xref: /openbmc/linux/drivers/md/raid5.c (revision f220d3eb)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
61 
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
67 
68 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
69 
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
72 
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
78 
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
80 {
81 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 	return &conf->stripe_hashtbl[hash];
83 }
84 
85 static inline int stripe_hash_locks_hash(sector_t sect)
86 {
87 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88 }
89 
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91 {
92 	spin_lock_irq(conf->hash_locks + hash);
93 	spin_lock(&conf->device_lock);
94 }
95 
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 {
98 	spin_unlock(&conf->device_lock);
99 	spin_unlock_irq(conf->hash_locks + hash);
100 }
101 
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_lock_irq(conf->hash_locks);
106 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 	spin_lock(&conf->device_lock);
109 }
110 
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 	int i;
114 	spin_unlock(&conf->device_lock);
115 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 		spin_unlock(conf->hash_locks + i);
117 	spin_unlock_irq(conf->hash_locks);
118 }
119 
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 	if (sh->ddf_layout)
124 		/* ddf always start from first device */
125 		return 0;
126 	/* md starts just after Q block */
127 	if (sh->qd_idx == sh->disks - 1)
128 		return 0;
129 	else
130 		return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 	disk++;
135 	return (disk < raid_disks) ? disk : 0;
136 }
137 
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139  * We need to map each disk to a 'slot', where the data disks are slot
140  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141  * is raid_disks-1.  This help does that mapping.
142  */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 			     int *count, int syndrome_disks)
145 {
146 	int slot = *count;
147 
148 	if (sh->ddf_layout)
149 		(*count)++;
150 	if (idx == sh->pd_idx)
151 		return syndrome_disks;
152 	if (idx == sh->qd_idx)
153 		return syndrome_disks + 1;
154 	if (!sh->ddf_layout)
155 		(*count)++;
156 	return slot;
157 }
158 
159 static void print_raid5_conf (struct r5conf *conf);
160 
161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163 	return sh->check_state || sh->reconstruct_state ||
164 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167 
168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174 
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177 	struct r5conf *conf = sh->raid_conf;
178 	struct r5worker_group *group;
179 	int thread_cnt;
180 	int i, cpu = sh->cpu;
181 
182 	if (!cpu_online(cpu)) {
183 		cpu = cpumask_any(cpu_online_mask);
184 		sh->cpu = cpu;
185 	}
186 
187 	if (list_empty(&sh->lru)) {
188 		struct r5worker_group *group;
189 		group = conf->worker_groups + cpu_to_group(cpu);
190 		if (stripe_is_lowprio(sh))
191 			list_add_tail(&sh->lru, &group->loprio_list);
192 		else
193 			list_add_tail(&sh->lru, &group->handle_list);
194 		group->stripes_cnt++;
195 		sh->group = group;
196 	}
197 
198 	if (conf->worker_cnt_per_group == 0) {
199 		md_wakeup_thread(conf->mddev->thread);
200 		return;
201 	}
202 
203 	group = conf->worker_groups + cpu_to_group(sh->cpu);
204 
205 	group->workers[0].working = true;
206 	/* at least one worker should run to avoid race */
207 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208 
209 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 	/* wakeup more workers */
211 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 		if (group->workers[i].working == false) {
213 			group->workers[i].working = true;
214 			queue_work_on(sh->cpu, raid5_wq,
215 				      &group->workers[i].work);
216 			thread_cnt--;
217 		}
218 	}
219 }
220 
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 			      struct list_head *temp_inactive_list)
223 {
224 	int i;
225 	int injournal = 0;	/* number of date pages with R5_InJournal */
226 
227 	BUG_ON(!list_empty(&sh->lru));
228 	BUG_ON(atomic_read(&conf->active_stripes)==0);
229 
230 	if (r5c_is_writeback(conf->log))
231 		for (i = sh->disks; i--; )
232 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 				injournal++;
234 	/*
235 	 * In the following cases, the stripe cannot be released to cached
236 	 * lists. Therefore, we make the stripe write out and set
237 	 * STRIPE_HANDLE:
238 	 *   1. when quiesce in r5c write back;
239 	 *   2. when resync is requested fot the stripe.
240 	 */
241 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
243 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 			r5c_make_stripe_write_out(sh);
246 		set_bit(STRIPE_HANDLE, &sh->state);
247 	}
248 
249 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 			list_add_tail(&sh->lru, &conf->delayed_list);
253 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 			   sh->bm_seq - conf->seq_write > 0)
255 			list_add_tail(&sh->lru, &conf->bitmap_list);
256 		else {
257 			clear_bit(STRIPE_DELAYED, &sh->state);
258 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 			if (conf->worker_cnt_per_group == 0) {
260 				if (stripe_is_lowprio(sh))
261 					list_add_tail(&sh->lru,
262 							&conf->loprio_list);
263 				else
264 					list_add_tail(&sh->lru,
265 							&conf->handle_list);
266 			} else {
267 				raid5_wakeup_stripe_thread(sh);
268 				return;
269 			}
270 		}
271 		md_wakeup_thread(conf->mddev->thread);
272 	} else {
273 		BUG_ON(stripe_operations_active(sh));
274 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 			if (atomic_dec_return(&conf->preread_active_stripes)
276 			    < IO_THRESHOLD)
277 				md_wakeup_thread(conf->mddev->thread);
278 		atomic_dec(&conf->active_stripes);
279 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 			if (!r5c_is_writeback(conf->log))
281 				list_add_tail(&sh->lru, temp_inactive_list);
282 			else {
283 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 				if (injournal == 0)
285 					list_add_tail(&sh->lru, temp_inactive_list);
286 				else if (injournal == conf->raid_disks - conf->max_degraded) {
287 					/* full stripe */
288 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 						atomic_inc(&conf->r5c_cached_full_stripes);
290 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 						atomic_dec(&conf->r5c_cached_partial_stripes);
292 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 					r5c_check_cached_full_stripe(conf);
294 				} else
295 					/*
296 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 					 * r5c_try_caching_write(). No need to
298 					 * set it again.
299 					 */
300 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301 			}
302 		}
303 	}
304 }
305 
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 			     struct list_head *temp_inactive_list)
308 {
309 	if (atomic_dec_and_test(&sh->count))
310 		do_release_stripe(conf, sh, temp_inactive_list);
311 }
312 
313 /*
314  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315  *
316  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317  * given time. Adding stripes only takes device lock, while deleting stripes
318  * only takes hash lock.
319  */
320 static void release_inactive_stripe_list(struct r5conf *conf,
321 					 struct list_head *temp_inactive_list,
322 					 int hash)
323 {
324 	int size;
325 	bool do_wakeup = false;
326 	unsigned long flags;
327 
328 	if (hash == NR_STRIPE_HASH_LOCKS) {
329 		size = NR_STRIPE_HASH_LOCKS;
330 		hash = NR_STRIPE_HASH_LOCKS - 1;
331 	} else
332 		size = 1;
333 	while (size) {
334 		struct list_head *list = &temp_inactive_list[size - 1];
335 
336 		/*
337 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 		 * remove stripes from the list
339 		 */
340 		if (!list_empty_careful(list)) {
341 			spin_lock_irqsave(conf->hash_locks + hash, flags);
342 			if (list_empty(conf->inactive_list + hash) &&
343 			    !list_empty(list))
344 				atomic_dec(&conf->empty_inactive_list_nr);
345 			list_splice_tail_init(list, conf->inactive_list + hash);
346 			do_wakeup = true;
347 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 		}
349 		size--;
350 		hash--;
351 	}
352 
353 	if (do_wakeup) {
354 		wake_up(&conf->wait_for_stripe);
355 		if (atomic_read(&conf->active_stripes) == 0)
356 			wake_up(&conf->wait_for_quiescent);
357 		if (conf->retry_read_aligned)
358 			md_wakeup_thread(conf->mddev->thread);
359 	}
360 }
361 
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364 			       struct list_head *temp_inactive_list)
365 {
366 	struct stripe_head *sh, *t;
367 	int count = 0;
368 	struct llist_node *head;
369 
370 	head = llist_del_all(&conf->released_stripes);
371 	head = llist_reverse_order(head);
372 	llist_for_each_entry_safe(sh, t, head, release_list) {
373 		int hash;
374 
375 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 		smp_mb();
377 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 		/*
379 		 * Don't worry the bit is set here, because if the bit is set
380 		 * again, the count is always > 1. This is true for
381 		 * STRIPE_ON_UNPLUG_LIST bit too.
382 		 */
383 		hash = sh->hash_lock_index;
384 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
385 		count++;
386 	}
387 
388 	return count;
389 }
390 
391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 	struct r5conf *conf = sh->raid_conf;
394 	unsigned long flags;
395 	struct list_head list;
396 	int hash;
397 	bool wakeup;
398 
399 	/* Avoid release_list until the last reference.
400 	 */
401 	if (atomic_add_unless(&sh->count, -1, 1))
402 		return;
403 
404 	if (unlikely(!conf->mddev->thread) ||
405 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 		goto slow_path;
407 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 	if (wakeup)
409 		md_wakeup_thread(conf->mddev->thread);
410 	return;
411 slow_path:
412 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
413 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
414 		INIT_LIST_HEAD(&list);
415 		hash = sh->hash_lock_index;
416 		do_release_stripe(conf, sh, &list);
417 		spin_unlock_irqrestore(&conf->device_lock, flags);
418 		release_inactive_stripe_list(conf, &list, hash);
419 	}
420 }
421 
422 static inline void remove_hash(struct stripe_head *sh)
423 {
424 	pr_debug("remove_hash(), stripe %llu\n",
425 		(unsigned long long)sh->sector);
426 
427 	hlist_del_init(&sh->hash);
428 }
429 
430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
431 {
432 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
433 
434 	pr_debug("insert_hash(), stripe %llu\n",
435 		(unsigned long long)sh->sector);
436 
437 	hlist_add_head(&sh->hash, hp);
438 }
439 
440 /* find an idle stripe, make sure it is unhashed, and return it. */
441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
442 {
443 	struct stripe_head *sh = NULL;
444 	struct list_head *first;
445 
446 	if (list_empty(conf->inactive_list + hash))
447 		goto out;
448 	first = (conf->inactive_list + hash)->next;
449 	sh = list_entry(first, struct stripe_head, lru);
450 	list_del_init(first);
451 	remove_hash(sh);
452 	atomic_inc(&conf->active_stripes);
453 	BUG_ON(hash != sh->hash_lock_index);
454 	if (list_empty(conf->inactive_list + hash))
455 		atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457 	return sh;
458 }
459 
460 static void shrink_buffers(struct stripe_head *sh)
461 {
462 	struct page *p;
463 	int i;
464 	int num = sh->raid_conf->pool_size;
465 
466 	for (i = 0; i < num ; i++) {
467 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
468 		p = sh->dev[i].page;
469 		if (!p)
470 			continue;
471 		sh->dev[i].page = NULL;
472 		put_page(p);
473 	}
474 }
475 
476 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
477 {
478 	int i;
479 	int num = sh->raid_conf->pool_size;
480 
481 	for (i = 0; i < num; i++) {
482 		struct page *page;
483 
484 		if (!(page = alloc_page(gfp))) {
485 			return 1;
486 		}
487 		sh->dev[i].page = page;
488 		sh->dev[i].orig_page = page;
489 	}
490 
491 	return 0;
492 }
493 
494 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
495 			    struct stripe_head *sh);
496 
497 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
498 {
499 	struct r5conf *conf = sh->raid_conf;
500 	int i, seq;
501 
502 	BUG_ON(atomic_read(&sh->count) != 0);
503 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
504 	BUG_ON(stripe_operations_active(sh));
505 	BUG_ON(sh->batch_head);
506 
507 	pr_debug("init_stripe called, stripe %llu\n",
508 		(unsigned long long)sector);
509 retry:
510 	seq = read_seqcount_begin(&conf->gen_lock);
511 	sh->generation = conf->generation - previous;
512 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
513 	sh->sector = sector;
514 	stripe_set_idx(sector, conf, previous, sh);
515 	sh->state = 0;
516 
517 	for (i = sh->disks; i--; ) {
518 		struct r5dev *dev = &sh->dev[i];
519 
520 		if (dev->toread || dev->read || dev->towrite || dev->written ||
521 		    test_bit(R5_LOCKED, &dev->flags)) {
522 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
523 			       (unsigned long long)sh->sector, i, dev->toread,
524 			       dev->read, dev->towrite, dev->written,
525 			       test_bit(R5_LOCKED, &dev->flags));
526 			WARN_ON(1);
527 		}
528 		dev->flags = 0;
529 		dev->sector = raid5_compute_blocknr(sh, i, previous);
530 	}
531 	if (read_seqcount_retry(&conf->gen_lock, seq))
532 		goto retry;
533 	sh->overwrite_disks = 0;
534 	insert_hash(conf, sh);
535 	sh->cpu = smp_processor_id();
536 	set_bit(STRIPE_BATCH_READY, &sh->state);
537 }
538 
539 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
540 					 short generation)
541 {
542 	struct stripe_head *sh;
543 
544 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
545 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
546 		if (sh->sector == sector && sh->generation == generation)
547 			return sh;
548 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
549 	return NULL;
550 }
551 
552 /*
553  * Need to check if array has failed when deciding whether to:
554  *  - start an array
555  *  - remove non-faulty devices
556  *  - add a spare
557  *  - allow a reshape
558  * This determination is simple when no reshape is happening.
559  * However if there is a reshape, we need to carefully check
560  * both the before and after sections.
561  * This is because some failed devices may only affect one
562  * of the two sections, and some non-in_sync devices may
563  * be insync in the section most affected by failed devices.
564  */
565 int raid5_calc_degraded(struct r5conf *conf)
566 {
567 	int degraded, degraded2;
568 	int i;
569 
570 	rcu_read_lock();
571 	degraded = 0;
572 	for (i = 0; i < conf->previous_raid_disks; i++) {
573 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
574 		if (rdev && test_bit(Faulty, &rdev->flags))
575 			rdev = rcu_dereference(conf->disks[i].replacement);
576 		if (!rdev || test_bit(Faulty, &rdev->flags))
577 			degraded++;
578 		else if (test_bit(In_sync, &rdev->flags))
579 			;
580 		else
581 			/* not in-sync or faulty.
582 			 * If the reshape increases the number of devices,
583 			 * this is being recovered by the reshape, so
584 			 * this 'previous' section is not in_sync.
585 			 * If the number of devices is being reduced however,
586 			 * the device can only be part of the array if
587 			 * we are reverting a reshape, so this section will
588 			 * be in-sync.
589 			 */
590 			if (conf->raid_disks >= conf->previous_raid_disks)
591 				degraded++;
592 	}
593 	rcu_read_unlock();
594 	if (conf->raid_disks == conf->previous_raid_disks)
595 		return degraded;
596 	rcu_read_lock();
597 	degraded2 = 0;
598 	for (i = 0; i < conf->raid_disks; i++) {
599 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
600 		if (rdev && test_bit(Faulty, &rdev->flags))
601 			rdev = rcu_dereference(conf->disks[i].replacement);
602 		if (!rdev || test_bit(Faulty, &rdev->flags))
603 			degraded2++;
604 		else if (test_bit(In_sync, &rdev->flags))
605 			;
606 		else
607 			/* not in-sync or faulty.
608 			 * If reshape increases the number of devices, this
609 			 * section has already been recovered, else it
610 			 * almost certainly hasn't.
611 			 */
612 			if (conf->raid_disks <= conf->previous_raid_disks)
613 				degraded2++;
614 	}
615 	rcu_read_unlock();
616 	if (degraded2 > degraded)
617 		return degraded2;
618 	return degraded;
619 }
620 
621 static int has_failed(struct r5conf *conf)
622 {
623 	int degraded;
624 
625 	if (conf->mddev->reshape_position == MaxSector)
626 		return conf->mddev->degraded > conf->max_degraded;
627 
628 	degraded = raid5_calc_degraded(conf);
629 	if (degraded > conf->max_degraded)
630 		return 1;
631 	return 0;
632 }
633 
634 struct stripe_head *
635 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
636 			int previous, int noblock, int noquiesce)
637 {
638 	struct stripe_head *sh;
639 	int hash = stripe_hash_locks_hash(sector);
640 	int inc_empty_inactive_list_flag;
641 
642 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
643 
644 	spin_lock_irq(conf->hash_locks + hash);
645 
646 	do {
647 		wait_event_lock_irq(conf->wait_for_quiescent,
648 				    conf->quiesce == 0 || noquiesce,
649 				    *(conf->hash_locks + hash));
650 		sh = __find_stripe(conf, sector, conf->generation - previous);
651 		if (!sh) {
652 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
653 				sh = get_free_stripe(conf, hash);
654 				if (!sh && !test_bit(R5_DID_ALLOC,
655 						     &conf->cache_state))
656 					set_bit(R5_ALLOC_MORE,
657 						&conf->cache_state);
658 			}
659 			if (noblock && sh == NULL)
660 				break;
661 
662 			r5c_check_stripe_cache_usage(conf);
663 			if (!sh) {
664 				set_bit(R5_INACTIVE_BLOCKED,
665 					&conf->cache_state);
666 				r5l_wake_reclaim(conf->log, 0);
667 				wait_event_lock_irq(
668 					conf->wait_for_stripe,
669 					!list_empty(conf->inactive_list + hash) &&
670 					(atomic_read(&conf->active_stripes)
671 					 < (conf->max_nr_stripes * 3 / 4)
672 					 || !test_bit(R5_INACTIVE_BLOCKED,
673 						      &conf->cache_state)),
674 					*(conf->hash_locks + hash));
675 				clear_bit(R5_INACTIVE_BLOCKED,
676 					  &conf->cache_state);
677 			} else {
678 				init_stripe(sh, sector, previous);
679 				atomic_inc(&sh->count);
680 			}
681 		} else if (!atomic_inc_not_zero(&sh->count)) {
682 			spin_lock(&conf->device_lock);
683 			if (!atomic_read(&sh->count)) {
684 				if (!test_bit(STRIPE_HANDLE, &sh->state))
685 					atomic_inc(&conf->active_stripes);
686 				BUG_ON(list_empty(&sh->lru) &&
687 				       !test_bit(STRIPE_EXPANDING, &sh->state));
688 				inc_empty_inactive_list_flag = 0;
689 				if (!list_empty(conf->inactive_list + hash))
690 					inc_empty_inactive_list_flag = 1;
691 				list_del_init(&sh->lru);
692 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
693 					atomic_inc(&conf->empty_inactive_list_nr);
694 				if (sh->group) {
695 					sh->group->stripes_cnt--;
696 					sh->group = NULL;
697 				}
698 			}
699 			atomic_inc(&sh->count);
700 			spin_unlock(&conf->device_lock);
701 		}
702 	} while (sh == NULL);
703 
704 	spin_unlock_irq(conf->hash_locks + hash);
705 	return sh;
706 }
707 
708 static bool is_full_stripe_write(struct stripe_head *sh)
709 {
710 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
711 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
712 }
713 
714 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
715 {
716 	if (sh1 > sh2) {
717 		spin_lock_irq(&sh2->stripe_lock);
718 		spin_lock_nested(&sh1->stripe_lock, 1);
719 	} else {
720 		spin_lock_irq(&sh1->stripe_lock);
721 		spin_lock_nested(&sh2->stripe_lock, 1);
722 	}
723 }
724 
725 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
726 {
727 	spin_unlock(&sh1->stripe_lock);
728 	spin_unlock_irq(&sh2->stripe_lock);
729 }
730 
731 /* Only freshly new full stripe normal write stripe can be added to a batch list */
732 static bool stripe_can_batch(struct stripe_head *sh)
733 {
734 	struct r5conf *conf = sh->raid_conf;
735 
736 	if (conf->log || raid5_has_ppl(conf))
737 		return false;
738 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
739 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
740 		is_full_stripe_write(sh);
741 }
742 
743 /* we only do back search */
744 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
745 {
746 	struct stripe_head *head;
747 	sector_t head_sector, tmp_sec;
748 	int hash;
749 	int dd_idx;
750 	int inc_empty_inactive_list_flag;
751 
752 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
753 	tmp_sec = sh->sector;
754 	if (!sector_div(tmp_sec, conf->chunk_sectors))
755 		return;
756 	head_sector = sh->sector - STRIPE_SECTORS;
757 
758 	hash = stripe_hash_locks_hash(head_sector);
759 	spin_lock_irq(conf->hash_locks + hash);
760 	head = __find_stripe(conf, head_sector, conf->generation);
761 	if (head && !atomic_inc_not_zero(&head->count)) {
762 		spin_lock(&conf->device_lock);
763 		if (!atomic_read(&head->count)) {
764 			if (!test_bit(STRIPE_HANDLE, &head->state))
765 				atomic_inc(&conf->active_stripes);
766 			BUG_ON(list_empty(&head->lru) &&
767 			       !test_bit(STRIPE_EXPANDING, &head->state));
768 			inc_empty_inactive_list_flag = 0;
769 			if (!list_empty(conf->inactive_list + hash))
770 				inc_empty_inactive_list_flag = 1;
771 			list_del_init(&head->lru);
772 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
773 				atomic_inc(&conf->empty_inactive_list_nr);
774 			if (head->group) {
775 				head->group->stripes_cnt--;
776 				head->group = NULL;
777 			}
778 		}
779 		atomic_inc(&head->count);
780 		spin_unlock(&conf->device_lock);
781 	}
782 	spin_unlock_irq(conf->hash_locks + hash);
783 
784 	if (!head)
785 		return;
786 	if (!stripe_can_batch(head))
787 		goto out;
788 
789 	lock_two_stripes(head, sh);
790 	/* clear_batch_ready clear the flag */
791 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792 		goto unlock_out;
793 
794 	if (sh->batch_head)
795 		goto unlock_out;
796 
797 	dd_idx = 0;
798 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799 		dd_idx++;
800 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
801 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
802 		goto unlock_out;
803 
804 	if (head->batch_head) {
805 		spin_lock(&head->batch_head->batch_lock);
806 		/* This batch list is already running */
807 		if (!stripe_can_batch(head)) {
808 			spin_unlock(&head->batch_head->batch_lock);
809 			goto unlock_out;
810 		}
811 		/*
812 		 * We must assign batch_head of this stripe within the
813 		 * batch_lock, otherwise clear_batch_ready of batch head
814 		 * stripe could clear BATCH_READY bit of this stripe and
815 		 * this stripe->batch_head doesn't get assigned, which
816 		 * could confuse clear_batch_ready for this stripe
817 		 */
818 		sh->batch_head = head->batch_head;
819 
820 		/*
821 		 * at this point, head's BATCH_READY could be cleared, but we
822 		 * can still add the stripe to batch list
823 		 */
824 		list_add(&sh->batch_list, &head->batch_list);
825 		spin_unlock(&head->batch_head->batch_lock);
826 	} else {
827 		head->batch_head = head;
828 		sh->batch_head = head->batch_head;
829 		spin_lock(&head->batch_lock);
830 		list_add_tail(&sh->batch_list, &head->batch_list);
831 		spin_unlock(&head->batch_lock);
832 	}
833 
834 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
835 		if (atomic_dec_return(&conf->preread_active_stripes)
836 		    < IO_THRESHOLD)
837 			md_wakeup_thread(conf->mddev->thread);
838 
839 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
840 		int seq = sh->bm_seq;
841 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
842 		    sh->batch_head->bm_seq > seq)
843 			seq = sh->batch_head->bm_seq;
844 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
845 		sh->batch_head->bm_seq = seq;
846 	}
847 
848 	atomic_inc(&sh->count);
849 unlock_out:
850 	unlock_two_stripes(head, sh);
851 out:
852 	raid5_release_stripe(head);
853 }
854 
855 /* Determine if 'data_offset' or 'new_data_offset' should be used
856  * in this stripe_head.
857  */
858 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
859 {
860 	sector_t progress = conf->reshape_progress;
861 	/* Need a memory barrier to make sure we see the value
862 	 * of conf->generation, or ->data_offset that was set before
863 	 * reshape_progress was updated.
864 	 */
865 	smp_rmb();
866 	if (progress == MaxSector)
867 		return 0;
868 	if (sh->generation == conf->generation - 1)
869 		return 0;
870 	/* We are in a reshape, and this is a new-generation stripe,
871 	 * so use new_data_offset.
872 	 */
873 	return 1;
874 }
875 
876 static void dispatch_bio_list(struct bio_list *tmp)
877 {
878 	struct bio *bio;
879 
880 	while ((bio = bio_list_pop(tmp)))
881 		generic_make_request(bio);
882 }
883 
884 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
885 {
886 	const struct r5pending_data *da = list_entry(a,
887 				struct r5pending_data, sibling);
888 	const struct r5pending_data *db = list_entry(b,
889 				struct r5pending_data, sibling);
890 	if (da->sector > db->sector)
891 		return 1;
892 	if (da->sector < db->sector)
893 		return -1;
894 	return 0;
895 }
896 
897 static void dispatch_defer_bios(struct r5conf *conf, int target,
898 				struct bio_list *list)
899 {
900 	struct r5pending_data *data;
901 	struct list_head *first, *next = NULL;
902 	int cnt = 0;
903 
904 	if (conf->pending_data_cnt == 0)
905 		return;
906 
907 	list_sort(NULL, &conf->pending_list, cmp_stripe);
908 
909 	first = conf->pending_list.next;
910 
911 	/* temporarily move the head */
912 	if (conf->next_pending_data)
913 		list_move_tail(&conf->pending_list,
914 				&conf->next_pending_data->sibling);
915 
916 	while (!list_empty(&conf->pending_list)) {
917 		data = list_first_entry(&conf->pending_list,
918 			struct r5pending_data, sibling);
919 		if (&data->sibling == first)
920 			first = data->sibling.next;
921 		next = data->sibling.next;
922 
923 		bio_list_merge(list, &data->bios);
924 		list_move(&data->sibling, &conf->free_list);
925 		cnt++;
926 		if (cnt >= target)
927 			break;
928 	}
929 	conf->pending_data_cnt -= cnt;
930 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
931 
932 	if (next != &conf->pending_list)
933 		conf->next_pending_data = list_entry(next,
934 				struct r5pending_data, sibling);
935 	else
936 		conf->next_pending_data = NULL;
937 	/* list isn't empty */
938 	if (first != &conf->pending_list)
939 		list_move_tail(&conf->pending_list, first);
940 }
941 
942 static void flush_deferred_bios(struct r5conf *conf)
943 {
944 	struct bio_list tmp = BIO_EMPTY_LIST;
945 
946 	if (conf->pending_data_cnt == 0)
947 		return;
948 
949 	spin_lock(&conf->pending_bios_lock);
950 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
951 	BUG_ON(conf->pending_data_cnt != 0);
952 	spin_unlock(&conf->pending_bios_lock);
953 
954 	dispatch_bio_list(&tmp);
955 }
956 
957 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
958 				struct bio_list *bios)
959 {
960 	struct bio_list tmp = BIO_EMPTY_LIST;
961 	struct r5pending_data *ent;
962 
963 	spin_lock(&conf->pending_bios_lock);
964 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
965 							sibling);
966 	list_move_tail(&ent->sibling, &conf->pending_list);
967 	ent->sector = sector;
968 	bio_list_init(&ent->bios);
969 	bio_list_merge(&ent->bios, bios);
970 	conf->pending_data_cnt++;
971 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
972 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
973 
974 	spin_unlock(&conf->pending_bios_lock);
975 
976 	dispatch_bio_list(&tmp);
977 }
978 
979 static void
980 raid5_end_read_request(struct bio *bi);
981 static void
982 raid5_end_write_request(struct bio *bi);
983 
984 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
985 {
986 	struct r5conf *conf = sh->raid_conf;
987 	int i, disks = sh->disks;
988 	struct stripe_head *head_sh = sh;
989 	struct bio_list pending_bios = BIO_EMPTY_LIST;
990 	bool should_defer;
991 
992 	might_sleep();
993 
994 	if (log_stripe(sh, s) == 0)
995 		return;
996 
997 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
998 
999 	for (i = disks; i--; ) {
1000 		int op, op_flags = 0;
1001 		int replace_only = 0;
1002 		struct bio *bi, *rbi;
1003 		struct md_rdev *rdev, *rrdev = NULL;
1004 
1005 		sh = head_sh;
1006 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1007 			op = REQ_OP_WRITE;
1008 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1009 				op_flags = REQ_FUA;
1010 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1011 				op = REQ_OP_DISCARD;
1012 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1013 			op = REQ_OP_READ;
1014 		else if (test_and_clear_bit(R5_WantReplace,
1015 					    &sh->dev[i].flags)) {
1016 			op = REQ_OP_WRITE;
1017 			replace_only = 1;
1018 		} else
1019 			continue;
1020 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1021 			op_flags |= REQ_SYNC;
1022 
1023 again:
1024 		bi = &sh->dev[i].req;
1025 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1026 
1027 		rcu_read_lock();
1028 		rrdev = rcu_dereference(conf->disks[i].replacement);
1029 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1030 		rdev = rcu_dereference(conf->disks[i].rdev);
1031 		if (!rdev) {
1032 			rdev = rrdev;
1033 			rrdev = NULL;
1034 		}
1035 		if (op_is_write(op)) {
1036 			if (replace_only)
1037 				rdev = NULL;
1038 			if (rdev == rrdev)
1039 				/* We raced and saw duplicates */
1040 				rrdev = NULL;
1041 		} else {
1042 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1043 				rdev = rrdev;
1044 			rrdev = NULL;
1045 		}
1046 
1047 		if (rdev && test_bit(Faulty, &rdev->flags))
1048 			rdev = NULL;
1049 		if (rdev)
1050 			atomic_inc(&rdev->nr_pending);
1051 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1052 			rrdev = NULL;
1053 		if (rrdev)
1054 			atomic_inc(&rrdev->nr_pending);
1055 		rcu_read_unlock();
1056 
1057 		/* We have already checked bad blocks for reads.  Now
1058 		 * need to check for writes.  We never accept write errors
1059 		 * on the replacement, so we don't to check rrdev.
1060 		 */
1061 		while (op_is_write(op) && rdev &&
1062 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1063 			sector_t first_bad;
1064 			int bad_sectors;
1065 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1066 					      &first_bad, &bad_sectors);
1067 			if (!bad)
1068 				break;
1069 
1070 			if (bad < 0) {
1071 				set_bit(BlockedBadBlocks, &rdev->flags);
1072 				if (!conf->mddev->external &&
1073 				    conf->mddev->sb_flags) {
1074 					/* It is very unlikely, but we might
1075 					 * still need to write out the
1076 					 * bad block log - better give it
1077 					 * a chance*/
1078 					md_check_recovery(conf->mddev);
1079 				}
1080 				/*
1081 				 * Because md_wait_for_blocked_rdev
1082 				 * will dec nr_pending, we must
1083 				 * increment it first.
1084 				 */
1085 				atomic_inc(&rdev->nr_pending);
1086 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1087 			} else {
1088 				/* Acknowledged bad block - skip the write */
1089 				rdev_dec_pending(rdev, conf->mddev);
1090 				rdev = NULL;
1091 			}
1092 		}
1093 
1094 		if (rdev) {
1095 			if (s->syncing || s->expanding || s->expanded
1096 			    || s->replacing)
1097 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1098 
1099 			set_bit(STRIPE_IO_STARTED, &sh->state);
1100 
1101 			bio_set_dev(bi, rdev->bdev);
1102 			bio_set_op_attrs(bi, op, op_flags);
1103 			bi->bi_end_io = op_is_write(op)
1104 				? raid5_end_write_request
1105 				: raid5_end_read_request;
1106 			bi->bi_private = sh;
1107 
1108 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1109 				__func__, (unsigned long long)sh->sector,
1110 				bi->bi_opf, i);
1111 			atomic_inc(&sh->count);
1112 			if (sh != head_sh)
1113 				atomic_inc(&head_sh->count);
1114 			if (use_new_offset(conf, sh))
1115 				bi->bi_iter.bi_sector = (sh->sector
1116 						 + rdev->new_data_offset);
1117 			else
1118 				bi->bi_iter.bi_sector = (sh->sector
1119 						 + rdev->data_offset);
1120 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1121 				bi->bi_opf |= REQ_NOMERGE;
1122 
1123 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1124 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1125 
1126 			if (!op_is_write(op) &&
1127 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1128 				/*
1129 				 * issuing read for a page in journal, this
1130 				 * must be preparing for prexor in rmw; read
1131 				 * the data into orig_page
1132 				 */
1133 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1134 			else
1135 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1136 			bi->bi_vcnt = 1;
1137 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1138 			bi->bi_io_vec[0].bv_offset = 0;
1139 			bi->bi_iter.bi_size = STRIPE_SIZE;
1140 			bi->bi_write_hint = sh->dev[i].write_hint;
1141 			if (!rrdev)
1142 				sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1143 			/*
1144 			 * If this is discard request, set bi_vcnt 0. We don't
1145 			 * want to confuse SCSI because SCSI will replace payload
1146 			 */
1147 			if (op == REQ_OP_DISCARD)
1148 				bi->bi_vcnt = 0;
1149 			if (rrdev)
1150 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1151 
1152 			if (conf->mddev->gendisk)
1153 				trace_block_bio_remap(bi->bi_disk->queue,
1154 						      bi, disk_devt(conf->mddev->gendisk),
1155 						      sh->dev[i].sector);
1156 			if (should_defer && op_is_write(op))
1157 				bio_list_add(&pending_bios, bi);
1158 			else
1159 				generic_make_request(bi);
1160 		}
1161 		if (rrdev) {
1162 			if (s->syncing || s->expanding || s->expanded
1163 			    || s->replacing)
1164 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1165 
1166 			set_bit(STRIPE_IO_STARTED, &sh->state);
1167 
1168 			bio_set_dev(rbi, rrdev->bdev);
1169 			bio_set_op_attrs(rbi, op, op_flags);
1170 			BUG_ON(!op_is_write(op));
1171 			rbi->bi_end_io = raid5_end_write_request;
1172 			rbi->bi_private = sh;
1173 
1174 			pr_debug("%s: for %llu schedule op %d on "
1175 				 "replacement disc %d\n",
1176 				__func__, (unsigned long long)sh->sector,
1177 				rbi->bi_opf, i);
1178 			atomic_inc(&sh->count);
1179 			if (sh != head_sh)
1180 				atomic_inc(&head_sh->count);
1181 			if (use_new_offset(conf, sh))
1182 				rbi->bi_iter.bi_sector = (sh->sector
1183 						  + rrdev->new_data_offset);
1184 			else
1185 				rbi->bi_iter.bi_sector = (sh->sector
1186 						  + rrdev->data_offset);
1187 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1188 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1189 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1190 			rbi->bi_vcnt = 1;
1191 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1192 			rbi->bi_io_vec[0].bv_offset = 0;
1193 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1194 			rbi->bi_write_hint = sh->dev[i].write_hint;
1195 			sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1196 			/*
1197 			 * If this is discard request, set bi_vcnt 0. We don't
1198 			 * want to confuse SCSI because SCSI will replace payload
1199 			 */
1200 			if (op == REQ_OP_DISCARD)
1201 				rbi->bi_vcnt = 0;
1202 			if (conf->mddev->gendisk)
1203 				trace_block_bio_remap(rbi->bi_disk->queue,
1204 						      rbi, disk_devt(conf->mddev->gendisk),
1205 						      sh->dev[i].sector);
1206 			if (should_defer && op_is_write(op))
1207 				bio_list_add(&pending_bios, rbi);
1208 			else
1209 				generic_make_request(rbi);
1210 		}
1211 		if (!rdev && !rrdev) {
1212 			if (op_is_write(op))
1213 				set_bit(STRIPE_DEGRADED, &sh->state);
1214 			pr_debug("skip op %d on disc %d for sector %llu\n",
1215 				bi->bi_opf, i, (unsigned long long)sh->sector);
1216 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1217 			set_bit(STRIPE_HANDLE, &sh->state);
1218 		}
1219 
1220 		if (!head_sh->batch_head)
1221 			continue;
1222 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1223 				      batch_list);
1224 		if (sh != head_sh)
1225 			goto again;
1226 	}
1227 
1228 	if (should_defer && !bio_list_empty(&pending_bios))
1229 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1230 }
1231 
1232 static struct dma_async_tx_descriptor *
1233 async_copy_data(int frombio, struct bio *bio, struct page **page,
1234 	sector_t sector, struct dma_async_tx_descriptor *tx,
1235 	struct stripe_head *sh, int no_skipcopy)
1236 {
1237 	struct bio_vec bvl;
1238 	struct bvec_iter iter;
1239 	struct page *bio_page;
1240 	int page_offset;
1241 	struct async_submit_ctl submit;
1242 	enum async_tx_flags flags = 0;
1243 
1244 	if (bio->bi_iter.bi_sector >= sector)
1245 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1246 	else
1247 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1248 
1249 	if (frombio)
1250 		flags |= ASYNC_TX_FENCE;
1251 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1252 
1253 	bio_for_each_segment(bvl, bio, iter) {
1254 		int len = bvl.bv_len;
1255 		int clen;
1256 		int b_offset = 0;
1257 
1258 		if (page_offset < 0) {
1259 			b_offset = -page_offset;
1260 			page_offset += b_offset;
1261 			len -= b_offset;
1262 		}
1263 
1264 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1265 			clen = STRIPE_SIZE - page_offset;
1266 		else
1267 			clen = len;
1268 
1269 		if (clen > 0) {
1270 			b_offset += bvl.bv_offset;
1271 			bio_page = bvl.bv_page;
1272 			if (frombio) {
1273 				if (sh->raid_conf->skip_copy &&
1274 				    b_offset == 0 && page_offset == 0 &&
1275 				    clen == STRIPE_SIZE &&
1276 				    !no_skipcopy)
1277 					*page = bio_page;
1278 				else
1279 					tx = async_memcpy(*page, bio_page, page_offset,
1280 						  b_offset, clen, &submit);
1281 			} else
1282 				tx = async_memcpy(bio_page, *page, b_offset,
1283 						  page_offset, clen, &submit);
1284 		}
1285 		/* chain the operations */
1286 		submit.depend_tx = tx;
1287 
1288 		if (clen < len) /* hit end of page */
1289 			break;
1290 		page_offset +=  len;
1291 	}
1292 
1293 	return tx;
1294 }
1295 
1296 static void ops_complete_biofill(void *stripe_head_ref)
1297 {
1298 	struct stripe_head *sh = stripe_head_ref;
1299 	int i;
1300 
1301 	pr_debug("%s: stripe %llu\n", __func__,
1302 		(unsigned long long)sh->sector);
1303 
1304 	/* clear completed biofills */
1305 	for (i = sh->disks; i--; ) {
1306 		struct r5dev *dev = &sh->dev[i];
1307 
1308 		/* acknowledge completion of a biofill operation */
1309 		/* and check if we need to reply to a read request,
1310 		 * new R5_Wantfill requests are held off until
1311 		 * !STRIPE_BIOFILL_RUN
1312 		 */
1313 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1314 			struct bio *rbi, *rbi2;
1315 
1316 			BUG_ON(!dev->read);
1317 			rbi = dev->read;
1318 			dev->read = NULL;
1319 			while (rbi && rbi->bi_iter.bi_sector <
1320 				dev->sector + STRIPE_SECTORS) {
1321 				rbi2 = r5_next_bio(rbi, dev->sector);
1322 				bio_endio(rbi);
1323 				rbi = rbi2;
1324 			}
1325 		}
1326 	}
1327 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1328 
1329 	set_bit(STRIPE_HANDLE, &sh->state);
1330 	raid5_release_stripe(sh);
1331 }
1332 
1333 static void ops_run_biofill(struct stripe_head *sh)
1334 {
1335 	struct dma_async_tx_descriptor *tx = NULL;
1336 	struct async_submit_ctl submit;
1337 	int i;
1338 
1339 	BUG_ON(sh->batch_head);
1340 	pr_debug("%s: stripe %llu\n", __func__,
1341 		(unsigned long long)sh->sector);
1342 
1343 	for (i = sh->disks; i--; ) {
1344 		struct r5dev *dev = &sh->dev[i];
1345 		if (test_bit(R5_Wantfill, &dev->flags)) {
1346 			struct bio *rbi;
1347 			spin_lock_irq(&sh->stripe_lock);
1348 			dev->read = rbi = dev->toread;
1349 			dev->toread = NULL;
1350 			spin_unlock_irq(&sh->stripe_lock);
1351 			while (rbi && rbi->bi_iter.bi_sector <
1352 				dev->sector + STRIPE_SECTORS) {
1353 				tx = async_copy_data(0, rbi, &dev->page,
1354 						     dev->sector, tx, sh, 0);
1355 				rbi = r5_next_bio(rbi, dev->sector);
1356 			}
1357 		}
1358 	}
1359 
1360 	atomic_inc(&sh->count);
1361 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1362 	async_trigger_callback(&submit);
1363 }
1364 
1365 static void mark_target_uptodate(struct stripe_head *sh, int target)
1366 {
1367 	struct r5dev *tgt;
1368 
1369 	if (target < 0)
1370 		return;
1371 
1372 	tgt = &sh->dev[target];
1373 	set_bit(R5_UPTODATE, &tgt->flags);
1374 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1375 	clear_bit(R5_Wantcompute, &tgt->flags);
1376 }
1377 
1378 static void ops_complete_compute(void *stripe_head_ref)
1379 {
1380 	struct stripe_head *sh = stripe_head_ref;
1381 
1382 	pr_debug("%s: stripe %llu\n", __func__,
1383 		(unsigned long long)sh->sector);
1384 
1385 	/* mark the computed target(s) as uptodate */
1386 	mark_target_uptodate(sh, sh->ops.target);
1387 	mark_target_uptodate(sh, sh->ops.target2);
1388 
1389 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1390 	if (sh->check_state == check_state_compute_run)
1391 		sh->check_state = check_state_compute_result;
1392 	set_bit(STRIPE_HANDLE, &sh->state);
1393 	raid5_release_stripe(sh);
1394 }
1395 
1396 /* return a pointer to the address conversion region of the scribble buffer */
1397 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1398 				 struct raid5_percpu *percpu, int i)
1399 {
1400 	void *addr;
1401 
1402 	addr = flex_array_get(percpu->scribble, i);
1403 	return addr + sizeof(struct page *) * (sh->disks + 2);
1404 }
1405 
1406 /* return a pointer to the address conversion region of the scribble buffer */
1407 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1408 {
1409 	void *addr;
1410 
1411 	addr = flex_array_get(percpu->scribble, i);
1412 	return addr;
1413 }
1414 
1415 static struct dma_async_tx_descriptor *
1416 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1417 {
1418 	int disks = sh->disks;
1419 	struct page **xor_srcs = to_addr_page(percpu, 0);
1420 	int target = sh->ops.target;
1421 	struct r5dev *tgt = &sh->dev[target];
1422 	struct page *xor_dest = tgt->page;
1423 	int count = 0;
1424 	struct dma_async_tx_descriptor *tx;
1425 	struct async_submit_ctl submit;
1426 	int i;
1427 
1428 	BUG_ON(sh->batch_head);
1429 
1430 	pr_debug("%s: stripe %llu block: %d\n",
1431 		__func__, (unsigned long long)sh->sector, target);
1432 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1433 
1434 	for (i = disks; i--; )
1435 		if (i != target)
1436 			xor_srcs[count++] = sh->dev[i].page;
1437 
1438 	atomic_inc(&sh->count);
1439 
1440 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1441 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1442 	if (unlikely(count == 1))
1443 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1444 	else
1445 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1446 
1447 	return tx;
1448 }
1449 
1450 /* set_syndrome_sources - populate source buffers for gen_syndrome
1451  * @srcs - (struct page *) array of size sh->disks
1452  * @sh - stripe_head to parse
1453  *
1454  * Populates srcs in proper layout order for the stripe and returns the
1455  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1456  * destination buffer is recorded in srcs[count] and the Q destination
1457  * is recorded in srcs[count+1]].
1458  */
1459 static int set_syndrome_sources(struct page **srcs,
1460 				struct stripe_head *sh,
1461 				int srctype)
1462 {
1463 	int disks = sh->disks;
1464 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1465 	int d0_idx = raid6_d0(sh);
1466 	int count;
1467 	int i;
1468 
1469 	for (i = 0; i < disks; i++)
1470 		srcs[i] = NULL;
1471 
1472 	count = 0;
1473 	i = d0_idx;
1474 	do {
1475 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1476 		struct r5dev *dev = &sh->dev[i];
1477 
1478 		if (i == sh->qd_idx || i == sh->pd_idx ||
1479 		    (srctype == SYNDROME_SRC_ALL) ||
1480 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1481 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1482 		      test_bit(R5_InJournal, &dev->flags))) ||
1483 		    (srctype == SYNDROME_SRC_WRITTEN &&
1484 		     (dev->written ||
1485 		      test_bit(R5_InJournal, &dev->flags)))) {
1486 			if (test_bit(R5_InJournal, &dev->flags))
1487 				srcs[slot] = sh->dev[i].orig_page;
1488 			else
1489 				srcs[slot] = sh->dev[i].page;
1490 		}
1491 		i = raid6_next_disk(i, disks);
1492 	} while (i != d0_idx);
1493 
1494 	return syndrome_disks;
1495 }
1496 
1497 static struct dma_async_tx_descriptor *
1498 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1499 {
1500 	int disks = sh->disks;
1501 	struct page **blocks = to_addr_page(percpu, 0);
1502 	int target;
1503 	int qd_idx = sh->qd_idx;
1504 	struct dma_async_tx_descriptor *tx;
1505 	struct async_submit_ctl submit;
1506 	struct r5dev *tgt;
1507 	struct page *dest;
1508 	int i;
1509 	int count;
1510 
1511 	BUG_ON(sh->batch_head);
1512 	if (sh->ops.target < 0)
1513 		target = sh->ops.target2;
1514 	else if (sh->ops.target2 < 0)
1515 		target = sh->ops.target;
1516 	else
1517 		/* we should only have one valid target */
1518 		BUG();
1519 	BUG_ON(target < 0);
1520 	pr_debug("%s: stripe %llu block: %d\n",
1521 		__func__, (unsigned long long)sh->sector, target);
1522 
1523 	tgt = &sh->dev[target];
1524 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1525 	dest = tgt->page;
1526 
1527 	atomic_inc(&sh->count);
1528 
1529 	if (target == qd_idx) {
1530 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1531 		blocks[count] = NULL; /* regenerating p is not necessary */
1532 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1533 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1534 				  ops_complete_compute, sh,
1535 				  to_addr_conv(sh, percpu, 0));
1536 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1537 	} else {
1538 		/* Compute any data- or p-drive using XOR */
1539 		count = 0;
1540 		for (i = disks; i-- ; ) {
1541 			if (i == target || i == qd_idx)
1542 				continue;
1543 			blocks[count++] = sh->dev[i].page;
1544 		}
1545 
1546 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1547 				  NULL, ops_complete_compute, sh,
1548 				  to_addr_conv(sh, percpu, 0));
1549 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1550 	}
1551 
1552 	return tx;
1553 }
1554 
1555 static struct dma_async_tx_descriptor *
1556 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1557 {
1558 	int i, count, disks = sh->disks;
1559 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1560 	int d0_idx = raid6_d0(sh);
1561 	int faila = -1, failb = -1;
1562 	int target = sh->ops.target;
1563 	int target2 = sh->ops.target2;
1564 	struct r5dev *tgt = &sh->dev[target];
1565 	struct r5dev *tgt2 = &sh->dev[target2];
1566 	struct dma_async_tx_descriptor *tx;
1567 	struct page **blocks = to_addr_page(percpu, 0);
1568 	struct async_submit_ctl submit;
1569 
1570 	BUG_ON(sh->batch_head);
1571 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1572 		 __func__, (unsigned long long)sh->sector, target, target2);
1573 	BUG_ON(target < 0 || target2 < 0);
1574 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1576 
1577 	/* we need to open-code set_syndrome_sources to handle the
1578 	 * slot number conversion for 'faila' and 'failb'
1579 	 */
1580 	for (i = 0; i < disks ; i++)
1581 		blocks[i] = NULL;
1582 	count = 0;
1583 	i = d0_idx;
1584 	do {
1585 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1586 
1587 		blocks[slot] = sh->dev[i].page;
1588 
1589 		if (i == target)
1590 			faila = slot;
1591 		if (i == target2)
1592 			failb = slot;
1593 		i = raid6_next_disk(i, disks);
1594 	} while (i != d0_idx);
1595 
1596 	BUG_ON(faila == failb);
1597 	if (failb < faila)
1598 		swap(faila, failb);
1599 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1600 		 __func__, (unsigned long long)sh->sector, faila, failb);
1601 
1602 	atomic_inc(&sh->count);
1603 
1604 	if (failb == syndrome_disks+1) {
1605 		/* Q disk is one of the missing disks */
1606 		if (faila == syndrome_disks) {
1607 			/* Missing P+Q, just recompute */
1608 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1609 					  ops_complete_compute, sh,
1610 					  to_addr_conv(sh, percpu, 0));
1611 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1612 						  STRIPE_SIZE, &submit);
1613 		} else {
1614 			struct page *dest;
1615 			int data_target;
1616 			int qd_idx = sh->qd_idx;
1617 
1618 			/* Missing D+Q: recompute D from P, then recompute Q */
1619 			if (target == qd_idx)
1620 				data_target = target2;
1621 			else
1622 				data_target = target;
1623 
1624 			count = 0;
1625 			for (i = disks; i-- ; ) {
1626 				if (i == data_target || i == qd_idx)
1627 					continue;
1628 				blocks[count++] = sh->dev[i].page;
1629 			}
1630 			dest = sh->dev[data_target].page;
1631 			init_async_submit(&submit,
1632 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1633 					  NULL, NULL, NULL,
1634 					  to_addr_conv(sh, percpu, 0));
1635 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1636 				       &submit);
1637 
1638 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1639 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1640 					  ops_complete_compute, sh,
1641 					  to_addr_conv(sh, percpu, 0));
1642 			return async_gen_syndrome(blocks, 0, count+2,
1643 						  STRIPE_SIZE, &submit);
1644 		}
1645 	} else {
1646 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1647 				  ops_complete_compute, sh,
1648 				  to_addr_conv(sh, percpu, 0));
1649 		if (failb == syndrome_disks) {
1650 			/* We're missing D+P. */
1651 			return async_raid6_datap_recov(syndrome_disks+2,
1652 						       STRIPE_SIZE, faila,
1653 						       blocks, &submit);
1654 		} else {
1655 			/* We're missing D+D. */
1656 			return async_raid6_2data_recov(syndrome_disks+2,
1657 						       STRIPE_SIZE, faila, failb,
1658 						       blocks, &submit);
1659 		}
1660 	}
1661 }
1662 
1663 static void ops_complete_prexor(void *stripe_head_ref)
1664 {
1665 	struct stripe_head *sh = stripe_head_ref;
1666 
1667 	pr_debug("%s: stripe %llu\n", __func__,
1668 		(unsigned long long)sh->sector);
1669 
1670 	if (r5c_is_writeback(sh->raid_conf->log))
1671 		/*
1672 		 * raid5-cache write back uses orig_page during prexor.
1673 		 * After prexor, it is time to free orig_page
1674 		 */
1675 		r5c_release_extra_page(sh);
1676 }
1677 
1678 static struct dma_async_tx_descriptor *
1679 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1680 		struct dma_async_tx_descriptor *tx)
1681 {
1682 	int disks = sh->disks;
1683 	struct page **xor_srcs = to_addr_page(percpu, 0);
1684 	int count = 0, pd_idx = sh->pd_idx, i;
1685 	struct async_submit_ctl submit;
1686 
1687 	/* existing parity data subtracted */
1688 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1689 
1690 	BUG_ON(sh->batch_head);
1691 	pr_debug("%s: stripe %llu\n", __func__,
1692 		(unsigned long long)sh->sector);
1693 
1694 	for (i = disks; i--; ) {
1695 		struct r5dev *dev = &sh->dev[i];
1696 		/* Only process blocks that are known to be uptodate */
1697 		if (test_bit(R5_InJournal, &dev->flags))
1698 			xor_srcs[count++] = dev->orig_page;
1699 		else if (test_bit(R5_Wantdrain, &dev->flags))
1700 			xor_srcs[count++] = dev->page;
1701 	}
1702 
1703 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1704 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1705 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1706 
1707 	return tx;
1708 }
1709 
1710 static struct dma_async_tx_descriptor *
1711 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1712 		struct dma_async_tx_descriptor *tx)
1713 {
1714 	struct page **blocks = to_addr_page(percpu, 0);
1715 	int count;
1716 	struct async_submit_ctl submit;
1717 
1718 	pr_debug("%s: stripe %llu\n", __func__,
1719 		(unsigned long long)sh->sector);
1720 
1721 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1722 
1723 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1724 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1725 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1726 
1727 	return tx;
1728 }
1729 
1730 static struct dma_async_tx_descriptor *
1731 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1732 {
1733 	struct r5conf *conf = sh->raid_conf;
1734 	int disks = sh->disks;
1735 	int i;
1736 	struct stripe_head *head_sh = sh;
1737 
1738 	pr_debug("%s: stripe %llu\n", __func__,
1739 		(unsigned long long)sh->sector);
1740 
1741 	for (i = disks; i--; ) {
1742 		struct r5dev *dev;
1743 		struct bio *chosen;
1744 
1745 		sh = head_sh;
1746 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1747 			struct bio *wbi;
1748 
1749 again:
1750 			dev = &sh->dev[i];
1751 			/*
1752 			 * clear R5_InJournal, so when rewriting a page in
1753 			 * journal, it is not skipped by r5l_log_stripe()
1754 			 */
1755 			clear_bit(R5_InJournal, &dev->flags);
1756 			spin_lock_irq(&sh->stripe_lock);
1757 			chosen = dev->towrite;
1758 			dev->towrite = NULL;
1759 			sh->overwrite_disks = 0;
1760 			BUG_ON(dev->written);
1761 			wbi = dev->written = chosen;
1762 			spin_unlock_irq(&sh->stripe_lock);
1763 			WARN_ON(dev->page != dev->orig_page);
1764 
1765 			while (wbi && wbi->bi_iter.bi_sector <
1766 				dev->sector + STRIPE_SECTORS) {
1767 				if (wbi->bi_opf & REQ_FUA)
1768 					set_bit(R5_WantFUA, &dev->flags);
1769 				if (wbi->bi_opf & REQ_SYNC)
1770 					set_bit(R5_SyncIO, &dev->flags);
1771 				if (bio_op(wbi) == REQ_OP_DISCARD)
1772 					set_bit(R5_Discard, &dev->flags);
1773 				else {
1774 					tx = async_copy_data(1, wbi, &dev->page,
1775 							     dev->sector, tx, sh,
1776 							     r5c_is_writeback(conf->log));
1777 					if (dev->page != dev->orig_page &&
1778 					    !r5c_is_writeback(conf->log)) {
1779 						set_bit(R5_SkipCopy, &dev->flags);
1780 						clear_bit(R5_UPTODATE, &dev->flags);
1781 						clear_bit(R5_OVERWRITE, &dev->flags);
1782 					}
1783 				}
1784 				wbi = r5_next_bio(wbi, dev->sector);
1785 			}
1786 
1787 			if (head_sh->batch_head) {
1788 				sh = list_first_entry(&sh->batch_list,
1789 						      struct stripe_head,
1790 						      batch_list);
1791 				if (sh == head_sh)
1792 					continue;
1793 				goto again;
1794 			}
1795 		}
1796 	}
1797 
1798 	return tx;
1799 }
1800 
1801 static void ops_complete_reconstruct(void *stripe_head_ref)
1802 {
1803 	struct stripe_head *sh = stripe_head_ref;
1804 	int disks = sh->disks;
1805 	int pd_idx = sh->pd_idx;
1806 	int qd_idx = sh->qd_idx;
1807 	int i;
1808 	bool fua = false, sync = false, discard = false;
1809 
1810 	pr_debug("%s: stripe %llu\n", __func__,
1811 		(unsigned long long)sh->sector);
1812 
1813 	for (i = disks; i--; ) {
1814 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1815 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1816 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1817 	}
1818 
1819 	for (i = disks; i--; ) {
1820 		struct r5dev *dev = &sh->dev[i];
1821 
1822 		if (dev->written || i == pd_idx || i == qd_idx) {
1823 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1824 				set_bit(R5_UPTODATE, &dev->flags);
1825 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1826 					set_bit(R5_Expanded, &dev->flags);
1827 			}
1828 			if (fua)
1829 				set_bit(R5_WantFUA, &dev->flags);
1830 			if (sync)
1831 				set_bit(R5_SyncIO, &dev->flags);
1832 		}
1833 	}
1834 
1835 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1836 		sh->reconstruct_state = reconstruct_state_drain_result;
1837 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1838 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1839 	else {
1840 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1841 		sh->reconstruct_state = reconstruct_state_result;
1842 	}
1843 
1844 	set_bit(STRIPE_HANDLE, &sh->state);
1845 	raid5_release_stripe(sh);
1846 }
1847 
1848 static void
1849 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1850 		     struct dma_async_tx_descriptor *tx)
1851 {
1852 	int disks = sh->disks;
1853 	struct page **xor_srcs;
1854 	struct async_submit_ctl submit;
1855 	int count, pd_idx = sh->pd_idx, i;
1856 	struct page *xor_dest;
1857 	int prexor = 0;
1858 	unsigned long flags;
1859 	int j = 0;
1860 	struct stripe_head *head_sh = sh;
1861 	int last_stripe;
1862 
1863 	pr_debug("%s: stripe %llu\n", __func__,
1864 		(unsigned long long)sh->sector);
1865 
1866 	for (i = 0; i < sh->disks; i++) {
1867 		if (pd_idx == i)
1868 			continue;
1869 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870 			break;
1871 	}
1872 	if (i >= sh->disks) {
1873 		atomic_inc(&sh->count);
1874 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1875 		ops_complete_reconstruct(sh);
1876 		return;
1877 	}
1878 again:
1879 	count = 0;
1880 	xor_srcs = to_addr_page(percpu, j);
1881 	/* check if prexor is active which means only process blocks
1882 	 * that are part of a read-modify-write (written)
1883 	 */
1884 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1885 		prexor = 1;
1886 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1887 		for (i = disks; i--; ) {
1888 			struct r5dev *dev = &sh->dev[i];
1889 			if (head_sh->dev[i].written ||
1890 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1891 				xor_srcs[count++] = dev->page;
1892 		}
1893 	} else {
1894 		xor_dest = sh->dev[pd_idx].page;
1895 		for (i = disks; i--; ) {
1896 			struct r5dev *dev = &sh->dev[i];
1897 			if (i != pd_idx)
1898 				xor_srcs[count++] = dev->page;
1899 		}
1900 	}
1901 
1902 	/* 1/ if we prexor'd then the dest is reused as a source
1903 	 * 2/ if we did not prexor then we are redoing the parity
1904 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1905 	 * for the synchronous xor case
1906 	 */
1907 	last_stripe = !head_sh->batch_head ||
1908 		list_first_entry(&sh->batch_list,
1909 				 struct stripe_head, batch_list) == head_sh;
1910 	if (last_stripe) {
1911 		flags = ASYNC_TX_ACK |
1912 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1913 
1914 		atomic_inc(&head_sh->count);
1915 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1916 				  to_addr_conv(sh, percpu, j));
1917 	} else {
1918 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1919 		init_async_submit(&submit, flags, tx, NULL, NULL,
1920 				  to_addr_conv(sh, percpu, j));
1921 	}
1922 
1923 	if (unlikely(count == 1))
1924 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1925 	else
1926 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1927 	if (!last_stripe) {
1928 		j++;
1929 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1930 				      batch_list);
1931 		goto again;
1932 	}
1933 }
1934 
1935 static void
1936 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1937 		     struct dma_async_tx_descriptor *tx)
1938 {
1939 	struct async_submit_ctl submit;
1940 	struct page **blocks;
1941 	int count, i, j = 0;
1942 	struct stripe_head *head_sh = sh;
1943 	int last_stripe;
1944 	int synflags;
1945 	unsigned long txflags;
1946 
1947 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1948 
1949 	for (i = 0; i < sh->disks; i++) {
1950 		if (sh->pd_idx == i || sh->qd_idx == i)
1951 			continue;
1952 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1953 			break;
1954 	}
1955 	if (i >= sh->disks) {
1956 		atomic_inc(&sh->count);
1957 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1958 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1959 		ops_complete_reconstruct(sh);
1960 		return;
1961 	}
1962 
1963 again:
1964 	blocks = to_addr_page(percpu, j);
1965 
1966 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1967 		synflags = SYNDROME_SRC_WRITTEN;
1968 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1969 	} else {
1970 		synflags = SYNDROME_SRC_ALL;
1971 		txflags = ASYNC_TX_ACK;
1972 	}
1973 
1974 	count = set_syndrome_sources(blocks, sh, synflags);
1975 	last_stripe = !head_sh->batch_head ||
1976 		list_first_entry(&sh->batch_list,
1977 				 struct stripe_head, batch_list) == head_sh;
1978 
1979 	if (last_stripe) {
1980 		atomic_inc(&head_sh->count);
1981 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1982 				  head_sh, to_addr_conv(sh, percpu, j));
1983 	} else
1984 		init_async_submit(&submit, 0, tx, NULL, NULL,
1985 				  to_addr_conv(sh, percpu, j));
1986 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1987 	if (!last_stripe) {
1988 		j++;
1989 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1990 				      batch_list);
1991 		goto again;
1992 	}
1993 }
1994 
1995 static void ops_complete_check(void *stripe_head_ref)
1996 {
1997 	struct stripe_head *sh = stripe_head_ref;
1998 
1999 	pr_debug("%s: stripe %llu\n", __func__,
2000 		(unsigned long long)sh->sector);
2001 
2002 	sh->check_state = check_state_check_result;
2003 	set_bit(STRIPE_HANDLE, &sh->state);
2004 	raid5_release_stripe(sh);
2005 }
2006 
2007 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2008 {
2009 	int disks = sh->disks;
2010 	int pd_idx = sh->pd_idx;
2011 	int qd_idx = sh->qd_idx;
2012 	struct page *xor_dest;
2013 	struct page **xor_srcs = to_addr_page(percpu, 0);
2014 	struct dma_async_tx_descriptor *tx;
2015 	struct async_submit_ctl submit;
2016 	int count;
2017 	int i;
2018 
2019 	pr_debug("%s: stripe %llu\n", __func__,
2020 		(unsigned long long)sh->sector);
2021 
2022 	BUG_ON(sh->batch_head);
2023 	count = 0;
2024 	xor_dest = sh->dev[pd_idx].page;
2025 	xor_srcs[count++] = xor_dest;
2026 	for (i = disks; i--; ) {
2027 		if (i == pd_idx || i == qd_idx)
2028 			continue;
2029 		xor_srcs[count++] = sh->dev[i].page;
2030 	}
2031 
2032 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2033 			  to_addr_conv(sh, percpu, 0));
2034 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2035 			   &sh->ops.zero_sum_result, &submit);
2036 
2037 	atomic_inc(&sh->count);
2038 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2039 	tx = async_trigger_callback(&submit);
2040 }
2041 
2042 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2043 {
2044 	struct page **srcs = to_addr_page(percpu, 0);
2045 	struct async_submit_ctl submit;
2046 	int count;
2047 
2048 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2049 		(unsigned long long)sh->sector, checkp);
2050 
2051 	BUG_ON(sh->batch_head);
2052 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2053 	if (!checkp)
2054 		srcs[count] = NULL;
2055 
2056 	atomic_inc(&sh->count);
2057 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2058 			  sh, to_addr_conv(sh, percpu, 0));
2059 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2060 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2061 }
2062 
2063 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2064 {
2065 	int overlap_clear = 0, i, disks = sh->disks;
2066 	struct dma_async_tx_descriptor *tx = NULL;
2067 	struct r5conf *conf = sh->raid_conf;
2068 	int level = conf->level;
2069 	struct raid5_percpu *percpu;
2070 	unsigned long cpu;
2071 
2072 	cpu = get_cpu();
2073 	percpu = per_cpu_ptr(conf->percpu, cpu);
2074 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2075 		ops_run_biofill(sh);
2076 		overlap_clear++;
2077 	}
2078 
2079 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2080 		if (level < 6)
2081 			tx = ops_run_compute5(sh, percpu);
2082 		else {
2083 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2084 				tx = ops_run_compute6_1(sh, percpu);
2085 			else
2086 				tx = ops_run_compute6_2(sh, percpu);
2087 		}
2088 		/* terminate the chain if reconstruct is not set to be run */
2089 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2090 			async_tx_ack(tx);
2091 	}
2092 
2093 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2094 		if (level < 6)
2095 			tx = ops_run_prexor5(sh, percpu, tx);
2096 		else
2097 			tx = ops_run_prexor6(sh, percpu, tx);
2098 	}
2099 
2100 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2101 		tx = ops_run_partial_parity(sh, percpu, tx);
2102 
2103 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2104 		tx = ops_run_biodrain(sh, tx);
2105 		overlap_clear++;
2106 	}
2107 
2108 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2109 		if (level < 6)
2110 			ops_run_reconstruct5(sh, percpu, tx);
2111 		else
2112 			ops_run_reconstruct6(sh, percpu, tx);
2113 	}
2114 
2115 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2116 		if (sh->check_state == check_state_run)
2117 			ops_run_check_p(sh, percpu);
2118 		else if (sh->check_state == check_state_run_q)
2119 			ops_run_check_pq(sh, percpu, 0);
2120 		else if (sh->check_state == check_state_run_pq)
2121 			ops_run_check_pq(sh, percpu, 1);
2122 		else
2123 			BUG();
2124 	}
2125 
2126 	if (overlap_clear && !sh->batch_head)
2127 		for (i = disks; i--; ) {
2128 			struct r5dev *dev = &sh->dev[i];
2129 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2130 				wake_up(&sh->raid_conf->wait_for_overlap);
2131 		}
2132 	put_cpu();
2133 }
2134 
2135 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2136 {
2137 	if (sh->ppl_page)
2138 		__free_page(sh->ppl_page);
2139 	kmem_cache_free(sc, sh);
2140 }
2141 
2142 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2143 	int disks, struct r5conf *conf)
2144 {
2145 	struct stripe_head *sh;
2146 	int i;
2147 
2148 	sh = kmem_cache_zalloc(sc, gfp);
2149 	if (sh) {
2150 		spin_lock_init(&sh->stripe_lock);
2151 		spin_lock_init(&sh->batch_lock);
2152 		INIT_LIST_HEAD(&sh->batch_list);
2153 		INIT_LIST_HEAD(&sh->lru);
2154 		INIT_LIST_HEAD(&sh->r5c);
2155 		INIT_LIST_HEAD(&sh->log_list);
2156 		atomic_set(&sh->count, 1);
2157 		sh->raid_conf = conf;
2158 		sh->log_start = MaxSector;
2159 		for (i = 0; i < disks; i++) {
2160 			struct r5dev *dev = &sh->dev[i];
2161 
2162 			bio_init(&dev->req, &dev->vec, 1);
2163 			bio_init(&dev->rreq, &dev->rvec, 1);
2164 		}
2165 
2166 		if (raid5_has_ppl(conf)) {
2167 			sh->ppl_page = alloc_page(gfp);
2168 			if (!sh->ppl_page) {
2169 				free_stripe(sc, sh);
2170 				sh = NULL;
2171 			}
2172 		}
2173 	}
2174 	return sh;
2175 }
2176 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2177 {
2178 	struct stripe_head *sh;
2179 
2180 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2181 	if (!sh)
2182 		return 0;
2183 
2184 	if (grow_buffers(sh, gfp)) {
2185 		shrink_buffers(sh);
2186 		free_stripe(conf->slab_cache, sh);
2187 		return 0;
2188 	}
2189 	sh->hash_lock_index =
2190 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2191 	/* we just created an active stripe so... */
2192 	atomic_inc(&conf->active_stripes);
2193 
2194 	raid5_release_stripe(sh);
2195 	conf->max_nr_stripes++;
2196 	return 1;
2197 }
2198 
2199 static int grow_stripes(struct r5conf *conf, int num)
2200 {
2201 	struct kmem_cache *sc;
2202 	size_t namelen = sizeof(conf->cache_name[0]);
2203 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2204 
2205 	if (conf->mddev->gendisk)
2206 		snprintf(conf->cache_name[0], namelen,
2207 			"raid%d-%s", conf->level, mdname(conf->mddev));
2208 	else
2209 		snprintf(conf->cache_name[0], namelen,
2210 			"raid%d-%p", conf->level, conf->mddev);
2211 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2212 
2213 	conf->active_name = 0;
2214 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2215 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2216 			       0, 0, NULL);
2217 	if (!sc)
2218 		return 1;
2219 	conf->slab_cache = sc;
2220 	conf->pool_size = devs;
2221 	while (num--)
2222 		if (!grow_one_stripe(conf, GFP_KERNEL))
2223 			return 1;
2224 
2225 	return 0;
2226 }
2227 
2228 /**
2229  * scribble_len - return the required size of the scribble region
2230  * @num - total number of disks in the array
2231  *
2232  * The size must be enough to contain:
2233  * 1/ a struct page pointer for each device in the array +2
2234  * 2/ room to convert each entry in (1) to its corresponding dma
2235  *    (dma_map_page()) or page (page_address()) address.
2236  *
2237  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2238  * calculate over all devices (not just the data blocks), using zeros in place
2239  * of the P and Q blocks.
2240  */
2241 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2242 {
2243 	struct flex_array *ret;
2244 	size_t len;
2245 
2246 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2247 	ret = flex_array_alloc(len, cnt, flags);
2248 	if (!ret)
2249 		return NULL;
2250 	/* always prealloc all elements, so no locking is required */
2251 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2252 		flex_array_free(ret);
2253 		return NULL;
2254 	}
2255 	return ret;
2256 }
2257 
2258 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2259 {
2260 	unsigned long cpu;
2261 	int err = 0;
2262 
2263 	/*
2264 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2265 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2266 	 * should equal to new_disks and new_sectors
2267 	 */
2268 	if (conf->scribble_disks >= new_disks &&
2269 	    conf->scribble_sectors >= new_sectors)
2270 		return 0;
2271 	mddev_suspend(conf->mddev);
2272 	get_online_cpus();
2273 	for_each_present_cpu(cpu) {
2274 		struct raid5_percpu *percpu;
2275 		struct flex_array *scribble;
2276 
2277 		percpu = per_cpu_ptr(conf->percpu, cpu);
2278 		scribble = scribble_alloc(new_disks,
2279 					  new_sectors / STRIPE_SECTORS,
2280 					  GFP_NOIO);
2281 
2282 		if (scribble) {
2283 			flex_array_free(percpu->scribble);
2284 			percpu->scribble = scribble;
2285 		} else {
2286 			err = -ENOMEM;
2287 			break;
2288 		}
2289 	}
2290 	put_online_cpus();
2291 	mddev_resume(conf->mddev);
2292 	if (!err) {
2293 		conf->scribble_disks = new_disks;
2294 		conf->scribble_sectors = new_sectors;
2295 	}
2296 	return err;
2297 }
2298 
2299 static int resize_stripes(struct r5conf *conf, int newsize)
2300 {
2301 	/* Make all the stripes able to hold 'newsize' devices.
2302 	 * New slots in each stripe get 'page' set to a new page.
2303 	 *
2304 	 * This happens in stages:
2305 	 * 1/ create a new kmem_cache and allocate the required number of
2306 	 *    stripe_heads.
2307 	 * 2/ gather all the old stripe_heads and transfer the pages across
2308 	 *    to the new stripe_heads.  This will have the side effect of
2309 	 *    freezing the array as once all stripe_heads have been collected,
2310 	 *    no IO will be possible.  Old stripe heads are freed once their
2311 	 *    pages have been transferred over, and the old kmem_cache is
2312 	 *    freed when all stripes are done.
2313 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2314 	 *    we simple return a failure status - no need to clean anything up.
2315 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2316 	 *    If this fails, we don't bother trying the shrink the
2317 	 *    stripe_heads down again, we just leave them as they are.
2318 	 *    As each stripe_head is processed the new one is released into
2319 	 *    active service.
2320 	 *
2321 	 * Once step2 is started, we cannot afford to wait for a write,
2322 	 * so we use GFP_NOIO allocations.
2323 	 */
2324 	struct stripe_head *osh, *nsh;
2325 	LIST_HEAD(newstripes);
2326 	struct disk_info *ndisks;
2327 	int err = 0;
2328 	struct kmem_cache *sc;
2329 	int i;
2330 	int hash, cnt;
2331 
2332 	md_allow_write(conf->mddev);
2333 
2334 	/* Step 1 */
2335 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2336 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2337 			       0, 0, NULL);
2338 	if (!sc)
2339 		return -ENOMEM;
2340 
2341 	/* Need to ensure auto-resizing doesn't interfere */
2342 	mutex_lock(&conf->cache_size_mutex);
2343 
2344 	for (i = conf->max_nr_stripes; i; i--) {
2345 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2346 		if (!nsh)
2347 			break;
2348 
2349 		list_add(&nsh->lru, &newstripes);
2350 	}
2351 	if (i) {
2352 		/* didn't get enough, give up */
2353 		while (!list_empty(&newstripes)) {
2354 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2355 			list_del(&nsh->lru);
2356 			free_stripe(sc, nsh);
2357 		}
2358 		kmem_cache_destroy(sc);
2359 		mutex_unlock(&conf->cache_size_mutex);
2360 		return -ENOMEM;
2361 	}
2362 	/* Step 2 - Must use GFP_NOIO now.
2363 	 * OK, we have enough stripes, start collecting inactive
2364 	 * stripes and copying them over
2365 	 */
2366 	hash = 0;
2367 	cnt = 0;
2368 	list_for_each_entry(nsh, &newstripes, lru) {
2369 		lock_device_hash_lock(conf, hash);
2370 		wait_event_cmd(conf->wait_for_stripe,
2371 				    !list_empty(conf->inactive_list + hash),
2372 				    unlock_device_hash_lock(conf, hash),
2373 				    lock_device_hash_lock(conf, hash));
2374 		osh = get_free_stripe(conf, hash);
2375 		unlock_device_hash_lock(conf, hash);
2376 
2377 		for(i=0; i<conf->pool_size; i++) {
2378 			nsh->dev[i].page = osh->dev[i].page;
2379 			nsh->dev[i].orig_page = osh->dev[i].page;
2380 		}
2381 		nsh->hash_lock_index = hash;
2382 		free_stripe(conf->slab_cache, osh);
2383 		cnt++;
2384 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2385 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2386 			hash++;
2387 			cnt = 0;
2388 		}
2389 	}
2390 	kmem_cache_destroy(conf->slab_cache);
2391 
2392 	/* Step 3.
2393 	 * At this point, we are holding all the stripes so the array
2394 	 * is completely stalled, so now is a good time to resize
2395 	 * conf->disks and the scribble region
2396 	 */
2397 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2398 	if (ndisks) {
2399 		for (i = 0; i < conf->pool_size; i++)
2400 			ndisks[i] = conf->disks[i];
2401 
2402 		for (i = conf->pool_size; i < newsize; i++) {
2403 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2404 			if (!ndisks[i].extra_page)
2405 				err = -ENOMEM;
2406 		}
2407 
2408 		if (err) {
2409 			for (i = conf->pool_size; i < newsize; i++)
2410 				if (ndisks[i].extra_page)
2411 					put_page(ndisks[i].extra_page);
2412 			kfree(ndisks);
2413 		} else {
2414 			kfree(conf->disks);
2415 			conf->disks = ndisks;
2416 		}
2417 	} else
2418 		err = -ENOMEM;
2419 
2420 	mutex_unlock(&conf->cache_size_mutex);
2421 
2422 	conf->slab_cache = sc;
2423 	conf->active_name = 1-conf->active_name;
2424 
2425 	/* Step 4, return new stripes to service */
2426 	while(!list_empty(&newstripes)) {
2427 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2428 		list_del_init(&nsh->lru);
2429 
2430 		for (i=conf->raid_disks; i < newsize; i++)
2431 			if (nsh->dev[i].page == NULL) {
2432 				struct page *p = alloc_page(GFP_NOIO);
2433 				nsh->dev[i].page = p;
2434 				nsh->dev[i].orig_page = p;
2435 				if (!p)
2436 					err = -ENOMEM;
2437 			}
2438 		raid5_release_stripe(nsh);
2439 	}
2440 	/* critical section pass, GFP_NOIO no longer needed */
2441 
2442 	if (!err)
2443 		conf->pool_size = newsize;
2444 	return err;
2445 }
2446 
2447 static int drop_one_stripe(struct r5conf *conf)
2448 {
2449 	struct stripe_head *sh;
2450 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2451 
2452 	spin_lock_irq(conf->hash_locks + hash);
2453 	sh = get_free_stripe(conf, hash);
2454 	spin_unlock_irq(conf->hash_locks + hash);
2455 	if (!sh)
2456 		return 0;
2457 	BUG_ON(atomic_read(&sh->count));
2458 	shrink_buffers(sh);
2459 	free_stripe(conf->slab_cache, sh);
2460 	atomic_dec(&conf->active_stripes);
2461 	conf->max_nr_stripes--;
2462 	return 1;
2463 }
2464 
2465 static void shrink_stripes(struct r5conf *conf)
2466 {
2467 	while (conf->max_nr_stripes &&
2468 	       drop_one_stripe(conf))
2469 		;
2470 
2471 	kmem_cache_destroy(conf->slab_cache);
2472 	conf->slab_cache = NULL;
2473 }
2474 
2475 static void raid5_end_read_request(struct bio * bi)
2476 {
2477 	struct stripe_head *sh = bi->bi_private;
2478 	struct r5conf *conf = sh->raid_conf;
2479 	int disks = sh->disks, i;
2480 	char b[BDEVNAME_SIZE];
2481 	struct md_rdev *rdev = NULL;
2482 	sector_t s;
2483 
2484 	for (i=0 ; i<disks; i++)
2485 		if (bi == &sh->dev[i].req)
2486 			break;
2487 
2488 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2489 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2490 		bi->bi_status);
2491 	if (i == disks) {
2492 		bio_reset(bi);
2493 		BUG();
2494 		return;
2495 	}
2496 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2497 		/* If replacement finished while this request was outstanding,
2498 		 * 'replacement' might be NULL already.
2499 		 * In that case it moved down to 'rdev'.
2500 		 * rdev is not removed until all requests are finished.
2501 		 */
2502 		rdev = conf->disks[i].replacement;
2503 	if (!rdev)
2504 		rdev = conf->disks[i].rdev;
2505 
2506 	if (use_new_offset(conf, sh))
2507 		s = sh->sector + rdev->new_data_offset;
2508 	else
2509 		s = sh->sector + rdev->data_offset;
2510 	if (!bi->bi_status) {
2511 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2512 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2513 			/* Note that this cannot happen on a
2514 			 * replacement device.  We just fail those on
2515 			 * any error
2516 			 */
2517 			pr_info_ratelimited(
2518 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2519 				mdname(conf->mddev), STRIPE_SECTORS,
2520 				(unsigned long long)s,
2521 				bdevname(rdev->bdev, b));
2522 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2523 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2524 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2525 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2526 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2527 
2528 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2529 			/*
2530 			 * end read for a page in journal, this
2531 			 * must be preparing for prexor in rmw
2532 			 */
2533 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2534 
2535 		if (atomic_read(&rdev->read_errors))
2536 			atomic_set(&rdev->read_errors, 0);
2537 	} else {
2538 		const char *bdn = bdevname(rdev->bdev, b);
2539 		int retry = 0;
2540 		int set_bad = 0;
2541 
2542 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2543 		atomic_inc(&rdev->read_errors);
2544 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2545 			pr_warn_ratelimited(
2546 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2547 				mdname(conf->mddev),
2548 				(unsigned long long)s,
2549 				bdn);
2550 		else if (conf->mddev->degraded >= conf->max_degraded) {
2551 			set_bad = 1;
2552 			pr_warn_ratelimited(
2553 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2554 				mdname(conf->mddev),
2555 				(unsigned long long)s,
2556 				bdn);
2557 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2558 			/* Oh, no!!! */
2559 			set_bad = 1;
2560 			pr_warn_ratelimited(
2561 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2562 				mdname(conf->mddev),
2563 				(unsigned long long)s,
2564 				bdn);
2565 		} else if (atomic_read(&rdev->read_errors)
2566 			 > conf->max_nr_stripes)
2567 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2568 			       mdname(conf->mddev), bdn);
2569 		else
2570 			retry = 1;
2571 		if (set_bad && test_bit(In_sync, &rdev->flags)
2572 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2573 			retry = 1;
2574 		if (retry)
2575 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2576 				set_bit(R5_ReadError, &sh->dev[i].flags);
2577 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2578 			} else
2579 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580 		else {
2581 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2582 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2583 			if (!(set_bad
2584 			      && test_bit(In_sync, &rdev->flags)
2585 			      && rdev_set_badblocks(
2586 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2587 				md_error(conf->mddev, rdev);
2588 		}
2589 	}
2590 	rdev_dec_pending(rdev, conf->mddev);
2591 	bio_reset(bi);
2592 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2593 	set_bit(STRIPE_HANDLE, &sh->state);
2594 	raid5_release_stripe(sh);
2595 }
2596 
2597 static void raid5_end_write_request(struct bio *bi)
2598 {
2599 	struct stripe_head *sh = bi->bi_private;
2600 	struct r5conf *conf = sh->raid_conf;
2601 	int disks = sh->disks, i;
2602 	struct md_rdev *uninitialized_var(rdev);
2603 	sector_t first_bad;
2604 	int bad_sectors;
2605 	int replacement = 0;
2606 
2607 	for (i = 0 ; i < disks; i++) {
2608 		if (bi == &sh->dev[i].req) {
2609 			rdev = conf->disks[i].rdev;
2610 			break;
2611 		}
2612 		if (bi == &sh->dev[i].rreq) {
2613 			rdev = conf->disks[i].replacement;
2614 			if (rdev)
2615 				replacement = 1;
2616 			else
2617 				/* rdev was removed and 'replacement'
2618 				 * replaced it.  rdev is not removed
2619 				 * until all requests are finished.
2620 				 */
2621 				rdev = conf->disks[i].rdev;
2622 			break;
2623 		}
2624 	}
2625 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2626 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2627 		bi->bi_status);
2628 	if (i == disks) {
2629 		bio_reset(bi);
2630 		BUG();
2631 		return;
2632 	}
2633 
2634 	if (replacement) {
2635 		if (bi->bi_status)
2636 			md_error(conf->mddev, rdev);
2637 		else if (is_badblock(rdev, sh->sector,
2638 				     STRIPE_SECTORS,
2639 				     &first_bad, &bad_sectors))
2640 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2641 	} else {
2642 		if (bi->bi_status) {
2643 			set_bit(STRIPE_DEGRADED, &sh->state);
2644 			set_bit(WriteErrorSeen, &rdev->flags);
2645 			set_bit(R5_WriteError, &sh->dev[i].flags);
2646 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2647 				set_bit(MD_RECOVERY_NEEDED,
2648 					&rdev->mddev->recovery);
2649 		} else if (is_badblock(rdev, sh->sector,
2650 				       STRIPE_SECTORS,
2651 				       &first_bad, &bad_sectors)) {
2652 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2653 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2654 				/* That was a successful write so make
2655 				 * sure it looks like we already did
2656 				 * a re-write.
2657 				 */
2658 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2659 		}
2660 	}
2661 	rdev_dec_pending(rdev, conf->mddev);
2662 
2663 	if (sh->batch_head && bi->bi_status && !replacement)
2664 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2665 
2666 	bio_reset(bi);
2667 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2668 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2669 	set_bit(STRIPE_HANDLE, &sh->state);
2670 	raid5_release_stripe(sh);
2671 
2672 	if (sh->batch_head && sh != sh->batch_head)
2673 		raid5_release_stripe(sh->batch_head);
2674 }
2675 
2676 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2677 {
2678 	char b[BDEVNAME_SIZE];
2679 	struct r5conf *conf = mddev->private;
2680 	unsigned long flags;
2681 	pr_debug("raid456: error called\n");
2682 
2683 	spin_lock_irqsave(&conf->device_lock, flags);
2684 	set_bit(Faulty, &rdev->flags);
2685 	clear_bit(In_sync, &rdev->flags);
2686 	mddev->degraded = raid5_calc_degraded(conf);
2687 	spin_unlock_irqrestore(&conf->device_lock, flags);
2688 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2689 
2690 	set_bit(Blocked, &rdev->flags);
2691 	set_mask_bits(&mddev->sb_flags, 0,
2692 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2693 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2694 		"md/raid:%s: Operation continuing on %d devices.\n",
2695 		mdname(mddev),
2696 		bdevname(rdev->bdev, b),
2697 		mdname(mddev),
2698 		conf->raid_disks - mddev->degraded);
2699 	r5c_update_on_rdev_error(mddev, rdev);
2700 }
2701 
2702 /*
2703  * Input: a 'big' sector number,
2704  * Output: index of the data and parity disk, and the sector # in them.
2705  */
2706 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2707 			      int previous, int *dd_idx,
2708 			      struct stripe_head *sh)
2709 {
2710 	sector_t stripe, stripe2;
2711 	sector_t chunk_number;
2712 	unsigned int chunk_offset;
2713 	int pd_idx, qd_idx;
2714 	int ddf_layout = 0;
2715 	sector_t new_sector;
2716 	int algorithm = previous ? conf->prev_algo
2717 				 : conf->algorithm;
2718 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2719 					 : conf->chunk_sectors;
2720 	int raid_disks = previous ? conf->previous_raid_disks
2721 				  : conf->raid_disks;
2722 	int data_disks = raid_disks - conf->max_degraded;
2723 
2724 	/* First compute the information on this sector */
2725 
2726 	/*
2727 	 * Compute the chunk number and the sector offset inside the chunk
2728 	 */
2729 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2730 	chunk_number = r_sector;
2731 
2732 	/*
2733 	 * Compute the stripe number
2734 	 */
2735 	stripe = chunk_number;
2736 	*dd_idx = sector_div(stripe, data_disks);
2737 	stripe2 = stripe;
2738 	/*
2739 	 * Select the parity disk based on the user selected algorithm.
2740 	 */
2741 	pd_idx = qd_idx = -1;
2742 	switch(conf->level) {
2743 	case 4:
2744 		pd_idx = data_disks;
2745 		break;
2746 	case 5:
2747 		switch (algorithm) {
2748 		case ALGORITHM_LEFT_ASYMMETRIC:
2749 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2750 			if (*dd_idx >= pd_idx)
2751 				(*dd_idx)++;
2752 			break;
2753 		case ALGORITHM_RIGHT_ASYMMETRIC:
2754 			pd_idx = sector_div(stripe2, raid_disks);
2755 			if (*dd_idx >= pd_idx)
2756 				(*dd_idx)++;
2757 			break;
2758 		case ALGORITHM_LEFT_SYMMETRIC:
2759 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2760 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2761 			break;
2762 		case ALGORITHM_RIGHT_SYMMETRIC:
2763 			pd_idx = sector_div(stripe2, raid_disks);
2764 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2765 			break;
2766 		case ALGORITHM_PARITY_0:
2767 			pd_idx = 0;
2768 			(*dd_idx)++;
2769 			break;
2770 		case ALGORITHM_PARITY_N:
2771 			pd_idx = data_disks;
2772 			break;
2773 		default:
2774 			BUG();
2775 		}
2776 		break;
2777 	case 6:
2778 
2779 		switch (algorithm) {
2780 		case ALGORITHM_LEFT_ASYMMETRIC:
2781 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2782 			qd_idx = pd_idx + 1;
2783 			if (pd_idx == raid_disks-1) {
2784 				(*dd_idx)++;	/* Q D D D P */
2785 				qd_idx = 0;
2786 			} else if (*dd_idx >= pd_idx)
2787 				(*dd_idx) += 2; /* D D P Q D */
2788 			break;
2789 		case ALGORITHM_RIGHT_ASYMMETRIC:
2790 			pd_idx = sector_div(stripe2, raid_disks);
2791 			qd_idx = pd_idx + 1;
2792 			if (pd_idx == raid_disks-1) {
2793 				(*dd_idx)++;	/* Q D D D P */
2794 				qd_idx = 0;
2795 			} else if (*dd_idx >= pd_idx)
2796 				(*dd_idx) += 2; /* D D P Q D */
2797 			break;
2798 		case ALGORITHM_LEFT_SYMMETRIC:
2799 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2800 			qd_idx = (pd_idx + 1) % raid_disks;
2801 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2802 			break;
2803 		case ALGORITHM_RIGHT_SYMMETRIC:
2804 			pd_idx = sector_div(stripe2, raid_disks);
2805 			qd_idx = (pd_idx + 1) % raid_disks;
2806 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2807 			break;
2808 
2809 		case ALGORITHM_PARITY_0:
2810 			pd_idx = 0;
2811 			qd_idx = 1;
2812 			(*dd_idx) += 2;
2813 			break;
2814 		case ALGORITHM_PARITY_N:
2815 			pd_idx = data_disks;
2816 			qd_idx = data_disks + 1;
2817 			break;
2818 
2819 		case ALGORITHM_ROTATING_ZERO_RESTART:
2820 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2821 			 * of blocks for computing Q is different.
2822 			 */
2823 			pd_idx = sector_div(stripe2, raid_disks);
2824 			qd_idx = pd_idx + 1;
2825 			if (pd_idx == raid_disks-1) {
2826 				(*dd_idx)++;	/* Q D D D P */
2827 				qd_idx = 0;
2828 			} else if (*dd_idx >= pd_idx)
2829 				(*dd_idx) += 2; /* D D P Q D */
2830 			ddf_layout = 1;
2831 			break;
2832 
2833 		case ALGORITHM_ROTATING_N_RESTART:
2834 			/* Same a left_asymmetric, by first stripe is
2835 			 * D D D P Q  rather than
2836 			 * Q D D D P
2837 			 */
2838 			stripe2 += 1;
2839 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2840 			qd_idx = pd_idx + 1;
2841 			if (pd_idx == raid_disks-1) {
2842 				(*dd_idx)++;	/* Q D D D P */
2843 				qd_idx = 0;
2844 			} else if (*dd_idx >= pd_idx)
2845 				(*dd_idx) += 2; /* D D P Q D */
2846 			ddf_layout = 1;
2847 			break;
2848 
2849 		case ALGORITHM_ROTATING_N_CONTINUE:
2850 			/* Same as left_symmetric but Q is before P */
2851 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2852 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2853 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2854 			ddf_layout = 1;
2855 			break;
2856 
2857 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2858 			/* RAID5 left_asymmetric, with Q on last device */
2859 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2860 			if (*dd_idx >= pd_idx)
2861 				(*dd_idx)++;
2862 			qd_idx = raid_disks - 1;
2863 			break;
2864 
2865 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2866 			pd_idx = sector_div(stripe2, raid_disks-1);
2867 			if (*dd_idx >= pd_idx)
2868 				(*dd_idx)++;
2869 			qd_idx = raid_disks - 1;
2870 			break;
2871 
2872 		case ALGORITHM_LEFT_SYMMETRIC_6:
2873 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2874 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2875 			qd_idx = raid_disks - 1;
2876 			break;
2877 
2878 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2879 			pd_idx = sector_div(stripe2, raid_disks-1);
2880 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2881 			qd_idx = raid_disks - 1;
2882 			break;
2883 
2884 		case ALGORITHM_PARITY_0_6:
2885 			pd_idx = 0;
2886 			(*dd_idx)++;
2887 			qd_idx = raid_disks - 1;
2888 			break;
2889 
2890 		default:
2891 			BUG();
2892 		}
2893 		break;
2894 	}
2895 
2896 	if (sh) {
2897 		sh->pd_idx = pd_idx;
2898 		sh->qd_idx = qd_idx;
2899 		sh->ddf_layout = ddf_layout;
2900 	}
2901 	/*
2902 	 * Finally, compute the new sector number
2903 	 */
2904 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2905 	return new_sector;
2906 }
2907 
2908 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2909 {
2910 	struct r5conf *conf = sh->raid_conf;
2911 	int raid_disks = sh->disks;
2912 	int data_disks = raid_disks - conf->max_degraded;
2913 	sector_t new_sector = sh->sector, check;
2914 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2915 					 : conf->chunk_sectors;
2916 	int algorithm = previous ? conf->prev_algo
2917 				 : conf->algorithm;
2918 	sector_t stripe;
2919 	int chunk_offset;
2920 	sector_t chunk_number;
2921 	int dummy1, dd_idx = i;
2922 	sector_t r_sector;
2923 	struct stripe_head sh2;
2924 
2925 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2926 	stripe = new_sector;
2927 
2928 	if (i == sh->pd_idx)
2929 		return 0;
2930 	switch(conf->level) {
2931 	case 4: break;
2932 	case 5:
2933 		switch (algorithm) {
2934 		case ALGORITHM_LEFT_ASYMMETRIC:
2935 		case ALGORITHM_RIGHT_ASYMMETRIC:
2936 			if (i > sh->pd_idx)
2937 				i--;
2938 			break;
2939 		case ALGORITHM_LEFT_SYMMETRIC:
2940 		case ALGORITHM_RIGHT_SYMMETRIC:
2941 			if (i < sh->pd_idx)
2942 				i += raid_disks;
2943 			i -= (sh->pd_idx + 1);
2944 			break;
2945 		case ALGORITHM_PARITY_0:
2946 			i -= 1;
2947 			break;
2948 		case ALGORITHM_PARITY_N:
2949 			break;
2950 		default:
2951 			BUG();
2952 		}
2953 		break;
2954 	case 6:
2955 		if (i == sh->qd_idx)
2956 			return 0; /* It is the Q disk */
2957 		switch (algorithm) {
2958 		case ALGORITHM_LEFT_ASYMMETRIC:
2959 		case ALGORITHM_RIGHT_ASYMMETRIC:
2960 		case ALGORITHM_ROTATING_ZERO_RESTART:
2961 		case ALGORITHM_ROTATING_N_RESTART:
2962 			if (sh->pd_idx == raid_disks-1)
2963 				i--;	/* Q D D D P */
2964 			else if (i > sh->pd_idx)
2965 				i -= 2; /* D D P Q D */
2966 			break;
2967 		case ALGORITHM_LEFT_SYMMETRIC:
2968 		case ALGORITHM_RIGHT_SYMMETRIC:
2969 			if (sh->pd_idx == raid_disks-1)
2970 				i--; /* Q D D D P */
2971 			else {
2972 				/* D D P Q D */
2973 				if (i < sh->pd_idx)
2974 					i += raid_disks;
2975 				i -= (sh->pd_idx + 2);
2976 			}
2977 			break;
2978 		case ALGORITHM_PARITY_0:
2979 			i -= 2;
2980 			break;
2981 		case ALGORITHM_PARITY_N:
2982 			break;
2983 		case ALGORITHM_ROTATING_N_CONTINUE:
2984 			/* Like left_symmetric, but P is before Q */
2985 			if (sh->pd_idx == 0)
2986 				i--;	/* P D D D Q */
2987 			else {
2988 				/* D D Q P D */
2989 				if (i < sh->pd_idx)
2990 					i += raid_disks;
2991 				i -= (sh->pd_idx + 1);
2992 			}
2993 			break;
2994 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2995 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2996 			if (i > sh->pd_idx)
2997 				i--;
2998 			break;
2999 		case ALGORITHM_LEFT_SYMMETRIC_6:
3000 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3001 			if (i < sh->pd_idx)
3002 				i += data_disks + 1;
3003 			i -= (sh->pd_idx + 1);
3004 			break;
3005 		case ALGORITHM_PARITY_0_6:
3006 			i -= 1;
3007 			break;
3008 		default:
3009 			BUG();
3010 		}
3011 		break;
3012 	}
3013 
3014 	chunk_number = stripe * data_disks + i;
3015 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3016 
3017 	check = raid5_compute_sector(conf, r_sector,
3018 				     previous, &dummy1, &sh2);
3019 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3020 		|| sh2.qd_idx != sh->qd_idx) {
3021 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3022 			mdname(conf->mddev));
3023 		return 0;
3024 	}
3025 	return r_sector;
3026 }
3027 
3028 /*
3029  * There are cases where we want handle_stripe_dirtying() and
3030  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3031  *
3032  * This function checks whether we want to delay the towrite. Specifically,
3033  * we delay the towrite when:
3034  *
3035  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3036  *      stripe has data in journal (for other devices).
3037  *
3038  *      In this case, when reading data for the non-overwrite dev, it is
3039  *      necessary to handle complex rmw of write back cache (prexor with
3040  *      orig_page, and xor with page). To keep read path simple, we would
3041  *      like to flush data in journal to RAID disks first, so complex rmw
3042  *      is handled in the write patch (handle_stripe_dirtying).
3043  *
3044  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3045  *
3046  *      It is important to be able to flush all stripes in raid5-cache.
3047  *      Therefore, we need reserve some space on the journal device for
3048  *      these flushes. If flush operation includes pending writes to the
3049  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3050  *      for the flush out. If we exclude these pending writes from flush
3051  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3052  *      Therefore, excluding pending writes in these cases enables more
3053  *      efficient use of the journal device.
3054  *
3055  *      Note: To make sure the stripe makes progress, we only delay
3056  *      towrite for stripes with data already in journal (injournal > 0).
3057  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3058  *      no_space_stripes list.
3059  *
3060  *   3. during journal failure
3061  *      In journal failure, we try to flush all cached data to raid disks
3062  *      based on data in stripe cache. The array is read-only to upper
3063  *      layers, so we would skip all pending writes.
3064  *
3065  */
3066 static inline bool delay_towrite(struct r5conf *conf,
3067 				 struct r5dev *dev,
3068 				 struct stripe_head_state *s)
3069 {
3070 	/* case 1 above */
3071 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3072 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3073 		return true;
3074 	/* case 2 above */
3075 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3076 	    s->injournal > 0)
3077 		return true;
3078 	/* case 3 above */
3079 	if (s->log_failed && s->injournal)
3080 		return true;
3081 	return false;
3082 }
3083 
3084 static void
3085 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3086 			 int rcw, int expand)
3087 {
3088 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3089 	struct r5conf *conf = sh->raid_conf;
3090 	int level = conf->level;
3091 
3092 	if (rcw) {
3093 		/*
3094 		 * In some cases, handle_stripe_dirtying initially decided to
3095 		 * run rmw and allocates extra page for prexor. However, rcw is
3096 		 * cheaper later on. We need to free the extra page now,
3097 		 * because we won't be able to do that in ops_complete_prexor().
3098 		 */
3099 		r5c_release_extra_page(sh);
3100 
3101 		for (i = disks; i--; ) {
3102 			struct r5dev *dev = &sh->dev[i];
3103 
3104 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3105 				set_bit(R5_LOCKED, &dev->flags);
3106 				set_bit(R5_Wantdrain, &dev->flags);
3107 				if (!expand)
3108 					clear_bit(R5_UPTODATE, &dev->flags);
3109 				s->locked++;
3110 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3111 				set_bit(R5_LOCKED, &dev->flags);
3112 				s->locked++;
3113 			}
3114 		}
3115 		/* if we are not expanding this is a proper write request, and
3116 		 * there will be bios with new data to be drained into the
3117 		 * stripe cache
3118 		 */
3119 		if (!expand) {
3120 			if (!s->locked)
3121 				/* False alarm, nothing to do */
3122 				return;
3123 			sh->reconstruct_state = reconstruct_state_drain_run;
3124 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3125 		} else
3126 			sh->reconstruct_state = reconstruct_state_run;
3127 
3128 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3129 
3130 		if (s->locked + conf->max_degraded == disks)
3131 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3132 				atomic_inc(&conf->pending_full_writes);
3133 	} else {
3134 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3135 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3136 		BUG_ON(level == 6 &&
3137 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3138 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3139 
3140 		for (i = disks; i--; ) {
3141 			struct r5dev *dev = &sh->dev[i];
3142 			if (i == pd_idx || i == qd_idx)
3143 				continue;
3144 
3145 			if (dev->towrite &&
3146 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3147 			     test_bit(R5_Wantcompute, &dev->flags))) {
3148 				set_bit(R5_Wantdrain, &dev->flags);
3149 				set_bit(R5_LOCKED, &dev->flags);
3150 				clear_bit(R5_UPTODATE, &dev->flags);
3151 				s->locked++;
3152 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3153 				set_bit(R5_LOCKED, &dev->flags);
3154 				s->locked++;
3155 			}
3156 		}
3157 		if (!s->locked)
3158 			/* False alarm - nothing to do */
3159 			return;
3160 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3161 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3162 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3163 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3164 	}
3165 
3166 	/* keep the parity disk(s) locked while asynchronous operations
3167 	 * are in flight
3168 	 */
3169 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3170 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3171 	s->locked++;
3172 
3173 	if (level == 6) {
3174 		int qd_idx = sh->qd_idx;
3175 		struct r5dev *dev = &sh->dev[qd_idx];
3176 
3177 		set_bit(R5_LOCKED, &dev->flags);
3178 		clear_bit(R5_UPTODATE, &dev->flags);
3179 		s->locked++;
3180 	}
3181 
3182 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3183 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3184 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3185 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3186 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3187 
3188 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3189 		__func__, (unsigned long long)sh->sector,
3190 		s->locked, s->ops_request);
3191 }
3192 
3193 /*
3194  * Each stripe/dev can have one or more bion attached.
3195  * toread/towrite point to the first in a chain.
3196  * The bi_next chain must be in order.
3197  */
3198 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3199 			  int forwrite, int previous)
3200 {
3201 	struct bio **bip;
3202 	struct r5conf *conf = sh->raid_conf;
3203 	int firstwrite=0;
3204 
3205 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3206 		(unsigned long long)bi->bi_iter.bi_sector,
3207 		(unsigned long long)sh->sector);
3208 
3209 	spin_lock_irq(&sh->stripe_lock);
3210 	sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3211 	/* Don't allow new IO added to stripes in batch list */
3212 	if (sh->batch_head)
3213 		goto overlap;
3214 	if (forwrite) {
3215 		bip = &sh->dev[dd_idx].towrite;
3216 		if (*bip == NULL)
3217 			firstwrite = 1;
3218 	} else
3219 		bip = &sh->dev[dd_idx].toread;
3220 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3221 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3222 			goto overlap;
3223 		bip = & (*bip)->bi_next;
3224 	}
3225 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3226 		goto overlap;
3227 
3228 	if (forwrite && raid5_has_ppl(conf)) {
3229 		/*
3230 		 * With PPL only writes to consecutive data chunks within a
3231 		 * stripe are allowed because for a single stripe_head we can
3232 		 * only have one PPL entry at a time, which describes one data
3233 		 * range. Not really an overlap, but wait_for_overlap can be
3234 		 * used to handle this.
3235 		 */
3236 		sector_t sector;
3237 		sector_t first = 0;
3238 		sector_t last = 0;
3239 		int count = 0;
3240 		int i;
3241 
3242 		for (i = 0; i < sh->disks; i++) {
3243 			if (i != sh->pd_idx &&
3244 			    (i == dd_idx || sh->dev[i].towrite)) {
3245 				sector = sh->dev[i].sector;
3246 				if (count == 0 || sector < first)
3247 					first = sector;
3248 				if (sector > last)
3249 					last = sector;
3250 				count++;
3251 			}
3252 		}
3253 
3254 		if (first + conf->chunk_sectors * (count - 1) != last)
3255 			goto overlap;
3256 	}
3257 
3258 	if (!forwrite || previous)
3259 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3260 
3261 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3262 	if (*bip)
3263 		bi->bi_next = *bip;
3264 	*bip = bi;
3265 	bio_inc_remaining(bi);
3266 	md_write_inc(conf->mddev, bi);
3267 
3268 	if (forwrite) {
3269 		/* check if page is covered */
3270 		sector_t sector = sh->dev[dd_idx].sector;
3271 		for (bi=sh->dev[dd_idx].towrite;
3272 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3273 			     bi && bi->bi_iter.bi_sector <= sector;
3274 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3275 			if (bio_end_sector(bi) >= sector)
3276 				sector = bio_end_sector(bi);
3277 		}
3278 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3279 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3280 				sh->overwrite_disks++;
3281 	}
3282 
3283 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3284 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3285 		(unsigned long long)sh->sector, dd_idx);
3286 
3287 	if (conf->mddev->bitmap && firstwrite) {
3288 		/* Cannot hold spinlock over bitmap_startwrite,
3289 		 * but must ensure this isn't added to a batch until
3290 		 * we have added to the bitmap and set bm_seq.
3291 		 * So set STRIPE_BITMAP_PENDING to prevent
3292 		 * batching.
3293 		 * If multiple add_stripe_bio() calls race here they
3294 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3295 		 * to complete "bitmap_startwrite" gets to set
3296 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3297 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3298 		 * any more.
3299 		 */
3300 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3301 		spin_unlock_irq(&sh->stripe_lock);
3302 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3303 				     STRIPE_SECTORS, 0);
3304 		spin_lock_irq(&sh->stripe_lock);
3305 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3306 		if (!sh->batch_head) {
3307 			sh->bm_seq = conf->seq_flush+1;
3308 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3309 		}
3310 	}
3311 	spin_unlock_irq(&sh->stripe_lock);
3312 
3313 	if (stripe_can_batch(sh))
3314 		stripe_add_to_batch_list(conf, sh);
3315 	return 1;
3316 
3317  overlap:
3318 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3319 	spin_unlock_irq(&sh->stripe_lock);
3320 	return 0;
3321 }
3322 
3323 static void end_reshape(struct r5conf *conf);
3324 
3325 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3326 			    struct stripe_head *sh)
3327 {
3328 	int sectors_per_chunk =
3329 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3330 	int dd_idx;
3331 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3332 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3333 
3334 	raid5_compute_sector(conf,
3335 			     stripe * (disks - conf->max_degraded)
3336 			     *sectors_per_chunk + chunk_offset,
3337 			     previous,
3338 			     &dd_idx, sh);
3339 }
3340 
3341 static void
3342 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3343 		     struct stripe_head_state *s, int disks)
3344 {
3345 	int i;
3346 	BUG_ON(sh->batch_head);
3347 	for (i = disks; i--; ) {
3348 		struct bio *bi;
3349 		int bitmap_end = 0;
3350 
3351 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3352 			struct md_rdev *rdev;
3353 			rcu_read_lock();
3354 			rdev = rcu_dereference(conf->disks[i].rdev);
3355 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3356 			    !test_bit(Faulty, &rdev->flags))
3357 				atomic_inc(&rdev->nr_pending);
3358 			else
3359 				rdev = NULL;
3360 			rcu_read_unlock();
3361 			if (rdev) {
3362 				if (!rdev_set_badblocks(
3363 					    rdev,
3364 					    sh->sector,
3365 					    STRIPE_SECTORS, 0))
3366 					md_error(conf->mddev, rdev);
3367 				rdev_dec_pending(rdev, conf->mddev);
3368 			}
3369 		}
3370 		spin_lock_irq(&sh->stripe_lock);
3371 		/* fail all writes first */
3372 		bi = sh->dev[i].towrite;
3373 		sh->dev[i].towrite = NULL;
3374 		sh->overwrite_disks = 0;
3375 		spin_unlock_irq(&sh->stripe_lock);
3376 		if (bi)
3377 			bitmap_end = 1;
3378 
3379 		log_stripe_write_finished(sh);
3380 
3381 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3382 			wake_up(&conf->wait_for_overlap);
3383 
3384 		while (bi && bi->bi_iter.bi_sector <
3385 			sh->dev[i].sector + STRIPE_SECTORS) {
3386 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3387 
3388 			md_write_end(conf->mddev);
3389 			bio_io_error(bi);
3390 			bi = nextbi;
3391 		}
3392 		if (bitmap_end)
3393 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3394 					   STRIPE_SECTORS, 0, 0);
3395 		bitmap_end = 0;
3396 		/* and fail all 'written' */
3397 		bi = sh->dev[i].written;
3398 		sh->dev[i].written = NULL;
3399 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3400 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3401 			sh->dev[i].page = sh->dev[i].orig_page;
3402 		}
3403 
3404 		if (bi) bitmap_end = 1;
3405 		while (bi && bi->bi_iter.bi_sector <
3406 		       sh->dev[i].sector + STRIPE_SECTORS) {
3407 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3408 
3409 			md_write_end(conf->mddev);
3410 			bio_io_error(bi);
3411 			bi = bi2;
3412 		}
3413 
3414 		/* fail any reads if this device is non-operational and
3415 		 * the data has not reached the cache yet.
3416 		 */
3417 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3418 		    s->failed > conf->max_degraded &&
3419 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3420 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3421 			spin_lock_irq(&sh->stripe_lock);
3422 			bi = sh->dev[i].toread;
3423 			sh->dev[i].toread = NULL;
3424 			spin_unlock_irq(&sh->stripe_lock);
3425 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3426 				wake_up(&conf->wait_for_overlap);
3427 			if (bi)
3428 				s->to_read--;
3429 			while (bi && bi->bi_iter.bi_sector <
3430 			       sh->dev[i].sector + STRIPE_SECTORS) {
3431 				struct bio *nextbi =
3432 					r5_next_bio(bi, sh->dev[i].sector);
3433 
3434 				bio_io_error(bi);
3435 				bi = nextbi;
3436 			}
3437 		}
3438 		if (bitmap_end)
3439 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3440 					   STRIPE_SECTORS, 0, 0);
3441 		/* If we were in the middle of a write the parity block might
3442 		 * still be locked - so just clear all R5_LOCKED flags
3443 		 */
3444 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3445 	}
3446 	s->to_write = 0;
3447 	s->written = 0;
3448 
3449 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3450 		if (atomic_dec_and_test(&conf->pending_full_writes))
3451 			md_wakeup_thread(conf->mddev->thread);
3452 }
3453 
3454 static void
3455 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3456 		   struct stripe_head_state *s)
3457 {
3458 	int abort = 0;
3459 	int i;
3460 
3461 	BUG_ON(sh->batch_head);
3462 	clear_bit(STRIPE_SYNCING, &sh->state);
3463 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3464 		wake_up(&conf->wait_for_overlap);
3465 	s->syncing = 0;
3466 	s->replacing = 0;
3467 	/* There is nothing more to do for sync/check/repair.
3468 	 * Don't even need to abort as that is handled elsewhere
3469 	 * if needed, and not always wanted e.g. if there is a known
3470 	 * bad block here.
3471 	 * For recover/replace we need to record a bad block on all
3472 	 * non-sync devices, or abort the recovery
3473 	 */
3474 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3475 		/* During recovery devices cannot be removed, so
3476 		 * locking and refcounting of rdevs is not needed
3477 		 */
3478 		rcu_read_lock();
3479 		for (i = 0; i < conf->raid_disks; i++) {
3480 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3481 			if (rdev
3482 			    && !test_bit(Faulty, &rdev->flags)
3483 			    && !test_bit(In_sync, &rdev->flags)
3484 			    && !rdev_set_badblocks(rdev, sh->sector,
3485 						   STRIPE_SECTORS, 0))
3486 				abort = 1;
3487 			rdev = rcu_dereference(conf->disks[i].replacement);
3488 			if (rdev
3489 			    && !test_bit(Faulty, &rdev->flags)
3490 			    && !test_bit(In_sync, &rdev->flags)
3491 			    && !rdev_set_badblocks(rdev, sh->sector,
3492 						   STRIPE_SECTORS, 0))
3493 				abort = 1;
3494 		}
3495 		rcu_read_unlock();
3496 		if (abort)
3497 			conf->recovery_disabled =
3498 				conf->mddev->recovery_disabled;
3499 	}
3500 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3501 }
3502 
3503 static int want_replace(struct stripe_head *sh, int disk_idx)
3504 {
3505 	struct md_rdev *rdev;
3506 	int rv = 0;
3507 
3508 	rcu_read_lock();
3509 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3510 	if (rdev
3511 	    && !test_bit(Faulty, &rdev->flags)
3512 	    && !test_bit(In_sync, &rdev->flags)
3513 	    && (rdev->recovery_offset <= sh->sector
3514 		|| rdev->mddev->recovery_cp <= sh->sector))
3515 		rv = 1;
3516 	rcu_read_unlock();
3517 	return rv;
3518 }
3519 
3520 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3521 			   int disk_idx, int disks)
3522 {
3523 	struct r5dev *dev = &sh->dev[disk_idx];
3524 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3525 				  &sh->dev[s->failed_num[1]] };
3526 	int i;
3527 
3528 
3529 	if (test_bit(R5_LOCKED, &dev->flags) ||
3530 	    test_bit(R5_UPTODATE, &dev->flags))
3531 		/* No point reading this as we already have it or have
3532 		 * decided to get it.
3533 		 */
3534 		return 0;
3535 
3536 	if (dev->toread ||
3537 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3538 		/* We need this block to directly satisfy a request */
3539 		return 1;
3540 
3541 	if (s->syncing || s->expanding ||
3542 	    (s->replacing && want_replace(sh, disk_idx)))
3543 		/* When syncing, or expanding we read everything.
3544 		 * When replacing, we need the replaced block.
3545 		 */
3546 		return 1;
3547 
3548 	if ((s->failed >= 1 && fdev[0]->toread) ||
3549 	    (s->failed >= 2 && fdev[1]->toread))
3550 		/* If we want to read from a failed device, then
3551 		 * we need to actually read every other device.
3552 		 */
3553 		return 1;
3554 
3555 	/* Sometimes neither read-modify-write nor reconstruct-write
3556 	 * cycles can work.  In those cases we read every block we
3557 	 * can.  Then the parity-update is certain to have enough to
3558 	 * work with.
3559 	 * This can only be a problem when we need to write something,
3560 	 * and some device has failed.  If either of those tests
3561 	 * fail we need look no further.
3562 	 */
3563 	if (!s->failed || !s->to_write)
3564 		return 0;
3565 
3566 	if (test_bit(R5_Insync, &dev->flags) &&
3567 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3568 		/* Pre-reads at not permitted until after short delay
3569 		 * to gather multiple requests.  However if this
3570 		 * device is no Insync, the block could only be computed
3571 		 * and there is no need to delay that.
3572 		 */
3573 		return 0;
3574 
3575 	for (i = 0; i < s->failed && i < 2; i++) {
3576 		if (fdev[i]->towrite &&
3577 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3578 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3579 			/* If we have a partial write to a failed
3580 			 * device, then we will need to reconstruct
3581 			 * the content of that device, so all other
3582 			 * devices must be read.
3583 			 */
3584 			return 1;
3585 	}
3586 
3587 	/* If we are forced to do a reconstruct-write, either because
3588 	 * the current RAID6 implementation only supports that, or
3589 	 * because parity cannot be trusted and we are currently
3590 	 * recovering it, there is extra need to be careful.
3591 	 * If one of the devices that we would need to read, because
3592 	 * it is not being overwritten (and maybe not written at all)
3593 	 * is missing/faulty, then we need to read everything we can.
3594 	 */
3595 	if (sh->raid_conf->level != 6 &&
3596 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3597 		/* reconstruct-write isn't being forced */
3598 		return 0;
3599 	for (i = 0; i < s->failed && i < 2; i++) {
3600 		if (s->failed_num[i] != sh->pd_idx &&
3601 		    s->failed_num[i] != sh->qd_idx &&
3602 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3603 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3604 			return 1;
3605 	}
3606 
3607 	return 0;
3608 }
3609 
3610 /* fetch_block - checks the given member device to see if its data needs
3611  * to be read or computed to satisfy a request.
3612  *
3613  * Returns 1 when no more member devices need to be checked, otherwise returns
3614  * 0 to tell the loop in handle_stripe_fill to continue
3615  */
3616 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3617 		       int disk_idx, int disks)
3618 {
3619 	struct r5dev *dev = &sh->dev[disk_idx];
3620 
3621 	/* is the data in this block needed, and can we get it? */
3622 	if (need_this_block(sh, s, disk_idx, disks)) {
3623 		/* we would like to get this block, possibly by computing it,
3624 		 * otherwise read it if the backing disk is insync
3625 		 */
3626 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3627 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3628 		BUG_ON(sh->batch_head);
3629 
3630 		/*
3631 		 * In the raid6 case if the only non-uptodate disk is P
3632 		 * then we already trusted P to compute the other failed
3633 		 * drives. It is safe to compute rather than re-read P.
3634 		 * In other cases we only compute blocks from failed
3635 		 * devices, otherwise check/repair might fail to detect
3636 		 * a real inconsistency.
3637 		 */
3638 
3639 		if ((s->uptodate == disks - 1) &&
3640 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3641 		    (s->failed && (disk_idx == s->failed_num[0] ||
3642 				   disk_idx == s->failed_num[1])))) {
3643 			/* have disk failed, and we're requested to fetch it;
3644 			 * do compute it
3645 			 */
3646 			pr_debug("Computing stripe %llu block %d\n",
3647 			       (unsigned long long)sh->sector, disk_idx);
3648 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3649 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3650 			set_bit(R5_Wantcompute, &dev->flags);
3651 			sh->ops.target = disk_idx;
3652 			sh->ops.target2 = -1; /* no 2nd target */
3653 			s->req_compute = 1;
3654 			/* Careful: from this point on 'uptodate' is in the eye
3655 			 * of raid_run_ops which services 'compute' operations
3656 			 * before writes. R5_Wantcompute flags a block that will
3657 			 * be R5_UPTODATE by the time it is needed for a
3658 			 * subsequent operation.
3659 			 */
3660 			s->uptodate++;
3661 			return 1;
3662 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3663 			/* Computing 2-failure is *very* expensive; only
3664 			 * do it if failed >= 2
3665 			 */
3666 			int other;
3667 			for (other = disks; other--; ) {
3668 				if (other == disk_idx)
3669 					continue;
3670 				if (!test_bit(R5_UPTODATE,
3671 				      &sh->dev[other].flags))
3672 					break;
3673 			}
3674 			BUG_ON(other < 0);
3675 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3676 			       (unsigned long long)sh->sector,
3677 			       disk_idx, other);
3678 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3679 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3680 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3681 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3682 			sh->ops.target = disk_idx;
3683 			sh->ops.target2 = other;
3684 			s->uptodate += 2;
3685 			s->req_compute = 1;
3686 			return 1;
3687 		} else if (test_bit(R5_Insync, &dev->flags)) {
3688 			set_bit(R5_LOCKED, &dev->flags);
3689 			set_bit(R5_Wantread, &dev->flags);
3690 			s->locked++;
3691 			pr_debug("Reading block %d (sync=%d)\n",
3692 				disk_idx, s->syncing);
3693 		}
3694 	}
3695 
3696 	return 0;
3697 }
3698 
3699 /**
3700  * handle_stripe_fill - read or compute data to satisfy pending requests.
3701  */
3702 static void handle_stripe_fill(struct stripe_head *sh,
3703 			       struct stripe_head_state *s,
3704 			       int disks)
3705 {
3706 	int i;
3707 
3708 	/* look for blocks to read/compute, skip this if a compute
3709 	 * is already in flight, or if the stripe contents are in the
3710 	 * midst of changing due to a write
3711 	 */
3712 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3713 	    !sh->reconstruct_state) {
3714 
3715 		/*
3716 		 * For degraded stripe with data in journal, do not handle
3717 		 * read requests yet, instead, flush the stripe to raid
3718 		 * disks first, this avoids handling complex rmw of write
3719 		 * back cache (prexor with orig_page, and then xor with
3720 		 * page) in the read path
3721 		 */
3722 		if (s->injournal && s->failed) {
3723 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3724 				r5c_make_stripe_write_out(sh);
3725 			goto out;
3726 		}
3727 
3728 		for (i = disks; i--; )
3729 			if (fetch_block(sh, s, i, disks))
3730 				break;
3731 	}
3732 out:
3733 	set_bit(STRIPE_HANDLE, &sh->state);
3734 }
3735 
3736 static void break_stripe_batch_list(struct stripe_head *head_sh,
3737 				    unsigned long handle_flags);
3738 /* handle_stripe_clean_event
3739  * any written block on an uptodate or failed drive can be returned.
3740  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3741  * never LOCKED, so we don't need to test 'failed' directly.
3742  */
3743 static void handle_stripe_clean_event(struct r5conf *conf,
3744 	struct stripe_head *sh, int disks)
3745 {
3746 	int i;
3747 	struct r5dev *dev;
3748 	int discard_pending = 0;
3749 	struct stripe_head *head_sh = sh;
3750 	bool do_endio = false;
3751 
3752 	for (i = disks; i--; )
3753 		if (sh->dev[i].written) {
3754 			dev = &sh->dev[i];
3755 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3756 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3757 			     test_bit(R5_Discard, &dev->flags) ||
3758 			     test_bit(R5_SkipCopy, &dev->flags))) {
3759 				/* We can return any write requests */
3760 				struct bio *wbi, *wbi2;
3761 				pr_debug("Return write for disc %d\n", i);
3762 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3763 					clear_bit(R5_UPTODATE, &dev->flags);
3764 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3765 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3766 				}
3767 				do_endio = true;
3768 
3769 returnbi:
3770 				dev->page = dev->orig_page;
3771 				wbi = dev->written;
3772 				dev->written = NULL;
3773 				while (wbi && wbi->bi_iter.bi_sector <
3774 					dev->sector + STRIPE_SECTORS) {
3775 					wbi2 = r5_next_bio(wbi, dev->sector);
3776 					md_write_end(conf->mddev);
3777 					bio_endio(wbi);
3778 					wbi = wbi2;
3779 				}
3780 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3781 						   STRIPE_SECTORS,
3782 						   !test_bit(STRIPE_DEGRADED, &sh->state),
3783 						   0);
3784 				if (head_sh->batch_head) {
3785 					sh = list_first_entry(&sh->batch_list,
3786 							      struct stripe_head,
3787 							      batch_list);
3788 					if (sh != head_sh) {
3789 						dev = &sh->dev[i];
3790 						goto returnbi;
3791 					}
3792 				}
3793 				sh = head_sh;
3794 				dev = &sh->dev[i];
3795 			} else if (test_bit(R5_Discard, &dev->flags))
3796 				discard_pending = 1;
3797 		}
3798 
3799 	log_stripe_write_finished(sh);
3800 
3801 	if (!discard_pending &&
3802 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3803 		int hash;
3804 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3805 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3806 		if (sh->qd_idx >= 0) {
3807 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3808 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3809 		}
3810 		/* now that discard is done we can proceed with any sync */
3811 		clear_bit(STRIPE_DISCARD, &sh->state);
3812 		/*
3813 		 * SCSI discard will change some bio fields and the stripe has
3814 		 * no updated data, so remove it from hash list and the stripe
3815 		 * will be reinitialized
3816 		 */
3817 unhash:
3818 		hash = sh->hash_lock_index;
3819 		spin_lock_irq(conf->hash_locks + hash);
3820 		remove_hash(sh);
3821 		spin_unlock_irq(conf->hash_locks + hash);
3822 		if (head_sh->batch_head) {
3823 			sh = list_first_entry(&sh->batch_list,
3824 					      struct stripe_head, batch_list);
3825 			if (sh != head_sh)
3826 					goto unhash;
3827 		}
3828 		sh = head_sh;
3829 
3830 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3831 			set_bit(STRIPE_HANDLE, &sh->state);
3832 
3833 	}
3834 
3835 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3836 		if (atomic_dec_and_test(&conf->pending_full_writes))
3837 			md_wakeup_thread(conf->mddev->thread);
3838 
3839 	if (head_sh->batch_head && do_endio)
3840 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3841 }
3842 
3843 /*
3844  * For RMW in write back cache, we need extra page in prexor to store the
3845  * old data. This page is stored in dev->orig_page.
3846  *
3847  * This function checks whether we have data for prexor. The exact logic
3848  * is:
3849  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3850  */
3851 static inline bool uptodate_for_rmw(struct r5dev *dev)
3852 {
3853 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3854 		(!test_bit(R5_InJournal, &dev->flags) ||
3855 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3856 }
3857 
3858 static int handle_stripe_dirtying(struct r5conf *conf,
3859 				  struct stripe_head *sh,
3860 				  struct stripe_head_state *s,
3861 				  int disks)
3862 {
3863 	int rmw = 0, rcw = 0, i;
3864 	sector_t recovery_cp = conf->mddev->recovery_cp;
3865 
3866 	/* Check whether resync is now happening or should start.
3867 	 * If yes, then the array is dirty (after unclean shutdown or
3868 	 * initial creation), so parity in some stripes might be inconsistent.
3869 	 * In this case, we need to always do reconstruct-write, to ensure
3870 	 * that in case of drive failure or read-error correction, we
3871 	 * generate correct data from the parity.
3872 	 */
3873 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3874 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3875 	     s->failed == 0)) {
3876 		/* Calculate the real rcw later - for now make it
3877 		 * look like rcw is cheaper
3878 		 */
3879 		rcw = 1; rmw = 2;
3880 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3881 			 conf->rmw_level, (unsigned long long)recovery_cp,
3882 			 (unsigned long long)sh->sector);
3883 	} else for (i = disks; i--; ) {
3884 		/* would I have to read this buffer for read_modify_write */
3885 		struct r5dev *dev = &sh->dev[i];
3886 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3887 		     i == sh->pd_idx || i == sh->qd_idx ||
3888 		     test_bit(R5_InJournal, &dev->flags)) &&
3889 		    !test_bit(R5_LOCKED, &dev->flags) &&
3890 		    !(uptodate_for_rmw(dev) ||
3891 		      test_bit(R5_Wantcompute, &dev->flags))) {
3892 			if (test_bit(R5_Insync, &dev->flags))
3893 				rmw++;
3894 			else
3895 				rmw += 2*disks;  /* cannot read it */
3896 		}
3897 		/* Would I have to read this buffer for reconstruct_write */
3898 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3899 		    i != sh->pd_idx && i != sh->qd_idx &&
3900 		    !test_bit(R5_LOCKED, &dev->flags) &&
3901 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3902 		      test_bit(R5_Wantcompute, &dev->flags))) {
3903 			if (test_bit(R5_Insync, &dev->flags))
3904 				rcw++;
3905 			else
3906 				rcw += 2*disks;
3907 		}
3908 	}
3909 
3910 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3911 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3912 	set_bit(STRIPE_HANDLE, &sh->state);
3913 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3914 		/* prefer read-modify-write, but need to get some data */
3915 		if (conf->mddev->queue)
3916 			blk_add_trace_msg(conf->mddev->queue,
3917 					  "raid5 rmw %llu %d",
3918 					  (unsigned long long)sh->sector, rmw);
3919 		for (i = disks; i--; ) {
3920 			struct r5dev *dev = &sh->dev[i];
3921 			if (test_bit(R5_InJournal, &dev->flags) &&
3922 			    dev->page == dev->orig_page &&
3923 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3924 				/* alloc page for prexor */
3925 				struct page *p = alloc_page(GFP_NOIO);
3926 
3927 				if (p) {
3928 					dev->orig_page = p;
3929 					continue;
3930 				}
3931 
3932 				/*
3933 				 * alloc_page() failed, try use
3934 				 * disk_info->extra_page
3935 				 */
3936 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3937 						      &conf->cache_state)) {
3938 					r5c_use_extra_page(sh);
3939 					break;
3940 				}
3941 
3942 				/* extra_page in use, add to delayed_list */
3943 				set_bit(STRIPE_DELAYED, &sh->state);
3944 				s->waiting_extra_page = 1;
3945 				return -EAGAIN;
3946 			}
3947 		}
3948 
3949 		for (i = disks; i--; ) {
3950 			struct r5dev *dev = &sh->dev[i];
3951 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3952 			     i == sh->pd_idx || i == sh->qd_idx ||
3953 			     test_bit(R5_InJournal, &dev->flags)) &&
3954 			    !test_bit(R5_LOCKED, &dev->flags) &&
3955 			    !(uptodate_for_rmw(dev) ||
3956 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3957 			    test_bit(R5_Insync, &dev->flags)) {
3958 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3959 					     &sh->state)) {
3960 					pr_debug("Read_old block %d for r-m-w\n",
3961 						 i);
3962 					set_bit(R5_LOCKED, &dev->flags);
3963 					set_bit(R5_Wantread, &dev->flags);
3964 					s->locked++;
3965 				} else {
3966 					set_bit(STRIPE_DELAYED, &sh->state);
3967 					set_bit(STRIPE_HANDLE, &sh->state);
3968 				}
3969 			}
3970 		}
3971 	}
3972 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3973 		/* want reconstruct write, but need to get some data */
3974 		int qread =0;
3975 		rcw = 0;
3976 		for (i = disks; i--; ) {
3977 			struct r5dev *dev = &sh->dev[i];
3978 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3979 			    i != sh->pd_idx && i != sh->qd_idx &&
3980 			    !test_bit(R5_LOCKED, &dev->flags) &&
3981 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3982 			      test_bit(R5_Wantcompute, &dev->flags))) {
3983 				rcw++;
3984 				if (test_bit(R5_Insync, &dev->flags) &&
3985 				    test_bit(STRIPE_PREREAD_ACTIVE,
3986 					     &sh->state)) {
3987 					pr_debug("Read_old block "
3988 						"%d for Reconstruct\n", i);
3989 					set_bit(R5_LOCKED, &dev->flags);
3990 					set_bit(R5_Wantread, &dev->flags);
3991 					s->locked++;
3992 					qread++;
3993 				} else {
3994 					set_bit(STRIPE_DELAYED, &sh->state);
3995 					set_bit(STRIPE_HANDLE, &sh->state);
3996 				}
3997 			}
3998 		}
3999 		if (rcw && conf->mddev->queue)
4000 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4001 					  (unsigned long long)sh->sector,
4002 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4003 	}
4004 
4005 	if (rcw > disks && rmw > disks &&
4006 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4007 		set_bit(STRIPE_DELAYED, &sh->state);
4008 
4009 	/* now if nothing is locked, and if we have enough data,
4010 	 * we can start a write request
4011 	 */
4012 	/* since handle_stripe can be called at any time we need to handle the
4013 	 * case where a compute block operation has been submitted and then a
4014 	 * subsequent call wants to start a write request.  raid_run_ops only
4015 	 * handles the case where compute block and reconstruct are requested
4016 	 * simultaneously.  If this is not the case then new writes need to be
4017 	 * held off until the compute completes.
4018 	 */
4019 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4020 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4021 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4022 		schedule_reconstruction(sh, s, rcw == 0, 0);
4023 	return 0;
4024 }
4025 
4026 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4027 				struct stripe_head_state *s, int disks)
4028 {
4029 	struct r5dev *dev = NULL;
4030 
4031 	BUG_ON(sh->batch_head);
4032 	set_bit(STRIPE_HANDLE, &sh->state);
4033 
4034 	switch (sh->check_state) {
4035 	case check_state_idle:
4036 		/* start a new check operation if there are no failures */
4037 		if (s->failed == 0) {
4038 			BUG_ON(s->uptodate != disks);
4039 			sh->check_state = check_state_run;
4040 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4041 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4042 			s->uptodate--;
4043 			break;
4044 		}
4045 		dev = &sh->dev[s->failed_num[0]];
4046 		/* fall through */
4047 	case check_state_compute_result:
4048 		sh->check_state = check_state_idle;
4049 		if (!dev)
4050 			dev = &sh->dev[sh->pd_idx];
4051 
4052 		/* check that a write has not made the stripe insync */
4053 		if (test_bit(STRIPE_INSYNC, &sh->state))
4054 			break;
4055 
4056 		/* either failed parity check, or recovery is happening */
4057 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4058 		BUG_ON(s->uptodate != disks);
4059 
4060 		set_bit(R5_LOCKED, &dev->flags);
4061 		s->locked++;
4062 		set_bit(R5_Wantwrite, &dev->flags);
4063 
4064 		clear_bit(STRIPE_DEGRADED, &sh->state);
4065 		set_bit(STRIPE_INSYNC, &sh->state);
4066 		break;
4067 	case check_state_run:
4068 		break; /* we will be called again upon completion */
4069 	case check_state_check_result:
4070 		sh->check_state = check_state_idle;
4071 
4072 		/* if a failure occurred during the check operation, leave
4073 		 * STRIPE_INSYNC not set and let the stripe be handled again
4074 		 */
4075 		if (s->failed)
4076 			break;
4077 
4078 		/* handle a successful check operation, if parity is correct
4079 		 * we are done.  Otherwise update the mismatch count and repair
4080 		 * parity if !MD_RECOVERY_CHECK
4081 		 */
4082 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4083 			/* parity is correct (on disc,
4084 			 * not in buffer any more)
4085 			 */
4086 			set_bit(STRIPE_INSYNC, &sh->state);
4087 		else {
4088 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4089 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4090 				/* don't try to repair!! */
4091 				set_bit(STRIPE_INSYNC, &sh->state);
4092 				pr_warn_ratelimited("%s: mismatch sector in range "
4093 						    "%llu-%llu\n", mdname(conf->mddev),
4094 						    (unsigned long long) sh->sector,
4095 						    (unsigned long long) sh->sector +
4096 						    STRIPE_SECTORS);
4097 			} else {
4098 				sh->check_state = check_state_compute_run;
4099 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4100 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4101 				set_bit(R5_Wantcompute,
4102 					&sh->dev[sh->pd_idx].flags);
4103 				sh->ops.target = sh->pd_idx;
4104 				sh->ops.target2 = -1;
4105 				s->uptodate++;
4106 			}
4107 		}
4108 		break;
4109 	case check_state_compute_run:
4110 		break;
4111 	default:
4112 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4113 		       __func__, sh->check_state,
4114 		       (unsigned long long) sh->sector);
4115 		BUG();
4116 	}
4117 }
4118 
4119 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4120 				  struct stripe_head_state *s,
4121 				  int disks)
4122 {
4123 	int pd_idx = sh->pd_idx;
4124 	int qd_idx = sh->qd_idx;
4125 	struct r5dev *dev;
4126 
4127 	BUG_ON(sh->batch_head);
4128 	set_bit(STRIPE_HANDLE, &sh->state);
4129 
4130 	BUG_ON(s->failed > 2);
4131 
4132 	/* Want to check and possibly repair P and Q.
4133 	 * However there could be one 'failed' device, in which
4134 	 * case we can only check one of them, possibly using the
4135 	 * other to generate missing data
4136 	 */
4137 
4138 	switch (sh->check_state) {
4139 	case check_state_idle:
4140 		/* start a new check operation if there are < 2 failures */
4141 		if (s->failed == s->q_failed) {
4142 			/* The only possible failed device holds Q, so it
4143 			 * makes sense to check P (If anything else were failed,
4144 			 * we would have used P to recreate it).
4145 			 */
4146 			sh->check_state = check_state_run;
4147 		}
4148 		if (!s->q_failed && s->failed < 2) {
4149 			/* Q is not failed, and we didn't use it to generate
4150 			 * anything, so it makes sense to check it
4151 			 */
4152 			if (sh->check_state == check_state_run)
4153 				sh->check_state = check_state_run_pq;
4154 			else
4155 				sh->check_state = check_state_run_q;
4156 		}
4157 
4158 		/* discard potentially stale zero_sum_result */
4159 		sh->ops.zero_sum_result = 0;
4160 
4161 		if (sh->check_state == check_state_run) {
4162 			/* async_xor_zero_sum destroys the contents of P */
4163 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4164 			s->uptodate--;
4165 		}
4166 		if (sh->check_state >= check_state_run &&
4167 		    sh->check_state <= check_state_run_pq) {
4168 			/* async_syndrome_zero_sum preserves P and Q, so
4169 			 * no need to mark them !uptodate here
4170 			 */
4171 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4172 			break;
4173 		}
4174 
4175 		/* we have 2-disk failure */
4176 		BUG_ON(s->failed != 2);
4177 		/* fall through */
4178 	case check_state_compute_result:
4179 		sh->check_state = check_state_idle;
4180 
4181 		/* check that a write has not made the stripe insync */
4182 		if (test_bit(STRIPE_INSYNC, &sh->state))
4183 			break;
4184 
4185 		/* now write out any block on a failed drive,
4186 		 * or P or Q if they were recomputed
4187 		 */
4188 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4189 		if (s->failed == 2) {
4190 			dev = &sh->dev[s->failed_num[1]];
4191 			s->locked++;
4192 			set_bit(R5_LOCKED, &dev->flags);
4193 			set_bit(R5_Wantwrite, &dev->flags);
4194 		}
4195 		if (s->failed >= 1) {
4196 			dev = &sh->dev[s->failed_num[0]];
4197 			s->locked++;
4198 			set_bit(R5_LOCKED, &dev->flags);
4199 			set_bit(R5_Wantwrite, &dev->flags);
4200 		}
4201 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4202 			dev = &sh->dev[pd_idx];
4203 			s->locked++;
4204 			set_bit(R5_LOCKED, &dev->flags);
4205 			set_bit(R5_Wantwrite, &dev->flags);
4206 		}
4207 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4208 			dev = &sh->dev[qd_idx];
4209 			s->locked++;
4210 			set_bit(R5_LOCKED, &dev->flags);
4211 			set_bit(R5_Wantwrite, &dev->flags);
4212 		}
4213 		clear_bit(STRIPE_DEGRADED, &sh->state);
4214 
4215 		set_bit(STRIPE_INSYNC, &sh->state);
4216 		break;
4217 	case check_state_run:
4218 	case check_state_run_q:
4219 	case check_state_run_pq:
4220 		break; /* we will be called again upon completion */
4221 	case check_state_check_result:
4222 		sh->check_state = check_state_idle;
4223 
4224 		/* handle a successful check operation, if parity is correct
4225 		 * we are done.  Otherwise update the mismatch count and repair
4226 		 * parity if !MD_RECOVERY_CHECK
4227 		 */
4228 		if (sh->ops.zero_sum_result == 0) {
4229 			/* both parities are correct */
4230 			if (!s->failed)
4231 				set_bit(STRIPE_INSYNC, &sh->state);
4232 			else {
4233 				/* in contrast to the raid5 case we can validate
4234 				 * parity, but still have a failure to write
4235 				 * back
4236 				 */
4237 				sh->check_state = check_state_compute_result;
4238 				/* Returning at this point means that we may go
4239 				 * off and bring p and/or q uptodate again so
4240 				 * we make sure to check zero_sum_result again
4241 				 * to verify if p or q need writeback
4242 				 */
4243 			}
4244 		} else {
4245 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4246 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4247 				/* don't try to repair!! */
4248 				set_bit(STRIPE_INSYNC, &sh->state);
4249 				pr_warn_ratelimited("%s: mismatch sector in range "
4250 						    "%llu-%llu\n", mdname(conf->mddev),
4251 						    (unsigned long long) sh->sector,
4252 						    (unsigned long long) sh->sector +
4253 						    STRIPE_SECTORS);
4254 			} else {
4255 				int *target = &sh->ops.target;
4256 
4257 				sh->ops.target = -1;
4258 				sh->ops.target2 = -1;
4259 				sh->check_state = check_state_compute_run;
4260 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4261 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4262 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4263 					set_bit(R5_Wantcompute,
4264 						&sh->dev[pd_idx].flags);
4265 					*target = pd_idx;
4266 					target = &sh->ops.target2;
4267 					s->uptodate++;
4268 				}
4269 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4270 					set_bit(R5_Wantcompute,
4271 						&sh->dev[qd_idx].flags);
4272 					*target = qd_idx;
4273 					s->uptodate++;
4274 				}
4275 			}
4276 		}
4277 		break;
4278 	case check_state_compute_run:
4279 		break;
4280 	default:
4281 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4282 			__func__, sh->check_state,
4283 			(unsigned long long) sh->sector);
4284 		BUG();
4285 	}
4286 }
4287 
4288 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4289 {
4290 	int i;
4291 
4292 	/* We have read all the blocks in this stripe and now we need to
4293 	 * copy some of them into a target stripe for expand.
4294 	 */
4295 	struct dma_async_tx_descriptor *tx = NULL;
4296 	BUG_ON(sh->batch_head);
4297 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4298 	for (i = 0; i < sh->disks; i++)
4299 		if (i != sh->pd_idx && i != sh->qd_idx) {
4300 			int dd_idx, j;
4301 			struct stripe_head *sh2;
4302 			struct async_submit_ctl submit;
4303 
4304 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4305 			sector_t s = raid5_compute_sector(conf, bn, 0,
4306 							  &dd_idx, NULL);
4307 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4308 			if (sh2 == NULL)
4309 				/* so far only the early blocks of this stripe
4310 				 * have been requested.  When later blocks
4311 				 * get requested, we will try again
4312 				 */
4313 				continue;
4314 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4315 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4316 				/* must have already done this block */
4317 				raid5_release_stripe(sh2);
4318 				continue;
4319 			}
4320 
4321 			/* place all the copies on one channel */
4322 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4323 			tx = async_memcpy(sh2->dev[dd_idx].page,
4324 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4325 					  &submit);
4326 
4327 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4328 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4329 			for (j = 0; j < conf->raid_disks; j++)
4330 				if (j != sh2->pd_idx &&
4331 				    j != sh2->qd_idx &&
4332 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4333 					break;
4334 			if (j == conf->raid_disks) {
4335 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4336 				set_bit(STRIPE_HANDLE, &sh2->state);
4337 			}
4338 			raid5_release_stripe(sh2);
4339 
4340 		}
4341 	/* done submitting copies, wait for them to complete */
4342 	async_tx_quiesce(&tx);
4343 }
4344 
4345 /*
4346  * handle_stripe - do things to a stripe.
4347  *
4348  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4349  * state of various bits to see what needs to be done.
4350  * Possible results:
4351  *    return some read requests which now have data
4352  *    return some write requests which are safely on storage
4353  *    schedule a read on some buffers
4354  *    schedule a write of some buffers
4355  *    return confirmation of parity correctness
4356  *
4357  */
4358 
4359 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4360 {
4361 	struct r5conf *conf = sh->raid_conf;
4362 	int disks = sh->disks;
4363 	struct r5dev *dev;
4364 	int i;
4365 	int do_recovery = 0;
4366 
4367 	memset(s, 0, sizeof(*s));
4368 
4369 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4370 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4371 	s->failed_num[0] = -1;
4372 	s->failed_num[1] = -1;
4373 	s->log_failed = r5l_log_disk_error(conf);
4374 
4375 	/* Now to look around and see what can be done */
4376 	rcu_read_lock();
4377 	for (i=disks; i--; ) {
4378 		struct md_rdev *rdev;
4379 		sector_t first_bad;
4380 		int bad_sectors;
4381 		int is_bad = 0;
4382 
4383 		dev = &sh->dev[i];
4384 
4385 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4386 			 i, dev->flags,
4387 			 dev->toread, dev->towrite, dev->written);
4388 		/* maybe we can reply to a read
4389 		 *
4390 		 * new wantfill requests are only permitted while
4391 		 * ops_complete_biofill is guaranteed to be inactive
4392 		 */
4393 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4394 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4395 			set_bit(R5_Wantfill, &dev->flags);
4396 
4397 		/* now count some things */
4398 		if (test_bit(R5_LOCKED, &dev->flags))
4399 			s->locked++;
4400 		if (test_bit(R5_UPTODATE, &dev->flags))
4401 			s->uptodate++;
4402 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4403 			s->compute++;
4404 			BUG_ON(s->compute > 2);
4405 		}
4406 
4407 		if (test_bit(R5_Wantfill, &dev->flags))
4408 			s->to_fill++;
4409 		else if (dev->toread)
4410 			s->to_read++;
4411 		if (dev->towrite) {
4412 			s->to_write++;
4413 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4414 				s->non_overwrite++;
4415 		}
4416 		if (dev->written)
4417 			s->written++;
4418 		/* Prefer to use the replacement for reads, but only
4419 		 * if it is recovered enough and has no bad blocks.
4420 		 */
4421 		rdev = rcu_dereference(conf->disks[i].replacement);
4422 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4423 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4424 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4425 				 &first_bad, &bad_sectors))
4426 			set_bit(R5_ReadRepl, &dev->flags);
4427 		else {
4428 			if (rdev && !test_bit(Faulty, &rdev->flags))
4429 				set_bit(R5_NeedReplace, &dev->flags);
4430 			else
4431 				clear_bit(R5_NeedReplace, &dev->flags);
4432 			rdev = rcu_dereference(conf->disks[i].rdev);
4433 			clear_bit(R5_ReadRepl, &dev->flags);
4434 		}
4435 		if (rdev && test_bit(Faulty, &rdev->flags))
4436 			rdev = NULL;
4437 		if (rdev) {
4438 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4439 					     &first_bad, &bad_sectors);
4440 			if (s->blocked_rdev == NULL
4441 			    && (test_bit(Blocked, &rdev->flags)
4442 				|| is_bad < 0)) {
4443 				if (is_bad < 0)
4444 					set_bit(BlockedBadBlocks,
4445 						&rdev->flags);
4446 				s->blocked_rdev = rdev;
4447 				atomic_inc(&rdev->nr_pending);
4448 			}
4449 		}
4450 		clear_bit(R5_Insync, &dev->flags);
4451 		if (!rdev)
4452 			/* Not in-sync */;
4453 		else if (is_bad) {
4454 			/* also not in-sync */
4455 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4456 			    test_bit(R5_UPTODATE, &dev->flags)) {
4457 				/* treat as in-sync, but with a read error
4458 				 * which we can now try to correct
4459 				 */
4460 				set_bit(R5_Insync, &dev->flags);
4461 				set_bit(R5_ReadError, &dev->flags);
4462 			}
4463 		} else if (test_bit(In_sync, &rdev->flags))
4464 			set_bit(R5_Insync, &dev->flags);
4465 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4466 			/* in sync if before recovery_offset */
4467 			set_bit(R5_Insync, &dev->flags);
4468 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4469 			 test_bit(R5_Expanded, &dev->flags))
4470 			/* If we've reshaped into here, we assume it is Insync.
4471 			 * We will shortly update recovery_offset to make
4472 			 * it official.
4473 			 */
4474 			set_bit(R5_Insync, &dev->flags);
4475 
4476 		if (test_bit(R5_WriteError, &dev->flags)) {
4477 			/* This flag does not apply to '.replacement'
4478 			 * only to .rdev, so make sure to check that*/
4479 			struct md_rdev *rdev2 = rcu_dereference(
4480 				conf->disks[i].rdev);
4481 			if (rdev2 == rdev)
4482 				clear_bit(R5_Insync, &dev->flags);
4483 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4484 				s->handle_bad_blocks = 1;
4485 				atomic_inc(&rdev2->nr_pending);
4486 			} else
4487 				clear_bit(R5_WriteError, &dev->flags);
4488 		}
4489 		if (test_bit(R5_MadeGood, &dev->flags)) {
4490 			/* This flag does not apply to '.replacement'
4491 			 * only to .rdev, so make sure to check that*/
4492 			struct md_rdev *rdev2 = rcu_dereference(
4493 				conf->disks[i].rdev);
4494 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4495 				s->handle_bad_blocks = 1;
4496 				atomic_inc(&rdev2->nr_pending);
4497 			} else
4498 				clear_bit(R5_MadeGood, &dev->flags);
4499 		}
4500 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4501 			struct md_rdev *rdev2 = rcu_dereference(
4502 				conf->disks[i].replacement);
4503 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4504 				s->handle_bad_blocks = 1;
4505 				atomic_inc(&rdev2->nr_pending);
4506 			} else
4507 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4508 		}
4509 		if (!test_bit(R5_Insync, &dev->flags)) {
4510 			/* The ReadError flag will just be confusing now */
4511 			clear_bit(R5_ReadError, &dev->flags);
4512 			clear_bit(R5_ReWrite, &dev->flags);
4513 		}
4514 		if (test_bit(R5_ReadError, &dev->flags))
4515 			clear_bit(R5_Insync, &dev->flags);
4516 		if (!test_bit(R5_Insync, &dev->flags)) {
4517 			if (s->failed < 2)
4518 				s->failed_num[s->failed] = i;
4519 			s->failed++;
4520 			if (rdev && !test_bit(Faulty, &rdev->flags))
4521 				do_recovery = 1;
4522 			else if (!rdev) {
4523 				rdev = rcu_dereference(
4524 				    conf->disks[i].replacement);
4525 				if (rdev && !test_bit(Faulty, &rdev->flags))
4526 					do_recovery = 1;
4527 			}
4528 		}
4529 
4530 		if (test_bit(R5_InJournal, &dev->flags))
4531 			s->injournal++;
4532 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4533 			s->just_cached++;
4534 	}
4535 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4536 		/* If there is a failed device being replaced,
4537 		 *     we must be recovering.
4538 		 * else if we are after recovery_cp, we must be syncing
4539 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4540 		 * else we can only be replacing
4541 		 * sync and recovery both need to read all devices, and so
4542 		 * use the same flag.
4543 		 */
4544 		if (do_recovery ||
4545 		    sh->sector >= conf->mddev->recovery_cp ||
4546 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4547 			s->syncing = 1;
4548 		else
4549 			s->replacing = 1;
4550 	}
4551 	rcu_read_unlock();
4552 }
4553 
4554 static int clear_batch_ready(struct stripe_head *sh)
4555 {
4556 	/* Return '1' if this is a member of batch, or
4557 	 * '0' if it is a lone stripe or a head which can now be
4558 	 * handled.
4559 	 */
4560 	struct stripe_head *tmp;
4561 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4562 		return (sh->batch_head && sh->batch_head != sh);
4563 	spin_lock(&sh->stripe_lock);
4564 	if (!sh->batch_head) {
4565 		spin_unlock(&sh->stripe_lock);
4566 		return 0;
4567 	}
4568 
4569 	/*
4570 	 * this stripe could be added to a batch list before we check
4571 	 * BATCH_READY, skips it
4572 	 */
4573 	if (sh->batch_head != sh) {
4574 		spin_unlock(&sh->stripe_lock);
4575 		return 1;
4576 	}
4577 	spin_lock(&sh->batch_lock);
4578 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4579 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4580 	spin_unlock(&sh->batch_lock);
4581 	spin_unlock(&sh->stripe_lock);
4582 
4583 	/*
4584 	 * BATCH_READY is cleared, no new stripes can be added.
4585 	 * batch_list can be accessed without lock
4586 	 */
4587 	return 0;
4588 }
4589 
4590 static void break_stripe_batch_list(struct stripe_head *head_sh,
4591 				    unsigned long handle_flags)
4592 {
4593 	struct stripe_head *sh, *next;
4594 	int i;
4595 	int do_wakeup = 0;
4596 
4597 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4598 
4599 		list_del_init(&sh->batch_list);
4600 
4601 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4602 					  (1 << STRIPE_SYNCING) |
4603 					  (1 << STRIPE_REPLACED) |
4604 					  (1 << STRIPE_DELAYED) |
4605 					  (1 << STRIPE_BIT_DELAY) |
4606 					  (1 << STRIPE_FULL_WRITE) |
4607 					  (1 << STRIPE_BIOFILL_RUN) |
4608 					  (1 << STRIPE_COMPUTE_RUN)  |
4609 					  (1 << STRIPE_OPS_REQ_PENDING) |
4610 					  (1 << STRIPE_DISCARD) |
4611 					  (1 << STRIPE_BATCH_READY) |
4612 					  (1 << STRIPE_BATCH_ERR) |
4613 					  (1 << STRIPE_BITMAP_PENDING)),
4614 			"stripe state: %lx\n", sh->state);
4615 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4616 					      (1 << STRIPE_REPLACED)),
4617 			"head stripe state: %lx\n", head_sh->state);
4618 
4619 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4620 					    (1 << STRIPE_PREREAD_ACTIVE) |
4621 					    (1 << STRIPE_DEGRADED) |
4622 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4623 			      head_sh->state & (1 << STRIPE_INSYNC));
4624 
4625 		sh->check_state = head_sh->check_state;
4626 		sh->reconstruct_state = head_sh->reconstruct_state;
4627 		spin_lock_irq(&sh->stripe_lock);
4628 		sh->batch_head = NULL;
4629 		spin_unlock_irq(&sh->stripe_lock);
4630 		for (i = 0; i < sh->disks; i++) {
4631 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4632 				do_wakeup = 1;
4633 			sh->dev[i].flags = head_sh->dev[i].flags &
4634 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4635 		}
4636 		if (handle_flags == 0 ||
4637 		    sh->state & handle_flags)
4638 			set_bit(STRIPE_HANDLE, &sh->state);
4639 		raid5_release_stripe(sh);
4640 	}
4641 	spin_lock_irq(&head_sh->stripe_lock);
4642 	head_sh->batch_head = NULL;
4643 	spin_unlock_irq(&head_sh->stripe_lock);
4644 	for (i = 0; i < head_sh->disks; i++)
4645 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4646 			do_wakeup = 1;
4647 	if (head_sh->state & handle_flags)
4648 		set_bit(STRIPE_HANDLE, &head_sh->state);
4649 
4650 	if (do_wakeup)
4651 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4652 }
4653 
4654 static void handle_stripe(struct stripe_head *sh)
4655 {
4656 	struct stripe_head_state s;
4657 	struct r5conf *conf = sh->raid_conf;
4658 	int i;
4659 	int prexor;
4660 	int disks = sh->disks;
4661 	struct r5dev *pdev, *qdev;
4662 
4663 	clear_bit(STRIPE_HANDLE, &sh->state);
4664 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4665 		/* already being handled, ensure it gets handled
4666 		 * again when current action finishes */
4667 		set_bit(STRIPE_HANDLE, &sh->state);
4668 		return;
4669 	}
4670 
4671 	if (clear_batch_ready(sh) ) {
4672 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4673 		return;
4674 	}
4675 
4676 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4677 		break_stripe_batch_list(sh, 0);
4678 
4679 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4680 		spin_lock(&sh->stripe_lock);
4681 		/*
4682 		 * Cannot process 'sync' concurrently with 'discard'.
4683 		 * Flush data in r5cache before 'sync'.
4684 		 */
4685 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4686 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4687 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4688 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4689 			set_bit(STRIPE_SYNCING, &sh->state);
4690 			clear_bit(STRIPE_INSYNC, &sh->state);
4691 			clear_bit(STRIPE_REPLACED, &sh->state);
4692 		}
4693 		spin_unlock(&sh->stripe_lock);
4694 	}
4695 	clear_bit(STRIPE_DELAYED, &sh->state);
4696 
4697 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4698 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4699 	       (unsigned long long)sh->sector, sh->state,
4700 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4701 	       sh->check_state, sh->reconstruct_state);
4702 
4703 	analyse_stripe(sh, &s);
4704 
4705 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4706 		goto finish;
4707 
4708 	if (s.handle_bad_blocks ||
4709 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4710 		set_bit(STRIPE_HANDLE, &sh->state);
4711 		goto finish;
4712 	}
4713 
4714 	if (unlikely(s.blocked_rdev)) {
4715 		if (s.syncing || s.expanding || s.expanded ||
4716 		    s.replacing || s.to_write || s.written) {
4717 			set_bit(STRIPE_HANDLE, &sh->state);
4718 			goto finish;
4719 		}
4720 		/* There is nothing for the blocked_rdev to block */
4721 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4722 		s.blocked_rdev = NULL;
4723 	}
4724 
4725 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4726 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4727 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4728 	}
4729 
4730 	pr_debug("locked=%d uptodate=%d to_read=%d"
4731 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4732 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4733 	       s.failed_num[0], s.failed_num[1]);
4734 	/*
4735 	 * check if the array has lost more than max_degraded devices and,
4736 	 * if so, some requests might need to be failed.
4737 	 *
4738 	 * When journal device failed (log_failed), we will only process
4739 	 * the stripe if there is data need write to raid disks
4740 	 */
4741 	if (s.failed > conf->max_degraded ||
4742 	    (s.log_failed && s.injournal == 0)) {
4743 		sh->check_state = 0;
4744 		sh->reconstruct_state = 0;
4745 		break_stripe_batch_list(sh, 0);
4746 		if (s.to_read+s.to_write+s.written)
4747 			handle_failed_stripe(conf, sh, &s, disks);
4748 		if (s.syncing + s.replacing)
4749 			handle_failed_sync(conf, sh, &s);
4750 	}
4751 
4752 	/* Now we check to see if any write operations have recently
4753 	 * completed
4754 	 */
4755 	prexor = 0;
4756 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4757 		prexor = 1;
4758 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4759 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4760 		sh->reconstruct_state = reconstruct_state_idle;
4761 
4762 		/* All the 'written' buffers and the parity block are ready to
4763 		 * be written back to disk
4764 		 */
4765 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4766 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4767 		BUG_ON(sh->qd_idx >= 0 &&
4768 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4769 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4770 		for (i = disks; i--; ) {
4771 			struct r5dev *dev = &sh->dev[i];
4772 			if (test_bit(R5_LOCKED, &dev->flags) &&
4773 				(i == sh->pd_idx || i == sh->qd_idx ||
4774 				 dev->written || test_bit(R5_InJournal,
4775 							  &dev->flags))) {
4776 				pr_debug("Writing block %d\n", i);
4777 				set_bit(R5_Wantwrite, &dev->flags);
4778 				if (prexor)
4779 					continue;
4780 				if (s.failed > 1)
4781 					continue;
4782 				if (!test_bit(R5_Insync, &dev->flags) ||
4783 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4784 				     s.failed == 0))
4785 					set_bit(STRIPE_INSYNC, &sh->state);
4786 			}
4787 		}
4788 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4789 			s.dec_preread_active = 1;
4790 	}
4791 
4792 	/*
4793 	 * might be able to return some write requests if the parity blocks
4794 	 * are safe, or on a failed drive
4795 	 */
4796 	pdev = &sh->dev[sh->pd_idx];
4797 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4798 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4799 	qdev = &sh->dev[sh->qd_idx];
4800 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4801 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4802 		|| conf->level < 6;
4803 
4804 	if (s.written &&
4805 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4806 			     && !test_bit(R5_LOCKED, &pdev->flags)
4807 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4808 				 test_bit(R5_Discard, &pdev->flags))))) &&
4809 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4810 			     && !test_bit(R5_LOCKED, &qdev->flags)
4811 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4812 				 test_bit(R5_Discard, &qdev->flags))))))
4813 		handle_stripe_clean_event(conf, sh, disks);
4814 
4815 	if (s.just_cached)
4816 		r5c_handle_cached_data_endio(conf, sh, disks);
4817 	log_stripe_write_finished(sh);
4818 
4819 	/* Now we might consider reading some blocks, either to check/generate
4820 	 * parity, or to satisfy requests
4821 	 * or to load a block that is being partially written.
4822 	 */
4823 	if (s.to_read || s.non_overwrite
4824 	    || (conf->level == 6 && s.to_write && s.failed)
4825 	    || (s.syncing && (s.uptodate + s.compute < disks))
4826 	    || s.replacing
4827 	    || s.expanding)
4828 		handle_stripe_fill(sh, &s, disks);
4829 
4830 	/*
4831 	 * When the stripe finishes full journal write cycle (write to journal
4832 	 * and raid disk), this is the clean up procedure so it is ready for
4833 	 * next operation.
4834 	 */
4835 	r5c_finish_stripe_write_out(conf, sh, &s);
4836 
4837 	/*
4838 	 * Now to consider new write requests, cache write back and what else,
4839 	 * if anything should be read.  We do not handle new writes when:
4840 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4841 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4842 	 *    block.
4843 	 * 3/ A r5c cache log write is in flight.
4844 	 */
4845 
4846 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4847 		if (!r5c_is_writeback(conf->log)) {
4848 			if (s.to_write)
4849 				handle_stripe_dirtying(conf, sh, &s, disks);
4850 		} else { /* write back cache */
4851 			int ret = 0;
4852 
4853 			/* First, try handle writes in caching phase */
4854 			if (s.to_write)
4855 				ret = r5c_try_caching_write(conf, sh, &s,
4856 							    disks);
4857 			/*
4858 			 * If caching phase failed: ret == -EAGAIN
4859 			 *    OR
4860 			 * stripe under reclaim: !caching && injournal
4861 			 *
4862 			 * fall back to handle_stripe_dirtying()
4863 			 */
4864 			if (ret == -EAGAIN ||
4865 			    /* stripe under reclaim: !caching && injournal */
4866 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4867 			     s.injournal > 0)) {
4868 				ret = handle_stripe_dirtying(conf, sh, &s,
4869 							     disks);
4870 				if (ret == -EAGAIN)
4871 					goto finish;
4872 			}
4873 		}
4874 	}
4875 
4876 	/* maybe we need to check and possibly fix the parity for this stripe
4877 	 * Any reads will already have been scheduled, so we just see if enough
4878 	 * data is available.  The parity check is held off while parity
4879 	 * dependent operations are in flight.
4880 	 */
4881 	if (sh->check_state ||
4882 	    (s.syncing && s.locked == 0 &&
4883 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4884 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4885 		if (conf->level == 6)
4886 			handle_parity_checks6(conf, sh, &s, disks);
4887 		else
4888 			handle_parity_checks5(conf, sh, &s, disks);
4889 	}
4890 
4891 	if ((s.replacing || s.syncing) && s.locked == 0
4892 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4893 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4894 		/* Write out to replacement devices where possible */
4895 		for (i = 0; i < conf->raid_disks; i++)
4896 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4897 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4898 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4899 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4900 				s.locked++;
4901 			}
4902 		if (s.replacing)
4903 			set_bit(STRIPE_INSYNC, &sh->state);
4904 		set_bit(STRIPE_REPLACED, &sh->state);
4905 	}
4906 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4907 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4908 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4909 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4910 		clear_bit(STRIPE_SYNCING, &sh->state);
4911 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4912 			wake_up(&conf->wait_for_overlap);
4913 	}
4914 
4915 	/* If the failed drives are just a ReadError, then we might need
4916 	 * to progress the repair/check process
4917 	 */
4918 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4919 		for (i = 0; i < s.failed; i++) {
4920 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4921 			if (test_bit(R5_ReadError, &dev->flags)
4922 			    && !test_bit(R5_LOCKED, &dev->flags)
4923 			    && test_bit(R5_UPTODATE, &dev->flags)
4924 				) {
4925 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4926 					set_bit(R5_Wantwrite, &dev->flags);
4927 					set_bit(R5_ReWrite, &dev->flags);
4928 					set_bit(R5_LOCKED, &dev->flags);
4929 					s.locked++;
4930 				} else {
4931 					/* let's read it back */
4932 					set_bit(R5_Wantread, &dev->flags);
4933 					set_bit(R5_LOCKED, &dev->flags);
4934 					s.locked++;
4935 				}
4936 			}
4937 		}
4938 
4939 	/* Finish reconstruct operations initiated by the expansion process */
4940 	if (sh->reconstruct_state == reconstruct_state_result) {
4941 		struct stripe_head *sh_src
4942 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4943 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4944 			/* sh cannot be written until sh_src has been read.
4945 			 * so arrange for sh to be delayed a little
4946 			 */
4947 			set_bit(STRIPE_DELAYED, &sh->state);
4948 			set_bit(STRIPE_HANDLE, &sh->state);
4949 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4950 					      &sh_src->state))
4951 				atomic_inc(&conf->preread_active_stripes);
4952 			raid5_release_stripe(sh_src);
4953 			goto finish;
4954 		}
4955 		if (sh_src)
4956 			raid5_release_stripe(sh_src);
4957 
4958 		sh->reconstruct_state = reconstruct_state_idle;
4959 		clear_bit(STRIPE_EXPANDING, &sh->state);
4960 		for (i = conf->raid_disks; i--; ) {
4961 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4962 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4963 			s.locked++;
4964 		}
4965 	}
4966 
4967 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4968 	    !sh->reconstruct_state) {
4969 		/* Need to write out all blocks after computing parity */
4970 		sh->disks = conf->raid_disks;
4971 		stripe_set_idx(sh->sector, conf, 0, sh);
4972 		schedule_reconstruction(sh, &s, 1, 1);
4973 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4974 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4975 		atomic_dec(&conf->reshape_stripes);
4976 		wake_up(&conf->wait_for_overlap);
4977 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4978 	}
4979 
4980 	if (s.expanding && s.locked == 0 &&
4981 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4982 		handle_stripe_expansion(conf, sh);
4983 
4984 finish:
4985 	/* wait for this device to become unblocked */
4986 	if (unlikely(s.blocked_rdev)) {
4987 		if (conf->mddev->external)
4988 			md_wait_for_blocked_rdev(s.blocked_rdev,
4989 						 conf->mddev);
4990 		else
4991 			/* Internal metadata will immediately
4992 			 * be written by raid5d, so we don't
4993 			 * need to wait here.
4994 			 */
4995 			rdev_dec_pending(s.blocked_rdev,
4996 					 conf->mddev);
4997 	}
4998 
4999 	if (s.handle_bad_blocks)
5000 		for (i = disks; i--; ) {
5001 			struct md_rdev *rdev;
5002 			struct r5dev *dev = &sh->dev[i];
5003 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5004 				/* We own a safe reference to the rdev */
5005 				rdev = conf->disks[i].rdev;
5006 				if (!rdev_set_badblocks(rdev, sh->sector,
5007 							STRIPE_SECTORS, 0))
5008 					md_error(conf->mddev, rdev);
5009 				rdev_dec_pending(rdev, conf->mddev);
5010 			}
5011 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5012 				rdev = conf->disks[i].rdev;
5013 				rdev_clear_badblocks(rdev, sh->sector,
5014 						     STRIPE_SECTORS, 0);
5015 				rdev_dec_pending(rdev, conf->mddev);
5016 			}
5017 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5018 				rdev = conf->disks[i].replacement;
5019 				if (!rdev)
5020 					/* rdev have been moved down */
5021 					rdev = conf->disks[i].rdev;
5022 				rdev_clear_badblocks(rdev, sh->sector,
5023 						     STRIPE_SECTORS, 0);
5024 				rdev_dec_pending(rdev, conf->mddev);
5025 			}
5026 		}
5027 
5028 	if (s.ops_request)
5029 		raid_run_ops(sh, s.ops_request);
5030 
5031 	ops_run_io(sh, &s);
5032 
5033 	if (s.dec_preread_active) {
5034 		/* We delay this until after ops_run_io so that if make_request
5035 		 * is waiting on a flush, it won't continue until the writes
5036 		 * have actually been submitted.
5037 		 */
5038 		atomic_dec(&conf->preread_active_stripes);
5039 		if (atomic_read(&conf->preread_active_stripes) <
5040 		    IO_THRESHOLD)
5041 			md_wakeup_thread(conf->mddev->thread);
5042 	}
5043 
5044 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5045 }
5046 
5047 static void raid5_activate_delayed(struct r5conf *conf)
5048 {
5049 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5050 		while (!list_empty(&conf->delayed_list)) {
5051 			struct list_head *l = conf->delayed_list.next;
5052 			struct stripe_head *sh;
5053 			sh = list_entry(l, struct stripe_head, lru);
5054 			list_del_init(l);
5055 			clear_bit(STRIPE_DELAYED, &sh->state);
5056 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5057 				atomic_inc(&conf->preread_active_stripes);
5058 			list_add_tail(&sh->lru, &conf->hold_list);
5059 			raid5_wakeup_stripe_thread(sh);
5060 		}
5061 	}
5062 }
5063 
5064 static void activate_bit_delay(struct r5conf *conf,
5065 	struct list_head *temp_inactive_list)
5066 {
5067 	/* device_lock is held */
5068 	struct list_head head;
5069 	list_add(&head, &conf->bitmap_list);
5070 	list_del_init(&conf->bitmap_list);
5071 	while (!list_empty(&head)) {
5072 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5073 		int hash;
5074 		list_del_init(&sh->lru);
5075 		atomic_inc(&sh->count);
5076 		hash = sh->hash_lock_index;
5077 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5078 	}
5079 }
5080 
5081 static int raid5_congested(struct mddev *mddev, int bits)
5082 {
5083 	struct r5conf *conf = mddev->private;
5084 
5085 	/* No difference between reads and writes.  Just check
5086 	 * how busy the stripe_cache is
5087 	 */
5088 
5089 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5090 		return 1;
5091 
5092 	/* Also checks whether there is pressure on r5cache log space */
5093 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5094 		return 1;
5095 	if (conf->quiesce)
5096 		return 1;
5097 	if (atomic_read(&conf->empty_inactive_list_nr))
5098 		return 1;
5099 
5100 	return 0;
5101 }
5102 
5103 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5104 {
5105 	struct r5conf *conf = mddev->private;
5106 	sector_t sector = bio->bi_iter.bi_sector;
5107 	unsigned int chunk_sectors;
5108 	unsigned int bio_sectors = bio_sectors(bio);
5109 
5110 	WARN_ON_ONCE(bio->bi_partno);
5111 
5112 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5113 	return  chunk_sectors >=
5114 		((sector & (chunk_sectors - 1)) + bio_sectors);
5115 }
5116 
5117 /*
5118  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5119  *  later sampled by raid5d.
5120  */
5121 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5122 {
5123 	unsigned long flags;
5124 
5125 	spin_lock_irqsave(&conf->device_lock, flags);
5126 
5127 	bi->bi_next = conf->retry_read_aligned_list;
5128 	conf->retry_read_aligned_list = bi;
5129 
5130 	spin_unlock_irqrestore(&conf->device_lock, flags);
5131 	md_wakeup_thread(conf->mddev->thread);
5132 }
5133 
5134 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5135 					 unsigned int *offset)
5136 {
5137 	struct bio *bi;
5138 
5139 	bi = conf->retry_read_aligned;
5140 	if (bi) {
5141 		*offset = conf->retry_read_offset;
5142 		conf->retry_read_aligned = NULL;
5143 		return bi;
5144 	}
5145 	bi = conf->retry_read_aligned_list;
5146 	if(bi) {
5147 		conf->retry_read_aligned_list = bi->bi_next;
5148 		bi->bi_next = NULL;
5149 		*offset = 0;
5150 	}
5151 
5152 	return bi;
5153 }
5154 
5155 /*
5156  *  The "raid5_align_endio" should check if the read succeeded and if it
5157  *  did, call bio_endio on the original bio (having bio_put the new bio
5158  *  first).
5159  *  If the read failed..
5160  */
5161 static void raid5_align_endio(struct bio *bi)
5162 {
5163 	struct bio* raid_bi  = bi->bi_private;
5164 	struct mddev *mddev;
5165 	struct r5conf *conf;
5166 	struct md_rdev *rdev;
5167 	blk_status_t error = bi->bi_status;
5168 
5169 	bio_put(bi);
5170 
5171 	rdev = (void*)raid_bi->bi_next;
5172 	raid_bi->bi_next = NULL;
5173 	mddev = rdev->mddev;
5174 	conf = mddev->private;
5175 
5176 	rdev_dec_pending(rdev, conf->mddev);
5177 
5178 	if (!error) {
5179 		bio_endio(raid_bi);
5180 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5181 			wake_up(&conf->wait_for_quiescent);
5182 		return;
5183 	}
5184 
5185 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5186 
5187 	add_bio_to_retry(raid_bi, conf);
5188 }
5189 
5190 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5191 {
5192 	struct r5conf *conf = mddev->private;
5193 	int dd_idx;
5194 	struct bio* align_bi;
5195 	struct md_rdev *rdev;
5196 	sector_t end_sector;
5197 
5198 	if (!in_chunk_boundary(mddev, raid_bio)) {
5199 		pr_debug("%s: non aligned\n", __func__);
5200 		return 0;
5201 	}
5202 	/*
5203 	 * use bio_clone_fast to make a copy of the bio
5204 	 */
5205 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5206 	if (!align_bi)
5207 		return 0;
5208 	/*
5209 	 *   set bi_end_io to a new function, and set bi_private to the
5210 	 *     original bio.
5211 	 */
5212 	align_bi->bi_end_io  = raid5_align_endio;
5213 	align_bi->bi_private = raid_bio;
5214 	/*
5215 	 *	compute position
5216 	 */
5217 	align_bi->bi_iter.bi_sector =
5218 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5219 				     0, &dd_idx, NULL);
5220 
5221 	end_sector = bio_end_sector(align_bi);
5222 	rcu_read_lock();
5223 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5224 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5225 	    rdev->recovery_offset < end_sector) {
5226 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5227 		if (rdev &&
5228 		    (test_bit(Faulty, &rdev->flags) ||
5229 		    !(test_bit(In_sync, &rdev->flags) ||
5230 		      rdev->recovery_offset >= end_sector)))
5231 			rdev = NULL;
5232 	}
5233 
5234 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5235 		rcu_read_unlock();
5236 		bio_put(align_bi);
5237 		return 0;
5238 	}
5239 
5240 	if (rdev) {
5241 		sector_t first_bad;
5242 		int bad_sectors;
5243 
5244 		atomic_inc(&rdev->nr_pending);
5245 		rcu_read_unlock();
5246 		raid_bio->bi_next = (void*)rdev;
5247 		bio_set_dev(align_bi, rdev->bdev);
5248 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5249 
5250 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5251 				bio_sectors(align_bi),
5252 				&first_bad, &bad_sectors)) {
5253 			bio_put(align_bi);
5254 			rdev_dec_pending(rdev, mddev);
5255 			return 0;
5256 		}
5257 
5258 		/* No reshape active, so we can trust rdev->data_offset */
5259 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5260 
5261 		spin_lock_irq(&conf->device_lock);
5262 		wait_event_lock_irq(conf->wait_for_quiescent,
5263 				    conf->quiesce == 0,
5264 				    conf->device_lock);
5265 		atomic_inc(&conf->active_aligned_reads);
5266 		spin_unlock_irq(&conf->device_lock);
5267 
5268 		if (mddev->gendisk)
5269 			trace_block_bio_remap(align_bi->bi_disk->queue,
5270 					      align_bi, disk_devt(mddev->gendisk),
5271 					      raid_bio->bi_iter.bi_sector);
5272 		generic_make_request(align_bi);
5273 		return 1;
5274 	} else {
5275 		rcu_read_unlock();
5276 		bio_put(align_bi);
5277 		return 0;
5278 	}
5279 }
5280 
5281 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5282 {
5283 	struct bio *split;
5284 	sector_t sector = raid_bio->bi_iter.bi_sector;
5285 	unsigned chunk_sects = mddev->chunk_sectors;
5286 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5287 
5288 	if (sectors < bio_sectors(raid_bio)) {
5289 		struct r5conf *conf = mddev->private;
5290 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5291 		bio_chain(split, raid_bio);
5292 		generic_make_request(raid_bio);
5293 		raid_bio = split;
5294 	}
5295 
5296 	if (!raid5_read_one_chunk(mddev, raid_bio))
5297 		return raid_bio;
5298 
5299 	return NULL;
5300 }
5301 
5302 /* __get_priority_stripe - get the next stripe to process
5303  *
5304  * Full stripe writes are allowed to pass preread active stripes up until
5305  * the bypass_threshold is exceeded.  In general the bypass_count
5306  * increments when the handle_list is handled before the hold_list; however, it
5307  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5308  * stripe with in flight i/o.  The bypass_count will be reset when the
5309  * head of the hold_list has changed, i.e. the head was promoted to the
5310  * handle_list.
5311  */
5312 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5313 {
5314 	struct stripe_head *sh, *tmp;
5315 	struct list_head *handle_list = NULL;
5316 	struct r5worker_group *wg;
5317 	bool second_try = !r5c_is_writeback(conf->log) &&
5318 		!r5l_log_disk_error(conf);
5319 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5320 		r5l_log_disk_error(conf);
5321 
5322 again:
5323 	wg = NULL;
5324 	sh = NULL;
5325 	if (conf->worker_cnt_per_group == 0) {
5326 		handle_list = try_loprio ? &conf->loprio_list :
5327 					&conf->handle_list;
5328 	} else if (group != ANY_GROUP) {
5329 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5330 				&conf->worker_groups[group].handle_list;
5331 		wg = &conf->worker_groups[group];
5332 	} else {
5333 		int i;
5334 		for (i = 0; i < conf->group_cnt; i++) {
5335 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5336 				&conf->worker_groups[i].handle_list;
5337 			wg = &conf->worker_groups[i];
5338 			if (!list_empty(handle_list))
5339 				break;
5340 		}
5341 	}
5342 
5343 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5344 		  __func__,
5345 		  list_empty(handle_list) ? "empty" : "busy",
5346 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5347 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5348 
5349 	if (!list_empty(handle_list)) {
5350 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5351 
5352 		if (list_empty(&conf->hold_list))
5353 			conf->bypass_count = 0;
5354 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5355 			if (conf->hold_list.next == conf->last_hold)
5356 				conf->bypass_count++;
5357 			else {
5358 				conf->last_hold = conf->hold_list.next;
5359 				conf->bypass_count -= conf->bypass_threshold;
5360 				if (conf->bypass_count < 0)
5361 					conf->bypass_count = 0;
5362 			}
5363 		}
5364 	} else if (!list_empty(&conf->hold_list) &&
5365 		   ((conf->bypass_threshold &&
5366 		     conf->bypass_count > conf->bypass_threshold) ||
5367 		    atomic_read(&conf->pending_full_writes) == 0)) {
5368 
5369 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5370 			if (conf->worker_cnt_per_group == 0 ||
5371 			    group == ANY_GROUP ||
5372 			    !cpu_online(tmp->cpu) ||
5373 			    cpu_to_group(tmp->cpu) == group) {
5374 				sh = tmp;
5375 				break;
5376 			}
5377 		}
5378 
5379 		if (sh) {
5380 			conf->bypass_count -= conf->bypass_threshold;
5381 			if (conf->bypass_count < 0)
5382 				conf->bypass_count = 0;
5383 		}
5384 		wg = NULL;
5385 	}
5386 
5387 	if (!sh) {
5388 		if (second_try)
5389 			return NULL;
5390 		second_try = true;
5391 		try_loprio = !try_loprio;
5392 		goto again;
5393 	}
5394 
5395 	if (wg) {
5396 		wg->stripes_cnt--;
5397 		sh->group = NULL;
5398 	}
5399 	list_del_init(&sh->lru);
5400 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5401 	return sh;
5402 }
5403 
5404 struct raid5_plug_cb {
5405 	struct blk_plug_cb	cb;
5406 	struct list_head	list;
5407 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5408 };
5409 
5410 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5411 {
5412 	struct raid5_plug_cb *cb = container_of(
5413 		blk_cb, struct raid5_plug_cb, cb);
5414 	struct stripe_head *sh;
5415 	struct mddev *mddev = cb->cb.data;
5416 	struct r5conf *conf = mddev->private;
5417 	int cnt = 0;
5418 	int hash;
5419 
5420 	if (cb->list.next && !list_empty(&cb->list)) {
5421 		spin_lock_irq(&conf->device_lock);
5422 		while (!list_empty(&cb->list)) {
5423 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5424 			list_del_init(&sh->lru);
5425 			/*
5426 			 * avoid race release_stripe_plug() sees
5427 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5428 			 * is still in our list
5429 			 */
5430 			smp_mb__before_atomic();
5431 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5432 			/*
5433 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5434 			 * case, the count is always > 1 here
5435 			 */
5436 			hash = sh->hash_lock_index;
5437 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5438 			cnt++;
5439 		}
5440 		spin_unlock_irq(&conf->device_lock);
5441 	}
5442 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5443 				     NR_STRIPE_HASH_LOCKS);
5444 	if (mddev->queue)
5445 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5446 	kfree(cb);
5447 }
5448 
5449 static void release_stripe_plug(struct mddev *mddev,
5450 				struct stripe_head *sh)
5451 {
5452 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5453 		raid5_unplug, mddev,
5454 		sizeof(struct raid5_plug_cb));
5455 	struct raid5_plug_cb *cb;
5456 
5457 	if (!blk_cb) {
5458 		raid5_release_stripe(sh);
5459 		return;
5460 	}
5461 
5462 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5463 
5464 	if (cb->list.next == NULL) {
5465 		int i;
5466 		INIT_LIST_HEAD(&cb->list);
5467 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5468 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5469 	}
5470 
5471 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5472 		list_add_tail(&sh->lru, &cb->list);
5473 	else
5474 		raid5_release_stripe(sh);
5475 }
5476 
5477 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5478 {
5479 	struct r5conf *conf = mddev->private;
5480 	sector_t logical_sector, last_sector;
5481 	struct stripe_head *sh;
5482 	int stripe_sectors;
5483 
5484 	if (mddev->reshape_position != MaxSector)
5485 		/* Skip discard while reshape is happening */
5486 		return;
5487 
5488 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5489 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5490 
5491 	bi->bi_next = NULL;
5492 
5493 	stripe_sectors = conf->chunk_sectors *
5494 		(conf->raid_disks - conf->max_degraded);
5495 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5496 					       stripe_sectors);
5497 	sector_div(last_sector, stripe_sectors);
5498 
5499 	logical_sector *= conf->chunk_sectors;
5500 	last_sector *= conf->chunk_sectors;
5501 
5502 	for (; logical_sector < last_sector;
5503 	     logical_sector += STRIPE_SECTORS) {
5504 		DEFINE_WAIT(w);
5505 		int d;
5506 	again:
5507 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5508 		prepare_to_wait(&conf->wait_for_overlap, &w,
5509 				TASK_UNINTERRUPTIBLE);
5510 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5511 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5512 			raid5_release_stripe(sh);
5513 			schedule();
5514 			goto again;
5515 		}
5516 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5517 		spin_lock_irq(&sh->stripe_lock);
5518 		for (d = 0; d < conf->raid_disks; d++) {
5519 			if (d == sh->pd_idx || d == sh->qd_idx)
5520 				continue;
5521 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5522 				set_bit(R5_Overlap, &sh->dev[d].flags);
5523 				spin_unlock_irq(&sh->stripe_lock);
5524 				raid5_release_stripe(sh);
5525 				schedule();
5526 				goto again;
5527 			}
5528 		}
5529 		set_bit(STRIPE_DISCARD, &sh->state);
5530 		finish_wait(&conf->wait_for_overlap, &w);
5531 		sh->overwrite_disks = 0;
5532 		for (d = 0; d < conf->raid_disks; d++) {
5533 			if (d == sh->pd_idx || d == sh->qd_idx)
5534 				continue;
5535 			sh->dev[d].towrite = bi;
5536 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5537 			bio_inc_remaining(bi);
5538 			md_write_inc(mddev, bi);
5539 			sh->overwrite_disks++;
5540 		}
5541 		spin_unlock_irq(&sh->stripe_lock);
5542 		if (conf->mddev->bitmap) {
5543 			for (d = 0;
5544 			     d < conf->raid_disks - conf->max_degraded;
5545 			     d++)
5546 				md_bitmap_startwrite(mddev->bitmap,
5547 						     sh->sector,
5548 						     STRIPE_SECTORS,
5549 						     0);
5550 			sh->bm_seq = conf->seq_flush + 1;
5551 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5552 		}
5553 
5554 		set_bit(STRIPE_HANDLE, &sh->state);
5555 		clear_bit(STRIPE_DELAYED, &sh->state);
5556 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5557 			atomic_inc(&conf->preread_active_stripes);
5558 		release_stripe_plug(mddev, sh);
5559 	}
5560 
5561 	bio_endio(bi);
5562 }
5563 
5564 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5565 {
5566 	struct r5conf *conf = mddev->private;
5567 	int dd_idx;
5568 	sector_t new_sector;
5569 	sector_t logical_sector, last_sector;
5570 	struct stripe_head *sh;
5571 	const int rw = bio_data_dir(bi);
5572 	DEFINE_WAIT(w);
5573 	bool do_prepare;
5574 	bool do_flush = false;
5575 
5576 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5577 		int ret = log_handle_flush_request(conf, bi);
5578 
5579 		if (ret == 0)
5580 			return true;
5581 		if (ret == -ENODEV) {
5582 			md_flush_request(mddev, bi);
5583 			return true;
5584 		}
5585 		/* ret == -EAGAIN, fallback */
5586 		/*
5587 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5588 		 * we need to flush journal device
5589 		 */
5590 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5591 	}
5592 
5593 	if (!md_write_start(mddev, bi))
5594 		return false;
5595 	/*
5596 	 * If array is degraded, better not do chunk aligned read because
5597 	 * later we might have to read it again in order to reconstruct
5598 	 * data on failed drives.
5599 	 */
5600 	if (rw == READ && mddev->degraded == 0 &&
5601 	    mddev->reshape_position == MaxSector) {
5602 		bi = chunk_aligned_read(mddev, bi);
5603 		if (!bi)
5604 			return true;
5605 	}
5606 
5607 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5608 		make_discard_request(mddev, bi);
5609 		md_write_end(mddev);
5610 		return true;
5611 	}
5612 
5613 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5614 	last_sector = bio_end_sector(bi);
5615 	bi->bi_next = NULL;
5616 
5617 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5618 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5619 		int previous;
5620 		int seq;
5621 
5622 		do_prepare = false;
5623 	retry:
5624 		seq = read_seqcount_begin(&conf->gen_lock);
5625 		previous = 0;
5626 		if (do_prepare)
5627 			prepare_to_wait(&conf->wait_for_overlap, &w,
5628 				TASK_UNINTERRUPTIBLE);
5629 		if (unlikely(conf->reshape_progress != MaxSector)) {
5630 			/* spinlock is needed as reshape_progress may be
5631 			 * 64bit on a 32bit platform, and so it might be
5632 			 * possible to see a half-updated value
5633 			 * Of course reshape_progress could change after
5634 			 * the lock is dropped, so once we get a reference
5635 			 * to the stripe that we think it is, we will have
5636 			 * to check again.
5637 			 */
5638 			spin_lock_irq(&conf->device_lock);
5639 			if (mddev->reshape_backwards
5640 			    ? logical_sector < conf->reshape_progress
5641 			    : logical_sector >= conf->reshape_progress) {
5642 				previous = 1;
5643 			} else {
5644 				if (mddev->reshape_backwards
5645 				    ? logical_sector < conf->reshape_safe
5646 				    : logical_sector >= conf->reshape_safe) {
5647 					spin_unlock_irq(&conf->device_lock);
5648 					schedule();
5649 					do_prepare = true;
5650 					goto retry;
5651 				}
5652 			}
5653 			spin_unlock_irq(&conf->device_lock);
5654 		}
5655 
5656 		new_sector = raid5_compute_sector(conf, logical_sector,
5657 						  previous,
5658 						  &dd_idx, NULL);
5659 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5660 			(unsigned long long)new_sector,
5661 			(unsigned long long)logical_sector);
5662 
5663 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5664 				       (bi->bi_opf & REQ_RAHEAD), 0);
5665 		if (sh) {
5666 			if (unlikely(previous)) {
5667 				/* expansion might have moved on while waiting for a
5668 				 * stripe, so we must do the range check again.
5669 				 * Expansion could still move past after this
5670 				 * test, but as we are holding a reference to
5671 				 * 'sh', we know that if that happens,
5672 				 *  STRIPE_EXPANDING will get set and the expansion
5673 				 * won't proceed until we finish with the stripe.
5674 				 */
5675 				int must_retry = 0;
5676 				spin_lock_irq(&conf->device_lock);
5677 				if (mddev->reshape_backwards
5678 				    ? logical_sector >= conf->reshape_progress
5679 				    : logical_sector < conf->reshape_progress)
5680 					/* mismatch, need to try again */
5681 					must_retry = 1;
5682 				spin_unlock_irq(&conf->device_lock);
5683 				if (must_retry) {
5684 					raid5_release_stripe(sh);
5685 					schedule();
5686 					do_prepare = true;
5687 					goto retry;
5688 				}
5689 			}
5690 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5691 				/* Might have got the wrong stripe_head
5692 				 * by accident
5693 				 */
5694 				raid5_release_stripe(sh);
5695 				goto retry;
5696 			}
5697 
5698 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5699 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5700 				/* Stripe is busy expanding or
5701 				 * add failed due to overlap.  Flush everything
5702 				 * and wait a while
5703 				 */
5704 				md_wakeup_thread(mddev->thread);
5705 				raid5_release_stripe(sh);
5706 				schedule();
5707 				do_prepare = true;
5708 				goto retry;
5709 			}
5710 			if (do_flush) {
5711 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5712 				/* we only need flush for one stripe */
5713 				do_flush = false;
5714 			}
5715 
5716 			set_bit(STRIPE_HANDLE, &sh->state);
5717 			clear_bit(STRIPE_DELAYED, &sh->state);
5718 			if ((!sh->batch_head || sh == sh->batch_head) &&
5719 			    (bi->bi_opf & REQ_SYNC) &&
5720 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5721 				atomic_inc(&conf->preread_active_stripes);
5722 			release_stripe_plug(mddev, sh);
5723 		} else {
5724 			/* cannot get stripe for read-ahead, just give-up */
5725 			bi->bi_status = BLK_STS_IOERR;
5726 			break;
5727 		}
5728 	}
5729 	finish_wait(&conf->wait_for_overlap, &w);
5730 
5731 	if (rw == WRITE)
5732 		md_write_end(mddev);
5733 	bio_endio(bi);
5734 	return true;
5735 }
5736 
5737 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5738 
5739 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5740 {
5741 	/* reshaping is quite different to recovery/resync so it is
5742 	 * handled quite separately ... here.
5743 	 *
5744 	 * On each call to sync_request, we gather one chunk worth of
5745 	 * destination stripes and flag them as expanding.
5746 	 * Then we find all the source stripes and request reads.
5747 	 * As the reads complete, handle_stripe will copy the data
5748 	 * into the destination stripe and release that stripe.
5749 	 */
5750 	struct r5conf *conf = mddev->private;
5751 	struct stripe_head *sh;
5752 	struct md_rdev *rdev;
5753 	sector_t first_sector, last_sector;
5754 	int raid_disks = conf->previous_raid_disks;
5755 	int data_disks = raid_disks - conf->max_degraded;
5756 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5757 	int i;
5758 	int dd_idx;
5759 	sector_t writepos, readpos, safepos;
5760 	sector_t stripe_addr;
5761 	int reshape_sectors;
5762 	struct list_head stripes;
5763 	sector_t retn;
5764 
5765 	if (sector_nr == 0) {
5766 		/* If restarting in the middle, skip the initial sectors */
5767 		if (mddev->reshape_backwards &&
5768 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5769 			sector_nr = raid5_size(mddev, 0, 0)
5770 				- conf->reshape_progress;
5771 		} else if (mddev->reshape_backwards &&
5772 			   conf->reshape_progress == MaxSector) {
5773 			/* shouldn't happen, but just in case, finish up.*/
5774 			sector_nr = MaxSector;
5775 		} else if (!mddev->reshape_backwards &&
5776 			   conf->reshape_progress > 0)
5777 			sector_nr = conf->reshape_progress;
5778 		sector_div(sector_nr, new_data_disks);
5779 		if (sector_nr) {
5780 			mddev->curr_resync_completed = sector_nr;
5781 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5782 			*skipped = 1;
5783 			retn = sector_nr;
5784 			goto finish;
5785 		}
5786 	}
5787 
5788 	/* We need to process a full chunk at a time.
5789 	 * If old and new chunk sizes differ, we need to process the
5790 	 * largest of these
5791 	 */
5792 
5793 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5794 
5795 	/* We update the metadata at least every 10 seconds, or when
5796 	 * the data about to be copied would over-write the source of
5797 	 * the data at the front of the range.  i.e. one new_stripe
5798 	 * along from reshape_progress new_maps to after where
5799 	 * reshape_safe old_maps to
5800 	 */
5801 	writepos = conf->reshape_progress;
5802 	sector_div(writepos, new_data_disks);
5803 	readpos = conf->reshape_progress;
5804 	sector_div(readpos, data_disks);
5805 	safepos = conf->reshape_safe;
5806 	sector_div(safepos, data_disks);
5807 	if (mddev->reshape_backwards) {
5808 		BUG_ON(writepos < reshape_sectors);
5809 		writepos -= reshape_sectors;
5810 		readpos += reshape_sectors;
5811 		safepos += reshape_sectors;
5812 	} else {
5813 		writepos += reshape_sectors;
5814 		/* readpos and safepos are worst-case calculations.
5815 		 * A negative number is overly pessimistic, and causes
5816 		 * obvious problems for unsigned storage.  So clip to 0.
5817 		 */
5818 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5819 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5820 	}
5821 
5822 	/* Having calculated the 'writepos' possibly use it
5823 	 * to set 'stripe_addr' which is where we will write to.
5824 	 */
5825 	if (mddev->reshape_backwards) {
5826 		BUG_ON(conf->reshape_progress == 0);
5827 		stripe_addr = writepos;
5828 		BUG_ON((mddev->dev_sectors &
5829 			~((sector_t)reshape_sectors - 1))
5830 		       - reshape_sectors - stripe_addr
5831 		       != sector_nr);
5832 	} else {
5833 		BUG_ON(writepos != sector_nr + reshape_sectors);
5834 		stripe_addr = sector_nr;
5835 	}
5836 
5837 	/* 'writepos' is the most advanced device address we might write.
5838 	 * 'readpos' is the least advanced device address we might read.
5839 	 * 'safepos' is the least address recorded in the metadata as having
5840 	 *     been reshaped.
5841 	 * If there is a min_offset_diff, these are adjusted either by
5842 	 * increasing the safepos/readpos if diff is negative, or
5843 	 * increasing writepos if diff is positive.
5844 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5845 	 * ensure safety in the face of a crash - that must be done by userspace
5846 	 * making a backup of the data.  So in that case there is no particular
5847 	 * rush to update metadata.
5848 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5849 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5850 	 * we can be safe in the event of a crash.
5851 	 * So we insist on updating metadata if safepos is behind writepos and
5852 	 * readpos is beyond writepos.
5853 	 * In any case, update the metadata every 10 seconds.
5854 	 * Maybe that number should be configurable, but I'm not sure it is
5855 	 * worth it.... maybe it could be a multiple of safemode_delay???
5856 	 */
5857 	if (conf->min_offset_diff < 0) {
5858 		safepos += -conf->min_offset_diff;
5859 		readpos += -conf->min_offset_diff;
5860 	} else
5861 		writepos += conf->min_offset_diff;
5862 
5863 	if ((mddev->reshape_backwards
5864 	     ? (safepos > writepos && readpos < writepos)
5865 	     : (safepos < writepos && readpos > writepos)) ||
5866 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5867 		/* Cannot proceed until we've updated the superblock... */
5868 		wait_event(conf->wait_for_overlap,
5869 			   atomic_read(&conf->reshape_stripes)==0
5870 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5871 		if (atomic_read(&conf->reshape_stripes) != 0)
5872 			return 0;
5873 		mddev->reshape_position = conf->reshape_progress;
5874 		mddev->curr_resync_completed = sector_nr;
5875 		if (!mddev->reshape_backwards)
5876 			/* Can update recovery_offset */
5877 			rdev_for_each(rdev, mddev)
5878 				if (rdev->raid_disk >= 0 &&
5879 				    !test_bit(Journal, &rdev->flags) &&
5880 				    !test_bit(In_sync, &rdev->flags) &&
5881 				    rdev->recovery_offset < sector_nr)
5882 					rdev->recovery_offset = sector_nr;
5883 
5884 		conf->reshape_checkpoint = jiffies;
5885 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5886 		md_wakeup_thread(mddev->thread);
5887 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5888 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5889 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5890 			return 0;
5891 		spin_lock_irq(&conf->device_lock);
5892 		conf->reshape_safe = mddev->reshape_position;
5893 		spin_unlock_irq(&conf->device_lock);
5894 		wake_up(&conf->wait_for_overlap);
5895 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5896 	}
5897 
5898 	INIT_LIST_HEAD(&stripes);
5899 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5900 		int j;
5901 		int skipped_disk = 0;
5902 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5903 		set_bit(STRIPE_EXPANDING, &sh->state);
5904 		atomic_inc(&conf->reshape_stripes);
5905 		/* If any of this stripe is beyond the end of the old
5906 		 * array, then we need to zero those blocks
5907 		 */
5908 		for (j=sh->disks; j--;) {
5909 			sector_t s;
5910 			if (j == sh->pd_idx)
5911 				continue;
5912 			if (conf->level == 6 &&
5913 			    j == sh->qd_idx)
5914 				continue;
5915 			s = raid5_compute_blocknr(sh, j, 0);
5916 			if (s < raid5_size(mddev, 0, 0)) {
5917 				skipped_disk = 1;
5918 				continue;
5919 			}
5920 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5921 			set_bit(R5_Expanded, &sh->dev[j].flags);
5922 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5923 		}
5924 		if (!skipped_disk) {
5925 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5926 			set_bit(STRIPE_HANDLE, &sh->state);
5927 		}
5928 		list_add(&sh->lru, &stripes);
5929 	}
5930 	spin_lock_irq(&conf->device_lock);
5931 	if (mddev->reshape_backwards)
5932 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5933 	else
5934 		conf->reshape_progress += reshape_sectors * new_data_disks;
5935 	spin_unlock_irq(&conf->device_lock);
5936 	/* Ok, those stripe are ready. We can start scheduling
5937 	 * reads on the source stripes.
5938 	 * The source stripes are determined by mapping the first and last
5939 	 * block on the destination stripes.
5940 	 */
5941 	first_sector =
5942 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5943 				     1, &dd_idx, NULL);
5944 	last_sector =
5945 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5946 					    * new_data_disks - 1),
5947 				     1, &dd_idx, NULL);
5948 	if (last_sector >= mddev->dev_sectors)
5949 		last_sector = mddev->dev_sectors - 1;
5950 	while (first_sector <= last_sector) {
5951 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5952 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5953 		set_bit(STRIPE_HANDLE, &sh->state);
5954 		raid5_release_stripe(sh);
5955 		first_sector += STRIPE_SECTORS;
5956 	}
5957 	/* Now that the sources are clearly marked, we can release
5958 	 * the destination stripes
5959 	 */
5960 	while (!list_empty(&stripes)) {
5961 		sh = list_entry(stripes.next, struct stripe_head, lru);
5962 		list_del_init(&sh->lru);
5963 		raid5_release_stripe(sh);
5964 	}
5965 	/* If this takes us to the resync_max point where we have to pause,
5966 	 * then we need to write out the superblock.
5967 	 */
5968 	sector_nr += reshape_sectors;
5969 	retn = reshape_sectors;
5970 finish:
5971 	if (mddev->curr_resync_completed > mddev->resync_max ||
5972 	    (sector_nr - mddev->curr_resync_completed) * 2
5973 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5974 		/* Cannot proceed until we've updated the superblock... */
5975 		wait_event(conf->wait_for_overlap,
5976 			   atomic_read(&conf->reshape_stripes) == 0
5977 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5978 		if (atomic_read(&conf->reshape_stripes) != 0)
5979 			goto ret;
5980 		mddev->reshape_position = conf->reshape_progress;
5981 		mddev->curr_resync_completed = sector_nr;
5982 		if (!mddev->reshape_backwards)
5983 			/* Can update recovery_offset */
5984 			rdev_for_each(rdev, mddev)
5985 				if (rdev->raid_disk >= 0 &&
5986 				    !test_bit(Journal, &rdev->flags) &&
5987 				    !test_bit(In_sync, &rdev->flags) &&
5988 				    rdev->recovery_offset < sector_nr)
5989 					rdev->recovery_offset = sector_nr;
5990 		conf->reshape_checkpoint = jiffies;
5991 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5992 		md_wakeup_thread(mddev->thread);
5993 		wait_event(mddev->sb_wait,
5994 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5995 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5996 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5997 			goto ret;
5998 		spin_lock_irq(&conf->device_lock);
5999 		conf->reshape_safe = mddev->reshape_position;
6000 		spin_unlock_irq(&conf->device_lock);
6001 		wake_up(&conf->wait_for_overlap);
6002 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6003 	}
6004 ret:
6005 	return retn;
6006 }
6007 
6008 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6009 					  int *skipped)
6010 {
6011 	struct r5conf *conf = mddev->private;
6012 	struct stripe_head *sh;
6013 	sector_t max_sector = mddev->dev_sectors;
6014 	sector_t sync_blocks;
6015 	int still_degraded = 0;
6016 	int i;
6017 
6018 	if (sector_nr >= max_sector) {
6019 		/* just being told to finish up .. nothing much to do */
6020 
6021 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6022 			end_reshape(conf);
6023 			return 0;
6024 		}
6025 
6026 		if (mddev->curr_resync < max_sector) /* aborted */
6027 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6028 					   &sync_blocks, 1);
6029 		else /* completed sync */
6030 			conf->fullsync = 0;
6031 		md_bitmap_close_sync(mddev->bitmap);
6032 
6033 		return 0;
6034 	}
6035 
6036 	/* Allow raid5_quiesce to complete */
6037 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6038 
6039 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6040 		return reshape_request(mddev, sector_nr, skipped);
6041 
6042 	/* No need to check resync_max as we never do more than one
6043 	 * stripe, and as resync_max will always be on a chunk boundary,
6044 	 * if the check in md_do_sync didn't fire, there is no chance
6045 	 * of overstepping resync_max here
6046 	 */
6047 
6048 	/* if there is too many failed drives and we are trying
6049 	 * to resync, then assert that we are finished, because there is
6050 	 * nothing we can do.
6051 	 */
6052 	if (mddev->degraded >= conf->max_degraded &&
6053 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6054 		sector_t rv = mddev->dev_sectors - sector_nr;
6055 		*skipped = 1;
6056 		return rv;
6057 	}
6058 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6059 	    !conf->fullsync &&
6060 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6061 	    sync_blocks >= STRIPE_SECTORS) {
6062 		/* we can skip this block, and probably more */
6063 		sync_blocks /= STRIPE_SECTORS;
6064 		*skipped = 1;
6065 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6066 	}
6067 
6068 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6069 
6070 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6071 	if (sh == NULL) {
6072 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6073 		/* make sure we don't swamp the stripe cache if someone else
6074 		 * is trying to get access
6075 		 */
6076 		schedule_timeout_uninterruptible(1);
6077 	}
6078 	/* Need to check if array will still be degraded after recovery/resync
6079 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6080 	 * one drive while leaving another faulty drive in array.
6081 	 */
6082 	rcu_read_lock();
6083 	for (i = 0; i < conf->raid_disks; i++) {
6084 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6085 
6086 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6087 			still_degraded = 1;
6088 	}
6089 	rcu_read_unlock();
6090 
6091 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6092 
6093 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6094 	set_bit(STRIPE_HANDLE, &sh->state);
6095 
6096 	raid5_release_stripe(sh);
6097 
6098 	return STRIPE_SECTORS;
6099 }
6100 
6101 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6102 			       unsigned int offset)
6103 {
6104 	/* We may not be able to submit a whole bio at once as there
6105 	 * may not be enough stripe_heads available.
6106 	 * We cannot pre-allocate enough stripe_heads as we may need
6107 	 * more than exist in the cache (if we allow ever large chunks).
6108 	 * So we do one stripe head at a time and record in
6109 	 * ->bi_hw_segments how many have been done.
6110 	 *
6111 	 * We *know* that this entire raid_bio is in one chunk, so
6112 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6113 	 */
6114 	struct stripe_head *sh;
6115 	int dd_idx;
6116 	sector_t sector, logical_sector, last_sector;
6117 	int scnt = 0;
6118 	int handled = 0;
6119 
6120 	logical_sector = raid_bio->bi_iter.bi_sector &
6121 		~((sector_t)STRIPE_SECTORS-1);
6122 	sector = raid5_compute_sector(conf, logical_sector,
6123 				      0, &dd_idx, NULL);
6124 	last_sector = bio_end_sector(raid_bio);
6125 
6126 	for (; logical_sector < last_sector;
6127 	     logical_sector += STRIPE_SECTORS,
6128 		     sector += STRIPE_SECTORS,
6129 		     scnt++) {
6130 
6131 		if (scnt < offset)
6132 			/* already done this stripe */
6133 			continue;
6134 
6135 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6136 
6137 		if (!sh) {
6138 			/* failed to get a stripe - must wait */
6139 			conf->retry_read_aligned = raid_bio;
6140 			conf->retry_read_offset = scnt;
6141 			return handled;
6142 		}
6143 
6144 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6145 			raid5_release_stripe(sh);
6146 			conf->retry_read_aligned = raid_bio;
6147 			conf->retry_read_offset = scnt;
6148 			return handled;
6149 		}
6150 
6151 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6152 		handle_stripe(sh);
6153 		raid5_release_stripe(sh);
6154 		handled++;
6155 	}
6156 
6157 	bio_endio(raid_bio);
6158 
6159 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6160 		wake_up(&conf->wait_for_quiescent);
6161 	return handled;
6162 }
6163 
6164 static int handle_active_stripes(struct r5conf *conf, int group,
6165 				 struct r5worker *worker,
6166 				 struct list_head *temp_inactive_list)
6167 {
6168 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6169 	int i, batch_size = 0, hash;
6170 	bool release_inactive = false;
6171 
6172 	while (batch_size < MAX_STRIPE_BATCH &&
6173 			(sh = __get_priority_stripe(conf, group)) != NULL)
6174 		batch[batch_size++] = sh;
6175 
6176 	if (batch_size == 0) {
6177 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6178 			if (!list_empty(temp_inactive_list + i))
6179 				break;
6180 		if (i == NR_STRIPE_HASH_LOCKS) {
6181 			spin_unlock_irq(&conf->device_lock);
6182 			log_flush_stripe_to_raid(conf);
6183 			spin_lock_irq(&conf->device_lock);
6184 			return batch_size;
6185 		}
6186 		release_inactive = true;
6187 	}
6188 	spin_unlock_irq(&conf->device_lock);
6189 
6190 	release_inactive_stripe_list(conf, temp_inactive_list,
6191 				     NR_STRIPE_HASH_LOCKS);
6192 
6193 	r5l_flush_stripe_to_raid(conf->log);
6194 	if (release_inactive) {
6195 		spin_lock_irq(&conf->device_lock);
6196 		return 0;
6197 	}
6198 
6199 	for (i = 0; i < batch_size; i++)
6200 		handle_stripe(batch[i]);
6201 	log_write_stripe_run(conf);
6202 
6203 	cond_resched();
6204 
6205 	spin_lock_irq(&conf->device_lock);
6206 	for (i = 0; i < batch_size; i++) {
6207 		hash = batch[i]->hash_lock_index;
6208 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6209 	}
6210 	return batch_size;
6211 }
6212 
6213 static void raid5_do_work(struct work_struct *work)
6214 {
6215 	struct r5worker *worker = container_of(work, struct r5worker, work);
6216 	struct r5worker_group *group = worker->group;
6217 	struct r5conf *conf = group->conf;
6218 	struct mddev *mddev = conf->mddev;
6219 	int group_id = group - conf->worker_groups;
6220 	int handled;
6221 	struct blk_plug plug;
6222 
6223 	pr_debug("+++ raid5worker active\n");
6224 
6225 	blk_start_plug(&plug);
6226 	handled = 0;
6227 	spin_lock_irq(&conf->device_lock);
6228 	while (1) {
6229 		int batch_size, released;
6230 
6231 		released = release_stripe_list(conf, worker->temp_inactive_list);
6232 
6233 		batch_size = handle_active_stripes(conf, group_id, worker,
6234 						   worker->temp_inactive_list);
6235 		worker->working = false;
6236 		if (!batch_size && !released)
6237 			break;
6238 		handled += batch_size;
6239 		wait_event_lock_irq(mddev->sb_wait,
6240 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6241 			conf->device_lock);
6242 	}
6243 	pr_debug("%d stripes handled\n", handled);
6244 
6245 	spin_unlock_irq(&conf->device_lock);
6246 
6247 	flush_deferred_bios(conf);
6248 
6249 	r5l_flush_stripe_to_raid(conf->log);
6250 
6251 	async_tx_issue_pending_all();
6252 	blk_finish_plug(&plug);
6253 
6254 	pr_debug("--- raid5worker inactive\n");
6255 }
6256 
6257 /*
6258  * This is our raid5 kernel thread.
6259  *
6260  * We scan the hash table for stripes which can be handled now.
6261  * During the scan, completed stripes are saved for us by the interrupt
6262  * handler, so that they will not have to wait for our next wakeup.
6263  */
6264 static void raid5d(struct md_thread *thread)
6265 {
6266 	struct mddev *mddev = thread->mddev;
6267 	struct r5conf *conf = mddev->private;
6268 	int handled;
6269 	struct blk_plug plug;
6270 
6271 	pr_debug("+++ raid5d active\n");
6272 
6273 	md_check_recovery(mddev);
6274 
6275 	blk_start_plug(&plug);
6276 	handled = 0;
6277 	spin_lock_irq(&conf->device_lock);
6278 	while (1) {
6279 		struct bio *bio;
6280 		int batch_size, released;
6281 		unsigned int offset;
6282 
6283 		released = release_stripe_list(conf, conf->temp_inactive_list);
6284 		if (released)
6285 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6286 
6287 		if (
6288 		    !list_empty(&conf->bitmap_list)) {
6289 			/* Now is a good time to flush some bitmap updates */
6290 			conf->seq_flush++;
6291 			spin_unlock_irq(&conf->device_lock);
6292 			md_bitmap_unplug(mddev->bitmap);
6293 			spin_lock_irq(&conf->device_lock);
6294 			conf->seq_write = conf->seq_flush;
6295 			activate_bit_delay(conf, conf->temp_inactive_list);
6296 		}
6297 		raid5_activate_delayed(conf);
6298 
6299 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6300 			int ok;
6301 			spin_unlock_irq(&conf->device_lock);
6302 			ok = retry_aligned_read(conf, bio, offset);
6303 			spin_lock_irq(&conf->device_lock);
6304 			if (!ok)
6305 				break;
6306 			handled++;
6307 		}
6308 
6309 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6310 						   conf->temp_inactive_list);
6311 		if (!batch_size && !released)
6312 			break;
6313 		handled += batch_size;
6314 
6315 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6316 			spin_unlock_irq(&conf->device_lock);
6317 			md_check_recovery(mddev);
6318 			spin_lock_irq(&conf->device_lock);
6319 		}
6320 	}
6321 	pr_debug("%d stripes handled\n", handled);
6322 
6323 	spin_unlock_irq(&conf->device_lock);
6324 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6325 	    mutex_trylock(&conf->cache_size_mutex)) {
6326 		grow_one_stripe(conf, __GFP_NOWARN);
6327 		/* Set flag even if allocation failed.  This helps
6328 		 * slow down allocation requests when mem is short
6329 		 */
6330 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6331 		mutex_unlock(&conf->cache_size_mutex);
6332 	}
6333 
6334 	flush_deferred_bios(conf);
6335 
6336 	r5l_flush_stripe_to_raid(conf->log);
6337 
6338 	async_tx_issue_pending_all();
6339 	blk_finish_plug(&plug);
6340 
6341 	pr_debug("--- raid5d inactive\n");
6342 }
6343 
6344 static ssize_t
6345 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6346 {
6347 	struct r5conf *conf;
6348 	int ret = 0;
6349 	spin_lock(&mddev->lock);
6350 	conf = mddev->private;
6351 	if (conf)
6352 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6353 	spin_unlock(&mddev->lock);
6354 	return ret;
6355 }
6356 
6357 int
6358 raid5_set_cache_size(struct mddev *mddev, int size)
6359 {
6360 	struct r5conf *conf = mddev->private;
6361 
6362 	if (size <= 16 || size > 32768)
6363 		return -EINVAL;
6364 
6365 	conf->min_nr_stripes = size;
6366 	mutex_lock(&conf->cache_size_mutex);
6367 	while (size < conf->max_nr_stripes &&
6368 	       drop_one_stripe(conf))
6369 		;
6370 	mutex_unlock(&conf->cache_size_mutex);
6371 
6372 	md_allow_write(mddev);
6373 
6374 	mutex_lock(&conf->cache_size_mutex);
6375 	while (size > conf->max_nr_stripes)
6376 		if (!grow_one_stripe(conf, GFP_KERNEL))
6377 			break;
6378 	mutex_unlock(&conf->cache_size_mutex);
6379 
6380 	return 0;
6381 }
6382 EXPORT_SYMBOL(raid5_set_cache_size);
6383 
6384 static ssize_t
6385 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6386 {
6387 	struct r5conf *conf;
6388 	unsigned long new;
6389 	int err;
6390 
6391 	if (len >= PAGE_SIZE)
6392 		return -EINVAL;
6393 	if (kstrtoul(page, 10, &new))
6394 		return -EINVAL;
6395 	err = mddev_lock(mddev);
6396 	if (err)
6397 		return err;
6398 	conf = mddev->private;
6399 	if (!conf)
6400 		err = -ENODEV;
6401 	else
6402 		err = raid5_set_cache_size(mddev, new);
6403 	mddev_unlock(mddev);
6404 
6405 	return err ?: len;
6406 }
6407 
6408 static struct md_sysfs_entry
6409 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6410 				raid5_show_stripe_cache_size,
6411 				raid5_store_stripe_cache_size);
6412 
6413 static ssize_t
6414 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6415 {
6416 	struct r5conf *conf = mddev->private;
6417 	if (conf)
6418 		return sprintf(page, "%d\n", conf->rmw_level);
6419 	else
6420 		return 0;
6421 }
6422 
6423 static ssize_t
6424 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6425 {
6426 	struct r5conf *conf = mddev->private;
6427 	unsigned long new;
6428 
6429 	if (!conf)
6430 		return -ENODEV;
6431 
6432 	if (len >= PAGE_SIZE)
6433 		return -EINVAL;
6434 
6435 	if (kstrtoul(page, 10, &new))
6436 		return -EINVAL;
6437 
6438 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6439 		return -EINVAL;
6440 
6441 	if (new != PARITY_DISABLE_RMW &&
6442 	    new != PARITY_ENABLE_RMW &&
6443 	    new != PARITY_PREFER_RMW)
6444 		return -EINVAL;
6445 
6446 	conf->rmw_level = new;
6447 	return len;
6448 }
6449 
6450 static struct md_sysfs_entry
6451 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6452 			 raid5_show_rmw_level,
6453 			 raid5_store_rmw_level);
6454 
6455 
6456 static ssize_t
6457 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6458 {
6459 	struct r5conf *conf;
6460 	int ret = 0;
6461 	spin_lock(&mddev->lock);
6462 	conf = mddev->private;
6463 	if (conf)
6464 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6465 	spin_unlock(&mddev->lock);
6466 	return ret;
6467 }
6468 
6469 static ssize_t
6470 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6471 {
6472 	struct r5conf *conf;
6473 	unsigned long new;
6474 	int err;
6475 
6476 	if (len >= PAGE_SIZE)
6477 		return -EINVAL;
6478 	if (kstrtoul(page, 10, &new))
6479 		return -EINVAL;
6480 
6481 	err = mddev_lock(mddev);
6482 	if (err)
6483 		return err;
6484 	conf = mddev->private;
6485 	if (!conf)
6486 		err = -ENODEV;
6487 	else if (new > conf->min_nr_stripes)
6488 		err = -EINVAL;
6489 	else
6490 		conf->bypass_threshold = new;
6491 	mddev_unlock(mddev);
6492 	return err ?: len;
6493 }
6494 
6495 static struct md_sysfs_entry
6496 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6497 					S_IRUGO | S_IWUSR,
6498 					raid5_show_preread_threshold,
6499 					raid5_store_preread_threshold);
6500 
6501 static ssize_t
6502 raid5_show_skip_copy(struct mddev *mddev, char *page)
6503 {
6504 	struct r5conf *conf;
6505 	int ret = 0;
6506 	spin_lock(&mddev->lock);
6507 	conf = mddev->private;
6508 	if (conf)
6509 		ret = sprintf(page, "%d\n", conf->skip_copy);
6510 	spin_unlock(&mddev->lock);
6511 	return ret;
6512 }
6513 
6514 static ssize_t
6515 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6516 {
6517 	struct r5conf *conf;
6518 	unsigned long new;
6519 	int err;
6520 
6521 	if (len >= PAGE_SIZE)
6522 		return -EINVAL;
6523 	if (kstrtoul(page, 10, &new))
6524 		return -EINVAL;
6525 	new = !!new;
6526 
6527 	err = mddev_lock(mddev);
6528 	if (err)
6529 		return err;
6530 	conf = mddev->private;
6531 	if (!conf)
6532 		err = -ENODEV;
6533 	else if (new != conf->skip_copy) {
6534 		mddev_suspend(mddev);
6535 		conf->skip_copy = new;
6536 		if (new)
6537 			mddev->queue->backing_dev_info->capabilities |=
6538 				BDI_CAP_STABLE_WRITES;
6539 		else
6540 			mddev->queue->backing_dev_info->capabilities &=
6541 				~BDI_CAP_STABLE_WRITES;
6542 		mddev_resume(mddev);
6543 	}
6544 	mddev_unlock(mddev);
6545 	return err ?: len;
6546 }
6547 
6548 static struct md_sysfs_entry
6549 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6550 					raid5_show_skip_copy,
6551 					raid5_store_skip_copy);
6552 
6553 static ssize_t
6554 stripe_cache_active_show(struct mddev *mddev, char *page)
6555 {
6556 	struct r5conf *conf = mddev->private;
6557 	if (conf)
6558 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6559 	else
6560 		return 0;
6561 }
6562 
6563 static struct md_sysfs_entry
6564 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6565 
6566 static ssize_t
6567 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6568 {
6569 	struct r5conf *conf;
6570 	int ret = 0;
6571 	spin_lock(&mddev->lock);
6572 	conf = mddev->private;
6573 	if (conf)
6574 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6575 	spin_unlock(&mddev->lock);
6576 	return ret;
6577 }
6578 
6579 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6580 			       int *group_cnt,
6581 			       int *worker_cnt_per_group,
6582 			       struct r5worker_group **worker_groups);
6583 static ssize_t
6584 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6585 {
6586 	struct r5conf *conf;
6587 	unsigned int new;
6588 	int err;
6589 	struct r5worker_group *new_groups, *old_groups;
6590 	int group_cnt, worker_cnt_per_group;
6591 
6592 	if (len >= PAGE_SIZE)
6593 		return -EINVAL;
6594 	if (kstrtouint(page, 10, &new))
6595 		return -EINVAL;
6596 	/* 8192 should be big enough */
6597 	if (new > 8192)
6598 		return -EINVAL;
6599 
6600 	err = mddev_lock(mddev);
6601 	if (err)
6602 		return err;
6603 	conf = mddev->private;
6604 	if (!conf)
6605 		err = -ENODEV;
6606 	else if (new != conf->worker_cnt_per_group) {
6607 		mddev_suspend(mddev);
6608 
6609 		old_groups = conf->worker_groups;
6610 		if (old_groups)
6611 			flush_workqueue(raid5_wq);
6612 
6613 		err = alloc_thread_groups(conf, new,
6614 					  &group_cnt, &worker_cnt_per_group,
6615 					  &new_groups);
6616 		if (!err) {
6617 			spin_lock_irq(&conf->device_lock);
6618 			conf->group_cnt = group_cnt;
6619 			conf->worker_cnt_per_group = worker_cnt_per_group;
6620 			conf->worker_groups = new_groups;
6621 			spin_unlock_irq(&conf->device_lock);
6622 
6623 			if (old_groups)
6624 				kfree(old_groups[0].workers);
6625 			kfree(old_groups);
6626 		}
6627 		mddev_resume(mddev);
6628 	}
6629 	mddev_unlock(mddev);
6630 
6631 	return err ?: len;
6632 }
6633 
6634 static struct md_sysfs_entry
6635 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6636 				raid5_show_group_thread_cnt,
6637 				raid5_store_group_thread_cnt);
6638 
6639 static struct attribute *raid5_attrs[] =  {
6640 	&raid5_stripecache_size.attr,
6641 	&raid5_stripecache_active.attr,
6642 	&raid5_preread_bypass_threshold.attr,
6643 	&raid5_group_thread_cnt.attr,
6644 	&raid5_skip_copy.attr,
6645 	&raid5_rmw_level.attr,
6646 	&r5c_journal_mode.attr,
6647 	NULL,
6648 };
6649 static struct attribute_group raid5_attrs_group = {
6650 	.name = NULL,
6651 	.attrs = raid5_attrs,
6652 };
6653 
6654 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6655 			       int *group_cnt,
6656 			       int *worker_cnt_per_group,
6657 			       struct r5worker_group **worker_groups)
6658 {
6659 	int i, j, k;
6660 	ssize_t size;
6661 	struct r5worker *workers;
6662 
6663 	*worker_cnt_per_group = cnt;
6664 	if (cnt == 0) {
6665 		*group_cnt = 0;
6666 		*worker_groups = NULL;
6667 		return 0;
6668 	}
6669 	*group_cnt = num_possible_nodes();
6670 	size = sizeof(struct r5worker) * cnt;
6671 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6672 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6673 				 GFP_NOIO);
6674 	if (!*worker_groups || !workers) {
6675 		kfree(workers);
6676 		kfree(*worker_groups);
6677 		return -ENOMEM;
6678 	}
6679 
6680 	for (i = 0; i < *group_cnt; i++) {
6681 		struct r5worker_group *group;
6682 
6683 		group = &(*worker_groups)[i];
6684 		INIT_LIST_HEAD(&group->handle_list);
6685 		INIT_LIST_HEAD(&group->loprio_list);
6686 		group->conf = conf;
6687 		group->workers = workers + i * cnt;
6688 
6689 		for (j = 0; j < cnt; j++) {
6690 			struct r5worker *worker = group->workers + j;
6691 			worker->group = group;
6692 			INIT_WORK(&worker->work, raid5_do_work);
6693 
6694 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6695 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6696 		}
6697 	}
6698 
6699 	return 0;
6700 }
6701 
6702 static void free_thread_groups(struct r5conf *conf)
6703 {
6704 	if (conf->worker_groups)
6705 		kfree(conf->worker_groups[0].workers);
6706 	kfree(conf->worker_groups);
6707 	conf->worker_groups = NULL;
6708 }
6709 
6710 static sector_t
6711 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6712 {
6713 	struct r5conf *conf = mddev->private;
6714 
6715 	if (!sectors)
6716 		sectors = mddev->dev_sectors;
6717 	if (!raid_disks)
6718 		/* size is defined by the smallest of previous and new size */
6719 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6720 
6721 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6722 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6723 	return sectors * (raid_disks - conf->max_degraded);
6724 }
6725 
6726 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6727 {
6728 	safe_put_page(percpu->spare_page);
6729 	if (percpu->scribble)
6730 		flex_array_free(percpu->scribble);
6731 	percpu->spare_page = NULL;
6732 	percpu->scribble = NULL;
6733 }
6734 
6735 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6736 {
6737 	if (conf->level == 6 && !percpu->spare_page)
6738 		percpu->spare_page = alloc_page(GFP_KERNEL);
6739 	if (!percpu->scribble)
6740 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6741 						      conf->previous_raid_disks),
6742 						  max(conf->chunk_sectors,
6743 						      conf->prev_chunk_sectors)
6744 						   / STRIPE_SECTORS,
6745 						  GFP_KERNEL);
6746 
6747 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6748 		free_scratch_buffer(conf, percpu);
6749 		return -ENOMEM;
6750 	}
6751 
6752 	return 0;
6753 }
6754 
6755 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6756 {
6757 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6758 
6759 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6760 	return 0;
6761 }
6762 
6763 static void raid5_free_percpu(struct r5conf *conf)
6764 {
6765 	if (!conf->percpu)
6766 		return;
6767 
6768 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6769 	free_percpu(conf->percpu);
6770 }
6771 
6772 static void free_conf(struct r5conf *conf)
6773 {
6774 	int i;
6775 
6776 	log_exit(conf);
6777 
6778 	unregister_shrinker(&conf->shrinker);
6779 	free_thread_groups(conf);
6780 	shrink_stripes(conf);
6781 	raid5_free_percpu(conf);
6782 	for (i = 0; i < conf->pool_size; i++)
6783 		if (conf->disks[i].extra_page)
6784 			put_page(conf->disks[i].extra_page);
6785 	kfree(conf->disks);
6786 	bioset_exit(&conf->bio_split);
6787 	kfree(conf->stripe_hashtbl);
6788 	kfree(conf->pending_data);
6789 	kfree(conf);
6790 }
6791 
6792 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6793 {
6794 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6795 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6796 
6797 	if (alloc_scratch_buffer(conf, percpu)) {
6798 		pr_warn("%s: failed memory allocation for cpu%u\n",
6799 			__func__, cpu);
6800 		return -ENOMEM;
6801 	}
6802 	return 0;
6803 }
6804 
6805 static int raid5_alloc_percpu(struct r5conf *conf)
6806 {
6807 	int err = 0;
6808 
6809 	conf->percpu = alloc_percpu(struct raid5_percpu);
6810 	if (!conf->percpu)
6811 		return -ENOMEM;
6812 
6813 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6814 	if (!err) {
6815 		conf->scribble_disks = max(conf->raid_disks,
6816 			conf->previous_raid_disks);
6817 		conf->scribble_sectors = max(conf->chunk_sectors,
6818 			conf->prev_chunk_sectors);
6819 	}
6820 	return err;
6821 }
6822 
6823 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6824 				      struct shrink_control *sc)
6825 {
6826 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6827 	unsigned long ret = SHRINK_STOP;
6828 
6829 	if (mutex_trylock(&conf->cache_size_mutex)) {
6830 		ret= 0;
6831 		while (ret < sc->nr_to_scan &&
6832 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6833 			if (drop_one_stripe(conf) == 0) {
6834 				ret = SHRINK_STOP;
6835 				break;
6836 			}
6837 			ret++;
6838 		}
6839 		mutex_unlock(&conf->cache_size_mutex);
6840 	}
6841 	return ret;
6842 }
6843 
6844 static unsigned long raid5_cache_count(struct shrinker *shrink,
6845 				       struct shrink_control *sc)
6846 {
6847 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6848 
6849 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6850 		/* unlikely, but not impossible */
6851 		return 0;
6852 	return conf->max_nr_stripes - conf->min_nr_stripes;
6853 }
6854 
6855 static struct r5conf *setup_conf(struct mddev *mddev)
6856 {
6857 	struct r5conf *conf;
6858 	int raid_disk, memory, max_disks;
6859 	struct md_rdev *rdev;
6860 	struct disk_info *disk;
6861 	char pers_name[6];
6862 	int i;
6863 	int group_cnt, worker_cnt_per_group;
6864 	struct r5worker_group *new_group;
6865 	int ret;
6866 
6867 	if (mddev->new_level != 5
6868 	    && mddev->new_level != 4
6869 	    && mddev->new_level != 6) {
6870 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6871 			mdname(mddev), mddev->new_level);
6872 		return ERR_PTR(-EIO);
6873 	}
6874 	if ((mddev->new_level == 5
6875 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6876 	    (mddev->new_level == 6
6877 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6878 		pr_warn("md/raid:%s: layout %d not supported\n",
6879 			mdname(mddev), mddev->new_layout);
6880 		return ERR_PTR(-EIO);
6881 	}
6882 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6883 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6884 			mdname(mddev), mddev->raid_disks);
6885 		return ERR_PTR(-EINVAL);
6886 	}
6887 
6888 	if (!mddev->new_chunk_sectors ||
6889 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6890 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6891 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6892 			mdname(mddev), mddev->new_chunk_sectors << 9);
6893 		return ERR_PTR(-EINVAL);
6894 	}
6895 
6896 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6897 	if (conf == NULL)
6898 		goto abort;
6899 	INIT_LIST_HEAD(&conf->free_list);
6900 	INIT_LIST_HEAD(&conf->pending_list);
6901 	conf->pending_data = kcalloc(PENDING_IO_MAX,
6902 				     sizeof(struct r5pending_data),
6903 				     GFP_KERNEL);
6904 	if (!conf->pending_data)
6905 		goto abort;
6906 	for (i = 0; i < PENDING_IO_MAX; i++)
6907 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6908 	/* Don't enable multi-threading by default*/
6909 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6910 				 &new_group)) {
6911 		conf->group_cnt = group_cnt;
6912 		conf->worker_cnt_per_group = worker_cnt_per_group;
6913 		conf->worker_groups = new_group;
6914 	} else
6915 		goto abort;
6916 	spin_lock_init(&conf->device_lock);
6917 	seqcount_init(&conf->gen_lock);
6918 	mutex_init(&conf->cache_size_mutex);
6919 	init_waitqueue_head(&conf->wait_for_quiescent);
6920 	init_waitqueue_head(&conf->wait_for_stripe);
6921 	init_waitqueue_head(&conf->wait_for_overlap);
6922 	INIT_LIST_HEAD(&conf->handle_list);
6923 	INIT_LIST_HEAD(&conf->loprio_list);
6924 	INIT_LIST_HEAD(&conf->hold_list);
6925 	INIT_LIST_HEAD(&conf->delayed_list);
6926 	INIT_LIST_HEAD(&conf->bitmap_list);
6927 	init_llist_head(&conf->released_stripes);
6928 	atomic_set(&conf->active_stripes, 0);
6929 	atomic_set(&conf->preread_active_stripes, 0);
6930 	atomic_set(&conf->active_aligned_reads, 0);
6931 	spin_lock_init(&conf->pending_bios_lock);
6932 	conf->batch_bio_dispatch = true;
6933 	rdev_for_each(rdev, mddev) {
6934 		if (test_bit(Journal, &rdev->flags))
6935 			continue;
6936 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6937 			conf->batch_bio_dispatch = false;
6938 			break;
6939 		}
6940 	}
6941 
6942 	conf->bypass_threshold = BYPASS_THRESHOLD;
6943 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6944 
6945 	conf->raid_disks = mddev->raid_disks;
6946 	if (mddev->reshape_position == MaxSector)
6947 		conf->previous_raid_disks = mddev->raid_disks;
6948 	else
6949 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6950 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6951 
6952 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6953 			      GFP_KERNEL);
6954 
6955 	if (!conf->disks)
6956 		goto abort;
6957 
6958 	for (i = 0; i < max_disks; i++) {
6959 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6960 		if (!conf->disks[i].extra_page)
6961 			goto abort;
6962 	}
6963 
6964 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6965 	if (ret)
6966 		goto abort;
6967 	conf->mddev = mddev;
6968 
6969 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6970 		goto abort;
6971 
6972 	/* We init hash_locks[0] separately to that it can be used
6973 	 * as the reference lock in the spin_lock_nest_lock() call
6974 	 * in lock_all_device_hash_locks_irq in order to convince
6975 	 * lockdep that we know what we are doing.
6976 	 */
6977 	spin_lock_init(conf->hash_locks);
6978 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6979 		spin_lock_init(conf->hash_locks + i);
6980 
6981 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6982 		INIT_LIST_HEAD(conf->inactive_list + i);
6983 
6984 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6985 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6986 
6987 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6988 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6989 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6990 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6991 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6992 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6993 
6994 	conf->level = mddev->new_level;
6995 	conf->chunk_sectors = mddev->new_chunk_sectors;
6996 	if (raid5_alloc_percpu(conf) != 0)
6997 		goto abort;
6998 
6999 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7000 
7001 	rdev_for_each(rdev, mddev) {
7002 		raid_disk = rdev->raid_disk;
7003 		if (raid_disk >= max_disks
7004 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7005 			continue;
7006 		disk = conf->disks + raid_disk;
7007 
7008 		if (test_bit(Replacement, &rdev->flags)) {
7009 			if (disk->replacement)
7010 				goto abort;
7011 			disk->replacement = rdev;
7012 		} else {
7013 			if (disk->rdev)
7014 				goto abort;
7015 			disk->rdev = rdev;
7016 		}
7017 
7018 		if (test_bit(In_sync, &rdev->flags)) {
7019 			char b[BDEVNAME_SIZE];
7020 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7021 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7022 		} else if (rdev->saved_raid_disk != raid_disk)
7023 			/* Cannot rely on bitmap to complete recovery */
7024 			conf->fullsync = 1;
7025 	}
7026 
7027 	conf->level = mddev->new_level;
7028 	if (conf->level == 6) {
7029 		conf->max_degraded = 2;
7030 		if (raid6_call.xor_syndrome)
7031 			conf->rmw_level = PARITY_ENABLE_RMW;
7032 		else
7033 			conf->rmw_level = PARITY_DISABLE_RMW;
7034 	} else {
7035 		conf->max_degraded = 1;
7036 		conf->rmw_level = PARITY_ENABLE_RMW;
7037 	}
7038 	conf->algorithm = mddev->new_layout;
7039 	conf->reshape_progress = mddev->reshape_position;
7040 	if (conf->reshape_progress != MaxSector) {
7041 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7042 		conf->prev_algo = mddev->layout;
7043 	} else {
7044 		conf->prev_chunk_sectors = conf->chunk_sectors;
7045 		conf->prev_algo = conf->algorithm;
7046 	}
7047 
7048 	conf->min_nr_stripes = NR_STRIPES;
7049 	if (mddev->reshape_position != MaxSector) {
7050 		int stripes = max_t(int,
7051 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7052 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7053 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7054 		if (conf->min_nr_stripes != NR_STRIPES)
7055 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7056 				mdname(mddev), conf->min_nr_stripes);
7057 	}
7058 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7059 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7060 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7061 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7062 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7063 			mdname(mddev), memory);
7064 		goto abort;
7065 	} else
7066 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7067 	/*
7068 	 * Losing a stripe head costs more than the time to refill it,
7069 	 * it reduces the queue depth and so can hurt throughput.
7070 	 * So set it rather large, scaled by number of devices.
7071 	 */
7072 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7073 	conf->shrinker.scan_objects = raid5_cache_scan;
7074 	conf->shrinker.count_objects = raid5_cache_count;
7075 	conf->shrinker.batch = 128;
7076 	conf->shrinker.flags = 0;
7077 	if (register_shrinker(&conf->shrinker)) {
7078 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7079 			mdname(mddev));
7080 		goto abort;
7081 	}
7082 
7083 	sprintf(pers_name, "raid%d", mddev->new_level);
7084 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7085 	if (!conf->thread) {
7086 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7087 			mdname(mddev));
7088 		goto abort;
7089 	}
7090 
7091 	return conf;
7092 
7093  abort:
7094 	if (conf) {
7095 		free_conf(conf);
7096 		return ERR_PTR(-EIO);
7097 	} else
7098 		return ERR_PTR(-ENOMEM);
7099 }
7100 
7101 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7102 {
7103 	switch (algo) {
7104 	case ALGORITHM_PARITY_0:
7105 		if (raid_disk < max_degraded)
7106 			return 1;
7107 		break;
7108 	case ALGORITHM_PARITY_N:
7109 		if (raid_disk >= raid_disks - max_degraded)
7110 			return 1;
7111 		break;
7112 	case ALGORITHM_PARITY_0_6:
7113 		if (raid_disk == 0 ||
7114 		    raid_disk == raid_disks - 1)
7115 			return 1;
7116 		break;
7117 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7118 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7119 	case ALGORITHM_LEFT_SYMMETRIC_6:
7120 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7121 		if (raid_disk == raid_disks - 1)
7122 			return 1;
7123 	}
7124 	return 0;
7125 }
7126 
7127 static int raid5_run(struct mddev *mddev)
7128 {
7129 	struct r5conf *conf;
7130 	int working_disks = 0;
7131 	int dirty_parity_disks = 0;
7132 	struct md_rdev *rdev;
7133 	struct md_rdev *journal_dev = NULL;
7134 	sector_t reshape_offset = 0;
7135 	int i;
7136 	long long min_offset_diff = 0;
7137 	int first = 1;
7138 
7139 	if (mddev_init_writes_pending(mddev) < 0)
7140 		return -ENOMEM;
7141 
7142 	if (mddev->recovery_cp != MaxSector)
7143 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7144 			  mdname(mddev));
7145 
7146 	rdev_for_each(rdev, mddev) {
7147 		long long diff;
7148 
7149 		if (test_bit(Journal, &rdev->flags)) {
7150 			journal_dev = rdev;
7151 			continue;
7152 		}
7153 		if (rdev->raid_disk < 0)
7154 			continue;
7155 		diff = (rdev->new_data_offset - rdev->data_offset);
7156 		if (first) {
7157 			min_offset_diff = diff;
7158 			first = 0;
7159 		} else if (mddev->reshape_backwards &&
7160 			 diff < min_offset_diff)
7161 			min_offset_diff = diff;
7162 		else if (!mddev->reshape_backwards &&
7163 			 diff > min_offset_diff)
7164 			min_offset_diff = diff;
7165 	}
7166 
7167 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7168 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7169 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7170 			  mdname(mddev));
7171 		return -EINVAL;
7172 	}
7173 
7174 	if (mddev->reshape_position != MaxSector) {
7175 		/* Check that we can continue the reshape.
7176 		 * Difficulties arise if the stripe we would write to
7177 		 * next is at or after the stripe we would read from next.
7178 		 * For a reshape that changes the number of devices, this
7179 		 * is only possible for a very short time, and mdadm makes
7180 		 * sure that time appears to have past before assembling
7181 		 * the array.  So we fail if that time hasn't passed.
7182 		 * For a reshape that keeps the number of devices the same
7183 		 * mdadm must be monitoring the reshape can keeping the
7184 		 * critical areas read-only and backed up.  It will start
7185 		 * the array in read-only mode, so we check for that.
7186 		 */
7187 		sector_t here_new, here_old;
7188 		int old_disks;
7189 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7190 		int chunk_sectors;
7191 		int new_data_disks;
7192 
7193 		if (journal_dev) {
7194 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7195 				mdname(mddev));
7196 			return -EINVAL;
7197 		}
7198 
7199 		if (mddev->new_level != mddev->level) {
7200 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7201 				mdname(mddev));
7202 			return -EINVAL;
7203 		}
7204 		old_disks = mddev->raid_disks - mddev->delta_disks;
7205 		/* reshape_position must be on a new-stripe boundary, and one
7206 		 * further up in new geometry must map after here in old
7207 		 * geometry.
7208 		 * If the chunk sizes are different, then as we perform reshape
7209 		 * in units of the largest of the two, reshape_position needs
7210 		 * be a multiple of the largest chunk size times new data disks.
7211 		 */
7212 		here_new = mddev->reshape_position;
7213 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7214 		new_data_disks = mddev->raid_disks - max_degraded;
7215 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7216 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7217 				mdname(mddev));
7218 			return -EINVAL;
7219 		}
7220 		reshape_offset = here_new * chunk_sectors;
7221 		/* here_new is the stripe we will write to */
7222 		here_old = mddev->reshape_position;
7223 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7224 		/* here_old is the first stripe that we might need to read
7225 		 * from */
7226 		if (mddev->delta_disks == 0) {
7227 			/* We cannot be sure it is safe to start an in-place
7228 			 * reshape.  It is only safe if user-space is monitoring
7229 			 * and taking constant backups.
7230 			 * mdadm always starts a situation like this in
7231 			 * readonly mode so it can take control before
7232 			 * allowing any writes.  So just check for that.
7233 			 */
7234 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7235 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7236 				/* not really in-place - so OK */;
7237 			else if (mddev->ro == 0) {
7238 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7239 					mdname(mddev));
7240 				return -EINVAL;
7241 			}
7242 		} else if (mddev->reshape_backwards
7243 		    ? (here_new * chunk_sectors + min_offset_diff <=
7244 		       here_old * chunk_sectors)
7245 		    : (here_new * chunk_sectors >=
7246 		       here_old * chunk_sectors + (-min_offset_diff))) {
7247 			/* Reading from the same stripe as writing to - bad */
7248 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7249 				mdname(mddev));
7250 			return -EINVAL;
7251 		}
7252 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7253 		/* OK, we should be able to continue; */
7254 	} else {
7255 		BUG_ON(mddev->level != mddev->new_level);
7256 		BUG_ON(mddev->layout != mddev->new_layout);
7257 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7258 		BUG_ON(mddev->delta_disks != 0);
7259 	}
7260 
7261 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7262 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7263 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7264 			mdname(mddev));
7265 		clear_bit(MD_HAS_PPL, &mddev->flags);
7266 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7267 	}
7268 
7269 	if (mddev->private == NULL)
7270 		conf = setup_conf(mddev);
7271 	else
7272 		conf = mddev->private;
7273 
7274 	if (IS_ERR(conf))
7275 		return PTR_ERR(conf);
7276 
7277 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7278 		if (!journal_dev) {
7279 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7280 				mdname(mddev));
7281 			mddev->ro = 1;
7282 			set_disk_ro(mddev->gendisk, 1);
7283 		} else if (mddev->recovery_cp == MaxSector)
7284 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7285 	}
7286 
7287 	conf->min_offset_diff = min_offset_diff;
7288 	mddev->thread = conf->thread;
7289 	conf->thread = NULL;
7290 	mddev->private = conf;
7291 
7292 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7293 	     i++) {
7294 		rdev = conf->disks[i].rdev;
7295 		if (!rdev && conf->disks[i].replacement) {
7296 			/* The replacement is all we have yet */
7297 			rdev = conf->disks[i].replacement;
7298 			conf->disks[i].replacement = NULL;
7299 			clear_bit(Replacement, &rdev->flags);
7300 			conf->disks[i].rdev = rdev;
7301 		}
7302 		if (!rdev)
7303 			continue;
7304 		if (conf->disks[i].replacement &&
7305 		    conf->reshape_progress != MaxSector) {
7306 			/* replacements and reshape simply do not mix. */
7307 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7308 			goto abort;
7309 		}
7310 		if (test_bit(In_sync, &rdev->flags)) {
7311 			working_disks++;
7312 			continue;
7313 		}
7314 		/* This disc is not fully in-sync.  However if it
7315 		 * just stored parity (beyond the recovery_offset),
7316 		 * when we don't need to be concerned about the
7317 		 * array being dirty.
7318 		 * When reshape goes 'backwards', we never have
7319 		 * partially completed devices, so we only need
7320 		 * to worry about reshape going forwards.
7321 		 */
7322 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7323 		if (mddev->major_version == 0 &&
7324 		    mddev->minor_version > 90)
7325 			rdev->recovery_offset = reshape_offset;
7326 
7327 		if (rdev->recovery_offset < reshape_offset) {
7328 			/* We need to check old and new layout */
7329 			if (!only_parity(rdev->raid_disk,
7330 					 conf->algorithm,
7331 					 conf->raid_disks,
7332 					 conf->max_degraded))
7333 				continue;
7334 		}
7335 		if (!only_parity(rdev->raid_disk,
7336 				 conf->prev_algo,
7337 				 conf->previous_raid_disks,
7338 				 conf->max_degraded))
7339 			continue;
7340 		dirty_parity_disks++;
7341 	}
7342 
7343 	/*
7344 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7345 	 */
7346 	mddev->degraded = raid5_calc_degraded(conf);
7347 
7348 	if (has_failed(conf)) {
7349 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7350 			mdname(mddev), mddev->degraded, conf->raid_disks);
7351 		goto abort;
7352 	}
7353 
7354 	/* device size must be a multiple of chunk size */
7355 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7356 	mddev->resync_max_sectors = mddev->dev_sectors;
7357 
7358 	if (mddev->degraded > dirty_parity_disks &&
7359 	    mddev->recovery_cp != MaxSector) {
7360 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7361 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7362 				mdname(mddev));
7363 		else if (mddev->ok_start_degraded)
7364 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7365 				mdname(mddev));
7366 		else {
7367 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7368 				mdname(mddev));
7369 			goto abort;
7370 		}
7371 	}
7372 
7373 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7374 		mdname(mddev), conf->level,
7375 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7376 		mddev->new_layout);
7377 
7378 	print_raid5_conf(conf);
7379 
7380 	if (conf->reshape_progress != MaxSector) {
7381 		conf->reshape_safe = conf->reshape_progress;
7382 		atomic_set(&conf->reshape_stripes, 0);
7383 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7384 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7385 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7386 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7387 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7388 							"reshape");
7389 	}
7390 
7391 	/* Ok, everything is just fine now */
7392 	if (mddev->to_remove == &raid5_attrs_group)
7393 		mddev->to_remove = NULL;
7394 	else if (mddev->kobj.sd &&
7395 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7396 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7397 			mdname(mddev));
7398 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7399 
7400 	if (mddev->queue) {
7401 		int chunk_size;
7402 		/* read-ahead size must cover two whole stripes, which
7403 		 * is 2 * (datadisks) * chunksize where 'n' is the
7404 		 * number of raid devices
7405 		 */
7406 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7407 		int stripe = data_disks *
7408 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7409 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7410 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7411 
7412 		chunk_size = mddev->chunk_sectors << 9;
7413 		blk_queue_io_min(mddev->queue, chunk_size);
7414 		blk_queue_io_opt(mddev->queue, chunk_size *
7415 				 (conf->raid_disks - conf->max_degraded));
7416 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7417 		/*
7418 		 * We can only discard a whole stripe. It doesn't make sense to
7419 		 * discard data disk but write parity disk
7420 		 */
7421 		stripe = stripe * PAGE_SIZE;
7422 		/* Round up to power of 2, as discard handling
7423 		 * currently assumes that */
7424 		while ((stripe-1) & stripe)
7425 			stripe = (stripe | (stripe-1)) + 1;
7426 		mddev->queue->limits.discard_alignment = stripe;
7427 		mddev->queue->limits.discard_granularity = stripe;
7428 
7429 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7430 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7431 
7432 		rdev_for_each(rdev, mddev) {
7433 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7434 					  rdev->data_offset << 9);
7435 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7436 					  rdev->new_data_offset << 9);
7437 		}
7438 
7439 		/*
7440 		 * zeroing is required, otherwise data
7441 		 * could be lost. Consider a scenario: discard a stripe
7442 		 * (the stripe could be inconsistent if
7443 		 * discard_zeroes_data is 0); write one disk of the
7444 		 * stripe (the stripe could be inconsistent again
7445 		 * depending on which disks are used to calculate
7446 		 * parity); the disk is broken; The stripe data of this
7447 		 * disk is lost.
7448 		 *
7449 		 * We only allow DISCARD if the sysadmin has confirmed that
7450 		 * only safe devices are in use by setting a module parameter.
7451 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7452 		 * requests, as that is required to be safe.
7453 		 */
7454 		if (devices_handle_discard_safely &&
7455 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7456 		    mddev->queue->limits.discard_granularity >= stripe)
7457 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7458 						mddev->queue);
7459 		else
7460 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7461 						mddev->queue);
7462 
7463 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7464 	}
7465 
7466 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7467 		goto abort;
7468 
7469 	return 0;
7470 abort:
7471 	md_unregister_thread(&mddev->thread);
7472 	print_raid5_conf(conf);
7473 	free_conf(conf);
7474 	mddev->private = NULL;
7475 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7476 	return -EIO;
7477 }
7478 
7479 static void raid5_free(struct mddev *mddev, void *priv)
7480 {
7481 	struct r5conf *conf = priv;
7482 
7483 	free_conf(conf);
7484 	mddev->to_remove = &raid5_attrs_group;
7485 }
7486 
7487 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7488 {
7489 	struct r5conf *conf = mddev->private;
7490 	int i;
7491 
7492 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7493 		conf->chunk_sectors / 2, mddev->layout);
7494 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7495 	rcu_read_lock();
7496 	for (i = 0; i < conf->raid_disks; i++) {
7497 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7498 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7499 	}
7500 	rcu_read_unlock();
7501 	seq_printf (seq, "]");
7502 }
7503 
7504 static void print_raid5_conf (struct r5conf *conf)
7505 {
7506 	int i;
7507 	struct disk_info *tmp;
7508 
7509 	pr_debug("RAID conf printout:\n");
7510 	if (!conf) {
7511 		pr_debug("(conf==NULL)\n");
7512 		return;
7513 	}
7514 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7515 	       conf->raid_disks,
7516 	       conf->raid_disks - conf->mddev->degraded);
7517 
7518 	for (i = 0; i < conf->raid_disks; i++) {
7519 		char b[BDEVNAME_SIZE];
7520 		tmp = conf->disks + i;
7521 		if (tmp->rdev)
7522 			pr_debug(" disk %d, o:%d, dev:%s\n",
7523 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7524 			       bdevname(tmp->rdev->bdev, b));
7525 	}
7526 }
7527 
7528 static int raid5_spare_active(struct mddev *mddev)
7529 {
7530 	int i;
7531 	struct r5conf *conf = mddev->private;
7532 	struct disk_info *tmp;
7533 	int count = 0;
7534 	unsigned long flags;
7535 
7536 	for (i = 0; i < conf->raid_disks; i++) {
7537 		tmp = conf->disks + i;
7538 		if (tmp->replacement
7539 		    && tmp->replacement->recovery_offset == MaxSector
7540 		    && !test_bit(Faulty, &tmp->replacement->flags)
7541 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7542 			/* Replacement has just become active. */
7543 			if (!tmp->rdev
7544 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7545 				count++;
7546 			if (tmp->rdev) {
7547 				/* Replaced device not technically faulty,
7548 				 * but we need to be sure it gets removed
7549 				 * and never re-added.
7550 				 */
7551 				set_bit(Faulty, &tmp->rdev->flags);
7552 				sysfs_notify_dirent_safe(
7553 					tmp->rdev->sysfs_state);
7554 			}
7555 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7556 		} else if (tmp->rdev
7557 		    && tmp->rdev->recovery_offset == MaxSector
7558 		    && !test_bit(Faulty, &tmp->rdev->flags)
7559 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7560 			count++;
7561 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7562 		}
7563 	}
7564 	spin_lock_irqsave(&conf->device_lock, flags);
7565 	mddev->degraded = raid5_calc_degraded(conf);
7566 	spin_unlock_irqrestore(&conf->device_lock, flags);
7567 	print_raid5_conf(conf);
7568 	return count;
7569 }
7570 
7571 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7572 {
7573 	struct r5conf *conf = mddev->private;
7574 	int err = 0;
7575 	int number = rdev->raid_disk;
7576 	struct md_rdev **rdevp;
7577 	struct disk_info *p = conf->disks + number;
7578 
7579 	print_raid5_conf(conf);
7580 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7581 		/*
7582 		 * we can't wait pending write here, as this is called in
7583 		 * raid5d, wait will deadlock.
7584 		 * neilb: there is no locking about new writes here,
7585 		 * so this cannot be safe.
7586 		 */
7587 		if (atomic_read(&conf->active_stripes) ||
7588 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7589 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7590 			return -EBUSY;
7591 		}
7592 		log_exit(conf);
7593 		return 0;
7594 	}
7595 	if (rdev == p->rdev)
7596 		rdevp = &p->rdev;
7597 	else if (rdev == p->replacement)
7598 		rdevp = &p->replacement;
7599 	else
7600 		return 0;
7601 
7602 	if (number >= conf->raid_disks &&
7603 	    conf->reshape_progress == MaxSector)
7604 		clear_bit(In_sync, &rdev->flags);
7605 
7606 	if (test_bit(In_sync, &rdev->flags) ||
7607 	    atomic_read(&rdev->nr_pending)) {
7608 		err = -EBUSY;
7609 		goto abort;
7610 	}
7611 	/* Only remove non-faulty devices if recovery
7612 	 * isn't possible.
7613 	 */
7614 	if (!test_bit(Faulty, &rdev->flags) &&
7615 	    mddev->recovery_disabled != conf->recovery_disabled &&
7616 	    !has_failed(conf) &&
7617 	    (!p->replacement || p->replacement == rdev) &&
7618 	    number < conf->raid_disks) {
7619 		err = -EBUSY;
7620 		goto abort;
7621 	}
7622 	*rdevp = NULL;
7623 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7624 		synchronize_rcu();
7625 		if (atomic_read(&rdev->nr_pending)) {
7626 			/* lost the race, try later */
7627 			err = -EBUSY;
7628 			*rdevp = rdev;
7629 		}
7630 	}
7631 	if (!err) {
7632 		err = log_modify(conf, rdev, false);
7633 		if (err)
7634 			goto abort;
7635 	}
7636 	if (p->replacement) {
7637 		/* We must have just cleared 'rdev' */
7638 		p->rdev = p->replacement;
7639 		clear_bit(Replacement, &p->replacement->flags);
7640 		smp_mb(); /* Make sure other CPUs may see both as identical
7641 			   * but will never see neither - if they are careful
7642 			   */
7643 		p->replacement = NULL;
7644 
7645 		if (!err)
7646 			err = log_modify(conf, p->rdev, true);
7647 	}
7648 
7649 	clear_bit(WantReplacement, &rdev->flags);
7650 abort:
7651 
7652 	print_raid5_conf(conf);
7653 	return err;
7654 }
7655 
7656 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7657 {
7658 	struct r5conf *conf = mddev->private;
7659 	int err = -EEXIST;
7660 	int disk;
7661 	struct disk_info *p;
7662 	int first = 0;
7663 	int last = conf->raid_disks - 1;
7664 
7665 	if (test_bit(Journal, &rdev->flags)) {
7666 		if (conf->log)
7667 			return -EBUSY;
7668 
7669 		rdev->raid_disk = 0;
7670 		/*
7671 		 * The array is in readonly mode if journal is missing, so no
7672 		 * write requests running. We should be safe
7673 		 */
7674 		log_init(conf, rdev, false);
7675 		return 0;
7676 	}
7677 	if (mddev->recovery_disabled == conf->recovery_disabled)
7678 		return -EBUSY;
7679 
7680 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7681 		/* no point adding a device */
7682 		return -EINVAL;
7683 
7684 	if (rdev->raid_disk >= 0)
7685 		first = last = rdev->raid_disk;
7686 
7687 	/*
7688 	 * find the disk ... but prefer rdev->saved_raid_disk
7689 	 * if possible.
7690 	 */
7691 	if (rdev->saved_raid_disk >= 0 &&
7692 	    rdev->saved_raid_disk >= first &&
7693 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7694 		first = rdev->saved_raid_disk;
7695 
7696 	for (disk = first; disk <= last; disk++) {
7697 		p = conf->disks + disk;
7698 		if (p->rdev == NULL) {
7699 			clear_bit(In_sync, &rdev->flags);
7700 			rdev->raid_disk = disk;
7701 			if (rdev->saved_raid_disk != disk)
7702 				conf->fullsync = 1;
7703 			rcu_assign_pointer(p->rdev, rdev);
7704 
7705 			err = log_modify(conf, rdev, true);
7706 
7707 			goto out;
7708 		}
7709 	}
7710 	for (disk = first; disk <= last; disk++) {
7711 		p = conf->disks + disk;
7712 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7713 		    p->replacement == NULL) {
7714 			clear_bit(In_sync, &rdev->flags);
7715 			set_bit(Replacement, &rdev->flags);
7716 			rdev->raid_disk = disk;
7717 			err = 0;
7718 			conf->fullsync = 1;
7719 			rcu_assign_pointer(p->replacement, rdev);
7720 			break;
7721 		}
7722 	}
7723 out:
7724 	print_raid5_conf(conf);
7725 	return err;
7726 }
7727 
7728 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7729 {
7730 	/* no resync is happening, and there is enough space
7731 	 * on all devices, so we can resize.
7732 	 * We need to make sure resync covers any new space.
7733 	 * If the array is shrinking we should possibly wait until
7734 	 * any io in the removed space completes, but it hardly seems
7735 	 * worth it.
7736 	 */
7737 	sector_t newsize;
7738 	struct r5conf *conf = mddev->private;
7739 
7740 	if (conf->log || raid5_has_ppl(conf))
7741 		return -EINVAL;
7742 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7743 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7744 	if (mddev->external_size &&
7745 	    mddev->array_sectors > newsize)
7746 		return -EINVAL;
7747 	if (mddev->bitmap) {
7748 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7749 		if (ret)
7750 			return ret;
7751 	}
7752 	md_set_array_sectors(mddev, newsize);
7753 	if (sectors > mddev->dev_sectors &&
7754 	    mddev->recovery_cp > mddev->dev_sectors) {
7755 		mddev->recovery_cp = mddev->dev_sectors;
7756 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7757 	}
7758 	mddev->dev_sectors = sectors;
7759 	mddev->resync_max_sectors = sectors;
7760 	return 0;
7761 }
7762 
7763 static int check_stripe_cache(struct mddev *mddev)
7764 {
7765 	/* Can only proceed if there are plenty of stripe_heads.
7766 	 * We need a minimum of one full stripe,, and for sensible progress
7767 	 * it is best to have about 4 times that.
7768 	 * If we require 4 times, then the default 256 4K stripe_heads will
7769 	 * allow for chunk sizes up to 256K, which is probably OK.
7770 	 * If the chunk size is greater, user-space should request more
7771 	 * stripe_heads first.
7772 	 */
7773 	struct r5conf *conf = mddev->private;
7774 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7775 	    > conf->min_nr_stripes ||
7776 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7777 	    > conf->min_nr_stripes) {
7778 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7779 			mdname(mddev),
7780 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7781 			 / STRIPE_SIZE)*4);
7782 		return 0;
7783 	}
7784 	return 1;
7785 }
7786 
7787 static int check_reshape(struct mddev *mddev)
7788 {
7789 	struct r5conf *conf = mddev->private;
7790 
7791 	if (conf->log || raid5_has_ppl(conf))
7792 		return -EINVAL;
7793 	if (mddev->delta_disks == 0 &&
7794 	    mddev->new_layout == mddev->layout &&
7795 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7796 		return 0; /* nothing to do */
7797 	if (has_failed(conf))
7798 		return -EINVAL;
7799 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7800 		/* We might be able to shrink, but the devices must
7801 		 * be made bigger first.
7802 		 * For raid6, 4 is the minimum size.
7803 		 * Otherwise 2 is the minimum
7804 		 */
7805 		int min = 2;
7806 		if (mddev->level == 6)
7807 			min = 4;
7808 		if (mddev->raid_disks + mddev->delta_disks < min)
7809 			return -EINVAL;
7810 	}
7811 
7812 	if (!check_stripe_cache(mddev))
7813 		return -ENOSPC;
7814 
7815 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7816 	    mddev->delta_disks > 0)
7817 		if (resize_chunks(conf,
7818 				  conf->previous_raid_disks
7819 				  + max(0, mddev->delta_disks),
7820 				  max(mddev->new_chunk_sectors,
7821 				      mddev->chunk_sectors)
7822 			    ) < 0)
7823 			return -ENOMEM;
7824 
7825 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7826 		return 0; /* never bother to shrink */
7827 	return resize_stripes(conf, (conf->previous_raid_disks
7828 				     + mddev->delta_disks));
7829 }
7830 
7831 static int raid5_start_reshape(struct mddev *mddev)
7832 {
7833 	struct r5conf *conf = mddev->private;
7834 	struct md_rdev *rdev;
7835 	int spares = 0;
7836 	unsigned long flags;
7837 
7838 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7839 		return -EBUSY;
7840 
7841 	if (!check_stripe_cache(mddev))
7842 		return -ENOSPC;
7843 
7844 	if (has_failed(conf))
7845 		return -EINVAL;
7846 
7847 	rdev_for_each(rdev, mddev) {
7848 		if (!test_bit(In_sync, &rdev->flags)
7849 		    && !test_bit(Faulty, &rdev->flags))
7850 			spares++;
7851 	}
7852 
7853 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7854 		/* Not enough devices even to make a degraded array
7855 		 * of that size
7856 		 */
7857 		return -EINVAL;
7858 
7859 	/* Refuse to reduce size of the array.  Any reductions in
7860 	 * array size must be through explicit setting of array_size
7861 	 * attribute.
7862 	 */
7863 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7864 	    < mddev->array_sectors) {
7865 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7866 			mdname(mddev));
7867 		return -EINVAL;
7868 	}
7869 
7870 	atomic_set(&conf->reshape_stripes, 0);
7871 	spin_lock_irq(&conf->device_lock);
7872 	write_seqcount_begin(&conf->gen_lock);
7873 	conf->previous_raid_disks = conf->raid_disks;
7874 	conf->raid_disks += mddev->delta_disks;
7875 	conf->prev_chunk_sectors = conf->chunk_sectors;
7876 	conf->chunk_sectors = mddev->new_chunk_sectors;
7877 	conf->prev_algo = conf->algorithm;
7878 	conf->algorithm = mddev->new_layout;
7879 	conf->generation++;
7880 	/* Code that selects data_offset needs to see the generation update
7881 	 * if reshape_progress has been set - so a memory barrier needed.
7882 	 */
7883 	smp_mb();
7884 	if (mddev->reshape_backwards)
7885 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7886 	else
7887 		conf->reshape_progress = 0;
7888 	conf->reshape_safe = conf->reshape_progress;
7889 	write_seqcount_end(&conf->gen_lock);
7890 	spin_unlock_irq(&conf->device_lock);
7891 
7892 	/* Now make sure any requests that proceeded on the assumption
7893 	 * the reshape wasn't running - like Discard or Read - have
7894 	 * completed.
7895 	 */
7896 	mddev_suspend(mddev);
7897 	mddev_resume(mddev);
7898 
7899 	/* Add some new drives, as many as will fit.
7900 	 * We know there are enough to make the newly sized array work.
7901 	 * Don't add devices if we are reducing the number of
7902 	 * devices in the array.  This is because it is not possible
7903 	 * to correctly record the "partially reconstructed" state of
7904 	 * such devices during the reshape and confusion could result.
7905 	 */
7906 	if (mddev->delta_disks >= 0) {
7907 		rdev_for_each(rdev, mddev)
7908 			if (rdev->raid_disk < 0 &&
7909 			    !test_bit(Faulty, &rdev->flags)) {
7910 				if (raid5_add_disk(mddev, rdev) == 0) {
7911 					if (rdev->raid_disk
7912 					    >= conf->previous_raid_disks)
7913 						set_bit(In_sync, &rdev->flags);
7914 					else
7915 						rdev->recovery_offset = 0;
7916 
7917 					if (sysfs_link_rdev(mddev, rdev))
7918 						/* Failure here is OK */;
7919 				}
7920 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7921 				   && !test_bit(Faulty, &rdev->flags)) {
7922 				/* This is a spare that was manually added */
7923 				set_bit(In_sync, &rdev->flags);
7924 			}
7925 
7926 		/* When a reshape changes the number of devices,
7927 		 * ->degraded is measured against the larger of the
7928 		 * pre and post number of devices.
7929 		 */
7930 		spin_lock_irqsave(&conf->device_lock, flags);
7931 		mddev->degraded = raid5_calc_degraded(conf);
7932 		spin_unlock_irqrestore(&conf->device_lock, flags);
7933 	}
7934 	mddev->raid_disks = conf->raid_disks;
7935 	mddev->reshape_position = conf->reshape_progress;
7936 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7937 
7938 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7939 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7940 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7941 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7942 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7943 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7944 						"reshape");
7945 	if (!mddev->sync_thread) {
7946 		mddev->recovery = 0;
7947 		spin_lock_irq(&conf->device_lock);
7948 		write_seqcount_begin(&conf->gen_lock);
7949 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7950 		mddev->new_chunk_sectors =
7951 			conf->chunk_sectors = conf->prev_chunk_sectors;
7952 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7953 		rdev_for_each(rdev, mddev)
7954 			rdev->new_data_offset = rdev->data_offset;
7955 		smp_wmb();
7956 		conf->generation --;
7957 		conf->reshape_progress = MaxSector;
7958 		mddev->reshape_position = MaxSector;
7959 		write_seqcount_end(&conf->gen_lock);
7960 		spin_unlock_irq(&conf->device_lock);
7961 		return -EAGAIN;
7962 	}
7963 	conf->reshape_checkpoint = jiffies;
7964 	md_wakeup_thread(mddev->sync_thread);
7965 	md_new_event(mddev);
7966 	return 0;
7967 }
7968 
7969 /* This is called from the reshape thread and should make any
7970  * changes needed in 'conf'
7971  */
7972 static void end_reshape(struct r5conf *conf)
7973 {
7974 
7975 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7976 		struct md_rdev *rdev;
7977 
7978 		spin_lock_irq(&conf->device_lock);
7979 		conf->previous_raid_disks = conf->raid_disks;
7980 		md_finish_reshape(conf->mddev);
7981 		smp_wmb();
7982 		conf->reshape_progress = MaxSector;
7983 		conf->mddev->reshape_position = MaxSector;
7984 		rdev_for_each(rdev, conf->mddev)
7985 			if (rdev->raid_disk >= 0 &&
7986 			    !test_bit(Journal, &rdev->flags) &&
7987 			    !test_bit(In_sync, &rdev->flags))
7988 				rdev->recovery_offset = MaxSector;
7989 		spin_unlock_irq(&conf->device_lock);
7990 		wake_up(&conf->wait_for_overlap);
7991 
7992 		/* read-ahead size must cover two whole stripes, which is
7993 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7994 		 */
7995 		if (conf->mddev->queue) {
7996 			int data_disks = conf->raid_disks - conf->max_degraded;
7997 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7998 						   / PAGE_SIZE);
7999 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8000 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8001 		}
8002 	}
8003 }
8004 
8005 /* This is called from the raid5d thread with mddev_lock held.
8006  * It makes config changes to the device.
8007  */
8008 static void raid5_finish_reshape(struct mddev *mddev)
8009 {
8010 	struct r5conf *conf = mddev->private;
8011 
8012 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8013 
8014 		if (mddev->delta_disks <= 0) {
8015 			int d;
8016 			spin_lock_irq(&conf->device_lock);
8017 			mddev->degraded = raid5_calc_degraded(conf);
8018 			spin_unlock_irq(&conf->device_lock);
8019 			for (d = conf->raid_disks ;
8020 			     d < conf->raid_disks - mddev->delta_disks;
8021 			     d++) {
8022 				struct md_rdev *rdev = conf->disks[d].rdev;
8023 				if (rdev)
8024 					clear_bit(In_sync, &rdev->flags);
8025 				rdev = conf->disks[d].replacement;
8026 				if (rdev)
8027 					clear_bit(In_sync, &rdev->flags);
8028 			}
8029 		}
8030 		mddev->layout = conf->algorithm;
8031 		mddev->chunk_sectors = conf->chunk_sectors;
8032 		mddev->reshape_position = MaxSector;
8033 		mddev->delta_disks = 0;
8034 		mddev->reshape_backwards = 0;
8035 	}
8036 }
8037 
8038 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8039 {
8040 	struct r5conf *conf = mddev->private;
8041 
8042 	if (quiesce) {
8043 		/* stop all writes */
8044 		lock_all_device_hash_locks_irq(conf);
8045 		/* '2' tells resync/reshape to pause so that all
8046 		 * active stripes can drain
8047 		 */
8048 		r5c_flush_cache(conf, INT_MAX);
8049 		conf->quiesce = 2;
8050 		wait_event_cmd(conf->wait_for_quiescent,
8051 				    atomic_read(&conf->active_stripes) == 0 &&
8052 				    atomic_read(&conf->active_aligned_reads) == 0,
8053 				    unlock_all_device_hash_locks_irq(conf),
8054 				    lock_all_device_hash_locks_irq(conf));
8055 		conf->quiesce = 1;
8056 		unlock_all_device_hash_locks_irq(conf);
8057 		/* allow reshape to continue */
8058 		wake_up(&conf->wait_for_overlap);
8059 	} else {
8060 		/* re-enable writes */
8061 		lock_all_device_hash_locks_irq(conf);
8062 		conf->quiesce = 0;
8063 		wake_up(&conf->wait_for_quiescent);
8064 		wake_up(&conf->wait_for_overlap);
8065 		unlock_all_device_hash_locks_irq(conf);
8066 	}
8067 	log_quiesce(conf, quiesce);
8068 }
8069 
8070 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8071 {
8072 	struct r0conf *raid0_conf = mddev->private;
8073 	sector_t sectors;
8074 
8075 	/* for raid0 takeover only one zone is supported */
8076 	if (raid0_conf->nr_strip_zones > 1) {
8077 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8078 			mdname(mddev));
8079 		return ERR_PTR(-EINVAL);
8080 	}
8081 
8082 	sectors = raid0_conf->strip_zone[0].zone_end;
8083 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8084 	mddev->dev_sectors = sectors;
8085 	mddev->new_level = level;
8086 	mddev->new_layout = ALGORITHM_PARITY_N;
8087 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8088 	mddev->raid_disks += 1;
8089 	mddev->delta_disks = 1;
8090 	/* make sure it will be not marked as dirty */
8091 	mddev->recovery_cp = MaxSector;
8092 
8093 	return setup_conf(mddev);
8094 }
8095 
8096 static void *raid5_takeover_raid1(struct mddev *mddev)
8097 {
8098 	int chunksect;
8099 	void *ret;
8100 
8101 	if (mddev->raid_disks != 2 ||
8102 	    mddev->degraded > 1)
8103 		return ERR_PTR(-EINVAL);
8104 
8105 	/* Should check if there are write-behind devices? */
8106 
8107 	chunksect = 64*2; /* 64K by default */
8108 
8109 	/* The array must be an exact multiple of chunksize */
8110 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8111 		chunksect >>= 1;
8112 
8113 	if ((chunksect<<9) < STRIPE_SIZE)
8114 		/* array size does not allow a suitable chunk size */
8115 		return ERR_PTR(-EINVAL);
8116 
8117 	mddev->new_level = 5;
8118 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8119 	mddev->new_chunk_sectors = chunksect;
8120 
8121 	ret = setup_conf(mddev);
8122 	if (!IS_ERR(ret))
8123 		mddev_clear_unsupported_flags(mddev,
8124 			UNSUPPORTED_MDDEV_FLAGS);
8125 	return ret;
8126 }
8127 
8128 static void *raid5_takeover_raid6(struct mddev *mddev)
8129 {
8130 	int new_layout;
8131 
8132 	switch (mddev->layout) {
8133 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8134 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8135 		break;
8136 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8137 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8138 		break;
8139 	case ALGORITHM_LEFT_SYMMETRIC_6:
8140 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8141 		break;
8142 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8143 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8144 		break;
8145 	case ALGORITHM_PARITY_0_6:
8146 		new_layout = ALGORITHM_PARITY_0;
8147 		break;
8148 	case ALGORITHM_PARITY_N:
8149 		new_layout = ALGORITHM_PARITY_N;
8150 		break;
8151 	default:
8152 		return ERR_PTR(-EINVAL);
8153 	}
8154 	mddev->new_level = 5;
8155 	mddev->new_layout = new_layout;
8156 	mddev->delta_disks = -1;
8157 	mddev->raid_disks -= 1;
8158 	return setup_conf(mddev);
8159 }
8160 
8161 static int raid5_check_reshape(struct mddev *mddev)
8162 {
8163 	/* For a 2-drive array, the layout and chunk size can be changed
8164 	 * immediately as not restriping is needed.
8165 	 * For larger arrays we record the new value - after validation
8166 	 * to be used by a reshape pass.
8167 	 */
8168 	struct r5conf *conf = mddev->private;
8169 	int new_chunk = mddev->new_chunk_sectors;
8170 
8171 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8172 		return -EINVAL;
8173 	if (new_chunk > 0) {
8174 		if (!is_power_of_2(new_chunk))
8175 			return -EINVAL;
8176 		if (new_chunk < (PAGE_SIZE>>9))
8177 			return -EINVAL;
8178 		if (mddev->array_sectors & (new_chunk-1))
8179 			/* not factor of array size */
8180 			return -EINVAL;
8181 	}
8182 
8183 	/* They look valid */
8184 
8185 	if (mddev->raid_disks == 2) {
8186 		/* can make the change immediately */
8187 		if (mddev->new_layout >= 0) {
8188 			conf->algorithm = mddev->new_layout;
8189 			mddev->layout = mddev->new_layout;
8190 		}
8191 		if (new_chunk > 0) {
8192 			conf->chunk_sectors = new_chunk ;
8193 			mddev->chunk_sectors = new_chunk;
8194 		}
8195 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8196 		md_wakeup_thread(mddev->thread);
8197 	}
8198 	return check_reshape(mddev);
8199 }
8200 
8201 static int raid6_check_reshape(struct mddev *mddev)
8202 {
8203 	int new_chunk = mddev->new_chunk_sectors;
8204 
8205 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8206 		return -EINVAL;
8207 	if (new_chunk > 0) {
8208 		if (!is_power_of_2(new_chunk))
8209 			return -EINVAL;
8210 		if (new_chunk < (PAGE_SIZE >> 9))
8211 			return -EINVAL;
8212 		if (mddev->array_sectors & (new_chunk-1))
8213 			/* not factor of array size */
8214 			return -EINVAL;
8215 	}
8216 
8217 	/* They look valid */
8218 	return check_reshape(mddev);
8219 }
8220 
8221 static void *raid5_takeover(struct mddev *mddev)
8222 {
8223 	/* raid5 can take over:
8224 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8225 	 *  raid1 - if there are two drives.  We need to know the chunk size
8226 	 *  raid4 - trivial - just use a raid4 layout.
8227 	 *  raid6 - Providing it is a *_6 layout
8228 	 */
8229 	if (mddev->level == 0)
8230 		return raid45_takeover_raid0(mddev, 5);
8231 	if (mddev->level == 1)
8232 		return raid5_takeover_raid1(mddev);
8233 	if (mddev->level == 4) {
8234 		mddev->new_layout = ALGORITHM_PARITY_N;
8235 		mddev->new_level = 5;
8236 		return setup_conf(mddev);
8237 	}
8238 	if (mddev->level == 6)
8239 		return raid5_takeover_raid6(mddev);
8240 
8241 	return ERR_PTR(-EINVAL);
8242 }
8243 
8244 static void *raid4_takeover(struct mddev *mddev)
8245 {
8246 	/* raid4 can take over:
8247 	 *  raid0 - if there is only one strip zone
8248 	 *  raid5 - if layout is right
8249 	 */
8250 	if (mddev->level == 0)
8251 		return raid45_takeover_raid0(mddev, 4);
8252 	if (mddev->level == 5 &&
8253 	    mddev->layout == ALGORITHM_PARITY_N) {
8254 		mddev->new_layout = 0;
8255 		mddev->new_level = 4;
8256 		return setup_conf(mddev);
8257 	}
8258 	return ERR_PTR(-EINVAL);
8259 }
8260 
8261 static struct md_personality raid5_personality;
8262 
8263 static void *raid6_takeover(struct mddev *mddev)
8264 {
8265 	/* Currently can only take over a raid5.  We map the
8266 	 * personality to an equivalent raid6 personality
8267 	 * with the Q block at the end.
8268 	 */
8269 	int new_layout;
8270 
8271 	if (mddev->pers != &raid5_personality)
8272 		return ERR_PTR(-EINVAL);
8273 	if (mddev->degraded > 1)
8274 		return ERR_PTR(-EINVAL);
8275 	if (mddev->raid_disks > 253)
8276 		return ERR_PTR(-EINVAL);
8277 	if (mddev->raid_disks < 3)
8278 		return ERR_PTR(-EINVAL);
8279 
8280 	switch (mddev->layout) {
8281 	case ALGORITHM_LEFT_ASYMMETRIC:
8282 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8283 		break;
8284 	case ALGORITHM_RIGHT_ASYMMETRIC:
8285 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8286 		break;
8287 	case ALGORITHM_LEFT_SYMMETRIC:
8288 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8289 		break;
8290 	case ALGORITHM_RIGHT_SYMMETRIC:
8291 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8292 		break;
8293 	case ALGORITHM_PARITY_0:
8294 		new_layout = ALGORITHM_PARITY_0_6;
8295 		break;
8296 	case ALGORITHM_PARITY_N:
8297 		new_layout = ALGORITHM_PARITY_N;
8298 		break;
8299 	default:
8300 		return ERR_PTR(-EINVAL);
8301 	}
8302 	mddev->new_level = 6;
8303 	mddev->new_layout = new_layout;
8304 	mddev->delta_disks = 1;
8305 	mddev->raid_disks += 1;
8306 	return setup_conf(mddev);
8307 }
8308 
8309 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8310 {
8311 	struct r5conf *conf;
8312 	int err;
8313 
8314 	err = mddev_lock(mddev);
8315 	if (err)
8316 		return err;
8317 	conf = mddev->private;
8318 	if (!conf) {
8319 		mddev_unlock(mddev);
8320 		return -ENODEV;
8321 	}
8322 
8323 	if (strncmp(buf, "ppl", 3) == 0) {
8324 		/* ppl only works with RAID 5 */
8325 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8326 			err = log_init(conf, NULL, true);
8327 			if (!err) {
8328 				err = resize_stripes(conf, conf->pool_size);
8329 				if (err)
8330 					log_exit(conf);
8331 			}
8332 		} else
8333 			err = -EINVAL;
8334 	} else if (strncmp(buf, "resync", 6) == 0) {
8335 		if (raid5_has_ppl(conf)) {
8336 			mddev_suspend(mddev);
8337 			log_exit(conf);
8338 			mddev_resume(mddev);
8339 			err = resize_stripes(conf, conf->pool_size);
8340 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8341 			   r5l_log_disk_error(conf)) {
8342 			bool journal_dev_exists = false;
8343 			struct md_rdev *rdev;
8344 
8345 			rdev_for_each(rdev, mddev)
8346 				if (test_bit(Journal, &rdev->flags)) {
8347 					journal_dev_exists = true;
8348 					break;
8349 				}
8350 
8351 			if (!journal_dev_exists) {
8352 				mddev_suspend(mddev);
8353 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8354 				mddev_resume(mddev);
8355 			} else  /* need remove journal device first */
8356 				err = -EBUSY;
8357 		} else
8358 			err = -EINVAL;
8359 	} else {
8360 		err = -EINVAL;
8361 	}
8362 
8363 	if (!err)
8364 		md_update_sb(mddev, 1);
8365 
8366 	mddev_unlock(mddev);
8367 
8368 	return err;
8369 }
8370 
8371 static int raid5_start(struct mddev *mddev)
8372 {
8373 	struct r5conf *conf = mddev->private;
8374 
8375 	return r5l_start(conf->log);
8376 }
8377 
8378 static struct md_personality raid6_personality =
8379 {
8380 	.name		= "raid6",
8381 	.level		= 6,
8382 	.owner		= THIS_MODULE,
8383 	.make_request	= raid5_make_request,
8384 	.run		= raid5_run,
8385 	.start		= raid5_start,
8386 	.free		= raid5_free,
8387 	.status		= raid5_status,
8388 	.error_handler	= raid5_error,
8389 	.hot_add_disk	= raid5_add_disk,
8390 	.hot_remove_disk= raid5_remove_disk,
8391 	.spare_active	= raid5_spare_active,
8392 	.sync_request	= raid5_sync_request,
8393 	.resize		= raid5_resize,
8394 	.size		= raid5_size,
8395 	.check_reshape	= raid6_check_reshape,
8396 	.start_reshape  = raid5_start_reshape,
8397 	.finish_reshape = raid5_finish_reshape,
8398 	.quiesce	= raid5_quiesce,
8399 	.takeover	= raid6_takeover,
8400 	.congested	= raid5_congested,
8401 	.change_consistency_policy = raid5_change_consistency_policy,
8402 };
8403 static struct md_personality raid5_personality =
8404 {
8405 	.name		= "raid5",
8406 	.level		= 5,
8407 	.owner		= THIS_MODULE,
8408 	.make_request	= raid5_make_request,
8409 	.run		= raid5_run,
8410 	.start		= raid5_start,
8411 	.free		= raid5_free,
8412 	.status		= raid5_status,
8413 	.error_handler	= raid5_error,
8414 	.hot_add_disk	= raid5_add_disk,
8415 	.hot_remove_disk= raid5_remove_disk,
8416 	.spare_active	= raid5_spare_active,
8417 	.sync_request	= raid5_sync_request,
8418 	.resize		= raid5_resize,
8419 	.size		= raid5_size,
8420 	.check_reshape	= raid5_check_reshape,
8421 	.start_reshape  = raid5_start_reshape,
8422 	.finish_reshape = raid5_finish_reshape,
8423 	.quiesce	= raid5_quiesce,
8424 	.takeover	= raid5_takeover,
8425 	.congested	= raid5_congested,
8426 	.change_consistency_policy = raid5_change_consistency_policy,
8427 };
8428 
8429 static struct md_personality raid4_personality =
8430 {
8431 	.name		= "raid4",
8432 	.level		= 4,
8433 	.owner		= THIS_MODULE,
8434 	.make_request	= raid5_make_request,
8435 	.run		= raid5_run,
8436 	.start		= raid5_start,
8437 	.free		= raid5_free,
8438 	.status		= raid5_status,
8439 	.error_handler	= raid5_error,
8440 	.hot_add_disk	= raid5_add_disk,
8441 	.hot_remove_disk= raid5_remove_disk,
8442 	.spare_active	= raid5_spare_active,
8443 	.sync_request	= raid5_sync_request,
8444 	.resize		= raid5_resize,
8445 	.size		= raid5_size,
8446 	.check_reshape	= raid5_check_reshape,
8447 	.start_reshape  = raid5_start_reshape,
8448 	.finish_reshape = raid5_finish_reshape,
8449 	.quiesce	= raid5_quiesce,
8450 	.takeover	= raid4_takeover,
8451 	.congested	= raid5_congested,
8452 	.change_consistency_policy = raid5_change_consistency_policy,
8453 };
8454 
8455 static int __init raid5_init(void)
8456 {
8457 	int ret;
8458 
8459 	raid5_wq = alloc_workqueue("raid5wq",
8460 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8461 	if (!raid5_wq)
8462 		return -ENOMEM;
8463 
8464 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8465 				      "md/raid5:prepare",
8466 				      raid456_cpu_up_prepare,
8467 				      raid456_cpu_dead);
8468 	if (ret) {
8469 		destroy_workqueue(raid5_wq);
8470 		return ret;
8471 	}
8472 	register_md_personality(&raid6_personality);
8473 	register_md_personality(&raid5_personality);
8474 	register_md_personality(&raid4_personality);
8475 	return 0;
8476 }
8477 
8478 static void raid5_exit(void)
8479 {
8480 	unregister_md_personality(&raid6_personality);
8481 	unregister_md_personality(&raid5_personality);
8482 	unregister_md_personality(&raid4_personality);
8483 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8484 	destroy_workqueue(raid5_wq);
8485 }
8486 
8487 module_init(raid5_init);
8488 module_exit(raid5_exit);
8489 MODULE_LICENSE("GPL");
8490 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8491 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8492 MODULE_ALIAS("md-raid5");
8493 MODULE_ALIAS("md-raid4");
8494 MODULE_ALIAS("md-level-5");
8495 MODULE_ALIAS("md-level-4");
8496 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8497 MODULE_ALIAS("md-raid6");
8498 MODULE_ALIAS("md-level-6");
8499 
8500 /* This used to be two separate modules, they were: */
8501 MODULE_ALIAS("raid5");
8502 MODULE_ALIAS("raid6");
8503