xref: /openbmc/linux/drivers/md/raid5.c (revision c819e2cf)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58 
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63 
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66 
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
72 /*
73  * Stripe cache
74  */
75 
76 #define NR_STRIPES		256
77 #define STRIPE_SIZE		PAGE_SIZE
78 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
79 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
80 #define	IO_THRESHOLD		1
81 #define BYPASS_THRESHOLD	1
82 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
83 #define HASH_MASK		(NR_HASH - 1)
84 #define MAX_STRIPE_BATCH	8
85 
86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
87 {
88 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89 	return &conf->stripe_hashtbl[hash];
90 }
91 
92 static inline int stripe_hash_locks_hash(sector_t sect)
93 {
94 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
95 }
96 
97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 	spin_lock_irq(conf->hash_locks + hash);
100 	spin_lock(&conf->device_lock);
101 }
102 
103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
104 {
105 	spin_unlock(&conf->device_lock);
106 	spin_unlock_irq(conf->hash_locks + hash);
107 }
108 
109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111 	int i;
112 	local_irq_disable();
113 	spin_lock(conf->hash_locks);
114 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116 	spin_lock(&conf->device_lock);
117 }
118 
119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120 {
121 	int i;
122 	spin_unlock(&conf->device_lock);
123 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124 		spin_unlock(conf->hash_locks + i - 1);
125 	local_irq_enable();
126 }
127 
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129  * order without overlap.  There may be several bio's per stripe+device, and
130  * a bio could span several devices.
131  * When walking this list for a particular stripe+device, we must never proceed
132  * beyond a bio that extends past this device, as the next bio might no longer
133  * be valid.
134  * This function is used to determine the 'next' bio in the list, given the sector
135  * of the current stripe+device
136  */
137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138 {
139 	int sectors = bio_sectors(bio);
140 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141 		return bio->bi_next;
142 	else
143 		return NULL;
144 }
145 
146 /*
147  * We maintain a biased count of active stripes in the bottom 16 bits of
148  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149  */
150 static inline int raid5_bi_processed_stripes(struct bio *bio)
151 {
152 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153 	return (atomic_read(segments) >> 16) & 0xffff;
154 }
155 
156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157 {
158 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159 	return atomic_sub_return(1, segments) & 0xffff;
160 }
161 
162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163 {
164 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165 	atomic_inc(segments);
166 }
167 
168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169 	unsigned int cnt)
170 {
171 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172 	int old, new;
173 
174 	do {
175 		old = atomic_read(segments);
176 		new = (old & 0xffff) | (cnt << 16);
177 	} while (atomic_cmpxchg(segments, old, new) != old);
178 }
179 
180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181 {
182 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183 	atomic_set(segments, cnt);
184 }
185 
186 /* Find first data disk in a raid6 stripe */
187 static inline int raid6_d0(struct stripe_head *sh)
188 {
189 	if (sh->ddf_layout)
190 		/* ddf always start from first device */
191 		return 0;
192 	/* md starts just after Q block */
193 	if (sh->qd_idx == sh->disks - 1)
194 		return 0;
195 	else
196 		return sh->qd_idx + 1;
197 }
198 static inline int raid6_next_disk(int disk, int raid_disks)
199 {
200 	disk++;
201 	return (disk < raid_disks) ? disk : 0;
202 }
203 
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205  * We need to map each disk to a 'slot', where the data disks are slot
206  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207  * is raid_disks-1.  This help does that mapping.
208  */
209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210 			     int *count, int syndrome_disks)
211 {
212 	int slot = *count;
213 
214 	if (sh->ddf_layout)
215 		(*count)++;
216 	if (idx == sh->pd_idx)
217 		return syndrome_disks;
218 	if (idx == sh->qd_idx)
219 		return syndrome_disks + 1;
220 	if (!sh->ddf_layout)
221 		(*count)++;
222 	return slot;
223 }
224 
225 static void return_io(struct bio *return_bi)
226 {
227 	struct bio *bi = return_bi;
228 	while (bi) {
229 
230 		return_bi = bi->bi_next;
231 		bi->bi_next = NULL;
232 		bi->bi_iter.bi_size = 0;
233 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
234 					 bi, 0);
235 		bio_endio(bi, 0);
236 		bi = return_bi;
237 	}
238 }
239 
240 static void print_raid5_conf (struct r5conf *conf);
241 
242 static int stripe_operations_active(struct stripe_head *sh)
243 {
244 	return sh->check_state || sh->reconstruct_state ||
245 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
247 }
248 
249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
250 {
251 	struct r5conf *conf = sh->raid_conf;
252 	struct r5worker_group *group;
253 	int thread_cnt;
254 	int i, cpu = sh->cpu;
255 
256 	if (!cpu_online(cpu)) {
257 		cpu = cpumask_any(cpu_online_mask);
258 		sh->cpu = cpu;
259 	}
260 
261 	if (list_empty(&sh->lru)) {
262 		struct r5worker_group *group;
263 		group = conf->worker_groups + cpu_to_group(cpu);
264 		list_add_tail(&sh->lru, &group->handle_list);
265 		group->stripes_cnt++;
266 		sh->group = group;
267 	}
268 
269 	if (conf->worker_cnt_per_group == 0) {
270 		md_wakeup_thread(conf->mddev->thread);
271 		return;
272 	}
273 
274 	group = conf->worker_groups + cpu_to_group(sh->cpu);
275 
276 	group->workers[0].working = true;
277 	/* at least one worker should run to avoid race */
278 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
279 
280 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281 	/* wakeup more workers */
282 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283 		if (group->workers[i].working == false) {
284 			group->workers[i].working = true;
285 			queue_work_on(sh->cpu, raid5_wq,
286 				      &group->workers[i].work);
287 			thread_cnt--;
288 		}
289 	}
290 }
291 
292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293 			      struct list_head *temp_inactive_list)
294 {
295 	BUG_ON(!list_empty(&sh->lru));
296 	BUG_ON(atomic_read(&conf->active_stripes)==0);
297 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
298 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
299 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
300 			list_add_tail(&sh->lru, &conf->delayed_list);
301 			if (atomic_read(&conf->preread_active_stripes)
302 			    < IO_THRESHOLD)
303 				md_wakeup_thread(conf->mddev->thread);
304 		} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
305 			   sh->bm_seq - conf->seq_write > 0)
306 			list_add_tail(&sh->lru, &conf->bitmap_list);
307 		else {
308 			clear_bit(STRIPE_DELAYED, &sh->state);
309 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
310 			if (conf->worker_cnt_per_group == 0) {
311 				list_add_tail(&sh->lru, &conf->handle_list);
312 			} else {
313 				raid5_wakeup_stripe_thread(sh);
314 				return;
315 			}
316 		}
317 		md_wakeup_thread(conf->mddev->thread);
318 	} else {
319 		BUG_ON(stripe_operations_active(sh));
320 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
321 			if (atomic_dec_return(&conf->preread_active_stripes)
322 			    < IO_THRESHOLD)
323 				md_wakeup_thread(conf->mddev->thread);
324 		atomic_dec(&conf->active_stripes);
325 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
326 			list_add_tail(&sh->lru, temp_inactive_list);
327 	}
328 }
329 
330 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
331 			     struct list_head *temp_inactive_list)
332 {
333 	if (atomic_dec_and_test(&sh->count))
334 		do_release_stripe(conf, sh, temp_inactive_list);
335 }
336 
337 /*
338  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
339  *
340  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
341  * given time. Adding stripes only takes device lock, while deleting stripes
342  * only takes hash lock.
343  */
344 static void release_inactive_stripe_list(struct r5conf *conf,
345 					 struct list_head *temp_inactive_list,
346 					 int hash)
347 {
348 	int size;
349 	bool do_wakeup = false;
350 	unsigned long flags;
351 
352 	if (hash == NR_STRIPE_HASH_LOCKS) {
353 		size = NR_STRIPE_HASH_LOCKS;
354 		hash = NR_STRIPE_HASH_LOCKS - 1;
355 	} else
356 		size = 1;
357 	while (size) {
358 		struct list_head *list = &temp_inactive_list[size - 1];
359 
360 		/*
361 		 * We don't hold any lock here yet, get_active_stripe() might
362 		 * remove stripes from the list
363 		 */
364 		if (!list_empty_careful(list)) {
365 			spin_lock_irqsave(conf->hash_locks + hash, flags);
366 			if (list_empty(conf->inactive_list + hash) &&
367 			    !list_empty(list))
368 				atomic_dec(&conf->empty_inactive_list_nr);
369 			list_splice_tail_init(list, conf->inactive_list + hash);
370 			do_wakeup = true;
371 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
372 		}
373 		size--;
374 		hash--;
375 	}
376 
377 	if (do_wakeup) {
378 		wake_up(&conf->wait_for_stripe);
379 		if (conf->retry_read_aligned)
380 			md_wakeup_thread(conf->mddev->thread);
381 	}
382 }
383 
384 /* should hold conf->device_lock already */
385 static int release_stripe_list(struct r5conf *conf,
386 			       struct list_head *temp_inactive_list)
387 {
388 	struct stripe_head *sh;
389 	int count = 0;
390 	struct llist_node *head;
391 
392 	head = llist_del_all(&conf->released_stripes);
393 	head = llist_reverse_order(head);
394 	while (head) {
395 		int hash;
396 
397 		sh = llist_entry(head, struct stripe_head, release_list);
398 		head = llist_next(head);
399 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
400 		smp_mb();
401 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
402 		/*
403 		 * Don't worry the bit is set here, because if the bit is set
404 		 * again, the count is always > 1. This is true for
405 		 * STRIPE_ON_UNPLUG_LIST bit too.
406 		 */
407 		hash = sh->hash_lock_index;
408 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
409 		count++;
410 	}
411 
412 	return count;
413 }
414 
415 static void release_stripe(struct stripe_head *sh)
416 {
417 	struct r5conf *conf = sh->raid_conf;
418 	unsigned long flags;
419 	struct list_head list;
420 	int hash;
421 	bool wakeup;
422 
423 	/* Avoid release_list until the last reference.
424 	 */
425 	if (atomic_add_unless(&sh->count, -1, 1))
426 		return;
427 
428 	if (unlikely(!conf->mddev->thread) ||
429 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
430 		goto slow_path;
431 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
432 	if (wakeup)
433 		md_wakeup_thread(conf->mddev->thread);
434 	return;
435 slow_path:
436 	local_irq_save(flags);
437 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
438 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
439 		INIT_LIST_HEAD(&list);
440 		hash = sh->hash_lock_index;
441 		do_release_stripe(conf, sh, &list);
442 		spin_unlock(&conf->device_lock);
443 		release_inactive_stripe_list(conf, &list, hash);
444 	}
445 	local_irq_restore(flags);
446 }
447 
448 static inline void remove_hash(struct stripe_head *sh)
449 {
450 	pr_debug("remove_hash(), stripe %llu\n",
451 		(unsigned long long)sh->sector);
452 
453 	hlist_del_init(&sh->hash);
454 }
455 
456 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
457 {
458 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
459 
460 	pr_debug("insert_hash(), stripe %llu\n",
461 		(unsigned long long)sh->sector);
462 
463 	hlist_add_head(&sh->hash, hp);
464 }
465 
466 /* find an idle stripe, make sure it is unhashed, and return it. */
467 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
468 {
469 	struct stripe_head *sh = NULL;
470 	struct list_head *first;
471 
472 	if (list_empty(conf->inactive_list + hash))
473 		goto out;
474 	first = (conf->inactive_list + hash)->next;
475 	sh = list_entry(first, struct stripe_head, lru);
476 	list_del_init(first);
477 	remove_hash(sh);
478 	atomic_inc(&conf->active_stripes);
479 	BUG_ON(hash != sh->hash_lock_index);
480 	if (list_empty(conf->inactive_list + hash))
481 		atomic_inc(&conf->empty_inactive_list_nr);
482 out:
483 	return sh;
484 }
485 
486 static void shrink_buffers(struct stripe_head *sh)
487 {
488 	struct page *p;
489 	int i;
490 	int num = sh->raid_conf->pool_size;
491 
492 	for (i = 0; i < num ; i++) {
493 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
494 		p = sh->dev[i].page;
495 		if (!p)
496 			continue;
497 		sh->dev[i].page = NULL;
498 		put_page(p);
499 	}
500 }
501 
502 static int grow_buffers(struct stripe_head *sh)
503 {
504 	int i;
505 	int num = sh->raid_conf->pool_size;
506 
507 	for (i = 0; i < num; i++) {
508 		struct page *page;
509 
510 		if (!(page = alloc_page(GFP_KERNEL))) {
511 			return 1;
512 		}
513 		sh->dev[i].page = page;
514 		sh->dev[i].orig_page = page;
515 	}
516 	return 0;
517 }
518 
519 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
520 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
521 			    struct stripe_head *sh);
522 
523 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
524 {
525 	struct r5conf *conf = sh->raid_conf;
526 	int i, seq;
527 
528 	BUG_ON(atomic_read(&sh->count) != 0);
529 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
530 	BUG_ON(stripe_operations_active(sh));
531 
532 	pr_debug("init_stripe called, stripe %llu\n",
533 		(unsigned long long)sector);
534 retry:
535 	seq = read_seqcount_begin(&conf->gen_lock);
536 	sh->generation = conf->generation - previous;
537 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
538 	sh->sector = sector;
539 	stripe_set_idx(sector, conf, previous, sh);
540 	sh->state = 0;
541 
542 	for (i = sh->disks; i--; ) {
543 		struct r5dev *dev = &sh->dev[i];
544 
545 		if (dev->toread || dev->read || dev->towrite || dev->written ||
546 		    test_bit(R5_LOCKED, &dev->flags)) {
547 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
548 			       (unsigned long long)sh->sector, i, dev->toread,
549 			       dev->read, dev->towrite, dev->written,
550 			       test_bit(R5_LOCKED, &dev->flags));
551 			WARN_ON(1);
552 		}
553 		dev->flags = 0;
554 		raid5_build_block(sh, i, previous);
555 	}
556 	if (read_seqcount_retry(&conf->gen_lock, seq))
557 		goto retry;
558 	insert_hash(conf, sh);
559 	sh->cpu = smp_processor_id();
560 }
561 
562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
563 					 short generation)
564 {
565 	struct stripe_head *sh;
566 
567 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
568 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
569 		if (sh->sector == sector && sh->generation == generation)
570 			return sh;
571 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
572 	return NULL;
573 }
574 
575 /*
576  * Need to check if array has failed when deciding whether to:
577  *  - start an array
578  *  - remove non-faulty devices
579  *  - add a spare
580  *  - allow a reshape
581  * This determination is simple when no reshape is happening.
582  * However if there is a reshape, we need to carefully check
583  * both the before and after sections.
584  * This is because some failed devices may only affect one
585  * of the two sections, and some non-in_sync devices may
586  * be insync in the section most affected by failed devices.
587  */
588 static int calc_degraded(struct r5conf *conf)
589 {
590 	int degraded, degraded2;
591 	int i;
592 
593 	rcu_read_lock();
594 	degraded = 0;
595 	for (i = 0; i < conf->previous_raid_disks; i++) {
596 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
597 		if (rdev && test_bit(Faulty, &rdev->flags))
598 			rdev = rcu_dereference(conf->disks[i].replacement);
599 		if (!rdev || test_bit(Faulty, &rdev->flags))
600 			degraded++;
601 		else if (test_bit(In_sync, &rdev->flags))
602 			;
603 		else
604 			/* not in-sync or faulty.
605 			 * If the reshape increases the number of devices,
606 			 * this is being recovered by the reshape, so
607 			 * this 'previous' section is not in_sync.
608 			 * If the number of devices is being reduced however,
609 			 * the device can only be part of the array if
610 			 * we are reverting a reshape, so this section will
611 			 * be in-sync.
612 			 */
613 			if (conf->raid_disks >= conf->previous_raid_disks)
614 				degraded++;
615 	}
616 	rcu_read_unlock();
617 	if (conf->raid_disks == conf->previous_raid_disks)
618 		return degraded;
619 	rcu_read_lock();
620 	degraded2 = 0;
621 	for (i = 0; i < conf->raid_disks; i++) {
622 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
623 		if (rdev && test_bit(Faulty, &rdev->flags))
624 			rdev = rcu_dereference(conf->disks[i].replacement);
625 		if (!rdev || test_bit(Faulty, &rdev->flags))
626 			degraded2++;
627 		else if (test_bit(In_sync, &rdev->flags))
628 			;
629 		else
630 			/* not in-sync or faulty.
631 			 * If reshape increases the number of devices, this
632 			 * section has already been recovered, else it
633 			 * almost certainly hasn't.
634 			 */
635 			if (conf->raid_disks <= conf->previous_raid_disks)
636 				degraded2++;
637 	}
638 	rcu_read_unlock();
639 	if (degraded2 > degraded)
640 		return degraded2;
641 	return degraded;
642 }
643 
644 static int has_failed(struct r5conf *conf)
645 {
646 	int degraded;
647 
648 	if (conf->mddev->reshape_position == MaxSector)
649 		return conf->mddev->degraded > conf->max_degraded;
650 
651 	degraded = calc_degraded(conf);
652 	if (degraded > conf->max_degraded)
653 		return 1;
654 	return 0;
655 }
656 
657 static struct stripe_head *
658 get_active_stripe(struct r5conf *conf, sector_t sector,
659 		  int previous, int noblock, int noquiesce)
660 {
661 	struct stripe_head *sh;
662 	int hash = stripe_hash_locks_hash(sector);
663 
664 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665 
666 	spin_lock_irq(conf->hash_locks + hash);
667 
668 	do {
669 		wait_event_lock_irq(conf->wait_for_stripe,
670 				    conf->quiesce == 0 || noquiesce,
671 				    *(conf->hash_locks + hash));
672 		sh = __find_stripe(conf, sector, conf->generation - previous);
673 		if (!sh) {
674 			if (!conf->inactive_blocked)
675 				sh = get_free_stripe(conf, hash);
676 			if (noblock && sh == NULL)
677 				break;
678 			if (!sh) {
679 				conf->inactive_blocked = 1;
680 				wait_event_lock_irq(
681 					conf->wait_for_stripe,
682 					!list_empty(conf->inactive_list + hash) &&
683 					(atomic_read(&conf->active_stripes)
684 					 < (conf->max_nr_stripes * 3 / 4)
685 					 || !conf->inactive_blocked),
686 					*(conf->hash_locks + hash));
687 				conf->inactive_blocked = 0;
688 			} else {
689 				init_stripe(sh, sector, previous);
690 				atomic_inc(&sh->count);
691 			}
692 		} else if (!atomic_inc_not_zero(&sh->count)) {
693 			spin_lock(&conf->device_lock);
694 			if (!atomic_read(&sh->count)) {
695 				if (!test_bit(STRIPE_HANDLE, &sh->state))
696 					atomic_inc(&conf->active_stripes);
697 				BUG_ON(list_empty(&sh->lru) &&
698 				       !test_bit(STRIPE_EXPANDING, &sh->state));
699 				list_del_init(&sh->lru);
700 				if (sh->group) {
701 					sh->group->stripes_cnt--;
702 					sh->group = NULL;
703 				}
704 			}
705 			atomic_inc(&sh->count);
706 			spin_unlock(&conf->device_lock);
707 		}
708 	} while (sh == NULL);
709 
710 	spin_unlock_irq(conf->hash_locks + hash);
711 	return sh;
712 }
713 
714 /* Determine if 'data_offset' or 'new_data_offset' should be used
715  * in this stripe_head.
716  */
717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
718 {
719 	sector_t progress = conf->reshape_progress;
720 	/* Need a memory barrier to make sure we see the value
721 	 * of conf->generation, or ->data_offset that was set before
722 	 * reshape_progress was updated.
723 	 */
724 	smp_rmb();
725 	if (progress == MaxSector)
726 		return 0;
727 	if (sh->generation == conf->generation - 1)
728 		return 0;
729 	/* We are in a reshape, and this is a new-generation stripe,
730 	 * so use new_data_offset.
731 	 */
732 	return 1;
733 }
734 
735 static void
736 raid5_end_read_request(struct bio *bi, int error);
737 static void
738 raid5_end_write_request(struct bio *bi, int error);
739 
740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
741 {
742 	struct r5conf *conf = sh->raid_conf;
743 	int i, disks = sh->disks;
744 
745 	might_sleep();
746 
747 	for (i = disks; i--; ) {
748 		int rw;
749 		int replace_only = 0;
750 		struct bio *bi, *rbi;
751 		struct md_rdev *rdev, *rrdev = NULL;
752 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
753 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
754 				rw = WRITE_FUA;
755 			else
756 				rw = WRITE;
757 			if (test_bit(R5_Discard, &sh->dev[i].flags))
758 				rw |= REQ_DISCARD;
759 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
760 			rw = READ;
761 		else if (test_and_clear_bit(R5_WantReplace,
762 					    &sh->dev[i].flags)) {
763 			rw = WRITE;
764 			replace_only = 1;
765 		} else
766 			continue;
767 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
768 			rw |= REQ_SYNC;
769 
770 		bi = &sh->dev[i].req;
771 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
772 
773 		rcu_read_lock();
774 		rrdev = rcu_dereference(conf->disks[i].replacement);
775 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
776 		rdev = rcu_dereference(conf->disks[i].rdev);
777 		if (!rdev) {
778 			rdev = rrdev;
779 			rrdev = NULL;
780 		}
781 		if (rw & WRITE) {
782 			if (replace_only)
783 				rdev = NULL;
784 			if (rdev == rrdev)
785 				/* We raced and saw duplicates */
786 				rrdev = NULL;
787 		} else {
788 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
789 				rdev = rrdev;
790 			rrdev = NULL;
791 		}
792 
793 		if (rdev && test_bit(Faulty, &rdev->flags))
794 			rdev = NULL;
795 		if (rdev)
796 			atomic_inc(&rdev->nr_pending);
797 		if (rrdev && test_bit(Faulty, &rrdev->flags))
798 			rrdev = NULL;
799 		if (rrdev)
800 			atomic_inc(&rrdev->nr_pending);
801 		rcu_read_unlock();
802 
803 		/* We have already checked bad blocks for reads.  Now
804 		 * need to check for writes.  We never accept write errors
805 		 * on the replacement, so we don't to check rrdev.
806 		 */
807 		while ((rw & WRITE) && rdev &&
808 		       test_bit(WriteErrorSeen, &rdev->flags)) {
809 			sector_t first_bad;
810 			int bad_sectors;
811 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
812 					      &first_bad, &bad_sectors);
813 			if (!bad)
814 				break;
815 
816 			if (bad < 0) {
817 				set_bit(BlockedBadBlocks, &rdev->flags);
818 				if (!conf->mddev->external &&
819 				    conf->mddev->flags) {
820 					/* It is very unlikely, but we might
821 					 * still need to write out the
822 					 * bad block log - better give it
823 					 * a chance*/
824 					md_check_recovery(conf->mddev);
825 				}
826 				/*
827 				 * Because md_wait_for_blocked_rdev
828 				 * will dec nr_pending, we must
829 				 * increment it first.
830 				 */
831 				atomic_inc(&rdev->nr_pending);
832 				md_wait_for_blocked_rdev(rdev, conf->mddev);
833 			} else {
834 				/* Acknowledged bad block - skip the write */
835 				rdev_dec_pending(rdev, conf->mddev);
836 				rdev = NULL;
837 			}
838 		}
839 
840 		if (rdev) {
841 			if (s->syncing || s->expanding || s->expanded
842 			    || s->replacing)
843 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
844 
845 			set_bit(STRIPE_IO_STARTED, &sh->state);
846 
847 			bio_reset(bi);
848 			bi->bi_bdev = rdev->bdev;
849 			bi->bi_rw = rw;
850 			bi->bi_end_io = (rw & WRITE)
851 				? raid5_end_write_request
852 				: raid5_end_read_request;
853 			bi->bi_private = sh;
854 
855 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
856 				__func__, (unsigned long long)sh->sector,
857 				bi->bi_rw, i);
858 			atomic_inc(&sh->count);
859 			if (use_new_offset(conf, sh))
860 				bi->bi_iter.bi_sector = (sh->sector
861 						 + rdev->new_data_offset);
862 			else
863 				bi->bi_iter.bi_sector = (sh->sector
864 						 + rdev->data_offset);
865 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
866 				bi->bi_rw |= REQ_NOMERGE;
867 
868 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
869 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
870 			sh->dev[i].vec.bv_page = sh->dev[i].page;
871 			bi->bi_vcnt = 1;
872 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
873 			bi->bi_io_vec[0].bv_offset = 0;
874 			bi->bi_iter.bi_size = STRIPE_SIZE;
875 			/*
876 			 * If this is discard request, set bi_vcnt 0. We don't
877 			 * want to confuse SCSI because SCSI will replace payload
878 			 */
879 			if (rw & REQ_DISCARD)
880 				bi->bi_vcnt = 0;
881 			if (rrdev)
882 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
883 
884 			if (conf->mddev->gendisk)
885 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
886 						      bi, disk_devt(conf->mddev->gendisk),
887 						      sh->dev[i].sector);
888 			generic_make_request(bi);
889 		}
890 		if (rrdev) {
891 			if (s->syncing || s->expanding || s->expanded
892 			    || s->replacing)
893 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
894 
895 			set_bit(STRIPE_IO_STARTED, &sh->state);
896 
897 			bio_reset(rbi);
898 			rbi->bi_bdev = rrdev->bdev;
899 			rbi->bi_rw = rw;
900 			BUG_ON(!(rw & WRITE));
901 			rbi->bi_end_io = raid5_end_write_request;
902 			rbi->bi_private = sh;
903 
904 			pr_debug("%s: for %llu schedule op %ld on "
905 				 "replacement disc %d\n",
906 				__func__, (unsigned long long)sh->sector,
907 				rbi->bi_rw, i);
908 			atomic_inc(&sh->count);
909 			if (use_new_offset(conf, sh))
910 				rbi->bi_iter.bi_sector = (sh->sector
911 						  + rrdev->new_data_offset);
912 			else
913 				rbi->bi_iter.bi_sector = (sh->sector
914 						  + rrdev->data_offset);
915 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
916 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
917 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
918 			rbi->bi_vcnt = 1;
919 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
920 			rbi->bi_io_vec[0].bv_offset = 0;
921 			rbi->bi_iter.bi_size = STRIPE_SIZE;
922 			/*
923 			 * If this is discard request, set bi_vcnt 0. We don't
924 			 * want to confuse SCSI because SCSI will replace payload
925 			 */
926 			if (rw & REQ_DISCARD)
927 				rbi->bi_vcnt = 0;
928 			if (conf->mddev->gendisk)
929 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
930 						      rbi, disk_devt(conf->mddev->gendisk),
931 						      sh->dev[i].sector);
932 			generic_make_request(rbi);
933 		}
934 		if (!rdev && !rrdev) {
935 			if (rw & WRITE)
936 				set_bit(STRIPE_DEGRADED, &sh->state);
937 			pr_debug("skip op %ld on disc %d for sector %llu\n",
938 				bi->bi_rw, i, (unsigned long long)sh->sector);
939 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
940 			set_bit(STRIPE_HANDLE, &sh->state);
941 		}
942 	}
943 }
944 
945 static struct dma_async_tx_descriptor *
946 async_copy_data(int frombio, struct bio *bio, struct page **page,
947 	sector_t sector, struct dma_async_tx_descriptor *tx,
948 	struct stripe_head *sh)
949 {
950 	struct bio_vec bvl;
951 	struct bvec_iter iter;
952 	struct page *bio_page;
953 	int page_offset;
954 	struct async_submit_ctl submit;
955 	enum async_tx_flags flags = 0;
956 
957 	if (bio->bi_iter.bi_sector >= sector)
958 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
959 	else
960 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
961 
962 	if (frombio)
963 		flags |= ASYNC_TX_FENCE;
964 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
965 
966 	bio_for_each_segment(bvl, bio, iter) {
967 		int len = bvl.bv_len;
968 		int clen;
969 		int b_offset = 0;
970 
971 		if (page_offset < 0) {
972 			b_offset = -page_offset;
973 			page_offset += b_offset;
974 			len -= b_offset;
975 		}
976 
977 		if (len > 0 && page_offset + len > STRIPE_SIZE)
978 			clen = STRIPE_SIZE - page_offset;
979 		else
980 			clen = len;
981 
982 		if (clen > 0) {
983 			b_offset += bvl.bv_offset;
984 			bio_page = bvl.bv_page;
985 			if (frombio) {
986 				if (sh->raid_conf->skip_copy &&
987 				    b_offset == 0 && page_offset == 0 &&
988 				    clen == STRIPE_SIZE)
989 					*page = bio_page;
990 				else
991 					tx = async_memcpy(*page, bio_page, page_offset,
992 						  b_offset, clen, &submit);
993 			} else
994 				tx = async_memcpy(bio_page, *page, b_offset,
995 						  page_offset, clen, &submit);
996 		}
997 		/* chain the operations */
998 		submit.depend_tx = tx;
999 
1000 		if (clen < len) /* hit end of page */
1001 			break;
1002 		page_offset +=  len;
1003 	}
1004 
1005 	return tx;
1006 }
1007 
1008 static void ops_complete_biofill(void *stripe_head_ref)
1009 {
1010 	struct stripe_head *sh = stripe_head_ref;
1011 	struct bio *return_bi = NULL;
1012 	int i;
1013 
1014 	pr_debug("%s: stripe %llu\n", __func__,
1015 		(unsigned long long)sh->sector);
1016 
1017 	/* clear completed biofills */
1018 	for (i = sh->disks; i--; ) {
1019 		struct r5dev *dev = &sh->dev[i];
1020 
1021 		/* acknowledge completion of a biofill operation */
1022 		/* and check if we need to reply to a read request,
1023 		 * new R5_Wantfill requests are held off until
1024 		 * !STRIPE_BIOFILL_RUN
1025 		 */
1026 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027 			struct bio *rbi, *rbi2;
1028 
1029 			BUG_ON(!dev->read);
1030 			rbi = dev->read;
1031 			dev->read = NULL;
1032 			while (rbi && rbi->bi_iter.bi_sector <
1033 				dev->sector + STRIPE_SECTORS) {
1034 				rbi2 = r5_next_bio(rbi, dev->sector);
1035 				if (!raid5_dec_bi_active_stripes(rbi)) {
1036 					rbi->bi_next = return_bi;
1037 					return_bi = rbi;
1038 				}
1039 				rbi = rbi2;
1040 			}
1041 		}
1042 	}
1043 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1044 
1045 	return_io(return_bi);
1046 
1047 	set_bit(STRIPE_HANDLE, &sh->state);
1048 	release_stripe(sh);
1049 }
1050 
1051 static void ops_run_biofill(struct stripe_head *sh)
1052 {
1053 	struct dma_async_tx_descriptor *tx = NULL;
1054 	struct async_submit_ctl submit;
1055 	int i;
1056 
1057 	pr_debug("%s: stripe %llu\n", __func__,
1058 		(unsigned long long)sh->sector);
1059 
1060 	for (i = sh->disks; i--; ) {
1061 		struct r5dev *dev = &sh->dev[i];
1062 		if (test_bit(R5_Wantfill, &dev->flags)) {
1063 			struct bio *rbi;
1064 			spin_lock_irq(&sh->stripe_lock);
1065 			dev->read = rbi = dev->toread;
1066 			dev->toread = NULL;
1067 			spin_unlock_irq(&sh->stripe_lock);
1068 			while (rbi && rbi->bi_iter.bi_sector <
1069 				dev->sector + STRIPE_SECTORS) {
1070 				tx = async_copy_data(0, rbi, &dev->page,
1071 					dev->sector, tx, sh);
1072 				rbi = r5_next_bio(rbi, dev->sector);
1073 			}
1074 		}
1075 	}
1076 
1077 	atomic_inc(&sh->count);
1078 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079 	async_trigger_callback(&submit);
1080 }
1081 
1082 static void mark_target_uptodate(struct stripe_head *sh, int target)
1083 {
1084 	struct r5dev *tgt;
1085 
1086 	if (target < 0)
1087 		return;
1088 
1089 	tgt = &sh->dev[target];
1090 	set_bit(R5_UPTODATE, &tgt->flags);
1091 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092 	clear_bit(R5_Wantcompute, &tgt->flags);
1093 }
1094 
1095 static void ops_complete_compute(void *stripe_head_ref)
1096 {
1097 	struct stripe_head *sh = stripe_head_ref;
1098 
1099 	pr_debug("%s: stripe %llu\n", __func__,
1100 		(unsigned long long)sh->sector);
1101 
1102 	/* mark the computed target(s) as uptodate */
1103 	mark_target_uptodate(sh, sh->ops.target);
1104 	mark_target_uptodate(sh, sh->ops.target2);
1105 
1106 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107 	if (sh->check_state == check_state_compute_run)
1108 		sh->check_state = check_state_compute_result;
1109 	set_bit(STRIPE_HANDLE, &sh->state);
1110 	release_stripe(sh);
1111 }
1112 
1113 /* return a pointer to the address conversion region of the scribble buffer */
1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115 				 struct raid5_percpu *percpu)
1116 {
1117 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1118 }
1119 
1120 static struct dma_async_tx_descriptor *
1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1122 {
1123 	int disks = sh->disks;
1124 	struct page **xor_srcs = percpu->scribble;
1125 	int target = sh->ops.target;
1126 	struct r5dev *tgt = &sh->dev[target];
1127 	struct page *xor_dest = tgt->page;
1128 	int count = 0;
1129 	struct dma_async_tx_descriptor *tx;
1130 	struct async_submit_ctl submit;
1131 	int i;
1132 
1133 	pr_debug("%s: stripe %llu block: %d\n",
1134 		__func__, (unsigned long long)sh->sector, target);
1135 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1136 
1137 	for (i = disks; i--; )
1138 		if (i != target)
1139 			xor_srcs[count++] = sh->dev[i].page;
1140 
1141 	atomic_inc(&sh->count);
1142 
1143 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145 	if (unlikely(count == 1))
1146 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1147 	else
1148 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1149 
1150 	return tx;
1151 }
1152 
1153 /* set_syndrome_sources - populate source buffers for gen_syndrome
1154  * @srcs - (struct page *) array of size sh->disks
1155  * @sh - stripe_head to parse
1156  *
1157  * Populates srcs in proper layout order for the stripe and returns the
1158  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1159  * destination buffer is recorded in srcs[count] and the Q destination
1160  * is recorded in srcs[count+1]].
1161  */
1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1163 {
1164 	int disks = sh->disks;
1165 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166 	int d0_idx = raid6_d0(sh);
1167 	int count;
1168 	int i;
1169 
1170 	for (i = 0; i < disks; i++)
1171 		srcs[i] = NULL;
1172 
1173 	count = 0;
1174 	i = d0_idx;
1175 	do {
1176 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1177 
1178 		srcs[slot] = sh->dev[i].page;
1179 		i = raid6_next_disk(i, disks);
1180 	} while (i != d0_idx);
1181 
1182 	return syndrome_disks;
1183 }
1184 
1185 static struct dma_async_tx_descriptor *
1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1187 {
1188 	int disks = sh->disks;
1189 	struct page **blocks = percpu->scribble;
1190 	int target;
1191 	int qd_idx = sh->qd_idx;
1192 	struct dma_async_tx_descriptor *tx;
1193 	struct async_submit_ctl submit;
1194 	struct r5dev *tgt;
1195 	struct page *dest;
1196 	int i;
1197 	int count;
1198 
1199 	if (sh->ops.target < 0)
1200 		target = sh->ops.target2;
1201 	else if (sh->ops.target2 < 0)
1202 		target = sh->ops.target;
1203 	else
1204 		/* we should only have one valid target */
1205 		BUG();
1206 	BUG_ON(target < 0);
1207 	pr_debug("%s: stripe %llu block: %d\n",
1208 		__func__, (unsigned long long)sh->sector, target);
1209 
1210 	tgt = &sh->dev[target];
1211 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1212 	dest = tgt->page;
1213 
1214 	atomic_inc(&sh->count);
1215 
1216 	if (target == qd_idx) {
1217 		count = set_syndrome_sources(blocks, sh);
1218 		blocks[count] = NULL; /* regenerating p is not necessary */
1219 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221 				  ops_complete_compute, sh,
1222 				  to_addr_conv(sh, percpu));
1223 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1224 	} else {
1225 		/* Compute any data- or p-drive using XOR */
1226 		count = 0;
1227 		for (i = disks; i-- ; ) {
1228 			if (i == target || i == qd_idx)
1229 				continue;
1230 			blocks[count++] = sh->dev[i].page;
1231 		}
1232 
1233 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234 				  NULL, ops_complete_compute, sh,
1235 				  to_addr_conv(sh, percpu));
1236 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1237 	}
1238 
1239 	return tx;
1240 }
1241 
1242 static struct dma_async_tx_descriptor *
1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1244 {
1245 	int i, count, disks = sh->disks;
1246 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247 	int d0_idx = raid6_d0(sh);
1248 	int faila = -1, failb = -1;
1249 	int target = sh->ops.target;
1250 	int target2 = sh->ops.target2;
1251 	struct r5dev *tgt = &sh->dev[target];
1252 	struct r5dev *tgt2 = &sh->dev[target2];
1253 	struct dma_async_tx_descriptor *tx;
1254 	struct page **blocks = percpu->scribble;
1255 	struct async_submit_ctl submit;
1256 
1257 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258 		 __func__, (unsigned long long)sh->sector, target, target2);
1259 	BUG_ON(target < 0 || target2 < 0);
1260 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1262 
1263 	/* we need to open-code set_syndrome_sources to handle the
1264 	 * slot number conversion for 'faila' and 'failb'
1265 	 */
1266 	for (i = 0; i < disks ; i++)
1267 		blocks[i] = NULL;
1268 	count = 0;
1269 	i = d0_idx;
1270 	do {
1271 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1272 
1273 		blocks[slot] = sh->dev[i].page;
1274 
1275 		if (i == target)
1276 			faila = slot;
1277 		if (i == target2)
1278 			failb = slot;
1279 		i = raid6_next_disk(i, disks);
1280 	} while (i != d0_idx);
1281 
1282 	BUG_ON(faila == failb);
1283 	if (failb < faila)
1284 		swap(faila, failb);
1285 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286 		 __func__, (unsigned long long)sh->sector, faila, failb);
1287 
1288 	atomic_inc(&sh->count);
1289 
1290 	if (failb == syndrome_disks+1) {
1291 		/* Q disk is one of the missing disks */
1292 		if (faila == syndrome_disks) {
1293 			/* Missing P+Q, just recompute */
1294 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295 					  ops_complete_compute, sh,
1296 					  to_addr_conv(sh, percpu));
1297 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298 						  STRIPE_SIZE, &submit);
1299 		} else {
1300 			struct page *dest;
1301 			int data_target;
1302 			int qd_idx = sh->qd_idx;
1303 
1304 			/* Missing D+Q: recompute D from P, then recompute Q */
1305 			if (target == qd_idx)
1306 				data_target = target2;
1307 			else
1308 				data_target = target;
1309 
1310 			count = 0;
1311 			for (i = disks; i-- ; ) {
1312 				if (i == data_target || i == qd_idx)
1313 					continue;
1314 				blocks[count++] = sh->dev[i].page;
1315 			}
1316 			dest = sh->dev[data_target].page;
1317 			init_async_submit(&submit,
1318 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1319 					  NULL, NULL, NULL,
1320 					  to_addr_conv(sh, percpu));
1321 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1322 				       &submit);
1323 
1324 			count = set_syndrome_sources(blocks, sh);
1325 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326 					  ops_complete_compute, sh,
1327 					  to_addr_conv(sh, percpu));
1328 			return async_gen_syndrome(blocks, 0, count+2,
1329 						  STRIPE_SIZE, &submit);
1330 		}
1331 	} else {
1332 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333 				  ops_complete_compute, sh,
1334 				  to_addr_conv(sh, percpu));
1335 		if (failb == syndrome_disks) {
1336 			/* We're missing D+P. */
1337 			return async_raid6_datap_recov(syndrome_disks+2,
1338 						       STRIPE_SIZE, faila,
1339 						       blocks, &submit);
1340 		} else {
1341 			/* We're missing D+D. */
1342 			return async_raid6_2data_recov(syndrome_disks+2,
1343 						       STRIPE_SIZE, faila, failb,
1344 						       blocks, &submit);
1345 		}
1346 	}
1347 }
1348 
1349 static void ops_complete_prexor(void *stripe_head_ref)
1350 {
1351 	struct stripe_head *sh = stripe_head_ref;
1352 
1353 	pr_debug("%s: stripe %llu\n", __func__,
1354 		(unsigned long long)sh->sector);
1355 }
1356 
1357 static struct dma_async_tx_descriptor *
1358 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1359 	       struct dma_async_tx_descriptor *tx)
1360 {
1361 	int disks = sh->disks;
1362 	struct page **xor_srcs = percpu->scribble;
1363 	int count = 0, pd_idx = sh->pd_idx, i;
1364 	struct async_submit_ctl submit;
1365 
1366 	/* existing parity data subtracted */
1367 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1368 
1369 	pr_debug("%s: stripe %llu\n", __func__,
1370 		(unsigned long long)sh->sector);
1371 
1372 	for (i = disks; i--; ) {
1373 		struct r5dev *dev = &sh->dev[i];
1374 		/* Only process blocks that are known to be uptodate */
1375 		if (test_bit(R5_Wantdrain, &dev->flags))
1376 			xor_srcs[count++] = dev->page;
1377 	}
1378 
1379 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1380 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1381 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1382 
1383 	return tx;
1384 }
1385 
1386 static struct dma_async_tx_descriptor *
1387 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1388 {
1389 	int disks = sh->disks;
1390 	int i;
1391 
1392 	pr_debug("%s: stripe %llu\n", __func__,
1393 		(unsigned long long)sh->sector);
1394 
1395 	for (i = disks; i--; ) {
1396 		struct r5dev *dev = &sh->dev[i];
1397 		struct bio *chosen;
1398 
1399 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1400 			struct bio *wbi;
1401 
1402 			spin_lock_irq(&sh->stripe_lock);
1403 			chosen = dev->towrite;
1404 			dev->towrite = NULL;
1405 			BUG_ON(dev->written);
1406 			wbi = dev->written = chosen;
1407 			spin_unlock_irq(&sh->stripe_lock);
1408 			WARN_ON(dev->page != dev->orig_page);
1409 
1410 			while (wbi && wbi->bi_iter.bi_sector <
1411 				dev->sector + STRIPE_SECTORS) {
1412 				if (wbi->bi_rw & REQ_FUA)
1413 					set_bit(R5_WantFUA, &dev->flags);
1414 				if (wbi->bi_rw & REQ_SYNC)
1415 					set_bit(R5_SyncIO, &dev->flags);
1416 				if (wbi->bi_rw & REQ_DISCARD)
1417 					set_bit(R5_Discard, &dev->flags);
1418 				else {
1419 					tx = async_copy_data(1, wbi, &dev->page,
1420 						dev->sector, tx, sh);
1421 					if (dev->page != dev->orig_page) {
1422 						set_bit(R5_SkipCopy, &dev->flags);
1423 						clear_bit(R5_UPTODATE, &dev->flags);
1424 						clear_bit(R5_OVERWRITE, &dev->flags);
1425 					}
1426 				}
1427 				wbi = r5_next_bio(wbi, dev->sector);
1428 			}
1429 		}
1430 	}
1431 
1432 	return tx;
1433 }
1434 
1435 static void ops_complete_reconstruct(void *stripe_head_ref)
1436 {
1437 	struct stripe_head *sh = stripe_head_ref;
1438 	int disks = sh->disks;
1439 	int pd_idx = sh->pd_idx;
1440 	int qd_idx = sh->qd_idx;
1441 	int i;
1442 	bool fua = false, sync = false, discard = false;
1443 
1444 	pr_debug("%s: stripe %llu\n", __func__,
1445 		(unsigned long long)sh->sector);
1446 
1447 	for (i = disks; i--; ) {
1448 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1449 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1450 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1451 	}
1452 
1453 	for (i = disks; i--; ) {
1454 		struct r5dev *dev = &sh->dev[i];
1455 
1456 		if (dev->written || i == pd_idx || i == qd_idx) {
1457 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1458 				set_bit(R5_UPTODATE, &dev->flags);
1459 			if (fua)
1460 				set_bit(R5_WantFUA, &dev->flags);
1461 			if (sync)
1462 				set_bit(R5_SyncIO, &dev->flags);
1463 		}
1464 	}
1465 
1466 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1467 		sh->reconstruct_state = reconstruct_state_drain_result;
1468 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1469 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1470 	else {
1471 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1472 		sh->reconstruct_state = reconstruct_state_result;
1473 	}
1474 
1475 	set_bit(STRIPE_HANDLE, &sh->state);
1476 	release_stripe(sh);
1477 }
1478 
1479 static void
1480 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1481 		     struct dma_async_tx_descriptor *tx)
1482 {
1483 	int disks = sh->disks;
1484 	struct page **xor_srcs = percpu->scribble;
1485 	struct async_submit_ctl submit;
1486 	int count = 0, pd_idx = sh->pd_idx, i;
1487 	struct page *xor_dest;
1488 	int prexor = 0;
1489 	unsigned long flags;
1490 
1491 	pr_debug("%s: stripe %llu\n", __func__,
1492 		(unsigned long long)sh->sector);
1493 
1494 	for (i = 0; i < sh->disks; i++) {
1495 		if (pd_idx == i)
1496 			continue;
1497 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1498 			break;
1499 	}
1500 	if (i >= sh->disks) {
1501 		atomic_inc(&sh->count);
1502 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1503 		ops_complete_reconstruct(sh);
1504 		return;
1505 	}
1506 	/* check if prexor is active which means only process blocks
1507 	 * that are part of a read-modify-write (written)
1508 	 */
1509 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1510 		prexor = 1;
1511 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1512 		for (i = disks; i--; ) {
1513 			struct r5dev *dev = &sh->dev[i];
1514 			if (dev->written)
1515 				xor_srcs[count++] = dev->page;
1516 		}
1517 	} else {
1518 		xor_dest = sh->dev[pd_idx].page;
1519 		for (i = disks; i--; ) {
1520 			struct r5dev *dev = &sh->dev[i];
1521 			if (i != pd_idx)
1522 				xor_srcs[count++] = dev->page;
1523 		}
1524 	}
1525 
1526 	/* 1/ if we prexor'd then the dest is reused as a source
1527 	 * 2/ if we did not prexor then we are redoing the parity
1528 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1529 	 * for the synchronous xor case
1530 	 */
1531 	flags = ASYNC_TX_ACK |
1532 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1533 
1534 	atomic_inc(&sh->count);
1535 
1536 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1537 			  to_addr_conv(sh, percpu));
1538 	if (unlikely(count == 1))
1539 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1540 	else
1541 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1542 }
1543 
1544 static void
1545 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1546 		     struct dma_async_tx_descriptor *tx)
1547 {
1548 	struct async_submit_ctl submit;
1549 	struct page **blocks = percpu->scribble;
1550 	int count, i;
1551 
1552 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1553 
1554 	for (i = 0; i < sh->disks; i++) {
1555 		if (sh->pd_idx == i || sh->qd_idx == i)
1556 			continue;
1557 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1558 			break;
1559 	}
1560 	if (i >= sh->disks) {
1561 		atomic_inc(&sh->count);
1562 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1563 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1564 		ops_complete_reconstruct(sh);
1565 		return;
1566 	}
1567 
1568 	count = set_syndrome_sources(blocks, sh);
1569 
1570 	atomic_inc(&sh->count);
1571 
1572 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1573 			  sh, to_addr_conv(sh, percpu));
1574 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1575 }
1576 
1577 static void ops_complete_check(void *stripe_head_ref)
1578 {
1579 	struct stripe_head *sh = stripe_head_ref;
1580 
1581 	pr_debug("%s: stripe %llu\n", __func__,
1582 		(unsigned long long)sh->sector);
1583 
1584 	sh->check_state = check_state_check_result;
1585 	set_bit(STRIPE_HANDLE, &sh->state);
1586 	release_stripe(sh);
1587 }
1588 
1589 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1590 {
1591 	int disks = sh->disks;
1592 	int pd_idx = sh->pd_idx;
1593 	int qd_idx = sh->qd_idx;
1594 	struct page *xor_dest;
1595 	struct page **xor_srcs = percpu->scribble;
1596 	struct dma_async_tx_descriptor *tx;
1597 	struct async_submit_ctl submit;
1598 	int count;
1599 	int i;
1600 
1601 	pr_debug("%s: stripe %llu\n", __func__,
1602 		(unsigned long long)sh->sector);
1603 
1604 	count = 0;
1605 	xor_dest = sh->dev[pd_idx].page;
1606 	xor_srcs[count++] = xor_dest;
1607 	for (i = disks; i--; ) {
1608 		if (i == pd_idx || i == qd_idx)
1609 			continue;
1610 		xor_srcs[count++] = sh->dev[i].page;
1611 	}
1612 
1613 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1614 			  to_addr_conv(sh, percpu));
1615 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1616 			   &sh->ops.zero_sum_result, &submit);
1617 
1618 	atomic_inc(&sh->count);
1619 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1620 	tx = async_trigger_callback(&submit);
1621 }
1622 
1623 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1624 {
1625 	struct page **srcs = percpu->scribble;
1626 	struct async_submit_ctl submit;
1627 	int count;
1628 
1629 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1630 		(unsigned long long)sh->sector, checkp);
1631 
1632 	count = set_syndrome_sources(srcs, sh);
1633 	if (!checkp)
1634 		srcs[count] = NULL;
1635 
1636 	atomic_inc(&sh->count);
1637 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1638 			  sh, to_addr_conv(sh, percpu));
1639 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1640 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1641 }
1642 
1643 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1644 {
1645 	int overlap_clear = 0, i, disks = sh->disks;
1646 	struct dma_async_tx_descriptor *tx = NULL;
1647 	struct r5conf *conf = sh->raid_conf;
1648 	int level = conf->level;
1649 	struct raid5_percpu *percpu;
1650 	unsigned long cpu;
1651 
1652 	cpu = get_cpu();
1653 	percpu = per_cpu_ptr(conf->percpu, cpu);
1654 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1655 		ops_run_biofill(sh);
1656 		overlap_clear++;
1657 	}
1658 
1659 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1660 		if (level < 6)
1661 			tx = ops_run_compute5(sh, percpu);
1662 		else {
1663 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1664 				tx = ops_run_compute6_1(sh, percpu);
1665 			else
1666 				tx = ops_run_compute6_2(sh, percpu);
1667 		}
1668 		/* terminate the chain if reconstruct is not set to be run */
1669 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1670 			async_tx_ack(tx);
1671 	}
1672 
1673 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1674 		tx = ops_run_prexor(sh, percpu, tx);
1675 
1676 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1677 		tx = ops_run_biodrain(sh, tx);
1678 		overlap_clear++;
1679 	}
1680 
1681 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1682 		if (level < 6)
1683 			ops_run_reconstruct5(sh, percpu, tx);
1684 		else
1685 			ops_run_reconstruct6(sh, percpu, tx);
1686 	}
1687 
1688 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1689 		if (sh->check_state == check_state_run)
1690 			ops_run_check_p(sh, percpu);
1691 		else if (sh->check_state == check_state_run_q)
1692 			ops_run_check_pq(sh, percpu, 0);
1693 		else if (sh->check_state == check_state_run_pq)
1694 			ops_run_check_pq(sh, percpu, 1);
1695 		else
1696 			BUG();
1697 	}
1698 
1699 	if (overlap_clear)
1700 		for (i = disks; i--; ) {
1701 			struct r5dev *dev = &sh->dev[i];
1702 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1703 				wake_up(&sh->raid_conf->wait_for_overlap);
1704 		}
1705 	put_cpu();
1706 }
1707 
1708 static int grow_one_stripe(struct r5conf *conf, int hash)
1709 {
1710 	struct stripe_head *sh;
1711 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1712 	if (!sh)
1713 		return 0;
1714 
1715 	sh->raid_conf = conf;
1716 
1717 	spin_lock_init(&sh->stripe_lock);
1718 
1719 	if (grow_buffers(sh)) {
1720 		shrink_buffers(sh);
1721 		kmem_cache_free(conf->slab_cache, sh);
1722 		return 0;
1723 	}
1724 	sh->hash_lock_index = hash;
1725 	/* we just created an active stripe so... */
1726 	atomic_set(&sh->count, 1);
1727 	atomic_inc(&conf->active_stripes);
1728 	INIT_LIST_HEAD(&sh->lru);
1729 	release_stripe(sh);
1730 	return 1;
1731 }
1732 
1733 static int grow_stripes(struct r5conf *conf, int num)
1734 {
1735 	struct kmem_cache *sc;
1736 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1737 	int hash;
1738 
1739 	if (conf->mddev->gendisk)
1740 		sprintf(conf->cache_name[0],
1741 			"raid%d-%s", conf->level, mdname(conf->mddev));
1742 	else
1743 		sprintf(conf->cache_name[0],
1744 			"raid%d-%p", conf->level, conf->mddev);
1745 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1746 
1747 	conf->active_name = 0;
1748 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1749 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1750 			       0, 0, NULL);
1751 	if (!sc)
1752 		return 1;
1753 	conf->slab_cache = sc;
1754 	conf->pool_size = devs;
1755 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1756 	while (num--) {
1757 		if (!grow_one_stripe(conf, hash))
1758 			return 1;
1759 		conf->max_nr_stripes++;
1760 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1761 	}
1762 	return 0;
1763 }
1764 
1765 /**
1766  * scribble_len - return the required size of the scribble region
1767  * @num - total number of disks in the array
1768  *
1769  * The size must be enough to contain:
1770  * 1/ a struct page pointer for each device in the array +2
1771  * 2/ room to convert each entry in (1) to its corresponding dma
1772  *    (dma_map_page()) or page (page_address()) address.
1773  *
1774  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1775  * calculate over all devices (not just the data blocks), using zeros in place
1776  * of the P and Q blocks.
1777  */
1778 static size_t scribble_len(int num)
1779 {
1780 	size_t len;
1781 
1782 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1783 
1784 	return len;
1785 }
1786 
1787 static int resize_stripes(struct r5conf *conf, int newsize)
1788 {
1789 	/* Make all the stripes able to hold 'newsize' devices.
1790 	 * New slots in each stripe get 'page' set to a new page.
1791 	 *
1792 	 * This happens in stages:
1793 	 * 1/ create a new kmem_cache and allocate the required number of
1794 	 *    stripe_heads.
1795 	 * 2/ gather all the old stripe_heads and transfer the pages across
1796 	 *    to the new stripe_heads.  This will have the side effect of
1797 	 *    freezing the array as once all stripe_heads have been collected,
1798 	 *    no IO will be possible.  Old stripe heads are freed once their
1799 	 *    pages have been transferred over, and the old kmem_cache is
1800 	 *    freed when all stripes are done.
1801 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1802 	 *    we simple return a failre status - no need to clean anything up.
1803 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1804 	 *    If this fails, we don't bother trying the shrink the
1805 	 *    stripe_heads down again, we just leave them as they are.
1806 	 *    As each stripe_head is processed the new one is released into
1807 	 *    active service.
1808 	 *
1809 	 * Once step2 is started, we cannot afford to wait for a write,
1810 	 * so we use GFP_NOIO allocations.
1811 	 */
1812 	struct stripe_head *osh, *nsh;
1813 	LIST_HEAD(newstripes);
1814 	struct disk_info *ndisks;
1815 	unsigned long cpu;
1816 	int err;
1817 	struct kmem_cache *sc;
1818 	int i;
1819 	int hash, cnt;
1820 
1821 	if (newsize <= conf->pool_size)
1822 		return 0; /* never bother to shrink */
1823 
1824 	err = md_allow_write(conf->mddev);
1825 	if (err)
1826 		return err;
1827 
1828 	/* Step 1 */
1829 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1830 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1831 			       0, 0, NULL);
1832 	if (!sc)
1833 		return -ENOMEM;
1834 
1835 	for (i = conf->max_nr_stripes; i; i--) {
1836 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1837 		if (!nsh)
1838 			break;
1839 
1840 		nsh->raid_conf = conf;
1841 		spin_lock_init(&nsh->stripe_lock);
1842 
1843 		list_add(&nsh->lru, &newstripes);
1844 	}
1845 	if (i) {
1846 		/* didn't get enough, give up */
1847 		while (!list_empty(&newstripes)) {
1848 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1849 			list_del(&nsh->lru);
1850 			kmem_cache_free(sc, nsh);
1851 		}
1852 		kmem_cache_destroy(sc);
1853 		return -ENOMEM;
1854 	}
1855 	/* Step 2 - Must use GFP_NOIO now.
1856 	 * OK, we have enough stripes, start collecting inactive
1857 	 * stripes and copying them over
1858 	 */
1859 	hash = 0;
1860 	cnt = 0;
1861 	list_for_each_entry(nsh, &newstripes, lru) {
1862 		lock_device_hash_lock(conf, hash);
1863 		wait_event_cmd(conf->wait_for_stripe,
1864 				    !list_empty(conf->inactive_list + hash),
1865 				    unlock_device_hash_lock(conf, hash),
1866 				    lock_device_hash_lock(conf, hash));
1867 		osh = get_free_stripe(conf, hash);
1868 		unlock_device_hash_lock(conf, hash);
1869 		atomic_set(&nsh->count, 1);
1870 		for(i=0; i<conf->pool_size; i++) {
1871 			nsh->dev[i].page = osh->dev[i].page;
1872 			nsh->dev[i].orig_page = osh->dev[i].page;
1873 		}
1874 		for( ; i<newsize; i++)
1875 			nsh->dev[i].page = NULL;
1876 		nsh->hash_lock_index = hash;
1877 		kmem_cache_free(conf->slab_cache, osh);
1878 		cnt++;
1879 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1880 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1881 			hash++;
1882 			cnt = 0;
1883 		}
1884 	}
1885 	kmem_cache_destroy(conf->slab_cache);
1886 
1887 	/* Step 3.
1888 	 * At this point, we are holding all the stripes so the array
1889 	 * is completely stalled, so now is a good time to resize
1890 	 * conf->disks and the scribble region
1891 	 */
1892 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1893 	if (ndisks) {
1894 		for (i=0; i<conf->raid_disks; i++)
1895 			ndisks[i] = conf->disks[i];
1896 		kfree(conf->disks);
1897 		conf->disks = ndisks;
1898 	} else
1899 		err = -ENOMEM;
1900 
1901 	get_online_cpus();
1902 	conf->scribble_len = scribble_len(newsize);
1903 	for_each_present_cpu(cpu) {
1904 		struct raid5_percpu *percpu;
1905 		void *scribble;
1906 
1907 		percpu = per_cpu_ptr(conf->percpu, cpu);
1908 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1909 
1910 		if (scribble) {
1911 			kfree(percpu->scribble);
1912 			percpu->scribble = scribble;
1913 		} else {
1914 			err = -ENOMEM;
1915 			break;
1916 		}
1917 	}
1918 	put_online_cpus();
1919 
1920 	/* Step 4, return new stripes to service */
1921 	while(!list_empty(&newstripes)) {
1922 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1923 		list_del_init(&nsh->lru);
1924 
1925 		for (i=conf->raid_disks; i < newsize; i++)
1926 			if (nsh->dev[i].page == NULL) {
1927 				struct page *p = alloc_page(GFP_NOIO);
1928 				nsh->dev[i].page = p;
1929 				nsh->dev[i].orig_page = p;
1930 				if (!p)
1931 					err = -ENOMEM;
1932 			}
1933 		release_stripe(nsh);
1934 	}
1935 	/* critical section pass, GFP_NOIO no longer needed */
1936 
1937 	conf->slab_cache = sc;
1938 	conf->active_name = 1-conf->active_name;
1939 	conf->pool_size = newsize;
1940 	return err;
1941 }
1942 
1943 static int drop_one_stripe(struct r5conf *conf, int hash)
1944 {
1945 	struct stripe_head *sh;
1946 
1947 	spin_lock_irq(conf->hash_locks + hash);
1948 	sh = get_free_stripe(conf, hash);
1949 	spin_unlock_irq(conf->hash_locks + hash);
1950 	if (!sh)
1951 		return 0;
1952 	BUG_ON(atomic_read(&sh->count));
1953 	shrink_buffers(sh);
1954 	kmem_cache_free(conf->slab_cache, sh);
1955 	atomic_dec(&conf->active_stripes);
1956 	return 1;
1957 }
1958 
1959 static void shrink_stripes(struct r5conf *conf)
1960 {
1961 	int hash;
1962 	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1963 		while (drop_one_stripe(conf, hash))
1964 			;
1965 
1966 	if (conf->slab_cache)
1967 		kmem_cache_destroy(conf->slab_cache);
1968 	conf->slab_cache = NULL;
1969 }
1970 
1971 static void raid5_end_read_request(struct bio * bi, int error)
1972 {
1973 	struct stripe_head *sh = bi->bi_private;
1974 	struct r5conf *conf = sh->raid_conf;
1975 	int disks = sh->disks, i;
1976 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1977 	char b[BDEVNAME_SIZE];
1978 	struct md_rdev *rdev = NULL;
1979 	sector_t s;
1980 
1981 	for (i=0 ; i<disks; i++)
1982 		if (bi == &sh->dev[i].req)
1983 			break;
1984 
1985 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1986 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1987 		uptodate);
1988 	if (i == disks) {
1989 		BUG();
1990 		return;
1991 	}
1992 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1993 		/* If replacement finished while this request was outstanding,
1994 		 * 'replacement' might be NULL already.
1995 		 * In that case it moved down to 'rdev'.
1996 		 * rdev is not removed until all requests are finished.
1997 		 */
1998 		rdev = conf->disks[i].replacement;
1999 	if (!rdev)
2000 		rdev = conf->disks[i].rdev;
2001 
2002 	if (use_new_offset(conf, sh))
2003 		s = sh->sector + rdev->new_data_offset;
2004 	else
2005 		s = sh->sector + rdev->data_offset;
2006 	if (uptodate) {
2007 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2008 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2009 			/* Note that this cannot happen on a
2010 			 * replacement device.  We just fail those on
2011 			 * any error
2012 			 */
2013 			printk_ratelimited(
2014 				KERN_INFO
2015 				"md/raid:%s: read error corrected"
2016 				" (%lu sectors at %llu on %s)\n",
2017 				mdname(conf->mddev), STRIPE_SECTORS,
2018 				(unsigned long long)s,
2019 				bdevname(rdev->bdev, b));
2020 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2021 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2022 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2023 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2024 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2025 
2026 		if (atomic_read(&rdev->read_errors))
2027 			atomic_set(&rdev->read_errors, 0);
2028 	} else {
2029 		const char *bdn = bdevname(rdev->bdev, b);
2030 		int retry = 0;
2031 		int set_bad = 0;
2032 
2033 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2034 		atomic_inc(&rdev->read_errors);
2035 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2036 			printk_ratelimited(
2037 				KERN_WARNING
2038 				"md/raid:%s: read error on replacement device "
2039 				"(sector %llu on %s).\n",
2040 				mdname(conf->mddev),
2041 				(unsigned long long)s,
2042 				bdn);
2043 		else if (conf->mddev->degraded >= conf->max_degraded) {
2044 			set_bad = 1;
2045 			printk_ratelimited(
2046 				KERN_WARNING
2047 				"md/raid:%s: read error not correctable "
2048 				"(sector %llu on %s).\n",
2049 				mdname(conf->mddev),
2050 				(unsigned long long)s,
2051 				bdn);
2052 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2053 			/* Oh, no!!! */
2054 			set_bad = 1;
2055 			printk_ratelimited(
2056 				KERN_WARNING
2057 				"md/raid:%s: read error NOT corrected!! "
2058 				"(sector %llu on %s).\n",
2059 				mdname(conf->mddev),
2060 				(unsigned long long)s,
2061 				bdn);
2062 		} else if (atomic_read(&rdev->read_errors)
2063 			 > conf->max_nr_stripes)
2064 			printk(KERN_WARNING
2065 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2066 			       mdname(conf->mddev), bdn);
2067 		else
2068 			retry = 1;
2069 		if (set_bad && test_bit(In_sync, &rdev->flags)
2070 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2071 			retry = 1;
2072 		if (retry)
2073 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2074 				set_bit(R5_ReadError, &sh->dev[i].flags);
2075 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2076 			} else
2077 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2078 		else {
2079 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2080 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2081 			if (!(set_bad
2082 			      && test_bit(In_sync, &rdev->flags)
2083 			      && rdev_set_badblocks(
2084 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2085 				md_error(conf->mddev, rdev);
2086 		}
2087 	}
2088 	rdev_dec_pending(rdev, conf->mddev);
2089 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2090 	set_bit(STRIPE_HANDLE, &sh->state);
2091 	release_stripe(sh);
2092 }
2093 
2094 static void raid5_end_write_request(struct bio *bi, int error)
2095 {
2096 	struct stripe_head *sh = bi->bi_private;
2097 	struct r5conf *conf = sh->raid_conf;
2098 	int disks = sh->disks, i;
2099 	struct md_rdev *uninitialized_var(rdev);
2100 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2101 	sector_t first_bad;
2102 	int bad_sectors;
2103 	int replacement = 0;
2104 
2105 	for (i = 0 ; i < disks; i++) {
2106 		if (bi == &sh->dev[i].req) {
2107 			rdev = conf->disks[i].rdev;
2108 			break;
2109 		}
2110 		if (bi == &sh->dev[i].rreq) {
2111 			rdev = conf->disks[i].replacement;
2112 			if (rdev)
2113 				replacement = 1;
2114 			else
2115 				/* rdev was removed and 'replacement'
2116 				 * replaced it.  rdev is not removed
2117 				 * until all requests are finished.
2118 				 */
2119 				rdev = conf->disks[i].rdev;
2120 			break;
2121 		}
2122 	}
2123 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2124 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2125 		uptodate);
2126 	if (i == disks) {
2127 		BUG();
2128 		return;
2129 	}
2130 
2131 	if (replacement) {
2132 		if (!uptodate)
2133 			md_error(conf->mddev, rdev);
2134 		else if (is_badblock(rdev, sh->sector,
2135 				     STRIPE_SECTORS,
2136 				     &first_bad, &bad_sectors))
2137 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2138 	} else {
2139 		if (!uptodate) {
2140 			set_bit(STRIPE_DEGRADED, &sh->state);
2141 			set_bit(WriteErrorSeen, &rdev->flags);
2142 			set_bit(R5_WriteError, &sh->dev[i].flags);
2143 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2144 				set_bit(MD_RECOVERY_NEEDED,
2145 					&rdev->mddev->recovery);
2146 		} else if (is_badblock(rdev, sh->sector,
2147 				       STRIPE_SECTORS,
2148 				       &first_bad, &bad_sectors)) {
2149 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2150 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2151 				/* That was a successful write so make
2152 				 * sure it looks like we already did
2153 				 * a re-write.
2154 				 */
2155 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2156 		}
2157 	}
2158 	rdev_dec_pending(rdev, conf->mddev);
2159 
2160 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2161 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2162 	set_bit(STRIPE_HANDLE, &sh->state);
2163 	release_stripe(sh);
2164 }
2165 
2166 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2167 
2168 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2169 {
2170 	struct r5dev *dev = &sh->dev[i];
2171 
2172 	bio_init(&dev->req);
2173 	dev->req.bi_io_vec = &dev->vec;
2174 	dev->req.bi_max_vecs = 1;
2175 	dev->req.bi_private = sh;
2176 
2177 	bio_init(&dev->rreq);
2178 	dev->rreq.bi_io_vec = &dev->rvec;
2179 	dev->rreq.bi_max_vecs = 1;
2180 	dev->rreq.bi_private = sh;
2181 
2182 	dev->flags = 0;
2183 	dev->sector = compute_blocknr(sh, i, previous);
2184 }
2185 
2186 static void error(struct mddev *mddev, struct md_rdev *rdev)
2187 {
2188 	char b[BDEVNAME_SIZE];
2189 	struct r5conf *conf = mddev->private;
2190 	unsigned long flags;
2191 	pr_debug("raid456: error called\n");
2192 
2193 	spin_lock_irqsave(&conf->device_lock, flags);
2194 	clear_bit(In_sync, &rdev->flags);
2195 	mddev->degraded = calc_degraded(conf);
2196 	spin_unlock_irqrestore(&conf->device_lock, flags);
2197 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2198 
2199 	set_bit(Blocked, &rdev->flags);
2200 	set_bit(Faulty, &rdev->flags);
2201 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2202 	printk(KERN_ALERT
2203 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2204 	       "md/raid:%s: Operation continuing on %d devices.\n",
2205 	       mdname(mddev),
2206 	       bdevname(rdev->bdev, b),
2207 	       mdname(mddev),
2208 	       conf->raid_disks - mddev->degraded);
2209 }
2210 
2211 /*
2212  * Input: a 'big' sector number,
2213  * Output: index of the data and parity disk, and the sector # in them.
2214  */
2215 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2216 				     int previous, int *dd_idx,
2217 				     struct stripe_head *sh)
2218 {
2219 	sector_t stripe, stripe2;
2220 	sector_t chunk_number;
2221 	unsigned int chunk_offset;
2222 	int pd_idx, qd_idx;
2223 	int ddf_layout = 0;
2224 	sector_t new_sector;
2225 	int algorithm = previous ? conf->prev_algo
2226 				 : conf->algorithm;
2227 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2228 					 : conf->chunk_sectors;
2229 	int raid_disks = previous ? conf->previous_raid_disks
2230 				  : conf->raid_disks;
2231 	int data_disks = raid_disks - conf->max_degraded;
2232 
2233 	/* First compute the information on this sector */
2234 
2235 	/*
2236 	 * Compute the chunk number and the sector offset inside the chunk
2237 	 */
2238 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2239 	chunk_number = r_sector;
2240 
2241 	/*
2242 	 * Compute the stripe number
2243 	 */
2244 	stripe = chunk_number;
2245 	*dd_idx = sector_div(stripe, data_disks);
2246 	stripe2 = stripe;
2247 	/*
2248 	 * Select the parity disk based on the user selected algorithm.
2249 	 */
2250 	pd_idx = qd_idx = -1;
2251 	switch(conf->level) {
2252 	case 4:
2253 		pd_idx = data_disks;
2254 		break;
2255 	case 5:
2256 		switch (algorithm) {
2257 		case ALGORITHM_LEFT_ASYMMETRIC:
2258 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2259 			if (*dd_idx >= pd_idx)
2260 				(*dd_idx)++;
2261 			break;
2262 		case ALGORITHM_RIGHT_ASYMMETRIC:
2263 			pd_idx = sector_div(stripe2, raid_disks);
2264 			if (*dd_idx >= pd_idx)
2265 				(*dd_idx)++;
2266 			break;
2267 		case ALGORITHM_LEFT_SYMMETRIC:
2268 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2269 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2270 			break;
2271 		case ALGORITHM_RIGHT_SYMMETRIC:
2272 			pd_idx = sector_div(stripe2, raid_disks);
2273 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2274 			break;
2275 		case ALGORITHM_PARITY_0:
2276 			pd_idx = 0;
2277 			(*dd_idx)++;
2278 			break;
2279 		case ALGORITHM_PARITY_N:
2280 			pd_idx = data_disks;
2281 			break;
2282 		default:
2283 			BUG();
2284 		}
2285 		break;
2286 	case 6:
2287 
2288 		switch (algorithm) {
2289 		case ALGORITHM_LEFT_ASYMMETRIC:
2290 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2291 			qd_idx = pd_idx + 1;
2292 			if (pd_idx == raid_disks-1) {
2293 				(*dd_idx)++;	/* Q D D D P */
2294 				qd_idx = 0;
2295 			} else if (*dd_idx >= pd_idx)
2296 				(*dd_idx) += 2; /* D D P Q D */
2297 			break;
2298 		case ALGORITHM_RIGHT_ASYMMETRIC:
2299 			pd_idx = sector_div(stripe2, raid_disks);
2300 			qd_idx = pd_idx + 1;
2301 			if (pd_idx == raid_disks-1) {
2302 				(*dd_idx)++;	/* Q D D D P */
2303 				qd_idx = 0;
2304 			} else if (*dd_idx >= pd_idx)
2305 				(*dd_idx) += 2; /* D D P Q D */
2306 			break;
2307 		case ALGORITHM_LEFT_SYMMETRIC:
2308 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2309 			qd_idx = (pd_idx + 1) % raid_disks;
2310 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2311 			break;
2312 		case ALGORITHM_RIGHT_SYMMETRIC:
2313 			pd_idx = sector_div(stripe2, raid_disks);
2314 			qd_idx = (pd_idx + 1) % raid_disks;
2315 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2316 			break;
2317 
2318 		case ALGORITHM_PARITY_0:
2319 			pd_idx = 0;
2320 			qd_idx = 1;
2321 			(*dd_idx) += 2;
2322 			break;
2323 		case ALGORITHM_PARITY_N:
2324 			pd_idx = data_disks;
2325 			qd_idx = data_disks + 1;
2326 			break;
2327 
2328 		case ALGORITHM_ROTATING_ZERO_RESTART:
2329 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2330 			 * of blocks for computing Q is different.
2331 			 */
2332 			pd_idx = sector_div(stripe2, raid_disks);
2333 			qd_idx = pd_idx + 1;
2334 			if (pd_idx == raid_disks-1) {
2335 				(*dd_idx)++;	/* Q D D D P */
2336 				qd_idx = 0;
2337 			} else if (*dd_idx >= pd_idx)
2338 				(*dd_idx) += 2; /* D D P Q D */
2339 			ddf_layout = 1;
2340 			break;
2341 
2342 		case ALGORITHM_ROTATING_N_RESTART:
2343 			/* Same a left_asymmetric, by first stripe is
2344 			 * D D D P Q  rather than
2345 			 * Q D D D P
2346 			 */
2347 			stripe2 += 1;
2348 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2349 			qd_idx = pd_idx + 1;
2350 			if (pd_idx == raid_disks-1) {
2351 				(*dd_idx)++;	/* Q D D D P */
2352 				qd_idx = 0;
2353 			} else if (*dd_idx >= pd_idx)
2354 				(*dd_idx) += 2; /* D D P Q D */
2355 			ddf_layout = 1;
2356 			break;
2357 
2358 		case ALGORITHM_ROTATING_N_CONTINUE:
2359 			/* Same as left_symmetric but Q is before P */
2360 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2361 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2362 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2363 			ddf_layout = 1;
2364 			break;
2365 
2366 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2367 			/* RAID5 left_asymmetric, with Q on last device */
2368 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2369 			if (*dd_idx >= pd_idx)
2370 				(*dd_idx)++;
2371 			qd_idx = raid_disks - 1;
2372 			break;
2373 
2374 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2375 			pd_idx = sector_div(stripe2, raid_disks-1);
2376 			if (*dd_idx >= pd_idx)
2377 				(*dd_idx)++;
2378 			qd_idx = raid_disks - 1;
2379 			break;
2380 
2381 		case ALGORITHM_LEFT_SYMMETRIC_6:
2382 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2383 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2384 			qd_idx = raid_disks - 1;
2385 			break;
2386 
2387 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2388 			pd_idx = sector_div(stripe2, raid_disks-1);
2389 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2390 			qd_idx = raid_disks - 1;
2391 			break;
2392 
2393 		case ALGORITHM_PARITY_0_6:
2394 			pd_idx = 0;
2395 			(*dd_idx)++;
2396 			qd_idx = raid_disks - 1;
2397 			break;
2398 
2399 		default:
2400 			BUG();
2401 		}
2402 		break;
2403 	}
2404 
2405 	if (sh) {
2406 		sh->pd_idx = pd_idx;
2407 		sh->qd_idx = qd_idx;
2408 		sh->ddf_layout = ddf_layout;
2409 	}
2410 	/*
2411 	 * Finally, compute the new sector number
2412 	 */
2413 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2414 	return new_sector;
2415 }
2416 
2417 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2418 {
2419 	struct r5conf *conf = sh->raid_conf;
2420 	int raid_disks = sh->disks;
2421 	int data_disks = raid_disks - conf->max_degraded;
2422 	sector_t new_sector = sh->sector, check;
2423 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2424 					 : conf->chunk_sectors;
2425 	int algorithm = previous ? conf->prev_algo
2426 				 : conf->algorithm;
2427 	sector_t stripe;
2428 	int chunk_offset;
2429 	sector_t chunk_number;
2430 	int dummy1, dd_idx = i;
2431 	sector_t r_sector;
2432 	struct stripe_head sh2;
2433 
2434 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2435 	stripe = new_sector;
2436 
2437 	if (i == sh->pd_idx)
2438 		return 0;
2439 	switch(conf->level) {
2440 	case 4: break;
2441 	case 5:
2442 		switch (algorithm) {
2443 		case ALGORITHM_LEFT_ASYMMETRIC:
2444 		case ALGORITHM_RIGHT_ASYMMETRIC:
2445 			if (i > sh->pd_idx)
2446 				i--;
2447 			break;
2448 		case ALGORITHM_LEFT_SYMMETRIC:
2449 		case ALGORITHM_RIGHT_SYMMETRIC:
2450 			if (i < sh->pd_idx)
2451 				i += raid_disks;
2452 			i -= (sh->pd_idx + 1);
2453 			break;
2454 		case ALGORITHM_PARITY_0:
2455 			i -= 1;
2456 			break;
2457 		case ALGORITHM_PARITY_N:
2458 			break;
2459 		default:
2460 			BUG();
2461 		}
2462 		break;
2463 	case 6:
2464 		if (i == sh->qd_idx)
2465 			return 0; /* It is the Q disk */
2466 		switch (algorithm) {
2467 		case ALGORITHM_LEFT_ASYMMETRIC:
2468 		case ALGORITHM_RIGHT_ASYMMETRIC:
2469 		case ALGORITHM_ROTATING_ZERO_RESTART:
2470 		case ALGORITHM_ROTATING_N_RESTART:
2471 			if (sh->pd_idx == raid_disks-1)
2472 				i--;	/* Q D D D P */
2473 			else if (i > sh->pd_idx)
2474 				i -= 2; /* D D P Q D */
2475 			break;
2476 		case ALGORITHM_LEFT_SYMMETRIC:
2477 		case ALGORITHM_RIGHT_SYMMETRIC:
2478 			if (sh->pd_idx == raid_disks-1)
2479 				i--; /* Q D D D P */
2480 			else {
2481 				/* D D P Q D */
2482 				if (i < sh->pd_idx)
2483 					i += raid_disks;
2484 				i -= (sh->pd_idx + 2);
2485 			}
2486 			break;
2487 		case ALGORITHM_PARITY_0:
2488 			i -= 2;
2489 			break;
2490 		case ALGORITHM_PARITY_N:
2491 			break;
2492 		case ALGORITHM_ROTATING_N_CONTINUE:
2493 			/* Like left_symmetric, but P is before Q */
2494 			if (sh->pd_idx == 0)
2495 				i--;	/* P D D D Q */
2496 			else {
2497 				/* D D Q P D */
2498 				if (i < sh->pd_idx)
2499 					i += raid_disks;
2500 				i -= (sh->pd_idx + 1);
2501 			}
2502 			break;
2503 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2504 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2505 			if (i > sh->pd_idx)
2506 				i--;
2507 			break;
2508 		case ALGORITHM_LEFT_SYMMETRIC_6:
2509 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2510 			if (i < sh->pd_idx)
2511 				i += data_disks + 1;
2512 			i -= (sh->pd_idx + 1);
2513 			break;
2514 		case ALGORITHM_PARITY_0_6:
2515 			i -= 1;
2516 			break;
2517 		default:
2518 			BUG();
2519 		}
2520 		break;
2521 	}
2522 
2523 	chunk_number = stripe * data_disks + i;
2524 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2525 
2526 	check = raid5_compute_sector(conf, r_sector,
2527 				     previous, &dummy1, &sh2);
2528 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2529 		|| sh2.qd_idx != sh->qd_idx) {
2530 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2531 		       mdname(conf->mddev));
2532 		return 0;
2533 	}
2534 	return r_sector;
2535 }
2536 
2537 static void
2538 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2539 			 int rcw, int expand)
2540 {
2541 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2542 	struct r5conf *conf = sh->raid_conf;
2543 	int level = conf->level;
2544 
2545 	if (rcw) {
2546 
2547 		for (i = disks; i--; ) {
2548 			struct r5dev *dev = &sh->dev[i];
2549 
2550 			if (dev->towrite) {
2551 				set_bit(R5_LOCKED, &dev->flags);
2552 				set_bit(R5_Wantdrain, &dev->flags);
2553 				if (!expand)
2554 					clear_bit(R5_UPTODATE, &dev->flags);
2555 				s->locked++;
2556 			}
2557 		}
2558 		/* if we are not expanding this is a proper write request, and
2559 		 * there will be bios with new data to be drained into the
2560 		 * stripe cache
2561 		 */
2562 		if (!expand) {
2563 			if (!s->locked)
2564 				/* False alarm, nothing to do */
2565 				return;
2566 			sh->reconstruct_state = reconstruct_state_drain_run;
2567 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2568 		} else
2569 			sh->reconstruct_state = reconstruct_state_run;
2570 
2571 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2572 
2573 		if (s->locked + conf->max_degraded == disks)
2574 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2575 				atomic_inc(&conf->pending_full_writes);
2576 	} else {
2577 		BUG_ON(level == 6);
2578 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2579 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2580 
2581 		for (i = disks; i--; ) {
2582 			struct r5dev *dev = &sh->dev[i];
2583 			if (i == pd_idx)
2584 				continue;
2585 
2586 			if (dev->towrite &&
2587 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2588 			     test_bit(R5_Wantcompute, &dev->flags))) {
2589 				set_bit(R5_Wantdrain, &dev->flags);
2590 				set_bit(R5_LOCKED, &dev->flags);
2591 				clear_bit(R5_UPTODATE, &dev->flags);
2592 				s->locked++;
2593 			}
2594 		}
2595 		if (!s->locked)
2596 			/* False alarm - nothing to do */
2597 			return;
2598 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2599 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2600 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2601 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2602 	}
2603 
2604 	/* keep the parity disk(s) locked while asynchronous operations
2605 	 * are in flight
2606 	 */
2607 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2608 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2609 	s->locked++;
2610 
2611 	if (level == 6) {
2612 		int qd_idx = sh->qd_idx;
2613 		struct r5dev *dev = &sh->dev[qd_idx];
2614 
2615 		set_bit(R5_LOCKED, &dev->flags);
2616 		clear_bit(R5_UPTODATE, &dev->flags);
2617 		s->locked++;
2618 	}
2619 
2620 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2621 		__func__, (unsigned long long)sh->sector,
2622 		s->locked, s->ops_request);
2623 }
2624 
2625 /*
2626  * Each stripe/dev can have one or more bion attached.
2627  * toread/towrite point to the first in a chain.
2628  * The bi_next chain must be in order.
2629  */
2630 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2631 {
2632 	struct bio **bip;
2633 	struct r5conf *conf = sh->raid_conf;
2634 	int firstwrite=0;
2635 
2636 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2637 		(unsigned long long)bi->bi_iter.bi_sector,
2638 		(unsigned long long)sh->sector);
2639 
2640 	/*
2641 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2642 	 * reference count to avoid race. The reference count should already be
2643 	 * increased before this function is called (for example, in
2644 	 * make_request()), so other bio sharing this stripe will not free the
2645 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2646 	 * protect it.
2647 	 */
2648 	spin_lock_irq(&sh->stripe_lock);
2649 	if (forwrite) {
2650 		bip = &sh->dev[dd_idx].towrite;
2651 		if (*bip == NULL)
2652 			firstwrite = 1;
2653 	} else
2654 		bip = &sh->dev[dd_idx].toread;
2655 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2656 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2657 			goto overlap;
2658 		bip = & (*bip)->bi_next;
2659 	}
2660 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2661 		goto overlap;
2662 
2663 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2664 	if (*bip)
2665 		bi->bi_next = *bip;
2666 	*bip = bi;
2667 	raid5_inc_bi_active_stripes(bi);
2668 
2669 	if (forwrite) {
2670 		/* check if page is covered */
2671 		sector_t sector = sh->dev[dd_idx].sector;
2672 		for (bi=sh->dev[dd_idx].towrite;
2673 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2674 			     bi && bi->bi_iter.bi_sector <= sector;
2675 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2676 			if (bio_end_sector(bi) >= sector)
2677 				sector = bio_end_sector(bi);
2678 		}
2679 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2680 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2681 	}
2682 
2683 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2684 		(unsigned long long)(*bip)->bi_iter.bi_sector,
2685 		(unsigned long long)sh->sector, dd_idx);
2686 	spin_unlock_irq(&sh->stripe_lock);
2687 
2688 	if (conf->mddev->bitmap && firstwrite) {
2689 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2690 				  STRIPE_SECTORS, 0);
2691 		sh->bm_seq = conf->seq_flush+1;
2692 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2693 	}
2694 	return 1;
2695 
2696  overlap:
2697 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2698 	spin_unlock_irq(&sh->stripe_lock);
2699 	return 0;
2700 }
2701 
2702 static void end_reshape(struct r5conf *conf);
2703 
2704 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2705 			    struct stripe_head *sh)
2706 {
2707 	int sectors_per_chunk =
2708 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2709 	int dd_idx;
2710 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2711 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2712 
2713 	raid5_compute_sector(conf,
2714 			     stripe * (disks - conf->max_degraded)
2715 			     *sectors_per_chunk + chunk_offset,
2716 			     previous,
2717 			     &dd_idx, sh);
2718 }
2719 
2720 static void
2721 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2722 				struct stripe_head_state *s, int disks,
2723 				struct bio **return_bi)
2724 {
2725 	int i;
2726 	for (i = disks; i--; ) {
2727 		struct bio *bi;
2728 		int bitmap_end = 0;
2729 
2730 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2731 			struct md_rdev *rdev;
2732 			rcu_read_lock();
2733 			rdev = rcu_dereference(conf->disks[i].rdev);
2734 			if (rdev && test_bit(In_sync, &rdev->flags))
2735 				atomic_inc(&rdev->nr_pending);
2736 			else
2737 				rdev = NULL;
2738 			rcu_read_unlock();
2739 			if (rdev) {
2740 				if (!rdev_set_badblocks(
2741 					    rdev,
2742 					    sh->sector,
2743 					    STRIPE_SECTORS, 0))
2744 					md_error(conf->mddev, rdev);
2745 				rdev_dec_pending(rdev, conf->mddev);
2746 			}
2747 		}
2748 		spin_lock_irq(&sh->stripe_lock);
2749 		/* fail all writes first */
2750 		bi = sh->dev[i].towrite;
2751 		sh->dev[i].towrite = NULL;
2752 		spin_unlock_irq(&sh->stripe_lock);
2753 		if (bi)
2754 			bitmap_end = 1;
2755 
2756 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2757 			wake_up(&conf->wait_for_overlap);
2758 
2759 		while (bi && bi->bi_iter.bi_sector <
2760 			sh->dev[i].sector + STRIPE_SECTORS) {
2761 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2762 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2763 			if (!raid5_dec_bi_active_stripes(bi)) {
2764 				md_write_end(conf->mddev);
2765 				bi->bi_next = *return_bi;
2766 				*return_bi = bi;
2767 			}
2768 			bi = nextbi;
2769 		}
2770 		if (bitmap_end)
2771 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2772 				STRIPE_SECTORS, 0, 0);
2773 		bitmap_end = 0;
2774 		/* and fail all 'written' */
2775 		bi = sh->dev[i].written;
2776 		sh->dev[i].written = NULL;
2777 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2778 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2779 			sh->dev[i].page = sh->dev[i].orig_page;
2780 		}
2781 
2782 		if (bi) bitmap_end = 1;
2783 		while (bi && bi->bi_iter.bi_sector <
2784 		       sh->dev[i].sector + STRIPE_SECTORS) {
2785 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2786 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2787 			if (!raid5_dec_bi_active_stripes(bi)) {
2788 				md_write_end(conf->mddev);
2789 				bi->bi_next = *return_bi;
2790 				*return_bi = bi;
2791 			}
2792 			bi = bi2;
2793 		}
2794 
2795 		/* fail any reads if this device is non-operational and
2796 		 * the data has not reached the cache yet.
2797 		 */
2798 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2799 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2800 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2801 			spin_lock_irq(&sh->stripe_lock);
2802 			bi = sh->dev[i].toread;
2803 			sh->dev[i].toread = NULL;
2804 			spin_unlock_irq(&sh->stripe_lock);
2805 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2806 				wake_up(&conf->wait_for_overlap);
2807 			while (bi && bi->bi_iter.bi_sector <
2808 			       sh->dev[i].sector + STRIPE_SECTORS) {
2809 				struct bio *nextbi =
2810 					r5_next_bio(bi, sh->dev[i].sector);
2811 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2812 				if (!raid5_dec_bi_active_stripes(bi)) {
2813 					bi->bi_next = *return_bi;
2814 					*return_bi = bi;
2815 				}
2816 				bi = nextbi;
2817 			}
2818 		}
2819 		if (bitmap_end)
2820 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2821 					STRIPE_SECTORS, 0, 0);
2822 		/* If we were in the middle of a write the parity block might
2823 		 * still be locked - so just clear all R5_LOCKED flags
2824 		 */
2825 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2826 	}
2827 
2828 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2829 		if (atomic_dec_and_test(&conf->pending_full_writes))
2830 			md_wakeup_thread(conf->mddev->thread);
2831 }
2832 
2833 static void
2834 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2835 		   struct stripe_head_state *s)
2836 {
2837 	int abort = 0;
2838 	int i;
2839 
2840 	clear_bit(STRIPE_SYNCING, &sh->state);
2841 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2842 		wake_up(&conf->wait_for_overlap);
2843 	s->syncing = 0;
2844 	s->replacing = 0;
2845 	/* There is nothing more to do for sync/check/repair.
2846 	 * Don't even need to abort as that is handled elsewhere
2847 	 * if needed, and not always wanted e.g. if there is a known
2848 	 * bad block here.
2849 	 * For recover/replace we need to record a bad block on all
2850 	 * non-sync devices, or abort the recovery
2851 	 */
2852 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2853 		/* During recovery devices cannot be removed, so
2854 		 * locking and refcounting of rdevs is not needed
2855 		 */
2856 		for (i = 0; i < conf->raid_disks; i++) {
2857 			struct md_rdev *rdev = conf->disks[i].rdev;
2858 			if (rdev
2859 			    && !test_bit(Faulty, &rdev->flags)
2860 			    && !test_bit(In_sync, &rdev->flags)
2861 			    && !rdev_set_badblocks(rdev, sh->sector,
2862 						   STRIPE_SECTORS, 0))
2863 				abort = 1;
2864 			rdev = conf->disks[i].replacement;
2865 			if (rdev
2866 			    && !test_bit(Faulty, &rdev->flags)
2867 			    && !test_bit(In_sync, &rdev->flags)
2868 			    && !rdev_set_badblocks(rdev, sh->sector,
2869 						   STRIPE_SECTORS, 0))
2870 				abort = 1;
2871 		}
2872 		if (abort)
2873 			conf->recovery_disabled =
2874 				conf->mddev->recovery_disabled;
2875 	}
2876 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2877 }
2878 
2879 static int want_replace(struct stripe_head *sh, int disk_idx)
2880 {
2881 	struct md_rdev *rdev;
2882 	int rv = 0;
2883 	/* Doing recovery so rcu locking not required */
2884 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2885 	if (rdev
2886 	    && !test_bit(Faulty, &rdev->flags)
2887 	    && !test_bit(In_sync, &rdev->flags)
2888 	    && (rdev->recovery_offset <= sh->sector
2889 		|| rdev->mddev->recovery_cp <= sh->sector))
2890 		rv = 1;
2891 
2892 	return rv;
2893 }
2894 
2895 /* fetch_block - checks the given member device to see if its data needs
2896  * to be read or computed to satisfy a request.
2897  *
2898  * Returns 1 when no more member devices need to be checked, otherwise returns
2899  * 0 to tell the loop in handle_stripe_fill to continue
2900  */
2901 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2902 		       int disk_idx, int disks)
2903 {
2904 	struct r5dev *dev = &sh->dev[disk_idx];
2905 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2906 				  &sh->dev[s->failed_num[1]] };
2907 
2908 	/* is the data in this block needed, and can we get it? */
2909 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2910 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2911 	    (dev->toread ||
2912 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2913 	     s->syncing || s->expanding ||
2914 	     (s->replacing && want_replace(sh, disk_idx)) ||
2915 	     (s->failed >= 1 && fdev[0]->toread) ||
2916 	     (s->failed >= 2 && fdev[1]->toread) ||
2917 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2918 	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2919 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2920 	     ((sh->raid_conf->level == 6 ||
2921 	       sh->sector >= sh->raid_conf->mddev->recovery_cp)
2922 	      && s->failed && s->to_write &&
2923 	      (s->to_write - s->non_overwrite <
2924 	       sh->raid_conf->raid_disks - sh->raid_conf->max_degraded) &&
2925 	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2926 		/* we would like to get this block, possibly by computing it,
2927 		 * otherwise read it if the backing disk is insync
2928 		 */
2929 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2930 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2931 		if ((s->uptodate == disks - 1) &&
2932 		    (s->failed && (disk_idx == s->failed_num[0] ||
2933 				   disk_idx == s->failed_num[1]))) {
2934 			/* have disk failed, and we're requested to fetch it;
2935 			 * do compute it
2936 			 */
2937 			pr_debug("Computing stripe %llu block %d\n",
2938 			       (unsigned long long)sh->sector, disk_idx);
2939 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2940 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2941 			set_bit(R5_Wantcompute, &dev->flags);
2942 			sh->ops.target = disk_idx;
2943 			sh->ops.target2 = -1; /* no 2nd target */
2944 			s->req_compute = 1;
2945 			/* Careful: from this point on 'uptodate' is in the eye
2946 			 * of raid_run_ops which services 'compute' operations
2947 			 * before writes. R5_Wantcompute flags a block that will
2948 			 * be R5_UPTODATE by the time it is needed for a
2949 			 * subsequent operation.
2950 			 */
2951 			s->uptodate++;
2952 			return 1;
2953 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2954 			/* Computing 2-failure is *very* expensive; only
2955 			 * do it if failed >= 2
2956 			 */
2957 			int other;
2958 			for (other = disks; other--; ) {
2959 				if (other == disk_idx)
2960 					continue;
2961 				if (!test_bit(R5_UPTODATE,
2962 				      &sh->dev[other].flags))
2963 					break;
2964 			}
2965 			BUG_ON(other < 0);
2966 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2967 			       (unsigned long long)sh->sector,
2968 			       disk_idx, other);
2969 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2970 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2971 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2972 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2973 			sh->ops.target = disk_idx;
2974 			sh->ops.target2 = other;
2975 			s->uptodate += 2;
2976 			s->req_compute = 1;
2977 			return 1;
2978 		} else if (test_bit(R5_Insync, &dev->flags)) {
2979 			set_bit(R5_LOCKED, &dev->flags);
2980 			set_bit(R5_Wantread, &dev->flags);
2981 			s->locked++;
2982 			pr_debug("Reading block %d (sync=%d)\n",
2983 				disk_idx, s->syncing);
2984 		}
2985 	}
2986 
2987 	return 0;
2988 }
2989 
2990 /**
2991  * handle_stripe_fill - read or compute data to satisfy pending requests.
2992  */
2993 static void handle_stripe_fill(struct stripe_head *sh,
2994 			       struct stripe_head_state *s,
2995 			       int disks)
2996 {
2997 	int i;
2998 
2999 	/* look for blocks to read/compute, skip this if a compute
3000 	 * is already in flight, or if the stripe contents are in the
3001 	 * midst of changing due to a write
3002 	 */
3003 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3004 	    !sh->reconstruct_state)
3005 		for (i = disks; i--; )
3006 			if (fetch_block(sh, s, i, disks))
3007 				break;
3008 	set_bit(STRIPE_HANDLE, &sh->state);
3009 }
3010 
3011 /* handle_stripe_clean_event
3012  * any written block on an uptodate or failed drive can be returned.
3013  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3014  * never LOCKED, so we don't need to test 'failed' directly.
3015  */
3016 static void handle_stripe_clean_event(struct r5conf *conf,
3017 	struct stripe_head *sh, int disks, struct bio **return_bi)
3018 {
3019 	int i;
3020 	struct r5dev *dev;
3021 	int discard_pending = 0;
3022 
3023 	for (i = disks; i--; )
3024 		if (sh->dev[i].written) {
3025 			dev = &sh->dev[i];
3026 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3027 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3028 			     test_bit(R5_Discard, &dev->flags) ||
3029 			     test_bit(R5_SkipCopy, &dev->flags))) {
3030 				/* We can return any write requests */
3031 				struct bio *wbi, *wbi2;
3032 				pr_debug("Return write for disc %d\n", i);
3033 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3034 					clear_bit(R5_UPTODATE, &dev->flags);
3035 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3036 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3037 					dev->page = dev->orig_page;
3038 				}
3039 				wbi = dev->written;
3040 				dev->written = NULL;
3041 				while (wbi && wbi->bi_iter.bi_sector <
3042 					dev->sector + STRIPE_SECTORS) {
3043 					wbi2 = r5_next_bio(wbi, dev->sector);
3044 					if (!raid5_dec_bi_active_stripes(wbi)) {
3045 						md_write_end(conf->mddev);
3046 						wbi->bi_next = *return_bi;
3047 						*return_bi = wbi;
3048 					}
3049 					wbi = wbi2;
3050 				}
3051 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3052 						STRIPE_SECTORS,
3053 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3054 						0);
3055 			} else if (test_bit(R5_Discard, &dev->flags))
3056 				discard_pending = 1;
3057 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3058 			WARN_ON(dev->page != dev->orig_page);
3059 		}
3060 	if (!discard_pending &&
3061 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3062 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3063 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3064 		if (sh->qd_idx >= 0) {
3065 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3066 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3067 		}
3068 		/* now that discard is done we can proceed with any sync */
3069 		clear_bit(STRIPE_DISCARD, &sh->state);
3070 		/*
3071 		 * SCSI discard will change some bio fields and the stripe has
3072 		 * no updated data, so remove it from hash list and the stripe
3073 		 * will be reinitialized
3074 		 */
3075 		spin_lock_irq(&conf->device_lock);
3076 		remove_hash(sh);
3077 		spin_unlock_irq(&conf->device_lock);
3078 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3079 			set_bit(STRIPE_HANDLE, &sh->state);
3080 
3081 	}
3082 
3083 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3084 		if (atomic_dec_and_test(&conf->pending_full_writes))
3085 			md_wakeup_thread(conf->mddev->thread);
3086 }
3087 
3088 static void handle_stripe_dirtying(struct r5conf *conf,
3089 				   struct stripe_head *sh,
3090 				   struct stripe_head_state *s,
3091 				   int disks)
3092 {
3093 	int rmw = 0, rcw = 0, i;
3094 	sector_t recovery_cp = conf->mddev->recovery_cp;
3095 
3096 	/* RAID6 requires 'rcw' in current implementation.
3097 	 * Otherwise, check whether resync is now happening or should start.
3098 	 * If yes, then the array is dirty (after unclean shutdown or
3099 	 * initial creation), so parity in some stripes might be inconsistent.
3100 	 * In this case, we need to always do reconstruct-write, to ensure
3101 	 * that in case of drive failure or read-error correction, we
3102 	 * generate correct data from the parity.
3103 	 */
3104 	if (conf->max_degraded == 2 ||
3105 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3106 		/* Calculate the real rcw later - for now make it
3107 		 * look like rcw is cheaper
3108 		 */
3109 		rcw = 1; rmw = 2;
3110 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3111 			 conf->max_degraded, (unsigned long long)recovery_cp,
3112 			 (unsigned long long)sh->sector);
3113 	} else for (i = disks; i--; ) {
3114 		/* would I have to read this buffer for read_modify_write */
3115 		struct r5dev *dev = &sh->dev[i];
3116 		if ((dev->towrite || i == sh->pd_idx) &&
3117 		    !test_bit(R5_LOCKED, &dev->flags) &&
3118 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3119 		      test_bit(R5_Wantcompute, &dev->flags))) {
3120 			if (test_bit(R5_Insync, &dev->flags))
3121 				rmw++;
3122 			else
3123 				rmw += 2*disks;  /* cannot read it */
3124 		}
3125 		/* Would I have to read this buffer for reconstruct_write */
3126 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3127 		    !test_bit(R5_LOCKED, &dev->flags) &&
3128 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3129 		    test_bit(R5_Wantcompute, &dev->flags))) {
3130 			if (test_bit(R5_Insync, &dev->flags))
3131 				rcw++;
3132 			else
3133 				rcw += 2*disks;
3134 		}
3135 	}
3136 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3137 		(unsigned long long)sh->sector, rmw, rcw);
3138 	set_bit(STRIPE_HANDLE, &sh->state);
3139 	if (rmw < rcw && rmw > 0) {
3140 		/* prefer read-modify-write, but need to get some data */
3141 		if (conf->mddev->queue)
3142 			blk_add_trace_msg(conf->mddev->queue,
3143 					  "raid5 rmw %llu %d",
3144 					  (unsigned long long)sh->sector, rmw);
3145 		for (i = disks; i--; ) {
3146 			struct r5dev *dev = &sh->dev[i];
3147 			if ((dev->towrite || i == sh->pd_idx) &&
3148 			    !test_bit(R5_LOCKED, &dev->flags) &&
3149 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3150 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3151 			    test_bit(R5_Insync, &dev->flags)) {
3152 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3153 					     &sh->state)) {
3154 					pr_debug("Read_old block %d for r-m-w\n",
3155 						 i);
3156 					set_bit(R5_LOCKED, &dev->flags);
3157 					set_bit(R5_Wantread, &dev->flags);
3158 					s->locked++;
3159 				} else {
3160 					set_bit(STRIPE_DELAYED, &sh->state);
3161 					set_bit(STRIPE_HANDLE, &sh->state);
3162 				}
3163 			}
3164 		}
3165 	}
3166 	if (rcw <= rmw && rcw > 0) {
3167 		/* want reconstruct write, but need to get some data */
3168 		int qread =0;
3169 		rcw = 0;
3170 		for (i = disks; i--; ) {
3171 			struct r5dev *dev = &sh->dev[i];
3172 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3173 			    i != sh->pd_idx && i != sh->qd_idx &&
3174 			    !test_bit(R5_LOCKED, &dev->flags) &&
3175 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3176 			      test_bit(R5_Wantcompute, &dev->flags))) {
3177 				rcw++;
3178 				if (test_bit(R5_Insync, &dev->flags) &&
3179 				    test_bit(STRIPE_PREREAD_ACTIVE,
3180 					     &sh->state)) {
3181 					pr_debug("Read_old block "
3182 						"%d for Reconstruct\n", i);
3183 					set_bit(R5_LOCKED, &dev->flags);
3184 					set_bit(R5_Wantread, &dev->flags);
3185 					s->locked++;
3186 					qread++;
3187 				} else {
3188 					set_bit(STRIPE_DELAYED, &sh->state);
3189 					set_bit(STRIPE_HANDLE, &sh->state);
3190 				}
3191 			}
3192 		}
3193 		if (rcw && conf->mddev->queue)
3194 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3195 					  (unsigned long long)sh->sector,
3196 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3197 	}
3198 	/* now if nothing is locked, and if we have enough data,
3199 	 * we can start a write request
3200 	 */
3201 	/* since handle_stripe can be called at any time we need to handle the
3202 	 * case where a compute block operation has been submitted and then a
3203 	 * subsequent call wants to start a write request.  raid_run_ops only
3204 	 * handles the case where compute block and reconstruct are requested
3205 	 * simultaneously.  If this is not the case then new writes need to be
3206 	 * held off until the compute completes.
3207 	 */
3208 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3209 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3210 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3211 		schedule_reconstruction(sh, s, rcw == 0, 0);
3212 }
3213 
3214 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3215 				struct stripe_head_state *s, int disks)
3216 {
3217 	struct r5dev *dev = NULL;
3218 
3219 	set_bit(STRIPE_HANDLE, &sh->state);
3220 
3221 	switch (sh->check_state) {
3222 	case check_state_idle:
3223 		/* start a new check operation if there are no failures */
3224 		if (s->failed == 0) {
3225 			BUG_ON(s->uptodate != disks);
3226 			sh->check_state = check_state_run;
3227 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3228 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3229 			s->uptodate--;
3230 			break;
3231 		}
3232 		dev = &sh->dev[s->failed_num[0]];
3233 		/* fall through */
3234 	case check_state_compute_result:
3235 		sh->check_state = check_state_idle;
3236 		if (!dev)
3237 			dev = &sh->dev[sh->pd_idx];
3238 
3239 		/* check that a write has not made the stripe insync */
3240 		if (test_bit(STRIPE_INSYNC, &sh->state))
3241 			break;
3242 
3243 		/* either failed parity check, or recovery is happening */
3244 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3245 		BUG_ON(s->uptodate != disks);
3246 
3247 		set_bit(R5_LOCKED, &dev->flags);
3248 		s->locked++;
3249 		set_bit(R5_Wantwrite, &dev->flags);
3250 
3251 		clear_bit(STRIPE_DEGRADED, &sh->state);
3252 		set_bit(STRIPE_INSYNC, &sh->state);
3253 		break;
3254 	case check_state_run:
3255 		break; /* we will be called again upon completion */
3256 	case check_state_check_result:
3257 		sh->check_state = check_state_idle;
3258 
3259 		/* if a failure occurred during the check operation, leave
3260 		 * STRIPE_INSYNC not set and let the stripe be handled again
3261 		 */
3262 		if (s->failed)
3263 			break;
3264 
3265 		/* handle a successful check operation, if parity is correct
3266 		 * we are done.  Otherwise update the mismatch count and repair
3267 		 * parity if !MD_RECOVERY_CHECK
3268 		 */
3269 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3270 			/* parity is correct (on disc,
3271 			 * not in buffer any more)
3272 			 */
3273 			set_bit(STRIPE_INSYNC, &sh->state);
3274 		else {
3275 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3276 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3277 				/* don't try to repair!! */
3278 				set_bit(STRIPE_INSYNC, &sh->state);
3279 			else {
3280 				sh->check_state = check_state_compute_run;
3281 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3282 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3283 				set_bit(R5_Wantcompute,
3284 					&sh->dev[sh->pd_idx].flags);
3285 				sh->ops.target = sh->pd_idx;
3286 				sh->ops.target2 = -1;
3287 				s->uptodate++;
3288 			}
3289 		}
3290 		break;
3291 	case check_state_compute_run:
3292 		break;
3293 	default:
3294 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3295 		       __func__, sh->check_state,
3296 		       (unsigned long long) sh->sector);
3297 		BUG();
3298 	}
3299 }
3300 
3301 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3302 				  struct stripe_head_state *s,
3303 				  int disks)
3304 {
3305 	int pd_idx = sh->pd_idx;
3306 	int qd_idx = sh->qd_idx;
3307 	struct r5dev *dev;
3308 
3309 	set_bit(STRIPE_HANDLE, &sh->state);
3310 
3311 	BUG_ON(s->failed > 2);
3312 
3313 	/* Want to check and possibly repair P and Q.
3314 	 * However there could be one 'failed' device, in which
3315 	 * case we can only check one of them, possibly using the
3316 	 * other to generate missing data
3317 	 */
3318 
3319 	switch (sh->check_state) {
3320 	case check_state_idle:
3321 		/* start a new check operation if there are < 2 failures */
3322 		if (s->failed == s->q_failed) {
3323 			/* The only possible failed device holds Q, so it
3324 			 * makes sense to check P (If anything else were failed,
3325 			 * we would have used P to recreate it).
3326 			 */
3327 			sh->check_state = check_state_run;
3328 		}
3329 		if (!s->q_failed && s->failed < 2) {
3330 			/* Q is not failed, and we didn't use it to generate
3331 			 * anything, so it makes sense to check it
3332 			 */
3333 			if (sh->check_state == check_state_run)
3334 				sh->check_state = check_state_run_pq;
3335 			else
3336 				sh->check_state = check_state_run_q;
3337 		}
3338 
3339 		/* discard potentially stale zero_sum_result */
3340 		sh->ops.zero_sum_result = 0;
3341 
3342 		if (sh->check_state == check_state_run) {
3343 			/* async_xor_zero_sum destroys the contents of P */
3344 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3345 			s->uptodate--;
3346 		}
3347 		if (sh->check_state >= check_state_run &&
3348 		    sh->check_state <= check_state_run_pq) {
3349 			/* async_syndrome_zero_sum preserves P and Q, so
3350 			 * no need to mark them !uptodate here
3351 			 */
3352 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3353 			break;
3354 		}
3355 
3356 		/* we have 2-disk failure */
3357 		BUG_ON(s->failed != 2);
3358 		/* fall through */
3359 	case check_state_compute_result:
3360 		sh->check_state = check_state_idle;
3361 
3362 		/* check that a write has not made the stripe insync */
3363 		if (test_bit(STRIPE_INSYNC, &sh->state))
3364 			break;
3365 
3366 		/* now write out any block on a failed drive,
3367 		 * or P or Q if they were recomputed
3368 		 */
3369 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3370 		if (s->failed == 2) {
3371 			dev = &sh->dev[s->failed_num[1]];
3372 			s->locked++;
3373 			set_bit(R5_LOCKED, &dev->flags);
3374 			set_bit(R5_Wantwrite, &dev->flags);
3375 		}
3376 		if (s->failed >= 1) {
3377 			dev = &sh->dev[s->failed_num[0]];
3378 			s->locked++;
3379 			set_bit(R5_LOCKED, &dev->flags);
3380 			set_bit(R5_Wantwrite, &dev->flags);
3381 		}
3382 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3383 			dev = &sh->dev[pd_idx];
3384 			s->locked++;
3385 			set_bit(R5_LOCKED, &dev->flags);
3386 			set_bit(R5_Wantwrite, &dev->flags);
3387 		}
3388 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3389 			dev = &sh->dev[qd_idx];
3390 			s->locked++;
3391 			set_bit(R5_LOCKED, &dev->flags);
3392 			set_bit(R5_Wantwrite, &dev->flags);
3393 		}
3394 		clear_bit(STRIPE_DEGRADED, &sh->state);
3395 
3396 		set_bit(STRIPE_INSYNC, &sh->state);
3397 		break;
3398 	case check_state_run:
3399 	case check_state_run_q:
3400 	case check_state_run_pq:
3401 		break; /* we will be called again upon completion */
3402 	case check_state_check_result:
3403 		sh->check_state = check_state_idle;
3404 
3405 		/* handle a successful check operation, if parity is correct
3406 		 * we are done.  Otherwise update the mismatch count and repair
3407 		 * parity if !MD_RECOVERY_CHECK
3408 		 */
3409 		if (sh->ops.zero_sum_result == 0) {
3410 			/* both parities are correct */
3411 			if (!s->failed)
3412 				set_bit(STRIPE_INSYNC, &sh->state);
3413 			else {
3414 				/* in contrast to the raid5 case we can validate
3415 				 * parity, but still have a failure to write
3416 				 * back
3417 				 */
3418 				sh->check_state = check_state_compute_result;
3419 				/* Returning at this point means that we may go
3420 				 * off and bring p and/or q uptodate again so
3421 				 * we make sure to check zero_sum_result again
3422 				 * to verify if p or q need writeback
3423 				 */
3424 			}
3425 		} else {
3426 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3427 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3428 				/* don't try to repair!! */
3429 				set_bit(STRIPE_INSYNC, &sh->state);
3430 			else {
3431 				int *target = &sh->ops.target;
3432 
3433 				sh->ops.target = -1;
3434 				sh->ops.target2 = -1;
3435 				sh->check_state = check_state_compute_run;
3436 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3437 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3438 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3439 					set_bit(R5_Wantcompute,
3440 						&sh->dev[pd_idx].flags);
3441 					*target = pd_idx;
3442 					target = &sh->ops.target2;
3443 					s->uptodate++;
3444 				}
3445 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3446 					set_bit(R5_Wantcompute,
3447 						&sh->dev[qd_idx].flags);
3448 					*target = qd_idx;
3449 					s->uptodate++;
3450 				}
3451 			}
3452 		}
3453 		break;
3454 	case check_state_compute_run:
3455 		break;
3456 	default:
3457 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3458 		       __func__, sh->check_state,
3459 		       (unsigned long long) sh->sector);
3460 		BUG();
3461 	}
3462 }
3463 
3464 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3465 {
3466 	int i;
3467 
3468 	/* We have read all the blocks in this stripe and now we need to
3469 	 * copy some of them into a target stripe for expand.
3470 	 */
3471 	struct dma_async_tx_descriptor *tx = NULL;
3472 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3473 	for (i = 0; i < sh->disks; i++)
3474 		if (i != sh->pd_idx && i != sh->qd_idx) {
3475 			int dd_idx, j;
3476 			struct stripe_head *sh2;
3477 			struct async_submit_ctl submit;
3478 
3479 			sector_t bn = compute_blocknr(sh, i, 1);
3480 			sector_t s = raid5_compute_sector(conf, bn, 0,
3481 							  &dd_idx, NULL);
3482 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3483 			if (sh2 == NULL)
3484 				/* so far only the early blocks of this stripe
3485 				 * have been requested.  When later blocks
3486 				 * get requested, we will try again
3487 				 */
3488 				continue;
3489 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3490 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3491 				/* must have already done this block */
3492 				release_stripe(sh2);
3493 				continue;
3494 			}
3495 
3496 			/* place all the copies on one channel */
3497 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3498 			tx = async_memcpy(sh2->dev[dd_idx].page,
3499 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3500 					  &submit);
3501 
3502 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3503 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3504 			for (j = 0; j < conf->raid_disks; j++)
3505 				if (j != sh2->pd_idx &&
3506 				    j != sh2->qd_idx &&
3507 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3508 					break;
3509 			if (j == conf->raid_disks) {
3510 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3511 				set_bit(STRIPE_HANDLE, &sh2->state);
3512 			}
3513 			release_stripe(sh2);
3514 
3515 		}
3516 	/* done submitting copies, wait for them to complete */
3517 	async_tx_quiesce(&tx);
3518 }
3519 
3520 /*
3521  * handle_stripe - do things to a stripe.
3522  *
3523  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3524  * state of various bits to see what needs to be done.
3525  * Possible results:
3526  *    return some read requests which now have data
3527  *    return some write requests which are safely on storage
3528  *    schedule a read on some buffers
3529  *    schedule a write of some buffers
3530  *    return confirmation of parity correctness
3531  *
3532  */
3533 
3534 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3535 {
3536 	struct r5conf *conf = sh->raid_conf;
3537 	int disks = sh->disks;
3538 	struct r5dev *dev;
3539 	int i;
3540 	int do_recovery = 0;
3541 
3542 	memset(s, 0, sizeof(*s));
3543 
3544 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3545 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3546 	s->failed_num[0] = -1;
3547 	s->failed_num[1] = -1;
3548 
3549 	/* Now to look around and see what can be done */
3550 	rcu_read_lock();
3551 	for (i=disks; i--; ) {
3552 		struct md_rdev *rdev;
3553 		sector_t first_bad;
3554 		int bad_sectors;
3555 		int is_bad = 0;
3556 
3557 		dev = &sh->dev[i];
3558 
3559 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3560 			 i, dev->flags,
3561 			 dev->toread, dev->towrite, dev->written);
3562 		/* maybe we can reply to a read
3563 		 *
3564 		 * new wantfill requests are only permitted while
3565 		 * ops_complete_biofill is guaranteed to be inactive
3566 		 */
3567 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3568 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3569 			set_bit(R5_Wantfill, &dev->flags);
3570 
3571 		/* now count some things */
3572 		if (test_bit(R5_LOCKED, &dev->flags))
3573 			s->locked++;
3574 		if (test_bit(R5_UPTODATE, &dev->flags))
3575 			s->uptodate++;
3576 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3577 			s->compute++;
3578 			BUG_ON(s->compute > 2);
3579 		}
3580 
3581 		if (test_bit(R5_Wantfill, &dev->flags))
3582 			s->to_fill++;
3583 		else if (dev->toread)
3584 			s->to_read++;
3585 		if (dev->towrite) {
3586 			s->to_write++;
3587 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3588 				s->non_overwrite++;
3589 		}
3590 		if (dev->written)
3591 			s->written++;
3592 		/* Prefer to use the replacement for reads, but only
3593 		 * if it is recovered enough and has no bad blocks.
3594 		 */
3595 		rdev = rcu_dereference(conf->disks[i].replacement);
3596 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3597 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3598 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3599 				 &first_bad, &bad_sectors))
3600 			set_bit(R5_ReadRepl, &dev->flags);
3601 		else {
3602 			if (rdev)
3603 				set_bit(R5_NeedReplace, &dev->flags);
3604 			rdev = rcu_dereference(conf->disks[i].rdev);
3605 			clear_bit(R5_ReadRepl, &dev->flags);
3606 		}
3607 		if (rdev && test_bit(Faulty, &rdev->flags))
3608 			rdev = NULL;
3609 		if (rdev) {
3610 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3611 					     &first_bad, &bad_sectors);
3612 			if (s->blocked_rdev == NULL
3613 			    && (test_bit(Blocked, &rdev->flags)
3614 				|| is_bad < 0)) {
3615 				if (is_bad < 0)
3616 					set_bit(BlockedBadBlocks,
3617 						&rdev->flags);
3618 				s->blocked_rdev = rdev;
3619 				atomic_inc(&rdev->nr_pending);
3620 			}
3621 		}
3622 		clear_bit(R5_Insync, &dev->flags);
3623 		if (!rdev)
3624 			/* Not in-sync */;
3625 		else if (is_bad) {
3626 			/* also not in-sync */
3627 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3628 			    test_bit(R5_UPTODATE, &dev->flags)) {
3629 				/* treat as in-sync, but with a read error
3630 				 * which we can now try to correct
3631 				 */
3632 				set_bit(R5_Insync, &dev->flags);
3633 				set_bit(R5_ReadError, &dev->flags);
3634 			}
3635 		} else if (test_bit(In_sync, &rdev->flags))
3636 			set_bit(R5_Insync, &dev->flags);
3637 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3638 			/* in sync if before recovery_offset */
3639 			set_bit(R5_Insync, &dev->flags);
3640 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3641 			 test_bit(R5_Expanded, &dev->flags))
3642 			/* If we've reshaped into here, we assume it is Insync.
3643 			 * We will shortly update recovery_offset to make
3644 			 * it official.
3645 			 */
3646 			set_bit(R5_Insync, &dev->flags);
3647 
3648 		if (test_bit(R5_WriteError, &dev->flags)) {
3649 			/* This flag does not apply to '.replacement'
3650 			 * only to .rdev, so make sure to check that*/
3651 			struct md_rdev *rdev2 = rcu_dereference(
3652 				conf->disks[i].rdev);
3653 			if (rdev2 == rdev)
3654 				clear_bit(R5_Insync, &dev->flags);
3655 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3656 				s->handle_bad_blocks = 1;
3657 				atomic_inc(&rdev2->nr_pending);
3658 			} else
3659 				clear_bit(R5_WriteError, &dev->flags);
3660 		}
3661 		if (test_bit(R5_MadeGood, &dev->flags)) {
3662 			/* This flag does not apply to '.replacement'
3663 			 * only to .rdev, so make sure to check that*/
3664 			struct md_rdev *rdev2 = rcu_dereference(
3665 				conf->disks[i].rdev);
3666 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3667 				s->handle_bad_blocks = 1;
3668 				atomic_inc(&rdev2->nr_pending);
3669 			} else
3670 				clear_bit(R5_MadeGood, &dev->flags);
3671 		}
3672 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3673 			struct md_rdev *rdev2 = rcu_dereference(
3674 				conf->disks[i].replacement);
3675 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3676 				s->handle_bad_blocks = 1;
3677 				atomic_inc(&rdev2->nr_pending);
3678 			} else
3679 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3680 		}
3681 		if (!test_bit(R5_Insync, &dev->flags)) {
3682 			/* The ReadError flag will just be confusing now */
3683 			clear_bit(R5_ReadError, &dev->flags);
3684 			clear_bit(R5_ReWrite, &dev->flags);
3685 		}
3686 		if (test_bit(R5_ReadError, &dev->flags))
3687 			clear_bit(R5_Insync, &dev->flags);
3688 		if (!test_bit(R5_Insync, &dev->flags)) {
3689 			if (s->failed < 2)
3690 				s->failed_num[s->failed] = i;
3691 			s->failed++;
3692 			if (rdev && !test_bit(Faulty, &rdev->flags))
3693 				do_recovery = 1;
3694 		}
3695 	}
3696 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3697 		/* If there is a failed device being replaced,
3698 		 *     we must be recovering.
3699 		 * else if we are after recovery_cp, we must be syncing
3700 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3701 		 * else we can only be replacing
3702 		 * sync and recovery both need to read all devices, and so
3703 		 * use the same flag.
3704 		 */
3705 		if (do_recovery ||
3706 		    sh->sector >= conf->mddev->recovery_cp ||
3707 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3708 			s->syncing = 1;
3709 		else
3710 			s->replacing = 1;
3711 	}
3712 	rcu_read_unlock();
3713 }
3714 
3715 static void handle_stripe(struct stripe_head *sh)
3716 {
3717 	struct stripe_head_state s;
3718 	struct r5conf *conf = sh->raid_conf;
3719 	int i;
3720 	int prexor;
3721 	int disks = sh->disks;
3722 	struct r5dev *pdev, *qdev;
3723 
3724 	clear_bit(STRIPE_HANDLE, &sh->state);
3725 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3726 		/* already being handled, ensure it gets handled
3727 		 * again when current action finishes */
3728 		set_bit(STRIPE_HANDLE, &sh->state);
3729 		return;
3730 	}
3731 
3732 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3733 		spin_lock(&sh->stripe_lock);
3734 		/* Cannot process 'sync' concurrently with 'discard' */
3735 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3736 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3737 			set_bit(STRIPE_SYNCING, &sh->state);
3738 			clear_bit(STRIPE_INSYNC, &sh->state);
3739 			clear_bit(STRIPE_REPLACED, &sh->state);
3740 		}
3741 		spin_unlock(&sh->stripe_lock);
3742 	}
3743 	clear_bit(STRIPE_DELAYED, &sh->state);
3744 
3745 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3746 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3747 	       (unsigned long long)sh->sector, sh->state,
3748 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3749 	       sh->check_state, sh->reconstruct_state);
3750 
3751 	analyse_stripe(sh, &s);
3752 
3753 	if (s.handle_bad_blocks) {
3754 		set_bit(STRIPE_HANDLE, &sh->state);
3755 		goto finish;
3756 	}
3757 
3758 	if (unlikely(s.blocked_rdev)) {
3759 		if (s.syncing || s.expanding || s.expanded ||
3760 		    s.replacing || s.to_write || s.written) {
3761 			set_bit(STRIPE_HANDLE, &sh->state);
3762 			goto finish;
3763 		}
3764 		/* There is nothing for the blocked_rdev to block */
3765 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3766 		s.blocked_rdev = NULL;
3767 	}
3768 
3769 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3770 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3771 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3772 	}
3773 
3774 	pr_debug("locked=%d uptodate=%d to_read=%d"
3775 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3776 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3777 	       s.failed_num[0], s.failed_num[1]);
3778 	/* check if the array has lost more than max_degraded devices and,
3779 	 * if so, some requests might need to be failed.
3780 	 */
3781 	if (s.failed > conf->max_degraded) {
3782 		sh->check_state = 0;
3783 		sh->reconstruct_state = 0;
3784 		if (s.to_read+s.to_write+s.written)
3785 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3786 		if (s.syncing + s.replacing)
3787 			handle_failed_sync(conf, sh, &s);
3788 	}
3789 
3790 	/* Now we check to see if any write operations have recently
3791 	 * completed
3792 	 */
3793 	prexor = 0;
3794 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3795 		prexor = 1;
3796 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3797 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3798 		sh->reconstruct_state = reconstruct_state_idle;
3799 
3800 		/* All the 'written' buffers and the parity block are ready to
3801 		 * be written back to disk
3802 		 */
3803 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3804 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3805 		BUG_ON(sh->qd_idx >= 0 &&
3806 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3807 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3808 		for (i = disks; i--; ) {
3809 			struct r5dev *dev = &sh->dev[i];
3810 			if (test_bit(R5_LOCKED, &dev->flags) &&
3811 				(i == sh->pd_idx || i == sh->qd_idx ||
3812 				 dev->written)) {
3813 				pr_debug("Writing block %d\n", i);
3814 				set_bit(R5_Wantwrite, &dev->flags);
3815 				if (prexor)
3816 					continue;
3817 				if (s.failed > 1)
3818 					continue;
3819 				if (!test_bit(R5_Insync, &dev->flags) ||
3820 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3821 				     s.failed == 0))
3822 					set_bit(STRIPE_INSYNC, &sh->state);
3823 			}
3824 		}
3825 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3826 			s.dec_preread_active = 1;
3827 	}
3828 
3829 	/*
3830 	 * might be able to return some write requests if the parity blocks
3831 	 * are safe, or on a failed drive
3832 	 */
3833 	pdev = &sh->dev[sh->pd_idx];
3834 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3835 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3836 	qdev = &sh->dev[sh->qd_idx];
3837 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3838 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3839 		|| conf->level < 6;
3840 
3841 	if (s.written &&
3842 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3843 			     && !test_bit(R5_LOCKED, &pdev->flags)
3844 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3845 				 test_bit(R5_Discard, &pdev->flags))))) &&
3846 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3847 			     && !test_bit(R5_LOCKED, &qdev->flags)
3848 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3849 				 test_bit(R5_Discard, &qdev->flags))))))
3850 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3851 
3852 	/* Now we might consider reading some blocks, either to check/generate
3853 	 * parity, or to satisfy requests
3854 	 * or to load a block that is being partially written.
3855 	 */
3856 	if (s.to_read || s.non_overwrite
3857 	    || (conf->level == 6 && s.to_write && s.failed)
3858 	    || (s.syncing && (s.uptodate + s.compute < disks))
3859 	    || s.replacing
3860 	    || s.expanding)
3861 		handle_stripe_fill(sh, &s, disks);
3862 
3863 	/* Now to consider new write requests and what else, if anything
3864 	 * should be read.  We do not handle new writes when:
3865 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3866 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3867 	 *    block.
3868 	 */
3869 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3870 		handle_stripe_dirtying(conf, sh, &s, disks);
3871 
3872 	/* maybe we need to check and possibly fix the parity for this stripe
3873 	 * Any reads will already have been scheduled, so we just see if enough
3874 	 * data is available.  The parity check is held off while parity
3875 	 * dependent operations are in flight.
3876 	 */
3877 	if (sh->check_state ||
3878 	    (s.syncing && s.locked == 0 &&
3879 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3880 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3881 		if (conf->level == 6)
3882 			handle_parity_checks6(conf, sh, &s, disks);
3883 		else
3884 			handle_parity_checks5(conf, sh, &s, disks);
3885 	}
3886 
3887 	if ((s.replacing || s.syncing) && s.locked == 0
3888 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3889 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3890 		/* Write out to replacement devices where possible */
3891 		for (i = 0; i < conf->raid_disks; i++)
3892 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3893 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3894 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3895 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3896 				s.locked++;
3897 			}
3898 		if (s.replacing)
3899 			set_bit(STRIPE_INSYNC, &sh->state);
3900 		set_bit(STRIPE_REPLACED, &sh->state);
3901 	}
3902 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3903 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3904 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3905 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3906 		clear_bit(STRIPE_SYNCING, &sh->state);
3907 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3908 			wake_up(&conf->wait_for_overlap);
3909 	}
3910 
3911 	/* If the failed drives are just a ReadError, then we might need
3912 	 * to progress the repair/check process
3913 	 */
3914 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3915 		for (i = 0; i < s.failed; i++) {
3916 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3917 			if (test_bit(R5_ReadError, &dev->flags)
3918 			    && !test_bit(R5_LOCKED, &dev->flags)
3919 			    && test_bit(R5_UPTODATE, &dev->flags)
3920 				) {
3921 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3922 					set_bit(R5_Wantwrite, &dev->flags);
3923 					set_bit(R5_ReWrite, &dev->flags);
3924 					set_bit(R5_LOCKED, &dev->flags);
3925 					s.locked++;
3926 				} else {
3927 					/* let's read it back */
3928 					set_bit(R5_Wantread, &dev->flags);
3929 					set_bit(R5_LOCKED, &dev->flags);
3930 					s.locked++;
3931 				}
3932 			}
3933 		}
3934 
3935 	/* Finish reconstruct operations initiated by the expansion process */
3936 	if (sh->reconstruct_state == reconstruct_state_result) {
3937 		struct stripe_head *sh_src
3938 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3939 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3940 			/* sh cannot be written until sh_src has been read.
3941 			 * so arrange for sh to be delayed a little
3942 			 */
3943 			set_bit(STRIPE_DELAYED, &sh->state);
3944 			set_bit(STRIPE_HANDLE, &sh->state);
3945 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3946 					      &sh_src->state))
3947 				atomic_inc(&conf->preread_active_stripes);
3948 			release_stripe(sh_src);
3949 			goto finish;
3950 		}
3951 		if (sh_src)
3952 			release_stripe(sh_src);
3953 
3954 		sh->reconstruct_state = reconstruct_state_idle;
3955 		clear_bit(STRIPE_EXPANDING, &sh->state);
3956 		for (i = conf->raid_disks; i--; ) {
3957 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3958 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3959 			s.locked++;
3960 		}
3961 	}
3962 
3963 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3964 	    !sh->reconstruct_state) {
3965 		/* Need to write out all blocks after computing parity */
3966 		sh->disks = conf->raid_disks;
3967 		stripe_set_idx(sh->sector, conf, 0, sh);
3968 		schedule_reconstruction(sh, &s, 1, 1);
3969 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3970 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3971 		atomic_dec(&conf->reshape_stripes);
3972 		wake_up(&conf->wait_for_overlap);
3973 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3974 	}
3975 
3976 	if (s.expanding && s.locked == 0 &&
3977 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3978 		handle_stripe_expansion(conf, sh);
3979 
3980 finish:
3981 	/* wait for this device to become unblocked */
3982 	if (unlikely(s.blocked_rdev)) {
3983 		if (conf->mddev->external)
3984 			md_wait_for_blocked_rdev(s.blocked_rdev,
3985 						 conf->mddev);
3986 		else
3987 			/* Internal metadata will immediately
3988 			 * be written by raid5d, so we don't
3989 			 * need to wait here.
3990 			 */
3991 			rdev_dec_pending(s.blocked_rdev,
3992 					 conf->mddev);
3993 	}
3994 
3995 	if (s.handle_bad_blocks)
3996 		for (i = disks; i--; ) {
3997 			struct md_rdev *rdev;
3998 			struct r5dev *dev = &sh->dev[i];
3999 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4000 				/* We own a safe reference to the rdev */
4001 				rdev = conf->disks[i].rdev;
4002 				if (!rdev_set_badblocks(rdev, sh->sector,
4003 							STRIPE_SECTORS, 0))
4004 					md_error(conf->mddev, rdev);
4005 				rdev_dec_pending(rdev, conf->mddev);
4006 			}
4007 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4008 				rdev = conf->disks[i].rdev;
4009 				rdev_clear_badblocks(rdev, sh->sector,
4010 						     STRIPE_SECTORS, 0);
4011 				rdev_dec_pending(rdev, conf->mddev);
4012 			}
4013 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4014 				rdev = conf->disks[i].replacement;
4015 				if (!rdev)
4016 					/* rdev have been moved down */
4017 					rdev = conf->disks[i].rdev;
4018 				rdev_clear_badblocks(rdev, sh->sector,
4019 						     STRIPE_SECTORS, 0);
4020 				rdev_dec_pending(rdev, conf->mddev);
4021 			}
4022 		}
4023 
4024 	if (s.ops_request)
4025 		raid_run_ops(sh, s.ops_request);
4026 
4027 	ops_run_io(sh, &s);
4028 
4029 	if (s.dec_preread_active) {
4030 		/* We delay this until after ops_run_io so that if make_request
4031 		 * is waiting on a flush, it won't continue until the writes
4032 		 * have actually been submitted.
4033 		 */
4034 		atomic_dec(&conf->preread_active_stripes);
4035 		if (atomic_read(&conf->preread_active_stripes) <
4036 		    IO_THRESHOLD)
4037 			md_wakeup_thread(conf->mddev->thread);
4038 	}
4039 
4040 	return_io(s.return_bi);
4041 
4042 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4043 }
4044 
4045 static void raid5_activate_delayed(struct r5conf *conf)
4046 {
4047 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4048 		while (!list_empty(&conf->delayed_list)) {
4049 			struct list_head *l = conf->delayed_list.next;
4050 			struct stripe_head *sh;
4051 			sh = list_entry(l, struct stripe_head, lru);
4052 			list_del_init(l);
4053 			clear_bit(STRIPE_DELAYED, &sh->state);
4054 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4055 				atomic_inc(&conf->preread_active_stripes);
4056 			list_add_tail(&sh->lru, &conf->hold_list);
4057 			raid5_wakeup_stripe_thread(sh);
4058 		}
4059 	}
4060 }
4061 
4062 static void activate_bit_delay(struct r5conf *conf,
4063 	struct list_head *temp_inactive_list)
4064 {
4065 	/* device_lock is held */
4066 	struct list_head head;
4067 	list_add(&head, &conf->bitmap_list);
4068 	list_del_init(&conf->bitmap_list);
4069 	while (!list_empty(&head)) {
4070 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4071 		int hash;
4072 		list_del_init(&sh->lru);
4073 		atomic_inc(&sh->count);
4074 		hash = sh->hash_lock_index;
4075 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4076 	}
4077 }
4078 
4079 int md_raid5_congested(struct mddev *mddev, int bits)
4080 {
4081 	struct r5conf *conf = mddev->private;
4082 
4083 	/* No difference between reads and writes.  Just check
4084 	 * how busy the stripe_cache is
4085 	 */
4086 
4087 	if (conf->inactive_blocked)
4088 		return 1;
4089 	if (conf->quiesce)
4090 		return 1;
4091 	if (atomic_read(&conf->empty_inactive_list_nr))
4092 		return 1;
4093 
4094 	return 0;
4095 }
4096 EXPORT_SYMBOL_GPL(md_raid5_congested);
4097 
4098 static int raid5_congested(void *data, int bits)
4099 {
4100 	struct mddev *mddev = data;
4101 
4102 	return mddev_congested(mddev, bits) ||
4103 		md_raid5_congested(mddev, bits);
4104 }
4105 
4106 /* We want read requests to align with chunks where possible,
4107  * but write requests don't need to.
4108  */
4109 static int raid5_mergeable_bvec(struct request_queue *q,
4110 				struct bvec_merge_data *bvm,
4111 				struct bio_vec *biovec)
4112 {
4113 	struct mddev *mddev = q->queuedata;
4114 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4115 	int max;
4116 	unsigned int chunk_sectors = mddev->chunk_sectors;
4117 	unsigned int bio_sectors = bvm->bi_size >> 9;
4118 
4119 	if ((bvm->bi_rw & 1) == WRITE)
4120 		return biovec->bv_len; /* always allow writes to be mergeable */
4121 
4122 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4123 		chunk_sectors = mddev->new_chunk_sectors;
4124 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4125 	if (max < 0) max = 0;
4126 	if (max <= biovec->bv_len && bio_sectors == 0)
4127 		return biovec->bv_len;
4128 	else
4129 		return max;
4130 }
4131 
4132 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4133 {
4134 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4135 	unsigned int chunk_sectors = mddev->chunk_sectors;
4136 	unsigned int bio_sectors = bio_sectors(bio);
4137 
4138 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4139 		chunk_sectors = mddev->new_chunk_sectors;
4140 	return  chunk_sectors >=
4141 		((sector & (chunk_sectors - 1)) + bio_sectors);
4142 }
4143 
4144 /*
4145  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4146  *  later sampled by raid5d.
4147  */
4148 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4149 {
4150 	unsigned long flags;
4151 
4152 	spin_lock_irqsave(&conf->device_lock, flags);
4153 
4154 	bi->bi_next = conf->retry_read_aligned_list;
4155 	conf->retry_read_aligned_list = bi;
4156 
4157 	spin_unlock_irqrestore(&conf->device_lock, flags);
4158 	md_wakeup_thread(conf->mddev->thread);
4159 }
4160 
4161 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4162 {
4163 	struct bio *bi;
4164 
4165 	bi = conf->retry_read_aligned;
4166 	if (bi) {
4167 		conf->retry_read_aligned = NULL;
4168 		return bi;
4169 	}
4170 	bi = conf->retry_read_aligned_list;
4171 	if(bi) {
4172 		conf->retry_read_aligned_list = bi->bi_next;
4173 		bi->bi_next = NULL;
4174 		/*
4175 		 * this sets the active strip count to 1 and the processed
4176 		 * strip count to zero (upper 8 bits)
4177 		 */
4178 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4179 	}
4180 
4181 	return bi;
4182 }
4183 
4184 /*
4185  *  The "raid5_align_endio" should check if the read succeeded and if it
4186  *  did, call bio_endio on the original bio (having bio_put the new bio
4187  *  first).
4188  *  If the read failed..
4189  */
4190 static void raid5_align_endio(struct bio *bi, int error)
4191 {
4192 	struct bio* raid_bi  = bi->bi_private;
4193 	struct mddev *mddev;
4194 	struct r5conf *conf;
4195 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4196 	struct md_rdev *rdev;
4197 
4198 	bio_put(bi);
4199 
4200 	rdev = (void*)raid_bi->bi_next;
4201 	raid_bi->bi_next = NULL;
4202 	mddev = rdev->mddev;
4203 	conf = mddev->private;
4204 
4205 	rdev_dec_pending(rdev, conf->mddev);
4206 
4207 	if (!error && uptodate) {
4208 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4209 					 raid_bi, 0);
4210 		bio_endio(raid_bi, 0);
4211 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4212 			wake_up(&conf->wait_for_stripe);
4213 		return;
4214 	}
4215 
4216 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4217 
4218 	add_bio_to_retry(raid_bi, conf);
4219 }
4220 
4221 static int bio_fits_rdev(struct bio *bi)
4222 {
4223 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4224 
4225 	if (bio_sectors(bi) > queue_max_sectors(q))
4226 		return 0;
4227 	blk_recount_segments(q, bi);
4228 	if (bi->bi_phys_segments > queue_max_segments(q))
4229 		return 0;
4230 
4231 	if (q->merge_bvec_fn)
4232 		/* it's too hard to apply the merge_bvec_fn at this stage,
4233 		 * just just give up
4234 		 */
4235 		return 0;
4236 
4237 	return 1;
4238 }
4239 
4240 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4241 {
4242 	struct r5conf *conf = mddev->private;
4243 	int dd_idx;
4244 	struct bio* align_bi;
4245 	struct md_rdev *rdev;
4246 	sector_t end_sector;
4247 
4248 	if (!in_chunk_boundary(mddev, raid_bio)) {
4249 		pr_debug("chunk_aligned_read : non aligned\n");
4250 		return 0;
4251 	}
4252 	/*
4253 	 * use bio_clone_mddev to make a copy of the bio
4254 	 */
4255 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4256 	if (!align_bi)
4257 		return 0;
4258 	/*
4259 	 *   set bi_end_io to a new function, and set bi_private to the
4260 	 *     original bio.
4261 	 */
4262 	align_bi->bi_end_io  = raid5_align_endio;
4263 	align_bi->bi_private = raid_bio;
4264 	/*
4265 	 *	compute position
4266 	 */
4267 	align_bi->bi_iter.bi_sector =
4268 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4269 				     0, &dd_idx, NULL);
4270 
4271 	end_sector = bio_end_sector(align_bi);
4272 	rcu_read_lock();
4273 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4274 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4275 	    rdev->recovery_offset < end_sector) {
4276 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4277 		if (rdev &&
4278 		    (test_bit(Faulty, &rdev->flags) ||
4279 		    !(test_bit(In_sync, &rdev->flags) ||
4280 		      rdev->recovery_offset >= end_sector)))
4281 			rdev = NULL;
4282 	}
4283 	if (rdev) {
4284 		sector_t first_bad;
4285 		int bad_sectors;
4286 
4287 		atomic_inc(&rdev->nr_pending);
4288 		rcu_read_unlock();
4289 		raid_bio->bi_next = (void*)rdev;
4290 		align_bi->bi_bdev =  rdev->bdev;
4291 		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4292 
4293 		if (!bio_fits_rdev(align_bi) ||
4294 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4295 				bio_sectors(align_bi),
4296 				&first_bad, &bad_sectors)) {
4297 			/* too big in some way, or has a known bad block */
4298 			bio_put(align_bi);
4299 			rdev_dec_pending(rdev, mddev);
4300 			return 0;
4301 		}
4302 
4303 		/* No reshape active, so we can trust rdev->data_offset */
4304 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4305 
4306 		spin_lock_irq(&conf->device_lock);
4307 		wait_event_lock_irq(conf->wait_for_stripe,
4308 				    conf->quiesce == 0,
4309 				    conf->device_lock);
4310 		atomic_inc(&conf->active_aligned_reads);
4311 		spin_unlock_irq(&conf->device_lock);
4312 
4313 		if (mddev->gendisk)
4314 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4315 					      align_bi, disk_devt(mddev->gendisk),
4316 					      raid_bio->bi_iter.bi_sector);
4317 		generic_make_request(align_bi);
4318 		return 1;
4319 	} else {
4320 		rcu_read_unlock();
4321 		bio_put(align_bi);
4322 		return 0;
4323 	}
4324 }
4325 
4326 /* __get_priority_stripe - get the next stripe to process
4327  *
4328  * Full stripe writes are allowed to pass preread active stripes up until
4329  * the bypass_threshold is exceeded.  In general the bypass_count
4330  * increments when the handle_list is handled before the hold_list; however, it
4331  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4332  * stripe with in flight i/o.  The bypass_count will be reset when the
4333  * head of the hold_list has changed, i.e. the head was promoted to the
4334  * handle_list.
4335  */
4336 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4337 {
4338 	struct stripe_head *sh = NULL, *tmp;
4339 	struct list_head *handle_list = NULL;
4340 	struct r5worker_group *wg = NULL;
4341 
4342 	if (conf->worker_cnt_per_group == 0) {
4343 		handle_list = &conf->handle_list;
4344 	} else if (group != ANY_GROUP) {
4345 		handle_list = &conf->worker_groups[group].handle_list;
4346 		wg = &conf->worker_groups[group];
4347 	} else {
4348 		int i;
4349 		for (i = 0; i < conf->group_cnt; i++) {
4350 			handle_list = &conf->worker_groups[i].handle_list;
4351 			wg = &conf->worker_groups[i];
4352 			if (!list_empty(handle_list))
4353 				break;
4354 		}
4355 	}
4356 
4357 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4358 		  __func__,
4359 		  list_empty(handle_list) ? "empty" : "busy",
4360 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4361 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4362 
4363 	if (!list_empty(handle_list)) {
4364 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4365 
4366 		if (list_empty(&conf->hold_list))
4367 			conf->bypass_count = 0;
4368 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4369 			if (conf->hold_list.next == conf->last_hold)
4370 				conf->bypass_count++;
4371 			else {
4372 				conf->last_hold = conf->hold_list.next;
4373 				conf->bypass_count -= conf->bypass_threshold;
4374 				if (conf->bypass_count < 0)
4375 					conf->bypass_count = 0;
4376 			}
4377 		}
4378 	} else if (!list_empty(&conf->hold_list) &&
4379 		   ((conf->bypass_threshold &&
4380 		     conf->bypass_count > conf->bypass_threshold) ||
4381 		    atomic_read(&conf->pending_full_writes) == 0)) {
4382 
4383 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4384 			if (conf->worker_cnt_per_group == 0 ||
4385 			    group == ANY_GROUP ||
4386 			    !cpu_online(tmp->cpu) ||
4387 			    cpu_to_group(tmp->cpu) == group) {
4388 				sh = tmp;
4389 				break;
4390 			}
4391 		}
4392 
4393 		if (sh) {
4394 			conf->bypass_count -= conf->bypass_threshold;
4395 			if (conf->bypass_count < 0)
4396 				conf->bypass_count = 0;
4397 		}
4398 		wg = NULL;
4399 	}
4400 
4401 	if (!sh)
4402 		return NULL;
4403 
4404 	if (wg) {
4405 		wg->stripes_cnt--;
4406 		sh->group = NULL;
4407 	}
4408 	list_del_init(&sh->lru);
4409 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4410 	return sh;
4411 }
4412 
4413 struct raid5_plug_cb {
4414 	struct blk_plug_cb	cb;
4415 	struct list_head	list;
4416 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4417 };
4418 
4419 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4420 {
4421 	struct raid5_plug_cb *cb = container_of(
4422 		blk_cb, struct raid5_plug_cb, cb);
4423 	struct stripe_head *sh;
4424 	struct mddev *mddev = cb->cb.data;
4425 	struct r5conf *conf = mddev->private;
4426 	int cnt = 0;
4427 	int hash;
4428 
4429 	if (cb->list.next && !list_empty(&cb->list)) {
4430 		spin_lock_irq(&conf->device_lock);
4431 		while (!list_empty(&cb->list)) {
4432 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4433 			list_del_init(&sh->lru);
4434 			/*
4435 			 * avoid race release_stripe_plug() sees
4436 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4437 			 * is still in our list
4438 			 */
4439 			smp_mb__before_atomic();
4440 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4441 			/*
4442 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4443 			 * case, the count is always > 1 here
4444 			 */
4445 			hash = sh->hash_lock_index;
4446 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4447 			cnt++;
4448 		}
4449 		spin_unlock_irq(&conf->device_lock);
4450 	}
4451 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4452 				     NR_STRIPE_HASH_LOCKS);
4453 	if (mddev->queue)
4454 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4455 	kfree(cb);
4456 }
4457 
4458 static void release_stripe_plug(struct mddev *mddev,
4459 				struct stripe_head *sh)
4460 {
4461 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4462 		raid5_unplug, mddev,
4463 		sizeof(struct raid5_plug_cb));
4464 	struct raid5_plug_cb *cb;
4465 
4466 	if (!blk_cb) {
4467 		release_stripe(sh);
4468 		return;
4469 	}
4470 
4471 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4472 
4473 	if (cb->list.next == NULL) {
4474 		int i;
4475 		INIT_LIST_HEAD(&cb->list);
4476 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4477 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4478 	}
4479 
4480 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4481 		list_add_tail(&sh->lru, &cb->list);
4482 	else
4483 		release_stripe(sh);
4484 }
4485 
4486 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4487 {
4488 	struct r5conf *conf = mddev->private;
4489 	sector_t logical_sector, last_sector;
4490 	struct stripe_head *sh;
4491 	int remaining;
4492 	int stripe_sectors;
4493 
4494 	if (mddev->reshape_position != MaxSector)
4495 		/* Skip discard while reshape is happening */
4496 		return;
4497 
4498 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4499 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4500 
4501 	bi->bi_next = NULL;
4502 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4503 
4504 	stripe_sectors = conf->chunk_sectors *
4505 		(conf->raid_disks - conf->max_degraded);
4506 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4507 					       stripe_sectors);
4508 	sector_div(last_sector, stripe_sectors);
4509 
4510 	logical_sector *= conf->chunk_sectors;
4511 	last_sector *= conf->chunk_sectors;
4512 
4513 	for (; logical_sector < last_sector;
4514 	     logical_sector += STRIPE_SECTORS) {
4515 		DEFINE_WAIT(w);
4516 		int d;
4517 	again:
4518 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4519 		prepare_to_wait(&conf->wait_for_overlap, &w,
4520 				TASK_UNINTERRUPTIBLE);
4521 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4522 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4523 			release_stripe(sh);
4524 			schedule();
4525 			goto again;
4526 		}
4527 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4528 		spin_lock_irq(&sh->stripe_lock);
4529 		for (d = 0; d < conf->raid_disks; d++) {
4530 			if (d == sh->pd_idx || d == sh->qd_idx)
4531 				continue;
4532 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4533 				set_bit(R5_Overlap, &sh->dev[d].flags);
4534 				spin_unlock_irq(&sh->stripe_lock);
4535 				release_stripe(sh);
4536 				schedule();
4537 				goto again;
4538 			}
4539 		}
4540 		set_bit(STRIPE_DISCARD, &sh->state);
4541 		finish_wait(&conf->wait_for_overlap, &w);
4542 		for (d = 0; d < conf->raid_disks; d++) {
4543 			if (d == sh->pd_idx || d == sh->qd_idx)
4544 				continue;
4545 			sh->dev[d].towrite = bi;
4546 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4547 			raid5_inc_bi_active_stripes(bi);
4548 		}
4549 		spin_unlock_irq(&sh->stripe_lock);
4550 		if (conf->mddev->bitmap) {
4551 			for (d = 0;
4552 			     d < conf->raid_disks - conf->max_degraded;
4553 			     d++)
4554 				bitmap_startwrite(mddev->bitmap,
4555 						  sh->sector,
4556 						  STRIPE_SECTORS,
4557 						  0);
4558 			sh->bm_seq = conf->seq_flush + 1;
4559 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4560 		}
4561 
4562 		set_bit(STRIPE_HANDLE, &sh->state);
4563 		clear_bit(STRIPE_DELAYED, &sh->state);
4564 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4565 			atomic_inc(&conf->preread_active_stripes);
4566 		release_stripe_plug(mddev, sh);
4567 	}
4568 
4569 	remaining = raid5_dec_bi_active_stripes(bi);
4570 	if (remaining == 0) {
4571 		md_write_end(mddev);
4572 		bio_endio(bi, 0);
4573 	}
4574 }
4575 
4576 static void make_request(struct mddev *mddev, struct bio * bi)
4577 {
4578 	struct r5conf *conf = mddev->private;
4579 	int dd_idx;
4580 	sector_t new_sector;
4581 	sector_t logical_sector, last_sector;
4582 	struct stripe_head *sh;
4583 	const int rw = bio_data_dir(bi);
4584 	int remaining;
4585 	DEFINE_WAIT(w);
4586 	bool do_prepare;
4587 
4588 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4589 		md_flush_request(mddev, bi);
4590 		return;
4591 	}
4592 
4593 	md_write_start(mddev, bi);
4594 
4595 	if (rw == READ &&
4596 	     mddev->reshape_position == MaxSector &&
4597 	     chunk_aligned_read(mddev,bi))
4598 		return;
4599 
4600 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4601 		make_discard_request(mddev, bi);
4602 		return;
4603 	}
4604 
4605 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4606 	last_sector = bio_end_sector(bi);
4607 	bi->bi_next = NULL;
4608 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4609 
4610 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4611 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4612 		int previous;
4613 		int seq;
4614 
4615 		do_prepare = false;
4616 	retry:
4617 		seq = read_seqcount_begin(&conf->gen_lock);
4618 		previous = 0;
4619 		if (do_prepare)
4620 			prepare_to_wait(&conf->wait_for_overlap, &w,
4621 				TASK_UNINTERRUPTIBLE);
4622 		if (unlikely(conf->reshape_progress != MaxSector)) {
4623 			/* spinlock is needed as reshape_progress may be
4624 			 * 64bit on a 32bit platform, and so it might be
4625 			 * possible to see a half-updated value
4626 			 * Of course reshape_progress could change after
4627 			 * the lock is dropped, so once we get a reference
4628 			 * to the stripe that we think it is, we will have
4629 			 * to check again.
4630 			 */
4631 			spin_lock_irq(&conf->device_lock);
4632 			if (mddev->reshape_backwards
4633 			    ? logical_sector < conf->reshape_progress
4634 			    : logical_sector >= conf->reshape_progress) {
4635 				previous = 1;
4636 			} else {
4637 				if (mddev->reshape_backwards
4638 				    ? logical_sector < conf->reshape_safe
4639 				    : logical_sector >= conf->reshape_safe) {
4640 					spin_unlock_irq(&conf->device_lock);
4641 					schedule();
4642 					do_prepare = true;
4643 					goto retry;
4644 				}
4645 			}
4646 			spin_unlock_irq(&conf->device_lock);
4647 		}
4648 
4649 		new_sector = raid5_compute_sector(conf, logical_sector,
4650 						  previous,
4651 						  &dd_idx, NULL);
4652 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4653 			(unsigned long long)new_sector,
4654 			(unsigned long long)logical_sector);
4655 
4656 		sh = get_active_stripe(conf, new_sector, previous,
4657 				       (bi->bi_rw&RWA_MASK), 0);
4658 		if (sh) {
4659 			if (unlikely(previous)) {
4660 				/* expansion might have moved on while waiting for a
4661 				 * stripe, so we must do the range check again.
4662 				 * Expansion could still move past after this
4663 				 * test, but as we are holding a reference to
4664 				 * 'sh', we know that if that happens,
4665 				 *  STRIPE_EXPANDING will get set and the expansion
4666 				 * won't proceed until we finish with the stripe.
4667 				 */
4668 				int must_retry = 0;
4669 				spin_lock_irq(&conf->device_lock);
4670 				if (mddev->reshape_backwards
4671 				    ? logical_sector >= conf->reshape_progress
4672 				    : logical_sector < conf->reshape_progress)
4673 					/* mismatch, need to try again */
4674 					must_retry = 1;
4675 				spin_unlock_irq(&conf->device_lock);
4676 				if (must_retry) {
4677 					release_stripe(sh);
4678 					schedule();
4679 					do_prepare = true;
4680 					goto retry;
4681 				}
4682 			}
4683 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4684 				/* Might have got the wrong stripe_head
4685 				 * by accident
4686 				 */
4687 				release_stripe(sh);
4688 				goto retry;
4689 			}
4690 
4691 			if (rw == WRITE &&
4692 			    logical_sector >= mddev->suspend_lo &&
4693 			    logical_sector < mddev->suspend_hi) {
4694 				release_stripe(sh);
4695 				/* As the suspend_* range is controlled by
4696 				 * userspace, we want an interruptible
4697 				 * wait.
4698 				 */
4699 				flush_signals(current);
4700 				prepare_to_wait(&conf->wait_for_overlap,
4701 						&w, TASK_INTERRUPTIBLE);
4702 				if (logical_sector >= mddev->suspend_lo &&
4703 				    logical_sector < mddev->suspend_hi) {
4704 					schedule();
4705 					do_prepare = true;
4706 				}
4707 				goto retry;
4708 			}
4709 
4710 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4711 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4712 				/* Stripe is busy expanding or
4713 				 * add failed due to overlap.  Flush everything
4714 				 * and wait a while
4715 				 */
4716 				md_wakeup_thread(mddev->thread);
4717 				release_stripe(sh);
4718 				schedule();
4719 				do_prepare = true;
4720 				goto retry;
4721 			}
4722 			set_bit(STRIPE_HANDLE, &sh->state);
4723 			clear_bit(STRIPE_DELAYED, &sh->state);
4724 			if ((bi->bi_rw & REQ_SYNC) &&
4725 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4726 				atomic_inc(&conf->preread_active_stripes);
4727 			release_stripe_plug(mddev, sh);
4728 		} else {
4729 			/* cannot get stripe for read-ahead, just give-up */
4730 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4731 			break;
4732 		}
4733 	}
4734 	finish_wait(&conf->wait_for_overlap, &w);
4735 
4736 	remaining = raid5_dec_bi_active_stripes(bi);
4737 	if (remaining == 0) {
4738 
4739 		if ( rw == WRITE )
4740 			md_write_end(mddev);
4741 
4742 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4743 					 bi, 0);
4744 		bio_endio(bi, 0);
4745 	}
4746 }
4747 
4748 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4749 
4750 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4751 {
4752 	/* reshaping is quite different to recovery/resync so it is
4753 	 * handled quite separately ... here.
4754 	 *
4755 	 * On each call to sync_request, we gather one chunk worth of
4756 	 * destination stripes and flag them as expanding.
4757 	 * Then we find all the source stripes and request reads.
4758 	 * As the reads complete, handle_stripe will copy the data
4759 	 * into the destination stripe and release that stripe.
4760 	 */
4761 	struct r5conf *conf = mddev->private;
4762 	struct stripe_head *sh;
4763 	sector_t first_sector, last_sector;
4764 	int raid_disks = conf->previous_raid_disks;
4765 	int data_disks = raid_disks - conf->max_degraded;
4766 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4767 	int i;
4768 	int dd_idx;
4769 	sector_t writepos, readpos, safepos;
4770 	sector_t stripe_addr;
4771 	int reshape_sectors;
4772 	struct list_head stripes;
4773 
4774 	if (sector_nr == 0) {
4775 		/* If restarting in the middle, skip the initial sectors */
4776 		if (mddev->reshape_backwards &&
4777 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4778 			sector_nr = raid5_size(mddev, 0, 0)
4779 				- conf->reshape_progress;
4780 		} else if (!mddev->reshape_backwards &&
4781 			   conf->reshape_progress > 0)
4782 			sector_nr = conf->reshape_progress;
4783 		sector_div(sector_nr, new_data_disks);
4784 		if (sector_nr) {
4785 			mddev->curr_resync_completed = sector_nr;
4786 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4787 			*skipped = 1;
4788 			return sector_nr;
4789 		}
4790 	}
4791 
4792 	/* We need to process a full chunk at a time.
4793 	 * If old and new chunk sizes differ, we need to process the
4794 	 * largest of these
4795 	 */
4796 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4797 		reshape_sectors = mddev->new_chunk_sectors;
4798 	else
4799 		reshape_sectors = mddev->chunk_sectors;
4800 
4801 	/* We update the metadata at least every 10 seconds, or when
4802 	 * the data about to be copied would over-write the source of
4803 	 * the data at the front of the range.  i.e. one new_stripe
4804 	 * along from reshape_progress new_maps to after where
4805 	 * reshape_safe old_maps to
4806 	 */
4807 	writepos = conf->reshape_progress;
4808 	sector_div(writepos, new_data_disks);
4809 	readpos = conf->reshape_progress;
4810 	sector_div(readpos, data_disks);
4811 	safepos = conf->reshape_safe;
4812 	sector_div(safepos, data_disks);
4813 	if (mddev->reshape_backwards) {
4814 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4815 		readpos += reshape_sectors;
4816 		safepos += reshape_sectors;
4817 	} else {
4818 		writepos += reshape_sectors;
4819 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4820 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4821 	}
4822 
4823 	/* Having calculated the 'writepos' possibly use it
4824 	 * to set 'stripe_addr' which is where we will write to.
4825 	 */
4826 	if (mddev->reshape_backwards) {
4827 		BUG_ON(conf->reshape_progress == 0);
4828 		stripe_addr = writepos;
4829 		BUG_ON((mddev->dev_sectors &
4830 			~((sector_t)reshape_sectors - 1))
4831 		       - reshape_sectors - stripe_addr
4832 		       != sector_nr);
4833 	} else {
4834 		BUG_ON(writepos != sector_nr + reshape_sectors);
4835 		stripe_addr = sector_nr;
4836 	}
4837 
4838 	/* 'writepos' is the most advanced device address we might write.
4839 	 * 'readpos' is the least advanced device address we might read.
4840 	 * 'safepos' is the least address recorded in the metadata as having
4841 	 *     been reshaped.
4842 	 * If there is a min_offset_diff, these are adjusted either by
4843 	 * increasing the safepos/readpos if diff is negative, or
4844 	 * increasing writepos if diff is positive.
4845 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4846 	 * ensure safety in the face of a crash - that must be done by userspace
4847 	 * making a backup of the data.  So in that case there is no particular
4848 	 * rush to update metadata.
4849 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4850 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4851 	 * we can be safe in the event of a crash.
4852 	 * So we insist on updating metadata if safepos is behind writepos and
4853 	 * readpos is beyond writepos.
4854 	 * In any case, update the metadata every 10 seconds.
4855 	 * Maybe that number should be configurable, but I'm not sure it is
4856 	 * worth it.... maybe it could be a multiple of safemode_delay???
4857 	 */
4858 	if (conf->min_offset_diff < 0) {
4859 		safepos += -conf->min_offset_diff;
4860 		readpos += -conf->min_offset_diff;
4861 	} else
4862 		writepos += conf->min_offset_diff;
4863 
4864 	if ((mddev->reshape_backwards
4865 	     ? (safepos > writepos && readpos < writepos)
4866 	     : (safepos < writepos && readpos > writepos)) ||
4867 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4868 		/* Cannot proceed until we've updated the superblock... */
4869 		wait_event(conf->wait_for_overlap,
4870 			   atomic_read(&conf->reshape_stripes)==0
4871 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4872 		if (atomic_read(&conf->reshape_stripes) != 0)
4873 			return 0;
4874 		mddev->reshape_position = conf->reshape_progress;
4875 		mddev->curr_resync_completed = sector_nr;
4876 		conf->reshape_checkpoint = jiffies;
4877 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4878 		md_wakeup_thread(mddev->thread);
4879 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4880 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4881 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4882 			return 0;
4883 		spin_lock_irq(&conf->device_lock);
4884 		conf->reshape_safe = mddev->reshape_position;
4885 		spin_unlock_irq(&conf->device_lock);
4886 		wake_up(&conf->wait_for_overlap);
4887 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4888 	}
4889 
4890 	INIT_LIST_HEAD(&stripes);
4891 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4892 		int j;
4893 		int skipped_disk = 0;
4894 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4895 		set_bit(STRIPE_EXPANDING, &sh->state);
4896 		atomic_inc(&conf->reshape_stripes);
4897 		/* If any of this stripe is beyond the end of the old
4898 		 * array, then we need to zero those blocks
4899 		 */
4900 		for (j=sh->disks; j--;) {
4901 			sector_t s;
4902 			if (j == sh->pd_idx)
4903 				continue;
4904 			if (conf->level == 6 &&
4905 			    j == sh->qd_idx)
4906 				continue;
4907 			s = compute_blocknr(sh, j, 0);
4908 			if (s < raid5_size(mddev, 0, 0)) {
4909 				skipped_disk = 1;
4910 				continue;
4911 			}
4912 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4913 			set_bit(R5_Expanded, &sh->dev[j].flags);
4914 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4915 		}
4916 		if (!skipped_disk) {
4917 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4918 			set_bit(STRIPE_HANDLE, &sh->state);
4919 		}
4920 		list_add(&sh->lru, &stripes);
4921 	}
4922 	spin_lock_irq(&conf->device_lock);
4923 	if (mddev->reshape_backwards)
4924 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4925 	else
4926 		conf->reshape_progress += reshape_sectors * new_data_disks;
4927 	spin_unlock_irq(&conf->device_lock);
4928 	/* Ok, those stripe are ready. We can start scheduling
4929 	 * reads on the source stripes.
4930 	 * The source stripes are determined by mapping the first and last
4931 	 * block on the destination stripes.
4932 	 */
4933 	first_sector =
4934 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4935 				     1, &dd_idx, NULL);
4936 	last_sector =
4937 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4938 					    * new_data_disks - 1),
4939 				     1, &dd_idx, NULL);
4940 	if (last_sector >= mddev->dev_sectors)
4941 		last_sector = mddev->dev_sectors - 1;
4942 	while (first_sector <= last_sector) {
4943 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4944 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4945 		set_bit(STRIPE_HANDLE, &sh->state);
4946 		release_stripe(sh);
4947 		first_sector += STRIPE_SECTORS;
4948 	}
4949 	/* Now that the sources are clearly marked, we can release
4950 	 * the destination stripes
4951 	 */
4952 	while (!list_empty(&stripes)) {
4953 		sh = list_entry(stripes.next, struct stripe_head, lru);
4954 		list_del_init(&sh->lru);
4955 		release_stripe(sh);
4956 	}
4957 	/* If this takes us to the resync_max point where we have to pause,
4958 	 * then we need to write out the superblock.
4959 	 */
4960 	sector_nr += reshape_sectors;
4961 	if ((sector_nr - mddev->curr_resync_completed) * 2
4962 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4963 		/* Cannot proceed until we've updated the superblock... */
4964 		wait_event(conf->wait_for_overlap,
4965 			   atomic_read(&conf->reshape_stripes) == 0
4966 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4967 		if (atomic_read(&conf->reshape_stripes) != 0)
4968 			goto ret;
4969 		mddev->reshape_position = conf->reshape_progress;
4970 		mddev->curr_resync_completed = sector_nr;
4971 		conf->reshape_checkpoint = jiffies;
4972 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4973 		md_wakeup_thread(mddev->thread);
4974 		wait_event(mddev->sb_wait,
4975 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4976 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4977 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4978 			goto ret;
4979 		spin_lock_irq(&conf->device_lock);
4980 		conf->reshape_safe = mddev->reshape_position;
4981 		spin_unlock_irq(&conf->device_lock);
4982 		wake_up(&conf->wait_for_overlap);
4983 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4984 	}
4985 ret:
4986 	return reshape_sectors;
4987 }
4988 
4989 /* FIXME go_faster isn't used */
4990 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4991 {
4992 	struct r5conf *conf = mddev->private;
4993 	struct stripe_head *sh;
4994 	sector_t max_sector = mddev->dev_sectors;
4995 	sector_t sync_blocks;
4996 	int still_degraded = 0;
4997 	int i;
4998 
4999 	if (sector_nr >= max_sector) {
5000 		/* just being told to finish up .. nothing much to do */
5001 
5002 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5003 			end_reshape(conf);
5004 			return 0;
5005 		}
5006 
5007 		if (mddev->curr_resync < max_sector) /* aborted */
5008 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5009 					&sync_blocks, 1);
5010 		else /* completed sync */
5011 			conf->fullsync = 0;
5012 		bitmap_close_sync(mddev->bitmap);
5013 
5014 		return 0;
5015 	}
5016 
5017 	/* Allow raid5_quiesce to complete */
5018 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5019 
5020 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5021 		return reshape_request(mddev, sector_nr, skipped);
5022 
5023 	/* No need to check resync_max as we never do more than one
5024 	 * stripe, and as resync_max will always be on a chunk boundary,
5025 	 * if the check in md_do_sync didn't fire, there is no chance
5026 	 * of overstepping resync_max here
5027 	 */
5028 
5029 	/* if there is too many failed drives and we are trying
5030 	 * to resync, then assert that we are finished, because there is
5031 	 * nothing we can do.
5032 	 */
5033 	if (mddev->degraded >= conf->max_degraded &&
5034 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5035 		sector_t rv = mddev->dev_sectors - sector_nr;
5036 		*skipped = 1;
5037 		return rv;
5038 	}
5039 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5040 	    !conf->fullsync &&
5041 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5042 	    sync_blocks >= STRIPE_SECTORS) {
5043 		/* we can skip this block, and probably more */
5044 		sync_blocks /= STRIPE_SECTORS;
5045 		*skipped = 1;
5046 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5047 	}
5048 
5049 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5050 
5051 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5052 	if (sh == NULL) {
5053 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5054 		/* make sure we don't swamp the stripe cache if someone else
5055 		 * is trying to get access
5056 		 */
5057 		schedule_timeout_uninterruptible(1);
5058 	}
5059 	/* Need to check if array will still be degraded after recovery/resync
5060 	 * We don't need to check the 'failed' flag as when that gets set,
5061 	 * recovery aborts.
5062 	 */
5063 	for (i = 0; i < conf->raid_disks; i++)
5064 		if (conf->disks[i].rdev == NULL)
5065 			still_degraded = 1;
5066 
5067 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5068 
5069 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5070 	set_bit(STRIPE_HANDLE, &sh->state);
5071 
5072 	release_stripe(sh);
5073 
5074 	return STRIPE_SECTORS;
5075 }
5076 
5077 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5078 {
5079 	/* We may not be able to submit a whole bio at once as there
5080 	 * may not be enough stripe_heads available.
5081 	 * We cannot pre-allocate enough stripe_heads as we may need
5082 	 * more than exist in the cache (if we allow ever large chunks).
5083 	 * So we do one stripe head at a time and record in
5084 	 * ->bi_hw_segments how many have been done.
5085 	 *
5086 	 * We *know* that this entire raid_bio is in one chunk, so
5087 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5088 	 */
5089 	struct stripe_head *sh;
5090 	int dd_idx;
5091 	sector_t sector, logical_sector, last_sector;
5092 	int scnt = 0;
5093 	int remaining;
5094 	int handled = 0;
5095 
5096 	logical_sector = raid_bio->bi_iter.bi_sector &
5097 		~((sector_t)STRIPE_SECTORS-1);
5098 	sector = raid5_compute_sector(conf, logical_sector,
5099 				      0, &dd_idx, NULL);
5100 	last_sector = bio_end_sector(raid_bio);
5101 
5102 	for (; logical_sector < last_sector;
5103 	     logical_sector += STRIPE_SECTORS,
5104 		     sector += STRIPE_SECTORS,
5105 		     scnt++) {
5106 
5107 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5108 			/* already done this stripe */
5109 			continue;
5110 
5111 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5112 
5113 		if (!sh) {
5114 			/* failed to get a stripe - must wait */
5115 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5116 			conf->retry_read_aligned = raid_bio;
5117 			return handled;
5118 		}
5119 
5120 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5121 			release_stripe(sh);
5122 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5123 			conf->retry_read_aligned = raid_bio;
5124 			return handled;
5125 		}
5126 
5127 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5128 		handle_stripe(sh);
5129 		release_stripe(sh);
5130 		handled++;
5131 	}
5132 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5133 	if (remaining == 0) {
5134 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5135 					 raid_bio, 0);
5136 		bio_endio(raid_bio, 0);
5137 	}
5138 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5139 		wake_up(&conf->wait_for_stripe);
5140 	return handled;
5141 }
5142 
5143 static int handle_active_stripes(struct r5conf *conf, int group,
5144 				 struct r5worker *worker,
5145 				 struct list_head *temp_inactive_list)
5146 {
5147 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5148 	int i, batch_size = 0, hash;
5149 	bool release_inactive = false;
5150 
5151 	while (batch_size < MAX_STRIPE_BATCH &&
5152 			(sh = __get_priority_stripe(conf, group)) != NULL)
5153 		batch[batch_size++] = sh;
5154 
5155 	if (batch_size == 0) {
5156 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5157 			if (!list_empty(temp_inactive_list + i))
5158 				break;
5159 		if (i == NR_STRIPE_HASH_LOCKS)
5160 			return batch_size;
5161 		release_inactive = true;
5162 	}
5163 	spin_unlock_irq(&conf->device_lock);
5164 
5165 	release_inactive_stripe_list(conf, temp_inactive_list,
5166 				     NR_STRIPE_HASH_LOCKS);
5167 
5168 	if (release_inactive) {
5169 		spin_lock_irq(&conf->device_lock);
5170 		return 0;
5171 	}
5172 
5173 	for (i = 0; i < batch_size; i++)
5174 		handle_stripe(batch[i]);
5175 
5176 	cond_resched();
5177 
5178 	spin_lock_irq(&conf->device_lock);
5179 	for (i = 0; i < batch_size; i++) {
5180 		hash = batch[i]->hash_lock_index;
5181 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5182 	}
5183 	return batch_size;
5184 }
5185 
5186 static void raid5_do_work(struct work_struct *work)
5187 {
5188 	struct r5worker *worker = container_of(work, struct r5worker, work);
5189 	struct r5worker_group *group = worker->group;
5190 	struct r5conf *conf = group->conf;
5191 	int group_id = group - conf->worker_groups;
5192 	int handled;
5193 	struct blk_plug plug;
5194 
5195 	pr_debug("+++ raid5worker active\n");
5196 
5197 	blk_start_plug(&plug);
5198 	handled = 0;
5199 	spin_lock_irq(&conf->device_lock);
5200 	while (1) {
5201 		int batch_size, released;
5202 
5203 		released = release_stripe_list(conf, worker->temp_inactive_list);
5204 
5205 		batch_size = handle_active_stripes(conf, group_id, worker,
5206 						   worker->temp_inactive_list);
5207 		worker->working = false;
5208 		if (!batch_size && !released)
5209 			break;
5210 		handled += batch_size;
5211 	}
5212 	pr_debug("%d stripes handled\n", handled);
5213 
5214 	spin_unlock_irq(&conf->device_lock);
5215 	blk_finish_plug(&plug);
5216 
5217 	pr_debug("--- raid5worker inactive\n");
5218 }
5219 
5220 /*
5221  * This is our raid5 kernel thread.
5222  *
5223  * We scan the hash table for stripes which can be handled now.
5224  * During the scan, completed stripes are saved for us by the interrupt
5225  * handler, so that they will not have to wait for our next wakeup.
5226  */
5227 static void raid5d(struct md_thread *thread)
5228 {
5229 	struct mddev *mddev = thread->mddev;
5230 	struct r5conf *conf = mddev->private;
5231 	int handled;
5232 	struct blk_plug plug;
5233 
5234 	pr_debug("+++ raid5d active\n");
5235 
5236 	md_check_recovery(mddev);
5237 
5238 	blk_start_plug(&plug);
5239 	handled = 0;
5240 	spin_lock_irq(&conf->device_lock);
5241 	while (1) {
5242 		struct bio *bio;
5243 		int batch_size, released;
5244 
5245 		released = release_stripe_list(conf, conf->temp_inactive_list);
5246 
5247 		if (
5248 		    !list_empty(&conf->bitmap_list)) {
5249 			/* Now is a good time to flush some bitmap updates */
5250 			conf->seq_flush++;
5251 			spin_unlock_irq(&conf->device_lock);
5252 			bitmap_unplug(mddev->bitmap);
5253 			spin_lock_irq(&conf->device_lock);
5254 			conf->seq_write = conf->seq_flush;
5255 			activate_bit_delay(conf, conf->temp_inactive_list);
5256 		}
5257 		raid5_activate_delayed(conf);
5258 
5259 		while ((bio = remove_bio_from_retry(conf))) {
5260 			int ok;
5261 			spin_unlock_irq(&conf->device_lock);
5262 			ok = retry_aligned_read(conf, bio);
5263 			spin_lock_irq(&conf->device_lock);
5264 			if (!ok)
5265 				break;
5266 			handled++;
5267 		}
5268 
5269 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5270 						   conf->temp_inactive_list);
5271 		if (!batch_size && !released)
5272 			break;
5273 		handled += batch_size;
5274 
5275 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5276 			spin_unlock_irq(&conf->device_lock);
5277 			md_check_recovery(mddev);
5278 			spin_lock_irq(&conf->device_lock);
5279 		}
5280 	}
5281 	pr_debug("%d stripes handled\n", handled);
5282 
5283 	spin_unlock_irq(&conf->device_lock);
5284 
5285 	async_tx_issue_pending_all();
5286 	blk_finish_plug(&plug);
5287 
5288 	pr_debug("--- raid5d inactive\n");
5289 }
5290 
5291 static ssize_t
5292 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5293 {
5294 	struct r5conf *conf = mddev->private;
5295 	if (conf)
5296 		return sprintf(page, "%d\n", conf->max_nr_stripes);
5297 	else
5298 		return 0;
5299 }
5300 
5301 int
5302 raid5_set_cache_size(struct mddev *mddev, int size)
5303 {
5304 	struct r5conf *conf = mddev->private;
5305 	int err;
5306 	int hash;
5307 
5308 	if (size <= 16 || size > 32768)
5309 		return -EINVAL;
5310 	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5311 	while (size < conf->max_nr_stripes) {
5312 		if (drop_one_stripe(conf, hash))
5313 			conf->max_nr_stripes--;
5314 		else
5315 			break;
5316 		hash--;
5317 		if (hash < 0)
5318 			hash = NR_STRIPE_HASH_LOCKS - 1;
5319 	}
5320 	err = md_allow_write(mddev);
5321 	if (err)
5322 		return err;
5323 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5324 	while (size > conf->max_nr_stripes) {
5325 		if (grow_one_stripe(conf, hash))
5326 			conf->max_nr_stripes++;
5327 		else break;
5328 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5329 	}
5330 	return 0;
5331 }
5332 EXPORT_SYMBOL(raid5_set_cache_size);
5333 
5334 static ssize_t
5335 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5336 {
5337 	struct r5conf *conf = mddev->private;
5338 	unsigned long new;
5339 	int err;
5340 
5341 	if (len >= PAGE_SIZE)
5342 		return -EINVAL;
5343 	if (!conf)
5344 		return -ENODEV;
5345 
5346 	if (kstrtoul(page, 10, &new))
5347 		return -EINVAL;
5348 	err = raid5_set_cache_size(mddev, new);
5349 	if (err)
5350 		return err;
5351 	return len;
5352 }
5353 
5354 static struct md_sysfs_entry
5355 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5356 				raid5_show_stripe_cache_size,
5357 				raid5_store_stripe_cache_size);
5358 
5359 static ssize_t
5360 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5361 {
5362 	struct r5conf *conf = mddev->private;
5363 	if (conf)
5364 		return sprintf(page, "%d\n", conf->bypass_threshold);
5365 	else
5366 		return 0;
5367 }
5368 
5369 static ssize_t
5370 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5371 {
5372 	struct r5conf *conf = mddev->private;
5373 	unsigned long new;
5374 	if (len >= PAGE_SIZE)
5375 		return -EINVAL;
5376 	if (!conf)
5377 		return -ENODEV;
5378 
5379 	if (kstrtoul(page, 10, &new))
5380 		return -EINVAL;
5381 	if (new > conf->max_nr_stripes)
5382 		return -EINVAL;
5383 	conf->bypass_threshold = new;
5384 	return len;
5385 }
5386 
5387 static struct md_sysfs_entry
5388 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5389 					S_IRUGO | S_IWUSR,
5390 					raid5_show_preread_threshold,
5391 					raid5_store_preread_threshold);
5392 
5393 static ssize_t
5394 raid5_show_skip_copy(struct mddev *mddev, char *page)
5395 {
5396 	struct r5conf *conf = mddev->private;
5397 	if (conf)
5398 		return sprintf(page, "%d\n", conf->skip_copy);
5399 	else
5400 		return 0;
5401 }
5402 
5403 static ssize_t
5404 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5405 {
5406 	struct r5conf *conf = mddev->private;
5407 	unsigned long new;
5408 	if (len >= PAGE_SIZE)
5409 		return -EINVAL;
5410 	if (!conf)
5411 		return -ENODEV;
5412 
5413 	if (kstrtoul(page, 10, &new))
5414 		return -EINVAL;
5415 	new = !!new;
5416 	if (new == conf->skip_copy)
5417 		return len;
5418 
5419 	mddev_suspend(mddev);
5420 	conf->skip_copy = new;
5421 	if (new)
5422 		mddev->queue->backing_dev_info.capabilities |=
5423 						BDI_CAP_STABLE_WRITES;
5424 	else
5425 		mddev->queue->backing_dev_info.capabilities &=
5426 						~BDI_CAP_STABLE_WRITES;
5427 	mddev_resume(mddev);
5428 	return len;
5429 }
5430 
5431 static struct md_sysfs_entry
5432 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5433 					raid5_show_skip_copy,
5434 					raid5_store_skip_copy);
5435 
5436 static ssize_t
5437 stripe_cache_active_show(struct mddev *mddev, char *page)
5438 {
5439 	struct r5conf *conf = mddev->private;
5440 	if (conf)
5441 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5442 	else
5443 		return 0;
5444 }
5445 
5446 static struct md_sysfs_entry
5447 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5448 
5449 static ssize_t
5450 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5451 {
5452 	struct r5conf *conf = mddev->private;
5453 	if (conf)
5454 		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5455 	else
5456 		return 0;
5457 }
5458 
5459 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5460 			       int *group_cnt,
5461 			       int *worker_cnt_per_group,
5462 			       struct r5worker_group **worker_groups);
5463 static ssize_t
5464 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5465 {
5466 	struct r5conf *conf = mddev->private;
5467 	unsigned long new;
5468 	int err;
5469 	struct r5worker_group *new_groups, *old_groups;
5470 	int group_cnt, worker_cnt_per_group;
5471 
5472 	if (len >= PAGE_SIZE)
5473 		return -EINVAL;
5474 	if (!conf)
5475 		return -ENODEV;
5476 
5477 	if (kstrtoul(page, 10, &new))
5478 		return -EINVAL;
5479 
5480 	if (new == conf->worker_cnt_per_group)
5481 		return len;
5482 
5483 	mddev_suspend(mddev);
5484 
5485 	old_groups = conf->worker_groups;
5486 	if (old_groups)
5487 		flush_workqueue(raid5_wq);
5488 
5489 	err = alloc_thread_groups(conf, new,
5490 				  &group_cnt, &worker_cnt_per_group,
5491 				  &new_groups);
5492 	if (!err) {
5493 		spin_lock_irq(&conf->device_lock);
5494 		conf->group_cnt = group_cnt;
5495 		conf->worker_cnt_per_group = worker_cnt_per_group;
5496 		conf->worker_groups = new_groups;
5497 		spin_unlock_irq(&conf->device_lock);
5498 
5499 		if (old_groups)
5500 			kfree(old_groups[0].workers);
5501 		kfree(old_groups);
5502 	}
5503 
5504 	mddev_resume(mddev);
5505 
5506 	if (err)
5507 		return err;
5508 	return len;
5509 }
5510 
5511 static struct md_sysfs_entry
5512 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5513 				raid5_show_group_thread_cnt,
5514 				raid5_store_group_thread_cnt);
5515 
5516 static struct attribute *raid5_attrs[] =  {
5517 	&raid5_stripecache_size.attr,
5518 	&raid5_stripecache_active.attr,
5519 	&raid5_preread_bypass_threshold.attr,
5520 	&raid5_group_thread_cnt.attr,
5521 	&raid5_skip_copy.attr,
5522 	NULL,
5523 };
5524 static struct attribute_group raid5_attrs_group = {
5525 	.name = NULL,
5526 	.attrs = raid5_attrs,
5527 };
5528 
5529 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5530 			       int *group_cnt,
5531 			       int *worker_cnt_per_group,
5532 			       struct r5worker_group **worker_groups)
5533 {
5534 	int i, j, k;
5535 	ssize_t size;
5536 	struct r5worker *workers;
5537 
5538 	*worker_cnt_per_group = cnt;
5539 	if (cnt == 0) {
5540 		*group_cnt = 0;
5541 		*worker_groups = NULL;
5542 		return 0;
5543 	}
5544 	*group_cnt = num_possible_nodes();
5545 	size = sizeof(struct r5worker) * cnt;
5546 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
5547 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
5548 				*group_cnt, GFP_NOIO);
5549 	if (!*worker_groups || !workers) {
5550 		kfree(workers);
5551 		kfree(*worker_groups);
5552 		return -ENOMEM;
5553 	}
5554 
5555 	for (i = 0; i < *group_cnt; i++) {
5556 		struct r5worker_group *group;
5557 
5558 		group = &(*worker_groups)[i];
5559 		INIT_LIST_HEAD(&group->handle_list);
5560 		group->conf = conf;
5561 		group->workers = workers + i * cnt;
5562 
5563 		for (j = 0; j < cnt; j++) {
5564 			struct r5worker *worker = group->workers + j;
5565 			worker->group = group;
5566 			INIT_WORK(&worker->work, raid5_do_work);
5567 
5568 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5569 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5570 		}
5571 	}
5572 
5573 	return 0;
5574 }
5575 
5576 static void free_thread_groups(struct r5conf *conf)
5577 {
5578 	if (conf->worker_groups)
5579 		kfree(conf->worker_groups[0].workers);
5580 	kfree(conf->worker_groups);
5581 	conf->worker_groups = NULL;
5582 }
5583 
5584 static sector_t
5585 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5586 {
5587 	struct r5conf *conf = mddev->private;
5588 
5589 	if (!sectors)
5590 		sectors = mddev->dev_sectors;
5591 	if (!raid_disks)
5592 		/* size is defined by the smallest of previous and new size */
5593 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5594 
5595 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5596 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5597 	return sectors * (raid_disks - conf->max_degraded);
5598 }
5599 
5600 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5601 {
5602 	safe_put_page(percpu->spare_page);
5603 	kfree(percpu->scribble);
5604 	percpu->spare_page = NULL;
5605 	percpu->scribble = NULL;
5606 }
5607 
5608 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5609 {
5610 	if (conf->level == 6 && !percpu->spare_page)
5611 		percpu->spare_page = alloc_page(GFP_KERNEL);
5612 	if (!percpu->scribble)
5613 		percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5614 
5615 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5616 		free_scratch_buffer(conf, percpu);
5617 		return -ENOMEM;
5618 	}
5619 
5620 	return 0;
5621 }
5622 
5623 static void raid5_free_percpu(struct r5conf *conf)
5624 {
5625 	unsigned long cpu;
5626 
5627 	if (!conf->percpu)
5628 		return;
5629 
5630 #ifdef CONFIG_HOTPLUG_CPU
5631 	unregister_cpu_notifier(&conf->cpu_notify);
5632 #endif
5633 
5634 	get_online_cpus();
5635 	for_each_possible_cpu(cpu)
5636 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5637 	put_online_cpus();
5638 
5639 	free_percpu(conf->percpu);
5640 }
5641 
5642 static void free_conf(struct r5conf *conf)
5643 {
5644 	free_thread_groups(conf);
5645 	shrink_stripes(conf);
5646 	raid5_free_percpu(conf);
5647 	kfree(conf->disks);
5648 	kfree(conf->stripe_hashtbl);
5649 	kfree(conf);
5650 }
5651 
5652 #ifdef CONFIG_HOTPLUG_CPU
5653 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5654 			      void *hcpu)
5655 {
5656 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5657 	long cpu = (long)hcpu;
5658 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5659 
5660 	switch (action) {
5661 	case CPU_UP_PREPARE:
5662 	case CPU_UP_PREPARE_FROZEN:
5663 		if (alloc_scratch_buffer(conf, percpu)) {
5664 			pr_err("%s: failed memory allocation for cpu%ld\n",
5665 			       __func__, cpu);
5666 			return notifier_from_errno(-ENOMEM);
5667 		}
5668 		break;
5669 	case CPU_DEAD:
5670 	case CPU_DEAD_FROZEN:
5671 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5672 		break;
5673 	default:
5674 		break;
5675 	}
5676 	return NOTIFY_OK;
5677 }
5678 #endif
5679 
5680 static int raid5_alloc_percpu(struct r5conf *conf)
5681 {
5682 	unsigned long cpu;
5683 	int err = 0;
5684 
5685 	conf->percpu = alloc_percpu(struct raid5_percpu);
5686 	if (!conf->percpu)
5687 		return -ENOMEM;
5688 
5689 #ifdef CONFIG_HOTPLUG_CPU
5690 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5691 	conf->cpu_notify.priority = 0;
5692 	err = register_cpu_notifier(&conf->cpu_notify);
5693 	if (err)
5694 		return err;
5695 #endif
5696 
5697 	get_online_cpus();
5698 	for_each_present_cpu(cpu) {
5699 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5700 		if (err) {
5701 			pr_err("%s: failed memory allocation for cpu%ld\n",
5702 			       __func__, cpu);
5703 			break;
5704 		}
5705 	}
5706 	put_online_cpus();
5707 
5708 	return err;
5709 }
5710 
5711 static struct r5conf *setup_conf(struct mddev *mddev)
5712 {
5713 	struct r5conf *conf;
5714 	int raid_disk, memory, max_disks;
5715 	struct md_rdev *rdev;
5716 	struct disk_info *disk;
5717 	char pers_name[6];
5718 	int i;
5719 	int group_cnt, worker_cnt_per_group;
5720 	struct r5worker_group *new_group;
5721 
5722 	if (mddev->new_level != 5
5723 	    && mddev->new_level != 4
5724 	    && mddev->new_level != 6) {
5725 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5726 		       mdname(mddev), mddev->new_level);
5727 		return ERR_PTR(-EIO);
5728 	}
5729 	if ((mddev->new_level == 5
5730 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5731 	    (mddev->new_level == 6
5732 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5733 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5734 		       mdname(mddev), mddev->new_layout);
5735 		return ERR_PTR(-EIO);
5736 	}
5737 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5738 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5739 		       mdname(mddev), mddev->raid_disks);
5740 		return ERR_PTR(-EINVAL);
5741 	}
5742 
5743 	if (!mddev->new_chunk_sectors ||
5744 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5745 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5746 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5747 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5748 		return ERR_PTR(-EINVAL);
5749 	}
5750 
5751 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5752 	if (conf == NULL)
5753 		goto abort;
5754 	/* Don't enable multi-threading by default*/
5755 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5756 				 &new_group)) {
5757 		conf->group_cnt = group_cnt;
5758 		conf->worker_cnt_per_group = worker_cnt_per_group;
5759 		conf->worker_groups = new_group;
5760 	} else
5761 		goto abort;
5762 	spin_lock_init(&conf->device_lock);
5763 	seqcount_init(&conf->gen_lock);
5764 	init_waitqueue_head(&conf->wait_for_stripe);
5765 	init_waitqueue_head(&conf->wait_for_overlap);
5766 	INIT_LIST_HEAD(&conf->handle_list);
5767 	INIT_LIST_HEAD(&conf->hold_list);
5768 	INIT_LIST_HEAD(&conf->delayed_list);
5769 	INIT_LIST_HEAD(&conf->bitmap_list);
5770 	init_llist_head(&conf->released_stripes);
5771 	atomic_set(&conf->active_stripes, 0);
5772 	atomic_set(&conf->preread_active_stripes, 0);
5773 	atomic_set(&conf->active_aligned_reads, 0);
5774 	conf->bypass_threshold = BYPASS_THRESHOLD;
5775 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5776 
5777 	conf->raid_disks = mddev->raid_disks;
5778 	if (mddev->reshape_position == MaxSector)
5779 		conf->previous_raid_disks = mddev->raid_disks;
5780 	else
5781 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5782 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5783 	conf->scribble_len = scribble_len(max_disks);
5784 
5785 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5786 			      GFP_KERNEL);
5787 	if (!conf->disks)
5788 		goto abort;
5789 
5790 	conf->mddev = mddev;
5791 
5792 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5793 		goto abort;
5794 
5795 	/* We init hash_locks[0] separately to that it can be used
5796 	 * as the reference lock in the spin_lock_nest_lock() call
5797 	 * in lock_all_device_hash_locks_irq in order to convince
5798 	 * lockdep that we know what we are doing.
5799 	 */
5800 	spin_lock_init(conf->hash_locks);
5801 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5802 		spin_lock_init(conf->hash_locks + i);
5803 
5804 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5805 		INIT_LIST_HEAD(conf->inactive_list + i);
5806 
5807 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5808 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
5809 
5810 	conf->level = mddev->new_level;
5811 	if (raid5_alloc_percpu(conf) != 0)
5812 		goto abort;
5813 
5814 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5815 
5816 	rdev_for_each(rdev, mddev) {
5817 		raid_disk = rdev->raid_disk;
5818 		if (raid_disk >= max_disks
5819 		    || raid_disk < 0)
5820 			continue;
5821 		disk = conf->disks + raid_disk;
5822 
5823 		if (test_bit(Replacement, &rdev->flags)) {
5824 			if (disk->replacement)
5825 				goto abort;
5826 			disk->replacement = rdev;
5827 		} else {
5828 			if (disk->rdev)
5829 				goto abort;
5830 			disk->rdev = rdev;
5831 		}
5832 
5833 		if (test_bit(In_sync, &rdev->flags)) {
5834 			char b[BDEVNAME_SIZE];
5835 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5836 			       " disk %d\n",
5837 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5838 		} else if (rdev->saved_raid_disk != raid_disk)
5839 			/* Cannot rely on bitmap to complete recovery */
5840 			conf->fullsync = 1;
5841 	}
5842 
5843 	conf->chunk_sectors = mddev->new_chunk_sectors;
5844 	conf->level = mddev->new_level;
5845 	if (conf->level == 6)
5846 		conf->max_degraded = 2;
5847 	else
5848 		conf->max_degraded = 1;
5849 	conf->algorithm = mddev->new_layout;
5850 	conf->reshape_progress = mddev->reshape_position;
5851 	if (conf->reshape_progress != MaxSector) {
5852 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5853 		conf->prev_algo = mddev->layout;
5854 	}
5855 
5856 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5857 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5858 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5859 	if (grow_stripes(conf, NR_STRIPES)) {
5860 		printk(KERN_ERR
5861 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5862 		       mdname(mddev), memory);
5863 		goto abort;
5864 	} else
5865 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5866 		       mdname(mddev), memory);
5867 
5868 	sprintf(pers_name, "raid%d", mddev->new_level);
5869 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5870 	if (!conf->thread) {
5871 		printk(KERN_ERR
5872 		       "md/raid:%s: couldn't allocate thread.\n",
5873 		       mdname(mddev));
5874 		goto abort;
5875 	}
5876 
5877 	return conf;
5878 
5879  abort:
5880 	if (conf) {
5881 		free_conf(conf);
5882 		return ERR_PTR(-EIO);
5883 	} else
5884 		return ERR_PTR(-ENOMEM);
5885 }
5886 
5887 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5888 {
5889 	switch (algo) {
5890 	case ALGORITHM_PARITY_0:
5891 		if (raid_disk < max_degraded)
5892 			return 1;
5893 		break;
5894 	case ALGORITHM_PARITY_N:
5895 		if (raid_disk >= raid_disks - max_degraded)
5896 			return 1;
5897 		break;
5898 	case ALGORITHM_PARITY_0_6:
5899 		if (raid_disk == 0 ||
5900 		    raid_disk == raid_disks - 1)
5901 			return 1;
5902 		break;
5903 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5904 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5905 	case ALGORITHM_LEFT_SYMMETRIC_6:
5906 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5907 		if (raid_disk == raid_disks - 1)
5908 			return 1;
5909 	}
5910 	return 0;
5911 }
5912 
5913 static int run(struct mddev *mddev)
5914 {
5915 	struct r5conf *conf;
5916 	int working_disks = 0;
5917 	int dirty_parity_disks = 0;
5918 	struct md_rdev *rdev;
5919 	sector_t reshape_offset = 0;
5920 	int i;
5921 	long long min_offset_diff = 0;
5922 	int first = 1;
5923 
5924 	if (mddev->recovery_cp != MaxSector)
5925 		printk(KERN_NOTICE "md/raid:%s: not clean"
5926 		       " -- starting background reconstruction\n",
5927 		       mdname(mddev));
5928 
5929 	rdev_for_each(rdev, mddev) {
5930 		long long diff;
5931 		if (rdev->raid_disk < 0)
5932 			continue;
5933 		diff = (rdev->new_data_offset - rdev->data_offset);
5934 		if (first) {
5935 			min_offset_diff = diff;
5936 			first = 0;
5937 		} else if (mddev->reshape_backwards &&
5938 			 diff < min_offset_diff)
5939 			min_offset_diff = diff;
5940 		else if (!mddev->reshape_backwards &&
5941 			 diff > min_offset_diff)
5942 			min_offset_diff = diff;
5943 	}
5944 
5945 	if (mddev->reshape_position != MaxSector) {
5946 		/* Check that we can continue the reshape.
5947 		 * Difficulties arise if the stripe we would write to
5948 		 * next is at or after the stripe we would read from next.
5949 		 * For a reshape that changes the number of devices, this
5950 		 * is only possible for a very short time, and mdadm makes
5951 		 * sure that time appears to have past before assembling
5952 		 * the array.  So we fail if that time hasn't passed.
5953 		 * For a reshape that keeps the number of devices the same
5954 		 * mdadm must be monitoring the reshape can keeping the
5955 		 * critical areas read-only and backed up.  It will start
5956 		 * the array in read-only mode, so we check for that.
5957 		 */
5958 		sector_t here_new, here_old;
5959 		int old_disks;
5960 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5961 
5962 		if (mddev->new_level != mddev->level) {
5963 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5964 			       "required - aborting.\n",
5965 			       mdname(mddev));
5966 			return -EINVAL;
5967 		}
5968 		old_disks = mddev->raid_disks - mddev->delta_disks;
5969 		/* reshape_position must be on a new-stripe boundary, and one
5970 		 * further up in new geometry must map after here in old
5971 		 * geometry.
5972 		 */
5973 		here_new = mddev->reshape_position;
5974 		if (sector_div(here_new, mddev->new_chunk_sectors *
5975 			       (mddev->raid_disks - max_degraded))) {
5976 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5977 			       "on a stripe boundary\n", mdname(mddev));
5978 			return -EINVAL;
5979 		}
5980 		reshape_offset = here_new * mddev->new_chunk_sectors;
5981 		/* here_new is the stripe we will write to */
5982 		here_old = mddev->reshape_position;
5983 		sector_div(here_old, mddev->chunk_sectors *
5984 			   (old_disks-max_degraded));
5985 		/* here_old is the first stripe that we might need to read
5986 		 * from */
5987 		if (mddev->delta_disks == 0) {
5988 			if ((here_new * mddev->new_chunk_sectors !=
5989 			     here_old * mddev->chunk_sectors)) {
5990 				printk(KERN_ERR "md/raid:%s: reshape position is"
5991 				       " confused - aborting\n", mdname(mddev));
5992 				return -EINVAL;
5993 			}
5994 			/* We cannot be sure it is safe to start an in-place
5995 			 * reshape.  It is only safe if user-space is monitoring
5996 			 * and taking constant backups.
5997 			 * mdadm always starts a situation like this in
5998 			 * readonly mode so it can take control before
5999 			 * allowing any writes.  So just check for that.
6000 			 */
6001 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6002 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6003 				/* not really in-place - so OK */;
6004 			else if (mddev->ro == 0) {
6005 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6006 				       "must be started in read-only mode "
6007 				       "- aborting\n",
6008 				       mdname(mddev));
6009 				return -EINVAL;
6010 			}
6011 		} else if (mddev->reshape_backwards
6012 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6013 		       here_old * mddev->chunk_sectors)
6014 		    : (here_new * mddev->new_chunk_sectors >=
6015 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6016 			/* Reading from the same stripe as writing to - bad */
6017 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6018 			       "auto-recovery - aborting.\n",
6019 			       mdname(mddev));
6020 			return -EINVAL;
6021 		}
6022 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6023 		       mdname(mddev));
6024 		/* OK, we should be able to continue; */
6025 	} else {
6026 		BUG_ON(mddev->level != mddev->new_level);
6027 		BUG_ON(mddev->layout != mddev->new_layout);
6028 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6029 		BUG_ON(mddev->delta_disks != 0);
6030 	}
6031 
6032 	if (mddev->private == NULL)
6033 		conf = setup_conf(mddev);
6034 	else
6035 		conf = mddev->private;
6036 
6037 	if (IS_ERR(conf))
6038 		return PTR_ERR(conf);
6039 
6040 	conf->min_offset_diff = min_offset_diff;
6041 	mddev->thread = conf->thread;
6042 	conf->thread = NULL;
6043 	mddev->private = conf;
6044 
6045 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6046 	     i++) {
6047 		rdev = conf->disks[i].rdev;
6048 		if (!rdev && conf->disks[i].replacement) {
6049 			/* The replacement is all we have yet */
6050 			rdev = conf->disks[i].replacement;
6051 			conf->disks[i].replacement = NULL;
6052 			clear_bit(Replacement, &rdev->flags);
6053 			conf->disks[i].rdev = rdev;
6054 		}
6055 		if (!rdev)
6056 			continue;
6057 		if (conf->disks[i].replacement &&
6058 		    conf->reshape_progress != MaxSector) {
6059 			/* replacements and reshape simply do not mix. */
6060 			printk(KERN_ERR "md: cannot handle concurrent "
6061 			       "replacement and reshape.\n");
6062 			goto abort;
6063 		}
6064 		if (test_bit(In_sync, &rdev->flags)) {
6065 			working_disks++;
6066 			continue;
6067 		}
6068 		/* This disc is not fully in-sync.  However if it
6069 		 * just stored parity (beyond the recovery_offset),
6070 		 * when we don't need to be concerned about the
6071 		 * array being dirty.
6072 		 * When reshape goes 'backwards', we never have
6073 		 * partially completed devices, so we only need
6074 		 * to worry about reshape going forwards.
6075 		 */
6076 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6077 		if (mddev->major_version == 0 &&
6078 		    mddev->minor_version > 90)
6079 			rdev->recovery_offset = reshape_offset;
6080 
6081 		if (rdev->recovery_offset < reshape_offset) {
6082 			/* We need to check old and new layout */
6083 			if (!only_parity(rdev->raid_disk,
6084 					 conf->algorithm,
6085 					 conf->raid_disks,
6086 					 conf->max_degraded))
6087 				continue;
6088 		}
6089 		if (!only_parity(rdev->raid_disk,
6090 				 conf->prev_algo,
6091 				 conf->previous_raid_disks,
6092 				 conf->max_degraded))
6093 			continue;
6094 		dirty_parity_disks++;
6095 	}
6096 
6097 	/*
6098 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6099 	 */
6100 	mddev->degraded = calc_degraded(conf);
6101 
6102 	if (has_failed(conf)) {
6103 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6104 			" (%d/%d failed)\n",
6105 			mdname(mddev), mddev->degraded, conf->raid_disks);
6106 		goto abort;
6107 	}
6108 
6109 	/* device size must be a multiple of chunk size */
6110 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6111 	mddev->resync_max_sectors = mddev->dev_sectors;
6112 
6113 	if (mddev->degraded > dirty_parity_disks &&
6114 	    mddev->recovery_cp != MaxSector) {
6115 		if (mddev->ok_start_degraded)
6116 			printk(KERN_WARNING
6117 			       "md/raid:%s: starting dirty degraded array"
6118 			       " - data corruption possible.\n",
6119 			       mdname(mddev));
6120 		else {
6121 			printk(KERN_ERR
6122 			       "md/raid:%s: cannot start dirty degraded array.\n",
6123 			       mdname(mddev));
6124 			goto abort;
6125 		}
6126 	}
6127 
6128 	if (mddev->degraded == 0)
6129 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6130 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6131 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6132 		       mddev->new_layout);
6133 	else
6134 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6135 		       " out of %d devices, algorithm %d\n",
6136 		       mdname(mddev), conf->level,
6137 		       mddev->raid_disks - mddev->degraded,
6138 		       mddev->raid_disks, mddev->new_layout);
6139 
6140 	print_raid5_conf(conf);
6141 
6142 	if (conf->reshape_progress != MaxSector) {
6143 		conf->reshape_safe = conf->reshape_progress;
6144 		atomic_set(&conf->reshape_stripes, 0);
6145 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6146 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6147 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6148 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6149 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6150 							"reshape");
6151 	}
6152 
6153 	/* Ok, everything is just fine now */
6154 	if (mddev->to_remove == &raid5_attrs_group)
6155 		mddev->to_remove = NULL;
6156 	else if (mddev->kobj.sd &&
6157 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6158 		printk(KERN_WARNING
6159 		       "raid5: failed to create sysfs attributes for %s\n",
6160 		       mdname(mddev));
6161 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6162 
6163 	if (mddev->queue) {
6164 		int chunk_size;
6165 		bool discard_supported = true;
6166 		/* read-ahead size must cover two whole stripes, which
6167 		 * is 2 * (datadisks) * chunksize where 'n' is the
6168 		 * number of raid devices
6169 		 */
6170 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6171 		int stripe = data_disks *
6172 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6173 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6174 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6175 
6176 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6177 
6178 		mddev->queue->backing_dev_info.congested_data = mddev;
6179 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6180 
6181 		chunk_size = mddev->chunk_sectors << 9;
6182 		blk_queue_io_min(mddev->queue, chunk_size);
6183 		blk_queue_io_opt(mddev->queue, chunk_size *
6184 				 (conf->raid_disks - conf->max_degraded));
6185 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6186 		/*
6187 		 * We can only discard a whole stripe. It doesn't make sense to
6188 		 * discard data disk but write parity disk
6189 		 */
6190 		stripe = stripe * PAGE_SIZE;
6191 		/* Round up to power of 2, as discard handling
6192 		 * currently assumes that */
6193 		while ((stripe-1) & stripe)
6194 			stripe = (stripe | (stripe-1)) + 1;
6195 		mddev->queue->limits.discard_alignment = stripe;
6196 		mddev->queue->limits.discard_granularity = stripe;
6197 		/*
6198 		 * unaligned part of discard request will be ignored, so can't
6199 		 * guarantee discard_zeroes_data
6200 		 */
6201 		mddev->queue->limits.discard_zeroes_data = 0;
6202 
6203 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6204 
6205 		rdev_for_each(rdev, mddev) {
6206 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6207 					  rdev->data_offset << 9);
6208 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6209 					  rdev->new_data_offset << 9);
6210 			/*
6211 			 * discard_zeroes_data is required, otherwise data
6212 			 * could be lost. Consider a scenario: discard a stripe
6213 			 * (the stripe could be inconsistent if
6214 			 * discard_zeroes_data is 0); write one disk of the
6215 			 * stripe (the stripe could be inconsistent again
6216 			 * depending on which disks are used to calculate
6217 			 * parity); the disk is broken; The stripe data of this
6218 			 * disk is lost.
6219 			 */
6220 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6221 			    !bdev_get_queue(rdev->bdev)->
6222 						limits.discard_zeroes_data)
6223 				discard_supported = false;
6224 			/* Unfortunately, discard_zeroes_data is not currently
6225 			 * a guarantee - just a hint.  So we only allow DISCARD
6226 			 * if the sysadmin has confirmed that only safe devices
6227 			 * are in use by setting a module parameter.
6228 			 */
6229 			if (!devices_handle_discard_safely) {
6230 				if (discard_supported) {
6231 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6232 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6233 				}
6234 				discard_supported = false;
6235 			}
6236 		}
6237 
6238 		if (discard_supported &&
6239 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6240 		   mddev->queue->limits.discard_granularity >= stripe)
6241 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6242 						mddev->queue);
6243 		else
6244 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6245 						mddev->queue);
6246 	}
6247 
6248 	return 0;
6249 abort:
6250 	md_unregister_thread(&mddev->thread);
6251 	print_raid5_conf(conf);
6252 	free_conf(conf);
6253 	mddev->private = NULL;
6254 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6255 	return -EIO;
6256 }
6257 
6258 static int stop(struct mddev *mddev)
6259 {
6260 	struct r5conf *conf = mddev->private;
6261 
6262 	md_unregister_thread(&mddev->thread);
6263 	if (mddev->queue)
6264 		mddev->queue->backing_dev_info.congested_fn = NULL;
6265 	free_conf(conf);
6266 	mddev->private = NULL;
6267 	mddev->to_remove = &raid5_attrs_group;
6268 	return 0;
6269 }
6270 
6271 static void status(struct seq_file *seq, struct mddev *mddev)
6272 {
6273 	struct r5conf *conf = mddev->private;
6274 	int i;
6275 
6276 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6277 		mddev->chunk_sectors / 2, mddev->layout);
6278 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6279 	for (i = 0; i < conf->raid_disks; i++)
6280 		seq_printf (seq, "%s",
6281 			       conf->disks[i].rdev &&
6282 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6283 	seq_printf (seq, "]");
6284 }
6285 
6286 static void print_raid5_conf (struct r5conf *conf)
6287 {
6288 	int i;
6289 	struct disk_info *tmp;
6290 
6291 	printk(KERN_DEBUG "RAID conf printout:\n");
6292 	if (!conf) {
6293 		printk("(conf==NULL)\n");
6294 		return;
6295 	}
6296 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6297 	       conf->raid_disks,
6298 	       conf->raid_disks - conf->mddev->degraded);
6299 
6300 	for (i = 0; i < conf->raid_disks; i++) {
6301 		char b[BDEVNAME_SIZE];
6302 		tmp = conf->disks + i;
6303 		if (tmp->rdev)
6304 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6305 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6306 			       bdevname(tmp->rdev->bdev, b));
6307 	}
6308 }
6309 
6310 static int raid5_spare_active(struct mddev *mddev)
6311 {
6312 	int i;
6313 	struct r5conf *conf = mddev->private;
6314 	struct disk_info *tmp;
6315 	int count = 0;
6316 	unsigned long flags;
6317 
6318 	for (i = 0; i < conf->raid_disks; i++) {
6319 		tmp = conf->disks + i;
6320 		if (tmp->replacement
6321 		    && tmp->replacement->recovery_offset == MaxSector
6322 		    && !test_bit(Faulty, &tmp->replacement->flags)
6323 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6324 			/* Replacement has just become active. */
6325 			if (!tmp->rdev
6326 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6327 				count++;
6328 			if (tmp->rdev) {
6329 				/* Replaced device not technically faulty,
6330 				 * but we need to be sure it gets removed
6331 				 * and never re-added.
6332 				 */
6333 				set_bit(Faulty, &tmp->rdev->flags);
6334 				sysfs_notify_dirent_safe(
6335 					tmp->rdev->sysfs_state);
6336 			}
6337 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6338 		} else if (tmp->rdev
6339 		    && tmp->rdev->recovery_offset == MaxSector
6340 		    && !test_bit(Faulty, &tmp->rdev->flags)
6341 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6342 			count++;
6343 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6344 		}
6345 	}
6346 	spin_lock_irqsave(&conf->device_lock, flags);
6347 	mddev->degraded = calc_degraded(conf);
6348 	spin_unlock_irqrestore(&conf->device_lock, flags);
6349 	print_raid5_conf(conf);
6350 	return count;
6351 }
6352 
6353 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6354 {
6355 	struct r5conf *conf = mddev->private;
6356 	int err = 0;
6357 	int number = rdev->raid_disk;
6358 	struct md_rdev **rdevp;
6359 	struct disk_info *p = conf->disks + number;
6360 
6361 	print_raid5_conf(conf);
6362 	if (rdev == p->rdev)
6363 		rdevp = &p->rdev;
6364 	else if (rdev == p->replacement)
6365 		rdevp = &p->replacement;
6366 	else
6367 		return 0;
6368 
6369 	if (number >= conf->raid_disks &&
6370 	    conf->reshape_progress == MaxSector)
6371 		clear_bit(In_sync, &rdev->flags);
6372 
6373 	if (test_bit(In_sync, &rdev->flags) ||
6374 	    atomic_read(&rdev->nr_pending)) {
6375 		err = -EBUSY;
6376 		goto abort;
6377 	}
6378 	/* Only remove non-faulty devices if recovery
6379 	 * isn't possible.
6380 	 */
6381 	if (!test_bit(Faulty, &rdev->flags) &&
6382 	    mddev->recovery_disabled != conf->recovery_disabled &&
6383 	    !has_failed(conf) &&
6384 	    (!p->replacement || p->replacement == rdev) &&
6385 	    number < conf->raid_disks) {
6386 		err = -EBUSY;
6387 		goto abort;
6388 	}
6389 	*rdevp = NULL;
6390 	synchronize_rcu();
6391 	if (atomic_read(&rdev->nr_pending)) {
6392 		/* lost the race, try later */
6393 		err = -EBUSY;
6394 		*rdevp = rdev;
6395 	} else if (p->replacement) {
6396 		/* We must have just cleared 'rdev' */
6397 		p->rdev = p->replacement;
6398 		clear_bit(Replacement, &p->replacement->flags);
6399 		smp_mb(); /* Make sure other CPUs may see both as identical
6400 			   * but will never see neither - if they are careful
6401 			   */
6402 		p->replacement = NULL;
6403 		clear_bit(WantReplacement, &rdev->flags);
6404 	} else
6405 		/* We might have just removed the Replacement as faulty-
6406 		 * clear the bit just in case
6407 		 */
6408 		clear_bit(WantReplacement, &rdev->flags);
6409 abort:
6410 
6411 	print_raid5_conf(conf);
6412 	return err;
6413 }
6414 
6415 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6416 {
6417 	struct r5conf *conf = mddev->private;
6418 	int err = -EEXIST;
6419 	int disk;
6420 	struct disk_info *p;
6421 	int first = 0;
6422 	int last = conf->raid_disks - 1;
6423 
6424 	if (mddev->recovery_disabled == conf->recovery_disabled)
6425 		return -EBUSY;
6426 
6427 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6428 		/* no point adding a device */
6429 		return -EINVAL;
6430 
6431 	if (rdev->raid_disk >= 0)
6432 		first = last = rdev->raid_disk;
6433 
6434 	/*
6435 	 * find the disk ... but prefer rdev->saved_raid_disk
6436 	 * if possible.
6437 	 */
6438 	if (rdev->saved_raid_disk >= 0 &&
6439 	    rdev->saved_raid_disk >= first &&
6440 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6441 		first = rdev->saved_raid_disk;
6442 
6443 	for (disk = first; disk <= last; disk++) {
6444 		p = conf->disks + disk;
6445 		if (p->rdev == NULL) {
6446 			clear_bit(In_sync, &rdev->flags);
6447 			rdev->raid_disk = disk;
6448 			err = 0;
6449 			if (rdev->saved_raid_disk != disk)
6450 				conf->fullsync = 1;
6451 			rcu_assign_pointer(p->rdev, rdev);
6452 			goto out;
6453 		}
6454 	}
6455 	for (disk = first; disk <= last; disk++) {
6456 		p = conf->disks + disk;
6457 		if (test_bit(WantReplacement, &p->rdev->flags) &&
6458 		    p->replacement == NULL) {
6459 			clear_bit(In_sync, &rdev->flags);
6460 			set_bit(Replacement, &rdev->flags);
6461 			rdev->raid_disk = disk;
6462 			err = 0;
6463 			conf->fullsync = 1;
6464 			rcu_assign_pointer(p->replacement, rdev);
6465 			break;
6466 		}
6467 	}
6468 out:
6469 	print_raid5_conf(conf);
6470 	return err;
6471 }
6472 
6473 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6474 {
6475 	/* no resync is happening, and there is enough space
6476 	 * on all devices, so we can resize.
6477 	 * We need to make sure resync covers any new space.
6478 	 * If the array is shrinking we should possibly wait until
6479 	 * any io in the removed space completes, but it hardly seems
6480 	 * worth it.
6481 	 */
6482 	sector_t newsize;
6483 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6484 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6485 	if (mddev->external_size &&
6486 	    mddev->array_sectors > newsize)
6487 		return -EINVAL;
6488 	if (mddev->bitmap) {
6489 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6490 		if (ret)
6491 			return ret;
6492 	}
6493 	md_set_array_sectors(mddev, newsize);
6494 	set_capacity(mddev->gendisk, mddev->array_sectors);
6495 	revalidate_disk(mddev->gendisk);
6496 	if (sectors > mddev->dev_sectors &&
6497 	    mddev->recovery_cp > mddev->dev_sectors) {
6498 		mddev->recovery_cp = mddev->dev_sectors;
6499 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6500 	}
6501 	mddev->dev_sectors = sectors;
6502 	mddev->resync_max_sectors = sectors;
6503 	return 0;
6504 }
6505 
6506 static int check_stripe_cache(struct mddev *mddev)
6507 {
6508 	/* Can only proceed if there are plenty of stripe_heads.
6509 	 * We need a minimum of one full stripe,, and for sensible progress
6510 	 * it is best to have about 4 times that.
6511 	 * If we require 4 times, then the default 256 4K stripe_heads will
6512 	 * allow for chunk sizes up to 256K, which is probably OK.
6513 	 * If the chunk size is greater, user-space should request more
6514 	 * stripe_heads first.
6515 	 */
6516 	struct r5conf *conf = mddev->private;
6517 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6518 	    > conf->max_nr_stripes ||
6519 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6520 	    > conf->max_nr_stripes) {
6521 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6522 		       mdname(mddev),
6523 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6524 			/ STRIPE_SIZE)*4);
6525 		return 0;
6526 	}
6527 	return 1;
6528 }
6529 
6530 static int check_reshape(struct mddev *mddev)
6531 {
6532 	struct r5conf *conf = mddev->private;
6533 
6534 	if (mddev->delta_disks == 0 &&
6535 	    mddev->new_layout == mddev->layout &&
6536 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6537 		return 0; /* nothing to do */
6538 	if (has_failed(conf))
6539 		return -EINVAL;
6540 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6541 		/* We might be able to shrink, but the devices must
6542 		 * be made bigger first.
6543 		 * For raid6, 4 is the minimum size.
6544 		 * Otherwise 2 is the minimum
6545 		 */
6546 		int min = 2;
6547 		if (mddev->level == 6)
6548 			min = 4;
6549 		if (mddev->raid_disks + mddev->delta_disks < min)
6550 			return -EINVAL;
6551 	}
6552 
6553 	if (!check_stripe_cache(mddev))
6554 		return -ENOSPC;
6555 
6556 	return resize_stripes(conf, (conf->previous_raid_disks
6557 				     + mddev->delta_disks));
6558 }
6559 
6560 static int raid5_start_reshape(struct mddev *mddev)
6561 {
6562 	struct r5conf *conf = mddev->private;
6563 	struct md_rdev *rdev;
6564 	int spares = 0;
6565 	unsigned long flags;
6566 
6567 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6568 		return -EBUSY;
6569 
6570 	if (!check_stripe_cache(mddev))
6571 		return -ENOSPC;
6572 
6573 	if (has_failed(conf))
6574 		return -EINVAL;
6575 
6576 	rdev_for_each(rdev, mddev) {
6577 		if (!test_bit(In_sync, &rdev->flags)
6578 		    && !test_bit(Faulty, &rdev->flags))
6579 			spares++;
6580 	}
6581 
6582 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6583 		/* Not enough devices even to make a degraded array
6584 		 * of that size
6585 		 */
6586 		return -EINVAL;
6587 
6588 	/* Refuse to reduce size of the array.  Any reductions in
6589 	 * array size must be through explicit setting of array_size
6590 	 * attribute.
6591 	 */
6592 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6593 	    < mddev->array_sectors) {
6594 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6595 		       "before number of disks\n", mdname(mddev));
6596 		return -EINVAL;
6597 	}
6598 
6599 	atomic_set(&conf->reshape_stripes, 0);
6600 	spin_lock_irq(&conf->device_lock);
6601 	write_seqcount_begin(&conf->gen_lock);
6602 	conf->previous_raid_disks = conf->raid_disks;
6603 	conf->raid_disks += mddev->delta_disks;
6604 	conf->prev_chunk_sectors = conf->chunk_sectors;
6605 	conf->chunk_sectors = mddev->new_chunk_sectors;
6606 	conf->prev_algo = conf->algorithm;
6607 	conf->algorithm = mddev->new_layout;
6608 	conf->generation++;
6609 	/* Code that selects data_offset needs to see the generation update
6610 	 * if reshape_progress has been set - so a memory barrier needed.
6611 	 */
6612 	smp_mb();
6613 	if (mddev->reshape_backwards)
6614 		conf->reshape_progress = raid5_size(mddev, 0, 0);
6615 	else
6616 		conf->reshape_progress = 0;
6617 	conf->reshape_safe = conf->reshape_progress;
6618 	write_seqcount_end(&conf->gen_lock);
6619 	spin_unlock_irq(&conf->device_lock);
6620 
6621 	/* Now make sure any requests that proceeded on the assumption
6622 	 * the reshape wasn't running - like Discard or Read - have
6623 	 * completed.
6624 	 */
6625 	mddev_suspend(mddev);
6626 	mddev_resume(mddev);
6627 
6628 	/* Add some new drives, as many as will fit.
6629 	 * We know there are enough to make the newly sized array work.
6630 	 * Don't add devices if we are reducing the number of
6631 	 * devices in the array.  This is because it is not possible
6632 	 * to correctly record the "partially reconstructed" state of
6633 	 * such devices during the reshape and confusion could result.
6634 	 */
6635 	if (mddev->delta_disks >= 0) {
6636 		rdev_for_each(rdev, mddev)
6637 			if (rdev->raid_disk < 0 &&
6638 			    !test_bit(Faulty, &rdev->flags)) {
6639 				if (raid5_add_disk(mddev, rdev) == 0) {
6640 					if (rdev->raid_disk
6641 					    >= conf->previous_raid_disks)
6642 						set_bit(In_sync, &rdev->flags);
6643 					else
6644 						rdev->recovery_offset = 0;
6645 
6646 					if (sysfs_link_rdev(mddev, rdev))
6647 						/* Failure here is OK */;
6648 				}
6649 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6650 				   && !test_bit(Faulty, &rdev->flags)) {
6651 				/* This is a spare that was manually added */
6652 				set_bit(In_sync, &rdev->flags);
6653 			}
6654 
6655 		/* When a reshape changes the number of devices,
6656 		 * ->degraded is measured against the larger of the
6657 		 * pre and post number of devices.
6658 		 */
6659 		spin_lock_irqsave(&conf->device_lock, flags);
6660 		mddev->degraded = calc_degraded(conf);
6661 		spin_unlock_irqrestore(&conf->device_lock, flags);
6662 	}
6663 	mddev->raid_disks = conf->raid_disks;
6664 	mddev->reshape_position = conf->reshape_progress;
6665 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6666 
6667 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6668 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6669 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6670 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6671 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6672 						"reshape");
6673 	if (!mddev->sync_thread) {
6674 		mddev->recovery = 0;
6675 		spin_lock_irq(&conf->device_lock);
6676 		write_seqcount_begin(&conf->gen_lock);
6677 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6678 		mddev->new_chunk_sectors =
6679 			conf->chunk_sectors = conf->prev_chunk_sectors;
6680 		mddev->new_layout = conf->algorithm = conf->prev_algo;
6681 		rdev_for_each(rdev, mddev)
6682 			rdev->new_data_offset = rdev->data_offset;
6683 		smp_wmb();
6684 		conf->generation --;
6685 		conf->reshape_progress = MaxSector;
6686 		mddev->reshape_position = MaxSector;
6687 		write_seqcount_end(&conf->gen_lock);
6688 		spin_unlock_irq(&conf->device_lock);
6689 		return -EAGAIN;
6690 	}
6691 	conf->reshape_checkpoint = jiffies;
6692 	md_wakeup_thread(mddev->sync_thread);
6693 	md_new_event(mddev);
6694 	return 0;
6695 }
6696 
6697 /* This is called from the reshape thread and should make any
6698  * changes needed in 'conf'
6699  */
6700 static void end_reshape(struct r5conf *conf)
6701 {
6702 
6703 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6704 		struct md_rdev *rdev;
6705 
6706 		spin_lock_irq(&conf->device_lock);
6707 		conf->previous_raid_disks = conf->raid_disks;
6708 		rdev_for_each(rdev, conf->mddev)
6709 			rdev->data_offset = rdev->new_data_offset;
6710 		smp_wmb();
6711 		conf->reshape_progress = MaxSector;
6712 		spin_unlock_irq(&conf->device_lock);
6713 		wake_up(&conf->wait_for_overlap);
6714 
6715 		/* read-ahead size must cover two whole stripes, which is
6716 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6717 		 */
6718 		if (conf->mddev->queue) {
6719 			int data_disks = conf->raid_disks - conf->max_degraded;
6720 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6721 						   / PAGE_SIZE);
6722 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6723 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6724 		}
6725 	}
6726 }
6727 
6728 /* This is called from the raid5d thread with mddev_lock held.
6729  * It makes config changes to the device.
6730  */
6731 static void raid5_finish_reshape(struct mddev *mddev)
6732 {
6733 	struct r5conf *conf = mddev->private;
6734 
6735 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6736 
6737 		if (mddev->delta_disks > 0) {
6738 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6739 			set_capacity(mddev->gendisk, mddev->array_sectors);
6740 			revalidate_disk(mddev->gendisk);
6741 		} else {
6742 			int d;
6743 			spin_lock_irq(&conf->device_lock);
6744 			mddev->degraded = calc_degraded(conf);
6745 			spin_unlock_irq(&conf->device_lock);
6746 			for (d = conf->raid_disks ;
6747 			     d < conf->raid_disks - mddev->delta_disks;
6748 			     d++) {
6749 				struct md_rdev *rdev = conf->disks[d].rdev;
6750 				if (rdev)
6751 					clear_bit(In_sync, &rdev->flags);
6752 				rdev = conf->disks[d].replacement;
6753 				if (rdev)
6754 					clear_bit(In_sync, &rdev->flags);
6755 			}
6756 		}
6757 		mddev->layout = conf->algorithm;
6758 		mddev->chunk_sectors = conf->chunk_sectors;
6759 		mddev->reshape_position = MaxSector;
6760 		mddev->delta_disks = 0;
6761 		mddev->reshape_backwards = 0;
6762 	}
6763 }
6764 
6765 static void raid5_quiesce(struct mddev *mddev, int state)
6766 {
6767 	struct r5conf *conf = mddev->private;
6768 
6769 	switch(state) {
6770 	case 2: /* resume for a suspend */
6771 		wake_up(&conf->wait_for_overlap);
6772 		break;
6773 
6774 	case 1: /* stop all writes */
6775 		lock_all_device_hash_locks_irq(conf);
6776 		/* '2' tells resync/reshape to pause so that all
6777 		 * active stripes can drain
6778 		 */
6779 		conf->quiesce = 2;
6780 		wait_event_cmd(conf->wait_for_stripe,
6781 				    atomic_read(&conf->active_stripes) == 0 &&
6782 				    atomic_read(&conf->active_aligned_reads) == 0,
6783 				    unlock_all_device_hash_locks_irq(conf),
6784 				    lock_all_device_hash_locks_irq(conf));
6785 		conf->quiesce = 1;
6786 		unlock_all_device_hash_locks_irq(conf);
6787 		/* allow reshape to continue */
6788 		wake_up(&conf->wait_for_overlap);
6789 		break;
6790 
6791 	case 0: /* re-enable writes */
6792 		lock_all_device_hash_locks_irq(conf);
6793 		conf->quiesce = 0;
6794 		wake_up(&conf->wait_for_stripe);
6795 		wake_up(&conf->wait_for_overlap);
6796 		unlock_all_device_hash_locks_irq(conf);
6797 		break;
6798 	}
6799 }
6800 
6801 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6802 {
6803 	struct r0conf *raid0_conf = mddev->private;
6804 	sector_t sectors;
6805 
6806 	/* for raid0 takeover only one zone is supported */
6807 	if (raid0_conf->nr_strip_zones > 1) {
6808 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6809 		       mdname(mddev));
6810 		return ERR_PTR(-EINVAL);
6811 	}
6812 
6813 	sectors = raid0_conf->strip_zone[0].zone_end;
6814 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6815 	mddev->dev_sectors = sectors;
6816 	mddev->new_level = level;
6817 	mddev->new_layout = ALGORITHM_PARITY_N;
6818 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6819 	mddev->raid_disks += 1;
6820 	mddev->delta_disks = 1;
6821 	/* make sure it will be not marked as dirty */
6822 	mddev->recovery_cp = MaxSector;
6823 
6824 	return setup_conf(mddev);
6825 }
6826 
6827 static void *raid5_takeover_raid1(struct mddev *mddev)
6828 {
6829 	int chunksect;
6830 
6831 	if (mddev->raid_disks != 2 ||
6832 	    mddev->degraded > 1)
6833 		return ERR_PTR(-EINVAL);
6834 
6835 	/* Should check if there are write-behind devices? */
6836 
6837 	chunksect = 64*2; /* 64K by default */
6838 
6839 	/* The array must be an exact multiple of chunksize */
6840 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6841 		chunksect >>= 1;
6842 
6843 	if ((chunksect<<9) < STRIPE_SIZE)
6844 		/* array size does not allow a suitable chunk size */
6845 		return ERR_PTR(-EINVAL);
6846 
6847 	mddev->new_level = 5;
6848 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6849 	mddev->new_chunk_sectors = chunksect;
6850 
6851 	return setup_conf(mddev);
6852 }
6853 
6854 static void *raid5_takeover_raid6(struct mddev *mddev)
6855 {
6856 	int new_layout;
6857 
6858 	switch (mddev->layout) {
6859 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6860 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6861 		break;
6862 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6863 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6864 		break;
6865 	case ALGORITHM_LEFT_SYMMETRIC_6:
6866 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6867 		break;
6868 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6869 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6870 		break;
6871 	case ALGORITHM_PARITY_0_6:
6872 		new_layout = ALGORITHM_PARITY_0;
6873 		break;
6874 	case ALGORITHM_PARITY_N:
6875 		new_layout = ALGORITHM_PARITY_N;
6876 		break;
6877 	default:
6878 		return ERR_PTR(-EINVAL);
6879 	}
6880 	mddev->new_level = 5;
6881 	mddev->new_layout = new_layout;
6882 	mddev->delta_disks = -1;
6883 	mddev->raid_disks -= 1;
6884 	return setup_conf(mddev);
6885 }
6886 
6887 static int raid5_check_reshape(struct mddev *mddev)
6888 {
6889 	/* For a 2-drive array, the layout and chunk size can be changed
6890 	 * immediately as not restriping is needed.
6891 	 * For larger arrays we record the new value - after validation
6892 	 * to be used by a reshape pass.
6893 	 */
6894 	struct r5conf *conf = mddev->private;
6895 	int new_chunk = mddev->new_chunk_sectors;
6896 
6897 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6898 		return -EINVAL;
6899 	if (new_chunk > 0) {
6900 		if (!is_power_of_2(new_chunk))
6901 			return -EINVAL;
6902 		if (new_chunk < (PAGE_SIZE>>9))
6903 			return -EINVAL;
6904 		if (mddev->array_sectors & (new_chunk-1))
6905 			/* not factor of array size */
6906 			return -EINVAL;
6907 	}
6908 
6909 	/* They look valid */
6910 
6911 	if (mddev->raid_disks == 2) {
6912 		/* can make the change immediately */
6913 		if (mddev->new_layout >= 0) {
6914 			conf->algorithm = mddev->new_layout;
6915 			mddev->layout = mddev->new_layout;
6916 		}
6917 		if (new_chunk > 0) {
6918 			conf->chunk_sectors = new_chunk ;
6919 			mddev->chunk_sectors = new_chunk;
6920 		}
6921 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6922 		md_wakeup_thread(mddev->thread);
6923 	}
6924 	return check_reshape(mddev);
6925 }
6926 
6927 static int raid6_check_reshape(struct mddev *mddev)
6928 {
6929 	int new_chunk = mddev->new_chunk_sectors;
6930 
6931 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6932 		return -EINVAL;
6933 	if (new_chunk > 0) {
6934 		if (!is_power_of_2(new_chunk))
6935 			return -EINVAL;
6936 		if (new_chunk < (PAGE_SIZE >> 9))
6937 			return -EINVAL;
6938 		if (mddev->array_sectors & (new_chunk-1))
6939 			/* not factor of array size */
6940 			return -EINVAL;
6941 	}
6942 
6943 	/* They look valid */
6944 	return check_reshape(mddev);
6945 }
6946 
6947 static void *raid5_takeover(struct mddev *mddev)
6948 {
6949 	/* raid5 can take over:
6950 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6951 	 *  raid1 - if there are two drives.  We need to know the chunk size
6952 	 *  raid4 - trivial - just use a raid4 layout.
6953 	 *  raid6 - Providing it is a *_6 layout
6954 	 */
6955 	if (mddev->level == 0)
6956 		return raid45_takeover_raid0(mddev, 5);
6957 	if (mddev->level == 1)
6958 		return raid5_takeover_raid1(mddev);
6959 	if (mddev->level == 4) {
6960 		mddev->new_layout = ALGORITHM_PARITY_N;
6961 		mddev->new_level = 5;
6962 		return setup_conf(mddev);
6963 	}
6964 	if (mddev->level == 6)
6965 		return raid5_takeover_raid6(mddev);
6966 
6967 	return ERR_PTR(-EINVAL);
6968 }
6969 
6970 static void *raid4_takeover(struct mddev *mddev)
6971 {
6972 	/* raid4 can take over:
6973 	 *  raid0 - if there is only one strip zone
6974 	 *  raid5 - if layout is right
6975 	 */
6976 	if (mddev->level == 0)
6977 		return raid45_takeover_raid0(mddev, 4);
6978 	if (mddev->level == 5 &&
6979 	    mddev->layout == ALGORITHM_PARITY_N) {
6980 		mddev->new_layout = 0;
6981 		mddev->new_level = 4;
6982 		return setup_conf(mddev);
6983 	}
6984 	return ERR_PTR(-EINVAL);
6985 }
6986 
6987 static struct md_personality raid5_personality;
6988 
6989 static void *raid6_takeover(struct mddev *mddev)
6990 {
6991 	/* Currently can only take over a raid5.  We map the
6992 	 * personality to an equivalent raid6 personality
6993 	 * with the Q block at the end.
6994 	 */
6995 	int new_layout;
6996 
6997 	if (mddev->pers != &raid5_personality)
6998 		return ERR_PTR(-EINVAL);
6999 	if (mddev->degraded > 1)
7000 		return ERR_PTR(-EINVAL);
7001 	if (mddev->raid_disks > 253)
7002 		return ERR_PTR(-EINVAL);
7003 	if (mddev->raid_disks < 3)
7004 		return ERR_PTR(-EINVAL);
7005 
7006 	switch (mddev->layout) {
7007 	case ALGORITHM_LEFT_ASYMMETRIC:
7008 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7009 		break;
7010 	case ALGORITHM_RIGHT_ASYMMETRIC:
7011 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7012 		break;
7013 	case ALGORITHM_LEFT_SYMMETRIC:
7014 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7015 		break;
7016 	case ALGORITHM_RIGHT_SYMMETRIC:
7017 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7018 		break;
7019 	case ALGORITHM_PARITY_0:
7020 		new_layout = ALGORITHM_PARITY_0_6;
7021 		break;
7022 	case ALGORITHM_PARITY_N:
7023 		new_layout = ALGORITHM_PARITY_N;
7024 		break;
7025 	default:
7026 		return ERR_PTR(-EINVAL);
7027 	}
7028 	mddev->new_level = 6;
7029 	mddev->new_layout = new_layout;
7030 	mddev->delta_disks = 1;
7031 	mddev->raid_disks += 1;
7032 	return setup_conf(mddev);
7033 }
7034 
7035 static struct md_personality raid6_personality =
7036 {
7037 	.name		= "raid6",
7038 	.level		= 6,
7039 	.owner		= THIS_MODULE,
7040 	.make_request	= make_request,
7041 	.run		= run,
7042 	.stop		= stop,
7043 	.status		= status,
7044 	.error_handler	= error,
7045 	.hot_add_disk	= raid5_add_disk,
7046 	.hot_remove_disk= raid5_remove_disk,
7047 	.spare_active	= raid5_spare_active,
7048 	.sync_request	= sync_request,
7049 	.resize		= raid5_resize,
7050 	.size		= raid5_size,
7051 	.check_reshape	= raid6_check_reshape,
7052 	.start_reshape  = raid5_start_reshape,
7053 	.finish_reshape = raid5_finish_reshape,
7054 	.quiesce	= raid5_quiesce,
7055 	.takeover	= raid6_takeover,
7056 };
7057 static struct md_personality raid5_personality =
7058 {
7059 	.name		= "raid5",
7060 	.level		= 5,
7061 	.owner		= THIS_MODULE,
7062 	.make_request	= make_request,
7063 	.run		= run,
7064 	.stop		= stop,
7065 	.status		= status,
7066 	.error_handler	= error,
7067 	.hot_add_disk	= raid5_add_disk,
7068 	.hot_remove_disk= raid5_remove_disk,
7069 	.spare_active	= raid5_spare_active,
7070 	.sync_request	= sync_request,
7071 	.resize		= raid5_resize,
7072 	.size		= raid5_size,
7073 	.check_reshape	= raid5_check_reshape,
7074 	.start_reshape  = raid5_start_reshape,
7075 	.finish_reshape = raid5_finish_reshape,
7076 	.quiesce	= raid5_quiesce,
7077 	.takeover	= raid5_takeover,
7078 };
7079 
7080 static struct md_personality raid4_personality =
7081 {
7082 	.name		= "raid4",
7083 	.level		= 4,
7084 	.owner		= THIS_MODULE,
7085 	.make_request	= make_request,
7086 	.run		= run,
7087 	.stop		= stop,
7088 	.status		= status,
7089 	.error_handler	= error,
7090 	.hot_add_disk	= raid5_add_disk,
7091 	.hot_remove_disk= raid5_remove_disk,
7092 	.spare_active	= raid5_spare_active,
7093 	.sync_request	= sync_request,
7094 	.resize		= raid5_resize,
7095 	.size		= raid5_size,
7096 	.check_reshape	= raid5_check_reshape,
7097 	.start_reshape  = raid5_start_reshape,
7098 	.finish_reshape = raid5_finish_reshape,
7099 	.quiesce	= raid5_quiesce,
7100 	.takeover	= raid4_takeover,
7101 };
7102 
7103 static int __init raid5_init(void)
7104 {
7105 	raid5_wq = alloc_workqueue("raid5wq",
7106 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7107 	if (!raid5_wq)
7108 		return -ENOMEM;
7109 	register_md_personality(&raid6_personality);
7110 	register_md_personality(&raid5_personality);
7111 	register_md_personality(&raid4_personality);
7112 	return 0;
7113 }
7114 
7115 static void raid5_exit(void)
7116 {
7117 	unregister_md_personality(&raid6_personality);
7118 	unregister_md_personality(&raid5_personality);
7119 	unregister_md_personality(&raid4_personality);
7120 	destroy_workqueue(raid5_wq);
7121 }
7122 
7123 module_init(raid5_init);
7124 module_exit(raid5_exit);
7125 MODULE_LICENSE("GPL");
7126 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7127 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7128 MODULE_ALIAS("md-raid5");
7129 MODULE_ALIAS("md-raid4");
7130 MODULE_ALIAS("md-level-5");
7131 MODULE_ALIAS("md-level-4");
7132 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7133 MODULE_ALIAS("md-raid6");
7134 MODULE_ALIAS("md-level-6");
7135 
7136 /* This used to be two separate modules, they were: */
7137 MODULE_ALIAS("raid5");
7138 MODULE_ALIAS("raid6");
7139