1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->bm_write is the number of the last batch successfully written. 31 * conf->bm_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is bm_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/async.h> 51 #include <linux/seq_file.h> 52 #include <linux/cpu.h> 53 #include "md.h" 54 #include "raid5.h" 55 #include "bitmap.h" 56 57 /* 58 * Stripe cache 59 */ 60 61 #define NR_STRIPES 256 62 #define STRIPE_SIZE PAGE_SIZE 63 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 64 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 65 #define IO_THRESHOLD 1 66 #define BYPASS_THRESHOLD 1 67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 68 #define HASH_MASK (NR_HASH - 1) 69 70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) 71 72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 73 * order without overlap. There may be several bio's per stripe+device, and 74 * a bio could span several devices. 75 * When walking this list for a particular stripe+device, we must never proceed 76 * beyond a bio that extends past this device, as the next bio might no longer 77 * be valid. 78 * This macro is used to determine the 'next' bio in the list, given the sector 79 * of the current stripe+device 80 */ 81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) 82 /* 83 * The following can be used to debug the driver 84 */ 85 #define RAID5_PARANOIA 1 86 #if RAID5_PARANOIA && defined(CONFIG_SMP) 87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) 88 #else 89 # define CHECK_DEVLOCK() 90 #endif 91 92 #ifdef DEBUG 93 #define inline 94 #define __inline__ 95 #endif 96 97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args))) 98 99 /* 100 * We maintain a biased count of active stripes in the bottom 16 bits of 101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 102 */ 103 static inline int raid5_bi_phys_segments(struct bio *bio) 104 { 105 return bio->bi_phys_segments & 0xffff; 106 } 107 108 static inline int raid5_bi_hw_segments(struct bio *bio) 109 { 110 return (bio->bi_phys_segments >> 16) & 0xffff; 111 } 112 113 static inline int raid5_dec_bi_phys_segments(struct bio *bio) 114 { 115 --bio->bi_phys_segments; 116 return raid5_bi_phys_segments(bio); 117 } 118 119 static inline int raid5_dec_bi_hw_segments(struct bio *bio) 120 { 121 unsigned short val = raid5_bi_hw_segments(bio); 122 123 --val; 124 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio); 125 return val; 126 } 127 128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt) 129 { 130 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16); 131 } 132 133 /* Find first data disk in a raid6 stripe */ 134 static inline int raid6_d0(struct stripe_head *sh) 135 { 136 if (sh->ddf_layout) 137 /* ddf always start from first device */ 138 return 0; 139 /* md starts just after Q block */ 140 if (sh->qd_idx == sh->disks - 1) 141 return 0; 142 else 143 return sh->qd_idx + 1; 144 } 145 static inline int raid6_next_disk(int disk, int raid_disks) 146 { 147 disk++; 148 return (disk < raid_disks) ? disk : 0; 149 } 150 151 /* When walking through the disks in a raid5, starting at raid6_d0, 152 * We need to map each disk to a 'slot', where the data disks are slot 153 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 154 * is raid_disks-1. This help does that mapping. 155 */ 156 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 157 int *count, int syndrome_disks) 158 { 159 int slot; 160 161 if (idx == sh->pd_idx) 162 return syndrome_disks; 163 if (idx == sh->qd_idx) 164 return syndrome_disks + 1; 165 slot = (*count)++; 166 return slot; 167 } 168 169 static void return_io(struct bio *return_bi) 170 { 171 struct bio *bi = return_bi; 172 while (bi) { 173 174 return_bi = bi->bi_next; 175 bi->bi_next = NULL; 176 bi->bi_size = 0; 177 bio_endio(bi, 0); 178 bi = return_bi; 179 } 180 } 181 182 static void print_raid5_conf (raid5_conf_t *conf); 183 184 static int stripe_operations_active(struct stripe_head *sh) 185 { 186 return sh->check_state || sh->reconstruct_state || 187 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 188 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 189 } 190 191 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) 192 { 193 if (atomic_dec_and_test(&sh->count)) { 194 BUG_ON(!list_empty(&sh->lru)); 195 BUG_ON(atomic_read(&conf->active_stripes)==0); 196 if (test_bit(STRIPE_HANDLE, &sh->state)) { 197 if (test_bit(STRIPE_DELAYED, &sh->state)) { 198 list_add_tail(&sh->lru, &conf->delayed_list); 199 blk_plug_device(conf->mddev->queue); 200 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 201 sh->bm_seq - conf->seq_write > 0) { 202 list_add_tail(&sh->lru, &conf->bitmap_list); 203 blk_plug_device(conf->mddev->queue); 204 } else { 205 clear_bit(STRIPE_BIT_DELAY, &sh->state); 206 list_add_tail(&sh->lru, &conf->handle_list); 207 } 208 md_wakeup_thread(conf->mddev->thread); 209 } else { 210 BUG_ON(stripe_operations_active(sh)); 211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 212 atomic_dec(&conf->preread_active_stripes); 213 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 214 md_wakeup_thread(conf->mddev->thread); 215 } 216 atomic_dec(&conf->active_stripes); 217 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 218 list_add_tail(&sh->lru, &conf->inactive_list); 219 wake_up(&conf->wait_for_stripe); 220 if (conf->retry_read_aligned) 221 md_wakeup_thread(conf->mddev->thread); 222 } 223 } 224 } 225 } 226 227 static void release_stripe(struct stripe_head *sh) 228 { 229 raid5_conf_t *conf = sh->raid_conf; 230 unsigned long flags; 231 232 spin_lock_irqsave(&conf->device_lock, flags); 233 __release_stripe(conf, sh); 234 spin_unlock_irqrestore(&conf->device_lock, flags); 235 } 236 237 static inline void remove_hash(struct stripe_head *sh) 238 { 239 pr_debug("remove_hash(), stripe %llu\n", 240 (unsigned long long)sh->sector); 241 242 hlist_del_init(&sh->hash); 243 } 244 245 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) 246 { 247 struct hlist_head *hp = stripe_hash(conf, sh->sector); 248 249 pr_debug("insert_hash(), stripe %llu\n", 250 (unsigned long long)sh->sector); 251 252 CHECK_DEVLOCK(); 253 hlist_add_head(&sh->hash, hp); 254 } 255 256 257 /* find an idle stripe, make sure it is unhashed, and return it. */ 258 static struct stripe_head *get_free_stripe(raid5_conf_t *conf) 259 { 260 struct stripe_head *sh = NULL; 261 struct list_head *first; 262 263 CHECK_DEVLOCK(); 264 if (list_empty(&conf->inactive_list)) 265 goto out; 266 first = conf->inactive_list.next; 267 sh = list_entry(first, struct stripe_head, lru); 268 list_del_init(first); 269 remove_hash(sh); 270 atomic_inc(&conf->active_stripes); 271 out: 272 return sh; 273 } 274 275 static void shrink_buffers(struct stripe_head *sh, int num) 276 { 277 struct page *p; 278 int i; 279 280 for (i=0; i<num ; i++) { 281 p = sh->dev[i].page; 282 if (!p) 283 continue; 284 sh->dev[i].page = NULL; 285 put_page(p); 286 } 287 } 288 289 static int grow_buffers(struct stripe_head *sh, int num) 290 { 291 int i; 292 293 for (i=0; i<num; i++) { 294 struct page *page; 295 296 if (!(page = alloc_page(GFP_KERNEL))) { 297 return 1; 298 } 299 sh->dev[i].page = page; 300 } 301 return 0; 302 } 303 304 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 305 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous, 306 struct stripe_head *sh); 307 308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 309 { 310 raid5_conf_t *conf = sh->raid_conf; 311 int i; 312 313 BUG_ON(atomic_read(&sh->count) != 0); 314 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 315 BUG_ON(stripe_operations_active(sh)); 316 317 CHECK_DEVLOCK(); 318 pr_debug("init_stripe called, stripe %llu\n", 319 (unsigned long long)sh->sector); 320 321 remove_hash(sh); 322 323 sh->generation = conf->generation - previous; 324 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 325 sh->sector = sector; 326 stripe_set_idx(sector, conf, previous, sh); 327 sh->state = 0; 328 329 330 for (i = sh->disks; i--; ) { 331 struct r5dev *dev = &sh->dev[i]; 332 333 if (dev->toread || dev->read || dev->towrite || dev->written || 334 test_bit(R5_LOCKED, &dev->flags)) { 335 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 336 (unsigned long long)sh->sector, i, dev->toread, 337 dev->read, dev->towrite, dev->written, 338 test_bit(R5_LOCKED, &dev->flags)); 339 BUG(); 340 } 341 dev->flags = 0; 342 raid5_build_block(sh, i, previous); 343 } 344 insert_hash(conf, sh); 345 } 346 347 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, 348 short generation) 349 { 350 struct stripe_head *sh; 351 struct hlist_node *hn; 352 353 CHECK_DEVLOCK(); 354 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 355 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 356 if (sh->sector == sector && sh->generation == generation) 357 return sh; 358 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 359 return NULL; 360 } 361 362 static void unplug_slaves(mddev_t *mddev); 363 static void raid5_unplug_device(struct request_queue *q); 364 365 static struct stripe_head * 366 get_active_stripe(raid5_conf_t *conf, sector_t sector, 367 int previous, int noblock, int noquiesce) 368 { 369 struct stripe_head *sh; 370 371 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 372 373 spin_lock_irq(&conf->device_lock); 374 375 do { 376 wait_event_lock_irq(conf->wait_for_stripe, 377 conf->quiesce == 0 || noquiesce, 378 conf->device_lock, /* nothing */); 379 sh = __find_stripe(conf, sector, conf->generation - previous); 380 if (!sh) { 381 if (!conf->inactive_blocked) 382 sh = get_free_stripe(conf); 383 if (noblock && sh == NULL) 384 break; 385 if (!sh) { 386 conf->inactive_blocked = 1; 387 wait_event_lock_irq(conf->wait_for_stripe, 388 !list_empty(&conf->inactive_list) && 389 (atomic_read(&conf->active_stripes) 390 < (conf->max_nr_stripes *3/4) 391 || !conf->inactive_blocked), 392 conf->device_lock, 393 raid5_unplug_device(conf->mddev->queue) 394 ); 395 conf->inactive_blocked = 0; 396 } else 397 init_stripe(sh, sector, previous); 398 } else { 399 if (atomic_read(&sh->count)) { 400 BUG_ON(!list_empty(&sh->lru) 401 && !test_bit(STRIPE_EXPANDING, &sh->state)); 402 } else { 403 if (!test_bit(STRIPE_HANDLE, &sh->state)) 404 atomic_inc(&conf->active_stripes); 405 if (list_empty(&sh->lru) && 406 !test_bit(STRIPE_EXPANDING, &sh->state)) 407 BUG(); 408 list_del_init(&sh->lru); 409 } 410 } 411 } while (sh == NULL); 412 413 if (sh) 414 atomic_inc(&sh->count); 415 416 spin_unlock_irq(&conf->device_lock); 417 return sh; 418 } 419 420 static void 421 raid5_end_read_request(struct bio *bi, int error); 422 static void 423 raid5_end_write_request(struct bio *bi, int error); 424 425 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 426 { 427 raid5_conf_t *conf = sh->raid_conf; 428 int i, disks = sh->disks; 429 430 might_sleep(); 431 432 for (i = disks; i--; ) { 433 int rw; 434 struct bio *bi; 435 mdk_rdev_t *rdev; 436 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 437 rw = WRITE; 438 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 439 rw = READ; 440 else 441 continue; 442 443 bi = &sh->dev[i].req; 444 445 bi->bi_rw = rw; 446 if (rw == WRITE) 447 bi->bi_end_io = raid5_end_write_request; 448 else 449 bi->bi_end_io = raid5_end_read_request; 450 451 rcu_read_lock(); 452 rdev = rcu_dereference(conf->disks[i].rdev); 453 if (rdev && test_bit(Faulty, &rdev->flags)) 454 rdev = NULL; 455 if (rdev) 456 atomic_inc(&rdev->nr_pending); 457 rcu_read_unlock(); 458 459 if (rdev) { 460 if (s->syncing || s->expanding || s->expanded) 461 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 462 463 set_bit(STRIPE_IO_STARTED, &sh->state); 464 465 bi->bi_bdev = rdev->bdev; 466 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 467 __func__, (unsigned long long)sh->sector, 468 bi->bi_rw, i); 469 atomic_inc(&sh->count); 470 bi->bi_sector = sh->sector + rdev->data_offset; 471 bi->bi_flags = 1 << BIO_UPTODATE; 472 bi->bi_vcnt = 1; 473 bi->bi_max_vecs = 1; 474 bi->bi_idx = 0; 475 bi->bi_io_vec = &sh->dev[i].vec; 476 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 477 bi->bi_io_vec[0].bv_offset = 0; 478 bi->bi_size = STRIPE_SIZE; 479 bi->bi_next = NULL; 480 if (rw == WRITE && 481 test_bit(R5_ReWrite, &sh->dev[i].flags)) 482 atomic_add(STRIPE_SECTORS, 483 &rdev->corrected_errors); 484 generic_make_request(bi); 485 } else { 486 if (rw == WRITE) 487 set_bit(STRIPE_DEGRADED, &sh->state); 488 pr_debug("skip op %ld on disc %d for sector %llu\n", 489 bi->bi_rw, i, (unsigned long long)sh->sector); 490 clear_bit(R5_LOCKED, &sh->dev[i].flags); 491 set_bit(STRIPE_HANDLE, &sh->state); 492 } 493 } 494 } 495 496 static struct dma_async_tx_descriptor * 497 async_copy_data(int frombio, struct bio *bio, struct page *page, 498 sector_t sector, struct dma_async_tx_descriptor *tx) 499 { 500 struct bio_vec *bvl; 501 struct page *bio_page; 502 int i; 503 int page_offset; 504 struct async_submit_ctl submit; 505 enum async_tx_flags flags = 0; 506 507 if (bio->bi_sector >= sector) 508 page_offset = (signed)(bio->bi_sector - sector) * 512; 509 else 510 page_offset = (signed)(sector - bio->bi_sector) * -512; 511 512 if (frombio) 513 flags |= ASYNC_TX_FENCE; 514 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 515 516 bio_for_each_segment(bvl, bio, i) { 517 int len = bio_iovec_idx(bio, i)->bv_len; 518 int clen; 519 int b_offset = 0; 520 521 if (page_offset < 0) { 522 b_offset = -page_offset; 523 page_offset += b_offset; 524 len -= b_offset; 525 } 526 527 if (len > 0 && page_offset + len > STRIPE_SIZE) 528 clen = STRIPE_SIZE - page_offset; 529 else 530 clen = len; 531 532 if (clen > 0) { 533 b_offset += bio_iovec_idx(bio, i)->bv_offset; 534 bio_page = bio_iovec_idx(bio, i)->bv_page; 535 if (frombio) 536 tx = async_memcpy(page, bio_page, page_offset, 537 b_offset, clen, &submit); 538 else 539 tx = async_memcpy(bio_page, page, b_offset, 540 page_offset, clen, &submit); 541 } 542 /* chain the operations */ 543 submit.depend_tx = tx; 544 545 if (clen < len) /* hit end of page */ 546 break; 547 page_offset += len; 548 } 549 550 return tx; 551 } 552 553 static void ops_complete_biofill(void *stripe_head_ref) 554 { 555 struct stripe_head *sh = stripe_head_ref; 556 struct bio *return_bi = NULL; 557 raid5_conf_t *conf = sh->raid_conf; 558 int i; 559 560 pr_debug("%s: stripe %llu\n", __func__, 561 (unsigned long long)sh->sector); 562 563 /* clear completed biofills */ 564 spin_lock_irq(&conf->device_lock); 565 for (i = sh->disks; i--; ) { 566 struct r5dev *dev = &sh->dev[i]; 567 568 /* acknowledge completion of a biofill operation */ 569 /* and check if we need to reply to a read request, 570 * new R5_Wantfill requests are held off until 571 * !STRIPE_BIOFILL_RUN 572 */ 573 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 574 struct bio *rbi, *rbi2; 575 576 BUG_ON(!dev->read); 577 rbi = dev->read; 578 dev->read = NULL; 579 while (rbi && rbi->bi_sector < 580 dev->sector + STRIPE_SECTORS) { 581 rbi2 = r5_next_bio(rbi, dev->sector); 582 if (!raid5_dec_bi_phys_segments(rbi)) { 583 rbi->bi_next = return_bi; 584 return_bi = rbi; 585 } 586 rbi = rbi2; 587 } 588 } 589 } 590 spin_unlock_irq(&conf->device_lock); 591 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 592 593 return_io(return_bi); 594 595 set_bit(STRIPE_HANDLE, &sh->state); 596 release_stripe(sh); 597 } 598 599 static void ops_run_biofill(struct stripe_head *sh) 600 { 601 struct dma_async_tx_descriptor *tx = NULL; 602 raid5_conf_t *conf = sh->raid_conf; 603 struct async_submit_ctl submit; 604 int i; 605 606 pr_debug("%s: stripe %llu\n", __func__, 607 (unsigned long long)sh->sector); 608 609 for (i = sh->disks; i--; ) { 610 struct r5dev *dev = &sh->dev[i]; 611 if (test_bit(R5_Wantfill, &dev->flags)) { 612 struct bio *rbi; 613 spin_lock_irq(&conf->device_lock); 614 dev->read = rbi = dev->toread; 615 dev->toread = NULL; 616 spin_unlock_irq(&conf->device_lock); 617 while (rbi && rbi->bi_sector < 618 dev->sector + STRIPE_SECTORS) { 619 tx = async_copy_data(0, rbi, dev->page, 620 dev->sector, tx); 621 rbi = r5_next_bio(rbi, dev->sector); 622 } 623 } 624 } 625 626 atomic_inc(&sh->count); 627 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 628 async_trigger_callback(&submit); 629 } 630 631 static void mark_target_uptodate(struct stripe_head *sh, int target) 632 { 633 struct r5dev *tgt; 634 635 if (target < 0) 636 return; 637 638 tgt = &sh->dev[target]; 639 set_bit(R5_UPTODATE, &tgt->flags); 640 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 641 clear_bit(R5_Wantcompute, &tgt->flags); 642 } 643 644 static void ops_complete_compute(void *stripe_head_ref) 645 { 646 struct stripe_head *sh = stripe_head_ref; 647 648 pr_debug("%s: stripe %llu\n", __func__, 649 (unsigned long long)sh->sector); 650 651 /* mark the computed target(s) as uptodate */ 652 mark_target_uptodate(sh, sh->ops.target); 653 mark_target_uptodate(sh, sh->ops.target2); 654 655 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 656 if (sh->check_state == check_state_compute_run) 657 sh->check_state = check_state_compute_result; 658 set_bit(STRIPE_HANDLE, &sh->state); 659 release_stripe(sh); 660 } 661 662 /* return a pointer to the address conversion region of the scribble buffer */ 663 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 664 struct raid5_percpu *percpu) 665 { 666 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 667 } 668 669 static struct dma_async_tx_descriptor * 670 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 671 { 672 int disks = sh->disks; 673 struct page **xor_srcs = percpu->scribble; 674 int target = sh->ops.target; 675 struct r5dev *tgt = &sh->dev[target]; 676 struct page *xor_dest = tgt->page; 677 int count = 0; 678 struct dma_async_tx_descriptor *tx; 679 struct async_submit_ctl submit; 680 int i; 681 682 pr_debug("%s: stripe %llu block: %d\n", 683 __func__, (unsigned long long)sh->sector, target); 684 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 685 686 for (i = disks; i--; ) 687 if (i != target) 688 xor_srcs[count++] = sh->dev[i].page; 689 690 atomic_inc(&sh->count); 691 692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 693 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 694 if (unlikely(count == 1)) 695 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 696 else 697 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 698 699 return tx; 700 } 701 702 /* set_syndrome_sources - populate source buffers for gen_syndrome 703 * @srcs - (struct page *) array of size sh->disks 704 * @sh - stripe_head to parse 705 * 706 * Populates srcs in proper layout order for the stripe and returns the 707 * 'count' of sources to be used in a call to async_gen_syndrome. The P 708 * destination buffer is recorded in srcs[count] and the Q destination 709 * is recorded in srcs[count+1]]. 710 */ 711 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 712 { 713 int disks = sh->disks; 714 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 715 int d0_idx = raid6_d0(sh); 716 int count; 717 int i; 718 719 for (i = 0; i < disks; i++) 720 srcs[i] = (void *)raid6_empty_zero_page; 721 722 count = 0; 723 i = d0_idx; 724 do { 725 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 726 727 srcs[slot] = sh->dev[i].page; 728 i = raid6_next_disk(i, disks); 729 } while (i != d0_idx); 730 BUG_ON(count != syndrome_disks); 731 732 return count; 733 } 734 735 static struct dma_async_tx_descriptor * 736 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 737 { 738 int disks = sh->disks; 739 struct page **blocks = percpu->scribble; 740 int target; 741 int qd_idx = sh->qd_idx; 742 struct dma_async_tx_descriptor *tx; 743 struct async_submit_ctl submit; 744 struct r5dev *tgt; 745 struct page *dest; 746 int i; 747 int count; 748 749 if (sh->ops.target < 0) 750 target = sh->ops.target2; 751 else if (sh->ops.target2 < 0) 752 target = sh->ops.target; 753 else 754 /* we should only have one valid target */ 755 BUG(); 756 BUG_ON(target < 0); 757 pr_debug("%s: stripe %llu block: %d\n", 758 __func__, (unsigned long long)sh->sector, target); 759 760 tgt = &sh->dev[target]; 761 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 762 dest = tgt->page; 763 764 atomic_inc(&sh->count); 765 766 if (target == qd_idx) { 767 count = set_syndrome_sources(blocks, sh); 768 blocks[count] = NULL; /* regenerating p is not necessary */ 769 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 770 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 771 ops_complete_compute, sh, 772 to_addr_conv(sh, percpu)); 773 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 774 } else { 775 /* Compute any data- or p-drive using XOR */ 776 count = 0; 777 for (i = disks; i-- ; ) { 778 if (i == target || i == qd_idx) 779 continue; 780 blocks[count++] = sh->dev[i].page; 781 } 782 783 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 784 NULL, ops_complete_compute, sh, 785 to_addr_conv(sh, percpu)); 786 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 787 } 788 789 return tx; 790 } 791 792 static struct dma_async_tx_descriptor * 793 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 794 { 795 int i, count, disks = sh->disks; 796 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 797 int d0_idx = raid6_d0(sh); 798 int faila = -1, failb = -1; 799 int target = sh->ops.target; 800 int target2 = sh->ops.target2; 801 struct r5dev *tgt = &sh->dev[target]; 802 struct r5dev *tgt2 = &sh->dev[target2]; 803 struct dma_async_tx_descriptor *tx; 804 struct page **blocks = percpu->scribble; 805 struct async_submit_ctl submit; 806 807 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 808 __func__, (unsigned long long)sh->sector, target, target2); 809 BUG_ON(target < 0 || target2 < 0); 810 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 811 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 812 813 /* we need to open-code set_syndrome_sources to handle the 814 * slot number conversion for 'faila' and 'failb' 815 */ 816 for (i = 0; i < disks ; i++) 817 blocks[i] = (void *)raid6_empty_zero_page; 818 count = 0; 819 i = d0_idx; 820 do { 821 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 822 823 blocks[slot] = sh->dev[i].page; 824 825 if (i == target) 826 faila = slot; 827 if (i == target2) 828 failb = slot; 829 i = raid6_next_disk(i, disks); 830 } while (i != d0_idx); 831 BUG_ON(count != syndrome_disks); 832 833 BUG_ON(faila == failb); 834 if (failb < faila) 835 swap(faila, failb); 836 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 837 __func__, (unsigned long long)sh->sector, faila, failb); 838 839 atomic_inc(&sh->count); 840 841 if (failb == syndrome_disks+1) { 842 /* Q disk is one of the missing disks */ 843 if (faila == syndrome_disks) { 844 /* Missing P+Q, just recompute */ 845 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 846 ops_complete_compute, sh, 847 to_addr_conv(sh, percpu)); 848 return async_gen_syndrome(blocks, 0, count+2, 849 STRIPE_SIZE, &submit); 850 } else { 851 struct page *dest; 852 int data_target; 853 int qd_idx = sh->qd_idx; 854 855 /* Missing D+Q: recompute D from P, then recompute Q */ 856 if (target == qd_idx) 857 data_target = target2; 858 else 859 data_target = target; 860 861 count = 0; 862 for (i = disks; i-- ; ) { 863 if (i == data_target || i == qd_idx) 864 continue; 865 blocks[count++] = sh->dev[i].page; 866 } 867 dest = sh->dev[data_target].page; 868 init_async_submit(&submit, 869 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 870 NULL, NULL, NULL, 871 to_addr_conv(sh, percpu)); 872 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 873 &submit); 874 875 count = set_syndrome_sources(blocks, sh); 876 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 877 ops_complete_compute, sh, 878 to_addr_conv(sh, percpu)); 879 return async_gen_syndrome(blocks, 0, count+2, 880 STRIPE_SIZE, &submit); 881 } 882 } else { 883 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 884 ops_complete_compute, sh, 885 to_addr_conv(sh, percpu)); 886 if (failb == syndrome_disks) { 887 /* We're missing D+P. */ 888 return async_raid6_datap_recov(syndrome_disks+2, 889 STRIPE_SIZE, faila, 890 blocks, &submit); 891 } else { 892 /* We're missing D+D. */ 893 return async_raid6_2data_recov(syndrome_disks+2, 894 STRIPE_SIZE, faila, failb, 895 blocks, &submit); 896 } 897 } 898 } 899 900 901 static void ops_complete_prexor(void *stripe_head_ref) 902 { 903 struct stripe_head *sh = stripe_head_ref; 904 905 pr_debug("%s: stripe %llu\n", __func__, 906 (unsigned long long)sh->sector); 907 } 908 909 static struct dma_async_tx_descriptor * 910 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 911 struct dma_async_tx_descriptor *tx) 912 { 913 int disks = sh->disks; 914 struct page **xor_srcs = percpu->scribble; 915 int count = 0, pd_idx = sh->pd_idx, i; 916 struct async_submit_ctl submit; 917 918 /* existing parity data subtracted */ 919 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 920 921 pr_debug("%s: stripe %llu\n", __func__, 922 (unsigned long long)sh->sector); 923 924 for (i = disks; i--; ) { 925 struct r5dev *dev = &sh->dev[i]; 926 /* Only process blocks that are known to be uptodate */ 927 if (test_bit(R5_Wantdrain, &dev->flags)) 928 xor_srcs[count++] = dev->page; 929 } 930 931 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 932 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 933 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 934 935 return tx; 936 } 937 938 static struct dma_async_tx_descriptor * 939 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 940 { 941 int disks = sh->disks; 942 int i; 943 944 pr_debug("%s: stripe %llu\n", __func__, 945 (unsigned long long)sh->sector); 946 947 for (i = disks; i--; ) { 948 struct r5dev *dev = &sh->dev[i]; 949 struct bio *chosen; 950 951 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 952 struct bio *wbi; 953 954 spin_lock(&sh->lock); 955 chosen = dev->towrite; 956 dev->towrite = NULL; 957 BUG_ON(dev->written); 958 wbi = dev->written = chosen; 959 spin_unlock(&sh->lock); 960 961 while (wbi && wbi->bi_sector < 962 dev->sector + STRIPE_SECTORS) { 963 tx = async_copy_data(1, wbi, dev->page, 964 dev->sector, tx); 965 wbi = r5_next_bio(wbi, dev->sector); 966 } 967 } 968 } 969 970 return tx; 971 } 972 973 static void ops_complete_reconstruct(void *stripe_head_ref) 974 { 975 struct stripe_head *sh = stripe_head_ref; 976 int disks = sh->disks; 977 int pd_idx = sh->pd_idx; 978 int qd_idx = sh->qd_idx; 979 int i; 980 981 pr_debug("%s: stripe %llu\n", __func__, 982 (unsigned long long)sh->sector); 983 984 for (i = disks; i--; ) { 985 struct r5dev *dev = &sh->dev[i]; 986 987 if (dev->written || i == pd_idx || i == qd_idx) 988 set_bit(R5_UPTODATE, &dev->flags); 989 } 990 991 if (sh->reconstruct_state == reconstruct_state_drain_run) 992 sh->reconstruct_state = reconstruct_state_drain_result; 993 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 994 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 995 else { 996 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 997 sh->reconstruct_state = reconstruct_state_result; 998 } 999 1000 set_bit(STRIPE_HANDLE, &sh->state); 1001 release_stripe(sh); 1002 } 1003 1004 static void 1005 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1006 struct dma_async_tx_descriptor *tx) 1007 { 1008 int disks = sh->disks; 1009 struct page **xor_srcs = percpu->scribble; 1010 struct async_submit_ctl submit; 1011 int count = 0, pd_idx = sh->pd_idx, i; 1012 struct page *xor_dest; 1013 int prexor = 0; 1014 unsigned long flags; 1015 1016 pr_debug("%s: stripe %llu\n", __func__, 1017 (unsigned long long)sh->sector); 1018 1019 /* check if prexor is active which means only process blocks 1020 * that are part of a read-modify-write (written) 1021 */ 1022 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1023 prexor = 1; 1024 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1025 for (i = disks; i--; ) { 1026 struct r5dev *dev = &sh->dev[i]; 1027 if (dev->written) 1028 xor_srcs[count++] = dev->page; 1029 } 1030 } else { 1031 xor_dest = sh->dev[pd_idx].page; 1032 for (i = disks; i--; ) { 1033 struct r5dev *dev = &sh->dev[i]; 1034 if (i != pd_idx) 1035 xor_srcs[count++] = dev->page; 1036 } 1037 } 1038 1039 /* 1/ if we prexor'd then the dest is reused as a source 1040 * 2/ if we did not prexor then we are redoing the parity 1041 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1042 * for the synchronous xor case 1043 */ 1044 flags = ASYNC_TX_ACK | 1045 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1046 1047 atomic_inc(&sh->count); 1048 1049 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1050 to_addr_conv(sh, percpu)); 1051 if (unlikely(count == 1)) 1052 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1053 else 1054 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1055 } 1056 1057 static void 1058 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1059 struct dma_async_tx_descriptor *tx) 1060 { 1061 struct async_submit_ctl submit; 1062 struct page **blocks = percpu->scribble; 1063 int count; 1064 1065 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1066 1067 count = set_syndrome_sources(blocks, sh); 1068 1069 atomic_inc(&sh->count); 1070 1071 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1072 sh, to_addr_conv(sh, percpu)); 1073 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1074 } 1075 1076 static void ops_complete_check(void *stripe_head_ref) 1077 { 1078 struct stripe_head *sh = stripe_head_ref; 1079 1080 pr_debug("%s: stripe %llu\n", __func__, 1081 (unsigned long long)sh->sector); 1082 1083 sh->check_state = check_state_check_result; 1084 set_bit(STRIPE_HANDLE, &sh->state); 1085 release_stripe(sh); 1086 } 1087 1088 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1089 { 1090 int disks = sh->disks; 1091 int pd_idx = sh->pd_idx; 1092 int qd_idx = sh->qd_idx; 1093 struct page *xor_dest; 1094 struct page **xor_srcs = percpu->scribble; 1095 struct dma_async_tx_descriptor *tx; 1096 struct async_submit_ctl submit; 1097 int count; 1098 int i; 1099 1100 pr_debug("%s: stripe %llu\n", __func__, 1101 (unsigned long long)sh->sector); 1102 1103 count = 0; 1104 xor_dest = sh->dev[pd_idx].page; 1105 xor_srcs[count++] = xor_dest; 1106 for (i = disks; i--; ) { 1107 if (i == pd_idx || i == qd_idx) 1108 continue; 1109 xor_srcs[count++] = sh->dev[i].page; 1110 } 1111 1112 init_async_submit(&submit, 0, NULL, NULL, NULL, 1113 to_addr_conv(sh, percpu)); 1114 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1115 &sh->ops.zero_sum_result, &submit); 1116 1117 atomic_inc(&sh->count); 1118 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1119 tx = async_trigger_callback(&submit); 1120 } 1121 1122 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1123 { 1124 struct page **srcs = percpu->scribble; 1125 struct async_submit_ctl submit; 1126 int count; 1127 1128 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1129 (unsigned long long)sh->sector, checkp); 1130 1131 count = set_syndrome_sources(srcs, sh); 1132 if (!checkp) 1133 srcs[count] = NULL; 1134 1135 atomic_inc(&sh->count); 1136 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1137 sh, to_addr_conv(sh, percpu)); 1138 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1139 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1140 } 1141 1142 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1143 { 1144 int overlap_clear = 0, i, disks = sh->disks; 1145 struct dma_async_tx_descriptor *tx = NULL; 1146 raid5_conf_t *conf = sh->raid_conf; 1147 int level = conf->level; 1148 struct raid5_percpu *percpu; 1149 unsigned long cpu; 1150 1151 cpu = get_cpu(); 1152 percpu = per_cpu_ptr(conf->percpu, cpu); 1153 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1154 ops_run_biofill(sh); 1155 overlap_clear++; 1156 } 1157 1158 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1159 if (level < 6) 1160 tx = ops_run_compute5(sh, percpu); 1161 else { 1162 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1163 tx = ops_run_compute6_1(sh, percpu); 1164 else 1165 tx = ops_run_compute6_2(sh, percpu); 1166 } 1167 /* terminate the chain if reconstruct is not set to be run */ 1168 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1169 async_tx_ack(tx); 1170 } 1171 1172 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1173 tx = ops_run_prexor(sh, percpu, tx); 1174 1175 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1176 tx = ops_run_biodrain(sh, tx); 1177 overlap_clear++; 1178 } 1179 1180 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1181 if (level < 6) 1182 ops_run_reconstruct5(sh, percpu, tx); 1183 else 1184 ops_run_reconstruct6(sh, percpu, tx); 1185 } 1186 1187 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1188 if (sh->check_state == check_state_run) 1189 ops_run_check_p(sh, percpu); 1190 else if (sh->check_state == check_state_run_q) 1191 ops_run_check_pq(sh, percpu, 0); 1192 else if (sh->check_state == check_state_run_pq) 1193 ops_run_check_pq(sh, percpu, 1); 1194 else 1195 BUG(); 1196 } 1197 1198 if (overlap_clear) 1199 for (i = disks; i--; ) { 1200 struct r5dev *dev = &sh->dev[i]; 1201 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1202 wake_up(&sh->raid_conf->wait_for_overlap); 1203 } 1204 put_cpu(); 1205 } 1206 1207 static int grow_one_stripe(raid5_conf_t *conf) 1208 { 1209 struct stripe_head *sh; 1210 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); 1211 if (!sh) 1212 return 0; 1213 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev)); 1214 sh->raid_conf = conf; 1215 spin_lock_init(&sh->lock); 1216 1217 if (grow_buffers(sh, conf->raid_disks)) { 1218 shrink_buffers(sh, conf->raid_disks); 1219 kmem_cache_free(conf->slab_cache, sh); 1220 return 0; 1221 } 1222 sh->disks = conf->raid_disks; 1223 /* we just created an active stripe so... */ 1224 atomic_set(&sh->count, 1); 1225 atomic_inc(&conf->active_stripes); 1226 INIT_LIST_HEAD(&sh->lru); 1227 release_stripe(sh); 1228 return 1; 1229 } 1230 1231 static int grow_stripes(raid5_conf_t *conf, int num) 1232 { 1233 struct kmem_cache *sc; 1234 int devs = conf->raid_disks; 1235 1236 sprintf(conf->cache_name[0], 1237 "raid%d-%s", conf->level, mdname(conf->mddev)); 1238 sprintf(conf->cache_name[1], 1239 "raid%d-%s-alt", conf->level, mdname(conf->mddev)); 1240 conf->active_name = 0; 1241 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1242 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1243 0, 0, NULL); 1244 if (!sc) 1245 return 1; 1246 conf->slab_cache = sc; 1247 conf->pool_size = devs; 1248 while (num--) 1249 if (!grow_one_stripe(conf)) 1250 return 1; 1251 return 0; 1252 } 1253 1254 /** 1255 * scribble_len - return the required size of the scribble region 1256 * @num - total number of disks in the array 1257 * 1258 * The size must be enough to contain: 1259 * 1/ a struct page pointer for each device in the array +2 1260 * 2/ room to convert each entry in (1) to its corresponding dma 1261 * (dma_map_page()) or page (page_address()) address. 1262 * 1263 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1264 * calculate over all devices (not just the data blocks), using zeros in place 1265 * of the P and Q blocks. 1266 */ 1267 static size_t scribble_len(int num) 1268 { 1269 size_t len; 1270 1271 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1272 1273 return len; 1274 } 1275 1276 static int resize_stripes(raid5_conf_t *conf, int newsize) 1277 { 1278 /* Make all the stripes able to hold 'newsize' devices. 1279 * New slots in each stripe get 'page' set to a new page. 1280 * 1281 * This happens in stages: 1282 * 1/ create a new kmem_cache and allocate the required number of 1283 * stripe_heads. 1284 * 2/ gather all the old stripe_heads and tranfer the pages across 1285 * to the new stripe_heads. This will have the side effect of 1286 * freezing the array as once all stripe_heads have been collected, 1287 * no IO will be possible. Old stripe heads are freed once their 1288 * pages have been transferred over, and the old kmem_cache is 1289 * freed when all stripes are done. 1290 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1291 * we simple return a failre status - no need to clean anything up. 1292 * 4/ allocate new pages for the new slots in the new stripe_heads. 1293 * If this fails, we don't bother trying the shrink the 1294 * stripe_heads down again, we just leave them as they are. 1295 * As each stripe_head is processed the new one is released into 1296 * active service. 1297 * 1298 * Once step2 is started, we cannot afford to wait for a write, 1299 * so we use GFP_NOIO allocations. 1300 */ 1301 struct stripe_head *osh, *nsh; 1302 LIST_HEAD(newstripes); 1303 struct disk_info *ndisks; 1304 unsigned long cpu; 1305 int err; 1306 struct kmem_cache *sc; 1307 int i; 1308 1309 if (newsize <= conf->pool_size) 1310 return 0; /* never bother to shrink */ 1311 1312 err = md_allow_write(conf->mddev); 1313 if (err) 1314 return err; 1315 1316 /* Step 1 */ 1317 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1318 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1319 0, 0, NULL); 1320 if (!sc) 1321 return -ENOMEM; 1322 1323 for (i = conf->max_nr_stripes; i; i--) { 1324 nsh = kmem_cache_alloc(sc, GFP_KERNEL); 1325 if (!nsh) 1326 break; 1327 1328 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); 1329 1330 nsh->raid_conf = conf; 1331 spin_lock_init(&nsh->lock); 1332 1333 list_add(&nsh->lru, &newstripes); 1334 } 1335 if (i) { 1336 /* didn't get enough, give up */ 1337 while (!list_empty(&newstripes)) { 1338 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1339 list_del(&nsh->lru); 1340 kmem_cache_free(sc, nsh); 1341 } 1342 kmem_cache_destroy(sc); 1343 return -ENOMEM; 1344 } 1345 /* Step 2 - Must use GFP_NOIO now. 1346 * OK, we have enough stripes, start collecting inactive 1347 * stripes and copying them over 1348 */ 1349 list_for_each_entry(nsh, &newstripes, lru) { 1350 spin_lock_irq(&conf->device_lock); 1351 wait_event_lock_irq(conf->wait_for_stripe, 1352 !list_empty(&conf->inactive_list), 1353 conf->device_lock, 1354 unplug_slaves(conf->mddev) 1355 ); 1356 osh = get_free_stripe(conf); 1357 spin_unlock_irq(&conf->device_lock); 1358 atomic_set(&nsh->count, 1); 1359 for(i=0; i<conf->pool_size; i++) 1360 nsh->dev[i].page = osh->dev[i].page; 1361 for( ; i<newsize; i++) 1362 nsh->dev[i].page = NULL; 1363 kmem_cache_free(conf->slab_cache, osh); 1364 } 1365 kmem_cache_destroy(conf->slab_cache); 1366 1367 /* Step 3. 1368 * At this point, we are holding all the stripes so the array 1369 * is completely stalled, so now is a good time to resize 1370 * conf->disks and the scribble region 1371 */ 1372 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1373 if (ndisks) { 1374 for (i=0; i<conf->raid_disks; i++) 1375 ndisks[i] = conf->disks[i]; 1376 kfree(conf->disks); 1377 conf->disks = ndisks; 1378 } else 1379 err = -ENOMEM; 1380 1381 get_online_cpus(); 1382 conf->scribble_len = scribble_len(newsize); 1383 for_each_present_cpu(cpu) { 1384 struct raid5_percpu *percpu; 1385 void *scribble; 1386 1387 percpu = per_cpu_ptr(conf->percpu, cpu); 1388 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1389 1390 if (scribble) { 1391 kfree(percpu->scribble); 1392 percpu->scribble = scribble; 1393 } else { 1394 err = -ENOMEM; 1395 break; 1396 } 1397 } 1398 put_online_cpus(); 1399 1400 /* Step 4, return new stripes to service */ 1401 while(!list_empty(&newstripes)) { 1402 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1403 list_del_init(&nsh->lru); 1404 1405 for (i=conf->raid_disks; i < newsize; i++) 1406 if (nsh->dev[i].page == NULL) { 1407 struct page *p = alloc_page(GFP_NOIO); 1408 nsh->dev[i].page = p; 1409 if (!p) 1410 err = -ENOMEM; 1411 } 1412 release_stripe(nsh); 1413 } 1414 /* critical section pass, GFP_NOIO no longer needed */ 1415 1416 conf->slab_cache = sc; 1417 conf->active_name = 1-conf->active_name; 1418 conf->pool_size = newsize; 1419 return err; 1420 } 1421 1422 static int drop_one_stripe(raid5_conf_t *conf) 1423 { 1424 struct stripe_head *sh; 1425 1426 spin_lock_irq(&conf->device_lock); 1427 sh = get_free_stripe(conf); 1428 spin_unlock_irq(&conf->device_lock); 1429 if (!sh) 1430 return 0; 1431 BUG_ON(atomic_read(&sh->count)); 1432 shrink_buffers(sh, conf->pool_size); 1433 kmem_cache_free(conf->slab_cache, sh); 1434 atomic_dec(&conf->active_stripes); 1435 return 1; 1436 } 1437 1438 static void shrink_stripes(raid5_conf_t *conf) 1439 { 1440 while (drop_one_stripe(conf)) 1441 ; 1442 1443 if (conf->slab_cache) 1444 kmem_cache_destroy(conf->slab_cache); 1445 conf->slab_cache = NULL; 1446 } 1447 1448 static void raid5_end_read_request(struct bio * bi, int error) 1449 { 1450 struct stripe_head *sh = bi->bi_private; 1451 raid5_conf_t *conf = sh->raid_conf; 1452 int disks = sh->disks, i; 1453 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1454 char b[BDEVNAME_SIZE]; 1455 mdk_rdev_t *rdev; 1456 1457 1458 for (i=0 ; i<disks; i++) 1459 if (bi == &sh->dev[i].req) 1460 break; 1461 1462 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1463 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1464 uptodate); 1465 if (i == disks) { 1466 BUG(); 1467 return; 1468 } 1469 1470 if (uptodate) { 1471 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1472 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1473 rdev = conf->disks[i].rdev; 1474 printk_rl(KERN_INFO "raid5:%s: read error corrected" 1475 " (%lu sectors at %llu on %s)\n", 1476 mdname(conf->mddev), STRIPE_SECTORS, 1477 (unsigned long long)(sh->sector 1478 + rdev->data_offset), 1479 bdevname(rdev->bdev, b)); 1480 clear_bit(R5_ReadError, &sh->dev[i].flags); 1481 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1482 } 1483 if (atomic_read(&conf->disks[i].rdev->read_errors)) 1484 atomic_set(&conf->disks[i].rdev->read_errors, 0); 1485 } else { 1486 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); 1487 int retry = 0; 1488 rdev = conf->disks[i].rdev; 1489 1490 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1491 atomic_inc(&rdev->read_errors); 1492 if (conf->mddev->degraded) 1493 printk_rl(KERN_WARNING 1494 "raid5:%s: read error not correctable " 1495 "(sector %llu on %s).\n", 1496 mdname(conf->mddev), 1497 (unsigned long long)(sh->sector 1498 + rdev->data_offset), 1499 bdn); 1500 else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) 1501 /* Oh, no!!! */ 1502 printk_rl(KERN_WARNING 1503 "raid5:%s: read error NOT corrected!! " 1504 "(sector %llu on %s).\n", 1505 mdname(conf->mddev), 1506 (unsigned long long)(sh->sector 1507 + rdev->data_offset), 1508 bdn); 1509 else if (atomic_read(&rdev->read_errors) 1510 > conf->max_nr_stripes) 1511 printk(KERN_WARNING 1512 "raid5:%s: Too many read errors, failing device %s.\n", 1513 mdname(conf->mddev), bdn); 1514 else 1515 retry = 1; 1516 if (retry) 1517 set_bit(R5_ReadError, &sh->dev[i].flags); 1518 else { 1519 clear_bit(R5_ReadError, &sh->dev[i].flags); 1520 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1521 md_error(conf->mddev, rdev); 1522 } 1523 } 1524 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1525 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1526 set_bit(STRIPE_HANDLE, &sh->state); 1527 release_stripe(sh); 1528 } 1529 1530 static void raid5_end_write_request(struct bio *bi, int error) 1531 { 1532 struct stripe_head *sh = bi->bi_private; 1533 raid5_conf_t *conf = sh->raid_conf; 1534 int disks = sh->disks, i; 1535 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1536 1537 for (i=0 ; i<disks; i++) 1538 if (bi == &sh->dev[i].req) 1539 break; 1540 1541 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1542 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1543 uptodate); 1544 if (i == disks) { 1545 BUG(); 1546 return; 1547 } 1548 1549 if (!uptodate) 1550 md_error(conf->mddev, conf->disks[i].rdev); 1551 1552 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1553 1554 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1555 set_bit(STRIPE_HANDLE, &sh->state); 1556 release_stripe(sh); 1557 } 1558 1559 1560 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 1561 1562 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 1563 { 1564 struct r5dev *dev = &sh->dev[i]; 1565 1566 bio_init(&dev->req); 1567 dev->req.bi_io_vec = &dev->vec; 1568 dev->req.bi_vcnt++; 1569 dev->req.bi_max_vecs++; 1570 dev->vec.bv_page = dev->page; 1571 dev->vec.bv_len = STRIPE_SIZE; 1572 dev->vec.bv_offset = 0; 1573 1574 dev->req.bi_sector = sh->sector; 1575 dev->req.bi_private = sh; 1576 1577 dev->flags = 0; 1578 dev->sector = compute_blocknr(sh, i, previous); 1579 } 1580 1581 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1582 { 1583 char b[BDEVNAME_SIZE]; 1584 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 1585 pr_debug("raid5: error called\n"); 1586 1587 if (!test_bit(Faulty, &rdev->flags)) { 1588 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1589 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1590 unsigned long flags; 1591 spin_lock_irqsave(&conf->device_lock, flags); 1592 mddev->degraded++; 1593 spin_unlock_irqrestore(&conf->device_lock, flags); 1594 /* 1595 * if recovery was running, make sure it aborts. 1596 */ 1597 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1598 } 1599 set_bit(Faulty, &rdev->flags); 1600 printk(KERN_ALERT 1601 "raid5: Disk failure on %s, disabling device.\n" 1602 "raid5: Operation continuing on %d devices.\n", 1603 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1604 } 1605 } 1606 1607 /* 1608 * Input: a 'big' sector number, 1609 * Output: index of the data and parity disk, and the sector # in them. 1610 */ 1611 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector, 1612 int previous, int *dd_idx, 1613 struct stripe_head *sh) 1614 { 1615 long stripe; 1616 unsigned long chunk_number; 1617 unsigned int chunk_offset; 1618 int pd_idx, qd_idx; 1619 int ddf_layout = 0; 1620 sector_t new_sector; 1621 int algorithm = previous ? conf->prev_algo 1622 : conf->algorithm; 1623 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1624 : conf->chunk_sectors; 1625 int raid_disks = previous ? conf->previous_raid_disks 1626 : conf->raid_disks; 1627 int data_disks = raid_disks - conf->max_degraded; 1628 1629 /* First compute the information on this sector */ 1630 1631 /* 1632 * Compute the chunk number and the sector offset inside the chunk 1633 */ 1634 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1635 chunk_number = r_sector; 1636 BUG_ON(r_sector != chunk_number); 1637 1638 /* 1639 * Compute the stripe number 1640 */ 1641 stripe = chunk_number / data_disks; 1642 1643 /* 1644 * Compute the data disk and parity disk indexes inside the stripe 1645 */ 1646 *dd_idx = chunk_number % data_disks; 1647 1648 /* 1649 * Select the parity disk based on the user selected algorithm. 1650 */ 1651 pd_idx = qd_idx = ~0; 1652 switch(conf->level) { 1653 case 4: 1654 pd_idx = data_disks; 1655 break; 1656 case 5: 1657 switch (algorithm) { 1658 case ALGORITHM_LEFT_ASYMMETRIC: 1659 pd_idx = data_disks - stripe % raid_disks; 1660 if (*dd_idx >= pd_idx) 1661 (*dd_idx)++; 1662 break; 1663 case ALGORITHM_RIGHT_ASYMMETRIC: 1664 pd_idx = stripe % raid_disks; 1665 if (*dd_idx >= pd_idx) 1666 (*dd_idx)++; 1667 break; 1668 case ALGORITHM_LEFT_SYMMETRIC: 1669 pd_idx = data_disks - stripe % raid_disks; 1670 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 1671 break; 1672 case ALGORITHM_RIGHT_SYMMETRIC: 1673 pd_idx = stripe % raid_disks; 1674 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 1675 break; 1676 case ALGORITHM_PARITY_0: 1677 pd_idx = 0; 1678 (*dd_idx)++; 1679 break; 1680 case ALGORITHM_PARITY_N: 1681 pd_idx = data_disks; 1682 break; 1683 default: 1684 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 1685 algorithm); 1686 BUG(); 1687 } 1688 break; 1689 case 6: 1690 1691 switch (algorithm) { 1692 case ALGORITHM_LEFT_ASYMMETRIC: 1693 pd_idx = raid_disks - 1 - (stripe % raid_disks); 1694 qd_idx = pd_idx + 1; 1695 if (pd_idx == raid_disks-1) { 1696 (*dd_idx)++; /* Q D D D P */ 1697 qd_idx = 0; 1698 } else if (*dd_idx >= pd_idx) 1699 (*dd_idx) += 2; /* D D P Q D */ 1700 break; 1701 case ALGORITHM_RIGHT_ASYMMETRIC: 1702 pd_idx = stripe % raid_disks; 1703 qd_idx = pd_idx + 1; 1704 if (pd_idx == raid_disks-1) { 1705 (*dd_idx)++; /* Q D D D P */ 1706 qd_idx = 0; 1707 } else if (*dd_idx >= pd_idx) 1708 (*dd_idx) += 2; /* D D P Q D */ 1709 break; 1710 case ALGORITHM_LEFT_SYMMETRIC: 1711 pd_idx = raid_disks - 1 - (stripe % raid_disks); 1712 qd_idx = (pd_idx + 1) % raid_disks; 1713 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 1714 break; 1715 case ALGORITHM_RIGHT_SYMMETRIC: 1716 pd_idx = stripe % raid_disks; 1717 qd_idx = (pd_idx + 1) % raid_disks; 1718 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 1719 break; 1720 1721 case ALGORITHM_PARITY_0: 1722 pd_idx = 0; 1723 qd_idx = 1; 1724 (*dd_idx) += 2; 1725 break; 1726 case ALGORITHM_PARITY_N: 1727 pd_idx = data_disks; 1728 qd_idx = data_disks + 1; 1729 break; 1730 1731 case ALGORITHM_ROTATING_ZERO_RESTART: 1732 /* Exactly the same as RIGHT_ASYMMETRIC, but or 1733 * of blocks for computing Q is different. 1734 */ 1735 pd_idx = stripe % raid_disks; 1736 qd_idx = pd_idx + 1; 1737 if (pd_idx == raid_disks-1) { 1738 (*dd_idx)++; /* Q D D D P */ 1739 qd_idx = 0; 1740 } else if (*dd_idx >= pd_idx) 1741 (*dd_idx) += 2; /* D D P Q D */ 1742 ddf_layout = 1; 1743 break; 1744 1745 case ALGORITHM_ROTATING_N_RESTART: 1746 /* Same a left_asymmetric, by first stripe is 1747 * D D D P Q rather than 1748 * Q D D D P 1749 */ 1750 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks); 1751 qd_idx = pd_idx + 1; 1752 if (pd_idx == raid_disks-1) { 1753 (*dd_idx)++; /* Q D D D P */ 1754 qd_idx = 0; 1755 } else if (*dd_idx >= pd_idx) 1756 (*dd_idx) += 2; /* D D P Q D */ 1757 ddf_layout = 1; 1758 break; 1759 1760 case ALGORITHM_ROTATING_N_CONTINUE: 1761 /* Same as left_symmetric but Q is before P */ 1762 pd_idx = raid_disks - 1 - (stripe % raid_disks); 1763 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 1764 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 1765 ddf_layout = 1; 1766 break; 1767 1768 case ALGORITHM_LEFT_ASYMMETRIC_6: 1769 /* RAID5 left_asymmetric, with Q on last device */ 1770 pd_idx = data_disks - stripe % (raid_disks-1); 1771 if (*dd_idx >= pd_idx) 1772 (*dd_idx)++; 1773 qd_idx = raid_disks - 1; 1774 break; 1775 1776 case ALGORITHM_RIGHT_ASYMMETRIC_6: 1777 pd_idx = stripe % (raid_disks-1); 1778 if (*dd_idx >= pd_idx) 1779 (*dd_idx)++; 1780 qd_idx = raid_disks - 1; 1781 break; 1782 1783 case ALGORITHM_LEFT_SYMMETRIC_6: 1784 pd_idx = data_disks - stripe % (raid_disks-1); 1785 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 1786 qd_idx = raid_disks - 1; 1787 break; 1788 1789 case ALGORITHM_RIGHT_SYMMETRIC_6: 1790 pd_idx = stripe % (raid_disks-1); 1791 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 1792 qd_idx = raid_disks - 1; 1793 break; 1794 1795 case ALGORITHM_PARITY_0_6: 1796 pd_idx = 0; 1797 (*dd_idx)++; 1798 qd_idx = raid_disks - 1; 1799 break; 1800 1801 1802 default: 1803 printk(KERN_CRIT "raid6: unsupported algorithm %d\n", 1804 algorithm); 1805 BUG(); 1806 } 1807 break; 1808 } 1809 1810 if (sh) { 1811 sh->pd_idx = pd_idx; 1812 sh->qd_idx = qd_idx; 1813 sh->ddf_layout = ddf_layout; 1814 } 1815 /* 1816 * Finally, compute the new sector number 1817 */ 1818 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 1819 return new_sector; 1820 } 1821 1822 1823 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 1824 { 1825 raid5_conf_t *conf = sh->raid_conf; 1826 int raid_disks = sh->disks; 1827 int data_disks = raid_disks - conf->max_degraded; 1828 sector_t new_sector = sh->sector, check; 1829 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1830 : conf->chunk_sectors; 1831 int algorithm = previous ? conf->prev_algo 1832 : conf->algorithm; 1833 sector_t stripe; 1834 int chunk_offset; 1835 int chunk_number, dummy1, dd_idx = i; 1836 sector_t r_sector; 1837 struct stripe_head sh2; 1838 1839 1840 chunk_offset = sector_div(new_sector, sectors_per_chunk); 1841 stripe = new_sector; 1842 BUG_ON(new_sector != stripe); 1843 1844 if (i == sh->pd_idx) 1845 return 0; 1846 switch(conf->level) { 1847 case 4: break; 1848 case 5: 1849 switch (algorithm) { 1850 case ALGORITHM_LEFT_ASYMMETRIC: 1851 case ALGORITHM_RIGHT_ASYMMETRIC: 1852 if (i > sh->pd_idx) 1853 i--; 1854 break; 1855 case ALGORITHM_LEFT_SYMMETRIC: 1856 case ALGORITHM_RIGHT_SYMMETRIC: 1857 if (i < sh->pd_idx) 1858 i += raid_disks; 1859 i -= (sh->pd_idx + 1); 1860 break; 1861 case ALGORITHM_PARITY_0: 1862 i -= 1; 1863 break; 1864 case ALGORITHM_PARITY_N: 1865 break; 1866 default: 1867 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 1868 algorithm); 1869 BUG(); 1870 } 1871 break; 1872 case 6: 1873 if (i == sh->qd_idx) 1874 return 0; /* It is the Q disk */ 1875 switch (algorithm) { 1876 case ALGORITHM_LEFT_ASYMMETRIC: 1877 case ALGORITHM_RIGHT_ASYMMETRIC: 1878 case ALGORITHM_ROTATING_ZERO_RESTART: 1879 case ALGORITHM_ROTATING_N_RESTART: 1880 if (sh->pd_idx == raid_disks-1) 1881 i--; /* Q D D D P */ 1882 else if (i > sh->pd_idx) 1883 i -= 2; /* D D P Q D */ 1884 break; 1885 case ALGORITHM_LEFT_SYMMETRIC: 1886 case ALGORITHM_RIGHT_SYMMETRIC: 1887 if (sh->pd_idx == raid_disks-1) 1888 i--; /* Q D D D P */ 1889 else { 1890 /* D D P Q D */ 1891 if (i < sh->pd_idx) 1892 i += raid_disks; 1893 i -= (sh->pd_idx + 2); 1894 } 1895 break; 1896 case ALGORITHM_PARITY_0: 1897 i -= 2; 1898 break; 1899 case ALGORITHM_PARITY_N: 1900 break; 1901 case ALGORITHM_ROTATING_N_CONTINUE: 1902 if (sh->pd_idx == 0) 1903 i--; /* P D D D Q */ 1904 else if (i > sh->pd_idx) 1905 i -= 2; /* D D Q P D */ 1906 break; 1907 case ALGORITHM_LEFT_ASYMMETRIC_6: 1908 case ALGORITHM_RIGHT_ASYMMETRIC_6: 1909 if (i > sh->pd_idx) 1910 i--; 1911 break; 1912 case ALGORITHM_LEFT_SYMMETRIC_6: 1913 case ALGORITHM_RIGHT_SYMMETRIC_6: 1914 if (i < sh->pd_idx) 1915 i += data_disks + 1; 1916 i -= (sh->pd_idx + 1); 1917 break; 1918 case ALGORITHM_PARITY_0_6: 1919 i -= 1; 1920 break; 1921 default: 1922 printk(KERN_CRIT "raid6: unsupported algorithm %d\n", 1923 algorithm); 1924 BUG(); 1925 } 1926 break; 1927 } 1928 1929 chunk_number = stripe * data_disks + i; 1930 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; 1931 1932 check = raid5_compute_sector(conf, r_sector, 1933 previous, &dummy1, &sh2); 1934 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 1935 || sh2.qd_idx != sh->qd_idx) { 1936 printk(KERN_ERR "compute_blocknr: map not correct\n"); 1937 return 0; 1938 } 1939 return r_sector; 1940 } 1941 1942 1943 static void 1944 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 1945 int rcw, int expand) 1946 { 1947 int i, pd_idx = sh->pd_idx, disks = sh->disks; 1948 raid5_conf_t *conf = sh->raid_conf; 1949 int level = conf->level; 1950 1951 if (rcw) { 1952 /* if we are not expanding this is a proper write request, and 1953 * there will be bios with new data to be drained into the 1954 * stripe cache 1955 */ 1956 if (!expand) { 1957 sh->reconstruct_state = reconstruct_state_drain_run; 1958 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 1959 } else 1960 sh->reconstruct_state = reconstruct_state_run; 1961 1962 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 1963 1964 for (i = disks; i--; ) { 1965 struct r5dev *dev = &sh->dev[i]; 1966 1967 if (dev->towrite) { 1968 set_bit(R5_LOCKED, &dev->flags); 1969 set_bit(R5_Wantdrain, &dev->flags); 1970 if (!expand) 1971 clear_bit(R5_UPTODATE, &dev->flags); 1972 s->locked++; 1973 } 1974 } 1975 if (s->locked + conf->max_degraded == disks) 1976 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 1977 atomic_inc(&conf->pending_full_writes); 1978 } else { 1979 BUG_ON(level == 6); 1980 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 1981 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 1982 1983 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 1984 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 1985 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 1986 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 1987 1988 for (i = disks; i--; ) { 1989 struct r5dev *dev = &sh->dev[i]; 1990 if (i == pd_idx) 1991 continue; 1992 1993 if (dev->towrite && 1994 (test_bit(R5_UPTODATE, &dev->flags) || 1995 test_bit(R5_Wantcompute, &dev->flags))) { 1996 set_bit(R5_Wantdrain, &dev->flags); 1997 set_bit(R5_LOCKED, &dev->flags); 1998 clear_bit(R5_UPTODATE, &dev->flags); 1999 s->locked++; 2000 } 2001 } 2002 } 2003 2004 /* keep the parity disk(s) locked while asynchronous operations 2005 * are in flight 2006 */ 2007 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2008 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2009 s->locked++; 2010 2011 if (level == 6) { 2012 int qd_idx = sh->qd_idx; 2013 struct r5dev *dev = &sh->dev[qd_idx]; 2014 2015 set_bit(R5_LOCKED, &dev->flags); 2016 clear_bit(R5_UPTODATE, &dev->flags); 2017 s->locked++; 2018 } 2019 2020 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2021 __func__, (unsigned long long)sh->sector, 2022 s->locked, s->ops_request); 2023 } 2024 2025 /* 2026 * Each stripe/dev can have one or more bion attached. 2027 * toread/towrite point to the first in a chain. 2028 * The bi_next chain must be in order. 2029 */ 2030 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2031 { 2032 struct bio **bip; 2033 raid5_conf_t *conf = sh->raid_conf; 2034 int firstwrite=0; 2035 2036 pr_debug("adding bh b#%llu to stripe s#%llu\n", 2037 (unsigned long long)bi->bi_sector, 2038 (unsigned long long)sh->sector); 2039 2040 2041 spin_lock(&sh->lock); 2042 spin_lock_irq(&conf->device_lock); 2043 if (forwrite) { 2044 bip = &sh->dev[dd_idx].towrite; 2045 if (*bip == NULL && sh->dev[dd_idx].written == NULL) 2046 firstwrite = 1; 2047 } else 2048 bip = &sh->dev[dd_idx].toread; 2049 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2050 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 2051 goto overlap; 2052 bip = & (*bip)->bi_next; 2053 } 2054 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 2055 goto overlap; 2056 2057 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2058 if (*bip) 2059 bi->bi_next = *bip; 2060 *bip = bi; 2061 bi->bi_phys_segments++; 2062 spin_unlock_irq(&conf->device_lock); 2063 spin_unlock(&sh->lock); 2064 2065 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2066 (unsigned long long)bi->bi_sector, 2067 (unsigned long long)sh->sector, dd_idx); 2068 2069 if (conf->mddev->bitmap && firstwrite) { 2070 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2071 STRIPE_SECTORS, 0); 2072 sh->bm_seq = conf->seq_flush+1; 2073 set_bit(STRIPE_BIT_DELAY, &sh->state); 2074 } 2075 2076 if (forwrite) { 2077 /* check if page is covered */ 2078 sector_t sector = sh->dev[dd_idx].sector; 2079 for (bi=sh->dev[dd_idx].towrite; 2080 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2081 bi && bi->bi_sector <= sector; 2082 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2083 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 2084 sector = bi->bi_sector + (bi->bi_size>>9); 2085 } 2086 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2087 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2088 } 2089 return 1; 2090 2091 overlap: 2092 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2093 spin_unlock_irq(&conf->device_lock); 2094 spin_unlock(&sh->lock); 2095 return 0; 2096 } 2097 2098 static void end_reshape(raid5_conf_t *conf); 2099 2100 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous, 2101 struct stripe_head *sh) 2102 { 2103 int sectors_per_chunk = 2104 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2105 int dd_idx; 2106 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2107 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2108 2109 raid5_compute_sector(conf, 2110 stripe * (disks - conf->max_degraded) 2111 *sectors_per_chunk + chunk_offset, 2112 previous, 2113 &dd_idx, sh); 2114 } 2115 2116 static void 2117 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh, 2118 struct stripe_head_state *s, int disks, 2119 struct bio **return_bi) 2120 { 2121 int i; 2122 for (i = disks; i--; ) { 2123 struct bio *bi; 2124 int bitmap_end = 0; 2125 2126 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2127 mdk_rdev_t *rdev; 2128 rcu_read_lock(); 2129 rdev = rcu_dereference(conf->disks[i].rdev); 2130 if (rdev && test_bit(In_sync, &rdev->flags)) 2131 /* multiple read failures in one stripe */ 2132 md_error(conf->mddev, rdev); 2133 rcu_read_unlock(); 2134 } 2135 spin_lock_irq(&conf->device_lock); 2136 /* fail all writes first */ 2137 bi = sh->dev[i].towrite; 2138 sh->dev[i].towrite = NULL; 2139 if (bi) { 2140 s->to_write--; 2141 bitmap_end = 1; 2142 } 2143 2144 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2145 wake_up(&conf->wait_for_overlap); 2146 2147 while (bi && bi->bi_sector < 2148 sh->dev[i].sector + STRIPE_SECTORS) { 2149 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2150 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2151 if (!raid5_dec_bi_phys_segments(bi)) { 2152 md_write_end(conf->mddev); 2153 bi->bi_next = *return_bi; 2154 *return_bi = bi; 2155 } 2156 bi = nextbi; 2157 } 2158 /* and fail all 'written' */ 2159 bi = sh->dev[i].written; 2160 sh->dev[i].written = NULL; 2161 if (bi) bitmap_end = 1; 2162 while (bi && bi->bi_sector < 2163 sh->dev[i].sector + STRIPE_SECTORS) { 2164 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2165 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2166 if (!raid5_dec_bi_phys_segments(bi)) { 2167 md_write_end(conf->mddev); 2168 bi->bi_next = *return_bi; 2169 *return_bi = bi; 2170 } 2171 bi = bi2; 2172 } 2173 2174 /* fail any reads if this device is non-operational and 2175 * the data has not reached the cache yet. 2176 */ 2177 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2178 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2179 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2180 bi = sh->dev[i].toread; 2181 sh->dev[i].toread = NULL; 2182 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2183 wake_up(&conf->wait_for_overlap); 2184 if (bi) s->to_read--; 2185 while (bi && bi->bi_sector < 2186 sh->dev[i].sector + STRIPE_SECTORS) { 2187 struct bio *nextbi = 2188 r5_next_bio(bi, sh->dev[i].sector); 2189 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2190 if (!raid5_dec_bi_phys_segments(bi)) { 2191 bi->bi_next = *return_bi; 2192 *return_bi = bi; 2193 } 2194 bi = nextbi; 2195 } 2196 } 2197 spin_unlock_irq(&conf->device_lock); 2198 if (bitmap_end) 2199 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2200 STRIPE_SECTORS, 0, 0); 2201 } 2202 2203 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2204 if (atomic_dec_and_test(&conf->pending_full_writes)) 2205 md_wakeup_thread(conf->mddev->thread); 2206 } 2207 2208 /* fetch_block5 - checks the given member device to see if its data needs 2209 * to be read or computed to satisfy a request. 2210 * 2211 * Returns 1 when no more member devices need to be checked, otherwise returns 2212 * 0 to tell the loop in handle_stripe_fill5 to continue 2213 */ 2214 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s, 2215 int disk_idx, int disks) 2216 { 2217 struct r5dev *dev = &sh->dev[disk_idx]; 2218 struct r5dev *failed_dev = &sh->dev[s->failed_num]; 2219 2220 /* is the data in this block needed, and can we get it? */ 2221 if (!test_bit(R5_LOCKED, &dev->flags) && 2222 !test_bit(R5_UPTODATE, &dev->flags) && 2223 (dev->toread || 2224 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2225 s->syncing || s->expanding || 2226 (s->failed && 2227 (failed_dev->toread || 2228 (failed_dev->towrite && 2229 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) { 2230 /* We would like to get this block, possibly by computing it, 2231 * otherwise read it if the backing disk is insync 2232 */ 2233 if ((s->uptodate == disks - 1) && 2234 (s->failed && disk_idx == s->failed_num)) { 2235 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2236 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2237 set_bit(R5_Wantcompute, &dev->flags); 2238 sh->ops.target = disk_idx; 2239 sh->ops.target2 = -1; 2240 s->req_compute = 1; 2241 /* Careful: from this point on 'uptodate' is in the eye 2242 * of raid_run_ops which services 'compute' operations 2243 * before writes. R5_Wantcompute flags a block that will 2244 * be R5_UPTODATE by the time it is needed for a 2245 * subsequent operation. 2246 */ 2247 s->uptodate++; 2248 return 1; /* uptodate + compute == disks */ 2249 } else if (test_bit(R5_Insync, &dev->flags)) { 2250 set_bit(R5_LOCKED, &dev->flags); 2251 set_bit(R5_Wantread, &dev->flags); 2252 s->locked++; 2253 pr_debug("Reading block %d (sync=%d)\n", disk_idx, 2254 s->syncing); 2255 } 2256 } 2257 2258 return 0; 2259 } 2260 2261 /** 2262 * handle_stripe_fill5 - read or compute data to satisfy pending requests. 2263 */ 2264 static void handle_stripe_fill5(struct stripe_head *sh, 2265 struct stripe_head_state *s, int disks) 2266 { 2267 int i; 2268 2269 /* look for blocks to read/compute, skip this if a compute 2270 * is already in flight, or if the stripe contents are in the 2271 * midst of changing due to a write 2272 */ 2273 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2274 !sh->reconstruct_state) 2275 for (i = disks; i--; ) 2276 if (fetch_block5(sh, s, i, disks)) 2277 break; 2278 set_bit(STRIPE_HANDLE, &sh->state); 2279 } 2280 2281 /* fetch_block6 - checks the given member device to see if its data needs 2282 * to be read or computed to satisfy a request. 2283 * 2284 * Returns 1 when no more member devices need to be checked, otherwise returns 2285 * 0 to tell the loop in handle_stripe_fill6 to continue 2286 */ 2287 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s, 2288 struct r6_state *r6s, int disk_idx, int disks) 2289 { 2290 struct r5dev *dev = &sh->dev[disk_idx]; 2291 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]], 2292 &sh->dev[r6s->failed_num[1]] }; 2293 2294 if (!test_bit(R5_LOCKED, &dev->flags) && 2295 !test_bit(R5_UPTODATE, &dev->flags) && 2296 (dev->toread || 2297 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2298 s->syncing || s->expanding || 2299 (s->failed >= 1 && 2300 (fdev[0]->toread || s->to_write)) || 2301 (s->failed >= 2 && 2302 (fdev[1]->toread || s->to_write)))) { 2303 /* we would like to get this block, possibly by computing it, 2304 * otherwise read it if the backing disk is insync 2305 */ 2306 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2307 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2308 if ((s->uptodate == disks - 1) && 2309 (s->failed && (disk_idx == r6s->failed_num[0] || 2310 disk_idx == r6s->failed_num[1]))) { 2311 /* have disk failed, and we're requested to fetch it; 2312 * do compute it 2313 */ 2314 pr_debug("Computing stripe %llu block %d\n", 2315 (unsigned long long)sh->sector, disk_idx); 2316 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2317 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2318 set_bit(R5_Wantcompute, &dev->flags); 2319 sh->ops.target = disk_idx; 2320 sh->ops.target2 = -1; /* no 2nd target */ 2321 s->req_compute = 1; 2322 s->uptodate++; 2323 return 1; 2324 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2325 /* Computing 2-failure is *very* expensive; only 2326 * do it if failed >= 2 2327 */ 2328 int other; 2329 for (other = disks; other--; ) { 2330 if (other == disk_idx) 2331 continue; 2332 if (!test_bit(R5_UPTODATE, 2333 &sh->dev[other].flags)) 2334 break; 2335 } 2336 BUG_ON(other < 0); 2337 pr_debug("Computing stripe %llu blocks %d,%d\n", 2338 (unsigned long long)sh->sector, 2339 disk_idx, other); 2340 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2341 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2342 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2343 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2344 sh->ops.target = disk_idx; 2345 sh->ops.target2 = other; 2346 s->uptodate += 2; 2347 s->req_compute = 1; 2348 return 1; 2349 } else if (test_bit(R5_Insync, &dev->flags)) { 2350 set_bit(R5_LOCKED, &dev->flags); 2351 set_bit(R5_Wantread, &dev->flags); 2352 s->locked++; 2353 pr_debug("Reading block %d (sync=%d)\n", 2354 disk_idx, s->syncing); 2355 } 2356 } 2357 2358 return 0; 2359 } 2360 2361 /** 2362 * handle_stripe_fill6 - read or compute data to satisfy pending requests. 2363 */ 2364 static void handle_stripe_fill6(struct stripe_head *sh, 2365 struct stripe_head_state *s, struct r6_state *r6s, 2366 int disks) 2367 { 2368 int i; 2369 2370 /* look for blocks to read/compute, skip this if a compute 2371 * is already in flight, or if the stripe contents are in the 2372 * midst of changing due to a write 2373 */ 2374 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2375 !sh->reconstruct_state) 2376 for (i = disks; i--; ) 2377 if (fetch_block6(sh, s, r6s, i, disks)) 2378 break; 2379 set_bit(STRIPE_HANDLE, &sh->state); 2380 } 2381 2382 2383 /* handle_stripe_clean_event 2384 * any written block on an uptodate or failed drive can be returned. 2385 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2386 * never LOCKED, so we don't need to test 'failed' directly. 2387 */ 2388 static void handle_stripe_clean_event(raid5_conf_t *conf, 2389 struct stripe_head *sh, int disks, struct bio **return_bi) 2390 { 2391 int i; 2392 struct r5dev *dev; 2393 2394 for (i = disks; i--; ) 2395 if (sh->dev[i].written) { 2396 dev = &sh->dev[i]; 2397 if (!test_bit(R5_LOCKED, &dev->flags) && 2398 test_bit(R5_UPTODATE, &dev->flags)) { 2399 /* We can return any write requests */ 2400 struct bio *wbi, *wbi2; 2401 int bitmap_end = 0; 2402 pr_debug("Return write for disc %d\n", i); 2403 spin_lock_irq(&conf->device_lock); 2404 wbi = dev->written; 2405 dev->written = NULL; 2406 while (wbi && wbi->bi_sector < 2407 dev->sector + STRIPE_SECTORS) { 2408 wbi2 = r5_next_bio(wbi, dev->sector); 2409 if (!raid5_dec_bi_phys_segments(wbi)) { 2410 md_write_end(conf->mddev); 2411 wbi->bi_next = *return_bi; 2412 *return_bi = wbi; 2413 } 2414 wbi = wbi2; 2415 } 2416 if (dev->towrite == NULL) 2417 bitmap_end = 1; 2418 spin_unlock_irq(&conf->device_lock); 2419 if (bitmap_end) 2420 bitmap_endwrite(conf->mddev->bitmap, 2421 sh->sector, 2422 STRIPE_SECTORS, 2423 !test_bit(STRIPE_DEGRADED, &sh->state), 2424 0); 2425 } 2426 } 2427 2428 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2429 if (atomic_dec_and_test(&conf->pending_full_writes)) 2430 md_wakeup_thread(conf->mddev->thread); 2431 } 2432 2433 static void handle_stripe_dirtying5(raid5_conf_t *conf, 2434 struct stripe_head *sh, struct stripe_head_state *s, int disks) 2435 { 2436 int rmw = 0, rcw = 0, i; 2437 for (i = disks; i--; ) { 2438 /* would I have to read this buffer for read_modify_write */ 2439 struct r5dev *dev = &sh->dev[i]; 2440 if ((dev->towrite || i == sh->pd_idx) && 2441 !test_bit(R5_LOCKED, &dev->flags) && 2442 !(test_bit(R5_UPTODATE, &dev->flags) || 2443 test_bit(R5_Wantcompute, &dev->flags))) { 2444 if (test_bit(R5_Insync, &dev->flags)) 2445 rmw++; 2446 else 2447 rmw += 2*disks; /* cannot read it */ 2448 } 2449 /* Would I have to read this buffer for reconstruct_write */ 2450 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2451 !test_bit(R5_LOCKED, &dev->flags) && 2452 !(test_bit(R5_UPTODATE, &dev->flags) || 2453 test_bit(R5_Wantcompute, &dev->flags))) { 2454 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2455 else 2456 rcw += 2*disks; 2457 } 2458 } 2459 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2460 (unsigned long long)sh->sector, rmw, rcw); 2461 set_bit(STRIPE_HANDLE, &sh->state); 2462 if (rmw < rcw && rmw > 0) 2463 /* prefer read-modify-write, but need to get some data */ 2464 for (i = disks; i--; ) { 2465 struct r5dev *dev = &sh->dev[i]; 2466 if ((dev->towrite || i == sh->pd_idx) && 2467 !test_bit(R5_LOCKED, &dev->flags) && 2468 !(test_bit(R5_UPTODATE, &dev->flags) || 2469 test_bit(R5_Wantcompute, &dev->flags)) && 2470 test_bit(R5_Insync, &dev->flags)) { 2471 if ( 2472 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2473 pr_debug("Read_old block " 2474 "%d for r-m-w\n", i); 2475 set_bit(R5_LOCKED, &dev->flags); 2476 set_bit(R5_Wantread, &dev->flags); 2477 s->locked++; 2478 } else { 2479 set_bit(STRIPE_DELAYED, &sh->state); 2480 set_bit(STRIPE_HANDLE, &sh->state); 2481 } 2482 } 2483 } 2484 if (rcw <= rmw && rcw > 0) 2485 /* want reconstruct write, but need to get some data */ 2486 for (i = disks; i--; ) { 2487 struct r5dev *dev = &sh->dev[i]; 2488 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2489 i != sh->pd_idx && 2490 !test_bit(R5_LOCKED, &dev->flags) && 2491 !(test_bit(R5_UPTODATE, &dev->flags) || 2492 test_bit(R5_Wantcompute, &dev->flags)) && 2493 test_bit(R5_Insync, &dev->flags)) { 2494 if ( 2495 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2496 pr_debug("Read_old block " 2497 "%d for Reconstruct\n", i); 2498 set_bit(R5_LOCKED, &dev->flags); 2499 set_bit(R5_Wantread, &dev->flags); 2500 s->locked++; 2501 } else { 2502 set_bit(STRIPE_DELAYED, &sh->state); 2503 set_bit(STRIPE_HANDLE, &sh->state); 2504 } 2505 } 2506 } 2507 /* now if nothing is locked, and if we have enough data, 2508 * we can start a write request 2509 */ 2510 /* since handle_stripe can be called at any time we need to handle the 2511 * case where a compute block operation has been submitted and then a 2512 * subsequent call wants to start a write request. raid_run_ops only 2513 * handles the case where compute block and reconstruct are requested 2514 * simultaneously. If this is not the case then new writes need to be 2515 * held off until the compute completes. 2516 */ 2517 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2518 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2519 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2520 schedule_reconstruction(sh, s, rcw == 0, 0); 2521 } 2522 2523 static void handle_stripe_dirtying6(raid5_conf_t *conf, 2524 struct stripe_head *sh, struct stripe_head_state *s, 2525 struct r6_state *r6s, int disks) 2526 { 2527 int rcw = 0, pd_idx = sh->pd_idx, i; 2528 int qd_idx = sh->qd_idx; 2529 2530 set_bit(STRIPE_HANDLE, &sh->state); 2531 for (i = disks; i--; ) { 2532 struct r5dev *dev = &sh->dev[i]; 2533 /* check if we haven't enough data */ 2534 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2535 i != pd_idx && i != qd_idx && 2536 !test_bit(R5_LOCKED, &dev->flags) && 2537 !(test_bit(R5_UPTODATE, &dev->flags) || 2538 test_bit(R5_Wantcompute, &dev->flags))) { 2539 rcw++; 2540 if (!test_bit(R5_Insync, &dev->flags)) 2541 continue; /* it's a failed drive */ 2542 2543 if ( 2544 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2545 pr_debug("Read_old stripe %llu " 2546 "block %d for Reconstruct\n", 2547 (unsigned long long)sh->sector, i); 2548 set_bit(R5_LOCKED, &dev->flags); 2549 set_bit(R5_Wantread, &dev->flags); 2550 s->locked++; 2551 } else { 2552 pr_debug("Request delayed stripe %llu " 2553 "block %d for Reconstruct\n", 2554 (unsigned long long)sh->sector, i); 2555 set_bit(STRIPE_DELAYED, &sh->state); 2556 set_bit(STRIPE_HANDLE, &sh->state); 2557 } 2558 } 2559 } 2560 /* now if nothing is locked, and if we have enough data, we can start a 2561 * write request 2562 */ 2563 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2564 s->locked == 0 && rcw == 0 && 2565 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 2566 schedule_reconstruction(sh, s, 1, 0); 2567 } 2568 } 2569 2570 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh, 2571 struct stripe_head_state *s, int disks) 2572 { 2573 struct r5dev *dev = NULL; 2574 2575 set_bit(STRIPE_HANDLE, &sh->state); 2576 2577 switch (sh->check_state) { 2578 case check_state_idle: 2579 /* start a new check operation if there are no failures */ 2580 if (s->failed == 0) { 2581 BUG_ON(s->uptodate != disks); 2582 sh->check_state = check_state_run; 2583 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2584 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2585 s->uptodate--; 2586 break; 2587 } 2588 dev = &sh->dev[s->failed_num]; 2589 /* fall through */ 2590 case check_state_compute_result: 2591 sh->check_state = check_state_idle; 2592 if (!dev) 2593 dev = &sh->dev[sh->pd_idx]; 2594 2595 /* check that a write has not made the stripe insync */ 2596 if (test_bit(STRIPE_INSYNC, &sh->state)) 2597 break; 2598 2599 /* either failed parity check, or recovery is happening */ 2600 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2601 BUG_ON(s->uptodate != disks); 2602 2603 set_bit(R5_LOCKED, &dev->flags); 2604 s->locked++; 2605 set_bit(R5_Wantwrite, &dev->flags); 2606 2607 clear_bit(STRIPE_DEGRADED, &sh->state); 2608 set_bit(STRIPE_INSYNC, &sh->state); 2609 break; 2610 case check_state_run: 2611 break; /* we will be called again upon completion */ 2612 case check_state_check_result: 2613 sh->check_state = check_state_idle; 2614 2615 /* if a failure occurred during the check operation, leave 2616 * STRIPE_INSYNC not set and let the stripe be handled again 2617 */ 2618 if (s->failed) 2619 break; 2620 2621 /* handle a successful check operation, if parity is correct 2622 * we are done. Otherwise update the mismatch count and repair 2623 * parity if !MD_RECOVERY_CHECK 2624 */ 2625 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 2626 /* parity is correct (on disc, 2627 * not in buffer any more) 2628 */ 2629 set_bit(STRIPE_INSYNC, &sh->state); 2630 else { 2631 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2632 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2633 /* don't try to repair!! */ 2634 set_bit(STRIPE_INSYNC, &sh->state); 2635 else { 2636 sh->check_state = check_state_compute_run; 2637 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2638 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2639 set_bit(R5_Wantcompute, 2640 &sh->dev[sh->pd_idx].flags); 2641 sh->ops.target = sh->pd_idx; 2642 sh->ops.target2 = -1; 2643 s->uptodate++; 2644 } 2645 } 2646 break; 2647 case check_state_compute_run: 2648 break; 2649 default: 2650 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 2651 __func__, sh->check_state, 2652 (unsigned long long) sh->sector); 2653 BUG(); 2654 } 2655 } 2656 2657 2658 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh, 2659 struct stripe_head_state *s, 2660 struct r6_state *r6s, int disks) 2661 { 2662 int pd_idx = sh->pd_idx; 2663 int qd_idx = sh->qd_idx; 2664 struct r5dev *dev; 2665 2666 set_bit(STRIPE_HANDLE, &sh->state); 2667 2668 BUG_ON(s->failed > 2); 2669 2670 /* Want to check and possibly repair P and Q. 2671 * However there could be one 'failed' device, in which 2672 * case we can only check one of them, possibly using the 2673 * other to generate missing data 2674 */ 2675 2676 switch (sh->check_state) { 2677 case check_state_idle: 2678 /* start a new check operation if there are < 2 failures */ 2679 if (s->failed == r6s->q_failed) { 2680 /* The only possible failed device holds Q, so it 2681 * makes sense to check P (If anything else were failed, 2682 * we would have used P to recreate it). 2683 */ 2684 sh->check_state = check_state_run; 2685 } 2686 if (!r6s->q_failed && s->failed < 2) { 2687 /* Q is not failed, and we didn't use it to generate 2688 * anything, so it makes sense to check it 2689 */ 2690 if (sh->check_state == check_state_run) 2691 sh->check_state = check_state_run_pq; 2692 else 2693 sh->check_state = check_state_run_q; 2694 } 2695 2696 /* discard potentially stale zero_sum_result */ 2697 sh->ops.zero_sum_result = 0; 2698 2699 if (sh->check_state == check_state_run) { 2700 /* async_xor_zero_sum destroys the contents of P */ 2701 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2702 s->uptodate--; 2703 } 2704 if (sh->check_state >= check_state_run && 2705 sh->check_state <= check_state_run_pq) { 2706 /* async_syndrome_zero_sum preserves P and Q, so 2707 * no need to mark them !uptodate here 2708 */ 2709 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2710 break; 2711 } 2712 2713 /* we have 2-disk failure */ 2714 BUG_ON(s->failed != 2); 2715 /* fall through */ 2716 case check_state_compute_result: 2717 sh->check_state = check_state_idle; 2718 2719 /* check that a write has not made the stripe insync */ 2720 if (test_bit(STRIPE_INSYNC, &sh->state)) 2721 break; 2722 2723 /* now write out any block on a failed drive, 2724 * or P or Q if they were recomputed 2725 */ 2726 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 2727 if (s->failed == 2) { 2728 dev = &sh->dev[r6s->failed_num[1]]; 2729 s->locked++; 2730 set_bit(R5_LOCKED, &dev->flags); 2731 set_bit(R5_Wantwrite, &dev->flags); 2732 } 2733 if (s->failed >= 1) { 2734 dev = &sh->dev[r6s->failed_num[0]]; 2735 s->locked++; 2736 set_bit(R5_LOCKED, &dev->flags); 2737 set_bit(R5_Wantwrite, &dev->flags); 2738 } 2739 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 2740 dev = &sh->dev[pd_idx]; 2741 s->locked++; 2742 set_bit(R5_LOCKED, &dev->flags); 2743 set_bit(R5_Wantwrite, &dev->flags); 2744 } 2745 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 2746 dev = &sh->dev[qd_idx]; 2747 s->locked++; 2748 set_bit(R5_LOCKED, &dev->flags); 2749 set_bit(R5_Wantwrite, &dev->flags); 2750 } 2751 clear_bit(STRIPE_DEGRADED, &sh->state); 2752 2753 set_bit(STRIPE_INSYNC, &sh->state); 2754 break; 2755 case check_state_run: 2756 case check_state_run_q: 2757 case check_state_run_pq: 2758 break; /* we will be called again upon completion */ 2759 case check_state_check_result: 2760 sh->check_state = check_state_idle; 2761 2762 /* handle a successful check operation, if parity is correct 2763 * we are done. Otherwise update the mismatch count and repair 2764 * parity if !MD_RECOVERY_CHECK 2765 */ 2766 if (sh->ops.zero_sum_result == 0) { 2767 /* both parities are correct */ 2768 if (!s->failed) 2769 set_bit(STRIPE_INSYNC, &sh->state); 2770 else { 2771 /* in contrast to the raid5 case we can validate 2772 * parity, but still have a failure to write 2773 * back 2774 */ 2775 sh->check_state = check_state_compute_result; 2776 /* Returning at this point means that we may go 2777 * off and bring p and/or q uptodate again so 2778 * we make sure to check zero_sum_result again 2779 * to verify if p or q need writeback 2780 */ 2781 } 2782 } else { 2783 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2784 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2785 /* don't try to repair!! */ 2786 set_bit(STRIPE_INSYNC, &sh->state); 2787 else { 2788 int *target = &sh->ops.target; 2789 2790 sh->ops.target = -1; 2791 sh->ops.target2 = -1; 2792 sh->check_state = check_state_compute_run; 2793 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2794 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2795 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 2796 set_bit(R5_Wantcompute, 2797 &sh->dev[pd_idx].flags); 2798 *target = pd_idx; 2799 target = &sh->ops.target2; 2800 s->uptodate++; 2801 } 2802 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 2803 set_bit(R5_Wantcompute, 2804 &sh->dev[qd_idx].flags); 2805 *target = qd_idx; 2806 s->uptodate++; 2807 } 2808 } 2809 } 2810 break; 2811 case check_state_compute_run: 2812 break; 2813 default: 2814 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 2815 __func__, sh->check_state, 2816 (unsigned long long) sh->sector); 2817 BUG(); 2818 } 2819 } 2820 2821 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh, 2822 struct r6_state *r6s) 2823 { 2824 int i; 2825 2826 /* We have read all the blocks in this stripe and now we need to 2827 * copy some of them into a target stripe for expand. 2828 */ 2829 struct dma_async_tx_descriptor *tx = NULL; 2830 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2831 for (i = 0; i < sh->disks; i++) 2832 if (i != sh->pd_idx && i != sh->qd_idx) { 2833 int dd_idx, j; 2834 struct stripe_head *sh2; 2835 struct async_submit_ctl submit; 2836 2837 sector_t bn = compute_blocknr(sh, i, 1); 2838 sector_t s = raid5_compute_sector(conf, bn, 0, 2839 &dd_idx, NULL); 2840 sh2 = get_active_stripe(conf, s, 0, 1, 1); 2841 if (sh2 == NULL) 2842 /* so far only the early blocks of this stripe 2843 * have been requested. When later blocks 2844 * get requested, we will try again 2845 */ 2846 continue; 2847 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 2848 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 2849 /* must have already done this block */ 2850 release_stripe(sh2); 2851 continue; 2852 } 2853 2854 /* place all the copies on one channel */ 2855 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 2856 tx = async_memcpy(sh2->dev[dd_idx].page, 2857 sh->dev[i].page, 0, 0, STRIPE_SIZE, 2858 &submit); 2859 2860 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 2861 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 2862 for (j = 0; j < conf->raid_disks; j++) 2863 if (j != sh2->pd_idx && 2864 (!r6s || j != sh2->qd_idx) && 2865 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 2866 break; 2867 if (j == conf->raid_disks) { 2868 set_bit(STRIPE_EXPAND_READY, &sh2->state); 2869 set_bit(STRIPE_HANDLE, &sh2->state); 2870 } 2871 release_stripe(sh2); 2872 2873 } 2874 /* done submitting copies, wait for them to complete */ 2875 if (tx) { 2876 async_tx_ack(tx); 2877 dma_wait_for_async_tx(tx); 2878 } 2879 } 2880 2881 2882 /* 2883 * handle_stripe - do things to a stripe. 2884 * 2885 * We lock the stripe and then examine the state of various bits 2886 * to see what needs to be done. 2887 * Possible results: 2888 * return some read request which now have data 2889 * return some write requests which are safely on disc 2890 * schedule a read on some buffers 2891 * schedule a write of some buffers 2892 * return confirmation of parity correctness 2893 * 2894 * buffers are taken off read_list or write_list, and bh_cache buffers 2895 * get BH_Lock set before the stripe lock is released. 2896 * 2897 */ 2898 2899 static bool handle_stripe5(struct stripe_head *sh) 2900 { 2901 raid5_conf_t *conf = sh->raid_conf; 2902 int disks = sh->disks, i; 2903 struct bio *return_bi = NULL; 2904 struct stripe_head_state s; 2905 struct r5dev *dev; 2906 mdk_rdev_t *blocked_rdev = NULL; 2907 int prexor; 2908 2909 memset(&s, 0, sizeof(s)); 2910 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d " 2911 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state, 2912 atomic_read(&sh->count), sh->pd_idx, sh->check_state, 2913 sh->reconstruct_state); 2914 2915 spin_lock(&sh->lock); 2916 clear_bit(STRIPE_HANDLE, &sh->state); 2917 clear_bit(STRIPE_DELAYED, &sh->state); 2918 2919 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 2920 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2921 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 2922 2923 /* Now to look around and see what can be done */ 2924 rcu_read_lock(); 2925 for (i=disks; i--; ) { 2926 mdk_rdev_t *rdev; 2927 2928 dev = &sh->dev[i]; 2929 clear_bit(R5_Insync, &dev->flags); 2930 2931 pr_debug("check %d: state 0x%lx toread %p read %p write %p " 2932 "written %p\n", i, dev->flags, dev->toread, dev->read, 2933 dev->towrite, dev->written); 2934 2935 /* maybe we can request a biofill operation 2936 * 2937 * new wantfill requests are only permitted while 2938 * ops_complete_biofill is guaranteed to be inactive 2939 */ 2940 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 2941 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 2942 set_bit(R5_Wantfill, &dev->flags); 2943 2944 /* now count some things */ 2945 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 2946 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 2947 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++; 2948 2949 if (test_bit(R5_Wantfill, &dev->flags)) 2950 s.to_fill++; 2951 else if (dev->toread) 2952 s.to_read++; 2953 if (dev->towrite) { 2954 s.to_write++; 2955 if (!test_bit(R5_OVERWRITE, &dev->flags)) 2956 s.non_overwrite++; 2957 } 2958 if (dev->written) 2959 s.written++; 2960 rdev = rcu_dereference(conf->disks[i].rdev); 2961 if (blocked_rdev == NULL && 2962 rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 2963 blocked_rdev = rdev; 2964 atomic_inc(&rdev->nr_pending); 2965 } 2966 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 2967 /* The ReadError flag will just be confusing now */ 2968 clear_bit(R5_ReadError, &dev->flags); 2969 clear_bit(R5_ReWrite, &dev->flags); 2970 } 2971 if (!rdev || !test_bit(In_sync, &rdev->flags) 2972 || test_bit(R5_ReadError, &dev->flags)) { 2973 s.failed++; 2974 s.failed_num = i; 2975 } else 2976 set_bit(R5_Insync, &dev->flags); 2977 } 2978 rcu_read_unlock(); 2979 2980 if (unlikely(blocked_rdev)) { 2981 if (s.syncing || s.expanding || s.expanded || 2982 s.to_write || s.written) { 2983 set_bit(STRIPE_HANDLE, &sh->state); 2984 goto unlock; 2985 } 2986 /* There is nothing for the blocked_rdev to block */ 2987 rdev_dec_pending(blocked_rdev, conf->mddev); 2988 blocked_rdev = NULL; 2989 } 2990 2991 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 2992 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 2993 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 2994 } 2995 2996 pr_debug("locked=%d uptodate=%d to_read=%d" 2997 " to_write=%d failed=%d failed_num=%d\n", 2998 s.locked, s.uptodate, s.to_read, s.to_write, 2999 s.failed, s.failed_num); 3000 /* check if the array has lost two devices and, if so, some requests might 3001 * need to be failed 3002 */ 3003 if (s.failed > 1 && s.to_read+s.to_write+s.written) 3004 handle_failed_stripe(conf, sh, &s, disks, &return_bi); 3005 if (s.failed > 1 && s.syncing) { 3006 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 3007 clear_bit(STRIPE_SYNCING, &sh->state); 3008 s.syncing = 0; 3009 } 3010 3011 /* might be able to return some write requests if the parity block 3012 * is safe, or on a failed drive 3013 */ 3014 dev = &sh->dev[sh->pd_idx]; 3015 if ( s.written && 3016 ((test_bit(R5_Insync, &dev->flags) && 3017 !test_bit(R5_LOCKED, &dev->flags) && 3018 test_bit(R5_UPTODATE, &dev->flags)) || 3019 (s.failed == 1 && s.failed_num == sh->pd_idx))) 3020 handle_stripe_clean_event(conf, sh, disks, &return_bi); 3021 3022 /* Now we might consider reading some blocks, either to check/generate 3023 * parity, or to satisfy requests 3024 * or to load a block that is being partially written. 3025 */ 3026 if (s.to_read || s.non_overwrite || 3027 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding) 3028 handle_stripe_fill5(sh, &s, disks); 3029 3030 /* Now we check to see if any write operations have recently 3031 * completed 3032 */ 3033 prexor = 0; 3034 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3035 prexor = 1; 3036 if (sh->reconstruct_state == reconstruct_state_drain_result || 3037 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3038 sh->reconstruct_state = reconstruct_state_idle; 3039 3040 /* All the 'written' buffers and the parity block are ready to 3041 * be written back to disk 3042 */ 3043 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); 3044 for (i = disks; i--; ) { 3045 dev = &sh->dev[i]; 3046 if (test_bit(R5_LOCKED, &dev->flags) && 3047 (i == sh->pd_idx || dev->written)) { 3048 pr_debug("Writing block %d\n", i); 3049 set_bit(R5_Wantwrite, &dev->flags); 3050 if (prexor) 3051 continue; 3052 if (!test_bit(R5_Insync, &dev->flags) || 3053 (i == sh->pd_idx && s.failed == 0)) 3054 set_bit(STRIPE_INSYNC, &sh->state); 3055 } 3056 } 3057 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 3058 atomic_dec(&conf->preread_active_stripes); 3059 if (atomic_read(&conf->preread_active_stripes) < 3060 IO_THRESHOLD) 3061 md_wakeup_thread(conf->mddev->thread); 3062 } 3063 } 3064 3065 /* Now to consider new write requests and what else, if anything 3066 * should be read. We do not handle new writes when: 3067 * 1/ A 'write' operation (copy+xor) is already in flight. 3068 * 2/ A 'check' operation is in flight, as it may clobber the parity 3069 * block. 3070 */ 3071 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3072 handle_stripe_dirtying5(conf, sh, &s, disks); 3073 3074 /* maybe we need to check and possibly fix the parity for this stripe 3075 * Any reads will already have been scheduled, so we just see if enough 3076 * data is available. The parity check is held off while parity 3077 * dependent operations are in flight. 3078 */ 3079 if (sh->check_state || 3080 (s.syncing && s.locked == 0 && 3081 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3082 !test_bit(STRIPE_INSYNC, &sh->state))) 3083 handle_parity_checks5(conf, sh, &s, disks); 3084 3085 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 3086 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 3087 clear_bit(STRIPE_SYNCING, &sh->state); 3088 } 3089 3090 /* If the failed drive is just a ReadError, then we might need to progress 3091 * the repair/check process 3092 */ 3093 if (s.failed == 1 && !conf->mddev->ro && 3094 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags) 3095 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags) 3096 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags) 3097 ) { 3098 dev = &sh->dev[s.failed_num]; 3099 if (!test_bit(R5_ReWrite, &dev->flags)) { 3100 set_bit(R5_Wantwrite, &dev->flags); 3101 set_bit(R5_ReWrite, &dev->flags); 3102 set_bit(R5_LOCKED, &dev->flags); 3103 s.locked++; 3104 } else { 3105 /* let's read it back */ 3106 set_bit(R5_Wantread, &dev->flags); 3107 set_bit(R5_LOCKED, &dev->flags); 3108 s.locked++; 3109 } 3110 } 3111 3112 /* Finish reconstruct operations initiated by the expansion process */ 3113 if (sh->reconstruct_state == reconstruct_state_result) { 3114 struct stripe_head *sh2 3115 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3116 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) { 3117 /* sh cannot be written until sh2 has been read. 3118 * so arrange for sh to be delayed a little 3119 */ 3120 set_bit(STRIPE_DELAYED, &sh->state); 3121 set_bit(STRIPE_HANDLE, &sh->state); 3122 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3123 &sh2->state)) 3124 atomic_inc(&conf->preread_active_stripes); 3125 release_stripe(sh2); 3126 goto unlock; 3127 } 3128 if (sh2) 3129 release_stripe(sh2); 3130 3131 sh->reconstruct_state = reconstruct_state_idle; 3132 clear_bit(STRIPE_EXPANDING, &sh->state); 3133 for (i = conf->raid_disks; i--; ) { 3134 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3135 set_bit(R5_LOCKED, &sh->dev[i].flags); 3136 s.locked++; 3137 } 3138 } 3139 3140 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3141 !sh->reconstruct_state) { 3142 /* Need to write out all blocks after computing parity */ 3143 sh->disks = conf->raid_disks; 3144 stripe_set_idx(sh->sector, conf, 0, sh); 3145 schedule_reconstruction(sh, &s, 1, 1); 3146 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3147 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3148 atomic_dec(&conf->reshape_stripes); 3149 wake_up(&conf->wait_for_overlap); 3150 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3151 } 3152 3153 if (s.expanding && s.locked == 0 && 3154 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3155 handle_stripe_expansion(conf, sh, NULL); 3156 3157 unlock: 3158 spin_unlock(&sh->lock); 3159 3160 /* wait for this device to become unblocked */ 3161 if (unlikely(blocked_rdev)) 3162 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev); 3163 3164 if (s.ops_request) 3165 raid_run_ops(sh, s.ops_request); 3166 3167 ops_run_io(sh, &s); 3168 3169 return_io(return_bi); 3170 3171 return blocked_rdev == NULL; 3172 } 3173 3174 static bool handle_stripe6(struct stripe_head *sh) 3175 { 3176 raid5_conf_t *conf = sh->raid_conf; 3177 int disks = sh->disks; 3178 struct bio *return_bi = NULL; 3179 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx; 3180 struct stripe_head_state s; 3181 struct r6_state r6s; 3182 struct r5dev *dev, *pdev, *qdev; 3183 mdk_rdev_t *blocked_rdev = NULL; 3184 3185 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3186 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3187 (unsigned long long)sh->sector, sh->state, 3188 atomic_read(&sh->count), pd_idx, qd_idx, 3189 sh->check_state, sh->reconstruct_state); 3190 memset(&s, 0, sizeof(s)); 3191 3192 spin_lock(&sh->lock); 3193 clear_bit(STRIPE_HANDLE, &sh->state); 3194 clear_bit(STRIPE_DELAYED, &sh->state); 3195 3196 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 3197 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3198 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3199 /* Now to look around and see what can be done */ 3200 3201 rcu_read_lock(); 3202 for (i=disks; i--; ) { 3203 mdk_rdev_t *rdev; 3204 dev = &sh->dev[i]; 3205 clear_bit(R5_Insync, &dev->flags); 3206 3207 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3208 i, dev->flags, dev->toread, dev->towrite, dev->written); 3209 /* maybe we can reply to a read 3210 * 3211 * new wantfill requests are only permitted while 3212 * ops_complete_biofill is guaranteed to be inactive 3213 */ 3214 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3215 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3216 set_bit(R5_Wantfill, &dev->flags); 3217 3218 /* now count some things */ 3219 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 3220 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 3221 if (test_bit(R5_Wantcompute, &dev->flags)) { 3222 s.compute++; 3223 BUG_ON(s.compute > 2); 3224 } 3225 3226 if (test_bit(R5_Wantfill, &dev->flags)) { 3227 s.to_fill++; 3228 } else if (dev->toread) 3229 s.to_read++; 3230 if (dev->towrite) { 3231 s.to_write++; 3232 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3233 s.non_overwrite++; 3234 } 3235 if (dev->written) 3236 s.written++; 3237 rdev = rcu_dereference(conf->disks[i].rdev); 3238 if (blocked_rdev == NULL && 3239 rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 3240 blocked_rdev = rdev; 3241 atomic_inc(&rdev->nr_pending); 3242 } 3243 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 3244 /* The ReadError flag will just be confusing now */ 3245 clear_bit(R5_ReadError, &dev->flags); 3246 clear_bit(R5_ReWrite, &dev->flags); 3247 } 3248 if (!rdev || !test_bit(In_sync, &rdev->flags) 3249 || test_bit(R5_ReadError, &dev->flags)) { 3250 if (s.failed < 2) 3251 r6s.failed_num[s.failed] = i; 3252 s.failed++; 3253 } else 3254 set_bit(R5_Insync, &dev->flags); 3255 } 3256 rcu_read_unlock(); 3257 3258 if (unlikely(blocked_rdev)) { 3259 if (s.syncing || s.expanding || s.expanded || 3260 s.to_write || s.written) { 3261 set_bit(STRIPE_HANDLE, &sh->state); 3262 goto unlock; 3263 } 3264 /* There is nothing for the blocked_rdev to block */ 3265 rdev_dec_pending(blocked_rdev, conf->mddev); 3266 blocked_rdev = NULL; 3267 } 3268 3269 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3270 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3271 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3272 } 3273 3274 pr_debug("locked=%d uptodate=%d to_read=%d" 3275 " to_write=%d failed=%d failed_num=%d,%d\n", 3276 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3277 r6s.failed_num[0], r6s.failed_num[1]); 3278 /* check if the array has lost >2 devices and, if so, some requests 3279 * might need to be failed 3280 */ 3281 if (s.failed > 2 && s.to_read+s.to_write+s.written) 3282 handle_failed_stripe(conf, sh, &s, disks, &return_bi); 3283 if (s.failed > 2 && s.syncing) { 3284 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 3285 clear_bit(STRIPE_SYNCING, &sh->state); 3286 s.syncing = 0; 3287 } 3288 3289 /* 3290 * might be able to return some write requests if the parity blocks 3291 * are safe, or on a failed drive 3292 */ 3293 pdev = &sh->dev[pd_idx]; 3294 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx) 3295 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx); 3296 qdev = &sh->dev[qd_idx]; 3297 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx) 3298 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx); 3299 3300 if ( s.written && 3301 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3302 && !test_bit(R5_LOCKED, &pdev->flags) 3303 && test_bit(R5_UPTODATE, &pdev->flags)))) && 3304 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3305 && !test_bit(R5_LOCKED, &qdev->flags) 3306 && test_bit(R5_UPTODATE, &qdev->flags))))) 3307 handle_stripe_clean_event(conf, sh, disks, &return_bi); 3308 3309 /* Now we might consider reading some blocks, either to check/generate 3310 * parity, or to satisfy requests 3311 * or to load a block that is being partially written. 3312 */ 3313 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) || 3314 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding) 3315 handle_stripe_fill6(sh, &s, &r6s, disks); 3316 3317 /* Now we check to see if any write operations have recently 3318 * completed 3319 */ 3320 if (sh->reconstruct_state == reconstruct_state_drain_result) { 3321 int qd_idx = sh->qd_idx; 3322 3323 sh->reconstruct_state = reconstruct_state_idle; 3324 /* All the 'written' buffers and the parity blocks are ready to 3325 * be written back to disk 3326 */ 3327 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); 3328 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags)); 3329 for (i = disks; i--; ) { 3330 dev = &sh->dev[i]; 3331 if (test_bit(R5_LOCKED, &dev->flags) && 3332 (i == sh->pd_idx || i == qd_idx || 3333 dev->written)) { 3334 pr_debug("Writing block %d\n", i); 3335 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3336 set_bit(R5_Wantwrite, &dev->flags); 3337 if (!test_bit(R5_Insync, &dev->flags) || 3338 ((i == sh->pd_idx || i == qd_idx) && 3339 s.failed == 0)) 3340 set_bit(STRIPE_INSYNC, &sh->state); 3341 } 3342 } 3343 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 3344 atomic_dec(&conf->preread_active_stripes); 3345 if (atomic_read(&conf->preread_active_stripes) < 3346 IO_THRESHOLD) 3347 md_wakeup_thread(conf->mddev->thread); 3348 } 3349 } 3350 3351 /* Now to consider new write requests and what else, if anything 3352 * should be read. We do not handle new writes when: 3353 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight. 3354 * 2/ A 'check' operation is in flight, as it may clobber the parity 3355 * block. 3356 */ 3357 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3358 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks); 3359 3360 /* maybe we need to check and possibly fix the parity for this stripe 3361 * Any reads will already have been scheduled, so we just see if enough 3362 * data is available. The parity check is held off while parity 3363 * dependent operations are in flight. 3364 */ 3365 if (sh->check_state || 3366 (s.syncing && s.locked == 0 && 3367 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3368 !test_bit(STRIPE_INSYNC, &sh->state))) 3369 handle_parity_checks6(conf, sh, &s, &r6s, disks); 3370 3371 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 3372 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 3373 clear_bit(STRIPE_SYNCING, &sh->state); 3374 } 3375 3376 /* If the failed drives are just a ReadError, then we might need 3377 * to progress the repair/check process 3378 */ 3379 if (s.failed <= 2 && !conf->mddev->ro) 3380 for (i = 0; i < s.failed; i++) { 3381 dev = &sh->dev[r6s.failed_num[i]]; 3382 if (test_bit(R5_ReadError, &dev->flags) 3383 && !test_bit(R5_LOCKED, &dev->flags) 3384 && test_bit(R5_UPTODATE, &dev->flags) 3385 ) { 3386 if (!test_bit(R5_ReWrite, &dev->flags)) { 3387 set_bit(R5_Wantwrite, &dev->flags); 3388 set_bit(R5_ReWrite, &dev->flags); 3389 set_bit(R5_LOCKED, &dev->flags); 3390 s.locked++; 3391 } else { 3392 /* let's read it back */ 3393 set_bit(R5_Wantread, &dev->flags); 3394 set_bit(R5_LOCKED, &dev->flags); 3395 s.locked++; 3396 } 3397 } 3398 } 3399 3400 /* Finish reconstruct operations initiated by the expansion process */ 3401 if (sh->reconstruct_state == reconstruct_state_result) { 3402 sh->reconstruct_state = reconstruct_state_idle; 3403 clear_bit(STRIPE_EXPANDING, &sh->state); 3404 for (i = conf->raid_disks; i--; ) { 3405 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3406 set_bit(R5_LOCKED, &sh->dev[i].flags); 3407 s.locked++; 3408 } 3409 } 3410 3411 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3412 !sh->reconstruct_state) { 3413 struct stripe_head *sh2 3414 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3415 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) { 3416 /* sh cannot be written until sh2 has been read. 3417 * so arrange for sh to be delayed a little 3418 */ 3419 set_bit(STRIPE_DELAYED, &sh->state); 3420 set_bit(STRIPE_HANDLE, &sh->state); 3421 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3422 &sh2->state)) 3423 atomic_inc(&conf->preread_active_stripes); 3424 release_stripe(sh2); 3425 goto unlock; 3426 } 3427 if (sh2) 3428 release_stripe(sh2); 3429 3430 /* Need to write out all blocks after computing P&Q */ 3431 sh->disks = conf->raid_disks; 3432 stripe_set_idx(sh->sector, conf, 0, sh); 3433 schedule_reconstruction(sh, &s, 1, 1); 3434 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3435 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3436 atomic_dec(&conf->reshape_stripes); 3437 wake_up(&conf->wait_for_overlap); 3438 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3439 } 3440 3441 if (s.expanding && s.locked == 0 && 3442 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3443 handle_stripe_expansion(conf, sh, &r6s); 3444 3445 unlock: 3446 spin_unlock(&sh->lock); 3447 3448 /* wait for this device to become unblocked */ 3449 if (unlikely(blocked_rdev)) 3450 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev); 3451 3452 if (s.ops_request) 3453 raid_run_ops(sh, s.ops_request); 3454 3455 ops_run_io(sh, &s); 3456 3457 return_io(return_bi); 3458 3459 return blocked_rdev == NULL; 3460 } 3461 3462 /* returns true if the stripe was handled */ 3463 static bool handle_stripe(struct stripe_head *sh) 3464 { 3465 if (sh->raid_conf->level == 6) 3466 return handle_stripe6(sh); 3467 else 3468 return handle_stripe5(sh); 3469 } 3470 3471 static void raid5_activate_delayed(raid5_conf_t *conf) 3472 { 3473 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3474 while (!list_empty(&conf->delayed_list)) { 3475 struct list_head *l = conf->delayed_list.next; 3476 struct stripe_head *sh; 3477 sh = list_entry(l, struct stripe_head, lru); 3478 list_del_init(l); 3479 clear_bit(STRIPE_DELAYED, &sh->state); 3480 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3481 atomic_inc(&conf->preread_active_stripes); 3482 list_add_tail(&sh->lru, &conf->hold_list); 3483 } 3484 } else 3485 blk_plug_device(conf->mddev->queue); 3486 } 3487 3488 static void activate_bit_delay(raid5_conf_t *conf) 3489 { 3490 /* device_lock is held */ 3491 struct list_head head; 3492 list_add(&head, &conf->bitmap_list); 3493 list_del_init(&conf->bitmap_list); 3494 while (!list_empty(&head)) { 3495 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3496 list_del_init(&sh->lru); 3497 atomic_inc(&sh->count); 3498 __release_stripe(conf, sh); 3499 } 3500 } 3501 3502 static void unplug_slaves(mddev_t *mddev) 3503 { 3504 raid5_conf_t *conf = mddev->private; 3505 int i; 3506 3507 rcu_read_lock(); 3508 for (i = 0; i < conf->raid_disks; i++) { 3509 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 3510 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 3511 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 3512 3513 atomic_inc(&rdev->nr_pending); 3514 rcu_read_unlock(); 3515 3516 blk_unplug(r_queue); 3517 3518 rdev_dec_pending(rdev, mddev); 3519 rcu_read_lock(); 3520 } 3521 } 3522 rcu_read_unlock(); 3523 } 3524 3525 static void raid5_unplug_device(struct request_queue *q) 3526 { 3527 mddev_t *mddev = q->queuedata; 3528 raid5_conf_t *conf = mddev->private; 3529 unsigned long flags; 3530 3531 spin_lock_irqsave(&conf->device_lock, flags); 3532 3533 if (blk_remove_plug(q)) { 3534 conf->seq_flush++; 3535 raid5_activate_delayed(conf); 3536 } 3537 md_wakeup_thread(mddev->thread); 3538 3539 spin_unlock_irqrestore(&conf->device_lock, flags); 3540 3541 unplug_slaves(mddev); 3542 } 3543 3544 static int raid5_congested(void *data, int bits) 3545 { 3546 mddev_t *mddev = data; 3547 raid5_conf_t *conf = mddev->private; 3548 3549 /* No difference between reads and writes. Just check 3550 * how busy the stripe_cache is 3551 */ 3552 3553 if (mddev_congested(mddev, bits)) 3554 return 1; 3555 if (conf->inactive_blocked) 3556 return 1; 3557 if (conf->quiesce) 3558 return 1; 3559 if (list_empty_careful(&conf->inactive_list)) 3560 return 1; 3561 3562 return 0; 3563 } 3564 3565 /* We want read requests to align with chunks where possible, 3566 * but write requests don't need to. 3567 */ 3568 static int raid5_mergeable_bvec(struct request_queue *q, 3569 struct bvec_merge_data *bvm, 3570 struct bio_vec *biovec) 3571 { 3572 mddev_t *mddev = q->queuedata; 3573 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 3574 int max; 3575 unsigned int chunk_sectors = mddev->chunk_sectors; 3576 unsigned int bio_sectors = bvm->bi_size >> 9; 3577 3578 if ((bvm->bi_rw & 1) == WRITE) 3579 return biovec->bv_len; /* always allow writes to be mergeable */ 3580 3581 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3582 chunk_sectors = mddev->new_chunk_sectors; 3583 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3584 if (max < 0) max = 0; 3585 if (max <= biovec->bv_len && bio_sectors == 0) 3586 return biovec->bv_len; 3587 else 3588 return max; 3589 } 3590 3591 3592 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio) 3593 { 3594 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3595 unsigned int chunk_sectors = mddev->chunk_sectors; 3596 unsigned int bio_sectors = bio->bi_size >> 9; 3597 3598 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3599 chunk_sectors = mddev->new_chunk_sectors; 3600 return chunk_sectors >= 3601 ((sector & (chunk_sectors - 1)) + bio_sectors); 3602 } 3603 3604 /* 3605 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3606 * later sampled by raid5d. 3607 */ 3608 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf) 3609 { 3610 unsigned long flags; 3611 3612 spin_lock_irqsave(&conf->device_lock, flags); 3613 3614 bi->bi_next = conf->retry_read_aligned_list; 3615 conf->retry_read_aligned_list = bi; 3616 3617 spin_unlock_irqrestore(&conf->device_lock, flags); 3618 md_wakeup_thread(conf->mddev->thread); 3619 } 3620 3621 3622 static struct bio *remove_bio_from_retry(raid5_conf_t *conf) 3623 { 3624 struct bio *bi; 3625 3626 bi = conf->retry_read_aligned; 3627 if (bi) { 3628 conf->retry_read_aligned = NULL; 3629 return bi; 3630 } 3631 bi = conf->retry_read_aligned_list; 3632 if(bi) { 3633 conf->retry_read_aligned_list = bi->bi_next; 3634 bi->bi_next = NULL; 3635 /* 3636 * this sets the active strip count to 1 and the processed 3637 * strip count to zero (upper 8 bits) 3638 */ 3639 bi->bi_phys_segments = 1; /* biased count of active stripes */ 3640 } 3641 3642 return bi; 3643 } 3644 3645 3646 /* 3647 * The "raid5_align_endio" should check if the read succeeded and if it 3648 * did, call bio_endio on the original bio (having bio_put the new bio 3649 * first). 3650 * If the read failed.. 3651 */ 3652 static void raid5_align_endio(struct bio *bi, int error) 3653 { 3654 struct bio* raid_bi = bi->bi_private; 3655 mddev_t *mddev; 3656 raid5_conf_t *conf; 3657 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3658 mdk_rdev_t *rdev; 3659 3660 bio_put(bi); 3661 3662 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata; 3663 conf = mddev->private; 3664 rdev = (void*)raid_bi->bi_next; 3665 raid_bi->bi_next = NULL; 3666 3667 rdev_dec_pending(rdev, conf->mddev); 3668 3669 if (!error && uptodate) { 3670 bio_endio(raid_bi, 0); 3671 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3672 wake_up(&conf->wait_for_stripe); 3673 return; 3674 } 3675 3676 3677 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3678 3679 add_bio_to_retry(raid_bi, conf); 3680 } 3681 3682 static int bio_fits_rdev(struct bio *bi) 3683 { 3684 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3685 3686 if ((bi->bi_size>>9) > queue_max_sectors(q)) 3687 return 0; 3688 blk_recount_segments(q, bi); 3689 if (bi->bi_phys_segments > queue_max_phys_segments(q)) 3690 return 0; 3691 3692 if (q->merge_bvec_fn) 3693 /* it's too hard to apply the merge_bvec_fn at this stage, 3694 * just just give up 3695 */ 3696 return 0; 3697 3698 return 1; 3699 } 3700 3701 3702 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio) 3703 { 3704 mddev_t *mddev = q->queuedata; 3705 raid5_conf_t *conf = mddev->private; 3706 unsigned int dd_idx; 3707 struct bio* align_bi; 3708 mdk_rdev_t *rdev; 3709 3710 if (!in_chunk_boundary(mddev, raid_bio)) { 3711 pr_debug("chunk_aligned_read : non aligned\n"); 3712 return 0; 3713 } 3714 /* 3715 * use bio_clone to make a copy of the bio 3716 */ 3717 align_bi = bio_clone(raid_bio, GFP_NOIO); 3718 if (!align_bi) 3719 return 0; 3720 /* 3721 * set bi_end_io to a new function, and set bi_private to the 3722 * original bio. 3723 */ 3724 align_bi->bi_end_io = raid5_align_endio; 3725 align_bi->bi_private = raid_bio; 3726 /* 3727 * compute position 3728 */ 3729 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 3730 0, 3731 &dd_idx, NULL); 3732 3733 rcu_read_lock(); 3734 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3735 if (rdev && test_bit(In_sync, &rdev->flags)) { 3736 atomic_inc(&rdev->nr_pending); 3737 rcu_read_unlock(); 3738 raid_bio->bi_next = (void*)rdev; 3739 align_bi->bi_bdev = rdev->bdev; 3740 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 3741 align_bi->bi_sector += rdev->data_offset; 3742 3743 if (!bio_fits_rdev(align_bi)) { 3744 /* too big in some way */ 3745 bio_put(align_bi); 3746 rdev_dec_pending(rdev, mddev); 3747 return 0; 3748 } 3749 3750 spin_lock_irq(&conf->device_lock); 3751 wait_event_lock_irq(conf->wait_for_stripe, 3752 conf->quiesce == 0, 3753 conf->device_lock, /* nothing */); 3754 atomic_inc(&conf->active_aligned_reads); 3755 spin_unlock_irq(&conf->device_lock); 3756 3757 generic_make_request(align_bi); 3758 return 1; 3759 } else { 3760 rcu_read_unlock(); 3761 bio_put(align_bi); 3762 return 0; 3763 } 3764 } 3765 3766 /* __get_priority_stripe - get the next stripe to process 3767 * 3768 * Full stripe writes are allowed to pass preread active stripes up until 3769 * the bypass_threshold is exceeded. In general the bypass_count 3770 * increments when the handle_list is handled before the hold_list; however, it 3771 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 3772 * stripe with in flight i/o. The bypass_count will be reset when the 3773 * head of the hold_list has changed, i.e. the head was promoted to the 3774 * handle_list. 3775 */ 3776 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf) 3777 { 3778 struct stripe_head *sh; 3779 3780 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 3781 __func__, 3782 list_empty(&conf->handle_list) ? "empty" : "busy", 3783 list_empty(&conf->hold_list) ? "empty" : "busy", 3784 atomic_read(&conf->pending_full_writes), conf->bypass_count); 3785 3786 if (!list_empty(&conf->handle_list)) { 3787 sh = list_entry(conf->handle_list.next, typeof(*sh), lru); 3788 3789 if (list_empty(&conf->hold_list)) 3790 conf->bypass_count = 0; 3791 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 3792 if (conf->hold_list.next == conf->last_hold) 3793 conf->bypass_count++; 3794 else { 3795 conf->last_hold = conf->hold_list.next; 3796 conf->bypass_count -= conf->bypass_threshold; 3797 if (conf->bypass_count < 0) 3798 conf->bypass_count = 0; 3799 } 3800 } 3801 } else if (!list_empty(&conf->hold_list) && 3802 ((conf->bypass_threshold && 3803 conf->bypass_count > conf->bypass_threshold) || 3804 atomic_read(&conf->pending_full_writes) == 0)) { 3805 sh = list_entry(conf->hold_list.next, 3806 typeof(*sh), lru); 3807 conf->bypass_count -= conf->bypass_threshold; 3808 if (conf->bypass_count < 0) 3809 conf->bypass_count = 0; 3810 } else 3811 return NULL; 3812 3813 list_del_init(&sh->lru); 3814 atomic_inc(&sh->count); 3815 BUG_ON(atomic_read(&sh->count) != 1); 3816 return sh; 3817 } 3818 3819 static int make_request(struct request_queue *q, struct bio * bi) 3820 { 3821 mddev_t *mddev = q->queuedata; 3822 raid5_conf_t *conf = mddev->private; 3823 int dd_idx; 3824 sector_t new_sector; 3825 sector_t logical_sector, last_sector; 3826 struct stripe_head *sh; 3827 const int rw = bio_data_dir(bi); 3828 int cpu, remaining; 3829 3830 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) { 3831 bio_endio(bi, -EOPNOTSUPP); 3832 return 0; 3833 } 3834 3835 md_write_start(mddev, bi); 3836 3837 cpu = part_stat_lock(); 3838 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 3839 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 3840 bio_sectors(bi)); 3841 part_stat_unlock(); 3842 3843 if (rw == READ && 3844 mddev->reshape_position == MaxSector && 3845 chunk_aligned_read(q,bi)) 3846 return 0; 3847 3848 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 3849 last_sector = bi->bi_sector + (bi->bi_size>>9); 3850 bi->bi_next = NULL; 3851 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 3852 3853 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 3854 DEFINE_WAIT(w); 3855 int disks, data_disks; 3856 int previous; 3857 3858 retry: 3859 previous = 0; 3860 disks = conf->raid_disks; 3861 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 3862 if (unlikely(conf->reshape_progress != MaxSector)) { 3863 /* spinlock is needed as reshape_progress may be 3864 * 64bit on a 32bit platform, and so it might be 3865 * possible to see a half-updated value 3866 * Ofcourse reshape_progress could change after 3867 * the lock is dropped, so once we get a reference 3868 * to the stripe that we think it is, we will have 3869 * to check again. 3870 */ 3871 spin_lock_irq(&conf->device_lock); 3872 if (mddev->delta_disks < 0 3873 ? logical_sector < conf->reshape_progress 3874 : logical_sector >= conf->reshape_progress) { 3875 disks = conf->previous_raid_disks; 3876 previous = 1; 3877 } else { 3878 if (mddev->delta_disks < 0 3879 ? logical_sector < conf->reshape_safe 3880 : logical_sector >= conf->reshape_safe) { 3881 spin_unlock_irq(&conf->device_lock); 3882 schedule(); 3883 goto retry; 3884 } 3885 } 3886 spin_unlock_irq(&conf->device_lock); 3887 } 3888 data_disks = disks - conf->max_degraded; 3889 3890 new_sector = raid5_compute_sector(conf, logical_sector, 3891 previous, 3892 &dd_idx, NULL); 3893 pr_debug("raid5: make_request, sector %llu logical %llu\n", 3894 (unsigned long long)new_sector, 3895 (unsigned long long)logical_sector); 3896 3897 sh = get_active_stripe(conf, new_sector, previous, 3898 (bi->bi_rw&RWA_MASK), 0); 3899 if (sh) { 3900 if (unlikely(previous)) { 3901 /* expansion might have moved on while waiting for a 3902 * stripe, so we must do the range check again. 3903 * Expansion could still move past after this 3904 * test, but as we are holding a reference to 3905 * 'sh', we know that if that happens, 3906 * STRIPE_EXPANDING will get set and the expansion 3907 * won't proceed until we finish with the stripe. 3908 */ 3909 int must_retry = 0; 3910 spin_lock_irq(&conf->device_lock); 3911 if (mddev->delta_disks < 0 3912 ? logical_sector >= conf->reshape_progress 3913 : logical_sector < conf->reshape_progress) 3914 /* mismatch, need to try again */ 3915 must_retry = 1; 3916 spin_unlock_irq(&conf->device_lock); 3917 if (must_retry) { 3918 release_stripe(sh); 3919 schedule(); 3920 goto retry; 3921 } 3922 } 3923 3924 if (bio_data_dir(bi) == WRITE && 3925 logical_sector >= mddev->suspend_lo && 3926 logical_sector < mddev->suspend_hi) { 3927 release_stripe(sh); 3928 /* As the suspend_* range is controlled by 3929 * userspace, we want an interruptible 3930 * wait. 3931 */ 3932 flush_signals(current); 3933 prepare_to_wait(&conf->wait_for_overlap, 3934 &w, TASK_INTERRUPTIBLE); 3935 if (logical_sector >= mddev->suspend_lo && 3936 logical_sector < mddev->suspend_hi) 3937 schedule(); 3938 goto retry; 3939 } 3940 3941 if (test_bit(STRIPE_EXPANDING, &sh->state) || 3942 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { 3943 /* Stripe is busy expanding or 3944 * add failed due to overlap. Flush everything 3945 * and wait a while 3946 */ 3947 raid5_unplug_device(mddev->queue); 3948 release_stripe(sh); 3949 schedule(); 3950 goto retry; 3951 } 3952 finish_wait(&conf->wait_for_overlap, &w); 3953 set_bit(STRIPE_HANDLE, &sh->state); 3954 clear_bit(STRIPE_DELAYED, &sh->state); 3955 release_stripe(sh); 3956 } else { 3957 /* cannot get stripe for read-ahead, just give-up */ 3958 clear_bit(BIO_UPTODATE, &bi->bi_flags); 3959 finish_wait(&conf->wait_for_overlap, &w); 3960 break; 3961 } 3962 3963 } 3964 spin_lock_irq(&conf->device_lock); 3965 remaining = raid5_dec_bi_phys_segments(bi); 3966 spin_unlock_irq(&conf->device_lock); 3967 if (remaining == 0) { 3968 3969 if ( rw == WRITE ) 3970 md_write_end(mddev); 3971 3972 bio_endio(bi, 0); 3973 } 3974 return 0; 3975 } 3976 3977 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks); 3978 3979 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped) 3980 { 3981 /* reshaping is quite different to recovery/resync so it is 3982 * handled quite separately ... here. 3983 * 3984 * On each call to sync_request, we gather one chunk worth of 3985 * destination stripes and flag them as expanding. 3986 * Then we find all the source stripes and request reads. 3987 * As the reads complete, handle_stripe will copy the data 3988 * into the destination stripe and release that stripe. 3989 */ 3990 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3991 struct stripe_head *sh; 3992 sector_t first_sector, last_sector; 3993 int raid_disks = conf->previous_raid_disks; 3994 int data_disks = raid_disks - conf->max_degraded; 3995 int new_data_disks = conf->raid_disks - conf->max_degraded; 3996 int i; 3997 int dd_idx; 3998 sector_t writepos, readpos, safepos; 3999 sector_t stripe_addr; 4000 int reshape_sectors; 4001 struct list_head stripes; 4002 4003 if (sector_nr == 0) { 4004 /* If restarting in the middle, skip the initial sectors */ 4005 if (mddev->delta_disks < 0 && 4006 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4007 sector_nr = raid5_size(mddev, 0, 0) 4008 - conf->reshape_progress; 4009 } else if (mddev->delta_disks >= 0 && 4010 conf->reshape_progress > 0) 4011 sector_nr = conf->reshape_progress; 4012 sector_div(sector_nr, new_data_disks); 4013 if (sector_nr) { 4014 *skipped = 1; 4015 return sector_nr; 4016 } 4017 } 4018 4019 /* We need to process a full chunk at a time. 4020 * If old and new chunk sizes differ, we need to process the 4021 * largest of these 4022 */ 4023 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4024 reshape_sectors = mddev->new_chunk_sectors; 4025 else 4026 reshape_sectors = mddev->chunk_sectors; 4027 4028 /* we update the metadata when there is more than 3Meg 4029 * in the block range (that is rather arbitrary, should 4030 * probably be time based) or when the data about to be 4031 * copied would over-write the source of the data at 4032 * the front of the range. 4033 * i.e. one new_stripe along from reshape_progress new_maps 4034 * to after where reshape_safe old_maps to 4035 */ 4036 writepos = conf->reshape_progress; 4037 sector_div(writepos, new_data_disks); 4038 readpos = conf->reshape_progress; 4039 sector_div(readpos, data_disks); 4040 safepos = conf->reshape_safe; 4041 sector_div(safepos, data_disks); 4042 if (mddev->delta_disks < 0) { 4043 writepos -= min_t(sector_t, reshape_sectors, writepos); 4044 readpos += reshape_sectors; 4045 safepos += reshape_sectors; 4046 } else { 4047 writepos += reshape_sectors; 4048 readpos -= min_t(sector_t, reshape_sectors, readpos); 4049 safepos -= min_t(sector_t, reshape_sectors, safepos); 4050 } 4051 4052 /* 'writepos' is the most advanced device address we might write. 4053 * 'readpos' is the least advanced device address we might read. 4054 * 'safepos' is the least address recorded in the metadata as having 4055 * been reshaped. 4056 * If 'readpos' is behind 'writepos', then there is no way that we can 4057 * ensure safety in the face of a crash - that must be done by userspace 4058 * making a backup of the data. So in that case there is no particular 4059 * rush to update metadata. 4060 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4061 * update the metadata to advance 'safepos' to match 'readpos' so that 4062 * we can be safe in the event of a crash. 4063 * So we insist on updating metadata if safepos is behind writepos and 4064 * readpos is beyond writepos. 4065 * In any case, update the metadata every 10 seconds. 4066 * Maybe that number should be configurable, but I'm not sure it is 4067 * worth it.... maybe it could be a multiple of safemode_delay??? 4068 */ 4069 if ((mddev->delta_disks < 0 4070 ? (safepos > writepos && readpos < writepos) 4071 : (safepos < writepos && readpos > writepos)) || 4072 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4073 /* Cannot proceed until we've updated the superblock... */ 4074 wait_event(conf->wait_for_overlap, 4075 atomic_read(&conf->reshape_stripes)==0); 4076 mddev->reshape_position = conf->reshape_progress; 4077 mddev->curr_resync_completed = mddev->curr_resync; 4078 conf->reshape_checkpoint = jiffies; 4079 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4080 md_wakeup_thread(mddev->thread); 4081 wait_event(mddev->sb_wait, mddev->flags == 0 || 4082 kthread_should_stop()); 4083 spin_lock_irq(&conf->device_lock); 4084 conf->reshape_safe = mddev->reshape_position; 4085 spin_unlock_irq(&conf->device_lock); 4086 wake_up(&conf->wait_for_overlap); 4087 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4088 } 4089 4090 if (mddev->delta_disks < 0) { 4091 BUG_ON(conf->reshape_progress == 0); 4092 stripe_addr = writepos; 4093 BUG_ON((mddev->dev_sectors & 4094 ~((sector_t)reshape_sectors - 1)) 4095 - reshape_sectors - stripe_addr 4096 != sector_nr); 4097 } else { 4098 BUG_ON(writepos != sector_nr + reshape_sectors); 4099 stripe_addr = sector_nr; 4100 } 4101 INIT_LIST_HEAD(&stripes); 4102 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4103 int j; 4104 int skipped_disk = 0; 4105 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4106 set_bit(STRIPE_EXPANDING, &sh->state); 4107 atomic_inc(&conf->reshape_stripes); 4108 /* If any of this stripe is beyond the end of the old 4109 * array, then we need to zero those blocks 4110 */ 4111 for (j=sh->disks; j--;) { 4112 sector_t s; 4113 if (j == sh->pd_idx) 4114 continue; 4115 if (conf->level == 6 && 4116 j == sh->qd_idx) 4117 continue; 4118 s = compute_blocknr(sh, j, 0); 4119 if (s < raid5_size(mddev, 0, 0)) { 4120 skipped_disk = 1; 4121 continue; 4122 } 4123 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4124 set_bit(R5_Expanded, &sh->dev[j].flags); 4125 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4126 } 4127 if (!skipped_disk) { 4128 set_bit(STRIPE_EXPAND_READY, &sh->state); 4129 set_bit(STRIPE_HANDLE, &sh->state); 4130 } 4131 list_add(&sh->lru, &stripes); 4132 } 4133 spin_lock_irq(&conf->device_lock); 4134 if (mddev->delta_disks < 0) 4135 conf->reshape_progress -= reshape_sectors * new_data_disks; 4136 else 4137 conf->reshape_progress += reshape_sectors * new_data_disks; 4138 spin_unlock_irq(&conf->device_lock); 4139 /* Ok, those stripe are ready. We can start scheduling 4140 * reads on the source stripes. 4141 * The source stripes are determined by mapping the first and last 4142 * block on the destination stripes. 4143 */ 4144 first_sector = 4145 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4146 1, &dd_idx, NULL); 4147 last_sector = 4148 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4149 * new_data_disks - 1), 4150 1, &dd_idx, NULL); 4151 if (last_sector >= mddev->dev_sectors) 4152 last_sector = mddev->dev_sectors - 1; 4153 while (first_sector <= last_sector) { 4154 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4155 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4156 set_bit(STRIPE_HANDLE, &sh->state); 4157 release_stripe(sh); 4158 first_sector += STRIPE_SECTORS; 4159 } 4160 /* Now that the sources are clearly marked, we can release 4161 * the destination stripes 4162 */ 4163 while (!list_empty(&stripes)) { 4164 sh = list_entry(stripes.next, struct stripe_head, lru); 4165 list_del_init(&sh->lru); 4166 release_stripe(sh); 4167 } 4168 /* If this takes us to the resync_max point where we have to pause, 4169 * then we need to write out the superblock. 4170 */ 4171 sector_nr += reshape_sectors; 4172 if ((sector_nr - mddev->curr_resync_completed) * 2 4173 >= mddev->resync_max - mddev->curr_resync_completed) { 4174 /* Cannot proceed until we've updated the superblock... */ 4175 wait_event(conf->wait_for_overlap, 4176 atomic_read(&conf->reshape_stripes) == 0); 4177 mddev->reshape_position = conf->reshape_progress; 4178 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors; 4179 conf->reshape_checkpoint = jiffies; 4180 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4181 md_wakeup_thread(mddev->thread); 4182 wait_event(mddev->sb_wait, 4183 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4184 || kthread_should_stop()); 4185 spin_lock_irq(&conf->device_lock); 4186 conf->reshape_safe = mddev->reshape_position; 4187 spin_unlock_irq(&conf->device_lock); 4188 wake_up(&conf->wait_for_overlap); 4189 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4190 } 4191 return reshape_sectors; 4192 } 4193 4194 /* FIXME go_faster isn't used */ 4195 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 4196 { 4197 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 4198 struct stripe_head *sh; 4199 sector_t max_sector = mddev->dev_sectors; 4200 int sync_blocks; 4201 int still_degraded = 0; 4202 int i; 4203 4204 if (sector_nr >= max_sector) { 4205 /* just being told to finish up .. nothing much to do */ 4206 unplug_slaves(mddev); 4207 4208 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4209 end_reshape(conf); 4210 return 0; 4211 } 4212 4213 if (mddev->curr_resync < max_sector) /* aborted */ 4214 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4215 &sync_blocks, 1); 4216 else /* completed sync */ 4217 conf->fullsync = 0; 4218 bitmap_close_sync(mddev->bitmap); 4219 4220 return 0; 4221 } 4222 4223 /* Allow raid5_quiesce to complete */ 4224 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4225 4226 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4227 return reshape_request(mddev, sector_nr, skipped); 4228 4229 /* No need to check resync_max as we never do more than one 4230 * stripe, and as resync_max will always be on a chunk boundary, 4231 * if the check in md_do_sync didn't fire, there is no chance 4232 * of overstepping resync_max here 4233 */ 4234 4235 /* if there is too many failed drives and we are trying 4236 * to resync, then assert that we are finished, because there is 4237 * nothing we can do. 4238 */ 4239 if (mddev->degraded >= conf->max_degraded && 4240 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4241 sector_t rv = mddev->dev_sectors - sector_nr; 4242 *skipped = 1; 4243 return rv; 4244 } 4245 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 4246 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 4247 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 4248 /* we can skip this block, and probably more */ 4249 sync_blocks /= STRIPE_SECTORS; 4250 *skipped = 1; 4251 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 4252 } 4253 4254 4255 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 4256 4257 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 4258 if (sh == NULL) { 4259 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 4260 /* make sure we don't swamp the stripe cache if someone else 4261 * is trying to get access 4262 */ 4263 schedule_timeout_uninterruptible(1); 4264 } 4265 /* Need to check if array will still be degraded after recovery/resync 4266 * We don't need to check the 'failed' flag as when that gets set, 4267 * recovery aborts. 4268 */ 4269 for (i = 0; i < conf->raid_disks; i++) 4270 if (conf->disks[i].rdev == NULL) 4271 still_degraded = 1; 4272 4273 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 4274 4275 spin_lock(&sh->lock); 4276 set_bit(STRIPE_SYNCING, &sh->state); 4277 clear_bit(STRIPE_INSYNC, &sh->state); 4278 spin_unlock(&sh->lock); 4279 4280 /* wait for any blocked device to be handled */ 4281 while (unlikely(!handle_stripe(sh))) 4282 ; 4283 release_stripe(sh); 4284 4285 return STRIPE_SECTORS; 4286 } 4287 4288 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio) 4289 { 4290 /* We may not be able to submit a whole bio at once as there 4291 * may not be enough stripe_heads available. 4292 * We cannot pre-allocate enough stripe_heads as we may need 4293 * more than exist in the cache (if we allow ever large chunks). 4294 * So we do one stripe head at a time and record in 4295 * ->bi_hw_segments how many have been done. 4296 * 4297 * We *know* that this entire raid_bio is in one chunk, so 4298 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 4299 */ 4300 struct stripe_head *sh; 4301 int dd_idx; 4302 sector_t sector, logical_sector, last_sector; 4303 int scnt = 0; 4304 int remaining; 4305 int handled = 0; 4306 4307 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4308 sector = raid5_compute_sector(conf, logical_sector, 4309 0, &dd_idx, NULL); 4310 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 4311 4312 for (; logical_sector < last_sector; 4313 logical_sector += STRIPE_SECTORS, 4314 sector += STRIPE_SECTORS, 4315 scnt++) { 4316 4317 if (scnt < raid5_bi_hw_segments(raid_bio)) 4318 /* already done this stripe */ 4319 continue; 4320 4321 sh = get_active_stripe(conf, sector, 0, 1, 0); 4322 4323 if (!sh) { 4324 /* failed to get a stripe - must wait */ 4325 raid5_set_bi_hw_segments(raid_bio, scnt); 4326 conf->retry_read_aligned = raid_bio; 4327 return handled; 4328 } 4329 4330 set_bit(R5_ReadError, &sh->dev[dd_idx].flags); 4331 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 4332 release_stripe(sh); 4333 raid5_set_bi_hw_segments(raid_bio, scnt); 4334 conf->retry_read_aligned = raid_bio; 4335 return handled; 4336 } 4337 4338 handle_stripe(sh); 4339 release_stripe(sh); 4340 handled++; 4341 } 4342 spin_lock_irq(&conf->device_lock); 4343 remaining = raid5_dec_bi_phys_segments(raid_bio); 4344 spin_unlock_irq(&conf->device_lock); 4345 if (remaining == 0) 4346 bio_endio(raid_bio, 0); 4347 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4348 wake_up(&conf->wait_for_stripe); 4349 return handled; 4350 } 4351 4352 #ifdef CONFIG_MULTICORE_RAID456 4353 static void __process_stripe(void *param, async_cookie_t cookie) 4354 { 4355 struct stripe_head *sh = param; 4356 4357 handle_stripe(sh); 4358 release_stripe(sh); 4359 } 4360 4361 static void process_stripe(struct stripe_head *sh, struct list_head *domain) 4362 { 4363 async_schedule_domain(__process_stripe, sh, domain); 4364 } 4365 4366 static void synchronize_stripe_processing(struct list_head *domain) 4367 { 4368 async_synchronize_full_domain(domain); 4369 } 4370 #else 4371 static void process_stripe(struct stripe_head *sh, struct list_head *domain) 4372 { 4373 handle_stripe(sh); 4374 release_stripe(sh); 4375 cond_resched(); 4376 } 4377 4378 static void synchronize_stripe_processing(struct list_head *domain) 4379 { 4380 } 4381 #endif 4382 4383 4384 /* 4385 * This is our raid5 kernel thread. 4386 * 4387 * We scan the hash table for stripes which can be handled now. 4388 * During the scan, completed stripes are saved for us by the interrupt 4389 * handler, so that they will not have to wait for our next wakeup. 4390 */ 4391 static void raid5d(mddev_t *mddev) 4392 { 4393 struct stripe_head *sh; 4394 raid5_conf_t *conf = mddev->private; 4395 int handled; 4396 LIST_HEAD(raid_domain); 4397 4398 pr_debug("+++ raid5d active\n"); 4399 4400 md_check_recovery(mddev); 4401 4402 handled = 0; 4403 spin_lock_irq(&conf->device_lock); 4404 while (1) { 4405 struct bio *bio; 4406 4407 if (conf->seq_flush != conf->seq_write) { 4408 int seq = conf->seq_flush; 4409 spin_unlock_irq(&conf->device_lock); 4410 bitmap_unplug(mddev->bitmap); 4411 spin_lock_irq(&conf->device_lock); 4412 conf->seq_write = seq; 4413 activate_bit_delay(conf); 4414 } 4415 4416 while ((bio = remove_bio_from_retry(conf))) { 4417 int ok; 4418 spin_unlock_irq(&conf->device_lock); 4419 ok = retry_aligned_read(conf, bio); 4420 spin_lock_irq(&conf->device_lock); 4421 if (!ok) 4422 break; 4423 handled++; 4424 } 4425 4426 sh = __get_priority_stripe(conf); 4427 4428 if (!sh) 4429 break; 4430 spin_unlock_irq(&conf->device_lock); 4431 4432 handled++; 4433 process_stripe(sh, &raid_domain); 4434 4435 spin_lock_irq(&conf->device_lock); 4436 } 4437 pr_debug("%d stripes handled\n", handled); 4438 4439 spin_unlock_irq(&conf->device_lock); 4440 4441 synchronize_stripe_processing(&raid_domain); 4442 async_tx_issue_pending_all(); 4443 unplug_slaves(mddev); 4444 4445 pr_debug("--- raid5d inactive\n"); 4446 } 4447 4448 static ssize_t 4449 raid5_show_stripe_cache_size(mddev_t *mddev, char *page) 4450 { 4451 raid5_conf_t *conf = mddev->private; 4452 if (conf) 4453 return sprintf(page, "%d\n", conf->max_nr_stripes); 4454 else 4455 return 0; 4456 } 4457 4458 static ssize_t 4459 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len) 4460 { 4461 raid5_conf_t *conf = mddev->private; 4462 unsigned long new; 4463 int err; 4464 4465 if (len >= PAGE_SIZE) 4466 return -EINVAL; 4467 if (!conf) 4468 return -ENODEV; 4469 4470 if (strict_strtoul(page, 10, &new)) 4471 return -EINVAL; 4472 if (new <= 16 || new > 32768) 4473 return -EINVAL; 4474 while (new < conf->max_nr_stripes) { 4475 if (drop_one_stripe(conf)) 4476 conf->max_nr_stripes--; 4477 else 4478 break; 4479 } 4480 err = md_allow_write(mddev); 4481 if (err) 4482 return err; 4483 while (new > conf->max_nr_stripes) { 4484 if (grow_one_stripe(conf)) 4485 conf->max_nr_stripes++; 4486 else break; 4487 } 4488 return len; 4489 } 4490 4491 static struct md_sysfs_entry 4492 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 4493 raid5_show_stripe_cache_size, 4494 raid5_store_stripe_cache_size); 4495 4496 static ssize_t 4497 raid5_show_preread_threshold(mddev_t *mddev, char *page) 4498 { 4499 raid5_conf_t *conf = mddev->private; 4500 if (conf) 4501 return sprintf(page, "%d\n", conf->bypass_threshold); 4502 else 4503 return 0; 4504 } 4505 4506 static ssize_t 4507 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len) 4508 { 4509 raid5_conf_t *conf = mddev->private; 4510 unsigned long new; 4511 if (len >= PAGE_SIZE) 4512 return -EINVAL; 4513 if (!conf) 4514 return -ENODEV; 4515 4516 if (strict_strtoul(page, 10, &new)) 4517 return -EINVAL; 4518 if (new > conf->max_nr_stripes) 4519 return -EINVAL; 4520 conf->bypass_threshold = new; 4521 return len; 4522 } 4523 4524 static struct md_sysfs_entry 4525 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 4526 S_IRUGO | S_IWUSR, 4527 raid5_show_preread_threshold, 4528 raid5_store_preread_threshold); 4529 4530 static ssize_t 4531 stripe_cache_active_show(mddev_t *mddev, char *page) 4532 { 4533 raid5_conf_t *conf = mddev->private; 4534 if (conf) 4535 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 4536 else 4537 return 0; 4538 } 4539 4540 static struct md_sysfs_entry 4541 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 4542 4543 static struct attribute *raid5_attrs[] = { 4544 &raid5_stripecache_size.attr, 4545 &raid5_stripecache_active.attr, 4546 &raid5_preread_bypass_threshold.attr, 4547 NULL, 4548 }; 4549 static struct attribute_group raid5_attrs_group = { 4550 .name = NULL, 4551 .attrs = raid5_attrs, 4552 }; 4553 4554 static sector_t 4555 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks) 4556 { 4557 raid5_conf_t *conf = mddev->private; 4558 4559 if (!sectors) 4560 sectors = mddev->dev_sectors; 4561 if (!raid_disks) { 4562 /* size is defined by the smallest of previous and new size */ 4563 if (conf->raid_disks < conf->previous_raid_disks) 4564 raid_disks = conf->raid_disks; 4565 else 4566 raid_disks = conf->previous_raid_disks; 4567 } 4568 4569 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 4570 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 4571 return sectors * (raid_disks - conf->max_degraded); 4572 } 4573 4574 static void raid5_free_percpu(raid5_conf_t *conf) 4575 { 4576 struct raid5_percpu *percpu; 4577 unsigned long cpu; 4578 4579 if (!conf->percpu) 4580 return; 4581 4582 get_online_cpus(); 4583 for_each_possible_cpu(cpu) { 4584 percpu = per_cpu_ptr(conf->percpu, cpu); 4585 safe_put_page(percpu->spare_page); 4586 kfree(percpu->scribble); 4587 } 4588 #ifdef CONFIG_HOTPLUG_CPU 4589 unregister_cpu_notifier(&conf->cpu_notify); 4590 #endif 4591 put_online_cpus(); 4592 4593 free_percpu(conf->percpu); 4594 } 4595 4596 static void free_conf(raid5_conf_t *conf) 4597 { 4598 shrink_stripes(conf); 4599 raid5_free_percpu(conf); 4600 kfree(conf->disks); 4601 kfree(conf->stripe_hashtbl); 4602 kfree(conf); 4603 } 4604 4605 #ifdef CONFIG_HOTPLUG_CPU 4606 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 4607 void *hcpu) 4608 { 4609 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify); 4610 long cpu = (long)hcpu; 4611 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 4612 4613 switch (action) { 4614 case CPU_UP_PREPARE: 4615 case CPU_UP_PREPARE_FROZEN: 4616 if (conf->level == 6 && !percpu->spare_page) 4617 percpu->spare_page = alloc_page(GFP_KERNEL); 4618 if (!percpu->scribble) 4619 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 4620 4621 if (!percpu->scribble || 4622 (conf->level == 6 && !percpu->spare_page)) { 4623 safe_put_page(percpu->spare_page); 4624 kfree(percpu->scribble); 4625 pr_err("%s: failed memory allocation for cpu%ld\n", 4626 __func__, cpu); 4627 return NOTIFY_BAD; 4628 } 4629 break; 4630 case CPU_DEAD: 4631 case CPU_DEAD_FROZEN: 4632 safe_put_page(percpu->spare_page); 4633 kfree(percpu->scribble); 4634 percpu->spare_page = NULL; 4635 percpu->scribble = NULL; 4636 break; 4637 default: 4638 break; 4639 } 4640 return NOTIFY_OK; 4641 } 4642 #endif 4643 4644 static int raid5_alloc_percpu(raid5_conf_t *conf) 4645 { 4646 unsigned long cpu; 4647 struct page *spare_page; 4648 struct raid5_percpu *allcpus; 4649 void *scribble; 4650 int err; 4651 4652 allcpus = alloc_percpu(struct raid5_percpu); 4653 if (!allcpus) 4654 return -ENOMEM; 4655 conf->percpu = allcpus; 4656 4657 get_online_cpus(); 4658 err = 0; 4659 for_each_present_cpu(cpu) { 4660 if (conf->level == 6) { 4661 spare_page = alloc_page(GFP_KERNEL); 4662 if (!spare_page) { 4663 err = -ENOMEM; 4664 break; 4665 } 4666 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 4667 } 4668 scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL); 4669 if (!scribble) { 4670 err = -ENOMEM; 4671 break; 4672 } 4673 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 4674 } 4675 #ifdef CONFIG_HOTPLUG_CPU 4676 conf->cpu_notify.notifier_call = raid456_cpu_notify; 4677 conf->cpu_notify.priority = 0; 4678 if (err == 0) 4679 err = register_cpu_notifier(&conf->cpu_notify); 4680 #endif 4681 put_online_cpus(); 4682 4683 return err; 4684 } 4685 4686 static raid5_conf_t *setup_conf(mddev_t *mddev) 4687 { 4688 raid5_conf_t *conf; 4689 int raid_disk, memory; 4690 mdk_rdev_t *rdev; 4691 struct disk_info *disk; 4692 4693 if (mddev->new_level != 5 4694 && mddev->new_level != 4 4695 && mddev->new_level != 6) { 4696 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n", 4697 mdname(mddev), mddev->new_level); 4698 return ERR_PTR(-EIO); 4699 } 4700 if ((mddev->new_level == 5 4701 && !algorithm_valid_raid5(mddev->new_layout)) || 4702 (mddev->new_level == 6 4703 && !algorithm_valid_raid6(mddev->new_layout))) { 4704 printk(KERN_ERR "raid5: %s: layout %d not supported\n", 4705 mdname(mddev), mddev->new_layout); 4706 return ERR_PTR(-EIO); 4707 } 4708 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 4709 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n", 4710 mdname(mddev), mddev->raid_disks); 4711 return ERR_PTR(-EINVAL); 4712 } 4713 4714 if (!mddev->new_chunk_sectors || 4715 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 4716 !is_power_of_2(mddev->new_chunk_sectors)) { 4717 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", 4718 mddev->new_chunk_sectors << 9, mdname(mddev)); 4719 return ERR_PTR(-EINVAL); 4720 } 4721 4722 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL); 4723 if (conf == NULL) 4724 goto abort; 4725 4726 conf->raid_disks = mddev->raid_disks; 4727 conf->scribble_len = scribble_len(conf->raid_disks); 4728 if (mddev->reshape_position == MaxSector) 4729 conf->previous_raid_disks = mddev->raid_disks; 4730 else 4731 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 4732 4733 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info), 4734 GFP_KERNEL); 4735 if (!conf->disks) 4736 goto abort; 4737 4738 conf->mddev = mddev; 4739 4740 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 4741 goto abort; 4742 4743 conf->level = mddev->new_level; 4744 if (raid5_alloc_percpu(conf) != 0) 4745 goto abort; 4746 4747 spin_lock_init(&conf->device_lock); 4748 init_waitqueue_head(&conf->wait_for_stripe); 4749 init_waitqueue_head(&conf->wait_for_overlap); 4750 INIT_LIST_HEAD(&conf->handle_list); 4751 INIT_LIST_HEAD(&conf->hold_list); 4752 INIT_LIST_HEAD(&conf->delayed_list); 4753 INIT_LIST_HEAD(&conf->bitmap_list); 4754 INIT_LIST_HEAD(&conf->inactive_list); 4755 atomic_set(&conf->active_stripes, 0); 4756 atomic_set(&conf->preread_active_stripes, 0); 4757 atomic_set(&conf->active_aligned_reads, 0); 4758 conf->bypass_threshold = BYPASS_THRESHOLD; 4759 4760 pr_debug("raid5: run(%s) called.\n", mdname(mddev)); 4761 4762 list_for_each_entry(rdev, &mddev->disks, same_set) { 4763 raid_disk = rdev->raid_disk; 4764 if (raid_disk >= conf->raid_disks 4765 || raid_disk < 0) 4766 continue; 4767 disk = conf->disks + raid_disk; 4768 4769 disk->rdev = rdev; 4770 4771 if (test_bit(In_sync, &rdev->flags)) { 4772 char b[BDEVNAME_SIZE]; 4773 printk(KERN_INFO "raid5: device %s operational as raid" 4774 " disk %d\n", bdevname(rdev->bdev,b), 4775 raid_disk); 4776 } else 4777 /* Cannot rely on bitmap to complete recovery */ 4778 conf->fullsync = 1; 4779 } 4780 4781 conf->chunk_sectors = mddev->new_chunk_sectors; 4782 conf->level = mddev->new_level; 4783 if (conf->level == 6) 4784 conf->max_degraded = 2; 4785 else 4786 conf->max_degraded = 1; 4787 conf->algorithm = mddev->new_layout; 4788 conf->max_nr_stripes = NR_STRIPES; 4789 conf->reshape_progress = mddev->reshape_position; 4790 if (conf->reshape_progress != MaxSector) { 4791 conf->prev_chunk_sectors = mddev->chunk_sectors; 4792 conf->prev_algo = mddev->layout; 4793 } 4794 4795 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 4796 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 4797 if (grow_stripes(conf, conf->max_nr_stripes)) { 4798 printk(KERN_ERR 4799 "raid5: couldn't allocate %dkB for buffers\n", memory); 4800 goto abort; 4801 } else 4802 printk(KERN_INFO "raid5: allocated %dkB for %s\n", 4803 memory, mdname(mddev)); 4804 4805 conf->thread = md_register_thread(raid5d, mddev, NULL); 4806 if (!conf->thread) { 4807 printk(KERN_ERR 4808 "raid5: couldn't allocate thread for %s\n", 4809 mdname(mddev)); 4810 goto abort; 4811 } 4812 4813 return conf; 4814 4815 abort: 4816 if (conf) { 4817 free_conf(conf); 4818 return ERR_PTR(-EIO); 4819 } else 4820 return ERR_PTR(-ENOMEM); 4821 } 4822 4823 static int run(mddev_t *mddev) 4824 { 4825 raid5_conf_t *conf; 4826 int working_disks = 0, chunk_size; 4827 mdk_rdev_t *rdev; 4828 4829 if (mddev->recovery_cp != MaxSector) 4830 printk(KERN_NOTICE "raid5: %s is not clean" 4831 " -- starting background reconstruction\n", 4832 mdname(mddev)); 4833 if (mddev->reshape_position != MaxSector) { 4834 /* Check that we can continue the reshape. 4835 * Currently only disks can change, it must 4836 * increase, and we must be past the point where 4837 * a stripe over-writes itself 4838 */ 4839 sector_t here_new, here_old; 4840 int old_disks; 4841 int max_degraded = (mddev->level == 6 ? 2 : 1); 4842 4843 if (mddev->new_level != mddev->level) { 4844 printk(KERN_ERR "raid5: %s: unsupported reshape " 4845 "required - aborting.\n", 4846 mdname(mddev)); 4847 return -EINVAL; 4848 } 4849 old_disks = mddev->raid_disks - mddev->delta_disks; 4850 /* reshape_position must be on a new-stripe boundary, and one 4851 * further up in new geometry must map after here in old 4852 * geometry. 4853 */ 4854 here_new = mddev->reshape_position; 4855 if (sector_div(here_new, mddev->new_chunk_sectors * 4856 (mddev->raid_disks - max_degraded))) { 4857 printk(KERN_ERR "raid5: reshape_position not " 4858 "on a stripe boundary\n"); 4859 return -EINVAL; 4860 } 4861 /* here_new is the stripe we will write to */ 4862 here_old = mddev->reshape_position; 4863 sector_div(here_old, mddev->chunk_sectors * 4864 (old_disks-max_degraded)); 4865 /* here_old is the first stripe that we might need to read 4866 * from */ 4867 if (mddev->delta_disks == 0) { 4868 /* We cannot be sure it is safe to start an in-place 4869 * reshape. It is only safe if user-space if monitoring 4870 * and taking constant backups. 4871 * mdadm always starts a situation like this in 4872 * readonly mode so it can take control before 4873 * allowing any writes. So just check for that. 4874 */ 4875 if ((here_new * mddev->new_chunk_sectors != 4876 here_old * mddev->chunk_sectors) || 4877 mddev->ro == 0) { 4878 printk(KERN_ERR "raid5: in-place reshape must be started" 4879 " in read-only mode - aborting\n"); 4880 return -EINVAL; 4881 } 4882 } else if (mddev->delta_disks < 0 4883 ? (here_new * mddev->new_chunk_sectors <= 4884 here_old * mddev->chunk_sectors) 4885 : (here_new * mddev->new_chunk_sectors >= 4886 here_old * mddev->chunk_sectors)) { 4887 /* Reading from the same stripe as writing to - bad */ 4888 printk(KERN_ERR "raid5: reshape_position too early for " 4889 "auto-recovery - aborting.\n"); 4890 return -EINVAL; 4891 } 4892 printk(KERN_INFO "raid5: reshape will continue\n"); 4893 /* OK, we should be able to continue; */ 4894 } else { 4895 BUG_ON(mddev->level != mddev->new_level); 4896 BUG_ON(mddev->layout != mddev->new_layout); 4897 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 4898 BUG_ON(mddev->delta_disks != 0); 4899 } 4900 4901 if (mddev->private == NULL) 4902 conf = setup_conf(mddev); 4903 else 4904 conf = mddev->private; 4905 4906 if (IS_ERR(conf)) 4907 return PTR_ERR(conf); 4908 4909 mddev->thread = conf->thread; 4910 conf->thread = NULL; 4911 mddev->private = conf; 4912 4913 /* 4914 * 0 for a fully functional array, 1 or 2 for a degraded array. 4915 */ 4916 list_for_each_entry(rdev, &mddev->disks, same_set) 4917 if (rdev->raid_disk >= 0 && 4918 test_bit(In_sync, &rdev->flags)) 4919 working_disks++; 4920 4921 mddev->degraded = conf->raid_disks - working_disks; 4922 4923 if (mddev->degraded > conf->max_degraded) { 4924 printk(KERN_ERR "raid5: not enough operational devices for %s" 4925 " (%d/%d failed)\n", 4926 mdname(mddev), mddev->degraded, conf->raid_disks); 4927 goto abort; 4928 } 4929 4930 /* device size must be a multiple of chunk size */ 4931 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 4932 mddev->resync_max_sectors = mddev->dev_sectors; 4933 4934 if (mddev->degraded > 0 && 4935 mddev->recovery_cp != MaxSector) { 4936 if (mddev->ok_start_degraded) 4937 printk(KERN_WARNING 4938 "raid5: starting dirty degraded array: %s" 4939 "- data corruption possible.\n", 4940 mdname(mddev)); 4941 else { 4942 printk(KERN_ERR 4943 "raid5: cannot start dirty degraded array for %s\n", 4944 mdname(mddev)); 4945 goto abort; 4946 } 4947 } 4948 4949 if (mddev->degraded == 0) 4950 printk("raid5: raid level %d set %s active with %d out of %d" 4951 " devices, algorithm %d\n", conf->level, mdname(mddev), 4952 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 4953 mddev->new_layout); 4954 else 4955 printk(KERN_ALERT "raid5: raid level %d set %s active with %d" 4956 " out of %d devices, algorithm %d\n", conf->level, 4957 mdname(mddev), mddev->raid_disks - mddev->degraded, 4958 mddev->raid_disks, mddev->new_layout); 4959 4960 print_raid5_conf(conf); 4961 4962 if (conf->reshape_progress != MaxSector) { 4963 printk("...ok start reshape thread\n"); 4964 conf->reshape_safe = conf->reshape_progress; 4965 atomic_set(&conf->reshape_stripes, 0); 4966 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4967 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4968 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4969 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4970 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4971 "reshape"); 4972 } 4973 4974 /* read-ahead size must cover two whole stripes, which is 4975 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4976 */ 4977 { 4978 int data_disks = conf->previous_raid_disks - conf->max_degraded; 4979 int stripe = data_disks * 4980 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 4981 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4982 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4983 } 4984 4985 /* Ok, everything is just fine now */ 4986 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 4987 printk(KERN_WARNING 4988 "raid5: failed to create sysfs attributes for %s\n", 4989 mdname(mddev)); 4990 4991 mddev->queue->queue_lock = &conf->device_lock; 4992 4993 mddev->queue->unplug_fn = raid5_unplug_device; 4994 mddev->queue->backing_dev_info.congested_data = mddev; 4995 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 4996 4997 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 4998 4999 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 5000 chunk_size = mddev->chunk_sectors << 9; 5001 blk_queue_io_min(mddev->queue, chunk_size); 5002 blk_queue_io_opt(mddev->queue, chunk_size * 5003 (conf->raid_disks - conf->max_degraded)); 5004 5005 list_for_each_entry(rdev, &mddev->disks, same_set) 5006 disk_stack_limits(mddev->gendisk, rdev->bdev, 5007 rdev->data_offset << 9); 5008 5009 return 0; 5010 abort: 5011 md_unregister_thread(mddev->thread); 5012 mddev->thread = NULL; 5013 if (conf) { 5014 print_raid5_conf(conf); 5015 free_conf(conf); 5016 } 5017 mddev->private = NULL; 5018 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev)); 5019 return -EIO; 5020 } 5021 5022 5023 5024 static int stop(mddev_t *mddev) 5025 { 5026 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 5027 5028 md_unregister_thread(mddev->thread); 5029 mddev->thread = NULL; 5030 mddev->queue->backing_dev_info.congested_fn = NULL; 5031 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5032 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group); 5033 free_conf(conf); 5034 mddev->private = NULL; 5035 return 0; 5036 } 5037 5038 #ifdef DEBUG 5039 static void print_sh(struct seq_file *seq, struct stripe_head *sh) 5040 { 5041 int i; 5042 5043 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", 5044 (unsigned long long)sh->sector, sh->pd_idx, sh->state); 5045 seq_printf(seq, "sh %llu, count %d.\n", 5046 (unsigned long long)sh->sector, atomic_read(&sh->count)); 5047 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); 5048 for (i = 0; i < sh->disks; i++) { 5049 seq_printf(seq, "(cache%d: %p %ld) ", 5050 i, sh->dev[i].page, sh->dev[i].flags); 5051 } 5052 seq_printf(seq, "\n"); 5053 } 5054 5055 static void printall(struct seq_file *seq, raid5_conf_t *conf) 5056 { 5057 struct stripe_head *sh; 5058 struct hlist_node *hn; 5059 int i; 5060 5061 spin_lock_irq(&conf->device_lock); 5062 for (i = 0; i < NR_HASH; i++) { 5063 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) { 5064 if (sh->raid_conf != conf) 5065 continue; 5066 print_sh(seq, sh); 5067 } 5068 } 5069 spin_unlock_irq(&conf->device_lock); 5070 } 5071 #endif 5072 5073 static void status(struct seq_file *seq, mddev_t *mddev) 5074 { 5075 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 5076 int i; 5077 5078 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 5079 mddev->chunk_sectors / 2, mddev->layout); 5080 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 5081 for (i = 0; i < conf->raid_disks; i++) 5082 seq_printf (seq, "%s", 5083 conf->disks[i].rdev && 5084 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 5085 seq_printf (seq, "]"); 5086 #ifdef DEBUG 5087 seq_printf (seq, "\n"); 5088 printall(seq, conf); 5089 #endif 5090 } 5091 5092 static void print_raid5_conf (raid5_conf_t *conf) 5093 { 5094 int i; 5095 struct disk_info *tmp; 5096 5097 printk("RAID5 conf printout:\n"); 5098 if (!conf) { 5099 printk("(conf==NULL)\n"); 5100 return; 5101 } 5102 printk(" --- rd:%d wd:%d\n", conf->raid_disks, 5103 conf->raid_disks - conf->mddev->degraded); 5104 5105 for (i = 0; i < conf->raid_disks; i++) { 5106 char b[BDEVNAME_SIZE]; 5107 tmp = conf->disks + i; 5108 if (tmp->rdev) 5109 printk(" disk %d, o:%d, dev:%s\n", 5110 i, !test_bit(Faulty, &tmp->rdev->flags), 5111 bdevname(tmp->rdev->bdev,b)); 5112 } 5113 } 5114 5115 static int raid5_spare_active(mddev_t *mddev) 5116 { 5117 int i; 5118 raid5_conf_t *conf = mddev->private; 5119 struct disk_info *tmp; 5120 5121 for (i = 0; i < conf->raid_disks; i++) { 5122 tmp = conf->disks + i; 5123 if (tmp->rdev 5124 && !test_bit(Faulty, &tmp->rdev->flags) 5125 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 5126 unsigned long flags; 5127 spin_lock_irqsave(&conf->device_lock, flags); 5128 mddev->degraded--; 5129 spin_unlock_irqrestore(&conf->device_lock, flags); 5130 } 5131 } 5132 print_raid5_conf(conf); 5133 return 0; 5134 } 5135 5136 static int raid5_remove_disk(mddev_t *mddev, int number) 5137 { 5138 raid5_conf_t *conf = mddev->private; 5139 int err = 0; 5140 mdk_rdev_t *rdev; 5141 struct disk_info *p = conf->disks + number; 5142 5143 print_raid5_conf(conf); 5144 rdev = p->rdev; 5145 if (rdev) { 5146 if (number >= conf->raid_disks && 5147 conf->reshape_progress == MaxSector) 5148 clear_bit(In_sync, &rdev->flags); 5149 5150 if (test_bit(In_sync, &rdev->flags) || 5151 atomic_read(&rdev->nr_pending)) { 5152 err = -EBUSY; 5153 goto abort; 5154 } 5155 /* Only remove non-faulty devices if recovery 5156 * isn't possible. 5157 */ 5158 if (!test_bit(Faulty, &rdev->flags) && 5159 mddev->degraded <= conf->max_degraded && 5160 number < conf->raid_disks) { 5161 err = -EBUSY; 5162 goto abort; 5163 } 5164 p->rdev = NULL; 5165 synchronize_rcu(); 5166 if (atomic_read(&rdev->nr_pending)) { 5167 /* lost the race, try later */ 5168 err = -EBUSY; 5169 p->rdev = rdev; 5170 } 5171 } 5172 abort: 5173 5174 print_raid5_conf(conf); 5175 return err; 5176 } 5177 5178 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 5179 { 5180 raid5_conf_t *conf = mddev->private; 5181 int err = -EEXIST; 5182 int disk; 5183 struct disk_info *p; 5184 int first = 0; 5185 int last = conf->raid_disks - 1; 5186 5187 if (mddev->degraded > conf->max_degraded) 5188 /* no point adding a device */ 5189 return -EINVAL; 5190 5191 if (rdev->raid_disk >= 0) 5192 first = last = rdev->raid_disk; 5193 5194 /* 5195 * find the disk ... but prefer rdev->saved_raid_disk 5196 * if possible. 5197 */ 5198 if (rdev->saved_raid_disk >= 0 && 5199 rdev->saved_raid_disk >= first && 5200 conf->disks[rdev->saved_raid_disk].rdev == NULL) 5201 disk = rdev->saved_raid_disk; 5202 else 5203 disk = first; 5204 for ( ; disk <= last ; disk++) 5205 if ((p=conf->disks + disk)->rdev == NULL) { 5206 clear_bit(In_sync, &rdev->flags); 5207 rdev->raid_disk = disk; 5208 err = 0; 5209 if (rdev->saved_raid_disk != disk) 5210 conf->fullsync = 1; 5211 rcu_assign_pointer(p->rdev, rdev); 5212 break; 5213 } 5214 print_raid5_conf(conf); 5215 return err; 5216 } 5217 5218 static int raid5_resize(mddev_t *mddev, sector_t sectors) 5219 { 5220 /* no resync is happening, and there is enough space 5221 * on all devices, so we can resize. 5222 * We need to make sure resync covers any new space. 5223 * If the array is shrinking we should possibly wait until 5224 * any io in the removed space completes, but it hardly seems 5225 * worth it. 5226 */ 5227 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5228 md_set_array_sectors(mddev, raid5_size(mddev, sectors, 5229 mddev->raid_disks)); 5230 if (mddev->array_sectors > 5231 raid5_size(mddev, sectors, mddev->raid_disks)) 5232 return -EINVAL; 5233 set_capacity(mddev->gendisk, mddev->array_sectors); 5234 mddev->changed = 1; 5235 revalidate_disk(mddev->gendisk); 5236 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) { 5237 mddev->recovery_cp = mddev->dev_sectors; 5238 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5239 } 5240 mddev->dev_sectors = sectors; 5241 mddev->resync_max_sectors = sectors; 5242 return 0; 5243 } 5244 5245 static int check_stripe_cache(mddev_t *mddev) 5246 { 5247 /* Can only proceed if there are plenty of stripe_heads. 5248 * We need a minimum of one full stripe,, and for sensible progress 5249 * it is best to have about 4 times that. 5250 * If we require 4 times, then the default 256 4K stripe_heads will 5251 * allow for chunk sizes up to 256K, which is probably OK. 5252 * If the chunk size is greater, user-space should request more 5253 * stripe_heads first. 5254 */ 5255 raid5_conf_t *conf = mddev->private; 5256 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 5257 > conf->max_nr_stripes || 5258 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 5259 > conf->max_nr_stripes) { 5260 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n", 5261 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 5262 / STRIPE_SIZE)*4); 5263 return 0; 5264 } 5265 return 1; 5266 } 5267 5268 static int check_reshape(mddev_t *mddev) 5269 { 5270 raid5_conf_t *conf = mddev->private; 5271 5272 if (mddev->delta_disks == 0 && 5273 mddev->new_layout == mddev->layout && 5274 mddev->new_chunk_sectors == mddev->chunk_sectors) 5275 return 0; /* nothing to do */ 5276 if (mddev->bitmap) 5277 /* Cannot grow a bitmap yet */ 5278 return -EBUSY; 5279 if (mddev->degraded > conf->max_degraded) 5280 return -EINVAL; 5281 if (mddev->delta_disks < 0) { 5282 /* We might be able to shrink, but the devices must 5283 * be made bigger first. 5284 * For raid6, 4 is the minimum size. 5285 * Otherwise 2 is the minimum 5286 */ 5287 int min = 2; 5288 if (mddev->level == 6) 5289 min = 4; 5290 if (mddev->raid_disks + mddev->delta_disks < min) 5291 return -EINVAL; 5292 } 5293 5294 if (!check_stripe_cache(mddev)) 5295 return -ENOSPC; 5296 5297 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks); 5298 } 5299 5300 static int raid5_start_reshape(mddev_t *mddev) 5301 { 5302 raid5_conf_t *conf = mddev->private; 5303 mdk_rdev_t *rdev; 5304 int spares = 0; 5305 int added_devices = 0; 5306 unsigned long flags; 5307 5308 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5309 return -EBUSY; 5310 5311 if (!check_stripe_cache(mddev)) 5312 return -ENOSPC; 5313 5314 list_for_each_entry(rdev, &mddev->disks, same_set) 5315 if (rdev->raid_disk < 0 && 5316 !test_bit(Faulty, &rdev->flags)) 5317 spares++; 5318 5319 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 5320 /* Not enough devices even to make a degraded array 5321 * of that size 5322 */ 5323 return -EINVAL; 5324 5325 /* Refuse to reduce size of the array. Any reductions in 5326 * array size must be through explicit setting of array_size 5327 * attribute. 5328 */ 5329 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 5330 < mddev->array_sectors) { 5331 printk(KERN_ERR "md: %s: array size must be reduced " 5332 "before number of disks\n", mdname(mddev)); 5333 return -EINVAL; 5334 } 5335 5336 atomic_set(&conf->reshape_stripes, 0); 5337 spin_lock_irq(&conf->device_lock); 5338 conf->previous_raid_disks = conf->raid_disks; 5339 conf->raid_disks += mddev->delta_disks; 5340 conf->prev_chunk_sectors = conf->chunk_sectors; 5341 conf->chunk_sectors = mddev->new_chunk_sectors; 5342 conf->prev_algo = conf->algorithm; 5343 conf->algorithm = mddev->new_layout; 5344 if (mddev->delta_disks < 0) 5345 conf->reshape_progress = raid5_size(mddev, 0, 0); 5346 else 5347 conf->reshape_progress = 0; 5348 conf->reshape_safe = conf->reshape_progress; 5349 conf->generation++; 5350 spin_unlock_irq(&conf->device_lock); 5351 5352 /* Add some new drives, as many as will fit. 5353 * We know there are enough to make the newly sized array work. 5354 */ 5355 list_for_each_entry(rdev, &mddev->disks, same_set) 5356 if (rdev->raid_disk < 0 && 5357 !test_bit(Faulty, &rdev->flags)) { 5358 if (raid5_add_disk(mddev, rdev) == 0) { 5359 char nm[20]; 5360 set_bit(In_sync, &rdev->flags); 5361 added_devices++; 5362 rdev->recovery_offset = 0; 5363 sprintf(nm, "rd%d", rdev->raid_disk); 5364 if (sysfs_create_link(&mddev->kobj, 5365 &rdev->kobj, nm)) 5366 printk(KERN_WARNING 5367 "raid5: failed to create " 5368 " link %s for %s\n", 5369 nm, mdname(mddev)); 5370 } else 5371 break; 5372 } 5373 5374 if (mddev->delta_disks > 0) { 5375 spin_lock_irqsave(&conf->device_lock, flags); 5376 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) 5377 - added_devices; 5378 spin_unlock_irqrestore(&conf->device_lock, flags); 5379 } 5380 mddev->raid_disks = conf->raid_disks; 5381 mddev->reshape_position = conf->reshape_progress; 5382 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5383 5384 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5385 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5386 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5387 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5388 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5389 "reshape"); 5390 if (!mddev->sync_thread) { 5391 mddev->recovery = 0; 5392 spin_lock_irq(&conf->device_lock); 5393 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 5394 conf->reshape_progress = MaxSector; 5395 spin_unlock_irq(&conf->device_lock); 5396 return -EAGAIN; 5397 } 5398 conf->reshape_checkpoint = jiffies; 5399 md_wakeup_thread(mddev->sync_thread); 5400 md_new_event(mddev); 5401 return 0; 5402 } 5403 5404 /* This is called from the reshape thread and should make any 5405 * changes needed in 'conf' 5406 */ 5407 static void end_reshape(raid5_conf_t *conf) 5408 { 5409 5410 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 5411 5412 spin_lock_irq(&conf->device_lock); 5413 conf->previous_raid_disks = conf->raid_disks; 5414 conf->reshape_progress = MaxSector; 5415 spin_unlock_irq(&conf->device_lock); 5416 wake_up(&conf->wait_for_overlap); 5417 5418 /* read-ahead size must cover two whole stripes, which is 5419 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 5420 */ 5421 { 5422 int data_disks = conf->raid_disks - conf->max_degraded; 5423 int stripe = data_disks * ((conf->chunk_sectors << 9) 5424 / PAGE_SIZE); 5425 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5426 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5427 } 5428 } 5429 } 5430 5431 /* This is called from the raid5d thread with mddev_lock held. 5432 * It makes config changes to the device. 5433 */ 5434 static void raid5_finish_reshape(mddev_t *mddev) 5435 { 5436 raid5_conf_t *conf = mddev->private; 5437 5438 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5439 5440 if (mddev->delta_disks > 0) { 5441 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5442 set_capacity(mddev->gendisk, mddev->array_sectors); 5443 mddev->changed = 1; 5444 revalidate_disk(mddev->gendisk); 5445 } else { 5446 int d; 5447 mddev->degraded = conf->raid_disks; 5448 for (d = 0; d < conf->raid_disks ; d++) 5449 if (conf->disks[d].rdev && 5450 test_bit(In_sync, 5451 &conf->disks[d].rdev->flags)) 5452 mddev->degraded--; 5453 for (d = conf->raid_disks ; 5454 d < conf->raid_disks - mddev->delta_disks; 5455 d++) { 5456 mdk_rdev_t *rdev = conf->disks[d].rdev; 5457 if (rdev && raid5_remove_disk(mddev, d) == 0) { 5458 char nm[20]; 5459 sprintf(nm, "rd%d", rdev->raid_disk); 5460 sysfs_remove_link(&mddev->kobj, nm); 5461 rdev->raid_disk = -1; 5462 } 5463 } 5464 } 5465 mddev->layout = conf->algorithm; 5466 mddev->chunk_sectors = conf->chunk_sectors; 5467 mddev->reshape_position = MaxSector; 5468 mddev->delta_disks = 0; 5469 } 5470 } 5471 5472 static void raid5_quiesce(mddev_t *mddev, int state) 5473 { 5474 raid5_conf_t *conf = mddev->private; 5475 5476 switch(state) { 5477 case 2: /* resume for a suspend */ 5478 wake_up(&conf->wait_for_overlap); 5479 break; 5480 5481 case 1: /* stop all writes */ 5482 spin_lock_irq(&conf->device_lock); 5483 /* '2' tells resync/reshape to pause so that all 5484 * active stripes can drain 5485 */ 5486 conf->quiesce = 2; 5487 wait_event_lock_irq(conf->wait_for_stripe, 5488 atomic_read(&conf->active_stripes) == 0 && 5489 atomic_read(&conf->active_aligned_reads) == 0, 5490 conf->device_lock, /* nothing */); 5491 conf->quiesce = 1; 5492 spin_unlock_irq(&conf->device_lock); 5493 /* allow reshape to continue */ 5494 wake_up(&conf->wait_for_overlap); 5495 break; 5496 5497 case 0: /* re-enable writes */ 5498 spin_lock_irq(&conf->device_lock); 5499 conf->quiesce = 0; 5500 wake_up(&conf->wait_for_stripe); 5501 wake_up(&conf->wait_for_overlap); 5502 spin_unlock_irq(&conf->device_lock); 5503 break; 5504 } 5505 } 5506 5507 5508 static void *raid5_takeover_raid1(mddev_t *mddev) 5509 { 5510 int chunksect; 5511 5512 if (mddev->raid_disks != 2 || 5513 mddev->degraded > 1) 5514 return ERR_PTR(-EINVAL); 5515 5516 /* Should check if there are write-behind devices? */ 5517 5518 chunksect = 64*2; /* 64K by default */ 5519 5520 /* The array must be an exact multiple of chunksize */ 5521 while (chunksect && (mddev->array_sectors & (chunksect-1))) 5522 chunksect >>= 1; 5523 5524 if ((chunksect<<9) < STRIPE_SIZE) 5525 /* array size does not allow a suitable chunk size */ 5526 return ERR_PTR(-EINVAL); 5527 5528 mddev->new_level = 5; 5529 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 5530 mddev->new_chunk_sectors = chunksect; 5531 5532 return setup_conf(mddev); 5533 } 5534 5535 static void *raid5_takeover_raid6(mddev_t *mddev) 5536 { 5537 int new_layout; 5538 5539 switch (mddev->layout) { 5540 case ALGORITHM_LEFT_ASYMMETRIC_6: 5541 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 5542 break; 5543 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5544 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 5545 break; 5546 case ALGORITHM_LEFT_SYMMETRIC_6: 5547 new_layout = ALGORITHM_LEFT_SYMMETRIC; 5548 break; 5549 case ALGORITHM_RIGHT_SYMMETRIC_6: 5550 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 5551 break; 5552 case ALGORITHM_PARITY_0_6: 5553 new_layout = ALGORITHM_PARITY_0; 5554 break; 5555 case ALGORITHM_PARITY_N: 5556 new_layout = ALGORITHM_PARITY_N; 5557 break; 5558 default: 5559 return ERR_PTR(-EINVAL); 5560 } 5561 mddev->new_level = 5; 5562 mddev->new_layout = new_layout; 5563 mddev->delta_disks = -1; 5564 mddev->raid_disks -= 1; 5565 return setup_conf(mddev); 5566 } 5567 5568 5569 static int raid5_check_reshape(mddev_t *mddev) 5570 { 5571 /* For a 2-drive array, the layout and chunk size can be changed 5572 * immediately as not restriping is needed. 5573 * For larger arrays we record the new value - after validation 5574 * to be used by a reshape pass. 5575 */ 5576 raid5_conf_t *conf = mddev->private; 5577 int new_chunk = mddev->new_chunk_sectors; 5578 5579 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 5580 return -EINVAL; 5581 if (new_chunk > 0) { 5582 if (!is_power_of_2(new_chunk)) 5583 return -EINVAL; 5584 if (new_chunk < (PAGE_SIZE>>9)) 5585 return -EINVAL; 5586 if (mddev->array_sectors & (new_chunk-1)) 5587 /* not factor of array size */ 5588 return -EINVAL; 5589 } 5590 5591 /* They look valid */ 5592 5593 if (mddev->raid_disks == 2) { 5594 /* can make the change immediately */ 5595 if (mddev->new_layout >= 0) { 5596 conf->algorithm = mddev->new_layout; 5597 mddev->layout = mddev->new_layout; 5598 } 5599 if (new_chunk > 0) { 5600 conf->chunk_sectors = new_chunk ; 5601 mddev->chunk_sectors = new_chunk; 5602 } 5603 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5604 md_wakeup_thread(mddev->thread); 5605 } 5606 return check_reshape(mddev); 5607 } 5608 5609 static int raid6_check_reshape(mddev_t *mddev) 5610 { 5611 int new_chunk = mddev->new_chunk_sectors; 5612 5613 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 5614 return -EINVAL; 5615 if (new_chunk > 0) { 5616 if (!is_power_of_2(new_chunk)) 5617 return -EINVAL; 5618 if (new_chunk < (PAGE_SIZE >> 9)) 5619 return -EINVAL; 5620 if (mddev->array_sectors & (new_chunk-1)) 5621 /* not factor of array size */ 5622 return -EINVAL; 5623 } 5624 5625 /* They look valid */ 5626 return check_reshape(mddev); 5627 } 5628 5629 static void *raid5_takeover(mddev_t *mddev) 5630 { 5631 /* raid5 can take over: 5632 * raid0 - if all devices are the same - make it a raid4 layout 5633 * raid1 - if there are two drives. We need to know the chunk size 5634 * raid4 - trivial - just use a raid4 layout. 5635 * raid6 - Providing it is a *_6 layout 5636 */ 5637 5638 if (mddev->level == 1) 5639 return raid5_takeover_raid1(mddev); 5640 if (mddev->level == 4) { 5641 mddev->new_layout = ALGORITHM_PARITY_N; 5642 mddev->new_level = 5; 5643 return setup_conf(mddev); 5644 } 5645 if (mddev->level == 6) 5646 return raid5_takeover_raid6(mddev); 5647 5648 return ERR_PTR(-EINVAL); 5649 } 5650 5651 5652 static struct mdk_personality raid5_personality; 5653 5654 static void *raid6_takeover(mddev_t *mddev) 5655 { 5656 /* Currently can only take over a raid5. We map the 5657 * personality to an equivalent raid6 personality 5658 * with the Q block at the end. 5659 */ 5660 int new_layout; 5661 5662 if (mddev->pers != &raid5_personality) 5663 return ERR_PTR(-EINVAL); 5664 if (mddev->degraded > 1) 5665 return ERR_PTR(-EINVAL); 5666 if (mddev->raid_disks > 253) 5667 return ERR_PTR(-EINVAL); 5668 if (mddev->raid_disks < 3) 5669 return ERR_PTR(-EINVAL); 5670 5671 switch (mddev->layout) { 5672 case ALGORITHM_LEFT_ASYMMETRIC: 5673 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 5674 break; 5675 case ALGORITHM_RIGHT_ASYMMETRIC: 5676 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 5677 break; 5678 case ALGORITHM_LEFT_SYMMETRIC: 5679 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 5680 break; 5681 case ALGORITHM_RIGHT_SYMMETRIC: 5682 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 5683 break; 5684 case ALGORITHM_PARITY_0: 5685 new_layout = ALGORITHM_PARITY_0_6; 5686 break; 5687 case ALGORITHM_PARITY_N: 5688 new_layout = ALGORITHM_PARITY_N; 5689 break; 5690 default: 5691 return ERR_PTR(-EINVAL); 5692 } 5693 mddev->new_level = 6; 5694 mddev->new_layout = new_layout; 5695 mddev->delta_disks = 1; 5696 mddev->raid_disks += 1; 5697 return setup_conf(mddev); 5698 } 5699 5700 5701 static struct mdk_personality raid6_personality = 5702 { 5703 .name = "raid6", 5704 .level = 6, 5705 .owner = THIS_MODULE, 5706 .make_request = make_request, 5707 .run = run, 5708 .stop = stop, 5709 .status = status, 5710 .error_handler = error, 5711 .hot_add_disk = raid5_add_disk, 5712 .hot_remove_disk= raid5_remove_disk, 5713 .spare_active = raid5_spare_active, 5714 .sync_request = sync_request, 5715 .resize = raid5_resize, 5716 .size = raid5_size, 5717 .check_reshape = raid6_check_reshape, 5718 .start_reshape = raid5_start_reshape, 5719 .finish_reshape = raid5_finish_reshape, 5720 .quiesce = raid5_quiesce, 5721 .takeover = raid6_takeover, 5722 }; 5723 static struct mdk_personality raid5_personality = 5724 { 5725 .name = "raid5", 5726 .level = 5, 5727 .owner = THIS_MODULE, 5728 .make_request = make_request, 5729 .run = run, 5730 .stop = stop, 5731 .status = status, 5732 .error_handler = error, 5733 .hot_add_disk = raid5_add_disk, 5734 .hot_remove_disk= raid5_remove_disk, 5735 .spare_active = raid5_spare_active, 5736 .sync_request = sync_request, 5737 .resize = raid5_resize, 5738 .size = raid5_size, 5739 .check_reshape = raid5_check_reshape, 5740 .start_reshape = raid5_start_reshape, 5741 .finish_reshape = raid5_finish_reshape, 5742 .quiesce = raid5_quiesce, 5743 .takeover = raid5_takeover, 5744 }; 5745 5746 static struct mdk_personality raid4_personality = 5747 { 5748 .name = "raid4", 5749 .level = 4, 5750 .owner = THIS_MODULE, 5751 .make_request = make_request, 5752 .run = run, 5753 .stop = stop, 5754 .status = status, 5755 .error_handler = error, 5756 .hot_add_disk = raid5_add_disk, 5757 .hot_remove_disk= raid5_remove_disk, 5758 .spare_active = raid5_spare_active, 5759 .sync_request = sync_request, 5760 .resize = raid5_resize, 5761 .size = raid5_size, 5762 .check_reshape = raid5_check_reshape, 5763 .start_reshape = raid5_start_reshape, 5764 .finish_reshape = raid5_finish_reshape, 5765 .quiesce = raid5_quiesce, 5766 }; 5767 5768 static int __init raid5_init(void) 5769 { 5770 register_md_personality(&raid6_personality); 5771 register_md_personality(&raid5_personality); 5772 register_md_personality(&raid4_personality); 5773 return 0; 5774 } 5775 5776 static void raid5_exit(void) 5777 { 5778 unregister_md_personality(&raid6_personality); 5779 unregister_md_personality(&raid5_personality); 5780 unregister_md_personality(&raid4_personality); 5781 } 5782 5783 module_init(raid5_init); 5784 module_exit(raid5_exit); 5785 MODULE_LICENSE("GPL"); 5786 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 5787 MODULE_ALIAS("md-raid5"); 5788 MODULE_ALIAS("md-raid4"); 5789 MODULE_ALIAS("md-level-5"); 5790 MODULE_ALIAS("md-level-4"); 5791 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 5792 MODULE_ALIAS("md-raid6"); 5793 MODULE_ALIAS("md-level-6"); 5794 5795 /* This used to be two separate modules, they were: */ 5796 MODULE_ALIAS("raid5"); 5797 MODULE_ALIAS("raid6"); 5798