1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <trace/events/block.h> 59 60 #include "md.h" 61 #include "raid5.h" 62 #include "raid0.h" 63 #include "bitmap.h" 64 65 #define cpu_to_group(cpu) cpu_to_node(cpu) 66 #define ANY_GROUP NUMA_NO_NODE 67 68 static bool devices_handle_discard_safely = false; 69 module_param(devices_handle_discard_safely, bool, 0644); 70 MODULE_PARM_DESC(devices_handle_discard_safely, 71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 72 static struct workqueue_struct *raid5_wq; 73 /* 74 * Stripe cache 75 */ 76 77 #define NR_STRIPES 256 78 #define STRIPE_SIZE PAGE_SIZE 79 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 80 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 81 #define IO_THRESHOLD 1 82 #define BYPASS_THRESHOLD 1 83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 84 #define HASH_MASK (NR_HASH - 1) 85 #define MAX_STRIPE_BATCH 8 86 87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 88 { 89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 90 return &conf->stripe_hashtbl[hash]; 91 } 92 93 static inline int stripe_hash_locks_hash(sector_t sect) 94 { 95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 96 } 97 98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 99 { 100 spin_lock_irq(conf->hash_locks + hash); 101 spin_lock(&conf->device_lock); 102 } 103 104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 105 { 106 spin_unlock(&conf->device_lock); 107 spin_unlock_irq(conf->hash_locks + hash); 108 } 109 110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 111 { 112 int i; 113 local_irq_disable(); 114 spin_lock(conf->hash_locks); 115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 117 spin_lock(&conf->device_lock); 118 } 119 120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 121 { 122 int i; 123 spin_unlock(&conf->device_lock); 124 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 125 spin_unlock(conf->hash_locks + i - 1); 126 local_irq_enable(); 127 } 128 129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 130 * order without overlap. There may be several bio's per stripe+device, and 131 * a bio could span several devices. 132 * When walking this list for a particular stripe+device, we must never proceed 133 * beyond a bio that extends past this device, as the next bio might no longer 134 * be valid. 135 * This function is used to determine the 'next' bio in the list, given the sector 136 * of the current stripe+device 137 */ 138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 139 { 140 int sectors = bio_sectors(bio); 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 142 return bio->bi_next; 143 else 144 return NULL; 145 } 146 147 /* 148 * We maintain a biased count of active stripes in the bottom 16 bits of 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 150 */ 151 static inline int raid5_bi_processed_stripes(struct bio *bio) 152 { 153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 154 return (atomic_read(segments) >> 16) & 0xffff; 155 } 156 157 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 158 { 159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 160 return atomic_sub_return(1, segments) & 0xffff; 161 } 162 163 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 164 { 165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 166 atomic_inc(segments); 167 } 168 169 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 170 unsigned int cnt) 171 { 172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 173 int old, new; 174 175 do { 176 old = atomic_read(segments); 177 new = (old & 0xffff) | (cnt << 16); 178 } while (atomic_cmpxchg(segments, old, new) != old); 179 } 180 181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 182 { 183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 184 atomic_set(segments, cnt); 185 } 186 187 /* Find first data disk in a raid6 stripe */ 188 static inline int raid6_d0(struct stripe_head *sh) 189 { 190 if (sh->ddf_layout) 191 /* ddf always start from first device */ 192 return 0; 193 /* md starts just after Q block */ 194 if (sh->qd_idx == sh->disks - 1) 195 return 0; 196 else 197 return sh->qd_idx + 1; 198 } 199 static inline int raid6_next_disk(int disk, int raid_disks) 200 { 201 disk++; 202 return (disk < raid_disks) ? disk : 0; 203 } 204 205 /* When walking through the disks in a raid5, starting at raid6_d0, 206 * We need to map each disk to a 'slot', where the data disks are slot 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 208 * is raid_disks-1. This help does that mapping. 209 */ 210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 211 int *count, int syndrome_disks) 212 { 213 int slot = *count; 214 215 if (sh->ddf_layout) 216 (*count)++; 217 if (idx == sh->pd_idx) 218 return syndrome_disks; 219 if (idx == sh->qd_idx) 220 return syndrome_disks + 1; 221 if (!sh->ddf_layout) 222 (*count)++; 223 return slot; 224 } 225 226 static void return_io(struct bio_list *return_bi) 227 { 228 struct bio *bi; 229 while ((bi = bio_list_pop(return_bi)) != NULL) { 230 bi->bi_iter.bi_size = 0; 231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 232 bi, 0); 233 bio_endio(bi); 234 } 235 } 236 237 static void print_raid5_conf (struct r5conf *conf); 238 239 static int stripe_operations_active(struct stripe_head *sh) 240 { 241 return sh->check_state || sh->reconstruct_state || 242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 243 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 244 } 245 246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 247 { 248 struct r5conf *conf = sh->raid_conf; 249 struct r5worker_group *group; 250 int thread_cnt; 251 int i, cpu = sh->cpu; 252 253 if (!cpu_online(cpu)) { 254 cpu = cpumask_any(cpu_online_mask); 255 sh->cpu = cpu; 256 } 257 258 if (list_empty(&sh->lru)) { 259 struct r5worker_group *group; 260 group = conf->worker_groups + cpu_to_group(cpu); 261 list_add_tail(&sh->lru, &group->handle_list); 262 group->stripes_cnt++; 263 sh->group = group; 264 } 265 266 if (conf->worker_cnt_per_group == 0) { 267 md_wakeup_thread(conf->mddev->thread); 268 return; 269 } 270 271 group = conf->worker_groups + cpu_to_group(sh->cpu); 272 273 group->workers[0].working = true; 274 /* at least one worker should run to avoid race */ 275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 276 277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 278 /* wakeup more workers */ 279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 280 if (group->workers[i].working == false) { 281 group->workers[i].working = true; 282 queue_work_on(sh->cpu, raid5_wq, 283 &group->workers[i].work); 284 thread_cnt--; 285 } 286 } 287 } 288 289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 290 struct list_head *temp_inactive_list) 291 { 292 BUG_ON(!list_empty(&sh->lru)); 293 BUG_ON(atomic_read(&conf->active_stripes)==0); 294 if (test_bit(STRIPE_HANDLE, &sh->state)) { 295 if (test_bit(STRIPE_DELAYED, &sh->state) && 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 297 list_add_tail(&sh->lru, &conf->delayed_list); 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 299 sh->bm_seq - conf->seq_write > 0) 300 list_add_tail(&sh->lru, &conf->bitmap_list); 301 else { 302 clear_bit(STRIPE_DELAYED, &sh->state); 303 clear_bit(STRIPE_BIT_DELAY, &sh->state); 304 if (conf->worker_cnt_per_group == 0) { 305 list_add_tail(&sh->lru, &conf->handle_list); 306 } else { 307 raid5_wakeup_stripe_thread(sh); 308 return; 309 } 310 } 311 md_wakeup_thread(conf->mddev->thread); 312 } else { 313 BUG_ON(stripe_operations_active(sh)); 314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 315 if (atomic_dec_return(&conf->preread_active_stripes) 316 < IO_THRESHOLD) 317 md_wakeup_thread(conf->mddev->thread); 318 atomic_dec(&conf->active_stripes); 319 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 320 list_add_tail(&sh->lru, temp_inactive_list); 321 } 322 } 323 324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 325 struct list_head *temp_inactive_list) 326 { 327 if (atomic_dec_and_test(&sh->count)) 328 do_release_stripe(conf, sh, temp_inactive_list); 329 } 330 331 /* 332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 333 * 334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 335 * given time. Adding stripes only takes device lock, while deleting stripes 336 * only takes hash lock. 337 */ 338 static void release_inactive_stripe_list(struct r5conf *conf, 339 struct list_head *temp_inactive_list, 340 int hash) 341 { 342 int size; 343 bool do_wakeup = false; 344 unsigned long flags; 345 346 if (hash == NR_STRIPE_HASH_LOCKS) { 347 size = NR_STRIPE_HASH_LOCKS; 348 hash = NR_STRIPE_HASH_LOCKS - 1; 349 } else 350 size = 1; 351 while (size) { 352 struct list_head *list = &temp_inactive_list[size - 1]; 353 354 /* 355 * We don't hold any lock here yet, raid5_get_active_stripe() might 356 * remove stripes from the list 357 */ 358 if (!list_empty_careful(list)) { 359 spin_lock_irqsave(conf->hash_locks + hash, flags); 360 if (list_empty(conf->inactive_list + hash) && 361 !list_empty(list)) 362 atomic_dec(&conf->empty_inactive_list_nr); 363 list_splice_tail_init(list, conf->inactive_list + hash); 364 do_wakeup = true; 365 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 366 } 367 size--; 368 hash--; 369 } 370 371 if (do_wakeup) { 372 wake_up(&conf->wait_for_stripe); 373 if (atomic_read(&conf->active_stripes) == 0) 374 wake_up(&conf->wait_for_quiescent); 375 if (conf->retry_read_aligned) 376 md_wakeup_thread(conf->mddev->thread); 377 } 378 } 379 380 /* should hold conf->device_lock already */ 381 static int release_stripe_list(struct r5conf *conf, 382 struct list_head *temp_inactive_list) 383 { 384 struct stripe_head *sh; 385 int count = 0; 386 struct llist_node *head; 387 388 head = llist_del_all(&conf->released_stripes); 389 head = llist_reverse_order(head); 390 while (head) { 391 int hash; 392 393 sh = llist_entry(head, struct stripe_head, release_list); 394 head = llist_next(head); 395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 396 smp_mb(); 397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 398 /* 399 * Don't worry the bit is set here, because if the bit is set 400 * again, the count is always > 1. This is true for 401 * STRIPE_ON_UNPLUG_LIST bit too. 402 */ 403 hash = sh->hash_lock_index; 404 __release_stripe(conf, sh, &temp_inactive_list[hash]); 405 count++; 406 } 407 408 return count; 409 } 410 411 void raid5_release_stripe(struct stripe_head *sh) 412 { 413 struct r5conf *conf = sh->raid_conf; 414 unsigned long flags; 415 struct list_head list; 416 int hash; 417 bool wakeup; 418 419 /* Avoid release_list until the last reference. 420 */ 421 if (atomic_add_unless(&sh->count, -1, 1)) 422 return; 423 424 if (unlikely(!conf->mddev->thread) || 425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 426 goto slow_path; 427 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 428 if (wakeup) 429 md_wakeup_thread(conf->mddev->thread); 430 return; 431 slow_path: 432 local_irq_save(flags); 433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 435 INIT_LIST_HEAD(&list); 436 hash = sh->hash_lock_index; 437 do_release_stripe(conf, sh, &list); 438 spin_unlock(&conf->device_lock); 439 release_inactive_stripe_list(conf, &list, hash); 440 } 441 local_irq_restore(flags); 442 } 443 444 static inline void remove_hash(struct stripe_head *sh) 445 { 446 pr_debug("remove_hash(), stripe %llu\n", 447 (unsigned long long)sh->sector); 448 449 hlist_del_init(&sh->hash); 450 } 451 452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 453 { 454 struct hlist_head *hp = stripe_hash(conf, sh->sector); 455 456 pr_debug("insert_hash(), stripe %llu\n", 457 (unsigned long long)sh->sector); 458 459 hlist_add_head(&sh->hash, hp); 460 } 461 462 /* find an idle stripe, make sure it is unhashed, and return it. */ 463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 464 { 465 struct stripe_head *sh = NULL; 466 struct list_head *first; 467 468 if (list_empty(conf->inactive_list + hash)) 469 goto out; 470 first = (conf->inactive_list + hash)->next; 471 sh = list_entry(first, struct stripe_head, lru); 472 list_del_init(first); 473 remove_hash(sh); 474 atomic_inc(&conf->active_stripes); 475 BUG_ON(hash != sh->hash_lock_index); 476 if (list_empty(conf->inactive_list + hash)) 477 atomic_inc(&conf->empty_inactive_list_nr); 478 out: 479 return sh; 480 } 481 482 static void shrink_buffers(struct stripe_head *sh) 483 { 484 struct page *p; 485 int i; 486 int num = sh->raid_conf->pool_size; 487 488 for (i = 0; i < num ; i++) { 489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 490 p = sh->dev[i].page; 491 if (!p) 492 continue; 493 sh->dev[i].page = NULL; 494 put_page(p); 495 } 496 } 497 498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 499 { 500 int i; 501 int num = sh->raid_conf->pool_size; 502 503 for (i = 0; i < num; i++) { 504 struct page *page; 505 506 if (!(page = alloc_page(gfp))) { 507 return 1; 508 } 509 sh->dev[i].page = page; 510 sh->dev[i].orig_page = page; 511 } 512 return 0; 513 } 514 515 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 517 struct stripe_head *sh); 518 519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 520 { 521 struct r5conf *conf = sh->raid_conf; 522 int i, seq; 523 524 BUG_ON(atomic_read(&sh->count) != 0); 525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 526 BUG_ON(stripe_operations_active(sh)); 527 BUG_ON(sh->batch_head); 528 529 pr_debug("init_stripe called, stripe %llu\n", 530 (unsigned long long)sector); 531 retry: 532 seq = read_seqcount_begin(&conf->gen_lock); 533 sh->generation = conf->generation - previous; 534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 535 sh->sector = sector; 536 stripe_set_idx(sector, conf, previous, sh); 537 sh->state = 0; 538 539 for (i = sh->disks; i--; ) { 540 struct r5dev *dev = &sh->dev[i]; 541 542 if (dev->toread || dev->read || dev->towrite || dev->written || 543 test_bit(R5_LOCKED, &dev->flags)) { 544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 545 (unsigned long long)sh->sector, i, dev->toread, 546 dev->read, dev->towrite, dev->written, 547 test_bit(R5_LOCKED, &dev->flags)); 548 WARN_ON(1); 549 } 550 dev->flags = 0; 551 raid5_build_block(sh, i, previous); 552 } 553 if (read_seqcount_retry(&conf->gen_lock, seq)) 554 goto retry; 555 sh->overwrite_disks = 0; 556 insert_hash(conf, sh); 557 sh->cpu = smp_processor_id(); 558 set_bit(STRIPE_BATCH_READY, &sh->state); 559 } 560 561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 562 short generation) 563 { 564 struct stripe_head *sh; 565 566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 568 if (sh->sector == sector && sh->generation == generation) 569 return sh; 570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 571 return NULL; 572 } 573 574 /* 575 * Need to check if array has failed when deciding whether to: 576 * - start an array 577 * - remove non-faulty devices 578 * - add a spare 579 * - allow a reshape 580 * This determination is simple when no reshape is happening. 581 * However if there is a reshape, we need to carefully check 582 * both the before and after sections. 583 * This is because some failed devices may only affect one 584 * of the two sections, and some non-in_sync devices may 585 * be insync in the section most affected by failed devices. 586 */ 587 static int calc_degraded(struct r5conf *conf) 588 { 589 int degraded, degraded2; 590 int i; 591 592 rcu_read_lock(); 593 degraded = 0; 594 for (i = 0; i < conf->previous_raid_disks; i++) { 595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 596 if (rdev && test_bit(Faulty, &rdev->flags)) 597 rdev = rcu_dereference(conf->disks[i].replacement); 598 if (!rdev || test_bit(Faulty, &rdev->flags)) 599 degraded++; 600 else if (test_bit(In_sync, &rdev->flags)) 601 ; 602 else 603 /* not in-sync or faulty. 604 * If the reshape increases the number of devices, 605 * this is being recovered by the reshape, so 606 * this 'previous' section is not in_sync. 607 * If the number of devices is being reduced however, 608 * the device can only be part of the array if 609 * we are reverting a reshape, so this section will 610 * be in-sync. 611 */ 612 if (conf->raid_disks >= conf->previous_raid_disks) 613 degraded++; 614 } 615 rcu_read_unlock(); 616 if (conf->raid_disks == conf->previous_raid_disks) 617 return degraded; 618 rcu_read_lock(); 619 degraded2 = 0; 620 for (i = 0; i < conf->raid_disks; i++) { 621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 622 if (rdev && test_bit(Faulty, &rdev->flags)) 623 rdev = rcu_dereference(conf->disks[i].replacement); 624 if (!rdev || test_bit(Faulty, &rdev->flags)) 625 degraded2++; 626 else if (test_bit(In_sync, &rdev->flags)) 627 ; 628 else 629 /* not in-sync or faulty. 630 * If reshape increases the number of devices, this 631 * section has already been recovered, else it 632 * almost certainly hasn't. 633 */ 634 if (conf->raid_disks <= conf->previous_raid_disks) 635 degraded2++; 636 } 637 rcu_read_unlock(); 638 if (degraded2 > degraded) 639 return degraded2; 640 return degraded; 641 } 642 643 static int has_failed(struct r5conf *conf) 644 { 645 int degraded; 646 647 if (conf->mddev->reshape_position == MaxSector) 648 return conf->mddev->degraded > conf->max_degraded; 649 650 degraded = calc_degraded(conf); 651 if (degraded > conf->max_degraded) 652 return 1; 653 return 0; 654 } 655 656 struct stripe_head * 657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 658 int previous, int noblock, int noquiesce) 659 { 660 struct stripe_head *sh; 661 int hash = stripe_hash_locks_hash(sector); 662 int inc_empty_inactive_list_flag; 663 664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 665 666 spin_lock_irq(conf->hash_locks + hash); 667 668 do { 669 wait_event_lock_irq(conf->wait_for_quiescent, 670 conf->quiesce == 0 || noquiesce, 671 *(conf->hash_locks + hash)); 672 sh = __find_stripe(conf, sector, conf->generation - previous); 673 if (!sh) { 674 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 675 sh = get_free_stripe(conf, hash); 676 if (!sh && !test_bit(R5_DID_ALLOC, 677 &conf->cache_state)) 678 set_bit(R5_ALLOC_MORE, 679 &conf->cache_state); 680 } 681 if (noblock && sh == NULL) 682 break; 683 if (!sh) { 684 set_bit(R5_INACTIVE_BLOCKED, 685 &conf->cache_state); 686 wait_event_lock_irq( 687 conf->wait_for_stripe, 688 !list_empty(conf->inactive_list + hash) && 689 (atomic_read(&conf->active_stripes) 690 < (conf->max_nr_stripes * 3 / 4) 691 || !test_bit(R5_INACTIVE_BLOCKED, 692 &conf->cache_state)), 693 *(conf->hash_locks + hash)); 694 clear_bit(R5_INACTIVE_BLOCKED, 695 &conf->cache_state); 696 } else { 697 init_stripe(sh, sector, previous); 698 atomic_inc(&sh->count); 699 } 700 } else if (!atomic_inc_not_zero(&sh->count)) { 701 spin_lock(&conf->device_lock); 702 if (!atomic_read(&sh->count)) { 703 if (!test_bit(STRIPE_HANDLE, &sh->state)) 704 atomic_inc(&conf->active_stripes); 705 BUG_ON(list_empty(&sh->lru) && 706 !test_bit(STRIPE_EXPANDING, &sh->state)); 707 inc_empty_inactive_list_flag = 0; 708 if (!list_empty(conf->inactive_list + hash)) 709 inc_empty_inactive_list_flag = 1; 710 list_del_init(&sh->lru); 711 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 712 atomic_inc(&conf->empty_inactive_list_nr); 713 if (sh->group) { 714 sh->group->stripes_cnt--; 715 sh->group = NULL; 716 } 717 } 718 atomic_inc(&sh->count); 719 spin_unlock(&conf->device_lock); 720 } 721 } while (sh == NULL); 722 723 spin_unlock_irq(conf->hash_locks + hash); 724 return sh; 725 } 726 727 static bool is_full_stripe_write(struct stripe_head *sh) 728 { 729 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 730 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 731 } 732 733 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 734 { 735 local_irq_disable(); 736 if (sh1 > sh2) { 737 spin_lock(&sh2->stripe_lock); 738 spin_lock_nested(&sh1->stripe_lock, 1); 739 } else { 740 spin_lock(&sh1->stripe_lock); 741 spin_lock_nested(&sh2->stripe_lock, 1); 742 } 743 } 744 745 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 746 { 747 spin_unlock(&sh1->stripe_lock); 748 spin_unlock(&sh2->stripe_lock); 749 local_irq_enable(); 750 } 751 752 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 753 static bool stripe_can_batch(struct stripe_head *sh) 754 { 755 struct r5conf *conf = sh->raid_conf; 756 757 if (conf->log) 758 return false; 759 return test_bit(STRIPE_BATCH_READY, &sh->state) && 760 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 761 is_full_stripe_write(sh); 762 } 763 764 /* we only do back search */ 765 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 766 { 767 struct stripe_head *head; 768 sector_t head_sector, tmp_sec; 769 int hash; 770 int dd_idx; 771 int inc_empty_inactive_list_flag; 772 773 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 774 tmp_sec = sh->sector; 775 if (!sector_div(tmp_sec, conf->chunk_sectors)) 776 return; 777 head_sector = sh->sector - STRIPE_SECTORS; 778 779 hash = stripe_hash_locks_hash(head_sector); 780 spin_lock_irq(conf->hash_locks + hash); 781 head = __find_stripe(conf, head_sector, conf->generation); 782 if (head && !atomic_inc_not_zero(&head->count)) { 783 spin_lock(&conf->device_lock); 784 if (!atomic_read(&head->count)) { 785 if (!test_bit(STRIPE_HANDLE, &head->state)) 786 atomic_inc(&conf->active_stripes); 787 BUG_ON(list_empty(&head->lru) && 788 !test_bit(STRIPE_EXPANDING, &head->state)); 789 inc_empty_inactive_list_flag = 0; 790 if (!list_empty(conf->inactive_list + hash)) 791 inc_empty_inactive_list_flag = 1; 792 list_del_init(&head->lru); 793 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 794 atomic_inc(&conf->empty_inactive_list_nr); 795 if (head->group) { 796 head->group->stripes_cnt--; 797 head->group = NULL; 798 } 799 } 800 atomic_inc(&head->count); 801 spin_unlock(&conf->device_lock); 802 } 803 spin_unlock_irq(conf->hash_locks + hash); 804 805 if (!head) 806 return; 807 if (!stripe_can_batch(head)) 808 goto out; 809 810 lock_two_stripes(head, sh); 811 /* clear_batch_ready clear the flag */ 812 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 813 goto unlock_out; 814 815 if (sh->batch_head) 816 goto unlock_out; 817 818 dd_idx = 0; 819 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 820 dd_idx++; 821 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 822 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 823 goto unlock_out; 824 825 if (head->batch_head) { 826 spin_lock(&head->batch_head->batch_lock); 827 /* This batch list is already running */ 828 if (!stripe_can_batch(head)) { 829 spin_unlock(&head->batch_head->batch_lock); 830 goto unlock_out; 831 } 832 833 /* 834 * at this point, head's BATCH_READY could be cleared, but we 835 * can still add the stripe to batch list 836 */ 837 list_add(&sh->batch_list, &head->batch_list); 838 spin_unlock(&head->batch_head->batch_lock); 839 840 sh->batch_head = head->batch_head; 841 } else { 842 head->batch_head = head; 843 sh->batch_head = head->batch_head; 844 spin_lock(&head->batch_lock); 845 list_add_tail(&sh->batch_list, &head->batch_list); 846 spin_unlock(&head->batch_lock); 847 } 848 849 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 850 if (atomic_dec_return(&conf->preread_active_stripes) 851 < IO_THRESHOLD) 852 md_wakeup_thread(conf->mddev->thread); 853 854 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 855 int seq = sh->bm_seq; 856 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 857 sh->batch_head->bm_seq > seq) 858 seq = sh->batch_head->bm_seq; 859 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 860 sh->batch_head->bm_seq = seq; 861 } 862 863 atomic_inc(&sh->count); 864 unlock_out: 865 unlock_two_stripes(head, sh); 866 out: 867 raid5_release_stripe(head); 868 } 869 870 /* Determine if 'data_offset' or 'new_data_offset' should be used 871 * in this stripe_head. 872 */ 873 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 874 { 875 sector_t progress = conf->reshape_progress; 876 /* Need a memory barrier to make sure we see the value 877 * of conf->generation, or ->data_offset that was set before 878 * reshape_progress was updated. 879 */ 880 smp_rmb(); 881 if (progress == MaxSector) 882 return 0; 883 if (sh->generation == conf->generation - 1) 884 return 0; 885 /* We are in a reshape, and this is a new-generation stripe, 886 * so use new_data_offset. 887 */ 888 return 1; 889 } 890 891 static void 892 raid5_end_read_request(struct bio *bi); 893 static void 894 raid5_end_write_request(struct bio *bi); 895 896 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 897 { 898 struct r5conf *conf = sh->raid_conf; 899 int i, disks = sh->disks; 900 struct stripe_head *head_sh = sh; 901 902 might_sleep(); 903 904 if (r5l_write_stripe(conf->log, sh) == 0) 905 return; 906 for (i = disks; i--; ) { 907 int op, op_flags = 0; 908 int replace_only = 0; 909 struct bio *bi, *rbi; 910 struct md_rdev *rdev, *rrdev = NULL; 911 912 sh = head_sh; 913 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 914 op = REQ_OP_WRITE; 915 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 916 op_flags = WRITE_FUA; 917 if (test_bit(R5_Discard, &sh->dev[i].flags)) 918 op = REQ_OP_DISCARD; 919 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 920 op = REQ_OP_READ; 921 else if (test_and_clear_bit(R5_WantReplace, 922 &sh->dev[i].flags)) { 923 op = REQ_OP_WRITE; 924 replace_only = 1; 925 } else 926 continue; 927 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 928 op_flags |= REQ_SYNC; 929 930 again: 931 bi = &sh->dev[i].req; 932 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 933 934 rcu_read_lock(); 935 rrdev = rcu_dereference(conf->disks[i].replacement); 936 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 937 rdev = rcu_dereference(conf->disks[i].rdev); 938 if (!rdev) { 939 rdev = rrdev; 940 rrdev = NULL; 941 } 942 if (op_is_write(op)) { 943 if (replace_only) 944 rdev = NULL; 945 if (rdev == rrdev) 946 /* We raced and saw duplicates */ 947 rrdev = NULL; 948 } else { 949 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 950 rdev = rrdev; 951 rrdev = NULL; 952 } 953 954 if (rdev && test_bit(Faulty, &rdev->flags)) 955 rdev = NULL; 956 if (rdev) 957 atomic_inc(&rdev->nr_pending); 958 if (rrdev && test_bit(Faulty, &rrdev->flags)) 959 rrdev = NULL; 960 if (rrdev) 961 atomic_inc(&rrdev->nr_pending); 962 rcu_read_unlock(); 963 964 /* We have already checked bad blocks for reads. Now 965 * need to check for writes. We never accept write errors 966 * on the replacement, so we don't to check rrdev. 967 */ 968 while (op_is_write(op) && rdev && 969 test_bit(WriteErrorSeen, &rdev->flags)) { 970 sector_t first_bad; 971 int bad_sectors; 972 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 973 &first_bad, &bad_sectors); 974 if (!bad) 975 break; 976 977 if (bad < 0) { 978 set_bit(BlockedBadBlocks, &rdev->flags); 979 if (!conf->mddev->external && 980 conf->mddev->flags) { 981 /* It is very unlikely, but we might 982 * still need to write out the 983 * bad block log - better give it 984 * a chance*/ 985 md_check_recovery(conf->mddev); 986 } 987 /* 988 * Because md_wait_for_blocked_rdev 989 * will dec nr_pending, we must 990 * increment it first. 991 */ 992 atomic_inc(&rdev->nr_pending); 993 md_wait_for_blocked_rdev(rdev, conf->mddev); 994 } else { 995 /* Acknowledged bad block - skip the write */ 996 rdev_dec_pending(rdev, conf->mddev); 997 rdev = NULL; 998 } 999 } 1000 1001 if (rdev) { 1002 if (s->syncing || s->expanding || s->expanded 1003 || s->replacing) 1004 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1005 1006 set_bit(STRIPE_IO_STARTED, &sh->state); 1007 1008 bi->bi_bdev = rdev->bdev; 1009 bio_set_op_attrs(bi, op, op_flags); 1010 bi->bi_end_io = op_is_write(op) 1011 ? raid5_end_write_request 1012 : raid5_end_read_request; 1013 bi->bi_private = sh; 1014 1015 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1016 __func__, (unsigned long long)sh->sector, 1017 bi->bi_opf, i); 1018 atomic_inc(&sh->count); 1019 if (sh != head_sh) 1020 atomic_inc(&head_sh->count); 1021 if (use_new_offset(conf, sh)) 1022 bi->bi_iter.bi_sector = (sh->sector 1023 + rdev->new_data_offset); 1024 else 1025 bi->bi_iter.bi_sector = (sh->sector 1026 + rdev->data_offset); 1027 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1028 bi->bi_opf |= REQ_NOMERGE; 1029 1030 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1031 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1032 sh->dev[i].vec.bv_page = sh->dev[i].page; 1033 bi->bi_vcnt = 1; 1034 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1035 bi->bi_io_vec[0].bv_offset = 0; 1036 bi->bi_iter.bi_size = STRIPE_SIZE; 1037 /* 1038 * If this is discard request, set bi_vcnt 0. We don't 1039 * want to confuse SCSI because SCSI will replace payload 1040 */ 1041 if (op == REQ_OP_DISCARD) 1042 bi->bi_vcnt = 0; 1043 if (rrdev) 1044 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1045 1046 if (conf->mddev->gendisk) 1047 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1048 bi, disk_devt(conf->mddev->gendisk), 1049 sh->dev[i].sector); 1050 generic_make_request(bi); 1051 } 1052 if (rrdev) { 1053 if (s->syncing || s->expanding || s->expanded 1054 || s->replacing) 1055 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1056 1057 set_bit(STRIPE_IO_STARTED, &sh->state); 1058 1059 rbi->bi_bdev = rrdev->bdev; 1060 bio_set_op_attrs(rbi, op, op_flags); 1061 BUG_ON(!op_is_write(op)); 1062 rbi->bi_end_io = raid5_end_write_request; 1063 rbi->bi_private = sh; 1064 1065 pr_debug("%s: for %llu schedule op %d on " 1066 "replacement disc %d\n", 1067 __func__, (unsigned long long)sh->sector, 1068 rbi->bi_opf, i); 1069 atomic_inc(&sh->count); 1070 if (sh != head_sh) 1071 atomic_inc(&head_sh->count); 1072 if (use_new_offset(conf, sh)) 1073 rbi->bi_iter.bi_sector = (sh->sector 1074 + rrdev->new_data_offset); 1075 else 1076 rbi->bi_iter.bi_sector = (sh->sector 1077 + rrdev->data_offset); 1078 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1079 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1080 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1081 rbi->bi_vcnt = 1; 1082 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1083 rbi->bi_io_vec[0].bv_offset = 0; 1084 rbi->bi_iter.bi_size = STRIPE_SIZE; 1085 /* 1086 * If this is discard request, set bi_vcnt 0. We don't 1087 * want to confuse SCSI because SCSI will replace payload 1088 */ 1089 if (op == REQ_OP_DISCARD) 1090 rbi->bi_vcnt = 0; 1091 if (conf->mddev->gendisk) 1092 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1093 rbi, disk_devt(conf->mddev->gendisk), 1094 sh->dev[i].sector); 1095 generic_make_request(rbi); 1096 } 1097 if (!rdev && !rrdev) { 1098 if (op_is_write(op)) 1099 set_bit(STRIPE_DEGRADED, &sh->state); 1100 pr_debug("skip op %d on disc %d for sector %llu\n", 1101 bi->bi_opf, i, (unsigned long long)sh->sector); 1102 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1103 set_bit(STRIPE_HANDLE, &sh->state); 1104 } 1105 1106 if (!head_sh->batch_head) 1107 continue; 1108 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1109 batch_list); 1110 if (sh != head_sh) 1111 goto again; 1112 } 1113 } 1114 1115 static struct dma_async_tx_descriptor * 1116 async_copy_data(int frombio, struct bio *bio, struct page **page, 1117 sector_t sector, struct dma_async_tx_descriptor *tx, 1118 struct stripe_head *sh) 1119 { 1120 struct bio_vec bvl; 1121 struct bvec_iter iter; 1122 struct page *bio_page; 1123 int page_offset; 1124 struct async_submit_ctl submit; 1125 enum async_tx_flags flags = 0; 1126 1127 if (bio->bi_iter.bi_sector >= sector) 1128 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1129 else 1130 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1131 1132 if (frombio) 1133 flags |= ASYNC_TX_FENCE; 1134 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1135 1136 bio_for_each_segment(bvl, bio, iter) { 1137 int len = bvl.bv_len; 1138 int clen; 1139 int b_offset = 0; 1140 1141 if (page_offset < 0) { 1142 b_offset = -page_offset; 1143 page_offset += b_offset; 1144 len -= b_offset; 1145 } 1146 1147 if (len > 0 && page_offset + len > STRIPE_SIZE) 1148 clen = STRIPE_SIZE - page_offset; 1149 else 1150 clen = len; 1151 1152 if (clen > 0) { 1153 b_offset += bvl.bv_offset; 1154 bio_page = bvl.bv_page; 1155 if (frombio) { 1156 if (sh->raid_conf->skip_copy && 1157 b_offset == 0 && page_offset == 0 && 1158 clen == STRIPE_SIZE) 1159 *page = bio_page; 1160 else 1161 tx = async_memcpy(*page, bio_page, page_offset, 1162 b_offset, clen, &submit); 1163 } else 1164 tx = async_memcpy(bio_page, *page, b_offset, 1165 page_offset, clen, &submit); 1166 } 1167 /* chain the operations */ 1168 submit.depend_tx = tx; 1169 1170 if (clen < len) /* hit end of page */ 1171 break; 1172 page_offset += len; 1173 } 1174 1175 return tx; 1176 } 1177 1178 static void ops_complete_biofill(void *stripe_head_ref) 1179 { 1180 struct stripe_head *sh = stripe_head_ref; 1181 struct bio_list return_bi = BIO_EMPTY_LIST; 1182 int i; 1183 1184 pr_debug("%s: stripe %llu\n", __func__, 1185 (unsigned long long)sh->sector); 1186 1187 /* clear completed biofills */ 1188 for (i = sh->disks; i--; ) { 1189 struct r5dev *dev = &sh->dev[i]; 1190 1191 /* acknowledge completion of a biofill operation */ 1192 /* and check if we need to reply to a read request, 1193 * new R5_Wantfill requests are held off until 1194 * !STRIPE_BIOFILL_RUN 1195 */ 1196 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1197 struct bio *rbi, *rbi2; 1198 1199 BUG_ON(!dev->read); 1200 rbi = dev->read; 1201 dev->read = NULL; 1202 while (rbi && rbi->bi_iter.bi_sector < 1203 dev->sector + STRIPE_SECTORS) { 1204 rbi2 = r5_next_bio(rbi, dev->sector); 1205 if (!raid5_dec_bi_active_stripes(rbi)) 1206 bio_list_add(&return_bi, rbi); 1207 rbi = rbi2; 1208 } 1209 } 1210 } 1211 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1212 1213 return_io(&return_bi); 1214 1215 set_bit(STRIPE_HANDLE, &sh->state); 1216 raid5_release_stripe(sh); 1217 } 1218 1219 static void ops_run_biofill(struct stripe_head *sh) 1220 { 1221 struct dma_async_tx_descriptor *tx = NULL; 1222 struct async_submit_ctl submit; 1223 int i; 1224 1225 BUG_ON(sh->batch_head); 1226 pr_debug("%s: stripe %llu\n", __func__, 1227 (unsigned long long)sh->sector); 1228 1229 for (i = sh->disks; i--; ) { 1230 struct r5dev *dev = &sh->dev[i]; 1231 if (test_bit(R5_Wantfill, &dev->flags)) { 1232 struct bio *rbi; 1233 spin_lock_irq(&sh->stripe_lock); 1234 dev->read = rbi = dev->toread; 1235 dev->toread = NULL; 1236 spin_unlock_irq(&sh->stripe_lock); 1237 while (rbi && rbi->bi_iter.bi_sector < 1238 dev->sector + STRIPE_SECTORS) { 1239 tx = async_copy_data(0, rbi, &dev->page, 1240 dev->sector, tx, sh); 1241 rbi = r5_next_bio(rbi, dev->sector); 1242 } 1243 } 1244 } 1245 1246 atomic_inc(&sh->count); 1247 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1248 async_trigger_callback(&submit); 1249 } 1250 1251 static void mark_target_uptodate(struct stripe_head *sh, int target) 1252 { 1253 struct r5dev *tgt; 1254 1255 if (target < 0) 1256 return; 1257 1258 tgt = &sh->dev[target]; 1259 set_bit(R5_UPTODATE, &tgt->flags); 1260 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1261 clear_bit(R5_Wantcompute, &tgt->flags); 1262 } 1263 1264 static void ops_complete_compute(void *stripe_head_ref) 1265 { 1266 struct stripe_head *sh = stripe_head_ref; 1267 1268 pr_debug("%s: stripe %llu\n", __func__, 1269 (unsigned long long)sh->sector); 1270 1271 /* mark the computed target(s) as uptodate */ 1272 mark_target_uptodate(sh, sh->ops.target); 1273 mark_target_uptodate(sh, sh->ops.target2); 1274 1275 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1276 if (sh->check_state == check_state_compute_run) 1277 sh->check_state = check_state_compute_result; 1278 set_bit(STRIPE_HANDLE, &sh->state); 1279 raid5_release_stripe(sh); 1280 } 1281 1282 /* return a pointer to the address conversion region of the scribble buffer */ 1283 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1284 struct raid5_percpu *percpu, int i) 1285 { 1286 void *addr; 1287 1288 addr = flex_array_get(percpu->scribble, i); 1289 return addr + sizeof(struct page *) * (sh->disks + 2); 1290 } 1291 1292 /* return a pointer to the address conversion region of the scribble buffer */ 1293 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1294 { 1295 void *addr; 1296 1297 addr = flex_array_get(percpu->scribble, i); 1298 return addr; 1299 } 1300 1301 static struct dma_async_tx_descriptor * 1302 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1303 { 1304 int disks = sh->disks; 1305 struct page **xor_srcs = to_addr_page(percpu, 0); 1306 int target = sh->ops.target; 1307 struct r5dev *tgt = &sh->dev[target]; 1308 struct page *xor_dest = tgt->page; 1309 int count = 0; 1310 struct dma_async_tx_descriptor *tx; 1311 struct async_submit_ctl submit; 1312 int i; 1313 1314 BUG_ON(sh->batch_head); 1315 1316 pr_debug("%s: stripe %llu block: %d\n", 1317 __func__, (unsigned long long)sh->sector, target); 1318 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1319 1320 for (i = disks; i--; ) 1321 if (i != target) 1322 xor_srcs[count++] = sh->dev[i].page; 1323 1324 atomic_inc(&sh->count); 1325 1326 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1327 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1328 if (unlikely(count == 1)) 1329 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1330 else 1331 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1332 1333 return tx; 1334 } 1335 1336 /* set_syndrome_sources - populate source buffers for gen_syndrome 1337 * @srcs - (struct page *) array of size sh->disks 1338 * @sh - stripe_head to parse 1339 * 1340 * Populates srcs in proper layout order for the stripe and returns the 1341 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1342 * destination buffer is recorded in srcs[count] and the Q destination 1343 * is recorded in srcs[count+1]]. 1344 */ 1345 static int set_syndrome_sources(struct page **srcs, 1346 struct stripe_head *sh, 1347 int srctype) 1348 { 1349 int disks = sh->disks; 1350 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1351 int d0_idx = raid6_d0(sh); 1352 int count; 1353 int i; 1354 1355 for (i = 0; i < disks; i++) 1356 srcs[i] = NULL; 1357 1358 count = 0; 1359 i = d0_idx; 1360 do { 1361 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1362 struct r5dev *dev = &sh->dev[i]; 1363 1364 if (i == sh->qd_idx || i == sh->pd_idx || 1365 (srctype == SYNDROME_SRC_ALL) || 1366 (srctype == SYNDROME_SRC_WANT_DRAIN && 1367 test_bit(R5_Wantdrain, &dev->flags)) || 1368 (srctype == SYNDROME_SRC_WRITTEN && 1369 dev->written)) 1370 srcs[slot] = sh->dev[i].page; 1371 i = raid6_next_disk(i, disks); 1372 } while (i != d0_idx); 1373 1374 return syndrome_disks; 1375 } 1376 1377 static struct dma_async_tx_descriptor * 1378 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1379 { 1380 int disks = sh->disks; 1381 struct page **blocks = to_addr_page(percpu, 0); 1382 int target; 1383 int qd_idx = sh->qd_idx; 1384 struct dma_async_tx_descriptor *tx; 1385 struct async_submit_ctl submit; 1386 struct r5dev *tgt; 1387 struct page *dest; 1388 int i; 1389 int count; 1390 1391 BUG_ON(sh->batch_head); 1392 if (sh->ops.target < 0) 1393 target = sh->ops.target2; 1394 else if (sh->ops.target2 < 0) 1395 target = sh->ops.target; 1396 else 1397 /* we should only have one valid target */ 1398 BUG(); 1399 BUG_ON(target < 0); 1400 pr_debug("%s: stripe %llu block: %d\n", 1401 __func__, (unsigned long long)sh->sector, target); 1402 1403 tgt = &sh->dev[target]; 1404 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1405 dest = tgt->page; 1406 1407 atomic_inc(&sh->count); 1408 1409 if (target == qd_idx) { 1410 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1411 blocks[count] = NULL; /* regenerating p is not necessary */ 1412 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1413 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1414 ops_complete_compute, sh, 1415 to_addr_conv(sh, percpu, 0)); 1416 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1417 } else { 1418 /* Compute any data- or p-drive using XOR */ 1419 count = 0; 1420 for (i = disks; i-- ; ) { 1421 if (i == target || i == qd_idx) 1422 continue; 1423 blocks[count++] = sh->dev[i].page; 1424 } 1425 1426 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1427 NULL, ops_complete_compute, sh, 1428 to_addr_conv(sh, percpu, 0)); 1429 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1430 } 1431 1432 return tx; 1433 } 1434 1435 static struct dma_async_tx_descriptor * 1436 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1437 { 1438 int i, count, disks = sh->disks; 1439 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1440 int d0_idx = raid6_d0(sh); 1441 int faila = -1, failb = -1; 1442 int target = sh->ops.target; 1443 int target2 = sh->ops.target2; 1444 struct r5dev *tgt = &sh->dev[target]; 1445 struct r5dev *tgt2 = &sh->dev[target2]; 1446 struct dma_async_tx_descriptor *tx; 1447 struct page **blocks = to_addr_page(percpu, 0); 1448 struct async_submit_ctl submit; 1449 1450 BUG_ON(sh->batch_head); 1451 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1452 __func__, (unsigned long long)sh->sector, target, target2); 1453 BUG_ON(target < 0 || target2 < 0); 1454 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1456 1457 /* we need to open-code set_syndrome_sources to handle the 1458 * slot number conversion for 'faila' and 'failb' 1459 */ 1460 for (i = 0; i < disks ; i++) 1461 blocks[i] = NULL; 1462 count = 0; 1463 i = d0_idx; 1464 do { 1465 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1466 1467 blocks[slot] = sh->dev[i].page; 1468 1469 if (i == target) 1470 faila = slot; 1471 if (i == target2) 1472 failb = slot; 1473 i = raid6_next_disk(i, disks); 1474 } while (i != d0_idx); 1475 1476 BUG_ON(faila == failb); 1477 if (failb < faila) 1478 swap(faila, failb); 1479 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1480 __func__, (unsigned long long)sh->sector, faila, failb); 1481 1482 atomic_inc(&sh->count); 1483 1484 if (failb == syndrome_disks+1) { 1485 /* Q disk is one of the missing disks */ 1486 if (faila == syndrome_disks) { 1487 /* Missing P+Q, just recompute */ 1488 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1489 ops_complete_compute, sh, 1490 to_addr_conv(sh, percpu, 0)); 1491 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1492 STRIPE_SIZE, &submit); 1493 } else { 1494 struct page *dest; 1495 int data_target; 1496 int qd_idx = sh->qd_idx; 1497 1498 /* Missing D+Q: recompute D from P, then recompute Q */ 1499 if (target == qd_idx) 1500 data_target = target2; 1501 else 1502 data_target = target; 1503 1504 count = 0; 1505 for (i = disks; i-- ; ) { 1506 if (i == data_target || i == qd_idx) 1507 continue; 1508 blocks[count++] = sh->dev[i].page; 1509 } 1510 dest = sh->dev[data_target].page; 1511 init_async_submit(&submit, 1512 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1513 NULL, NULL, NULL, 1514 to_addr_conv(sh, percpu, 0)); 1515 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1516 &submit); 1517 1518 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1519 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1520 ops_complete_compute, sh, 1521 to_addr_conv(sh, percpu, 0)); 1522 return async_gen_syndrome(blocks, 0, count+2, 1523 STRIPE_SIZE, &submit); 1524 } 1525 } else { 1526 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1527 ops_complete_compute, sh, 1528 to_addr_conv(sh, percpu, 0)); 1529 if (failb == syndrome_disks) { 1530 /* We're missing D+P. */ 1531 return async_raid6_datap_recov(syndrome_disks+2, 1532 STRIPE_SIZE, faila, 1533 blocks, &submit); 1534 } else { 1535 /* We're missing D+D. */ 1536 return async_raid6_2data_recov(syndrome_disks+2, 1537 STRIPE_SIZE, faila, failb, 1538 blocks, &submit); 1539 } 1540 } 1541 } 1542 1543 static void ops_complete_prexor(void *stripe_head_ref) 1544 { 1545 struct stripe_head *sh = stripe_head_ref; 1546 1547 pr_debug("%s: stripe %llu\n", __func__, 1548 (unsigned long long)sh->sector); 1549 } 1550 1551 static struct dma_async_tx_descriptor * 1552 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1553 struct dma_async_tx_descriptor *tx) 1554 { 1555 int disks = sh->disks; 1556 struct page **xor_srcs = to_addr_page(percpu, 0); 1557 int count = 0, pd_idx = sh->pd_idx, i; 1558 struct async_submit_ctl submit; 1559 1560 /* existing parity data subtracted */ 1561 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1562 1563 BUG_ON(sh->batch_head); 1564 pr_debug("%s: stripe %llu\n", __func__, 1565 (unsigned long long)sh->sector); 1566 1567 for (i = disks; i--; ) { 1568 struct r5dev *dev = &sh->dev[i]; 1569 /* Only process blocks that are known to be uptodate */ 1570 if (test_bit(R5_Wantdrain, &dev->flags)) 1571 xor_srcs[count++] = dev->page; 1572 } 1573 1574 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1575 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1576 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1577 1578 return tx; 1579 } 1580 1581 static struct dma_async_tx_descriptor * 1582 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1583 struct dma_async_tx_descriptor *tx) 1584 { 1585 struct page **blocks = to_addr_page(percpu, 0); 1586 int count; 1587 struct async_submit_ctl submit; 1588 1589 pr_debug("%s: stripe %llu\n", __func__, 1590 (unsigned long long)sh->sector); 1591 1592 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1593 1594 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1595 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1596 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1597 1598 return tx; 1599 } 1600 1601 static struct dma_async_tx_descriptor * 1602 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1603 { 1604 int disks = sh->disks; 1605 int i; 1606 struct stripe_head *head_sh = sh; 1607 1608 pr_debug("%s: stripe %llu\n", __func__, 1609 (unsigned long long)sh->sector); 1610 1611 for (i = disks; i--; ) { 1612 struct r5dev *dev; 1613 struct bio *chosen; 1614 1615 sh = head_sh; 1616 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1617 struct bio *wbi; 1618 1619 again: 1620 dev = &sh->dev[i]; 1621 spin_lock_irq(&sh->stripe_lock); 1622 chosen = dev->towrite; 1623 dev->towrite = NULL; 1624 sh->overwrite_disks = 0; 1625 BUG_ON(dev->written); 1626 wbi = dev->written = chosen; 1627 spin_unlock_irq(&sh->stripe_lock); 1628 WARN_ON(dev->page != dev->orig_page); 1629 1630 while (wbi && wbi->bi_iter.bi_sector < 1631 dev->sector + STRIPE_SECTORS) { 1632 if (wbi->bi_opf & REQ_FUA) 1633 set_bit(R5_WantFUA, &dev->flags); 1634 if (wbi->bi_opf & REQ_SYNC) 1635 set_bit(R5_SyncIO, &dev->flags); 1636 if (bio_op(wbi) == REQ_OP_DISCARD) 1637 set_bit(R5_Discard, &dev->flags); 1638 else { 1639 tx = async_copy_data(1, wbi, &dev->page, 1640 dev->sector, tx, sh); 1641 if (dev->page != dev->orig_page) { 1642 set_bit(R5_SkipCopy, &dev->flags); 1643 clear_bit(R5_UPTODATE, &dev->flags); 1644 clear_bit(R5_OVERWRITE, &dev->flags); 1645 } 1646 } 1647 wbi = r5_next_bio(wbi, dev->sector); 1648 } 1649 1650 if (head_sh->batch_head) { 1651 sh = list_first_entry(&sh->batch_list, 1652 struct stripe_head, 1653 batch_list); 1654 if (sh == head_sh) 1655 continue; 1656 goto again; 1657 } 1658 } 1659 } 1660 1661 return tx; 1662 } 1663 1664 static void ops_complete_reconstruct(void *stripe_head_ref) 1665 { 1666 struct stripe_head *sh = stripe_head_ref; 1667 int disks = sh->disks; 1668 int pd_idx = sh->pd_idx; 1669 int qd_idx = sh->qd_idx; 1670 int i; 1671 bool fua = false, sync = false, discard = false; 1672 1673 pr_debug("%s: stripe %llu\n", __func__, 1674 (unsigned long long)sh->sector); 1675 1676 for (i = disks; i--; ) { 1677 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1678 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1679 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1680 } 1681 1682 for (i = disks; i--; ) { 1683 struct r5dev *dev = &sh->dev[i]; 1684 1685 if (dev->written || i == pd_idx || i == qd_idx) { 1686 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1687 set_bit(R5_UPTODATE, &dev->flags); 1688 if (fua) 1689 set_bit(R5_WantFUA, &dev->flags); 1690 if (sync) 1691 set_bit(R5_SyncIO, &dev->flags); 1692 } 1693 } 1694 1695 if (sh->reconstruct_state == reconstruct_state_drain_run) 1696 sh->reconstruct_state = reconstruct_state_drain_result; 1697 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1698 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1699 else { 1700 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1701 sh->reconstruct_state = reconstruct_state_result; 1702 } 1703 1704 set_bit(STRIPE_HANDLE, &sh->state); 1705 raid5_release_stripe(sh); 1706 } 1707 1708 static void 1709 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1710 struct dma_async_tx_descriptor *tx) 1711 { 1712 int disks = sh->disks; 1713 struct page **xor_srcs; 1714 struct async_submit_ctl submit; 1715 int count, pd_idx = sh->pd_idx, i; 1716 struct page *xor_dest; 1717 int prexor = 0; 1718 unsigned long flags; 1719 int j = 0; 1720 struct stripe_head *head_sh = sh; 1721 int last_stripe; 1722 1723 pr_debug("%s: stripe %llu\n", __func__, 1724 (unsigned long long)sh->sector); 1725 1726 for (i = 0; i < sh->disks; i++) { 1727 if (pd_idx == i) 1728 continue; 1729 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1730 break; 1731 } 1732 if (i >= sh->disks) { 1733 atomic_inc(&sh->count); 1734 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1735 ops_complete_reconstruct(sh); 1736 return; 1737 } 1738 again: 1739 count = 0; 1740 xor_srcs = to_addr_page(percpu, j); 1741 /* check if prexor is active which means only process blocks 1742 * that are part of a read-modify-write (written) 1743 */ 1744 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1745 prexor = 1; 1746 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1747 for (i = disks; i--; ) { 1748 struct r5dev *dev = &sh->dev[i]; 1749 if (head_sh->dev[i].written) 1750 xor_srcs[count++] = dev->page; 1751 } 1752 } else { 1753 xor_dest = sh->dev[pd_idx].page; 1754 for (i = disks; i--; ) { 1755 struct r5dev *dev = &sh->dev[i]; 1756 if (i != pd_idx) 1757 xor_srcs[count++] = dev->page; 1758 } 1759 } 1760 1761 /* 1/ if we prexor'd then the dest is reused as a source 1762 * 2/ if we did not prexor then we are redoing the parity 1763 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1764 * for the synchronous xor case 1765 */ 1766 last_stripe = !head_sh->batch_head || 1767 list_first_entry(&sh->batch_list, 1768 struct stripe_head, batch_list) == head_sh; 1769 if (last_stripe) { 1770 flags = ASYNC_TX_ACK | 1771 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1772 1773 atomic_inc(&head_sh->count); 1774 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1775 to_addr_conv(sh, percpu, j)); 1776 } else { 1777 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1778 init_async_submit(&submit, flags, tx, NULL, NULL, 1779 to_addr_conv(sh, percpu, j)); 1780 } 1781 1782 if (unlikely(count == 1)) 1783 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1784 else 1785 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1786 if (!last_stripe) { 1787 j++; 1788 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1789 batch_list); 1790 goto again; 1791 } 1792 } 1793 1794 static void 1795 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1796 struct dma_async_tx_descriptor *tx) 1797 { 1798 struct async_submit_ctl submit; 1799 struct page **blocks; 1800 int count, i, j = 0; 1801 struct stripe_head *head_sh = sh; 1802 int last_stripe; 1803 int synflags; 1804 unsigned long txflags; 1805 1806 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1807 1808 for (i = 0; i < sh->disks; i++) { 1809 if (sh->pd_idx == i || sh->qd_idx == i) 1810 continue; 1811 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1812 break; 1813 } 1814 if (i >= sh->disks) { 1815 atomic_inc(&sh->count); 1816 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1817 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1818 ops_complete_reconstruct(sh); 1819 return; 1820 } 1821 1822 again: 1823 blocks = to_addr_page(percpu, j); 1824 1825 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1826 synflags = SYNDROME_SRC_WRITTEN; 1827 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1828 } else { 1829 synflags = SYNDROME_SRC_ALL; 1830 txflags = ASYNC_TX_ACK; 1831 } 1832 1833 count = set_syndrome_sources(blocks, sh, synflags); 1834 last_stripe = !head_sh->batch_head || 1835 list_first_entry(&sh->batch_list, 1836 struct stripe_head, batch_list) == head_sh; 1837 1838 if (last_stripe) { 1839 atomic_inc(&head_sh->count); 1840 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1841 head_sh, to_addr_conv(sh, percpu, j)); 1842 } else 1843 init_async_submit(&submit, 0, tx, NULL, NULL, 1844 to_addr_conv(sh, percpu, j)); 1845 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1846 if (!last_stripe) { 1847 j++; 1848 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1849 batch_list); 1850 goto again; 1851 } 1852 } 1853 1854 static void ops_complete_check(void *stripe_head_ref) 1855 { 1856 struct stripe_head *sh = stripe_head_ref; 1857 1858 pr_debug("%s: stripe %llu\n", __func__, 1859 (unsigned long long)sh->sector); 1860 1861 sh->check_state = check_state_check_result; 1862 set_bit(STRIPE_HANDLE, &sh->state); 1863 raid5_release_stripe(sh); 1864 } 1865 1866 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1867 { 1868 int disks = sh->disks; 1869 int pd_idx = sh->pd_idx; 1870 int qd_idx = sh->qd_idx; 1871 struct page *xor_dest; 1872 struct page **xor_srcs = to_addr_page(percpu, 0); 1873 struct dma_async_tx_descriptor *tx; 1874 struct async_submit_ctl submit; 1875 int count; 1876 int i; 1877 1878 pr_debug("%s: stripe %llu\n", __func__, 1879 (unsigned long long)sh->sector); 1880 1881 BUG_ON(sh->batch_head); 1882 count = 0; 1883 xor_dest = sh->dev[pd_idx].page; 1884 xor_srcs[count++] = xor_dest; 1885 for (i = disks; i--; ) { 1886 if (i == pd_idx || i == qd_idx) 1887 continue; 1888 xor_srcs[count++] = sh->dev[i].page; 1889 } 1890 1891 init_async_submit(&submit, 0, NULL, NULL, NULL, 1892 to_addr_conv(sh, percpu, 0)); 1893 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1894 &sh->ops.zero_sum_result, &submit); 1895 1896 atomic_inc(&sh->count); 1897 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1898 tx = async_trigger_callback(&submit); 1899 } 1900 1901 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1902 { 1903 struct page **srcs = to_addr_page(percpu, 0); 1904 struct async_submit_ctl submit; 1905 int count; 1906 1907 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1908 (unsigned long long)sh->sector, checkp); 1909 1910 BUG_ON(sh->batch_head); 1911 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1912 if (!checkp) 1913 srcs[count] = NULL; 1914 1915 atomic_inc(&sh->count); 1916 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1917 sh, to_addr_conv(sh, percpu, 0)); 1918 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1919 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1920 } 1921 1922 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1923 { 1924 int overlap_clear = 0, i, disks = sh->disks; 1925 struct dma_async_tx_descriptor *tx = NULL; 1926 struct r5conf *conf = sh->raid_conf; 1927 int level = conf->level; 1928 struct raid5_percpu *percpu; 1929 unsigned long cpu; 1930 1931 cpu = get_cpu(); 1932 percpu = per_cpu_ptr(conf->percpu, cpu); 1933 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1934 ops_run_biofill(sh); 1935 overlap_clear++; 1936 } 1937 1938 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1939 if (level < 6) 1940 tx = ops_run_compute5(sh, percpu); 1941 else { 1942 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1943 tx = ops_run_compute6_1(sh, percpu); 1944 else 1945 tx = ops_run_compute6_2(sh, percpu); 1946 } 1947 /* terminate the chain if reconstruct is not set to be run */ 1948 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1949 async_tx_ack(tx); 1950 } 1951 1952 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 1953 if (level < 6) 1954 tx = ops_run_prexor5(sh, percpu, tx); 1955 else 1956 tx = ops_run_prexor6(sh, percpu, tx); 1957 } 1958 1959 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1960 tx = ops_run_biodrain(sh, tx); 1961 overlap_clear++; 1962 } 1963 1964 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1965 if (level < 6) 1966 ops_run_reconstruct5(sh, percpu, tx); 1967 else 1968 ops_run_reconstruct6(sh, percpu, tx); 1969 } 1970 1971 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1972 if (sh->check_state == check_state_run) 1973 ops_run_check_p(sh, percpu); 1974 else if (sh->check_state == check_state_run_q) 1975 ops_run_check_pq(sh, percpu, 0); 1976 else if (sh->check_state == check_state_run_pq) 1977 ops_run_check_pq(sh, percpu, 1); 1978 else 1979 BUG(); 1980 } 1981 1982 if (overlap_clear && !sh->batch_head) 1983 for (i = disks; i--; ) { 1984 struct r5dev *dev = &sh->dev[i]; 1985 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1986 wake_up(&sh->raid_conf->wait_for_overlap); 1987 } 1988 put_cpu(); 1989 } 1990 1991 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 1992 int disks) 1993 { 1994 struct stripe_head *sh; 1995 int i; 1996 1997 sh = kmem_cache_zalloc(sc, gfp); 1998 if (sh) { 1999 spin_lock_init(&sh->stripe_lock); 2000 spin_lock_init(&sh->batch_lock); 2001 INIT_LIST_HEAD(&sh->batch_list); 2002 INIT_LIST_HEAD(&sh->lru); 2003 atomic_set(&sh->count, 1); 2004 for (i = 0; i < disks; i++) { 2005 struct r5dev *dev = &sh->dev[i]; 2006 2007 bio_init(&dev->req); 2008 dev->req.bi_io_vec = &dev->vec; 2009 dev->req.bi_max_vecs = 1; 2010 2011 bio_init(&dev->rreq); 2012 dev->rreq.bi_io_vec = &dev->rvec; 2013 dev->rreq.bi_max_vecs = 1; 2014 } 2015 } 2016 return sh; 2017 } 2018 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2019 { 2020 struct stripe_head *sh; 2021 2022 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size); 2023 if (!sh) 2024 return 0; 2025 2026 sh->raid_conf = conf; 2027 2028 if (grow_buffers(sh, gfp)) { 2029 shrink_buffers(sh); 2030 kmem_cache_free(conf->slab_cache, sh); 2031 return 0; 2032 } 2033 sh->hash_lock_index = 2034 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2035 /* we just created an active stripe so... */ 2036 atomic_inc(&conf->active_stripes); 2037 2038 raid5_release_stripe(sh); 2039 conf->max_nr_stripes++; 2040 return 1; 2041 } 2042 2043 static int grow_stripes(struct r5conf *conf, int num) 2044 { 2045 struct kmem_cache *sc; 2046 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2047 2048 if (conf->mddev->gendisk) 2049 sprintf(conf->cache_name[0], 2050 "raid%d-%s", conf->level, mdname(conf->mddev)); 2051 else 2052 sprintf(conf->cache_name[0], 2053 "raid%d-%p", conf->level, conf->mddev); 2054 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2055 2056 conf->active_name = 0; 2057 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2058 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2059 0, 0, NULL); 2060 if (!sc) 2061 return 1; 2062 conf->slab_cache = sc; 2063 conf->pool_size = devs; 2064 while (num--) 2065 if (!grow_one_stripe(conf, GFP_KERNEL)) 2066 return 1; 2067 2068 return 0; 2069 } 2070 2071 /** 2072 * scribble_len - return the required size of the scribble region 2073 * @num - total number of disks in the array 2074 * 2075 * The size must be enough to contain: 2076 * 1/ a struct page pointer for each device in the array +2 2077 * 2/ room to convert each entry in (1) to its corresponding dma 2078 * (dma_map_page()) or page (page_address()) address. 2079 * 2080 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2081 * calculate over all devices (not just the data blocks), using zeros in place 2082 * of the P and Q blocks. 2083 */ 2084 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2085 { 2086 struct flex_array *ret; 2087 size_t len; 2088 2089 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2090 ret = flex_array_alloc(len, cnt, flags); 2091 if (!ret) 2092 return NULL; 2093 /* always prealloc all elements, so no locking is required */ 2094 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2095 flex_array_free(ret); 2096 return NULL; 2097 } 2098 return ret; 2099 } 2100 2101 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2102 { 2103 unsigned long cpu; 2104 int err = 0; 2105 2106 /* 2107 * Never shrink. And mddev_suspend() could deadlock if this is called 2108 * from raid5d. In that case, scribble_disks and scribble_sectors 2109 * should equal to new_disks and new_sectors 2110 */ 2111 if (conf->scribble_disks >= new_disks && 2112 conf->scribble_sectors >= new_sectors) 2113 return 0; 2114 mddev_suspend(conf->mddev); 2115 get_online_cpus(); 2116 for_each_present_cpu(cpu) { 2117 struct raid5_percpu *percpu; 2118 struct flex_array *scribble; 2119 2120 percpu = per_cpu_ptr(conf->percpu, cpu); 2121 scribble = scribble_alloc(new_disks, 2122 new_sectors / STRIPE_SECTORS, 2123 GFP_NOIO); 2124 2125 if (scribble) { 2126 flex_array_free(percpu->scribble); 2127 percpu->scribble = scribble; 2128 } else { 2129 err = -ENOMEM; 2130 break; 2131 } 2132 } 2133 put_online_cpus(); 2134 mddev_resume(conf->mddev); 2135 if (!err) { 2136 conf->scribble_disks = new_disks; 2137 conf->scribble_sectors = new_sectors; 2138 } 2139 return err; 2140 } 2141 2142 static int resize_stripes(struct r5conf *conf, int newsize) 2143 { 2144 /* Make all the stripes able to hold 'newsize' devices. 2145 * New slots in each stripe get 'page' set to a new page. 2146 * 2147 * This happens in stages: 2148 * 1/ create a new kmem_cache and allocate the required number of 2149 * stripe_heads. 2150 * 2/ gather all the old stripe_heads and transfer the pages across 2151 * to the new stripe_heads. This will have the side effect of 2152 * freezing the array as once all stripe_heads have been collected, 2153 * no IO will be possible. Old stripe heads are freed once their 2154 * pages have been transferred over, and the old kmem_cache is 2155 * freed when all stripes are done. 2156 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2157 * we simple return a failre status - no need to clean anything up. 2158 * 4/ allocate new pages for the new slots in the new stripe_heads. 2159 * If this fails, we don't bother trying the shrink the 2160 * stripe_heads down again, we just leave them as they are. 2161 * As each stripe_head is processed the new one is released into 2162 * active service. 2163 * 2164 * Once step2 is started, we cannot afford to wait for a write, 2165 * so we use GFP_NOIO allocations. 2166 */ 2167 struct stripe_head *osh, *nsh; 2168 LIST_HEAD(newstripes); 2169 struct disk_info *ndisks; 2170 int err; 2171 struct kmem_cache *sc; 2172 int i; 2173 int hash, cnt; 2174 2175 if (newsize <= conf->pool_size) 2176 return 0; /* never bother to shrink */ 2177 2178 err = md_allow_write(conf->mddev); 2179 if (err) 2180 return err; 2181 2182 /* Step 1 */ 2183 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2184 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2185 0, 0, NULL); 2186 if (!sc) 2187 return -ENOMEM; 2188 2189 /* Need to ensure auto-resizing doesn't interfere */ 2190 mutex_lock(&conf->cache_size_mutex); 2191 2192 for (i = conf->max_nr_stripes; i; i--) { 2193 nsh = alloc_stripe(sc, GFP_KERNEL, newsize); 2194 if (!nsh) 2195 break; 2196 2197 nsh->raid_conf = conf; 2198 list_add(&nsh->lru, &newstripes); 2199 } 2200 if (i) { 2201 /* didn't get enough, give up */ 2202 while (!list_empty(&newstripes)) { 2203 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2204 list_del(&nsh->lru); 2205 kmem_cache_free(sc, nsh); 2206 } 2207 kmem_cache_destroy(sc); 2208 mutex_unlock(&conf->cache_size_mutex); 2209 return -ENOMEM; 2210 } 2211 /* Step 2 - Must use GFP_NOIO now. 2212 * OK, we have enough stripes, start collecting inactive 2213 * stripes and copying them over 2214 */ 2215 hash = 0; 2216 cnt = 0; 2217 list_for_each_entry(nsh, &newstripes, lru) { 2218 lock_device_hash_lock(conf, hash); 2219 wait_event_cmd(conf->wait_for_stripe, 2220 !list_empty(conf->inactive_list + hash), 2221 unlock_device_hash_lock(conf, hash), 2222 lock_device_hash_lock(conf, hash)); 2223 osh = get_free_stripe(conf, hash); 2224 unlock_device_hash_lock(conf, hash); 2225 2226 for(i=0; i<conf->pool_size; i++) { 2227 nsh->dev[i].page = osh->dev[i].page; 2228 nsh->dev[i].orig_page = osh->dev[i].page; 2229 } 2230 nsh->hash_lock_index = hash; 2231 kmem_cache_free(conf->slab_cache, osh); 2232 cnt++; 2233 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2234 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2235 hash++; 2236 cnt = 0; 2237 } 2238 } 2239 kmem_cache_destroy(conf->slab_cache); 2240 2241 /* Step 3. 2242 * At this point, we are holding all the stripes so the array 2243 * is completely stalled, so now is a good time to resize 2244 * conf->disks and the scribble region 2245 */ 2246 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2247 if (ndisks) { 2248 for (i=0; i<conf->raid_disks; i++) 2249 ndisks[i] = conf->disks[i]; 2250 kfree(conf->disks); 2251 conf->disks = ndisks; 2252 } else 2253 err = -ENOMEM; 2254 2255 mutex_unlock(&conf->cache_size_mutex); 2256 /* Step 4, return new stripes to service */ 2257 while(!list_empty(&newstripes)) { 2258 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2259 list_del_init(&nsh->lru); 2260 2261 for (i=conf->raid_disks; i < newsize; i++) 2262 if (nsh->dev[i].page == NULL) { 2263 struct page *p = alloc_page(GFP_NOIO); 2264 nsh->dev[i].page = p; 2265 nsh->dev[i].orig_page = p; 2266 if (!p) 2267 err = -ENOMEM; 2268 } 2269 raid5_release_stripe(nsh); 2270 } 2271 /* critical section pass, GFP_NOIO no longer needed */ 2272 2273 conf->slab_cache = sc; 2274 conf->active_name = 1-conf->active_name; 2275 if (!err) 2276 conf->pool_size = newsize; 2277 return err; 2278 } 2279 2280 static int drop_one_stripe(struct r5conf *conf) 2281 { 2282 struct stripe_head *sh; 2283 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2284 2285 spin_lock_irq(conf->hash_locks + hash); 2286 sh = get_free_stripe(conf, hash); 2287 spin_unlock_irq(conf->hash_locks + hash); 2288 if (!sh) 2289 return 0; 2290 BUG_ON(atomic_read(&sh->count)); 2291 shrink_buffers(sh); 2292 kmem_cache_free(conf->slab_cache, sh); 2293 atomic_dec(&conf->active_stripes); 2294 conf->max_nr_stripes--; 2295 return 1; 2296 } 2297 2298 static void shrink_stripes(struct r5conf *conf) 2299 { 2300 while (conf->max_nr_stripes && 2301 drop_one_stripe(conf)) 2302 ; 2303 2304 kmem_cache_destroy(conf->slab_cache); 2305 conf->slab_cache = NULL; 2306 } 2307 2308 static void raid5_end_read_request(struct bio * bi) 2309 { 2310 struct stripe_head *sh = bi->bi_private; 2311 struct r5conf *conf = sh->raid_conf; 2312 int disks = sh->disks, i; 2313 char b[BDEVNAME_SIZE]; 2314 struct md_rdev *rdev = NULL; 2315 sector_t s; 2316 2317 for (i=0 ; i<disks; i++) 2318 if (bi == &sh->dev[i].req) 2319 break; 2320 2321 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2322 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2323 bi->bi_error); 2324 if (i == disks) { 2325 bio_reset(bi); 2326 BUG(); 2327 return; 2328 } 2329 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2330 /* If replacement finished while this request was outstanding, 2331 * 'replacement' might be NULL already. 2332 * In that case it moved down to 'rdev'. 2333 * rdev is not removed until all requests are finished. 2334 */ 2335 rdev = conf->disks[i].replacement; 2336 if (!rdev) 2337 rdev = conf->disks[i].rdev; 2338 2339 if (use_new_offset(conf, sh)) 2340 s = sh->sector + rdev->new_data_offset; 2341 else 2342 s = sh->sector + rdev->data_offset; 2343 if (!bi->bi_error) { 2344 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2345 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2346 /* Note that this cannot happen on a 2347 * replacement device. We just fail those on 2348 * any error 2349 */ 2350 printk_ratelimited( 2351 KERN_INFO 2352 "md/raid:%s: read error corrected" 2353 " (%lu sectors at %llu on %s)\n", 2354 mdname(conf->mddev), STRIPE_SECTORS, 2355 (unsigned long long)s, 2356 bdevname(rdev->bdev, b)); 2357 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2358 clear_bit(R5_ReadError, &sh->dev[i].flags); 2359 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2360 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2361 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2362 2363 if (atomic_read(&rdev->read_errors)) 2364 atomic_set(&rdev->read_errors, 0); 2365 } else { 2366 const char *bdn = bdevname(rdev->bdev, b); 2367 int retry = 0; 2368 int set_bad = 0; 2369 2370 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2371 atomic_inc(&rdev->read_errors); 2372 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2373 printk_ratelimited( 2374 KERN_WARNING 2375 "md/raid:%s: read error on replacement device " 2376 "(sector %llu on %s).\n", 2377 mdname(conf->mddev), 2378 (unsigned long long)s, 2379 bdn); 2380 else if (conf->mddev->degraded >= conf->max_degraded) { 2381 set_bad = 1; 2382 printk_ratelimited( 2383 KERN_WARNING 2384 "md/raid:%s: read error not correctable " 2385 "(sector %llu on %s).\n", 2386 mdname(conf->mddev), 2387 (unsigned long long)s, 2388 bdn); 2389 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2390 /* Oh, no!!! */ 2391 set_bad = 1; 2392 printk_ratelimited( 2393 KERN_WARNING 2394 "md/raid:%s: read error NOT corrected!! " 2395 "(sector %llu on %s).\n", 2396 mdname(conf->mddev), 2397 (unsigned long long)s, 2398 bdn); 2399 } else if (atomic_read(&rdev->read_errors) 2400 > conf->max_nr_stripes) 2401 printk(KERN_WARNING 2402 "md/raid:%s: Too many read errors, failing device %s.\n", 2403 mdname(conf->mddev), bdn); 2404 else 2405 retry = 1; 2406 if (set_bad && test_bit(In_sync, &rdev->flags) 2407 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2408 retry = 1; 2409 if (retry) 2410 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2411 set_bit(R5_ReadError, &sh->dev[i].flags); 2412 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2413 } else 2414 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2415 else { 2416 clear_bit(R5_ReadError, &sh->dev[i].flags); 2417 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2418 if (!(set_bad 2419 && test_bit(In_sync, &rdev->flags) 2420 && rdev_set_badblocks( 2421 rdev, sh->sector, STRIPE_SECTORS, 0))) 2422 md_error(conf->mddev, rdev); 2423 } 2424 } 2425 rdev_dec_pending(rdev, conf->mddev); 2426 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2427 set_bit(STRIPE_HANDLE, &sh->state); 2428 raid5_release_stripe(sh); 2429 bio_reset(bi); 2430 } 2431 2432 static void raid5_end_write_request(struct bio *bi) 2433 { 2434 struct stripe_head *sh = bi->bi_private; 2435 struct r5conf *conf = sh->raid_conf; 2436 int disks = sh->disks, i; 2437 struct md_rdev *uninitialized_var(rdev); 2438 sector_t first_bad; 2439 int bad_sectors; 2440 int replacement = 0; 2441 2442 for (i = 0 ; i < disks; i++) { 2443 if (bi == &sh->dev[i].req) { 2444 rdev = conf->disks[i].rdev; 2445 break; 2446 } 2447 if (bi == &sh->dev[i].rreq) { 2448 rdev = conf->disks[i].replacement; 2449 if (rdev) 2450 replacement = 1; 2451 else 2452 /* rdev was removed and 'replacement' 2453 * replaced it. rdev is not removed 2454 * until all requests are finished. 2455 */ 2456 rdev = conf->disks[i].rdev; 2457 break; 2458 } 2459 } 2460 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2461 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2462 bi->bi_error); 2463 if (i == disks) { 2464 bio_reset(bi); 2465 BUG(); 2466 return; 2467 } 2468 2469 if (replacement) { 2470 if (bi->bi_error) 2471 md_error(conf->mddev, rdev); 2472 else if (is_badblock(rdev, sh->sector, 2473 STRIPE_SECTORS, 2474 &first_bad, &bad_sectors)) 2475 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2476 } else { 2477 if (bi->bi_error) { 2478 set_bit(STRIPE_DEGRADED, &sh->state); 2479 set_bit(WriteErrorSeen, &rdev->flags); 2480 set_bit(R5_WriteError, &sh->dev[i].flags); 2481 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2482 set_bit(MD_RECOVERY_NEEDED, 2483 &rdev->mddev->recovery); 2484 } else if (is_badblock(rdev, sh->sector, 2485 STRIPE_SECTORS, 2486 &first_bad, &bad_sectors)) { 2487 set_bit(R5_MadeGood, &sh->dev[i].flags); 2488 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2489 /* That was a successful write so make 2490 * sure it looks like we already did 2491 * a re-write. 2492 */ 2493 set_bit(R5_ReWrite, &sh->dev[i].flags); 2494 } 2495 } 2496 rdev_dec_pending(rdev, conf->mddev); 2497 2498 if (sh->batch_head && bi->bi_error && !replacement) 2499 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2500 2501 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2502 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2503 set_bit(STRIPE_HANDLE, &sh->state); 2504 raid5_release_stripe(sh); 2505 2506 if (sh->batch_head && sh != sh->batch_head) 2507 raid5_release_stripe(sh->batch_head); 2508 bio_reset(bi); 2509 } 2510 2511 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2512 { 2513 struct r5dev *dev = &sh->dev[i]; 2514 2515 dev->flags = 0; 2516 dev->sector = raid5_compute_blocknr(sh, i, previous); 2517 } 2518 2519 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2520 { 2521 char b[BDEVNAME_SIZE]; 2522 struct r5conf *conf = mddev->private; 2523 unsigned long flags; 2524 pr_debug("raid456: error called\n"); 2525 2526 spin_lock_irqsave(&conf->device_lock, flags); 2527 clear_bit(In_sync, &rdev->flags); 2528 mddev->degraded = calc_degraded(conf); 2529 spin_unlock_irqrestore(&conf->device_lock, flags); 2530 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2531 2532 set_bit(Blocked, &rdev->flags); 2533 set_bit(Faulty, &rdev->flags); 2534 set_mask_bits(&mddev->flags, 0, 2535 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 2536 printk(KERN_ALERT 2537 "md/raid:%s: Disk failure on %s, disabling device.\n" 2538 "md/raid:%s: Operation continuing on %d devices.\n", 2539 mdname(mddev), 2540 bdevname(rdev->bdev, b), 2541 mdname(mddev), 2542 conf->raid_disks - mddev->degraded); 2543 } 2544 2545 /* 2546 * Input: a 'big' sector number, 2547 * Output: index of the data and parity disk, and the sector # in them. 2548 */ 2549 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2550 int previous, int *dd_idx, 2551 struct stripe_head *sh) 2552 { 2553 sector_t stripe, stripe2; 2554 sector_t chunk_number; 2555 unsigned int chunk_offset; 2556 int pd_idx, qd_idx; 2557 int ddf_layout = 0; 2558 sector_t new_sector; 2559 int algorithm = previous ? conf->prev_algo 2560 : conf->algorithm; 2561 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2562 : conf->chunk_sectors; 2563 int raid_disks = previous ? conf->previous_raid_disks 2564 : conf->raid_disks; 2565 int data_disks = raid_disks - conf->max_degraded; 2566 2567 /* First compute the information on this sector */ 2568 2569 /* 2570 * Compute the chunk number and the sector offset inside the chunk 2571 */ 2572 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2573 chunk_number = r_sector; 2574 2575 /* 2576 * Compute the stripe number 2577 */ 2578 stripe = chunk_number; 2579 *dd_idx = sector_div(stripe, data_disks); 2580 stripe2 = stripe; 2581 /* 2582 * Select the parity disk based on the user selected algorithm. 2583 */ 2584 pd_idx = qd_idx = -1; 2585 switch(conf->level) { 2586 case 4: 2587 pd_idx = data_disks; 2588 break; 2589 case 5: 2590 switch (algorithm) { 2591 case ALGORITHM_LEFT_ASYMMETRIC: 2592 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2593 if (*dd_idx >= pd_idx) 2594 (*dd_idx)++; 2595 break; 2596 case ALGORITHM_RIGHT_ASYMMETRIC: 2597 pd_idx = sector_div(stripe2, raid_disks); 2598 if (*dd_idx >= pd_idx) 2599 (*dd_idx)++; 2600 break; 2601 case ALGORITHM_LEFT_SYMMETRIC: 2602 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2603 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2604 break; 2605 case ALGORITHM_RIGHT_SYMMETRIC: 2606 pd_idx = sector_div(stripe2, raid_disks); 2607 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2608 break; 2609 case ALGORITHM_PARITY_0: 2610 pd_idx = 0; 2611 (*dd_idx)++; 2612 break; 2613 case ALGORITHM_PARITY_N: 2614 pd_idx = data_disks; 2615 break; 2616 default: 2617 BUG(); 2618 } 2619 break; 2620 case 6: 2621 2622 switch (algorithm) { 2623 case ALGORITHM_LEFT_ASYMMETRIC: 2624 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2625 qd_idx = pd_idx + 1; 2626 if (pd_idx == raid_disks-1) { 2627 (*dd_idx)++; /* Q D D D P */ 2628 qd_idx = 0; 2629 } else if (*dd_idx >= pd_idx) 2630 (*dd_idx) += 2; /* D D P Q D */ 2631 break; 2632 case ALGORITHM_RIGHT_ASYMMETRIC: 2633 pd_idx = sector_div(stripe2, raid_disks); 2634 qd_idx = pd_idx + 1; 2635 if (pd_idx == raid_disks-1) { 2636 (*dd_idx)++; /* Q D D D P */ 2637 qd_idx = 0; 2638 } else if (*dd_idx >= pd_idx) 2639 (*dd_idx) += 2; /* D D P Q D */ 2640 break; 2641 case ALGORITHM_LEFT_SYMMETRIC: 2642 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2643 qd_idx = (pd_idx + 1) % raid_disks; 2644 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2645 break; 2646 case ALGORITHM_RIGHT_SYMMETRIC: 2647 pd_idx = sector_div(stripe2, raid_disks); 2648 qd_idx = (pd_idx + 1) % raid_disks; 2649 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2650 break; 2651 2652 case ALGORITHM_PARITY_0: 2653 pd_idx = 0; 2654 qd_idx = 1; 2655 (*dd_idx) += 2; 2656 break; 2657 case ALGORITHM_PARITY_N: 2658 pd_idx = data_disks; 2659 qd_idx = data_disks + 1; 2660 break; 2661 2662 case ALGORITHM_ROTATING_ZERO_RESTART: 2663 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2664 * of blocks for computing Q is different. 2665 */ 2666 pd_idx = sector_div(stripe2, raid_disks); 2667 qd_idx = pd_idx + 1; 2668 if (pd_idx == raid_disks-1) { 2669 (*dd_idx)++; /* Q D D D P */ 2670 qd_idx = 0; 2671 } else if (*dd_idx >= pd_idx) 2672 (*dd_idx) += 2; /* D D P Q D */ 2673 ddf_layout = 1; 2674 break; 2675 2676 case ALGORITHM_ROTATING_N_RESTART: 2677 /* Same a left_asymmetric, by first stripe is 2678 * D D D P Q rather than 2679 * Q D D D P 2680 */ 2681 stripe2 += 1; 2682 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2683 qd_idx = pd_idx + 1; 2684 if (pd_idx == raid_disks-1) { 2685 (*dd_idx)++; /* Q D D D P */ 2686 qd_idx = 0; 2687 } else if (*dd_idx >= pd_idx) 2688 (*dd_idx) += 2; /* D D P Q D */ 2689 ddf_layout = 1; 2690 break; 2691 2692 case ALGORITHM_ROTATING_N_CONTINUE: 2693 /* Same as left_symmetric but Q is before P */ 2694 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2695 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2696 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2697 ddf_layout = 1; 2698 break; 2699 2700 case ALGORITHM_LEFT_ASYMMETRIC_6: 2701 /* RAID5 left_asymmetric, with Q on last device */ 2702 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2703 if (*dd_idx >= pd_idx) 2704 (*dd_idx)++; 2705 qd_idx = raid_disks - 1; 2706 break; 2707 2708 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2709 pd_idx = sector_div(stripe2, raid_disks-1); 2710 if (*dd_idx >= pd_idx) 2711 (*dd_idx)++; 2712 qd_idx = raid_disks - 1; 2713 break; 2714 2715 case ALGORITHM_LEFT_SYMMETRIC_6: 2716 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2717 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2718 qd_idx = raid_disks - 1; 2719 break; 2720 2721 case ALGORITHM_RIGHT_SYMMETRIC_6: 2722 pd_idx = sector_div(stripe2, raid_disks-1); 2723 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2724 qd_idx = raid_disks - 1; 2725 break; 2726 2727 case ALGORITHM_PARITY_0_6: 2728 pd_idx = 0; 2729 (*dd_idx)++; 2730 qd_idx = raid_disks - 1; 2731 break; 2732 2733 default: 2734 BUG(); 2735 } 2736 break; 2737 } 2738 2739 if (sh) { 2740 sh->pd_idx = pd_idx; 2741 sh->qd_idx = qd_idx; 2742 sh->ddf_layout = ddf_layout; 2743 } 2744 /* 2745 * Finally, compute the new sector number 2746 */ 2747 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2748 return new_sector; 2749 } 2750 2751 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2752 { 2753 struct r5conf *conf = sh->raid_conf; 2754 int raid_disks = sh->disks; 2755 int data_disks = raid_disks - conf->max_degraded; 2756 sector_t new_sector = sh->sector, check; 2757 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2758 : conf->chunk_sectors; 2759 int algorithm = previous ? conf->prev_algo 2760 : conf->algorithm; 2761 sector_t stripe; 2762 int chunk_offset; 2763 sector_t chunk_number; 2764 int dummy1, dd_idx = i; 2765 sector_t r_sector; 2766 struct stripe_head sh2; 2767 2768 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2769 stripe = new_sector; 2770 2771 if (i == sh->pd_idx) 2772 return 0; 2773 switch(conf->level) { 2774 case 4: break; 2775 case 5: 2776 switch (algorithm) { 2777 case ALGORITHM_LEFT_ASYMMETRIC: 2778 case ALGORITHM_RIGHT_ASYMMETRIC: 2779 if (i > sh->pd_idx) 2780 i--; 2781 break; 2782 case ALGORITHM_LEFT_SYMMETRIC: 2783 case ALGORITHM_RIGHT_SYMMETRIC: 2784 if (i < sh->pd_idx) 2785 i += raid_disks; 2786 i -= (sh->pd_idx + 1); 2787 break; 2788 case ALGORITHM_PARITY_0: 2789 i -= 1; 2790 break; 2791 case ALGORITHM_PARITY_N: 2792 break; 2793 default: 2794 BUG(); 2795 } 2796 break; 2797 case 6: 2798 if (i == sh->qd_idx) 2799 return 0; /* It is the Q disk */ 2800 switch (algorithm) { 2801 case ALGORITHM_LEFT_ASYMMETRIC: 2802 case ALGORITHM_RIGHT_ASYMMETRIC: 2803 case ALGORITHM_ROTATING_ZERO_RESTART: 2804 case ALGORITHM_ROTATING_N_RESTART: 2805 if (sh->pd_idx == raid_disks-1) 2806 i--; /* Q D D D P */ 2807 else if (i > sh->pd_idx) 2808 i -= 2; /* D D P Q D */ 2809 break; 2810 case ALGORITHM_LEFT_SYMMETRIC: 2811 case ALGORITHM_RIGHT_SYMMETRIC: 2812 if (sh->pd_idx == raid_disks-1) 2813 i--; /* Q D D D P */ 2814 else { 2815 /* D D P Q D */ 2816 if (i < sh->pd_idx) 2817 i += raid_disks; 2818 i -= (sh->pd_idx + 2); 2819 } 2820 break; 2821 case ALGORITHM_PARITY_0: 2822 i -= 2; 2823 break; 2824 case ALGORITHM_PARITY_N: 2825 break; 2826 case ALGORITHM_ROTATING_N_CONTINUE: 2827 /* Like left_symmetric, but P is before Q */ 2828 if (sh->pd_idx == 0) 2829 i--; /* P D D D Q */ 2830 else { 2831 /* D D Q P D */ 2832 if (i < sh->pd_idx) 2833 i += raid_disks; 2834 i -= (sh->pd_idx + 1); 2835 } 2836 break; 2837 case ALGORITHM_LEFT_ASYMMETRIC_6: 2838 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2839 if (i > sh->pd_idx) 2840 i--; 2841 break; 2842 case ALGORITHM_LEFT_SYMMETRIC_6: 2843 case ALGORITHM_RIGHT_SYMMETRIC_6: 2844 if (i < sh->pd_idx) 2845 i += data_disks + 1; 2846 i -= (sh->pd_idx + 1); 2847 break; 2848 case ALGORITHM_PARITY_0_6: 2849 i -= 1; 2850 break; 2851 default: 2852 BUG(); 2853 } 2854 break; 2855 } 2856 2857 chunk_number = stripe * data_disks + i; 2858 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2859 2860 check = raid5_compute_sector(conf, r_sector, 2861 previous, &dummy1, &sh2); 2862 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2863 || sh2.qd_idx != sh->qd_idx) { 2864 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2865 mdname(conf->mddev)); 2866 return 0; 2867 } 2868 return r_sector; 2869 } 2870 2871 static void 2872 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2873 int rcw, int expand) 2874 { 2875 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2876 struct r5conf *conf = sh->raid_conf; 2877 int level = conf->level; 2878 2879 if (rcw) { 2880 2881 for (i = disks; i--; ) { 2882 struct r5dev *dev = &sh->dev[i]; 2883 2884 if (dev->towrite) { 2885 set_bit(R5_LOCKED, &dev->flags); 2886 set_bit(R5_Wantdrain, &dev->flags); 2887 if (!expand) 2888 clear_bit(R5_UPTODATE, &dev->flags); 2889 s->locked++; 2890 } 2891 } 2892 /* if we are not expanding this is a proper write request, and 2893 * there will be bios with new data to be drained into the 2894 * stripe cache 2895 */ 2896 if (!expand) { 2897 if (!s->locked) 2898 /* False alarm, nothing to do */ 2899 return; 2900 sh->reconstruct_state = reconstruct_state_drain_run; 2901 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2902 } else 2903 sh->reconstruct_state = reconstruct_state_run; 2904 2905 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2906 2907 if (s->locked + conf->max_degraded == disks) 2908 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2909 atomic_inc(&conf->pending_full_writes); 2910 } else { 2911 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2912 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2913 BUG_ON(level == 6 && 2914 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 2915 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 2916 2917 for (i = disks; i--; ) { 2918 struct r5dev *dev = &sh->dev[i]; 2919 if (i == pd_idx || i == qd_idx) 2920 continue; 2921 2922 if (dev->towrite && 2923 (test_bit(R5_UPTODATE, &dev->flags) || 2924 test_bit(R5_Wantcompute, &dev->flags))) { 2925 set_bit(R5_Wantdrain, &dev->flags); 2926 set_bit(R5_LOCKED, &dev->flags); 2927 clear_bit(R5_UPTODATE, &dev->flags); 2928 s->locked++; 2929 } 2930 } 2931 if (!s->locked) 2932 /* False alarm - nothing to do */ 2933 return; 2934 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2935 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2936 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2937 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2938 } 2939 2940 /* keep the parity disk(s) locked while asynchronous operations 2941 * are in flight 2942 */ 2943 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2944 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2945 s->locked++; 2946 2947 if (level == 6) { 2948 int qd_idx = sh->qd_idx; 2949 struct r5dev *dev = &sh->dev[qd_idx]; 2950 2951 set_bit(R5_LOCKED, &dev->flags); 2952 clear_bit(R5_UPTODATE, &dev->flags); 2953 s->locked++; 2954 } 2955 2956 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2957 __func__, (unsigned long long)sh->sector, 2958 s->locked, s->ops_request); 2959 } 2960 2961 /* 2962 * Each stripe/dev can have one or more bion attached. 2963 * toread/towrite point to the first in a chain. 2964 * The bi_next chain must be in order. 2965 */ 2966 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 2967 int forwrite, int previous) 2968 { 2969 struct bio **bip; 2970 struct r5conf *conf = sh->raid_conf; 2971 int firstwrite=0; 2972 2973 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2974 (unsigned long long)bi->bi_iter.bi_sector, 2975 (unsigned long long)sh->sector); 2976 2977 /* 2978 * If several bio share a stripe. The bio bi_phys_segments acts as a 2979 * reference count to avoid race. The reference count should already be 2980 * increased before this function is called (for example, in 2981 * raid5_make_request()), so other bio sharing this stripe will not free the 2982 * stripe. If a stripe is owned by one stripe, the stripe lock will 2983 * protect it. 2984 */ 2985 spin_lock_irq(&sh->stripe_lock); 2986 /* Don't allow new IO added to stripes in batch list */ 2987 if (sh->batch_head) 2988 goto overlap; 2989 if (forwrite) { 2990 bip = &sh->dev[dd_idx].towrite; 2991 if (*bip == NULL) 2992 firstwrite = 1; 2993 } else 2994 bip = &sh->dev[dd_idx].toread; 2995 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2996 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2997 goto overlap; 2998 bip = & (*bip)->bi_next; 2999 } 3000 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3001 goto overlap; 3002 3003 if (!forwrite || previous) 3004 clear_bit(STRIPE_BATCH_READY, &sh->state); 3005 3006 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3007 if (*bip) 3008 bi->bi_next = *bip; 3009 *bip = bi; 3010 raid5_inc_bi_active_stripes(bi); 3011 3012 if (forwrite) { 3013 /* check if page is covered */ 3014 sector_t sector = sh->dev[dd_idx].sector; 3015 for (bi=sh->dev[dd_idx].towrite; 3016 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3017 bi && bi->bi_iter.bi_sector <= sector; 3018 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3019 if (bio_end_sector(bi) >= sector) 3020 sector = bio_end_sector(bi); 3021 } 3022 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3023 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3024 sh->overwrite_disks++; 3025 } 3026 3027 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3028 (unsigned long long)(*bip)->bi_iter.bi_sector, 3029 (unsigned long long)sh->sector, dd_idx); 3030 3031 if (conf->mddev->bitmap && firstwrite) { 3032 /* Cannot hold spinlock over bitmap_startwrite, 3033 * but must ensure this isn't added to a batch until 3034 * we have added to the bitmap and set bm_seq. 3035 * So set STRIPE_BITMAP_PENDING to prevent 3036 * batching. 3037 * If multiple add_stripe_bio() calls race here they 3038 * much all set STRIPE_BITMAP_PENDING. So only the first one 3039 * to complete "bitmap_startwrite" gets to set 3040 * STRIPE_BIT_DELAY. This is important as once a stripe 3041 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3042 * any more. 3043 */ 3044 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3045 spin_unlock_irq(&sh->stripe_lock); 3046 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3047 STRIPE_SECTORS, 0); 3048 spin_lock_irq(&sh->stripe_lock); 3049 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3050 if (!sh->batch_head) { 3051 sh->bm_seq = conf->seq_flush+1; 3052 set_bit(STRIPE_BIT_DELAY, &sh->state); 3053 } 3054 } 3055 spin_unlock_irq(&sh->stripe_lock); 3056 3057 if (stripe_can_batch(sh)) 3058 stripe_add_to_batch_list(conf, sh); 3059 return 1; 3060 3061 overlap: 3062 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3063 spin_unlock_irq(&sh->stripe_lock); 3064 return 0; 3065 } 3066 3067 static void end_reshape(struct r5conf *conf); 3068 3069 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3070 struct stripe_head *sh) 3071 { 3072 int sectors_per_chunk = 3073 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3074 int dd_idx; 3075 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3076 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3077 3078 raid5_compute_sector(conf, 3079 stripe * (disks - conf->max_degraded) 3080 *sectors_per_chunk + chunk_offset, 3081 previous, 3082 &dd_idx, sh); 3083 } 3084 3085 static void 3086 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3087 struct stripe_head_state *s, int disks, 3088 struct bio_list *return_bi) 3089 { 3090 int i; 3091 BUG_ON(sh->batch_head); 3092 for (i = disks; i--; ) { 3093 struct bio *bi; 3094 int bitmap_end = 0; 3095 3096 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3097 struct md_rdev *rdev; 3098 rcu_read_lock(); 3099 rdev = rcu_dereference(conf->disks[i].rdev); 3100 if (rdev && test_bit(In_sync, &rdev->flags) && 3101 !test_bit(Faulty, &rdev->flags)) 3102 atomic_inc(&rdev->nr_pending); 3103 else 3104 rdev = NULL; 3105 rcu_read_unlock(); 3106 if (rdev) { 3107 if (!rdev_set_badblocks( 3108 rdev, 3109 sh->sector, 3110 STRIPE_SECTORS, 0)) 3111 md_error(conf->mddev, rdev); 3112 rdev_dec_pending(rdev, conf->mddev); 3113 } 3114 } 3115 spin_lock_irq(&sh->stripe_lock); 3116 /* fail all writes first */ 3117 bi = sh->dev[i].towrite; 3118 sh->dev[i].towrite = NULL; 3119 sh->overwrite_disks = 0; 3120 spin_unlock_irq(&sh->stripe_lock); 3121 if (bi) 3122 bitmap_end = 1; 3123 3124 r5l_stripe_write_finished(sh); 3125 3126 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3127 wake_up(&conf->wait_for_overlap); 3128 3129 while (bi && bi->bi_iter.bi_sector < 3130 sh->dev[i].sector + STRIPE_SECTORS) { 3131 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3132 3133 bi->bi_error = -EIO; 3134 if (!raid5_dec_bi_active_stripes(bi)) { 3135 md_write_end(conf->mddev); 3136 bio_list_add(return_bi, bi); 3137 } 3138 bi = nextbi; 3139 } 3140 if (bitmap_end) 3141 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3142 STRIPE_SECTORS, 0, 0); 3143 bitmap_end = 0; 3144 /* and fail all 'written' */ 3145 bi = sh->dev[i].written; 3146 sh->dev[i].written = NULL; 3147 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3148 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3149 sh->dev[i].page = sh->dev[i].orig_page; 3150 } 3151 3152 if (bi) bitmap_end = 1; 3153 while (bi && bi->bi_iter.bi_sector < 3154 sh->dev[i].sector + STRIPE_SECTORS) { 3155 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3156 3157 bi->bi_error = -EIO; 3158 if (!raid5_dec_bi_active_stripes(bi)) { 3159 md_write_end(conf->mddev); 3160 bio_list_add(return_bi, bi); 3161 } 3162 bi = bi2; 3163 } 3164 3165 /* fail any reads if this device is non-operational and 3166 * the data has not reached the cache yet. 3167 */ 3168 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3169 s->failed > conf->max_degraded && 3170 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3171 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3172 spin_lock_irq(&sh->stripe_lock); 3173 bi = sh->dev[i].toread; 3174 sh->dev[i].toread = NULL; 3175 spin_unlock_irq(&sh->stripe_lock); 3176 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3177 wake_up(&conf->wait_for_overlap); 3178 if (bi) 3179 s->to_read--; 3180 while (bi && bi->bi_iter.bi_sector < 3181 sh->dev[i].sector + STRIPE_SECTORS) { 3182 struct bio *nextbi = 3183 r5_next_bio(bi, sh->dev[i].sector); 3184 3185 bi->bi_error = -EIO; 3186 if (!raid5_dec_bi_active_stripes(bi)) 3187 bio_list_add(return_bi, bi); 3188 bi = nextbi; 3189 } 3190 } 3191 if (bitmap_end) 3192 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3193 STRIPE_SECTORS, 0, 0); 3194 /* If we were in the middle of a write the parity block might 3195 * still be locked - so just clear all R5_LOCKED flags 3196 */ 3197 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3198 } 3199 s->to_write = 0; 3200 s->written = 0; 3201 3202 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3203 if (atomic_dec_and_test(&conf->pending_full_writes)) 3204 md_wakeup_thread(conf->mddev->thread); 3205 } 3206 3207 static void 3208 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3209 struct stripe_head_state *s) 3210 { 3211 int abort = 0; 3212 int i; 3213 3214 BUG_ON(sh->batch_head); 3215 clear_bit(STRIPE_SYNCING, &sh->state); 3216 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3217 wake_up(&conf->wait_for_overlap); 3218 s->syncing = 0; 3219 s->replacing = 0; 3220 /* There is nothing more to do for sync/check/repair. 3221 * Don't even need to abort as that is handled elsewhere 3222 * if needed, and not always wanted e.g. if there is a known 3223 * bad block here. 3224 * For recover/replace we need to record a bad block on all 3225 * non-sync devices, or abort the recovery 3226 */ 3227 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3228 /* During recovery devices cannot be removed, so 3229 * locking and refcounting of rdevs is not needed 3230 */ 3231 rcu_read_lock(); 3232 for (i = 0; i < conf->raid_disks; i++) { 3233 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3234 if (rdev 3235 && !test_bit(Faulty, &rdev->flags) 3236 && !test_bit(In_sync, &rdev->flags) 3237 && !rdev_set_badblocks(rdev, sh->sector, 3238 STRIPE_SECTORS, 0)) 3239 abort = 1; 3240 rdev = rcu_dereference(conf->disks[i].replacement); 3241 if (rdev 3242 && !test_bit(Faulty, &rdev->flags) 3243 && !test_bit(In_sync, &rdev->flags) 3244 && !rdev_set_badblocks(rdev, sh->sector, 3245 STRIPE_SECTORS, 0)) 3246 abort = 1; 3247 } 3248 rcu_read_unlock(); 3249 if (abort) 3250 conf->recovery_disabled = 3251 conf->mddev->recovery_disabled; 3252 } 3253 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3254 } 3255 3256 static int want_replace(struct stripe_head *sh, int disk_idx) 3257 { 3258 struct md_rdev *rdev; 3259 int rv = 0; 3260 3261 rcu_read_lock(); 3262 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3263 if (rdev 3264 && !test_bit(Faulty, &rdev->flags) 3265 && !test_bit(In_sync, &rdev->flags) 3266 && (rdev->recovery_offset <= sh->sector 3267 || rdev->mddev->recovery_cp <= sh->sector)) 3268 rv = 1; 3269 rcu_read_unlock(); 3270 return rv; 3271 } 3272 3273 /* fetch_block - checks the given member device to see if its data needs 3274 * to be read or computed to satisfy a request. 3275 * 3276 * Returns 1 when no more member devices need to be checked, otherwise returns 3277 * 0 to tell the loop in handle_stripe_fill to continue 3278 */ 3279 3280 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3281 int disk_idx, int disks) 3282 { 3283 struct r5dev *dev = &sh->dev[disk_idx]; 3284 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3285 &sh->dev[s->failed_num[1]] }; 3286 int i; 3287 3288 3289 if (test_bit(R5_LOCKED, &dev->flags) || 3290 test_bit(R5_UPTODATE, &dev->flags)) 3291 /* No point reading this as we already have it or have 3292 * decided to get it. 3293 */ 3294 return 0; 3295 3296 if (dev->toread || 3297 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3298 /* We need this block to directly satisfy a request */ 3299 return 1; 3300 3301 if (s->syncing || s->expanding || 3302 (s->replacing && want_replace(sh, disk_idx))) 3303 /* When syncing, or expanding we read everything. 3304 * When replacing, we need the replaced block. 3305 */ 3306 return 1; 3307 3308 if ((s->failed >= 1 && fdev[0]->toread) || 3309 (s->failed >= 2 && fdev[1]->toread)) 3310 /* If we want to read from a failed device, then 3311 * we need to actually read every other device. 3312 */ 3313 return 1; 3314 3315 /* Sometimes neither read-modify-write nor reconstruct-write 3316 * cycles can work. In those cases we read every block we 3317 * can. Then the parity-update is certain to have enough to 3318 * work with. 3319 * This can only be a problem when we need to write something, 3320 * and some device has failed. If either of those tests 3321 * fail we need look no further. 3322 */ 3323 if (!s->failed || !s->to_write) 3324 return 0; 3325 3326 if (test_bit(R5_Insync, &dev->flags) && 3327 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3328 /* Pre-reads at not permitted until after short delay 3329 * to gather multiple requests. However if this 3330 * device is no Insync, the block could only be be computed 3331 * and there is no need to delay that. 3332 */ 3333 return 0; 3334 3335 for (i = 0; i < s->failed && i < 2; i++) { 3336 if (fdev[i]->towrite && 3337 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3338 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3339 /* If we have a partial write to a failed 3340 * device, then we will need to reconstruct 3341 * the content of that device, so all other 3342 * devices must be read. 3343 */ 3344 return 1; 3345 } 3346 3347 /* If we are forced to do a reconstruct-write, either because 3348 * the current RAID6 implementation only supports that, or 3349 * or because parity cannot be trusted and we are currently 3350 * recovering it, there is extra need to be careful. 3351 * If one of the devices that we would need to read, because 3352 * it is not being overwritten (and maybe not written at all) 3353 * is missing/faulty, then we need to read everything we can. 3354 */ 3355 if (sh->raid_conf->level != 6 && 3356 sh->sector < sh->raid_conf->mddev->recovery_cp) 3357 /* reconstruct-write isn't being forced */ 3358 return 0; 3359 for (i = 0; i < s->failed && i < 2; i++) { 3360 if (s->failed_num[i] != sh->pd_idx && 3361 s->failed_num[i] != sh->qd_idx && 3362 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3363 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3364 return 1; 3365 } 3366 3367 return 0; 3368 } 3369 3370 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3371 int disk_idx, int disks) 3372 { 3373 struct r5dev *dev = &sh->dev[disk_idx]; 3374 3375 /* is the data in this block needed, and can we get it? */ 3376 if (need_this_block(sh, s, disk_idx, disks)) { 3377 /* we would like to get this block, possibly by computing it, 3378 * otherwise read it if the backing disk is insync 3379 */ 3380 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3381 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3382 BUG_ON(sh->batch_head); 3383 if ((s->uptodate == disks - 1) && 3384 (s->failed && (disk_idx == s->failed_num[0] || 3385 disk_idx == s->failed_num[1]))) { 3386 /* have disk failed, and we're requested to fetch it; 3387 * do compute it 3388 */ 3389 pr_debug("Computing stripe %llu block %d\n", 3390 (unsigned long long)sh->sector, disk_idx); 3391 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3392 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3393 set_bit(R5_Wantcompute, &dev->flags); 3394 sh->ops.target = disk_idx; 3395 sh->ops.target2 = -1; /* no 2nd target */ 3396 s->req_compute = 1; 3397 /* Careful: from this point on 'uptodate' is in the eye 3398 * of raid_run_ops which services 'compute' operations 3399 * before writes. R5_Wantcompute flags a block that will 3400 * be R5_UPTODATE by the time it is needed for a 3401 * subsequent operation. 3402 */ 3403 s->uptodate++; 3404 return 1; 3405 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3406 /* Computing 2-failure is *very* expensive; only 3407 * do it if failed >= 2 3408 */ 3409 int other; 3410 for (other = disks; other--; ) { 3411 if (other == disk_idx) 3412 continue; 3413 if (!test_bit(R5_UPTODATE, 3414 &sh->dev[other].flags)) 3415 break; 3416 } 3417 BUG_ON(other < 0); 3418 pr_debug("Computing stripe %llu blocks %d,%d\n", 3419 (unsigned long long)sh->sector, 3420 disk_idx, other); 3421 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3422 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3423 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3424 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3425 sh->ops.target = disk_idx; 3426 sh->ops.target2 = other; 3427 s->uptodate += 2; 3428 s->req_compute = 1; 3429 return 1; 3430 } else if (test_bit(R5_Insync, &dev->flags)) { 3431 set_bit(R5_LOCKED, &dev->flags); 3432 set_bit(R5_Wantread, &dev->flags); 3433 s->locked++; 3434 pr_debug("Reading block %d (sync=%d)\n", 3435 disk_idx, s->syncing); 3436 } 3437 } 3438 3439 return 0; 3440 } 3441 3442 /** 3443 * handle_stripe_fill - read or compute data to satisfy pending requests. 3444 */ 3445 static void handle_stripe_fill(struct stripe_head *sh, 3446 struct stripe_head_state *s, 3447 int disks) 3448 { 3449 int i; 3450 3451 /* look for blocks to read/compute, skip this if a compute 3452 * is already in flight, or if the stripe contents are in the 3453 * midst of changing due to a write 3454 */ 3455 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3456 !sh->reconstruct_state) 3457 for (i = disks; i--; ) 3458 if (fetch_block(sh, s, i, disks)) 3459 break; 3460 set_bit(STRIPE_HANDLE, &sh->state); 3461 } 3462 3463 static void break_stripe_batch_list(struct stripe_head *head_sh, 3464 unsigned long handle_flags); 3465 /* handle_stripe_clean_event 3466 * any written block on an uptodate or failed drive can be returned. 3467 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3468 * never LOCKED, so we don't need to test 'failed' directly. 3469 */ 3470 static void handle_stripe_clean_event(struct r5conf *conf, 3471 struct stripe_head *sh, int disks, struct bio_list *return_bi) 3472 { 3473 int i; 3474 struct r5dev *dev; 3475 int discard_pending = 0; 3476 struct stripe_head *head_sh = sh; 3477 bool do_endio = false; 3478 3479 for (i = disks; i--; ) 3480 if (sh->dev[i].written) { 3481 dev = &sh->dev[i]; 3482 if (!test_bit(R5_LOCKED, &dev->flags) && 3483 (test_bit(R5_UPTODATE, &dev->flags) || 3484 test_bit(R5_Discard, &dev->flags) || 3485 test_bit(R5_SkipCopy, &dev->flags))) { 3486 /* We can return any write requests */ 3487 struct bio *wbi, *wbi2; 3488 pr_debug("Return write for disc %d\n", i); 3489 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3490 clear_bit(R5_UPTODATE, &dev->flags); 3491 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3492 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3493 } 3494 do_endio = true; 3495 3496 returnbi: 3497 dev->page = dev->orig_page; 3498 wbi = dev->written; 3499 dev->written = NULL; 3500 while (wbi && wbi->bi_iter.bi_sector < 3501 dev->sector + STRIPE_SECTORS) { 3502 wbi2 = r5_next_bio(wbi, dev->sector); 3503 if (!raid5_dec_bi_active_stripes(wbi)) { 3504 md_write_end(conf->mddev); 3505 bio_list_add(return_bi, wbi); 3506 } 3507 wbi = wbi2; 3508 } 3509 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3510 STRIPE_SECTORS, 3511 !test_bit(STRIPE_DEGRADED, &sh->state), 3512 0); 3513 if (head_sh->batch_head) { 3514 sh = list_first_entry(&sh->batch_list, 3515 struct stripe_head, 3516 batch_list); 3517 if (sh != head_sh) { 3518 dev = &sh->dev[i]; 3519 goto returnbi; 3520 } 3521 } 3522 sh = head_sh; 3523 dev = &sh->dev[i]; 3524 } else if (test_bit(R5_Discard, &dev->flags)) 3525 discard_pending = 1; 3526 } 3527 3528 r5l_stripe_write_finished(sh); 3529 3530 if (!discard_pending && 3531 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3532 int hash; 3533 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3534 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3535 if (sh->qd_idx >= 0) { 3536 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3537 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3538 } 3539 /* now that discard is done we can proceed with any sync */ 3540 clear_bit(STRIPE_DISCARD, &sh->state); 3541 /* 3542 * SCSI discard will change some bio fields and the stripe has 3543 * no updated data, so remove it from hash list and the stripe 3544 * will be reinitialized 3545 */ 3546 unhash: 3547 hash = sh->hash_lock_index; 3548 spin_lock_irq(conf->hash_locks + hash); 3549 remove_hash(sh); 3550 spin_unlock_irq(conf->hash_locks + hash); 3551 if (head_sh->batch_head) { 3552 sh = list_first_entry(&sh->batch_list, 3553 struct stripe_head, batch_list); 3554 if (sh != head_sh) 3555 goto unhash; 3556 } 3557 sh = head_sh; 3558 3559 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3560 set_bit(STRIPE_HANDLE, &sh->state); 3561 3562 } 3563 3564 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3565 if (atomic_dec_and_test(&conf->pending_full_writes)) 3566 md_wakeup_thread(conf->mddev->thread); 3567 3568 if (head_sh->batch_head && do_endio) 3569 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3570 } 3571 3572 static void handle_stripe_dirtying(struct r5conf *conf, 3573 struct stripe_head *sh, 3574 struct stripe_head_state *s, 3575 int disks) 3576 { 3577 int rmw = 0, rcw = 0, i; 3578 sector_t recovery_cp = conf->mddev->recovery_cp; 3579 3580 /* Check whether resync is now happening or should start. 3581 * If yes, then the array is dirty (after unclean shutdown or 3582 * initial creation), so parity in some stripes might be inconsistent. 3583 * In this case, we need to always do reconstruct-write, to ensure 3584 * that in case of drive failure or read-error correction, we 3585 * generate correct data from the parity. 3586 */ 3587 if (conf->rmw_level == PARITY_DISABLE_RMW || 3588 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3589 s->failed == 0)) { 3590 /* Calculate the real rcw later - for now make it 3591 * look like rcw is cheaper 3592 */ 3593 rcw = 1; rmw = 2; 3594 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3595 conf->rmw_level, (unsigned long long)recovery_cp, 3596 (unsigned long long)sh->sector); 3597 } else for (i = disks; i--; ) { 3598 /* would I have to read this buffer for read_modify_write */ 3599 struct r5dev *dev = &sh->dev[i]; 3600 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3601 !test_bit(R5_LOCKED, &dev->flags) && 3602 !(test_bit(R5_UPTODATE, &dev->flags) || 3603 test_bit(R5_Wantcompute, &dev->flags))) { 3604 if (test_bit(R5_Insync, &dev->flags)) 3605 rmw++; 3606 else 3607 rmw += 2*disks; /* cannot read it */ 3608 } 3609 /* Would I have to read this buffer for reconstruct_write */ 3610 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3611 i != sh->pd_idx && i != sh->qd_idx && 3612 !test_bit(R5_LOCKED, &dev->flags) && 3613 !(test_bit(R5_UPTODATE, &dev->flags) || 3614 test_bit(R5_Wantcompute, &dev->flags))) { 3615 if (test_bit(R5_Insync, &dev->flags)) 3616 rcw++; 3617 else 3618 rcw += 2*disks; 3619 } 3620 } 3621 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3622 (unsigned long long)sh->sector, rmw, rcw); 3623 set_bit(STRIPE_HANDLE, &sh->state); 3624 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3625 /* prefer read-modify-write, but need to get some data */ 3626 if (conf->mddev->queue) 3627 blk_add_trace_msg(conf->mddev->queue, 3628 "raid5 rmw %llu %d", 3629 (unsigned long long)sh->sector, rmw); 3630 for (i = disks; i--; ) { 3631 struct r5dev *dev = &sh->dev[i]; 3632 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3633 !test_bit(R5_LOCKED, &dev->flags) && 3634 !(test_bit(R5_UPTODATE, &dev->flags) || 3635 test_bit(R5_Wantcompute, &dev->flags)) && 3636 test_bit(R5_Insync, &dev->flags)) { 3637 if (test_bit(STRIPE_PREREAD_ACTIVE, 3638 &sh->state)) { 3639 pr_debug("Read_old block %d for r-m-w\n", 3640 i); 3641 set_bit(R5_LOCKED, &dev->flags); 3642 set_bit(R5_Wantread, &dev->flags); 3643 s->locked++; 3644 } else { 3645 set_bit(STRIPE_DELAYED, &sh->state); 3646 set_bit(STRIPE_HANDLE, &sh->state); 3647 } 3648 } 3649 } 3650 } 3651 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3652 /* want reconstruct write, but need to get some data */ 3653 int qread =0; 3654 rcw = 0; 3655 for (i = disks; i--; ) { 3656 struct r5dev *dev = &sh->dev[i]; 3657 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3658 i != sh->pd_idx && i != sh->qd_idx && 3659 !test_bit(R5_LOCKED, &dev->flags) && 3660 !(test_bit(R5_UPTODATE, &dev->flags) || 3661 test_bit(R5_Wantcompute, &dev->flags))) { 3662 rcw++; 3663 if (test_bit(R5_Insync, &dev->flags) && 3664 test_bit(STRIPE_PREREAD_ACTIVE, 3665 &sh->state)) { 3666 pr_debug("Read_old block " 3667 "%d for Reconstruct\n", i); 3668 set_bit(R5_LOCKED, &dev->flags); 3669 set_bit(R5_Wantread, &dev->flags); 3670 s->locked++; 3671 qread++; 3672 } else { 3673 set_bit(STRIPE_DELAYED, &sh->state); 3674 set_bit(STRIPE_HANDLE, &sh->state); 3675 } 3676 } 3677 } 3678 if (rcw && conf->mddev->queue) 3679 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3680 (unsigned long long)sh->sector, 3681 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3682 } 3683 3684 if (rcw > disks && rmw > disks && 3685 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3686 set_bit(STRIPE_DELAYED, &sh->state); 3687 3688 /* now if nothing is locked, and if we have enough data, 3689 * we can start a write request 3690 */ 3691 /* since handle_stripe can be called at any time we need to handle the 3692 * case where a compute block operation has been submitted and then a 3693 * subsequent call wants to start a write request. raid_run_ops only 3694 * handles the case where compute block and reconstruct are requested 3695 * simultaneously. If this is not the case then new writes need to be 3696 * held off until the compute completes. 3697 */ 3698 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3699 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3700 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3701 schedule_reconstruction(sh, s, rcw == 0, 0); 3702 } 3703 3704 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3705 struct stripe_head_state *s, int disks) 3706 { 3707 struct r5dev *dev = NULL; 3708 3709 BUG_ON(sh->batch_head); 3710 set_bit(STRIPE_HANDLE, &sh->state); 3711 3712 switch (sh->check_state) { 3713 case check_state_idle: 3714 /* start a new check operation if there are no failures */ 3715 if (s->failed == 0) { 3716 BUG_ON(s->uptodate != disks); 3717 sh->check_state = check_state_run; 3718 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3719 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3720 s->uptodate--; 3721 break; 3722 } 3723 dev = &sh->dev[s->failed_num[0]]; 3724 /* fall through */ 3725 case check_state_compute_result: 3726 sh->check_state = check_state_idle; 3727 if (!dev) 3728 dev = &sh->dev[sh->pd_idx]; 3729 3730 /* check that a write has not made the stripe insync */ 3731 if (test_bit(STRIPE_INSYNC, &sh->state)) 3732 break; 3733 3734 /* either failed parity check, or recovery is happening */ 3735 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3736 BUG_ON(s->uptodate != disks); 3737 3738 set_bit(R5_LOCKED, &dev->flags); 3739 s->locked++; 3740 set_bit(R5_Wantwrite, &dev->flags); 3741 3742 clear_bit(STRIPE_DEGRADED, &sh->state); 3743 set_bit(STRIPE_INSYNC, &sh->state); 3744 break; 3745 case check_state_run: 3746 break; /* we will be called again upon completion */ 3747 case check_state_check_result: 3748 sh->check_state = check_state_idle; 3749 3750 /* if a failure occurred during the check operation, leave 3751 * STRIPE_INSYNC not set and let the stripe be handled again 3752 */ 3753 if (s->failed) 3754 break; 3755 3756 /* handle a successful check operation, if parity is correct 3757 * we are done. Otherwise update the mismatch count and repair 3758 * parity if !MD_RECOVERY_CHECK 3759 */ 3760 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3761 /* parity is correct (on disc, 3762 * not in buffer any more) 3763 */ 3764 set_bit(STRIPE_INSYNC, &sh->state); 3765 else { 3766 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3767 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3768 /* don't try to repair!! */ 3769 set_bit(STRIPE_INSYNC, &sh->state); 3770 else { 3771 sh->check_state = check_state_compute_run; 3772 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3773 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3774 set_bit(R5_Wantcompute, 3775 &sh->dev[sh->pd_idx].flags); 3776 sh->ops.target = sh->pd_idx; 3777 sh->ops.target2 = -1; 3778 s->uptodate++; 3779 } 3780 } 3781 break; 3782 case check_state_compute_run: 3783 break; 3784 default: 3785 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3786 __func__, sh->check_state, 3787 (unsigned long long) sh->sector); 3788 BUG(); 3789 } 3790 } 3791 3792 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3793 struct stripe_head_state *s, 3794 int disks) 3795 { 3796 int pd_idx = sh->pd_idx; 3797 int qd_idx = sh->qd_idx; 3798 struct r5dev *dev; 3799 3800 BUG_ON(sh->batch_head); 3801 set_bit(STRIPE_HANDLE, &sh->state); 3802 3803 BUG_ON(s->failed > 2); 3804 3805 /* Want to check and possibly repair P and Q. 3806 * However there could be one 'failed' device, in which 3807 * case we can only check one of them, possibly using the 3808 * other to generate missing data 3809 */ 3810 3811 switch (sh->check_state) { 3812 case check_state_idle: 3813 /* start a new check operation if there are < 2 failures */ 3814 if (s->failed == s->q_failed) { 3815 /* The only possible failed device holds Q, so it 3816 * makes sense to check P (If anything else were failed, 3817 * we would have used P to recreate it). 3818 */ 3819 sh->check_state = check_state_run; 3820 } 3821 if (!s->q_failed && s->failed < 2) { 3822 /* Q is not failed, and we didn't use it to generate 3823 * anything, so it makes sense to check it 3824 */ 3825 if (sh->check_state == check_state_run) 3826 sh->check_state = check_state_run_pq; 3827 else 3828 sh->check_state = check_state_run_q; 3829 } 3830 3831 /* discard potentially stale zero_sum_result */ 3832 sh->ops.zero_sum_result = 0; 3833 3834 if (sh->check_state == check_state_run) { 3835 /* async_xor_zero_sum destroys the contents of P */ 3836 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3837 s->uptodate--; 3838 } 3839 if (sh->check_state >= check_state_run && 3840 sh->check_state <= check_state_run_pq) { 3841 /* async_syndrome_zero_sum preserves P and Q, so 3842 * no need to mark them !uptodate here 3843 */ 3844 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3845 break; 3846 } 3847 3848 /* we have 2-disk failure */ 3849 BUG_ON(s->failed != 2); 3850 /* fall through */ 3851 case check_state_compute_result: 3852 sh->check_state = check_state_idle; 3853 3854 /* check that a write has not made the stripe insync */ 3855 if (test_bit(STRIPE_INSYNC, &sh->state)) 3856 break; 3857 3858 /* now write out any block on a failed drive, 3859 * or P or Q if they were recomputed 3860 */ 3861 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3862 if (s->failed == 2) { 3863 dev = &sh->dev[s->failed_num[1]]; 3864 s->locked++; 3865 set_bit(R5_LOCKED, &dev->flags); 3866 set_bit(R5_Wantwrite, &dev->flags); 3867 } 3868 if (s->failed >= 1) { 3869 dev = &sh->dev[s->failed_num[0]]; 3870 s->locked++; 3871 set_bit(R5_LOCKED, &dev->flags); 3872 set_bit(R5_Wantwrite, &dev->flags); 3873 } 3874 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3875 dev = &sh->dev[pd_idx]; 3876 s->locked++; 3877 set_bit(R5_LOCKED, &dev->flags); 3878 set_bit(R5_Wantwrite, &dev->flags); 3879 } 3880 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3881 dev = &sh->dev[qd_idx]; 3882 s->locked++; 3883 set_bit(R5_LOCKED, &dev->flags); 3884 set_bit(R5_Wantwrite, &dev->flags); 3885 } 3886 clear_bit(STRIPE_DEGRADED, &sh->state); 3887 3888 set_bit(STRIPE_INSYNC, &sh->state); 3889 break; 3890 case check_state_run: 3891 case check_state_run_q: 3892 case check_state_run_pq: 3893 break; /* we will be called again upon completion */ 3894 case check_state_check_result: 3895 sh->check_state = check_state_idle; 3896 3897 /* handle a successful check operation, if parity is correct 3898 * we are done. Otherwise update the mismatch count and repair 3899 * parity if !MD_RECOVERY_CHECK 3900 */ 3901 if (sh->ops.zero_sum_result == 0) { 3902 /* both parities are correct */ 3903 if (!s->failed) 3904 set_bit(STRIPE_INSYNC, &sh->state); 3905 else { 3906 /* in contrast to the raid5 case we can validate 3907 * parity, but still have a failure to write 3908 * back 3909 */ 3910 sh->check_state = check_state_compute_result; 3911 /* Returning at this point means that we may go 3912 * off and bring p and/or q uptodate again so 3913 * we make sure to check zero_sum_result again 3914 * to verify if p or q need writeback 3915 */ 3916 } 3917 } else { 3918 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3919 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3920 /* don't try to repair!! */ 3921 set_bit(STRIPE_INSYNC, &sh->state); 3922 else { 3923 int *target = &sh->ops.target; 3924 3925 sh->ops.target = -1; 3926 sh->ops.target2 = -1; 3927 sh->check_state = check_state_compute_run; 3928 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3929 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3930 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3931 set_bit(R5_Wantcompute, 3932 &sh->dev[pd_idx].flags); 3933 *target = pd_idx; 3934 target = &sh->ops.target2; 3935 s->uptodate++; 3936 } 3937 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3938 set_bit(R5_Wantcompute, 3939 &sh->dev[qd_idx].flags); 3940 *target = qd_idx; 3941 s->uptodate++; 3942 } 3943 } 3944 } 3945 break; 3946 case check_state_compute_run: 3947 break; 3948 default: 3949 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3950 __func__, sh->check_state, 3951 (unsigned long long) sh->sector); 3952 BUG(); 3953 } 3954 } 3955 3956 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3957 { 3958 int i; 3959 3960 /* We have read all the blocks in this stripe and now we need to 3961 * copy some of them into a target stripe for expand. 3962 */ 3963 struct dma_async_tx_descriptor *tx = NULL; 3964 BUG_ON(sh->batch_head); 3965 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3966 for (i = 0; i < sh->disks; i++) 3967 if (i != sh->pd_idx && i != sh->qd_idx) { 3968 int dd_idx, j; 3969 struct stripe_head *sh2; 3970 struct async_submit_ctl submit; 3971 3972 sector_t bn = raid5_compute_blocknr(sh, i, 1); 3973 sector_t s = raid5_compute_sector(conf, bn, 0, 3974 &dd_idx, NULL); 3975 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 3976 if (sh2 == NULL) 3977 /* so far only the early blocks of this stripe 3978 * have been requested. When later blocks 3979 * get requested, we will try again 3980 */ 3981 continue; 3982 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3983 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3984 /* must have already done this block */ 3985 raid5_release_stripe(sh2); 3986 continue; 3987 } 3988 3989 /* place all the copies on one channel */ 3990 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3991 tx = async_memcpy(sh2->dev[dd_idx].page, 3992 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3993 &submit); 3994 3995 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3996 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3997 for (j = 0; j < conf->raid_disks; j++) 3998 if (j != sh2->pd_idx && 3999 j != sh2->qd_idx && 4000 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4001 break; 4002 if (j == conf->raid_disks) { 4003 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4004 set_bit(STRIPE_HANDLE, &sh2->state); 4005 } 4006 raid5_release_stripe(sh2); 4007 4008 } 4009 /* done submitting copies, wait for them to complete */ 4010 async_tx_quiesce(&tx); 4011 } 4012 4013 /* 4014 * handle_stripe - do things to a stripe. 4015 * 4016 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4017 * state of various bits to see what needs to be done. 4018 * Possible results: 4019 * return some read requests which now have data 4020 * return some write requests which are safely on storage 4021 * schedule a read on some buffers 4022 * schedule a write of some buffers 4023 * return confirmation of parity correctness 4024 * 4025 */ 4026 4027 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4028 { 4029 struct r5conf *conf = sh->raid_conf; 4030 int disks = sh->disks; 4031 struct r5dev *dev; 4032 int i; 4033 int do_recovery = 0; 4034 4035 memset(s, 0, sizeof(*s)); 4036 4037 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4038 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4039 s->failed_num[0] = -1; 4040 s->failed_num[1] = -1; 4041 s->log_failed = r5l_log_disk_error(conf); 4042 4043 /* Now to look around and see what can be done */ 4044 rcu_read_lock(); 4045 for (i=disks; i--; ) { 4046 struct md_rdev *rdev; 4047 sector_t first_bad; 4048 int bad_sectors; 4049 int is_bad = 0; 4050 4051 dev = &sh->dev[i]; 4052 4053 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4054 i, dev->flags, 4055 dev->toread, dev->towrite, dev->written); 4056 /* maybe we can reply to a read 4057 * 4058 * new wantfill requests are only permitted while 4059 * ops_complete_biofill is guaranteed to be inactive 4060 */ 4061 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4062 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4063 set_bit(R5_Wantfill, &dev->flags); 4064 4065 /* now count some things */ 4066 if (test_bit(R5_LOCKED, &dev->flags)) 4067 s->locked++; 4068 if (test_bit(R5_UPTODATE, &dev->flags)) 4069 s->uptodate++; 4070 if (test_bit(R5_Wantcompute, &dev->flags)) { 4071 s->compute++; 4072 BUG_ON(s->compute > 2); 4073 } 4074 4075 if (test_bit(R5_Wantfill, &dev->flags)) 4076 s->to_fill++; 4077 else if (dev->toread) 4078 s->to_read++; 4079 if (dev->towrite) { 4080 s->to_write++; 4081 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4082 s->non_overwrite++; 4083 } 4084 if (dev->written) 4085 s->written++; 4086 /* Prefer to use the replacement for reads, but only 4087 * if it is recovered enough and has no bad blocks. 4088 */ 4089 rdev = rcu_dereference(conf->disks[i].replacement); 4090 if (rdev && !test_bit(Faulty, &rdev->flags) && 4091 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4092 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4093 &first_bad, &bad_sectors)) 4094 set_bit(R5_ReadRepl, &dev->flags); 4095 else { 4096 if (rdev && !test_bit(Faulty, &rdev->flags)) 4097 set_bit(R5_NeedReplace, &dev->flags); 4098 else 4099 clear_bit(R5_NeedReplace, &dev->flags); 4100 rdev = rcu_dereference(conf->disks[i].rdev); 4101 clear_bit(R5_ReadRepl, &dev->flags); 4102 } 4103 if (rdev && test_bit(Faulty, &rdev->flags)) 4104 rdev = NULL; 4105 if (rdev) { 4106 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4107 &first_bad, &bad_sectors); 4108 if (s->blocked_rdev == NULL 4109 && (test_bit(Blocked, &rdev->flags) 4110 || is_bad < 0)) { 4111 if (is_bad < 0) 4112 set_bit(BlockedBadBlocks, 4113 &rdev->flags); 4114 s->blocked_rdev = rdev; 4115 atomic_inc(&rdev->nr_pending); 4116 } 4117 } 4118 clear_bit(R5_Insync, &dev->flags); 4119 if (!rdev) 4120 /* Not in-sync */; 4121 else if (is_bad) { 4122 /* also not in-sync */ 4123 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4124 test_bit(R5_UPTODATE, &dev->flags)) { 4125 /* treat as in-sync, but with a read error 4126 * which we can now try to correct 4127 */ 4128 set_bit(R5_Insync, &dev->flags); 4129 set_bit(R5_ReadError, &dev->flags); 4130 } 4131 } else if (test_bit(In_sync, &rdev->flags)) 4132 set_bit(R5_Insync, &dev->flags); 4133 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4134 /* in sync if before recovery_offset */ 4135 set_bit(R5_Insync, &dev->flags); 4136 else if (test_bit(R5_UPTODATE, &dev->flags) && 4137 test_bit(R5_Expanded, &dev->flags)) 4138 /* If we've reshaped into here, we assume it is Insync. 4139 * We will shortly update recovery_offset to make 4140 * it official. 4141 */ 4142 set_bit(R5_Insync, &dev->flags); 4143 4144 if (test_bit(R5_WriteError, &dev->flags)) { 4145 /* This flag does not apply to '.replacement' 4146 * only to .rdev, so make sure to check that*/ 4147 struct md_rdev *rdev2 = rcu_dereference( 4148 conf->disks[i].rdev); 4149 if (rdev2 == rdev) 4150 clear_bit(R5_Insync, &dev->flags); 4151 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4152 s->handle_bad_blocks = 1; 4153 atomic_inc(&rdev2->nr_pending); 4154 } else 4155 clear_bit(R5_WriteError, &dev->flags); 4156 } 4157 if (test_bit(R5_MadeGood, &dev->flags)) { 4158 /* This flag does not apply to '.replacement' 4159 * only to .rdev, so make sure to check that*/ 4160 struct md_rdev *rdev2 = rcu_dereference( 4161 conf->disks[i].rdev); 4162 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4163 s->handle_bad_blocks = 1; 4164 atomic_inc(&rdev2->nr_pending); 4165 } else 4166 clear_bit(R5_MadeGood, &dev->flags); 4167 } 4168 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4169 struct md_rdev *rdev2 = rcu_dereference( 4170 conf->disks[i].replacement); 4171 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4172 s->handle_bad_blocks = 1; 4173 atomic_inc(&rdev2->nr_pending); 4174 } else 4175 clear_bit(R5_MadeGoodRepl, &dev->flags); 4176 } 4177 if (!test_bit(R5_Insync, &dev->flags)) { 4178 /* The ReadError flag will just be confusing now */ 4179 clear_bit(R5_ReadError, &dev->flags); 4180 clear_bit(R5_ReWrite, &dev->flags); 4181 } 4182 if (test_bit(R5_ReadError, &dev->flags)) 4183 clear_bit(R5_Insync, &dev->flags); 4184 if (!test_bit(R5_Insync, &dev->flags)) { 4185 if (s->failed < 2) 4186 s->failed_num[s->failed] = i; 4187 s->failed++; 4188 if (rdev && !test_bit(Faulty, &rdev->flags)) 4189 do_recovery = 1; 4190 } 4191 } 4192 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4193 /* If there is a failed device being replaced, 4194 * we must be recovering. 4195 * else if we are after recovery_cp, we must be syncing 4196 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4197 * else we can only be replacing 4198 * sync and recovery both need to read all devices, and so 4199 * use the same flag. 4200 */ 4201 if (do_recovery || 4202 sh->sector >= conf->mddev->recovery_cp || 4203 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4204 s->syncing = 1; 4205 else 4206 s->replacing = 1; 4207 } 4208 rcu_read_unlock(); 4209 } 4210 4211 static int clear_batch_ready(struct stripe_head *sh) 4212 { 4213 /* Return '1' if this is a member of batch, or 4214 * '0' if it is a lone stripe or a head which can now be 4215 * handled. 4216 */ 4217 struct stripe_head *tmp; 4218 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4219 return (sh->batch_head && sh->batch_head != sh); 4220 spin_lock(&sh->stripe_lock); 4221 if (!sh->batch_head) { 4222 spin_unlock(&sh->stripe_lock); 4223 return 0; 4224 } 4225 4226 /* 4227 * this stripe could be added to a batch list before we check 4228 * BATCH_READY, skips it 4229 */ 4230 if (sh->batch_head != sh) { 4231 spin_unlock(&sh->stripe_lock); 4232 return 1; 4233 } 4234 spin_lock(&sh->batch_lock); 4235 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4236 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4237 spin_unlock(&sh->batch_lock); 4238 spin_unlock(&sh->stripe_lock); 4239 4240 /* 4241 * BATCH_READY is cleared, no new stripes can be added. 4242 * batch_list can be accessed without lock 4243 */ 4244 return 0; 4245 } 4246 4247 static void break_stripe_batch_list(struct stripe_head *head_sh, 4248 unsigned long handle_flags) 4249 { 4250 struct stripe_head *sh, *next; 4251 int i; 4252 int do_wakeup = 0; 4253 4254 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4255 4256 list_del_init(&sh->batch_list); 4257 4258 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4259 (1 << STRIPE_SYNCING) | 4260 (1 << STRIPE_REPLACED) | 4261 (1 << STRIPE_DELAYED) | 4262 (1 << STRIPE_BIT_DELAY) | 4263 (1 << STRIPE_FULL_WRITE) | 4264 (1 << STRIPE_BIOFILL_RUN) | 4265 (1 << STRIPE_COMPUTE_RUN) | 4266 (1 << STRIPE_OPS_REQ_PENDING) | 4267 (1 << STRIPE_DISCARD) | 4268 (1 << STRIPE_BATCH_READY) | 4269 (1 << STRIPE_BATCH_ERR) | 4270 (1 << STRIPE_BITMAP_PENDING)), 4271 "stripe state: %lx\n", sh->state); 4272 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4273 (1 << STRIPE_REPLACED)), 4274 "head stripe state: %lx\n", head_sh->state); 4275 4276 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4277 (1 << STRIPE_PREREAD_ACTIVE) | 4278 (1 << STRIPE_DEGRADED)), 4279 head_sh->state & (1 << STRIPE_INSYNC)); 4280 4281 sh->check_state = head_sh->check_state; 4282 sh->reconstruct_state = head_sh->reconstruct_state; 4283 for (i = 0; i < sh->disks; i++) { 4284 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4285 do_wakeup = 1; 4286 sh->dev[i].flags = head_sh->dev[i].flags & 4287 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4288 } 4289 spin_lock_irq(&sh->stripe_lock); 4290 sh->batch_head = NULL; 4291 spin_unlock_irq(&sh->stripe_lock); 4292 if (handle_flags == 0 || 4293 sh->state & handle_flags) 4294 set_bit(STRIPE_HANDLE, &sh->state); 4295 raid5_release_stripe(sh); 4296 } 4297 spin_lock_irq(&head_sh->stripe_lock); 4298 head_sh->batch_head = NULL; 4299 spin_unlock_irq(&head_sh->stripe_lock); 4300 for (i = 0; i < head_sh->disks; i++) 4301 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4302 do_wakeup = 1; 4303 if (head_sh->state & handle_flags) 4304 set_bit(STRIPE_HANDLE, &head_sh->state); 4305 4306 if (do_wakeup) 4307 wake_up(&head_sh->raid_conf->wait_for_overlap); 4308 } 4309 4310 static void handle_stripe(struct stripe_head *sh) 4311 { 4312 struct stripe_head_state s; 4313 struct r5conf *conf = sh->raid_conf; 4314 int i; 4315 int prexor; 4316 int disks = sh->disks; 4317 struct r5dev *pdev, *qdev; 4318 4319 clear_bit(STRIPE_HANDLE, &sh->state); 4320 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4321 /* already being handled, ensure it gets handled 4322 * again when current action finishes */ 4323 set_bit(STRIPE_HANDLE, &sh->state); 4324 return; 4325 } 4326 4327 if (clear_batch_ready(sh) ) { 4328 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4329 return; 4330 } 4331 4332 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4333 break_stripe_batch_list(sh, 0); 4334 4335 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4336 spin_lock(&sh->stripe_lock); 4337 /* Cannot process 'sync' concurrently with 'discard' */ 4338 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4339 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4340 set_bit(STRIPE_SYNCING, &sh->state); 4341 clear_bit(STRIPE_INSYNC, &sh->state); 4342 clear_bit(STRIPE_REPLACED, &sh->state); 4343 } 4344 spin_unlock(&sh->stripe_lock); 4345 } 4346 clear_bit(STRIPE_DELAYED, &sh->state); 4347 4348 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4349 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4350 (unsigned long long)sh->sector, sh->state, 4351 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4352 sh->check_state, sh->reconstruct_state); 4353 4354 analyse_stripe(sh, &s); 4355 4356 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4357 goto finish; 4358 4359 if (s.handle_bad_blocks) { 4360 set_bit(STRIPE_HANDLE, &sh->state); 4361 goto finish; 4362 } 4363 4364 if (unlikely(s.blocked_rdev)) { 4365 if (s.syncing || s.expanding || s.expanded || 4366 s.replacing || s.to_write || s.written) { 4367 set_bit(STRIPE_HANDLE, &sh->state); 4368 goto finish; 4369 } 4370 /* There is nothing for the blocked_rdev to block */ 4371 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4372 s.blocked_rdev = NULL; 4373 } 4374 4375 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4376 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4377 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4378 } 4379 4380 pr_debug("locked=%d uptodate=%d to_read=%d" 4381 " to_write=%d failed=%d failed_num=%d,%d\n", 4382 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4383 s.failed_num[0], s.failed_num[1]); 4384 /* check if the array has lost more than max_degraded devices and, 4385 * if so, some requests might need to be failed. 4386 */ 4387 if (s.failed > conf->max_degraded || s.log_failed) { 4388 sh->check_state = 0; 4389 sh->reconstruct_state = 0; 4390 break_stripe_batch_list(sh, 0); 4391 if (s.to_read+s.to_write+s.written) 4392 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4393 if (s.syncing + s.replacing) 4394 handle_failed_sync(conf, sh, &s); 4395 } 4396 4397 /* Now we check to see if any write operations have recently 4398 * completed 4399 */ 4400 prexor = 0; 4401 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4402 prexor = 1; 4403 if (sh->reconstruct_state == reconstruct_state_drain_result || 4404 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4405 sh->reconstruct_state = reconstruct_state_idle; 4406 4407 /* All the 'written' buffers and the parity block are ready to 4408 * be written back to disk 4409 */ 4410 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4411 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4412 BUG_ON(sh->qd_idx >= 0 && 4413 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4414 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4415 for (i = disks; i--; ) { 4416 struct r5dev *dev = &sh->dev[i]; 4417 if (test_bit(R5_LOCKED, &dev->flags) && 4418 (i == sh->pd_idx || i == sh->qd_idx || 4419 dev->written)) { 4420 pr_debug("Writing block %d\n", i); 4421 set_bit(R5_Wantwrite, &dev->flags); 4422 if (prexor) 4423 continue; 4424 if (s.failed > 1) 4425 continue; 4426 if (!test_bit(R5_Insync, &dev->flags) || 4427 ((i == sh->pd_idx || i == sh->qd_idx) && 4428 s.failed == 0)) 4429 set_bit(STRIPE_INSYNC, &sh->state); 4430 } 4431 } 4432 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4433 s.dec_preread_active = 1; 4434 } 4435 4436 /* 4437 * might be able to return some write requests if the parity blocks 4438 * are safe, or on a failed drive 4439 */ 4440 pdev = &sh->dev[sh->pd_idx]; 4441 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4442 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4443 qdev = &sh->dev[sh->qd_idx]; 4444 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4445 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4446 || conf->level < 6; 4447 4448 if (s.written && 4449 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4450 && !test_bit(R5_LOCKED, &pdev->flags) 4451 && (test_bit(R5_UPTODATE, &pdev->flags) || 4452 test_bit(R5_Discard, &pdev->flags))))) && 4453 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4454 && !test_bit(R5_LOCKED, &qdev->flags) 4455 && (test_bit(R5_UPTODATE, &qdev->flags) || 4456 test_bit(R5_Discard, &qdev->flags)))))) 4457 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4458 4459 /* Now we might consider reading some blocks, either to check/generate 4460 * parity, or to satisfy requests 4461 * or to load a block that is being partially written. 4462 */ 4463 if (s.to_read || s.non_overwrite 4464 || (conf->level == 6 && s.to_write && s.failed) 4465 || (s.syncing && (s.uptodate + s.compute < disks)) 4466 || s.replacing 4467 || s.expanding) 4468 handle_stripe_fill(sh, &s, disks); 4469 4470 /* Now to consider new write requests and what else, if anything 4471 * should be read. We do not handle new writes when: 4472 * 1/ A 'write' operation (copy+xor) is already in flight. 4473 * 2/ A 'check' operation is in flight, as it may clobber the parity 4474 * block. 4475 */ 4476 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 4477 handle_stripe_dirtying(conf, sh, &s, disks); 4478 4479 /* maybe we need to check and possibly fix the parity for this stripe 4480 * Any reads will already have been scheduled, so we just see if enough 4481 * data is available. The parity check is held off while parity 4482 * dependent operations are in flight. 4483 */ 4484 if (sh->check_state || 4485 (s.syncing && s.locked == 0 && 4486 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4487 !test_bit(STRIPE_INSYNC, &sh->state))) { 4488 if (conf->level == 6) 4489 handle_parity_checks6(conf, sh, &s, disks); 4490 else 4491 handle_parity_checks5(conf, sh, &s, disks); 4492 } 4493 4494 if ((s.replacing || s.syncing) && s.locked == 0 4495 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4496 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4497 /* Write out to replacement devices where possible */ 4498 for (i = 0; i < conf->raid_disks; i++) 4499 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4500 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4501 set_bit(R5_WantReplace, &sh->dev[i].flags); 4502 set_bit(R5_LOCKED, &sh->dev[i].flags); 4503 s.locked++; 4504 } 4505 if (s.replacing) 4506 set_bit(STRIPE_INSYNC, &sh->state); 4507 set_bit(STRIPE_REPLACED, &sh->state); 4508 } 4509 if ((s.syncing || s.replacing) && s.locked == 0 && 4510 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4511 test_bit(STRIPE_INSYNC, &sh->state)) { 4512 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4513 clear_bit(STRIPE_SYNCING, &sh->state); 4514 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4515 wake_up(&conf->wait_for_overlap); 4516 } 4517 4518 /* If the failed drives are just a ReadError, then we might need 4519 * to progress the repair/check process 4520 */ 4521 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4522 for (i = 0; i < s.failed; i++) { 4523 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4524 if (test_bit(R5_ReadError, &dev->flags) 4525 && !test_bit(R5_LOCKED, &dev->flags) 4526 && test_bit(R5_UPTODATE, &dev->flags) 4527 ) { 4528 if (!test_bit(R5_ReWrite, &dev->flags)) { 4529 set_bit(R5_Wantwrite, &dev->flags); 4530 set_bit(R5_ReWrite, &dev->flags); 4531 set_bit(R5_LOCKED, &dev->flags); 4532 s.locked++; 4533 } else { 4534 /* let's read it back */ 4535 set_bit(R5_Wantread, &dev->flags); 4536 set_bit(R5_LOCKED, &dev->flags); 4537 s.locked++; 4538 } 4539 } 4540 } 4541 4542 /* Finish reconstruct operations initiated by the expansion process */ 4543 if (sh->reconstruct_state == reconstruct_state_result) { 4544 struct stripe_head *sh_src 4545 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4546 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4547 /* sh cannot be written until sh_src has been read. 4548 * so arrange for sh to be delayed a little 4549 */ 4550 set_bit(STRIPE_DELAYED, &sh->state); 4551 set_bit(STRIPE_HANDLE, &sh->state); 4552 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4553 &sh_src->state)) 4554 atomic_inc(&conf->preread_active_stripes); 4555 raid5_release_stripe(sh_src); 4556 goto finish; 4557 } 4558 if (sh_src) 4559 raid5_release_stripe(sh_src); 4560 4561 sh->reconstruct_state = reconstruct_state_idle; 4562 clear_bit(STRIPE_EXPANDING, &sh->state); 4563 for (i = conf->raid_disks; i--; ) { 4564 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4565 set_bit(R5_LOCKED, &sh->dev[i].flags); 4566 s.locked++; 4567 } 4568 } 4569 4570 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4571 !sh->reconstruct_state) { 4572 /* Need to write out all blocks after computing parity */ 4573 sh->disks = conf->raid_disks; 4574 stripe_set_idx(sh->sector, conf, 0, sh); 4575 schedule_reconstruction(sh, &s, 1, 1); 4576 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4577 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4578 atomic_dec(&conf->reshape_stripes); 4579 wake_up(&conf->wait_for_overlap); 4580 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4581 } 4582 4583 if (s.expanding && s.locked == 0 && 4584 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4585 handle_stripe_expansion(conf, sh); 4586 4587 finish: 4588 /* wait for this device to become unblocked */ 4589 if (unlikely(s.blocked_rdev)) { 4590 if (conf->mddev->external) 4591 md_wait_for_blocked_rdev(s.blocked_rdev, 4592 conf->mddev); 4593 else 4594 /* Internal metadata will immediately 4595 * be written by raid5d, so we don't 4596 * need to wait here. 4597 */ 4598 rdev_dec_pending(s.blocked_rdev, 4599 conf->mddev); 4600 } 4601 4602 if (s.handle_bad_blocks) 4603 for (i = disks; i--; ) { 4604 struct md_rdev *rdev; 4605 struct r5dev *dev = &sh->dev[i]; 4606 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4607 /* We own a safe reference to the rdev */ 4608 rdev = conf->disks[i].rdev; 4609 if (!rdev_set_badblocks(rdev, sh->sector, 4610 STRIPE_SECTORS, 0)) 4611 md_error(conf->mddev, rdev); 4612 rdev_dec_pending(rdev, conf->mddev); 4613 } 4614 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4615 rdev = conf->disks[i].rdev; 4616 rdev_clear_badblocks(rdev, sh->sector, 4617 STRIPE_SECTORS, 0); 4618 rdev_dec_pending(rdev, conf->mddev); 4619 } 4620 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4621 rdev = conf->disks[i].replacement; 4622 if (!rdev) 4623 /* rdev have been moved down */ 4624 rdev = conf->disks[i].rdev; 4625 rdev_clear_badblocks(rdev, sh->sector, 4626 STRIPE_SECTORS, 0); 4627 rdev_dec_pending(rdev, conf->mddev); 4628 } 4629 } 4630 4631 if (s.ops_request) 4632 raid_run_ops(sh, s.ops_request); 4633 4634 ops_run_io(sh, &s); 4635 4636 if (s.dec_preread_active) { 4637 /* We delay this until after ops_run_io so that if make_request 4638 * is waiting on a flush, it won't continue until the writes 4639 * have actually been submitted. 4640 */ 4641 atomic_dec(&conf->preread_active_stripes); 4642 if (atomic_read(&conf->preread_active_stripes) < 4643 IO_THRESHOLD) 4644 md_wakeup_thread(conf->mddev->thread); 4645 } 4646 4647 if (!bio_list_empty(&s.return_bi)) { 4648 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) && 4649 (s.failed <= conf->max_degraded || 4650 conf->mddev->external == 0)) { 4651 spin_lock_irq(&conf->device_lock); 4652 bio_list_merge(&conf->return_bi, &s.return_bi); 4653 spin_unlock_irq(&conf->device_lock); 4654 md_wakeup_thread(conf->mddev->thread); 4655 } else 4656 return_io(&s.return_bi); 4657 } 4658 4659 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4660 } 4661 4662 static void raid5_activate_delayed(struct r5conf *conf) 4663 { 4664 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4665 while (!list_empty(&conf->delayed_list)) { 4666 struct list_head *l = conf->delayed_list.next; 4667 struct stripe_head *sh; 4668 sh = list_entry(l, struct stripe_head, lru); 4669 list_del_init(l); 4670 clear_bit(STRIPE_DELAYED, &sh->state); 4671 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4672 atomic_inc(&conf->preread_active_stripes); 4673 list_add_tail(&sh->lru, &conf->hold_list); 4674 raid5_wakeup_stripe_thread(sh); 4675 } 4676 } 4677 } 4678 4679 static void activate_bit_delay(struct r5conf *conf, 4680 struct list_head *temp_inactive_list) 4681 { 4682 /* device_lock is held */ 4683 struct list_head head; 4684 list_add(&head, &conf->bitmap_list); 4685 list_del_init(&conf->bitmap_list); 4686 while (!list_empty(&head)) { 4687 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4688 int hash; 4689 list_del_init(&sh->lru); 4690 atomic_inc(&sh->count); 4691 hash = sh->hash_lock_index; 4692 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4693 } 4694 } 4695 4696 static int raid5_congested(struct mddev *mddev, int bits) 4697 { 4698 struct r5conf *conf = mddev->private; 4699 4700 /* No difference between reads and writes. Just check 4701 * how busy the stripe_cache is 4702 */ 4703 4704 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4705 return 1; 4706 if (conf->quiesce) 4707 return 1; 4708 if (atomic_read(&conf->empty_inactive_list_nr)) 4709 return 1; 4710 4711 return 0; 4712 } 4713 4714 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4715 { 4716 struct r5conf *conf = mddev->private; 4717 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4718 unsigned int chunk_sectors; 4719 unsigned int bio_sectors = bio_sectors(bio); 4720 4721 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 4722 return chunk_sectors >= 4723 ((sector & (chunk_sectors - 1)) + bio_sectors); 4724 } 4725 4726 /* 4727 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4728 * later sampled by raid5d. 4729 */ 4730 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4731 { 4732 unsigned long flags; 4733 4734 spin_lock_irqsave(&conf->device_lock, flags); 4735 4736 bi->bi_next = conf->retry_read_aligned_list; 4737 conf->retry_read_aligned_list = bi; 4738 4739 spin_unlock_irqrestore(&conf->device_lock, flags); 4740 md_wakeup_thread(conf->mddev->thread); 4741 } 4742 4743 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4744 { 4745 struct bio *bi; 4746 4747 bi = conf->retry_read_aligned; 4748 if (bi) { 4749 conf->retry_read_aligned = NULL; 4750 return bi; 4751 } 4752 bi = conf->retry_read_aligned_list; 4753 if(bi) { 4754 conf->retry_read_aligned_list = bi->bi_next; 4755 bi->bi_next = NULL; 4756 /* 4757 * this sets the active strip count to 1 and the processed 4758 * strip count to zero (upper 8 bits) 4759 */ 4760 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4761 } 4762 4763 return bi; 4764 } 4765 4766 /* 4767 * The "raid5_align_endio" should check if the read succeeded and if it 4768 * did, call bio_endio on the original bio (having bio_put the new bio 4769 * first). 4770 * If the read failed.. 4771 */ 4772 static void raid5_align_endio(struct bio *bi) 4773 { 4774 struct bio* raid_bi = bi->bi_private; 4775 struct mddev *mddev; 4776 struct r5conf *conf; 4777 struct md_rdev *rdev; 4778 int error = bi->bi_error; 4779 4780 bio_put(bi); 4781 4782 rdev = (void*)raid_bi->bi_next; 4783 raid_bi->bi_next = NULL; 4784 mddev = rdev->mddev; 4785 conf = mddev->private; 4786 4787 rdev_dec_pending(rdev, conf->mddev); 4788 4789 if (!error) { 4790 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4791 raid_bi, 0); 4792 bio_endio(raid_bi); 4793 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4794 wake_up(&conf->wait_for_quiescent); 4795 return; 4796 } 4797 4798 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4799 4800 add_bio_to_retry(raid_bi, conf); 4801 } 4802 4803 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 4804 { 4805 struct r5conf *conf = mddev->private; 4806 int dd_idx; 4807 struct bio* align_bi; 4808 struct md_rdev *rdev; 4809 sector_t end_sector; 4810 4811 if (!in_chunk_boundary(mddev, raid_bio)) { 4812 pr_debug("%s: non aligned\n", __func__); 4813 return 0; 4814 } 4815 /* 4816 * use bio_clone_mddev to make a copy of the bio 4817 */ 4818 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4819 if (!align_bi) 4820 return 0; 4821 /* 4822 * set bi_end_io to a new function, and set bi_private to the 4823 * original bio. 4824 */ 4825 align_bi->bi_end_io = raid5_align_endio; 4826 align_bi->bi_private = raid_bio; 4827 /* 4828 * compute position 4829 */ 4830 align_bi->bi_iter.bi_sector = 4831 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4832 0, &dd_idx, NULL); 4833 4834 end_sector = bio_end_sector(align_bi); 4835 rcu_read_lock(); 4836 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4837 if (!rdev || test_bit(Faulty, &rdev->flags) || 4838 rdev->recovery_offset < end_sector) { 4839 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4840 if (rdev && 4841 (test_bit(Faulty, &rdev->flags) || 4842 !(test_bit(In_sync, &rdev->flags) || 4843 rdev->recovery_offset >= end_sector))) 4844 rdev = NULL; 4845 } 4846 if (rdev) { 4847 sector_t first_bad; 4848 int bad_sectors; 4849 4850 atomic_inc(&rdev->nr_pending); 4851 rcu_read_unlock(); 4852 raid_bio->bi_next = (void*)rdev; 4853 align_bi->bi_bdev = rdev->bdev; 4854 bio_clear_flag(align_bi, BIO_SEG_VALID); 4855 4856 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 4857 bio_sectors(align_bi), 4858 &first_bad, &bad_sectors)) { 4859 bio_put(align_bi); 4860 rdev_dec_pending(rdev, mddev); 4861 return 0; 4862 } 4863 4864 /* No reshape active, so we can trust rdev->data_offset */ 4865 align_bi->bi_iter.bi_sector += rdev->data_offset; 4866 4867 spin_lock_irq(&conf->device_lock); 4868 wait_event_lock_irq(conf->wait_for_quiescent, 4869 conf->quiesce == 0, 4870 conf->device_lock); 4871 atomic_inc(&conf->active_aligned_reads); 4872 spin_unlock_irq(&conf->device_lock); 4873 4874 if (mddev->gendisk) 4875 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4876 align_bi, disk_devt(mddev->gendisk), 4877 raid_bio->bi_iter.bi_sector); 4878 generic_make_request(align_bi); 4879 return 1; 4880 } else { 4881 rcu_read_unlock(); 4882 bio_put(align_bi); 4883 return 0; 4884 } 4885 } 4886 4887 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 4888 { 4889 struct bio *split; 4890 4891 do { 4892 sector_t sector = raid_bio->bi_iter.bi_sector; 4893 unsigned chunk_sects = mddev->chunk_sectors; 4894 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 4895 4896 if (sectors < bio_sectors(raid_bio)) { 4897 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); 4898 bio_chain(split, raid_bio); 4899 } else 4900 split = raid_bio; 4901 4902 if (!raid5_read_one_chunk(mddev, split)) { 4903 if (split != raid_bio) 4904 generic_make_request(raid_bio); 4905 return split; 4906 } 4907 } while (split != raid_bio); 4908 4909 return NULL; 4910 } 4911 4912 /* __get_priority_stripe - get the next stripe to process 4913 * 4914 * Full stripe writes are allowed to pass preread active stripes up until 4915 * the bypass_threshold is exceeded. In general the bypass_count 4916 * increments when the handle_list is handled before the hold_list; however, it 4917 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4918 * stripe with in flight i/o. The bypass_count will be reset when the 4919 * head of the hold_list has changed, i.e. the head was promoted to the 4920 * handle_list. 4921 */ 4922 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4923 { 4924 struct stripe_head *sh = NULL, *tmp; 4925 struct list_head *handle_list = NULL; 4926 struct r5worker_group *wg = NULL; 4927 4928 if (conf->worker_cnt_per_group == 0) { 4929 handle_list = &conf->handle_list; 4930 } else if (group != ANY_GROUP) { 4931 handle_list = &conf->worker_groups[group].handle_list; 4932 wg = &conf->worker_groups[group]; 4933 } else { 4934 int i; 4935 for (i = 0; i < conf->group_cnt; i++) { 4936 handle_list = &conf->worker_groups[i].handle_list; 4937 wg = &conf->worker_groups[i]; 4938 if (!list_empty(handle_list)) 4939 break; 4940 } 4941 } 4942 4943 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4944 __func__, 4945 list_empty(handle_list) ? "empty" : "busy", 4946 list_empty(&conf->hold_list) ? "empty" : "busy", 4947 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4948 4949 if (!list_empty(handle_list)) { 4950 sh = list_entry(handle_list->next, typeof(*sh), lru); 4951 4952 if (list_empty(&conf->hold_list)) 4953 conf->bypass_count = 0; 4954 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4955 if (conf->hold_list.next == conf->last_hold) 4956 conf->bypass_count++; 4957 else { 4958 conf->last_hold = conf->hold_list.next; 4959 conf->bypass_count -= conf->bypass_threshold; 4960 if (conf->bypass_count < 0) 4961 conf->bypass_count = 0; 4962 } 4963 } 4964 } else if (!list_empty(&conf->hold_list) && 4965 ((conf->bypass_threshold && 4966 conf->bypass_count > conf->bypass_threshold) || 4967 atomic_read(&conf->pending_full_writes) == 0)) { 4968 4969 list_for_each_entry(tmp, &conf->hold_list, lru) { 4970 if (conf->worker_cnt_per_group == 0 || 4971 group == ANY_GROUP || 4972 !cpu_online(tmp->cpu) || 4973 cpu_to_group(tmp->cpu) == group) { 4974 sh = tmp; 4975 break; 4976 } 4977 } 4978 4979 if (sh) { 4980 conf->bypass_count -= conf->bypass_threshold; 4981 if (conf->bypass_count < 0) 4982 conf->bypass_count = 0; 4983 } 4984 wg = NULL; 4985 } 4986 4987 if (!sh) 4988 return NULL; 4989 4990 if (wg) { 4991 wg->stripes_cnt--; 4992 sh->group = NULL; 4993 } 4994 list_del_init(&sh->lru); 4995 BUG_ON(atomic_inc_return(&sh->count) != 1); 4996 return sh; 4997 } 4998 4999 struct raid5_plug_cb { 5000 struct blk_plug_cb cb; 5001 struct list_head list; 5002 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5003 }; 5004 5005 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5006 { 5007 struct raid5_plug_cb *cb = container_of( 5008 blk_cb, struct raid5_plug_cb, cb); 5009 struct stripe_head *sh; 5010 struct mddev *mddev = cb->cb.data; 5011 struct r5conf *conf = mddev->private; 5012 int cnt = 0; 5013 int hash; 5014 5015 if (cb->list.next && !list_empty(&cb->list)) { 5016 spin_lock_irq(&conf->device_lock); 5017 while (!list_empty(&cb->list)) { 5018 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5019 list_del_init(&sh->lru); 5020 /* 5021 * avoid race release_stripe_plug() sees 5022 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5023 * is still in our list 5024 */ 5025 smp_mb__before_atomic(); 5026 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5027 /* 5028 * STRIPE_ON_RELEASE_LIST could be set here. In that 5029 * case, the count is always > 1 here 5030 */ 5031 hash = sh->hash_lock_index; 5032 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5033 cnt++; 5034 } 5035 spin_unlock_irq(&conf->device_lock); 5036 } 5037 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5038 NR_STRIPE_HASH_LOCKS); 5039 if (mddev->queue) 5040 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5041 kfree(cb); 5042 } 5043 5044 static void release_stripe_plug(struct mddev *mddev, 5045 struct stripe_head *sh) 5046 { 5047 struct blk_plug_cb *blk_cb = blk_check_plugged( 5048 raid5_unplug, mddev, 5049 sizeof(struct raid5_plug_cb)); 5050 struct raid5_plug_cb *cb; 5051 5052 if (!blk_cb) { 5053 raid5_release_stripe(sh); 5054 return; 5055 } 5056 5057 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5058 5059 if (cb->list.next == NULL) { 5060 int i; 5061 INIT_LIST_HEAD(&cb->list); 5062 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5063 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5064 } 5065 5066 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5067 list_add_tail(&sh->lru, &cb->list); 5068 else 5069 raid5_release_stripe(sh); 5070 } 5071 5072 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5073 { 5074 struct r5conf *conf = mddev->private; 5075 sector_t logical_sector, last_sector; 5076 struct stripe_head *sh; 5077 int remaining; 5078 int stripe_sectors; 5079 5080 if (mddev->reshape_position != MaxSector) 5081 /* Skip discard while reshape is happening */ 5082 return; 5083 5084 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5085 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5086 5087 bi->bi_next = NULL; 5088 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5089 5090 stripe_sectors = conf->chunk_sectors * 5091 (conf->raid_disks - conf->max_degraded); 5092 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5093 stripe_sectors); 5094 sector_div(last_sector, stripe_sectors); 5095 5096 logical_sector *= conf->chunk_sectors; 5097 last_sector *= conf->chunk_sectors; 5098 5099 for (; logical_sector < last_sector; 5100 logical_sector += STRIPE_SECTORS) { 5101 DEFINE_WAIT(w); 5102 int d; 5103 again: 5104 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5105 prepare_to_wait(&conf->wait_for_overlap, &w, 5106 TASK_UNINTERRUPTIBLE); 5107 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5108 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5109 raid5_release_stripe(sh); 5110 schedule(); 5111 goto again; 5112 } 5113 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5114 spin_lock_irq(&sh->stripe_lock); 5115 for (d = 0; d < conf->raid_disks; d++) { 5116 if (d == sh->pd_idx || d == sh->qd_idx) 5117 continue; 5118 if (sh->dev[d].towrite || sh->dev[d].toread) { 5119 set_bit(R5_Overlap, &sh->dev[d].flags); 5120 spin_unlock_irq(&sh->stripe_lock); 5121 raid5_release_stripe(sh); 5122 schedule(); 5123 goto again; 5124 } 5125 } 5126 set_bit(STRIPE_DISCARD, &sh->state); 5127 finish_wait(&conf->wait_for_overlap, &w); 5128 sh->overwrite_disks = 0; 5129 for (d = 0; d < conf->raid_disks; d++) { 5130 if (d == sh->pd_idx || d == sh->qd_idx) 5131 continue; 5132 sh->dev[d].towrite = bi; 5133 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5134 raid5_inc_bi_active_stripes(bi); 5135 sh->overwrite_disks++; 5136 } 5137 spin_unlock_irq(&sh->stripe_lock); 5138 if (conf->mddev->bitmap) { 5139 for (d = 0; 5140 d < conf->raid_disks - conf->max_degraded; 5141 d++) 5142 bitmap_startwrite(mddev->bitmap, 5143 sh->sector, 5144 STRIPE_SECTORS, 5145 0); 5146 sh->bm_seq = conf->seq_flush + 1; 5147 set_bit(STRIPE_BIT_DELAY, &sh->state); 5148 } 5149 5150 set_bit(STRIPE_HANDLE, &sh->state); 5151 clear_bit(STRIPE_DELAYED, &sh->state); 5152 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5153 atomic_inc(&conf->preread_active_stripes); 5154 release_stripe_plug(mddev, sh); 5155 } 5156 5157 remaining = raid5_dec_bi_active_stripes(bi); 5158 if (remaining == 0) { 5159 md_write_end(mddev); 5160 bio_endio(bi); 5161 } 5162 } 5163 5164 static void raid5_make_request(struct mddev *mddev, struct bio * bi) 5165 { 5166 struct r5conf *conf = mddev->private; 5167 int dd_idx; 5168 sector_t new_sector; 5169 sector_t logical_sector, last_sector; 5170 struct stripe_head *sh; 5171 const int rw = bio_data_dir(bi); 5172 int remaining; 5173 DEFINE_WAIT(w); 5174 bool do_prepare; 5175 5176 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5177 int ret = r5l_handle_flush_request(conf->log, bi); 5178 5179 if (ret == 0) 5180 return; 5181 if (ret == -ENODEV) { 5182 md_flush_request(mddev, bi); 5183 return; 5184 } 5185 /* ret == -EAGAIN, fallback */ 5186 } 5187 5188 md_write_start(mddev, bi); 5189 5190 /* 5191 * If array is degraded, better not do chunk aligned read because 5192 * later we might have to read it again in order to reconstruct 5193 * data on failed drives. 5194 */ 5195 if (rw == READ && mddev->degraded == 0 && 5196 mddev->reshape_position == MaxSector) { 5197 bi = chunk_aligned_read(mddev, bi); 5198 if (!bi) 5199 return; 5200 } 5201 5202 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5203 make_discard_request(mddev, bi); 5204 return; 5205 } 5206 5207 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5208 last_sector = bio_end_sector(bi); 5209 bi->bi_next = NULL; 5210 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5211 5212 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5213 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5214 int previous; 5215 int seq; 5216 5217 do_prepare = false; 5218 retry: 5219 seq = read_seqcount_begin(&conf->gen_lock); 5220 previous = 0; 5221 if (do_prepare) 5222 prepare_to_wait(&conf->wait_for_overlap, &w, 5223 TASK_UNINTERRUPTIBLE); 5224 if (unlikely(conf->reshape_progress != MaxSector)) { 5225 /* spinlock is needed as reshape_progress may be 5226 * 64bit on a 32bit platform, and so it might be 5227 * possible to see a half-updated value 5228 * Of course reshape_progress could change after 5229 * the lock is dropped, so once we get a reference 5230 * to the stripe that we think it is, we will have 5231 * to check again. 5232 */ 5233 spin_lock_irq(&conf->device_lock); 5234 if (mddev->reshape_backwards 5235 ? logical_sector < conf->reshape_progress 5236 : logical_sector >= conf->reshape_progress) { 5237 previous = 1; 5238 } else { 5239 if (mddev->reshape_backwards 5240 ? logical_sector < conf->reshape_safe 5241 : logical_sector >= conf->reshape_safe) { 5242 spin_unlock_irq(&conf->device_lock); 5243 schedule(); 5244 do_prepare = true; 5245 goto retry; 5246 } 5247 } 5248 spin_unlock_irq(&conf->device_lock); 5249 } 5250 5251 new_sector = raid5_compute_sector(conf, logical_sector, 5252 previous, 5253 &dd_idx, NULL); 5254 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5255 (unsigned long long)new_sector, 5256 (unsigned long long)logical_sector); 5257 5258 sh = raid5_get_active_stripe(conf, new_sector, previous, 5259 (bi->bi_opf & REQ_RAHEAD), 0); 5260 if (sh) { 5261 if (unlikely(previous)) { 5262 /* expansion might have moved on while waiting for a 5263 * stripe, so we must do the range check again. 5264 * Expansion could still move past after this 5265 * test, but as we are holding a reference to 5266 * 'sh', we know that if that happens, 5267 * STRIPE_EXPANDING will get set and the expansion 5268 * won't proceed until we finish with the stripe. 5269 */ 5270 int must_retry = 0; 5271 spin_lock_irq(&conf->device_lock); 5272 if (mddev->reshape_backwards 5273 ? logical_sector >= conf->reshape_progress 5274 : logical_sector < conf->reshape_progress) 5275 /* mismatch, need to try again */ 5276 must_retry = 1; 5277 spin_unlock_irq(&conf->device_lock); 5278 if (must_retry) { 5279 raid5_release_stripe(sh); 5280 schedule(); 5281 do_prepare = true; 5282 goto retry; 5283 } 5284 } 5285 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5286 /* Might have got the wrong stripe_head 5287 * by accident 5288 */ 5289 raid5_release_stripe(sh); 5290 goto retry; 5291 } 5292 5293 if (rw == WRITE && 5294 logical_sector >= mddev->suspend_lo && 5295 logical_sector < mddev->suspend_hi) { 5296 raid5_release_stripe(sh); 5297 /* As the suspend_* range is controlled by 5298 * userspace, we want an interruptible 5299 * wait. 5300 */ 5301 flush_signals(current); 5302 prepare_to_wait(&conf->wait_for_overlap, 5303 &w, TASK_INTERRUPTIBLE); 5304 if (logical_sector >= mddev->suspend_lo && 5305 logical_sector < mddev->suspend_hi) { 5306 schedule(); 5307 do_prepare = true; 5308 } 5309 goto retry; 5310 } 5311 5312 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5313 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5314 /* Stripe is busy expanding or 5315 * add failed due to overlap. Flush everything 5316 * and wait a while 5317 */ 5318 md_wakeup_thread(mddev->thread); 5319 raid5_release_stripe(sh); 5320 schedule(); 5321 do_prepare = true; 5322 goto retry; 5323 } 5324 set_bit(STRIPE_HANDLE, &sh->state); 5325 clear_bit(STRIPE_DELAYED, &sh->state); 5326 if ((!sh->batch_head || sh == sh->batch_head) && 5327 (bi->bi_opf & REQ_SYNC) && 5328 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5329 atomic_inc(&conf->preread_active_stripes); 5330 release_stripe_plug(mddev, sh); 5331 } else { 5332 /* cannot get stripe for read-ahead, just give-up */ 5333 bi->bi_error = -EIO; 5334 break; 5335 } 5336 } 5337 finish_wait(&conf->wait_for_overlap, &w); 5338 5339 remaining = raid5_dec_bi_active_stripes(bi); 5340 if (remaining == 0) { 5341 5342 if ( rw == WRITE ) 5343 md_write_end(mddev); 5344 5345 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5346 bi, 0); 5347 bio_endio(bi); 5348 } 5349 } 5350 5351 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5352 5353 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5354 { 5355 /* reshaping is quite different to recovery/resync so it is 5356 * handled quite separately ... here. 5357 * 5358 * On each call to sync_request, we gather one chunk worth of 5359 * destination stripes and flag them as expanding. 5360 * Then we find all the source stripes and request reads. 5361 * As the reads complete, handle_stripe will copy the data 5362 * into the destination stripe and release that stripe. 5363 */ 5364 struct r5conf *conf = mddev->private; 5365 struct stripe_head *sh; 5366 sector_t first_sector, last_sector; 5367 int raid_disks = conf->previous_raid_disks; 5368 int data_disks = raid_disks - conf->max_degraded; 5369 int new_data_disks = conf->raid_disks - conf->max_degraded; 5370 int i; 5371 int dd_idx; 5372 sector_t writepos, readpos, safepos; 5373 sector_t stripe_addr; 5374 int reshape_sectors; 5375 struct list_head stripes; 5376 sector_t retn; 5377 5378 if (sector_nr == 0) { 5379 /* If restarting in the middle, skip the initial sectors */ 5380 if (mddev->reshape_backwards && 5381 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5382 sector_nr = raid5_size(mddev, 0, 0) 5383 - conf->reshape_progress; 5384 } else if (mddev->reshape_backwards && 5385 conf->reshape_progress == MaxSector) { 5386 /* shouldn't happen, but just in case, finish up.*/ 5387 sector_nr = MaxSector; 5388 } else if (!mddev->reshape_backwards && 5389 conf->reshape_progress > 0) 5390 sector_nr = conf->reshape_progress; 5391 sector_div(sector_nr, new_data_disks); 5392 if (sector_nr) { 5393 mddev->curr_resync_completed = sector_nr; 5394 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5395 *skipped = 1; 5396 retn = sector_nr; 5397 goto finish; 5398 } 5399 } 5400 5401 /* We need to process a full chunk at a time. 5402 * If old and new chunk sizes differ, we need to process the 5403 * largest of these 5404 */ 5405 5406 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5407 5408 /* We update the metadata at least every 10 seconds, or when 5409 * the data about to be copied would over-write the source of 5410 * the data at the front of the range. i.e. one new_stripe 5411 * along from reshape_progress new_maps to after where 5412 * reshape_safe old_maps to 5413 */ 5414 writepos = conf->reshape_progress; 5415 sector_div(writepos, new_data_disks); 5416 readpos = conf->reshape_progress; 5417 sector_div(readpos, data_disks); 5418 safepos = conf->reshape_safe; 5419 sector_div(safepos, data_disks); 5420 if (mddev->reshape_backwards) { 5421 BUG_ON(writepos < reshape_sectors); 5422 writepos -= reshape_sectors; 5423 readpos += reshape_sectors; 5424 safepos += reshape_sectors; 5425 } else { 5426 writepos += reshape_sectors; 5427 /* readpos and safepos are worst-case calculations. 5428 * A negative number is overly pessimistic, and causes 5429 * obvious problems for unsigned storage. So clip to 0. 5430 */ 5431 readpos -= min_t(sector_t, reshape_sectors, readpos); 5432 safepos -= min_t(sector_t, reshape_sectors, safepos); 5433 } 5434 5435 /* Having calculated the 'writepos' possibly use it 5436 * to set 'stripe_addr' which is where we will write to. 5437 */ 5438 if (mddev->reshape_backwards) { 5439 BUG_ON(conf->reshape_progress == 0); 5440 stripe_addr = writepos; 5441 BUG_ON((mddev->dev_sectors & 5442 ~((sector_t)reshape_sectors - 1)) 5443 - reshape_sectors - stripe_addr 5444 != sector_nr); 5445 } else { 5446 BUG_ON(writepos != sector_nr + reshape_sectors); 5447 stripe_addr = sector_nr; 5448 } 5449 5450 /* 'writepos' is the most advanced device address we might write. 5451 * 'readpos' is the least advanced device address we might read. 5452 * 'safepos' is the least address recorded in the metadata as having 5453 * been reshaped. 5454 * If there is a min_offset_diff, these are adjusted either by 5455 * increasing the safepos/readpos if diff is negative, or 5456 * increasing writepos if diff is positive. 5457 * If 'readpos' is then behind 'writepos', there is no way that we can 5458 * ensure safety in the face of a crash - that must be done by userspace 5459 * making a backup of the data. So in that case there is no particular 5460 * rush to update metadata. 5461 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5462 * update the metadata to advance 'safepos' to match 'readpos' so that 5463 * we can be safe in the event of a crash. 5464 * So we insist on updating metadata if safepos is behind writepos and 5465 * readpos is beyond writepos. 5466 * In any case, update the metadata every 10 seconds. 5467 * Maybe that number should be configurable, but I'm not sure it is 5468 * worth it.... maybe it could be a multiple of safemode_delay??? 5469 */ 5470 if (conf->min_offset_diff < 0) { 5471 safepos += -conf->min_offset_diff; 5472 readpos += -conf->min_offset_diff; 5473 } else 5474 writepos += conf->min_offset_diff; 5475 5476 if ((mddev->reshape_backwards 5477 ? (safepos > writepos && readpos < writepos) 5478 : (safepos < writepos && readpos > writepos)) || 5479 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5480 /* Cannot proceed until we've updated the superblock... */ 5481 wait_event(conf->wait_for_overlap, 5482 atomic_read(&conf->reshape_stripes)==0 5483 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5484 if (atomic_read(&conf->reshape_stripes) != 0) 5485 return 0; 5486 mddev->reshape_position = conf->reshape_progress; 5487 mddev->curr_resync_completed = sector_nr; 5488 conf->reshape_checkpoint = jiffies; 5489 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5490 md_wakeup_thread(mddev->thread); 5491 wait_event(mddev->sb_wait, mddev->flags == 0 || 5492 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5493 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5494 return 0; 5495 spin_lock_irq(&conf->device_lock); 5496 conf->reshape_safe = mddev->reshape_position; 5497 spin_unlock_irq(&conf->device_lock); 5498 wake_up(&conf->wait_for_overlap); 5499 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5500 } 5501 5502 INIT_LIST_HEAD(&stripes); 5503 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5504 int j; 5505 int skipped_disk = 0; 5506 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5507 set_bit(STRIPE_EXPANDING, &sh->state); 5508 atomic_inc(&conf->reshape_stripes); 5509 /* If any of this stripe is beyond the end of the old 5510 * array, then we need to zero those blocks 5511 */ 5512 for (j=sh->disks; j--;) { 5513 sector_t s; 5514 if (j == sh->pd_idx) 5515 continue; 5516 if (conf->level == 6 && 5517 j == sh->qd_idx) 5518 continue; 5519 s = raid5_compute_blocknr(sh, j, 0); 5520 if (s < raid5_size(mddev, 0, 0)) { 5521 skipped_disk = 1; 5522 continue; 5523 } 5524 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5525 set_bit(R5_Expanded, &sh->dev[j].flags); 5526 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5527 } 5528 if (!skipped_disk) { 5529 set_bit(STRIPE_EXPAND_READY, &sh->state); 5530 set_bit(STRIPE_HANDLE, &sh->state); 5531 } 5532 list_add(&sh->lru, &stripes); 5533 } 5534 spin_lock_irq(&conf->device_lock); 5535 if (mddev->reshape_backwards) 5536 conf->reshape_progress -= reshape_sectors * new_data_disks; 5537 else 5538 conf->reshape_progress += reshape_sectors * new_data_disks; 5539 spin_unlock_irq(&conf->device_lock); 5540 /* Ok, those stripe are ready. We can start scheduling 5541 * reads on the source stripes. 5542 * The source stripes are determined by mapping the first and last 5543 * block on the destination stripes. 5544 */ 5545 first_sector = 5546 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5547 1, &dd_idx, NULL); 5548 last_sector = 5549 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5550 * new_data_disks - 1), 5551 1, &dd_idx, NULL); 5552 if (last_sector >= mddev->dev_sectors) 5553 last_sector = mddev->dev_sectors - 1; 5554 while (first_sector <= last_sector) { 5555 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5556 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5557 set_bit(STRIPE_HANDLE, &sh->state); 5558 raid5_release_stripe(sh); 5559 first_sector += STRIPE_SECTORS; 5560 } 5561 /* Now that the sources are clearly marked, we can release 5562 * the destination stripes 5563 */ 5564 while (!list_empty(&stripes)) { 5565 sh = list_entry(stripes.next, struct stripe_head, lru); 5566 list_del_init(&sh->lru); 5567 raid5_release_stripe(sh); 5568 } 5569 /* If this takes us to the resync_max point where we have to pause, 5570 * then we need to write out the superblock. 5571 */ 5572 sector_nr += reshape_sectors; 5573 retn = reshape_sectors; 5574 finish: 5575 if (mddev->curr_resync_completed > mddev->resync_max || 5576 (sector_nr - mddev->curr_resync_completed) * 2 5577 >= mddev->resync_max - mddev->curr_resync_completed) { 5578 /* Cannot proceed until we've updated the superblock... */ 5579 wait_event(conf->wait_for_overlap, 5580 atomic_read(&conf->reshape_stripes) == 0 5581 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5582 if (atomic_read(&conf->reshape_stripes) != 0) 5583 goto ret; 5584 mddev->reshape_position = conf->reshape_progress; 5585 mddev->curr_resync_completed = sector_nr; 5586 conf->reshape_checkpoint = jiffies; 5587 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5588 md_wakeup_thread(mddev->thread); 5589 wait_event(mddev->sb_wait, 5590 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 5591 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5592 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5593 goto ret; 5594 spin_lock_irq(&conf->device_lock); 5595 conf->reshape_safe = mddev->reshape_position; 5596 spin_unlock_irq(&conf->device_lock); 5597 wake_up(&conf->wait_for_overlap); 5598 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5599 } 5600 ret: 5601 return retn; 5602 } 5603 5604 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 5605 int *skipped) 5606 { 5607 struct r5conf *conf = mddev->private; 5608 struct stripe_head *sh; 5609 sector_t max_sector = mddev->dev_sectors; 5610 sector_t sync_blocks; 5611 int still_degraded = 0; 5612 int i; 5613 5614 if (sector_nr >= max_sector) { 5615 /* just being told to finish up .. nothing much to do */ 5616 5617 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5618 end_reshape(conf); 5619 return 0; 5620 } 5621 5622 if (mddev->curr_resync < max_sector) /* aborted */ 5623 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5624 &sync_blocks, 1); 5625 else /* completed sync */ 5626 conf->fullsync = 0; 5627 bitmap_close_sync(mddev->bitmap); 5628 5629 return 0; 5630 } 5631 5632 /* Allow raid5_quiesce to complete */ 5633 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5634 5635 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5636 return reshape_request(mddev, sector_nr, skipped); 5637 5638 /* No need to check resync_max as we never do more than one 5639 * stripe, and as resync_max will always be on a chunk boundary, 5640 * if the check in md_do_sync didn't fire, there is no chance 5641 * of overstepping resync_max here 5642 */ 5643 5644 /* if there is too many failed drives and we are trying 5645 * to resync, then assert that we are finished, because there is 5646 * nothing we can do. 5647 */ 5648 if (mddev->degraded >= conf->max_degraded && 5649 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5650 sector_t rv = mddev->dev_sectors - sector_nr; 5651 *skipped = 1; 5652 return rv; 5653 } 5654 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5655 !conf->fullsync && 5656 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5657 sync_blocks >= STRIPE_SECTORS) { 5658 /* we can skip this block, and probably more */ 5659 sync_blocks /= STRIPE_SECTORS; 5660 *skipped = 1; 5661 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5662 } 5663 5664 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 5665 5666 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 5667 if (sh == NULL) { 5668 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 5669 /* make sure we don't swamp the stripe cache if someone else 5670 * is trying to get access 5671 */ 5672 schedule_timeout_uninterruptible(1); 5673 } 5674 /* Need to check if array will still be degraded after recovery/resync 5675 * Note in case of > 1 drive failures it's possible we're rebuilding 5676 * one drive while leaving another faulty drive in array. 5677 */ 5678 rcu_read_lock(); 5679 for (i = 0; i < conf->raid_disks; i++) { 5680 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5681 5682 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5683 still_degraded = 1; 5684 } 5685 rcu_read_unlock(); 5686 5687 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5688 5689 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5690 set_bit(STRIPE_HANDLE, &sh->state); 5691 5692 raid5_release_stripe(sh); 5693 5694 return STRIPE_SECTORS; 5695 } 5696 5697 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5698 { 5699 /* We may not be able to submit a whole bio at once as there 5700 * may not be enough stripe_heads available. 5701 * We cannot pre-allocate enough stripe_heads as we may need 5702 * more than exist in the cache (if we allow ever large chunks). 5703 * So we do one stripe head at a time and record in 5704 * ->bi_hw_segments how many have been done. 5705 * 5706 * We *know* that this entire raid_bio is in one chunk, so 5707 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5708 */ 5709 struct stripe_head *sh; 5710 int dd_idx; 5711 sector_t sector, logical_sector, last_sector; 5712 int scnt = 0; 5713 int remaining; 5714 int handled = 0; 5715 5716 logical_sector = raid_bio->bi_iter.bi_sector & 5717 ~((sector_t)STRIPE_SECTORS-1); 5718 sector = raid5_compute_sector(conf, logical_sector, 5719 0, &dd_idx, NULL); 5720 last_sector = bio_end_sector(raid_bio); 5721 5722 for (; logical_sector < last_sector; 5723 logical_sector += STRIPE_SECTORS, 5724 sector += STRIPE_SECTORS, 5725 scnt++) { 5726 5727 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5728 /* already done this stripe */ 5729 continue; 5730 5731 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 5732 5733 if (!sh) { 5734 /* failed to get a stripe - must wait */ 5735 raid5_set_bi_processed_stripes(raid_bio, scnt); 5736 conf->retry_read_aligned = raid_bio; 5737 return handled; 5738 } 5739 5740 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 5741 raid5_release_stripe(sh); 5742 raid5_set_bi_processed_stripes(raid_bio, scnt); 5743 conf->retry_read_aligned = raid_bio; 5744 return handled; 5745 } 5746 5747 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5748 handle_stripe(sh); 5749 raid5_release_stripe(sh); 5750 handled++; 5751 } 5752 remaining = raid5_dec_bi_active_stripes(raid_bio); 5753 if (remaining == 0) { 5754 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5755 raid_bio, 0); 5756 bio_endio(raid_bio); 5757 } 5758 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5759 wake_up(&conf->wait_for_quiescent); 5760 return handled; 5761 } 5762 5763 static int handle_active_stripes(struct r5conf *conf, int group, 5764 struct r5worker *worker, 5765 struct list_head *temp_inactive_list) 5766 { 5767 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5768 int i, batch_size = 0, hash; 5769 bool release_inactive = false; 5770 5771 while (batch_size < MAX_STRIPE_BATCH && 5772 (sh = __get_priority_stripe(conf, group)) != NULL) 5773 batch[batch_size++] = sh; 5774 5775 if (batch_size == 0) { 5776 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5777 if (!list_empty(temp_inactive_list + i)) 5778 break; 5779 if (i == NR_STRIPE_HASH_LOCKS) { 5780 spin_unlock_irq(&conf->device_lock); 5781 r5l_flush_stripe_to_raid(conf->log); 5782 spin_lock_irq(&conf->device_lock); 5783 return batch_size; 5784 } 5785 release_inactive = true; 5786 } 5787 spin_unlock_irq(&conf->device_lock); 5788 5789 release_inactive_stripe_list(conf, temp_inactive_list, 5790 NR_STRIPE_HASH_LOCKS); 5791 5792 r5l_flush_stripe_to_raid(conf->log); 5793 if (release_inactive) { 5794 spin_lock_irq(&conf->device_lock); 5795 return 0; 5796 } 5797 5798 for (i = 0; i < batch_size; i++) 5799 handle_stripe(batch[i]); 5800 r5l_write_stripe_run(conf->log); 5801 5802 cond_resched(); 5803 5804 spin_lock_irq(&conf->device_lock); 5805 for (i = 0; i < batch_size; i++) { 5806 hash = batch[i]->hash_lock_index; 5807 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5808 } 5809 return batch_size; 5810 } 5811 5812 static void raid5_do_work(struct work_struct *work) 5813 { 5814 struct r5worker *worker = container_of(work, struct r5worker, work); 5815 struct r5worker_group *group = worker->group; 5816 struct r5conf *conf = group->conf; 5817 int group_id = group - conf->worker_groups; 5818 int handled; 5819 struct blk_plug plug; 5820 5821 pr_debug("+++ raid5worker active\n"); 5822 5823 blk_start_plug(&plug); 5824 handled = 0; 5825 spin_lock_irq(&conf->device_lock); 5826 while (1) { 5827 int batch_size, released; 5828 5829 released = release_stripe_list(conf, worker->temp_inactive_list); 5830 5831 batch_size = handle_active_stripes(conf, group_id, worker, 5832 worker->temp_inactive_list); 5833 worker->working = false; 5834 if (!batch_size && !released) 5835 break; 5836 handled += batch_size; 5837 } 5838 pr_debug("%d stripes handled\n", handled); 5839 5840 spin_unlock_irq(&conf->device_lock); 5841 blk_finish_plug(&plug); 5842 5843 pr_debug("--- raid5worker inactive\n"); 5844 } 5845 5846 /* 5847 * This is our raid5 kernel thread. 5848 * 5849 * We scan the hash table for stripes which can be handled now. 5850 * During the scan, completed stripes are saved for us by the interrupt 5851 * handler, so that they will not have to wait for our next wakeup. 5852 */ 5853 static void raid5d(struct md_thread *thread) 5854 { 5855 struct mddev *mddev = thread->mddev; 5856 struct r5conf *conf = mddev->private; 5857 int handled; 5858 struct blk_plug plug; 5859 5860 pr_debug("+++ raid5d active\n"); 5861 5862 md_check_recovery(mddev); 5863 5864 if (!bio_list_empty(&conf->return_bi) && 5865 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5866 struct bio_list tmp = BIO_EMPTY_LIST; 5867 spin_lock_irq(&conf->device_lock); 5868 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5869 bio_list_merge(&tmp, &conf->return_bi); 5870 bio_list_init(&conf->return_bi); 5871 } 5872 spin_unlock_irq(&conf->device_lock); 5873 return_io(&tmp); 5874 } 5875 5876 blk_start_plug(&plug); 5877 handled = 0; 5878 spin_lock_irq(&conf->device_lock); 5879 while (1) { 5880 struct bio *bio; 5881 int batch_size, released; 5882 5883 released = release_stripe_list(conf, conf->temp_inactive_list); 5884 if (released) 5885 clear_bit(R5_DID_ALLOC, &conf->cache_state); 5886 5887 if ( 5888 !list_empty(&conf->bitmap_list)) { 5889 /* Now is a good time to flush some bitmap updates */ 5890 conf->seq_flush++; 5891 spin_unlock_irq(&conf->device_lock); 5892 bitmap_unplug(mddev->bitmap); 5893 spin_lock_irq(&conf->device_lock); 5894 conf->seq_write = conf->seq_flush; 5895 activate_bit_delay(conf, conf->temp_inactive_list); 5896 } 5897 raid5_activate_delayed(conf); 5898 5899 while ((bio = remove_bio_from_retry(conf))) { 5900 int ok; 5901 spin_unlock_irq(&conf->device_lock); 5902 ok = retry_aligned_read(conf, bio); 5903 spin_lock_irq(&conf->device_lock); 5904 if (!ok) 5905 break; 5906 handled++; 5907 } 5908 5909 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5910 conf->temp_inactive_list); 5911 if (!batch_size && !released) 5912 break; 5913 handled += batch_size; 5914 5915 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5916 spin_unlock_irq(&conf->device_lock); 5917 md_check_recovery(mddev); 5918 spin_lock_irq(&conf->device_lock); 5919 } 5920 } 5921 pr_debug("%d stripes handled\n", handled); 5922 5923 spin_unlock_irq(&conf->device_lock); 5924 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 5925 mutex_trylock(&conf->cache_size_mutex)) { 5926 grow_one_stripe(conf, __GFP_NOWARN); 5927 /* Set flag even if allocation failed. This helps 5928 * slow down allocation requests when mem is short 5929 */ 5930 set_bit(R5_DID_ALLOC, &conf->cache_state); 5931 mutex_unlock(&conf->cache_size_mutex); 5932 } 5933 5934 r5l_flush_stripe_to_raid(conf->log); 5935 5936 async_tx_issue_pending_all(); 5937 blk_finish_plug(&plug); 5938 5939 pr_debug("--- raid5d inactive\n"); 5940 } 5941 5942 static ssize_t 5943 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5944 { 5945 struct r5conf *conf; 5946 int ret = 0; 5947 spin_lock(&mddev->lock); 5948 conf = mddev->private; 5949 if (conf) 5950 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 5951 spin_unlock(&mddev->lock); 5952 return ret; 5953 } 5954 5955 int 5956 raid5_set_cache_size(struct mddev *mddev, int size) 5957 { 5958 struct r5conf *conf = mddev->private; 5959 int err; 5960 5961 if (size <= 16 || size > 32768) 5962 return -EINVAL; 5963 5964 conf->min_nr_stripes = size; 5965 mutex_lock(&conf->cache_size_mutex); 5966 while (size < conf->max_nr_stripes && 5967 drop_one_stripe(conf)) 5968 ; 5969 mutex_unlock(&conf->cache_size_mutex); 5970 5971 5972 err = md_allow_write(mddev); 5973 if (err) 5974 return err; 5975 5976 mutex_lock(&conf->cache_size_mutex); 5977 while (size > conf->max_nr_stripes) 5978 if (!grow_one_stripe(conf, GFP_KERNEL)) 5979 break; 5980 mutex_unlock(&conf->cache_size_mutex); 5981 5982 return 0; 5983 } 5984 EXPORT_SYMBOL(raid5_set_cache_size); 5985 5986 static ssize_t 5987 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5988 { 5989 struct r5conf *conf; 5990 unsigned long new; 5991 int err; 5992 5993 if (len >= PAGE_SIZE) 5994 return -EINVAL; 5995 if (kstrtoul(page, 10, &new)) 5996 return -EINVAL; 5997 err = mddev_lock(mddev); 5998 if (err) 5999 return err; 6000 conf = mddev->private; 6001 if (!conf) 6002 err = -ENODEV; 6003 else 6004 err = raid5_set_cache_size(mddev, new); 6005 mddev_unlock(mddev); 6006 6007 return err ?: len; 6008 } 6009 6010 static struct md_sysfs_entry 6011 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6012 raid5_show_stripe_cache_size, 6013 raid5_store_stripe_cache_size); 6014 6015 static ssize_t 6016 raid5_show_rmw_level(struct mddev *mddev, char *page) 6017 { 6018 struct r5conf *conf = mddev->private; 6019 if (conf) 6020 return sprintf(page, "%d\n", conf->rmw_level); 6021 else 6022 return 0; 6023 } 6024 6025 static ssize_t 6026 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6027 { 6028 struct r5conf *conf = mddev->private; 6029 unsigned long new; 6030 6031 if (!conf) 6032 return -ENODEV; 6033 6034 if (len >= PAGE_SIZE) 6035 return -EINVAL; 6036 6037 if (kstrtoul(page, 10, &new)) 6038 return -EINVAL; 6039 6040 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6041 return -EINVAL; 6042 6043 if (new != PARITY_DISABLE_RMW && 6044 new != PARITY_ENABLE_RMW && 6045 new != PARITY_PREFER_RMW) 6046 return -EINVAL; 6047 6048 conf->rmw_level = new; 6049 return len; 6050 } 6051 6052 static struct md_sysfs_entry 6053 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6054 raid5_show_rmw_level, 6055 raid5_store_rmw_level); 6056 6057 6058 static ssize_t 6059 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6060 { 6061 struct r5conf *conf; 6062 int ret = 0; 6063 spin_lock(&mddev->lock); 6064 conf = mddev->private; 6065 if (conf) 6066 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6067 spin_unlock(&mddev->lock); 6068 return ret; 6069 } 6070 6071 static ssize_t 6072 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6073 { 6074 struct r5conf *conf; 6075 unsigned long new; 6076 int err; 6077 6078 if (len >= PAGE_SIZE) 6079 return -EINVAL; 6080 if (kstrtoul(page, 10, &new)) 6081 return -EINVAL; 6082 6083 err = mddev_lock(mddev); 6084 if (err) 6085 return err; 6086 conf = mddev->private; 6087 if (!conf) 6088 err = -ENODEV; 6089 else if (new > conf->min_nr_stripes) 6090 err = -EINVAL; 6091 else 6092 conf->bypass_threshold = new; 6093 mddev_unlock(mddev); 6094 return err ?: len; 6095 } 6096 6097 static struct md_sysfs_entry 6098 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6099 S_IRUGO | S_IWUSR, 6100 raid5_show_preread_threshold, 6101 raid5_store_preread_threshold); 6102 6103 static ssize_t 6104 raid5_show_skip_copy(struct mddev *mddev, char *page) 6105 { 6106 struct r5conf *conf; 6107 int ret = 0; 6108 spin_lock(&mddev->lock); 6109 conf = mddev->private; 6110 if (conf) 6111 ret = sprintf(page, "%d\n", conf->skip_copy); 6112 spin_unlock(&mddev->lock); 6113 return ret; 6114 } 6115 6116 static ssize_t 6117 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6118 { 6119 struct r5conf *conf; 6120 unsigned long new; 6121 int err; 6122 6123 if (len >= PAGE_SIZE) 6124 return -EINVAL; 6125 if (kstrtoul(page, 10, &new)) 6126 return -EINVAL; 6127 new = !!new; 6128 6129 err = mddev_lock(mddev); 6130 if (err) 6131 return err; 6132 conf = mddev->private; 6133 if (!conf) 6134 err = -ENODEV; 6135 else if (new != conf->skip_copy) { 6136 mddev_suspend(mddev); 6137 conf->skip_copy = new; 6138 if (new) 6139 mddev->queue->backing_dev_info.capabilities |= 6140 BDI_CAP_STABLE_WRITES; 6141 else 6142 mddev->queue->backing_dev_info.capabilities &= 6143 ~BDI_CAP_STABLE_WRITES; 6144 mddev_resume(mddev); 6145 } 6146 mddev_unlock(mddev); 6147 return err ?: len; 6148 } 6149 6150 static struct md_sysfs_entry 6151 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6152 raid5_show_skip_copy, 6153 raid5_store_skip_copy); 6154 6155 static ssize_t 6156 stripe_cache_active_show(struct mddev *mddev, char *page) 6157 { 6158 struct r5conf *conf = mddev->private; 6159 if (conf) 6160 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6161 else 6162 return 0; 6163 } 6164 6165 static struct md_sysfs_entry 6166 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6167 6168 static ssize_t 6169 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6170 { 6171 struct r5conf *conf; 6172 int ret = 0; 6173 spin_lock(&mddev->lock); 6174 conf = mddev->private; 6175 if (conf) 6176 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6177 spin_unlock(&mddev->lock); 6178 return ret; 6179 } 6180 6181 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6182 int *group_cnt, 6183 int *worker_cnt_per_group, 6184 struct r5worker_group **worker_groups); 6185 static ssize_t 6186 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6187 { 6188 struct r5conf *conf; 6189 unsigned long new; 6190 int err; 6191 struct r5worker_group *new_groups, *old_groups; 6192 int group_cnt, worker_cnt_per_group; 6193 6194 if (len >= PAGE_SIZE) 6195 return -EINVAL; 6196 if (kstrtoul(page, 10, &new)) 6197 return -EINVAL; 6198 6199 err = mddev_lock(mddev); 6200 if (err) 6201 return err; 6202 conf = mddev->private; 6203 if (!conf) 6204 err = -ENODEV; 6205 else if (new != conf->worker_cnt_per_group) { 6206 mddev_suspend(mddev); 6207 6208 old_groups = conf->worker_groups; 6209 if (old_groups) 6210 flush_workqueue(raid5_wq); 6211 6212 err = alloc_thread_groups(conf, new, 6213 &group_cnt, &worker_cnt_per_group, 6214 &new_groups); 6215 if (!err) { 6216 spin_lock_irq(&conf->device_lock); 6217 conf->group_cnt = group_cnt; 6218 conf->worker_cnt_per_group = worker_cnt_per_group; 6219 conf->worker_groups = new_groups; 6220 spin_unlock_irq(&conf->device_lock); 6221 6222 if (old_groups) 6223 kfree(old_groups[0].workers); 6224 kfree(old_groups); 6225 } 6226 mddev_resume(mddev); 6227 } 6228 mddev_unlock(mddev); 6229 6230 return err ?: len; 6231 } 6232 6233 static struct md_sysfs_entry 6234 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6235 raid5_show_group_thread_cnt, 6236 raid5_store_group_thread_cnt); 6237 6238 static struct attribute *raid5_attrs[] = { 6239 &raid5_stripecache_size.attr, 6240 &raid5_stripecache_active.attr, 6241 &raid5_preread_bypass_threshold.attr, 6242 &raid5_group_thread_cnt.attr, 6243 &raid5_skip_copy.attr, 6244 &raid5_rmw_level.attr, 6245 NULL, 6246 }; 6247 static struct attribute_group raid5_attrs_group = { 6248 .name = NULL, 6249 .attrs = raid5_attrs, 6250 }; 6251 6252 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6253 int *group_cnt, 6254 int *worker_cnt_per_group, 6255 struct r5worker_group **worker_groups) 6256 { 6257 int i, j, k; 6258 ssize_t size; 6259 struct r5worker *workers; 6260 6261 *worker_cnt_per_group = cnt; 6262 if (cnt == 0) { 6263 *group_cnt = 0; 6264 *worker_groups = NULL; 6265 return 0; 6266 } 6267 *group_cnt = num_possible_nodes(); 6268 size = sizeof(struct r5worker) * cnt; 6269 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6270 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6271 *group_cnt, GFP_NOIO); 6272 if (!*worker_groups || !workers) { 6273 kfree(workers); 6274 kfree(*worker_groups); 6275 return -ENOMEM; 6276 } 6277 6278 for (i = 0; i < *group_cnt; i++) { 6279 struct r5worker_group *group; 6280 6281 group = &(*worker_groups)[i]; 6282 INIT_LIST_HEAD(&group->handle_list); 6283 group->conf = conf; 6284 group->workers = workers + i * cnt; 6285 6286 for (j = 0; j < cnt; j++) { 6287 struct r5worker *worker = group->workers + j; 6288 worker->group = group; 6289 INIT_WORK(&worker->work, raid5_do_work); 6290 6291 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6292 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6293 } 6294 } 6295 6296 return 0; 6297 } 6298 6299 static void free_thread_groups(struct r5conf *conf) 6300 { 6301 if (conf->worker_groups) 6302 kfree(conf->worker_groups[0].workers); 6303 kfree(conf->worker_groups); 6304 conf->worker_groups = NULL; 6305 } 6306 6307 static sector_t 6308 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6309 { 6310 struct r5conf *conf = mddev->private; 6311 6312 if (!sectors) 6313 sectors = mddev->dev_sectors; 6314 if (!raid_disks) 6315 /* size is defined by the smallest of previous and new size */ 6316 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6317 6318 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6319 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6320 return sectors * (raid_disks - conf->max_degraded); 6321 } 6322 6323 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6324 { 6325 safe_put_page(percpu->spare_page); 6326 if (percpu->scribble) 6327 flex_array_free(percpu->scribble); 6328 percpu->spare_page = NULL; 6329 percpu->scribble = NULL; 6330 } 6331 6332 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6333 { 6334 if (conf->level == 6 && !percpu->spare_page) 6335 percpu->spare_page = alloc_page(GFP_KERNEL); 6336 if (!percpu->scribble) 6337 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6338 conf->previous_raid_disks), 6339 max(conf->chunk_sectors, 6340 conf->prev_chunk_sectors) 6341 / STRIPE_SECTORS, 6342 GFP_KERNEL); 6343 6344 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6345 free_scratch_buffer(conf, percpu); 6346 return -ENOMEM; 6347 } 6348 6349 return 0; 6350 } 6351 6352 static void raid5_free_percpu(struct r5conf *conf) 6353 { 6354 unsigned long cpu; 6355 6356 if (!conf->percpu) 6357 return; 6358 6359 #ifdef CONFIG_HOTPLUG_CPU 6360 unregister_cpu_notifier(&conf->cpu_notify); 6361 #endif 6362 6363 get_online_cpus(); 6364 for_each_possible_cpu(cpu) 6365 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6366 put_online_cpus(); 6367 6368 free_percpu(conf->percpu); 6369 } 6370 6371 static void free_conf(struct r5conf *conf) 6372 { 6373 if (conf->log) 6374 r5l_exit_log(conf->log); 6375 if (conf->shrinker.seeks) 6376 unregister_shrinker(&conf->shrinker); 6377 6378 free_thread_groups(conf); 6379 shrink_stripes(conf); 6380 raid5_free_percpu(conf); 6381 kfree(conf->disks); 6382 kfree(conf->stripe_hashtbl); 6383 kfree(conf); 6384 } 6385 6386 #ifdef CONFIG_HOTPLUG_CPU 6387 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 6388 void *hcpu) 6389 { 6390 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 6391 long cpu = (long)hcpu; 6392 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6393 6394 switch (action) { 6395 case CPU_UP_PREPARE: 6396 case CPU_UP_PREPARE_FROZEN: 6397 if (alloc_scratch_buffer(conf, percpu)) { 6398 pr_err("%s: failed memory allocation for cpu%ld\n", 6399 __func__, cpu); 6400 return notifier_from_errno(-ENOMEM); 6401 } 6402 break; 6403 case CPU_DEAD: 6404 case CPU_DEAD_FROZEN: 6405 case CPU_UP_CANCELED: 6406 case CPU_UP_CANCELED_FROZEN: 6407 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6408 break; 6409 default: 6410 break; 6411 } 6412 return NOTIFY_OK; 6413 } 6414 #endif 6415 6416 static int raid5_alloc_percpu(struct r5conf *conf) 6417 { 6418 unsigned long cpu; 6419 int err = 0; 6420 6421 conf->percpu = alloc_percpu(struct raid5_percpu); 6422 if (!conf->percpu) 6423 return -ENOMEM; 6424 6425 #ifdef CONFIG_HOTPLUG_CPU 6426 conf->cpu_notify.notifier_call = raid456_cpu_notify; 6427 conf->cpu_notify.priority = 0; 6428 err = register_cpu_notifier(&conf->cpu_notify); 6429 if (err) 6430 return err; 6431 #endif 6432 6433 get_online_cpus(); 6434 for_each_present_cpu(cpu) { 6435 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6436 if (err) { 6437 pr_err("%s: failed memory allocation for cpu%ld\n", 6438 __func__, cpu); 6439 break; 6440 } 6441 } 6442 put_online_cpus(); 6443 6444 if (!err) { 6445 conf->scribble_disks = max(conf->raid_disks, 6446 conf->previous_raid_disks); 6447 conf->scribble_sectors = max(conf->chunk_sectors, 6448 conf->prev_chunk_sectors); 6449 } 6450 return err; 6451 } 6452 6453 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6454 struct shrink_control *sc) 6455 { 6456 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6457 unsigned long ret = SHRINK_STOP; 6458 6459 if (mutex_trylock(&conf->cache_size_mutex)) { 6460 ret= 0; 6461 while (ret < sc->nr_to_scan && 6462 conf->max_nr_stripes > conf->min_nr_stripes) { 6463 if (drop_one_stripe(conf) == 0) { 6464 ret = SHRINK_STOP; 6465 break; 6466 } 6467 ret++; 6468 } 6469 mutex_unlock(&conf->cache_size_mutex); 6470 } 6471 return ret; 6472 } 6473 6474 static unsigned long raid5_cache_count(struct shrinker *shrink, 6475 struct shrink_control *sc) 6476 { 6477 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6478 6479 if (conf->max_nr_stripes < conf->min_nr_stripes) 6480 /* unlikely, but not impossible */ 6481 return 0; 6482 return conf->max_nr_stripes - conf->min_nr_stripes; 6483 } 6484 6485 static struct r5conf *setup_conf(struct mddev *mddev) 6486 { 6487 struct r5conf *conf; 6488 int raid_disk, memory, max_disks; 6489 struct md_rdev *rdev; 6490 struct disk_info *disk; 6491 char pers_name[6]; 6492 int i; 6493 int group_cnt, worker_cnt_per_group; 6494 struct r5worker_group *new_group; 6495 6496 if (mddev->new_level != 5 6497 && mddev->new_level != 4 6498 && mddev->new_level != 6) { 6499 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6500 mdname(mddev), mddev->new_level); 6501 return ERR_PTR(-EIO); 6502 } 6503 if ((mddev->new_level == 5 6504 && !algorithm_valid_raid5(mddev->new_layout)) || 6505 (mddev->new_level == 6 6506 && !algorithm_valid_raid6(mddev->new_layout))) { 6507 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 6508 mdname(mddev), mddev->new_layout); 6509 return ERR_PTR(-EIO); 6510 } 6511 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6512 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6513 mdname(mddev), mddev->raid_disks); 6514 return ERR_PTR(-EINVAL); 6515 } 6516 6517 if (!mddev->new_chunk_sectors || 6518 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6519 !is_power_of_2(mddev->new_chunk_sectors)) { 6520 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 6521 mdname(mddev), mddev->new_chunk_sectors << 9); 6522 return ERR_PTR(-EINVAL); 6523 } 6524 6525 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6526 if (conf == NULL) 6527 goto abort; 6528 /* Don't enable multi-threading by default*/ 6529 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6530 &new_group)) { 6531 conf->group_cnt = group_cnt; 6532 conf->worker_cnt_per_group = worker_cnt_per_group; 6533 conf->worker_groups = new_group; 6534 } else 6535 goto abort; 6536 spin_lock_init(&conf->device_lock); 6537 seqcount_init(&conf->gen_lock); 6538 mutex_init(&conf->cache_size_mutex); 6539 init_waitqueue_head(&conf->wait_for_quiescent); 6540 init_waitqueue_head(&conf->wait_for_stripe); 6541 init_waitqueue_head(&conf->wait_for_overlap); 6542 INIT_LIST_HEAD(&conf->handle_list); 6543 INIT_LIST_HEAD(&conf->hold_list); 6544 INIT_LIST_HEAD(&conf->delayed_list); 6545 INIT_LIST_HEAD(&conf->bitmap_list); 6546 bio_list_init(&conf->return_bi); 6547 init_llist_head(&conf->released_stripes); 6548 atomic_set(&conf->active_stripes, 0); 6549 atomic_set(&conf->preread_active_stripes, 0); 6550 atomic_set(&conf->active_aligned_reads, 0); 6551 conf->bypass_threshold = BYPASS_THRESHOLD; 6552 conf->recovery_disabled = mddev->recovery_disabled - 1; 6553 6554 conf->raid_disks = mddev->raid_disks; 6555 if (mddev->reshape_position == MaxSector) 6556 conf->previous_raid_disks = mddev->raid_disks; 6557 else 6558 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6559 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6560 6561 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6562 GFP_KERNEL); 6563 if (!conf->disks) 6564 goto abort; 6565 6566 conf->mddev = mddev; 6567 6568 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6569 goto abort; 6570 6571 /* We init hash_locks[0] separately to that it can be used 6572 * as the reference lock in the spin_lock_nest_lock() call 6573 * in lock_all_device_hash_locks_irq in order to convince 6574 * lockdep that we know what we are doing. 6575 */ 6576 spin_lock_init(conf->hash_locks); 6577 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6578 spin_lock_init(conf->hash_locks + i); 6579 6580 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6581 INIT_LIST_HEAD(conf->inactive_list + i); 6582 6583 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6584 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6585 6586 conf->level = mddev->new_level; 6587 conf->chunk_sectors = mddev->new_chunk_sectors; 6588 if (raid5_alloc_percpu(conf) != 0) 6589 goto abort; 6590 6591 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6592 6593 rdev_for_each(rdev, mddev) { 6594 raid_disk = rdev->raid_disk; 6595 if (raid_disk >= max_disks 6596 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6597 continue; 6598 disk = conf->disks + raid_disk; 6599 6600 if (test_bit(Replacement, &rdev->flags)) { 6601 if (disk->replacement) 6602 goto abort; 6603 disk->replacement = rdev; 6604 } else { 6605 if (disk->rdev) 6606 goto abort; 6607 disk->rdev = rdev; 6608 } 6609 6610 if (test_bit(In_sync, &rdev->flags)) { 6611 char b[BDEVNAME_SIZE]; 6612 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 6613 " disk %d\n", 6614 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6615 } else if (rdev->saved_raid_disk != raid_disk) 6616 /* Cannot rely on bitmap to complete recovery */ 6617 conf->fullsync = 1; 6618 } 6619 6620 conf->level = mddev->new_level; 6621 if (conf->level == 6) { 6622 conf->max_degraded = 2; 6623 if (raid6_call.xor_syndrome) 6624 conf->rmw_level = PARITY_ENABLE_RMW; 6625 else 6626 conf->rmw_level = PARITY_DISABLE_RMW; 6627 } else { 6628 conf->max_degraded = 1; 6629 conf->rmw_level = PARITY_ENABLE_RMW; 6630 } 6631 conf->algorithm = mddev->new_layout; 6632 conf->reshape_progress = mddev->reshape_position; 6633 if (conf->reshape_progress != MaxSector) { 6634 conf->prev_chunk_sectors = mddev->chunk_sectors; 6635 conf->prev_algo = mddev->layout; 6636 } else { 6637 conf->prev_chunk_sectors = conf->chunk_sectors; 6638 conf->prev_algo = conf->algorithm; 6639 } 6640 6641 conf->min_nr_stripes = NR_STRIPES; 6642 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6643 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6644 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6645 if (grow_stripes(conf, conf->min_nr_stripes)) { 6646 printk(KERN_ERR 6647 "md/raid:%s: couldn't allocate %dkB for buffers\n", 6648 mdname(mddev), memory); 6649 goto abort; 6650 } else 6651 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 6652 mdname(mddev), memory); 6653 /* 6654 * Losing a stripe head costs more than the time to refill it, 6655 * it reduces the queue depth and so can hurt throughput. 6656 * So set it rather large, scaled by number of devices. 6657 */ 6658 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6659 conf->shrinker.scan_objects = raid5_cache_scan; 6660 conf->shrinker.count_objects = raid5_cache_count; 6661 conf->shrinker.batch = 128; 6662 conf->shrinker.flags = 0; 6663 register_shrinker(&conf->shrinker); 6664 6665 sprintf(pers_name, "raid%d", mddev->new_level); 6666 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6667 if (!conf->thread) { 6668 printk(KERN_ERR 6669 "md/raid:%s: couldn't allocate thread.\n", 6670 mdname(mddev)); 6671 goto abort; 6672 } 6673 6674 return conf; 6675 6676 abort: 6677 if (conf) { 6678 free_conf(conf); 6679 return ERR_PTR(-EIO); 6680 } else 6681 return ERR_PTR(-ENOMEM); 6682 } 6683 6684 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6685 { 6686 switch (algo) { 6687 case ALGORITHM_PARITY_0: 6688 if (raid_disk < max_degraded) 6689 return 1; 6690 break; 6691 case ALGORITHM_PARITY_N: 6692 if (raid_disk >= raid_disks - max_degraded) 6693 return 1; 6694 break; 6695 case ALGORITHM_PARITY_0_6: 6696 if (raid_disk == 0 || 6697 raid_disk == raid_disks - 1) 6698 return 1; 6699 break; 6700 case ALGORITHM_LEFT_ASYMMETRIC_6: 6701 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6702 case ALGORITHM_LEFT_SYMMETRIC_6: 6703 case ALGORITHM_RIGHT_SYMMETRIC_6: 6704 if (raid_disk == raid_disks - 1) 6705 return 1; 6706 } 6707 return 0; 6708 } 6709 6710 static int raid5_run(struct mddev *mddev) 6711 { 6712 struct r5conf *conf; 6713 int working_disks = 0; 6714 int dirty_parity_disks = 0; 6715 struct md_rdev *rdev; 6716 struct md_rdev *journal_dev = NULL; 6717 sector_t reshape_offset = 0; 6718 int i; 6719 long long min_offset_diff = 0; 6720 int first = 1; 6721 6722 if (mddev->recovery_cp != MaxSector) 6723 printk(KERN_NOTICE "md/raid:%s: not clean" 6724 " -- starting background reconstruction\n", 6725 mdname(mddev)); 6726 6727 rdev_for_each(rdev, mddev) { 6728 long long diff; 6729 6730 if (test_bit(Journal, &rdev->flags)) { 6731 journal_dev = rdev; 6732 continue; 6733 } 6734 if (rdev->raid_disk < 0) 6735 continue; 6736 diff = (rdev->new_data_offset - rdev->data_offset); 6737 if (first) { 6738 min_offset_diff = diff; 6739 first = 0; 6740 } else if (mddev->reshape_backwards && 6741 diff < min_offset_diff) 6742 min_offset_diff = diff; 6743 else if (!mddev->reshape_backwards && 6744 diff > min_offset_diff) 6745 min_offset_diff = diff; 6746 } 6747 6748 if (mddev->reshape_position != MaxSector) { 6749 /* Check that we can continue the reshape. 6750 * Difficulties arise if the stripe we would write to 6751 * next is at or after the stripe we would read from next. 6752 * For a reshape that changes the number of devices, this 6753 * is only possible for a very short time, and mdadm makes 6754 * sure that time appears to have past before assembling 6755 * the array. So we fail if that time hasn't passed. 6756 * For a reshape that keeps the number of devices the same 6757 * mdadm must be monitoring the reshape can keeping the 6758 * critical areas read-only and backed up. It will start 6759 * the array in read-only mode, so we check for that. 6760 */ 6761 sector_t here_new, here_old; 6762 int old_disks; 6763 int max_degraded = (mddev->level == 6 ? 2 : 1); 6764 int chunk_sectors; 6765 int new_data_disks; 6766 6767 if (journal_dev) { 6768 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n", 6769 mdname(mddev)); 6770 return -EINVAL; 6771 } 6772 6773 if (mddev->new_level != mddev->level) { 6774 printk(KERN_ERR "md/raid:%s: unsupported reshape " 6775 "required - aborting.\n", 6776 mdname(mddev)); 6777 return -EINVAL; 6778 } 6779 old_disks = mddev->raid_disks - mddev->delta_disks; 6780 /* reshape_position must be on a new-stripe boundary, and one 6781 * further up in new geometry must map after here in old 6782 * geometry. 6783 * If the chunk sizes are different, then as we perform reshape 6784 * in units of the largest of the two, reshape_position needs 6785 * be a multiple of the largest chunk size times new data disks. 6786 */ 6787 here_new = mddev->reshape_position; 6788 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 6789 new_data_disks = mddev->raid_disks - max_degraded; 6790 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 6791 printk(KERN_ERR "md/raid:%s: reshape_position not " 6792 "on a stripe boundary\n", mdname(mddev)); 6793 return -EINVAL; 6794 } 6795 reshape_offset = here_new * chunk_sectors; 6796 /* here_new is the stripe we will write to */ 6797 here_old = mddev->reshape_position; 6798 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 6799 /* here_old is the first stripe that we might need to read 6800 * from */ 6801 if (mddev->delta_disks == 0) { 6802 /* We cannot be sure it is safe to start an in-place 6803 * reshape. It is only safe if user-space is monitoring 6804 * and taking constant backups. 6805 * mdadm always starts a situation like this in 6806 * readonly mode so it can take control before 6807 * allowing any writes. So just check for that. 6808 */ 6809 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6810 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6811 /* not really in-place - so OK */; 6812 else if (mddev->ro == 0) { 6813 printk(KERN_ERR "md/raid:%s: in-place reshape " 6814 "must be started in read-only mode " 6815 "- aborting\n", 6816 mdname(mddev)); 6817 return -EINVAL; 6818 } 6819 } else if (mddev->reshape_backwards 6820 ? (here_new * chunk_sectors + min_offset_diff <= 6821 here_old * chunk_sectors) 6822 : (here_new * chunk_sectors >= 6823 here_old * chunk_sectors + (-min_offset_diff))) { 6824 /* Reading from the same stripe as writing to - bad */ 6825 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6826 "auto-recovery - aborting.\n", 6827 mdname(mddev)); 6828 return -EINVAL; 6829 } 6830 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6831 mdname(mddev)); 6832 /* OK, we should be able to continue; */ 6833 } else { 6834 BUG_ON(mddev->level != mddev->new_level); 6835 BUG_ON(mddev->layout != mddev->new_layout); 6836 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6837 BUG_ON(mddev->delta_disks != 0); 6838 } 6839 6840 if (mddev->private == NULL) 6841 conf = setup_conf(mddev); 6842 else 6843 conf = mddev->private; 6844 6845 if (IS_ERR(conf)) 6846 return PTR_ERR(conf); 6847 6848 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 6849 if (!journal_dev) { 6850 pr_err("md/raid:%s: journal disk is missing, force array readonly\n", 6851 mdname(mddev)); 6852 mddev->ro = 1; 6853 set_disk_ro(mddev->gendisk, 1); 6854 } else if (mddev->recovery_cp == MaxSector) 6855 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 6856 } 6857 6858 conf->min_offset_diff = min_offset_diff; 6859 mddev->thread = conf->thread; 6860 conf->thread = NULL; 6861 mddev->private = conf; 6862 6863 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6864 i++) { 6865 rdev = conf->disks[i].rdev; 6866 if (!rdev && conf->disks[i].replacement) { 6867 /* The replacement is all we have yet */ 6868 rdev = conf->disks[i].replacement; 6869 conf->disks[i].replacement = NULL; 6870 clear_bit(Replacement, &rdev->flags); 6871 conf->disks[i].rdev = rdev; 6872 } 6873 if (!rdev) 6874 continue; 6875 if (conf->disks[i].replacement && 6876 conf->reshape_progress != MaxSector) { 6877 /* replacements and reshape simply do not mix. */ 6878 printk(KERN_ERR "md: cannot handle concurrent " 6879 "replacement and reshape.\n"); 6880 goto abort; 6881 } 6882 if (test_bit(In_sync, &rdev->flags)) { 6883 working_disks++; 6884 continue; 6885 } 6886 /* This disc is not fully in-sync. However if it 6887 * just stored parity (beyond the recovery_offset), 6888 * when we don't need to be concerned about the 6889 * array being dirty. 6890 * When reshape goes 'backwards', we never have 6891 * partially completed devices, so we only need 6892 * to worry about reshape going forwards. 6893 */ 6894 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6895 if (mddev->major_version == 0 && 6896 mddev->minor_version > 90) 6897 rdev->recovery_offset = reshape_offset; 6898 6899 if (rdev->recovery_offset < reshape_offset) { 6900 /* We need to check old and new layout */ 6901 if (!only_parity(rdev->raid_disk, 6902 conf->algorithm, 6903 conf->raid_disks, 6904 conf->max_degraded)) 6905 continue; 6906 } 6907 if (!only_parity(rdev->raid_disk, 6908 conf->prev_algo, 6909 conf->previous_raid_disks, 6910 conf->max_degraded)) 6911 continue; 6912 dirty_parity_disks++; 6913 } 6914 6915 /* 6916 * 0 for a fully functional array, 1 or 2 for a degraded array. 6917 */ 6918 mddev->degraded = calc_degraded(conf); 6919 6920 if (has_failed(conf)) { 6921 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6922 " (%d/%d failed)\n", 6923 mdname(mddev), mddev->degraded, conf->raid_disks); 6924 goto abort; 6925 } 6926 6927 /* device size must be a multiple of chunk size */ 6928 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6929 mddev->resync_max_sectors = mddev->dev_sectors; 6930 6931 if (mddev->degraded > dirty_parity_disks && 6932 mddev->recovery_cp != MaxSector) { 6933 if (mddev->ok_start_degraded) 6934 printk(KERN_WARNING 6935 "md/raid:%s: starting dirty degraded array" 6936 " - data corruption possible.\n", 6937 mdname(mddev)); 6938 else { 6939 printk(KERN_ERR 6940 "md/raid:%s: cannot start dirty degraded array.\n", 6941 mdname(mddev)); 6942 goto abort; 6943 } 6944 } 6945 6946 if (mddev->degraded == 0) 6947 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6948 " devices, algorithm %d\n", mdname(mddev), conf->level, 6949 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6950 mddev->new_layout); 6951 else 6952 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6953 " out of %d devices, algorithm %d\n", 6954 mdname(mddev), conf->level, 6955 mddev->raid_disks - mddev->degraded, 6956 mddev->raid_disks, mddev->new_layout); 6957 6958 print_raid5_conf(conf); 6959 6960 if (conf->reshape_progress != MaxSector) { 6961 conf->reshape_safe = conf->reshape_progress; 6962 atomic_set(&conf->reshape_stripes, 0); 6963 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6964 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6965 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6966 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6967 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6968 "reshape"); 6969 } 6970 6971 /* Ok, everything is just fine now */ 6972 if (mddev->to_remove == &raid5_attrs_group) 6973 mddev->to_remove = NULL; 6974 else if (mddev->kobj.sd && 6975 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6976 printk(KERN_WARNING 6977 "raid5: failed to create sysfs attributes for %s\n", 6978 mdname(mddev)); 6979 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6980 6981 if (mddev->queue) { 6982 int chunk_size; 6983 bool discard_supported = true; 6984 /* read-ahead size must cover two whole stripes, which 6985 * is 2 * (datadisks) * chunksize where 'n' is the 6986 * number of raid devices 6987 */ 6988 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6989 int stripe = data_disks * 6990 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6991 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6992 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6993 6994 chunk_size = mddev->chunk_sectors << 9; 6995 blk_queue_io_min(mddev->queue, chunk_size); 6996 blk_queue_io_opt(mddev->queue, chunk_size * 6997 (conf->raid_disks - conf->max_degraded)); 6998 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6999 /* 7000 * We can only discard a whole stripe. It doesn't make sense to 7001 * discard data disk but write parity disk 7002 */ 7003 stripe = stripe * PAGE_SIZE; 7004 /* Round up to power of 2, as discard handling 7005 * currently assumes that */ 7006 while ((stripe-1) & stripe) 7007 stripe = (stripe | (stripe-1)) + 1; 7008 mddev->queue->limits.discard_alignment = stripe; 7009 mddev->queue->limits.discard_granularity = stripe; 7010 /* 7011 * unaligned part of discard request will be ignored, so can't 7012 * guarantee discard_zeroes_data 7013 */ 7014 mddev->queue->limits.discard_zeroes_data = 0; 7015 7016 blk_queue_max_write_same_sectors(mddev->queue, 0); 7017 7018 rdev_for_each(rdev, mddev) { 7019 disk_stack_limits(mddev->gendisk, rdev->bdev, 7020 rdev->data_offset << 9); 7021 disk_stack_limits(mddev->gendisk, rdev->bdev, 7022 rdev->new_data_offset << 9); 7023 /* 7024 * discard_zeroes_data is required, otherwise data 7025 * could be lost. Consider a scenario: discard a stripe 7026 * (the stripe could be inconsistent if 7027 * discard_zeroes_data is 0); write one disk of the 7028 * stripe (the stripe could be inconsistent again 7029 * depending on which disks are used to calculate 7030 * parity); the disk is broken; The stripe data of this 7031 * disk is lost. 7032 */ 7033 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 7034 !bdev_get_queue(rdev->bdev)-> 7035 limits.discard_zeroes_data) 7036 discard_supported = false; 7037 /* Unfortunately, discard_zeroes_data is not currently 7038 * a guarantee - just a hint. So we only allow DISCARD 7039 * if the sysadmin has confirmed that only safe devices 7040 * are in use by setting a module parameter. 7041 */ 7042 if (!devices_handle_discard_safely) { 7043 if (discard_supported) { 7044 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 7045 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 7046 } 7047 discard_supported = false; 7048 } 7049 } 7050 7051 if (discard_supported && 7052 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7053 mddev->queue->limits.discard_granularity >= stripe) 7054 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7055 mddev->queue); 7056 else 7057 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7058 mddev->queue); 7059 } 7060 7061 if (journal_dev) { 7062 char b[BDEVNAME_SIZE]; 7063 7064 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7065 mdname(mddev), bdevname(journal_dev->bdev, b)); 7066 r5l_init_log(conf, journal_dev); 7067 } 7068 7069 return 0; 7070 abort: 7071 md_unregister_thread(&mddev->thread); 7072 print_raid5_conf(conf); 7073 free_conf(conf); 7074 mddev->private = NULL; 7075 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7076 return -EIO; 7077 } 7078 7079 static void raid5_free(struct mddev *mddev, void *priv) 7080 { 7081 struct r5conf *conf = priv; 7082 7083 free_conf(conf); 7084 mddev->to_remove = &raid5_attrs_group; 7085 } 7086 7087 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7088 { 7089 struct r5conf *conf = mddev->private; 7090 int i; 7091 7092 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7093 conf->chunk_sectors / 2, mddev->layout); 7094 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7095 rcu_read_lock(); 7096 for (i = 0; i < conf->raid_disks; i++) { 7097 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7098 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7099 } 7100 rcu_read_unlock(); 7101 seq_printf (seq, "]"); 7102 } 7103 7104 static void print_raid5_conf (struct r5conf *conf) 7105 { 7106 int i; 7107 struct disk_info *tmp; 7108 7109 printk(KERN_DEBUG "RAID conf printout:\n"); 7110 if (!conf) { 7111 printk("(conf==NULL)\n"); 7112 return; 7113 } 7114 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 7115 conf->raid_disks, 7116 conf->raid_disks - conf->mddev->degraded); 7117 7118 for (i = 0; i < conf->raid_disks; i++) { 7119 char b[BDEVNAME_SIZE]; 7120 tmp = conf->disks + i; 7121 if (tmp->rdev) 7122 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 7123 i, !test_bit(Faulty, &tmp->rdev->flags), 7124 bdevname(tmp->rdev->bdev, b)); 7125 } 7126 } 7127 7128 static int raid5_spare_active(struct mddev *mddev) 7129 { 7130 int i; 7131 struct r5conf *conf = mddev->private; 7132 struct disk_info *tmp; 7133 int count = 0; 7134 unsigned long flags; 7135 7136 for (i = 0; i < conf->raid_disks; i++) { 7137 tmp = conf->disks + i; 7138 if (tmp->replacement 7139 && tmp->replacement->recovery_offset == MaxSector 7140 && !test_bit(Faulty, &tmp->replacement->flags) 7141 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7142 /* Replacement has just become active. */ 7143 if (!tmp->rdev 7144 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7145 count++; 7146 if (tmp->rdev) { 7147 /* Replaced device not technically faulty, 7148 * but we need to be sure it gets removed 7149 * and never re-added. 7150 */ 7151 set_bit(Faulty, &tmp->rdev->flags); 7152 sysfs_notify_dirent_safe( 7153 tmp->rdev->sysfs_state); 7154 } 7155 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7156 } else if (tmp->rdev 7157 && tmp->rdev->recovery_offset == MaxSector 7158 && !test_bit(Faulty, &tmp->rdev->flags) 7159 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7160 count++; 7161 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7162 } 7163 } 7164 spin_lock_irqsave(&conf->device_lock, flags); 7165 mddev->degraded = calc_degraded(conf); 7166 spin_unlock_irqrestore(&conf->device_lock, flags); 7167 print_raid5_conf(conf); 7168 return count; 7169 } 7170 7171 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7172 { 7173 struct r5conf *conf = mddev->private; 7174 int err = 0; 7175 int number = rdev->raid_disk; 7176 struct md_rdev **rdevp; 7177 struct disk_info *p = conf->disks + number; 7178 7179 print_raid5_conf(conf); 7180 if (test_bit(Journal, &rdev->flags) && conf->log) { 7181 struct r5l_log *log; 7182 /* 7183 * we can't wait pending write here, as this is called in 7184 * raid5d, wait will deadlock. 7185 */ 7186 if (atomic_read(&mddev->writes_pending)) 7187 return -EBUSY; 7188 log = conf->log; 7189 conf->log = NULL; 7190 synchronize_rcu(); 7191 r5l_exit_log(log); 7192 return 0; 7193 } 7194 if (rdev == p->rdev) 7195 rdevp = &p->rdev; 7196 else if (rdev == p->replacement) 7197 rdevp = &p->replacement; 7198 else 7199 return 0; 7200 7201 if (number >= conf->raid_disks && 7202 conf->reshape_progress == MaxSector) 7203 clear_bit(In_sync, &rdev->flags); 7204 7205 if (test_bit(In_sync, &rdev->flags) || 7206 atomic_read(&rdev->nr_pending)) { 7207 err = -EBUSY; 7208 goto abort; 7209 } 7210 /* Only remove non-faulty devices if recovery 7211 * isn't possible. 7212 */ 7213 if (!test_bit(Faulty, &rdev->flags) && 7214 mddev->recovery_disabled != conf->recovery_disabled && 7215 !has_failed(conf) && 7216 (!p->replacement || p->replacement == rdev) && 7217 number < conf->raid_disks) { 7218 err = -EBUSY; 7219 goto abort; 7220 } 7221 *rdevp = NULL; 7222 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7223 synchronize_rcu(); 7224 if (atomic_read(&rdev->nr_pending)) { 7225 /* lost the race, try later */ 7226 err = -EBUSY; 7227 *rdevp = rdev; 7228 } 7229 } 7230 if (p->replacement) { 7231 /* We must have just cleared 'rdev' */ 7232 p->rdev = p->replacement; 7233 clear_bit(Replacement, &p->replacement->flags); 7234 smp_mb(); /* Make sure other CPUs may see both as identical 7235 * but will never see neither - if they are careful 7236 */ 7237 p->replacement = NULL; 7238 clear_bit(WantReplacement, &rdev->flags); 7239 } else 7240 /* We might have just removed the Replacement as faulty- 7241 * clear the bit just in case 7242 */ 7243 clear_bit(WantReplacement, &rdev->flags); 7244 abort: 7245 7246 print_raid5_conf(conf); 7247 return err; 7248 } 7249 7250 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7251 { 7252 struct r5conf *conf = mddev->private; 7253 int err = -EEXIST; 7254 int disk; 7255 struct disk_info *p; 7256 int first = 0; 7257 int last = conf->raid_disks - 1; 7258 7259 if (test_bit(Journal, &rdev->flags)) { 7260 char b[BDEVNAME_SIZE]; 7261 if (conf->log) 7262 return -EBUSY; 7263 7264 rdev->raid_disk = 0; 7265 /* 7266 * The array is in readonly mode if journal is missing, so no 7267 * write requests running. We should be safe 7268 */ 7269 r5l_init_log(conf, rdev); 7270 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7271 mdname(mddev), bdevname(rdev->bdev, b)); 7272 return 0; 7273 } 7274 if (mddev->recovery_disabled == conf->recovery_disabled) 7275 return -EBUSY; 7276 7277 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7278 /* no point adding a device */ 7279 return -EINVAL; 7280 7281 if (rdev->raid_disk >= 0) 7282 first = last = rdev->raid_disk; 7283 7284 /* 7285 * find the disk ... but prefer rdev->saved_raid_disk 7286 * if possible. 7287 */ 7288 if (rdev->saved_raid_disk >= 0 && 7289 rdev->saved_raid_disk >= first && 7290 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7291 first = rdev->saved_raid_disk; 7292 7293 for (disk = first; disk <= last; disk++) { 7294 p = conf->disks + disk; 7295 if (p->rdev == NULL) { 7296 clear_bit(In_sync, &rdev->flags); 7297 rdev->raid_disk = disk; 7298 err = 0; 7299 if (rdev->saved_raid_disk != disk) 7300 conf->fullsync = 1; 7301 rcu_assign_pointer(p->rdev, rdev); 7302 goto out; 7303 } 7304 } 7305 for (disk = first; disk <= last; disk++) { 7306 p = conf->disks + disk; 7307 if (test_bit(WantReplacement, &p->rdev->flags) && 7308 p->replacement == NULL) { 7309 clear_bit(In_sync, &rdev->flags); 7310 set_bit(Replacement, &rdev->flags); 7311 rdev->raid_disk = disk; 7312 err = 0; 7313 conf->fullsync = 1; 7314 rcu_assign_pointer(p->replacement, rdev); 7315 break; 7316 } 7317 } 7318 out: 7319 print_raid5_conf(conf); 7320 return err; 7321 } 7322 7323 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7324 { 7325 /* no resync is happening, and there is enough space 7326 * on all devices, so we can resize. 7327 * We need to make sure resync covers any new space. 7328 * If the array is shrinking we should possibly wait until 7329 * any io in the removed space completes, but it hardly seems 7330 * worth it. 7331 */ 7332 sector_t newsize; 7333 struct r5conf *conf = mddev->private; 7334 7335 if (conf->log) 7336 return -EINVAL; 7337 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7338 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7339 if (mddev->external_size && 7340 mddev->array_sectors > newsize) 7341 return -EINVAL; 7342 if (mddev->bitmap) { 7343 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7344 if (ret) 7345 return ret; 7346 } 7347 md_set_array_sectors(mddev, newsize); 7348 set_capacity(mddev->gendisk, mddev->array_sectors); 7349 revalidate_disk(mddev->gendisk); 7350 if (sectors > mddev->dev_sectors && 7351 mddev->recovery_cp > mddev->dev_sectors) { 7352 mddev->recovery_cp = mddev->dev_sectors; 7353 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7354 } 7355 mddev->dev_sectors = sectors; 7356 mddev->resync_max_sectors = sectors; 7357 return 0; 7358 } 7359 7360 static int check_stripe_cache(struct mddev *mddev) 7361 { 7362 /* Can only proceed if there are plenty of stripe_heads. 7363 * We need a minimum of one full stripe,, and for sensible progress 7364 * it is best to have about 4 times that. 7365 * If we require 4 times, then the default 256 4K stripe_heads will 7366 * allow for chunk sizes up to 256K, which is probably OK. 7367 * If the chunk size is greater, user-space should request more 7368 * stripe_heads first. 7369 */ 7370 struct r5conf *conf = mddev->private; 7371 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7372 > conf->min_nr_stripes || 7373 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7374 > conf->min_nr_stripes) { 7375 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7376 mdname(mddev), 7377 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7378 / STRIPE_SIZE)*4); 7379 return 0; 7380 } 7381 return 1; 7382 } 7383 7384 static int check_reshape(struct mddev *mddev) 7385 { 7386 struct r5conf *conf = mddev->private; 7387 7388 if (conf->log) 7389 return -EINVAL; 7390 if (mddev->delta_disks == 0 && 7391 mddev->new_layout == mddev->layout && 7392 mddev->new_chunk_sectors == mddev->chunk_sectors) 7393 return 0; /* nothing to do */ 7394 if (has_failed(conf)) 7395 return -EINVAL; 7396 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7397 /* We might be able to shrink, but the devices must 7398 * be made bigger first. 7399 * For raid6, 4 is the minimum size. 7400 * Otherwise 2 is the minimum 7401 */ 7402 int min = 2; 7403 if (mddev->level == 6) 7404 min = 4; 7405 if (mddev->raid_disks + mddev->delta_disks < min) 7406 return -EINVAL; 7407 } 7408 7409 if (!check_stripe_cache(mddev)) 7410 return -ENOSPC; 7411 7412 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7413 mddev->delta_disks > 0) 7414 if (resize_chunks(conf, 7415 conf->previous_raid_disks 7416 + max(0, mddev->delta_disks), 7417 max(mddev->new_chunk_sectors, 7418 mddev->chunk_sectors) 7419 ) < 0) 7420 return -ENOMEM; 7421 return resize_stripes(conf, (conf->previous_raid_disks 7422 + mddev->delta_disks)); 7423 } 7424 7425 static int raid5_start_reshape(struct mddev *mddev) 7426 { 7427 struct r5conf *conf = mddev->private; 7428 struct md_rdev *rdev; 7429 int spares = 0; 7430 unsigned long flags; 7431 7432 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7433 return -EBUSY; 7434 7435 if (!check_stripe_cache(mddev)) 7436 return -ENOSPC; 7437 7438 if (has_failed(conf)) 7439 return -EINVAL; 7440 7441 rdev_for_each(rdev, mddev) { 7442 if (!test_bit(In_sync, &rdev->flags) 7443 && !test_bit(Faulty, &rdev->flags)) 7444 spares++; 7445 } 7446 7447 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7448 /* Not enough devices even to make a degraded array 7449 * of that size 7450 */ 7451 return -EINVAL; 7452 7453 /* Refuse to reduce size of the array. Any reductions in 7454 * array size must be through explicit setting of array_size 7455 * attribute. 7456 */ 7457 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7458 < mddev->array_sectors) { 7459 printk(KERN_ERR "md/raid:%s: array size must be reduced " 7460 "before number of disks\n", mdname(mddev)); 7461 return -EINVAL; 7462 } 7463 7464 atomic_set(&conf->reshape_stripes, 0); 7465 spin_lock_irq(&conf->device_lock); 7466 write_seqcount_begin(&conf->gen_lock); 7467 conf->previous_raid_disks = conf->raid_disks; 7468 conf->raid_disks += mddev->delta_disks; 7469 conf->prev_chunk_sectors = conf->chunk_sectors; 7470 conf->chunk_sectors = mddev->new_chunk_sectors; 7471 conf->prev_algo = conf->algorithm; 7472 conf->algorithm = mddev->new_layout; 7473 conf->generation++; 7474 /* Code that selects data_offset needs to see the generation update 7475 * if reshape_progress has been set - so a memory barrier needed. 7476 */ 7477 smp_mb(); 7478 if (mddev->reshape_backwards) 7479 conf->reshape_progress = raid5_size(mddev, 0, 0); 7480 else 7481 conf->reshape_progress = 0; 7482 conf->reshape_safe = conf->reshape_progress; 7483 write_seqcount_end(&conf->gen_lock); 7484 spin_unlock_irq(&conf->device_lock); 7485 7486 /* Now make sure any requests that proceeded on the assumption 7487 * the reshape wasn't running - like Discard or Read - have 7488 * completed. 7489 */ 7490 mddev_suspend(mddev); 7491 mddev_resume(mddev); 7492 7493 /* Add some new drives, as many as will fit. 7494 * We know there are enough to make the newly sized array work. 7495 * Don't add devices if we are reducing the number of 7496 * devices in the array. This is because it is not possible 7497 * to correctly record the "partially reconstructed" state of 7498 * such devices during the reshape and confusion could result. 7499 */ 7500 if (mddev->delta_disks >= 0) { 7501 rdev_for_each(rdev, mddev) 7502 if (rdev->raid_disk < 0 && 7503 !test_bit(Faulty, &rdev->flags)) { 7504 if (raid5_add_disk(mddev, rdev) == 0) { 7505 if (rdev->raid_disk 7506 >= conf->previous_raid_disks) 7507 set_bit(In_sync, &rdev->flags); 7508 else 7509 rdev->recovery_offset = 0; 7510 7511 if (sysfs_link_rdev(mddev, rdev)) 7512 /* Failure here is OK */; 7513 } 7514 } else if (rdev->raid_disk >= conf->previous_raid_disks 7515 && !test_bit(Faulty, &rdev->flags)) { 7516 /* This is a spare that was manually added */ 7517 set_bit(In_sync, &rdev->flags); 7518 } 7519 7520 /* When a reshape changes the number of devices, 7521 * ->degraded is measured against the larger of the 7522 * pre and post number of devices. 7523 */ 7524 spin_lock_irqsave(&conf->device_lock, flags); 7525 mddev->degraded = calc_degraded(conf); 7526 spin_unlock_irqrestore(&conf->device_lock, flags); 7527 } 7528 mddev->raid_disks = conf->raid_disks; 7529 mddev->reshape_position = conf->reshape_progress; 7530 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7531 7532 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7533 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7534 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7535 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7536 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7537 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7538 "reshape"); 7539 if (!mddev->sync_thread) { 7540 mddev->recovery = 0; 7541 spin_lock_irq(&conf->device_lock); 7542 write_seqcount_begin(&conf->gen_lock); 7543 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7544 mddev->new_chunk_sectors = 7545 conf->chunk_sectors = conf->prev_chunk_sectors; 7546 mddev->new_layout = conf->algorithm = conf->prev_algo; 7547 rdev_for_each(rdev, mddev) 7548 rdev->new_data_offset = rdev->data_offset; 7549 smp_wmb(); 7550 conf->generation --; 7551 conf->reshape_progress = MaxSector; 7552 mddev->reshape_position = MaxSector; 7553 write_seqcount_end(&conf->gen_lock); 7554 spin_unlock_irq(&conf->device_lock); 7555 return -EAGAIN; 7556 } 7557 conf->reshape_checkpoint = jiffies; 7558 md_wakeup_thread(mddev->sync_thread); 7559 md_new_event(mddev); 7560 return 0; 7561 } 7562 7563 /* This is called from the reshape thread and should make any 7564 * changes needed in 'conf' 7565 */ 7566 static void end_reshape(struct r5conf *conf) 7567 { 7568 7569 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7570 struct md_rdev *rdev; 7571 7572 spin_lock_irq(&conf->device_lock); 7573 conf->previous_raid_disks = conf->raid_disks; 7574 rdev_for_each(rdev, conf->mddev) 7575 rdev->data_offset = rdev->new_data_offset; 7576 smp_wmb(); 7577 conf->reshape_progress = MaxSector; 7578 conf->mddev->reshape_position = MaxSector; 7579 spin_unlock_irq(&conf->device_lock); 7580 wake_up(&conf->wait_for_overlap); 7581 7582 /* read-ahead size must cover two whole stripes, which is 7583 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7584 */ 7585 if (conf->mddev->queue) { 7586 int data_disks = conf->raid_disks - conf->max_degraded; 7587 int stripe = data_disks * ((conf->chunk_sectors << 9) 7588 / PAGE_SIZE); 7589 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 7590 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 7591 } 7592 } 7593 } 7594 7595 /* This is called from the raid5d thread with mddev_lock held. 7596 * It makes config changes to the device. 7597 */ 7598 static void raid5_finish_reshape(struct mddev *mddev) 7599 { 7600 struct r5conf *conf = mddev->private; 7601 7602 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7603 7604 if (mddev->delta_disks > 0) { 7605 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7606 if (mddev->queue) { 7607 set_capacity(mddev->gendisk, mddev->array_sectors); 7608 revalidate_disk(mddev->gendisk); 7609 } 7610 } else { 7611 int d; 7612 spin_lock_irq(&conf->device_lock); 7613 mddev->degraded = calc_degraded(conf); 7614 spin_unlock_irq(&conf->device_lock); 7615 for (d = conf->raid_disks ; 7616 d < conf->raid_disks - mddev->delta_disks; 7617 d++) { 7618 struct md_rdev *rdev = conf->disks[d].rdev; 7619 if (rdev) 7620 clear_bit(In_sync, &rdev->flags); 7621 rdev = conf->disks[d].replacement; 7622 if (rdev) 7623 clear_bit(In_sync, &rdev->flags); 7624 } 7625 } 7626 mddev->layout = conf->algorithm; 7627 mddev->chunk_sectors = conf->chunk_sectors; 7628 mddev->reshape_position = MaxSector; 7629 mddev->delta_disks = 0; 7630 mddev->reshape_backwards = 0; 7631 } 7632 } 7633 7634 static void raid5_quiesce(struct mddev *mddev, int state) 7635 { 7636 struct r5conf *conf = mddev->private; 7637 7638 switch(state) { 7639 case 2: /* resume for a suspend */ 7640 wake_up(&conf->wait_for_overlap); 7641 break; 7642 7643 case 1: /* stop all writes */ 7644 lock_all_device_hash_locks_irq(conf); 7645 /* '2' tells resync/reshape to pause so that all 7646 * active stripes can drain 7647 */ 7648 conf->quiesce = 2; 7649 wait_event_cmd(conf->wait_for_quiescent, 7650 atomic_read(&conf->active_stripes) == 0 && 7651 atomic_read(&conf->active_aligned_reads) == 0, 7652 unlock_all_device_hash_locks_irq(conf), 7653 lock_all_device_hash_locks_irq(conf)); 7654 conf->quiesce = 1; 7655 unlock_all_device_hash_locks_irq(conf); 7656 /* allow reshape to continue */ 7657 wake_up(&conf->wait_for_overlap); 7658 break; 7659 7660 case 0: /* re-enable writes */ 7661 lock_all_device_hash_locks_irq(conf); 7662 conf->quiesce = 0; 7663 wake_up(&conf->wait_for_quiescent); 7664 wake_up(&conf->wait_for_overlap); 7665 unlock_all_device_hash_locks_irq(conf); 7666 break; 7667 } 7668 r5l_quiesce(conf->log, state); 7669 } 7670 7671 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7672 { 7673 struct r0conf *raid0_conf = mddev->private; 7674 sector_t sectors; 7675 7676 /* for raid0 takeover only one zone is supported */ 7677 if (raid0_conf->nr_strip_zones > 1) { 7678 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7679 mdname(mddev)); 7680 return ERR_PTR(-EINVAL); 7681 } 7682 7683 sectors = raid0_conf->strip_zone[0].zone_end; 7684 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7685 mddev->dev_sectors = sectors; 7686 mddev->new_level = level; 7687 mddev->new_layout = ALGORITHM_PARITY_N; 7688 mddev->new_chunk_sectors = mddev->chunk_sectors; 7689 mddev->raid_disks += 1; 7690 mddev->delta_disks = 1; 7691 /* make sure it will be not marked as dirty */ 7692 mddev->recovery_cp = MaxSector; 7693 7694 return setup_conf(mddev); 7695 } 7696 7697 static void *raid5_takeover_raid1(struct mddev *mddev) 7698 { 7699 int chunksect; 7700 7701 if (mddev->raid_disks != 2 || 7702 mddev->degraded > 1) 7703 return ERR_PTR(-EINVAL); 7704 7705 /* Should check if there are write-behind devices? */ 7706 7707 chunksect = 64*2; /* 64K by default */ 7708 7709 /* The array must be an exact multiple of chunksize */ 7710 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7711 chunksect >>= 1; 7712 7713 if ((chunksect<<9) < STRIPE_SIZE) 7714 /* array size does not allow a suitable chunk size */ 7715 return ERR_PTR(-EINVAL); 7716 7717 mddev->new_level = 5; 7718 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7719 mddev->new_chunk_sectors = chunksect; 7720 7721 return setup_conf(mddev); 7722 } 7723 7724 static void *raid5_takeover_raid6(struct mddev *mddev) 7725 { 7726 int new_layout; 7727 7728 switch (mddev->layout) { 7729 case ALGORITHM_LEFT_ASYMMETRIC_6: 7730 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7731 break; 7732 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7733 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7734 break; 7735 case ALGORITHM_LEFT_SYMMETRIC_6: 7736 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7737 break; 7738 case ALGORITHM_RIGHT_SYMMETRIC_6: 7739 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7740 break; 7741 case ALGORITHM_PARITY_0_6: 7742 new_layout = ALGORITHM_PARITY_0; 7743 break; 7744 case ALGORITHM_PARITY_N: 7745 new_layout = ALGORITHM_PARITY_N; 7746 break; 7747 default: 7748 return ERR_PTR(-EINVAL); 7749 } 7750 mddev->new_level = 5; 7751 mddev->new_layout = new_layout; 7752 mddev->delta_disks = -1; 7753 mddev->raid_disks -= 1; 7754 return setup_conf(mddev); 7755 } 7756 7757 static int raid5_check_reshape(struct mddev *mddev) 7758 { 7759 /* For a 2-drive array, the layout and chunk size can be changed 7760 * immediately as not restriping is needed. 7761 * For larger arrays we record the new value - after validation 7762 * to be used by a reshape pass. 7763 */ 7764 struct r5conf *conf = mddev->private; 7765 int new_chunk = mddev->new_chunk_sectors; 7766 7767 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 7768 return -EINVAL; 7769 if (new_chunk > 0) { 7770 if (!is_power_of_2(new_chunk)) 7771 return -EINVAL; 7772 if (new_chunk < (PAGE_SIZE>>9)) 7773 return -EINVAL; 7774 if (mddev->array_sectors & (new_chunk-1)) 7775 /* not factor of array size */ 7776 return -EINVAL; 7777 } 7778 7779 /* They look valid */ 7780 7781 if (mddev->raid_disks == 2) { 7782 /* can make the change immediately */ 7783 if (mddev->new_layout >= 0) { 7784 conf->algorithm = mddev->new_layout; 7785 mddev->layout = mddev->new_layout; 7786 } 7787 if (new_chunk > 0) { 7788 conf->chunk_sectors = new_chunk ; 7789 mddev->chunk_sectors = new_chunk; 7790 } 7791 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7792 md_wakeup_thread(mddev->thread); 7793 } 7794 return check_reshape(mddev); 7795 } 7796 7797 static int raid6_check_reshape(struct mddev *mddev) 7798 { 7799 int new_chunk = mddev->new_chunk_sectors; 7800 7801 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 7802 return -EINVAL; 7803 if (new_chunk > 0) { 7804 if (!is_power_of_2(new_chunk)) 7805 return -EINVAL; 7806 if (new_chunk < (PAGE_SIZE >> 9)) 7807 return -EINVAL; 7808 if (mddev->array_sectors & (new_chunk-1)) 7809 /* not factor of array size */ 7810 return -EINVAL; 7811 } 7812 7813 /* They look valid */ 7814 return check_reshape(mddev); 7815 } 7816 7817 static void *raid5_takeover(struct mddev *mddev) 7818 { 7819 /* raid5 can take over: 7820 * raid0 - if there is only one strip zone - make it a raid4 layout 7821 * raid1 - if there are two drives. We need to know the chunk size 7822 * raid4 - trivial - just use a raid4 layout. 7823 * raid6 - Providing it is a *_6 layout 7824 */ 7825 if (mddev->level == 0) 7826 return raid45_takeover_raid0(mddev, 5); 7827 if (mddev->level == 1) 7828 return raid5_takeover_raid1(mddev); 7829 if (mddev->level == 4) { 7830 mddev->new_layout = ALGORITHM_PARITY_N; 7831 mddev->new_level = 5; 7832 return setup_conf(mddev); 7833 } 7834 if (mddev->level == 6) 7835 return raid5_takeover_raid6(mddev); 7836 7837 return ERR_PTR(-EINVAL); 7838 } 7839 7840 static void *raid4_takeover(struct mddev *mddev) 7841 { 7842 /* raid4 can take over: 7843 * raid0 - if there is only one strip zone 7844 * raid5 - if layout is right 7845 */ 7846 if (mddev->level == 0) 7847 return raid45_takeover_raid0(mddev, 4); 7848 if (mddev->level == 5 && 7849 mddev->layout == ALGORITHM_PARITY_N) { 7850 mddev->new_layout = 0; 7851 mddev->new_level = 4; 7852 return setup_conf(mddev); 7853 } 7854 return ERR_PTR(-EINVAL); 7855 } 7856 7857 static struct md_personality raid5_personality; 7858 7859 static void *raid6_takeover(struct mddev *mddev) 7860 { 7861 /* Currently can only take over a raid5. We map the 7862 * personality to an equivalent raid6 personality 7863 * with the Q block at the end. 7864 */ 7865 int new_layout; 7866 7867 if (mddev->pers != &raid5_personality) 7868 return ERR_PTR(-EINVAL); 7869 if (mddev->degraded > 1) 7870 return ERR_PTR(-EINVAL); 7871 if (mddev->raid_disks > 253) 7872 return ERR_PTR(-EINVAL); 7873 if (mddev->raid_disks < 3) 7874 return ERR_PTR(-EINVAL); 7875 7876 switch (mddev->layout) { 7877 case ALGORITHM_LEFT_ASYMMETRIC: 7878 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7879 break; 7880 case ALGORITHM_RIGHT_ASYMMETRIC: 7881 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7882 break; 7883 case ALGORITHM_LEFT_SYMMETRIC: 7884 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7885 break; 7886 case ALGORITHM_RIGHT_SYMMETRIC: 7887 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7888 break; 7889 case ALGORITHM_PARITY_0: 7890 new_layout = ALGORITHM_PARITY_0_6; 7891 break; 7892 case ALGORITHM_PARITY_N: 7893 new_layout = ALGORITHM_PARITY_N; 7894 break; 7895 default: 7896 return ERR_PTR(-EINVAL); 7897 } 7898 mddev->new_level = 6; 7899 mddev->new_layout = new_layout; 7900 mddev->delta_disks = 1; 7901 mddev->raid_disks += 1; 7902 return setup_conf(mddev); 7903 } 7904 7905 static struct md_personality raid6_personality = 7906 { 7907 .name = "raid6", 7908 .level = 6, 7909 .owner = THIS_MODULE, 7910 .make_request = raid5_make_request, 7911 .run = raid5_run, 7912 .free = raid5_free, 7913 .status = raid5_status, 7914 .error_handler = raid5_error, 7915 .hot_add_disk = raid5_add_disk, 7916 .hot_remove_disk= raid5_remove_disk, 7917 .spare_active = raid5_spare_active, 7918 .sync_request = raid5_sync_request, 7919 .resize = raid5_resize, 7920 .size = raid5_size, 7921 .check_reshape = raid6_check_reshape, 7922 .start_reshape = raid5_start_reshape, 7923 .finish_reshape = raid5_finish_reshape, 7924 .quiesce = raid5_quiesce, 7925 .takeover = raid6_takeover, 7926 .congested = raid5_congested, 7927 }; 7928 static struct md_personality raid5_personality = 7929 { 7930 .name = "raid5", 7931 .level = 5, 7932 .owner = THIS_MODULE, 7933 .make_request = raid5_make_request, 7934 .run = raid5_run, 7935 .free = raid5_free, 7936 .status = raid5_status, 7937 .error_handler = raid5_error, 7938 .hot_add_disk = raid5_add_disk, 7939 .hot_remove_disk= raid5_remove_disk, 7940 .spare_active = raid5_spare_active, 7941 .sync_request = raid5_sync_request, 7942 .resize = raid5_resize, 7943 .size = raid5_size, 7944 .check_reshape = raid5_check_reshape, 7945 .start_reshape = raid5_start_reshape, 7946 .finish_reshape = raid5_finish_reshape, 7947 .quiesce = raid5_quiesce, 7948 .takeover = raid5_takeover, 7949 .congested = raid5_congested, 7950 }; 7951 7952 static struct md_personality raid4_personality = 7953 { 7954 .name = "raid4", 7955 .level = 4, 7956 .owner = THIS_MODULE, 7957 .make_request = raid5_make_request, 7958 .run = raid5_run, 7959 .free = raid5_free, 7960 .status = raid5_status, 7961 .error_handler = raid5_error, 7962 .hot_add_disk = raid5_add_disk, 7963 .hot_remove_disk= raid5_remove_disk, 7964 .spare_active = raid5_spare_active, 7965 .sync_request = raid5_sync_request, 7966 .resize = raid5_resize, 7967 .size = raid5_size, 7968 .check_reshape = raid5_check_reshape, 7969 .start_reshape = raid5_start_reshape, 7970 .finish_reshape = raid5_finish_reshape, 7971 .quiesce = raid5_quiesce, 7972 .takeover = raid4_takeover, 7973 .congested = raid5_congested, 7974 }; 7975 7976 static int __init raid5_init(void) 7977 { 7978 raid5_wq = alloc_workqueue("raid5wq", 7979 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7980 if (!raid5_wq) 7981 return -ENOMEM; 7982 register_md_personality(&raid6_personality); 7983 register_md_personality(&raid5_personality); 7984 register_md_personality(&raid4_personality); 7985 return 0; 7986 } 7987 7988 static void raid5_exit(void) 7989 { 7990 unregister_md_personality(&raid6_personality); 7991 unregister_md_personality(&raid5_personality); 7992 unregister_md_personality(&raid4_personality); 7993 destroy_workqueue(raid5_wq); 7994 } 7995 7996 module_init(raid5_init); 7997 module_exit(raid5_exit); 7998 MODULE_LICENSE("GPL"); 7999 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8000 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8001 MODULE_ALIAS("md-raid5"); 8002 MODULE_ALIAS("md-raid4"); 8003 MODULE_ALIAS("md-level-5"); 8004 MODULE_ALIAS("md-level-4"); 8005 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8006 MODULE_ALIAS("md-raid6"); 8007 MODULE_ALIAS("md-level-6"); 8008 8009 /* This used to be two separate modules, they were: */ 8010 MODULE_ALIAS("raid5"); 8011 MODULE_ALIAS("raid6"); 8012