xref: /openbmc/linux/drivers/md/raid5.c (revision c629f345)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69 
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 	return &conf->stripe_hashtbl[hash];
74 }
75 
76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77 {
78 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79 }
80 
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 	__acquires(&conf->device_lock)
83 {
84 	spin_lock_irq(conf->hash_locks + hash);
85 	spin_lock(&conf->device_lock);
86 }
87 
88 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
89 	__releases(&conf->device_lock)
90 {
91 	spin_unlock(&conf->device_lock);
92 	spin_unlock_irq(conf->hash_locks + hash);
93 }
94 
95 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
96 	__acquires(&conf->device_lock)
97 {
98 	int i;
99 	spin_lock_irq(conf->hash_locks);
100 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
101 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
102 	spin_lock(&conf->device_lock);
103 }
104 
105 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
106 	__releases(&conf->device_lock)
107 {
108 	int i;
109 	spin_unlock(&conf->device_lock);
110 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
111 		spin_unlock(conf->hash_locks + i);
112 	spin_unlock_irq(conf->hash_locks);
113 }
114 
115 /* Find first data disk in a raid6 stripe */
116 static inline int raid6_d0(struct stripe_head *sh)
117 {
118 	if (sh->ddf_layout)
119 		/* ddf always start from first device */
120 		return 0;
121 	/* md starts just after Q block */
122 	if (sh->qd_idx == sh->disks - 1)
123 		return 0;
124 	else
125 		return sh->qd_idx + 1;
126 }
127 static inline int raid6_next_disk(int disk, int raid_disks)
128 {
129 	disk++;
130 	return (disk < raid_disks) ? disk : 0;
131 }
132 
133 /* When walking through the disks in a raid5, starting at raid6_d0,
134  * We need to map each disk to a 'slot', where the data disks are slot
135  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
136  * is raid_disks-1.  This help does that mapping.
137  */
138 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
139 			     int *count, int syndrome_disks)
140 {
141 	int slot = *count;
142 
143 	if (sh->ddf_layout)
144 		(*count)++;
145 	if (idx == sh->pd_idx)
146 		return syndrome_disks;
147 	if (idx == sh->qd_idx)
148 		return syndrome_disks + 1;
149 	if (!sh->ddf_layout)
150 		(*count)++;
151 	return slot;
152 }
153 
154 static void print_raid5_conf (struct r5conf *conf);
155 
156 static int stripe_operations_active(struct stripe_head *sh)
157 {
158 	return sh->check_state || sh->reconstruct_state ||
159 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
160 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
161 }
162 
163 static bool stripe_is_lowprio(struct stripe_head *sh)
164 {
165 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
166 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
167 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
168 }
169 
170 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
171 	__must_hold(&sh->raid_conf->device_lock)
172 {
173 	struct r5conf *conf = sh->raid_conf;
174 	struct r5worker_group *group;
175 	int thread_cnt;
176 	int i, cpu = sh->cpu;
177 
178 	if (!cpu_online(cpu)) {
179 		cpu = cpumask_any(cpu_online_mask);
180 		sh->cpu = cpu;
181 	}
182 
183 	if (list_empty(&sh->lru)) {
184 		struct r5worker_group *group;
185 		group = conf->worker_groups + cpu_to_group(cpu);
186 		if (stripe_is_lowprio(sh))
187 			list_add_tail(&sh->lru, &group->loprio_list);
188 		else
189 			list_add_tail(&sh->lru, &group->handle_list);
190 		group->stripes_cnt++;
191 		sh->group = group;
192 	}
193 
194 	if (conf->worker_cnt_per_group == 0) {
195 		md_wakeup_thread(conf->mddev->thread);
196 		return;
197 	}
198 
199 	group = conf->worker_groups + cpu_to_group(sh->cpu);
200 
201 	group->workers[0].working = true;
202 	/* at least one worker should run to avoid race */
203 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
204 
205 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
206 	/* wakeup more workers */
207 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
208 		if (group->workers[i].working == false) {
209 			group->workers[i].working = true;
210 			queue_work_on(sh->cpu, raid5_wq,
211 				      &group->workers[i].work);
212 			thread_cnt--;
213 		}
214 	}
215 }
216 
217 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
218 			      struct list_head *temp_inactive_list)
219 	__must_hold(&conf->device_lock)
220 {
221 	int i;
222 	int injournal = 0;	/* number of date pages with R5_InJournal */
223 
224 	BUG_ON(!list_empty(&sh->lru));
225 	BUG_ON(atomic_read(&conf->active_stripes)==0);
226 
227 	if (r5c_is_writeback(conf->log))
228 		for (i = sh->disks; i--; )
229 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
230 				injournal++;
231 	/*
232 	 * In the following cases, the stripe cannot be released to cached
233 	 * lists. Therefore, we make the stripe write out and set
234 	 * STRIPE_HANDLE:
235 	 *   1. when quiesce in r5c write back;
236 	 *   2. when resync is requested fot the stripe.
237 	 */
238 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
239 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
240 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
241 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
242 			r5c_make_stripe_write_out(sh);
243 		set_bit(STRIPE_HANDLE, &sh->state);
244 	}
245 
246 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
247 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
248 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
249 			list_add_tail(&sh->lru, &conf->delayed_list);
250 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
251 			   sh->bm_seq - conf->seq_write > 0)
252 			list_add_tail(&sh->lru, &conf->bitmap_list);
253 		else {
254 			clear_bit(STRIPE_DELAYED, &sh->state);
255 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
256 			if (conf->worker_cnt_per_group == 0) {
257 				if (stripe_is_lowprio(sh))
258 					list_add_tail(&sh->lru,
259 							&conf->loprio_list);
260 				else
261 					list_add_tail(&sh->lru,
262 							&conf->handle_list);
263 			} else {
264 				raid5_wakeup_stripe_thread(sh);
265 				return;
266 			}
267 		}
268 		md_wakeup_thread(conf->mddev->thread);
269 	} else {
270 		BUG_ON(stripe_operations_active(sh));
271 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
272 			if (atomic_dec_return(&conf->preread_active_stripes)
273 			    < IO_THRESHOLD)
274 				md_wakeup_thread(conf->mddev->thread);
275 		atomic_dec(&conf->active_stripes);
276 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
277 			if (!r5c_is_writeback(conf->log))
278 				list_add_tail(&sh->lru, temp_inactive_list);
279 			else {
280 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
281 				if (injournal == 0)
282 					list_add_tail(&sh->lru, temp_inactive_list);
283 				else if (injournal == conf->raid_disks - conf->max_degraded) {
284 					/* full stripe */
285 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
286 						atomic_inc(&conf->r5c_cached_full_stripes);
287 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
288 						atomic_dec(&conf->r5c_cached_partial_stripes);
289 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
290 					r5c_check_cached_full_stripe(conf);
291 				} else
292 					/*
293 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
294 					 * r5c_try_caching_write(). No need to
295 					 * set it again.
296 					 */
297 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
298 			}
299 		}
300 	}
301 }
302 
303 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
304 			     struct list_head *temp_inactive_list)
305 	__must_hold(&conf->device_lock)
306 {
307 	if (atomic_dec_and_test(&sh->count))
308 		do_release_stripe(conf, sh, temp_inactive_list);
309 }
310 
311 /*
312  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
313  *
314  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
315  * given time. Adding stripes only takes device lock, while deleting stripes
316  * only takes hash lock.
317  */
318 static void release_inactive_stripe_list(struct r5conf *conf,
319 					 struct list_head *temp_inactive_list,
320 					 int hash)
321 {
322 	int size;
323 	bool do_wakeup = false;
324 	unsigned long flags;
325 
326 	if (hash == NR_STRIPE_HASH_LOCKS) {
327 		size = NR_STRIPE_HASH_LOCKS;
328 		hash = NR_STRIPE_HASH_LOCKS - 1;
329 	} else
330 		size = 1;
331 	while (size) {
332 		struct list_head *list = &temp_inactive_list[size - 1];
333 
334 		/*
335 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
336 		 * remove stripes from the list
337 		 */
338 		if (!list_empty_careful(list)) {
339 			spin_lock_irqsave(conf->hash_locks + hash, flags);
340 			if (list_empty(conf->inactive_list + hash) &&
341 			    !list_empty(list))
342 				atomic_dec(&conf->empty_inactive_list_nr);
343 			list_splice_tail_init(list, conf->inactive_list + hash);
344 			do_wakeup = true;
345 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
346 		}
347 		size--;
348 		hash--;
349 	}
350 
351 	if (do_wakeup) {
352 		wake_up(&conf->wait_for_stripe);
353 		if (atomic_read(&conf->active_stripes) == 0)
354 			wake_up(&conf->wait_for_quiescent);
355 		if (conf->retry_read_aligned)
356 			md_wakeup_thread(conf->mddev->thread);
357 	}
358 }
359 
360 static int release_stripe_list(struct r5conf *conf,
361 			       struct list_head *temp_inactive_list)
362 	__must_hold(&conf->device_lock)
363 {
364 	struct stripe_head *sh, *t;
365 	int count = 0;
366 	struct llist_node *head;
367 
368 	head = llist_del_all(&conf->released_stripes);
369 	head = llist_reverse_order(head);
370 	llist_for_each_entry_safe(sh, t, head, release_list) {
371 		int hash;
372 
373 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
374 		smp_mb();
375 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
376 		/*
377 		 * Don't worry the bit is set here, because if the bit is set
378 		 * again, the count is always > 1. This is true for
379 		 * STRIPE_ON_UNPLUG_LIST bit too.
380 		 */
381 		hash = sh->hash_lock_index;
382 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
383 		count++;
384 	}
385 
386 	return count;
387 }
388 
389 void raid5_release_stripe(struct stripe_head *sh)
390 {
391 	struct r5conf *conf = sh->raid_conf;
392 	unsigned long flags;
393 	struct list_head list;
394 	int hash;
395 	bool wakeup;
396 
397 	/* Avoid release_list until the last reference.
398 	 */
399 	if (atomic_add_unless(&sh->count, -1, 1))
400 		return;
401 
402 	if (unlikely(!conf->mddev->thread) ||
403 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
404 		goto slow_path;
405 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
406 	if (wakeup)
407 		md_wakeup_thread(conf->mddev->thread);
408 	return;
409 slow_path:
410 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
411 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
412 		INIT_LIST_HEAD(&list);
413 		hash = sh->hash_lock_index;
414 		do_release_stripe(conf, sh, &list);
415 		spin_unlock_irqrestore(&conf->device_lock, flags);
416 		release_inactive_stripe_list(conf, &list, hash);
417 	}
418 }
419 
420 static inline void remove_hash(struct stripe_head *sh)
421 {
422 	pr_debug("remove_hash(), stripe %llu\n",
423 		(unsigned long long)sh->sector);
424 
425 	hlist_del_init(&sh->hash);
426 }
427 
428 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
429 {
430 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
431 
432 	pr_debug("insert_hash(), stripe %llu\n",
433 		(unsigned long long)sh->sector);
434 
435 	hlist_add_head(&sh->hash, hp);
436 }
437 
438 /* find an idle stripe, make sure it is unhashed, and return it. */
439 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
440 {
441 	struct stripe_head *sh = NULL;
442 	struct list_head *first;
443 
444 	if (list_empty(conf->inactive_list + hash))
445 		goto out;
446 	first = (conf->inactive_list + hash)->next;
447 	sh = list_entry(first, struct stripe_head, lru);
448 	list_del_init(first);
449 	remove_hash(sh);
450 	atomic_inc(&conf->active_stripes);
451 	BUG_ON(hash != sh->hash_lock_index);
452 	if (list_empty(conf->inactive_list + hash))
453 		atomic_inc(&conf->empty_inactive_list_nr);
454 out:
455 	return sh;
456 }
457 
458 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
459 static void free_stripe_pages(struct stripe_head *sh)
460 {
461 	int i;
462 	struct page *p;
463 
464 	/* Have not allocate page pool */
465 	if (!sh->pages)
466 		return;
467 
468 	for (i = 0; i < sh->nr_pages; i++) {
469 		p = sh->pages[i];
470 		if (p)
471 			put_page(p);
472 		sh->pages[i] = NULL;
473 	}
474 }
475 
476 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
477 {
478 	int i;
479 	struct page *p;
480 
481 	for (i = 0; i < sh->nr_pages; i++) {
482 		/* The page have allocated. */
483 		if (sh->pages[i])
484 			continue;
485 
486 		p = alloc_page(gfp);
487 		if (!p) {
488 			free_stripe_pages(sh);
489 			return -ENOMEM;
490 		}
491 		sh->pages[i] = p;
492 	}
493 	return 0;
494 }
495 
496 static int
497 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
498 {
499 	int nr_pages, cnt;
500 
501 	if (sh->pages)
502 		return 0;
503 
504 	/* Each of the sh->dev[i] need one conf->stripe_size */
505 	cnt = PAGE_SIZE / conf->stripe_size;
506 	nr_pages = (disks + cnt - 1) / cnt;
507 
508 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
509 	if (!sh->pages)
510 		return -ENOMEM;
511 	sh->nr_pages = nr_pages;
512 	sh->stripes_per_page = cnt;
513 	return 0;
514 }
515 #endif
516 
517 static void shrink_buffers(struct stripe_head *sh)
518 {
519 	int i;
520 	int num = sh->raid_conf->pool_size;
521 
522 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
523 	for (i = 0; i < num ; i++) {
524 		struct page *p;
525 
526 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
527 		p = sh->dev[i].page;
528 		if (!p)
529 			continue;
530 		sh->dev[i].page = NULL;
531 		put_page(p);
532 	}
533 #else
534 	for (i = 0; i < num; i++)
535 		sh->dev[i].page = NULL;
536 	free_stripe_pages(sh); /* Free pages */
537 #endif
538 }
539 
540 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
541 {
542 	int i;
543 	int num = sh->raid_conf->pool_size;
544 
545 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
546 	for (i = 0; i < num; i++) {
547 		struct page *page;
548 
549 		if (!(page = alloc_page(gfp))) {
550 			return 1;
551 		}
552 		sh->dev[i].page = page;
553 		sh->dev[i].orig_page = page;
554 		sh->dev[i].offset = 0;
555 	}
556 #else
557 	if (alloc_stripe_pages(sh, gfp))
558 		return -ENOMEM;
559 
560 	for (i = 0; i < num; i++) {
561 		sh->dev[i].page = raid5_get_dev_page(sh, i);
562 		sh->dev[i].orig_page = sh->dev[i].page;
563 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
564 	}
565 #endif
566 	return 0;
567 }
568 
569 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
570 			    struct stripe_head *sh);
571 
572 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
573 {
574 	struct r5conf *conf = sh->raid_conf;
575 	int i, seq;
576 
577 	BUG_ON(atomic_read(&sh->count) != 0);
578 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
579 	BUG_ON(stripe_operations_active(sh));
580 	BUG_ON(sh->batch_head);
581 
582 	pr_debug("init_stripe called, stripe %llu\n",
583 		(unsigned long long)sector);
584 retry:
585 	seq = read_seqcount_begin(&conf->gen_lock);
586 	sh->generation = conf->generation - previous;
587 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
588 	sh->sector = sector;
589 	stripe_set_idx(sector, conf, previous, sh);
590 	sh->state = 0;
591 
592 	for (i = sh->disks; i--; ) {
593 		struct r5dev *dev = &sh->dev[i];
594 
595 		if (dev->toread || dev->read || dev->towrite || dev->written ||
596 		    test_bit(R5_LOCKED, &dev->flags)) {
597 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
598 			       (unsigned long long)sh->sector, i, dev->toread,
599 			       dev->read, dev->towrite, dev->written,
600 			       test_bit(R5_LOCKED, &dev->flags));
601 			WARN_ON(1);
602 		}
603 		dev->flags = 0;
604 		dev->sector = raid5_compute_blocknr(sh, i, previous);
605 	}
606 	if (read_seqcount_retry(&conf->gen_lock, seq))
607 		goto retry;
608 	sh->overwrite_disks = 0;
609 	insert_hash(conf, sh);
610 	sh->cpu = smp_processor_id();
611 	set_bit(STRIPE_BATCH_READY, &sh->state);
612 }
613 
614 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
615 					 short generation)
616 {
617 	struct stripe_head *sh;
618 
619 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
620 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
621 		if (sh->sector == sector && sh->generation == generation)
622 			return sh;
623 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
624 	return NULL;
625 }
626 
627 /*
628  * Need to check if array has failed when deciding whether to:
629  *  - start an array
630  *  - remove non-faulty devices
631  *  - add a spare
632  *  - allow a reshape
633  * This determination is simple when no reshape is happening.
634  * However if there is a reshape, we need to carefully check
635  * both the before and after sections.
636  * This is because some failed devices may only affect one
637  * of the two sections, and some non-in_sync devices may
638  * be insync in the section most affected by failed devices.
639  *
640  * Most calls to this function hold &conf->device_lock. Calls
641  * in raid5_run() do not require the lock as no other threads
642  * have been started yet.
643  */
644 int raid5_calc_degraded(struct r5conf *conf)
645 {
646 	int degraded, degraded2;
647 	int i;
648 
649 	rcu_read_lock();
650 	degraded = 0;
651 	for (i = 0; i < conf->previous_raid_disks; i++) {
652 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
653 		if (rdev && test_bit(Faulty, &rdev->flags))
654 			rdev = rcu_dereference(conf->disks[i].replacement);
655 		if (!rdev || test_bit(Faulty, &rdev->flags))
656 			degraded++;
657 		else if (test_bit(In_sync, &rdev->flags))
658 			;
659 		else
660 			/* not in-sync or faulty.
661 			 * If the reshape increases the number of devices,
662 			 * this is being recovered by the reshape, so
663 			 * this 'previous' section is not in_sync.
664 			 * If the number of devices is being reduced however,
665 			 * the device can only be part of the array if
666 			 * we are reverting a reshape, so this section will
667 			 * be in-sync.
668 			 */
669 			if (conf->raid_disks >= conf->previous_raid_disks)
670 				degraded++;
671 	}
672 	rcu_read_unlock();
673 	if (conf->raid_disks == conf->previous_raid_disks)
674 		return degraded;
675 	rcu_read_lock();
676 	degraded2 = 0;
677 	for (i = 0; i < conf->raid_disks; i++) {
678 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
679 		if (rdev && test_bit(Faulty, &rdev->flags))
680 			rdev = rcu_dereference(conf->disks[i].replacement);
681 		if (!rdev || test_bit(Faulty, &rdev->flags))
682 			degraded2++;
683 		else if (test_bit(In_sync, &rdev->flags))
684 			;
685 		else
686 			/* not in-sync or faulty.
687 			 * If reshape increases the number of devices, this
688 			 * section has already been recovered, else it
689 			 * almost certainly hasn't.
690 			 */
691 			if (conf->raid_disks <= conf->previous_raid_disks)
692 				degraded2++;
693 	}
694 	rcu_read_unlock();
695 	if (degraded2 > degraded)
696 		return degraded2;
697 	return degraded;
698 }
699 
700 static bool has_failed(struct r5conf *conf)
701 {
702 	int degraded = conf->mddev->degraded;
703 
704 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
705 		return true;
706 
707 	if (conf->mddev->reshape_position != MaxSector)
708 		degraded = raid5_calc_degraded(conf);
709 
710 	return degraded > conf->max_degraded;
711 }
712 
713 struct stripe_head *
714 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
715 			int previous, int noblock, int noquiesce)
716 {
717 	struct stripe_head *sh;
718 	int hash = stripe_hash_locks_hash(conf, sector);
719 	int inc_empty_inactive_list_flag;
720 
721 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
722 
723 	spin_lock_irq(conf->hash_locks + hash);
724 
725 	do {
726 		wait_event_lock_irq(conf->wait_for_quiescent,
727 				    conf->quiesce == 0 || noquiesce,
728 				    *(conf->hash_locks + hash));
729 		sh = __find_stripe(conf, sector, conf->generation - previous);
730 		if (!sh) {
731 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
732 				sh = get_free_stripe(conf, hash);
733 				if (!sh && !test_bit(R5_DID_ALLOC,
734 						     &conf->cache_state))
735 					set_bit(R5_ALLOC_MORE,
736 						&conf->cache_state);
737 			}
738 			if (noblock && sh == NULL)
739 				break;
740 
741 			r5c_check_stripe_cache_usage(conf);
742 			if (!sh) {
743 				set_bit(R5_INACTIVE_BLOCKED,
744 					&conf->cache_state);
745 				r5l_wake_reclaim(conf->log, 0);
746 				wait_event_lock_irq(
747 					conf->wait_for_stripe,
748 					!list_empty(conf->inactive_list + hash) &&
749 					(atomic_read(&conf->active_stripes)
750 					 < (conf->max_nr_stripes * 3 / 4)
751 					 || !test_bit(R5_INACTIVE_BLOCKED,
752 						      &conf->cache_state)),
753 					*(conf->hash_locks + hash));
754 				clear_bit(R5_INACTIVE_BLOCKED,
755 					  &conf->cache_state);
756 			} else {
757 				init_stripe(sh, sector, previous);
758 				atomic_inc(&sh->count);
759 			}
760 		} else if (!atomic_inc_not_zero(&sh->count)) {
761 			spin_lock(&conf->device_lock);
762 			if (!atomic_read(&sh->count)) {
763 				if (!test_bit(STRIPE_HANDLE, &sh->state))
764 					atomic_inc(&conf->active_stripes);
765 				BUG_ON(list_empty(&sh->lru) &&
766 				       !test_bit(STRIPE_EXPANDING, &sh->state));
767 				inc_empty_inactive_list_flag = 0;
768 				if (!list_empty(conf->inactive_list + hash))
769 					inc_empty_inactive_list_flag = 1;
770 				list_del_init(&sh->lru);
771 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
772 					atomic_inc(&conf->empty_inactive_list_nr);
773 				if (sh->group) {
774 					sh->group->stripes_cnt--;
775 					sh->group = NULL;
776 				}
777 			}
778 			atomic_inc(&sh->count);
779 			spin_unlock(&conf->device_lock);
780 		}
781 	} while (sh == NULL);
782 
783 	spin_unlock_irq(conf->hash_locks + hash);
784 	return sh;
785 }
786 
787 static bool is_full_stripe_write(struct stripe_head *sh)
788 {
789 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
790 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
791 }
792 
793 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
794 		__acquires(&sh1->stripe_lock)
795 		__acquires(&sh2->stripe_lock)
796 {
797 	if (sh1 > sh2) {
798 		spin_lock_irq(&sh2->stripe_lock);
799 		spin_lock_nested(&sh1->stripe_lock, 1);
800 	} else {
801 		spin_lock_irq(&sh1->stripe_lock);
802 		spin_lock_nested(&sh2->stripe_lock, 1);
803 	}
804 }
805 
806 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
807 		__releases(&sh1->stripe_lock)
808 		__releases(&sh2->stripe_lock)
809 {
810 	spin_unlock(&sh1->stripe_lock);
811 	spin_unlock_irq(&sh2->stripe_lock);
812 }
813 
814 /* Only freshly new full stripe normal write stripe can be added to a batch list */
815 static bool stripe_can_batch(struct stripe_head *sh)
816 {
817 	struct r5conf *conf = sh->raid_conf;
818 
819 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
820 		return false;
821 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
822 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
823 		is_full_stripe_write(sh);
824 }
825 
826 /* we only do back search */
827 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
828 {
829 	struct stripe_head *head;
830 	sector_t head_sector, tmp_sec;
831 	int hash;
832 	int dd_idx;
833 	int inc_empty_inactive_list_flag;
834 
835 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
836 	tmp_sec = sh->sector;
837 	if (!sector_div(tmp_sec, conf->chunk_sectors))
838 		return;
839 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
840 
841 	hash = stripe_hash_locks_hash(conf, head_sector);
842 	spin_lock_irq(conf->hash_locks + hash);
843 	head = __find_stripe(conf, head_sector, conf->generation);
844 	if (head && !atomic_inc_not_zero(&head->count)) {
845 		spin_lock(&conf->device_lock);
846 		if (!atomic_read(&head->count)) {
847 			if (!test_bit(STRIPE_HANDLE, &head->state))
848 				atomic_inc(&conf->active_stripes);
849 			BUG_ON(list_empty(&head->lru) &&
850 			       !test_bit(STRIPE_EXPANDING, &head->state));
851 			inc_empty_inactive_list_flag = 0;
852 			if (!list_empty(conf->inactive_list + hash))
853 				inc_empty_inactive_list_flag = 1;
854 			list_del_init(&head->lru);
855 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
856 				atomic_inc(&conf->empty_inactive_list_nr);
857 			if (head->group) {
858 				head->group->stripes_cnt--;
859 				head->group = NULL;
860 			}
861 		}
862 		atomic_inc(&head->count);
863 		spin_unlock(&conf->device_lock);
864 	}
865 	spin_unlock_irq(conf->hash_locks + hash);
866 
867 	if (!head)
868 		return;
869 	if (!stripe_can_batch(head))
870 		goto out;
871 
872 	lock_two_stripes(head, sh);
873 	/* clear_batch_ready clear the flag */
874 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
875 		goto unlock_out;
876 
877 	if (sh->batch_head)
878 		goto unlock_out;
879 
880 	dd_idx = 0;
881 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
882 		dd_idx++;
883 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
884 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
885 		goto unlock_out;
886 
887 	if (head->batch_head) {
888 		spin_lock(&head->batch_head->batch_lock);
889 		/* This batch list is already running */
890 		if (!stripe_can_batch(head)) {
891 			spin_unlock(&head->batch_head->batch_lock);
892 			goto unlock_out;
893 		}
894 		/*
895 		 * We must assign batch_head of this stripe within the
896 		 * batch_lock, otherwise clear_batch_ready of batch head
897 		 * stripe could clear BATCH_READY bit of this stripe and
898 		 * this stripe->batch_head doesn't get assigned, which
899 		 * could confuse clear_batch_ready for this stripe
900 		 */
901 		sh->batch_head = head->batch_head;
902 
903 		/*
904 		 * at this point, head's BATCH_READY could be cleared, but we
905 		 * can still add the stripe to batch list
906 		 */
907 		list_add(&sh->batch_list, &head->batch_list);
908 		spin_unlock(&head->batch_head->batch_lock);
909 	} else {
910 		head->batch_head = head;
911 		sh->batch_head = head->batch_head;
912 		spin_lock(&head->batch_lock);
913 		list_add_tail(&sh->batch_list, &head->batch_list);
914 		spin_unlock(&head->batch_lock);
915 	}
916 
917 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
918 		if (atomic_dec_return(&conf->preread_active_stripes)
919 		    < IO_THRESHOLD)
920 			md_wakeup_thread(conf->mddev->thread);
921 
922 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
923 		int seq = sh->bm_seq;
924 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
925 		    sh->batch_head->bm_seq > seq)
926 			seq = sh->batch_head->bm_seq;
927 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
928 		sh->batch_head->bm_seq = seq;
929 	}
930 
931 	atomic_inc(&sh->count);
932 unlock_out:
933 	unlock_two_stripes(head, sh);
934 out:
935 	raid5_release_stripe(head);
936 }
937 
938 /* Determine if 'data_offset' or 'new_data_offset' should be used
939  * in this stripe_head.
940  */
941 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
942 {
943 	sector_t progress = conf->reshape_progress;
944 	/* Need a memory barrier to make sure we see the value
945 	 * of conf->generation, or ->data_offset that was set before
946 	 * reshape_progress was updated.
947 	 */
948 	smp_rmb();
949 	if (progress == MaxSector)
950 		return 0;
951 	if (sh->generation == conf->generation - 1)
952 		return 0;
953 	/* We are in a reshape, and this is a new-generation stripe,
954 	 * so use new_data_offset.
955 	 */
956 	return 1;
957 }
958 
959 static void dispatch_bio_list(struct bio_list *tmp)
960 {
961 	struct bio *bio;
962 
963 	while ((bio = bio_list_pop(tmp)))
964 		submit_bio_noacct(bio);
965 }
966 
967 static int cmp_stripe(void *priv, const struct list_head *a,
968 		      const struct list_head *b)
969 {
970 	const struct r5pending_data *da = list_entry(a,
971 				struct r5pending_data, sibling);
972 	const struct r5pending_data *db = list_entry(b,
973 				struct r5pending_data, sibling);
974 	if (da->sector > db->sector)
975 		return 1;
976 	if (da->sector < db->sector)
977 		return -1;
978 	return 0;
979 }
980 
981 static void dispatch_defer_bios(struct r5conf *conf, int target,
982 				struct bio_list *list)
983 {
984 	struct r5pending_data *data;
985 	struct list_head *first, *next = NULL;
986 	int cnt = 0;
987 
988 	if (conf->pending_data_cnt == 0)
989 		return;
990 
991 	list_sort(NULL, &conf->pending_list, cmp_stripe);
992 
993 	first = conf->pending_list.next;
994 
995 	/* temporarily move the head */
996 	if (conf->next_pending_data)
997 		list_move_tail(&conf->pending_list,
998 				&conf->next_pending_data->sibling);
999 
1000 	while (!list_empty(&conf->pending_list)) {
1001 		data = list_first_entry(&conf->pending_list,
1002 			struct r5pending_data, sibling);
1003 		if (&data->sibling == first)
1004 			first = data->sibling.next;
1005 		next = data->sibling.next;
1006 
1007 		bio_list_merge(list, &data->bios);
1008 		list_move(&data->sibling, &conf->free_list);
1009 		cnt++;
1010 		if (cnt >= target)
1011 			break;
1012 	}
1013 	conf->pending_data_cnt -= cnt;
1014 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1015 
1016 	if (next != &conf->pending_list)
1017 		conf->next_pending_data = list_entry(next,
1018 				struct r5pending_data, sibling);
1019 	else
1020 		conf->next_pending_data = NULL;
1021 	/* list isn't empty */
1022 	if (first != &conf->pending_list)
1023 		list_move_tail(&conf->pending_list, first);
1024 }
1025 
1026 static void flush_deferred_bios(struct r5conf *conf)
1027 {
1028 	struct bio_list tmp = BIO_EMPTY_LIST;
1029 
1030 	if (conf->pending_data_cnt == 0)
1031 		return;
1032 
1033 	spin_lock(&conf->pending_bios_lock);
1034 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1035 	BUG_ON(conf->pending_data_cnt != 0);
1036 	spin_unlock(&conf->pending_bios_lock);
1037 
1038 	dispatch_bio_list(&tmp);
1039 }
1040 
1041 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1042 				struct bio_list *bios)
1043 {
1044 	struct bio_list tmp = BIO_EMPTY_LIST;
1045 	struct r5pending_data *ent;
1046 
1047 	spin_lock(&conf->pending_bios_lock);
1048 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1049 							sibling);
1050 	list_move_tail(&ent->sibling, &conf->pending_list);
1051 	ent->sector = sector;
1052 	bio_list_init(&ent->bios);
1053 	bio_list_merge(&ent->bios, bios);
1054 	conf->pending_data_cnt++;
1055 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1056 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1057 
1058 	spin_unlock(&conf->pending_bios_lock);
1059 
1060 	dispatch_bio_list(&tmp);
1061 }
1062 
1063 static void
1064 raid5_end_read_request(struct bio *bi);
1065 static void
1066 raid5_end_write_request(struct bio *bi);
1067 
1068 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1069 {
1070 	struct r5conf *conf = sh->raid_conf;
1071 	int i, disks = sh->disks;
1072 	struct stripe_head *head_sh = sh;
1073 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1074 	struct r5dev *dev;
1075 	bool should_defer;
1076 
1077 	might_sleep();
1078 
1079 	if (log_stripe(sh, s) == 0)
1080 		return;
1081 
1082 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1083 
1084 	for (i = disks; i--; ) {
1085 		enum req_op op;
1086 		blk_opf_t op_flags = 0;
1087 		int replace_only = 0;
1088 		struct bio *bi, *rbi;
1089 		struct md_rdev *rdev, *rrdev = NULL;
1090 
1091 		sh = head_sh;
1092 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1093 			op = REQ_OP_WRITE;
1094 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1095 				op_flags = REQ_FUA;
1096 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1097 				op = REQ_OP_DISCARD;
1098 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1099 			op = REQ_OP_READ;
1100 		else if (test_and_clear_bit(R5_WantReplace,
1101 					    &sh->dev[i].flags)) {
1102 			op = REQ_OP_WRITE;
1103 			replace_only = 1;
1104 		} else
1105 			continue;
1106 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1107 			op_flags |= REQ_SYNC;
1108 
1109 again:
1110 		dev = &sh->dev[i];
1111 		bi = &dev->req;
1112 		rbi = &dev->rreq; /* For writing to replacement */
1113 
1114 		rcu_read_lock();
1115 		rrdev = rcu_dereference(conf->disks[i].replacement);
1116 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1117 		rdev = rcu_dereference(conf->disks[i].rdev);
1118 		if (!rdev) {
1119 			rdev = rrdev;
1120 			rrdev = NULL;
1121 		}
1122 		if (op_is_write(op)) {
1123 			if (replace_only)
1124 				rdev = NULL;
1125 			if (rdev == rrdev)
1126 				/* We raced and saw duplicates */
1127 				rrdev = NULL;
1128 		} else {
1129 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1130 				rdev = rrdev;
1131 			rrdev = NULL;
1132 		}
1133 
1134 		if (rdev && test_bit(Faulty, &rdev->flags))
1135 			rdev = NULL;
1136 		if (rdev)
1137 			atomic_inc(&rdev->nr_pending);
1138 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1139 			rrdev = NULL;
1140 		if (rrdev)
1141 			atomic_inc(&rrdev->nr_pending);
1142 		rcu_read_unlock();
1143 
1144 		/* We have already checked bad blocks for reads.  Now
1145 		 * need to check for writes.  We never accept write errors
1146 		 * on the replacement, so we don't to check rrdev.
1147 		 */
1148 		while (op_is_write(op) && rdev &&
1149 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1150 			sector_t first_bad;
1151 			int bad_sectors;
1152 			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1153 					      &first_bad, &bad_sectors);
1154 			if (!bad)
1155 				break;
1156 
1157 			if (bad < 0) {
1158 				set_bit(BlockedBadBlocks, &rdev->flags);
1159 				if (!conf->mddev->external &&
1160 				    conf->mddev->sb_flags) {
1161 					/* It is very unlikely, but we might
1162 					 * still need to write out the
1163 					 * bad block log - better give it
1164 					 * a chance*/
1165 					md_check_recovery(conf->mddev);
1166 				}
1167 				/*
1168 				 * Because md_wait_for_blocked_rdev
1169 				 * will dec nr_pending, we must
1170 				 * increment it first.
1171 				 */
1172 				atomic_inc(&rdev->nr_pending);
1173 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1174 			} else {
1175 				/* Acknowledged bad block - skip the write */
1176 				rdev_dec_pending(rdev, conf->mddev);
1177 				rdev = NULL;
1178 			}
1179 		}
1180 
1181 		if (rdev) {
1182 			if (s->syncing || s->expanding || s->expanded
1183 			    || s->replacing)
1184 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1185 
1186 			set_bit(STRIPE_IO_STARTED, &sh->state);
1187 
1188 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1189 			bi->bi_end_io = op_is_write(op)
1190 				? raid5_end_write_request
1191 				: raid5_end_read_request;
1192 			bi->bi_private = sh;
1193 
1194 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1195 				__func__, (unsigned long long)sh->sector,
1196 				bi->bi_opf, i);
1197 			atomic_inc(&sh->count);
1198 			if (sh != head_sh)
1199 				atomic_inc(&head_sh->count);
1200 			if (use_new_offset(conf, sh))
1201 				bi->bi_iter.bi_sector = (sh->sector
1202 						 + rdev->new_data_offset);
1203 			else
1204 				bi->bi_iter.bi_sector = (sh->sector
1205 						 + rdev->data_offset);
1206 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1207 				bi->bi_opf |= REQ_NOMERGE;
1208 
1209 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1210 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1211 
1212 			if (!op_is_write(op) &&
1213 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1214 				/*
1215 				 * issuing read for a page in journal, this
1216 				 * must be preparing for prexor in rmw; read
1217 				 * the data into orig_page
1218 				 */
1219 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1220 			else
1221 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1222 			bi->bi_vcnt = 1;
1223 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1224 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1225 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1226 			/*
1227 			 * If this is discard request, set bi_vcnt 0. We don't
1228 			 * want to confuse SCSI because SCSI will replace payload
1229 			 */
1230 			if (op == REQ_OP_DISCARD)
1231 				bi->bi_vcnt = 0;
1232 			if (rrdev)
1233 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1234 
1235 			if (conf->mddev->gendisk)
1236 				trace_block_bio_remap(bi,
1237 						disk_devt(conf->mddev->gendisk),
1238 						sh->dev[i].sector);
1239 			if (should_defer && op_is_write(op))
1240 				bio_list_add(&pending_bios, bi);
1241 			else
1242 				submit_bio_noacct(bi);
1243 		}
1244 		if (rrdev) {
1245 			if (s->syncing || s->expanding || s->expanded
1246 			    || s->replacing)
1247 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1248 
1249 			set_bit(STRIPE_IO_STARTED, &sh->state);
1250 
1251 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1252 			BUG_ON(!op_is_write(op));
1253 			rbi->bi_end_io = raid5_end_write_request;
1254 			rbi->bi_private = sh;
1255 
1256 			pr_debug("%s: for %llu schedule op %d on "
1257 				 "replacement disc %d\n",
1258 				__func__, (unsigned long long)sh->sector,
1259 				rbi->bi_opf, i);
1260 			atomic_inc(&sh->count);
1261 			if (sh != head_sh)
1262 				atomic_inc(&head_sh->count);
1263 			if (use_new_offset(conf, sh))
1264 				rbi->bi_iter.bi_sector = (sh->sector
1265 						  + rrdev->new_data_offset);
1266 			else
1267 				rbi->bi_iter.bi_sector = (sh->sector
1268 						  + rrdev->data_offset);
1269 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1270 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1271 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1272 			rbi->bi_vcnt = 1;
1273 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1274 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1275 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1276 			/*
1277 			 * If this is discard request, set bi_vcnt 0. We don't
1278 			 * want to confuse SCSI because SCSI will replace payload
1279 			 */
1280 			if (op == REQ_OP_DISCARD)
1281 				rbi->bi_vcnt = 0;
1282 			if (conf->mddev->gendisk)
1283 				trace_block_bio_remap(rbi,
1284 						disk_devt(conf->mddev->gendisk),
1285 						sh->dev[i].sector);
1286 			if (should_defer && op_is_write(op))
1287 				bio_list_add(&pending_bios, rbi);
1288 			else
1289 				submit_bio_noacct(rbi);
1290 		}
1291 		if (!rdev && !rrdev) {
1292 			if (op_is_write(op))
1293 				set_bit(STRIPE_DEGRADED, &sh->state);
1294 			pr_debug("skip op %d on disc %d for sector %llu\n",
1295 				bi->bi_opf, i, (unsigned long long)sh->sector);
1296 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1297 			set_bit(STRIPE_HANDLE, &sh->state);
1298 		}
1299 
1300 		if (!head_sh->batch_head)
1301 			continue;
1302 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1303 				      batch_list);
1304 		if (sh != head_sh)
1305 			goto again;
1306 	}
1307 
1308 	if (should_defer && !bio_list_empty(&pending_bios))
1309 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1310 }
1311 
1312 static struct dma_async_tx_descriptor *
1313 async_copy_data(int frombio, struct bio *bio, struct page **page,
1314 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1315 	struct stripe_head *sh, int no_skipcopy)
1316 {
1317 	struct bio_vec bvl;
1318 	struct bvec_iter iter;
1319 	struct page *bio_page;
1320 	int page_offset;
1321 	struct async_submit_ctl submit;
1322 	enum async_tx_flags flags = 0;
1323 	struct r5conf *conf = sh->raid_conf;
1324 
1325 	if (bio->bi_iter.bi_sector >= sector)
1326 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1327 	else
1328 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1329 
1330 	if (frombio)
1331 		flags |= ASYNC_TX_FENCE;
1332 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1333 
1334 	bio_for_each_segment(bvl, bio, iter) {
1335 		int len = bvl.bv_len;
1336 		int clen;
1337 		int b_offset = 0;
1338 
1339 		if (page_offset < 0) {
1340 			b_offset = -page_offset;
1341 			page_offset += b_offset;
1342 			len -= b_offset;
1343 		}
1344 
1345 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1346 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1347 		else
1348 			clen = len;
1349 
1350 		if (clen > 0) {
1351 			b_offset += bvl.bv_offset;
1352 			bio_page = bvl.bv_page;
1353 			if (frombio) {
1354 				if (conf->skip_copy &&
1355 				    b_offset == 0 && page_offset == 0 &&
1356 				    clen == RAID5_STRIPE_SIZE(conf) &&
1357 				    !no_skipcopy)
1358 					*page = bio_page;
1359 				else
1360 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1361 						  b_offset, clen, &submit);
1362 			} else
1363 				tx = async_memcpy(bio_page, *page, b_offset,
1364 						  page_offset + poff, clen, &submit);
1365 		}
1366 		/* chain the operations */
1367 		submit.depend_tx = tx;
1368 
1369 		if (clen < len) /* hit end of page */
1370 			break;
1371 		page_offset +=  len;
1372 	}
1373 
1374 	return tx;
1375 }
1376 
1377 static void ops_complete_biofill(void *stripe_head_ref)
1378 {
1379 	struct stripe_head *sh = stripe_head_ref;
1380 	int i;
1381 	struct r5conf *conf = sh->raid_conf;
1382 
1383 	pr_debug("%s: stripe %llu\n", __func__,
1384 		(unsigned long long)sh->sector);
1385 
1386 	/* clear completed biofills */
1387 	for (i = sh->disks; i--; ) {
1388 		struct r5dev *dev = &sh->dev[i];
1389 
1390 		/* acknowledge completion of a biofill operation */
1391 		/* and check if we need to reply to a read request,
1392 		 * new R5_Wantfill requests are held off until
1393 		 * !STRIPE_BIOFILL_RUN
1394 		 */
1395 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1396 			struct bio *rbi, *rbi2;
1397 
1398 			BUG_ON(!dev->read);
1399 			rbi = dev->read;
1400 			dev->read = NULL;
1401 			while (rbi && rbi->bi_iter.bi_sector <
1402 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1403 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1404 				bio_endio(rbi);
1405 				rbi = rbi2;
1406 			}
1407 		}
1408 	}
1409 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1410 
1411 	set_bit(STRIPE_HANDLE, &sh->state);
1412 	raid5_release_stripe(sh);
1413 }
1414 
1415 static void ops_run_biofill(struct stripe_head *sh)
1416 {
1417 	struct dma_async_tx_descriptor *tx = NULL;
1418 	struct async_submit_ctl submit;
1419 	int i;
1420 	struct r5conf *conf = sh->raid_conf;
1421 
1422 	BUG_ON(sh->batch_head);
1423 	pr_debug("%s: stripe %llu\n", __func__,
1424 		(unsigned long long)sh->sector);
1425 
1426 	for (i = sh->disks; i--; ) {
1427 		struct r5dev *dev = &sh->dev[i];
1428 		if (test_bit(R5_Wantfill, &dev->flags)) {
1429 			struct bio *rbi;
1430 			spin_lock_irq(&sh->stripe_lock);
1431 			dev->read = rbi = dev->toread;
1432 			dev->toread = NULL;
1433 			spin_unlock_irq(&sh->stripe_lock);
1434 			while (rbi && rbi->bi_iter.bi_sector <
1435 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1436 				tx = async_copy_data(0, rbi, &dev->page,
1437 						     dev->offset,
1438 						     dev->sector, tx, sh, 0);
1439 				rbi = r5_next_bio(conf, rbi, dev->sector);
1440 			}
1441 		}
1442 	}
1443 
1444 	atomic_inc(&sh->count);
1445 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1446 	async_trigger_callback(&submit);
1447 }
1448 
1449 static void mark_target_uptodate(struct stripe_head *sh, int target)
1450 {
1451 	struct r5dev *tgt;
1452 
1453 	if (target < 0)
1454 		return;
1455 
1456 	tgt = &sh->dev[target];
1457 	set_bit(R5_UPTODATE, &tgt->flags);
1458 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1459 	clear_bit(R5_Wantcompute, &tgt->flags);
1460 }
1461 
1462 static void ops_complete_compute(void *stripe_head_ref)
1463 {
1464 	struct stripe_head *sh = stripe_head_ref;
1465 
1466 	pr_debug("%s: stripe %llu\n", __func__,
1467 		(unsigned long long)sh->sector);
1468 
1469 	/* mark the computed target(s) as uptodate */
1470 	mark_target_uptodate(sh, sh->ops.target);
1471 	mark_target_uptodate(sh, sh->ops.target2);
1472 
1473 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1474 	if (sh->check_state == check_state_compute_run)
1475 		sh->check_state = check_state_compute_result;
1476 	set_bit(STRIPE_HANDLE, &sh->state);
1477 	raid5_release_stripe(sh);
1478 }
1479 
1480 /* return a pointer to the address conversion region of the scribble buffer */
1481 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1482 {
1483 	return percpu->scribble + i * percpu->scribble_obj_size;
1484 }
1485 
1486 /* return a pointer to the address conversion region of the scribble buffer */
1487 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1488 				 struct raid5_percpu *percpu, int i)
1489 {
1490 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1491 }
1492 
1493 /*
1494  * Return a pointer to record offset address.
1495  */
1496 static unsigned int *
1497 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1498 {
1499 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1500 }
1501 
1502 static struct dma_async_tx_descriptor *
1503 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1504 {
1505 	int disks = sh->disks;
1506 	struct page **xor_srcs = to_addr_page(percpu, 0);
1507 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1508 	int target = sh->ops.target;
1509 	struct r5dev *tgt = &sh->dev[target];
1510 	struct page *xor_dest = tgt->page;
1511 	unsigned int off_dest = tgt->offset;
1512 	int count = 0;
1513 	struct dma_async_tx_descriptor *tx;
1514 	struct async_submit_ctl submit;
1515 	int i;
1516 
1517 	BUG_ON(sh->batch_head);
1518 
1519 	pr_debug("%s: stripe %llu block: %d\n",
1520 		__func__, (unsigned long long)sh->sector, target);
1521 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1522 
1523 	for (i = disks; i--; ) {
1524 		if (i != target) {
1525 			off_srcs[count] = sh->dev[i].offset;
1526 			xor_srcs[count++] = sh->dev[i].page;
1527 		}
1528 	}
1529 
1530 	atomic_inc(&sh->count);
1531 
1532 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1533 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1534 	if (unlikely(count == 1))
1535 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1536 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1537 	else
1538 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1539 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1540 
1541 	return tx;
1542 }
1543 
1544 /* set_syndrome_sources - populate source buffers for gen_syndrome
1545  * @srcs - (struct page *) array of size sh->disks
1546  * @offs - (unsigned int) array of offset for each page
1547  * @sh - stripe_head to parse
1548  *
1549  * Populates srcs in proper layout order for the stripe and returns the
1550  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1551  * destination buffer is recorded in srcs[count] and the Q destination
1552  * is recorded in srcs[count+1]].
1553  */
1554 static int set_syndrome_sources(struct page **srcs,
1555 				unsigned int *offs,
1556 				struct stripe_head *sh,
1557 				int srctype)
1558 {
1559 	int disks = sh->disks;
1560 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1561 	int d0_idx = raid6_d0(sh);
1562 	int count;
1563 	int i;
1564 
1565 	for (i = 0; i < disks; i++)
1566 		srcs[i] = NULL;
1567 
1568 	count = 0;
1569 	i = d0_idx;
1570 	do {
1571 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1572 		struct r5dev *dev = &sh->dev[i];
1573 
1574 		if (i == sh->qd_idx || i == sh->pd_idx ||
1575 		    (srctype == SYNDROME_SRC_ALL) ||
1576 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1577 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1578 		      test_bit(R5_InJournal, &dev->flags))) ||
1579 		    (srctype == SYNDROME_SRC_WRITTEN &&
1580 		     (dev->written ||
1581 		      test_bit(R5_InJournal, &dev->flags)))) {
1582 			if (test_bit(R5_InJournal, &dev->flags))
1583 				srcs[slot] = sh->dev[i].orig_page;
1584 			else
1585 				srcs[slot] = sh->dev[i].page;
1586 			/*
1587 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1588 			 * not shared page. In that case, dev[i].offset
1589 			 * is 0.
1590 			 */
1591 			offs[slot] = sh->dev[i].offset;
1592 		}
1593 		i = raid6_next_disk(i, disks);
1594 	} while (i != d0_idx);
1595 
1596 	return syndrome_disks;
1597 }
1598 
1599 static struct dma_async_tx_descriptor *
1600 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1601 {
1602 	int disks = sh->disks;
1603 	struct page **blocks = to_addr_page(percpu, 0);
1604 	unsigned int *offs = to_addr_offs(sh, percpu);
1605 	int target;
1606 	int qd_idx = sh->qd_idx;
1607 	struct dma_async_tx_descriptor *tx;
1608 	struct async_submit_ctl submit;
1609 	struct r5dev *tgt;
1610 	struct page *dest;
1611 	unsigned int dest_off;
1612 	int i;
1613 	int count;
1614 
1615 	BUG_ON(sh->batch_head);
1616 	if (sh->ops.target < 0)
1617 		target = sh->ops.target2;
1618 	else if (sh->ops.target2 < 0)
1619 		target = sh->ops.target;
1620 	else
1621 		/* we should only have one valid target */
1622 		BUG();
1623 	BUG_ON(target < 0);
1624 	pr_debug("%s: stripe %llu block: %d\n",
1625 		__func__, (unsigned long long)sh->sector, target);
1626 
1627 	tgt = &sh->dev[target];
1628 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1629 	dest = tgt->page;
1630 	dest_off = tgt->offset;
1631 
1632 	atomic_inc(&sh->count);
1633 
1634 	if (target == qd_idx) {
1635 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1636 		blocks[count] = NULL; /* regenerating p is not necessary */
1637 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1638 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1639 				  ops_complete_compute, sh,
1640 				  to_addr_conv(sh, percpu, 0));
1641 		tx = async_gen_syndrome(blocks, offs, count+2,
1642 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1643 	} else {
1644 		/* Compute any data- or p-drive using XOR */
1645 		count = 0;
1646 		for (i = disks; i-- ; ) {
1647 			if (i == target || i == qd_idx)
1648 				continue;
1649 			offs[count] = sh->dev[i].offset;
1650 			blocks[count++] = sh->dev[i].page;
1651 		}
1652 
1653 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1654 				  NULL, ops_complete_compute, sh,
1655 				  to_addr_conv(sh, percpu, 0));
1656 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1657 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1658 	}
1659 
1660 	return tx;
1661 }
1662 
1663 static struct dma_async_tx_descriptor *
1664 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1665 {
1666 	int i, count, disks = sh->disks;
1667 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1668 	int d0_idx = raid6_d0(sh);
1669 	int faila = -1, failb = -1;
1670 	int target = sh->ops.target;
1671 	int target2 = sh->ops.target2;
1672 	struct r5dev *tgt = &sh->dev[target];
1673 	struct r5dev *tgt2 = &sh->dev[target2];
1674 	struct dma_async_tx_descriptor *tx;
1675 	struct page **blocks = to_addr_page(percpu, 0);
1676 	unsigned int *offs = to_addr_offs(sh, percpu);
1677 	struct async_submit_ctl submit;
1678 
1679 	BUG_ON(sh->batch_head);
1680 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1681 		 __func__, (unsigned long long)sh->sector, target, target2);
1682 	BUG_ON(target < 0 || target2 < 0);
1683 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1684 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1685 
1686 	/* we need to open-code set_syndrome_sources to handle the
1687 	 * slot number conversion for 'faila' and 'failb'
1688 	 */
1689 	for (i = 0; i < disks ; i++) {
1690 		offs[i] = 0;
1691 		blocks[i] = NULL;
1692 	}
1693 	count = 0;
1694 	i = d0_idx;
1695 	do {
1696 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1697 
1698 		offs[slot] = sh->dev[i].offset;
1699 		blocks[slot] = sh->dev[i].page;
1700 
1701 		if (i == target)
1702 			faila = slot;
1703 		if (i == target2)
1704 			failb = slot;
1705 		i = raid6_next_disk(i, disks);
1706 	} while (i != d0_idx);
1707 
1708 	BUG_ON(faila == failb);
1709 	if (failb < faila)
1710 		swap(faila, failb);
1711 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1712 		 __func__, (unsigned long long)sh->sector, faila, failb);
1713 
1714 	atomic_inc(&sh->count);
1715 
1716 	if (failb == syndrome_disks+1) {
1717 		/* Q disk is one of the missing disks */
1718 		if (faila == syndrome_disks) {
1719 			/* Missing P+Q, just recompute */
1720 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1721 					  ops_complete_compute, sh,
1722 					  to_addr_conv(sh, percpu, 0));
1723 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1724 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1725 						  &submit);
1726 		} else {
1727 			struct page *dest;
1728 			unsigned int dest_off;
1729 			int data_target;
1730 			int qd_idx = sh->qd_idx;
1731 
1732 			/* Missing D+Q: recompute D from P, then recompute Q */
1733 			if (target == qd_idx)
1734 				data_target = target2;
1735 			else
1736 				data_target = target;
1737 
1738 			count = 0;
1739 			for (i = disks; i-- ; ) {
1740 				if (i == data_target || i == qd_idx)
1741 					continue;
1742 				offs[count] = sh->dev[i].offset;
1743 				blocks[count++] = sh->dev[i].page;
1744 			}
1745 			dest = sh->dev[data_target].page;
1746 			dest_off = sh->dev[data_target].offset;
1747 			init_async_submit(&submit,
1748 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1749 					  NULL, NULL, NULL,
1750 					  to_addr_conv(sh, percpu, 0));
1751 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1752 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1753 				       &submit);
1754 
1755 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1756 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1757 					  ops_complete_compute, sh,
1758 					  to_addr_conv(sh, percpu, 0));
1759 			return async_gen_syndrome(blocks, offs, count+2,
1760 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1761 						  &submit);
1762 		}
1763 	} else {
1764 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1765 				  ops_complete_compute, sh,
1766 				  to_addr_conv(sh, percpu, 0));
1767 		if (failb == syndrome_disks) {
1768 			/* We're missing D+P. */
1769 			return async_raid6_datap_recov(syndrome_disks+2,
1770 						RAID5_STRIPE_SIZE(sh->raid_conf),
1771 						faila,
1772 						blocks, offs, &submit);
1773 		} else {
1774 			/* We're missing D+D. */
1775 			return async_raid6_2data_recov(syndrome_disks+2,
1776 						RAID5_STRIPE_SIZE(sh->raid_conf),
1777 						faila, failb,
1778 						blocks, offs, &submit);
1779 		}
1780 	}
1781 }
1782 
1783 static void ops_complete_prexor(void *stripe_head_ref)
1784 {
1785 	struct stripe_head *sh = stripe_head_ref;
1786 
1787 	pr_debug("%s: stripe %llu\n", __func__,
1788 		(unsigned long long)sh->sector);
1789 
1790 	if (r5c_is_writeback(sh->raid_conf->log))
1791 		/*
1792 		 * raid5-cache write back uses orig_page during prexor.
1793 		 * After prexor, it is time to free orig_page
1794 		 */
1795 		r5c_release_extra_page(sh);
1796 }
1797 
1798 static struct dma_async_tx_descriptor *
1799 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1800 		struct dma_async_tx_descriptor *tx)
1801 {
1802 	int disks = sh->disks;
1803 	struct page **xor_srcs = to_addr_page(percpu, 0);
1804 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1805 	int count = 0, pd_idx = sh->pd_idx, i;
1806 	struct async_submit_ctl submit;
1807 
1808 	/* existing parity data subtracted */
1809 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1810 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1811 
1812 	BUG_ON(sh->batch_head);
1813 	pr_debug("%s: stripe %llu\n", __func__,
1814 		(unsigned long long)sh->sector);
1815 
1816 	for (i = disks; i--; ) {
1817 		struct r5dev *dev = &sh->dev[i];
1818 		/* Only process blocks that are known to be uptodate */
1819 		if (test_bit(R5_InJournal, &dev->flags)) {
1820 			/*
1821 			 * For this case, PAGE_SIZE must be equal to 4KB and
1822 			 * page offset is zero.
1823 			 */
1824 			off_srcs[count] = dev->offset;
1825 			xor_srcs[count++] = dev->orig_page;
1826 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1827 			off_srcs[count] = dev->offset;
1828 			xor_srcs[count++] = dev->page;
1829 		}
1830 	}
1831 
1832 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1833 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1834 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1835 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1836 
1837 	return tx;
1838 }
1839 
1840 static struct dma_async_tx_descriptor *
1841 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1842 		struct dma_async_tx_descriptor *tx)
1843 {
1844 	struct page **blocks = to_addr_page(percpu, 0);
1845 	unsigned int *offs = to_addr_offs(sh, percpu);
1846 	int count;
1847 	struct async_submit_ctl submit;
1848 
1849 	pr_debug("%s: stripe %llu\n", __func__,
1850 		(unsigned long long)sh->sector);
1851 
1852 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1853 
1854 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1855 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1856 	tx = async_gen_syndrome(blocks, offs, count+2,
1857 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1858 
1859 	return tx;
1860 }
1861 
1862 static struct dma_async_tx_descriptor *
1863 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1864 {
1865 	struct r5conf *conf = sh->raid_conf;
1866 	int disks = sh->disks;
1867 	int i;
1868 	struct stripe_head *head_sh = sh;
1869 
1870 	pr_debug("%s: stripe %llu\n", __func__,
1871 		(unsigned long long)sh->sector);
1872 
1873 	for (i = disks; i--; ) {
1874 		struct r5dev *dev;
1875 		struct bio *chosen;
1876 
1877 		sh = head_sh;
1878 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1879 			struct bio *wbi;
1880 
1881 again:
1882 			dev = &sh->dev[i];
1883 			/*
1884 			 * clear R5_InJournal, so when rewriting a page in
1885 			 * journal, it is not skipped by r5l_log_stripe()
1886 			 */
1887 			clear_bit(R5_InJournal, &dev->flags);
1888 			spin_lock_irq(&sh->stripe_lock);
1889 			chosen = dev->towrite;
1890 			dev->towrite = NULL;
1891 			sh->overwrite_disks = 0;
1892 			BUG_ON(dev->written);
1893 			wbi = dev->written = chosen;
1894 			spin_unlock_irq(&sh->stripe_lock);
1895 			WARN_ON(dev->page != dev->orig_page);
1896 
1897 			while (wbi && wbi->bi_iter.bi_sector <
1898 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1899 				if (wbi->bi_opf & REQ_FUA)
1900 					set_bit(R5_WantFUA, &dev->flags);
1901 				if (wbi->bi_opf & REQ_SYNC)
1902 					set_bit(R5_SyncIO, &dev->flags);
1903 				if (bio_op(wbi) == REQ_OP_DISCARD)
1904 					set_bit(R5_Discard, &dev->flags);
1905 				else {
1906 					tx = async_copy_data(1, wbi, &dev->page,
1907 							     dev->offset,
1908 							     dev->sector, tx, sh,
1909 							     r5c_is_writeback(conf->log));
1910 					if (dev->page != dev->orig_page &&
1911 					    !r5c_is_writeback(conf->log)) {
1912 						set_bit(R5_SkipCopy, &dev->flags);
1913 						clear_bit(R5_UPTODATE, &dev->flags);
1914 						clear_bit(R5_OVERWRITE, &dev->flags);
1915 					}
1916 				}
1917 				wbi = r5_next_bio(conf, wbi, dev->sector);
1918 			}
1919 
1920 			if (head_sh->batch_head) {
1921 				sh = list_first_entry(&sh->batch_list,
1922 						      struct stripe_head,
1923 						      batch_list);
1924 				if (sh == head_sh)
1925 					continue;
1926 				goto again;
1927 			}
1928 		}
1929 	}
1930 
1931 	return tx;
1932 }
1933 
1934 static void ops_complete_reconstruct(void *stripe_head_ref)
1935 {
1936 	struct stripe_head *sh = stripe_head_ref;
1937 	int disks = sh->disks;
1938 	int pd_idx = sh->pd_idx;
1939 	int qd_idx = sh->qd_idx;
1940 	int i;
1941 	bool fua = false, sync = false, discard = false;
1942 
1943 	pr_debug("%s: stripe %llu\n", __func__,
1944 		(unsigned long long)sh->sector);
1945 
1946 	for (i = disks; i--; ) {
1947 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1948 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1949 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1950 	}
1951 
1952 	for (i = disks; i--; ) {
1953 		struct r5dev *dev = &sh->dev[i];
1954 
1955 		if (dev->written || i == pd_idx || i == qd_idx) {
1956 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1957 				set_bit(R5_UPTODATE, &dev->flags);
1958 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1959 					set_bit(R5_Expanded, &dev->flags);
1960 			}
1961 			if (fua)
1962 				set_bit(R5_WantFUA, &dev->flags);
1963 			if (sync)
1964 				set_bit(R5_SyncIO, &dev->flags);
1965 		}
1966 	}
1967 
1968 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1969 		sh->reconstruct_state = reconstruct_state_drain_result;
1970 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1971 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1972 	else {
1973 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1974 		sh->reconstruct_state = reconstruct_state_result;
1975 	}
1976 
1977 	set_bit(STRIPE_HANDLE, &sh->state);
1978 	raid5_release_stripe(sh);
1979 }
1980 
1981 static void
1982 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1983 		     struct dma_async_tx_descriptor *tx)
1984 {
1985 	int disks = sh->disks;
1986 	struct page **xor_srcs;
1987 	unsigned int *off_srcs;
1988 	struct async_submit_ctl submit;
1989 	int count, pd_idx = sh->pd_idx, i;
1990 	struct page *xor_dest;
1991 	unsigned int off_dest;
1992 	int prexor = 0;
1993 	unsigned long flags;
1994 	int j = 0;
1995 	struct stripe_head *head_sh = sh;
1996 	int last_stripe;
1997 
1998 	pr_debug("%s: stripe %llu\n", __func__,
1999 		(unsigned long long)sh->sector);
2000 
2001 	for (i = 0; i < sh->disks; i++) {
2002 		if (pd_idx == i)
2003 			continue;
2004 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2005 			break;
2006 	}
2007 	if (i >= sh->disks) {
2008 		atomic_inc(&sh->count);
2009 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2010 		ops_complete_reconstruct(sh);
2011 		return;
2012 	}
2013 again:
2014 	count = 0;
2015 	xor_srcs = to_addr_page(percpu, j);
2016 	off_srcs = to_addr_offs(sh, percpu);
2017 	/* check if prexor is active which means only process blocks
2018 	 * that are part of a read-modify-write (written)
2019 	 */
2020 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2021 		prexor = 1;
2022 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2023 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2024 		for (i = disks; i--; ) {
2025 			struct r5dev *dev = &sh->dev[i];
2026 			if (head_sh->dev[i].written ||
2027 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2028 				off_srcs[count] = dev->offset;
2029 				xor_srcs[count++] = dev->page;
2030 			}
2031 		}
2032 	} else {
2033 		xor_dest = sh->dev[pd_idx].page;
2034 		off_dest = sh->dev[pd_idx].offset;
2035 		for (i = disks; i--; ) {
2036 			struct r5dev *dev = &sh->dev[i];
2037 			if (i != pd_idx) {
2038 				off_srcs[count] = dev->offset;
2039 				xor_srcs[count++] = dev->page;
2040 			}
2041 		}
2042 	}
2043 
2044 	/* 1/ if we prexor'd then the dest is reused as a source
2045 	 * 2/ if we did not prexor then we are redoing the parity
2046 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2047 	 * for the synchronous xor case
2048 	 */
2049 	last_stripe = !head_sh->batch_head ||
2050 		list_first_entry(&sh->batch_list,
2051 				 struct stripe_head, batch_list) == head_sh;
2052 	if (last_stripe) {
2053 		flags = ASYNC_TX_ACK |
2054 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2055 
2056 		atomic_inc(&head_sh->count);
2057 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2058 				  to_addr_conv(sh, percpu, j));
2059 	} else {
2060 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2061 		init_async_submit(&submit, flags, tx, NULL, NULL,
2062 				  to_addr_conv(sh, percpu, j));
2063 	}
2064 
2065 	if (unlikely(count == 1))
2066 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2067 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2068 	else
2069 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2070 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2071 	if (!last_stripe) {
2072 		j++;
2073 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2074 				      batch_list);
2075 		goto again;
2076 	}
2077 }
2078 
2079 static void
2080 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2081 		     struct dma_async_tx_descriptor *tx)
2082 {
2083 	struct async_submit_ctl submit;
2084 	struct page **blocks;
2085 	unsigned int *offs;
2086 	int count, i, j = 0;
2087 	struct stripe_head *head_sh = sh;
2088 	int last_stripe;
2089 	int synflags;
2090 	unsigned long txflags;
2091 
2092 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2093 
2094 	for (i = 0; i < sh->disks; i++) {
2095 		if (sh->pd_idx == i || sh->qd_idx == i)
2096 			continue;
2097 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2098 			break;
2099 	}
2100 	if (i >= sh->disks) {
2101 		atomic_inc(&sh->count);
2102 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2103 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2104 		ops_complete_reconstruct(sh);
2105 		return;
2106 	}
2107 
2108 again:
2109 	blocks = to_addr_page(percpu, j);
2110 	offs = to_addr_offs(sh, percpu);
2111 
2112 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2113 		synflags = SYNDROME_SRC_WRITTEN;
2114 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2115 	} else {
2116 		synflags = SYNDROME_SRC_ALL;
2117 		txflags = ASYNC_TX_ACK;
2118 	}
2119 
2120 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2121 	last_stripe = !head_sh->batch_head ||
2122 		list_first_entry(&sh->batch_list,
2123 				 struct stripe_head, batch_list) == head_sh;
2124 
2125 	if (last_stripe) {
2126 		atomic_inc(&head_sh->count);
2127 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2128 				  head_sh, to_addr_conv(sh, percpu, j));
2129 	} else
2130 		init_async_submit(&submit, 0, tx, NULL, NULL,
2131 				  to_addr_conv(sh, percpu, j));
2132 	tx = async_gen_syndrome(blocks, offs, count+2,
2133 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2134 	if (!last_stripe) {
2135 		j++;
2136 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2137 				      batch_list);
2138 		goto again;
2139 	}
2140 }
2141 
2142 static void ops_complete_check(void *stripe_head_ref)
2143 {
2144 	struct stripe_head *sh = stripe_head_ref;
2145 
2146 	pr_debug("%s: stripe %llu\n", __func__,
2147 		(unsigned long long)sh->sector);
2148 
2149 	sh->check_state = check_state_check_result;
2150 	set_bit(STRIPE_HANDLE, &sh->state);
2151 	raid5_release_stripe(sh);
2152 }
2153 
2154 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2155 {
2156 	int disks = sh->disks;
2157 	int pd_idx = sh->pd_idx;
2158 	int qd_idx = sh->qd_idx;
2159 	struct page *xor_dest;
2160 	unsigned int off_dest;
2161 	struct page **xor_srcs = to_addr_page(percpu, 0);
2162 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2163 	struct dma_async_tx_descriptor *tx;
2164 	struct async_submit_ctl submit;
2165 	int count;
2166 	int i;
2167 
2168 	pr_debug("%s: stripe %llu\n", __func__,
2169 		(unsigned long long)sh->sector);
2170 
2171 	BUG_ON(sh->batch_head);
2172 	count = 0;
2173 	xor_dest = sh->dev[pd_idx].page;
2174 	off_dest = sh->dev[pd_idx].offset;
2175 	off_srcs[count] = off_dest;
2176 	xor_srcs[count++] = xor_dest;
2177 	for (i = disks; i--; ) {
2178 		if (i == pd_idx || i == qd_idx)
2179 			continue;
2180 		off_srcs[count] = sh->dev[i].offset;
2181 		xor_srcs[count++] = sh->dev[i].page;
2182 	}
2183 
2184 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2185 			  to_addr_conv(sh, percpu, 0));
2186 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2187 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2188 			   &sh->ops.zero_sum_result, &submit);
2189 
2190 	atomic_inc(&sh->count);
2191 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2192 	tx = async_trigger_callback(&submit);
2193 }
2194 
2195 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2196 {
2197 	struct page **srcs = to_addr_page(percpu, 0);
2198 	unsigned int *offs = to_addr_offs(sh, percpu);
2199 	struct async_submit_ctl submit;
2200 	int count;
2201 
2202 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2203 		(unsigned long long)sh->sector, checkp);
2204 
2205 	BUG_ON(sh->batch_head);
2206 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2207 	if (!checkp)
2208 		srcs[count] = NULL;
2209 
2210 	atomic_inc(&sh->count);
2211 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2212 			  sh, to_addr_conv(sh, percpu, 0));
2213 	async_syndrome_val(srcs, offs, count+2,
2214 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2215 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2216 }
2217 
2218 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2219 {
2220 	int overlap_clear = 0, i, disks = sh->disks;
2221 	struct dma_async_tx_descriptor *tx = NULL;
2222 	struct r5conf *conf = sh->raid_conf;
2223 	int level = conf->level;
2224 	struct raid5_percpu *percpu;
2225 
2226 	local_lock(&conf->percpu->lock);
2227 	percpu = this_cpu_ptr(conf->percpu);
2228 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2229 		ops_run_biofill(sh);
2230 		overlap_clear++;
2231 	}
2232 
2233 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2234 		if (level < 6)
2235 			tx = ops_run_compute5(sh, percpu);
2236 		else {
2237 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2238 				tx = ops_run_compute6_1(sh, percpu);
2239 			else
2240 				tx = ops_run_compute6_2(sh, percpu);
2241 		}
2242 		/* terminate the chain if reconstruct is not set to be run */
2243 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2244 			async_tx_ack(tx);
2245 	}
2246 
2247 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2248 		if (level < 6)
2249 			tx = ops_run_prexor5(sh, percpu, tx);
2250 		else
2251 			tx = ops_run_prexor6(sh, percpu, tx);
2252 	}
2253 
2254 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2255 		tx = ops_run_partial_parity(sh, percpu, tx);
2256 
2257 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2258 		tx = ops_run_biodrain(sh, tx);
2259 		overlap_clear++;
2260 	}
2261 
2262 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2263 		if (level < 6)
2264 			ops_run_reconstruct5(sh, percpu, tx);
2265 		else
2266 			ops_run_reconstruct6(sh, percpu, tx);
2267 	}
2268 
2269 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2270 		if (sh->check_state == check_state_run)
2271 			ops_run_check_p(sh, percpu);
2272 		else if (sh->check_state == check_state_run_q)
2273 			ops_run_check_pq(sh, percpu, 0);
2274 		else if (sh->check_state == check_state_run_pq)
2275 			ops_run_check_pq(sh, percpu, 1);
2276 		else
2277 			BUG();
2278 	}
2279 
2280 	if (overlap_clear && !sh->batch_head) {
2281 		for (i = disks; i--; ) {
2282 			struct r5dev *dev = &sh->dev[i];
2283 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2284 				wake_up(&sh->raid_conf->wait_for_overlap);
2285 		}
2286 	}
2287 	local_unlock(&conf->percpu->lock);
2288 }
2289 
2290 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2291 {
2292 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2293 	kfree(sh->pages);
2294 #endif
2295 	if (sh->ppl_page)
2296 		__free_page(sh->ppl_page);
2297 	kmem_cache_free(sc, sh);
2298 }
2299 
2300 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2301 	int disks, struct r5conf *conf)
2302 {
2303 	struct stripe_head *sh;
2304 
2305 	sh = kmem_cache_zalloc(sc, gfp);
2306 	if (sh) {
2307 		spin_lock_init(&sh->stripe_lock);
2308 		spin_lock_init(&sh->batch_lock);
2309 		INIT_LIST_HEAD(&sh->batch_list);
2310 		INIT_LIST_HEAD(&sh->lru);
2311 		INIT_LIST_HEAD(&sh->r5c);
2312 		INIT_LIST_HEAD(&sh->log_list);
2313 		atomic_set(&sh->count, 1);
2314 		sh->raid_conf = conf;
2315 		sh->log_start = MaxSector;
2316 
2317 		if (raid5_has_ppl(conf)) {
2318 			sh->ppl_page = alloc_page(gfp);
2319 			if (!sh->ppl_page) {
2320 				free_stripe(sc, sh);
2321 				return NULL;
2322 			}
2323 		}
2324 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2325 		if (init_stripe_shared_pages(sh, conf, disks)) {
2326 			free_stripe(sc, sh);
2327 			return NULL;
2328 		}
2329 #endif
2330 	}
2331 	return sh;
2332 }
2333 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2334 {
2335 	struct stripe_head *sh;
2336 
2337 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2338 	if (!sh)
2339 		return 0;
2340 
2341 	if (grow_buffers(sh, gfp)) {
2342 		shrink_buffers(sh);
2343 		free_stripe(conf->slab_cache, sh);
2344 		return 0;
2345 	}
2346 	sh->hash_lock_index =
2347 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2348 	/* we just created an active stripe so... */
2349 	atomic_inc(&conf->active_stripes);
2350 
2351 	raid5_release_stripe(sh);
2352 	conf->max_nr_stripes++;
2353 	return 1;
2354 }
2355 
2356 static int grow_stripes(struct r5conf *conf, int num)
2357 {
2358 	struct kmem_cache *sc;
2359 	size_t namelen = sizeof(conf->cache_name[0]);
2360 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2361 
2362 	if (conf->mddev->gendisk)
2363 		snprintf(conf->cache_name[0], namelen,
2364 			"raid%d-%s", conf->level, mdname(conf->mddev));
2365 	else
2366 		snprintf(conf->cache_name[0], namelen,
2367 			"raid%d-%p", conf->level, conf->mddev);
2368 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2369 
2370 	conf->active_name = 0;
2371 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2372 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2373 			       0, 0, NULL);
2374 	if (!sc)
2375 		return 1;
2376 	conf->slab_cache = sc;
2377 	conf->pool_size = devs;
2378 	while (num--)
2379 		if (!grow_one_stripe(conf, GFP_KERNEL))
2380 			return 1;
2381 
2382 	return 0;
2383 }
2384 
2385 /**
2386  * scribble_alloc - allocate percpu scribble buffer for required size
2387  *		    of the scribble region
2388  * @percpu: from for_each_present_cpu() of the caller
2389  * @num: total number of disks in the array
2390  * @cnt: scribble objs count for required size of the scribble region
2391  *
2392  * The scribble buffer size must be enough to contain:
2393  * 1/ a struct page pointer for each device in the array +2
2394  * 2/ room to convert each entry in (1) to its corresponding dma
2395  *    (dma_map_page()) or page (page_address()) address.
2396  *
2397  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2398  * calculate over all devices (not just the data blocks), using zeros in place
2399  * of the P and Q blocks.
2400  */
2401 static int scribble_alloc(struct raid5_percpu *percpu,
2402 			  int num, int cnt)
2403 {
2404 	size_t obj_size =
2405 		sizeof(struct page *) * (num + 2) +
2406 		sizeof(addr_conv_t) * (num + 2) +
2407 		sizeof(unsigned int) * (num + 2);
2408 	void *scribble;
2409 
2410 	/*
2411 	 * If here is in raid array suspend context, it is in memalloc noio
2412 	 * context as well, there is no potential recursive memory reclaim
2413 	 * I/Os with the GFP_KERNEL flag.
2414 	 */
2415 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2416 	if (!scribble)
2417 		return -ENOMEM;
2418 
2419 	kvfree(percpu->scribble);
2420 
2421 	percpu->scribble = scribble;
2422 	percpu->scribble_obj_size = obj_size;
2423 	return 0;
2424 }
2425 
2426 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2427 {
2428 	unsigned long cpu;
2429 	int err = 0;
2430 
2431 	/*
2432 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2433 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2434 	 * should equal to new_disks and new_sectors
2435 	 */
2436 	if (conf->scribble_disks >= new_disks &&
2437 	    conf->scribble_sectors >= new_sectors)
2438 		return 0;
2439 	mddev_suspend(conf->mddev);
2440 	cpus_read_lock();
2441 
2442 	for_each_present_cpu(cpu) {
2443 		struct raid5_percpu *percpu;
2444 
2445 		percpu = per_cpu_ptr(conf->percpu, cpu);
2446 		err = scribble_alloc(percpu, new_disks,
2447 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2448 		if (err)
2449 			break;
2450 	}
2451 
2452 	cpus_read_unlock();
2453 	mddev_resume(conf->mddev);
2454 	if (!err) {
2455 		conf->scribble_disks = new_disks;
2456 		conf->scribble_sectors = new_sectors;
2457 	}
2458 	return err;
2459 }
2460 
2461 static int resize_stripes(struct r5conf *conf, int newsize)
2462 {
2463 	/* Make all the stripes able to hold 'newsize' devices.
2464 	 * New slots in each stripe get 'page' set to a new page.
2465 	 *
2466 	 * This happens in stages:
2467 	 * 1/ create a new kmem_cache and allocate the required number of
2468 	 *    stripe_heads.
2469 	 * 2/ gather all the old stripe_heads and transfer the pages across
2470 	 *    to the new stripe_heads.  This will have the side effect of
2471 	 *    freezing the array as once all stripe_heads have been collected,
2472 	 *    no IO will be possible.  Old stripe heads are freed once their
2473 	 *    pages have been transferred over, and the old kmem_cache is
2474 	 *    freed when all stripes are done.
2475 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2476 	 *    we simple return a failure status - no need to clean anything up.
2477 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2478 	 *    If this fails, we don't bother trying the shrink the
2479 	 *    stripe_heads down again, we just leave them as they are.
2480 	 *    As each stripe_head is processed the new one is released into
2481 	 *    active service.
2482 	 *
2483 	 * Once step2 is started, we cannot afford to wait for a write,
2484 	 * so we use GFP_NOIO allocations.
2485 	 */
2486 	struct stripe_head *osh, *nsh;
2487 	LIST_HEAD(newstripes);
2488 	struct disk_info *ndisks;
2489 	int err = 0;
2490 	struct kmem_cache *sc;
2491 	int i;
2492 	int hash, cnt;
2493 
2494 	md_allow_write(conf->mddev);
2495 
2496 	/* Step 1 */
2497 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2498 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2499 			       0, 0, NULL);
2500 	if (!sc)
2501 		return -ENOMEM;
2502 
2503 	/* Need to ensure auto-resizing doesn't interfere */
2504 	mutex_lock(&conf->cache_size_mutex);
2505 
2506 	for (i = conf->max_nr_stripes; i; i--) {
2507 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2508 		if (!nsh)
2509 			break;
2510 
2511 		list_add(&nsh->lru, &newstripes);
2512 	}
2513 	if (i) {
2514 		/* didn't get enough, give up */
2515 		while (!list_empty(&newstripes)) {
2516 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2517 			list_del(&nsh->lru);
2518 			free_stripe(sc, nsh);
2519 		}
2520 		kmem_cache_destroy(sc);
2521 		mutex_unlock(&conf->cache_size_mutex);
2522 		return -ENOMEM;
2523 	}
2524 	/* Step 2 - Must use GFP_NOIO now.
2525 	 * OK, we have enough stripes, start collecting inactive
2526 	 * stripes and copying them over
2527 	 */
2528 	hash = 0;
2529 	cnt = 0;
2530 	list_for_each_entry(nsh, &newstripes, lru) {
2531 		lock_device_hash_lock(conf, hash);
2532 		wait_event_cmd(conf->wait_for_stripe,
2533 				    !list_empty(conf->inactive_list + hash),
2534 				    unlock_device_hash_lock(conf, hash),
2535 				    lock_device_hash_lock(conf, hash));
2536 		osh = get_free_stripe(conf, hash);
2537 		unlock_device_hash_lock(conf, hash);
2538 
2539 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2540 	for (i = 0; i < osh->nr_pages; i++) {
2541 		nsh->pages[i] = osh->pages[i];
2542 		osh->pages[i] = NULL;
2543 	}
2544 #endif
2545 		for(i=0; i<conf->pool_size; i++) {
2546 			nsh->dev[i].page = osh->dev[i].page;
2547 			nsh->dev[i].orig_page = osh->dev[i].page;
2548 			nsh->dev[i].offset = osh->dev[i].offset;
2549 		}
2550 		nsh->hash_lock_index = hash;
2551 		free_stripe(conf->slab_cache, osh);
2552 		cnt++;
2553 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2554 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2555 			hash++;
2556 			cnt = 0;
2557 		}
2558 	}
2559 	kmem_cache_destroy(conf->slab_cache);
2560 
2561 	/* Step 3.
2562 	 * At this point, we are holding all the stripes so the array
2563 	 * is completely stalled, so now is a good time to resize
2564 	 * conf->disks and the scribble region
2565 	 */
2566 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2567 	if (ndisks) {
2568 		for (i = 0; i < conf->pool_size; i++)
2569 			ndisks[i] = conf->disks[i];
2570 
2571 		for (i = conf->pool_size; i < newsize; i++) {
2572 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2573 			if (!ndisks[i].extra_page)
2574 				err = -ENOMEM;
2575 		}
2576 
2577 		if (err) {
2578 			for (i = conf->pool_size; i < newsize; i++)
2579 				if (ndisks[i].extra_page)
2580 					put_page(ndisks[i].extra_page);
2581 			kfree(ndisks);
2582 		} else {
2583 			kfree(conf->disks);
2584 			conf->disks = ndisks;
2585 		}
2586 	} else
2587 		err = -ENOMEM;
2588 
2589 	conf->slab_cache = sc;
2590 	conf->active_name = 1-conf->active_name;
2591 
2592 	/* Step 4, return new stripes to service */
2593 	while(!list_empty(&newstripes)) {
2594 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2595 		list_del_init(&nsh->lru);
2596 
2597 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2598 		for (i = 0; i < nsh->nr_pages; i++) {
2599 			if (nsh->pages[i])
2600 				continue;
2601 			nsh->pages[i] = alloc_page(GFP_NOIO);
2602 			if (!nsh->pages[i])
2603 				err = -ENOMEM;
2604 		}
2605 
2606 		for (i = conf->raid_disks; i < newsize; i++) {
2607 			if (nsh->dev[i].page)
2608 				continue;
2609 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2610 			nsh->dev[i].orig_page = nsh->dev[i].page;
2611 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2612 		}
2613 #else
2614 		for (i=conf->raid_disks; i < newsize; i++)
2615 			if (nsh->dev[i].page == NULL) {
2616 				struct page *p = alloc_page(GFP_NOIO);
2617 				nsh->dev[i].page = p;
2618 				nsh->dev[i].orig_page = p;
2619 				nsh->dev[i].offset = 0;
2620 				if (!p)
2621 					err = -ENOMEM;
2622 			}
2623 #endif
2624 		raid5_release_stripe(nsh);
2625 	}
2626 	/* critical section pass, GFP_NOIO no longer needed */
2627 
2628 	if (!err)
2629 		conf->pool_size = newsize;
2630 	mutex_unlock(&conf->cache_size_mutex);
2631 
2632 	return err;
2633 }
2634 
2635 static int drop_one_stripe(struct r5conf *conf)
2636 {
2637 	struct stripe_head *sh;
2638 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2639 
2640 	spin_lock_irq(conf->hash_locks + hash);
2641 	sh = get_free_stripe(conf, hash);
2642 	spin_unlock_irq(conf->hash_locks + hash);
2643 	if (!sh)
2644 		return 0;
2645 	BUG_ON(atomic_read(&sh->count));
2646 	shrink_buffers(sh);
2647 	free_stripe(conf->slab_cache, sh);
2648 	atomic_dec(&conf->active_stripes);
2649 	conf->max_nr_stripes--;
2650 	return 1;
2651 }
2652 
2653 static void shrink_stripes(struct r5conf *conf)
2654 {
2655 	while (conf->max_nr_stripes &&
2656 	       drop_one_stripe(conf))
2657 		;
2658 
2659 	kmem_cache_destroy(conf->slab_cache);
2660 	conf->slab_cache = NULL;
2661 }
2662 
2663 /*
2664  * This helper wraps rcu_dereference_protected() and can be used when
2665  * it is known that the nr_pending of the rdev is elevated.
2666  */
2667 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
2668 {
2669 	return rcu_dereference_protected(rdev,
2670 			atomic_read(&rcu_access_pointer(rdev)->nr_pending));
2671 }
2672 
2673 /*
2674  * This helper wraps rcu_dereference_protected() and should be used
2675  * when it is known that the mddev_lock() is held. This is safe
2676  * seeing raid5_remove_disk() has the same lock held.
2677  */
2678 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
2679 					 struct md_rdev __rcu *rdev)
2680 {
2681 	return rcu_dereference_protected(rdev,
2682 			lockdep_is_held(&mddev->reconfig_mutex));
2683 }
2684 
2685 static void raid5_end_read_request(struct bio * bi)
2686 {
2687 	struct stripe_head *sh = bi->bi_private;
2688 	struct r5conf *conf = sh->raid_conf;
2689 	int disks = sh->disks, i;
2690 	struct md_rdev *rdev = NULL;
2691 	sector_t s;
2692 
2693 	for (i=0 ; i<disks; i++)
2694 		if (bi == &sh->dev[i].req)
2695 			break;
2696 
2697 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2698 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2699 		bi->bi_status);
2700 	if (i == disks) {
2701 		BUG();
2702 		return;
2703 	}
2704 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2705 		/* If replacement finished while this request was outstanding,
2706 		 * 'replacement' might be NULL already.
2707 		 * In that case it moved down to 'rdev'.
2708 		 * rdev is not removed until all requests are finished.
2709 		 */
2710 		rdev = rdev_pend_deref(conf->disks[i].replacement);
2711 	if (!rdev)
2712 		rdev = rdev_pend_deref(conf->disks[i].rdev);
2713 
2714 	if (use_new_offset(conf, sh))
2715 		s = sh->sector + rdev->new_data_offset;
2716 	else
2717 		s = sh->sector + rdev->data_offset;
2718 	if (!bi->bi_status) {
2719 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2720 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2721 			/* Note that this cannot happen on a
2722 			 * replacement device.  We just fail those on
2723 			 * any error
2724 			 */
2725 			pr_info_ratelimited(
2726 				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2727 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2728 				(unsigned long long)s,
2729 				rdev->bdev);
2730 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2731 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2732 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2733 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2734 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2735 
2736 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2737 			/*
2738 			 * end read for a page in journal, this
2739 			 * must be preparing for prexor in rmw
2740 			 */
2741 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2742 
2743 		if (atomic_read(&rdev->read_errors))
2744 			atomic_set(&rdev->read_errors, 0);
2745 	} else {
2746 		int retry = 0;
2747 		int set_bad = 0;
2748 
2749 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2750 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2751 			atomic_inc(&rdev->read_errors);
2752 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2753 			pr_warn_ratelimited(
2754 				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2755 				mdname(conf->mddev),
2756 				(unsigned long long)s,
2757 				rdev->bdev);
2758 		else if (conf->mddev->degraded >= conf->max_degraded) {
2759 			set_bad = 1;
2760 			pr_warn_ratelimited(
2761 				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2762 				mdname(conf->mddev),
2763 				(unsigned long long)s,
2764 				rdev->bdev);
2765 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2766 			/* Oh, no!!! */
2767 			set_bad = 1;
2768 			pr_warn_ratelimited(
2769 				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2770 				mdname(conf->mddev),
2771 				(unsigned long long)s,
2772 				rdev->bdev);
2773 		} else if (atomic_read(&rdev->read_errors)
2774 			 > conf->max_nr_stripes) {
2775 			if (!test_bit(Faulty, &rdev->flags)) {
2776 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2777 				    mdname(conf->mddev),
2778 				    atomic_read(&rdev->read_errors),
2779 				    conf->max_nr_stripes);
2780 				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2781 				    mdname(conf->mddev), rdev->bdev);
2782 			}
2783 		} else
2784 			retry = 1;
2785 		if (set_bad && test_bit(In_sync, &rdev->flags)
2786 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2787 			retry = 1;
2788 		if (retry)
2789 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2790 				set_bit(R5_ReadError, &sh->dev[i].flags);
2791 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2792 				set_bit(R5_ReadError, &sh->dev[i].flags);
2793 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2794 			} else
2795 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2796 		else {
2797 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2798 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2799 			if (!(set_bad
2800 			      && test_bit(In_sync, &rdev->flags)
2801 			      && rdev_set_badblocks(
2802 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2803 				md_error(conf->mddev, rdev);
2804 		}
2805 	}
2806 	rdev_dec_pending(rdev, conf->mddev);
2807 	bio_uninit(bi);
2808 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2809 	set_bit(STRIPE_HANDLE, &sh->state);
2810 	raid5_release_stripe(sh);
2811 }
2812 
2813 static void raid5_end_write_request(struct bio *bi)
2814 {
2815 	struct stripe_head *sh = bi->bi_private;
2816 	struct r5conf *conf = sh->raid_conf;
2817 	int disks = sh->disks, i;
2818 	struct md_rdev *rdev;
2819 	sector_t first_bad;
2820 	int bad_sectors;
2821 	int replacement = 0;
2822 
2823 	for (i = 0 ; i < disks; i++) {
2824 		if (bi == &sh->dev[i].req) {
2825 			rdev = rdev_pend_deref(conf->disks[i].rdev);
2826 			break;
2827 		}
2828 		if (bi == &sh->dev[i].rreq) {
2829 			rdev = rdev_pend_deref(conf->disks[i].replacement);
2830 			if (rdev)
2831 				replacement = 1;
2832 			else
2833 				/* rdev was removed and 'replacement'
2834 				 * replaced it.  rdev is not removed
2835 				 * until all requests are finished.
2836 				 */
2837 				rdev = rdev_pend_deref(conf->disks[i].rdev);
2838 			break;
2839 		}
2840 	}
2841 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2842 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2843 		bi->bi_status);
2844 	if (i == disks) {
2845 		BUG();
2846 		return;
2847 	}
2848 
2849 	if (replacement) {
2850 		if (bi->bi_status)
2851 			md_error(conf->mddev, rdev);
2852 		else if (is_badblock(rdev, sh->sector,
2853 				     RAID5_STRIPE_SECTORS(conf),
2854 				     &first_bad, &bad_sectors))
2855 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2856 	} else {
2857 		if (bi->bi_status) {
2858 			set_bit(STRIPE_DEGRADED, &sh->state);
2859 			set_bit(WriteErrorSeen, &rdev->flags);
2860 			set_bit(R5_WriteError, &sh->dev[i].flags);
2861 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2862 				set_bit(MD_RECOVERY_NEEDED,
2863 					&rdev->mddev->recovery);
2864 		} else if (is_badblock(rdev, sh->sector,
2865 				       RAID5_STRIPE_SECTORS(conf),
2866 				       &first_bad, &bad_sectors)) {
2867 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2868 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2869 				/* That was a successful write so make
2870 				 * sure it looks like we already did
2871 				 * a re-write.
2872 				 */
2873 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2874 		}
2875 	}
2876 	rdev_dec_pending(rdev, conf->mddev);
2877 
2878 	if (sh->batch_head && bi->bi_status && !replacement)
2879 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2880 
2881 	bio_uninit(bi);
2882 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2883 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2884 	set_bit(STRIPE_HANDLE, &sh->state);
2885 	raid5_release_stripe(sh);
2886 
2887 	if (sh->batch_head && sh != sh->batch_head)
2888 		raid5_release_stripe(sh->batch_head);
2889 }
2890 
2891 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2892 {
2893 	struct r5conf *conf = mddev->private;
2894 	unsigned long flags;
2895 	pr_debug("raid456: error called\n");
2896 
2897 	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2898 		mdname(mddev), rdev->bdev);
2899 
2900 	spin_lock_irqsave(&conf->device_lock, flags);
2901 	set_bit(Faulty, &rdev->flags);
2902 	clear_bit(In_sync, &rdev->flags);
2903 	mddev->degraded = raid5_calc_degraded(conf);
2904 
2905 	if (has_failed(conf)) {
2906 		set_bit(MD_BROKEN, &conf->mddev->flags);
2907 		conf->recovery_disabled = mddev->recovery_disabled;
2908 
2909 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2910 			mdname(mddev), mddev->degraded, conf->raid_disks);
2911 	} else {
2912 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2913 			mdname(mddev), conf->raid_disks - mddev->degraded);
2914 	}
2915 
2916 	spin_unlock_irqrestore(&conf->device_lock, flags);
2917 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2918 
2919 	set_bit(Blocked, &rdev->flags);
2920 	set_mask_bits(&mddev->sb_flags, 0,
2921 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2922 	r5c_update_on_rdev_error(mddev, rdev);
2923 }
2924 
2925 /*
2926  * Input: a 'big' sector number,
2927  * Output: index of the data and parity disk, and the sector # in them.
2928  */
2929 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2930 			      int previous, int *dd_idx,
2931 			      struct stripe_head *sh)
2932 {
2933 	sector_t stripe, stripe2;
2934 	sector_t chunk_number;
2935 	unsigned int chunk_offset;
2936 	int pd_idx, qd_idx;
2937 	int ddf_layout = 0;
2938 	sector_t new_sector;
2939 	int algorithm = previous ? conf->prev_algo
2940 				 : conf->algorithm;
2941 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2942 					 : conf->chunk_sectors;
2943 	int raid_disks = previous ? conf->previous_raid_disks
2944 				  : conf->raid_disks;
2945 	int data_disks = raid_disks - conf->max_degraded;
2946 
2947 	/* First compute the information on this sector */
2948 
2949 	/*
2950 	 * Compute the chunk number and the sector offset inside the chunk
2951 	 */
2952 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2953 	chunk_number = r_sector;
2954 
2955 	/*
2956 	 * Compute the stripe number
2957 	 */
2958 	stripe = chunk_number;
2959 	*dd_idx = sector_div(stripe, data_disks);
2960 	stripe2 = stripe;
2961 	/*
2962 	 * Select the parity disk based on the user selected algorithm.
2963 	 */
2964 	pd_idx = qd_idx = -1;
2965 	switch(conf->level) {
2966 	case 4:
2967 		pd_idx = data_disks;
2968 		break;
2969 	case 5:
2970 		switch (algorithm) {
2971 		case ALGORITHM_LEFT_ASYMMETRIC:
2972 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2973 			if (*dd_idx >= pd_idx)
2974 				(*dd_idx)++;
2975 			break;
2976 		case ALGORITHM_RIGHT_ASYMMETRIC:
2977 			pd_idx = sector_div(stripe2, raid_disks);
2978 			if (*dd_idx >= pd_idx)
2979 				(*dd_idx)++;
2980 			break;
2981 		case ALGORITHM_LEFT_SYMMETRIC:
2982 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2983 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2984 			break;
2985 		case ALGORITHM_RIGHT_SYMMETRIC:
2986 			pd_idx = sector_div(stripe2, raid_disks);
2987 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2988 			break;
2989 		case ALGORITHM_PARITY_0:
2990 			pd_idx = 0;
2991 			(*dd_idx)++;
2992 			break;
2993 		case ALGORITHM_PARITY_N:
2994 			pd_idx = data_disks;
2995 			break;
2996 		default:
2997 			BUG();
2998 		}
2999 		break;
3000 	case 6:
3001 
3002 		switch (algorithm) {
3003 		case ALGORITHM_LEFT_ASYMMETRIC:
3004 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3005 			qd_idx = pd_idx + 1;
3006 			if (pd_idx == raid_disks-1) {
3007 				(*dd_idx)++;	/* Q D D D P */
3008 				qd_idx = 0;
3009 			} else if (*dd_idx >= pd_idx)
3010 				(*dd_idx) += 2; /* D D P Q D */
3011 			break;
3012 		case ALGORITHM_RIGHT_ASYMMETRIC:
3013 			pd_idx = sector_div(stripe2, raid_disks);
3014 			qd_idx = pd_idx + 1;
3015 			if (pd_idx == raid_disks-1) {
3016 				(*dd_idx)++;	/* Q D D D P */
3017 				qd_idx = 0;
3018 			} else if (*dd_idx >= pd_idx)
3019 				(*dd_idx) += 2; /* D D P Q D */
3020 			break;
3021 		case ALGORITHM_LEFT_SYMMETRIC:
3022 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3023 			qd_idx = (pd_idx + 1) % raid_disks;
3024 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3025 			break;
3026 		case ALGORITHM_RIGHT_SYMMETRIC:
3027 			pd_idx = sector_div(stripe2, raid_disks);
3028 			qd_idx = (pd_idx + 1) % raid_disks;
3029 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3030 			break;
3031 
3032 		case ALGORITHM_PARITY_0:
3033 			pd_idx = 0;
3034 			qd_idx = 1;
3035 			(*dd_idx) += 2;
3036 			break;
3037 		case ALGORITHM_PARITY_N:
3038 			pd_idx = data_disks;
3039 			qd_idx = data_disks + 1;
3040 			break;
3041 
3042 		case ALGORITHM_ROTATING_ZERO_RESTART:
3043 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3044 			 * of blocks for computing Q is different.
3045 			 */
3046 			pd_idx = sector_div(stripe2, raid_disks);
3047 			qd_idx = pd_idx + 1;
3048 			if (pd_idx == raid_disks-1) {
3049 				(*dd_idx)++;	/* Q D D D P */
3050 				qd_idx = 0;
3051 			} else if (*dd_idx >= pd_idx)
3052 				(*dd_idx) += 2; /* D D P Q D */
3053 			ddf_layout = 1;
3054 			break;
3055 
3056 		case ALGORITHM_ROTATING_N_RESTART:
3057 			/* Same a left_asymmetric, by first stripe is
3058 			 * D D D P Q  rather than
3059 			 * Q D D D P
3060 			 */
3061 			stripe2 += 1;
3062 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3063 			qd_idx = pd_idx + 1;
3064 			if (pd_idx == raid_disks-1) {
3065 				(*dd_idx)++;	/* Q D D D P */
3066 				qd_idx = 0;
3067 			} else if (*dd_idx >= pd_idx)
3068 				(*dd_idx) += 2; /* D D P Q D */
3069 			ddf_layout = 1;
3070 			break;
3071 
3072 		case ALGORITHM_ROTATING_N_CONTINUE:
3073 			/* Same as left_symmetric but Q is before P */
3074 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3075 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3076 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3077 			ddf_layout = 1;
3078 			break;
3079 
3080 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3081 			/* RAID5 left_asymmetric, with Q on last device */
3082 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3083 			if (*dd_idx >= pd_idx)
3084 				(*dd_idx)++;
3085 			qd_idx = raid_disks - 1;
3086 			break;
3087 
3088 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3089 			pd_idx = sector_div(stripe2, raid_disks-1);
3090 			if (*dd_idx >= pd_idx)
3091 				(*dd_idx)++;
3092 			qd_idx = raid_disks - 1;
3093 			break;
3094 
3095 		case ALGORITHM_LEFT_SYMMETRIC_6:
3096 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3097 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3098 			qd_idx = raid_disks - 1;
3099 			break;
3100 
3101 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3102 			pd_idx = sector_div(stripe2, raid_disks-1);
3103 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3104 			qd_idx = raid_disks - 1;
3105 			break;
3106 
3107 		case ALGORITHM_PARITY_0_6:
3108 			pd_idx = 0;
3109 			(*dd_idx)++;
3110 			qd_idx = raid_disks - 1;
3111 			break;
3112 
3113 		default:
3114 			BUG();
3115 		}
3116 		break;
3117 	}
3118 
3119 	if (sh) {
3120 		sh->pd_idx = pd_idx;
3121 		sh->qd_idx = qd_idx;
3122 		sh->ddf_layout = ddf_layout;
3123 	}
3124 	/*
3125 	 * Finally, compute the new sector number
3126 	 */
3127 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3128 	return new_sector;
3129 }
3130 
3131 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3132 {
3133 	struct r5conf *conf = sh->raid_conf;
3134 	int raid_disks = sh->disks;
3135 	int data_disks = raid_disks - conf->max_degraded;
3136 	sector_t new_sector = sh->sector, check;
3137 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3138 					 : conf->chunk_sectors;
3139 	int algorithm = previous ? conf->prev_algo
3140 				 : conf->algorithm;
3141 	sector_t stripe;
3142 	int chunk_offset;
3143 	sector_t chunk_number;
3144 	int dummy1, dd_idx = i;
3145 	sector_t r_sector;
3146 	struct stripe_head sh2;
3147 
3148 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3149 	stripe = new_sector;
3150 
3151 	if (i == sh->pd_idx)
3152 		return 0;
3153 	switch(conf->level) {
3154 	case 4: break;
3155 	case 5:
3156 		switch (algorithm) {
3157 		case ALGORITHM_LEFT_ASYMMETRIC:
3158 		case ALGORITHM_RIGHT_ASYMMETRIC:
3159 			if (i > sh->pd_idx)
3160 				i--;
3161 			break;
3162 		case ALGORITHM_LEFT_SYMMETRIC:
3163 		case ALGORITHM_RIGHT_SYMMETRIC:
3164 			if (i < sh->pd_idx)
3165 				i += raid_disks;
3166 			i -= (sh->pd_idx + 1);
3167 			break;
3168 		case ALGORITHM_PARITY_0:
3169 			i -= 1;
3170 			break;
3171 		case ALGORITHM_PARITY_N:
3172 			break;
3173 		default:
3174 			BUG();
3175 		}
3176 		break;
3177 	case 6:
3178 		if (i == sh->qd_idx)
3179 			return 0; /* It is the Q disk */
3180 		switch (algorithm) {
3181 		case ALGORITHM_LEFT_ASYMMETRIC:
3182 		case ALGORITHM_RIGHT_ASYMMETRIC:
3183 		case ALGORITHM_ROTATING_ZERO_RESTART:
3184 		case ALGORITHM_ROTATING_N_RESTART:
3185 			if (sh->pd_idx == raid_disks-1)
3186 				i--;	/* Q D D D P */
3187 			else if (i > sh->pd_idx)
3188 				i -= 2; /* D D P Q D */
3189 			break;
3190 		case ALGORITHM_LEFT_SYMMETRIC:
3191 		case ALGORITHM_RIGHT_SYMMETRIC:
3192 			if (sh->pd_idx == raid_disks-1)
3193 				i--; /* Q D D D P */
3194 			else {
3195 				/* D D P Q D */
3196 				if (i < sh->pd_idx)
3197 					i += raid_disks;
3198 				i -= (sh->pd_idx + 2);
3199 			}
3200 			break;
3201 		case ALGORITHM_PARITY_0:
3202 			i -= 2;
3203 			break;
3204 		case ALGORITHM_PARITY_N:
3205 			break;
3206 		case ALGORITHM_ROTATING_N_CONTINUE:
3207 			/* Like left_symmetric, but P is before Q */
3208 			if (sh->pd_idx == 0)
3209 				i--;	/* P D D D Q */
3210 			else {
3211 				/* D D Q P D */
3212 				if (i < sh->pd_idx)
3213 					i += raid_disks;
3214 				i -= (sh->pd_idx + 1);
3215 			}
3216 			break;
3217 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3218 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3219 			if (i > sh->pd_idx)
3220 				i--;
3221 			break;
3222 		case ALGORITHM_LEFT_SYMMETRIC_6:
3223 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3224 			if (i < sh->pd_idx)
3225 				i += data_disks + 1;
3226 			i -= (sh->pd_idx + 1);
3227 			break;
3228 		case ALGORITHM_PARITY_0_6:
3229 			i -= 1;
3230 			break;
3231 		default:
3232 			BUG();
3233 		}
3234 		break;
3235 	}
3236 
3237 	chunk_number = stripe * data_disks + i;
3238 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3239 
3240 	check = raid5_compute_sector(conf, r_sector,
3241 				     previous, &dummy1, &sh2);
3242 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3243 		|| sh2.qd_idx != sh->qd_idx) {
3244 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3245 			mdname(conf->mddev));
3246 		return 0;
3247 	}
3248 	return r_sector;
3249 }
3250 
3251 /*
3252  * There are cases where we want handle_stripe_dirtying() and
3253  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3254  *
3255  * This function checks whether we want to delay the towrite. Specifically,
3256  * we delay the towrite when:
3257  *
3258  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3259  *      stripe has data in journal (for other devices).
3260  *
3261  *      In this case, when reading data for the non-overwrite dev, it is
3262  *      necessary to handle complex rmw of write back cache (prexor with
3263  *      orig_page, and xor with page). To keep read path simple, we would
3264  *      like to flush data in journal to RAID disks first, so complex rmw
3265  *      is handled in the write patch (handle_stripe_dirtying).
3266  *
3267  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3268  *
3269  *      It is important to be able to flush all stripes in raid5-cache.
3270  *      Therefore, we need reserve some space on the journal device for
3271  *      these flushes. If flush operation includes pending writes to the
3272  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3273  *      for the flush out. If we exclude these pending writes from flush
3274  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3275  *      Therefore, excluding pending writes in these cases enables more
3276  *      efficient use of the journal device.
3277  *
3278  *      Note: To make sure the stripe makes progress, we only delay
3279  *      towrite for stripes with data already in journal (injournal > 0).
3280  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3281  *      no_space_stripes list.
3282  *
3283  *   3. during journal failure
3284  *      In journal failure, we try to flush all cached data to raid disks
3285  *      based on data in stripe cache. The array is read-only to upper
3286  *      layers, so we would skip all pending writes.
3287  *
3288  */
3289 static inline bool delay_towrite(struct r5conf *conf,
3290 				 struct r5dev *dev,
3291 				 struct stripe_head_state *s)
3292 {
3293 	/* case 1 above */
3294 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3295 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3296 		return true;
3297 	/* case 2 above */
3298 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3299 	    s->injournal > 0)
3300 		return true;
3301 	/* case 3 above */
3302 	if (s->log_failed && s->injournal)
3303 		return true;
3304 	return false;
3305 }
3306 
3307 static void
3308 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3309 			 int rcw, int expand)
3310 {
3311 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3312 	struct r5conf *conf = sh->raid_conf;
3313 	int level = conf->level;
3314 
3315 	if (rcw) {
3316 		/*
3317 		 * In some cases, handle_stripe_dirtying initially decided to
3318 		 * run rmw and allocates extra page for prexor. However, rcw is
3319 		 * cheaper later on. We need to free the extra page now,
3320 		 * because we won't be able to do that in ops_complete_prexor().
3321 		 */
3322 		r5c_release_extra_page(sh);
3323 
3324 		for (i = disks; i--; ) {
3325 			struct r5dev *dev = &sh->dev[i];
3326 
3327 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3328 				set_bit(R5_LOCKED, &dev->flags);
3329 				set_bit(R5_Wantdrain, &dev->flags);
3330 				if (!expand)
3331 					clear_bit(R5_UPTODATE, &dev->flags);
3332 				s->locked++;
3333 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3334 				set_bit(R5_LOCKED, &dev->flags);
3335 				s->locked++;
3336 			}
3337 		}
3338 		/* if we are not expanding this is a proper write request, and
3339 		 * there will be bios with new data to be drained into the
3340 		 * stripe cache
3341 		 */
3342 		if (!expand) {
3343 			if (!s->locked)
3344 				/* False alarm, nothing to do */
3345 				return;
3346 			sh->reconstruct_state = reconstruct_state_drain_run;
3347 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3348 		} else
3349 			sh->reconstruct_state = reconstruct_state_run;
3350 
3351 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3352 
3353 		if (s->locked + conf->max_degraded == disks)
3354 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3355 				atomic_inc(&conf->pending_full_writes);
3356 	} else {
3357 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3358 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3359 		BUG_ON(level == 6 &&
3360 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3361 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3362 
3363 		for (i = disks; i--; ) {
3364 			struct r5dev *dev = &sh->dev[i];
3365 			if (i == pd_idx || i == qd_idx)
3366 				continue;
3367 
3368 			if (dev->towrite &&
3369 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3370 			     test_bit(R5_Wantcompute, &dev->flags))) {
3371 				set_bit(R5_Wantdrain, &dev->flags);
3372 				set_bit(R5_LOCKED, &dev->flags);
3373 				clear_bit(R5_UPTODATE, &dev->flags);
3374 				s->locked++;
3375 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3376 				set_bit(R5_LOCKED, &dev->flags);
3377 				s->locked++;
3378 			}
3379 		}
3380 		if (!s->locked)
3381 			/* False alarm - nothing to do */
3382 			return;
3383 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3384 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3385 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3386 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3387 	}
3388 
3389 	/* keep the parity disk(s) locked while asynchronous operations
3390 	 * are in flight
3391 	 */
3392 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3393 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3394 	s->locked++;
3395 
3396 	if (level == 6) {
3397 		int qd_idx = sh->qd_idx;
3398 		struct r5dev *dev = &sh->dev[qd_idx];
3399 
3400 		set_bit(R5_LOCKED, &dev->flags);
3401 		clear_bit(R5_UPTODATE, &dev->flags);
3402 		s->locked++;
3403 	}
3404 
3405 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3406 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3407 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3408 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3409 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3410 
3411 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3412 		__func__, (unsigned long long)sh->sector,
3413 		s->locked, s->ops_request);
3414 }
3415 
3416 /*
3417  * Each stripe/dev can have one or more bion attached.
3418  * toread/towrite point to the first in a chain.
3419  * The bi_next chain must be in order.
3420  */
3421 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3422 			  int forwrite, int previous)
3423 {
3424 	struct bio **bip;
3425 	struct r5conf *conf = sh->raid_conf;
3426 	int firstwrite=0;
3427 
3428 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3429 		(unsigned long long)bi->bi_iter.bi_sector,
3430 		(unsigned long long)sh->sector);
3431 
3432 	spin_lock_irq(&sh->stripe_lock);
3433 	/* Don't allow new IO added to stripes in batch list */
3434 	if (sh->batch_head)
3435 		goto overlap;
3436 	if (forwrite) {
3437 		bip = &sh->dev[dd_idx].towrite;
3438 		if (*bip == NULL)
3439 			firstwrite = 1;
3440 	} else
3441 		bip = &sh->dev[dd_idx].toread;
3442 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3443 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3444 			goto overlap;
3445 		bip = & (*bip)->bi_next;
3446 	}
3447 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3448 		goto overlap;
3449 
3450 	if (forwrite && raid5_has_ppl(conf)) {
3451 		/*
3452 		 * With PPL only writes to consecutive data chunks within a
3453 		 * stripe are allowed because for a single stripe_head we can
3454 		 * only have one PPL entry at a time, which describes one data
3455 		 * range. Not really an overlap, but wait_for_overlap can be
3456 		 * used to handle this.
3457 		 */
3458 		sector_t sector;
3459 		sector_t first = 0;
3460 		sector_t last = 0;
3461 		int count = 0;
3462 		int i;
3463 
3464 		for (i = 0; i < sh->disks; i++) {
3465 			if (i != sh->pd_idx &&
3466 			    (i == dd_idx || sh->dev[i].towrite)) {
3467 				sector = sh->dev[i].sector;
3468 				if (count == 0 || sector < first)
3469 					first = sector;
3470 				if (sector > last)
3471 					last = sector;
3472 				count++;
3473 			}
3474 		}
3475 
3476 		if (first + conf->chunk_sectors * (count - 1) != last)
3477 			goto overlap;
3478 	}
3479 
3480 	if (!forwrite || previous)
3481 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3482 
3483 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3484 	if (*bip)
3485 		bi->bi_next = *bip;
3486 	*bip = bi;
3487 	bio_inc_remaining(bi);
3488 	md_write_inc(conf->mddev, bi);
3489 
3490 	if (forwrite) {
3491 		/* check if page is covered */
3492 		sector_t sector = sh->dev[dd_idx].sector;
3493 		for (bi=sh->dev[dd_idx].towrite;
3494 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3495 			     bi && bi->bi_iter.bi_sector <= sector;
3496 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3497 			if (bio_end_sector(bi) >= sector)
3498 				sector = bio_end_sector(bi);
3499 		}
3500 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3501 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3502 				sh->overwrite_disks++;
3503 	}
3504 
3505 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3506 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3507 		(unsigned long long)sh->sector, dd_idx);
3508 
3509 	if (conf->mddev->bitmap && firstwrite) {
3510 		/* Cannot hold spinlock over bitmap_startwrite,
3511 		 * but must ensure this isn't added to a batch until
3512 		 * we have added to the bitmap and set bm_seq.
3513 		 * So set STRIPE_BITMAP_PENDING to prevent
3514 		 * batching.
3515 		 * If multiple add_stripe_bio() calls race here they
3516 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3517 		 * to complete "bitmap_startwrite" gets to set
3518 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3519 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3520 		 * any more.
3521 		 */
3522 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3523 		spin_unlock_irq(&sh->stripe_lock);
3524 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3525 				     RAID5_STRIPE_SECTORS(conf), 0);
3526 		spin_lock_irq(&sh->stripe_lock);
3527 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3528 		if (!sh->batch_head) {
3529 			sh->bm_seq = conf->seq_flush+1;
3530 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3531 		}
3532 	}
3533 	spin_unlock_irq(&sh->stripe_lock);
3534 
3535 	if (stripe_can_batch(sh))
3536 		stripe_add_to_batch_list(conf, sh);
3537 	return 1;
3538 
3539  overlap:
3540 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3541 	spin_unlock_irq(&sh->stripe_lock);
3542 	return 0;
3543 }
3544 
3545 static void end_reshape(struct r5conf *conf);
3546 
3547 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3548 			    struct stripe_head *sh)
3549 {
3550 	int sectors_per_chunk =
3551 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3552 	int dd_idx;
3553 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3554 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3555 
3556 	raid5_compute_sector(conf,
3557 			     stripe * (disks - conf->max_degraded)
3558 			     *sectors_per_chunk + chunk_offset,
3559 			     previous,
3560 			     &dd_idx, sh);
3561 }
3562 
3563 static void
3564 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3565 		     struct stripe_head_state *s, int disks)
3566 {
3567 	int i;
3568 	BUG_ON(sh->batch_head);
3569 	for (i = disks; i--; ) {
3570 		struct bio *bi;
3571 		int bitmap_end = 0;
3572 
3573 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3574 			struct md_rdev *rdev;
3575 			rcu_read_lock();
3576 			rdev = rcu_dereference(conf->disks[i].rdev);
3577 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3578 			    !test_bit(Faulty, &rdev->flags))
3579 				atomic_inc(&rdev->nr_pending);
3580 			else
3581 				rdev = NULL;
3582 			rcu_read_unlock();
3583 			if (rdev) {
3584 				if (!rdev_set_badblocks(
3585 					    rdev,
3586 					    sh->sector,
3587 					    RAID5_STRIPE_SECTORS(conf), 0))
3588 					md_error(conf->mddev, rdev);
3589 				rdev_dec_pending(rdev, conf->mddev);
3590 			}
3591 		}
3592 		spin_lock_irq(&sh->stripe_lock);
3593 		/* fail all writes first */
3594 		bi = sh->dev[i].towrite;
3595 		sh->dev[i].towrite = NULL;
3596 		sh->overwrite_disks = 0;
3597 		spin_unlock_irq(&sh->stripe_lock);
3598 		if (bi)
3599 			bitmap_end = 1;
3600 
3601 		log_stripe_write_finished(sh);
3602 
3603 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3604 			wake_up(&conf->wait_for_overlap);
3605 
3606 		while (bi && bi->bi_iter.bi_sector <
3607 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3608 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3609 
3610 			md_write_end(conf->mddev);
3611 			bio_io_error(bi);
3612 			bi = nextbi;
3613 		}
3614 		if (bitmap_end)
3615 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3616 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3617 		bitmap_end = 0;
3618 		/* and fail all 'written' */
3619 		bi = sh->dev[i].written;
3620 		sh->dev[i].written = NULL;
3621 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3622 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3623 			sh->dev[i].page = sh->dev[i].orig_page;
3624 		}
3625 
3626 		if (bi) bitmap_end = 1;
3627 		while (bi && bi->bi_iter.bi_sector <
3628 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3629 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3630 
3631 			md_write_end(conf->mddev);
3632 			bio_io_error(bi);
3633 			bi = bi2;
3634 		}
3635 
3636 		/* fail any reads if this device is non-operational and
3637 		 * the data has not reached the cache yet.
3638 		 */
3639 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3640 		    s->failed > conf->max_degraded &&
3641 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3642 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3643 			spin_lock_irq(&sh->stripe_lock);
3644 			bi = sh->dev[i].toread;
3645 			sh->dev[i].toread = NULL;
3646 			spin_unlock_irq(&sh->stripe_lock);
3647 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3648 				wake_up(&conf->wait_for_overlap);
3649 			if (bi)
3650 				s->to_read--;
3651 			while (bi && bi->bi_iter.bi_sector <
3652 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3653 				struct bio *nextbi =
3654 					r5_next_bio(conf, bi, sh->dev[i].sector);
3655 
3656 				bio_io_error(bi);
3657 				bi = nextbi;
3658 			}
3659 		}
3660 		if (bitmap_end)
3661 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3662 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3663 		/* If we were in the middle of a write the parity block might
3664 		 * still be locked - so just clear all R5_LOCKED flags
3665 		 */
3666 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3667 	}
3668 	s->to_write = 0;
3669 	s->written = 0;
3670 
3671 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3672 		if (atomic_dec_and_test(&conf->pending_full_writes))
3673 			md_wakeup_thread(conf->mddev->thread);
3674 }
3675 
3676 static void
3677 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3678 		   struct stripe_head_state *s)
3679 {
3680 	int abort = 0;
3681 	int i;
3682 
3683 	BUG_ON(sh->batch_head);
3684 	clear_bit(STRIPE_SYNCING, &sh->state);
3685 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3686 		wake_up(&conf->wait_for_overlap);
3687 	s->syncing = 0;
3688 	s->replacing = 0;
3689 	/* There is nothing more to do for sync/check/repair.
3690 	 * Don't even need to abort as that is handled elsewhere
3691 	 * if needed, and not always wanted e.g. if there is a known
3692 	 * bad block here.
3693 	 * For recover/replace we need to record a bad block on all
3694 	 * non-sync devices, or abort the recovery
3695 	 */
3696 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3697 		/* During recovery devices cannot be removed, so
3698 		 * locking and refcounting of rdevs is not needed
3699 		 */
3700 		rcu_read_lock();
3701 		for (i = 0; i < conf->raid_disks; i++) {
3702 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3703 			if (rdev
3704 			    && !test_bit(Faulty, &rdev->flags)
3705 			    && !test_bit(In_sync, &rdev->flags)
3706 			    && !rdev_set_badblocks(rdev, sh->sector,
3707 						   RAID5_STRIPE_SECTORS(conf), 0))
3708 				abort = 1;
3709 			rdev = rcu_dereference(conf->disks[i].replacement);
3710 			if (rdev
3711 			    && !test_bit(Faulty, &rdev->flags)
3712 			    && !test_bit(In_sync, &rdev->flags)
3713 			    && !rdev_set_badblocks(rdev, sh->sector,
3714 						   RAID5_STRIPE_SECTORS(conf), 0))
3715 				abort = 1;
3716 		}
3717 		rcu_read_unlock();
3718 		if (abort)
3719 			conf->recovery_disabled =
3720 				conf->mddev->recovery_disabled;
3721 	}
3722 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3723 }
3724 
3725 static int want_replace(struct stripe_head *sh, int disk_idx)
3726 {
3727 	struct md_rdev *rdev;
3728 	int rv = 0;
3729 
3730 	rcu_read_lock();
3731 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3732 	if (rdev
3733 	    && !test_bit(Faulty, &rdev->flags)
3734 	    && !test_bit(In_sync, &rdev->flags)
3735 	    && (rdev->recovery_offset <= sh->sector
3736 		|| rdev->mddev->recovery_cp <= sh->sector))
3737 		rv = 1;
3738 	rcu_read_unlock();
3739 	return rv;
3740 }
3741 
3742 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3743 			   int disk_idx, int disks)
3744 {
3745 	struct r5dev *dev = &sh->dev[disk_idx];
3746 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3747 				  &sh->dev[s->failed_num[1]] };
3748 	int i;
3749 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3750 
3751 
3752 	if (test_bit(R5_LOCKED, &dev->flags) ||
3753 	    test_bit(R5_UPTODATE, &dev->flags))
3754 		/* No point reading this as we already have it or have
3755 		 * decided to get it.
3756 		 */
3757 		return 0;
3758 
3759 	if (dev->toread ||
3760 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3761 		/* We need this block to directly satisfy a request */
3762 		return 1;
3763 
3764 	if (s->syncing || s->expanding ||
3765 	    (s->replacing && want_replace(sh, disk_idx)))
3766 		/* When syncing, or expanding we read everything.
3767 		 * When replacing, we need the replaced block.
3768 		 */
3769 		return 1;
3770 
3771 	if ((s->failed >= 1 && fdev[0]->toread) ||
3772 	    (s->failed >= 2 && fdev[1]->toread))
3773 		/* If we want to read from a failed device, then
3774 		 * we need to actually read every other device.
3775 		 */
3776 		return 1;
3777 
3778 	/* Sometimes neither read-modify-write nor reconstruct-write
3779 	 * cycles can work.  In those cases we read every block we
3780 	 * can.  Then the parity-update is certain to have enough to
3781 	 * work with.
3782 	 * This can only be a problem when we need to write something,
3783 	 * and some device has failed.  If either of those tests
3784 	 * fail we need look no further.
3785 	 */
3786 	if (!s->failed || !s->to_write)
3787 		return 0;
3788 
3789 	if (test_bit(R5_Insync, &dev->flags) &&
3790 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3791 		/* Pre-reads at not permitted until after short delay
3792 		 * to gather multiple requests.  However if this
3793 		 * device is no Insync, the block could only be computed
3794 		 * and there is no need to delay that.
3795 		 */
3796 		return 0;
3797 
3798 	for (i = 0; i < s->failed && i < 2; i++) {
3799 		if (fdev[i]->towrite &&
3800 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3801 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3802 			/* If we have a partial write to a failed
3803 			 * device, then we will need to reconstruct
3804 			 * the content of that device, so all other
3805 			 * devices must be read.
3806 			 */
3807 			return 1;
3808 
3809 		if (s->failed >= 2 &&
3810 		    (fdev[i]->towrite ||
3811 		     s->failed_num[i] == sh->pd_idx ||
3812 		     s->failed_num[i] == sh->qd_idx) &&
3813 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3814 			/* In max degraded raid6, If the failed disk is P, Q,
3815 			 * or we want to read the failed disk, we need to do
3816 			 * reconstruct-write.
3817 			 */
3818 			force_rcw = true;
3819 	}
3820 
3821 	/* If we are forced to do a reconstruct-write, because parity
3822 	 * cannot be trusted and we are currently recovering it, there
3823 	 * is extra need to be careful.
3824 	 * If one of the devices that we would need to read, because
3825 	 * it is not being overwritten (and maybe not written at all)
3826 	 * is missing/faulty, then we need to read everything we can.
3827 	 */
3828 	if (!force_rcw &&
3829 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3830 		/* reconstruct-write isn't being forced */
3831 		return 0;
3832 	for (i = 0; i < s->failed && i < 2; i++) {
3833 		if (s->failed_num[i] != sh->pd_idx &&
3834 		    s->failed_num[i] != sh->qd_idx &&
3835 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3836 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3837 			return 1;
3838 	}
3839 
3840 	return 0;
3841 }
3842 
3843 /* fetch_block - checks the given member device to see if its data needs
3844  * to be read or computed to satisfy a request.
3845  *
3846  * Returns 1 when no more member devices need to be checked, otherwise returns
3847  * 0 to tell the loop in handle_stripe_fill to continue
3848  */
3849 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3850 		       int disk_idx, int disks)
3851 {
3852 	struct r5dev *dev = &sh->dev[disk_idx];
3853 
3854 	/* is the data in this block needed, and can we get it? */
3855 	if (need_this_block(sh, s, disk_idx, disks)) {
3856 		/* we would like to get this block, possibly by computing it,
3857 		 * otherwise read it if the backing disk is insync
3858 		 */
3859 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3860 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3861 		BUG_ON(sh->batch_head);
3862 
3863 		/*
3864 		 * In the raid6 case if the only non-uptodate disk is P
3865 		 * then we already trusted P to compute the other failed
3866 		 * drives. It is safe to compute rather than re-read P.
3867 		 * In other cases we only compute blocks from failed
3868 		 * devices, otherwise check/repair might fail to detect
3869 		 * a real inconsistency.
3870 		 */
3871 
3872 		if ((s->uptodate == disks - 1) &&
3873 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3874 		    (s->failed && (disk_idx == s->failed_num[0] ||
3875 				   disk_idx == s->failed_num[1])))) {
3876 			/* have disk failed, and we're requested to fetch it;
3877 			 * do compute it
3878 			 */
3879 			pr_debug("Computing stripe %llu block %d\n",
3880 			       (unsigned long long)sh->sector, disk_idx);
3881 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3882 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3883 			set_bit(R5_Wantcompute, &dev->flags);
3884 			sh->ops.target = disk_idx;
3885 			sh->ops.target2 = -1; /* no 2nd target */
3886 			s->req_compute = 1;
3887 			/* Careful: from this point on 'uptodate' is in the eye
3888 			 * of raid_run_ops which services 'compute' operations
3889 			 * before writes. R5_Wantcompute flags a block that will
3890 			 * be R5_UPTODATE by the time it is needed for a
3891 			 * subsequent operation.
3892 			 */
3893 			s->uptodate++;
3894 			return 1;
3895 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3896 			/* Computing 2-failure is *very* expensive; only
3897 			 * do it if failed >= 2
3898 			 */
3899 			int other;
3900 			for (other = disks; other--; ) {
3901 				if (other == disk_idx)
3902 					continue;
3903 				if (!test_bit(R5_UPTODATE,
3904 				      &sh->dev[other].flags))
3905 					break;
3906 			}
3907 			BUG_ON(other < 0);
3908 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3909 			       (unsigned long long)sh->sector,
3910 			       disk_idx, other);
3911 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3912 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3913 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3914 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3915 			sh->ops.target = disk_idx;
3916 			sh->ops.target2 = other;
3917 			s->uptodate += 2;
3918 			s->req_compute = 1;
3919 			return 1;
3920 		} else if (test_bit(R5_Insync, &dev->flags)) {
3921 			set_bit(R5_LOCKED, &dev->flags);
3922 			set_bit(R5_Wantread, &dev->flags);
3923 			s->locked++;
3924 			pr_debug("Reading block %d (sync=%d)\n",
3925 				disk_idx, s->syncing);
3926 		}
3927 	}
3928 
3929 	return 0;
3930 }
3931 
3932 /*
3933  * handle_stripe_fill - read or compute data to satisfy pending requests.
3934  */
3935 static void handle_stripe_fill(struct stripe_head *sh,
3936 			       struct stripe_head_state *s,
3937 			       int disks)
3938 {
3939 	int i;
3940 
3941 	/* look for blocks to read/compute, skip this if a compute
3942 	 * is already in flight, or if the stripe contents are in the
3943 	 * midst of changing due to a write
3944 	 */
3945 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3946 	    !sh->reconstruct_state) {
3947 
3948 		/*
3949 		 * For degraded stripe with data in journal, do not handle
3950 		 * read requests yet, instead, flush the stripe to raid
3951 		 * disks first, this avoids handling complex rmw of write
3952 		 * back cache (prexor with orig_page, and then xor with
3953 		 * page) in the read path
3954 		 */
3955 		if (s->injournal && s->failed) {
3956 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3957 				r5c_make_stripe_write_out(sh);
3958 			goto out;
3959 		}
3960 
3961 		for (i = disks; i--; )
3962 			if (fetch_block(sh, s, i, disks))
3963 				break;
3964 	}
3965 out:
3966 	set_bit(STRIPE_HANDLE, &sh->state);
3967 }
3968 
3969 static void break_stripe_batch_list(struct stripe_head *head_sh,
3970 				    unsigned long handle_flags);
3971 /* handle_stripe_clean_event
3972  * any written block on an uptodate or failed drive can be returned.
3973  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3974  * never LOCKED, so we don't need to test 'failed' directly.
3975  */
3976 static void handle_stripe_clean_event(struct r5conf *conf,
3977 	struct stripe_head *sh, int disks)
3978 {
3979 	int i;
3980 	struct r5dev *dev;
3981 	int discard_pending = 0;
3982 	struct stripe_head *head_sh = sh;
3983 	bool do_endio = false;
3984 
3985 	for (i = disks; i--; )
3986 		if (sh->dev[i].written) {
3987 			dev = &sh->dev[i];
3988 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3989 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3990 			     test_bit(R5_Discard, &dev->flags) ||
3991 			     test_bit(R5_SkipCopy, &dev->flags))) {
3992 				/* We can return any write requests */
3993 				struct bio *wbi, *wbi2;
3994 				pr_debug("Return write for disc %d\n", i);
3995 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3996 					clear_bit(R5_UPTODATE, &dev->flags);
3997 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3998 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3999 				}
4000 				do_endio = true;
4001 
4002 returnbi:
4003 				dev->page = dev->orig_page;
4004 				wbi = dev->written;
4005 				dev->written = NULL;
4006 				while (wbi && wbi->bi_iter.bi_sector <
4007 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4008 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4009 					md_write_end(conf->mddev);
4010 					bio_endio(wbi);
4011 					wbi = wbi2;
4012 				}
4013 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4014 						   RAID5_STRIPE_SECTORS(conf),
4015 						   !test_bit(STRIPE_DEGRADED, &sh->state),
4016 						   0);
4017 				if (head_sh->batch_head) {
4018 					sh = list_first_entry(&sh->batch_list,
4019 							      struct stripe_head,
4020 							      batch_list);
4021 					if (sh != head_sh) {
4022 						dev = &sh->dev[i];
4023 						goto returnbi;
4024 					}
4025 				}
4026 				sh = head_sh;
4027 				dev = &sh->dev[i];
4028 			} else if (test_bit(R5_Discard, &dev->flags))
4029 				discard_pending = 1;
4030 		}
4031 
4032 	log_stripe_write_finished(sh);
4033 
4034 	if (!discard_pending &&
4035 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4036 		int hash;
4037 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4038 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4039 		if (sh->qd_idx >= 0) {
4040 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4041 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4042 		}
4043 		/* now that discard is done we can proceed with any sync */
4044 		clear_bit(STRIPE_DISCARD, &sh->state);
4045 		/*
4046 		 * SCSI discard will change some bio fields and the stripe has
4047 		 * no updated data, so remove it from hash list and the stripe
4048 		 * will be reinitialized
4049 		 */
4050 unhash:
4051 		hash = sh->hash_lock_index;
4052 		spin_lock_irq(conf->hash_locks + hash);
4053 		remove_hash(sh);
4054 		spin_unlock_irq(conf->hash_locks + hash);
4055 		if (head_sh->batch_head) {
4056 			sh = list_first_entry(&sh->batch_list,
4057 					      struct stripe_head, batch_list);
4058 			if (sh != head_sh)
4059 					goto unhash;
4060 		}
4061 		sh = head_sh;
4062 
4063 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4064 			set_bit(STRIPE_HANDLE, &sh->state);
4065 
4066 	}
4067 
4068 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4069 		if (atomic_dec_and_test(&conf->pending_full_writes))
4070 			md_wakeup_thread(conf->mddev->thread);
4071 
4072 	if (head_sh->batch_head && do_endio)
4073 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4074 }
4075 
4076 /*
4077  * For RMW in write back cache, we need extra page in prexor to store the
4078  * old data. This page is stored in dev->orig_page.
4079  *
4080  * This function checks whether we have data for prexor. The exact logic
4081  * is:
4082  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4083  */
4084 static inline bool uptodate_for_rmw(struct r5dev *dev)
4085 {
4086 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4087 		(!test_bit(R5_InJournal, &dev->flags) ||
4088 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4089 }
4090 
4091 static int handle_stripe_dirtying(struct r5conf *conf,
4092 				  struct stripe_head *sh,
4093 				  struct stripe_head_state *s,
4094 				  int disks)
4095 {
4096 	int rmw = 0, rcw = 0, i;
4097 	sector_t recovery_cp = conf->mddev->recovery_cp;
4098 
4099 	/* Check whether resync is now happening or should start.
4100 	 * If yes, then the array is dirty (after unclean shutdown or
4101 	 * initial creation), so parity in some stripes might be inconsistent.
4102 	 * In this case, we need to always do reconstruct-write, to ensure
4103 	 * that in case of drive failure or read-error correction, we
4104 	 * generate correct data from the parity.
4105 	 */
4106 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4107 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4108 	     s->failed == 0)) {
4109 		/* Calculate the real rcw later - for now make it
4110 		 * look like rcw is cheaper
4111 		 */
4112 		rcw = 1; rmw = 2;
4113 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4114 			 conf->rmw_level, (unsigned long long)recovery_cp,
4115 			 (unsigned long long)sh->sector);
4116 	} else for (i = disks; i--; ) {
4117 		/* would I have to read this buffer for read_modify_write */
4118 		struct r5dev *dev = &sh->dev[i];
4119 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4120 		     i == sh->pd_idx || i == sh->qd_idx ||
4121 		     test_bit(R5_InJournal, &dev->flags)) &&
4122 		    !test_bit(R5_LOCKED, &dev->flags) &&
4123 		    !(uptodate_for_rmw(dev) ||
4124 		      test_bit(R5_Wantcompute, &dev->flags))) {
4125 			if (test_bit(R5_Insync, &dev->flags))
4126 				rmw++;
4127 			else
4128 				rmw += 2*disks;  /* cannot read it */
4129 		}
4130 		/* Would I have to read this buffer for reconstruct_write */
4131 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4132 		    i != sh->pd_idx && i != sh->qd_idx &&
4133 		    !test_bit(R5_LOCKED, &dev->flags) &&
4134 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4135 		      test_bit(R5_Wantcompute, &dev->flags))) {
4136 			if (test_bit(R5_Insync, &dev->flags))
4137 				rcw++;
4138 			else
4139 				rcw += 2*disks;
4140 		}
4141 	}
4142 
4143 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4144 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4145 	set_bit(STRIPE_HANDLE, &sh->state);
4146 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4147 		/* prefer read-modify-write, but need to get some data */
4148 		if (conf->mddev->queue)
4149 			blk_add_trace_msg(conf->mddev->queue,
4150 					  "raid5 rmw %llu %d",
4151 					  (unsigned long long)sh->sector, rmw);
4152 		for (i = disks; i--; ) {
4153 			struct r5dev *dev = &sh->dev[i];
4154 			if (test_bit(R5_InJournal, &dev->flags) &&
4155 			    dev->page == dev->orig_page &&
4156 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4157 				/* alloc page for prexor */
4158 				struct page *p = alloc_page(GFP_NOIO);
4159 
4160 				if (p) {
4161 					dev->orig_page = p;
4162 					continue;
4163 				}
4164 
4165 				/*
4166 				 * alloc_page() failed, try use
4167 				 * disk_info->extra_page
4168 				 */
4169 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4170 						      &conf->cache_state)) {
4171 					r5c_use_extra_page(sh);
4172 					break;
4173 				}
4174 
4175 				/* extra_page in use, add to delayed_list */
4176 				set_bit(STRIPE_DELAYED, &sh->state);
4177 				s->waiting_extra_page = 1;
4178 				return -EAGAIN;
4179 			}
4180 		}
4181 
4182 		for (i = disks; i--; ) {
4183 			struct r5dev *dev = &sh->dev[i];
4184 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4185 			     i == sh->pd_idx || i == sh->qd_idx ||
4186 			     test_bit(R5_InJournal, &dev->flags)) &&
4187 			    !test_bit(R5_LOCKED, &dev->flags) &&
4188 			    !(uptodate_for_rmw(dev) ||
4189 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4190 			    test_bit(R5_Insync, &dev->flags)) {
4191 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4192 					     &sh->state)) {
4193 					pr_debug("Read_old block %d for r-m-w\n",
4194 						 i);
4195 					set_bit(R5_LOCKED, &dev->flags);
4196 					set_bit(R5_Wantread, &dev->flags);
4197 					s->locked++;
4198 				} else
4199 					set_bit(STRIPE_DELAYED, &sh->state);
4200 			}
4201 		}
4202 	}
4203 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4204 		/* want reconstruct write, but need to get some data */
4205 		int qread =0;
4206 		rcw = 0;
4207 		for (i = disks; i--; ) {
4208 			struct r5dev *dev = &sh->dev[i];
4209 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4210 			    i != sh->pd_idx && i != sh->qd_idx &&
4211 			    !test_bit(R5_LOCKED, &dev->flags) &&
4212 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4213 			      test_bit(R5_Wantcompute, &dev->flags))) {
4214 				rcw++;
4215 				if (test_bit(R5_Insync, &dev->flags) &&
4216 				    test_bit(STRIPE_PREREAD_ACTIVE,
4217 					     &sh->state)) {
4218 					pr_debug("Read_old block "
4219 						"%d for Reconstruct\n", i);
4220 					set_bit(R5_LOCKED, &dev->flags);
4221 					set_bit(R5_Wantread, &dev->flags);
4222 					s->locked++;
4223 					qread++;
4224 				} else
4225 					set_bit(STRIPE_DELAYED, &sh->state);
4226 			}
4227 		}
4228 		if (rcw && conf->mddev->queue)
4229 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4230 					  (unsigned long long)sh->sector,
4231 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4232 	}
4233 
4234 	if (rcw > disks && rmw > disks &&
4235 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4236 		set_bit(STRIPE_DELAYED, &sh->state);
4237 
4238 	/* now if nothing is locked, and if we have enough data,
4239 	 * we can start a write request
4240 	 */
4241 	/* since handle_stripe can be called at any time we need to handle the
4242 	 * case where a compute block operation has been submitted and then a
4243 	 * subsequent call wants to start a write request.  raid_run_ops only
4244 	 * handles the case where compute block and reconstruct are requested
4245 	 * simultaneously.  If this is not the case then new writes need to be
4246 	 * held off until the compute completes.
4247 	 */
4248 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4249 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4250 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4251 		schedule_reconstruction(sh, s, rcw == 0, 0);
4252 	return 0;
4253 }
4254 
4255 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4256 				struct stripe_head_state *s, int disks)
4257 {
4258 	struct r5dev *dev = NULL;
4259 
4260 	BUG_ON(sh->batch_head);
4261 	set_bit(STRIPE_HANDLE, &sh->state);
4262 
4263 	switch (sh->check_state) {
4264 	case check_state_idle:
4265 		/* start a new check operation if there are no failures */
4266 		if (s->failed == 0) {
4267 			BUG_ON(s->uptodate != disks);
4268 			sh->check_state = check_state_run;
4269 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4270 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4271 			s->uptodate--;
4272 			break;
4273 		}
4274 		dev = &sh->dev[s->failed_num[0]];
4275 		fallthrough;
4276 	case check_state_compute_result:
4277 		sh->check_state = check_state_idle;
4278 		if (!dev)
4279 			dev = &sh->dev[sh->pd_idx];
4280 
4281 		/* check that a write has not made the stripe insync */
4282 		if (test_bit(STRIPE_INSYNC, &sh->state))
4283 			break;
4284 
4285 		/* either failed parity check, or recovery is happening */
4286 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4287 		BUG_ON(s->uptodate != disks);
4288 
4289 		set_bit(R5_LOCKED, &dev->flags);
4290 		s->locked++;
4291 		set_bit(R5_Wantwrite, &dev->flags);
4292 
4293 		clear_bit(STRIPE_DEGRADED, &sh->state);
4294 		set_bit(STRIPE_INSYNC, &sh->state);
4295 		break;
4296 	case check_state_run:
4297 		break; /* we will be called again upon completion */
4298 	case check_state_check_result:
4299 		sh->check_state = check_state_idle;
4300 
4301 		/* if a failure occurred during the check operation, leave
4302 		 * STRIPE_INSYNC not set and let the stripe be handled again
4303 		 */
4304 		if (s->failed)
4305 			break;
4306 
4307 		/* handle a successful check operation, if parity is correct
4308 		 * we are done.  Otherwise update the mismatch count and repair
4309 		 * parity if !MD_RECOVERY_CHECK
4310 		 */
4311 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4312 			/* parity is correct (on disc,
4313 			 * not in buffer any more)
4314 			 */
4315 			set_bit(STRIPE_INSYNC, &sh->state);
4316 		else {
4317 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4318 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4319 				/* don't try to repair!! */
4320 				set_bit(STRIPE_INSYNC, &sh->state);
4321 				pr_warn_ratelimited("%s: mismatch sector in range "
4322 						    "%llu-%llu\n", mdname(conf->mddev),
4323 						    (unsigned long long) sh->sector,
4324 						    (unsigned long long) sh->sector +
4325 						    RAID5_STRIPE_SECTORS(conf));
4326 			} else {
4327 				sh->check_state = check_state_compute_run;
4328 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4329 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4330 				set_bit(R5_Wantcompute,
4331 					&sh->dev[sh->pd_idx].flags);
4332 				sh->ops.target = sh->pd_idx;
4333 				sh->ops.target2 = -1;
4334 				s->uptodate++;
4335 			}
4336 		}
4337 		break;
4338 	case check_state_compute_run:
4339 		break;
4340 	default:
4341 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4342 		       __func__, sh->check_state,
4343 		       (unsigned long long) sh->sector);
4344 		BUG();
4345 	}
4346 }
4347 
4348 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4349 				  struct stripe_head_state *s,
4350 				  int disks)
4351 {
4352 	int pd_idx = sh->pd_idx;
4353 	int qd_idx = sh->qd_idx;
4354 	struct r5dev *dev;
4355 
4356 	BUG_ON(sh->batch_head);
4357 	set_bit(STRIPE_HANDLE, &sh->state);
4358 
4359 	BUG_ON(s->failed > 2);
4360 
4361 	/* Want to check and possibly repair P and Q.
4362 	 * However there could be one 'failed' device, in which
4363 	 * case we can only check one of them, possibly using the
4364 	 * other to generate missing data
4365 	 */
4366 
4367 	switch (sh->check_state) {
4368 	case check_state_idle:
4369 		/* start a new check operation if there are < 2 failures */
4370 		if (s->failed == s->q_failed) {
4371 			/* The only possible failed device holds Q, so it
4372 			 * makes sense to check P (If anything else were failed,
4373 			 * we would have used P to recreate it).
4374 			 */
4375 			sh->check_state = check_state_run;
4376 		}
4377 		if (!s->q_failed && s->failed < 2) {
4378 			/* Q is not failed, and we didn't use it to generate
4379 			 * anything, so it makes sense to check it
4380 			 */
4381 			if (sh->check_state == check_state_run)
4382 				sh->check_state = check_state_run_pq;
4383 			else
4384 				sh->check_state = check_state_run_q;
4385 		}
4386 
4387 		/* discard potentially stale zero_sum_result */
4388 		sh->ops.zero_sum_result = 0;
4389 
4390 		if (sh->check_state == check_state_run) {
4391 			/* async_xor_zero_sum destroys the contents of P */
4392 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4393 			s->uptodate--;
4394 		}
4395 		if (sh->check_state >= check_state_run &&
4396 		    sh->check_state <= check_state_run_pq) {
4397 			/* async_syndrome_zero_sum preserves P and Q, so
4398 			 * no need to mark them !uptodate here
4399 			 */
4400 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4401 			break;
4402 		}
4403 
4404 		/* we have 2-disk failure */
4405 		BUG_ON(s->failed != 2);
4406 		fallthrough;
4407 	case check_state_compute_result:
4408 		sh->check_state = check_state_idle;
4409 
4410 		/* check that a write has not made the stripe insync */
4411 		if (test_bit(STRIPE_INSYNC, &sh->state))
4412 			break;
4413 
4414 		/* now write out any block on a failed drive,
4415 		 * or P or Q if they were recomputed
4416 		 */
4417 		dev = NULL;
4418 		if (s->failed == 2) {
4419 			dev = &sh->dev[s->failed_num[1]];
4420 			s->locked++;
4421 			set_bit(R5_LOCKED, &dev->flags);
4422 			set_bit(R5_Wantwrite, &dev->flags);
4423 		}
4424 		if (s->failed >= 1) {
4425 			dev = &sh->dev[s->failed_num[0]];
4426 			s->locked++;
4427 			set_bit(R5_LOCKED, &dev->flags);
4428 			set_bit(R5_Wantwrite, &dev->flags);
4429 		}
4430 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4431 			dev = &sh->dev[pd_idx];
4432 			s->locked++;
4433 			set_bit(R5_LOCKED, &dev->flags);
4434 			set_bit(R5_Wantwrite, &dev->flags);
4435 		}
4436 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4437 			dev = &sh->dev[qd_idx];
4438 			s->locked++;
4439 			set_bit(R5_LOCKED, &dev->flags);
4440 			set_bit(R5_Wantwrite, &dev->flags);
4441 		}
4442 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4443 			      "%s: disk%td not up to date\n",
4444 			      mdname(conf->mddev),
4445 			      dev - (struct r5dev *) &sh->dev)) {
4446 			clear_bit(R5_LOCKED, &dev->flags);
4447 			clear_bit(R5_Wantwrite, &dev->flags);
4448 			s->locked--;
4449 		}
4450 		clear_bit(STRIPE_DEGRADED, &sh->state);
4451 
4452 		set_bit(STRIPE_INSYNC, &sh->state);
4453 		break;
4454 	case check_state_run:
4455 	case check_state_run_q:
4456 	case check_state_run_pq:
4457 		break; /* we will be called again upon completion */
4458 	case check_state_check_result:
4459 		sh->check_state = check_state_idle;
4460 
4461 		/* handle a successful check operation, if parity is correct
4462 		 * we are done.  Otherwise update the mismatch count and repair
4463 		 * parity if !MD_RECOVERY_CHECK
4464 		 */
4465 		if (sh->ops.zero_sum_result == 0) {
4466 			/* both parities are correct */
4467 			if (!s->failed)
4468 				set_bit(STRIPE_INSYNC, &sh->state);
4469 			else {
4470 				/* in contrast to the raid5 case we can validate
4471 				 * parity, but still have a failure to write
4472 				 * back
4473 				 */
4474 				sh->check_state = check_state_compute_result;
4475 				/* Returning at this point means that we may go
4476 				 * off and bring p and/or q uptodate again so
4477 				 * we make sure to check zero_sum_result again
4478 				 * to verify if p or q need writeback
4479 				 */
4480 			}
4481 		} else {
4482 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4483 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4484 				/* don't try to repair!! */
4485 				set_bit(STRIPE_INSYNC, &sh->state);
4486 				pr_warn_ratelimited("%s: mismatch sector in range "
4487 						    "%llu-%llu\n", mdname(conf->mddev),
4488 						    (unsigned long long) sh->sector,
4489 						    (unsigned long long) sh->sector +
4490 						    RAID5_STRIPE_SECTORS(conf));
4491 			} else {
4492 				int *target = &sh->ops.target;
4493 
4494 				sh->ops.target = -1;
4495 				sh->ops.target2 = -1;
4496 				sh->check_state = check_state_compute_run;
4497 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4498 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4499 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4500 					set_bit(R5_Wantcompute,
4501 						&sh->dev[pd_idx].flags);
4502 					*target = pd_idx;
4503 					target = &sh->ops.target2;
4504 					s->uptodate++;
4505 				}
4506 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4507 					set_bit(R5_Wantcompute,
4508 						&sh->dev[qd_idx].flags);
4509 					*target = qd_idx;
4510 					s->uptodate++;
4511 				}
4512 			}
4513 		}
4514 		break;
4515 	case check_state_compute_run:
4516 		break;
4517 	default:
4518 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4519 			__func__, sh->check_state,
4520 			(unsigned long long) sh->sector);
4521 		BUG();
4522 	}
4523 }
4524 
4525 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4526 {
4527 	int i;
4528 
4529 	/* We have read all the blocks in this stripe and now we need to
4530 	 * copy some of them into a target stripe for expand.
4531 	 */
4532 	struct dma_async_tx_descriptor *tx = NULL;
4533 	BUG_ON(sh->batch_head);
4534 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4535 	for (i = 0; i < sh->disks; i++)
4536 		if (i != sh->pd_idx && i != sh->qd_idx) {
4537 			int dd_idx, j;
4538 			struct stripe_head *sh2;
4539 			struct async_submit_ctl submit;
4540 
4541 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4542 			sector_t s = raid5_compute_sector(conf, bn, 0,
4543 							  &dd_idx, NULL);
4544 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4545 			if (sh2 == NULL)
4546 				/* so far only the early blocks of this stripe
4547 				 * have been requested.  When later blocks
4548 				 * get requested, we will try again
4549 				 */
4550 				continue;
4551 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4552 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4553 				/* must have already done this block */
4554 				raid5_release_stripe(sh2);
4555 				continue;
4556 			}
4557 
4558 			/* place all the copies on one channel */
4559 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4560 			tx = async_memcpy(sh2->dev[dd_idx].page,
4561 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4562 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4563 					  &submit);
4564 
4565 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4566 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4567 			for (j = 0; j < conf->raid_disks; j++)
4568 				if (j != sh2->pd_idx &&
4569 				    j != sh2->qd_idx &&
4570 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4571 					break;
4572 			if (j == conf->raid_disks) {
4573 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4574 				set_bit(STRIPE_HANDLE, &sh2->state);
4575 			}
4576 			raid5_release_stripe(sh2);
4577 
4578 		}
4579 	/* done submitting copies, wait for them to complete */
4580 	async_tx_quiesce(&tx);
4581 }
4582 
4583 /*
4584  * handle_stripe - do things to a stripe.
4585  *
4586  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4587  * state of various bits to see what needs to be done.
4588  * Possible results:
4589  *    return some read requests which now have data
4590  *    return some write requests which are safely on storage
4591  *    schedule a read on some buffers
4592  *    schedule a write of some buffers
4593  *    return confirmation of parity correctness
4594  *
4595  */
4596 
4597 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4598 {
4599 	struct r5conf *conf = sh->raid_conf;
4600 	int disks = sh->disks;
4601 	struct r5dev *dev;
4602 	int i;
4603 	int do_recovery = 0;
4604 
4605 	memset(s, 0, sizeof(*s));
4606 
4607 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4608 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4609 	s->failed_num[0] = -1;
4610 	s->failed_num[1] = -1;
4611 	s->log_failed = r5l_log_disk_error(conf);
4612 
4613 	/* Now to look around and see what can be done */
4614 	rcu_read_lock();
4615 	for (i=disks; i--; ) {
4616 		struct md_rdev *rdev;
4617 		sector_t first_bad;
4618 		int bad_sectors;
4619 		int is_bad = 0;
4620 
4621 		dev = &sh->dev[i];
4622 
4623 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4624 			 i, dev->flags,
4625 			 dev->toread, dev->towrite, dev->written);
4626 		/* maybe we can reply to a read
4627 		 *
4628 		 * new wantfill requests are only permitted while
4629 		 * ops_complete_biofill is guaranteed to be inactive
4630 		 */
4631 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4632 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4633 			set_bit(R5_Wantfill, &dev->flags);
4634 
4635 		/* now count some things */
4636 		if (test_bit(R5_LOCKED, &dev->flags))
4637 			s->locked++;
4638 		if (test_bit(R5_UPTODATE, &dev->flags))
4639 			s->uptodate++;
4640 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4641 			s->compute++;
4642 			BUG_ON(s->compute > 2);
4643 		}
4644 
4645 		if (test_bit(R5_Wantfill, &dev->flags))
4646 			s->to_fill++;
4647 		else if (dev->toread)
4648 			s->to_read++;
4649 		if (dev->towrite) {
4650 			s->to_write++;
4651 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4652 				s->non_overwrite++;
4653 		}
4654 		if (dev->written)
4655 			s->written++;
4656 		/* Prefer to use the replacement for reads, but only
4657 		 * if it is recovered enough and has no bad blocks.
4658 		 */
4659 		rdev = rcu_dereference(conf->disks[i].replacement);
4660 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4661 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4662 		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4663 				 &first_bad, &bad_sectors))
4664 			set_bit(R5_ReadRepl, &dev->flags);
4665 		else {
4666 			if (rdev && !test_bit(Faulty, &rdev->flags))
4667 				set_bit(R5_NeedReplace, &dev->flags);
4668 			else
4669 				clear_bit(R5_NeedReplace, &dev->flags);
4670 			rdev = rcu_dereference(conf->disks[i].rdev);
4671 			clear_bit(R5_ReadRepl, &dev->flags);
4672 		}
4673 		if (rdev && test_bit(Faulty, &rdev->flags))
4674 			rdev = NULL;
4675 		if (rdev) {
4676 			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4677 					     &first_bad, &bad_sectors);
4678 			if (s->blocked_rdev == NULL
4679 			    && (test_bit(Blocked, &rdev->flags)
4680 				|| is_bad < 0)) {
4681 				if (is_bad < 0)
4682 					set_bit(BlockedBadBlocks,
4683 						&rdev->flags);
4684 				s->blocked_rdev = rdev;
4685 				atomic_inc(&rdev->nr_pending);
4686 			}
4687 		}
4688 		clear_bit(R5_Insync, &dev->flags);
4689 		if (!rdev)
4690 			/* Not in-sync */;
4691 		else if (is_bad) {
4692 			/* also not in-sync */
4693 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4694 			    test_bit(R5_UPTODATE, &dev->flags)) {
4695 				/* treat as in-sync, but with a read error
4696 				 * which we can now try to correct
4697 				 */
4698 				set_bit(R5_Insync, &dev->flags);
4699 				set_bit(R5_ReadError, &dev->flags);
4700 			}
4701 		} else if (test_bit(In_sync, &rdev->flags))
4702 			set_bit(R5_Insync, &dev->flags);
4703 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4704 			/* in sync if before recovery_offset */
4705 			set_bit(R5_Insync, &dev->flags);
4706 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4707 			 test_bit(R5_Expanded, &dev->flags))
4708 			/* If we've reshaped into here, we assume it is Insync.
4709 			 * We will shortly update recovery_offset to make
4710 			 * it official.
4711 			 */
4712 			set_bit(R5_Insync, &dev->flags);
4713 
4714 		if (test_bit(R5_WriteError, &dev->flags)) {
4715 			/* This flag does not apply to '.replacement'
4716 			 * only to .rdev, so make sure to check that*/
4717 			struct md_rdev *rdev2 = rcu_dereference(
4718 				conf->disks[i].rdev);
4719 			if (rdev2 == rdev)
4720 				clear_bit(R5_Insync, &dev->flags);
4721 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4722 				s->handle_bad_blocks = 1;
4723 				atomic_inc(&rdev2->nr_pending);
4724 			} else
4725 				clear_bit(R5_WriteError, &dev->flags);
4726 		}
4727 		if (test_bit(R5_MadeGood, &dev->flags)) {
4728 			/* This flag does not apply to '.replacement'
4729 			 * only to .rdev, so make sure to check that*/
4730 			struct md_rdev *rdev2 = rcu_dereference(
4731 				conf->disks[i].rdev);
4732 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4733 				s->handle_bad_blocks = 1;
4734 				atomic_inc(&rdev2->nr_pending);
4735 			} else
4736 				clear_bit(R5_MadeGood, &dev->flags);
4737 		}
4738 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4739 			struct md_rdev *rdev2 = rcu_dereference(
4740 				conf->disks[i].replacement);
4741 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4742 				s->handle_bad_blocks = 1;
4743 				atomic_inc(&rdev2->nr_pending);
4744 			} else
4745 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4746 		}
4747 		if (!test_bit(R5_Insync, &dev->flags)) {
4748 			/* The ReadError flag will just be confusing now */
4749 			clear_bit(R5_ReadError, &dev->flags);
4750 			clear_bit(R5_ReWrite, &dev->flags);
4751 		}
4752 		if (test_bit(R5_ReadError, &dev->flags))
4753 			clear_bit(R5_Insync, &dev->flags);
4754 		if (!test_bit(R5_Insync, &dev->flags)) {
4755 			if (s->failed < 2)
4756 				s->failed_num[s->failed] = i;
4757 			s->failed++;
4758 			if (rdev && !test_bit(Faulty, &rdev->flags))
4759 				do_recovery = 1;
4760 			else if (!rdev) {
4761 				rdev = rcu_dereference(
4762 				    conf->disks[i].replacement);
4763 				if (rdev && !test_bit(Faulty, &rdev->flags))
4764 					do_recovery = 1;
4765 			}
4766 		}
4767 
4768 		if (test_bit(R5_InJournal, &dev->flags))
4769 			s->injournal++;
4770 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4771 			s->just_cached++;
4772 	}
4773 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4774 		/* If there is a failed device being replaced,
4775 		 *     we must be recovering.
4776 		 * else if we are after recovery_cp, we must be syncing
4777 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4778 		 * else we can only be replacing
4779 		 * sync and recovery both need to read all devices, and so
4780 		 * use the same flag.
4781 		 */
4782 		if (do_recovery ||
4783 		    sh->sector >= conf->mddev->recovery_cp ||
4784 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4785 			s->syncing = 1;
4786 		else
4787 			s->replacing = 1;
4788 	}
4789 	rcu_read_unlock();
4790 }
4791 
4792 /*
4793  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4794  * a head which can now be handled.
4795  */
4796 static int clear_batch_ready(struct stripe_head *sh)
4797 {
4798 	struct stripe_head *tmp;
4799 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4800 		return (sh->batch_head && sh->batch_head != sh);
4801 	spin_lock(&sh->stripe_lock);
4802 	if (!sh->batch_head) {
4803 		spin_unlock(&sh->stripe_lock);
4804 		return 0;
4805 	}
4806 
4807 	/*
4808 	 * this stripe could be added to a batch list before we check
4809 	 * BATCH_READY, skips it
4810 	 */
4811 	if (sh->batch_head != sh) {
4812 		spin_unlock(&sh->stripe_lock);
4813 		return 1;
4814 	}
4815 	spin_lock(&sh->batch_lock);
4816 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4817 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4818 	spin_unlock(&sh->batch_lock);
4819 	spin_unlock(&sh->stripe_lock);
4820 
4821 	/*
4822 	 * BATCH_READY is cleared, no new stripes can be added.
4823 	 * batch_list can be accessed without lock
4824 	 */
4825 	return 0;
4826 }
4827 
4828 static void break_stripe_batch_list(struct stripe_head *head_sh,
4829 				    unsigned long handle_flags)
4830 {
4831 	struct stripe_head *sh, *next;
4832 	int i;
4833 	int do_wakeup = 0;
4834 
4835 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4836 
4837 		list_del_init(&sh->batch_list);
4838 
4839 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4840 					  (1 << STRIPE_SYNCING) |
4841 					  (1 << STRIPE_REPLACED) |
4842 					  (1 << STRIPE_DELAYED) |
4843 					  (1 << STRIPE_BIT_DELAY) |
4844 					  (1 << STRIPE_FULL_WRITE) |
4845 					  (1 << STRIPE_BIOFILL_RUN) |
4846 					  (1 << STRIPE_COMPUTE_RUN)  |
4847 					  (1 << STRIPE_DISCARD) |
4848 					  (1 << STRIPE_BATCH_READY) |
4849 					  (1 << STRIPE_BATCH_ERR) |
4850 					  (1 << STRIPE_BITMAP_PENDING)),
4851 			"stripe state: %lx\n", sh->state);
4852 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4853 					      (1 << STRIPE_REPLACED)),
4854 			"head stripe state: %lx\n", head_sh->state);
4855 
4856 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4857 					    (1 << STRIPE_PREREAD_ACTIVE) |
4858 					    (1 << STRIPE_DEGRADED) |
4859 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4860 			      head_sh->state & (1 << STRIPE_INSYNC));
4861 
4862 		sh->check_state = head_sh->check_state;
4863 		sh->reconstruct_state = head_sh->reconstruct_state;
4864 		spin_lock_irq(&sh->stripe_lock);
4865 		sh->batch_head = NULL;
4866 		spin_unlock_irq(&sh->stripe_lock);
4867 		for (i = 0; i < sh->disks; i++) {
4868 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4869 				do_wakeup = 1;
4870 			sh->dev[i].flags = head_sh->dev[i].flags &
4871 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4872 		}
4873 		if (handle_flags == 0 ||
4874 		    sh->state & handle_flags)
4875 			set_bit(STRIPE_HANDLE, &sh->state);
4876 		raid5_release_stripe(sh);
4877 	}
4878 	spin_lock_irq(&head_sh->stripe_lock);
4879 	head_sh->batch_head = NULL;
4880 	spin_unlock_irq(&head_sh->stripe_lock);
4881 	for (i = 0; i < head_sh->disks; i++)
4882 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4883 			do_wakeup = 1;
4884 	if (head_sh->state & handle_flags)
4885 		set_bit(STRIPE_HANDLE, &head_sh->state);
4886 
4887 	if (do_wakeup)
4888 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4889 }
4890 
4891 static void handle_stripe(struct stripe_head *sh)
4892 {
4893 	struct stripe_head_state s;
4894 	struct r5conf *conf = sh->raid_conf;
4895 	int i;
4896 	int prexor;
4897 	int disks = sh->disks;
4898 	struct r5dev *pdev, *qdev;
4899 
4900 	clear_bit(STRIPE_HANDLE, &sh->state);
4901 
4902 	/*
4903 	 * handle_stripe should not continue handle the batched stripe, only
4904 	 * the head of batch list or lone stripe can continue. Otherwise we
4905 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4906 	 * is set for the batched stripe.
4907 	 */
4908 	if (clear_batch_ready(sh))
4909 		return;
4910 
4911 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4912 		/* already being handled, ensure it gets handled
4913 		 * again when current action finishes */
4914 		set_bit(STRIPE_HANDLE, &sh->state);
4915 		return;
4916 	}
4917 
4918 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4919 		break_stripe_batch_list(sh, 0);
4920 
4921 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4922 		spin_lock(&sh->stripe_lock);
4923 		/*
4924 		 * Cannot process 'sync' concurrently with 'discard'.
4925 		 * Flush data in r5cache before 'sync'.
4926 		 */
4927 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4928 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4929 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4930 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4931 			set_bit(STRIPE_SYNCING, &sh->state);
4932 			clear_bit(STRIPE_INSYNC, &sh->state);
4933 			clear_bit(STRIPE_REPLACED, &sh->state);
4934 		}
4935 		spin_unlock(&sh->stripe_lock);
4936 	}
4937 	clear_bit(STRIPE_DELAYED, &sh->state);
4938 
4939 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4940 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4941 	       (unsigned long long)sh->sector, sh->state,
4942 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4943 	       sh->check_state, sh->reconstruct_state);
4944 
4945 	analyse_stripe(sh, &s);
4946 
4947 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4948 		goto finish;
4949 
4950 	if (s.handle_bad_blocks ||
4951 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4952 		set_bit(STRIPE_HANDLE, &sh->state);
4953 		goto finish;
4954 	}
4955 
4956 	if (unlikely(s.blocked_rdev)) {
4957 		if (s.syncing || s.expanding || s.expanded ||
4958 		    s.replacing || s.to_write || s.written) {
4959 			set_bit(STRIPE_HANDLE, &sh->state);
4960 			goto finish;
4961 		}
4962 		/* There is nothing for the blocked_rdev to block */
4963 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4964 		s.blocked_rdev = NULL;
4965 	}
4966 
4967 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4968 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4969 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4970 	}
4971 
4972 	pr_debug("locked=%d uptodate=%d to_read=%d"
4973 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4974 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4975 	       s.failed_num[0], s.failed_num[1]);
4976 	/*
4977 	 * check if the array has lost more than max_degraded devices and,
4978 	 * if so, some requests might need to be failed.
4979 	 *
4980 	 * When journal device failed (log_failed), we will only process
4981 	 * the stripe if there is data need write to raid disks
4982 	 */
4983 	if (s.failed > conf->max_degraded ||
4984 	    (s.log_failed && s.injournal == 0)) {
4985 		sh->check_state = 0;
4986 		sh->reconstruct_state = 0;
4987 		break_stripe_batch_list(sh, 0);
4988 		if (s.to_read+s.to_write+s.written)
4989 			handle_failed_stripe(conf, sh, &s, disks);
4990 		if (s.syncing + s.replacing)
4991 			handle_failed_sync(conf, sh, &s);
4992 	}
4993 
4994 	/* Now we check to see if any write operations have recently
4995 	 * completed
4996 	 */
4997 	prexor = 0;
4998 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4999 		prexor = 1;
5000 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
5001 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5002 		sh->reconstruct_state = reconstruct_state_idle;
5003 
5004 		/* All the 'written' buffers and the parity block are ready to
5005 		 * be written back to disk
5006 		 */
5007 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5008 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5009 		BUG_ON(sh->qd_idx >= 0 &&
5010 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5011 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5012 		for (i = disks; i--; ) {
5013 			struct r5dev *dev = &sh->dev[i];
5014 			if (test_bit(R5_LOCKED, &dev->flags) &&
5015 				(i == sh->pd_idx || i == sh->qd_idx ||
5016 				 dev->written || test_bit(R5_InJournal,
5017 							  &dev->flags))) {
5018 				pr_debug("Writing block %d\n", i);
5019 				set_bit(R5_Wantwrite, &dev->flags);
5020 				if (prexor)
5021 					continue;
5022 				if (s.failed > 1)
5023 					continue;
5024 				if (!test_bit(R5_Insync, &dev->flags) ||
5025 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5026 				     s.failed == 0))
5027 					set_bit(STRIPE_INSYNC, &sh->state);
5028 			}
5029 		}
5030 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5031 			s.dec_preread_active = 1;
5032 	}
5033 
5034 	/*
5035 	 * might be able to return some write requests if the parity blocks
5036 	 * are safe, or on a failed drive
5037 	 */
5038 	pdev = &sh->dev[sh->pd_idx];
5039 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5040 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5041 	qdev = &sh->dev[sh->qd_idx];
5042 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5043 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5044 		|| conf->level < 6;
5045 
5046 	if (s.written &&
5047 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5048 			     && !test_bit(R5_LOCKED, &pdev->flags)
5049 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5050 				 test_bit(R5_Discard, &pdev->flags))))) &&
5051 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5052 			     && !test_bit(R5_LOCKED, &qdev->flags)
5053 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5054 				 test_bit(R5_Discard, &qdev->flags))))))
5055 		handle_stripe_clean_event(conf, sh, disks);
5056 
5057 	if (s.just_cached)
5058 		r5c_handle_cached_data_endio(conf, sh, disks);
5059 	log_stripe_write_finished(sh);
5060 
5061 	/* Now we might consider reading some blocks, either to check/generate
5062 	 * parity, or to satisfy requests
5063 	 * or to load a block that is being partially written.
5064 	 */
5065 	if (s.to_read || s.non_overwrite
5066 	    || (s.to_write && s.failed)
5067 	    || (s.syncing && (s.uptodate + s.compute < disks))
5068 	    || s.replacing
5069 	    || s.expanding)
5070 		handle_stripe_fill(sh, &s, disks);
5071 
5072 	/*
5073 	 * When the stripe finishes full journal write cycle (write to journal
5074 	 * and raid disk), this is the clean up procedure so it is ready for
5075 	 * next operation.
5076 	 */
5077 	r5c_finish_stripe_write_out(conf, sh, &s);
5078 
5079 	/*
5080 	 * Now to consider new write requests, cache write back and what else,
5081 	 * if anything should be read.  We do not handle new writes when:
5082 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5083 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5084 	 *    block.
5085 	 * 3/ A r5c cache log write is in flight.
5086 	 */
5087 
5088 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5089 		if (!r5c_is_writeback(conf->log)) {
5090 			if (s.to_write)
5091 				handle_stripe_dirtying(conf, sh, &s, disks);
5092 		} else { /* write back cache */
5093 			int ret = 0;
5094 
5095 			/* First, try handle writes in caching phase */
5096 			if (s.to_write)
5097 				ret = r5c_try_caching_write(conf, sh, &s,
5098 							    disks);
5099 			/*
5100 			 * If caching phase failed: ret == -EAGAIN
5101 			 *    OR
5102 			 * stripe under reclaim: !caching && injournal
5103 			 *
5104 			 * fall back to handle_stripe_dirtying()
5105 			 */
5106 			if (ret == -EAGAIN ||
5107 			    /* stripe under reclaim: !caching && injournal */
5108 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5109 			     s.injournal > 0)) {
5110 				ret = handle_stripe_dirtying(conf, sh, &s,
5111 							     disks);
5112 				if (ret == -EAGAIN)
5113 					goto finish;
5114 			}
5115 		}
5116 	}
5117 
5118 	/* maybe we need to check and possibly fix the parity for this stripe
5119 	 * Any reads will already have been scheduled, so we just see if enough
5120 	 * data is available.  The parity check is held off while parity
5121 	 * dependent operations are in flight.
5122 	 */
5123 	if (sh->check_state ||
5124 	    (s.syncing && s.locked == 0 &&
5125 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5126 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5127 		if (conf->level == 6)
5128 			handle_parity_checks6(conf, sh, &s, disks);
5129 		else
5130 			handle_parity_checks5(conf, sh, &s, disks);
5131 	}
5132 
5133 	if ((s.replacing || s.syncing) && s.locked == 0
5134 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5135 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5136 		/* Write out to replacement devices where possible */
5137 		for (i = 0; i < conf->raid_disks; i++)
5138 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5139 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5140 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5141 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5142 				s.locked++;
5143 			}
5144 		if (s.replacing)
5145 			set_bit(STRIPE_INSYNC, &sh->state);
5146 		set_bit(STRIPE_REPLACED, &sh->state);
5147 	}
5148 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5149 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5150 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5151 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5152 		clear_bit(STRIPE_SYNCING, &sh->state);
5153 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5154 			wake_up(&conf->wait_for_overlap);
5155 	}
5156 
5157 	/* If the failed drives are just a ReadError, then we might need
5158 	 * to progress the repair/check process
5159 	 */
5160 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5161 		for (i = 0; i < s.failed; i++) {
5162 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5163 			if (test_bit(R5_ReadError, &dev->flags)
5164 			    && !test_bit(R5_LOCKED, &dev->flags)
5165 			    && test_bit(R5_UPTODATE, &dev->flags)
5166 				) {
5167 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5168 					set_bit(R5_Wantwrite, &dev->flags);
5169 					set_bit(R5_ReWrite, &dev->flags);
5170 				} else
5171 					/* let's read it back */
5172 					set_bit(R5_Wantread, &dev->flags);
5173 				set_bit(R5_LOCKED, &dev->flags);
5174 				s.locked++;
5175 			}
5176 		}
5177 
5178 	/* Finish reconstruct operations initiated by the expansion process */
5179 	if (sh->reconstruct_state == reconstruct_state_result) {
5180 		struct stripe_head *sh_src
5181 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5182 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5183 			/* sh cannot be written until sh_src has been read.
5184 			 * so arrange for sh to be delayed a little
5185 			 */
5186 			set_bit(STRIPE_DELAYED, &sh->state);
5187 			set_bit(STRIPE_HANDLE, &sh->state);
5188 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5189 					      &sh_src->state))
5190 				atomic_inc(&conf->preread_active_stripes);
5191 			raid5_release_stripe(sh_src);
5192 			goto finish;
5193 		}
5194 		if (sh_src)
5195 			raid5_release_stripe(sh_src);
5196 
5197 		sh->reconstruct_state = reconstruct_state_idle;
5198 		clear_bit(STRIPE_EXPANDING, &sh->state);
5199 		for (i = conf->raid_disks; i--; ) {
5200 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5201 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5202 			s.locked++;
5203 		}
5204 	}
5205 
5206 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5207 	    !sh->reconstruct_state) {
5208 		/* Need to write out all blocks after computing parity */
5209 		sh->disks = conf->raid_disks;
5210 		stripe_set_idx(sh->sector, conf, 0, sh);
5211 		schedule_reconstruction(sh, &s, 1, 1);
5212 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5213 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5214 		atomic_dec(&conf->reshape_stripes);
5215 		wake_up(&conf->wait_for_overlap);
5216 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5217 	}
5218 
5219 	if (s.expanding && s.locked == 0 &&
5220 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5221 		handle_stripe_expansion(conf, sh);
5222 
5223 finish:
5224 	/* wait for this device to become unblocked */
5225 	if (unlikely(s.blocked_rdev)) {
5226 		if (conf->mddev->external)
5227 			md_wait_for_blocked_rdev(s.blocked_rdev,
5228 						 conf->mddev);
5229 		else
5230 			/* Internal metadata will immediately
5231 			 * be written by raid5d, so we don't
5232 			 * need to wait here.
5233 			 */
5234 			rdev_dec_pending(s.blocked_rdev,
5235 					 conf->mddev);
5236 	}
5237 
5238 	if (s.handle_bad_blocks)
5239 		for (i = disks; i--; ) {
5240 			struct md_rdev *rdev;
5241 			struct r5dev *dev = &sh->dev[i];
5242 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5243 				/* We own a safe reference to the rdev */
5244 				rdev = rdev_pend_deref(conf->disks[i].rdev);
5245 				if (!rdev_set_badblocks(rdev, sh->sector,
5246 							RAID5_STRIPE_SECTORS(conf), 0))
5247 					md_error(conf->mddev, rdev);
5248 				rdev_dec_pending(rdev, conf->mddev);
5249 			}
5250 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5251 				rdev = rdev_pend_deref(conf->disks[i].rdev);
5252 				rdev_clear_badblocks(rdev, sh->sector,
5253 						     RAID5_STRIPE_SECTORS(conf), 0);
5254 				rdev_dec_pending(rdev, conf->mddev);
5255 			}
5256 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5257 				rdev = rdev_pend_deref(conf->disks[i].replacement);
5258 				if (!rdev)
5259 					/* rdev have been moved down */
5260 					rdev = rdev_pend_deref(conf->disks[i].rdev);
5261 				rdev_clear_badblocks(rdev, sh->sector,
5262 						     RAID5_STRIPE_SECTORS(conf), 0);
5263 				rdev_dec_pending(rdev, conf->mddev);
5264 			}
5265 		}
5266 
5267 	if (s.ops_request)
5268 		raid_run_ops(sh, s.ops_request);
5269 
5270 	ops_run_io(sh, &s);
5271 
5272 	if (s.dec_preread_active) {
5273 		/* We delay this until after ops_run_io so that if make_request
5274 		 * is waiting on a flush, it won't continue until the writes
5275 		 * have actually been submitted.
5276 		 */
5277 		atomic_dec(&conf->preread_active_stripes);
5278 		if (atomic_read(&conf->preread_active_stripes) <
5279 		    IO_THRESHOLD)
5280 			md_wakeup_thread(conf->mddev->thread);
5281 	}
5282 
5283 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5284 }
5285 
5286 static void raid5_activate_delayed(struct r5conf *conf)
5287 	__must_hold(&conf->device_lock)
5288 {
5289 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5290 		while (!list_empty(&conf->delayed_list)) {
5291 			struct list_head *l = conf->delayed_list.next;
5292 			struct stripe_head *sh;
5293 			sh = list_entry(l, struct stripe_head, lru);
5294 			list_del_init(l);
5295 			clear_bit(STRIPE_DELAYED, &sh->state);
5296 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5297 				atomic_inc(&conf->preread_active_stripes);
5298 			list_add_tail(&sh->lru, &conf->hold_list);
5299 			raid5_wakeup_stripe_thread(sh);
5300 		}
5301 	}
5302 }
5303 
5304 static void activate_bit_delay(struct r5conf *conf,
5305 		struct list_head *temp_inactive_list)
5306 	__must_hold(&conf->device_lock)
5307 {
5308 	struct list_head head;
5309 	list_add(&head, &conf->bitmap_list);
5310 	list_del_init(&conf->bitmap_list);
5311 	while (!list_empty(&head)) {
5312 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5313 		int hash;
5314 		list_del_init(&sh->lru);
5315 		atomic_inc(&sh->count);
5316 		hash = sh->hash_lock_index;
5317 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5318 	}
5319 }
5320 
5321 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5322 {
5323 	struct r5conf *conf = mddev->private;
5324 	sector_t sector = bio->bi_iter.bi_sector;
5325 	unsigned int chunk_sectors;
5326 	unsigned int bio_sectors = bio_sectors(bio);
5327 
5328 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5329 	return  chunk_sectors >=
5330 		((sector & (chunk_sectors - 1)) + bio_sectors);
5331 }
5332 
5333 /*
5334  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5335  *  later sampled by raid5d.
5336  */
5337 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5338 {
5339 	unsigned long flags;
5340 
5341 	spin_lock_irqsave(&conf->device_lock, flags);
5342 
5343 	bi->bi_next = conf->retry_read_aligned_list;
5344 	conf->retry_read_aligned_list = bi;
5345 
5346 	spin_unlock_irqrestore(&conf->device_lock, flags);
5347 	md_wakeup_thread(conf->mddev->thread);
5348 }
5349 
5350 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5351 					 unsigned int *offset)
5352 {
5353 	struct bio *bi;
5354 
5355 	bi = conf->retry_read_aligned;
5356 	if (bi) {
5357 		*offset = conf->retry_read_offset;
5358 		conf->retry_read_aligned = NULL;
5359 		return bi;
5360 	}
5361 	bi = conf->retry_read_aligned_list;
5362 	if(bi) {
5363 		conf->retry_read_aligned_list = bi->bi_next;
5364 		bi->bi_next = NULL;
5365 		*offset = 0;
5366 	}
5367 
5368 	return bi;
5369 }
5370 
5371 /*
5372  *  The "raid5_align_endio" should check if the read succeeded and if it
5373  *  did, call bio_endio on the original bio (having bio_put the new bio
5374  *  first).
5375  *  If the read failed..
5376  */
5377 static void raid5_align_endio(struct bio *bi)
5378 {
5379 	struct md_io_acct *md_io_acct = bi->bi_private;
5380 	struct bio *raid_bi = md_io_acct->orig_bio;
5381 	struct mddev *mddev;
5382 	struct r5conf *conf;
5383 	struct md_rdev *rdev;
5384 	blk_status_t error = bi->bi_status;
5385 	unsigned long start_time = md_io_acct->start_time;
5386 
5387 	bio_put(bi);
5388 
5389 	rdev = (void*)raid_bi->bi_next;
5390 	raid_bi->bi_next = NULL;
5391 	mddev = rdev->mddev;
5392 	conf = mddev->private;
5393 
5394 	rdev_dec_pending(rdev, conf->mddev);
5395 
5396 	if (!error) {
5397 		if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5398 			bio_end_io_acct(raid_bi, start_time);
5399 		bio_endio(raid_bi);
5400 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5401 			wake_up(&conf->wait_for_quiescent);
5402 		return;
5403 	}
5404 
5405 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5406 
5407 	add_bio_to_retry(raid_bi, conf);
5408 }
5409 
5410 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5411 {
5412 	struct r5conf *conf = mddev->private;
5413 	struct bio *align_bio;
5414 	struct md_rdev *rdev;
5415 	sector_t sector, end_sector, first_bad;
5416 	int bad_sectors, dd_idx;
5417 	struct md_io_acct *md_io_acct;
5418 	bool did_inc;
5419 
5420 	if (!in_chunk_boundary(mddev, raid_bio)) {
5421 		pr_debug("%s: non aligned\n", __func__);
5422 		return 0;
5423 	}
5424 
5425 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5426 				      &dd_idx, NULL);
5427 	end_sector = bio_end_sector(raid_bio);
5428 
5429 	rcu_read_lock();
5430 	if (r5c_big_stripe_cached(conf, sector))
5431 		goto out_rcu_unlock;
5432 
5433 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5434 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5435 	    rdev->recovery_offset < end_sector) {
5436 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5437 		if (!rdev)
5438 			goto out_rcu_unlock;
5439 		if (test_bit(Faulty, &rdev->flags) ||
5440 		    !(test_bit(In_sync, &rdev->flags) ||
5441 		      rdev->recovery_offset >= end_sector))
5442 			goto out_rcu_unlock;
5443 	}
5444 
5445 	atomic_inc(&rdev->nr_pending);
5446 	rcu_read_unlock();
5447 
5448 	if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5449 			&bad_sectors)) {
5450 		bio_put(raid_bio);
5451 		rdev_dec_pending(rdev, mddev);
5452 		return 0;
5453 	}
5454 
5455 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5456 				    &mddev->io_acct_set);
5457 	md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5458 	raid_bio->bi_next = (void *)rdev;
5459 	if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5460 		md_io_acct->start_time = bio_start_io_acct(raid_bio);
5461 	md_io_acct->orig_bio = raid_bio;
5462 
5463 	align_bio->bi_end_io = raid5_align_endio;
5464 	align_bio->bi_private = md_io_acct;
5465 	align_bio->bi_iter.bi_sector = sector;
5466 
5467 	/* No reshape active, so we can trust rdev->data_offset */
5468 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5469 
5470 	did_inc = false;
5471 	if (conf->quiesce == 0) {
5472 		atomic_inc(&conf->active_aligned_reads);
5473 		did_inc = true;
5474 	}
5475 	/* need a memory barrier to detect the race with raid5_quiesce() */
5476 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5477 		/* quiesce is in progress, so we need to undo io activation and wait
5478 		 * for it to finish
5479 		 */
5480 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5481 			wake_up(&conf->wait_for_quiescent);
5482 		spin_lock_irq(&conf->device_lock);
5483 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5484 				    conf->device_lock);
5485 		atomic_inc(&conf->active_aligned_reads);
5486 		spin_unlock_irq(&conf->device_lock);
5487 	}
5488 
5489 	if (mddev->gendisk)
5490 		trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5491 				      raid_bio->bi_iter.bi_sector);
5492 	submit_bio_noacct(align_bio);
5493 	return 1;
5494 
5495 out_rcu_unlock:
5496 	rcu_read_unlock();
5497 	return 0;
5498 }
5499 
5500 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5501 {
5502 	struct bio *split;
5503 	sector_t sector = raid_bio->bi_iter.bi_sector;
5504 	unsigned chunk_sects = mddev->chunk_sectors;
5505 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5506 
5507 	if (sectors < bio_sectors(raid_bio)) {
5508 		struct r5conf *conf = mddev->private;
5509 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5510 		bio_chain(split, raid_bio);
5511 		submit_bio_noacct(raid_bio);
5512 		raid_bio = split;
5513 	}
5514 
5515 	if (!raid5_read_one_chunk(mddev, raid_bio))
5516 		return raid_bio;
5517 
5518 	return NULL;
5519 }
5520 
5521 /* __get_priority_stripe - get the next stripe to process
5522  *
5523  * Full stripe writes are allowed to pass preread active stripes up until
5524  * the bypass_threshold is exceeded.  In general the bypass_count
5525  * increments when the handle_list is handled before the hold_list; however, it
5526  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5527  * stripe with in flight i/o.  The bypass_count will be reset when the
5528  * head of the hold_list has changed, i.e. the head was promoted to the
5529  * handle_list.
5530  */
5531 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5532 	__must_hold(&conf->device_lock)
5533 {
5534 	struct stripe_head *sh, *tmp;
5535 	struct list_head *handle_list = NULL;
5536 	struct r5worker_group *wg;
5537 	bool second_try = !r5c_is_writeback(conf->log) &&
5538 		!r5l_log_disk_error(conf);
5539 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5540 		r5l_log_disk_error(conf);
5541 
5542 again:
5543 	wg = NULL;
5544 	sh = NULL;
5545 	if (conf->worker_cnt_per_group == 0) {
5546 		handle_list = try_loprio ? &conf->loprio_list :
5547 					&conf->handle_list;
5548 	} else if (group != ANY_GROUP) {
5549 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5550 				&conf->worker_groups[group].handle_list;
5551 		wg = &conf->worker_groups[group];
5552 	} else {
5553 		int i;
5554 		for (i = 0; i < conf->group_cnt; i++) {
5555 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5556 				&conf->worker_groups[i].handle_list;
5557 			wg = &conf->worker_groups[i];
5558 			if (!list_empty(handle_list))
5559 				break;
5560 		}
5561 	}
5562 
5563 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5564 		  __func__,
5565 		  list_empty(handle_list) ? "empty" : "busy",
5566 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5567 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5568 
5569 	if (!list_empty(handle_list)) {
5570 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5571 
5572 		if (list_empty(&conf->hold_list))
5573 			conf->bypass_count = 0;
5574 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5575 			if (conf->hold_list.next == conf->last_hold)
5576 				conf->bypass_count++;
5577 			else {
5578 				conf->last_hold = conf->hold_list.next;
5579 				conf->bypass_count -= conf->bypass_threshold;
5580 				if (conf->bypass_count < 0)
5581 					conf->bypass_count = 0;
5582 			}
5583 		}
5584 	} else if (!list_empty(&conf->hold_list) &&
5585 		   ((conf->bypass_threshold &&
5586 		     conf->bypass_count > conf->bypass_threshold) ||
5587 		    atomic_read(&conf->pending_full_writes) == 0)) {
5588 
5589 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5590 			if (conf->worker_cnt_per_group == 0 ||
5591 			    group == ANY_GROUP ||
5592 			    !cpu_online(tmp->cpu) ||
5593 			    cpu_to_group(tmp->cpu) == group) {
5594 				sh = tmp;
5595 				break;
5596 			}
5597 		}
5598 
5599 		if (sh) {
5600 			conf->bypass_count -= conf->bypass_threshold;
5601 			if (conf->bypass_count < 0)
5602 				conf->bypass_count = 0;
5603 		}
5604 		wg = NULL;
5605 	}
5606 
5607 	if (!sh) {
5608 		if (second_try)
5609 			return NULL;
5610 		second_try = true;
5611 		try_loprio = !try_loprio;
5612 		goto again;
5613 	}
5614 
5615 	if (wg) {
5616 		wg->stripes_cnt--;
5617 		sh->group = NULL;
5618 	}
5619 	list_del_init(&sh->lru);
5620 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5621 	return sh;
5622 }
5623 
5624 struct raid5_plug_cb {
5625 	struct blk_plug_cb	cb;
5626 	struct list_head	list;
5627 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5628 };
5629 
5630 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5631 {
5632 	struct raid5_plug_cb *cb = container_of(
5633 		blk_cb, struct raid5_plug_cb, cb);
5634 	struct stripe_head *sh;
5635 	struct mddev *mddev = cb->cb.data;
5636 	struct r5conf *conf = mddev->private;
5637 	int cnt = 0;
5638 	int hash;
5639 
5640 	if (cb->list.next && !list_empty(&cb->list)) {
5641 		spin_lock_irq(&conf->device_lock);
5642 		while (!list_empty(&cb->list)) {
5643 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5644 			list_del_init(&sh->lru);
5645 			/*
5646 			 * avoid race release_stripe_plug() sees
5647 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5648 			 * is still in our list
5649 			 */
5650 			smp_mb__before_atomic();
5651 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5652 			/*
5653 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5654 			 * case, the count is always > 1 here
5655 			 */
5656 			hash = sh->hash_lock_index;
5657 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5658 			cnt++;
5659 		}
5660 		spin_unlock_irq(&conf->device_lock);
5661 	}
5662 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5663 				     NR_STRIPE_HASH_LOCKS);
5664 	if (mddev->queue)
5665 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5666 	kfree(cb);
5667 }
5668 
5669 static void release_stripe_plug(struct mddev *mddev,
5670 				struct stripe_head *sh)
5671 {
5672 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5673 		raid5_unplug, mddev,
5674 		sizeof(struct raid5_plug_cb));
5675 	struct raid5_plug_cb *cb;
5676 
5677 	if (!blk_cb) {
5678 		raid5_release_stripe(sh);
5679 		return;
5680 	}
5681 
5682 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5683 
5684 	if (cb->list.next == NULL) {
5685 		int i;
5686 		INIT_LIST_HEAD(&cb->list);
5687 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5688 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5689 	}
5690 
5691 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5692 		list_add_tail(&sh->lru, &cb->list);
5693 	else
5694 		raid5_release_stripe(sh);
5695 }
5696 
5697 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5698 {
5699 	struct r5conf *conf = mddev->private;
5700 	sector_t logical_sector, last_sector;
5701 	struct stripe_head *sh;
5702 	int stripe_sectors;
5703 
5704 	/* We need to handle this when io_uring supports discard/trim */
5705 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5706 		return;
5707 
5708 	if (mddev->reshape_position != MaxSector)
5709 		/* Skip discard while reshape is happening */
5710 		return;
5711 
5712 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5713 	last_sector = bio_end_sector(bi);
5714 
5715 	bi->bi_next = NULL;
5716 
5717 	stripe_sectors = conf->chunk_sectors *
5718 		(conf->raid_disks - conf->max_degraded);
5719 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5720 					       stripe_sectors);
5721 	sector_div(last_sector, stripe_sectors);
5722 
5723 	logical_sector *= conf->chunk_sectors;
5724 	last_sector *= conf->chunk_sectors;
5725 
5726 	for (; logical_sector < last_sector;
5727 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5728 		DEFINE_WAIT(w);
5729 		int d;
5730 	again:
5731 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5732 		prepare_to_wait(&conf->wait_for_overlap, &w,
5733 				TASK_UNINTERRUPTIBLE);
5734 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5735 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5736 			raid5_release_stripe(sh);
5737 			schedule();
5738 			goto again;
5739 		}
5740 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5741 		spin_lock_irq(&sh->stripe_lock);
5742 		for (d = 0; d < conf->raid_disks; d++) {
5743 			if (d == sh->pd_idx || d == sh->qd_idx)
5744 				continue;
5745 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5746 				set_bit(R5_Overlap, &sh->dev[d].flags);
5747 				spin_unlock_irq(&sh->stripe_lock);
5748 				raid5_release_stripe(sh);
5749 				schedule();
5750 				goto again;
5751 			}
5752 		}
5753 		set_bit(STRIPE_DISCARD, &sh->state);
5754 		finish_wait(&conf->wait_for_overlap, &w);
5755 		sh->overwrite_disks = 0;
5756 		for (d = 0; d < conf->raid_disks; d++) {
5757 			if (d == sh->pd_idx || d == sh->qd_idx)
5758 				continue;
5759 			sh->dev[d].towrite = bi;
5760 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5761 			bio_inc_remaining(bi);
5762 			md_write_inc(mddev, bi);
5763 			sh->overwrite_disks++;
5764 		}
5765 		spin_unlock_irq(&sh->stripe_lock);
5766 		if (conf->mddev->bitmap) {
5767 			for (d = 0;
5768 			     d < conf->raid_disks - conf->max_degraded;
5769 			     d++)
5770 				md_bitmap_startwrite(mddev->bitmap,
5771 						     sh->sector,
5772 						     RAID5_STRIPE_SECTORS(conf),
5773 						     0);
5774 			sh->bm_seq = conf->seq_flush + 1;
5775 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5776 		}
5777 
5778 		set_bit(STRIPE_HANDLE, &sh->state);
5779 		clear_bit(STRIPE_DELAYED, &sh->state);
5780 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5781 			atomic_inc(&conf->preread_active_stripes);
5782 		release_stripe_plug(mddev, sh);
5783 	}
5784 
5785 	bio_endio(bi);
5786 }
5787 
5788 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5789 {
5790 	struct r5conf *conf = mddev->private;
5791 	int dd_idx;
5792 	sector_t new_sector;
5793 	sector_t logical_sector, last_sector;
5794 	struct stripe_head *sh;
5795 	const int rw = bio_data_dir(bi);
5796 	DEFINE_WAIT(w);
5797 	bool do_prepare;
5798 	bool do_flush = false;
5799 
5800 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5801 		int ret = log_handle_flush_request(conf, bi);
5802 
5803 		if (ret == 0)
5804 			return true;
5805 		if (ret == -ENODEV) {
5806 			if (md_flush_request(mddev, bi))
5807 				return true;
5808 		}
5809 		/* ret == -EAGAIN, fallback */
5810 		/*
5811 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5812 		 * we need to flush journal device
5813 		 */
5814 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5815 	}
5816 
5817 	if (!md_write_start(mddev, bi))
5818 		return false;
5819 	/*
5820 	 * If array is degraded, better not do chunk aligned read because
5821 	 * later we might have to read it again in order to reconstruct
5822 	 * data on failed drives.
5823 	 */
5824 	if (rw == READ && mddev->degraded == 0 &&
5825 	    mddev->reshape_position == MaxSector) {
5826 		bi = chunk_aligned_read(mddev, bi);
5827 		if (!bi)
5828 			return true;
5829 	}
5830 
5831 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5832 		make_discard_request(mddev, bi);
5833 		md_write_end(mddev);
5834 		return true;
5835 	}
5836 
5837 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5838 	last_sector = bio_end_sector(bi);
5839 	bi->bi_next = NULL;
5840 
5841 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
5842 	if ((bi->bi_opf & REQ_NOWAIT) &&
5843 	    (conf->reshape_progress != MaxSector) &&
5844 	    (mddev->reshape_backwards
5845 	    ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe)
5846 	    : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) {
5847 		bio_wouldblock_error(bi);
5848 		if (rw == WRITE)
5849 			md_write_end(mddev);
5850 		return true;
5851 	}
5852 	md_account_bio(mddev, &bi);
5853 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5854 	for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5855 		int previous;
5856 		int seq;
5857 
5858 		do_prepare = false;
5859 	retry:
5860 		seq = read_seqcount_begin(&conf->gen_lock);
5861 		previous = 0;
5862 		if (do_prepare)
5863 			prepare_to_wait(&conf->wait_for_overlap, &w,
5864 				TASK_UNINTERRUPTIBLE);
5865 		if (unlikely(conf->reshape_progress != MaxSector)) {
5866 			/* spinlock is needed as reshape_progress may be
5867 			 * 64bit on a 32bit platform, and so it might be
5868 			 * possible to see a half-updated value
5869 			 * Of course reshape_progress could change after
5870 			 * the lock is dropped, so once we get a reference
5871 			 * to the stripe that we think it is, we will have
5872 			 * to check again.
5873 			 */
5874 			spin_lock_irq(&conf->device_lock);
5875 			if (mddev->reshape_backwards
5876 			    ? logical_sector < conf->reshape_progress
5877 			    : logical_sector >= conf->reshape_progress) {
5878 				previous = 1;
5879 			} else {
5880 				if (mddev->reshape_backwards
5881 				    ? logical_sector < conf->reshape_safe
5882 				    : logical_sector >= conf->reshape_safe) {
5883 					spin_unlock_irq(&conf->device_lock);
5884 					schedule();
5885 					do_prepare = true;
5886 					goto retry;
5887 				}
5888 			}
5889 			spin_unlock_irq(&conf->device_lock);
5890 		}
5891 
5892 		new_sector = raid5_compute_sector(conf, logical_sector,
5893 						  previous,
5894 						  &dd_idx, NULL);
5895 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5896 			(unsigned long long)new_sector,
5897 			(unsigned long long)logical_sector);
5898 
5899 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5900 				       (bi->bi_opf & REQ_RAHEAD), 0);
5901 		if (sh) {
5902 			if (unlikely(previous)) {
5903 				/* expansion might have moved on while waiting for a
5904 				 * stripe, so we must do the range check again.
5905 				 * Expansion could still move past after this
5906 				 * test, but as we are holding a reference to
5907 				 * 'sh', we know that if that happens,
5908 				 *  STRIPE_EXPANDING will get set and the expansion
5909 				 * won't proceed until we finish with the stripe.
5910 				 */
5911 				int must_retry = 0;
5912 				spin_lock_irq(&conf->device_lock);
5913 				if (mddev->reshape_backwards
5914 				    ? logical_sector >= conf->reshape_progress
5915 				    : logical_sector < conf->reshape_progress)
5916 					/* mismatch, need to try again */
5917 					must_retry = 1;
5918 				spin_unlock_irq(&conf->device_lock);
5919 				if (must_retry) {
5920 					raid5_release_stripe(sh);
5921 					schedule();
5922 					do_prepare = true;
5923 					goto retry;
5924 				}
5925 			}
5926 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5927 				/* Might have got the wrong stripe_head
5928 				 * by accident
5929 				 */
5930 				raid5_release_stripe(sh);
5931 				goto retry;
5932 			}
5933 
5934 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5935 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5936 				/* Stripe is busy expanding or
5937 				 * add failed due to overlap.  Flush everything
5938 				 * and wait a while
5939 				 */
5940 				md_wakeup_thread(mddev->thread);
5941 				raid5_release_stripe(sh);
5942 				schedule();
5943 				do_prepare = true;
5944 				goto retry;
5945 			}
5946 			if (do_flush) {
5947 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5948 				/* we only need flush for one stripe */
5949 				do_flush = false;
5950 			}
5951 
5952 			set_bit(STRIPE_HANDLE, &sh->state);
5953 			clear_bit(STRIPE_DELAYED, &sh->state);
5954 			if ((!sh->batch_head || sh == sh->batch_head) &&
5955 			    (bi->bi_opf & REQ_SYNC) &&
5956 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5957 				atomic_inc(&conf->preread_active_stripes);
5958 			release_stripe_plug(mddev, sh);
5959 		} else {
5960 			/* cannot get stripe for read-ahead, just give-up */
5961 			bi->bi_status = BLK_STS_IOERR;
5962 			break;
5963 		}
5964 	}
5965 	finish_wait(&conf->wait_for_overlap, &w);
5966 
5967 	if (rw == WRITE)
5968 		md_write_end(mddev);
5969 	bio_endio(bi);
5970 	return true;
5971 }
5972 
5973 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5974 
5975 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5976 {
5977 	/* reshaping is quite different to recovery/resync so it is
5978 	 * handled quite separately ... here.
5979 	 *
5980 	 * On each call to sync_request, we gather one chunk worth of
5981 	 * destination stripes and flag them as expanding.
5982 	 * Then we find all the source stripes and request reads.
5983 	 * As the reads complete, handle_stripe will copy the data
5984 	 * into the destination stripe and release that stripe.
5985 	 */
5986 	struct r5conf *conf = mddev->private;
5987 	struct stripe_head *sh;
5988 	struct md_rdev *rdev;
5989 	sector_t first_sector, last_sector;
5990 	int raid_disks = conf->previous_raid_disks;
5991 	int data_disks = raid_disks - conf->max_degraded;
5992 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5993 	int i;
5994 	int dd_idx;
5995 	sector_t writepos, readpos, safepos;
5996 	sector_t stripe_addr;
5997 	int reshape_sectors;
5998 	struct list_head stripes;
5999 	sector_t retn;
6000 
6001 	if (sector_nr == 0) {
6002 		/* If restarting in the middle, skip the initial sectors */
6003 		if (mddev->reshape_backwards &&
6004 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6005 			sector_nr = raid5_size(mddev, 0, 0)
6006 				- conf->reshape_progress;
6007 		} else if (mddev->reshape_backwards &&
6008 			   conf->reshape_progress == MaxSector) {
6009 			/* shouldn't happen, but just in case, finish up.*/
6010 			sector_nr = MaxSector;
6011 		} else if (!mddev->reshape_backwards &&
6012 			   conf->reshape_progress > 0)
6013 			sector_nr = conf->reshape_progress;
6014 		sector_div(sector_nr, new_data_disks);
6015 		if (sector_nr) {
6016 			mddev->curr_resync_completed = sector_nr;
6017 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6018 			*skipped = 1;
6019 			retn = sector_nr;
6020 			goto finish;
6021 		}
6022 	}
6023 
6024 	/* We need to process a full chunk at a time.
6025 	 * If old and new chunk sizes differ, we need to process the
6026 	 * largest of these
6027 	 */
6028 
6029 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6030 
6031 	/* We update the metadata at least every 10 seconds, or when
6032 	 * the data about to be copied would over-write the source of
6033 	 * the data at the front of the range.  i.e. one new_stripe
6034 	 * along from reshape_progress new_maps to after where
6035 	 * reshape_safe old_maps to
6036 	 */
6037 	writepos = conf->reshape_progress;
6038 	sector_div(writepos, new_data_disks);
6039 	readpos = conf->reshape_progress;
6040 	sector_div(readpos, data_disks);
6041 	safepos = conf->reshape_safe;
6042 	sector_div(safepos, data_disks);
6043 	if (mddev->reshape_backwards) {
6044 		BUG_ON(writepos < reshape_sectors);
6045 		writepos -= reshape_sectors;
6046 		readpos += reshape_sectors;
6047 		safepos += reshape_sectors;
6048 	} else {
6049 		writepos += reshape_sectors;
6050 		/* readpos and safepos are worst-case calculations.
6051 		 * A negative number is overly pessimistic, and causes
6052 		 * obvious problems for unsigned storage.  So clip to 0.
6053 		 */
6054 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6055 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6056 	}
6057 
6058 	/* Having calculated the 'writepos' possibly use it
6059 	 * to set 'stripe_addr' which is where we will write to.
6060 	 */
6061 	if (mddev->reshape_backwards) {
6062 		BUG_ON(conf->reshape_progress == 0);
6063 		stripe_addr = writepos;
6064 		BUG_ON((mddev->dev_sectors &
6065 			~((sector_t)reshape_sectors - 1))
6066 		       - reshape_sectors - stripe_addr
6067 		       != sector_nr);
6068 	} else {
6069 		BUG_ON(writepos != sector_nr + reshape_sectors);
6070 		stripe_addr = sector_nr;
6071 	}
6072 
6073 	/* 'writepos' is the most advanced device address we might write.
6074 	 * 'readpos' is the least advanced device address we might read.
6075 	 * 'safepos' is the least address recorded in the metadata as having
6076 	 *     been reshaped.
6077 	 * If there is a min_offset_diff, these are adjusted either by
6078 	 * increasing the safepos/readpos if diff is negative, or
6079 	 * increasing writepos if diff is positive.
6080 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6081 	 * ensure safety in the face of a crash - that must be done by userspace
6082 	 * making a backup of the data.  So in that case there is no particular
6083 	 * rush to update metadata.
6084 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6085 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6086 	 * we can be safe in the event of a crash.
6087 	 * So we insist on updating metadata if safepos is behind writepos and
6088 	 * readpos is beyond writepos.
6089 	 * In any case, update the metadata every 10 seconds.
6090 	 * Maybe that number should be configurable, but I'm not sure it is
6091 	 * worth it.... maybe it could be a multiple of safemode_delay???
6092 	 */
6093 	if (conf->min_offset_diff < 0) {
6094 		safepos += -conf->min_offset_diff;
6095 		readpos += -conf->min_offset_diff;
6096 	} else
6097 		writepos += conf->min_offset_diff;
6098 
6099 	if ((mddev->reshape_backwards
6100 	     ? (safepos > writepos && readpos < writepos)
6101 	     : (safepos < writepos && readpos > writepos)) ||
6102 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6103 		/* Cannot proceed until we've updated the superblock... */
6104 		wait_event(conf->wait_for_overlap,
6105 			   atomic_read(&conf->reshape_stripes)==0
6106 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6107 		if (atomic_read(&conf->reshape_stripes) != 0)
6108 			return 0;
6109 		mddev->reshape_position = conf->reshape_progress;
6110 		mddev->curr_resync_completed = sector_nr;
6111 		if (!mddev->reshape_backwards)
6112 			/* Can update recovery_offset */
6113 			rdev_for_each(rdev, mddev)
6114 				if (rdev->raid_disk >= 0 &&
6115 				    !test_bit(Journal, &rdev->flags) &&
6116 				    !test_bit(In_sync, &rdev->flags) &&
6117 				    rdev->recovery_offset < sector_nr)
6118 					rdev->recovery_offset = sector_nr;
6119 
6120 		conf->reshape_checkpoint = jiffies;
6121 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6122 		md_wakeup_thread(mddev->thread);
6123 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6124 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6125 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6126 			return 0;
6127 		spin_lock_irq(&conf->device_lock);
6128 		conf->reshape_safe = mddev->reshape_position;
6129 		spin_unlock_irq(&conf->device_lock);
6130 		wake_up(&conf->wait_for_overlap);
6131 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6132 	}
6133 
6134 	INIT_LIST_HEAD(&stripes);
6135 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6136 		int j;
6137 		int skipped_disk = 0;
6138 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6139 		set_bit(STRIPE_EXPANDING, &sh->state);
6140 		atomic_inc(&conf->reshape_stripes);
6141 		/* If any of this stripe is beyond the end of the old
6142 		 * array, then we need to zero those blocks
6143 		 */
6144 		for (j=sh->disks; j--;) {
6145 			sector_t s;
6146 			if (j == sh->pd_idx)
6147 				continue;
6148 			if (conf->level == 6 &&
6149 			    j == sh->qd_idx)
6150 				continue;
6151 			s = raid5_compute_blocknr(sh, j, 0);
6152 			if (s < raid5_size(mddev, 0, 0)) {
6153 				skipped_disk = 1;
6154 				continue;
6155 			}
6156 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6157 			set_bit(R5_Expanded, &sh->dev[j].flags);
6158 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6159 		}
6160 		if (!skipped_disk) {
6161 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6162 			set_bit(STRIPE_HANDLE, &sh->state);
6163 		}
6164 		list_add(&sh->lru, &stripes);
6165 	}
6166 	spin_lock_irq(&conf->device_lock);
6167 	if (mddev->reshape_backwards)
6168 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6169 	else
6170 		conf->reshape_progress += reshape_sectors * new_data_disks;
6171 	spin_unlock_irq(&conf->device_lock);
6172 	/* Ok, those stripe are ready. We can start scheduling
6173 	 * reads on the source stripes.
6174 	 * The source stripes are determined by mapping the first and last
6175 	 * block on the destination stripes.
6176 	 */
6177 	first_sector =
6178 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6179 				     1, &dd_idx, NULL);
6180 	last_sector =
6181 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6182 					    * new_data_disks - 1),
6183 				     1, &dd_idx, NULL);
6184 	if (last_sector >= mddev->dev_sectors)
6185 		last_sector = mddev->dev_sectors - 1;
6186 	while (first_sector <= last_sector) {
6187 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6188 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6189 		set_bit(STRIPE_HANDLE, &sh->state);
6190 		raid5_release_stripe(sh);
6191 		first_sector += RAID5_STRIPE_SECTORS(conf);
6192 	}
6193 	/* Now that the sources are clearly marked, we can release
6194 	 * the destination stripes
6195 	 */
6196 	while (!list_empty(&stripes)) {
6197 		sh = list_entry(stripes.next, struct stripe_head, lru);
6198 		list_del_init(&sh->lru);
6199 		raid5_release_stripe(sh);
6200 	}
6201 	/* If this takes us to the resync_max point where we have to pause,
6202 	 * then we need to write out the superblock.
6203 	 */
6204 	sector_nr += reshape_sectors;
6205 	retn = reshape_sectors;
6206 finish:
6207 	if (mddev->curr_resync_completed > mddev->resync_max ||
6208 	    (sector_nr - mddev->curr_resync_completed) * 2
6209 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6210 		/* Cannot proceed until we've updated the superblock... */
6211 		wait_event(conf->wait_for_overlap,
6212 			   atomic_read(&conf->reshape_stripes) == 0
6213 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6214 		if (atomic_read(&conf->reshape_stripes) != 0)
6215 			goto ret;
6216 		mddev->reshape_position = conf->reshape_progress;
6217 		mddev->curr_resync_completed = sector_nr;
6218 		if (!mddev->reshape_backwards)
6219 			/* Can update recovery_offset */
6220 			rdev_for_each(rdev, mddev)
6221 				if (rdev->raid_disk >= 0 &&
6222 				    !test_bit(Journal, &rdev->flags) &&
6223 				    !test_bit(In_sync, &rdev->flags) &&
6224 				    rdev->recovery_offset < sector_nr)
6225 					rdev->recovery_offset = sector_nr;
6226 		conf->reshape_checkpoint = jiffies;
6227 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6228 		md_wakeup_thread(mddev->thread);
6229 		wait_event(mddev->sb_wait,
6230 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6231 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6232 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6233 			goto ret;
6234 		spin_lock_irq(&conf->device_lock);
6235 		conf->reshape_safe = mddev->reshape_position;
6236 		spin_unlock_irq(&conf->device_lock);
6237 		wake_up(&conf->wait_for_overlap);
6238 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6239 	}
6240 ret:
6241 	return retn;
6242 }
6243 
6244 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6245 					  int *skipped)
6246 {
6247 	struct r5conf *conf = mddev->private;
6248 	struct stripe_head *sh;
6249 	sector_t max_sector = mddev->dev_sectors;
6250 	sector_t sync_blocks;
6251 	int still_degraded = 0;
6252 	int i;
6253 
6254 	if (sector_nr >= max_sector) {
6255 		/* just being told to finish up .. nothing much to do */
6256 
6257 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6258 			end_reshape(conf);
6259 			return 0;
6260 		}
6261 
6262 		if (mddev->curr_resync < max_sector) /* aborted */
6263 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6264 					   &sync_blocks, 1);
6265 		else /* completed sync */
6266 			conf->fullsync = 0;
6267 		md_bitmap_close_sync(mddev->bitmap);
6268 
6269 		return 0;
6270 	}
6271 
6272 	/* Allow raid5_quiesce to complete */
6273 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6274 
6275 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6276 		return reshape_request(mddev, sector_nr, skipped);
6277 
6278 	/* No need to check resync_max as we never do more than one
6279 	 * stripe, and as resync_max will always be on a chunk boundary,
6280 	 * if the check in md_do_sync didn't fire, there is no chance
6281 	 * of overstepping resync_max here
6282 	 */
6283 
6284 	/* if there is too many failed drives and we are trying
6285 	 * to resync, then assert that we are finished, because there is
6286 	 * nothing we can do.
6287 	 */
6288 	if (mddev->degraded >= conf->max_degraded &&
6289 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6290 		sector_t rv = mddev->dev_sectors - sector_nr;
6291 		*skipped = 1;
6292 		return rv;
6293 	}
6294 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6295 	    !conf->fullsync &&
6296 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6297 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6298 		/* we can skip this block, and probably more */
6299 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6300 		*skipped = 1;
6301 		/* keep things rounded to whole stripes */
6302 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6303 	}
6304 
6305 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6306 
6307 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6308 	if (sh == NULL) {
6309 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6310 		/* make sure we don't swamp the stripe cache if someone else
6311 		 * is trying to get access
6312 		 */
6313 		schedule_timeout_uninterruptible(1);
6314 	}
6315 	/* Need to check if array will still be degraded after recovery/resync
6316 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6317 	 * one drive while leaving another faulty drive in array.
6318 	 */
6319 	rcu_read_lock();
6320 	for (i = 0; i < conf->raid_disks; i++) {
6321 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
6322 
6323 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6324 			still_degraded = 1;
6325 	}
6326 	rcu_read_unlock();
6327 
6328 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6329 
6330 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6331 	set_bit(STRIPE_HANDLE, &sh->state);
6332 
6333 	raid5_release_stripe(sh);
6334 
6335 	return RAID5_STRIPE_SECTORS(conf);
6336 }
6337 
6338 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6339 			       unsigned int offset)
6340 {
6341 	/* We may not be able to submit a whole bio at once as there
6342 	 * may not be enough stripe_heads available.
6343 	 * We cannot pre-allocate enough stripe_heads as we may need
6344 	 * more than exist in the cache (if we allow ever large chunks).
6345 	 * So we do one stripe head at a time and record in
6346 	 * ->bi_hw_segments how many have been done.
6347 	 *
6348 	 * We *know* that this entire raid_bio is in one chunk, so
6349 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6350 	 */
6351 	struct stripe_head *sh;
6352 	int dd_idx;
6353 	sector_t sector, logical_sector, last_sector;
6354 	int scnt = 0;
6355 	int handled = 0;
6356 
6357 	logical_sector = raid_bio->bi_iter.bi_sector &
6358 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6359 	sector = raid5_compute_sector(conf, logical_sector,
6360 				      0, &dd_idx, NULL);
6361 	last_sector = bio_end_sector(raid_bio);
6362 
6363 	for (; logical_sector < last_sector;
6364 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6365 		     sector += RAID5_STRIPE_SECTORS(conf),
6366 		     scnt++) {
6367 
6368 		if (scnt < offset)
6369 			/* already done this stripe */
6370 			continue;
6371 
6372 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6373 
6374 		if (!sh) {
6375 			/* failed to get a stripe - must wait */
6376 			conf->retry_read_aligned = raid_bio;
6377 			conf->retry_read_offset = scnt;
6378 			return handled;
6379 		}
6380 
6381 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6382 			raid5_release_stripe(sh);
6383 			conf->retry_read_aligned = raid_bio;
6384 			conf->retry_read_offset = scnt;
6385 			return handled;
6386 		}
6387 
6388 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6389 		handle_stripe(sh);
6390 		raid5_release_stripe(sh);
6391 		handled++;
6392 	}
6393 
6394 	bio_endio(raid_bio);
6395 
6396 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6397 		wake_up(&conf->wait_for_quiescent);
6398 	return handled;
6399 }
6400 
6401 static int handle_active_stripes(struct r5conf *conf, int group,
6402 				 struct r5worker *worker,
6403 				 struct list_head *temp_inactive_list)
6404 		__must_hold(&conf->device_lock)
6405 {
6406 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6407 	int i, batch_size = 0, hash;
6408 	bool release_inactive = false;
6409 
6410 	while (batch_size < MAX_STRIPE_BATCH &&
6411 			(sh = __get_priority_stripe(conf, group)) != NULL)
6412 		batch[batch_size++] = sh;
6413 
6414 	if (batch_size == 0) {
6415 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6416 			if (!list_empty(temp_inactive_list + i))
6417 				break;
6418 		if (i == NR_STRIPE_HASH_LOCKS) {
6419 			spin_unlock_irq(&conf->device_lock);
6420 			log_flush_stripe_to_raid(conf);
6421 			spin_lock_irq(&conf->device_lock);
6422 			return batch_size;
6423 		}
6424 		release_inactive = true;
6425 	}
6426 	spin_unlock_irq(&conf->device_lock);
6427 
6428 	release_inactive_stripe_list(conf, temp_inactive_list,
6429 				     NR_STRIPE_HASH_LOCKS);
6430 
6431 	r5l_flush_stripe_to_raid(conf->log);
6432 	if (release_inactive) {
6433 		spin_lock_irq(&conf->device_lock);
6434 		return 0;
6435 	}
6436 
6437 	for (i = 0; i < batch_size; i++)
6438 		handle_stripe(batch[i]);
6439 	log_write_stripe_run(conf);
6440 
6441 	cond_resched();
6442 
6443 	spin_lock_irq(&conf->device_lock);
6444 	for (i = 0; i < batch_size; i++) {
6445 		hash = batch[i]->hash_lock_index;
6446 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6447 	}
6448 	return batch_size;
6449 }
6450 
6451 static void raid5_do_work(struct work_struct *work)
6452 {
6453 	struct r5worker *worker = container_of(work, struct r5worker, work);
6454 	struct r5worker_group *group = worker->group;
6455 	struct r5conf *conf = group->conf;
6456 	struct mddev *mddev = conf->mddev;
6457 	int group_id = group - conf->worker_groups;
6458 	int handled;
6459 	struct blk_plug plug;
6460 
6461 	pr_debug("+++ raid5worker active\n");
6462 
6463 	blk_start_plug(&plug);
6464 	handled = 0;
6465 	spin_lock_irq(&conf->device_lock);
6466 	while (1) {
6467 		int batch_size, released;
6468 
6469 		released = release_stripe_list(conf, worker->temp_inactive_list);
6470 
6471 		batch_size = handle_active_stripes(conf, group_id, worker,
6472 						   worker->temp_inactive_list);
6473 		worker->working = false;
6474 		if (!batch_size && !released)
6475 			break;
6476 		handled += batch_size;
6477 		wait_event_lock_irq(mddev->sb_wait,
6478 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6479 			conf->device_lock);
6480 	}
6481 	pr_debug("%d stripes handled\n", handled);
6482 
6483 	spin_unlock_irq(&conf->device_lock);
6484 
6485 	flush_deferred_bios(conf);
6486 
6487 	r5l_flush_stripe_to_raid(conf->log);
6488 
6489 	async_tx_issue_pending_all();
6490 	blk_finish_plug(&plug);
6491 
6492 	pr_debug("--- raid5worker inactive\n");
6493 }
6494 
6495 /*
6496  * This is our raid5 kernel thread.
6497  *
6498  * We scan the hash table for stripes which can be handled now.
6499  * During the scan, completed stripes are saved for us by the interrupt
6500  * handler, so that they will not have to wait for our next wakeup.
6501  */
6502 static void raid5d(struct md_thread *thread)
6503 {
6504 	struct mddev *mddev = thread->mddev;
6505 	struct r5conf *conf = mddev->private;
6506 	int handled;
6507 	struct blk_plug plug;
6508 
6509 	pr_debug("+++ raid5d active\n");
6510 
6511 	md_check_recovery(mddev);
6512 
6513 	blk_start_plug(&plug);
6514 	handled = 0;
6515 	spin_lock_irq(&conf->device_lock);
6516 	while (1) {
6517 		struct bio *bio;
6518 		int batch_size, released;
6519 		unsigned int offset;
6520 
6521 		released = release_stripe_list(conf, conf->temp_inactive_list);
6522 		if (released)
6523 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6524 
6525 		if (
6526 		    !list_empty(&conf->bitmap_list)) {
6527 			/* Now is a good time to flush some bitmap updates */
6528 			conf->seq_flush++;
6529 			spin_unlock_irq(&conf->device_lock);
6530 			md_bitmap_unplug(mddev->bitmap);
6531 			spin_lock_irq(&conf->device_lock);
6532 			conf->seq_write = conf->seq_flush;
6533 			activate_bit_delay(conf, conf->temp_inactive_list);
6534 		}
6535 		raid5_activate_delayed(conf);
6536 
6537 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6538 			int ok;
6539 			spin_unlock_irq(&conf->device_lock);
6540 			ok = retry_aligned_read(conf, bio, offset);
6541 			spin_lock_irq(&conf->device_lock);
6542 			if (!ok)
6543 				break;
6544 			handled++;
6545 		}
6546 
6547 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6548 						   conf->temp_inactive_list);
6549 		if (!batch_size && !released)
6550 			break;
6551 		handled += batch_size;
6552 
6553 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6554 			spin_unlock_irq(&conf->device_lock);
6555 			md_check_recovery(mddev);
6556 			spin_lock_irq(&conf->device_lock);
6557 		}
6558 	}
6559 	pr_debug("%d stripes handled\n", handled);
6560 
6561 	spin_unlock_irq(&conf->device_lock);
6562 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6563 	    mutex_trylock(&conf->cache_size_mutex)) {
6564 		grow_one_stripe(conf, __GFP_NOWARN);
6565 		/* Set flag even if allocation failed.  This helps
6566 		 * slow down allocation requests when mem is short
6567 		 */
6568 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6569 		mutex_unlock(&conf->cache_size_mutex);
6570 	}
6571 
6572 	flush_deferred_bios(conf);
6573 
6574 	r5l_flush_stripe_to_raid(conf->log);
6575 
6576 	async_tx_issue_pending_all();
6577 	blk_finish_plug(&plug);
6578 
6579 	pr_debug("--- raid5d inactive\n");
6580 }
6581 
6582 static ssize_t
6583 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6584 {
6585 	struct r5conf *conf;
6586 	int ret = 0;
6587 	spin_lock(&mddev->lock);
6588 	conf = mddev->private;
6589 	if (conf)
6590 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6591 	spin_unlock(&mddev->lock);
6592 	return ret;
6593 }
6594 
6595 int
6596 raid5_set_cache_size(struct mddev *mddev, int size)
6597 {
6598 	int result = 0;
6599 	struct r5conf *conf = mddev->private;
6600 
6601 	if (size <= 16 || size > 32768)
6602 		return -EINVAL;
6603 
6604 	conf->min_nr_stripes = size;
6605 	mutex_lock(&conf->cache_size_mutex);
6606 	while (size < conf->max_nr_stripes &&
6607 	       drop_one_stripe(conf))
6608 		;
6609 	mutex_unlock(&conf->cache_size_mutex);
6610 
6611 	md_allow_write(mddev);
6612 
6613 	mutex_lock(&conf->cache_size_mutex);
6614 	while (size > conf->max_nr_stripes)
6615 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6616 			conf->min_nr_stripes = conf->max_nr_stripes;
6617 			result = -ENOMEM;
6618 			break;
6619 		}
6620 	mutex_unlock(&conf->cache_size_mutex);
6621 
6622 	return result;
6623 }
6624 EXPORT_SYMBOL(raid5_set_cache_size);
6625 
6626 static ssize_t
6627 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6628 {
6629 	struct r5conf *conf;
6630 	unsigned long new;
6631 	int err;
6632 
6633 	if (len >= PAGE_SIZE)
6634 		return -EINVAL;
6635 	if (kstrtoul(page, 10, &new))
6636 		return -EINVAL;
6637 	err = mddev_lock(mddev);
6638 	if (err)
6639 		return err;
6640 	conf = mddev->private;
6641 	if (!conf)
6642 		err = -ENODEV;
6643 	else
6644 		err = raid5_set_cache_size(mddev, new);
6645 	mddev_unlock(mddev);
6646 
6647 	return err ?: len;
6648 }
6649 
6650 static struct md_sysfs_entry
6651 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6652 				raid5_show_stripe_cache_size,
6653 				raid5_store_stripe_cache_size);
6654 
6655 static ssize_t
6656 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6657 {
6658 	struct r5conf *conf = mddev->private;
6659 	if (conf)
6660 		return sprintf(page, "%d\n", conf->rmw_level);
6661 	else
6662 		return 0;
6663 }
6664 
6665 static ssize_t
6666 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6667 {
6668 	struct r5conf *conf = mddev->private;
6669 	unsigned long new;
6670 
6671 	if (!conf)
6672 		return -ENODEV;
6673 
6674 	if (len >= PAGE_SIZE)
6675 		return -EINVAL;
6676 
6677 	if (kstrtoul(page, 10, &new))
6678 		return -EINVAL;
6679 
6680 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6681 		return -EINVAL;
6682 
6683 	if (new != PARITY_DISABLE_RMW &&
6684 	    new != PARITY_ENABLE_RMW &&
6685 	    new != PARITY_PREFER_RMW)
6686 		return -EINVAL;
6687 
6688 	conf->rmw_level = new;
6689 	return len;
6690 }
6691 
6692 static struct md_sysfs_entry
6693 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6694 			 raid5_show_rmw_level,
6695 			 raid5_store_rmw_level);
6696 
6697 static ssize_t
6698 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6699 {
6700 	struct r5conf *conf;
6701 	int ret = 0;
6702 
6703 	spin_lock(&mddev->lock);
6704 	conf = mddev->private;
6705 	if (conf)
6706 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6707 	spin_unlock(&mddev->lock);
6708 	return ret;
6709 }
6710 
6711 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6712 static ssize_t
6713 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6714 {
6715 	struct r5conf *conf;
6716 	unsigned long new;
6717 	int err;
6718 	int size;
6719 
6720 	if (len >= PAGE_SIZE)
6721 		return -EINVAL;
6722 	if (kstrtoul(page, 10, &new))
6723 		return -EINVAL;
6724 
6725 	/*
6726 	 * The value should not be bigger than PAGE_SIZE. It requires to
6727 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6728 	 * of two.
6729 	 */
6730 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6731 			new > PAGE_SIZE || new == 0 ||
6732 			new != roundup_pow_of_two(new))
6733 		return -EINVAL;
6734 
6735 	err = mddev_lock(mddev);
6736 	if (err)
6737 		return err;
6738 
6739 	conf = mddev->private;
6740 	if (!conf) {
6741 		err = -ENODEV;
6742 		goto out_unlock;
6743 	}
6744 
6745 	if (new == conf->stripe_size)
6746 		goto out_unlock;
6747 
6748 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6749 			conf->stripe_size, new);
6750 
6751 	if (mddev->sync_thread ||
6752 		test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6753 		mddev->reshape_position != MaxSector ||
6754 		mddev->sysfs_active) {
6755 		err = -EBUSY;
6756 		goto out_unlock;
6757 	}
6758 
6759 	mddev_suspend(mddev);
6760 	mutex_lock(&conf->cache_size_mutex);
6761 	size = conf->max_nr_stripes;
6762 
6763 	shrink_stripes(conf);
6764 
6765 	conf->stripe_size = new;
6766 	conf->stripe_shift = ilog2(new) - 9;
6767 	conf->stripe_sectors = new >> 9;
6768 	if (grow_stripes(conf, size)) {
6769 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
6770 				mdname(mddev));
6771 		err = -ENOMEM;
6772 	}
6773 	mutex_unlock(&conf->cache_size_mutex);
6774 	mddev_resume(mddev);
6775 
6776 out_unlock:
6777 	mddev_unlock(mddev);
6778 	return err ?: len;
6779 }
6780 
6781 static struct md_sysfs_entry
6782 raid5_stripe_size = __ATTR(stripe_size, 0644,
6783 			 raid5_show_stripe_size,
6784 			 raid5_store_stripe_size);
6785 #else
6786 static struct md_sysfs_entry
6787 raid5_stripe_size = __ATTR(stripe_size, 0444,
6788 			 raid5_show_stripe_size,
6789 			 NULL);
6790 #endif
6791 
6792 static ssize_t
6793 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6794 {
6795 	struct r5conf *conf;
6796 	int ret = 0;
6797 	spin_lock(&mddev->lock);
6798 	conf = mddev->private;
6799 	if (conf)
6800 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6801 	spin_unlock(&mddev->lock);
6802 	return ret;
6803 }
6804 
6805 static ssize_t
6806 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6807 {
6808 	struct r5conf *conf;
6809 	unsigned long new;
6810 	int err;
6811 
6812 	if (len >= PAGE_SIZE)
6813 		return -EINVAL;
6814 	if (kstrtoul(page, 10, &new))
6815 		return -EINVAL;
6816 
6817 	err = mddev_lock(mddev);
6818 	if (err)
6819 		return err;
6820 	conf = mddev->private;
6821 	if (!conf)
6822 		err = -ENODEV;
6823 	else if (new > conf->min_nr_stripes)
6824 		err = -EINVAL;
6825 	else
6826 		conf->bypass_threshold = new;
6827 	mddev_unlock(mddev);
6828 	return err ?: len;
6829 }
6830 
6831 static struct md_sysfs_entry
6832 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6833 					S_IRUGO | S_IWUSR,
6834 					raid5_show_preread_threshold,
6835 					raid5_store_preread_threshold);
6836 
6837 static ssize_t
6838 raid5_show_skip_copy(struct mddev *mddev, char *page)
6839 {
6840 	struct r5conf *conf;
6841 	int ret = 0;
6842 	spin_lock(&mddev->lock);
6843 	conf = mddev->private;
6844 	if (conf)
6845 		ret = sprintf(page, "%d\n", conf->skip_copy);
6846 	spin_unlock(&mddev->lock);
6847 	return ret;
6848 }
6849 
6850 static ssize_t
6851 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6852 {
6853 	struct r5conf *conf;
6854 	unsigned long new;
6855 	int err;
6856 
6857 	if (len >= PAGE_SIZE)
6858 		return -EINVAL;
6859 	if (kstrtoul(page, 10, &new))
6860 		return -EINVAL;
6861 	new = !!new;
6862 
6863 	err = mddev_lock(mddev);
6864 	if (err)
6865 		return err;
6866 	conf = mddev->private;
6867 	if (!conf)
6868 		err = -ENODEV;
6869 	else if (new != conf->skip_copy) {
6870 		struct request_queue *q = mddev->queue;
6871 
6872 		mddev_suspend(mddev);
6873 		conf->skip_copy = new;
6874 		if (new)
6875 			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6876 		else
6877 			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6878 		mddev_resume(mddev);
6879 	}
6880 	mddev_unlock(mddev);
6881 	return err ?: len;
6882 }
6883 
6884 static struct md_sysfs_entry
6885 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6886 					raid5_show_skip_copy,
6887 					raid5_store_skip_copy);
6888 
6889 static ssize_t
6890 stripe_cache_active_show(struct mddev *mddev, char *page)
6891 {
6892 	struct r5conf *conf = mddev->private;
6893 	if (conf)
6894 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6895 	else
6896 		return 0;
6897 }
6898 
6899 static struct md_sysfs_entry
6900 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6901 
6902 static ssize_t
6903 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6904 {
6905 	struct r5conf *conf;
6906 	int ret = 0;
6907 	spin_lock(&mddev->lock);
6908 	conf = mddev->private;
6909 	if (conf)
6910 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6911 	spin_unlock(&mddev->lock);
6912 	return ret;
6913 }
6914 
6915 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6916 			       int *group_cnt,
6917 			       struct r5worker_group **worker_groups);
6918 static ssize_t
6919 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6920 {
6921 	struct r5conf *conf;
6922 	unsigned int new;
6923 	int err;
6924 	struct r5worker_group *new_groups, *old_groups;
6925 	int group_cnt;
6926 
6927 	if (len >= PAGE_SIZE)
6928 		return -EINVAL;
6929 	if (kstrtouint(page, 10, &new))
6930 		return -EINVAL;
6931 	/* 8192 should be big enough */
6932 	if (new > 8192)
6933 		return -EINVAL;
6934 
6935 	err = mddev_lock(mddev);
6936 	if (err)
6937 		return err;
6938 	conf = mddev->private;
6939 	if (!conf)
6940 		err = -ENODEV;
6941 	else if (new != conf->worker_cnt_per_group) {
6942 		mddev_suspend(mddev);
6943 
6944 		old_groups = conf->worker_groups;
6945 		if (old_groups)
6946 			flush_workqueue(raid5_wq);
6947 
6948 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6949 		if (!err) {
6950 			spin_lock_irq(&conf->device_lock);
6951 			conf->group_cnt = group_cnt;
6952 			conf->worker_cnt_per_group = new;
6953 			conf->worker_groups = new_groups;
6954 			spin_unlock_irq(&conf->device_lock);
6955 
6956 			if (old_groups)
6957 				kfree(old_groups[0].workers);
6958 			kfree(old_groups);
6959 		}
6960 		mddev_resume(mddev);
6961 	}
6962 	mddev_unlock(mddev);
6963 
6964 	return err ?: len;
6965 }
6966 
6967 static struct md_sysfs_entry
6968 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6969 				raid5_show_group_thread_cnt,
6970 				raid5_store_group_thread_cnt);
6971 
6972 static struct attribute *raid5_attrs[] =  {
6973 	&raid5_stripecache_size.attr,
6974 	&raid5_stripecache_active.attr,
6975 	&raid5_preread_bypass_threshold.attr,
6976 	&raid5_group_thread_cnt.attr,
6977 	&raid5_skip_copy.attr,
6978 	&raid5_rmw_level.attr,
6979 	&raid5_stripe_size.attr,
6980 	&r5c_journal_mode.attr,
6981 	&ppl_write_hint.attr,
6982 	NULL,
6983 };
6984 static const struct attribute_group raid5_attrs_group = {
6985 	.name = NULL,
6986 	.attrs = raid5_attrs,
6987 };
6988 
6989 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6990 			       struct r5worker_group **worker_groups)
6991 {
6992 	int i, j, k;
6993 	ssize_t size;
6994 	struct r5worker *workers;
6995 
6996 	if (cnt == 0) {
6997 		*group_cnt = 0;
6998 		*worker_groups = NULL;
6999 		return 0;
7000 	}
7001 	*group_cnt = num_possible_nodes();
7002 	size = sizeof(struct r5worker) * cnt;
7003 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7004 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7005 				 GFP_NOIO);
7006 	if (!*worker_groups || !workers) {
7007 		kfree(workers);
7008 		kfree(*worker_groups);
7009 		return -ENOMEM;
7010 	}
7011 
7012 	for (i = 0; i < *group_cnt; i++) {
7013 		struct r5worker_group *group;
7014 
7015 		group = &(*worker_groups)[i];
7016 		INIT_LIST_HEAD(&group->handle_list);
7017 		INIT_LIST_HEAD(&group->loprio_list);
7018 		group->conf = conf;
7019 		group->workers = workers + i * cnt;
7020 
7021 		for (j = 0; j < cnt; j++) {
7022 			struct r5worker *worker = group->workers + j;
7023 			worker->group = group;
7024 			INIT_WORK(&worker->work, raid5_do_work);
7025 
7026 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7027 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7028 		}
7029 	}
7030 
7031 	return 0;
7032 }
7033 
7034 static void free_thread_groups(struct r5conf *conf)
7035 {
7036 	if (conf->worker_groups)
7037 		kfree(conf->worker_groups[0].workers);
7038 	kfree(conf->worker_groups);
7039 	conf->worker_groups = NULL;
7040 }
7041 
7042 static sector_t
7043 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7044 {
7045 	struct r5conf *conf = mddev->private;
7046 
7047 	if (!sectors)
7048 		sectors = mddev->dev_sectors;
7049 	if (!raid_disks)
7050 		/* size is defined by the smallest of previous and new size */
7051 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7052 
7053 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7054 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7055 	return sectors * (raid_disks - conf->max_degraded);
7056 }
7057 
7058 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7059 {
7060 	safe_put_page(percpu->spare_page);
7061 	percpu->spare_page = NULL;
7062 	kvfree(percpu->scribble);
7063 	percpu->scribble = NULL;
7064 }
7065 
7066 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7067 {
7068 	if (conf->level == 6 && !percpu->spare_page) {
7069 		percpu->spare_page = alloc_page(GFP_KERNEL);
7070 		if (!percpu->spare_page)
7071 			return -ENOMEM;
7072 	}
7073 
7074 	if (scribble_alloc(percpu,
7075 			   max(conf->raid_disks,
7076 			       conf->previous_raid_disks),
7077 			   max(conf->chunk_sectors,
7078 			       conf->prev_chunk_sectors)
7079 			   / RAID5_STRIPE_SECTORS(conf))) {
7080 		free_scratch_buffer(conf, percpu);
7081 		return -ENOMEM;
7082 	}
7083 
7084 	local_lock_init(&percpu->lock);
7085 	return 0;
7086 }
7087 
7088 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7089 {
7090 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7091 
7092 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7093 	return 0;
7094 }
7095 
7096 static void raid5_free_percpu(struct r5conf *conf)
7097 {
7098 	if (!conf->percpu)
7099 		return;
7100 
7101 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7102 	free_percpu(conf->percpu);
7103 }
7104 
7105 static void free_conf(struct r5conf *conf)
7106 {
7107 	int i;
7108 
7109 	log_exit(conf);
7110 
7111 	unregister_shrinker(&conf->shrinker);
7112 	free_thread_groups(conf);
7113 	shrink_stripes(conf);
7114 	raid5_free_percpu(conf);
7115 	for (i = 0; i < conf->pool_size; i++)
7116 		if (conf->disks[i].extra_page)
7117 			put_page(conf->disks[i].extra_page);
7118 	kfree(conf->disks);
7119 	bioset_exit(&conf->bio_split);
7120 	kfree(conf->stripe_hashtbl);
7121 	kfree(conf->pending_data);
7122 	kfree(conf);
7123 }
7124 
7125 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7126 {
7127 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7128 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7129 
7130 	if (alloc_scratch_buffer(conf, percpu)) {
7131 		pr_warn("%s: failed memory allocation for cpu%u\n",
7132 			__func__, cpu);
7133 		return -ENOMEM;
7134 	}
7135 	return 0;
7136 }
7137 
7138 static int raid5_alloc_percpu(struct r5conf *conf)
7139 {
7140 	int err = 0;
7141 
7142 	conf->percpu = alloc_percpu(struct raid5_percpu);
7143 	if (!conf->percpu)
7144 		return -ENOMEM;
7145 
7146 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7147 	if (!err) {
7148 		conf->scribble_disks = max(conf->raid_disks,
7149 			conf->previous_raid_disks);
7150 		conf->scribble_sectors = max(conf->chunk_sectors,
7151 			conf->prev_chunk_sectors);
7152 	}
7153 	return err;
7154 }
7155 
7156 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7157 				      struct shrink_control *sc)
7158 {
7159 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7160 	unsigned long ret = SHRINK_STOP;
7161 
7162 	if (mutex_trylock(&conf->cache_size_mutex)) {
7163 		ret= 0;
7164 		while (ret < sc->nr_to_scan &&
7165 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7166 			if (drop_one_stripe(conf) == 0) {
7167 				ret = SHRINK_STOP;
7168 				break;
7169 			}
7170 			ret++;
7171 		}
7172 		mutex_unlock(&conf->cache_size_mutex);
7173 	}
7174 	return ret;
7175 }
7176 
7177 static unsigned long raid5_cache_count(struct shrinker *shrink,
7178 				       struct shrink_control *sc)
7179 {
7180 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7181 
7182 	if (conf->max_nr_stripes < conf->min_nr_stripes)
7183 		/* unlikely, but not impossible */
7184 		return 0;
7185 	return conf->max_nr_stripes - conf->min_nr_stripes;
7186 }
7187 
7188 static struct r5conf *setup_conf(struct mddev *mddev)
7189 {
7190 	struct r5conf *conf;
7191 	int raid_disk, memory, max_disks;
7192 	struct md_rdev *rdev;
7193 	struct disk_info *disk;
7194 	char pers_name[6];
7195 	int i;
7196 	int group_cnt;
7197 	struct r5worker_group *new_group;
7198 	int ret = -ENOMEM;
7199 
7200 	if (mddev->new_level != 5
7201 	    && mddev->new_level != 4
7202 	    && mddev->new_level != 6) {
7203 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7204 			mdname(mddev), mddev->new_level);
7205 		return ERR_PTR(-EIO);
7206 	}
7207 	if ((mddev->new_level == 5
7208 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7209 	    (mddev->new_level == 6
7210 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7211 		pr_warn("md/raid:%s: layout %d not supported\n",
7212 			mdname(mddev), mddev->new_layout);
7213 		return ERR_PTR(-EIO);
7214 	}
7215 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7216 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7217 			mdname(mddev), mddev->raid_disks);
7218 		return ERR_PTR(-EINVAL);
7219 	}
7220 
7221 	if (!mddev->new_chunk_sectors ||
7222 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7223 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7224 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7225 			mdname(mddev), mddev->new_chunk_sectors << 9);
7226 		return ERR_PTR(-EINVAL);
7227 	}
7228 
7229 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7230 	if (conf == NULL)
7231 		goto abort;
7232 
7233 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7234 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7235 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7236 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7237 #endif
7238 	INIT_LIST_HEAD(&conf->free_list);
7239 	INIT_LIST_HEAD(&conf->pending_list);
7240 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7241 				     sizeof(struct r5pending_data),
7242 				     GFP_KERNEL);
7243 	if (!conf->pending_data)
7244 		goto abort;
7245 	for (i = 0; i < PENDING_IO_MAX; i++)
7246 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7247 	/* Don't enable multi-threading by default*/
7248 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7249 		conf->group_cnt = group_cnt;
7250 		conf->worker_cnt_per_group = 0;
7251 		conf->worker_groups = new_group;
7252 	} else
7253 		goto abort;
7254 	spin_lock_init(&conf->device_lock);
7255 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7256 	mutex_init(&conf->cache_size_mutex);
7257 
7258 	init_waitqueue_head(&conf->wait_for_quiescent);
7259 	init_waitqueue_head(&conf->wait_for_stripe);
7260 	init_waitqueue_head(&conf->wait_for_overlap);
7261 	INIT_LIST_HEAD(&conf->handle_list);
7262 	INIT_LIST_HEAD(&conf->loprio_list);
7263 	INIT_LIST_HEAD(&conf->hold_list);
7264 	INIT_LIST_HEAD(&conf->delayed_list);
7265 	INIT_LIST_HEAD(&conf->bitmap_list);
7266 	init_llist_head(&conf->released_stripes);
7267 	atomic_set(&conf->active_stripes, 0);
7268 	atomic_set(&conf->preread_active_stripes, 0);
7269 	atomic_set(&conf->active_aligned_reads, 0);
7270 	spin_lock_init(&conf->pending_bios_lock);
7271 	conf->batch_bio_dispatch = true;
7272 	rdev_for_each(rdev, mddev) {
7273 		if (test_bit(Journal, &rdev->flags))
7274 			continue;
7275 		if (bdev_nonrot(rdev->bdev)) {
7276 			conf->batch_bio_dispatch = false;
7277 			break;
7278 		}
7279 	}
7280 
7281 	conf->bypass_threshold = BYPASS_THRESHOLD;
7282 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7283 
7284 	conf->raid_disks = mddev->raid_disks;
7285 	if (mddev->reshape_position == MaxSector)
7286 		conf->previous_raid_disks = mddev->raid_disks;
7287 	else
7288 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7289 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7290 
7291 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7292 			      GFP_KERNEL);
7293 
7294 	if (!conf->disks)
7295 		goto abort;
7296 
7297 	for (i = 0; i < max_disks; i++) {
7298 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7299 		if (!conf->disks[i].extra_page)
7300 			goto abort;
7301 	}
7302 
7303 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7304 	if (ret)
7305 		goto abort;
7306 	conf->mddev = mddev;
7307 
7308 	ret = -ENOMEM;
7309 	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7310 	if (!conf->stripe_hashtbl)
7311 		goto abort;
7312 
7313 	/* We init hash_locks[0] separately to that it can be used
7314 	 * as the reference lock in the spin_lock_nest_lock() call
7315 	 * in lock_all_device_hash_locks_irq in order to convince
7316 	 * lockdep that we know what we are doing.
7317 	 */
7318 	spin_lock_init(conf->hash_locks);
7319 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7320 		spin_lock_init(conf->hash_locks + i);
7321 
7322 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7323 		INIT_LIST_HEAD(conf->inactive_list + i);
7324 
7325 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7326 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7327 
7328 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7329 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7330 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7331 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7332 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7333 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7334 
7335 	conf->level = mddev->new_level;
7336 	conf->chunk_sectors = mddev->new_chunk_sectors;
7337 	ret = raid5_alloc_percpu(conf);
7338 	if (ret)
7339 		goto abort;
7340 
7341 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7342 
7343 	ret = -EIO;
7344 	rdev_for_each(rdev, mddev) {
7345 		raid_disk = rdev->raid_disk;
7346 		if (raid_disk >= max_disks
7347 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7348 			continue;
7349 		disk = conf->disks + raid_disk;
7350 
7351 		if (test_bit(Replacement, &rdev->flags)) {
7352 			if (disk->replacement)
7353 				goto abort;
7354 			RCU_INIT_POINTER(disk->replacement, rdev);
7355 		} else {
7356 			if (disk->rdev)
7357 				goto abort;
7358 			RCU_INIT_POINTER(disk->rdev, rdev);
7359 		}
7360 
7361 		if (test_bit(In_sync, &rdev->flags)) {
7362 			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7363 				mdname(mddev), rdev->bdev, raid_disk);
7364 		} else if (rdev->saved_raid_disk != raid_disk)
7365 			/* Cannot rely on bitmap to complete recovery */
7366 			conf->fullsync = 1;
7367 	}
7368 
7369 	conf->level = mddev->new_level;
7370 	if (conf->level == 6) {
7371 		conf->max_degraded = 2;
7372 		if (raid6_call.xor_syndrome)
7373 			conf->rmw_level = PARITY_ENABLE_RMW;
7374 		else
7375 			conf->rmw_level = PARITY_DISABLE_RMW;
7376 	} else {
7377 		conf->max_degraded = 1;
7378 		conf->rmw_level = PARITY_ENABLE_RMW;
7379 	}
7380 	conf->algorithm = mddev->new_layout;
7381 	conf->reshape_progress = mddev->reshape_position;
7382 	if (conf->reshape_progress != MaxSector) {
7383 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7384 		conf->prev_algo = mddev->layout;
7385 	} else {
7386 		conf->prev_chunk_sectors = conf->chunk_sectors;
7387 		conf->prev_algo = conf->algorithm;
7388 	}
7389 
7390 	conf->min_nr_stripes = NR_STRIPES;
7391 	if (mddev->reshape_position != MaxSector) {
7392 		int stripes = max_t(int,
7393 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7394 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7395 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7396 		if (conf->min_nr_stripes != NR_STRIPES)
7397 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7398 				mdname(mddev), conf->min_nr_stripes);
7399 	}
7400 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7401 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7402 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7403 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7404 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7405 			mdname(mddev), memory);
7406 		ret = -ENOMEM;
7407 		goto abort;
7408 	} else
7409 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7410 	/*
7411 	 * Losing a stripe head costs more than the time to refill it,
7412 	 * it reduces the queue depth and so can hurt throughput.
7413 	 * So set it rather large, scaled by number of devices.
7414 	 */
7415 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7416 	conf->shrinker.scan_objects = raid5_cache_scan;
7417 	conf->shrinker.count_objects = raid5_cache_count;
7418 	conf->shrinker.batch = 128;
7419 	conf->shrinker.flags = 0;
7420 	ret = register_shrinker(&conf->shrinker);
7421 	if (ret) {
7422 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7423 			mdname(mddev));
7424 		goto abort;
7425 	}
7426 
7427 	sprintf(pers_name, "raid%d", mddev->new_level);
7428 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7429 	if (!conf->thread) {
7430 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7431 			mdname(mddev));
7432 		ret = -ENOMEM;
7433 		goto abort;
7434 	}
7435 
7436 	return conf;
7437 
7438  abort:
7439 	if (conf)
7440 		free_conf(conf);
7441 	return ERR_PTR(ret);
7442 }
7443 
7444 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7445 {
7446 	switch (algo) {
7447 	case ALGORITHM_PARITY_0:
7448 		if (raid_disk < max_degraded)
7449 			return 1;
7450 		break;
7451 	case ALGORITHM_PARITY_N:
7452 		if (raid_disk >= raid_disks - max_degraded)
7453 			return 1;
7454 		break;
7455 	case ALGORITHM_PARITY_0_6:
7456 		if (raid_disk == 0 ||
7457 		    raid_disk == raid_disks - 1)
7458 			return 1;
7459 		break;
7460 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7461 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7462 	case ALGORITHM_LEFT_SYMMETRIC_6:
7463 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7464 		if (raid_disk == raid_disks - 1)
7465 			return 1;
7466 	}
7467 	return 0;
7468 }
7469 
7470 static void raid5_set_io_opt(struct r5conf *conf)
7471 {
7472 	blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7473 			 (conf->raid_disks - conf->max_degraded));
7474 }
7475 
7476 static int raid5_run(struct mddev *mddev)
7477 {
7478 	struct r5conf *conf;
7479 	int working_disks = 0;
7480 	int dirty_parity_disks = 0;
7481 	struct md_rdev *rdev;
7482 	struct md_rdev *journal_dev = NULL;
7483 	sector_t reshape_offset = 0;
7484 	int i, ret = 0;
7485 	long long min_offset_diff = 0;
7486 	int first = 1;
7487 
7488 	if (acct_bioset_init(mddev)) {
7489 		pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
7490 		return -ENOMEM;
7491 	}
7492 
7493 	if (mddev_init_writes_pending(mddev) < 0) {
7494 		ret = -ENOMEM;
7495 		goto exit_acct_set;
7496 	}
7497 
7498 	if (mddev->recovery_cp != MaxSector)
7499 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7500 			  mdname(mddev));
7501 
7502 	rdev_for_each(rdev, mddev) {
7503 		long long diff;
7504 
7505 		if (test_bit(Journal, &rdev->flags)) {
7506 			journal_dev = rdev;
7507 			continue;
7508 		}
7509 		if (rdev->raid_disk < 0)
7510 			continue;
7511 		diff = (rdev->new_data_offset - rdev->data_offset);
7512 		if (first) {
7513 			min_offset_diff = diff;
7514 			first = 0;
7515 		} else if (mddev->reshape_backwards &&
7516 			 diff < min_offset_diff)
7517 			min_offset_diff = diff;
7518 		else if (!mddev->reshape_backwards &&
7519 			 diff > min_offset_diff)
7520 			min_offset_diff = diff;
7521 	}
7522 
7523 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7524 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7525 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7526 			  mdname(mddev));
7527 		ret = -EINVAL;
7528 		goto exit_acct_set;
7529 	}
7530 
7531 	if (mddev->reshape_position != MaxSector) {
7532 		/* Check that we can continue the reshape.
7533 		 * Difficulties arise if the stripe we would write to
7534 		 * next is at or after the stripe we would read from next.
7535 		 * For a reshape that changes the number of devices, this
7536 		 * is only possible for a very short time, and mdadm makes
7537 		 * sure that time appears to have past before assembling
7538 		 * the array.  So we fail if that time hasn't passed.
7539 		 * For a reshape that keeps the number of devices the same
7540 		 * mdadm must be monitoring the reshape can keeping the
7541 		 * critical areas read-only and backed up.  It will start
7542 		 * the array in read-only mode, so we check for that.
7543 		 */
7544 		sector_t here_new, here_old;
7545 		int old_disks;
7546 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7547 		int chunk_sectors;
7548 		int new_data_disks;
7549 
7550 		if (journal_dev) {
7551 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7552 				mdname(mddev));
7553 			ret = -EINVAL;
7554 			goto exit_acct_set;
7555 		}
7556 
7557 		if (mddev->new_level != mddev->level) {
7558 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7559 				mdname(mddev));
7560 			ret = -EINVAL;
7561 			goto exit_acct_set;
7562 		}
7563 		old_disks = mddev->raid_disks - mddev->delta_disks;
7564 		/* reshape_position must be on a new-stripe boundary, and one
7565 		 * further up in new geometry must map after here in old
7566 		 * geometry.
7567 		 * If the chunk sizes are different, then as we perform reshape
7568 		 * in units of the largest of the two, reshape_position needs
7569 		 * be a multiple of the largest chunk size times new data disks.
7570 		 */
7571 		here_new = mddev->reshape_position;
7572 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7573 		new_data_disks = mddev->raid_disks - max_degraded;
7574 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7575 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7576 				mdname(mddev));
7577 			ret = -EINVAL;
7578 			goto exit_acct_set;
7579 		}
7580 		reshape_offset = here_new * chunk_sectors;
7581 		/* here_new is the stripe we will write to */
7582 		here_old = mddev->reshape_position;
7583 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7584 		/* here_old is the first stripe that we might need to read
7585 		 * from */
7586 		if (mddev->delta_disks == 0) {
7587 			/* We cannot be sure it is safe to start an in-place
7588 			 * reshape.  It is only safe if user-space is monitoring
7589 			 * and taking constant backups.
7590 			 * mdadm always starts a situation like this in
7591 			 * readonly mode so it can take control before
7592 			 * allowing any writes.  So just check for that.
7593 			 */
7594 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7595 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7596 				/* not really in-place - so OK */;
7597 			else if (mddev->ro == 0) {
7598 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7599 					mdname(mddev));
7600 				ret = -EINVAL;
7601 				goto exit_acct_set;
7602 			}
7603 		} else if (mddev->reshape_backwards
7604 		    ? (here_new * chunk_sectors + min_offset_diff <=
7605 		       here_old * chunk_sectors)
7606 		    : (here_new * chunk_sectors >=
7607 		       here_old * chunk_sectors + (-min_offset_diff))) {
7608 			/* Reading from the same stripe as writing to - bad */
7609 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7610 				mdname(mddev));
7611 			ret = -EINVAL;
7612 			goto exit_acct_set;
7613 		}
7614 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7615 		/* OK, we should be able to continue; */
7616 	} else {
7617 		BUG_ON(mddev->level != mddev->new_level);
7618 		BUG_ON(mddev->layout != mddev->new_layout);
7619 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7620 		BUG_ON(mddev->delta_disks != 0);
7621 	}
7622 
7623 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7624 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7625 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7626 			mdname(mddev));
7627 		clear_bit(MD_HAS_PPL, &mddev->flags);
7628 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7629 	}
7630 
7631 	if (mddev->private == NULL)
7632 		conf = setup_conf(mddev);
7633 	else
7634 		conf = mddev->private;
7635 
7636 	if (IS_ERR(conf)) {
7637 		ret = PTR_ERR(conf);
7638 		goto exit_acct_set;
7639 	}
7640 
7641 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7642 		if (!journal_dev) {
7643 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7644 				mdname(mddev));
7645 			mddev->ro = 1;
7646 			set_disk_ro(mddev->gendisk, 1);
7647 		} else if (mddev->recovery_cp == MaxSector)
7648 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7649 	}
7650 
7651 	conf->min_offset_diff = min_offset_diff;
7652 	mddev->thread = conf->thread;
7653 	conf->thread = NULL;
7654 	mddev->private = conf;
7655 
7656 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7657 	     i++) {
7658 		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7659 		if (!rdev && conf->disks[i].replacement) {
7660 			/* The replacement is all we have yet */
7661 			rdev = rdev_mdlock_deref(mddev,
7662 						 conf->disks[i].replacement);
7663 			conf->disks[i].replacement = NULL;
7664 			clear_bit(Replacement, &rdev->flags);
7665 			rcu_assign_pointer(conf->disks[i].rdev, rdev);
7666 		}
7667 		if (!rdev)
7668 			continue;
7669 		if (rcu_access_pointer(conf->disks[i].replacement) &&
7670 		    conf->reshape_progress != MaxSector) {
7671 			/* replacements and reshape simply do not mix. */
7672 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7673 			goto abort;
7674 		}
7675 		if (test_bit(In_sync, &rdev->flags)) {
7676 			working_disks++;
7677 			continue;
7678 		}
7679 		/* This disc is not fully in-sync.  However if it
7680 		 * just stored parity (beyond the recovery_offset),
7681 		 * when we don't need to be concerned about the
7682 		 * array being dirty.
7683 		 * When reshape goes 'backwards', we never have
7684 		 * partially completed devices, so we only need
7685 		 * to worry about reshape going forwards.
7686 		 */
7687 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7688 		if (mddev->major_version == 0 &&
7689 		    mddev->minor_version > 90)
7690 			rdev->recovery_offset = reshape_offset;
7691 
7692 		if (rdev->recovery_offset < reshape_offset) {
7693 			/* We need to check old and new layout */
7694 			if (!only_parity(rdev->raid_disk,
7695 					 conf->algorithm,
7696 					 conf->raid_disks,
7697 					 conf->max_degraded))
7698 				continue;
7699 		}
7700 		if (!only_parity(rdev->raid_disk,
7701 				 conf->prev_algo,
7702 				 conf->previous_raid_disks,
7703 				 conf->max_degraded))
7704 			continue;
7705 		dirty_parity_disks++;
7706 	}
7707 
7708 	/*
7709 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7710 	 */
7711 	mddev->degraded = raid5_calc_degraded(conf);
7712 
7713 	if (has_failed(conf)) {
7714 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7715 			mdname(mddev), mddev->degraded, conf->raid_disks);
7716 		goto abort;
7717 	}
7718 
7719 	/* device size must be a multiple of chunk size */
7720 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7721 	mddev->resync_max_sectors = mddev->dev_sectors;
7722 
7723 	if (mddev->degraded > dirty_parity_disks &&
7724 	    mddev->recovery_cp != MaxSector) {
7725 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7726 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7727 				mdname(mddev));
7728 		else if (mddev->ok_start_degraded)
7729 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7730 				mdname(mddev));
7731 		else {
7732 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7733 				mdname(mddev));
7734 			goto abort;
7735 		}
7736 	}
7737 
7738 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7739 		mdname(mddev), conf->level,
7740 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7741 		mddev->new_layout);
7742 
7743 	print_raid5_conf(conf);
7744 
7745 	if (conf->reshape_progress != MaxSector) {
7746 		conf->reshape_safe = conf->reshape_progress;
7747 		atomic_set(&conf->reshape_stripes, 0);
7748 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7749 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7750 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7751 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7752 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7753 							"reshape");
7754 		if (!mddev->sync_thread)
7755 			goto abort;
7756 	}
7757 
7758 	/* Ok, everything is just fine now */
7759 	if (mddev->to_remove == &raid5_attrs_group)
7760 		mddev->to_remove = NULL;
7761 	else if (mddev->kobj.sd &&
7762 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7763 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7764 			mdname(mddev));
7765 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7766 
7767 	if (mddev->queue) {
7768 		int chunk_size;
7769 		/* read-ahead size must cover two whole stripes, which
7770 		 * is 2 * (datadisks) * chunksize where 'n' is the
7771 		 * number of raid devices
7772 		 */
7773 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7774 		int stripe = data_disks *
7775 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7776 
7777 		chunk_size = mddev->chunk_sectors << 9;
7778 		blk_queue_io_min(mddev->queue, chunk_size);
7779 		raid5_set_io_opt(conf);
7780 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7781 		/*
7782 		 * We can only discard a whole stripe. It doesn't make sense to
7783 		 * discard data disk but write parity disk
7784 		 */
7785 		stripe = stripe * PAGE_SIZE;
7786 		stripe = roundup_pow_of_two(stripe);
7787 		mddev->queue->limits.discard_granularity = stripe;
7788 
7789 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7790 
7791 		rdev_for_each(rdev, mddev) {
7792 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7793 					  rdev->data_offset << 9);
7794 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7795 					  rdev->new_data_offset << 9);
7796 		}
7797 
7798 		/*
7799 		 * zeroing is required, otherwise data
7800 		 * could be lost. Consider a scenario: discard a stripe
7801 		 * (the stripe could be inconsistent if
7802 		 * discard_zeroes_data is 0); write one disk of the
7803 		 * stripe (the stripe could be inconsistent again
7804 		 * depending on which disks are used to calculate
7805 		 * parity); the disk is broken; The stripe data of this
7806 		 * disk is lost.
7807 		 *
7808 		 * We only allow DISCARD if the sysadmin has confirmed that
7809 		 * only safe devices are in use by setting a module parameter.
7810 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7811 		 * requests, as that is required to be safe.
7812 		 */
7813 		if (!devices_handle_discard_safely ||
7814 		    mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
7815 		    mddev->queue->limits.discard_granularity < stripe)
7816 			blk_queue_max_discard_sectors(mddev->queue, 0);
7817 
7818 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7819 	}
7820 
7821 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7822 		goto abort;
7823 
7824 	return 0;
7825 abort:
7826 	md_unregister_thread(&mddev->thread);
7827 	print_raid5_conf(conf);
7828 	free_conf(conf);
7829 	mddev->private = NULL;
7830 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7831 	ret = -EIO;
7832 exit_acct_set:
7833 	acct_bioset_exit(mddev);
7834 	return ret;
7835 }
7836 
7837 static void raid5_free(struct mddev *mddev, void *priv)
7838 {
7839 	struct r5conf *conf = priv;
7840 
7841 	free_conf(conf);
7842 	acct_bioset_exit(mddev);
7843 	mddev->to_remove = &raid5_attrs_group;
7844 }
7845 
7846 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7847 {
7848 	struct r5conf *conf = mddev->private;
7849 	int i;
7850 
7851 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7852 		conf->chunk_sectors / 2, mddev->layout);
7853 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7854 	rcu_read_lock();
7855 	for (i = 0; i < conf->raid_disks; i++) {
7856 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7857 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7858 	}
7859 	rcu_read_unlock();
7860 	seq_printf (seq, "]");
7861 }
7862 
7863 static void print_raid5_conf (struct r5conf *conf)
7864 {
7865 	struct md_rdev *rdev;
7866 	int i;
7867 
7868 	pr_debug("RAID conf printout:\n");
7869 	if (!conf) {
7870 		pr_debug("(conf==NULL)\n");
7871 		return;
7872 	}
7873 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7874 	       conf->raid_disks,
7875 	       conf->raid_disks - conf->mddev->degraded);
7876 
7877 	rcu_read_lock();
7878 	for (i = 0; i < conf->raid_disks; i++) {
7879 		rdev = rcu_dereference(conf->disks[i].rdev);
7880 		if (rdev)
7881 			pr_debug(" disk %d, o:%d, dev:%pg\n",
7882 			       i, !test_bit(Faulty, &rdev->flags),
7883 			       rdev->bdev);
7884 	}
7885 	rcu_read_unlock();
7886 }
7887 
7888 static int raid5_spare_active(struct mddev *mddev)
7889 {
7890 	int i;
7891 	struct r5conf *conf = mddev->private;
7892 	struct md_rdev *rdev, *replacement;
7893 	int count = 0;
7894 	unsigned long flags;
7895 
7896 	for (i = 0; i < conf->raid_disks; i++) {
7897 		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7898 		replacement = rdev_mdlock_deref(mddev,
7899 						conf->disks[i].replacement);
7900 		if (replacement
7901 		    && replacement->recovery_offset == MaxSector
7902 		    && !test_bit(Faulty, &replacement->flags)
7903 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
7904 			/* Replacement has just become active. */
7905 			if (!rdev
7906 			    || !test_and_clear_bit(In_sync, &rdev->flags))
7907 				count++;
7908 			if (rdev) {
7909 				/* Replaced device not technically faulty,
7910 				 * but we need to be sure it gets removed
7911 				 * and never re-added.
7912 				 */
7913 				set_bit(Faulty, &rdev->flags);
7914 				sysfs_notify_dirent_safe(
7915 					rdev->sysfs_state);
7916 			}
7917 			sysfs_notify_dirent_safe(replacement->sysfs_state);
7918 		} else if (rdev
7919 		    && rdev->recovery_offset == MaxSector
7920 		    && !test_bit(Faulty, &rdev->flags)
7921 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
7922 			count++;
7923 			sysfs_notify_dirent_safe(rdev->sysfs_state);
7924 		}
7925 	}
7926 	spin_lock_irqsave(&conf->device_lock, flags);
7927 	mddev->degraded = raid5_calc_degraded(conf);
7928 	spin_unlock_irqrestore(&conf->device_lock, flags);
7929 	print_raid5_conf(conf);
7930 	return count;
7931 }
7932 
7933 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7934 {
7935 	struct r5conf *conf = mddev->private;
7936 	int err = 0;
7937 	int number = rdev->raid_disk;
7938 	struct md_rdev __rcu **rdevp;
7939 	struct disk_info *p;
7940 	struct md_rdev *tmp;
7941 
7942 	print_raid5_conf(conf);
7943 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7944 		/*
7945 		 * we can't wait pending write here, as this is called in
7946 		 * raid5d, wait will deadlock.
7947 		 * neilb: there is no locking about new writes here,
7948 		 * so this cannot be safe.
7949 		 */
7950 		if (atomic_read(&conf->active_stripes) ||
7951 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7952 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7953 			return -EBUSY;
7954 		}
7955 		log_exit(conf);
7956 		return 0;
7957 	}
7958 	if (unlikely(number >= conf->pool_size))
7959 		return 0;
7960 	p = conf->disks + number;
7961 	if (rdev == rcu_access_pointer(p->rdev))
7962 		rdevp = &p->rdev;
7963 	else if (rdev == rcu_access_pointer(p->replacement))
7964 		rdevp = &p->replacement;
7965 	else
7966 		return 0;
7967 
7968 	if (number >= conf->raid_disks &&
7969 	    conf->reshape_progress == MaxSector)
7970 		clear_bit(In_sync, &rdev->flags);
7971 
7972 	if (test_bit(In_sync, &rdev->flags) ||
7973 	    atomic_read(&rdev->nr_pending)) {
7974 		err = -EBUSY;
7975 		goto abort;
7976 	}
7977 	/* Only remove non-faulty devices if recovery
7978 	 * isn't possible.
7979 	 */
7980 	if (!test_bit(Faulty, &rdev->flags) &&
7981 	    mddev->recovery_disabled != conf->recovery_disabled &&
7982 	    !has_failed(conf) &&
7983 	    (!rcu_access_pointer(p->replacement) ||
7984 	     rcu_access_pointer(p->replacement) == rdev) &&
7985 	    number < conf->raid_disks) {
7986 		err = -EBUSY;
7987 		goto abort;
7988 	}
7989 	*rdevp = NULL;
7990 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7991 		lockdep_assert_held(&mddev->reconfig_mutex);
7992 		synchronize_rcu();
7993 		if (atomic_read(&rdev->nr_pending)) {
7994 			/* lost the race, try later */
7995 			err = -EBUSY;
7996 			rcu_assign_pointer(*rdevp, rdev);
7997 		}
7998 	}
7999 	if (!err) {
8000 		err = log_modify(conf, rdev, false);
8001 		if (err)
8002 			goto abort;
8003 	}
8004 
8005 	tmp = rcu_access_pointer(p->replacement);
8006 	if (tmp) {
8007 		/* We must have just cleared 'rdev' */
8008 		rcu_assign_pointer(p->rdev, tmp);
8009 		clear_bit(Replacement, &tmp->flags);
8010 		smp_mb(); /* Make sure other CPUs may see both as identical
8011 			   * but will never see neither - if they are careful
8012 			   */
8013 		rcu_assign_pointer(p->replacement, NULL);
8014 
8015 		if (!err)
8016 			err = log_modify(conf, tmp, true);
8017 	}
8018 
8019 	clear_bit(WantReplacement, &rdev->flags);
8020 abort:
8021 
8022 	print_raid5_conf(conf);
8023 	return err;
8024 }
8025 
8026 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8027 {
8028 	struct r5conf *conf = mddev->private;
8029 	int ret, err = -EEXIST;
8030 	int disk;
8031 	struct disk_info *p;
8032 	struct md_rdev *tmp;
8033 	int first = 0;
8034 	int last = conf->raid_disks - 1;
8035 
8036 	if (test_bit(Journal, &rdev->flags)) {
8037 		if (conf->log)
8038 			return -EBUSY;
8039 
8040 		rdev->raid_disk = 0;
8041 		/*
8042 		 * The array is in readonly mode if journal is missing, so no
8043 		 * write requests running. We should be safe
8044 		 */
8045 		ret = log_init(conf, rdev, false);
8046 		if (ret)
8047 			return ret;
8048 
8049 		ret = r5l_start(conf->log);
8050 		if (ret)
8051 			return ret;
8052 
8053 		return 0;
8054 	}
8055 	if (mddev->recovery_disabled == conf->recovery_disabled)
8056 		return -EBUSY;
8057 
8058 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8059 		/* no point adding a device */
8060 		return -EINVAL;
8061 
8062 	if (rdev->raid_disk >= 0)
8063 		first = last = rdev->raid_disk;
8064 
8065 	/*
8066 	 * find the disk ... but prefer rdev->saved_raid_disk
8067 	 * if possible.
8068 	 */
8069 	if (rdev->saved_raid_disk >= 0 &&
8070 	    rdev->saved_raid_disk >= first &&
8071 	    rdev->saved_raid_disk <= last &&
8072 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8073 		first = rdev->saved_raid_disk;
8074 
8075 	for (disk = first; disk <= last; disk++) {
8076 		p = conf->disks + disk;
8077 		if (p->rdev == NULL) {
8078 			clear_bit(In_sync, &rdev->flags);
8079 			rdev->raid_disk = disk;
8080 			if (rdev->saved_raid_disk != disk)
8081 				conf->fullsync = 1;
8082 			rcu_assign_pointer(p->rdev, rdev);
8083 
8084 			err = log_modify(conf, rdev, true);
8085 
8086 			goto out;
8087 		}
8088 	}
8089 	for (disk = first; disk <= last; disk++) {
8090 		p = conf->disks + disk;
8091 		tmp = rdev_mdlock_deref(mddev, p->rdev);
8092 		if (test_bit(WantReplacement, &tmp->flags) &&
8093 		    p->replacement == NULL) {
8094 			clear_bit(In_sync, &rdev->flags);
8095 			set_bit(Replacement, &rdev->flags);
8096 			rdev->raid_disk = disk;
8097 			err = 0;
8098 			conf->fullsync = 1;
8099 			rcu_assign_pointer(p->replacement, rdev);
8100 			break;
8101 		}
8102 	}
8103 out:
8104 	print_raid5_conf(conf);
8105 	return err;
8106 }
8107 
8108 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8109 {
8110 	/* no resync is happening, and there is enough space
8111 	 * on all devices, so we can resize.
8112 	 * We need to make sure resync covers any new space.
8113 	 * If the array is shrinking we should possibly wait until
8114 	 * any io in the removed space completes, but it hardly seems
8115 	 * worth it.
8116 	 */
8117 	sector_t newsize;
8118 	struct r5conf *conf = mddev->private;
8119 
8120 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8121 		return -EINVAL;
8122 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8123 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8124 	if (mddev->external_size &&
8125 	    mddev->array_sectors > newsize)
8126 		return -EINVAL;
8127 	if (mddev->bitmap) {
8128 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8129 		if (ret)
8130 			return ret;
8131 	}
8132 	md_set_array_sectors(mddev, newsize);
8133 	if (sectors > mddev->dev_sectors &&
8134 	    mddev->recovery_cp > mddev->dev_sectors) {
8135 		mddev->recovery_cp = mddev->dev_sectors;
8136 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8137 	}
8138 	mddev->dev_sectors = sectors;
8139 	mddev->resync_max_sectors = sectors;
8140 	return 0;
8141 }
8142 
8143 static int check_stripe_cache(struct mddev *mddev)
8144 {
8145 	/* Can only proceed if there are plenty of stripe_heads.
8146 	 * We need a minimum of one full stripe,, and for sensible progress
8147 	 * it is best to have about 4 times that.
8148 	 * If we require 4 times, then the default 256 4K stripe_heads will
8149 	 * allow for chunk sizes up to 256K, which is probably OK.
8150 	 * If the chunk size is greater, user-space should request more
8151 	 * stripe_heads first.
8152 	 */
8153 	struct r5conf *conf = mddev->private;
8154 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8155 	    > conf->min_nr_stripes ||
8156 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8157 	    > conf->min_nr_stripes) {
8158 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8159 			mdname(mddev),
8160 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8161 			 / RAID5_STRIPE_SIZE(conf))*4);
8162 		return 0;
8163 	}
8164 	return 1;
8165 }
8166 
8167 static int check_reshape(struct mddev *mddev)
8168 {
8169 	struct r5conf *conf = mddev->private;
8170 
8171 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8172 		return -EINVAL;
8173 	if (mddev->delta_disks == 0 &&
8174 	    mddev->new_layout == mddev->layout &&
8175 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8176 		return 0; /* nothing to do */
8177 	if (has_failed(conf))
8178 		return -EINVAL;
8179 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8180 		/* We might be able to shrink, but the devices must
8181 		 * be made bigger first.
8182 		 * For raid6, 4 is the minimum size.
8183 		 * Otherwise 2 is the minimum
8184 		 */
8185 		int min = 2;
8186 		if (mddev->level == 6)
8187 			min = 4;
8188 		if (mddev->raid_disks + mddev->delta_disks < min)
8189 			return -EINVAL;
8190 	}
8191 
8192 	if (!check_stripe_cache(mddev))
8193 		return -ENOSPC;
8194 
8195 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8196 	    mddev->delta_disks > 0)
8197 		if (resize_chunks(conf,
8198 				  conf->previous_raid_disks
8199 				  + max(0, mddev->delta_disks),
8200 				  max(mddev->new_chunk_sectors,
8201 				      mddev->chunk_sectors)
8202 			    ) < 0)
8203 			return -ENOMEM;
8204 
8205 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8206 		return 0; /* never bother to shrink */
8207 	return resize_stripes(conf, (conf->previous_raid_disks
8208 				     + mddev->delta_disks));
8209 }
8210 
8211 static int raid5_start_reshape(struct mddev *mddev)
8212 {
8213 	struct r5conf *conf = mddev->private;
8214 	struct md_rdev *rdev;
8215 	int spares = 0;
8216 	unsigned long flags;
8217 
8218 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8219 		return -EBUSY;
8220 
8221 	if (!check_stripe_cache(mddev))
8222 		return -ENOSPC;
8223 
8224 	if (has_failed(conf))
8225 		return -EINVAL;
8226 
8227 	rdev_for_each(rdev, mddev) {
8228 		if (!test_bit(In_sync, &rdev->flags)
8229 		    && !test_bit(Faulty, &rdev->flags))
8230 			spares++;
8231 	}
8232 
8233 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8234 		/* Not enough devices even to make a degraded array
8235 		 * of that size
8236 		 */
8237 		return -EINVAL;
8238 
8239 	/* Refuse to reduce size of the array.  Any reductions in
8240 	 * array size must be through explicit setting of array_size
8241 	 * attribute.
8242 	 */
8243 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8244 	    < mddev->array_sectors) {
8245 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8246 			mdname(mddev));
8247 		return -EINVAL;
8248 	}
8249 
8250 	atomic_set(&conf->reshape_stripes, 0);
8251 	spin_lock_irq(&conf->device_lock);
8252 	write_seqcount_begin(&conf->gen_lock);
8253 	conf->previous_raid_disks = conf->raid_disks;
8254 	conf->raid_disks += mddev->delta_disks;
8255 	conf->prev_chunk_sectors = conf->chunk_sectors;
8256 	conf->chunk_sectors = mddev->new_chunk_sectors;
8257 	conf->prev_algo = conf->algorithm;
8258 	conf->algorithm = mddev->new_layout;
8259 	conf->generation++;
8260 	/* Code that selects data_offset needs to see the generation update
8261 	 * if reshape_progress has been set - so a memory barrier needed.
8262 	 */
8263 	smp_mb();
8264 	if (mddev->reshape_backwards)
8265 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8266 	else
8267 		conf->reshape_progress = 0;
8268 	conf->reshape_safe = conf->reshape_progress;
8269 	write_seqcount_end(&conf->gen_lock);
8270 	spin_unlock_irq(&conf->device_lock);
8271 
8272 	/* Now make sure any requests that proceeded on the assumption
8273 	 * the reshape wasn't running - like Discard or Read - have
8274 	 * completed.
8275 	 */
8276 	mddev_suspend(mddev);
8277 	mddev_resume(mddev);
8278 
8279 	/* Add some new drives, as many as will fit.
8280 	 * We know there are enough to make the newly sized array work.
8281 	 * Don't add devices if we are reducing the number of
8282 	 * devices in the array.  This is because it is not possible
8283 	 * to correctly record the "partially reconstructed" state of
8284 	 * such devices during the reshape and confusion could result.
8285 	 */
8286 	if (mddev->delta_disks >= 0) {
8287 		rdev_for_each(rdev, mddev)
8288 			if (rdev->raid_disk < 0 &&
8289 			    !test_bit(Faulty, &rdev->flags)) {
8290 				if (raid5_add_disk(mddev, rdev) == 0) {
8291 					if (rdev->raid_disk
8292 					    >= conf->previous_raid_disks)
8293 						set_bit(In_sync, &rdev->flags);
8294 					else
8295 						rdev->recovery_offset = 0;
8296 
8297 					/* Failure here is OK */
8298 					sysfs_link_rdev(mddev, rdev);
8299 				}
8300 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8301 				   && !test_bit(Faulty, &rdev->flags)) {
8302 				/* This is a spare that was manually added */
8303 				set_bit(In_sync, &rdev->flags);
8304 			}
8305 
8306 		/* When a reshape changes the number of devices,
8307 		 * ->degraded is measured against the larger of the
8308 		 * pre and post number of devices.
8309 		 */
8310 		spin_lock_irqsave(&conf->device_lock, flags);
8311 		mddev->degraded = raid5_calc_degraded(conf);
8312 		spin_unlock_irqrestore(&conf->device_lock, flags);
8313 	}
8314 	mddev->raid_disks = conf->raid_disks;
8315 	mddev->reshape_position = conf->reshape_progress;
8316 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8317 
8318 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8319 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8320 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8321 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8322 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8323 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8324 						"reshape");
8325 	if (!mddev->sync_thread) {
8326 		mddev->recovery = 0;
8327 		spin_lock_irq(&conf->device_lock);
8328 		write_seqcount_begin(&conf->gen_lock);
8329 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8330 		mddev->new_chunk_sectors =
8331 			conf->chunk_sectors = conf->prev_chunk_sectors;
8332 		mddev->new_layout = conf->algorithm = conf->prev_algo;
8333 		rdev_for_each(rdev, mddev)
8334 			rdev->new_data_offset = rdev->data_offset;
8335 		smp_wmb();
8336 		conf->generation --;
8337 		conf->reshape_progress = MaxSector;
8338 		mddev->reshape_position = MaxSector;
8339 		write_seqcount_end(&conf->gen_lock);
8340 		spin_unlock_irq(&conf->device_lock);
8341 		return -EAGAIN;
8342 	}
8343 	conf->reshape_checkpoint = jiffies;
8344 	md_wakeup_thread(mddev->sync_thread);
8345 	md_new_event();
8346 	return 0;
8347 }
8348 
8349 /* This is called from the reshape thread and should make any
8350  * changes needed in 'conf'
8351  */
8352 static void end_reshape(struct r5conf *conf)
8353 {
8354 
8355 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8356 		struct md_rdev *rdev;
8357 
8358 		spin_lock_irq(&conf->device_lock);
8359 		conf->previous_raid_disks = conf->raid_disks;
8360 		md_finish_reshape(conf->mddev);
8361 		smp_wmb();
8362 		conf->reshape_progress = MaxSector;
8363 		conf->mddev->reshape_position = MaxSector;
8364 		rdev_for_each(rdev, conf->mddev)
8365 			if (rdev->raid_disk >= 0 &&
8366 			    !test_bit(Journal, &rdev->flags) &&
8367 			    !test_bit(In_sync, &rdev->flags))
8368 				rdev->recovery_offset = MaxSector;
8369 		spin_unlock_irq(&conf->device_lock);
8370 		wake_up(&conf->wait_for_overlap);
8371 
8372 		if (conf->mddev->queue)
8373 			raid5_set_io_opt(conf);
8374 	}
8375 }
8376 
8377 /* This is called from the raid5d thread with mddev_lock held.
8378  * It makes config changes to the device.
8379  */
8380 static void raid5_finish_reshape(struct mddev *mddev)
8381 {
8382 	struct r5conf *conf = mddev->private;
8383 	struct md_rdev *rdev;
8384 
8385 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8386 
8387 		if (mddev->delta_disks <= 0) {
8388 			int d;
8389 			spin_lock_irq(&conf->device_lock);
8390 			mddev->degraded = raid5_calc_degraded(conf);
8391 			spin_unlock_irq(&conf->device_lock);
8392 			for (d = conf->raid_disks ;
8393 			     d < conf->raid_disks - mddev->delta_disks;
8394 			     d++) {
8395 				rdev = rdev_mdlock_deref(mddev,
8396 							 conf->disks[d].rdev);
8397 				if (rdev)
8398 					clear_bit(In_sync, &rdev->flags);
8399 				rdev = rdev_mdlock_deref(mddev,
8400 						conf->disks[d].replacement);
8401 				if (rdev)
8402 					clear_bit(In_sync, &rdev->flags);
8403 			}
8404 		}
8405 		mddev->layout = conf->algorithm;
8406 		mddev->chunk_sectors = conf->chunk_sectors;
8407 		mddev->reshape_position = MaxSector;
8408 		mddev->delta_disks = 0;
8409 		mddev->reshape_backwards = 0;
8410 	}
8411 }
8412 
8413 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8414 {
8415 	struct r5conf *conf = mddev->private;
8416 
8417 	if (quiesce) {
8418 		/* stop all writes */
8419 		lock_all_device_hash_locks_irq(conf);
8420 		/* '2' tells resync/reshape to pause so that all
8421 		 * active stripes can drain
8422 		 */
8423 		r5c_flush_cache(conf, INT_MAX);
8424 		/* need a memory barrier to make sure read_one_chunk() sees
8425 		 * quiesce started and reverts to slow (locked) path.
8426 		 */
8427 		smp_store_release(&conf->quiesce, 2);
8428 		wait_event_cmd(conf->wait_for_quiescent,
8429 				    atomic_read(&conf->active_stripes) == 0 &&
8430 				    atomic_read(&conf->active_aligned_reads) == 0,
8431 				    unlock_all_device_hash_locks_irq(conf),
8432 				    lock_all_device_hash_locks_irq(conf));
8433 		conf->quiesce = 1;
8434 		unlock_all_device_hash_locks_irq(conf);
8435 		/* allow reshape to continue */
8436 		wake_up(&conf->wait_for_overlap);
8437 	} else {
8438 		/* re-enable writes */
8439 		lock_all_device_hash_locks_irq(conf);
8440 		conf->quiesce = 0;
8441 		wake_up(&conf->wait_for_quiescent);
8442 		wake_up(&conf->wait_for_overlap);
8443 		unlock_all_device_hash_locks_irq(conf);
8444 	}
8445 	log_quiesce(conf, quiesce);
8446 }
8447 
8448 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8449 {
8450 	struct r0conf *raid0_conf = mddev->private;
8451 	sector_t sectors;
8452 
8453 	/* for raid0 takeover only one zone is supported */
8454 	if (raid0_conf->nr_strip_zones > 1) {
8455 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8456 			mdname(mddev));
8457 		return ERR_PTR(-EINVAL);
8458 	}
8459 
8460 	sectors = raid0_conf->strip_zone[0].zone_end;
8461 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8462 	mddev->dev_sectors = sectors;
8463 	mddev->new_level = level;
8464 	mddev->new_layout = ALGORITHM_PARITY_N;
8465 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8466 	mddev->raid_disks += 1;
8467 	mddev->delta_disks = 1;
8468 	/* make sure it will be not marked as dirty */
8469 	mddev->recovery_cp = MaxSector;
8470 
8471 	return setup_conf(mddev);
8472 }
8473 
8474 static void *raid5_takeover_raid1(struct mddev *mddev)
8475 {
8476 	int chunksect;
8477 	void *ret;
8478 
8479 	if (mddev->raid_disks != 2 ||
8480 	    mddev->degraded > 1)
8481 		return ERR_PTR(-EINVAL);
8482 
8483 	/* Should check if there are write-behind devices? */
8484 
8485 	chunksect = 64*2; /* 64K by default */
8486 
8487 	/* The array must be an exact multiple of chunksize */
8488 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8489 		chunksect >>= 1;
8490 
8491 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8492 		/* array size does not allow a suitable chunk size */
8493 		return ERR_PTR(-EINVAL);
8494 
8495 	mddev->new_level = 5;
8496 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8497 	mddev->new_chunk_sectors = chunksect;
8498 
8499 	ret = setup_conf(mddev);
8500 	if (!IS_ERR(ret))
8501 		mddev_clear_unsupported_flags(mddev,
8502 			UNSUPPORTED_MDDEV_FLAGS);
8503 	return ret;
8504 }
8505 
8506 static void *raid5_takeover_raid6(struct mddev *mddev)
8507 {
8508 	int new_layout;
8509 
8510 	switch (mddev->layout) {
8511 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8512 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8513 		break;
8514 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8515 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8516 		break;
8517 	case ALGORITHM_LEFT_SYMMETRIC_6:
8518 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8519 		break;
8520 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8521 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8522 		break;
8523 	case ALGORITHM_PARITY_0_6:
8524 		new_layout = ALGORITHM_PARITY_0;
8525 		break;
8526 	case ALGORITHM_PARITY_N:
8527 		new_layout = ALGORITHM_PARITY_N;
8528 		break;
8529 	default:
8530 		return ERR_PTR(-EINVAL);
8531 	}
8532 	mddev->new_level = 5;
8533 	mddev->new_layout = new_layout;
8534 	mddev->delta_disks = -1;
8535 	mddev->raid_disks -= 1;
8536 	return setup_conf(mddev);
8537 }
8538 
8539 static int raid5_check_reshape(struct mddev *mddev)
8540 {
8541 	/* For a 2-drive array, the layout and chunk size can be changed
8542 	 * immediately as not restriping is needed.
8543 	 * For larger arrays we record the new value - after validation
8544 	 * to be used by a reshape pass.
8545 	 */
8546 	struct r5conf *conf = mddev->private;
8547 	int new_chunk = mddev->new_chunk_sectors;
8548 
8549 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8550 		return -EINVAL;
8551 	if (new_chunk > 0) {
8552 		if (!is_power_of_2(new_chunk))
8553 			return -EINVAL;
8554 		if (new_chunk < (PAGE_SIZE>>9))
8555 			return -EINVAL;
8556 		if (mddev->array_sectors & (new_chunk-1))
8557 			/* not factor of array size */
8558 			return -EINVAL;
8559 	}
8560 
8561 	/* They look valid */
8562 
8563 	if (mddev->raid_disks == 2) {
8564 		/* can make the change immediately */
8565 		if (mddev->new_layout >= 0) {
8566 			conf->algorithm = mddev->new_layout;
8567 			mddev->layout = mddev->new_layout;
8568 		}
8569 		if (new_chunk > 0) {
8570 			conf->chunk_sectors = new_chunk ;
8571 			mddev->chunk_sectors = new_chunk;
8572 		}
8573 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8574 		md_wakeup_thread(mddev->thread);
8575 	}
8576 	return check_reshape(mddev);
8577 }
8578 
8579 static int raid6_check_reshape(struct mddev *mddev)
8580 {
8581 	int new_chunk = mddev->new_chunk_sectors;
8582 
8583 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8584 		return -EINVAL;
8585 	if (new_chunk > 0) {
8586 		if (!is_power_of_2(new_chunk))
8587 			return -EINVAL;
8588 		if (new_chunk < (PAGE_SIZE >> 9))
8589 			return -EINVAL;
8590 		if (mddev->array_sectors & (new_chunk-1))
8591 			/* not factor of array size */
8592 			return -EINVAL;
8593 	}
8594 
8595 	/* They look valid */
8596 	return check_reshape(mddev);
8597 }
8598 
8599 static void *raid5_takeover(struct mddev *mddev)
8600 {
8601 	/* raid5 can take over:
8602 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8603 	 *  raid1 - if there are two drives.  We need to know the chunk size
8604 	 *  raid4 - trivial - just use a raid4 layout.
8605 	 *  raid6 - Providing it is a *_6 layout
8606 	 */
8607 	if (mddev->level == 0)
8608 		return raid45_takeover_raid0(mddev, 5);
8609 	if (mddev->level == 1)
8610 		return raid5_takeover_raid1(mddev);
8611 	if (mddev->level == 4) {
8612 		mddev->new_layout = ALGORITHM_PARITY_N;
8613 		mddev->new_level = 5;
8614 		return setup_conf(mddev);
8615 	}
8616 	if (mddev->level == 6)
8617 		return raid5_takeover_raid6(mddev);
8618 
8619 	return ERR_PTR(-EINVAL);
8620 }
8621 
8622 static void *raid4_takeover(struct mddev *mddev)
8623 {
8624 	/* raid4 can take over:
8625 	 *  raid0 - if there is only one strip zone
8626 	 *  raid5 - if layout is right
8627 	 */
8628 	if (mddev->level == 0)
8629 		return raid45_takeover_raid0(mddev, 4);
8630 	if (mddev->level == 5 &&
8631 	    mddev->layout == ALGORITHM_PARITY_N) {
8632 		mddev->new_layout = 0;
8633 		mddev->new_level = 4;
8634 		return setup_conf(mddev);
8635 	}
8636 	return ERR_PTR(-EINVAL);
8637 }
8638 
8639 static struct md_personality raid5_personality;
8640 
8641 static void *raid6_takeover(struct mddev *mddev)
8642 {
8643 	/* Currently can only take over a raid5.  We map the
8644 	 * personality to an equivalent raid6 personality
8645 	 * with the Q block at the end.
8646 	 */
8647 	int new_layout;
8648 
8649 	if (mddev->pers != &raid5_personality)
8650 		return ERR_PTR(-EINVAL);
8651 	if (mddev->degraded > 1)
8652 		return ERR_PTR(-EINVAL);
8653 	if (mddev->raid_disks > 253)
8654 		return ERR_PTR(-EINVAL);
8655 	if (mddev->raid_disks < 3)
8656 		return ERR_PTR(-EINVAL);
8657 
8658 	switch (mddev->layout) {
8659 	case ALGORITHM_LEFT_ASYMMETRIC:
8660 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8661 		break;
8662 	case ALGORITHM_RIGHT_ASYMMETRIC:
8663 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8664 		break;
8665 	case ALGORITHM_LEFT_SYMMETRIC:
8666 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8667 		break;
8668 	case ALGORITHM_RIGHT_SYMMETRIC:
8669 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8670 		break;
8671 	case ALGORITHM_PARITY_0:
8672 		new_layout = ALGORITHM_PARITY_0_6;
8673 		break;
8674 	case ALGORITHM_PARITY_N:
8675 		new_layout = ALGORITHM_PARITY_N;
8676 		break;
8677 	default:
8678 		return ERR_PTR(-EINVAL);
8679 	}
8680 	mddev->new_level = 6;
8681 	mddev->new_layout = new_layout;
8682 	mddev->delta_disks = 1;
8683 	mddev->raid_disks += 1;
8684 	return setup_conf(mddev);
8685 }
8686 
8687 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8688 {
8689 	struct r5conf *conf;
8690 	int err;
8691 
8692 	err = mddev_lock(mddev);
8693 	if (err)
8694 		return err;
8695 	conf = mddev->private;
8696 	if (!conf) {
8697 		mddev_unlock(mddev);
8698 		return -ENODEV;
8699 	}
8700 
8701 	if (strncmp(buf, "ppl", 3) == 0) {
8702 		/* ppl only works with RAID 5 */
8703 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8704 			err = log_init(conf, NULL, true);
8705 			if (!err) {
8706 				err = resize_stripes(conf, conf->pool_size);
8707 				if (err) {
8708 					mddev_suspend(mddev);
8709 					log_exit(conf);
8710 					mddev_resume(mddev);
8711 				}
8712 			}
8713 		} else
8714 			err = -EINVAL;
8715 	} else if (strncmp(buf, "resync", 6) == 0) {
8716 		if (raid5_has_ppl(conf)) {
8717 			mddev_suspend(mddev);
8718 			log_exit(conf);
8719 			mddev_resume(mddev);
8720 			err = resize_stripes(conf, conf->pool_size);
8721 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8722 			   r5l_log_disk_error(conf)) {
8723 			bool journal_dev_exists = false;
8724 			struct md_rdev *rdev;
8725 
8726 			rdev_for_each(rdev, mddev)
8727 				if (test_bit(Journal, &rdev->flags)) {
8728 					journal_dev_exists = true;
8729 					break;
8730 				}
8731 
8732 			if (!journal_dev_exists) {
8733 				mddev_suspend(mddev);
8734 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8735 				mddev_resume(mddev);
8736 			} else  /* need remove journal device first */
8737 				err = -EBUSY;
8738 		} else
8739 			err = -EINVAL;
8740 	} else {
8741 		err = -EINVAL;
8742 	}
8743 
8744 	if (!err)
8745 		md_update_sb(mddev, 1);
8746 
8747 	mddev_unlock(mddev);
8748 
8749 	return err;
8750 }
8751 
8752 static int raid5_start(struct mddev *mddev)
8753 {
8754 	struct r5conf *conf = mddev->private;
8755 
8756 	return r5l_start(conf->log);
8757 }
8758 
8759 static struct md_personality raid6_personality =
8760 {
8761 	.name		= "raid6",
8762 	.level		= 6,
8763 	.owner		= THIS_MODULE,
8764 	.make_request	= raid5_make_request,
8765 	.run		= raid5_run,
8766 	.start		= raid5_start,
8767 	.free		= raid5_free,
8768 	.status		= raid5_status,
8769 	.error_handler	= raid5_error,
8770 	.hot_add_disk	= raid5_add_disk,
8771 	.hot_remove_disk= raid5_remove_disk,
8772 	.spare_active	= raid5_spare_active,
8773 	.sync_request	= raid5_sync_request,
8774 	.resize		= raid5_resize,
8775 	.size		= raid5_size,
8776 	.check_reshape	= raid6_check_reshape,
8777 	.start_reshape  = raid5_start_reshape,
8778 	.finish_reshape = raid5_finish_reshape,
8779 	.quiesce	= raid5_quiesce,
8780 	.takeover	= raid6_takeover,
8781 	.change_consistency_policy = raid5_change_consistency_policy,
8782 };
8783 static struct md_personality raid5_personality =
8784 {
8785 	.name		= "raid5",
8786 	.level		= 5,
8787 	.owner		= THIS_MODULE,
8788 	.make_request	= raid5_make_request,
8789 	.run		= raid5_run,
8790 	.start		= raid5_start,
8791 	.free		= raid5_free,
8792 	.status		= raid5_status,
8793 	.error_handler	= raid5_error,
8794 	.hot_add_disk	= raid5_add_disk,
8795 	.hot_remove_disk= raid5_remove_disk,
8796 	.spare_active	= raid5_spare_active,
8797 	.sync_request	= raid5_sync_request,
8798 	.resize		= raid5_resize,
8799 	.size		= raid5_size,
8800 	.check_reshape	= raid5_check_reshape,
8801 	.start_reshape  = raid5_start_reshape,
8802 	.finish_reshape = raid5_finish_reshape,
8803 	.quiesce	= raid5_quiesce,
8804 	.takeover	= raid5_takeover,
8805 	.change_consistency_policy = raid5_change_consistency_policy,
8806 };
8807 
8808 static struct md_personality raid4_personality =
8809 {
8810 	.name		= "raid4",
8811 	.level		= 4,
8812 	.owner		= THIS_MODULE,
8813 	.make_request	= raid5_make_request,
8814 	.run		= raid5_run,
8815 	.start		= raid5_start,
8816 	.free		= raid5_free,
8817 	.status		= raid5_status,
8818 	.error_handler	= raid5_error,
8819 	.hot_add_disk	= raid5_add_disk,
8820 	.hot_remove_disk= raid5_remove_disk,
8821 	.spare_active	= raid5_spare_active,
8822 	.sync_request	= raid5_sync_request,
8823 	.resize		= raid5_resize,
8824 	.size		= raid5_size,
8825 	.check_reshape	= raid5_check_reshape,
8826 	.start_reshape  = raid5_start_reshape,
8827 	.finish_reshape = raid5_finish_reshape,
8828 	.quiesce	= raid5_quiesce,
8829 	.takeover	= raid4_takeover,
8830 	.change_consistency_policy = raid5_change_consistency_policy,
8831 };
8832 
8833 static int __init raid5_init(void)
8834 {
8835 	int ret;
8836 
8837 	raid5_wq = alloc_workqueue("raid5wq",
8838 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8839 	if (!raid5_wq)
8840 		return -ENOMEM;
8841 
8842 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8843 				      "md/raid5:prepare",
8844 				      raid456_cpu_up_prepare,
8845 				      raid456_cpu_dead);
8846 	if (ret) {
8847 		destroy_workqueue(raid5_wq);
8848 		return ret;
8849 	}
8850 	register_md_personality(&raid6_personality);
8851 	register_md_personality(&raid5_personality);
8852 	register_md_personality(&raid4_personality);
8853 	return 0;
8854 }
8855 
8856 static void raid5_exit(void)
8857 {
8858 	unregister_md_personality(&raid6_personality);
8859 	unregister_md_personality(&raid5_personality);
8860 	unregister_md_personality(&raid4_personality);
8861 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8862 	destroy_workqueue(raid5_wq);
8863 }
8864 
8865 module_init(raid5_init);
8866 module_exit(raid5_exit);
8867 MODULE_LICENSE("GPL");
8868 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8869 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8870 MODULE_ALIAS("md-raid5");
8871 MODULE_ALIAS("md-raid4");
8872 MODULE_ALIAS("md-level-5");
8873 MODULE_ALIAS("md-level-4");
8874 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8875 MODULE_ALIAS("md-raid6");
8876 MODULE_ALIAS("md-level-6");
8877 
8878 /* This used to be two separate modules, they were: */
8879 MODULE_ALIAS("raid5");
8880 MODULE_ALIAS("raid6");
8881