xref: /openbmc/linux/drivers/md/raid5.c (revision e8e0929d)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include "md.h"
54 #include "raid5.h"
55 #include "bitmap.h"
56 
57 /*
58  * Stripe cache
59  */
60 
61 #define NR_STRIPES		256
62 #define STRIPE_SIZE		PAGE_SIZE
63 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
65 #define	IO_THRESHOLD		1
66 #define BYPASS_THRESHOLD	1
67 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK		(NR_HASH - 1)
69 
70 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA	1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91 
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96 
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98 
99 /*
100  * We maintain a biased count of active stripes in the bottom 16 bits of
101  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102  */
103 static inline int raid5_bi_phys_segments(struct bio *bio)
104 {
105 	return bio->bi_phys_segments & 0xffff;
106 }
107 
108 static inline int raid5_bi_hw_segments(struct bio *bio)
109 {
110 	return (bio->bi_phys_segments >> 16) & 0xffff;
111 }
112 
113 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
114 {
115 	--bio->bi_phys_segments;
116 	return raid5_bi_phys_segments(bio);
117 }
118 
119 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
120 {
121 	unsigned short val = raid5_bi_hw_segments(bio);
122 
123 	--val;
124 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 	return val;
126 }
127 
128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
129 {
130 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 }
132 
133 /* Find first data disk in a raid6 stripe */
134 static inline int raid6_d0(struct stripe_head *sh)
135 {
136 	if (sh->ddf_layout)
137 		/* ddf always start from first device */
138 		return 0;
139 	/* md starts just after Q block */
140 	if (sh->qd_idx == sh->disks - 1)
141 		return 0;
142 	else
143 		return sh->qd_idx + 1;
144 }
145 static inline int raid6_next_disk(int disk, int raid_disks)
146 {
147 	disk++;
148 	return (disk < raid_disks) ? disk : 0;
149 }
150 
151 /* When walking through the disks in a raid5, starting at raid6_d0,
152  * We need to map each disk to a 'slot', where the data disks are slot
153  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154  * is raid_disks-1.  This help does that mapping.
155  */
156 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
157 			     int *count, int syndrome_disks)
158 {
159 	int slot;
160 
161 	if (idx == sh->pd_idx)
162 		return syndrome_disks;
163 	if (idx == sh->qd_idx)
164 		return syndrome_disks + 1;
165 	slot = (*count)++;
166 	return slot;
167 }
168 
169 static void return_io(struct bio *return_bi)
170 {
171 	struct bio *bi = return_bi;
172 	while (bi) {
173 
174 		return_bi = bi->bi_next;
175 		bi->bi_next = NULL;
176 		bi->bi_size = 0;
177 		bio_endio(bi, 0);
178 		bi = return_bi;
179 	}
180 }
181 
182 static void print_raid5_conf (raid5_conf_t *conf);
183 
184 static int stripe_operations_active(struct stripe_head *sh)
185 {
186 	return sh->check_state || sh->reconstruct_state ||
187 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
188 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
189 }
190 
191 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
192 {
193 	if (atomic_dec_and_test(&sh->count)) {
194 		BUG_ON(!list_empty(&sh->lru));
195 		BUG_ON(atomic_read(&conf->active_stripes)==0);
196 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
197 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
198 				list_add_tail(&sh->lru, &conf->delayed_list);
199 				blk_plug_device(conf->mddev->queue);
200 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201 				   sh->bm_seq - conf->seq_write > 0) {
202 				list_add_tail(&sh->lru, &conf->bitmap_list);
203 				blk_plug_device(conf->mddev->queue);
204 			} else {
205 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
206 				list_add_tail(&sh->lru, &conf->handle_list);
207 			}
208 			md_wakeup_thread(conf->mddev->thread);
209 		} else {
210 			BUG_ON(stripe_operations_active(sh));
211 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212 				atomic_dec(&conf->preread_active_stripes);
213 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214 					md_wakeup_thread(conf->mddev->thread);
215 			}
216 			atomic_dec(&conf->active_stripes);
217 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218 				list_add_tail(&sh->lru, &conf->inactive_list);
219 				wake_up(&conf->wait_for_stripe);
220 				if (conf->retry_read_aligned)
221 					md_wakeup_thread(conf->mddev->thread);
222 			}
223 		}
224 	}
225 }
226 
227 static void release_stripe(struct stripe_head *sh)
228 {
229 	raid5_conf_t *conf = sh->raid_conf;
230 	unsigned long flags;
231 
232 	spin_lock_irqsave(&conf->device_lock, flags);
233 	__release_stripe(conf, sh);
234 	spin_unlock_irqrestore(&conf->device_lock, flags);
235 }
236 
237 static inline void remove_hash(struct stripe_head *sh)
238 {
239 	pr_debug("remove_hash(), stripe %llu\n",
240 		(unsigned long long)sh->sector);
241 
242 	hlist_del_init(&sh->hash);
243 }
244 
245 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
246 {
247 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
248 
249 	pr_debug("insert_hash(), stripe %llu\n",
250 		(unsigned long long)sh->sector);
251 
252 	CHECK_DEVLOCK();
253 	hlist_add_head(&sh->hash, hp);
254 }
255 
256 
257 /* find an idle stripe, make sure it is unhashed, and return it. */
258 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
259 {
260 	struct stripe_head *sh = NULL;
261 	struct list_head *first;
262 
263 	CHECK_DEVLOCK();
264 	if (list_empty(&conf->inactive_list))
265 		goto out;
266 	first = conf->inactive_list.next;
267 	sh = list_entry(first, struct stripe_head, lru);
268 	list_del_init(first);
269 	remove_hash(sh);
270 	atomic_inc(&conf->active_stripes);
271 out:
272 	return sh;
273 }
274 
275 static void shrink_buffers(struct stripe_head *sh, int num)
276 {
277 	struct page *p;
278 	int i;
279 
280 	for (i=0; i<num ; i++) {
281 		p = sh->dev[i].page;
282 		if (!p)
283 			continue;
284 		sh->dev[i].page = NULL;
285 		put_page(p);
286 	}
287 }
288 
289 static int grow_buffers(struct stripe_head *sh, int num)
290 {
291 	int i;
292 
293 	for (i=0; i<num; i++) {
294 		struct page *page;
295 
296 		if (!(page = alloc_page(GFP_KERNEL))) {
297 			return 1;
298 		}
299 		sh->dev[i].page = page;
300 	}
301 	return 0;
302 }
303 
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
306 			    struct stripe_head *sh);
307 
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 {
310 	raid5_conf_t *conf = sh->raid_conf;
311 	int i;
312 
313 	BUG_ON(atomic_read(&sh->count) != 0);
314 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315 	BUG_ON(stripe_operations_active(sh));
316 
317 	CHECK_DEVLOCK();
318 	pr_debug("init_stripe called, stripe %llu\n",
319 		(unsigned long long)sh->sector);
320 
321 	remove_hash(sh);
322 
323 	sh->generation = conf->generation - previous;
324 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
325 	sh->sector = sector;
326 	stripe_set_idx(sector, conf, previous, sh);
327 	sh->state = 0;
328 
329 
330 	for (i = sh->disks; i--; ) {
331 		struct r5dev *dev = &sh->dev[i];
332 
333 		if (dev->toread || dev->read || dev->towrite || dev->written ||
334 		    test_bit(R5_LOCKED, &dev->flags)) {
335 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
336 			       (unsigned long long)sh->sector, i, dev->toread,
337 			       dev->read, dev->towrite, dev->written,
338 			       test_bit(R5_LOCKED, &dev->flags));
339 			BUG();
340 		}
341 		dev->flags = 0;
342 		raid5_build_block(sh, i, previous);
343 	}
344 	insert_hash(conf, sh);
345 }
346 
347 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
348 					 short generation)
349 {
350 	struct stripe_head *sh;
351 	struct hlist_node *hn;
352 
353 	CHECK_DEVLOCK();
354 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
355 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
356 		if (sh->sector == sector && sh->generation == generation)
357 			return sh;
358 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
359 	return NULL;
360 }
361 
362 static void unplug_slaves(mddev_t *mddev);
363 static void raid5_unplug_device(struct request_queue *q);
364 
365 static struct stripe_head *
366 get_active_stripe(raid5_conf_t *conf, sector_t sector,
367 		  int previous, int noblock, int noquiesce)
368 {
369 	struct stripe_head *sh;
370 
371 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
372 
373 	spin_lock_irq(&conf->device_lock);
374 
375 	do {
376 		wait_event_lock_irq(conf->wait_for_stripe,
377 				    conf->quiesce == 0 || noquiesce,
378 				    conf->device_lock, /* nothing */);
379 		sh = __find_stripe(conf, sector, conf->generation - previous);
380 		if (!sh) {
381 			if (!conf->inactive_blocked)
382 				sh = get_free_stripe(conf);
383 			if (noblock && sh == NULL)
384 				break;
385 			if (!sh) {
386 				conf->inactive_blocked = 1;
387 				wait_event_lock_irq(conf->wait_for_stripe,
388 						    !list_empty(&conf->inactive_list) &&
389 						    (atomic_read(&conf->active_stripes)
390 						     < (conf->max_nr_stripes *3/4)
391 						     || !conf->inactive_blocked),
392 						    conf->device_lock,
393 						    raid5_unplug_device(conf->mddev->queue)
394 					);
395 				conf->inactive_blocked = 0;
396 			} else
397 				init_stripe(sh, sector, previous);
398 		} else {
399 			if (atomic_read(&sh->count)) {
400 				BUG_ON(!list_empty(&sh->lru)
401 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
402 			} else {
403 				if (!test_bit(STRIPE_HANDLE, &sh->state))
404 					atomic_inc(&conf->active_stripes);
405 				if (list_empty(&sh->lru) &&
406 				    !test_bit(STRIPE_EXPANDING, &sh->state))
407 					BUG();
408 				list_del_init(&sh->lru);
409 			}
410 		}
411 	} while (sh == NULL);
412 
413 	if (sh)
414 		atomic_inc(&sh->count);
415 
416 	spin_unlock_irq(&conf->device_lock);
417 	return sh;
418 }
419 
420 static void
421 raid5_end_read_request(struct bio *bi, int error);
422 static void
423 raid5_end_write_request(struct bio *bi, int error);
424 
425 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
426 {
427 	raid5_conf_t *conf = sh->raid_conf;
428 	int i, disks = sh->disks;
429 
430 	might_sleep();
431 
432 	for (i = disks; i--; ) {
433 		int rw;
434 		struct bio *bi;
435 		mdk_rdev_t *rdev;
436 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
437 			rw = WRITE;
438 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
439 			rw = READ;
440 		else
441 			continue;
442 
443 		bi = &sh->dev[i].req;
444 
445 		bi->bi_rw = rw;
446 		if (rw == WRITE)
447 			bi->bi_end_io = raid5_end_write_request;
448 		else
449 			bi->bi_end_io = raid5_end_read_request;
450 
451 		rcu_read_lock();
452 		rdev = rcu_dereference(conf->disks[i].rdev);
453 		if (rdev && test_bit(Faulty, &rdev->flags))
454 			rdev = NULL;
455 		if (rdev)
456 			atomic_inc(&rdev->nr_pending);
457 		rcu_read_unlock();
458 
459 		if (rdev) {
460 			if (s->syncing || s->expanding || s->expanded)
461 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
462 
463 			set_bit(STRIPE_IO_STARTED, &sh->state);
464 
465 			bi->bi_bdev = rdev->bdev;
466 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
467 				__func__, (unsigned long long)sh->sector,
468 				bi->bi_rw, i);
469 			atomic_inc(&sh->count);
470 			bi->bi_sector = sh->sector + rdev->data_offset;
471 			bi->bi_flags = 1 << BIO_UPTODATE;
472 			bi->bi_vcnt = 1;
473 			bi->bi_max_vecs = 1;
474 			bi->bi_idx = 0;
475 			bi->bi_io_vec = &sh->dev[i].vec;
476 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
477 			bi->bi_io_vec[0].bv_offset = 0;
478 			bi->bi_size = STRIPE_SIZE;
479 			bi->bi_next = NULL;
480 			if (rw == WRITE &&
481 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
482 				atomic_add(STRIPE_SECTORS,
483 					&rdev->corrected_errors);
484 			generic_make_request(bi);
485 		} else {
486 			if (rw == WRITE)
487 				set_bit(STRIPE_DEGRADED, &sh->state);
488 			pr_debug("skip op %ld on disc %d for sector %llu\n",
489 				bi->bi_rw, i, (unsigned long long)sh->sector);
490 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
491 			set_bit(STRIPE_HANDLE, &sh->state);
492 		}
493 	}
494 }
495 
496 static struct dma_async_tx_descriptor *
497 async_copy_data(int frombio, struct bio *bio, struct page *page,
498 	sector_t sector, struct dma_async_tx_descriptor *tx)
499 {
500 	struct bio_vec *bvl;
501 	struct page *bio_page;
502 	int i;
503 	int page_offset;
504 	struct async_submit_ctl submit;
505 	enum async_tx_flags flags = 0;
506 
507 	if (bio->bi_sector >= sector)
508 		page_offset = (signed)(bio->bi_sector - sector) * 512;
509 	else
510 		page_offset = (signed)(sector - bio->bi_sector) * -512;
511 
512 	if (frombio)
513 		flags |= ASYNC_TX_FENCE;
514 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
515 
516 	bio_for_each_segment(bvl, bio, i) {
517 		int len = bio_iovec_idx(bio, i)->bv_len;
518 		int clen;
519 		int b_offset = 0;
520 
521 		if (page_offset < 0) {
522 			b_offset = -page_offset;
523 			page_offset += b_offset;
524 			len -= b_offset;
525 		}
526 
527 		if (len > 0 && page_offset + len > STRIPE_SIZE)
528 			clen = STRIPE_SIZE - page_offset;
529 		else
530 			clen = len;
531 
532 		if (clen > 0) {
533 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
534 			bio_page = bio_iovec_idx(bio, i)->bv_page;
535 			if (frombio)
536 				tx = async_memcpy(page, bio_page, page_offset,
537 						  b_offset, clen, &submit);
538 			else
539 				tx = async_memcpy(bio_page, page, b_offset,
540 						  page_offset, clen, &submit);
541 		}
542 		/* chain the operations */
543 		submit.depend_tx = tx;
544 
545 		if (clen < len) /* hit end of page */
546 			break;
547 		page_offset +=  len;
548 	}
549 
550 	return tx;
551 }
552 
553 static void ops_complete_biofill(void *stripe_head_ref)
554 {
555 	struct stripe_head *sh = stripe_head_ref;
556 	struct bio *return_bi = NULL;
557 	raid5_conf_t *conf = sh->raid_conf;
558 	int i;
559 
560 	pr_debug("%s: stripe %llu\n", __func__,
561 		(unsigned long long)sh->sector);
562 
563 	/* clear completed biofills */
564 	spin_lock_irq(&conf->device_lock);
565 	for (i = sh->disks; i--; ) {
566 		struct r5dev *dev = &sh->dev[i];
567 
568 		/* acknowledge completion of a biofill operation */
569 		/* and check if we need to reply to a read request,
570 		 * new R5_Wantfill requests are held off until
571 		 * !STRIPE_BIOFILL_RUN
572 		 */
573 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
574 			struct bio *rbi, *rbi2;
575 
576 			BUG_ON(!dev->read);
577 			rbi = dev->read;
578 			dev->read = NULL;
579 			while (rbi && rbi->bi_sector <
580 				dev->sector + STRIPE_SECTORS) {
581 				rbi2 = r5_next_bio(rbi, dev->sector);
582 				if (!raid5_dec_bi_phys_segments(rbi)) {
583 					rbi->bi_next = return_bi;
584 					return_bi = rbi;
585 				}
586 				rbi = rbi2;
587 			}
588 		}
589 	}
590 	spin_unlock_irq(&conf->device_lock);
591 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
592 
593 	return_io(return_bi);
594 
595 	set_bit(STRIPE_HANDLE, &sh->state);
596 	release_stripe(sh);
597 }
598 
599 static void ops_run_biofill(struct stripe_head *sh)
600 {
601 	struct dma_async_tx_descriptor *tx = NULL;
602 	raid5_conf_t *conf = sh->raid_conf;
603 	struct async_submit_ctl submit;
604 	int i;
605 
606 	pr_debug("%s: stripe %llu\n", __func__,
607 		(unsigned long long)sh->sector);
608 
609 	for (i = sh->disks; i--; ) {
610 		struct r5dev *dev = &sh->dev[i];
611 		if (test_bit(R5_Wantfill, &dev->flags)) {
612 			struct bio *rbi;
613 			spin_lock_irq(&conf->device_lock);
614 			dev->read = rbi = dev->toread;
615 			dev->toread = NULL;
616 			spin_unlock_irq(&conf->device_lock);
617 			while (rbi && rbi->bi_sector <
618 				dev->sector + STRIPE_SECTORS) {
619 				tx = async_copy_data(0, rbi, dev->page,
620 					dev->sector, tx);
621 				rbi = r5_next_bio(rbi, dev->sector);
622 			}
623 		}
624 	}
625 
626 	atomic_inc(&sh->count);
627 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
628 	async_trigger_callback(&submit);
629 }
630 
631 static void mark_target_uptodate(struct stripe_head *sh, int target)
632 {
633 	struct r5dev *tgt;
634 
635 	if (target < 0)
636 		return;
637 
638 	tgt = &sh->dev[target];
639 	set_bit(R5_UPTODATE, &tgt->flags);
640 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
641 	clear_bit(R5_Wantcompute, &tgt->flags);
642 }
643 
644 static void ops_complete_compute(void *stripe_head_ref)
645 {
646 	struct stripe_head *sh = stripe_head_ref;
647 
648 	pr_debug("%s: stripe %llu\n", __func__,
649 		(unsigned long long)sh->sector);
650 
651 	/* mark the computed target(s) as uptodate */
652 	mark_target_uptodate(sh, sh->ops.target);
653 	mark_target_uptodate(sh, sh->ops.target2);
654 
655 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
656 	if (sh->check_state == check_state_compute_run)
657 		sh->check_state = check_state_compute_result;
658 	set_bit(STRIPE_HANDLE, &sh->state);
659 	release_stripe(sh);
660 }
661 
662 /* return a pointer to the address conversion region of the scribble buffer */
663 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
664 				 struct raid5_percpu *percpu)
665 {
666 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
667 }
668 
669 static struct dma_async_tx_descriptor *
670 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
671 {
672 	int disks = sh->disks;
673 	struct page **xor_srcs = percpu->scribble;
674 	int target = sh->ops.target;
675 	struct r5dev *tgt = &sh->dev[target];
676 	struct page *xor_dest = tgt->page;
677 	int count = 0;
678 	struct dma_async_tx_descriptor *tx;
679 	struct async_submit_ctl submit;
680 	int i;
681 
682 	pr_debug("%s: stripe %llu block: %d\n",
683 		__func__, (unsigned long long)sh->sector, target);
684 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
685 
686 	for (i = disks; i--; )
687 		if (i != target)
688 			xor_srcs[count++] = sh->dev[i].page;
689 
690 	atomic_inc(&sh->count);
691 
692 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
693 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
694 	if (unlikely(count == 1))
695 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
696 	else
697 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
698 
699 	return tx;
700 }
701 
702 /* set_syndrome_sources - populate source buffers for gen_syndrome
703  * @srcs - (struct page *) array of size sh->disks
704  * @sh - stripe_head to parse
705  *
706  * Populates srcs in proper layout order for the stripe and returns the
707  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
708  * destination buffer is recorded in srcs[count] and the Q destination
709  * is recorded in srcs[count+1]].
710  */
711 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
712 {
713 	int disks = sh->disks;
714 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
715 	int d0_idx = raid6_d0(sh);
716 	int count;
717 	int i;
718 
719 	for (i = 0; i < disks; i++)
720 		srcs[i] = (void *)raid6_empty_zero_page;
721 
722 	count = 0;
723 	i = d0_idx;
724 	do {
725 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
726 
727 		srcs[slot] = sh->dev[i].page;
728 		i = raid6_next_disk(i, disks);
729 	} while (i != d0_idx);
730 	BUG_ON(count != syndrome_disks);
731 
732 	return count;
733 }
734 
735 static struct dma_async_tx_descriptor *
736 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
737 {
738 	int disks = sh->disks;
739 	struct page **blocks = percpu->scribble;
740 	int target;
741 	int qd_idx = sh->qd_idx;
742 	struct dma_async_tx_descriptor *tx;
743 	struct async_submit_ctl submit;
744 	struct r5dev *tgt;
745 	struct page *dest;
746 	int i;
747 	int count;
748 
749 	if (sh->ops.target < 0)
750 		target = sh->ops.target2;
751 	else if (sh->ops.target2 < 0)
752 		target = sh->ops.target;
753 	else
754 		/* we should only have one valid target */
755 		BUG();
756 	BUG_ON(target < 0);
757 	pr_debug("%s: stripe %llu block: %d\n",
758 		__func__, (unsigned long long)sh->sector, target);
759 
760 	tgt = &sh->dev[target];
761 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
762 	dest = tgt->page;
763 
764 	atomic_inc(&sh->count);
765 
766 	if (target == qd_idx) {
767 		count = set_syndrome_sources(blocks, sh);
768 		blocks[count] = NULL; /* regenerating p is not necessary */
769 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
770 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
771 				  ops_complete_compute, sh,
772 				  to_addr_conv(sh, percpu));
773 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
774 	} else {
775 		/* Compute any data- or p-drive using XOR */
776 		count = 0;
777 		for (i = disks; i-- ; ) {
778 			if (i == target || i == qd_idx)
779 				continue;
780 			blocks[count++] = sh->dev[i].page;
781 		}
782 
783 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
784 				  NULL, ops_complete_compute, sh,
785 				  to_addr_conv(sh, percpu));
786 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
787 	}
788 
789 	return tx;
790 }
791 
792 static struct dma_async_tx_descriptor *
793 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
794 {
795 	int i, count, disks = sh->disks;
796 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
797 	int d0_idx = raid6_d0(sh);
798 	int faila = -1, failb = -1;
799 	int target = sh->ops.target;
800 	int target2 = sh->ops.target2;
801 	struct r5dev *tgt = &sh->dev[target];
802 	struct r5dev *tgt2 = &sh->dev[target2];
803 	struct dma_async_tx_descriptor *tx;
804 	struct page **blocks = percpu->scribble;
805 	struct async_submit_ctl submit;
806 
807 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
808 		 __func__, (unsigned long long)sh->sector, target, target2);
809 	BUG_ON(target < 0 || target2 < 0);
810 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
811 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
812 
813 	/* we need to open-code set_syndrome_sources to handle the
814 	 * slot number conversion for 'faila' and 'failb'
815 	 */
816 	for (i = 0; i < disks ; i++)
817 		blocks[i] = (void *)raid6_empty_zero_page;
818 	count = 0;
819 	i = d0_idx;
820 	do {
821 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822 
823 		blocks[slot] = sh->dev[i].page;
824 
825 		if (i == target)
826 			faila = slot;
827 		if (i == target2)
828 			failb = slot;
829 		i = raid6_next_disk(i, disks);
830 	} while (i != d0_idx);
831 	BUG_ON(count != syndrome_disks);
832 
833 	BUG_ON(faila == failb);
834 	if (failb < faila)
835 		swap(faila, failb);
836 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
837 		 __func__, (unsigned long long)sh->sector, faila, failb);
838 
839 	atomic_inc(&sh->count);
840 
841 	if (failb == syndrome_disks+1) {
842 		/* Q disk is one of the missing disks */
843 		if (faila == syndrome_disks) {
844 			/* Missing P+Q, just recompute */
845 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
846 					  ops_complete_compute, sh,
847 					  to_addr_conv(sh, percpu));
848 			return async_gen_syndrome(blocks, 0, count+2,
849 						  STRIPE_SIZE, &submit);
850 		} else {
851 			struct page *dest;
852 			int data_target;
853 			int qd_idx = sh->qd_idx;
854 
855 			/* Missing D+Q: recompute D from P, then recompute Q */
856 			if (target == qd_idx)
857 				data_target = target2;
858 			else
859 				data_target = target;
860 
861 			count = 0;
862 			for (i = disks; i-- ; ) {
863 				if (i == data_target || i == qd_idx)
864 					continue;
865 				blocks[count++] = sh->dev[i].page;
866 			}
867 			dest = sh->dev[data_target].page;
868 			init_async_submit(&submit,
869 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
870 					  NULL, NULL, NULL,
871 					  to_addr_conv(sh, percpu));
872 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
873 				       &submit);
874 
875 			count = set_syndrome_sources(blocks, sh);
876 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
877 					  ops_complete_compute, sh,
878 					  to_addr_conv(sh, percpu));
879 			return async_gen_syndrome(blocks, 0, count+2,
880 						  STRIPE_SIZE, &submit);
881 		}
882 	} else {
883 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
884 				  ops_complete_compute, sh,
885 				  to_addr_conv(sh, percpu));
886 		if (failb == syndrome_disks) {
887 			/* We're missing D+P. */
888 			return async_raid6_datap_recov(syndrome_disks+2,
889 						       STRIPE_SIZE, faila,
890 						       blocks, &submit);
891 		} else {
892 			/* We're missing D+D. */
893 			return async_raid6_2data_recov(syndrome_disks+2,
894 						       STRIPE_SIZE, faila, failb,
895 						       blocks, &submit);
896 		}
897 	}
898 }
899 
900 
901 static void ops_complete_prexor(void *stripe_head_ref)
902 {
903 	struct stripe_head *sh = stripe_head_ref;
904 
905 	pr_debug("%s: stripe %llu\n", __func__,
906 		(unsigned long long)sh->sector);
907 }
908 
909 static struct dma_async_tx_descriptor *
910 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
911 	       struct dma_async_tx_descriptor *tx)
912 {
913 	int disks = sh->disks;
914 	struct page **xor_srcs = percpu->scribble;
915 	int count = 0, pd_idx = sh->pd_idx, i;
916 	struct async_submit_ctl submit;
917 
918 	/* existing parity data subtracted */
919 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
920 
921 	pr_debug("%s: stripe %llu\n", __func__,
922 		(unsigned long long)sh->sector);
923 
924 	for (i = disks; i--; ) {
925 		struct r5dev *dev = &sh->dev[i];
926 		/* Only process blocks that are known to be uptodate */
927 		if (test_bit(R5_Wantdrain, &dev->flags))
928 			xor_srcs[count++] = dev->page;
929 	}
930 
931 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
932 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
933 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
934 
935 	return tx;
936 }
937 
938 static struct dma_async_tx_descriptor *
939 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
940 {
941 	int disks = sh->disks;
942 	int i;
943 
944 	pr_debug("%s: stripe %llu\n", __func__,
945 		(unsigned long long)sh->sector);
946 
947 	for (i = disks; i--; ) {
948 		struct r5dev *dev = &sh->dev[i];
949 		struct bio *chosen;
950 
951 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
952 			struct bio *wbi;
953 
954 			spin_lock(&sh->lock);
955 			chosen = dev->towrite;
956 			dev->towrite = NULL;
957 			BUG_ON(dev->written);
958 			wbi = dev->written = chosen;
959 			spin_unlock(&sh->lock);
960 
961 			while (wbi && wbi->bi_sector <
962 				dev->sector + STRIPE_SECTORS) {
963 				tx = async_copy_data(1, wbi, dev->page,
964 					dev->sector, tx);
965 				wbi = r5_next_bio(wbi, dev->sector);
966 			}
967 		}
968 	}
969 
970 	return tx;
971 }
972 
973 static void ops_complete_reconstruct(void *stripe_head_ref)
974 {
975 	struct stripe_head *sh = stripe_head_ref;
976 	int disks = sh->disks;
977 	int pd_idx = sh->pd_idx;
978 	int qd_idx = sh->qd_idx;
979 	int i;
980 
981 	pr_debug("%s: stripe %llu\n", __func__,
982 		(unsigned long long)sh->sector);
983 
984 	for (i = disks; i--; ) {
985 		struct r5dev *dev = &sh->dev[i];
986 
987 		if (dev->written || i == pd_idx || i == qd_idx)
988 			set_bit(R5_UPTODATE, &dev->flags);
989 	}
990 
991 	if (sh->reconstruct_state == reconstruct_state_drain_run)
992 		sh->reconstruct_state = reconstruct_state_drain_result;
993 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
994 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
995 	else {
996 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
997 		sh->reconstruct_state = reconstruct_state_result;
998 	}
999 
1000 	set_bit(STRIPE_HANDLE, &sh->state);
1001 	release_stripe(sh);
1002 }
1003 
1004 static void
1005 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1006 		     struct dma_async_tx_descriptor *tx)
1007 {
1008 	int disks = sh->disks;
1009 	struct page **xor_srcs = percpu->scribble;
1010 	struct async_submit_ctl submit;
1011 	int count = 0, pd_idx = sh->pd_idx, i;
1012 	struct page *xor_dest;
1013 	int prexor = 0;
1014 	unsigned long flags;
1015 
1016 	pr_debug("%s: stripe %llu\n", __func__,
1017 		(unsigned long long)sh->sector);
1018 
1019 	/* check if prexor is active which means only process blocks
1020 	 * that are part of a read-modify-write (written)
1021 	 */
1022 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1023 		prexor = 1;
1024 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1025 		for (i = disks; i--; ) {
1026 			struct r5dev *dev = &sh->dev[i];
1027 			if (dev->written)
1028 				xor_srcs[count++] = dev->page;
1029 		}
1030 	} else {
1031 		xor_dest = sh->dev[pd_idx].page;
1032 		for (i = disks; i--; ) {
1033 			struct r5dev *dev = &sh->dev[i];
1034 			if (i != pd_idx)
1035 				xor_srcs[count++] = dev->page;
1036 		}
1037 	}
1038 
1039 	/* 1/ if we prexor'd then the dest is reused as a source
1040 	 * 2/ if we did not prexor then we are redoing the parity
1041 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1042 	 * for the synchronous xor case
1043 	 */
1044 	flags = ASYNC_TX_ACK |
1045 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1046 
1047 	atomic_inc(&sh->count);
1048 
1049 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1050 			  to_addr_conv(sh, percpu));
1051 	if (unlikely(count == 1))
1052 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1053 	else
1054 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1055 }
1056 
1057 static void
1058 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1059 		     struct dma_async_tx_descriptor *tx)
1060 {
1061 	struct async_submit_ctl submit;
1062 	struct page **blocks = percpu->scribble;
1063 	int count;
1064 
1065 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1066 
1067 	count = set_syndrome_sources(blocks, sh);
1068 
1069 	atomic_inc(&sh->count);
1070 
1071 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1072 			  sh, to_addr_conv(sh, percpu));
1073 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1074 }
1075 
1076 static void ops_complete_check(void *stripe_head_ref)
1077 {
1078 	struct stripe_head *sh = stripe_head_ref;
1079 
1080 	pr_debug("%s: stripe %llu\n", __func__,
1081 		(unsigned long long)sh->sector);
1082 
1083 	sh->check_state = check_state_check_result;
1084 	set_bit(STRIPE_HANDLE, &sh->state);
1085 	release_stripe(sh);
1086 }
1087 
1088 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1089 {
1090 	int disks = sh->disks;
1091 	int pd_idx = sh->pd_idx;
1092 	int qd_idx = sh->qd_idx;
1093 	struct page *xor_dest;
1094 	struct page **xor_srcs = percpu->scribble;
1095 	struct dma_async_tx_descriptor *tx;
1096 	struct async_submit_ctl submit;
1097 	int count;
1098 	int i;
1099 
1100 	pr_debug("%s: stripe %llu\n", __func__,
1101 		(unsigned long long)sh->sector);
1102 
1103 	count = 0;
1104 	xor_dest = sh->dev[pd_idx].page;
1105 	xor_srcs[count++] = xor_dest;
1106 	for (i = disks; i--; ) {
1107 		if (i == pd_idx || i == qd_idx)
1108 			continue;
1109 		xor_srcs[count++] = sh->dev[i].page;
1110 	}
1111 
1112 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1113 			  to_addr_conv(sh, percpu));
1114 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1115 			   &sh->ops.zero_sum_result, &submit);
1116 
1117 	atomic_inc(&sh->count);
1118 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1119 	tx = async_trigger_callback(&submit);
1120 }
1121 
1122 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1123 {
1124 	struct page **srcs = percpu->scribble;
1125 	struct async_submit_ctl submit;
1126 	int count;
1127 
1128 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1129 		(unsigned long long)sh->sector, checkp);
1130 
1131 	count = set_syndrome_sources(srcs, sh);
1132 	if (!checkp)
1133 		srcs[count] = NULL;
1134 
1135 	atomic_inc(&sh->count);
1136 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1137 			  sh, to_addr_conv(sh, percpu));
1138 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1139 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1140 }
1141 
1142 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1143 {
1144 	int overlap_clear = 0, i, disks = sh->disks;
1145 	struct dma_async_tx_descriptor *tx = NULL;
1146 	raid5_conf_t *conf = sh->raid_conf;
1147 	int level = conf->level;
1148 	struct raid5_percpu *percpu;
1149 	unsigned long cpu;
1150 
1151 	cpu = get_cpu();
1152 	percpu = per_cpu_ptr(conf->percpu, cpu);
1153 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1154 		ops_run_biofill(sh);
1155 		overlap_clear++;
1156 	}
1157 
1158 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1159 		if (level < 6)
1160 			tx = ops_run_compute5(sh, percpu);
1161 		else {
1162 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1163 				tx = ops_run_compute6_1(sh, percpu);
1164 			else
1165 				tx = ops_run_compute6_2(sh, percpu);
1166 		}
1167 		/* terminate the chain if reconstruct is not set to be run */
1168 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1169 			async_tx_ack(tx);
1170 	}
1171 
1172 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1173 		tx = ops_run_prexor(sh, percpu, tx);
1174 
1175 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1176 		tx = ops_run_biodrain(sh, tx);
1177 		overlap_clear++;
1178 	}
1179 
1180 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1181 		if (level < 6)
1182 			ops_run_reconstruct5(sh, percpu, tx);
1183 		else
1184 			ops_run_reconstruct6(sh, percpu, tx);
1185 	}
1186 
1187 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1188 		if (sh->check_state == check_state_run)
1189 			ops_run_check_p(sh, percpu);
1190 		else if (sh->check_state == check_state_run_q)
1191 			ops_run_check_pq(sh, percpu, 0);
1192 		else if (sh->check_state == check_state_run_pq)
1193 			ops_run_check_pq(sh, percpu, 1);
1194 		else
1195 			BUG();
1196 	}
1197 
1198 	if (overlap_clear)
1199 		for (i = disks; i--; ) {
1200 			struct r5dev *dev = &sh->dev[i];
1201 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1202 				wake_up(&sh->raid_conf->wait_for_overlap);
1203 		}
1204 	put_cpu();
1205 }
1206 
1207 static int grow_one_stripe(raid5_conf_t *conf)
1208 {
1209 	struct stripe_head *sh;
1210 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1211 	if (!sh)
1212 		return 0;
1213 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
1214 	sh->raid_conf = conf;
1215 	spin_lock_init(&sh->lock);
1216 
1217 	if (grow_buffers(sh, conf->raid_disks)) {
1218 		shrink_buffers(sh, conf->raid_disks);
1219 		kmem_cache_free(conf->slab_cache, sh);
1220 		return 0;
1221 	}
1222 	sh->disks = conf->raid_disks;
1223 	/* we just created an active stripe so... */
1224 	atomic_set(&sh->count, 1);
1225 	atomic_inc(&conf->active_stripes);
1226 	INIT_LIST_HEAD(&sh->lru);
1227 	release_stripe(sh);
1228 	return 1;
1229 }
1230 
1231 static int grow_stripes(raid5_conf_t *conf, int num)
1232 {
1233 	struct kmem_cache *sc;
1234 	int devs = conf->raid_disks;
1235 
1236 	sprintf(conf->cache_name[0],
1237 		"raid%d-%s", conf->level, mdname(conf->mddev));
1238 	sprintf(conf->cache_name[1],
1239 		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1240 	conf->active_name = 0;
1241 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1242 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1243 			       0, 0, NULL);
1244 	if (!sc)
1245 		return 1;
1246 	conf->slab_cache = sc;
1247 	conf->pool_size = devs;
1248 	while (num--)
1249 		if (!grow_one_stripe(conf))
1250 			return 1;
1251 	return 0;
1252 }
1253 
1254 /**
1255  * scribble_len - return the required size of the scribble region
1256  * @num - total number of disks in the array
1257  *
1258  * The size must be enough to contain:
1259  * 1/ a struct page pointer for each device in the array +2
1260  * 2/ room to convert each entry in (1) to its corresponding dma
1261  *    (dma_map_page()) or page (page_address()) address.
1262  *
1263  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1264  * calculate over all devices (not just the data blocks), using zeros in place
1265  * of the P and Q blocks.
1266  */
1267 static size_t scribble_len(int num)
1268 {
1269 	size_t len;
1270 
1271 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1272 
1273 	return len;
1274 }
1275 
1276 static int resize_stripes(raid5_conf_t *conf, int newsize)
1277 {
1278 	/* Make all the stripes able to hold 'newsize' devices.
1279 	 * New slots in each stripe get 'page' set to a new page.
1280 	 *
1281 	 * This happens in stages:
1282 	 * 1/ create a new kmem_cache and allocate the required number of
1283 	 *    stripe_heads.
1284 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1285 	 *    to the new stripe_heads.  This will have the side effect of
1286 	 *    freezing the array as once all stripe_heads have been collected,
1287 	 *    no IO will be possible.  Old stripe heads are freed once their
1288 	 *    pages have been transferred over, and the old kmem_cache is
1289 	 *    freed when all stripes are done.
1290 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1291 	 *    we simple return a failre status - no need to clean anything up.
1292 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1293 	 *    If this fails, we don't bother trying the shrink the
1294 	 *    stripe_heads down again, we just leave them as they are.
1295 	 *    As each stripe_head is processed the new one is released into
1296 	 *    active service.
1297 	 *
1298 	 * Once step2 is started, we cannot afford to wait for a write,
1299 	 * so we use GFP_NOIO allocations.
1300 	 */
1301 	struct stripe_head *osh, *nsh;
1302 	LIST_HEAD(newstripes);
1303 	struct disk_info *ndisks;
1304 	unsigned long cpu;
1305 	int err;
1306 	struct kmem_cache *sc;
1307 	int i;
1308 
1309 	if (newsize <= conf->pool_size)
1310 		return 0; /* never bother to shrink */
1311 
1312 	err = md_allow_write(conf->mddev);
1313 	if (err)
1314 		return err;
1315 
1316 	/* Step 1 */
1317 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1318 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1319 			       0, 0, NULL);
1320 	if (!sc)
1321 		return -ENOMEM;
1322 
1323 	for (i = conf->max_nr_stripes; i; i--) {
1324 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1325 		if (!nsh)
1326 			break;
1327 
1328 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1329 
1330 		nsh->raid_conf = conf;
1331 		spin_lock_init(&nsh->lock);
1332 
1333 		list_add(&nsh->lru, &newstripes);
1334 	}
1335 	if (i) {
1336 		/* didn't get enough, give up */
1337 		while (!list_empty(&newstripes)) {
1338 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1339 			list_del(&nsh->lru);
1340 			kmem_cache_free(sc, nsh);
1341 		}
1342 		kmem_cache_destroy(sc);
1343 		return -ENOMEM;
1344 	}
1345 	/* Step 2 - Must use GFP_NOIO now.
1346 	 * OK, we have enough stripes, start collecting inactive
1347 	 * stripes and copying them over
1348 	 */
1349 	list_for_each_entry(nsh, &newstripes, lru) {
1350 		spin_lock_irq(&conf->device_lock);
1351 		wait_event_lock_irq(conf->wait_for_stripe,
1352 				    !list_empty(&conf->inactive_list),
1353 				    conf->device_lock,
1354 				    unplug_slaves(conf->mddev)
1355 			);
1356 		osh = get_free_stripe(conf);
1357 		spin_unlock_irq(&conf->device_lock);
1358 		atomic_set(&nsh->count, 1);
1359 		for(i=0; i<conf->pool_size; i++)
1360 			nsh->dev[i].page = osh->dev[i].page;
1361 		for( ; i<newsize; i++)
1362 			nsh->dev[i].page = NULL;
1363 		kmem_cache_free(conf->slab_cache, osh);
1364 	}
1365 	kmem_cache_destroy(conf->slab_cache);
1366 
1367 	/* Step 3.
1368 	 * At this point, we are holding all the stripes so the array
1369 	 * is completely stalled, so now is a good time to resize
1370 	 * conf->disks and the scribble region
1371 	 */
1372 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1373 	if (ndisks) {
1374 		for (i=0; i<conf->raid_disks; i++)
1375 			ndisks[i] = conf->disks[i];
1376 		kfree(conf->disks);
1377 		conf->disks = ndisks;
1378 	} else
1379 		err = -ENOMEM;
1380 
1381 	get_online_cpus();
1382 	conf->scribble_len = scribble_len(newsize);
1383 	for_each_present_cpu(cpu) {
1384 		struct raid5_percpu *percpu;
1385 		void *scribble;
1386 
1387 		percpu = per_cpu_ptr(conf->percpu, cpu);
1388 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1389 
1390 		if (scribble) {
1391 			kfree(percpu->scribble);
1392 			percpu->scribble = scribble;
1393 		} else {
1394 			err = -ENOMEM;
1395 			break;
1396 		}
1397 	}
1398 	put_online_cpus();
1399 
1400 	/* Step 4, return new stripes to service */
1401 	while(!list_empty(&newstripes)) {
1402 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1403 		list_del_init(&nsh->lru);
1404 
1405 		for (i=conf->raid_disks; i < newsize; i++)
1406 			if (nsh->dev[i].page == NULL) {
1407 				struct page *p = alloc_page(GFP_NOIO);
1408 				nsh->dev[i].page = p;
1409 				if (!p)
1410 					err = -ENOMEM;
1411 			}
1412 		release_stripe(nsh);
1413 	}
1414 	/* critical section pass, GFP_NOIO no longer needed */
1415 
1416 	conf->slab_cache = sc;
1417 	conf->active_name = 1-conf->active_name;
1418 	conf->pool_size = newsize;
1419 	return err;
1420 }
1421 
1422 static int drop_one_stripe(raid5_conf_t *conf)
1423 {
1424 	struct stripe_head *sh;
1425 
1426 	spin_lock_irq(&conf->device_lock);
1427 	sh = get_free_stripe(conf);
1428 	spin_unlock_irq(&conf->device_lock);
1429 	if (!sh)
1430 		return 0;
1431 	BUG_ON(atomic_read(&sh->count));
1432 	shrink_buffers(sh, conf->pool_size);
1433 	kmem_cache_free(conf->slab_cache, sh);
1434 	atomic_dec(&conf->active_stripes);
1435 	return 1;
1436 }
1437 
1438 static void shrink_stripes(raid5_conf_t *conf)
1439 {
1440 	while (drop_one_stripe(conf))
1441 		;
1442 
1443 	if (conf->slab_cache)
1444 		kmem_cache_destroy(conf->slab_cache);
1445 	conf->slab_cache = NULL;
1446 }
1447 
1448 static void raid5_end_read_request(struct bio * bi, int error)
1449 {
1450 	struct stripe_head *sh = bi->bi_private;
1451 	raid5_conf_t *conf = sh->raid_conf;
1452 	int disks = sh->disks, i;
1453 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1454 	char b[BDEVNAME_SIZE];
1455 	mdk_rdev_t *rdev;
1456 
1457 
1458 	for (i=0 ; i<disks; i++)
1459 		if (bi == &sh->dev[i].req)
1460 			break;
1461 
1462 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1463 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1464 		uptodate);
1465 	if (i == disks) {
1466 		BUG();
1467 		return;
1468 	}
1469 
1470 	if (uptodate) {
1471 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1472 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1473 			rdev = conf->disks[i].rdev;
1474 			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1475 				  " (%lu sectors at %llu on %s)\n",
1476 				  mdname(conf->mddev), STRIPE_SECTORS,
1477 				  (unsigned long long)(sh->sector
1478 						       + rdev->data_offset),
1479 				  bdevname(rdev->bdev, b));
1480 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1481 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1482 		}
1483 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1484 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1485 	} else {
1486 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1487 		int retry = 0;
1488 		rdev = conf->disks[i].rdev;
1489 
1490 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1491 		atomic_inc(&rdev->read_errors);
1492 		if (conf->mddev->degraded)
1493 			printk_rl(KERN_WARNING
1494 				  "raid5:%s: read error not correctable "
1495 				  "(sector %llu on %s).\n",
1496 				  mdname(conf->mddev),
1497 				  (unsigned long long)(sh->sector
1498 						       + rdev->data_offset),
1499 				  bdn);
1500 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1501 			/* Oh, no!!! */
1502 			printk_rl(KERN_WARNING
1503 				  "raid5:%s: read error NOT corrected!! "
1504 				  "(sector %llu on %s).\n",
1505 				  mdname(conf->mddev),
1506 				  (unsigned long long)(sh->sector
1507 						       + rdev->data_offset),
1508 				  bdn);
1509 		else if (atomic_read(&rdev->read_errors)
1510 			 > conf->max_nr_stripes)
1511 			printk(KERN_WARNING
1512 			       "raid5:%s: Too many read errors, failing device %s.\n",
1513 			       mdname(conf->mddev), bdn);
1514 		else
1515 			retry = 1;
1516 		if (retry)
1517 			set_bit(R5_ReadError, &sh->dev[i].flags);
1518 		else {
1519 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1520 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1521 			md_error(conf->mddev, rdev);
1522 		}
1523 	}
1524 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1525 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1526 	set_bit(STRIPE_HANDLE, &sh->state);
1527 	release_stripe(sh);
1528 }
1529 
1530 static void raid5_end_write_request(struct bio *bi, int error)
1531 {
1532 	struct stripe_head *sh = bi->bi_private;
1533 	raid5_conf_t *conf = sh->raid_conf;
1534 	int disks = sh->disks, i;
1535 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1536 
1537 	for (i=0 ; i<disks; i++)
1538 		if (bi == &sh->dev[i].req)
1539 			break;
1540 
1541 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1542 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1543 		uptodate);
1544 	if (i == disks) {
1545 		BUG();
1546 		return;
1547 	}
1548 
1549 	if (!uptodate)
1550 		md_error(conf->mddev, conf->disks[i].rdev);
1551 
1552 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1553 
1554 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1555 	set_bit(STRIPE_HANDLE, &sh->state);
1556 	release_stripe(sh);
1557 }
1558 
1559 
1560 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1561 
1562 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1563 {
1564 	struct r5dev *dev = &sh->dev[i];
1565 
1566 	bio_init(&dev->req);
1567 	dev->req.bi_io_vec = &dev->vec;
1568 	dev->req.bi_vcnt++;
1569 	dev->req.bi_max_vecs++;
1570 	dev->vec.bv_page = dev->page;
1571 	dev->vec.bv_len = STRIPE_SIZE;
1572 	dev->vec.bv_offset = 0;
1573 
1574 	dev->req.bi_sector = sh->sector;
1575 	dev->req.bi_private = sh;
1576 
1577 	dev->flags = 0;
1578 	dev->sector = compute_blocknr(sh, i, previous);
1579 }
1580 
1581 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1582 {
1583 	char b[BDEVNAME_SIZE];
1584 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1585 	pr_debug("raid5: error called\n");
1586 
1587 	if (!test_bit(Faulty, &rdev->flags)) {
1588 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1589 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1590 			unsigned long flags;
1591 			spin_lock_irqsave(&conf->device_lock, flags);
1592 			mddev->degraded++;
1593 			spin_unlock_irqrestore(&conf->device_lock, flags);
1594 			/*
1595 			 * if recovery was running, make sure it aborts.
1596 			 */
1597 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1598 		}
1599 		set_bit(Faulty, &rdev->flags);
1600 		printk(KERN_ALERT
1601 		       "raid5: Disk failure on %s, disabling device.\n"
1602 		       "raid5: Operation continuing on %d devices.\n",
1603 		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1604 	}
1605 }
1606 
1607 /*
1608  * Input: a 'big' sector number,
1609  * Output: index of the data and parity disk, and the sector # in them.
1610  */
1611 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1612 				     int previous, int *dd_idx,
1613 				     struct stripe_head *sh)
1614 {
1615 	long stripe;
1616 	unsigned long chunk_number;
1617 	unsigned int chunk_offset;
1618 	int pd_idx, qd_idx;
1619 	int ddf_layout = 0;
1620 	sector_t new_sector;
1621 	int algorithm = previous ? conf->prev_algo
1622 				 : conf->algorithm;
1623 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1624 					 : conf->chunk_sectors;
1625 	int raid_disks = previous ? conf->previous_raid_disks
1626 				  : conf->raid_disks;
1627 	int data_disks = raid_disks - conf->max_degraded;
1628 
1629 	/* First compute the information on this sector */
1630 
1631 	/*
1632 	 * Compute the chunk number and the sector offset inside the chunk
1633 	 */
1634 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1635 	chunk_number = r_sector;
1636 	BUG_ON(r_sector != chunk_number);
1637 
1638 	/*
1639 	 * Compute the stripe number
1640 	 */
1641 	stripe = chunk_number / data_disks;
1642 
1643 	/*
1644 	 * Compute the data disk and parity disk indexes inside the stripe
1645 	 */
1646 	*dd_idx = chunk_number % data_disks;
1647 
1648 	/*
1649 	 * Select the parity disk based on the user selected algorithm.
1650 	 */
1651 	pd_idx = qd_idx = ~0;
1652 	switch(conf->level) {
1653 	case 4:
1654 		pd_idx = data_disks;
1655 		break;
1656 	case 5:
1657 		switch (algorithm) {
1658 		case ALGORITHM_LEFT_ASYMMETRIC:
1659 			pd_idx = data_disks - stripe % raid_disks;
1660 			if (*dd_idx >= pd_idx)
1661 				(*dd_idx)++;
1662 			break;
1663 		case ALGORITHM_RIGHT_ASYMMETRIC:
1664 			pd_idx = stripe % raid_disks;
1665 			if (*dd_idx >= pd_idx)
1666 				(*dd_idx)++;
1667 			break;
1668 		case ALGORITHM_LEFT_SYMMETRIC:
1669 			pd_idx = data_disks - stripe % raid_disks;
1670 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1671 			break;
1672 		case ALGORITHM_RIGHT_SYMMETRIC:
1673 			pd_idx = stripe % raid_disks;
1674 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1675 			break;
1676 		case ALGORITHM_PARITY_0:
1677 			pd_idx = 0;
1678 			(*dd_idx)++;
1679 			break;
1680 		case ALGORITHM_PARITY_N:
1681 			pd_idx = data_disks;
1682 			break;
1683 		default:
1684 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1685 				algorithm);
1686 			BUG();
1687 		}
1688 		break;
1689 	case 6:
1690 
1691 		switch (algorithm) {
1692 		case ALGORITHM_LEFT_ASYMMETRIC:
1693 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1694 			qd_idx = pd_idx + 1;
1695 			if (pd_idx == raid_disks-1) {
1696 				(*dd_idx)++;	/* Q D D D P */
1697 				qd_idx = 0;
1698 			} else if (*dd_idx >= pd_idx)
1699 				(*dd_idx) += 2; /* D D P Q D */
1700 			break;
1701 		case ALGORITHM_RIGHT_ASYMMETRIC:
1702 			pd_idx = stripe % raid_disks;
1703 			qd_idx = pd_idx + 1;
1704 			if (pd_idx == raid_disks-1) {
1705 				(*dd_idx)++;	/* Q D D D P */
1706 				qd_idx = 0;
1707 			} else if (*dd_idx >= pd_idx)
1708 				(*dd_idx) += 2; /* D D P Q D */
1709 			break;
1710 		case ALGORITHM_LEFT_SYMMETRIC:
1711 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1712 			qd_idx = (pd_idx + 1) % raid_disks;
1713 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1714 			break;
1715 		case ALGORITHM_RIGHT_SYMMETRIC:
1716 			pd_idx = stripe % raid_disks;
1717 			qd_idx = (pd_idx + 1) % raid_disks;
1718 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1719 			break;
1720 
1721 		case ALGORITHM_PARITY_0:
1722 			pd_idx = 0;
1723 			qd_idx = 1;
1724 			(*dd_idx) += 2;
1725 			break;
1726 		case ALGORITHM_PARITY_N:
1727 			pd_idx = data_disks;
1728 			qd_idx = data_disks + 1;
1729 			break;
1730 
1731 		case ALGORITHM_ROTATING_ZERO_RESTART:
1732 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1733 			 * of blocks for computing Q is different.
1734 			 */
1735 			pd_idx = stripe % raid_disks;
1736 			qd_idx = pd_idx + 1;
1737 			if (pd_idx == raid_disks-1) {
1738 				(*dd_idx)++;	/* Q D D D P */
1739 				qd_idx = 0;
1740 			} else if (*dd_idx >= pd_idx)
1741 				(*dd_idx) += 2; /* D D P Q D */
1742 			ddf_layout = 1;
1743 			break;
1744 
1745 		case ALGORITHM_ROTATING_N_RESTART:
1746 			/* Same a left_asymmetric, by first stripe is
1747 			 * D D D P Q  rather than
1748 			 * Q D D D P
1749 			 */
1750 			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1751 			qd_idx = pd_idx + 1;
1752 			if (pd_idx == raid_disks-1) {
1753 				(*dd_idx)++;	/* Q D D D P */
1754 				qd_idx = 0;
1755 			} else if (*dd_idx >= pd_idx)
1756 				(*dd_idx) += 2; /* D D P Q D */
1757 			ddf_layout = 1;
1758 			break;
1759 
1760 		case ALGORITHM_ROTATING_N_CONTINUE:
1761 			/* Same as left_symmetric but Q is before P */
1762 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1763 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1764 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1765 			ddf_layout = 1;
1766 			break;
1767 
1768 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1769 			/* RAID5 left_asymmetric, with Q on last device */
1770 			pd_idx = data_disks - stripe % (raid_disks-1);
1771 			if (*dd_idx >= pd_idx)
1772 				(*dd_idx)++;
1773 			qd_idx = raid_disks - 1;
1774 			break;
1775 
1776 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1777 			pd_idx = stripe % (raid_disks-1);
1778 			if (*dd_idx >= pd_idx)
1779 				(*dd_idx)++;
1780 			qd_idx = raid_disks - 1;
1781 			break;
1782 
1783 		case ALGORITHM_LEFT_SYMMETRIC_6:
1784 			pd_idx = data_disks - stripe % (raid_disks-1);
1785 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1786 			qd_idx = raid_disks - 1;
1787 			break;
1788 
1789 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1790 			pd_idx = stripe % (raid_disks-1);
1791 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1792 			qd_idx = raid_disks - 1;
1793 			break;
1794 
1795 		case ALGORITHM_PARITY_0_6:
1796 			pd_idx = 0;
1797 			(*dd_idx)++;
1798 			qd_idx = raid_disks - 1;
1799 			break;
1800 
1801 
1802 		default:
1803 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1804 			       algorithm);
1805 			BUG();
1806 		}
1807 		break;
1808 	}
1809 
1810 	if (sh) {
1811 		sh->pd_idx = pd_idx;
1812 		sh->qd_idx = qd_idx;
1813 		sh->ddf_layout = ddf_layout;
1814 	}
1815 	/*
1816 	 * Finally, compute the new sector number
1817 	 */
1818 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1819 	return new_sector;
1820 }
1821 
1822 
1823 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1824 {
1825 	raid5_conf_t *conf = sh->raid_conf;
1826 	int raid_disks = sh->disks;
1827 	int data_disks = raid_disks - conf->max_degraded;
1828 	sector_t new_sector = sh->sector, check;
1829 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1830 					 : conf->chunk_sectors;
1831 	int algorithm = previous ? conf->prev_algo
1832 				 : conf->algorithm;
1833 	sector_t stripe;
1834 	int chunk_offset;
1835 	int chunk_number, dummy1, dd_idx = i;
1836 	sector_t r_sector;
1837 	struct stripe_head sh2;
1838 
1839 
1840 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1841 	stripe = new_sector;
1842 	BUG_ON(new_sector != stripe);
1843 
1844 	if (i == sh->pd_idx)
1845 		return 0;
1846 	switch(conf->level) {
1847 	case 4: break;
1848 	case 5:
1849 		switch (algorithm) {
1850 		case ALGORITHM_LEFT_ASYMMETRIC:
1851 		case ALGORITHM_RIGHT_ASYMMETRIC:
1852 			if (i > sh->pd_idx)
1853 				i--;
1854 			break;
1855 		case ALGORITHM_LEFT_SYMMETRIC:
1856 		case ALGORITHM_RIGHT_SYMMETRIC:
1857 			if (i < sh->pd_idx)
1858 				i += raid_disks;
1859 			i -= (sh->pd_idx + 1);
1860 			break;
1861 		case ALGORITHM_PARITY_0:
1862 			i -= 1;
1863 			break;
1864 		case ALGORITHM_PARITY_N:
1865 			break;
1866 		default:
1867 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1868 			       algorithm);
1869 			BUG();
1870 		}
1871 		break;
1872 	case 6:
1873 		if (i == sh->qd_idx)
1874 			return 0; /* It is the Q disk */
1875 		switch (algorithm) {
1876 		case ALGORITHM_LEFT_ASYMMETRIC:
1877 		case ALGORITHM_RIGHT_ASYMMETRIC:
1878 		case ALGORITHM_ROTATING_ZERO_RESTART:
1879 		case ALGORITHM_ROTATING_N_RESTART:
1880 			if (sh->pd_idx == raid_disks-1)
1881 				i--;	/* Q D D D P */
1882 			else if (i > sh->pd_idx)
1883 				i -= 2; /* D D P Q D */
1884 			break;
1885 		case ALGORITHM_LEFT_SYMMETRIC:
1886 		case ALGORITHM_RIGHT_SYMMETRIC:
1887 			if (sh->pd_idx == raid_disks-1)
1888 				i--; /* Q D D D P */
1889 			else {
1890 				/* D D P Q D */
1891 				if (i < sh->pd_idx)
1892 					i += raid_disks;
1893 				i -= (sh->pd_idx + 2);
1894 			}
1895 			break;
1896 		case ALGORITHM_PARITY_0:
1897 			i -= 2;
1898 			break;
1899 		case ALGORITHM_PARITY_N:
1900 			break;
1901 		case ALGORITHM_ROTATING_N_CONTINUE:
1902 			if (sh->pd_idx == 0)
1903 				i--;	/* P D D D Q */
1904 			else if (i > sh->pd_idx)
1905 				i -= 2; /* D D Q P D */
1906 			break;
1907 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1908 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1909 			if (i > sh->pd_idx)
1910 				i--;
1911 			break;
1912 		case ALGORITHM_LEFT_SYMMETRIC_6:
1913 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1914 			if (i < sh->pd_idx)
1915 				i += data_disks + 1;
1916 			i -= (sh->pd_idx + 1);
1917 			break;
1918 		case ALGORITHM_PARITY_0_6:
1919 			i -= 1;
1920 			break;
1921 		default:
1922 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1923 			       algorithm);
1924 			BUG();
1925 		}
1926 		break;
1927 	}
1928 
1929 	chunk_number = stripe * data_disks + i;
1930 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1931 
1932 	check = raid5_compute_sector(conf, r_sector,
1933 				     previous, &dummy1, &sh2);
1934 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1935 		|| sh2.qd_idx != sh->qd_idx) {
1936 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1937 		return 0;
1938 	}
1939 	return r_sector;
1940 }
1941 
1942 
1943 static void
1944 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1945 			 int rcw, int expand)
1946 {
1947 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1948 	raid5_conf_t *conf = sh->raid_conf;
1949 	int level = conf->level;
1950 
1951 	if (rcw) {
1952 		/* if we are not expanding this is a proper write request, and
1953 		 * there will be bios with new data to be drained into the
1954 		 * stripe cache
1955 		 */
1956 		if (!expand) {
1957 			sh->reconstruct_state = reconstruct_state_drain_run;
1958 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1959 		} else
1960 			sh->reconstruct_state = reconstruct_state_run;
1961 
1962 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1963 
1964 		for (i = disks; i--; ) {
1965 			struct r5dev *dev = &sh->dev[i];
1966 
1967 			if (dev->towrite) {
1968 				set_bit(R5_LOCKED, &dev->flags);
1969 				set_bit(R5_Wantdrain, &dev->flags);
1970 				if (!expand)
1971 					clear_bit(R5_UPTODATE, &dev->flags);
1972 				s->locked++;
1973 			}
1974 		}
1975 		if (s->locked + conf->max_degraded == disks)
1976 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1977 				atomic_inc(&conf->pending_full_writes);
1978 	} else {
1979 		BUG_ON(level == 6);
1980 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1981 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1982 
1983 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1984 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1985 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1986 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1987 
1988 		for (i = disks; i--; ) {
1989 			struct r5dev *dev = &sh->dev[i];
1990 			if (i == pd_idx)
1991 				continue;
1992 
1993 			if (dev->towrite &&
1994 			    (test_bit(R5_UPTODATE, &dev->flags) ||
1995 			     test_bit(R5_Wantcompute, &dev->flags))) {
1996 				set_bit(R5_Wantdrain, &dev->flags);
1997 				set_bit(R5_LOCKED, &dev->flags);
1998 				clear_bit(R5_UPTODATE, &dev->flags);
1999 				s->locked++;
2000 			}
2001 		}
2002 	}
2003 
2004 	/* keep the parity disk(s) locked while asynchronous operations
2005 	 * are in flight
2006 	 */
2007 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2008 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2009 	s->locked++;
2010 
2011 	if (level == 6) {
2012 		int qd_idx = sh->qd_idx;
2013 		struct r5dev *dev = &sh->dev[qd_idx];
2014 
2015 		set_bit(R5_LOCKED, &dev->flags);
2016 		clear_bit(R5_UPTODATE, &dev->flags);
2017 		s->locked++;
2018 	}
2019 
2020 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2021 		__func__, (unsigned long long)sh->sector,
2022 		s->locked, s->ops_request);
2023 }
2024 
2025 /*
2026  * Each stripe/dev can have one or more bion attached.
2027  * toread/towrite point to the first in a chain.
2028  * The bi_next chain must be in order.
2029  */
2030 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2031 {
2032 	struct bio **bip;
2033 	raid5_conf_t *conf = sh->raid_conf;
2034 	int firstwrite=0;
2035 
2036 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2037 		(unsigned long long)bi->bi_sector,
2038 		(unsigned long long)sh->sector);
2039 
2040 
2041 	spin_lock(&sh->lock);
2042 	spin_lock_irq(&conf->device_lock);
2043 	if (forwrite) {
2044 		bip = &sh->dev[dd_idx].towrite;
2045 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2046 			firstwrite = 1;
2047 	} else
2048 		bip = &sh->dev[dd_idx].toread;
2049 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2050 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2051 			goto overlap;
2052 		bip = & (*bip)->bi_next;
2053 	}
2054 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2055 		goto overlap;
2056 
2057 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2058 	if (*bip)
2059 		bi->bi_next = *bip;
2060 	*bip = bi;
2061 	bi->bi_phys_segments++;
2062 	spin_unlock_irq(&conf->device_lock);
2063 	spin_unlock(&sh->lock);
2064 
2065 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2066 		(unsigned long long)bi->bi_sector,
2067 		(unsigned long long)sh->sector, dd_idx);
2068 
2069 	if (conf->mddev->bitmap && firstwrite) {
2070 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2071 				  STRIPE_SECTORS, 0);
2072 		sh->bm_seq = conf->seq_flush+1;
2073 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2074 	}
2075 
2076 	if (forwrite) {
2077 		/* check if page is covered */
2078 		sector_t sector = sh->dev[dd_idx].sector;
2079 		for (bi=sh->dev[dd_idx].towrite;
2080 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2081 			     bi && bi->bi_sector <= sector;
2082 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2083 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2084 				sector = bi->bi_sector + (bi->bi_size>>9);
2085 		}
2086 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2087 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2088 	}
2089 	return 1;
2090 
2091  overlap:
2092 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2093 	spin_unlock_irq(&conf->device_lock);
2094 	spin_unlock(&sh->lock);
2095 	return 0;
2096 }
2097 
2098 static void end_reshape(raid5_conf_t *conf);
2099 
2100 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2101 			    struct stripe_head *sh)
2102 {
2103 	int sectors_per_chunk =
2104 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2105 	int dd_idx;
2106 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2107 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2108 
2109 	raid5_compute_sector(conf,
2110 			     stripe * (disks - conf->max_degraded)
2111 			     *sectors_per_chunk + chunk_offset,
2112 			     previous,
2113 			     &dd_idx, sh);
2114 }
2115 
2116 static void
2117 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2118 				struct stripe_head_state *s, int disks,
2119 				struct bio **return_bi)
2120 {
2121 	int i;
2122 	for (i = disks; i--; ) {
2123 		struct bio *bi;
2124 		int bitmap_end = 0;
2125 
2126 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2127 			mdk_rdev_t *rdev;
2128 			rcu_read_lock();
2129 			rdev = rcu_dereference(conf->disks[i].rdev);
2130 			if (rdev && test_bit(In_sync, &rdev->flags))
2131 				/* multiple read failures in one stripe */
2132 				md_error(conf->mddev, rdev);
2133 			rcu_read_unlock();
2134 		}
2135 		spin_lock_irq(&conf->device_lock);
2136 		/* fail all writes first */
2137 		bi = sh->dev[i].towrite;
2138 		sh->dev[i].towrite = NULL;
2139 		if (bi) {
2140 			s->to_write--;
2141 			bitmap_end = 1;
2142 		}
2143 
2144 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2145 			wake_up(&conf->wait_for_overlap);
2146 
2147 		while (bi && bi->bi_sector <
2148 			sh->dev[i].sector + STRIPE_SECTORS) {
2149 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2150 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2151 			if (!raid5_dec_bi_phys_segments(bi)) {
2152 				md_write_end(conf->mddev);
2153 				bi->bi_next = *return_bi;
2154 				*return_bi = bi;
2155 			}
2156 			bi = nextbi;
2157 		}
2158 		/* and fail all 'written' */
2159 		bi = sh->dev[i].written;
2160 		sh->dev[i].written = NULL;
2161 		if (bi) bitmap_end = 1;
2162 		while (bi && bi->bi_sector <
2163 		       sh->dev[i].sector + STRIPE_SECTORS) {
2164 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2165 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2166 			if (!raid5_dec_bi_phys_segments(bi)) {
2167 				md_write_end(conf->mddev);
2168 				bi->bi_next = *return_bi;
2169 				*return_bi = bi;
2170 			}
2171 			bi = bi2;
2172 		}
2173 
2174 		/* fail any reads if this device is non-operational and
2175 		 * the data has not reached the cache yet.
2176 		 */
2177 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2178 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2179 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2180 			bi = sh->dev[i].toread;
2181 			sh->dev[i].toread = NULL;
2182 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2183 				wake_up(&conf->wait_for_overlap);
2184 			if (bi) s->to_read--;
2185 			while (bi && bi->bi_sector <
2186 			       sh->dev[i].sector + STRIPE_SECTORS) {
2187 				struct bio *nextbi =
2188 					r5_next_bio(bi, sh->dev[i].sector);
2189 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2190 				if (!raid5_dec_bi_phys_segments(bi)) {
2191 					bi->bi_next = *return_bi;
2192 					*return_bi = bi;
2193 				}
2194 				bi = nextbi;
2195 			}
2196 		}
2197 		spin_unlock_irq(&conf->device_lock);
2198 		if (bitmap_end)
2199 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2200 					STRIPE_SECTORS, 0, 0);
2201 	}
2202 
2203 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2204 		if (atomic_dec_and_test(&conf->pending_full_writes))
2205 			md_wakeup_thread(conf->mddev->thread);
2206 }
2207 
2208 /* fetch_block5 - checks the given member device to see if its data needs
2209  * to be read or computed to satisfy a request.
2210  *
2211  * Returns 1 when no more member devices need to be checked, otherwise returns
2212  * 0 to tell the loop in handle_stripe_fill5 to continue
2213  */
2214 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2215 			int disk_idx, int disks)
2216 {
2217 	struct r5dev *dev = &sh->dev[disk_idx];
2218 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2219 
2220 	/* is the data in this block needed, and can we get it? */
2221 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2222 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2223 	    (dev->toread ||
2224 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2225 	     s->syncing || s->expanding ||
2226 	     (s->failed &&
2227 	      (failed_dev->toread ||
2228 	       (failed_dev->towrite &&
2229 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2230 		/* We would like to get this block, possibly by computing it,
2231 		 * otherwise read it if the backing disk is insync
2232 		 */
2233 		if ((s->uptodate == disks - 1) &&
2234 		    (s->failed && disk_idx == s->failed_num)) {
2235 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2236 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2237 			set_bit(R5_Wantcompute, &dev->flags);
2238 			sh->ops.target = disk_idx;
2239 			sh->ops.target2 = -1;
2240 			s->req_compute = 1;
2241 			/* Careful: from this point on 'uptodate' is in the eye
2242 			 * of raid_run_ops which services 'compute' operations
2243 			 * before writes. R5_Wantcompute flags a block that will
2244 			 * be R5_UPTODATE by the time it is needed for a
2245 			 * subsequent operation.
2246 			 */
2247 			s->uptodate++;
2248 			return 1; /* uptodate + compute == disks */
2249 		} else if (test_bit(R5_Insync, &dev->flags)) {
2250 			set_bit(R5_LOCKED, &dev->flags);
2251 			set_bit(R5_Wantread, &dev->flags);
2252 			s->locked++;
2253 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2254 				s->syncing);
2255 		}
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 /**
2262  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2263  */
2264 static void handle_stripe_fill5(struct stripe_head *sh,
2265 			struct stripe_head_state *s, int disks)
2266 {
2267 	int i;
2268 
2269 	/* look for blocks to read/compute, skip this if a compute
2270 	 * is already in flight, or if the stripe contents are in the
2271 	 * midst of changing due to a write
2272 	 */
2273 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2274 	    !sh->reconstruct_state)
2275 		for (i = disks; i--; )
2276 			if (fetch_block5(sh, s, i, disks))
2277 				break;
2278 	set_bit(STRIPE_HANDLE, &sh->state);
2279 }
2280 
2281 /* fetch_block6 - checks the given member device to see if its data needs
2282  * to be read or computed to satisfy a request.
2283  *
2284  * Returns 1 when no more member devices need to be checked, otherwise returns
2285  * 0 to tell the loop in handle_stripe_fill6 to continue
2286  */
2287 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2288 			 struct r6_state *r6s, int disk_idx, int disks)
2289 {
2290 	struct r5dev *dev = &sh->dev[disk_idx];
2291 	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2292 				  &sh->dev[r6s->failed_num[1]] };
2293 
2294 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2295 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2296 	    (dev->toread ||
2297 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2298 	     s->syncing || s->expanding ||
2299 	     (s->failed >= 1 &&
2300 	      (fdev[0]->toread || s->to_write)) ||
2301 	     (s->failed >= 2 &&
2302 	      (fdev[1]->toread || s->to_write)))) {
2303 		/* we would like to get this block, possibly by computing it,
2304 		 * otherwise read it if the backing disk is insync
2305 		 */
2306 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2307 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2308 		if ((s->uptodate == disks - 1) &&
2309 		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2310 				   disk_idx == r6s->failed_num[1]))) {
2311 			/* have disk failed, and we're requested to fetch it;
2312 			 * do compute it
2313 			 */
2314 			pr_debug("Computing stripe %llu block %d\n",
2315 			       (unsigned long long)sh->sector, disk_idx);
2316 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2317 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2318 			set_bit(R5_Wantcompute, &dev->flags);
2319 			sh->ops.target = disk_idx;
2320 			sh->ops.target2 = -1; /* no 2nd target */
2321 			s->req_compute = 1;
2322 			s->uptodate++;
2323 			return 1;
2324 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2325 			/* Computing 2-failure is *very* expensive; only
2326 			 * do it if failed >= 2
2327 			 */
2328 			int other;
2329 			for (other = disks; other--; ) {
2330 				if (other == disk_idx)
2331 					continue;
2332 				if (!test_bit(R5_UPTODATE,
2333 				      &sh->dev[other].flags))
2334 					break;
2335 			}
2336 			BUG_ON(other < 0);
2337 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2338 			       (unsigned long long)sh->sector,
2339 			       disk_idx, other);
2340 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2341 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2342 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2343 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2344 			sh->ops.target = disk_idx;
2345 			sh->ops.target2 = other;
2346 			s->uptodate += 2;
2347 			s->req_compute = 1;
2348 			return 1;
2349 		} else if (test_bit(R5_Insync, &dev->flags)) {
2350 			set_bit(R5_LOCKED, &dev->flags);
2351 			set_bit(R5_Wantread, &dev->flags);
2352 			s->locked++;
2353 			pr_debug("Reading block %d (sync=%d)\n",
2354 				disk_idx, s->syncing);
2355 		}
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 /**
2362  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2363  */
2364 static void handle_stripe_fill6(struct stripe_head *sh,
2365 			struct stripe_head_state *s, struct r6_state *r6s,
2366 			int disks)
2367 {
2368 	int i;
2369 
2370 	/* look for blocks to read/compute, skip this if a compute
2371 	 * is already in flight, or if the stripe contents are in the
2372 	 * midst of changing due to a write
2373 	 */
2374 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2375 	    !sh->reconstruct_state)
2376 		for (i = disks; i--; )
2377 			if (fetch_block6(sh, s, r6s, i, disks))
2378 				break;
2379 	set_bit(STRIPE_HANDLE, &sh->state);
2380 }
2381 
2382 
2383 /* handle_stripe_clean_event
2384  * any written block on an uptodate or failed drive can be returned.
2385  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2386  * never LOCKED, so we don't need to test 'failed' directly.
2387  */
2388 static void handle_stripe_clean_event(raid5_conf_t *conf,
2389 	struct stripe_head *sh, int disks, struct bio **return_bi)
2390 {
2391 	int i;
2392 	struct r5dev *dev;
2393 
2394 	for (i = disks; i--; )
2395 		if (sh->dev[i].written) {
2396 			dev = &sh->dev[i];
2397 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2398 				test_bit(R5_UPTODATE, &dev->flags)) {
2399 				/* We can return any write requests */
2400 				struct bio *wbi, *wbi2;
2401 				int bitmap_end = 0;
2402 				pr_debug("Return write for disc %d\n", i);
2403 				spin_lock_irq(&conf->device_lock);
2404 				wbi = dev->written;
2405 				dev->written = NULL;
2406 				while (wbi && wbi->bi_sector <
2407 					dev->sector + STRIPE_SECTORS) {
2408 					wbi2 = r5_next_bio(wbi, dev->sector);
2409 					if (!raid5_dec_bi_phys_segments(wbi)) {
2410 						md_write_end(conf->mddev);
2411 						wbi->bi_next = *return_bi;
2412 						*return_bi = wbi;
2413 					}
2414 					wbi = wbi2;
2415 				}
2416 				if (dev->towrite == NULL)
2417 					bitmap_end = 1;
2418 				spin_unlock_irq(&conf->device_lock);
2419 				if (bitmap_end)
2420 					bitmap_endwrite(conf->mddev->bitmap,
2421 							sh->sector,
2422 							STRIPE_SECTORS,
2423 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2424 							0);
2425 			}
2426 		}
2427 
2428 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2429 		if (atomic_dec_and_test(&conf->pending_full_writes))
2430 			md_wakeup_thread(conf->mddev->thread);
2431 }
2432 
2433 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2434 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2435 {
2436 	int rmw = 0, rcw = 0, i;
2437 	for (i = disks; i--; ) {
2438 		/* would I have to read this buffer for read_modify_write */
2439 		struct r5dev *dev = &sh->dev[i];
2440 		if ((dev->towrite || i == sh->pd_idx) &&
2441 		    !test_bit(R5_LOCKED, &dev->flags) &&
2442 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2443 		      test_bit(R5_Wantcompute, &dev->flags))) {
2444 			if (test_bit(R5_Insync, &dev->flags))
2445 				rmw++;
2446 			else
2447 				rmw += 2*disks;  /* cannot read it */
2448 		}
2449 		/* Would I have to read this buffer for reconstruct_write */
2450 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2451 		    !test_bit(R5_LOCKED, &dev->flags) &&
2452 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2453 		    test_bit(R5_Wantcompute, &dev->flags))) {
2454 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2455 			else
2456 				rcw += 2*disks;
2457 		}
2458 	}
2459 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2460 		(unsigned long long)sh->sector, rmw, rcw);
2461 	set_bit(STRIPE_HANDLE, &sh->state);
2462 	if (rmw < rcw && rmw > 0)
2463 		/* prefer read-modify-write, but need to get some data */
2464 		for (i = disks; i--; ) {
2465 			struct r5dev *dev = &sh->dev[i];
2466 			if ((dev->towrite || i == sh->pd_idx) &&
2467 			    !test_bit(R5_LOCKED, &dev->flags) &&
2468 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2469 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2470 			    test_bit(R5_Insync, &dev->flags)) {
2471 				if (
2472 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2473 					pr_debug("Read_old block "
2474 						"%d for r-m-w\n", i);
2475 					set_bit(R5_LOCKED, &dev->flags);
2476 					set_bit(R5_Wantread, &dev->flags);
2477 					s->locked++;
2478 				} else {
2479 					set_bit(STRIPE_DELAYED, &sh->state);
2480 					set_bit(STRIPE_HANDLE, &sh->state);
2481 				}
2482 			}
2483 		}
2484 	if (rcw <= rmw && rcw > 0)
2485 		/* want reconstruct write, but need to get some data */
2486 		for (i = disks; i--; ) {
2487 			struct r5dev *dev = &sh->dev[i];
2488 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2489 			    i != sh->pd_idx &&
2490 			    !test_bit(R5_LOCKED, &dev->flags) &&
2491 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2492 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2493 			    test_bit(R5_Insync, &dev->flags)) {
2494 				if (
2495 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2496 					pr_debug("Read_old block "
2497 						"%d for Reconstruct\n", i);
2498 					set_bit(R5_LOCKED, &dev->flags);
2499 					set_bit(R5_Wantread, &dev->flags);
2500 					s->locked++;
2501 				} else {
2502 					set_bit(STRIPE_DELAYED, &sh->state);
2503 					set_bit(STRIPE_HANDLE, &sh->state);
2504 				}
2505 			}
2506 		}
2507 	/* now if nothing is locked, and if we have enough data,
2508 	 * we can start a write request
2509 	 */
2510 	/* since handle_stripe can be called at any time we need to handle the
2511 	 * case where a compute block operation has been submitted and then a
2512 	 * subsequent call wants to start a write request.  raid_run_ops only
2513 	 * handles the case where compute block and reconstruct are requested
2514 	 * simultaneously.  If this is not the case then new writes need to be
2515 	 * held off until the compute completes.
2516 	 */
2517 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2518 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2519 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2520 		schedule_reconstruction(sh, s, rcw == 0, 0);
2521 }
2522 
2523 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2524 		struct stripe_head *sh,	struct stripe_head_state *s,
2525 		struct r6_state *r6s, int disks)
2526 {
2527 	int rcw = 0, pd_idx = sh->pd_idx, i;
2528 	int qd_idx = sh->qd_idx;
2529 
2530 	set_bit(STRIPE_HANDLE, &sh->state);
2531 	for (i = disks; i--; ) {
2532 		struct r5dev *dev = &sh->dev[i];
2533 		/* check if we haven't enough data */
2534 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2535 		    i != pd_idx && i != qd_idx &&
2536 		    !test_bit(R5_LOCKED, &dev->flags) &&
2537 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2538 		      test_bit(R5_Wantcompute, &dev->flags))) {
2539 			rcw++;
2540 			if (!test_bit(R5_Insync, &dev->flags))
2541 				continue; /* it's a failed drive */
2542 
2543 			if (
2544 			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2545 				pr_debug("Read_old stripe %llu "
2546 					"block %d for Reconstruct\n",
2547 				     (unsigned long long)sh->sector, i);
2548 				set_bit(R5_LOCKED, &dev->flags);
2549 				set_bit(R5_Wantread, &dev->flags);
2550 				s->locked++;
2551 			} else {
2552 				pr_debug("Request delayed stripe %llu "
2553 					"block %d for Reconstruct\n",
2554 				     (unsigned long long)sh->sector, i);
2555 				set_bit(STRIPE_DELAYED, &sh->state);
2556 				set_bit(STRIPE_HANDLE, &sh->state);
2557 			}
2558 		}
2559 	}
2560 	/* now if nothing is locked, and if we have enough data, we can start a
2561 	 * write request
2562 	 */
2563 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2564 	    s->locked == 0 && rcw == 0 &&
2565 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2566 		schedule_reconstruction(sh, s, 1, 0);
2567 	}
2568 }
2569 
2570 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2571 				struct stripe_head_state *s, int disks)
2572 {
2573 	struct r5dev *dev = NULL;
2574 
2575 	set_bit(STRIPE_HANDLE, &sh->state);
2576 
2577 	switch (sh->check_state) {
2578 	case check_state_idle:
2579 		/* start a new check operation if there are no failures */
2580 		if (s->failed == 0) {
2581 			BUG_ON(s->uptodate != disks);
2582 			sh->check_state = check_state_run;
2583 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2584 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2585 			s->uptodate--;
2586 			break;
2587 		}
2588 		dev = &sh->dev[s->failed_num];
2589 		/* fall through */
2590 	case check_state_compute_result:
2591 		sh->check_state = check_state_idle;
2592 		if (!dev)
2593 			dev = &sh->dev[sh->pd_idx];
2594 
2595 		/* check that a write has not made the stripe insync */
2596 		if (test_bit(STRIPE_INSYNC, &sh->state))
2597 			break;
2598 
2599 		/* either failed parity check, or recovery is happening */
2600 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2601 		BUG_ON(s->uptodate != disks);
2602 
2603 		set_bit(R5_LOCKED, &dev->flags);
2604 		s->locked++;
2605 		set_bit(R5_Wantwrite, &dev->flags);
2606 
2607 		clear_bit(STRIPE_DEGRADED, &sh->state);
2608 		set_bit(STRIPE_INSYNC, &sh->state);
2609 		break;
2610 	case check_state_run:
2611 		break; /* we will be called again upon completion */
2612 	case check_state_check_result:
2613 		sh->check_state = check_state_idle;
2614 
2615 		/* if a failure occurred during the check operation, leave
2616 		 * STRIPE_INSYNC not set and let the stripe be handled again
2617 		 */
2618 		if (s->failed)
2619 			break;
2620 
2621 		/* handle a successful check operation, if parity is correct
2622 		 * we are done.  Otherwise update the mismatch count and repair
2623 		 * parity if !MD_RECOVERY_CHECK
2624 		 */
2625 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2626 			/* parity is correct (on disc,
2627 			 * not in buffer any more)
2628 			 */
2629 			set_bit(STRIPE_INSYNC, &sh->state);
2630 		else {
2631 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2632 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2633 				/* don't try to repair!! */
2634 				set_bit(STRIPE_INSYNC, &sh->state);
2635 			else {
2636 				sh->check_state = check_state_compute_run;
2637 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2638 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2639 				set_bit(R5_Wantcompute,
2640 					&sh->dev[sh->pd_idx].flags);
2641 				sh->ops.target = sh->pd_idx;
2642 				sh->ops.target2 = -1;
2643 				s->uptodate++;
2644 			}
2645 		}
2646 		break;
2647 	case check_state_compute_run:
2648 		break;
2649 	default:
2650 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2651 		       __func__, sh->check_state,
2652 		       (unsigned long long) sh->sector);
2653 		BUG();
2654 	}
2655 }
2656 
2657 
2658 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2659 				  struct stripe_head_state *s,
2660 				  struct r6_state *r6s, int disks)
2661 {
2662 	int pd_idx = sh->pd_idx;
2663 	int qd_idx = sh->qd_idx;
2664 	struct r5dev *dev;
2665 
2666 	set_bit(STRIPE_HANDLE, &sh->state);
2667 
2668 	BUG_ON(s->failed > 2);
2669 
2670 	/* Want to check and possibly repair P and Q.
2671 	 * However there could be one 'failed' device, in which
2672 	 * case we can only check one of them, possibly using the
2673 	 * other to generate missing data
2674 	 */
2675 
2676 	switch (sh->check_state) {
2677 	case check_state_idle:
2678 		/* start a new check operation if there are < 2 failures */
2679 		if (s->failed == r6s->q_failed) {
2680 			/* The only possible failed device holds Q, so it
2681 			 * makes sense to check P (If anything else were failed,
2682 			 * we would have used P to recreate it).
2683 			 */
2684 			sh->check_state = check_state_run;
2685 		}
2686 		if (!r6s->q_failed && s->failed < 2) {
2687 			/* Q is not failed, and we didn't use it to generate
2688 			 * anything, so it makes sense to check it
2689 			 */
2690 			if (sh->check_state == check_state_run)
2691 				sh->check_state = check_state_run_pq;
2692 			else
2693 				sh->check_state = check_state_run_q;
2694 		}
2695 
2696 		/* discard potentially stale zero_sum_result */
2697 		sh->ops.zero_sum_result = 0;
2698 
2699 		if (sh->check_state == check_state_run) {
2700 			/* async_xor_zero_sum destroys the contents of P */
2701 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2702 			s->uptodate--;
2703 		}
2704 		if (sh->check_state >= check_state_run &&
2705 		    sh->check_state <= check_state_run_pq) {
2706 			/* async_syndrome_zero_sum preserves P and Q, so
2707 			 * no need to mark them !uptodate here
2708 			 */
2709 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2710 			break;
2711 		}
2712 
2713 		/* we have 2-disk failure */
2714 		BUG_ON(s->failed != 2);
2715 		/* fall through */
2716 	case check_state_compute_result:
2717 		sh->check_state = check_state_idle;
2718 
2719 		/* check that a write has not made the stripe insync */
2720 		if (test_bit(STRIPE_INSYNC, &sh->state))
2721 			break;
2722 
2723 		/* now write out any block on a failed drive,
2724 		 * or P or Q if they were recomputed
2725 		 */
2726 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2727 		if (s->failed == 2) {
2728 			dev = &sh->dev[r6s->failed_num[1]];
2729 			s->locked++;
2730 			set_bit(R5_LOCKED, &dev->flags);
2731 			set_bit(R5_Wantwrite, &dev->flags);
2732 		}
2733 		if (s->failed >= 1) {
2734 			dev = &sh->dev[r6s->failed_num[0]];
2735 			s->locked++;
2736 			set_bit(R5_LOCKED, &dev->flags);
2737 			set_bit(R5_Wantwrite, &dev->flags);
2738 		}
2739 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2740 			dev = &sh->dev[pd_idx];
2741 			s->locked++;
2742 			set_bit(R5_LOCKED, &dev->flags);
2743 			set_bit(R5_Wantwrite, &dev->flags);
2744 		}
2745 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2746 			dev = &sh->dev[qd_idx];
2747 			s->locked++;
2748 			set_bit(R5_LOCKED, &dev->flags);
2749 			set_bit(R5_Wantwrite, &dev->flags);
2750 		}
2751 		clear_bit(STRIPE_DEGRADED, &sh->state);
2752 
2753 		set_bit(STRIPE_INSYNC, &sh->state);
2754 		break;
2755 	case check_state_run:
2756 	case check_state_run_q:
2757 	case check_state_run_pq:
2758 		break; /* we will be called again upon completion */
2759 	case check_state_check_result:
2760 		sh->check_state = check_state_idle;
2761 
2762 		/* handle a successful check operation, if parity is correct
2763 		 * we are done.  Otherwise update the mismatch count and repair
2764 		 * parity if !MD_RECOVERY_CHECK
2765 		 */
2766 		if (sh->ops.zero_sum_result == 0) {
2767 			/* both parities are correct */
2768 			if (!s->failed)
2769 				set_bit(STRIPE_INSYNC, &sh->state);
2770 			else {
2771 				/* in contrast to the raid5 case we can validate
2772 				 * parity, but still have a failure to write
2773 				 * back
2774 				 */
2775 				sh->check_state = check_state_compute_result;
2776 				/* Returning at this point means that we may go
2777 				 * off and bring p and/or q uptodate again so
2778 				 * we make sure to check zero_sum_result again
2779 				 * to verify if p or q need writeback
2780 				 */
2781 			}
2782 		} else {
2783 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2784 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2785 				/* don't try to repair!! */
2786 				set_bit(STRIPE_INSYNC, &sh->state);
2787 			else {
2788 				int *target = &sh->ops.target;
2789 
2790 				sh->ops.target = -1;
2791 				sh->ops.target2 = -1;
2792 				sh->check_state = check_state_compute_run;
2793 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2794 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2795 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2796 					set_bit(R5_Wantcompute,
2797 						&sh->dev[pd_idx].flags);
2798 					*target = pd_idx;
2799 					target = &sh->ops.target2;
2800 					s->uptodate++;
2801 				}
2802 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2803 					set_bit(R5_Wantcompute,
2804 						&sh->dev[qd_idx].flags);
2805 					*target = qd_idx;
2806 					s->uptodate++;
2807 				}
2808 			}
2809 		}
2810 		break;
2811 	case check_state_compute_run:
2812 		break;
2813 	default:
2814 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2815 		       __func__, sh->check_state,
2816 		       (unsigned long long) sh->sector);
2817 		BUG();
2818 	}
2819 }
2820 
2821 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2822 				struct r6_state *r6s)
2823 {
2824 	int i;
2825 
2826 	/* We have read all the blocks in this stripe and now we need to
2827 	 * copy some of them into a target stripe for expand.
2828 	 */
2829 	struct dma_async_tx_descriptor *tx = NULL;
2830 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2831 	for (i = 0; i < sh->disks; i++)
2832 		if (i != sh->pd_idx && i != sh->qd_idx) {
2833 			int dd_idx, j;
2834 			struct stripe_head *sh2;
2835 			struct async_submit_ctl submit;
2836 
2837 			sector_t bn = compute_blocknr(sh, i, 1);
2838 			sector_t s = raid5_compute_sector(conf, bn, 0,
2839 							  &dd_idx, NULL);
2840 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2841 			if (sh2 == NULL)
2842 				/* so far only the early blocks of this stripe
2843 				 * have been requested.  When later blocks
2844 				 * get requested, we will try again
2845 				 */
2846 				continue;
2847 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2848 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2849 				/* must have already done this block */
2850 				release_stripe(sh2);
2851 				continue;
2852 			}
2853 
2854 			/* place all the copies on one channel */
2855 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2856 			tx = async_memcpy(sh2->dev[dd_idx].page,
2857 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2858 					  &submit);
2859 
2860 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2861 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2862 			for (j = 0; j < conf->raid_disks; j++)
2863 				if (j != sh2->pd_idx &&
2864 				    (!r6s || j != sh2->qd_idx) &&
2865 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2866 					break;
2867 			if (j == conf->raid_disks) {
2868 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2869 				set_bit(STRIPE_HANDLE, &sh2->state);
2870 			}
2871 			release_stripe(sh2);
2872 
2873 		}
2874 	/* done submitting copies, wait for them to complete */
2875 	if (tx) {
2876 		async_tx_ack(tx);
2877 		dma_wait_for_async_tx(tx);
2878 	}
2879 }
2880 
2881 
2882 /*
2883  * handle_stripe - do things to a stripe.
2884  *
2885  * We lock the stripe and then examine the state of various bits
2886  * to see what needs to be done.
2887  * Possible results:
2888  *    return some read request which now have data
2889  *    return some write requests which are safely on disc
2890  *    schedule a read on some buffers
2891  *    schedule a write of some buffers
2892  *    return confirmation of parity correctness
2893  *
2894  * buffers are taken off read_list or write_list, and bh_cache buffers
2895  * get BH_Lock set before the stripe lock is released.
2896  *
2897  */
2898 
2899 static bool handle_stripe5(struct stripe_head *sh)
2900 {
2901 	raid5_conf_t *conf = sh->raid_conf;
2902 	int disks = sh->disks, i;
2903 	struct bio *return_bi = NULL;
2904 	struct stripe_head_state s;
2905 	struct r5dev *dev;
2906 	mdk_rdev_t *blocked_rdev = NULL;
2907 	int prexor;
2908 
2909 	memset(&s, 0, sizeof(s));
2910 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2911 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2912 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2913 		 sh->reconstruct_state);
2914 
2915 	spin_lock(&sh->lock);
2916 	clear_bit(STRIPE_HANDLE, &sh->state);
2917 	clear_bit(STRIPE_DELAYED, &sh->state);
2918 
2919 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2920 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2921 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2922 
2923 	/* Now to look around and see what can be done */
2924 	rcu_read_lock();
2925 	for (i=disks; i--; ) {
2926 		mdk_rdev_t *rdev;
2927 
2928 		dev = &sh->dev[i];
2929 		clear_bit(R5_Insync, &dev->flags);
2930 
2931 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2932 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2933 			dev->towrite, dev->written);
2934 
2935 		/* maybe we can request a biofill operation
2936 		 *
2937 		 * new wantfill requests are only permitted while
2938 		 * ops_complete_biofill is guaranteed to be inactive
2939 		 */
2940 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2941 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2942 			set_bit(R5_Wantfill, &dev->flags);
2943 
2944 		/* now count some things */
2945 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2946 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2947 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2948 
2949 		if (test_bit(R5_Wantfill, &dev->flags))
2950 			s.to_fill++;
2951 		else if (dev->toread)
2952 			s.to_read++;
2953 		if (dev->towrite) {
2954 			s.to_write++;
2955 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2956 				s.non_overwrite++;
2957 		}
2958 		if (dev->written)
2959 			s.written++;
2960 		rdev = rcu_dereference(conf->disks[i].rdev);
2961 		if (blocked_rdev == NULL &&
2962 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2963 			blocked_rdev = rdev;
2964 			atomic_inc(&rdev->nr_pending);
2965 		}
2966 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2967 			/* The ReadError flag will just be confusing now */
2968 			clear_bit(R5_ReadError, &dev->flags);
2969 			clear_bit(R5_ReWrite, &dev->flags);
2970 		}
2971 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2972 		    || test_bit(R5_ReadError, &dev->flags)) {
2973 			s.failed++;
2974 			s.failed_num = i;
2975 		} else
2976 			set_bit(R5_Insync, &dev->flags);
2977 	}
2978 	rcu_read_unlock();
2979 
2980 	if (unlikely(blocked_rdev)) {
2981 		if (s.syncing || s.expanding || s.expanded ||
2982 		    s.to_write || s.written) {
2983 			set_bit(STRIPE_HANDLE, &sh->state);
2984 			goto unlock;
2985 		}
2986 		/* There is nothing for the blocked_rdev to block */
2987 		rdev_dec_pending(blocked_rdev, conf->mddev);
2988 		blocked_rdev = NULL;
2989 	}
2990 
2991 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2992 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2993 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2994 	}
2995 
2996 	pr_debug("locked=%d uptodate=%d to_read=%d"
2997 		" to_write=%d failed=%d failed_num=%d\n",
2998 		s.locked, s.uptodate, s.to_read, s.to_write,
2999 		s.failed, s.failed_num);
3000 	/* check if the array has lost two devices and, if so, some requests might
3001 	 * need to be failed
3002 	 */
3003 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3004 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3005 	if (s.failed > 1 && s.syncing) {
3006 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3007 		clear_bit(STRIPE_SYNCING, &sh->state);
3008 		s.syncing = 0;
3009 	}
3010 
3011 	/* might be able to return some write requests if the parity block
3012 	 * is safe, or on a failed drive
3013 	 */
3014 	dev = &sh->dev[sh->pd_idx];
3015 	if ( s.written &&
3016 	     ((test_bit(R5_Insync, &dev->flags) &&
3017 	       !test_bit(R5_LOCKED, &dev->flags) &&
3018 	       test_bit(R5_UPTODATE, &dev->flags)) ||
3019 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3020 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3021 
3022 	/* Now we might consider reading some blocks, either to check/generate
3023 	 * parity, or to satisfy requests
3024 	 * or to load a block that is being partially written.
3025 	 */
3026 	if (s.to_read || s.non_overwrite ||
3027 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3028 		handle_stripe_fill5(sh, &s, disks);
3029 
3030 	/* Now we check to see if any write operations have recently
3031 	 * completed
3032 	 */
3033 	prexor = 0;
3034 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3035 		prexor = 1;
3036 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3037 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3038 		sh->reconstruct_state = reconstruct_state_idle;
3039 
3040 		/* All the 'written' buffers and the parity block are ready to
3041 		 * be written back to disk
3042 		 */
3043 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3044 		for (i = disks; i--; ) {
3045 			dev = &sh->dev[i];
3046 			if (test_bit(R5_LOCKED, &dev->flags) &&
3047 				(i == sh->pd_idx || dev->written)) {
3048 				pr_debug("Writing block %d\n", i);
3049 				set_bit(R5_Wantwrite, &dev->flags);
3050 				if (prexor)
3051 					continue;
3052 				if (!test_bit(R5_Insync, &dev->flags) ||
3053 				    (i == sh->pd_idx && s.failed == 0))
3054 					set_bit(STRIPE_INSYNC, &sh->state);
3055 			}
3056 		}
3057 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3058 			atomic_dec(&conf->preread_active_stripes);
3059 			if (atomic_read(&conf->preread_active_stripes) <
3060 				IO_THRESHOLD)
3061 				md_wakeup_thread(conf->mddev->thread);
3062 		}
3063 	}
3064 
3065 	/* Now to consider new write requests and what else, if anything
3066 	 * should be read.  We do not handle new writes when:
3067 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3068 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3069 	 *    block.
3070 	 */
3071 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3072 		handle_stripe_dirtying5(conf, sh, &s, disks);
3073 
3074 	/* maybe we need to check and possibly fix the parity for this stripe
3075 	 * Any reads will already have been scheduled, so we just see if enough
3076 	 * data is available.  The parity check is held off while parity
3077 	 * dependent operations are in flight.
3078 	 */
3079 	if (sh->check_state ||
3080 	    (s.syncing && s.locked == 0 &&
3081 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3082 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3083 		handle_parity_checks5(conf, sh, &s, disks);
3084 
3085 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3086 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3087 		clear_bit(STRIPE_SYNCING, &sh->state);
3088 	}
3089 
3090 	/* If the failed drive is just a ReadError, then we might need to progress
3091 	 * the repair/check process
3092 	 */
3093 	if (s.failed == 1 && !conf->mddev->ro &&
3094 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3095 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3096 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3097 		) {
3098 		dev = &sh->dev[s.failed_num];
3099 		if (!test_bit(R5_ReWrite, &dev->flags)) {
3100 			set_bit(R5_Wantwrite, &dev->flags);
3101 			set_bit(R5_ReWrite, &dev->flags);
3102 			set_bit(R5_LOCKED, &dev->flags);
3103 			s.locked++;
3104 		} else {
3105 			/* let's read it back */
3106 			set_bit(R5_Wantread, &dev->flags);
3107 			set_bit(R5_LOCKED, &dev->flags);
3108 			s.locked++;
3109 		}
3110 	}
3111 
3112 	/* Finish reconstruct operations initiated by the expansion process */
3113 	if (sh->reconstruct_state == reconstruct_state_result) {
3114 		struct stripe_head *sh2
3115 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3116 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3117 			/* sh cannot be written until sh2 has been read.
3118 			 * so arrange for sh to be delayed a little
3119 			 */
3120 			set_bit(STRIPE_DELAYED, &sh->state);
3121 			set_bit(STRIPE_HANDLE, &sh->state);
3122 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3123 					      &sh2->state))
3124 				atomic_inc(&conf->preread_active_stripes);
3125 			release_stripe(sh2);
3126 			goto unlock;
3127 		}
3128 		if (sh2)
3129 			release_stripe(sh2);
3130 
3131 		sh->reconstruct_state = reconstruct_state_idle;
3132 		clear_bit(STRIPE_EXPANDING, &sh->state);
3133 		for (i = conf->raid_disks; i--; ) {
3134 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3135 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3136 			s.locked++;
3137 		}
3138 	}
3139 
3140 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3141 	    !sh->reconstruct_state) {
3142 		/* Need to write out all blocks after computing parity */
3143 		sh->disks = conf->raid_disks;
3144 		stripe_set_idx(sh->sector, conf, 0, sh);
3145 		schedule_reconstruction(sh, &s, 1, 1);
3146 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3147 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3148 		atomic_dec(&conf->reshape_stripes);
3149 		wake_up(&conf->wait_for_overlap);
3150 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3151 	}
3152 
3153 	if (s.expanding && s.locked == 0 &&
3154 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3155 		handle_stripe_expansion(conf, sh, NULL);
3156 
3157  unlock:
3158 	spin_unlock(&sh->lock);
3159 
3160 	/* wait for this device to become unblocked */
3161 	if (unlikely(blocked_rdev))
3162 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3163 
3164 	if (s.ops_request)
3165 		raid_run_ops(sh, s.ops_request);
3166 
3167 	ops_run_io(sh, &s);
3168 
3169 	return_io(return_bi);
3170 
3171 	return blocked_rdev == NULL;
3172 }
3173 
3174 static bool handle_stripe6(struct stripe_head *sh)
3175 {
3176 	raid5_conf_t *conf = sh->raid_conf;
3177 	int disks = sh->disks;
3178 	struct bio *return_bi = NULL;
3179 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3180 	struct stripe_head_state s;
3181 	struct r6_state r6s;
3182 	struct r5dev *dev, *pdev, *qdev;
3183 	mdk_rdev_t *blocked_rdev = NULL;
3184 
3185 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3186 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3187 	       (unsigned long long)sh->sector, sh->state,
3188 	       atomic_read(&sh->count), pd_idx, qd_idx,
3189 	       sh->check_state, sh->reconstruct_state);
3190 	memset(&s, 0, sizeof(s));
3191 
3192 	spin_lock(&sh->lock);
3193 	clear_bit(STRIPE_HANDLE, &sh->state);
3194 	clear_bit(STRIPE_DELAYED, &sh->state);
3195 
3196 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3197 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3198 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3199 	/* Now to look around and see what can be done */
3200 
3201 	rcu_read_lock();
3202 	for (i=disks; i--; ) {
3203 		mdk_rdev_t *rdev;
3204 		dev = &sh->dev[i];
3205 		clear_bit(R5_Insync, &dev->flags);
3206 
3207 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3208 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3209 		/* maybe we can reply to a read
3210 		 *
3211 		 * new wantfill requests are only permitted while
3212 		 * ops_complete_biofill is guaranteed to be inactive
3213 		 */
3214 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3215 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3216 			set_bit(R5_Wantfill, &dev->flags);
3217 
3218 		/* now count some things */
3219 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3220 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3221 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3222 			s.compute++;
3223 			BUG_ON(s.compute > 2);
3224 		}
3225 
3226 		if (test_bit(R5_Wantfill, &dev->flags)) {
3227 			s.to_fill++;
3228 		} else if (dev->toread)
3229 			s.to_read++;
3230 		if (dev->towrite) {
3231 			s.to_write++;
3232 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3233 				s.non_overwrite++;
3234 		}
3235 		if (dev->written)
3236 			s.written++;
3237 		rdev = rcu_dereference(conf->disks[i].rdev);
3238 		if (blocked_rdev == NULL &&
3239 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3240 			blocked_rdev = rdev;
3241 			atomic_inc(&rdev->nr_pending);
3242 		}
3243 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3244 			/* The ReadError flag will just be confusing now */
3245 			clear_bit(R5_ReadError, &dev->flags);
3246 			clear_bit(R5_ReWrite, &dev->flags);
3247 		}
3248 		if (!rdev || !test_bit(In_sync, &rdev->flags)
3249 		    || test_bit(R5_ReadError, &dev->flags)) {
3250 			if (s.failed < 2)
3251 				r6s.failed_num[s.failed] = i;
3252 			s.failed++;
3253 		} else
3254 			set_bit(R5_Insync, &dev->flags);
3255 	}
3256 	rcu_read_unlock();
3257 
3258 	if (unlikely(blocked_rdev)) {
3259 		if (s.syncing || s.expanding || s.expanded ||
3260 		    s.to_write || s.written) {
3261 			set_bit(STRIPE_HANDLE, &sh->state);
3262 			goto unlock;
3263 		}
3264 		/* There is nothing for the blocked_rdev to block */
3265 		rdev_dec_pending(blocked_rdev, conf->mddev);
3266 		blocked_rdev = NULL;
3267 	}
3268 
3269 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3270 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3271 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3272 	}
3273 
3274 	pr_debug("locked=%d uptodate=%d to_read=%d"
3275 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3276 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3277 	       r6s.failed_num[0], r6s.failed_num[1]);
3278 	/* check if the array has lost >2 devices and, if so, some requests
3279 	 * might need to be failed
3280 	 */
3281 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3282 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3283 	if (s.failed > 2 && s.syncing) {
3284 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3285 		clear_bit(STRIPE_SYNCING, &sh->state);
3286 		s.syncing = 0;
3287 	}
3288 
3289 	/*
3290 	 * might be able to return some write requests if the parity blocks
3291 	 * are safe, or on a failed drive
3292 	 */
3293 	pdev = &sh->dev[pd_idx];
3294 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3295 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3296 	qdev = &sh->dev[qd_idx];
3297 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3298 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3299 
3300 	if ( s.written &&
3301 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3302 			     && !test_bit(R5_LOCKED, &pdev->flags)
3303 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3304 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3305 			     && !test_bit(R5_LOCKED, &qdev->flags)
3306 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3307 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3308 
3309 	/* Now we might consider reading some blocks, either to check/generate
3310 	 * parity, or to satisfy requests
3311 	 * or to load a block that is being partially written.
3312 	 */
3313 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3314 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3315 		handle_stripe_fill6(sh, &s, &r6s, disks);
3316 
3317 	/* Now we check to see if any write operations have recently
3318 	 * completed
3319 	 */
3320 	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3321 		int qd_idx = sh->qd_idx;
3322 
3323 		sh->reconstruct_state = reconstruct_state_idle;
3324 		/* All the 'written' buffers and the parity blocks are ready to
3325 		 * be written back to disk
3326 		 */
3327 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3328 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3329 		for (i = disks; i--; ) {
3330 			dev = &sh->dev[i];
3331 			if (test_bit(R5_LOCKED, &dev->flags) &&
3332 			    (i == sh->pd_idx || i == qd_idx ||
3333 			     dev->written)) {
3334 				pr_debug("Writing block %d\n", i);
3335 				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3336 				set_bit(R5_Wantwrite, &dev->flags);
3337 				if (!test_bit(R5_Insync, &dev->flags) ||
3338 				    ((i == sh->pd_idx || i == qd_idx) &&
3339 				      s.failed == 0))
3340 					set_bit(STRIPE_INSYNC, &sh->state);
3341 			}
3342 		}
3343 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3344 			atomic_dec(&conf->preread_active_stripes);
3345 			if (atomic_read(&conf->preread_active_stripes) <
3346 				IO_THRESHOLD)
3347 				md_wakeup_thread(conf->mddev->thread);
3348 		}
3349 	}
3350 
3351 	/* Now to consider new write requests and what else, if anything
3352 	 * should be read.  We do not handle new writes when:
3353 	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3354 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3355 	 *    block.
3356 	 */
3357 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3358 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3359 
3360 	/* maybe we need to check and possibly fix the parity for this stripe
3361 	 * Any reads will already have been scheduled, so we just see if enough
3362 	 * data is available.  The parity check is held off while parity
3363 	 * dependent operations are in flight.
3364 	 */
3365 	if (sh->check_state ||
3366 	    (s.syncing && s.locked == 0 &&
3367 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3368 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3369 		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3370 
3371 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3372 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3373 		clear_bit(STRIPE_SYNCING, &sh->state);
3374 	}
3375 
3376 	/* If the failed drives are just a ReadError, then we might need
3377 	 * to progress the repair/check process
3378 	 */
3379 	if (s.failed <= 2 && !conf->mddev->ro)
3380 		for (i = 0; i < s.failed; i++) {
3381 			dev = &sh->dev[r6s.failed_num[i]];
3382 			if (test_bit(R5_ReadError, &dev->flags)
3383 			    && !test_bit(R5_LOCKED, &dev->flags)
3384 			    && test_bit(R5_UPTODATE, &dev->flags)
3385 				) {
3386 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3387 					set_bit(R5_Wantwrite, &dev->flags);
3388 					set_bit(R5_ReWrite, &dev->flags);
3389 					set_bit(R5_LOCKED, &dev->flags);
3390 					s.locked++;
3391 				} else {
3392 					/* let's read it back */
3393 					set_bit(R5_Wantread, &dev->flags);
3394 					set_bit(R5_LOCKED, &dev->flags);
3395 					s.locked++;
3396 				}
3397 			}
3398 		}
3399 
3400 	/* Finish reconstruct operations initiated by the expansion process */
3401 	if (sh->reconstruct_state == reconstruct_state_result) {
3402 		sh->reconstruct_state = reconstruct_state_idle;
3403 		clear_bit(STRIPE_EXPANDING, &sh->state);
3404 		for (i = conf->raid_disks; i--; ) {
3405 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3406 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3407 			s.locked++;
3408 		}
3409 	}
3410 
3411 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3412 	    !sh->reconstruct_state) {
3413 		struct stripe_head *sh2
3414 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3415 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3416 			/* sh cannot be written until sh2 has been read.
3417 			 * so arrange for sh to be delayed a little
3418 			 */
3419 			set_bit(STRIPE_DELAYED, &sh->state);
3420 			set_bit(STRIPE_HANDLE, &sh->state);
3421 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3422 					      &sh2->state))
3423 				atomic_inc(&conf->preread_active_stripes);
3424 			release_stripe(sh2);
3425 			goto unlock;
3426 		}
3427 		if (sh2)
3428 			release_stripe(sh2);
3429 
3430 		/* Need to write out all blocks after computing P&Q */
3431 		sh->disks = conf->raid_disks;
3432 		stripe_set_idx(sh->sector, conf, 0, sh);
3433 		schedule_reconstruction(sh, &s, 1, 1);
3434 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3435 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3436 		atomic_dec(&conf->reshape_stripes);
3437 		wake_up(&conf->wait_for_overlap);
3438 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3439 	}
3440 
3441 	if (s.expanding && s.locked == 0 &&
3442 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3443 		handle_stripe_expansion(conf, sh, &r6s);
3444 
3445  unlock:
3446 	spin_unlock(&sh->lock);
3447 
3448 	/* wait for this device to become unblocked */
3449 	if (unlikely(blocked_rdev))
3450 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3451 
3452 	if (s.ops_request)
3453 		raid_run_ops(sh, s.ops_request);
3454 
3455 	ops_run_io(sh, &s);
3456 
3457 	return_io(return_bi);
3458 
3459 	return blocked_rdev == NULL;
3460 }
3461 
3462 /* returns true if the stripe was handled */
3463 static bool handle_stripe(struct stripe_head *sh)
3464 {
3465 	if (sh->raid_conf->level == 6)
3466 		return handle_stripe6(sh);
3467 	else
3468 		return handle_stripe5(sh);
3469 }
3470 
3471 static void raid5_activate_delayed(raid5_conf_t *conf)
3472 {
3473 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3474 		while (!list_empty(&conf->delayed_list)) {
3475 			struct list_head *l = conf->delayed_list.next;
3476 			struct stripe_head *sh;
3477 			sh = list_entry(l, struct stripe_head, lru);
3478 			list_del_init(l);
3479 			clear_bit(STRIPE_DELAYED, &sh->state);
3480 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3481 				atomic_inc(&conf->preread_active_stripes);
3482 			list_add_tail(&sh->lru, &conf->hold_list);
3483 		}
3484 	} else
3485 		blk_plug_device(conf->mddev->queue);
3486 }
3487 
3488 static void activate_bit_delay(raid5_conf_t *conf)
3489 {
3490 	/* device_lock is held */
3491 	struct list_head head;
3492 	list_add(&head, &conf->bitmap_list);
3493 	list_del_init(&conf->bitmap_list);
3494 	while (!list_empty(&head)) {
3495 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3496 		list_del_init(&sh->lru);
3497 		atomic_inc(&sh->count);
3498 		__release_stripe(conf, sh);
3499 	}
3500 }
3501 
3502 static void unplug_slaves(mddev_t *mddev)
3503 {
3504 	raid5_conf_t *conf = mddev->private;
3505 	int i;
3506 
3507 	rcu_read_lock();
3508 	for (i = 0; i < conf->raid_disks; i++) {
3509 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3510 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3511 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3512 
3513 			atomic_inc(&rdev->nr_pending);
3514 			rcu_read_unlock();
3515 
3516 			blk_unplug(r_queue);
3517 
3518 			rdev_dec_pending(rdev, mddev);
3519 			rcu_read_lock();
3520 		}
3521 	}
3522 	rcu_read_unlock();
3523 }
3524 
3525 static void raid5_unplug_device(struct request_queue *q)
3526 {
3527 	mddev_t *mddev = q->queuedata;
3528 	raid5_conf_t *conf = mddev->private;
3529 	unsigned long flags;
3530 
3531 	spin_lock_irqsave(&conf->device_lock, flags);
3532 
3533 	if (blk_remove_plug(q)) {
3534 		conf->seq_flush++;
3535 		raid5_activate_delayed(conf);
3536 	}
3537 	md_wakeup_thread(mddev->thread);
3538 
3539 	spin_unlock_irqrestore(&conf->device_lock, flags);
3540 
3541 	unplug_slaves(mddev);
3542 }
3543 
3544 static int raid5_congested(void *data, int bits)
3545 {
3546 	mddev_t *mddev = data;
3547 	raid5_conf_t *conf = mddev->private;
3548 
3549 	/* No difference between reads and writes.  Just check
3550 	 * how busy the stripe_cache is
3551 	 */
3552 
3553 	if (mddev_congested(mddev, bits))
3554 		return 1;
3555 	if (conf->inactive_blocked)
3556 		return 1;
3557 	if (conf->quiesce)
3558 		return 1;
3559 	if (list_empty_careful(&conf->inactive_list))
3560 		return 1;
3561 
3562 	return 0;
3563 }
3564 
3565 /* We want read requests to align with chunks where possible,
3566  * but write requests don't need to.
3567  */
3568 static int raid5_mergeable_bvec(struct request_queue *q,
3569 				struct bvec_merge_data *bvm,
3570 				struct bio_vec *biovec)
3571 {
3572 	mddev_t *mddev = q->queuedata;
3573 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3574 	int max;
3575 	unsigned int chunk_sectors = mddev->chunk_sectors;
3576 	unsigned int bio_sectors = bvm->bi_size >> 9;
3577 
3578 	if ((bvm->bi_rw & 1) == WRITE)
3579 		return biovec->bv_len; /* always allow writes to be mergeable */
3580 
3581 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3582 		chunk_sectors = mddev->new_chunk_sectors;
3583 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3584 	if (max < 0) max = 0;
3585 	if (max <= biovec->bv_len && bio_sectors == 0)
3586 		return biovec->bv_len;
3587 	else
3588 		return max;
3589 }
3590 
3591 
3592 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3593 {
3594 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3595 	unsigned int chunk_sectors = mddev->chunk_sectors;
3596 	unsigned int bio_sectors = bio->bi_size >> 9;
3597 
3598 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3599 		chunk_sectors = mddev->new_chunk_sectors;
3600 	return  chunk_sectors >=
3601 		((sector & (chunk_sectors - 1)) + bio_sectors);
3602 }
3603 
3604 /*
3605  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3606  *  later sampled by raid5d.
3607  */
3608 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3609 {
3610 	unsigned long flags;
3611 
3612 	spin_lock_irqsave(&conf->device_lock, flags);
3613 
3614 	bi->bi_next = conf->retry_read_aligned_list;
3615 	conf->retry_read_aligned_list = bi;
3616 
3617 	spin_unlock_irqrestore(&conf->device_lock, flags);
3618 	md_wakeup_thread(conf->mddev->thread);
3619 }
3620 
3621 
3622 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3623 {
3624 	struct bio *bi;
3625 
3626 	bi = conf->retry_read_aligned;
3627 	if (bi) {
3628 		conf->retry_read_aligned = NULL;
3629 		return bi;
3630 	}
3631 	bi = conf->retry_read_aligned_list;
3632 	if(bi) {
3633 		conf->retry_read_aligned_list = bi->bi_next;
3634 		bi->bi_next = NULL;
3635 		/*
3636 		 * this sets the active strip count to 1 and the processed
3637 		 * strip count to zero (upper 8 bits)
3638 		 */
3639 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3640 	}
3641 
3642 	return bi;
3643 }
3644 
3645 
3646 /*
3647  *  The "raid5_align_endio" should check if the read succeeded and if it
3648  *  did, call bio_endio on the original bio (having bio_put the new bio
3649  *  first).
3650  *  If the read failed..
3651  */
3652 static void raid5_align_endio(struct bio *bi, int error)
3653 {
3654 	struct bio* raid_bi  = bi->bi_private;
3655 	mddev_t *mddev;
3656 	raid5_conf_t *conf;
3657 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3658 	mdk_rdev_t *rdev;
3659 
3660 	bio_put(bi);
3661 
3662 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3663 	conf = mddev->private;
3664 	rdev = (void*)raid_bi->bi_next;
3665 	raid_bi->bi_next = NULL;
3666 
3667 	rdev_dec_pending(rdev, conf->mddev);
3668 
3669 	if (!error && uptodate) {
3670 		bio_endio(raid_bi, 0);
3671 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3672 			wake_up(&conf->wait_for_stripe);
3673 		return;
3674 	}
3675 
3676 
3677 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3678 
3679 	add_bio_to_retry(raid_bi, conf);
3680 }
3681 
3682 static int bio_fits_rdev(struct bio *bi)
3683 {
3684 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3685 
3686 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3687 		return 0;
3688 	blk_recount_segments(q, bi);
3689 	if (bi->bi_phys_segments > queue_max_phys_segments(q))
3690 		return 0;
3691 
3692 	if (q->merge_bvec_fn)
3693 		/* it's too hard to apply the merge_bvec_fn at this stage,
3694 		 * just just give up
3695 		 */
3696 		return 0;
3697 
3698 	return 1;
3699 }
3700 
3701 
3702 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3703 {
3704 	mddev_t *mddev = q->queuedata;
3705 	raid5_conf_t *conf = mddev->private;
3706 	unsigned int dd_idx;
3707 	struct bio* align_bi;
3708 	mdk_rdev_t *rdev;
3709 
3710 	if (!in_chunk_boundary(mddev, raid_bio)) {
3711 		pr_debug("chunk_aligned_read : non aligned\n");
3712 		return 0;
3713 	}
3714 	/*
3715 	 * use bio_clone to make a copy of the bio
3716 	 */
3717 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3718 	if (!align_bi)
3719 		return 0;
3720 	/*
3721 	 *   set bi_end_io to a new function, and set bi_private to the
3722 	 *     original bio.
3723 	 */
3724 	align_bi->bi_end_io  = raid5_align_endio;
3725 	align_bi->bi_private = raid_bio;
3726 	/*
3727 	 *	compute position
3728 	 */
3729 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3730 						    0,
3731 						    &dd_idx, NULL);
3732 
3733 	rcu_read_lock();
3734 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3735 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3736 		atomic_inc(&rdev->nr_pending);
3737 		rcu_read_unlock();
3738 		raid_bio->bi_next = (void*)rdev;
3739 		align_bi->bi_bdev =  rdev->bdev;
3740 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3741 		align_bi->bi_sector += rdev->data_offset;
3742 
3743 		if (!bio_fits_rdev(align_bi)) {
3744 			/* too big in some way */
3745 			bio_put(align_bi);
3746 			rdev_dec_pending(rdev, mddev);
3747 			return 0;
3748 		}
3749 
3750 		spin_lock_irq(&conf->device_lock);
3751 		wait_event_lock_irq(conf->wait_for_stripe,
3752 				    conf->quiesce == 0,
3753 				    conf->device_lock, /* nothing */);
3754 		atomic_inc(&conf->active_aligned_reads);
3755 		spin_unlock_irq(&conf->device_lock);
3756 
3757 		generic_make_request(align_bi);
3758 		return 1;
3759 	} else {
3760 		rcu_read_unlock();
3761 		bio_put(align_bi);
3762 		return 0;
3763 	}
3764 }
3765 
3766 /* __get_priority_stripe - get the next stripe to process
3767  *
3768  * Full stripe writes are allowed to pass preread active stripes up until
3769  * the bypass_threshold is exceeded.  In general the bypass_count
3770  * increments when the handle_list is handled before the hold_list; however, it
3771  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3772  * stripe with in flight i/o.  The bypass_count will be reset when the
3773  * head of the hold_list has changed, i.e. the head was promoted to the
3774  * handle_list.
3775  */
3776 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3777 {
3778 	struct stripe_head *sh;
3779 
3780 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3781 		  __func__,
3782 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3783 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3784 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3785 
3786 	if (!list_empty(&conf->handle_list)) {
3787 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3788 
3789 		if (list_empty(&conf->hold_list))
3790 			conf->bypass_count = 0;
3791 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3792 			if (conf->hold_list.next == conf->last_hold)
3793 				conf->bypass_count++;
3794 			else {
3795 				conf->last_hold = conf->hold_list.next;
3796 				conf->bypass_count -= conf->bypass_threshold;
3797 				if (conf->bypass_count < 0)
3798 					conf->bypass_count = 0;
3799 			}
3800 		}
3801 	} else if (!list_empty(&conf->hold_list) &&
3802 		   ((conf->bypass_threshold &&
3803 		     conf->bypass_count > conf->bypass_threshold) ||
3804 		    atomic_read(&conf->pending_full_writes) == 0)) {
3805 		sh = list_entry(conf->hold_list.next,
3806 				typeof(*sh), lru);
3807 		conf->bypass_count -= conf->bypass_threshold;
3808 		if (conf->bypass_count < 0)
3809 			conf->bypass_count = 0;
3810 	} else
3811 		return NULL;
3812 
3813 	list_del_init(&sh->lru);
3814 	atomic_inc(&sh->count);
3815 	BUG_ON(atomic_read(&sh->count) != 1);
3816 	return sh;
3817 }
3818 
3819 static int make_request(struct request_queue *q, struct bio * bi)
3820 {
3821 	mddev_t *mddev = q->queuedata;
3822 	raid5_conf_t *conf = mddev->private;
3823 	int dd_idx;
3824 	sector_t new_sector;
3825 	sector_t logical_sector, last_sector;
3826 	struct stripe_head *sh;
3827 	const int rw = bio_data_dir(bi);
3828 	int cpu, remaining;
3829 
3830 	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3831 		bio_endio(bi, -EOPNOTSUPP);
3832 		return 0;
3833 	}
3834 
3835 	md_write_start(mddev, bi);
3836 
3837 	cpu = part_stat_lock();
3838 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3839 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3840 		      bio_sectors(bi));
3841 	part_stat_unlock();
3842 
3843 	if (rw == READ &&
3844 	     mddev->reshape_position == MaxSector &&
3845 	     chunk_aligned_read(q,bi))
3846 		return 0;
3847 
3848 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3849 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3850 	bi->bi_next = NULL;
3851 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3852 
3853 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3854 		DEFINE_WAIT(w);
3855 		int disks, data_disks;
3856 		int previous;
3857 
3858 	retry:
3859 		previous = 0;
3860 		disks = conf->raid_disks;
3861 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3862 		if (unlikely(conf->reshape_progress != MaxSector)) {
3863 			/* spinlock is needed as reshape_progress may be
3864 			 * 64bit on a 32bit platform, and so it might be
3865 			 * possible to see a half-updated value
3866 			 * Ofcourse reshape_progress could change after
3867 			 * the lock is dropped, so once we get a reference
3868 			 * to the stripe that we think it is, we will have
3869 			 * to check again.
3870 			 */
3871 			spin_lock_irq(&conf->device_lock);
3872 			if (mddev->delta_disks < 0
3873 			    ? logical_sector < conf->reshape_progress
3874 			    : logical_sector >= conf->reshape_progress) {
3875 				disks = conf->previous_raid_disks;
3876 				previous = 1;
3877 			} else {
3878 				if (mddev->delta_disks < 0
3879 				    ? logical_sector < conf->reshape_safe
3880 				    : logical_sector >= conf->reshape_safe) {
3881 					spin_unlock_irq(&conf->device_lock);
3882 					schedule();
3883 					goto retry;
3884 				}
3885 			}
3886 			spin_unlock_irq(&conf->device_lock);
3887 		}
3888 		data_disks = disks - conf->max_degraded;
3889 
3890 		new_sector = raid5_compute_sector(conf, logical_sector,
3891 						  previous,
3892 						  &dd_idx, NULL);
3893 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3894 			(unsigned long long)new_sector,
3895 			(unsigned long long)logical_sector);
3896 
3897 		sh = get_active_stripe(conf, new_sector, previous,
3898 				       (bi->bi_rw&RWA_MASK), 0);
3899 		if (sh) {
3900 			if (unlikely(previous)) {
3901 				/* expansion might have moved on while waiting for a
3902 				 * stripe, so we must do the range check again.
3903 				 * Expansion could still move past after this
3904 				 * test, but as we are holding a reference to
3905 				 * 'sh', we know that if that happens,
3906 				 *  STRIPE_EXPANDING will get set and the expansion
3907 				 * won't proceed until we finish with the stripe.
3908 				 */
3909 				int must_retry = 0;
3910 				spin_lock_irq(&conf->device_lock);
3911 				if (mddev->delta_disks < 0
3912 				    ? logical_sector >= conf->reshape_progress
3913 				    : logical_sector < conf->reshape_progress)
3914 					/* mismatch, need to try again */
3915 					must_retry = 1;
3916 				spin_unlock_irq(&conf->device_lock);
3917 				if (must_retry) {
3918 					release_stripe(sh);
3919 					schedule();
3920 					goto retry;
3921 				}
3922 			}
3923 
3924 			if (bio_data_dir(bi) == WRITE &&
3925 			    logical_sector >= mddev->suspend_lo &&
3926 			    logical_sector < mddev->suspend_hi) {
3927 				release_stripe(sh);
3928 				/* As the suspend_* range is controlled by
3929 				 * userspace, we want an interruptible
3930 				 * wait.
3931 				 */
3932 				flush_signals(current);
3933 				prepare_to_wait(&conf->wait_for_overlap,
3934 						&w, TASK_INTERRUPTIBLE);
3935 				if (logical_sector >= mddev->suspend_lo &&
3936 				    logical_sector < mddev->suspend_hi)
3937 					schedule();
3938 				goto retry;
3939 			}
3940 
3941 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3942 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3943 				/* Stripe is busy expanding or
3944 				 * add failed due to overlap.  Flush everything
3945 				 * and wait a while
3946 				 */
3947 				raid5_unplug_device(mddev->queue);
3948 				release_stripe(sh);
3949 				schedule();
3950 				goto retry;
3951 			}
3952 			finish_wait(&conf->wait_for_overlap, &w);
3953 			set_bit(STRIPE_HANDLE, &sh->state);
3954 			clear_bit(STRIPE_DELAYED, &sh->state);
3955 			release_stripe(sh);
3956 		} else {
3957 			/* cannot get stripe for read-ahead, just give-up */
3958 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3959 			finish_wait(&conf->wait_for_overlap, &w);
3960 			break;
3961 		}
3962 
3963 	}
3964 	spin_lock_irq(&conf->device_lock);
3965 	remaining = raid5_dec_bi_phys_segments(bi);
3966 	spin_unlock_irq(&conf->device_lock);
3967 	if (remaining == 0) {
3968 
3969 		if ( rw == WRITE )
3970 			md_write_end(mddev);
3971 
3972 		bio_endio(bi, 0);
3973 	}
3974 	return 0;
3975 }
3976 
3977 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3978 
3979 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3980 {
3981 	/* reshaping is quite different to recovery/resync so it is
3982 	 * handled quite separately ... here.
3983 	 *
3984 	 * On each call to sync_request, we gather one chunk worth of
3985 	 * destination stripes and flag them as expanding.
3986 	 * Then we find all the source stripes and request reads.
3987 	 * As the reads complete, handle_stripe will copy the data
3988 	 * into the destination stripe and release that stripe.
3989 	 */
3990 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3991 	struct stripe_head *sh;
3992 	sector_t first_sector, last_sector;
3993 	int raid_disks = conf->previous_raid_disks;
3994 	int data_disks = raid_disks - conf->max_degraded;
3995 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3996 	int i;
3997 	int dd_idx;
3998 	sector_t writepos, readpos, safepos;
3999 	sector_t stripe_addr;
4000 	int reshape_sectors;
4001 	struct list_head stripes;
4002 
4003 	if (sector_nr == 0) {
4004 		/* If restarting in the middle, skip the initial sectors */
4005 		if (mddev->delta_disks < 0 &&
4006 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4007 			sector_nr = raid5_size(mddev, 0, 0)
4008 				- conf->reshape_progress;
4009 		} else if (mddev->delta_disks >= 0 &&
4010 			   conf->reshape_progress > 0)
4011 			sector_nr = conf->reshape_progress;
4012 		sector_div(sector_nr, new_data_disks);
4013 		if (sector_nr) {
4014 			*skipped = 1;
4015 			return sector_nr;
4016 		}
4017 	}
4018 
4019 	/* We need to process a full chunk at a time.
4020 	 * If old and new chunk sizes differ, we need to process the
4021 	 * largest of these
4022 	 */
4023 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4024 		reshape_sectors = mddev->new_chunk_sectors;
4025 	else
4026 		reshape_sectors = mddev->chunk_sectors;
4027 
4028 	/* we update the metadata when there is more than 3Meg
4029 	 * in the block range (that is rather arbitrary, should
4030 	 * probably be time based) or when the data about to be
4031 	 * copied would over-write the source of the data at
4032 	 * the front of the range.
4033 	 * i.e. one new_stripe along from reshape_progress new_maps
4034 	 * to after where reshape_safe old_maps to
4035 	 */
4036 	writepos = conf->reshape_progress;
4037 	sector_div(writepos, new_data_disks);
4038 	readpos = conf->reshape_progress;
4039 	sector_div(readpos, data_disks);
4040 	safepos = conf->reshape_safe;
4041 	sector_div(safepos, data_disks);
4042 	if (mddev->delta_disks < 0) {
4043 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4044 		readpos += reshape_sectors;
4045 		safepos += reshape_sectors;
4046 	} else {
4047 		writepos += reshape_sectors;
4048 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4049 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4050 	}
4051 
4052 	/* 'writepos' is the most advanced device address we might write.
4053 	 * 'readpos' is the least advanced device address we might read.
4054 	 * 'safepos' is the least address recorded in the metadata as having
4055 	 *     been reshaped.
4056 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4057 	 * ensure safety in the face of a crash - that must be done by userspace
4058 	 * making a backup of the data.  So in that case there is no particular
4059 	 * rush to update metadata.
4060 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4061 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4062 	 * we can be safe in the event of a crash.
4063 	 * So we insist on updating metadata if safepos is behind writepos and
4064 	 * readpos is beyond writepos.
4065 	 * In any case, update the metadata every 10 seconds.
4066 	 * Maybe that number should be configurable, but I'm not sure it is
4067 	 * worth it.... maybe it could be a multiple of safemode_delay???
4068 	 */
4069 	if ((mddev->delta_disks < 0
4070 	     ? (safepos > writepos && readpos < writepos)
4071 	     : (safepos < writepos && readpos > writepos)) ||
4072 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4073 		/* Cannot proceed until we've updated the superblock... */
4074 		wait_event(conf->wait_for_overlap,
4075 			   atomic_read(&conf->reshape_stripes)==0);
4076 		mddev->reshape_position = conf->reshape_progress;
4077 		mddev->curr_resync_completed = mddev->curr_resync;
4078 		conf->reshape_checkpoint = jiffies;
4079 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4080 		md_wakeup_thread(mddev->thread);
4081 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4082 			   kthread_should_stop());
4083 		spin_lock_irq(&conf->device_lock);
4084 		conf->reshape_safe = mddev->reshape_position;
4085 		spin_unlock_irq(&conf->device_lock);
4086 		wake_up(&conf->wait_for_overlap);
4087 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4088 	}
4089 
4090 	if (mddev->delta_disks < 0) {
4091 		BUG_ON(conf->reshape_progress == 0);
4092 		stripe_addr = writepos;
4093 		BUG_ON((mddev->dev_sectors &
4094 			~((sector_t)reshape_sectors - 1))
4095 		       - reshape_sectors - stripe_addr
4096 		       != sector_nr);
4097 	} else {
4098 		BUG_ON(writepos != sector_nr + reshape_sectors);
4099 		stripe_addr = sector_nr;
4100 	}
4101 	INIT_LIST_HEAD(&stripes);
4102 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4103 		int j;
4104 		int skipped_disk = 0;
4105 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4106 		set_bit(STRIPE_EXPANDING, &sh->state);
4107 		atomic_inc(&conf->reshape_stripes);
4108 		/* If any of this stripe is beyond the end of the old
4109 		 * array, then we need to zero those blocks
4110 		 */
4111 		for (j=sh->disks; j--;) {
4112 			sector_t s;
4113 			if (j == sh->pd_idx)
4114 				continue;
4115 			if (conf->level == 6 &&
4116 			    j == sh->qd_idx)
4117 				continue;
4118 			s = compute_blocknr(sh, j, 0);
4119 			if (s < raid5_size(mddev, 0, 0)) {
4120 				skipped_disk = 1;
4121 				continue;
4122 			}
4123 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4124 			set_bit(R5_Expanded, &sh->dev[j].flags);
4125 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4126 		}
4127 		if (!skipped_disk) {
4128 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4129 			set_bit(STRIPE_HANDLE, &sh->state);
4130 		}
4131 		list_add(&sh->lru, &stripes);
4132 	}
4133 	spin_lock_irq(&conf->device_lock);
4134 	if (mddev->delta_disks < 0)
4135 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4136 	else
4137 		conf->reshape_progress += reshape_sectors * new_data_disks;
4138 	spin_unlock_irq(&conf->device_lock);
4139 	/* Ok, those stripe are ready. We can start scheduling
4140 	 * reads on the source stripes.
4141 	 * The source stripes are determined by mapping the first and last
4142 	 * block on the destination stripes.
4143 	 */
4144 	first_sector =
4145 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4146 				     1, &dd_idx, NULL);
4147 	last_sector =
4148 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4149 					    * new_data_disks - 1),
4150 				     1, &dd_idx, NULL);
4151 	if (last_sector >= mddev->dev_sectors)
4152 		last_sector = mddev->dev_sectors - 1;
4153 	while (first_sector <= last_sector) {
4154 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4155 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4156 		set_bit(STRIPE_HANDLE, &sh->state);
4157 		release_stripe(sh);
4158 		first_sector += STRIPE_SECTORS;
4159 	}
4160 	/* Now that the sources are clearly marked, we can release
4161 	 * the destination stripes
4162 	 */
4163 	while (!list_empty(&stripes)) {
4164 		sh = list_entry(stripes.next, struct stripe_head, lru);
4165 		list_del_init(&sh->lru);
4166 		release_stripe(sh);
4167 	}
4168 	/* If this takes us to the resync_max point where we have to pause,
4169 	 * then we need to write out the superblock.
4170 	 */
4171 	sector_nr += reshape_sectors;
4172 	if ((sector_nr - mddev->curr_resync_completed) * 2
4173 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4174 		/* Cannot proceed until we've updated the superblock... */
4175 		wait_event(conf->wait_for_overlap,
4176 			   atomic_read(&conf->reshape_stripes) == 0);
4177 		mddev->reshape_position = conf->reshape_progress;
4178 		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4179 		conf->reshape_checkpoint = jiffies;
4180 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181 		md_wakeup_thread(mddev->thread);
4182 		wait_event(mddev->sb_wait,
4183 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4184 			   || kthread_should_stop());
4185 		spin_lock_irq(&conf->device_lock);
4186 		conf->reshape_safe = mddev->reshape_position;
4187 		spin_unlock_irq(&conf->device_lock);
4188 		wake_up(&conf->wait_for_overlap);
4189 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4190 	}
4191 	return reshape_sectors;
4192 }
4193 
4194 /* FIXME go_faster isn't used */
4195 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4196 {
4197 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4198 	struct stripe_head *sh;
4199 	sector_t max_sector = mddev->dev_sectors;
4200 	int sync_blocks;
4201 	int still_degraded = 0;
4202 	int i;
4203 
4204 	if (sector_nr >= max_sector) {
4205 		/* just being told to finish up .. nothing much to do */
4206 		unplug_slaves(mddev);
4207 
4208 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4209 			end_reshape(conf);
4210 			return 0;
4211 		}
4212 
4213 		if (mddev->curr_resync < max_sector) /* aborted */
4214 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4215 					&sync_blocks, 1);
4216 		else /* completed sync */
4217 			conf->fullsync = 0;
4218 		bitmap_close_sync(mddev->bitmap);
4219 
4220 		return 0;
4221 	}
4222 
4223 	/* Allow raid5_quiesce to complete */
4224 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4225 
4226 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4227 		return reshape_request(mddev, sector_nr, skipped);
4228 
4229 	/* No need to check resync_max as we never do more than one
4230 	 * stripe, and as resync_max will always be on a chunk boundary,
4231 	 * if the check in md_do_sync didn't fire, there is no chance
4232 	 * of overstepping resync_max here
4233 	 */
4234 
4235 	/* if there is too many failed drives and we are trying
4236 	 * to resync, then assert that we are finished, because there is
4237 	 * nothing we can do.
4238 	 */
4239 	if (mddev->degraded >= conf->max_degraded &&
4240 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4241 		sector_t rv = mddev->dev_sectors - sector_nr;
4242 		*skipped = 1;
4243 		return rv;
4244 	}
4245 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4246 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4247 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4248 		/* we can skip this block, and probably more */
4249 		sync_blocks /= STRIPE_SECTORS;
4250 		*skipped = 1;
4251 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4252 	}
4253 
4254 
4255 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4256 
4257 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4258 	if (sh == NULL) {
4259 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4260 		/* make sure we don't swamp the stripe cache if someone else
4261 		 * is trying to get access
4262 		 */
4263 		schedule_timeout_uninterruptible(1);
4264 	}
4265 	/* Need to check if array will still be degraded after recovery/resync
4266 	 * We don't need to check the 'failed' flag as when that gets set,
4267 	 * recovery aborts.
4268 	 */
4269 	for (i = 0; i < conf->raid_disks; i++)
4270 		if (conf->disks[i].rdev == NULL)
4271 			still_degraded = 1;
4272 
4273 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4274 
4275 	spin_lock(&sh->lock);
4276 	set_bit(STRIPE_SYNCING, &sh->state);
4277 	clear_bit(STRIPE_INSYNC, &sh->state);
4278 	spin_unlock(&sh->lock);
4279 
4280 	/* wait for any blocked device to be handled */
4281 	while (unlikely(!handle_stripe(sh)))
4282 		;
4283 	release_stripe(sh);
4284 
4285 	return STRIPE_SECTORS;
4286 }
4287 
4288 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4289 {
4290 	/* We may not be able to submit a whole bio at once as there
4291 	 * may not be enough stripe_heads available.
4292 	 * We cannot pre-allocate enough stripe_heads as we may need
4293 	 * more than exist in the cache (if we allow ever large chunks).
4294 	 * So we do one stripe head at a time and record in
4295 	 * ->bi_hw_segments how many have been done.
4296 	 *
4297 	 * We *know* that this entire raid_bio is in one chunk, so
4298 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4299 	 */
4300 	struct stripe_head *sh;
4301 	int dd_idx;
4302 	sector_t sector, logical_sector, last_sector;
4303 	int scnt = 0;
4304 	int remaining;
4305 	int handled = 0;
4306 
4307 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4308 	sector = raid5_compute_sector(conf, logical_sector,
4309 				      0, &dd_idx, NULL);
4310 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4311 
4312 	for (; logical_sector < last_sector;
4313 	     logical_sector += STRIPE_SECTORS,
4314 		     sector += STRIPE_SECTORS,
4315 		     scnt++) {
4316 
4317 		if (scnt < raid5_bi_hw_segments(raid_bio))
4318 			/* already done this stripe */
4319 			continue;
4320 
4321 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4322 
4323 		if (!sh) {
4324 			/* failed to get a stripe - must wait */
4325 			raid5_set_bi_hw_segments(raid_bio, scnt);
4326 			conf->retry_read_aligned = raid_bio;
4327 			return handled;
4328 		}
4329 
4330 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4331 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4332 			release_stripe(sh);
4333 			raid5_set_bi_hw_segments(raid_bio, scnt);
4334 			conf->retry_read_aligned = raid_bio;
4335 			return handled;
4336 		}
4337 
4338 		handle_stripe(sh);
4339 		release_stripe(sh);
4340 		handled++;
4341 	}
4342 	spin_lock_irq(&conf->device_lock);
4343 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4344 	spin_unlock_irq(&conf->device_lock);
4345 	if (remaining == 0)
4346 		bio_endio(raid_bio, 0);
4347 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4348 		wake_up(&conf->wait_for_stripe);
4349 	return handled;
4350 }
4351 
4352 #ifdef CONFIG_MULTICORE_RAID456
4353 static void __process_stripe(void *param, async_cookie_t cookie)
4354 {
4355 	struct stripe_head *sh = param;
4356 
4357 	handle_stripe(sh);
4358 	release_stripe(sh);
4359 }
4360 
4361 static void process_stripe(struct stripe_head *sh, struct list_head *domain)
4362 {
4363 	async_schedule_domain(__process_stripe, sh, domain);
4364 }
4365 
4366 static void synchronize_stripe_processing(struct list_head *domain)
4367 {
4368 	async_synchronize_full_domain(domain);
4369 }
4370 #else
4371 static void process_stripe(struct stripe_head *sh, struct list_head *domain)
4372 {
4373 	handle_stripe(sh);
4374 	release_stripe(sh);
4375 	cond_resched();
4376 }
4377 
4378 static void synchronize_stripe_processing(struct list_head *domain)
4379 {
4380 }
4381 #endif
4382 
4383 
4384 /*
4385  * This is our raid5 kernel thread.
4386  *
4387  * We scan the hash table for stripes which can be handled now.
4388  * During the scan, completed stripes are saved for us by the interrupt
4389  * handler, so that they will not have to wait for our next wakeup.
4390  */
4391 static void raid5d(mddev_t *mddev)
4392 {
4393 	struct stripe_head *sh;
4394 	raid5_conf_t *conf = mddev->private;
4395 	int handled;
4396 	LIST_HEAD(raid_domain);
4397 
4398 	pr_debug("+++ raid5d active\n");
4399 
4400 	md_check_recovery(mddev);
4401 
4402 	handled = 0;
4403 	spin_lock_irq(&conf->device_lock);
4404 	while (1) {
4405 		struct bio *bio;
4406 
4407 		if (conf->seq_flush != conf->seq_write) {
4408 			int seq = conf->seq_flush;
4409 			spin_unlock_irq(&conf->device_lock);
4410 			bitmap_unplug(mddev->bitmap);
4411 			spin_lock_irq(&conf->device_lock);
4412 			conf->seq_write = seq;
4413 			activate_bit_delay(conf);
4414 		}
4415 
4416 		while ((bio = remove_bio_from_retry(conf))) {
4417 			int ok;
4418 			spin_unlock_irq(&conf->device_lock);
4419 			ok = retry_aligned_read(conf, bio);
4420 			spin_lock_irq(&conf->device_lock);
4421 			if (!ok)
4422 				break;
4423 			handled++;
4424 		}
4425 
4426 		sh = __get_priority_stripe(conf);
4427 
4428 		if (!sh)
4429 			break;
4430 		spin_unlock_irq(&conf->device_lock);
4431 
4432 		handled++;
4433 		process_stripe(sh, &raid_domain);
4434 
4435 		spin_lock_irq(&conf->device_lock);
4436 	}
4437 	pr_debug("%d stripes handled\n", handled);
4438 
4439 	spin_unlock_irq(&conf->device_lock);
4440 
4441 	synchronize_stripe_processing(&raid_domain);
4442 	async_tx_issue_pending_all();
4443 	unplug_slaves(mddev);
4444 
4445 	pr_debug("--- raid5d inactive\n");
4446 }
4447 
4448 static ssize_t
4449 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4450 {
4451 	raid5_conf_t *conf = mddev->private;
4452 	if (conf)
4453 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4454 	else
4455 		return 0;
4456 }
4457 
4458 static ssize_t
4459 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4460 {
4461 	raid5_conf_t *conf = mddev->private;
4462 	unsigned long new;
4463 	int err;
4464 
4465 	if (len >= PAGE_SIZE)
4466 		return -EINVAL;
4467 	if (!conf)
4468 		return -ENODEV;
4469 
4470 	if (strict_strtoul(page, 10, &new))
4471 		return -EINVAL;
4472 	if (new <= 16 || new > 32768)
4473 		return -EINVAL;
4474 	while (new < conf->max_nr_stripes) {
4475 		if (drop_one_stripe(conf))
4476 			conf->max_nr_stripes--;
4477 		else
4478 			break;
4479 	}
4480 	err = md_allow_write(mddev);
4481 	if (err)
4482 		return err;
4483 	while (new > conf->max_nr_stripes) {
4484 		if (grow_one_stripe(conf))
4485 			conf->max_nr_stripes++;
4486 		else break;
4487 	}
4488 	return len;
4489 }
4490 
4491 static struct md_sysfs_entry
4492 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4493 				raid5_show_stripe_cache_size,
4494 				raid5_store_stripe_cache_size);
4495 
4496 static ssize_t
4497 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4498 {
4499 	raid5_conf_t *conf = mddev->private;
4500 	if (conf)
4501 		return sprintf(page, "%d\n", conf->bypass_threshold);
4502 	else
4503 		return 0;
4504 }
4505 
4506 static ssize_t
4507 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4508 {
4509 	raid5_conf_t *conf = mddev->private;
4510 	unsigned long new;
4511 	if (len >= PAGE_SIZE)
4512 		return -EINVAL;
4513 	if (!conf)
4514 		return -ENODEV;
4515 
4516 	if (strict_strtoul(page, 10, &new))
4517 		return -EINVAL;
4518 	if (new > conf->max_nr_stripes)
4519 		return -EINVAL;
4520 	conf->bypass_threshold = new;
4521 	return len;
4522 }
4523 
4524 static struct md_sysfs_entry
4525 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4526 					S_IRUGO | S_IWUSR,
4527 					raid5_show_preread_threshold,
4528 					raid5_store_preread_threshold);
4529 
4530 static ssize_t
4531 stripe_cache_active_show(mddev_t *mddev, char *page)
4532 {
4533 	raid5_conf_t *conf = mddev->private;
4534 	if (conf)
4535 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4536 	else
4537 		return 0;
4538 }
4539 
4540 static struct md_sysfs_entry
4541 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4542 
4543 static struct attribute *raid5_attrs[] =  {
4544 	&raid5_stripecache_size.attr,
4545 	&raid5_stripecache_active.attr,
4546 	&raid5_preread_bypass_threshold.attr,
4547 	NULL,
4548 };
4549 static struct attribute_group raid5_attrs_group = {
4550 	.name = NULL,
4551 	.attrs = raid5_attrs,
4552 };
4553 
4554 static sector_t
4555 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4556 {
4557 	raid5_conf_t *conf = mddev->private;
4558 
4559 	if (!sectors)
4560 		sectors = mddev->dev_sectors;
4561 	if (!raid_disks) {
4562 		/* size is defined by the smallest of previous and new size */
4563 		if (conf->raid_disks < conf->previous_raid_disks)
4564 			raid_disks = conf->raid_disks;
4565 		else
4566 			raid_disks = conf->previous_raid_disks;
4567 	}
4568 
4569 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4570 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4571 	return sectors * (raid_disks - conf->max_degraded);
4572 }
4573 
4574 static void raid5_free_percpu(raid5_conf_t *conf)
4575 {
4576 	struct raid5_percpu *percpu;
4577 	unsigned long cpu;
4578 
4579 	if (!conf->percpu)
4580 		return;
4581 
4582 	get_online_cpus();
4583 	for_each_possible_cpu(cpu) {
4584 		percpu = per_cpu_ptr(conf->percpu, cpu);
4585 		safe_put_page(percpu->spare_page);
4586 		kfree(percpu->scribble);
4587 	}
4588 #ifdef CONFIG_HOTPLUG_CPU
4589 	unregister_cpu_notifier(&conf->cpu_notify);
4590 #endif
4591 	put_online_cpus();
4592 
4593 	free_percpu(conf->percpu);
4594 }
4595 
4596 static void free_conf(raid5_conf_t *conf)
4597 {
4598 	shrink_stripes(conf);
4599 	raid5_free_percpu(conf);
4600 	kfree(conf->disks);
4601 	kfree(conf->stripe_hashtbl);
4602 	kfree(conf);
4603 }
4604 
4605 #ifdef CONFIG_HOTPLUG_CPU
4606 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4607 			      void *hcpu)
4608 {
4609 	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4610 	long cpu = (long)hcpu;
4611 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4612 
4613 	switch (action) {
4614 	case CPU_UP_PREPARE:
4615 	case CPU_UP_PREPARE_FROZEN:
4616 		if (conf->level == 6 && !percpu->spare_page)
4617 			percpu->spare_page = alloc_page(GFP_KERNEL);
4618 		if (!percpu->scribble)
4619 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4620 
4621 		if (!percpu->scribble ||
4622 		    (conf->level == 6 && !percpu->spare_page)) {
4623 			safe_put_page(percpu->spare_page);
4624 			kfree(percpu->scribble);
4625 			pr_err("%s: failed memory allocation for cpu%ld\n",
4626 			       __func__, cpu);
4627 			return NOTIFY_BAD;
4628 		}
4629 		break;
4630 	case CPU_DEAD:
4631 	case CPU_DEAD_FROZEN:
4632 		safe_put_page(percpu->spare_page);
4633 		kfree(percpu->scribble);
4634 		percpu->spare_page = NULL;
4635 		percpu->scribble = NULL;
4636 		break;
4637 	default:
4638 		break;
4639 	}
4640 	return NOTIFY_OK;
4641 }
4642 #endif
4643 
4644 static int raid5_alloc_percpu(raid5_conf_t *conf)
4645 {
4646 	unsigned long cpu;
4647 	struct page *spare_page;
4648 	struct raid5_percpu *allcpus;
4649 	void *scribble;
4650 	int err;
4651 
4652 	allcpus = alloc_percpu(struct raid5_percpu);
4653 	if (!allcpus)
4654 		return -ENOMEM;
4655 	conf->percpu = allcpus;
4656 
4657 	get_online_cpus();
4658 	err = 0;
4659 	for_each_present_cpu(cpu) {
4660 		if (conf->level == 6) {
4661 			spare_page = alloc_page(GFP_KERNEL);
4662 			if (!spare_page) {
4663 				err = -ENOMEM;
4664 				break;
4665 			}
4666 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4667 		}
4668 		scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
4669 		if (!scribble) {
4670 			err = -ENOMEM;
4671 			break;
4672 		}
4673 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4674 	}
4675 #ifdef CONFIG_HOTPLUG_CPU
4676 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4677 	conf->cpu_notify.priority = 0;
4678 	if (err == 0)
4679 		err = register_cpu_notifier(&conf->cpu_notify);
4680 #endif
4681 	put_online_cpus();
4682 
4683 	return err;
4684 }
4685 
4686 static raid5_conf_t *setup_conf(mddev_t *mddev)
4687 {
4688 	raid5_conf_t *conf;
4689 	int raid_disk, memory;
4690 	mdk_rdev_t *rdev;
4691 	struct disk_info *disk;
4692 
4693 	if (mddev->new_level != 5
4694 	    && mddev->new_level != 4
4695 	    && mddev->new_level != 6) {
4696 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4697 		       mdname(mddev), mddev->new_level);
4698 		return ERR_PTR(-EIO);
4699 	}
4700 	if ((mddev->new_level == 5
4701 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4702 	    (mddev->new_level == 6
4703 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4704 		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4705 		       mdname(mddev), mddev->new_layout);
4706 		return ERR_PTR(-EIO);
4707 	}
4708 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4709 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4710 		       mdname(mddev), mddev->raid_disks);
4711 		return ERR_PTR(-EINVAL);
4712 	}
4713 
4714 	if (!mddev->new_chunk_sectors ||
4715 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4716 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4717 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4718 		       mddev->new_chunk_sectors << 9, mdname(mddev));
4719 		return ERR_PTR(-EINVAL);
4720 	}
4721 
4722 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4723 	if (conf == NULL)
4724 		goto abort;
4725 
4726 	conf->raid_disks = mddev->raid_disks;
4727 	conf->scribble_len = scribble_len(conf->raid_disks);
4728 	if (mddev->reshape_position == MaxSector)
4729 		conf->previous_raid_disks = mddev->raid_disks;
4730 	else
4731 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4732 
4733 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4734 			      GFP_KERNEL);
4735 	if (!conf->disks)
4736 		goto abort;
4737 
4738 	conf->mddev = mddev;
4739 
4740 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4741 		goto abort;
4742 
4743 	conf->level = mddev->new_level;
4744 	if (raid5_alloc_percpu(conf) != 0)
4745 		goto abort;
4746 
4747 	spin_lock_init(&conf->device_lock);
4748 	init_waitqueue_head(&conf->wait_for_stripe);
4749 	init_waitqueue_head(&conf->wait_for_overlap);
4750 	INIT_LIST_HEAD(&conf->handle_list);
4751 	INIT_LIST_HEAD(&conf->hold_list);
4752 	INIT_LIST_HEAD(&conf->delayed_list);
4753 	INIT_LIST_HEAD(&conf->bitmap_list);
4754 	INIT_LIST_HEAD(&conf->inactive_list);
4755 	atomic_set(&conf->active_stripes, 0);
4756 	atomic_set(&conf->preread_active_stripes, 0);
4757 	atomic_set(&conf->active_aligned_reads, 0);
4758 	conf->bypass_threshold = BYPASS_THRESHOLD;
4759 
4760 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4761 
4762 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4763 		raid_disk = rdev->raid_disk;
4764 		if (raid_disk >= conf->raid_disks
4765 		    || raid_disk < 0)
4766 			continue;
4767 		disk = conf->disks + raid_disk;
4768 
4769 		disk->rdev = rdev;
4770 
4771 		if (test_bit(In_sync, &rdev->flags)) {
4772 			char b[BDEVNAME_SIZE];
4773 			printk(KERN_INFO "raid5: device %s operational as raid"
4774 				" disk %d\n", bdevname(rdev->bdev,b),
4775 				raid_disk);
4776 		} else
4777 			/* Cannot rely on bitmap to complete recovery */
4778 			conf->fullsync = 1;
4779 	}
4780 
4781 	conf->chunk_sectors = mddev->new_chunk_sectors;
4782 	conf->level = mddev->new_level;
4783 	if (conf->level == 6)
4784 		conf->max_degraded = 2;
4785 	else
4786 		conf->max_degraded = 1;
4787 	conf->algorithm = mddev->new_layout;
4788 	conf->max_nr_stripes = NR_STRIPES;
4789 	conf->reshape_progress = mddev->reshape_position;
4790 	if (conf->reshape_progress != MaxSector) {
4791 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4792 		conf->prev_algo = mddev->layout;
4793 	}
4794 
4795 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4796 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4797 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4798 		printk(KERN_ERR
4799 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4800 		goto abort;
4801 	} else
4802 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4803 			memory, mdname(mddev));
4804 
4805 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4806 	if (!conf->thread) {
4807 		printk(KERN_ERR
4808 		       "raid5: couldn't allocate thread for %s\n",
4809 		       mdname(mddev));
4810 		goto abort;
4811 	}
4812 
4813 	return conf;
4814 
4815  abort:
4816 	if (conf) {
4817 		free_conf(conf);
4818 		return ERR_PTR(-EIO);
4819 	} else
4820 		return ERR_PTR(-ENOMEM);
4821 }
4822 
4823 static int run(mddev_t *mddev)
4824 {
4825 	raid5_conf_t *conf;
4826 	int working_disks = 0, chunk_size;
4827 	mdk_rdev_t *rdev;
4828 
4829 	if (mddev->recovery_cp != MaxSector)
4830 		printk(KERN_NOTICE "raid5: %s is not clean"
4831 		       " -- starting background reconstruction\n",
4832 		       mdname(mddev));
4833 	if (mddev->reshape_position != MaxSector) {
4834 		/* Check that we can continue the reshape.
4835 		 * Currently only disks can change, it must
4836 		 * increase, and we must be past the point where
4837 		 * a stripe over-writes itself
4838 		 */
4839 		sector_t here_new, here_old;
4840 		int old_disks;
4841 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4842 
4843 		if (mddev->new_level != mddev->level) {
4844 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4845 			       "required - aborting.\n",
4846 			       mdname(mddev));
4847 			return -EINVAL;
4848 		}
4849 		old_disks = mddev->raid_disks - mddev->delta_disks;
4850 		/* reshape_position must be on a new-stripe boundary, and one
4851 		 * further up in new geometry must map after here in old
4852 		 * geometry.
4853 		 */
4854 		here_new = mddev->reshape_position;
4855 		if (sector_div(here_new, mddev->new_chunk_sectors *
4856 			       (mddev->raid_disks - max_degraded))) {
4857 			printk(KERN_ERR "raid5: reshape_position not "
4858 			       "on a stripe boundary\n");
4859 			return -EINVAL;
4860 		}
4861 		/* here_new is the stripe we will write to */
4862 		here_old = mddev->reshape_position;
4863 		sector_div(here_old, mddev->chunk_sectors *
4864 			   (old_disks-max_degraded));
4865 		/* here_old is the first stripe that we might need to read
4866 		 * from */
4867 		if (mddev->delta_disks == 0) {
4868 			/* We cannot be sure it is safe to start an in-place
4869 			 * reshape.  It is only safe if user-space if monitoring
4870 			 * and taking constant backups.
4871 			 * mdadm always starts a situation like this in
4872 			 * readonly mode so it can take control before
4873 			 * allowing any writes.  So just check for that.
4874 			 */
4875 			if ((here_new * mddev->new_chunk_sectors !=
4876 			     here_old * mddev->chunk_sectors) ||
4877 			    mddev->ro == 0) {
4878 				printk(KERN_ERR "raid5: in-place reshape must be started"
4879 				       " in read-only mode - aborting\n");
4880 				return -EINVAL;
4881 			}
4882 		} else if (mddev->delta_disks < 0
4883 		    ? (here_new * mddev->new_chunk_sectors <=
4884 		       here_old * mddev->chunk_sectors)
4885 		    : (here_new * mddev->new_chunk_sectors >=
4886 		       here_old * mddev->chunk_sectors)) {
4887 			/* Reading from the same stripe as writing to - bad */
4888 			printk(KERN_ERR "raid5: reshape_position too early for "
4889 			       "auto-recovery - aborting.\n");
4890 			return -EINVAL;
4891 		}
4892 		printk(KERN_INFO "raid5: reshape will continue\n");
4893 		/* OK, we should be able to continue; */
4894 	} else {
4895 		BUG_ON(mddev->level != mddev->new_level);
4896 		BUG_ON(mddev->layout != mddev->new_layout);
4897 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4898 		BUG_ON(mddev->delta_disks != 0);
4899 	}
4900 
4901 	if (mddev->private == NULL)
4902 		conf = setup_conf(mddev);
4903 	else
4904 		conf = mddev->private;
4905 
4906 	if (IS_ERR(conf))
4907 		return PTR_ERR(conf);
4908 
4909 	mddev->thread = conf->thread;
4910 	conf->thread = NULL;
4911 	mddev->private = conf;
4912 
4913 	/*
4914 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4915 	 */
4916 	list_for_each_entry(rdev, &mddev->disks, same_set)
4917 		if (rdev->raid_disk >= 0 &&
4918 		    test_bit(In_sync, &rdev->flags))
4919 			working_disks++;
4920 
4921 	mddev->degraded = conf->raid_disks - working_disks;
4922 
4923 	if (mddev->degraded > conf->max_degraded) {
4924 		printk(KERN_ERR "raid5: not enough operational devices for %s"
4925 			" (%d/%d failed)\n",
4926 			mdname(mddev), mddev->degraded, conf->raid_disks);
4927 		goto abort;
4928 	}
4929 
4930 	/* device size must be a multiple of chunk size */
4931 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4932 	mddev->resync_max_sectors = mddev->dev_sectors;
4933 
4934 	if (mddev->degraded > 0 &&
4935 	    mddev->recovery_cp != MaxSector) {
4936 		if (mddev->ok_start_degraded)
4937 			printk(KERN_WARNING
4938 			       "raid5: starting dirty degraded array: %s"
4939 			       "- data corruption possible.\n",
4940 			       mdname(mddev));
4941 		else {
4942 			printk(KERN_ERR
4943 			       "raid5: cannot start dirty degraded array for %s\n",
4944 			       mdname(mddev));
4945 			goto abort;
4946 		}
4947 	}
4948 
4949 	if (mddev->degraded == 0)
4950 		printk("raid5: raid level %d set %s active with %d out of %d"
4951 		       " devices, algorithm %d\n", conf->level, mdname(mddev),
4952 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4953 		       mddev->new_layout);
4954 	else
4955 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4956 			" out of %d devices, algorithm %d\n", conf->level,
4957 			mdname(mddev), mddev->raid_disks - mddev->degraded,
4958 			mddev->raid_disks, mddev->new_layout);
4959 
4960 	print_raid5_conf(conf);
4961 
4962 	if (conf->reshape_progress != MaxSector) {
4963 		printk("...ok start reshape thread\n");
4964 		conf->reshape_safe = conf->reshape_progress;
4965 		atomic_set(&conf->reshape_stripes, 0);
4966 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4967 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4968 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4969 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4970 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4971 							"reshape");
4972 	}
4973 
4974 	/* read-ahead size must cover two whole stripes, which is
4975 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4976 	 */
4977 	{
4978 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4979 		int stripe = data_disks *
4980 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
4981 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4982 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4983 	}
4984 
4985 	/* Ok, everything is just fine now */
4986 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4987 		printk(KERN_WARNING
4988 		       "raid5: failed to create sysfs attributes for %s\n",
4989 		       mdname(mddev));
4990 
4991 	mddev->queue->queue_lock = &conf->device_lock;
4992 
4993 	mddev->queue->unplug_fn = raid5_unplug_device;
4994 	mddev->queue->backing_dev_info.congested_data = mddev;
4995 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4996 
4997 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4998 
4999 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5000 	chunk_size = mddev->chunk_sectors << 9;
5001 	blk_queue_io_min(mddev->queue, chunk_size);
5002 	blk_queue_io_opt(mddev->queue, chunk_size *
5003 			 (conf->raid_disks - conf->max_degraded));
5004 
5005 	list_for_each_entry(rdev, &mddev->disks, same_set)
5006 		disk_stack_limits(mddev->gendisk, rdev->bdev,
5007 				  rdev->data_offset << 9);
5008 
5009 	return 0;
5010 abort:
5011 	md_unregister_thread(mddev->thread);
5012 	mddev->thread = NULL;
5013 	if (conf) {
5014 		print_raid5_conf(conf);
5015 		free_conf(conf);
5016 	}
5017 	mddev->private = NULL;
5018 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5019 	return -EIO;
5020 }
5021 
5022 
5023 
5024 static int stop(mddev_t *mddev)
5025 {
5026 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5027 
5028 	md_unregister_thread(mddev->thread);
5029 	mddev->thread = NULL;
5030 	mddev->queue->backing_dev_info.congested_fn = NULL;
5031 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5032 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5033 	free_conf(conf);
5034 	mddev->private = NULL;
5035 	return 0;
5036 }
5037 
5038 #ifdef DEBUG
5039 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5040 {
5041 	int i;
5042 
5043 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5044 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5045 	seq_printf(seq, "sh %llu,  count %d.\n",
5046 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5047 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5048 	for (i = 0; i < sh->disks; i++) {
5049 		seq_printf(seq, "(cache%d: %p %ld) ",
5050 			   i, sh->dev[i].page, sh->dev[i].flags);
5051 	}
5052 	seq_printf(seq, "\n");
5053 }
5054 
5055 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5056 {
5057 	struct stripe_head *sh;
5058 	struct hlist_node *hn;
5059 	int i;
5060 
5061 	spin_lock_irq(&conf->device_lock);
5062 	for (i = 0; i < NR_HASH; i++) {
5063 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5064 			if (sh->raid_conf != conf)
5065 				continue;
5066 			print_sh(seq, sh);
5067 		}
5068 	}
5069 	spin_unlock_irq(&conf->device_lock);
5070 }
5071 #endif
5072 
5073 static void status(struct seq_file *seq, mddev_t *mddev)
5074 {
5075 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5076 	int i;
5077 
5078 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5079 		mddev->chunk_sectors / 2, mddev->layout);
5080 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5081 	for (i = 0; i < conf->raid_disks; i++)
5082 		seq_printf (seq, "%s",
5083 			       conf->disks[i].rdev &&
5084 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5085 	seq_printf (seq, "]");
5086 #ifdef DEBUG
5087 	seq_printf (seq, "\n");
5088 	printall(seq, conf);
5089 #endif
5090 }
5091 
5092 static void print_raid5_conf (raid5_conf_t *conf)
5093 {
5094 	int i;
5095 	struct disk_info *tmp;
5096 
5097 	printk("RAID5 conf printout:\n");
5098 	if (!conf) {
5099 		printk("(conf==NULL)\n");
5100 		return;
5101 	}
5102 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5103 		 conf->raid_disks - conf->mddev->degraded);
5104 
5105 	for (i = 0; i < conf->raid_disks; i++) {
5106 		char b[BDEVNAME_SIZE];
5107 		tmp = conf->disks + i;
5108 		if (tmp->rdev)
5109 		printk(" disk %d, o:%d, dev:%s\n",
5110 			i, !test_bit(Faulty, &tmp->rdev->flags),
5111 			bdevname(tmp->rdev->bdev,b));
5112 	}
5113 }
5114 
5115 static int raid5_spare_active(mddev_t *mddev)
5116 {
5117 	int i;
5118 	raid5_conf_t *conf = mddev->private;
5119 	struct disk_info *tmp;
5120 
5121 	for (i = 0; i < conf->raid_disks; i++) {
5122 		tmp = conf->disks + i;
5123 		if (tmp->rdev
5124 		    && !test_bit(Faulty, &tmp->rdev->flags)
5125 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5126 			unsigned long flags;
5127 			spin_lock_irqsave(&conf->device_lock, flags);
5128 			mddev->degraded--;
5129 			spin_unlock_irqrestore(&conf->device_lock, flags);
5130 		}
5131 	}
5132 	print_raid5_conf(conf);
5133 	return 0;
5134 }
5135 
5136 static int raid5_remove_disk(mddev_t *mddev, int number)
5137 {
5138 	raid5_conf_t *conf = mddev->private;
5139 	int err = 0;
5140 	mdk_rdev_t *rdev;
5141 	struct disk_info *p = conf->disks + number;
5142 
5143 	print_raid5_conf(conf);
5144 	rdev = p->rdev;
5145 	if (rdev) {
5146 		if (number >= conf->raid_disks &&
5147 		    conf->reshape_progress == MaxSector)
5148 			clear_bit(In_sync, &rdev->flags);
5149 
5150 		if (test_bit(In_sync, &rdev->flags) ||
5151 		    atomic_read(&rdev->nr_pending)) {
5152 			err = -EBUSY;
5153 			goto abort;
5154 		}
5155 		/* Only remove non-faulty devices if recovery
5156 		 * isn't possible.
5157 		 */
5158 		if (!test_bit(Faulty, &rdev->flags) &&
5159 		    mddev->degraded <= conf->max_degraded &&
5160 		    number < conf->raid_disks) {
5161 			err = -EBUSY;
5162 			goto abort;
5163 		}
5164 		p->rdev = NULL;
5165 		synchronize_rcu();
5166 		if (atomic_read(&rdev->nr_pending)) {
5167 			/* lost the race, try later */
5168 			err = -EBUSY;
5169 			p->rdev = rdev;
5170 		}
5171 	}
5172 abort:
5173 
5174 	print_raid5_conf(conf);
5175 	return err;
5176 }
5177 
5178 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5179 {
5180 	raid5_conf_t *conf = mddev->private;
5181 	int err = -EEXIST;
5182 	int disk;
5183 	struct disk_info *p;
5184 	int first = 0;
5185 	int last = conf->raid_disks - 1;
5186 
5187 	if (mddev->degraded > conf->max_degraded)
5188 		/* no point adding a device */
5189 		return -EINVAL;
5190 
5191 	if (rdev->raid_disk >= 0)
5192 		first = last = rdev->raid_disk;
5193 
5194 	/*
5195 	 * find the disk ... but prefer rdev->saved_raid_disk
5196 	 * if possible.
5197 	 */
5198 	if (rdev->saved_raid_disk >= 0 &&
5199 	    rdev->saved_raid_disk >= first &&
5200 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5201 		disk = rdev->saved_raid_disk;
5202 	else
5203 		disk = first;
5204 	for ( ; disk <= last ; disk++)
5205 		if ((p=conf->disks + disk)->rdev == NULL) {
5206 			clear_bit(In_sync, &rdev->flags);
5207 			rdev->raid_disk = disk;
5208 			err = 0;
5209 			if (rdev->saved_raid_disk != disk)
5210 				conf->fullsync = 1;
5211 			rcu_assign_pointer(p->rdev, rdev);
5212 			break;
5213 		}
5214 	print_raid5_conf(conf);
5215 	return err;
5216 }
5217 
5218 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5219 {
5220 	/* no resync is happening, and there is enough space
5221 	 * on all devices, so we can resize.
5222 	 * We need to make sure resync covers any new space.
5223 	 * If the array is shrinking we should possibly wait until
5224 	 * any io in the removed space completes, but it hardly seems
5225 	 * worth it.
5226 	 */
5227 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5228 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5229 					       mddev->raid_disks));
5230 	if (mddev->array_sectors >
5231 	    raid5_size(mddev, sectors, mddev->raid_disks))
5232 		return -EINVAL;
5233 	set_capacity(mddev->gendisk, mddev->array_sectors);
5234 	mddev->changed = 1;
5235 	revalidate_disk(mddev->gendisk);
5236 	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5237 		mddev->recovery_cp = mddev->dev_sectors;
5238 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5239 	}
5240 	mddev->dev_sectors = sectors;
5241 	mddev->resync_max_sectors = sectors;
5242 	return 0;
5243 }
5244 
5245 static int check_stripe_cache(mddev_t *mddev)
5246 {
5247 	/* Can only proceed if there are plenty of stripe_heads.
5248 	 * We need a minimum of one full stripe,, and for sensible progress
5249 	 * it is best to have about 4 times that.
5250 	 * If we require 4 times, then the default 256 4K stripe_heads will
5251 	 * allow for chunk sizes up to 256K, which is probably OK.
5252 	 * If the chunk size is greater, user-space should request more
5253 	 * stripe_heads first.
5254 	 */
5255 	raid5_conf_t *conf = mddev->private;
5256 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5257 	    > conf->max_nr_stripes ||
5258 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5259 	    > conf->max_nr_stripes) {
5260 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5261 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5262 			/ STRIPE_SIZE)*4);
5263 		return 0;
5264 	}
5265 	return 1;
5266 }
5267 
5268 static int check_reshape(mddev_t *mddev)
5269 {
5270 	raid5_conf_t *conf = mddev->private;
5271 
5272 	if (mddev->delta_disks == 0 &&
5273 	    mddev->new_layout == mddev->layout &&
5274 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5275 		return 0; /* nothing to do */
5276 	if (mddev->bitmap)
5277 		/* Cannot grow a bitmap yet */
5278 		return -EBUSY;
5279 	if (mddev->degraded > conf->max_degraded)
5280 		return -EINVAL;
5281 	if (mddev->delta_disks < 0) {
5282 		/* We might be able to shrink, but the devices must
5283 		 * be made bigger first.
5284 		 * For raid6, 4 is the minimum size.
5285 		 * Otherwise 2 is the minimum
5286 		 */
5287 		int min = 2;
5288 		if (mddev->level == 6)
5289 			min = 4;
5290 		if (mddev->raid_disks + mddev->delta_disks < min)
5291 			return -EINVAL;
5292 	}
5293 
5294 	if (!check_stripe_cache(mddev))
5295 		return -ENOSPC;
5296 
5297 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5298 }
5299 
5300 static int raid5_start_reshape(mddev_t *mddev)
5301 {
5302 	raid5_conf_t *conf = mddev->private;
5303 	mdk_rdev_t *rdev;
5304 	int spares = 0;
5305 	int added_devices = 0;
5306 	unsigned long flags;
5307 
5308 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5309 		return -EBUSY;
5310 
5311 	if (!check_stripe_cache(mddev))
5312 		return -ENOSPC;
5313 
5314 	list_for_each_entry(rdev, &mddev->disks, same_set)
5315 		if (rdev->raid_disk < 0 &&
5316 		    !test_bit(Faulty, &rdev->flags))
5317 			spares++;
5318 
5319 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5320 		/* Not enough devices even to make a degraded array
5321 		 * of that size
5322 		 */
5323 		return -EINVAL;
5324 
5325 	/* Refuse to reduce size of the array.  Any reductions in
5326 	 * array size must be through explicit setting of array_size
5327 	 * attribute.
5328 	 */
5329 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5330 	    < mddev->array_sectors) {
5331 		printk(KERN_ERR "md: %s: array size must be reduced "
5332 		       "before number of disks\n", mdname(mddev));
5333 		return -EINVAL;
5334 	}
5335 
5336 	atomic_set(&conf->reshape_stripes, 0);
5337 	spin_lock_irq(&conf->device_lock);
5338 	conf->previous_raid_disks = conf->raid_disks;
5339 	conf->raid_disks += mddev->delta_disks;
5340 	conf->prev_chunk_sectors = conf->chunk_sectors;
5341 	conf->chunk_sectors = mddev->new_chunk_sectors;
5342 	conf->prev_algo = conf->algorithm;
5343 	conf->algorithm = mddev->new_layout;
5344 	if (mddev->delta_disks < 0)
5345 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5346 	else
5347 		conf->reshape_progress = 0;
5348 	conf->reshape_safe = conf->reshape_progress;
5349 	conf->generation++;
5350 	spin_unlock_irq(&conf->device_lock);
5351 
5352 	/* Add some new drives, as many as will fit.
5353 	 * We know there are enough to make the newly sized array work.
5354 	 */
5355 	list_for_each_entry(rdev, &mddev->disks, same_set)
5356 		if (rdev->raid_disk < 0 &&
5357 		    !test_bit(Faulty, &rdev->flags)) {
5358 			if (raid5_add_disk(mddev, rdev) == 0) {
5359 				char nm[20];
5360 				set_bit(In_sync, &rdev->flags);
5361 				added_devices++;
5362 				rdev->recovery_offset = 0;
5363 				sprintf(nm, "rd%d", rdev->raid_disk);
5364 				if (sysfs_create_link(&mddev->kobj,
5365 						      &rdev->kobj, nm))
5366 					printk(KERN_WARNING
5367 					       "raid5: failed to create "
5368 					       " link %s for %s\n",
5369 					       nm, mdname(mddev));
5370 			} else
5371 				break;
5372 		}
5373 
5374 	if (mddev->delta_disks > 0) {
5375 		spin_lock_irqsave(&conf->device_lock, flags);
5376 		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5377 			- added_devices;
5378 		spin_unlock_irqrestore(&conf->device_lock, flags);
5379 	}
5380 	mddev->raid_disks = conf->raid_disks;
5381 	mddev->reshape_position = conf->reshape_progress;
5382 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5383 
5384 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5385 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5386 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5387 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5388 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5389 						"reshape");
5390 	if (!mddev->sync_thread) {
5391 		mddev->recovery = 0;
5392 		spin_lock_irq(&conf->device_lock);
5393 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5394 		conf->reshape_progress = MaxSector;
5395 		spin_unlock_irq(&conf->device_lock);
5396 		return -EAGAIN;
5397 	}
5398 	conf->reshape_checkpoint = jiffies;
5399 	md_wakeup_thread(mddev->sync_thread);
5400 	md_new_event(mddev);
5401 	return 0;
5402 }
5403 
5404 /* This is called from the reshape thread and should make any
5405  * changes needed in 'conf'
5406  */
5407 static void end_reshape(raid5_conf_t *conf)
5408 {
5409 
5410 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5411 
5412 		spin_lock_irq(&conf->device_lock);
5413 		conf->previous_raid_disks = conf->raid_disks;
5414 		conf->reshape_progress = MaxSector;
5415 		spin_unlock_irq(&conf->device_lock);
5416 		wake_up(&conf->wait_for_overlap);
5417 
5418 		/* read-ahead size must cover two whole stripes, which is
5419 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5420 		 */
5421 		{
5422 			int data_disks = conf->raid_disks - conf->max_degraded;
5423 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5424 						   / PAGE_SIZE);
5425 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5426 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5427 		}
5428 	}
5429 }
5430 
5431 /* This is called from the raid5d thread with mddev_lock held.
5432  * It makes config changes to the device.
5433  */
5434 static void raid5_finish_reshape(mddev_t *mddev)
5435 {
5436 	raid5_conf_t *conf = mddev->private;
5437 
5438 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5439 
5440 		if (mddev->delta_disks > 0) {
5441 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5442 			set_capacity(mddev->gendisk, mddev->array_sectors);
5443 			mddev->changed = 1;
5444 			revalidate_disk(mddev->gendisk);
5445 		} else {
5446 			int d;
5447 			mddev->degraded = conf->raid_disks;
5448 			for (d = 0; d < conf->raid_disks ; d++)
5449 				if (conf->disks[d].rdev &&
5450 				    test_bit(In_sync,
5451 					     &conf->disks[d].rdev->flags))
5452 					mddev->degraded--;
5453 			for (d = conf->raid_disks ;
5454 			     d < conf->raid_disks - mddev->delta_disks;
5455 			     d++) {
5456 				mdk_rdev_t *rdev = conf->disks[d].rdev;
5457 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5458 					char nm[20];
5459 					sprintf(nm, "rd%d", rdev->raid_disk);
5460 					sysfs_remove_link(&mddev->kobj, nm);
5461 					rdev->raid_disk = -1;
5462 				}
5463 			}
5464 		}
5465 		mddev->layout = conf->algorithm;
5466 		mddev->chunk_sectors = conf->chunk_sectors;
5467 		mddev->reshape_position = MaxSector;
5468 		mddev->delta_disks = 0;
5469 	}
5470 }
5471 
5472 static void raid5_quiesce(mddev_t *mddev, int state)
5473 {
5474 	raid5_conf_t *conf = mddev->private;
5475 
5476 	switch(state) {
5477 	case 2: /* resume for a suspend */
5478 		wake_up(&conf->wait_for_overlap);
5479 		break;
5480 
5481 	case 1: /* stop all writes */
5482 		spin_lock_irq(&conf->device_lock);
5483 		/* '2' tells resync/reshape to pause so that all
5484 		 * active stripes can drain
5485 		 */
5486 		conf->quiesce = 2;
5487 		wait_event_lock_irq(conf->wait_for_stripe,
5488 				    atomic_read(&conf->active_stripes) == 0 &&
5489 				    atomic_read(&conf->active_aligned_reads) == 0,
5490 				    conf->device_lock, /* nothing */);
5491 		conf->quiesce = 1;
5492 		spin_unlock_irq(&conf->device_lock);
5493 		/* allow reshape to continue */
5494 		wake_up(&conf->wait_for_overlap);
5495 		break;
5496 
5497 	case 0: /* re-enable writes */
5498 		spin_lock_irq(&conf->device_lock);
5499 		conf->quiesce = 0;
5500 		wake_up(&conf->wait_for_stripe);
5501 		wake_up(&conf->wait_for_overlap);
5502 		spin_unlock_irq(&conf->device_lock);
5503 		break;
5504 	}
5505 }
5506 
5507 
5508 static void *raid5_takeover_raid1(mddev_t *mddev)
5509 {
5510 	int chunksect;
5511 
5512 	if (mddev->raid_disks != 2 ||
5513 	    mddev->degraded > 1)
5514 		return ERR_PTR(-EINVAL);
5515 
5516 	/* Should check if there are write-behind devices? */
5517 
5518 	chunksect = 64*2; /* 64K by default */
5519 
5520 	/* The array must be an exact multiple of chunksize */
5521 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5522 		chunksect >>= 1;
5523 
5524 	if ((chunksect<<9) < STRIPE_SIZE)
5525 		/* array size does not allow a suitable chunk size */
5526 		return ERR_PTR(-EINVAL);
5527 
5528 	mddev->new_level = 5;
5529 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5530 	mddev->new_chunk_sectors = chunksect;
5531 
5532 	return setup_conf(mddev);
5533 }
5534 
5535 static void *raid5_takeover_raid6(mddev_t *mddev)
5536 {
5537 	int new_layout;
5538 
5539 	switch (mddev->layout) {
5540 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5541 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5542 		break;
5543 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5544 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5545 		break;
5546 	case ALGORITHM_LEFT_SYMMETRIC_6:
5547 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5548 		break;
5549 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5550 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5551 		break;
5552 	case ALGORITHM_PARITY_0_6:
5553 		new_layout = ALGORITHM_PARITY_0;
5554 		break;
5555 	case ALGORITHM_PARITY_N:
5556 		new_layout = ALGORITHM_PARITY_N;
5557 		break;
5558 	default:
5559 		return ERR_PTR(-EINVAL);
5560 	}
5561 	mddev->new_level = 5;
5562 	mddev->new_layout = new_layout;
5563 	mddev->delta_disks = -1;
5564 	mddev->raid_disks -= 1;
5565 	return setup_conf(mddev);
5566 }
5567 
5568 
5569 static int raid5_check_reshape(mddev_t *mddev)
5570 {
5571 	/* For a 2-drive array, the layout and chunk size can be changed
5572 	 * immediately as not restriping is needed.
5573 	 * For larger arrays we record the new value - after validation
5574 	 * to be used by a reshape pass.
5575 	 */
5576 	raid5_conf_t *conf = mddev->private;
5577 	int new_chunk = mddev->new_chunk_sectors;
5578 
5579 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5580 		return -EINVAL;
5581 	if (new_chunk > 0) {
5582 		if (!is_power_of_2(new_chunk))
5583 			return -EINVAL;
5584 		if (new_chunk < (PAGE_SIZE>>9))
5585 			return -EINVAL;
5586 		if (mddev->array_sectors & (new_chunk-1))
5587 			/* not factor of array size */
5588 			return -EINVAL;
5589 	}
5590 
5591 	/* They look valid */
5592 
5593 	if (mddev->raid_disks == 2) {
5594 		/* can make the change immediately */
5595 		if (mddev->new_layout >= 0) {
5596 			conf->algorithm = mddev->new_layout;
5597 			mddev->layout = mddev->new_layout;
5598 		}
5599 		if (new_chunk > 0) {
5600 			conf->chunk_sectors = new_chunk ;
5601 			mddev->chunk_sectors = new_chunk;
5602 		}
5603 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5604 		md_wakeup_thread(mddev->thread);
5605 	}
5606 	return check_reshape(mddev);
5607 }
5608 
5609 static int raid6_check_reshape(mddev_t *mddev)
5610 {
5611 	int new_chunk = mddev->new_chunk_sectors;
5612 
5613 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5614 		return -EINVAL;
5615 	if (new_chunk > 0) {
5616 		if (!is_power_of_2(new_chunk))
5617 			return -EINVAL;
5618 		if (new_chunk < (PAGE_SIZE >> 9))
5619 			return -EINVAL;
5620 		if (mddev->array_sectors & (new_chunk-1))
5621 			/* not factor of array size */
5622 			return -EINVAL;
5623 	}
5624 
5625 	/* They look valid */
5626 	return check_reshape(mddev);
5627 }
5628 
5629 static void *raid5_takeover(mddev_t *mddev)
5630 {
5631 	/* raid5 can take over:
5632 	 *  raid0 - if all devices are the same - make it a raid4 layout
5633 	 *  raid1 - if there are two drives.  We need to know the chunk size
5634 	 *  raid4 - trivial - just use a raid4 layout.
5635 	 *  raid6 - Providing it is a *_6 layout
5636 	 */
5637 
5638 	if (mddev->level == 1)
5639 		return raid5_takeover_raid1(mddev);
5640 	if (mddev->level == 4) {
5641 		mddev->new_layout = ALGORITHM_PARITY_N;
5642 		mddev->new_level = 5;
5643 		return setup_conf(mddev);
5644 	}
5645 	if (mddev->level == 6)
5646 		return raid5_takeover_raid6(mddev);
5647 
5648 	return ERR_PTR(-EINVAL);
5649 }
5650 
5651 
5652 static struct mdk_personality raid5_personality;
5653 
5654 static void *raid6_takeover(mddev_t *mddev)
5655 {
5656 	/* Currently can only take over a raid5.  We map the
5657 	 * personality to an equivalent raid6 personality
5658 	 * with the Q block at the end.
5659 	 */
5660 	int new_layout;
5661 
5662 	if (mddev->pers != &raid5_personality)
5663 		return ERR_PTR(-EINVAL);
5664 	if (mddev->degraded > 1)
5665 		return ERR_PTR(-EINVAL);
5666 	if (mddev->raid_disks > 253)
5667 		return ERR_PTR(-EINVAL);
5668 	if (mddev->raid_disks < 3)
5669 		return ERR_PTR(-EINVAL);
5670 
5671 	switch (mddev->layout) {
5672 	case ALGORITHM_LEFT_ASYMMETRIC:
5673 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5674 		break;
5675 	case ALGORITHM_RIGHT_ASYMMETRIC:
5676 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5677 		break;
5678 	case ALGORITHM_LEFT_SYMMETRIC:
5679 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5680 		break;
5681 	case ALGORITHM_RIGHT_SYMMETRIC:
5682 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5683 		break;
5684 	case ALGORITHM_PARITY_0:
5685 		new_layout = ALGORITHM_PARITY_0_6;
5686 		break;
5687 	case ALGORITHM_PARITY_N:
5688 		new_layout = ALGORITHM_PARITY_N;
5689 		break;
5690 	default:
5691 		return ERR_PTR(-EINVAL);
5692 	}
5693 	mddev->new_level = 6;
5694 	mddev->new_layout = new_layout;
5695 	mddev->delta_disks = 1;
5696 	mddev->raid_disks += 1;
5697 	return setup_conf(mddev);
5698 }
5699 
5700 
5701 static struct mdk_personality raid6_personality =
5702 {
5703 	.name		= "raid6",
5704 	.level		= 6,
5705 	.owner		= THIS_MODULE,
5706 	.make_request	= make_request,
5707 	.run		= run,
5708 	.stop		= stop,
5709 	.status		= status,
5710 	.error_handler	= error,
5711 	.hot_add_disk	= raid5_add_disk,
5712 	.hot_remove_disk= raid5_remove_disk,
5713 	.spare_active	= raid5_spare_active,
5714 	.sync_request	= sync_request,
5715 	.resize		= raid5_resize,
5716 	.size		= raid5_size,
5717 	.check_reshape	= raid6_check_reshape,
5718 	.start_reshape  = raid5_start_reshape,
5719 	.finish_reshape = raid5_finish_reshape,
5720 	.quiesce	= raid5_quiesce,
5721 	.takeover	= raid6_takeover,
5722 };
5723 static struct mdk_personality raid5_personality =
5724 {
5725 	.name		= "raid5",
5726 	.level		= 5,
5727 	.owner		= THIS_MODULE,
5728 	.make_request	= make_request,
5729 	.run		= run,
5730 	.stop		= stop,
5731 	.status		= status,
5732 	.error_handler	= error,
5733 	.hot_add_disk	= raid5_add_disk,
5734 	.hot_remove_disk= raid5_remove_disk,
5735 	.spare_active	= raid5_spare_active,
5736 	.sync_request	= sync_request,
5737 	.resize		= raid5_resize,
5738 	.size		= raid5_size,
5739 	.check_reshape	= raid5_check_reshape,
5740 	.start_reshape  = raid5_start_reshape,
5741 	.finish_reshape = raid5_finish_reshape,
5742 	.quiesce	= raid5_quiesce,
5743 	.takeover	= raid5_takeover,
5744 };
5745 
5746 static struct mdk_personality raid4_personality =
5747 {
5748 	.name		= "raid4",
5749 	.level		= 4,
5750 	.owner		= THIS_MODULE,
5751 	.make_request	= make_request,
5752 	.run		= run,
5753 	.stop		= stop,
5754 	.status		= status,
5755 	.error_handler	= error,
5756 	.hot_add_disk	= raid5_add_disk,
5757 	.hot_remove_disk= raid5_remove_disk,
5758 	.spare_active	= raid5_spare_active,
5759 	.sync_request	= sync_request,
5760 	.resize		= raid5_resize,
5761 	.size		= raid5_size,
5762 	.check_reshape	= raid5_check_reshape,
5763 	.start_reshape  = raid5_start_reshape,
5764 	.finish_reshape = raid5_finish_reshape,
5765 	.quiesce	= raid5_quiesce,
5766 };
5767 
5768 static int __init raid5_init(void)
5769 {
5770 	register_md_personality(&raid6_personality);
5771 	register_md_personality(&raid5_personality);
5772 	register_md_personality(&raid4_personality);
5773 	return 0;
5774 }
5775 
5776 static void raid5_exit(void)
5777 {
5778 	unregister_md_personality(&raid6_personality);
5779 	unregister_md_personality(&raid5_personality);
5780 	unregister_md_personality(&raid4_personality);
5781 }
5782 
5783 module_init(raid5_init);
5784 module_exit(raid5_exit);
5785 MODULE_LICENSE("GPL");
5786 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5787 MODULE_ALIAS("md-raid5");
5788 MODULE_ALIAS("md-raid4");
5789 MODULE_ALIAS("md-level-5");
5790 MODULE_ALIAS("md-level-4");
5791 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5792 MODULE_ALIAS("md-raid6");
5793 MODULE_ALIAS("md-level-6");
5794 
5795 /* This used to be two separate modules, they were: */
5796 MODULE_ALIAS("raid5");
5797 MODULE_ALIAS("raid6");
5798