!list_empty(temp_inactive_list + i))
6705 				break;
6706 		if (i == NR_STRIPE_HASH_LOCKS) {
6707 			spin_unlock_irq(&conf->device_lock);
6708 			log_flush_stripe_to_raid(conf);
6709 			spin_lock_irq(&conf->device_lock);
6710 			return batch_size;
6711 		}
6712 		release_inactive = true;
6713 	}
6714 	spin_unlock_irq(&conf->device_lock);
6715 
6716 	release_inactive_stripe_list(conf, temp_inactive_list,
6717 				     NR_STRIPE_HASH_LOCKS);
6718 
6719 	r5l_flush_stripe_to_raid(conf->log);
6720 	if (release_inactive) {
6721 		spin_lock_irq(&conf->device_lock);
6722 		return 0;
6723 	}
6724 
6725 	for (i = 0; i < batch_size; i++)
6726 		handle_stripe(batch[i]);
6727 	log_write_stripe_run(conf);
6728 
6729 	cond_resched();
6730 
6731 	spin_lock_irq(&conf->device_lock);
6732 	for (i = 0; i < batch_size; i++) {
6733 		hash = batch[i]->hash_lock_index;
6734 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6735 	}
6736 	return batch_size;
6737 }
6738 
raid5_do_work(struct work_struct * work)6739 static void raid5_do_work(struct work_struct *work)
6740 {
6741 	struct r5worker *worker = container_of(work, struct r5worker, work);
6742 	struct r5worker_group *group = worker->group;
6743 	struct r5conf *conf = group->conf;
6744 	struct mddev *mddev = conf->mddev;
6745 	int group_id = group - conf->worker_groups;
6746 	int handled;
6747 	struct blk_plug plug;
6748 
6749 	pr_debug("+++ raid5worker active\n");
6750 
6751 	blk_start_plug(&plug);
6752 	handled = 0;
6753 	spin_lock_irq(&conf->device_lock);
6754 	while (1) {
6755 		int batch_size, released;
6756 
6757 		released = release_stripe_list(conf, worker->temp_inactive_list);
6758 
6759 		batch_size = handle_active_stripes(conf, group_id, worker,
6760 						   worker->temp_inactive_list);
6761 		worker->working = false;
6762 		if (!batch_size && !released)
6763 			break;
6764 		handled += batch_size;
6765 		wait_event_lock_irq(mddev->sb_wait,
6766 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6767 			conf->device_lock);
6768 	}
6769 	pr_debug("%d stripes handled\n", handled);
6770 
6771 	spin_unlock_irq(&conf->device_lock);
6772 
6773 	flush_deferred_bios(conf);
6774 
6775 	r5l_flush_stripe_to_raid(conf->log);
6776 
6777 	async_tx_issue_pending_all();
6778 	blk_finish_plug(&plug);
6779 
6780 	pr_debug("--- raid5worker inactive\n");
6781 }
6782 
6783 /*
6784  * This is our raid5 kernel thread.
6785  *
6786  * We scan the hash table for stripes which can be handled now.
6787  * During the scan, completed stripes are saved for us by the interrupt
6788  * handler, so that they will not have to wait for our next wakeup.
6789  */
raid5d(struct md_thread * thread)6790 static void raid5d(struct md_thread *thread)
6791 {
6792 	struct mddev *mddev = thread->mddev;
6793 	struct r5conf *conf = mddev->private;
6794 	int handled;
6795 	struct blk_plug plug;
6796 
6797 	pr_debug("+++ raid5d active\n");
6798 
6799 	md_check_recovery(mddev);
6800 
6801 	blk_start_plug(&plug);
6802 	handled = 0;
6803 	spin_lock_irq(&conf->device_lock);
6804 	while (1) {
6805 		struct bio *bio;
6806 		int batch_size, released;
6807 		unsigned int offset;
6808 
6809 		if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6810 			break;
6811 
6812 		released = release_stripe_list(conf, conf->temp_inactive_list);
6813 		if (released)
6814 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6815 
6816 		if (
6817 		    !list_empty(&conf->bitmap_list)) {
6818 			/* Now is a good time to flush some bitmap updates */
6819 			conf->seq_flush++;
6820 			spin_unlock_irq(&conf->device_lock);
6821 			md_bitmap_unplug(mddev->bitmap);
6822 			spin_lock_irq(&conf->device_lock);
6823 			conf->seq_write = conf->seq_flush;
6824 			activate_bit_delay(conf, conf->temp_inactive_list);
6825 		}
6826 		raid5_activate_delayed(conf);
6827 
6828 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6829 			int ok;
6830 			spin_unlock_irq(&conf->device_lock);
6831 			ok = retry_aligned_read(conf, bio, offset);
6832 			spin_lock_irq(&conf->device_lock);
6833 			if (!ok)
6834 				break;
6835 			handled++;
6836 		}
6837 
6838 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6839 						   conf->temp_inactive_list);
6840 		if (!batch_size && !released)
6841 			break;
6842 		handled += batch_size;
6843 
6844 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6845 			spin_unlock_irq(&conf->device_lock);
6846 			md_check_recovery(mddev);
6847 			spin_lock_irq(&conf->device_lock);
6848 		}
6849 	}
6850 	pr_debug("%d stripes handled\n", handled);
6851 
6852 	spin_unlock_irq(&conf->device_lock);
6853 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6854 	    mutex_trylock(&conf->cache_size_mutex)) {
6855 		grow_one_stripe(conf, __GFP_NOWARN);
6856 		/* Set flag even if allocation failed.  This helps
6857 		 * slow down allocation requests when mem is short
6858 		 */
6859 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6860 		mutex_unlock(&conf->cache_size_mutex);
6861 	}
6862 
6863 	flush_deferred_bios(conf);
6864 
6865 	r5l_flush_stripe_to_raid(conf->log);
6866 
6867 	async_tx_issue_pending_all();
6868 	blk_finish_plug(&plug);
6869 
6870 	pr_debug("--- raid5d inactive\n");
6871 }
6872 
6873 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6874 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6875 {
6876 	struct r5conf *conf;
6877 	int ret = 0;
6878 	spin_lock(&mddev->lock);
6879 	conf = mddev->private;
6880 	if (conf)
6881 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6882 	spin_unlock(&mddev->lock);
6883 	return ret;
6884 }
6885 
6886 int
raid5_set_cache_size(struct mddev * mddev,int size)6887 raid5_set_cache_size(struct mddev *mddev, int size)
6888 {
6889 	int result = 0;
6890 	struct r5conf *conf = mddev->private;
6891 
6892 	if (size <= 16 || size > 32768)
6893 		return -EINVAL;
6894 
6895 	WRITE_ONCE(conf->min_nr_stripes, size);
6896 	mutex_lock(&conf->cache_size_mutex);
6897 	while (size < conf->max_nr_stripes &&
6898 	       drop_one_stripe(conf))
6899 		;
6900 	mutex_unlock(&conf->cache_size_mutex);
6901 
6902 	md_allow_write(mddev);
6903 
6904 	mutex_lock(&conf->cache_size_mutex);
6905 	while (size > conf->max_nr_stripes)
6906 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6907 			WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6908 			result = -ENOMEM;
6909 			break;
6910 		}
6911 	mutex_unlock(&conf->cache_size_mutex);
6912 
6913 	return result;
6914 }
6915 EXPORT_SYMBOL(raid5_set_cache_size);
6916 
6917 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6918 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6919 {
6920 	struct r5conf *conf;
6921 	unsigned long new;
6922 	int err;
6923 
6924 	if (len >= PAGE_SIZE)
6925 		return -EINVAL;
6926 	if (kstrtoul(page, 10, &new))
6927 		return -EINVAL;
6928 	err = mddev_lock(mddev);
6929 	if (err)
6930 		return err;
6931 	conf = mddev->private;
6932 	if (!conf)
6933 		err = -ENODEV;
6934 	else
6935 		err = raid5_set_cache_size(mddev, new);
6936 	mddev_unlock(mddev);
6937 
6938 	return err ?: len;
6939 }
6940 
6941 static struct md_sysfs_entry
6942 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6943 				raid5_show_stripe_cache_size,
6944 				raid5_store_stripe_cache_size);
6945 
6946 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6947 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6948 {
6949 	struct r5conf *conf = mddev->private;
6950 	if (conf)
6951 		return sprintf(page, "%d\n", conf->rmw_level);
6952 	else
6953 		return 0;
6954 }
6955 
6956 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6957 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6958 {
6959 	struct r5conf *conf = mddev->private;
6960 	unsigned long new;
6961 
6962 	if (!conf)
6963 		return -ENODEV;
6964 
6965 	if (len >= PAGE_SIZE)
6966 		return -EINVAL;
6967 
6968 	if (kstrtoul(page, 10, &new))
6969 		return -EINVAL;
6970 
6971 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6972 		return -EINVAL;
6973 
6974 	if (new != PARITY_DISABLE_RMW &&
6975 	    new != PARITY_ENABLE_RMW &&
6976 	    new != PARITY_PREFER_RMW)
6977 		return -EINVAL;
6978 
6979 	conf->rmw_level = new;
6980 	return len;
6981 }
6982 
6983 static struct md_sysfs_entry
6984 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6985 			 raid5_show_rmw_level,
6986 			 raid5_store_rmw_level);
6987 
6988 static ssize_t
raid5_show_stripe_size(struct mddev * mddev,char * page)6989 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6990 {
6991 	struct r5conf *conf;
6992 	int ret = 0;
6993 
6994 	spin_lock(&mddev->lock);
6995 	conf = mddev->private;
6996 	if (conf)
6997 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6998 	spin_unlock(&mddev->lock);
6999 	return ret;
7000 }
7001 
7002 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7003 static ssize_t
raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)7004 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
7005 {
7006 	struct r5conf *conf;
7007 	unsigned long new;
7008 	int err;
7009 	int size;
7010 
7011 	if (len >= PAGE_SIZE)
7012 		return -EINVAL;
7013 	if (kstrtoul(page, 10, &new))
7014 		return -EINVAL;
7015 
7016 	/*
7017 	 * The value should not be bigger than PAGE_SIZE. It requires to
7018 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
7019 	 * of two.
7020 	 */
7021 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
7022 			new > PAGE_SIZE || new == 0 ||
7023 			new != roundup_pow_of_two(new))
7024 		return -EINVAL;
7025 
7026 	err = mddev_lock(mddev);
7027 	if (err)
7028 		return err;
7029 
7030 	conf = mddev->private;
7031 	if (!conf) {
7032 		err = -ENODEV;
7033 		goto out_unlock;
7034 	}
7035 
7036 	if (new == conf->stripe_size)
7037 		goto out_unlock;
7038 
7039 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
7040 			conf->stripe_size, new);
7041 
7042 	if (mddev->sync_thread ||
7043 		test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7044 		mddev->reshape_position != MaxSector ||
7045 		mddev->sysfs_active) {
7046 		err = -EBUSY;
7047 		goto out_unlock;
7048 	}
7049 
7050 	mddev_suspend(mddev);
7051 	mutex_lock(&conf->cache_size_mutex);
7052 	size = conf->max_nr_stripes;
7053 
7054 	shrink_stripes(conf);
7055 
7056 	conf->stripe_size = new;
7057 	conf->stripe_shift = ilog2(new) - 9;
7058 	conf->stripe_sectors = new >> 9;
7059 	if (grow_stripes(conf, size)) {
7060 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
7061 				mdname(mddev));
7062 		err = -ENOMEM;
7063 	}
7064 	mutex_unlock(&conf->cache_size_mutex);
7065 	mddev_resume(mddev);
7066 
7067 out_unlock:
7068 	mddev_unlock(mddev);
7069 	return err ?: len;
7070 }
7071 
7072 static struct md_sysfs_entry
7073 raid5_stripe_size = __ATTR(stripe_size, 0644,
7074 			 raid5_show_stripe_size,
7075 			 raid5_store_stripe_size);
7076 #else
7077 static struct md_sysfs_entry
7078 raid5_stripe_size = __ATTR(stripe_size, 0444,
7079 			 raid5_show_stripe_size,
7080 			 NULL);
7081 #endif
7082 
7083 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)7084 raid5_show_preread_threshold(struct mddev *mddev, char *page)
7085 {
7086 	struct r5conf *conf;
7087 	int ret = 0;
7088 	spin_lock(&mddev->lock);
7089 	conf = mddev->private;
7090 	if (conf)
7091 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
7092 	spin_unlock(&mddev->lock);
7093 	return ret;
7094 }
7095 
7096 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)7097 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7098 {
7099 	struct r5conf *conf;
7100 	unsigned long new;
7101 	int err;
7102 
7103 	if (len >= PAGE_SIZE)
7104 		return -EINVAL;
7105 	if (kstrtoul(page, 10, &new))
7106 		return -EINVAL;
7107 
7108 	err = mddev_lock(mddev);
7109 	if (err)
7110 		return err;
7111 	conf = mddev->private;
7112 	if (!conf)
7113 		err = -ENODEV;
7114 	else if (new > conf->min_nr_stripes)
7115 		err = -EINVAL;
7116 	else
7117 		conf->bypass_threshold = new;
7118 	mddev_unlock(mddev);
7119 	return err ?: len;
7120 }
7121 
7122 static struct md_sysfs_entry
7123 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7124 					S_IRUGO | S_IWUSR,
7125 					raid5_show_preread_threshold,
7126 					raid5_store_preread_threshold);
7127 
7128 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)7129 raid5_show_skip_copy(struct mddev *mddev, char *page)
7130 {
7131 	struct r5conf *conf;
7132 	int ret = 0;
7133 	spin_lock(&mddev->lock);
7134 	conf = mddev->private;
7135 	if (conf)
7136 		ret = sprintf(page, "%d\n", conf->skip_copy);
7137 	spin_unlock(&mddev->lock);
7138 	return ret;
7139 }
7140 
7141 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)7142 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7143 {
7144 	struct r5conf *conf;
7145 	unsigned long new;
7146 	int err;
7147 
7148 	if (len >= PAGE_SIZE)
7149 		return -EINVAL;
7150 	if (kstrtoul(page, 10, &new))
7151 		return -EINVAL;
7152 	new = !!new;
7153 
7154 	err = mddev_lock(mddev);
7155 	if (err)
7156 		return err;
7157 	conf = mddev->private;
7158 	if (!conf)
7159 		err = -ENODEV;
7160 	else if (new != conf->skip_copy) {
7161 		struct request_queue *q = mddev->queue;
7162 
7163 		mddev_suspend(mddev);
7164 		conf->skip_copy = new;
7165 		if (new)
7166 			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7167 		else
7168 			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7169 		mddev_resume(mddev);
7170 	}
7171 	mddev_unlock(mddev);
7172 	return err ?: len;
7173 }
7174 
7175 static struct md_sysfs_entry
7176 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7177 					raid5_show_skip_copy,
7178 					raid5_store_skip_copy);
7179 
7180 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)7181 stripe_cache_active_show(struct mddev *mddev, char *page)
7182 {
7183 	struct r5conf *conf = mddev->private;
7184 	if (conf)
7185 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7186 	else
7187 		return 0;
7188 }
7189 
7190 static struct md_sysfs_entry
7191 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7192 
7193 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)7194 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7195 {
7196 	struct r5conf *conf;
7197 	int ret = 0;
7198 	spin_lock(&mddev->lock);
7199 	conf = mddev->private;
7200 	if (conf)
7201 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7202 	spin_unlock(&mddev->lock);
7203 	return ret;
7204 }
7205 
7206 static int alloc_thread_groups(struct r5conf *conf, int cnt,
7207 			       int *group_cnt,
7208 			       struct r5worker_group **worker_groups);
7209 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)7210 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7211 {
7212 	struct r5conf *conf;
7213 	unsigned int new;
7214 	int err;
7215 	struct r5worker_group *new_groups, *old_groups;
7216 	int group_cnt;
7217 
7218 	if (len >= PAGE_SIZE)
7219 		return -EINVAL;
7220 	if (kstrtouint(page, 10, &new))
7221 		return -EINVAL;
7222 	/* 8192 should be big enough */
7223 	if (new > 8192)
7224 		return -EINVAL;
7225 
7226 	err = mddev_lock(mddev);
7227 	if (err)
7228 		return err;
7229 	conf = mddev->private;
7230 	if (!conf)
7231 		err = -ENODEV;
7232 	else if (new != conf->worker_cnt_per_group) {
7233 		mddev_suspend(mddev);
7234 
7235 		old_groups = conf->worker_groups;
7236 		if (old_groups)
7237 			flush_workqueue(raid5_wq);
7238 
7239 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7240 		if (!err) {
7241 			spin_lock_irq(&conf->device_lock);
7242 			conf->group_cnt = group_cnt;
7243 			conf->worker_cnt_per_group = new;
7244 			conf->worker_groups = new_groups;
7245 			spin_unlock_irq(&conf->device_lock);
7246 
7247 			if (old_groups)
7248 				kfree(old_groups[0].workers);
7249 			kfree(old_groups);
7250 		}
7251 		mddev_resume(mddev);
7252 	}
7253 	mddev_unlock(mddev);
7254 
7255 	return err ?: len;
7256 }
7257 
7258 static struct md_sysfs_entry
7259 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7260 				raid5_show_group_thread_cnt,
7261 				raid5_store_group_thread_cnt);
7262 
7263 static struct attribute *raid5_attrs[] =  {
7264 	&raid5_stripecache_size.attr,
7265 	&raid5_stripecache_active.attr,
7266 	&raid5_preread_bypass_threshold.attr,
7267 	&raid5_group_thread_cnt.attr,
7268 	&raid5_skip_copy.attr,
7269 	&raid5_rmw_level.attr,
7270 	&raid5_stripe_size.attr,
7271 	&r5c_journal_mode.attr,
7272 	&ppl_write_hint.attr,
7273 	NULL,
7274 };
7275 static const struct attribute_group raid5_attrs_group = {
7276 	.name = NULL,
7277 	.attrs = raid5_attrs,
7278 };
7279 
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)7280 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7281 			       struct r5worker_group **worker_groups)
7282 {
7283 	int i, j, k;
7284 	ssize_t size;
7285 	struct r5worker *workers;
7286 
7287 	if (cnt == 0) {
7288 		*group_cnt = 0;
7289 		*worker_groups = NULL;
7290 		return 0;
7291 	}
7292 	*group_cnt = num_possible_nodes();
7293 	size = sizeof(struct r5worker) * cnt;
7294 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7295 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7296 				 GFP_NOIO);
7297 	if (!*worker_groups || !workers) {
7298 		kfree(workers);
7299 		kfree(*worker_groups);
7300 		return -ENOMEM;
7301 	}
7302 
7303 	for (i = 0; i < *group_cnt; i++) {
7304 		struct r5worker_group *group;
7305 
7306 		group = &(*worker_groups)[i];
7307 		INIT_LIST_HEAD(&group->handle_list);
7308 		INIT_LIST_HEAD(&group->loprio_list);
7309 		group->conf = conf;
7310 		group->workers = workers + i * cnt;
7311 
7312 		for (j = 0; j < cnt; j++) {
7313 			struct r5worker *worker = group->workers + j;
7314 			worker->group = group;
7315 			INIT_WORK(&worker->work, raid5_do_work);
7316 
7317 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7318 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7319 		}
7320 	}
7321 
7322 	return 0;
7323 }
7324 
free_thread_groups(struct r5conf * conf)7325 static void free_thread_groups(struct r5conf *conf)
7326 {
7327 	if (conf->worker_groups)
7328 		kfree(conf->worker_groups[0].workers);
7329 	kfree(conf->worker_groups);
7330 	conf->worker_groups = NULL;
7331 }
7332 
7333 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7334 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7335 {
7336 	struct r5conf *conf = mddev->private;
7337 
7338 	if (!sectors)
7339 		sectors = mddev->dev_sectors;
7340 	if (!raid_disks)
7341 		/* size is defined by the smallest of previous and new size */
7342 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7343 
7344 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7345 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7346 	return sectors * (raid_disks - conf->max_degraded);
7347 }
7348 
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7349 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7350 {
7351 	safe_put_page(percpu->spare_page);
7352 	percpu->spare_page = NULL;
7353 	kvfree(percpu->scribble);
7354 	percpu->scribble = NULL;
7355 }
7356 
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7357 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7358 {
7359 	if (conf->level == 6 && !percpu->spare_page) {
7360 		percpu->spare_page = alloc_page(GFP_KERNEL);
7361 		if (!percpu->spare_page)
7362 			return -ENOMEM;
7363 	}
7364 
7365 	if (scribble_alloc(percpu,
7366 			   max(conf->raid_disks,
7367 			       conf->previous_raid_disks),
7368 			   max(conf->chunk_sectors,
7369 			       conf->prev_chunk_sectors)
7370 			   / RAID5_STRIPE_SECTORS(conf))) {
7371 		free_scratch_buffer(conf, percpu);
7372 		return -ENOMEM;
7373 	}
7374 
7375 	local_lock_init(&percpu->lock);
7376 	return 0;
7377 }
7378 
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7379 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7380 {
7381 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7382 
7383 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7384 	return 0;
7385 }
7386 
raid5_free_percpu(struct r5conf * conf)7387 static void raid5_free_percpu(struct r5conf *conf)
7388 {
7389 	if (!conf->percpu)
7390 		return;
7391 
7392 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7393 	free_percpu(conf->percpu);
7394 }
7395 
free_conf(struct r5conf * conf)7396 static void free_conf(struct r5conf *conf)
7397 {
7398 	int i;
7399 
7400 	log_exit(conf);
7401 
7402 	unregister_shrinker(&conf->shrinker);
7403 	free_thread_groups(conf);
7404 	shrink_stripes(conf);
7405 	raid5_free_percpu(conf);
7406 	for (i = 0; i < conf->pool_size; i++)
7407 		if (conf->disks[i].extra_page)
7408 			put_page(conf->disks[i].extra_page);
7409 	kfree(conf->disks);
7410 	bioset_exit(&conf->bio_split);
7411 	kfree(conf->stripe_hashtbl);
7412 	kfree(conf->pending_data);
7413 	kfree(conf);
7414 }
7415 
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7416 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7417 {
7418 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7419 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7420 
7421 	if (alloc_scratch_buffer(conf, percpu)) {
7422 		pr_warn("%s: failed memory allocation for cpu%u\n",
7423 			__func__, cpu);
7424 		return -ENOMEM;
7425 	}
7426 	return 0;
7427 }
7428 
raid5_alloc_percpu(struct r5conf * conf)7429 static int raid5_alloc_percpu(struct r5conf *conf)
7430 {
7431 	int err = 0;
7432 
7433 	conf->percpu = alloc_percpu(struct raid5_percpu);
7434 	if (!conf->percpu)
7435 		return -ENOMEM;
7436 
7437 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7438 	if (!err) {
7439 		conf->scribble_disks = max(conf->raid_disks,
7440 			conf->previous_raid_disks);
7441 		conf->scribble_sectors = max(conf->chunk_sectors,
7442 			conf->prev_chunk_sectors);
7443 	}
7444 	return err;
7445 }
7446 
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7447 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7448 				      struct shrink_control *sc)
7449 {
7450 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7451 	unsigned long ret = SHRINK_STOP;
7452 
7453 	if (mutex_trylock(&conf->cache_size_mutex)) {
7454 		ret= 0;
7455 		while (ret < sc->nr_to_scan &&
7456 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7457 			if (drop_one_stripe(conf) == 0) {
7458 				ret = SHRINK_STOP;
7459 				break;
7460 			}
7461 			ret++;
7462 		}
7463 		mutex_unlock(&conf->cache_size_mutex);
7464 	}
7465 	return ret;
7466 }
7467 
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7468 static unsigned long raid5_cache_count(struct shrinker *shrink,
7469 				       struct shrink_control *sc)
7470 {
7471 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7472 	int max_stripes = READ_ONCE(conf->max_nr_stripes);
7473 	int min_stripes = READ_ONCE(conf->min_nr_stripes);
7474 
7475 	if (max_stripes < min_stripes)
7476 		/* unlikely, but not impossible */
7477 		return 0;
7478 	return max_stripes - min_stripes;
7479 }
7480 
setup_conf(struct mddev * mddev)7481 static struct r5conf *setup_conf(struct mddev *mddev)
7482 {
7483 	struct r5conf *conf;
7484 	int raid_disk, memory, max_disks;
7485 	struct md_rdev *rdev;
7486 	struct disk_info *disk;
7487 	char pers_name[6];
7488 	int i;
7489 	int group_cnt;
7490 	struct r5worker_group *new_group;
7491 	int ret = -ENOMEM;
7492 
7493 	if (mddev->new_level != 5
7494 	    && mddev->new_level != 4
7495 	    && mddev->new_level != 6) {
7496 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7497 			mdname(mddev), mddev->new_level);
7498 		return ERR_PTR(-EIO);
7499 	}
7500 	if ((mddev->new_level == 5
7501 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7502 	    (mddev->new_level == 6
7503 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7504 		pr_warn("md/raid:%s: layout %d not supported\n",
7505 			mdname(mddev), mddev->new_layout);
7506 		return ERR_PTR(-EIO);
7507 	}
7508 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7509 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7510 			mdname(mddev), mddev->raid_disks);
7511 		return ERR_PTR(-EINVAL);
7512 	}
7513 
7514 	if (!mddev->new_chunk_sectors ||
7515 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7516 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7517 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7518 			mdname(mddev), mddev->new_chunk_sectors << 9);
7519 		return ERR_PTR(-EINVAL);
7520 	}
7521 
7522 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7523 	if (conf == NULL)
7524 		goto abort;
7525 
7526 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7527 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7528 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7529 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7530 #endif
7531 	INIT_LIST_HEAD(&conf->free_list);
7532 	INIT_LIST_HEAD(&conf->pending_list);
7533 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7534 				     sizeof(struct r5pending_data),
7535 				     GFP_KERNEL);
7536 	if (!conf->pending_data)
7537 		goto abort;
7538 	for (i = 0; i < PENDING_IO_MAX; i++)
7539 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7540 	/* Don't enable multi-threading by default*/
7541 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7542 		conf->group_cnt = group_cnt;
7543 		conf->worker_cnt_per_group = 0;
7544 		conf->worker_groups = new_group;
7545 	} else
7546 		goto abort;
7547 	spin_lock_init(&conf->device_lock);
7548 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7549 	mutex_init(&conf->cache_size_mutex);
7550 
7551 	init_waitqueue_head(&conf->wait_for_quiescent);
7552 	init_waitqueue_head(&conf->wait_for_stripe);
7553 	init_waitqueue_head(&conf->wait_for_overlap);
7554 	INIT_LIST_HEAD(&conf->handle_list);
7555 	INIT_LIST_HEAD(&conf->loprio_list);
7556 	INIT_LIST_HEAD(&conf->hold_list);
7557 	INIT_LIST_HEAD(&conf->delayed_list);
7558 	INIT_LIST_HEAD(&conf->bitmap_list);
7559 	init_llist_head(&conf->released_stripes);
7560 	atomic_set(&conf->active_stripes, 0);
7561 	atomic_set(&conf->preread_active_stripes, 0);
7562 	atomic_set(&conf->active_aligned_reads, 0);
7563 	spin_lock_init(&conf->pending_bios_lock);
7564 	conf->batch_bio_dispatch = true;
7565 	rdev_for_each(rdev, mddev) {
7566 		if (test_bit(Journal, &rdev->flags))
7567 			continue;
7568 		if (bdev_nonrot(rdev->bdev)) {
7569 			conf->batch_bio_dispatch = false;
7570 			break;
7571 		}
7572 	}
7573 
7574 	conf->bypass_threshold = BYPASS_THRESHOLD;
7575 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7576 
7577 	conf->raid_disks = mddev->raid_disks;
7578 	if (mddev->reshape_position == MaxSector)
7579 		conf->previous_raid_disks = mddev->raid_disks;
7580 	else
7581 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7582 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7583 
7584 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7585 			      GFP_KERNEL);
7586 
7587 	if (!conf->disks)
7588 		goto abort;
7589 
7590 	for (i = 0; i < max_disks; i++) {
7591 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7592 		if (!conf->disks[i].extra_page)
7593 			goto abort;
7594 	}
7595 
7596 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7597 	if (ret)
7598 		goto abort;
7599 	conf->mddev = mddev;
7600 
7601 	ret = -ENOMEM;
7602 	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7603 	if (!conf->stripe_hashtbl)
7604 		goto abort;
7605 
7606 	/* We init hash_locks[0] separately to that it can be used
7607 	 * as the reference lock in the spin_lock_nest_lock() call
7608 	 * in lock_all_device_hash_locks_irq in order to convince
7609 	 * lockdep that we know what we are doing.
7610 	 */
7611 	spin_lock_init(conf->hash_locks);
7612 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7613 		spin_lock_init(conf->hash_locks + i);
7614 
7615 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7616 		INIT_LIST_HEAD(conf->inactive_list + i);
7617 
7618 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7619 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7620 
7621 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7622 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7623 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7624 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7625 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7626 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7627 
7628 	conf->level = mddev->new_level;
7629 	conf->chunk_sectors = mddev->new_chunk_sectors;
7630 	ret = raid5_alloc_percpu(conf);
7631 	if (ret)
7632 		goto abort;
7633 
7634 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7635 
7636 	ret = -EIO;
7637 	rdev_for_each(rdev, mddev) {
7638 		raid_disk = rdev->raid_disk;
7639 		if (raid_disk >= max_disks
7640 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7641 			continue;
7642 		disk = conf->disks + raid_disk;
7643 
7644 		if (test_bit(Replacement, &rdev->flags)) {
7645 			if (disk->replacement)
7646 				goto abort;
7647 			RCU_INIT_POINTER(disk->replacement, rdev);
7648 		} else {
7649 			if (disk->rdev)
7650 				goto abort;
7651 			RCU_INIT_POINTER(disk->rdev, rdev);
7652 		}
7653 
7654 		if (test_bit(In_sync, &rdev->flags)) {
7655 			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7656 				mdname(mddev), rdev->bdev, raid_disk);
7657 		} else if (rdev->saved_raid_disk != raid_disk)
7658 			/* Cannot rely on bitmap to complete recovery */
7659 			conf->fullsync = 1;
7660 	}
7661 
7662 	conf->level = mddev->new_level;
7663 	if (conf->level == 6) {
7664 		conf->max_degraded = 2;
7665 		if (raid6_call.xor_syndrome)
7666 			conf->rmw_level = PARITY_ENABLE_RMW;
7667 		else
7668 			conf->rmw_level = PARITY_DISABLE_RMW;
7669 	} else {
7670 		conf->max_degraded = 1;
7671 		conf->rmw_level = PARITY_ENABLE_RMW;
7672 	}
7673 	conf->algorithm = mddev->new_layout;
7674 	conf->reshape_progress = mddev->reshape_position;
7675 	if (conf->reshape_progress != MaxSector) {
7676 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7677 		conf->prev_algo = mddev->layout;
7678 	} else {
7679 		conf->prev_chunk_sectors = conf->chunk_sectors;
7680 		conf->prev_algo = conf->algorithm;
7681 	}
7682 
7683 	conf->min_nr_stripes = NR_STRIPES;
7684 	if (mddev->reshape_position != MaxSector) {
7685 		int stripes = max_t(int,
7686 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7687 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7688 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7689 		if (conf->min_nr_stripes != NR_STRIPES)
7690 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7691 				mdname(mddev), conf->min_nr_stripes);
7692 	}
7693 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7694 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7695 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7696 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7697 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7698 			mdname(mddev), memory);
7699 		ret = -ENOMEM;
7700 		goto abort;
7701 	} else
7702 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7703 	/*
7704 	 * Losing a stripe head costs more than the time to refill it,
7705 	 * it reduces the queue depth and so can hurt throughput.
7706 	 * So set it rather large, scaled by number of devices.
7707 	 */
7708 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7709 	conf->shrinker.scan_objects = raid5_cache_scan;
7710 	conf->shrinker.count_objects = raid5_cache_count;
7711 	conf->shrinker.batch = 128;
7712 	conf->shrinker.flags = 0;
7713 	ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev));
7714 	if (ret) {
7715 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7716 			mdname(mddev));
7717 		goto abort;
7718 	}
7719 
7720 	sprintf(pers_name, "raid%d", mddev->new_level);
7721 	rcu_assign_pointer(conf->thread,
7722 			   md_register_thread(raid5d, mddev, pers_name));
7723 	if (!conf->thread) {
7724 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7725 			mdname(mddev));
7726 		ret = -ENOMEM;
7727 		goto abort;
7728 	}
7729 
7730 	return conf;
7731 
7732  abort:
7733 	if (conf)
7734 		free_conf(conf);
7735 	return ERR_PTR(ret);
7736 }
7737 
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7738 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7739 {
7740 	switch (algo) {
7741 	case ALGORITHM_PARITY_0:
7742 		if (raid_disk < max_degraded)
7743 			return 1;
7744 		break;
7745 	case ALGORITHM_PARITY_N:
7746 		if (raid_disk >= raid_disks - max_degraded)
7747 			return 1;
7748 		break;
7749 	case ALGORITHM_PARITY_0_6:
7750 		if (raid_disk == 0 ||
7751 		    raid_disk == raid_disks - 1)
7752 			return 1;
7753 		break;
7754 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7755 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7756 	case ALGORITHM_LEFT_SYMMETRIC_6:
7757 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7758 		if (raid_disk == raid_disks - 1)
7759 			return 1;
7760 	}
7761 	return 0;
7762 }
7763 
raid5_set_io_opt(struct r5conf * conf)7764 static void raid5_set_io_opt(struct r5conf *conf)
7765 {
7766 	blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7767 			 (conf->raid_disks - conf->max_degraded));
7768 }
7769 
raid5_run(struct mddev * mddev)7770 static int raid5_run(struct mddev *mddev)
7771 {
7772 	struct r5conf *conf;
7773 	int dirty_parity_disks = 0;
7774 	struct md_rdev *rdev;
7775 	struct md_rdev *journal_dev = NULL;
7776 	sector_t reshape_offset = 0;
7777 	int i;
7778 	long long min_offset_diff = 0;
7779 	int first = 1;
7780 
7781 	if (mddev_init_writes_pending(mddev) < 0)
7782 		return -ENOMEM;
7783 
7784 	if (mddev->recovery_cp != MaxSector)
7785 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7786 			  mdname(mddev));
7787 
7788 	rdev_for_each(rdev, mddev) {
7789 		long long diff;
7790 
7791 		if (test_bit(Journal, &rdev->flags)) {
7792 			journal_dev = rdev;
7793 			continue;
7794 		}
7795 		if (rdev->raid_disk < 0)
7796 			continue;
7797 		diff = (rdev->new_data_offset - rdev->data_offset);
7798 		if (first) {
7799 			min_offset_diff = diff;
7800 			first = 0;
7801 		} else if (mddev->reshape_backwards &&
7802 			 diff < min_offset_diff)
7803 			min_offset_diff = diff;
7804 		else if (!mddev->reshape_backwards &&
7805 			 diff > min_offset_diff)
7806 			min_offset_diff = diff;
7807 	}
7808 
7809 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7810 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7811 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7812 			  mdname(mddev));
7813 		return -EINVAL;
7814 	}
7815 
7816 	if (mddev->reshape_position != MaxSector) {
7817 		/* Check that we can continue the reshape.
7818 		 * Difficulties arise if the stripe we would write to
7819 		 * next is at or after the stripe we would read from next.
7820 		 * For a reshape that changes the number of devices, this
7821 		 * is only possible for a very short time, and mdadm makes
7822 		 * sure that time appears to have past before assembling
7823 		 * the array.  So we fail if that time hasn't passed.
7824 		 * For a reshape that keeps the number of devices the same
7825 		 * mdadm must be monitoring the reshape can keeping the
7826 		 * critical areas read-only and backed up.  It will start
7827 		 * the array in read-only mode, so we check for that.
7828 		 */
7829 		sector_t here_new, here_old;
7830 		int old_disks;
7831 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7832 		int chunk_sectors;
7833 		int new_data_disks;
7834 
7835 		if (journal_dev) {
7836 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7837 				mdname(mddev));
7838 			return -EINVAL;
7839 		}
7840 
7841 		if (mddev->new_level != mddev->level) {
7842 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7843 				mdname(mddev));
7844 			return -EINVAL;
7845 		}
7846 		old_disks = mddev->raid_disks - mddev->delta_disks;
7847 		/* reshape_position must be on a new-stripe boundary, and one
7848 		 * further up in new geometry must map after here in old
7849 		 * geometry.
7850 		 * If the chunk sizes are different, then as we perform reshape
7851 		 * in units of the largest of the two, reshape_position needs
7852 		 * be a multiple of the largest chunk size times new data disks.
7853 		 */
7854 		here_new = mddev->reshape_position;
7855 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7856 		new_data_disks = mddev->raid_disks - max_degraded;
7857 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7858 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7859 				mdname(mddev));
7860 			return -EINVAL;
7861 		}
7862 		reshape_offset = here_new * chunk_sectors;
7863 		/* here_new is the stripe we will write to */
7864 		here_old = mddev->reshape_position;
7865 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7866 		/* here_old is the first stripe that we might need to read
7867 		 * from */
7868 		if (mddev->delta_disks == 0) {
7869 			/* We cannot be sure it is safe to start an in-place
7870 			 * reshape.  It is only safe if user-space is monitoring
7871 			 * and taking constant backups.
7872 			 * mdadm always starts a situation like this in
7873 			 * readonly mode so it can take control before
7874 			 * allowing any writes.  So just check for that.
7875 			 */
7876 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7877 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7878 				/* not really in-place - so OK */;
7879 			else if (mddev->ro == 0) {
7880 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7881 					mdname(mddev));
7882 				return -EINVAL;
7883 			}
7884 		} else if (mddev->reshape_backwards
7885 		    ? (here_new * chunk_sectors + min_offset_diff <=
7886 		       here_old * chunk_sectors)
7887 		    : (here_new * chunk_sectors >=
7888 		       here_old * chunk_sectors + (-min_offset_diff))) {
7889 			/* Reading from the same stripe as writing to - bad */
7890 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7891 				mdname(mddev));
7892 			return -EINVAL;
7893 		}
7894 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7895 		/* OK, we should be able to continue; */
7896 	} else {
7897 		BUG_ON(mddev->level != mddev->new_level);
7898 		BUG_ON(mddev->layout != mddev->new_layout);
7899 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7900 		BUG_ON(mddev->delta_disks != 0);
7901 	}
7902 
7903 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7904 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7905 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7906 			mdname(mddev));
7907 		clear_bit(MD_HAS_PPL, &mddev->flags);
7908 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7909 	}
7910 
7911 	if (mddev->private == NULL)
7912 		conf = setup_conf(mddev);
7913 	else
7914 		conf = mddev->private;
7915 
7916 	if (IS_ERR(conf))
7917 		return PTR_ERR(conf);
7918 
7919 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7920 		if (!journal_dev) {
7921 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7922 				mdname(mddev));
7923 			mddev->ro = 1;
7924 			set_disk_ro(mddev->gendisk, 1);
7925 		} else if (mddev->recovery_cp == MaxSector)
7926 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7927 	}
7928 
7929 	conf->min_offset_diff = min_offset_diff;
7930 	rcu_assign_pointer(mddev->thread, conf->thread);
7931 	rcu_assign_pointer(conf->thread, NULL);
7932 	mddev->private = conf;
7933 
7934 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7935 	     i++) {
7936 		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7937 		if (!rdev && conf->disks[i].replacement) {
7938 			/* The replacement is all we have yet */
7939 			rdev = rdev_mdlock_deref(mddev,
7940 						 conf->disks[i].replacement);
7941 			conf->disks[i].replacement = NULL;
7942 			clear_bit(Replacement, &rdev->flags);
7943 			rcu_assign_pointer(conf->disks[i].rdev, rdev);
7944 		}
7945 		if (!rdev)
7946 			continue;
7947 		if (rcu_access_pointer(conf->disks[i].replacement) &&
7948 		    conf->reshape_progress != MaxSector) {
7949 			/* replacements and reshape simply do not mix. */
7950 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7951 			goto abort;
7952 		}
7953 		if (test_bit(In_sync, &rdev->flags))
7954 			continue;
7955 		/* This disc is not fully in-sync.  However if it
7956 		 * just stored parity (beyond the recovery_offset),
7957 		 * when we don't need to be concerned about the
7958 		 * array being dirty.
7959 		 * When reshape goes 'backwards', we never have
7960 		 * partially completed devices, so we only need
7961 		 * to worry about reshape going forwards.
7962 		 */
7963 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7964 		if (mddev->major_version == 0 &&
7965 		    mddev->minor_version > 90)
7966 			rdev->recovery_offset = reshape_offset;
7967 
7968 		if (rdev->recovery_offset < reshape_offset) {
7969 			/* We need to check old and new layout */
7970 			if (!only_parity(rdev->raid_disk,
7971 					 conf->algorithm,
7972 					 conf->raid_disks,
7973 					 conf->max_degraded))
7974 				continue;
7975 		}
7976 		if (!only_parity(rdev->raid_disk,
7977 				 conf->prev_algo,
7978 				 conf->previous_raid_disks,
7979 				 conf->max_degraded))
7980 			continue;
7981 		dirty_parity_disks++;
7982 	}
7983 
7984 	/*
7985 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7986 	 */
7987 	mddev->degraded = raid5_calc_degraded(conf);
7988 
7989 	if (has_failed(conf)) {
7990 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7991 			mdname(mddev), mddev->degraded, conf->raid_disks);
7992 		goto abort;
7993 	}
7994 
7995 	/* device size must be a multiple of chunk size */
7996 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7997 	mddev->resync_max_sectors = mddev->dev_sectors;
7998 
7999 	if (mddev->degraded > dirty_parity_disks &&
8000 	    mddev->recovery_cp != MaxSector) {
8001 		if (test_bit(MD_HAS_PPL, &mddev->flags))
8002 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8003 				mdname(mddev));
8004 		else if (mddev->ok_start_degraded)
8005 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8006 				mdname(mddev));
8007 		else {
8008 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8009 				mdname(mddev));
8010 			goto abort;
8011 		}
8012 	}
8013 
8014 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8015 		mdname(mddev), conf->level,
8016 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8017 		mddev->new_layout);
8018 
8019 	print_raid5_conf(conf);
8020 
8021 	if (conf->reshape_progress != MaxSector) {
8022 		conf->reshape_safe = conf->reshape_progress;
8023 		atomic_set(&conf->reshape_stripes, 0);
8024 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8025 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8026 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8027 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8028 		rcu_assign_pointer(mddev->sync_thread,
8029 			md_register_thread(md_do_sync, mddev, "reshape"));
8030 		if (!mddev->sync_thread)
8031 			goto abort;
8032 	}
8033 
8034 	/* Ok, everything is just fine now */
8035 	if (mddev->to_remove == &raid5_attrs_group)
8036 		mddev->to_remove = NULL;
8037 	else if (mddev->kobj.sd &&
8038 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8039 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
8040 			mdname(mddev));
8041 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8042 
8043 	if (mddev->queue) {
8044 		int chunk_size;
8045 		/* read-ahead size must cover two whole stripes, which
8046 		 * is 2 * (datadisks) * chunksize where 'n' is the
8047 		 * number of raid devices
8048 		 */
8049 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
8050 		int stripe = data_disks *
8051 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
8052 
8053 		chunk_size = mddev->chunk_sectors << 9;
8054 		blk_queue_io_min(mddev->queue, chunk_size);
8055 		raid5_set_io_opt(conf);
8056 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
8057 		/*
8058 		 * We can only discard a whole stripe. It doesn't make sense to
8059 		 * discard data disk but write parity disk
8060 		 */
8061 		stripe = stripe * PAGE_SIZE;
8062 		stripe = roundup_pow_of_two(stripe);
8063 		mddev->queue->limits.discard_granularity = stripe;
8064 
8065 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
8066 
8067 		rdev_for_each(rdev, mddev) {
8068 			disk_stack_limits(mddev->gendisk, rdev->bdev,
8069 					  rdev->data_offset << 9);
8070 			disk_stack_limits(mddev->gendisk, rdev->bdev,
8071 					  rdev->new_data_offset << 9);
8072 		}
8073 
8074 		/*
8075 		 * zeroing is required, otherwise data
8076 		 * could be lost. Consider a scenario: discard a stripe
8077 		 * (the stripe could be inconsistent if
8078 		 * discard_zeroes_data is 0); write one disk of the
8079 		 * stripe (the stripe could be inconsistent again
8080 		 * depending on which disks are used to calculate
8081 		 * parity); the disk is broken; The stripe data of this
8082 		 * disk is lost.
8083 		 *
8084 		 * We only allow DISCARD if the sysadmin has confirmed that
8085 		 * only safe devices are in use by setting a module parameter.
8086 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
8087 		 * requests, as that is required to be safe.
8088 		 */
8089 		if (!devices_handle_discard_safely ||
8090 		    mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
8091 		    mddev->queue->limits.discard_granularity < stripe)
8092 			blk_queue_max_discard_sectors(mddev->queue, 0);
8093 
8094 		/*
8095 		 * Requests require having a bitmap for each stripe.
8096 		 * Limit the max sectors based on this.
8097 		 */
8098 		blk_queue_max_hw_sectors(mddev->queue,
8099 			RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf));
8100 
8101 		/* No restrictions on the number of segments in the request */
8102 		blk_queue_max_segments(mddev->queue, USHRT_MAX);
8103 	}
8104 
8105 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8106 		goto abort;
8107 
8108 	return 0;
8109 abort:
8110 	md_unregister_thread(mddev, &mddev->thread);
8111 	print_raid5_conf(conf);
8112 	free_conf(conf);
8113 	mddev->private = NULL;
8114 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8115 	return -EIO;
8116 }
8117 
raid5_free(struct mddev * mddev,void * priv)8118 static void raid5_free(struct mddev *mddev, void *priv)
8119 {
8120 	struct r5conf *conf = priv;
8121 
8122 	free_conf(conf);
8123 	mddev->to_remove = &raid5_attrs_group;
8124 }
8125 
raid5_status(struct seq_file * seq,struct mddev * mddev)8126 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8127 {
8128 	struct r5conf *conf = mddev->private;
8129 	int i;
8130 
8131 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8132 		conf->chunk_sectors / 2, mddev->layout);
8133 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8134 	rcu_read_lock();
8135 	for (i = 0; i < conf->raid_disks; i++) {
8136 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
8137 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8138 	}
8139 	rcu_read_unlock();
8140 	seq_printf (seq, "]");
8141 }
8142 
print_raid5_conf(struct r5conf * conf)8143 static void print_raid5_conf (struct r5conf *conf)
8144 {
8145 	struct md_rdev *rdev;
8146 	int i;
8147 
8148 	pr_debug("RAID conf printout:\n");
8149 	if (!conf) {
8150 		pr_debug("(conf==NULL)\n");
8151 		return;
8152 	}
8153 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8154 	       conf->raid_disks,
8155 	       conf->raid_disks - conf->mddev->degraded);
8156 
8157 	rcu_read_lock();
8158 	for (i = 0; i < conf->raid_disks; i++) {
8159 		rdev = rcu_dereference(conf->disks[i].rdev);
8160 		if (rdev)
8161 			pr_debug(" disk %d, o:%d, dev:%pg\n",
8162 			       i, !test_bit(Faulty, &rdev->flags),
8163 			       rdev->bdev);
8164 	}
8165 	rcu_read_unlock();
8166 }
8167 
raid5_spare_active(struct mddev * mddev)8168 static int raid5_spare_active(struct mddev *mddev)
8169 {
8170 	int i;
8171 	struct r5conf *conf = mddev->private;
8172 	struct md_rdev *rdev, *replacement;
8173 	int count = 0;
8174 	unsigned long flags;
8175 
8176 	for (i = 0; i < conf->raid_disks; i++) {
8177 		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
8178 		replacement = rdev_mdlock_deref(mddev,
8179 						conf->disks[i].replacement);
8180 		if (replacement
8181 		    && replacement->recovery_offset == MaxSector
8182 		    && !test_bit(Faulty, &replacement->flags)
8183 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
8184 			/* Replacement has just become active. */
8185 			if (!rdev
8186 			    || !test_and_clear_bit(In_sync, &rdev->flags))
8187 				count++;
8188 			if (rdev) {
8189 				/* Replaced device not technically faulty,
8190 				 * but we need to be sure it gets removed
8191 				 * and never re-added.
8192 				 */
8193 				set_bit(Faulty, &rdev->flags);
8194 				sysfs_notify_dirent_safe(
8195 					rdev->sysfs_state);
8196 			}
8197 			sysfs_notify_dirent_safe(replacement->sysfs_state);
8198 		} else if (rdev
8199 		    && rdev->recovery_offset == MaxSector
8200 		    && !test_bit(Faulty, &rdev->flags)
8201 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
8202 			count++;
8203 			sysfs_notify_dirent_safe(rdev->sysfs_state);
8204 		}
8205 	}
8206 	spin_lock_irqsave(&conf->device_lock, flags);
8207 	mddev->degraded = raid5_calc_degraded(conf);
8208 	spin_unlock_irqrestore(&conf->device_lock, flags);
8209 	print_raid5_conf(conf);
8210 	return count;
8211 }
8212 
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)8213 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8214 {
8215 	struct r5conf *conf = mddev->private;
8216 	int err = 0;
8217 	int number = rdev->raid_disk;
8218 	struct md_rdev __rcu **rdevp;
8219 	struct disk_info *p;
8220 	struct md_rdev *tmp;
8221 
8222 	print_raid5_conf(conf);
8223 	if (test_bit(Journal, &rdev->flags) && conf->log) {
8224 		/*
8225 		 * we can't wait pending write here, as this is called in
8226 		 * raid5d, wait will deadlock.
8227 		 * neilb: there is no locking about new writes here,
8228 		 * so this cannot be safe.
8229 		 */
8230 		if (atomic_read(&conf->active_stripes) ||
8231 		    atomic_read(&conf->r5c_cached_full_stripes) ||
8232 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
8233 			return -EBUSY;
8234 		}
8235 		log_exit(conf);
8236 		return 0;
8237 	}
8238 	if (unlikely(number >= conf->pool_size))
8239 		return 0;
8240 	p = conf->disks + number;
8241 	if (rdev == rcu_access_pointer(p->rdev))
8242 		rdevp = &p->rdev;
8243 	else if (rdev == rcu_access_pointer(p->replacement))
8244 		rdevp = &p->replacement;
8245 	else
8246 		return 0;
8247 
8248 	if (number >= conf->raid_disks &&
8249 	    conf->reshape_progress == MaxSector)
8250 		clear_bit(In_sync, &rdev->flags);
8251 
8252 	if (test_bit(In_sync, &rdev->flags) ||
8253 	    atomic_read(&rdev->nr_pending)) {
8254 		err = -EBUSY;
8255 		goto abort;
8256 	}
8257 	/* Only remove non-faulty devices if recovery
8258 	 * isn't possible.
8259 	 */
8260 	if (!test_bit(Faulty, &rdev->flags) &&
8261 	    mddev->recovery_disabled != conf->recovery_disabled &&
8262 	    !has_failed(conf) &&
8263 	    (!rcu_access_pointer(p->replacement) ||
8264 	     rcu_access_pointer(p->replacement) == rdev) &&
8265 	    number < conf->raid_disks) {
8266 		err = -EBUSY;
8267 		goto abort;
8268 	}
8269 	*rdevp = NULL;
8270 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
8271 		lockdep_assert_held(&mddev->reconfig_mutex);
8272 		synchronize_rcu();
8273 		if (atomic_read(&rdev->nr_pending)) {
8274 			/* lost the race, try later */
8275 			err = -EBUSY;
8276 			rcu_assign_pointer(*rdevp, rdev);
8277 		}
8278 	}
8279 	if (!err) {
8280 		err = log_modify(conf, rdev, false);
8281 		if (err)
8282 			goto abort;
8283 	}
8284 
8285 	tmp = rcu_access_pointer(p->replacement);
8286 	if (tmp) {
8287 		/* We must have just cleared 'rdev' */
8288 		rcu_assign_pointer(p->rdev, tmp);
8289 		clear_bit(Replacement, &tmp->flags);
8290 		smp_mb(); /* Make sure other CPUs may see both as identical
8291 			   * but will never see neither - if they are careful
8292 			   */
8293 		rcu_assign_pointer(p->replacement, NULL);
8294 
8295 		if (!err)
8296 			err = log_modify(conf, tmp, true);
8297 	}
8298 
8299 	clear_bit(WantReplacement, &rdev->flags);
8300 abort:
8301 
8302 	print_raid5_conf(conf);
8303 	return err;
8304 }
8305 
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)8306 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8307 {
8308 	struct r5conf *conf = mddev->private;
8309 	int ret, err = -EEXIST;
8310 	int disk;
8311 	struct disk_info *p;
8312 	struct md_rdev *tmp;
8313 	int first = 0;
8314 	int last = conf->raid_disks - 1;
8315 
8316 	if (test_bit(Journal, &rdev->flags)) {
8317 		if (conf->log)
8318 			return -EBUSY;
8319 
8320 		rdev->raid_disk = 0;
8321 		/*
8322 		 * The array is in readonly mode if journal is missing, so no
8323 		 * write requests running. We should be safe
8324 		 */
8325 		ret = log_init(conf, rdev, false);
8326 		if (ret)
8327 			return ret;
8328 
8329 		ret = r5l_start(conf->log);
8330 		if (ret)
8331 			return ret;
8332 
8333 		return 0;
8334 	}
8335 	if (mddev->recovery_disabled == conf->recovery_disabled)
8336 		return -EBUSY;
8337 
8338 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8339 		/* no point adding a device */
8340 		return -EINVAL;
8341 
8342 	if (rdev->raid_disk >= 0)
8343 		first = last = rdev->raid_disk;
8344 
8345 	/*
8346 	 * find the disk ... but prefer rdev->saved_raid_disk
8347 	 * if possible.
8348 	 */
8349 	if (rdev->saved_raid_disk >= first &&
8350 	    rdev->saved_raid_disk <= last &&
8351 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8352 		first = rdev->saved_raid_disk;
8353 
8354 	for (disk = first; disk <= last; disk++) {
8355 		p = conf->disks + disk;
8356 		if (p->rdev == NULL) {
8357 			clear_bit(In_sync, &rdev->flags);
8358 			rdev->raid_disk = disk;
8359 			if (rdev->saved_raid_disk != disk)
8360 				conf->fullsync = 1;
8361 			rcu_assign_pointer(p->rdev, rdev);
8362 
8363 			err = log_modify(conf, rdev, true);
8364 
8365 			goto out;
8366 		}
8367 	}
8368 	for (disk = first; disk <= last; disk++) {
8369 		p = conf->disks + disk;
8370 		tmp = rdev_mdlock_deref(mddev, p->rdev);
8371 		if (test_bit(WantReplacement, &tmp->flags) &&
8372 		    mddev->reshape_position == MaxSector &&
8373 		    p->replacement == NULL) {
8374 			clear_bit(In_sync, &rdev->flags);
8375 			set_bit(Replacement, &rdev->flags);
8376 			rdev->raid_disk = disk;
8377 			err = 0;
8378 			conf->fullsync = 1;
8379 			rcu_assign_pointer(p->replacement, rdev);
8380 			break;
8381 		}
8382 	}
8383 out:
8384 	print_raid5_conf(conf);
8385 	return err;
8386 }
8387 
raid5_resize(struct mddev * mddev,sector_t sectors)8388 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8389 {
8390 	/* no resync is happening, and there is enough space
8391 	 * on all devices, so we can resize.
8392 	 * We need to make sure resync covers any new space.
8393 	 * If the array is shrinking we should possibly wait until
8394 	 * any io in the removed space completes, but it hardly seems
8395 	 * worth it.
8396 	 */
8397 	sector_t newsize;
8398 	struct r5conf *conf = mddev->private;
8399 
8400 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8401 		return -EINVAL;
8402 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8403 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8404 	if (mddev->external_size &&
8405 	    mddev->array_sectors > newsize)
8406 		return -EINVAL;
8407 	if (mddev->bitmap) {
8408 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8409 		if (ret)
8410 			return ret;
8411 	}
8412 	md_set_array_sectors(mddev, newsize);
8413 	if (sectors > mddev->dev_sectors &&
8414 	    mddev->recovery_cp > mddev->dev_sectors) {
8415 		mddev->recovery_cp = mddev->dev_sectors;
8416 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8417 	}
8418 	mddev->dev_sectors = sectors;
8419 	mddev->resync_max_sectors = sectors;
8420 	return 0;
8421 }
8422 
check_stripe_cache(struct mddev * mddev)8423 static int check_stripe_cache(struct mddev *mddev)
8424 {
8425 	/* Can only proceed if there are plenty of stripe_heads.
8426 	 * We need a minimum of one full stripe,, and for sensible progress
8427 	 * it is best to have about 4 times that.
8428 	 * If we require 4 times, then the default 256 4K stripe_heads will
8429 	 * allow for chunk sizes up to 256K, which is probably OK.
8430 	 * If the chunk size is greater, user-space should request more
8431 	 * stripe_heads first.
8432 	 */
8433 	struct r5conf *conf = mddev->private;
8434 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8435 	    > conf->min_nr_stripes ||
8436 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8437 	    > conf->min_nr_stripes) {
8438 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8439 			mdname(mddev),
8440 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8441 			 / RAID5_STRIPE_SIZE(conf))*4);
8442 		return 0;
8443 	}
8444 	return 1;
8445 }
8446 
check_reshape(struct mddev * mddev)8447 static int check_reshape(struct mddev *mddev)
8448 {
8449 	struct r5conf *conf = mddev->private;
8450 
8451 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8452 		return -EINVAL;
8453 	if (mddev->delta_disks == 0 &&
8454 	    mddev->new_layout == mddev->layout &&
8455 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8456 		return 0; /* nothing to do */
8457 	if (has_failed(conf))
8458 		return -EINVAL;
8459 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8460 		/* We might be able to shrink, but the devices must
8461 		 * be made bigger first.
8462 		 * For raid6, 4 is the minimum size.
8463 		 * Otherwise 2 is the minimum
8464 		 */
8465 		int min = 2;
8466 		if (mddev->level == 6)
8467 			min = 4;
8468 		if (mddev->raid_disks + mddev->delta_disks < min)
8469 			return -EINVAL;
8470 	}
8471 
8472 	if (!check_stripe_cache(mddev))
8473 		return -ENOSPC;
8474 
8475 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8476 	    mddev->delta_disks > 0)
8477 		if (resize_chunks(conf,
8478 				  conf->previous_raid_disks
8479 				  + max(0, mddev->delta_disks),
8480 				  max(mddev->new_chunk_sectors,
8481 				      mddev->chunk_sectors)
8482 			    ) < 0)
8483 			return -ENOMEM;
8484 
8485 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8486 		return 0; /* never bother to shrink */
8487 	return resize_stripes(conf, (conf->previous_raid_disks
8488 				     + mddev->delta_disks));
8489 }
8490 
raid5_start_reshape(struct mddev * mddev)8491 static int raid5_start_reshape(struct mddev *mddev)
8492 {
8493 	struct r5conf *conf = mddev->private;
8494 	struct md_rdev *rdev;
8495 	int spares = 0;
8496 	int i;
8497 	unsigned long flags;
8498 
8499 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8500 		return -EBUSY;
8501 
8502 	if (!check_stripe_cache(mddev))
8503 		return -ENOSPC;
8504 
8505 	if (has_failed(conf))
8506 		return -EINVAL;
8507 
8508 	/* raid5 can't handle concurrent reshape and recovery */
8509 	if (mddev->recovery_cp < MaxSector)
8510 		return -EBUSY;
8511 	for (i = 0; i < conf->raid_disks; i++)
8512 		if (rdev_mdlock_deref(mddev, conf->disks[i].replacement))
8513 			return -EBUSY;
8514 
8515 	rdev_for_each(rdev, mddev) {
8516 		if (!test_bit(In_sync, &rdev->flags)
8517 		    && !test_bit(Faulty, &rdev->flags))
8518 			spares++;
8519 	}
8520 
8521 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8522 		/* Not enough devices even to make a degraded array
8523 		 * of that size
8524 		 */
8525 		return -EINVAL;
8526 
8527 	/* Refuse to reduce size of the array.  Any reductions in
8528 	 * array size must be through explicit setting of array_size
8529 	 * attribute.
8530 	 */
8531 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8532 	    < mddev->array_sectors) {
8533 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8534 			mdname(mddev));
8535 		return -EINVAL;
8536 	}
8537 
8538 	atomic_set(&conf->reshape_stripes, 0);
8539 	spin_lock_irq(&conf->device_lock);
8540 	write_seqcount_begin(&conf->gen_lock);
8541 	conf->previous_raid_disks = conf->raid_disks;
8542 	conf->raid_disks += mddev->delta_disks;
8543 	conf->prev_chunk_sectors = conf->chunk_sectors;
8544 	conf->chunk_sectors = mddev->new_chunk_sectors;
8545 	conf->prev_algo = conf->algorithm;
8546 	conf->algorithm = mddev->new_layout;
8547 	conf->generation++;
8548 	/* Code that selects data_offset needs to see the generation update
8549 	 * if reshape_progress has been set - so a memory barrier needed.
8550 	 */
8551 	smp_mb();
8552 	if (mddev->reshape_backwards)
8553 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8554 	else
8555 		conf->reshape_progress = 0;
8556 	conf->reshape_safe = conf->reshape_progress;
8557 	write_seqcount_end(&conf->gen_lock);
8558 	spin_unlock_irq(&conf->device_lock);
8559 
8560 	/* Now make sure any requests that proceeded on the assumption
8561 	 * the reshape wasn't running - like Discard or Read - have
8562 	 * completed.
8563 	 */
8564 	mddev_suspend(mddev);
8565 	mddev_resume(mddev);
8566 
8567 	/* Add some new drives, as many as will fit.
8568 	 * We know there are enough to make the newly sized array work.
8569 	 * Don't add devices if we are reducing the number of
8570 	 * devices in the array.  This is because it is not possible
8571 	 * to correctly record the "partially reconstructed" state of
8572 	 * such devices during the reshape and confusion could result.
8573 	 */
8574 	if (mddev->delta_disks >= 0) {
8575 		rdev_for_each(rdev, mddev)
8576 			if (rdev->raid_disk < 0 &&
8577 			    !test_bit(Faulty, &rdev->flags)) {
8578 				if (raid5_add_disk(mddev, rdev) == 0) {
8579 					if (rdev->raid_disk
8580 					    >= conf->previous_raid_disks)
8581 						set_bit(In_sync, &rdev->flags);
8582 					else
8583 						rdev->recovery_offset = 0;
8584 
8585 					/* Failure here is OK */
8586 					sysfs_link_rdev(mddev, rdev);
8587 				}
8588 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8589 				   && !test_bit(Faulty, &rdev->flags)) {
8590 				/* This is a spare that was manually added */
8591 				set_bit(In_sync, &rdev->flags);
8592 			}
8593 
8594 		/* When a reshape changes the number of devices,
8595 		 * ->degraded is measured against the larger of the
8596 		 * pre and post number of devices.
8597 		 */
8598 		spin_lock_irqsave(&conf->device_lock, flags);
8599 		mddev->degraded = raid5_calc_degraded(conf);
8600 		spin_unlock_irqrestore(&conf->device_lock, flags);
8601 	}
8602 	mddev->raid_disks = conf->raid_disks;
8603 	mddev->reshape_position = conf->reshape_progress;
8604 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8605 
8606 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8607 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8608 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8609 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8610 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8611 	rcu_assign_pointer(mddev->sync_thread,
8612 			   md_register_thread(md_do_sync, mddev, "reshape"));
8613 	if (!mddev->sync_thread) {
8614 		mddev->recovery = 0;
8615 		spin_lock_irq(&conf->device_lock);
8616 		write_seqcount_begin(&conf->gen_lock);
8617 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8618 		mddev->new_chunk_sectors =
8619 			conf->chunk_sectors = conf->prev_chunk_sectors;
8620 		mddev->new_layout = conf->algorithm = conf->prev_algo;
8621 		rdev_for_each(rdev, mddev)
8622 			rdev->new_data_offset = rdev->data_offset;
8623 		smp_wmb();
8624 		conf->generation --;
8625 		conf->reshape_progress = MaxSector;
8626 		mddev->reshape_position = MaxSector;
8627 		write_seqcount_end(&conf->gen_lock);
8628 		spin_unlock_irq(&conf->device_lock);
8629 		return -EAGAIN;
8630 	}
8631 	conf->reshape_checkpoint = jiffies;
8632 	md_wakeup_thread(mddev->sync_thread);
8633 	md_new_event();
8634 	return 0;
8635 }
8636 
8637 /* This is called from the reshape thread and should make any
8638  * changes needed in 'conf'
8639  */
end_reshape(struct r5conf * conf)8640 static void end_reshape(struct r5conf *conf)
8641 {
8642 
8643 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8644 		struct md_rdev *rdev;
8645 
8646 		spin_lock_irq(&conf->device_lock);
8647 		conf->previous_raid_disks = conf->raid_disks;
8648 		md_finish_reshape(conf->mddev);
8649 		smp_wmb();
8650 		conf->reshape_progress = MaxSector;
8651 		conf->mddev->reshape_position = MaxSector;
8652 		rdev_for_each(rdev, conf->mddev)
8653 			if (rdev->raid_disk >= 0 &&
8654 			    !test_bit(Journal, &rdev->flags) &&
8655 			    !test_bit(In_sync, &rdev->flags))
8656 				rdev->recovery_offset = MaxSector;
8657 		spin_unlock_irq(&conf->device_lock);
8658 		wake_up(&conf->wait_for_overlap);
8659 
8660 		if (conf->mddev->queue)
8661 			raid5_set_io_opt(conf);
8662 	}
8663 }
8664 
8665 /* This is called from the raid5d thread with mddev_lock held.
8666  * It makes config changes to the device.
8667  */
raid5_finish_reshape(struct mddev * mddev)8668 static void raid5_finish_reshape(struct mddev *mddev)
8669 {
8670 	struct r5conf *conf = mddev->private;
8671 	struct md_rdev *rdev;
8672 
8673 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8674 
8675 		if (mddev->delta_disks <= 0) {
8676 			int d;
8677 			spin_lock_irq(&conf->device_lock);
8678 			mddev->degraded = raid5_calc_degraded(conf);
8679 			spin_unlock_irq(&conf->device_lock);
8680 			for (d = conf->raid_disks ;
8681 			     d < conf->raid_disks - mddev->delta_disks;
8682 			     d++) {
8683 				rdev = rdev_mdlock_deref(mddev,
8684 							 conf->disks[d].rdev);
8685 				if (rdev)
8686 					clear_bit(In_sync, &rdev->flags);
8687 				rdev = rdev_mdlock_deref(mddev,
8688 						conf->disks[d].replacement);
8689 				if (rdev)
8690 					clear_bit(In_sync, &rdev->flags);
8691 			}
8692 		}
8693 		mddev->layout = conf->algorithm;
8694 		mddev->chunk_sectors = conf->chunk_sectors;
8695 		mddev->reshape_position = MaxSector;
8696 		mddev->delta_disks = 0;
8697 		mddev->reshape_backwards = 0;
8698 	}
8699 }
8700 
raid5_quiesce(struct mddev * mddev,int quiesce)8701 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8702 {
8703 	struct r5conf *conf = mddev->private;
8704 
8705 	if (quiesce) {
8706 		/* stop all writes */
8707 		lock_all_device_hash_locks_irq(conf);
8708 		/* '2' tells resync/reshape to pause so that all
8709 		 * active stripes can drain
8710 		 */
8711 		r5c_flush_cache(conf, INT_MAX);
8712 		/* need a memory barrier to make sure read_one_chunk() sees
8713 		 * quiesce started and reverts to slow (locked) path.
8714 		 */
8715 		smp_store_release(&conf->quiesce, 2);
8716 		wait_event_cmd(conf->wait_for_quiescent,
8717 				    atomic_read(&conf->active_stripes) == 0 &&
8718 				    atomic_read(&conf->active_aligned_reads) == 0,
8719 				    unlock_all_device_hash_locks_irq(conf),
8720 				    lock_all_device_hash_locks_irq(conf));
8721 		conf->quiesce = 1;
8722 		unlock_all_device_hash_locks_irq(conf);
8723 		/* allow reshape to continue */
8724 		wake_up(&conf->wait_for_overlap);
8725 	} else {
8726 		/* re-enable writes */
8727 		lock_all_device_hash_locks_irq(conf);
8728 		conf->quiesce = 0;
8729 		wake_up(&conf->wait_for_quiescent);
8730 		wake_up(&conf->wait_for_overlap);
8731 		unlock_all_device_hash_locks_irq(conf);
8732 	}
8733 	log_quiesce(conf, quiesce);
8734 }
8735 
raid45_takeover_raid0(struct mddev * mddev,int level)8736 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8737 {
8738 	struct r0conf *raid0_conf = mddev->private;
8739 	sector_t sectors;
8740 
8741 	/* for raid0 takeover only one zone is supported */
8742 	if (raid0_conf->nr_strip_zones > 1) {
8743 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8744 			mdname(mddev));
8745 		return ERR_PTR(-EINVAL);
8746 	}
8747 
8748 	sectors = raid0_conf->strip_zone[0].zone_end;
8749 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8750 	mddev->dev_sectors = sectors;
8751 	mddev->new_level = level;
8752 	mddev->new_layout = ALGORITHM_PARITY_N;
8753 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8754 	mddev->raid_disks += 1;
8755 	mddev->delta_disks = 1;
8756 	/* make sure it will be not marked as dirty */
8757 	mddev->recovery_cp = MaxSector;
8758 
8759 	return setup_conf(mddev);
8760 }
8761 
raid5_takeover_raid1(struct mddev * mddev)8762 static void *raid5_takeover_raid1(struct mddev *mddev)
8763 {
8764 	int chunksect;
8765 	void *ret;
8766 
8767 	if (mddev->raid_disks != 2 ||
8768 	    mddev->degraded > 1)
8769 		return ERR_PTR(-EINVAL);
8770 
8771 	/* Should check if there are write-behind devices? */
8772 
8773 	chunksect = 64*2; /* 64K by default */
8774 
8775 	/* The array must be an exact multiple of chunksize */
8776 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8777 		chunksect >>= 1;
8778 
8779 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8780 		/* array size does not allow a suitable chunk size */
8781 		return ERR_PTR(-EINVAL);
8782 
8783 	mddev->new_level = 5;
8784 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8785 	mddev->new_chunk_sectors = chunksect;
8786 
8787 	ret = setup_conf(mddev);
8788 	if (!IS_ERR(ret))
8789 		mddev_clear_unsupported_flags(mddev,
8790 			UNSUPPORTED_MDDEV_FLAGS);
8791 	return ret;
8792 }
8793 
raid5_takeover_raid6(struct mddev * mddev)8794 static void *raid5_takeover_raid6(struct mddev *mddev)
8795 {
8796 	int new_layout;
8797 
8798 	switch (mddev->layout) {
8799 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8800 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8801 		break;
8802 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8803 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8804 		break;
8805 	case ALGORITHM_LEFT_SYMMETRIC_6:
8806 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8807 		break;
8808 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8809 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8810 		break;
8811 	case ALGORITHM_PARITY_0_6:
8812 		new_layout = ALGORITHM_PARITY_0;
8813 		break;
8814 	case ALGORITHM_PARITY_N:
8815 		new_layout = ALGORITHM_PARITY_N;
8816 		break;
8817 	default:
8818 		return ERR_PTR(-EINVAL);
8819 	}
8820 	mddev->new_level = 5;
8821 	mddev->new_layout = new_layout;
8822 	mddev->delta_disks = -1;
8823 	mddev->raid_disks -= 1;
8824 	return setup_conf(mddev);
8825 }
8826 
raid5_check_reshape(struct mddev * mddev)8827 static int raid5_check_reshape(struct mddev *mddev)
8828 {
8829 	/* For a 2-drive array, the layout and chunk size can be changed
8830 	 * immediately as not restriping is needed.
8831 	 * For larger arrays we record the new value - after validation
8832 	 * to be used by a reshape pass.
8833 	 */
8834 	struct r5conf *conf = mddev->private;
8835 	int new_chunk = mddev->new_chunk_sectors;
8836 
8837 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8838 		return -EINVAL;
8839 	if (new_chunk > 0) {
8840 		if (!is_power_of_2(new_chunk))
8841 			return -EINVAL;
8842 		if (new_chunk < (PAGE_SIZE>>9))
8843 			return -EINVAL;
8844 		if (mddev->array_sectors & (new_chunk-1))
8845 			/* not factor of array size */
8846 			return -EINVAL;
8847 	}
8848 
8849 	/* They look valid */
8850 
8851 	if (mddev->raid_disks == 2) {
8852 		/* can make the change immediately */
8853 		if (mddev->new_layout >= 0) {
8854 			conf->algorithm = mddev->new_layout;
8855 			mddev->layout = mddev->new_layout;
8856 		}
8857 		if (new_chunk > 0) {
8858 			conf->chunk_sectors = new_chunk ;
8859 			mddev->chunk_sectors = new_chunk;
8860 		}
8861 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8862 		md_wakeup_thread(mddev->thread);
8863 	}
8864 	return check_reshape(mddev);
8865 }
8866 
raid6_check_reshape(struct mddev * mddev)8867 static int raid6_check_reshape(struct mddev *mddev)
8868 {
8869 	int new_chunk = mddev->new_chunk_sectors;
8870 
8871 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8872 		return -EINVAL;
8873 	if (new_chunk > 0) {
8874 		if (!is_power_of_2(new_chunk))
8875 			return -EINVAL;
8876 		if (new_chunk < (PAGE_SIZE >> 9))
8877 			return -EINVAL;
8878 		if (mddev->array_sectors & (new_chunk-1))
8879 			/* not factor of array size */
8880 			return -EINVAL;
8881 	}
8882 
8883 	/* They look valid */
8884 	return check_reshape(mddev);
8885 }
8886 
raid5_takeover(struct mddev * mddev)8887 static void *raid5_takeover(struct mddev *mddev)
8888 {
8889 	/* raid5 can take over:
8890 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8891 	 *  raid1 - if there are two drives.  We need to know the chunk size
8892 	 *  raid4 - trivial - just use a raid4 layout.
8893 	 *  raid6 - Providing it is a *_6 layout
8894 	 */
8895 	if (mddev->level == 0)
8896 		return raid45_takeover_raid0(mddev, 5);
8897 	if (mddev->level == 1)
8898 		return raid5_takeover_raid1(mddev);
8899 	if (mddev->level == 4) {
8900 		mddev->new_layout = ALGORITHM_PARITY_N;
8901 		mddev->new_level = 5;
8902 		return setup_conf(mddev);
8903 	}
8904 	if (mddev->level == 6)
8905 		return raid5_takeover_raid6(mddev);
8906 
8907 	return ERR_PTR(-EINVAL);
8908 }
8909 
raid4_takeover(struct mddev * mddev)8910 static void *raid4_takeover(struct mddev *mddev)
8911 {
8912 	/* raid4 can take over:
8913 	 *  raid0 - if there is only one strip zone
8914 	 *  raid5 - if layout is right
8915 	 */
8916 	if (mddev->level == 0)
8917 		return raid45_takeover_raid0(mddev, 4);
8918 	if (mddev->level == 5 &&
8919 	    mddev->layout == ALGORITHM_PARITY_N) {
8920 		mddev->new_layout = 0;
8921 		mddev->new_level = 4;
8922 		return setup_conf(mddev);
8923 	}
8924 	return ERR_PTR(-EINVAL);
8925 }
8926 
8927 static struct md_personality raid5_personality;
8928 
raid6_takeover(struct mddev * mddev)8929 static void *raid6_takeover(struct mddev *mddev)
8930 {
8931 	/* Currently can only take over a raid5.  We map the
8932 	 * personality to an equivalent raid6 personality
8933 	 * with the Q block at the end.
8934 	 */
8935 	int new_layout;
8936 
8937 	if (mddev->pers != &raid5_personality)
8938 		return ERR_PTR(-EINVAL);
8939 	if (mddev->degraded > 1)
8940 		return ERR_PTR(-EINVAL);
8941 	if (mddev->raid_disks > 253)
8942 		return ERR_PTR(-EINVAL);
8943 	if (mddev->raid_disks < 3)
8944 		return ERR_PTR(-EINVAL);
8945 
8946 	switch (mddev->layout) {
8947 	case ALGORITHM_LEFT_ASYMMETRIC:
8948 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8949 		break;
8950 	case ALGORITHM_RIGHT_ASYMMETRIC:
8951 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8952 		break;
8953 	case ALGORITHM_LEFT_SYMMETRIC:
8954 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8955 		break;
8956 	case ALGORITHM_RIGHT_SYMMETRIC:
8957 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8958 		break;
8959 	case ALGORITHM_PARITY_0:
8960 		new_layout = ALGORITHM_PARITY_0_6;
8961 		break;
8962 	case ALGORITHM_PARITY_N:
8963 		new_layout = ALGORITHM_PARITY_N;
8964 		break;
8965 	default:
8966 		return ERR_PTR(-EINVAL);
8967 	}
8968 	mddev->new_level = 6;
8969 	mddev->new_layout = new_layout;
8970 	mddev->delta_disks = 1;
8971 	mddev->raid_disks += 1;
8972 	return setup_conf(mddev);
8973 }
8974 
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8975 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8976 {
8977 	struct r5conf *conf;
8978 	int err;
8979 
8980 	err = mddev_lock(mddev);
8981 	if (err)
8982 		return err;
8983 	conf = mddev->private;
8984 	if (!conf) {
8985 		mddev_unlock(mddev);
8986 		return -ENODEV;
8987 	}
8988 
8989 	if (strncmp(buf, "ppl", 3) == 0) {
8990 		/* ppl only works with RAID 5 */
8991 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8992 			err = log_init(conf, NULL, true);
8993 			if (!err) {
8994 				err = resize_stripes(conf, conf->pool_size);
8995 				if (err) {
8996 					mddev_suspend(mddev);
8997 					log_exit(conf);
8998 					mddev_resume(mddev);
8999 				}
9000 			}
9001 		} else
9002 			err = -EINVAL;
9003 	} else if (strncmp(buf, "resync", 6) == 0) {
9004 		if (raid5_has_ppl(conf)) {
9005 			mddev_suspend(mddev);
9006 			log_exit(conf);
9007 			mddev_resume(mddev);
9008 			err = resize_stripes(conf, conf->pool_size);
9009 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
9010 			   r5l_log_disk_error(conf)) {
9011 			bool journal_dev_exists = false;
9012 			struct md_rdev *rdev;
9013 
9014 			rdev_for_each(rdev, mddev)
9015 				if (test_bit(Journal, &rdev->flags)) {
9016 					journal_dev_exists = true;
9017 					break;
9018 				}
9019 
9020 			if (!journal_dev_exists) {
9021 				mddev_suspend(mddev);
9022 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
9023 				mddev_resume(mddev);
9024 			} else  /* need remove journal device first */
9025 				err = -EBUSY;
9026 		} else
9027 			err = -EINVAL;
9028 	} else {
9029 		err = -EINVAL;
9030 	}
9031 
9032 	if (!err)
9033 		md_update_sb(mddev, 1);
9034 
9035 	mddev_unlock(mddev);
9036 
9037 	return err;
9038 }
9039 
raid5_start(struct mddev * mddev)9040 static int raid5_start(struct mddev *mddev)
9041 {
9042 	struct r5conf *conf = mddev->private;
9043 
9044 	return r5l_start(conf->log);
9045 }
9046 
raid5_prepare_suspend(struct mddev * mddev)9047 static void raid5_prepare_suspend(struct mddev *mddev)
9048 {
9049 	struct r5conf *conf = mddev->private;
9050 
9051 	wait_event(mddev->sb_wait, !reshape_inprogress(mddev) ||
9052 				    percpu_ref_is_zero(&mddev->active_io));
9053 	if (percpu_ref_is_zero(&mddev->active_io))
9054 		return;
9055 
9056 	/*
9057 	 * Reshape is not in progress, and array is suspended, io that is
9058 	 * waiting for reshpape can never be done.
9059 	 */
9060 	wake_up(&conf->wait_for_overlap);
9061 }
9062 
9063 static struct md_personality raid6_personality =
9064 {
9065 	.name		= "raid6",
9066 	.level		= 6,
9067 	.owner		= THIS_MODULE,
9068 	.make_request	= raid5_make_request,
9069 	.run		= raid5_run,
9070 	.start		= raid5_start,
9071 	.free		= raid5_free,
9072 	.status		= raid5_status,
9073 	.error_handler	= raid5_error,
9074 	.hot_add_disk	= raid5_add_disk,
9075 	.hot_remove_disk= raid5_remove_disk,
9076 	.spare_active	= raid5_spare_active,
9077 	.sync_request	= raid5_sync_request,
9078 	.resize		= raid5_resize,
9079 	.size		= raid5_size,
9080 	.check_reshape	= raid6_check_reshape,
9081 	.start_reshape  = raid5_start_reshape,
9082 	.finish_reshape = raid5_finish_reshape,
9083 	.prepare_suspend = raid5_prepare_suspend,
9084 	.quiesce	= raid5_quiesce,
9085 	.takeover	= raid6_takeover,
9086 	.change_consistency_policy = raid5_change_consistency_policy,
9087 };
9088 static struct md_personality raid5_personality =
9089 {
9090 	.name		= "raid5",
9091 	.level		= 5,
9092 	.owner		= THIS_MODULE,
9093 	.make_request	= raid5_make_request,
9094 	.run		= raid5_run,
9095 	.start		= raid5_start,
9096 	.free		= raid5_free,
9097 	.status		= raid5_status,
9098 	.error_handler	= raid5_error,
9099 	.hot_add_disk	= raid5_add_disk,
9100 	.hot_remove_disk= raid5_remove_disk,
9101 	.spare_active	= raid5_spare_active,
9102 	.sync_request	= raid5_sync_request,
9103 	.resize		= raid5_resize,
9104 	.size		= raid5_size,
9105 	.check_reshape	= raid5_check_reshape,
9106 	.start_reshape  = raid5_start_reshape,
9107 	.finish_reshape = raid5_finish_reshape,
9108 	.prepare_suspend = raid5_prepare_suspend,
9109 	.quiesce	= raid5_quiesce,
9110 	.takeover	= raid5_takeover,
9111 	.change_consistency_policy = raid5_change_consistency_policy,
9112 };
9113 
9114 static struct md_personality raid4_personality =
9115 {
9116 	.name		= "raid4",
9117 	.level		= 4,
9118 	.owner		= THIS_MODULE,
9119 	.make_request	= raid5_make_request,
9120 	.run		= raid5_run,
9121 	.start		= raid5_start,
9122 	.free		= raid5_free,
9123 	.status		= raid5_status,
9124 	.error_handler	= raid5_error,
9125 	.hot_add_disk	= raid5_add_disk,
9126 	.hot_remove_disk= raid5_remove_disk,
9127 	.spare_active	= raid5_spare_active,
9128 	.sync_request	= raid5_sync_request,
9129 	.resize		= raid5_resize,
9130 	.size		= raid5_size,
9131 	.check_reshape	= raid5_check_reshape,
9132 	.start_reshape  = raid5_start_reshape,
9133 	.finish_reshape = raid5_finish_reshape,
9134 	.prepare_suspend = raid5_prepare_suspend,
9135 	.quiesce	= raid5_quiesce,
9136 	.takeover	= raid4_takeover,
9137 	.change_consistency_policy = raid5_change_consistency_policy,
9138 };
9139 
raid5_init(void)9140 static int __init raid5_init(void)
9141 {
9142 	int ret;
9143 
9144 	raid5_wq = alloc_workqueue("raid5wq",
9145 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9146 	if (!raid5_wq)
9147 		return -ENOMEM;
9148 
9149 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9150 				      "md/raid5:prepare",
9151 				      raid456_cpu_up_prepare,
9152 				      raid456_cpu_dead);
9153 	if (ret) {
9154 		destroy_workqueue(raid5_wq);
9155 		return ret;
9156 	}
9157 	register_md_personality(&raid6_personality);
9158 	register_md_personality(&raid5_personality);
9159 	register_md_personality(&raid4_personality);
9160 	return 0;
9161 }
9162 
raid5_exit(void)9163 static void raid5_exit(void)
9164 {
9165 	unregister_md_personality(&raid6_personality);
9166 	unregister_md_personality(&raid5_personality);
9167 	unregister_md_personality(&raid4_personality);
9168 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9169 	destroy_workqueue(raid5_wq);
9170 }
9171 
9172 module_init(raid5_init);
9173 module_exit(raid5_exit);
9174 MODULE_LICENSE("GPL");
9175 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9176 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9177 MODULE_ALIAS("md-raid5");
9178 MODULE_ALIAS("md-raid4");
9179 MODULE_ALIAS("md-level-5");
9180 MODULE_ALIAS("md-level-4");
9181 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9182 MODULE_ALIAS("md-raid6");
9183 MODULE_ALIAS("md-level-6");
9184 
9185 /* This used to be two separate modules, they were: */
9186 MODULE_ALIAS("raid5");
9187 MODULE_ALIAS("raid6");
9188