xref: /openbmc/linux/drivers/md/raid5.c (revision df202b452fe6c6d6f1351bad485e2367ef1e644e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69 
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 	return &conf->stripe_hashtbl[hash];
74 }
75 
76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77 {
78 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79 }
80 
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 	__acquires(&conf->device_lock)
83 {
84 	spin_lock_irq(conf->hash_locks + hash);
85 	spin_lock(&conf->device_lock);
86 }
87 
88 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
89 	__releases(&conf->device_lock)
90 {
91 	spin_unlock(&conf->device_lock);
92 	spin_unlock_irq(conf->hash_locks + hash);
93 }
94 
95 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
96 	__acquires(&conf->device_lock)
97 {
98 	int i;
99 	spin_lock_irq(conf->hash_locks);
100 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
101 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
102 	spin_lock(&conf->device_lock);
103 }
104 
105 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
106 	__releases(&conf->device_lock)
107 {
108 	int i;
109 	spin_unlock(&conf->device_lock);
110 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
111 		spin_unlock(conf->hash_locks + i);
112 	spin_unlock_irq(conf->hash_locks);
113 }
114 
115 /* Find first data disk in a raid6 stripe */
116 static inline int raid6_d0(struct stripe_head *sh)
117 {
118 	if (sh->ddf_layout)
119 		/* ddf always start from first device */
120 		return 0;
121 	/* md starts just after Q block */
122 	if (sh->qd_idx == sh->disks - 1)
123 		return 0;
124 	else
125 		return sh->qd_idx + 1;
126 }
127 static inline int raid6_next_disk(int disk, int raid_disks)
128 {
129 	disk++;
130 	return (disk < raid_disks) ? disk : 0;
131 }
132 
133 /* When walking through the disks in a raid5, starting at raid6_d0,
134  * We need to map each disk to a 'slot', where the data disks are slot
135  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
136  * is raid_disks-1.  This help does that mapping.
137  */
138 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
139 			     int *count, int syndrome_disks)
140 {
141 	int slot = *count;
142 
143 	if (sh->ddf_layout)
144 		(*count)++;
145 	if (idx == sh->pd_idx)
146 		return syndrome_disks;
147 	if (idx == sh->qd_idx)
148 		return syndrome_disks + 1;
149 	if (!sh->ddf_layout)
150 		(*count)++;
151 	return slot;
152 }
153 
154 static void print_raid5_conf (struct r5conf *conf);
155 
156 static int stripe_operations_active(struct stripe_head *sh)
157 {
158 	return sh->check_state || sh->reconstruct_state ||
159 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
160 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
161 }
162 
163 static bool stripe_is_lowprio(struct stripe_head *sh)
164 {
165 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
166 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
167 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
168 }
169 
170 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
171 	__must_hold(&sh->raid_conf->device_lock)
172 {
173 	struct r5conf *conf = sh->raid_conf;
174 	struct r5worker_group *group;
175 	int thread_cnt;
176 	int i, cpu = sh->cpu;
177 
178 	if (!cpu_online(cpu)) {
179 		cpu = cpumask_any(cpu_online_mask);
180 		sh->cpu = cpu;
181 	}
182 
183 	if (list_empty(&sh->lru)) {
184 		struct r5worker_group *group;
185 		group = conf->worker_groups + cpu_to_group(cpu);
186 		if (stripe_is_lowprio(sh))
187 			list_add_tail(&sh->lru, &group->loprio_list);
188 		else
189 			list_add_tail(&sh->lru, &group->handle_list);
190 		group->stripes_cnt++;
191 		sh->group = group;
192 	}
193 
194 	if (conf->worker_cnt_per_group == 0) {
195 		md_wakeup_thread(conf->mddev->thread);
196 		return;
197 	}
198 
199 	group = conf->worker_groups + cpu_to_group(sh->cpu);
200 
201 	group->workers[0].working = true;
202 	/* at least one worker should run to avoid race */
203 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
204 
205 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
206 	/* wakeup more workers */
207 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
208 		if (group->workers[i].working == false) {
209 			group->workers[i].working = true;
210 			queue_work_on(sh->cpu, raid5_wq,
211 				      &group->workers[i].work);
212 			thread_cnt--;
213 		}
214 	}
215 }
216 
217 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
218 			      struct list_head *temp_inactive_list)
219 	__must_hold(&conf->device_lock)
220 {
221 	int i;
222 	int injournal = 0;	/* number of date pages with R5_InJournal */
223 
224 	BUG_ON(!list_empty(&sh->lru));
225 	BUG_ON(atomic_read(&conf->active_stripes)==0);
226 
227 	if (r5c_is_writeback(conf->log))
228 		for (i = sh->disks; i--; )
229 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
230 				injournal++;
231 	/*
232 	 * In the following cases, the stripe cannot be released to cached
233 	 * lists. Therefore, we make the stripe write out and set
234 	 * STRIPE_HANDLE:
235 	 *   1. when quiesce in r5c write back;
236 	 *   2. when resync is requested fot the stripe.
237 	 */
238 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
239 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
240 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
241 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
242 			r5c_make_stripe_write_out(sh);
243 		set_bit(STRIPE_HANDLE, &sh->state);
244 	}
245 
246 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
247 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
248 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
249 			list_add_tail(&sh->lru, &conf->delayed_list);
250 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
251 			   sh->bm_seq - conf->seq_write > 0)
252 			list_add_tail(&sh->lru, &conf->bitmap_list);
253 		else {
254 			clear_bit(STRIPE_DELAYED, &sh->state);
255 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
256 			if (conf->worker_cnt_per_group == 0) {
257 				if (stripe_is_lowprio(sh))
258 					list_add_tail(&sh->lru,
259 							&conf->loprio_list);
260 				else
261 					list_add_tail(&sh->lru,
262 							&conf->handle_list);
263 			} else {
264 				raid5_wakeup_stripe_thread(sh);
265 				return;
266 			}
267 		}
268 		md_wakeup_thread(conf->mddev->thread);
269 	} else {
270 		BUG_ON(stripe_operations_active(sh));
271 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
272 			if (atomic_dec_return(&conf->preread_active_stripes)
273 			    < IO_THRESHOLD)
274 				md_wakeup_thread(conf->mddev->thread);
275 		atomic_dec(&conf->active_stripes);
276 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
277 			if (!r5c_is_writeback(conf->log))
278 				list_add_tail(&sh->lru, temp_inactive_list);
279 			else {
280 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
281 				if (injournal == 0)
282 					list_add_tail(&sh->lru, temp_inactive_list);
283 				else if (injournal == conf->raid_disks - conf->max_degraded) {
284 					/* full stripe */
285 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
286 						atomic_inc(&conf->r5c_cached_full_stripes);
287 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
288 						atomic_dec(&conf->r5c_cached_partial_stripes);
289 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
290 					r5c_check_cached_full_stripe(conf);
291 				} else
292 					/*
293 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
294 					 * r5c_try_caching_write(). No need to
295 					 * set it again.
296 					 */
297 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
298 			}
299 		}
300 	}
301 }
302 
303 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
304 			     struct list_head *temp_inactive_list)
305 	__must_hold(&conf->device_lock)
306 {
307 	if (atomic_dec_and_test(&sh->count))
308 		do_release_stripe(conf, sh, temp_inactive_list);
309 }
310 
311 /*
312  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
313  *
314  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
315  * given time. Adding stripes only takes device lock, while deleting stripes
316  * only takes hash lock.
317  */
318 static void release_inactive_stripe_list(struct r5conf *conf,
319 					 struct list_head *temp_inactive_list,
320 					 int hash)
321 {
322 	int size;
323 	bool do_wakeup = false;
324 	unsigned long flags;
325 
326 	if (hash == NR_STRIPE_HASH_LOCKS) {
327 		size = NR_STRIPE_HASH_LOCKS;
328 		hash = NR_STRIPE_HASH_LOCKS - 1;
329 	} else
330 		size = 1;
331 	while (size) {
332 		struct list_head *list = &temp_inactive_list[size - 1];
333 
334 		/*
335 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
336 		 * remove stripes from the list
337 		 */
338 		if (!list_empty_careful(list)) {
339 			spin_lock_irqsave(conf->hash_locks + hash, flags);
340 			if (list_empty(conf->inactive_list + hash) &&
341 			    !list_empty(list))
342 				atomic_dec(&conf->empty_inactive_list_nr);
343 			list_splice_tail_init(list, conf->inactive_list + hash);
344 			do_wakeup = true;
345 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
346 		}
347 		size--;
348 		hash--;
349 	}
350 
351 	if (do_wakeup) {
352 		wake_up(&conf->wait_for_stripe);
353 		if (atomic_read(&conf->active_stripes) == 0)
354 			wake_up(&conf->wait_for_quiescent);
355 		if (conf->retry_read_aligned)
356 			md_wakeup_thread(conf->mddev->thread);
357 	}
358 }
359 
360 static int release_stripe_list(struct r5conf *conf,
361 			       struct list_head *temp_inactive_list)
362 	__must_hold(&conf->device_lock)
363 {
364 	struct stripe_head *sh, *t;
365 	int count = 0;
366 	struct llist_node *head;
367 
368 	head = llist_del_all(&conf->released_stripes);
369 	head = llist_reverse_order(head);
370 	llist_for_each_entry_safe(sh, t, head, release_list) {
371 		int hash;
372 
373 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
374 		smp_mb();
375 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
376 		/*
377 		 * Don't worry the bit is set here, because if the bit is set
378 		 * again, the count is always > 1. This is true for
379 		 * STRIPE_ON_UNPLUG_LIST bit too.
380 		 */
381 		hash = sh->hash_lock_index;
382 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
383 		count++;
384 	}
385 
386 	return count;
387 }
388 
389 void raid5_release_stripe(struct stripe_head *sh)
390 {
391 	struct r5conf *conf = sh->raid_conf;
392 	unsigned long flags;
393 	struct list_head list;
394 	int hash;
395 	bool wakeup;
396 
397 	/* Avoid release_list until the last reference.
398 	 */
399 	if (atomic_add_unless(&sh->count, -1, 1))
400 		return;
401 
402 	if (unlikely(!conf->mddev->thread) ||
403 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
404 		goto slow_path;
405 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
406 	if (wakeup)
407 		md_wakeup_thread(conf->mddev->thread);
408 	return;
409 slow_path:
410 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
411 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
412 		INIT_LIST_HEAD(&list);
413 		hash = sh->hash_lock_index;
414 		do_release_stripe(conf, sh, &list);
415 		spin_unlock_irqrestore(&conf->device_lock, flags);
416 		release_inactive_stripe_list(conf, &list, hash);
417 	}
418 }
419 
420 static inline void remove_hash(struct stripe_head *sh)
421 {
422 	pr_debug("remove_hash(), stripe %llu\n",
423 		(unsigned long long)sh->sector);
424 
425 	hlist_del_init(&sh->hash);
426 }
427 
428 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
429 {
430 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
431 
432 	pr_debug("insert_hash(), stripe %llu\n",
433 		(unsigned long long)sh->sector);
434 
435 	hlist_add_head(&sh->hash, hp);
436 }
437 
438 /* find an idle stripe, make sure it is unhashed, and return it. */
439 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
440 {
441 	struct stripe_head *sh = NULL;
442 	struct list_head *first;
443 
444 	if (list_empty(conf->inactive_list + hash))
445 		goto out;
446 	first = (conf->inactive_list + hash)->next;
447 	sh = list_entry(first, struct stripe_head, lru);
448 	list_del_init(first);
449 	remove_hash(sh);
450 	atomic_inc(&conf->active_stripes);
451 	BUG_ON(hash != sh->hash_lock_index);
452 	if (list_empty(conf->inactive_list + hash))
453 		atomic_inc(&conf->empty_inactive_list_nr);
454 out:
455 	return sh;
456 }
457 
458 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
459 static void free_stripe_pages(struct stripe_head *sh)
460 {
461 	int i;
462 	struct page *p;
463 
464 	/* Have not allocate page pool */
465 	if (!sh->pages)
466 		return;
467 
468 	for (i = 0; i < sh->nr_pages; i++) {
469 		p = sh->pages[i];
470 		if (p)
471 			put_page(p);
472 		sh->pages[i] = NULL;
473 	}
474 }
475 
476 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
477 {
478 	int i;
479 	struct page *p;
480 
481 	for (i = 0; i < sh->nr_pages; i++) {
482 		/* The page have allocated. */
483 		if (sh->pages[i])
484 			continue;
485 
486 		p = alloc_page(gfp);
487 		if (!p) {
488 			free_stripe_pages(sh);
489 			return -ENOMEM;
490 		}
491 		sh->pages[i] = p;
492 	}
493 	return 0;
494 }
495 
496 static int
497 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
498 {
499 	int nr_pages, cnt;
500 
501 	if (sh->pages)
502 		return 0;
503 
504 	/* Each of the sh->dev[i] need one conf->stripe_size */
505 	cnt = PAGE_SIZE / conf->stripe_size;
506 	nr_pages = (disks + cnt - 1) / cnt;
507 
508 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
509 	if (!sh->pages)
510 		return -ENOMEM;
511 	sh->nr_pages = nr_pages;
512 	sh->stripes_per_page = cnt;
513 	return 0;
514 }
515 #endif
516 
517 static void shrink_buffers(struct stripe_head *sh)
518 {
519 	int i;
520 	int num = sh->raid_conf->pool_size;
521 
522 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
523 	for (i = 0; i < num ; i++) {
524 		struct page *p;
525 
526 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
527 		p = sh->dev[i].page;
528 		if (!p)
529 			continue;
530 		sh->dev[i].page = NULL;
531 		put_page(p);
532 	}
533 #else
534 	for (i = 0; i < num; i++)
535 		sh->dev[i].page = NULL;
536 	free_stripe_pages(sh); /* Free pages */
537 #endif
538 }
539 
540 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
541 {
542 	int i;
543 	int num = sh->raid_conf->pool_size;
544 
545 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
546 	for (i = 0; i < num; i++) {
547 		struct page *page;
548 
549 		if (!(page = alloc_page(gfp))) {
550 			return 1;
551 		}
552 		sh->dev[i].page = page;
553 		sh->dev[i].orig_page = page;
554 		sh->dev[i].offset = 0;
555 	}
556 #else
557 	if (alloc_stripe_pages(sh, gfp))
558 		return -ENOMEM;
559 
560 	for (i = 0; i < num; i++) {
561 		sh->dev[i].page = raid5_get_dev_page(sh, i);
562 		sh->dev[i].orig_page = sh->dev[i].page;
563 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
564 	}
565 #endif
566 	return 0;
567 }
568 
569 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
570 			    struct stripe_head *sh);
571 
572 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
573 {
574 	struct r5conf *conf = sh->raid_conf;
575 	int i, seq;
576 
577 	BUG_ON(atomic_read(&sh->count) != 0);
578 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
579 	BUG_ON(stripe_operations_active(sh));
580 	BUG_ON(sh->batch_head);
581 
582 	pr_debug("init_stripe called, stripe %llu\n",
583 		(unsigned long long)sector);
584 retry:
585 	seq = read_seqcount_begin(&conf->gen_lock);
586 	sh->generation = conf->generation - previous;
587 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
588 	sh->sector = sector;
589 	stripe_set_idx(sector, conf, previous, sh);
590 	sh->state = 0;
591 
592 	for (i = sh->disks; i--; ) {
593 		struct r5dev *dev = &sh->dev[i];
594 
595 		if (dev->toread || dev->read || dev->towrite || dev->written ||
596 		    test_bit(R5_LOCKED, &dev->flags)) {
597 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
598 			       (unsigned long long)sh->sector, i, dev->toread,
599 			       dev->read, dev->towrite, dev->written,
600 			       test_bit(R5_LOCKED, &dev->flags));
601 			WARN_ON(1);
602 		}
603 		dev->flags = 0;
604 		dev->sector = raid5_compute_blocknr(sh, i, previous);
605 	}
606 	if (read_seqcount_retry(&conf->gen_lock, seq))
607 		goto retry;
608 	sh->overwrite_disks = 0;
609 	insert_hash(conf, sh);
610 	sh->cpu = smp_processor_id();
611 	set_bit(STRIPE_BATCH_READY, &sh->state);
612 }
613 
614 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
615 					 short generation)
616 {
617 	struct stripe_head *sh;
618 
619 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
620 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
621 		if (sh->sector == sector && sh->generation == generation)
622 			return sh;
623 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
624 	return NULL;
625 }
626 
627 /*
628  * Need to check if array has failed when deciding whether to:
629  *  - start an array
630  *  - remove non-faulty devices
631  *  - add a spare
632  *  - allow a reshape
633  * This determination is simple when no reshape is happening.
634  * However if there is a reshape, we need to carefully check
635  * both the before and after sections.
636  * This is because some failed devices may only affect one
637  * of the two sections, and some non-in_sync devices may
638  * be insync in the section most affected by failed devices.
639  *
640  * Most calls to this function hold &conf->device_lock. Calls
641  * in raid5_run() do not require the lock as no other threads
642  * have been started yet.
643  */
644 int raid5_calc_degraded(struct r5conf *conf)
645 {
646 	int degraded, degraded2;
647 	int i;
648 
649 	rcu_read_lock();
650 	degraded = 0;
651 	for (i = 0; i < conf->previous_raid_disks; i++) {
652 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
653 		if (rdev && test_bit(Faulty, &rdev->flags))
654 			rdev = rcu_dereference(conf->disks[i].replacement);
655 		if (!rdev || test_bit(Faulty, &rdev->flags))
656 			degraded++;
657 		else if (test_bit(In_sync, &rdev->flags))
658 			;
659 		else
660 			/* not in-sync or faulty.
661 			 * If the reshape increases the number of devices,
662 			 * this is being recovered by the reshape, so
663 			 * this 'previous' section is not in_sync.
664 			 * If the number of devices is being reduced however,
665 			 * the device can only be part of the array if
666 			 * we are reverting a reshape, so this section will
667 			 * be in-sync.
668 			 */
669 			if (conf->raid_disks >= conf->previous_raid_disks)
670 				degraded++;
671 	}
672 	rcu_read_unlock();
673 	if (conf->raid_disks == conf->previous_raid_disks)
674 		return degraded;
675 	rcu_read_lock();
676 	degraded2 = 0;
677 	for (i = 0; i < conf->raid_disks; i++) {
678 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
679 		if (rdev && test_bit(Faulty, &rdev->flags))
680 			rdev = rcu_dereference(conf->disks[i].replacement);
681 		if (!rdev || test_bit(Faulty, &rdev->flags))
682 			degraded2++;
683 		else if (test_bit(In_sync, &rdev->flags))
684 			;
685 		else
686 			/* not in-sync or faulty.
687 			 * If reshape increases the number of devices, this
688 			 * section has already been recovered, else it
689 			 * almost certainly hasn't.
690 			 */
691 			if (conf->raid_disks <= conf->previous_raid_disks)
692 				degraded2++;
693 	}
694 	rcu_read_unlock();
695 	if (degraded2 > degraded)
696 		return degraded2;
697 	return degraded;
698 }
699 
700 static bool has_failed(struct r5conf *conf)
701 {
702 	int degraded = conf->mddev->degraded;
703 
704 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
705 		return true;
706 
707 	if (conf->mddev->reshape_position != MaxSector)
708 		degraded = raid5_calc_degraded(conf);
709 
710 	return degraded > conf->max_degraded;
711 }
712 
713 struct stripe_head *
714 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
715 			int previous, int noblock, int noquiesce)
716 {
717 	struct stripe_head *sh;
718 	int hash = stripe_hash_locks_hash(conf, sector);
719 	int inc_empty_inactive_list_flag;
720 
721 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
722 
723 	spin_lock_irq(conf->hash_locks + hash);
724 
725 	do {
726 		wait_event_lock_irq(conf->wait_for_quiescent,
727 				    conf->quiesce == 0 || noquiesce,
728 				    *(conf->hash_locks + hash));
729 		sh = __find_stripe(conf, sector, conf->generation - previous);
730 		if (!sh) {
731 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
732 				sh = get_free_stripe(conf, hash);
733 				if (!sh && !test_bit(R5_DID_ALLOC,
734 						     &conf->cache_state))
735 					set_bit(R5_ALLOC_MORE,
736 						&conf->cache_state);
737 			}
738 			if (noblock && sh == NULL)
739 				break;
740 
741 			r5c_check_stripe_cache_usage(conf);
742 			if (!sh) {
743 				set_bit(R5_INACTIVE_BLOCKED,
744 					&conf->cache_state);
745 				r5l_wake_reclaim(conf->log, 0);
746 				wait_event_lock_irq(
747 					conf->wait_for_stripe,
748 					!list_empty(conf->inactive_list + hash) &&
749 					(atomic_read(&conf->active_stripes)
750 					 < (conf->max_nr_stripes * 3 / 4)
751 					 || !test_bit(R5_INACTIVE_BLOCKED,
752 						      &conf->cache_state)),
753 					*(conf->hash_locks + hash));
754 				clear_bit(R5_INACTIVE_BLOCKED,
755 					  &conf->cache_state);
756 			} else {
757 				init_stripe(sh, sector, previous);
758 				atomic_inc(&sh->count);
759 			}
760 		} else if (!atomic_inc_not_zero(&sh->count)) {
761 			spin_lock(&conf->device_lock);
762 			if (!atomic_read(&sh->count)) {
763 				if (!test_bit(STRIPE_HANDLE, &sh->state))
764 					atomic_inc(&conf->active_stripes);
765 				BUG_ON(list_empty(&sh->lru) &&
766 				       !test_bit(STRIPE_EXPANDING, &sh->state));
767 				inc_empty_inactive_list_flag = 0;
768 				if (!list_empty(conf->inactive_list + hash))
769 					inc_empty_inactive_list_flag = 1;
770 				list_del_init(&sh->lru);
771 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
772 					atomic_inc(&conf->empty_inactive_list_nr);
773 				if (sh->group) {
774 					sh->group->stripes_cnt--;
775 					sh->group = NULL;
776 				}
777 			}
778 			atomic_inc(&sh->count);
779 			spin_unlock(&conf->device_lock);
780 		}
781 	} while (sh == NULL);
782 
783 	spin_unlock_irq(conf->hash_locks + hash);
784 	return sh;
785 }
786 
787 static bool is_full_stripe_write(struct stripe_head *sh)
788 {
789 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
790 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
791 }
792 
793 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
794 		__acquires(&sh1->stripe_lock)
795 		__acquires(&sh2->stripe_lock)
796 {
797 	if (sh1 > sh2) {
798 		spin_lock_irq(&sh2->stripe_lock);
799 		spin_lock_nested(&sh1->stripe_lock, 1);
800 	} else {
801 		spin_lock_irq(&sh1->stripe_lock);
802 		spin_lock_nested(&sh2->stripe_lock, 1);
803 	}
804 }
805 
806 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
807 		__releases(&sh1->stripe_lock)
808 		__releases(&sh2->stripe_lock)
809 {
810 	spin_unlock(&sh1->stripe_lock);
811 	spin_unlock_irq(&sh2->stripe_lock);
812 }
813 
814 /* Only freshly new full stripe normal write stripe can be added to a batch list */
815 static bool stripe_can_batch(struct stripe_head *sh)
816 {
817 	struct r5conf *conf = sh->raid_conf;
818 
819 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
820 		return false;
821 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
822 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
823 		is_full_stripe_write(sh);
824 }
825 
826 /* we only do back search */
827 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
828 {
829 	struct stripe_head *head;
830 	sector_t head_sector, tmp_sec;
831 	int hash;
832 	int dd_idx;
833 	int inc_empty_inactive_list_flag;
834 
835 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
836 	tmp_sec = sh->sector;
837 	if (!sector_div(tmp_sec, conf->chunk_sectors))
838 		return;
839 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
840 
841 	hash = stripe_hash_locks_hash(conf, head_sector);
842 	spin_lock_irq(conf->hash_locks + hash);
843 	head = __find_stripe(conf, head_sector, conf->generation);
844 	if (head && !atomic_inc_not_zero(&head->count)) {
845 		spin_lock(&conf->device_lock);
846 		if (!atomic_read(&head->count)) {
847 			if (!test_bit(STRIPE_HANDLE, &head->state))
848 				atomic_inc(&conf->active_stripes);
849 			BUG_ON(list_empty(&head->lru) &&
850 			       !test_bit(STRIPE_EXPANDING, &head->state));
851 			inc_empty_inactive_list_flag = 0;
852 			if (!list_empty(conf->inactive_list + hash))
853 				inc_empty_inactive_list_flag = 1;
854 			list_del_init(&head->lru);
855 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
856 				atomic_inc(&conf->empty_inactive_list_nr);
857 			if (head->group) {
858 				head->group->stripes_cnt--;
859 				head->group = NULL;
860 			}
861 		}
862 		atomic_inc(&head->count);
863 		spin_unlock(&conf->device_lock);
864 	}
865 	spin_unlock_irq(conf->hash_locks + hash);
866 
867 	if (!head)
868 		return;
869 	if (!stripe_can_batch(head))
870 		goto out;
871 
872 	lock_two_stripes(head, sh);
873 	/* clear_batch_ready clear the flag */
874 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
875 		goto unlock_out;
876 
877 	if (sh->batch_head)
878 		goto unlock_out;
879 
880 	dd_idx = 0;
881 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
882 		dd_idx++;
883 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
884 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
885 		goto unlock_out;
886 
887 	if (head->batch_head) {
888 		spin_lock(&head->batch_head->batch_lock);
889 		/* This batch list is already running */
890 		if (!stripe_can_batch(head)) {
891 			spin_unlock(&head->batch_head->batch_lock);
892 			goto unlock_out;
893 		}
894 		/*
895 		 * We must assign batch_head of this stripe within the
896 		 * batch_lock, otherwise clear_batch_ready of batch head
897 		 * stripe could clear BATCH_READY bit of this stripe and
898 		 * this stripe->batch_head doesn't get assigned, which
899 		 * could confuse clear_batch_ready for this stripe
900 		 */
901 		sh->batch_head = head->batch_head;
902 
903 		/*
904 		 * at this point, head's BATCH_READY could be cleared, but we
905 		 * can still add the stripe to batch list
906 		 */
907 		list_add(&sh->batch_list, &head->batch_list);
908 		spin_unlock(&head->batch_head->batch_lock);
909 	} else {
910 		head->batch_head = head;
911 		sh->batch_head = head->batch_head;
912 		spin_lock(&head->batch_lock);
913 		list_add_tail(&sh->batch_list, &head->batch_list);
914 		spin_unlock(&head->batch_lock);
915 	}
916 
917 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
918 		if (atomic_dec_return(&conf->preread_active_stripes)
919 		    < IO_THRESHOLD)
920 			md_wakeup_thread(conf->mddev->thread);
921 
922 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
923 		int seq = sh->bm_seq;
924 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
925 		    sh->batch_head->bm_seq > seq)
926 			seq = sh->batch_head->bm_seq;
927 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
928 		sh->batch_head->bm_seq = seq;
929 	}
930 
931 	atomic_inc(&sh->count);
932 unlock_out:
933 	unlock_two_stripes(head, sh);
934 out:
935 	raid5_release_stripe(head);
936 }
937 
938 /* Determine if 'data_offset' or 'new_data_offset' should be used
939  * in this stripe_head.
940  */
941 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
942 {
943 	sector_t progress = conf->reshape_progress;
944 	/* Need a memory barrier to make sure we see the value
945 	 * of conf->generation, or ->data_offset that was set before
946 	 * reshape_progress was updated.
947 	 */
948 	smp_rmb();
949 	if (progress == MaxSector)
950 		return 0;
951 	if (sh->generation == conf->generation - 1)
952 		return 0;
953 	/* We are in a reshape, and this is a new-generation stripe,
954 	 * so use new_data_offset.
955 	 */
956 	return 1;
957 }
958 
959 static void dispatch_bio_list(struct bio_list *tmp)
960 {
961 	struct bio *bio;
962 
963 	while ((bio = bio_list_pop(tmp)))
964 		submit_bio_noacct(bio);
965 }
966 
967 static int cmp_stripe(void *priv, const struct list_head *a,
968 		      const struct list_head *b)
969 {
970 	const struct r5pending_data *da = list_entry(a,
971 				struct r5pending_data, sibling);
972 	const struct r5pending_data *db = list_entry(b,
973 				struct r5pending_data, sibling);
974 	if (da->sector > db->sector)
975 		return 1;
976 	if (da->sector < db->sector)
977 		return -1;
978 	return 0;
979 }
980 
981 static void dispatch_defer_bios(struct r5conf *conf, int target,
982 				struct bio_list *list)
983 {
984 	struct r5pending_data *data;
985 	struct list_head *first, *next = NULL;
986 	int cnt = 0;
987 
988 	if (conf->pending_data_cnt == 0)
989 		return;
990 
991 	list_sort(NULL, &conf->pending_list, cmp_stripe);
992 
993 	first = conf->pending_list.next;
994 
995 	/* temporarily move the head */
996 	if (conf->next_pending_data)
997 		list_move_tail(&conf->pending_list,
998 				&conf->next_pending_data->sibling);
999 
1000 	while (!list_empty(&conf->pending_list)) {
1001 		data = list_first_entry(&conf->pending_list,
1002 			struct r5pending_data, sibling);
1003 		if (&data->sibling == first)
1004 			first = data->sibling.next;
1005 		next = data->sibling.next;
1006 
1007 		bio_list_merge(list, &data->bios);
1008 		list_move(&data->sibling, &conf->free_list);
1009 		cnt++;
1010 		if (cnt >= target)
1011 			break;
1012 	}
1013 	conf->pending_data_cnt -= cnt;
1014 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1015 
1016 	if (next != &conf->pending_list)
1017 		conf->next_pending_data = list_entry(next,
1018 				struct r5pending_data, sibling);
1019 	else
1020 		conf->next_pending_data = NULL;
1021 	/* list isn't empty */
1022 	if (first != &conf->pending_list)
1023 		list_move_tail(&conf->pending_list, first);
1024 }
1025 
1026 static void flush_deferred_bios(struct r5conf *conf)
1027 {
1028 	struct bio_list tmp = BIO_EMPTY_LIST;
1029 
1030 	if (conf->pending_data_cnt == 0)
1031 		return;
1032 
1033 	spin_lock(&conf->pending_bios_lock);
1034 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1035 	BUG_ON(conf->pending_data_cnt != 0);
1036 	spin_unlock(&conf->pending_bios_lock);
1037 
1038 	dispatch_bio_list(&tmp);
1039 }
1040 
1041 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1042 				struct bio_list *bios)
1043 {
1044 	struct bio_list tmp = BIO_EMPTY_LIST;
1045 	struct r5pending_data *ent;
1046 
1047 	spin_lock(&conf->pending_bios_lock);
1048 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1049 							sibling);
1050 	list_move_tail(&ent->sibling, &conf->pending_list);
1051 	ent->sector = sector;
1052 	bio_list_init(&ent->bios);
1053 	bio_list_merge(&ent->bios, bios);
1054 	conf->pending_data_cnt++;
1055 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1056 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1057 
1058 	spin_unlock(&conf->pending_bios_lock);
1059 
1060 	dispatch_bio_list(&tmp);
1061 }
1062 
1063 static void
1064 raid5_end_read_request(struct bio *bi);
1065 static void
1066 raid5_end_write_request(struct bio *bi);
1067 
1068 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1069 {
1070 	struct r5conf *conf = sh->raid_conf;
1071 	int i, disks = sh->disks;
1072 	struct stripe_head *head_sh = sh;
1073 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1074 	struct r5dev *dev;
1075 	bool should_defer;
1076 
1077 	might_sleep();
1078 
1079 	if (log_stripe(sh, s) == 0)
1080 		return;
1081 
1082 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1083 
1084 	for (i = disks; i--; ) {
1085 		int op, op_flags = 0;
1086 		int replace_only = 0;
1087 		struct bio *bi, *rbi;
1088 		struct md_rdev *rdev, *rrdev = NULL;
1089 
1090 		sh = head_sh;
1091 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1092 			op = REQ_OP_WRITE;
1093 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1094 				op_flags = REQ_FUA;
1095 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1096 				op = REQ_OP_DISCARD;
1097 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1098 			op = REQ_OP_READ;
1099 		else if (test_and_clear_bit(R5_WantReplace,
1100 					    &sh->dev[i].flags)) {
1101 			op = REQ_OP_WRITE;
1102 			replace_only = 1;
1103 		} else
1104 			continue;
1105 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1106 			op_flags |= REQ_SYNC;
1107 
1108 again:
1109 		dev = &sh->dev[i];
1110 		bi = &dev->req;
1111 		rbi = &dev->rreq; /* For writing to replacement */
1112 
1113 		rcu_read_lock();
1114 		rrdev = rcu_dereference(conf->disks[i].replacement);
1115 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1116 		rdev = rcu_dereference(conf->disks[i].rdev);
1117 		if (!rdev) {
1118 			rdev = rrdev;
1119 			rrdev = NULL;
1120 		}
1121 		if (op_is_write(op)) {
1122 			if (replace_only)
1123 				rdev = NULL;
1124 			if (rdev == rrdev)
1125 				/* We raced and saw duplicates */
1126 				rrdev = NULL;
1127 		} else {
1128 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1129 				rdev = rrdev;
1130 			rrdev = NULL;
1131 		}
1132 
1133 		if (rdev && test_bit(Faulty, &rdev->flags))
1134 			rdev = NULL;
1135 		if (rdev)
1136 			atomic_inc(&rdev->nr_pending);
1137 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1138 			rrdev = NULL;
1139 		if (rrdev)
1140 			atomic_inc(&rrdev->nr_pending);
1141 		rcu_read_unlock();
1142 
1143 		/* We have already checked bad blocks for reads.  Now
1144 		 * need to check for writes.  We never accept write errors
1145 		 * on the replacement, so we don't to check rrdev.
1146 		 */
1147 		while (op_is_write(op) && rdev &&
1148 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1149 			sector_t first_bad;
1150 			int bad_sectors;
1151 			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1152 					      &first_bad, &bad_sectors);
1153 			if (!bad)
1154 				break;
1155 
1156 			if (bad < 0) {
1157 				set_bit(BlockedBadBlocks, &rdev->flags);
1158 				if (!conf->mddev->external &&
1159 				    conf->mddev->sb_flags) {
1160 					/* It is very unlikely, but we might
1161 					 * still need to write out the
1162 					 * bad block log - better give it
1163 					 * a chance*/
1164 					md_check_recovery(conf->mddev);
1165 				}
1166 				/*
1167 				 * Because md_wait_for_blocked_rdev
1168 				 * will dec nr_pending, we must
1169 				 * increment it first.
1170 				 */
1171 				atomic_inc(&rdev->nr_pending);
1172 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1173 			} else {
1174 				/* Acknowledged bad block - skip the write */
1175 				rdev_dec_pending(rdev, conf->mddev);
1176 				rdev = NULL;
1177 			}
1178 		}
1179 
1180 		if (rdev) {
1181 			if (s->syncing || s->expanding || s->expanded
1182 			    || s->replacing)
1183 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1184 
1185 			set_bit(STRIPE_IO_STARTED, &sh->state);
1186 
1187 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1188 			bi->bi_end_io = op_is_write(op)
1189 				? raid5_end_write_request
1190 				: raid5_end_read_request;
1191 			bi->bi_private = sh;
1192 
1193 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1194 				__func__, (unsigned long long)sh->sector,
1195 				bi->bi_opf, i);
1196 			atomic_inc(&sh->count);
1197 			if (sh != head_sh)
1198 				atomic_inc(&head_sh->count);
1199 			if (use_new_offset(conf, sh))
1200 				bi->bi_iter.bi_sector = (sh->sector
1201 						 + rdev->new_data_offset);
1202 			else
1203 				bi->bi_iter.bi_sector = (sh->sector
1204 						 + rdev->data_offset);
1205 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1206 				bi->bi_opf |= REQ_NOMERGE;
1207 
1208 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1209 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1210 
1211 			if (!op_is_write(op) &&
1212 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1213 				/*
1214 				 * issuing read for a page in journal, this
1215 				 * must be preparing for prexor in rmw; read
1216 				 * the data into orig_page
1217 				 */
1218 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1219 			else
1220 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1221 			bi->bi_vcnt = 1;
1222 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1223 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1224 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1225 			/*
1226 			 * If this is discard request, set bi_vcnt 0. We don't
1227 			 * want to confuse SCSI because SCSI will replace payload
1228 			 */
1229 			if (op == REQ_OP_DISCARD)
1230 				bi->bi_vcnt = 0;
1231 			if (rrdev)
1232 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1233 
1234 			if (conf->mddev->gendisk)
1235 				trace_block_bio_remap(bi,
1236 						disk_devt(conf->mddev->gendisk),
1237 						sh->dev[i].sector);
1238 			if (should_defer && op_is_write(op))
1239 				bio_list_add(&pending_bios, bi);
1240 			else
1241 				submit_bio_noacct(bi);
1242 		}
1243 		if (rrdev) {
1244 			if (s->syncing || s->expanding || s->expanded
1245 			    || s->replacing)
1246 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1247 
1248 			set_bit(STRIPE_IO_STARTED, &sh->state);
1249 
1250 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1251 			BUG_ON(!op_is_write(op));
1252 			rbi->bi_end_io = raid5_end_write_request;
1253 			rbi->bi_private = sh;
1254 
1255 			pr_debug("%s: for %llu schedule op %d on "
1256 				 "replacement disc %d\n",
1257 				__func__, (unsigned long long)sh->sector,
1258 				rbi->bi_opf, i);
1259 			atomic_inc(&sh->count);
1260 			if (sh != head_sh)
1261 				atomic_inc(&head_sh->count);
1262 			if (use_new_offset(conf, sh))
1263 				rbi->bi_iter.bi_sector = (sh->sector
1264 						  + rrdev->new_data_offset);
1265 			else
1266 				rbi->bi_iter.bi_sector = (sh->sector
1267 						  + rrdev->data_offset);
1268 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1269 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1270 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1271 			rbi->bi_vcnt = 1;
1272 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1273 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1274 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1275 			/*
1276 			 * If this is discard request, set bi_vcnt 0. We don't
1277 			 * want to confuse SCSI because SCSI will replace payload
1278 			 */
1279 			if (op == REQ_OP_DISCARD)
1280 				rbi->bi_vcnt = 0;
1281 			if (conf->mddev->gendisk)
1282 				trace_block_bio_remap(rbi,
1283 						disk_devt(conf->mddev->gendisk),
1284 						sh->dev[i].sector);
1285 			if (should_defer && op_is_write(op))
1286 				bio_list_add(&pending_bios, rbi);
1287 			else
1288 				submit_bio_noacct(rbi);
1289 		}
1290 		if (!rdev && !rrdev) {
1291 			if (op_is_write(op))
1292 				set_bit(STRIPE_DEGRADED, &sh->state);
1293 			pr_debug("skip op %d on disc %d for sector %llu\n",
1294 				bi->bi_opf, i, (unsigned long long)sh->sector);
1295 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1296 			set_bit(STRIPE_HANDLE, &sh->state);
1297 		}
1298 
1299 		if (!head_sh->batch_head)
1300 			continue;
1301 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1302 				      batch_list);
1303 		if (sh != head_sh)
1304 			goto again;
1305 	}
1306 
1307 	if (should_defer && !bio_list_empty(&pending_bios))
1308 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1309 }
1310 
1311 static struct dma_async_tx_descriptor *
1312 async_copy_data(int frombio, struct bio *bio, struct page **page,
1313 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1314 	struct stripe_head *sh, int no_skipcopy)
1315 {
1316 	struct bio_vec bvl;
1317 	struct bvec_iter iter;
1318 	struct page *bio_page;
1319 	int page_offset;
1320 	struct async_submit_ctl submit;
1321 	enum async_tx_flags flags = 0;
1322 	struct r5conf *conf = sh->raid_conf;
1323 
1324 	if (bio->bi_iter.bi_sector >= sector)
1325 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1326 	else
1327 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1328 
1329 	if (frombio)
1330 		flags |= ASYNC_TX_FENCE;
1331 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1332 
1333 	bio_for_each_segment(bvl, bio, iter) {
1334 		int len = bvl.bv_len;
1335 		int clen;
1336 		int b_offset = 0;
1337 
1338 		if (page_offset < 0) {
1339 			b_offset = -page_offset;
1340 			page_offset += b_offset;
1341 			len -= b_offset;
1342 		}
1343 
1344 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1345 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1346 		else
1347 			clen = len;
1348 
1349 		if (clen > 0) {
1350 			b_offset += bvl.bv_offset;
1351 			bio_page = bvl.bv_page;
1352 			if (frombio) {
1353 				if (conf->skip_copy &&
1354 				    b_offset == 0 && page_offset == 0 &&
1355 				    clen == RAID5_STRIPE_SIZE(conf) &&
1356 				    !no_skipcopy)
1357 					*page = bio_page;
1358 				else
1359 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1360 						  b_offset, clen, &submit);
1361 			} else
1362 				tx = async_memcpy(bio_page, *page, b_offset,
1363 						  page_offset + poff, clen, &submit);
1364 		}
1365 		/* chain the operations */
1366 		submit.depend_tx = tx;
1367 
1368 		if (clen < len) /* hit end of page */
1369 			break;
1370 		page_offset +=  len;
1371 	}
1372 
1373 	return tx;
1374 }
1375 
1376 static void ops_complete_biofill(void *stripe_head_ref)
1377 {
1378 	struct stripe_head *sh = stripe_head_ref;
1379 	int i;
1380 	struct r5conf *conf = sh->raid_conf;
1381 
1382 	pr_debug("%s: stripe %llu\n", __func__,
1383 		(unsigned long long)sh->sector);
1384 
1385 	/* clear completed biofills */
1386 	for (i = sh->disks; i--; ) {
1387 		struct r5dev *dev = &sh->dev[i];
1388 
1389 		/* acknowledge completion of a biofill operation */
1390 		/* and check if we need to reply to a read request,
1391 		 * new R5_Wantfill requests are held off until
1392 		 * !STRIPE_BIOFILL_RUN
1393 		 */
1394 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1395 			struct bio *rbi, *rbi2;
1396 
1397 			BUG_ON(!dev->read);
1398 			rbi = dev->read;
1399 			dev->read = NULL;
1400 			while (rbi && rbi->bi_iter.bi_sector <
1401 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1402 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1403 				bio_endio(rbi);
1404 				rbi = rbi2;
1405 			}
1406 		}
1407 	}
1408 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1409 
1410 	set_bit(STRIPE_HANDLE, &sh->state);
1411 	raid5_release_stripe(sh);
1412 }
1413 
1414 static void ops_run_biofill(struct stripe_head *sh)
1415 {
1416 	struct dma_async_tx_descriptor *tx = NULL;
1417 	struct async_submit_ctl submit;
1418 	int i;
1419 	struct r5conf *conf = sh->raid_conf;
1420 
1421 	BUG_ON(sh->batch_head);
1422 	pr_debug("%s: stripe %llu\n", __func__,
1423 		(unsigned long long)sh->sector);
1424 
1425 	for (i = sh->disks; i--; ) {
1426 		struct r5dev *dev = &sh->dev[i];
1427 		if (test_bit(R5_Wantfill, &dev->flags)) {
1428 			struct bio *rbi;
1429 			spin_lock_irq(&sh->stripe_lock);
1430 			dev->read = rbi = dev->toread;
1431 			dev->toread = NULL;
1432 			spin_unlock_irq(&sh->stripe_lock);
1433 			while (rbi && rbi->bi_iter.bi_sector <
1434 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1435 				tx = async_copy_data(0, rbi, &dev->page,
1436 						     dev->offset,
1437 						     dev->sector, tx, sh, 0);
1438 				rbi = r5_next_bio(conf, rbi, dev->sector);
1439 			}
1440 		}
1441 	}
1442 
1443 	atomic_inc(&sh->count);
1444 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1445 	async_trigger_callback(&submit);
1446 }
1447 
1448 static void mark_target_uptodate(struct stripe_head *sh, int target)
1449 {
1450 	struct r5dev *tgt;
1451 
1452 	if (target < 0)
1453 		return;
1454 
1455 	tgt = &sh->dev[target];
1456 	set_bit(R5_UPTODATE, &tgt->flags);
1457 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1458 	clear_bit(R5_Wantcompute, &tgt->flags);
1459 }
1460 
1461 static void ops_complete_compute(void *stripe_head_ref)
1462 {
1463 	struct stripe_head *sh = stripe_head_ref;
1464 
1465 	pr_debug("%s: stripe %llu\n", __func__,
1466 		(unsigned long long)sh->sector);
1467 
1468 	/* mark the computed target(s) as uptodate */
1469 	mark_target_uptodate(sh, sh->ops.target);
1470 	mark_target_uptodate(sh, sh->ops.target2);
1471 
1472 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1473 	if (sh->check_state == check_state_compute_run)
1474 		sh->check_state = check_state_compute_result;
1475 	set_bit(STRIPE_HANDLE, &sh->state);
1476 	raid5_release_stripe(sh);
1477 }
1478 
1479 /* return a pointer to the address conversion region of the scribble buffer */
1480 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1481 {
1482 	return percpu->scribble + i * percpu->scribble_obj_size;
1483 }
1484 
1485 /* return a pointer to the address conversion region of the scribble buffer */
1486 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1487 				 struct raid5_percpu *percpu, int i)
1488 {
1489 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1490 }
1491 
1492 /*
1493  * Return a pointer to record offset address.
1494  */
1495 static unsigned int *
1496 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1497 {
1498 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1499 }
1500 
1501 static struct dma_async_tx_descriptor *
1502 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1503 {
1504 	int disks = sh->disks;
1505 	struct page **xor_srcs = to_addr_page(percpu, 0);
1506 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1507 	int target = sh->ops.target;
1508 	struct r5dev *tgt = &sh->dev[target];
1509 	struct page *xor_dest = tgt->page;
1510 	unsigned int off_dest = tgt->offset;
1511 	int count = 0;
1512 	struct dma_async_tx_descriptor *tx;
1513 	struct async_submit_ctl submit;
1514 	int i;
1515 
1516 	BUG_ON(sh->batch_head);
1517 
1518 	pr_debug("%s: stripe %llu block: %d\n",
1519 		__func__, (unsigned long long)sh->sector, target);
1520 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1521 
1522 	for (i = disks; i--; ) {
1523 		if (i != target) {
1524 			off_srcs[count] = sh->dev[i].offset;
1525 			xor_srcs[count++] = sh->dev[i].page;
1526 		}
1527 	}
1528 
1529 	atomic_inc(&sh->count);
1530 
1531 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1532 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1533 	if (unlikely(count == 1))
1534 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1535 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1536 	else
1537 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1538 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1539 
1540 	return tx;
1541 }
1542 
1543 /* set_syndrome_sources - populate source buffers for gen_syndrome
1544  * @srcs - (struct page *) array of size sh->disks
1545  * @offs - (unsigned int) array of offset for each page
1546  * @sh - stripe_head to parse
1547  *
1548  * Populates srcs in proper layout order for the stripe and returns the
1549  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1550  * destination buffer is recorded in srcs[count] and the Q destination
1551  * is recorded in srcs[count+1]].
1552  */
1553 static int set_syndrome_sources(struct page **srcs,
1554 				unsigned int *offs,
1555 				struct stripe_head *sh,
1556 				int srctype)
1557 {
1558 	int disks = sh->disks;
1559 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1560 	int d0_idx = raid6_d0(sh);
1561 	int count;
1562 	int i;
1563 
1564 	for (i = 0; i < disks; i++)
1565 		srcs[i] = NULL;
1566 
1567 	count = 0;
1568 	i = d0_idx;
1569 	do {
1570 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1571 		struct r5dev *dev = &sh->dev[i];
1572 
1573 		if (i == sh->qd_idx || i == sh->pd_idx ||
1574 		    (srctype == SYNDROME_SRC_ALL) ||
1575 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1576 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1577 		      test_bit(R5_InJournal, &dev->flags))) ||
1578 		    (srctype == SYNDROME_SRC_WRITTEN &&
1579 		     (dev->written ||
1580 		      test_bit(R5_InJournal, &dev->flags)))) {
1581 			if (test_bit(R5_InJournal, &dev->flags))
1582 				srcs[slot] = sh->dev[i].orig_page;
1583 			else
1584 				srcs[slot] = sh->dev[i].page;
1585 			/*
1586 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1587 			 * not shared page. In that case, dev[i].offset
1588 			 * is 0.
1589 			 */
1590 			offs[slot] = sh->dev[i].offset;
1591 		}
1592 		i = raid6_next_disk(i, disks);
1593 	} while (i != d0_idx);
1594 
1595 	return syndrome_disks;
1596 }
1597 
1598 static struct dma_async_tx_descriptor *
1599 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1600 {
1601 	int disks = sh->disks;
1602 	struct page **blocks = to_addr_page(percpu, 0);
1603 	unsigned int *offs = to_addr_offs(sh, percpu);
1604 	int target;
1605 	int qd_idx = sh->qd_idx;
1606 	struct dma_async_tx_descriptor *tx;
1607 	struct async_submit_ctl submit;
1608 	struct r5dev *tgt;
1609 	struct page *dest;
1610 	unsigned int dest_off;
1611 	int i;
1612 	int count;
1613 
1614 	BUG_ON(sh->batch_head);
1615 	if (sh->ops.target < 0)
1616 		target = sh->ops.target2;
1617 	else if (sh->ops.target2 < 0)
1618 		target = sh->ops.target;
1619 	else
1620 		/* we should only have one valid target */
1621 		BUG();
1622 	BUG_ON(target < 0);
1623 	pr_debug("%s: stripe %llu block: %d\n",
1624 		__func__, (unsigned long long)sh->sector, target);
1625 
1626 	tgt = &sh->dev[target];
1627 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1628 	dest = tgt->page;
1629 	dest_off = tgt->offset;
1630 
1631 	atomic_inc(&sh->count);
1632 
1633 	if (target == qd_idx) {
1634 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1635 		blocks[count] = NULL; /* regenerating p is not necessary */
1636 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1637 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1638 				  ops_complete_compute, sh,
1639 				  to_addr_conv(sh, percpu, 0));
1640 		tx = async_gen_syndrome(blocks, offs, count+2,
1641 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1642 	} else {
1643 		/* Compute any data- or p-drive using XOR */
1644 		count = 0;
1645 		for (i = disks; i-- ; ) {
1646 			if (i == target || i == qd_idx)
1647 				continue;
1648 			offs[count] = sh->dev[i].offset;
1649 			blocks[count++] = sh->dev[i].page;
1650 		}
1651 
1652 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1653 				  NULL, ops_complete_compute, sh,
1654 				  to_addr_conv(sh, percpu, 0));
1655 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1656 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1657 	}
1658 
1659 	return tx;
1660 }
1661 
1662 static struct dma_async_tx_descriptor *
1663 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1664 {
1665 	int i, count, disks = sh->disks;
1666 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1667 	int d0_idx = raid6_d0(sh);
1668 	int faila = -1, failb = -1;
1669 	int target = sh->ops.target;
1670 	int target2 = sh->ops.target2;
1671 	struct r5dev *tgt = &sh->dev[target];
1672 	struct r5dev *tgt2 = &sh->dev[target2];
1673 	struct dma_async_tx_descriptor *tx;
1674 	struct page **blocks = to_addr_page(percpu, 0);
1675 	unsigned int *offs = to_addr_offs(sh, percpu);
1676 	struct async_submit_ctl submit;
1677 
1678 	BUG_ON(sh->batch_head);
1679 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1680 		 __func__, (unsigned long long)sh->sector, target, target2);
1681 	BUG_ON(target < 0 || target2 < 0);
1682 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1683 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1684 
1685 	/* we need to open-code set_syndrome_sources to handle the
1686 	 * slot number conversion for 'faila' and 'failb'
1687 	 */
1688 	for (i = 0; i < disks ; i++) {
1689 		offs[i] = 0;
1690 		blocks[i] = NULL;
1691 	}
1692 	count = 0;
1693 	i = d0_idx;
1694 	do {
1695 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1696 
1697 		offs[slot] = sh->dev[i].offset;
1698 		blocks[slot] = sh->dev[i].page;
1699 
1700 		if (i == target)
1701 			faila = slot;
1702 		if (i == target2)
1703 			failb = slot;
1704 		i = raid6_next_disk(i, disks);
1705 	} while (i != d0_idx);
1706 
1707 	BUG_ON(faila == failb);
1708 	if (failb < faila)
1709 		swap(faila, failb);
1710 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1711 		 __func__, (unsigned long long)sh->sector, faila, failb);
1712 
1713 	atomic_inc(&sh->count);
1714 
1715 	if (failb == syndrome_disks+1) {
1716 		/* Q disk is one of the missing disks */
1717 		if (faila == syndrome_disks) {
1718 			/* Missing P+Q, just recompute */
1719 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1720 					  ops_complete_compute, sh,
1721 					  to_addr_conv(sh, percpu, 0));
1722 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1723 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1724 						  &submit);
1725 		} else {
1726 			struct page *dest;
1727 			unsigned int dest_off;
1728 			int data_target;
1729 			int qd_idx = sh->qd_idx;
1730 
1731 			/* Missing D+Q: recompute D from P, then recompute Q */
1732 			if (target == qd_idx)
1733 				data_target = target2;
1734 			else
1735 				data_target = target;
1736 
1737 			count = 0;
1738 			for (i = disks; i-- ; ) {
1739 				if (i == data_target || i == qd_idx)
1740 					continue;
1741 				offs[count] = sh->dev[i].offset;
1742 				blocks[count++] = sh->dev[i].page;
1743 			}
1744 			dest = sh->dev[data_target].page;
1745 			dest_off = sh->dev[data_target].offset;
1746 			init_async_submit(&submit,
1747 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1748 					  NULL, NULL, NULL,
1749 					  to_addr_conv(sh, percpu, 0));
1750 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1751 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1752 				       &submit);
1753 
1754 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1755 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1756 					  ops_complete_compute, sh,
1757 					  to_addr_conv(sh, percpu, 0));
1758 			return async_gen_syndrome(blocks, offs, count+2,
1759 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1760 						  &submit);
1761 		}
1762 	} else {
1763 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1764 				  ops_complete_compute, sh,
1765 				  to_addr_conv(sh, percpu, 0));
1766 		if (failb == syndrome_disks) {
1767 			/* We're missing D+P. */
1768 			return async_raid6_datap_recov(syndrome_disks+2,
1769 						RAID5_STRIPE_SIZE(sh->raid_conf),
1770 						faila,
1771 						blocks, offs, &submit);
1772 		} else {
1773 			/* We're missing D+D. */
1774 			return async_raid6_2data_recov(syndrome_disks+2,
1775 						RAID5_STRIPE_SIZE(sh->raid_conf),
1776 						faila, failb,
1777 						blocks, offs, &submit);
1778 		}
1779 	}
1780 }
1781 
1782 static void ops_complete_prexor(void *stripe_head_ref)
1783 {
1784 	struct stripe_head *sh = stripe_head_ref;
1785 
1786 	pr_debug("%s: stripe %llu\n", __func__,
1787 		(unsigned long long)sh->sector);
1788 
1789 	if (r5c_is_writeback(sh->raid_conf->log))
1790 		/*
1791 		 * raid5-cache write back uses orig_page during prexor.
1792 		 * After prexor, it is time to free orig_page
1793 		 */
1794 		r5c_release_extra_page(sh);
1795 }
1796 
1797 static struct dma_async_tx_descriptor *
1798 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1799 		struct dma_async_tx_descriptor *tx)
1800 {
1801 	int disks = sh->disks;
1802 	struct page **xor_srcs = to_addr_page(percpu, 0);
1803 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1804 	int count = 0, pd_idx = sh->pd_idx, i;
1805 	struct async_submit_ctl submit;
1806 
1807 	/* existing parity data subtracted */
1808 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1809 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1810 
1811 	BUG_ON(sh->batch_head);
1812 	pr_debug("%s: stripe %llu\n", __func__,
1813 		(unsigned long long)sh->sector);
1814 
1815 	for (i = disks; i--; ) {
1816 		struct r5dev *dev = &sh->dev[i];
1817 		/* Only process blocks that are known to be uptodate */
1818 		if (test_bit(R5_InJournal, &dev->flags)) {
1819 			/*
1820 			 * For this case, PAGE_SIZE must be equal to 4KB and
1821 			 * page offset is zero.
1822 			 */
1823 			off_srcs[count] = dev->offset;
1824 			xor_srcs[count++] = dev->orig_page;
1825 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1826 			off_srcs[count] = dev->offset;
1827 			xor_srcs[count++] = dev->page;
1828 		}
1829 	}
1830 
1831 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1832 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1833 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1834 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1835 
1836 	return tx;
1837 }
1838 
1839 static struct dma_async_tx_descriptor *
1840 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1841 		struct dma_async_tx_descriptor *tx)
1842 {
1843 	struct page **blocks = to_addr_page(percpu, 0);
1844 	unsigned int *offs = to_addr_offs(sh, percpu);
1845 	int count;
1846 	struct async_submit_ctl submit;
1847 
1848 	pr_debug("%s: stripe %llu\n", __func__,
1849 		(unsigned long long)sh->sector);
1850 
1851 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1852 
1853 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1854 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1855 	tx = async_gen_syndrome(blocks, offs, count+2,
1856 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1857 
1858 	return tx;
1859 }
1860 
1861 static struct dma_async_tx_descriptor *
1862 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1863 {
1864 	struct r5conf *conf = sh->raid_conf;
1865 	int disks = sh->disks;
1866 	int i;
1867 	struct stripe_head *head_sh = sh;
1868 
1869 	pr_debug("%s: stripe %llu\n", __func__,
1870 		(unsigned long long)sh->sector);
1871 
1872 	for (i = disks; i--; ) {
1873 		struct r5dev *dev;
1874 		struct bio *chosen;
1875 
1876 		sh = head_sh;
1877 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1878 			struct bio *wbi;
1879 
1880 again:
1881 			dev = &sh->dev[i];
1882 			/*
1883 			 * clear R5_InJournal, so when rewriting a page in
1884 			 * journal, it is not skipped by r5l_log_stripe()
1885 			 */
1886 			clear_bit(R5_InJournal, &dev->flags);
1887 			spin_lock_irq(&sh->stripe_lock);
1888 			chosen = dev->towrite;
1889 			dev->towrite = NULL;
1890 			sh->overwrite_disks = 0;
1891 			BUG_ON(dev->written);
1892 			wbi = dev->written = chosen;
1893 			spin_unlock_irq(&sh->stripe_lock);
1894 			WARN_ON(dev->page != dev->orig_page);
1895 
1896 			while (wbi && wbi->bi_iter.bi_sector <
1897 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1898 				if (wbi->bi_opf & REQ_FUA)
1899 					set_bit(R5_WantFUA, &dev->flags);
1900 				if (wbi->bi_opf & REQ_SYNC)
1901 					set_bit(R5_SyncIO, &dev->flags);
1902 				if (bio_op(wbi) == REQ_OP_DISCARD)
1903 					set_bit(R5_Discard, &dev->flags);
1904 				else {
1905 					tx = async_copy_data(1, wbi, &dev->page,
1906 							     dev->offset,
1907 							     dev->sector, tx, sh,
1908 							     r5c_is_writeback(conf->log));
1909 					if (dev->page != dev->orig_page &&
1910 					    !r5c_is_writeback(conf->log)) {
1911 						set_bit(R5_SkipCopy, &dev->flags);
1912 						clear_bit(R5_UPTODATE, &dev->flags);
1913 						clear_bit(R5_OVERWRITE, &dev->flags);
1914 					}
1915 				}
1916 				wbi = r5_next_bio(conf, wbi, dev->sector);
1917 			}
1918 
1919 			if (head_sh->batch_head) {
1920 				sh = list_first_entry(&sh->batch_list,
1921 						      struct stripe_head,
1922 						      batch_list);
1923 				if (sh == head_sh)
1924 					continue;
1925 				goto again;
1926 			}
1927 		}
1928 	}
1929 
1930 	return tx;
1931 }
1932 
1933 static void ops_complete_reconstruct(void *stripe_head_ref)
1934 {
1935 	struct stripe_head *sh = stripe_head_ref;
1936 	int disks = sh->disks;
1937 	int pd_idx = sh->pd_idx;
1938 	int qd_idx = sh->qd_idx;
1939 	int i;
1940 	bool fua = false, sync = false, discard = false;
1941 
1942 	pr_debug("%s: stripe %llu\n", __func__,
1943 		(unsigned long long)sh->sector);
1944 
1945 	for (i = disks; i--; ) {
1946 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1947 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1948 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1949 	}
1950 
1951 	for (i = disks; i--; ) {
1952 		struct r5dev *dev = &sh->dev[i];
1953 
1954 		if (dev->written || i == pd_idx || i == qd_idx) {
1955 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1956 				set_bit(R5_UPTODATE, &dev->flags);
1957 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1958 					set_bit(R5_Expanded, &dev->flags);
1959 			}
1960 			if (fua)
1961 				set_bit(R5_WantFUA, &dev->flags);
1962 			if (sync)
1963 				set_bit(R5_SyncIO, &dev->flags);
1964 		}
1965 	}
1966 
1967 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1968 		sh->reconstruct_state = reconstruct_state_drain_result;
1969 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1970 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1971 	else {
1972 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1973 		sh->reconstruct_state = reconstruct_state_result;
1974 	}
1975 
1976 	set_bit(STRIPE_HANDLE, &sh->state);
1977 	raid5_release_stripe(sh);
1978 }
1979 
1980 static void
1981 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1982 		     struct dma_async_tx_descriptor *tx)
1983 {
1984 	int disks = sh->disks;
1985 	struct page **xor_srcs;
1986 	unsigned int *off_srcs;
1987 	struct async_submit_ctl submit;
1988 	int count, pd_idx = sh->pd_idx, i;
1989 	struct page *xor_dest;
1990 	unsigned int off_dest;
1991 	int prexor = 0;
1992 	unsigned long flags;
1993 	int j = 0;
1994 	struct stripe_head *head_sh = sh;
1995 	int last_stripe;
1996 
1997 	pr_debug("%s: stripe %llu\n", __func__,
1998 		(unsigned long long)sh->sector);
1999 
2000 	for (i = 0; i < sh->disks; i++) {
2001 		if (pd_idx == i)
2002 			continue;
2003 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2004 			break;
2005 	}
2006 	if (i >= sh->disks) {
2007 		atomic_inc(&sh->count);
2008 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2009 		ops_complete_reconstruct(sh);
2010 		return;
2011 	}
2012 again:
2013 	count = 0;
2014 	xor_srcs = to_addr_page(percpu, j);
2015 	off_srcs = to_addr_offs(sh, percpu);
2016 	/* check if prexor is active which means only process blocks
2017 	 * that are part of a read-modify-write (written)
2018 	 */
2019 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2020 		prexor = 1;
2021 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2022 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2023 		for (i = disks; i--; ) {
2024 			struct r5dev *dev = &sh->dev[i];
2025 			if (head_sh->dev[i].written ||
2026 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2027 				off_srcs[count] = dev->offset;
2028 				xor_srcs[count++] = dev->page;
2029 			}
2030 		}
2031 	} else {
2032 		xor_dest = sh->dev[pd_idx].page;
2033 		off_dest = sh->dev[pd_idx].offset;
2034 		for (i = disks; i--; ) {
2035 			struct r5dev *dev = &sh->dev[i];
2036 			if (i != pd_idx) {
2037 				off_srcs[count] = dev->offset;
2038 				xor_srcs[count++] = dev->page;
2039 			}
2040 		}
2041 	}
2042 
2043 	/* 1/ if we prexor'd then the dest is reused as a source
2044 	 * 2/ if we did not prexor then we are redoing the parity
2045 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2046 	 * for the synchronous xor case
2047 	 */
2048 	last_stripe = !head_sh->batch_head ||
2049 		list_first_entry(&sh->batch_list,
2050 				 struct stripe_head, batch_list) == head_sh;
2051 	if (last_stripe) {
2052 		flags = ASYNC_TX_ACK |
2053 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2054 
2055 		atomic_inc(&head_sh->count);
2056 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2057 				  to_addr_conv(sh, percpu, j));
2058 	} else {
2059 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2060 		init_async_submit(&submit, flags, tx, NULL, NULL,
2061 				  to_addr_conv(sh, percpu, j));
2062 	}
2063 
2064 	if (unlikely(count == 1))
2065 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2066 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2067 	else
2068 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2069 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2070 	if (!last_stripe) {
2071 		j++;
2072 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2073 				      batch_list);
2074 		goto again;
2075 	}
2076 }
2077 
2078 static void
2079 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2080 		     struct dma_async_tx_descriptor *tx)
2081 {
2082 	struct async_submit_ctl submit;
2083 	struct page **blocks;
2084 	unsigned int *offs;
2085 	int count, i, j = 0;
2086 	struct stripe_head *head_sh = sh;
2087 	int last_stripe;
2088 	int synflags;
2089 	unsigned long txflags;
2090 
2091 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2092 
2093 	for (i = 0; i < sh->disks; i++) {
2094 		if (sh->pd_idx == i || sh->qd_idx == i)
2095 			continue;
2096 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2097 			break;
2098 	}
2099 	if (i >= sh->disks) {
2100 		atomic_inc(&sh->count);
2101 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2102 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2103 		ops_complete_reconstruct(sh);
2104 		return;
2105 	}
2106 
2107 again:
2108 	blocks = to_addr_page(percpu, j);
2109 	offs = to_addr_offs(sh, percpu);
2110 
2111 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2112 		synflags = SYNDROME_SRC_WRITTEN;
2113 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2114 	} else {
2115 		synflags = SYNDROME_SRC_ALL;
2116 		txflags = ASYNC_TX_ACK;
2117 	}
2118 
2119 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2120 	last_stripe = !head_sh->batch_head ||
2121 		list_first_entry(&sh->batch_list,
2122 				 struct stripe_head, batch_list) == head_sh;
2123 
2124 	if (last_stripe) {
2125 		atomic_inc(&head_sh->count);
2126 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2127 				  head_sh, to_addr_conv(sh, percpu, j));
2128 	} else
2129 		init_async_submit(&submit, 0, tx, NULL, NULL,
2130 				  to_addr_conv(sh, percpu, j));
2131 	tx = async_gen_syndrome(blocks, offs, count+2,
2132 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2133 	if (!last_stripe) {
2134 		j++;
2135 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2136 				      batch_list);
2137 		goto again;
2138 	}
2139 }
2140 
2141 static void ops_complete_check(void *stripe_head_ref)
2142 {
2143 	struct stripe_head *sh = stripe_head_ref;
2144 
2145 	pr_debug("%s: stripe %llu\n", __func__,
2146 		(unsigned long long)sh->sector);
2147 
2148 	sh->check_state = check_state_check_result;
2149 	set_bit(STRIPE_HANDLE, &sh->state);
2150 	raid5_release_stripe(sh);
2151 }
2152 
2153 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2154 {
2155 	int disks = sh->disks;
2156 	int pd_idx = sh->pd_idx;
2157 	int qd_idx = sh->qd_idx;
2158 	struct page *xor_dest;
2159 	unsigned int off_dest;
2160 	struct page **xor_srcs = to_addr_page(percpu, 0);
2161 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2162 	struct dma_async_tx_descriptor *tx;
2163 	struct async_submit_ctl submit;
2164 	int count;
2165 	int i;
2166 
2167 	pr_debug("%s: stripe %llu\n", __func__,
2168 		(unsigned long long)sh->sector);
2169 
2170 	BUG_ON(sh->batch_head);
2171 	count = 0;
2172 	xor_dest = sh->dev[pd_idx].page;
2173 	off_dest = sh->dev[pd_idx].offset;
2174 	off_srcs[count] = off_dest;
2175 	xor_srcs[count++] = xor_dest;
2176 	for (i = disks; i--; ) {
2177 		if (i == pd_idx || i == qd_idx)
2178 			continue;
2179 		off_srcs[count] = sh->dev[i].offset;
2180 		xor_srcs[count++] = sh->dev[i].page;
2181 	}
2182 
2183 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2184 			  to_addr_conv(sh, percpu, 0));
2185 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2186 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2187 			   &sh->ops.zero_sum_result, &submit);
2188 
2189 	atomic_inc(&sh->count);
2190 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2191 	tx = async_trigger_callback(&submit);
2192 }
2193 
2194 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2195 {
2196 	struct page **srcs = to_addr_page(percpu, 0);
2197 	unsigned int *offs = to_addr_offs(sh, percpu);
2198 	struct async_submit_ctl submit;
2199 	int count;
2200 
2201 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2202 		(unsigned long long)sh->sector, checkp);
2203 
2204 	BUG_ON(sh->batch_head);
2205 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2206 	if (!checkp)
2207 		srcs[count] = NULL;
2208 
2209 	atomic_inc(&sh->count);
2210 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2211 			  sh, to_addr_conv(sh, percpu, 0));
2212 	async_syndrome_val(srcs, offs, count+2,
2213 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2214 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2215 }
2216 
2217 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2218 {
2219 	int overlap_clear = 0, i, disks = sh->disks;
2220 	struct dma_async_tx_descriptor *tx = NULL;
2221 	struct r5conf *conf = sh->raid_conf;
2222 	int level = conf->level;
2223 	struct raid5_percpu *percpu;
2224 
2225 	local_lock(&conf->percpu->lock);
2226 	percpu = this_cpu_ptr(conf->percpu);
2227 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2228 		ops_run_biofill(sh);
2229 		overlap_clear++;
2230 	}
2231 
2232 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2233 		if (level < 6)
2234 			tx = ops_run_compute5(sh, percpu);
2235 		else {
2236 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2237 				tx = ops_run_compute6_1(sh, percpu);
2238 			else
2239 				tx = ops_run_compute6_2(sh, percpu);
2240 		}
2241 		/* terminate the chain if reconstruct is not set to be run */
2242 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2243 			async_tx_ack(tx);
2244 	}
2245 
2246 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2247 		if (level < 6)
2248 			tx = ops_run_prexor5(sh, percpu, tx);
2249 		else
2250 			tx = ops_run_prexor6(sh, percpu, tx);
2251 	}
2252 
2253 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2254 		tx = ops_run_partial_parity(sh, percpu, tx);
2255 
2256 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2257 		tx = ops_run_biodrain(sh, tx);
2258 		overlap_clear++;
2259 	}
2260 
2261 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2262 		if (level < 6)
2263 			ops_run_reconstruct5(sh, percpu, tx);
2264 		else
2265 			ops_run_reconstruct6(sh, percpu, tx);
2266 	}
2267 
2268 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2269 		if (sh->check_state == check_state_run)
2270 			ops_run_check_p(sh, percpu);
2271 		else if (sh->check_state == check_state_run_q)
2272 			ops_run_check_pq(sh, percpu, 0);
2273 		else if (sh->check_state == check_state_run_pq)
2274 			ops_run_check_pq(sh, percpu, 1);
2275 		else
2276 			BUG();
2277 	}
2278 
2279 	if (overlap_clear && !sh->batch_head) {
2280 		for (i = disks; i--; ) {
2281 			struct r5dev *dev = &sh->dev[i];
2282 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2283 				wake_up(&sh->raid_conf->wait_for_overlap);
2284 		}
2285 	}
2286 	local_unlock(&conf->percpu->lock);
2287 }
2288 
2289 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2290 {
2291 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2292 	kfree(sh->pages);
2293 #endif
2294 	if (sh->ppl_page)
2295 		__free_page(sh->ppl_page);
2296 	kmem_cache_free(sc, sh);
2297 }
2298 
2299 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2300 	int disks, struct r5conf *conf)
2301 {
2302 	struct stripe_head *sh;
2303 
2304 	sh = kmem_cache_zalloc(sc, gfp);
2305 	if (sh) {
2306 		spin_lock_init(&sh->stripe_lock);
2307 		spin_lock_init(&sh->batch_lock);
2308 		INIT_LIST_HEAD(&sh->batch_list);
2309 		INIT_LIST_HEAD(&sh->lru);
2310 		INIT_LIST_HEAD(&sh->r5c);
2311 		INIT_LIST_HEAD(&sh->log_list);
2312 		atomic_set(&sh->count, 1);
2313 		sh->raid_conf = conf;
2314 		sh->log_start = MaxSector;
2315 
2316 		if (raid5_has_ppl(conf)) {
2317 			sh->ppl_page = alloc_page(gfp);
2318 			if (!sh->ppl_page) {
2319 				free_stripe(sc, sh);
2320 				return NULL;
2321 			}
2322 		}
2323 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2324 		if (init_stripe_shared_pages(sh, conf, disks)) {
2325 			free_stripe(sc, sh);
2326 			return NULL;
2327 		}
2328 #endif
2329 	}
2330 	return sh;
2331 }
2332 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2333 {
2334 	struct stripe_head *sh;
2335 
2336 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2337 	if (!sh)
2338 		return 0;
2339 
2340 	if (grow_buffers(sh, gfp)) {
2341 		shrink_buffers(sh);
2342 		free_stripe(conf->slab_cache, sh);
2343 		return 0;
2344 	}
2345 	sh->hash_lock_index =
2346 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2347 	/* we just created an active stripe so... */
2348 	atomic_inc(&conf->active_stripes);
2349 
2350 	raid5_release_stripe(sh);
2351 	conf->max_nr_stripes++;
2352 	return 1;
2353 }
2354 
2355 static int grow_stripes(struct r5conf *conf, int num)
2356 {
2357 	struct kmem_cache *sc;
2358 	size_t namelen = sizeof(conf->cache_name[0]);
2359 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2360 
2361 	if (conf->mddev->gendisk)
2362 		snprintf(conf->cache_name[0], namelen,
2363 			"raid%d-%s", conf->level, mdname(conf->mddev));
2364 	else
2365 		snprintf(conf->cache_name[0], namelen,
2366 			"raid%d-%p", conf->level, conf->mddev);
2367 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2368 
2369 	conf->active_name = 0;
2370 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2371 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2372 			       0, 0, NULL);
2373 	if (!sc)
2374 		return 1;
2375 	conf->slab_cache = sc;
2376 	conf->pool_size = devs;
2377 	while (num--)
2378 		if (!grow_one_stripe(conf, GFP_KERNEL))
2379 			return 1;
2380 
2381 	return 0;
2382 }
2383 
2384 /**
2385  * scribble_alloc - allocate percpu scribble buffer for required size
2386  *		    of the scribble region
2387  * @percpu: from for_each_present_cpu() of the caller
2388  * @num: total number of disks in the array
2389  * @cnt: scribble objs count for required size of the scribble region
2390  *
2391  * The scribble buffer size must be enough to contain:
2392  * 1/ a struct page pointer for each device in the array +2
2393  * 2/ room to convert each entry in (1) to its corresponding dma
2394  *    (dma_map_page()) or page (page_address()) address.
2395  *
2396  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2397  * calculate over all devices (not just the data blocks), using zeros in place
2398  * of the P and Q blocks.
2399  */
2400 static int scribble_alloc(struct raid5_percpu *percpu,
2401 			  int num, int cnt)
2402 {
2403 	size_t obj_size =
2404 		sizeof(struct page *) * (num + 2) +
2405 		sizeof(addr_conv_t) * (num + 2) +
2406 		sizeof(unsigned int) * (num + 2);
2407 	void *scribble;
2408 
2409 	/*
2410 	 * If here is in raid array suspend context, it is in memalloc noio
2411 	 * context as well, there is no potential recursive memory reclaim
2412 	 * I/Os with the GFP_KERNEL flag.
2413 	 */
2414 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2415 	if (!scribble)
2416 		return -ENOMEM;
2417 
2418 	kvfree(percpu->scribble);
2419 
2420 	percpu->scribble = scribble;
2421 	percpu->scribble_obj_size = obj_size;
2422 	return 0;
2423 }
2424 
2425 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2426 {
2427 	unsigned long cpu;
2428 	int err = 0;
2429 
2430 	/*
2431 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2432 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2433 	 * should equal to new_disks and new_sectors
2434 	 */
2435 	if (conf->scribble_disks >= new_disks &&
2436 	    conf->scribble_sectors >= new_sectors)
2437 		return 0;
2438 	mddev_suspend(conf->mddev);
2439 	cpus_read_lock();
2440 
2441 	for_each_present_cpu(cpu) {
2442 		struct raid5_percpu *percpu;
2443 
2444 		percpu = per_cpu_ptr(conf->percpu, cpu);
2445 		err = scribble_alloc(percpu, new_disks,
2446 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2447 		if (err)
2448 			break;
2449 	}
2450 
2451 	cpus_read_unlock();
2452 	mddev_resume(conf->mddev);
2453 	if (!err) {
2454 		conf->scribble_disks = new_disks;
2455 		conf->scribble_sectors = new_sectors;
2456 	}
2457 	return err;
2458 }
2459 
2460 static int resize_stripes(struct r5conf *conf, int newsize)
2461 {
2462 	/* Make all the stripes able to hold 'newsize' devices.
2463 	 * New slots in each stripe get 'page' set to a new page.
2464 	 *
2465 	 * This happens in stages:
2466 	 * 1/ create a new kmem_cache and allocate the required number of
2467 	 *    stripe_heads.
2468 	 * 2/ gather all the old stripe_heads and transfer the pages across
2469 	 *    to the new stripe_heads.  This will have the side effect of
2470 	 *    freezing the array as once all stripe_heads have been collected,
2471 	 *    no IO will be possible.  Old stripe heads are freed once their
2472 	 *    pages have been transferred over, and the old kmem_cache is
2473 	 *    freed when all stripes are done.
2474 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2475 	 *    we simple return a failure status - no need to clean anything up.
2476 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2477 	 *    If this fails, we don't bother trying the shrink the
2478 	 *    stripe_heads down again, we just leave them as they are.
2479 	 *    As each stripe_head is processed the new one is released into
2480 	 *    active service.
2481 	 *
2482 	 * Once step2 is started, we cannot afford to wait for a write,
2483 	 * so we use GFP_NOIO allocations.
2484 	 */
2485 	struct stripe_head *osh, *nsh;
2486 	LIST_HEAD(newstripes);
2487 	struct disk_info *ndisks;
2488 	int err = 0;
2489 	struct kmem_cache *sc;
2490 	int i;
2491 	int hash, cnt;
2492 
2493 	md_allow_write(conf->mddev);
2494 
2495 	/* Step 1 */
2496 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2497 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2498 			       0, 0, NULL);
2499 	if (!sc)
2500 		return -ENOMEM;
2501 
2502 	/* Need to ensure auto-resizing doesn't interfere */
2503 	mutex_lock(&conf->cache_size_mutex);
2504 
2505 	for (i = conf->max_nr_stripes; i; i--) {
2506 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2507 		if (!nsh)
2508 			break;
2509 
2510 		list_add(&nsh->lru, &newstripes);
2511 	}
2512 	if (i) {
2513 		/* didn't get enough, give up */
2514 		while (!list_empty(&newstripes)) {
2515 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2516 			list_del(&nsh->lru);
2517 			free_stripe(sc, nsh);
2518 		}
2519 		kmem_cache_destroy(sc);
2520 		mutex_unlock(&conf->cache_size_mutex);
2521 		return -ENOMEM;
2522 	}
2523 	/* Step 2 - Must use GFP_NOIO now.
2524 	 * OK, we have enough stripes, start collecting inactive
2525 	 * stripes and copying them over
2526 	 */
2527 	hash = 0;
2528 	cnt = 0;
2529 	list_for_each_entry(nsh, &newstripes, lru) {
2530 		lock_device_hash_lock(conf, hash);
2531 		wait_event_cmd(conf->wait_for_stripe,
2532 				    !list_empty(conf->inactive_list + hash),
2533 				    unlock_device_hash_lock(conf, hash),
2534 				    lock_device_hash_lock(conf, hash));
2535 		osh = get_free_stripe(conf, hash);
2536 		unlock_device_hash_lock(conf, hash);
2537 
2538 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2539 	for (i = 0; i < osh->nr_pages; i++) {
2540 		nsh->pages[i] = osh->pages[i];
2541 		osh->pages[i] = NULL;
2542 	}
2543 #endif
2544 		for(i=0; i<conf->pool_size; i++) {
2545 			nsh->dev[i].page = osh->dev[i].page;
2546 			nsh->dev[i].orig_page = osh->dev[i].page;
2547 			nsh->dev[i].offset = osh->dev[i].offset;
2548 		}
2549 		nsh->hash_lock_index = hash;
2550 		free_stripe(conf->slab_cache, osh);
2551 		cnt++;
2552 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2553 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2554 			hash++;
2555 			cnt = 0;
2556 		}
2557 	}
2558 	kmem_cache_destroy(conf->slab_cache);
2559 
2560 	/* Step 3.
2561 	 * At this point, we are holding all the stripes so the array
2562 	 * is completely stalled, so now is a good time to resize
2563 	 * conf->disks and the scribble region
2564 	 */
2565 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2566 	if (ndisks) {
2567 		for (i = 0; i < conf->pool_size; i++)
2568 			ndisks[i] = conf->disks[i];
2569 
2570 		for (i = conf->pool_size; i < newsize; i++) {
2571 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2572 			if (!ndisks[i].extra_page)
2573 				err = -ENOMEM;
2574 		}
2575 
2576 		if (err) {
2577 			for (i = conf->pool_size; i < newsize; i++)
2578 				if (ndisks[i].extra_page)
2579 					put_page(ndisks[i].extra_page);
2580 			kfree(ndisks);
2581 		} else {
2582 			kfree(conf->disks);
2583 			conf->disks = ndisks;
2584 		}
2585 	} else
2586 		err = -ENOMEM;
2587 
2588 	conf->slab_cache = sc;
2589 	conf->active_name = 1-conf->active_name;
2590 
2591 	/* Step 4, return new stripes to service */
2592 	while(!list_empty(&newstripes)) {
2593 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2594 		list_del_init(&nsh->lru);
2595 
2596 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2597 		for (i = 0; i < nsh->nr_pages; i++) {
2598 			if (nsh->pages[i])
2599 				continue;
2600 			nsh->pages[i] = alloc_page(GFP_NOIO);
2601 			if (!nsh->pages[i])
2602 				err = -ENOMEM;
2603 		}
2604 
2605 		for (i = conf->raid_disks; i < newsize; i++) {
2606 			if (nsh->dev[i].page)
2607 				continue;
2608 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2609 			nsh->dev[i].orig_page = nsh->dev[i].page;
2610 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2611 		}
2612 #else
2613 		for (i=conf->raid_disks; i < newsize; i++)
2614 			if (nsh->dev[i].page == NULL) {
2615 				struct page *p = alloc_page(GFP_NOIO);
2616 				nsh->dev[i].page = p;
2617 				nsh->dev[i].orig_page = p;
2618 				nsh->dev[i].offset = 0;
2619 				if (!p)
2620 					err = -ENOMEM;
2621 			}
2622 #endif
2623 		raid5_release_stripe(nsh);
2624 	}
2625 	/* critical section pass, GFP_NOIO no longer needed */
2626 
2627 	if (!err)
2628 		conf->pool_size = newsize;
2629 	mutex_unlock(&conf->cache_size_mutex);
2630 
2631 	return err;
2632 }
2633 
2634 static int drop_one_stripe(struct r5conf *conf)
2635 {
2636 	struct stripe_head *sh;
2637 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2638 
2639 	spin_lock_irq(conf->hash_locks + hash);
2640 	sh = get_free_stripe(conf, hash);
2641 	spin_unlock_irq(conf->hash_locks + hash);
2642 	if (!sh)
2643 		return 0;
2644 	BUG_ON(atomic_read(&sh->count));
2645 	shrink_buffers(sh);
2646 	free_stripe(conf->slab_cache, sh);
2647 	atomic_dec(&conf->active_stripes);
2648 	conf->max_nr_stripes--;
2649 	return 1;
2650 }
2651 
2652 static void shrink_stripes(struct r5conf *conf)
2653 {
2654 	while (conf->max_nr_stripes &&
2655 	       drop_one_stripe(conf))
2656 		;
2657 
2658 	kmem_cache_destroy(conf->slab_cache);
2659 	conf->slab_cache = NULL;
2660 }
2661 
2662 /*
2663  * This helper wraps rcu_dereference_protected() and can be used when
2664  * it is known that the nr_pending of the rdev is elevated.
2665  */
2666 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
2667 {
2668 	return rcu_dereference_protected(rdev,
2669 			atomic_read(&rcu_access_pointer(rdev)->nr_pending));
2670 }
2671 
2672 /*
2673  * This helper wraps rcu_dereference_protected() and should be used
2674  * when it is known that the mddev_lock() is held. This is safe
2675  * seeing raid5_remove_disk() has the same lock held.
2676  */
2677 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
2678 					 struct md_rdev __rcu *rdev)
2679 {
2680 	return rcu_dereference_protected(rdev,
2681 			lockdep_is_held(&mddev->reconfig_mutex));
2682 }
2683 
2684 static void raid5_end_read_request(struct bio * bi)
2685 {
2686 	struct stripe_head *sh = bi->bi_private;
2687 	struct r5conf *conf = sh->raid_conf;
2688 	int disks = sh->disks, i;
2689 	char b[BDEVNAME_SIZE];
2690 	struct md_rdev *rdev = NULL;
2691 	sector_t s;
2692 
2693 	for (i=0 ; i<disks; i++)
2694 		if (bi == &sh->dev[i].req)
2695 			break;
2696 
2697 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2698 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2699 		bi->bi_status);
2700 	if (i == disks) {
2701 		BUG();
2702 		return;
2703 	}
2704 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2705 		/* If replacement finished while this request was outstanding,
2706 		 * 'replacement' might be NULL already.
2707 		 * In that case it moved down to 'rdev'.
2708 		 * rdev is not removed until all requests are finished.
2709 		 */
2710 		rdev = rdev_pend_deref(conf->disks[i].replacement);
2711 	if (!rdev)
2712 		rdev = rdev_pend_deref(conf->disks[i].rdev);
2713 
2714 	if (use_new_offset(conf, sh))
2715 		s = sh->sector + rdev->new_data_offset;
2716 	else
2717 		s = sh->sector + rdev->data_offset;
2718 	if (!bi->bi_status) {
2719 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2720 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2721 			/* Note that this cannot happen on a
2722 			 * replacement device.  We just fail those on
2723 			 * any error
2724 			 */
2725 			pr_info_ratelimited(
2726 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2727 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2728 				(unsigned long long)s,
2729 				bdevname(rdev->bdev, b));
2730 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2731 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2732 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2733 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2734 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2735 
2736 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2737 			/*
2738 			 * end read for a page in journal, this
2739 			 * must be preparing for prexor in rmw
2740 			 */
2741 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2742 
2743 		if (atomic_read(&rdev->read_errors))
2744 			atomic_set(&rdev->read_errors, 0);
2745 	} else {
2746 		const char *bdn = bdevname(rdev->bdev, b);
2747 		int retry = 0;
2748 		int set_bad = 0;
2749 
2750 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2751 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2752 			atomic_inc(&rdev->read_errors);
2753 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2754 			pr_warn_ratelimited(
2755 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2756 				mdname(conf->mddev),
2757 				(unsigned long long)s,
2758 				bdn);
2759 		else if (conf->mddev->degraded >= conf->max_degraded) {
2760 			set_bad = 1;
2761 			pr_warn_ratelimited(
2762 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2763 				mdname(conf->mddev),
2764 				(unsigned long long)s,
2765 				bdn);
2766 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2767 			/* Oh, no!!! */
2768 			set_bad = 1;
2769 			pr_warn_ratelimited(
2770 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2771 				mdname(conf->mddev),
2772 				(unsigned long long)s,
2773 				bdn);
2774 		} else if (atomic_read(&rdev->read_errors)
2775 			 > conf->max_nr_stripes) {
2776 			if (!test_bit(Faulty, &rdev->flags)) {
2777 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2778 				    mdname(conf->mddev),
2779 				    atomic_read(&rdev->read_errors),
2780 				    conf->max_nr_stripes);
2781 				pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2782 				    mdname(conf->mddev), bdn);
2783 			}
2784 		} else
2785 			retry = 1;
2786 		if (set_bad && test_bit(In_sync, &rdev->flags)
2787 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2788 			retry = 1;
2789 		if (retry)
2790 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2791 				set_bit(R5_ReadError, &sh->dev[i].flags);
2792 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2793 				set_bit(R5_ReadError, &sh->dev[i].flags);
2794 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2795 			} else
2796 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2797 		else {
2798 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2799 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2800 			if (!(set_bad
2801 			      && test_bit(In_sync, &rdev->flags)
2802 			      && rdev_set_badblocks(
2803 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2804 				md_error(conf->mddev, rdev);
2805 		}
2806 	}
2807 	rdev_dec_pending(rdev, conf->mddev);
2808 	bio_uninit(bi);
2809 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2810 	set_bit(STRIPE_HANDLE, &sh->state);
2811 	raid5_release_stripe(sh);
2812 }
2813 
2814 static void raid5_end_write_request(struct bio *bi)
2815 {
2816 	struct stripe_head *sh = bi->bi_private;
2817 	struct r5conf *conf = sh->raid_conf;
2818 	int disks = sh->disks, i;
2819 	struct md_rdev *rdev;
2820 	sector_t first_bad;
2821 	int bad_sectors;
2822 	int replacement = 0;
2823 
2824 	for (i = 0 ; i < disks; i++) {
2825 		if (bi == &sh->dev[i].req) {
2826 			rdev = rdev_pend_deref(conf->disks[i].rdev);
2827 			break;
2828 		}
2829 		if (bi == &sh->dev[i].rreq) {
2830 			rdev = rdev_pend_deref(conf->disks[i].replacement);
2831 			if (rdev)
2832 				replacement = 1;
2833 			else
2834 				/* rdev was removed and 'replacement'
2835 				 * replaced it.  rdev is not removed
2836 				 * until all requests are finished.
2837 				 */
2838 				rdev = rdev_pend_deref(conf->disks[i].rdev);
2839 			break;
2840 		}
2841 	}
2842 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2843 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2844 		bi->bi_status);
2845 	if (i == disks) {
2846 		BUG();
2847 		return;
2848 	}
2849 
2850 	if (replacement) {
2851 		if (bi->bi_status)
2852 			md_error(conf->mddev, rdev);
2853 		else if (is_badblock(rdev, sh->sector,
2854 				     RAID5_STRIPE_SECTORS(conf),
2855 				     &first_bad, &bad_sectors))
2856 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2857 	} else {
2858 		if (bi->bi_status) {
2859 			set_bit(STRIPE_DEGRADED, &sh->state);
2860 			set_bit(WriteErrorSeen, &rdev->flags);
2861 			set_bit(R5_WriteError, &sh->dev[i].flags);
2862 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2863 				set_bit(MD_RECOVERY_NEEDED,
2864 					&rdev->mddev->recovery);
2865 		} else if (is_badblock(rdev, sh->sector,
2866 				       RAID5_STRIPE_SECTORS(conf),
2867 				       &first_bad, &bad_sectors)) {
2868 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2869 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2870 				/* That was a successful write so make
2871 				 * sure it looks like we already did
2872 				 * a re-write.
2873 				 */
2874 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2875 		}
2876 	}
2877 	rdev_dec_pending(rdev, conf->mddev);
2878 
2879 	if (sh->batch_head && bi->bi_status && !replacement)
2880 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2881 
2882 	bio_uninit(bi);
2883 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2884 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2885 	set_bit(STRIPE_HANDLE, &sh->state);
2886 	raid5_release_stripe(sh);
2887 
2888 	if (sh->batch_head && sh != sh->batch_head)
2889 		raid5_release_stripe(sh->batch_head);
2890 }
2891 
2892 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2893 {
2894 	char b[BDEVNAME_SIZE];
2895 	struct r5conf *conf = mddev->private;
2896 	unsigned long flags;
2897 	pr_debug("raid456: error called\n");
2898 
2899 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n",
2900 		mdname(mddev), bdevname(rdev->bdev, b));
2901 
2902 	spin_lock_irqsave(&conf->device_lock, flags);
2903 	set_bit(Faulty, &rdev->flags);
2904 	clear_bit(In_sync, &rdev->flags);
2905 	mddev->degraded = raid5_calc_degraded(conf);
2906 
2907 	if (has_failed(conf)) {
2908 		set_bit(MD_BROKEN, &conf->mddev->flags);
2909 		conf->recovery_disabled = mddev->recovery_disabled;
2910 
2911 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2912 			mdname(mddev), mddev->degraded, conf->raid_disks);
2913 	} else {
2914 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2915 			mdname(mddev), conf->raid_disks - mddev->degraded);
2916 	}
2917 
2918 	spin_unlock_irqrestore(&conf->device_lock, flags);
2919 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2920 
2921 	set_bit(Blocked, &rdev->flags);
2922 	set_mask_bits(&mddev->sb_flags, 0,
2923 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2924 	r5c_update_on_rdev_error(mddev, rdev);
2925 }
2926 
2927 /*
2928  * Input: a 'big' sector number,
2929  * Output: index of the data and parity disk, and the sector # in them.
2930  */
2931 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2932 			      int previous, int *dd_idx,
2933 			      struct stripe_head *sh)
2934 {
2935 	sector_t stripe, stripe2;
2936 	sector_t chunk_number;
2937 	unsigned int chunk_offset;
2938 	int pd_idx, qd_idx;
2939 	int ddf_layout = 0;
2940 	sector_t new_sector;
2941 	int algorithm = previous ? conf->prev_algo
2942 				 : conf->algorithm;
2943 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2944 					 : conf->chunk_sectors;
2945 	int raid_disks = previous ? conf->previous_raid_disks
2946 				  : conf->raid_disks;
2947 	int data_disks = raid_disks - conf->max_degraded;
2948 
2949 	/* First compute the information on this sector */
2950 
2951 	/*
2952 	 * Compute the chunk number and the sector offset inside the chunk
2953 	 */
2954 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2955 	chunk_number = r_sector;
2956 
2957 	/*
2958 	 * Compute the stripe number
2959 	 */
2960 	stripe = chunk_number;
2961 	*dd_idx = sector_div(stripe, data_disks);
2962 	stripe2 = stripe;
2963 	/*
2964 	 * Select the parity disk based on the user selected algorithm.
2965 	 */
2966 	pd_idx = qd_idx = -1;
2967 	switch(conf->level) {
2968 	case 4:
2969 		pd_idx = data_disks;
2970 		break;
2971 	case 5:
2972 		switch (algorithm) {
2973 		case ALGORITHM_LEFT_ASYMMETRIC:
2974 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2975 			if (*dd_idx >= pd_idx)
2976 				(*dd_idx)++;
2977 			break;
2978 		case ALGORITHM_RIGHT_ASYMMETRIC:
2979 			pd_idx = sector_div(stripe2, raid_disks);
2980 			if (*dd_idx >= pd_idx)
2981 				(*dd_idx)++;
2982 			break;
2983 		case ALGORITHM_LEFT_SYMMETRIC:
2984 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2985 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2986 			break;
2987 		case ALGORITHM_RIGHT_SYMMETRIC:
2988 			pd_idx = sector_div(stripe2, raid_disks);
2989 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2990 			break;
2991 		case ALGORITHM_PARITY_0:
2992 			pd_idx = 0;
2993 			(*dd_idx)++;
2994 			break;
2995 		case ALGORITHM_PARITY_N:
2996 			pd_idx = data_disks;
2997 			break;
2998 		default:
2999 			BUG();
3000 		}
3001 		break;
3002 	case 6:
3003 
3004 		switch (algorithm) {
3005 		case ALGORITHM_LEFT_ASYMMETRIC:
3006 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3007 			qd_idx = pd_idx + 1;
3008 			if (pd_idx == raid_disks-1) {
3009 				(*dd_idx)++;	/* Q D D D P */
3010 				qd_idx = 0;
3011 			} else if (*dd_idx >= pd_idx)
3012 				(*dd_idx) += 2; /* D D P Q D */
3013 			break;
3014 		case ALGORITHM_RIGHT_ASYMMETRIC:
3015 			pd_idx = sector_div(stripe2, raid_disks);
3016 			qd_idx = pd_idx + 1;
3017 			if (pd_idx == raid_disks-1) {
3018 				(*dd_idx)++;	/* Q D D D P */
3019 				qd_idx = 0;
3020 			} else if (*dd_idx >= pd_idx)
3021 				(*dd_idx) += 2; /* D D P Q D */
3022 			break;
3023 		case ALGORITHM_LEFT_SYMMETRIC:
3024 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3025 			qd_idx = (pd_idx + 1) % raid_disks;
3026 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3027 			break;
3028 		case ALGORITHM_RIGHT_SYMMETRIC:
3029 			pd_idx = sector_div(stripe2, raid_disks);
3030 			qd_idx = (pd_idx + 1) % raid_disks;
3031 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3032 			break;
3033 
3034 		case ALGORITHM_PARITY_0:
3035 			pd_idx = 0;
3036 			qd_idx = 1;
3037 			(*dd_idx) += 2;
3038 			break;
3039 		case ALGORITHM_PARITY_N:
3040 			pd_idx = data_disks;
3041 			qd_idx = data_disks + 1;
3042 			break;
3043 
3044 		case ALGORITHM_ROTATING_ZERO_RESTART:
3045 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3046 			 * of blocks for computing Q is different.
3047 			 */
3048 			pd_idx = sector_div(stripe2, raid_disks);
3049 			qd_idx = pd_idx + 1;
3050 			if (pd_idx == raid_disks-1) {
3051 				(*dd_idx)++;	/* Q D D D P */
3052 				qd_idx = 0;
3053 			} else if (*dd_idx >= pd_idx)
3054 				(*dd_idx) += 2; /* D D P Q D */
3055 			ddf_layout = 1;
3056 			break;
3057 
3058 		case ALGORITHM_ROTATING_N_RESTART:
3059 			/* Same a left_asymmetric, by first stripe is
3060 			 * D D D P Q  rather than
3061 			 * Q D D D P
3062 			 */
3063 			stripe2 += 1;
3064 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3065 			qd_idx = pd_idx + 1;
3066 			if (pd_idx == raid_disks-1) {
3067 				(*dd_idx)++;	/* Q D D D P */
3068 				qd_idx = 0;
3069 			} else if (*dd_idx >= pd_idx)
3070 				(*dd_idx) += 2; /* D D P Q D */
3071 			ddf_layout = 1;
3072 			break;
3073 
3074 		case ALGORITHM_ROTATING_N_CONTINUE:
3075 			/* Same as left_symmetric but Q is before P */
3076 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3077 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3078 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3079 			ddf_layout = 1;
3080 			break;
3081 
3082 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3083 			/* RAID5 left_asymmetric, with Q on last device */
3084 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3085 			if (*dd_idx >= pd_idx)
3086 				(*dd_idx)++;
3087 			qd_idx = raid_disks - 1;
3088 			break;
3089 
3090 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3091 			pd_idx = sector_div(stripe2, raid_disks-1);
3092 			if (*dd_idx >= pd_idx)
3093 				(*dd_idx)++;
3094 			qd_idx = raid_disks - 1;
3095 			break;
3096 
3097 		case ALGORITHM_LEFT_SYMMETRIC_6:
3098 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3099 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3100 			qd_idx = raid_disks - 1;
3101 			break;
3102 
3103 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3104 			pd_idx = sector_div(stripe2, raid_disks-1);
3105 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3106 			qd_idx = raid_disks - 1;
3107 			break;
3108 
3109 		case ALGORITHM_PARITY_0_6:
3110 			pd_idx = 0;
3111 			(*dd_idx)++;
3112 			qd_idx = raid_disks - 1;
3113 			break;
3114 
3115 		default:
3116 			BUG();
3117 		}
3118 		break;
3119 	}
3120 
3121 	if (sh) {
3122 		sh->pd_idx = pd_idx;
3123 		sh->qd_idx = qd_idx;
3124 		sh->ddf_layout = ddf_layout;
3125 	}
3126 	/*
3127 	 * Finally, compute the new sector number
3128 	 */
3129 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3130 	return new_sector;
3131 }
3132 
3133 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3134 {
3135 	struct r5conf *conf = sh->raid_conf;
3136 	int raid_disks = sh->disks;
3137 	int data_disks = raid_disks - conf->max_degraded;
3138 	sector_t new_sector = sh->sector, check;
3139 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3140 					 : conf->chunk_sectors;
3141 	int algorithm = previous ? conf->prev_algo
3142 				 : conf->algorithm;
3143 	sector_t stripe;
3144 	int chunk_offset;
3145 	sector_t chunk_number;
3146 	int dummy1, dd_idx = i;
3147 	sector_t r_sector;
3148 	struct stripe_head sh2;
3149 
3150 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3151 	stripe = new_sector;
3152 
3153 	if (i == sh->pd_idx)
3154 		return 0;
3155 	switch(conf->level) {
3156 	case 4: break;
3157 	case 5:
3158 		switch (algorithm) {
3159 		case ALGORITHM_LEFT_ASYMMETRIC:
3160 		case ALGORITHM_RIGHT_ASYMMETRIC:
3161 			if (i > sh->pd_idx)
3162 				i--;
3163 			break;
3164 		case ALGORITHM_LEFT_SYMMETRIC:
3165 		case ALGORITHM_RIGHT_SYMMETRIC:
3166 			if (i < sh->pd_idx)
3167 				i += raid_disks;
3168 			i -= (sh->pd_idx + 1);
3169 			break;
3170 		case ALGORITHM_PARITY_0:
3171 			i -= 1;
3172 			break;
3173 		case ALGORITHM_PARITY_N:
3174 			break;
3175 		default:
3176 			BUG();
3177 		}
3178 		break;
3179 	case 6:
3180 		if (i == sh->qd_idx)
3181 			return 0; /* It is the Q disk */
3182 		switch (algorithm) {
3183 		case ALGORITHM_LEFT_ASYMMETRIC:
3184 		case ALGORITHM_RIGHT_ASYMMETRIC:
3185 		case ALGORITHM_ROTATING_ZERO_RESTART:
3186 		case ALGORITHM_ROTATING_N_RESTART:
3187 			if (sh->pd_idx == raid_disks-1)
3188 				i--;	/* Q D D D P */
3189 			else if (i > sh->pd_idx)
3190 				i -= 2; /* D D P Q D */
3191 			break;
3192 		case ALGORITHM_LEFT_SYMMETRIC:
3193 		case ALGORITHM_RIGHT_SYMMETRIC:
3194 			if (sh->pd_idx == raid_disks-1)
3195 				i--; /* Q D D D P */
3196 			else {
3197 				/* D D P Q D */
3198 				if (i < sh->pd_idx)
3199 					i += raid_disks;
3200 				i -= (sh->pd_idx + 2);
3201 			}
3202 			break;
3203 		case ALGORITHM_PARITY_0:
3204 			i -= 2;
3205 			break;
3206 		case ALGORITHM_PARITY_N:
3207 			break;
3208 		case ALGORITHM_ROTATING_N_CONTINUE:
3209 			/* Like left_symmetric, but P is before Q */
3210 			if (sh->pd_idx == 0)
3211 				i--;	/* P D D D Q */
3212 			else {
3213 				/* D D Q P D */
3214 				if (i < sh->pd_idx)
3215 					i += raid_disks;
3216 				i -= (sh->pd_idx + 1);
3217 			}
3218 			break;
3219 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3220 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3221 			if (i > sh->pd_idx)
3222 				i--;
3223 			break;
3224 		case ALGORITHM_LEFT_SYMMETRIC_6:
3225 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3226 			if (i < sh->pd_idx)
3227 				i += data_disks + 1;
3228 			i -= (sh->pd_idx + 1);
3229 			break;
3230 		case ALGORITHM_PARITY_0_6:
3231 			i -= 1;
3232 			break;
3233 		default:
3234 			BUG();
3235 		}
3236 		break;
3237 	}
3238 
3239 	chunk_number = stripe * data_disks + i;
3240 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3241 
3242 	check = raid5_compute_sector(conf, r_sector,
3243 				     previous, &dummy1, &sh2);
3244 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3245 		|| sh2.qd_idx != sh->qd_idx) {
3246 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3247 			mdname(conf->mddev));
3248 		return 0;
3249 	}
3250 	return r_sector;
3251 }
3252 
3253 /*
3254  * There are cases where we want handle_stripe_dirtying() and
3255  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3256  *
3257  * This function checks whether we want to delay the towrite. Specifically,
3258  * we delay the towrite when:
3259  *
3260  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3261  *      stripe has data in journal (for other devices).
3262  *
3263  *      In this case, when reading data for the non-overwrite dev, it is
3264  *      necessary to handle complex rmw of write back cache (prexor with
3265  *      orig_page, and xor with page). To keep read path simple, we would
3266  *      like to flush data in journal to RAID disks first, so complex rmw
3267  *      is handled in the write patch (handle_stripe_dirtying).
3268  *
3269  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3270  *
3271  *      It is important to be able to flush all stripes in raid5-cache.
3272  *      Therefore, we need reserve some space on the journal device for
3273  *      these flushes. If flush operation includes pending writes to the
3274  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3275  *      for the flush out. If we exclude these pending writes from flush
3276  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3277  *      Therefore, excluding pending writes in these cases enables more
3278  *      efficient use of the journal device.
3279  *
3280  *      Note: To make sure the stripe makes progress, we only delay
3281  *      towrite for stripes with data already in journal (injournal > 0).
3282  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3283  *      no_space_stripes list.
3284  *
3285  *   3. during journal failure
3286  *      In journal failure, we try to flush all cached data to raid disks
3287  *      based on data in stripe cache. The array is read-only to upper
3288  *      layers, so we would skip all pending writes.
3289  *
3290  */
3291 static inline bool delay_towrite(struct r5conf *conf,
3292 				 struct r5dev *dev,
3293 				 struct stripe_head_state *s)
3294 {
3295 	/* case 1 above */
3296 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3297 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3298 		return true;
3299 	/* case 2 above */
3300 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3301 	    s->injournal > 0)
3302 		return true;
3303 	/* case 3 above */
3304 	if (s->log_failed && s->injournal)
3305 		return true;
3306 	return false;
3307 }
3308 
3309 static void
3310 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3311 			 int rcw, int expand)
3312 {
3313 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3314 	struct r5conf *conf = sh->raid_conf;
3315 	int level = conf->level;
3316 
3317 	if (rcw) {
3318 		/*
3319 		 * In some cases, handle_stripe_dirtying initially decided to
3320 		 * run rmw and allocates extra page for prexor. However, rcw is
3321 		 * cheaper later on. We need to free the extra page now,
3322 		 * because we won't be able to do that in ops_complete_prexor().
3323 		 */
3324 		r5c_release_extra_page(sh);
3325 
3326 		for (i = disks; i--; ) {
3327 			struct r5dev *dev = &sh->dev[i];
3328 
3329 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3330 				set_bit(R5_LOCKED, &dev->flags);
3331 				set_bit(R5_Wantdrain, &dev->flags);
3332 				if (!expand)
3333 					clear_bit(R5_UPTODATE, &dev->flags);
3334 				s->locked++;
3335 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3336 				set_bit(R5_LOCKED, &dev->flags);
3337 				s->locked++;
3338 			}
3339 		}
3340 		/* if we are not expanding this is a proper write request, and
3341 		 * there will be bios with new data to be drained into the
3342 		 * stripe cache
3343 		 */
3344 		if (!expand) {
3345 			if (!s->locked)
3346 				/* False alarm, nothing to do */
3347 				return;
3348 			sh->reconstruct_state = reconstruct_state_drain_run;
3349 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3350 		} else
3351 			sh->reconstruct_state = reconstruct_state_run;
3352 
3353 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3354 
3355 		if (s->locked + conf->max_degraded == disks)
3356 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3357 				atomic_inc(&conf->pending_full_writes);
3358 	} else {
3359 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3360 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3361 		BUG_ON(level == 6 &&
3362 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3363 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3364 
3365 		for (i = disks; i--; ) {
3366 			struct r5dev *dev = &sh->dev[i];
3367 			if (i == pd_idx || i == qd_idx)
3368 				continue;
3369 
3370 			if (dev->towrite &&
3371 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3372 			     test_bit(R5_Wantcompute, &dev->flags))) {
3373 				set_bit(R5_Wantdrain, &dev->flags);
3374 				set_bit(R5_LOCKED, &dev->flags);
3375 				clear_bit(R5_UPTODATE, &dev->flags);
3376 				s->locked++;
3377 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3378 				set_bit(R5_LOCKED, &dev->flags);
3379 				s->locked++;
3380 			}
3381 		}
3382 		if (!s->locked)
3383 			/* False alarm - nothing to do */
3384 			return;
3385 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3386 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3387 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3388 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3389 	}
3390 
3391 	/* keep the parity disk(s) locked while asynchronous operations
3392 	 * are in flight
3393 	 */
3394 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3395 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3396 	s->locked++;
3397 
3398 	if (level == 6) {
3399 		int qd_idx = sh->qd_idx;
3400 		struct r5dev *dev = &sh->dev[qd_idx];
3401 
3402 		set_bit(R5_LOCKED, &dev->flags);
3403 		clear_bit(R5_UPTODATE, &dev->flags);
3404 		s->locked++;
3405 	}
3406 
3407 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3408 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3409 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3410 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3411 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3412 
3413 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3414 		__func__, (unsigned long long)sh->sector,
3415 		s->locked, s->ops_request);
3416 }
3417 
3418 /*
3419  * Each stripe/dev can have one or more bion attached.
3420  * toread/towrite point to the first in a chain.
3421  * The bi_next chain must be in order.
3422  */
3423 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3424 			  int forwrite, int previous)
3425 {
3426 	struct bio **bip;
3427 	struct r5conf *conf = sh->raid_conf;
3428 	int firstwrite=0;
3429 
3430 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3431 		(unsigned long long)bi->bi_iter.bi_sector,
3432 		(unsigned long long)sh->sector);
3433 
3434 	spin_lock_irq(&sh->stripe_lock);
3435 	/* Don't allow new IO added to stripes in batch list */
3436 	if (sh->batch_head)
3437 		goto overlap;
3438 	if (forwrite) {
3439 		bip = &sh->dev[dd_idx].towrite;
3440 		if (*bip == NULL)
3441 			firstwrite = 1;
3442 	} else
3443 		bip = &sh->dev[dd_idx].toread;
3444 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3445 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3446 			goto overlap;
3447 		bip = & (*bip)->bi_next;
3448 	}
3449 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3450 		goto overlap;
3451 
3452 	if (forwrite && raid5_has_ppl(conf)) {
3453 		/*
3454 		 * With PPL only writes to consecutive data chunks within a
3455 		 * stripe are allowed because for a single stripe_head we can
3456 		 * only have one PPL entry at a time, which describes one data
3457 		 * range. Not really an overlap, but wait_for_overlap can be
3458 		 * used to handle this.
3459 		 */
3460 		sector_t sector;
3461 		sector_t first = 0;
3462 		sector_t last = 0;
3463 		int count = 0;
3464 		int i;
3465 
3466 		for (i = 0; i < sh->disks; i++) {
3467 			if (i != sh->pd_idx &&
3468 			    (i == dd_idx || sh->dev[i].towrite)) {
3469 				sector = sh->dev[i].sector;
3470 				if (count == 0 || sector < first)
3471 					first = sector;
3472 				if (sector > last)
3473 					last = sector;
3474 				count++;
3475 			}
3476 		}
3477 
3478 		if (first + conf->chunk_sectors * (count - 1) != last)
3479 			goto overlap;
3480 	}
3481 
3482 	if (!forwrite || previous)
3483 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3484 
3485 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3486 	if (*bip)
3487 		bi->bi_next = *bip;
3488 	*bip = bi;
3489 	bio_inc_remaining(bi);
3490 	md_write_inc(conf->mddev, bi);
3491 
3492 	if (forwrite) {
3493 		/* check if page is covered */
3494 		sector_t sector = sh->dev[dd_idx].sector;
3495 		for (bi=sh->dev[dd_idx].towrite;
3496 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3497 			     bi && bi->bi_iter.bi_sector <= sector;
3498 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3499 			if (bio_end_sector(bi) >= sector)
3500 				sector = bio_end_sector(bi);
3501 		}
3502 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3503 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3504 				sh->overwrite_disks++;
3505 	}
3506 
3507 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3508 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3509 		(unsigned long long)sh->sector, dd_idx);
3510 
3511 	if (conf->mddev->bitmap && firstwrite) {
3512 		/* Cannot hold spinlock over bitmap_startwrite,
3513 		 * but must ensure this isn't added to a batch until
3514 		 * we have added to the bitmap and set bm_seq.
3515 		 * So set STRIPE_BITMAP_PENDING to prevent
3516 		 * batching.
3517 		 * If multiple add_stripe_bio() calls race here they
3518 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3519 		 * to complete "bitmap_startwrite" gets to set
3520 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3521 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3522 		 * any more.
3523 		 */
3524 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3525 		spin_unlock_irq(&sh->stripe_lock);
3526 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3527 				     RAID5_STRIPE_SECTORS(conf), 0);
3528 		spin_lock_irq(&sh->stripe_lock);
3529 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3530 		if (!sh->batch_head) {
3531 			sh->bm_seq = conf->seq_flush+1;
3532 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3533 		}
3534 	}
3535 	spin_unlock_irq(&sh->stripe_lock);
3536 
3537 	if (stripe_can_batch(sh))
3538 		stripe_add_to_batch_list(conf, sh);
3539 	return 1;
3540 
3541  overlap:
3542 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3543 	spin_unlock_irq(&sh->stripe_lock);
3544 	return 0;
3545 }
3546 
3547 static void end_reshape(struct r5conf *conf);
3548 
3549 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3550 			    struct stripe_head *sh)
3551 {
3552 	int sectors_per_chunk =
3553 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3554 	int dd_idx;
3555 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3556 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3557 
3558 	raid5_compute_sector(conf,
3559 			     stripe * (disks - conf->max_degraded)
3560 			     *sectors_per_chunk + chunk_offset,
3561 			     previous,
3562 			     &dd_idx, sh);
3563 }
3564 
3565 static void
3566 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3567 		     struct stripe_head_state *s, int disks)
3568 {
3569 	int i;
3570 	BUG_ON(sh->batch_head);
3571 	for (i = disks; i--; ) {
3572 		struct bio *bi;
3573 		int bitmap_end = 0;
3574 
3575 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3576 			struct md_rdev *rdev;
3577 			rcu_read_lock();
3578 			rdev = rcu_dereference(conf->disks[i].rdev);
3579 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3580 			    !test_bit(Faulty, &rdev->flags))
3581 				atomic_inc(&rdev->nr_pending);
3582 			else
3583 				rdev = NULL;
3584 			rcu_read_unlock();
3585 			if (rdev) {
3586 				if (!rdev_set_badblocks(
3587 					    rdev,
3588 					    sh->sector,
3589 					    RAID5_STRIPE_SECTORS(conf), 0))
3590 					md_error(conf->mddev, rdev);
3591 				rdev_dec_pending(rdev, conf->mddev);
3592 			}
3593 		}
3594 		spin_lock_irq(&sh->stripe_lock);
3595 		/* fail all writes first */
3596 		bi = sh->dev[i].towrite;
3597 		sh->dev[i].towrite = NULL;
3598 		sh->overwrite_disks = 0;
3599 		spin_unlock_irq(&sh->stripe_lock);
3600 		if (bi)
3601 			bitmap_end = 1;
3602 
3603 		log_stripe_write_finished(sh);
3604 
3605 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3606 			wake_up(&conf->wait_for_overlap);
3607 
3608 		while (bi && bi->bi_iter.bi_sector <
3609 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3610 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3611 
3612 			md_write_end(conf->mddev);
3613 			bio_io_error(bi);
3614 			bi = nextbi;
3615 		}
3616 		if (bitmap_end)
3617 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3618 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3619 		bitmap_end = 0;
3620 		/* and fail all 'written' */
3621 		bi = sh->dev[i].written;
3622 		sh->dev[i].written = NULL;
3623 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3624 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3625 			sh->dev[i].page = sh->dev[i].orig_page;
3626 		}
3627 
3628 		if (bi) bitmap_end = 1;
3629 		while (bi && bi->bi_iter.bi_sector <
3630 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3631 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3632 
3633 			md_write_end(conf->mddev);
3634 			bio_io_error(bi);
3635 			bi = bi2;
3636 		}
3637 
3638 		/* fail any reads if this device is non-operational and
3639 		 * the data has not reached the cache yet.
3640 		 */
3641 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3642 		    s->failed > conf->max_degraded &&
3643 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3644 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3645 			spin_lock_irq(&sh->stripe_lock);
3646 			bi = sh->dev[i].toread;
3647 			sh->dev[i].toread = NULL;
3648 			spin_unlock_irq(&sh->stripe_lock);
3649 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3650 				wake_up(&conf->wait_for_overlap);
3651 			if (bi)
3652 				s->to_read--;
3653 			while (bi && bi->bi_iter.bi_sector <
3654 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3655 				struct bio *nextbi =
3656 					r5_next_bio(conf, bi, sh->dev[i].sector);
3657 
3658 				bio_io_error(bi);
3659 				bi = nextbi;
3660 			}
3661 		}
3662 		if (bitmap_end)
3663 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3664 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3665 		/* If we were in the middle of a write the parity block might
3666 		 * still be locked - so just clear all R5_LOCKED flags
3667 		 */
3668 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3669 	}
3670 	s->to_write = 0;
3671 	s->written = 0;
3672 
3673 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3674 		if (atomic_dec_and_test(&conf->pending_full_writes))
3675 			md_wakeup_thread(conf->mddev->thread);
3676 }
3677 
3678 static void
3679 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3680 		   struct stripe_head_state *s)
3681 {
3682 	int abort = 0;
3683 	int i;
3684 
3685 	BUG_ON(sh->batch_head);
3686 	clear_bit(STRIPE_SYNCING, &sh->state);
3687 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3688 		wake_up(&conf->wait_for_overlap);
3689 	s->syncing = 0;
3690 	s->replacing = 0;
3691 	/* There is nothing more to do for sync/check/repair.
3692 	 * Don't even need to abort as that is handled elsewhere
3693 	 * if needed, and not always wanted e.g. if there is a known
3694 	 * bad block here.
3695 	 * For recover/replace we need to record a bad block on all
3696 	 * non-sync devices, or abort the recovery
3697 	 */
3698 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3699 		/* During recovery devices cannot be removed, so
3700 		 * locking and refcounting of rdevs is not needed
3701 		 */
3702 		rcu_read_lock();
3703 		for (i = 0; i < conf->raid_disks; i++) {
3704 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3705 			if (rdev
3706 			    && !test_bit(Faulty, &rdev->flags)
3707 			    && !test_bit(In_sync, &rdev->flags)
3708 			    && !rdev_set_badblocks(rdev, sh->sector,
3709 						   RAID5_STRIPE_SECTORS(conf), 0))
3710 				abort = 1;
3711 			rdev = rcu_dereference(conf->disks[i].replacement);
3712 			if (rdev
3713 			    && !test_bit(Faulty, &rdev->flags)
3714 			    && !test_bit(In_sync, &rdev->flags)
3715 			    && !rdev_set_badblocks(rdev, sh->sector,
3716 						   RAID5_STRIPE_SECTORS(conf), 0))
3717 				abort = 1;
3718 		}
3719 		rcu_read_unlock();
3720 		if (abort)
3721 			conf->recovery_disabled =
3722 				conf->mddev->recovery_disabled;
3723 	}
3724 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3725 }
3726 
3727 static int want_replace(struct stripe_head *sh, int disk_idx)
3728 {
3729 	struct md_rdev *rdev;
3730 	int rv = 0;
3731 
3732 	rcu_read_lock();
3733 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3734 	if (rdev
3735 	    && !test_bit(Faulty, &rdev->flags)
3736 	    && !test_bit(In_sync, &rdev->flags)
3737 	    && (rdev->recovery_offset <= sh->sector
3738 		|| rdev->mddev->recovery_cp <= sh->sector))
3739 		rv = 1;
3740 	rcu_read_unlock();
3741 	return rv;
3742 }
3743 
3744 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3745 			   int disk_idx, int disks)
3746 {
3747 	struct r5dev *dev = &sh->dev[disk_idx];
3748 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3749 				  &sh->dev[s->failed_num[1]] };
3750 	int i;
3751 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3752 
3753 
3754 	if (test_bit(R5_LOCKED, &dev->flags) ||
3755 	    test_bit(R5_UPTODATE, &dev->flags))
3756 		/* No point reading this as we already have it or have
3757 		 * decided to get it.
3758 		 */
3759 		return 0;
3760 
3761 	if (dev->toread ||
3762 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3763 		/* We need this block to directly satisfy a request */
3764 		return 1;
3765 
3766 	if (s->syncing || s->expanding ||
3767 	    (s->replacing && want_replace(sh, disk_idx)))
3768 		/* When syncing, or expanding we read everything.
3769 		 * When replacing, we need the replaced block.
3770 		 */
3771 		return 1;
3772 
3773 	if ((s->failed >= 1 && fdev[0]->toread) ||
3774 	    (s->failed >= 2 && fdev[1]->toread))
3775 		/* If we want to read from a failed device, then
3776 		 * we need to actually read every other device.
3777 		 */
3778 		return 1;
3779 
3780 	/* Sometimes neither read-modify-write nor reconstruct-write
3781 	 * cycles can work.  In those cases we read every block we
3782 	 * can.  Then the parity-update is certain to have enough to
3783 	 * work with.
3784 	 * This can only be a problem when we need to write something,
3785 	 * and some device has failed.  If either of those tests
3786 	 * fail we need look no further.
3787 	 */
3788 	if (!s->failed || !s->to_write)
3789 		return 0;
3790 
3791 	if (test_bit(R5_Insync, &dev->flags) &&
3792 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3793 		/* Pre-reads at not permitted until after short delay
3794 		 * to gather multiple requests.  However if this
3795 		 * device is no Insync, the block could only be computed
3796 		 * and there is no need to delay that.
3797 		 */
3798 		return 0;
3799 
3800 	for (i = 0; i < s->failed && i < 2; i++) {
3801 		if (fdev[i]->towrite &&
3802 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3803 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3804 			/* If we have a partial write to a failed
3805 			 * device, then we will need to reconstruct
3806 			 * the content of that device, so all other
3807 			 * devices must be read.
3808 			 */
3809 			return 1;
3810 
3811 		if (s->failed >= 2 &&
3812 		    (fdev[i]->towrite ||
3813 		     s->failed_num[i] == sh->pd_idx ||
3814 		     s->failed_num[i] == sh->qd_idx) &&
3815 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3816 			/* In max degraded raid6, If the failed disk is P, Q,
3817 			 * or we want to read the failed disk, we need to do
3818 			 * reconstruct-write.
3819 			 */
3820 			force_rcw = true;
3821 	}
3822 
3823 	/* If we are forced to do a reconstruct-write, because parity
3824 	 * cannot be trusted and we are currently recovering it, there
3825 	 * is extra need to be careful.
3826 	 * If one of the devices that we would need to read, because
3827 	 * it is not being overwritten (and maybe not written at all)
3828 	 * is missing/faulty, then we need to read everything we can.
3829 	 */
3830 	if (!force_rcw &&
3831 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3832 		/* reconstruct-write isn't being forced */
3833 		return 0;
3834 	for (i = 0; i < s->failed && i < 2; i++) {
3835 		if (s->failed_num[i] != sh->pd_idx &&
3836 		    s->failed_num[i] != sh->qd_idx &&
3837 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3838 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3839 			return 1;
3840 	}
3841 
3842 	return 0;
3843 }
3844 
3845 /* fetch_block - checks the given member device to see if its data needs
3846  * to be read or computed to satisfy a request.
3847  *
3848  * Returns 1 when no more member devices need to be checked, otherwise returns
3849  * 0 to tell the loop in handle_stripe_fill to continue
3850  */
3851 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3852 		       int disk_idx, int disks)
3853 {
3854 	struct r5dev *dev = &sh->dev[disk_idx];
3855 
3856 	/* is the data in this block needed, and can we get it? */
3857 	if (need_this_block(sh, s, disk_idx, disks)) {
3858 		/* we would like to get this block, possibly by computing it,
3859 		 * otherwise read it if the backing disk is insync
3860 		 */
3861 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3862 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3863 		BUG_ON(sh->batch_head);
3864 
3865 		/*
3866 		 * In the raid6 case if the only non-uptodate disk is P
3867 		 * then we already trusted P to compute the other failed
3868 		 * drives. It is safe to compute rather than re-read P.
3869 		 * In other cases we only compute blocks from failed
3870 		 * devices, otherwise check/repair might fail to detect
3871 		 * a real inconsistency.
3872 		 */
3873 
3874 		if ((s->uptodate == disks - 1) &&
3875 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3876 		    (s->failed && (disk_idx == s->failed_num[0] ||
3877 				   disk_idx == s->failed_num[1])))) {
3878 			/* have disk failed, and we're requested to fetch it;
3879 			 * do compute it
3880 			 */
3881 			pr_debug("Computing stripe %llu block %d\n",
3882 			       (unsigned long long)sh->sector, disk_idx);
3883 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3884 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3885 			set_bit(R5_Wantcompute, &dev->flags);
3886 			sh->ops.target = disk_idx;
3887 			sh->ops.target2 = -1; /* no 2nd target */
3888 			s->req_compute = 1;
3889 			/* Careful: from this point on 'uptodate' is in the eye
3890 			 * of raid_run_ops which services 'compute' operations
3891 			 * before writes. R5_Wantcompute flags a block that will
3892 			 * be R5_UPTODATE by the time it is needed for a
3893 			 * subsequent operation.
3894 			 */
3895 			s->uptodate++;
3896 			return 1;
3897 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3898 			/* Computing 2-failure is *very* expensive; only
3899 			 * do it if failed >= 2
3900 			 */
3901 			int other;
3902 			for (other = disks; other--; ) {
3903 				if (other == disk_idx)
3904 					continue;
3905 				if (!test_bit(R5_UPTODATE,
3906 				      &sh->dev[other].flags))
3907 					break;
3908 			}
3909 			BUG_ON(other < 0);
3910 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3911 			       (unsigned long long)sh->sector,
3912 			       disk_idx, other);
3913 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3914 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3915 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3916 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3917 			sh->ops.target = disk_idx;
3918 			sh->ops.target2 = other;
3919 			s->uptodate += 2;
3920 			s->req_compute = 1;
3921 			return 1;
3922 		} else if (test_bit(R5_Insync, &dev->flags)) {
3923 			set_bit(R5_LOCKED, &dev->flags);
3924 			set_bit(R5_Wantread, &dev->flags);
3925 			s->locked++;
3926 			pr_debug("Reading block %d (sync=%d)\n",
3927 				disk_idx, s->syncing);
3928 		}
3929 	}
3930 
3931 	return 0;
3932 }
3933 
3934 /*
3935  * handle_stripe_fill - read or compute data to satisfy pending requests.
3936  */
3937 static void handle_stripe_fill(struct stripe_head *sh,
3938 			       struct stripe_head_state *s,
3939 			       int disks)
3940 {
3941 	int i;
3942 
3943 	/* look for blocks to read/compute, skip this if a compute
3944 	 * is already in flight, or if the stripe contents are in the
3945 	 * midst of changing due to a write
3946 	 */
3947 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3948 	    !sh->reconstruct_state) {
3949 
3950 		/*
3951 		 * For degraded stripe with data in journal, do not handle
3952 		 * read requests yet, instead, flush the stripe to raid
3953 		 * disks first, this avoids handling complex rmw of write
3954 		 * back cache (prexor with orig_page, and then xor with
3955 		 * page) in the read path
3956 		 */
3957 		if (s->injournal && s->failed) {
3958 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3959 				r5c_make_stripe_write_out(sh);
3960 			goto out;
3961 		}
3962 
3963 		for (i = disks; i--; )
3964 			if (fetch_block(sh, s, i, disks))
3965 				break;
3966 	}
3967 out:
3968 	set_bit(STRIPE_HANDLE, &sh->state);
3969 }
3970 
3971 static void break_stripe_batch_list(struct stripe_head *head_sh,
3972 				    unsigned long handle_flags);
3973 /* handle_stripe_clean_event
3974  * any written block on an uptodate or failed drive can be returned.
3975  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3976  * never LOCKED, so we don't need to test 'failed' directly.
3977  */
3978 static void handle_stripe_clean_event(struct r5conf *conf,
3979 	struct stripe_head *sh, int disks)
3980 {
3981 	int i;
3982 	struct r5dev *dev;
3983 	int discard_pending = 0;
3984 	struct stripe_head *head_sh = sh;
3985 	bool do_endio = false;
3986 
3987 	for (i = disks; i--; )
3988 		if (sh->dev[i].written) {
3989 			dev = &sh->dev[i];
3990 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3991 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3992 			     test_bit(R5_Discard, &dev->flags) ||
3993 			     test_bit(R5_SkipCopy, &dev->flags))) {
3994 				/* We can return any write requests */
3995 				struct bio *wbi, *wbi2;
3996 				pr_debug("Return write for disc %d\n", i);
3997 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3998 					clear_bit(R5_UPTODATE, &dev->flags);
3999 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4000 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4001 				}
4002 				do_endio = true;
4003 
4004 returnbi:
4005 				dev->page = dev->orig_page;
4006 				wbi = dev->written;
4007 				dev->written = NULL;
4008 				while (wbi && wbi->bi_iter.bi_sector <
4009 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4010 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4011 					md_write_end(conf->mddev);
4012 					bio_endio(wbi);
4013 					wbi = wbi2;
4014 				}
4015 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4016 						   RAID5_STRIPE_SECTORS(conf),
4017 						   !test_bit(STRIPE_DEGRADED, &sh->state),
4018 						   0);
4019 				if (head_sh->batch_head) {
4020 					sh = list_first_entry(&sh->batch_list,
4021 							      struct stripe_head,
4022 							      batch_list);
4023 					if (sh != head_sh) {
4024 						dev = &sh->dev[i];
4025 						goto returnbi;
4026 					}
4027 				}
4028 				sh = head_sh;
4029 				dev = &sh->dev[i];
4030 			} else if (test_bit(R5_Discard, &dev->flags))
4031 				discard_pending = 1;
4032 		}
4033 
4034 	log_stripe_write_finished(sh);
4035 
4036 	if (!discard_pending &&
4037 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4038 		int hash;
4039 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4040 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4041 		if (sh->qd_idx >= 0) {
4042 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4043 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4044 		}
4045 		/* now that discard is done we can proceed with any sync */
4046 		clear_bit(STRIPE_DISCARD, &sh->state);
4047 		/*
4048 		 * SCSI discard will change some bio fields and the stripe has
4049 		 * no updated data, so remove it from hash list and the stripe
4050 		 * will be reinitialized
4051 		 */
4052 unhash:
4053 		hash = sh->hash_lock_index;
4054 		spin_lock_irq(conf->hash_locks + hash);
4055 		remove_hash(sh);
4056 		spin_unlock_irq(conf->hash_locks + hash);
4057 		if (head_sh->batch_head) {
4058 			sh = list_first_entry(&sh->batch_list,
4059 					      struct stripe_head, batch_list);
4060 			if (sh != head_sh)
4061 					goto unhash;
4062 		}
4063 		sh = head_sh;
4064 
4065 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4066 			set_bit(STRIPE_HANDLE, &sh->state);
4067 
4068 	}
4069 
4070 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4071 		if (atomic_dec_and_test(&conf->pending_full_writes))
4072 			md_wakeup_thread(conf->mddev->thread);
4073 
4074 	if (head_sh->batch_head && do_endio)
4075 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4076 }
4077 
4078 /*
4079  * For RMW in write back cache, we need extra page in prexor to store the
4080  * old data. This page is stored in dev->orig_page.
4081  *
4082  * This function checks whether we have data for prexor. The exact logic
4083  * is:
4084  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4085  */
4086 static inline bool uptodate_for_rmw(struct r5dev *dev)
4087 {
4088 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4089 		(!test_bit(R5_InJournal, &dev->flags) ||
4090 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4091 }
4092 
4093 static int handle_stripe_dirtying(struct r5conf *conf,
4094 				  struct stripe_head *sh,
4095 				  struct stripe_head_state *s,
4096 				  int disks)
4097 {
4098 	int rmw = 0, rcw = 0, i;
4099 	sector_t recovery_cp = conf->mddev->recovery_cp;
4100 
4101 	/* Check whether resync is now happening or should start.
4102 	 * If yes, then the array is dirty (after unclean shutdown or
4103 	 * initial creation), so parity in some stripes might be inconsistent.
4104 	 * In this case, we need to always do reconstruct-write, to ensure
4105 	 * that in case of drive failure or read-error correction, we
4106 	 * generate correct data from the parity.
4107 	 */
4108 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4109 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4110 	     s->failed == 0)) {
4111 		/* Calculate the real rcw later - for now make it
4112 		 * look like rcw is cheaper
4113 		 */
4114 		rcw = 1; rmw = 2;
4115 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4116 			 conf->rmw_level, (unsigned long long)recovery_cp,
4117 			 (unsigned long long)sh->sector);
4118 	} else for (i = disks; i--; ) {
4119 		/* would I have to read this buffer for read_modify_write */
4120 		struct r5dev *dev = &sh->dev[i];
4121 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4122 		     i == sh->pd_idx || i == sh->qd_idx ||
4123 		     test_bit(R5_InJournal, &dev->flags)) &&
4124 		    !test_bit(R5_LOCKED, &dev->flags) &&
4125 		    !(uptodate_for_rmw(dev) ||
4126 		      test_bit(R5_Wantcompute, &dev->flags))) {
4127 			if (test_bit(R5_Insync, &dev->flags))
4128 				rmw++;
4129 			else
4130 				rmw += 2*disks;  /* cannot read it */
4131 		}
4132 		/* Would I have to read this buffer for reconstruct_write */
4133 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4134 		    i != sh->pd_idx && i != sh->qd_idx &&
4135 		    !test_bit(R5_LOCKED, &dev->flags) &&
4136 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4137 		      test_bit(R5_Wantcompute, &dev->flags))) {
4138 			if (test_bit(R5_Insync, &dev->flags))
4139 				rcw++;
4140 			else
4141 				rcw += 2*disks;
4142 		}
4143 	}
4144 
4145 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4146 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4147 	set_bit(STRIPE_HANDLE, &sh->state);
4148 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4149 		/* prefer read-modify-write, but need to get some data */
4150 		if (conf->mddev->queue)
4151 			blk_add_trace_msg(conf->mddev->queue,
4152 					  "raid5 rmw %llu %d",
4153 					  (unsigned long long)sh->sector, rmw);
4154 		for (i = disks; i--; ) {
4155 			struct r5dev *dev = &sh->dev[i];
4156 			if (test_bit(R5_InJournal, &dev->flags) &&
4157 			    dev->page == dev->orig_page &&
4158 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4159 				/* alloc page for prexor */
4160 				struct page *p = alloc_page(GFP_NOIO);
4161 
4162 				if (p) {
4163 					dev->orig_page = p;
4164 					continue;
4165 				}
4166 
4167 				/*
4168 				 * alloc_page() failed, try use
4169 				 * disk_info->extra_page
4170 				 */
4171 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4172 						      &conf->cache_state)) {
4173 					r5c_use_extra_page(sh);
4174 					break;
4175 				}
4176 
4177 				/* extra_page in use, add to delayed_list */
4178 				set_bit(STRIPE_DELAYED, &sh->state);
4179 				s->waiting_extra_page = 1;
4180 				return -EAGAIN;
4181 			}
4182 		}
4183 
4184 		for (i = disks; i--; ) {
4185 			struct r5dev *dev = &sh->dev[i];
4186 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4187 			     i == sh->pd_idx || i == sh->qd_idx ||
4188 			     test_bit(R5_InJournal, &dev->flags)) &&
4189 			    !test_bit(R5_LOCKED, &dev->flags) &&
4190 			    !(uptodate_for_rmw(dev) ||
4191 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4192 			    test_bit(R5_Insync, &dev->flags)) {
4193 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4194 					     &sh->state)) {
4195 					pr_debug("Read_old block %d for r-m-w\n",
4196 						 i);
4197 					set_bit(R5_LOCKED, &dev->flags);
4198 					set_bit(R5_Wantread, &dev->flags);
4199 					s->locked++;
4200 				} else
4201 					set_bit(STRIPE_DELAYED, &sh->state);
4202 			}
4203 		}
4204 	}
4205 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4206 		/* want reconstruct write, but need to get some data */
4207 		int qread =0;
4208 		rcw = 0;
4209 		for (i = disks; i--; ) {
4210 			struct r5dev *dev = &sh->dev[i];
4211 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4212 			    i != sh->pd_idx && i != sh->qd_idx &&
4213 			    !test_bit(R5_LOCKED, &dev->flags) &&
4214 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4215 			      test_bit(R5_Wantcompute, &dev->flags))) {
4216 				rcw++;
4217 				if (test_bit(R5_Insync, &dev->flags) &&
4218 				    test_bit(STRIPE_PREREAD_ACTIVE,
4219 					     &sh->state)) {
4220 					pr_debug("Read_old block "
4221 						"%d for Reconstruct\n", i);
4222 					set_bit(R5_LOCKED, &dev->flags);
4223 					set_bit(R5_Wantread, &dev->flags);
4224 					s->locked++;
4225 					qread++;
4226 				} else
4227 					set_bit(STRIPE_DELAYED, &sh->state);
4228 			}
4229 		}
4230 		if (rcw && conf->mddev->queue)
4231 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4232 					  (unsigned long long)sh->sector,
4233 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4234 	}
4235 
4236 	if (rcw > disks && rmw > disks &&
4237 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4238 		set_bit(STRIPE_DELAYED, &sh->state);
4239 
4240 	/* now if nothing is locked, and if we have enough data,
4241 	 * we can start a write request
4242 	 */
4243 	/* since handle_stripe can be called at any time we need to handle the
4244 	 * case where a compute block operation has been submitted and then a
4245 	 * subsequent call wants to start a write request.  raid_run_ops only
4246 	 * handles the case where compute block and reconstruct are requested
4247 	 * simultaneously.  If this is not the case then new writes need to be
4248 	 * held off until the compute completes.
4249 	 */
4250 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4251 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4252 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4253 		schedule_reconstruction(sh, s, rcw == 0, 0);
4254 	return 0;
4255 }
4256 
4257 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4258 				struct stripe_head_state *s, int disks)
4259 {
4260 	struct r5dev *dev = NULL;
4261 
4262 	BUG_ON(sh->batch_head);
4263 	set_bit(STRIPE_HANDLE, &sh->state);
4264 
4265 	switch (sh->check_state) {
4266 	case check_state_idle:
4267 		/* start a new check operation if there are no failures */
4268 		if (s->failed == 0) {
4269 			BUG_ON(s->uptodate != disks);
4270 			sh->check_state = check_state_run;
4271 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4272 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4273 			s->uptodate--;
4274 			break;
4275 		}
4276 		dev = &sh->dev[s->failed_num[0]];
4277 		fallthrough;
4278 	case check_state_compute_result:
4279 		sh->check_state = check_state_idle;
4280 		if (!dev)
4281 			dev = &sh->dev[sh->pd_idx];
4282 
4283 		/* check that a write has not made the stripe insync */
4284 		if (test_bit(STRIPE_INSYNC, &sh->state))
4285 			break;
4286 
4287 		/* either failed parity check, or recovery is happening */
4288 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4289 		BUG_ON(s->uptodate != disks);
4290 
4291 		set_bit(R5_LOCKED, &dev->flags);
4292 		s->locked++;
4293 		set_bit(R5_Wantwrite, &dev->flags);
4294 
4295 		clear_bit(STRIPE_DEGRADED, &sh->state);
4296 		set_bit(STRIPE_INSYNC, &sh->state);
4297 		break;
4298 	case check_state_run:
4299 		break; /* we will be called again upon completion */
4300 	case check_state_check_result:
4301 		sh->check_state = check_state_idle;
4302 
4303 		/* if a failure occurred during the check operation, leave
4304 		 * STRIPE_INSYNC not set and let the stripe be handled again
4305 		 */
4306 		if (s->failed)
4307 			break;
4308 
4309 		/* handle a successful check operation, if parity is correct
4310 		 * we are done.  Otherwise update the mismatch count and repair
4311 		 * parity if !MD_RECOVERY_CHECK
4312 		 */
4313 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4314 			/* parity is correct (on disc,
4315 			 * not in buffer any more)
4316 			 */
4317 			set_bit(STRIPE_INSYNC, &sh->state);
4318 		else {
4319 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4320 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4321 				/* don't try to repair!! */
4322 				set_bit(STRIPE_INSYNC, &sh->state);
4323 				pr_warn_ratelimited("%s: mismatch sector in range "
4324 						    "%llu-%llu\n", mdname(conf->mddev),
4325 						    (unsigned long long) sh->sector,
4326 						    (unsigned long long) sh->sector +
4327 						    RAID5_STRIPE_SECTORS(conf));
4328 			} else {
4329 				sh->check_state = check_state_compute_run;
4330 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4331 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4332 				set_bit(R5_Wantcompute,
4333 					&sh->dev[sh->pd_idx].flags);
4334 				sh->ops.target = sh->pd_idx;
4335 				sh->ops.target2 = -1;
4336 				s->uptodate++;
4337 			}
4338 		}
4339 		break;
4340 	case check_state_compute_run:
4341 		break;
4342 	default:
4343 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4344 		       __func__, sh->check_state,
4345 		       (unsigned long long) sh->sector);
4346 		BUG();
4347 	}
4348 }
4349 
4350 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4351 				  struct stripe_head_state *s,
4352 				  int disks)
4353 {
4354 	int pd_idx = sh->pd_idx;
4355 	int qd_idx = sh->qd_idx;
4356 	struct r5dev *dev;
4357 
4358 	BUG_ON(sh->batch_head);
4359 	set_bit(STRIPE_HANDLE, &sh->state);
4360 
4361 	BUG_ON(s->failed > 2);
4362 
4363 	/* Want to check and possibly repair P and Q.
4364 	 * However there could be one 'failed' device, in which
4365 	 * case we can only check one of them, possibly using the
4366 	 * other to generate missing data
4367 	 */
4368 
4369 	switch (sh->check_state) {
4370 	case check_state_idle:
4371 		/* start a new check operation if there are < 2 failures */
4372 		if (s->failed == s->q_failed) {
4373 			/* The only possible failed device holds Q, so it
4374 			 * makes sense to check P (If anything else were failed,
4375 			 * we would have used P to recreate it).
4376 			 */
4377 			sh->check_state = check_state_run;
4378 		}
4379 		if (!s->q_failed && s->failed < 2) {
4380 			/* Q is not failed, and we didn't use it to generate
4381 			 * anything, so it makes sense to check it
4382 			 */
4383 			if (sh->check_state == check_state_run)
4384 				sh->check_state = check_state_run_pq;
4385 			else
4386 				sh->check_state = check_state_run_q;
4387 		}
4388 
4389 		/* discard potentially stale zero_sum_result */
4390 		sh->ops.zero_sum_result = 0;
4391 
4392 		if (sh->check_state == check_state_run) {
4393 			/* async_xor_zero_sum destroys the contents of P */
4394 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4395 			s->uptodate--;
4396 		}
4397 		if (sh->check_state >= check_state_run &&
4398 		    sh->check_state <= check_state_run_pq) {
4399 			/* async_syndrome_zero_sum preserves P and Q, so
4400 			 * no need to mark them !uptodate here
4401 			 */
4402 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4403 			break;
4404 		}
4405 
4406 		/* we have 2-disk failure */
4407 		BUG_ON(s->failed != 2);
4408 		fallthrough;
4409 	case check_state_compute_result:
4410 		sh->check_state = check_state_idle;
4411 
4412 		/* check that a write has not made the stripe insync */
4413 		if (test_bit(STRIPE_INSYNC, &sh->state))
4414 			break;
4415 
4416 		/* now write out any block on a failed drive,
4417 		 * or P or Q if they were recomputed
4418 		 */
4419 		dev = NULL;
4420 		if (s->failed == 2) {
4421 			dev = &sh->dev[s->failed_num[1]];
4422 			s->locked++;
4423 			set_bit(R5_LOCKED, &dev->flags);
4424 			set_bit(R5_Wantwrite, &dev->flags);
4425 		}
4426 		if (s->failed >= 1) {
4427 			dev = &sh->dev[s->failed_num[0]];
4428 			s->locked++;
4429 			set_bit(R5_LOCKED, &dev->flags);
4430 			set_bit(R5_Wantwrite, &dev->flags);
4431 		}
4432 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4433 			dev = &sh->dev[pd_idx];
4434 			s->locked++;
4435 			set_bit(R5_LOCKED, &dev->flags);
4436 			set_bit(R5_Wantwrite, &dev->flags);
4437 		}
4438 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4439 			dev = &sh->dev[qd_idx];
4440 			s->locked++;
4441 			set_bit(R5_LOCKED, &dev->flags);
4442 			set_bit(R5_Wantwrite, &dev->flags);
4443 		}
4444 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4445 			      "%s: disk%td not up to date\n",
4446 			      mdname(conf->mddev),
4447 			      dev - (struct r5dev *) &sh->dev)) {
4448 			clear_bit(R5_LOCKED, &dev->flags);
4449 			clear_bit(R5_Wantwrite, &dev->flags);
4450 			s->locked--;
4451 		}
4452 		clear_bit(STRIPE_DEGRADED, &sh->state);
4453 
4454 		set_bit(STRIPE_INSYNC, &sh->state);
4455 		break;
4456 	case check_state_run:
4457 	case check_state_run_q:
4458 	case check_state_run_pq:
4459 		break; /* we will be called again upon completion */
4460 	case check_state_check_result:
4461 		sh->check_state = check_state_idle;
4462 
4463 		/* handle a successful check operation, if parity is correct
4464 		 * we are done.  Otherwise update the mismatch count and repair
4465 		 * parity if !MD_RECOVERY_CHECK
4466 		 */
4467 		if (sh->ops.zero_sum_result == 0) {
4468 			/* both parities are correct */
4469 			if (!s->failed)
4470 				set_bit(STRIPE_INSYNC, &sh->state);
4471 			else {
4472 				/* in contrast to the raid5 case we can validate
4473 				 * parity, but still have a failure to write
4474 				 * back
4475 				 */
4476 				sh->check_state = check_state_compute_result;
4477 				/* Returning at this point means that we may go
4478 				 * off and bring p and/or q uptodate again so
4479 				 * we make sure to check zero_sum_result again
4480 				 * to verify if p or q need writeback
4481 				 */
4482 			}
4483 		} else {
4484 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4485 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4486 				/* don't try to repair!! */
4487 				set_bit(STRIPE_INSYNC, &sh->state);
4488 				pr_warn_ratelimited("%s: mismatch sector in range "
4489 						    "%llu-%llu\n", mdname(conf->mddev),
4490 						    (unsigned long long) sh->sector,
4491 						    (unsigned long long) sh->sector +
4492 						    RAID5_STRIPE_SECTORS(conf));
4493 			} else {
4494 				int *target = &sh->ops.target;
4495 
4496 				sh->ops.target = -1;
4497 				sh->ops.target2 = -1;
4498 				sh->check_state = check_state_compute_run;
4499 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4500 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4501 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4502 					set_bit(R5_Wantcompute,
4503 						&sh->dev[pd_idx].flags);
4504 					*target = pd_idx;
4505 					target = &sh->ops.target2;
4506 					s->uptodate++;
4507 				}
4508 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4509 					set_bit(R5_Wantcompute,
4510 						&sh->dev[qd_idx].flags);
4511 					*target = qd_idx;
4512 					s->uptodate++;
4513 				}
4514 			}
4515 		}
4516 		break;
4517 	case check_state_compute_run:
4518 		break;
4519 	default:
4520 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4521 			__func__, sh->check_state,
4522 			(unsigned long long) sh->sector);
4523 		BUG();
4524 	}
4525 }
4526 
4527 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4528 {
4529 	int i;
4530 
4531 	/* We have read all the blocks in this stripe and now we need to
4532 	 * copy some of them into a target stripe for expand.
4533 	 */
4534 	struct dma_async_tx_descriptor *tx = NULL;
4535 	BUG_ON(sh->batch_head);
4536 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4537 	for (i = 0; i < sh->disks; i++)
4538 		if (i != sh->pd_idx && i != sh->qd_idx) {
4539 			int dd_idx, j;
4540 			struct stripe_head *sh2;
4541 			struct async_submit_ctl submit;
4542 
4543 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4544 			sector_t s = raid5_compute_sector(conf, bn, 0,
4545 							  &dd_idx, NULL);
4546 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4547 			if (sh2 == NULL)
4548 				/* so far only the early blocks of this stripe
4549 				 * have been requested.  When later blocks
4550 				 * get requested, we will try again
4551 				 */
4552 				continue;
4553 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4554 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4555 				/* must have already done this block */
4556 				raid5_release_stripe(sh2);
4557 				continue;
4558 			}
4559 
4560 			/* place all the copies on one channel */
4561 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4562 			tx = async_memcpy(sh2->dev[dd_idx].page,
4563 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4564 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4565 					  &submit);
4566 
4567 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4568 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4569 			for (j = 0; j < conf->raid_disks; j++)
4570 				if (j != sh2->pd_idx &&
4571 				    j != sh2->qd_idx &&
4572 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4573 					break;
4574 			if (j == conf->raid_disks) {
4575 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4576 				set_bit(STRIPE_HANDLE, &sh2->state);
4577 			}
4578 			raid5_release_stripe(sh2);
4579 
4580 		}
4581 	/* done submitting copies, wait for them to complete */
4582 	async_tx_quiesce(&tx);
4583 }
4584 
4585 /*
4586  * handle_stripe - do things to a stripe.
4587  *
4588  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4589  * state of various bits to see what needs to be done.
4590  * Possible results:
4591  *    return some read requests which now have data
4592  *    return some write requests which are safely on storage
4593  *    schedule a read on some buffers
4594  *    schedule a write of some buffers
4595  *    return confirmation of parity correctness
4596  *
4597  */
4598 
4599 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4600 {
4601 	struct r5conf *conf = sh->raid_conf;
4602 	int disks = sh->disks;
4603 	struct r5dev *dev;
4604 	int i;
4605 	int do_recovery = 0;
4606 
4607 	memset(s, 0, sizeof(*s));
4608 
4609 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4610 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4611 	s->failed_num[0] = -1;
4612 	s->failed_num[1] = -1;
4613 	s->log_failed = r5l_log_disk_error(conf);
4614 
4615 	/* Now to look around and see what can be done */
4616 	rcu_read_lock();
4617 	for (i=disks; i--; ) {
4618 		struct md_rdev *rdev;
4619 		sector_t first_bad;
4620 		int bad_sectors;
4621 		int is_bad = 0;
4622 
4623 		dev = &sh->dev[i];
4624 
4625 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4626 			 i, dev->flags,
4627 			 dev->toread, dev->towrite, dev->written);
4628 		/* maybe we can reply to a read
4629 		 *
4630 		 * new wantfill requests are only permitted while
4631 		 * ops_complete_biofill is guaranteed to be inactive
4632 		 */
4633 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4634 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4635 			set_bit(R5_Wantfill, &dev->flags);
4636 
4637 		/* now count some things */
4638 		if (test_bit(R5_LOCKED, &dev->flags))
4639 			s->locked++;
4640 		if (test_bit(R5_UPTODATE, &dev->flags))
4641 			s->uptodate++;
4642 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4643 			s->compute++;
4644 			BUG_ON(s->compute > 2);
4645 		}
4646 
4647 		if (test_bit(R5_Wantfill, &dev->flags))
4648 			s->to_fill++;
4649 		else if (dev->toread)
4650 			s->to_read++;
4651 		if (dev->towrite) {
4652 			s->to_write++;
4653 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4654 				s->non_overwrite++;
4655 		}
4656 		if (dev->written)
4657 			s->written++;
4658 		/* Prefer to use the replacement for reads, but only
4659 		 * if it is recovered enough and has no bad blocks.
4660 		 */
4661 		rdev = rcu_dereference(conf->disks[i].replacement);
4662 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4663 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4664 		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4665 				 &first_bad, &bad_sectors))
4666 			set_bit(R5_ReadRepl, &dev->flags);
4667 		else {
4668 			if (rdev && !test_bit(Faulty, &rdev->flags))
4669 				set_bit(R5_NeedReplace, &dev->flags);
4670 			else
4671 				clear_bit(R5_NeedReplace, &dev->flags);
4672 			rdev = rcu_dereference(conf->disks[i].rdev);
4673 			clear_bit(R5_ReadRepl, &dev->flags);
4674 		}
4675 		if (rdev && test_bit(Faulty, &rdev->flags))
4676 			rdev = NULL;
4677 		if (rdev) {
4678 			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4679 					     &first_bad, &bad_sectors);
4680 			if (s->blocked_rdev == NULL
4681 			    && (test_bit(Blocked, &rdev->flags)
4682 				|| is_bad < 0)) {
4683 				if (is_bad < 0)
4684 					set_bit(BlockedBadBlocks,
4685 						&rdev->flags);
4686 				s->blocked_rdev = rdev;
4687 				atomic_inc(&rdev->nr_pending);
4688 			}
4689 		}
4690 		clear_bit(R5_Insync, &dev->flags);
4691 		if (!rdev)
4692 			/* Not in-sync */;
4693 		else if (is_bad) {
4694 			/* also not in-sync */
4695 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4696 			    test_bit(R5_UPTODATE, &dev->flags)) {
4697 				/* treat as in-sync, but with a read error
4698 				 * which we can now try to correct
4699 				 */
4700 				set_bit(R5_Insync, &dev->flags);
4701 				set_bit(R5_ReadError, &dev->flags);
4702 			}
4703 		} else if (test_bit(In_sync, &rdev->flags))
4704 			set_bit(R5_Insync, &dev->flags);
4705 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4706 			/* in sync if before recovery_offset */
4707 			set_bit(R5_Insync, &dev->flags);
4708 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4709 			 test_bit(R5_Expanded, &dev->flags))
4710 			/* If we've reshaped into here, we assume it is Insync.
4711 			 * We will shortly update recovery_offset to make
4712 			 * it official.
4713 			 */
4714 			set_bit(R5_Insync, &dev->flags);
4715 
4716 		if (test_bit(R5_WriteError, &dev->flags)) {
4717 			/* This flag does not apply to '.replacement'
4718 			 * only to .rdev, so make sure to check that*/
4719 			struct md_rdev *rdev2 = rcu_dereference(
4720 				conf->disks[i].rdev);
4721 			if (rdev2 == rdev)
4722 				clear_bit(R5_Insync, &dev->flags);
4723 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4724 				s->handle_bad_blocks = 1;
4725 				atomic_inc(&rdev2->nr_pending);
4726 			} else
4727 				clear_bit(R5_WriteError, &dev->flags);
4728 		}
4729 		if (test_bit(R5_MadeGood, &dev->flags)) {
4730 			/* This flag does not apply to '.replacement'
4731 			 * only to .rdev, so make sure to check that*/
4732 			struct md_rdev *rdev2 = rcu_dereference(
4733 				conf->disks[i].rdev);
4734 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4735 				s->handle_bad_blocks = 1;
4736 				atomic_inc(&rdev2->nr_pending);
4737 			} else
4738 				clear_bit(R5_MadeGood, &dev->flags);
4739 		}
4740 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4741 			struct md_rdev *rdev2 = rcu_dereference(
4742 				conf->disks[i].replacement);
4743 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4744 				s->handle_bad_blocks = 1;
4745 				atomic_inc(&rdev2->nr_pending);
4746 			} else
4747 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4748 		}
4749 		if (!test_bit(R5_Insync, &dev->flags)) {
4750 			/* The ReadError flag will just be confusing now */
4751 			clear_bit(R5_ReadError, &dev->flags);
4752 			clear_bit(R5_ReWrite, &dev->flags);
4753 		}
4754 		if (test_bit(R5_ReadError, &dev->flags))
4755 			clear_bit(R5_Insync, &dev->flags);
4756 		if (!test_bit(R5_Insync, &dev->flags)) {
4757 			if (s->failed < 2)
4758 				s->failed_num[s->failed] = i;
4759 			s->failed++;
4760 			if (rdev && !test_bit(Faulty, &rdev->flags))
4761 				do_recovery = 1;
4762 			else if (!rdev) {
4763 				rdev = rcu_dereference(
4764 				    conf->disks[i].replacement);
4765 				if (rdev && !test_bit(Faulty, &rdev->flags))
4766 					do_recovery = 1;
4767 			}
4768 		}
4769 
4770 		if (test_bit(R5_InJournal, &dev->flags))
4771 			s->injournal++;
4772 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4773 			s->just_cached++;
4774 	}
4775 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4776 		/* If there is a failed device being replaced,
4777 		 *     we must be recovering.
4778 		 * else if we are after recovery_cp, we must be syncing
4779 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4780 		 * else we can only be replacing
4781 		 * sync and recovery both need to read all devices, and so
4782 		 * use the same flag.
4783 		 */
4784 		if (do_recovery ||
4785 		    sh->sector >= conf->mddev->recovery_cp ||
4786 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4787 			s->syncing = 1;
4788 		else
4789 			s->replacing = 1;
4790 	}
4791 	rcu_read_unlock();
4792 }
4793 
4794 /*
4795  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4796  * a head which can now be handled.
4797  */
4798 static int clear_batch_ready(struct stripe_head *sh)
4799 {
4800 	struct stripe_head *tmp;
4801 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4802 		return (sh->batch_head && sh->batch_head != sh);
4803 	spin_lock(&sh->stripe_lock);
4804 	if (!sh->batch_head) {
4805 		spin_unlock(&sh->stripe_lock);
4806 		return 0;
4807 	}
4808 
4809 	/*
4810 	 * this stripe could be added to a batch list before we check
4811 	 * BATCH_READY, skips it
4812 	 */
4813 	if (sh->batch_head != sh) {
4814 		spin_unlock(&sh->stripe_lock);
4815 		return 1;
4816 	}
4817 	spin_lock(&sh->batch_lock);
4818 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4819 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4820 	spin_unlock(&sh->batch_lock);
4821 	spin_unlock(&sh->stripe_lock);
4822 
4823 	/*
4824 	 * BATCH_READY is cleared, no new stripes can be added.
4825 	 * batch_list can be accessed without lock
4826 	 */
4827 	return 0;
4828 }
4829 
4830 static void break_stripe_batch_list(struct stripe_head *head_sh,
4831 				    unsigned long handle_flags)
4832 {
4833 	struct stripe_head *sh, *next;
4834 	int i;
4835 	int do_wakeup = 0;
4836 
4837 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4838 
4839 		list_del_init(&sh->batch_list);
4840 
4841 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4842 					  (1 << STRIPE_SYNCING) |
4843 					  (1 << STRIPE_REPLACED) |
4844 					  (1 << STRIPE_DELAYED) |
4845 					  (1 << STRIPE_BIT_DELAY) |
4846 					  (1 << STRIPE_FULL_WRITE) |
4847 					  (1 << STRIPE_BIOFILL_RUN) |
4848 					  (1 << STRIPE_COMPUTE_RUN)  |
4849 					  (1 << STRIPE_DISCARD) |
4850 					  (1 << STRIPE_BATCH_READY) |
4851 					  (1 << STRIPE_BATCH_ERR) |
4852 					  (1 << STRIPE_BITMAP_PENDING)),
4853 			"stripe state: %lx\n", sh->state);
4854 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4855 					      (1 << STRIPE_REPLACED)),
4856 			"head stripe state: %lx\n", head_sh->state);
4857 
4858 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4859 					    (1 << STRIPE_PREREAD_ACTIVE) |
4860 					    (1 << STRIPE_DEGRADED) |
4861 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4862 			      head_sh->state & (1 << STRIPE_INSYNC));
4863 
4864 		sh->check_state = head_sh->check_state;
4865 		sh->reconstruct_state = head_sh->reconstruct_state;
4866 		spin_lock_irq(&sh->stripe_lock);
4867 		sh->batch_head = NULL;
4868 		spin_unlock_irq(&sh->stripe_lock);
4869 		for (i = 0; i < sh->disks; i++) {
4870 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4871 				do_wakeup = 1;
4872 			sh->dev[i].flags = head_sh->dev[i].flags &
4873 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4874 		}
4875 		if (handle_flags == 0 ||
4876 		    sh->state & handle_flags)
4877 			set_bit(STRIPE_HANDLE, &sh->state);
4878 		raid5_release_stripe(sh);
4879 	}
4880 	spin_lock_irq(&head_sh->stripe_lock);
4881 	head_sh->batch_head = NULL;
4882 	spin_unlock_irq(&head_sh->stripe_lock);
4883 	for (i = 0; i < head_sh->disks; i++)
4884 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4885 			do_wakeup = 1;
4886 	if (head_sh->state & handle_flags)
4887 		set_bit(STRIPE_HANDLE, &head_sh->state);
4888 
4889 	if (do_wakeup)
4890 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4891 }
4892 
4893 static void handle_stripe(struct stripe_head *sh)
4894 {
4895 	struct stripe_head_state s;
4896 	struct r5conf *conf = sh->raid_conf;
4897 	int i;
4898 	int prexor;
4899 	int disks = sh->disks;
4900 	struct r5dev *pdev, *qdev;
4901 
4902 	clear_bit(STRIPE_HANDLE, &sh->state);
4903 
4904 	/*
4905 	 * handle_stripe should not continue handle the batched stripe, only
4906 	 * the head of batch list or lone stripe can continue. Otherwise we
4907 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4908 	 * is set for the batched stripe.
4909 	 */
4910 	if (clear_batch_ready(sh))
4911 		return;
4912 
4913 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4914 		/* already being handled, ensure it gets handled
4915 		 * again when current action finishes */
4916 		set_bit(STRIPE_HANDLE, &sh->state);
4917 		return;
4918 	}
4919 
4920 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4921 		break_stripe_batch_list(sh, 0);
4922 
4923 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4924 		spin_lock(&sh->stripe_lock);
4925 		/*
4926 		 * Cannot process 'sync' concurrently with 'discard'.
4927 		 * Flush data in r5cache before 'sync'.
4928 		 */
4929 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4930 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4931 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4932 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4933 			set_bit(STRIPE_SYNCING, &sh->state);
4934 			clear_bit(STRIPE_INSYNC, &sh->state);
4935 			clear_bit(STRIPE_REPLACED, &sh->state);
4936 		}
4937 		spin_unlock(&sh->stripe_lock);
4938 	}
4939 	clear_bit(STRIPE_DELAYED, &sh->state);
4940 
4941 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4942 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4943 	       (unsigned long long)sh->sector, sh->state,
4944 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4945 	       sh->check_state, sh->reconstruct_state);
4946 
4947 	analyse_stripe(sh, &s);
4948 
4949 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4950 		goto finish;
4951 
4952 	if (s.handle_bad_blocks ||
4953 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4954 		set_bit(STRIPE_HANDLE, &sh->state);
4955 		goto finish;
4956 	}
4957 
4958 	if (unlikely(s.blocked_rdev)) {
4959 		if (s.syncing || s.expanding || s.expanded ||
4960 		    s.replacing || s.to_write || s.written) {
4961 			set_bit(STRIPE_HANDLE, &sh->state);
4962 			goto finish;
4963 		}
4964 		/* There is nothing for the blocked_rdev to block */
4965 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4966 		s.blocked_rdev = NULL;
4967 	}
4968 
4969 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4970 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4971 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4972 	}
4973 
4974 	pr_debug("locked=%d uptodate=%d to_read=%d"
4975 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4976 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4977 	       s.failed_num[0], s.failed_num[1]);
4978 	/*
4979 	 * check if the array has lost more than max_degraded devices and,
4980 	 * if so, some requests might need to be failed.
4981 	 *
4982 	 * When journal device failed (log_failed), we will only process
4983 	 * the stripe if there is data need write to raid disks
4984 	 */
4985 	if (s.failed > conf->max_degraded ||
4986 	    (s.log_failed && s.injournal == 0)) {
4987 		sh->check_state = 0;
4988 		sh->reconstruct_state = 0;
4989 		break_stripe_batch_list(sh, 0);
4990 		if (s.to_read+s.to_write+s.written)
4991 			handle_failed_stripe(conf, sh, &s, disks);
4992 		if (s.syncing + s.replacing)
4993 			handle_failed_sync(conf, sh, &s);
4994 	}
4995 
4996 	/* Now we check to see if any write operations have recently
4997 	 * completed
4998 	 */
4999 	prexor = 0;
5000 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5001 		prexor = 1;
5002 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
5003 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5004 		sh->reconstruct_state = reconstruct_state_idle;
5005 
5006 		/* All the 'written' buffers and the parity block are ready to
5007 		 * be written back to disk
5008 		 */
5009 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5010 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5011 		BUG_ON(sh->qd_idx >= 0 &&
5012 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5013 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5014 		for (i = disks; i--; ) {
5015 			struct r5dev *dev = &sh->dev[i];
5016 			if (test_bit(R5_LOCKED, &dev->flags) &&
5017 				(i == sh->pd_idx || i == sh->qd_idx ||
5018 				 dev->written || test_bit(R5_InJournal,
5019 							  &dev->flags))) {
5020 				pr_debug("Writing block %d\n", i);
5021 				set_bit(R5_Wantwrite, &dev->flags);
5022 				if (prexor)
5023 					continue;
5024 				if (s.failed > 1)
5025 					continue;
5026 				if (!test_bit(R5_Insync, &dev->flags) ||
5027 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5028 				     s.failed == 0))
5029 					set_bit(STRIPE_INSYNC, &sh->state);
5030 			}
5031 		}
5032 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5033 			s.dec_preread_active = 1;
5034 	}
5035 
5036 	/*
5037 	 * might be able to return some write requests if the parity blocks
5038 	 * are safe, or on a failed drive
5039 	 */
5040 	pdev = &sh->dev[sh->pd_idx];
5041 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5042 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5043 	qdev = &sh->dev[sh->qd_idx];
5044 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5045 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5046 		|| conf->level < 6;
5047 
5048 	if (s.written &&
5049 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5050 			     && !test_bit(R5_LOCKED, &pdev->flags)
5051 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5052 				 test_bit(R5_Discard, &pdev->flags))))) &&
5053 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5054 			     && !test_bit(R5_LOCKED, &qdev->flags)
5055 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5056 				 test_bit(R5_Discard, &qdev->flags))))))
5057 		handle_stripe_clean_event(conf, sh, disks);
5058 
5059 	if (s.just_cached)
5060 		r5c_handle_cached_data_endio(conf, sh, disks);
5061 	log_stripe_write_finished(sh);
5062 
5063 	/* Now we might consider reading some blocks, either to check/generate
5064 	 * parity, or to satisfy requests
5065 	 * or to load a block that is being partially written.
5066 	 */
5067 	if (s.to_read || s.non_overwrite
5068 	    || (s.to_write && s.failed)
5069 	    || (s.syncing && (s.uptodate + s.compute < disks))
5070 	    || s.replacing
5071 	    || s.expanding)
5072 		handle_stripe_fill(sh, &s, disks);
5073 
5074 	/*
5075 	 * When the stripe finishes full journal write cycle (write to journal
5076 	 * and raid disk), this is the clean up procedure so it is ready for
5077 	 * next operation.
5078 	 */
5079 	r5c_finish_stripe_write_out(conf, sh, &s);
5080 
5081 	/*
5082 	 * Now to consider new write requests, cache write back and what else,
5083 	 * if anything should be read.  We do not handle new writes when:
5084 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5085 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5086 	 *    block.
5087 	 * 3/ A r5c cache log write is in flight.
5088 	 */
5089 
5090 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5091 		if (!r5c_is_writeback(conf->log)) {
5092 			if (s.to_write)
5093 				handle_stripe_dirtying(conf, sh, &s, disks);
5094 		} else { /* write back cache */
5095 			int ret = 0;
5096 
5097 			/* First, try handle writes in caching phase */
5098 			if (s.to_write)
5099 				ret = r5c_try_caching_write(conf, sh, &s,
5100 							    disks);
5101 			/*
5102 			 * If caching phase failed: ret == -EAGAIN
5103 			 *    OR
5104 			 * stripe under reclaim: !caching && injournal
5105 			 *
5106 			 * fall back to handle_stripe_dirtying()
5107 			 */
5108 			if (ret == -EAGAIN ||
5109 			    /* stripe under reclaim: !caching && injournal */
5110 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5111 			     s.injournal > 0)) {
5112 				ret = handle_stripe_dirtying(conf, sh, &s,
5113 							     disks);
5114 				if (ret == -EAGAIN)
5115 					goto finish;
5116 			}
5117 		}
5118 	}
5119 
5120 	/* maybe we need to check and possibly fix the parity for this stripe
5121 	 * Any reads will already have been scheduled, so we just see if enough
5122 	 * data is available.  The parity check is held off while parity
5123 	 * dependent operations are in flight.
5124 	 */
5125 	if (sh->check_state ||
5126 	    (s.syncing && s.locked == 0 &&
5127 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5128 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5129 		if (conf->level == 6)
5130 			handle_parity_checks6(conf, sh, &s, disks);
5131 		else
5132 			handle_parity_checks5(conf, sh, &s, disks);
5133 	}
5134 
5135 	if ((s.replacing || s.syncing) && s.locked == 0
5136 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5137 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5138 		/* Write out to replacement devices where possible */
5139 		for (i = 0; i < conf->raid_disks; i++)
5140 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5141 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5142 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5143 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5144 				s.locked++;
5145 			}
5146 		if (s.replacing)
5147 			set_bit(STRIPE_INSYNC, &sh->state);
5148 		set_bit(STRIPE_REPLACED, &sh->state);
5149 	}
5150 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5151 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5152 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5153 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5154 		clear_bit(STRIPE_SYNCING, &sh->state);
5155 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5156 			wake_up(&conf->wait_for_overlap);
5157 	}
5158 
5159 	/* If the failed drives are just a ReadError, then we might need
5160 	 * to progress the repair/check process
5161 	 */
5162 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5163 		for (i = 0; i < s.failed; i++) {
5164 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5165 			if (test_bit(R5_ReadError, &dev->flags)
5166 			    && !test_bit(R5_LOCKED, &dev->flags)
5167 			    && test_bit(R5_UPTODATE, &dev->flags)
5168 				) {
5169 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5170 					set_bit(R5_Wantwrite, &dev->flags);
5171 					set_bit(R5_ReWrite, &dev->flags);
5172 				} else
5173 					/* let's read it back */
5174 					set_bit(R5_Wantread, &dev->flags);
5175 				set_bit(R5_LOCKED, &dev->flags);
5176 				s.locked++;
5177 			}
5178 		}
5179 
5180 	/* Finish reconstruct operations initiated by the expansion process */
5181 	if (sh->reconstruct_state == reconstruct_state_result) {
5182 		struct stripe_head *sh_src
5183 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5184 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5185 			/* sh cannot be written until sh_src has been read.
5186 			 * so arrange for sh to be delayed a little
5187 			 */
5188 			set_bit(STRIPE_DELAYED, &sh->state);
5189 			set_bit(STRIPE_HANDLE, &sh->state);
5190 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5191 					      &sh_src->state))
5192 				atomic_inc(&conf->preread_active_stripes);
5193 			raid5_release_stripe(sh_src);
5194 			goto finish;
5195 		}
5196 		if (sh_src)
5197 			raid5_release_stripe(sh_src);
5198 
5199 		sh->reconstruct_state = reconstruct_state_idle;
5200 		clear_bit(STRIPE_EXPANDING, &sh->state);
5201 		for (i = conf->raid_disks; i--; ) {
5202 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5203 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5204 			s.locked++;
5205 		}
5206 	}
5207 
5208 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5209 	    !sh->reconstruct_state) {
5210 		/* Need to write out all blocks after computing parity */
5211 		sh->disks = conf->raid_disks;
5212 		stripe_set_idx(sh->sector, conf, 0, sh);
5213 		schedule_reconstruction(sh, &s, 1, 1);
5214 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5215 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5216 		atomic_dec(&conf->reshape_stripes);
5217 		wake_up(&conf->wait_for_overlap);
5218 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5219 	}
5220 
5221 	if (s.expanding && s.locked == 0 &&
5222 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5223 		handle_stripe_expansion(conf, sh);
5224 
5225 finish:
5226 	/* wait for this device to become unblocked */
5227 	if (unlikely(s.blocked_rdev)) {
5228 		if (conf->mddev->external)
5229 			md_wait_for_blocked_rdev(s.blocked_rdev,
5230 						 conf->mddev);
5231 		else
5232 			/* Internal metadata will immediately
5233 			 * be written by raid5d, so we don't
5234 			 * need to wait here.
5235 			 */
5236 			rdev_dec_pending(s.blocked_rdev,
5237 					 conf->mddev);
5238 	}
5239 
5240 	if (s.handle_bad_blocks)
5241 		for (i = disks; i--; ) {
5242 			struct md_rdev *rdev;
5243 			struct r5dev *dev = &sh->dev[i];
5244 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5245 				/* We own a safe reference to the rdev */
5246 				rdev = rdev_pend_deref(conf->disks[i].rdev);
5247 				if (!rdev_set_badblocks(rdev, sh->sector,
5248 							RAID5_STRIPE_SECTORS(conf), 0))
5249 					md_error(conf->mddev, rdev);
5250 				rdev_dec_pending(rdev, conf->mddev);
5251 			}
5252 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5253 				rdev = rdev_pend_deref(conf->disks[i].rdev);
5254 				rdev_clear_badblocks(rdev, sh->sector,
5255 						     RAID5_STRIPE_SECTORS(conf), 0);
5256 				rdev_dec_pending(rdev, conf->mddev);
5257 			}
5258 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5259 				rdev = rdev_pend_deref(conf->disks[i].replacement);
5260 				if (!rdev)
5261 					/* rdev have been moved down */
5262 					rdev = rdev_pend_deref(conf->disks[i].rdev);
5263 				rdev_clear_badblocks(rdev, sh->sector,
5264 						     RAID5_STRIPE_SECTORS(conf), 0);
5265 				rdev_dec_pending(rdev, conf->mddev);
5266 			}
5267 		}
5268 
5269 	if (s.ops_request)
5270 		raid_run_ops(sh, s.ops_request);
5271 
5272 	ops_run_io(sh, &s);
5273 
5274 	if (s.dec_preread_active) {
5275 		/* We delay this until after ops_run_io so that if make_request
5276 		 * is waiting on a flush, it won't continue until the writes
5277 		 * have actually been submitted.
5278 		 */
5279 		atomic_dec(&conf->preread_active_stripes);
5280 		if (atomic_read(&conf->preread_active_stripes) <
5281 		    IO_THRESHOLD)
5282 			md_wakeup_thread(conf->mddev->thread);
5283 	}
5284 
5285 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5286 }
5287 
5288 static void raid5_activate_delayed(struct r5conf *conf)
5289 	__must_hold(&conf->device_lock)
5290 {
5291 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5292 		while (!list_empty(&conf->delayed_list)) {
5293 			struct list_head *l = conf->delayed_list.next;
5294 			struct stripe_head *sh;
5295 			sh = list_entry(l, struct stripe_head, lru);
5296 			list_del_init(l);
5297 			clear_bit(STRIPE_DELAYED, &sh->state);
5298 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5299 				atomic_inc(&conf->preread_active_stripes);
5300 			list_add_tail(&sh->lru, &conf->hold_list);
5301 			raid5_wakeup_stripe_thread(sh);
5302 		}
5303 	}
5304 }
5305 
5306 static void activate_bit_delay(struct r5conf *conf,
5307 		struct list_head *temp_inactive_list)
5308 	__must_hold(&conf->device_lock)
5309 {
5310 	struct list_head head;
5311 	list_add(&head, &conf->bitmap_list);
5312 	list_del_init(&conf->bitmap_list);
5313 	while (!list_empty(&head)) {
5314 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5315 		int hash;
5316 		list_del_init(&sh->lru);
5317 		atomic_inc(&sh->count);
5318 		hash = sh->hash_lock_index;
5319 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5320 	}
5321 }
5322 
5323 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5324 {
5325 	struct r5conf *conf = mddev->private;
5326 	sector_t sector = bio->bi_iter.bi_sector;
5327 	unsigned int chunk_sectors;
5328 	unsigned int bio_sectors = bio_sectors(bio);
5329 
5330 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5331 	return  chunk_sectors >=
5332 		((sector & (chunk_sectors - 1)) + bio_sectors);
5333 }
5334 
5335 /*
5336  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5337  *  later sampled by raid5d.
5338  */
5339 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5340 {
5341 	unsigned long flags;
5342 
5343 	spin_lock_irqsave(&conf->device_lock, flags);
5344 
5345 	bi->bi_next = conf->retry_read_aligned_list;
5346 	conf->retry_read_aligned_list = bi;
5347 
5348 	spin_unlock_irqrestore(&conf->device_lock, flags);
5349 	md_wakeup_thread(conf->mddev->thread);
5350 }
5351 
5352 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5353 					 unsigned int *offset)
5354 {
5355 	struct bio *bi;
5356 
5357 	bi = conf->retry_read_aligned;
5358 	if (bi) {
5359 		*offset = conf->retry_read_offset;
5360 		conf->retry_read_aligned = NULL;
5361 		return bi;
5362 	}
5363 	bi = conf->retry_read_aligned_list;
5364 	if(bi) {
5365 		conf->retry_read_aligned_list = bi->bi_next;
5366 		bi->bi_next = NULL;
5367 		*offset = 0;
5368 	}
5369 
5370 	return bi;
5371 }
5372 
5373 /*
5374  *  The "raid5_align_endio" should check if the read succeeded and if it
5375  *  did, call bio_endio on the original bio (having bio_put the new bio
5376  *  first).
5377  *  If the read failed..
5378  */
5379 static void raid5_align_endio(struct bio *bi)
5380 {
5381 	struct md_io_acct *md_io_acct = bi->bi_private;
5382 	struct bio *raid_bi = md_io_acct->orig_bio;
5383 	struct mddev *mddev;
5384 	struct r5conf *conf;
5385 	struct md_rdev *rdev;
5386 	blk_status_t error = bi->bi_status;
5387 	unsigned long start_time = md_io_acct->start_time;
5388 
5389 	bio_put(bi);
5390 
5391 	rdev = (void*)raid_bi->bi_next;
5392 	raid_bi->bi_next = NULL;
5393 	mddev = rdev->mddev;
5394 	conf = mddev->private;
5395 
5396 	rdev_dec_pending(rdev, conf->mddev);
5397 
5398 	if (!error) {
5399 		if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5400 			bio_end_io_acct(raid_bi, start_time);
5401 		bio_endio(raid_bi);
5402 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5403 			wake_up(&conf->wait_for_quiescent);
5404 		return;
5405 	}
5406 
5407 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5408 
5409 	add_bio_to_retry(raid_bi, conf);
5410 }
5411 
5412 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5413 {
5414 	struct r5conf *conf = mddev->private;
5415 	struct bio *align_bio;
5416 	struct md_rdev *rdev;
5417 	sector_t sector, end_sector, first_bad;
5418 	int bad_sectors, dd_idx;
5419 	struct md_io_acct *md_io_acct;
5420 	bool did_inc;
5421 
5422 	if (!in_chunk_boundary(mddev, raid_bio)) {
5423 		pr_debug("%s: non aligned\n", __func__);
5424 		return 0;
5425 	}
5426 
5427 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5428 				      &dd_idx, NULL);
5429 	end_sector = bio_end_sector(raid_bio);
5430 
5431 	rcu_read_lock();
5432 	if (r5c_big_stripe_cached(conf, sector))
5433 		goto out_rcu_unlock;
5434 
5435 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5436 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5437 	    rdev->recovery_offset < end_sector) {
5438 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5439 		if (!rdev)
5440 			goto out_rcu_unlock;
5441 		if (test_bit(Faulty, &rdev->flags) ||
5442 		    !(test_bit(In_sync, &rdev->flags) ||
5443 		      rdev->recovery_offset >= end_sector))
5444 			goto out_rcu_unlock;
5445 	}
5446 
5447 	atomic_inc(&rdev->nr_pending);
5448 	rcu_read_unlock();
5449 
5450 	if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5451 			&bad_sectors)) {
5452 		bio_put(raid_bio);
5453 		rdev_dec_pending(rdev, mddev);
5454 		return 0;
5455 	}
5456 
5457 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5458 				    &mddev->io_acct_set);
5459 	md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5460 	raid_bio->bi_next = (void *)rdev;
5461 	if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5462 		md_io_acct->start_time = bio_start_io_acct(raid_bio);
5463 	md_io_acct->orig_bio = raid_bio;
5464 
5465 	align_bio->bi_end_io = raid5_align_endio;
5466 	align_bio->bi_private = md_io_acct;
5467 	align_bio->bi_iter.bi_sector = sector;
5468 
5469 	/* No reshape active, so we can trust rdev->data_offset */
5470 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5471 
5472 	did_inc = false;
5473 	if (conf->quiesce == 0) {
5474 		atomic_inc(&conf->active_aligned_reads);
5475 		did_inc = true;
5476 	}
5477 	/* need a memory barrier to detect the race with raid5_quiesce() */
5478 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5479 		/* quiesce is in progress, so we need to undo io activation and wait
5480 		 * for it to finish
5481 		 */
5482 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5483 			wake_up(&conf->wait_for_quiescent);
5484 		spin_lock_irq(&conf->device_lock);
5485 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5486 				    conf->device_lock);
5487 		atomic_inc(&conf->active_aligned_reads);
5488 		spin_unlock_irq(&conf->device_lock);
5489 	}
5490 
5491 	if (mddev->gendisk)
5492 		trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5493 				      raid_bio->bi_iter.bi_sector);
5494 	submit_bio_noacct(align_bio);
5495 	return 1;
5496 
5497 out_rcu_unlock:
5498 	rcu_read_unlock();
5499 	return 0;
5500 }
5501 
5502 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5503 {
5504 	struct bio *split;
5505 	sector_t sector = raid_bio->bi_iter.bi_sector;
5506 	unsigned chunk_sects = mddev->chunk_sectors;
5507 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5508 
5509 	if (sectors < bio_sectors(raid_bio)) {
5510 		struct r5conf *conf = mddev->private;
5511 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5512 		bio_chain(split, raid_bio);
5513 		submit_bio_noacct(raid_bio);
5514 		raid_bio = split;
5515 	}
5516 
5517 	if (!raid5_read_one_chunk(mddev, raid_bio))
5518 		return raid_bio;
5519 
5520 	return NULL;
5521 }
5522 
5523 /* __get_priority_stripe - get the next stripe to process
5524  *
5525  * Full stripe writes are allowed to pass preread active stripes up until
5526  * the bypass_threshold is exceeded.  In general the bypass_count
5527  * increments when the handle_list is handled before the hold_list; however, it
5528  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5529  * stripe with in flight i/o.  The bypass_count will be reset when the
5530  * head of the hold_list has changed, i.e. the head was promoted to the
5531  * handle_list.
5532  */
5533 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5534 	__must_hold(&conf->device_lock)
5535 {
5536 	struct stripe_head *sh, *tmp;
5537 	struct list_head *handle_list = NULL;
5538 	struct r5worker_group *wg;
5539 	bool second_try = !r5c_is_writeback(conf->log) &&
5540 		!r5l_log_disk_error(conf);
5541 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5542 		r5l_log_disk_error(conf);
5543 
5544 again:
5545 	wg = NULL;
5546 	sh = NULL;
5547 	if (conf->worker_cnt_per_group == 0) {
5548 		handle_list = try_loprio ? &conf->loprio_list :
5549 					&conf->handle_list;
5550 	} else if (group != ANY_GROUP) {
5551 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5552 				&conf->worker_groups[group].handle_list;
5553 		wg = &conf->worker_groups[group];
5554 	} else {
5555 		int i;
5556 		for (i = 0; i < conf->group_cnt; i++) {
5557 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5558 				&conf->worker_groups[i].handle_list;
5559 			wg = &conf->worker_groups[i];
5560 			if (!list_empty(handle_list))
5561 				break;
5562 		}
5563 	}
5564 
5565 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5566 		  __func__,
5567 		  list_empty(handle_list) ? "empty" : "busy",
5568 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5569 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5570 
5571 	if (!list_empty(handle_list)) {
5572 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5573 
5574 		if (list_empty(&conf->hold_list))
5575 			conf->bypass_count = 0;
5576 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5577 			if (conf->hold_list.next == conf->last_hold)
5578 				conf->bypass_count++;
5579 			else {
5580 				conf->last_hold = conf->hold_list.next;
5581 				conf->bypass_count -= conf->bypass_threshold;
5582 				if (conf->bypass_count < 0)
5583 					conf->bypass_count = 0;
5584 			}
5585 		}
5586 	} else if (!list_empty(&conf->hold_list) &&
5587 		   ((conf->bypass_threshold &&
5588 		     conf->bypass_count > conf->bypass_threshold) ||
5589 		    atomic_read(&conf->pending_full_writes) == 0)) {
5590 
5591 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5592 			if (conf->worker_cnt_per_group == 0 ||
5593 			    group == ANY_GROUP ||
5594 			    !cpu_online(tmp->cpu) ||
5595 			    cpu_to_group(tmp->cpu) == group) {
5596 				sh = tmp;
5597 				break;
5598 			}
5599 		}
5600 
5601 		if (sh) {
5602 			conf->bypass_count -= conf->bypass_threshold;
5603 			if (conf->bypass_count < 0)
5604 				conf->bypass_count = 0;
5605 		}
5606 		wg = NULL;
5607 	}
5608 
5609 	if (!sh) {
5610 		if (second_try)
5611 			return NULL;
5612 		second_try = true;
5613 		try_loprio = !try_loprio;
5614 		goto again;
5615 	}
5616 
5617 	if (wg) {
5618 		wg->stripes_cnt--;
5619 		sh->group = NULL;
5620 	}
5621 	list_del_init(&sh->lru);
5622 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5623 	return sh;
5624 }
5625 
5626 struct raid5_plug_cb {
5627 	struct blk_plug_cb	cb;
5628 	struct list_head	list;
5629 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5630 };
5631 
5632 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5633 {
5634 	struct raid5_plug_cb *cb = container_of(
5635 		blk_cb, struct raid5_plug_cb, cb);
5636 	struct stripe_head *sh;
5637 	struct mddev *mddev = cb->cb.data;
5638 	struct r5conf *conf = mddev->private;
5639 	int cnt = 0;
5640 	int hash;
5641 
5642 	if (cb->list.next && !list_empty(&cb->list)) {
5643 		spin_lock_irq(&conf->device_lock);
5644 		while (!list_empty(&cb->list)) {
5645 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5646 			list_del_init(&sh->lru);
5647 			/*
5648 			 * avoid race release_stripe_plug() sees
5649 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5650 			 * is still in our list
5651 			 */
5652 			smp_mb__before_atomic();
5653 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5654 			/*
5655 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5656 			 * case, the count is always > 1 here
5657 			 */
5658 			hash = sh->hash_lock_index;
5659 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5660 			cnt++;
5661 		}
5662 		spin_unlock_irq(&conf->device_lock);
5663 	}
5664 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5665 				     NR_STRIPE_HASH_LOCKS);
5666 	if (mddev->queue)
5667 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5668 	kfree(cb);
5669 }
5670 
5671 static void release_stripe_plug(struct mddev *mddev,
5672 				struct stripe_head *sh)
5673 {
5674 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5675 		raid5_unplug, mddev,
5676 		sizeof(struct raid5_plug_cb));
5677 	struct raid5_plug_cb *cb;
5678 
5679 	if (!blk_cb) {
5680 		raid5_release_stripe(sh);
5681 		return;
5682 	}
5683 
5684 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5685 
5686 	if (cb->list.next == NULL) {
5687 		int i;
5688 		INIT_LIST_HEAD(&cb->list);
5689 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5690 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5691 	}
5692 
5693 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5694 		list_add_tail(&sh->lru, &cb->list);
5695 	else
5696 		raid5_release_stripe(sh);
5697 }
5698 
5699 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5700 {
5701 	struct r5conf *conf = mddev->private;
5702 	sector_t logical_sector, last_sector;
5703 	struct stripe_head *sh;
5704 	int stripe_sectors;
5705 
5706 	/* We need to handle this when io_uring supports discard/trim */
5707 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5708 		return;
5709 
5710 	if (mddev->reshape_position != MaxSector)
5711 		/* Skip discard while reshape is happening */
5712 		return;
5713 
5714 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5715 	last_sector = bio_end_sector(bi);
5716 
5717 	bi->bi_next = NULL;
5718 
5719 	stripe_sectors = conf->chunk_sectors *
5720 		(conf->raid_disks - conf->max_degraded);
5721 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5722 					       stripe_sectors);
5723 	sector_div(last_sector, stripe_sectors);
5724 
5725 	logical_sector *= conf->chunk_sectors;
5726 	last_sector *= conf->chunk_sectors;
5727 
5728 	for (; logical_sector < last_sector;
5729 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5730 		DEFINE_WAIT(w);
5731 		int d;
5732 	again:
5733 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5734 		prepare_to_wait(&conf->wait_for_overlap, &w,
5735 				TASK_UNINTERRUPTIBLE);
5736 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5737 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5738 			raid5_release_stripe(sh);
5739 			schedule();
5740 			goto again;
5741 		}
5742 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5743 		spin_lock_irq(&sh->stripe_lock);
5744 		for (d = 0; d < conf->raid_disks; d++) {
5745 			if (d == sh->pd_idx || d == sh->qd_idx)
5746 				continue;
5747 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5748 				set_bit(R5_Overlap, &sh->dev[d].flags);
5749 				spin_unlock_irq(&sh->stripe_lock);
5750 				raid5_release_stripe(sh);
5751 				schedule();
5752 				goto again;
5753 			}
5754 		}
5755 		set_bit(STRIPE_DISCARD, &sh->state);
5756 		finish_wait(&conf->wait_for_overlap, &w);
5757 		sh->overwrite_disks = 0;
5758 		for (d = 0; d < conf->raid_disks; d++) {
5759 			if (d == sh->pd_idx || d == sh->qd_idx)
5760 				continue;
5761 			sh->dev[d].towrite = bi;
5762 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5763 			bio_inc_remaining(bi);
5764 			md_write_inc(mddev, bi);
5765 			sh->overwrite_disks++;
5766 		}
5767 		spin_unlock_irq(&sh->stripe_lock);
5768 		if (conf->mddev->bitmap) {
5769 			for (d = 0;
5770 			     d < conf->raid_disks - conf->max_degraded;
5771 			     d++)
5772 				md_bitmap_startwrite(mddev->bitmap,
5773 						     sh->sector,
5774 						     RAID5_STRIPE_SECTORS(conf),
5775 						     0);
5776 			sh->bm_seq = conf->seq_flush + 1;
5777 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5778 		}
5779 
5780 		set_bit(STRIPE_HANDLE, &sh->state);
5781 		clear_bit(STRIPE_DELAYED, &sh->state);
5782 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5783 			atomic_inc(&conf->preread_active_stripes);
5784 		release_stripe_plug(mddev, sh);
5785 	}
5786 
5787 	bio_endio(bi);
5788 }
5789 
5790 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5791 {
5792 	struct r5conf *conf = mddev->private;
5793 	int dd_idx;
5794 	sector_t new_sector;
5795 	sector_t logical_sector, last_sector;
5796 	struct stripe_head *sh;
5797 	const int rw = bio_data_dir(bi);
5798 	DEFINE_WAIT(w);
5799 	bool do_prepare;
5800 	bool do_flush = false;
5801 
5802 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5803 		int ret = log_handle_flush_request(conf, bi);
5804 
5805 		if (ret == 0)
5806 			return true;
5807 		if (ret == -ENODEV) {
5808 			if (md_flush_request(mddev, bi))
5809 				return true;
5810 		}
5811 		/* ret == -EAGAIN, fallback */
5812 		/*
5813 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5814 		 * we need to flush journal device
5815 		 */
5816 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5817 	}
5818 
5819 	if (!md_write_start(mddev, bi))
5820 		return false;
5821 	/*
5822 	 * If array is degraded, better not do chunk aligned read because
5823 	 * later we might have to read it again in order to reconstruct
5824 	 * data on failed drives.
5825 	 */
5826 	if (rw == READ && mddev->degraded == 0 &&
5827 	    mddev->reshape_position == MaxSector) {
5828 		bi = chunk_aligned_read(mddev, bi);
5829 		if (!bi)
5830 			return true;
5831 	}
5832 
5833 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5834 		make_discard_request(mddev, bi);
5835 		md_write_end(mddev);
5836 		return true;
5837 	}
5838 
5839 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5840 	last_sector = bio_end_sector(bi);
5841 	bi->bi_next = NULL;
5842 
5843 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
5844 	if ((bi->bi_opf & REQ_NOWAIT) &&
5845 	    (conf->reshape_progress != MaxSector) &&
5846 	    (mddev->reshape_backwards
5847 	    ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe)
5848 	    : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) {
5849 		bio_wouldblock_error(bi);
5850 		if (rw == WRITE)
5851 			md_write_end(mddev);
5852 		return true;
5853 	}
5854 	md_account_bio(mddev, &bi);
5855 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5856 	for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5857 		int previous;
5858 		int seq;
5859 
5860 		do_prepare = false;
5861 	retry:
5862 		seq = read_seqcount_begin(&conf->gen_lock);
5863 		previous = 0;
5864 		if (do_prepare)
5865 			prepare_to_wait(&conf->wait_for_overlap, &w,
5866 				TASK_UNINTERRUPTIBLE);
5867 		if (unlikely(conf->reshape_progress != MaxSector)) {
5868 			/* spinlock is needed as reshape_progress may be
5869 			 * 64bit on a 32bit platform, and so it might be
5870 			 * possible to see a half-updated value
5871 			 * Of course reshape_progress could change after
5872 			 * the lock is dropped, so once we get a reference
5873 			 * to the stripe that we think it is, we will have
5874 			 * to check again.
5875 			 */
5876 			spin_lock_irq(&conf->device_lock);
5877 			if (mddev->reshape_backwards
5878 			    ? logical_sector < conf->reshape_progress
5879 			    : logical_sector >= conf->reshape_progress) {
5880 				previous = 1;
5881 			} else {
5882 				if (mddev->reshape_backwards
5883 				    ? logical_sector < conf->reshape_safe
5884 				    : logical_sector >= conf->reshape_safe) {
5885 					spin_unlock_irq(&conf->device_lock);
5886 					schedule();
5887 					do_prepare = true;
5888 					goto retry;
5889 				}
5890 			}
5891 			spin_unlock_irq(&conf->device_lock);
5892 		}
5893 
5894 		new_sector = raid5_compute_sector(conf, logical_sector,
5895 						  previous,
5896 						  &dd_idx, NULL);
5897 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5898 			(unsigned long long)new_sector,
5899 			(unsigned long long)logical_sector);
5900 
5901 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5902 				       (bi->bi_opf & REQ_RAHEAD), 0);
5903 		if (sh) {
5904 			if (unlikely(previous)) {
5905 				/* expansion might have moved on while waiting for a
5906 				 * stripe, so we must do the range check again.
5907 				 * Expansion could still move past after this
5908 				 * test, but as we are holding a reference to
5909 				 * 'sh', we know that if that happens,
5910 				 *  STRIPE_EXPANDING will get set and the expansion
5911 				 * won't proceed until we finish with the stripe.
5912 				 */
5913 				int must_retry = 0;
5914 				spin_lock_irq(&conf->device_lock);
5915 				if (mddev->reshape_backwards
5916 				    ? logical_sector >= conf->reshape_progress
5917 				    : logical_sector < conf->reshape_progress)
5918 					/* mismatch, need to try again */
5919 					must_retry = 1;
5920 				spin_unlock_irq(&conf->device_lock);
5921 				if (must_retry) {
5922 					raid5_release_stripe(sh);
5923 					schedule();
5924 					do_prepare = true;
5925 					goto retry;
5926 				}
5927 			}
5928 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5929 				/* Might have got the wrong stripe_head
5930 				 * by accident
5931 				 */
5932 				raid5_release_stripe(sh);
5933 				goto retry;
5934 			}
5935 
5936 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5937 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5938 				/* Stripe is busy expanding or
5939 				 * add failed due to overlap.  Flush everything
5940 				 * and wait a while
5941 				 */
5942 				md_wakeup_thread(mddev->thread);
5943 				raid5_release_stripe(sh);
5944 				schedule();
5945 				do_prepare = true;
5946 				goto retry;
5947 			}
5948 			if (do_flush) {
5949 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5950 				/* we only need flush for one stripe */
5951 				do_flush = false;
5952 			}
5953 
5954 			set_bit(STRIPE_HANDLE, &sh->state);
5955 			clear_bit(STRIPE_DELAYED, &sh->state);
5956 			if ((!sh->batch_head || sh == sh->batch_head) &&
5957 			    (bi->bi_opf & REQ_SYNC) &&
5958 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5959 				atomic_inc(&conf->preread_active_stripes);
5960 			release_stripe_plug(mddev, sh);
5961 		} else {
5962 			/* cannot get stripe for read-ahead, just give-up */
5963 			bi->bi_status = BLK_STS_IOERR;
5964 			break;
5965 		}
5966 	}
5967 	finish_wait(&conf->wait_for_overlap, &w);
5968 
5969 	if (rw == WRITE)
5970 		md_write_end(mddev);
5971 	bio_endio(bi);
5972 	return true;
5973 }
5974 
5975 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5976 
5977 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5978 {
5979 	/* reshaping is quite different to recovery/resync so it is
5980 	 * handled quite separately ... here.
5981 	 *
5982 	 * On each call to sync_request, we gather one chunk worth of
5983 	 * destination stripes and flag them as expanding.
5984 	 * Then we find all the source stripes and request reads.
5985 	 * As the reads complete, handle_stripe will copy the data
5986 	 * into the destination stripe and release that stripe.
5987 	 */
5988 	struct r5conf *conf = mddev->private;
5989 	struct stripe_head *sh;
5990 	struct md_rdev *rdev;
5991 	sector_t first_sector, last_sector;
5992 	int raid_disks = conf->previous_raid_disks;
5993 	int data_disks = raid_disks - conf->max_degraded;
5994 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5995 	int i;
5996 	int dd_idx;
5997 	sector_t writepos, readpos, safepos;
5998 	sector_t stripe_addr;
5999 	int reshape_sectors;
6000 	struct list_head stripes;
6001 	sector_t retn;
6002 
6003 	if (sector_nr == 0) {
6004 		/* If restarting in the middle, skip the initial sectors */
6005 		if (mddev->reshape_backwards &&
6006 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6007 			sector_nr = raid5_size(mddev, 0, 0)
6008 				- conf->reshape_progress;
6009 		} else if (mddev->reshape_backwards &&
6010 			   conf->reshape_progress == MaxSector) {
6011 			/* shouldn't happen, but just in case, finish up.*/
6012 			sector_nr = MaxSector;
6013 		} else if (!mddev->reshape_backwards &&
6014 			   conf->reshape_progress > 0)
6015 			sector_nr = conf->reshape_progress;
6016 		sector_div(sector_nr, new_data_disks);
6017 		if (sector_nr) {
6018 			mddev->curr_resync_completed = sector_nr;
6019 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6020 			*skipped = 1;
6021 			retn = sector_nr;
6022 			goto finish;
6023 		}
6024 	}
6025 
6026 	/* We need to process a full chunk at a time.
6027 	 * If old and new chunk sizes differ, we need to process the
6028 	 * largest of these
6029 	 */
6030 
6031 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6032 
6033 	/* We update the metadata at least every 10 seconds, or when
6034 	 * the data about to be copied would over-write the source of
6035 	 * the data at the front of the range.  i.e. one new_stripe
6036 	 * along from reshape_progress new_maps to after where
6037 	 * reshape_safe old_maps to
6038 	 */
6039 	writepos = conf->reshape_progress;
6040 	sector_div(writepos, new_data_disks);
6041 	readpos = conf->reshape_progress;
6042 	sector_div(readpos, data_disks);
6043 	safepos = conf->reshape_safe;
6044 	sector_div(safepos, data_disks);
6045 	if (mddev->reshape_backwards) {
6046 		BUG_ON(writepos < reshape_sectors);
6047 		writepos -= reshape_sectors;
6048 		readpos += reshape_sectors;
6049 		safepos += reshape_sectors;
6050 	} else {
6051 		writepos += reshape_sectors;
6052 		/* readpos and safepos are worst-case calculations.
6053 		 * A negative number is overly pessimistic, and causes
6054 		 * obvious problems for unsigned storage.  So clip to 0.
6055 		 */
6056 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6057 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6058 	}
6059 
6060 	/* Having calculated the 'writepos' possibly use it
6061 	 * to set 'stripe_addr' which is where we will write to.
6062 	 */
6063 	if (mddev->reshape_backwards) {
6064 		BUG_ON(conf->reshape_progress == 0);
6065 		stripe_addr = writepos;
6066 		BUG_ON((mddev->dev_sectors &
6067 			~((sector_t)reshape_sectors - 1))
6068 		       - reshape_sectors - stripe_addr
6069 		       != sector_nr);
6070 	} else {
6071 		BUG_ON(writepos != sector_nr + reshape_sectors);
6072 		stripe_addr = sector_nr;
6073 	}
6074 
6075 	/* 'writepos' is the most advanced device address we might write.
6076 	 * 'readpos' is the least advanced device address we might read.
6077 	 * 'safepos' is the least address recorded in the metadata as having
6078 	 *     been reshaped.
6079 	 * If there is a min_offset_diff, these are adjusted either by
6080 	 * increasing the safepos/readpos if diff is negative, or
6081 	 * increasing writepos if diff is positive.
6082 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6083 	 * ensure safety in the face of a crash - that must be done by userspace
6084 	 * making a backup of the data.  So in that case there is no particular
6085 	 * rush to update metadata.
6086 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6087 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6088 	 * we can be safe in the event of a crash.
6089 	 * So we insist on updating metadata if safepos is behind writepos and
6090 	 * readpos is beyond writepos.
6091 	 * In any case, update the metadata every 10 seconds.
6092 	 * Maybe that number should be configurable, but I'm not sure it is
6093 	 * worth it.... maybe it could be a multiple of safemode_delay???
6094 	 */
6095 	if (conf->min_offset_diff < 0) {
6096 		safepos += -conf->min_offset_diff;
6097 		readpos += -conf->min_offset_diff;
6098 	} else
6099 		writepos += conf->min_offset_diff;
6100 
6101 	if ((mddev->reshape_backwards
6102 	     ? (safepos > writepos && readpos < writepos)
6103 	     : (safepos < writepos && readpos > writepos)) ||
6104 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6105 		/* Cannot proceed until we've updated the superblock... */
6106 		wait_event(conf->wait_for_overlap,
6107 			   atomic_read(&conf->reshape_stripes)==0
6108 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6109 		if (atomic_read(&conf->reshape_stripes) != 0)
6110 			return 0;
6111 		mddev->reshape_position = conf->reshape_progress;
6112 		mddev->curr_resync_completed = sector_nr;
6113 		if (!mddev->reshape_backwards)
6114 			/* Can update recovery_offset */
6115 			rdev_for_each(rdev, mddev)
6116 				if (rdev->raid_disk >= 0 &&
6117 				    !test_bit(Journal, &rdev->flags) &&
6118 				    !test_bit(In_sync, &rdev->flags) &&
6119 				    rdev->recovery_offset < sector_nr)
6120 					rdev->recovery_offset = sector_nr;
6121 
6122 		conf->reshape_checkpoint = jiffies;
6123 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6124 		md_wakeup_thread(mddev->thread);
6125 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6126 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6127 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6128 			return 0;
6129 		spin_lock_irq(&conf->device_lock);
6130 		conf->reshape_safe = mddev->reshape_position;
6131 		spin_unlock_irq(&conf->device_lock);
6132 		wake_up(&conf->wait_for_overlap);
6133 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6134 	}
6135 
6136 	INIT_LIST_HEAD(&stripes);
6137 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6138 		int j;
6139 		int skipped_disk = 0;
6140 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6141 		set_bit(STRIPE_EXPANDING, &sh->state);
6142 		atomic_inc(&conf->reshape_stripes);
6143 		/* If any of this stripe is beyond the end of the old
6144 		 * array, then we need to zero those blocks
6145 		 */
6146 		for (j=sh->disks; j--;) {
6147 			sector_t s;
6148 			if (j == sh->pd_idx)
6149 				continue;
6150 			if (conf->level == 6 &&
6151 			    j == sh->qd_idx)
6152 				continue;
6153 			s = raid5_compute_blocknr(sh, j, 0);
6154 			if (s < raid5_size(mddev, 0, 0)) {
6155 				skipped_disk = 1;
6156 				continue;
6157 			}
6158 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6159 			set_bit(R5_Expanded, &sh->dev[j].flags);
6160 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6161 		}
6162 		if (!skipped_disk) {
6163 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6164 			set_bit(STRIPE_HANDLE, &sh->state);
6165 		}
6166 		list_add(&sh->lru, &stripes);
6167 	}
6168 	spin_lock_irq(&conf->device_lock);
6169 	if (mddev->reshape_backwards)
6170 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6171 	else
6172 		conf->reshape_progress += reshape_sectors * new_data_disks;
6173 	spin_unlock_irq(&conf->device_lock);
6174 	/* Ok, those stripe are ready. We can start scheduling
6175 	 * reads on the source stripes.
6176 	 * The source stripes are determined by mapping the first and last
6177 	 * block on the destination stripes.
6178 	 */
6179 	first_sector =
6180 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6181 				     1, &dd_idx, NULL);
6182 	last_sector =
6183 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6184 					    * new_data_disks - 1),
6185 				     1, &dd_idx, NULL);
6186 	if (last_sector >= mddev->dev_sectors)
6187 		last_sector = mddev->dev_sectors - 1;
6188 	while (first_sector <= last_sector) {
6189 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6190 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6191 		set_bit(STRIPE_HANDLE, &sh->state);
6192 		raid5_release_stripe(sh);
6193 		first_sector += RAID5_STRIPE_SECTORS(conf);
6194 	}
6195 	/* Now that the sources are clearly marked, we can release
6196 	 * the destination stripes
6197 	 */
6198 	while (!list_empty(&stripes)) {
6199 		sh = list_entry(stripes.next, struct stripe_head, lru);
6200 		list_del_init(&sh->lru);
6201 		raid5_release_stripe(sh);
6202 	}
6203 	/* If this takes us to the resync_max point where we have to pause,
6204 	 * then we need to write out the superblock.
6205 	 */
6206 	sector_nr += reshape_sectors;
6207 	retn = reshape_sectors;
6208 finish:
6209 	if (mddev->curr_resync_completed > mddev->resync_max ||
6210 	    (sector_nr - mddev->curr_resync_completed) * 2
6211 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6212 		/* Cannot proceed until we've updated the superblock... */
6213 		wait_event(conf->wait_for_overlap,
6214 			   atomic_read(&conf->reshape_stripes) == 0
6215 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6216 		if (atomic_read(&conf->reshape_stripes) != 0)
6217 			goto ret;
6218 		mddev->reshape_position = conf->reshape_progress;
6219 		mddev->curr_resync_completed = sector_nr;
6220 		if (!mddev->reshape_backwards)
6221 			/* Can update recovery_offset */
6222 			rdev_for_each(rdev, mddev)
6223 				if (rdev->raid_disk >= 0 &&
6224 				    !test_bit(Journal, &rdev->flags) &&
6225 				    !test_bit(In_sync, &rdev->flags) &&
6226 				    rdev->recovery_offset < sector_nr)
6227 					rdev->recovery_offset = sector_nr;
6228 		conf->reshape_checkpoint = jiffies;
6229 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6230 		md_wakeup_thread(mddev->thread);
6231 		wait_event(mddev->sb_wait,
6232 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6233 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6234 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6235 			goto ret;
6236 		spin_lock_irq(&conf->device_lock);
6237 		conf->reshape_safe = mddev->reshape_position;
6238 		spin_unlock_irq(&conf->device_lock);
6239 		wake_up(&conf->wait_for_overlap);
6240 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6241 	}
6242 ret:
6243 	return retn;
6244 }
6245 
6246 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6247 					  int *skipped)
6248 {
6249 	struct r5conf *conf = mddev->private;
6250 	struct stripe_head *sh;
6251 	sector_t max_sector = mddev->dev_sectors;
6252 	sector_t sync_blocks;
6253 	int still_degraded = 0;
6254 	int i;
6255 
6256 	if (sector_nr >= max_sector) {
6257 		/* just being told to finish up .. nothing much to do */
6258 
6259 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6260 			end_reshape(conf);
6261 			return 0;
6262 		}
6263 
6264 		if (mddev->curr_resync < max_sector) /* aborted */
6265 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6266 					   &sync_blocks, 1);
6267 		else /* completed sync */
6268 			conf->fullsync = 0;
6269 		md_bitmap_close_sync(mddev->bitmap);
6270 
6271 		return 0;
6272 	}
6273 
6274 	/* Allow raid5_quiesce to complete */
6275 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6276 
6277 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6278 		return reshape_request(mddev, sector_nr, skipped);
6279 
6280 	/* No need to check resync_max as we never do more than one
6281 	 * stripe, and as resync_max will always be on a chunk boundary,
6282 	 * if the check in md_do_sync didn't fire, there is no chance
6283 	 * of overstepping resync_max here
6284 	 */
6285 
6286 	/* if there is too many failed drives and we are trying
6287 	 * to resync, then assert that we are finished, because there is
6288 	 * nothing we can do.
6289 	 */
6290 	if (mddev->degraded >= conf->max_degraded &&
6291 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6292 		sector_t rv = mddev->dev_sectors - sector_nr;
6293 		*skipped = 1;
6294 		return rv;
6295 	}
6296 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6297 	    !conf->fullsync &&
6298 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6299 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6300 		/* we can skip this block, and probably more */
6301 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6302 		*skipped = 1;
6303 		/* keep things rounded to whole stripes */
6304 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6305 	}
6306 
6307 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6308 
6309 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6310 	if (sh == NULL) {
6311 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6312 		/* make sure we don't swamp the stripe cache if someone else
6313 		 * is trying to get access
6314 		 */
6315 		schedule_timeout_uninterruptible(1);
6316 	}
6317 	/* Need to check if array will still be degraded after recovery/resync
6318 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6319 	 * one drive while leaving another faulty drive in array.
6320 	 */
6321 	rcu_read_lock();
6322 	for (i = 0; i < conf->raid_disks; i++) {
6323 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
6324 
6325 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6326 			still_degraded = 1;
6327 	}
6328 	rcu_read_unlock();
6329 
6330 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6331 
6332 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6333 	set_bit(STRIPE_HANDLE, &sh->state);
6334 
6335 	raid5_release_stripe(sh);
6336 
6337 	return RAID5_STRIPE_SECTORS(conf);
6338 }
6339 
6340 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6341 			       unsigned int offset)
6342 {
6343 	/* We may not be able to submit a whole bio at once as there
6344 	 * may not be enough stripe_heads available.
6345 	 * We cannot pre-allocate enough stripe_heads as we may need
6346 	 * more than exist in the cache (if we allow ever large chunks).
6347 	 * So we do one stripe head at a time and record in
6348 	 * ->bi_hw_segments how many have been done.
6349 	 *
6350 	 * We *know* that this entire raid_bio is in one chunk, so
6351 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6352 	 */
6353 	struct stripe_head *sh;
6354 	int dd_idx;
6355 	sector_t sector, logical_sector, last_sector;
6356 	int scnt = 0;
6357 	int handled = 0;
6358 
6359 	logical_sector = raid_bio->bi_iter.bi_sector &
6360 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6361 	sector = raid5_compute_sector(conf, logical_sector,
6362 				      0, &dd_idx, NULL);
6363 	last_sector = bio_end_sector(raid_bio);
6364 
6365 	for (; logical_sector < last_sector;
6366 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6367 		     sector += RAID5_STRIPE_SECTORS(conf),
6368 		     scnt++) {
6369 
6370 		if (scnt < offset)
6371 			/* already done this stripe */
6372 			continue;
6373 
6374 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6375 
6376 		if (!sh) {
6377 			/* failed to get a stripe - must wait */
6378 			conf->retry_read_aligned = raid_bio;
6379 			conf->retry_read_offset = scnt;
6380 			return handled;
6381 		}
6382 
6383 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6384 			raid5_release_stripe(sh);
6385 			conf->retry_read_aligned = raid_bio;
6386 			conf->retry_read_offset = scnt;
6387 			return handled;
6388 		}
6389 
6390 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6391 		handle_stripe(sh);
6392 		raid5_release_stripe(sh);
6393 		handled++;
6394 	}
6395 
6396 	bio_endio(raid_bio);
6397 
6398 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6399 		wake_up(&conf->wait_for_quiescent);
6400 	return handled;
6401 }
6402 
6403 static int handle_active_stripes(struct r5conf *conf, int group,
6404 				 struct r5worker *worker,
6405 				 struct list_head *temp_inactive_list)
6406 		__must_hold(&conf->device_lock)
6407 {
6408 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6409 	int i, batch_size = 0, hash;
6410 	bool release_inactive = false;
6411 
6412 	while (batch_size < MAX_STRIPE_BATCH &&
6413 			(sh = __get_priority_stripe(conf, group)) != NULL)
6414 		batch[batch_size++] = sh;
6415 
6416 	if (batch_size == 0) {
6417 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6418 			if (!list_empty(temp_inactive_list + i))
6419 				break;
6420 		if (i == NR_STRIPE_HASH_LOCKS) {
6421 			spin_unlock_irq(&conf->device_lock);
6422 			log_flush_stripe_to_raid(conf);
6423 			spin_lock_irq(&conf->device_lock);
6424 			return batch_size;
6425 		}
6426 		release_inactive = true;
6427 	}
6428 	spin_unlock_irq(&conf->device_lock);
6429 
6430 	release_inactive_stripe_list(conf, temp_inactive_list,
6431 				     NR_STRIPE_HASH_LOCKS);
6432 
6433 	r5l_flush_stripe_to_raid(conf->log);
6434 	if (release_inactive) {
6435 		spin_lock_irq(&conf->device_lock);
6436 		return 0;
6437 	}
6438 
6439 	for (i = 0; i < batch_size; i++)
6440 		handle_stripe(batch[i]);
6441 	log_write_stripe_run(conf);
6442 
6443 	cond_resched();
6444 
6445 	spin_lock_irq(&conf->device_lock);
6446 	for (i = 0; i < batch_size; i++) {
6447 		hash = batch[i]->hash_lock_index;
6448 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6449 	}
6450 	return batch_size;
6451 }
6452 
6453 static void raid5_do_work(struct work_struct *work)
6454 {
6455 	struct r5worker *worker = container_of(work, struct r5worker, work);
6456 	struct r5worker_group *group = worker->group;
6457 	struct r5conf *conf = group->conf;
6458 	struct mddev *mddev = conf->mddev;
6459 	int group_id = group - conf->worker_groups;
6460 	int handled;
6461 	struct blk_plug plug;
6462 
6463 	pr_debug("+++ raid5worker active\n");
6464 
6465 	blk_start_plug(&plug);
6466 	handled = 0;
6467 	spin_lock_irq(&conf->device_lock);
6468 	while (1) {
6469 		int batch_size, released;
6470 
6471 		released = release_stripe_list(conf, worker->temp_inactive_list);
6472 
6473 		batch_size = handle_active_stripes(conf, group_id, worker,
6474 						   worker->temp_inactive_list);
6475 		worker->working = false;
6476 		if (!batch_size && !released)
6477 			break;
6478 		handled += batch_size;
6479 		wait_event_lock_irq(mddev->sb_wait,
6480 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6481 			conf->device_lock);
6482 	}
6483 	pr_debug("%d stripes handled\n", handled);
6484 
6485 	spin_unlock_irq(&conf->device_lock);
6486 
6487 	flush_deferred_bios(conf);
6488 
6489 	r5l_flush_stripe_to_raid(conf->log);
6490 
6491 	async_tx_issue_pending_all();
6492 	blk_finish_plug(&plug);
6493 
6494 	pr_debug("--- raid5worker inactive\n");
6495 }
6496 
6497 /*
6498  * This is our raid5 kernel thread.
6499  *
6500  * We scan the hash table for stripes which can be handled now.
6501  * During the scan, completed stripes are saved for us by the interrupt
6502  * handler, so that they will not have to wait for our next wakeup.
6503  */
6504 static void raid5d(struct md_thread *thread)
6505 {
6506 	struct mddev *mddev = thread->mddev;
6507 	struct r5conf *conf = mddev->private;
6508 	int handled;
6509 	struct blk_plug plug;
6510 
6511 	pr_debug("+++ raid5d active\n");
6512 
6513 	md_check_recovery(mddev);
6514 
6515 	blk_start_plug(&plug);
6516 	handled = 0;
6517 	spin_lock_irq(&conf->device_lock);
6518 	while (1) {
6519 		struct bio *bio;
6520 		int batch_size, released;
6521 		unsigned int offset;
6522 
6523 		released = release_stripe_list(conf, conf->temp_inactive_list);
6524 		if (released)
6525 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6526 
6527 		if (
6528 		    !list_empty(&conf->bitmap_list)) {
6529 			/* Now is a good time to flush some bitmap updates */
6530 			conf->seq_flush++;
6531 			spin_unlock_irq(&conf->device_lock);
6532 			md_bitmap_unplug(mddev->bitmap);
6533 			spin_lock_irq(&conf->device_lock);
6534 			conf->seq_write = conf->seq_flush;
6535 			activate_bit_delay(conf, conf->temp_inactive_list);
6536 		}
6537 		raid5_activate_delayed(conf);
6538 
6539 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6540 			int ok;
6541 			spin_unlock_irq(&conf->device_lock);
6542 			ok = retry_aligned_read(conf, bio, offset);
6543 			spin_lock_irq(&conf->device_lock);
6544 			if (!ok)
6545 				break;
6546 			handled++;
6547 		}
6548 
6549 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6550 						   conf->temp_inactive_list);
6551 		if (!batch_size && !released)
6552 			break;
6553 		handled += batch_size;
6554 
6555 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6556 			spin_unlock_irq(&conf->device_lock);
6557 			md_check_recovery(mddev);
6558 			spin_lock_irq(&conf->device_lock);
6559 		}
6560 	}
6561 	pr_debug("%d stripes handled\n", handled);
6562 
6563 	spin_unlock_irq(&conf->device_lock);
6564 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6565 	    mutex_trylock(&conf->cache_size_mutex)) {
6566 		grow_one_stripe(conf, __GFP_NOWARN);
6567 		/* Set flag even if allocation failed.  This helps
6568 		 * slow down allocation requests when mem is short
6569 		 */
6570 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6571 		mutex_unlock(&conf->cache_size_mutex);
6572 	}
6573 
6574 	flush_deferred_bios(conf);
6575 
6576 	r5l_flush_stripe_to_raid(conf->log);
6577 
6578 	async_tx_issue_pending_all();
6579 	blk_finish_plug(&plug);
6580 
6581 	pr_debug("--- raid5d inactive\n");
6582 }
6583 
6584 static ssize_t
6585 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6586 {
6587 	struct r5conf *conf;
6588 	int ret = 0;
6589 	spin_lock(&mddev->lock);
6590 	conf = mddev->private;
6591 	if (conf)
6592 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6593 	spin_unlock(&mddev->lock);
6594 	return ret;
6595 }
6596 
6597 int
6598 raid5_set_cache_size(struct mddev *mddev, int size)
6599 {
6600 	int result = 0;
6601 	struct r5conf *conf = mddev->private;
6602 
6603 	if (size <= 16 || size > 32768)
6604 		return -EINVAL;
6605 
6606 	conf->min_nr_stripes = size;
6607 	mutex_lock(&conf->cache_size_mutex);
6608 	while (size < conf->max_nr_stripes &&
6609 	       drop_one_stripe(conf))
6610 		;
6611 	mutex_unlock(&conf->cache_size_mutex);
6612 
6613 	md_allow_write(mddev);
6614 
6615 	mutex_lock(&conf->cache_size_mutex);
6616 	while (size > conf->max_nr_stripes)
6617 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6618 			conf->min_nr_stripes = conf->max_nr_stripes;
6619 			result = -ENOMEM;
6620 			break;
6621 		}
6622 	mutex_unlock(&conf->cache_size_mutex);
6623 
6624 	return result;
6625 }
6626 EXPORT_SYMBOL(raid5_set_cache_size);
6627 
6628 static ssize_t
6629 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6630 {
6631 	struct r5conf *conf;
6632 	unsigned long new;
6633 	int err;
6634 
6635 	if (len >= PAGE_SIZE)
6636 		return -EINVAL;
6637 	if (kstrtoul(page, 10, &new))
6638 		return -EINVAL;
6639 	err = mddev_lock(mddev);
6640 	if (err)
6641 		return err;
6642 	conf = mddev->private;
6643 	if (!conf)
6644 		err = -ENODEV;
6645 	else
6646 		err = raid5_set_cache_size(mddev, new);
6647 	mddev_unlock(mddev);
6648 
6649 	return err ?: len;
6650 }
6651 
6652 static struct md_sysfs_entry
6653 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6654 				raid5_show_stripe_cache_size,
6655 				raid5_store_stripe_cache_size);
6656 
6657 static ssize_t
6658 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6659 {
6660 	struct r5conf *conf = mddev->private;
6661 	if (conf)
6662 		return sprintf(page, "%d\n", conf->rmw_level);
6663 	else
6664 		return 0;
6665 }
6666 
6667 static ssize_t
6668 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6669 {
6670 	struct r5conf *conf = mddev->private;
6671 	unsigned long new;
6672 
6673 	if (!conf)
6674 		return -ENODEV;
6675 
6676 	if (len >= PAGE_SIZE)
6677 		return -EINVAL;
6678 
6679 	if (kstrtoul(page, 10, &new))
6680 		return -EINVAL;
6681 
6682 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6683 		return -EINVAL;
6684 
6685 	if (new != PARITY_DISABLE_RMW &&
6686 	    new != PARITY_ENABLE_RMW &&
6687 	    new != PARITY_PREFER_RMW)
6688 		return -EINVAL;
6689 
6690 	conf->rmw_level = new;
6691 	return len;
6692 }
6693 
6694 static struct md_sysfs_entry
6695 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6696 			 raid5_show_rmw_level,
6697 			 raid5_store_rmw_level);
6698 
6699 static ssize_t
6700 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6701 {
6702 	struct r5conf *conf;
6703 	int ret = 0;
6704 
6705 	spin_lock(&mddev->lock);
6706 	conf = mddev->private;
6707 	if (conf)
6708 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6709 	spin_unlock(&mddev->lock);
6710 	return ret;
6711 }
6712 
6713 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6714 static ssize_t
6715 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6716 {
6717 	struct r5conf *conf;
6718 	unsigned long new;
6719 	int err;
6720 	int size;
6721 
6722 	if (len >= PAGE_SIZE)
6723 		return -EINVAL;
6724 	if (kstrtoul(page, 10, &new))
6725 		return -EINVAL;
6726 
6727 	/*
6728 	 * The value should not be bigger than PAGE_SIZE. It requires to
6729 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6730 	 * of two.
6731 	 */
6732 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6733 			new > PAGE_SIZE || new == 0 ||
6734 			new != roundup_pow_of_two(new))
6735 		return -EINVAL;
6736 
6737 	err = mddev_lock(mddev);
6738 	if (err)
6739 		return err;
6740 
6741 	conf = mddev->private;
6742 	if (!conf) {
6743 		err = -ENODEV;
6744 		goto out_unlock;
6745 	}
6746 
6747 	if (new == conf->stripe_size)
6748 		goto out_unlock;
6749 
6750 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6751 			conf->stripe_size, new);
6752 
6753 	if (mddev->sync_thread ||
6754 		test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6755 		mddev->reshape_position != MaxSector ||
6756 		mddev->sysfs_active) {
6757 		err = -EBUSY;
6758 		goto out_unlock;
6759 	}
6760 
6761 	mddev_suspend(mddev);
6762 	mutex_lock(&conf->cache_size_mutex);
6763 	size = conf->max_nr_stripes;
6764 
6765 	shrink_stripes(conf);
6766 
6767 	conf->stripe_size = new;
6768 	conf->stripe_shift = ilog2(new) - 9;
6769 	conf->stripe_sectors = new >> 9;
6770 	if (grow_stripes(conf, size)) {
6771 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
6772 				mdname(mddev));
6773 		err = -ENOMEM;
6774 	}
6775 	mutex_unlock(&conf->cache_size_mutex);
6776 	mddev_resume(mddev);
6777 
6778 out_unlock:
6779 	mddev_unlock(mddev);
6780 	return err ?: len;
6781 }
6782 
6783 static struct md_sysfs_entry
6784 raid5_stripe_size = __ATTR(stripe_size, 0644,
6785 			 raid5_show_stripe_size,
6786 			 raid5_store_stripe_size);
6787 #else
6788 static struct md_sysfs_entry
6789 raid5_stripe_size = __ATTR(stripe_size, 0444,
6790 			 raid5_show_stripe_size,
6791 			 NULL);
6792 #endif
6793 
6794 static ssize_t
6795 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6796 {
6797 	struct r5conf *conf;
6798 	int ret = 0;
6799 	spin_lock(&mddev->lock);
6800 	conf = mddev->private;
6801 	if (conf)
6802 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6803 	spin_unlock(&mddev->lock);
6804 	return ret;
6805 }
6806 
6807 static ssize_t
6808 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6809 {
6810 	struct r5conf *conf;
6811 	unsigned long new;
6812 	int err;
6813 
6814 	if (len >= PAGE_SIZE)
6815 		return -EINVAL;
6816 	if (kstrtoul(page, 10, &new))
6817 		return -EINVAL;
6818 
6819 	err = mddev_lock(mddev);
6820 	if (err)
6821 		return err;
6822 	conf = mddev->private;
6823 	if (!conf)
6824 		err = -ENODEV;
6825 	else if (new > conf->min_nr_stripes)
6826 		err = -EINVAL;
6827 	else
6828 		conf->bypass_threshold = new;
6829 	mddev_unlock(mddev);
6830 	return err ?: len;
6831 }
6832 
6833 static struct md_sysfs_entry
6834 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6835 					S_IRUGO | S_IWUSR,
6836 					raid5_show_preread_threshold,
6837 					raid5_store_preread_threshold);
6838 
6839 static ssize_t
6840 raid5_show_skip_copy(struct mddev *mddev, char *page)
6841 {
6842 	struct r5conf *conf;
6843 	int ret = 0;
6844 	spin_lock(&mddev->lock);
6845 	conf = mddev->private;
6846 	if (conf)
6847 		ret = sprintf(page, "%d\n", conf->skip_copy);
6848 	spin_unlock(&mddev->lock);
6849 	return ret;
6850 }
6851 
6852 static ssize_t
6853 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6854 {
6855 	struct r5conf *conf;
6856 	unsigned long new;
6857 	int err;
6858 
6859 	if (len >= PAGE_SIZE)
6860 		return -EINVAL;
6861 	if (kstrtoul(page, 10, &new))
6862 		return -EINVAL;
6863 	new = !!new;
6864 
6865 	err = mddev_lock(mddev);
6866 	if (err)
6867 		return err;
6868 	conf = mddev->private;
6869 	if (!conf)
6870 		err = -ENODEV;
6871 	else if (new != conf->skip_copy) {
6872 		struct request_queue *q = mddev->queue;
6873 
6874 		mddev_suspend(mddev);
6875 		conf->skip_copy = new;
6876 		if (new)
6877 			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6878 		else
6879 			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6880 		mddev_resume(mddev);
6881 	}
6882 	mddev_unlock(mddev);
6883 	return err ?: len;
6884 }
6885 
6886 static struct md_sysfs_entry
6887 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6888 					raid5_show_skip_copy,
6889 					raid5_store_skip_copy);
6890 
6891 static ssize_t
6892 stripe_cache_active_show(struct mddev *mddev, char *page)
6893 {
6894 	struct r5conf *conf = mddev->private;
6895 	if (conf)
6896 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6897 	else
6898 		return 0;
6899 }
6900 
6901 static struct md_sysfs_entry
6902 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6903 
6904 static ssize_t
6905 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6906 {
6907 	struct r5conf *conf;
6908 	int ret = 0;
6909 	spin_lock(&mddev->lock);
6910 	conf = mddev->private;
6911 	if (conf)
6912 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6913 	spin_unlock(&mddev->lock);
6914 	return ret;
6915 }
6916 
6917 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6918 			       int *group_cnt,
6919 			       struct r5worker_group **worker_groups);
6920 static ssize_t
6921 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6922 {
6923 	struct r5conf *conf;
6924 	unsigned int new;
6925 	int err;
6926 	struct r5worker_group *new_groups, *old_groups;
6927 	int group_cnt;
6928 
6929 	if (len >= PAGE_SIZE)
6930 		return -EINVAL;
6931 	if (kstrtouint(page, 10, &new))
6932 		return -EINVAL;
6933 	/* 8192 should be big enough */
6934 	if (new > 8192)
6935 		return -EINVAL;
6936 
6937 	err = mddev_lock(mddev);
6938 	if (err)
6939 		return err;
6940 	conf = mddev->private;
6941 	if (!conf)
6942 		err = -ENODEV;
6943 	else if (new != conf->worker_cnt_per_group) {
6944 		mddev_suspend(mddev);
6945 
6946 		old_groups = conf->worker_groups;
6947 		if (old_groups)
6948 			flush_workqueue(raid5_wq);
6949 
6950 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6951 		if (!err) {
6952 			spin_lock_irq(&conf->device_lock);
6953 			conf->group_cnt = group_cnt;
6954 			conf->worker_cnt_per_group = new;
6955 			conf->worker_groups = new_groups;
6956 			spin_unlock_irq(&conf->device_lock);
6957 
6958 			if (old_groups)
6959 				kfree(old_groups[0].workers);
6960 			kfree(old_groups);
6961 		}
6962 		mddev_resume(mddev);
6963 	}
6964 	mddev_unlock(mddev);
6965 
6966 	return err ?: len;
6967 }
6968 
6969 static struct md_sysfs_entry
6970 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6971 				raid5_show_group_thread_cnt,
6972 				raid5_store_group_thread_cnt);
6973 
6974 static struct attribute *raid5_attrs[] =  {
6975 	&raid5_stripecache_size.attr,
6976 	&raid5_stripecache_active.attr,
6977 	&raid5_preread_bypass_threshold.attr,
6978 	&raid5_group_thread_cnt.attr,
6979 	&raid5_skip_copy.attr,
6980 	&raid5_rmw_level.attr,
6981 	&raid5_stripe_size.attr,
6982 	&r5c_journal_mode.attr,
6983 	&ppl_write_hint.attr,
6984 	NULL,
6985 };
6986 static const struct attribute_group raid5_attrs_group = {
6987 	.name = NULL,
6988 	.attrs = raid5_attrs,
6989 };
6990 
6991 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6992 			       struct r5worker_group **worker_groups)
6993 {
6994 	int i, j, k;
6995 	ssize_t size;
6996 	struct r5worker *workers;
6997 
6998 	if (cnt == 0) {
6999 		*group_cnt = 0;
7000 		*worker_groups = NULL;
7001 		return 0;
7002 	}
7003 	*group_cnt = num_possible_nodes();
7004 	size = sizeof(struct r5worker) * cnt;
7005 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7006 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7007 				 GFP_NOIO);
7008 	if (!*worker_groups || !workers) {
7009 		kfree(workers);
7010 		kfree(*worker_groups);
7011 		return -ENOMEM;
7012 	}
7013 
7014 	for (i = 0; i < *group_cnt; i++) {
7015 		struct r5worker_group *group;
7016 
7017 		group = &(*worker_groups)[i];
7018 		INIT_LIST_HEAD(&group->handle_list);
7019 		INIT_LIST_HEAD(&group->loprio_list);
7020 		group->conf = conf;
7021 		group->workers = workers + i * cnt;
7022 
7023 		for (j = 0; j < cnt; j++) {
7024 			struct r5worker *worker = group->workers + j;
7025 			worker->group = group;
7026 			INIT_WORK(&worker->work, raid5_do_work);
7027 
7028 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7029 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7030 		}
7031 	}
7032 
7033 	return 0;
7034 }
7035 
7036 static void free_thread_groups(struct r5conf *conf)
7037 {
7038 	if (conf->worker_groups)
7039 		kfree(conf->worker_groups[0].workers);
7040 	kfree(conf->worker_groups);
7041 	conf->worker_groups = NULL;
7042 }
7043 
7044 static sector_t
7045 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7046 {
7047 	struct r5conf *conf = mddev->private;
7048 
7049 	if (!sectors)
7050 		sectors = mddev->dev_sectors;
7051 	if (!raid_disks)
7052 		/* size is defined by the smallest of previous and new size */
7053 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7054 
7055 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7056 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7057 	return sectors * (raid_disks - conf->max_degraded);
7058 }
7059 
7060 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7061 {
7062 	safe_put_page(percpu->spare_page);
7063 	percpu->spare_page = NULL;
7064 	kvfree(percpu->scribble);
7065 	percpu->scribble = NULL;
7066 }
7067 
7068 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7069 {
7070 	if (conf->level == 6 && !percpu->spare_page) {
7071 		percpu->spare_page = alloc_page(GFP_KERNEL);
7072 		if (!percpu->spare_page)
7073 			return -ENOMEM;
7074 	}
7075 
7076 	if (scribble_alloc(percpu,
7077 			   max(conf->raid_disks,
7078 			       conf->previous_raid_disks),
7079 			   max(conf->chunk_sectors,
7080 			       conf->prev_chunk_sectors)
7081 			   / RAID5_STRIPE_SECTORS(conf))) {
7082 		free_scratch_buffer(conf, percpu);
7083 		return -ENOMEM;
7084 	}
7085 
7086 	local_lock_init(&percpu->lock);
7087 	return 0;
7088 }
7089 
7090 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7091 {
7092 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7093 
7094 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7095 	return 0;
7096 }
7097 
7098 static void raid5_free_percpu(struct r5conf *conf)
7099 {
7100 	if (!conf->percpu)
7101 		return;
7102 
7103 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7104 	free_percpu(conf->percpu);
7105 }
7106 
7107 static void free_conf(struct r5conf *conf)
7108 {
7109 	int i;
7110 
7111 	log_exit(conf);
7112 
7113 	unregister_shrinker(&conf->shrinker);
7114 	free_thread_groups(conf);
7115 	shrink_stripes(conf);
7116 	raid5_free_percpu(conf);
7117 	for (i = 0; i < conf->pool_size; i++)
7118 		if (conf->disks[i].extra_page)
7119 			put_page(conf->disks[i].extra_page);
7120 	kfree(conf->disks);
7121 	bioset_exit(&conf->bio_split);
7122 	kfree(conf->stripe_hashtbl);
7123 	kfree(conf->pending_data);
7124 	kfree(conf);
7125 }
7126 
7127 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7128 {
7129 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7130 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7131 
7132 	if (alloc_scratch_buffer(conf, percpu)) {
7133 		pr_warn("%s: failed memory allocation for cpu%u\n",
7134 			__func__, cpu);
7135 		return -ENOMEM;
7136 	}
7137 	return 0;
7138 }
7139 
7140 static int raid5_alloc_percpu(struct r5conf *conf)
7141 {
7142 	int err = 0;
7143 
7144 	conf->percpu = alloc_percpu(struct raid5_percpu);
7145 	if (!conf->percpu)
7146 		return -ENOMEM;
7147 
7148 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7149 	if (!err) {
7150 		conf->scribble_disks = max(conf->raid_disks,
7151 			conf->previous_raid_disks);
7152 		conf->scribble_sectors = max(conf->chunk_sectors,
7153 			conf->prev_chunk_sectors);
7154 	}
7155 	return err;
7156 }
7157 
7158 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7159 				      struct shrink_control *sc)
7160 {
7161 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7162 	unsigned long ret = SHRINK_STOP;
7163 
7164 	if (mutex_trylock(&conf->cache_size_mutex)) {
7165 		ret= 0;
7166 		while (ret < sc->nr_to_scan &&
7167 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7168 			if (drop_one_stripe(conf) == 0) {
7169 				ret = SHRINK_STOP;
7170 				break;
7171 			}
7172 			ret++;
7173 		}
7174 		mutex_unlock(&conf->cache_size_mutex);
7175 	}
7176 	return ret;
7177 }
7178 
7179 static unsigned long raid5_cache_count(struct shrinker *shrink,
7180 				       struct shrink_control *sc)
7181 {
7182 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7183 
7184 	if (conf->max_nr_stripes < conf->min_nr_stripes)
7185 		/* unlikely, but not impossible */
7186 		return 0;
7187 	return conf->max_nr_stripes - conf->min_nr_stripes;
7188 }
7189 
7190 static struct r5conf *setup_conf(struct mddev *mddev)
7191 {
7192 	struct r5conf *conf;
7193 	int raid_disk, memory, max_disks;
7194 	struct md_rdev *rdev;
7195 	struct disk_info *disk;
7196 	char pers_name[6];
7197 	int i;
7198 	int group_cnt;
7199 	struct r5worker_group *new_group;
7200 	int ret = -ENOMEM;
7201 
7202 	if (mddev->new_level != 5
7203 	    && mddev->new_level != 4
7204 	    && mddev->new_level != 6) {
7205 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7206 			mdname(mddev), mddev->new_level);
7207 		return ERR_PTR(-EIO);
7208 	}
7209 	if ((mddev->new_level == 5
7210 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7211 	    (mddev->new_level == 6
7212 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7213 		pr_warn("md/raid:%s: layout %d not supported\n",
7214 			mdname(mddev), mddev->new_layout);
7215 		return ERR_PTR(-EIO);
7216 	}
7217 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7218 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7219 			mdname(mddev), mddev->raid_disks);
7220 		return ERR_PTR(-EINVAL);
7221 	}
7222 
7223 	if (!mddev->new_chunk_sectors ||
7224 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7225 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7226 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7227 			mdname(mddev), mddev->new_chunk_sectors << 9);
7228 		return ERR_PTR(-EINVAL);
7229 	}
7230 
7231 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7232 	if (conf == NULL)
7233 		goto abort;
7234 
7235 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7236 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7237 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7238 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7239 #endif
7240 	INIT_LIST_HEAD(&conf->free_list);
7241 	INIT_LIST_HEAD(&conf->pending_list);
7242 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7243 				     sizeof(struct r5pending_data),
7244 				     GFP_KERNEL);
7245 	if (!conf->pending_data)
7246 		goto abort;
7247 	for (i = 0; i < PENDING_IO_MAX; i++)
7248 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7249 	/* Don't enable multi-threading by default*/
7250 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7251 		conf->group_cnt = group_cnt;
7252 		conf->worker_cnt_per_group = 0;
7253 		conf->worker_groups = new_group;
7254 	} else
7255 		goto abort;
7256 	spin_lock_init(&conf->device_lock);
7257 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7258 	mutex_init(&conf->cache_size_mutex);
7259 
7260 	init_waitqueue_head(&conf->wait_for_quiescent);
7261 	init_waitqueue_head(&conf->wait_for_stripe);
7262 	init_waitqueue_head(&conf->wait_for_overlap);
7263 	INIT_LIST_HEAD(&conf->handle_list);
7264 	INIT_LIST_HEAD(&conf->loprio_list);
7265 	INIT_LIST_HEAD(&conf->hold_list);
7266 	INIT_LIST_HEAD(&conf->delayed_list);
7267 	INIT_LIST_HEAD(&conf->bitmap_list);
7268 	init_llist_head(&conf->released_stripes);
7269 	atomic_set(&conf->active_stripes, 0);
7270 	atomic_set(&conf->preread_active_stripes, 0);
7271 	atomic_set(&conf->active_aligned_reads, 0);
7272 	spin_lock_init(&conf->pending_bios_lock);
7273 	conf->batch_bio_dispatch = true;
7274 	rdev_for_each(rdev, mddev) {
7275 		if (test_bit(Journal, &rdev->flags))
7276 			continue;
7277 		if (bdev_nonrot(rdev->bdev)) {
7278 			conf->batch_bio_dispatch = false;
7279 			break;
7280 		}
7281 	}
7282 
7283 	conf->bypass_threshold = BYPASS_THRESHOLD;
7284 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7285 
7286 	conf->raid_disks = mddev->raid_disks;
7287 	if (mddev->reshape_position == MaxSector)
7288 		conf->previous_raid_disks = mddev->raid_disks;
7289 	else
7290 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7291 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7292 
7293 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7294 			      GFP_KERNEL);
7295 
7296 	if (!conf->disks)
7297 		goto abort;
7298 
7299 	for (i = 0; i < max_disks; i++) {
7300 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7301 		if (!conf->disks[i].extra_page)
7302 			goto abort;
7303 	}
7304 
7305 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7306 	if (ret)
7307 		goto abort;
7308 	conf->mddev = mddev;
7309 
7310 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7311 		goto abort;
7312 
7313 	/* We init hash_locks[0] separately to that it can be used
7314 	 * as the reference lock in the spin_lock_nest_lock() call
7315 	 * in lock_all_device_hash_locks_irq in order to convince
7316 	 * lockdep that we know what we are doing.
7317 	 */
7318 	spin_lock_init(conf->hash_locks);
7319 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7320 		spin_lock_init(conf->hash_locks + i);
7321 
7322 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7323 		INIT_LIST_HEAD(conf->inactive_list + i);
7324 
7325 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7326 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7327 
7328 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7329 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7330 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7331 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7332 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7333 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7334 
7335 	conf->level = mddev->new_level;
7336 	conf->chunk_sectors = mddev->new_chunk_sectors;
7337 	ret = raid5_alloc_percpu(conf);
7338 	if (ret)
7339 		goto abort;
7340 
7341 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7342 
7343 	ret = -EIO;
7344 	rdev_for_each(rdev, mddev) {
7345 		raid_disk = rdev->raid_disk;
7346 		if (raid_disk >= max_disks
7347 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7348 			continue;
7349 		disk = conf->disks + raid_disk;
7350 
7351 		if (test_bit(Replacement, &rdev->flags)) {
7352 			if (disk->replacement)
7353 				goto abort;
7354 			RCU_INIT_POINTER(disk->replacement, rdev);
7355 		} else {
7356 			if (disk->rdev)
7357 				goto abort;
7358 			RCU_INIT_POINTER(disk->rdev, rdev);
7359 		}
7360 
7361 		if (test_bit(In_sync, &rdev->flags)) {
7362 			char b[BDEVNAME_SIZE];
7363 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7364 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7365 		} else if (rdev->saved_raid_disk != raid_disk)
7366 			/* Cannot rely on bitmap to complete recovery */
7367 			conf->fullsync = 1;
7368 	}
7369 
7370 	conf->level = mddev->new_level;
7371 	if (conf->level == 6) {
7372 		conf->max_degraded = 2;
7373 		if (raid6_call.xor_syndrome)
7374 			conf->rmw_level = PARITY_ENABLE_RMW;
7375 		else
7376 			conf->rmw_level = PARITY_DISABLE_RMW;
7377 	} else {
7378 		conf->max_degraded = 1;
7379 		conf->rmw_level = PARITY_ENABLE_RMW;
7380 	}
7381 	conf->algorithm = mddev->new_layout;
7382 	conf->reshape_progress = mddev->reshape_position;
7383 	if (conf->reshape_progress != MaxSector) {
7384 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7385 		conf->prev_algo = mddev->layout;
7386 	} else {
7387 		conf->prev_chunk_sectors = conf->chunk_sectors;
7388 		conf->prev_algo = conf->algorithm;
7389 	}
7390 
7391 	conf->min_nr_stripes = NR_STRIPES;
7392 	if (mddev->reshape_position != MaxSector) {
7393 		int stripes = max_t(int,
7394 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7395 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7396 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7397 		if (conf->min_nr_stripes != NR_STRIPES)
7398 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7399 				mdname(mddev), conf->min_nr_stripes);
7400 	}
7401 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7402 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7403 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7404 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7405 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7406 			mdname(mddev), memory);
7407 		ret = -ENOMEM;
7408 		goto abort;
7409 	} else
7410 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7411 	/*
7412 	 * Losing a stripe head costs more than the time to refill it,
7413 	 * it reduces the queue depth and so can hurt throughput.
7414 	 * So set it rather large, scaled by number of devices.
7415 	 */
7416 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7417 	conf->shrinker.scan_objects = raid5_cache_scan;
7418 	conf->shrinker.count_objects = raid5_cache_count;
7419 	conf->shrinker.batch = 128;
7420 	conf->shrinker.flags = 0;
7421 	ret = register_shrinker(&conf->shrinker);
7422 	if (ret) {
7423 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7424 			mdname(mddev));
7425 		goto abort;
7426 	}
7427 
7428 	sprintf(pers_name, "raid%d", mddev->new_level);
7429 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7430 	if (!conf->thread) {
7431 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7432 			mdname(mddev));
7433 		ret = -ENOMEM;
7434 		goto abort;
7435 	}
7436 
7437 	return conf;
7438 
7439  abort:
7440 	if (conf)
7441 		free_conf(conf);
7442 	return ERR_PTR(ret);
7443 }
7444 
7445 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7446 {
7447 	switch (algo) {
7448 	case ALGORITHM_PARITY_0:
7449 		if (raid_disk < max_degraded)
7450 			return 1;
7451 		break;
7452 	case ALGORITHM_PARITY_N:
7453 		if (raid_disk >= raid_disks - max_degraded)
7454 			return 1;
7455 		break;
7456 	case ALGORITHM_PARITY_0_6:
7457 		if (raid_disk == 0 ||
7458 		    raid_disk == raid_disks - 1)
7459 			return 1;
7460 		break;
7461 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7462 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7463 	case ALGORITHM_LEFT_SYMMETRIC_6:
7464 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7465 		if (raid_disk == raid_disks - 1)
7466 			return 1;
7467 	}
7468 	return 0;
7469 }
7470 
7471 static void raid5_set_io_opt(struct r5conf *conf)
7472 {
7473 	blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7474 			 (conf->raid_disks - conf->max_degraded));
7475 }
7476 
7477 static int raid5_run(struct mddev *mddev)
7478 {
7479 	struct r5conf *conf;
7480 	int working_disks = 0;
7481 	int dirty_parity_disks = 0;
7482 	struct md_rdev *rdev;
7483 	struct md_rdev *journal_dev = NULL;
7484 	sector_t reshape_offset = 0;
7485 	int i, ret = 0;
7486 	long long min_offset_diff = 0;
7487 	int first = 1;
7488 
7489 	if (acct_bioset_init(mddev)) {
7490 		pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
7491 		return -ENOMEM;
7492 	}
7493 
7494 	if (mddev_init_writes_pending(mddev) < 0) {
7495 		ret = -ENOMEM;
7496 		goto exit_acct_set;
7497 	}
7498 
7499 	if (mddev->recovery_cp != MaxSector)
7500 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7501 			  mdname(mddev));
7502 
7503 	rdev_for_each(rdev, mddev) {
7504 		long long diff;
7505 
7506 		if (test_bit(Journal, &rdev->flags)) {
7507 			journal_dev = rdev;
7508 			continue;
7509 		}
7510 		if (rdev->raid_disk < 0)
7511 			continue;
7512 		diff = (rdev->new_data_offset - rdev->data_offset);
7513 		if (first) {
7514 			min_offset_diff = diff;
7515 			first = 0;
7516 		} else if (mddev->reshape_backwards &&
7517 			 diff < min_offset_diff)
7518 			min_offset_diff = diff;
7519 		else if (!mddev->reshape_backwards &&
7520 			 diff > min_offset_diff)
7521 			min_offset_diff = diff;
7522 	}
7523 
7524 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7525 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7526 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7527 			  mdname(mddev));
7528 		ret = -EINVAL;
7529 		goto exit_acct_set;
7530 	}
7531 
7532 	if (mddev->reshape_position != MaxSector) {
7533 		/* Check that we can continue the reshape.
7534 		 * Difficulties arise if the stripe we would write to
7535 		 * next is at or after the stripe we would read from next.
7536 		 * For a reshape that changes the number of devices, this
7537 		 * is only possible for a very short time, and mdadm makes
7538 		 * sure that time appears to have past before assembling
7539 		 * the array.  So we fail if that time hasn't passed.
7540 		 * For a reshape that keeps the number of devices the same
7541 		 * mdadm must be monitoring the reshape can keeping the
7542 		 * critical areas read-only and backed up.  It will start
7543 		 * the array in read-only mode, so we check for that.
7544 		 */
7545 		sector_t here_new, here_old;
7546 		int old_disks;
7547 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7548 		int chunk_sectors;
7549 		int new_data_disks;
7550 
7551 		if (journal_dev) {
7552 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7553 				mdname(mddev));
7554 			ret = -EINVAL;
7555 			goto exit_acct_set;
7556 		}
7557 
7558 		if (mddev->new_level != mddev->level) {
7559 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7560 				mdname(mddev));
7561 			ret = -EINVAL;
7562 			goto exit_acct_set;
7563 		}
7564 		old_disks = mddev->raid_disks - mddev->delta_disks;
7565 		/* reshape_position must be on a new-stripe boundary, and one
7566 		 * further up in new geometry must map after here in old
7567 		 * geometry.
7568 		 * If the chunk sizes are different, then as we perform reshape
7569 		 * in units of the largest of the two, reshape_position needs
7570 		 * be a multiple of the largest chunk size times new data disks.
7571 		 */
7572 		here_new = mddev->reshape_position;
7573 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7574 		new_data_disks = mddev->raid_disks - max_degraded;
7575 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7576 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7577 				mdname(mddev));
7578 			ret = -EINVAL;
7579 			goto exit_acct_set;
7580 		}
7581 		reshape_offset = here_new * chunk_sectors;
7582 		/* here_new is the stripe we will write to */
7583 		here_old = mddev->reshape_position;
7584 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7585 		/* here_old is the first stripe that we might need to read
7586 		 * from */
7587 		if (mddev->delta_disks == 0) {
7588 			/* We cannot be sure it is safe to start an in-place
7589 			 * reshape.  It is only safe if user-space is monitoring
7590 			 * and taking constant backups.
7591 			 * mdadm always starts a situation like this in
7592 			 * readonly mode so it can take control before
7593 			 * allowing any writes.  So just check for that.
7594 			 */
7595 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7596 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7597 				/* not really in-place - so OK */;
7598 			else if (mddev->ro == 0) {
7599 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7600 					mdname(mddev));
7601 				ret = -EINVAL;
7602 				goto exit_acct_set;
7603 			}
7604 		} else if (mddev->reshape_backwards
7605 		    ? (here_new * chunk_sectors + min_offset_diff <=
7606 		       here_old * chunk_sectors)
7607 		    : (here_new * chunk_sectors >=
7608 		       here_old * chunk_sectors + (-min_offset_diff))) {
7609 			/* Reading from the same stripe as writing to - bad */
7610 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7611 				mdname(mddev));
7612 			ret = -EINVAL;
7613 			goto exit_acct_set;
7614 		}
7615 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7616 		/* OK, we should be able to continue; */
7617 	} else {
7618 		BUG_ON(mddev->level != mddev->new_level);
7619 		BUG_ON(mddev->layout != mddev->new_layout);
7620 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7621 		BUG_ON(mddev->delta_disks != 0);
7622 	}
7623 
7624 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7625 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7626 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7627 			mdname(mddev));
7628 		clear_bit(MD_HAS_PPL, &mddev->flags);
7629 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7630 	}
7631 
7632 	if (mddev->private == NULL)
7633 		conf = setup_conf(mddev);
7634 	else
7635 		conf = mddev->private;
7636 
7637 	if (IS_ERR(conf)) {
7638 		ret = PTR_ERR(conf);
7639 		goto exit_acct_set;
7640 	}
7641 
7642 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7643 		if (!journal_dev) {
7644 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7645 				mdname(mddev));
7646 			mddev->ro = 1;
7647 			set_disk_ro(mddev->gendisk, 1);
7648 		} else if (mddev->recovery_cp == MaxSector)
7649 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7650 	}
7651 
7652 	conf->min_offset_diff = min_offset_diff;
7653 	mddev->thread = conf->thread;
7654 	conf->thread = NULL;
7655 	mddev->private = conf;
7656 
7657 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7658 	     i++) {
7659 		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7660 		if (!rdev && conf->disks[i].replacement) {
7661 			/* The replacement is all we have yet */
7662 			rdev = rdev_mdlock_deref(mddev,
7663 						 conf->disks[i].replacement);
7664 			conf->disks[i].replacement = NULL;
7665 			clear_bit(Replacement, &rdev->flags);
7666 			rcu_assign_pointer(conf->disks[i].rdev, rdev);
7667 		}
7668 		if (!rdev)
7669 			continue;
7670 		if (rcu_access_pointer(conf->disks[i].replacement) &&
7671 		    conf->reshape_progress != MaxSector) {
7672 			/* replacements and reshape simply do not mix. */
7673 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7674 			goto abort;
7675 		}
7676 		if (test_bit(In_sync, &rdev->flags)) {
7677 			working_disks++;
7678 			continue;
7679 		}
7680 		/* This disc is not fully in-sync.  However if it
7681 		 * just stored parity (beyond the recovery_offset),
7682 		 * when we don't need to be concerned about the
7683 		 * array being dirty.
7684 		 * When reshape goes 'backwards', we never have
7685 		 * partially completed devices, so we only need
7686 		 * to worry about reshape going forwards.
7687 		 */
7688 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7689 		if (mddev->major_version == 0 &&
7690 		    mddev->minor_version > 90)
7691 			rdev->recovery_offset = reshape_offset;
7692 
7693 		if (rdev->recovery_offset < reshape_offset) {
7694 			/* We need to check old and new layout */
7695 			if (!only_parity(rdev->raid_disk,
7696 					 conf->algorithm,
7697 					 conf->raid_disks,
7698 					 conf->max_degraded))
7699 				continue;
7700 		}
7701 		if (!only_parity(rdev->raid_disk,
7702 				 conf->prev_algo,
7703 				 conf->previous_raid_disks,
7704 				 conf->max_degraded))
7705 			continue;
7706 		dirty_parity_disks++;
7707 	}
7708 
7709 	/*
7710 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7711 	 */
7712 	mddev->degraded = raid5_calc_degraded(conf);
7713 
7714 	if (has_failed(conf)) {
7715 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7716 			mdname(mddev), mddev->degraded, conf->raid_disks);
7717 		goto abort;
7718 	}
7719 
7720 	/* device size must be a multiple of chunk size */
7721 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7722 	mddev->resync_max_sectors = mddev->dev_sectors;
7723 
7724 	if (mddev->degraded > dirty_parity_disks &&
7725 	    mddev->recovery_cp != MaxSector) {
7726 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7727 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7728 				mdname(mddev));
7729 		else if (mddev->ok_start_degraded)
7730 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7731 				mdname(mddev));
7732 		else {
7733 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7734 				mdname(mddev));
7735 			goto abort;
7736 		}
7737 	}
7738 
7739 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7740 		mdname(mddev), conf->level,
7741 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7742 		mddev->new_layout);
7743 
7744 	print_raid5_conf(conf);
7745 
7746 	if (conf->reshape_progress != MaxSector) {
7747 		conf->reshape_safe = conf->reshape_progress;
7748 		atomic_set(&conf->reshape_stripes, 0);
7749 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7750 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7751 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7752 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7753 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7754 							"reshape");
7755 		if (!mddev->sync_thread)
7756 			goto abort;
7757 	}
7758 
7759 	/* Ok, everything is just fine now */
7760 	if (mddev->to_remove == &raid5_attrs_group)
7761 		mddev->to_remove = NULL;
7762 	else if (mddev->kobj.sd &&
7763 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7764 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7765 			mdname(mddev));
7766 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7767 
7768 	if (mddev->queue) {
7769 		int chunk_size;
7770 		/* read-ahead size must cover two whole stripes, which
7771 		 * is 2 * (datadisks) * chunksize where 'n' is the
7772 		 * number of raid devices
7773 		 */
7774 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7775 		int stripe = data_disks *
7776 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7777 
7778 		chunk_size = mddev->chunk_sectors << 9;
7779 		blk_queue_io_min(mddev->queue, chunk_size);
7780 		raid5_set_io_opt(conf);
7781 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7782 		/*
7783 		 * We can only discard a whole stripe. It doesn't make sense to
7784 		 * discard data disk but write parity disk
7785 		 */
7786 		stripe = stripe * PAGE_SIZE;
7787 		stripe = roundup_pow_of_two(stripe);
7788 		mddev->queue->limits.discard_granularity = stripe;
7789 
7790 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7791 
7792 		rdev_for_each(rdev, mddev) {
7793 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7794 					  rdev->data_offset << 9);
7795 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7796 					  rdev->new_data_offset << 9);
7797 		}
7798 
7799 		/*
7800 		 * zeroing is required, otherwise data
7801 		 * could be lost. Consider a scenario: discard a stripe
7802 		 * (the stripe could be inconsistent if
7803 		 * discard_zeroes_data is 0); write one disk of the
7804 		 * stripe (the stripe could be inconsistent again
7805 		 * depending on which disks are used to calculate
7806 		 * parity); the disk is broken; The stripe data of this
7807 		 * disk is lost.
7808 		 *
7809 		 * We only allow DISCARD if the sysadmin has confirmed that
7810 		 * only safe devices are in use by setting a module parameter.
7811 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7812 		 * requests, as that is required to be safe.
7813 		 */
7814 		if (!devices_handle_discard_safely ||
7815 		    mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
7816 		    mddev->queue->limits.discard_granularity < stripe)
7817 			blk_queue_max_discard_sectors(mddev->queue, 0);
7818 
7819 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7820 	}
7821 
7822 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7823 		goto abort;
7824 
7825 	return 0;
7826 abort:
7827 	md_unregister_thread(&mddev->thread);
7828 	print_raid5_conf(conf);
7829 	free_conf(conf);
7830 	mddev->private = NULL;
7831 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7832 	ret = -EIO;
7833 exit_acct_set:
7834 	acct_bioset_exit(mddev);
7835 	return ret;
7836 }
7837 
7838 static void raid5_free(struct mddev *mddev, void *priv)
7839 {
7840 	struct r5conf *conf = priv;
7841 
7842 	free_conf(conf);
7843 	acct_bioset_exit(mddev);
7844 	mddev->to_remove = &raid5_attrs_group;
7845 }
7846 
7847 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7848 {
7849 	struct r5conf *conf = mddev->private;
7850 	int i;
7851 
7852 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7853 		conf->chunk_sectors / 2, mddev->layout);
7854 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7855 	rcu_read_lock();
7856 	for (i = 0; i < conf->raid_disks; i++) {
7857 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7858 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7859 	}
7860 	rcu_read_unlock();
7861 	seq_printf (seq, "]");
7862 }
7863 
7864 static void print_raid5_conf (struct r5conf *conf)
7865 {
7866 	struct md_rdev *rdev;
7867 	int i;
7868 
7869 	pr_debug("RAID conf printout:\n");
7870 	if (!conf) {
7871 		pr_debug("(conf==NULL)\n");
7872 		return;
7873 	}
7874 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7875 	       conf->raid_disks,
7876 	       conf->raid_disks - conf->mddev->degraded);
7877 
7878 	rcu_read_lock();
7879 	for (i = 0; i < conf->raid_disks; i++) {
7880 		char b[BDEVNAME_SIZE];
7881 		rdev = rcu_dereference(conf->disks[i].rdev);
7882 		if (rdev)
7883 			pr_debug(" disk %d, o:%d, dev:%s\n",
7884 			       i, !test_bit(Faulty, &rdev->flags),
7885 			       bdevname(rdev->bdev, b));
7886 	}
7887 	rcu_read_unlock();
7888 }
7889 
7890 static int raid5_spare_active(struct mddev *mddev)
7891 {
7892 	int i;
7893 	struct r5conf *conf = mddev->private;
7894 	struct md_rdev *rdev, *replacement;
7895 	int count = 0;
7896 	unsigned long flags;
7897 
7898 	for (i = 0; i < conf->raid_disks; i++) {
7899 		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7900 		replacement = rdev_mdlock_deref(mddev,
7901 						conf->disks[i].replacement);
7902 		if (replacement
7903 		    && replacement->recovery_offset == MaxSector
7904 		    && !test_bit(Faulty, &replacement->flags)
7905 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
7906 			/* Replacement has just become active. */
7907 			if (!rdev
7908 			    || !test_and_clear_bit(In_sync, &rdev->flags))
7909 				count++;
7910 			if (rdev) {
7911 				/* Replaced device not technically faulty,
7912 				 * but we need to be sure it gets removed
7913 				 * and never re-added.
7914 				 */
7915 				set_bit(Faulty, &rdev->flags);
7916 				sysfs_notify_dirent_safe(
7917 					rdev->sysfs_state);
7918 			}
7919 			sysfs_notify_dirent_safe(replacement->sysfs_state);
7920 		} else if (rdev
7921 		    && rdev->recovery_offset == MaxSector
7922 		    && !test_bit(Faulty, &rdev->flags)
7923 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
7924 			count++;
7925 			sysfs_notify_dirent_safe(rdev->sysfs_state);
7926 		}
7927 	}
7928 	spin_lock_irqsave(&conf->device_lock, flags);
7929 	mddev->degraded = raid5_calc_degraded(conf);
7930 	spin_unlock_irqrestore(&conf->device_lock, flags);
7931 	print_raid5_conf(conf);
7932 	return count;
7933 }
7934 
7935 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7936 {
7937 	struct r5conf *conf = mddev->private;
7938 	int err = 0;
7939 	int number = rdev->raid_disk;
7940 	struct md_rdev __rcu **rdevp;
7941 	struct disk_info *p = conf->disks + number;
7942 	struct md_rdev *tmp;
7943 
7944 	print_raid5_conf(conf);
7945 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7946 		/*
7947 		 * we can't wait pending write here, as this is called in
7948 		 * raid5d, wait will deadlock.
7949 		 * neilb: there is no locking about new writes here,
7950 		 * so this cannot be safe.
7951 		 */
7952 		if (atomic_read(&conf->active_stripes) ||
7953 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7954 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7955 			return -EBUSY;
7956 		}
7957 		log_exit(conf);
7958 		return 0;
7959 	}
7960 	if (rdev == rcu_access_pointer(p->rdev))
7961 		rdevp = &p->rdev;
7962 	else if (rdev == rcu_access_pointer(p->replacement))
7963 		rdevp = &p->replacement;
7964 	else
7965 		return 0;
7966 
7967 	if (number >= conf->raid_disks &&
7968 	    conf->reshape_progress == MaxSector)
7969 		clear_bit(In_sync, &rdev->flags);
7970 
7971 	if (test_bit(In_sync, &rdev->flags) ||
7972 	    atomic_read(&rdev->nr_pending)) {
7973 		err = -EBUSY;
7974 		goto abort;
7975 	}
7976 	/* Only remove non-faulty devices if recovery
7977 	 * isn't possible.
7978 	 */
7979 	if (!test_bit(Faulty, &rdev->flags) &&
7980 	    mddev->recovery_disabled != conf->recovery_disabled &&
7981 	    !has_failed(conf) &&
7982 	    (!rcu_access_pointer(p->replacement) ||
7983 	     rcu_access_pointer(p->replacement) == rdev) &&
7984 	    number < conf->raid_disks) {
7985 		err = -EBUSY;
7986 		goto abort;
7987 	}
7988 	*rdevp = NULL;
7989 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7990 		lockdep_assert_held(&mddev->reconfig_mutex);
7991 		synchronize_rcu();
7992 		if (atomic_read(&rdev->nr_pending)) {
7993 			/* lost the race, try later */
7994 			err = -EBUSY;
7995 			rcu_assign_pointer(*rdevp, rdev);
7996 		}
7997 	}
7998 	if (!err) {
7999 		err = log_modify(conf, rdev, false);
8000 		if (err)
8001 			goto abort;
8002 	}
8003 
8004 	tmp = rcu_access_pointer(p->replacement);
8005 	if (tmp) {
8006 		/* We must have just cleared 'rdev' */
8007 		rcu_assign_pointer(p->rdev, tmp);
8008 		clear_bit(Replacement, &tmp->flags);
8009 		smp_mb(); /* Make sure other CPUs may see both as identical
8010 			   * but will never see neither - if they are careful
8011 			   */
8012 		rcu_assign_pointer(p->replacement, NULL);
8013 
8014 		if (!err)
8015 			err = log_modify(conf, tmp, true);
8016 	}
8017 
8018 	clear_bit(WantReplacement, &rdev->flags);
8019 abort:
8020 
8021 	print_raid5_conf(conf);
8022 	return err;
8023 }
8024 
8025 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8026 {
8027 	struct r5conf *conf = mddev->private;
8028 	int ret, err = -EEXIST;
8029 	int disk;
8030 	struct disk_info *p;
8031 	struct md_rdev *tmp;
8032 	int first = 0;
8033 	int last = conf->raid_disks - 1;
8034 
8035 	if (test_bit(Journal, &rdev->flags)) {
8036 		if (conf->log)
8037 			return -EBUSY;
8038 
8039 		rdev->raid_disk = 0;
8040 		/*
8041 		 * The array is in readonly mode if journal is missing, so no
8042 		 * write requests running. We should be safe
8043 		 */
8044 		ret = log_init(conf, rdev, false);
8045 		if (ret)
8046 			return ret;
8047 
8048 		ret = r5l_start(conf->log);
8049 		if (ret)
8050 			return ret;
8051 
8052 		return 0;
8053 	}
8054 	if (mddev->recovery_disabled == conf->recovery_disabled)
8055 		return -EBUSY;
8056 
8057 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8058 		/* no point adding a device */
8059 		return -EINVAL;
8060 
8061 	if (rdev->raid_disk >= 0)
8062 		first = last = rdev->raid_disk;
8063 
8064 	/*
8065 	 * find the disk ... but prefer rdev->saved_raid_disk
8066 	 * if possible.
8067 	 */
8068 	if (rdev->saved_raid_disk >= 0 &&
8069 	    rdev->saved_raid_disk >= first &&
8070 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8071 		first = rdev->saved_raid_disk;
8072 
8073 	for (disk = first; disk <= last; disk++) {
8074 		p = conf->disks + disk;
8075 		if (p->rdev == NULL) {
8076 			clear_bit(In_sync, &rdev->flags);
8077 			rdev->raid_disk = disk;
8078 			if (rdev->saved_raid_disk != disk)
8079 				conf->fullsync = 1;
8080 			rcu_assign_pointer(p->rdev, rdev);
8081 
8082 			err = log_modify(conf, rdev, true);
8083 
8084 			goto out;
8085 		}
8086 	}
8087 	for (disk = first; disk <= last; disk++) {
8088 		p = conf->disks + disk;
8089 		tmp = rdev_mdlock_deref(mddev, p->rdev);
8090 		if (test_bit(WantReplacement, &tmp->flags) &&
8091 		    p->replacement == NULL) {
8092 			clear_bit(In_sync, &rdev->flags);
8093 			set_bit(Replacement, &rdev->flags);
8094 			rdev->raid_disk = disk;
8095 			err = 0;
8096 			conf->fullsync = 1;
8097 			rcu_assign_pointer(p->replacement, rdev);
8098 			break;
8099 		}
8100 	}
8101 out:
8102 	print_raid5_conf(conf);
8103 	return err;
8104 }
8105 
8106 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8107 {
8108 	/* no resync is happening, and there is enough space
8109 	 * on all devices, so we can resize.
8110 	 * We need to make sure resync covers any new space.
8111 	 * If the array is shrinking we should possibly wait until
8112 	 * any io in the removed space completes, but it hardly seems
8113 	 * worth it.
8114 	 */
8115 	sector_t newsize;
8116 	struct r5conf *conf = mddev->private;
8117 
8118 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8119 		return -EINVAL;
8120 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8121 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8122 	if (mddev->external_size &&
8123 	    mddev->array_sectors > newsize)
8124 		return -EINVAL;
8125 	if (mddev->bitmap) {
8126 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8127 		if (ret)
8128 			return ret;
8129 	}
8130 	md_set_array_sectors(mddev, newsize);
8131 	if (sectors > mddev->dev_sectors &&
8132 	    mddev->recovery_cp > mddev->dev_sectors) {
8133 		mddev->recovery_cp = mddev->dev_sectors;
8134 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8135 	}
8136 	mddev->dev_sectors = sectors;
8137 	mddev->resync_max_sectors = sectors;
8138 	return 0;
8139 }
8140 
8141 static int check_stripe_cache(struct mddev *mddev)
8142 {
8143 	/* Can only proceed if there are plenty of stripe_heads.
8144 	 * We need a minimum of one full stripe,, and for sensible progress
8145 	 * it is best to have about 4 times that.
8146 	 * If we require 4 times, then the default 256 4K stripe_heads will
8147 	 * allow for chunk sizes up to 256K, which is probably OK.
8148 	 * If the chunk size is greater, user-space should request more
8149 	 * stripe_heads first.
8150 	 */
8151 	struct r5conf *conf = mddev->private;
8152 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8153 	    > conf->min_nr_stripes ||
8154 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8155 	    > conf->min_nr_stripes) {
8156 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8157 			mdname(mddev),
8158 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8159 			 / RAID5_STRIPE_SIZE(conf))*4);
8160 		return 0;
8161 	}
8162 	return 1;
8163 }
8164 
8165 static int check_reshape(struct mddev *mddev)
8166 {
8167 	struct r5conf *conf = mddev->private;
8168 
8169 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8170 		return -EINVAL;
8171 	if (mddev->delta_disks == 0 &&
8172 	    mddev->new_layout == mddev->layout &&
8173 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8174 		return 0; /* nothing to do */
8175 	if (has_failed(conf))
8176 		return -EINVAL;
8177 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8178 		/* We might be able to shrink, but the devices must
8179 		 * be made bigger first.
8180 		 * For raid6, 4 is the minimum size.
8181 		 * Otherwise 2 is the minimum
8182 		 */
8183 		int min = 2;
8184 		if (mddev->level == 6)
8185 			min = 4;
8186 		if (mddev->raid_disks + mddev->delta_disks < min)
8187 			return -EINVAL;
8188 	}
8189 
8190 	if (!check_stripe_cache(mddev))
8191 		return -ENOSPC;
8192 
8193 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8194 	    mddev->delta_disks > 0)
8195 		if (resize_chunks(conf,
8196 				  conf->previous_raid_disks
8197 				  + max(0, mddev->delta_disks),
8198 				  max(mddev->new_chunk_sectors,
8199 				      mddev->chunk_sectors)
8200 			    ) < 0)
8201 			return -ENOMEM;
8202 
8203 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8204 		return 0; /* never bother to shrink */
8205 	return resize_stripes(conf, (conf->previous_raid_disks
8206 				     + mddev->delta_disks));
8207 }
8208 
8209 static int raid5_start_reshape(struct mddev *mddev)
8210 {
8211 	struct r5conf *conf = mddev->private;
8212 	struct md_rdev *rdev;
8213 	int spares = 0;
8214 	unsigned long flags;
8215 
8216 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8217 		return -EBUSY;
8218 
8219 	if (!check_stripe_cache(mddev))
8220 		return -ENOSPC;
8221 
8222 	if (has_failed(conf))
8223 		return -EINVAL;
8224 
8225 	rdev_for_each(rdev, mddev) {
8226 		if (!test_bit(In_sync, &rdev->flags)
8227 		    && !test_bit(Faulty, &rdev->flags))
8228 			spares++;
8229 	}
8230 
8231 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8232 		/* Not enough devices even to make a degraded array
8233 		 * of that size
8234 		 */
8235 		return -EINVAL;
8236 
8237 	/* Refuse to reduce size of the array.  Any reductions in
8238 	 * array size must be through explicit setting of array_size
8239 	 * attribute.
8240 	 */
8241 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8242 	    < mddev->array_sectors) {
8243 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8244 			mdname(mddev));
8245 		return -EINVAL;
8246 	}
8247 
8248 	atomic_set(&conf->reshape_stripes, 0);
8249 	spin_lock_irq(&conf->device_lock);
8250 	write_seqcount_begin(&conf->gen_lock);
8251 	conf->previous_raid_disks = conf->raid_disks;
8252 	conf->raid_disks += mddev->delta_disks;
8253 	conf->prev_chunk_sectors = conf->chunk_sectors;
8254 	conf->chunk_sectors = mddev->new_chunk_sectors;
8255 	conf->prev_algo = conf->algorithm;
8256 	conf->algorithm = mddev->new_layout;
8257 	conf->generation++;
8258 	/* Code that selects data_offset needs to see the generation update
8259 	 * if reshape_progress has been set - so a memory barrier needed.
8260 	 */
8261 	smp_mb();
8262 	if (mddev->reshape_backwards)
8263 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8264 	else
8265 		conf->reshape_progress = 0;
8266 	conf->reshape_safe = conf->reshape_progress;
8267 	write_seqcount_end(&conf->gen_lock);
8268 	spin_unlock_irq(&conf->device_lock);
8269 
8270 	/* Now make sure any requests that proceeded on the assumption
8271 	 * the reshape wasn't running - like Discard or Read - have
8272 	 * completed.
8273 	 */
8274 	mddev_suspend(mddev);
8275 	mddev_resume(mddev);
8276 
8277 	/* Add some new drives, as many as will fit.
8278 	 * We know there are enough to make the newly sized array work.
8279 	 * Don't add devices if we are reducing the number of
8280 	 * devices in the array.  This is because it is not possible
8281 	 * to correctly record the "partially reconstructed" state of
8282 	 * such devices during the reshape and confusion could result.
8283 	 */
8284 	if (mddev->delta_disks >= 0) {
8285 		rdev_for_each(rdev, mddev)
8286 			if (rdev->raid_disk < 0 &&
8287 			    !test_bit(Faulty, &rdev->flags)) {
8288 				if (raid5_add_disk(mddev, rdev) == 0) {
8289 					if (rdev->raid_disk
8290 					    >= conf->previous_raid_disks)
8291 						set_bit(In_sync, &rdev->flags);
8292 					else
8293 						rdev->recovery_offset = 0;
8294 
8295 					/* Failure here is OK */
8296 					sysfs_link_rdev(mddev, rdev);
8297 				}
8298 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8299 				   && !test_bit(Faulty, &rdev->flags)) {
8300 				/* This is a spare that was manually added */
8301 				set_bit(In_sync, &rdev->flags);
8302 			}
8303 
8304 		/* When a reshape changes the number of devices,
8305 		 * ->degraded is measured against the larger of the
8306 		 * pre and post number of devices.
8307 		 */
8308 		spin_lock_irqsave(&conf->device_lock, flags);
8309 		mddev->degraded = raid5_calc_degraded(conf);
8310 		spin_unlock_irqrestore(&conf->device_lock, flags);
8311 	}
8312 	mddev->raid_disks = conf->raid_disks;
8313 	mddev->reshape_position = conf->reshape_progress;
8314 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8315 
8316 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8317 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8318 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8319 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8320 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8321 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8322 						"reshape");
8323 	if (!mddev->sync_thread) {
8324 		mddev->recovery = 0;
8325 		spin_lock_irq(&conf->device_lock);
8326 		write_seqcount_begin(&conf->gen_lock);
8327 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8328 		mddev->new_chunk_sectors =
8329 			conf->chunk_sectors = conf->prev_chunk_sectors;
8330 		mddev->new_layout = conf->algorithm = conf->prev_algo;
8331 		rdev_for_each(rdev, mddev)
8332 			rdev->new_data_offset = rdev->data_offset;
8333 		smp_wmb();
8334 		conf->generation --;
8335 		conf->reshape_progress = MaxSector;
8336 		mddev->reshape_position = MaxSector;
8337 		write_seqcount_end(&conf->gen_lock);
8338 		spin_unlock_irq(&conf->device_lock);
8339 		return -EAGAIN;
8340 	}
8341 	conf->reshape_checkpoint = jiffies;
8342 	md_wakeup_thread(mddev->sync_thread);
8343 	md_new_event();
8344 	return 0;
8345 }
8346 
8347 /* This is called from the reshape thread and should make any
8348  * changes needed in 'conf'
8349  */
8350 static void end_reshape(struct r5conf *conf)
8351 {
8352 
8353 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8354 		struct md_rdev *rdev;
8355 
8356 		spin_lock_irq(&conf->device_lock);
8357 		conf->previous_raid_disks = conf->raid_disks;
8358 		md_finish_reshape(conf->mddev);
8359 		smp_wmb();
8360 		conf->reshape_progress = MaxSector;
8361 		conf->mddev->reshape_position = MaxSector;
8362 		rdev_for_each(rdev, conf->mddev)
8363 			if (rdev->raid_disk >= 0 &&
8364 			    !test_bit(Journal, &rdev->flags) &&
8365 			    !test_bit(In_sync, &rdev->flags))
8366 				rdev->recovery_offset = MaxSector;
8367 		spin_unlock_irq(&conf->device_lock);
8368 		wake_up(&conf->wait_for_overlap);
8369 
8370 		if (conf->mddev->queue)
8371 			raid5_set_io_opt(conf);
8372 	}
8373 }
8374 
8375 /* This is called from the raid5d thread with mddev_lock held.
8376  * It makes config changes to the device.
8377  */
8378 static void raid5_finish_reshape(struct mddev *mddev)
8379 {
8380 	struct r5conf *conf = mddev->private;
8381 	struct md_rdev *rdev;
8382 
8383 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8384 
8385 		if (mddev->delta_disks <= 0) {
8386 			int d;
8387 			spin_lock_irq(&conf->device_lock);
8388 			mddev->degraded = raid5_calc_degraded(conf);
8389 			spin_unlock_irq(&conf->device_lock);
8390 			for (d = conf->raid_disks ;
8391 			     d < conf->raid_disks - mddev->delta_disks;
8392 			     d++) {
8393 				rdev = rdev_mdlock_deref(mddev,
8394 							 conf->disks[d].rdev);
8395 				if (rdev)
8396 					clear_bit(In_sync, &rdev->flags);
8397 				rdev = rdev_mdlock_deref(mddev,
8398 						conf->disks[d].replacement);
8399 				if (rdev)
8400 					clear_bit(In_sync, &rdev->flags);
8401 			}
8402 		}
8403 		mddev->layout = conf->algorithm;
8404 		mddev->chunk_sectors = conf->chunk_sectors;
8405 		mddev->reshape_position = MaxSector;
8406 		mddev->delta_disks = 0;
8407 		mddev->reshape_backwards = 0;
8408 	}
8409 }
8410 
8411 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8412 {
8413 	struct r5conf *conf = mddev->private;
8414 
8415 	if (quiesce) {
8416 		/* stop all writes */
8417 		lock_all_device_hash_locks_irq(conf);
8418 		/* '2' tells resync/reshape to pause so that all
8419 		 * active stripes can drain
8420 		 */
8421 		r5c_flush_cache(conf, INT_MAX);
8422 		/* need a memory barrier to make sure read_one_chunk() sees
8423 		 * quiesce started and reverts to slow (locked) path.
8424 		 */
8425 		smp_store_release(&conf->quiesce, 2);
8426 		wait_event_cmd(conf->wait_for_quiescent,
8427 				    atomic_read(&conf->active_stripes) == 0 &&
8428 				    atomic_read(&conf->active_aligned_reads) == 0,
8429 				    unlock_all_device_hash_locks_irq(conf),
8430 				    lock_all_device_hash_locks_irq(conf));
8431 		conf->quiesce = 1;
8432 		unlock_all_device_hash_locks_irq(conf);
8433 		/* allow reshape to continue */
8434 		wake_up(&conf->wait_for_overlap);
8435 	} else {
8436 		/* re-enable writes */
8437 		lock_all_device_hash_locks_irq(conf);
8438 		conf->quiesce = 0;
8439 		wake_up(&conf->wait_for_quiescent);
8440 		wake_up(&conf->wait_for_overlap);
8441 		unlock_all_device_hash_locks_irq(conf);
8442 	}
8443 	log_quiesce(conf, quiesce);
8444 }
8445 
8446 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8447 {
8448 	struct r0conf *raid0_conf = mddev->private;
8449 	sector_t sectors;
8450 
8451 	/* for raid0 takeover only one zone is supported */
8452 	if (raid0_conf->nr_strip_zones > 1) {
8453 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8454 			mdname(mddev));
8455 		return ERR_PTR(-EINVAL);
8456 	}
8457 
8458 	sectors = raid0_conf->strip_zone[0].zone_end;
8459 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8460 	mddev->dev_sectors = sectors;
8461 	mddev->new_level = level;
8462 	mddev->new_layout = ALGORITHM_PARITY_N;
8463 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8464 	mddev->raid_disks += 1;
8465 	mddev->delta_disks = 1;
8466 	/* make sure it will be not marked as dirty */
8467 	mddev->recovery_cp = MaxSector;
8468 
8469 	return setup_conf(mddev);
8470 }
8471 
8472 static void *raid5_takeover_raid1(struct mddev *mddev)
8473 {
8474 	int chunksect;
8475 	void *ret;
8476 
8477 	if (mddev->raid_disks != 2 ||
8478 	    mddev->degraded > 1)
8479 		return ERR_PTR(-EINVAL);
8480 
8481 	/* Should check if there are write-behind devices? */
8482 
8483 	chunksect = 64*2; /* 64K by default */
8484 
8485 	/* The array must be an exact multiple of chunksize */
8486 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8487 		chunksect >>= 1;
8488 
8489 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8490 		/* array size does not allow a suitable chunk size */
8491 		return ERR_PTR(-EINVAL);
8492 
8493 	mddev->new_level = 5;
8494 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8495 	mddev->new_chunk_sectors = chunksect;
8496 
8497 	ret = setup_conf(mddev);
8498 	if (!IS_ERR(ret))
8499 		mddev_clear_unsupported_flags(mddev,
8500 			UNSUPPORTED_MDDEV_FLAGS);
8501 	return ret;
8502 }
8503 
8504 static void *raid5_takeover_raid6(struct mddev *mddev)
8505 {
8506 	int new_layout;
8507 
8508 	switch (mddev->layout) {
8509 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8510 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8511 		break;
8512 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8513 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8514 		break;
8515 	case ALGORITHM_LEFT_SYMMETRIC_6:
8516 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8517 		break;
8518 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8519 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8520 		break;
8521 	case ALGORITHM_PARITY_0_6:
8522 		new_layout = ALGORITHM_PARITY_0;
8523 		break;
8524 	case ALGORITHM_PARITY_N:
8525 		new_layout = ALGORITHM_PARITY_N;
8526 		break;
8527 	default:
8528 		return ERR_PTR(-EINVAL);
8529 	}
8530 	mddev->new_level = 5;
8531 	mddev->new_layout = new_layout;
8532 	mddev->delta_disks = -1;
8533 	mddev->raid_disks -= 1;
8534 	return setup_conf(mddev);
8535 }
8536 
8537 static int raid5_check_reshape(struct mddev *mddev)
8538 {
8539 	/* For a 2-drive array, the layout and chunk size can be changed
8540 	 * immediately as not restriping is needed.
8541 	 * For larger arrays we record the new value - after validation
8542 	 * to be used by a reshape pass.
8543 	 */
8544 	struct r5conf *conf = mddev->private;
8545 	int new_chunk = mddev->new_chunk_sectors;
8546 
8547 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8548 		return -EINVAL;
8549 	if (new_chunk > 0) {
8550 		if (!is_power_of_2(new_chunk))
8551 			return -EINVAL;
8552 		if (new_chunk < (PAGE_SIZE>>9))
8553 			return -EINVAL;
8554 		if (mddev->array_sectors & (new_chunk-1))
8555 			/* not factor of array size */
8556 			return -EINVAL;
8557 	}
8558 
8559 	/* They look valid */
8560 
8561 	if (mddev->raid_disks == 2) {
8562 		/* can make the change immediately */
8563 		if (mddev->new_layout >= 0) {
8564 			conf->algorithm = mddev->new_layout;
8565 			mddev->layout = mddev->new_layout;
8566 		}
8567 		if (new_chunk > 0) {
8568 			conf->chunk_sectors = new_chunk ;
8569 			mddev->chunk_sectors = new_chunk;
8570 		}
8571 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8572 		md_wakeup_thread(mddev->thread);
8573 	}
8574 	return check_reshape(mddev);
8575 }
8576 
8577 static int raid6_check_reshape(struct mddev *mddev)
8578 {
8579 	int new_chunk = mddev->new_chunk_sectors;
8580 
8581 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8582 		return -EINVAL;
8583 	if (new_chunk > 0) {
8584 		if (!is_power_of_2(new_chunk))
8585 			return -EINVAL;
8586 		if (new_chunk < (PAGE_SIZE >> 9))
8587 			return -EINVAL;
8588 		if (mddev->array_sectors & (new_chunk-1))
8589 			/* not factor of array size */
8590 			return -EINVAL;
8591 	}
8592 
8593 	/* They look valid */
8594 	return check_reshape(mddev);
8595 }
8596 
8597 static void *raid5_takeover(struct mddev *mddev)
8598 {
8599 	/* raid5 can take over:
8600 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8601 	 *  raid1 - if there are two drives.  We need to know the chunk size
8602 	 *  raid4 - trivial - just use a raid4 layout.
8603 	 *  raid6 - Providing it is a *_6 layout
8604 	 */
8605 	if (mddev->level == 0)
8606 		return raid45_takeover_raid0(mddev, 5);
8607 	if (mddev->level == 1)
8608 		return raid5_takeover_raid1(mddev);
8609 	if (mddev->level == 4) {
8610 		mddev->new_layout = ALGORITHM_PARITY_N;
8611 		mddev->new_level = 5;
8612 		return setup_conf(mddev);
8613 	}
8614 	if (mddev->level == 6)
8615 		return raid5_takeover_raid6(mddev);
8616 
8617 	return ERR_PTR(-EINVAL);
8618 }
8619 
8620 static void *raid4_takeover(struct mddev *mddev)
8621 {
8622 	/* raid4 can take over:
8623 	 *  raid0 - if there is only one strip zone
8624 	 *  raid5 - if layout is right
8625 	 */
8626 	if (mddev->level == 0)
8627 		return raid45_takeover_raid0(mddev, 4);
8628 	if (mddev->level == 5 &&
8629 	    mddev->layout == ALGORITHM_PARITY_N) {
8630 		mddev->new_layout = 0;
8631 		mddev->new_level = 4;
8632 		return setup_conf(mddev);
8633 	}
8634 	return ERR_PTR(-EINVAL);
8635 }
8636 
8637 static struct md_personality raid5_personality;
8638 
8639 static void *raid6_takeover(struct mddev *mddev)
8640 {
8641 	/* Currently can only take over a raid5.  We map the
8642 	 * personality to an equivalent raid6 personality
8643 	 * with the Q block at the end.
8644 	 */
8645 	int new_layout;
8646 
8647 	if (mddev->pers != &raid5_personality)
8648 		return ERR_PTR(-EINVAL);
8649 	if (mddev->degraded > 1)
8650 		return ERR_PTR(-EINVAL);
8651 	if (mddev->raid_disks > 253)
8652 		return ERR_PTR(-EINVAL);
8653 	if (mddev->raid_disks < 3)
8654 		return ERR_PTR(-EINVAL);
8655 
8656 	switch (mddev->layout) {
8657 	case ALGORITHM_LEFT_ASYMMETRIC:
8658 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8659 		break;
8660 	case ALGORITHM_RIGHT_ASYMMETRIC:
8661 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8662 		break;
8663 	case ALGORITHM_LEFT_SYMMETRIC:
8664 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8665 		break;
8666 	case ALGORITHM_RIGHT_SYMMETRIC:
8667 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8668 		break;
8669 	case ALGORITHM_PARITY_0:
8670 		new_layout = ALGORITHM_PARITY_0_6;
8671 		break;
8672 	case ALGORITHM_PARITY_N:
8673 		new_layout = ALGORITHM_PARITY_N;
8674 		break;
8675 	default:
8676 		return ERR_PTR(-EINVAL);
8677 	}
8678 	mddev->new_level = 6;
8679 	mddev->new_layout = new_layout;
8680 	mddev->delta_disks = 1;
8681 	mddev->raid_disks += 1;
8682 	return setup_conf(mddev);
8683 }
8684 
8685 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8686 {
8687 	struct r5conf *conf;
8688 	int err;
8689 
8690 	err = mddev_lock(mddev);
8691 	if (err)
8692 		return err;
8693 	conf = mddev->private;
8694 	if (!conf) {
8695 		mddev_unlock(mddev);
8696 		return -ENODEV;
8697 	}
8698 
8699 	if (strncmp(buf, "ppl", 3) == 0) {
8700 		/* ppl only works with RAID 5 */
8701 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8702 			err = log_init(conf, NULL, true);
8703 			if (!err) {
8704 				err = resize_stripes(conf, conf->pool_size);
8705 				if (err)
8706 					log_exit(conf);
8707 			}
8708 		} else
8709 			err = -EINVAL;
8710 	} else if (strncmp(buf, "resync", 6) == 0) {
8711 		if (raid5_has_ppl(conf)) {
8712 			mddev_suspend(mddev);
8713 			log_exit(conf);
8714 			mddev_resume(mddev);
8715 			err = resize_stripes(conf, conf->pool_size);
8716 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8717 			   r5l_log_disk_error(conf)) {
8718 			bool journal_dev_exists = false;
8719 			struct md_rdev *rdev;
8720 
8721 			rdev_for_each(rdev, mddev)
8722 				if (test_bit(Journal, &rdev->flags)) {
8723 					journal_dev_exists = true;
8724 					break;
8725 				}
8726 
8727 			if (!journal_dev_exists) {
8728 				mddev_suspend(mddev);
8729 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8730 				mddev_resume(mddev);
8731 			} else  /* need remove journal device first */
8732 				err = -EBUSY;
8733 		} else
8734 			err = -EINVAL;
8735 	} else {
8736 		err = -EINVAL;
8737 	}
8738 
8739 	if (!err)
8740 		md_update_sb(mddev, 1);
8741 
8742 	mddev_unlock(mddev);
8743 
8744 	return err;
8745 }
8746 
8747 static int raid5_start(struct mddev *mddev)
8748 {
8749 	struct r5conf *conf = mddev->private;
8750 
8751 	return r5l_start(conf->log);
8752 }
8753 
8754 static struct md_personality raid6_personality =
8755 {
8756 	.name		= "raid6",
8757 	.level		= 6,
8758 	.owner		= THIS_MODULE,
8759 	.make_request	= raid5_make_request,
8760 	.run		= raid5_run,
8761 	.start		= raid5_start,
8762 	.free		= raid5_free,
8763 	.status		= raid5_status,
8764 	.error_handler	= raid5_error,
8765 	.hot_add_disk	= raid5_add_disk,
8766 	.hot_remove_disk= raid5_remove_disk,
8767 	.spare_active	= raid5_spare_active,
8768 	.sync_request	= raid5_sync_request,
8769 	.resize		= raid5_resize,
8770 	.size		= raid5_size,
8771 	.check_reshape	= raid6_check_reshape,
8772 	.start_reshape  = raid5_start_reshape,
8773 	.finish_reshape = raid5_finish_reshape,
8774 	.quiesce	= raid5_quiesce,
8775 	.takeover	= raid6_takeover,
8776 	.change_consistency_policy = raid5_change_consistency_policy,
8777 };
8778 static struct md_personality raid5_personality =
8779 {
8780 	.name		= "raid5",
8781 	.level		= 5,
8782 	.owner		= THIS_MODULE,
8783 	.make_request	= raid5_make_request,
8784 	.run		= raid5_run,
8785 	.start		= raid5_start,
8786 	.free		= raid5_free,
8787 	.status		= raid5_status,
8788 	.error_handler	= raid5_error,
8789 	.hot_add_disk	= raid5_add_disk,
8790 	.hot_remove_disk= raid5_remove_disk,
8791 	.spare_active	= raid5_spare_active,
8792 	.sync_request	= raid5_sync_request,
8793 	.resize		= raid5_resize,
8794 	.size		= raid5_size,
8795 	.check_reshape	= raid5_check_reshape,
8796 	.start_reshape  = raid5_start_reshape,
8797 	.finish_reshape = raid5_finish_reshape,
8798 	.quiesce	= raid5_quiesce,
8799 	.takeover	= raid5_takeover,
8800 	.change_consistency_policy = raid5_change_consistency_policy,
8801 };
8802 
8803 static struct md_personality raid4_personality =
8804 {
8805 	.name		= "raid4",
8806 	.level		= 4,
8807 	.owner		= THIS_MODULE,
8808 	.make_request	= raid5_make_request,
8809 	.run		= raid5_run,
8810 	.start		= raid5_start,
8811 	.free		= raid5_free,
8812 	.status		= raid5_status,
8813 	.error_handler	= raid5_error,
8814 	.hot_add_disk	= raid5_add_disk,
8815 	.hot_remove_disk= raid5_remove_disk,
8816 	.spare_active	= raid5_spare_active,
8817 	.sync_request	= raid5_sync_request,
8818 	.resize		= raid5_resize,
8819 	.size		= raid5_size,
8820 	.check_reshape	= raid5_check_reshape,
8821 	.start_reshape  = raid5_start_reshape,
8822 	.finish_reshape = raid5_finish_reshape,
8823 	.quiesce	= raid5_quiesce,
8824 	.takeover	= raid4_takeover,
8825 	.change_consistency_policy = raid5_change_consistency_policy,
8826 };
8827 
8828 static int __init raid5_init(void)
8829 {
8830 	int ret;
8831 
8832 	raid5_wq = alloc_workqueue("raid5wq",
8833 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8834 	if (!raid5_wq)
8835 		return -ENOMEM;
8836 
8837 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8838 				      "md/raid5:prepare",
8839 				      raid456_cpu_up_prepare,
8840 				      raid456_cpu_dead);
8841 	if (ret) {
8842 		destroy_workqueue(raid5_wq);
8843 		return ret;
8844 	}
8845 	register_md_personality(&raid6_personality);
8846 	register_md_personality(&raid5_personality);
8847 	register_md_personality(&raid4_personality);
8848 	return 0;
8849 }
8850 
8851 static void raid5_exit(void)
8852 {
8853 	unregister_md_personality(&raid6_personality);
8854 	unregister_md_personality(&raid5_personality);
8855 	unregister_md_personality(&raid4_personality);
8856 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8857 	destroy_workqueue(raid5_wq);
8858 }
8859 
8860 module_init(raid5_init);
8861 module_exit(raid5_exit);
8862 MODULE_LICENSE("GPL");
8863 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8864 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8865 MODULE_ALIAS("md-raid5");
8866 MODULE_ALIAS("md-raid4");
8867 MODULE_ALIAS("md-level-5");
8868 MODULE_ALIAS("md-level-4");
8869 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8870 MODULE_ALIAS("md-raid6");
8871 MODULE_ALIAS("md-level-6");
8872 
8873 /* This used to be two separate modules, they were: */
8874 MODULE_ALIAS("raid5");
8875 MODULE_ALIAS("raid6");
8876