xref: /openbmc/linux/drivers/md/raid5.c (revision ee89bd6b)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57 
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62 
63 /*
64  * Stripe cache
65  */
66 
67 #define NR_STRIPES		256
68 #define STRIPE_SIZE		PAGE_SIZE
69 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
71 #define	IO_THRESHOLD		1
72 #define BYPASS_THRESHOLD	1
73 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK		(NR_HASH - 1)
75 
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 	return &conf->stripe_hashtbl[hash];
80 }
81 
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83  * order without overlap.  There may be several bio's per stripe+device, and
84  * a bio could span several devices.
85  * When walking this list for a particular stripe+device, we must never proceed
86  * beyond a bio that extends past this device, as the next bio might no longer
87  * be valid.
88  * This function is used to determine the 'next' bio in the list, given the sector
89  * of the current stripe+device
90  */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93 	int sectors = bio_sectors(bio);
94 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 		return bio->bi_next;
96 	else
97 		return NULL;
98 }
99 
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 	return (atomic_read(segments) >> 16) & 0xffff;
108 }
109 
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 	return atomic_sub_return(1, segments) & 0xffff;
114 }
115 
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 	atomic_inc(segments);
120 }
121 
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 	unsigned int cnt)
124 {
125 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 	int old, new;
127 
128 	do {
129 		old = atomic_read(segments);
130 		new = (old & 0xffff) | (cnt << 16);
131 	} while (atomic_cmpxchg(segments, old, new) != old);
132 }
133 
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 	atomic_set(segments, cnt);
138 }
139 
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143 	if (sh->ddf_layout)
144 		/* ddf always start from first device */
145 		return 0;
146 	/* md starts just after Q block */
147 	if (sh->qd_idx == sh->disks - 1)
148 		return 0;
149 	else
150 		return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154 	disk++;
155 	return (disk < raid_disks) ? disk : 0;
156 }
157 
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159  * We need to map each disk to a 'slot', where the data disks are slot
160  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161  * is raid_disks-1.  This help does that mapping.
162  */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 			     int *count, int syndrome_disks)
165 {
166 	int slot = *count;
167 
168 	if (sh->ddf_layout)
169 		(*count)++;
170 	if (idx == sh->pd_idx)
171 		return syndrome_disks;
172 	if (idx == sh->qd_idx)
173 		return syndrome_disks + 1;
174 	if (!sh->ddf_layout)
175 		(*count)++;
176 	return slot;
177 }
178 
179 static void return_io(struct bio *return_bi)
180 {
181 	struct bio *bi = return_bi;
182 	while (bi) {
183 
184 		return_bi = bi->bi_next;
185 		bi->bi_next = NULL;
186 		bi->bi_size = 0;
187 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
188 					 bi, 0);
189 		bio_endio(bi, 0);
190 		bi = return_bi;
191 	}
192 }
193 
194 static void print_raid5_conf (struct r5conf *conf);
195 
196 static int stripe_operations_active(struct stripe_head *sh)
197 {
198 	return sh->check_state || sh->reconstruct_state ||
199 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
200 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201 }
202 
203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
204 {
205 	BUG_ON(!list_empty(&sh->lru));
206 	BUG_ON(atomic_read(&conf->active_stripes)==0);
207 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
208 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
209 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
210 			list_add_tail(&sh->lru, &conf->delayed_list);
211 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
212 			   sh->bm_seq - conf->seq_write > 0)
213 			list_add_tail(&sh->lru, &conf->bitmap_list);
214 		else {
215 			clear_bit(STRIPE_DELAYED, &sh->state);
216 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
217 			list_add_tail(&sh->lru, &conf->handle_list);
218 		}
219 		md_wakeup_thread(conf->mddev->thread);
220 	} else {
221 		BUG_ON(stripe_operations_active(sh));
222 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
223 			if (atomic_dec_return(&conf->preread_active_stripes)
224 			    < IO_THRESHOLD)
225 				md_wakeup_thread(conf->mddev->thread);
226 		atomic_dec(&conf->active_stripes);
227 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
228 			list_add_tail(&sh->lru, &conf->inactive_list);
229 			wake_up(&conf->wait_for_stripe);
230 			if (conf->retry_read_aligned)
231 				md_wakeup_thread(conf->mddev->thread);
232 		}
233 	}
234 }
235 
236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
237 {
238 	if (atomic_dec_and_test(&sh->count))
239 		do_release_stripe(conf, sh);
240 }
241 
242 static void release_stripe(struct stripe_head *sh)
243 {
244 	struct r5conf *conf = sh->raid_conf;
245 	unsigned long flags;
246 
247 	local_irq_save(flags);
248 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
249 		do_release_stripe(conf, sh);
250 		spin_unlock(&conf->device_lock);
251 	}
252 	local_irq_restore(flags);
253 }
254 
255 static inline void remove_hash(struct stripe_head *sh)
256 {
257 	pr_debug("remove_hash(), stripe %llu\n",
258 		(unsigned long long)sh->sector);
259 
260 	hlist_del_init(&sh->hash);
261 }
262 
263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
264 {
265 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
266 
267 	pr_debug("insert_hash(), stripe %llu\n",
268 		(unsigned long long)sh->sector);
269 
270 	hlist_add_head(&sh->hash, hp);
271 }
272 
273 
274 /* find an idle stripe, make sure it is unhashed, and return it. */
275 static struct stripe_head *get_free_stripe(struct r5conf *conf)
276 {
277 	struct stripe_head *sh = NULL;
278 	struct list_head *first;
279 
280 	if (list_empty(&conf->inactive_list))
281 		goto out;
282 	first = conf->inactive_list.next;
283 	sh = list_entry(first, struct stripe_head, lru);
284 	list_del_init(first);
285 	remove_hash(sh);
286 	atomic_inc(&conf->active_stripes);
287 out:
288 	return sh;
289 }
290 
291 static void shrink_buffers(struct stripe_head *sh)
292 {
293 	struct page *p;
294 	int i;
295 	int num = sh->raid_conf->pool_size;
296 
297 	for (i = 0; i < num ; i++) {
298 		p = sh->dev[i].page;
299 		if (!p)
300 			continue;
301 		sh->dev[i].page = NULL;
302 		put_page(p);
303 	}
304 }
305 
306 static int grow_buffers(struct stripe_head *sh)
307 {
308 	int i;
309 	int num = sh->raid_conf->pool_size;
310 
311 	for (i = 0; i < num; i++) {
312 		struct page *page;
313 
314 		if (!(page = alloc_page(GFP_KERNEL))) {
315 			return 1;
316 		}
317 		sh->dev[i].page = page;
318 	}
319 	return 0;
320 }
321 
322 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
324 			    struct stripe_head *sh);
325 
326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
327 {
328 	struct r5conf *conf = sh->raid_conf;
329 	int i;
330 
331 	BUG_ON(atomic_read(&sh->count) != 0);
332 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
333 	BUG_ON(stripe_operations_active(sh));
334 
335 	pr_debug("init_stripe called, stripe %llu\n",
336 		(unsigned long long)sh->sector);
337 
338 	remove_hash(sh);
339 
340 	sh->generation = conf->generation - previous;
341 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
342 	sh->sector = sector;
343 	stripe_set_idx(sector, conf, previous, sh);
344 	sh->state = 0;
345 
346 
347 	for (i = sh->disks; i--; ) {
348 		struct r5dev *dev = &sh->dev[i];
349 
350 		if (dev->toread || dev->read || dev->towrite || dev->written ||
351 		    test_bit(R5_LOCKED, &dev->flags)) {
352 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
353 			       (unsigned long long)sh->sector, i, dev->toread,
354 			       dev->read, dev->towrite, dev->written,
355 			       test_bit(R5_LOCKED, &dev->flags));
356 			WARN_ON(1);
357 		}
358 		dev->flags = 0;
359 		raid5_build_block(sh, i, previous);
360 	}
361 	insert_hash(conf, sh);
362 }
363 
364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
365 					 short generation)
366 {
367 	struct stripe_head *sh;
368 
369 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
370 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
371 		if (sh->sector == sector && sh->generation == generation)
372 			return sh;
373 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
374 	return NULL;
375 }
376 
377 /*
378  * Need to check if array has failed when deciding whether to:
379  *  - start an array
380  *  - remove non-faulty devices
381  *  - add a spare
382  *  - allow a reshape
383  * This determination is simple when no reshape is happening.
384  * However if there is a reshape, we need to carefully check
385  * both the before and after sections.
386  * This is because some failed devices may only affect one
387  * of the two sections, and some non-in_sync devices may
388  * be insync in the section most affected by failed devices.
389  */
390 static int calc_degraded(struct r5conf *conf)
391 {
392 	int degraded, degraded2;
393 	int i;
394 
395 	rcu_read_lock();
396 	degraded = 0;
397 	for (i = 0; i < conf->previous_raid_disks; i++) {
398 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
399 		if (rdev && test_bit(Faulty, &rdev->flags))
400 			rdev = rcu_dereference(conf->disks[i].replacement);
401 		if (!rdev || test_bit(Faulty, &rdev->flags))
402 			degraded++;
403 		else if (test_bit(In_sync, &rdev->flags))
404 			;
405 		else
406 			/* not in-sync or faulty.
407 			 * If the reshape increases the number of devices,
408 			 * this is being recovered by the reshape, so
409 			 * this 'previous' section is not in_sync.
410 			 * If the number of devices is being reduced however,
411 			 * the device can only be part of the array if
412 			 * we are reverting a reshape, so this section will
413 			 * be in-sync.
414 			 */
415 			if (conf->raid_disks >= conf->previous_raid_disks)
416 				degraded++;
417 	}
418 	rcu_read_unlock();
419 	if (conf->raid_disks == conf->previous_raid_disks)
420 		return degraded;
421 	rcu_read_lock();
422 	degraded2 = 0;
423 	for (i = 0; i < conf->raid_disks; i++) {
424 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
425 		if (rdev && test_bit(Faulty, &rdev->flags))
426 			rdev = rcu_dereference(conf->disks[i].replacement);
427 		if (!rdev || test_bit(Faulty, &rdev->flags))
428 			degraded2++;
429 		else if (test_bit(In_sync, &rdev->flags))
430 			;
431 		else
432 			/* not in-sync or faulty.
433 			 * If reshape increases the number of devices, this
434 			 * section has already been recovered, else it
435 			 * almost certainly hasn't.
436 			 */
437 			if (conf->raid_disks <= conf->previous_raid_disks)
438 				degraded2++;
439 	}
440 	rcu_read_unlock();
441 	if (degraded2 > degraded)
442 		return degraded2;
443 	return degraded;
444 }
445 
446 static int has_failed(struct r5conf *conf)
447 {
448 	int degraded;
449 
450 	if (conf->mddev->reshape_position == MaxSector)
451 		return conf->mddev->degraded > conf->max_degraded;
452 
453 	degraded = calc_degraded(conf);
454 	if (degraded > conf->max_degraded)
455 		return 1;
456 	return 0;
457 }
458 
459 static struct stripe_head *
460 get_active_stripe(struct r5conf *conf, sector_t sector,
461 		  int previous, int noblock, int noquiesce)
462 {
463 	struct stripe_head *sh;
464 
465 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
466 
467 	spin_lock_irq(&conf->device_lock);
468 
469 	do {
470 		wait_event_lock_irq(conf->wait_for_stripe,
471 				    conf->quiesce == 0 || noquiesce,
472 				    conf->device_lock);
473 		sh = __find_stripe(conf, sector, conf->generation - previous);
474 		if (!sh) {
475 			if (!conf->inactive_blocked)
476 				sh = get_free_stripe(conf);
477 			if (noblock && sh == NULL)
478 				break;
479 			if (!sh) {
480 				conf->inactive_blocked = 1;
481 				wait_event_lock_irq(conf->wait_for_stripe,
482 						    !list_empty(&conf->inactive_list) &&
483 						    (atomic_read(&conf->active_stripes)
484 						     < (conf->max_nr_stripes *3/4)
485 						     || !conf->inactive_blocked),
486 						    conf->device_lock);
487 				conf->inactive_blocked = 0;
488 			} else
489 				init_stripe(sh, sector, previous);
490 		} else {
491 			if (atomic_read(&sh->count)) {
492 				BUG_ON(!list_empty(&sh->lru)
493 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
494 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
495 			} else {
496 				if (!test_bit(STRIPE_HANDLE, &sh->state))
497 					atomic_inc(&conf->active_stripes);
498 				if (list_empty(&sh->lru) &&
499 				    !test_bit(STRIPE_EXPANDING, &sh->state))
500 					BUG();
501 				list_del_init(&sh->lru);
502 			}
503 		}
504 	} while (sh == NULL);
505 
506 	if (sh)
507 		atomic_inc(&sh->count);
508 
509 	spin_unlock_irq(&conf->device_lock);
510 	return sh;
511 }
512 
513 /* Determine if 'data_offset' or 'new_data_offset' should be used
514  * in this stripe_head.
515  */
516 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
517 {
518 	sector_t progress = conf->reshape_progress;
519 	/* Need a memory barrier to make sure we see the value
520 	 * of conf->generation, or ->data_offset that was set before
521 	 * reshape_progress was updated.
522 	 */
523 	smp_rmb();
524 	if (progress == MaxSector)
525 		return 0;
526 	if (sh->generation == conf->generation - 1)
527 		return 0;
528 	/* We are in a reshape, and this is a new-generation stripe,
529 	 * so use new_data_offset.
530 	 */
531 	return 1;
532 }
533 
534 static void
535 raid5_end_read_request(struct bio *bi, int error);
536 static void
537 raid5_end_write_request(struct bio *bi, int error);
538 
539 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
540 {
541 	struct r5conf *conf = sh->raid_conf;
542 	int i, disks = sh->disks;
543 
544 	might_sleep();
545 
546 	for (i = disks; i--; ) {
547 		int rw;
548 		int replace_only = 0;
549 		struct bio *bi, *rbi;
550 		struct md_rdev *rdev, *rrdev = NULL;
551 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
552 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
553 				rw = WRITE_FUA;
554 			else
555 				rw = WRITE;
556 			if (test_bit(R5_Discard, &sh->dev[i].flags))
557 				rw |= REQ_DISCARD;
558 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
559 			rw = READ;
560 		else if (test_and_clear_bit(R5_WantReplace,
561 					    &sh->dev[i].flags)) {
562 			rw = WRITE;
563 			replace_only = 1;
564 		} else
565 			continue;
566 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
567 			rw |= REQ_SYNC;
568 
569 		bi = &sh->dev[i].req;
570 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
571 
572 		rcu_read_lock();
573 		rrdev = rcu_dereference(conf->disks[i].replacement);
574 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
575 		rdev = rcu_dereference(conf->disks[i].rdev);
576 		if (!rdev) {
577 			rdev = rrdev;
578 			rrdev = NULL;
579 		}
580 		if (rw & WRITE) {
581 			if (replace_only)
582 				rdev = NULL;
583 			if (rdev == rrdev)
584 				/* We raced and saw duplicates */
585 				rrdev = NULL;
586 		} else {
587 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
588 				rdev = rrdev;
589 			rrdev = NULL;
590 		}
591 
592 		if (rdev && test_bit(Faulty, &rdev->flags))
593 			rdev = NULL;
594 		if (rdev)
595 			atomic_inc(&rdev->nr_pending);
596 		if (rrdev && test_bit(Faulty, &rrdev->flags))
597 			rrdev = NULL;
598 		if (rrdev)
599 			atomic_inc(&rrdev->nr_pending);
600 		rcu_read_unlock();
601 
602 		/* We have already checked bad blocks for reads.  Now
603 		 * need to check for writes.  We never accept write errors
604 		 * on the replacement, so we don't to check rrdev.
605 		 */
606 		while ((rw & WRITE) && rdev &&
607 		       test_bit(WriteErrorSeen, &rdev->flags)) {
608 			sector_t first_bad;
609 			int bad_sectors;
610 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
611 					      &first_bad, &bad_sectors);
612 			if (!bad)
613 				break;
614 
615 			if (bad < 0) {
616 				set_bit(BlockedBadBlocks, &rdev->flags);
617 				if (!conf->mddev->external &&
618 				    conf->mddev->flags) {
619 					/* It is very unlikely, but we might
620 					 * still need to write out the
621 					 * bad block log - better give it
622 					 * a chance*/
623 					md_check_recovery(conf->mddev);
624 				}
625 				/*
626 				 * Because md_wait_for_blocked_rdev
627 				 * will dec nr_pending, we must
628 				 * increment it first.
629 				 */
630 				atomic_inc(&rdev->nr_pending);
631 				md_wait_for_blocked_rdev(rdev, conf->mddev);
632 			} else {
633 				/* Acknowledged bad block - skip the write */
634 				rdev_dec_pending(rdev, conf->mddev);
635 				rdev = NULL;
636 			}
637 		}
638 
639 		if (rdev) {
640 			if (s->syncing || s->expanding || s->expanded
641 			    || s->replacing)
642 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
643 
644 			set_bit(STRIPE_IO_STARTED, &sh->state);
645 
646 			bio_reset(bi);
647 			bi->bi_bdev = rdev->bdev;
648 			bi->bi_rw = rw;
649 			bi->bi_end_io = (rw & WRITE)
650 				? raid5_end_write_request
651 				: raid5_end_read_request;
652 			bi->bi_private = sh;
653 
654 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
655 				__func__, (unsigned long long)sh->sector,
656 				bi->bi_rw, i);
657 			atomic_inc(&sh->count);
658 			if (use_new_offset(conf, sh))
659 				bi->bi_sector = (sh->sector
660 						 + rdev->new_data_offset);
661 			else
662 				bi->bi_sector = (sh->sector
663 						 + rdev->data_offset);
664 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
665 				bi->bi_rw |= REQ_FLUSH;
666 
667 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
668 			bi->bi_io_vec[0].bv_offset = 0;
669 			bi->bi_size = STRIPE_SIZE;
670 			if (rrdev)
671 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
672 
673 			if (conf->mddev->gendisk)
674 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
675 						      bi, disk_devt(conf->mddev->gendisk),
676 						      sh->dev[i].sector);
677 			generic_make_request(bi);
678 		}
679 		if (rrdev) {
680 			if (s->syncing || s->expanding || s->expanded
681 			    || s->replacing)
682 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
683 
684 			set_bit(STRIPE_IO_STARTED, &sh->state);
685 
686 			bio_reset(rbi);
687 			rbi->bi_bdev = rrdev->bdev;
688 			rbi->bi_rw = rw;
689 			BUG_ON(!(rw & WRITE));
690 			rbi->bi_end_io = raid5_end_write_request;
691 			rbi->bi_private = sh;
692 
693 			pr_debug("%s: for %llu schedule op %ld on "
694 				 "replacement disc %d\n",
695 				__func__, (unsigned long long)sh->sector,
696 				rbi->bi_rw, i);
697 			atomic_inc(&sh->count);
698 			if (use_new_offset(conf, sh))
699 				rbi->bi_sector = (sh->sector
700 						  + rrdev->new_data_offset);
701 			else
702 				rbi->bi_sector = (sh->sector
703 						  + rrdev->data_offset);
704 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
705 			rbi->bi_io_vec[0].bv_offset = 0;
706 			rbi->bi_size = STRIPE_SIZE;
707 			if (conf->mddev->gendisk)
708 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
709 						      rbi, disk_devt(conf->mddev->gendisk),
710 						      sh->dev[i].sector);
711 			generic_make_request(rbi);
712 		}
713 		if (!rdev && !rrdev) {
714 			if (rw & WRITE)
715 				set_bit(STRIPE_DEGRADED, &sh->state);
716 			pr_debug("skip op %ld on disc %d for sector %llu\n",
717 				bi->bi_rw, i, (unsigned long long)sh->sector);
718 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
719 			set_bit(STRIPE_HANDLE, &sh->state);
720 		}
721 	}
722 }
723 
724 static struct dma_async_tx_descriptor *
725 async_copy_data(int frombio, struct bio *bio, struct page *page,
726 	sector_t sector, struct dma_async_tx_descriptor *tx)
727 {
728 	struct bio_vec *bvl;
729 	struct page *bio_page;
730 	int i;
731 	int page_offset;
732 	struct async_submit_ctl submit;
733 	enum async_tx_flags flags = 0;
734 
735 	if (bio->bi_sector >= sector)
736 		page_offset = (signed)(bio->bi_sector - sector) * 512;
737 	else
738 		page_offset = (signed)(sector - bio->bi_sector) * -512;
739 
740 	if (frombio)
741 		flags |= ASYNC_TX_FENCE;
742 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
743 
744 	bio_for_each_segment(bvl, bio, i) {
745 		int len = bvl->bv_len;
746 		int clen;
747 		int b_offset = 0;
748 
749 		if (page_offset < 0) {
750 			b_offset = -page_offset;
751 			page_offset += b_offset;
752 			len -= b_offset;
753 		}
754 
755 		if (len > 0 && page_offset + len > STRIPE_SIZE)
756 			clen = STRIPE_SIZE - page_offset;
757 		else
758 			clen = len;
759 
760 		if (clen > 0) {
761 			b_offset += bvl->bv_offset;
762 			bio_page = bvl->bv_page;
763 			if (frombio)
764 				tx = async_memcpy(page, bio_page, page_offset,
765 						  b_offset, clen, &submit);
766 			else
767 				tx = async_memcpy(bio_page, page, b_offset,
768 						  page_offset, clen, &submit);
769 		}
770 		/* chain the operations */
771 		submit.depend_tx = tx;
772 
773 		if (clen < len) /* hit end of page */
774 			break;
775 		page_offset +=  len;
776 	}
777 
778 	return tx;
779 }
780 
781 static void ops_complete_biofill(void *stripe_head_ref)
782 {
783 	struct stripe_head *sh = stripe_head_ref;
784 	struct bio *return_bi = NULL;
785 	int i;
786 
787 	pr_debug("%s: stripe %llu\n", __func__,
788 		(unsigned long long)sh->sector);
789 
790 	/* clear completed biofills */
791 	for (i = sh->disks; i--; ) {
792 		struct r5dev *dev = &sh->dev[i];
793 
794 		/* acknowledge completion of a biofill operation */
795 		/* and check if we need to reply to a read request,
796 		 * new R5_Wantfill requests are held off until
797 		 * !STRIPE_BIOFILL_RUN
798 		 */
799 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
800 			struct bio *rbi, *rbi2;
801 
802 			BUG_ON(!dev->read);
803 			rbi = dev->read;
804 			dev->read = NULL;
805 			while (rbi && rbi->bi_sector <
806 				dev->sector + STRIPE_SECTORS) {
807 				rbi2 = r5_next_bio(rbi, dev->sector);
808 				if (!raid5_dec_bi_active_stripes(rbi)) {
809 					rbi->bi_next = return_bi;
810 					return_bi = rbi;
811 				}
812 				rbi = rbi2;
813 			}
814 		}
815 	}
816 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
817 
818 	return_io(return_bi);
819 
820 	set_bit(STRIPE_HANDLE, &sh->state);
821 	release_stripe(sh);
822 }
823 
824 static void ops_run_biofill(struct stripe_head *sh)
825 {
826 	struct dma_async_tx_descriptor *tx = NULL;
827 	struct async_submit_ctl submit;
828 	int i;
829 
830 	pr_debug("%s: stripe %llu\n", __func__,
831 		(unsigned long long)sh->sector);
832 
833 	for (i = sh->disks; i--; ) {
834 		struct r5dev *dev = &sh->dev[i];
835 		if (test_bit(R5_Wantfill, &dev->flags)) {
836 			struct bio *rbi;
837 			spin_lock_irq(&sh->stripe_lock);
838 			dev->read = rbi = dev->toread;
839 			dev->toread = NULL;
840 			spin_unlock_irq(&sh->stripe_lock);
841 			while (rbi && rbi->bi_sector <
842 				dev->sector + STRIPE_SECTORS) {
843 				tx = async_copy_data(0, rbi, dev->page,
844 					dev->sector, tx);
845 				rbi = r5_next_bio(rbi, dev->sector);
846 			}
847 		}
848 	}
849 
850 	atomic_inc(&sh->count);
851 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
852 	async_trigger_callback(&submit);
853 }
854 
855 static void mark_target_uptodate(struct stripe_head *sh, int target)
856 {
857 	struct r5dev *tgt;
858 
859 	if (target < 0)
860 		return;
861 
862 	tgt = &sh->dev[target];
863 	set_bit(R5_UPTODATE, &tgt->flags);
864 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
865 	clear_bit(R5_Wantcompute, &tgt->flags);
866 }
867 
868 static void ops_complete_compute(void *stripe_head_ref)
869 {
870 	struct stripe_head *sh = stripe_head_ref;
871 
872 	pr_debug("%s: stripe %llu\n", __func__,
873 		(unsigned long long)sh->sector);
874 
875 	/* mark the computed target(s) as uptodate */
876 	mark_target_uptodate(sh, sh->ops.target);
877 	mark_target_uptodate(sh, sh->ops.target2);
878 
879 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
880 	if (sh->check_state == check_state_compute_run)
881 		sh->check_state = check_state_compute_result;
882 	set_bit(STRIPE_HANDLE, &sh->state);
883 	release_stripe(sh);
884 }
885 
886 /* return a pointer to the address conversion region of the scribble buffer */
887 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
888 				 struct raid5_percpu *percpu)
889 {
890 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
891 }
892 
893 static struct dma_async_tx_descriptor *
894 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
895 {
896 	int disks = sh->disks;
897 	struct page **xor_srcs = percpu->scribble;
898 	int target = sh->ops.target;
899 	struct r5dev *tgt = &sh->dev[target];
900 	struct page *xor_dest = tgt->page;
901 	int count = 0;
902 	struct dma_async_tx_descriptor *tx;
903 	struct async_submit_ctl submit;
904 	int i;
905 
906 	pr_debug("%s: stripe %llu block: %d\n",
907 		__func__, (unsigned long long)sh->sector, target);
908 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
909 
910 	for (i = disks; i--; )
911 		if (i != target)
912 			xor_srcs[count++] = sh->dev[i].page;
913 
914 	atomic_inc(&sh->count);
915 
916 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
917 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
918 	if (unlikely(count == 1))
919 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
920 	else
921 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
922 
923 	return tx;
924 }
925 
926 /* set_syndrome_sources - populate source buffers for gen_syndrome
927  * @srcs - (struct page *) array of size sh->disks
928  * @sh - stripe_head to parse
929  *
930  * Populates srcs in proper layout order for the stripe and returns the
931  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
932  * destination buffer is recorded in srcs[count] and the Q destination
933  * is recorded in srcs[count+1]].
934  */
935 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
936 {
937 	int disks = sh->disks;
938 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
939 	int d0_idx = raid6_d0(sh);
940 	int count;
941 	int i;
942 
943 	for (i = 0; i < disks; i++)
944 		srcs[i] = NULL;
945 
946 	count = 0;
947 	i = d0_idx;
948 	do {
949 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
950 
951 		srcs[slot] = sh->dev[i].page;
952 		i = raid6_next_disk(i, disks);
953 	} while (i != d0_idx);
954 
955 	return syndrome_disks;
956 }
957 
958 static struct dma_async_tx_descriptor *
959 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
960 {
961 	int disks = sh->disks;
962 	struct page **blocks = percpu->scribble;
963 	int target;
964 	int qd_idx = sh->qd_idx;
965 	struct dma_async_tx_descriptor *tx;
966 	struct async_submit_ctl submit;
967 	struct r5dev *tgt;
968 	struct page *dest;
969 	int i;
970 	int count;
971 
972 	if (sh->ops.target < 0)
973 		target = sh->ops.target2;
974 	else if (sh->ops.target2 < 0)
975 		target = sh->ops.target;
976 	else
977 		/* we should only have one valid target */
978 		BUG();
979 	BUG_ON(target < 0);
980 	pr_debug("%s: stripe %llu block: %d\n",
981 		__func__, (unsigned long long)sh->sector, target);
982 
983 	tgt = &sh->dev[target];
984 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
985 	dest = tgt->page;
986 
987 	atomic_inc(&sh->count);
988 
989 	if (target == qd_idx) {
990 		count = set_syndrome_sources(blocks, sh);
991 		blocks[count] = NULL; /* regenerating p is not necessary */
992 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
993 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
994 				  ops_complete_compute, sh,
995 				  to_addr_conv(sh, percpu));
996 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
997 	} else {
998 		/* Compute any data- or p-drive using XOR */
999 		count = 0;
1000 		for (i = disks; i-- ; ) {
1001 			if (i == target || i == qd_idx)
1002 				continue;
1003 			blocks[count++] = sh->dev[i].page;
1004 		}
1005 
1006 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1007 				  NULL, ops_complete_compute, sh,
1008 				  to_addr_conv(sh, percpu));
1009 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1010 	}
1011 
1012 	return tx;
1013 }
1014 
1015 static struct dma_async_tx_descriptor *
1016 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1017 {
1018 	int i, count, disks = sh->disks;
1019 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1020 	int d0_idx = raid6_d0(sh);
1021 	int faila = -1, failb = -1;
1022 	int target = sh->ops.target;
1023 	int target2 = sh->ops.target2;
1024 	struct r5dev *tgt = &sh->dev[target];
1025 	struct r5dev *tgt2 = &sh->dev[target2];
1026 	struct dma_async_tx_descriptor *tx;
1027 	struct page **blocks = percpu->scribble;
1028 	struct async_submit_ctl submit;
1029 
1030 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1031 		 __func__, (unsigned long long)sh->sector, target, target2);
1032 	BUG_ON(target < 0 || target2 < 0);
1033 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1034 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1035 
1036 	/* we need to open-code set_syndrome_sources to handle the
1037 	 * slot number conversion for 'faila' and 'failb'
1038 	 */
1039 	for (i = 0; i < disks ; i++)
1040 		blocks[i] = NULL;
1041 	count = 0;
1042 	i = d0_idx;
1043 	do {
1044 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1045 
1046 		blocks[slot] = sh->dev[i].page;
1047 
1048 		if (i == target)
1049 			faila = slot;
1050 		if (i == target2)
1051 			failb = slot;
1052 		i = raid6_next_disk(i, disks);
1053 	} while (i != d0_idx);
1054 
1055 	BUG_ON(faila == failb);
1056 	if (failb < faila)
1057 		swap(faila, failb);
1058 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1059 		 __func__, (unsigned long long)sh->sector, faila, failb);
1060 
1061 	atomic_inc(&sh->count);
1062 
1063 	if (failb == syndrome_disks+1) {
1064 		/* Q disk is one of the missing disks */
1065 		if (faila == syndrome_disks) {
1066 			/* Missing P+Q, just recompute */
1067 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1068 					  ops_complete_compute, sh,
1069 					  to_addr_conv(sh, percpu));
1070 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1071 						  STRIPE_SIZE, &submit);
1072 		} else {
1073 			struct page *dest;
1074 			int data_target;
1075 			int qd_idx = sh->qd_idx;
1076 
1077 			/* Missing D+Q: recompute D from P, then recompute Q */
1078 			if (target == qd_idx)
1079 				data_target = target2;
1080 			else
1081 				data_target = target;
1082 
1083 			count = 0;
1084 			for (i = disks; i-- ; ) {
1085 				if (i == data_target || i == qd_idx)
1086 					continue;
1087 				blocks[count++] = sh->dev[i].page;
1088 			}
1089 			dest = sh->dev[data_target].page;
1090 			init_async_submit(&submit,
1091 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1092 					  NULL, NULL, NULL,
1093 					  to_addr_conv(sh, percpu));
1094 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1095 				       &submit);
1096 
1097 			count = set_syndrome_sources(blocks, sh);
1098 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1099 					  ops_complete_compute, sh,
1100 					  to_addr_conv(sh, percpu));
1101 			return async_gen_syndrome(blocks, 0, count+2,
1102 						  STRIPE_SIZE, &submit);
1103 		}
1104 	} else {
1105 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1106 				  ops_complete_compute, sh,
1107 				  to_addr_conv(sh, percpu));
1108 		if (failb == syndrome_disks) {
1109 			/* We're missing D+P. */
1110 			return async_raid6_datap_recov(syndrome_disks+2,
1111 						       STRIPE_SIZE, faila,
1112 						       blocks, &submit);
1113 		} else {
1114 			/* We're missing D+D. */
1115 			return async_raid6_2data_recov(syndrome_disks+2,
1116 						       STRIPE_SIZE, faila, failb,
1117 						       blocks, &submit);
1118 		}
1119 	}
1120 }
1121 
1122 
1123 static void ops_complete_prexor(void *stripe_head_ref)
1124 {
1125 	struct stripe_head *sh = stripe_head_ref;
1126 
1127 	pr_debug("%s: stripe %llu\n", __func__,
1128 		(unsigned long long)sh->sector);
1129 }
1130 
1131 static struct dma_async_tx_descriptor *
1132 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1133 	       struct dma_async_tx_descriptor *tx)
1134 {
1135 	int disks = sh->disks;
1136 	struct page **xor_srcs = percpu->scribble;
1137 	int count = 0, pd_idx = sh->pd_idx, i;
1138 	struct async_submit_ctl submit;
1139 
1140 	/* existing parity data subtracted */
1141 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1142 
1143 	pr_debug("%s: stripe %llu\n", __func__,
1144 		(unsigned long long)sh->sector);
1145 
1146 	for (i = disks; i--; ) {
1147 		struct r5dev *dev = &sh->dev[i];
1148 		/* Only process blocks that are known to be uptodate */
1149 		if (test_bit(R5_Wantdrain, &dev->flags))
1150 			xor_srcs[count++] = dev->page;
1151 	}
1152 
1153 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1154 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1155 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1156 
1157 	return tx;
1158 }
1159 
1160 static struct dma_async_tx_descriptor *
1161 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1162 {
1163 	int disks = sh->disks;
1164 	int i;
1165 
1166 	pr_debug("%s: stripe %llu\n", __func__,
1167 		(unsigned long long)sh->sector);
1168 
1169 	for (i = disks; i--; ) {
1170 		struct r5dev *dev = &sh->dev[i];
1171 		struct bio *chosen;
1172 
1173 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1174 			struct bio *wbi;
1175 
1176 			spin_lock_irq(&sh->stripe_lock);
1177 			chosen = dev->towrite;
1178 			dev->towrite = NULL;
1179 			BUG_ON(dev->written);
1180 			wbi = dev->written = chosen;
1181 			spin_unlock_irq(&sh->stripe_lock);
1182 
1183 			while (wbi && wbi->bi_sector <
1184 				dev->sector + STRIPE_SECTORS) {
1185 				if (wbi->bi_rw & REQ_FUA)
1186 					set_bit(R5_WantFUA, &dev->flags);
1187 				if (wbi->bi_rw & REQ_SYNC)
1188 					set_bit(R5_SyncIO, &dev->flags);
1189 				if (wbi->bi_rw & REQ_DISCARD)
1190 					set_bit(R5_Discard, &dev->flags);
1191 				else
1192 					tx = async_copy_data(1, wbi, dev->page,
1193 						dev->sector, tx);
1194 				wbi = r5_next_bio(wbi, dev->sector);
1195 			}
1196 		}
1197 	}
1198 
1199 	return tx;
1200 }
1201 
1202 static void ops_complete_reconstruct(void *stripe_head_ref)
1203 {
1204 	struct stripe_head *sh = stripe_head_ref;
1205 	int disks = sh->disks;
1206 	int pd_idx = sh->pd_idx;
1207 	int qd_idx = sh->qd_idx;
1208 	int i;
1209 	bool fua = false, sync = false, discard = false;
1210 
1211 	pr_debug("%s: stripe %llu\n", __func__,
1212 		(unsigned long long)sh->sector);
1213 
1214 	for (i = disks; i--; ) {
1215 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1216 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1217 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1218 	}
1219 
1220 	for (i = disks; i--; ) {
1221 		struct r5dev *dev = &sh->dev[i];
1222 
1223 		if (dev->written || i == pd_idx || i == qd_idx) {
1224 			if (!discard)
1225 				set_bit(R5_UPTODATE, &dev->flags);
1226 			if (fua)
1227 				set_bit(R5_WantFUA, &dev->flags);
1228 			if (sync)
1229 				set_bit(R5_SyncIO, &dev->flags);
1230 		}
1231 	}
1232 
1233 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1234 		sh->reconstruct_state = reconstruct_state_drain_result;
1235 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1236 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1237 	else {
1238 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1239 		sh->reconstruct_state = reconstruct_state_result;
1240 	}
1241 
1242 	set_bit(STRIPE_HANDLE, &sh->state);
1243 	release_stripe(sh);
1244 }
1245 
1246 static void
1247 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1248 		     struct dma_async_tx_descriptor *tx)
1249 {
1250 	int disks = sh->disks;
1251 	struct page **xor_srcs = percpu->scribble;
1252 	struct async_submit_ctl submit;
1253 	int count = 0, pd_idx = sh->pd_idx, i;
1254 	struct page *xor_dest;
1255 	int prexor = 0;
1256 	unsigned long flags;
1257 
1258 	pr_debug("%s: stripe %llu\n", __func__,
1259 		(unsigned long long)sh->sector);
1260 
1261 	for (i = 0; i < sh->disks; i++) {
1262 		if (pd_idx == i)
1263 			continue;
1264 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1265 			break;
1266 	}
1267 	if (i >= sh->disks) {
1268 		atomic_inc(&sh->count);
1269 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1270 		ops_complete_reconstruct(sh);
1271 		return;
1272 	}
1273 	/* check if prexor is active which means only process blocks
1274 	 * that are part of a read-modify-write (written)
1275 	 */
1276 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1277 		prexor = 1;
1278 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1279 		for (i = disks; i--; ) {
1280 			struct r5dev *dev = &sh->dev[i];
1281 			if (dev->written)
1282 				xor_srcs[count++] = dev->page;
1283 		}
1284 	} else {
1285 		xor_dest = sh->dev[pd_idx].page;
1286 		for (i = disks; i--; ) {
1287 			struct r5dev *dev = &sh->dev[i];
1288 			if (i != pd_idx)
1289 				xor_srcs[count++] = dev->page;
1290 		}
1291 	}
1292 
1293 	/* 1/ if we prexor'd then the dest is reused as a source
1294 	 * 2/ if we did not prexor then we are redoing the parity
1295 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1296 	 * for the synchronous xor case
1297 	 */
1298 	flags = ASYNC_TX_ACK |
1299 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1300 
1301 	atomic_inc(&sh->count);
1302 
1303 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1304 			  to_addr_conv(sh, percpu));
1305 	if (unlikely(count == 1))
1306 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1307 	else
1308 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1309 }
1310 
1311 static void
1312 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1313 		     struct dma_async_tx_descriptor *tx)
1314 {
1315 	struct async_submit_ctl submit;
1316 	struct page **blocks = percpu->scribble;
1317 	int count, i;
1318 
1319 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1320 
1321 	for (i = 0; i < sh->disks; i++) {
1322 		if (sh->pd_idx == i || sh->qd_idx == i)
1323 			continue;
1324 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1325 			break;
1326 	}
1327 	if (i >= sh->disks) {
1328 		atomic_inc(&sh->count);
1329 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1330 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1331 		ops_complete_reconstruct(sh);
1332 		return;
1333 	}
1334 
1335 	count = set_syndrome_sources(blocks, sh);
1336 
1337 	atomic_inc(&sh->count);
1338 
1339 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1340 			  sh, to_addr_conv(sh, percpu));
1341 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1342 }
1343 
1344 static void ops_complete_check(void *stripe_head_ref)
1345 {
1346 	struct stripe_head *sh = stripe_head_ref;
1347 
1348 	pr_debug("%s: stripe %llu\n", __func__,
1349 		(unsigned long long)sh->sector);
1350 
1351 	sh->check_state = check_state_check_result;
1352 	set_bit(STRIPE_HANDLE, &sh->state);
1353 	release_stripe(sh);
1354 }
1355 
1356 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1357 {
1358 	int disks = sh->disks;
1359 	int pd_idx = sh->pd_idx;
1360 	int qd_idx = sh->qd_idx;
1361 	struct page *xor_dest;
1362 	struct page **xor_srcs = percpu->scribble;
1363 	struct dma_async_tx_descriptor *tx;
1364 	struct async_submit_ctl submit;
1365 	int count;
1366 	int i;
1367 
1368 	pr_debug("%s: stripe %llu\n", __func__,
1369 		(unsigned long long)sh->sector);
1370 
1371 	count = 0;
1372 	xor_dest = sh->dev[pd_idx].page;
1373 	xor_srcs[count++] = xor_dest;
1374 	for (i = disks; i--; ) {
1375 		if (i == pd_idx || i == qd_idx)
1376 			continue;
1377 		xor_srcs[count++] = sh->dev[i].page;
1378 	}
1379 
1380 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1381 			  to_addr_conv(sh, percpu));
1382 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1383 			   &sh->ops.zero_sum_result, &submit);
1384 
1385 	atomic_inc(&sh->count);
1386 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1387 	tx = async_trigger_callback(&submit);
1388 }
1389 
1390 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1391 {
1392 	struct page **srcs = percpu->scribble;
1393 	struct async_submit_ctl submit;
1394 	int count;
1395 
1396 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1397 		(unsigned long long)sh->sector, checkp);
1398 
1399 	count = set_syndrome_sources(srcs, sh);
1400 	if (!checkp)
1401 		srcs[count] = NULL;
1402 
1403 	atomic_inc(&sh->count);
1404 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1405 			  sh, to_addr_conv(sh, percpu));
1406 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1407 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1408 }
1409 
1410 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1411 {
1412 	int overlap_clear = 0, i, disks = sh->disks;
1413 	struct dma_async_tx_descriptor *tx = NULL;
1414 	struct r5conf *conf = sh->raid_conf;
1415 	int level = conf->level;
1416 	struct raid5_percpu *percpu;
1417 	unsigned long cpu;
1418 
1419 	cpu = get_cpu();
1420 	percpu = per_cpu_ptr(conf->percpu, cpu);
1421 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1422 		ops_run_biofill(sh);
1423 		overlap_clear++;
1424 	}
1425 
1426 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1427 		if (level < 6)
1428 			tx = ops_run_compute5(sh, percpu);
1429 		else {
1430 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1431 				tx = ops_run_compute6_1(sh, percpu);
1432 			else
1433 				tx = ops_run_compute6_2(sh, percpu);
1434 		}
1435 		/* terminate the chain if reconstruct is not set to be run */
1436 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1437 			async_tx_ack(tx);
1438 	}
1439 
1440 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1441 		tx = ops_run_prexor(sh, percpu, tx);
1442 
1443 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1444 		tx = ops_run_biodrain(sh, tx);
1445 		overlap_clear++;
1446 	}
1447 
1448 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1449 		if (level < 6)
1450 			ops_run_reconstruct5(sh, percpu, tx);
1451 		else
1452 			ops_run_reconstruct6(sh, percpu, tx);
1453 	}
1454 
1455 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1456 		if (sh->check_state == check_state_run)
1457 			ops_run_check_p(sh, percpu);
1458 		else if (sh->check_state == check_state_run_q)
1459 			ops_run_check_pq(sh, percpu, 0);
1460 		else if (sh->check_state == check_state_run_pq)
1461 			ops_run_check_pq(sh, percpu, 1);
1462 		else
1463 			BUG();
1464 	}
1465 
1466 	if (overlap_clear)
1467 		for (i = disks; i--; ) {
1468 			struct r5dev *dev = &sh->dev[i];
1469 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1470 				wake_up(&sh->raid_conf->wait_for_overlap);
1471 		}
1472 	put_cpu();
1473 }
1474 
1475 static int grow_one_stripe(struct r5conf *conf)
1476 {
1477 	struct stripe_head *sh;
1478 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1479 	if (!sh)
1480 		return 0;
1481 
1482 	sh->raid_conf = conf;
1483 
1484 	spin_lock_init(&sh->stripe_lock);
1485 
1486 	if (grow_buffers(sh)) {
1487 		shrink_buffers(sh);
1488 		kmem_cache_free(conf->slab_cache, sh);
1489 		return 0;
1490 	}
1491 	/* we just created an active stripe so... */
1492 	atomic_set(&sh->count, 1);
1493 	atomic_inc(&conf->active_stripes);
1494 	INIT_LIST_HEAD(&sh->lru);
1495 	release_stripe(sh);
1496 	return 1;
1497 }
1498 
1499 static int grow_stripes(struct r5conf *conf, int num)
1500 {
1501 	struct kmem_cache *sc;
1502 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1503 
1504 	if (conf->mddev->gendisk)
1505 		sprintf(conf->cache_name[0],
1506 			"raid%d-%s", conf->level, mdname(conf->mddev));
1507 	else
1508 		sprintf(conf->cache_name[0],
1509 			"raid%d-%p", conf->level, conf->mddev);
1510 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1511 
1512 	conf->active_name = 0;
1513 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1514 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1515 			       0, 0, NULL);
1516 	if (!sc)
1517 		return 1;
1518 	conf->slab_cache = sc;
1519 	conf->pool_size = devs;
1520 	while (num--)
1521 		if (!grow_one_stripe(conf))
1522 			return 1;
1523 	return 0;
1524 }
1525 
1526 /**
1527  * scribble_len - return the required size of the scribble region
1528  * @num - total number of disks in the array
1529  *
1530  * The size must be enough to contain:
1531  * 1/ a struct page pointer for each device in the array +2
1532  * 2/ room to convert each entry in (1) to its corresponding dma
1533  *    (dma_map_page()) or page (page_address()) address.
1534  *
1535  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1536  * calculate over all devices (not just the data blocks), using zeros in place
1537  * of the P and Q blocks.
1538  */
1539 static size_t scribble_len(int num)
1540 {
1541 	size_t len;
1542 
1543 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1544 
1545 	return len;
1546 }
1547 
1548 static int resize_stripes(struct r5conf *conf, int newsize)
1549 {
1550 	/* Make all the stripes able to hold 'newsize' devices.
1551 	 * New slots in each stripe get 'page' set to a new page.
1552 	 *
1553 	 * This happens in stages:
1554 	 * 1/ create a new kmem_cache and allocate the required number of
1555 	 *    stripe_heads.
1556 	 * 2/ gather all the old stripe_heads and transfer the pages across
1557 	 *    to the new stripe_heads.  This will have the side effect of
1558 	 *    freezing the array as once all stripe_heads have been collected,
1559 	 *    no IO will be possible.  Old stripe heads are freed once their
1560 	 *    pages have been transferred over, and the old kmem_cache is
1561 	 *    freed when all stripes are done.
1562 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1563 	 *    we simple return a failre status - no need to clean anything up.
1564 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1565 	 *    If this fails, we don't bother trying the shrink the
1566 	 *    stripe_heads down again, we just leave them as they are.
1567 	 *    As each stripe_head is processed the new one is released into
1568 	 *    active service.
1569 	 *
1570 	 * Once step2 is started, we cannot afford to wait for a write,
1571 	 * so we use GFP_NOIO allocations.
1572 	 */
1573 	struct stripe_head *osh, *nsh;
1574 	LIST_HEAD(newstripes);
1575 	struct disk_info *ndisks;
1576 	unsigned long cpu;
1577 	int err;
1578 	struct kmem_cache *sc;
1579 	int i;
1580 
1581 	if (newsize <= conf->pool_size)
1582 		return 0; /* never bother to shrink */
1583 
1584 	err = md_allow_write(conf->mddev);
1585 	if (err)
1586 		return err;
1587 
1588 	/* Step 1 */
1589 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1590 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1591 			       0, 0, NULL);
1592 	if (!sc)
1593 		return -ENOMEM;
1594 
1595 	for (i = conf->max_nr_stripes; i; i--) {
1596 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1597 		if (!nsh)
1598 			break;
1599 
1600 		nsh->raid_conf = conf;
1601 		spin_lock_init(&nsh->stripe_lock);
1602 
1603 		list_add(&nsh->lru, &newstripes);
1604 	}
1605 	if (i) {
1606 		/* didn't get enough, give up */
1607 		while (!list_empty(&newstripes)) {
1608 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1609 			list_del(&nsh->lru);
1610 			kmem_cache_free(sc, nsh);
1611 		}
1612 		kmem_cache_destroy(sc);
1613 		return -ENOMEM;
1614 	}
1615 	/* Step 2 - Must use GFP_NOIO now.
1616 	 * OK, we have enough stripes, start collecting inactive
1617 	 * stripes and copying them over
1618 	 */
1619 	list_for_each_entry(nsh, &newstripes, lru) {
1620 		spin_lock_irq(&conf->device_lock);
1621 		wait_event_lock_irq(conf->wait_for_stripe,
1622 				    !list_empty(&conf->inactive_list),
1623 				    conf->device_lock);
1624 		osh = get_free_stripe(conf);
1625 		spin_unlock_irq(&conf->device_lock);
1626 		atomic_set(&nsh->count, 1);
1627 		for(i=0; i<conf->pool_size; i++)
1628 			nsh->dev[i].page = osh->dev[i].page;
1629 		for( ; i<newsize; i++)
1630 			nsh->dev[i].page = NULL;
1631 		kmem_cache_free(conf->slab_cache, osh);
1632 	}
1633 	kmem_cache_destroy(conf->slab_cache);
1634 
1635 	/* Step 3.
1636 	 * At this point, we are holding all the stripes so the array
1637 	 * is completely stalled, so now is a good time to resize
1638 	 * conf->disks and the scribble region
1639 	 */
1640 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1641 	if (ndisks) {
1642 		for (i=0; i<conf->raid_disks; i++)
1643 			ndisks[i] = conf->disks[i];
1644 		kfree(conf->disks);
1645 		conf->disks = ndisks;
1646 	} else
1647 		err = -ENOMEM;
1648 
1649 	get_online_cpus();
1650 	conf->scribble_len = scribble_len(newsize);
1651 	for_each_present_cpu(cpu) {
1652 		struct raid5_percpu *percpu;
1653 		void *scribble;
1654 
1655 		percpu = per_cpu_ptr(conf->percpu, cpu);
1656 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1657 
1658 		if (scribble) {
1659 			kfree(percpu->scribble);
1660 			percpu->scribble = scribble;
1661 		} else {
1662 			err = -ENOMEM;
1663 			break;
1664 		}
1665 	}
1666 	put_online_cpus();
1667 
1668 	/* Step 4, return new stripes to service */
1669 	while(!list_empty(&newstripes)) {
1670 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1671 		list_del_init(&nsh->lru);
1672 
1673 		for (i=conf->raid_disks; i < newsize; i++)
1674 			if (nsh->dev[i].page == NULL) {
1675 				struct page *p = alloc_page(GFP_NOIO);
1676 				nsh->dev[i].page = p;
1677 				if (!p)
1678 					err = -ENOMEM;
1679 			}
1680 		release_stripe(nsh);
1681 	}
1682 	/* critical section pass, GFP_NOIO no longer needed */
1683 
1684 	conf->slab_cache = sc;
1685 	conf->active_name = 1-conf->active_name;
1686 	conf->pool_size = newsize;
1687 	return err;
1688 }
1689 
1690 static int drop_one_stripe(struct r5conf *conf)
1691 {
1692 	struct stripe_head *sh;
1693 
1694 	spin_lock_irq(&conf->device_lock);
1695 	sh = get_free_stripe(conf);
1696 	spin_unlock_irq(&conf->device_lock);
1697 	if (!sh)
1698 		return 0;
1699 	BUG_ON(atomic_read(&sh->count));
1700 	shrink_buffers(sh);
1701 	kmem_cache_free(conf->slab_cache, sh);
1702 	atomic_dec(&conf->active_stripes);
1703 	return 1;
1704 }
1705 
1706 static void shrink_stripes(struct r5conf *conf)
1707 {
1708 	while (drop_one_stripe(conf))
1709 		;
1710 
1711 	if (conf->slab_cache)
1712 		kmem_cache_destroy(conf->slab_cache);
1713 	conf->slab_cache = NULL;
1714 }
1715 
1716 static void raid5_end_read_request(struct bio * bi, int error)
1717 {
1718 	struct stripe_head *sh = bi->bi_private;
1719 	struct r5conf *conf = sh->raid_conf;
1720 	int disks = sh->disks, i;
1721 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1722 	char b[BDEVNAME_SIZE];
1723 	struct md_rdev *rdev = NULL;
1724 	sector_t s;
1725 
1726 	for (i=0 ; i<disks; i++)
1727 		if (bi == &sh->dev[i].req)
1728 			break;
1729 
1730 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1731 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1732 		uptodate);
1733 	if (i == disks) {
1734 		BUG();
1735 		return;
1736 	}
1737 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1738 		/* If replacement finished while this request was outstanding,
1739 		 * 'replacement' might be NULL already.
1740 		 * In that case it moved down to 'rdev'.
1741 		 * rdev is not removed until all requests are finished.
1742 		 */
1743 		rdev = conf->disks[i].replacement;
1744 	if (!rdev)
1745 		rdev = conf->disks[i].rdev;
1746 
1747 	if (use_new_offset(conf, sh))
1748 		s = sh->sector + rdev->new_data_offset;
1749 	else
1750 		s = sh->sector + rdev->data_offset;
1751 	if (uptodate) {
1752 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1753 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1754 			/* Note that this cannot happen on a
1755 			 * replacement device.  We just fail those on
1756 			 * any error
1757 			 */
1758 			printk_ratelimited(
1759 				KERN_INFO
1760 				"md/raid:%s: read error corrected"
1761 				" (%lu sectors at %llu on %s)\n",
1762 				mdname(conf->mddev), STRIPE_SECTORS,
1763 				(unsigned long long)s,
1764 				bdevname(rdev->bdev, b));
1765 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1766 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1767 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1768 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1769 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1770 
1771 		if (atomic_read(&rdev->read_errors))
1772 			atomic_set(&rdev->read_errors, 0);
1773 	} else {
1774 		const char *bdn = bdevname(rdev->bdev, b);
1775 		int retry = 0;
1776 		int set_bad = 0;
1777 
1778 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1779 		atomic_inc(&rdev->read_errors);
1780 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1781 			printk_ratelimited(
1782 				KERN_WARNING
1783 				"md/raid:%s: read error on replacement device "
1784 				"(sector %llu on %s).\n",
1785 				mdname(conf->mddev),
1786 				(unsigned long long)s,
1787 				bdn);
1788 		else if (conf->mddev->degraded >= conf->max_degraded) {
1789 			set_bad = 1;
1790 			printk_ratelimited(
1791 				KERN_WARNING
1792 				"md/raid:%s: read error not correctable "
1793 				"(sector %llu on %s).\n",
1794 				mdname(conf->mddev),
1795 				(unsigned long long)s,
1796 				bdn);
1797 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1798 			/* Oh, no!!! */
1799 			set_bad = 1;
1800 			printk_ratelimited(
1801 				KERN_WARNING
1802 				"md/raid:%s: read error NOT corrected!! "
1803 				"(sector %llu on %s).\n",
1804 				mdname(conf->mddev),
1805 				(unsigned long long)s,
1806 				bdn);
1807 		} else if (atomic_read(&rdev->read_errors)
1808 			 > conf->max_nr_stripes)
1809 			printk(KERN_WARNING
1810 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1811 			       mdname(conf->mddev), bdn);
1812 		else
1813 			retry = 1;
1814 		if (retry)
1815 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1816 				set_bit(R5_ReadError, &sh->dev[i].flags);
1817 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1818 			} else
1819 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1820 		else {
1821 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1822 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1823 			if (!(set_bad
1824 			      && test_bit(In_sync, &rdev->flags)
1825 			      && rdev_set_badblocks(
1826 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1827 				md_error(conf->mddev, rdev);
1828 		}
1829 	}
1830 	rdev_dec_pending(rdev, conf->mddev);
1831 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1832 	set_bit(STRIPE_HANDLE, &sh->state);
1833 	release_stripe(sh);
1834 }
1835 
1836 static void raid5_end_write_request(struct bio *bi, int error)
1837 {
1838 	struct stripe_head *sh = bi->bi_private;
1839 	struct r5conf *conf = sh->raid_conf;
1840 	int disks = sh->disks, i;
1841 	struct md_rdev *uninitialized_var(rdev);
1842 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1843 	sector_t first_bad;
1844 	int bad_sectors;
1845 	int replacement = 0;
1846 
1847 	for (i = 0 ; i < disks; i++) {
1848 		if (bi == &sh->dev[i].req) {
1849 			rdev = conf->disks[i].rdev;
1850 			break;
1851 		}
1852 		if (bi == &sh->dev[i].rreq) {
1853 			rdev = conf->disks[i].replacement;
1854 			if (rdev)
1855 				replacement = 1;
1856 			else
1857 				/* rdev was removed and 'replacement'
1858 				 * replaced it.  rdev is not removed
1859 				 * until all requests are finished.
1860 				 */
1861 				rdev = conf->disks[i].rdev;
1862 			break;
1863 		}
1864 	}
1865 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1866 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1867 		uptodate);
1868 	if (i == disks) {
1869 		BUG();
1870 		return;
1871 	}
1872 
1873 	if (replacement) {
1874 		if (!uptodate)
1875 			md_error(conf->mddev, rdev);
1876 		else if (is_badblock(rdev, sh->sector,
1877 				     STRIPE_SECTORS,
1878 				     &first_bad, &bad_sectors))
1879 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1880 	} else {
1881 		if (!uptodate) {
1882 			set_bit(WriteErrorSeen, &rdev->flags);
1883 			set_bit(R5_WriteError, &sh->dev[i].flags);
1884 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1885 				set_bit(MD_RECOVERY_NEEDED,
1886 					&rdev->mddev->recovery);
1887 		} else if (is_badblock(rdev, sh->sector,
1888 				       STRIPE_SECTORS,
1889 				       &first_bad, &bad_sectors)) {
1890 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1891 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
1892 				/* That was a successful write so make
1893 				 * sure it looks like we already did
1894 				 * a re-write.
1895 				 */
1896 				set_bit(R5_ReWrite, &sh->dev[i].flags);
1897 		}
1898 	}
1899 	rdev_dec_pending(rdev, conf->mddev);
1900 
1901 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1902 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1903 	set_bit(STRIPE_HANDLE, &sh->state);
1904 	release_stripe(sh);
1905 }
1906 
1907 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1908 
1909 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1910 {
1911 	struct r5dev *dev = &sh->dev[i];
1912 
1913 	bio_init(&dev->req);
1914 	dev->req.bi_io_vec = &dev->vec;
1915 	dev->req.bi_vcnt++;
1916 	dev->req.bi_max_vecs++;
1917 	dev->req.bi_private = sh;
1918 	dev->vec.bv_page = dev->page;
1919 
1920 	bio_init(&dev->rreq);
1921 	dev->rreq.bi_io_vec = &dev->rvec;
1922 	dev->rreq.bi_vcnt++;
1923 	dev->rreq.bi_max_vecs++;
1924 	dev->rreq.bi_private = sh;
1925 	dev->rvec.bv_page = dev->page;
1926 
1927 	dev->flags = 0;
1928 	dev->sector = compute_blocknr(sh, i, previous);
1929 }
1930 
1931 static void error(struct mddev *mddev, struct md_rdev *rdev)
1932 {
1933 	char b[BDEVNAME_SIZE];
1934 	struct r5conf *conf = mddev->private;
1935 	unsigned long flags;
1936 	pr_debug("raid456: error called\n");
1937 
1938 	spin_lock_irqsave(&conf->device_lock, flags);
1939 	clear_bit(In_sync, &rdev->flags);
1940 	mddev->degraded = calc_degraded(conf);
1941 	spin_unlock_irqrestore(&conf->device_lock, flags);
1942 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1943 
1944 	set_bit(Blocked, &rdev->flags);
1945 	set_bit(Faulty, &rdev->flags);
1946 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1947 	printk(KERN_ALERT
1948 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1949 	       "md/raid:%s: Operation continuing on %d devices.\n",
1950 	       mdname(mddev),
1951 	       bdevname(rdev->bdev, b),
1952 	       mdname(mddev),
1953 	       conf->raid_disks - mddev->degraded);
1954 }
1955 
1956 /*
1957  * Input: a 'big' sector number,
1958  * Output: index of the data and parity disk, and the sector # in them.
1959  */
1960 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1961 				     int previous, int *dd_idx,
1962 				     struct stripe_head *sh)
1963 {
1964 	sector_t stripe, stripe2;
1965 	sector_t chunk_number;
1966 	unsigned int chunk_offset;
1967 	int pd_idx, qd_idx;
1968 	int ddf_layout = 0;
1969 	sector_t new_sector;
1970 	int algorithm = previous ? conf->prev_algo
1971 				 : conf->algorithm;
1972 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1973 					 : conf->chunk_sectors;
1974 	int raid_disks = previous ? conf->previous_raid_disks
1975 				  : conf->raid_disks;
1976 	int data_disks = raid_disks - conf->max_degraded;
1977 
1978 	/* First compute the information on this sector */
1979 
1980 	/*
1981 	 * Compute the chunk number and the sector offset inside the chunk
1982 	 */
1983 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1984 	chunk_number = r_sector;
1985 
1986 	/*
1987 	 * Compute the stripe number
1988 	 */
1989 	stripe = chunk_number;
1990 	*dd_idx = sector_div(stripe, data_disks);
1991 	stripe2 = stripe;
1992 	/*
1993 	 * Select the parity disk based on the user selected algorithm.
1994 	 */
1995 	pd_idx = qd_idx = -1;
1996 	switch(conf->level) {
1997 	case 4:
1998 		pd_idx = data_disks;
1999 		break;
2000 	case 5:
2001 		switch (algorithm) {
2002 		case ALGORITHM_LEFT_ASYMMETRIC:
2003 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2004 			if (*dd_idx >= pd_idx)
2005 				(*dd_idx)++;
2006 			break;
2007 		case ALGORITHM_RIGHT_ASYMMETRIC:
2008 			pd_idx = sector_div(stripe2, raid_disks);
2009 			if (*dd_idx >= pd_idx)
2010 				(*dd_idx)++;
2011 			break;
2012 		case ALGORITHM_LEFT_SYMMETRIC:
2013 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2014 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2015 			break;
2016 		case ALGORITHM_RIGHT_SYMMETRIC:
2017 			pd_idx = sector_div(stripe2, raid_disks);
2018 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2019 			break;
2020 		case ALGORITHM_PARITY_0:
2021 			pd_idx = 0;
2022 			(*dd_idx)++;
2023 			break;
2024 		case ALGORITHM_PARITY_N:
2025 			pd_idx = data_disks;
2026 			break;
2027 		default:
2028 			BUG();
2029 		}
2030 		break;
2031 	case 6:
2032 
2033 		switch (algorithm) {
2034 		case ALGORITHM_LEFT_ASYMMETRIC:
2035 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2036 			qd_idx = pd_idx + 1;
2037 			if (pd_idx == raid_disks-1) {
2038 				(*dd_idx)++;	/* Q D D D P */
2039 				qd_idx = 0;
2040 			} else if (*dd_idx >= pd_idx)
2041 				(*dd_idx) += 2; /* D D P Q D */
2042 			break;
2043 		case ALGORITHM_RIGHT_ASYMMETRIC:
2044 			pd_idx = sector_div(stripe2, raid_disks);
2045 			qd_idx = pd_idx + 1;
2046 			if (pd_idx == raid_disks-1) {
2047 				(*dd_idx)++;	/* Q D D D P */
2048 				qd_idx = 0;
2049 			} else if (*dd_idx >= pd_idx)
2050 				(*dd_idx) += 2; /* D D P Q D */
2051 			break;
2052 		case ALGORITHM_LEFT_SYMMETRIC:
2053 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2054 			qd_idx = (pd_idx + 1) % raid_disks;
2055 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2056 			break;
2057 		case ALGORITHM_RIGHT_SYMMETRIC:
2058 			pd_idx = sector_div(stripe2, raid_disks);
2059 			qd_idx = (pd_idx + 1) % raid_disks;
2060 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2061 			break;
2062 
2063 		case ALGORITHM_PARITY_0:
2064 			pd_idx = 0;
2065 			qd_idx = 1;
2066 			(*dd_idx) += 2;
2067 			break;
2068 		case ALGORITHM_PARITY_N:
2069 			pd_idx = data_disks;
2070 			qd_idx = data_disks + 1;
2071 			break;
2072 
2073 		case ALGORITHM_ROTATING_ZERO_RESTART:
2074 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2075 			 * of blocks for computing Q is different.
2076 			 */
2077 			pd_idx = sector_div(stripe2, raid_disks);
2078 			qd_idx = pd_idx + 1;
2079 			if (pd_idx == raid_disks-1) {
2080 				(*dd_idx)++;	/* Q D D D P */
2081 				qd_idx = 0;
2082 			} else if (*dd_idx >= pd_idx)
2083 				(*dd_idx) += 2; /* D D P Q D */
2084 			ddf_layout = 1;
2085 			break;
2086 
2087 		case ALGORITHM_ROTATING_N_RESTART:
2088 			/* Same a left_asymmetric, by first stripe is
2089 			 * D D D P Q  rather than
2090 			 * Q D D D P
2091 			 */
2092 			stripe2 += 1;
2093 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2094 			qd_idx = pd_idx + 1;
2095 			if (pd_idx == raid_disks-1) {
2096 				(*dd_idx)++;	/* Q D D D P */
2097 				qd_idx = 0;
2098 			} else if (*dd_idx >= pd_idx)
2099 				(*dd_idx) += 2; /* D D P Q D */
2100 			ddf_layout = 1;
2101 			break;
2102 
2103 		case ALGORITHM_ROTATING_N_CONTINUE:
2104 			/* Same as left_symmetric but Q is before P */
2105 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2106 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2107 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2108 			ddf_layout = 1;
2109 			break;
2110 
2111 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2112 			/* RAID5 left_asymmetric, with Q on last device */
2113 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2114 			if (*dd_idx >= pd_idx)
2115 				(*dd_idx)++;
2116 			qd_idx = raid_disks - 1;
2117 			break;
2118 
2119 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2120 			pd_idx = sector_div(stripe2, raid_disks-1);
2121 			if (*dd_idx >= pd_idx)
2122 				(*dd_idx)++;
2123 			qd_idx = raid_disks - 1;
2124 			break;
2125 
2126 		case ALGORITHM_LEFT_SYMMETRIC_6:
2127 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2128 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2129 			qd_idx = raid_disks - 1;
2130 			break;
2131 
2132 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2133 			pd_idx = sector_div(stripe2, raid_disks-1);
2134 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2135 			qd_idx = raid_disks - 1;
2136 			break;
2137 
2138 		case ALGORITHM_PARITY_0_6:
2139 			pd_idx = 0;
2140 			(*dd_idx)++;
2141 			qd_idx = raid_disks - 1;
2142 			break;
2143 
2144 		default:
2145 			BUG();
2146 		}
2147 		break;
2148 	}
2149 
2150 	if (sh) {
2151 		sh->pd_idx = pd_idx;
2152 		sh->qd_idx = qd_idx;
2153 		sh->ddf_layout = ddf_layout;
2154 	}
2155 	/*
2156 	 * Finally, compute the new sector number
2157 	 */
2158 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2159 	return new_sector;
2160 }
2161 
2162 
2163 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2164 {
2165 	struct r5conf *conf = sh->raid_conf;
2166 	int raid_disks = sh->disks;
2167 	int data_disks = raid_disks - conf->max_degraded;
2168 	sector_t new_sector = sh->sector, check;
2169 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2170 					 : conf->chunk_sectors;
2171 	int algorithm = previous ? conf->prev_algo
2172 				 : conf->algorithm;
2173 	sector_t stripe;
2174 	int chunk_offset;
2175 	sector_t chunk_number;
2176 	int dummy1, dd_idx = i;
2177 	sector_t r_sector;
2178 	struct stripe_head sh2;
2179 
2180 
2181 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2182 	stripe = new_sector;
2183 
2184 	if (i == sh->pd_idx)
2185 		return 0;
2186 	switch(conf->level) {
2187 	case 4: break;
2188 	case 5:
2189 		switch (algorithm) {
2190 		case ALGORITHM_LEFT_ASYMMETRIC:
2191 		case ALGORITHM_RIGHT_ASYMMETRIC:
2192 			if (i > sh->pd_idx)
2193 				i--;
2194 			break;
2195 		case ALGORITHM_LEFT_SYMMETRIC:
2196 		case ALGORITHM_RIGHT_SYMMETRIC:
2197 			if (i < sh->pd_idx)
2198 				i += raid_disks;
2199 			i -= (sh->pd_idx + 1);
2200 			break;
2201 		case ALGORITHM_PARITY_0:
2202 			i -= 1;
2203 			break;
2204 		case ALGORITHM_PARITY_N:
2205 			break;
2206 		default:
2207 			BUG();
2208 		}
2209 		break;
2210 	case 6:
2211 		if (i == sh->qd_idx)
2212 			return 0; /* It is the Q disk */
2213 		switch (algorithm) {
2214 		case ALGORITHM_LEFT_ASYMMETRIC:
2215 		case ALGORITHM_RIGHT_ASYMMETRIC:
2216 		case ALGORITHM_ROTATING_ZERO_RESTART:
2217 		case ALGORITHM_ROTATING_N_RESTART:
2218 			if (sh->pd_idx == raid_disks-1)
2219 				i--;	/* Q D D D P */
2220 			else if (i > sh->pd_idx)
2221 				i -= 2; /* D D P Q D */
2222 			break;
2223 		case ALGORITHM_LEFT_SYMMETRIC:
2224 		case ALGORITHM_RIGHT_SYMMETRIC:
2225 			if (sh->pd_idx == raid_disks-1)
2226 				i--; /* Q D D D P */
2227 			else {
2228 				/* D D P Q D */
2229 				if (i < sh->pd_idx)
2230 					i += raid_disks;
2231 				i -= (sh->pd_idx + 2);
2232 			}
2233 			break;
2234 		case ALGORITHM_PARITY_0:
2235 			i -= 2;
2236 			break;
2237 		case ALGORITHM_PARITY_N:
2238 			break;
2239 		case ALGORITHM_ROTATING_N_CONTINUE:
2240 			/* Like left_symmetric, but P is before Q */
2241 			if (sh->pd_idx == 0)
2242 				i--;	/* P D D D Q */
2243 			else {
2244 				/* D D Q P D */
2245 				if (i < sh->pd_idx)
2246 					i += raid_disks;
2247 				i -= (sh->pd_idx + 1);
2248 			}
2249 			break;
2250 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2251 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2252 			if (i > sh->pd_idx)
2253 				i--;
2254 			break;
2255 		case ALGORITHM_LEFT_SYMMETRIC_6:
2256 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2257 			if (i < sh->pd_idx)
2258 				i += data_disks + 1;
2259 			i -= (sh->pd_idx + 1);
2260 			break;
2261 		case ALGORITHM_PARITY_0_6:
2262 			i -= 1;
2263 			break;
2264 		default:
2265 			BUG();
2266 		}
2267 		break;
2268 	}
2269 
2270 	chunk_number = stripe * data_disks + i;
2271 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2272 
2273 	check = raid5_compute_sector(conf, r_sector,
2274 				     previous, &dummy1, &sh2);
2275 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2276 		|| sh2.qd_idx != sh->qd_idx) {
2277 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2278 		       mdname(conf->mddev));
2279 		return 0;
2280 	}
2281 	return r_sector;
2282 }
2283 
2284 
2285 static void
2286 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2287 			 int rcw, int expand)
2288 {
2289 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2290 	struct r5conf *conf = sh->raid_conf;
2291 	int level = conf->level;
2292 
2293 	if (rcw) {
2294 
2295 		for (i = disks; i--; ) {
2296 			struct r5dev *dev = &sh->dev[i];
2297 
2298 			if (dev->towrite) {
2299 				set_bit(R5_LOCKED, &dev->flags);
2300 				set_bit(R5_Wantdrain, &dev->flags);
2301 				if (!expand)
2302 					clear_bit(R5_UPTODATE, &dev->flags);
2303 				s->locked++;
2304 			}
2305 		}
2306 		/* if we are not expanding this is a proper write request, and
2307 		 * there will be bios with new data to be drained into the
2308 		 * stripe cache
2309 		 */
2310 		if (!expand) {
2311 			if (!s->locked)
2312 				/* False alarm, nothing to do */
2313 				return;
2314 			sh->reconstruct_state = reconstruct_state_drain_run;
2315 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2316 		} else
2317 			sh->reconstruct_state = reconstruct_state_run;
2318 
2319 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2320 
2321 		if (s->locked + conf->max_degraded == disks)
2322 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2323 				atomic_inc(&conf->pending_full_writes);
2324 	} else {
2325 		BUG_ON(level == 6);
2326 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2327 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2328 
2329 		for (i = disks; i--; ) {
2330 			struct r5dev *dev = &sh->dev[i];
2331 			if (i == pd_idx)
2332 				continue;
2333 
2334 			if (dev->towrite &&
2335 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2336 			     test_bit(R5_Wantcompute, &dev->flags))) {
2337 				set_bit(R5_Wantdrain, &dev->flags);
2338 				set_bit(R5_LOCKED, &dev->flags);
2339 				clear_bit(R5_UPTODATE, &dev->flags);
2340 				s->locked++;
2341 			}
2342 		}
2343 		if (!s->locked)
2344 			/* False alarm - nothing to do */
2345 			return;
2346 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2347 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2348 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2349 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2350 	}
2351 
2352 	/* keep the parity disk(s) locked while asynchronous operations
2353 	 * are in flight
2354 	 */
2355 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2356 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2357 	s->locked++;
2358 
2359 	if (level == 6) {
2360 		int qd_idx = sh->qd_idx;
2361 		struct r5dev *dev = &sh->dev[qd_idx];
2362 
2363 		set_bit(R5_LOCKED, &dev->flags);
2364 		clear_bit(R5_UPTODATE, &dev->flags);
2365 		s->locked++;
2366 	}
2367 
2368 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2369 		__func__, (unsigned long long)sh->sector,
2370 		s->locked, s->ops_request);
2371 }
2372 
2373 /*
2374  * Each stripe/dev can have one or more bion attached.
2375  * toread/towrite point to the first in a chain.
2376  * The bi_next chain must be in order.
2377  */
2378 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2379 {
2380 	struct bio **bip;
2381 	struct r5conf *conf = sh->raid_conf;
2382 	int firstwrite=0;
2383 
2384 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2385 		(unsigned long long)bi->bi_sector,
2386 		(unsigned long long)sh->sector);
2387 
2388 	/*
2389 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2390 	 * reference count to avoid race. The reference count should already be
2391 	 * increased before this function is called (for example, in
2392 	 * make_request()), so other bio sharing this stripe will not free the
2393 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2394 	 * protect it.
2395 	 */
2396 	spin_lock_irq(&sh->stripe_lock);
2397 	if (forwrite) {
2398 		bip = &sh->dev[dd_idx].towrite;
2399 		if (*bip == NULL)
2400 			firstwrite = 1;
2401 	} else
2402 		bip = &sh->dev[dd_idx].toread;
2403 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2404 		if (bio_end_sector(*bip) > bi->bi_sector)
2405 			goto overlap;
2406 		bip = & (*bip)->bi_next;
2407 	}
2408 	if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2409 		goto overlap;
2410 
2411 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2412 	if (*bip)
2413 		bi->bi_next = *bip;
2414 	*bip = bi;
2415 	raid5_inc_bi_active_stripes(bi);
2416 
2417 	if (forwrite) {
2418 		/* check if page is covered */
2419 		sector_t sector = sh->dev[dd_idx].sector;
2420 		for (bi=sh->dev[dd_idx].towrite;
2421 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2422 			     bi && bi->bi_sector <= sector;
2423 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2424 			if (bio_end_sector(bi) >= sector)
2425 				sector = bio_end_sector(bi);
2426 		}
2427 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2428 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2429 	}
2430 
2431 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2432 		(unsigned long long)(*bip)->bi_sector,
2433 		(unsigned long long)sh->sector, dd_idx);
2434 	spin_unlock_irq(&sh->stripe_lock);
2435 
2436 	if (conf->mddev->bitmap && firstwrite) {
2437 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2438 				  STRIPE_SECTORS, 0);
2439 		sh->bm_seq = conf->seq_flush+1;
2440 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2441 	}
2442 	return 1;
2443 
2444  overlap:
2445 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2446 	spin_unlock_irq(&sh->stripe_lock);
2447 	return 0;
2448 }
2449 
2450 static void end_reshape(struct r5conf *conf);
2451 
2452 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2453 			    struct stripe_head *sh)
2454 {
2455 	int sectors_per_chunk =
2456 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2457 	int dd_idx;
2458 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2459 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2460 
2461 	raid5_compute_sector(conf,
2462 			     stripe * (disks - conf->max_degraded)
2463 			     *sectors_per_chunk + chunk_offset,
2464 			     previous,
2465 			     &dd_idx, sh);
2466 }
2467 
2468 static void
2469 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2470 				struct stripe_head_state *s, int disks,
2471 				struct bio **return_bi)
2472 {
2473 	int i;
2474 	for (i = disks; i--; ) {
2475 		struct bio *bi;
2476 		int bitmap_end = 0;
2477 
2478 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2479 			struct md_rdev *rdev;
2480 			rcu_read_lock();
2481 			rdev = rcu_dereference(conf->disks[i].rdev);
2482 			if (rdev && test_bit(In_sync, &rdev->flags))
2483 				atomic_inc(&rdev->nr_pending);
2484 			else
2485 				rdev = NULL;
2486 			rcu_read_unlock();
2487 			if (rdev) {
2488 				if (!rdev_set_badblocks(
2489 					    rdev,
2490 					    sh->sector,
2491 					    STRIPE_SECTORS, 0))
2492 					md_error(conf->mddev, rdev);
2493 				rdev_dec_pending(rdev, conf->mddev);
2494 			}
2495 		}
2496 		spin_lock_irq(&sh->stripe_lock);
2497 		/* fail all writes first */
2498 		bi = sh->dev[i].towrite;
2499 		sh->dev[i].towrite = NULL;
2500 		spin_unlock_irq(&sh->stripe_lock);
2501 		if (bi)
2502 			bitmap_end = 1;
2503 
2504 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2505 			wake_up(&conf->wait_for_overlap);
2506 
2507 		while (bi && bi->bi_sector <
2508 			sh->dev[i].sector + STRIPE_SECTORS) {
2509 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2510 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2511 			if (!raid5_dec_bi_active_stripes(bi)) {
2512 				md_write_end(conf->mddev);
2513 				bi->bi_next = *return_bi;
2514 				*return_bi = bi;
2515 			}
2516 			bi = nextbi;
2517 		}
2518 		if (bitmap_end)
2519 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2520 				STRIPE_SECTORS, 0, 0);
2521 		bitmap_end = 0;
2522 		/* and fail all 'written' */
2523 		bi = sh->dev[i].written;
2524 		sh->dev[i].written = NULL;
2525 		if (bi) bitmap_end = 1;
2526 		while (bi && bi->bi_sector <
2527 		       sh->dev[i].sector + STRIPE_SECTORS) {
2528 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2529 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2530 			if (!raid5_dec_bi_active_stripes(bi)) {
2531 				md_write_end(conf->mddev);
2532 				bi->bi_next = *return_bi;
2533 				*return_bi = bi;
2534 			}
2535 			bi = bi2;
2536 		}
2537 
2538 		/* fail any reads if this device is non-operational and
2539 		 * the data has not reached the cache yet.
2540 		 */
2541 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2542 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2543 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2544 			spin_lock_irq(&sh->stripe_lock);
2545 			bi = sh->dev[i].toread;
2546 			sh->dev[i].toread = NULL;
2547 			spin_unlock_irq(&sh->stripe_lock);
2548 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2549 				wake_up(&conf->wait_for_overlap);
2550 			while (bi && bi->bi_sector <
2551 			       sh->dev[i].sector + STRIPE_SECTORS) {
2552 				struct bio *nextbi =
2553 					r5_next_bio(bi, sh->dev[i].sector);
2554 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2555 				if (!raid5_dec_bi_active_stripes(bi)) {
2556 					bi->bi_next = *return_bi;
2557 					*return_bi = bi;
2558 				}
2559 				bi = nextbi;
2560 			}
2561 		}
2562 		if (bitmap_end)
2563 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2564 					STRIPE_SECTORS, 0, 0);
2565 		/* If we were in the middle of a write the parity block might
2566 		 * still be locked - so just clear all R5_LOCKED flags
2567 		 */
2568 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2569 	}
2570 
2571 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2572 		if (atomic_dec_and_test(&conf->pending_full_writes))
2573 			md_wakeup_thread(conf->mddev->thread);
2574 }
2575 
2576 static void
2577 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2578 		   struct stripe_head_state *s)
2579 {
2580 	int abort = 0;
2581 	int i;
2582 
2583 	clear_bit(STRIPE_SYNCING, &sh->state);
2584 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2585 		wake_up(&conf->wait_for_overlap);
2586 	s->syncing = 0;
2587 	s->replacing = 0;
2588 	/* There is nothing more to do for sync/check/repair.
2589 	 * Don't even need to abort as that is handled elsewhere
2590 	 * if needed, and not always wanted e.g. if there is a known
2591 	 * bad block here.
2592 	 * For recover/replace we need to record a bad block on all
2593 	 * non-sync devices, or abort the recovery
2594 	 */
2595 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2596 		/* During recovery devices cannot be removed, so
2597 		 * locking and refcounting of rdevs is not needed
2598 		 */
2599 		for (i = 0; i < conf->raid_disks; i++) {
2600 			struct md_rdev *rdev = conf->disks[i].rdev;
2601 			if (rdev
2602 			    && !test_bit(Faulty, &rdev->flags)
2603 			    && !test_bit(In_sync, &rdev->flags)
2604 			    && !rdev_set_badblocks(rdev, sh->sector,
2605 						   STRIPE_SECTORS, 0))
2606 				abort = 1;
2607 			rdev = conf->disks[i].replacement;
2608 			if (rdev
2609 			    && !test_bit(Faulty, &rdev->flags)
2610 			    && !test_bit(In_sync, &rdev->flags)
2611 			    && !rdev_set_badblocks(rdev, sh->sector,
2612 						   STRIPE_SECTORS, 0))
2613 				abort = 1;
2614 		}
2615 		if (abort)
2616 			conf->recovery_disabled =
2617 				conf->mddev->recovery_disabled;
2618 	}
2619 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2620 }
2621 
2622 static int want_replace(struct stripe_head *sh, int disk_idx)
2623 {
2624 	struct md_rdev *rdev;
2625 	int rv = 0;
2626 	/* Doing recovery so rcu locking not required */
2627 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2628 	if (rdev
2629 	    && !test_bit(Faulty, &rdev->flags)
2630 	    && !test_bit(In_sync, &rdev->flags)
2631 	    && (rdev->recovery_offset <= sh->sector
2632 		|| rdev->mddev->recovery_cp <= sh->sector))
2633 		rv = 1;
2634 
2635 	return rv;
2636 }
2637 
2638 /* fetch_block - checks the given member device to see if its data needs
2639  * to be read or computed to satisfy a request.
2640  *
2641  * Returns 1 when no more member devices need to be checked, otherwise returns
2642  * 0 to tell the loop in handle_stripe_fill to continue
2643  */
2644 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2645 		       int disk_idx, int disks)
2646 {
2647 	struct r5dev *dev = &sh->dev[disk_idx];
2648 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2649 				  &sh->dev[s->failed_num[1]] };
2650 
2651 	/* is the data in this block needed, and can we get it? */
2652 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2653 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2654 	    (dev->toread ||
2655 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2656 	     s->syncing || s->expanding ||
2657 	     (s->replacing && want_replace(sh, disk_idx)) ||
2658 	     (s->failed >= 1 && fdev[0]->toread) ||
2659 	     (s->failed >= 2 && fdev[1]->toread) ||
2660 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2661 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2662 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2663 		/* we would like to get this block, possibly by computing it,
2664 		 * otherwise read it if the backing disk is insync
2665 		 */
2666 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2667 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2668 		if ((s->uptodate == disks - 1) &&
2669 		    (s->failed && (disk_idx == s->failed_num[0] ||
2670 				   disk_idx == s->failed_num[1]))) {
2671 			/* have disk failed, and we're requested to fetch it;
2672 			 * do compute it
2673 			 */
2674 			pr_debug("Computing stripe %llu block %d\n",
2675 			       (unsigned long long)sh->sector, disk_idx);
2676 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2677 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2678 			set_bit(R5_Wantcompute, &dev->flags);
2679 			sh->ops.target = disk_idx;
2680 			sh->ops.target2 = -1; /* no 2nd target */
2681 			s->req_compute = 1;
2682 			/* Careful: from this point on 'uptodate' is in the eye
2683 			 * of raid_run_ops which services 'compute' operations
2684 			 * before writes. R5_Wantcompute flags a block that will
2685 			 * be R5_UPTODATE by the time it is needed for a
2686 			 * subsequent operation.
2687 			 */
2688 			s->uptodate++;
2689 			return 1;
2690 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2691 			/* Computing 2-failure is *very* expensive; only
2692 			 * do it if failed >= 2
2693 			 */
2694 			int other;
2695 			for (other = disks; other--; ) {
2696 				if (other == disk_idx)
2697 					continue;
2698 				if (!test_bit(R5_UPTODATE,
2699 				      &sh->dev[other].flags))
2700 					break;
2701 			}
2702 			BUG_ON(other < 0);
2703 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2704 			       (unsigned long long)sh->sector,
2705 			       disk_idx, other);
2706 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2707 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2708 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2709 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2710 			sh->ops.target = disk_idx;
2711 			sh->ops.target2 = other;
2712 			s->uptodate += 2;
2713 			s->req_compute = 1;
2714 			return 1;
2715 		} else if (test_bit(R5_Insync, &dev->flags)) {
2716 			set_bit(R5_LOCKED, &dev->flags);
2717 			set_bit(R5_Wantread, &dev->flags);
2718 			s->locked++;
2719 			pr_debug("Reading block %d (sync=%d)\n",
2720 				disk_idx, s->syncing);
2721 		}
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 /**
2728  * handle_stripe_fill - read or compute data to satisfy pending requests.
2729  */
2730 static void handle_stripe_fill(struct stripe_head *sh,
2731 			       struct stripe_head_state *s,
2732 			       int disks)
2733 {
2734 	int i;
2735 
2736 	/* look for blocks to read/compute, skip this if a compute
2737 	 * is already in flight, or if the stripe contents are in the
2738 	 * midst of changing due to a write
2739 	 */
2740 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2741 	    !sh->reconstruct_state)
2742 		for (i = disks; i--; )
2743 			if (fetch_block(sh, s, i, disks))
2744 				break;
2745 	set_bit(STRIPE_HANDLE, &sh->state);
2746 }
2747 
2748 
2749 /* handle_stripe_clean_event
2750  * any written block on an uptodate or failed drive can be returned.
2751  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2752  * never LOCKED, so we don't need to test 'failed' directly.
2753  */
2754 static void handle_stripe_clean_event(struct r5conf *conf,
2755 	struct stripe_head *sh, int disks, struct bio **return_bi)
2756 {
2757 	int i;
2758 	struct r5dev *dev;
2759 	int discard_pending = 0;
2760 
2761 	for (i = disks; i--; )
2762 		if (sh->dev[i].written) {
2763 			dev = &sh->dev[i];
2764 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2765 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2766 			     test_bit(R5_Discard, &dev->flags))) {
2767 				/* We can return any write requests */
2768 				struct bio *wbi, *wbi2;
2769 				pr_debug("Return write for disc %d\n", i);
2770 				if (test_and_clear_bit(R5_Discard, &dev->flags))
2771 					clear_bit(R5_UPTODATE, &dev->flags);
2772 				wbi = dev->written;
2773 				dev->written = NULL;
2774 				while (wbi && wbi->bi_sector <
2775 					dev->sector + STRIPE_SECTORS) {
2776 					wbi2 = r5_next_bio(wbi, dev->sector);
2777 					if (!raid5_dec_bi_active_stripes(wbi)) {
2778 						md_write_end(conf->mddev);
2779 						wbi->bi_next = *return_bi;
2780 						*return_bi = wbi;
2781 					}
2782 					wbi = wbi2;
2783 				}
2784 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2785 						STRIPE_SECTORS,
2786 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2787 						0);
2788 			} else if (test_bit(R5_Discard, &dev->flags))
2789 				discard_pending = 1;
2790 		}
2791 	if (!discard_pending &&
2792 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2793 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2794 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2795 		if (sh->qd_idx >= 0) {
2796 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2797 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2798 		}
2799 		/* now that discard is done we can proceed with any sync */
2800 		clear_bit(STRIPE_DISCARD, &sh->state);
2801 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2802 			set_bit(STRIPE_HANDLE, &sh->state);
2803 
2804 	}
2805 
2806 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2807 		if (atomic_dec_and_test(&conf->pending_full_writes))
2808 			md_wakeup_thread(conf->mddev->thread);
2809 }
2810 
2811 static void handle_stripe_dirtying(struct r5conf *conf,
2812 				   struct stripe_head *sh,
2813 				   struct stripe_head_state *s,
2814 				   int disks)
2815 {
2816 	int rmw = 0, rcw = 0, i;
2817 	sector_t recovery_cp = conf->mddev->recovery_cp;
2818 
2819 	/* RAID6 requires 'rcw' in current implementation.
2820 	 * Otherwise, check whether resync is now happening or should start.
2821 	 * If yes, then the array is dirty (after unclean shutdown or
2822 	 * initial creation), so parity in some stripes might be inconsistent.
2823 	 * In this case, we need to always do reconstruct-write, to ensure
2824 	 * that in case of drive failure or read-error correction, we
2825 	 * generate correct data from the parity.
2826 	 */
2827 	if (conf->max_degraded == 2 ||
2828 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2829 		/* Calculate the real rcw later - for now make it
2830 		 * look like rcw is cheaper
2831 		 */
2832 		rcw = 1; rmw = 2;
2833 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2834 			 conf->max_degraded, (unsigned long long)recovery_cp,
2835 			 (unsigned long long)sh->sector);
2836 	} else for (i = disks; i--; ) {
2837 		/* would I have to read this buffer for read_modify_write */
2838 		struct r5dev *dev = &sh->dev[i];
2839 		if ((dev->towrite || i == sh->pd_idx) &&
2840 		    !test_bit(R5_LOCKED, &dev->flags) &&
2841 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2842 		      test_bit(R5_Wantcompute, &dev->flags))) {
2843 			if (test_bit(R5_Insync, &dev->flags))
2844 				rmw++;
2845 			else
2846 				rmw += 2*disks;  /* cannot read it */
2847 		}
2848 		/* Would I have to read this buffer for reconstruct_write */
2849 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2850 		    !test_bit(R5_LOCKED, &dev->flags) &&
2851 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2852 		    test_bit(R5_Wantcompute, &dev->flags))) {
2853 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2854 			else
2855 				rcw += 2*disks;
2856 		}
2857 	}
2858 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2859 		(unsigned long long)sh->sector, rmw, rcw);
2860 	set_bit(STRIPE_HANDLE, &sh->state);
2861 	if (rmw < rcw && rmw > 0) {
2862 		/* prefer read-modify-write, but need to get some data */
2863 		if (conf->mddev->queue)
2864 			blk_add_trace_msg(conf->mddev->queue,
2865 					  "raid5 rmw %llu %d",
2866 					  (unsigned long long)sh->sector, rmw);
2867 		for (i = disks; i--; ) {
2868 			struct r5dev *dev = &sh->dev[i];
2869 			if ((dev->towrite || i == sh->pd_idx) &&
2870 			    !test_bit(R5_LOCKED, &dev->flags) &&
2871 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2872 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2873 			    test_bit(R5_Insync, &dev->flags)) {
2874 				if (
2875 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2876 					pr_debug("Read_old block "
2877 						 "%d for r-m-w\n", i);
2878 					set_bit(R5_LOCKED, &dev->flags);
2879 					set_bit(R5_Wantread, &dev->flags);
2880 					s->locked++;
2881 				} else {
2882 					set_bit(STRIPE_DELAYED, &sh->state);
2883 					set_bit(STRIPE_HANDLE, &sh->state);
2884 				}
2885 			}
2886 		}
2887 	}
2888 	if (rcw <= rmw && rcw > 0) {
2889 		/* want reconstruct write, but need to get some data */
2890 		int qread =0;
2891 		rcw = 0;
2892 		for (i = disks; i--; ) {
2893 			struct r5dev *dev = &sh->dev[i];
2894 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2895 			    i != sh->pd_idx && i != sh->qd_idx &&
2896 			    !test_bit(R5_LOCKED, &dev->flags) &&
2897 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2898 			      test_bit(R5_Wantcompute, &dev->flags))) {
2899 				rcw++;
2900 				if (!test_bit(R5_Insync, &dev->flags))
2901 					continue; /* it's a failed drive */
2902 				if (
2903 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2904 					pr_debug("Read_old block "
2905 						"%d for Reconstruct\n", i);
2906 					set_bit(R5_LOCKED, &dev->flags);
2907 					set_bit(R5_Wantread, &dev->flags);
2908 					s->locked++;
2909 					qread++;
2910 				} else {
2911 					set_bit(STRIPE_DELAYED, &sh->state);
2912 					set_bit(STRIPE_HANDLE, &sh->state);
2913 				}
2914 			}
2915 		}
2916 		if (rcw && conf->mddev->queue)
2917 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2918 					  (unsigned long long)sh->sector,
2919 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2920 	}
2921 	/* now if nothing is locked, and if we have enough data,
2922 	 * we can start a write request
2923 	 */
2924 	/* since handle_stripe can be called at any time we need to handle the
2925 	 * case where a compute block operation has been submitted and then a
2926 	 * subsequent call wants to start a write request.  raid_run_ops only
2927 	 * handles the case where compute block and reconstruct are requested
2928 	 * simultaneously.  If this is not the case then new writes need to be
2929 	 * held off until the compute completes.
2930 	 */
2931 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2932 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2933 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2934 		schedule_reconstruction(sh, s, rcw == 0, 0);
2935 }
2936 
2937 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2938 				struct stripe_head_state *s, int disks)
2939 {
2940 	struct r5dev *dev = NULL;
2941 
2942 	set_bit(STRIPE_HANDLE, &sh->state);
2943 
2944 	switch (sh->check_state) {
2945 	case check_state_idle:
2946 		/* start a new check operation if there are no failures */
2947 		if (s->failed == 0) {
2948 			BUG_ON(s->uptodate != disks);
2949 			sh->check_state = check_state_run;
2950 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2951 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2952 			s->uptodate--;
2953 			break;
2954 		}
2955 		dev = &sh->dev[s->failed_num[0]];
2956 		/* fall through */
2957 	case check_state_compute_result:
2958 		sh->check_state = check_state_idle;
2959 		if (!dev)
2960 			dev = &sh->dev[sh->pd_idx];
2961 
2962 		/* check that a write has not made the stripe insync */
2963 		if (test_bit(STRIPE_INSYNC, &sh->state))
2964 			break;
2965 
2966 		/* either failed parity check, or recovery is happening */
2967 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2968 		BUG_ON(s->uptodate != disks);
2969 
2970 		set_bit(R5_LOCKED, &dev->flags);
2971 		s->locked++;
2972 		set_bit(R5_Wantwrite, &dev->flags);
2973 
2974 		clear_bit(STRIPE_DEGRADED, &sh->state);
2975 		set_bit(STRIPE_INSYNC, &sh->state);
2976 		break;
2977 	case check_state_run:
2978 		break; /* we will be called again upon completion */
2979 	case check_state_check_result:
2980 		sh->check_state = check_state_idle;
2981 
2982 		/* if a failure occurred during the check operation, leave
2983 		 * STRIPE_INSYNC not set and let the stripe be handled again
2984 		 */
2985 		if (s->failed)
2986 			break;
2987 
2988 		/* handle a successful check operation, if parity is correct
2989 		 * we are done.  Otherwise update the mismatch count and repair
2990 		 * parity if !MD_RECOVERY_CHECK
2991 		 */
2992 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2993 			/* parity is correct (on disc,
2994 			 * not in buffer any more)
2995 			 */
2996 			set_bit(STRIPE_INSYNC, &sh->state);
2997 		else {
2998 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2999 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3000 				/* don't try to repair!! */
3001 				set_bit(STRIPE_INSYNC, &sh->state);
3002 			else {
3003 				sh->check_state = check_state_compute_run;
3004 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3005 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3006 				set_bit(R5_Wantcompute,
3007 					&sh->dev[sh->pd_idx].flags);
3008 				sh->ops.target = sh->pd_idx;
3009 				sh->ops.target2 = -1;
3010 				s->uptodate++;
3011 			}
3012 		}
3013 		break;
3014 	case check_state_compute_run:
3015 		break;
3016 	default:
3017 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3018 		       __func__, sh->check_state,
3019 		       (unsigned long long) sh->sector);
3020 		BUG();
3021 	}
3022 }
3023 
3024 
3025 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3026 				  struct stripe_head_state *s,
3027 				  int disks)
3028 {
3029 	int pd_idx = sh->pd_idx;
3030 	int qd_idx = sh->qd_idx;
3031 	struct r5dev *dev;
3032 
3033 	set_bit(STRIPE_HANDLE, &sh->state);
3034 
3035 	BUG_ON(s->failed > 2);
3036 
3037 	/* Want to check and possibly repair P and Q.
3038 	 * However there could be one 'failed' device, in which
3039 	 * case we can only check one of them, possibly using the
3040 	 * other to generate missing data
3041 	 */
3042 
3043 	switch (sh->check_state) {
3044 	case check_state_idle:
3045 		/* start a new check operation if there are < 2 failures */
3046 		if (s->failed == s->q_failed) {
3047 			/* The only possible failed device holds Q, so it
3048 			 * makes sense to check P (If anything else were failed,
3049 			 * we would have used P to recreate it).
3050 			 */
3051 			sh->check_state = check_state_run;
3052 		}
3053 		if (!s->q_failed && s->failed < 2) {
3054 			/* Q is not failed, and we didn't use it to generate
3055 			 * anything, so it makes sense to check it
3056 			 */
3057 			if (sh->check_state == check_state_run)
3058 				sh->check_state = check_state_run_pq;
3059 			else
3060 				sh->check_state = check_state_run_q;
3061 		}
3062 
3063 		/* discard potentially stale zero_sum_result */
3064 		sh->ops.zero_sum_result = 0;
3065 
3066 		if (sh->check_state == check_state_run) {
3067 			/* async_xor_zero_sum destroys the contents of P */
3068 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3069 			s->uptodate--;
3070 		}
3071 		if (sh->check_state >= check_state_run &&
3072 		    sh->check_state <= check_state_run_pq) {
3073 			/* async_syndrome_zero_sum preserves P and Q, so
3074 			 * no need to mark them !uptodate here
3075 			 */
3076 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3077 			break;
3078 		}
3079 
3080 		/* we have 2-disk failure */
3081 		BUG_ON(s->failed != 2);
3082 		/* fall through */
3083 	case check_state_compute_result:
3084 		sh->check_state = check_state_idle;
3085 
3086 		/* check that a write has not made the stripe insync */
3087 		if (test_bit(STRIPE_INSYNC, &sh->state))
3088 			break;
3089 
3090 		/* now write out any block on a failed drive,
3091 		 * or P or Q if they were recomputed
3092 		 */
3093 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3094 		if (s->failed == 2) {
3095 			dev = &sh->dev[s->failed_num[1]];
3096 			s->locked++;
3097 			set_bit(R5_LOCKED, &dev->flags);
3098 			set_bit(R5_Wantwrite, &dev->flags);
3099 		}
3100 		if (s->failed >= 1) {
3101 			dev = &sh->dev[s->failed_num[0]];
3102 			s->locked++;
3103 			set_bit(R5_LOCKED, &dev->flags);
3104 			set_bit(R5_Wantwrite, &dev->flags);
3105 		}
3106 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3107 			dev = &sh->dev[pd_idx];
3108 			s->locked++;
3109 			set_bit(R5_LOCKED, &dev->flags);
3110 			set_bit(R5_Wantwrite, &dev->flags);
3111 		}
3112 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3113 			dev = &sh->dev[qd_idx];
3114 			s->locked++;
3115 			set_bit(R5_LOCKED, &dev->flags);
3116 			set_bit(R5_Wantwrite, &dev->flags);
3117 		}
3118 		clear_bit(STRIPE_DEGRADED, &sh->state);
3119 
3120 		set_bit(STRIPE_INSYNC, &sh->state);
3121 		break;
3122 	case check_state_run:
3123 	case check_state_run_q:
3124 	case check_state_run_pq:
3125 		break; /* we will be called again upon completion */
3126 	case check_state_check_result:
3127 		sh->check_state = check_state_idle;
3128 
3129 		/* handle a successful check operation, if parity is correct
3130 		 * we are done.  Otherwise update the mismatch count and repair
3131 		 * parity if !MD_RECOVERY_CHECK
3132 		 */
3133 		if (sh->ops.zero_sum_result == 0) {
3134 			/* both parities are correct */
3135 			if (!s->failed)
3136 				set_bit(STRIPE_INSYNC, &sh->state);
3137 			else {
3138 				/* in contrast to the raid5 case we can validate
3139 				 * parity, but still have a failure to write
3140 				 * back
3141 				 */
3142 				sh->check_state = check_state_compute_result;
3143 				/* Returning at this point means that we may go
3144 				 * off and bring p and/or q uptodate again so
3145 				 * we make sure to check zero_sum_result again
3146 				 * to verify if p or q need writeback
3147 				 */
3148 			}
3149 		} else {
3150 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3151 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3152 				/* don't try to repair!! */
3153 				set_bit(STRIPE_INSYNC, &sh->state);
3154 			else {
3155 				int *target = &sh->ops.target;
3156 
3157 				sh->ops.target = -1;
3158 				sh->ops.target2 = -1;
3159 				sh->check_state = check_state_compute_run;
3160 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3161 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3162 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3163 					set_bit(R5_Wantcompute,
3164 						&sh->dev[pd_idx].flags);
3165 					*target = pd_idx;
3166 					target = &sh->ops.target2;
3167 					s->uptodate++;
3168 				}
3169 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3170 					set_bit(R5_Wantcompute,
3171 						&sh->dev[qd_idx].flags);
3172 					*target = qd_idx;
3173 					s->uptodate++;
3174 				}
3175 			}
3176 		}
3177 		break;
3178 	case check_state_compute_run:
3179 		break;
3180 	default:
3181 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3182 		       __func__, sh->check_state,
3183 		       (unsigned long long) sh->sector);
3184 		BUG();
3185 	}
3186 }
3187 
3188 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3189 {
3190 	int i;
3191 
3192 	/* We have read all the blocks in this stripe and now we need to
3193 	 * copy some of them into a target stripe for expand.
3194 	 */
3195 	struct dma_async_tx_descriptor *tx = NULL;
3196 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3197 	for (i = 0; i < sh->disks; i++)
3198 		if (i != sh->pd_idx && i != sh->qd_idx) {
3199 			int dd_idx, j;
3200 			struct stripe_head *sh2;
3201 			struct async_submit_ctl submit;
3202 
3203 			sector_t bn = compute_blocknr(sh, i, 1);
3204 			sector_t s = raid5_compute_sector(conf, bn, 0,
3205 							  &dd_idx, NULL);
3206 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3207 			if (sh2 == NULL)
3208 				/* so far only the early blocks of this stripe
3209 				 * have been requested.  When later blocks
3210 				 * get requested, we will try again
3211 				 */
3212 				continue;
3213 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3214 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3215 				/* must have already done this block */
3216 				release_stripe(sh2);
3217 				continue;
3218 			}
3219 
3220 			/* place all the copies on one channel */
3221 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3222 			tx = async_memcpy(sh2->dev[dd_idx].page,
3223 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3224 					  &submit);
3225 
3226 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3227 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3228 			for (j = 0; j < conf->raid_disks; j++)
3229 				if (j != sh2->pd_idx &&
3230 				    j != sh2->qd_idx &&
3231 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3232 					break;
3233 			if (j == conf->raid_disks) {
3234 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3235 				set_bit(STRIPE_HANDLE, &sh2->state);
3236 			}
3237 			release_stripe(sh2);
3238 
3239 		}
3240 	/* done submitting copies, wait for them to complete */
3241 	async_tx_quiesce(&tx);
3242 }
3243 
3244 /*
3245  * handle_stripe - do things to a stripe.
3246  *
3247  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3248  * state of various bits to see what needs to be done.
3249  * Possible results:
3250  *    return some read requests which now have data
3251  *    return some write requests which are safely on storage
3252  *    schedule a read on some buffers
3253  *    schedule a write of some buffers
3254  *    return confirmation of parity correctness
3255  *
3256  */
3257 
3258 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3259 {
3260 	struct r5conf *conf = sh->raid_conf;
3261 	int disks = sh->disks;
3262 	struct r5dev *dev;
3263 	int i;
3264 	int do_recovery = 0;
3265 
3266 	memset(s, 0, sizeof(*s));
3267 
3268 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3269 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3270 	s->failed_num[0] = -1;
3271 	s->failed_num[1] = -1;
3272 
3273 	/* Now to look around and see what can be done */
3274 	rcu_read_lock();
3275 	for (i=disks; i--; ) {
3276 		struct md_rdev *rdev;
3277 		sector_t first_bad;
3278 		int bad_sectors;
3279 		int is_bad = 0;
3280 
3281 		dev = &sh->dev[i];
3282 
3283 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3284 			 i, dev->flags,
3285 			 dev->toread, dev->towrite, dev->written);
3286 		/* maybe we can reply to a read
3287 		 *
3288 		 * new wantfill requests are only permitted while
3289 		 * ops_complete_biofill is guaranteed to be inactive
3290 		 */
3291 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3292 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3293 			set_bit(R5_Wantfill, &dev->flags);
3294 
3295 		/* now count some things */
3296 		if (test_bit(R5_LOCKED, &dev->flags))
3297 			s->locked++;
3298 		if (test_bit(R5_UPTODATE, &dev->flags))
3299 			s->uptodate++;
3300 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3301 			s->compute++;
3302 			BUG_ON(s->compute > 2);
3303 		}
3304 
3305 		if (test_bit(R5_Wantfill, &dev->flags))
3306 			s->to_fill++;
3307 		else if (dev->toread)
3308 			s->to_read++;
3309 		if (dev->towrite) {
3310 			s->to_write++;
3311 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3312 				s->non_overwrite++;
3313 		}
3314 		if (dev->written)
3315 			s->written++;
3316 		/* Prefer to use the replacement for reads, but only
3317 		 * if it is recovered enough and has no bad blocks.
3318 		 */
3319 		rdev = rcu_dereference(conf->disks[i].replacement);
3320 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3321 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3322 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3323 				 &first_bad, &bad_sectors))
3324 			set_bit(R5_ReadRepl, &dev->flags);
3325 		else {
3326 			if (rdev)
3327 				set_bit(R5_NeedReplace, &dev->flags);
3328 			rdev = rcu_dereference(conf->disks[i].rdev);
3329 			clear_bit(R5_ReadRepl, &dev->flags);
3330 		}
3331 		if (rdev && test_bit(Faulty, &rdev->flags))
3332 			rdev = NULL;
3333 		if (rdev) {
3334 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3335 					     &first_bad, &bad_sectors);
3336 			if (s->blocked_rdev == NULL
3337 			    && (test_bit(Blocked, &rdev->flags)
3338 				|| is_bad < 0)) {
3339 				if (is_bad < 0)
3340 					set_bit(BlockedBadBlocks,
3341 						&rdev->flags);
3342 				s->blocked_rdev = rdev;
3343 				atomic_inc(&rdev->nr_pending);
3344 			}
3345 		}
3346 		clear_bit(R5_Insync, &dev->flags);
3347 		if (!rdev)
3348 			/* Not in-sync */;
3349 		else if (is_bad) {
3350 			/* also not in-sync */
3351 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3352 			    test_bit(R5_UPTODATE, &dev->flags)) {
3353 				/* treat as in-sync, but with a read error
3354 				 * which we can now try to correct
3355 				 */
3356 				set_bit(R5_Insync, &dev->flags);
3357 				set_bit(R5_ReadError, &dev->flags);
3358 			}
3359 		} else if (test_bit(In_sync, &rdev->flags))
3360 			set_bit(R5_Insync, &dev->flags);
3361 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3362 			/* in sync if before recovery_offset */
3363 			set_bit(R5_Insync, &dev->flags);
3364 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3365 			 test_bit(R5_Expanded, &dev->flags))
3366 			/* If we've reshaped into here, we assume it is Insync.
3367 			 * We will shortly update recovery_offset to make
3368 			 * it official.
3369 			 */
3370 			set_bit(R5_Insync, &dev->flags);
3371 
3372 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3373 			/* This flag does not apply to '.replacement'
3374 			 * only to .rdev, so make sure to check that*/
3375 			struct md_rdev *rdev2 = rcu_dereference(
3376 				conf->disks[i].rdev);
3377 			if (rdev2 == rdev)
3378 				clear_bit(R5_Insync, &dev->flags);
3379 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3380 				s->handle_bad_blocks = 1;
3381 				atomic_inc(&rdev2->nr_pending);
3382 			} else
3383 				clear_bit(R5_WriteError, &dev->flags);
3384 		}
3385 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3386 			/* This flag does not apply to '.replacement'
3387 			 * only to .rdev, so make sure to check that*/
3388 			struct md_rdev *rdev2 = rcu_dereference(
3389 				conf->disks[i].rdev);
3390 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3391 				s->handle_bad_blocks = 1;
3392 				atomic_inc(&rdev2->nr_pending);
3393 			} else
3394 				clear_bit(R5_MadeGood, &dev->flags);
3395 		}
3396 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3397 			struct md_rdev *rdev2 = rcu_dereference(
3398 				conf->disks[i].replacement);
3399 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3400 				s->handle_bad_blocks = 1;
3401 				atomic_inc(&rdev2->nr_pending);
3402 			} else
3403 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3404 		}
3405 		if (!test_bit(R5_Insync, &dev->flags)) {
3406 			/* The ReadError flag will just be confusing now */
3407 			clear_bit(R5_ReadError, &dev->flags);
3408 			clear_bit(R5_ReWrite, &dev->flags);
3409 		}
3410 		if (test_bit(R5_ReadError, &dev->flags))
3411 			clear_bit(R5_Insync, &dev->flags);
3412 		if (!test_bit(R5_Insync, &dev->flags)) {
3413 			if (s->failed < 2)
3414 				s->failed_num[s->failed] = i;
3415 			s->failed++;
3416 			if (rdev && !test_bit(Faulty, &rdev->flags))
3417 				do_recovery = 1;
3418 		}
3419 	}
3420 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3421 		/* If there is a failed device being replaced,
3422 		 *     we must be recovering.
3423 		 * else if we are after recovery_cp, we must be syncing
3424 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3425 		 * else we can only be replacing
3426 		 * sync and recovery both need to read all devices, and so
3427 		 * use the same flag.
3428 		 */
3429 		if (do_recovery ||
3430 		    sh->sector >= conf->mddev->recovery_cp ||
3431 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3432 			s->syncing = 1;
3433 		else
3434 			s->replacing = 1;
3435 	}
3436 	rcu_read_unlock();
3437 }
3438 
3439 static void handle_stripe(struct stripe_head *sh)
3440 {
3441 	struct stripe_head_state s;
3442 	struct r5conf *conf = sh->raid_conf;
3443 	int i;
3444 	int prexor;
3445 	int disks = sh->disks;
3446 	struct r5dev *pdev, *qdev;
3447 
3448 	clear_bit(STRIPE_HANDLE, &sh->state);
3449 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3450 		/* already being handled, ensure it gets handled
3451 		 * again when current action finishes */
3452 		set_bit(STRIPE_HANDLE, &sh->state);
3453 		return;
3454 	}
3455 
3456 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3457 		spin_lock(&sh->stripe_lock);
3458 		/* Cannot process 'sync' concurrently with 'discard' */
3459 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3460 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3461 			set_bit(STRIPE_SYNCING, &sh->state);
3462 			clear_bit(STRIPE_INSYNC, &sh->state);
3463 		}
3464 		spin_unlock(&sh->stripe_lock);
3465 	}
3466 	clear_bit(STRIPE_DELAYED, &sh->state);
3467 
3468 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3469 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3470 	       (unsigned long long)sh->sector, sh->state,
3471 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3472 	       sh->check_state, sh->reconstruct_state);
3473 
3474 	analyse_stripe(sh, &s);
3475 
3476 	if (s.handle_bad_blocks) {
3477 		set_bit(STRIPE_HANDLE, &sh->state);
3478 		goto finish;
3479 	}
3480 
3481 	if (unlikely(s.blocked_rdev)) {
3482 		if (s.syncing || s.expanding || s.expanded ||
3483 		    s.replacing || s.to_write || s.written) {
3484 			set_bit(STRIPE_HANDLE, &sh->state);
3485 			goto finish;
3486 		}
3487 		/* There is nothing for the blocked_rdev to block */
3488 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3489 		s.blocked_rdev = NULL;
3490 	}
3491 
3492 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3493 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3494 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3495 	}
3496 
3497 	pr_debug("locked=%d uptodate=%d to_read=%d"
3498 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3499 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3500 	       s.failed_num[0], s.failed_num[1]);
3501 	/* check if the array has lost more than max_degraded devices and,
3502 	 * if so, some requests might need to be failed.
3503 	 */
3504 	if (s.failed > conf->max_degraded) {
3505 		sh->check_state = 0;
3506 		sh->reconstruct_state = 0;
3507 		if (s.to_read+s.to_write+s.written)
3508 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3509 		if (s.syncing + s.replacing)
3510 			handle_failed_sync(conf, sh, &s);
3511 	}
3512 
3513 	/* Now we check to see if any write operations have recently
3514 	 * completed
3515 	 */
3516 	prexor = 0;
3517 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3518 		prexor = 1;
3519 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3520 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3521 		sh->reconstruct_state = reconstruct_state_idle;
3522 
3523 		/* All the 'written' buffers and the parity block are ready to
3524 		 * be written back to disk
3525 		 */
3526 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3527 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3528 		BUG_ON(sh->qd_idx >= 0 &&
3529 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3530 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3531 		for (i = disks; i--; ) {
3532 			struct r5dev *dev = &sh->dev[i];
3533 			if (test_bit(R5_LOCKED, &dev->flags) &&
3534 				(i == sh->pd_idx || i == sh->qd_idx ||
3535 				 dev->written)) {
3536 				pr_debug("Writing block %d\n", i);
3537 				set_bit(R5_Wantwrite, &dev->flags);
3538 				if (prexor)
3539 					continue;
3540 				if (!test_bit(R5_Insync, &dev->flags) ||
3541 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3542 				     s.failed == 0))
3543 					set_bit(STRIPE_INSYNC, &sh->state);
3544 			}
3545 		}
3546 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3547 			s.dec_preread_active = 1;
3548 	}
3549 
3550 	/*
3551 	 * might be able to return some write requests if the parity blocks
3552 	 * are safe, or on a failed drive
3553 	 */
3554 	pdev = &sh->dev[sh->pd_idx];
3555 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3556 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3557 	qdev = &sh->dev[sh->qd_idx];
3558 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3559 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3560 		|| conf->level < 6;
3561 
3562 	if (s.written &&
3563 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3564 			     && !test_bit(R5_LOCKED, &pdev->flags)
3565 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3566 				 test_bit(R5_Discard, &pdev->flags))))) &&
3567 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3568 			     && !test_bit(R5_LOCKED, &qdev->flags)
3569 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3570 				 test_bit(R5_Discard, &qdev->flags))))))
3571 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3572 
3573 	/* Now we might consider reading some blocks, either to check/generate
3574 	 * parity, or to satisfy requests
3575 	 * or to load a block that is being partially written.
3576 	 */
3577 	if (s.to_read || s.non_overwrite
3578 	    || (conf->level == 6 && s.to_write && s.failed)
3579 	    || (s.syncing && (s.uptodate + s.compute < disks))
3580 	    || s.replacing
3581 	    || s.expanding)
3582 		handle_stripe_fill(sh, &s, disks);
3583 
3584 	/* Now to consider new write requests and what else, if anything
3585 	 * should be read.  We do not handle new writes when:
3586 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3587 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3588 	 *    block.
3589 	 */
3590 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3591 		handle_stripe_dirtying(conf, sh, &s, disks);
3592 
3593 	/* maybe we need to check and possibly fix the parity for this stripe
3594 	 * Any reads will already have been scheduled, so we just see if enough
3595 	 * data is available.  The parity check is held off while parity
3596 	 * dependent operations are in flight.
3597 	 */
3598 	if (sh->check_state ||
3599 	    (s.syncing && s.locked == 0 &&
3600 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3601 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3602 		if (conf->level == 6)
3603 			handle_parity_checks6(conf, sh, &s, disks);
3604 		else
3605 			handle_parity_checks5(conf, sh, &s, disks);
3606 	}
3607 
3608 	if (s.replacing && s.locked == 0
3609 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3610 		/* Write out to replacement devices where possible */
3611 		for (i = 0; i < conf->raid_disks; i++)
3612 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3613 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3614 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3615 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3616 				s.locked++;
3617 			}
3618 		set_bit(STRIPE_INSYNC, &sh->state);
3619 	}
3620 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3621 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3622 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3623 		clear_bit(STRIPE_SYNCING, &sh->state);
3624 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3625 			wake_up(&conf->wait_for_overlap);
3626 	}
3627 
3628 	/* If the failed drives are just a ReadError, then we might need
3629 	 * to progress the repair/check process
3630 	 */
3631 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3632 		for (i = 0; i < s.failed; i++) {
3633 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3634 			if (test_bit(R5_ReadError, &dev->flags)
3635 			    && !test_bit(R5_LOCKED, &dev->flags)
3636 			    && test_bit(R5_UPTODATE, &dev->flags)
3637 				) {
3638 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3639 					set_bit(R5_Wantwrite, &dev->flags);
3640 					set_bit(R5_ReWrite, &dev->flags);
3641 					set_bit(R5_LOCKED, &dev->flags);
3642 					s.locked++;
3643 				} else {
3644 					/* let's read it back */
3645 					set_bit(R5_Wantread, &dev->flags);
3646 					set_bit(R5_LOCKED, &dev->flags);
3647 					s.locked++;
3648 				}
3649 			}
3650 		}
3651 
3652 
3653 	/* Finish reconstruct operations initiated by the expansion process */
3654 	if (sh->reconstruct_state == reconstruct_state_result) {
3655 		struct stripe_head *sh_src
3656 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3657 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3658 			/* sh cannot be written until sh_src has been read.
3659 			 * so arrange for sh to be delayed a little
3660 			 */
3661 			set_bit(STRIPE_DELAYED, &sh->state);
3662 			set_bit(STRIPE_HANDLE, &sh->state);
3663 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3664 					      &sh_src->state))
3665 				atomic_inc(&conf->preread_active_stripes);
3666 			release_stripe(sh_src);
3667 			goto finish;
3668 		}
3669 		if (sh_src)
3670 			release_stripe(sh_src);
3671 
3672 		sh->reconstruct_state = reconstruct_state_idle;
3673 		clear_bit(STRIPE_EXPANDING, &sh->state);
3674 		for (i = conf->raid_disks; i--; ) {
3675 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3676 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3677 			s.locked++;
3678 		}
3679 	}
3680 
3681 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3682 	    !sh->reconstruct_state) {
3683 		/* Need to write out all blocks after computing parity */
3684 		sh->disks = conf->raid_disks;
3685 		stripe_set_idx(sh->sector, conf, 0, sh);
3686 		schedule_reconstruction(sh, &s, 1, 1);
3687 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3688 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3689 		atomic_dec(&conf->reshape_stripes);
3690 		wake_up(&conf->wait_for_overlap);
3691 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3692 	}
3693 
3694 	if (s.expanding && s.locked == 0 &&
3695 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3696 		handle_stripe_expansion(conf, sh);
3697 
3698 finish:
3699 	/* wait for this device to become unblocked */
3700 	if (unlikely(s.blocked_rdev)) {
3701 		if (conf->mddev->external)
3702 			md_wait_for_blocked_rdev(s.blocked_rdev,
3703 						 conf->mddev);
3704 		else
3705 			/* Internal metadata will immediately
3706 			 * be written by raid5d, so we don't
3707 			 * need to wait here.
3708 			 */
3709 			rdev_dec_pending(s.blocked_rdev,
3710 					 conf->mddev);
3711 	}
3712 
3713 	if (s.handle_bad_blocks)
3714 		for (i = disks; i--; ) {
3715 			struct md_rdev *rdev;
3716 			struct r5dev *dev = &sh->dev[i];
3717 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3718 				/* We own a safe reference to the rdev */
3719 				rdev = conf->disks[i].rdev;
3720 				if (!rdev_set_badblocks(rdev, sh->sector,
3721 							STRIPE_SECTORS, 0))
3722 					md_error(conf->mddev, rdev);
3723 				rdev_dec_pending(rdev, conf->mddev);
3724 			}
3725 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3726 				rdev = conf->disks[i].rdev;
3727 				rdev_clear_badblocks(rdev, sh->sector,
3728 						     STRIPE_SECTORS, 0);
3729 				rdev_dec_pending(rdev, conf->mddev);
3730 			}
3731 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3732 				rdev = conf->disks[i].replacement;
3733 				if (!rdev)
3734 					/* rdev have been moved down */
3735 					rdev = conf->disks[i].rdev;
3736 				rdev_clear_badblocks(rdev, sh->sector,
3737 						     STRIPE_SECTORS, 0);
3738 				rdev_dec_pending(rdev, conf->mddev);
3739 			}
3740 		}
3741 
3742 	if (s.ops_request)
3743 		raid_run_ops(sh, s.ops_request);
3744 
3745 	ops_run_io(sh, &s);
3746 
3747 	if (s.dec_preread_active) {
3748 		/* We delay this until after ops_run_io so that if make_request
3749 		 * is waiting on a flush, it won't continue until the writes
3750 		 * have actually been submitted.
3751 		 */
3752 		atomic_dec(&conf->preread_active_stripes);
3753 		if (atomic_read(&conf->preread_active_stripes) <
3754 		    IO_THRESHOLD)
3755 			md_wakeup_thread(conf->mddev->thread);
3756 	}
3757 
3758 	return_io(s.return_bi);
3759 
3760 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3761 }
3762 
3763 static void raid5_activate_delayed(struct r5conf *conf)
3764 {
3765 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3766 		while (!list_empty(&conf->delayed_list)) {
3767 			struct list_head *l = conf->delayed_list.next;
3768 			struct stripe_head *sh;
3769 			sh = list_entry(l, struct stripe_head, lru);
3770 			list_del_init(l);
3771 			clear_bit(STRIPE_DELAYED, &sh->state);
3772 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3773 				atomic_inc(&conf->preread_active_stripes);
3774 			list_add_tail(&sh->lru, &conf->hold_list);
3775 		}
3776 	}
3777 }
3778 
3779 static void activate_bit_delay(struct r5conf *conf)
3780 {
3781 	/* device_lock is held */
3782 	struct list_head head;
3783 	list_add(&head, &conf->bitmap_list);
3784 	list_del_init(&conf->bitmap_list);
3785 	while (!list_empty(&head)) {
3786 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3787 		list_del_init(&sh->lru);
3788 		atomic_inc(&sh->count);
3789 		__release_stripe(conf, sh);
3790 	}
3791 }
3792 
3793 int md_raid5_congested(struct mddev *mddev, int bits)
3794 {
3795 	struct r5conf *conf = mddev->private;
3796 
3797 	/* No difference between reads and writes.  Just check
3798 	 * how busy the stripe_cache is
3799 	 */
3800 
3801 	if (conf->inactive_blocked)
3802 		return 1;
3803 	if (conf->quiesce)
3804 		return 1;
3805 	if (list_empty_careful(&conf->inactive_list))
3806 		return 1;
3807 
3808 	return 0;
3809 }
3810 EXPORT_SYMBOL_GPL(md_raid5_congested);
3811 
3812 static int raid5_congested(void *data, int bits)
3813 {
3814 	struct mddev *mddev = data;
3815 
3816 	return mddev_congested(mddev, bits) ||
3817 		md_raid5_congested(mddev, bits);
3818 }
3819 
3820 /* We want read requests to align with chunks where possible,
3821  * but write requests don't need to.
3822  */
3823 static int raid5_mergeable_bvec(struct request_queue *q,
3824 				struct bvec_merge_data *bvm,
3825 				struct bio_vec *biovec)
3826 {
3827 	struct mddev *mddev = q->queuedata;
3828 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3829 	int max;
3830 	unsigned int chunk_sectors = mddev->chunk_sectors;
3831 	unsigned int bio_sectors = bvm->bi_size >> 9;
3832 
3833 	if ((bvm->bi_rw & 1) == WRITE)
3834 		return biovec->bv_len; /* always allow writes to be mergeable */
3835 
3836 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3837 		chunk_sectors = mddev->new_chunk_sectors;
3838 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3839 	if (max < 0) max = 0;
3840 	if (max <= biovec->bv_len && bio_sectors == 0)
3841 		return biovec->bv_len;
3842 	else
3843 		return max;
3844 }
3845 
3846 
3847 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3848 {
3849 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3850 	unsigned int chunk_sectors = mddev->chunk_sectors;
3851 	unsigned int bio_sectors = bio_sectors(bio);
3852 
3853 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3854 		chunk_sectors = mddev->new_chunk_sectors;
3855 	return  chunk_sectors >=
3856 		((sector & (chunk_sectors - 1)) + bio_sectors);
3857 }
3858 
3859 /*
3860  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3861  *  later sampled by raid5d.
3862  */
3863 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3864 {
3865 	unsigned long flags;
3866 
3867 	spin_lock_irqsave(&conf->device_lock, flags);
3868 
3869 	bi->bi_next = conf->retry_read_aligned_list;
3870 	conf->retry_read_aligned_list = bi;
3871 
3872 	spin_unlock_irqrestore(&conf->device_lock, flags);
3873 	md_wakeup_thread(conf->mddev->thread);
3874 }
3875 
3876 
3877 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3878 {
3879 	struct bio *bi;
3880 
3881 	bi = conf->retry_read_aligned;
3882 	if (bi) {
3883 		conf->retry_read_aligned = NULL;
3884 		return bi;
3885 	}
3886 	bi = conf->retry_read_aligned_list;
3887 	if(bi) {
3888 		conf->retry_read_aligned_list = bi->bi_next;
3889 		bi->bi_next = NULL;
3890 		/*
3891 		 * this sets the active strip count to 1 and the processed
3892 		 * strip count to zero (upper 8 bits)
3893 		 */
3894 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3895 	}
3896 
3897 	return bi;
3898 }
3899 
3900 
3901 /*
3902  *  The "raid5_align_endio" should check if the read succeeded and if it
3903  *  did, call bio_endio on the original bio (having bio_put the new bio
3904  *  first).
3905  *  If the read failed..
3906  */
3907 static void raid5_align_endio(struct bio *bi, int error)
3908 {
3909 	struct bio* raid_bi  = bi->bi_private;
3910 	struct mddev *mddev;
3911 	struct r5conf *conf;
3912 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3913 	struct md_rdev *rdev;
3914 
3915 	bio_put(bi);
3916 
3917 	rdev = (void*)raid_bi->bi_next;
3918 	raid_bi->bi_next = NULL;
3919 	mddev = rdev->mddev;
3920 	conf = mddev->private;
3921 
3922 	rdev_dec_pending(rdev, conf->mddev);
3923 
3924 	if (!error && uptodate) {
3925 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3926 					 raid_bi, 0);
3927 		bio_endio(raid_bi, 0);
3928 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3929 			wake_up(&conf->wait_for_stripe);
3930 		return;
3931 	}
3932 
3933 
3934 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3935 
3936 	add_bio_to_retry(raid_bi, conf);
3937 }
3938 
3939 static int bio_fits_rdev(struct bio *bi)
3940 {
3941 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3942 
3943 	if (bio_sectors(bi) > queue_max_sectors(q))
3944 		return 0;
3945 	blk_recount_segments(q, bi);
3946 	if (bi->bi_phys_segments > queue_max_segments(q))
3947 		return 0;
3948 
3949 	if (q->merge_bvec_fn)
3950 		/* it's too hard to apply the merge_bvec_fn at this stage,
3951 		 * just just give up
3952 		 */
3953 		return 0;
3954 
3955 	return 1;
3956 }
3957 
3958 
3959 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3960 {
3961 	struct r5conf *conf = mddev->private;
3962 	int dd_idx;
3963 	struct bio* align_bi;
3964 	struct md_rdev *rdev;
3965 	sector_t end_sector;
3966 
3967 	if (!in_chunk_boundary(mddev, raid_bio)) {
3968 		pr_debug("chunk_aligned_read : non aligned\n");
3969 		return 0;
3970 	}
3971 	/*
3972 	 * use bio_clone_mddev to make a copy of the bio
3973 	 */
3974 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3975 	if (!align_bi)
3976 		return 0;
3977 	/*
3978 	 *   set bi_end_io to a new function, and set bi_private to the
3979 	 *     original bio.
3980 	 */
3981 	align_bi->bi_end_io  = raid5_align_endio;
3982 	align_bi->bi_private = raid_bio;
3983 	/*
3984 	 *	compute position
3985 	 */
3986 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3987 						    0,
3988 						    &dd_idx, NULL);
3989 
3990 	end_sector = bio_end_sector(align_bi);
3991 	rcu_read_lock();
3992 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3993 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3994 	    rdev->recovery_offset < end_sector) {
3995 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3996 		if (rdev &&
3997 		    (test_bit(Faulty, &rdev->flags) ||
3998 		    !(test_bit(In_sync, &rdev->flags) ||
3999 		      rdev->recovery_offset >= end_sector)))
4000 			rdev = NULL;
4001 	}
4002 	if (rdev) {
4003 		sector_t first_bad;
4004 		int bad_sectors;
4005 
4006 		atomic_inc(&rdev->nr_pending);
4007 		rcu_read_unlock();
4008 		raid_bio->bi_next = (void*)rdev;
4009 		align_bi->bi_bdev =  rdev->bdev;
4010 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4011 
4012 		if (!bio_fits_rdev(align_bi) ||
4013 		    is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4014 				&first_bad, &bad_sectors)) {
4015 			/* too big in some way, or has a known bad block */
4016 			bio_put(align_bi);
4017 			rdev_dec_pending(rdev, mddev);
4018 			return 0;
4019 		}
4020 
4021 		/* No reshape active, so we can trust rdev->data_offset */
4022 		align_bi->bi_sector += rdev->data_offset;
4023 
4024 		spin_lock_irq(&conf->device_lock);
4025 		wait_event_lock_irq(conf->wait_for_stripe,
4026 				    conf->quiesce == 0,
4027 				    conf->device_lock);
4028 		atomic_inc(&conf->active_aligned_reads);
4029 		spin_unlock_irq(&conf->device_lock);
4030 
4031 		if (mddev->gendisk)
4032 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4033 					      align_bi, disk_devt(mddev->gendisk),
4034 					      raid_bio->bi_sector);
4035 		generic_make_request(align_bi);
4036 		return 1;
4037 	} else {
4038 		rcu_read_unlock();
4039 		bio_put(align_bi);
4040 		return 0;
4041 	}
4042 }
4043 
4044 /* __get_priority_stripe - get the next stripe to process
4045  *
4046  * Full stripe writes are allowed to pass preread active stripes up until
4047  * the bypass_threshold is exceeded.  In general the bypass_count
4048  * increments when the handle_list is handled before the hold_list; however, it
4049  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4050  * stripe with in flight i/o.  The bypass_count will be reset when the
4051  * head of the hold_list has changed, i.e. the head was promoted to the
4052  * handle_list.
4053  */
4054 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4055 {
4056 	struct stripe_head *sh;
4057 
4058 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4059 		  __func__,
4060 		  list_empty(&conf->handle_list) ? "empty" : "busy",
4061 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4062 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4063 
4064 	if (!list_empty(&conf->handle_list)) {
4065 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4066 
4067 		if (list_empty(&conf->hold_list))
4068 			conf->bypass_count = 0;
4069 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4070 			if (conf->hold_list.next == conf->last_hold)
4071 				conf->bypass_count++;
4072 			else {
4073 				conf->last_hold = conf->hold_list.next;
4074 				conf->bypass_count -= conf->bypass_threshold;
4075 				if (conf->bypass_count < 0)
4076 					conf->bypass_count = 0;
4077 			}
4078 		}
4079 	} else if (!list_empty(&conf->hold_list) &&
4080 		   ((conf->bypass_threshold &&
4081 		     conf->bypass_count > conf->bypass_threshold) ||
4082 		    atomic_read(&conf->pending_full_writes) == 0)) {
4083 		sh = list_entry(conf->hold_list.next,
4084 				typeof(*sh), lru);
4085 		conf->bypass_count -= conf->bypass_threshold;
4086 		if (conf->bypass_count < 0)
4087 			conf->bypass_count = 0;
4088 	} else
4089 		return NULL;
4090 
4091 	list_del_init(&sh->lru);
4092 	atomic_inc(&sh->count);
4093 	BUG_ON(atomic_read(&sh->count) != 1);
4094 	return sh;
4095 }
4096 
4097 struct raid5_plug_cb {
4098 	struct blk_plug_cb	cb;
4099 	struct list_head	list;
4100 };
4101 
4102 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4103 {
4104 	struct raid5_plug_cb *cb = container_of(
4105 		blk_cb, struct raid5_plug_cb, cb);
4106 	struct stripe_head *sh;
4107 	struct mddev *mddev = cb->cb.data;
4108 	struct r5conf *conf = mddev->private;
4109 	int cnt = 0;
4110 
4111 	if (cb->list.next && !list_empty(&cb->list)) {
4112 		spin_lock_irq(&conf->device_lock);
4113 		while (!list_empty(&cb->list)) {
4114 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4115 			list_del_init(&sh->lru);
4116 			/*
4117 			 * avoid race release_stripe_plug() sees
4118 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4119 			 * is still in our list
4120 			 */
4121 			smp_mb__before_clear_bit();
4122 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4123 			__release_stripe(conf, sh);
4124 			cnt++;
4125 		}
4126 		spin_unlock_irq(&conf->device_lock);
4127 	}
4128 	if (mddev->queue)
4129 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4130 	kfree(cb);
4131 }
4132 
4133 static void release_stripe_plug(struct mddev *mddev,
4134 				struct stripe_head *sh)
4135 {
4136 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4137 		raid5_unplug, mddev,
4138 		sizeof(struct raid5_plug_cb));
4139 	struct raid5_plug_cb *cb;
4140 
4141 	if (!blk_cb) {
4142 		release_stripe(sh);
4143 		return;
4144 	}
4145 
4146 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4147 
4148 	if (cb->list.next == NULL)
4149 		INIT_LIST_HEAD(&cb->list);
4150 
4151 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4152 		list_add_tail(&sh->lru, &cb->list);
4153 	else
4154 		release_stripe(sh);
4155 }
4156 
4157 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4158 {
4159 	struct r5conf *conf = mddev->private;
4160 	sector_t logical_sector, last_sector;
4161 	struct stripe_head *sh;
4162 	int remaining;
4163 	int stripe_sectors;
4164 
4165 	if (mddev->reshape_position != MaxSector)
4166 		/* Skip discard while reshape is happening */
4167 		return;
4168 
4169 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4170 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4171 
4172 	bi->bi_next = NULL;
4173 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4174 
4175 	stripe_sectors = conf->chunk_sectors *
4176 		(conf->raid_disks - conf->max_degraded);
4177 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4178 					       stripe_sectors);
4179 	sector_div(last_sector, stripe_sectors);
4180 
4181 	logical_sector *= conf->chunk_sectors;
4182 	last_sector *= conf->chunk_sectors;
4183 
4184 	for (; logical_sector < last_sector;
4185 	     logical_sector += STRIPE_SECTORS) {
4186 		DEFINE_WAIT(w);
4187 		int d;
4188 	again:
4189 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4190 		prepare_to_wait(&conf->wait_for_overlap, &w,
4191 				TASK_UNINTERRUPTIBLE);
4192 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4193 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4194 			release_stripe(sh);
4195 			schedule();
4196 			goto again;
4197 		}
4198 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4199 		spin_lock_irq(&sh->stripe_lock);
4200 		for (d = 0; d < conf->raid_disks; d++) {
4201 			if (d == sh->pd_idx || d == sh->qd_idx)
4202 				continue;
4203 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4204 				set_bit(R5_Overlap, &sh->dev[d].flags);
4205 				spin_unlock_irq(&sh->stripe_lock);
4206 				release_stripe(sh);
4207 				schedule();
4208 				goto again;
4209 			}
4210 		}
4211 		set_bit(STRIPE_DISCARD, &sh->state);
4212 		finish_wait(&conf->wait_for_overlap, &w);
4213 		for (d = 0; d < conf->raid_disks; d++) {
4214 			if (d == sh->pd_idx || d == sh->qd_idx)
4215 				continue;
4216 			sh->dev[d].towrite = bi;
4217 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4218 			raid5_inc_bi_active_stripes(bi);
4219 		}
4220 		spin_unlock_irq(&sh->stripe_lock);
4221 		if (conf->mddev->bitmap) {
4222 			for (d = 0;
4223 			     d < conf->raid_disks - conf->max_degraded;
4224 			     d++)
4225 				bitmap_startwrite(mddev->bitmap,
4226 						  sh->sector,
4227 						  STRIPE_SECTORS,
4228 						  0);
4229 			sh->bm_seq = conf->seq_flush + 1;
4230 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4231 		}
4232 
4233 		set_bit(STRIPE_HANDLE, &sh->state);
4234 		clear_bit(STRIPE_DELAYED, &sh->state);
4235 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4236 			atomic_inc(&conf->preread_active_stripes);
4237 		release_stripe_plug(mddev, sh);
4238 	}
4239 
4240 	remaining = raid5_dec_bi_active_stripes(bi);
4241 	if (remaining == 0) {
4242 		md_write_end(mddev);
4243 		bio_endio(bi, 0);
4244 	}
4245 }
4246 
4247 static void make_request(struct mddev *mddev, struct bio * bi)
4248 {
4249 	struct r5conf *conf = mddev->private;
4250 	int dd_idx;
4251 	sector_t new_sector;
4252 	sector_t logical_sector, last_sector;
4253 	struct stripe_head *sh;
4254 	const int rw = bio_data_dir(bi);
4255 	int remaining;
4256 
4257 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4258 		md_flush_request(mddev, bi);
4259 		return;
4260 	}
4261 
4262 	md_write_start(mddev, bi);
4263 
4264 	if (rw == READ &&
4265 	     mddev->reshape_position == MaxSector &&
4266 	     chunk_aligned_read(mddev,bi))
4267 		return;
4268 
4269 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4270 		make_discard_request(mddev, bi);
4271 		return;
4272 	}
4273 
4274 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4275 	last_sector = bio_end_sector(bi);
4276 	bi->bi_next = NULL;
4277 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4278 
4279 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4280 		DEFINE_WAIT(w);
4281 		int previous;
4282 
4283 	retry:
4284 		previous = 0;
4285 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4286 		if (unlikely(conf->reshape_progress != MaxSector)) {
4287 			/* spinlock is needed as reshape_progress may be
4288 			 * 64bit on a 32bit platform, and so it might be
4289 			 * possible to see a half-updated value
4290 			 * Of course reshape_progress could change after
4291 			 * the lock is dropped, so once we get a reference
4292 			 * to the stripe that we think it is, we will have
4293 			 * to check again.
4294 			 */
4295 			spin_lock_irq(&conf->device_lock);
4296 			if (mddev->reshape_backwards
4297 			    ? logical_sector < conf->reshape_progress
4298 			    : logical_sector >= conf->reshape_progress) {
4299 				previous = 1;
4300 			} else {
4301 				if (mddev->reshape_backwards
4302 				    ? logical_sector < conf->reshape_safe
4303 				    : logical_sector >= conf->reshape_safe) {
4304 					spin_unlock_irq(&conf->device_lock);
4305 					schedule();
4306 					goto retry;
4307 				}
4308 			}
4309 			spin_unlock_irq(&conf->device_lock);
4310 		}
4311 
4312 		new_sector = raid5_compute_sector(conf, logical_sector,
4313 						  previous,
4314 						  &dd_idx, NULL);
4315 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4316 			(unsigned long long)new_sector,
4317 			(unsigned long long)logical_sector);
4318 
4319 		sh = get_active_stripe(conf, new_sector, previous,
4320 				       (bi->bi_rw&RWA_MASK), 0);
4321 		if (sh) {
4322 			if (unlikely(previous)) {
4323 				/* expansion might have moved on while waiting for a
4324 				 * stripe, so we must do the range check again.
4325 				 * Expansion could still move past after this
4326 				 * test, but as we are holding a reference to
4327 				 * 'sh', we know that if that happens,
4328 				 *  STRIPE_EXPANDING will get set and the expansion
4329 				 * won't proceed until we finish with the stripe.
4330 				 */
4331 				int must_retry = 0;
4332 				spin_lock_irq(&conf->device_lock);
4333 				if (mddev->reshape_backwards
4334 				    ? logical_sector >= conf->reshape_progress
4335 				    : logical_sector < conf->reshape_progress)
4336 					/* mismatch, need to try again */
4337 					must_retry = 1;
4338 				spin_unlock_irq(&conf->device_lock);
4339 				if (must_retry) {
4340 					release_stripe(sh);
4341 					schedule();
4342 					goto retry;
4343 				}
4344 			}
4345 
4346 			if (rw == WRITE &&
4347 			    logical_sector >= mddev->suspend_lo &&
4348 			    logical_sector < mddev->suspend_hi) {
4349 				release_stripe(sh);
4350 				/* As the suspend_* range is controlled by
4351 				 * userspace, we want an interruptible
4352 				 * wait.
4353 				 */
4354 				flush_signals(current);
4355 				prepare_to_wait(&conf->wait_for_overlap,
4356 						&w, TASK_INTERRUPTIBLE);
4357 				if (logical_sector >= mddev->suspend_lo &&
4358 				    logical_sector < mddev->suspend_hi)
4359 					schedule();
4360 				goto retry;
4361 			}
4362 
4363 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4364 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4365 				/* Stripe is busy expanding or
4366 				 * add failed due to overlap.  Flush everything
4367 				 * and wait a while
4368 				 */
4369 				md_wakeup_thread(mddev->thread);
4370 				release_stripe(sh);
4371 				schedule();
4372 				goto retry;
4373 			}
4374 			finish_wait(&conf->wait_for_overlap, &w);
4375 			set_bit(STRIPE_HANDLE, &sh->state);
4376 			clear_bit(STRIPE_DELAYED, &sh->state);
4377 			if ((bi->bi_rw & REQ_SYNC) &&
4378 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4379 				atomic_inc(&conf->preread_active_stripes);
4380 			release_stripe_plug(mddev, sh);
4381 		} else {
4382 			/* cannot get stripe for read-ahead, just give-up */
4383 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4384 			finish_wait(&conf->wait_for_overlap, &w);
4385 			break;
4386 		}
4387 	}
4388 
4389 	remaining = raid5_dec_bi_active_stripes(bi);
4390 	if (remaining == 0) {
4391 
4392 		if ( rw == WRITE )
4393 			md_write_end(mddev);
4394 
4395 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4396 					 bi, 0);
4397 		bio_endio(bi, 0);
4398 	}
4399 }
4400 
4401 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4402 
4403 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4404 {
4405 	/* reshaping is quite different to recovery/resync so it is
4406 	 * handled quite separately ... here.
4407 	 *
4408 	 * On each call to sync_request, we gather one chunk worth of
4409 	 * destination stripes and flag them as expanding.
4410 	 * Then we find all the source stripes and request reads.
4411 	 * As the reads complete, handle_stripe will copy the data
4412 	 * into the destination stripe and release that stripe.
4413 	 */
4414 	struct r5conf *conf = mddev->private;
4415 	struct stripe_head *sh;
4416 	sector_t first_sector, last_sector;
4417 	int raid_disks = conf->previous_raid_disks;
4418 	int data_disks = raid_disks - conf->max_degraded;
4419 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4420 	int i;
4421 	int dd_idx;
4422 	sector_t writepos, readpos, safepos;
4423 	sector_t stripe_addr;
4424 	int reshape_sectors;
4425 	struct list_head stripes;
4426 
4427 	if (sector_nr == 0) {
4428 		/* If restarting in the middle, skip the initial sectors */
4429 		if (mddev->reshape_backwards &&
4430 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4431 			sector_nr = raid5_size(mddev, 0, 0)
4432 				- conf->reshape_progress;
4433 		} else if (!mddev->reshape_backwards &&
4434 			   conf->reshape_progress > 0)
4435 			sector_nr = conf->reshape_progress;
4436 		sector_div(sector_nr, new_data_disks);
4437 		if (sector_nr) {
4438 			mddev->curr_resync_completed = sector_nr;
4439 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4440 			*skipped = 1;
4441 			return sector_nr;
4442 		}
4443 	}
4444 
4445 	/* We need to process a full chunk at a time.
4446 	 * If old and new chunk sizes differ, we need to process the
4447 	 * largest of these
4448 	 */
4449 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4450 		reshape_sectors = mddev->new_chunk_sectors;
4451 	else
4452 		reshape_sectors = mddev->chunk_sectors;
4453 
4454 	/* We update the metadata at least every 10 seconds, or when
4455 	 * the data about to be copied would over-write the source of
4456 	 * the data at the front of the range.  i.e. one new_stripe
4457 	 * along from reshape_progress new_maps to after where
4458 	 * reshape_safe old_maps to
4459 	 */
4460 	writepos = conf->reshape_progress;
4461 	sector_div(writepos, new_data_disks);
4462 	readpos = conf->reshape_progress;
4463 	sector_div(readpos, data_disks);
4464 	safepos = conf->reshape_safe;
4465 	sector_div(safepos, data_disks);
4466 	if (mddev->reshape_backwards) {
4467 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4468 		readpos += reshape_sectors;
4469 		safepos += reshape_sectors;
4470 	} else {
4471 		writepos += reshape_sectors;
4472 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4473 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4474 	}
4475 
4476 	/* Having calculated the 'writepos' possibly use it
4477 	 * to set 'stripe_addr' which is where we will write to.
4478 	 */
4479 	if (mddev->reshape_backwards) {
4480 		BUG_ON(conf->reshape_progress == 0);
4481 		stripe_addr = writepos;
4482 		BUG_ON((mddev->dev_sectors &
4483 			~((sector_t)reshape_sectors - 1))
4484 		       - reshape_sectors - stripe_addr
4485 		       != sector_nr);
4486 	} else {
4487 		BUG_ON(writepos != sector_nr + reshape_sectors);
4488 		stripe_addr = sector_nr;
4489 	}
4490 
4491 	/* 'writepos' is the most advanced device address we might write.
4492 	 * 'readpos' is the least advanced device address we might read.
4493 	 * 'safepos' is the least address recorded in the metadata as having
4494 	 *     been reshaped.
4495 	 * If there is a min_offset_diff, these are adjusted either by
4496 	 * increasing the safepos/readpos if diff is negative, or
4497 	 * increasing writepos if diff is positive.
4498 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4499 	 * ensure safety in the face of a crash - that must be done by userspace
4500 	 * making a backup of the data.  So in that case there is no particular
4501 	 * rush to update metadata.
4502 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4503 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4504 	 * we can be safe in the event of a crash.
4505 	 * So we insist on updating metadata if safepos is behind writepos and
4506 	 * readpos is beyond writepos.
4507 	 * In any case, update the metadata every 10 seconds.
4508 	 * Maybe that number should be configurable, but I'm not sure it is
4509 	 * worth it.... maybe it could be a multiple of safemode_delay???
4510 	 */
4511 	if (conf->min_offset_diff < 0) {
4512 		safepos += -conf->min_offset_diff;
4513 		readpos += -conf->min_offset_diff;
4514 	} else
4515 		writepos += conf->min_offset_diff;
4516 
4517 	if ((mddev->reshape_backwards
4518 	     ? (safepos > writepos && readpos < writepos)
4519 	     : (safepos < writepos && readpos > writepos)) ||
4520 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4521 		/* Cannot proceed until we've updated the superblock... */
4522 		wait_event(conf->wait_for_overlap,
4523 			   atomic_read(&conf->reshape_stripes)==0);
4524 		mddev->reshape_position = conf->reshape_progress;
4525 		mddev->curr_resync_completed = sector_nr;
4526 		conf->reshape_checkpoint = jiffies;
4527 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4528 		md_wakeup_thread(mddev->thread);
4529 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4530 			   kthread_should_stop());
4531 		spin_lock_irq(&conf->device_lock);
4532 		conf->reshape_safe = mddev->reshape_position;
4533 		spin_unlock_irq(&conf->device_lock);
4534 		wake_up(&conf->wait_for_overlap);
4535 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4536 	}
4537 
4538 	INIT_LIST_HEAD(&stripes);
4539 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4540 		int j;
4541 		int skipped_disk = 0;
4542 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4543 		set_bit(STRIPE_EXPANDING, &sh->state);
4544 		atomic_inc(&conf->reshape_stripes);
4545 		/* If any of this stripe is beyond the end of the old
4546 		 * array, then we need to zero those blocks
4547 		 */
4548 		for (j=sh->disks; j--;) {
4549 			sector_t s;
4550 			if (j == sh->pd_idx)
4551 				continue;
4552 			if (conf->level == 6 &&
4553 			    j == sh->qd_idx)
4554 				continue;
4555 			s = compute_blocknr(sh, j, 0);
4556 			if (s < raid5_size(mddev, 0, 0)) {
4557 				skipped_disk = 1;
4558 				continue;
4559 			}
4560 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4561 			set_bit(R5_Expanded, &sh->dev[j].flags);
4562 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4563 		}
4564 		if (!skipped_disk) {
4565 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4566 			set_bit(STRIPE_HANDLE, &sh->state);
4567 		}
4568 		list_add(&sh->lru, &stripes);
4569 	}
4570 	spin_lock_irq(&conf->device_lock);
4571 	if (mddev->reshape_backwards)
4572 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4573 	else
4574 		conf->reshape_progress += reshape_sectors * new_data_disks;
4575 	spin_unlock_irq(&conf->device_lock);
4576 	/* Ok, those stripe are ready. We can start scheduling
4577 	 * reads on the source stripes.
4578 	 * The source stripes are determined by mapping the first and last
4579 	 * block on the destination stripes.
4580 	 */
4581 	first_sector =
4582 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4583 				     1, &dd_idx, NULL);
4584 	last_sector =
4585 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4586 					    * new_data_disks - 1),
4587 				     1, &dd_idx, NULL);
4588 	if (last_sector >= mddev->dev_sectors)
4589 		last_sector = mddev->dev_sectors - 1;
4590 	while (first_sector <= last_sector) {
4591 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4592 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4593 		set_bit(STRIPE_HANDLE, &sh->state);
4594 		release_stripe(sh);
4595 		first_sector += STRIPE_SECTORS;
4596 	}
4597 	/* Now that the sources are clearly marked, we can release
4598 	 * the destination stripes
4599 	 */
4600 	while (!list_empty(&stripes)) {
4601 		sh = list_entry(stripes.next, struct stripe_head, lru);
4602 		list_del_init(&sh->lru);
4603 		release_stripe(sh);
4604 	}
4605 	/* If this takes us to the resync_max point where we have to pause,
4606 	 * then we need to write out the superblock.
4607 	 */
4608 	sector_nr += reshape_sectors;
4609 	if ((sector_nr - mddev->curr_resync_completed) * 2
4610 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4611 		/* Cannot proceed until we've updated the superblock... */
4612 		wait_event(conf->wait_for_overlap,
4613 			   atomic_read(&conf->reshape_stripes) == 0);
4614 		mddev->reshape_position = conf->reshape_progress;
4615 		mddev->curr_resync_completed = sector_nr;
4616 		conf->reshape_checkpoint = jiffies;
4617 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4618 		md_wakeup_thread(mddev->thread);
4619 		wait_event(mddev->sb_wait,
4620 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4621 			   || kthread_should_stop());
4622 		spin_lock_irq(&conf->device_lock);
4623 		conf->reshape_safe = mddev->reshape_position;
4624 		spin_unlock_irq(&conf->device_lock);
4625 		wake_up(&conf->wait_for_overlap);
4626 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4627 	}
4628 	return reshape_sectors;
4629 }
4630 
4631 /* FIXME go_faster isn't used */
4632 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4633 {
4634 	struct r5conf *conf = mddev->private;
4635 	struct stripe_head *sh;
4636 	sector_t max_sector = mddev->dev_sectors;
4637 	sector_t sync_blocks;
4638 	int still_degraded = 0;
4639 	int i;
4640 
4641 	if (sector_nr >= max_sector) {
4642 		/* just being told to finish up .. nothing much to do */
4643 
4644 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4645 			end_reshape(conf);
4646 			return 0;
4647 		}
4648 
4649 		if (mddev->curr_resync < max_sector) /* aborted */
4650 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4651 					&sync_blocks, 1);
4652 		else /* completed sync */
4653 			conf->fullsync = 0;
4654 		bitmap_close_sync(mddev->bitmap);
4655 
4656 		return 0;
4657 	}
4658 
4659 	/* Allow raid5_quiesce to complete */
4660 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4661 
4662 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4663 		return reshape_request(mddev, sector_nr, skipped);
4664 
4665 	/* No need to check resync_max as we never do more than one
4666 	 * stripe, and as resync_max will always be on a chunk boundary,
4667 	 * if the check in md_do_sync didn't fire, there is no chance
4668 	 * of overstepping resync_max here
4669 	 */
4670 
4671 	/* if there is too many failed drives and we are trying
4672 	 * to resync, then assert that we are finished, because there is
4673 	 * nothing we can do.
4674 	 */
4675 	if (mddev->degraded >= conf->max_degraded &&
4676 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4677 		sector_t rv = mddev->dev_sectors - sector_nr;
4678 		*skipped = 1;
4679 		return rv;
4680 	}
4681 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4682 	    !conf->fullsync &&
4683 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4684 	    sync_blocks >= STRIPE_SECTORS) {
4685 		/* we can skip this block, and probably more */
4686 		sync_blocks /= STRIPE_SECTORS;
4687 		*skipped = 1;
4688 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4689 	}
4690 
4691 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4692 
4693 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4694 	if (sh == NULL) {
4695 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4696 		/* make sure we don't swamp the stripe cache if someone else
4697 		 * is trying to get access
4698 		 */
4699 		schedule_timeout_uninterruptible(1);
4700 	}
4701 	/* Need to check if array will still be degraded after recovery/resync
4702 	 * We don't need to check the 'failed' flag as when that gets set,
4703 	 * recovery aborts.
4704 	 */
4705 	for (i = 0; i < conf->raid_disks; i++)
4706 		if (conf->disks[i].rdev == NULL)
4707 			still_degraded = 1;
4708 
4709 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4710 
4711 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4712 
4713 	handle_stripe(sh);
4714 	release_stripe(sh);
4715 
4716 	return STRIPE_SECTORS;
4717 }
4718 
4719 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4720 {
4721 	/* We may not be able to submit a whole bio at once as there
4722 	 * may not be enough stripe_heads available.
4723 	 * We cannot pre-allocate enough stripe_heads as we may need
4724 	 * more than exist in the cache (if we allow ever large chunks).
4725 	 * So we do one stripe head at a time and record in
4726 	 * ->bi_hw_segments how many have been done.
4727 	 *
4728 	 * We *know* that this entire raid_bio is in one chunk, so
4729 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4730 	 */
4731 	struct stripe_head *sh;
4732 	int dd_idx;
4733 	sector_t sector, logical_sector, last_sector;
4734 	int scnt = 0;
4735 	int remaining;
4736 	int handled = 0;
4737 
4738 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4739 	sector = raid5_compute_sector(conf, logical_sector,
4740 				      0, &dd_idx, NULL);
4741 	last_sector = bio_end_sector(raid_bio);
4742 
4743 	for (; logical_sector < last_sector;
4744 	     logical_sector += STRIPE_SECTORS,
4745 		     sector += STRIPE_SECTORS,
4746 		     scnt++) {
4747 
4748 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4749 			/* already done this stripe */
4750 			continue;
4751 
4752 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4753 
4754 		if (!sh) {
4755 			/* failed to get a stripe - must wait */
4756 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4757 			conf->retry_read_aligned = raid_bio;
4758 			return handled;
4759 		}
4760 
4761 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4762 			release_stripe(sh);
4763 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4764 			conf->retry_read_aligned = raid_bio;
4765 			return handled;
4766 		}
4767 
4768 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4769 		handle_stripe(sh);
4770 		release_stripe(sh);
4771 		handled++;
4772 	}
4773 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4774 	if (remaining == 0) {
4775 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4776 					 raid_bio, 0);
4777 		bio_endio(raid_bio, 0);
4778 	}
4779 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4780 		wake_up(&conf->wait_for_stripe);
4781 	return handled;
4782 }
4783 
4784 #define MAX_STRIPE_BATCH 8
4785 static int handle_active_stripes(struct r5conf *conf)
4786 {
4787 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4788 	int i, batch_size = 0;
4789 
4790 	while (batch_size < MAX_STRIPE_BATCH &&
4791 			(sh = __get_priority_stripe(conf)) != NULL)
4792 		batch[batch_size++] = sh;
4793 
4794 	if (batch_size == 0)
4795 		return batch_size;
4796 	spin_unlock_irq(&conf->device_lock);
4797 
4798 	for (i = 0; i < batch_size; i++)
4799 		handle_stripe(batch[i]);
4800 
4801 	cond_resched();
4802 
4803 	spin_lock_irq(&conf->device_lock);
4804 	for (i = 0; i < batch_size; i++)
4805 		__release_stripe(conf, batch[i]);
4806 	return batch_size;
4807 }
4808 
4809 /*
4810  * This is our raid5 kernel thread.
4811  *
4812  * We scan the hash table for stripes which can be handled now.
4813  * During the scan, completed stripes are saved for us by the interrupt
4814  * handler, so that they will not have to wait for our next wakeup.
4815  */
4816 static void raid5d(struct md_thread *thread)
4817 {
4818 	struct mddev *mddev = thread->mddev;
4819 	struct r5conf *conf = mddev->private;
4820 	int handled;
4821 	struct blk_plug plug;
4822 
4823 	pr_debug("+++ raid5d active\n");
4824 
4825 	md_check_recovery(mddev);
4826 
4827 	blk_start_plug(&plug);
4828 	handled = 0;
4829 	spin_lock_irq(&conf->device_lock);
4830 	while (1) {
4831 		struct bio *bio;
4832 		int batch_size;
4833 
4834 		if (
4835 		    !list_empty(&conf->bitmap_list)) {
4836 			/* Now is a good time to flush some bitmap updates */
4837 			conf->seq_flush++;
4838 			spin_unlock_irq(&conf->device_lock);
4839 			bitmap_unplug(mddev->bitmap);
4840 			spin_lock_irq(&conf->device_lock);
4841 			conf->seq_write = conf->seq_flush;
4842 			activate_bit_delay(conf);
4843 		}
4844 		raid5_activate_delayed(conf);
4845 
4846 		while ((bio = remove_bio_from_retry(conf))) {
4847 			int ok;
4848 			spin_unlock_irq(&conf->device_lock);
4849 			ok = retry_aligned_read(conf, bio);
4850 			spin_lock_irq(&conf->device_lock);
4851 			if (!ok)
4852 				break;
4853 			handled++;
4854 		}
4855 
4856 		batch_size = handle_active_stripes(conf);
4857 		if (!batch_size)
4858 			break;
4859 		handled += batch_size;
4860 
4861 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4862 			spin_unlock_irq(&conf->device_lock);
4863 			md_check_recovery(mddev);
4864 			spin_lock_irq(&conf->device_lock);
4865 		}
4866 	}
4867 	pr_debug("%d stripes handled\n", handled);
4868 
4869 	spin_unlock_irq(&conf->device_lock);
4870 
4871 	async_tx_issue_pending_all();
4872 	blk_finish_plug(&plug);
4873 
4874 	pr_debug("--- raid5d inactive\n");
4875 }
4876 
4877 static ssize_t
4878 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4879 {
4880 	struct r5conf *conf = mddev->private;
4881 	if (conf)
4882 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4883 	else
4884 		return 0;
4885 }
4886 
4887 int
4888 raid5_set_cache_size(struct mddev *mddev, int size)
4889 {
4890 	struct r5conf *conf = mddev->private;
4891 	int err;
4892 
4893 	if (size <= 16 || size > 32768)
4894 		return -EINVAL;
4895 	while (size < conf->max_nr_stripes) {
4896 		if (drop_one_stripe(conf))
4897 			conf->max_nr_stripes--;
4898 		else
4899 			break;
4900 	}
4901 	err = md_allow_write(mddev);
4902 	if (err)
4903 		return err;
4904 	while (size > conf->max_nr_stripes) {
4905 		if (grow_one_stripe(conf))
4906 			conf->max_nr_stripes++;
4907 		else break;
4908 	}
4909 	return 0;
4910 }
4911 EXPORT_SYMBOL(raid5_set_cache_size);
4912 
4913 static ssize_t
4914 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4915 {
4916 	struct r5conf *conf = mddev->private;
4917 	unsigned long new;
4918 	int err;
4919 
4920 	if (len >= PAGE_SIZE)
4921 		return -EINVAL;
4922 	if (!conf)
4923 		return -ENODEV;
4924 
4925 	if (strict_strtoul(page, 10, &new))
4926 		return -EINVAL;
4927 	err = raid5_set_cache_size(mddev, new);
4928 	if (err)
4929 		return err;
4930 	return len;
4931 }
4932 
4933 static struct md_sysfs_entry
4934 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4935 				raid5_show_stripe_cache_size,
4936 				raid5_store_stripe_cache_size);
4937 
4938 static ssize_t
4939 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4940 {
4941 	struct r5conf *conf = mddev->private;
4942 	if (conf)
4943 		return sprintf(page, "%d\n", conf->bypass_threshold);
4944 	else
4945 		return 0;
4946 }
4947 
4948 static ssize_t
4949 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4950 {
4951 	struct r5conf *conf = mddev->private;
4952 	unsigned long new;
4953 	if (len >= PAGE_SIZE)
4954 		return -EINVAL;
4955 	if (!conf)
4956 		return -ENODEV;
4957 
4958 	if (strict_strtoul(page, 10, &new))
4959 		return -EINVAL;
4960 	if (new > conf->max_nr_stripes)
4961 		return -EINVAL;
4962 	conf->bypass_threshold = new;
4963 	return len;
4964 }
4965 
4966 static struct md_sysfs_entry
4967 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4968 					S_IRUGO | S_IWUSR,
4969 					raid5_show_preread_threshold,
4970 					raid5_store_preread_threshold);
4971 
4972 static ssize_t
4973 stripe_cache_active_show(struct mddev *mddev, char *page)
4974 {
4975 	struct r5conf *conf = mddev->private;
4976 	if (conf)
4977 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4978 	else
4979 		return 0;
4980 }
4981 
4982 static struct md_sysfs_entry
4983 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4984 
4985 static struct attribute *raid5_attrs[] =  {
4986 	&raid5_stripecache_size.attr,
4987 	&raid5_stripecache_active.attr,
4988 	&raid5_preread_bypass_threshold.attr,
4989 	NULL,
4990 };
4991 static struct attribute_group raid5_attrs_group = {
4992 	.name = NULL,
4993 	.attrs = raid5_attrs,
4994 };
4995 
4996 static sector_t
4997 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4998 {
4999 	struct r5conf *conf = mddev->private;
5000 
5001 	if (!sectors)
5002 		sectors = mddev->dev_sectors;
5003 	if (!raid_disks)
5004 		/* size is defined by the smallest of previous and new size */
5005 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5006 
5007 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5008 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5009 	return sectors * (raid_disks - conf->max_degraded);
5010 }
5011 
5012 static void raid5_free_percpu(struct r5conf *conf)
5013 {
5014 	struct raid5_percpu *percpu;
5015 	unsigned long cpu;
5016 
5017 	if (!conf->percpu)
5018 		return;
5019 
5020 	get_online_cpus();
5021 	for_each_possible_cpu(cpu) {
5022 		percpu = per_cpu_ptr(conf->percpu, cpu);
5023 		safe_put_page(percpu->spare_page);
5024 		kfree(percpu->scribble);
5025 	}
5026 #ifdef CONFIG_HOTPLUG_CPU
5027 	unregister_cpu_notifier(&conf->cpu_notify);
5028 #endif
5029 	put_online_cpus();
5030 
5031 	free_percpu(conf->percpu);
5032 }
5033 
5034 static void free_conf(struct r5conf *conf)
5035 {
5036 	shrink_stripes(conf);
5037 	raid5_free_percpu(conf);
5038 	kfree(conf->disks);
5039 	kfree(conf->stripe_hashtbl);
5040 	kfree(conf);
5041 }
5042 
5043 #ifdef CONFIG_HOTPLUG_CPU
5044 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5045 			      void *hcpu)
5046 {
5047 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5048 	long cpu = (long)hcpu;
5049 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5050 
5051 	switch (action) {
5052 	case CPU_UP_PREPARE:
5053 	case CPU_UP_PREPARE_FROZEN:
5054 		if (conf->level == 6 && !percpu->spare_page)
5055 			percpu->spare_page = alloc_page(GFP_KERNEL);
5056 		if (!percpu->scribble)
5057 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5058 
5059 		if (!percpu->scribble ||
5060 		    (conf->level == 6 && !percpu->spare_page)) {
5061 			safe_put_page(percpu->spare_page);
5062 			kfree(percpu->scribble);
5063 			pr_err("%s: failed memory allocation for cpu%ld\n",
5064 			       __func__, cpu);
5065 			return notifier_from_errno(-ENOMEM);
5066 		}
5067 		break;
5068 	case CPU_DEAD:
5069 	case CPU_DEAD_FROZEN:
5070 		safe_put_page(percpu->spare_page);
5071 		kfree(percpu->scribble);
5072 		percpu->spare_page = NULL;
5073 		percpu->scribble = NULL;
5074 		break;
5075 	default:
5076 		break;
5077 	}
5078 	return NOTIFY_OK;
5079 }
5080 #endif
5081 
5082 static int raid5_alloc_percpu(struct r5conf *conf)
5083 {
5084 	unsigned long cpu;
5085 	struct page *spare_page;
5086 	struct raid5_percpu __percpu *allcpus;
5087 	void *scribble;
5088 	int err;
5089 
5090 	allcpus = alloc_percpu(struct raid5_percpu);
5091 	if (!allcpus)
5092 		return -ENOMEM;
5093 	conf->percpu = allcpus;
5094 
5095 	get_online_cpus();
5096 	err = 0;
5097 	for_each_present_cpu(cpu) {
5098 		if (conf->level == 6) {
5099 			spare_page = alloc_page(GFP_KERNEL);
5100 			if (!spare_page) {
5101 				err = -ENOMEM;
5102 				break;
5103 			}
5104 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5105 		}
5106 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5107 		if (!scribble) {
5108 			err = -ENOMEM;
5109 			break;
5110 		}
5111 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5112 	}
5113 #ifdef CONFIG_HOTPLUG_CPU
5114 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5115 	conf->cpu_notify.priority = 0;
5116 	if (err == 0)
5117 		err = register_cpu_notifier(&conf->cpu_notify);
5118 #endif
5119 	put_online_cpus();
5120 
5121 	return err;
5122 }
5123 
5124 static struct r5conf *setup_conf(struct mddev *mddev)
5125 {
5126 	struct r5conf *conf;
5127 	int raid_disk, memory, max_disks;
5128 	struct md_rdev *rdev;
5129 	struct disk_info *disk;
5130 	char pers_name[6];
5131 
5132 	if (mddev->new_level != 5
5133 	    && mddev->new_level != 4
5134 	    && mddev->new_level != 6) {
5135 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5136 		       mdname(mddev), mddev->new_level);
5137 		return ERR_PTR(-EIO);
5138 	}
5139 	if ((mddev->new_level == 5
5140 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5141 	    (mddev->new_level == 6
5142 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5143 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5144 		       mdname(mddev), mddev->new_layout);
5145 		return ERR_PTR(-EIO);
5146 	}
5147 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5148 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5149 		       mdname(mddev), mddev->raid_disks);
5150 		return ERR_PTR(-EINVAL);
5151 	}
5152 
5153 	if (!mddev->new_chunk_sectors ||
5154 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5155 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5156 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5157 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5158 		return ERR_PTR(-EINVAL);
5159 	}
5160 
5161 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5162 	if (conf == NULL)
5163 		goto abort;
5164 	spin_lock_init(&conf->device_lock);
5165 	init_waitqueue_head(&conf->wait_for_stripe);
5166 	init_waitqueue_head(&conf->wait_for_overlap);
5167 	INIT_LIST_HEAD(&conf->handle_list);
5168 	INIT_LIST_HEAD(&conf->hold_list);
5169 	INIT_LIST_HEAD(&conf->delayed_list);
5170 	INIT_LIST_HEAD(&conf->bitmap_list);
5171 	INIT_LIST_HEAD(&conf->inactive_list);
5172 	atomic_set(&conf->active_stripes, 0);
5173 	atomic_set(&conf->preread_active_stripes, 0);
5174 	atomic_set(&conf->active_aligned_reads, 0);
5175 	conf->bypass_threshold = BYPASS_THRESHOLD;
5176 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5177 
5178 	conf->raid_disks = mddev->raid_disks;
5179 	if (mddev->reshape_position == MaxSector)
5180 		conf->previous_raid_disks = mddev->raid_disks;
5181 	else
5182 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5183 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5184 	conf->scribble_len = scribble_len(max_disks);
5185 
5186 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5187 			      GFP_KERNEL);
5188 	if (!conf->disks)
5189 		goto abort;
5190 
5191 	conf->mddev = mddev;
5192 
5193 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5194 		goto abort;
5195 
5196 	conf->level = mddev->new_level;
5197 	if (raid5_alloc_percpu(conf) != 0)
5198 		goto abort;
5199 
5200 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5201 
5202 	rdev_for_each(rdev, mddev) {
5203 		raid_disk = rdev->raid_disk;
5204 		if (raid_disk >= max_disks
5205 		    || raid_disk < 0)
5206 			continue;
5207 		disk = conf->disks + raid_disk;
5208 
5209 		if (test_bit(Replacement, &rdev->flags)) {
5210 			if (disk->replacement)
5211 				goto abort;
5212 			disk->replacement = rdev;
5213 		} else {
5214 			if (disk->rdev)
5215 				goto abort;
5216 			disk->rdev = rdev;
5217 		}
5218 
5219 		if (test_bit(In_sync, &rdev->flags)) {
5220 			char b[BDEVNAME_SIZE];
5221 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5222 			       " disk %d\n",
5223 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5224 		} else if (rdev->saved_raid_disk != raid_disk)
5225 			/* Cannot rely on bitmap to complete recovery */
5226 			conf->fullsync = 1;
5227 	}
5228 
5229 	conf->chunk_sectors = mddev->new_chunk_sectors;
5230 	conf->level = mddev->new_level;
5231 	if (conf->level == 6)
5232 		conf->max_degraded = 2;
5233 	else
5234 		conf->max_degraded = 1;
5235 	conf->algorithm = mddev->new_layout;
5236 	conf->max_nr_stripes = NR_STRIPES;
5237 	conf->reshape_progress = mddev->reshape_position;
5238 	if (conf->reshape_progress != MaxSector) {
5239 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5240 		conf->prev_algo = mddev->layout;
5241 	}
5242 
5243 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5244 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5245 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5246 		printk(KERN_ERR
5247 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5248 		       mdname(mddev), memory);
5249 		goto abort;
5250 	} else
5251 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5252 		       mdname(mddev), memory);
5253 
5254 	sprintf(pers_name, "raid%d", mddev->new_level);
5255 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5256 	if (!conf->thread) {
5257 		printk(KERN_ERR
5258 		       "md/raid:%s: couldn't allocate thread.\n",
5259 		       mdname(mddev));
5260 		goto abort;
5261 	}
5262 
5263 	return conf;
5264 
5265  abort:
5266 	if (conf) {
5267 		free_conf(conf);
5268 		return ERR_PTR(-EIO);
5269 	} else
5270 		return ERR_PTR(-ENOMEM);
5271 }
5272 
5273 
5274 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5275 {
5276 	switch (algo) {
5277 	case ALGORITHM_PARITY_0:
5278 		if (raid_disk < max_degraded)
5279 			return 1;
5280 		break;
5281 	case ALGORITHM_PARITY_N:
5282 		if (raid_disk >= raid_disks - max_degraded)
5283 			return 1;
5284 		break;
5285 	case ALGORITHM_PARITY_0_6:
5286 		if (raid_disk == 0 ||
5287 		    raid_disk == raid_disks - 1)
5288 			return 1;
5289 		break;
5290 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5291 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5292 	case ALGORITHM_LEFT_SYMMETRIC_6:
5293 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5294 		if (raid_disk == raid_disks - 1)
5295 			return 1;
5296 	}
5297 	return 0;
5298 }
5299 
5300 static int run(struct mddev *mddev)
5301 {
5302 	struct r5conf *conf;
5303 	int working_disks = 0;
5304 	int dirty_parity_disks = 0;
5305 	struct md_rdev *rdev;
5306 	sector_t reshape_offset = 0;
5307 	int i;
5308 	long long min_offset_diff = 0;
5309 	int first = 1;
5310 
5311 	if (mddev->recovery_cp != MaxSector)
5312 		printk(KERN_NOTICE "md/raid:%s: not clean"
5313 		       " -- starting background reconstruction\n",
5314 		       mdname(mddev));
5315 
5316 	rdev_for_each(rdev, mddev) {
5317 		long long diff;
5318 		if (rdev->raid_disk < 0)
5319 			continue;
5320 		diff = (rdev->new_data_offset - rdev->data_offset);
5321 		if (first) {
5322 			min_offset_diff = diff;
5323 			first = 0;
5324 		} else if (mddev->reshape_backwards &&
5325 			 diff < min_offset_diff)
5326 			min_offset_diff = diff;
5327 		else if (!mddev->reshape_backwards &&
5328 			 diff > min_offset_diff)
5329 			min_offset_diff = diff;
5330 	}
5331 
5332 	if (mddev->reshape_position != MaxSector) {
5333 		/* Check that we can continue the reshape.
5334 		 * Difficulties arise if the stripe we would write to
5335 		 * next is at or after the stripe we would read from next.
5336 		 * For a reshape that changes the number of devices, this
5337 		 * is only possible for a very short time, and mdadm makes
5338 		 * sure that time appears to have past before assembling
5339 		 * the array.  So we fail if that time hasn't passed.
5340 		 * For a reshape that keeps the number of devices the same
5341 		 * mdadm must be monitoring the reshape can keeping the
5342 		 * critical areas read-only and backed up.  It will start
5343 		 * the array in read-only mode, so we check for that.
5344 		 */
5345 		sector_t here_new, here_old;
5346 		int old_disks;
5347 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5348 
5349 		if (mddev->new_level != mddev->level) {
5350 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5351 			       "required - aborting.\n",
5352 			       mdname(mddev));
5353 			return -EINVAL;
5354 		}
5355 		old_disks = mddev->raid_disks - mddev->delta_disks;
5356 		/* reshape_position must be on a new-stripe boundary, and one
5357 		 * further up in new geometry must map after here in old
5358 		 * geometry.
5359 		 */
5360 		here_new = mddev->reshape_position;
5361 		if (sector_div(here_new, mddev->new_chunk_sectors *
5362 			       (mddev->raid_disks - max_degraded))) {
5363 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5364 			       "on a stripe boundary\n", mdname(mddev));
5365 			return -EINVAL;
5366 		}
5367 		reshape_offset = here_new * mddev->new_chunk_sectors;
5368 		/* here_new is the stripe we will write to */
5369 		here_old = mddev->reshape_position;
5370 		sector_div(here_old, mddev->chunk_sectors *
5371 			   (old_disks-max_degraded));
5372 		/* here_old is the first stripe that we might need to read
5373 		 * from */
5374 		if (mddev->delta_disks == 0) {
5375 			if ((here_new * mddev->new_chunk_sectors !=
5376 			     here_old * mddev->chunk_sectors)) {
5377 				printk(KERN_ERR "md/raid:%s: reshape position is"
5378 				       " confused - aborting\n", mdname(mddev));
5379 				return -EINVAL;
5380 			}
5381 			/* We cannot be sure it is safe to start an in-place
5382 			 * reshape.  It is only safe if user-space is monitoring
5383 			 * and taking constant backups.
5384 			 * mdadm always starts a situation like this in
5385 			 * readonly mode so it can take control before
5386 			 * allowing any writes.  So just check for that.
5387 			 */
5388 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5389 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5390 				/* not really in-place - so OK */;
5391 			else if (mddev->ro == 0) {
5392 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5393 				       "must be started in read-only mode "
5394 				       "- aborting\n",
5395 				       mdname(mddev));
5396 				return -EINVAL;
5397 			}
5398 		} else if (mddev->reshape_backwards
5399 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5400 		       here_old * mddev->chunk_sectors)
5401 		    : (here_new * mddev->new_chunk_sectors >=
5402 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5403 			/* Reading from the same stripe as writing to - bad */
5404 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5405 			       "auto-recovery - aborting.\n",
5406 			       mdname(mddev));
5407 			return -EINVAL;
5408 		}
5409 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5410 		       mdname(mddev));
5411 		/* OK, we should be able to continue; */
5412 	} else {
5413 		BUG_ON(mddev->level != mddev->new_level);
5414 		BUG_ON(mddev->layout != mddev->new_layout);
5415 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5416 		BUG_ON(mddev->delta_disks != 0);
5417 	}
5418 
5419 	if (mddev->private == NULL)
5420 		conf = setup_conf(mddev);
5421 	else
5422 		conf = mddev->private;
5423 
5424 	if (IS_ERR(conf))
5425 		return PTR_ERR(conf);
5426 
5427 	conf->min_offset_diff = min_offset_diff;
5428 	mddev->thread = conf->thread;
5429 	conf->thread = NULL;
5430 	mddev->private = conf;
5431 
5432 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5433 	     i++) {
5434 		rdev = conf->disks[i].rdev;
5435 		if (!rdev && conf->disks[i].replacement) {
5436 			/* The replacement is all we have yet */
5437 			rdev = conf->disks[i].replacement;
5438 			conf->disks[i].replacement = NULL;
5439 			clear_bit(Replacement, &rdev->flags);
5440 			conf->disks[i].rdev = rdev;
5441 		}
5442 		if (!rdev)
5443 			continue;
5444 		if (conf->disks[i].replacement &&
5445 		    conf->reshape_progress != MaxSector) {
5446 			/* replacements and reshape simply do not mix. */
5447 			printk(KERN_ERR "md: cannot handle concurrent "
5448 			       "replacement and reshape.\n");
5449 			goto abort;
5450 		}
5451 		if (test_bit(In_sync, &rdev->flags)) {
5452 			working_disks++;
5453 			continue;
5454 		}
5455 		/* This disc is not fully in-sync.  However if it
5456 		 * just stored parity (beyond the recovery_offset),
5457 		 * when we don't need to be concerned about the
5458 		 * array being dirty.
5459 		 * When reshape goes 'backwards', we never have
5460 		 * partially completed devices, so we only need
5461 		 * to worry about reshape going forwards.
5462 		 */
5463 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5464 		if (mddev->major_version == 0 &&
5465 		    mddev->minor_version > 90)
5466 			rdev->recovery_offset = reshape_offset;
5467 
5468 		if (rdev->recovery_offset < reshape_offset) {
5469 			/* We need to check old and new layout */
5470 			if (!only_parity(rdev->raid_disk,
5471 					 conf->algorithm,
5472 					 conf->raid_disks,
5473 					 conf->max_degraded))
5474 				continue;
5475 		}
5476 		if (!only_parity(rdev->raid_disk,
5477 				 conf->prev_algo,
5478 				 conf->previous_raid_disks,
5479 				 conf->max_degraded))
5480 			continue;
5481 		dirty_parity_disks++;
5482 	}
5483 
5484 	/*
5485 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5486 	 */
5487 	mddev->degraded = calc_degraded(conf);
5488 
5489 	if (has_failed(conf)) {
5490 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5491 			" (%d/%d failed)\n",
5492 			mdname(mddev), mddev->degraded, conf->raid_disks);
5493 		goto abort;
5494 	}
5495 
5496 	/* device size must be a multiple of chunk size */
5497 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5498 	mddev->resync_max_sectors = mddev->dev_sectors;
5499 
5500 	if (mddev->degraded > dirty_parity_disks &&
5501 	    mddev->recovery_cp != MaxSector) {
5502 		if (mddev->ok_start_degraded)
5503 			printk(KERN_WARNING
5504 			       "md/raid:%s: starting dirty degraded array"
5505 			       " - data corruption possible.\n",
5506 			       mdname(mddev));
5507 		else {
5508 			printk(KERN_ERR
5509 			       "md/raid:%s: cannot start dirty degraded array.\n",
5510 			       mdname(mddev));
5511 			goto abort;
5512 		}
5513 	}
5514 
5515 	if (mddev->degraded == 0)
5516 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5517 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5518 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5519 		       mddev->new_layout);
5520 	else
5521 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5522 		       " out of %d devices, algorithm %d\n",
5523 		       mdname(mddev), conf->level,
5524 		       mddev->raid_disks - mddev->degraded,
5525 		       mddev->raid_disks, mddev->new_layout);
5526 
5527 	print_raid5_conf(conf);
5528 
5529 	if (conf->reshape_progress != MaxSector) {
5530 		conf->reshape_safe = conf->reshape_progress;
5531 		atomic_set(&conf->reshape_stripes, 0);
5532 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5533 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5534 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5535 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5536 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5537 							"reshape");
5538 	}
5539 
5540 
5541 	/* Ok, everything is just fine now */
5542 	if (mddev->to_remove == &raid5_attrs_group)
5543 		mddev->to_remove = NULL;
5544 	else if (mddev->kobj.sd &&
5545 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5546 		printk(KERN_WARNING
5547 		       "raid5: failed to create sysfs attributes for %s\n",
5548 		       mdname(mddev));
5549 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5550 
5551 	if (mddev->queue) {
5552 		int chunk_size;
5553 		bool discard_supported = true;
5554 		/* read-ahead size must cover two whole stripes, which
5555 		 * is 2 * (datadisks) * chunksize where 'n' is the
5556 		 * number of raid devices
5557 		 */
5558 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5559 		int stripe = data_disks *
5560 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5561 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5562 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5563 
5564 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5565 
5566 		mddev->queue->backing_dev_info.congested_data = mddev;
5567 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5568 
5569 		chunk_size = mddev->chunk_sectors << 9;
5570 		blk_queue_io_min(mddev->queue, chunk_size);
5571 		blk_queue_io_opt(mddev->queue, chunk_size *
5572 				 (conf->raid_disks - conf->max_degraded));
5573 		/*
5574 		 * We can only discard a whole stripe. It doesn't make sense to
5575 		 * discard data disk but write parity disk
5576 		 */
5577 		stripe = stripe * PAGE_SIZE;
5578 		/* Round up to power of 2, as discard handling
5579 		 * currently assumes that */
5580 		while ((stripe-1) & stripe)
5581 			stripe = (stripe | (stripe-1)) + 1;
5582 		mddev->queue->limits.discard_alignment = stripe;
5583 		mddev->queue->limits.discard_granularity = stripe;
5584 		/*
5585 		 * unaligned part of discard request will be ignored, so can't
5586 		 * guarantee discard_zerors_data
5587 		 */
5588 		mddev->queue->limits.discard_zeroes_data = 0;
5589 
5590 		rdev_for_each(rdev, mddev) {
5591 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5592 					  rdev->data_offset << 9);
5593 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5594 					  rdev->new_data_offset << 9);
5595 			/*
5596 			 * discard_zeroes_data is required, otherwise data
5597 			 * could be lost. Consider a scenario: discard a stripe
5598 			 * (the stripe could be inconsistent if
5599 			 * discard_zeroes_data is 0); write one disk of the
5600 			 * stripe (the stripe could be inconsistent again
5601 			 * depending on which disks are used to calculate
5602 			 * parity); the disk is broken; The stripe data of this
5603 			 * disk is lost.
5604 			 */
5605 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5606 			    !bdev_get_queue(rdev->bdev)->
5607 						limits.discard_zeroes_data)
5608 				discard_supported = false;
5609 		}
5610 
5611 		if (discard_supported &&
5612 		   mddev->queue->limits.max_discard_sectors >= stripe &&
5613 		   mddev->queue->limits.discard_granularity >= stripe)
5614 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5615 						mddev->queue);
5616 		else
5617 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5618 						mddev->queue);
5619 	}
5620 
5621 	return 0;
5622 abort:
5623 	md_unregister_thread(&mddev->thread);
5624 	print_raid5_conf(conf);
5625 	free_conf(conf);
5626 	mddev->private = NULL;
5627 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5628 	return -EIO;
5629 }
5630 
5631 static int stop(struct mddev *mddev)
5632 {
5633 	struct r5conf *conf = mddev->private;
5634 
5635 	md_unregister_thread(&mddev->thread);
5636 	if (mddev->queue)
5637 		mddev->queue->backing_dev_info.congested_fn = NULL;
5638 	free_conf(conf);
5639 	mddev->private = NULL;
5640 	mddev->to_remove = &raid5_attrs_group;
5641 	return 0;
5642 }
5643 
5644 static void status(struct seq_file *seq, struct mddev *mddev)
5645 {
5646 	struct r5conf *conf = mddev->private;
5647 	int i;
5648 
5649 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5650 		mddev->chunk_sectors / 2, mddev->layout);
5651 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5652 	for (i = 0; i < conf->raid_disks; i++)
5653 		seq_printf (seq, "%s",
5654 			       conf->disks[i].rdev &&
5655 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5656 	seq_printf (seq, "]");
5657 }
5658 
5659 static void print_raid5_conf (struct r5conf *conf)
5660 {
5661 	int i;
5662 	struct disk_info *tmp;
5663 
5664 	printk(KERN_DEBUG "RAID conf printout:\n");
5665 	if (!conf) {
5666 		printk("(conf==NULL)\n");
5667 		return;
5668 	}
5669 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5670 	       conf->raid_disks,
5671 	       conf->raid_disks - conf->mddev->degraded);
5672 
5673 	for (i = 0; i < conf->raid_disks; i++) {
5674 		char b[BDEVNAME_SIZE];
5675 		tmp = conf->disks + i;
5676 		if (tmp->rdev)
5677 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5678 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5679 			       bdevname(tmp->rdev->bdev, b));
5680 	}
5681 }
5682 
5683 static int raid5_spare_active(struct mddev *mddev)
5684 {
5685 	int i;
5686 	struct r5conf *conf = mddev->private;
5687 	struct disk_info *tmp;
5688 	int count = 0;
5689 	unsigned long flags;
5690 
5691 	for (i = 0; i < conf->raid_disks; i++) {
5692 		tmp = conf->disks + i;
5693 		if (tmp->replacement
5694 		    && tmp->replacement->recovery_offset == MaxSector
5695 		    && !test_bit(Faulty, &tmp->replacement->flags)
5696 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5697 			/* Replacement has just become active. */
5698 			if (!tmp->rdev
5699 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5700 				count++;
5701 			if (tmp->rdev) {
5702 				/* Replaced device not technically faulty,
5703 				 * but we need to be sure it gets removed
5704 				 * and never re-added.
5705 				 */
5706 				set_bit(Faulty, &tmp->rdev->flags);
5707 				sysfs_notify_dirent_safe(
5708 					tmp->rdev->sysfs_state);
5709 			}
5710 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5711 		} else if (tmp->rdev
5712 		    && tmp->rdev->recovery_offset == MaxSector
5713 		    && !test_bit(Faulty, &tmp->rdev->flags)
5714 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5715 			count++;
5716 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5717 		}
5718 	}
5719 	spin_lock_irqsave(&conf->device_lock, flags);
5720 	mddev->degraded = calc_degraded(conf);
5721 	spin_unlock_irqrestore(&conf->device_lock, flags);
5722 	print_raid5_conf(conf);
5723 	return count;
5724 }
5725 
5726 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5727 {
5728 	struct r5conf *conf = mddev->private;
5729 	int err = 0;
5730 	int number = rdev->raid_disk;
5731 	struct md_rdev **rdevp;
5732 	struct disk_info *p = conf->disks + number;
5733 
5734 	print_raid5_conf(conf);
5735 	if (rdev == p->rdev)
5736 		rdevp = &p->rdev;
5737 	else if (rdev == p->replacement)
5738 		rdevp = &p->replacement;
5739 	else
5740 		return 0;
5741 
5742 	if (number >= conf->raid_disks &&
5743 	    conf->reshape_progress == MaxSector)
5744 		clear_bit(In_sync, &rdev->flags);
5745 
5746 	if (test_bit(In_sync, &rdev->flags) ||
5747 	    atomic_read(&rdev->nr_pending)) {
5748 		err = -EBUSY;
5749 		goto abort;
5750 	}
5751 	/* Only remove non-faulty devices if recovery
5752 	 * isn't possible.
5753 	 */
5754 	if (!test_bit(Faulty, &rdev->flags) &&
5755 	    mddev->recovery_disabled != conf->recovery_disabled &&
5756 	    !has_failed(conf) &&
5757 	    (!p->replacement || p->replacement == rdev) &&
5758 	    number < conf->raid_disks) {
5759 		err = -EBUSY;
5760 		goto abort;
5761 	}
5762 	*rdevp = NULL;
5763 	synchronize_rcu();
5764 	if (atomic_read(&rdev->nr_pending)) {
5765 		/* lost the race, try later */
5766 		err = -EBUSY;
5767 		*rdevp = rdev;
5768 	} else if (p->replacement) {
5769 		/* We must have just cleared 'rdev' */
5770 		p->rdev = p->replacement;
5771 		clear_bit(Replacement, &p->replacement->flags);
5772 		smp_mb(); /* Make sure other CPUs may see both as identical
5773 			   * but will never see neither - if they are careful
5774 			   */
5775 		p->replacement = NULL;
5776 		clear_bit(WantReplacement, &rdev->flags);
5777 	} else
5778 		/* We might have just removed the Replacement as faulty-
5779 		 * clear the bit just in case
5780 		 */
5781 		clear_bit(WantReplacement, &rdev->flags);
5782 abort:
5783 
5784 	print_raid5_conf(conf);
5785 	return err;
5786 }
5787 
5788 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5789 {
5790 	struct r5conf *conf = mddev->private;
5791 	int err = -EEXIST;
5792 	int disk;
5793 	struct disk_info *p;
5794 	int first = 0;
5795 	int last = conf->raid_disks - 1;
5796 
5797 	if (mddev->recovery_disabled == conf->recovery_disabled)
5798 		return -EBUSY;
5799 
5800 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5801 		/* no point adding a device */
5802 		return -EINVAL;
5803 
5804 	if (rdev->raid_disk >= 0)
5805 		first = last = rdev->raid_disk;
5806 
5807 	/*
5808 	 * find the disk ... but prefer rdev->saved_raid_disk
5809 	 * if possible.
5810 	 */
5811 	if (rdev->saved_raid_disk >= 0 &&
5812 	    rdev->saved_raid_disk >= first &&
5813 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5814 		first = rdev->saved_raid_disk;
5815 
5816 	for (disk = first; disk <= last; disk++) {
5817 		p = conf->disks + disk;
5818 		if (p->rdev == NULL) {
5819 			clear_bit(In_sync, &rdev->flags);
5820 			rdev->raid_disk = disk;
5821 			err = 0;
5822 			if (rdev->saved_raid_disk != disk)
5823 				conf->fullsync = 1;
5824 			rcu_assign_pointer(p->rdev, rdev);
5825 			goto out;
5826 		}
5827 	}
5828 	for (disk = first; disk <= last; disk++) {
5829 		p = conf->disks + disk;
5830 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5831 		    p->replacement == NULL) {
5832 			clear_bit(In_sync, &rdev->flags);
5833 			set_bit(Replacement, &rdev->flags);
5834 			rdev->raid_disk = disk;
5835 			err = 0;
5836 			conf->fullsync = 1;
5837 			rcu_assign_pointer(p->replacement, rdev);
5838 			break;
5839 		}
5840 	}
5841 out:
5842 	print_raid5_conf(conf);
5843 	return err;
5844 }
5845 
5846 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5847 {
5848 	/* no resync is happening, and there is enough space
5849 	 * on all devices, so we can resize.
5850 	 * We need to make sure resync covers any new space.
5851 	 * If the array is shrinking we should possibly wait until
5852 	 * any io in the removed space completes, but it hardly seems
5853 	 * worth it.
5854 	 */
5855 	sector_t newsize;
5856 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5857 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5858 	if (mddev->external_size &&
5859 	    mddev->array_sectors > newsize)
5860 		return -EINVAL;
5861 	if (mddev->bitmap) {
5862 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5863 		if (ret)
5864 			return ret;
5865 	}
5866 	md_set_array_sectors(mddev, newsize);
5867 	set_capacity(mddev->gendisk, mddev->array_sectors);
5868 	revalidate_disk(mddev->gendisk);
5869 	if (sectors > mddev->dev_sectors &&
5870 	    mddev->recovery_cp > mddev->dev_sectors) {
5871 		mddev->recovery_cp = mddev->dev_sectors;
5872 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5873 	}
5874 	mddev->dev_sectors = sectors;
5875 	mddev->resync_max_sectors = sectors;
5876 	return 0;
5877 }
5878 
5879 static int check_stripe_cache(struct mddev *mddev)
5880 {
5881 	/* Can only proceed if there are plenty of stripe_heads.
5882 	 * We need a minimum of one full stripe,, and for sensible progress
5883 	 * it is best to have about 4 times that.
5884 	 * If we require 4 times, then the default 256 4K stripe_heads will
5885 	 * allow for chunk sizes up to 256K, which is probably OK.
5886 	 * If the chunk size is greater, user-space should request more
5887 	 * stripe_heads first.
5888 	 */
5889 	struct r5conf *conf = mddev->private;
5890 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5891 	    > conf->max_nr_stripes ||
5892 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5893 	    > conf->max_nr_stripes) {
5894 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5895 		       mdname(mddev),
5896 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5897 			/ STRIPE_SIZE)*4);
5898 		return 0;
5899 	}
5900 	return 1;
5901 }
5902 
5903 static int check_reshape(struct mddev *mddev)
5904 {
5905 	struct r5conf *conf = mddev->private;
5906 
5907 	if (mddev->delta_disks == 0 &&
5908 	    mddev->new_layout == mddev->layout &&
5909 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5910 		return 0; /* nothing to do */
5911 	if (has_failed(conf))
5912 		return -EINVAL;
5913 	if (mddev->delta_disks < 0) {
5914 		/* We might be able to shrink, but the devices must
5915 		 * be made bigger first.
5916 		 * For raid6, 4 is the minimum size.
5917 		 * Otherwise 2 is the minimum
5918 		 */
5919 		int min = 2;
5920 		if (mddev->level == 6)
5921 			min = 4;
5922 		if (mddev->raid_disks + mddev->delta_disks < min)
5923 			return -EINVAL;
5924 	}
5925 
5926 	if (!check_stripe_cache(mddev))
5927 		return -ENOSPC;
5928 
5929 	return resize_stripes(conf, (conf->previous_raid_disks
5930 				     + mddev->delta_disks));
5931 }
5932 
5933 static int raid5_start_reshape(struct mddev *mddev)
5934 {
5935 	struct r5conf *conf = mddev->private;
5936 	struct md_rdev *rdev;
5937 	int spares = 0;
5938 	unsigned long flags;
5939 
5940 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5941 		return -EBUSY;
5942 
5943 	if (!check_stripe_cache(mddev))
5944 		return -ENOSPC;
5945 
5946 	if (has_failed(conf))
5947 		return -EINVAL;
5948 
5949 	rdev_for_each(rdev, mddev) {
5950 		if (!test_bit(In_sync, &rdev->flags)
5951 		    && !test_bit(Faulty, &rdev->flags))
5952 			spares++;
5953 	}
5954 
5955 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5956 		/* Not enough devices even to make a degraded array
5957 		 * of that size
5958 		 */
5959 		return -EINVAL;
5960 
5961 	/* Refuse to reduce size of the array.  Any reductions in
5962 	 * array size must be through explicit setting of array_size
5963 	 * attribute.
5964 	 */
5965 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5966 	    < mddev->array_sectors) {
5967 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5968 		       "before number of disks\n", mdname(mddev));
5969 		return -EINVAL;
5970 	}
5971 
5972 	atomic_set(&conf->reshape_stripes, 0);
5973 	spin_lock_irq(&conf->device_lock);
5974 	conf->previous_raid_disks = conf->raid_disks;
5975 	conf->raid_disks += mddev->delta_disks;
5976 	conf->prev_chunk_sectors = conf->chunk_sectors;
5977 	conf->chunk_sectors = mddev->new_chunk_sectors;
5978 	conf->prev_algo = conf->algorithm;
5979 	conf->algorithm = mddev->new_layout;
5980 	conf->generation++;
5981 	/* Code that selects data_offset needs to see the generation update
5982 	 * if reshape_progress has been set - so a memory barrier needed.
5983 	 */
5984 	smp_mb();
5985 	if (mddev->reshape_backwards)
5986 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5987 	else
5988 		conf->reshape_progress = 0;
5989 	conf->reshape_safe = conf->reshape_progress;
5990 	spin_unlock_irq(&conf->device_lock);
5991 
5992 	/* Add some new drives, as many as will fit.
5993 	 * We know there are enough to make the newly sized array work.
5994 	 * Don't add devices if we are reducing the number of
5995 	 * devices in the array.  This is because it is not possible
5996 	 * to correctly record the "partially reconstructed" state of
5997 	 * such devices during the reshape and confusion could result.
5998 	 */
5999 	if (mddev->delta_disks >= 0) {
6000 		rdev_for_each(rdev, mddev)
6001 			if (rdev->raid_disk < 0 &&
6002 			    !test_bit(Faulty, &rdev->flags)) {
6003 				if (raid5_add_disk(mddev, rdev) == 0) {
6004 					if (rdev->raid_disk
6005 					    >= conf->previous_raid_disks)
6006 						set_bit(In_sync, &rdev->flags);
6007 					else
6008 						rdev->recovery_offset = 0;
6009 
6010 					if (sysfs_link_rdev(mddev, rdev))
6011 						/* Failure here is OK */;
6012 				}
6013 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6014 				   && !test_bit(Faulty, &rdev->flags)) {
6015 				/* This is a spare that was manually added */
6016 				set_bit(In_sync, &rdev->flags);
6017 			}
6018 
6019 		/* When a reshape changes the number of devices,
6020 		 * ->degraded is measured against the larger of the
6021 		 * pre and post number of devices.
6022 		 */
6023 		spin_lock_irqsave(&conf->device_lock, flags);
6024 		mddev->degraded = calc_degraded(conf);
6025 		spin_unlock_irqrestore(&conf->device_lock, flags);
6026 	}
6027 	mddev->raid_disks = conf->raid_disks;
6028 	mddev->reshape_position = conf->reshape_progress;
6029 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6030 
6031 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6032 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6033 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6034 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6035 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6036 						"reshape");
6037 	if (!mddev->sync_thread) {
6038 		mddev->recovery = 0;
6039 		spin_lock_irq(&conf->device_lock);
6040 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6041 		rdev_for_each(rdev, mddev)
6042 			rdev->new_data_offset = rdev->data_offset;
6043 		smp_wmb();
6044 		conf->reshape_progress = MaxSector;
6045 		mddev->reshape_position = MaxSector;
6046 		spin_unlock_irq(&conf->device_lock);
6047 		return -EAGAIN;
6048 	}
6049 	conf->reshape_checkpoint = jiffies;
6050 	md_wakeup_thread(mddev->sync_thread);
6051 	md_new_event(mddev);
6052 	return 0;
6053 }
6054 
6055 /* This is called from the reshape thread and should make any
6056  * changes needed in 'conf'
6057  */
6058 static void end_reshape(struct r5conf *conf)
6059 {
6060 
6061 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6062 		struct md_rdev *rdev;
6063 
6064 		spin_lock_irq(&conf->device_lock);
6065 		conf->previous_raid_disks = conf->raid_disks;
6066 		rdev_for_each(rdev, conf->mddev)
6067 			rdev->data_offset = rdev->new_data_offset;
6068 		smp_wmb();
6069 		conf->reshape_progress = MaxSector;
6070 		spin_unlock_irq(&conf->device_lock);
6071 		wake_up(&conf->wait_for_overlap);
6072 
6073 		/* read-ahead size must cover two whole stripes, which is
6074 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6075 		 */
6076 		if (conf->mddev->queue) {
6077 			int data_disks = conf->raid_disks - conf->max_degraded;
6078 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6079 						   / PAGE_SIZE);
6080 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6081 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6082 		}
6083 	}
6084 }
6085 
6086 /* This is called from the raid5d thread with mddev_lock held.
6087  * It makes config changes to the device.
6088  */
6089 static void raid5_finish_reshape(struct mddev *mddev)
6090 {
6091 	struct r5conf *conf = mddev->private;
6092 
6093 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6094 
6095 		if (mddev->delta_disks > 0) {
6096 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6097 			set_capacity(mddev->gendisk, mddev->array_sectors);
6098 			revalidate_disk(mddev->gendisk);
6099 		} else {
6100 			int d;
6101 			spin_lock_irq(&conf->device_lock);
6102 			mddev->degraded = calc_degraded(conf);
6103 			spin_unlock_irq(&conf->device_lock);
6104 			for (d = conf->raid_disks ;
6105 			     d < conf->raid_disks - mddev->delta_disks;
6106 			     d++) {
6107 				struct md_rdev *rdev = conf->disks[d].rdev;
6108 				if (rdev)
6109 					clear_bit(In_sync, &rdev->flags);
6110 				rdev = conf->disks[d].replacement;
6111 				if (rdev)
6112 					clear_bit(In_sync, &rdev->flags);
6113 			}
6114 		}
6115 		mddev->layout = conf->algorithm;
6116 		mddev->chunk_sectors = conf->chunk_sectors;
6117 		mddev->reshape_position = MaxSector;
6118 		mddev->delta_disks = 0;
6119 		mddev->reshape_backwards = 0;
6120 	}
6121 }
6122 
6123 static void raid5_quiesce(struct mddev *mddev, int state)
6124 {
6125 	struct r5conf *conf = mddev->private;
6126 
6127 	switch(state) {
6128 	case 2: /* resume for a suspend */
6129 		wake_up(&conf->wait_for_overlap);
6130 		break;
6131 
6132 	case 1: /* stop all writes */
6133 		spin_lock_irq(&conf->device_lock);
6134 		/* '2' tells resync/reshape to pause so that all
6135 		 * active stripes can drain
6136 		 */
6137 		conf->quiesce = 2;
6138 		wait_event_lock_irq(conf->wait_for_stripe,
6139 				    atomic_read(&conf->active_stripes) == 0 &&
6140 				    atomic_read(&conf->active_aligned_reads) == 0,
6141 				    conf->device_lock);
6142 		conf->quiesce = 1;
6143 		spin_unlock_irq(&conf->device_lock);
6144 		/* allow reshape to continue */
6145 		wake_up(&conf->wait_for_overlap);
6146 		break;
6147 
6148 	case 0: /* re-enable writes */
6149 		spin_lock_irq(&conf->device_lock);
6150 		conf->quiesce = 0;
6151 		wake_up(&conf->wait_for_stripe);
6152 		wake_up(&conf->wait_for_overlap);
6153 		spin_unlock_irq(&conf->device_lock);
6154 		break;
6155 	}
6156 }
6157 
6158 
6159 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6160 {
6161 	struct r0conf *raid0_conf = mddev->private;
6162 	sector_t sectors;
6163 
6164 	/* for raid0 takeover only one zone is supported */
6165 	if (raid0_conf->nr_strip_zones > 1) {
6166 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6167 		       mdname(mddev));
6168 		return ERR_PTR(-EINVAL);
6169 	}
6170 
6171 	sectors = raid0_conf->strip_zone[0].zone_end;
6172 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6173 	mddev->dev_sectors = sectors;
6174 	mddev->new_level = level;
6175 	mddev->new_layout = ALGORITHM_PARITY_N;
6176 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6177 	mddev->raid_disks += 1;
6178 	mddev->delta_disks = 1;
6179 	/* make sure it will be not marked as dirty */
6180 	mddev->recovery_cp = MaxSector;
6181 
6182 	return setup_conf(mddev);
6183 }
6184 
6185 
6186 static void *raid5_takeover_raid1(struct mddev *mddev)
6187 {
6188 	int chunksect;
6189 
6190 	if (mddev->raid_disks != 2 ||
6191 	    mddev->degraded > 1)
6192 		return ERR_PTR(-EINVAL);
6193 
6194 	/* Should check if there are write-behind devices? */
6195 
6196 	chunksect = 64*2; /* 64K by default */
6197 
6198 	/* The array must be an exact multiple of chunksize */
6199 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6200 		chunksect >>= 1;
6201 
6202 	if ((chunksect<<9) < STRIPE_SIZE)
6203 		/* array size does not allow a suitable chunk size */
6204 		return ERR_PTR(-EINVAL);
6205 
6206 	mddev->new_level = 5;
6207 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6208 	mddev->new_chunk_sectors = chunksect;
6209 
6210 	return setup_conf(mddev);
6211 }
6212 
6213 static void *raid5_takeover_raid6(struct mddev *mddev)
6214 {
6215 	int new_layout;
6216 
6217 	switch (mddev->layout) {
6218 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6219 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6220 		break;
6221 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6222 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6223 		break;
6224 	case ALGORITHM_LEFT_SYMMETRIC_6:
6225 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6226 		break;
6227 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6228 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6229 		break;
6230 	case ALGORITHM_PARITY_0_6:
6231 		new_layout = ALGORITHM_PARITY_0;
6232 		break;
6233 	case ALGORITHM_PARITY_N:
6234 		new_layout = ALGORITHM_PARITY_N;
6235 		break;
6236 	default:
6237 		return ERR_PTR(-EINVAL);
6238 	}
6239 	mddev->new_level = 5;
6240 	mddev->new_layout = new_layout;
6241 	mddev->delta_disks = -1;
6242 	mddev->raid_disks -= 1;
6243 	return setup_conf(mddev);
6244 }
6245 
6246 
6247 static int raid5_check_reshape(struct mddev *mddev)
6248 {
6249 	/* For a 2-drive array, the layout and chunk size can be changed
6250 	 * immediately as not restriping is needed.
6251 	 * For larger arrays we record the new value - after validation
6252 	 * to be used by a reshape pass.
6253 	 */
6254 	struct r5conf *conf = mddev->private;
6255 	int new_chunk = mddev->new_chunk_sectors;
6256 
6257 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6258 		return -EINVAL;
6259 	if (new_chunk > 0) {
6260 		if (!is_power_of_2(new_chunk))
6261 			return -EINVAL;
6262 		if (new_chunk < (PAGE_SIZE>>9))
6263 			return -EINVAL;
6264 		if (mddev->array_sectors & (new_chunk-1))
6265 			/* not factor of array size */
6266 			return -EINVAL;
6267 	}
6268 
6269 	/* They look valid */
6270 
6271 	if (mddev->raid_disks == 2) {
6272 		/* can make the change immediately */
6273 		if (mddev->new_layout >= 0) {
6274 			conf->algorithm = mddev->new_layout;
6275 			mddev->layout = mddev->new_layout;
6276 		}
6277 		if (new_chunk > 0) {
6278 			conf->chunk_sectors = new_chunk ;
6279 			mddev->chunk_sectors = new_chunk;
6280 		}
6281 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6282 		md_wakeup_thread(mddev->thread);
6283 	}
6284 	return check_reshape(mddev);
6285 }
6286 
6287 static int raid6_check_reshape(struct mddev *mddev)
6288 {
6289 	int new_chunk = mddev->new_chunk_sectors;
6290 
6291 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6292 		return -EINVAL;
6293 	if (new_chunk > 0) {
6294 		if (!is_power_of_2(new_chunk))
6295 			return -EINVAL;
6296 		if (new_chunk < (PAGE_SIZE >> 9))
6297 			return -EINVAL;
6298 		if (mddev->array_sectors & (new_chunk-1))
6299 			/* not factor of array size */
6300 			return -EINVAL;
6301 	}
6302 
6303 	/* They look valid */
6304 	return check_reshape(mddev);
6305 }
6306 
6307 static void *raid5_takeover(struct mddev *mddev)
6308 {
6309 	/* raid5 can take over:
6310 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6311 	 *  raid1 - if there are two drives.  We need to know the chunk size
6312 	 *  raid4 - trivial - just use a raid4 layout.
6313 	 *  raid6 - Providing it is a *_6 layout
6314 	 */
6315 	if (mddev->level == 0)
6316 		return raid45_takeover_raid0(mddev, 5);
6317 	if (mddev->level == 1)
6318 		return raid5_takeover_raid1(mddev);
6319 	if (mddev->level == 4) {
6320 		mddev->new_layout = ALGORITHM_PARITY_N;
6321 		mddev->new_level = 5;
6322 		return setup_conf(mddev);
6323 	}
6324 	if (mddev->level == 6)
6325 		return raid5_takeover_raid6(mddev);
6326 
6327 	return ERR_PTR(-EINVAL);
6328 }
6329 
6330 static void *raid4_takeover(struct mddev *mddev)
6331 {
6332 	/* raid4 can take over:
6333 	 *  raid0 - if there is only one strip zone
6334 	 *  raid5 - if layout is right
6335 	 */
6336 	if (mddev->level == 0)
6337 		return raid45_takeover_raid0(mddev, 4);
6338 	if (mddev->level == 5 &&
6339 	    mddev->layout == ALGORITHM_PARITY_N) {
6340 		mddev->new_layout = 0;
6341 		mddev->new_level = 4;
6342 		return setup_conf(mddev);
6343 	}
6344 	return ERR_PTR(-EINVAL);
6345 }
6346 
6347 static struct md_personality raid5_personality;
6348 
6349 static void *raid6_takeover(struct mddev *mddev)
6350 {
6351 	/* Currently can only take over a raid5.  We map the
6352 	 * personality to an equivalent raid6 personality
6353 	 * with the Q block at the end.
6354 	 */
6355 	int new_layout;
6356 
6357 	if (mddev->pers != &raid5_personality)
6358 		return ERR_PTR(-EINVAL);
6359 	if (mddev->degraded > 1)
6360 		return ERR_PTR(-EINVAL);
6361 	if (mddev->raid_disks > 253)
6362 		return ERR_PTR(-EINVAL);
6363 	if (mddev->raid_disks < 3)
6364 		return ERR_PTR(-EINVAL);
6365 
6366 	switch (mddev->layout) {
6367 	case ALGORITHM_LEFT_ASYMMETRIC:
6368 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6369 		break;
6370 	case ALGORITHM_RIGHT_ASYMMETRIC:
6371 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6372 		break;
6373 	case ALGORITHM_LEFT_SYMMETRIC:
6374 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6375 		break;
6376 	case ALGORITHM_RIGHT_SYMMETRIC:
6377 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6378 		break;
6379 	case ALGORITHM_PARITY_0:
6380 		new_layout = ALGORITHM_PARITY_0_6;
6381 		break;
6382 	case ALGORITHM_PARITY_N:
6383 		new_layout = ALGORITHM_PARITY_N;
6384 		break;
6385 	default:
6386 		return ERR_PTR(-EINVAL);
6387 	}
6388 	mddev->new_level = 6;
6389 	mddev->new_layout = new_layout;
6390 	mddev->delta_disks = 1;
6391 	mddev->raid_disks += 1;
6392 	return setup_conf(mddev);
6393 }
6394 
6395 
6396 static struct md_personality raid6_personality =
6397 {
6398 	.name		= "raid6",
6399 	.level		= 6,
6400 	.owner		= THIS_MODULE,
6401 	.make_request	= make_request,
6402 	.run		= run,
6403 	.stop		= stop,
6404 	.status		= status,
6405 	.error_handler	= error,
6406 	.hot_add_disk	= raid5_add_disk,
6407 	.hot_remove_disk= raid5_remove_disk,
6408 	.spare_active	= raid5_spare_active,
6409 	.sync_request	= sync_request,
6410 	.resize		= raid5_resize,
6411 	.size		= raid5_size,
6412 	.check_reshape	= raid6_check_reshape,
6413 	.start_reshape  = raid5_start_reshape,
6414 	.finish_reshape = raid5_finish_reshape,
6415 	.quiesce	= raid5_quiesce,
6416 	.takeover	= raid6_takeover,
6417 };
6418 static struct md_personality raid5_personality =
6419 {
6420 	.name		= "raid5",
6421 	.level		= 5,
6422 	.owner		= THIS_MODULE,
6423 	.make_request	= make_request,
6424 	.run		= run,
6425 	.stop		= stop,
6426 	.status		= status,
6427 	.error_handler	= error,
6428 	.hot_add_disk	= raid5_add_disk,
6429 	.hot_remove_disk= raid5_remove_disk,
6430 	.spare_active	= raid5_spare_active,
6431 	.sync_request	= sync_request,
6432 	.resize		= raid5_resize,
6433 	.size		= raid5_size,
6434 	.check_reshape	= raid5_check_reshape,
6435 	.start_reshape  = raid5_start_reshape,
6436 	.finish_reshape = raid5_finish_reshape,
6437 	.quiesce	= raid5_quiesce,
6438 	.takeover	= raid5_takeover,
6439 };
6440 
6441 static struct md_personality raid4_personality =
6442 {
6443 	.name		= "raid4",
6444 	.level		= 4,
6445 	.owner		= THIS_MODULE,
6446 	.make_request	= make_request,
6447 	.run		= run,
6448 	.stop		= stop,
6449 	.status		= status,
6450 	.error_handler	= error,
6451 	.hot_add_disk	= raid5_add_disk,
6452 	.hot_remove_disk= raid5_remove_disk,
6453 	.spare_active	= raid5_spare_active,
6454 	.sync_request	= sync_request,
6455 	.resize		= raid5_resize,
6456 	.size		= raid5_size,
6457 	.check_reshape	= raid5_check_reshape,
6458 	.start_reshape  = raid5_start_reshape,
6459 	.finish_reshape = raid5_finish_reshape,
6460 	.quiesce	= raid5_quiesce,
6461 	.takeover	= raid4_takeover,
6462 };
6463 
6464 static int __init raid5_init(void)
6465 {
6466 	register_md_personality(&raid6_personality);
6467 	register_md_personality(&raid5_personality);
6468 	register_md_personality(&raid4_personality);
6469 	return 0;
6470 }
6471 
6472 static void raid5_exit(void)
6473 {
6474 	unregister_md_personality(&raid6_personality);
6475 	unregister_md_personality(&raid5_personality);
6476 	unregister_md_personality(&raid4_personality);
6477 }
6478 
6479 module_init(raid5_init);
6480 module_exit(raid5_exit);
6481 MODULE_LICENSE("GPL");
6482 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6483 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6484 MODULE_ALIAS("md-raid5");
6485 MODULE_ALIAS("md-raid4");
6486 MODULE_ALIAS("md-level-5");
6487 MODULE_ALIAS("md-level-4");
6488 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6489 MODULE_ALIAS("md-raid6");
6490 MODULE_ALIAS("md-level-6");
6491 
6492 /* This used to be two separate modules, they were: */
6493 MODULE_ALIAS("raid5");
6494 MODULE_ALIAS("raid6");
6495