xref: /openbmc/linux/drivers/md/raid5.c (revision f6723b56)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58 
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63 
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66 
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71 
72 #define NR_STRIPES		256
73 #define STRIPE_SIZE		PAGE_SIZE
74 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
76 #define	IO_THRESHOLD		1
77 #define BYPASS_THRESHOLD	1
78 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK		(NR_HASH - 1)
80 #define MAX_STRIPE_BATCH	8
81 
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 	return &conf->stripe_hashtbl[hash];
86 }
87 
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92 
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 	spin_lock_irq(conf->hash_locks + hash);
96 	spin_lock(&conf->device_lock);
97 }
98 
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101 	spin_unlock(&conf->device_lock);
102 	spin_unlock_irq(conf->hash_locks + hash);
103 }
104 
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107 	int i;
108 	local_irq_disable();
109 	spin_lock(conf->hash_locks);
110 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 	spin_lock(&conf->device_lock);
113 }
114 
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117 	int i;
118 	spin_unlock(&conf->device_lock);
119 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 		spin_unlock(conf->hash_locks + i - 1);
121 	local_irq_enable();
122 }
123 
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135 	int sectors = bio_sectors(bio);
136 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137 		return bio->bi_next;
138 	else
139 		return NULL;
140 }
141 
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 	return (atomic_read(segments) >> 16) & 0xffff;
150 }
151 
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 	return atomic_sub_return(1, segments) & 0xffff;
156 }
157 
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 	atomic_inc(segments);
162 }
163 
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 	unsigned int cnt)
166 {
167 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 	int old, new;
169 
170 	do {
171 		old = atomic_read(segments);
172 		new = (old & 0xffff) | (cnt << 16);
173 	} while (atomic_cmpxchg(segments, old, new) != old);
174 }
175 
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 	atomic_set(segments, cnt);
180 }
181 
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185 	if (sh->ddf_layout)
186 		/* ddf always start from first device */
187 		return 0;
188 	/* md starts just after Q block */
189 	if (sh->qd_idx == sh->disks - 1)
190 		return 0;
191 	else
192 		return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196 	disk++;
197 	return (disk < raid_disks) ? disk : 0;
198 }
199 
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 			     int *count, int syndrome_disks)
207 {
208 	int slot = *count;
209 
210 	if (sh->ddf_layout)
211 		(*count)++;
212 	if (idx == sh->pd_idx)
213 		return syndrome_disks;
214 	if (idx == sh->qd_idx)
215 		return syndrome_disks + 1;
216 	if (!sh->ddf_layout)
217 		(*count)++;
218 	return slot;
219 }
220 
221 static void return_io(struct bio *return_bi)
222 {
223 	struct bio *bi = return_bi;
224 	while (bi) {
225 
226 		return_bi = bi->bi_next;
227 		bi->bi_next = NULL;
228 		bi->bi_iter.bi_size = 0;
229 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 					 bi, 0);
231 		bio_endio(bi, 0);
232 		bi = return_bi;
233 	}
234 }
235 
236 static void print_raid5_conf (struct r5conf *conf);
237 
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 	return sh->check_state || sh->reconstruct_state ||
241 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244 
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 	struct r5conf *conf = sh->raid_conf;
248 	struct r5worker_group *group;
249 	int thread_cnt;
250 	int i, cpu = sh->cpu;
251 
252 	if (!cpu_online(cpu)) {
253 		cpu = cpumask_any(cpu_online_mask);
254 		sh->cpu = cpu;
255 	}
256 
257 	if (list_empty(&sh->lru)) {
258 		struct r5worker_group *group;
259 		group = conf->worker_groups + cpu_to_group(cpu);
260 		list_add_tail(&sh->lru, &group->handle_list);
261 		group->stripes_cnt++;
262 		sh->group = group;
263 	}
264 
265 	if (conf->worker_cnt_per_group == 0) {
266 		md_wakeup_thread(conf->mddev->thread);
267 		return;
268 	}
269 
270 	group = conf->worker_groups + cpu_to_group(sh->cpu);
271 
272 	group->workers[0].working = true;
273 	/* at least one worker should run to avoid race */
274 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275 
276 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 	/* wakeup more workers */
278 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 		if (group->workers[i].working == false) {
280 			group->workers[i].working = true;
281 			queue_work_on(sh->cpu, raid5_wq,
282 				      &group->workers[i].work);
283 			thread_cnt--;
284 		}
285 	}
286 }
287 
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 			      struct list_head *temp_inactive_list)
290 {
291 	BUG_ON(!list_empty(&sh->lru));
292 	BUG_ON(atomic_read(&conf->active_stripes)==0);
293 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296 			list_add_tail(&sh->lru, &conf->delayed_list);
297 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298 			   sh->bm_seq - conf->seq_write > 0)
299 			list_add_tail(&sh->lru, &conf->bitmap_list);
300 		else {
301 			clear_bit(STRIPE_DELAYED, &sh->state);
302 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
303 			if (conf->worker_cnt_per_group == 0) {
304 				list_add_tail(&sh->lru, &conf->handle_list);
305 			} else {
306 				raid5_wakeup_stripe_thread(sh);
307 				return;
308 			}
309 		}
310 		md_wakeup_thread(conf->mddev->thread);
311 	} else {
312 		BUG_ON(stripe_operations_active(sh));
313 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314 			if (atomic_dec_return(&conf->preread_active_stripes)
315 			    < IO_THRESHOLD)
316 				md_wakeup_thread(conf->mddev->thread);
317 		atomic_dec(&conf->active_stripes);
318 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
319 			list_add_tail(&sh->lru, temp_inactive_list);
320 	}
321 }
322 
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324 			     struct list_head *temp_inactive_list)
325 {
326 	if (atomic_dec_and_test(&sh->count))
327 		do_release_stripe(conf, sh, temp_inactive_list);
328 }
329 
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338 					 struct list_head *temp_inactive_list,
339 					 int hash)
340 {
341 	int size;
342 	bool do_wakeup = false;
343 	unsigned long flags;
344 
345 	if (hash == NR_STRIPE_HASH_LOCKS) {
346 		size = NR_STRIPE_HASH_LOCKS;
347 		hash = NR_STRIPE_HASH_LOCKS - 1;
348 	} else
349 		size = 1;
350 	while (size) {
351 		struct list_head *list = &temp_inactive_list[size - 1];
352 
353 		/*
354 		 * We don't hold any lock here yet, get_active_stripe() might
355 		 * remove stripes from the list
356 		 */
357 		if (!list_empty_careful(list)) {
358 			spin_lock_irqsave(conf->hash_locks + hash, flags);
359 			if (list_empty(conf->inactive_list + hash) &&
360 			    !list_empty(list))
361 				atomic_dec(&conf->empty_inactive_list_nr);
362 			list_splice_tail_init(list, conf->inactive_list + hash);
363 			do_wakeup = true;
364 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365 		}
366 		size--;
367 		hash--;
368 	}
369 
370 	if (do_wakeup) {
371 		wake_up(&conf->wait_for_stripe);
372 		if (conf->retry_read_aligned)
373 			md_wakeup_thread(conf->mddev->thread);
374 	}
375 }
376 
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379 			       struct list_head *temp_inactive_list)
380 {
381 	struct stripe_head *sh;
382 	int count = 0;
383 	struct llist_node *head;
384 
385 	head = llist_del_all(&conf->released_stripes);
386 	head = llist_reverse_order(head);
387 	while (head) {
388 		int hash;
389 
390 		sh = llist_entry(head, struct stripe_head, release_list);
391 		head = llist_next(head);
392 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393 		smp_mb();
394 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395 		/*
396 		 * Don't worry the bit is set here, because if the bit is set
397 		 * again, the count is always > 1. This is true for
398 		 * STRIPE_ON_UNPLUG_LIST bit too.
399 		 */
400 		hash = sh->hash_lock_index;
401 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
402 		count++;
403 	}
404 
405 	return count;
406 }
407 
408 static void release_stripe(struct stripe_head *sh)
409 {
410 	struct r5conf *conf = sh->raid_conf;
411 	unsigned long flags;
412 	struct list_head list;
413 	int hash;
414 	bool wakeup;
415 
416 	if (unlikely(!conf->mddev->thread) ||
417 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418 		goto slow_path;
419 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420 	if (wakeup)
421 		md_wakeup_thread(conf->mddev->thread);
422 	return;
423 slow_path:
424 	local_irq_save(flags);
425 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427 		INIT_LIST_HEAD(&list);
428 		hash = sh->hash_lock_index;
429 		do_release_stripe(conf, sh, &list);
430 		spin_unlock(&conf->device_lock);
431 		release_inactive_stripe_list(conf, &list, hash);
432 	}
433 	local_irq_restore(flags);
434 }
435 
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438 	pr_debug("remove_hash(), stripe %llu\n",
439 		(unsigned long long)sh->sector);
440 
441 	hlist_del_init(&sh->hash);
442 }
443 
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
447 
448 	pr_debug("insert_hash(), stripe %llu\n",
449 		(unsigned long long)sh->sector);
450 
451 	hlist_add_head(&sh->hash, hp);
452 }
453 
454 
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458 	struct stripe_head *sh = NULL;
459 	struct list_head *first;
460 
461 	if (list_empty(conf->inactive_list + hash))
462 		goto out;
463 	first = (conf->inactive_list + hash)->next;
464 	sh = list_entry(first, struct stripe_head, lru);
465 	list_del_init(first);
466 	remove_hash(sh);
467 	atomic_inc(&conf->active_stripes);
468 	BUG_ON(hash != sh->hash_lock_index);
469 	if (list_empty(conf->inactive_list + hash))
470 		atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472 	return sh;
473 }
474 
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477 	struct page *p;
478 	int i;
479 	int num = sh->raid_conf->pool_size;
480 
481 	for (i = 0; i < num ; i++) {
482 		p = sh->dev[i].page;
483 		if (!p)
484 			continue;
485 		sh->dev[i].page = NULL;
486 		put_page(p);
487 	}
488 }
489 
490 static int grow_buffers(struct stripe_head *sh)
491 {
492 	int i;
493 	int num = sh->raid_conf->pool_size;
494 
495 	for (i = 0; i < num; i++) {
496 		struct page *page;
497 
498 		if (!(page = alloc_page(GFP_KERNEL))) {
499 			return 1;
500 		}
501 		sh->dev[i].page = page;
502 	}
503 	return 0;
504 }
505 
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508 			    struct stripe_head *sh);
509 
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512 	struct r5conf *conf = sh->raid_conf;
513 	int i, seq;
514 
515 	BUG_ON(atomic_read(&sh->count) != 0);
516 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517 	BUG_ON(stripe_operations_active(sh));
518 
519 	pr_debug("init_stripe called, stripe %llu\n",
520 		(unsigned long long)sh->sector);
521 
522 	remove_hash(sh);
523 retry:
524 	seq = read_seqcount_begin(&conf->gen_lock);
525 	sh->generation = conf->generation - previous;
526 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527 	sh->sector = sector;
528 	stripe_set_idx(sector, conf, previous, sh);
529 	sh->state = 0;
530 
531 
532 	for (i = sh->disks; i--; ) {
533 		struct r5dev *dev = &sh->dev[i];
534 
535 		if (dev->toread || dev->read || dev->towrite || dev->written ||
536 		    test_bit(R5_LOCKED, &dev->flags)) {
537 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538 			       (unsigned long long)sh->sector, i, dev->toread,
539 			       dev->read, dev->towrite, dev->written,
540 			       test_bit(R5_LOCKED, &dev->flags));
541 			WARN_ON(1);
542 		}
543 		dev->flags = 0;
544 		raid5_build_block(sh, i, previous);
545 	}
546 	if (read_seqcount_retry(&conf->gen_lock, seq))
547 		goto retry;
548 	insert_hash(conf, sh);
549 	sh->cpu = smp_processor_id();
550 }
551 
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553 					 short generation)
554 {
555 	struct stripe_head *sh;
556 
557 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559 		if (sh->sector == sector && sh->generation == generation)
560 			return sh;
561 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562 	return NULL;
563 }
564 
565 /*
566  * Need to check if array has failed when deciding whether to:
567  *  - start an array
568  *  - remove non-faulty devices
569  *  - add a spare
570  *  - allow a reshape
571  * This determination is simple when no reshape is happening.
572  * However if there is a reshape, we need to carefully check
573  * both the before and after sections.
574  * This is because some failed devices may only affect one
575  * of the two sections, and some non-in_sync devices may
576  * be insync in the section most affected by failed devices.
577  */
578 static int calc_degraded(struct r5conf *conf)
579 {
580 	int degraded, degraded2;
581 	int i;
582 
583 	rcu_read_lock();
584 	degraded = 0;
585 	for (i = 0; i < conf->previous_raid_disks; i++) {
586 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587 		if (rdev && test_bit(Faulty, &rdev->flags))
588 			rdev = rcu_dereference(conf->disks[i].replacement);
589 		if (!rdev || test_bit(Faulty, &rdev->flags))
590 			degraded++;
591 		else if (test_bit(In_sync, &rdev->flags))
592 			;
593 		else
594 			/* not in-sync or faulty.
595 			 * If the reshape increases the number of devices,
596 			 * this is being recovered by the reshape, so
597 			 * this 'previous' section is not in_sync.
598 			 * If the number of devices is being reduced however,
599 			 * the device can only be part of the array if
600 			 * we are reverting a reshape, so this section will
601 			 * be in-sync.
602 			 */
603 			if (conf->raid_disks >= conf->previous_raid_disks)
604 				degraded++;
605 	}
606 	rcu_read_unlock();
607 	if (conf->raid_disks == conf->previous_raid_disks)
608 		return degraded;
609 	rcu_read_lock();
610 	degraded2 = 0;
611 	for (i = 0; i < conf->raid_disks; i++) {
612 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613 		if (rdev && test_bit(Faulty, &rdev->flags))
614 			rdev = rcu_dereference(conf->disks[i].replacement);
615 		if (!rdev || test_bit(Faulty, &rdev->flags))
616 			degraded2++;
617 		else if (test_bit(In_sync, &rdev->flags))
618 			;
619 		else
620 			/* not in-sync or faulty.
621 			 * If reshape increases the number of devices, this
622 			 * section has already been recovered, else it
623 			 * almost certainly hasn't.
624 			 */
625 			if (conf->raid_disks <= conf->previous_raid_disks)
626 				degraded2++;
627 	}
628 	rcu_read_unlock();
629 	if (degraded2 > degraded)
630 		return degraded2;
631 	return degraded;
632 }
633 
634 static int has_failed(struct r5conf *conf)
635 {
636 	int degraded;
637 
638 	if (conf->mddev->reshape_position == MaxSector)
639 		return conf->mddev->degraded > conf->max_degraded;
640 
641 	degraded = calc_degraded(conf);
642 	if (degraded > conf->max_degraded)
643 		return 1;
644 	return 0;
645 }
646 
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649 		  int previous, int noblock, int noquiesce)
650 {
651 	struct stripe_head *sh;
652 	int hash = stripe_hash_locks_hash(sector);
653 
654 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655 
656 	spin_lock_irq(conf->hash_locks + hash);
657 
658 	do {
659 		wait_event_lock_irq(conf->wait_for_stripe,
660 				    conf->quiesce == 0 || noquiesce,
661 				    *(conf->hash_locks + hash));
662 		sh = __find_stripe(conf, sector, conf->generation - previous);
663 		if (!sh) {
664 			if (!conf->inactive_blocked)
665 				sh = get_free_stripe(conf, hash);
666 			if (noblock && sh == NULL)
667 				break;
668 			if (!sh) {
669 				conf->inactive_blocked = 1;
670 				wait_event_lock_irq(
671 					conf->wait_for_stripe,
672 					!list_empty(conf->inactive_list + hash) &&
673 					(atomic_read(&conf->active_stripes)
674 					 < (conf->max_nr_stripes * 3 / 4)
675 					 || !conf->inactive_blocked),
676 					*(conf->hash_locks + hash));
677 				conf->inactive_blocked = 0;
678 			} else {
679 				init_stripe(sh, sector, previous);
680 				atomic_inc(&sh->count);
681 			}
682 		} else {
683 			spin_lock(&conf->device_lock);
684 			if (atomic_read(&sh->count)) {
685 				BUG_ON(!list_empty(&sh->lru)
686 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
687 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
688 					);
689 			} else {
690 				if (!test_bit(STRIPE_HANDLE, &sh->state))
691 					atomic_inc(&conf->active_stripes);
692 				BUG_ON(list_empty(&sh->lru) &&
693 				       !test_bit(STRIPE_EXPANDING, &sh->state));
694 				list_del_init(&sh->lru);
695 				if (sh->group) {
696 					sh->group->stripes_cnt--;
697 					sh->group = NULL;
698 				}
699 			}
700 			atomic_inc(&sh->count);
701 			spin_unlock(&conf->device_lock);
702 		}
703 	} while (sh == NULL);
704 
705 	spin_unlock_irq(conf->hash_locks + hash);
706 	return sh;
707 }
708 
709 /* Determine if 'data_offset' or 'new_data_offset' should be used
710  * in this stripe_head.
711  */
712 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
713 {
714 	sector_t progress = conf->reshape_progress;
715 	/* Need a memory barrier to make sure we see the value
716 	 * of conf->generation, or ->data_offset that was set before
717 	 * reshape_progress was updated.
718 	 */
719 	smp_rmb();
720 	if (progress == MaxSector)
721 		return 0;
722 	if (sh->generation == conf->generation - 1)
723 		return 0;
724 	/* We are in a reshape, and this is a new-generation stripe,
725 	 * so use new_data_offset.
726 	 */
727 	return 1;
728 }
729 
730 static void
731 raid5_end_read_request(struct bio *bi, int error);
732 static void
733 raid5_end_write_request(struct bio *bi, int error);
734 
735 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
736 {
737 	struct r5conf *conf = sh->raid_conf;
738 	int i, disks = sh->disks;
739 
740 	might_sleep();
741 
742 	for (i = disks; i--; ) {
743 		int rw;
744 		int replace_only = 0;
745 		struct bio *bi, *rbi;
746 		struct md_rdev *rdev, *rrdev = NULL;
747 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
748 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
749 				rw = WRITE_FUA;
750 			else
751 				rw = WRITE;
752 			if (test_bit(R5_Discard, &sh->dev[i].flags))
753 				rw |= REQ_DISCARD;
754 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
755 			rw = READ;
756 		else if (test_and_clear_bit(R5_WantReplace,
757 					    &sh->dev[i].flags)) {
758 			rw = WRITE;
759 			replace_only = 1;
760 		} else
761 			continue;
762 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
763 			rw |= REQ_SYNC;
764 
765 		bi = &sh->dev[i].req;
766 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
767 
768 		rcu_read_lock();
769 		rrdev = rcu_dereference(conf->disks[i].replacement);
770 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
771 		rdev = rcu_dereference(conf->disks[i].rdev);
772 		if (!rdev) {
773 			rdev = rrdev;
774 			rrdev = NULL;
775 		}
776 		if (rw & WRITE) {
777 			if (replace_only)
778 				rdev = NULL;
779 			if (rdev == rrdev)
780 				/* We raced and saw duplicates */
781 				rrdev = NULL;
782 		} else {
783 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
784 				rdev = rrdev;
785 			rrdev = NULL;
786 		}
787 
788 		if (rdev && test_bit(Faulty, &rdev->flags))
789 			rdev = NULL;
790 		if (rdev)
791 			atomic_inc(&rdev->nr_pending);
792 		if (rrdev && test_bit(Faulty, &rrdev->flags))
793 			rrdev = NULL;
794 		if (rrdev)
795 			atomic_inc(&rrdev->nr_pending);
796 		rcu_read_unlock();
797 
798 		/* We have already checked bad blocks for reads.  Now
799 		 * need to check for writes.  We never accept write errors
800 		 * on the replacement, so we don't to check rrdev.
801 		 */
802 		while ((rw & WRITE) && rdev &&
803 		       test_bit(WriteErrorSeen, &rdev->flags)) {
804 			sector_t first_bad;
805 			int bad_sectors;
806 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
807 					      &first_bad, &bad_sectors);
808 			if (!bad)
809 				break;
810 
811 			if (bad < 0) {
812 				set_bit(BlockedBadBlocks, &rdev->flags);
813 				if (!conf->mddev->external &&
814 				    conf->mddev->flags) {
815 					/* It is very unlikely, but we might
816 					 * still need to write out the
817 					 * bad block log - better give it
818 					 * a chance*/
819 					md_check_recovery(conf->mddev);
820 				}
821 				/*
822 				 * Because md_wait_for_blocked_rdev
823 				 * will dec nr_pending, we must
824 				 * increment it first.
825 				 */
826 				atomic_inc(&rdev->nr_pending);
827 				md_wait_for_blocked_rdev(rdev, conf->mddev);
828 			} else {
829 				/* Acknowledged bad block - skip the write */
830 				rdev_dec_pending(rdev, conf->mddev);
831 				rdev = NULL;
832 			}
833 		}
834 
835 		if (rdev) {
836 			if (s->syncing || s->expanding || s->expanded
837 			    || s->replacing)
838 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
839 
840 			set_bit(STRIPE_IO_STARTED, &sh->state);
841 
842 			bio_reset(bi);
843 			bi->bi_bdev = rdev->bdev;
844 			bi->bi_rw = rw;
845 			bi->bi_end_io = (rw & WRITE)
846 				? raid5_end_write_request
847 				: raid5_end_read_request;
848 			bi->bi_private = sh;
849 
850 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
851 				__func__, (unsigned long long)sh->sector,
852 				bi->bi_rw, i);
853 			atomic_inc(&sh->count);
854 			if (use_new_offset(conf, sh))
855 				bi->bi_iter.bi_sector = (sh->sector
856 						 + rdev->new_data_offset);
857 			else
858 				bi->bi_iter.bi_sector = (sh->sector
859 						 + rdev->data_offset);
860 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
861 				bi->bi_rw |= REQ_NOMERGE;
862 
863 			bi->bi_vcnt = 1;
864 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
865 			bi->bi_io_vec[0].bv_offset = 0;
866 			bi->bi_iter.bi_size = STRIPE_SIZE;
867 			/*
868 			 * If this is discard request, set bi_vcnt 0. We don't
869 			 * want to confuse SCSI because SCSI will replace payload
870 			 */
871 			if (rw & REQ_DISCARD)
872 				bi->bi_vcnt = 0;
873 			if (rrdev)
874 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
875 
876 			if (conf->mddev->gendisk)
877 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
878 						      bi, disk_devt(conf->mddev->gendisk),
879 						      sh->dev[i].sector);
880 			generic_make_request(bi);
881 		}
882 		if (rrdev) {
883 			if (s->syncing || s->expanding || s->expanded
884 			    || s->replacing)
885 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
886 
887 			set_bit(STRIPE_IO_STARTED, &sh->state);
888 
889 			bio_reset(rbi);
890 			rbi->bi_bdev = rrdev->bdev;
891 			rbi->bi_rw = rw;
892 			BUG_ON(!(rw & WRITE));
893 			rbi->bi_end_io = raid5_end_write_request;
894 			rbi->bi_private = sh;
895 
896 			pr_debug("%s: for %llu schedule op %ld on "
897 				 "replacement disc %d\n",
898 				__func__, (unsigned long long)sh->sector,
899 				rbi->bi_rw, i);
900 			atomic_inc(&sh->count);
901 			if (use_new_offset(conf, sh))
902 				rbi->bi_iter.bi_sector = (sh->sector
903 						  + rrdev->new_data_offset);
904 			else
905 				rbi->bi_iter.bi_sector = (sh->sector
906 						  + rrdev->data_offset);
907 			rbi->bi_vcnt = 1;
908 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
909 			rbi->bi_io_vec[0].bv_offset = 0;
910 			rbi->bi_iter.bi_size = STRIPE_SIZE;
911 			/*
912 			 * If this is discard request, set bi_vcnt 0. We don't
913 			 * want to confuse SCSI because SCSI will replace payload
914 			 */
915 			if (rw & REQ_DISCARD)
916 				rbi->bi_vcnt = 0;
917 			if (conf->mddev->gendisk)
918 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
919 						      rbi, disk_devt(conf->mddev->gendisk),
920 						      sh->dev[i].sector);
921 			generic_make_request(rbi);
922 		}
923 		if (!rdev && !rrdev) {
924 			if (rw & WRITE)
925 				set_bit(STRIPE_DEGRADED, &sh->state);
926 			pr_debug("skip op %ld on disc %d for sector %llu\n",
927 				bi->bi_rw, i, (unsigned long long)sh->sector);
928 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
929 			set_bit(STRIPE_HANDLE, &sh->state);
930 		}
931 	}
932 }
933 
934 static struct dma_async_tx_descriptor *
935 async_copy_data(int frombio, struct bio *bio, struct page *page,
936 	sector_t sector, struct dma_async_tx_descriptor *tx)
937 {
938 	struct bio_vec bvl;
939 	struct bvec_iter iter;
940 	struct page *bio_page;
941 	int page_offset;
942 	struct async_submit_ctl submit;
943 	enum async_tx_flags flags = 0;
944 
945 	if (bio->bi_iter.bi_sector >= sector)
946 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
947 	else
948 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
949 
950 	if (frombio)
951 		flags |= ASYNC_TX_FENCE;
952 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
953 
954 	bio_for_each_segment(bvl, bio, iter) {
955 		int len = bvl.bv_len;
956 		int clen;
957 		int b_offset = 0;
958 
959 		if (page_offset < 0) {
960 			b_offset = -page_offset;
961 			page_offset += b_offset;
962 			len -= b_offset;
963 		}
964 
965 		if (len > 0 && page_offset + len > STRIPE_SIZE)
966 			clen = STRIPE_SIZE - page_offset;
967 		else
968 			clen = len;
969 
970 		if (clen > 0) {
971 			b_offset += bvl.bv_offset;
972 			bio_page = bvl.bv_page;
973 			if (frombio)
974 				tx = async_memcpy(page, bio_page, page_offset,
975 						  b_offset, clen, &submit);
976 			else
977 				tx = async_memcpy(bio_page, page, b_offset,
978 						  page_offset, clen, &submit);
979 		}
980 		/* chain the operations */
981 		submit.depend_tx = tx;
982 
983 		if (clen < len) /* hit end of page */
984 			break;
985 		page_offset +=  len;
986 	}
987 
988 	return tx;
989 }
990 
991 static void ops_complete_biofill(void *stripe_head_ref)
992 {
993 	struct stripe_head *sh = stripe_head_ref;
994 	struct bio *return_bi = NULL;
995 	int i;
996 
997 	pr_debug("%s: stripe %llu\n", __func__,
998 		(unsigned long long)sh->sector);
999 
1000 	/* clear completed biofills */
1001 	for (i = sh->disks; i--; ) {
1002 		struct r5dev *dev = &sh->dev[i];
1003 
1004 		/* acknowledge completion of a biofill operation */
1005 		/* and check if we need to reply to a read request,
1006 		 * new R5_Wantfill requests are held off until
1007 		 * !STRIPE_BIOFILL_RUN
1008 		 */
1009 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1010 			struct bio *rbi, *rbi2;
1011 
1012 			BUG_ON(!dev->read);
1013 			rbi = dev->read;
1014 			dev->read = NULL;
1015 			while (rbi && rbi->bi_iter.bi_sector <
1016 				dev->sector + STRIPE_SECTORS) {
1017 				rbi2 = r5_next_bio(rbi, dev->sector);
1018 				if (!raid5_dec_bi_active_stripes(rbi)) {
1019 					rbi->bi_next = return_bi;
1020 					return_bi = rbi;
1021 				}
1022 				rbi = rbi2;
1023 			}
1024 		}
1025 	}
1026 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1027 
1028 	return_io(return_bi);
1029 
1030 	set_bit(STRIPE_HANDLE, &sh->state);
1031 	release_stripe(sh);
1032 }
1033 
1034 static void ops_run_biofill(struct stripe_head *sh)
1035 {
1036 	struct dma_async_tx_descriptor *tx = NULL;
1037 	struct async_submit_ctl submit;
1038 	int i;
1039 
1040 	pr_debug("%s: stripe %llu\n", __func__,
1041 		(unsigned long long)sh->sector);
1042 
1043 	for (i = sh->disks; i--; ) {
1044 		struct r5dev *dev = &sh->dev[i];
1045 		if (test_bit(R5_Wantfill, &dev->flags)) {
1046 			struct bio *rbi;
1047 			spin_lock_irq(&sh->stripe_lock);
1048 			dev->read = rbi = dev->toread;
1049 			dev->toread = NULL;
1050 			spin_unlock_irq(&sh->stripe_lock);
1051 			while (rbi && rbi->bi_iter.bi_sector <
1052 				dev->sector + STRIPE_SECTORS) {
1053 				tx = async_copy_data(0, rbi, dev->page,
1054 					dev->sector, tx);
1055 				rbi = r5_next_bio(rbi, dev->sector);
1056 			}
1057 		}
1058 	}
1059 
1060 	atomic_inc(&sh->count);
1061 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1062 	async_trigger_callback(&submit);
1063 }
1064 
1065 static void mark_target_uptodate(struct stripe_head *sh, int target)
1066 {
1067 	struct r5dev *tgt;
1068 
1069 	if (target < 0)
1070 		return;
1071 
1072 	tgt = &sh->dev[target];
1073 	set_bit(R5_UPTODATE, &tgt->flags);
1074 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1075 	clear_bit(R5_Wantcompute, &tgt->flags);
1076 }
1077 
1078 static void ops_complete_compute(void *stripe_head_ref)
1079 {
1080 	struct stripe_head *sh = stripe_head_ref;
1081 
1082 	pr_debug("%s: stripe %llu\n", __func__,
1083 		(unsigned long long)sh->sector);
1084 
1085 	/* mark the computed target(s) as uptodate */
1086 	mark_target_uptodate(sh, sh->ops.target);
1087 	mark_target_uptodate(sh, sh->ops.target2);
1088 
1089 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1090 	if (sh->check_state == check_state_compute_run)
1091 		sh->check_state = check_state_compute_result;
1092 	set_bit(STRIPE_HANDLE, &sh->state);
1093 	release_stripe(sh);
1094 }
1095 
1096 /* return a pointer to the address conversion region of the scribble buffer */
1097 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1098 				 struct raid5_percpu *percpu)
1099 {
1100 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1101 }
1102 
1103 static struct dma_async_tx_descriptor *
1104 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1105 {
1106 	int disks = sh->disks;
1107 	struct page **xor_srcs = percpu->scribble;
1108 	int target = sh->ops.target;
1109 	struct r5dev *tgt = &sh->dev[target];
1110 	struct page *xor_dest = tgt->page;
1111 	int count = 0;
1112 	struct dma_async_tx_descriptor *tx;
1113 	struct async_submit_ctl submit;
1114 	int i;
1115 
1116 	pr_debug("%s: stripe %llu block: %d\n",
1117 		__func__, (unsigned long long)sh->sector, target);
1118 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1119 
1120 	for (i = disks; i--; )
1121 		if (i != target)
1122 			xor_srcs[count++] = sh->dev[i].page;
1123 
1124 	atomic_inc(&sh->count);
1125 
1126 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1127 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1128 	if (unlikely(count == 1))
1129 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1130 	else
1131 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1132 
1133 	return tx;
1134 }
1135 
1136 /* set_syndrome_sources - populate source buffers for gen_syndrome
1137  * @srcs - (struct page *) array of size sh->disks
1138  * @sh - stripe_head to parse
1139  *
1140  * Populates srcs in proper layout order for the stripe and returns the
1141  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1142  * destination buffer is recorded in srcs[count] and the Q destination
1143  * is recorded in srcs[count+1]].
1144  */
1145 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1146 {
1147 	int disks = sh->disks;
1148 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1149 	int d0_idx = raid6_d0(sh);
1150 	int count;
1151 	int i;
1152 
1153 	for (i = 0; i < disks; i++)
1154 		srcs[i] = NULL;
1155 
1156 	count = 0;
1157 	i = d0_idx;
1158 	do {
1159 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1160 
1161 		srcs[slot] = sh->dev[i].page;
1162 		i = raid6_next_disk(i, disks);
1163 	} while (i != d0_idx);
1164 
1165 	return syndrome_disks;
1166 }
1167 
1168 static struct dma_async_tx_descriptor *
1169 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1170 {
1171 	int disks = sh->disks;
1172 	struct page **blocks = percpu->scribble;
1173 	int target;
1174 	int qd_idx = sh->qd_idx;
1175 	struct dma_async_tx_descriptor *tx;
1176 	struct async_submit_ctl submit;
1177 	struct r5dev *tgt;
1178 	struct page *dest;
1179 	int i;
1180 	int count;
1181 
1182 	if (sh->ops.target < 0)
1183 		target = sh->ops.target2;
1184 	else if (sh->ops.target2 < 0)
1185 		target = sh->ops.target;
1186 	else
1187 		/* we should only have one valid target */
1188 		BUG();
1189 	BUG_ON(target < 0);
1190 	pr_debug("%s: stripe %llu block: %d\n",
1191 		__func__, (unsigned long long)sh->sector, target);
1192 
1193 	tgt = &sh->dev[target];
1194 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1195 	dest = tgt->page;
1196 
1197 	atomic_inc(&sh->count);
1198 
1199 	if (target == qd_idx) {
1200 		count = set_syndrome_sources(blocks, sh);
1201 		blocks[count] = NULL; /* regenerating p is not necessary */
1202 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1203 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1204 				  ops_complete_compute, sh,
1205 				  to_addr_conv(sh, percpu));
1206 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1207 	} else {
1208 		/* Compute any data- or p-drive using XOR */
1209 		count = 0;
1210 		for (i = disks; i-- ; ) {
1211 			if (i == target || i == qd_idx)
1212 				continue;
1213 			blocks[count++] = sh->dev[i].page;
1214 		}
1215 
1216 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1217 				  NULL, ops_complete_compute, sh,
1218 				  to_addr_conv(sh, percpu));
1219 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1220 	}
1221 
1222 	return tx;
1223 }
1224 
1225 static struct dma_async_tx_descriptor *
1226 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1227 {
1228 	int i, count, disks = sh->disks;
1229 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1230 	int d0_idx = raid6_d0(sh);
1231 	int faila = -1, failb = -1;
1232 	int target = sh->ops.target;
1233 	int target2 = sh->ops.target2;
1234 	struct r5dev *tgt = &sh->dev[target];
1235 	struct r5dev *tgt2 = &sh->dev[target2];
1236 	struct dma_async_tx_descriptor *tx;
1237 	struct page **blocks = percpu->scribble;
1238 	struct async_submit_ctl submit;
1239 
1240 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1241 		 __func__, (unsigned long long)sh->sector, target, target2);
1242 	BUG_ON(target < 0 || target2 < 0);
1243 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1245 
1246 	/* we need to open-code set_syndrome_sources to handle the
1247 	 * slot number conversion for 'faila' and 'failb'
1248 	 */
1249 	for (i = 0; i < disks ; i++)
1250 		blocks[i] = NULL;
1251 	count = 0;
1252 	i = d0_idx;
1253 	do {
1254 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1255 
1256 		blocks[slot] = sh->dev[i].page;
1257 
1258 		if (i == target)
1259 			faila = slot;
1260 		if (i == target2)
1261 			failb = slot;
1262 		i = raid6_next_disk(i, disks);
1263 	} while (i != d0_idx);
1264 
1265 	BUG_ON(faila == failb);
1266 	if (failb < faila)
1267 		swap(faila, failb);
1268 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1269 		 __func__, (unsigned long long)sh->sector, faila, failb);
1270 
1271 	atomic_inc(&sh->count);
1272 
1273 	if (failb == syndrome_disks+1) {
1274 		/* Q disk is one of the missing disks */
1275 		if (faila == syndrome_disks) {
1276 			/* Missing P+Q, just recompute */
1277 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1278 					  ops_complete_compute, sh,
1279 					  to_addr_conv(sh, percpu));
1280 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1281 						  STRIPE_SIZE, &submit);
1282 		} else {
1283 			struct page *dest;
1284 			int data_target;
1285 			int qd_idx = sh->qd_idx;
1286 
1287 			/* Missing D+Q: recompute D from P, then recompute Q */
1288 			if (target == qd_idx)
1289 				data_target = target2;
1290 			else
1291 				data_target = target;
1292 
1293 			count = 0;
1294 			for (i = disks; i-- ; ) {
1295 				if (i == data_target || i == qd_idx)
1296 					continue;
1297 				blocks[count++] = sh->dev[i].page;
1298 			}
1299 			dest = sh->dev[data_target].page;
1300 			init_async_submit(&submit,
1301 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1302 					  NULL, NULL, NULL,
1303 					  to_addr_conv(sh, percpu));
1304 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1305 				       &submit);
1306 
1307 			count = set_syndrome_sources(blocks, sh);
1308 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1309 					  ops_complete_compute, sh,
1310 					  to_addr_conv(sh, percpu));
1311 			return async_gen_syndrome(blocks, 0, count+2,
1312 						  STRIPE_SIZE, &submit);
1313 		}
1314 	} else {
1315 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1316 				  ops_complete_compute, sh,
1317 				  to_addr_conv(sh, percpu));
1318 		if (failb == syndrome_disks) {
1319 			/* We're missing D+P. */
1320 			return async_raid6_datap_recov(syndrome_disks+2,
1321 						       STRIPE_SIZE, faila,
1322 						       blocks, &submit);
1323 		} else {
1324 			/* We're missing D+D. */
1325 			return async_raid6_2data_recov(syndrome_disks+2,
1326 						       STRIPE_SIZE, faila, failb,
1327 						       blocks, &submit);
1328 		}
1329 	}
1330 }
1331 
1332 
1333 static void ops_complete_prexor(void *stripe_head_ref)
1334 {
1335 	struct stripe_head *sh = stripe_head_ref;
1336 
1337 	pr_debug("%s: stripe %llu\n", __func__,
1338 		(unsigned long long)sh->sector);
1339 }
1340 
1341 static struct dma_async_tx_descriptor *
1342 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1343 	       struct dma_async_tx_descriptor *tx)
1344 {
1345 	int disks = sh->disks;
1346 	struct page **xor_srcs = percpu->scribble;
1347 	int count = 0, pd_idx = sh->pd_idx, i;
1348 	struct async_submit_ctl submit;
1349 
1350 	/* existing parity data subtracted */
1351 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1352 
1353 	pr_debug("%s: stripe %llu\n", __func__,
1354 		(unsigned long long)sh->sector);
1355 
1356 	for (i = disks; i--; ) {
1357 		struct r5dev *dev = &sh->dev[i];
1358 		/* Only process blocks that are known to be uptodate */
1359 		if (test_bit(R5_Wantdrain, &dev->flags))
1360 			xor_srcs[count++] = dev->page;
1361 	}
1362 
1363 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1364 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1365 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1366 
1367 	return tx;
1368 }
1369 
1370 static struct dma_async_tx_descriptor *
1371 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1372 {
1373 	int disks = sh->disks;
1374 	int i;
1375 
1376 	pr_debug("%s: stripe %llu\n", __func__,
1377 		(unsigned long long)sh->sector);
1378 
1379 	for (i = disks; i--; ) {
1380 		struct r5dev *dev = &sh->dev[i];
1381 		struct bio *chosen;
1382 
1383 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1384 			struct bio *wbi;
1385 
1386 			spin_lock_irq(&sh->stripe_lock);
1387 			chosen = dev->towrite;
1388 			dev->towrite = NULL;
1389 			BUG_ON(dev->written);
1390 			wbi = dev->written = chosen;
1391 			spin_unlock_irq(&sh->stripe_lock);
1392 
1393 			while (wbi && wbi->bi_iter.bi_sector <
1394 				dev->sector + STRIPE_SECTORS) {
1395 				if (wbi->bi_rw & REQ_FUA)
1396 					set_bit(R5_WantFUA, &dev->flags);
1397 				if (wbi->bi_rw & REQ_SYNC)
1398 					set_bit(R5_SyncIO, &dev->flags);
1399 				if (wbi->bi_rw & REQ_DISCARD)
1400 					set_bit(R5_Discard, &dev->flags);
1401 				else
1402 					tx = async_copy_data(1, wbi, dev->page,
1403 						dev->sector, tx);
1404 				wbi = r5_next_bio(wbi, dev->sector);
1405 			}
1406 		}
1407 	}
1408 
1409 	return tx;
1410 }
1411 
1412 static void ops_complete_reconstruct(void *stripe_head_ref)
1413 {
1414 	struct stripe_head *sh = stripe_head_ref;
1415 	int disks = sh->disks;
1416 	int pd_idx = sh->pd_idx;
1417 	int qd_idx = sh->qd_idx;
1418 	int i;
1419 	bool fua = false, sync = false, discard = false;
1420 
1421 	pr_debug("%s: stripe %llu\n", __func__,
1422 		(unsigned long long)sh->sector);
1423 
1424 	for (i = disks; i--; ) {
1425 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1426 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1427 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1428 	}
1429 
1430 	for (i = disks; i--; ) {
1431 		struct r5dev *dev = &sh->dev[i];
1432 
1433 		if (dev->written || i == pd_idx || i == qd_idx) {
1434 			if (!discard)
1435 				set_bit(R5_UPTODATE, &dev->flags);
1436 			if (fua)
1437 				set_bit(R5_WantFUA, &dev->flags);
1438 			if (sync)
1439 				set_bit(R5_SyncIO, &dev->flags);
1440 		}
1441 	}
1442 
1443 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1444 		sh->reconstruct_state = reconstruct_state_drain_result;
1445 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1446 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1447 	else {
1448 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1449 		sh->reconstruct_state = reconstruct_state_result;
1450 	}
1451 
1452 	set_bit(STRIPE_HANDLE, &sh->state);
1453 	release_stripe(sh);
1454 }
1455 
1456 static void
1457 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1458 		     struct dma_async_tx_descriptor *tx)
1459 {
1460 	int disks = sh->disks;
1461 	struct page **xor_srcs = percpu->scribble;
1462 	struct async_submit_ctl submit;
1463 	int count = 0, pd_idx = sh->pd_idx, i;
1464 	struct page *xor_dest;
1465 	int prexor = 0;
1466 	unsigned long flags;
1467 
1468 	pr_debug("%s: stripe %llu\n", __func__,
1469 		(unsigned long long)sh->sector);
1470 
1471 	for (i = 0; i < sh->disks; i++) {
1472 		if (pd_idx == i)
1473 			continue;
1474 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1475 			break;
1476 	}
1477 	if (i >= sh->disks) {
1478 		atomic_inc(&sh->count);
1479 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1480 		ops_complete_reconstruct(sh);
1481 		return;
1482 	}
1483 	/* check if prexor is active which means only process blocks
1484 	 * that are part of a read-modify-write (written)
1485 	 */
1486 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1487 		prexor = 1;
1488 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1489 		for (i = disks; i--; ) {
1490 			struct r5dev *dev = &sh->dev[i];
1491 			if (dev->written)
1492 				xor_srcs[count++] = dev->page;
1493 		}
1494 	} else {
1495 		xor_dest = sh->dev[pd_idx].page;
1496 		for (i = disks; i--; ) {
1497 			struct r5dev *dev = &sh->dev[i];
1498 			if (i != pd_idx)
1499 				xor_srcs[count++] = dev->page;
1500 		}
1501 	}
1502 
1503 	/* 1/ if we prexor'd then the dest is reused as a source
1504 	 * 2/ if we did not prexor then we are redoing the parity
1505 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1506 	 * for the synchronous xor case
1507 	 */
1508 	flags = ASYNC_TX_ACK |
1509 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1510 
1511 	atomic_inc(&sh->count);
1512 
1513 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1514 			  to_addr_conv(sh, percpu));
1515 	if (unlikely(count == 1))
1516 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1517 	else
1518 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1519 }
1520 
1521 static void
1522 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1523 		     struct dma_async_tx_descriptor *tx)
1524 {
1525 	struct async_submit_ctl submit;
1526 	struct page **blocks = percpu->scribble;
1527 	int count, i;
1528 
1529 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1530 
1531 	for (i = 0; i < sh->disks; i++) {
1532 		if (sh->pd_idx == i || sh->qd_idx == i)
1533 			continue;
1534 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1535 			break;
1536 	}
1537 	if (i >= sh->disks) {
1538 		atomic_inc(&sh->count);
1539 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1540 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1541 		ops_complete_reconstruct(sh);
1542 		return;
1543 	}
1544 
1545 	count = set_syndrome_sources(blocks, sh);
1546 
1547 	atomic_inc(&sh->count);
1548 
1549 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1550 			  sh, to_addr_conv(sh, percpu));
1551 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1552 }
1553 
1554 static void ops_complete_check(void *stripe_head_ref)
1555 {
1556 	struct stripe_head *sh = stripe_head_ref;
1557 
1558 	pr_debug("%s: stripe %llu\n", __func__,
1559 		(unsigned long long)sh->sector);
1560 
1561 	sh->check_state = check_state_check_result;
1562 	set_bit(STRIPE_HANDLE, &sh->state);
1563 	release_stripe(sh);
1564 }
1565 
1566 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1567 {
1568 	int disks = sh->disks;
1569 	int pd_idx = sh->pd_idx;
1570 	int qd_idx = sh->qd_idx;
1571 	struct page *xor_dest;
1572 	struct page **xor_srcs = percpu->scribble;
1573 	struct dma_async_tx_descriptor *tx;
1574 	struct async_submit_ctl submit;
1575 	int count;
1576 	int i;
1577 
1578 	pr_debug("%s: stripe %llu\n", __func__,
1579 		(unsigned long long)sh->sector);
1580 
1581 	count = 0;
1582 	xor_dest = sh->dev[pd_idx].page;
1583 	xor_srcs[count++] = xor_dest;
1584 	for (i = disks; i--; ) {
1585 		if (i == pd_idx || i == qd_idx)
1586 			continue;
1587 		xor_srcs[count++] = sh->dev[i].page;
1588 	}
1589 
1590 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1591 			  to_addr_conv(sh, percpu));
1592 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1593 			   &sh->ops.zero_sum_result, &submit);
1594 
1595 	atomic_inc(&sh->count);
1596 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1597 	tx = async_trigger_callback(&submit);
1598 }
1599 
1600 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1601 {
1602 	struct page **srcs = percpu->scribble;
1603 	struct async_submit_ctl submit;
1604 	int count;
1605 
1606 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1607 		(unsigned long long)sh->sector, checkp);
1608 
1609 	count = set_syndrome_sources(srcs, sh);
1610 	if (!checkp)
1611 		srcs[count] = NULL;
1612 
1613 	atomic_inc(&sh->count);
1614 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1615 			  sh, to_addr_conv(sh, percpu));
1616 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1617 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1618 }
1619 
1620 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1621 {
1622 	int overlap_clear = 0, i, disks = sh->disks;
1623 	struct dma_async_tx_descriptor *tx = NULL;
1624 	struct r5conf *conf = sh->raid_conf;
1625 	int level = conf->level;
1626 	struct raid5_percpu *percpu;
1627 	unsigned long cpu;
1628 
1629 	cpu = get_cpu();
1630 	percpu = per_cpu_ptr(conf->percpu, cpu);
1631 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1632 		ops_run_biofill(sh);
1633 		overlap_clear++;
1634 	}
1635 
1636 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1637 		if (level < 6)
1638 			tx = ops_run_compute5(sh, percpu);
1639 		else {
1640 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1641 				tx = ops_run_compute6_1(sh, percpu);
1642 			else
1643 				tx = ops_run_compute6_2(sh, percpu);
1644 		}
1645 		/* terminate the chain if reconstruct is not set to be run */
1646 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1647 			async_tx_ack(tx);
1648 	}
1649 
1650 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1651 		tx = ops_run_prexor(sh, percpu, tx);
1652 
1653 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1654 		tx = ops_run_biodrain(sh, tx);
1655 		overlap_clear++;
1656 	}
1657 
1658 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1659 		if (level < 6)
1660 			ops_run_reconstruct5(sh, percpu, tx);
1661 		else
1662 			ops_run_reconstruct6(sh, percpu, tx);
1663 	}
1664 
1665 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1666 		if (sh->check_state == check_state_run)
1667 			ops_run_check_p(sh, percpu);
1668 		else if (sh->check_state == check_state_run_q)
1669 			ops_run_check_pq(sh, percpu, 0);
1670 		else if (sh->check_state == check_state_run_pq)
1671 			ops_run_check_pq(sh, percpu, 1);
1672 		else
1673 			BUG();
1674 	}
1675 
1676 	if (overlap_clear)
1677 		for (i = disks; i--; ) {
1678 			struct r5dev *dev = &sh->dev[i];
1679 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1680 				wake_up(&sh->raid_conf->wait_for_overlap);
1681 		}
1682 	put_cpu();
1683 }
1684 
1685 static int grow_one_stripe(struct r5conf *conf, int hash)
1686 {
1687 	struct stripe_head *sh;
1688 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1689 	if (!sh)
1690 		return 0;
1691 
1692 	sh->raid_conf = conf;
1693 
1694 	spin_lock_init(&sh->stripe_lock);
1695 
1696 	if (grow_buffers(sh)) {
1697 		shrink_buffers(sh);
1698 		kmem_cache_free(conf->slab_cache, sh);
1699 		return 0;
1700 	}
1701 	sh->hash_lock_index = hash;
1702 	/* we just created an active stripe so... */
1703 	atomic_set(&sh->count, 1);
1704 	atomic_inc(&conf->active_stripes);
1705 	INIT_LIST_HEAD(&sh->lru);
1706 	release_stripe(sh);
1707 	return 1;
1708 }
1709 
1710 static int grow_stripes(struct r5conf *conf, int num)
1711 {
1712 	struct kmem_cache *sc;
1713 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1714 	int hash;
1715 
1716 	if (conf->mddev->gendisk)
1717 		sprintf(conf->cache_name[0],
1718 			"raid%d-%s", conf->level, mdname(conf->mddev));
1719 	else
1720 		sprintf(conf->cache_name[0],
1721 			"raid%d-%p", conf->level, conf->mddev);
1722 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1723 
1724 	conf->active_name = 0;
1725 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1726 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1727 			       0, 0, NULL);
1728 	if (!sc)
1729 		return 1;
1730 	conf->slab_cache = sc;
1731 	conf->pool_size = devs;
1732 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1733 	while (num--) {
1734 		if (!grow_one_stripe(conf, hash))
1735 			return 1;
1736 		conf->max_nr_stripes++;
1737 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1738 	}
1739 	return 0;
1740 }
1741 
1742 /**
1743  * scribble_len - return the required size of the scribble region
1744  * @num - total number of disks in the array
1745  *
1746  * The size must be enough to contain:
1747  * 1/ a struct page pointer for each device in the array +2
1748  * 2/ room to convert each entry in (1) to its corresponding dma
1749  *    (dma_map_page()) or page (page_address()) address.
1750  *
1751  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1752  * calculate over all devices (not just the data blocks), using zeros in place
1753  * of the P and Q blocks.
1754  */
1755 static size_t scribble_len(int num)
1756 {
1757 	size_t len;
1758 
1759 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1760 
1761 	return len;
1762 }
1763 
1764 static int resize_stripes(struct r5conf *conf, int newsize)
1765 {
1766 	/* Make all the stripes able to hold 'newsize' devices.
1767 	 * New slots in each stripe get 'page' set to a new page.
1768 	 *
1769 	 * This happens in stages:
1770 	 * 1/ create a new kmem_cache and allocate the required number of
1771 	 *    stripe_heads.
1772 	 * 2/ gather all the old stripe_heads and transfer the pages across
1773 	 *    to the new stripe_heads.  This will have the side effect of
1774 	 *    freezing the array as once all stripe_heads have been collected,
1775 	 *    no IO will be possible.  Old stripe heads are freed once their
1776 	 *    pages have been transferred over, and the old kmem_cache is
1777 	 *    freed when all stripes are done.
1778 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1779 	 *    we simple return a failre status - no need to clean anything up.
1780 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1781 	 *    If this fails, we don't bother trying the shrink the
1782 	 *    stripe_heads down again, we just leave them as they are.
1783 	 *    As each stripe_head is processed the new one is released into
1784 	 *    active service.
1785 	 *
1786 	 * Once step2 is started, we cannot afford to wait for a write,
1787 	 * so we use GFP_NOIO allocations.
1788 	 */
1789 	struct stripe_head *osh, *nsh;
1790 	LIST_HEAD(newstripes);
1791 	struct disk_info *ndisks;
1792 	unsigned long cpu;
1793 	int err;
1794 	struct kmem_cache *sc;
1795 	int i;
1796 	int hash, cnt;
1797 
1798 	if (newsize <= conf->pool_size)
1799 		return 0; /* never bother to shrink */
1800 
1801 	err = md_allow_write(conf->mddev);
1802 	if (err)
1803 		return err;
1804 
1805 	/* Step 1 */
1806 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1807 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1808 			       0, 0, NULL);
1809 	if (!sc)
1810 		return -ENOMEM;
1811 
1812 	for (i = conf->max_nr_stripes; i; i--) {
1813 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1814 		if (!nsh)
1815 			break;
1816 
1817 		nsh->raid_conf = conf;
1818 		spin_lock_init(&nsh->stripe_lock);
1819 
1820 		list_add(&nsh->lru, &newstripes);
1821 	}
1822 	if (i) {
1823 		/* didn't get enough, give up */
1824 		while (!list_empty(&newstripes)) {
1825 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1826 			list_del(&nsh->lru);
1827 			kmem_cache_free(sc, nsh);
1828 		}
1829 		kmem_cache_destroy(sc);
1830 		return -ENOMEM;
1831 	}
1832 	/* Step 2 - Must use GFP_NOIO now.
1833 	 * OK, we have enough stripes, start collecting inactive
1834 	 * stripes and copying them over
1835 	 */
1836 	hash = 0;
1837 	cnt = 0;
1838 	list_for_each_entry(nsh, &newstripes, lru) {
1839 		lock_device_hash_lock(conf, hash);
1840 		wait_event_cmd(conf->wait_for_stripe,
1841 				    !list_empty(conf->inactive_list + hash),
1842 				    unlock_device_hash_lock(conf, hash),
1843 				    lock_device_hash_lock(conf, hash));
1844 		osh = get_free_stripe(conf, hash);
1845 		unlock_device_hash_lock(conf, hash);
1846 		atomic_set(&nsh->count, 1);
1847 		for(i=0; i<conf->pool_size; i++)
1848 			nsh->dev[i].page = osh->dev[i].page;
1849 		for( ; i<newsize; i++)
1850 			nsh->dev[i].page = NULL;
1851 		nsh->hash_lock_index = hash;
1852 		kmem_cache_free(conf->slab_cache, osh);
1853 		cnt++;
1854 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1855 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1856 			hash++;
1857 			cnt = 0;
1858 		}
1859 	}
1860 	kmem_cache_destroy(conf->slab_cache);
1861 
1862 	/* Step 3.
1863 	 * At this point, we are holding all the stripes so the array
1864 	 * is completely stalled, so now is a good time to resize
1865 	 * conf->disks and the scribble region
1866 	 */
1867 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1868 	if (ndisks) {
1869 		for (i=0; i<conf->raid_disks; i++)
1870 			ndisks[i] = conf->disks[i];
1871 		kfree(conf->disks);
1872 		conf->disks = ndisks;
1873 	} else
1874 		err = -ENOMEM;
1875 
1876 	get_online_cpus();
1877 	conf->scribble_len = scribble_len(newsize);
1878 	for_each_present_cpu(cpu) {
1879 		struct raid5_percpu *percpu;
1880 		void *scribble;
1881 
1882 		percpu = per_cpu_ptr(conf->percpu, cpu);
1883 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1884 
1885 		if (scribble) {
1886 			kfree(percpu->scribble);
1887 			percpu->scribble = scribble;
1888 		} else {
1889 			err = -ENOMEM;
1890 			break;
1891 		}
1892 	}
1893 	put_online_cpus();
1894 
1895 	/* Step 4, return new stripes to service */
1896 	while(!list_empty(&newstripes)) {
1897 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1898 		list_del_init(&nsh->lru);
1899 
1900 		for (i=conf->raid_disks; i < newsize; i++)
1901 			if (nsh->dev[i].page == NULL) {
1902 				struct page *p = alloc_page(GFP_NOIO);
1903 				nsh->dev[i].page = p;
1904 				if (!p)
1905 					err = -ENOMEM;
1906 			}
1907 		release_stripe(nsh);
1908 	}
1909 	/* critical section pass, GFP_NOIO no longer needed */
1910 
1911 	conf->slab_cache = sc;
1912 	conf->active_name = 1-conf->active_name;
1913 	conf->pool_size = newsize;
1914 	return err;
1915 }
1916 
1917 static int drop_one_stripe(struct r5conf *conf, int hash)
1918 {
1919 	struct stripe_head *sh;
1920 
1921 	spin_lock_irq(conf->hash_locks + hash);
1922 	sh = get_free_stripe(conf, hash);
1923 	spin_unlock_irq(conf->hash_locks + hash);
1924 	if (!sh)
1925 		return 0;
1926 	BUG_ON(atomic_read(&sh->count));
1927 	shrink_buffers(sh);
1928 	kmem_cache_free(conf->slab_cache, sh);
1929 	atomic_dec(&conf->active_stripes);
1930 	return 1;
1931 }
1932 
1933 static void shrink_stripes(struct r5conf *conf)
1934 {
1935 	int hash;
1936 	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1937 		while (drop_one_stripe(conf, hash))
1938 			;
1939 
1940 	if (conf->slab_cache)
1941 		kmem_cache_destroy(conf->slab_cache);
1942 	conf->slab_cache = NULL;
1943 }
1944 
1945 static void raid5_end_read_request(struct bio * bi, int error)
1946 {
1947 	struct stripe_head *sh = bi->bi_private;
1948 	struct r5conf *conf = sh->raid_conf;
1949 	int disks = sh->disks, i;
1950 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1951 	char b[BDEVNAME_SIZE];
1952 	struct md_rdev *rdev = NULL;
1953 	sector_t s;
1954 
1955 	for (i=0 ; i<disks; i++)
1956 		if (bi == &sh->dev[i].req)
1957 			break;
1958 
1959 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1960 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1961 		uptodate);
1962 	if (i == disks) {
1963 		BUG();
1964 		return;
1965 	}
1966 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1967 		/* If replacement finished while this request was outstanding,
1968 		 * 'replacement' might be NULL already.
1969 		 * In that case it moved down to 'rdev'.
1970 		 * rdev is not removed until all requests are finished.
1971 		 */
1972 		rdev = conf->disks[i].replacement;
1973 	if (!rdev)
1974 		rdev = conf->disks[i].rdev;
1975 
1976 	if (use_new_offset(conf, sh))
1977 		s = sh->sector + rdev->new_data_offset;
1978 	else
1979 		s = sh->sector + rdev->data_offset;
1980 	if (uptodate) {
1981 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1982 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1983 			/* Note that this cannot happen on a
1984 			 * replacement device.  We just fail those on
1985 			 * any error
1986 			 */
1987 			printk_ratelimited(
1988 				KERN_INFO
1989 				"md/raid:%s: read error corrected"
1990 				" (%lu sectors at %llu on %s)\n",
1991 				mdname(conf->mddev), STRIPE_SECTORS,
1992 				(unsigned long long)s,
1993 				bdevname(rdev->bdev, b));
1994 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1995 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1996 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1997 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1998 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1999 
2000 		if (atomic_read(&rdev->read_errors))
2001 			atomic_set(&rdev->read_errors, 0);
2002 	} else {
2003 		const char *bdn = bdevname(rdev->bdev, b);
2004 		int retry = 0;
2005 		int set_bad = 0;
2006 
2007 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2008 		atomic_inc(&rdev->read_errors);
2009 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2010 			printk_ratelimited(
2011 				KERN_WARNING
2012 				"md/raid:%s: read error on replacement device "
2013 				"(sector %llu on %s).\n",
2014 				mdname(conf->mddev),
2015 				(unsigned long long)s,
2016 				bdn);
2017 		else if (conf->mddev->degraded >= conf->max_degraded) {
2018 			set_bad = 1;
2019 			printk_ratelimited(
2020 				KERN_WARNING
2021 				"md/raid:%s: read error not correctable "
2022 				"(sector %llu on %s).\n",
2023 				mdname(conf->mddev),
2024 				(unsigned long long)s,
2025 				bdn);
2026 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2027 			/* Oh, no!!! */
2028 			set_bad = 1;
2029 			printk_ratelimited(
2030 				KERN_WARNING
2031 				"md/raid:%s: read error NOT corrected!! "
2032 				"(sector %llu on %s).\n",
2033 				mdname(conf->mddev),
2034 				(unsigned long long)s,
2035 				bdn);
2036 		} else if (atomic_read(&rdev->read_errors)
2037 			 > conf->max_nr_stripes)
2038 			printk(KERN_WARNING
2039 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2040 			       mdname(conf->mddev), bdn);
2041 		else
2042 			retry = 1;
2043 		if (set_bad && test_bit(In_sync, &rdev->flags)
2044 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2045 			retry = 1;
2046 		if (retry)
2047 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2048 				set_bit(R5_ReadError, &sh->dev[i].flags);
2049 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2050 			} else
2051 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2052 		else {
2053 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2054 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2055 			if (!(set_bad
2056 			      && test_bit(In_sync, &rdev->flags)
2057 			      && rdev_set_badblocks(
2058 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2059 				md_error(conf->mddev, rdev);
2060 		}
2061 	}
2062 	rdev_dec_pending(rdev, conf->mddev);
2063 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2064 	set_bit(STRIPE_HANDLE, &sh->state);
2065 	release_stripe(sh);
2066 }
2067 
2068 static void raid5_end_write_request(struct bio *bi, int error)
2069 {
2070 	struct stripe_head *sh = bi->bi_private;
2071 	struct r5conf *conf = sh->raid_conf;
2072 	int disks = sh->disks, i;
2073 	struct md_rdev *uninitialized_var(rdev);
2074 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2075 	sector_t first_bad;
2076 	int bad_sectors;
2077 	int replacement = 0;
2078 
2079 	for (i = 0 ; i < disks; i++) {
2080 		if (bi == &sh->dev[i].req) {
2081 			rdev = conf->disks[i].rdev;
2082 			break;
2083 		}
2084 		if (bi == &sh->dev[i].rreq) {
2085 			rdev = conf->disks[i].replacement;
2086 			if (rdev)
2087 				replacement = 1;
2088 			else
2089 				/* rdev was removed and 'replacement'
2090 				 * replaced it.  rdev is not removed
2091 				 * until all requests are finished.
2092 				 */
2093 				rdev = conf->disks[i].rdev;
2094 			break;
2095 		}
2096 	}
2097 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2098 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2099 		uptodate);
2100 	if (i == disks) {
2101 		BUG();
2102 		return;
2103 	}
2104 
2105 	if (replacement) {
2106 		if (!uptodate)
2107 			md_error(conf->mddev, rdev);
2108 		else if (is_badblock(rdev, sh->sector,
2109 				     STRIPE_SECTORS,
2110 				     &first_bad, &bad_sectors))
2111 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2112 	} else {
2113 		if (!uptodate) {
2114 			set_bit(STRIPE_DEGRADED, &sh->state);
2115 			set_bit(WriteErrorSeen, &rdev->flags);
2116 			set_bit(R5_WriteError, &sh->dev[i].flags);
2117 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2118 				set_bit(MD_RECOVERY_NEEDED,
2119 					&rdev->mddev->recovery);
2120 		} else if (is_badblock(rdev, sh->sector,
2121 				       STRIPE_SECTORS,
2122 				       &first_bad, &bad_sectors)) {
2123 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2124 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2125 				/* That was a successful write so make
2126 				 * sure it looks like we already did
2127 				 * a re-write.
2128 				 */
2129 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2130 		}
2131 	}
2132 	rdev_dec_pending(rdev, conf->mddev);
2133 
2134 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2135 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2136 	set_bit(STRIPE_HANDLE, &sh->state);
2137 	release_stripe(sh);
2138 }
2139 
2140 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2141 
2142 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2143 {
2144 	struct r5dev *dev = &sh->dev[i];
2145 
2146 	bio_init(&dev->req);
2147 	dev->req.bi_io_vec = &dev->vec;
2148 	dev->req.bi_vcnt++;
2149 	dev->req.bi_max_vecs++;
2150 	dev->req.bi_private = sh;
2151 	dev->vec.bv_page = dev->page;
2152 
2153 	bio_init(&dev->rreq);
2154 	dev->rreq.bi_io_vec = &dev->rvec;
2155 	dev->rreq.bi_vcnt++;
2156 	dev->rreq.bi_max_vecs++;
2157 	dev->rreq.bi_private = sh;
2158 	dev->rvec.bv_page = dev->page;
2159 
2160 	dev->flags = 0;
2161 	dev->sector = compute_blocknr(sh, i, previous);
2162 }
2163 
2164 static void error(struct mddev *mddev, struct md_rdev *rdev)
2165 {
2166 	char b[BDEVNAME_SIZE];
2167 	struct r5conf *conf = mddev->private;
2168 	unsigned long flags;
2169 	pr_debug("raid456: error called\n");
2170 
2171 	spin_lock_irqsave(&conf->device_lock, flags);
2172 	clear_bit(In_sync, &rdev->flags);
2173 	mddev->degraded = calc_degraded(conf);
2174 	spin_unlock_irqrestore(&conf->device_lock, flags);
2175 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2176 
2177 	set_bit(Blocked, &rdev->flags);
2178 	set_bit(Faulty, &rdev->flags);
2179 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2180 	printk(KERN_ALERT
2181 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2182 	       "md/raid:%s: Operation continuing on %d devices.\n",
2183 	       mdname(mddev),
2184 	       bdevname(rdev->bdev, b),
2185 	       mdname(mddev),
2186 	       conf->raid_disks - mddev->degraded);
2187 }
2188 
2189 /*
2190  * Input: a 'big' sector number,
2191  * Output: index of the data and parity disk, and the sector # in them.
2192  */
2193 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2194 				     int previous, int *dd_idx,
2195 				     struct stripe_head *sh)
2196 {
2197 	sector_t stripe, stripe2;
2198 	sector_t chunk_number;
2199 	unsigned int chunk_offset;
2200 	int pd_idx, qd_idx;
2201 	int ddf_layout = 0;
2202 	sector_t new_sector;
2203 	int algorithm = previous ? conf->prev_algo
2204 				 : conf->algorithm;
2205 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2206 					 : conf->chunk_sectors;
2207 	int raid_disks = previous ? conf->previous_raid_disks
2208 				  : conf->raid_disks;
2209 	int data_disks = raid_disks - conf->max_degraded;
2210 
2211 	/* First compute the information on this sector */
2212 
2213 	/*
2214 	 * Compute the chunk number and the sector offset inside the chunk
2215 	 */
2216 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2217 	chunk_number = r_sector;
2218 
2219 	/*
2220 	 * Compute the stripe number
2221 	 */
2222 	stripe = chunk_number;
2223 	*dd_idx = sector_div(stripe, data_disks);
2224 	stripe2 = stripe;
2225 	/*
2226 	 * Select the parity disk based on the user selected algorithm.
2227 	 */
2228 	pd_idx = qd_idx = -1;
2229 	switch(conf->level) {
2230 	case 4:
2231 		pd_idx = data_disks;
2232 		break;
2233 	case 5:
2234 		switch (algorithm) {
2235 		case ALGORITHM_LEFT_ASYMMETRIC:
2236 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2237 			if (*dd_idx >= pd_idx)
2238 				(*dd_idx)++;
2239 			break;
2240 		case ALGORITHM_RIGHT_ASYMMETRIC:
2241 			pd_idx = sector_div(stripe2, raid_disks);
2242 			if (*dd_idx >= pd_idx)
2243 				(*dd_idx)++;
2244 			break;
2245 		case ALGORITHM_LEFT_SYMMETRIC:
2246 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2247 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2248 			break;
2249 		case ALGORITHM_RIGHT_SYMMETRIC:
2250 			pd_idx = sector_div(stripe2, raid_disks);
2251 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2252 			break;
2253 		case ALGORITHM_PARITY_0:
2254 			pd_idx = 0;
2255 			(*dd_idx)++;
2256 			break;
2257 		case ALGORITHM_PARITY_N:
2258 			pd_idx = data_disks;
2259 			break;
2260 		default:
2261 			BUG();
2262 		}
2263 		break;
2264 	case 6:
2265 
2266 		switch (algorithm) {
2267 		case ALGORITHM_LEFT_ASYMMETRIC:
2268 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2269 			qd_idx = pd_idx + 1;
2270 			if (pd_idx == raid_disks-1) {
2271 				(*dd_idx)++;	/* Q D D D P */
2272 				qd_idx = 0;
2273 			} else if (*dd_idx >= pd_idx)
2274 				(*dd_idx) += 2; /* D D P Q D */
2275 			break;
2276 		case ALGORITHM_RIGHT_ASYMMETRIC:
2277 			pd_idx = sector_div(stripe2, raid_disks);
2278 			qd_idx = pd_idx + 1;
2279 			if (pd_idx == raid_disks-1) {
2280 				(*dd_idx)++;	/* Q D D D P */
2281 				qd_idx = 0;
2282 			} else if (*dd_idx >= pd_idx)
2283 				(*dd_idx) += 2; /* D D P Q D */
2284 			break;
2285 		case ALGORITHM_LEFT_SYMMETRIC:
2286 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2287 			qd_idx = (pd_idx + 1) % raid_disks;
2288 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2289 			break;
2290 		case ALGORITHM_RIGHT_SYMMETRIC:
2291 			pd_idx = sector_div(stripe2, raid_disks);
2292 			qd_idx = (pd_idx + 1) % raid_disks;
2293 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2294 			break;
2295 
2296 		case ALGORITHM_PARITY_0:
2297 			pd_idx = 0;
2298 			qd_idx = 1;
2299 			(*dd_idx) += 2;
2300 			break;
2301 		case ALGORITHM_PARITY_N:
2302 			pd_idx = data_disks;
2303 			qd_idx = data_disks + 1;
2304 			break;
2305 
2306 		case ALGORITHM_ROTATING_ZERO_RESTART:
2307 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2308 			 * of blocks for computing Q is different.
2309 			 */
2310 			pd_idx = sector_div(stripe2, raid_disks);
2311 			qd_idx = pd_idx + 1;
2312 			if (pd_idx == raid_disks-1) {
2313 				(*dd_idx)++;	/* Q D D D P */
2314 				qd_idx = 0;
2315 			} else if (*dd_idx >= pd_idx)
2316 				(*dd_idx) += 2; /* D D P Q D */
2317 			ddf_layout = 1;
2318 			break;
2319 
2320 		case ALGORITHM_ROTATING_N_RESTART:
2321 			/* Same a left_asymmetric, by first stripe is
2322 			 * D D D P Q  rather than
2323 			 * Q D D D P
2324 			 */
2325 			stripe2 += 1;
2326 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2327 			qd_idx = pd_idx + 1;
2328 			if (pd_idx == raid_disks-1) {
2329 				(*dd_idx)++;	/* Q D D D P */
2330 				qd_idx = 0;
2331 			} else if (*dd_idx >= pd_idx)
2332 				(*dd_idx) += 2; /* D D P Q D */
2333 			ddf_layout = 1;
2334 			break;
2335 
2336 		case ALGORITHM_ROTATING_N_CONTINUE:
2337 			/* Same as left_symmetric but Q is before P */
2338 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2339 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2340 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2341 			ddf_layout = 1;
2342 			break;
2343 
2344 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2345 			/* RAID5 left_asymmetric, with Q on last device */
2346 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2347 			if (*dd_idx >= pd_idx)
2348 				(*dd_idx)++;
2349 			qd_idx = raid_disks - 1;
2350 			break;
2351 
2352 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2353 			pd_idx = sector_div(stripe2, raid_disks-1);
2354 			if (*dd_idx >= pd_idx)
2355 				(*dd_idx)++;
2356 			qd_idx = raid_disks - 1;
2357 			break;
2358 
2359 		case ALGORITHM_LEFT_SYMMETRIC_6:
2360 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2361 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2362 			qd_idx = raid_disks - 1;
2363 			break;
2364 
2365 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2366 			pd_idx = sector_div(stripe2, raid_disks-1);
2367 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2368 			qd_idx = raid_disks - 1;
2369 			break;
2370 
2371 		case ALGORITHM_PARITY_0_6:
2372 			pd_idx = 0;
2373 			(*dd_idx)++;
2374 			qd_idx = raid_disks - 1;
2375 			break;
2376 
2377 		default:
2378 			BUG();
2379 		}
2380 		break;
2381 	}
2382 
2383 	if (sh) {
2384 		sh->pd_idx = pd_idx;
2385 		sh->qd_idx = qd_idx;
2386 		sh->ddf_layout = ddf_layout;
2387 	}
2388 	/*
2389 	 * Finally, compute the new sector number
2390 	 */
2391 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2392 	return new_sector;
2393 }
2394 
2395 
2396 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2397 {
2398 	struct r5conf *conf = sh->raid_conf;
2399 	int raid_disks = sh->disks;
2400 	int data_disks = raid_disks - conf->max_degraded;
2401 	sector_t new_sector = sh->sector, check;
2402 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2403 					 : conf->chunk_sectors;
2404 	int algorithm = previous ? conf->prev_algo
2405 				 : conf->algorithm;
2406 	sector_t stripe;
2407 	int chunk_offset;
2408 	sector_t chunk_number;
2409 	int dummy1, dd_idx = i;
2410 	sector_t r_sector;
2411 	struct stripe_head sh2;
2412 
2413 
2414 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2415 	stripe = new_sector;
2416 
2417 	if (i == sh->pd_idx)
2418 		return 0;
2419 	switch(conf->level) {
2420 	case 4: break;
2421 	case 5:
2422 		switch (algorithm) {
2423 		case ALGORITHM_LEFT_ASYMMETRIC:
2424 		case ALGORITHM_RIGHT_ASYMMETRIC:
2425 			if (i > sh->pd_idx)
2426 				i--;
2427 			break;
2428 		case ALGORITHM_LEFT_SYMMETRIC:
2429 		case ALGORITHM_RIGHT_SYMMETRIC:
2430 			if (i < sh->pd_idx)
2431 				i += raid_disks;
2432 			i -= (sh->pd_idx + 1);
2433 			break;
2434 		case ALGORITHM_PARITY_0:
2435 			i -= 1;
2436 			break;
2437 		case ALGORITHM_PARITY_N:
2438 			break;
2439 		default:
2440 			BUG();
2441 		}
2442 		break;
2443 	case 6:
2444 		if (i == sh->qd_idx)
2445 			return 0; /* It is the Q disk */
2446 		switch (algorithm) {
2447 		case ALGORITHM_LEFT_ASYMMETRIC:
2448 		case ALGORITHM_RIGHT_ASYMMETRIC:
2449 		case ALGORITHM_ROTATING_ZERO_RESTART:
2450 		case ALGORITHM_ROTATING_N_RESTART:
2451 			if (sh->pd_idx == raid_disks-1)
2452 				i--;	/* Q D D D P */
2453 			else if (i > sh->pd_idx)
2454 				i -= 2; /* D D P Q D */
2455 			break;
2456 		case ALGORITHM_LEFT_SYMMETRIC:
2457 		case ALGORITHM_RIGHT_SYMMETRIC:
2458 			if (sh->pd_idx == raid_disks-1)
2459 				i--; /* Q D D D P */
2460 			else {
2461 				/* D D P Q D */
2462 				if (i < sh->pd_idx)
2463 					i += raid_disks;
2464 				i -= (sh->pd_idx + 2);
2465 			}
2466 			break;
2467 		case ALGORITHM_PARITY_0:
2468 			i -= 2;
2469 			break;
2470 		case ALGORITHM_PARITY_N:
2471 			break;
2472 		case ALGORITHM_ROTATING_N_CONTINUE:
2473 			/* Like left_symmetric, but P is before Q */
2474 			if (sh->pd_idx == 0)
2475 				i--;	/* P D D D Q */
2476 			else {
2477 				/* D D Q P D */
2478 				if (i < sh->pd_idx)
2479 					i += raid_disks;
2480 				i -= (sh->pd_idx + 1);
2481 			}
2482 			break;
2483 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2484 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2485 			if (i > sh->pd_idx)
2486 				i--;
2487 			break;
2488 		case ALGORITHM_LEFT_SYMMETRIC_6:
2489 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2490 			if (i < sh->pd_idx)
2491 				i += data_disks + 1;
2492 			i -= (sh->pd_idx + 1);
2493 			break;
2494 		case ALGORITHM_PARITY_0_6:
2495 			i -= 1;
2496 			break;
2497 		default:
2498 			BUG();
2499 		}
2500 		break;
2501 	}
2502 
2503 	chunk_number = stripe * data_disks + i;
2504 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2505 
2506 	check = raid5_compute_sector(conf, r_sector,
2507 				     previous, &dummy1, &sh2);
2508 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2509 		|| sh2.qd_idx != sh->qd_idx) {
2510 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2511 		       mdname(conf->mddev));
2512 		return 0;
2513 	}
2514 	return r_sector;
2515 }
2516 
2517 
2518 static void
2519 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2520 			 int rcw, int expand)
2521 {
2522 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2523 	struct r5conf *conf = sh->raid_conf;
2524 	int level = conf->level;
2525 
2526 	if (rcw) {
2527 
2528 		for (i = disks; i--; ) {
2529 			struct r5dev *dev = &sh->dev[i];
2530 
2531 			if (dev->towrite) {
2532 				set_bit(R5_LOCKED, &dev->flags);
2533 				set_bit(R5_Wantdrain, &dev->flags);
2534 				if (!expand)
2535 					clear_bit(R5_UPTODATE, &dev->flags);
2536 				s->locked++;
2537 			}
2538 		}
2539 		/* if we are not expanding this is a proper write request, and
2540 		 * there will be bios with new data to be drained into the
2541 		 * stripe cache
2542 		 */
2543 		if (!expand) {
2544 			if (!s->locked)
2545 				/* False alarm, nothing to do */
2546 				return;
2547 			sh->reconstruct_state = reconstruct_state_drain_run;
2548 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2549 		} else
2550 			sh->reconstruct_state = reconstruct_state_run;
2551 
2552 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2553 
2554 		if (s->locked + conf->max_degraded == disks)
2555 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2556 				atomic_inc(&conf->pending_full_writes);
2557 	} else {
2558 		BUG_ON(level == 6);
2559 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2560 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2561 
2562 		for (i = disks; i--; ) {
2563 			struct r5dev *dev = &sh->dev[i];
2564 			if (i == pd_idx)
2565 				continue;
2566 
2567 			if (dev->towrite &&
2568 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2569 			     test_bit(R5_Wantcompute, &dev->flags))) {
2570 				set_bit(R5_Wantdrain, &dev->flags);
2571 				set_bit(R5_LOCKED, &dev->flags);
2572 				clear_bit(R5_UPTODATE, &dev->flags);
2573 				s->locked++;
2574 			}
2575 		}
2576 		if (!s->locked)
2577 			/* False alarm - nothing to do */
2578 			return;
2579 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2580 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2581 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2582 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2583 	}
2584 
2585 	/* keep the parity disk(s) locked while asynchronous operations
2586 	 * are in flight
2587 	 */
2588 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2589 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2590 	s->locked++;
2591 
2592 	if (level == 6) {
2593 		int qd_idx = sh->qd_idx;
2594 		struct r5dev *dev = &sh->dev[qd_idx];
2595 
2596 		set_bit(R5_LOCKED, &dev->flags);
2597 		clear_bit(R5_UPTODATE, &dev->flags);
2598 		s->locked++;
2599 	}
2600 
2601 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2602 		__func__, (unsigned long long)sh->sector,
2603 		s->locked, s->ops_request);
2604 }
2605 
2606 /*
2607  * Each stripe/dev can have one or more bion attached.
2608  * toread/towrite point to the first in a chain.
2609  * The bi_next chain must be in order.
2610  */
2611 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2612 {
2613 	struct bio **bip;
2614 	struct r5conf *conf = sh->raid_conf;
2615 	int firstwrite=0;
2616 
2617 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2618 		(unsigned long long)bi->bi_iter.bi_sector,
2619 		(unsigned long long)sh->sector);
2620 
2621 	/*
2622 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2623 	 * reference count to avoid race. The reference count should already be
2624 	 * increased before this function is called (for example, in
2625 	 * make_request()), so other bio sharing this stripe will not free the
2626 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2627 	 * protect it.
2628 	 */
2629 	spin_lock_irq(&sh->stripe_lock);
2630 	if (forwrite) {
2631 		bip = &sh->dev[dd_idx].towrite;
2632 		if (*bip == NULL)
2633 			firstwrite = 1;
2634 	} else
2635 		bip = &sh->dev[dd_idx].toread;
2636 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2637 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2638 			goto overlap;
2639 		bip = & (*bip)->bi_next;
2640 	}
2641 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2642 		goto overlap;
2643 
2644 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2645 	if (*bip)
2646 		bi->bi_next = *bip;
2647 	*bip = bi;
2648 	raid5_inc_bi_active_stripes(bi);
2649 
2650 	if (forwrite) {
2651 		/* check if page is covered */
2652 		sector_t sector = sh->dev[dd_idx].sector;
2653 		for (bi=sh->dev[dd_idx].towrite;
2654 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2655 			     bi && bi->bi_iter.bi_sector <= sector;
2656 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2657 			if (bio_end_sector(bi) >= sector)
2658 				sector = bio_end_sector(bi);
2659 		}
2660 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2661 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2662 	}
2663 
2664 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2665 		(unsigned long long)(*bip)->bi_iter.bi_sector,
2666 		(unsigned long long)sh->sector, dd_idx);
2667 	spin_unlock_irq(&sh->stripe_lock);
2668 
2669 	if (conf->mddev->bitmap && firstwrite) {
2670 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2671 				  STRIPE_SECTORS, 0);
2672 		sh->bm_seq = conf->seq_flush+1;
2673 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2674 	}
2675 	return 1;
2676 
2677  overlap:
2678 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2679 	spin_unlock_irq(&sh->stripe_lock);
2680 	return 0;
2681 }
2682 
2683 static void end_reshape(struct r5conf *conf);
2684 
2685 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2686 			    struct stripe_head *sh)
2687 {
2688 	int sectors_per_chunk =
2689 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2690 	int dd_idx;
2691 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2692 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2693 
2694 	raid5_compute_sector(conf,
2695 			     stripe * (disks - conf->max_degraded)
2696 			     *sectors_per_chunk + chunk_offset,
2697 			     previous,
2698 			     &dd_idx, sh);
2699 }
2700 
2701 static void
2702 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2703 				struct stripe_head_state *s, int disks,
2704 				struct bio **return_bi)
2705 {
2706 	int i;
2707 	for (i = disks; i--; ) {
2708 		struct bio *bi;
2709 		int bitmap_end = 0;
2710 
2711 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2712 			struct md_rdev *rdev;
2713 			rcu_read_lock();
2714 			rdev = rcu_dereference(conf->disks[i].rdev);
2715 			if (rdev && test_bit(In_sync, &rdev->flags))
2716 				atomic_inc(&rdev->nr_pending);
2717 			else
2718 				rdev = NULL;
2719 			rcu_read_unlock();
2720 			if (rdev) {
2721 				if (!rdev_set_badblocks(
2722 					    rdev,
2723 					    sh->sector,
2724 					    STRIPE_SECTORS, 0))
2725 					md_error(conf->mddev, rdev);
2726 				rdev_dec_pending(rdev, conf->mddev);
2727 			}
2728 		}
2729 		spin_lock_irq(&sh->stripe_lock);
2730 		/* fail all writes first */
2731 		bi = sh->dev[i].towrite;
2732 		sh->dev[i].towrite = NULL;
2733 		spin_unlock_irq(&sh->stripe_lock);
2734 		if (bi)
2735 			bitmap_end = 1;
2736 
2737 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2738 			wake_up(&conf->wait_for_overlap);
2739 
2740 		while (bi && bi->bi_iter.bi_sector <
2741 			sh->dev[i].sector + STRIPE_SECTORS) {
2742 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2743 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2744 			if (!raid5_dec_bi_active_stripes(bi)) {
2745 				md_write_end(conf->mddev);
2746 				bi->bi_next = *return_bi;
2747 				*return_bi = bi;
2748 			}
2749 			bi = nextbi;
2750 		}
2751 		if (bitmap_end)
2752 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2753 				STRIPE_SECTORS, 0, 0);
2754 		bitmap_end = 0;
2755 		/* and fail all 'written' */
2756 		bi = sh->dev[i].written;
2757 		sh->dev[i].written = NULL;
2758 		if (bi) bitmap_end = 1;
2759 		while (bi && bi->bi_iter.bi_sector <
2760 		       sh->dev[i].sector + STRIPE_SECTORS) {
2761 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2762 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2763 			if (!raid5_dec_bi_active_stripes(bi)) {
2764 				md_write_end(conf->mddev);
2765 				bi->bi_next = *return_bi;
2766 				*return_bi = bi;
2767 			}
2768 			bi = bi2;
2769 		}
2770 
2771 		/* fail any reads if this device is non-operational and
2772 		 * the data has not reached the cache yet.
2773 		 */
2774 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2775 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2776 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2777 			spin_lock_irq(&sh->stripe_lock);
2778 			bi = sh->dev[i].toread;
2779 			sh->dev[i].toread = NULL;
2780 			spin_unlock_irq(&sh->stripe_lock);
2781 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2782 				wake_up(&conf->wait_for_overlap);
2783 			while (bi && bi->bi_iter.bi_sector <
2784 			       sh->dev[i].sector + STRIPE_SECTORS) {
2785 				struct bio *nextbi =
2786 					r5_next_bio(bi, sh->dev[i].sector);
2787 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2788 				if (!raid5_dec_bi_active_stripes(bi)) {
2789 					bi->bi_next = *return_bi;
2790 					*return_bi = bi;
2791 				}
2792 				bi = nextbi;
2793 			}
2794 		}
2795 		if (bitmap_end)
2796 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2797 					STRIPE_SECTORS, 0, 0);
2798 		/* If we were in the middle of a write the parity block might
2799 		 * still be locked - so just clear all R5_LOCKED flags
2800 		 */
2801 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2802 	}
2803 
2804 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2805 		if (atomic_dec_and_test(&conf->pending_full_writes))
2806 			md_wakeup_thread(conf->mddev->thread);
2807 }
2808 
2809 static void
2810 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2811 		   struct stripe_head_state *s)
2812 {
2813 	int abort = 0;
2814 	int i;
2815 
2816 	clear_bit(STRIPE_SYNCING, &sh->state);
2817 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2818 		wake_up(&conf->wait_for_overlap);
2819 	s->syncing = 0;
2820 	s->replacing = 0;
2821 	/* There is nothing more to do for sync/check/repair.
2822 	 * Don't even need to abort as that is handled elsewhere
2823 	 * if needed, and not always wanted e.g. if there is a known
2824 	 * bad block here.
2825 	 * For recover/replace we need to record a bad block on all
2826 	 * non-sync devices, or abort the recovery
2827 	 */
2828 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2829 		/* During recovery devices cannot be removed, so
2830 		 * locking and refcounting of rdevs is not needed
2831 		 */
2832 		for (i = 0; i < conf->raid_disks; i++) {
2833 			struct md_rdev *rdev = conf->disks[i].rdev;
2834 			if (rdev
2835 			    && !test_bit(Faulty, &rdev->flags)
2836 			    && !test_bit(In_sync, &rdev->flags)
2837 			    && !rdev_set_badblocks(rdev, sh->sector,
2838 						   STRIPE_SECTORS, 0))
2839 				abort = 1;
2840 			rdev = conf->disks[i].replacement;
2841 			if (rdev
2842 			    && !test_bit(Faulty, &rdev->flags)
2843 			    && !test_bit(In_sync, &rdev->flags)
2844 			    && !rdev_set_badblocks(rdev, sh->sector,
2845 						   STRIPE_SECTORS, 0))
2846 				abort = 1;
2847 		}
2848 		if (abort)
2849 			conf->recovery_disabled =
2850 				conf->mddev->recovery_disabled;
2851 	}
2852 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2853 }
2854 
2855 static int want_replace(struct stripe_head *sh, int disk_idx)
2856 {
2857 	struct md_rdev *rdev;
2858 	int rv = 0;
2859 	/* Doing recovery so rcu locking not required */
2860 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2861 	if (rdev
2862 	    && !test_bit(Faulty, &rdev->flags)
2863 	    && !test_bit(In_sync, &rdev->flags)
2864 	    && (rdev->recovery_offset <= sh->sector
2865 		|| rdev->mddev->recovery_cp <= sh->sector))
2866 		rv = 1;
2867 
2868 	return rv;
2869 }
2870 
2871 /* fetch_block - checks the given member device to see if its data needs
2872  * to be read or computed to satisfy a request.
2873  *
2874  * Returns 1 when no more member devices need to be checked, otherwise returns
2875  * 0 to tell the loop in handle_stripe_fill to continue
2876  */
2877 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2878 		       int disk_idx, int disks)
2879 {
2880 	struct r5dev *dev = &sh->dev[disk_idx];
2881 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2882 				  &sh->dev[s->failed_num[1]] };
2883 
2884 	/* is the data in this block needed, and can we get it? */
2885 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2886 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2887 	    (dev->toread ||
2888 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2889 	     s->syncing || s->expanding ||
2890 	     (s->replacing && want_replace(sh, disk_idx)) ||
2891 	     (s->failed >= 1 && fdev[0]->toread) ||
2892 	     (s->failed >= 2 && fdev[1]->toread) ||
2893 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2894 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2895 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2896 		/* we would like to get this block, possibly by computing it,
2897 		 * otherwise read it if the backing disk is insync
2898 		 */
2899 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2900 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2901 		if ((s->uptodate == disks - 1) &&
2902 		    (s->failed && (disk_idx == s->failed_num[0] ||
2903 				   disk_idx == s->failed_num[1]))) {
2904 			/* have disk failed, and we're requested to fetch it;
2905 			 * do compute it
2906 			 */
2907 			pr_debug("Computing stripe %llu block %d\n",
2908 			       (unsigned long long)sh->sector, disk_idx);
2909 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2910 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2911 			set_bit(R5_Wantcompute, &dev->flags);
2912 			sh->ops.target = disk_idx;
2913 			sh->ops.target2 = -1; /* no 2nd target */
2914 			s->req_compute = 1;
2915 			/* Careful: from this point on 'uptodate' is in the eye
2916 			 * of raid_run_ops which services 'compute' operations
2917 			 * before writes. R5_Wantcompute flags a block that will
2918 			 * be R5_UPTODATE by the time it is needed for a
2919 			 * subsequent operation.
2920 			 */
2921 			s->uptodate++;
2922 			return 1;
2923 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2924 			/* Computing 2-failure is *very* expensive; only
2925 			 * do it if failed >= 2
2926 			 */
2927 			int other;
2928 			for (other = disks; other--; ) {
2929 				if (other == disk_idx)
2930 					continue;
2931 				if (!test_bit(R5_UPTODATE,
2932 				      &sh->dev[other].flags))
2933 					break;
2934 			}
2935 			BUG_ON(other < 0);
2936 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2937 			       (unsigned long long)sh->sector,
2938 			       disk_idx, other);
2939 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2940 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2941 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2942 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2943 			sh->ops.target = disk_idx;
2944 			sh->ops.target2 = other;
2945 			s->uptodate += 2;
2946 			s->req_compute = 1;
2947 			return 1;
2948 		} else if (test_bit(R5_Insync, &dev->flags)) {
2949 			set_bit(R5_LOCKED, &dev->flags);
2950 			set_bit(R5_Wantread, &dev->flags);
2951 			s->locked++;
2952 			pr_debug("Reading block %d (sync=%d)\n",
2953 				disk_idx, s->syncing);
2954 		}
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 /**
2961  * handle_stripe_fill - read or compute data to satisfy pending requests.
2962  */
2963 static void handle_stripe_fill(struct stripe_head *sh,
2964 			       struct stripe_head_state *s,
2965 			       int disks)
2966 {
2967 	int i;
2968 
2969 	/* look for blocks to read/compute, skip this if a compute
2970 	 * is already in flight, or if the stripe contents are in the
2971 	 * midst of changing due to a write
2972 	 */
2973 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2974 	    !sh->reconstruct_state)
2975 		for (i = disks; i--; )
2976 			if (fetch_block(sh, s, i, disks))
2977 				break;
2978 	set_bit(STRIPE_HANDLE, &sh->state);
2979 }
2980 
2981 
2982 /* handle_stripe_clean_event
2983  * any written block on an uptodate or failed drive can be returned.
2984  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2985  * never LOCKED, so we don't need to test 'failed' directly.
2986  */
2987 static void handle_stripe_clean_event(struct r5conf *conf,
2988 	struct stripe_head *sh, int disks, struct bio **return_bi)
2989 {
2990 	int i;
2991 	struct r5dev *dev;
2992 	int discard_pending = 0;
2993 
2994 	for (i = disks; i--; )
2995 		if (sh->dev[i].written) {
2996 			dev = &sh->dev[i];
2997 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2998 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2999 			     test_bit(R5_Discard, &dev->flags))) {
3000 				/* We can return any write requests */
3001 				struct bio *wbi, *wbi2;
3002 				pr_debug("Return write for disc %d\n", i);
3003 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3004 					clear_bit(R5_UPTODATE, &dev->flags);
3005 				wbi = dev->written;
3006 				dev->written = NULL;
3007 				while (wbi && wbi->bi_iter.bi_sector <
3008 					dev->sector + STRIPE_SECTORS) {
3009 					wbi2 = r5_next_bio(wbi, dev->sector);
3010 					if (!raid5_dec_bi_active_stripes(wbi)) {
3011 						md_write_end(conf->mddev);
3012 						wbi->bi_next = *return_bi;
3013 						*return_bi = wbi;
3014 					}
3015 					wbi = wbi2;
3016 				}
3017 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3018 						STRIPE_SECTORS,
3019 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3020 						0);
3021 			} else if (test_bit(R5_Discard, &dev->flags))
3022 				discard_pending = 1;
3023 		}
3024 	if (!discard_pending &&
3025 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3026 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3027 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3028 		if (sh->qd_idx >= 0) {
3029 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3030 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3031 		}
3032 		/* now that discard is done we can proceed with any sync */
3033 		clear_bit(STRIPE_DISCARD, &sh->state);
3034 		/*
3035 		 * SCSI discard will change some bio fields and the stripe has
3036 		 * no updated data, so remove it from hash list and the stripe
3037 		 * will be reinitialized
3038 		 */
3039 		spin_lock_irq(&conf->device_lock);
3040 		remove_hash(sh);
3041 		spin_unlock_irq(&conf->device_lock);
3042 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3043 			set_bit(STRIPE_HANDLE, &sh->state);
3044 
3045 	}
3046 
3047 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3048 		if (atomic_dec_and_test(&conf->pending_full_writes))
3049 			md_wakeup_thread(conf->mddev->thread);
3050 }
3051 
3052 static void handle_stripe_dirtying(struct r5conf *conf,
3053 				   struct stripe_head *sh,
3054 				   struct stripe_head_state *s,
3055 				   int disks)
3056 {
3057 	int rmw = 0, rcw = 0, i;
3058 	sector_t recovery_cp = conf->mddev->recovery_cp;
3059 
3060 	/* RAID6 requires 'rcw' in current implementation.
3061 	 * Otherwise, check whether resync is now happening or should start.
3062 	 * If yes, then the array is dirty (after unclean shutdown or
3063 	 * initial creation), so parity in some stripes might be inconsistent.
3064 	 * In this case, we need to always do reconstruct-write, to ensure
3065 	 * that in case of drive failure or read-error correction, we
3066 	 * generate correct data from the parity.
3067 	 */
3068 	if (conf->max_degraded == 2 ||
3069 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3070 		/* Calculate the real rcw later - for now make it
3071 		 * look like rcw is cheaper
3072 		 */
3073 		rcw = 1; rmw = 2;
3074 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3075 			 conf->max_degraded, (unsigned long long)recovery_cp,
3076 			 (unsigned long long)sh->sector);
3077 	} else for (i = disks; i--; ) {
3078 		/* would I have to read this buffer for read_modify_write */
3079 		struct r5dev *dev = &sh->dev[i];
3080 		if ((dev->towrite || i == sh->pd_idx) &&
3081 		    !test_bit(R5_LOCKED, &dev->flags) &&
3082 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3083 		      test_bit(R5_Wantcompute, &dev->flags))) {
3084 			if (test_bit(R5_Insync, &dev->flags))
3085 				rmw++;
3086 			else
3087 				rmw += 2*disks;  /* cannot read it */
3088 		}
3089 		/* Would I have to read this buffer for reconstruct_write */
3090 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3091 		    !test_bit(R5_LOCKED, &dev->flags) &&
3092 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3093 		    test_bit(R5_Wantcompute, &dev->flags))) {
3094 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
3095 			else
3096 				rcw += 2*disks;
3097 		}
3098 	}
3099 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3100 		(unsigned long long)sh->sector, rmw, rcw);
3101 	set_bit(STRIPE_HANDLE, &sh->state);
3102 	if (rmw < rcw && rmw > 0) {
3103 		/* prefer read-modify-write, but need to get some data */
3104 		if (conf->mddev->queue)
3105 			blk_add_trace_msg(conf->mddev->queue,
3106 					  "raid5 rmw %llu %d",
3107 					  (unsigned long long)sh->sector, rmw);
3108 		for (i = disks; i--; ) {
3109 			struct r5dev *dev = &sh->dev[i];
3110 			if ((dev->towrite || i == sh->pd_idx) &&
3111 			    !test_bit(R5_LOCKED, &dev->flags) &&
3112 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3113 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3114 			    test_bit(R5_Insync, &dev->flags)) {
3115 				if (
3116 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3117 					pr_debug("Read_old block "
3118 						 "%d for r-m-w\n", i);
3119 					set_bit(R5_LOCKED, &dev->flags);
3120 					set_bit(R5_Wantread, &dev->flags);
3121 					s->locked++;
3122 				} else {
3123 					set_bit(STRIPE_DELAYED, &sh->state);
3124 					set_bit(STRIPE_HANDLE, &sh->state);
3125 				}
3126 			}
3127 		}
3128 	}
3129 	if (rcw <= rmw && rcw > 0) {
3130 		/* want reconstruct write, but need to get some data */
3131 		int qread =0;
3132 		rcw = 0;
3133 		for (i = disks; i--; ) {
3134 			struct r5dev *dev = &sh->dev[i];
3135 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3136 			    i != sh->pd_idx && i != sh->qd_idx &&
3137 			    !test_bit(R5_LOCKED, &dev->flags) &&
3138 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3139 			      test_bit(R5_Wantcompute, &dev->flags))) {
3140 				rcw++;
3141 				if (!test_bit(R5_Insync, &dev->flags))
3142 					continue; /* it's a failed drive */
3143 				if (
3144 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3145 					pr_debug("Read_old block "
3146 						"%d for Reconstruct\n", i);
3147 					set_bit(R5_LOCKED, &dev->flags);
3148 					set_bit(R5_Wantread, &dev->flags);
3149 					s->locked++;
3150 					qread++;
3151 				} else {
3152 					set_bit(STRIPE_DELAYED, &sh->state);
3153 					set_bit(STRIPE_HANDLE, &sh->state);
3154 				}
3155 			}
3156 		}
3157 		if (rcw && conf->mddev->queue)
3158 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3159 					  (unsigned long long)sh->sector,
3160 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3161 	}
3162 	/* now if nothing is locked, and if we have enough data,
3163 	 * we can start a write request
3164 	 */
3165 	/* since handle_stripe can be called at any time we need to handle the
3166 	 * case where a compute block operation has been submitted and then a
3167 	 * subsequent call wants to start a write request.  raid_run_ops only
3168 	 * handles the case where compute block and reconstruct are requested
3169 	 * simultaneously.  If this is not the case then new writes need to be
3170 	 * held off until the compute completes.
3171 	 */
3172 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3173 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3174 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3175 		schedule_reconstruction(sh, s, rcw == 0, 0);
3176 }
3177 
3178 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3179 				struct stripe_head_state *s, int disks)
3180 {
3181 	struct r5dev *dev = NULL;
3182 
3183 	set_bit(STRIPE_HANDLE, &sh->state);
3184 
3185 	switch (sh->check_state) {
3186 	case check_state_idle:
3187 		/* start a new check operation if there are no failures */
3188 		if (s->failed == 0) {
3189 			BUG_ON(s->uptodate != disks);
3190 			sh->check_state = check_state_run;
3191 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3192 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3193 			s->uptodate--;
3194 			break;
3195 		}
3196 		dev = &sh->dev[s->failed_num[0]];
3197 		/* fall through */
3198 	case check_state_compute_result:
3199 		sh->check_state = check_state_idle;
3200 		if (!dev)
3201 			dev = &sh->dev[sh->pd_idx];
3202 
3203 		/* check that a write has not made the stripe insync */
3204 		if (test_bit(STRIPE_INSYNC, &sh->state))
3205 			break;
3206 
3207 		/* either failed parity check, or recovery is happening */
3208 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3209 		BUG_ON(s->uptodate != disks);
3210 
3211 		set_bit(R5_LOCKED, &dev->flags);
3212 		s->locked++;
3213 		set_bit(R5_Wantwrite, &dev->flags);
3214 
3215 		clear_bit(STRIPE_DEGRADED, &sh->state);
3216 		set_bit(STRIPE_INSYNC, &sh->state);
3217 		break;
3218 	case check_state_run:
3219 		break; /* we will be called again upon completion */
3220 	case check_state_check_result:
3221 		sh->check_state = check_state_idle;
3222 
3223 		/* if a failure occurred during the check operation, leave
3224 		 * STRIPE_INSYNC not set and let the stripe be handled again
3225 		 */
3226 		if (s->failed)
3227 			break;
3228 
3229 		/* handle a successful check operation, if parity is correct
3230 		 * we are done.  Otherwise update the mismatch count and repair
3231 		 * parity if !MD_RECOVERY_CHECK
3232 		 */
3233 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3234 			/* parity is correct (on disc,
3235 			 * not in buffer any more)
3236 			 */
3237 			set_bit(STRIPE_INSYNC, &sh->state);
3238 		else {
3239 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3240 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3241 				/* don't try to repair!! */
3242 				set_bit(STRIPE_INSYNC, &sh->state);
3243 			else {
3244 				sh->check_state = check_state_compute_run;
3245 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3246 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3247 				set_bit(R5_Wantcompute,
3248 					&sh->dev[sh->pd_idx].flags);
3249 				sh->ops.target = sh->pd_idx;
3250 				sh->ops.target2 = -1;
3251 				s->uptodate++;
3252 			}
3253 		}
3254 		break;
3255 	case check_state_compute_run:
3256 		break;
3257 	default:
3258 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3259 		       __func__, sh->check_state,
3260 		       (unsigned long long) sh->sector);
3261 		BUG();
3262 	}
3263 }
3264 
3265 
3266 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3267 				  struct stripe_head_state *s,
3268 				  int disks)
3269 {
3270 	int pd_idx = sh->pd_idx;
3271 	int qd_idx = sh->qd_idx;
3272 	struct r5dev *dev;
3273 
3274 	set_bit(STRIPE_HANDLE, &sh->state);
3275 
3276 	BUG_ON(s->failed > 2);
3277 
3278 	/* Want to check and possibly repair P and Q.
3279 	 * However there could be one 'failed' device, in which
3280 	 * case we can only check one of them, possibly using the
3281 	 * other to generate missing data
3282 	 */
3283 
3284 	switch (sh->check_state) {
3285 	case check_state_idle:
3286 		/* start a new check operation if there are < 2 failures */
3287 		if (s->failed == s->q_failed) {
3288 			/* The only possible failed device holds Q, so it
3289 			 * makes sense to check P (If anything else were failed,
3290 			 * we would have used P to recreate it).
3291 			 */
3292 			sh->check_state = check_state_run;
3293 		}
3294 		if (!s->q_failed && s->failed < 2) {
3295 			/* Q is not failed, and we didn't use it to generate
3296 			 * anything, so it makes sense to check it
3297 			 */
3298 			if (sh->check_state == check_state_run)
3299 				sh->check_state = check_state_run_pq;
3300 			else
3301 				sh->check_state = check_state_run_q;
3302 		}
3303 
3304 		/* discard potentially stale zero_sum_result */
3305 		sh->ops.zero_sum_result = 0;
3306 
3307 		if (sh->check_state == check_state_run) {
3308 			/* async_xor_zero_sum destroys the contents of P */
3309 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3310 			s->uptodate--;
3311 		}
3312 		if (sh->check_state >= check_state_run &&
3313 		    sh->check_state <= check_state_run_pq) {
3314 			/* async_syndrome_zero_sum preserves P and Q, so
3315 			 * no need to mark them !uptodate here
3316 			 */
3317 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3318 			break;
3319 		}
3320 
3321 		/* we have 2-disk failure */
3322 		BUG_ON(s->failed != 2);
3323 		/* fall through */
3324 	case check_state_compute_result:
3325 		sh->check_state = check_state_idle;
3326 
3327 		/* check that a write has not made the stripe insync */
3328 		if (test_bit(STRIPE_INSYNC, &sh->state))
3329 			break;
3330 
3331 		/* now write out any block on a failed drive,
3332 		 * or P or Q if they were recomputed
3333 		 */
3334 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3335 		if (s->failed == 2) {
3336 			dev = &sh->dev[s->failed_num[1]];
3337 			s->locked++;
3338 			set_bit(R5_LOCKED, &dev->flags);
3339 			set_bit(R5_Wantwrite, &dev->flags);
3340 		}
3341 		if (s->failed >= 1) {
3342 			dev = &sh->dev[s->failed_num[0]];
3343 			s->locked++;
3344 			set_bit(R5_LOCKED, &dev->flags);
3345 			set_bit(R5_Wantwrite, &dev->flags);
3346 		}
3347 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3348 			dev = &sh->dev[pd_idx];
3349 			s->locked++;
3350 			set_bit(R5_LOCKED, &dev->flags);
3351 			set_bit(R5_Wantwrite, &dev->flags);
3352 		}
3353 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3354 			dev = &sh->dev[qd_idx];
3355 			s->locked++;
3356 			set_bit(R5_LOCKED, &dev->flags);
3357 			set_bit(R5_Wantwrite, &dev->flags);
3358 		}
3359 		clear_bit(STRIPE_DEGRADED, &sh->state);
3360 
3361 		set_bit(STRIPE_INSYNC, &sh->state);
3362 		break;
3363 	case check_state_run:
3364 	case check_state_run_q:
3365 	case check_state_run_pq:
3366 		break; /* we will be called again upon completion */
3367 	case check_state_check_result:
3368 		sh->check_state = check_state_idle;
3369 
3370 		/* handle a successful check operation, if parity is correct
3371 		 * we are done.  Otherwise update the mismatch count and repair
3372 		 * parity if !MD_RECOVERY_CHECK
3373 		 */
3374 		if (sh->ops.zero_sum_result == 0) {
3375 			/* both parities are correct */
3376 			if (!s->failed)
3377 				set_bit(STRIPE_INSYNC, &sh->state);
3378 			else {
3379 				/* in contrast to the raid5 case we can validate
3380 				 * parity, but still have a failure to write
3381 				 * back
3382 				 */
3383 				sh->check_state = check_state_compute_result;
3384 				/* Returning at this point means that we may go
3385 				 * off and bring p and/or q uptodate again so
3386 				 * we make sure to check zero_sum_result again
3387 				 * to verify if p or q need writeback
3388 				 */
3389 			}
3390 		} else {
3391 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3392 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3393 				/* don't try to repair!! */
3394 				set_bit(STRIPE_INSYNC, &sh->state);
3395 			else {
3396 				int *target = &sh->ops.target;
3397 
3398 				sh->ops.target = -1;
3399 				sh->ops.target2 = -1;
3400 				sh->check_state = check_state_compute_run;
3401 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3402 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3403 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3404 					set_bit(R5_Wantcompute,
3405 						&sh->dev[pd_idx].flags);
3406 					*target = pd_idx;
3407 					target = &sh->ops.target2;
3408 					s->uptodate++;
3409 				}
3410 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3411 					set_bit(R5_Wantcompute,
3412 						&sh->dev[qd_idx].flags);
3413 					*target = qd_idx;
3414 					s->uptodate++;
3415 				}
3416 			}
3417 		}
3418 		break;
3419 	case check_state_compute_run:
3420 		break;
3421 	default:
3422 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3423 		       __func__, sh->check_state,
3424 		       (unsigned long long) sh->sector);
3425 		BUG();
3426 	}
3427 }
3428 
3429 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3430 {
3431 	int i;
3432 
3433 	/* We have read all the blocks in this stripe and now we need to
3434 	 * copy some of them into a target stripe for expand.
3435 	 */
3436 	struct dma_async_tx_descriptor *tx = NULL;
3437 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3438 	for (i = 0; i < sh->disks; i++)
3439 		if (i != sh->pd_idx && i != sh->qd_idx) {
3440 			int dd_idx, j;
3441 			struct stripe_head *sh2;
3442 			struct async_submit_ctl submit;
3443 
3444 			sector_t bn = compute_blocknr(sh, i, 1);
3445 			sector_t s = raid5_compute_sector(conf, bn, 0,
3446 							  &dd_idx, NULL);
3447 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3448 			if (sh2 == NULL)
3449 				/* so far only the early blocks of this stripe
3450 				 * have been requested.  When later blocks
3451 				 * get requested, we will try again
3452 				 */
3453 				continue;
3454 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3455 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3456 				/* must have already done this block */
3457 				release_stripe(sh2);
3458 				continue;
3459 			}
3460 
3461 			/* place all the copies on one channel */
3462 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3463 			tx = async_memcpy(sh2->dev[dd_idx].page,
3464 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3465 					  &submit);
3466 
3467 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3468 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3469 			for (j = 0; j < conf->raid_disks; j++)
3470 				if (j != sh2->pd_idx &&
3471 				    j != sh2->qd_idx &&
3472 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3473 					break;
3474 			if (j == conf->raid_disks) {
3475 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3476 				set_bit(STRIPE_HANDLE, &sh2->state);
3477 			}
3478 			release_stripe(sh2);
3479 
3480 		}
3481 	/* done submitting copies, wait for them to complete */
3482 	async_tx_quiesce(&tx);
3483 }
3484 
3485 /*
3486  * handle_stripe - do things to a stripe.
3487  *
3488  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3489  * state of various bits to see what needs to be done.
3490  * Possible results:
3491  *    return some read requests which now have data
3492  *    return some write requests which are safely on storage
3493  *    schedule a read on some buffers
3494  *    schedule a write of some buffers
3495  *    return confirmation of parity correctness
3496  *
3497  */
3498 
3499 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3500 {
3501 	struct r5conf *conf = sh->raid_conf;
3502 	int disks = sh->disks;
3503 	struct r5dev *dev;
3504 	int i;
3505 	int do_recovery = 0;
3506 
3507 	memset(s, 0, sizeof(*s));
3508 
3509 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3510 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3511 	s->failed_num[0] = -1;
3512 	s->failed_num[1] = -1;
3513 
3514 	/* Now to look around and see what can be done */
3515 	rcu_read_lock();
3516 	for (i=disks; i--; ) {
3517 		struct md_rdev *rdev;
3518 		sector_t first_bad;
3519 		int bad_sectors;
3520 		int is_bad = 0;
3521 
3522 		dev = &sh->dev[i];
3523 
3524 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3525 			 i, dev->flags,
3526 			 dev->toread, dev->towrite, dev->written);
3527 		/* maybe we can reply to a read
3528 		 *
3529 		 * new wantfill requests are only permitted while
3530 		 * ops_complete_biofill is guaranteed to be inactive
3531 		 */
3532 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3533 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3534 			set_bit(R5_Wantfill, &dev->flags);
3535 
3536 		/* now count some things */
3537 		if (test_bit(R5_LOCKED, &dev->flags))
3538 			s->locked++;
3539 		if (test_bit(R5_UPTODATE, &dev->flags))
3540 			s->uptodate++;
3541 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3542 			s->compute++;
3543 			BUG_ON(s->compute > 2);
3544 		}
3545 
3546 		if (test_bit(R5_Wantfill, &dev->flags))
3547 			s->to_fill++;
3548 		else if (dev->toread)
3549 			s->to_read++;
3550 		if (dev->towrite) {
3551 			s->to_write++;
3552 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3553 				s->non_overwrite++;
3554 		}
3555 		if (dev->written)
3556 			s->written++;
3557 		/* Prefer to use the replacement for reads, but only
3558 		 * if it is recovered enough and has no bad blocks.
3559 		 */
3560 		rdev = rcu_dereference(conf->disks[i].replacement);
3561 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3562 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3563 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3564 				 &first_bad, &bad_sectors))
3565 			set_bit(R5_ReadRepl, &dev->flags);
3566 		else {
3567 			if (rdev)
3568 				set_bit(R5_NeedReplace, &dev->flags);
3569 			rdev = rcu_dereference(conf->disks[i].rdev);
3570 			clear_bit(R5_ReadRepl, &dev->flags);
3571 		}
3572 		if (rdev && test_bit(Faulty, &rdev->flags))
3573 			rdev = NULL;
3574 		if (rdev) {
3575 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3576 					     &first_bad, &bad_sectors);
3577 			if (s->blocked_rdev == NULL
3578 			    && (test_bit(Blocked, &rdev->flags)
3579 				|| is_bad < 0)) {
3580 				if (is_bad < 0)
3581 					set_bit(BlockedBadBlocks,
3582 						&rdev->flags);
3583 				s->blocked_rdev = rdev;
3584 				atomic_inc(&rdev->nr_pending);
3585 			}
3586 		}
3587 		clear_bit(R5_Insync, &dev->flags);
3588 		if (!rdev)
3589 			/* Not in-sync */;
3590 		else if (is_bad) {
3591 			/* also not in-sync */
3592 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3593 			    test_bit(R5_UPTODATE, &dev->flags)) {
3594 				/* treat as in-sync, but with a read error
3595 				 * which we can now try to correct
3596 				 */
3597 				set_bit(R5_Insync, &dev->flags);
3598 				set_bit(R5_ReadError, &dev->flags);
3599 			}
3600 		} else if (test_bit(In_sync, &rdev->flags))
3601 			set_bit(R5_Insync, &dev->flags);
3602 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3603 			/* in sync if before recovery_offset */
3604 			set_bit(R5_Insync, &dev->flags);
3605 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3606 			 test_bit(R5_Expanded, &dev->flags))
3607 			/* If we've reshaped into here, we assume it is Insync.
3608 			 * We will shortly update recovery_offset to make
3609 			 * it official.
3610 			 */
3611 			set_bit(R5_Insync, &dev->flags);
3612 
3613 		if (test_bit(R5_WriteError, &dev->flags)) {
3614 			/* This flag does not apply to '.replacement'
3615 			 * only to .rdev, so make sure to check that*/
3616 			struct md_rdev *rdev2 = rcu_dereference(
3617 				conf->disks[i].rdev);
3618 			if (rdev2 == rdev)
3619 				clear_bit(R5_Insync, &dev->flags);
3620 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3621 				s->handle_bad_blocks = 1;
3622 				atomic_inc(&rdev2->nr_pending);
3623 			} else
3624 				clear_bit(R5_WriteError, &dev->flags);
3625 		}
3626 		if (test_bit(R5_MadeGood, &dev->flags)) {
3627 			/* This flag does not apply to '.replacement'
3628 			 * only to .rdev, so make sure to check that*/
3629 			struct md_rdev *rdev2 = rcu_dereference(
3630 				conf->disks[i].rdev);
3631 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3632 				s->handle_bad_blocks = 1;
3633 				atomic_inc(&rdev2->nr_pending);
3634 			} else
3635 				clear_bit(R5_MadeGood, &dev->flags);
3636 		}
3637 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3638 			struct md_rdev *rdev2 = rcu_dereference(
3639 				conf->disks[i].replacement);
3640 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3641 				s->handle_bad_blocks = 1;
3642 				atomic_inc(&rdev2->nr_pending);
3643 			} else
3644 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3645 		}
3646 		if (!test_bit(R5_Insync, &dev->flags)) {
3647 			/* The ReadError flag will just be confusing now */
3648 			clear_bit(R5_ReadError, &dev->flags);
3649 			clear_bit(R5_ReWrite, &dev->flags);
3650 		}
3651 		if (test_bit(R5_ReadError, &dev->flags))
3652 			clear_bit(R5_Insync, &dev->flags);
3653 		if (!test_bit(R5_Insync, &dev->flags)) {
3654 			if (s->failed < 2)
3655 				s->failed_num[s->failed] = i;
3656 			s->failed++;
3657 			if (rdev && !test_bit(Faulty, &rdev->flags))
3658 				do_recovery = 1;
3659 		}
3660 	}
3661 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3662 		/* If there is a failed device being replaced,
3663 		 *     we must be recovering.
3664 		 * else if we are after recovery_cp, we must be syncing
3665 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3666 		 * else we can only be replacing
3667 		 * sync and recovery both need to read all devices, and so
3668 		 * use the same flag.
3669 		 */
3670 		if (do_recovery ||
3671 		    sh->sector >= conf->mddev->recovery_cp ||
3672 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3673 			s->syncing = 1;
3674 		else
3675 			s->replacing = 1;
3676 	}
3677 	rcu_read_unlock();
3678 }
3679 
3680 static void handle_stripe(struct stripe_head *sh)
3681 {
3682 	struct stripe_head_state s;
3683 	struct r5conf *conf = sh->raid_conf;
3684 	int i;
3685 	int prexor;
3686 	int disks = sh->disks;
3687 	struct r5dev *pdev, *qdev;
3688 
3689 	clear_bit(STRIPE_HANDLE, &sh->state);
3690 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3691 		/* already being handled, ensure it gets handled
3692 		 * again when current action finishes */
3693 		set_bit(STRIPE_HANDLE, &sh->state);
3694 		return;
3695 	}
3696 
3697 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3698 		spin_lock(&sh->stripe_lock);
3699 		/* Cannot process 'sync' concurrently with 'discard' */
3700 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3701 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3702 			set_bit(STRIPE_SYNCING, &sh->state);
3703 			clear_bit(STRIPE_INSYNC, &sh->state);
3704 			clear_bit(STRIPE_REPLACED, &sh->state);
3705 		}
3706 		spin_unlock(&sh->stripe_lock);
3707 	}
3708 	clear_bit(STRIPE_DELAYED, &sh->state);
3709 
3710 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3711 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3712 	       (unsigned long long)sh->sector, sh->state,
3713 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3714 	       sh->check_state, sh->reconstruct_state);
3715 
3716 	analyse_stripe(sh, &s);
3717 
3718 	if (s.handle_bad_blocks) {
3719 		set_bit(STRIPE_HANDLE, &sh->state);
3720 		goto finish;
3721 	}
3722 
3723 	if (unlikely(s.blocked_rdev)) {
3724 		if (s.syncing || s.expanding || s.expanded ||
3725 		    s.replacing || s.to_write || s.written) {
3726 			set_bit(STRIPE_HANDLE, &sh->state);
3727 			goto finish;
3728 		}
3729 		/* There is nothing for the blocked_rdev to block */
3730 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3731 		s.blocked_rdev = NULL;
3732 	}
3733 
3734 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3735 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3736 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3737 	}
3738 
3739 	pr_debug("locked=%d uptodate=%d to_read=%d"
3740 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3741 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3742 	       s.failed_num[0], s.failed_num[1]);
3743 	/* check if the array has lost more than max_degraded devices and,
3744 	 * if so, some requests might need to be failed.
3745 	 */
3746 	if (s.failed > conf->max_degraded) {
3747 		sh->check_state = 0;
3748 		sh->reconstruct_state = 0;
3749 		if (s.to_read+s.to_write+s.written)
3750 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3751 		if (s.syncing + s.replacing)
3752 			handle_failed_sync(conf, sh, &s);
3753 	}
3754 
3755 	/* Now we check to see if any write operations have recently
3756 	 * completed
3757 	 */
3758 	prexor = 0;
3759 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3760 		prexor = 1;
3761 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3762 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3763 		sh->reconstruct_state = reconstruct_state_idle;
3764 
3765 		/* All the 'written' buffers and the parity block are ready to
3766 		 * be written back to disk
3767 		 */
3768 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3769 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3770 		BUG_ON(sh->qd_idx >= 0 &&
3771 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3772 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3773 		for (i = disks; i--; ) {
3774 			struct r5dev *dev = &sh->dev[i];
3775 			if (test_bit(R5_LOCKED, &dev->flags) &&
3776 				(i == sh->pd_idx || i == sh->qd_idx ||
3777 				 dev->written)) {
3778 				pr_debug("Writing block %d\n", i);
3779 				set_bit(R5_Wantwrite, &dev->flags);
3780 				if (prexor)
3781 					continue;
3782 				if (!test_bit(R5_Insync, &dev->flags) ||
3783 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3784 				     s.failed == 0))
3785 					set_bit(STRIPE_INSYNC, &sh->state);
3786 			}
3787 		}
3788 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3789 			s.dec_preread_active = 1;
3790 	}
3791 
3792 	/*
3793 	 * might be able to return some write requests if the parity blocks
3794 	 * are safe, or on a failed drive
3795 	 */
3796 	pdev = &sh->dev[sh->pd_idx];
3797 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3798 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3799 	qdev = &sh->dev[sh->qd_idx];
3800 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3801 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3802 		|| conf->level < 6;
3803 
3804 	if (s.written &&
3805 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3806 			     && !test_bit(R5_LOCKED, &pdev->flags)
3807 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3808 				 test_bit(R5_Discard, &pdev->flags))))) &&
3809 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3810 			     && !test_bit(R5_LOCKED, &qdev->flags)
3811 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3812 				 test_bit(R5_Discard, &qdev->flags))))))
3813 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3814 
3815 	/* Now we might consider reading some blocks, either to check/generate
3816 	 * parity, or to satisfy requests
3817 	 * or to load a block that is being partially written.
3818 	 */
3819 	if (s.to_read || s.non_overwrite
3820 	    || (conf->level == 6 && s.to_write && s.failed)
3821 	    || (s.syncing && (s.uptodate + s.compute < disks))
3822 	    || s.replacing
3823 	    || s.expanding)
3824 		handle_stripe_fill(sh, &s, disks);
3825 
3826 	/* Now to consider new write requests and what else, if anything
3827 	 * should be read.  We do not handle new writes when:
3828 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3829 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3830 	 *    block.
3831 	 */
3832 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3833 		handle_stripe_dirtying(conf, sh, &s, disks);
3834 
3835 	/* maybe we need to check and possibly fix the parity for this stripe
3836 	 * Any reads will already have been scheduled, so we just see if enough
3837 	 * data is available.  The parity check is held off while parity
3838 	 * dependent operations are in flight.
3839 	 */
3840 	if (sh->check_state ||
3841 	    (s.syncing && s.locked == 0 &&
3842 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3843 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3844 		if (conf->level == 6)
3845 			handle_parity_checks6(conf, sh, &s, disks);
3846 		else
3847 			handle_parity_checks5(conf, sh, &s, disks);
3848 	}
3849 
3850 	if ((s.replacing || s.syncing) && s.locked == 0
3851 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3852 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3853 		/* Write out to replacement devices where possible */
3854 		for (i = 0; i < conf->raid_disks; i++)
3855 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3856 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3857 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3858 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3859 				s.locked++;
3860 			}
3861 		if (s.replacing)
3862 			set_bit(STRIPE_INSYNC, &sh->state);
3863 		set_bit(STRIPE_REPLACED, &sh->state);
3864 	}
3865 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3866 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3867 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3868 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3869 		clear_bit(STRIPE_SYNCING, &sh->state);
3870 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3871 			wake_up(&conf->wait_for_overlap);
3872 	}
3873 
3874 	/* If the failed drives are just a ReadError, then we might need
3875 	 * to progress the repair/check process
3876 	 */
3877 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3878 		for (i = 0; i < s.failed; i++) {
3879 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3880 			if (test_bit(R5_ReadError, &dev->flags)
3881 			    && !test_bit(R5_LOCKED, &dev->flags)
3882 			    && test_bit(R5_UPTODATE, &dev->flags)
3883 				) {
3884 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3885 					set_bit(R5_Wantwrite, &dev->flags);
3886 					set_bit(R5_ReWrite, &dev->flags);
3887 					set_bit(R5_LOCKED, &dev->flags);
3888 					s.locked++;
3889 				} else {
3890 					/* let's read it back */
3891 					set_bit(R5_Wantread, &dev->flags);
3892 					set_bit(R5_LOCKED, &dev->flags);
3893 					s.locked++;
3894 				}
3895 			}
3896 		}
3897 
3898 
3899 	/* Finish reconstruct operations initiated by the expansion process */
3900 	if (sh->reconstruct_state == reconstruct_state_result) {
3901 		struct stripe_head *sh_src
3902 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3903 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3904 			/* sh cannot be written until sh_src has been read.
3905 			 * so arrange for sh to be delayed a little
3906 			 */
3907 			set_bit(STRIPE_DELAYED, &sh->state);
3908 			set_bit(STRIPE_HANDLE, &sh->state);
3909 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3910 					      &sh_src->state))
3911 				atomic_inc(&conf->preread_active_stripes);
3912 			release_stripe(sh_src);
3913 			goto finish;
3914 		}
3915 		if (sh_src)
3916 			release_stripe(sh_src);
3917 
3918 		sh->reconstruct_state = reconstruct_state_idle;
3919 		clear_bit(STRIPE_EXPANDING, &sh->state);
3920 		for (i = conf->raid_disks; i--; ) {
3921 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3922 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3923 			s.locked++;
3924 		}
3925 	}
3926 
3927 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3928 	    !sh->reconstruct_state) {
3929 		/* Need to write out all blocks after computing parity */
3930 		sh->disks = conf->raid_disks;
3931 		stripe_set_idx(sh->sector, conf, 0, sh);
3932 		schedule_reconstruction(sh, &s, 1, 1);
3933 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3934 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3935 		atomic_dec(&conf->reshape_stripes);
3936 		wake_up(&conf->wait_for_overlap);
3937 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3938 	}
3939 
3940 	if (s.expanding && s.locked == 0 &&
3941 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3942 		handle_stripe_expansion(conf, sh);
3943 
3944 finish:
3945 	/* wait for this device to become unblocked */
3946 	if (unlikely(s.blocked_rdev)) {
3947 		if (conf->mddev->external)
3948 			md_wait_for_blocked_rdev(s.blocked_rdev,
3949 						 conf->mddev);
3950 		else
3951 			/* Internal metadata will immediately
3952 			 * be written by raid5d, so we don't
3953 			 * need to wait here.
3954 			 */
3955 			rdev_dec_pending(s.blocked_rdev,
3956 					 conf->mddev);
3957 	}
3958 
3959 	if (s.handle_bad_blocks)
3960 		for (i = disks; i--; ) {
3961 			struct md_rdev *rdev;
3962 			struct r5dev *dev = &sh->dev[i];
3963 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3964 				/* We own a safe reference to the rdev */
3965 				rdev = conf->disks[i].rdev;
3966 				if (!rdev_set_badblocks(rdev, sh->sector,
3967 							STRIPE_SECTORS, 0))
3968 					md_error(conf->mddev, rdev);
3969 				rdev_dec_pending(rdev, conf->mddev);
3970 			}
3971 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3972 				rdev = conf->disks[i].rdev;
3973 				rdev_clear_badblocks(rdev, sh->sector,
3974 						     STRIPE_SECTORS, 0);
3975 				rdev_dec_pending(rdev, conf->mddev);
3976 			}
3977 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3978 				rdev = conf->disks[i].replacement;
3979 				if (!rdev)
3980 					/* rdev have been moved down */
3981 					rdev = conf->disks[i].rdev;
3982 				rdev_clear_badblocks(rdev, sh->sector,
3983 						     STRIPE_SECTORS, 0);
3984 				rdev_dec_pending(rdev, conf->mddev);
3985 			}
3986 		}
3987 
3988 	if (s.ops_request)
3989 		raid_run_ops(sh, s.ops_request);
3990 
3991 	ops_run_io(sh, &s);
3992 
3993 	if (s.dec_preread_active) {
3994 		/* We delay this until after ops_run_io so that if make_request
3995 		 * is waiting on a flush, it won't continue until the writes
3996 		 * have actually been submitted.
3997 		 */
3998 		atomic_dec(&conf->preread_active_stripes);
3999 		if (atomic_read(&conf->preread_active_stripes) <
4000 		    IO_THRESHOLD)
4001 			md_wakeup_thread(conf->mddev->thread);
4002 	}
4003 
4004 	return_io(s.return_bi);
4005 
4006 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4007 }
4008 
4009 static void raid5_activate_delayed(struct r5conf *conf)
4010 {
4011 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4012 		while (!list_empty(&conf->delayed_list)) {
4013 			struct list_head *l = conf->delayed_list.next;
4014 			struct stripe_head *sh;
4015 			sh = list_entry(l, struct stripe_head, lru);
4016 			list_del_init(l);
4017 			clear_bit(STRIPE_DELAYED, &sh->state);
4018 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4019 				atomic_inc(&conf->preread_active_stripes);
4020 			list_add_tail(&sh->lru, &conf->hold_list);
4021 			raid5_wakeup_stripe_thread(sh);
4022 		}
4023 	}
4024 }
4025 
4026 static void activate_bit_delay(struct r5conf *conf,
4027 	struct list_head *temp_inactive_list)
4028 {
4029 	/* device_lock is held */
4030 	struct list_head head;
4031 	list_add(&head, &conf->bitmap_list);
4032 	list_del_init(&conf->bitmap_list);
4033 	while (!list_empty(&head)) {
4034 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4035 		int hash;
4036 		list_del_init(&sh->lru);
4037 		atomic_inc(&sh->count);
4038 		hash = sh->hash_lock_index;
4039 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4040 	}
4041 }
4042 
4043 int md_raid5_congested(struct mddev *mddev, int bits)
4044 {
4045 	struct r5conf *conf = mddev->private;
4046 
4047 	/* No difference between reads and writes.  Just check
4048 	 * how busy the stripe_cache is
4049 	 */
4050 
4051 	if (conf->inactive_blocked)
4052 		return 1;
4053 	if (conf->quiesce)
4054 		return 1;
4055 	if (atomic_read(&conf->empty_inactive_list_nr))
4056 		return 1;
4057 
4058 	return 0;
4059 }
4060 EXPORT_SYMBOL_GPL(md_raid5_congested);
4061 
4062 static int raid5_congested(void *data, int bits)
4063 {
4064 	struct mddev *mddev = data;
4065 
4066 	return mddev_congested(mddev, bits) ||
4067 		md_raid5_congested(mddev, bits);
4068 }
4069 
4070 /* We want read requests to align with chunks where possible,
4071  * but write requests don't need to.
4072  */
4073 static int raid5_mergeable_bvec(struct request_queue *q,
4074 				struct bvec_merge_data *bvm,
4075 				struct bio_vec *biovec)
4076 {
4077 	struct mddev *mddev = q->queuedata;
4078 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4079 	int max;
4080 	unsigned int chunk_sectors = mddev->chunk_sectors;
4081 	unsigned int bio_sectors = bvm->bi_size >> 9;
4082 
4083 	if ((bvm->bi_rw & 1) == WRITE)
4084 		return biovec->bv_len; /* always allow writes to be mergeable */
4085 
4086 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4087 		chunk_sectors = mddev->new_chunk_sectors;
4088 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4089 	if (max < 0) max = 0;
4090 	if (max <= biovec->bv_len && bio_sectors == 0)
4091 		return biovec->bv_len;
4092 	else
4093 		return max;
4094 }
4095 
4096 
4097 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4098 {
4099 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4100 	unsigned int chunk_sectors = mddev->chunk_sectors;
4101 	unsigned int bio_sectors = bio_sectors(bio);
4102 
4103 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4104 		chunk_sectors = mddev->new_chunk_sectors;
4105 	return  chunk_sectors >=
4106 		((sector & (chunk_sectors - 1)) + bio_sectors);
4107 }
4108 
4109 /*
4110  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4111  *  later sampled by raid5d.
4112  */
4113 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4114 {
4115 	unsigned long flags;
4116 
4117 	spin_lock_irqsave(&conf->device_lock, flags);
4118 
4119 	bi->bi_next = conf->retry_read_aligned_list;
4120 	conf->retry_read_aligned_list = bi;
4121 
4122 	spin_unlock_irqrestore(&conf->device_lock, flags);
4123 	md_wakeup_thread(conf->mddev->thread);
4124 }
4125 
4126 
4127 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4128 {
4129 	struct bio *bi;
4130 
4131 	bi = conf->retry_read_aligned;
4132 	if (bi) {
4133 		conf->retry_read_aligned = NULL;
4134 		return bi;
4135 	}
4136 	bi = conf->retry_read_aligned_list;
4137 	if(bi) {
4138 		conf->retry_read_aligned_list = bi->bi_next;
4139 		bi->bi_next = NULL;
4140 		/*
4141 		 * this sets the active strip count to 1 and the processed
4142 		 * strip count to zero (upper 8 bits)
4143 		 */
4144 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4145 	}
4146 
4147 	return bi;
4148 }
4149 
4150 
4151 /*
4152  *  The "raid5_align_endio" should check if the read succeeded and if it
4153  *  did, call bio_endio on the original bio (having bio_put the new bio
4154  *  first).
4155  *  If the read failed..
4156  */
4157 static void raid5_align_endio(struct bio *bi, int error)
4158 {
4159 	struct bio* raid_bi  = bi->bi_private;
4160 	struct mddev *mddev;
4161 	struct r5conf *conf;
4162 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4163 	struct md_rdev *rdev;
4164 
4165 	bio_put(bi);
4166 
4167 	rdev = (void*)raid_bi->bi_next;
4168 	raid_bi->bi_next = NULL;
4169 	mddev = rdev->mddev;
4170 	conf = mddev->private;
4171 
4172 	rdev_dec_pending(rdev, conf->mddev);
4173 
4174 	if (!error && uptodate) {
4175 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4176 					 raid_bi, 0);
4177 		bio_endio(raid_bi, 0);
4178 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4179 			wake_up(&conf->wait_for_stripe);
4180 		return;
4181 	}
4182 
4183 
4184 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4185 
4186 	add_bio_to_retry(raid_bi, conf);
4187 }
4188 
4189 static int bio_fits_rdev(struct bio *bi)
4190 {
4191 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4192 
4193 	if (bio_sectors(bi) > queue_max_sectors(q))
4194 		return 0;
4195 	blk_recount_segments(q, bi);
4196 	if (bi->bi_phys_segments > queue_max_segments(q))
4197 		return 0;
4198 
4199 	if (q->merge_bvec_fn)
4200 		/* it's too hard to apply the merge_bvec_fn at this stage,
4201 		 * just just give up
4202 		 */
4203 		return 0;
4204 
4205 	return 1;
4206 }
4207 
4208 
4209 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4210 {
4211 	struct r5conf *conf = mddev->private;
4212 	int dd_idx;
4213 	struct bio* align_bi;
4214 	struct md_rdev *rdev;
4215 	sector_t end_sector;
4216 
4217 	if (!in_chunk_boundary(mddev, raid_bio)) {
4218 		pr_debug("chunk_aligned_read : non aligned\n");
4219 		return 0;
4220 	}
4221 	/*
4222 	 * use bio_clone_mddev to make a copy of the bio
4223 	 */
4224 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4225 	if (!align_bi)
4226 		return 0;
4227 	/*
4228 	 *   set bi_end_io to a new function, and set bi_private to the
4229 	 *     original bio.
4230 	 */
4231 	align_bi->bi_end_io  = raid5_align_endio;
4232 	align_bi->bi_private = raid_bio;
4233 	/*
4234 	 *	compute position
4235 	 */
4236 	align_bi->bi_iter.bi_sector =
4237 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4238 				     0, &dd_idx, NULL);
4239 
4240 	end_sector = bio_end_sector(align_bi);
4241 	rcu_read_lock();
4242 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4243 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4244 	    rdev->recovery_offset < end_sector) {
4245 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4246 		if (rdev &&
4247 		    (test_bit(Faulty, &rdev->flags) ||
4248 		    !(test_bit(In_sync, &rdev->flags) ||
4249 		      rdev->recovery_offset >= end_sector)))
4250 			rdev = NULL;
4251 	}
4252 	if (rdev) {
4253 		sector_t first_bad;
4254 		int bad_sectors;
4255 
4256 		atomic_inc(&rdev->nr_pending);
4257 		rcu_read_unlock();
4258 		raid_bio->bi_next = (void*)rdev;
4259 		align_bi->bi_bdev =  rdev->bdev;
4260 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4261 
4262 		if (!bio_fits_rdev(align_bi) ||
4263 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4264 				bio_sectors(align_bi),
4265 				&first_bad, &bad_sectors)) {
4266 			/* too big in some way, or has a known bad block */
4267 			bio_put(align_bi);
4268 			rdev_dec_pending(rdev, mddev);
4269 			return 0;
4270 		}
4271 
4272 		/* No reshape active, so we can trust rdev->data_offset */
4273 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4274 
4275 		spin_lock_irq(&conf->device_lock);
4276 		wait_event_lock_irq(conf->wait_for_stripe,
4277 				    conf->quiesce == 0,
4278 				    conf->device_lock);
4279 		atomic_inc(&conf->active_aligned_reads);
4280 		spin_unlock_irq(&conf->device_lock);
4281 
4282 		if (mddev->gendisk)
4283 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4284 					      align_bi, disk_devt(mddev->gendisk),
4285 					      raid_bio->bi_iter.bi_sector);
4286 		generic_make_request(align_bi);
4287 		return 1;
4288 	} else {
4289 		rcu_read_unlock();
4290 		bio_put(align_bi);
4291 		return 0;
4292 	}
4293 }
4294 
4295 /* __get_priority_stripe - get the next stripe to process
4296  *
4297  * Full stripe writes are allowed to pass preread active stripes up until
4298  * the bypass_threshold is exceeded.  In general the bypass_count
4299  * increments when the handle_list is handled before the hold_list; however, it
4300  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4301  * stripe with in flight i/o.  The bypass_count will be reset when the
4302  * head of the hold_list has changed, i.e. the head was promoted to the
4303  * handle_list.
4304  */
4305 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4306 {
4307 	struct stripe_head *sh = NULL, *tmp;
4308 	struct list_head *handle_list = NULL;
4309 	struct r5worker_group *wg = NULL;
4310 
4311 	if (conf->worker_cnt_per_group == 0) {
4312 		handle_list = &conf->handle_list;
4313 	} else if (group != ANY_GROUP) {
4314 		handle_list = &conf->worker_groups[group].handle_list;
4315 		wg = &conf->worker_groups[group];
4316 	} else {
4317 		int i;
4318 		for (i = 0; i < conf->group_cnt; i++) {
4319 			handle_list = &conf->worker_groups[i].handle_list;
4320 			wg = &conf->worker_groups[i];
4321 			if (!list_empty(handle_list))
4322 				break;
4323 		}
4324 	}
4325 
4326 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4327 		  __func__,
4328 		  list_empty(handle_list) ? "empty" : "busy",
4329 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4330 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4331 
4332 	if (!list_empty(handle_list)) {
4333 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4334 
4335 		if (list_empty(&conf->hold_list))
4336 			conf->bypass_count = 0;
4337 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4338 			if (conf->hold_list.next == conf->last_hold)
4339 				conf->bypass_count++;
4340 			else {
4341 				conf->last_hold = conf->hold_list.next;
4342 				conf->bypass_count -= conf->bypass_threshold;
4343 				if (conf->bypass_count < 0)
4344 					conf->bypass_count = 0;
4345 			}
4346 		}
4347 	} else if (!list_empty(&conf->hold_list) &&
4348 		   ((conf->bypass_threshold &&
4349 		     conf->bypass_count > conf->bypass_threshold) ||
4350 		    atomic_read(&conf->pending_full_writes) == 0)) {
4351 
4352 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4353 			if (conf->worker_cnt_per_group == 0 ||
4354 			    group == ANY_GROUP ||
4355 			    !cpu_online(tmp->cpu) ||
4356 			    cpu_to_group(tmp->cpu) == group) {
4357 				sh = tmp;
4358 				break;
4359 			}
4360 		}
4361 
4362 		if (sh) {
4363 			conf->bypass_count -= conf->bypass_threshold;
4364 			if (conf->bypass_count < 0)
4365 				conf->bypass_count = 0;
4366 		}
4367 		wg = NULL;
4368 	}
4369 
4370 	if (!sh)
4371 		return NULL;
4372 
4373 	if (wg) {
4374 		wg->stripes_cnt--;
4375 		sh->group = NULL;
4376 	}
4377 	list_del_init(&sh->lru);
4378 	atomic_inc(&sh->count);
4379 	BUG_ON(atomic_read(&sh->count) != 1);
4380 	return sh;
4381 }
4382 
4383 struct raid5_plug_cb {
4384 	struct blk_plug_cb	cb;
4385 	struct list_head	list;
4386 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4387 };
4388 
4389 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4390 {
4391 	struct raid5_plug_cb *cb = container_of(
4392 		blk_cb, struct raid5_plug_cb, cb);
4393 	struct stripe_head *sh;
4394 	struct mddev *mddev = cb->cb.data;
4395 	struct r5conf *conf = mddev->private;
4396 	int cnt = 0;
4397 	int hash;
4398 
4399 	if (cb->list.next && !list_empty(&cb->list)) {
4400 		spin_lock_irq(&conf->device_lock);
4401 		while (!list_empty(&cb->list)) {
4402 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4403 			list_del_init(&sh->lru);
4404 			/*
4405 			 * avoid race release_stripe_plug() sees
4406 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4407 			 * is still in our list
4408 			 */
4409 			smp_mb__before_clear_bit();
4410 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4411 			/*
4412 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4413 			 * case, the count is always > 1 here
4414 			 */
4415 			hash = sh->hash_lock_index;
4416 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4417 			cnt++;
4418 		}
4419 		spin_unlock_irq(&conf->device_lock);
4420 	}
4421 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4422 				     NR_STRIPE_HASH_LOCKS);
4423 	if (mddev->queue)
4424 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4425 	kfree(cb);
4426 }
4427 
4428 static void release_stripe_plug(struct mddev *mddev,
4429 				struct stripe_head *sh)
4430 {
4431 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4432 		raid5_unplug, mddev,
4433 		sizeof(struct raid5_plug_cb));
4434 	struct raid5_plug_cb *cb;
4435 
4436 	if (!blk_cb) {
4437 		release_stripe(sh);
4438 		return;
4439 	}
4440 
4441 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4442 
4443 	if (cb->list.next == NULL) {
4444 		int i;
4445 		INIT_LIST_HEAD(&cb->list);
4446 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4447 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4448 	}
4449 
4450 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4451 		list_add_tail(&sh->lru, &cb->list);
4452 	else
4453 		release_stripe(sh);
4454 }
4455 
4456 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4457 {
4458 	struct r5conf *conf = mddev->private;
4459 	sector_t logical_sector, last_sector;
4460 	struct stripe_head *sh;
4461 	int remaining;
4462 	int stripe_sectors;
4463 
4464 	if (mddev->reshape_position != MaxSector)
4465 		/* Skip discard while reshape is happening */
4466 		return;
4467 
4468 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4469 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4470 
4471 	bi->bi_next = NULL;
4472 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4473 
4474 	stripe_sectors = conf->chunk_sectors *
4475 		(conf->raid_disks - conf->max_degraded);
4476 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4477 					       stripe_sectors);
4478 	sector_div(last_sector, stripe_sectors);
4479 
4480 	logical_sector *= conf->chunk_sectors;
4481 	last_sector *= conf->chunk_sectors;
4482 
4483 	for (; logical_sector < last_sector;
4484 	     logical_sector += STRIPE_SECTORS) {
4485 		DEFINE_WAIT(w);
4486 		int d;
4487 	again:
4488 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4489 		prepare_to_wait(&conf->wait_for_overlap, &w,
4490 				TASK_UNINTERRUPTIBLE);
4491 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4492 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4493 			release_stripe(sh);
4494 			schedule();
4495 			goto again;
4496 		}
4497 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4498 		spin_lock_irq(&sh->stripe_lock);
4499 		for (d = 0; d < conf->raid_disks; d++) {
4500 			if (d == sh->pd_idx || d == sh->qd_idx)
4501 				continue;
4502 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4503 				set_bit(R5_Overlap, &sh->dev[d].flags);
4504 				spin_unlock_irq(&sh->stripe_lock);
4505 				release_stripe(sh);
4506 				schedule();
4507 				goto again;
4508 			}
4509 		}
4510 		set_bit(STRIPE_DISCARD, &sh->state);
4511 		finish_wait(&conf->wait_for_overlap, &w);
4512 		for (d = 0; d < conf->raid_disks; d++) {
4513 			if (d == sh->pd_idx || d == sh->qd_idx)
4514 				continue;
4515 			sh->dev[d].towrite = bi;
4516 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4517 			raid5_inc_bi_active_stripes(bi);
4518 		}
4519 		spin_unlock_irq(&sh->stripe_lock);
4520 		if (conf->mddev->bitmap) {
4521 			for (d = 0;
4522 			     d < conf->raid_disks - conf->max_degraded;
4523 			     d++)
4524 				bitmap_startwrite(mddev->bitmap,
4525 						  sh->sector,
4526 						  STRIPE_SECTORS,
4527 						  0);
4528 			sh->bm_seq = conf->seq_flush + 1;
4529 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4530 		}
4531 
4532 		set_bit(STRIPE_HANDLE, &sh->state);
4533 		clear_bit(STRIPE_DELAYED, &sh->state);
4534 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4535 			atomic_inc(&conf->preread_active_stripes);
4536 		release_stripe_plug(mddev, sh);
4537 	}
4538 
4539 	remaining = raid5_dec_bi_active_stripes(bi);
4540 	if (remaining == 0) {
4541 		md_write_end(mddev);
4542 		bio_endio(bi, 0);
4543 	}
4544 }
4545 
4546 static void make_request(struct mddev *mddev, struct bio * bi)
4547 {
4548 	struct r5conf *conf = mddev->private;
4549 	int dd_idx;
4550 	sector_t new_sector;
4551 	sector_t logical_sector, last_sector;
4552 	struct stripe_head *sh;
4553 	const int rw = bio_data_dir(bi);
4554 	int remaining;
4555 
4556 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4557 		md_flush_request(mddev, bi);
4558 		return;
4559 	}
4560 
4561 	md_write_start(mddev, bi);
4562 
4563 	if (rw == READ &&
4564 	     mddev->reshape_position == MaxSector &&
4565 	     chunk_aligned_read(mddev,bi))
4566 		return;
4567 
4568 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4569 		make_discard_request(mddev, bi);
4570 		return;
4571 	}
4572 
4573 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4574 	last_sector = bio_end_sector(bi);
4575 	bi->bi_next = NULL;
4576 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4577 
4578 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4579 		DEFINE_WAIT(w);
4580 		int previous;
4581 		int seq;
4582 
4583 	retry:
4584 		seq = read_seqcount_begin(&conf->gen_lock);
4585 		previous = 0;
4586 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4587 		if (unlikely(conf->reshape_progress != MaxSector)) {
4588 			/* spinlock is needed as reshape_progress may be
4589 			 * 64bit on a 32bit platform, and so it might be
4590 			 * possible to see a half-updated value
4591 			 * Of course reshape_progress could change after
4592 			 * the lock is dropped, so once we get a reference
4593 			 * to the stripe that we think it is, we will have
4594 			 * to check again.
4595 			 */
4596 			spin_lock_irq(&conf->device_lock);
4597 			if (mddev->reshape_backwards
4598 			    ? logical_sector < conf->reshape_progress
4599 			    : logical_sector >= conf->reshape_progress) {
4600 				previous = 1;
4601 			} else {
4602 				if (mddev->reshape_backwards
4603 				    ? logical_sector < conf->reshape_safe
4604 				    : logical_sector >= conf->reshape_safe) {
4605 					spin_unlock_irq(&conf->device_lock);
4606 					schedule();
4607 					goto retry;
4608 				}
4609 			}
4610 			spin_unlock_irq(&conf->device_lock);
4611 		}
4612 
4613 		new_sector = raid5_compute_sector(conf, logical_sector,
4614 						  previous,
4615 						  &dd_idx, NULL);
4616 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4617 			(unsigned long long)new_sector,
4618 			(unsigned long long)logical_sector);
4619 
4620 		sh = get_active_stripe(conf, new_sector, previous,
4621 				       (bi->bi_rw&RWA_MASK), 0);
4622 		if (sh) {
4623 			if (unlikely(previous)) {
4624 				/* expansion might have moved on while waiting for a
4625 				 * stripe, so we must do the range check again.
4626 				 * Expansion could still move past after this
4627 				 * test, but as we are holding a reference to
4628 				 * 'sh', we know that if that happens,
4629 				 *  STRIPE_EXPANDING will get set and the expansion
4630 				 * won't proceed until we finish with the stripe.
4631 				 */
4632 				int must_retry = 0;
4633 				spin_lock_irq(&conf->device_lock);
4634 				if (mddev->reshape_backwards
4635 				    ? logical_sector >= conf->reshape_progress
4636 				    : logical_sector < conf->reshape_progress)
4637 					/* mismatch, need to try again */
4638 					must_retry = 1;
4639 				spin_unlock_irq(&conf->device_lock);
4640 				if (must_retry) {
4641 					release_stripe(sh);
4642 					schedule();
4643 					goto retry;
4644 				}
4645 			}
4646 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4647 				/* Might have got the wrong stripe_head
4648 				 * by accident
4649 				 */
4650 				release_stripe(sh);
4651 				goto retry;
4652 			}
4653 
4654 			if (rw == WRITE &&
4655 			    logical_sector >= mddev->suspend_lo &&
4656 			    logical_sector < mddev->suspend_hi) {
4657 				release_stripe(sh);
4658 				/* As the suspend_* range is controlled by
4659 				 * userspace, we want an interruptible
4660 				 * wait.
4661 				 */
4662 				flush_signals(current);
4663 				prepare_to_wait(&conf->wait_for_overlap,
4664 						&w, TASK_INTERRUPTIBLE);
4665 				if (logical_sector >= mddev->suspend_lo &&
4666 				    logical_sector < mddev->suspend_hi)
4667 					schedule();
4668 				goto retry;
4669 			}
4670 
4671 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4672 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4673 				/* Stripe is busy expanding or
4674 				 * add failed due to overlap.  Flush everything
4675 				 * and wait a while
4676 				 */
4677 				md_wakeup_thread(mddev->thread);
4678 				release_stripe(sh);
4679 				schedule();
4680 				goto retry;
4681 			}
4682 			finish_wait(&conf->wait_for_overlap, &w);
4683 			set_bit(STRIPE_HANDLE, &sh->state);
4684 			clear_bit(STRIPE_DELAYED, &sh->state);
4685 			if ((bi->bi_rw & REQ_SYNC) &&
4686 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4687 				atomic_inc(&conf->preread_active_stripes);
4688 			release_stripe_plug(mddev, sh);
4689 		} else {
4690 			/* cannot get stripe for read-ahead, just give-up */
4691 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4692 			finish_wait(&conf->wait_for_overlap, &w);
4693 			break;
4694 		}
4695 	}
4696 
4697 	remaining = raid5_dec_bi_active_stripes(bi);
4698 	if (remaining == 0) {
4699 
4700 		if ( rw == WRITE )
4701 			md_write_end(mddev);
4702 
4703 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4704 					 bi, 0);
4705 		bio_endio(bi, 0);
4706 	}
4707 }
4708 
4709 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4710 
4711 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4712 {
4713 	/* reshaping is quite different to recovery/resync so it is
4714 	 * handled quite separately ... here.
4715 	 *
4716 	 * On each call to sync_request, we gather one chunk worth of
4717 	 * destination stripes and flag them as expanding.
4718 	 * Then we find all the source stripes and request reads.
4719 	 * As the reads complete, handle_stripe will copy the data
4720 	 * into the destination stripe and release that stripe.
4721 	 */
4722 	struct r5conf *conf = mddev->private;
4723 	struct stripe_head *sh;
4724 	sector_t first_sector, last_sector;
4725 	int raid_disks = conf->previous_raid_disks;
4726 	int data_disks = raid_disks - conf->max_degraded;
4727 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4728 	int i;
4729 	int dd_idx;
4730 	sector_t writepos, readpos, safepos;
4731 	sector_t stripe_addr;
4732 	int reshape_sectors;
4733 	struct list_head stripes;
4734 
4735 	if (sector_nr == 0) {
4736 		/* If restarting in the middle, skip the initial sectors */
4737 		if (mddev->reshape_backwards &&
4738 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4739 			sector_nr = raid5_size(mddev, 0, 0)
4740 				- conf->reshape_progress;
4741 		} else if (!mddev->reshape_backwards &&
4742 			   conf->reshape_progress > 0)
4743 			sector_nr = conf->reshape_progress;
4744 		sector_div(sector_nr, new_data_disks);
4745 		if (sector_nr) {
4746 			mddev->curr_resync_completed = sector_nr;
4747 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4748 			*skipped = 1;
4749 			return sector_nr;
4750 		}
4751 	}
4752 
4753 	/* We need to process a full chunk at a time.
4754 	 * If old and new chunk sizes differ, we need to process the
4755 	 * largest of these
4756 	 */
4757 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4758 		reshape_sectors = mddev->new_chunk_sectors;
4759 	else
4760 		reshape_sectors = mddev->chunk_sectors;
4761 
4762 	/* We update the metadata at least every 10 seconds, or when
4763 	 * the data about to be copied would over-write the source of
4764 	 * the data at the front of the range.  i.e. one new_stripe
4765 	 * along from reshape_progress new_maps to after where
4766 	 * reshape_safe old_maps to
4767 	 */
4768 	writepos = conf->reshape_progress;
4769 	sector_div(writepos, new_data_disks);
4770 	readpos = conf->reshape_progress;
4771 	sector_div(readpos, data_disks);
4772 	safepos = conf->reshape_safe;
4773 	sector_div(safepos, data_disks);
4774 	if (mddev->reshape_backwards) {
4775 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4776 		readpos += reshape_sectors;
4777 		safepos += reshape_sectors;
4778 	} else {
4779 		writepos += reshape_sectors;
4780 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4781 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4782 	}
4783 
4784 	/* Having calculated the 'writepos' possibly use it
4785 	 * to set 'stripe_addr' which is where we will write to.
4786 	 */
4787 	if (mddev->reshape_backwards) {
4788 		BUG_ON(conf->reshape_progress == 0);
4789 		stripe_addr = writepos;
4790 		BUG_ON((mddev->dev_sectors &
4791 			~((sector_t)reshape_sectors - 1))
4792 		       - reshape_sectors - stripe_addr
4793 		       != sector_nr);
4794 	} else {
4795 		BUG_ON(writepos != sector_nr + reshape_sectors);
4796 		stripe_addr = sector_nr;
4797 	}
4798 
4799 	/* 'writepos' is the most advanced device address we might write.
4800 	 * 'readpos' is the least advanced device address we might read.
4801 	 * 'safepos' is the least address recorded in the metadata as having
4802 	 *     been reshaped.
4803 	 * If there is a min_offset_diff, these are adjusted either by
4804 	 * increasing the safepos/readpos if diff is negative, or
4805 	 * increasing writepos if diff is positive.
4806 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4807 	 * ensure safety in the face of a crash - that must be done by userspace
4808 	 * making a backup of the data.  So in that case there is no particular
4809 	 * rush to update metadata.
4810 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4811 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4812 	 * we can be safe in the event of a crash.
4813 	 * So we insist on updating metadata if safepos is behind writepos and
4814 	 * readpos is beyond writepos.
4815 	 * In any case, update the metadata every 10 seconds.
4816 	 * Maybe that number should be configurable, but I'm not sure it is
4817 	 * worth it.... maybe it could be a multiple of safemode_delay???
4818 	 */
4819 	if (conf->min_offset_diff < 0) {
4820 		safepos += -conf->min_offset_diff;
4821 		readpos += -conf->min_offset_diff;
4822 	} else
4823 		writepos += conf->min_offset_diff;
4824 
4825 	if ((mddev->reshape_backwards
4826 	     ? (safepos > writepos && readpos < writepos)
4827 	     : (safepos < writepos && readpos > writepos)) ||
4828 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4829 		/* Cannot proceed until we've updated the superblock... */
4830 		wait_event(conf->wait_for_overlap,
4831 			   atomic_read(&conf->reshape_stripes)==0
4832 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4833 		if (atomic_read(&conf->reshape_stripes) != 0)
4834 			return 0;
4835 		mddev->reshape_position = conf->reshape_progress;
4836 		mddev->curr_resync_completed = sector_nr;
4837 		conf->reshape_checkpoint = jiffies;
4838 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4839 		md_wakeup_thread(mddev->thread);
4840 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4841 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4842 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4843 			return 0;
4844 		spin_lock_irq(&conf->device_lock);
4845 		conf->reshape_safe = mddev->reshape_position;
4846 		spin_unlock_irq(&conf->device_lock);
4847 		wake_up(&conf->wait_for_overlap);
4848 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4849 	}
4850 
4851 	INIT_LIST_HEAD(&stripes);
4852 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4853 		int j;
4854 		int skipped_disk = 0;
4855 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4856 		set_bit(STRIPE_EXPANDING, &sh->state);
4857 		atomic_inc(&conf->reshape_stripes);
4858 		/* If any of this stripe is beyond the end of the old
4859 		 * array, then we need to zero those blocks
4860 		 */
4861 		for (j=sh->disks; j--;) {
4862 			sector_t s;
4863 			if (j == sh->pd_idx)
4864 				continue;
4865 			if (conf->level == 6 &&
4866 			    j == sh->qd_idx)
4867 				continue;
4868 			s = compute_blocknr(sh, j, 0);
4869 			if (s < raid5_size(mddev, 0, 0)) {
4870 				skipped_disk = 1;
4871 				continue;
4872 			}
4873 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4874 			set_bit(R5_Expanded, &sh->dev[j].flags);
4875 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4876 		}
4877 		if (!skipped_disk) {
4878 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4879 			set_bit(STRIPE_HANDLE, &sh->state);
4880 		}
4881 		list_add(&sh->lru, &stripes);
4882 	}
4883 	spin_lock_irq(&conf->device_lock);
4884 	if (mddev->reshape_backwards)
4885 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4886 	else
4887 		conf->reshape_progress += reshape_sectors * new_data_disks;
4888 	spin_unlock_irq(&conf->device_lock);
4889 	/* Ok, those stripe are ready. We can start scheduling
4890 	 * reads on the source stripes.
4891 	 * The source stripes are determined by mapping the first and last
4892 	 * block on the destination stripes.
4893 	 */
4894 	first_sector =
4895 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4896 				     1, &dd_idx, NULL);
4897 	last_sector =
4898 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4899 					    * new_data_disks - 1),
4900 				     1, &dd_idx, NULL);
4901 	if (last_sector >= mddev->dev_sectors)
4902 		last_sector = mddev->dev_sectors - 1;
4903 	while (first_sector <= last_sector) {
4904 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4905 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4906 		set_bit(STRIPE_HANDLE, &sh->state);
4907 		release_stripe(sh);
4908 		first_sector += STRIPE_SECTORS;
4909 	}
4910 	/* Now that the sources are clearly marked, we can release
4911 	 * the destination stripes
4912 	 */
4913 	while (!list_empty(&stripes)) {
4914 		sh = list_entry(stripes.next, struct stripe_head, lru);
4915 		list_del_init(&sh->lru);
4916 		release_stripe(sh);
4917 	}
4918 	/* If this takes us to the resync_max point where we have to pause,
4919 	 * then we need to write out the superblock.
4920 	 */
4921 	sector_nr += reshape_sectors;
4922 	if ((sector_nr - mddev->curr_resync_completed) * 2
4923 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4924 		/* Cannot proceed until we've updated the superblock... */
4925 		wait_event(conf->wait_for_overlap,
4926 			   atomic_read(&conf->reshape_stripes) == 0
4927 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4928 		if (atomic_read(&conf->reshape_stripes) != 0)
4929 			goto ret;
4930 		mddev->reshape_position = conf->reshape_progress;
4931 		mddev->curr_resync_completed = sector_nr;
4932 		conf->reshape_checkpoint = jiffies;
4933 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4934 		md_wakeup_thread(mddev->thread);
4935 		wait_event(mddev->sb_wait,
4936 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4937 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4938 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4939 			goto ret;
4940 		spin_lock_irq(&conf->device_lock);
4941 		conf->reshape_safe = mddev->reshape_position;
4942 		spin_unlock_irq(&conf->device_lock);
4943 		wake_up(&conf->wait_for_overlap);
4944 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4945 	}
4946 ret:
4947 	return reshape_sectors;
4948 }
4949 
4950 /* FIXME go_faster isn't used */
4951 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4952 {
4953 	struct r5conf *conf = mddev->private;
4954 	struct stripe_head *sh;
4955 	sector_t max_sector = mddev->dev_sectors;
4956 	sector_t sync_blocks;
4957 	int still_degraded = 0;
4958 	int i;
4959 
4960 	if (sector_nr >= max_sector) {
4961 		/* just being told to finish up .. nothing much to do */
4962 
4963 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4964 			end_reshape(conf);
4965 			return 0;
4966 		}
4967 
4968 		if (mddev->curr_resync < max_sector) /* aborted */
4969 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4970 					&sync_blocks, 1);
4971 		else /* completed sync */
4972 			conf->fullsync = 0;
4973 		bitmap_close_sync(mddev->bitmap);
4974 
4975 		return 0;
4976 	}
4977 
4978 	/* Allow raid5_quiesce to complete */
4979 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4980 
4981 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4982 		return reshape_request(mddev, sector_nr, skipped);
4983 
4984 	/* No need to check resync_max as we never do more than one
4985 	 * stripe, and as resync_max will always be on a chunk boundary,
4986 	 * if the check in md_do_sync didn't fire, there is no chance
4987 	 * of overstepping resync_max here
4988 	 */
4989 
4990 	/* if there is too many failed drives and we are trying
4991 	 * to resync, then assert that we are finished, because there is
4992 	 * nothing we can do.
4993 	 */
4994 	if (mddev->degraded >= conf->max_degraded &&
4995 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4996 		sector_t rv = mddev->dev_sectors - sector_nr;
4997 		*skipped = 1;
4998 		return rv;
4999 	}
5000 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5001 	    !conf->fullsync &&
5002 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5003 	    sync_blocks >= STRIPE_SECTORS) {
5004 		/* we can skip this block, and probably more */
5005 		sync_blocks /= STRIPE_SECTORS;
5006 		*skipped = 1;
5007 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5008 	}
5009 
5010 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5011 
5012 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5013 	if (sh == NULL) {
5014 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5015 		/* make sure we don't swamp the stripe cache if someone else
5016 		 * is trying to get access
5017 		 */
5018 		schedule_timeout_uninterruptible(1);
5019 	}
5020 	/* Need to check if array will still be degraded after recovery/resync
5021 	 * We don't need to check the 'failed' flag as when that gets set,
5022 	 * recovery aborts.
5023 	 */
5024 	for (i = 0; i < conf->raid_disks; i++)
5025 		if (conf->disks[i].rdev == NULL)
5026 			still_degraded = 1;
5027 
5028 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5029 
5030 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5031 
5032 	handle_stripe(sh);
5033 	release_stripe(sh);
5034 
5035 	return STRIPE_SECTORS;
5036 }
5037 
5038 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5039 {
5040 	/* We may not be able to submit a whole bio at once as there
5041 	 * may not be enough stripe_heads available.
5042 	 * We cannot pre-allocate enough stripe_heads as we may need
5043 	 * more than exist in the cache (if we allow ever large chunks).
5044 	 * So we do one stripe head at a time and record in
5045 	 * ->bi_hw_segments how many have been done.
5046 	 *
5047 	 * We *know* that this entire raid_bio is in one chunk, so
5048 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5049 	 */
5050 	struct stripe_head *sh;
5051 	int dd_idx;
5052 	sector_t sector, logical_sector, last_sector;
5053 	int scnt = 0;
5054 	int remaining;
5055 	int handled = 0;
5056 
5057 	logical_sector = raid_bio->bi_iter.bi_sector &
5058 		~((sector_t)STRIPE_SECTORS-1);
5059 	sector = raid5_compute_sector(conf, logical_sector,
5060 				      0, &dd_idx, NULL);
5061 	last_sector = bio_end_sector(raid_bio);
5062 
5063 	for (; logical_sector < last_sector;
5064 	     logical_sector += STRIPE_SECTORS,
5065 		     sector += STRIPE_SECTORS,
5066 		     scnt++) {
5067 
5068 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5069 			/* already done this stripe */
5070 			continue;
5071 
5072 		sh = get_active_stripe(conf, sector, 0, 1, 0);
5073 
5074 		if (!sh) {
5075 			/* failed to get a stripe - must wait */
5076 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5077 			conf->retry_read_aligned = raid_bio;
5078 			return handled;
5079 		}
5080 
5081 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5082 			release_stripe(sh);
5083 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5084 			conf->retry_read_aligned = raid_bio;
5085 			return handled;
5086 		}
5087 
5088 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5089 		handle_stripe(sh);
5090 		release_stripe(sh);
5091 		handled++;
5092 	}
5093 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5094 	if (remaining == 0) {
5095 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5096 					 raid_bio, 0);
5097 		bio_endio(raid_bio, 0);
5098 	}
5099 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5100 		wake_up(&conf->wait_for_stripe);
5101 	return handled;
5102 }
5103 
5104 static int handle_active_stripes(struct r5conf *conf, int group,
5105 				 struct r5worker *worker,
5106 				 struct list_head *temp_inactive_list)
5107 {
5108 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5109 	int i, batch_size = 0, hash;
5110 	bool release_inactive = false;
5111 
5112 	while (batch_size < MAX_STRIPE_BATCH &&
5113 			(sh = __get_priority_stripe(conf, group)) != NULL)
5114 		batch[batch_size++] = sh;
5115 
5116 	if (batch_size == 0) {
5117 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5118 			if (!list_empty(temp_inactive_list + i))
5119 				break;
5120 		if (i == NR_STRIPE_HASH_LOCKS)
5121 			return batch_size;
5122 		release_inactive = true;
5123 	}
5124 	spin_unlock_irq(&conf->device_lock);
5125 
5126 	release_inactive_stripe_list(conf, temp_inactive_list,
5127 				     NR_STRIPE_HASH_LOCKS);
5128 
5129 	if (release_inactive) {
5130 		spin_lock_irq(&conf->device_lock);
5131 		return 0;
5132 	}
5133 
5134 	for (i = 0; i < batch_size; i++)
5135 		handle_stripe(batch[i]);
5136 
5137 	cond_resched();
5138 
5139 	spin_lock_irq(&conf->device_lock);
5140 	for (i = 0; i < batch_size; i++) {
5141 		hash = batch[i]->hash_lock_index;
5142 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5143 	}
5144 	return batch_size;
5145 }
5146 
5147 static void raid5_do_work(struct work_struct *work)
5148 {
5149 	struct r5worker *worker = container_of(work, struct r5worker, work);
5150 	struct r5worker_group *group = worker->group;
5151 	struct r5conf *conf = group->conf;
5152 	int group_id = group - conf->worker_groups;
5153 	int handled;
5154 	struct blk_plug plug;
5155 
5156 	pr_debug("+++ raid5worker active\n");
5157 
5158 	blk_start_plug(&plug);
5159 	handled = 0;
5160 	spin_lock_irq(&conf->device_lock);
5161 	while (1) {
5162 		int batch_size, released;
5163 
5164 		released = release_stripe_list(conf, worker->temp_inactive_list);
5165 
5166 		batch_size = handle_active_stripes(conf, group_id, worker,
5167 						   worker->temp_inactive_list);
5168 		worker->working = false;
5169 		if (!batch_size && !released)
5170 			break;
5171 		handled += batch_size;
5172 	}
5173 	pr_debug("%d stripes handled\n", handled);
5174 
5175 	spin_unlock_irq(&conf->device_lock);
5176 	blk_finish_plug(&plug);
5177 
5178 	pr_debug("--- raid5worker inactive\n");
5179 }
5180 
5181 /*
5182  * This is our raid5 kernel thread.
5183  *
5184  * We scan the hash table for stripes which can be handled now.
5185  * During the scan, completed stripes are saved for us by the interrupt
5186  * handler, so that they will not have to wait for our next wakeup.
5187  */
5188 static void raid5d(struct md_thread *thread)
5189 {
5190 	struct mddev *mddev = thread->mddev;
5191 	struct r5conf *conf = mddev->private;
5192 	int handled;
5193 	struct blk_plug plug;
5194 
5195 	pr_debug("+++ raid5d active\n");
5196 
5197 	md_check_recovery(mddev);
5198 
5199 	blk_start_plug(&plug);
5200 	handled = 0;
5201 	spin_lock_irq(&conf->device_lock);
5202 	while (1) {
5203 		struct bio *bio;
5204 		int batch_size, released;
5205 
5206 		released = release_stripe_list(conf, conf->temp_inactive_list);
5207 
5208 		if (
5209 		    !list_empty(&conf->bitmap_list)) {
5210 			/* Now is a good time to flush some bitmap updates */
5211 			conf->seq_flush++;
5212 			spin_unlock_irq(&conf->device_lock);
5213 			bitmap_unplug(mddev->bitmap);
5214 			spin_lock_irq(&conf->device_lock);
5215 			conf->seq_write = conf->seq_flush;
5216 			activate_bit_delay(conf, conf->temp_inactive_list);
5217 		}
5218 		raid5_activate_delayed(conf);
5219 
5220 		while ((bio = remove_bio_from_retry(conf))) {
5221 			int ok;
5222 			spin_unlock_irq(&conf->device_lock);
5223 			ok = retry_aligned_read(conf, bio);
5224 			spin_lock_irq(&conf->device_lock);
5225 			if (!ok)
5226 				break;
5227 			handled++;
5228 		}
5229 
5230 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5231 						   conf->temp_inactive_list);
5232 		if (!batch_size && !released)
5233 			break;
5234 		handled += batch_size;
5235 
5236 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5237 			spin_unlock_irq(&conf->device_lock);
5238 			md_check_recovery(mddev);
5239 			spin_lock_irq(&conf->device_lock);
5240 		}
5241 	}
5242 	pr_debug("%d stripes handled\n", handled);
5243 
5244 	spin_unlock_irq(&conf->device_lock);
5245 
5246 	async_tx_issue_pending_all();
5247 	blk_finish_plug(&plug);
5248 
5249 	pr_debug("--- raid5d inactive\n");
5250 }
5251 
5252 static ssize_t
5253 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5254 {
5255 	struct r5conf *conf = mddev->private;
5256 	if (conf)
5257 		return sprintf(page, "%d\n", conf->max_nr_stripes);
5258 	else
5259 		return 0;
5260 }
5261 
5262 int
5263 raid5_set_cache_size(struct mddev *mddev, int size)
5264 {
5265 	struct r5conf *conf = mddev->private;
5266 	int err;
5267 	int hash;
5268 
5269 	if (size <= 16 || size > 32768)
5270 		return -EINVAL;
5271 	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5272 	while (size < conf->max_nr_stripes) {
5273 		if (drop_one_stripe(conf, hash))
5274 			conf->max_nr_stripes--;
5275 		else
5276 			break;
5277 		hash--;
5278 		if (hash < 0)
5279 			hash = NR_STRIPE_HASH_LOCKS - 1;
5280 	}
5281 	err = md_allow_write(mddev);
5282 	if (err)
5283 		return err;
5284 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5285 	while (size > conf->max_nr_stripes) {
5286 		if (grow_one_stripe(conf, hash))
5287 			conf->max_nr_stripes++;
5288 		else break;
5289 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5290 	}
5291 	return 0;
5292 }
5293 EXPORT_SYMBOL(raid5_set_cache_size);
5294 
5295 static ssize_t
5296 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5297 {
5298 	struct r5conf *conf = mddev->private;
5299 	unsigned long new;
5300 	int err;
5301 
5302 	if (len >= PAGE_SIZE)
5303 		return -EINVAL;
5304 	if (!conf)
5305 		return -ENODEV;
5306 
5307 	if (kstrtoul(page, 10, &new))
5308 		return -EINVAL;
5309 	err = raid5_set_cache_size(mddev, new);
5310 	if (err)
5311 		return err;
5312 	return len;
5313 }
5314 
5315 static struct md_sysfs_entry
5316 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5317 				raid5_show_stripe_cache_size,
5318 				raid5_store_stripe_cache_size);
5319 
5320 static ssize_t
5321 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5322 {
5323 	struct r5conf *conf = mddev->private;
5324 	if (conf)
5325 		return sprintf(page, "%d\n", conf->bypass_threshold);
5326 	else
5327 		return 0;
5328 }
5329 
5330 static ssize_t
5331 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5332 {
5333 	struct r5conf *conf = mddev->private;
5334 	unsigned long new;
5335 	if (len >= PAGE_SIZE)
5336 		return -EINVAL;
5337 	if (!conf)
5338 		return -ENODEV;
5339 
5340 	if (kstrtoul(page, 10, &new))
5341 		return -EINVAL;
5342 	if (new > conf->max_nr_stripes)
5343 		return -EINVAL;
5344 	conf->bypass_threshold = new;
5345 	return len;
5346 }
5347 
5348 static struct md_sysfs_entry
5349 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5350 					S_IRUGO | S_IWUSR,
5351 					raid5_show_preread_threshold,
5352 					raid5_store_preread_threshold);
5353 
5354 static ssize_t
5355 stripe_cache_active_show(struct mddev *mddev, char *page)
5356 {
5357 	struct r5conf *conf = mddev->private;
5358 	if (conf)
5359 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5360 	else
5361 		return 0;
5362 }
5363 
5364 static struct md_sysfs_entry
5365 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5366 
5367 static ssize_t
5368 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5369 {
5370 	struct r5conf *conf = mddev->private;
5371 	if (conf)
5372 		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5373 	else
5374 		return 0;
5375 }
5376 
5377 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5378 			       int *group_cnt,
5379 			       int *worker_cnt_per_group,
5380 			       struct r5worker_group **worker_groups);
5381 static ssize_t
5382 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5383 {
5384 	struct r5conf *conf = mddev->private;
5385 	unsigned long new;
5386 	int err;
5387 	struct r5worker_group *new_groups, *old_groups;
5388 	int group_cnt, worker_cnt_per_group;
5389 
5390 	if (len >= PAGE_SIZE)
5391 		return -EINVAL;
5392 	if (!conf)
5393 		return -ENODEV;
5394 
5395 	if (kstrtoul(page, 10, &new))
5396 		return -EINVAL;
5397 
5398 	if (new == conf->worker_cnt_per_group)
5399 		return len;
5400 
5401 	mddev_suspend(mddev);
5402 
5403 	old_groups = conf->worker_groups;
5404 	if (old_groups)
5405 		flush_workqueue(raid5_wq);
5406 
5407 	err = alloc_thread_groups(conf, new,
5408 				  &group_cnt, &worker_cnt_per_group,
5409 				  &new_groups);
5410 	if (!err) {
5411 		spin_lock_irq(&conf->device_lock);
5412 		conf->group_cnt = group_cnt;
5413 		conf->worker_cnt_per_group = worker_cnt_per_group;
5414 		conf->worker_groups = new_groups;
5415 		spin_unlock_irq(&conf->device_lock);
5416 
5417 		if (old_groups)
5418 			kfree(old_groups[0].workers);
5419 		kfree(old_groups);
5420 	}
5421 
5422 	mddev_resume(mddev);
5423 
5424 	if (err)
5425 		return err;
5426 	return len;
5427 }
5428 
5429 static struct md_sysfs_entry
5430 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5431 				raid5_show_group_thread_cnt,
5432 				raid5_store_group_thread_cnt);
5433 
5434 static struct attribute *raid5_attrs[] =  {
5435 	&raid5_stripecache_size.attr,
5436 	&raid5_stripecache_active.attr,
5437 	&raid5_preread_bypass_threshold.attr,
5438 	&raid5_group_thread_cnt.attr,
5439 	NULL,
5440 };
5441 static struct attribute_group raid5_attrs_group = {
5442 	.name = NULL,
5443 	.attrs = raid5_attrs,
5444 };
5445 
5446 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5447 			       int *group_cnt,
5448 			       int *worker_cnt_per_group,
5449 			       struct r5worker_group **worker_groups)
5450 {
5451 	int i, j, k;
5452 	ssize_t size;
5453 	struct r5worker *workers;
5454 
5455 	*worker_cnt_per_group = cnt;
5456 	if (cnt == 0) {
5457 		*group_cnt = 0;
5458 		*worker_groups = NULL;
5459 		return 0;
5460 	}
5461 	*group_cnt = num_possible_nodes();
5462 	size = sizeof(struct r5worker) * cnt;
5463 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
5464 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
5465 				*group_cnt, GFP_NOIO);
5466 	if (!*worker_groups || !workers) {
5467 		kfree(workers);
5468 		kfree(*worker_groups);
5469 		return -ENOMEM;
5470 	}
5471 
5472 	for (i = 0; i < *group_cnt; i++) {
5473 		struct r5worker_group *group;
5474 
5475 		group = &(*worker_groups)[i];
5476 		INIT_LIST_HEAD(&group->handle_list);
5477 		group->conf = conf;
5478 		group->workers = workers + i * cnt;
5479 
5480 		for (j = 0; j < cnt; j++) {
5481 			struct r5worker *worker = group->workers + j;
5482 			worker->group = group;
5483 			INIT_WORK(&worker->work, raid5_do_work);
5484 
5485 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5486 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5487 		}
5488 	}
5489 
5490 	return 0;
5491 }
5492 
5493 static void free_thread_groups(struct r5conf *conf)
5494 {
5495 	if (conf->worker_groups)
5496 		kfree(conf->worker_groups[0].workers);
5497 	kfree(conf->worker_groups);
5498 	conf->worker_groups = NULL;
5499 }
5500 
5501 static sector_t
5502 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5503 {
5504 	struct r5conf *conf = mddev->private;
5505 
5506 	if (!sectors)
5507 		sectors = mddev->dev_sectors;
5508 	if (!raid_disks)
5509 		/* size is defined by the smallest of previous and new size */
5510 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5511 
5512 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5513 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5514 	return sectors * (raid_disks - conf->max_degraded);
5515 }
5516 
5517 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5518 {
5519 	safe_put_page(percpu->spare_page);
5520 	kfree(percpu->scribble);
5521 	percpu->spare_page = NULL;
5522 	percpu->scribble = NULL;
5523 }
5524 
5525 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5526 {
5527 	if (conf->level == 6 && !percpu->spare_page)
5528 		percpu->spare_page = alloc_page(GFP_KERNEL);
5529 	if (!percpu->scribble)
5530 		percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5531 
5532 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5533 		free_scratch_buffer(conf, percpu);
5534 		return -ENOMEM;
5535 	}
5536 
5537 	return 0;
5538 }
5539 
5540 static void raid5_free_percpu(struct r5conf *conf)
5541 {
5542 	unsigned long cpu;
5543 
5544 	if (!conf->percpu)
5545 		return;
5546 
5547 #ifdef CONFIG_HOTPLUG_CPU
5548 	unregister_cpu_notifier(&conf->cpu_notify);
5549 #endif
5550 
5551 	get_online_cpus();
5552 	for_each_possible_cpu(cpu)
5553 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5554 	put_online_cpus();
5555 
5556 	free_percpu(conf->percpu);
5557 }
5558 
5559 static void free_conf(struct r5conf *conf)
5560 {
5561 	free_thread_groups(conf);
5562 	shrink_stripes(conf);
5563 	raid5_free_percpu(conf);
5564 	kfree(conf->disks);
5565 	kfree(conf->stripe_hashtbl);
5566 	kfree(conf);
5567 }
5568 
5569 #ifdef CONFIG_HOTPLUG_CPU
5570 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5571 			      void *hcpu)
5572 {
5573 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5574 	long cpu = (long)hcpu;
5575 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5576 
5577 	switch (action) {
5578 	case CPU_UP_PREPARE:
5579 	case CPU_UP_PREPARE_FROZEN:
5580 		if (alloc_scratch_buffer(conf, percpu)) {
5581 			pr_err("%s: failed memory allocation for cpu%ld\n",
5582 			       __func__, cpu);
5583 			return notifier_from_errno(-ENOMEM);
5584 		}
5585 		break;
5586 	case CPU_DEAD:
5587 	case CPU_DEAD_FROZEN:
5588 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5589 		break;
5590 	default:
5591 		break;
5592 	}
5593 	return NOTIFY_OK;
5594 }
5595 #endif
5596 
5597 static int raid5_alloc_percpu(struct r5conf *conf)
5598 {
5599 	unsigned long cpu;
5600 	int err = 0;
5601 
5602 	conf->percpu = alloc_percpu(struct raid5_percpu);
5603 	if (!conf->percpu)
5604 		return -ENOMEM;
5605 
5606 #ifdef CONFIG_HOTPLUG_CPU
5607 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5608 	conf->cpu_notify.priority = 0;
5609 	err = register_cpu_notifier(&conf->cpu_notify);
5610 	if (err)
5611 		return err;
5612 #endif
5613 
5614 	get_online_cpus();
5615 	for_each_present_cpu(cpu) {
5616 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5617 		if (err) {
5618 			pr_err("%s: failed memory allocation for cpu%ld\n",
5619 			       __func__, cpu);
5620 			break;
5621 		}
5622 	}
5623 	put_online_cpus();
5624 
5625 	return err;
5626 }
5627 
5628 static struct r5conf *setup_conf(struct mddev *mddev)
5629 {
5630 	struct r5conf *conf;
5631 	int raid_disk, memory, max_disks;
5632 	struct md_rdev *rdev;
5633 	struct disk_info *disk;
5634 	char pers_name[6];
5635 	int i;
5636 	int group_cnt, worker_cnt_per_group;
5637 	struct r5worker_group *new_group;
5638 
5639 	if (mddev->new_level != 5
5640 	    && mddev->new_level != 4
5641 	    && mddev->new_level != 6) {
5642 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5643 		       mdname(mddev), mddev->new_level);
5644 		return ERR_PTR(-EIO);
5645 	}
5646 	if ((mddev->new_level == 5
5647 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5648 	    (mddev->new_level == 6
5649 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5650 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5651 		       mdname(mddev), mddev->new_layout);
5652 		return ERR_PTR(-EIO);
5653 	}
5654 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5655 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5656 		       mdname(mddev), mddev->raid_disks);
5657 		return ERR_PTR(-EINVAL);
5658 	}
5659 
5660 	if (!mddev->new_chunk_sectors ||
5661 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5662 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5663 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5664 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5665 		return ERR_PTR(-EINVAL);
5666 	}
5667 
5668 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5669 	if (conf == NULL)
5670 		goto abort;
5671 	/* Don't enable multi-threading by default*/
5672 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5673 				 &new_group)) {
5674 		conf->group_cnt = group_cnt;
5675 		conf->worker_cnt_per_group = worker_cnt_per_group;
5676 		conf->worker_groups = new_group;
5677 	} else
5678 		goto abort;
5679 	spin_lock_init(&conf->device_lock);
5680 	seqcount_init(&conf->gen_lock);
5681 	init_waitqueue_head(&conf->wait_for_stripe);
5682 	init_waitqueue_head(&conf->wait_for_overlap);
5683 	INIT_LIST_HEAD(&conf->handle_list);
5684 	INIT_LIST_HEAD(&conf->hold_list);
5685 	INIT_LIST_HEAD(&conf->delayed_list);
5686 	INIT_LIST_HEAD(&conf->bitmap_list);
5687 	init_llist_head(&conf->released_stripes);
5688 	atomic_set(&conf->active_stripes, 0);
5689 	atomic_set(&conf->preread_active_stripes, 0);
5690 	atomic_set(&conf->active_aligned_reads, 0);
5691 	conf->bypass_threshold = BYPASS_THRESHOLD;
5692 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5693 
5694 	conf->raid_disks = mddev->raid_disks;
5695 	if (mddev->reshape_position == MaxSector)
5696 		conf->previous_raid_disks = mddev->raid_disks;
5697 	else
5698 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5699 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5700 	conf->scribble_len = scribble_len(max_disks);
5701 
5702 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5703 			      GFP_KERNEL);
5704 	if (!conf->disks)
5705 		goto abort;
5706 
5707 	conf->mddev = mddev;
5708 
5709 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5710 		goto abort;
5711 
5712 	/* We init hash_locks[0] separately to that it can be used
5713 	 * as the reference lock in the spin_lock_nest_lock() call
5714 	 * in lock_all_device_hash_locks_irq in order to convince
5715 	 * lockdep that we know what we are doing.
5716 	 */
5717 	spin_lock_init(conf->hash_locks);
5718 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5719 		spin_lock_init(conf->hash_locks + i);
5720 
5721 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5722 		INIT_LIST_HEAD(conf->inactive_list + i);
5723 
5724 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5725 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
5726 
5727 	conf->level = mddev->new_level;
5728 	if (raid5_alloc_percpu(conf) != 0)
5729 		goto abort;
5730 
5731 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5732 
5733 	rdev_for_each(rdev, mddev) {
5734 		raid_disk = rdev->raid_disk;
5735 		if (raid_disk >= max_disks
5736 		    || raid_disk < 0)
5737 			continue;
5738 		disk = conf->disks + raid_disk;
5739 
5740 		if (test_bit(Replacement, &rdev->flags)) {
5741 			if (disk->replacement)
5742 				goto abort;
5743 			disk->replacement = rdev;
5744 		} else {
5745 			if (disk->rdev)
5746 				goto abort;
5747 			disk->rdev = rdev;
5748 		}
5749 
5750 		if (test_bit(In_sync, &rdev->flags)) {
5751 			char b[BDEVNAME_SIZE];
5752 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5753 			       " disk %d\n",
5754 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5755 		} else if (rdev->saved_raid_disk != raid_disk)
5756 			/* Cannot rely on bitmap to complete recovery */
5757 			conf->fullsync = 1;
5758 	}
5759 
5760 	conf->chunk_sectors = mddev->new_chunk_sectors;
5761 	conf->level = mddev->new_level;
5762 	if (conf->level == 6)
5763 		conf->max_degraded = 2;
5764 	else
5765 		conf->max_degraded = 1;
5766 	conf->algorithm = mddev->new_layout;
5767 	conf->reshape_progress = mddev->reshape_position;
5768 	if (conf->reshape_progress != MaxSector) {
5769 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5770 		conf->prev_algo = mddev->layout;
5771 	}
5772 
5773 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5774 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5775 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5776 	if (grow_stripes(conf, NR_STRIPES)) {
5777 		printk(KERN_ERR
5778 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5779 		       mdname(mddev), memory);
5780 		goto abort;
5781 	} else
5782 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5783 		       mdname(mddev), memory);
5784 
5785 	sprintf(pers_name, "raid%d", mddev->new_level);
5786 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5787 	if (!conf->thread) {
5788 		printk(KERN_ERR
5789 		       "md/raid:%s: couldn't allocate thread.\n",
5790 		       mdname(mddev));
5791 		goto abort;
5792 	}
5793 
5794 	return conf;
5795 
5796  abort:
5797 	if (conf) {
5798 		free_conf(conf);
5799 		return ERR_PTR(-EIO);
5800 	} else
5801 		return ERR_PTR(-ENOMEM);
5802 }
5803 
5804 
5805 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5806 {
5807 	switch (algo) {
5808 	case ALGORITHM_PARITY_0:
5809 		if (raid_disk < max_degraded)
5810 			return 1;
5811 		break;
5812 	case ALGORITHM_PARITY_N:
5813 		if (raid_disk >= raid_disks - max_degraded)
5814 			return 1;
5815 		break;
5816 	case ALGORITHM_PARITY_0_6:
5817 		if (raid_disk == 0 ||
5818 		    raid_disk == raid_disks - 1)
5819 			return 1;
5820 		break;
5821 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5822 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5823 	case ALGORITHM_LEFT_SYMMETRIC_6:
5824 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5825 		if (raid_disk == raid_disks - 1)
5826 			return 1;
5827 	}
5828 	return 0;
5829 }
5830 
5831 static int run(struct mddev *mddev)
5832 {
5833 	struct r5conf *conf;
5834 	int working_disks = 0;
5835 	int dirty_parity_disks = 0;
5836 	struct md_rdev *rdev;
5837 	sector_t reshape_offset = 0;
5838 	int i;
5839 	long long min_offset_diff = 0;
5840 	int first = 1;
5841 
5842 	if (mddev->recovery_cp != MaxSector)
5843 		printk(KERN_NOTICE "md/raid:%s: not clean"
5844 		       " -- starting background reconstruction\n",
5845 		       mdname(mddev));
5846 
5847 	rdev_for_each(rdev, mddev) {
5848 		long long diff;
5849 		if (rdev->raid_disk < 0)
5850 			continue;
5851 		diff = (rdev->new_data_offset - rdev->data_offset);
5852 		if (first) {
5853 			min_offset_diff = diff;
5854 			first = 0;
5855 		} else if (mddev->reshape_backwards &&
5856 			 diff < min_offset_diff)
5857 			min_offset_diff = diff;
5858 		else if (!mddev->reshape_backwards &&
5859 			 diff > min_offset_diff)
5860 			min_offset_diff = diff;
5861 	}
5862 
5863 	if (mddev->reshape_position != MaxSector) {
5864 		/* Check that we can continue the reshape.
5865 		 * Difficulties arise if the stripe we would write to
5866 		 * next is at or after the stripe we would read from next.
5867 		 * For a reshape that changes the number of devices, this
5868 		 * is only possible for a very short time, and mdadm makes
5869 		 * sure that time appears to have past before assembling
5870 		 * the array.  So we fail if that time hasn't passed.
5871 		 * For a reshape that keeps the number of devices the same
5872 		 * mdadm must be monitoring the reshape can keeping the
5873 		 * critical areas read-only and backed up.  It will start
5874 		 * the array in read-only mode, so we check for that.
5875 		 */
5876 		sector_t here_new, here_old;
5877 		int old_disks;
5878 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5879 
5880 		if (mddev->new_level != mddev->level) {
5881 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5882 			       "required - aborting.\n",
5883 			       mdname(mddev));
5884 			return -EINVAL;
5885 		}
5886 		old_disks = mddev->raid_disks - mddev->delta_disks;
5887 		/* reshape_position must be on a new-stripe boundary, and one
5888 		 * further up in new geometry must map after here in old
5889 		 * geometry.
5890 		 */
5891 		here_new = mddev->reshape_position;
5892 		if (sector_div(here_new, mddev->new_chunk_sectors *
5893 			       (mddev->raid_disks - max_degraded))) {
5894 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5895 			       "on a stripe boundary\n", mdname(mddev));
5896 			return -EINVAL;
5897 		}
5898 		reshape_offset = here_new * mddev->new_chunk_sectors;
5899 		/* here_new is the stripe we will write to */
5900 		here_old = mddev->reshape_position;
5901 		sector_div(here_old, mddev->chunk_sectors *
5902 			   (old_disks-max_degraded));
5903 		/* here_old is the first stripe that we might need to read
5904 		 * from */
5905 		if (mddev->delta_disks == 0) {
5906 			if ((here_new * mddev->new_chunk_sectors !=
5907 			     here_old * mddev->chunk_sectors)) {
5908 				printk(KERN_ERR "md/raid:%s: reshape position is"
5909 				       " confused - aborting\n", mdname(mddev));
5910 				return -EINVAL;
5911 			}
5912 			/* We cannot be sure it is safe to start an in-place
5913 			 * reshape.  It is only safe if user-space is monitoring
5914 			 * and taking constant backups.
5915 			 * mdadm always starts a situation like this in
5916 			 * readonly mode so it can take control before
5917 			 * allowing any writes.  So just check for that.
5918 			 */
5919 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5920 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5921 				/* not really in-place - so OK */;
5922 			else if (mddev->ro == 0) {
5923 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5924 				       "must be started in read-only mode "
5925 				       "- aborting\n",
5926 				       mdname(mddev));
5927 				return -EINVAL;
5928 			}
5929 		} else if (mddev->reshape_backwards
5930 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5931 		       here_old * mddev->chunk_sectors)
5932 		    : (here_new * mddev->new_chunk_sectors >=
5933 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5934 			/* Reading from the same stripe as writing to - bad */
5935 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5936 			       "auto-recovery - aborting.\n",
5937 			       mdname(mddev));
5938 			return -EINVAL;
5939 		}
5940 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5941 		       mdname(mddev));
5942 		/* OK, we should be able to continue; */
5943 	} else {
5944 		BUG_ON(mddev->level != mddev->new_level);
5945 		BUG_ON(mddev->layout != mddev->new_layout);
5946 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5947 		BUG_ON(mddev->delta_disks != 0);
5948 	}
5949 
5950 	if (mddev->private == NULL)
5951 		conf = setup_conf(mddev);
5952 	else
5953 		conf = mddev->private;
5954 
5955 	if (IS_ERR(conf))
5956 		return PTR_ERR(conf);
5957 
5958 	conf->min_offset_diff = min_offset_diff;
5959 	mddev->thread = conf->thread;
5960 	conf->thread = NULL;
5961 	mddev->private = conf;
5962 
5963 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5964 	     i++) {
5965 		rdev = conf->disks[i].rdev;
5966 		if (!rdev && conf->disks[i].replacement) {
5967 			/* The replacement is all we have yet */
5968 			rdev = conf->disks[i].replacement;
5969 			conf->disks[i].replacement = NULL;
5970 			clear_bit(Replacement, &rdev->flags);
5971 			conf->disks[i].rdev = rdev;
5972 		}
5973 		if (!rdev)
5974 			continue;
5975 		if (conf->disks[i].replacement &&
5976 		    conf->reshape_progress != MaxSector) {
5977 			/* replacements and reshape simply do not mix. */
5978 			printk(KERN_ERR "md: cannot handle concurrent "
5979 			       "replacement and reshape.\n");
5980 			goto abort;
5981 		}
5982 		if (test_bit(In_sync, &rdev->flags)) {
5983 			working_disks++;
5984 			continue;
5985 		}
5986 		/* This disc is not fully in-sync.  However if it
5987 		 * just stored parity (beyond the recovery_offset),
5988 		 * when we don't need to be concerned about the
5989 		 * array being dirty.
5990 		 * When reshape goes 'backwards', we never have
5991 		 * partially completed devices, so we only need
5992 		 * to worry about reshape going forwards.
5993 		 */
5994 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5995 		if (mddev->major_version == 0 &&
5996 		    mddev->minor_version > 90)
5997 			rdev->recovery_offset = reshape_offset;
5998 
5999 		if (rdev->recovery_offset < reshape_offset) {
6000 			/* We need to check old and new layout */
6001 			if (!only_parity(rdev->raid_disk,
6002 					 conf->algorithm,
6003 					 conf->raid_disks,
6004 					 conf->max_degraded))
6005 				continue;
6006 		}
6007 		if (!only_parity(rdev->raid_disk,
6008 				 conf->prev_algo,
6009 				 conf->previous_raid_disks,
6010 				 conf->max_degraded))
6011 			continue;
6012 		dirty_parity_disks++;
6013 	}
6014 
6015 	/*
6016 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6017 	 */
6018 	mddev->degraded = calc_degraded(conf);
6019 
6020 	if (has_failed(conf)) {
6021 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6022 			" (%d/%d failed)\n",
6023 			mdname(mddev), mddev->degraded, conf->raid_disks);
6024 		goto abort;
6025 	}
6026 
6027 	/* device size must be a multiple of chunk size */
6028 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6029 	mddev->resync_max_sectors = mddev->dev_sectors;
6030 
6031 	if (mddev->degraded > dirty_parity_disks &&
6032 	    mddev->recovery_cp != MaxSector) {
6033 		if (mddev->ok_start_degraded)
6034 			printk(KERN_WARNING
6035 			       "md/raid:%s: starting dirty degraded array"
6036 			       " - data corruption possible.\n",
6037 			       mdname(mddev));
6038 		else {
6039 			printk(KERN_ERR
6040 			       "md/raid:%s: cannot start dirty degraded array.\n",
6041 			       mdname(mddev));
6042 			goto abort;
6043 		}
6044 	}
6045 
6046 	if (mddev->degraded == 0)
6047 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6048 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6049 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6050 		       mddev->new_layout);
6051 	else
6052 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6053 		       " out of %d devices, algorithm %d\n",
6054 		       mdname(mddev), conf->level,
6055 		       mddev->raid_disks - mddev->degraded,
6056 		       mddev->raid_disks, mddev->new_layout);
6057 
6058 	print_raid5_conf(conf);
6059 
6060 	if (conf->reshape_progress != MaxSector) {
6061 		conf->reshape_safe = conf->reshape_progress;
6062 		atomic_set(&conf->reshape_stripes, 0);
6063 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6064 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6065 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6066 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6067 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6068 							"reshape");
6069 	}
6070 
6071 
6072 	/* Ok, everything is just fine now */
6073 	if (mddev->to_remove == &raid5_attrs_group)
6074 		mddev->to_remove = NULL;
6075 	else if (mddev->kobj.sd &&
6076 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6077 		printk(KERN_WARNING
6078 		       "raid5: failed to create sysfs attributes for %s\n",
6079 		       mdname(mddev));
6080 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6081 
6082 	if (mddev->queue) {
6083 		int chunk_size;
6084 		bool discard_supported = true;
6085 		/* read-ahead size must cover two whole stripes, which
6086 		 * is 2 * (datadisks) * chunksize where 'n' is the
6087 		 * number of raid devices
6088 		 */
6089 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6090 		int stripe = data_disks *
6091 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6092 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6093 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6094 
6095 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6096 
6097 		mddev->queue->backing_dev_info.congested_data = mddev;
6098 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6099 
6100 		chunk_size = mddev->chunk_sectors << 9;
6101 		blk_queue_io_min(mddev->queue, chunk_size);
6102 		blk_queue_io_opt(mddev->queue, chunk_size *
6103 				 (conf->raid_disks - conf->max_degraded));
6104 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6105 		/*
6106 		 * We can only discard a whole stripe. It doesn't make sense to
6107 		 * discard data disk but write parity disk
6108 		 */
6109 		stripe = stripe * PAGE_SIZE;
6110 		/* Round up to power of 2, as discard handling
6111 		 * currently assumes that */
6112 		while ((stripe-1) & stripe)
6113 			stripe = (stripe | (stripe-1)) + 1;
6114 		mddev->queue->limits.discard_alignment = stripe;
6115 		mddev->queue->limits.discard_granularity = stripe;
6116 		/*
6117 		 * unaligned part of discard request will be ignored, so can't
6118 		 * guarantee discard_zerors_data
6119 		 */
6120 		mddev->queue->limits.discard_zeroes_data = 0;
6121 
6122 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6123 
6124 		rdev_for_each(rdev, mddev) {
6125 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6126 					  rdev->data_offset << 9);
6127 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6128 					  rdev->new_data_offset << 9);
6129 			/*
6130 			 * discard_zeroes_data is required, otherwise data
6131 			 * could be lost. Consider a scenario: discard a stripe
6132 			 * (the stripe could be inconsistent if
6133 			 * discard_zeroes_data is 0); write one disk of the
6134 			 * stripe (the stripe could be inconsistent again
6135 			 * depending on which disks are used to calculate
6136 			 * parity); the disk is broken; The stripe data of this
6137 			 * disk is lost.
6138 			 */
6139 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6140 			    !bdev_get_queue(rdev->bdev)->
6141 						limits.discard_zeroes_data)
6142 				discard_supported = false;
6143 		}
6144 
6145 		if (discard_supported &&
6146 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6147 		   mddev->queue->limits.discard_granularity >= stripe)
6148 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6149 						mddev->queue);
6150 		else
6151 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6152 						mddev->queue);
6153 	}
6154 
6155 	return 0;
6156 abort:
6157 	md_unregister_thread(&mddev->thread);
6158 	print_raid5_conf(conf);
6159 	free_conf(conf);
6160 	mddev->private = NULL;
6161 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6162 	return -EIO;
6163 }
6164 
6165 static int stop(struct mddev *mddev)
6166 {
6167 	struct r5conf *conf = mddev->private;
6168 
6169 	md_unregister_thread(&mddev->thread);
6170 	if (mddev->queue)
6171 		mddev->queue->backing_dev_info.congested_fn = NULL;
6172 	free_conf(conf);
6173 	mddev->private = NULL;
6174 	mddev->to_remove = &raid5_attrs_group;
6175 	return 0;
6176 }
6177 
6178 static void status(struct seq_file *seq, struct mddev *mddev)
6179 {
6180 	struct r5conf *conf = mddev->private;
6181 	int i;
6182 
6183 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6184 		mddev->chunk_sectors / 2, mddev->layout);
6185 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6186 	for (i = 0; i < conf->raid_disks; i++)
6187 		seq_printf (seq, "%s",
6188 			       conf->disks[i].rdev &&
6189 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6190 	seq_printf (seq, "]");
6191 }
6192 
6193 static void print_raid5_conf (struct r5conf *conf)
6194 {
6195 	int i;
6196 	struct disk_info *tmp;
6197 
6198 	printk(KERN_DEBUG "RAID conf printout:\n");
6199 	if (!conf) {
6200 		printk("(conf==NULL)\n");
6201 		return;
6202 	}
6203 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6204 	       conf->raid_disks,
6205 	       conf->raid_disks - conf->mddev->degraded);
6206 
6207 	for (i = 0; i < conf->raid_disks; i++) {
6208 		char b[BDEVNAME_SIZE];
6209 		tmp = conf->disks + i;
6210 		if (tmp->rdev)
6211 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6212 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6213 			       bdevname(tmp->rdev->bdev, b));
6214 	}
6215 }
6216 
6217 static int raid5_spare_active(struct mddev *mddev)
6218 {
6219 	int i;
6220 	struct r5conf *conf = mddev->private;
6221 	struct disk_info *tmp;
6222 	int count = 0;
6223 	unsigned long flags;
6224 
6225 	for (i = 0; i < conf->raid_disks; i++) {
6226 		tmp = conf->disks + i;
6227 		if (tmp->replacement
6228 		    && tmp->replacement->recovery_offset == MaxSector
6229 		    && !test_bit(Faulty, &tmp->replacement->flags)
6230 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6231 			/* Replacement has just become active. */
6232 			if (!tmp->rdev
6233 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6234 				count++;
6235 			if (tmp->rdev) {
6236 				/* Replaced device not technically faulty,
6237 				 * but we need to be sure it gets removed
6238 				 * and never re-added.
6239 				 */
6240 				set_bit(Faulty, &tmp->rdev->flags);
6241 				sysfs_notify_dirent_safe(
6242 					tmp->rdev->sysfs_state);
6243 			}
6244 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6245 		} else if (tmp->rdev
6246 		    && tmp->rdev->recovery_offset == MaxSector
6247 		    && !test_bit(Faulty, &tmp->rdev->flags)
6248 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6249 			count++;
6250 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6251 		}
6252 	}
6253 	spin_lock_irqsave(&conf->device_lock, flags);
6254 	mddev->degraded = calc_degraded(conf);
6255 	spin_unlock_irqrestore(&conf->device_lock, flags);
6256 	print_raid5_conf(conf);
6257 	return count;
6258 }
6259 
6260 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6261 {
6262 	struct r5conf *conf = mddev->private;
6263 	int err = 0;
6264 	int number = rdev->raid_disk;
6265 	struct md_rdev **rdevp;
6266 	struct disk_info *p = conf->disks + number;
6267 
6268 	print_raid5_conf(conf);
6269 	if (rdev == p->rdev)
6270 		rdevp = &p->rdev;
6271 	else if (rdev == p->replacement)
6272 		rdevp = &p->replacement;
6273 	else
6274 		return 0;
6275 
6276 	if (number >= conf->raid_disks &&
6277 	    conf->reshape_progress == MaxSector)
6278 		clear_bit(In_sync, &rdev->flags);
6279 
6280 	if (test_bit(In_sync, &rdev->flags) ||
6281 	    atomic_read(&rdev->nr_pending)) {
6282 		err = -EBUSY;
6283 		goto abort;
6284 	}
6285 	/* Only remove non-faulty devices if recovery
6286 	 * isn't possible.
6287 	 */
6288 	if (!test_bit(Faulty, &rdev->flags) &&
6289 	    mddev->recovery_disabled != conf->recovery_disabled &&
6290 	    !has_failed(conf) &&
6291 	    (!p->replacement || p->replacement == rdev) &&
6292 	    number < conf->raid_disks) {
6293 		err = -EBUSY;
6294 		goto abort;
6295 	}
6296 	*rdevp = NULL;
6297 	synchronize_rcu();
6298 	if (atomic_read(&rdev->nr_pending)) {
6299 		/* lost the race, try later */
6300 		err = -EBUSY;
6301 		*rdevp = rdev;
6302 	} else if (p->replacement) {
6303 		/* We must have just cleared 'rdev' */
6304 		p->rdev = p->replacement;
6305 		clear_bit(Replacement, &p->replacement->flags);
6306 		smp_mb(); /* Make sure other CPUs may see both as identical
6307 			   * but will never see neither - if they are careful
6308 			   */
6309 		p->replacement = NULL;
6310 		clear_bit(WantReplacement, &rdev->flags);
6311 	} else
6312 		/* We might have just removed the Replacement as faulty-
6313 		 * clear the bit just in case
6314 		 */
6315 		clear_bit(WantReplacement, &rdev->flags);
6316 abort:
6317 
6318 	print_raid5_conf(conf);
6319 	return err;
6320 }
6321 
6322 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6323 {
6324 	struct r5conf *conf = mddev->private;
6325 	int err = -EEXIST;
6326 	int disk;
6327 	struct disk_info *p;
6328 	int first = 0;
6329 	int last = conf->raid_disks - 1;
6330 
6331 	if (mddev->recovery_disabled == conf->recovery_disabled)
6332 		return -EBUSY;
6333 
6334 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6335 		/* no point adding a device */
6336 		return -EINVAL;
6337 
6338 	if (rdev->raid_disk >= 0)
6339 		first = last = rdev->raid_disk;
6340 
6341 	/*
6342 	 * find the disk ... but prefer rdev->saved_raid_disk
6343 	 * if possible.
6344 	 */
6345 	if (rdev->saved_raid_disk >= 0 &&
6346 	    rdev->saved_raid_disk >= first &&
6347 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6348 		first = rdev->saved_raid_disk;
6349 
6350 	for (disk = first; disk <= last; disk++) {
6351 		p = conf->disks + disk;
6352 		if (p->rdev == NULL) {
6353 			clear_bit(In_sync, &rdev->flags);
6354 			rdev->raid_disk = disk;
6355 			err = 0;
6356 			if (rdev->saved_raid_disk != disk)
6357 				conf->fullsync = 1;
6358 			rcu_assign_pointer(p->rdev, rdev);
6359 			goto out;
6360 		}
6361 	}
6362 	for (disk = first; disk <= last; disk++) {
6363 		p = conf->disks + disk;
6364 		if (test_bit(WantReplacement, &p->rdev->flags) &&
6365 		    p->replacement == NULL) {
6366 			clear_bit(In_sync, &rdev->flags);
6367 			set_bit(Replacement, &rdev->flags);
6368 			rdev->raid_disk = disk;
6369 			err = 0;
6370 			conf->fullsync = 1;
6371 			rcu_assign_pointer(p->replacement, rdev);
6372 			break;
6373 		}
6374 	}
6375 out:
6376 	print_raid5_conf(conf);
6377 	return err;
6378 }
6379 
6380 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6381 {
6382 	/* no resync is happening, and there is enough space
6383 	 * on all devices, so we can resize.
6384 	 * We need to make sure resync covers any new space.
6385 	 * If the array is shrinking we should possibly wait until
6386 	 * any io in the removed space completes, but it hardly seems
6387 	 * worth it.
6388 	 */
6389 	sector_t newsize;
6390 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6391 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6392 	if (mddev->external_size &&
6393 	    mddev->array_sectors > newsize)
6394 		return -EINVAL;
6395 	if (mddev->bitmap) {
6396 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6397 		if (ret)
6398 			return ret;
6399 	}
6400 	md_set_array_sectors(mddev, newsize);
6401 	set_capacity(mddev->gendisk, mddev->array_sectors);
6402 	revalidate_disk(mddev->gendisk);
6403 	if (sectors > mddev->dev_sectors &&
6404 	    mddev->recovery_cp > mddev->dev_sectors) {
6405 		mddev->recovery_cp = mddev->dev_sectors;
6406 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6407 	}
6408 	mddev->dev_sectors = sectors;
6409 	mddev->resync_max_sectors = sectors;
6410 	return 0;
6411 }
6412 
6413 static int check_stripe_cache(struct mddev *mddev)
6414 {
6415 	/* Can only proceed if there are plenty of stripe_heads.
6416 	 * We need a minimum of one full stripe,, and for sensible progress
6417 	 * it is best to have about 4 times that.
6418 	 * If we require 4 times, then the default 256 4K stripe_heads will
6419 	 * allow for chunk sizes up to 256K, which is probably OK.
6420 	 * If the chunk size is greater, user-space should request more
6421 	 * stripe_heads first.
6422 	 */
6423 	struct r5conf *conf = mddev->private;
6424 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6425 	    > conf->max_nr_stripes ||
6426 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6427 	    > conf->max_nr_stripes) {
6428 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6429 		       mdname(mddev),
6430 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6431 			/ STRIPE_SIZE)*4);
6432 		return 0;
6433 	}
6434 	return 1;
6435 }
6436 
6437 static int check_reshape(struct mddev *mddev)
6438 {
6439 	struct r5conf *conf = mddev->private;
6440 
6441 	if (mddev->delta_disks == 0 &&
6442 	    mddev->new_layout == mddev->layout &&
6443 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6444 		return 0; /* nothing to do */
6445 	if (has_failed(conf))
6446 		return -EINVAL;
6447 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6448 		/* We might be able to shrink, but the devices must
6449 		 * be made bigger first.
6450 		 * For raid6, 4 is the minimum size.
6451 		 * Otherwise 2 is the minimum
6452 		 */
6453 		int min = 2;
6454 		if (mddev->level == 6)
6455 			min = 4;
6456 		if (mddev->raid_disks + mddev->delta_disks < min)
6457 			return -EINVAL;
6458 	}
6459 
6460 	if (!check_stripe_cache(mddev))
6461 		return -ENOSPC;
6462 
6463 	return resize_stripes(conf, (conf->previous_raid_disks
6464 				     + mddev->delta_disks));
6465 }
6466 
6467 static int raid5_start_reshape(struct mddev *mddev)
6468 {
6469 	struct r5conf *conf = mddev->private;
6470 	struct md_rdev *rdev;
6471 	int spares = 0;
6472 	unsigned long flags;
6473 
6474 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6475 		return -EBUSY;
6476 
6477 	if (!check_stripe_cache(mddev))
6478 		return -ENOSPC;
6479 
6480 	if (has_failed(conf))
6481 		return -EINVAL;
6482 
6483 	rdev_for_each(rdev, mddev) {
6484 		if (!test_bit(In_sync, &rdev->flags)
6485 		    && !test_bit(Faulty, &rdev->flags))
6486 			spares++;
6487 	}
6488 
6489 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6490 		/* Not enough devices even to make a degraded array
6491 		 * of that size
6492 		 */
6493 		return -EINVAL;
6494 
6495 	/* Refuse to reduce size of the array.  Any reductions in
6496 	 * array size must be through explicit setting of array_size
6497 	 * attribute.
6498 	 */
6499 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6500 	    < mddev->array_sectors) {
6501 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6502 		       "before number of disks\n", mdname(mddev));
6503 		return -EINVAL;
6504 	}
6505 
6506 	atomic_set(&conf->reshape_stripes, 0);
6507 	spin_lock_irq(&conf->device_lock);
6508 	write_seqcount_begin(&conf->gen_lock);
6509 	conf->previous_raid_disks = conf->raid_disks;
6510 	conf->raid_disks += mddev->delta_disks;
6511 	conf->prev_chunk_sectors = conf->chunk_sectors;
6512 	conf->chunk_sectors = mddev->new_chunk_sectors;
6513 	conf->prev_algo = conf->algorithm;
6514 	conf->algorithm = mddev->new_layout;
6515 	conf->generation++;
6516 	/* Code that selects data_offset needs to see the generation update
6517 	 * if reshape_progress has been set - so a memory barrier needed.
6518 	 */
6519 	smp_mb();
6520 	if (mddev->reshape_backwards)
6521 		conf->reshape_progress = raid5_size(mddev, 0, 0);
6522 	else
6523 		conf->reshape_progress = 0;
6524 	conf->reshape_safe = conf->reshape_progress;
6525 	write_seqcount_end(&conf->gen_lock);
6526 	spin_unlock_irq(&conf->device_lock);
6527 
6528 	/* Now make sure any requests that proceeded on the assumption
6529 	 * the reshape wasn't running - like Discard or Read - have
6530 	 * completed.
6531 	 */
6532 	mddev_suspend(mddev);
6533 	mddev_resume(mddev);
6534 
6535 	/* Add some new drives, as many as will fit.
6536 	 * We know there are enough to make the newly sized array work.
6537 	 * Don't add devices if we are reducing the number of
6538 	 * devices in the array.  This is because it is not possible
6539 	 * to correctly record the "partially reconstructed" state of
6540 	 * such devices during the reshape and confusion could result.
6541 	 */
6542 	if (mddev->delta_disks >= 0) {
6543 		rdev_for_each(rdev, mddev)
6544 			if (rdev->raid_disk < 0 &&
6545 			    !test_bit(Faulty, &rdev->flags)) {
6546 				if (raid5_add_disk(mddev, rdev) == 0) {
6547 					if (rdev->raid_disk
6548 					    >= conf->previous_raid_disks)
6549 						set_bit(In_sync, &rdev->flags);
6550 					else
6551 						rdev->recovery_offset = 0;
6552 
6553 					if (sysfs_link_rdev(mddev, rdev))
6554 						/* Failure here is OK */;
6555 				}
6556 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6557 				   && !test_bit(Faulty, &rdev->flags)) {
6558 				/* This is a spare that was manually added */
6559 				set_bit(In_sync, &rdev->flags);
6560 			}
6561 
6562 		/* When a reshape changes the number of devices,
6563 		 * ->degraded is measured against the larger of the
6564 		 * pre and post number of devices.
6565 		 */
6566 		spin_lock_irqsave(&conf->device_lock, flags);
6567 		mddev->degraded = calc_degraded(conf);
6568 		spin_unlock_irqrestore(&conf->device_lock, flags);
6569 	}
6570 	mddev->raid_disks = conf->raid_disks;
6571 	mddev->reshape_position = conf->reshape_progress;
6572 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6573 
6574 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6575 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6576 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6577 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6578 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6579 						"reshape");
6580 	if (!mddev->sync_thread) {
6581 		mddev->recovery = 0;
6582 		spin_lock_irq(&conf->device_lock);
6583 		write_seqcount_begin(&conf->gen_lock);
6584 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6585 		mddev->new_chunk_sectors =
6586 			conf->chunk_sectors = conf->prev_chunk_sectors;
6587 		mddev->new_layout = conf->algorithm = conf->prev_algo;
6588 		rdev_for_each(rdev, mddev)
6589 			rdev->new_data_offset = rdev->data_offset;
6590 		smp_wmb();
6591 		conf->generation --;
6592 		conf->reshape_progress = MaxSector;
6593 		mddev->reshape_position = MaxSector;
6594 		write_seqcount_end(&conf->gen_lock);
6595 		spin_unlock_irq(&conf->device_lock);
6596 		return -EAGAIN;
6597 	}
6598 	conf->reshape_checkpoint = jiffies;
6599 	md_wakeup_thread(mddev->sync_thread);
6600 	md_new_event(mddev);
6601 	return 0;
6602 }
6603 
6604 /* This is called from the reshape thread and should make any
6605  * changes needed in 'conf'
6606  */
6607 static void end_reshape(struct r5conf *conf)
6608 {
6609 
6610 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6611 		struct md_rdev *rdev;
6612 
6613 		spin_lock_irq(&conf->device_lock);
6614 		conf->previous_raid_disks = conf->raid_disks;
6615 		rdev_for_each(rdev, conf->mddev)
6616 			rdev->data_offset = rdev->new_data_offset;
6617 		smp_wmb();
6618 		conf->reshape_progress = MaxSector;
6619 		spin_unlock_irq(&conf->device_lock);
6620 		wake_up(&conf->wait_for_overlap);
6621 
6622 		/* read-ahead size must cover two whole stripes, which is
6623 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6624 		 */
6625 		if (conf->mddev->queue) {
6626 			int data_disks = conf->raid_disks - conf->max_degraded;
6627 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6628 						   / PAGE_SIZE);
6629 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6630 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6631 		}
6632 	}
6633 }
6634 
6635 /* This is called from the raid5d thread with mddev_lock held.
6636  * It makes config changes to the device.
6637  */
6638 static void raid5_finish_reshape(struct mddev *mddev)
6639 {
6640 	struct r5conf *conf = mddev->private;
6641 
6642 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6643 
6644 		if (mddev->delta_disks > 0) {
6645 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6646 			set_capacity(mddev->gendisk, mddev->array_sectors);
6647 			revalidate_disk(mddev->gendisk);
6648 		} else {
6649 			int d;
6650 			spin_lock_irq(&conf->device_lock);
6651 			mddev->degraded = calc_degraded(conf);
6652 			spin_unlock_irq(&conf->device_lock);
6653 			for (d = conf->raid_disks ;
6654 			     d < conf->raid_disks - mddev->delta_disks;
6655 			     d++) {
6656 				struct md_rdev *rdev = conf->disks[d].rdev;
6657 				if (rdev)
6658 					clear_bit(In_sync, &rdev->flags);
6659 				rdev = conf->disks[d].replacement;
6660 				if (rdev)
6661 					clear_bit(In_sync, &rdev->flags);
6662 			}
6663 		}
6664 		mddev->layout = conf->algorithm;
6665 		mddev->chunk_sectors = conf->chunk_sectors;
6666 		mddev->reshape_position = MaxSector;
6667 		mddev->delta_disks = 0;
6668 		mddev->reshape_backwards = 0;
6669 	}
6670 }
6671 
6672 static void raid5_quiesce(struct mddev *mddev, int state)
6673 {
6674 	struct r5conf *conf = mddev->private;
6675 
6676 	switch(state) {
6677 	case 2: /* resume for a suspend */
6678 		wake_up(&conf->wait_for_overlap);
6679 		break;
6680 
6681 	case 1: /* stop all writes */
6682 		lock_all_device_hash_locks_irq(conf);
6683 		/* '2' tells resync/reshape to pause so that all
6684 		 * active stripes can drain
6685 		 */
6686 		conf->quiesce = 2;
6687 		wait_event_cmd(conf->wait_for_stripe,
6688 				    atomic_read(&conf->active_stripes) == 0 &&
6689 				    atomic_read(&conf->active_aligned_reads) == 0,
6690 				    unlock_all_device_hash_locks_irq(conf),
6691 				    lock_all_device_hash_locks_irq(conf));
6692 		conf->quiesce = 1;
6693 		unlock_all_device_hash_locks_irq(conf);
6694 		/* allow reshape to continue */
6695 		wake_up(&conf->wait_for_overlap);
6696 		break;
6697 
6698 	case 0: /* re-enable writes */
6699 		lock_all_device_hash_locks_irq(conf);
6700 		conf->quiesce = 0;
6701 		wake_up(&conf->wait_for_stripe);
6702 		wake_up(&conf->wait_for_overlap);
6703 		unlock_all_device_hash_locks_irq(conf);
6704 		break;
6705 	}
6706 }
6707 
6708 
6709 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6710 {
6711 	struct r0conf *raid0_conf = mddev->private;
6712 	sector_t sectors;
6713 
6714 	/* for raid0 takeover only one zone is supported */
6715 	if (raid0_conf->nr_strip_zones > 1) {
6716 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6717 		       mdname(mddev));
6718 		return ERR_PTR(-EINVAL);
6719 	}
6720 
6721 	sectors = raid0_conf->strip_zone[0].zone_end;
6722 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6723 	mddev->dev_sectors = sectors;
6724 	mddev->new_level = level;
6725 	mddev->new_layout = ALGORITHM_PARITY_N;
6726 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6727 	mddev->raid_disks += 1;
6728 	mddev->delta_disks = 1;
6729 	/* make sure it will be not marked as dirty */
6730 	mddev->recovery_cp = MaxSector;
6731 
6732 	return setup_conf(mddev);
6733 }
6734 
6735 
6736 static void *raid5_takeover_raid1(struct mddev *mddev)
6737 {
6738 	int chunksect;
6739 
6740 	if (mddev->raid_disks != 2 ||
6741 	    mddev->degraded > 1)
6742 		return ERR_PTR(-EINVAL);
6743 
6744 	/* Should check if there are write-behind devices? */
6745 
6746 	chunksect = 64*2; /* 64K by default */
6747 
6748 	/* The array must be an exact multiple of chunksize */
6749 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6750 		chunksect >>= 1;
6751 
6752 	if ((chunksect<<9) < STRIPE_SIZE)
6753 		/* array size does not allow a suitable chunk size */
6754 		return ERR_PTR(-EINVAL);
6755 
6756 	mddev->new_level = 5;
6757 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6758 	mddev->new_chunk_sectors = chunksect;
6759 
6760 	return setup_conf(mddev);
6761 }
6762 
6763 static void *raid5_takeover_raid6(struct mddev *mddev)
6764 {
6765 	int new_layout;
6766 
6767 	switch (mddev->layout) {
6768 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6769 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6770 		break;
6771 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6772 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6773 		break;
6774 	case ALGORITHM_LEFT_SYMMETRIC_6:
6775 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6776 		break;
6777 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6778 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6779 		break;
6780 	case ALGORITHM_PARITY_0_6:
6781 		new_layout = ALGORITHM_PARITY_0;
6782 		break;
6783 	case ALGORITHM_PARITY_N:
6784 		new_layout = ALGORITHM_PARITY_N;
6785 		break;
6786 	default:
6787 		return ERR_PTR(-EINVAL);
6788 	}
6789 	mddev->new_level = 5;
6790 	mddev->new_layout = new_layout;
6791 	mddev->delta_disks = -1;
6792 	mddev->raid_disks -= 1;
6793 	return setup_conf(mddev);
6794 }
6795 
6796 
6797 static int raid5_check_reshape(struct mddev *mddev)
6798 {
6799 	/* For a 2-drive array, the layout and chunk size can be changed
6800 	 * immediately as not restriping is needed.
6801 	 * For larger arrays we record the new value - after validation
6802 	 * to be used by a reshape pass.
6803 	 */
6804 	struct r5conf *conf = mddev->private;
6805 	int new_chunk = mddev->new_chunk_sectors;
6806 
6807 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6808 		return -EINVAL;
6809 	if (new_chunk > 0) {
6810 		if (!is_power_of_2(new_chunk))
6811 			return -EINVAL;
6812 		if (new_chunk < (PAGE_SIZE>>9))
6813 			return -EINVAL;
6814 		if (mddev->array_sectors & (new_chunk-1))
6815 			/* not factor of array size */
6816 			return -EINVAL;
6817 	}
6818 
6819 	/* They look valid */
6820 
6821 	if (mddev->raid_disks == 2) {
6822 		/* can make the change immediately */
6823 		if (mddev->new_layout >= 0) {
6824 			conf->algorithm = mddev->new_layout;
6825 			mddev->layout = mddev->new_layout;
6826 		}
6827 		if (new_chunk > 0) {
6828 			conf->chunk_sectors = new_chunk ;
6829 			mddev->chunk_sectors = new_chunk;
6830 		}
6831 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6832 		md_wakeup_thread(mddev->thread);
6833 	}
6834 	return check_reshape(mddev);
6835 }
6836 
6837 static int raid6_check_reshape(struct mddev *mddev)
6838 {
6839 	int new_chunk = mddev->new_chunk_sectors;
6840 
6841 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6842 		return -EINVAL;
6843 	if (new_chunk > 0) {
6844 		if (!is_power_of_2(new_chunk))
6845 			return -EINVAL;
6846 		if (new_chunk < (PAGE_SIZE >> 9))
6847 			return -EINVAL;
6848 		if (mddev->array_sectors & (new_chunk-1))
6849 			/* not factor of array size */
6850 			return -EINVAL;
6851 	}
6852 
6853 	/* They look valid */
6854 	return check_reshape(mddev);
6855 }
6856 
6857 static void *raid5_takeover(struct mddev *mddev)
6858 {
6859 	/* raid5 can take over:
6860 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6861 	 *  raid1 - if there are two drives.  We need to know the chunk size
6862 	 *  raid4 - trivial - just use a raid4 layout.
6863 	 *  raid6 - Providing it is a *_6 layout
6864 	 */
6865 	if (mddev->level == 0)
6866 		return raid45_takeover_raid0(mddev, 5);
6867 	if (mddev->level == 1)
6868 		return raid5_takeover_raid1(mddev);
6869 	if (mddev->level == 4) {
6870 		mddev->new_layout = ALGORITHM_PARITY_N;
6871 		mddev->new_level = 5;
6872 		return setup_conf(mddev);
6873 	}
6874 	if (mddev->level == 6)
6875 		return raid5_takeover_raid6(mddev);
6876 
6877 	return ERR_PTR(-EINVAL);
6878 }
6879 
6880 static void *raid4_takeover(struct mddev *mddev)
6881 {
6882 	/* raid4 can take over:
6883 	 *  raid0 - if there is only one strip zone
6884 	 *  raid5 - if layout is right
6885 	 */
6886 	if (mddev->level == 0)
6887 		return raid45_takeover_raid0(mddev, 4);
6888 	if (mddev->level == 5 &&
6889 	    mddev->layout == ALGORITHM_PARITY_N) {
6890 		mddev->new_layout = 0;
6891 		mddev->new_level = 4;
6892 		return setup_conf(mddev);
6893 	}
6894 	return ERR_PTR(-EINVAL);
6895 }
6896 
6897 static struct md_personality raid5_personality;
6898 
6899 static void *raid6_takeover(struct mddev *mddev)
6900 {
6901 	/* Currently can only take over a raid5.  We map the
6902 	 * personality to an equivalent raid6 personality
6903 	 * with the Q block at the end.
6904 	 */
6905 	int new_layout;
6906 
6907 	if (mddev->pers != &raid5_personality)
6908 		return ERR_PTR(-EINVAL);
6909 	if (mddev->degraded > 1)
6910 		return ERR_PTR(-EINVAL);
6911 	if (mddev->raid_disks > 253)
6912 		return ERR_PTR(-EINVAL);
6913 	if (mddev->raid_disks < 3)
6914 		return ERR_PTR(-EINVAL);
6915 
6916 	switch (mddev->layout) {
6917 	case ALGORITHM_LEFT_ASYMMETRIC:
6918 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6919 		break;
6920 	case ALGORITHM_RIGHT_ASYMMETRIC:
6921 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6922 		break;
6923 	case ALGORITHM_LEFT_SYMMETRIC:
6924 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6925 		break;
6926 	case ALGORITHM_RIGHT_SYMMETRIC:
6927 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6928 		break;
6929 	case ALGORITHM_PARITY_0:
6930 		new_layout = ALGORITHM_PARITY_0_6;
6931 		break;
6932 	case ALGORITHM_PARITY_N:
6933 		new_layout = ALGORITHM_PARITY_N;
6934 		break;
6935 	default:
6936 		return ERR_PTR(-EINVAL);
6937 	}
6938 	mddev->new_level = 6;
6939 	mddev->new_layout = new_layout;
6940 	mddev->delta_disks = 1;
6941 	mddev->raid_disks += 1;
6942 	return setup_conf(mddev);
6943 }
6944 
6945 
6946 static struct md_personality raid6_personality =
6947 {
6948 	.name		= "raid6",
6949 	.level		= 6,
6950 	.owner		= THIS_MODULE,
6951 	.make_request	= make_request,
6952 	.run		= run,
6953 	.stop		= stop,
6954 	.status		= status,
6955 	.error_handler	= error,
6956 	.hot_add_disk	= raid5_add_disk,
6957 	.hot_remove_disk= raid5_remove_disk,
6958 	.spare_active	= raid5_spare_active,
6959 	.sync_request	= sync_request,
6960 	.resize		= raid5_resize,
6961 	.size		= raid5_size,
6962 	.check_reshape	= raid6_check_reshape,
6963 	.start_reshape  = raid5_start_reshape,
6964 	.finish_reshape = raid5_finish_reshape,
6965 	.quiesce	= raid5_quiesce,
6966 	.takeover	= raid6_takeover,
6967 };
6968 static struct md_personality raid5_personality =
6969 {
6970 	.name		= "raid5",
6971 	.level		= 5,
6972 	.owner		= THIS_MODULE,
6973 	.make_request	= make_request,
6974 	.run		= run,
6975 	.stop		= stop,
6976 	.status		= status,
6977 	.error_handler	= error,
6978 	.hot_add_disk	= raid5_add_disk,
6979 	.hot_remove_disk= raid5_remove_disk,
6980 	.spare_active	= raid5_spare_active,
6981 	.sync_request	= sync_request,
6982 	.resize		= raid5_resize,
6983 	.size		= raid5_size,
6984 	.check_reshape	= raid5_check_reshape,
6985 	.start_reshape  = raid5_start_reshape,
6986 	.finish_reshape = raid5_finish_reshape,
6987 	.quiesce	= raid5_quiesce,
6988 	.takeover	= raid5_takeover,
6989 };
6990 
6991 static struct md_personality raid4_personality =
6992 {
6993 	.name		= "raid4",
6994 	.level		= 4,
6995 	.owner		= THIS_MODULE,
6996 	.make_request	= make_request,
6997 	.run		= run,
6998 	.stop		= stop,
6999 	.status		= status,
7000 	.error_handler	= error,
7001 	.hot_add_disk	= raid5_add_disk,
7002 	.hot_remove_disk= raid5_remove_disk,
7003 	.spare_active	= raid5_spare_active,
7004 	.sync_request	= sync_request,
7005 	.resize		= raid5_resize,
7006 	.size		= raid5_size,
7007 	.check_reshape	= raid5_check_reshape,
7008 	.start_reshape  = raid5_start_reshape,
7009 	.finish_reshape = raid5_finish_reshape,
7010 	.quiesce	= raid5_quiesce,
7011 	.takeover	= raid4_takeover,
7012 };
7013 
7014 static int __init raid5_init(void)
7015 {
7016 	raid5_wq = alloc_workqueue("raid5wq",
7017 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7018 	if (!raid5_wq)
7019 		return -ENOMEM;
7020 	register_md_personality(&raid6_personality);
7021 	register_md_personality(&raid5_personality);
7022 	register_md_personality(&raid4_personality);
7023 	return 0;
7024 }
7025 
7026 static void raid5_exit(void)
7027 {
7028 	unregister_md_personality(&raid6_personality);
7029 	unregister_md_personality(&raid5_personality);
7030 	unregister_md_personality(&raid4_personality);
7031 	destroy_workqueue(raid5_wq);
7032 }
7033 
7034 module_init(raid5_init);
7035 module_exit(raid5_exit);
7036 MODULE_LICENSE("GPL");
7037 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7038 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7039 MODULE_ALIAS("md-raid5");
7040 MODULE_ALIAS("md-raid4");
7041 MODULE_ALIAS("md-level-5");
7042 MODULE_ALIAS("md-level-4");
7043 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7044 MODULE_ALIAS("md-raid6");
7045 MODULE_ALIAS("md-level-6");
7046 
7047 /* This used to be two separate modules, they were: */
7048 MODULE_ALIAS("raid5");
7049 MODULE_ALIAS("raid6");
7050