xref: /openbmc/linux/drivers/md/raid5.c (revision d7a3d85e)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio *return_bi)
227 {
228 	struct bio *bi = return_bi;
229 	while (bi) {
230 
231 		return_bi = bi->bi_next;
232 		bi->bi_next = NULL;
233 		bi->bi_iter.bi_size = 0;
234 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 					 bi, 0);
236 		bio_endio(bi, 0);
237 		bi = return_bi;
238 	}
239 }
240 
241 static void print_raid5_conf (struct r5conf *conf);
242 
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 	return sh->check_state || sh->reconstruct_state ||
246 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249 
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 	struct r5conf *conf = sh->raid_conf;
253 	struct r5worker_group *group;
254 	int thread_cnt;
255 	int i, cpu = sh->cpu;
256 
257 	if (!cpu_online(cpu)) {
258 		cpu = cpumask_any(cpu_online_mask);
259 		sh->cpu = cpu;
260 	}
261 
262 	if (list_empty(&sh->lru)) {
263 		struct r5worker_group *group;
264 		group = conf->worker_groups + cpu_to_group(cpu);
265 		list_add_tail(&sh->lru, &group->handle_list);
266 		group->stripes_cnt++;
267 		sh->group = group;
268 	}
269 
270 	if (conf->worker_cnt_per_group == 0) {
271 		md_wakeup_thread(conf->mddev->thread);
272 		return;
273 	}
274 
275 	group = conf->worker_groups + cpu_to_group(sh->cpu);
276 
277 	group->workers[0].working = true;
278 	/* at least one worker should run to avoid race */
279 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280 
281 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 	/* wakeup more workers */
283 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 		if (group->workers[i].working == false) {
285 			group->workers[i].working = true;
286 			queue_work_on(sh->cpu, raid5_wq,
287 				      &group->workers[i].work);
288 			thread_cnt--;
289 		}
290 	}
291 }
292 
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 			      struct list_head *temp_inactive_list)
295 {
296 	BUG_ON(!list_empty(&sh->lru));
297 	BUG_ON(atomic_read(&conf->active_stripes)==0);
298 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 			list_add_tail(&sh->lru, &conf->delayed_list);
302 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 			   sh->bm_seq - conf->seq_write > 0)
304 			list_add_tail(&sh->lru, &conf->bitmap_list);
305 		else {
306 			clear_bit(STRIPE_DELAYED, &sh->state);
307 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 			if (conf->worker_cnt_per_group == 0) {
309 				list_add_tail(&sh->lru, &conf->handle_list);
310 			} else {
311 				raid5_wakeup_stripe_thread(sh);
312 				return;
313 			}
314 		}
315 		md_wakeup_thread(conf->mddev->thread);
316 	} else {
317 		BUG_ON(stripe_operations_active(sh));
318 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 			if (atomic_dec_return(&conf->preread_active_stripes)
320 			    < IO_THRESHOLD)
321 				md_wakeup_thread(conf->mddev->thread);
322 		atomic_dec(&conf->active_stripes);
323 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 			list_add_tail(&sh->lru, temp_inactive_list);
325 	}
326 }
327 
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 			     struct list_head *temp_inactive_list)
330 {
331 	if (atomic_dec_and_test(&sh->count))
332 		do_release_stripe(conf, sh, temp_inactive_list);
333 }
334 
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 					 struct list_head *temp_inactive_list,
344 					 int hash)
345 {
346 	int size;
347 	bool do_wakeup = false;
348 	unsigned long flags;
349 
350 	if (hash == NR_STRIPE_HASH_LOCKS) {
351 		size = NR_STRIPE_HASH_LOCKS;
352 		hash = NR_STRIPE_HASH_LOCKS - 1;
353 	} else
354 		size = 1;
355 	while (size) {
356 		struct list_head *list = &temp_inactive_list[size - 1];
357 
358 		/*
359 		 * We don't hold any lock here yet, get_active_stripe() might
360 		 * remove stripes from the list
361 		 */
362 		if (!list_empty_careful(list)) {
363 			spin_lock_irqsave(conf->hash_locks + hash, flags);
364 			if (list_empty(conf->inactive_list + hash) &&
365 			    !list_empty(list))
366 				atomic_dec(&conf->empty_inactive_list_nr);
367 			list_splice_tail_init(list, conf->inactive_list + hash);
368 			do_wakeup = true;
369 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 		}
371 		size--;
372 		hash--;
373 	}
374 
375 	if (do_wakeup) {
376 		wake_up(&conf->wait_for_stripe);
377 		if (conf->retry_read_aligned)
378 			md_wakeup_thread(conf->mddev->thread);
379 	}
380 }
381 
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384 			       struct list_head *temp_inactive_list)
385 {
386 	struct stripe_head *sh;
387 	int count = 0;
388 	struct llist_node *head;
389 
390 	head = llist_del_all(&conf->released_stripes);
391 	head = llist_reverse_order(head);
392 	while (head) {
393 		int hash;
394 
395 		sh = llist_entry(head, struct stripe_head, release_list);
396 		head = llist_next(head);
397 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 		smp_mb();
399 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 		/*
401 		 * Don't worry the bit is set here, because if the bit is set
402 		 * again, the count is always > 1. This is true for
403 		 * STRIPE_ON_UNPLUG_LIST bit too.
404 		 */
405 		hash = sh->hash_lock_index;
406 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
407 		count++;
408 	}
409 
410 	return count;
411 }
412 
413 static void release_stripe(struct stripe_head *sh)
414 {
415 	struct r5conf *conf = sh->raid_conf;
416 	unsigned long flags;
417 	struct list_head list;
418 	int hash;
419 	bool wakeup;
420 
421 	/* Avoid release_list until the last reference.
422 	 */
423 	if (atomic_add_unless(&sh->count, -1, 1))
424 		return;
425 
426 	if (unlikely(!conf->mddev->thread) ||
427 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428 		goto slow_path;
429 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 	if (wakeup)
431 		md_wakeup_thread(conf->mddev->thread);
432 	return;
433 slow_path:
434 	local_irq_save(flags);
435 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 		INIT_LIST_HEAD(&list);
438 		hash = sh->hash_lock_index;
439 		do_release_stripe(conf, sh, &list);
440 		spin_unlock(&conf->device_lock);
441 		release_inactive_stripe_list(conf, &list, hash);
442 	}
443 	local_irq_restore(flags);
444 }
445 
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448 	pr_debug("remove_hash(), stripe %llu\n",
449 		(unsigned long long)sh->sector);
450 
451 	hlist_del_init(&sh->hash);
452 }
453 
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
457 
458 	pr_debug("insert_hash(), stripe %llu\n",
459 		(unsigned long long)sh->sector);
460 
461 	hlist_add_head(&sh->hash, hp);
462 }
463 
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467 	struct stripe_head *sh = NULL;
468 	struct list_head *first;
469 
470 	if (list_empty(conf->inactive_list + hash))
471 		goto out;
472 	first = (conf->inactive_list + hash)->next;
473 	sh = list_entry(first, struct stripe_head, lru);
474 	list_del_init(first);
475 	remove_hash(sh);
476 	atomic_inc(&conf->active_stripes);
477 	BUG_ON(hash != sh->hash_lock_index);
478 	if (list_empty(conf->inactive_list + hash))
479 		atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481 	return sh;
482 }
483 
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486 	struct page *p;
487 	int i;
488 	int num = sh->raid_conf->pool_size;
489 
490 	for (i = 0; i < num ; i++) {
491 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492 		p = sh->dev[i].page;
493 		if (!p)
494 			continue;
495 		sh->dev[i].page = NULL;
496 		put_page(p);
497 	}
498 }
499 
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502 	int i;
503 	int num = sh->raid_conf->pool_size;
504 
505 	for (i = 0; i < num; i++) {
506 		struct page *page;
507 
508 		if (!(page = alloc_page(gfp))) {
509 			return 1;
510 		}
511 		sh->dev[i].page = page;
512 		sh->dev[i].orig_page = page;
513 	}
514 	return 0;
515 }
516 
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519 			    struct stripe_head *sh);
520 
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523 	struct r5conf *conf = sh->raid_conf;
524 	int i, seq;
525 
526 	BUG_ON(atomic_read(&sh->count) != 0);
527 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528 	BUG_ON(stripe_operations_active(sh));
529 	BUG_ON(sh->batch_head);
530 
531 	pr_debug("init_stripe called, stripe %llu\n",
532 		(unsigned long long)sector);
533 retry:
534 	seq = read_seqcount_begin(&conf->gen_lock);
535 	sh->generation = conf->generation - previous;
536 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 	sh->sector = sector;
538 	stripe_set_idx(sector, conf, previous, sh);
539 	sh->state = 0;
540 
541 	for (i = sh->disks; i--; ) {
542 		struct r5dev *dev = &sh->dev[i];
543 
544 		if (dev->toread || dev->read || dev->towrite || dev->written ||
545 		    test_bit(R5_LOCKED, &dev->flags)) {
546 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547 			       (unsigned long long)sh->sector, i, dev->toread,
548 			       dev->read, dev->towrite, dev->written,
549 			       test_bit(R5_LOCKED, &dev->flags));
550 			WARN_ON(1);
551 		}
552 		dev->flags = 0;
553 		raid5_build_block(sh, i, previous);
554 	}
555 	if (read_seqcount_retry(&conf->gen_lock, seq))
556 		goto retry;
557 	sh->overwrite_disks = 0;
558 	insert_hash(conf, sh);
559 	sh->cpu = smp_processor_id();
560 	set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562 
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564 					 short generation)
565 {
566 	struct stripe_head *sh;
567 
568 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570 		if (sh->sector == sector && sh->generation == generation)
571 			return sh;
572 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573 	return NULL;
574 }
575 
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591 	int degraded, degraded2;
592 	int i;
593 
594 	rcu_read_lock();
595 	degraded = 0;
596 	for (i = 0; i < conf->previous_raid_disks; i++) {
597 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598 		if (rdev && test_bit(Faulty, &rdev->flags))
599 			rdev = rcu_dereference(conf->disks[i].replacement);
600 		if (!rdev || test_bit(Faulty, &rdev->flags))
601 			degraded++;
602 		else if (test_bit(In_sync, &rdev->flags))
603 			;
604 		else
605 			/* not in-sync or faulty.
606 			 * If the reshape increases the number of devices,
607 			 * this is being recovered by the reshape, so
608 			 * this 'previous' section is not in_sync.
609 			 * If the number of devices is being reduced however,
610 			 * the device can only be part of the array if
611 			 * we are reverting a reshape, so this section will
612 			 * be in-sync.
613 			 */
614 			if (conf->raid_disks >= conf->previous_raid_disks)
615 				degraded++;
616 	}
617 	rcu_read_unlock();
618 	if (conf->raid_disks == conf->previous_raid_disks)
619 		return degraded;
620 	rcu_read_lock();
621 	degraded2 = 0;
622 	for (i = 0; i < conf->raid_disks; i++) {
623 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624 		if (rdev && test_bit(Faulty, &rdev->flags))
625 			rdev = rcu_dereference(conf->disks[i].replacement);
626 		if (!rdev || test_bit(Faulty, &rdev->flags))
627 			degraded2++;
628 		else if (test_bit(In_sync, &rdev->flags))
629 			;
630 		else
631 			/* not in-sync or faulty.
632 			 * If reshape increases the number of devices, this
633 			 * section has already been recovered, else it
634 			 * almost certainly hasn't.
635 			 */
636 			if (conf->raid_disks <= conf->previous_raid_disks)
637 				degraded2++;
638 	}
639 	rcu_read_unlock();
640 	if (degraded2 > degraded)
641 		return degraded2;
642 	return degraded;
643 }
644 
645 static int has_failed(struct r5conf *conf)
646 {
647 	int degraded;
648 
649 	if (conf->mddev->reshape_position == MaxSector)
650 		return conf->mddev->degraded > conf->max_degraded;
651 
652 	degraded = calc_degraded(conf);
653 	if (degraded > conf->max_degraded)
654 		return 1;
655 	return 0;
656 }
657 
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660 		  int previous, int noblock, int noquiesce)
661 {
662 	struct stripe_head *sh;
663 	int hash = stripe_hash_locks_hash(sector);
664 
665 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666 
667 	spin_lock_irq(conf->hash_locks + hash);
668 
669 	do {
670 		wait_event_lock_irq(conf->wait_for_stripe,
671 				    conf->quiesce == 0 || noquiesce,
672 				    *(conf->hash_locks + hash));
673 		sh = __find_stripe(conf, sector, conf->generation - previous);
674 		if (!sh) {
675 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676 				sh = get_free_stripe(conf, hash);
677 				if (!sh && llist_empty(&conf->released_stripes) &&
678 				    !test_bit(R5_DID_ALLOC, &conf->cache_state))
679 					set_bit(R5_ALLOC_MORE,
680 						&conf->cache_state);
681 			}
682 			if (noblock && sh == NULL)
683 				break;
684 			if (!sh) {
685 				set_bit(R5_INACTIVE_BLOCKED,
686 					&conf->cache_state);
687 				wait_event_lock_irq(
688 					conf->wait_for_stripe,
689 					!list_empty(conf->inactive_list + hash) &&
690 					(atomic_read(&conf->active_stripes)
691 					 < (conf->max_nr_stripes * 3 / 4)
692 					 || !test_bit(R5_INACTIVE_BLOCKED,
693 						      &conf->cache_state)),
694 					*(conf->hash_locks + hash));
695 				clear_bit(R5_INACTIVE_BLOCKED,
696 					  &conf->cache_state);
697 			} else {
698 				init_stripe(sh, sector, previous);
699 				atomic_inc(&sh->count);
700 			}
701 		} else if (!atomic_inc_not_zero(&sh->count)) {
702 			spin_lock(&conf->device_lock);
703 			if (!atomic_read(&sh->count)) {
704 				if (!test_bit(STRIPE_HANDLE, &sh->state))
705 					atomic_inc(&conf->active_stripes);
706 				BUG_ON(list_empty(&sh->lru) &&
707 				       !test_bit(STRIPE_EXPANDING, &sh->state));
708 				list_del_init(&sh->lru);
709 				if (sh->group) {
710 					sh->group->stripes_cnt--;
711 					sh->group = NULL;
712 				}
713 			}
714 			atomic_inc(&sh->count);
715 			spin_unlock(&conf->device_lock);
716 		}
717 	} while (sh == NULL);
718 
719 	spin_unlock_irq(conf->hash_locks + hash);
720 	return sh;
721 }
722 
723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728 
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731 	local_irq_disable();
732 	if (sh1 > sh2) {
733 		spin_lock(&sh2->stripe_lock);
734 		spin_lock_nested(&sh1->stripe_lock, 1);
735 	} else {
736 		spin_lock(&sh1->stripe_lock);
737 		spin_lock_nested(&sh2->stripe_lock, 1);
738 	}
739 }
740 
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743 	spin_unlock(&sh1->stripe_lock);
744 	spin_unlock(&sh2->stripe_lock);
745 	local_irq_enable();
746 }
747 
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752 		is_full_stripe_write(sh);
753 }
754 
755 /* we only do back search */
756 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
757 {
758 	struct stripe_head *head;
759 	sector_t head_sector, tmp_sec;
760 	int hash;
761 	int dd_idx;
762 
763 	if (!stripe_can_batch(sh))
764 		return;
765 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766 	tmp_sec = sh->sector;
767 	if (!sector_div(tmp_sec, conf->chunk_sectors))
768 		return;
769 	head_sector = sh->sector - STRIPE_SECTORS;
770 
771 	hash = stripe_hash_locks_hash(head_sector);
772 	spin_lock_irq(conf->hash_locks + hash);
773 	head = __find_stripe(conf, head_sector, conf->generation);
774 	if (head && !atomic_inc_not_zero(&head->count)) {
775 		spin_lock(&conf->device_lock);
776 		if (!atomic_read(&head->count)) {
777 			if (!test_bit(STRIPE_HANDLE, &head->state))
778 				atomic_inc(&conf->active_stripes);
779 			BUG_ON(list_empty(&head->lru) &&
780 			       !test_bit(STRIPE_EXPANDING, &head->state));
781 			list_del_init(&head->lru);
782 			if (head->group) {
783 				head->group->stripes_cnt--;
784 				head->group = NULL;
785 			}
786 		}
787 		atomic_inc(&head->count);
788 		spin_unlock(&conf->device_lock);
789 	}
790 	spin_unlock_irq(conf->hash_locks + hash);
791 
792 	if (!head)
793 		return;
794 	if (!stripe_can_batch(head))
795 		goto out;
796 
797 	lock_two_stripes(head, sh);
798 	/* clear_batch_ready clear the flag */
799 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800 		goto unlock_out;
801 
802 	if (sh->batch_head)
803 		goto unlock_out;
804 
805 	dd_idx = 0;
806 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
807 		dd_idx++;
808 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
809 		goto unlock_out;
810 
811 	if (head->batch_head) {
812 		spin_lock(&head->batch_head->batch_lock);
813 		/* This batch list is already running */
814 		if (!stripe_can_batch(head)) {
815 			spin_unlock(&head->batch_head->batch_lock);
816 			goto unlock_out;
817 		}
818 
819 		/*
820 		 * at this point, head's BATCH_READY could be cleared, but we
821 		 * can still add the stripe to batch list
822 		 */
823 		list_add(&sh->batch_list, &head->batch_list);
824 		spin_unlock(&head->batch_head->batch_lock);
825 
826 		sh->batch_head = head->batch_head;
827 	} else {
828 		head->batch_head = head;
829 		sh->batch_head = head->batch_head;
830 		spin_lock(&head->batch_lock);
831 		list_add_tail(&sh->batch_list, &head->batch_list);
832 		spin_unlock(&head->batch_lock);
833 	}
834 
835 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
836 		if (atomic_dec_return(&conf->preread_active_stripes)
837 		    < IO_THRESHOLD)
838 			md_wakeup_thread(conf->mddev->thread);
839 
840 	atomic_inc(&sh->count);
841 unlock_out:
842 	unlock_two_stripes(head, sh);
843 out:
844 	release_stripe(head);
845 }
846 
847 /* Determine if 'data_offset' or 'new_data_offset' should be used
848  * in this stripe_head.
849  */
850 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
851 {
852 	sector_t progress = conf->reshape_progress;
853 	/* Need a memory barrier to make sure we see the value
854 	 * of conf->generation, or ->data_offset that was set before
855 	 * reshape_progress was updated.
856 	 */
857 	smp_rmb();
858 	if (progress == MaxSector)
859 		return 0;
860 	if (sh->generation == conf->generation - 1)
861 		return 0;
862 	/* We are in a reshape, and this is a new-generation stripe,
863 	 * so use new_data_offset.
864 	 */
865 	return 1;
866 }
867 
868 static void
869 raid5_end_read_request(struct bio *bi, int error);
870 static void
871 raid5_end_write_request(struct bio *bi, int error);
872 
873 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
874 {
875 	struct r5conf *conf = sh->raid_conf;
876 	int i, disks = sh->disks;
877 	struct stripe_head *head_sh = sh;
878 
879 	might_sleep();
880 
881 	for (i = disks; i--; ) {
882 		int rw;
883 		int replace_only = 0;
884 		struct bio *bi, *rbi;
885 		struct md_rdev *rdev, *rrdev = NULL;
886 
887 		sh = head_sh;
888 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
889 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
890 				rw = WRITE_FUA;
891 			else
892 				rw = WRITE;
893 			if (test_bit(R5_Discard, &sh->dev[i].flags))
894 				rw |= REQ_DISCARD;
895 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
896 			rw = READ;
897 		else if (test_and_clear_bit(R5_WantReplace,
898 					    &sh->dev[i].flags)) {
899 			rw = WRITE;
900 			replace_only = 1;
901 		} else
902 			continue;
903 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
904 			rw |= REQ_SYNC;
905 
906 again:
907 		bi = &sh->dev[i].req;
908 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
909 
910 		rcu_read_lock();
911 		rrdev = rcu_dereference(conf->disks[i].replacement);
912 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
913 		rdev = rcu_dereference(conf->disks[i].rdev);
914 		if (!rdev) {
915 			rdev = rrdev;
916 			rrdev = NULL;
917 		}
918 		if (rw & WRITE) {
919 			if (replace_only)
920 				rdev = NULL;
921 			if (rdev == rrdev)
922 				/* We raced and saw duplicates */
923 				rrdev = NULL;
924 		} else {
925 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
926 				rdev = rrdev;
927 			rrdev = NULL;
928 		}
929 
930 		if (rdev && test_bit(Faulty, &rdev->flags))
931 			rdev = NULL;
932 		if (rdev)
933 			atomic_inc(&rdev->nr_pending);
934 		if (rrdev && test_bit(Faulty, &rrdev->flags))
935 			rrdev = NULL;
936 		if (rrdev)
937 			atomic_inc(&rrdev->nr_pending);
938 		rcu_read_unlock();
939 
940 		/* We have already checked bad blocks for reads.  Now
941 		 * need to check for writes.  We never accept write errors
942 		 * on the replacement, so we don't to check rrdev.
943 		 */
944 		while ((rw & WRITE) && rdev &&
945 		       test_bit(WriteErrorSeen, &rdev->flags)) {
946 			sector_t first_bad;
947 			int bad_sectors;
948 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
949 					      &first_bad, &bad_sectors);
950 			if (!bad)
951 				break;
952 
953 			if (bad < 0) {
954 				set_bit(BlockedBadBlocks, &rdev->flags);
955 				if (!conf->mddev->external &&
956 				    conf->mddev->flags) {
957 					/* It is very unlikely, but we might
958 					 * still need to write out the
959 					 * bad block log - better give it
960 					 * a chance*/
961 					md_check_recovery(conf->mddev);
962 				}
963 				/*
964 				 * Because md_wait_for_blocked_rdev
965 				 * will dec nr_pending, we must
966 				 * increment it first.
967 				 */
968 				atomic_inc(&rdev->nr_pending);
969 				md_wait_for_blocked_rdev(rdev, conf->mddev);
970 			} else {
971 				/* Acknowledged bad block - skip the write */
972 				rdev_dec_pending(rdev, conf->mddev);
973 				rdev = NULL;
974 			}
975 		}
976 
977 		if (rdev) {
978 			if (s->syncing || s->expanding || s->expanded
979 			    || s->replacing)
980 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
981 
982 			set_bit(STRIPE_IO_STARTED, &sh->state);
983 
984 			bio_reset(bi);
985 			bi->bi_bdev = rdev->bdev;
986 			bi->bi_rw = rw;
987 			bi->bi_end_io = (rw & WRITE)
988 				? raid5_end_write_request
989 				: raid5_end_read_request;
990 			bi->bi_private = sh;
991 
992 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
993 				__func__, (unsigned long long)sh->sector,
994 				bi->bi_rw, i);
995 			atomic_inc(&sh->count);
996 			if (sh != head_sh)
997 				atomic_inc(&head_sh->count);
998 			if (use_new_offset(conf, sh))
999 				bi->bi_iter.bi_sector = (sh->sector
1000 						 + rdev->new_data_offset);
1001 			else
1002 				bi->bi_iter.bi_sector = (sh->sector
1003 						 + rdev->data_offset);
1004 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1005 				bi->bi_rw |= REQ_NOMERGE;
1006 
1007 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1008 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1009 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1010 			bi->bi_vcnt = 1;
1011 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1012 			bi->bi_io_vec[0].bv_offset = 0;
1013 			bi->bi_iter.bi_size = STRIPE_SIZE;
1014 			/*
1015 			 * If this is discard request, set bi_vcnt 0. We don't
1016 			 * want to confuse SCSI because SCSI will replace payload
1017 			 */
1018 			if (rw & REQ_DISCARD)
1019 				bi->bi_vcnt = 0;
1020 			if (rrdev)
1021 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1022 
1023 			if (conf->mddev->gendisk)
1024 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1025 						      bi, disk_devt(conf->mddev->gendisk),
1026 						      sh->dev[i].sector);
1027 			generic_make_request(bi);
1028 		}
1029 		if (rrdev) {
1030 			if (s->syncing || s->expanding || s->expanded
1031 			    || s->replacing)
1032 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1033 
1034 			set_bit(STRIPE_IO_STARTED, &sh->state);
1035 
1036 			bio_reset(rbi);
1037 			rbi->bi_bdev = rrdev->bdev;
1038 			rbi->bi_rw = rw;
1039 			BUG_ON(!(rw & WRITE));
1040 			rbi->bi_end_io = raid5_end_write_request;
1041 			rbi->bi_private = sh;
1042 
1043 			pr_debug("%s: for %llu schedule op %ld on "
1044 				 "replacement disc %d\n",
1045 				__func__, (unsigned long long)sh->sector,
1046 				rbi->bi_rw, i);
1047 			atomic_inc(&sh->count);
1048 			if (sh != head_sh)
1049 				atomic_inc(&head_sh->count);
1050 			if (use_new_offset(conf, sh))
1051 				rbi->bi_iter.bi_sector = (sh->sector
1052 						  + rrdev->new_data_offset);
1053 			else
1054 				rbi->bi_iter.bi_sector = (sh->sector
1055 						  + rrdev->data_offset);
1056 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1057 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1058 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1059 			rbi->bi_vcnt = 1;
1060 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1061 			rbi->bi_io_vec[0].bv_offset = 0;
1062 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1063 			/*
1064 			 * If this is discard request, set bi_vcnt 0. We don't
1065 			 * want to confuse SCSI because SCSI will replace payload
1066 			 */
1067 			if (rw & REQ_DISCARD)
1068 				rbi->bi_vcnt = 0;
1069 			if (conf->mddev->gendisk)
1070 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1071 						      rbi, disk_devt(conf->mddev->gendisk),
1072 						      sh->dev[i].sector);
1073 			generic_make_request(rbi);
1074 		}
1075 		if (!rdev && !rrdev) {
1076 			if (rw & WRITE)
1077 				set_bit(STRIPE_DEGRADED, &sh->state);
1078 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1079 				bi->bi_rw, i, (unsigned long long)sh->sector);
1080 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1081 			set_bit(STRIPE_HANDLE, &sh->state);
1082 		}
1083 
1084 		if (!head_sh->batch_head)
1085 			continue;
1086 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1087 				      batch_list);
1088 		if (sh != head_sh)
1089 			goto again;
1090 	}
1091 }
1092 
1093 static struct dma_async_tx_descriptor *
1094 async_copy_data(int frombio, struct bio *bio, struct page **page,
1095 	sector_t sector, struct dma_async_tx_descriptor *tx,
1096 	struct stripe_head *sh)
1097 {
1098 	struct bio_vec bvl;
1099 	struct bvec_iter iter;
1100 	struct page *bio_page;
1101 	int page_offset;
1102 	struct async_submit_ctl submit;
1103 	enum async_tx_flags flags = 0;
1104 
1105 	if (bio->bi_iter.bi_sector >= sector)
1106 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1107 	else
1108 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1109 
1110 	if (frombio)
1111 		flags |= ASYNC_TX_FENCE;
1112 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1113 
1114 	bio_for_each_segment(bvl, bio, iter) {
1115 		int len = bvl.bv_len;
1116 		int clen;
1117 		int b_offset = 0;
1118 
1119 		if (page_offset < 0) {
1120 			b_offset = -page_offset;
1121 			page_offset += b_offset;
1122 			len -= b_offset;
1123 		}
1124 
1125 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1126 			clen = STRIPE_SIZE - page_offset;
1127 		else
1128 			clen = len;
1129 
1130 		if (clen > 0) {
1131 			b_offset += bvl.bv_offset;
1132 			bio_page = bvl.bv_page;
1133 			if (frombio) {
1134 				if (sh->raid_conf->skip_copy &&
1135 				    b_offset == 0 && page_offset == 0 &&
1136 				    clen == STRIPE_SIZE)
1137 					*page = bio_page;
1138 				else
1139 					tx = async_memcpy(*page, bio_page, page_offset,
1140 						  b_offset, clen, &submit);
1141 			} else
1142 				tx = async_memcpy(bio_page, *page, b_offset,
1143 						  page_offset, clen, &submit);
1144 		}
1145 		/* chain the operations */
1146 		submit.depend_tx = tx;
1147 
1148 		if (clen < len) /* hit end of page */
1149 			break;
1150 		page_offset +=  len;
1151 	}
1152 
1153 	return tx;
1154 }
1155 
1156 static void ops_complete_biofill(void *stripe_head_ref)
1157 {
1158 	struct stripe_head *sh = stripe_head_ref;
1159 	struct bio *return_bi = NULL;
1160 	int i;
1161 
1162 	pr_debug("%s: stripe %llu\n", __func__,
1163 		(unsigned long long)sh->sector);
1164 
1165 	/* clear completed biofills */
1166 	for (i = sh->disks; i--; ) {
1167 		struct r5dev *dev = &sh->dev[i];
1168 
1169 		/* acknowledge completion of a biofill operation */
1170 		/* and check if we need to reply to a read request,
1171 		 * new R5_Wantfill requests are held off until
1172 		 * !STRIPE_BIOFILL_RUN
1173 		 */
1174 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1175 			struct bio *rbi, *rbi2;
1176 
1177 			BUG_ON(!dev->read);
1178 			rbi = dev->read;
1179 			dev->read = NULL;
1180 			while (rbi && rbi->bi_iter.bi_sector <
1181 				dev->sector + STRIPE_SECTORS) {
1182 				rbi2 = r5_next_bio(rbi, dev->sector);
1183 				if (!raid5_dec_bi_active_stripes(rbi)) {
1184 					rbi->bi_next = return_bi;
1185 					return_bi = rbi;
1186 				}
1187 				rbi = rbi2;
1188 			}
1189 		}
1190 	}
1191 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1192 
1193 	return_io(return_bi);
1194 
1195 	set_bit(STRIPE_HANDLE, &sh->state);
1196 	release_stripe(sh);
1197 }
1198 
1199 static void ops_run_biofill(struct stripe_head *sh)
1200 {
1201 	struct dma_async_tx_descriptor *tx = NULL;
1202 	struct async_submit_ctl submit;
1203 	int i;
1204 
1205 	BUG_ON(sh->batch_head);
1206 	pr_debug("%s: stripe %llu\n", __func__,
1207 		(unsigned long long)sh->sector);
1208 
1209 	for (i = sh->disks; i--; ) {
1210 		struct r5dev *dev = &sh->dev[i];
1211 		if (test_bit(R5_Wantfill, &dev->flags)) {
1212 			struct bio *rbi;
1213 			spin_lock_irq(&sh->stripe_lock);
1214 			dev->read = rbi = dev->toread;
1215 			dev->toread = NULL;
1216 			spin_unlock_irq(&sh->stripe_lock);
1217 			while (rbi && rbi->bi_iter.bi_sector <
1218 				dev->sector + STRIPE_SECTORS) {
1219 				tx = async_copy_data(0, rbi, &dev->page,
1220 					dev->sector, tx, sh);
1221 				rbi = r5_next_bio(rbi, dev->sector);
1222 			}
1223 		}
1224 	}
1225 
1226 	atomic_inc(&sh->count);
1227 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1228 	async_trigger_callback(&submit);
1229 }
1230 
1231 static void mark_target_uptodate(struct stripe_head *sh, int target)
1232 {
1233 	struct r5dev *tgt;
1234 
1235 	if (target < 0)
1236 		return;
1237 
1238 	tgt = &sh->dev[target];
1239 	set_bit(R5_UPTODATE, &tgt->flags);
1240 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1241 	clear_bit(R5_Wantcompute, &tgt->flags);
1242 }
1243 
1244 static void ops_complete_compute(void *stripe_head_ref)
1245 {
1246 	struct stripe_head *sh = stripe_head_ref;
1247 
1248 	pr_debug("%s: stripe %llu\n", __func__,
1249 		(unsigned long long)sh->sector);
1250 
1251 	/* mark the computed target(s) as uptodate */
1252 	mark_target_uptodate(sh, sh->ops.target);
1253 	mark_target_uptodate(sh, sh->ops.target2);
1254 
1255 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1256 	if (sh->check_state == check_state_compute_run)
1257 		sh->check_state = check_state_compute_result;
1258 	set_bit(STRIPE_HANDLE, &sh->state);
1259 	release_stripe(sh);
1260 }
1261 
1262 /* return a pointer to the address conversion region of the scribble buffer */
1263 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1264 				 struct raid5_percpu *percpu, int i)
1265 {
1266 	void *addr;
1267 
1268 	addr = flex_array_get(percpu->scribble, i);
1269 	return addr + sizeof(struct page *) * (sh->disks + 2);
1270 }
1271 
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1274 {
1275 	void *addr;
1276 
1277 	addr = flex_array_get(percpu->scribble, i);
1278 	return addr;
1279 }
1280 
1281 static struct dma_async_tx_descriptor *
1282 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1283 {
1284 	int disks = sh->disks;
1285 	struct page **xor_srcs = to_addr_page(percpu, 0);
1286 	int target = sh->ops.target;
1287 	struct r5dev *tgt = &sh->dev[target];
1288 	struct page *xor_dest = tgt->page;
1289 	int count = 0;
1290 	struct dma_async_tx_descriptor *tx;
1291 	struct async_submit_ctl submit;
1292 	int i;
1293 
1294 	BUG_ON(sh->batch_head);
1295 
1296 	pr_debug("%s: stripe %llu block: %d\n",
1297 		__func__, (unsigned long long)sh->sector, target);
1298 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1299 
1300 	for (i = disks; i--; )
1301 		if (i != target)
1302 			xor_srcs[count++] = sh->dev[i].page;
1303 
1304 	atomic_inc(&sh->count);
1305 
1306 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1307 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1308 	if (unlikely(count == 1))
1309 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1310 	else
1311 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1312 
1313 	return tx;
1314 }
1315 
1316 /* set_syndrome_sources - populate source buffers for gen_syndrome
1317  * @srcs - (struct page *) array of size sh->disks
1318  * @sh - stripe_head to parse
1319  *
1320  * Populates srcs in proper layout order for the stripe and returns the
1321  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1322  * destination buffer is recorded in srcs[count] and the Q destination
1323  * is recorded in srcs[count+1]].
1324  */
1325 static int set_syndrome_sources(struct page **srcs,
1326 				struct stripe_head *sh,
1327 				int srctype)
1328 {
1329 	int disks = sh->disks;
1330 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1331 	int d0_idx = raid6_d0(sh);
1332 	int count;
1333 	int i;
1334 
1335 	for (i = 0; i < disks; i++)
1336 		srcs[i] = NULL;
1337 
1338 	count = 0;
1339 	i = d0_idx;
1340 	do {
1341 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1342 		struct r5dev *dev = &sh->dev[i];
1343 
1344 		if (i == sh->qd_idx || i == sh->pd_idx ||
1345 		    (srctype == SYNDROME_SRC_ALL) ||
1346 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1347 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1348 		    (srctype == SYNDROME_SRC_WRITTEN &&
1349 		     dev->written))
1350 			srcs[slot] = sh->dev[i].page;
1351 		i = raid6_next_disk(i, disks);
1352 	} while (i != d0_idx);
1353 
1354 	return syndrome_disks;
1355 }
1356 
1357 static struct dma_async_tx_descriptor *
1358 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1359 {
1360 	int disks = sh->disks;
1361 	struct page **blocks = to_addr_page(percpu, 0);
1362 	int target;
1363 	int qd_idx = sh->qd_idx;
1364 	struct dma_async_tx_descriptor *tx;
1365 	struct async_submit_ctl submit;
1366 	struct r5dev *tgt;
1367 	struct page *dest;
1368 	int i;
1369 	int count;
1370 
1371 	BUG_ON(sh->batch_head);
1372 	if (sh->ops.target < 0)
1373 		target = sh->ops.target2;
1374 	else if (sh->ops.target2 < 0)
1375 		target = sh->ops.target;
1376 	else
1377 		/* we should only have one valid target */
1378 		BUG();
1379 	BUG_ON(target < 0);
1380 	pr_debug("%s: stripe %llu block: %d\n",
1381 		__func__, (unsigned long long)sh->sector, target);
1382 
1383 	tgt = &sh->dev[target];
1384 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1385 	dest = tgt->page;
1386 
1387 	atomic_inc(&sh->count);
1388 
1389 	if (target == qd_idx) {
1390 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1391 		blocks[count] = NULL; /* regenerating p is not necessary */
1392 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1393 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1394 				  ops_complete_compute, sh,
1395 				  to_addr_conv(sh, percpu, 0));
1396 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1397 	} else {
1398 		/* Compute any data- or p-drive using XOR */
1399 		count = 0;
1400 		for (i = disks; i-- ; ) {
1401 			if (i == target || i == qd_idx)
1402 				continue;
1403 			blocks[count++] = sh->dev[i].page;
1404 		}
1405 
1406 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1407 				  NULL, ops_complete_compute, sh,
1408 				  to_addr_conv(sh, percpu, 0));
1409 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1410 	}
1411 
1412 	return tx;
1413 }
1414 
1415 static struct dma_async_tx_descriptor *
1416 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1417 {
1418 	int i, count, disks = sh->disks;
1419 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1420 	int d0_idx = raid6_d0(sh);
1421 	int faila = -1, failb = -1;
1422 	int target = sh->ops.target;
1423 	int target2 = sh->ops.target2;
1424 	struct r5dev *tgt = &sh->dev[target];
1425 	struct r5dev *tgt2 = &sh->dev[target2];
1426 	struct dma_async_tx_descriptor *tx;
1427 	struct page **blocks = to_addr_page(percpu, 0);
1428 	struct async_submit_ctl submit;
1429 
1430 	BUG_ON(sh->batch_head);
1431 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1432 		 __func__, (unsigned long long)sh->sector, target, target2);
1433 	BUG_ON(target < 0 || target2 < 0);
1434 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1435 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1436 
1437 	/* we need to open-code set_syndrome_sources to handle the
1438 	 * slot number conversion for 'faila' and 'failb'
1439 	 */
1440 	for (i = 0; i < disks ; i++)
1441 		blocks[i] = NULL;
1442 	count = 0;
1443 	i = d0_idx;
1444 	do {
1445 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1446 
1447 		blocks[slot] = sh->dev[i].page;
1448 
1449 		if (i == target)
1450 			faila = slot;
1451 		if (i == target2)
1452 			failb = slot;
1453 		i = raid6_next_disk(i, disks);
1454 	} while (i != d0_idx);
1455 
1456 	BUG_ON(faila == failb);
1457 	if (failb < faila)
1458 		swap(faila, failb);
1459 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1460 		 __func__, (unsigned long long)sh->sector, faila, failb);
1461 
1462 	atomic_inc(&sh->count);
1463 
1464 	if (failb == syndrome_disks+1) {
1465 		/* Q disk is one of the missing disks */
1466 		if (faila == syndrome_disks) {
1467 			/* Missing P+Q, just recompute */
1468 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1469 					  ops_complete_compute, sh,
1470 					  to_addr_conv(sh, percpu, 0));
1471 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1472 						  STRIPE_SIZE, &submit);
1473 		} else {
1474 			struct page *dest;
1475 			int data_target;
1476 			int qd_idx = sh->qd_idx;
1477 
1478 			/* Missing D+Q: recompute D from P, then recompute Q */
1479 			if (target == qd_idx)
1480 				data_target = target2;
1481 			else
1482 				data_target = target;
1483 
1484 			count = 0;
1485 			for (i = disks; i-- ; ) {
1486 				if (i == data_target || i == qd_idx)
1487 					continue;
1488 				blocks[count++] = sh->dev[i].page;
1489 			}
1490 			dest = sh->dev[data_target].page;
1491 			init_async_submit(&submit,
1492 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1493 					  NULL, NULL, NULL,
1494 					  to_addr_conv(sh, percpu, 0));
1495 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1496 				       &submit);
1497 
1498 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1499 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1500 					  ops_complete_compute, sh,
1501 					  to_addr_conv(sh, percpu, 0));
1502 			return async_gen_syndrome(blocks, 0, count+2,
1503 						  STRIPE_SIZE, &submit);
1504 		}
1505 	} else {
1506 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1507 				  ops_complete_compute, sh,
1508 				  to_addr_conv(sh, percpu, 0));
1509 		if (failb == syndrome_disks) {
1510 			/* We're missing D+P. */
1511 			return async_raid6_datap_recov(syndrome_disks+2,
1512 						       STRIPE_SIZE, faila,
1513 						       blocks, &submit);
1514 		} else {
1515 			/* We're missing D+D. */
1516 			return async_raid6_2data_recov(syndrome_disks+2,
1517 						       STRIPE_SIZE, faila, failb,
1518 						       blocks, &submit);
1519 		}
1520 	}
1521 }
1522 
1523 static void ops_complete_prexor(void *stripe_head_ref)
1524 {
1525 	struct stripe_head *sh = stripe_head_ref;
1526 
1527 	pr_debug("%s: stripe %llu\n", __func__,
1528 		(unsigned long long)sh->sector);
1529 }
1530 
1531 static struct dma_async_tx_descriptor *
1532 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1533 		struct dma_async_tx_descriptor *tx)
1534 {
1535 	int disks = sh->disks;
1536 	struct page **xor_srcs = to_addr_page(percpu, 0);
1537 	int count = 0, pd_idx = sh->pd_idx, i;
1538 	struct async_submit_ctl submit;
1539 
1540 	/* existing parity data subtracted */
1541 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1542 
1543 	BUG_ON(sh->batch_head);
1544 	pr_debug("%s: stripe %llu\n", __func__,
1545 		(unsigned long long)sh->sector);
1546 
1547 	for (i = disks; i--; ) {
1548 		struct r5dev *dev = &sh->dev[i];
1549 		/* Only process blocks that are known to be uptodate */
1550 		if (test_bit(R5_Wantdrain, &dev->flags))
1551 			xor_srcs[count++] = dev->page;
1552 	}
1553 
1554 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1555 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1556 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1557 
1558 	return tx;
1559 }
1560 
1561 static struct dma_async_tx_descriptor *
1562 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1563 		struct dma_async_tx_descriptor *tx)
1564 {
1565 	struct page **blocks = to_addr_page(percpu, 0);
1566 	int count;
1567 	struct async_submit_ctl submit;
1568 
1569 	pr_debug("%s: stripe %llu\n", __func__,
1570 		(unsigned long long)sh->sector);
1571 
1572 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1573 
1574 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1575 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1576 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1577 
1578 	return tx;
1579 }
1580 
1581 static struct dma_async_tx_descriptor *
1582 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1583 {
1584 	int disks = sh->disks;
1585 	int i;
1586 	struct stripe_head *head_sh = sh;
1587 
1588 	pr_debug("%s: stripe %llu\n", __func__,
1589 		(unsigned long long)sh->sector);
1590 
1591 	for (i = disks; i--; ) {
1592 		struct r5dev *dev;
1593 		struct bio *chosen;
1594 
1595 		sh = head_sh;
1596 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1597 			struct bio *wbi;
1598 
1599 again:
1600 			dev = &sh->dev[i];
1601 			spin_lock_irq(&sh->stripe_lock);
1602 			chosen = dev->towrite;
1603 			dev->towrite = NULL;
1604 			sh->overwrite_disks = 0;
1605 			BUG_ON(dev->written);
1606 			wbi = dev->written = chosen;
1607 			spin_unlock_irq(&sh->stripe_lock);
1608 			WARN_ON(dev->page != dev->orig_page);
1609 
1610 			while (wbi && wbi->bi_iter.bi_sector <
1611 				dev->sector + STRIPE_SECTORS) {
1612 				if (wbi->bi_rw & REQ_FUA)
1613 					set_bit(R5_WantFUA, &dev->flags);
1614 				if (wbi->bi_rw & REQ_SYNC)
1615 					set_bit(R5_SyncIO, &dev->flags);
1616 				if (wbi->bi_rw & REQ_DISCARD)
1617 					set_bit(R5_Discard, &dev->flags);
1618 				else {
1619 					tx = async_copy_data(1, wbi, &dev->page,
1620 						dev->sector, tx, sh);
1621 					if (dev->page != dev->orig_page) {
1622 						set_bit(R5_SkipCopy, &dev->flags);
1623 						clear_bit(R5_UPTODATE, &dev->flags);
1624 						clear_bit(R5_OVERWRITE, &dev->flags);
1625 					}
1626 				}
1627 				wbi = r5_next_bio(wbi, dev->sector);
1628 			}
1629 
1630 			if (head_sh->batch_head) {
1631 				sh = list_first_entry(&sh->batch_list,
1632 						      struct stripe_head,
1633 						      batch_list);
1634 				if (sh == head_sh)
1635 					continue;
1636 				goto again;
1637 			}
1638 		}
1639 	}
1640 
1641 	return tx;
1642 }
1643 
1644 static void ops_complete_reconstruct(void *stripe_head_ref)
1645 {
1646 	struct stripe_head *sh = stripe_head_ref;
1647 	int disks = sh->disks;
1648 	int pd_idx = sh->pd_idx;
1649 	int qd_idx = sh->qd_idx;
1650 	int i;
1651 	bool fua = false, sync = false, discard = false;
1652 
1653 	pr_debug("%s: stripe %llu\n", __func__,
1654 		(unsigned long long)sh->sector);
1655 
1656 	for (i = disks; i--; ) {
1657 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1658 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1659 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1660 	}
1661 
1662 	for (i = disks; i--; ) {
1663 		struct r5dev *dev = &sh->dev[i];
1664 
1665 		if (dev->written || i == pd_idx || i == qd_idx) {
1666 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1667 				set_bit(R5_UPTODATE, &dev->flags);
1668 			if (fua)
1669 				set_bit(R5_WantFUA, &dev->flags);
1670 			if (sync)
1671 				set_bit(R5_SyncIO, &dev->flags);
1672 		}
1673 	}
1674 
1675 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1676 		sh->reconstruct_state = reconstruct_state_drain_result;
1677 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1678 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1679 	else {
1680 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1681 		sh->reconstruct_state = reconstruct_state_result;
1682 	}
1683 
1684 	set_bit(STRIPE_HANDLE, &sh->state);
1685 	release_stripe(sh);
1686 }
1687 
1688 static void
1689 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1690 		     struct dma_async_tx_descriptor *tx)
1691 {
1692 	int disks = sh->disks;
1693 	struct page **xor_srcs;
1694 	struct async_submit_ctl submit;
1695 	int count, pd_idx = sh->pd_idx, i;
1696 	struct page *xor_dest;
1697 	int prexor = 0;
1698 	unsigned long flags;
1699 	int j = 0;
1700 	struct stripe_head *head_sh = sh;
1701 	int last_stripe;
1702 
1703 	pr_debug("%s: stripe %llu\n", __func__,
1704 		(unsigned long long)sh->sector);
1705 
1706 	for (i = 0; i < sh->disks; i++) {
1707 		if (pd_idx == i)
1708 			continue;
1709 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1710 			break;
1711 	}
1712 	if (i >= sh->disks) {
1713 		atomic_inc(&sh->count);
1714 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1715 		ops_complete_reconstruct(sh);
1716 		return;
1717 	}
1718 again:
1719 	count = 0;
1720 	xor_srcs = to_addr_page(percpu, j);
1721 	/* check if prexor is active which means only process blocks
1722 	 * that are part of a read-modify-write (written)
1723 	 */
1724 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1725 		prexor = 1;
1726 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1727 		for (i = disks; i--; ) {
1728 			struct r5dev *dev = &sh->dev[i];
1729 			if (head_sh->dev[i].written)
1730 				xor_srcs[count++] = dev->page;
1731 		}
1732 	} else {
1733 		xor_dest = sh->dev[pd_idx].page;
1734 		for (i = disks; i--; ) {
1735 			struct r5dev *dev = &sh->dev[i];
1736 			if (i != pd_idx)
1737 				xor_srcs[count++] = dev->page;
1738 		}
1739 	}
1740 
1741 	/* 1/ if we prexor'd then the dest is reused as a source
1742 	 * 2/ if we did not prexor then we are redoing the parity
1743 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1744 	 * for the synchronous xor case
1745 	 */
1746 	last_stripe = !head_sh->batch_head ||
1747 		list_first_entry(&sh->batch_list,
1748 				 struct stripe_head, batch_list) == head_sh;
1749 	if (last_stripe) {
1750 		flags = ASYNC_TX_ACK |
1751 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1752 
1753 		atomic_inc(&head_sh->count);
1754 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1755 				  to_addr_conv(sh, percpu, j));
1756 	} else {
1757 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1758 		init_async_submit(&submit, flags, tx, NULL, NULL,
1759 				  to_addr_conv(sh, percpu, j));
1760 	}
1761 
1762 	if (unlikely(count == 1))
1763 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1764 	else
1765 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1766 	if (!last_stripe) {
1767 		j++;
1768 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1769 				      batch_list);
1770 		goto again;
1771 	}
1772 }
1773 
1774 static void
1775 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1776 		     struct dma_async_tx_descriptor *tx)
1777 {
1778 	struct async_submit_ctl submit;
1779 	struct page **blocks;
1780 	int count, i, j = 0;
1781 	struct stripe_head *head_sh = sh;
1782 	int last_stripe;
1783 	int synflags;
1784 	unsigned long txflags;
1785 
1786 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1787 
1788 	for (i = 0; i < sh->disks; i++) {
1789 		if (sh->pd_idx == i || sh->qd_idx == i)
1790 			continue;
1791 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1792 			break;
1793 	}
1794 	if (i >= sh->disks) {
1795 		atomic_inc(&sh->count);
1796 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1797 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1798 		ops_complete_reconstruct(sh);
1799 		return;
1800 	}
1801 
1802 again:
1803 	blocks = to_addr_page(percpu, j);
1804 
1805 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1806 		synflags = SYNDROME_SRC_WRITTEN;
1807 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1808 	} else {
1809 		synflags = SYNDROME_SRC_ALL;
1810 		txflags = ASYNC_TX_ACK;
1811 	}
1812 
1813 	count = set_syndrome_sources(blocks, sh, synflags);
1814 	last_stripe = !head_sh->batch_head ||
1815 		list_first_entry(&sh->batch_list,
1816 				 struct stripe_head, batch_list) == head_sh;
1817 
1818 	if (last_stripe) {
1819 		atomic_inc(&head_sh->count);
1820 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1821 				  head_sh, to_addr_conv(sh, percpu, j));
1822 	} else
1823 		init_async_submit(&submit, 0, tx, NULL, NULL,
1824 				  to_addr_conv(sh, percpu, j));
1825 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1826 	if (!last_stripe) {
1827 		j++;
1828 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1829 				      batch_list);
1830 		goto again;
1831 	}
1832 }
1833 
1834 static void ops_complete_check(void *stripe_head_ref)
1835 {
1836 	struct stripe_head *sh = stripe_head_ref;
1837 
1838 	pr_debug("%s: stripe %llu\n", __func__,
1839 		(unsigned long long)sh->sector);
1840 
1841 	sh->check_state = check_state_check_result;
1842 	set_bit(STRIPE_HANDLE, &sh->state);
1843 	release_stripe(sh);
1844 }
1845 
1846 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1847 {
1848 	int disks = sh->disks;
1849 	int pd_idx = sh->pd_idx;
1850 	int qd_idx = sh->qd_idx;
1851 	struct page *xor_dest;
1852 	struct page **xor_srcs = to_addr_page(percpu, 0);
1853 	struct dma_async_tx_descriptor *tx;
1854 	struct async_submit_ctl submit;
1855 	int count;
1856 	int i;
1857 
1858 	pr_debug("%s: stripe %llu\n", __func__,
1859 		(unsigned long long)sh->sector);
1860 
1861 	BUG_ON(sh->batch_head);
1862 	count = 0;
1863 	xor_dest = sh->dev[pd_idx].page;
1864 	xor_srcs[count++] = xor_dest;
1865 	for (i = disks; i--; ) {
1866 		if (i == pd_idx || i == qd_idx)
1867 			continue;
1868 		xor_srcs[count++] = sh->dev[i].page;
1869 	}
1870 
1871 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1872 			  to_addr_conv(sh, percpu, 0));
1873 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1874 			   &sh->ops.zero_sum_result, &submit);
1875 
1876 	atomic_inc(&sh->count);
1877 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1878 	tx = async_trigger_callback(&submit);
1879 }
1880 
1881 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1882 {
1883 	struct page **srcs = to_addr_page(percpu, 0);
1884 	struct async_submit_ctl submit;
1885 	int count;
1886 
1887 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1888 		(unsigned long long)sh->sector, checkp);
1889 
1890 	BUG_ON(sh->batch_head);
1891 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1892 	if (!checkp)
1893 		srcs[count] = NULL;
1894 
1895 	atomic_inc(&sh->count);
1896 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1897 			  sh, to_addr_conv(sh, percpu, 0));
1898 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1899 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1900 }
1901 
1902 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1903 {
1904 	int overlap_clear = 0, i, disks = sh->disks;
1905 	struct dma_async_tx_descriptor *tx = NULL;
1906 	struct r5conf *conf = sh->raid_conf;
1907 	int level = conf->level;
1908 	struct raid5_percpu *percpu;
1909 	unsigned long cpu;
1910 
1911 	cpu = get_cpu();
1912 	percpu = per_cpu_ptr(conf->percpu, cpu);
1913 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1914 		ops_run_biofill(sh);
1915 		overlap_clear++;
1916 	}
1917 
1918 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1919 		if (level < 6)
1920 			tx = ops_run_compute5(sh, percpu);
1921 		else {
1922 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1923 				tx = ops_run_compute6_1(sh, percpu);
1924 			else
1925 				tx = ops_run_compute6_2(sh, percpu);
1926 		}
1927 		/* terminate the chain if reconstruct is not set to be run */
1928 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1929 			async_tx_ack(tx);
1930 	}
1931 
1932 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1933 		if (level < 6)
1934 			tx = ops_run_prexor5(sh, percpu, tx);
1935 		else
1936 			tx = ops_run_prexor6(sh, percpu, tx);
1937 	}
1938 
1939 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1940 		tx = ops_run_biodrain(sh, tx);
1941 		overlap_clear++;
1942 	}
1943 
1944 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1945 		if (level < 6)
1946 			ops_run_reconstruct5(sh, percpu, tx);
1947 		else
1948 			ops_run_reconstruct6(sh, percpu, tx);
1949 	}
1950 
1951 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1952 		if (sh->check_state == check_state_run)
1953 			ops_run_check_p(sh, percpu);
1954 		else if (sh->check_state == check_state_run_q)
1955 			ops_run_check_pq(sh, percpu, 0);
1956 		else if (sh->check_state == check_state_run_pq)
1957 			ops_run_check_pq(sh, percpu, 1);
1958 		else
1959 			BUG();
1960 	}
1961 
1962 	if (overlap_clear && !sh->batch_head)
1963 		for (i = disks; i--; ) {
1964 			struct r5dev *dev = &sh->dev[i];
1965 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1966 				wake_up(&sh->raid_conf->wait_for_overlap);
1967 		}
1968 	put_cpu();
1969 }
1970 
1971 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1972 {
1973 	struct stripe_head *sh;
1974 
1975 	sh = kmem_cache_zalloc(sc, gfp);
1976 	if (sh) {
1977 		spin_lock_init(&sh->stripe_lock);
1978 		spin_lock_init(&sh->batch_lock);
1979 		INIT_LIST_HEAD(&sh->batch_list);
1980 		INIT_LIST_HEAD(&sh->lru);
1981 		atomic_set(&sh->count, 1);
1982 	}
1983 	return sh;
1984 }
1985 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1986 {
1987 	struct stripe_head *sh;
1988 
1989 	sh = alloc_stripe(conf->slab_cache, gfp);
1990 	if (!sh)
1991 		return 0;
1992 
1993 	sh->raid_conf = conf;
1994 
1995 	if (grow_buffers(sh, gfp)) {
1996 		shrink_buffers(sh);
1997 		kmem_cache_free(conf->slab_cache, sh);
1998 		return 0;
1999 	}
2000 	sh->hash_lock_index =
2001 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2002 	/* we just created an active stripe so... */
2003 	atomic_inc(&conf->active_stripes);
2004 
2005 	release_stripe(sh);
2006 	conf->max_nr_stripes++;
2007 	return 1;
2008 }
2009 
2010 static int grow_stripes(struct r5conf *conf, int num)
2011 {
2012 	struct kmem_cache *sc;
2013 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2014 
2015 	if (conf->mddev->gendisk)
2016 		sprintf(conf->cache_name[0],
2017 			"raid%d-%s", conf->level, mdname(conf->mddev));
2018 	else
2019 		sprintf(conf->cache_name[0],
2020 			"raid%d-%p", conf->level, conf->mddev);
2021 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2022 
2023 	conf->active_name = 0;
2024 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2025 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2026 			       0, 0, NULL);
2027 	if (!sc)
2028 		return 1;
2029 	conf->slab_cache = sc;
2030 	conf->pool_size = devs;
2031 	while (num--)
2032 		if (!grow_one_stripe(conf, GFP_KERNEL))
2033 			return 1;
2034 
2035 	return 0;
2036 }
2037 
2038 /**
2039  * scribble_len - return the required size of the scribble region
2040  * @num - total number of disks in the array
2041  *
2042  * The size must be enough to contain:
2043  * 1/ a struct page pointer for each device in the array +2
2044  * 2/ room to convert each entry in (1) to its corresponding dma
2045  *    (dma_map_page()) or page (page_address()) address.
2046  *
2047  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2048  * calculate over all devices (not just the data blocks), using zeros in place
2049  * of the P and Q blocks.
2050  */
2051 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2052 {
2053 	struct flex_array *ret;
2054 	size_t len;
2055 
2056 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2057 	ret = flex_array_alloc(len, cnt, flags);
2058 	if (!ret)
2059 		return NULL;
2060 	/* always prealloc all elements, so no locking is required */
2061 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2062 		flex_array_free(ret);
2063 		return NULL;
2064 	}
2065 	return ret;
2066 }
2067 
2068 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2069 {
2070 	unsigned long cpu;
2071 	int err = 0;
2072 
2073 	mddev_suspend(conf->mddev);
2074 	get_online_cpus();
2075 	for_each_present_cpu(cpu) {
2076 		struct raid5_percpu *percpu;
2077 		struct flex_array *scribble;
2078 
2079 		percpu = per_cpu_ptr(conf->percpu, cpu);
2080 		scribble = scribble_alloc(new_disks,
2081 					  new_sectors / STRIPE_SECTORS,
2082 					  GFP_NOIO);
2083 
2084 		if (scribble) {
2085 			flex_array_free(percpu->scribble);
2086 			percpu->scribble = scribble;
2087 		} else {
2088 			err = -ENOMEM;
2089 			break;
2090 		}
2091 	}
2092 	put_online_cpus();
2093 	mddev_resume(conf->mddev);
2094 	return err;
2095 }
2096 
2097 static int resize_stripes(struct r5conf *conf, int newsize)
2098 {
2099 	/* Make all the stripes able to hold 'newsize' devices.
2100 	 * New slots in each stripe get 'page' set to a new page.
2101 	 *
2102 	 * This happens in stages:
2103 	 * 1/ create a new kmem_cache and allocate the required number of
2104 	 *    stripe_heads.
2105 	 * 2/ gather all the old stripe_heads and transfer the pages across
2106 	 *    to the new stripe_heads.  This will have the side effect of
2107 	 *    freezing the array as once all stripe_heads have been collected,
2108 	 *    no IO will be possible.  Old stripe heads are freed once their
2109 	 *    pages have been transferred over, and the old kmem_cache is
2110 	 *    freed when all stripes are done.
2111 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2112 	 *    we simple return a failre status - no need to clean anything up.
2113 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2114 	 *    If this fails, we don't bother trying the shrink the
2115 	 *    stripe_heads down again, we just leave them as they are.
2116 	 *    As each stripe_head is processed the new one is released into
2117 	 *    active service.
2118 	 *
2119 	 * Once step2 is started, we cannot afford to wait for a write,
2120 	 * so we use GFP_NOIO allocations.
2121 	 */
2122 	struct stripe_head *osh, *nsh;
2123 	LIST_HEAD(newstripes);
2124 	struct disk_info *ndisks;
2125 	int err;
2126 	struct kmem_cache *sc;
2127 	int i;
2128 	int hash, cnt;
2129 
2130 	if (newsize <= conf->pool_size)
2131 		return 0; /* never bother to shrink */
2132 
2133 	err = md_allow_write(conf->mddev);
2134 	if (err)
2135 		return err;
2136 
2137 	/* Step 1 */
2138 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2139 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2140 			       0, 0, NULL);
2141 	if (!sc)
2142 		return -ENOMEM;
2143 
2144 	for (i = conf->max_nr_stripes; i; i--) {
2145 		nsh = alloc_stripe(sc, GFP_KERNEL);
2146 		if (!nsh)
2147 			break;
2148 
2149 		nsh->raid_conf = conf;
2150 		list_add(&nsh->lru, &newstripes);
2151 	}
2152 	if (i) {
2153 		/* didn't get enough, give up */
2154 		while (!list_empty(&newstripes)) {
2155 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2156 			list_del(&nsh->lru);
2157 			kmem_cache_free(sc, nsh);
2158 		}
2159 		kmem_cache_destroy(sc);
2160 		return -ENOMEM;
2161 	}
2162 	/* Step 2 - Must use GFP_NOIO now.
2163 	 * OK, we have enough stripes, start collecting inactive
2164 	 * stripes and copying them over
2165 	 */
2166 	hash = 0;
2167 	cnt = 0;
2168 	list_for_each_entry(nsh, &newstripes, lru) {
2169 		lock_device_hash_lock(conf, hash);
2170 		wait_event_cmd(conf->wait_for_stripe,
2171 				    !list_empty(conf->inactive_list + hash),
2172 				    unlock_device_hash_lock(conf, hash),
2173 				    lock_device_hash_lock(conf, hash));
2174 		osh = get_free_stripe(conf, hash);
2175 		unlock_device_hash_lock(conf, hash);
2176 
2177 		for(i=0; i<conf->pool_size; i++) {
2178 			nsh->dev[i].page = osh->dev[i].page;
2179 			nsh->dev[i].orig_page = osh->dev[i].page;
2180 		}
2181 		nsh->hash_lock_index = hash;
2182 		kmem_cache_free(conf->slab_cache, osh);
2183 		cnt++;
2184 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2185 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2186 			hash++;
2187 			cnt = 0;
2188 		}
2189 	}
2190 	kmem_cache_destroy(conf->slab_cache);
2191 
2192 	/* Step 3.
2193 	 * At this point, we are holding all the stripes so the array
2194 	 * is completely stalled, so now is a good time to resize
2195 	 * conf->disks and the scribble region
2196 	 */
2197 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2198 	if (ndisks) {
2199 		for (i=0; i<conf->raid_disks; i++)
2200 			ndisks[i] = conf->disks[i];
2201 		kfree(conf->disks);
2202 		conf->disks = ndisks;
2203 	} else
2204 		err = -ENOMEM;
2205 
2206 	/* Step 4, return new stripes to service */
2207 	while(!list_empty(&newstripes)) {
2208 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2209 		list_del_init(&nsh->lru);
2210 
2211 		for (i=conf->raid_disks; i < newsize; i++)
2212 			if (nsh->dev[i].page == NULL) {
2213 				struct page *p = alloc_page(GFP_NOIO);
2214 				nsh->dev[i].page = p;
2215 				nsh->dev[i].orig_page = p;
2216 				if (!p)
2217 					err = -ENOMEM;
2218 			}
2219 		release_stripe(nsh);
2220 	}
2221 	/* critical section pass, GFP_NOIO no longer needed */
2222 
2223 	conf->slab_cache = sc;
2224 	conf->active_name = 1-conf->active_name;
2225 	if (!err)
2226 		conf->pool_size = newsize;
2227 	return err;
2228 }
2229 
2230 static int drop_one_stripe(struct r5conf *conf)
2231 {
2232 	struct stripe_head *sh;
2233 	int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2234 
2235 	spin_lock_irq(conf->hash_locks + hash);
2236 	sh = get_free_stripe(conf, hash);
2237 	spin_unlock_irq(conf->hash_locks + hash);
2238 	if (!sh)
2239 		return 0;
2240 	BUG_ON(atomic_read(&sh->count));
2241 	shrink_buffers(sh);
2242 	kmem_cache_free(conf->slab_cache, sh);
2243 	atomic_dec(&conf->active_stripes);
2244 	conf->max_nr_stripes--;
2245 	return 1;
2246 }
2247 
2248 static void shrink_stripes(struct r5conf *conf)
2249 {
2250 	while (conf->max_nr_stripes &&
2251 	       drop_one_stripe(conf))
2252 		;
2253 
2254 	if (conf->slab_cache)
2255 		kmem_cache_destroy(conf->slab_cache);
2256 	conf->slab_cache = NULL;
2257 }
2258 
2259 static void raid5_end_read_request(struct bio * bi, int error)
2260 {
2261 	struct stripe_head *sh = bi->bi_private;
2262 	struct r5conf *conf = sh->raid_conf;
2263 	int disks = sh->disks, i;
2264 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2265 	char b[BDEVNAME_SIZE];
2266 	struct md_rdev *rdev = NULL;
2267 	sector_t s;
2268 
2269 	for (i=0 ; i<disks; i++)
2270 		if (bi == &sh->dev[i].req)
2271 			break;
2272 
2273 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2274 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2275 		uptodate);
2276 	if (i == disks) {
2277 		BUG();
2278 		return;
2279 	}
2280 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2281 		/* If replacement finished while this request was outstanding,
2282 		 * 'replacement' might be NULL already.
2283 		 * In that case it moved down to 'rdev'.
2284 		 * rdev is not removed until all requests are finished.
2285 		 */
2286 		rdev = conf->disks[i].replacement;
2287 	if (!rdev)
2288 		rdev = conf->disks[i].rdev;
2289 
2290 	if (use_new_offset(conf, sh))
2291 		s = sh->sector + rdev->new_data_offset;
2292 	else
2293 		s = sh->sector + rdev->data_offset;
2294 	if (uptodate) {
2295 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2296 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2297 			/* Note that this cannot happen on a
2298 			 * replacement device.  We just fail those on
2299 			 * any error
2300 			 */
2301 			printk_ratelimited(
2302 				KERN_INFO
2303 				"md/raid:%s: read error corrected"
2304 				" (%lu sectors at %llu on %s)\n",
2305 				mdname(conf->mddev), STRIPE_SECTORS,
2306 				(unsigned long long)s,
2307 				bdevname(rdev->bdev, b));
2308 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2309 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2310 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2311 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2312 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2313 
2314 		if (atomic_read(&rdev->read_errors))
2315 			atomic_set(&rdev->read_errors, 0);
2316 	} else {
2317 		const char *bdn = bdevname(rdev->bdev, b);
2318 		int retry = 0;
2319 		int set_bad = 0;
2320 
2321 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2322 		atomic_inc(&rdev->read_errors);
2323 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2324 			printk_ratelimited(
2325 				KERN_WARNING
2326 				"md/raid:%s: read error on replacement device "
2327 				"(sector %llu on %s).\n",
2328 				mdname(conf->mddev),
2329 				(unsigned long long)s,
2330 				bdn);
2331 		else if (conf->mddev->degraded >= conf->max_degraded) {
2332 			set_bad = 1;
2333 			printk_ratelimited(
2334 				KERN_WARNING
2335 				"md/raid:%s: read error not correctable "
2336 				"(sector %llu on %s).\n",
2337 				mdname(conf->mddev),
2338 				(unsigned long long)s,
2339 				bdn);
2340 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2341 			/* Oh, no!!! */
2342 			set_bad = 1;
2343 			printk_ratelimited(
2344 				KERN_WARNING
2345 				"md/raid:%s: read error NOT corrected!! "
2346 				"(sector %llu on %s).\n",
2347 				mdname(conf->mddev),
2348 				(unsigned long long)s,
2349 				bdn);
2350 		} else if (atomic_read(&rdev->read_errors)
2351 			 > conf->max_nr_stripes)
2352 			printk(KERN_WARNING
2353 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2354 			       mdname(conf->mddev), bdn);
2355 		else
2356 			retry = 1;
2357 		if (set_bad && test_bit(In_sync, &rdev->flags)
2358 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2359 			retry = 1;
2360 		if (retry)
2361 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2362 				set_bit(R5_ReadError, &sh->dev[i].flags);
2363 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2364 			} else
2365 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2366 		else {
2367 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2368 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2369 			if (!(set_bad
2370 			      && test_bit(In_sync, &rdev->flags)
2371 			      && rdev_set_badblocks(
2372 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2373 				md_error(conf->mddev, rdev);
2374 		}
2375 	}
2376 	rdev_dec_pending(rdev, conf->mddev);
2377 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2378 	set_bit(STRIPE_HANDLE, &sh->state);
2379 	release_stripe(sh);
2380 }
2381 
2382 static void raid5_end_write_request(struct bio *bi, int error)
2383 {
2384 	struct stripe_head *sh = bi->bi_private;
2385 	struct r5conf *conf = sh->raid_conf;
2386 	int disks = sh->disks, i;
2387 	struct md_rdev *uninitialized_var(rdev);
2388 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2389 	sector_t first_bad;
2390 	int bad_sectors;
2391 	int replacement = 0;
2392 
2393 	for (i = 0 ; i < disks; i++) {
2394 		if (bi == &sh->dev[i].req) {
2395 			rdev = conf->disks[i].rdev;
2396 			break;
2397 		}
2398 		if (bi == &sh->dev[i].rreq) {
2399 			rdev = conf->disks[i].replacement;
2400 			if (rdev)
2401 				replacement = 1;
2402 			else
2403 				/* rdev was removed and 'replacement'
2404 				 * replaced it.  rdev is not removed
2405 				 * until all requests are finished.
2406 				 */
2407 				rdev = conf->disks[i].rdev;
2408 			break;
2409 		}
2410 	}
2411 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2412 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2413 		uptodate);
2414 	if (i == disks) {
2415 		BUG();
2416 		return;
2417 	}
2418 
2419 	if (replacement) {
2420 		if (!uptodate)
2421 			md_error(conf->mddev, rdev);
2422 		else if (is_badblock(rdev, sh->sector,
2423 				     STRIPE_SECTORS,
2424 				     &first_bad, &bad_sectors))
2425 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2426 	} else {
2427 		if (!uptodate) {
2428 			set_bit(STRIPE_DEGRADED, &sh->state);
2429 			set_bit(WriteErrorSeen, &rdev->flags);
2430 			set_bit(R5_WriteError, &sh->dev[i].flags);
2431 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2432 				set_bit(MD_RECOVERY_NEEDED,
2433 					&rdev->mddev->recovery);
2434 		} else if (is_badblock(rdev, sh->sector,
2435 				       STRIPE_SECTORS,
2436 				       &first_bad, &bad_sectors)) {
2437 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2438 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2439 				/* That was a successful write so make
2440 				 * sure it looks like we already did
2441 				 * a re-write.
2442 				 */
2443 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2444 		}
2445 	}
2446 	rdev_dec_pending(rdev, conf->mddev);
2447 
2448 	if (sh->batch_head && !uptodate && !replacement)
2449 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2450 
2451 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2452 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2453 	set_bit(STRIPE_HANDLE, &sh->state);
2454 	release_stripe(sh);
2455 
2456 	if (sh->batch_head && sh != sh->batch_head)
2457 		release_stripe(sh->batch_head);
2458 }
2459 
2460 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2461 
2462 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2463 {
2464 	struct r5dev *dev = &sh->dev[i];
2465 
2466 	bio_init(&dev->req);
2467 	dev->req.bi_io_vec = &dev->vec;
2468 	dev->req.bi_max_vecs = 1;
2469 	dev->req.bi_private = sh;
2470 
2471 	bio_init(&dev->rreq);
2472 	dev->rreq.bi_io_vec = &dev->rvec;
2473 	dev->rreq.bi_max_vecs = 1;
2474 	dev->rreq.bi_private = sh;
2475 
2476 	dev->flags = 0;
2477 	dev->sector = compute_blocknr(sh, i, previous);
2478 }
2479 
2480 static void error(struct mddev *mddev, struct md_rdev *rdev)
2481 {
2482 	char b[BDEVNAME_SIZE];
2483 	struct r5conf *conf = mddev->private;
2484 	unsigned long flags;
2485 	pr_debug("raid456: error called\n");
2486 
2487 	spin_lock_irqsave(&conf->device_lock, flags);
2488 	clear_bit(In_sync, &rdev->flags);
2489 	mddev->degraded = calc_degraded(conf);
2490 	spin_unlock_irqrestore(&conf->device_lock, flags);
2491 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2492 
2493 	set_bit(Blocked, &rdev->flags);
2494 	set_bit(Faulty, &rdev->flags);
2495 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2496 	printk(KERN_ALERT
2497 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2498 	       "md/raid:%s: Operation continuing on %d devices.\n",
2499 	       mdname(mddev),
2500 	       bdevname(rdev->bdev, b),
2501 	       mdname(mddev),
2502 	       conf->raid_disks - mddev->degraded);
2503 }
2504 
2505 /*
2506  * Input: a 'big' sector number,
2507  * Output: index of the data and parity disk, and the sector # in them.
2508  */
2509 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2510 				     int previous, int *dd_idx,
2511 				     struct stripe_head *sh)
2512 {
2513 	sector_t stripe, stripe2;
2514 	sector_t chunk_number;
2515 	unsigned int chunk_offset;
2516 	int pd_idx, qd_idx;
2517 	int ddf_layout = 0;
2518 	sector_t new_sector;
2519 	int algorithm = previous ? conf->prev_algo
2520 				 : conf->algorithm;
2521 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2522 					 : conf->chunk_sectors;
2523 	int raid_disks = previous ? conf->previous_raid_disks
2524 				  : conf->raid_disks;
2525 	int data_disks = raid_disks - conf->max_degraded;
2526 
2527 	/* First compute the information on this sector */
2528 
2529 	/*
2530 	 * Compute the chunk number and the sector offset inside the chunk
2531 	 */
2532 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2533 	chunk_number = r_sector;
2534 
2535 	/*
2536 	 * Compute the stripe number
2537 	 */
2538 	stripe = chunk_number;
2539 	*dd_idx = sector_div(stripe, data_disks);
2540 	stripe2 = stripe;
2541 	/*
2542 	 * Select the parity disk based on the user selected algorithm.
2543 	 */
2544 	pd_idx = qd_idx = -1;
2545 	switch(conf->level) {
2546 	case 4:
2547 		pd_idx = data_disks;
2548 		break;
2549 	case 5:
2550 		switch (algorithm) {
2551 		case ALGORITHM_LEFT_ASYMMETRIC:
2552 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2553 			if (*dd_idx >= pd_idx)
2554 				(*dd_idx)++;
2555 			break;
2556 		case ALGORITHM_RIGHT_ASYMMETRIC:
2557 			pd_idx = sector_div(stripe2, raid_disks);
2558 			if (*dd_idx >= pd_idx)
2559 				(*dd_idx)++;
2560 			break;
2561 		case ALGORITHM_LEFT_SYMMETRIC:
2562 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2563 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2564 			break;
2565 		case ALGORITHM_RIGHT_SYMMETRIC:
2566 			pd_idx = sector_div(stripe2, raid_disks);
2567 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2568 			break;
2569 		case ALGORITHM_PARITY_0:
2570 			pd_idx = 0;
2571 			(*dd_idx)++;
2572 			break;
2573 		case ALGORITHM_PARITY_N:
2574 			pd_idx = data_disks;
2575 			break;
2576 		default:
2577 			BUG();
2578 		}
2579 		break;
2580 	case 6:
2581 
2582 		switch (algorithm) {
2583 		case ALGORITHM_LEFT_ASYMMETRIC:
2584 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2585 			qd_idx = pd_idx + 1;
2586 			if (pd_idx == raid_disks-1) {
2587 				(*dd_idx)++;	/* Q D D D P */
2588 				qd_idx = 0;
2589 			} else if (*dd_idx >= pd_idx)
2590 				(*dd_idx) += 2; /* D D P Q D */
2591 			break;
2592 		case ALGORITHM_RIGHT_ASYMMETRIC:
2593 			pd_idx = sector_div(stripe2, raid_disks);
2594 			qd_idx = pd_idx + 1;
2595 			if (pd_idx == raid_disks-1) {
2596 				(*dd_idx)++;	/* Q D D D P */
2597 				qd_idx = 0;
2598 			} else if (*dd_idx >= pd_idx)
2599 				(*dd_idx) += 2; /* D D P Q D */
2600 			break;
2601 		case ALGORITHM_LEFT_SYMMETRIC:
2602 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2603 			qd_idx = (pd_idx + 1) % raid_disks;
2604 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2605 			break;
2606 		case ALGORITHM_RIGHT_SYMMETRIC:
2607 			pd_idx = sector_div(stripe2, raid_disks);
2608 			qd_idx = (pd_idx + 1) % raid_disks;
2609 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2610 			break;
2611 
2612 		case ALGORITHM_PARITY_0:
2613 			pd_idx = 0;
2614 			qd_idx = 1;
2615 			(*dd_idx) += 2;
2616 			break;
2617 		case ALGORITHM_PARITY_N:
2618 			pd_idx = data_disks;
2619 			qd_idx = data_disks + 1;
2620 			break;
2621 
2622 		case ALGORITHM_ROTATING_ZERO_RESTART:
2623 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2624 			 * of blocks for computing Q is different.
2625 			 */
2626 			pd_idx = sector_div(stripe2, raid_disks);
2627 			qd_idx = pd_idx + 1;
2628 			if (pd_idx == raid_disks-1) {
2629 				(*dd_idx)++;	/* Q D D D P */
2630 				qd_idx = 0;
2631 			} else if (*dd_idx >= pd_idx)
2632 				(*dd_idx) += 2; /* D D P Q D */
2633 			ddf_layout = 1;
2634 			break;
2635 
2636 		case ALGORITHM_ROTATING_N_RESTART:
2637 			/* Same a left_asymmetric, by first stripe is
2638 			 * D D D P Q  rather than
2639 			 * Q D D D P
2640 			 */
2641 			stripe2 += 1;
2642 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2643 			qd_idx = pd_idx + 1;
2644 			if (pd_idx == raid_disks-1) {
2645 				(*dd_idx)++;	/* Q D D D P */
2646 				qd_idx = 0;
2647 			} else if (*dd_idx >= pd_idx)
2648 				(*dd_idx) += 2; /* D D P Q D */
2649 			ddf_layout = 1;
2650 			break;
2651 
2652 		case ALGORITHM_ROTATING_N_CONTINUE:
2653 			/* Same as left_symmetric but Q is before P */
2654 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2655 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2656 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2657 			ddf_layout = 1;
2658 			break;
2659 
2660 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2661 			/* RAID5 left_asymmetric, with Q on last device */
2662 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2663 			if (*dd_idx >= pd_idx)
2664 				(*dd_idx)++;
2665 			qd_idx = raid_disks - 1;
2666 			break;
2667 
2668 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2669 			pd_idx = sector_div(stripe2, raid_disks-1);
2670 			if (*dd_idx >= pd_idx)
2671 				(*dd_idx)++;
2672 			qd_idx = raid_disks - 1;
2673 			break;
2674 
2675 		case ALGORITHM_LEFT_SYMMETRIC_6:
2676 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2677 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2678 			qd_idx = raid_disks - 1;
2679 			break;
2680 
2681 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2682 			pd_idx = sector_div(stripe2, raid_disks-1);
2683 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2684 			qd_idx = raid_disks - 1;
2685 			break;
2686 
2687 		case ALGORITHM_PARITY_0_6:
2688 			pd_idx = 0;
2689 			(*dd_idx)++;
2690 			qd_idx = raid_disks - 1;
2691 			break;
2692 
2693 		default:
2694 			BUG();
2695 		}
2696 		break;
2697 	}
2698 
2699 	if (sh) {
2700 		sh->pd_idx = pd_idx;
2701 		sh->qd_idx = qd_idx;
2702 		sh->ddf_layout = ddf_layout;
2703 	}
2704 	/*
2705 	 * Finally, compute the new sector number
2706 	 */
2707 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2708 	return new_sector;
2709 }
2710 
2711 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2712 {
2713 	struct r5conf *conf = sh->raid_conf;
2714 	int raid_disks = sh->disks;
2715 	int data_disks = raid_disks - conf->max_degraded;
2716 	sector_t new_sector = sh->sector, check;
2717 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2718 					 : conf->chunk_sectors;
2719 	int algorithm = previous ? conf->prev_algo
2720 				 : conf->algorithm;
2721 	sector_t stripe;
2722 	int chunk_offset;
2723 	sector_t chunk_number;
2724 	int dummy1, dd_idx = i;
2725 	sector_t r_sector;
2726 	struct stripe_head sh2;
2727 
2728 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2729 	stripe = new_sector;
2730 
2731 	if (i == sh->pd_idx)
2732 		return 0;
2733 	switch(conf->level) {
2734 	case 4: break;
2735 	case 5:
2736 		switch (algorithm) {
2737 		case ALGORITHM_LEFT_ASYMMETRIC:
2738 		case ALGORITHM_RIGHT_ASYMMETRIC:
2739 			if (i > sh->pd_idx)
2740 				i--;
2741 			break;
2742 		case ALGORITHM_LEFT_SYMMETRIC:
2743 		case ALGORITHM_RIGHT_SYMMETRIC:
2744 			if (i < sh->pd_idx)
2745 				i += raid_disks;
2746 			i -= (sh->pd_idx + 1);
2747 			break;
2748 		case ALGORITHM_PARITY_0:
2749 			i -= 1;
2750 			break;
2751 		case ALGORITHM_PARITY_N:
2752 			break;
2753 		default:
2754 			BUG();
2755 		}
2756 		break;
2757 	case 6:
2758 		if (i == sh->qd_idx)
2759 			return 0; /* It is the Q disk */
2760 		switch (algorithm) {
2761 		case ALGORITHM_LEFT_ASYMMETRIC:
2762 		case ALGORITHM_RIGHT_ASYMMETRIC:
2763 		case ALGORITHM_ROTATING_ZERO_RESTART:
2764 		case ALGORITHM_ROTATING_N_RESTART:
2765 			if (sh->pd_idx == raid_disks-1)
2766 				i--;	/* Q D D D P */
2767 			else if (i > sh->pd_idx)
2768 				i -= 2; /* D D P Q D */
2769 			break;
2770 		case ALGORITHM_LEFT_SYMMETRIC:
2771 		case ALGORITHM_RIGHT_SYMMETRIC:
2772 			if (sh->pd_idx == raid_disks-1)
2773 				i--; /* Q D D D P */
2774 			else {
2775 				/* D D P Q D */
2776 				if (i < sh->pd_idx)
2777 					i += raid_disks;
2778 				i -= (sh->pd_idx + 2);
2779 			}
2780 			break;
2781 		case ALGORITHM_PARITY_0:
2782 			i -= 2;
2783 			break;
2784 		case ALGORITHM_PARITY_N:
2785 			break;
2786 		case ALGORITHM_ROTATING_N_CONTINUE:
2787 			/* Like left_symmetric, but P is before Q */
2788 			if (sh->pd_idx == 0)
2789 				i--;	/* P D D D Q */
2790 			else {
2791 				/* D D Q P D */
2792 				if (i < sh->pd_idx)
2793 					i += raid_disks;
2794 				i -= (sh->pd_idx + 1);
2795 			}
2796 			break;
2797 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2798 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2799 			if (i > sh->pd_idx)
2800 				i--;
2801 			break;
2802 		case ALGORITHM_LEFT_SYMMETRIC_6:
2803 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2804 			if (i < sh->pd_idx)
2805 				i += data_disks + 1;
2806 			i -= (sh->pd_idx + 1);
2807 			break;
2808 		case ALGORITHM_PARITY_0_6:
2809 			i -= 1;
2810 			break;
2811 		default:
2812 			BUG();
2813 		}
2814 		break;
2815 	}
2816 
2817 	chunk_number = stripe * data_disks + i;
2818 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2819 
2820 	check = raid5_compute_sector(conf, r_sector,
2821 				     previous, &dummy1, &sh2);
2822 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2823 		|| sh2.qd_idx != sh->qd_idx) {
2824 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2825 		       mdname(conf->mddev));
2826 		return 0;
2827 	}
2828 	return r_sector;
2829 }
2830 
2831 static void
2832 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2833 			 int rcw, int expand)
2834 {
2835 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2836 	struct r5conf *conf = sh->raid_conf;
2837 	int level = conf->level;
2838 
2839 	if (rcw) {
2840 
2841 		for (i = disks; i--; ) {
2842 			struct r5dev *dev = &sh->dev[i];
2843 
2844 			if (dev->towrite) {
2845 				set_bit(R5_LOCKED, &dev->flags);
2846 				set_bit(R5_Wantdrain, &dev->flags);
2847 				if (!expand)
2848 					clear_bit(R5_UPTODATE, &dev->flags);
2849 				s->locked++;
2850 			}
2851 		}
2852 		/* if we are not expanding this is a proper write request, and
2853 		 * there will be bios with new data to be drained into the
2854 		 * stripe cache
2855 		 */
2856 		if (!expand) {
2857 			if (!s->locked)
2858 				/* False alarm, nothing to do */
2859 				return;
2860 			sh->reconstruct_state = reconstruct_state_drain_run;
2861 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2862 		} else
2863 			sh->reconstruct_state = reconstruct_state_run;
2864 
2865 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2866 
2867 		if (s->locked + conf->max_degraded == disks)
2868 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2869 				atomic_inc(&conf->pending_full_writes);
2870 	} else {
2871 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2872 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2873 		BUG_ON(level == 6 &&
2874 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2875 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2876 
2877 		for (i = disks; i--; ) {
2878 			struct r5dev *dev = &sh->dev[i];
2879 			if (i == pd_idx || i == qd_idx)
2880 				continue;
2881 
2882 			if (dev->towrite &&
2883 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2884 			     test_bit(R5_Wantcompute, &dev->flags))) {
2885 				set_bit(R5_Wantdrain, &dev->flags);
2886 				set_bit(R5_LOCKED, &dev->flags);
2887 				clear_bit(R5_UPTODATE, &dev->flags);
2888 				s->locked++;
2889 			}
2890 		}
2891 		if (!s->locked)
2892 			/* False alarm - nothing to do */
2893 			return;
2894 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2895 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2896 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2897 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2898 	}
2899 
2900 	/* keep the parity disk(s) locked while asynchronous operations
2901 	 * are in flight
2902 	 */
2903 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2904 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2905 	s->locked++;
2906 
2907 	if (level == 6) {
2908 		int qd_idx = sh->qd_idx;
2909 		struct r5dev *dev = &sh->dev[qd_idx];
2910 
2911 		set_bit(R5_LOCKED, &dev->flags);
2912 		clear_bit(R5_UPTODATE, &dev->flags);
2913 		s->locked++;
2914 	}
2915 
2916 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2917 		__func__, (unsigned long long)sh->sector,
2918 		s->locked, s->ops_request);
2919 }
2920 
2921 /*
2922  * Each stripe/dev can have one or more bion attached.
2923  * toread/towrite point to the first in a chain.
2924  * The bi_next chain must be in order.
2925  */
2926 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2927 			  int forwrite, int previous)
2928 {
2929 	struct bio **bip;
2930 	struct r5conf *conf = sh->raid_conf;
2931 	int firstwrite=0;
2932 
2933 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2934 		(unsigned long long)bi->bi_iter.bi_sector,
2935 		(unsigned long long)sh->sector);
2936 
2937 	/*
2938 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2939 	 * reference count to avoid race. The reference count should already be
2940 	 * increased before this function is called (for example, in
2941 	 * make_request()), so other bio sharing this stripe will not free the
2942 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2943 	 * protect it.
2944 	 */
2945 	spin_lock_irq(&sh->stripe_lock);
2946 	/* Don't allow new IO added to stripes in batch list */
2947 	if (sh->batch_head)
2948 		goto overlap;
2949 	if (forwrite) {
2950 		bip = &sh->dev[dd_idx].towrite;
2951 		if (*bip == NULL)
2952 			firstwrite = 1;
2953 	} else
2954 		bip = &sh->dev[dd_idx].toread;
2955 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2956 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2957 			goto overlap;
2958 		bip = & (*bip)->bi_next;
2959 	}
2960 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2961 		goto overlap;
2962 
2963 	if (!forwrite || previous)
2964 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2965 
2966 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2967 	if (*bip)
2968 		bi->bi_next = *bip;
2969 	*bip = bi;
2970 	raid5_inc_bi_active_stripes(bi);
2971 
2972 	if (forwrite) {
2973 		/* check if page is covered */
2974 		sector_t sector = sh->dev[dd_idx].sector;
2975 		for (bi=sh->dev[dd_idx].towrite;
2976 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2977 			     bi && bi->bi_iter.bi_sector <= sector;
2978 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2979 			if (bio_end_sector(bi) >= sector)
2980 				sector = bio_end_sector(bi);
2981 		}
2982 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2983 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2984 				sh->overwrite_disks++;
2985 	}
2986 
2987 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2988 		(unsigned long long)(*bip)->bi_iter.bi_sector,
2989 		(unsigned long long)sh->sector, dd_idx);
2990 	spin_unlock_irq(&sh->stripe_lock);
2991 
2992 	if (conf->mddev->bitmap && firstwrite) {
2993 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2994 				  STRIPE_SECTORS, 0);
2995 		sh->bm_seq = conf->seq_flush+1;
2996 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2997 	}
2998 
2999 	if (stripe_can_batch(sh))
3000 		stripe_add_to_batch_list(conf, sh);
3001 	return 1;
3002 
3003  overlap:
3004 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3005 	spin_unlock_irq(&sh->stripe_lock);
3006 	return 0;
3007 }
3008 
3009 static void end_reshape(struct r5conf *conf);
3010 
3011 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3012 			    struct stripe_head *sh)
3013 {
3014 	int sectors_per_chunk =
3015 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3016 	int dd_idx;
3017 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3018 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3019 
3020 	raid5_compute_sector(conf,
3021 			     stripe * (disks - conf->max_degraded)
3022 			     *sectors_per_chunk + chunk_offset,
3023 			     previous,
3024 			     &dd_idx, sh);
3025 }
3026 
3027 static void
3028 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3029 				struct stripe_head_state *s, int disks,
3030 				struct bio **return_bi)
3031 {
3032 	int i;
3033 	BUG_ON(sh->batch_head);
3034 	for (i = disks; i--; ) {
3035 		struct bio *bi;
3036 		int bitmap_end = 0;
3037 
3038 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3039 			struct md_rdev *rdev;
3040 			rcu_read_lock();
3041 			rdev = rcu_dereference(conf->disks[i].rdev);
3042 			if (rdev && test_bit(In_sync, &rdev->flags))
3043 				atomic_inc(&rdev->nr_pending);
3044 			else
3045 				rdev = NULL;
3046 			rcu_read_unlock();
3047 			if (rdev) {
3048 				if (!rdev_set_badblocks(
3049 					    rdev,
3050 					    sh->sector,
3051 					    STRIPE_SECTORS, 0))
3052 					md_error(conf->mddev, rdev);
3053 				rdev_dec_pending(rdev, conf->mddev);
3054 			}
3055 		}
3056 		spin_lock_irq(&sh->stripe_lock);
3057 		/* fail all writes first */
3058 		bi = sh->dev[i].towrite;
3059 		sh->dev[i].towrite = NULL;
3060 		sh->overwrite_disks = 0;
3061 		spin_unlock_irq(&sh->stripe_lock);
3062 		if (bi)
3063 			bitmap_end = 1;
3064 
3065 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3066 			wake_up(&conf->wait_for_overlap);
3067 
3068 		while (bi && bi->bi_iter.bi_sector <
3069 			sh->dev[i].sector + STRIPE_SECTORS) {
3070 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3071 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3072 			if (!raid5_dec_bi_active_stripes(bi)) {
3073 				md_write_end(conf->mddev);
3074 				bi->bi_next = *return_bi;
3075 				*return_bi = bi;
3076 			}
3077 			bi = nextbi;
3078 		}
3079 		if (bitmap_end)
3080 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3081 				STRIPE_SECTORS, 0, 0);
3082 		bitmap_end = 0;
3083 		/* and fail all 'written' */
3084 		bi = sh->dev[i].written;
3085 		sh->dev[i].written = NULL;
3086 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3087 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3088 			sh->dev[i].page = sh->dev[i].orig_page;
3089 		}
3090 
3091 		if (bi) bitmap_end = 1;
3092 		while (bi && bi->bi_iter.bi_sector <
3093 		       sh->dev[i].sector + STRIPE_SECTORS) {
3094 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3095 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3096 			if (!raid5_dec_bi_active_stripes(bi)) {
3097 				md_write_end(conf->mddev);
3098 				bi->bi_next = *return_bi;
3099 				*return_bi = bi;
3100 			}
3101 			bi = bi2;
3102 		}
3103 
3104 		/* fail any reads if this device is non-operational and
3105 		 * the data has not reached the cache yet.
3106 		 */
3107 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3108 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3109 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3110 			spin_lock_irq(&sh->stripe_lock);
3111 			bi = sh->dev[i].toread;
3112 			sh->dev[i].toread = NULL;
3113 			spin_unlock_irq(&sh->stripe_lock);
3114 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3115 				wake_up(&conf->wait_for_overlap);
3116 			while (bi && bi->bi_iter.bi_sector <
3117 			       sh->dev[i].sector + STRIPE_SECTORS) {
3118 				struct bio *nextbi =
3119 					r5_next_bio(bi, sh->dev[i].sector);
3120 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
3121 				if (!raid5_dec_bi_active_stripes(bi)) {
3122 					bi->bi_next = *return_bi;
3123 					*return_bi = bi;
3124 				}
3125 				bi = nextbi;
3126 			}
3127 		}
3128 		if (bitmap_end)
3129 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3130 					STRIPE_SECTORS, 0, 0);
3131 		/* If we were in the middle of a write the parity block might
3132 		 * still be locked - so just clear all R5_LOCKED flags
3133 		 */
3134 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3135 	}
3136 
3137 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3138 		if (atomic_dec_and_test(&conf->pending_full_writes))
3139 			md_wakeup_thread(conf->mddev->thread);
3140 }
3141 
3142 static void
3143 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3144 		   struct stripe_head_state *s)
3145 {
3146 	int abort = 0;
3147 	int i;
3148 
3149 	BUG_ON(sh->batch_head);
3150 	clear_bit(STRIPE_SYNCING, &sh->state);
3151 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3152 		wake_up(&conf->wait_for_overlap);
3153 	s->syncing = 0;
3154 	s->replacing = 0;
3155 	/* There is nothing more to do for sync/check/repair.
3156 	 * Don't even need to abort as that is handled elsewhere
3157 	 * if needed, and not always wanted e.g. if there is a known
3158 	 * bad block here.
3159 	 * For recover/replace we need to record a bad block on all
3160 	 * non-sync devices, or abort the recovery
3161 	 */
3162 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3163 		/* During recovery devices cannot be removed, so
3164 		 * locking and refcounting of rdevs is not needed
3165 		 */
3166 		for (i = 0; i < conf->raid_disks; i++) {
3167 			struct md_rdev *rdev = conf->disks[i].rdev;
3168 			if (rdev
3169 			    && !test_bit(Faulty, &rdev->flags)
3170 			    && !test_bit(In_sync, &rdev->flags)
3171 			    && !rdev_set_badblocks(rdev, sh->sector,
3172 						   STRIPE_SECTORS, 0))
3173 				abort = 1;
3174 			rdev = conf->disks[i].replacement;
3175 			if (rdev
3176 			    && !test_bit(Faulty, &rdev->flags)
3177 			    && !test_bit(In_sync, &rdev->flags)
3178 			    && !rdev_set_badblocks(rdev, sh->sector,
3179 						   STRIPE_SECTORS, 0))
3180 				abort = 1;
3181 		}
3182 		if (abort)
3183 			conf->recovery_disabled =
3184 				conf->mddev->recovery_disabled;
3185 	}
3186 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3187 }
3188 
3189 static int want_replace(struct stripe_head *sh, int disk_idx)
3190 {
3191 	struct md_rdev *rdev;
3192 	int rv = 0;
3193 	/* Doing recovery so rcu locking not required */
3194 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3195 	if (rdev
3196 	    && !test_bit(Faulty, &rdev->flags)
3197 	    && !test_bit(In_sync, &rdev->flags)
3198 	    && (rdev->recovery_offset <= sh->sector
3199 		|| rdev->mddev->recovery_cp <= sh->sector))
3200 		rv = 1;
3201 
3202 	return rv;
3203 }
3204 
3205 /* fetch_block - checks the given member device to see if its data needs
3206  * to be read or computed to satisfy a request.
3207  *
3208  * Returns 1 when no more member devices need to be checked, otherwise returns
3209  * 0 to tell the loop in handle_stripe_fill to continue
3210  */
3211 
3212 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3213 			   int disk_idx, int disks)
3214 {
3215 	struct r5dev *dev = &sh->dev[disk_idx];
3216 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3217 				  &sh->dev[s->failed_num[1]] };
3218 	int i;
3219 
3220 
3221 	if (test_bit(R5_LOCKED, &dev->flags) ||
3222 	    test_bit(R5_UPTODATE, &dev->flags))
3223 		/* No point reading this as we already have it or have
3224 		 * decided to get it.
3225 		 */
3226 		return 0;
3227 
3228 	if (dev->toread ||
3229 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3230 		/* We need this block to directly satisfy a request */
3231 		return 1;
3232 
3233 	if (s->syncing || s->expanding ||
3234 	    (s->replacing && want_replace(sh, disk_idx)))
3235 		/* When syncing, or expanding we read everything.
3236 		 * When replacing, we need the replaced block.
3237 		 */
3238 		return 1;
3239 
3240 	if ((s->failed >= 1 && fdev[0]->toread) ||
3241 	    (s->failed >= 2 && fdev[1]->toread))
3242 		/* If we want to read from a failed device, then
3243 		 * we need to actually read every other device.
3244 		 */
3245 		return 1;
3246 
3247 	/* Sometimes neither read-modify-write nor reconstruct-write
3248 	 * cycles can work.  In those cases we read every block we
3249 	 * can.  Then the parity-update is certain to have enough to
3250 	 * work with.
3251 	 * This can only be a problem when we need to write something,
3252 	 * and some device has failed.  If either of those tests
3253 	 * fail we need look no further.
3254 	 */
3255 	if (!s->failed || !s->to_write)
3256 		return 0;
3257 
3258 	if (test_bit(R5_Insync, &dev->flags) &&
3259 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3260 		/* Pre-reads at not permitted until after short delay
3261 		 * to gather multiple requests.  However if this
3262 		 * device is no Insync, the block could only be be computed
3263 		 * and there is no need to delay that.
3264 		 */
3265 		return 0;
3266 
3267 	for (i = 0; i < s->failed; i++) {
3268 		if (fdev[i]->towrite &&
3269 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3270 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3271 			/* If we have a partial write to a failed
3272 			 * device, then we will need to reconstruct
3273 			 * the content of that device, so all other
3274 			 * devices must be read.
3275 			 */
3276 			return 1;
3277 	}
3278 
3279 	/* If we are forced to do a reconstruct-write, either because
3280 	 * the current RAID6 implementation only supports that, or
3281 	 * or because parity cannot be trusted and we are currently
3282 	 * recovering it, there is extra need to be careful.
3283 	 * If one of the devices that we would need to read, because
3284 	 * it is not being overwritten (and maybe not written at all)
3285 	 * is missing/faulty, then we need to read everything we can.
3286 	 */
3287 	if (sh->raid_conf->level != 6 &&
3288 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3289 		/* reconstruct-write isn't being forced */
3290 		return 0;
3291 	for (i = 0; i < s->failed; i++) {
3292 		if (s->failed_num[i] != sh->pd_idx &&
3293 		    s->failed_num[i] != sh->qd_idx &&
3294 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3295 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3296 			return 1;
3297 	}
3298 
3299 	return 0;
3300 }
3301 
3302 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3303 		       int disk_idx, int disks)
3304 {
3305 	struct r5dev *dev = &sh->dev[disk_idx];
3306 
3307 	/* is the data in this block needed, and can we get it? */
3308 	if (need_this_block(sh, s, disk_idx, disks)) {
3309 		/* we would like to get this block, possibly by computing it,
3310 		 * otherwise read it if the backing disk is insync
3311 		 */
3312 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3313 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3314 		BUG_ON(sh->batch_head);
3315 		if ((s->uptodate == disks - 1) &&
3316 		    (s->failed && (disk_idx == s->failed_num[0] ||
3317 				   disk_idx == s->failed_num[1]))) {
3318 			/* have disk failed, and we're requested to fetch it;
3319 			 * do compute it
3320 			 */
3321 			pr_debug("Computing stripe %llu block %d\n",
3322 			       (unsigned long long)sh->sector, disk_idx);
3323 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3324 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3325 			set_bit(R5_Wantcompute, &dev->flags);
3326 			sh->ops.target = disk_idx;
3327 			sh->ops.target2 = -1; /* no 2nd target */
3328 			s->req_compute = 1;
3329 			/* Careful: from this point on 'uptodate' is in the eye
3330 			 * of raid_run_ops which services 'compute' operations
3331 			 * before writes. R5_Wantcompute flags a block that will
3332 			 * be R5_UPTODATE by the time it is needed for a
3333 			 * subsequent operation.
3334 			 */
3335 			s->uptodate++;
3336 			return 1;
3337 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3338 			/* Computing 2-failure is *very* expensive; only
3339 			 * do it if failed >= 2
3340 			 */
3341 			int other;
3342 			for (other = disks; other--; ) {
3343 				if (other == disk_idx)
3344 					continue;
3345 				if (!test_bit(R5_UPTODATE,
3346 				      &sh->dev[other].flags))
3347 					break;
3348 			}
3349 			BUG_ON(other < 0);
3350 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3351 			       (unsigned long long)sh->sector,
3352 			       disk_idx, other);
3353 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3354 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3355 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3356 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3357 			sh->ops.target = disk_idx;
3358 			sh->ops.target2 = other;
3359 			s->uptodate += 2;
3360 			s->req_compute = 1;
3361 			return 1;
3362 		} else if (test_bit(R5_Insync, &dev->flags)) {
3363 			set_bit(R5_LOCKED, &dev->flags);
3364 			set_bit(R5_Wantread, &dev->flags);
3365 			s->locked++;
3366 			pr_debug("Reading block %d (sync=%d)\n",
3367 				disk_idx, s->syncing);
3368 		}
3369 	}
3370 
3371 	return 0;
3372 }
3373 
3374 /**
3375  * handle_stripe_fill - read or compute data to satisfy pending requests.
3376  */
3377 static void handle_stripe_fill(struct stripe_head *sh,
3378 			       struct stripe_head_state *s,
3379 			       int disks)
3380 {
3381 	int i;
3382 
3383 	/* look for blocks to read/compute, skip this if a compute
3384 	 * is already in flight, or if the stripe contents are in the
3385 	 * midst of changing due to a write
3386 	 */
3387 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3388 	    !sh->reconstruct_state)
3389 		for (i = disks; i--; )
3390 			if (fetch_block(sh, s, i, disks))
3391 				break;
3392 	set_bit(STRIPE_HANDLE, &sh->state);
3393 }
3394 
3395 /* handle_stripe_clean_event
3396  * any written block on an uptodate or failed drive can be returned.
3397  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3398  * never LOCKED, so we don't need to test 'failed' directly.
3399  */
3400 static void handle_stripe_clean_event(struct r5conf *conf,
3401 	struct stripe_head *sh, int disks, struct bio **return_bi)
3402 {
3403 	int i;
3404 	struct r5dev *dev;
3405 	int discard_pending = 0;
3406 	struct stripe_head *head_sh = sh;
3407 	bool do_endio = false;
3408 	int wakeup_nr = 0;
3409 
3410 	for (i = disks; i--; )
3411 		if (sh->dev[i].written) {
3412 			dev = &sh->dev[i];
3413 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3414 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3415 			     test_bit(R5_Discard, &dev->flags) ||
3416 			     test_bit(R5_SkipCopy, &dev->flags))) {
3417 				/* We can return any write requests */
3418 				struct bio *wbi, *wbi2;
3419 				pr_debug("Return write for disc %d\n", i);
3420 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3421 					clear_bit(R5_UPTODATE, &dev->flags);
3422 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3423 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3424 				}
3425 				do_endio = true;
3426 
3427 returnbi:
3428 				dev->page = dev->orig_page;
3429 				wbi = dev->written;
3430 				dev->written = NULL;
3431 				while (wbi && wbi->bi_iter.bi_sector <
3432 					dev->sector + STRIPE_SECTORS) {
3433 					wbi2 = r5_next_bio(wbi, dev->sector);
3434 					if (!raid5_dec_bi_active_stripes(wbi)) {
3435 						md_write_end(conf->mddev);
3436 						wbi->bi_next = *return_bi;
3437 						*return_bi = wbi;
3438 					}
3439 					wbi = wbi2;
3440 				}
3441 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3442 						STRIPE_SECTORS,
3443 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3444 						0);
3445 				if (head_sh->batch_head) {
3446 					sh = list_first_entry(&sh->batch_list,
3447 							      struct stripe_head,
3448 							      batch_list);
3449 					if (sh != head_sh) {
3450 						dev = &sh->dev[i];
3451 						goto returnbi;
3452 					}
3453 				}
3454 				sh = head_sh;
3455 				dev = &sh->dev[i];
3456 			} else if (test_bit(R5_Discard, &dev->flags))
3457 				discard_pending = 1;
3458 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3459 			WARN_ON(dev->page != dev->orig_page);
3460 		}
3461 	if (!discard_pending &&
3462 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3463 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3464 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3465 		if (sh->qd_idx >= 0) {
3466 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3467 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3468 		}
3469 		/* now that discard is done we can proceed with any sync */
3470 		clear_bit(STRIPE_DISCARD, &sh->state);
3471 		/*
3472 		 * SCSI discard will change some bio fields and the stripe has
3473 		 * no updated data, so remove it from hash list and the stripe
3474 		 * will be reinitialized
3475 		 */
3476 		spin_lock_irq(&conf->device_lock);
3477 unhash:
3478 		remove_hash(sh);
3479 		if (head_sh->batch_head) {
3480 			sh = list_first_entry(&sh->batch_list,
3481 					      struct stripe_head, batch_list);
3482 			if (sh != head_sh)
3483 					goto unhash;
3484 		}
3485 		spin_unlock_irq(&conf->device_lock);
3486 		sh = head_sh;
3487 
3488 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3489 			set_bit(STRIPE_HANDLE, &sh->state);
3490 
3491 	}
3492 
3493 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3494 		if (atomic_dec_and_test(&conf->pending_full_writes))
3495 			md_wakeup_thread(conf->mddev->thread);
3496 
3497 	if (!head_sh->batch_head || !do_endio)
3498 		return;
3499 	for (i = 0; i < head_sh->disks; i++) {
3500 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3501 			wakeup_nr++;
3502 	}
3503 	while (!list_empty(&head_sh->batch_list)) {
3504 		int i;
3505 		sh = list_first_entry(&head_sh->batch_list,
3506 				      struct stripe_head, batch_list);
3507 		list_del_init(&sh->batch_list);
3508 
3509 		set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3510 			      head_sh->state & ~((1 << STRIPE_ACTIVE) |
3511 						 (1 << STRIPE_PREREAD_ACTIVE) |
3512 						 STRIPE_EXPAND_SYNC_FLAG));
3513 		sh->check_state = head_sh->check_state;
3514 		sh->reconstruct_state = head_sh->reconstruct_state;
3515 		for (i = 0; i < sh->disks; i++) {
3516 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3517 				wakeup_nr++;
3518 			sh->dev[i].flags = head_sh->dev[i].flags;
3519 		}
3520 
3521 		spin_lock_irq(&sh->stripe_lock);
3522 		sh->batch_head = NULL;
3523 		spin_unlock_irq(&sh->stripe_lock);
3524 		if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3525 			set_bit(STRIPE_HANDLE, &sh->state);
3526 		release_stripe(sh);
3527 	}
3528 
3529 	spin_lock_irq(&head_sh->stripe_lock);
3530 	head_sh->batch_head = NULL;
3531 	spin_unlock_irq(&head_sh->stripe_lock);
3532 	wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3533 	if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3534 		set_bit(STRIPE_HANDLE, &head_sh->state);
3535 }
3536 
3537 static void handle_stripe_dirtying(struct r5conf *conf,
3538 				   struct stripe_head *sh,
3539 				   struct stripe_head_state *s,
3540 				   int disks)
3541 {
3542 	int rmw = 0, rcw = 0, i;
3543 	sector_t recovery_cp = conf->mddev->recovery_cp;
3544 
3545 	/* Check whether resync is now happening or should start.
3546 	 * If yes, then the array is dirty (after unclean shutdown or
3547 	 * initial creation), so parity in some stripes might be inconsistent.
3548 	 * In this case, we need to always do reconstruct-write, to ensure
3549 	 * that in case of drive failure or read-error correction, we
3550 	 * generate correct data from the parity.
3551 	 */
3552 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3553 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3554 	     s->failed == 0)) {
3555 		/* Calculate the real rcw later - for now make it
3556 		 * look like rcw is cheaper
3557 		 */
3558 		rcw = 1; rmw = 2;
3559 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3560 			 conf->rmw_level, (unsigned long long)recovery_cp,
3561 			 (unsigned long long)sh->sector);
3562 	} else for (i = disks; i--; ) {
3563 		/* would I have to read this buffer for read_modify_write */
3564 		struct r5dev *dev = &sh->dev[i];
3565 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3566 		    !test_bit(R5_LOCKED, &dev->flags) &&
3567 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3568 		      test_bit(R5_Wantcompute, &dev->flags))) {
3569 			if (test_bit(R5_Insync, &dev->flags))
3570 				rmw++;
3571 			else
3572 				rmw += 2*disks;  /* cannot read it */
3573 		}
3574 		/* Would I have to read this buffer for reconstruct_write */
3575 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3576 		    i != sh->pd_idx && i != sh->qd_idx &&
3577 		    !test_bit(R5_LOCKED, &dev->flags) &&
3578 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3579 		    test_bit(R5_Wantcompute, &dev->flags))) {
3580 			if (test_bit(R5_Insync, &dev->flags))
3581 				rcw++;
3582 			else
3583 				rcw += 2*disks;
3584 		}
3585 	}
3586 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3587 		(unsigned long long)sh->sector, rmw, rcw);
3588 	set_bit(STRIPE_HANDLE, &sh->state);
3589 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3590 		/* prefer read-modify-write, but need to get some data */
3591 		if (conf->mddev->queue)
3592 			blk_add_trace_msg(conf->mddev->queue,
3593 					  "raid5 rmw %llu %d",
3594 					  (unsigned long long)sh->sector, rmw);
3595 		for (i = disks; i--; ) {
3596 			struct r5dev *dev = &sh->dev[i];
3597 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3598 			    !test_bit(R5_LOCKED, &dev->flags) &&
3599 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3600 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3601 			    test_bit(R5_Insync, &dev->flags)) {
3602 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3603 					     &sh->state)) {
3604 					pr_debug("Read_old block %d for r-m-w\n",
3605 						 i);
3606 					set_bit(R5_LOCKED, &dev->flags);
3607 					set_bit(R5_Wantread, &dev->flags);
3608 					s->locked++;
3609 				} else {
3610 					set_bit(STRIPE_DELAYED, &sh->state);
3611 					set_bit(STRIPE_HANDLE, &sh->state);
3612 				}
3613 			}
3614 		}
3615 	}
3616 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3617 		/* want reconstruct write, but need to get some data */
3618 		int qread =0;
3619 		rcw = 0;
3620 		for (i = disks; i--; ) {
3621 			struct r5dev *dev = &sh->dev[i];
3622 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3623 			    i != sh->pd_idx && i != sh->qd_idx &&
3624 			    !test_bit(R5_LOCKED, &dev->flags) &&
3625 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3626 			      test_bit(R5_Wantcompute, &dev->flags))) {
3627 				rcw++;
3628 				if (test_bit(R5_Insync, &dev->flags) &&
3629 				    test_bit(STRIPE_PREREAD_ACTIVE,
3630 					     &sh->state)) {
3631 					pr_debug("Read_old block "
3632 						"%d for Reconstruct\n", i);
3633 					set_bit(R5_LOCKED, &dev->flags);
3634 					set_bit(R5_Wantread, &dev->flags);
3635 					s->locked++;
3636 					qread++;
3637 				} else {
3638 					set_bit(STRIPE_DELAYED, &sh->state);
3639 					set_bit(STRIPE_HANDLE, &sh->state);
3640 				}
3641 			}
3642 		}
3643 		if (rcw && conf->mddev->queue)
3644 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3645 					  (unsigned long long)sh->sector,
3646 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3647 	}
3648 
3649 	if (rcw > disks && rmw > disks &&
3650 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3651 		set_bit(STRIPE_DELAYED, &sh->state);
3652 
3653 	/* now if nothing is locked, and if we have enough data,
3654 	 * we can start a write request
3655 	 */
3656 	/* since handle_stripe can be called at any time we need to handle the
3657 	 * case where a compute block operation has been submitted and then a
3658 	 * subsequent call wants to start a write request.  raid_run_ops only
3659 	 * handles the case where compute block and reconstruct are requested
3660 	 * simultaneously.  If this is not the case then new writes need to be
3661 	 * held off until the compute completes.
3662 	 */
3663 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3664 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3665 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3666 		schedule_reconstruction(sh, s, rcw == 0, 0);
3667 }
3668 
3669 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3670 				struct stripe_head_state *s, int disks)
3671 {
3672 	struct r5dev *dev = NULL;
3673 
3674 	BUG_ON(sh->batch_head);
3675 	set_bit(STRIPE_HANDLE, &sh->state);
3676 
3677 	switch (sh->check_state) {
3678 	case check_state_idle:
3679 		/* start a new check operation if there are no failures */
3680 		if (s->failed == 0) {
3681 			BUG_ON(s->uptodate != disks);
3682 			sh->check_state = check_state_run;
3683 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3684 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3685 			s->uptodate--;
3686 			break;
3687 		}
3688 		dev = &sh->dev[s->failed_num[0]];
3689 		/* fall through */
3690 	case check_state_compute_result:
3691 		sh->check_state = check_state_idle;
3692 		if (!dev)
3693 			dev = &sh->dev[sh->pd_idx];
3694 
3695 		/* check that a write has not made the stripe insync */
3696 		if (test_bit(STRIPE_INSYNC, &sh->state))
3697 			break;
3698 
3699 		/* either failed parity check, or recovery is happening */
3700 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3701 		BUG_ON(s->uptodate != disks);
3702 
3703 		set_bit(R5_LOCKED, &dev->flags);
3704 		s->locked++;
3705 		set_bit(R5_Wantwrite, &dev->flags);
3706 
3707 		clear_bit(STRIPE_DEGRADED, &sh->state);
3708 		set_bit(STRIPE_INSYNC, &sh->state);
3709 		break;
3710 	case check_state_run:
3711 		break; /* we will be called again upon completion */
3712 	case check_state_check_result:
3713 		sh->check_state = check_state_idle;
3714 
3715 		/* if a failure occurred during the check operation, leave
3716 		 * STRIPE_INSYNC not set and let the stripe be handled again
3717 		 */
3718 		if (s->failed)
3719 			break;
3720 
3721 		/* handle a successful check operation, if parity is correct
3722 		 * we are done.  Otherwise update the mismatch count and repair
3723 		 * parity if !MD_RECOVERY_CHECK
3724 		 */
3725 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3726 			/* parity is correct (on disc,
3727 			 * not in buffer any more)
3728 			 */
3729 			set_bit(STRIPE_INSYNC, &sh->state);
3730 		else {
3731 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3732 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3733 				/* don't try to repair!! */
3734 				set_bit(STRIPE_INSYNC, &sh->state);
3735 			else {
3736 				sh->check_state = check_state_compute_run;
3737 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3738 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3739 				set_bit(R5_Wantcompute,
3740 					&sh->dev[sh->pd_idx].flags);
3741 				sh->ops.target = sh->pd_idx;
3742 				sh->ops.target2 = -1;
3743 				s->uptodate++;
3744 			}
3745 		}
3746 		break;
3747 	case check_state_compute_run:
3748 		break;
3749 	default:
3750 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3751 		       __func__, sh->check_state,
3752 		       (unsigned long long) sh->sector);
3753 		BUG();
3754 	}
3755 }
3756 
3757 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3758 				  struct stripe_head_state *s,
3759 				  int disks)
3760 {
3761 	int pd_idx = sh->pd_idx;
3762 	int qd_idx = sh->qd_idx;
3763 	struct r5dev *dev;
3764 
3765 	BUG_ON(sh->batch_head);
3766 	set_bit(STRIPE_HANDLE, &sh->state);
3767 
3768 	BUG_ON(s->failed > 2);
3769 
3770 	/* Want to check and possibly repair P and Q.
3771 	 * However there could be one 'failed' device, in which
3772 	 * case we can only check one of them, possibly using the
3773 	 * other to generate missing data
3774 	 */
3775 
3776 	switch (sh->check_state) {
3777 	case check_state_idle:
3778 		/* start a new check operation if there are < 2 failures */
3779 		if (s->failed == s->q_failed) {
3780 			/* The only possible failed device holds Q, so it
3781 			 * makes sense to check P (If anything else were failed,
3782 			 * we would have used P to recreate it).
3783 			 */
3784 			sh->check_state = check_state_run;
3785 		}
3786 		if (!s->q_failed && s->failed < 2) {
3787 			/* Q is not failed, and we didn't use it to generate
3788 			 * anything, so it makes sense to check it
3789 			 */
3790 			if (sh->check_state == check_state_run)
3791 				sh->check_state = check_state_run_pq;
3792 			else
3793 				sh->check_state = check_state_run_q;
3794 		}
3795 
3796 		/* discard potentially stale zero_sum_result */
3797 		sh->ops.zero_sum_result = 0;
3798 
3799 		if (sh->check_state == check_state_run) {
3800 			/* async_xor_zero_sum destroys the contents of P */
3801 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3802 			s->uptodate--;
3803 		}
3804 		if (sh->check_state >= check_state_run &&
3805 		    sh->check_state <= check_state_run_pq) {
3806 			/* async_syndrome_zero_sum preserves P and Q, so
3807 			 * no need to mark them !uptodate here
3808 			 */
3809 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3810 			break;
3811 		}
3812 
3813 		/* we have 2-disk failure */
3814 		BUG_ON(s->failed != 2);
3815 		/* fall through */
3816 	case check_state_compute_result:
3817 		sh->check_state = check_state_idle;
3818 
3819 		/* check that a write has not made the stripe insync */
3820 		if (test_bit(STRIPE_INSYNC, &sh->state))
3821 			break;
3822 
3823 		/* now write out any block on a failed drive,
3824 		 * or P or Q if they were recomputed
3825 		 */
3826 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3827 		if (s->failed == 2) {
3828 			dev = &sh->dev[s->failed_num[1]];
3829 			s->locked++;
3830 			set_bit(R5_LOCKED, &dev->flags);
3831 			set_bit(R5_Wantwrite, &dev->flags);
3832 		}
3833 		if (s->failed >= 1) {
3834 			dev = &sh->dev[s->failed_num[0]];
3835 			s->locked++;
3836 			set_bit(R5_LOCKED, &dev->flags);
3837 			set_bit(R5_Wantwrite, &dev->flags);
3838 		}
3839 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3840 			dev = &sh->dev[pd_idx];
3841 			s->locked++;
3842 			set_bit(R5_LOCKED, &dev->flags);
3843 			set_bit(R5_Wantwrite, &dev->flags);
3844 		}
3845 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3846 			dev = &sh->dev[qd_idx];
3847 			s->locked++;
3848 			set_bit(R5_LOCKED, &dev->flags);
3849 			set_bit(R5_Wantwrite, &dev->flags);
3850 		}
3851 		clear_bit(STRIPE_DEGRADED, &sh->state);
3852 
3853 		set_bit(STRIPE_INSYNC, &sh->state);
3854 		break;
3855 	case check_state_run:
3856 	case check_state_run_q:
3857 	case check_state_run_pq:
3858 		break; /* we will be called again upon completion */
3859 	case check_state_check_result:
3860 		sh->check_state = check_state_idle;
3861 
3862 		/* handle a successful check operation, if parity is correct
3863 		 * we are done.  Otherwise update the mismatch count and repair
3864 		 * parity if !MD_RECOVERY_CHECK
3865 		 */
3866 		if (sh->ops.zero_sum_result == 0) {
3867 			/* both parities are correct */
3868 			if (!s->failed)
3869 				set_bit(STRIPE_INSYNC, &sh->state);
3870 			else {
3871 				/* in contrast to the raid5 case we can validate
3872 				 * parity, but still have a failure to write
3873 				 * back
3874 				 */
3875 				sh->check_state = check_state_compute_result;
3876 				/* Returning at this point means that we may go
3877 				 * off and bring p and/or q uptodate again so
3878 				 * we make sure to check zero_sum_result again
3879 				 * to verify if p or q need writeback
3880 				 */
3881 			}
3882 		} else {
3883 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3884 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3885 				/* don't try to repair!! */
3886 				set_bit(STRIPE_INSYNC, &sh->state);
3887 			else {
3888 				int *target = &sh->ops.target;
3889 
3890 				sh->ops.target = -1;
3891 				sh->ops.target2 = -1;
3892 				sh->check_state = check_state_compute_run;
3893 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3894 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3895 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3896 					set_bit(R5_Wantcompute,
3897 						&sh->dev[pd_idx].flags);
3898 					*target = pd_idx;
3899 					target = &sh->ops.target2;
3900 					s->uptodate++;
3901 				}
3902 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3903 					set_bit(R5_Wantcompute,
3904 						&sh->dev[qd_idx].flags);
3905 					*target = qd_idx;
3906 					s->uptodate++;
3907 				}
3908 			}
3909 		}
3910 		break;
3911 	case check_state_compute_run:
3912 		break;
3913 	default:
3914 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3915 		       __func__, sh->check_state,
3916 		       (unsigned long long) sh->sector);
3917 		BUG();
3918 	}
3919 }
3920 
3921 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3922 {
3923 	int i;
3924 
3925 	/* We have read all the blocks in this stripe and now we need to
3926 	 * copy some of them into a target stripe for expand.
3927 	 */
3928 	struct dma_async_tx_descriptor *tx = NULL;
3929 	BUG_ON(sh->batch_head);
3930 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3931 	for (i = 0; i < sh->disks; i++)
3932 		if (i != sh->pd_idx && i != sh->qd_idx) {
3933 			int dd_idx, j;
3934 			struct stripe_head *sh2;
3935 			struct async_submit_ctl submit;
3936 
3937 			sector_t bn = compute_blocknr(sh, i, 1);
3938 			sector_t s = raid5_compute_sector(conf, bn, 0,
3939 							  &dd_idx, NULL);
3940 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3941 			if (sh2 == NULL)
3942 				/* so far only the early blocks of this stripe
3943 				 * have been requested.  When later blocks
3944 				 * get requested, we will try again
3945 				 */
3946 				continue;
3947 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3948 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3949 				/* must have already done this block */
3950 				release_stripe(sh2);
3951 				continue;
3952 			}
3953 
3954 			/* place all the copies on one channel */
3955 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3956 			tx = async_memcpy(sh2->dev[dd_idx].page,
3957 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3958 					  &submit);
3959 
3960 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3961 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3962 			for (j = 0; j < conf->raid_disks; j++)
3963 				if (j != sh2->pd_idx &&
3964 				    j != sh2->qd_idx &&
3965 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3966 					break;
3967 			if (j == conf->raid_disks) {
3968 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3969 				set_bit(STRIPE_HANDLE, &sh2->state);
3970 			}
3971 			release_stripe(sh2);
3972 
3973 		}
3974 	/* done submitting copies, wait for them to complete */
3975 	async_tx_quiesce(&tx);
3976 }
3977 
3978 /*
3979  * handle_stripe - do things to a stripe.
3980  *
3981  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3982  * state of various bits to see what needs to be done.
3983  * Possible results:
3984  *    return some read requests which now have data
3985  *    return some write requests which are safely on storage
3986  *    schedule a read on some buffers
3987  *    schedule a write of some buffers
3988  *    return confirmation of parity correctness
3989  *
3990  */
3991 
3992 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3993 {
3994 	struct r5conf *conf = sh->raid_conf;
3995 	int disks = sh->disks;
3996 	struct r5dev *dev;
3997 	int i;
3998 	int do_recovery = 0;
3999 
4000 	memset(s, 0, sizeof(*s));
4001 
4002 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4003 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4004 	s->failed_num[0] = -1;
4005 	s->failed_num[1] = -1;
4006 
4007 	/* Now to look around and see what can be done */
4008 	rcu_read_lock();
4009 	for (i=disks; i--; ) {
4010 		struct md_rdev *rdev;
4011 		sector_t first_bad;
4012 		int bad_sectors;
4013 		int is_bad = 0;
4014 
4015 		dev = &sh->dev[i];
4016 
4017 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4018 			 i, dev->flags,
4019 			 dev->toread, dev->towrite, dev->written);
4020 		/* maybe we can reply to a read
4021 		 *
4022 		 * new wantfill requests are only permitted while
4023 		 * ops_complete_biofill is guaranteed to be inactive
4024 		 */
4025 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4026 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4027 			set_bit(R5_Wantfill, &dev->flags);
4028 
4029 		/* now count some things */
4030 		if (test_bit(R5_LOCKED, &dev->flags))
4031 			s->locked++;
4032 		if (test_bit(R5_UPTODATE, &dev->flags))
4033 			s->uptodate++;
4034 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4035 			s->compute++;
4036 			BUG_ON(s->compute > 2);
4037 		}
4038 
4039 		if (test_bit(R5_Wantfill, &dev->flags))
4040 			s->to_fill++;
4041 		else if (dev->toread)
4042 			s->to_read++;
4043 		if (dev->towrite) {
4044 			s->to_write++;
4045 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4046 				s->non_overwrite++;
4047 		}
4048 		if (dev->written)
4049 			s->written++;
4050 		/* Prefer to use the replacement for reads, but only
4051 		 * if it is recovered enough and has no bad blocks.
4052 		 */
4053 		rdev = rcu_dereference(conf->disks[i].replacement);
4054 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4055 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4056 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4057 				 &first_bad, &bad_sectors))
4058 			set_bit(R5_ReadRepl, &dev->flags);
4059 		else {
4060 			if (rdev)
4061 				set_bit(R5_NeedReplace, &dev->flags);
4062 			rdev = rcu_dereference(conf->disks[i].rdev);
4063 			clear_bit(R5_ReadRepl, &dev->flags);
4064 		}
4065 		if (rdev && test_bit(Faulty, &rdev->flags))
4066 			rdev = NULL;
4067 		if (rdev) {
4068 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4069 					     &first_bad, &bad_sectors);
4070 			if (s->blocked_rdev == NULL
4071 			    && (test_bit(Blocked, &rdev->flags)
4072 				|| is_bad < 0)) {
4073 				if (is_bad < 0)
4074 					set_bit(BlockedBadBlocks,
4075 						&rdev->flags);
4076 				s->blocked_rdev = rdev;
4077 				atomic_inc(&rdev->nr_pending);
4078 			}
4079 		}
4080 		clear_bit(R5_Insync, &dev->flags);
4081 		if (!rdev)
4082 			/* Not in-sync */;
4083 		else if (is_bad) {
4084 			/* also not in-sync */
4085 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4086 			    test_bit(R5_UPTODATE, &dev->flags)) {
4087 				/* treat as in-sync, but with a read error
4088 				 * which we can now try to correct
4089 				 */
4090 				set_bit(R5_Insync, &dev->flags);
4091 				set_bit(R5_ReadError, &dev->flags);
4092 			}
4093 		} else if (test_bit(In_sync, &rdev->flags))
4094 			set_bit(R5_Insync, &dev->flags);
4095 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4096 			/* in sync if before recovery_offset */
4097 			set_bit(R5_Insync, &dev->flags);
4098 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4099 			 test_bit(R5_Expanded, &dev->flags))
4100 			/* If we've reshaped into here, we assume it is Insync.
4101 			 * We will shortly update recovery_offset to make
4102 			 * it official.
4103 			 */
4104 			set_bit(R5_Insync, &dev->flags);
4105 
4106 		if (test_bit(R5_WriteError, &dev->flags)) {
4107 			/* This flag does not apply to '.replacement'
4108 			 * only to .rdev, so make sure to check that*/
4109 			struct md_rdev *rdev2 = rcu_dereference(
4110 				conf->disks[i].rdev);
4111 			if (rdev2 == rdev)
4112 				clear_bit(R5_Insync, &dev->flags);
4113 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4114 				s->handle_bad_blocks = 1;
4115 				atomic_inc(&rdev2->nr_pending);
4116 			} else
4117 				clear_bit(R5_WriteError, &dev->flags);
4118 		}
4119 		if (test_bit(R5_MadeGood, &dev->flags)) {
4120 			/* This flag does not apply to '.replacement'
4121 			 * only to .rdev, so make sure to check that*/
4122 			struct md_rdev *rdev2 = rcu_dereference(
4123 				conf->disks[i].rdev);
4124 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4125 				s->handle_bad_blocks = 1;
4126 				atomic_inc(&rdev2->nr_pending);
4127 			} else
4128 				clear_bit(R5_MadeGood, &dev->flags);
4129 		}
4130 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4131 			struct md_rdev *rdev2 = rcu_dereference(
4132 				conf->disks[i].replacement);
4133 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4134 				s->handle_bad_blocks = 1;
4135 				atomic_inc(&rdev2->nr_pending);
4136 			} else
4137 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4138 		}
4139 		if (!test_bit(R5_Insync, &dev->flags)) {
4140 			/* The ReadError flag will just be confusing now */
4141 			clear_bit(R5_ReadError, &dev->flags);
4142 			clear_bit(R5_ReWrite, &dev->flags);
4143 		}
4144 		if (test_bit(R5_ReadError, &dev->flags))
4145 			clear_bit(R5_Insync, &dev->flags);
4146 		if (!test_bit(R5_Insync, &dev->flags)) {
4147 			if (s->failed < 2)
4148 				s->failed_num[s->failed] = i;
4149 			s->failed++;
4150 			if (rdev && !test_bit(Faulty, &rdev->flags))
4151 				do_recovery = 1;
4152 		}
4153 	}
4154 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4155 		/* If there is a failed device being replaced,
4156 		 *     we must be recovering.
4157 		 * else if we are after recovery_cp, we must be syncing
4158 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4159 		 * else we can only be replacing
4160 		 * sync and recovery both need to read all devices, and so
4161 		 * use the same flag.
4162 		 */
4163 		if (do_recovery ||
4164 		    sh->sector >= conf->mddev->recovery_cp ||
4165 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4166 			s->syncing = 1;
4167 		else
4168 			s->replacing = 1;
4169 	}
4170 	rcu_read_unlock();
4171 }
4172 
4173 static int clear_batch_ready(struct stripe_head *sh)
4174 {
4175 	struct stripe_head *tmp;
4176 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4177 		return 0;
4178 	spin_lock(&sh->stripe_lock);
4179 	if (!sh->batch_head) {
4180 		spin_unlock(&sh->stripe_lock);
4181 		return 0;
4182 	}
4183 
4184 	/*
4185 	 * this stripe could be added to a batch list before we check
4186 	 * BATCH_READY, skips it
4187 	 */
4188 	if (sh->batch_head != sh) {
4189 		spin_unlock(&sh->stripe_lock);
4190 		return 1;
4191 	}
4192 	spin_lock(&sh->batch_lock);
4193 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4194 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4195 	spin_unlock(&sh->batch_lock);
4196 	spin_unlock(&sh->stripe_lock);
4197 
4198 	/*
4199 	 * BATCH_READY is cleared, no new stripes can be added.
4200 	 * batch_list can be accessed without lock
4201 	 */
4202 	return 0;
4203 }
4204 
4205 static void check_break_stripe_batch_list(struct stripe_head *sh)
4206 {
4207 	struct stripe_head *head_sh, *next;
4208 	int i;
4209 
4210 	if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4211 		return;
4212 
4213 	head_sh = sh;
4214 
4215 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4216 
4217 		list_del_init(&sh->batch_list);
4218 
4219 		set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4220 			      head_sh->state & ~((1 << STRIPE_ACTIVE) |
4221 						 (1 << STRIPE_PREREAD_ACTIVE) |
4222 						 (1 << STRIPE_DEGRADED) |
4223 						 STRIPE_EXPAND_SYNC_FLAG));
4224 		sh->check_state = head_sh->check_state;
4225 		sh->reconstruct_state = head_sh->reconstruct_state;
4226 		for (i = 0; i < sh->disks; i++)
4227 			sh->dev[i].flags = head_sh->dev[i].flags &
4228 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4229 
4230 		spin_lock_irq(&sh->stripe_lock);
4231 		sh->batch_head = NULL;
4232 		spin_unlock_irq(&sh->stripe_lock);
4233 
4234 		set_bit(STRIPE_HANDLE, &sh->state);
4235 		release_stripe(sh);
4236 	}
4237 }
4238 
4239 static void handle_stripe(struct stripe_head *sh)
4240 {
4241 	struct stripe_head_state s;
4242 	struct r5conf *conf = sh->raid_conf;
4243 	int i;
4244 	int prexor;
4245 	int disks = sh->disks;
4246 	struct r5dev *pdev, *qdev;
4247 
4248 	clear_bit(STRIPE_HANDLE, &sh->state);
4249 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4250 		/* already being handled, ensure it gets handled
4251 		 * again when current action finishes */
4252 		set_bit(STRIPE_HANDLE, &sh->state);
4253 		return;
4254 	}
4255 
4256 	if (clear_batch_ready(sh) ) {
4257 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4258 		return;
4259 	}
4260 
4261 	check_break_stripe_batch_list(sh);
4262 
4263 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4264 		spin_lock(&sh->stripe_lock);
4265 		/* Cannot process 'sync' concurrently with 'discard' */
4266 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4267 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4268 			set_bit(STRIPE_SYNCING, &sh->state);
4269 			clear_bit(STRIPE_INSYNC, &sh->state);
4270 			clear_bit(STRIPE_REPLACED, &sh->state);
4271 		}
4272 		spin_unlock(&sh->stripe_lock);
4273 	}
4274 	clear_bit(STRIPE_DELAYED, &sh->state);
4275 
4276 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4277 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4278 	       (unsigned long long)sh->sector, sh->state,
4279 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4280 	       sh->check_state, sh->reconstruct_state);
4281 
4282 	analyse_stripe(sh, &s);
4283 
4284 	if (s.handle_bad_blocks) {
4285 		set_bit(STRIPE_HANDLE, &sh->state);
4286 		goto finish;
4287 	}
4288 
4289 	if (unlikely(s.blocked_rdev)) {
4290 		if (s.syncing || s.expanding || s.expanded ||
4291 		    s.replacing || s.to_write || s.written) {
4292 			set_bit(STRIPE_HANDLE, &sh->state);
4293 			goto finish;
4294 		}
4295 		/* There is nothing for the blocked_rdev to block */
4296 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4297 		s.blocked_rdev = NULL;
4298 	}
4299 
4300 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4301 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4302 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4303 	}
4304 
4305 	pr_debug("locked=%d uptodate=%d to_read=%d"
4306 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4307 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4308 	       s.failed_num[0], s.failed_num[1]);
4309 	/* check if the array has lost more than max_degraded devices and,
4310 	 * if so, some requests might need to be failed.
4311 	 */
4312 	if (s.failed > conf->max_degraded) {
4313 		sh->check_state = 0;
4314 		sh->reconstruct_state = 0;
4315 		if (s.to_read+s.to_write+s.written)
4316 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4317 		if (s.syncing + s.replacing)
4318 			handle_failed_sync(conf, sh, &s);
4319 	}
4320 
4321 	/* Now we check to see if any write operations have recently
4322 	 * completed
4323 	 */
4324 	prexor = 0;
4325 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4326 		prexor = 1;
4327 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4328 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4329 		sh->reconstruct_state = reconstruct_state_idle;
4330 
4331 		/* All the 'written' buffers and the parity block are ready to
4332 		 * be written back to disk
4333 		 */
4334 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4335 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4336 		BUG_ON(sh->qd_idx >= 0 &&
4337 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4338 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4339 		for (i = disks; i--; ) {
4340 			struct r5dev *dev = &sh->dev[i];
4341 			if (test_bit(R5_LOCKED, &dev->flags) &&
4342 				(i == sh->pd_idx || i == sh->qd_idx ||
4343 				 dev->written)) {
4344 				pr_debug("Writing block %d\n", i);
4345 				set_bit(R5_Wantwrite, &dev->flags);
4346 				if (prexor)
4347 					continue;
4348 				if (s.failed > 1)
4349 					continue;
4350 				if (!test_bit(R5_Insync, &dev->flags) ||
4351 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4352 				     s.failed == 0))
4353 					set_bit(STRIPE_INSYNC, &sh->state);
4354 			}
4355 		}
4356 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4357 			s.dec_preread_active = 1;
4358 	}
4359 
4360 	/*
4361 	 * might be able to return some write requests if the parity blocks
4362 	 * are safe, or on a failed drive
4363 	 */
4364 	pdev = &sh->dev[sh->pd_idx];
4365 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4366 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4367 	qdev = &sh->dev[sh->qd_idx];
4368 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4369 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4370 		|| conf->level < 6;
4371 
4372 	if (s.written &&
4373 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4374 			     && !test_bit(R5_LOCKED, &pdev->flags)
4375 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4376 				 test_bit(R5_Discard, &pdev->flags))))) &&
4377 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4378 			     && !test_bit(R5_LOCKED, &qdev->flags)
4379 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4380 				 test_bit(R5_Discard, &qdev->flags))))))
4381 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4382 
4383 	/* Now we might consider reading some blocks, either to check/generate
4384 	 * parity, or to satisfy requests
4385 	 * or to load a block that is being partially written.
4386 	 */
4387 	if (s.to_read || s.non_overwrite
4388 	    || (conf->level == 6 && s.to_write && s.failed)
4389 	    || (s.syncing && (s.uptodate + s.compute < disks))
4390 	    || s.replacing
4391 	    || s.expanding)
4392 		handle_stripe_fill(sh, &s, disks);
4393 
4394 	/* Now to consider new write requests and what else, if anything
4395 	 * should be read.  We do not handle new writes when:
4396 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4397 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4398 	 *    block.
4399 	 */
4400 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4401 		handle_stripe_dirtying(conf, sh, &s, disks);
4402 
4403 	/* maybe we need to check and possibly fix the parity for this stripe
4404 	 * Any reads will already have been scheduled, so we just see if enough
4405 	 * data is available.  The parity check is held off while parity
4406 	 * dependent operations are in flight.
4407 	 */
4408 	if (sh->check_state ||
4409 	    (s.syncing && s.locked == 0 &&
4410 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4411 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4412 		if (conf->level == 6)
4413 			handle_parity_checks6(conf, sh, &s, disks);
4414 		else
4415 			handle_parity_checks5(conf, sh, &s, disks);
4416 	}
4417 
4418 	if ((s.replacing || s.syncing) && s.locked == 0
4419 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4420 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4421 		/* Write out to replacement devices where possible */
4422 		for (i = 0; i < conf->raid_disks; i++)
4423 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4424 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4425 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4426 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4427 				s.locked++;
4428 			}
4429 		if (s.replacing)
4430 			set_bit(STRIPE_INSYNC, &sh->state);
4431 		set_bit(STRIPE_REPLACED, &sh->state);
4432 	}
4433 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4434 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4435 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4436 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4437 		clear_bit(STRIPE_SYNCING, &sh->state);
4438 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4439 			wake_up(&conf->wait_for_overlap);
4440 	}
4441 
4442 	/* If the failed drives are just a ReadError, then we might need
4443 	 * to progress the repair/check process
4444 	 */
4445 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4446 		for (i = 0; i < s.failed; i++) {
4447 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4448 			if (test_bit(R5_ReadError, &dev->flags)
4449 			    && !test_bit(R5_LOCKED, &dev->flags)
4450 			    && test_bit(R5_UPTODATE, &dev->flags)
4451 				) {
4452 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4453 					set_bit(R5_Wantwrite, &dev->flags);
4454 					set_bit(R5_ReWrite, &dev->flags);
4455 					set_bit(R5_LOCKED, &dev->flags);
4456 					s.locked++;
4457 				} else {
4458 					/* let's read it back */
4459 					set_bit(R5_Wantread, &dev->flags);
4460 					set_bit(R5_LOCKED, &dev->flags);
4461 					s.locked++;
4462 				}
4463 			}
4464 		}
4465 
4466 	/* Finish reconstruct operations initiated by the expansion process */
4467 	if (sh->reconstruct_state == reconstruct_state_result) {
4468 		struct stripe_head *sh_src
4469 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
4470 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4471 			/* sh cannot be written until sh_src has been read.
4472 			 * so arrange for sh to be delayed a little
4473 			 */
4474 			set_bit(STRIPE_DELAYED, &sh->state);
4475 			set_bit(STRIPE_HANDLE, &sh->state);
4476 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4477 					      &sh_src->state))
4478 				atomic_inc(&conf->preread_active_stripes);
4479 			release_stripe(sh_src);
4480 			goto finish;
4481 		}
4482 		if (sh_src)
4483 			release_stripe(sh_src);
4484 
4485 		sh->reconstruct_state = reconstruct_state_idle;
4486 		clear_bit(STRIPE_EXPANDING, &sh->state);
4487 		for (i = conf->raid_disks; i--; ) {
4488 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4489 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4490 			s.locked++;
4491 		}
4492 	}
4493 
4494 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4495 	    !sh->reconstruct_state) {
4496 		/* Need to write out all blocks after computing parity */
4497 		sh->disks = conf->raid_disks;
4498 		stripe_set_idx(sh->sector, conf, 0, sh);
4499 		schedule_reconstruction(sh, &s, 1, 1);
4500 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4501 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4502 		atomic_dec(&conf->reshape_stripes);
4503 		wake_up(&conf->wait_for_overlap);
4504 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4505 	}
4506 
4507 	if (s.expanding && s.locked == 0 &&
4508 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4509 		handle_stripe_expansion(conf, sh);
4510 
4511 finish:
4512 	/* wait for this device to become unblocked */
4513 	if (unlikely(s.blocked_rdev)) {
4514 		if (conf->mddev->external)
4515 			md_wait_for_blocked_rdev(s.blocked_rdev,
4516 						 conf->mddev);
4517 		else
4518 			/* Internal metadata will immediately
4519 			 * be written by raid5d, so we don't
4520 			 * need to wait here.
4521 			 */
4522 			rdev_dec_pending(s.blocked_rdev,
4523 					 conf->mddev);
4524 	}
4525 
4526 	if (s.handle_bad_blocks)
4527 		for (i = disks; i--; ) {
4528 			struct md_rdev *rdev;
4529 			struct r5dev *dev = &sh->dev[i];
4530 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4531 				/* We own a safe reference to the rdev */
4532 				rdev = conf->disks[i].rdev;
4533 				if (!rdev_set_badblocks(rdev, sh->sector,
4534 							STRIPE_SECTORS, 0))
4535 					md_error(conf->mddev, rdev);
4536 				rdev_dec_pending(rdev, conf->mddev);
4537 			}
4538 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4539 				rdev = conf->disks[i].rdev;
4540 				rdev_clear_badblocks(rdev, sh->sector,
4541 						     STRIPE_SECTORS, 0);
4542 				rdev_dec_pending(rdev, conf->mddev);
4543 			}
4544 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4545 				rdev = conf->disks[i].replacement;
4546 				if (!rdev)
4547 					/* rdev have been moved down */
4548 					rdev = conf->disks[i].rdev;
4549 				rdev_clear_badblocks(rdev, sh->sector,
4550 						     STRIPE_SECTORS, 0);
4551 				rdev_dec_pending(rdev, conf->mddev);
4552 			}
4553 		}
4554 
4555 	if (s.ops_request)
4556 		raid_run_ops(sh, s.ops_request);
4557 
4558 	ops_run_io(sh, &s);
4559 
4560 	if (s.dec_preread_active) {
4561 		/* We delay this until after ops_run_io so that if make_request
4562 		 * is waiting on a flush, it won't continue until the writes
4563 		 * have actually been submitted.
4564 		 */
4565 		atomic_dec(&conf->preread_active_stripes);
4566 		if (atomic_read(&conf->preread_active_stripes) <
4567 		    IO_THRESHOLD)
4568 			md_wakeup_thread(conf->mddev->thread);
4569 	}
4570 
4571 	return_io(s.return_bi);
4572 
4573 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4574 }
4575 
4576 static void raid5_activate_delayed(struct r5conf *conf)
4577 {
4578 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4579 		while (!list_empty(&conf->delayed_list)) {
4580 			struct list_head *l = conf->delayed_list.next;
4581 			struct stripe_head *sh;
4582 			sh = list_entry(l, struct stripe_head, lru);
4583 			list_del_init(l);
4584 			clear_bit(STRIPE_DELAYED, &sh->state);
4585 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4586 				atomic_inc(&conf->preread_active_stripes);
4587 			list_add_tail(&sh->lru, &conf->hold_list);
4588 			raid5_wakeup_stripe_thread(sh);
4589 		}
4590 	}
4591 }
4592 
4593 static void activate_bit_delay(struct r5conf *conf,
4594 	struct list_head *temp_inactive_list)
4595 {
4596 	/* device_lock is held */
4597 	struct list_head head;
4598 	list_add(&head, &conf->bitmap_list);
4599 	list_del_init(&conf->bitmap_list);
4600 	while (!list_empty(&head)) {
4601 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4602 		int hash;
4603 		list_del_init(&sh->lru);
4604 		atomic_inc(&sh->count);
4605 		hash = sh->hash_lock_index;
4606 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4607 	}
4608 }
4609 
4610 static int raid5_congested(struct mddev *mddev, int bits)
4611 {
4612 	struct r5conf *conf = mddev->private;
4613 
4614 	/* No difference between reads and writes.  Just check
4615 	 * how busy the stripe_cache is
4616 	 */
4617 
4618 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4619 		return 1;
4620 	if (conf->quiesce)
4621 		return 1;
4622 	if (atomic_read(&conf->empty_inactive_list_nr))
4623 		return 1;
4624 
4625 	return 0;
4626 }
4627 
4628 /* We want read requests to align with chunks where possible,
4629  * but write requests don't need to.
4630  */
4631 static int raid5_mergeable_bvec(struct mddev *mddev,
4632 				struct bvec_merge_data *bvm,
4633 				struct bio_vec *biovec)
4634 {
4635 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4636 	int max;
4637 	unsigned int chunk_sectors = mddev->chunk_sectors;
4638 	unsigned int bio_sectors = bvm->bi_size >> 9;
4639 
4640 	/*
4641 	 * always allow writes to be mergeable, read as well if array
4642 	 * is degraded as we'll go through stripe cache anyway.
4643 	 */
4644 	if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4645 		return biovec->bv_len;
4646 
4647 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4648 		chunk_sectors = mddev->new_chunk_sectors;
4649 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4650 	if (max < 0) max = 0;
4651 	if (max <= biovec->bv_len && bio_sectors == 0)
4652 		return biovec->bv_len;
4653 	else
4654 		return max;
4655 }
4656 
4657 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4658 {
4659 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4660 	unsigned int chunk_sectors = mddev->chunk_sectors;
4661 	unsigned int bio_sectors = bio_sectors(bio);
4662 
4663 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4664 		chunk_sectors = mddev->new_chunk_sectors;
4665 	return  chunk_sectors >=
4666 		((sector & (chunk_sectors - 1)) + bio_sectors);
4667 }
4668 
4669 /*
4670  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4671  *  later sampled by raid5d.
4672  */
4673 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4674 {
4675 	unsigned long flags;
4676 
4677 	spin_lock_irqsave(&conf->device_lock, flags);
4678 
4679 	bi->bi_next = conf->retry_read_aligned_list;
4680 	conf->retry_read_aligned_list = bi;
4681 
4682 	spin_unlock_irqrestore(&conf->device_lock, flags);
4683 	md_wakeup_thread(conf->mddev->thread);
4684 }
4685 
4686 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4687 {
4688 	struct bio *bi;
4689 
4690 	bi = conf->retry_read_aligned;
4691 	if (bi) {
4692 		conf->retry_read_aligned = NULL;
4693 		return bi;
4694 	}
4695 	bi = conf->retry_read_aligned_list;
4696 	if(bi) {
4697 		conf->retry_read_aligned_list = bi->bi_next;
4698 		bi->bi_next = NULL;
4699 		/*
4700 		 * this sets the active strip count to 1 and the processed
4701 		 * strip count to zero (upper 8 bits)
4702 		 */
4703 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4704 	}
4705 
4706 	return bi;
4707 }
4708 
4709 /*
4710  *  The "raid5_align_endio" should check if the read succeeded and if it
4711  *  did, call bio_endio on the original bio (having bio_put the new bio
4712  *  first).
4713  *  If the read failed..
4714  */
4715 static void raid5_align_endio(struct bio *bi, int error)
4716 {
4717 	struct bio* raid_bi  = bi->bi_private;
4718 	struct mddev *mddev;
4719 	struct r5conf *conf;
4720 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4721 	struct md_rdev *rdev;
4722 
4723 	bio_put(bi);
4724 
4725 	rdev = (void*)raid_bi->bi_next;
4726 	raid_bi->bi_next = NULL;
4727 	mddev = rdev->mddev;
4728 	conf = mddev->private;
4729 
4730 	rdev_dec_pending(rdev, conf->mddev);
4731 
4732 	if (!error && uptodate) {
4733 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4734 					 raid_bi, 0);
4735 		bio_endio(raid_bi, 0);
4736 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4737 			wake_up(&conf->wait_for_stripe);
4738 		return;
4739 	}
4740 
4741 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4742 
4743 	add_bio_to_retry(raid_bi, conf);
4744 }
4745 
4746 static int bio_fits_rdev(struct bio *bi)
4747 {
4748 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4749 
4750 	if (bio_sectors(bi) > queue_max_sectors(q))
4751 		return 0;
4752 	blk_recount_segments(q, bi);
4753 	if (bi->bi_phys_segments > queue_max_segments(q))
4754 		return 0;
4755 
4756 	if (q->merge_bvec_fn)
4757 		/* it's too hard to apply the merge_bvec_fn at this stage,
4758 		 * just just give up
4759 		 */
4760 		return 0;
4761 
4762 	return 1;
4763 }
4764 
4765 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4766 {
4767 	struct r5conf *conf = mddev->private;
4768 	int dd_idx;
4769 	struct bio* align_bi;
4770 	struct md_rdev *rdev;
4771 	sector_t end_sector;
4772 
4773 	if (!in_chunk_boundary(mddev, raid_bio)) {
4774 		pr_debug("chunk_aligned_read : non aligned\n");
4775 		return 0;
4776 	}
4777 	/*
4778 	 * use bio_clone_mddev to make a copy of the bio
4779 	 */
4780 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4781 	if (!align_bi)
4782 		return 0;
4783 	/*
4784 	 *   set bi_end_io to a new function, and set bi_private to the
4785 	 *     original bio.
4786 	 */
4787 	align_bi->bi_end_io  = raid5_align_endio;
4788 	align_bi->bi_private = raid_bio;
4789 	/*
4790 	 *	compute position
4791 	 */
4792 	align_bi->bi_iter.bi_sector =
4793 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4794 				     0, &dd_idx, NULL);
4795 
4796 	end_sector = bio_end_sector(align_bi);
4797 	rcu_read_lock();
4798 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4799 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4800 	    rdev->recovery_offset < end_sector) {
4801 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4802 		if (rdev &&
4803 		    (test_bit(Faulty, &rdev->flags) ||
4804 		    !(test_bit(In_sync, &rdev->flags) ||
4805 		      rdev->recovery_offset >= end_sector)))
4806 			rdev = NULL;
4807 	}
4808 	if (rdev) {
4809 		sector_t first_bad;
4810 		int bad_sectors;
4811 
4812 		atomic_inc(&rdev->nr_pending);
4813 		rcu_read_unlock();
4814 		raid_bio->bi_next = (void*)rdev;
4815 		align_bi->bi_bdev =  rdev->bdev;
4816 		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4817 
4818 		if (!bio_fits_rdev(align_bi) ||
4819 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4820 				bio_sectors(align_bi),
4821 				&first_bad, &bad_sectors)) {
4822 			/* too big in some way, or has a known bad block */
4823 			bio_put(align_bi);
4824 			rdev_dec_pending(rdev, mddev);
4825 			return 0;
4826 		}
4827 
4828 		/* No reshape active, so we can trust rdev->data_offset */
4829 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4830 
4831 		spin_lock_irq(&conf->device_lock);
4832 		wait_event_lock_irq(conf->wait_for_stripe,
4833 				    conf->quiesce == 0,
4834 				    conf->device_lock);
4835 		atomic_inc(&conf->active_aligned_reads);
4836 		spin_unlock_irq(&conf->device_lock);
4837 
4838 		if (mddev->gendisk)
4839 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4840 					      align_bi, disk_devt(mddev->gendisk),
4841 					      raid_bio->bi_iter.bi_sector);
4842 		generic_make_request(align_bi);
4843 		return 1;
4844 	} else {
4845 		rcu_read_unlock();
4846 		bio_put(align_bi);
4847 		return 0;
4848 	}
4849 }
4850 
4851 /* __get_priority_stripe - get the next stripe to process
4852  *
4853  * Full stripe writes are allowed to pass preread active stripes up until
4854  * the bypass_threshold is exceeded.  In general the bypass_count
4855  * increments when the handle_list is handled before the hold_list; however, it
4856  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4857  * stripe with in flight i/o.  The bypass_count will be reset when the
4858  * head of the hold_list has changed, i.e. the head was promoted to the
4859  * handle_list.
4860  */
4861 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4862 {
4863 	struct stripe_head *sh = NULL, *tmp;
4864 	struct list_head *handle_list = NULL;
4865 	struct r5worker_group *wg = NULL;
4866 
4867 	if (conf->worker_cnt_per_group == 0) {
4868 		handle_list = &conf->handle_list;
4869 	} else if (group != ANY_GROUP) {
4870 		handle_list = &conf->worker_groups[group].handle_list;
4871 		wg = &conf->worker_groups[group];
4872 	} else {
4873 		int i;
4874 		for (i = 0; i < conf->group_cnt; i++) {
4875 			handle_list = &conf->worker_groups[i].handle_list;
4876 			wg = &conf->worker_groups[i];
4877 			if (!list_empty(handle_list))
4878 				break;
4879 		}
4880 	}
4881 
4882 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4883 		  __func__,
4884 		  list_empty(handle_list) ? "empty" : "busy",
4885 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4886 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4887 
4888 	if (!list_empty(handle_list)) {
4889 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4890 
4891 		if (list_empty(&conf->hold_list))
4892 			conf->bypass_count = 0;
4893 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4894 			if (conf->hold_list.next == conf->last_hold)
4895 				conf->bypass_count++;
4896 			else {
4897 				conf->last_hold = conf->hold_list.next;
4898 				conf->bypass_count -= conf->bypass_threshold;
4899 				if (conf->bypass_count < 0)
4900 					conf->bypass_count = 0;
4901 			}
4902 		}
4903 	} else if (!list_empty(&conf->hold_list) &&
4904 		   ((conf->bypass_threshold &&
4905 		     conf->bypass_count > conf->bypass_threshold) ||
4906 		    atomic_read(&conf->pending_full_writes) == 0)) {
4907 
4908 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4909 			if (conf->worker_cnt_per_group == 0 ||
4910 			    group == ANY_GROUP ||
4911 			    !cpu_online(tmp->cpu) ||
4912 			    cpu_to_group(tmp->cpu) == group) {
4913 				sh = tmp;
4914 				break;
4915 			}
4916 		}
4917 
4918 		if (sh) {
4919 			conf->bypass_count -= conf->bypass_threshold;
4920 			if (conf->bypass_count < 0)
4921 				conf->bypass_count = 0;
4922 		}
4923 		wg = NULL;
4924 	}
4925 
4926 	if (!sh)
4927 		return NULL;
4928 
4929 	if (wg) {
4930 		wg->stripes_cnt--;
4931 		sh->group = NULL;
4932 	}
4933 	list_del_init(&sh->lru);
4934 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4935 	return sh;
4936 }
4937 
4938 struct raid5_plug_cb {
4939 	struct blk_plug_cb	cb;
4940 	struct list_head	list;
4941 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4942 };
4943 
4944 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4945 {
4946 	struct raid5_plug_cb *cb = container_of(
4947 		blk_cb, struct raid5_plug_cb, cb);
4948 	struct stripe_head *sh;
4949 	struct mddev *mddev = cb->cb.data;
4950 	struct r5conf *conf = mddev->private;
4951 	int cnt = 0;
4952 	int hash;
4953 
4954 	if (cb->list.next && !list_empty(&cb->list)) {
4955 		spin_lock_irq(&conf->device_lock);
4956 		while (!list_empty(&cb->list)) {
4957 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4958 			list_del_init(&sh->lru);
4959 			/*
4960 			 * avoid race release_stripe_plug() sees
4961 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4962 			 * is still in our list
4963 			 */
4964 			smp_mb__before_atomic();
4965 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4966 			/*
4967 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4968 			 * case, the count is always > 1 here
4969 			 */
4970 			hash = sh->hash_lock_index;
4971 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4972 			cnt++;
4973 		}
4974 		spin_unlock_irq(&conf->device_lock);
4975 	}
4976 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4977 				     NR_STRIPE_HASH_LOCKS);
4978 	if (mddev->queue)
4979 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4980 	kfree(cb);
4981 }
4982 
4983 static void release_stripe_plug(struct mddev *mddev,
4984 				struct stripe_head *sh)
4985 {
4986 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4987 		raid5_unplug, mddev,
4988 		sizeof(struct raid5_plug_cb));
4989 	struct raid5_plug_cb *cb;
4990 
4991 	if (!blk_cb) {
4992 		release_stripe(sh);
4993 		return;
4994 	}
4995 
4996 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4997 
4998 	if (cb->list.next == NULL) {
4999 		int i;
5000 		INIT_LIST_HEAD(&cb->list);
5001 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5002 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5003 	}
5004 
5005 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5006 		list_add_tail(&sh->lru, &cb->list);
5007 	else
5008 		release_stripe(sh);
5009 }
5010 
5011 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5012 {
5013 	struct r5conf *conf = mddev->private;
5014 	sector_t logical_sector, last_sector;
5015 	struct stripe_head *sh;
5016 	int remaining;
5017 	int stripe_sectors;
5018 
5019 	if (mddev->reshape_position != MaxSector)
5020 		/* Skip discard while reshape is happening */
5021 		return;
5022 
5023 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5024 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5025 
5026 	bi->bi_next = NULL;
5027 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5028 
5029 	stripe_sectors = conf->chunk_sectors *
5030 		(conf->raid_disks - conf->max_degraded);
5031 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5032 					       stripe_sectors);
5033 	sector_div(last_sector, stripe_sectors);
5034 
5035 	logical_sector *= conf->chunk_sectors;
5036 	last_sector *= conf->chunk_sectors;
5037 
5038 	for (; logical_sector < last_sector;
5039 	     logical_sector += STRIPE_SECTORS) {
5040 		DEFINE_WAIT(w);
5041 		int d;
5042 	again:
5043 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5044 		prepare_to_wait(&conf->wait_for_overlap, &w,
5045 				TASK_UNINTERRUPTIBLE);
5046 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5047 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5048 			release_stripe(sh);
5049 			schedule();
5050 			goto again;
5051 		}
5052 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5053 		spin_lock_irq(&sh->stripe_lock);
5054 		for (d = 0; d < conf->raid_disks; d++) {
5055 			if (d == sh->pd_idx || d == sh->qd_idx)
5056 				continue;
5057 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5058 				set_bit(R5_Overlap, &sh->dev[d].flags);
5059 				spin_unlock_irq(&sh->stripe_lock);
5060 				release_stripe(sh);
5061 				schedule();
5062 				goto again;
5063 			}
5064 		}
5065 		set_bit(STRIPE_DISCARD, &sh->state);
5066 		finish_wait(&conf->wait_for_overlap, &w);
5067 		sh->overwrite_disks = 0;
5068 		for (d = 0; d < conf->raid_disks; d++) {
5069 			if (d == sh->pd_idx || d == sh->qd_idx)
5070 				continue;
5071 			sh->dev[d].towrite = bi;
5072 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5073 			raid5_inc_bi_active_stripes(bi);
5074 			sh->overwrite_disks++;
5075 		}
5076 		spin_unlock_irq(&sh->stripe_lock);
5077 		if (conf->mddev->bitmap) {
5078 			for (d = 0;
5079 			     d < conf->raid_disks - conf->max_degraded;
5080 			     d++)
5081 				bitmap_startwrite(mddev->bitmap,
5082 						  sh->sector,
5083 						  STRIPE_SECTORS,
5084 						  0);
5085 			sh->bm_seq = conf->seq_flush + 1;
5086 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5087 		}
5088 
5089 		set_bit(STRIPE_HANDLE, &sh->state);
5090 		clear_bit(STRIPE_DELAYED, &sh->state);
5091 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5092 			atomic_inc(&conf->preread_active_stripes);
5093 		release_stripe_plug(mddev, sh);
5094 	}
5095 
5096 	remaining = raid5_dec_bi_active_stripes(bi);
5097 	if (remaining == 0) {
5098 		md_write_end(mddev);
5099 		bio_endio(bi, 0);
5100 	}
5101 }
5102 
5103 static void make_request(struct mddev *mddev, struct bio * bi)
5104 {
5105 	struct r5conf *conf = mddev->private;
5106 	int dd_idx;
5107 	sector_t new_sector;
5108 	sector_t logical_sector, last_sector;
5109 	struct stripe_head *sh;
5110 	const int rw = bio_data_dir(bi);
5111 	int remaining;
5112 	DEFINE_WAIT(w);
5113 	bool do_prepare;
5114 
5115 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5116 		md_flush_request(mddev, bi);
5117 		return;
5118 	}
5119 
5120 	md_write_start(mddev, bi);
5121 
5122 	/*
5123 	 * If array is degraded, better not do chunk aligned read because
5124 	 * later we might have to read it again in order to reconstruct
5125 	 * data on failed drives.
5126 	 */
5127 	if (rw == READ && mddev->degraded == 0 &&
5128 	     mddev->reshape_position == MaxSector &&
5129 	     chunk_aligned_read(mddev,bi))
5130 		return;
5131 
5132 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5133 		make_discard_request(mddev, bi);
5134 		return;
5135 	}
5136 
5137 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5138 	last_sector = bio_end_sector(bi);
5139 	bi->bi_next = NULL;
5140 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5141 
5142 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5143 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5144 		int previous;
5145 		int seq;
5146 
5147 		do_prepare = false;
5148 	retry:
5149 		seq = read_seqcount_begin(&conf->gen_lock);
5150 		previous = 0;
5151 		if (do_prepare)
5152 			prepare_to_wait(&conf->wait_for_overlap, &w,
5153 				TASK_UNINTERRUPTIBLE);
5154 		if (unlikely(conf->reshape_progress != MaxSector)) {
5155 			/* spinlock is needed as reshape_progress may be
5156 			 * 64bit on a 32bit platform, and so it might be
5157 			 * possible to see a half-updated value
5158 			 * Of course reshape_progress could change after
5159 			 * the lock is dropped, so once we get a reference
5160 			 * to the stripe that we think it is, we will have
5161 			 * to check again.
5162 			 */
5163 			spin_lock_irq(&conf->device_lock);
5164 			if (mddev->reshape_backwards
5165 			    ? logical_sector < conf->reshape_progress
5166 			    : logical_sector >= conf->reshape_progress) {
5167 				previous = 1;
5168 			} else {
5169 				if (mddev->reshape_backwards
5170 				    ? logical_sector < conf->reshape_safe
5171 				    : logical_sector >= conf->reshape_safe) {
5172 					spin_unlock_irq(&conf->device_lock);
5173 					schedule();
5174 					do_prepare = true;
5175 					goto retry;
5176 				}
5177 			}
5178 			spin_unlock_irq(&conf->device_lock);
5179 		}
5180 
5181 		new_sector = raid5_compute_sector(conf, logical_sector,
5182 						  previous,
5183 						  &dd_idx, NULL);
5184 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5185 			(unsigned long long)new_sector,
5186 			(unsigned long long)logical_sector);
5187 
5188 		sh = get_active_stripe(conf, new_sector, previous,
5189 				       (bi->bi_rw&RWA_MASK), 0);
5190 		if (sh) {
5191 			if (unlikely(previous)) {
5192 				/* expansion might have moved on while waiting for a
5193 				 * stripe, so we must do the range check again.
5194 				 * Expansion could still move past after this
5195 				 * test, but as we are holding a reference to
5196 				 * 'sh', we know that if that happens,
5197 				 *  STRIPE_EXPANDING will get set and the expansion
5198 				 * won't proceed until we finish with the stripe.
5199 				 */
5200 				int must_retry = 0;
5201 				spin_lock_irq(&conf->device_lock);
5202 				if (mddev->reshape_backwards
5203 				    ? logical_sector >= conf->reshape_progress
5204 				    : logical_sector < conf->reshape_progress)
5205 					/* mismatch, need to try again */
5206 					must_retry = 1;
5207 				spin_unlock_irq(&conf->device_lock);
5208 				if (must_retry) {
5209 					release_stripe(sh);
5210 					schedule();
5211 					do_prepare = true;
5212 					goto retry;
5213 				}
5214 			}
5215 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5216 				/* Might have got the wrong stripe_head
5217 				 * by accident
5218 				 */
5219 				release_stripe(sh);
5220 				goto retry;
5221 			}
5222 
5223 			if (rw == WRITE &&
5224 			    logical_sector >= mddev->suspend_lo &&
5225 			    logical_sector < mddev->suspend_hi) {
5226 				release_stripe(sh);
5227 				/* As the suspend_* range is controlled by
5228 				 * userspace, we want an interruptible
5229 				 * wait.
5230 				 */
5231 				flush_signals(current);
5232 				prepare_to_wait(&conf->wait_for_overlap,
5233 						&w, TASK_INTERRUPTIBLE);
5234 				if (logical_sector >= mddev->suspend_lo &&
5235 				    logical_sector < mddev->suspend_hi) {
5236 					schedule();
5237 					do_prepare = true;
5238 				}
5239 				goto retry;
5240 			}
5241 
5242 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5243 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5244 				/* Stripe is busy expanding or
5245 				 * add failed due to overlap.  Flush everything
5246 				 * and wait a while
5247 				 */
5248 				md_wakeup_thread(mddev->thread);
5249 				release_stripe(sh);
5250 				schedule();
5251 				do_prepare = true;
5252 				goto retry;
5253 			}
5254 			set_bit(STRIPE_HANDLE, &sh->state);
5255 			clear_bit(STRIPE_DELAYED, &sh->state);
5256 			if ((!sh->batch_head || sh == sh->batch_head) &&
5257 			    (bi->bi_rw & REQ_SYNC) &&
5258 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5259 				atomic_inc(&conf->preread_active_stripes);
5260 			release_stripe_plug(mddev, sh);
5261 		} else {
5262 			/* cannot get stripe for read-ahead, just give-up */
5263 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
5264 			break;
5265 		}
5266 	}
5267 	finish_wait(&conf->wait_for_overlap, &w);
5268 
5269 	remaining = raid5_dec_bi_active_stripes(bi);
5270 	if (remaining == 0) {
5271 
5272 		if ( rw == WRITE )
5273 			md_write_end(mddev);
5274 
5275 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5276 					 bi, 0);
5277 		bio_endio(bi, 0);
5278 	}
5279 }
5280 
5281 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5282 
5283 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5284 {
5285 	/* reshaping is quite different to recovery/resync so it is
5286 	 * handled quite separately ... here.
5287 	 *
5288 	 * On each call to sync_request, we gather one chunk worth of
5289 	 * destination stripes and flag them as expanding.
5290 	 * Then we find all the source stripes and request reads.
5291 	 * As the reads complete, handle_stripe will copy the data
5292 	 * into the destination stripe and release that stripe.
5293 	 */
5294 	struct r5conf *conf = mddev->private;
5295 	struct stripe_head *sh;
5296 	sector_t first_sector, last_sector;
5297 	int raid_disks = conf->previous_raid_disks;
5298 	int data_disks = raid_disks - conf->max_degraded;
5299 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5300 	int i;
5301 	int dd_idx;
5302 	sector_t writepos, readpos, safepos;
5303 	sector_t stripe_addr;
5304 	int reshape_sectors;
5305 	struct list_head stripes;
5306 
5307 	if (sector_nr == 0) {
5308 		/* If restarting in the middle, skip the initial sectors */
5309 		if (mddev->reshape_backwards &&
5310 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5311 			sector_nr = raid5_size(mddev, 0, 0)
5312 				- conf->reshape_progress;
5313 		} else if (!mddev->reshape_backwards &&
5314 			   conf->reshape_progress > 0)
5315 			sector_nr = conf->reshape_progress;
5316 		sector_div(sector_nr, new_data_disks);
5317 		if (sector_nr) {
5318 			mddev->curr_resync_completed = sector_nr;
5319 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5320 			*skipped = 1;
5321 			return sector_nr;
5322 		}
5323 	}
5324 
5325 	/* We need to process a full chunk at a time.
5326 	 * If old and new chunk sizes differ, we need to process the
5327 	 * largest of these
5328 	 */
5329 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5330 		reshape_sectors = mddev->new_chunk_sectors;
5331 	else
5332 		reshape_sectors = mddev->chunk_sectors;
5333 
5334 	/* We update the metadata at least every 10 seconds, or when
5335 	 * the data about to be copied would over-write the source of
5336 	 * the data at the front of the range.  i.e. one new_stripe
5337 	 * along from reshape_progress new_maps to after where
5338 	 * reshape_safe old_maps to
5339 	 */
5340 	writepos = conf->reshape_progress;
5341 	sector_div(writepos, new_data_disks);
5342 	readpos = conf->reshape_progress;
5343 	sector_div(readpos, data_disks);
5344 	safepos = conf->reshape_safe;
5345 	sector_div(safepos, data_disks);
5346 	if (mddev->reshape_backwards) {
5347 		writepos -= min_t(sector_t, reshape_sectors, writepos);
5348 		readpos += reshape_sectors;
5349 		safepos += reshape_sectors;
5350 	} else {
5351 		writepos += reshape_sectors;
5352 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5353 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5354 	}
5355 
5356 	/* Having calculated the 'writepos' possibly use it
5357 	 * to set 'stripe_addr' which is where we will write to.
5358 	 */
5359 	if (mddev->reshape_backwards) {
5360 		BUG_ON(conf->reshape_progress == 0);
5361 		stripe_addr = writepos;
5362 		BUG_ON((mddev->dev_sectors &
5363 			~((sector_t)reshape_sectors - 1))
5364 		       - reshape_sectors - stripe_addr
5365 		       != sector_nr);
5366 	} else {
5367 		BUG_ON(writepos != sector_nr + reshape_sectors);
5368 		stripe_addr = sector_nr;
5369 	}
5370 
5371 	/* 'writepos' is the most advanced device address we might write.
5372 	 * 'readpos' is the least advanced device address we might read.
5373 	 * 'safepos' is the least address recorded in the metadata as having
5374 	 *     been reshaped.
5375 	 * If there is a min_offset_diff, these are adjusted either by
5376 	 * increasing the safepos/readpos if diff is negative, or
5377 	 * increasing writepos if diff is positive.
5378 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5379 	 * ensure safety in the face of a crash - that must be done by userspace
5380 	 * making a backup of the data.  So in that case there is no particular
5381 	 * rush to update metadata.
5382 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5383 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5384 	 * we can be safe in the event of a crash.
5385 	 * So we insist on updating metadata if safepos is behind writepos and
5386 	 * readpos is beyond writepos.
5387 	 * In any case, update the metadata every 10 seconds.
5388 	 * Maybe that number should be configurable, but I'm not sure it is
5389 	 * worth it.... maybe it could be a multiple of safemode_delay???
5390 	 */
5391 	if (conf->min_offset_diff < 0) {
5392 		safepos += -conf->min_offset_diff;
5393 		readpos += -conf->min_offset_diff;
5394 	} else
5395 		writepos += conf->min_offset_diff;
5396 
5397 	if ((mddev->reshape_backwards
5398 	     ? (safepos > writepos && readpos < writepos)
5399 	     : (safepos < writepos && readpos > writepos)) ||
5400 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5401 		/* Cannot proceed until we've updated the superblock... */
5402 		wait_event(conf->wait_for_overlap,
5403 			   atomic_read(&conf->reshape_stripes)==0
5404 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5405 		if (atomic_read(&conf->reshape_stripes) != 0)
5406 			return 0;
5407 		mddev->reshape_position = conf->reshape_progress;
5408 		mddev->curr_resync_completed = sector_nr;
5409 		conf->reshape_checkpoint = jiffies;
5410 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5411 		md_wakeup_thread(mddev->thread);
5412 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5413 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5414 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5415 			return 0;
5416 		spin_lock_irq(&conf->device_lock);
5417 		conf->reshape_safe = mddev->reshape_position;
5418 		spin_unlock_irq(&conf->device_lock);
5419 		wake_up(&conf->wait_for_overlap);
5420 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5421 	}
5422 
5423 	INIT_LIST_HEAD(&stripes);
5424 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5425 		int j;
5426 		int skipped_disk = 0;
5427 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5428 		set_bit(STRIPE_EXPANDING, &sh->state);
5429 		atomic_inc(&conf->reshape_stripes);
5430 		/* If any of this stripe is beyond the end of the old
5431 		 * array, then we need to zero those blocks
5432 		 */
5433 		for (j=sh->disks; j--;) {
5434 			sector_t s;
5435 			if (j == sh->pd_idx)
5436 				continue;
5437 			if (conf->level == 6 &&
5438 			    j == sh->qd_idx)
5439 				continue;
5440 			s = compute_blocknr(sh, j, 0);
5441 			if (s < raid5_size(mddev, 0, 0)) {
5442 				skipped_disk = 1;
5443 				continue;
5444 			}
5445 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5446 			set_bit(R5_Expanded, &sh->dev[j].flags);
5447 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5448 		}
5449 		if (!skipped_disk) {
5450 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5451 			set_bit(STRIPE_HANDLE, &sh->state);
5452 		}
5453 		list_add(&sh->lru, &stripes);
5454 	}
5455 	spin_lock_irq(&conf->device_lock);
5456 	if (mddev->reshape_backwards)
5457 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5458 	else
5459 		conf->reshape_progress += reshape_sectors * new_data_disks;
5460 	spin_unlock_irq(&conf->device_lock);
5461 	/* Ok, those stripe are ready. We can start scheduling
5462 	 * reads on the source stripes.
5463 	 * The source stripes are determined by mapping the first and last
5464 	 * block on the destination stripes.
5465 	 */
5466 	first_sector =
5467 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5468 				     1, &dd_idx, NULL);
5469 	last_sector =
5470 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5471 					    * new_data_disks - 1),
5472 				     1, &dd_idx, NULL);
5473 	if (last_sector >= mddev->dev_sectors)
5474 		last_sector = mddev->dev_sectors - 1;
5475 	while (first_sector <= last_sector) {
5476 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5477 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5478 		set_bit(STRIPE_HANDLE, &sh->state);
5479 		release_stripe(sh);
5480 		first_sector += STRIPE_SECTORS;
5481 	}
5482 	/* Now that the sources are clearly marked, we can release
5483 	 * the destination stripes
5484 	 */
5485 	while (!list_empty(&stripes)) {
5486 		sh = list_entry(stripes.next, struct stripe_head, lru);
5487 		list_del_init(&sh->lru);
5488 		release_stripe(sh);
5489 	}
5490 	/* If this takes us to the resync_max point where we have to pause,
5491 	 * then we need to write out the superblock.
5492 	 */
5493 	sector_nr += reshape_sectors;
5494 	if ((sector_nr - mddev->curr_resync_completed) * 2
5495 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5496 		/* Cannot proceed until we've updated the superblock... */
5497 		wait_event(conf->wait_for_overlap,
5498 			   atomic_read(&conf->reshape_stripes) == 0
5499 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5500 		if (atomic_read(&conf->reshape_stripes) != 0)
5501 			goto ret;
5502 		mddev->reshape_position = conf->reshape_progress;
5503 		mddev->curr_resync_completed = sector_nr;
5504 		conf->reshape_checkpoint = jiffies;
5505 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5506 		md_wakeup_thread(mddev->thread);
5507 		wait_event(mddev->sb_wait,
5508 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5509 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5510 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5511 			goto ret;
5512 		spin_lock_irq(&conf->device_lock);
5513 		conf->reshape_safe = mddev->reshape_position;
5514 		spin_unlock_irq(&conf->device_lock);
5515 		wake_up(&conf->wait_for_overlap);
5516 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5517 	}
5518 ret:
5519 	return reshape_sectors;
5520 }
5521 
5522 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5523 {
5524 	struct r5conf *conf = mddev->private;
5525 	struct stripe_head *sh;
5526 	sector_t max_sector = mddev->dev_sectors;
5527 	sector_t sync_blocks;
5528 	int still_degraded = 0;
5529 	int i;
5530 
5531 	if (sector_nr >= max_sector) {
5532 		/* just being told to finish up .. nothing much to do */
5533 
5534 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5535 			end_reshape(conf);
5536 			return 0;
5537 		}
5538 
5539 		if (mddev->curr_resync < max_sector) /* aborted */
5540 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5541 					&sync_blocks, 1);
5542 		else /* completed sync */
5543 			conf->fullsync = 0;
5544 		bitmap_close_sync(mddev->bitmap);
5545 
5546 		return 0;
5547 	}
5548 
5549 	/* Allow raid5_quiesce to complete */
5550 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5551 
5552 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5553 		return reshape_request(mddev, sector_nr, skipped);
5554 
5555 	/* No need to check resync_max as we never do more than one
5556 	 * stripe, and as resync_max will always be on a chunk boundary,
5557 	 * if the check in md_do_sync didn't fire, there is no chance
5558 	 * of overstepping resync_max here
5559 	 */
5560 
5561 	/* if there is too many failed drives and we are trying
5562 	 * to resync, then assert that we are finished, because there is
5563 	 * nothing we can do.
5564 	 */
5565 	if (mddev->degraded >= conf->max_degraded &&
5566 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5567 		sector_t rv = mddev->dev_sectors - sector_nr;
5568 		*skipped = 1;
5569 		return rv;
5570 	}
5571 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5572 	    !conf->fullsync &&
5573 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5574 	    sync_blocks >= STRIPE_SECTORS) {
5575 		/* we can skip this block, and probably more */
5576 		sync_blocks /= STRIPE_SECTORS;
5577 		*skipped = 1;
5578 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5579 	}
5580 
5581 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5582 
5583 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5584 	if (sh == NULL) {
5585 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5586 		/* make sure we don't swamp the stripe cache if someone else
5587 		 * is trying to get access
5588 		 */
5589 		schedule_timeout_uninterruptible(1);
5590 	}
5591 	/* Need to check if array will still be degraded after recovery/resync
5592 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5593 	 * one drive while leaving another faulty drive in array.
5594 	 */
5595 	rcu_read_lock();
5596 	for (i = 0; i < conf->raid_disks; i++) {
5597 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5598 
5599 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5600 			still_degraded = 1;
5601 	}
5602 	rcu_read_unlock();
5603 
5604 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5605 
5606 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5607 	set_bit(STRIPE_HANDLE, &sh->state);
5608 
5609 	release_stripe(sh);
5610 
5611 	return STRIPE_SECTORS;
5612 }
5613 
5614 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5615 {
5616 	/* We may not be able to submit a whole bio at once as there
5617 	 * may not be enough stripe_heads available.
5618 	 * We cannot pre-allocate enough stripe_heads as we may need
5619 	 * more than exist in the cache (if we allow ever large chunks).
5620 	 * So we do one stripe head at a time and record in
5621 	 * ->bi_hw_segments how many have been done.
5622 	 *
5623 	 * We *know* that this entire raid_bio is in one chunk, so
5624 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5625 	 */
5626 	struct stripe_head *sh;
5627 	int dd_idx;
5628 	sector_t sector, logical_sector, last_sector;
5629 	int scnt = 0;
5630 	int remaining;
5631 	int handled = 0;
5632 
5633 	logical_sector = raid_bio->bi_iter.bi_sector &
5634 		~((sector_t)STRIPE_SECTORS-1);
5635 	sector = raid5_compute_sector(conf, logical_sector,
5636 				      0, &dd_idx, NULL);
5637 	last_sector = bio_end_sector(raid_bio);
5638 
5639 	for (; logical_sector < last_sector;
5640 	     logical_sector += STRIPE_SECTORS,
5641 		     sector += STRIPE_SECTORS,
5642 		     scnt++) {
5643 
5644 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5645 			/* already done this stripe */
5646 			continue;
5647 
5648 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5649 
5650 		if (!sh) {
5651 			/* failed to get a stripe - must wait */
5652 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5653 			conf->retry_read_aligned = raid_bio;
5654 			return handled;
5655 		}
5656 
5657 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5658 			release_stripe(sh);
5659 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5660 			conf->retry_read_aligned = raid_bio;
5661 			return handled;
5662 		}
5663 
5664 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5665 		handle_stripe(sh);
5666 		release_stripe(sh);
5667 		handled++;
5668 	}
5669 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5670 	if (remaining == 0) {
5671 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5672 					 raid_bio, 0);
5673 		bio_endio(raid_bio, 0);
5674 	}
5675 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5676 		wake_up(&conf->wait_for_stripe);
5677 	return handled;
5678 }
5679 
5680 static int handle_active_stripes(struct r5conf *conf, int group,
5681 				 struct r5worker *worker,
5682 				 struct list_head *temp_inactive_list)
5683 {
5684 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5685 	int i, batch_size = 0, hash;
5686 	bool release_inactive = false;
5687 
5688 	while (batch_size < MAX_STRIPE_BATCH &&
5689 			(sh = __get_priority_stripe(conf, group)) != NULL)
5690 		batch[batch_size++] = sh;
5691 
5692 	if (batch_size == 0) {
5693 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5694 			if (!list_empty(temp_inactive_list + i))
5695 				break;
5696 		if (i == NR_STRIPE_HASH_LOCKS)
5697 			return batch_size;
5698 		release_inactive = true;
5699 	}
5700 	spin_unlock_irq(&conf->device_lock);
5701 
5702 	release_inactive_stripe_list(conf, temp_inactive_list,
5703 				     NR_STRIPE_HASH_LOCKS);
5704 
5705 	if (release_inactive) {
5706 		spin_lock_irq(&conf->device_lock);
5707 		return 0;
5708 	}
5709 
5710 	for (i = 0; i < batch_size; i++)
5711 		handle_stripe(batch[i]);
5712 
5713 	cond_resched();
5714 
5715 	spin_lock_irq(&conf->device_lock);
5716 	for (i = 0; i < batch_size; i++) {
5717 		hash = batch[i]->hash_lock_index;
5718 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5719 	}
5720 	return batch_size;
5721 }
5722 
5723 static void raid5_do_work(struct work_struct *work)
5724 {
5725 	struct r5worker *worker = container_of(work, struct r5worker, work);
5726 	struct r5worker_group *group = worker->group;
5727 	struct r5conf *conf = group->conf;
5728 	int group_id = group - conf->worker_groups;
5729 	int handled;
5730 	struct blk_plug plug;
5731 
5732 	pr_debug("+++ raid5worker active\n");
5733 
5734 	blk_start_plug(&plug);
5735 	handled = 0;
5736 	spin_lock_irq(&conf->device_lock);
5737 	while (1) {
5738 		int batch_size, released;
5739 
5740 		released = release_stripe_list(conf, worker->temp_inactive_list);
5741 
5742 		batch_size = handle_active_stripes(conf, group_id, worker,
5743 						   worker->temp_inactive_list);
5744 		worker->working = false;
5745 		if (!batch_size && !released)
5746 			break;
5747 		handled += batch_size;
5748 	}
5749 	pr_debug("%d stripes handled\n", handled);
5750 
5751 	spin_unlock_irq(&conf->device_lock);
5752 	blk_finish_plug(&plug);
5753 
5754 	pr_debug("--- raid5worker inactive\n");
5755 }
5756 
5757 /*
5758  * This is our raid5 kernel thread.
5759  *
5760  * We scan the hash table for stripes which can be handled now.
5761  * During the scan, completed stripes are saved for us by the interrupt
5762  * handler, so that they will not have to wait for our next wakeup.
5763  */
5764 static void raid5d(struct md_thread *thread)
5765 {
5766 	struct mddev *mddev = thread->mddev;
5767 	struct r5conf *conf = mddev->private;
5768 	int handled;
5769 	struct blk_plug plug;
5770 
5771 	pr_debug("+++ raid5d active\n");
5772 
5773 	md_check_recovery(mddev);
5774 
5775 	blk_start_plug(&plug);
5776 	handled = 0;
5777 	spin_lock_irq(&conf->device_lock);
5778 	while (1) {
5779 		struct bio *bio;
5780 		int batch_size, released;
5781 
5782 		released = release_stripe_list(conf, conf->temp_inactive_list);
5783 		if (released)
5784 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5785 
5786 		if (
5787 		    !list_empty(&conf->bitmap_list)) {
5788 			/* Now is a good time to flush some bitmap updates */
5789 			conf->seq_flush++;
5790 			spin_unlock_irq(&conf->device_lock);
5791 			bitmap_unplug(mddev->bitmap);
5792 			spin_lock_irq(&conf->device_lock);
5793 			conf->seq_write = conf->seq_flush;
5794 			activate_bit_delay(conf, conf->temp_inactive_list);
5795 		}
5796 		raid5_activate_delayed(conf);
5797 
5798 		while ((bio = remove_bio_from_retry(conf))) {
5799 			int ok;
5800 			spin_unlock_irq(&conf->device_lock);
5801 			ok = retry_aligned_read(conf, bio);
5802 			spin_lock_irq(&conf->device_lock);
5803 			if (!ok)
5804 				break;
5805 			handled++;
5806 		}
5807 
5808 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5809 						   conf->temp_inactive_list);
5810 		if (!batch_size && !released)
5811 			break;
5812 		handled += batch_size;
5813 
5814 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5815 			spin_unlock_irq(&conf->device_lock);
5816 			md_check_recovery(mddev);
5817 			spin_lock_irq(&conf->device_lock);
5818 		}
5819 	}
5820 	pr_debug("%d stripes handled\n", handled);
5821 
5822 	spin_unlock_irq(&conf->device_lock);
5823 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5824 		grow_one_stripe(conf, __GFP_NOWARN);
5825 		/* Set flag even if allocation failed.  This helps
5826 		 * slow down allocation requests when mem is short
5827 		 */
5828 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5829 	}
5830 
5831 	async_tx_issue_pending_all();
5832 	blk_finish_plug(&plug);
5833 
5834 	pr_debug("--- raid5d inactive\n");
5835 }
5836 
5837 static ssize_t
5838 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5839 {
5840 	struct r5conf *conf;
5841 	int ret = 0;
5842 	spin_lock(&mddev->lock);
5843 	conf = mddev->private;
5844 	if (conf)
5845 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5846 	spin_unlock(&mddev->lock);
5847 	return ret;
5848 }
5849 
5850 int
5851 raid5_set_cache_size(struct mddev *mddev, int size)
5852 {
5853 	struct r5conf *conf = mddev->private;
5854 	int err;
5855 
5856 	if (size <= 16 || size > 32768)
5857 		return -EINVAL;
5858 
5859 	conf->min_nr_stripes = size;
5860 	while (size < conf->max_nr_stripes &&
5861 	       drop_one_stripe(conf))
5862 		;
5863 
5864 
5865 	err = md_allow_write(mddev);
5866 	if (err)
5867 		return err;
5868 
5869 	while (size > conf->max_nr_stripes)
5870 		if (!grow_one_stripe(conf, GFP_KERNEL))
5871 			break;
5872 
5873 	return 0;
5874 }
5875 EXPORT_SYMBOL(raid5_set_cache_size);
5876 
5877 static ssize_t
5878 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5879 {
5880 	struct r5conf *conf;
5881 	unsigned long new;
5882 	int err;
5883 
5884 	if (len >= PAGE_SIZE)
5885 		return -EINVAL;
5886 	if (kstrtoul(page, 10, &new))
5887 		return -EINVAL;
5888 	err = mddev_lock(mddev);
5889 	if (err)
5890 		return err;
5891 	conf = mddev->private;
5892 	if (!conf)
5893 		err = -ENODEV;
5894 	else
5895 		err = raid5_set_cache_size(mddev, new);
5896 	mddev_unlock(mddev);
5897 
5898 	return err ?: len;
5899 }
5900 
5901 static struct md_sysfs_entry
5902 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5903 				raid5_show_stripe_cache_size,
5904 				raid5_store_stripe_cache_size);
5905 
5906 static ssize_t
5907 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5908 {
5909 	struct r5conf *conf = mddev->private;
5910 	if (conf)
5911 		return sprintf(page, "%d\n", conf->rmw_level);
5912 	else
5913 		return 0;
5914 }
5915 
5916 static ssize_t
5917 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5918 {
5919 	struct r5conf *conf = mddev->private;
5920 	unsigned long new;
5921 
5922 	if (!conf)
5923 		return -ENODEV;
5924 
5925 	if (len >= PAGE_SIZE)
5926 		return -EINVAL;
5927 
5928 	if (kstrtoul(page, 10, &new))
5929 		return -EINVAL;
5930 
5931 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5932 		return -EINVAL;
5933 
5934 	if (new != PARITY_DISABLE_RMW &&
5935 	    new != PARITY_ENABLE_RMW &&
5936 	    new != PARITY_PREFER_RMW)
5937 		return -EINVAL;
5938 
5939 	conf->rmw_level = new;
5940 	return len;
5941 }
5942 
5943 static struct md_sysfs_entry
5944 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5945 			 raid5_show_rmw_level,
5946 			 raid5_store_rmw_level);
5947 
5948 
5949 static ssize_t
5950 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5951 {
5952 	struct r5conf *conf;
5953 	int ret = 0;
5954 	spin_lock(&mddev->lock);
5955 	conf = mddev->private;
5956 	if (conf)
5957 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
5958 	spin_unlock(&mddev->lock);
5959 	return ret;
5960 }
5961 
5962 static ssize_t
5963 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5964 {
5965 	struct r5conf *conf;
5966 	unsigned long new;
5967 	int err;
5968 
5969 	if (len >= PAGE_SIZE)
5970 		return -EINVAL;
5971 	if (kstrtoul(page, 10, &new))
5972 		return -EINVAL;
5973 
5974 	err = mddev_lock(mddev);
5975 	if (err)
5976 		return err;
5977 	conf = mddev->private;
5978 	if (!conf)
5979 		err = -ENODEV;
5980 	else if (new > conf->min_nr_stripes)
5981 		err = -EINVAL;
5982 	else
5983 		conf->bypass_threshold = new;
5984 	mddev_unlock(mddev);
5985 	return err ?: len;
5986 }
5987 
5988 static struct md_sysfs_entry
5989 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5990 					S_IRUGO | S_IWUSR,
5991 					raid5_show_preread_threshold,
5992 					raid5_store_preread_threshold);
5993 
5994 static ssize_t
5995 raid5_show_skip_copy(struct mddev *mddev, char *page)
5996 {
5997 	struct r5conf *conf;
5998 	int ret = 0;
5999 	spin_lock(&mddev->lock);
6000 	conf = mddev->private;
6001 	if (conf)
6002 		ret = sprintf(page, "%d\n", conf->skip_copy);
6003 	spin_unlock(&mddev->lock);
6004 	return ret;
6005 }
6006 
6007 static ssize_t
6008 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6009 {
6010 	struct r5conf *conf;
6011 	unsigned long new;
6012 	int err;
6013 
6014 	if (len >= PAGE_SIZE)
6015 		return -EINVAL;
6016 	if (kstrtoul(page, 10, &new))
6017 		return -EINVAL;
6018 	new = !!new;
6019 
6020 	err = mddev_lock(mddev);
6021 	if (err)
6022 		return err;
6023 	conf = mddev->private;
6024 	if (!conf)
6025 		err = -ENODEV;
6026 	else if (new != conf->skip_copy) {
6027 		mddev_suspend(mddev);
6028 		conf->skip_copy = new;
6029 		if (new)
6030 			mddev->queue->backing_dev_info.capabilities |=
6031 				BDI_CAP_STABLE_WRITES;
6032 		else
6033 			mddev->queue->backing_dev_info.capabilities &=
6034 				~BDI_CAP_STABLE_WRITES;
6035 		mddev_resume(mddev);
6036 	}
6037 	mddev_unlock(mddev);
6038 	return err ?: len;
6039 }
6040 
6041 static struct md_sysfs_entry
6042 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6043 					raid5_show_skip_copy,
6044 					raid5_store_skip_copy);
6045 
6046 static ssize_t
6047 stripe_cache_active_show(struct mddev *mddev, char *page)
6048 {
6049 	struct r5conf *conf = mddev->private;
6050 	if (conf)
6051 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6052 	else
6053 		return 0;
6054 }
6055 
6056 static struct md_sysfs_entry
6057 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6058 
6059 static ssize_t
6060 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6061 {
6062 	struct r5conf *conf;
6063 	int ret = 0;
6064 	spin_lock(&mddev->lock);
6065 	conf = mddev->private;
6066 	if (conf)
6067 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6068 	spin_unlock(&mddev->lock);
6069 	return ret;
6070 }
6071 
6072 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6073 			       int *group_cnt,
6074 			       int *worker_cnt_per_group,
6075 			       struct r5worker_group **worker_groups);
6076 static ssize_t
6077 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6078 {
6079 	struct r5conf *conf;
6080 	unsigned long new;
6081 	int err;
6082 	struct r5worker_group *new_groups, *old_groups;
6083 	int group_cnt, worker_cnt_per_group;
6084 
6085 	if (len >= PAGE_SIZE)
6086 		return -EINVAL;
6087 	if (kstrtoul(page, 10, &new))
6088 		return -EINVAL;
6089 
6090 	err = mddev_lock(mddev);
6091 	if (err)
6092 		return err;
6093 	conf = mddev->private;
6094 	if (!conf)
6095 		err = -ENODEV;
6096 	else if (new != conf->worker_cnt_per_group) {
6097 		mddev_suspend(mddev);
6098 
6099 		old_groups = conf->worker_groups;
6100 		if (old_groups)
6101 			flush_workqueue(raid5_wq);
6102 
6103 		err = alloc_thread_groups(conf, new,
6104 					  &group_cnt, &worker_cnt_per_group,
6105 					  &new_groups);
6106 		if (!err) {
6107 			spin_lock_irq(&conf->device_lock);
6108 			conf->group_cnt = group_cnt;
6109 			conf->worker_cnt_per_group = worker_cnt_per_group;
6110 			conf->worker_groups = new_groups;
6111 			spin_unlock_irq(&conf->device_lock);
6112 
6113 			if (old_groups)
6114 				kfree(old_groups[0].workers);
6115 			kfree(old_groups);
6116 		}
6117 		mddev_resume(mddev);
6118 	}
6119 	mddev_unlock(mddev);
6120 
6121 	return err ?: len;
6122 }
6123 
6124 static struct md_sysfs_entry
6125 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6126 				raid5_show_group_thread_cnt,
6127 				raid5_store_group_thread_cnt);
6128 
6129 static struct attribute *raid5_attrs[] =  {
6130 	&raid5_stripecache_size.attr,
6131 	&raid5_stripecache_active.attr,
6132 	&raid5_preread_bypass_threshold.attr,
6133 	&raid5_group_thread_cnt.attr,
6134 	&raid5_skip_copy.attr,
6135 	&raid5_rmw_level.attr,
6136 	NULL,
6137 };
6138 static struct attribute_group raid5_attrs_group = {
6139 	.name = NULL,
6140 	.attrs = raid5_attrs,
6141 };
6142 
6143 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6144 			       int *group_cnt,
6145 			       int *worker_cnt_per_group,
6146 			       struct r5worker_group **worker_groups)
6147 {
6148 	int i, j, k;
6149 	ssize_t size;
6150 	struct r5worker *workers;
6151 
6152 	*worker_cnt_per_group = cnt;
6153 	if (cnt == 0) {
6154 		*group_cnt = 0;
6155 		*worker_groups = NULL;
6156 		return 0;
6157 	}
6158 	*group_cnt = num_possible_nodes();
6159 	size = sizeof(struct r5worker) * cnt;
6160 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6161 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6162 				*group_cnt, GFP_NOIO);
6163 	if (!*worker_groups || !workers) {
6164 		kfree(workers);
6165 		kfree(*worker_groups);
6166 		return -ENOMEM;
6167 	}
6168 
6169 	for (i = 0; i < *group_cnt; i++) {
6170 		struct r5worker_group *group;
6171 
6172 		group = &(*worker_groups)[i];
6173 		INIT_LIST_HEAD(&group->handle_list);
6174 		group->conf = conf;
6175 		group->workers = workers + i * cnt;
6176 
6177 		for (j = 0; j < cnt; j++) {
6178 			struct r5worker *worker = group->workers + j;
6179 			worker->group = group;
6180 			INIT_WORK(&worker->work, raid5_do_work);
6181 
6182 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6183 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6184 		}
6185 	}
6186 
6187 	return 0;
6188 }
6189 
6190 static void free_thread_groups(struct r5conf *conf)
6191 {
6192 	if (conf->worker_groups)
6193 		kfree(conf->worker_groups[0].workers);
6194 	kfree(conf->worker_groups);
6195 	conf->worker_groups = NULL;
6196 }
6197 
6198 static sector_t
6199 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6200 {
6201 	struct r5conf *conf = mddev->private;
6202 
6203 	if (!sectors)
6204 		sectors = mddev->dev_sectors;
6205 	if (!raid_disks)
6206 		/* size is defined by the smallest of previous and new size */
6207 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6208 
6209 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6210 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6211 	return sectors * (raid_disks - conf->max_degraded);
6212 }
6213 
6214 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6215 {
6216 	safe_put_page(percpu->spare_page);
6217 	if (percpu->scribble)
6218 		flex_array_free(percpu->scribble);
6219 	percpu->spare_page = NULL;
6220 	percpu->scribble = NULL;
6221 }
6222 
6223 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6224 {
6225 	if (conf->level == 6 && !percpu->spare_page)
6226 		percpu->spare_page = alloc_page(GFP_KERNEL);
6227 	if (!percpu->scribble)
6228 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6229 						      conf->previous_raid_disks),
6230 						  max(conf->chunk_sectors,
6231 						      conf->prev_chunk_sectors)
6232 						   / STRIPE_SECTORS,
6233 						  GFP_KERNEL);
6234 
6235 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6236 		free_scratch_buffer(conf, percpu);
6237 		return -ENOMEM;
6238 	}
6239 
6240 	return 0;
6241 }
6242 
6243 static void raid5_free_percpu(struct r5conf *conf)
6244 {
6245 	unsigned long cpu;
6246 
6247 	if (!conf->percpu)
6248 		return;
6249 
6250 #ifdef CONFIG_HOTPLUG_CPU
6251 	unregister_cpu_notifier(&conf->cpu_notify);
6252 #endif
6253 
6254 	get_online_cpus();
6255 	for_each_possible_cpu(cpu)
6256 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6257 	put_online_cpus();
6258 
6259 	free_percpu(conf->percpu);
6260 }
6261 
6262 static void free_conf(struct r5conf *conf)
6263 {
6264 	if (conf->shrinker.seeks)
6265 		unregister_shrinker(&conf->shrinker);
6266 	free_thread_groups(conf);
6267 	shrink_stripes(conf);
6268 	raid5_free_percpu(conf);
6269 	kfree(conf->disks);
6270 	kfree(conf->stripe_hashtbl);
6271 	kfree(conf);
6272 }
6273 
6274 #ifdef CONFIG_HOTPLUG_CPU
6275 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6276 			      void *hcpu)
6277 {
6278 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6279 	long cpu = (long)hcpu;
6280 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6281 
6282 	switch (action) {
6283 	case CPU_UP_PREPARE:
6284 	case CPU_UP_PREPARE_FROZEN:
6285 		if (alloc_scratch_buffer(conf, percpu)) {
6286 			pr_err("%s: failed memory allocation for cpu%ld\n",
6287 			       __func__, cpu);
6288 			return notifier_from_errno(-ENOMEM);
6289 		}
6290 		break;
6291 	case CPU_DEAD:
6292 	case CPU_DEAD_FROZEN:
6293 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6294 		break;
6295 	default:
6296 		break;
6297 	}
6298 	return NOTIFY_OK;
6299 }
6300 #endif
6301 
6302 static int raid5_alloc_percpu(struct r5conf *conf)
6303 {
6304 	unsigned long cpu;
6305 	int err = 0;
6306 
6307 	conf->percpu = alloc_percpu(struct raid5_percpu);
6308 	if (!conf->percpu)
6309 		return -ENOMEM;
6310 
6311 #ifdef CONFIG_HOTPLUG_CPU
6312 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6313 	conf->cpu_notify.priority = 0;
6314 	err = register_cpu_notifier(&conf->cpu_notify);
6315 	if (err)
6316 		return err;
6317 #endif
6318 
6319 	get_online_cpus();
6320 	for_each_present_cpu(cpu) {
6321 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6322 		if (err) {
6323 			pr_err("%s: failed memory allocation for cpu%ld\n",
6324 			       __func__, cpu);
6325 			break;
6326 		}
6327 	}
6328 	put_online_cpus();
6329 
6330 	return err;
6331 }
6332 
6333 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6334 				      struct shrink_control *sc)
6335 {
6336 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6337 	int ret = 0;
6338 	while (ret < sc->nr_to_scan) {
6339 		if (drop_one_stripe(conf) == 0)
6340 			return SHRINK_STOP;
6341 		ret++;
6342 	}
6343 	return ret;
6344 }
6345 
6346 static unsigned long raid5_cache_count(struct shrinker *shrink,
6347 				       struct shrink_control *sc)
6348 {
6349 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6350 
6351 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6352 		/* unlikely, but not impossible */
6353 		return 0;
6354 	return conf->max_nr_stripes - conf->min_nr_stripes;
6355 }
6356 
6357 static struct r5conf *setup_conf(struct mddev *mddev)
6358 {
6359 	struct r5conf *conf;
6360 	int raid_disk, memory, max_disks;
6361 	struct md_rdev *rdev;
6362 	struct disk_info *disk;
6363 	char pers_name[6];
6364 	int i;
6365 	int group_cnt, worker_cnt_per_group;
6366 	struct r5worker_group *new_group;
6367 
6368 	if (mddev->new_level != 5
6369 	    && mddev->new_level != 4
6370 	    && mddev->new_level != 6) {
6371 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6372 		       mdname(mddev), mddev->new_level);
6373 		return ERR_PTR(-EIO);
6374 	}
6375 	if ((mddev->new_level == 5
6376 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6377 	    (mddev->new_level == 6
6378 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6379 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6380 		       mdname(mddev), mddev->new_layout);
6381 		return ERR_PTR(-EIO);
6382 	}
6383 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6384 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6385 		       mdname(mddev), mddev->raid_disks);
6386 		return ERR_PTR(-EINVAL);
6387 	}
6388 
6389 	if (!mddev->new_chunk_sectors ||
6390 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6391 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6392 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6393 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6394 		return ERR_PTR(-EINVAL);
6395 	}
6396 
6397 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6398 	if (conf == NULL)
6399 		goto abort;
6400 	/* Don't enable multi-threading by default*/
6401 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6402 				 &new_group)) {
6403 		conf->group_cnt = group_cnt;
6404 		conf->worker_cnt_per_group = worker_cnt_per_group;
6405 		conf->worker_groups = new_group;
6406 	} else
6407 		goto abort;
6408 	spin_lock_init(&conf->device_lock);
6409 	seqcount_init(&conf->gen_lock);
6410 	init_waitqueue_head(&conf->wait_for_stripe);
6411 	init_waitqueue_head(&conf->wait_for_overlap);
6412 	INIT_LIST_HEAD(&conf->handle_list);
6413 	INIT_LIST_HEAD(&conf->hold_list);
6414 	INIT_LIST_HEAD(&conf->delayed_list);
6415 	INIT_LIST_HEAD(&conf->bitmap_list);
6416 	init_llist_head(&conf->released_stripes);
6417 	atomic_set(&conf->active_stripes, 0);
6418 	atomic_set(&conf->preread_active_stripes, 0);
6419 	atomic_set(&conf->active_aligned_reads, 0);
6420 	conf->bypass_threshold = BYPASS_THRESHOLD;
6421 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6422 
6423 	conf->raid_disks = mddev->raid_disks;
6424 	if (mddev->reshape_position == MaxSector)
6425 		conf->previous_raid_disks = mddev->raid_disks;
6426 	else
6427 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6428 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6429 
6430 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6431 			      GFP_KERNEL);
6432 	if (!conf->disks)
6433 		goto abort;
6434 
6435 	conf->mddev = mddev;
6436 
6437 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6438 		goto abort;
6439 
6440 	/* We init hash_locks[0] separately to that it can be used
6441 	 * as the reference lock in the spin_lock_nest_lock() call
6442 	 * in lock_all_device_hash_locks_irq in order to convince
6443 	 * lockdep that we know what we are doing.
6444 	 */
6445 	spin_lock_init(conf->hash_locks);
6446 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6447 		spin_lock_init(conf->hash_locks + i);
6448 
6449 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6450 		INIT_LIST_HEAD(conf->inactive_list + i);
6451 
6452 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6453 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6454 
6455 	conf->level = mddev->new_level;
6456 	conf->chunk_sectors = mddev->new_chunk_sectors;
6457 	if (raid5_alloc_percpu(conf) != 0)
6458 		goto abort;
6459 
6460 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6461 
6462 	rdev_for_each(rdev, mddev) {
6463 		raid_disk = rdev->raid_disk;
6464 		if (raid_disk >= max_disks
6465 		    || raid_disk < 0)
6466 			continue;
6467 		disk = conf->disks + raid_disk;
6468 
6469 		if (test_bit(Replacement, &rdev->flags)) {
6470 			if (disk->replacement)
6471 				goto abort;
6472 			disk->replacement = rdev;
6473 		} else {
6474 			if (disk->rdev)
6475 				goto abort;
6476 			disk->rdev = rdev;
6477 		}
6478 
6479 		if (test_bit(In_sync, &rdev->flags)) {
6480 			char b[BDEVNAME_SIZE];
6481 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6482 			       " disk %d\n",
6483 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6484 		} else if (rdev->saved_raid_disk != raid_disk)
6485 			/* Cannot rely on bitmap to complete recovery */
6486 			conf->fullsync = 1;
6487 	}
6488 
6489 	conf->level = mddev->new_level;
6490 	if (conf->level == 6) {
6491 		conf->max_degraded = 2;
6492 		if (raid6_call.xor_syndrome)
6493 			conf->rmw_level = PARITY_ENABLE_RMW;
6494 		else
6495 			conf->rmw_level = PARITY_DISABLE_RMW;
6496 	} else {
6497 		conf->max_degraded = 1;
6498 		conf->rmw_level = PARITY_ENABLE_RMW;
6499 	}
6500 	conf->algorithm = mddev->new_layout;
6501 	conf->reshape_progress = mddev->reshape_position;
6502 	if (conf->reshape_progress != MaxSector) {
6503 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6504 		conf->prev_algo = mddev->layout;
6505 	}
6506 
6507 	conf->min_nr_stripes = NR_STRIPES;
6508 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6509 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6510 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6511 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6512 		printk(KERN_ERR
6513 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6514 		       mdname(mddev), memory);
6515 		goto abort;
6516 	} else
6517 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6518 		       mdname(mddev), memory);
6519 	/*
6520 	 * Losing a stripe head costs more than the time to refill it,
6521 	 * it reduces the queue depth and so can hurt throughput.
6522 	 * So set it rather large, scaled by number of devices.
6523 	 */
6524 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6525 	conf->shrinker.scan_objects = raid5_cache_scan;
6526 	conf->shrinker.count_objects = raid5_cache_count;
6527 	conf->shrinker.batch = 128;
6528 	conf->shrinker.flags = 0;
6529 	register_shrinker(&conf->shrinker);
6530 
6531 	sprintf(pers_name, "raid%d", mddev->new_level);
6532 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6533 	if (!conf->thread) {
6534 		printk(KERN_ERR
6535 		       "md/raid:%s: couldn't allocate thread.\n",
6536 		       mdname(mddev));
6537 		goto abort;
6538 	}
6539 
6540 	return conf;
6541 
6542  abort:
6543 	if (conf) {
6544 		free_conf(conf);
6545 		return ERR_PTR(-EIO);
6546 	} else
6547 		return ERR_PTR(-ENOMEM);
6548 }
6549 
6550 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6551 {
6552 	switch (algo) {
6553 	case ALGORITHM_PARITY_0:
6554 		if (raid_disk < max_degraded)
6555 			return 1;
6556 		break;
6557 	case ALGORITHM_PARITY_N:
6558 		if (raid_disk >= raid_disks - max_degraded)
6559 			return 1;
6560 		break;
6561 	case ALGORITHM_PARITY_0_6:
6562 		if (raid_disk == 0 ||
6563 		    raid_disk == raid_disks - 1)
6564 			return 1;
6565 		break;
6566 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6567 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6568 	case ALGORITHM_LEFT_SYMMETRIC_6:
6569 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6570 		if (raid_disk == raid_disks - 1)
6571 			return 1;
6572 	}
6573 	return 0;
6574 }
6575 
6576 static int run(struct mddev *mddev)
6577 {
6578 	struct r5conf *conf;
6579 	int working_disks = 0;
6580 	int dirty_parity_disks = 0;
6581 	struct md_rdev *rdev;
6582 	sector_t reshape_offset = 0;
6583 	int i;
6584 	long long min_offset_diff = 0;
6585 	int first = 1;
6586 
6587 	if (mddev->recovery_cp != MaxSector)
6588 		printk(KERN_NOTICE "md/raid:%s: not clean"
6589 		       " -- starting background reconstruction\n",
6590 		       mdname(mddev));
6591 
6592 	rdev_for_each(rdev, mddev) {
6593 		long long diff;
6594 		if (rdev->raid_disk < 0)
6595 			continue;
6596 		diff = (rdev->new_data_offset - rdev->data_offset);
6597 		if (first) {
6598 			min_offset_diff = diff;
6599 			first = 0;
6600 		} else if (mddev->reshape_backwards &&
6601 			 diff < min_offset_diff)
6602 			min_offset_diff = diff;
6603 		else if (!mddev->reshape_backwards &&
6604 			 diff > min_offset_diff)
6605 			min_offset_diff = diff;
6606 	}
6607 
6608 	if (mddev->reshape_position != MaxSector) {
6609 		/* Check that we can continue the reshape.
6610 		 * Difficulties arise if the stripe we would write to
6611 		 * next is at or after the stripe we would read from next.
6612 		 * For a reshape that changes the number of devices, this
6613 		 * is only possible for a very short time, and mdadm makes
6614 		 * sure that time appears to have past before assembling
6615 		 * the array.  So we fail if that time hasn't passed.
6616 		 * For a reshape that keeps the number of devices the same
6617 		 * mdadm must be monitoring the reshape can keeping the
6618 		 * critical areas read-only and backed up.  It will start
6619 		 * the array in read-only mode, so we check for that.
6620 		 */
6621 		sector_t here_new, here_old;
6622 		int old_disks;
6623 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6624 
6625 		if (mddev->new_level != mddev->level) {
6626 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6627 			       "required - aborting.\n",
6628 			       mdname(mddev));
6629 			return -EINVAL;
6630 		}
6631 		old_disks = mddev->raid_disks - mddev->delta_disks;
6632 		/* reshape_position must be on a new-stripe boundary, and one
6633 		 * further up in new geometry must map after here in old
6634 		 * geometry.
6635 		 */
6636 		here_new = mddev->reshape_position;
6637 		if (sector_div(here_new, mddev->new_chunk_sectors *
6638 			       (mddev->raid_disks - max_degraded))) {
6639 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6640 			       "on a stripe boundary\n", mdname(mddev));
6641 			return -EINVAL;
6642 		}
6643 		reshape_offset = here_new * mddev->new_chunk_sectors;
6644 		/* here_new is the stripe we will write to */
6645 		here_old = mddev->reshape_position;
6646 		sector_div(here_old, mddev->chunk_sectors *
6647 			   (old_disks-max_degraded));
6648 		/* here_old is the first stripe that we might need to read
6649 		 * from */
6650 		if (mddev->delta_disks == 0) {
6651 			if ((here_new * mddev->new_chunk_sectors !=
6652 			     here_old * mddev->chunk_sectors)) {
6653 				printk(KERN_ERR "md/raid:%s: reshape position is"
6654 				       " confused - aborting\n", mdname(mddev));
6655 				return -EINVAL;
6656 			}
6657 			/* We cannot be sure it is safe to start an in-place
6658 			 * reshape.  It is only safe if user-space is monitoring
6659 			 * and taking constant backups.
6660 			 * mdadm always starts a situation like this in
6661 			 * readonly mode so it can take control before
6662 			 * allowing any writes.  So just check for that.
6663 			 */
6664 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6665 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6666 				/* not really in-place - so OK */;
6667 			else if (mddev->ro == 0) {
6668 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6669 				       "must be started in read-only mode "
6670 				       "- aborting\n",
6671 				       mdname(mddev));
6672 				return -EINVAL;
6673 			}
6674 		} else if (mddev->reshape_backwards
6675 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6676 		       here_old * mddev->chunk_sectors)
6677 		    : (here_new * mddev->new_chunk_sectors >=
6678 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6679 			/* Reading from the same stripe as writing to - bad */
6680 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6681 			       "auto-recovery - aborting.\n",
6682 			       mdname(mddev));
6683 			return -EINVAL;
6684 		}
6685 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6686 		       mdname(mddev));
6687 		/* OK, we should be able to continue; */
6688 	} else {
6689 		BUG_ON(mddev->level != mddev->new_level);
6690 		BUG_ON(mddev->layout != mddev->new_layout);
6691 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6692 		BUG_ON(mddev->delta_disks != 0);
6693 	}
6694 
6695 	if (mddev->private == NULL)
6696 		conf = setup_conf(mddev);
6697 	else
6698 		conf = mddev->private;
6699 
6700 	if (IS_ERR(conf))
6701 		return PTR_ERR(conf);
6702 
6703 	conf->min_offset_diff = min_offset_diff;
6704 	mddev->thread = conf->thread;
6705 	conf->thread = NULL;
6706 	mddev->private = conf;
6707 
6708 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6709 	     i++) {
6710 		rdev = conf->disks[i].rdev;
6711 		if (!rdev && conf->disks[i].replacement) {
6712 			/* The replacement is all we have yet */
6713 			rdev = conf->disks[i].replacement;
6714 			conf->disks[i].replacement = NULL;
6715 			clear_bit(Replacement, &rdev->flags);
6716 			conf->disks[i].rdev = rdev;
6717 		}
6718 		if (!rdev)
6719 			continue;
6720 		if (conf->disks[i].replacement &&
6721 		    conf->reshape_progress != MaxSector) {
6722 			/* replacements and reshape simply do not mix. */
6723 			printk(KERN_ERR "md: cannot handle concurrent "
6724 			       "replacement and reshape.\n");
6725 			goto abort;
6726 		}
6727 		if (test_bit(In_sync, &rdev->flags)) {
6728 			working_disks++;
6729 			continue;
6730 		}
6731 		/* This disc is not fully in-sync.  However if it
6732 		 * just stored parity (beyond the recovery_offset),
6733 		 * when we don't need to be concerned about the
6734 		 * array being dirty.
6735 		 * When reshape goes 'backwards', we never have
6736 		 * partially completed devices, so we only need
6737 		 * to worry about reshape going forwards.
6738 		 */
6739 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6740 		if (mddev->major_version == 0 &&
6741 		    mddev->minor_version > 90)
6742 			rdev->recovery_offset = reshape_offset;
6743 
6744 		if (rdev->recovery_offset < reshape_offset) {
6745 			/* We need to check old and new layout */
6746 			if (!only_parity(rdev->raid_disk,
6747 					 conf->algorithm,
6748 					 conf->raid_disks,
6749 					 conf->max_degraded))
6750 				continue;
6751 		}
6752 		if (!only_parity(rdev->raid_disk,
6753 				 conf->prev_algo,
6754 				 conf->previous_raid_disks,
6755 				 conf->max_degraded))
6756 			continue;
6757 		dirty_parity_disks++;
6758 	}
6759 
6760 	/*
6761 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6762 	 */
6763 	mddev->degraded = calc_degraded(conf);
6764 
6765 	if (has_failed(conf)) {
6766 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6767 			" (%d/%d failed)\n",
6768 			mdname(mddev), mddev->degraded, conf->raid_disks);
6769 		goto abort;
6770 	}
6771 
6772 	/* device size must be a multiple of chunk size */
6773 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6774 	mddev->resync_max_sectors = mddev->dev_sectors;
6775 
6776 	if (mddev->degraded > dirty_parity_disks &&
6777 	    mddev->recovery_cp != MaxSector) {
6778 		if (mddev->ok_start_degraded)
6779 			printk(KERN_WARNING
6780 			       "md/raid:%s: starting dirty degraded array"
6781 			       " - data corruption possible.\n",
6782 			       mdname(mddev));
6783 		else {
6784 			printk(KERN_ERR
6785 			       "md/raid:%s: cannot start dirty degraded array.\n",
6786 			       mdname(mddev));
6787 			goto abort;
6788 		}
6789 	}
6790 
6791 	if (mddev->degraded == 0)
6792 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6793 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6794 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6795 		       mddev->new_layout);
6796 	else
6797 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6798 		       " out of %d devices, algorithm %d\n",
6799 		       mdname(mddev), conf->level,
6800 		       mddev->raid_disks - mddev->degraded,
6801 		       mddev->raid_disks, mddev->new_layout);
6802 
6803 	print_raid5_conf(conf);
6804 
6805 	if (conf->reshape_progress != MaxSector) {
6806 		conf->reshape_safe = conf->reshape_progress;
6807 		atomic_set(&conf->reshape_stripes, 0);
6808 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6809 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6810 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6811 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6812 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6813 							"reshape");
6814 	}
6815 
6816 	/* Ok, everything is just fine now */
6817 	if (mddev->to_remove == &raid5_attrs_group)
6818 		mddev->to_remove = NULL;
6819 	else if (mddev->kobj.sd &&
6820 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6821 		printk(KERN_WARNING
6822 		       "raid5: failed to create sysfs attributes for %s\n",
6823 		       mdname(mddev));
6824 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6825 
6826 	if (mddev->queue) {
6827 		int chunk_size;
6828 		bool discard_supported = true;
6829 		/* read-ahead size must cover two whole stripes, which
6830 		 * is 2 * (datadisks) * chunksize where 'n' is the
6831 		 * number of raid devices
6832 		 */
6833 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6834 		int stripe = data_disks *
6835 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6836 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6837 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6838 
6839 		chunk_size = mddev->chunk_sectors << 9;
6840 		blk_queue_io_min(mddev->queue, chunk_size);
6841 		blk_queue_io_opt(mddev->queue, chunk_size *
6842 				 (conf->raid_disks - conf->max_degraded));
6843 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6844 		/*
6845 		 * We can only discard a whole stripe. It doesn't make sense to
6846 		 * discard data disk but write parity disk
6847 		 */
6848 		stripe = stripe * PAGE_SIZE;
6849 		/* Round up to power of 2, as discard handling
6850 		 * currently assumes that */
6851 		while ((stripe-1) & stripe)
6852 			stripe = (stripe | (stripe-1)) + 1;
6853 		mddev->queue->limits.discard_alignment = stripe;
6854 		mddev->queue->limits.discard_granularity = stripe;
6855 		/*
6856 		 * unaligned part of discard request will be ignored, so can't
6857 		 * guarantee discard_zeroes_data
6858 		 */
6859 		mddev->queue->limits.discard_zeroes_data = 0;
6860 
6861 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6862 
6863 		rdev_for_each(rdev, mddev) {
6864 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6865 					  rdev->data_offset << 9);
6866 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6867 					  rdev->new_data_offset << 9);
6868 			/*
6869 			 * discard_zeroes_data is required, otherwise data
6870 			 * could be lost. Consider a scenario: discard a stripe
6871 			 * (the stripe could be inconsistent if
6872 			 * discard_zeroes_data is 0); write one disk of the
6873 			 * stripe (the stripe could be inconsistent again
6874 			 * depending on which disks are used to calculate
6875 			 * parity); the disk is broken; The stripe data of this
6876 			 * disk is lost.
6877 			 */
6878 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6879 			    !bdev_get_queue(rdev->bdev)->
6880 						limits.discard_zeroes_data)
6881 				discard_supported = false;
6882 			/* Unfortunately, discard_zeroes_data is not currently
6883 			 * a guarantee - just a hint.  So we only allow DISCARD
6884 			 * if the sysadmin has confirmed that only safe devices
6885 			 * are in use by setting a module parameter.
6886 			 */
6887 			if (!devices_handle_discard_safely) {
6888 				if (discard_supported) {
6889 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6890 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6891 				}
6892 				discard_supported = false;
6893 			}
6894 		}
6895 
6896 		if (discard_supported &&
6897 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6898 		   mddev->queue->limits.discard_granularity >= stripe)
6899 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6900 						mddev->queue);
6901 		else
6902 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6903 						mddev->queue);
6904 	}
6905 
6906 	return 0;
6907 abort:
6908 	md_unregister_thread(&mddev->thread);
6909 	print_raid5_conf(conf);
6910 	free_conf(conf);
6911 	mddev->private = NULL;
6912 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6913 	return -EIO;
6914 }
6915 
6916 static void raid5_free(struct mddev *mddev, void *priv)
6917 {
6918 	struct r5conf *conf = priv;
6919 
6920 	free_conf(conf);
6921 	mddev->to_remove = &raid5_attrs_group;
6922 }
6923 
6924 static void status(struct seq_file *seq, struct mddev *mddev)
6925 {
6926 	struct r5conf *conf = mddev->private;
6927 	int i;
6928 
6929 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6930 		mddev->chunk_sectors / 2, mddev->layout);
6931 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6932 	for (i = 0; i < conf->raid_disks; i++)
6933 		seq_printf (seq, "%s",
6934 			       conf->disks[i].rdev &&
6935 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6936 	seq_printf (seq, "]");
6937 }
6938 
6939 static void print_raid5_conf (struct r5conf *conf)
6940 {
6941 	int i;
6942 	struct disk_info *tmp;
6943 
6944 	printk(KERN_DEBUG "RAID conf printout:\n");
6945 	if (!conf) {
6946 		printk("(conf==NULL)\n");
6947 		return;
6948 	}
6949 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6950 	       conf->raid_disks,
6951 	       conf->raid_disks - conf->mddev->degraded);
6952 
6953 	for (i = 0; i < conf->raid_disks; i++) {
6954 		char b[BDEVNAME_SIZE];
6955 		tmp = conf->disks + i;
6956 		if (tmp->rdev)
6957 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6958 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6959 			       bdevname(tmp->rdev->bdev, b));
6960 	}
6961 }
6962 
6963 static int raid5_spare_active(struct mddev *mddev)
6964 {
6965 	int i;
6966 	struct r5conf *conf = mddev->private;
6967 	struct disk_info *tmp;
6968 	int count = 0;
6969 	unsigned long flags;
6970 
6971 	for (i = 0; i < conf->raid_disks; i++) {
6972 		tmp = conf->disks + i;
6973 		if (tmp->replacement
6974 		    && tmp->replacement->recovery_offset == MaxSector
6975 		    && !test_bit(Faulty, &tmp->replacement->flags)
6976 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6977 			/* Replacement has just become active. */
6978 			if (!tmp->rdev
6979 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6980 				count++;
6981 			if (tmp->rdev) {
6982 				/* Replaced device not technically faulty,
6983 				 * but we need to be sure it gets removed
6984 				 * and never re-added.
6985 				 */
6986 				set_bit(Faulty, &tmp->rdev->flags);
6987 				sysfs_notify_dirent_safe(
6988 					tmp->rdev->sysfs_state);
6989 			}
6990 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6991 		} else if (tmp->rdev
6992 		    && tmp->rdev->recovery_offset == MaxSector
6993 		    && !test_bit(Faulty, &tmp->rdev->flags)
6994 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6995 			count++;
6996 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6997 		}
6998 	}
6999 	spin_lock_irqsave(&conf->device_lock, flags);
7000 	mddev->degraded = calc_degraded(conf);
7001 	spin_unlock_irqrestore(&conf->device_lock, flags);
7002 	print_raid5_conf(conf);
7003 	return count;
7004 }
7005 
7006 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7007 {
7008 	struct r5conf *conf = mddev->private;
7009 	int err = 0;
7010 	int number = rdev->raid_disk;
7011 	struct md_rdev **rdevp;
7012 	struct disk_info *p = conf->disks + number;
7013 
7014 	print_raid5_conf(conf);
7015 	if (rdev == p->rdev)
7016 		rdevp = &p->rdev;
7017 	else if (rdev == p->replacement)
7018 		rdevp = &p->replacement;
7019 	else
7020 		return 0;
7021 
7022 	if (number >= conf->raid_disks &&
7023 	    conf->reshape_progress == MaxSector)
7024 		clear_bit(In_sync, &rdev->flags);
7025 
7026 	if (test_bit(In_sync, &rdev->flags) ||
7027 	    atomic_read(&rdev->nr_pending)) {
7028 		err = -EBUSY;
7029 		goto abort;
7030 	}
7031 	/* Only remove non-faulty devices if recovery
7032 	 * isn't possible.
7033 	 */
7034 	if (!test_bit(Faulty, &rdev->flags) &&
7035 	    mddev->recovery_disabled != conf->recovery_disabled &&
7036 	    !has_failed(conf) &&
7037 	    (!p->replacement || p->replacement == rdev) &&
7038 	    number < conf->raid_disks) {
7039 		err = -EBUSY;
7040 		goto abort;
7041 	}
7042 	*rdevp = NULL;
7043 	synchronize_rcu();
7044 	if (atomic_read(&rdev->nr_pending)) {
7045 		/* lost the race, try later */
7046 		err = -EBUSY;
7047 		*rdevp = rdev;
7048 	} else if (p->replacement) {
7049 		/* We must have just cleared 'rdev' */
7050 		p->rdev = p->replacement;
7051 		clear_bit(Replacement, &p->replacement->flags);
7052 		smp_mb(); /* Make sure other CPUs may see both as identical
7053 			   * but will never see neither - if they are careful
7054 			   */
7055 		p->replacement = NULL;
7056 		clear_bit(WantReplacement, &rdev->flags);
7057 	} else
7058 		/* We might have just removed the Replacement as faulty-
7059 		 * clear the bit just in case
7060 		 */
7061 		clear_bit(WantReplacement, &rdev->flags);
7062 abort:
7063 
7064 	print_raid5_conf(conf);
7065 	return err;
7066 }
7067 
7068 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7069 {
7070 	struct r5conf *conf = mddev->private;
7071 	int err = -EEXIST;
7072 	int disk;
7073 	struct disk_info *p;
7074 	int first = 0;
7075 	int last = conf->raid_disks - 1;
7076 
7077 	if (mddev->recovery_disabled == conf->recovery_disabled)
7078 		return -EBUSY;
7079 
7080 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7081 		/* no point adding a device */
7082 		return -EINVAL;
7083 
7084 	if (rdev->raid_disk >= 0)
7085 		first = last = rdev->raid_disk;
7086 
7087 	/*
7088 	 * find the disk ... but prefer rdev->saved_raid_disk
7089 	 * if possible.
7090 	 */
7091 	if (rdev->saved_raid_disk >= 0 &&
7092 	    rdev->saved_raid_disk >= first &&
7093 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7094 		first = rdev->saved_raid_disk;
7095 
7096 	for (disk = first; disk <= last; disk++) {
7097 		p = conf->disks + disk;
7098 		if (p->rdev == NULL) {
7099 			clear_bit(In_sync, &rdev->flags);
7100 			rdev->raid_disk = disk;
7101 			err = 0;
7102 			if (rdev->saved_raid_disk != disk)
7103 				conf->fullsync = 1;
7104 			rcu_assign_pointer(p->rdev, rdev);
7105 			goto out;
7106 		}
7107 	}
7108 	for (disk = first; disk <= last; disk++) {
7109 		p = conf->disks + disk;
7110 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7111 		    p->replacement == NULL) {
7112 			clear_bit(In_sync, &rdev->flags);
7113 			set_bit(Replacement, &rdev->flags);
7114 			rdev->raid_disk = disk;
7115 			err = 0;
7116 			conf->fullsync = 1;
7117 			rcu_assign_pointer(p->replacement, rdev);
7118 			break;
7119 		}
7120 	}
7121 out:
7122 	print_raid5_conf(conf);
7123 	return err;
7124 }
7125 
7126 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7127 {
7128 	/* no resync is happening, and there is enough space
7129 	 * on all devices, so we can resize.
7130 	 * We need to make sure resync covers any new space.
7131 	 * If the array is shrinking we should possibly wait until
7132 	 * any io in the removed space completes, but it hardly seems
7133 	 * worth it.
7134 	 */
7135 	sector_t newsize;
7136 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7137 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7138 	if (mddev->external_size &&
7139 	    mddev->array_sectors > newsize)
7140 		return -EINVAL;
7141 	if (mddev->bitmap) {
7142 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7143 		if (ret)
7144 			return ret;
7145 	}
7146 	md_set_array_sectors(mddev, newsize);
7147 	set_capacity(mddev->gendisk, mddev->array_sectors);
7148 	revalidate_disk(mddev->gendisk);
7149 	if (sectors > mddev->dev_sectors &&
7150 	    mddev->recovery_cp > mddev->dev_sectors) {
7151 		mddev->recovery_cp = mddev->dev_sectors;
7152 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7153 	}
7154 	mddev->dev_sectors = sectors;
7155 	mddev->resync_max_sectors = sectors;
7156 	return 0;
7157 }
7158 
7159 static int check_stripe_cache(struct mddev *mddev)
7160 {
7161 	/* Can only proceed if there are plenty of stripe_heads.
7162 	 * We need a minimum of one full stripe,, and for sensible progress
7163 	 * it is best to have about 4 times that.
7164 	 * If we require 4 times, then the default 256 4K stripe_heads will
7165 	 * allow for chunk sizes up to 256K, which is probably OK.
7166 	 * If the chunk size is greater, user-space should request more
7167 	 * stripe_heads first.
7168 	 */
7169 	struct r5conf *conf = mddev->private;
7170 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7171 	    > conf->min_nr_stripes ||
7172 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7173 	    > conf->min_nr_stripes) {
7174 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7175 		       mdname(mddev),
7176 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7177 			/ STRIPE_SIZE)*4);
7178 		return 0;
7179 	}
7180 	return 1;
7181 }
7182 
7183 static int check_reshape(struct mddev *mddev)
7184 {
7185 	struct r5conf *conf = mddev->private;
7186 
7187 	if (mddev->delta_disks == 0 &&
7188 	    mddev->new_layout == mddev->layout &&
7189 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7190 		return 0; /* nothing to do */
7191 	if (has_failed(conf))
7192 		return -EINVAL;
7193 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7194 		/* We might be able to shrink, but the devices must
7195 		 * be made bigger first.
7196 		 * For raid6, 4 is the minimum size.
7197 		 * Otherwise 2 is the minimum
7198 		 */
7199 		int min = 2;
7200 		if (mddev->level == 6)
7201 			min = 4;
7202 		if (mddev->raid_disks + mddev->delta_disks < min)
7203 			return -EINVAL;
7204 	}
7205 
7206 	if (!check_stripe_cache(mddev))
7207 		return -ENOSPC;
7208 
7209 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7210 	    mddev->delta_disks > 0)
7211 		if (resize_chunks(conf,
7212 				  conf->previous_raid_disks
7213 				  + max(0, mddev->delta_disks),
7214 				  max(mddev->new_chunk_sectors,
7215 				      mddev->chunk_sectors)
7216 			    ) < 0)
7217 			return -ENOMEM;
7218 	return resize_stripes(conf, (conf->previous_raid_disks
7219 				     + mddev->delta_disks));
7220 }
7221 
7222 static int raid5_start_reshape(struct mddev *mddev)
7223 {
7224 	struct r5conf *conf = mddev->private;
7225 	struct md_rdev *rdev;
7226 	int spares = 0;
7227 	unsigned long flags;
7228 
7229 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7230 		return -EBUSY;
7231 
7232 	if (!check_stripe_cache(mddev))
7233 		return -ENOSPC;
7234 
7235 	if (has_failed(conf))
7236 		return -EINVAL;
7237 
7238 	rdev_for_each(rdev, mddev) {
7239 		if (!test_bit(In_sync, &rdev->flags)
7240 		    && !test_bit(Faulty, &rdev->flags))
7241 			spares++;
7242 	}
7243 
7244 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7245 		/* Not enough devices even to make a degraded array
7246 		 * of that size
7247 		 */
7248 		return -EINVAL;
7249 
7250 	/* Refuse to reduce size of the array.  Any reductions in
7251 	 * array size must be through explicit setting of array_size
7252 	 * attribute.
7253 	 */
7254 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7255 	    < mddev->array_sectors) {
7256 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7257 		       "before number of disks\n", mdname(mddev));
7258 		return -EINVAL;
7259 	}
7260 
7261 	atomic_set(&conf->reshape_stripes, 0);
7262 	spin_lock_irq(&conf->device_lock);
7263 	write_seqcount_begin(&conf->gen_lock);
7264 	conf->previous_raid_disks = conf->raid_disks;
7265 	conf->raid_disks += mddev->delta_disks;
7266 	conf->prev_chunk_sectors = conf->chunk_sectors;
7267 	conf->chunk_sectors = mddev->new_chunk_sectors;
7268 	conf->prev_algo = conf->algorithm;
7269 	conf->algorithm = mddev->new_layout;
7270 	conf->generation++;
7271 	/* Code that selects data_offset needs to see the generation update
7272 	 * if reshape_progress has been set - so a memory barrier needed.
7273 	 */
7274 	smp_mb();
7275 	if (mddev->reshape_backwards)
7276 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7277 	else
7278 		conf->reshape_progress = 0;
7279 	conf->reshape_safe = conf->reshape_progress;
7280 	write_seqcount_end(&conf->gen_lock);
7281 	spin_unlock_irq(&conf->device_lock);
7282 
7283 	/* Now make sure any requests that proceeded on the assumption
7284 	 * the reshape wasn't running - like Discard or Read - have
7285 	 * completed.
7286 	 */
7287 	mddev_suspend(mddev);
7288 	mddev_resume(mddev);
7289 
7290 	/* Add some new drives, as many as will fit.
7291 	 * We know there are enough to make the newly sized array work.
7292 	 * Don't add devices if we are reducing the number of
7293 	 * devices in the array.  This is because it is not possible
7294 	 * to correctly record the "partially reconstructed" state of
7295 	 * such devices during the reshape and confusion could result.
7296 	 */
7297 	if (mddev->delta_disks >= 0) {
7298 		rdev_for_each(rdev, mddev)
7299 			if (rdev->raid_disk < 0 &&
7300 			    !test_bit(Faulty, &rdev->flags)) {
7301 				if (raid5_add_disk(mddev, rdev) == 0) {
7302 					if (rdev->raid_disk
7303 					    >= conf->previous_raid_disks)
7304 						set_bit(In_sync, &rdev->flags);
7305 					else
7306 						rdev->recovery_offset = 0;
7307 
7308 					if (sysfs_link_rdev(mddev, rdev))
7309 						/* Failure here is OK */;
7310 				}
7311 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7312 				   && !test_bit(Faulty, &rdev->flags)) {
7313 				/* This is a spare that was manually added */
7314 				set_bit(In_sync, &rdev->flags);
7315 			}
7316 
7317 		/* When a reshape changes the number of devices,
7318 		 * ->degraded is measured against the larger of the
7319 		 * pre and post number of devices.
7320 		 */
7321 		spin_lock_irqsave(&conf->device_lock, flags);
7322 		mddev->degraded = calc_degraded(conf);
7323 		spin_unlock_irqrestore(&conf->device_lock, flags);
7324 	}
7325 	mddev->raid_disks = conf->raid_disks;
7326 	mddev->reshape_position = conf->reshape_progress;
7327 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7328 
7329 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7330 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7331 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7332 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7333 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7334 						"reshape");
7335 	if (!mddev->sync_thread) {
7336 		mddev->recovery = 0;
7337 		spin_lock_irq(&conf->device_lock);
7338 		write_seqcount_begin(&conf->gen_lock);
7339 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7340 		mddev->new_chunk_sectors =
7341 			conf->chunk_sectors = conf->prev_chunk_sectors;
7342 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7343 		rdev_for_each(rdev, mddev)
7344 			rdev->new_data_offset = rdev->data_offset;
7345 		smp_wmb();
7346 		conf->generation --;
7347 		conf->reshape_progress = MaxSector;
7348 		mddev->reshape_position = MaxSector;
7349 		write_seqcount_end(&conf->gen_lock);
7350 		spin_unlock_irq(&conf->device_lock);
7351 		return -EAGAIN;
7352 	}
7353 	conf->reshape_checkpoint = jiffies;
7354 	md_wakeup_thread(mddev->sync_thread);
7355 	md_new_event(mddev);
7356 	return 0;
7357 }
7358 
7359 /* This is called from the reshape thread and should make any
7360  * changes needed in 'conf'
7361  */
7362 static void end_reshape(struct r5conf *conf)
7363 {
7364 
7365 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7366 		struct md_rdev *rdev;
7367 
7368 		spin_lock_irq(&conf->device_lock);
7369 		conf->previous_raid_disks = conf->raid_disks;
7370 		rdev_for_each(rdev, conf->mddev)
7371 			rdev->data_offset = rdev->new_data_offset;
7372 		smp_wmb();
7373 		conf->reshape_progress = MaxSector;
7374 		spin_unlock_irq(&conf->device_lock);
7375 		wake_up(&conf->wait_for_overlap);
7376 
7377 		/* read-ahead size must cover two whole stripes, which is
7378 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7379 		 */
7380 		if (conf->mddev->queue) {
7381 			int data_disks = conf->raid_disks - conf->max_degraded;
7382 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7383 						   / PAGE_SIZE);
7384 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7385 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7386 		}
7387 	}
7388 }
7389 
7390 /* This is called from the raid5d thread with mddev_lock held.
7391  * It makes config changes to the device.
7392  */
7393 static void raid5_finish_reshape(struct mddev *mddev)
7394 {
7395 	struct r5conf *conf = mddev->private;
7396 
7397 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7398 
7399 		if (mddev->delta_disks > 0) {
7400 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7401 			set_capacity(mddev->gendisk, mddev->array_sectors);
7402 			revalidate_disk(mddev->gendisk);
7403 		} else {
7404 			int d;
7405 			spin_lock_irq(&conf->device_lock);
7406 			mddev->degraded = calc_degraded(conf);
7407 			spin_unlock_irq(&conf->device_lock);
7408 			for (d = conf->raid_disks ;
7409 			     d < conf->raid_disks - mddev->delta_disks;
7410 			     d++) {
7411 				struct md_rdev *rdev = conf->disks[d].rdev;
7412 				if (rdev)
7413 					clear_bit(In_sync, &rdev->flags);
7414 				rdev = conf->disks[d].replacement;
7415 				if (rdev)
7416 					clear_bit(In_sync, &rdev->flags);
7417 			}
7418 		}
7419 		mddev->layout = conf->algorithm;
7420 		mddev->chunk_sectors = conf->chunk_sectors;
7421 		mddev->reshape_position = MaxSector;
7422 		mddev->delta_disks = 0;
7423 		mddev->reshape_backwards = 0;
7424 	}
7425 }
7426 
7427 static void raid5_quiesce(struct mddev *mddev, int state)
7428 {
7429 	struct r5conf *conf = mddev->private;
7430 
7431 	switch(state) {
7432 	case 2: /* resume for a suspend */
7433 		wake_up(&conf->wait_for_overlap);
7434 		break;
7435 
7436 	case 1: /* stop all writes */
7437 		lock_all_device_hash_locks_irq(conf);
7438 		/* '2' tells resync/reshape to pause so that all
7439 		 * active stripes can drain
7440 		 */
7441 		conf->quiesce = 2;
7442 		wait_event_cmd(conf->wait_for_stripe,
7443 				    atomic_read(&conf->active_stripes) == 0 &&
7444 				    atomic_read(&conf->active_aligned_reads) == 0,
7445 				    unlock_all_device_hash_locks_irq(conf),
7446 				    lock_all_device_hash_locks_irq(conf));
7447 		conf->quiesce = 1;
7448 		unlock_all_device_hash_locks_irq(conf);
7449 		/* allow reshape to continue */
7450 		wake_up(&conf->wait_for_overlap);
7451 		break;
7452 
7453 	case 0: /* re-enable writes */
7454 		lock_all_device_hash_locks_irq(conf);
7455 		conf->quiesce = 0;
7456 		wake_up(&conf->wait_for_stripe);
7457 		wake_up(&conf->wait_for_overlap);
7458 		unlock_all_device_hash_locks_irq(conf);
7459 		break;
7460 	}
7461 }
7462 
7463 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7464 {
7465 	struct r0conf *raid0_conf = mddev->private;
7466 	sector_t sectors;
7467 
7468 	/* for raid0 takeover only one zone is supported */
7469 	if (raid0_conf->nr_strip_zones > 1) {
7470 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7471 		       mdname(mddev));
7472 		return ERR_PTR(-EINVAL);
7473 	}
7474 
7475 	sectors = raid0_conf->strip_zone[0].zone_end;
7476 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7477 	mddev->dev_sectors = sectors;
7478 	mddev->new_level = level;
7479 	mddev->new_layout = ALGORITHM_PARITY_N;
7480 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7481 	mddev->raid_disks += 1;
7482 	mddev->delta_disks = 1;
7483 	/* make sure it will be not marked as dirty */
7484 	mddev->recovery_cp = MaxSector;
7485 
7486 	return setup_conf(mddev);
7487 }
7488 
7489 static void *raid5_takeover_raid1(struct mddev *mddev)
7490 {
7491 	int chunksect;
7492 
7493 	if (mddev->raid_disks != 2 ||
7494 	    mddev->degraded > 1)
7495 		return ERR_PTR(-EINVAL);
7496 
7497 	/* Should check if there are write-behind devices? */
7498 
7499 	chunksect = 64*2; /* 64K by default */
7500 
7501 	/* The array must be an exact multiple of chunksize */
7502 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7503 		chunksect >>= 1;
7504 
7505 	if ((chunksect<<9) < STRIPE_SIZE)
7506 		/* array size does not allow a suitable chunk size */
7507 		return ERR_PTR(-EINVAL);
7508 
7509 	mddev->new_level = 5;
7510 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7511 	mddev->new_chunk_sectors = chunksect;
7512 
7513 	return setup_conf(mddev);
7514 }
7515 
7516 static void *raid5_takeover_raid6(struct mddev *mddev)
7517 {
7518 	int new_layout;
7519 
7520 	switch (mddev->layout) {
7521 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7522 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7523 		break;
7524 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7525 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7526 		break;
7527 	case ALGORITHM_LEFT_SYMMETRIC_6:
7528 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7529 		break;
7530 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7531 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7532 		break;
7533 	case ALGORITHM_PARITY_0_6:
7534 		new_layout = ALGORITHM_PARITY_0;
7535 		break;
7536 	case ALGORITHM_PARITY_N:
7537 		new_layout = ALGORITHM_PARITY_N;
7538 		break;
7539 	default:
7540 		return ERR_PTR(-EINVAL);
7541 	}
7542 	mddev->new_level = 5;
7543 	mddev->new_layout = new_layout;
7544 	mddev->delta_disks = -1;
7545 	mddev->raid_disks -= 1;
7546 	return setup_conf(mddev);
7547 }
7548 
7549 static int raid5_check_reshape(struct mddev *mddev)
7550 {
7551 	/* For a 2-drive array, the layout and chunk size can be changed
7552 	 * immediately as not restriping is needed.
7553 	 * For larger arrays we record the new value - after validation
7554 	 * to be used by a reshape pass.
7555 	 */
7556 	struct r5conf *conf = mddev->private;
7557 	int new_chunk = mddev->new_chunk_sectors;
7558 
7559 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7560 		return -EINVAL;
7561 	if (new_chunk > 0) {
7562 		if (!is_power_of_2(new_chunk))
7563 			return -EINVAL;
7564 		if (new_chunk < (PAGE_SIZE>>9))
7565 			return -EINVAL;
7566 		if (mddev->array_sectors & (new_chunk-1))
7567 			/* not factor of array size */
7568 			return -EINVAL;
7569 	}
7570 
7571 	/* They look valid */
7572 
7573 	if (mddev->raid_disks == 2) {
7574 		/* can make the change immediately */
7575 		if (mddev->new_layout >= 0) {
7576 			conf->algorithm = mddev->new_layout;
7577 			mddev->layout = mddev->new_layout;
7578 		}
7579 		if (new_chunk > 0) {
7580 			conf->chunk_sectors = new_chunk ;
7581 			mddev->chunk_sectors = new_chunk;
7582 		}
7583 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7584 		md_wakeup_thread(mddev->thread);
7585 	}
7586 	return check_reshape(mddev);
7587 }
7588 
7589 static int raid6_check_reshape(struct mddev *mddev)
7590 {
7591 	int new_chunk = mddev->new_chunk_sectors;
7592 
7593 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7594 		return -EINVAL;
7595 	if (new_chunk > 0) {
7596 		if (!is_power_of_2(new_chunk))
7597 			return -EINVAL;
7598 		if (new_chunk < (PAGE_SIZE >> 9))
7599 			return -EINVAL;
7600 		if (mddev->array_sectors & (new_chunk-1))
7601 			/* not factor of array size */
7602 			return -EINVAL;
7603 	}
7604 
7605 	/* They look valid */
7606 	return check_reshape(mddev);
7607 }
7608 
7609 static void *raid5_takeover(struct mddev *mddev)
7610 {
7611 	/* raid5 can take over:
7612 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7613 	 *  raid1 - if there are two drives.  We need to know the chunk size
7614 	 *  raid4 - trivial - just use a raid4 layout.
7615 	 *  raid6 - Providing it is a *_6 layout
7616 	 */
7617 	if (mddev->level == 0)
7618 		return raid45_takeover_raid0(mddev, 5);
7619 	if (mddev->level == 1)
7620 		return raid5_takeover_raid1(mddev);
7621 	if (mddev->level == 4) {
7622 		mddev->new_layout = ALGORITHM_PARITY_N;
7623 		mddev->new_level = 5;
7624 		return setup_conf(mddev);
7625 	}
7626 	if (mddev->level == 6)
7627 		return raid5_takeover_raid6(mddev);
7628 
7629 	return ERR_PTR(-EINVAL);
7630 }
7631 
7632 static void *raid4_takeover(struct mddev *mddev)
7633 {
7634 	/* raid4 can take over:
7635 	 *  raid0 - if there is only one strip zone
7636 	 *  raid5 - if layout is right
7637 	 */
7638 	if (mddev->level == 0)
7639 		return raid45_takeover_raid0(mddev, 4);
7640 	if (mddev->level == 5 &&
7641 	    mddev->layout == ALGORITHM_PARITY_N) {
7642 		mddev->new_layout = 0;
7643 		mddev->new_level = 4;
7644 		return setup_conf(mddev);
7645 	}
7646 	return ERR_PTR(-EINVAL);
7647 }
7648 
7649 static struct md_personality raid5_personality;
7650 
7651 static void *raid6_takeover(struct mddev *mddev)
7652 {
7653 	/* Currently can only take over a raid5.  We map the
7654 	 * personality to an equivalent raid6 personality
7655 	 * with the Q block at the end.
7656 	 */
7657 	int new_layout;
7658 
7659 	if (mddev->pers != &raid5_personality)
7660 		return ERR_PTR(-EINVAL);
7661 	if (mddev->degraded > 1)
7662 		return ERR_PTR(-EINVAL);
7663 	if (mddev->raid_disks > 253)
7664 		return ERR_PTR(-EINVAL);
7665 	if (mddev->raid_disks < 3)
7666 		return ERR_PTR(-EINVAL);
7667 
7668 	switch (mddev->layout) {
7669 	case ALGORITHM_LEFT_ASYMMETRIC:
7670 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7671 		break;
7672 	case ALGORITHM_RIGHT_ASYMMETRIC:
7673 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7674 		break;
7675 	case ALGORITHM_LEFT_SYMMETRIC:
7676 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7677 		break;
7678 	case ALGORITHM_RIGHT_SYMMETRIC:
7679 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7680 		break;
7681 	case ALGORITHM_PARITY_0:
7682 		new_layout = ALGORITHM_PARITY_0_6;
7683 		break;
7684 	case ALGORITHM_PARITY_N:
7685 		new_layout = ALGORITHM_PARITY_N;
7686 		break;
7687 	default:
7688 		return ERR_PTR(-EINVAL);
7689 	}
7690 	mddev->new_level = 6;
7691 	mddev->new_layout = new_layout;
7692 	mddev->delta_disks = 1;
7693 	mddev->raid_disks += 1;
7694 	return setup_conf(mddev);
7695 }
7696 
7697 static struct md_personality raid6_personality =
7698 {
7699 	.name		= "raid6",
7700 	.level		= 6,
7701 	.owner		= THIS_MODULE,
7702 	.make_request	= make_request,
7703 	.run		= run,
7704 	.free		= raid5_free,
7705 	.status		= status,
7706 	.error_handler	= error,
7707 	.hot_add_disk	= raid5_add_disk,
7708 	.hot_remove_disk= raid5_remove_disk,
7709 	.spare_active	= raid5_spare_active,
7710 	.sync_request	= sync_request,
7711 	.resize		= raid5_resize,
7712 	.size		= raid5_size,
7713 	.check_reshape	= raid6_check_reshape,
7714 	.start_reshape  = raid5_start_reshape,
7715 	.finish_reshape = raid5_finish_reshape,
7716 	.quiesce	= raid5_quiesce,
7717 	.takeover	= raid6_takeover,
7718 	.congested	= raid5_congested,
7719 	.mergeable_bvec	= raid5_mergeable_bvec,
7720 };
7721 static struct md_personality raid5_personality =
7722 {
7723 	.name		= "raid5",
7724 	.level		= 5,
7725 	.owner		= THIS_MODULE,
7726 	.make_request	= make_request,
7727 	.run		= run,
7728 	.free		= raid5_free,
7729 	.status		= status,
7730 	.error_handler	= error,
7731 	.hot_add_disk	= raid5_add_disk,
7732 	.hot_remove_disk= raid5_remove_disk,
7733 	.spare_active	= raid5_spare_active,
7734 	.sync_request	= sync_request,
7735 	.resize		= raid5_resize,
7736 	.size		= raid5_size,
7737 	.check_reshape	= raid5_check_reshape,
7738 	.start_reshape  = raid5_start_reshape,
7739 	.finish_reshape = raid5_finish_reshape,
7740 	.quiesce	= raid5_quiesce,
7741 	.takeover	= raid5_takeover,
7742 	.congested	= raid5_congested,
7743 	.mergeable_bvec	= raid5_mergeable_bvec,
7744 };
7745 
7746 static struct md_personality raid4_personality =
7747 {
7748 	.name		= "raid4",
7749 	.level		= 4,
7750 	.owner		= THIS_MODULE,
7751 	.make_request	= make_request,
7752 	.run		= run,
7753 	.free		= raid5_free,
7754 	.status		= status,
7755 	.error_handler	= error,
7756 	.hot_add_disk	= raid5_add_disk,
7757 	.hot_remove_disk= raid5_remove_disk,
7758 	.spare_active	= raid5_spare_active,
7759 	.sync_request	= sync_request,
7760 	.resize		= raid5_resize,
7761 	.size		= raid5_size,
7762 	.check_reshape	= raid5_check_reshape,
7763 	.start_reshape  = raid5_start_reshape,
7764 	.finish_reshape = raid5_finish_reshape,
7765 	.quiesce	= raid5_quiesce,
7766 	.takeover	= raid4_takeover,
7767 	.congested	= raid5_congested,
7768 	.mergeable_bvec	= raid5_mergeable_bvec,
7769 };
7770 
7771 static int __init raid5_init(void)
7772 {
7773 	raid5_wq = alloc_workqueue("raid5wq",
7774 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7775 	if (!raid5_wq)
7776 		return -ENOMEM;
7777 	register_md_personality(&raid6_personality);
7778 	register_md_personality(&raid5_personality);
7779 	register_md_personality(&raid4_personality);
7780 	return 0;
7781 }
7782 
7783 static void raid5_exit(void)
7784 {
7785 	unregister_md_personality(&raid6_personality);
7786 	unregister_md_personality(&raid5_personality);
7787 	unregister_md_personality(&raid4_personality);
7788 	destroy_workqueue(raid5_wq);
7789 }
7790 
7791 module_init(raid5_init);
7792 module_exit(raid5_exit);
7793 MODULE_LICENSE("GPL");
7794 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7795 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7796 MODULE_ALIAS("md-raid5");
7797 MODULE_ALIAS("md-raid4");
7798 MODULE_ALIAS("md-level-5");
7799 MODULE_ALIAS("md-level-4");
7800 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7801 MODULE_ALIAS("md-raid6");
7802 MODULE_ALIAS("md-level-6");
7803 
7804 /* This used to be two separate modules, they were: */
7805 MODULE_ALIAS("raid5");
7806 MODULE_ALIAS("raid6");
7807