xref: /openbmc/linux/drivers/md/raid5.c (revision f7018c21)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58 
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63 
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66 
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71 
72 #define NR_STRIPES		256
73 #define STRIPE_SIZE		PAGE_SIZE
74 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
76 #define	IO_THRESHOLD		1
77 #define BYPASS_THRESHOLD	1
78 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK		(NR_HASH - 1)
80 #define MAX_STRIPE_BATCH	8
81 
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 	return &conf->stripe_hashtbl[hash];
86 }
87 
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92 
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 	spin_lock_irq(conf->hash_locks + hash);
96 	spin_lock(&conf->device_lock);
97 }
98 
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101 	spin_unlock(&conf->device_lock);
102 	spin_unlock_irq(conf->hash_locks + hash);
103 }
104 
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107 	int i;
108 	local_irq_disable();
109 	spin_lock(conf->hash_locks);
110 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 	spin_lock(&conf->device_lock);
113 }
114 
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117 	int i;
118 	spin_unlock(&conf->device_lock);
119 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 		spin_unlock(conf->hash_locks + i - 1);
121 	local_irq_enable();
122 }
123 
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135 	int sectors = bio_sectors(bio);
136 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137 		return bio->bi_next;
138 	else
139 		return NULL;
140 }
141 
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 	return (atomic_read(segments) >> 16) & 0xffff;
150 }
151 
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 	return atomic_sub_return(1, segments) & 0xffff;
156 }
157 
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 	atomic_inc(segments);
162 }
163 
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 	unsigned int cnt)
166 {
167 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 	int old, new;
169 
170 	do {
171 		old = atomic_read(segments);
172 		new = (old & 0xffff) | (cnt << 16);
173 	} while (atomic_cmpxchg(segments, old, new) != old);
174 }
175 
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 	atomic_set(segments, cnt);
180 }
181 
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185 	if (sh->ddf_layout)
186 		/* ddf always start from first device */
187 		return 0;
188 	/* md starts just after Q block */
189 	if (sh->qd_idx == sh->disks - 1)
190 		return 0;
191 	else
192 		return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196 	disk++;
197 	return (disk < raid_disks) ? disk : 0;
198 }
199 
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 			     int *count, int syndrome_disks)
207 {
208 	int slot = *count;
209 
210 	if (sh->ddf_layout)
211 		(*count)++;
212 	if (idx == sh->pd_idx)
213 		return syndrome_disks;
214 	if (idx == sh->qd_idx)
215 		return syndrome_disks + 1;
216 	if (!sh->ddf_layout)
217 		(*count)++;
218 	return slot;
219 }
220 
221 static void return_io(struct bio *return_bi)
222 {
223 	struct bio *bi = return_bi;
224 	while (bi) {
225 
226 		return_bi = bi->bi_next;
227 		bi->bi_next = NULL;
228 		bi->bi_iter.bi_size = 0;
229 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 					 bi, 0);
231 		bio_endio(bi, 0);
232 		bi = return_bi;
233 	}
234 }
235 
236 static void print_raid5_conf (struct r5conf *conf);
237 
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 	return sh->check_state || sh->reconstruct_state ||
241 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244 
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 	struct r5conf *conf = sh->raid_conf;
248 	struct r5worker_group *group;
249 	int thread_cnt;
250 	int i, cpu = sh->cpu;
251 
252 	if (!cpu_online(cpu)) {
253 		cpu = cpumask_any(cpu_online_mask);
254 		sh->cpu = cpu;
255 	}
256 
257 	if (list_empty(&sh->lru)) {
258 		struct r5worker_group *group;
259 		group = conf->worker_groups + cpu_to_group(cpu);
260 		list_add_tail(&sh->lru, &group->handle_list);
261 		group->stripes_cnt++;
262 		sh->group = group;
263 	}
264 
265 	if (conf->worker_cnt_per_group == 0) {
266 		md_wakeup_thread(conf->mddev->thread);
267 		return;
268 	}
269 
270 	group = conf->worker_groups + cpu_to_group(sh->cpu);
271 
272 	group->workers[0].working = true;
273 	/* at least one worker should run to avoid race */
274 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275 
276 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 	/* wakeup more workers */
278 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 		if (group->workers[i].working == false) {
280 			group->workers[i].working = true;
281 			queue_work_on(sh->cpu, raid5_wq,
282 				      &group->workers[i].work);
283 			thread_cnt--;
284 		}
285 	}
286 }
287 
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 			      struct list_head *temp_inactive_list)
290 {
291 	BUG_ON(!list_empty(&sh->lru));
292 	BUG_ON(atomic_read(&conf->active_stripes)==0);
293 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296 			list_add_tail(&sh->lru, &conf->delayed_list);
297 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298 			   sh->bm_seq - conf->seq_write > 0)
299 			list_add_tail(&sh->lru, &conf->bitmap_list);
300 		else {
301 			clear_bit(STRIPE_DELAYED, &sh->state);
302 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
303 			if (conf->worker_cnt_per_group == 0) {
304 				list_add_tail(&sh->lru, &conf->handle_list);
305 			} else {
306 				raid5_wakeup_stripe_thread(sh);
307 				return;
308 			}
309 		}
310 		md_wakeup_thread(conf->mddev->thread);
311 	} else {
312 		BUG_ON(stripe_operations_active(sh));
313 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314 			if (atomic_dec_return(&conf->preread_active_stripes)
315 			    < IO_THRESHOLD)
316 				md_wakeup_thread(conf->mddev->thread);
317 		atomic_dec(&conf->active_stripes);
318 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
319 			list_add_tail(&sh->lru, temp_inactive_list);
320 	}
321 }
322 
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324 			     struct list_head *temp_inactive_list)
325 {
326 	if (atomic_dec_and_test(&sh->count))
327 		do_release_stripe(conf, sh, temp_inactive_list);
328 }
329 
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338 					 struct list_head *temp_inactive_list,
339 					 int hash)
340 {
341 	int size;
342 	bool do_wakeup = false;
343 	unsigned long flags;
344 
345 	if (hash == NR_STRIPE_HASH_LOCKS) {
346 		size = NR_STRIPE_HASH_LOCKS;
347 		hash = NR_STRIPE_HASH_LOCKS - 1;
348 	} else
349 		size = 1;
350 	while (size) {
351 		struct list_head *list = &temp_inactive_list[size - 1];
352 
353 		/*
354 		 * We don't hold any lock here yet, get_active_stripe() might
355 		 * remove stripes from the list
356 		 */
357 		if (!list_empty_careful(list)) {
358 			spin_lock_irqsave(conf->hash_locks + hash, flags);
359 			if (list_empty(conf->inactive_list + hash) &&
360 			    !list_empty(list))
361 				atomic_dec(&conf->empty_inactive_list_nr);
362 			list_splice_tail_init(list, conf->inactive_list + hash);
363 			do_wakeup = true;
364 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365 		}
366 		size--;
367 		hash--;
368 	}
369 
370 	if (do_wakeup) {
371 		wake_up(&conf->wait_for_stripe);
372 		if (conf->retry_read_aligned)
373 			md_wakeup_thread(conf->mddev->thread);
374 	}
375 }
376 
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379 			       struct list_head *temp_inactive_list)
380 {
381 	struct stripe_head *sh;
382 	int count = 0;
383 	struct llist_node *head;
384 
385 	head = llist_del_all(&conf->released_stripes);
386 	head = llist_reverse_order(head);
387 	while (head) {
388 		int hash;
389 
390 		sh = llist_entry(head, struct stripe_head, release_list);
391 		head = llist_next(head);
392 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393 		smp_mb();
394 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395 		/*
396 		 * Don't worry the bit is set here, because if the bit is set
397 		 * again, the count is always > 1. This is true for
398 		 * STRIPE_ON_UNPLUG_LIST bit too.
399 		 */
400 		hash = sh->hash_lock_index;
401 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
402 		count++;
403 	}
404 
405 	return count;
406 }
407 
408 static void release_stripe(struct stripe_head *sh)
409 {
410 	struct r5conf *conf = sh->raid_conf;
411 	unsigned long flags;
412 	struct list_head list;
413 	int hash;
414 	bool wakeup;
415 
416 	if (unlikely(!conf->mddev->thread) ||
417 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418 		goto slow_path;
419 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420 	if (wakeup)
421 		md_wakeup_thread(conf->mddev->thread);
422 	return;
423 slow_path:
424 	local_irq_save(flags);
425 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427 		INIT_LIST_HEAD(&list);
428 		hash = sh->hash_lock_index;
429 		do_release_stripe(conf, sh, &list);
430 		spin_unlock(&conf->device_lock);
431 		release_inactive_stripe_list(conf, &list, hash);
432 	}
433 	local_irq_restore(flags);
434 }
435 
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438 	pr_debug("remove_hash(), stripe %llu\n",
439 		(unsigned long long)sh->sector);
440 
441 	hlist_del_init(&sh->hash);
442 }
443 
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
447 
448 	pr_debug("insert_hash(), stripe %llu\n",
449 		(unsigned long long)sh->sector);
450 
451 	hlist_add_head(&sh->hash, hp);
452 }
453 
454 
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458 	struct stripe_head *sh = NULL;
459 	struct list_head *first;
460 
461 	if (list_empty(conf->inactive_list + hash))
462 		goto out;
463 	first = (conf->inactive_list + hash)->next;
464 	sh = list_entry(first, struct stripe_head, lru);
465 	list_del_init(first);
466 	remove_hash(sh);
467 	atomic_inc(&conf->active_stripes);
468 	BUG_ON(hash != sh->hash_lock_index);
469 	if (list_empty(conf->inactive_list + hash))
470 		atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472 	return sh;
473 }
474 
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477 	struct page *p;
478 	int i;
479 	int num = sh->raid_conf->pool_size;
480 
481 	for (i = 0; i < num ; i++) {
482 		p = sh->dev[i].page;
483 		if (!p)
484 			continue;
485 		sh->dev[i].page = NULL;
486 		put_page(p);
487 	}
488 }
489 
490 static int grow_buffers(struct stripe_head *sh)
491 {
492 	int i;
493 	int num = sh->raid_conf->pool_size;
494 
495 	for (i = 0; i < num; i++) {
496 		struct page *page;
497 
498 		if (!(page = alloc_page(GFP_KERNEL))) {
499 			return 1;
500 		}
501 		sh->dev[i].page = page;
502 	}
503 	return 0;
504 }
505 
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508 			    struct stripe_head *sh);
509 
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512 	struct r5conf *conf = sh->raid_conf;
513 	int i, seq;
514 
515 	BUG_ON(atomic_read(&sh->count) != 0);
516 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517 	BUG_ON(stripe_operations_active(sh));
518 
519 	pr_debug("init_stripe called, stripe %llu\n",
520 		(unsigned long long)sh->sector);
521 
522 	remove_hash(sh);
523 retry:
524 	seq = read_seqcount_begin(&conf->gen_lock);
525 	sh->generation = conf->generation - previous;
526 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527 	sh->sector = sector;
528 	stripe_set_idx(sector, conf, previous, sh);
529 	sh->state = 0;
530 
531 
532 	for (i = sh->disks; i--; ) {
533 		struct r5dev *dev = &sh->dev[i];
534 
535 		if (dev->toread || dev->read || dev->towrite || dev->written ||
536 		    test_bit(R5_LOCKED, &dev->flags)) {
537 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538 			       (unsigned long long)sh->sector, i, dev->toread,
539 			       dev->read, dev->towrite, dev->written,
540 			       test_bit(R5_LOCKED, &dev->flags));
541 			WARN_ON(1);
542 		}
543 		dev->flags = 0;
544 		raid5_build_block(sh, i, previous);
545 	}
546 	if (read_seqcount_retry(&conf->gen_lock, seq))
547 		goto retry;
548 	insert_hash(conf, sh);
549 	sh->cpu = smp_processor_id();
550 }
551 
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553 					 short generation)
554 {
555 	struct stripe_head *sh;
556 
557 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559 		if (sh->sector == sector && sh->generation == generation)
560 			return sh;
561 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562 	return NULL;
563 }
564 
565 /*
566  * Need to check if array has failed when deciding whether to:
567  *  - start an array
568  *  - remove non-faulty devices
569  *  - add a spare
570  *  - allow a reshape
571  * This determination is simple when no reshape is happening.
572  * However if there is a reshape, we need to carefully check
573  * both the before and after sections.
574  * This is because some failed devices may only affect one
575  * of the two sections, and some non-in_sync devices may
576  * be insync in the section most affected by failed devices.
577  */
578 static int calc_degraded(struct r5conf *conf)
579 {
580 	int degraded, degraded2;
581 	int i;
582 
583 	rcu_read_lock();
584 	degraded = 0;
585 	for (i = 0; i < conf->previous_raid_disks; i++) {
586 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587 		if (rdev && test_bit(Faulty, &rdev->flags))
588 			rdev = rcu_dereference(conf->disks[i].replacement);
589 		if (!rdev || test_bit(Faulty, &rdev->flags))
590 			degraded++;
591 		else if (test_bit(In_sync, &rdev->flags))
592 			;
593 		else
594 			/* not in-sync or faulty.
595 			 * If the reshape increases the number of devices,
596 			 * this is being recovered by the reshape, so
597 			 * this 'previous' section is not in_sync.
598 			 * If the number of devices is being reduced however,
599 			 * the device can only be part of the array if
600 			 * we are reverting a reshape, so this section will
601 			 * be in-sync.
602 			 */
603 			if (conf->raid_disks >= conf->previous_raid_disks)
604 				degraded++;
605 	}
606 	rcu_read_unlock();
607 	if (conf->raid_disks == conf->previous_raid_disks)
608 		return degraded;
609 	rcu_read_lock();
610 	degraded2 = 0;
611 	for (i = 0; i < conf->raid_disks; i++) {
612 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613 		if (rdev && test_bit(Faulty, &rdev->flags))
614 			rdev = rcu_dereference(conf->disks[i].replacement);
615 		if (!rdev || test_bit(Faulty, &rdev->flags))
616 			degraded2++;
617 		else if (test_bit(In_sync, &rdev->flags))
618 			;
619 		else
620 			/* not in-sync or faulty.
621 			 * If reshape increases the number of devices, this
622 			 * section has already been recovered, else it
623 			 * almost certainly hasn't.
624 			 */
625 			if (conf->raid_disks <= conf->previous_raid_disks)
626 				degraded2++;
627 	}
628 	rcu_read_unlock();
629 	if (degraded2 > degraded)
630 		return degraded2;
631 	return degraded;
632 }
633 
634 static int has_failed(struct r5conf *conf)
635 {
636 	int degraded;
637 
638 	if (conf->mddev->reshape_position == MaxSector)
639 		return conf->mddev->degraded > conf->max_degraded;
640 
641 	degraded = calc_degraded(conf);
642 	if (degraded > conf->max_degraded)
643 		return 1;
644 	return 0;
645 }
646 
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649 		  int previous, int noblock, int noquiesce)
650 {
651 	struct stripe_head *sh;
652 	int hash = stripe_hash_locks_hash(sector);
653 
654 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655 
656 	spin_lock_irq(conf->hash_locks + hash);
657 
658 	do {
659 		wait_event_lock_irq(conf->wait_for_stripe,
660 				    conf->quiesce == 0 || noquiesce,
661 				    *(conf->hash_locks + hash));
662 		sh = __find_stripe(conf, sector, conf->generation - previous);
663 		if (!sh) {
664 			if (!conf->inactive_blocked)
665 				sh = get_free_stripe(conf, hash);
666 			if (noblock && sh == NULL)
667 				break;
668 			if (!sh) {
669 				conf->inactive_blocked = 1;
670 				wait_event_lock_irq(
671 					conf->wait_for_stripe,
672 					!list_empty(conf->inactive_list + hash) &&
673 					(atomic_read(&conf->active_stripes)
674 					 < (conf->max_nr_stripes * 3 / 4)
675 					 || !conf->inactive_blocked),
676 					*(conf->hash_locks + hash));
677 				conf->inactive_blocked = 0;
678 			} else {
679 				init_stripe(sh, sector, previous);
680 				atomic_inc(&sh->count);
681 			}
682 		} else if (!atomic_inc_not_zero(&sh->count)) {
683 			spin_lock(&conf->device_lock);
684 			if (!atomic_read(&sh->count)) {
685 				if (!test_bit(STRIPE_HANDLE, &sh->state))
686 					atomic_inc(&conf->active_stripes);
687 				BUG_ON(list_empty(&sh->lru) &&
688 				       !test_bit(STRIPE_EXPANDING, &sh->state));
689 				list_del_init(&sh->lru);
690 				if (sh->group) {
691 					sh->group->stripes_cnt--;
692 					sh->group = NULL;
693 				}
694 			}
695 			atomic_inc(&sh->count);
696 			spin_unlock(&conf->device_lock);
697 		}
698 	} while (sh == NULL);
699 
700 	spin_unlock_irq(conf->hash_locks + hash);
701 	return sh;
702 }
703 
704 /* Determine if 'data_offset' or 'new_data_offset' should be used
705  * in this stripe_head.
706  */
707 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
708 {
709 	sector_t progress = conf->reshape_progress;
710 	/* Need a memory barrier to make sure we see the value
711 	 * of conf->generation, or ->data_offset that was set before
712 	 * reshape_progress was updated.
713 	 */
714 	smp_rmb();
715 	if (progress == MaxSector)
716 		return 0;
717 	if (sh->generation == conf->generation - 1)
718 		return 0;
719 	/* We are in a reshape, and this is a new-generation stripe,
720 	 * so use new_data_offset.
721 	 */
722 	return 1;
723 }
724 
725 static void
726 raid5_end_read_request(struct bio *bi, int error);
727 static void
728 raid5_end_write_request(struct bio *bi, int error);
729 
730 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
731 {
732 	struct r5conf *conf = sh->raid_conf;
733 	int i, disks = sh->disks;
734 
735 	might_sleep();
736 
737 	for (i = disks; i--; ) {
738 		int rw;
739 		int replace_only = 0;
740 		struct bio *bi, *rbi;
741 		struct md_rdev *rdev, *rrdev = NULL;
742 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
743 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
744 				rw = WRITE_FUA;
745 			else
746 				rw = WRITE;
747 			if (test_bit(R5_Discard, &sh->dev[i].flags))
748 				rw |= REQ_DISCARD;
749 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
750 			rw = READ;
751 		else if (test_and_clear_bit(R5_WantReplace,
752 					    &sh->dev[i].flags)) {
753 			rw = WRITE;
754 			replace_only = 1;
755 		} else
756 			continue;
757 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
758 			rw |= REQ_SYNC;
759 
760 		bi = &sh->dev[i].req;
761 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
762 
763 		rcu_read_lock();
764 		rrdev = rcu_dereference(conf->disks[i].replacement);
765 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
766 		rdev = rcu_dereference(conf->disks[i].rdev);
767 		if (!rdev) {
768 			rdev = rrdev;
769 			rrdev = NULL;
770 		}
771 		if (rw & WRITE) {
772 			if (replace_only)
773 				rdev = NULL;
774 			if (rdev == rrdev)
775 				/* We raced and saw duplicates */
776 				rrdev = NULL;
777 		} else {
778 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
779 				rdev = rrdev;
780 			rrdev = NULL;
781 		}
782 
783 		if (rdev && test_bit(Faulty, &rdev->flags))
784 			rdev = NULL;
785 		if (rdev)
786 			atomic_inc(&rdev->nr_pending);
787 		if (rrdev && test_bit(Faulty, &rrdev->flags))
788 			rrdev = NULL;
789 		if (rrdev)
790 			atomic_inc(&rrdev->nr_pending);
791 		rcu_read_unlock();
792 
793 		/* We have already checked bad blocks for reads.  Now
794 		 * need to check for writes.  We never accept write errors
795 		 * on the replacement, so we don't to check rrdev.
796 		 */
797 		while ((rw & WRITE) && rdev &&
798 		       test_bit(WriteErrorSeen, &rdev->flags)) {
799 			sector_t first_bad;
800 			int bad_sectors;
801 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
802 					      &first_bad, &bad_sectors);
803 			if (!bad)
804 				break;
805 
806 			if (bad < 0) {
807 				set_bit(BlockedBadBlocks, &rdev->flags);
808 				if (!conf->mddev->external &&
809 				    conf->mddev->flags) {
810 					/* It is very unlikely, but we might
811 					 * still need to write out the
812 					 * bad block log - better give it
813 					 * a chance*/
814 					md_check_recovery(conf->mddev);
815 				}
816 				/*
817 				 * Because md_wait_for_blocked_rdev
818 				 * will dec nr_pending, we must
819 				 * increment it first.
820 				 */
821 				atomic_inc(&rdev->nr_pending);
822 				md_wait_for_blocked_rdev(rdev, conf->mddev);
823 			} else {
824 				/* Acknowledged bad block - skip the write */
825 				rdev_dec_pending(rdev, conf->mddev);
826 				rdev = NULL;
827 			}
828 		}
829 
830 		if (rdev) {
831 			if (s->syncing || s->expanding || s->expanded
832 			    || s->replacing)
833 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
834 
835 			set_bit(STRIPE_IO_STARTED, &sh->state);
836 
837 			bio_reset(bi);
838 			bi->bi_bdev = rdev->bdev;
839 			bi->bi_rw = rw;
840 			bi->bi_end_io = (rw & WRITE)
841 				? raid5_end_write_request
842 				: raid5_end_read_request;
843 			bi->bi_private = sh;
844 
845 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
846 				__func__, (unsigned long long)sh->sector,
847 				bi->bi_rw, i);
848 			atomic_inc(&sh->count);
849 			if (use_new_offset(conf, sh))
850 				bi->bi_iter.bi_sector = (sh->sector
851 						 + rdev->new_data_offset);
852 			else
853 				bi->bi_iter.bi_sector = (sh->sector
854 						 + rdev->data_offset);
855 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
856 				bi->bi_rw |= REQ_NOMERGE;
857 
858 			bi->bi_vcnt = 1;
859 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
860 			bi->bi_io_vec[0].bv_offset = 0;
861 			bi->bi_iter.bi_size = STRIPE_SIZE;
862 			/*
863 			 * If this is discard request, set bi_vcnt 0. We don't
864 			 * want to confuse SCSI because SCSI will replace payload
865 			 */
866 			if (rw & REQ_DISCARD)
867 				bi->bi_vcnt = 0;
868 			if (rrdev)
869 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
870 
871 			if (conf->mddev->gendisk)
872 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
873 						      bi, disk_devt(conf->mddev->gendisk),
874 						      sh->dev[i].sector);
875 			generic_make_request(bi);
876 		}
877 		if (rrdev) {
878 			if (s->syncing || s->expanding || s->expanded
879 			    || s->replacing)
880 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
881 
882 			set_bit(STRIPE_IO_STARTED, &sh->state);
883 
884 			bio_reset(rbi);
885 			rbi->bi_bdev = rrdev->bdev;
886 			rbi->bi_rw = rw;
887 			BUG_ON(!(rw & WRITE));
888 			rbi->bi_end_io = raid5_end_write_request;
889 			rbi->bi_private = sh;
890 
891 			pr_debug("%s: for %llu schedule op %ld on "
892 				 "replacement disc %d\n",
893 				__func__, (unsigned long long)sh->sector,
894 				rbi->bi_rw, i);
895 			atomic_inc(&sh->count);
896 			if (use_new_offset(conf, sh))
897 				rbi->bi_iter.bi_sector = (sh->sector
898 						  + rrdev->new_data_offset);
899 			else
900 				rbi->bi_iter.bi_sector = (sh->sector
901 						  + rrdev->data_offset);
902 			rbi->bi_vcnt = 1;
903 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
904 			rbi->bi_io_vec[0].bv_offset = 0;
905 			rbi->bi_iter.bi_size = STRIPE_SIZE;
906 			/*
907 			 * If this is discard request, set bi_vcnt 0. We don't
908 			 * want to confuse SCSI because SCSI will replace payload
909 			 */
910 			if (rw & REQ_DISCARD)
911 				rbi->bi_vcnt = 0;
912 			if (conf->mddev->gendisk)
913 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
914 						      rbi, disk_devt(conf->mddev->gendisk),
915 						      sh->dev[i].sector);
916 			generic_make_request(rbi);
917 		}
918 		if (!rdev && !rrdev) {
919 			if (rw & WRITE)
920 				set_bit(STRIPE_DEGRADED, &sh->state);
921 			pr_debug("skip op %ld on disc %d for sector %llu\n",
922 				bi->bi_rw, i, (unsigned long long)sh->sector);
923 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
924 			set_bit(STRIPE_HANDLE, &sh->state);
925 		}
926 	}
927 }
928 
929 static struct dma_async_tx_descriptor *
930 async_copy_data(int frombio, struct bio *bio, struct page *page,
931 	sector_t sector, struct dma_async_tx_descriptor *tx)
932 {
933 	struct bio_vec bvl;
934 	struct bvec_iter iter;
935 	struct page *bio_page;
936 	int page_offset;
937 	struct async_submit_ctl submit;
938 	enum async_tx_flags flags = 0;
939 
940 	if (bio->bi_iter.bi_sector >= sector)
941 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
942 	else
943 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
944 
945 	if (frombio)
946 		flags |= ASYNC_TX_FENCE;
947 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
948 
949 	bio_for_each_segment(bvl, bio, iter) {
950 		int len = bvl.bv_len;
951 		int clen;
952 		int b_offset = 0;
953 
954 		if (page_offset < 0) {
955 			b_offset = -page_offset;
956 			page_offset += b_offset;
957 			len -= b_offset;
958 		}
959 
960 		if (len > 0 && page_offset + len > STRIPE_SIZE)
961 			clen = STRIPE_SIZE - page_offset;
962 		else
963 			clen = len;
964 
965 		if (clen > 0) {
966 			b_offset += bvl.bv_offset;
967 			bio_page = bvl.bv_page;
968 			if (frombio)
969 				tx = async_memcpy(page, bio_page, page_offset,
970 						  b_offset, clen, &submit);
971 			else
972 				tx = async_memcpy(bio_page, page, b_offset,
973 						  page_offset, clen, &submit);
974 		}
975 		/* chain the operations */
976 		submit.depend_tx = tx;
977 
978 		if (clen < len) /* hit end of page */
979 			break;
980 		page_offset +=  len;
981 	}
982 
983 	return tx;
984 }
985 
986 static void ops_complete_biofill(void *stripe_head_ref)
987 {
988 	struct stripe_head *sh = stripe_head_ref;
989 	struct bio *return_bi = NULL;
990 	int i;
991 
992 	pr_debug("%s: stripe %llu\n", __func__,
993 		(unsigned long long)sh->sector);
994 
995 	/* clear completed biofills */
996 	for (i = sh->disks; i--; ) {
997 		struct r5dev *dev = &sh->dev[i];
998 
999 		/* acknowledge completion of a biofill operation */
1000 		/* and check if we need to reply to a read request,
1001 		 * new R5_Wantfill requests are held off until
1002 		 * !STRIPE_BIOFILL_RUN
1003 		 */
1004 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1005 			struct bio *rbi, *rbi2;
1006 
1007 			BUG_ON(!dev->read);
1008 			rbi = dev->read;
1009 			dev->read = NULL;
1010 			while (rbi && rbi->bi_iter.bi_sector <
1011 				dev->sector + STRIPE_SECTORS) {
1012 				rbi2 = r5_next_bio(rbi, dev->sector);
1013 				if (!raid5_dec_bi_active_stripes(rbi)) {
1014 					rbi->bi_next = return_bi;
1015 					return_bi = rbi;
1016 				}
1017 				rbi = rbi2;
1018 			}
1019 		}
1020 	}
1021 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1022 
1023 	return_io(return_bi);
1024 
1025 	set_bit(STRIPE_HANDLE, &sh->state);
1026 	release_stripe(sh);
1027 }
1028 
1029 static void ops_run_biofill(struct stripe_head *sh)
1030 {
1031 	struct dma_async_tx_descriptor *tx = NULL;
1032 	struct async_submit_ctl submit;
1033 	int i;
1034 
1035 	pr_debug("%s: stripe %llu\n", __func__,
1036 		(unsigned long long)sh->sector);
1037 
1038 	for (i = sh->disks; i--; ) {
1039 		struct r5dev *dev = &sh->dev[i];
1040 		if (test_bit(R5_Wantfill, &dev->flags)) {
1041 			struct bio *rbi;
1042 			spin_lock_irq(&sh->stripe_lock);
1043 			dev->read = rbi = dev->toread;
1044 			dev->toread = NULL;
1045 			spin_unlock_irq(&sh->stripe_lock);
1046 			while (rbi && rbi->bi_iter.bi_sector <
1047 				dev->sector + STRIPE_SECTORS) {
1048 				tx = async_copy_data(0, rbi, dev->page,
1049 					dev->sector, tx);
1050 				rbi = r5_next_bio(rbi, dev->sector);
1051 			}
1052 		}
1053 	}
1054 
1055 	atomic_inc(&sh->count);
1056 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1057 	async_trigger_callback(&submit);
1058 }
1059 
1060 static void mark_target_uptodate(struct stripe_head *sh, int target)
1061 {
1062 	struct r5dev *tgt;
1063 
1064 	if (target < 0)
1065 		return;
1066 
1067 	tgt = &sh->dev[target];
1068 	set_bit(R5_UPTODATE, &tgt->flags);
1069 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1070 	clear_bit(R5_Wantcompute, &tgt->flags);
1071 }
1072 
1073 static void ops_complete_compute(void *stripe_head_ref)
1074 {
1075 	struct stripe_head *sh = stripe_head_ref;
1076 
1077 	pr_debug("%s: stripe %llu\n", __func__,
1078 		(unsigned long long)sh->sector);
1079 
1080 	/* mark the computed target(s) as uptodate */
1081 	mark_target_uptodate(sh, sh->ops.target);
1082 	mark_target_uptodate(sh, sh->ops.target2);
1083 
1084 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1085 	if (sh->check_state == check_state_compute_run)
1086 		sh->check_state = check_state_compute_result;
1087 	set_bit(STRIPE_HANDLE, &sh->state);
1088 	release_stripe(sh);
1089 }
1090 
1091 /* return a pointer to the address conversion region of the scribble buffer */
1092 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1093 				 struct raid5_percpu *percpu)
1094 {
1095 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1096 }
1097 
1098 static struct dma_async_tx_descriptor *
1099 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1100 {
1101 	int disks = sh->disks;
1102 	struct page **xor_srcs = percpu->scribble;
1103 	int target = sh->ops.target;
1104 	struct r5dev *tgt = &sh->dev[target];
1105 	struct page *xor_dest = tgt->page;
1106 	int count = 0;
1107 	struct dma_async_tx_descriptor *tx;
1108 	struct async_submit_ctl submit;
1109 	int i;
1110 
1111 	pr_debug("%s: stripe %llu block: %d\n",
1112 		__func__, (unsigned long long)sh->sector, target);
1113 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1114 
1115 	for (i = disks; i--; )
1116 		if (i != target)
1117 			xor_srcs[count++] = sh->dev[i].page;
1118 
1119 	atomic_inc(&sh->count);
1120 
1121 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1122 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1123 	if (unlikely(count == 1))
1124 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1125 	else
1126 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127 
1128 	return tx;
1129 }
1130 
1131 /* set_syndrome_sources - populate source buffers for gen_syndrome
1132  * @srcs - (struct page *) array of size sh->disks
1133  * @sh - stripe_head to parse
1134  *
1135  * Populates srcs in proper layout order for the stripe and returns the
1136  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1137  * destination buffer is recorded in srcs[count] and the Q destination
1138  * is recorded in srcs[count+1]].
1139  */
1140 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1141 {
1142 	int disks = sh->disks;
1143 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1144 	int d0_idx = raid6_d0(sh);
1145 	int count;
1146 	int i;
1147 
1148 	for (i = 0; i < disks; i++)
1149 		srcs[i] = NULL;
1150 
1151 	count = 0;
1152 	i = d0_idx;
1153 	do {
1154 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1155 
1156 		srcs[slot] = sh->dev[i].page;
1157 		i = raid6_next_disk(i, disks);
1158 	} while (i != d0_idx);
1159 
1160 	return syndrome_disks;
1161 }
1162 
1163 static struct dma_async_tx_descriptor *
1164 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1165 {
1166 	int disks = sh->disks;
1167 	struct page **blocks = percpu->scribble;
1168 	int target;
1169 	int qd_idx = sh->qd_idx;
1170 	struct dma_async_tx_descriptor *tx;
1171 	struct async_submit_ctl submit;
1172 	struct r5dev *tgt;
1173 	struct page *dest;
1174 	int i;
1175 	int count;
1176 
1177 	if (sh->ops.target < 0)
1178 		target = sh->ops.target2;
1179 	else if (sh->ops.target2 < 0)
1180 		target = sh->ops.target;
1181 	else
1182 		/* we should only have one valid target */
1183 		BUG();
1184 	BUG_ON(target < 0);
1185 	pr_debug("%s: stripe %llu block: %d\n",
1186 		__func__, (unsigned long long)sh->sector, target);
1187 
1188 	tgt = &sh->dev[target];
1189 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1190 	dest = tgt->page;
1191 
1192 	atomic_inc(&sh->count);
1193 
1194 	if (target == qd_idx) {
1195 		count = set_syndrome_sources(blocks, sh);
1196 		blocks[count] = NULL; /* regenerating p is not necessary */
1197 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1198 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1199 				  ops_complete_compute, sh,
1200 				  to_addr_conv(sh, percpu));
1201 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1202 	} else {
1203 		/* Compute any data- or p-drive using XOR */
1204 		count = 0;
1205 		for (i = disks; i-- ; ) {
1206 			if (i == target || i == qd_idx)
1207 				continue;
1208 			blocks[count++] = sh->dev[i].page;
1209 		}
1210 
1211 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1212 				  NULL, ops_complete_compute, sh,
1213 				  to_addr_conv(sh, percpu));
1214 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1215 	}
1216 
1217 	return tx;
1218 }
1219 
1220 static struct dma_async_tx_descriptor *
1221 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1222 {
1223 	int i, count, disks = sh->disks;
1224 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1225 	int d0_idx = raid6_d0(sh);
1226 	int faila = -1, failb = -1;
1227 	int target = sh->ops.target;
1228 	int target2 = sh->ops.target2;
1229 	struct r5dev *tgt = &sh->dev[target];
1230 	struct r5dev *tgt2 = &sh->dev[target2];
1231 	struct dma_async_tx_descriptor *tx;
1232 	struct page **blocks = percpu->scribble;
1233 	struct async_submit_ctl submit;
1234 
1235 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1236 		 __func__, (unsigned long long)sh->sector, target, target2);
1237 	BUG_ON(target < 0 || target2 < 0);
1238 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1239 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1240 
1241 	/* we need to open-code set_syndrome_sources to handle the
1242 	 * slot number conversion for 'faila' and 'failb'
1243 	 */
1244 	for (i = 0; i < disks ; i++)
1245 		blocks[i] = NULL;
1246 	count = 0;
1247 	i = d0_idx;
1248 	do {
1249 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1250 
1251 		blocks[slot] = sh->dev[i].page;
1252 
1253 		if (i == target)
1254 			faila = slot;
1255 		if (i == target2)
1256 			failb = slot;
1257 		i = raid6_next_disk(i, disks);
1258 	} while (i != d0_idx);
1259 
1260 	BUG_ON(faila == failb);
1261 	if (failb < faila)
1262 		swap(faila, failb);
1263 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1264 		 __func__, (unsigned long long)sh->sector, faila, failb);
1265 
1266 	atomic_inc(&sh->count);
1267 
1268 	if (failb == syndrome_disks+1) {
1269 		/* Q disk is one of the missing disks */
1270 		if (faila == syndrome_disks) {
1271 			/* Missing P+Q, just recompute */
1272 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1273 					  ops_complete_compute, sh,
1274 					  to_addr_conv(sh, percpu));
1275 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1276 						  STRIPE_SIZE, &submit);
1277 		} else {
1278 			struct page *dest;
1279 			int data_target;
1280 			int qd_idx = sh->qd_idx;
1281 
1282 			/* Missing D+Q: recompute D from P, then recompute Q */
1283 			if (target == qd_idx)
1284 				data_target = target2;
1285 			else
1286 				data_target = target;
1287 
1288 			count = 0;
1289 			for (i = disks; i-- ; ) {
1290 				if (i == data_target || i == qd_idx)
1291 					continue;
1292 				blocks[count++] = sh->dev[i].page;
1293 			}
1294 			dest = sh->dev[data_target].page;
1295 			init_async_submit(&submit,
1296 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1297 					  NULL, NULL, NULL,
1298 					  to_addr_conv(sh, percpu));
1299 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1300 				       &submit);
1301 
1302 			count = set_syndrome_sources(blocks, sh);
1303 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1304 					  ops_complete_compute, sh,
1305 					  to_addr_conv(sh, percpu));
1306 			return async_gen_syndrome(blocks, 0, count+2,
1307 						  STRIPE_SIZE, &submit);
1308 		}
1309 	} else {
1310 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1311 				  ops_complete_compute, sh,
1312 				  to_addr_conv(sh, percpu));
1313 		if (failb == syndrome_disks) {
1314 			/* We're missing D+P. */
1315 			return async_raid6_datap_recov(syndrome_disks+2,
1316 						       STRIPE_SIZE, faila,
1317 						       blocks, &submit);
1318 		} else {
1319 			/* We're missing D+D. */
1320 			return async_raid6_2data_recov(syndrome_disks+2,
1321 						       STRIPE_SIZE, faila, failb,
1322 						       blocks, &submit);
1323 		}
1324 	}
1325 }
1326 
1327 
1328 static void ops_complete_prexor(void *stripe_head_ref)
1329 {
1330 	struct stripe_head *sh = stripe_head_ref;
1331 
1332 	pr_debug("%s: stripe %llu\n", __func__,
1333 		(unsigned long long)sh->sector);
1334 }
1335 
1336 static struct dma_async_tx_descriptor *
1337 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1338 	       struct dma_async_tx_descriptor *tx)
1339 {
1340 	int disks = sh->disks;
1341 	struct page **xor_srcs = percpu->scribble;
1342 	int count = 0, pd_idx = sh->pd_idx, i;
1343 	struct async_submit_ctl submit;
1344 
1345 	/* existing parity data subtracted */
1346 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1347 
1348 	pr_debug("%s: stripe %llu\n", __func__,
1349 		(unsigned long long)sh->sector);
1350 
1351 	for (i = disks; i--; ) {
1352 		struct r5dev *dev = &sh->dev[i];
1353 		/* Only process blocks that are known to be uptodate */
1354 		if (test_bit(R5_Wantdrain, &dev->flags))
1355 			xor_srcs[count++] = dev->page;
1356 	}
1357 
1358 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1359 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1360 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1361 
1362 	return tx;
1363 }
1364 
1365 static struct dma_async_tx_descriptor *
1366 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1367 {
1368 	int disks = sh->disks;
1369 	int i;
1370 
1371 	pr_debug("%s: stripe %llu\n", __func__,
1372 		(unsigned long long)sh->sector);
1373 
1374 	for (i = disks; i--; ) {
1375 		struct r5dev *dev = &sh->dev[i];
1376 		struct bio *chosen;
1377 
1378 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1379 			struct bio *wbi;
1380 
1381 			spin_lock_irq(&sh->stripe_lock);
1382 			chosen = dev->towrite;
1383 			dev->towrite = NULL;
1384 			BUG_ON(dev->written);
1385 			wbi = dev->written = chosen;
1386 			spin_unlock_irq(&sh->stripe_lock);
1387 
1388 			while (wbi && wbi->bi_iter.bi_sector <
1389 				dev->sector + STRIPE_SECTORS) {
1390 				if (wbi->bi_rw & REQ_FUA)
1391 					set_bit(R5_WantFUA, &dev->flags);
1392 				if (wbi->bi_rw & REQ_SYNC)
1393 					set_bit(R5_SyncIO, &dev->flags);
1394 				if (wbi->bi_rw & REQ_DISCARD)
1395 					set_bit(R5_Discard, &dev->flags);
1396 				else
1397 					tx = async_copy_data(1, wbi, dev->page,
1398 						dev->sector, tx);
1399 				wbi = r5_next_bio(wbi, dev->sector);
1400 			}
1401 		}
1402 	}
1403 
1404 	return tx;
1405 }
1406 
1407 static void ops_complete_reconstruct(void *stripe_head_ref)
1408 {
1409 	struct stripe_head *sh = stripe_head_ref;
1410 	int disks = sh->disks;
1411 	int pd_idx = sh->pd_idx;
1412 	int qd_idx = sh->qd_idx;
1413 	int i;
1414 	bool fua = false, sync = false, discard = false;
1415 
1416 	pr_debug("%s: stripe %llu\n", __func__,
1417 		(unsigned long long)sh->sector);
1418 
1419 	for (i = disks; i--; ) {
1420 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1421 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1422 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1423 	}
1424 
1425 	for (i = disks; i--; ) {
1426 		struct r5dev *dev = &sh->dev[i];
1427 
1428 		if (dev->written || i == pd_idx || i == qd_idx) {
1429 			if (!discard)
1430 				set_bit(R5_UPTODATE, &dev->flags);
1431 			if (fua)
1432 				set_bit(R5_WantFUA, &dev->flags);
1433 			if (sync)
1434 				set_bit(R5_SyncIO, &dev->flags);
1435 		}
1436 	}
1437 
1438 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1439 		sh->reconstruct_state = reconstruct_state_drain_result;
1440 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1441 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1442 	else {
1443 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1444 		sh->reconstruct_state = reconstruct_state_result;
1445 	}
1446 
1447 	set_bit(STRIPE_HANDLE, &sh->state);
1448 	release_stripe(sh);
1449 }
1450 
1451 static void
1452 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1453 		     struct dma_async_tx_descriptor *tx)
1454 {
1455 	int disks = sh->disks;
1456 	struct page **xor_srcs = percpu->scribble;
1457 	struct async_submit_ctl submit;
1458 	int count = 0, pd_idx = sh->pd_idx, i;
1459 	struct page *xor_dest;
1460 	int prexor = 0;
1461 	unsigned long flags;
1462 
1463 	pr_debug("%s: stripe %llu\n", __func__,
1464 		(unsigned long long)sh->sector);
1465 
1466 	for (i = 0; i < sh->disks; i++) {
1467 		if (pd_idx == i)
1468 			continue;
1469 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1470 			break;
1471 	}
1472 	if (i >= sh->disks) {
1473 		atomic_inc(&sh->count);
1474 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1475 		ops_complete_reconstruct(sh);
1476 		return;
1477 	}
1478 	/* check if prexor is active which means only process blocks
1479 	 * that are part of a read-modify-write (written)
1480 	 */
1481 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1482 		prexor = 1;
1483 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1484 		for (i = disks; i--; ) {
1485 			struct r5dev *dev = &sh->dev[i];
1486 			if (dev->written)
1487 				xor_srcs[count++] = dev->page;
1488 		}
1489 	} else {
1490 		xor_dest = sh->dev[pd_idx].page;
1491 		for (i = disks; i--; ) {
1492 			struct r5dev *dev = &sh->dev[i];
1493 			if (i != pd_idx)
1494 				xor_srcs[count++] = dev->page;
1495 		}
1496 	}
1497 
1498 	/* 1/ if we prexor'd then the dest is reused as a source
1499 	 * 2/ if we did not prexor then we are redoing the parity
1500 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1501 	 * for the synchronous xor case
1502 	 */
1503 	flags = ASYNC_TX_ACK |
1504 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1505 
1506 	atomic_inc(&sh->count);
1507 
1508 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1509 			  to_addr_conv(sh, percpu));
1510 	if (unlikely(count == 1))
1511 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1512 	else
1513 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1514 }
1515 
1516 static void
1517 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1518 		     struct dma_async_tx_descriptor *tx)
1519 {
1520 	struct async_submit_ctl submit;
1521 	struct page **blocks = percpu->scribble;
1522 	int count, i;
1523 
1524 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1525 
1526 	for (i = 0; i < sh->disks; i++) {
1527 		if (sh->pd_idx == i || sh->qd_idx == i)
1528 			continue;
1529 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1530 			break;
1531 	}
1532 	if (i >= sh->disks) {
1533 		atomic_inc(&sh->count);
1534 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1535 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1536 		ops_complete_reconstruct(sh);
1537 		return;
1538 	}
1539 
1540 	count = set_syndrome_sources(blocks, sh);
1541 
1542 	atomic_inc(&sh->count);
1543 
1544 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1545 			  sh, to_addr_conv(sh, percpu));
1546 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1547 }
1548 
1549 static void ops_complete_check(void *stripe_head_ref)
1550 {
1551 	struct stripe_head *sh = stripe_head_ref;
1552 
1553 	pr_debug("%s: stripe %llu\n", __func__,
1554 		(unsigned long long)sh->sector);
1555 
1556 	sh->check_state = check_state_check_result;
1557 	set_bit(STRIPE_HANDLE, &sh->state);
1558 	release_stripe(sh);
1559 }
1560 
1561 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1562 {
1563 	int disks = sh->disks;
1564 	int pd_idx = sh->pd_idx;
1565 	int qd_idx = sh->qd_idx;
1566 	struct page *xor_dest;
1567 	struct page **xor_srcs = percpu->scribble;
1568 	struct dma_async_tx_descriptor *tx;
1569 	struct async_submit_ctl submit;
1570 	int count;
1571 	int i;
1572 
1573 	pr_debug("%s: stripe %llu\n", __func__,
1574 		(unsigned long long)sh->sector);
1575 
1576 	count = 0;
1577 	xor_dest = sh->dev[pd_idx].page;
1578 	xor_srcs[count++] = xor_dest;
1579 	for (i = disks; i--; ) {
1580 		if (i == pd_idx || i == qd_idx)
1581 			continue;
1582 		xor_srcs[count++] = sh->dev[i].page;
1583 	}
1584 
1585 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1586 			  to_addr_conv(sh, percpu));
1587 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1588 			   &sh->ops.zero_sum_result, &submit);
1589 
1590 	atomic_inc(&sh->count);
1591 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1592 	tx = async_trigger_callback(&submit);
1593 }
1594 
1595 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1596 {
1597 	struct page **srcs = percpu->scribble;
1598 	struct async_submit_ctl submit;
1599 	int count;
1600 
1601 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1602 		(unsigned long long)sh->sector, checkp);
1603 
1604 	count = set_syndrome_sources(srcs, sh);
1605 	if (!checkp)
1606 		srcs[count] = NULL;
1607 
1608 	atomic_inc(&sh->count);
1609 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1610 			  sh, to_addr_conv(sh, percpu));
1611 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1612 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1613 }
1614 
1615 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1616 {
1617 	int overlap_clear = 0, i, disks = sh->disks;
1618 	struct dma_async_tx_descriptor *tx = NULL;
1619 	struct r5conf *conf = sh->raid_conf;
1620 	int level = conf->level;
1621 	struct raid5_percpu *percpu;
1622 	unsigned long cpu;
1623 
1624 	cpu = get_cpu();
1625 	percpu = per_cpu_ptr(conf->percpu, cpu);
1626 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1627 		ops_run_biofill(sh);
1628 		overlap_clear++;
1629 	}
1630 
1631 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1632 		if (level < 6)
1633 			tx = ops_run_compute5(sh, percpu);
1634 		else {
1635 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1636 				tx = ops_run_compute6_1(sh, percpu);
1637 			else
1638 				tx = ops_run_compute6_2(sh, percpu);
1639 		}
1640 		/* terminate the chain if reconstruct is not set to be run */
1641 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1642 			async_tx_ack(tx);
1643 	}
1644 
1645 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1646 		tx = ops_run_prexor(sh, percpu, tx);
1647 
1648 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1649 		tx = ops_run_biodrain(sh, tx);
1650 		overlap_clear++;
1651 	}
1652 
1653 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1654 		if (level < 6)
1655 			ops_run_reconstruct5(sh, percpu, tx);
1656 		else
1657 			ops_run_reconstruct6(sh, percpu, tx);
1658 	}
1659 
1660 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1661 		if (sh->check_state == check_state_run)
1662 			ops_run_check_p(sh, percpu);
1663 		else if (sh->check_state == check_state_run_q)
1664 			ops_run_check_pq(sh, percpu, 0);
1665 		else if (sh->check_state == check_state_run_pq)
1666 			ops_run_check_pq(sh, percpu, 1);
1667 		else
1668 			BUG();
1669 	}
1670 
1671 	if (overlap_clear)
1672 		for (i = disks; i--; ) {
1673 			struct r5dev *dev = &sh->dev[i];
1674 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1675 				wake_up(&sh->raid_conf->wait_for_overlap);
1676 		}
1677 	put_cpu();
1678 }
1679 
1680 static int grow_one_stripe(struct r5conf *conf, int hash)
1681 {
1682 	struct stripe_head *sh;
1683 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1684 	if (!sh)
1685 		return 0;
1686 
1687 	sh->raid_conf = conf;
1688 
1689 	spin_lock_init(&sh->stripe_lock);
1690 
1691 	if (grow_buffers(sh)) {
1692 		shrink_buffers(sh);
1693 		kmem_cache_free(conf->slab_cache, sh);
1694 		return 0;
1695 	}
1696 	sh->hash_lock_index = hash;
1697 	/* we just created an active stripe so... */
1698 	atomic_set(&sh->count, 1);
1699 	atomic_inc(&conf->active_stripes);
1700 	INIT_LIST_HEAD(&sh->lru);
1701 	release_stripe(sh);
1702 	return 1;
1703 }
1704 
1705 static int grow_stripes(struct r5conf *conf, int num)
1706 {
1707 	struct kmem_cache *sc;
1708 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1709 	int hash;
1710 
1711 	if (conf->mddev->gendisk)
1712 		sprintf(conf->cache_name[0],
1713 			"raid%d-%s", conf->level, mdname(conf->mddev));
1714 	else
1715 		sprintf(conf->cache_name[0],
1716 			"raid%d-%p", conf->level, conf->mddev);
1717 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1718 
1719 	conf->active_name = 0;
1720 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1721 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1722 			       0, 0, NULL);
1723 	if (!sc)
1724 		return 1;
1725 	conf->slab_cache = sc;
1726 	conf->pool_size = devs;
1727 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1728 	while (num--) {
1729 		if (!grow_one_stripe(conf, hash))
1730 			return 1;
1731 		conf->max_nr_stripes++;
1732 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1733 	}
1734 	return 0;
1735 }
1736 
1737 /**
1738  * scribble_len - return the required size of the scribble region
1739  * @num - total number of disks in the array
1740  *
1741  * The size must be enough to contain:
1742  * 1/ a struct page pointer for each device in the array +2
1743  * 2/ room to convert each entry in (1) to its corresponding dma
1744  *    (dma_map_page()) or page (page_address()) address.
1745  *
1746  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1747  * calculate over all devices (not just the data blocks), using zeros in place
1748  * of the P and Q blocks.
1749  */
1750 static size_t scribble_len(int num)
1751 {
1752 	size_t len;
1753 
1754 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1755 
1756 	return len;
1757 }
1758 
1759 static int resize_stripes(struct r5conf *conf, int newsize)
1760 {
1761 	/* Make all the stripes able to hold 'newsize' devices.
1762 	 * New slots in each stripe get 'page' set to a new page.
1763 	 *
1764 	 * This happens in stages:
1765 	 * 1/ create a new kmem_cache and allocate the required number of
1766 	 *    stripe_heads.
1767 	 * 2/ gather all the old stripe_heads and transfer the pages across
1768 	 *    to the new stripe_heads.  This will have the side effect of
1769 	 *    freezing the array as once all stripe_heads have been collected,
1770 	 *    no IO will be possible.  Old stripe heads are freed once their
1771 	 *    pages have been transferred over, and the old kmem_cache is
1772 	 *    freed when all stripes are done.
1773 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1774 	 *    we simple return a failre status - no need to clean anything up.
1775 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1776 	 *    If this fails, we don't bother trying the shrink the
1777 	 *    stripe_heads down again, we just leave them as they are.
1778 	 *    As each stripe_head is processed the new one is released into
1779 	 *    active service.
1780 	 *
1781 	 * Once step2 is started, we cannot afford to wait for a write,
1782 	 * so we use GFP_NOIO allocations.
1783 	 */
1784 	struct stripe_head *osh, *nsh;
1785 	LIST_HEAD(newstripes);
1786 	struct disk_info *ndisks;
1787 	unsigned long cpu;
1788 	int err;
1789 	struct kmem_cache *sc;
1790 	int i;
1791 	int hash, cnt;
1792 
1793 	if (newsize <= conf->pool_size)
1794 		return 0; /* never bother to shrink */
1795 
1796 	err = md_allow_write(conf->mddev);
1797 	if (err)
1798 		return err;
1799 
1800 	/* Step 1 */
1801 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1802 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1803 			       0, 0, NULL);
1804 	if (!sc)
1805 		return -ENOMEM;
1806 
1807 	for (i = conf->max_nr_stripes; i; i--) {
1808 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1809 		if (!nsh)
1810 			break;
1811 
1812 		nsh->raid_conf = conf;
1813 		spin_lock_init(&nsh->stripe_lock);
1814 
1815 		list_add(&nsh->lru, &newstripes);
1816 	}
1817 	if (i) {
1818 		/* didn't get enough, give up */
1819 		while (!list_empty(&newstripes)) {
1820 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1821 			list_del(&nsh->lru);
1822 			kmem_cache_free(sc, nsh);
1823 		}
1824 		kmem_cache_destroy(sc);
1825 		return -ENOMEM;
1826 	}
1827 	/* Step 2 - Must use GFP_NOIO now.
1828 	 * OK, we have enough stripes, start collecting inactive
1829 	 * stripes and copying them over
1830 	 */
1831 	hash = 0;
1832 	cnt = 0;
1833 	list_for_each_entry(nsh, &newstripes, lru) {
1834 		lock_device_hash_lock(conf, hash);
1835 		wait_event_cmd(conf->wait_for_stripe,
1836 				    !list_empty(conf->inactive_list + hash),
1837 				    unlock_device_hash_lock(conf, hash),
1838 				    lock_device_hash_lock(conf, hash));
1839 		osh = get_free_stripe(conf, hash);
1840 		unlock_device_hash_lock(conf, hash);
1841 		atomic_set(&nsh->count, 1);
1842 		for(i=0; i<conf->pool_size; i++)
1843 			nsh->dev[i].page = osh->dev[i].page;
1844 		for( ; i<newsize; i++)
1845 			nsh->dev[i].page = NULL;
1846 		nsh->hash_lock_index = hash;
1847 		kmem_cache_free(conf->slab_cache, osh);
1848 		cnt++;
1849 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1850 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1851 			hash++;
1852 			cnt = 0;
1853 		}
1854 	}
1855 	kmem_cache_destroy(conf->slab_cache);
1856 
1857 	/* Step 3.
1858 	 * At this point, we are holding all the stripes so the array
1859 	 * is completely stalled, so now is a good time to resize
1860 	 * conf->disks and the scribble region
1861 	 */
1862 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1863 	if (ndisks) {
1864 		for (i=0; i<conf->raid_disks; i++)
1865 			ndisks[i] = conf->disks[i];
1866 		kfree(conf->disks);
1867 		conf->disks = ndisks;
1868 	} else
1869 		err = -ENOMEM;
1870 
1871 	get_online_cpus();
1872 	conf->scribble_len = scribble_len(newsize);
1873 	for_each_present_cpu(cpu) {
1874 		struct raid5_percpu *percpu;
1875 		void *scribble;
1876 
1877 		percpu = per_cpu_ptr(conf->percpu, cpu);
1878 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1879 
1880 		if (scribble) {
1881 			kfree(percpu->scribble);
1882 			percpu->scribble = scribble;
1883 		} else {
1884 			err = -ENOMEM;
1885 			break;
1886 		}
1887 	}
1888 	put_online_cpus();
1889 
1890 	/* Step 4, return new stripes to service */
1891 	while(!list_empty(&newstripes)) {
1892 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1893 		list_del_init(&nsh->lru);
1894 
1895 		for (i=conf->raid_disks; i < newsize; i++)
1896 			if (nsh->dev[i].page == NULL) {
1897 				struct page *p = alloc_page(GFP_NOIO);
1898 				nsh->dev[i].page = p;
1899 				if (!p)
1900 					err = -ENOMEM;
1901 			}
1902 		release_stripe(nsh);
1903 	}
1904 	/* critical section pass, GFP_NOIO no longer needed */
1905 
1906 	conf->slab_cache = sc;
1907 	conf->active_name = 1-conf->active_name;
1908 	conf->pool_size = newsize;
1909 	return err;
1910 }
1911 
1912 static int drop_one_stripe(struct r5conf *conf, int hash)
1913 {
1914 	struct stripe_head *sh;
1915 
1916 	spin_lock_irq(conf->hash_locks + hash);
1917 	sh = get_free_stripe(conf, hash);
1918 	spin_unlock_irq(conf->hash_locks + hash);
1919 	if (!sh)
1920 		return 0;
1921 	BUG_ON(atomic_read(&sh->count));
1922 	shrink_buffers(sh);
1923 	kmem_cache_free(conf->slab_cache, sh);
1924 	atomic_dec(&conf->active_stripes);
1925 	return 1;
1926 }
1927 
1928 static void shrink_stripes(struct r5conf *conf)
1929 {
1930 	int hash;
1931 	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1932 		while (drop_one_stripe(conf, hash))
1933 			;
1934 
1935 	if (conf->slab_cache)
1936 		kmem_cache_destroy(conf->slab_cache);
1937 	conf->slab_cache = NULL;
1938 }
1939 
1940 static void raid5_end_read_request(struct bio * bi, int error)
1941 {
1942 	struct stripe_head *sh = bi->bi_private;
1943 	struct r5conf *conf = sh->raid_conf;
1944 	int disks = sh->disks, i;
1945 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1946 	char b[BDEVNAME_SIZE];
1947 	struct md_rdev *rdev = NULL;
1948 	sector_t s;
1949 
1950 	for (i=0 ; i<disks; i++)
1951 		if (bi == &sh->dev[i].req)
1952 			break;
1953 
1954 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1955 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1956 		uptodate);
1957 	if (i == disks) {
1958 		BUG();
1959 		return;
1960 	}
1961 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1962 		/* If replacement finished while this request was outstanding,
1963 		 * 'replacement' might be NULL already.
1964 		 * In that case it moved down to 'rdev'.
1965 		 * rdev is not removed until all requests are finished.
1966 		 */
1967 		rdev = conf->disks[i].replacement;
1968 	if (!rdev)
1969 		rdev = conf->disks[i].rdev;
1970 
1971 	if (use_new_offset(conf, sh))
1972 		s = sh->sector + rdev->new_data_offset;
1973 	else
1974 		s = sh->sector + rdev->data_offset;
1975 	if (uptodate) {
1976 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1977 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1978 			/* Note that this cannot happen on a
1979 			 * replacement device.  We just fail those on
1980 			 * any error
1981 			 */
1982 			printk_ratelimited(
1983 				KERN_INFO
1984 				"md/raid:%s: read error corrected"
1985 				" (%lu sectors at %llu on %s)\n",
1986 				mdname(conf->mddev), STRIPE_SECTORS,
1987 				(unsigned long long)s,
1988 				bdevname(rdev->bdev, b));
1989 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1990 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1991 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1992 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1993 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1994 
1995 		if (atomic_read(&rdev->read_errors))
1996 			atomic_set(&rdev->read_errors, 0);
1997 	} else {
1998 		const char *bdn = bdevname(rdev->bdev, b);
1999 		int retry = 0;
2000 		int set_bad = 0;
2001 
2002 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2003 		atomic_inc(&rdev->read_errors);
2004 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2005 			printk_ratelimited(
2006 				KERN_WARNING
2007 				"md/raid:%s: read error on replacement device "
2008 				"(sector %llu on %s).\n",
2009 				mdname(conf->mddev),
2010 				(unsigned long long)s,
2011 				bdn);
2012 		else if (conf->mddev->degraded >= conf->max_degraded) {
2013 			set_bad = 1;
2014 			printk_ratelimited(
2015 				KERN_WARNING
2016 				"md/raid:%s: read error not correctable "
2017 				"(sector %llu on %s).\n",
2018 				mdname(conf->mddev),
2019 				(unsigned long long)s,
2020 				bdn);
2021 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2022 			/* Oh, no!!! */
2023 			set_bad = 1;
2024 			printk_ratelimited(
2025 				KERN_WARNING
2026 				"md/raid:%s: read error NOT corrected!! "
2027 				"(sector %llu on %s).\n",
2028 				mdname(conf->mddev),
2029 				(unsigned long long)s,
2030 				bdn);
2031 		} else if (atomic_read(&rdev->read_errors)
2032 			 > conf->max_nr_stripes)
2033 			printk(KERN_WARNING
2034 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2035 			       mdname(conf->mddev), bdn);
2036 		else
2037 			retry = 1;
2038 		if (set_bad && test_bit(In_sync, &rdev->flags)
2039 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2040 			retry = 1;
2041 		if (retry)
2042 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2043 				set_bit(R5_ReadError, &sh->dev[i].flags);
2044 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2045 			} else
2046 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2047 		else {
2048 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2049 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2050 			if (!(set_bad
2051 			      && test_bit(In_sync, &rdev->flags)
2052 			      && rdev_set_badblocks(
2053 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2054 				md_error(conf->mddev, rdev);
2055 		}
2056 	}
2057 	rdev_dec_pending(rdev, conf->mddev);
2058 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2059 	set_bit(STRIPE_HANDLE, &sh->state);
2060 	release_stripe(sh);
2061 }
2062 
2063 static void raid5_end_write_request(struct bio *bi, int error)
2064 {
2065 	struct stripe_head *sh = bi->bi_private;
2066 	struct r5conf *conf = sh->raid_conf;
2067 	int disks = sh->disks, i;
2068 	struct md_rdev *uninitialized_var(rdev);
2069 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2070 	sector_t first_bad;
2071 	int bad_sectors;
2072 	int replacement = 0;
2073 
2074 	for (i = 0 ; i < disks; i++) {
2075 		if (bi == &sh->dev[i].req) {
2076 			rdev = conf->disks[i].rdev;
2077 			break;
2078 		}
2079 		if (bi == &sh->dev[i].rreq) {
2080 			rdev = conf->disks[i].replacement;
2081 			if (rdev)
2082 				replacement = 1;
2083 			else
2084 				/* rdev was removed and 'replacement'
2085 				 * replaced it.  rdev is not removed
2086 				 * until all requests are finished.
2087 				 */
2088 				rdev = conf->disks[i].rdev;
2089 			break;
2090 		}
2091 	}
2092 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2093 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2094 		uptodate);
2095 	if (i == disks) {
2096 		BUG();
2097 		return;
2098 	}
2099 
2100 	if (replacement) {
2101 		if (!uptodate)
2102 			md_error(conf->mddev, rdev);
2103 		else if (is_badblock(rdev, sh->sector,
2104 				     STRIPE_SECTORS,
2105 				     &first_bad, &bad_sectors))
2106 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2107 	} else {
2108 		if (!uptodate) {
2109 			set_bit(STRIPE_DEGRADED, &sh->state);
2110 			set_bit(WriteErrorSeen, &rdev->flags);
2111 			set_bit(R5_WriteError, &sh->dev[i].flags);
2112 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2113 				set_bit(MD_RECOVERY_NEEDED,
2114 					&rdev->mddev->recovery);
2115 		} else if (is_badblock(rdev, sh->sector,
2116 				       STRIPE_SECTORS,
2117 				       &first_bad, &bad_sectors)) {
2118 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2119 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2120 				/* That was a successful write so make
2121 				 * sure it looks like we already did
2122 				 * a re-write.
2123 				 */
2124 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2125 		}
2126 	}
2127 	rdev_dec_pending(rdev, conf->mddev);
2128 
2129 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2130 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2131 	set_bit(STRIPE_HANDLE, &sh->state);
2132 	release_stripe(sh);
2133 }
2134 
2135 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2136 
2137 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2138 {
2139 	struct r5dev *dev = &sh->dev[i];
2140 
2141 	bio_init(&dev->req);
2142 	dev->req.bi_io_vec = &dev->vec;
2143 	dev->req.bi_vcnt++;
2144 	dev->req.bi_max_vecs++;
2145 	dev->req.bi_private = sh;
2146 	dev->vec.bv_page = dev->page;
2147 
2148 	bio_init(&dev->rreq);
2149 	dev->rreq.bi_io_vec = &dev->rvec;
2150 	dev->rreq.bi_vcnt++;
2151 	dev->rreq.bi_max_vecs++;
2152 	dev->rreq.bi_private = sh;
2153 	dev->rvec.bv_page = dev->page;
2154 
2155 	dev->flags = 0;
2156 	dev->sector = compute_blocknr(sh, i, previous);
2157 }
2158 
2159 static void error(struct mddev *mddev, struct md_rdev *rdev)
2160 {
2161 	char b[BDEVNAME_SIZE];
2162 	struct r5conf *conf = mddev->private;
2163 	unsigned long flags;
2164 	pr_debug("raid456: error called\n");
2165 
2166 	spin_lock_irqsave(&conf->device_lock, flags);
2167 	clear_bit(In_sync, &rdev->flags);
2168 	mddev->degraded = calc_degraded(conf);
2169 	spin_unlock_irqrestore(&conf->device_lock, flags);
2170 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2171 
2172 	set_bit(Blocked, &rdev->flags);
2173 	set_bit(Faulty, &rdev->flags);
2174 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2175 	printk(KERN_ALERT
2176 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2177 	       "md/raid:%s: Operation continuing on %d devices.\n",
2178 	       mdname(mddev),
2179 	       bdevname(rdev->bdev, b),
2180 	       mdname(mddev),
2181 	       conf->raid_disks - mddev->degraded);
2182 }
2183 
2184 /*
2185  * Input: a 'big' sector number,
2186  * Output: index of the data and parity disk, and the sector # in them.
2187  */
2188 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2189 				     int previous, int *dd_idx,
2190 				     struct stripe_head *sh)
2191 {
2192 	sector_t stripe, stripe2;
2193 	sector_t chunk_number;
2194 	unsigned int chunk_offset;
2195 	int pd_idx, qd_idx;
2196 	int ddf_layout = 0;
2197 	sector_t new_sector;
2198 	int algorithm = previous ? conf->prev_algo
2199 				 : conf->algorithm;
2200 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2201 					 : conf->chunk_sectors;
2202 	int raid_disks = previous ? conf->previous_raid_disks
2203 				  : conf->raid_disks;
2204 	int data_disks = raid_disks - conf->max_degraded;
2205 
2206 	/* First compute the information on this sector */
2207 
2208 	/*
2209 	 * Compute the chunk number and the sector offset inside the chunk
2210 	 */
2211 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2212 	chunk_number = r_sector;
2213 
2214 	/*
2215 	 * Compute the stripe number
2216 	 */
2217 	stripe = chunk_number;
2218 	*dd_idx = sector_div(stripe, data_disks);
2219 	stripe2 = stripe;
2220 	/*
2221 	 * Select the parity disk based on the user selected algorithm.
2222 	 */
2223 	pd_idx = qd_idx = -1;
2224 	switch(conf->level) {
2225 	case 4:
2226 		pd_idx = data_disks;
2227 		break;
2228 	case 5:
2229 		switch (algorithm) {
2230 		case ALGORITHM_LEFT_ASYMMETRIC:
2231 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2232 			if (*dd_idx >= pd_idx)
2233 				(*dd_idx)++;
2234 			break;
2235 		case ALGORITHM_RIGHT_ASYMMETRIC:
2236 			pd_idx = sector_div(stripe2, raid_disks);
2237 			if (*dd_idx >= pd_idx)
2238 				(*dd_idx)++;
2239 			break;
2240 		case ALGORITHM_LEFT_SYMMETRIC:
2241 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2242 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2243 			break;
2244 		case ALGORITHM_RIGHT_SYMMETRIC:
2245 			pd_idx = sector_div(stripe2, raid_disks);
2246 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2247 			break;
2248 		case ALGORITHM_PARITY_0:
2249 			pd_idx = 0;
2250 			(*dd_idx)++;
2251 			break;
2252 		case ALGORITHM_PARITY_N:
2253 			pd_idx = data_disks;
2254 			break;
2255 		default:
2256 			BUG();
2257 		}
2258 		break;
2259 	case 6:
2260 
2261 		switch (algorithm) {
2262 		case ALGORITHM_LEFT_ASYMMETRIC:
2263 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2264 			qd_idx = pd_idx + 1;
2265 			if (pd_idx == raid_disks-1) {
2266 				(*dd_idx)++;	/* Q D D D P */
2267 				qd_idx = 0;
2268 			} else if (*dd_idx >= pd_idx)
2269 				(*dd_idx) += 2; /* D D P Q D */
2270 			break;
2271 		case ALGORITHM_RIGHT_ASYMMETRIC:
2272 			pd_idx = sector_div(stripe2, raid_disks);
2273 			qd_idx = pd_idx + 1;
2274 			if (pd_idx == raid_disks-1) {
2275 				(*dd_idx)++;	/* Q D D D P */
2276 				qd_idx = 0;
2277 			} else if (*dd_idx >= pd_idx)
2278 				(*dd_idx) += 2; /* D D P Q D */
2279 			break;
2280 		case ALGORITHM_LEFT_SYMMETRIC:
2281 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2282 			qd_idx = (pd_idx + 1) % raid_disks;
2283 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2284 			break;
2285 		case ALGORITHM_RIGHT_SYMMETRIC:
2286 			pd_idx = sector_div(stripe2, raid_disks);
2287 			qd_idx = (pd_idx + 1) % raid_disks;
2288 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2289 			break;
2290 
2291 		case ALGORITHM_PARITY_0:
2292 			pd_idx = 0;
2293 			qd_idx = 1;
2294 			(*dd_idx) += 2;
2295 			break;
2296 		case ALGORITHM_PARITY_N:
2297 			pd_idx = data_disks;
2298 			qd_idx = data_disks + 1;
2299 			break;
2300 
2301 		case ALGORITHM_ROTATING_ZERO_RESTART:
2302 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2303 			 * of blocks for computing Q is different.
2304 			 */
2305 			pd_idx = sector_div(stripe2, raid_disks);
2306 			qd_idx = pd_idx + 1;
2307 			if (pd_idx == raid_disks-1) {
2308 				(*dd_idx)++;	/* Q D D D P */
2309 				qd_idx = 0;
2310 			} else if (*dd_idx >= pd_idx)
2311 				(*dd_idx) += 2; /* D D P Q D */
2312 			ddf_layout = 1;
2313 			break;
2314 
2315 		case ALGORITHM_ROTATING_N_RESTART:
2316 			/* Same a left_asymmetric, by first stripe is
2317 			 * D D D P Q  rather than
2318 			 * Q D D D P
2319 			 */
2320 			stripe2 += 1;
2321 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2322 			qd_idx = pd_idx + 1;
2323 			if (pd_idx == raid_disks-1) {
2324 				(*dd_idx)++;	/* Q D D D P */
2325 				qd_idx = 0;
2326 			} else if (*dd_idx >= pd_idx)
2327 				(*dd_idx) += 2; /* D D P Q D */
2328 			ddf_layout = 1;
2329 			break;
2330 
2331 		case ALGORITHM_ROTATING_N_CONTINUE:
2332 			/* Same as left_symmetric but Q is before P */
2333 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2334 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2335 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2336 			ddf_layout = 1;
2337 			break;
2338 
2339 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2340 			/* RAID5 left_asymmetric, with Q on last device */
2341 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2342 			if (*dd_idx >= pd_idx)
2343 				(*dd_idx)++;
2344 			qd_idx = raid_disks - 1;
2345 			break;
2346 
2347 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2348 			pd_idx = sector_div(stripe2, raid_disks-1);
2349 			if (*dd_idx >= pd_idx)
2350 				(*dd_idx)++;
2351 			qd_idx = raid_disks - 1;
2352 			break;
2353 
2354 		case ALGORITHM_LEFT_SYMMETRIC_6:
2355 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2356 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2357 			qd_idx = raid_disks - 1;
2358 			break;
2359 
2360 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2361 			pd_idx = sector_div(stripe2, raid_disks-1);
2362 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2363 			qd_idx = raid_disks - 1;
2364 			break;
2365 
2366 		case ALGORITHM_PARITY_0_6:
2367 			pd_idx = 0;
2368 			(*dd_idx)++;
2369 			qd_idx = raid_disks - 1;
2370 			break;
2371 
2372 		default:
2373 			BUG();
2374 		}
2375 		break;
2376 	}
2377 
2378 	if (sh) {
2379 		sh->pd_idx = pd_idx;
2380 		sh->qd_idx = qd_idx;
2381 		sh->ddf_layout = ddf_layout;
2382 	}
2383 	/*
2384 	 * Finally, compute the new sector number
2385 	 */
2386 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2387 	return new_sector;
2388 }
2389 
2390 
2391 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2392 {
2393 	struct r5conf *conf = sh->raid_conf;
2394 	int raid_disks = sh->disks;
2395 	int data_disks = raid_disks - conf->max_degraded;
2396 	sector_t new_sector = sh->sector, check;
2397 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2398 					 : conf->chunk_sectors;
2399 	int algorithm = previous ? conf->prev_algo
2400 				 : conf->algorithm;
2401 	sector_t stripe;
2402 	int chunk_offset;
2403 	sector_t chunk_number;
2404 	int dummy1, dd_idx = i;
2405 	sector_t r_sector;
2406 	struct stripe_head sh2;
2407 
2408 
2409 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2410 	stripe = new_sector;
2411 
2412 	if (i == sh->pd_idx)
2413 		return 0;
2414 	switch(conf->level) {
2415 	case 4: break;
2416 	case 5:
2417 		switch (algorithm) {
2418 		case ALGORITHM_LEFT_ASYMMETRIC:
2419 		case ALGORITHM_RIGHT_ASYMMETRIC:
2420 			if (i > sh->pd_idx)
2421 				i--;
2422 			break;
2423 		case ALGORITHM_LEFT_SYMMETRIC:
2424 		case ALGORITHM_RIGHT_SYMMETRIC:
2425 			if (i < sh->pd_idx)
2426 				i += raid_disks;
2427 			i -= (sh->pd_idx + 1);
2428 			break;
2429 		case ALGORITHM_PARITY_0:
2430 			i -= 1;
2431 			break;
2432 		case ALGORITHM_PARITY_N:
2433 			break;
2434 		default:
2435 			BUG();
2436 		}
2437 		break;
2438 	case 6:
2439 		if (i == sh->qd_idx)
2440 			return 0; /* It is the Q disk */
2441 		switch (algorithm) {
2442 		case ALGORITHM_LEFT_ASYMMETRIC:
2443 		case ALGORITHM_RIGHT_ASYMMETRIC:
2444 		case ALGORITHM_ROTATING_ZERO_RESTART:
2445 		case ALGORITHM_ROTATING_N_RESTART:
2446 			if (sh->pd_idx == raid_disks-1)
2447 				i--;	/* Q D D D P */
2448 			else if (i > sh->pd_idx)
2449 				i -= 2; /* D D P Q D */
2450 			break;
2451 		case ALGORITHM_LEFT_SYMMETRIC:
2452 		case ALGORITHM_RIGHT_SYMMETRIC:
2453 			if (sh->pd_idx == raid_disks-1)
2454 				i--; /* Q D D D P */
2455 			else {
2456 				/* D D P Q D */
2457 				if (i < sh->pd_idx)
2458 					i += raid_disks;
2459 				i -= (sh->pd_idx + 2);
2460 			}
2461 			break;
2462 		case ALGORITHM_PARITY_0:
2463 			i -= 2;
2464 			break;
2465 		case ALGORITHM_PARITY_N:
2466 			break;
2467 		case ALGORITHM_ROTATING_N_CONTINUE:
2468 			/* Like left_symmetric, but P is before Q */
2469 			if (sh->pd_idx == 0)
2470 				i--;	/* P D D D Q */
2471 			else {
2472 				/* D D Q P D */
2473 				if (i < sh->pd_idx)
2474 					i += raid_disks;
2475 				i -= (sh->pd_idx + 1);
2476 			}
2477 			break;
2478 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2479 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2480 			if (i > sh->pd_idx)
2481 				i--;
2482 			break;
2483 		case ALGORITHM_LEFT_SYMMETRIC_6:
2484 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2485 			if (i < sh->pd_idx)
2486 				i += data_disks + 1;
2487 			i -= (sh->pd_idx + 1);
2488 			break;
2489 		case ALGORITHM_PARITY_0_6:
2490 			i -= 1;
2491 			break;
2492 		default:
2493 			BUG();
2494 		}
2495 		break;
2496 	}
2497 
2498 	chunk_number = stripe * data_disks + i;
2499 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2500 
2501 	check = raid5_compute_sector(conf, r_sector,
2502 				     previous, &dummy1, &sh2);
2503 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2504 		|| sh2.qd_idx != sh->qd_idx) {
2505 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2506 		       mdname(conf->mddev));
2507 		return 0;
2508 	}
2509 	return r_sector;
2510 }
2511 
2512 
2513 static void
2514 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2515 			 int rcw, int expand)
2516 {
2517 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2518 	struct r5conf *conf = sh->raid_conf;
2519 	int level = conf->level;
2520 
2521 	if (rcw) {
2522 
2523 		for (i = disks; i--; ) {
2524 			struct r5dev *dev = &sh->dev[i];
2525 
2526 			if (dev->towrite) {
2527 				set_bit(R5_LOCKED, &dev->flags);
2528 				set_bit(R5_Wantdrain, &dev->flags);
2529 				if (!expand)
2530 					clear_bit(R5_UPTODATE, &dev->flags);
2531 				s->locked++;
2532 			}
2533 		}
2534 		/* if we are not expanding this is a proper write request, and
2535 		 * there will be bios with new data to be drained into the
2536 		 * stripe cache
2537 		 */
2538 		if (!expand) {
2539 			if (!s->locked)
2540 				/* False alarm, nothing to do */
2541 				return;
2542 			sh->reconstruct_state = reconstruct_state_drain_run;
2543 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2544 		} else
2545 			sh->reconstruct_state = reconstruct_state_run;
2546 
2547 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2548 
2549 		if (s->locked + conf->max_degraded == disks)
2550 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2551 				atomic_inc(&conf->pending_full_writes);
2552 	} else {
2553 		BUG_ON(level == 6);
2554 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2555 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2556 
2557 		for (i = disks; i--; ) {
2558 			struct r5dev *dev = &sh->dev[i];
2559 			if (i == pd_idx)
2560 				continue;
2561 
2562 			if (dev->towrite &&
2563 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2564 			     test_bit(R5_Wantcompute, &dev->flags))) {
2565 				set_bit(R5_Wantdrain, &dev->flags);
2566 				set_bit(R5_LOCKED, &dev->flags);
2567 				clear_bit(R5_UPTODATE, &dev->flags);
2568 				s->locked++;
2569 			}
2570 		}
2571 		if (!s->locked)
2572 			/* False alarm - nothing to do */
2573 			return;
2574 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2575 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2576 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2577 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2578 	}
2579 
2580 	/* keep the parity disk(s) locked while asynchronous operations
2581 	 * are in flight
2582 	 */
2583 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2584 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2585 	s->locked++;
2586 
2587 	if (level == 6) {
2588 		int qd_idx = sh->qd_idx;
2589 		struct r5dev *dev = &sh->dev[qd_idx];
2590 
2591 		set_bit(R5_LOCKED, &dev->flags);
2592 		clear_bit(R5_UPTODATE, &dev->flags);
2593 		s->locked++;
2594 	}
2595 
2596 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2597 		__func__, (unsigned long long)sh->sector,
2598 		s->locked, s->ops_request);
2599 }
2600 
2601 /*
2602  * Each stripe/dev can have one or more bion attached.
2603  * toread/towrite point to the first in a chain.
2604  * The bi_next chain must be in order.
2605  */
2606 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2607 {
2608 	struct bio **bip;
2609 	struct r5conf *conf = sh->raid_conf;
2610 	int firstwrite=0;
2611 
2612 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2613 		(unsigned long long)bi->bi_iter.bi_sector,
2614 		(unsigned long long)sh->sector);
2615 
2616 	/*
2617 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2618 	 * reference count to avoid race. The reference count should already be
2619 	 * increased before this function is called (for example, in
2620 	 * make_request()), so other bio sharing this stripe will not free the
2621 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2622 	 * protect it.
2623 	 */
2624 	spin_lock_irq(&sh->stripe_lock);
2625 	if (forwrite) {
2626 		bip = &sh->dev[dd_idx].towrite;
2627 		if (*bip == NULL)
2628 			firstwrite = 1;
2629 	} else
2630 		bip = &sh->dev[dd_idx].toread;
2631 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2632 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2633 			goto overlap;
2634 		bip = & (*bip)->bi_next;
2635 	}
2636 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2637 		goto overlap;
2638 
2639 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2640 	if (*bip)
2641 		bi->bi_next = *bip;
2642 	*bip = bi;
2643 	raid5_inc_bi_active_stripes(bi);
2644 
2645 	if (forwrite) {
2646 		/* check if page is covered */
2647 		sector_t sector = sh->dev[dd_idx].sector;
2648 		for (bi=sh->dev[dd_idx].towrite;
2649 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2650 			     bi && bi->bi_iter.bi_sector <= sector;
2651 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2652 			if (bio_end_sector(bi) >= sector)
2653 				sector = bio_end_sector(bi);
2654 		}
2655 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2656 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2657 	}
2658 
2659 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2660 		(unsigned long long)(*bip)->bi_iter.bi_sector,
2661 		(unsigned long long)sh->sector, dd_idx);
2662 	spin_unlock_irq(&sh->stripe_lock);
2663 
2664 	if (conf->mddev->bitmap && firstwrite) {
2665 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2666 				  STRIPE_SECTORS, 0);
2667 		sh->bm_seq = conf->seq_flush+1;
2668 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2669 	}
2670 	return 1;
2671 
2672  overlap:
2673 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2674 	spin_unlock_irq(&sh->stripe_lock);
2675 	return 0;
2676 }
2677 
2678 static void end_reshape(struct r5conf *conf);
2679 
2680 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2681 			    struct stripe_head *sh)
2682 {
2683 	int sectors_per_chunk =
2684 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2685 	int dd_idx;
2686 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2687 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2688 
2689 	raid5_compute_sector(conf,
2690 			     stripe * (disks - conf->max_degraded)
2691 			     *sectors_per_chunk + chunk_offset,
2692 			     previous,
2693 			     &dd_idx, sh);
2694 }
2695 
2696 static void
2697 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2698 				struct stripe_head_state *s, int disks,
2699 				struct bio **return_bi)
2700 {
2701 	int i;
2702 	for (i = disks; i--; ) {
2703 		struct bio *bi;
2704 		int bitmap_end = 0;
2705 
2706 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2707 			struct md_rdev *rdev;
2708 			rcu_read_lock();
2709 			rdev = rcu_dereference(conf->disks[i].rdev);
2710 			if (rdev && test_bit(In_sync, &rdev->flags))
2711 				atomic_inc(&rdev->nr_pending);
2712 			else
2713 				rdev = NULL;
2714 			rcu_read_unlock();
2715 			if (rdev) {
2716 				if (!rdev_set_badblocks(
2717 					    rdev,
2718 					    sh->sector,
2719 					    STRIPE_SECTORS, 0))
2720 					md_error(conf->mddev, rdev);
2721 				rdev_dec_pending(rdev, conf->mddev);
2722 			}
2723 		}
2724 		spin_lock_irq(&sh->stripe_lock);
2725 		/* fail all writes first */
2726 		bi = sh->dev[i].towrite;
2727 		sh->dev[i].towrite = NULL;
2728 		spin_unlock_irq(&sh->stripe_lock);
2729 		if (bi)
2730 			bitmap_end = 1;
2731 
2732 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2733 			wake_up(&conf->wait_for_overlap);
2734 
2735 		while (bi && bi->bi_iter.bi_sector <
2736 			sh->dev[i].sector + STRIPE_SECTORS) {
2737 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2738 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2739 			if (!raid5_dec_bi_active_stripes(bi)) {
2740 				md_write_end(conf->mddev);
2741 				bi->bi_next = *return_bi;
2742 				*return_bi = bi;
2743 			}
2744 			bi = nextbi;
2745 		}
2746 		if (bitmap_end)
2747 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2748 				STRIPE_SECTORS, 0, 0);
2749 		bitmap_end = 0;
2750 		/* and fail all 'written' */
2751 		bi = sh->dev[i].written;
2752 		sh->dev[i].written = NULL;
2753 		if (bi) bitmap_end = 1;
2754 		while (bi && bi->bi_iter.bi_sector <
2755 		       sh->dev[i].sector + STRIPE_SECTORS) {
2756 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2757 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2758 			if (!raid5_dec_bi_active_stripes(bi)) {
2759 				md_write_end(conf->mddev);
2760 				bi->bi_next = *return_bi;
2761 				*return_bi = bi;
2762 			}
2763 			bi = bi2;
2764 		}
2765 
2766 		/* fail any reads if this device is non-operational and
2767 		 * the data has not reached the cache yet.
2768 		 */
2769 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2770 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2771 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2772 			spin_lock_irq(&sh->stripe_lock);
2773 			bi = sh->dev[i].toread;
2774 			sh->dev[i].toread = NULL;
2775 			spin_unlock_irq(&sh->stripe_lock);
2776 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2777 				wake_up(&conf->wait_for_overlap);
2778 			while (bi && bi->bi_iter.bi_sector <
2779 			       sh->dev[i].sector + STRIPE_SECTORS) {
2780 				struct bio *nextbi =
2781 					r5_next_bio(bi, sh->dev[i].sector);
2782 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2783 				if (!raid5_dec_bi_active_stripes(bi)) {
2784 					bi->bi_next = *return_bi;
2785 					*return_bi = bi;
2786 				}
2787 				bi = nextbi;
2788 			}
2789 		}
2790 		if (bitmap_end)
2791 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2792 					STRIPE_SECTORS, 0, 0);
2793 		/* If we were in the middle of a write the parity block might
2794 		 * still be locked - so just clear all R5_LOCKED flags
2795 		 */
2796 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2797 	}
2798 
2799 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2800 		if (atomic_dec_and_test(&conf->pending_full_writes))
2801 			md_wakeup_thread(conf->mddev->thread);
2802 }
2803 
2804 static void
2805 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2806 		   struct stripe_head_state *s)
2807 {
2808 	int abort = 0;
2809 	int i;
2810 
2811 	clear_bit(STRIPE_SYNCING, &sh->state);
2812 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2813 		wake_up(&conf->wait_for_overlap);
2814 	s->syncing = 0;
2815 	s->replacing = 0;
2816 	/* There is nothing more to do for sync/check/repair.
2817 	 * Don't even need to abort as that is handled elsewhere
2818 	 * if needed, and not always wanted e.g. if there is a known
2819 	 * bad block here.
2820 	 * For recover/replace we need to record a bad block on all
2821 	 * non-sync devices, or abort the recovery
2822 	 */
2823 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2824 		/* During recovery devices cannot be removed, so
2825 		 * locking and refcounting of rdevs is not needed
2826 		 */
2827 		for (i = 0; i < conf->raid_disks; i++) {
2828 			struct md_rdev *rdev = conf->disks[i].rdev;
2829 			if (rdev
2830 			    && !test_bit(Faulty, &rdev->flags)
2831 			    && !test_bit(In_sync, &rdev->flags)
2832 			    && !rdev_set_badblocks(rdev, sh->sector,
2833 						   STRIPE_SECTORS, 0))
2834 				abort = 1;
2835 			rdev = conf->disks[i].replacement;
2836 			if (rdev
2837 			    && !test_bit(Faulty, &rdev->flags)
2838 			    && !test_bit(In_sync, &rdev->flags)
2839 			    && !rdev_set_badblocks(rdev, sh->sector,
2840 						   STRIPE_SECTORS, 0))
2841 				abort = 1;
2842 		}
2843 		if (abort)
2844 			conf->recovery_disabled =
2845 				conf->mddev->recovery_disabled;
2846 	}
2847 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2848 }
2849 
2850 static int want_replace(struct stripe_head *sh, int disk_idx)
2851 {
2852 	struct md_rdev *rdev;
2853 	int rv = 0;
2854 	/* Doing recovery so rcu locking not required */
2855 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2856 	if (rdev
2857 	    && !test_bit(Faulty, &rdev->flags)
2858 	    && !test_bit(In_sync, &rdev->flags)
2859 	    && (rdev->recovery_offset <= sh->sector
2860 		|| rdev->mddev->recovery_cp <= sh->sector))
2861 		rv = 1;
2862 
2863 	return rv;
2864 }
2865 
2866 /* fetch_block - checks the given member device to see if its data needs
2867  * to be read or computed to satisfy a request.
2868  *
2869  * Returns 1 when no more member devices need to be checked, otherwise returns
2870  * 0 to tell the loop in handle_stripe_fill to continue
2871  */
2872 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2873 		       int disk_idx, int disks)
2874 {
2875 	struct r5dev *dev = &sh->dev[disk_idx];
2876 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2877 				  &sh->dev[s->failed_num[1]] };
2878 
2879 	/* is the data in this block needed, and can we get it? */
2880 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2881 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2882 	    (dev->toread ||
2883 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2884 	     s->syncing || s->expanding ||
2885 	     (s->replacing && want_replace(sh, disk_idx)) ||
2886 	     (s->failed >= 1 && fdev[0]->toread) ||
2887 	     (s->failed >= 2 && fdev[1]->toread) ||
2888 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2889 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2890 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2891 		/* we would like to get this block, possibly by computing it,
2892 		 * otherwise read it if the backing disk is insync
2893 		 */
2894 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2895 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2896 		if ((s->uptodate == disks - 1) &&
2897 		    (s->failed && (disk_idx == s->failed_num[0] ||
2898 				   disk_idx == s->failed_num[1]))) {
2899 			/* have disk failed, and we're requested to fetch it;
2900 			 * do compute it
2901 			 */
2902 			pr_debug("Computing stripe %llu block %d\n",
2903 			       (unsigned long long)sh->sector, disk_idx);
2904 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2905 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2906 			set_bit(R5_Wantcompute, &dev->flags);
2907 			sh->ops.target = disk_idx;
2908 			sh->ops.target2 = -1; /* no 2nd target */
2909 			s->req_compute = 1;
2910 			/* Careful: from this point on 'uptodate' is in the eye
2911 			 * of raid_run_ops which services 'compute' operations
2912 			 * before writes. R5_Wantcompute flags a block that will
2913 			 * be R5_UPTODATE by the time it is needed for a
2914 			 * subsequent operation.
2915 			 */
2916 			s->uptodate++;
2917 			return 1;
2918 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2919 			/* Computing 2-failure is *very* expensive; only
2920 			 * do it if failed >= 2
2921 			 */
2922 			int other;
2923 			for (other = disks; other--; ) {
2924 				if (other == disk_idx)
2925 					continue;
2926 				if (!test_bit(R5_UPTODATE,
2927 				      &sh->dev[other].flags))
2928 					break;
2929 			}
2930 			BUG_ON(other < 0);
2931 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2932 			       (unsigned long long)sh->sector,
2933 			       disk_idx, other);
2934 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2935 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2936 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2937 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2938 			sh->ops.target = disk_idx;
2939 			sh->ops.target2 = other;
2940 			s->uptodate += 2;
2941 			s->req_compute = 1;
2942 			return 1;
2943 		} else if (test_bit(R5_Insync, &dev->flags)) {
2944 			set_bit(R5_LOCKED, &dev->flags);
2945 			set_bit(R5_Wantread, &dev->flags);
2946 			s->locked++;
2947 			pr_debug("Reading block %d (sync=%d)\n",
2948 				disk_idx, s->syncing);
2949 		}
2950 	}
2951 
2952 	return 0;
2953 }
2954 
2955 /**
2956  * handle_stripe_fill - read or compute data to satisfy pending requests.
2957  */
2958 static void handle_stripe_fill(struct stripe_head *sh,
2959 			       struct stripe_head_state *s,
2960 			       int disks)
2961 {
2962 	int i;
2963 
2964 	/* look for blocks to read/compute, skip this if a compute
2965 	 * is already in flight, or if the stripe contents are in the
2966 	 * midst of changing due to a write
2967 	 */
2968 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2969 	    !sh->reconstruct_state)
2970 		for (i = disks; i--; )
2971 			if (fetch_block(sh, s, i, disks))
2972 				break;
2973 	set_bit(STRIPE_HANDLE, &sh->state);
2974 }
2975 
2976 
2977 /* handle_stripe_clean_event
2978  * any written block on an uptodate or failed drive can be returned.
2979  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2980  * never LOCKED, so we don't need to test 'failed' directly.
2981  */
2982 static void handle_stripe_clean_event(struct r5conf *conf,
2983 	struct stripe_head *sh, int disks, struct bio **return_bi)
2984 {
2985 	int i;
2986 	struct r5dev *dev;
2987 	int discard_pending = 0;
2988 
2989 	for (i = disks; i--; )
2990 		if (sh->dev[i].written) {
2991 			dev = &sh->dev[i];
2992 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2993 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2994 			     test_bit(R5_Discard, &dev->flags))) {
2995 				/* We can return any write requests */
2996 				struct bio *wbi, *wbi2;
2997 				pr_debug("Return write for disc %d\n", i);
2998 				if (test_and_clear_bit(R5_Discard, &dev->flags))
2999 					clear_bit(R5_UPTODATE, &dev->flags);
3000 				wbi = dev->written;
3001 				dev->written = NULL;
3002 				while (wbi && wbi->bi_iter.bi_sector <
3003 					dev->sector + STRIPE_SECTORS) {
3004 					wbi2 = r5_next_bio(wbi, dev->sector);
3005 					if (!raid5_dec_bi_active_stripes(wbi)) {
3006 						md_write_end(conf->mddev);
3007 						wbi->bi_next = *return_bi;
3008 						*return_bi = wbi;
3009 					}
3010 					wbi = wbi2;
3011 				}
3012 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3013 						STRIPE_SECTORS,
3014 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3015 						0);
3016 			} else if (test_bit(R5_Discard, &dev->flags))
3017 				discard_pending = 1;
3018 		}
3019 	if (!discard_pending &&
3020 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3021 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3022 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3023 		if (sh->qd_idx >= 0) {
3024 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3025 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3026 		}
3027 		/* now that discard is done we can proceed with any sync */
3028 		clear_bit(STRIPE_DISCARD, &sh->state);
3029 		/*
3030 		 * SCSI discard will change some bio fields and the stripe has
3031 		 * no updated data, so remove it from hash list and the stripe
3032 		 * will be reinitialized
3033 		 */
3034 		spin_lock_irq(&conf->device_lock);
3035 		remove_hash(sh);
3036 		spin_unlock_irq(&conf->device_lock);
3037 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3038 			set_bit(STRIPE_HANDLE, &sh->state);
3039 
3040 	}
3041 
3042 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3043 		if (atomic_dec_and_test(&conf->pending_full_writes))
3044 			md_wakeup_thread(conf->mddev->thread);
3045 }
3046 
3047 static void handle_stripe_dirtying(struct r5conf *conf,
3048 				   struct stripe_head *sh,
3049 				   struct stripe_head_state *s,
3050 				   int disks)
3051 {
3052 	int rmw = 0, rcw = 0, i;
3053 	sector_t recovery_cp = conf->mddev->recovery_cp;
3054 
3055 	/* RAID6 requires 'rcw' in current implementation.
3056 	 * Otherwise, check whether resync is now happening or should start.
3057 	 * If yes, then the array is dirty (after unclean shutdown or
3058 	 * initial creation), so parity in some stripes might be inconsistent.
3059 	 * In this case, we need to always do reconstruct-write, to ensure
3060 	 * that in case of drive failure or read-error correction, we
3061 	 * generate correct data from the parity.
3062 	 */
3063 	if (conf->max_degraded == 2 ||
3064 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3065 		/* Calculate the real rcw later - for now make it
3066 		 * look like rcw is cheaper
3067 		 */
3068 		rcw = 1; rmw = 2;
3069 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3070 			 conf->max_degraded, (unsigned long long)recovery_cp,
3071 			 (unsigned long long)sh->sector);
3072 	} else for (i = disks; i--; ) {
3073 		/* would I have to read this buffer for read_modify_write */
3074 		struct r5dev *dev = &sh->dev[i];
3075 		if ((dev->towrite || i == sh->pd_idx) &&
3076 		    !test_bit(R5_LOCKED, &dev->flags) &&
3077 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3078 		      test_bit(R5_Wantcompute, &dev->flags))) {
3079 			if (test_bit(R5_Insync, &dev->flags))
3080 				rmw++;
3081 			else
3082 				rmw += 2*disks;  /* cannot read it */
3083 		}
3084 		/* Would I have to read this buffer for reconstruct_write */
3085 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3086 		    !test_bit(R5_LOCKED, &dev->flags) &&
3087 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3088 		    test_bit(R5_Wantcompute, &dev->flags))) {
3089 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
3090 			else
3091 				rcw += 2*disks;
3092 		}
3093 	}
3094 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3095 		(unsigned long long)sh->sector, rmw, rcw);
3096 	set_bit(STRIPE_HANDLE, &sh->state);
3097 	if (rmw < rcw && rmw > 0) {
3098 		/* prefer read-modify-write, but need to get some data */
3099 		if (conf->mddev->queue)
3100 			blk_add_trace_msg(conf->mddev->queue,
3101 					  "raid5 rmw %llu %d",
3102 					  (unsigned long long)sh->sector, rmw);
3103 		for (i = disks; i--; ) {
3104 			struct r5dev *dev = &sh->dev[i];
3105 			if ((dev->towrite || i == sh->pd_idx) &&
3106 			    !test_bit(R5_LOCKED, &dev->flags) &&
3107 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3108 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3109 			    test_bit(R5_Insync, &dev->flags)) {
3110 				if (
3111 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3112 					pr_debug("Read_old block "
3113 						 "%d for r-m-w\n", i);
3114 					set_bit(R5_LOCKED, &dev->flags);
3115 					set_bit(R5_Wantread, &dev->flags);
3116 					s->locked++;
3117 				} else {
3118 					set_bit(STRIPE_DELAYED, &sh->state);
3119 					set_bit(STRIPE_HANDLE, &sh->state);
3120 				}
3121 			}
3122 		}
3123 	}
3124 	if (rcw <= rmw && rcw > 0) {
3125 		/* want reconstruct write, but need to get some data */
3126 		int qread =0;
3127 		rcw = 0;
3128 		for (i = disks; i--; ) {
3129 			struct r5dev *dev = &sh->dev[i];
3130 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3131 			    i != sh->pd_idx && i != sh->qd_idx &&
3132 			    !test_bit(R5_LOCKED, &dev->flags) &&
3133 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3134 			      test_bit(R5_Wantcompute, &dev->flags))) {
3135 				rcw++;
3136 				if (!test_bit(R5_Insync, &dev->flags))
3137 					continue; /* it's a failed drive */
3138 				if (
3139 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3140 					pr_debug("Read_old block "
3141 						"%d for Reconstruct\n", i);
3142 					set_bit(R5_LOCKED, &dev->flags);
3143 					set_bit(R5_Wantread, &dev->flags);
3144 					s->locked++;
3145 					qread++;
3146 				} else {
3147 					set_bit(STRIPE_DELAYED, &sh->state);
3148 					set_bit(STRIPE_HANDLE, &sh->state);
3149 				}
3150 			}
3151 		}
3152 		if (rcw && conf->mddev->queue)
3153 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3154 					  (unsigned long long)sh->sector,
3155 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3156 	}
3157 	/* now if nothing is locked, and if we have enough data,
3158 	 * we can start a write request
3159 	 */
3160 	/* since handle_stripe can be called at any time we need to handle the
3161 	 * case where a compute block operation has been submitted and then a
3162 	 * subsequent call wants to start a write request.  raid_run_ops only
3163 	 * handles the case where compute block and reconstruct are requested
3164 	 * simultaneously.  If this is not the case then new writes need to be
3165 	 * held off until the compute completes.
3166 	 */
3167 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3168 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3169 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3170 		schedule_reconstruction(sh, s, rcw == 0, 0);
3171 }
3172 
3173 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3174 				struct stripe_head_state *s, int disks)
3175 {
3176 	struct r5dev *dev = NULL;
3177 
3178 	set_bit(STRIPE_HANDLE, &sh->state);
3179 
3180 	switch (sh->check_state) {
3181 	case check_state_idle:
3182 		/* start a new check operation if there are no failures */
3183 		if (s->failed == 0) {
3184 			BUG_ON(s->uptodate != disks);
3185 			sh->check_state = check_state_run;
3186 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3187 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3188 			s->uptodate--;
3189 			break;
3190 		}
3191 		dev = &sh->dev[s->failed_num[0]];
3192 		/* fall through */
3193 	case check_state_compute_result:
3194 		sh->check_state = check_state_idle;
3195 		if (!dev)
3196 			dev = &sh->dev[sh->pd_idx];
3197 
3198 		/* check that a write has not made the stripe insync */
3199 		if (test_bit(STRIPE_INSYNC, &sh->state))
3200 			break;
3201 
3202 		/* either failed parity check, or recovery is happening */
3203 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3204 		BUG_ON(s->uptodate != disks);
3205 
3206 		set_bit(R5_LOCKED, &dev->flags);
3207 		s->locked++;
3208 		set_bit(R5_Wantwrite, &dev->flags);
3209 
3210 		clear_bit(STRIPE_DEGRADED, &sh->state);
3211 		set_bit(STRIPE_INSYNC, &sh->state);
3212 		break;
3213 	case check_state_run:
3214 		break; /* we will be called again upon completion */
3215 	case check_state_check_result:
3216 		sh->check_state = check_state_idle;
3217 
3218 		/* if a failure occurred during the check operation, leave
3219 		 * STRIPE_INSYNC not set and let the stripe be handled again
3220 		 */
3221 		if (s->failed)
3222 			break;
3223 
3224 		/* handle a successful check operation, if parity is correct
3225 		 * we are done.  Otherwise update the mismatch count and repair
3226 		 * parity if !MD_RECOVERY_CHECK
3227 		 */
3228 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3229 			/* parity is correct (on disc,
3230 			 * not in buffer any more)
3231 			 */
3232 			set_bit(STRIPE_INSYNC, &sh->state);
3233 		else {
3234 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3235 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3236 				/* don't try to repair!! */
3237 				set_bit(STRIPE_INSYNC, &sh->state);
3238 			else {
3239 				sh->check_state = check_state_compute_run;
3240 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3241 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3242 				set_bit(R5_Wantcompute,
3243 					&sh->dev[sh->pd_idx].flags);
3244 				sh->ops.target = sh->pd_idx;
3245 				sh->ops.target2 = -1;
3246 				s->uptodate++;
3247 			}
3248 		}
3249 		break;
3250 	case check_state_compute_run:
3251 		break;
3252 	default:
3253 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3254 		       __func__, sh->check_state,
3255 		       (unsigned long long) sh->sector);
3256 		BUG();
3257 	}
3258 }
3259 
3260 
3261 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3262 				  struct stripe_head_state *s,
3263 				  int disks)
3264 {
3265 	int pd_idx = sh->pd_idx;
3266 	int qd_idx = sh->qd_idx;
3267 	struct r5dev *dev;
3268 
3269 	set_bit(STRIPE_HANDLE, &sh->state);
3270 
3271 	BUG_ON(s->failed > 2);
3272 
3273 	/* Want to check and possibly repair P and Q.
3274 	 * However there could be one 'failed' device, in which
3275 	 * case we can only check one of them, possibly using the
3276 	 * other to generate missing data
3277 	 */
3278 
3279 	switch (sh->check_state) {
3280 	case check_state_idle:
3281 		/* start a new check operation if there are < 2 failures */
3282 		if (s->failed == s->q_failed) {
3283 			/* The only possible failed device holds Q, so it
3284 			 * makes sense to check P (If anything else were failed,
3285 			 * we would have used P to recreate it).
3286 			 */
3287 			sh->check_state = check_state_run;
3288 		}
3289 		if (!s->q_failed && s->failed < 2) {
3290 			/* Q is not failed, and we didn't use it to generate
3291 			 * anything, so it makes sense to check it
3292 			 */
3293 			if (sh->check_state == check_state_run)
3294 				sh->check_state = check_state_run_pq;
3295 			else
3296 				sh->check_state = check_state_run_q;
3297 		}
3298 
3299 		/* discard potentially stale zero_sum_result */
3300 		sh->ops.zero_sum_result = 0;
3301 
3302 		if (sh->check_state == check_state_run) {
3303 			/* async_xor_zero_sum destroys the contents of P */
3304 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3305 			s->uptodate--;
3306 		}
3307 		if (sh->check_state >= check_state_run &&
3308 		    sh->check_state <= check_state_run_pq) {
3309 			/* async_syndrome_zero_sum preserves P and Q, so
3310 			 * no need to mark them !uptodate here
3311 			 */
3312 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3313 			break;
3314 		}
3315 
3316 		/* we have 2-disk failure */
3317 		BUG_ON(s->failed != 2);
3318 		/* fall through */
3319 	case check_state_compute_result:
3320 		sh->check_state = check_state_idle;
3321 
3322 		/* check that a write has not made the stripe insync */
3323 		if (test_bit(STRIPE_INSYNC, &sh->state))
3324 			break;
3325 
3326 		/* now write out any block on a failed drive,
3327 		 * or P or Q if they were recomputed
3328 		 */
3329 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3330 		if (s->failed == 2) {
3331 			dev = &sh->dev[s->failed_num[1]];
3332 			s->locked++;
3333 			set_bit(R5_LOCKED, &dev->flags);
3334 			set_bit(R5_Wantwrite, &dev->flags);
3335 		}
3336 		if (s->failed >= 1) {
3337 			dev = &sh->dev[s->failed_num[0]];
3338 			s->locked++;
3339 			set_bit(R5_LOCKED, &dev->flags);
3340 			set_bit(R5_Wantwrite, &dev->flags);
3341 		}
3342 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3343 			dev = &sh->dev[pd_idx];
3344 			s->locked++;
3345 			set_bit(R5_LOCKED, &dev->flags);
3346 			set_bit(R5_Wantwrite, &dev->flags);
3347 		}
3348 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3349 			dev = &sh->dev[qd_idx];
3350 			s->locked++;
3351 			set_bit(R5_LOCKED, &dev->flags);
3352 			set_bit(R5_Wantwrite, &dev->flags);
3353 		}
3354 		clear_bit(STRIPE_DEGRADED, &sh->state);
3355 
3356 		set_bit(STRIPE_INSYNC, &sh->state);
3357 		break;
3358 	case check_state_run:
3359 	case check_state_run_q:
3360 	case check_state_run_pq:
3361 		break; /* we will be called again upon completion */
3362 	case check_state_check_result:
3363 		sh->check_state = check_state_idle;
3364 
3365 		/* handle a successful check operation, if parity is correct
3366 		 * we are done.  Otherwise update the mismatch count and repair
3367 		 * parity if !MD_RECOVERY_CHECK
3368 		 */
3369 		if (sh->ops.zero_sum_result == 0) {
3370 			/* both parities are correct */
3371 			if (!s->failed)
3372 				set_bit(STRIPE_INSYNC, &sh->state);
3373 			else {
3374 				/* in contrast to the raid5 case we can validate
3375 				 * parity, but still have a failure to write
3376 				 * back
3377 				 */
3378 				sh->check_state = check_state_compute_result;
3379 				/* Returning at this point means that we may go
3380 				 * off and bring p and/or q uptodate again so
3381 				 * we make sure to check zero_sum_result again
3382 				 * to verify if p or q need writeback
3383 				 */
3384 			}
3385 		} else {
3386 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3387 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3388 				/* don't try to repair!! */
3389 				set_bit(STRIPE_INSYNC, &sh->state);
3390 			else {
3391 				int *target = &sh->ops.target;
3392 
3393 				sh->ops.target = -1;
3394 				sh->ops.target2 = -1;
3395 				sh->check_state = check_state_compute_run;
3396 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3397 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3398 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3399 					set_bit(R5_Wantcompute,
3400 						&sh->dev[pd_idx].flags);
3401 					*target = pd_idx;
3402 					target = &sh->ops.target2;
3403 					s->uptodate++;
3404 				}
3405 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3406 					set_bit(R5_Wantcompute,
3407 						&sh->dev[qd_idx].flags);
3408 					*target = qd_idx;
3409 					s->uptodate++;
3410 				}
3411 			}
3412 		}
3413 		break;
3414 	case check_state_compute_run:
3415 		break;
3416 	default:
3417 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3418 		       __func__, sh->check_state,
3419 		       (unsigned long long) sh->sector);
3420 		BUG();
3421 	}
3422 }
3423 
3424 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3425 {
3426 	int i;
3427 
3428 	/* We have read all the blocks in this stripe and now we need to
3429 	 * copy some of them into a target stripe for expand.
3430 	 */
3431 	struct dma_async_tx_descriptor *tx = NULL;
3432 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3433 	for (i = 0; i < sh->disks; i++)
3434 		if (i != sh->pd_idx && i != sh->qd_idx) {
3435 			int dd_idx, j;
3436 			struct stripe_head *sh2;
3437 			struct async_submit_ctl submit;
3438 
3439 			sector_t bn = compute_blocknr(sh, i, 1);
3440 			sector_t s = raid5_compute_sector(conf, bn, 0,
3441 							  &dd_idx, NULL);
3442 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3443 			if (sh2 == NULL)
3444 				/* so far only the early blocks of this stripe
3445 				 * have been requested.  When later blocks
3446 				 * get requested, we will try again
3447 				 */
3448 				continue;
3449 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3450 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3451 				/* must have already done this block */
3452 				release_stripe(sh2);
3453 				continue;
3454 			}
3455 
3456 			/* place all the copies on one channel */
3457 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3458 			tx = async_memcpy(sh2->dev[dd_idx].page,
3459 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3460 					  &submit);
3461 
3462 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3463 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3464 			for (j = 0; j < conf->raid_disks; j++)
3465 				if (j != sh2->pd_idx &&
3466 				    j != sh2->qd_idx &&
3467 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3468 					break;
3469 			if (j == conf->raid_disks) {
3470 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3471 				set_bit(STRIPE_HANDLE, &sh2->state);
3472 			}
3473 			release_stripe(sh2);
3474 
3475 		}
3476 	/* done submitting copies, wait for them to complete */
3477 	async_tx_quiesce(&tx);
3478 }
3479 
3480 /*
3481  * handle_stripe - do things to a stripe.
3482  *
3483  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3484  * state of various bits to see what needs to be done.
3485  * Possible results:
3486  *    return some read requests which now have data
3487  *    return some write requests which are safely on storage
3488  *    schedule a read on some buffers
3489  *    schedule a write of some buffers
3490  *    return confirmation of parity correctness
3491  *
3492  */
3493 
3494 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3495 {
3496 	struct r5conf *conf = sh->raid_conf;
3497 	int disks = sh->disks;
3498 	struct r5dev *dev;
3499 	int i;
3500 	int do_recovery = 0;
3501 
3502 	memset(s, 0, sizeof(*s));
3503 
3504 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3505 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3506 	s->failed_num[0] = -1;
3507 	s->failed_num[1] = -1;
3508 
3509 	/* Now to look around and see what can be done */
3510 	rcu_read_lock();
3511 	for (i=disks; i--; ) {
3512 		struct md_rdev *rdev;
3513 		sector_t first_bad;
3514 		int bad_sectors;
3515 		int is_bad = 0;
3516 
3517 		dev = &sh->dev[i];
3518 
3519 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3520 			 i, dev->flags,
3521 			 dev->toread, dev->towrite, dev->written);
3522 		/* maybe we can reply to a read
3523 		 *
3524 		 * new wantfill requests are only permitted while
3525 		 * ops_complete_biofill is guaranteed to be inactive
3526 		 */
3527 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3528 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3529 			set_bit(R5_Wantfill, &dev->flags);
3530 
3531 		/* now count some things */
3532 		if (test_bit(R5_LOCKED, &dev->flags))
3533 			s->locked++;
3534 		if (test_bit(R5_UPTODATE, &dev->flags))
3535 			s->uptodate++;
3536 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3537 			s->compute++;
3538 			BUG_ON(s->compute > 2);
3539 		}
3540 
3541 		if (test_bit(R5_Wantfill, &dev->flags))
3542 			s->to_fill++;
3543 		else if (dev->toread)
3544 			s->to_read++;
3545 		if (dev->towrite) {
3546 			s->to_write++;
3547 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3548 				s->non_overwrite++;
3549 		}
3550 		if (dev->written)
3551 			s->written++;
3552 		/* Prefer to use the replacement for reads, but only
3553 		 * if it is recovered enough and has no bad blocks.
3554 		 */
3555 		rdev = rcu_dereference(conf->disks[i].replacement);
3556 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3557 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3558 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3559 				 &first_bad, &bad_sectors))
3560 			set_bit(R5_ReadRepl, &dev->flags);
3561 		else {
3562 			if (rdev)
3563 				set_bit(R5_NeedReplace, &dev->flags);
3564 			rdev = rcu_dereference(conf->disks[i].rdev);
3565 			clear_bit(R5_ReadRepl, &dev->flags);
3566 		}
3567 		if (rdev && test_bit(Faulty, &rdev->flags))
3568 			rdev = NULL;
3569 		if (rdev) {
3570 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3571 					     &first_bad, &bad_sectors);
3572 			if (s->blocked_rdev == NULL
3573 			    && (test_bit(Blocked, &rdev->flags)
3574 				|| is_bad < 0)) {
3575 				if (is_bad < 0)
3576 					set_bit(BlockedBadBlocks,
3577 						&rdev->flags);
3578 				s->blocked_rdev = rdev;
3579 				atomic_inc(&rdev->nr_pending);
3580 			}
3581 		}
3582 		clear_bit(R5_Insync, &dev->flags);
3583 		if (!rdev)
3584 			/* Not in-sync */;
3585 		else if (is_bad) {
3586 			/* also not in-sync */
3587 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3588 			    test_bit(R5_UPTODATE, &dev->flags)) {
3589 				/* treat as in-sync, but with a read error
3590 				 * which we can now try to correct
3591 				 */
3592 				set_bit(R5_Insync, &dev->flags);
3593 				set_bit(R5_ReadError, &dev->flags);
3594 			}
3595 		} else if (test_bit(In_sync, &rdev->flags))
3596 			set_bit(R5_Insync, &dev->flags);
3597 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3598 			/* in sync if before recovery_offset */
3599 			set_bit(R5_Insync, &dev->flags);
3600 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3601 			 test_bit(R5_Expanded, &dev->flags))
3602 			/* If we've reshaped into here, we assume it is Insync.
3603 			 * We will shortly update recovery_offset to make
3604 			 * it official.
3605 			 */
3606 			set_bit(R5_Insync, &dev->flags);
3607 
3608 		if (test_bit(R5_WriteError, &dev->flags)) {
3609 			/* This flag does not apply to '.replacement'
3610 			 * only to .rdev, so make sure to check that*/
3611 			struct md_rdev *rdev2 = rcu_dereference(
3612 				conf->disks[i].rdev);
3613 			if (rdev2 == rdev)
3614 				clear_bit(R5_Insync, &dev->flags);
3615 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3616 				s->handle_bad_blocks = 1;
3617 				atomic_inc(&rdev2->nr_pending);
3618 			} else
3619 				clear_bit(R5_WriteError, &dev->flags);
3620 		}
3621 		if (test_bit(R5_MadeGood, &dev->flags)) {
3622 			/* This flag does not apply to '.replacement'
3623 			 * only to .rdev, so make sure to check that*/
3624 			struct md_rdev *rdev2 = rcu_dereference(
3625 				conf->disks[i].rdev);
3626 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3627 				s->handle_bad_blocks = 1;
3628 				atomic_inc(&rdev2->nr_pending);
3629 			} else
3630 				clear_bit(R5_MadeGood, &dev->flags);
3631 		}
3632 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3633 			struct md_rdev *rdev2 = rcu_dereference(
3634 				conf->disks[i].replacement);
3635 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3636 				s->handle_bad_blocks = 1;
3637 				atomic_inc(&rdev2->nr_pending);
3638 			} else
3639 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3640 		}
3641 		if (!test_bit(R5_Insync, &dev->flags)) {
3642 			/* The ReadError flag will just be confusing now */
3643 			clear_bit(R5_ReadError, &dev->flags);
3644 			clear_bit(R5_ReWrite, &dev->flags);
3645 		}
3646 		if (test_bit(R5_ReadError, &dev->flags))
3647 			clear_bit(R5_Insync, &dev->flags);
3648 		if (!test_bit(R5_Insync, &dev->flags)) {
3649 			if (s->failed < 2)
3650 				s->failed_num[s->failed] = i;
3651 			s->failed++;
3652 			if (rdev && !test_bit(Faulty, &rdev->flags))
3653 				do_recovery = 1;
3654 		}
3655 	}
3656 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3657 		/* If there is a failed device being replaced,
3658 		 *     we must be recovering.
3659 		 * else if we are after recovery_cp, we must be syncing
3660 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3661 		 * else we can only be replacing
3662 		 * sync and recovery both need to read all devices, and so
3663 		 * use the same flag.
3664 		 */
3665 		if (do_recovery ||
3666 		    sh->sector >= conf->mddev->recovery_cp ||
3667 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3668 			s->syncing = 1;
3669 		else
3670 			s->replacing = 1;
3671 	}
3672 	rcu_read_unlock();
3673 }
3674 
3675 static void handle_stripe(struct stripe_head *sh)
3676 {
3677 	struct stripe_head_state s;
3678 	struct r5conf *conf = sh->raid_conf;
3679 	int i;
3680 	int prexor;
3681 	int disks = sh->disks;
3682 	struct r5dev *pdev, *qdev;
3683 
3684 	clear_bit(STRIPE_HANDLE, &sh->state);
3685 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3686 		/* already being handled, ensure it gets handled
3687 		 * again when current action finishes */
3688 		set_bit(STRIPE_HANDLE, &sh->state);
3689 		return;
3690 	}
3691 
3692 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3693 		spin_lock(&sh->stripe_lock);
3694 		/* Cannot process 'sync' concurrently with 'discard' */
3695 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3696 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3697 			set_bit(STRIPE_SYNCING, &sh->state);
3698 			clear_bit(STRIPE_INSYNC, &sh->state);
3699 			clear_bit(STRIPE_REPLACED, &sh->state);
3700 		}
3701 		spin_unlock(&sh->stripe_lock);
3702 	}
3703 	clear_bit(STRIPE_DELAYED, &sh->state);
3704 
3705 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3706 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3707 	       (unsigned long long)sh->sector, sh->state,
3708 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3709 	       sh->check_state, sh->reconstruct_state);
3710 
3711 	analyse_stripe(sh, &s);
3712 
3713 	if (s.handle_bad_blocks) {
3714 		set_bit(STRIPE_HANDLE, &sh->state);
3715 		goto finish;
3716 	}
3717 
3718 	if (unlikely(s.blocked_rdev)) {
3719 		if (s.syncing || s.expanding || s.expanded ||
3720 		    s.replacing || s.to_write || s.written) {
3721 			set_bit(STRIPE_HANDLE, &sh->state);
3722 			goto finish;
3723 		}
3724 		/* There is nothing for the blocked_rdev to block */
3725 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3726 		s.blocked_rdev = NULL;
3727 	}
3728 
3729 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3730 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3731 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3732 	}
3733 
3734 	pr_debug("locked=%d uptodate=%d to_read=%d"
3735 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3736 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3737 	       s.failed_num[0], s.failed_num[1]);
3738 	/* check if the array has lost more than max_degraded devices and,
3739 	 * if so, some requests might need to be failed.
3740 	 */
3741 	if (s.failed > conf->max_degraded) {
3742 		sh->check_state = 0;
3743 		sh->reconstruct_state = 0;
3744 		if (s.to_read+s.to_write+s.written)
3745 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3746 		if (s.syncing + s.replacing)
3747 			handle_failed_sync(conf, sh, &s);
3748 	}
3749 
3750 	/* Now we check to see if any write operations have recently
3751 	 * completed
3752 	 */
3753 	prexor = 0;
3754 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3755 		prexor = 1;
3756 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3757 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3758 		sh->reconstruct_state = reconstruct_state_idle;
3759 
3760 		/* All the 'written' buffers and the parity block are ready to
3761 		 * be written back to disk
3762 		 */
3763 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3764 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3765 		BUG_ON(sh->qd_idx >= 0 &&
3766 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3767 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3768 		for (i = disks; i--; ) {
3769 			struct r5dev *dev = &sh->dev[i];
3770 			if (test_bit(R5_LOCKED, &dev->flags) &&
3771 				(i == sh->pd_idx || i == sh->qd_idx ||
3772 				 dev->written)) {
3773 				pr_debug("Writing block %d\n", i);
3774 				set_bit(R5_Wantwrite, &dev->flags);
3775 				if (prexor)
3776 					continue;
3777 				if (!test_bit(R5_Insync, &dev->flags) ||
3778 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3779 				     s.failed == 0))
3780 					set_bit(STRIPE_INSYNC, &sh->state);
3781 			}
3782 		}
3783 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3784 			s.dec_preread_active = 1;
3785 	}
3786 
3787 	/*
3788 	 * might be able to return some write requests if the parity blocks
3789 	 * are safe, or on a failed drive
3790 	 */
3791 	pdev = &sh->dev[sh->pd_idx];
3792 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3793 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3794 	qdev = &sh->dev[sh->qd_idx];
3795 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3796 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3797 		|| conf->level < 6;
3798 
3799 	if (s.written &&
3800 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3801 			     && !test_bit(R5_LOCKED, &pdev->flags)
3802 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3803 				 test_bit(R5_Discard, &pdev->flags))))) &&
3804 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3805 			     && !test_bit(R5_LOCKED, &qdev->flags)
3806 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3807 				 test_bit(R5_Discard, &qdev->flags))))))
3808 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3809 
3810 	/* Now we might consider reading some blocks, either to check/generate
3811 	 * parity, or to satisfy requests
3812 	 * or to load a block that is being partially written.
3813 	 */
3814 	if (s.to_read || s.non_overwrite
3815 	    || (conf->level == 6 && s.to_write && s.failed)
3816 	    || (s.syncing && (s.uptodate + s.compute < disks))
3817 	    || s.replacing
3818 	    || s.expanding)
3819 		handle_stripe_fill(sh, &s, disks);
3820 
3821 	/* Now to consider new write requests and what else, if anything
3822 	 * should be read.  We do not handle new writes when:
3823 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3824 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3825 	 *    block.
3826 	 */
3827 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3828 		handle_stripe_dirtying(conf, sh, &s, disks);
3829 
3830 	/* maybe we need to check and possibly fix the parity for this stripe
3831 	 * Any reads will already have been scheduled, so we just see if enough
3832 	 * data is available.  The parity check is held off while parity
3833 	 * dependent operations are in flight.
3834 	 */
3835 	if (sh->check_state ||
3836 	    (s.syncing && s.locked == 0 &&
3837 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3838 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3839 		if (conf->level == 6)
3840 			handle_parity_checks6(conf, sh, &s, disks);
3841 		else
3842 			handle_parity_checks5(conf, sh, &s, disks);
3843 	}
3844 
3845 	if ((s.replacing || s.syncing) && s.locked == 0
3846 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3847 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3848 		/* Write out to replacement devices where possible */
3849 		for (i = 0; i < conf->raid_disks; i++)
3850 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3851 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3852 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3853 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3854 				s.locked++;
3855 			}
3856 		if (s.replacing)
3857 			set_bit(STRIPE_INSYNC, &sh->state);
3858 		set_bit(STRIPE_REPLACED, &sh->state);
3859 	}
3860 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3861 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3862 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3863 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3864 		clear_bit(STRIPE_SYNCING, &sh->state);
3865 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3866 			wake_up(&conf->wait_for_overlap);
3867 	}
3868 
3869 	/* If the failed drives are just a ReadError, then we might need
3870 	 * to progress the repair/check process
3871 	 */
3872 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3873 		for (i = 0; i < s.failed; i++) {
3874 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3875 			if (test_bit(R5_ReadError, &dev->flags)
3876 			    && !test_bit(R5_LOCKED, &dev->flags)
3877 			    && test_bit(R5_UPTODATE, &dev->flags)
3878 				) {
3879 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3880 					set_bit(R5_Wantwrite, &dev->flags);
3881 					set_bit(R5_ReWrite, &dev->flags);
3882 					set_bit(R5_LOCKED, &dev->flags);
3883 					s.locked++;
3884 				} else {
3885 					/* let's read it back */
3886 					set_bit(R5_Wantread, &dev->flags);
3887 					set_bit(R5_LOCKED, &dev->flags);
3888 					s.locked++;
3889 				}
3890 			}
3891 		}
3892 
3893 
3894 	/* Finish reconstruct operations initiated by the expansion process */
3895 	if (sh->reconstruct_state == reconstruct_state_result) {
3896 		struct stripe_head *sh_src
3897 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3898 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3899 			/* sh cannot be written until sh_src has been read.
3900 			 * so arrange for sh to be delayed a little
3901 			 */
3902 			set_bit(STRIPE_DELAYED, &sh->state);
3903 			set_bit(STRIPE_HANDLE, &sh->state);
3904 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3905 					      &sh_src->state))
3906 				atomic_inc(&conf->preread_active_stripes);
3907 			release_stripe(sh_src);
3908 			goto finish;
3909 		}
3910 		if (sh_src)
3911 			release_stripe(sh_src);
3912 
3913 		sh->reconstruct_state = reconstruct_state_idle;
3914 		clear_bit(STRIPE_EXPANDING, &sh->state);
3915 		for (i = conf->raid_disks; i--; ) {
3916 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3917 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3918 			s.locked++;
3919 		}
3920 	}
3921 
3922 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3923 	    !sh->reconstruct_state) {
3924 		/* Need to write out all blocks after computing parity */
3925 		sh->disks = conf->raid_disks;
3926 		stripe_set_idx(sh->sector, conf, 0, sh);
3927 		schedule_reconstruction(sh, &s, 1, 1);
3928 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3929 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3930 		atomic_dec(&conf->reshape_stripes);
3931 		wake_up(&conf->wait_for_overlap);
3932 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3933 	}
3934 
3935 	if (s.expanding && s.locked == 0 &&
3936 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3937 		handle_stripe_expansion(conf, sh);
3938 
3939 finish:
3940 	/* wait for this device to become unblocked */
3941 	if (unlikely(s.blocked_rdev)) {
3942 		if (conf->mddev->external)
3943 			md_wait_for_blocked_rdev(s.blocked_rdev,
3944 						 conf->mddev);
3945 		else
3946 			/* Internal metadata will immediately
3947 			 * be written by raid5d, so we don't
3948 			 * need to wait here.
3949 			 */
3950 			rdev_dec_pending(s.blocked_rdev,
3951 					 conf->mddev);
3952 	}
3953 
3954 	if (s.handle_bad_blocks)
3955 		for (i = disks; i--; ) {
3956 			struct md_rdev *rdev;
3957 			struct r5dev *dev = &sh->dev[i];
3958 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3959 				/* We own a safe reference to the rdev */
3960 				rdev = conf->disks[i].rdev;
3961 				if (!rdev_set_badblocks(rdev, sh->sector,
3962 							STRIPE_SECTORS, 0))
3963 					md_error(conf->mddev, rdev);
3964 				rdev_dec_pending(rdev, conf->mddev);
3965 			}
3966 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3967 				rdev = conf->disks[i].rdev;
3968 				rdev_clear_badblocks(rdev, sh->sector,
3969 						     STRIPE_SECTORS, 0);
3970 				rdev_dec_pending(rdev, conf->mddev);
3971 			}
3972 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3973 				rdev = conf->disks[i].replacement;
3974 				if (!rdev)
3975 					/* rdev have been moved down */
3976 					rdev = conf->disks[i].rdev;
3977 				rdev_clear_badblocks(rdev, sh->sector,
3978 						     STRIPE_SECTORS, 0);
3979 				rdev_dec_pending(rdev, conf->mddev);
3980 			}
3981 		}
3982 
3983 	if (s.ops_request)
3984 		raid_run_ops(sh, s.ops_request);
3985 
3986 	ops_run_io(sh, &s);
3987 
3988 	if (s.dec_preread_active) {
3989 		/* We delay this until after ops_run_io so that if make_request
3990 		 * is waiting on a flush, it won't continue until the writes
3991 		 * have actually been submitted.
3992 		 */
3993 		atomic_dec(&conf->preread_active_stripes);
3994 		if (atomic_read(&conf->preread_active_stripes) <
3995 		    IO_THRESHOLD)
3996 			md_wakeup_thread(conf->mddev->thread);
3997 	}
3998 
3999 	return_io(s.return_bi);
4000 
4001 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4002 }
4003 
4004 static void raid5_activate_delayed(struct r5conf *conf)
4005 {
4006 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4007 		while (!list_empty(&conf->delayed_list)) {
4008 			struct list_head *l = conf->delayed_list.next;
4009 			struct stripe_head *sh;
4010 			sh = list_entry(l, struct stripe_head, lru);
4011 			list_del_init(l);
4012 			clear_bit(STRIPE_DELAYED, &sh->state);
4013 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4014 				atomic_inc(&conf->preread_active_stripes);
4015 			list_add_tail(&sh->lru, &conf->hold_list);
4016 			raid5_wakeup_stripe_thread(sh);
4017 		}
4018 	}
4019 }
4020 
4021 static void activate_bit_delay(struct r5conf *conf,
4022 	struct list_head *temp_inactive_list)
4023 {
4024 	/* device_lock is held */
4025 	struct list_head head;
4026 	list_add(&head, &conf->bitmap_list);
4027 	list_del_init(&conf->bitmap_list);
4028 	while (!list_empty(&head)) {
4029 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4030 		int hash;
4031 		list_del_init(&sh->lru);
4032 		atomic_inc(&sh->count);
4033 		hash = sh->hash_lock_index;
4034 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4035 	}
4036 }
4037 
4038 int md_raid5_congested(struct mddev *mddev, int bits)
4039 {
4040 	struct r5conf *conf = mddev->private;
4041 
4042 	/* No difference between reads and writes.  Just check
4043 	 * how busy the stripe_cache is
4044 	 */
4045 
4046 	if (conf->inactive_blocked)
4047 		return 1;
4048 	if (conf->quiesce)
4049 		return 1;
4050 	if (atomic_read(&conf->empty_inactive_list_nr))
4051 		return 1;
4052 
4053 	return 0;
4054 }
4055 EXPORT_SYMBOL_GPL(md_raid5_congested);
4056 
4057 static int raid5_congested(void *data, int bits)
4058 {
4059 	struct mddev *mddev = data;
4060 
4061 	return mddev_congested(mddev, bits) ||
4062 		md_raid5_congested(mddev, bits);
4063 }
4064 
4065 /* We want read requests to align with chunks where possible,
4066  * but write requests don't need to.
4067  */
4068 static int raid5_mergeable_bvec(struct request_queue *q,
4069 				struct bvec_merge_data *bvm,
4070 				struct bio_vec *biovec)
4071 {
4072 	struct mddev *mddev = q->queuedata;
4073 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4074 	int max;
4075 	unsigned int chunk_sectors = mddev->chunk_sectors;
4076 	unsigned int bio_sectors = bvm->bi_size >> 9;
4077 
4078 	if ((bvm->bi_rw & 1) == WRITE)
4079 		return biovec->bv_len; /* always allow writes to be mergeable */
4080 
4081 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4082 		chunk_sectors = mddev->new_chunk_sectors;
4083 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4084 	if (max < 0) max = 0;
4085 	if (max <= biovec->bv_len && bio_sectors == 0)
4086 		return biovec->bv_len;
4087 	else
4088 		return max;
4089 }
4090 
4091 
4092 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4093 {
4094 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4095 	unsigned int chunk_sectors = mddev->chunk_sectors;
4096 	unsigned int bio_sectors = bio_sectors(bio);
4097 
4098 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4099 		chunk_sectors = mddev->new_chunk_sectors;
4100 	return  chunk_sectors >=
4101 		((sector & (chunk_sectors - 1)) + bio_sectors);
4102 }
4103 
4104 /*
4105  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4106  *  later sampled by raid5d.
4107  */
4108 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4109 {
4110 	unsigned long flags;
4111 
4112 	spin_lock_irqsave(&conf->device_lock, flags);
4113 
4114 	bi->bi_next = conf->retry_read_aligned_list;
4115 	conf->retry_read_aligned_list = bi;
4116 
4117 	spin_unlock_irqrestore(&conf->device_lock, flags);
4118 	md_wakeup_thread(conf->mddev->thread);
4119 }
4120 
4121 
4122 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4123 {
4124 	struct bio *bi;
4125 
4126 	bi = conf->retry_read_aligned;
4127 	if (bi) {
4128 		conf->retry_read_aligned = NULL;
4129 		return bi;
4130 	}
4131 	bi = conf->retry_read_aligned_list;
4132 	if(bi) {
4133 		conf->retry_read_aligned_list = bi->bi_next;
4134 		bi->bi_next = NULL;
4135 		/*
4136 		 * this sets the active strip count to 1 and the processed
4137 		 * strip count to zero (upper 8 bits)
4138 		 */
4139 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4140 	}
4141 
4142 	return bi;
4143 }
4144 
4145 
4146 /*
4147  *  The "raid5_align_endio" should check if the read succeeded and if it
4148  *  did, call bio_endio on the original bio (having bio_put the new bio
4149  *  first).
4150  *  If the read failed..
4151  */
4152 static void raid5_align_endio(struct bio *bi, int error)
4153 {
4154 	struct bio* raid_bi  = bi->bi_private;
4155 	struct mddev *mddev;
4156 	struct r5conf *conf;
4157 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4158 	struct md_rdev *rdev;
4159 
4160 	bio_put(bi);
4161 
4162 	rdev = (void*)raid_bi->bi_next;
4163 	raid_bi->bi_next = NULL;
4164 	mddev = rdev->mddev;
4165 	conf = mddev->private;
4166 
4167 	rdev_dec_pending(rdev, conf->mddev);
4168 
4169 	if (!error && uptodate) {
4170 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4171 					 raid_bi, 0);
4172 		bio_endio(raid_bi, 0);
4173 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4174 			wake_up(&conf->wait_for_stripe);
4175 		return;
4176 	}
4177 
4178 
4179 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4180 
4181 	add_bio_to_retry(raid_bi, conf);
4182 }
4183 
4184 static int bio_fits_rdev(struct bio *bi)
4185 {
4186 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4187 
4188 	if (bio_sectors(bi) > queue_max_sectors(q))
4189 		return 0;
4190 	blk_recount_segments(q, bi);
4191 	if (bi->bi_phys_segments > queue_max_segments(q))
4192 		return 0;
4193 
4194 	if (q->merge_bvec_fn)
4195 		/* it's too hard to apply the merge_bvec_fn at this stage,
4196 		 * just just give up
4197 		 */
4198 		return 0;
4199 
4200 	return 1;
4201 }
4202 
4203 
4204 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4205 {
4206 	struct r5conf *conf = mddev->private;
4207 	int dd_idx;
4208 	struct bio* align_bi;
4209 	struct md_rdev *rdev;
4210 	sector_t end_sector;
4211 
4212 	if (!in_chunk_boundary(mddev, raid_bio)) {
4213 		pr_debug("chunk_aligned_read : non aligned\n");
4214 		return 0;
4215 	}
4216 	/*
4217 	 * use bio_clone_mddev to make a copy of the bio
4218 	 */
4219 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4220 	if (!align_bi)
4221 		return 0;
4222 	/*
4223 	 *   set bi_end_io to a new function, and set bi_private to the
4224 	 *     original bio.
4225 	 */
4226 	align_bi->bi_end_io  = raid5_align_endio;
4227 	align_bi->bi_private = raid_bio;
4228 	/*
4229 	 *	compute position
4230 	 */
4231 	align_bi->bi_iter.bi_sector =
4232 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4233 				     0, &dd_idx, NULL);
4234 
4235 	end_sector = bio_end_sector(align_bi);
4236 	rcu_read_lock();
4237 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4238 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4239 	    rdev->recovery_offset < end_sector) {
4240 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4241 		if (rdev &&
4242 		    (test_bit(Faulty, &rdev->flags) ||
4243 		    !(test_bit(In_sync, &rdev->flags) ||
4244 		      rdev->recovery_offset >= end_sector)))
4245 			rdev = NULL;
4246 	}
4247 	if (rdev) {
4248 		sector_t first_bad;
4249 		int bad_sectors;
4250 
4251 		atomic_inc(&rdev->nr_pending);
4252 		rcu_read_unlock();
4253 		raid_bio->bi_next = (void*)rdev;
4254 		align_bi->bi_bdev =  rdev->bdev;
4255 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4256 
4257 		if (!bio_fits_rdev(align_bi) ||
4258 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4259 				bio_sectors(align_bi),
4260 				&first_bad, &bad_sectors)) {
4261 			/* too big in some way, or has a known bad block */
4262 			bio_put(align_bi);
4263 			rdev_dec_pending(rdev, mddev);
4264 			return 0;
4265 		}
4266 
4267 		/* No reshape active, so we can trust rdev->data_offset */
4268 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4269 
4270 		spin_lock_irq(&conf->device_lock);
4271 		wait_event_lock_irq(conf->wait_for_stripe,
4272 				    conf->quiesce == 0,
4273 				    conf->device_lock);
4274 		atomic_inc(&conf->active_aligned_reads);
4275 		spin_unlock_irq(&conf->device_lock);
4276 
4277 		if (mddev->gendisk)
4278 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4279 					      align_bi, disk_devt(mddev->gendisk),
4280 					      raid_bio->bi_iter.bi_sector);
4281 		generic_make_request(align_bi);
4282 		return 1;
4283 	} else {
4284 		rcu_read_unlock();
4285 		bio_put(align_bi);
4286 		return 0;
4287 	}
4288 }
4289 
4290 /* __get_priority_stripe - get the next stripe to process
4291  *
4292  * Full stripe writes are allowed to pass preread active stripes up until
4293  * the bypass_threshold is exceeded.  In general the bypass_count
4294  * increments when the handle_list is handled before the hold_list; however, it
4295  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4296  * stripe with in flight i/o.  The bypass_count will be reset when the
4297  * head of the hold_list has changed, i.e. the head was promoted to the
4298  * handle_list.
4299  */
4300 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4301 {
4302 	struct stripe_head *sh = NULL, *tmp;
4303 	struct list_head *handle_list = NULL;
4304 	struct r5worker_group *wg = NULL;
4305 
4306 	if (conf->worker_cnt_per_group == 0) {
4307 		handle_list = &conf->handle_list;
4308 	} else if (group != ANY_GROUP) {
4309 		handle_list = &conf->worker_groups[group].handle_list;
4310 		wg = &conf->worker_groups[group];
4311 	} else {
4312 		int i;
4313 		for (i = 0; i < conf->group_cnt; i++) {
4314 			handle_list = &conf->worker_groups[i].handle_list;
4315 			wg = &conf->worker_groups[i];
4316 			if (!list_empty(handle_list))
4317 				break;
4318 		}
4319 	}
4320 
4321 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4322 		  __func__,
4323 		  list_empty(handle_list) ? "empty" : "busy",
4324 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4325 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4326 
4327 	if (!list_empty(handle_list)) {
4328 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4329 
4330 		if (list_empty(&conf->hold_list))
4331 			conf->bypass_count = 0;
4332 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4333 			if (conf->hold_list.next == conf->last_hold)
4334 				conf->bypass_count++;
4335 			else {
4336 				conf->last_hold = conf->hold_list.next;
4337 				conf->bypass_count -= conf->bypass_threshold;
4338 				if (conf->bypass_count < 0)
4339 					conf->bypass_count = 0;
4340 			}
4341 		}
4342 	} else if (!list_empty(&conf->hold_list) &&
4343 		   ((conf->bypass_threshold &&
4344 		     conf->bypass_count > conf->bypass_threshold) ||
4345 		    atomic_read(&conf->pending_full_writes) == 0)) {
4346 
4347 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4348 			if (conf->worker_cnt_per_group == 0 ||
4349 			    group == ANY_GROUP ||
4350 			    !cpu_online(tmp->cpu) ||
4351 			    cpu_to_group(tmp->cpu) == group) {
4352 				sh = tmp;
4353 				break;
4354 			}
4355 		}
4356 
4357 		if (sh) {
4358 			conf->bypass_count -= conf->bypass_threshold;
4359 			if (conf->bypass_count < 0)
4360 				conf->bypass_count = 0;
4361 		}
4362 		wg = NULL;
4363 	}
4364 
4365 	if (!sh)
4366 		return NULL;
4367 
4368 	if (wg) {
4369 		wg->stripes_cnt--;
4370 		sh->group = NULL;
4371 	}
4372 	list_del_init(&sh->lru);
4373 	atomic_inc(&sh->count);
4374 	BUG_ON(atomic_read(&sh->count) != 1);
4375 	return sh;
4376 }
4377 
4378 struct raid5_plug_cb {
4379 	struct blk_plug_cb	cb;
4380 	struct list_head	list;
4381 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4382 };
4383 
4384 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4385 {
4386 	struct raid5_plug_cb *cb = container_of(
4387 		blk_cb, struct raid5_plug_cb, cb);
4388 	struct stripe_head *sh;
4389 	struct mddev *mddev = cb->cb.data;
4390 	struct r5conf *conf = mddev->private;
4391 	int cnt = 0;
4392 	int hash;
4393 
4394 	if (cb->list.next && !list_empty(&cb->list)) {
4395 		spin_lock_irq(&conf->device_lock);
4396 		while (!list_empty(&cb->list)) {
4397 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4398 			list_del_init(&sh->lru);
4399 			/*
4400 			 * avoid race release_stripe_plug() sees
4401 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4402 			 * is still in our list
4403 			 */
4404 			smp_mb__before_clear_bit();
4405 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4406 			/*
4407 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4408 			 * case, the count is always > 1 here
4409 			 */
4410 			hash = sh->hash_lock_index;
4411 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4412 			cnt++;
4413 		}
4414 		spin_unlock_irq(&conf->device_lock);
4415 	}
4416 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4417 				     NR_STRIPE_HASH_LOCKS);
4418 	if (mddev->queue)
4419 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4420 	kfree(cb);
4421 }
4422 
4423 static void release_stripe_plug(struct mddev *mddev,
4424 				struct stripe_head *sh)
4425 {
4426 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4427 		raid5_unplug, mddev,
4428 		sizeof(struct raid5_plug_cb));
4429 	struct raid5_plug_cb *cb;
4430 
4431 	if (!blk_cb) {
4432 		release_stripe(sh);
4433 		return;
4434 	}
4435 
4436 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4437 
4438 	if (cb->list.next == NULL) {
4439 		int i;
4440 		INIT_LIST_HEAD(&cb->list);
4441 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4442 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4443 	}
4444 
4445 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4446 		list_add_tail(&sh->lru, &cb->list);
4447 	else
4448 		release_stripe(sh);
4449 }
4450 
4451 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4452 {
4453 	struct r5conf *conf = mddev->private;
4454 	sector_t logical_sector, last_sector;
4455 	struct stripe_head *sh;
4456 	int remaining;
4457 	int stripe_sectors;
4458 
4459 	if (mddev->reshape_position != MaxSector)
4460 		/* Skip discard while reshape is happening */
4461 		return;
4462 
4463 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4464 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4465 
4466 	bi->bi_next = NULL;
4467 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4468 
4469 	stripe_sectors = conf->chunk_sectors *
4470 		(conf->raid_disks - conf->max_degraded);
4471 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4472 					       stripe_sectors);
4473 	sector_div(last_sector, stripe_sectors);
4474 
4475 	logical_sector *= conf->chunk_sectors;
4476 	last_sector *= conf->chunk_sectors;
4477 
4478 	for (; logical_sector < last_sector;
4479 	     logical_sector += STRIPE_SECTORS) {
4480 		DEFINE_WAIT(w);
4481 		int d;
4482 	again:
4483 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4484 		prepare_to_wait(&conf->wait_for_overlap, &w,
4485 				TASK_UNINTERRUPTIBLE);
4486 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4487 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4488 			release_stripe(sh);
4489 			schedule();
4490 			goto again;
4491 		}
4492 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4493 		spin_lock_irq(&sh->stripe_lock);
4494 		for (d = 0; d < conf->raid_disks; d++) {
4495 			if (d == sh->pd_idx || d == sh->qd_idx)
4496 				continue;
4497 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4498 				set_bit(R5_Overlap, &sh->dev[d].flags);
4499 				spin_unlock_irq(&sh->stripe_lock);
4500 				release_stripe(sh);
4501 				schedule();
4502 				goto again;
4503 			}
4504 		}
4505 		set_bit(STRIPE_DISCARD, &sh->state);
4506 		finish_wait(&conf->wait_for_overlap, &w);
4507 		for (d = 0; d < conf->raid_disks; d++) {
4508 			if (d == sh->pd_idx || d == sh->qd_idx)
4509 				continue;
4510 			sh->dev[d].towrite = bi;
4511 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4512 			raid5_inc_bi_active_stripes(bi);
4513 		}
4514 		spin_unlock_irq(&sh->stripe_lock);
4515 		if (conf->mddev->bitmap) {
4516 			for (d = 0;
4517 			     d < conf->raid_disks - conf->max_degraded;
4518 			     d++)
4519 				bitmap_startwrite(mddev->bitmap,
4520 						  sh->sector,
4521 						  STRIPE_SECTORS,
4522 						  0);
4523 			sh->bm_seq = conf->seq_flush + 1;
4524 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4525 		}
4526 
4527 		set_bit(STRIPE_HANDLE, &sh->state);
4528 		clear_bit(STRIPE_DELAYED, &sh->state);
4529 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4530 			atomic_inc(&conf->preread_active_stripes);
4531 		release_stripe_plug(mddev, sh);
4532 	}
4533 
4534 	remaining = raid5_dec_bi_active_stripes(bi);
4535 	if (remaining == 0) {
4536 		md_write_end(mddev);
4537 		bio_endio(bi, 0);
4538 	}
4539 }
4540 
4541 static void make_request(struct mddev *mddev, struct bio * bi)
4542 {
4543 	struct r5conf *conf = mddev->private;
4544 	int dd_idx;
4545 	sector_t new_sector;
4546 	sector_t logical_sector, last_sector;
4547 	struct stripe_head *sh;
4548 	const int rw = bio_data_dir(bi);
4549 	int remaining;
4550 	DEFINE_WAIT(w);
4551 	bool do_prepare;
4552 
4553 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4554 		md_flush_request(mddev, bi);
4555 		return;
4556 	}
4557 
4558 	md_write_start(mddev, bi);
4559 
4560 	if (rw == READ &&
4561 	     mddev->reshape_position == MaxSector &&
4562 	     chunk_aligned_read(mddev,bi))
4563 		return;
4564 
4565 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4566 		make_discard_request(mddev, bi);
4567 		return;
4568 	}
4569 
4570 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4571 	last_sector = bio_end_sector(bi);
4572 	bi->bi_next = NULL;
4573 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4574 
4575 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4576 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4577 		int previous;
4578 		int seq;
4579 
4580 		do_prepare = false;
4581 	retry:
4582 		seq = read_seqcount_begin(&conf->gen_lock);
4583 		previous = 0;
4584 		if (do_prepare)
4585 			prepare_to_wait(&conf->wait_for_overlap, &w,
4586 				TASK_UNINTERRUPTIBLE);
4587 		if (unlikely(conf->reshape_progress != MaxSector)) {
4588 			/* spinlock is needed as reshape_progress may be
4589 			 * 64bit on a 32bit platform, and so it might be
4590 			 * possible to see a half-updated value
4591 			 * Of course reshape_progress could change after
4592 			 * the lock is dropped, so once we get a reference
4593 			 * to the stripe that we think it is, we will have
4594 			 * to check again.
4595 			 */
4596 			spin_lock_irq(&conf->device_lock);
4597 			if (mddev->reshape_backwards
4598 			    ? logical_sector < conf->reshape_progress
4599 			    : logical_sector >= conf->reshape_progress) {
4600 				previous = 1;
4601 			} else {
4602 				if (mddev->reshape_backwards
4603 				    ? logical_sector < conf->reshape_safe
4604 				    : logical_sector >= conf->reshape_safe) {
4605 					spin_unlock_irq(&conf->device_lock);
4606 					schedule();
4607 					do_prepare = true;
4608 					goto retry;
4609 				}
4610 			}
4611 			spin_unlock_irq(&conf->device_lock);
4612 		}
4613 
4614 		new_sector = raid5_compute_sector(conf, logical_sector,
4615 						  previous,
4616 						  &dd_idx, NULL);
4617 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4618 			(unsigned long long)new_sector,
4619 			(unsigned long long)logical_sector);
4620 
4621 		sh = get_active_stripe(conf, new_sector, previous,
4622 				       (bi->bi_rw&RWA_MASK), 0);
4623 		if (sh) {
4624 			if (unlikely(previous)) {
4625 				/* expansion might have moved on while waiting for a
4626 				 * stripe, so we must do the range check again.
4627 				 * Expansion could still move past after this
4628 				 * test, but as we are holding a reference to
4629 				 * 'sh', we know that if that happens,
4630 				 *  STRIPE_EXPANDING will get set and the expansion
4631 				 * won't proceed until we finish with the stripe.
4632 				 */
4633 				int must_retry = 0;
4634 				spin_lock_irq(&conf->device_lock);
4635 				if (mddev->reshape_backwards
4636 				    ? logical_sector >= conf->reshape_progress
4637 				    : logical_sector < conf->reshape_progress)
4638 					/* mismatch, need to try again */
4639 					must_retry = 1;
4640 				spin_unlock_irq(&conf->device_lock);
4641 				if (must_retry) {
4642 					release_stripe(sh);
4643 					schedule();
4644 					do_prepare = true;
4645 					goto retry;
4646 				}
4647 			}
4648 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4649 				/* Might have got the wrong stripe_head
4650 				 * by accident
4651 				 */
4652 				release_stripe(sh);
4653 				goto retry;
4654 			}
4655 
4656 			if (rw == WRITE &&
4657 			    logical_sector >= mddev->suspend_lo &&
4658 			    logical_sector < mddev->suspend_hi) {
4659 				release_stripe(sh);
4660 				/* As the suspend_* range is controlled by
4661 				 * userspace, we want an interruptible
4662 				 * wait.
4663 				 */
4664 				flush_signals(current);
4665 				prepare_to_wait(&conf->wait_for_overlap,
4666 						&w, TASK_INTERRUPTIBLE);
4667 				if (logical_sector >= mddev->suspend_lo &&
4668 				    logical_sector < mddev->suspend_hi) {
4669 					schedule();
4670 					do_prepare = true;
4671 				}
4672 				goto retry;
4673 			}
4674 
4675 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4676 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4677 				/* Stripe is busy expanding or
4678 				 * add failed due to overlap.  Flush everything
4679 				 * and wait a while
4680 				 */
4681 				md_wakeup_thread(mddev->thread);
4682 				release_stripe(sh);
4683 				schedule();
4684 				do_prepare = true;
4685 				goto retry;
4686 			}
4687 			set_bit(STRIPE_HANDLE, &sh->state);
4688 			clear_bit(STRIPE_DELAYED, &sh->state);
4689 			if ((bi->bi_rw & REQ_SYNC) &&
4690 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4691 				atomic_inc(&conf->preread_active_stripes);
4692 			release_stripe_plug(mddev, sh);
4693 		} else {
4694 			/* cannot get stripe for read-ahead, just give-up */
4695 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4696 			break;
4697 		}
4698 	}
4699 	finish_wait(&conf->wait_for_overlap, &w);
4700 
4701 	remaining = raid5_dec_bi_active_stripes(bi);
4702 	if (remaining == 0) {
4703 
4704 		if ( rw == WRITE )
4705 			md_write_end(mddev);
4706 
4707 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4708 					 bi, 0);
4709 		bio_endio(bi, 0);
4710 	}
4711 }
4712 
4713 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4714 
4715 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4716 {
4717 	/* reshaping is quite different to recovery/resync so it is
4718 	 * handled quite separately ... here.
4719 	 *
4720 	 * On each call to sync_request, we gather one chunk worth of
4721 	 * destination stripes and flag them as expanding.
4722 	 * Then we find all the source stripes and request reads.
4723 	 * As the reads complete, handle_stripe will copy the data
4724 	 * into the destination stripe and release that stripe.
4725 	 */
4726 	struct r5conf *conf = mddev->private;
4727 	struct stripe_head *sh;
4728 	sector_t first_sector, last_sector;
4729 	int raid_disks = conf->previous_raid_disks;
4730 	int data_disks = raid_disks - conf->max_degraded;
4731 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4732 	int i;
4733 	int dd_idx;
4734 	sector_t writepos, readpos, safepos;
4735 	sector_t stripe_addr;
4736 	int reshape_sectors;
4737 	struct list_head stripes;
4738 
4739 	if (sector_nr == 0) {
4740 		/* If restarting in the middle, skip the initial sectors */
4741 		if (mddev->reshape_backwards &&
4742 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4743 			sector_nr = raid5_size(mddev, 0, 0)
4744 				- conf->reshape_progress;
4745 		} else if (!mddev->reshape_backwards &&
4746 			   conf->reshape_progress > 0)
4747 			sector_nr = conf->reshape_progress;
4748 		sector_div(sector_nr, new_data_disks);
4749 		if (sector_nr) {
4750 			mddev->curr_resync_completed = sector_nr;
4751 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4752 			*skipped = 1;
4753 			return sector_nr;
4754 		}
4755 	}
4756 
4757 	/* We need to process a full chunk at a time.
4758 	 * If old and new chunk sizes differ, we need to process the
4759 	 * largest of these
4760 	 */
4761 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4762 		reshape_sectors = mddev->new_chunk_sectors;
4763 	else
4764 		reshape_sectors = mddev->chunk_sectors;
4765 
4766 	/* We update the metadata at least every 10 seconds, or when
4767 	 * the data about to be copied would over-write the source of
4768 	 * the data at the front of the range.  i.e. one new_stripe
4769 	 * along from reshape_progress new_maps to after where
4770 	 * reshape_safe old_maps to
4771 	 */
4772 	writepos = conf->reshape_progress;
4773 	sector_div(writepos, new_data_disks);
4774 	readpos = conf->reshape_progress;
4775 	sector_div(readpos, data_disks);
4776 	safepos = conf->reshape_safe;
4777 	sector_div(safepos, data_disks);
4778 	if (mddev->reshape_backwards) {
4779 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4780 		readpos += reshape_sectors;
4781 		safepos += reshape_sectors;
4782 	} else {
4783 		writepos += reshape_sectors;
4784 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4785 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4786 	}
4787 
4788 	/* Having calculated the 'writepos' possibly use it
4789 	 * to set 'stripe_addr' which is where we will write to.
4790 	 */
4791 	if (mddev->reshape_backwards) {
4792 		BUG_ON(conf->reshape_progress == 0);
4793 		stripe_addr = writepos;
4794 		BUG_ON((mddev->dev_sectors &
4795 			~((sector_t)reshape_sectors - 1))
4796 		       - reshape_sectors - stripe_addr
4797 		       != sector_nr);
4798 	} else {
4799 		BUG_ON(writepos != sector_nr + reshape_sectors);
4800 		stripe_addr = sector_nr;
4801 	}
4802 
4803 	/* 'writepos' is the most advanced device address we might write.
4804 	 * 'readpos' is the least advanced device address we might read.
4805 	 * 'safepos' is the least address recorded in the metadata as having
4806 	 *     been reshaped.
4807 	 * If there is a min_offset_diff, these are adjusted either by
4808 	 * increasing the safepos/readpos if diff is negative, or
4809 	 * increasing writepos if diff is positive.
4810 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4811 	 * ensure safety in the face of a crash - that must be done by userspace
4812 	 * making a backup of the data.  So in that case there is no particular
4813 	 * rush to update metadata.
4814 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4815 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4816 	 * we can be safe in the event of a crash.
4817 	 * So we insist on updating metadata if safepos is behind writepos and
4818 	 * readpos is beyond writepos.
4819 	 * In any case, update the metadata every 10 seconds.
4820 	 * Maybe that number should be configurable, but I'm not sure it is
4821 	 * worth it.... maybe it could be a multiple of safemode_delay???
4822 	 */
4823 	if (conf->min_offset_diff < 0) {
4824 		safepos += -conf->min_offset_diff;
4825 		readpos += -conf->min_offset_diff;
4826 	} else
4827 		writepos += conf->min_offset_diff;
4828 
4829 	if ((mddev->reshape_backwards
4830 	     ? (safepos > writepos && readpos < writepos)
4831 	     : (safepos < writepos && readpos > writepos)) ||
4832 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4833 		/* Cannot proceed until we've updated the superblock... */
4834 		wait_event(conf->wait_for_overlap,
4835 			   atomic_read(&conf->reshape_stripes)==0
4836 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4837 		if (atomic_read(&conf->reshape_stripes) != 0)
4838 			return 0;
4839 		mddev->reshape_position = conf->reshape_progress;
4840 		mddev->curr_resync_completed = sector_nr;
4841 		conf->reshape_checkpoint = jiffies;
4842 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4843 		md_wakeup_thread(mddev->thread);
4844 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4845 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4846 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4847 			return 0;
4848 		spin_lock_irq(&conf->device_lock);
4849 		conf->reshape_safe = mddev->reshape_position;
4850 		spin_unlock_irq(&conf->device_lock);
4851 		wake_up(&conf->wait_for_overlap);
4852 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4853 	}
4854 
4855 	INIT_LIST_HEAD(&stripes);
4856 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4857 		int j;
4858 		int skipped_disk = 0;
4859 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4860 		set_bit(STRIPE_EXPANDING, &sh->state);
4861 		atomic_inc(&conf->reshape_stripes);
4862 		/* If any of this stripe is beyond the end of the old
4863 		 * array, then we need to zero those blocks
4864 		 */
4865 		for (j=sh->disks; j--;) {
4866 			sector_t s;
4867 			if (j == sh->pd_idx)
4868 				continue;
4869 			if (conf->level == 6 &&
4870 			    j == sh->qd_idx)
4871 				continue;
4872 			s = compute_blocknr(sh, j, 0);
4873 			if (s < raid5_size(mddev, 0, 0)) {
4874 				skipped_disk = 1;
4875 				continue;
4876 			}
4877 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4878 			set_bit(R5_Expanded, &sh->dev[j].flags);
4879 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4880 		}
4881 		if (!skipped_disk) {
4882 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4883 			set_bit(STRIPE_HANDLE, &sh->state);
4884 		}
4885 		list_add(&sh->lru, &stripes);
4886 	}
4887 	spin_lock_irq(&conf->device_lock);
4888 	if (mddev->reshape_backwards)
4889 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4890 	else
4891 		conf->reshape_progress += reshape_sectors * new_data_disks;
4892 	spin_unlock_irq(&conf->device_lock);
4893 	/* Ok, those stripe are ready. We can start scheduling
4894 	 * reads on the source stripes.
4895 	 * The source stripes are determined by mapping the first and last
4896 	 * block on the destination stripes.
4897 	 */
4898 	first_sector =
4899 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4900 				     1, &dd_idx, NULL);
4901 	last_sector =
4902 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4903 					    * new_data_disks - 1),
4904 				     1, &dd_idx, NULL);
4905 	if (last_sector >= mddev->dev_sectors)
4906 		last_sector = mddev->dev_sectors - 1;
4907 	while (first_sector <= last_sector) {
4908 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4909 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4910 		set_bit(STRIPE_HANDLE, &sh->state);
4911 		release_stripe(sh);
4912 		first_sector += STRIPE_SECTORS;
4913 	}
4914 	/* Now that the sources are clearly marked, we can release
4915 	 * the destination stripes
4916 	 */
4917 	while (!list_empty(&stripes)) {
4918 		sh = list_entry(stripes.next, struct stripe_head, lru);
4919 		list_del_init(&sh->lru);
4920 		release_stripe(sh);
4921 	}
4922 	/* If this takes us to the resync_max point where we have to pause,
4923 	 * then we need to write out the superblock.
4924 	 */
4925 	sector_nr += reshape_sectors;
4926 	if ((sector_nr - mddev->curr_resync_completed) * 2
4927 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4928 		/* Cannot proceed until we've updated the superblock... */
4929 		wait_event(conf->wait_for_overlap,
4930 			   atomic_read(&conf->reshape_stripes) == 0
4931 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4932 		if (atomic_read(&conf->reshape_stripes) != 0)
4933 			goto ret;
4934 		mddev->reshape_position = conf->reshape_progress;
4935 		mddev->curr_resync_completed = sector_nr;
4936 		conf->reshape_checkpoint = jiffies;
4937 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4938 		md_wakeup_thread(mddev->thread);
4939 		wait_event(mddev->sb_wait,
4940 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4941 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4942 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4943 			goto ret;
4944 		spin_lock_irq(&conf->device_lock);
4945 		conf->reshape_safe = mddev->reshape_position;
4946 		spin_unlock_irq(&conf->device_lock);
4947 		wake_up(&conf->wait_for_overlap);
4948 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4949 	}
4950 ret:
4951 	return reshape_sectors;
4952 }
4953 
4954 /* FIXME go_faster isn't used */
4955 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4956 {
4957 	struct r5conf *conf = mddev->private;
4958 	struct stripe_head *sh;
4959 	sector_t max_sector = mddev->dev_sectors;
4960 	sector_t sync_blocks;
4961 	int still_degraded = 0;
4962 	int i;
4963 
4964 	if (sector_nr >= max_sector) {
4965 		/* just being told to finish up .. nothing much to do */
4966 
4967 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4968 			end_reshape(conf);
4969 			return 0;
4970 		}
4971 
4972 		if (mddev->curr_resync < max_sector) /* aborted */
4973 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4974 					&sync_blocks, 1);
4975 		else /* completed sync */
4976 			conf->fullsync = 0;
4977 		bitmap_close_sync(mddev->bitmap);
4978 
4979 		return 0;
4980 	}
4981 
4982 	/* Allow raid5_quiesce to complete */
4983 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4984 
4985 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4986 		return reshape_request(mddev, sector_nr, skipped);
4987 
4988 	/* No need to check resync_max as we never do more than one
4989 	 * stripe, and as resync_max will always be on a chunk boundary,
4990 	 * if the check in md_do_sync didn't fire, there is no chance
4991 	 * of overstepping resync_max here
4992 	 */
4993 
4994 	/* if there is too many failed drives and we are trying
4995 	 * to resync, then assert that we are finished, because there is
4996 	 * nothing we can do.
4997 	 */
4998 	if (mddev->degraded >= conf->max_degraded &&
4999 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5000 		sector_t rv = mddev->dev_sectors - sector_nr;
5001 		*skipped = 1;
5002 		return rv;
5003 	}
5004 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5005 	    !conf->fullsync &&
5006 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5007 	    sync_blocks >= STRIPE_SECTORS) {
5008 		/* we can skip this block, and probably more */
5009 		sync_blocks /= STRIPE_SECTORS;
5010 		*skipped = 1;
5011 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5012 	}
5013 
5014 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5015 
5016 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5017 	if (sh == NULL) {
5018 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5019 		/* make sure we don't swamp the stripe cache if someone else
5020 		 * is trying to get access
5021 		 */
5022 		schedule_timeout_uninterruptible(1);
5023 	}
5024 	/* Need to check if array will still be degraded after recovery/resync
5025 	 * We don't need to check the 'failed' flag as when that gets set,
5026 	 * recovery aborts.
5027 	 */
5028 	for (i = 0; i < conf->raid_disks; i++)
5029 		if (conf->disks[i].rdev == NULL)
5030 			still_degraded = 1;
5031 
5032 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5033 
5034 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5035 
5036 	handle_stripe(sh);
5037 	release_stripe(sh);
5038 
5039 	return STRIPE_SECTORS;
5040 }
5041 
5042 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5043 {
5044 	/* We may not be able to submit a whole bio at once as there
5045 	 * may not be enough stripe_heads available.
5046 	 * We cannot pre-allocate enough stripe_heads as we may need
5047 	 * more than exist in the cache (if we allow ever large chunks).
5048 	 * So we do one stripe head at a time and record in
5049 	 * ->bi_hw_segments how many have been done.
5050 	 *
5051 	 * We *know* that this entire raid_bio is in one chunk, so
5052 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5053 	 */
5054 	struct stripe_head *sh;
5055 	int dd_idx;
5056 	sector_t sector, logical_sector, last_sector;
5057 	int scnt = 0;
5058 	int remaining;
5059 	int handled = 0;
5060 
5061 	logical_sector = raid_bio->bi_iter.bi_sector &
5062 		~((sector_t)STRIPE_SECTORS-1);
5063 	sector = raid5_compute_sector(conf, logical_sector,
5064 				      0, &dd_idx, NULL);
5065 	last_sector = bio_end_sector(raid_bio);
5066 
5067 	for (; logical_sector < last_sector;
5068 	     logical_sector += STRIPE_SECTORS,
5069 		     sector += STRIPE_SECTORS,
5070 		     scnt++) {
5071 
5072 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5073 			/* already done this stripe */
5074 			continue;
5075 
5076 		sh = get_active_stripe(conf, sector, 0, 1, 0);
5077 
5078 		if (!sh) {
5079 			/* failed to get a stripe - must wait */
5080 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5081 			conf->retry_read_aligned = raid_bio;
5082 			return handled;
5083 		}
5084 
5085 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5086 			release_stripe(sh);
5087 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5088 			conf->retry_read_aligned = raid_bio;
5089 			return handled;
5090 		}
5091 
5092 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5093 		handle_stripe(sh);
5094 		release_stripe(sh);
5095 		handled++;
5096 	}
5097 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5098 	if (remaining == 0) {
5099 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5100 					 raid_bio, 0);
5101 		bio_endio(raid_bio, 0);
5102 	}
5103 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5104 		wake_up(&conf->wait_for_stripe);
5105 	return handled;
5106 }
5107 
5108 static int handle_active_stripes(struct r5conf *conf, int group,
5109 				 struct r5worker *worker,
5110 				 struct list_head *temp_inactive_list)
5111 {
5112 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5113 	int i, batch_size = 0, hash;
5114 	bool release_inactive = false;
5115 
5116 	while (batch_size < MAX_STRIPE_BATCH &&
5117 			(sh = __get_priority_stripe(conf, group)) != NULL)
5118 		batch[batch_size++] = sh;
5119 
5120 	if (batch_size == 0) {
5121 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5122 			if (!list_empty(temp_inactive_list + i))
5123 				break;
5124 		if (i == NR_STRIPE_HASH_LOCKS)
5125 			return batch_size;
5126 		release_inactive = true;
5127 	}
5128 	spin_unlock_irq(&conf->device_lock);
5129 
5130 	release_inactive_stripe_list(conf, temp_inactive_list,
5131 				     NR_STRIPE_HASH_LOCKS);
5132 
5133 	if (release_inactive) {
5134 		spin_lock_irq(&conf->device_lock);
5135 		return 0;
5136 	}
5137 
5138 	for (i = 0; i < batch_size; i++)
5139 		handle_stripe(batch[i]);
5140 
5141 	cond_resched();
5142 
5143 	spin_lock_irq(&conf->device_lock);
5144 	for (i = 0; i < batch_size; i++) {
5145 		hash = batch[i]->hash_lock_index;
5146 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5147 	}
5148 	return batch_size;
5149 }
5150 
5151 static void raid5_do_work(struct work_struct *work)
5152 {
5153 	struct r5worker *worker = container_of(work, struct r5worker, work);
5154 	struct r5worker_group *group = worker->group;
5155 	struct r5conf *conf = group->conf;
5156 	int group_id = group - conf->worker_groups;
5157 	int handled;
5158 	struct blk_plug plug;
5159 
5160 	pr_debug("+++ raid5worker active\n");
5161 
5162 	blk_start_plug(&plug);
5163 	handled = 0;
5164 	spin_lock_irq(&conf->device_lock);
5165 	while (1) {
5166 		int batch_size, released;
5167 
5168 		released = release_stripe_list(conf, worker->temp_inactive_list);
5169 
5170 		batch_size = handle_active_stripes(conf, group_id, worker,
5171 						   worker->temp_inactive_list);
5172 		worker->working = false;
5173 		if (!batch_size && !released)
5174 			break;
5175 		handled += batch_size;
5176 	}
5177 	pr_debug("%d stripes handled\n", handled);
5178 
5179 	spin_unlock_irq(&conf->device_lock);
5180 	blk_finish_plug(&plug);
5181 
5182 	pr_debug("--- raid5worker inactive\n");
5183 }
5184 
5185 /*
5186  * This is our raid5 kernel thread.
5187  *
5188  * We scan the hash table for stripes which can be handled now.
5189  * During the scan, completed stripes are saved for us by the interrupt
5190  * handler, so that they will not have to wait for our next wakeup.
5191  */
5192 static void raid5d(struct md_thread *thread)
5193 {
5194 	struct mddev *mddev = thread->mddev;
5195 	struct r5conf *conf = mddev->private;
5196 	int handled;
5197 	struct blk_plug plug;
5198 
5199 	pr_debug("+++ raid5d active\n");
5200 
5201 	md_check_recovery(mddev);
5202 
5203 	blk_start_plug(&plug);
5204 	handled = 0;
5205 	spin_lock_irq(&conf->device_lock);
5206 	while (1) {
5207 		struct bio *bio;
5208 		int batch_size, released;
5209 
5210 		released = release_stripe_list(conf, conf->temp_inactive_list);
5211 
5212 		if (
5213 		    !list_empty(&conf->bitmap_list)) {
5214 			/* Now is a good time to flush some bitmap updates */
5215 			conf->seq_flush++;
5216 			spin_unlock_irq(&conf->device_lock);
5217 			bitmap_unplug(mddev->bitmap);
5218 			spin_lock_irq(&conf->device_lock);
5219 			conf->seq_write = conf->seq_flush;
5220 			activate_bit_delay(conf, conf->temp_inactive_list);
5221 		}
5222 		raid5_activate_delayed(conf);
5223 
5224 		while ((bio = remove_bio_from_retry(conf))) {
5225 			int ok;
5226 			spin_unlock_irq(&conf->device_lock);
5227 			ok = retry_aligned_read(conf, bio);
5228 			spin_lock_irq(&conf->device_lock);
5229 			if (!ok)
5230 				break;
5231 			handled++;
5232 		}
5233 
5234 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5235 						   conf->temp_inactive_list);
5236 		if (!batch_size && !released)
5237 			break;
5238 		handled += batch_size;
5239 
5240 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5241 			spin_unlock_irq(&conf->device_lock);
5242 			md_check_recovery(mddev);
5243 			spin_lock_irq(&conf->device_lock);
5244 		}
5245 	}
5246 	pr_debug("%d stripes handled\n", handled);
5247 
5248 	spin_unlock_irq(&conf->device_lock);
5249 
5250 	async_tx_issue_pending_all();
5251 	blk_finish_plug(&plug);
5252 
5253 	pr_debug("--- raid5d inactive\n");
5254 }
5255 
5256 static ssize_t
5257 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5258 {
5259 	struct r5conf *conf = mddev->private;
5260 	if (conf)
5261 		return sprintf(page, "%d\n", conf->max_nr_stripes);
5262 	else
5263 		return 0;
5264 }
5265 
5266 int
5267 raid5_set_cache_size(struct mddev *mddev, int size)
5268 {
5269 	struct r5conf *conf = mddev->private;
5270 	int err;
5271 	int hash;
5272 
5273 	if (size <= 16 || size > 32768)
5274 		return -EINVAL;
5275 	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5276 	while (size < conf->max_nr_stripes) {
5277 		if (drop_one_stripe(conf, hash))
5278 			conf->max_nr_stripes--;
5279 		else
5280 			break;
5281 		hash--;
5282 		if (hash < 0)
5283 			hash = NR_STRIPE_HASH_LOCKS - 1;
5284 	}
5285 	err = md_allow_write(mddev);
5286 	if (err)
5287 		return err;
5288 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5289 	while (size > conf->max_nr_stripes) {
5290 		if (grow_one_stripe(conf, hash))
5291 			conf->max_nr_stripes++;
5292 		else break;
5293 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5294 	}
5295 	return 0;
5296 }
5297 EXPORT_SYMBOL(raid5_set_cache_size);
5298 
5299 static ssize_t
5300 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5301 {
5302 	struct r5conf *conf = mddev->private;
5303 	unsigned long new;
5304 	int err;
5305 
5306 	if (len >= PAGE_SIZE)
5307 		return -EINVAL;
5308 	if (!conf)
5309 		return -ENODEV;
5310 
5311 	if (kstrtoul(page, 10, &new))
5312 		return -EINVAL;
5313 	err = raid5_set_cache_size(mddev, new);
5314 	if (err)
5315 		return err;
5316 	return len;
5317 }
5318 
5319 static struct md_sysfs_entry
5320 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5321 				raid5_show_stripe_cache_size,
5322 				raid5_store_stripe_cache_size);
5323 
5324 static ssize_t
5325 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5326 {
5327 	struct r5conf *conf = mddev->private;
5328 	if (conf)
5329 		return sprintf(page, "%d\n", conf->bypass_threshold);
5330 	else
5331 		return 0;
5332 }
5333 
5334 static ssize_t
5335 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5336 {
5337 	struct r5conf *conf = mddev->private;
5338 	unsigned long new;
5339 	if (len >= PAGE_SIZE)
5340 		return -EINVAL;
5341 	if (!conf)
5342 		return -ENODEV;
5343 
5344 	if (kstrtoul(page, 10, &new))
5345 		return -EINVAL;
5346 	if (new > conf->max_nr_stripes)
5347 		return -EINVAL;
5348 	conf->bypass_threshold = new;
5349 	return len;
5350 }
5351 
5352 static struct md_sysfs_entry
5353 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5354 					S_IRUGO | S_IWUSR,
5355 					raid5_show_preread_threshold,
5356 					raid5_store_preread_threshold);
5357 
5358 static ssize_t
5359 stripe_cache_active_show(struct mddev *mddev, char *page)
5360 {
5361 	struct r5conf *conf = mddev->private;
5362 	if (conf)
5363 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5364 	else
5365 		return 0;
5366 }
5367 
5368 static struct md_sysfs_entry
5369 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5370 
5371 static ssize_t
5372 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5373 {
5374 	struct r5conf *conf = mddev->private;
5375 	if (conf)
5376 		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5377 	else
5378 		return 0;
5379 }
5380 
5381 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5382 			       int *group_cnt,
5383 			       int *worker_cnt_per_group,
5384 			       struct r5worker_group **worker_groups);
5385 static ssize_t
5386 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5387 {
5388 	struct r5conf *conf = mddev->private;
5389 	unsigned long new;
5390 	int err;
5391 	struct r5worker_group *new_groups, *old_groups;
5392 	int group_cnt, worker_cnt_per_group;
5393 
5394 	if (len >= PAGE_SIZE)
5395 		return -EINVAL;
5396 	if (!conf)
5397 		return -ENODEV;
5398 
5399 	if (kstrtoul(page, 10, &new))
5400 		return -EINVAL;
5401 
5402 	if (new == conf->worker_cnt_per_group)
5403 		return len;
5404 
5405 	mddev_suspend(mddev);
5406 
5407 	old_groups = conf->worker_groups;
5408 	if (old_groups)
5409 		flush_workqueue(raid5_wq);
5410 
5411 	err = alloc_thread_groups(conf, new,
5412 				  &group_cnt, &worker_cnt_per_group,
5413 				  &new_groups);
5414 	if (!err) {
5415 		spin_lock_irq(&conf->device_lock);
5416 		conf->group_cnt = group_cnt;
5417 		conf->worker_cnt_per_group = worker_cnt_per_group;
5418 		conf->worker_groups = new_groups;
5419 		spin_unlock_irq(&conf->device_lock);
5420 
5421 		if (old_groups)
5422 			kfree(old_groups[0].workers);
5423 		kfree(old_groups);
5424 	}
5425 
5426 	mddev_resume(mddev);
5427 
5428 	if (err)
5429 		return err;
5430 	return len;
5431 }
5432 
5433 static struct md_sysfs_entry
5434 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5435 				raid5_show_group_thread_cnt,
5436 				raid5_store_group_thread_cnt);
5437 
5438 static struct attribute *raid5_attrs[] =  {
5439 	&raid5_stripecache_size.attr,
5440 	&raid5_stripecache_active.attr,
5441 	&raid5_preread_bypass_threshold.attr,
5442 	&raid5_group_thread_cnt.attr,
5443 	NULL,
5444 };
5445 static struct attribute_group raid5_attrs_group = {
5446 	.name = NULL,
5447 	.attrs = raid5_attrs,
5448 };
5449 
5450 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5451 			       int *group_cnt,
5452 			       int *worker_cnt_per_group,
5453 			       struct r5worker_group **worker_groups)
5454 {
5455 	int i, j, k;
5456 	ssize_t size;
5457 	struct r5worker *workers;
5458 
5459 	*worker_cnt_per_group = cnt;
5460 	if (cnt == 0) {
5461 		*group_cnt = 0;
5462 		*worker_groups = NULL;
5463 		return 0;
5464 	}
5465 	*group_cnt = num_possible_nodes();
5466 	size = sizeof(struct r5worker) * cnt;
5467 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
5468 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
5469 				*group_cnt, GFP_NOIO);
5470 	if (!*worker_groups || !workers) {
5471 		kfree(workers);
5472 		kfree(*worker_groups);
5473 		return -ENOMEM;
5474 	}
5475 
5476 	for (i = 0; i < *group_cnt; i++) {
5477 		struct r5worker_group *group;
5478 
5479 		group = &(*worker_groups)[i];
5480 		INIT_LIST_HEAD(&group->handle_list);
5481 		group->conf = conf;
5482 		group->workers = workers + i * cnt;
5483 
5484 		for (j = 0; j < cnt; j++) {
5485 			struct r5worker *worker = group->workers + j;
5486 			worker->group = group;
5487 			INIT_WORK(&worker->work, raid5_do_work);
5488 
5489 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5490 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5491 		}
5492 	}
5493 
5494 	return 0;
5495 }
5496 
5497 static void free_thread_groups(struct r5conf *conf)
5498 {
5499 	if (conf->worker_groups)
5500 		kfree(conf->worker_groups[0].workers);
5501 	kfree(conf->worker_groups);
5502 	conf->worker_groups = NULL;
5503 }
5504 
5505 static sector_t
5506 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5507 {
5508 	struct r5conf *conf = mddev->private;
5509 
5510 	if (!sectors)
5511 		sectors = mddev->dev_sectors;
5512 	if (!raid_disks)
5513 		/* size is defined by the smallest of previous and new size */
5514 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5515 
5516 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5517 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5518 	return sectors * (raid_disks - conf->max_degraded);
5519 }
5520 
5521 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5522 {
5523 	safe_put_page(percpu->spare_page);
5524 	kfree(percpu->scribble);
5525 	percpu->spare_page = NULL;
5526 	percpu->scribble = NULL;
5527 }
5528 
5529 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5530 {
5531 	if (conf->level == 6 && !percpu->spare_page)
5532 		percpu->spare_page = alloc_page(GFP_KERNEL);
5533 	if (!percpu->scribble)
5534 		percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5535 
5536 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5537 		free_scratch_buffer(conf, percpu);
5538 		return -ENOMEM;
5539 	}
5540 
5541 	return 0;
5542 }
5543 
5544 static void raid5_free_percpu(struct r5conf *conf)
5545 {
5546 	unsigned long cpu;
5547 
5548 	if (!conf->percpu)
5549 		return;
5550 
5551 #ifdef CONFIG_HOTPLUG_CPU
5552 	unregister_cpu_notifier(&conf->cpu_notify);
5553 #endif
5554 
5555 	get_online_cpus();
5556 	for_each_possible_cpu(cpu)
5557 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5558 	put_online_cpus();
5559 
5560 	free_percpu(conf->percpu);
5561 }
5562 
5563 static void free_conf(struct r5conf *conf)
5564 {
5565 	free_thread_groups(conf);
5566 	shrink_stripes(conf);
5567 	raid5_free_percpu(conf);
5568 	kfree(conf->disks);
5569 	kfree(conf->stripe_hashtbl);
5570 	kfree(conf);
5571 }
5572 
5573 #ifdef CONFIG_HOTPLUG_CPU
5574 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5575 			      void *hcpu)
5576 {
5577 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5578 	long cpu = (long)hcpu;
5579 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5580 
5581 	switch (action) {
5582 	case CPU_UP_PREPARE:
5583 	case CPU_UP_PREPARE_FROZEN:
5584 		if (alloc_scratch_buffer(conf, percpu)) {
5585 			pr_err("%s: failed memory allocation for cpu%ld\n",
5586 			       __func__, cpu);
5587 			return notifier_from_errno(-ENOMEM);
5588 		}
5589 		break;
5590 	case CPU_DEAD:
5591 	case CPU_DEAD_FROZEN:
5592 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5593 		break;
5594 	default:
5595 		break;
5596 	}
5597 	return NOTIFY_OK;
5598 }
5599 #endif
5600 
5601 static int raid5_alloc_percpu(struct r5conf *conf)
5602 {
5603 	unsigned long cpu;
5604 	int err = 0;
5605 
5606 	conf->percpu = alloc_percpu(struct raid5_percpu);
5607 	if (!conf->percpu)
5608 		return -ENOMEM;
5609 
5610 #ifdef CONFIG_HOTPLUG_CPU
5611 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5612 	conf->cpu_notify.priority = 0;
5613 	err = register_cpu_notifier(&conf->cpu_notify);
5614 	if (err)
5615 		return err;
5616 #endif
5617 
5618 	get_online_cpus();
5619 	for_each_present_cpu(cpu) {
5620 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5621 		if (err) {
5622 			pr_err("%s: failed memory allocation for cpu%ld\n",
5623 			       __func__, cpu);
5624 			break;
5625 		}
5626 	}
5627 	put_online_cpus();
5628 
5629 	return err;
5630 }
5631 
5632 static struct r5conf *setup_conf(struct mddev *mddev)
5633 {
5634 	struct r5conf *conf;
5635 	int raid_disk, memory, max_disks;
5636 	struct md_rdev *rdev;
5637 	struct disk_info *disk;
5638 	char pers_name[6];
5639 	int i;
5640 	int group_cnt, worker_cnt_per_group;
5641 	struct r5worker_group *new_group;
5642 
5643 	if (mddev->new_level != 5
5644 	    && mddev->new_level != 4
5645 	    && mddev->new_level != 6) {
5646 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5647 		       mdname(mddev), mddev->new_level);
5648 		return ERR_PTR(-EIO);
5649 	}
5650 	if ((mddev->new_level == 5
5651 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5652 	    (mddev->new_level == 6
5653 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5654 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5655 		       mdname(mddev), mddev->new_layout);
5656 		return ERR_PTR(-EIO);
5657 	}
5658 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5659 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5660 		       mdname(mddev), mddev->raid_disks);
5661 		return ERR_PTR(-EINVAL);
5662 	}
5663 
5664 	if (!mddev->new_chunk_sectors ||
5665 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5666 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5667 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5668 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5669 		return ERR_PTR(-EINVAL);
5670 	}
5671 
5672 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5673 	if (conf == NULL)
5674 		goto abort;
5675 	/* Don't enable multi-threading by default*/
5676 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5677 				 &new_group)) {
5678 		conf->group_cnt = group_cnt;
5679 		conf->worker_cnt_per_group = worker_cnt_per_group;
5680 		conf->worker_groups = new_group;
5681 	} else
5682 		goto abort;
5683 	spin_lock_init(&conf->device_lock);
5684 	seqcount_init(&conf->gen_lock);
5685 	init_waitqueue_head(&conf->wait_for_stripe);
5686 	init_waitqueue_head(&conf->wait_for_overlap);
5687 	INIT_LIST_HEAD(&conf->handle_list);
5688 	INIT_LIST_HEAD(&conf->hold_list);
5689 	INIT_LIST_HEAD(&conf->delayed_list);
5690 	INIT_LIST_HEAD(&conf->bitmap_list);
5691 	init_llist_head(&conf->released_stripes);
5692 	atomic_set(&conf->active_stripes, 0);
5693 	atomic_set(&conf->preread_active_stripes, 0);
5694 	atomic_set(&conf->active_aligned_reads, 0);
5695 	conf->bypass_threshold = BYPASS_THRESHOLD;
5696 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5697 
5698 	conf->raid_disks = mddev->raid_disks;
5699 	if (mddev->reshape_position == MaxSector)
5700 		conf->previous_raid_disks = mddev->raid_disks;
5701 	else
5702 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5703 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5704 	conf->scribble_len = scribble_len(max_disks);
5705 
5706 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5707 			      GFP_KERNEL);
5708 	if (!conf->disks)
5709 		goto abort;
5710 
5711 	conf->mddev = mddev;
5712 
5713 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5714 		goto abort;
5715 
5716 	/* We init hash_locks[0] separately to that it can be used
5717 	 * as the reference lock in the spin_lock_nest_lock() call
5718 	 * in lock_all_device_hash_locks_irq in order to convince
5719 	 * lockdep that we know what we are doing.
5720 	 */
5721 	spin_lock_init(conf->hash_locks);
5722 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5723 		spin_lock_init(conf->hash_locks + i);
5724 
5725 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5726 		INIT_LIST_HEAD(conf->inactive_list + i);
5727 
5728 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5729 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
5730 
5731 	conf->level = mddev->new_level;
5732 	if (raid5_alloc_percpu(conf) != 0)
5733 		goto abort;
5734 
5735 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5736 
5737 	rdev_for_each(rdev, mddev) {
5738 		raid_disk = rdev->raid_disk;
5739 		if (raid_disk >= max_disks
5740 		    || raid_disk < 0)
5741 			continue;
5742 		disk = conf->disks + raid_disk;
5743 
5744 		if (test_bit(Replacement, &rdev->flags)) {
5745 			if (disk->replacement)
5746 				goto abort;
5747 			disk->replacement = rdev;
5748 		} else {
5749 			if (disk->rdev)
5750 				goto abort;
5751 			disk->rdev = rdev;
5752 		}
5753 
5754 		if (test_bit(In_sync, &rdev->flags)) {
5755 			char b[BDEVNAME_SIZE];
5756 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5757 			       " disk %d\n",
5758 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5759 		} else if (rdev->saved_raid_disk != raid_disk)
5760 			/* Cannot rely on bitmap to complete recovery */
5761 			conf->fullsync = 1;
5762 	}
5763 
5764 	conf->chunk_sectors = mddev->new_chunk_sectors;
5765 	conf->level = mddev->new_level;
5766 	if (conf->level == 6)
5767 		conf->max_degraded = 2;
5768 	else
5769 		conf->max_degraded = 1;
5770 	conf->algorithm = mddev->new_layout;
5771 	conf->reshape_progress = mddev->reshape_position;
5772 	if (conf->reshape_progress != MaxSector) {
5773 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5774 		conf->prev_algo = mddev->layout;
5775 	}
5776 
5777 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5778 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5779 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5780 	if (grow_stripes(conf, NR_STRIPES)) {
5781 		printk(KERN_ERR
5782 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5783 		       mdname(mddev), memory);
5784 		goto abort;
5785 	} else
5786 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5787 		       mdname(mddev), memory);
5788 
5789 	sprintf(pers_name, "raid%d", mddev->new_level);
5790 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5791 	if (!conf->thread) {
5792 		printk(KERN_ERR
5793 		       "md/raid:%s: couldn't allocate thread.\n",
5794 		       mdname(mddev));
5795 		goto abort;
5796 	}
5797 
5798 	return conf;
5799 
5800  abort:
5801 	if (conf) {
5802 		free_conf(conf);
5803 		return ERR_PTR(-EIO);
5804 	} else
5805 		return ERR_PTR(-ENOMEM);
5806 }
5807 
5808 
5809 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5810 {
5811 	switch (algo) {
5812 	case ALGORITHM_PARITY_0:
5813 		if (raid_disk < max_degraded)
5814 			return 1;
5815 		break;
5816 	case ALGORITHM_PARITY_N:
5817 		if (raid_disk >= raid_disks - max_degraded)
5818 			return 1;
5819 		break;
5820 	case ALGORITHM_PARITY_0_6:
5821 		if (raid_disk == 0 ||
5822 		    raid_disk == raid_disks - 1)
5823 			return 1;
5824 		break;
5825 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5826 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5827 	case ALGORITHM_LEFT_SYMMETRIC_6:
5828 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5829 		if (raid_disk == raid_disks - 1)
5830 			return 1;
5831 	}
5832 	return 0;
5833 }
5834 
5835 static int run(struct mddev *mddev)
5836 {
5837 	struct r5conf *conf;
5838 	int working_disks = 0;
5839 	int dirty_parity_disks = 0;
5840 	struct md_rdev *rdev;
5841 	sector_t reshape_offset = 0;
5842 	int i;
5843 	long long min_offset_diff = 0;
5844 	int first = 1;
5845 
5846 	if (mddev->recovery_cp != MaxSector)
5847 		printk(KERN_NOTICE "md/raid:%s: not clean"
5848 		       " -- starting background reconstruction\n",
5849 		       mdname(mddev));
5850 
5851 	rdev_for_each(rdev, mddev) {
5852 		long long diff;
5853 		if (rdev->raid_disk < 0)
5854 			continue;
5855 		diff = (rdev->new_data_offset - rdev->data_offset);
5856 		if (first) {
5857 			min_offset_diff = diff;
5858 			first = 0;
5859 		} else if (mddev->reshape_backwards &&
5860 			 diff < min_offset_diff)
5861 			min_offset_diff = diff;
5862 		else if (!mddev->reshape_backwards &&
5863 			 diff > min_offset_diff)
5864 			min_offset_diff = diff;
5865 	}
5866 
5867 	if (mddev->reshape_position != MaxSector) {
5868 		/* Check that we can continue the reshape.
5869 		 * Difficulties arise if the stripe we would write to
5870 		 * next is at or after the stripe we would read from next.
5871 		 * For a reshape that changes the number of devices, this
5872 		 * is only possible for a very short time, and mdadm makes
5873 		 * sure that time appears to have past before assembling
5874 		 * the array.  So we fail if that time hasn't passed.
5875 		 * For a reshape that keeps the number of devices the same
5876 		 * mdadm must be monitoring the reshape can keeping the
5877 		 * critical areas read-only and backed up.  It will start
5878 		 * the array in read-only mode, so we check for that.
5879 		 */
5880 		sector_t here_new, here_old;
5881 		int old_disks;
5882 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5883 
5884 		if (mddev->new_level != mddev->level) {
5885 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5886 			       "required - aborting.\n",
5887 			       mdname(mddev));
5888 			return -EINVAL;
5889 		}
5890 		old_disks = mddev->raid_disks - mddev->delta_disks;
5891 		/* reshape_position must be on a new-stripe boundary, and one
5892 		 * further up in new geometry must map after here in old
5893 		 * geometry.
5894 		 */
5895 		here_new = mddev->reshape_position;
5896 		if (sector_div(here_new, mddev->new_chunk_sectors *
5897 			       (mddev->raid_disks - max_degraded))) {
5898 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5899 			       "on a stripe boundary\n", mdname(mddev));
5900 			return -EINVAL;
5901 		}
5902 		reshape_offset = here_new * mddev->new_chunk_sectors;
5903 		/* here_new is the stripe we will write to */
5904 		here_old = mddev->reshape_position;
5905 		sector_div(here_old, mddev->chunk_sectors *
5906 			   (old_disks-max_degraded));
5907 		/* here_old is the first stripe that we might need to read
5908 		 * from */
5909 		if (mddev->delta_disks == 0) {
5910 			if ((here_new * mddev->new_chunk_sectors !=
5911 			     here_old * mddev->chunk_sectors)) {
5912 				printk(KERN_ERR "md/raid:%s: reshape position is"
5913 				       " confused - aborting\n", mdname(mddev));
5914 				return -EINVAL;
5915 			}
5916 			/* We cannot be sure it is safe to start an in-place
5917 			 * reshape.  It is only safe if user-space is monitoring
5918 			 * and taking constant backups.
5919 			 * mdadm always starts a situation like this in
5920 			 * readonly mode so it can take control before
5921 			 * allowing any writes.  So just check for that.
5922 			 */
5923 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5924 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5925 				/* not really in-place - so OK */;
5926 			else if (mddev->ro == 0) {
5927 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5928 				       "must be started in read-only mode "
5929 				       "- aborting\n",
5930 				       mdname(mddev));
5931 				return -EINVAL;
5932 			}
5933 		} else if (mddev->reshape_backwards
5934 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5935 		       here_old * mddev->chunk_sectors)
5936 		    : (here_new * mddev->new_chunk_sectors >=
5937 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5938 			/* Reading from the same stripe as writing to - bad */
5939 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5940 			       "auto-recovery - aborting.\n",
5941 			       mdname(mddev));
5942 			return -EINVAL;
5943 		}
5944 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5945 		       mdname(mddev));
5946 		/* OK, we should be able to continue; */
5947 	} else {
5948 		BUG_ON(mddev->level != mddev->new_level);
5949 		BUG_ON(mddev->layout != mddev->new_layout);
5950 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5951 		BUG_ON(mddev->delta_disks != 0);
5952 	}
5953 
5954 	if (mddev->private == NULL)
5955 		conf = setup_conf(mddev);
5956 	else
5957 		conf = mddev->private;
5958 
5959 	if (IS_ERR(conf))
5960 		return PTR_ERR(conf);
5961 
5962 	conf->min_offset_diff = min_offset_diff;
5963 	mddev->thread = conf->thread;
5964 	conf->thread = NULL;
5965 	mddev->private = conf;
5966 
5967 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5968 	     i++) {
5969 		rdev = conf->disks[i].rdev;
5970 		if (!rdev && conf->disks[i].replacement) {
5971 			/* The replacement is all we have yet */
5972 			rdev = conf->disks[i].replacement;
5973 			conf->disks[i].replacement = NULL;
5974 			clear_bit(Replacement, &rdev->flags);
5975 			conf->disks[i].rdev = rdev;
5976 		}
5977 		if (!rdev)
5978 			continue;
5979 		if (conf->disks[i].replacement &&
5980 		    conf->reshape_progress != MaxSector) {
5981 			/* replacements and reshape simply do not mix. */
5982 			printk(KERN_ERR "md: cannot handle concurrent "
5983 			       "replacement and reshape.\n");
5984 			goto abort;
5985 		}
5986 		if (test_bit(In_sync, &rdev->flags)) {
5987 			working_disks++;
5988 			continue;
5989 		}
5990 		/* This disc is not fully in-sync.  However if it
5991 		 * just stored parity (beyond the recovery_offset),
5992 		 * when we don't need to be concerned about the
5993 		 * array being dirty.
5994 		 * When reshape goes 'backwards', we never have
5995 		 * partially completed devices, so we only need
5996 		 * to worry about reshape going forwards.
5997 		 */
5998 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5999 		if (mddev->major_version == 0 &&
6000 		    mddev->minor_version > 90)
6001 			rdev->recovery_offset = reshape_offset;
6002 
6003 		if (rdev->recovery_offset < reshape_offset) {
6004 			/* We need to check old and new layout */
6005 			if (!only_parity(rdev->raid_disk,
6006 					 conf->algorithm,
6007 					 conf->raid_disks,
6008 					 conf->max_degraded))
6009 				continue;
6010 		}
6011 		if (!only_parity(rdev->raid_disk,
6012 				 conf->prev_algo,
6013 				 conf->previous_raid_disks,
6014 				 conf->max_degraded))
6015 			continue;
6016 		dirty_parity_disks++;
6017 	}
6018 
6019 	/*
6020 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6021 	 */
6022 	mddev->degraded = calc_degraded(conf);
6023 
6024 	if (has_failed(conf)) {
6025 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6026 			" (%d/%d failed)\n",
6027 			mdname(mddev), mddev->degraded, conf->raid_disks);
6028 		goto abort;
6029 	}
6030 
6031 	/* device size must be a multiple of chunk size */
6032 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6033 	mddev->resync_max_sectors = mddev->dev_sectors;
6034 
6035 	if (mddev->degraded > dirty_parity_disks &&
6036 	    mddev->recovery_cp != MaxSector) {
6037 		if (mddev->ok_start_degraded)
6038 			printk(KERN_WARNING
6039 			       "md/raid:%s: starting dirty degraded array"
6040 			       " - data corruption possible.\n",
6041 			       mdname(mddev));
6042 		else {
6043 			printk(KERN_ERR
6044 			       "md/raid:%s: cannot start dirty degraded array.\n",
6045 			       mdname(mddev));
6046 			goto abort;
6047 		}
6048 	}
6049 
6050 	if (mddev->degraded == 0)
6051 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6052 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6053 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6054 		       mddev->new_layout);
6055 	else
6056 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6057 		       " out of %d devices, algorithm %d\n",
6058 		       mdname(mddev), conf->level,
6059 		       mddev->raid_disks - mddev->degraded,
6060 		       mddev->raid_disks, mddev->new_layout);
6061 
6062 	print_raid5_conf(conf);
6063 
6064 	if (conf->reshape_progress != MaxSector) {
6065 		conf->reshape_safe = conf->reshape_progress;
6066 		atomic_set(&conf->reshape_stripes, 0);
6067 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6068 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6069 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6070 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6071 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6072 							"reshape");
6073 	}
6074 
6075 
6076 	/* Ok, everything is just fine now */
6077 	if (mddev->to_remove == &raid5_attrs_group)
6078 		mddev->to_remove = NULL;
6079 	else if (mddev->kobj.sd &&
6080 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6081 		printk(KERN_WARNING
6082 		       "raid5: failed to create sysfs attributes for %s\n",
6083 		       mdname(mddev));
6084 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6085 
6086 	if (mddev->queue) {
6087 		int chunk_size;
6088 		bool discard_supported = true;
6089 		/* read-ahead size must cover two whole stripes, which
6090 		 * is 2 * (datadisks) * chunksize where 'n' is the
6091 		 * number of raid devices
6092 		 */
6093 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6094 		int stripe = data_disks *
6095 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6096 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6097 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6098 
6099 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6100 
6101 		mddev->queue->backing_dev_info.congested_data = mddev;
6102 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6103 
6104 		chunk_size = mddev->chunk_sectors << 9;
6105 		blk_queue_io_min(mddev->queue, chunk_size);
6106 		blk_queue_io_opt(mddev->queue, chunk_size *
6107 				 (conf->raid_disks - conf->max_degraded));
6108 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6109 		/*
6110 		 * We can only discard a whole stripe. It doesn't make sense to
6111 		 * discard data disk but write parity disk
6112 		 */
6113 		stripe = stripe * PAGE_SIZE;
6114 		/* Round up to power of 2, as discard handling
6115 		 * currently assumes that */
6116 		while ((stripe-1) & stripe)
6117 			stripe = (stripe | (stripe-1)) + 1;
6118 		mddev->queue->limits.discard_alignment = stripe;
6119 		mddev->queue->limits.discard_granularity = stripe;
6120 		/*
6121 		 * unaligned part of discard request will be ignored, so can't
6122 		 * guarantee discard_zerors_data
6123 		 */
6124 		mddev->queue->limits.discard_zeroes_data = 0;
6125 
6126 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6127 
6128 		rdev_for_each(rdev, mddev) {
6129 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6130 					  rdev->data_offset << 9);
6131 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6132 					  rdev->new_data_offset << 9);
6133 			/*
6134 			 * discard_zeroes_data is required, otherwise data
6135 			 * could be lost. Consider a scenario: discard a stripe
6136 			 * (the stripe could be inconsistent if
6137 			 * discard_zeroes_data is 0); write one disk of the
6138 			 * stripe (the stripe could be inconsistent again
6139 			 * depending on which disks are used to calculate
6140 			 * parity); the disk is broken; The stripe data of this
6141 			 * disk is lost.
6142 			 */
6143 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6144 			    !bdev_get_queue(rdev->bdev)->
6145 						limits.discard_zeroes_data)
6146 				discard_supported = false;
6147 		}
6148 
6149 		if (discard_supported &&
6150 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6151 		   mddev->queue->limits.discard_granularity >= stripe)
6152 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6153 						mddev->queue);
6154 		else
6155 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6156 						mddev->queue);
6157 	}
6158 
6159 	return 0;
6160 abort:
6161 	md_unregister_thread(&mddev->thread);
6162 	print_raid5_conf(conf);
6163 	free_conf(conf);
6164 	mddev->private = NULL;
6165 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6166 	return -EIO;
6167 }
6168 
6169 static int stop(struct mddev *mddev)
6170 {
6171 	struct r5conf *conf = mddev->private;
6172 
6173 	md_unregister_thread(&mddev->thread);
6174 	if (mddev->queue)
6175 		mddev->queue->backing_dev_info.congested_fn = NULL;
6176 	free_conf(conf);
6177 	mddev->private = NULL;
6178 	mddev->to_remove = &raid5_attrs_group;
6179 	return 0;
6180 }
6181 
6182 static void status(struct seq_file *seq, struct mddev *mddev)
6183 {
6184 	struct r5conf *conf = mddev->private;
6185 	int i;
6186 
6187 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6188 		mddev->chunk_sectors / 2, mddev->layout);
6189 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6190 	for (i = 0; i < conf->raid_disks; i++)
6191 		seq_printf (seq, "%s",
6192 			       conf->disks[i].rdev &&
6193 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6194 	seq_printf (seq, "]");
6195 }
6196 
6197 static void print_raid5_conf (struct r5conf *conf)
6198 {
6199 	int i;
6200 	struct disk_info *tmp;
6201 
6202 	printk(KERN_DEBUG "RAID conf printout:\n");
6203 	if (!conf) {
6204 		printk("(conf==NULL)\n");
6205 		return;
6206 	}
6207 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6208 	       conf->raid_disks,
6209 	       conf->raid_disks - conf->mddev->degraded);
6210 
6211 	for (i = 0; i < conf->raid_disks; i++) {
6212 		char b[BDEVNAME_SIZE];
6213 		tmp = conf->disks + i;
6214 		if (tmp->rdev)
6215 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6216 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6217 			       bdevname(tmp->rdev->bdev, b));
6218 	}
6219 }
6220 
6221 static int raid5_spare_active(struct mddev *mddev)
6222 {
6223 	int i;
6224 	struct r5conf *conf = mddev->private;
6225 	struct disk_info *tmp;
6226 	int count = 0;
6227 	unsigned long flags;
6228 
6229 	for (i = 0; i < conf->raid_disks; i++) {
6230 		tmp = conf->disks + i;
6231 		if (tmp->replacement
6232 		    && tmp->replacement->recovery_offset == MaxSector
6233 		    && !test_bit(Faulty, &tmp->replacement->flags)
6234 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6235 			/* Replacement has just become active. */
6236 			if (!tmp->rdev
6237 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6238 				count++;
6239 			if (tmp->rdev) {
6240 				/* Replaced device not technically faulty,
6241 				 * but we need to be sure it gets removed
6242 				 * and never re-added.
6243 				 */
6244 				set_bit(Faulty, &tmp->rdev->flags);
6245 				sysfs_notify_dirent_safe(
6246 					tmp->rdev->sysfs_state);
6247 			}
6248 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6249 		} else if (tmp->rdev
6250 		    && tmp->rdev->recovery_offset == MaxSector
6251 		    && !test_bit(Faulty, &tmp->rdev->flags)
6252 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6253 			count++;
6254 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6255 		}
6256 	}
6257 	spin_lock_irqsave(&conf->device_lock, flags);
6258 	mddev->degraded = calc_degraded(conf);
6259 	spin_unlock_irqrestore(&conf->device_lock, flags);
6260 	print_raid5_conf(conf);
6261 	return count;
6262 }
6263 
6264 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6265 {
6266 	struct r5conf *conf = mddev->private;
6267 	int err = 0;
6268 	int number = rdev->raid_disk;
6269 	struct md_rdev **rdevp;
6270 	struct disk_info *p = conf->disks + number;
6271 
6272 	print_raid5_conf(conf);
6273 	if (rdev == p->rdev)
6274 		rdevp = &p->rdev;
6275 	else if (rdev == p->replacement)
6276 		rdevp = &p->replacement;
6277 	else
6278 		return 0;
6279 
6280 	if (number >= conf->raid_disks &&
6281 	    conf->reshape_progress == MaxSector)
6282 		clear_bit(In_sync, &rdev->flags);
6283 
6284 	if (test_bit(In_sync, &rdev->flags) ||
6285 	    atomic_read(&rdev->nr_pending)) {
6286 		err = -EBUSY;
6287 		goto abort;
6288 	}
6289 	/* Only remove non-faulty devices if recovery
6290 	 * isn't possible.
6291 	 */
6292 	if (!test_bit(Faulty, &rdev->flags) &&
6293 	    mddev->recovery_disabled != conf->recovery_disabled &&
6294 	    !has_failed(conf) &&
6295 	    (!p->replacement || p->replacement == rdev) &&
6296 	    number < conf->raid_disks) {
6297 		err = -EBUSY;
6298 		goto abort;
6299 	}
6300 	*rdevp = NULL;
6301 	synchronize_rcu();
6302 	if (atomic_read(&rdev->nr_pending)) {
6303 		/* lost the race, try later */
6304 		err = -EBUSY;
6305 		*rdevp = rdev;
6306 	} else if (p->replacement) {
6307 		/* We must have just cleared 'rdev' */
6308 		p->rdev = p->replacement;
6309 		clear_bit(Replacement, &p->replacement->flags);
6310 		smp_mb(); /* Make sure other CPUs may see both as identical
6311 			   * but will never see neither - if they are careful
6312 			   */
6313 		p->replacement = NULL;
6314 		clear_bit(WantReplacement, &rdev->flags);
6315 	} else
6316 		/* We might have just removed the Replacement as faulty-
6317 		 * clear the bit just in case
6318 		 */
6319 		clear_bit(WantReplacement, &rdev->flags);
6320 abort:
6321 
6322 	print_raid5_conf(conf);
6323 	return err;
6324 }
6325 
6326 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6327 {
6328 	struct r5conf *conf = mddev->private;
6329 	int err = -EEXIST;
6330 	int disk;
6331 	struct disk_info *p;
6332 	int first = 0;
6333 	int last = conf->raid_disks - 1;
6334 
6335 	if (mddev->recovery_disabled == conf->recovery_disabled)
6336 		return -EBUSY;
6337 
6338 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6339 		/* no point adding a device */
6340 		return -EINVAL;
6341 
6342 	if (rdev->raid_disk >= 0)
6343 		first = last = rdev->raid_disk;
6344 
6345 	/*
6346 	 * find the disk ... but prefer rdev->saved_raid_disk
6347 	 * if possible.
6348 	 */
6349 	if (rdev->saved_raid_disk >= 0 &&
6350 	    rdev->saved_raid_disk >= first &&
6351 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6352 		first = rdev->saved_raid_disk;
6353 
6354 	for (disk = first; disk <= last; disk++) {
6355 		p = conf->disks + disk;
6356 		if (p->rdev == NULL) {
6357 			clear_bit(In_sync, &rdev->flags);
6358 			rdev->raid_disk = disk;
6359 			err = 0;
6360 			if (rdev->saved_raid_disk != disk)
6361 				conf->fullsync = 1;
6362 			rcu_assign_pointer(p->rdev, rdev);
6363 			goto out;
6364 		}
6365 	}
6366 	for (disk = first; disk <= last; disk++) {
6367 		p = conf->disks + disk;
6368 		if (test_bit(WantReplacement, &p->rdev->flags) &&
6369 		    p->replacement == NULL) {
6370 			clear_bit(In_sync, &rdev->flags);
6371 			set_bit(Replacement, &rdev->flags);
6372 			rdev->raid_disk = disk;
6373 			err = 0;
6374 			conf->fullsync = 1;
6375 			rcu_assign_pointer(p->replacement, rdev);
6376 			break;
6377 		}
6378 	}
6379 out:
6380 	print_raid5_conf(conf);
6381 	return err;
6382 }
6383 
6384 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6385 {
6386 	/* no resync is happening, and there is enough space
6387 	 * on all devices, so we can resize.
6388 	 * We need to make sure resync covers any new space.
6389 	 * If the array is shrinking we should possibly wait until
6390 	 * any io in the removed space completes, but it hardly seems
6391 	 * worth it.
6392 	 */
6393 	sector_t newsize;
6394 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6395 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6396 	if (mddev->external_size &&
6397 	    mddev->array_sectors > newsize)
6398 		return -EINVAL;
6399 	if (mddev->bitmap) {
6400 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6401 		if (ret)
6402 			return ret;
6403 	}
6404 	md_set_array_sectors(mddev, newsize);
6405 	set_capacity(mddev->gendisk, mddev->array_sectors);
6406 	revalidate_disk(mddev->gendisk);
6407 	if (sectors > mddev->dev_sectors &&
6408 	    mddev->recovery_cp > mddev->dev_sectors) {
6409 		mddev->recovery_cp = mddev->dev_sectors;
6410 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6411 	}
6412 	mddev->dev_sectors = sectors;
6413 	mddev->resync_max_sectors = sectors;
6414 	return 0;
6415 }
6416 
6417 static int check_stripe_cache(struct mddev *mddev)
6418 {
6419 	/* Can only proceed if there are plenty of stripe_heads.
6420 	 * We need a minimum of one full stripe,, and for sensible progress
6421 	 * it is best to have about 4 times that.
6422 	 * If we require 4 times, then the default 256 4K stripe_heads will
6423 	 * allow for chunk sizes up to 256K, which is probably OK.
6424 	 * If the chunk size is greater, user-space should request more
6425 	 * stripe_heads first.
6426 	 */
6427 	struct r5conf *conf = mddev->private;
6428 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6429 	    > conf->max_nr_stripes ||
6430 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6431 	    > conf->max_nr_stripes) {
6432 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6433 		       mdname(mddev),
6434 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6435 			/ STRIPE_SIZE)*4);
6436 		return 0;
6437 	}
6438 	return 1;
6439 }
6440 
6441 static int check_reshape(struct mddev *mddev)
6442 {
6443 	struct r5conf *conf = mddev->private;
6444 
6445 	if (mddev->delta_disks == 0 &&
6446 	    mddev->new_layout == mddev->layout &&
6447 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6448 		return 0; /* nothing to do */
6449 	if (has_failed(conf))
6450 		return -EINVAL;
6451 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6452 		/* We might be able to shrink, but the devices must
6453 		 * be made bigger first.
6454 		 * For raid6, 4 is the minimum size.
6455 		 * Otherwise 2 is the minimum
6456 		 */
6457 		int min = 2;
6458 		if (mddev->level == 6)
6459 			min = 4;
6460 		if (mddev->raid_disks + mddev->delta_disks < min)
6461 			return -EINVAL;
6462 	}
6463 
6464 	if (!check_stripe_cache(mddev))
6465 		return -ENOSPC;
6466 
6467 	return resize_stripes(conf, (conf->previous_raid_disks
6468 				     + mddev->delta_disks));
6469 }
6470 
6471 static int raid5_start_reshape(struct mddev *mddev)
6472 {
6473 	struct r5conf *conf = mddev->private;
6474 	struct md_rdev *rdev;
6475 	int spares = 0;
6476 	unsigned long flags;
6477 
6478 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6479 		return -EBUSY;
6480 
6481 	if (!check_stripe_cache(mddev))
6482 		return -ENOSPC;
6483 
6484 	if (has_failed(conf))
6485 		return -EINVAL;
6486 
6487 	rdev_for_each(rdev, mddev) {
6488 		if (!test_bit(In_sync, &rdev->flags)
6489 		    && !test_bit(Faulty, &rdev->flags))
6490 			spares++;
6491 	}
6492 
6493 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6494 		/* Not enough devices even to make a degraded array
6495 		 * of that size
6496 		 */
6497 		return -EINVAL;
6498 
6499 	/* Refuse to reduce size of the array.  Any reductions in
6500 	 * array size must be through explicit setting of array_size
6501 	 * attribute.
6502 	 */
6503 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6504 	    < mddev->array_sectors) {
6505 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6506 		       "before number of disks\n", mdname(mddev));
6507 		return -EINVAL;
6508 	}
6509 
6510 	atomic_set(&conf->reshape_stripes, 0);
6511 	spin_lock_irq(&conf->device_lock);
6512 	write_seqcount_begin(&conf->gen_lock);
6513 	conf->previous_raid_disks = conf->raid_disks;
6514 	conf->raid_disks += mddev->delta_disks;
6515 	conf->prev_chunk_sectors = conf->chunk_sectors;
6516 	conf->chunk_sectors = mddev->new_chunk_sectors;
6517 	conf->prev_algo = conf->algorithm;
6518 	conf->algorithm = mddev->new_layout;
6519 	conf->generation++;
6520 	/* Code that selects data_offset needs to see the generation update
6521 	 * if reshape_progress has been set - so a memory barrier needed.
6522 	 */
6523 	smp_mb();
6524 	if (mddev->reshape_backwards)
6525 		conf->reshape_progress = raid5_size(mddev, 0, 0);
6526 	else
6527 		conf->reshape_progress = 0;
6528 	conf->reshape_safe = conf->reshape_progress;
6529 	write_seqcount_end(&conf->gen_lock);
6530 	spin_unlock_irq(&conf->device_lock);
6531 
6532 	/* Now make sure any requests that proceeded on the assumption
6533 	 * the reshape wasn't running - like Discard or Read - have
6534 	 * completed.
6535 	 */
6536 	mddev_suspend(mddev);
6537 	mddev_resume(mddev);
6538 
6539 	/* Add some new drives, as many as will fit.
6540 	 * We know there are enough to make the newly sized array work.
6541 	 * Don't add devices if we are reducing the number of
6542 	 * devices in the array.  This is because it is not possible
6543 	 * to correctly record the "partially reconstructed" state of
6544 	 * such devices during the reshape and confusion could result.
6545 	 */
6546 	if (mddev->delta_disks >= 0) {
6547 		rdev_for_each(rdev, mddev)
6548 			if (rdev->raid_disk < 0 &&
6549 			    !test_bit(Faulty, &rdev->flags)) {
6550 				if (raid5_add_disk(mddev, rdev) == 0) {
6551 					if (rdev->raid_disk
6552 					    >= conf->previous_raid_disks)
6553 						set_bit(In_sync, &rdev->flags);
6554 					else
6555 						rdev->recovery_offset = 0;
6556 
6557 					if (sysfs_link_rdev(mddev, rdev))
6558 						/* Failure here is OK */;
6559 				}
6560 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6561 				   && !test_bit(Faulty, &rdev->flags)) {
6562 				/* This is a spare that was manually added */
6563 				set_bit(In_sync, &rdev->flags);
6564 			}
6565 
6566 		/* When a reshape changes the number of devices,
6567 		 * ->degraded is measured against the larger of the
6568 		 * pre and post number of devices.
6569 		 */
6570 		spin_lock_irqsave(&conf->device_lock, flags);
6571 		mddev->degraded = calc_degraded(conf);
6572 		spin_unlock_irqrestore(&conf->device_lock, flags);
6573 	}
6574 	mddev->raid_disks = conf->raid_disks;
6575 	mddev->reshape_position = conf->reshape_progress;
6576 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6577 
6578 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6579 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6580 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6581 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6582 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6583 						"reshape");
6584 	if (!mddev->sync_thread) {
6585 		mddev->recovery = 0;
6586 		spin_lock_irq(&conf->device_lock);
6587 		write_seqcount_begin(&conf->gen_lock);
6588 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6589 		mddev->new_chunk_sectors =
6590 			conf->chunk_sectors = conf->prev_chunk_sectors;
6591 		mddev->new_layout = conf->algorithm = conf->prev_algo;
6592 		rdev_for_each(rdev, mddev)
6593 			rdev->new_data_offset = rdev->data_offset;
6594 		smp_wmb();
6595 		conf->generation --;
6596 		conf->reshape_progress = MaxSector;
6597 		mddev->reshape_position = MaxSector;
6598 		write_seqcount_end(&conf->gen_lock);
6599 		spin_unlock_irq(&conf->device_lock);
6600 		return -EAGAIN;
6601 	}
6602 	conf->reshape_checkpoint = jiffies;
6603 	md_wakeup_thread(mddev->sync_thread);
6604 	md_new_event(mddev);
6605 	return 0;
6606 }
6607 
6608 /* This is called from the reshape thread and should make any
6609  * changes needed in 'conf'
6610  */
6611 static void end_reshape(struct r5conf *conf)
6612 {
6613 
6614 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6615 		struct md_rdev *rdev;
6616 
6617 		spin_lock_irq(&conf->device_lock);
6618 		conf->previous_raid_disks = conf->raid_disks;
6619 		rdev_for_each(rdev, conf->mddev)
6620 			rdev->data_offset = rdev->new_data_offset;
6621 		smp_wmb();
6622 		conf->reshape_progress = MaxSector;
6623 		spin_unlock_irq(&conf->device_lock);
6624 		wake_up(&conf->wait_for_overlap);
6625 
6626 		/* read-ahead size must cover two whole stripes, which is
6627 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6628 		 */
6629 		if (conf->mddev->queue) {
6630 			int data_disks = conf->raid_disks - conf->max_degraded;
6631 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6632 						   / PAGE_SIZE);
6633 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6634 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6635 		}
6636 	}
6637 }
6638 
6639 /* This is called from the raid5d thread with mddev_lock held.
6640  * It makes config changes to the device.
6641  */
6642 static void raid5_finish_reshape(struct mddev *mddev)
6643 {
6644 	struct r5conf *conf = mddev->private;
6645 
6646 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6647 
6648 		if (mddev->delta_disks > 0) {
6649 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6650 			set_capacity(mddev->gendisk, mddev->array_sectors);
6651 			revalidate_disk(mddev->gendisk);
6652 		} else {
6653 			int d;
6654 			spin_lock_irq(&conf->device_lock);
6655 			mddev->degraded = calc_degraded(conf);
6656 			spin_unlock_irq(&conf->device_lock);
6657 			for (d = conf->raid_disks ;
6658 			     d < conf->raid_disks - mddev->delta_disks;
6659 			     d++) {
6660 				struct md_rdev *rdev = conf->disks[d].rdev;
6661 				if (rdev)
6662 					clear_bit(In_sync, &rdev->flags);
6663 				rdev = conf->disks[d].replacement;
6664 				if (rdev)
6665 					clear_bit(In_sync, &rdev->flags);
6666 			}
6667 		}
6668 		mddev->layout = conf->algorithm;
6669 		mddev->chunk_sectors = conf->chunk_sectors;
6670 		mddev->reshape_position = MaxSector;
6671 		mddev->delta_disks = 0;
6672 		mddev->reshape_backwards = 0;
6673 	}
6674 }
6675 
6676 static void raid5_quiesce(struct mddev *mddev, int state)
6677 {
6678 	struct r5conf *conf = mddev->private;
6679 
6680 	switch(state) {
6681 	case 2: /* resume for a suspend */
6682 		wake_up(&conf->wait_for_overlap);
6683 		break;
6684 
6685 	case 1: /* stop all writes */
6686 		lock_all_device_hash_locks_irq(conf);
6687 		/* '2' tells resync/reshape to pause so that all
6688 		 * active stripes can drain
6689 		 */
6690 		conf->quiesce = 2;
6691 		wait_event_cmd(conf->wait_for_stripe,
6692 				    atomic_read(&conf->active_stripes) == 0 &&
6693 				    atomic_read(&conf->active_aligned_reads) == 0,
6694 				    unlock_all_device_hash_locks_irq(conf),
6695 				    lock_all_device_hash_locks_irq(conf));
6696 		conf->quiesce = 1;
6697 		unlock_all_device_hash_locks_irq(conf);
6698 		/* allow reshape to continue */
6699 		wake_up(&conf->wait_for_overlap);
6700 		break;
6701 
6702 	case 0: /* re-enable writes */
6703 		lock_all_device_hash_locks_irq(conf);
6704 		conf->quiesce = 0;
6705 		wake_up(&conf->wait_for_stripe);
6706 		wake_up(&conf->wait_for_overlap);
6707 		unlock_all_device_hash_locks_irq(conf);
6708 		break;
6709 	}
6710 }
6711 
6712 
6713 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6714 {
6715 	struct r0conf *raid0_conf = mddev->private;
6716 	sector_t sectors;
6717 
6718 	/* for raid0 takeover only one zone is supported */
6719 	if (raid0_conf->nr_strip_zones > 1) {
6720 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6721 		       mdname(mddev));
6722 		return ERR_PTR(-EINVAL);
6723 	}
6724 
6725 	sectors = raid0_conf->strip_zone[0].zone_end;
6726 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6727 	mddev->dev_sectors = sectors;
6728 	mddev->new_level = level;
6729 	mddev->new_layout = ALGORITHM_PARITY_N;
6730 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6731 	mddev->raid_disks += 1;
6732 	mddev->delta_disks = 1;
6733 	/* make sure it will be not marked as dirty */
6734 	mddev->recovery_cp = MaxSector;
6735 
6736 	return setup_conf(mddev);
6737 }
6738 
6739 
6740 static void *raid5_takeover_raid1(struct mddev *mddev)
6741 {
6742 	int chunksect;
6743 
6744 	if (mddev->raid_disks != 2 ||
6745 	    mddev->degraded > 1)
6746 		return ERR_PTR(-EINVAL);
6747 
6748 	/* Should check if there are write-behind devices? */
6749 
6750 	chunksect = 64*2; /* 64K by default */
6751 
6752 	/* The array must be an exact multiple of chunksize */
6753 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6754 		chunksect >>= 1;
6755 
6756 	if ((chunksect<<9) < STRIPE_SIZE)
6757 		/* array size does not allow a suitable chunk size */
6758 		return ERR_PTR(-EINVAL);
6759 
6760 	mddev->new_level = 5;
6761 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6762 	mddev->new_chunk_sectors = chunksect;
6763 
6764 	return setup_conf(mddev);
6765 }
6766 
6767 static void *raid5_takeover_raid6(struct mddev *mddev)
6768 {
6769 	int new_layout;
6770 
6771 	switch (mddev->layout) {
6772 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6773 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6774 		break;
6775 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6776 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6777 		break;
6778 	case ALGORITHM_LEFT_SYMMETRIC_6:
6779 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6780 		break;
6781 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6782 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6783 		break;
6784 	case ALGORITHM_PARITY_0_6:
6785 		new_layout = ALGORITHM_PARITY_0;
6786 		break;
6787 	case ALGORITHM_PARITY_N:
6788 		new_layout = ALGORITHM_PARITY_N;
6789 		break;
6790 	default:
6791 		return ERR_PTR(-EINVAL);
6792 	}
6793 	mddev->new_level = 5;
6794 	mddev->new_layout = new_layout;
6795 	mddev->delta_disks = -1;
6796 	mddev->raid_disks -= 1;
6797 	return setup_conf(mddev);
6798 }
6799 
6800 
6801 static int raid5_check_reshape(struct mddev *mddev)
6802 {
6803 	/* For a 2-drive array, the layout and chunk size can be changed
6804 	 * immediately as not restriping is needed.
6805 	 * For larger arrays we record the new value - after validation
6806 	 * to be used by a reshape pass.
6807 	 */
6808 	struct r5conf *conf = mddev->private;
6809 	int new_chunk = mddev->new_chunk_sectors;
6810 
6811 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6812 		return -EINVAL;
6813 	if (new_chunk > 0) {
6814 		if (!is_power_of_2(new_chunk))
6815 			return -EINVAL;
6816 		if (new_chunk < (PAGE_SIZE>>9))
6817 			return -EINVAL;
6818 		if (mddev->array_sectors & (new_chunk-1))
6819 			/* not factor of array size */
6820 			return -EINVAL;
6821 	}
6822 
6823 	/* They look valid */
6824 
6825 	if (mddev->raid_disks == 2) {
6826 		/* can make the change immediately */
6827 		if (mddev->new_layout >= 0) {
6828 			conf->algorithm = mddev->new_layout;
6829 			mddev->layout = mddev->new_layout;
6830 		}
6831 		if (new_chunk > 0) {
6832 			conf->chunk_sectors = new_chunk ;
6833 			mddev->chunk_sectors = new_chunk;
6834 		}
6835 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6836 		md_wakeup_thread(mddev->thread);
6837 	}
6838 	return check_reshape(mddev);
6839 }
6840 
6841 static int raid6_check_reshape(struct mddev *mddev)
6842 {
6843 	int new_chunk = mddev->new_chunk_sectors;
6844 
6845 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6846 		return -EINVAL;
6847 	if (new_chunk > 0) {
6848 		if (!is_power_of_2(new_chunk))
6849 			return -EINVAL;
6850 		if (new_chunk < (PAGE_SIZE >> 9))
6851 			return -EINVAL;
6852 		if (mddev->array_sectors & (new_chunk-1))
6853 			/* not factor of array size */
6854 			return -EINVAL;
6855 	}
6856 
6857 	/* They look valid */
6858 	return check_reshape(mddev);
6859 }
6860 
6861 static void *raid5_takeover(struct mddev *mddev)
6862 {
6863 	/* raid5 can take over:
6864 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6865 	 *  raid1 - if there are two drives.  We need to know the chunk size
6866 	 *  raid4 - trivial - just use a raid4 layout.
6867 	 *  raid6 - Providing it is a *_6 layout
6868 	 */
6869 	if (mddev->level == 0)
6870 		return raid45_takeover_raid0(mddev, 5);
6871 	if (mddev->level == 1)
6872 		return raid5_takeover_raid1(mddev);
6873 	if (mddev->level == 4) {
6874 		mddev->new_layout = ALGORITHM_PARITY_N;
6875 		mddev->new_level = 5;
6876 		return setup_conf(mddev);
6877 	}
6878 	if (mddev->level == 6)
6879 		return raid5_takeover_raid6(mddev);
6880 
6881 	return ERR_PTR(-EINVAL);
6882 }
6883 
6884 static void *raid4_takeover(struct mddev *mddev)
6885 {
6886 	/* raid4 can take over:
6887 	 *  raid0 - if there is only one strip zone
6888 	 *  raid5 - if layout is right
6889 	 */
6890 	if (mddev->level == 0)
6891 		return raid45_takeover_raid0(mddev, 4);
6892 	if (mddev->level == 5 &&
6893 	    mddev->layout == ALGORITHM_PARITY_N) {
6894 		mddev->new_layout = 0;
6895 		mddev->new_level = 4;
6896 		return setup_conf(mddev);
6897 	}
6898 	return ERR_PTR(-EINVAL);
6899 }
6900 
6901 static struct md_personality raid5_personality;
6902 
6903 static void *raid6_takeover(struct mddev *mddev)
6904 {
6905 	/* Currently can only take over a raid5.  We map the
6906 	 * personality to an equivalent raid6 personality
6907 	 * with the Q block at the end.
6908 	 */
6909 	int new_layout;
6910 
6911 	if (mddev->pers != &raid5_personality)
6912 		return ERR_PTR(-EINVAL);
6913 	if (mddev->degraded > 1)
6914 		return ERR_PTR(-EINVAL);
6915 	if (mddev->raid_disks > 253)
6916 		return ERR_PTR(-EINVAL);
6917 	if (mddev->raid_disks < 3)
6918 		return ERR_PTR(-EINVAL);
6919 
6920 	switch (mddev->layout) {
6921 	case ALGORITHM_LEFT_ASYMMETRIC:
6922 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6923 		break;
6924 	case ALGORITHM_RIGHT_ASYMMETRIC:
6925 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6926 		break;
6927 	case ALGORITHM_LEFT_SYMMETRIC:
6928 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6929 		break;
6930 	case ALGORITHM_RIGHT_SYMMETRIC:
6931 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6932 		break;
6933 	case ALGORITHM_PARITY_0:
6934 		new_layout = ALGORITHM_PARITY_0_6;
6935 		break;
6936 	case ALGORITHM_PARITY_N:
6937 		new_layout = ALGORITHM_PARITY_N;
6938 		break;
6939 	default:
6940 		return ERR_PTR(-EINVAL);
6941 	}
6942 	mddev->new_level = 6;
6943 	mddev->new_layout = new_layout;
6944 	mddev->delta_disks = 1;
6945 	mddev->raid_disks += 1;
6946 	return setup_conf(mddev);
6947 }
6948 
6949 
6950 static struct md_personality raid6_personality =
6951 {
6952 	.name		= "raid6",
6953 	.level		= 6,
6954 	.owner		= THIS_MODULE,
6955 	.make_request	= make_request,
6956 	.run		= run,
6957 	.stop		= stop,
6958 	.status		= status,
6959 	.error_handler	= error,
6960 	.hot_add_disk	= raid5_add_disk,
6961 	.hot_remove_disk= raid5_remove_disk,
6962 	.spare_active	= raid5_spare_active,
6963 	.sync_request	= sync_request,
6964 	.resize		= raid5_resize,
6965 	.size		= raid5_size,
6966 	.check_reshape	= raid6_check_reshape,
6967 	.start_reshape  = raid5_start_reshape,
6968 	.finish_reshape = raid5_finish_reshape,
6969 	.quiesce	= raid5_quiesce,
6970 	.takeover	= raid6_takeover,
6971 };
6972 static struct md_personality raid5_personality =
6973 {
6974 	.name		= "raid5",
6975 	.level		= 5,
6976 	.owner		= THIS_MODULE,
6977 	.make_request	= make_request,
6978 	.run		= run,
6979 	.stop		= stop,
6980 	.status		= status,
6981 	.error_handler	= error,
6982 	.hot_add_disk	= raid5_add_disk,
6983 	.hot_remove_disk= raid5_remove_disk,
6984 	.spare_active	= raid5_spare_active,
6985 	.sync_request	= sync_request,
6986 	.resize		= raid5_resize,
6987 	.size		= raid5_size,
6988 	.check_reshape	= raid5_check_reshape,
6989 	.start_reshape  = raid5_start_reshape,
6990 	.finish_reshape = raid5_finish_reshape,
6991 	.quiesce	= raid5_quiesce,
6992 	.takeover	= raid5_takeover,
6993 };
6994 
6995 static struct md_personality raid4_personality =
6996 {
6997 	.name		= "raid4",
6998 	.level		= 4,
6999 	.owner		= THIS_MODULE,
7000 	.make_request	= make_request,
7001 	.run		= run,
7002 	.stop		= stop,
7003 	.status		= status,
7004 	.error_handler	= error,
7005 	.hot_add_disk	= raid5_add_disk,
7006 	.hot_remove_disk= raid5_remove_disk,
7007 	.spare_active	= raid5_spare_active,
7008 	.sync_request	= sync_request,
7009 	.resize		= raid5_resize,
7010 	.size		= raid5_size,
7011 	.check_reshape	= raid5_check_reshape,
7012 	.start_reshape  = raid5_start_reshape,
7013 	.finish_reshape = raid5_finish_reshape,
7014 	.quiesce	= raid5_quiesce,
7015 	.takeover	= raid4_takeover,
7016 };
7017 
7018 static int __init raid5_init(void)
7019 {
7020 	raid5_wq = alloc_workqueue("raid5wq",
7021 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7022 	if (!raid5_wq)
7023 		return -ENOMEM;
7024 	register_md_personality(&raid6_personality);
7025 	register_md_personality(&raid5_personality);
7026 	register_md_personality(&raid4_personality);
7027 	return 0;
7028 }
7029 
7030 static void raid5_exit(void)
7031 {
7032 	unregister_md_personality(&raid6_personality);
7033 	unregister_md_personality(&raid5_personality);
7034 	unregister_md_personality(&raid4_personality);
7035 	destroy_workqueue(raid5_wq);
7036 }
7037 
7038 module_init(raid5_init);
7039 module_exit(raid5_exit);
7040 MODULE_LICENSE("GPL");
7041 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7042 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7043 MODULE_ALIAS("md-raid5");
7044 MODULE_ALIAS("md-raid4");
7045 MODULE_ALIAS("md-level-5");
7046 MODULE_ALIAS("md-level-4");
7047 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7048 MODULE_ALIAS("md-raid6");
7049 MODULE_ALIAS("md-level-6");
7050 
7051 /* This used to be two separate modules, they were: */
7052 MODULE_ALIAS("raid5");
7053 MODULE_ALIAS("raid6");
7054