xref: /openbmc/linux/drivers/md/raid5.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58 
59 /*
60  * Stripe cache
61  */
62 
63 #define NR_STRIPES		256
64 #define STRIPE_SIZE		PAGE_SIZE
65 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
67 #define	IO_THRESHOLD		1
68 #define BYPASS_THRESHOLD	1
69 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK		(NR_HASH - 1)
71 
72 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73 
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA	1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93 
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98 
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107 	return bio->bi_phys_segments & 0xffff;
108 }
109 
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112 	return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114 
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117 	--bio->bi_phys_segments;
118 	return raid5_bi_phys_segments(bio);
119 }
120 
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123 	unsigned short val = raid5_bi_hw_segments(bio);
124 
125 	--val;
126 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 	return val;
128 }
129 
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134 
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138 	if (sh->ddf_layout)
139 		/* ddf always start from first device */
140 		return 0;
141 	/* md starts just after Q block */
142 	if (sh->qd_idx == sh->disks - 1)
143 		return 0;
144 	else
145 		return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149 	disk++;
150 	return (disk < raid_disks) ? disk : 0;
151 }
152 
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 			     int *count, int syndrome_disks)
160 {
161 	int slot = *count;
162 
163 	if (sh->ddf_layout)
164 		(*count)++;
165 	if (idx == sh->pd_idx)
166 		return syndrome_disks;
167 	if (idx == sh->qd_idx)
168 		return syndrome_disks + 1;
169 	if (!sh->ddf_layout)
170 		(*count)++;
171 	return slot;
172 }
173 
174 static void return_io(struct bio *return_bi)
175 {
176 	struct bio *bi = return_bi;
177 	while (bi) {
178 
179 		return_bi = bi->bi_next;
180 		bi->bi_next = NULL;
181 		bi->bi_size = 0;
182 		bio_endio(bi, 0);
183 		bi = return_bi;
184 	}
185 }
186 
187 static void print_raid5_conf (raid5_conf_t *conf);
188 
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191 	return sh->check_state || sh->reconstruct_state ||
192 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195 
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198 	if (atomic_dec_and_test(&sh->count)) {
199 		BUG_ON(!list_empty(&sh->lru));
200 		BUG_ON(atomic_read(&conf->active_stripes)==0);
201 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 				list_add_tail(&sh->lru, &conf->delayed_list);
204 				plugger_set_plug(&conf->plug);
205 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 				   sh->bm_seq - conf->seq_write > 0) {
207 				list_add_tail(&sh->lru, &conf->bitmap_list);
208 				plugger_set_plug(&conf->plug);
209 			} else {
210 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 				list_add_tail(&sh->lru, &conf->handle_list);
212 			}
213 			md_wakeup_thread(conf->mddev->thread);
214 		} else {
215 			BUG_ON(stripe_operations_active(sh));
216 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 				atomic_dec(&conf->preread_active_stripes);
218 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 					md_wakeup_thread(conf->mddev->thread);
220 			}
221 			atomic_dec(&conf->active_stripes);
222 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 				list_add_tail(&sh->lru, &conf->inactive_list);
224 				wake_up(&conf->wait_for_stripe);
225 				if (conf->retry_read_aligned)
226 					md_wakeup_thread(conf->mddev->thread);
227 			}
228 		}
229 	}
230 }
231 
232 static void release_stripe(struct stripe_head *sh)
233 {
234 	raid5_conf_t *conf = sh->raid_conf;
235 	unsigned long flags;
236 
237 	spin_lock_irqsave(&conf->device_lock, flags);
238 	__release_stripe(conf, sh);
239 	spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241 
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244 	pr_debug("remove_hash(), stripe %llu\n",
245 		(unsigned long long)sh->sector);
246 
247 	hlist_del_init(&sh->hash);
248 }
249 
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
253 
254 	pr_debug("insert_hash(), stripe %llu\n",
255 		(unsigned long long)sh->sector);
256 
257 	CHECK_DEVLOCK();
258 	hlist_add_head(&sh->hash, hp);
259 }
260 
261 
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265 	struct stripe_head *sh = NULL;
266 	struct list_head *first;
267 
268 	CHECK_DEVLOCK();
269 	if (list_empty(&conf->inactive_list))
270 		goto out;
271 	first = conf->inactive_list.next;
272 	sh = list_entry(first, struct stripe_head, lru);
273 	list_del_init(first);
274 	remove_hash(sh);
275 	atomic_inc(&conf->active_stripes);
276 out:
277 	return sh;
278 }
279 
280 static void shrink_buffers(struct stripe_head *sh)
281 {
282 	struct page *p;
283 	int i;
284 	int num = sh->raid_conf->pool_size;
285 
286 	for (i = 0; i < num ; i++) {
287 		p = sh->dev[i].page;
288 		if (!p)
289 			continue;
290 		sh->dev[i].page = NULL;
291 		put_page(p);
292 	}
293 }
294 
295 static int grow_buffers(struct stripe_head *sh)
296 {
297 	int i;
298 	int num = sh->raid_conf->pool_size;
299 
300 	for (i = 0; i < num; i++) {
301 		struct page *page;
302 
303 		if (!(page = alloc_page(GFP_KERNEL))) {
304 			return 1;
305 		}
306 		sh->dev[i].page = page;
307 	}
308 	return 0;
309 }
310 
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 			    struct stripe_head *sh);
314 
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
316 {
317 	raid5_conf_t *conf = sh->raid_conf;
318 	int i;
319 
320 	BUG_ON(atomic_read(&sh->count) != 0);
321 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322 	BUG_ON(stripe_operations_active(sh));
323 
324 	CHECK_DEVLOCK();
325 	pr_debug("init_stripe called, stripe %llu\n",
326 		(unsigned long long)sh->sector);
327 
328 	remove_hash(sh);
329 
330 	sh->generation = conf->generation - previous;
331 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332 	sh->sector = sector;
333 	stripe_set_idx(sector, conf, previous, sh);
334 	sh->state = 0;
335 
336 
337 	for (i = sh->disks; i--; ) {
338 		struct r5dev *dev = &sh->dev[i];
339 
340 		if (dev->toread || dev->read || dev->towrite || dev->written ||
341 		    test_bit(R5_LOCKED, &dev->flags)) {
342 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343 			       (unsigned long long)sh->sector, i, dev->toread,
344 			       dev->read, dev->towrite, dev->written,
345 			       test_bit(R5_LOCKED, &dev->flags));
346 			BUG();
347 		}
348 		dev->flags = 0;
349 		raid5_build_block(sh, i, previous);
350 	}
351 	insert_hash(conf, sh);
352 }
353 
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355 					 short generation)
356 {
357 	struct stripe_head *sh;
358 	struct hlist_node *hn;
359 
360 	CHECK_DEVLOCK();
361 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363 		if (sh->sector == sector && sh->generation == generation)
364 			return sh;
365 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366 	return NULL;
367 }
368 
369 /*
370  * Need to check if array has failed when deciding whether to:
371  *  - start an array
372  *  - remove non-faulty devices
373  *  - add a spare
374  *  - allow a reshape
375  * This determination is simple when no reshape is happening.
376  * However if there is a reshape, we need to carefully check
377  * both the before and after sections.
378  * This is because some failed devices may only affect one
379  * of the two sections, and some non-in_sync devices may
380  * be insync in the section most affected by failed devices.
381  */
382 static int has_failed(raid5_conf_t *conf)
383 {
384 	int degraded;
385 	int i;
386 	if (conf->mddev->reshape_position == MaxSector)
387 		return conf->mddev->degraded > conf->max_degraded;
388 
389 	rcu_read_lock();
390 	degraded = 0;
391 	for (i = 0; i < conf->previous_raid_disks; i++) {
392 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 		if (!rdev || test_bit(Faulty, &rdev->flags))
394 			degraded++;
395 		else if (test_bit(In_sync, &rdev->flags))
396 			;
397 		else
398 			/* not in-sync or faulty.
399 			 * If the reshape increases the number of devices,
400 			 * this is being recovered by the reshape, so
401 			 * this 'previous' section is not in_sync.
402 			 * If the number of devices is being reduced however,
403 			 * the device can only be part of the array if
404 			 * we are reverting a reshape, so this section will
405 			 * be in-sync.
406 			 */
407 			if (conf->raid_disks >= conf->previous_raid_disks)
408 				degraded++;
409 	}
410 	rcu_read_unlock();
411 	if (degraded > conf->max_degraded)
412 		return 1;
413 	rcu_read_lock();
414 	degraded = 0;
415 	for (i = 0; i < conf->raid_disks; i++) {
416 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 		if (!rdev || test_bit(Faulty, &rdev->flags))
418 			degraded++;
419 		else if (test_bit(In_sync, &rdev->flags))
420 			;
421 		else
422 			/* not in-sync or faulty.
423 			 * If reshape increases the number of devices, this
424 			 * section has already been recovered, else it
425 			 * almost certainly hasn't.
426 			 */
427 			if (conf->raid_disks <= conf->previous_raid_disks)
428 				degraded++;
429 	}
430 	rcu_read_unlock();
431 	if (degraded > conf->max_degraded)
432 		return 1;
433 	return 0;
434 }
435 
436 static void unplug_slaves(mddev_t *mddev);
437 
438 static struct stripe_head *
439 get_active_stripe(raid5_conf_t *conf, sector_t sector,
440 		  int previous, int noblock, int noquiesce)
441 {
442 	struct stripe_head *sh;
443 
444 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
445 
446 	spin_lock_irq(&conf->device_lock);
447 
448 	do {
449 		wait_event_lock_irq(conf->wait_for_stripe,
450 				    conf->quiesce == 0 || noquiesce,
451 				    conf->device_lock, /* nothing */);
452 		sh = __find_stripe(conf, sector, conf->generation - previous);
453 		if (!sh) {
454 			if (!conf->inactive_blocked)
455 				sh = get_free_stripe(conf);
456 			if (noblock && sh == NULL)
457 				break;
458 			if (!sh) {
459 				conf->inactive_blocked = 1;
460 				wait_event_lock_irq(conf->wait_for_stripe,
461 						    !list_empty(&conf->inactive_list) &&
462 						    (atomic_read(&conf->active_stripes)
463 						     < (conf->max_nr_stripes *3/4)
464 						     || !conf->inactive_blocked),
465 						    conf->device_lock,
466 						    md_raid5_unplug_device(conf)
467 					);
468 				conf->inactive_blocked = 0;
469 			} else
470 				init_stripe(sh, sector, previous);
471 		} else {
472 			if (atomic_read(&sh->count)) {
473 				BUG_ON(!list_empty(&sh->lru)
474 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
475 			} else {
476 				if (!test_bit(STRIPE_HANDLE, &sh->state))
477 					atomic_inc(&conf->active_stripes);
478 				if (list_empty(&sh->lru) &&
479 				    !test_bit(STRIPE_EXPANDING, &sh->state))
480 					BUG();
481 				list_del_init(&sh->lru);
482 			}
483 		}
484 	} while (sh == NULL);
485 
486 	if (sh)
487 		atomic_inc(&sh->count);
488 
489 	spin_unlock_irq(&conf->device_lock);
490 	return sh;
491 }
492 
493 static void
494 raid5_end_read_request(struct bio *bi, int error);
495 static void
496 raid5_end_write_request(struct bio *bi, int error);
497 
498 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
499 {
500 	raid5_conf_t *conf = sh->raid_conf;
501 	int i, disks = sh->disks;
502 
503 	might_sleep();
504 
505 	for (i = disks; i--; ) {
506 		int rw;
507 		struct bio *bi;
508 		mdk_rdev_t *rdev;
509 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
510 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
511 				rw = WRITE_FUA;
512 			else
513 				rw = WRITE;
514 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
515 			rw = READ;
516 		else
517 			continue;
518 
519 		bi = &sh->dev[i].req;
520 
521 		bi->bi_rw = rw;
522 		if (rw == WRITE)
523 			bi->bi_end_io = raid5_end_write_request;
524 		else
525 			bi->bi_end_io = raid5_end_read_request;
526 
527 		rcu_read_lock();
528 		rdev = rcu_dereference(conf->disks[i].rdev);
529 		if (rdev && test_bit(Faulty, &rdev->flags))
530 			rdev = NULL;
531 		if (rdev)
532 			atomic_inc(&rdev->nr_pending);
533 		rcu_read_unlock();
534 
535 		if (rdev) {
536 			if (s->syncing || s->expanding || s->expanded)
537 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
538 
539 			set_bit(STRIPE_IO_STARTED, &sh->state);
540 
541 			bi->bi_bdev = rdev->bdev;
542 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
543 				__func__, (unsigned long long)sh->sector,
544 				bi->bi_rw, i);
545 			atomic_inc(&sh->count);
546 			bi->bi_sector = sh->sector + rdev->data_offset;
547 			bi->bi_flags = 1 << BIO_UPTODATE;
548 			bi->bi_vcnt = 1;
549 			bi->bi_max_vecs = 1;
550 			bi->bi_idx = 0;
551 			bi->bi_io_vec = &sh->dev[i].vec;
552 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
553 			bi->bi_io_vec[0].bv_offset = 0;
554 			bi->bi_size = STRIPE_SIZE;
555 			bi->bi_next = NULL;
556 			if (rw == WRITE &&
557 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
558 				atomic_add(STRIPE_SECTORS,
559 					&rdev->corrected_errors);
560 			generic_make_request(bi);
561 		} else {
562 			if (rw == WRITE)
563 				set_bit(STRIPE_DEGRADED, &sh->state);
564 			pr_debug("skip op %ld on disc %d for sector %llu\n",
565 				bi->bi_rw, i, (unsigned long long)sh->sector);
566 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
567 			set_bit(STRIPE_HANDLE, &sh->state);
568 		}
569 	}
570 }
571 
572 static struct dma_async_tx_descriptor *
573 async_copy_data(int frombio, struct bio *bio, struct page *page,
574 	sector_t sector, struct dma_async_tx_descriptor *tx)
575 {
576 	struct bio_vec *bvl;
577 	struct page *bio_page;
578 	int i;
579 	int page_offset;
580 	struct async_submit_ctl submit;
581 	enum async_tx_flags flags = 0;
582 
583 	if (bio->bi_sector >= sector)
584 		page_offset = (signed)(bio->bi_sector - sector) * 512;
585 	else
586 		page_offset = (signed)(sector - bio->bi_sector) * -512;
587 
588 	if (frombio)
589 		flags |= ASYNC_TX_FENCE;
590 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
591 
592 	bio_for_each_segment(bvl, bio, i) {
593 		int len = bio_iovec_idx(bio, i)->bv_len;
594 		int clen;
595 		int b_offset = 0;
596 
597 		if (page_offset < 0) {
598 			b_offset = -page_offset;
599 			page_offset += b_offset;
600 			len -= b_offset;
601 		}
602 
603 		if (len > 0 && page_offset + len > STRIPE_SIZE)
604 			clen = STRIPE_SIZE - page_offset;
605 		else
606 			clen = len;
607 
608 		if (clen > 0) {
609 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
610 			bio_page = bio_iovec_idx(bio, i)->bv_page;
611 			if (frombio)
612 				tx = async_memcpy(page, bio_page, page_offset,
613 						  b_offset, clen, &submit);
614 			else
615 				tx = async_memcpy(bio_page, page, b_offset,
616 						  page_offset, clen, &submit);
617 		}
618 		/* chain the operations */
619 		submit.depend_tx = tx;
620 
621 		if (clen < len) /* hit end of page */
622 			break;
623 		page_offset +=  len;
624 	}
625 
626 	return tx;
627 }
628 
629 static void ops_complete_biofill(void *stripe_head_ref)
630 {
631 	struct stripe_head *sh = stripe_head_ref;
632 	struct bio *return_bi = NULL;
633 	raid5_conf_t *conf = sh->raid_conf;
634 	int i;
635 
636 	pr_debug("%s: stripe %llu\n", __func__,
637 		(unsigned long long)sh->sector);
638 
639 	/* clear completed biofills */
640 	spin_lock_irq(&conf->device_lock);
641 	for (i = sh->disks; i--; ) {
642 		struct r5dev *dev = &sh->dev[i];
643 
644 		/* acknowledge completion of a biofill operation */
645 		/* and check if we need to reply to a read request,
646 		 * new R5_Wantfill requests are held off until
647 		 * !STRIPE_BIOFILL_RUN
648 		 */
649 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
650 			struct bio *rbi, *rbi2;
651 
652 			BUG_ON(!dev->read);
653 			rbi = dev->read;
654 			dev->read = NULL;
655 			while (rbi && rbi->bi_sector <
656 				dev->sector + STRIPE_SECTORS) {
657 				rbi2 = r5_next_bio(rbi, dev->sector);
658 				if (!raid5_dec_bi_phys_segments(rbi)) {
659 					rbi->bi_next = return_bi;
660 					return_bi = rbi;
661 				}
662 				rbi = rbi2;
663 			}
664 		}
665 	}
666 	spin_unlock_irq(&conf->device_lock);
667 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
668 
669 	return_io(return_bi);
670 
671 	set_bit(STRIPE_HANDLE, &sh->state);
672 	release_stripe(sh);
673 }
674 
675 static void ops_run_biofill(struct stripe_head *sh)
676 {
677 	struct dma_async_tx_descriptor *tx = NULL;
678 	raid5_conf_t *conf = sh->raid_conf;
679 	struct async_submit_ctl submit;
680 	int i;
681 
682 	pr_debug("%s: stripe %llu\n", __func__,
683 		(unsigned long long)sh->sector);
684 
685 	for (i = sh->disks; i--; ) {
686 		struct r5dev *dev = &sh->dev[i];
687 		if (test_bit(R5_Wantfill, &dev->flags)) {
688 			struct bio *rbi;
689 			spin_lock_irq(&conf->device_lock);
690 			dev->read = rbi = dev->toread;
691 			dev->toread = NULL;
692 			spin_unlock_irq(&conf->device_lock);
693 			while (rbi && rbi->bi_sector <
694 				dev->sector + STRIPE_SECTORS) {
695 				tx = async_copy_data(0, rbi, dev->page,
696 					dev->sector, tx);
697 				rbi = r5_next_bio(rbi, dev->sector);
698 			}
699 		}
700 	}
701 
702 	atomic_inc(&sh->count);
703 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
704 	async_trigger_callback(&submit);
705 }
706 
707 static void mark_target_uptodate(struct stripe_head *sh, int target)
708 {
709 	struct r5dev *tgt;
710 
711 	if (target < 0)
712 		return;
713 
714 	tgt = &sh->dev[target];
715 	set_bit(R5_UPTODATE, &tgt->flags);
716 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
717 	clear_bit(R5_Wantcompute, &tgt->flags);
718 }
719 
720 static void ops_complete_compute(void *stripe_head_ref)
721 {
722 	struct stripe_head *sh = stripe_head_ref;
723 
724 	pr_debug("%s: stripe %llu\n", __func__,
725 		(unsigned long long)sh->sector);
726 
727 	/* mark the computed target(s) as uptodate */
728 	mark_target_uptodate(sh, sh->ops.target);
729 	mark_target_uptodate(sh, sh->ops.target2);
730 
731 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
732 	if (sh->check_state == check_state_compute_run)
733 		sh->check_state = check_state_compute_result;
734 	set_bit(STRIPE_HANDLE, &sh->state);
735 	release_stripe(sh);
736 }
737 
738 /* return a pointer to the address conversion region of the scribble buffer */
739 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
740 				 struct raid5_percpu *percpu)
741 {
742 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
743 }
744 
745 static struct dma_async_tx_descriptor *
746 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
747 {
748 	int disks = sh->disks;
749 	struct page **xor_srcs = percpu->scribble;
750 	int target = sh->ops.target;
751 	struct r5dev *tgt = &sh->dev[target];
752 	struct page *xor_dest = tgt->page;
753 	int count = 0;
754 	struct dma_async_tx_descriptor *tx;
755 	struct async_submit_ctl submit;
756 	int i;
757 
758 	pr_debug("%s: stripe %llu block: %d\n",
759 		__func__, (unsigned long long)sh->sector, target);
760 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
761 
762 	for (i = disks; i--; )
763 		if (i != target)
764 			xor_srcs[count++] = sh->dev[i].page;
765 
766 	atomic_inc(&sh->count);
767 
768 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
769 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
770 	if (unlikely(count == 1))
771 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
772 	else
773 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
774 
775 	return tx;
776 }
777 
778 /* set_syndrome_sources - populate source buffers for gen_syndrome
779  * @srcs - (struct page *) array of size sh->disks
780  * @sh - stripe_head to parse
781  *
782  * Populates srcs in proper layout order for the stripe and returns the
783  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
784  * destination buffer is recorded in srcs[count] and the Q destination
785  * is recorded in srcs[count+1]].
786  */
787 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
788 {
789 	int disks = sh->disks;
790 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
791 	int d0_idx = raid6_d0(sh);
792 	int count;
793 	int i;
794 
795 	for (i = 0; i < disks; i++)
796 		srcs[i] = NULL;
797 
798 	count = 0;
799 	i = d0_idx;
800 	do {
801 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
802 
803 		srcs[slot] = sh->dev[i].page;
804 		i = raid6_next_disk(i, disks);
805 	} while (i != d0_idx);
806 
807 	return syndrome_disks;
808 }
809 
810 static struct dma_async_tx_descriptor *
811 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
812 {
813 	int disks = sh->disks;
814 	struct page **blocks = percpu->scribble;
815 	int target;
816 	int qd_idx = sh->qd_idx;
817 	struct dma_async_tx_descriptor *tx;
818 	struct async_submit_ctl submit;
819 	struct r5dev *tgt;
820 	struct page *dest;
821 	int i;
822 	int count;
823 
824 	if (sh->ops.target < 0)
825 		target = sh->ops.target2;
826 	else if (sh->ops.target2 < 0)
827 		target = sh->ops.target;
828 	else
829 		/* we should only have one valid target */
830 		BUG();
831 	BUG_ON(target < 0);
832 	pr_debug("%s: stripe %llu block: %d\n",
833 		__func__, (unsigned long long)sh->sector, target);
834 
835 	tgt = &sh->dev[target];
836 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
837 	dest = tgt->page;
838 
839 	atomic_inc(&sh->count);
840 
841 	if (target == qd_idx) {
842 		count = set_syndrome_sources(blocks, sh);
843 		blocks[count] = NULL; /* regenerating p is not necessary */
844 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
845 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
846 				  ops_complete_compute, sh,
847 				  to_addr_conv(sh, percpu));
848 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
849 	} else {
850 		/* Compute any data- or p-drive using XOR */
851 		count = 0;
852 		for (i = disks; i-- ; ) {
853 			if (i == target || i == qd_idx)
854 				continue;
855 			blocks[count++] = sh->dev[i].page;
856 		}
857 
858 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
859 				  NULL, ops_complete_compute, sh,
860 				  to_addr_conv(sh, percpu));
861 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
862 	}
863 
864 	return tx;
865 }
866 
867 static struct dma_async_tx_descriptor *
868 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
869 {
870 	int i, count, disks = sh->disks;
871 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
872 	int d0_idx = raid6_d0(sh);
873 	int faila = -1, failb = -1;
874 	int target = sh->ops.target;
875 	int target2 = sh->ops.target2;
876 	struct r5dev *tgt = &sh->dev[target];
877 	struct r5dev *tgt2 = &sh->dev[target2];
878 	struct dma_async_tx_descriptor *tx;
879 	struct page **blocks = percpu->scribble;
880 	struct async_submit_ctl submit;
881 
882 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
883 		 __func__, (unsigned long long)sh->sector, target, target2);
884 	BUG_ON(target < 0 || target2 < 0);
885 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
886 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
887 
888 	/* we need to open-code set_syndrome_sources to handle the
889 	 * slot number conversion for 'faila' and 'failb'
890 	 */
891 	for (i = 0; i < disks ; i++)
892 		blocks[i] = NULL;
893 	count = 0;
894 	i = d0_idx;
895 	do {
896 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
897 
898 		blocks[slot] = sh->dev[i].page;
899 
900 		if (i == target)
901 			faila = slot;
902 		if (i == target2)
903 			failb = slot;
904 		i = raid6_next_disk(i, disks);
905 	} while (i != d0_idx);
906 
907 	BUG_ON(faila == failb);
908 	if (failb < faila)
909 		swap(faila, failb);
910 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
911 		 __func__, (unsigned long long)sh->sector, faila, failb);
912 
913 	atomic_inc(&sh->count);
914 
915 	if (failb == syndrome_disks+1) {
916 		/* Q disk is one of the missing disks */
917 		if (faila == syndrome_disks) {
918 			/* Missing P+Q, just recompute */
919 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
920 					  ops_complete_compute, sh,
921 					  to_addr_conv(sh, percpu));
922 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
923 						  STRIPE_SIZE, &submit);
924 		} else {
925 			struct page *dest;
926 			int data_target;
927 			int qd_idx = sh->qd_idx;
928 
929 			/* Missing D+Q: recompute D from P, then recompute Q */
930 			if (target == qd_idx)
931 				data_target = target2;
932 			else
933 				data_target = target;
934 
935 			count = 0;
936 			for (i = disks; i-- ; ) {
937 				if (i == data_target || i == qd_idx)
938 					continue;
939 				blocks[count++] = sh->dev[i].page;
940 			}
941 			dest = sh->dev[data_target].page;
942 			init_async_submit(&submit,
943 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
944 					  NULL, NULL, NULL,
945 					  to_addr_conv(sh, percpu));
946 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
947 				       &submit);
948 
949 			count = set_syndrome_sources(blocks, sh);
950 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
951 					  ops_complete_compute, sh,
952 					  to_addr_conv(sh, percpu));
953 			return async_gen_syndrome(blocks, 0, count+2,
954 						  STRIPE_SIZE, &submit);
955 		}
956 	} else {
957 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
958 				  ops_complete_compute, sh,
959 				  to_addr_conv(sh, percpu));
960 		if (failb == syndrome_disks) {
961 			/* We're missing D+P. */
962 			return async_raid6_datap_recov(syndrome_disks+2,
963 						       STRIPE_SIZE, faila,
964 						       blocks, &submit);
965 		} else {
966 			/* We're missing D+D. */
967 			return async_raid6_2data_recov(syndrome_disks+2,
968 						       STRIPE_SIZE, faila, failb,
969 						       blocks, &submit);
970 		}
971 	}
972 }
973 
974 
975 static void ops_complete_prexor(void *stripe_head_ref)
976 {
977 	struct stripe_head *sh = stripe_head_ref;
978 
979 	pr_debug("%s: stripe %llu\n", __func__,
980 		(unsigned long long)sh->sector);
981 }
982 
983 static struct dma_async_tx_descriptor *
984 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
985 	       struct dma_async_tx_descriptor *tx)
986 {
987 	int disks = sh->disks;
988 	struct page **xor_srcs = percpu->scribble;
989 	int count = 0, pd_idx = sh->pd_idx, i;
990 	struct async_submit_ctl submit;
991 
992 	/* existing parity data subtracted */
993 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
994 
995 	pr_debug("%s: stripe %llu\n", __func__,
996 		(unsigned long long)sh->sector);
997 
998 	for (i = disks; i--; ) {
999 		struct r5dev *dev = &sh->dev[i];
1000 		/* Only process blocks that are known to be uptodate */
1001 		if (test_bit(R5_Wantdrain, &dev->flags))
1002 			xor_srcs[count++] = dev->page;
1003 	}
1004 
1005 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1006 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1007 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1008 
1009 	return tx;
1010 }
1011 
1012 static struct dma_async_tx_descriptor *
1013 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1014 {
1015 	int disks = sh->disks;
1016 	int i;
1017 
1018 	pr_debug("%s: stripe %llu\n", __func__,
1019 		(unsigned long long)sh->sector);
1020 
1021 	for (i = disks; i--; ) {
1022 		struct r5dev *dev = &sh->dev[i];
1023 		struct bio *chosen;
1024 
1025 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1026 			struct bio *wbi;
1027 
1028 			spin_lock(&sh->lock);
1029 			chosen = dev->towrite;
1030 			dev->towrite = NULL;
1031 			BUG_ON(dev->written);
1032 			wbi = dev->written = chosen;
1033 			spin_unlock(&sh->lock);
1034 
1035 			while (wbi && wbi->bi_sector <
1036 				dev->sector + STRIPE_SECTORS) {
1037 				if (wbi->bi_rw & REQ_FUA)
1038 					set_bit(R5_WantFUA, &dev->flags);
1039 				tx = async_copy_data(1, wbi, dev->page,
1040 					dev->sector, tx);
1041 				wbi = r5_next_bio(wbi, dev->sector);
1042 			}
1043 		}
1044 	}
1045 
1046 	return tx;
1047 }
1048 
1049 static void ops_complete_reconstruct(void *stripe_head_ref)
1050 {
1051 	struct stripe_head *sh = stripe_head_ref;
1052 	int disks = sh->disks;
1053 	int pd_idx = sh->pd_idx;
1054 	int qd_idx = sh->qd_idx;
1055 	int i;
1056 	bool fua = false;
1057 
1058 	pr_debug("%s: stripe %llu\n", __func__,
1059 		(unsigned long long)sh->sector);
1060 
1061 	for (i = disks; i--; )
1062 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1063 
1064 	for (i = disks; i--; ) {
1065 		struct r5dev *dev = &sh->dev[i];
1066 
1067 		if (dev->written || i == pd_idx || i == qd_idx) {
1068 			set_bit(R5_UPTODATE, &dev->flags);
1069 			if (fua)
1070 				set_bit(R5_WantFUA, &dev->flags);
1071 		}
1072 	}
1073 
1074 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1075 		sh->reconstruct_state = reconstruct_state_drain_result;
1076 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1077 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1078 	else {
1079 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1080 		sh->reconstruct_state = reconstruct_state_result;
1081 	}
1082 
1083 	set_bit(STRIPE_HANDLE, &sh->state);
1084 	release_stripe(sh);
1085 }
1086 
1087 static void
1088 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1089 		     struct dma_async_tx_descriptor *tx)
1090 {
1091 	int disks = sh->disks;
1092 	struct page **xor_srcs = percpu->scribble;
1093 	struct async_submit_ctl submit;
1094 	int count = 0, pd_idx = sh->pd_idx, i;
1095 	struct page *xor_dest;
1096 	int prexor = 0;
1097 	unsigned long flags;
1098 
1099 	pr_debug("%s: stripe %llu\n", __func__,
1100 		(unsigned long long)sh->sector);
1101 
1102 	/* check if prexor is active which means only process blocks
1103 	 * that are part of a read-modify-write (written)
1104 	 */
1105 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1106 		prexor = 1;
1107 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1108 		for (i = disks; i--; ) {
1109 			struct r5dev *dev = &sh->dev[i];
1110 			if (dev->written)
1111 				xor_srcs[count++] = dev->page;
1112 		}
1113 	} else {
1114 		xor_dest = sh->dev[pd_idx].page;
1115 		for (i = disks; i--; ) {
1116 			struct r5dev *dev = &sh->dev[i];
1117 			if (i != pd_idx)
1118 				xor_srcs[count++] = dev->page;
1119 		}
1120 	}
1121 
1122 	/* 1/ if we prexor'd then the dest is reused as a source
1123 	 * 2/ if we did not prexor then we are redoing the parity
1124 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1125 	 * for the synchronous xor case
1126 	 */
1127 	flags = ASYNC_TX_ACK |
1128 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1129 
1130 	atomic_inc(&sh->count);
1131 
1132 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1133 			  to_addr_conv(sh, percpu));
1134 	if (unlikely(count == 1))
1135 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1136 	else
1137 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1138 }
1139 
1140 static void
1141 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1142 		     struct dma_async_tx_descriptor *tx)
1143 {
1144 	struct async_submit_ctl submit;
1145 	struct page **blocks = percpu->scribble;
1146 	int count;
1147 
1148 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1149 
1150 	count = set_syndrome_sources(blocks, sh);
1151 
1152 	atomic_inc(&sh->count);
1153 
1154 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1155 			  sh, to_addr_conv(sh, percpu));
1156 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1157 }
1158 
1159 static void ops_complete_check(void *stripe_head_ref)
1160 {
1161 	struct stripe_head *sh = stripe_head_ref;
1162 
1163 	pr_debug("%s: stripe %llu\n", __func__,
1164 		(unsigned long long)sh->sector);
1165 
1166 	sh->check_state = check_state_check_result;
1167 	set_bit(STRIPE_HANDLE, &sh->state);
1168 	release_stripe(sh);
1169 }
1170 
1171 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1172 {
1173 	int disks = sh->disks;
1174 	int pd_idx = sh->pd_idx;
1175 	int qd_idx = sh->qd_idx;
1176 	struct page *xor_dest;
1177 	struct page **xor_srcs = percpu->scribble;
1178 	struct dma_async_tx_descriptor *tx;
1179 	struct async_submit_ctl submit;
1180 	int count;
1181 	int i;
1182 
1183 	pr_debug("%s: stripe %llu\n", __func__,
1184 		(unsigned long long)sh->sector);
1185 
1186 	count = 0;
1187 	xor_dest = sh->dev[pd_idx].page;
1188 	xor_srcs[count++] = xor_dest;
1189 	for (i = disks; i--; ) {
1190 		if (i == pd_idx || i == qd_idx)
1191 			continue;
1192 		xor_srcs[count++] = sh->dev[i].page;
1193 	}
1194 
1195 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1196 			  to_addr_conv(sh, percpu));
1197 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1198 			   &sh->ops.zero_sum_result, &submit);
1199 
1200 	atomic_inc(&sh->count);
1201 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1202 	tx = async_trigger_callback(&submit);
1203 }
1204 
1205 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1206 {
1207 	struct page **srcs = percpu->scribble;
1208 	struct async_submit_ctl submit;
1209 	int count;
1210 
1211 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1212 		(unsigned long long)sh->sector, checkp);
1213 
1214 	count = set_syndrome_sources(srcs, sh);
1215 	if (!checkp)
1216 		srcs[count] = NULL;
1217 
1218 	atomic_inc(&sh->count);
1219 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1220 			  sh, to_addr_conv(sh, percpu));
1221 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1222 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1223 }
1224 
1225 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1226 {
1227 	int overlap_clear = 0, i, disks = sh->disks;
1228 	struct dma_async_tx_descriptor *tx = NULL;
1229 	raid5_conf_t *conf = sh->raid_conf;
1230 	int level = conf->level;
1231 	struct raid5_percpu *percpu;
1232 	unsigned long cpu;
1233 
1234 	cpu = get_cpu();
1235 	percpu = per_cpu_ptr(conf->percpu, cpu);
1236 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1237 		ops_run_biofill(sh);
1238 		overlap_clear++;
1239 	}
1240 
1241 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1242 		if (level < 6)
1243 			tx = ops_run_compute5(sh, percpu);
1244 		else {
1245 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1246 				tx = ops_run_compute6_1(sh, percpu);
1247 			else
1248 				tx = ops_run_compute6_2(sh, percpu);
1249 		}
1250 		/* terminate the chain if reconstruct is not set to be run */
1251 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1252 			async_tx_ack(tx);
1253 	}
1254 
1255 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1256 		tx = ops_run_prexor(sh, percpu, tx);
1257 
1258 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1259 		tx = ops_run_biodrain(sh, tx);
1260 		overlap_clear++;
1261 	}
1262 
1263 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1264 		if (level < 6)
1265 			ops_run_reconstruct5(sh, percpu, tx);
1266 		else
1267 			ops_run_reconstruct6(sh, percpu, tx);
1268 	}
1269 
1270 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1271 		if (sh->check_state == check_state_run)
1272 			ops_run_check_p(sh, percpu);
1273 		else if (sh->check_state == check_state_run_q)
1274 			ops_run_check_pq(sh, percpu, 0);
1275 		else if (sh->check_state == check_state_run_pq)
1276 			ops_run_check_pq(sh, percpu, 1);
1277 		else
1278 			BUG();
1279 	}
1280 
1281 	if (overlap_clear)
1282 		for (i = disks; i--; ) {
1283 			struct r5dev *dev = &sh->dev[i];
1284 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1285 				wake_up(&sh->raid_conf->wait_for_overlap);
1286 		}
1287 	put_cpu();
1288 }
1289 
1290 #ifdef CONFIG_MULTICORE_RAID456
1291 static void async_run_ops(void *param, async_cookie_t cookie)
1292 {
1293 	struct stripe_head *sh = param;
1294 	unsigned long ops_request = sh->ops.request;
1295 
1296 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1297 	wake_up(&sh->ops.wait_for_ops);
1298 
1299 	__raid_run_ops(sh, ops_request);
1300 	release_stripe(sh);
1301 }
1302 
1303 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1304 {
1305 	/* since handle_stripe can be called outside of raid5d context
1306 	 * we need to ensure sh->ops.request is de-staged before another
1307 	 * request arrives
1308 	 */
1309 	wait_event(sh->ops.wait_for_ops,
1310 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1311 	sh->ops.request = ops_request;
1312 
1313 	atomic_inc(&sh->count);
1314 	async_schedule(async_run_ops, sh);
1315 }
1316 #else
1317 #define raid_run_ops __raid_run_ops
1318 #endif
1319 
1320 static int grow_one_stripe(raid5_conf_t *conf)
1321 {
1322 	struct stripe_head *sh;
1323 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1324 	if (!sh)
1325 		return 0;
1326 	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1327 	sh->raid_conf = conf;
1328 	spin_lock_init(&sh->lock);
1329 	#ifdef CONFIG_MULTICORE_RAID456
1330 	init_waitqueue_head(&sh->ops.wait_for_ops);
1331 	#endif
1332 
1333 	if (grow_buffers(sh)) {
1334 		shrink_buffers(sh);
1335 		kmem_cache_free(conf->slab_cache, sh);
1336 		return 0;
1337 	}
1338 	/* we just created an active stripe so... */
1339 	atomic_set(&sh->count, 1);
1340 	atomic_inc(&conf->active_stripes);
1341 	INIT_LIST_HEAD(&sh->lru);
1342 	release_stripe(sh);
1343 	return 1;
1344 }
1345 
1346 static int grow_stripes(raid5_conf_t *conf, int num)
1347 {
1348 	struct kmem_cache *sc;
1349 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1350 
1351 	if (conf->mddev->gendisk)
1352 		sprintf(conf->cache_name[0],
1353 			"raid%d-%s", conf->level, mdname(conf->mddev));
1354 	else
1355 		sprintf(conf->cache_name[0],
1356 			"raid%d-%p", conf->level, conf->mddev);
1357 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1358 
1359 	conf->active_name = 0;
1360 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1361 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1362 			       0, 0, NULL);
1363 	if (!sc)
1364 		return 1;
1365 	conf->slab_cache = sc;
1366 	conf->pool_size = devs;
1367 	while (num--)
1368 		if (!grow_one_stripe(conf))
1369 			return 1;
1370 	return 0;
1371 }
1372 
1373 /**
1374  * scribble_len - return the required size of the scribble region
1375  * @num - total number of disks in the array
1376  *
1377  * The size must be enough to contain:
1378  * 1/ a struct page pointer for each device in the array +2
1379  * 2/ room to convert each entry in (1) to its corresponding dma
1380  *    (dma_map_page()) or page (page_address()) address.
1381  *
1382  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1383  * calculate over all devices (not just the data blocks), using zeros in place
1384  * of the P and Q blocks.
1385  */
1386 static size_t scribble_len(int num)
1387 {
1388 	size_t len;
1389 
1390 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1391 
1392 	return len;
1393 }
1394 
1395 static int resize_stripes(raid5_conf_t *conf, int newsize)
1396 {
1397 	/* Make all the stripes able to hold 'newsize' devices.
1398 	 * New slots in each stripe get 'page' set to a new page.
1399 	 *
1400 	 * This happens in stages:
1401 	 * 1/ create a new kmem_cache and allocate the required number of
1402 	 *    stripe_heads.
1403 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1404 	 *    to the new stripe_heads.  This will have the side effect of
1405 	 *    freezing the array as once all stripe_heads have been collected,
1406 	 *    no IO will be possible.  Old stripe heads are freed once their
1407 	 *    pages have been transferred over, and the old kmem_cache is
1408 	 *    freed when all stripes are done.
1409 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1410 	 *    we simple return a failre status - no need to clean anything up.
1411 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1412 	 *    If this fails, we don't bother trying the shrink the
1413 	 *    stripe_heads down again, we just leave them as they are.
1414 	 *    As each stripe_head is processed the new one is released into
1415 	 *    active service.
1416 	 *
1417 	 * Once step2 is started, we cannot afford to wait for a write,
1418 	 * so we use GFP_NOIO allocations.
1419 	 */
1420 	struct stripe_head *osh, *nsh;
1421 	LIST_HEAD(newstripes);
1422 	struct disk_info *ndisks;
1423 	unsigned long cpu;
1424 	int err;
1425 	struct kmem_cache *sc;
1426 	int i;
1427 
1428 	if (newsize <= conf->pool_size)
1429 		return 0; /* never bother to shrink */
1430 
1431 	err = md_allow_write(conf->mddev);
1432 	if (err)
1433 		return err;
1434 
1435 	/* Step 1 */
1436 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1437 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1438 			       0, 0, NULL);
1439 	if (!sc)
1440 		return -ENOMEM;
1441 
1442 	for (i = conf->max_nr_stripes; i; i--) {
1443 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1444 		if (!nsh)
1445 			break;
1446 
1447 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1448 
1449 		nsh->raid_conf = conf;
1450 		spin_lock_init(&nsh->lock);
1451 		#ifdef CONFIG_MULTICORE_RAID456
1452 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1453 		#endif
1454 
1455 		list_add(&nsh->lru, &newstripes);
1456 	}
1457 	if (i) {
1458 		/* didn't get enough, give up */
1459 		while (!list_empty(&newstripes)) {
1460 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1461 			list_del(&nsh->lru);
1462 			kmem_cache_free(sc, nsh);
1463 		}
1464 		kmem_cache_destroy(sc);
1465 		return -ENOMEM;
1466 	}
1467 	/* Step 2 - Must use GFP_NOIO now.
1468 	 * OK, we have enough stripes, start collecting inactive
1469 	 * stripes and copying them over
1470 	 */
1471 	list_for_each_entry(nsh, &newstripes, lru) {
1472 		spin_lock_irq(&conf->device_lock);
1473 		wait_event_lock_irq(conf->wait_for_stripe,
1474 				    !list_empty(&conf->inactive_list),
1475 				    conf->device_lock,
1476 				    unplug_slaves(conf->mddev)
1477 			);
1478 		osh = get_free_stripe(conf);
1479 		spin_unlock_irq(&conf->device_lock);
1480 		atomic_set(&nsh->count, 1);
1481 		for(i=0; i<conf->pool_size; i++)
1482 			nsh->dev[i].page = osh->dev[i].page;
1483 		for( ; i<newsize; i++)
1484 			nsh->dev[i].page = NULL;
1485 		kmem_cache_free(conf->slab_cache, osh);
1486 	}
1487 	kmem_cache_destroy(conf->slab_cache);
1488 
1489 	/* Step 3.
1490 	 * At this point, we are holding all the stripes so the array
1491 	 * is completely stalled, so now is a good time to resize
1492 	 * conf->disks and the scribble region
1493 	 */
1494 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1495 	if (ndisks) {
1496 		for (i=0; i<conf->raid_disks; i++)
1497 			ndisks[i] = conf->disks[i];
1498 		kfree(conf->disks);
1499 		conf->disks = ndisks;
1500 	} else
1501 		err = -ENOMEM;
1502 
1503 	get_online_cpus();
1504 	conf->scribble_len = scribble_len(newsize);
1505 	for_each_present_cpu(cpu) {
1506 		struct raid5_percpu *percpu;
1507 		void *scribble;
1508 
1509 		percpu = per_cpu_ptr(conf->percpu, cpu);
1510 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1511 
1512 		if (scribble) {
1513 			kfree(percpu->scribble);
1514 			percpu->scribble = scribble;
1515 		} else {
1516 			err = -ENOMEM;
1517 			break;
1518 		}
1519 	}
1520 	put_online_cpus();
1521 
1522 	/* Step 4, return new stripes to service */
1523 	while(!list_empty(&newstripes)) {
1524 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1525 		list_del_init(&nsh->lru);
1526 
1527 		for (i=conf->raid_disks; i < newsize; i++)
1528 			if (nsh->dev[i].page == NULL) {
1529 				struct page *p = alloc_page(GFP_NOIO);
1530 				nsh->dev[i].page = p;
1531 				if (!p)
1532 					err = -ENOMEM;
1533 			}
1534 		release_stripe(nsh);
1535 	}
1536 	/* critical section pass, GFP_NOIO no longer needed */
1537 
1538 	conf->slab_cache = sc;
1539 	conf->active_name = 1-conf->active_name;
1540 	conf->pool_size = newsize;
1541 	return err;
1542 }
1543 
1544 static int drop_one_stripe(raid5_conf_t *conf)
1545 {
1546 	struct stripe_head *sh;
1547 
1548 	spin_lock_irq(&conf->device_lock);
1549 	sh = get_free_stripe(conf);
1550 	spin_unlock_irq(&conf->device_lock);
1551 	if (!sh)
1552 		return 0;
1553 	BUG_ON(atomic_read(&sh->count));
1554 	shrink_buffers(sh);
1555 	kmem_cache_free(conf->slab_cache, sh);
1556 	atomic_dec(&conf->active_stripes);
1557 	return 1;
1558 }
1559 
1560 static void shrink_stripes(raid5_conf_t *conf)
1561 {
1562 	while (drop_one_stripe(conf))
1563 		;
1564 
1565 	if (conf->slab_cache)
1566 		kmem_cache_destroy(conf->slab_cache);
1567 	conf->slab_cache = NULL;
1568 }
1569 
1570 static void raid5_end_read_request(struct bio * bi, int error)
1571 {
1572 	struct stripe_head *sh = bi->bi_private;
1573 	raid5_conf_t *conf = sh->raid_conf;
1574 	int disks = sh->disks, i;
1575 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1576 	char b[BDEVNAME_SIZE];
1577 	mdk_rdev_t *rdev;
1578 
1579 
1580 	for (i=0 ; i<disks; i++)
1581 		if (bi == &sh->dev[i].req)
1582 			break;
1583 
1584 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1585 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1586 		uptodate);
1587 	if (i == disks) {
1588 		BUG();
1589 		return;
1590 	}
1591 
1592 	if (uptodate) {
1593 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1594 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1595 			rdev = conf->disks[i].rdev;
1596 			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1597 				  " (%lu sectors at %llu on %s)\n",
1598 				  mdname(conf->mddev), STRIPE_SECTORS,
1599 				  (unsigned long long)(sh->sector
1600 						       + rdev->data_offset),
1601 				  bdevname(rdev->bdev, b));
1602 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1603 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1604 		}
1605 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1606 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1607 	} else {
1608 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1609 		int retry = 0;
1610 		rdev = conf->disks[i].rdev;
1611 
1612 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1613 		atomic_inc(&rdev->read_errors);
1614 		if (conf->mddev->degraded >= conf->max_degraded)
1615 			printk_rl(KERN_WARNING
1616 				  "md/raid:%s: read error not correctable "
1617 				  "(sector %llu on %s).\n",
1618 				  mdname(conf->mddev),
1619 				  (unsigned long long)(sh->sector
1620 						       + rdev->data_offset),
1621 				  bdn);
1622 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1623 			/* Oh, no!!! */
1624 			printk_rl(KERN_WARNING
1625 				  "md/raid:%s: read error NOT corrected!! "
1626 				  "(sector %llu on %s).\n",
1627 				  mdname(conf->mddev),
1628 				  (unsigned long long)(sh->sector
1629 						       + rdev->data_offset),
1630 				  bdn);
1631 		else if (atomic_read(&rdev->read_errors)
1632 			 > conf->max_nr_stripes)
1633 			printk(KERN_WARNING
1634 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1635 			       mdname(conf->mddev), bdn);
1636 		else
1637 			retry = 1;
1638 		if (retry)
1639 			set_bit(R5_ReadError, &sh->dev[i].flags);
1640 		else {
1641 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1642 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1643 			md_error(conf->mddev, rdev);
1644 		}
1645 	}
1646 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1647 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1648 	set_bit(STRIPE_HANDLE, &sh->state);
1649 	release_stripe(sh);
1650 }
1651 
1652 static void raid5_end_write_request(struct bio *bi, int error)
1653 {
1654 	struct stripe_head *sh = bi->bi_private;
1655 	raid5_conf_t *conf = sh->raid_conf;
1656 	int disks = sh->disks, i;
1657 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1658 
1659 	for (i=0 ; i<disks; i++)
1660 		if (bi == &sh->dev[i].req)
1661 			break;
1662 
1663 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1664 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1665 		uptodate);
1666 	if (i == disks) {
1667 		BUG();
1668 		return;
1669 	}
1670 
1671 	if (!uptodate)
1672 		md_error(conf->mddev, conf->disks[i].rdev);
1673 
1674 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1675 
1676 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1677 	set_bit(STRIPE_HANDLE, &sh->state);
1678 	release_stripe(sh);
1679 }
1680 
1681 
1682 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1683 
1684 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1685 {
1686 	struct r5dev *dev = &sh->dev[i];
1687 
1688 	bio_init(&dev->req);
1689 	dev->req.bi_io_vec = &dev->vec;
1690 	dev->req.bi_vcnt++;
1691 	dev->req.bi_max_vecs++;
1692 	dev->vec.bv_page = dev->page;
1693 	dev->vec.bv_len = STRIPE_SIZE;
1694 	dev->vec.bv_offset = 0;
1695 
1696 	dev->req.bi_sector = sh->sector;
1697 	dev->req.bi_private = sh;
1698 
1699 	dev->flags = 0;
1700 	dev->sector = compute_blocknr(sh, i, previous);
1701 }
1702 
1703 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1704 {
1705 	char b[BDEVNAME_SIZE];
1706 	raid5_conf_t *conf = mddev->private;
1707 	pr_debug("raid456: error called\n");
1708 
1709 	if (!test_bit(Faulty, &rdev->flags)) {
1710 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1712 			unsigned long flags;
1713 			spin_lock_irqsave(&conf->device_lock, flags);
1714 			mddev->degraded++;
1715 			spin_unlock_irqrestore(&conf->device_lock, flags);
1716 			/*
1717 			 * if recovery was running, make sure it aborts.
1718 			 */
1719 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1720 		}
1721 		set_bit(Faulty, &rdev->flags);
1722 		printk(KERN_ALERT
1723 		       "md/raid:%s: Disk failure on %s, disabling device.\n"
1724 		       KERN_ALERT
1725 		       "md/raid:%s: Operation continuing on %d devices.\n",
1726 		       mdname(mddev),
1727 		       bdevname(rdev->bdev, b),
1728 		       mdname(mddev),
1729 		       conf->raid_disks - mddev->degraded);
1730 	}
1731 }
1732 
1733 /*
1734  * Input: a 'big' sector number,
1735  * Output: index of the data and parity disk, and the sector # in them.
1736  */
1737 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1738 				     int previous, int *dd_idx,
1739 				     struct stripe_head *sh)
1740 {
1741 	sector_t stripe, stripe2;
1742 	sector_t chunk_number;
1743 	unsigned int chunk_offset;
1744 	int pd_idx, qd_idx;
1745 	int ddf_layout = 0;
1746 	sector_t new_sector;
1747 	int algorithm = previous ? conf->prev_algo
1748 				 : conf->algorithm;
1749 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1750 					 : conf->chunk_sectors;
1751 	int raid_disks = previous ? conf->previous_raid_disks
1752 				  : conf->raid_disks;
1753 	int data_disks = raid_disks - conf->max_degraded;
1754 
1755 	/* First compute the information on this sector */
1756 
1757 	/*
1758 	 * Compute the chunk number and the sector offset inside the chunk
1759 	 */
1760 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1761 	chunk_number = r_sector;
1762 
1763 	/*
1764 	 * Compute the stripe number
1765 	 */
1766 	stripe = chunk_number;
1767 	*dd_idx = sector_div(stripe, data_disks);
1768 	stripe2 = stripe;
1769 	/*
1770 	 * Select the parity disk based on the user selected algorithm.
1771 	 */
1772 	pd_idx = qd_idx = ~0;
1773 	switch(conf->level) {
1774 	case 4:
1775 		pd_idx = data_disks;
1776 		break;
1777 	case 5:
1778 		switch (algorithm) {
1779 		case ALGORITHM_LEFT_ASYMMETRIC:
1780 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1781 			if (*dd_idx >= pd_idx)
1782 				(*dd_idx)++;
1783 			break;
1784 		case ALGORITHM_RIGHT_ASYMMETRIC:
1785 			pd_idx = sector_div(stripe2, raid_disks);
1786 			if (*dd_idx >= pd_idx)
1787 				(*dd_idx)++;
1788 			break;
1789 		case ALGORITHM_LEFT_SYMMETRIC:
1790 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1791 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1792 			break;
1793 		case ALGORITHM_RIGHT_SYMMETRIC:
1794 			pd_idx = sector_div(stripe2, raid_disks);
1795 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1796 			break;
1797 		case ALGORITHM_PARITY_0:
1798 			pd_idx = 0;
1799 			(*dd_idx)++;
1800 			break;
1801 		case ALGORITHM_PARITY_N:
1802 			pd_idx = data_disks;
1803 			break;
1804 		default:
1805 			BUG();
1806 		}
1807 		break;
1808 	case 6:
1809 
1810 		switch (algorithm) {
1811 		case ALGORITHM_LEFT_ASYMMETRIC:
1812 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1813 			qd_idx = pd_idx + 1;
1814 			if (pd_idx == raid_disks-1) {
1815 				(*dd_idx)++;	/* Q D D D P */
1816 				qd_idx = 0;
1817 			} else if (*dd_idx >= pd_idx)
1818 				(*dd_idx) += 2; /* D D P Q D */
1819 			break;
1820 		case ALGORITHM_RIGHT_ASYMMETRIC:
1821 			pd_idx = sector_div(stripe2, raid_disks);
1822 			qd_idx = pd_idx + 1;
1823 			if (pd_idx == raid_disks-1) {
1824 				(*dd_idx)++;	/* Q D D D P */
1825 				qd_idx = 0;
1826 			} else if (*dd_idx >= pd_idx)
1827 				(*dd_idx) += 2; /* D D P Q D */
1828 			break;
1829 		case ALGORITHM_LEFT_SYMMETRIC:
1830 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1831 			qd_idx = (pd_idx + 1) % raid_disks;
1832 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1833 			break;
1834 		case ALGORITHM_RIGHT_SYMMETRIC:
1835 			pd_idx = sector_div(stripe2, raid_disks);
1836 			qd_idx = (pd_idx + 1) % raid_disks;
1837 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1838 			break;
1839 
1840 		case ALGORITHM_PARITY_0:
1841 			pd_idx = 0;
1842 			qd_idx = 1;
1843 			(*dd_idx) += 2;
1844 			break;
1845 		case ALGORITHM_PARITY_N:
1846 			pd_idx = data_disks;
1847 			qd_idx = data_disks + 1;
1848 			break;
1849 
1850 		case ALGORITHM_ROTATING_ZERO_RESTART:
1851 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1852 			 * of blocks for computing Q is different.
1853 			 */
1854 			pd_idx = sector_div(stripe2, raid_disks);
1855 			qd_idx = pd_idx + 1;
1856 			if (pd_idx == raid_disks-1) {
1857 				(*dd_idx)++;	/* Q D D D P */
1858 				qd_idx = 0;
1859 			} else if (*dd_idx >= pd_idx)
1860 				(*dd_idx) += 2; /* D D P Q D */
1861 			ddf_layout = 1;
1862 			break;
1863 
1864 		case ALGORITHM_ROTATING_N_RESTART:
1865 			/* Same a left_asymmetric, by first stripe is
1866 			 * D D D P Q  rather than
1867 			 * Q D D D P
1868 			 */
1869 			stripe2 += 1;
1870 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1871 			qd_idx = pd_idx + 1;
1872 			if (pd_idx == raid_disks-1) {
1873 				(*dd_idx)++;	/* Q D D D P */
1874 				qd_idx = 0;
1875 			} else if (*dd_idx >= pd_idx)
1876 				(*dd_idx) += 2; /* D D P Q D */
1877 			ddf_layout = 1;
1878 			break;
1879 
1880 		case ALGORITHM_ROTATING_N_CONTINUE:
1881 			/* Same as left_symmetric but Q is before P */
1882 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1883 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1884 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1885 			ddf_layout = 1;
1886 			break;
1887 
1888 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1889 			/* RAID5 left_asymmetric, with Q on last device */
1890 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1891 			if (*dd_idx >= pd_idx)
1892 				(*dd_idx)++;
1893 			qd_idx = raid_disks - 1;
1894 			break;
1895 
1896 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1897 			pd_idx = sector_div(stripe2, raid_disks-1);
1898 			if (*dd_idx >= pd_idx)
1899 				(*dd_idx)++;
1900 			qd_idx = raid_disks - 1;
1901 			break;
1902 
1903 		case ALGORITHM_LEFT_SYMMETRIC_6:
1904 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1905 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1906 			qd_idx = raid_disks - 1;
1907 			break;
1908 
1909 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1910 			pd_idx = sector_div(stripe2, raid_disks-1);
1911 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1912 			qd_idx = raid_disks - 1;
1913 			break;
1914 
1915 		case ALGORITHM_PARITY_0_6:
1916 			pd_idx = 0;
1917 			(*dd_idx)++;
1918 			qd_idx = raid_disks - 1;
1919 			break;
1920 
1921 		default:
1922 			BUG();
1923 		}
1924 		break;
1925 	}
1926 
1927 	if (sh) {
1928 		sh->pd_idx = pd_idx;
1929 		sh->qd_idx = qd_idx;
1930 		sh->ddf_layout = ddf_layout;
1931 	}
1932 	/*
1933 	 * Finally, compute the new sector number
1934 	 */
1935 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1936 	return new_sector;
1937 }
1938 
1939 
1940 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1941 {
1942 	raid5_conf_t *conf = sh->raid_conf;
1943 	int raid_disks = sh->disks;
1944 	int data_disks = raid_disks - conf->max_degraded;
1945 	sector_t new_sector = sh->sector, check;
1946 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1947 					 : conf->chunk_sectors;
1948 	int algorithm = previous ? conf->prev_algo
1949 				 : conf->algorithm;
1950 	sector_t stripe;
1951 	int chunk_offset;
1952 	sector_t chunk_number;
1953 	int dummy1, dd_idx = i;
1954 	sector_t r_sector;
1955 	struct stripe_head sh2;
1956 
1957 
1958 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1959 	stripe = new_sector;
1960 
1961 	if (i == sh->pd_idx)
1962 		return 0;
1963 	switch(conf->level) {
1964 	case 4: break;
1965 	case 5:
1966 		switch (algorithm) {
1967 		case ALGORITHM_LEFT_ASYMMETRIC:
1968 		case ALGORITHM_RIGHT_ASYMMETRIC:
1969 			if (i > sh->pd_idx)
1970 				i--;
1971 			break;
1972 		case ALGORITHM_LEFT_SYMMETRIC:
1973 		case ALGORITHM_RIGHT_SYMMETRIC:
1974 			if (i < sh->pd_idx)
1975 				i += raid_disks;
1976 			i -= (sh->pd_idx + 1);
1977 			break;
1978 		case ALGORITHM_PARITY_0:
1979 			i -= 1;
1980 			break;
1981 		case ALGORITHM_PARITY_N:
1982 			break;
1983 		default:
1984 			BUG();
1985 		}
1986 		break;
1987 	case 6:
1988 		if (i == sh->qd_idx)
1989 			return 0; /* It is the Q disk */
1990 		switch (algorithm) {
1991 		case ALGORITHM_LEFT_ASYMMETRIC:
1992 		case ALGORITHM_RIGHT_ASYMMETRIC:
1993 		case ALGORITHM_ROTATING_ZERO_RESTART:
1994 		case ALGORITHM_ROTATING_N_RESTART:
1995 			if (sh->pd_idx == raid_disks-1)
1996 				i--;	/* Q D D D P */
1997 			else if (i > sh->pd_idx)
1998 				i -= 2; /* D D P Q D */
1999 			break;
2000 		case ALGORITHM_LEFT_SYMMETRIC:
2001 		case ALGORITHM_RIGHT_SYMMETRIC:
2002 			if (sh->pd_idx == raid_disks-1)
2003 				i--; /* Q D D D P */
2004 			else {
2005 				/* D D P Q D */
2006 				if (i < sh->pd_idx)
2007 					i += raid_disks;
2008 				i -= (sh->pd_idx + 2);
2009 			}
2010 			break;
2011 		case ALGORITHM_PARITY_0:
2012 			i -= 2;
2013 			break;
2014 		case ALGORITHM_PARITY_N:
2015 			break;
2016 		case ALGORITHM_ROTATING_N_CONTINUE:
2017 			/* Like left_symmetric, but P is before Q */
2018 			if (sh->pd_idx == 0)
2019 				i--;	/* P D D D Q */
2020 			else {
2021 				/* D D Q P D */
2022 				if (i < sh->pd_idx)
2023 					i += raid_disks;
2024 				i -= (sh->pd_idx + 1);
2025 			}
2026 			break;
2027 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2028 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2029 			if (i > sh->pd_idx)
2030 				i--;
2031 			break;
2032 		case ALGORITHM_LEFT_SYMMETRIC_6:
2033 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2034 			if (i < sh->pd_idx)
2035 				i += data_disks + 1;
2036 			i -= (sh->pd_idx + 1);
2037 			break;
2038 		case ALGORITHM_PARITY_0_6:
2039 			i -= 1;
2040 			break;
2041 		default:
2042 			BUG();
2043 		}
2044 		break;
2045 	}
2046 
2047 	chunk_number = stripe * data_disks + i;
2048 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2049 
2050 	check = raid5_compute_sector(conf, r_sector,
2051 				     previous, &dummy1, &sh2);
2052 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2053 		|| sh2.qd_idx != sh->qd_idx) {
2054 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2055 		       mdname(conf->mddev));
2056 		return 0;
2057 	}
2058 	return r_sector;
2059 }
2060 
2061 
2062 static void
2063 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2064 			 int rcw, int expand)
2065 {
2066 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2067 	raid5_conf_t *conf = sh->raid_conf;
2068 	int level = conf->level;
2069 
2070 	if (rcw) {
2071 		/* if we are not expanding this is a proper write request, and
2072 		 * there will be bios with new data to be drained into the
2073 		 * stripe cache
2074 		 */
2075 		if (!expand) {
2076 			sh->reconstruct_state = reconstruct_state_drain_run;
2077 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2078 		} else
2079 			sh->reconstruct_state = reconstruct_state_run;
2080 
2081 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2082 
2083 		for (i = disks; i--; ) {
2084 			struct r5dev *dev = &sh->dev[i];
2085 
2086 			if (dev->towrite) {
2087 				set_bit(R5_LOCKED, &dev->flags);
2088 				set_bit(R5_Wantdrain, &dev->flags);
2089 				if (!expand)
2090 					clear_bit(R5_UPTODATE, &dev->flags);
2091 				s->locked++;
2092 			}
2093 		}
2094 		if (s->locked + conf->max_degraded == disks)
2095 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2096 				atomic_inc(&conf->pending_full_writes);
2097 	} else {
2098 		BUG_ON(level == 6);
2099 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2100 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2101 
2102 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2103 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2104 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2105 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2106 
2107 		for (i = disks; i--; ) {
2108 			struct r5dev *dev = &sh->dev[i];
2109 			if (i == pd_idx)
2110 				continue;
2111 
2112 			if (dev->towrite &&
2113 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2114 			     test_bit(R5_Wantcompute, &dev->flags))) {
2115 				set_bit(R5_Wantdrain, &dev->flags);
2116 				set_bit(R5_LOCKED, &dev->flags);
2117 				clear_bit(R5_UPTODATE, &dev->flags);
2118 				s->locked++;
2119 			}
2120 		}
2121 	}
2122 
2123 	/* keep the parity disk(s) locked while asynchronous operations
2124 	 * are in flight
2125 	 */
2126 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2127 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2128 	s->locked++;
2129 
2130 	if (level == 6) {
2131 		int qd_idx = sh->qd_idx;
2132 		struct r5dev *dev = &sh->dev[qd_idx];
2133 
2134 		set_bit(R5_LOCKED, &dev->flags);
2135 		clear_bit(R5_UPTODATE, &dev->flags);
2136 		s->locked++;
2137 	}
2138 
2139 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2140 		__func__, (unsigned long long)sh->sector,
2141 		s->locked, s->ops_request);
2142 }
2143 
2144 /*
2145  * Each stripe/dev can have one or more bion attached.
2146  * toread/towrite point to the first in a chain.
2147  * The bi_next chain must be in order.
2148  */
2149 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2150 {
2151 	struct bio **bip;
2152 	raid5_conf_t *conf = sh->raid_conf;
2153 	int firstwrite=0;
2154 
2155 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2156 		(unsigned long long)bi->bi_sector,
2157 		(unsigned long long)sh->sector);
2158 
2159 
2160 	spin_lock(&sh->lock);
2161 	spin_lock_irq(&conf->device_lock);
2162 	if (forwrite) {
2163 		bip = &sh->dev[dd_idx].towrite;
2164 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2165 			firstwrite = 1;
2166 	} else
2167 		bip = &sh->dev[dd_idx].toread;
2168 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2169 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2170 			goto overlap;
2171 		bip = & (*bip)->bi_next;
2172 	}
2173 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2174 		goto overlap;
2175 
2176 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2177 	if (*bip)
2178 		bi->bi_next = *bip;
2179 	*bip = bi;
2180 	bi->bi_phys_segments++;
2181 	spin_unlock_irq(&conf->device_lock);
2182 	spin_unlock(&sh->lock);
2183 
2184 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2185 		(unsigned long long)bi->bi_sector,
2186 		(unsigned long long)sh->sector, dd_idx);
2187 
2188 	if (conf->mddev->bitmap && firstwrite) {
2189 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2190 				  STRIPE_SECTORS, 0);
2191 		sh->bm_seq = conf->seq_flush+1;
2192 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2193 	}
2194 
2195 	if (forwrite) {
2196 		/* check if page is covered */
2197 		sector_t sector = sh->dev[dd_idx].sector;
2198 		for (bi=sh->dev[dd_idx].towrite;
2199 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2200 			     bi && bi->bi_sector <= sector;
2201 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2202 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2203 				sector = bi->bi_sector + (bi->bi_size>>9);
2204 		}
2205 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2206 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2207 	}
2208 	return 1;
2209 
2210  overlap:
2211 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2212 	spin_unlock_irq(&conf->device_lock);
2213 	spin_unlock(&sh->lock);
2214 	return 0;
2215 }
2216 
2217 static void end_reshape(raid5_conf_t *conf);
2218 
2219 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2220 			    struct stripe_head *sh)
2221 {
2222 	int sectors_per_chunk =
2223 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2224 	int dd_idx;
2225 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2226 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2227 
2228 	raid5_compute_sector(conf,
2229 			     stripe * (disks - conf->max_degraded)
2230 			     *sectors_per_chunk + chunk_offset,
2231 			     previous,
2232 			     &dd_idx, sh);
2233 }
2234 
2235 static void
2236 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2237 				struct stripe_head_state *s, int disks,
2238 				struct bio **return_bi)
2239 {
2240 	int i;
2241 	for (i = disks; i--; ) {
2242 		struct bio *bi;
2243 		int bitmap_end = 0;
2244 
2245 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2246 			mdk_rdev_t *rdev;
2247 			rcu_read_lock();
2248 			rdev = rcu_dereference(conf->disks[i].rdev);
2249 			if (rdev && test_bit(In_sync, &rdev->flags))
2250 				/* multiple read failures in one stripe */
2251 				md_error(conf->mddev, rdev);
2252 			rcu_read_unlock();
2253 		}
2254 		spin_lock_irq(&conf->device_lock);
2255 		/* fail all writes first */
2256 		bi = sh->dev[i].towrite;
2257 		sh->dev[i].towrite = NULL;
2258 		if (bi) {
2259 			s->to_write--;
2260 			bitmap_end = 1;
2261 		}
2262 
2263 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2264 			wake_up(&conf->wait_for_overlap);
2265 
2266 		while (bi && bi->bi_sector <
2267 			sh->dev[i].sector + STRIPE_SECTORS) {
2268 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2269 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2270 			if (!raid5_dec_bi_phys_segments(bi)) {
2271 				md_write_end(conf->mddev);
2272 				bi->bi_next = *return_bi;
2273 				*return_bi = bi;
2274 			}
2275 			bi = nextbi;
2276 		}
2277 		/* and fail all 'written' */
2278 		bi = sh->dev[i].written;
2279 		sh->dev[i].written = NULL;
2280 		if (bi) bitmap_end = 1;
2281 		while (bi && bi->bi_sector <
2282 		       sh->dev[i].sector + STRIPE_SECTORS) {
2283 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2284 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2285 			if (!raid5_dec_bi_phys_segments(bi)) {
2286 				md_write_end(conf->mddev);
2287 				bi->bi_next = *return_bi;
2288 				*return_bi = bi;
2289 			}
2290 			bi = bi2;
2291 		}
2292 
2293 		/* fail any reads if this device is non-operational and
2294 		 * the data has not reached the cache yet.
2295 		 */
2296 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2297 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2298 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2299 			bi = sh->dev[i].toread;
2300 			sh->dev[i].toread = NULL;
2301 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2302 				wake_up(&conf->wait_for_overlap);
2303 			if (bi) s->to_read--;
2304 			while (bi && bi->bi_sector <
2305 			       sh->dev[i].sector + STRIPE_SECTORS) {
2306 				struct bio *nextbi =
2307 					r5_next_bio(bi, sh->dev[i].sector);
2308 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2309 				if (!raid5_dec_bi_phys_segments(bi)) {
2310 					bi->bi_next = *return_bi;
2311 					*return_bi = bi;
2312 				}
2313 				bi = nextbi;
2314 			}
2315 		}
2316 		spin_unlock_irq(&conf->device_lock);
2317 		if (bitmap_end)
2318 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2319 					STRIPE_SECTORS, 0, 0);
2320 	}
2321 
2322 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2323 		if (atomic_dec_and_test(&conf->pending_full_writes))
2324 			md_wakeup_thread(conf->mddev->thread);
2325 }
2326 
2327 /* fetch_block5 - checks the given member device to see if its data needs
2328  * to be read or computed to satisfy a request.
2329  *
2330  * Returns 1 when no more member devices need to be checked, otherwise returns
2331  * 0 to tell the loop in handle_stripe_fill5 to continue
2332  */
2333 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2334 			int disk_idx, int disks)
2335 {
2336 	struct r5dev *dev = &sh->dev[disk_idx];
2337 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2338 
2339 	/* is the data in this block needed, and can we get it? */
2340 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2341 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2342 	    (dev->toread ||
2343 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2344 	     s->syncing || s->expanding ||
2345 	     (s->failed &&
2346 	      (failed_dev->toread ||
2347 	       (failed_dev->towrite &&
2348 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2349 		/* We would like to get this block, possibly by computing it,
2350 		 * otherwise read it if the backing disk is insync
2351 		 */
2352 		if ((s->uptodate == disks - 1) &&
2353 		    (s->failed && disk_idx == s->failed_num)) {
2354 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356 			set_bit(R5_Wantcompute, &dev->flags);
2357 			sh->ops.target = disk_idx;
2358 			sh->ops.target2 = -1;
2359 			s->req_compute = 1;
2360 			/* Careful: from this point on 'uptodate' is in the eye
2361 			 * of raid_run_ops which services 'compute' operations
2362 			 * before writes. R5_Wantcompute flags a block that will
2363 			 * be R5_UPTODATE by the time it is needed for a
2364 			 * subsequent operation.
2365 			 */
2366 			s->uptodate++;
2367 			return 1; /* uptodate + compute == disks */
2368 		} else if (test_bit(R5_Insync, &dev->flags)) {
2369 			set_bit(R5_LOCKED, &dev->flags);
2370 			set_bit(R5_Wantread, &dev->flags);
2371 			s->locked++;
2372 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2373 				s->syncing);
2374 		}
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 /**
2381  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2382  */
2383 static void handle_stripe_fill5(struct stripe_head *sh,
2384 			struct stripe_head_state *s, int disks)
2385 {
2386 	int i;
2387 
2388 	/* look for blocks to read/compute, skip this if a compute
2389 	 * is already in flight, or if the stripe contents are in the
2390 	 * midst of changing due to a write
2391 	 */
2392 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2393 	    !sh->reconstruct_state)
2394 		for (i = disks; i--; )
2395 			if (fetch_block5(sh, s, i, disks))
2396 				break;
2397 	set_bit(STRIPE_HANDLE, &sh->state);
2398 }
2399 
2400 /* fetch_block6 - checks the given member device to see if its data needs
2401  * to be read or computed to satisfy a request.
2402  *
2403  * Returns 1 when no more member devices need to be checked, otherwise returns
2404  * 0 to tell the loop in handle_stripe_fill6 to continue
2405  */
2406 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2407 			 struct r6_state *r6s, int disk_idx, int disks)
2408 {
2409 	struct r5dev *dev = &sh->dev[disk_idx];
2410 	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2411 				  &sh->dev[r6s->failed_num[1]] };
2412 
2413 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2414 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2415 	    (dev->toread ||
2416 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2417 	     s->syncing || s->expanding ||
2418 	     (s->failed >= 1 &&
2419 	      (fdev[0]->toread || s->to_write)) ||
2420 	     (s->failed >= 2 &&
2421 	      (fdev[1]->toread || s->to_write)))) {
2422 		/* we would like to get this block, possibly by computing it,
2423 		 * otherwise read it if the backing disk is insync
2424 		 */
2425 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2426 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2427 		if ((s->uptodate == disks - 1) &&
2428 		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2429 				   disk_idx == r6s->failed_num[1]))) {
2430 			/* have disk failed, and we're requested to fetch it;
2431 			 * do compute it
2432 			 */
2433 			pr_debug("Computing stripe %llu block %d\n",
2434 			       (unsigned long long)sh->sector, disk_idx);
2435 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2436 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2437 			set_bit(R5_Wantcompute, &dev->flags);
2438 			sh->ops.target = disk_idx;
2439 			sh->ops.target2 = -1; /* no 2nd target */
2440 			s->req_compute = 1;
2441 			s->uptodate++;
2442 			return 1;
2443 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2444 			/* Computing 2-failure is *very* expensive; only
2445 			 * do it if failed >= 2
2446 			 */
2447 			int other;
2448 			for (other = disks; other--; ) {
2449 				if (other == disk_idx)
2450 					continue;
2451 				if (!test_bit(R5_UPTODATE,
2452 				      &sh->dev[other].flags))
2453 					break;
2454 			}
2455 			BUG_ON(other < 0);
2456 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2457 			       (unsigned long long)sh->sector,
2458 			       disk_idx, other);
2459 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2460 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2461 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2462 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2463 			sh->ops.target = disk_idx;
2464 			sh->ops.target2 = other;
2465 			s->uptodate += 2;
2466 			s->req_compute = 1;
2467 			return 1;
2468 		} else if (test_bit(R5_Insync, &dev->flags)) {
2469 			set_bit(R5_LOCKED, &dev->flags);
2470 			set_bit(R5_Wantread, &dev->flags);
2471 			s->locked++;
2472 			pr_debug("Reading block %d (sync=%d)\n",
2473 				disk_idx, s->syncing);
2474 		}
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 /**
2481  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2482  */
2483 static void handle_stripe_fill6(struct stripe_head *sh,
2484 			struct stripe_head_state *s, struct r6_state *r6s,
2485 			int disks)
2486 {
2487 	int i;
2488 
2489 	/* look for blocks to read/compute, skip this if a compute
2490 	 * is already in flight, or if the stripe contents are in the
2491 	 * midst of changing due to a write
2492 	 */
2493 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2494 	    !sh->reconstruct_state)
2495 		for (i = disks; i--; )
2496 			if (fetch_block6(sh, s, r6s, i, disks))
2497 				break;
2498 	set_bit(STRIPE_HANDLE, &sh->state);
2499 }
2500 
2501 
2502 /* handle_stripe_clean_event
2503  * any written block on an uptodate or failed drive can be returned.
2504  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2505  * never LOCKED, so we don't need to test 'failed' directly.
2506  */
2507 static void handle_stripe_clean_event(raid5_conf_t *conf,
2508 	struct stripe_head *sh, int disks, struct bio **return_bi)
2509 {
2510 	int i;
2511 	struct r5dev *dev;
2512 
2513 	for (i = disks; i--; )
2514 		if (sh->dev[i].written) {
2515 			dev = &sh->dev[i];
2516 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2517 				test_bit(R5_UPTODATE, &dev->flags)) {
2518 				/* We can return any write requests */
2519 				struct bio *wbi, *wbi2;
2520 				int bitmap_end = 0;
2521 				pr_debug("Return write for disc %d\n", i);
2522 				spin_lock_irq(&conf->device_lock);
2523 				wbi = dev->written;
2524 				dev->written = NULL;
2525 				while (wbi && wbi->bi_sector <
2526 					dev->sector + STRIPE_SECTORS) {
2527 					wbi2 = r5_next_bio(wbi, dev->sector);
2528 					if (!raid5_dec_bi_phys_segments(wbi)) {
2529 						md_write_end(conf->mddev);
2530 						wbi->bi_next = *return_bi;
2531 						*return_bi = wbi;
2532 					}
2533 					wbi = wbi2;
2534 				}
2535 				if (dev->towrite == NULL)
2536 					bitmap_end = 1;
2537 				spin_unlock_irq(&conf->device_lock);
2538 				if (bitmap_end)
2539 					bitmap_endwrite(conf->mddev->bitmap,
2540 							sh->sector,
2541 							STRIPE_SECTORS,
2542 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2543 							0);
2544 			}
2545 		}
2546 
2547 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2548 		if (atomic_dec_and_test(&conf->pending_full_writes))
2549 			md_wakeup_thread(conf->mddev->thread);
2550 }
2551 
2552 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2553 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2554 {
2555 	int rmw = 0, rcw = 0, i;
2556 	for (i = disks; i--; ) {
2557 		/* would I have to read this buffer for read_modify_write */
2558 		struct r5dev *dev = &sh->dev[i];
2559 		if ((dev->towrite || i == sh->pd_idx) &&
2560 		    !test_bit(R5_LOCKED, &dev->flags) &&
2561 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2562 		      test_bit(R5_Wantcompute, &dev->flags))) {
2563 			if (test_bit(R5_Insync, &dev->flags))
2564 				rmw++;
2565 			else
2566 				rmw += 2*disks;  /* cannot read it */
2567 		}
2568 		/* Would I have to read this buffer for reconstruct_write */
2569 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2570 		    !test_bit(R5_LOCKED, &dev->flags) &&
2571 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2572 		    test_bit(R5_Wantcompute, &dev->flags))) {
2573 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2574 			else
2575 				rcw += 2*disks;
2576 		}
2577 	}
2578 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2579 		(unsigned long long)sh->sector, rmw, rcw);
2580 	set_bit(STRIPE_HANDLE, &sh->state);
2581 	if (rmw < rcw && rmw > 0)
2582 		/* prefer read-modify-write, but need to get some data */
2583 		for (i = disks; i--; ) {
2584 			struct r5dev *dev = &sh->dev[i];
2585 			if ((dev->towrite || i == sh->pd_idx) &&
2586 			    !test_bit(R5_LOCKED, &dev->flags) &&
2587 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2588 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2589 			    test_bit(R5_Insync, &dev->flags)) {
2590 				if (
2591 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2592 					pr_debug("Read_old block "
2593 						"%d for r-m-w\n", i);
2594 					set_bit(R5_LOCKED, &dev->flags);
2595 					set_bit(R5_Wantread, &dev->flags);
2596 					s->locked++;
2597 				} else {
2598 					set_bit(STRIPE_DELAYED, &sh->state);
2599 					set_bit(STRIPE_HANDLE, &sh->state);
2600 				}
2601 			}
2602 		}
2603 	if (rcw <= rmw && rcw > 0)
2604 		/* want reconstruct write, but need to get some data */
2605 		for (i = disks; i--; ) {
2606 			struct r5dev *dev = &sh->dev[i];
2607 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2608 			    i != sh->pd_idx &&
2609 			    !test_bit(R5_LOCKED, &dev->flags) &&
2610 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2611 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2612 			    test_bit(R5_Insync, &dev->flags)) {
2613 				if (
2614 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2615 					pr_debug("Read_old block "
2616 						"%d for Reconstruct\n", i);
2617 					set_bit(R5_LOCKED, &dev->flags);
2618 					set_bit(R5_Wantread, &dev->flags);
2619 					s->locked++;
2620 				} else {
2621 					set_bit(STRIPE_DELAYED, &sh->state);
2622 					set_bit(STRIPE_HANDLE, &sh->state);
2623 				}
2624 			}
2625 		}
2626 	/* now if nothing is locked, and if we have enough data,
2627 	 * we can start a write request
2628 	 */
2629 	/* since handle_stripe can be called at any time we need to handle the
2630 	 * case where a compute block operation has been submitted and then a
2631 	 * subsequent call wants to start a write request.  raid_run_ops only
2632 	 * handles the case where compute block and reconstruct are requested
2633 	 * simultaneously.  If this is not the case then new writes need to be
2634 	 * held off until the compute completes.
2635 	 */
2636 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2637 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2638 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2639 		schedule_reconstruction(sh, s, rcw == 0, 0);
2640 }
2641 
2642 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2643 		struct stripe_head *sh,	struct stripe_head_state *s,
2644 		struct r6_state *r6s, int disks)
2645 {
2646 	int rcw = 0, pd_idx = sh->pd_idx, i;
2647 	int qd_idx = sh->qd_idx;
2648 
2649 	set_bit(STRIPE_HANDLE, &sh->state);
2650 	for (i = disks; i--; ) {
2651 		struct r5dev *dev = &sh->dev[i];
2652 		/* check if we haven't enough data */
2653 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2654 		    i != pd_idx && i != qd_idx &&
2655 		    !test_bit(R5_LOCKED, &dev->flags) &&
2656 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2657 		      test_bit(R5_Wantcompute, &dev->flags))) {
2658 			rcw++;
2659 			if (!test_bit(R5_Insync, &dev->flags))
2660 				continue; /* it's a failed drive */
2661 
2662 			if (
2663 			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2664 				pr_debug("Read_old stripe %llu "
2665 					"block %d for Reconstruct\n",
2666 				     (unsigned long long)sh->sector, i);
2667 				set_bit(R5_LOCKED, &dev->flags);
2668 				set_bit(R5_Wantread, &dev->flags);
2669 				s->locked++;
2670 			} else {
2671 				pr_debug("Request delayed stripe %llu "
2672 					"block %d for Reconstruct\n",
2673 				     (unsigned long long)sh->sector, i);
2674 				set_bit(STRIPE_DELAYED, &sh->state);
2675 				set_bit(STRIPE_HANDLE, &sh->state);
2676 			}
2677 		}
2678 	}
2679 	/* now if nothing is locked, and if we have enough data, we can start a
2680 	 * write request
2681 	 */
2682 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2683 	    s->locked == 0 && rcw == 0 &&
2684 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2685 		schedule_reconstruction(sh, s, 1, 0);
2686 	}
2687 }
2688 
2689 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2690 				struct stripe_head_state *s, int disks)
2691 {
2692 	struct r5dev *dev = NULL;
2693 
2694 	set_bit(STRIPE_HANDLE, &sh->state);
2695 
2696 	switch (sh->check_state) {
2697 	case check_state_idle:
2698 		/* start a new check operation if there are no failures */
2699 		if (s->failed == 0) {
2700 			BUG_ON(s->uptodate != disks);
2701 			sh->check_state = check_state_run;
2702 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2703 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2704 			s->uptodate--;
2705 			break;
2706 		}
2707 		dev = &sh->dev[s->failed_num];
2708 		/* fall through */
2709 	case check_state_compute_result:
2710 		sh->check_state = check_state_idle;
2711 		if (!dev)
2712 			dev = &sh->dev[sh->pd_idx];
2713 
2714 		/* check that a write has not made the stripe insync */
2715 		if (test_bit(STRIPE_INSYNC, &sh->state))
2716 			break;
2717 
2718 		/* either failed parity check, or recovery is happening */
2719 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2720 		BUG_ON(s->uptodate != disks);
2721 
2722 		set_bit(R5_LOCKED, &dev->flags);
2723 		s->locked++;
2724 		set_bit(R5_Wantwrite, &dev->flags);
2725 
2726 		clear_bit(STRIPE_DEGRADED, &sh->state);
2727 		set_bit(STRIPE_INSYNC, &sh->state);
2728 		break;
2729 	case check_state_run:
2730 		break; /* we will be called again upon completion */
2731 	case check_state_check_result:
2732 		sh->check_state = check_state_idle;
2733 
2734 		/* if a failure occurred during the check operation, leave
2735 		 * STRIPE_INSYNC not set and let the stripe be handled again
2736 		 */
2737 		if (s->failed)
2738 			break;
2739 
2740 		/* handle a successful check operation, if parity is correct
2741 		 * we are done.  Otherwise update the mismatch count and repair
2742 		 * parity if !MD_RECOVERY_CHECK
2743 		 */
2744 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2745 			/* parity is correct (on disc,
2746 			 * not in buffer any more)
2747 			 */
2748 			set_bit(STRIPE_INSYNC, &sh->state);
2749 		else {
2750 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2751 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2752 				/* don't try to repair!! */
2753 				set_bit(STRIPE_INSYNC, &sh->state);
2754 			else {
2755 				sh->check_state = check_state_compute_run;
2756 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2757 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2758 				set_bit(R5_Wantcompute,
2759 					&sh->dev[sh->pd_idx].flags);
2760 				sh->ops.target = sh->pd_idx;
2761 				sh->ops.target2 = -1;
2762 				s->uptodate++;
2763 			}
2764 		}
2765 		break;
2766 	case check_state_compute_run:
2767 		break;
2768 	default:
2769 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2770 		       __func__, sh->check_state,
2771 		       (unsigned long long) sh->sector);
2772 		BUG();
2773 	}
2774 }
2775 
2776 
2777 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2778 				  struct stripe_head_state *s,
2779 				  struct r6_state *r6s, int disks)
2780 {
2781 	int pd_idx = sh->pd_idx;
2782 	int qd_idx = sh->qd_idx;
2783 	struct r5dev *dev;
2784 
2785 	set_bit(STRIPE_HANDLE, &sh->state);
2786 
2787 	BUG_ON(s->failed > 2);
2788 
2789 	/* Want to check and possibly repair P and Q.
2790 	 * However there could be one 'failed' device, in which
2791 	 * case we can only check one of them, possibly using the
2792 	 * other to generate missing data
2793 	 */
2794 
2795 	switch (sh->check_state) {
2796 	case check_state_idle:
2797 		/* start a new check operation if there are < 2 failures */
2798 		if (s->failed == r6s->q_failed) {
2799 			/* The only possible failed device holds Q, so it
2800 			 * makes sense to check P (If anything else were failed,
2801 			 * we would have used P to recreate it).
2802 			 */
2803 			sh->check_state = check_state_run;
2804 		}
2805 		if (!r6s->q_failed && s->failed < 2) {
2806 			/* Q is not failed, and we didn't use it to generate
2807 			 * anything, so it makes sense to check it
2808 			 */
2809 			if (sh->check_state == check_state_run)
2810 				sh->check_state = check_state_run_pq;
2811 			else
2812 				sh->check_state = check_state_run_q;
2813 		}
2814 
2815 		/* discard potentially stale zero_sum_result */
2816 		sh->ops.zero_sum_result = 0;
2817 
2818 		if (sh->check_state == check_state_run) {
2819 			/* async_xor_zero_sum destroys the contents of P */
2820 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2821 			s->uptodate--;
2822 		}
2823 		if (sh->check_state >= check_state_run &&
2824 		    sh->check_state <= check_state_run_pq) {
2825 			/* async_syndrome_zero_sum preserves P and Q, so
2826 			 * no need to mark them !uptodate here
2827 			 */
2828 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2829 			break;
2830 		}
2831 
2832 		/* we have 2-disk failure */
2833 		BUG_ON(s->failed != 2);
2834 		/* fall through */
2835 	case check_state_compute_result:
2836 		sh->check_state = check_state_idle;
2837 
2838 		/* check that a write has not made the stripe insync */
2839 		if (test_bit(STRIPE_INSYNC, &sh->state))
2840 			break;
2841 
2842 		/* now write out any block on a failed drive,
2843 		 * or P or Q if they were recomputed
2844 		 */
2845 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2846 		if (s->failed == 2) {
2847 			dev = &sh->dev[r6s->failed_num[1]];
2848 			s->locked++;
2849 			set_bit(R5_LOCKED, &dev->flags);
2850 			set_bit(R5_Wantwrite, &dev->flags);
2851 		}
2852 		if (s->failed >= 1) {
2853 			dev = &sh->dev[r6s->failed_num[0]];
2854 			s->locked++;
2855 			set_bit(R5_LOCKED, &dev->flags);
2856 			set_bit(R5_Wantwrite, &dev->flags);
2857 		}
2858 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2859 			dev = &sh->dev[pd_idx];
2860 			s->locked++;
2861 			set_bit(R5_LOCKED, &dev->flags);
2862 			set_bit(R5_Wantwrite, &dev->flags);
2863 		}
2864 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2865 			dev = &sh->dev[qd_idx];
2866 			s->locked++;
2867 			set_bit(R5_LOCKED, &dev->flags);
2868 			set_bit(R5_Wantwrite, &dev->flags);
2869 		}
2870 		clear_bit(STRIPE_DEGRADED, &sh->state);
2871 
2872 		set_bit(STRIPE_INSYNC, &sh->state);
2873 		break;
2874 	case check_state_run:
2875 	case check_state_run_q:
2876 	case check_state_run_pq:
2877 		break; /* we will be called again upon completion */
2878 	case check_state_check_result:
2879 		sh->check_state = check_state_idle;
2880 
2881 		/* handle a successful check operation, if parity is correct
2882 		 * we are done.  Otherwise update the mismatch count and repair
2883 		 * parity if !MD_RECOVERY_CHECK
2884 		 */
2885 		if (sh->ops.zero_sum_result == 0) {
2886 			/* both parities are correct */
2887 			if (!s->failed)
2888 				set_bit(STRIPE_INSYNC, &sh->state);
2889 			else {
2890 				/* in contrast to the raid5 case we can validate
2891 				 * parity, but still have a failure to write
2892 				 * back
2893 				 */
2894 				sh->check_state = check_state_compute_result;
2895 				/* Returning at this point means that we may go
2896 				 * off and bring p and/or q uptodate again so
2897 				 * we make sure to check zero_sum_result again
2898 				 * to verify if p or q need writeback
2899 				 */
2900 			}
2901 		} else {
2902 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2903 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2904 				/* don't try to repair!! */
2905 				set_bit(STRIPE_INSYNC, &sh->state);
2906 			else {
2907 				int *target = &sh->ops.target;
2908 
2909 				sh->ops.target = -1;
2910 				sh->ops.target2 = -1;
2911 				sh->check_state = check_state_compute_run;
2912 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2913 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2914 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2915 					set_bit(R5_Wantcompute,
2916 						&sh->dev[pd_idx].flags);
2917 					*target = pd_idx;
2918 					target = &sh->ops.target2;
2919 					s->uptodate++;
2920 				}
2921 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2922 					set_bit(R5_Wantcompute,
2923 						&sh->dev[qd_idx].flags);
2924 					*target = qd_idx;
2925 					s->uptodate++;
2926 				}
2927 			}
2928 		}
2929 		break;
2930 	case check_state_compute_run:
2931 		break;
2932 	default:
2933 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2934 		       __func__, sh->check_state,
2935 		       (unsigned long long) sh->sector);
2936 		BUG();
2937 	}
2938 }
2939 
2940 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2941 				struct r6_state *r6s)
2942 {
2943 	int i;
2944 
2945 	/* We have read all the blocks in this stripe and now we need to
2946 	 * copy some of them into a target stripe for expand.
2947 	 */
2948 	struct dma_async_tx_descriptor *tx = NULL;
2949 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2950 	for (i = 0; i < sh->disks; i++)
2951 		if (i != sh->pd_idx && i != sh->qd_idx) {
2952 			int dd_idx, j;
2953 			struct stripe_head *sh2;
2954 			struct async_submit_ctl submit;
2955 
2956 			sector_t bn = compute_blocknr(sh, i, 1);
2957 			sector_t s = raid5_compute_sector(conf, bn, 0,
2958 							  &dd_idx, NULL);
2959 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2960 			if (sh2 == NULL)
2961 				/* so far only the early blocks of this stripe
2962 				 * have been requested.  When later blocks
2963 				 * get requested, we will try again
2964 				 */
2965 				continue;
2966 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2967 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2968 				/* must have already done this block */
2969 				release_stripe(sh2);
2970 				continue;
2971 			}
2972 
2973 			/* place all the copies on one channel */
2974 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2975 			tx = async_memcpy(sh2->dev[dd_idx].page,
2976 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2977 					  &submit);
2978 
2979 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2980 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2981 			for (j = 0; j < conf->raid_disks; j++)
2982 				if (j != sh2->pd_idx &&
2983 				    (!r6s || j != sh2->qd_idx) &&
2984 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2985 					break;
2986 			if (j == conf->raid_disks) {
2987 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2988 				set_bit(STRIPE_HANDLE, &sh2->state);
2989 			}
2990 			release_stripe(sh2);
2991 
2992 		}
2993 	/* done submitting copies, wait for them to complete */
2994 	if (tx) {
2995 		async_tx_ack(tx);
2996 		dma_wait_for_async_tx(tx);
2997 	}
2998 }
2999 
3000 
3001 /*
3002  * handle_stripe - do things to a stripe.
3003  *
3004  * We lock the stripe and then examine the state of various bits
3005  * to see what needs to be done.
3006  * Possible results:
3007  *    return some read request which now have data
3008  *    return some write requests which are safely on disc
3009  *    schedule a read on some buffers
3010  *    schedule a write of some buffers
3011  *    return confirmation of parity correctness
3012  *
3013  * buffers are taken off read_list or write_list, and bh_cache buffers
3014  * get BH_Lock set before the stripe lock is released.
3015  *
3016  */
3017 
3018 static void handle_stripe5(struct stripe_head *sh)
3019 {
3020 	raid5_conf_t *conf = sh->raid_conf;
3021 	int disks = sh->disks, i;
3022 	struct bio *return_bi = NULL;
3023 	struct stripe_head_state s;
3024 	struct r5dev *dev;
3025 	mdk_rdev_t *blocked_rdev = NULL;
3026 	int prexor;
3027 	int dec_preread_active = 0;
3028 
3029 	memset(&s, 0, sizeof(s));
3030 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3031 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3032 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3033 		 sh->reconstruct_state);
3034 
3035 	spin_lock(&sh->lock);
3036 	clear_bit(STRIPE_HANDLE, &sh->state);
3037 	clear_bit(STRIPE_DELAYED, &sh->state);
3038 
3039 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3040 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3041 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3042 
3043 	/* Now to look around and see what can be done */
3044 	rcu_read_lock();
3045 	for (i=disks; i--; ) {
3046 		mdk_rdev_t *rdev;
3047 
3048 		dev = &sh->dev[i];
3049 
3050 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3051 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
3052 			dev->towrite, dev->written);
3053 
3054 		/* maybe we can request a biofill operation
3055 		 *
3056 		 * new wantfill requests are only permitted while
3057 		 * ops_complete_biofill is guaranteed to be inactive
3058 		 */
3059 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3060 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3061 			set_bit(R5_Wantfill, &dev->flags);
3062 
3063 		/* now count some things */
3064 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3065 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3066 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3067 
3068 		if (test_bit(R5_Wantfill, &dev->flags))
3069 			s.to_fill++;
3070 		else if (dev->toread)
3071 			s.to_read++;
3072 		if (dev->towrite) {
3073 			s.to_write++;
3074 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3075 				s.non_overwrite++;
3076 		}
3077 		if (dev->written)
3078 			s.written++;
3079 		rdev = rcu_dereference(conf->disks[i].rdev);
3080 		if (blocked_rdev == NULL &&
3081 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3082 			blocked_rdev = rdev;
3083 			atomic_inc(&rdev->nr_pending);
3084 		}
3085 		clear_bit(R5_Insync, &dev->flags);
3086 		if (!rdev)
3087 			/* Not in-sync */;
3088 		else if (test_bit(In_sync, &rdev->flags))
3089 			set_bit(R5_Insync, &dev->flags);
3090 		else {
3091 			/* could be in-sync depending on recovery/reshape status */
3092 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3093 				set_bit(R5_Insync, &dev->flags);
3094 		}
3095 		if (!test_bit(R5_Insync, &dev->flags)) {
3096 			/* The ReadError flag will just be confusing now */
3097 			clear_bit(R5_ReadError, &dev->flags);
3098 			clear_bit(R5_ReWrite, &dev->flags);
3099 		}
3100 		if (test_bit(R5_ReadError, &dev->flags))
3101 			clear_bit(R5_Insync, &dev->flags);
3102 		if (!test_bit(R5_Insync, &dev->flags)) {
3103 			s.failed++;
3104 			s.failed_num = i;
3105 		}
3106 	}
3107 	rcu_read_unlock();
3108 
3109 	if (unlikely(blocked_rdev)) {
3110 		if (s.syncing || s.expanding || s.expanded ||
3111 		    s.to_write || s.written) {
3112 			set_bit(STRIPE_HANDLE, &sh->state);
3113 			goto unlock;
3114 		}
3115 		/* There is nothing for the blocked_rdev to block */
3116 		rdev_dec_pending(blocked_rdev, conf->mddev);
3117 		blocked_rdev = NULL;
3118 	}
3119 
3120 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3121 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3122 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3123 	}
3124 
3125 	pr_debug("locked=%d uptodate=%d to_read=%d"
3126 		" to_write=%d failed=%d failed_num=%d\n",
3127 		s.locked, s.uptodate, s.to_read, s.to_write,
3128 		s.failed, s.failed_num);
3129 	/* check if the array has lost two devices and, if so, some requests might
3130 	 * need to be failed
3131 	 */
3132 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3133 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3134 	if (s.failed > 1 && s.syncing) {
3135 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3136 		clear_bit(STRIPE_SYNCING, &sh->state);
3137 		s.syncing = 0;
3138 	}
3139 
3140 	/* might be able to return some write requests if the parity block
3141 	 * is safe, or on a failed drive
3142 	 */
3143 	dev = &sh->dev[sh->pd_idx];
3144 	if ( s.written &&
3145 	     ((test_bit(R5_Insync, &dev->flags) &&
3146 	       !test_bit(R5_LOCKED, &dev->flags) &&
3147 	       test_bit(R5_UPTODATE, &dev->flags)) ||
3148 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3149 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3150 
3151 	/* Now we might consider reading some blocks, either to check/generate
3152 	 * parity, or to satisfy requests
3153 	 * or to load a block that is being partially written.
3154 	 */
3155 	if (s.to_read || s.non_overwrite ||
3156 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3157 		handle_stripe_fill5(sh, &s, disks);
3158 
3159 	/* Now we check to see if any write operations have recently
3160 	 * completed
3161 	 */
3162 	prexor = 0;
3163 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3164 		prexor = 1;
3165 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3166 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3167 		sh->reconstruct_state = reconstruct_state_idle;
3168 
3169 		/* All the 'written' buffers and the parity block are ready to
3170 		 * be written back to disk
3171 		 */
3172 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3173 		for (i = disks; i--; ) {
3174 			dev = &sh->dev[i];
3175 			if (test_bit(R5_LOCKED, &dev->flags) &&
3176 				(i == sh->pd_idx || dev->written)) {
3177 				pr_debug("Writing block %d\n", i);
3178 				set_bit(R5_Wantwrite, &dev->flags);
3179 				if (prexor)
3180 					continue;
3181 				if (!test_bit(R5_Insync, &dev->flags) ||
3182 				    (i == sh->pd_idx && s.failed == 0))
3183 					set_bit(STRIPE_INSYNC, &sh->state);
3184 			}
3185 		}
3186 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3187 			dec_preread_active = 1;
3188 	}
3189 
3190 	/* Now to consider new write requests and what else, if anything
3191 	 * should be read.  We do not handle new writes when:
3192 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3193 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3194 	 *    block.
3195 	 */
3196 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3197 		handle_stripe_dirtying5(conf, sh, &s, disks);
3198 
3199 	/* maybe we need to check and possibly fix the parity for this stripe
3200 	 * Any reads will already have been scheduled, so we just see if enough
3201 	 * data is available.  The parity check is held off while parity
3202 	 * dependent operations are in flight.
3203 	 */
3204 	if (sh->check_state ||
3205 	    (s.syncing && s.locked == 0 &&
3206 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3207 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3208 		handle_parity_checks5(conf, sh, &s, disks);
3209 
3210 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3211 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3212 		clear_bit(STRIPE_SYNCING, &sh->state);
3213 	}
3214 
3215 	/* If the failed drive is just a ReadError, then we might need to progress
3216 	 * the repair/check process
3217 	 */
3218 	if (s.failed == 1 && !conf->mddev->ro &&
3219 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3220 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3221 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3222 		) {
3223 		dev = &sh->dev[s.failed_num];
3224 		if (!test_bit(R5_ReWrite, &dev->flags)) {
3225 			set_bit(R5_Wantwrite, &dev->flags);
3226 			set_bit(R5_ReWrite, &dev->flags);
3227 			set_bit(R5_LOCKED, &dev->flags);
3228 			s.locked++;
3229 		} else {
3230 			/* let's read it back */
3231 			set_bit(R5_Wantread, &dev->flags);
3232 			set_bit(R5_LOCKED, &dev->flags);
3233 			s.locked++;
3234 		}
3235 	}
3236 
3237 	/* Finish reconstruct operations initiated by the expansion process */
3238 	if (sh->reconstruct_state == reconstruct_state_result) {
3239 		struct stripe_head *sh2
3240 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3241 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3242 			/* sh cannot be written until sh2 has been read.
3243 			 * so arrange for sh to be delayed a little
3244 			 */
3245 			set_bit(STRIPE_DELAYED, &sh->state);
3246 			set_bit(STRIPE_HANDLE, &sh->state);
3247 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3248 					      &sh2->state))
3249 				atomic_inc(&conf->preread_active_stripes);
3250 			release_stripe(sh2);
3251 			goto unlock;
3252 		}
3253 		if (sh2)
3254 			release_stripe(sh2);
3255 
3256 		sh->reconstruct_state = reconstruct_state_idle;
3257 		clear_bit(STRIPE_EXPANDING, &sh->state);
3258 		for (i = conf->raid_disks; i--; ) {
3259 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3260 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3261 			s.locked++;
3262 		}
3263 	}
3264 
3265 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3266 	    !sh->reconstruct_state) {
3267 		/* Need to write out all blocks after computing parity */
3268 		sh->disks = conf->raid_disks;
3269 		stripe_set_idx(sh->sector, conf, 0, sh);
3270 		schedule_reconstruction(sh, &s, 1, 1);
3271 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3272 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3273 		atomic_dec(&conf->reshape_stripes);
3274 		wake_up(&conf->wait_for_overlap);
3275 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3276 	}
3277 
3278 	if (s.expanding && s.locked == 0 &&
3279 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3280 		handle_stripe_expansion(conf, sh, NULL);
3281 
3282  unlock:
3283 	spin_unlock(&sh->lock);
3284 
3285 	/* wait for this device to become unblocked */
3286 	if (unlikely(blocked_rdev))
3287 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3288 
3289 	if (s.ops_request)
3290 		raid_run_ops(sh, s.ops_request);
3291 
3292 	ops_run_io(sh, &s);
3293 
3294 	if (dec_preread_active) {
3295 		/* We delay this until after ops_run_io so that if make_request
3296 		 * is waiting on a flush, it won't continue until the writes
3297 		 * have actually been submitted.
3298 		 */
3299 		atomic_dec(&conf->preread_active_stripes);
3300 		if (atomic_read(&conf->preread_active_stripes) <
3301 		    IO_THRESHOLD)
3302 			md_wakeup_thread(conf->mddev->thread);
3303 	}
3304 	return_io(return_bi);
3305 }
3306 
3307 static void handle_stripe6(struct stripe_head *sh)
3308 {
3309 	raid5_conf_t *conf = sh->raid_conf;
3310 	int disks = sh->disks;
3311 	struct bio *return_bi = NULL;
3312 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3313 	struct stripe_head_state s;
3314 	struct r6_state r6s;
3315 	struct r5dev *dev, *pdev, *qdev;
3316 	mdk_rdev_t *blocked_rdev = NULL;
3317 	int dec_preread_active = 0;
3318 
3319 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3320 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3321 	       (unsigned long long)sh->sector, sh->state,
3322 	       atomic_read(&sh->count), pd_idx, qd_idx,
3323 	       sh->check_state, sh->reconstruct_state);
3324 	memset(&s, 0, sizeof(s));
3325 
3326 	spin_lock(&sh->lock);
3327 	clear_bit(STRIPE_HANDLE, &sh->state);
3328 	clear_bit(STRIPE_DELAYED, &sh->state);
3329 
3330 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3331 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3332 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3333 	/* Now to look around and see what can be done */
3334 
3335 	rcu_read_lock();
3336 	for (i=disks; i--; ) {
3337 		mdk_rdev_t *rdev;
3338 		dev = &sh->dev[i];
3339 
3340 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3341 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3342 		/* maybe we can reply to a read
3343 		 *
3344 		 * new wantfill requests are only permitted while
3345 		 * ops_complete_biofill is guaranteed to be inactive
3346 		 */
3347 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3348 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3349 			set_bit(R5_Wantfill, &dev->flags);
3350 
3351 		/* now count some things */
3352 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3353 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3354 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3355 			s.compute++;
3356 			BUG_ON(s.compute > 2);
3357 		}
3358 
3359 		if (test_bit(R5_Wantfill, &dev->flags)) {
3360 			s.to_fill++;
3361 		} else if (dev->toread)
3362 			s.to_read++;
3363 		if (dev->towrite) {
3364 			s.to_write++;
3365 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3366 				s.non_overwrite++;
3367 		}
3368 		if (dev->written)
3369 			s.written++;
3370 		rdev = rcu_dereference(conf->disks[i].rdev);
3371 		if (blocked_rdev == NULL &&
3372 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3373 			blocked_rdev = rdev;
3374 			atomic_inc(&rdev->nr_pending);
3375 		}
3376 		clear_bit(R5_Insync, &dev->flags);
3377 		if (!rdev)
3378 			/* Not in-sync */;
3379 		else if (test_bit(In_sync, &rdev->flags))
3380 			set_bit(R5_Insync, &dev->flags);
3381 		else {
3382 			/* in sync if before recovery_offset */
3383 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3384 				set_bit(R5_Insync, &dev->flags);
3385 		}
3386 		if (!test_bit(R5_Insync, &dev->flags)) {
3387 			/* The ReadError flag will just be confusing now */
3388 			clear_bit(R5_ReadError, &dev->flags);
3389 			clear_bit(R5_ReWrite, &dev->flags);
3390 		}
3391 		if (test_bit(R5_ReadError, &dev->flags))
3392 			clear_bit(R5_Insync, &dev->flags);
3393 		if (!test_bit(R5_Insync, &dev->flags)) {
3394 			if (s.failed < 2)
3395 				r6s.failed_num[s.failed] = i;
3396 			s.failed++;
3397 		}
3398 	}
3399 	rcu_read_unlock();
3400 
3401 	if (unlikely(blocked_rdev)) {
3402 		if (s.syncing || s.expanding || s.expanded ||
3403 		    s.to_write || s.written) {
3404 			set_bit(STRIPE_HANDLE, &sh->state);
3405 			goto unlock;
3406 		}
3407 		/* There is nothing for the blocked_rdev to block */
3408 		rdev_dec_pending(blocked_rdev, conf->mddev);
3409 		blocked_rdev = NULL;
3410 	}
3411 
3412 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3413 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3414 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3415 	}
3416 
3417 	pr_debug("locked=%d uptodate=%d to_read=%d"
3418 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3419 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3420 	       r6s.failed_num[0], r6s.failed_num[1]);
3421 	/* check if the array has lost >2 devices and, if so, some requests
3422 	 * might need to be failed
3423 	 */
3424 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3425 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3426 	if (s.failed > 2 && s.syncing) {
3427 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3428 		clear_bit(STRIPE_SYNCING, &sh->state);
3429 		s.syncing = 0;
3430 	}
3431 
3432 	/*
3433 	 * might be able to return some write requests if the parity blocks
3434 	 * are safe, or on a failed drive
3435 	 */
3436 	pdev = &sh->dev[pd_idx];
3437 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3438 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3439 	qdev = &sh->dev[qd_idx];
3440 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3441 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3442 
3443 	if ( s.written &&
3444 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3445 			     && !test_bit(R5_LOCKED, &pdev->flags)
3446 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3447 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3448 			     && !test_bit(R5_LOCKED, &qdev->flags)
3449 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3450 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3451 
3452 	/* Now we might consider reading some blocks, either to check/generate
3453 	 * parity, or to satisfy requests
3454 	 * or to load a block that is being partially written.
3455 	 */
3456 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3457 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3458 		handle_stripe_fill6(sh, &s, &r6s, disks);
3459 
3460 	/* Now we check to see if any write operations have recently
3461 	 * completed
3462 	 */
3463 	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3464 
3465 		sh->reconstruct_state = reconstruct_state_idle;
3466 		/* All the 'written' buffers and the parity blocks are ready to
3467 		 * be written back to disk
3468 		 */
3469 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3470 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3471 		for (i = disks; i--; ) {
3472 			dev = &sh->dev[i];
3473 			if (test_bit(R5_LOCKED, &dev->flags) &&
3474 			    (i == sh->pd_idx || i == qd_idx ||
3475 			     dev->written)) {
3476 				pr_debug("Writing block %d\n", i);
3477 				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3478 				set_bit(R5_Wantwrite, &dev->flags);
3479 				if (!test_bit(R5_Insync, &dev->flags) ||
3480 				    ((i == sh->pd_idx || i == qd_idx) &&
3481 				      s.failed == 0))
3482 					set_bit(STRIPE_INSYNC, &sh->state);
3483 			}
3484 		}
3485 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3486 			dec_preread_active = 1;
3487 	}
3488 
3489 	/* Now to consider new write requests and what else, if anything
3490 	 * should be read.  We do not handle new writes when:
3491 	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3492 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3493 	 *    block.
3494 	 */
3495 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3496 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3497 
3498 	/* maybe we need to check and possibly fix the parity for this stripe
3499 	 * Any reads will already have been scheduled, so we just see if enough
3500 	 * data is available.  The parity check is held off while parity
3501 	 * dependent operations are in flight.
3502 	 */
3503 	if (sh->check_state ||
3504 	    (s.syncing && s.locked == 0 &&
3505 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3506 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3507 		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3508 
3509 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3510 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3511 		clear_bit(STRIPE_SYNCING, &sh->state);
3512 	}
3513 
3514 	/* If the failed drives are just a ReadError, then we might need
3515 	 * to progress the repair/check process
3516 	 */
3517 	if (s.failed <= 2 && !conf->mddev->ro)
3518 		for (i = 0; i < s.failed; i++) {
3519 			dev = &sh->dev[r6s.failed_num[i]];
3520 			if (test_bit(R5_ReadError, &dev->flags)
3521 			    && !test_bit(R5_LOCKED, &dev->flags)
3522 			    && test_bit(R5_UPTODATE, &dev->flags)
3523 				) {
3524 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3525 					set_bit(R5_Wantwrite, &dev->flags);
3526 					set_bit(R5_ReWrite, &dev->flags);
3527 					set_bit(R5_LOCKED, &dev->flags);
3528 					s.locked++;
3529 				} else {
3530 					/* let's read it back */
3531 					set_bit(R5_Wantread, &dev->flags);
3532 					set_bit(R5_LOCKED, &dev->flags);
3533 					s.locked++;
3534 				}
3535 			}
3536 		}
3537 
3538 	/* Finish reconstruct operations initiated by the expansion process */
3539 	if (sh->reconstruct_state == reconstruct_state_result) {
3540 		sh->reconstruct_state = reconstruct_state_idle;
3541 		clear_bit(STRIPE_EXPANDING, &sh->state);
3542 		for (i = conf->raid_disks; i--; ) {
3543 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3544 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3545 			s.locked++;
3546 		}
3547 	}
3548 
3549 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3550 	    !sh->reconstruct_state) {
3551 		struct stripe_head *sh2
3552 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3553 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3554 			/* sh cannot be written until sh2 has been read.
3555 			 * so arrange for sh to be delayed a little
3556 			 */
3557 			set_bit(STRIPE_DELAYED, &sh->state);
3558 			set_bit(STRIPE_HANDLE, &sh->state);
3559 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3560 					      &sh2->state))
3561 				atomic_inc(&conf->preread_active_stripes);
3562 			release_stripe(sh2);
3563 			goto unlock;
3564 		}
3565 		if (sh2)
3566 			release_stripe(sh2);
3567 
3568 		/* Need to write out all blocks after computing P&Q */
3569 		sh->disks = conf->raid_disks;
3570 		stripe_set_idx(sh->sector, conf, 0, sh);
3571 		schedule_reconstruction(sh, &s, 1, 1);
3572 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3573 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3574 		atomic_dec(&conf->reshape_stripes);
3575 		wake_up(&conf->wait_for_overlap);
3576 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3577 	}
3578 
3579 	if (s.expanding && s.locked == 0 &&
3580 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3581 		handle_stripe_expansion(conf, sh, &r6s);
3582 
3583  unlock:
3584 	spin_unlock(&sh->lock);
3585 
3586 	/* wait for this device to become unblocked */
3587 	if (unlikely(blocked_rdev))
3588 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3589 
3590 	if (s.ops_request)
3591 		raid_run_ops(sh, s.ops_request);
3592 
3593 	ops_run_io(sh, &s);
3594 
3595 
3596 	if (dec_preread_active) {
3597 		/* We delay this until after ops_run_io so that if make_request
3598 		 * is waiting on a flush, it won't continue until the writes
3599 		 * have actually been submitted.
3600 		 */
3601 		atomic_dec(&conf->preread_active_stripes);
3602 		if (atomic_read(&conf->preread_active_stripes) <
3603 		    IO_THRESHOLD)
3604 			md_wakeup_thread(conf->mddev->thread);
3605 	}
3606 
3607 	return_io(return_bi);
3608 }
3609 
3610 static void handle_stripe(struct stripe_head *sh)
3611 {
3612 	if (sh->raid_conf->level == 6)
3613 		handle_stripe6(sh);
3614 	else
3615 		handle_stripe5(sh);
3616 }
3617 
3618 static void raid5_activate_delayed(raid5_conf_t *conf)
3619 {
3620 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3621 		while (!list_empty(&conf->delayed_list)) {
3622 			struct list_head *l = conf->delayed_list.next;
3623 			struct stripe_head *sh;
3624 			sh = list_entry(l, struct stripe_head, lru);
3625 			list_del_init(l);
3626 			clear_bit(STRIPE_DELAYED, &sh->state);
3627 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3628 				atomic_inc(&conf->preread_active_stripes);
3629 			list_add_tail(&sh->lru, &conf->hold_list);
3630 		}
3631 	} else
3632 		plugger_set_plug(&conf->plug);
3633 }
3634 
3635 static void activate_bit_delay(raid5_conf_t *conf)
3636 {
3637 	/* device_lock is held */
3638 	struct list_head head;
3639 	list_add(&head, &conf->bitmap_list);
3640 	list_del_init(&conf->bitmap_list);
3641 	while (!list_empty(&head)) {
3642 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3643 		list_del_init(&sh->lru);
3644 		atomic_inc(&sh->count);
3645 		__release_stripe(conf, sh);
3646 	}
3647 }
3648 
3649 static void unplug_slaves(mddev_t *mddev)
3650 {
3651 	raid5_conf_t *conf = mddev->private;
3652 	int i;
3653 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3654 
3655 	rcu_read_lock();
3656 	for (i = 0; i < devs; i++) {
3657 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3658 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3659 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3660 
3661 			atomic_inc(&rdev->nr_pending);
3662 			rcu_read_unlock();
3663 
3664 			blk_unplug(r_queue);
3665 
3666 			rdev_dec_pending(rdev, mddev);
3667 			rcu_read_lock();
3668 		}
3669 	}
3670 	rcu_read_unlock();
3671 }
3672 
3673 void md_raid5_unplug_device(raid5_conf_t *conf)
3674 {
3675 	unsigned long flags;
3676 
3677 	spin_lock_irqsave(&conf->device_lock, flags);
3678 
3679 	if (plugger_remove_plug(&conf->plug)) {
3680 		conf->seq_flush++;
3681 		raid5_activate_delayed(conf);
3682 	}
3683 	md_wakeup_thread(conf->mddev->thread);
3684 
3685 	spin_unlock_irqrestore(&conf->device_lock, flags);
3686 
3687 	unplug_slaves(conf->mddev);
3688 }
3689 EXPORT_SYMBOL_GPL(md_raid5_unplug_device);
3690 
3691 static void raid5_unplug(struct plug_handle *plug)
3692 {
3693 	raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3694 	md_raid5_unplug_device(conf);
3695 }
3696 
3697 static void raid5_unplug_queue(struct request_queue *q)
3698 {
3699 	mddev_t *mddev = q->queuedata;
3700 	md_raid5_unplug_device(mddev->private);
3701 }
3702 
3703 int md_raid5_congested(mddev_t *mddev, int bits)
3704 {
3705 	raid5_conf_t *conf = mddev->private;
3706 
3707 	/* No difference between reads and writes.  Just check
3708 	 * how busy the stripe_cache is
3709 	 */
3710 
3711 	if (conf->inactive_blocked)
3712 		return 1;
3713 	if (conf->quiesce)
3714 		return 1;
3715 	if (list_empty_careful(&conf->inactive_list))
3716 		return 1;
3717 
3718 	return 0;
3719 }
3720 EXPORT_SYMBOL_GPL(md_raid5_congested);
3721 
3722 static int raid5_congested(void *data, int bits)
3723 {
3724 	mddev_t *mddev = data;
3725 
3726 	return mddev_congested(mddev, bits) ||
3727 		md_raid5_congested(mddev, bits);
3728 }
3729 
3730 /* We want read requests to align with chunks where possible,
3731  * but write requests don't need to.
3732  */
3733 static int raid5_mergeable_bvec(struct request_queue *q,
3734 				struct bvec_merge_data *bvm,
3735 				struct bio_vec *biovec)
3736 {
3737 	mddev_t *mddev = q->queuedata;
3738 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3739 	int max;
3740 	unsigned int chunk_sectors = mddev->chunk_sectors;
3741 	unsigned int bio_sectors = bvm->bi_size >> 9;
3742 
3743 	if ((bvm->bi_rw & 1) == WRITE)
3744 		return biovec->bv_len; /* always allow writes to be mergeable */
3745 
3746 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3747 		chunk_sectors = mddev->new_chunk_sectors;
3748 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3749 	if (max < 0) max = 0;
3750 	if (max <= biovec->bv_len && bio_sectors == 0)
3751 		return biovec->bv_len;
3752 	else
3753 		return max;
3754 }
3755 
3756 
3757 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3758 {
3759 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3760 	unsigned int chunk_sectors = mddev->chunk_sectors;
3761 	unsigned int bio_sectors = bio->bi_size >> 9;
3762 
3763 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3764 		chunk_sectors = mddev->new_chunk_sectors;
3765 	return  chunk_sectors >=
3766 		((sector & (chunk_sectors - 1)) + bio_sectors);
3767 }
3768 
3769 /*
3770  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3771  *  later sampled by raid5d.
3772  */
3773 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3774 {
3775 	unsigned long flags;
3776 
3777 	spin_lock_irqsave(&conf->device_lock, flags);
3778 
3779 	bi->bi_next = conf->retry_read_aligned_list;
3780 	conf->retry_read_aligned_list = bi;
3781 
3782 	spin_unlock_irqrestore(&conf->device_lock, flags);
3783 	md_wakeup_thread(conf->mddev->thread);
3784 }
3785 
3786 
3787 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3788 {
3789 	struct bio *bi;
3790 
3791 	bi = conf->retry_read_aligned;
3792 	if (bi) {
3793 		conf->retry_read_aligned = NULL;
3794 		return bi;
3795 	}
3796 	bi = conf->retry_read_aligned_list;
3797 	if(bi) {
3798 		conf->retry_read_aligned_list = bi->bi_next;
3799 		bi->bi_next = NULL;
3800 		/*
3801 		 * this sets the active strip count to 1 and the processed
3802 		 * strip count to zero (upper 8 bits)
3803 		 */
3804 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3805 	}
3806 
3807 	return bi;
3808 }
3809 
3810 
3811 /*
3812  *  The "raid5_align_endio" should check if the read succeeded and if it
3813  *  did, call bio_endio on the original bio (having bio_put the new bio
3814  *  first).
3815  *  If the read failed..
3816  */
3817 static void raid5_align_endio(struct bio *bi, int error)
3818 {
3819 	struct bio* raid_bi  = bi->bi_private;
3820 	mddev_t *mddev;
3821 	raid5_conf_t *conf;
3822 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3823 	mdk_rdev_t *rdev;
3824 
3825 	bio_put(bi);
3826 
3827 	rdev = (void*)raid_bi->bi_next;
3828 	raid_bi->bi_next = NULL;
3829 	mddev = rdev->mddev;
3830 	conf = mddev->private;
3831 
3832 	rdev_dec_pending(rdev, conf->mddev);
3833 
3834 	if (!error && uptodate) {
3835 		bio_endio(raid_bi, 0);
3836 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3837 			wake_up(&conf->wait_for_stripe);
3838 		return;
3839 	}
3840 
3841 
3842 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3843 
3844 	add_bio_to_retry(raid_bi, conf);
3845 }
3846 
3847 static int bio_fits_rdev(struct bio *bi)
3848 {
3849 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3850 
3851 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3852 		return 0;
3853 	blk_recount_segments(q, bi);
3854 	if (bi->bi_phys_segments > queue_max_segments(q))
3855 		return 0;
3856 
3857 	if (q->merge_bvec_fn)
3858 		/* it's too hard to apply the merge_bvec_fn at this stage,
3859 		 * just just give up
3860 		 */
3861 		return 0;
3862 
3863 	return 1;
3864 }
3865 
3866 
3867 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3868 {
3869 	raid5_conf_t *conf = mddev->private;
3870 	int dd_idx;
3871 	struct bio* align_bi;
3872 	mdk_rdev_t *rdev;
3873 
3874 	if (!in_chunk_boundary(mddev, raid_bio)) {
3875 		pr_debug("chunk_aligned_read : non aligned\n");
3876 		return 0;
3877 	}
3878 	/*
3879 	 * use bio_clone_mddev to make a copy of the bio
3880 	 */
3881 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3882 	if (!align_bi)
3883 		return 0;
3884 	/*
3885 	 *   set bi_end_io to a new function, and set bi_private to the
3886 	 *     original bio.
3887 	 */
3888 	align_bi->bi_end_io  = raid5_align_endio;
3889 	align_bi->bi_private = raid_bio;
3890 	/*
3891 	 *	compute position
3892 	 */
3893 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3894 						    0,
3895 						    &dd_idx, NULL);
3896 
3897 	rcu_read_lock();
3898 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3899 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3900 		atomic_inc(&rdev->nr_pending);
3901 		rcu_read_unlock();
3902 		raid_bio->bi_next = (void*)rdev;
3903 		align_bi->bi_bdev =  rdev->bdev;
3904 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3905 		align_bi->bi_sector += rdev->data_offset;
3906 
3907 		if (!bio_fits_rdev(align_bi)) {
3908 			/* too big in some way */
3909 			bio_put(align_bi);
3910 			rdev_dec_pending(rdev, mddev);
3911 			return 0;
3912 		}
3913 
3914 		spin_lock_irq(&conf->device_lock);
3915 		wait_event_lock_irq(conf->wait_for_stripe,
3916 				    conf->quiesce == 0,
3917 				    conf->device_lock, /* nothing */);
3918 		atomic_inc(&conf->active_aligned_reads);
3919 		spin_unlock_irq(&conf->device_lock);
3920 
3921 		generic_make_request(align_bi);
3922 		return 1;
3923 	} else {
3924 		rcu_read_unlock();
3925 		bio_put(align_bi);
3926 		return 0;
3927 	}
3928 }
3929 
3930 /* __get_priority_stripe - get the next stripe to process
3931  *
3932  * Full stripe writes are allowed to pass preread active stripes up until
3933  * the bypass_threshold is exceeded.  In general the bypass_count
3934  * increments when the handle_list is handled before the hold_list; however, it
3935  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3936  * stripe with in flight i/o.  The bypass_count will be reset when the
3937  * head of the hold_list has changed, i.e. the head was promoted to the
3938  * handle_list.
3939  */
3940 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3941 {
3942 	struct stripe_head *sh;
3943 
3944 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3945 		  __func__,
3946 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3947 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3948 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3949 
3950 	if (!list_empty(&conf->handle_list)) {
3951 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3952 
3953 		if (list_empty(&conf->hold_list))
3954 			conf->bypass_count = 0;
3955 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3956 			if (conf->hold_list.next == conf->last_hold)
3957 				conf->bypass_count++;
3958 			else {
3959 				conf->last_hold = conf->hold_list.next;
3960 				conf->bypass_count -= conf->bypass_threshold;
3961 				if (conf->bypass_count < 0)
3962 					conf->bypass_count = 0;
3963 			}
3964 		}
3965 	} else if (!list_empty(&conf->hold_list) &&
3966 		   ((conf->bypass_threshold &&
3967 		     conf->bypass_count > conf->bypass_threshold) ||
3968 		    atomic_read(&conf->pending_full_writes) == 0)) {
3969 		sh = list_entry(conf->hold_list.next,
3970 				typeof(*sh), lru);
3971 		conf->bypass_count -= conf->bypass_threshold;
3972 		if (conf->bypass_count < 0)
3973 			conf->bypass_count = 0;
3974 	} else
3975 		return NULL;
3976 
3977 	list_del_init(&sh->lru);
3978 	atomic_inc(&sh->count);
3979 	BUG_ON(atomic_read(&sh->count) != 1);
3980 	return sh;
3981 }
3982 
3983 static int make_request(mddev_t *mddev, struct bio * bi)
3984 {
3985 	raid5_conf_t *conf = mddev->private;
3986 	int dd_idx;
3987 	sector_t new_sector;
3988 	sector_t logical_sector, last_sector;
3989 	struct stripe_head *sh;
3990 	const int rw = bio_data_dir(bi);
3991 	int remaining;
3992 
3993 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3994 		md_flush_request(mddev, bi);
3995 		return 0;
3996 	}
3997 
3998 	md_write_start(mddev, bi);
3999 
4000 	if (rw == READ &&
4001 	     mddev->reshape_position == MaxSector &&
4002 	     chunk_aligned_read(mddev,bi))
4003 		return 0;
4004 
4005 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4006 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4007 	bi->bi_next = NULL;
4008 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4009 
4010 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4011 		DEFINE_WAIT(w);
4012 		int disks, data_disks;
4013 		int previous;
4014 
4015 	retry:
4016 		previous = 0;
4017 		disks = conf->raid_disks;
4018 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4019 		if (unlikely(conf->reshape_progress != MaxSector)) {
4020 			/* spinlock is needed as reshape_progress may be
4021 			 * 64bit on a 32bit platform, and so it might be
4022 			 * possible to see a half-updated value
4023 			 * Ofcourse reshape_progress could change after
4024 			 * the lock is dropped, so once we get a reference
4025 			 * to the stripe that we think it is, we will have
4026 			 * to check again.
4027 			 */
4028 			spin_lock_irq(&conf->device_lock);
4029 			if (mddev->delta_disks < 0
4030 			    ? logical_sector < conf->reshape_progress
4031 			    : logical_sector >= conf->reshape_progress) {
4032 				disks = conf->previous_raid_disks;
4033 				previous = 1;
4034 			} else {
4035 				if (mddev->delta_disks < 0
4036 				    ? logical_sector < conf->reshape_safe
4037 				    : logical_sector >= conf->reshape_safe) {
4038 					spin_unlock_irq(&conf->device_lock);
4039 					schedule();
4040 					goto retry;
4041 				}
4042 			}
4043 			spin_unlock_irq(&conf->device_lock);
4044 		}
4045 		data_disks = disks - conf->max_degraded;
4046 
4047 		new_sector = raid5_compute_sector(conf, logical_sector,
4048 						  previous,
4049 						  &dd_idx, NULL);
4050 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4051 			(unsigned long long)new_sector,
4052 			(unsigned long long)logical_sector);
4053 
4054 		sh = get_active_stripe(conf, new_sector, previous,
4055 				       (bi->bi_rw&RWA_MASK), 0);
4056 		if (sh) {
4057 			if (unlikely(previous)) {
4058 				/* expansion might have moved on while waiting for a
4059 				 * stripe, so we must do the range check again.
4060 				 * Expansion could still move past after this
4061 				 * test, but as we are holding a reference to
4062 				 * 'sh', we know that if that happens,
4063 				 *  STRIPE_EXPANDING will get set and the expansion
4064 				 * won't proceed until we finish with the stripe.
4065 				 */
4066 				int must_retry = 0;
4067 				spin_lock_irq(&conf->device_lock);
4068 				if (mddev->delta_disks < 0
4069 				    ? logical_sector >= conf->reshape_progress
4070 				    : logical_sector < conf->reshape_progress)
4071 					/* mismatch, need to try again */
4072 					must_retry = 1;
4073 				spin_unlock_irq(&conf->device_lock);
4074 				if (must_retry) {
4075 					release_stripe(sh);
4076 					schedule();
4077 					goto retry;
4078 				}
4079 			}
4080 
4081 			if (bio_data_dir(bi) == WRITE &&
4082 			    logical_sector >= mddev->suspend_lo &&
4083 			    logical_sector < mddev->suspend_hi) {
4084 				release_stripe(sh);
4085 				/* As the suspend_* range is controlled by
4086 				 * userspace, we want an interruptible
4087 				 * wait.
4088 				 */
4089 				flush_signals(current);
4090 				prepare_to_wait(&conf->wait_for_overlap,
4091 						&w, TASK_INTERRUPTIBLE);
4092 				if (logical_sector >= mddev->suspend_lo &&
4093 				    logical_sector < mddev->suspend_hi)
4094 					schedule();
4095 				goto retry;
4096 			}
4097 
4098 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4099 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4100 				/* Stripe is busy expanding or
4101 				 * add failed due to overlap.  Flush everything
4102 				 * and wait a while
4103 				 */
4104 				md_raid5_unplug_device(conf);
4105 				release_stripe(sh);
4106 				schedule();
4107 				goto retry;
4108 			}
4109 			finish_wait(&conf->wait_for_overlap, &w);
4110 			set_bit(STRIPE_HANDLE, &sh->state);
4111 			clear_bit(STRIPE_DELAYED, &sh->state);
4112 			if ((bi->bi_rw & REQ_SYNC) &&
4113 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4114 				atomic_inc(&conf->preread_active_stripes);
4115 			release_stripe(sh);
4116 		} else {
4117 			/* cannot get stripe for read-ahead, just give-up */
4118 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4119 			finish_wait(&conf->wait_for_overlap, &w);
4120 			break;
4121 		}
4122 
4123 	}
4124 	spin_lock_irq(&conf->device_lock);
4125 	remaining = raid5_dec_bi_phys_segments(bi);
4126 	spin_unlock_irq(&conf->device_lock);
4127 	if (remaining == 0) {
4128 
4129 		if ( rw == WRITE )
4130 			md_write_end(mddev);
4131 
4132 		bio_endio(bi, 0);
4133 	}
4134 
4135 	return 0;
4136 }
4137 
4138 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4139 
4140 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4141 {
4142 	/* reshaping is quite different to recovery/resync so it is
4143 	 * handled quite separately ... here.
4144 	 *
4145 	 * On each call to sync_request, we gather one chunk worth of
4146 	 * destination stripes and flag them as expanding.
4147 	 * Then we find all the source stripes and request reads.
4148 	 * As the reads complete, handle_stripe will copy the data
4149 	 * into the destination stripe and release that stripe.
4150 	 */
4151 	raid5_conf_t *conf = mddev->private;
4152 	struct stripe_head *sh;
4153 	sector_t first_sector, last_sector;
4154 	int raid_disks = conf->previous_raid_disks;
4155 	int data_disks = raid_disks - conf->max_degraded;
4156 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4157 	int i;
4158 	int dd_idx;
4159 	sector_t writepos, readpos, safepos;
4160 	sector_t stripe_addr;
4161 	int reshape_sectors;
4162 	struct list_head stripes;
4163 
4164 	if (sector_nr == 0) {
4165 		/* If restarting in the middle, skip the initial sectors */
4166 		if (mddev->delta_disks < 0 &&
4167 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4168 			sector_nr = raid5_size(mddev, 0, 0)
4169 				- conf->reshape_progress;
4170 		} else if (mddev->delta_disks >= 0 &&
4171 			   conf->reshape_progress > 0)
4172 			sector_nr = conf->reshape_progress;
4173 		sector_div(sector_nr, new_data_disks);
4174 		if (sector_nr) {
4175 			mddev->curr_resync_completed = sector_nr;
4176 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4177 			*skipped = 1;
4178 			return sector_nr;
4179 		}
4180 	}
4181 
4182 	/* We need to process a full chunk at a time.
4183 	 * If old and new chunk sizes differ, we need to process the
4184 	 * largest of these
4185 	 */
4186 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4187 		reshape_sectors = mddev->new_chunk_sectors;
4188 	else
4189 		reshape_sectors = mddev->chunk_sectors;
4190 
4191 	/* we update the metadata when there is more than 3Meg
4192 	 * in the block range (that is rather arbitrary, should
4193 	 * probably be time based) or when the data about to be
4194 	 * copied would over-write the source of the data at
4195 	 * the front of the range.
4196 	 * i.e. one new_stripe along from reshape_progress new_maps
4197 	 * to after where reshape_safe old_maps to
4198 	 */
4199 	writepos = conf->reshape_progress;
4200 	sector_div(writepos, new_data_disks);
4201 	readpos = conf->reshape_progress;
4202 	sector_div(readpos, data_disks);
4203 	safepos = conf->reshape_safe;
4204 	sector_div(safepos, data_disks);
4205 	if (mddev->delta_disks < 0) {
4206 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4207 		readpos += reshape_sectors;
4208 		safepos += reshape_sectors;
4209 	} else {
4210 		writepos += reshape_sectors;
4211 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4212 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4213 	}
4214 
4215 	/* 'writepos' is the most advanced device address we might write.
4216 	 * 'readpos' is the least advanced device address we might read.
4217 	 * 'safepos' is the least address recorded in the metadata as having
4218 	 *     been reshaped.
4219 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4220 	 * ensure safety in the face of a crash - that must be done by userspace
4221 	 * making a backup of the data.  So in that case there is no particular
4222 	 * rush to update metadata.
4223 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4224 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4225 	 * we can be safe in the event of a crash.
4226 	 * So we insist on updating metadata if safepos is behind writepos and
4227 	 * readpos is beyond writepos.
4228 	 * In any case, update the metadata every 10 seconds.
4229 	 * Maybe that number should be configurable, but I'm not sure it is
4230 	 * worth it.... maybe it could be a multiple of safemode_delay???
4231 	 */
4232 	if ((mddev->delta_disks < 0
4233 	     ? (safepos > writepos && readpos < writepos)
4234 	     : (safepos < writepos && readpos > writepos)) ||
4235 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4236 		/* Cannot proceed until we've updated the superblock... */
4237 		wait_event(conf->wait_for_overlap,
4238 			   atomic_read(&conf->reshape_stripes)==0);
4239 		mddev->reshape_position = conf->reshape_progress;
4240 		mddev->curr_resync_completed = mddev->curr_resync;
4241 		conf->reshape_checkpoint = jiffies;
4242 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4243 		md_wakeup_thread(mddev->thread);
4244 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4245 			   kthread_should_stop());
4246 		spin_lock_irq(&conf->device_lock);
4247 		conf->reshape_safe = mddev->reshape_position;
4248 		spin_unlock_irq(&conf->device_lock);
4249 		wake_up(&conf->wait_for_overlap);
4250 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4251 	}
4252 
4253 	if (mddev->delta_disks < 0) {
4254 		BUG_ON(conf->reshape_progress == 0);
4255 		stripe_addr = writepos;
4256 		BUG_ON((mddev->dev_sectors &
4257 			~((sector_t)reshape_sectors - 1))
4258 		       - reshape_sectors - stripe_addr
4259 		       != sector_nr);
4260 	} else {
4261 		BUG_ON(writepos != sector_nr + reshape_sectors);
4262 		stripe_addr = sector_nr;
4263 	}
4264 	INIT_LIST_HEAD(&stripes);
4265 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4266 		int j;
4267 		int skipped_disk = 0;
4268 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4269 		set_bit(STRIPE_EXPANDING, &sh->state);
4270 		atomic_inc(&conf->reshape_stripes);
4271 		/* If any of this stripe is beyond the end of the old
4272 		 * array, then we need to zero those blocks
4273 		 */
4274 		for (j=sh->disks; j--;) {
4275 			sector_t s;
4276 			if (j == sh->pd_idx)
4277 				continue;
4278 			if (conf->level == 6 &&
4279 			    j == sh->qd_idx)
4280 				continue;
4281 			s = compute_blocknr(sh, j, 0);
4282 			if (s < raid5_size(mddev, 0, 0)) {
4283 				skipped_disk = 1;
4284 				continue;
4285 			}
4286 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4287 			set_bit(R5_Expanded, &sh->dev[j].flags);
4288 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4289 		}
4290 		if (!skipped_disk) {
4291 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4292 			set_bit(STRIPE_HANDLE, &sh->state);
4293 		}
4294 		list_add(&sh->lru, &stripes);
4295 	}
4296 	spin_lock_irq(&conf->device_lock);
4297 	if (mddev->delta_disks < 0)
4298 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4299 	else
4300 		conf->reshape_progress += reshape_sectors * new_data_disks;
4301 	spin_unlock_irq(&conf->device_lock);
4302 	/* Ok, those stripe are ready. We can start scheduling
4303 	 * reads on the source stripes.
4304 	 * The source stripes are determined by mapping the first and last
4305 	 * block on the destination stripes.
4306 	 */
4307 	first_sector =
4308 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4309 				     1, &dd_idx, NULL);
4310 	last_sector =
4311 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4312 					    * new_data_disks - 1),
4313 				     1, &dd_idx, NULL);
4314 	if (last_sector >= mddev->dev_sectors)
4315 		last_sector = mddev->dev_sectors - 1;
4316 	while (first_sector <= last_sector) {
4317 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4318 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4319 		set_bit(STRIPE_HANDLE, &sh->state);
4320 		release_stripe(sh);
4321 		first_sector += STRIPE_SECTORS;
4322 	}
4323 	/* Now that the sources are clearly marked, we can release
4324 	 * the destination stripes
4325 	 */
4326 	while (!list_empty(&stripes)) {
4327 		sh = list_entry(stripes.next, struct stripe_head, lru);
4328 		list_del_init(&sh->lru);
4329 		release_stripe(sh);
4330 	}
4331 	/* If this takes us to the resync_max point where we have to pause,
4332 	 * then we need to write out the superblock.
4333 	 */
4334 	sector_nr += reshape_sectors;
4335 	if ((sector_nr - mddev->curr_resync_completed) * 2
4336 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4337 		/* Cannot proceed until we've updated the superblock... */
4338 		wait_event(conf->wait_for_overlap,
4339 			   atomic_read(&conf->reshape_stripes) == 0);
4340 		mddev->reshape_position = conf->reshape_progress;
4341 		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4342 		conf->reshape_checkpoint = jiffies;
4343 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4344 		md_wakeup_thread(mddev->thread);
4345 		wait_event(mddev->sb_wait,
4346 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4347 			   || kthread_should_stop());
4348 		spin_lock_irq(&conf->device_lock);
4349 		conf->reshape_safe = mddev->reshape_position;
4350 		spin_unlock_irq(&conf->device_lock);
4351 		wake_up(&conf->wait_for_overlap);
4352 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4353 	}
4354 	return reshape_sectors;
4355 }
4356 
4357 /* FIXME go_faster isn't used */
4358 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4359 {
4360 	raid5_conf_t *conf = mddev->private;
4361 	struct stripe_head *sh;
4362 	sector_t max_sector = mddev->dev_sectors;
4363 	sector_t sync_blocks;
4364 	int still_degraded = 0;
4365 	int i;
4366 
4367 	if (sector_nr >= max_sector) {
4368 		/* just being told to finish up .. nothing much to do */
4369 		unplug_slaves(mddev);
4370 
4371 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4372 			end_reshape(conf);
4373 			return 0;
4374 		}
4375 
4376 		if (mddev->curr_resync < max_sector) /* aborted */
4377 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4378 					&sync_blocks, 1);
4379 		else /* completed sync */
4380 			conf->fullsync = 0;
4381 		bitmap_close_sync(mddev->bitmap);
4382 
4383 		return 0;
4384 	}
4385 
4386 	/* Allow raid5_quiesce to complete */
4387 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4388 
4389 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4390 		return reshape_request(mddev, sector_nr, skipped);
4391 
4392 	/* No need to check resync_max as we never do more than one
4393 	 * stripe, and as resync_max will always be on a chunk boundary,
4394 	 * if the check in md_do_sync didn't fire, there is no chance
4395 	 * of overstepping resync_max here
4396 	 */
4397 
4398 	/* if there is too many failed drives and we are trying
4399 	 * to resync, then assert that we are finished, because there is
4400 	 * nothing we can do.
4401 	 */
4402 	if (mddev->degraded >= conf->max_degraded &&
4403 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4404 		sector_t rv = mddev->dev_sectors - sector_nr;
4405 		*skipped = 1;
4406 		return rv;
4407 	}
4408 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4409 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4410 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4411 		/* we can skip this block, and probably more */
4412 		sync_blocks /= STRIPE_SECTORS;
4413 		*skipped = 1;
4414 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4415 	}
4416 
4417 
4418 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4419 
4420 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4421 	if (sh == NULL) {
4422 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4423 		/* make sure we don't swamp the stripe cache if someone else
4424 		 * is trying to get access
4425 		 */
4426 		schedule_timeout_uninterruptible(1);
4427 	}
4428 	/* Need to check if array will still be degraded after recovery/resync
4429 	 * We don't need to check the 'failed' flag as when that gets set,
4430 	 * recovery aborts.
4431 	 */
4432 	for (i = 0; i < conf->raid_disks; i++)
4433 		if (conf->disks[i].rdev == NULL)
4434 			still_degraded = 1;
4435 
4436 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4437 
4438 	spin_lock(&sh->lock);
4439 	set_bit(STRIPE_SYNCING, &sh->state);
4440 	clear_bit(STRIPE_INSYNC, &sh->state);
4441 	spin_unlock(&sh->lock);
4442 
4443 	handle_stripe(sh);
4444 	release_stripe(sh);
4445 
4446 	return STRIPE_SECTORS;
4447 }
4448 
4449 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4450 {
4451 	/* We may not be able to submit a whole bio at once as there
4452 	 * may not be enough stripe_heads available.
4453 	 * We cannot pre-allocate enough stripe_heads as we may need
4454 	 * more than exist in the cache (if we allow ever large chunks).
4455 	 * So we do one stripe head at a time and record in
4456 	 * ->bi_hw_segments how many have been done.
4457 	 *
4458 	 * We *know* that this entire raid_bio is in one chunk, so
4459 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4460 	 */
4461 	struct stripe_head *sh;
4462 	int dd_idx;
4463 	sector_t sector, logical_sector, last_sector;
4464 	int scnt = 0;
4465 	int remaining;
4466 	int handled = 0;
4467 
4468 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4469 	sector = raid5_compute_sector(conf, logical_sector,
4470 				      0, &dd_idx, NULL);
4471 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4472 
4473 	for (; logical_sector < last_sector;
4474 	     logical_sector += STRIPE_SECTORS,
4475 		     sector += STRIPE_SECTORS,
4476 		     scnt++) {
4477 
4478 		if (scnt < raid5_bi_hw_segments(raid_bio))
4479 			/* already done this stripe */
4480 			continue;
4481 
4482 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4483 
4484 		if (!sh) {
4485 			/* failed to get a stripe - must wait */
4486 			raid5_set_bi_hw_segments(raid_bio, scnt);
4487 			conf->retry_read_aligned = raid_bio;
4488 			return handled;
4489 		}
4490 
4491 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4492 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4493 			release_stripe(sh);
4494 			raid5_set_bi_hw_segments(raid_bio, scnt);
4495 			conf->retry_read_aligned = raid_bio;
4496 			return handled;
4497 		}
4498 
4499 		handle_stripe(sh);
4500 		release_stripe(sh);
4501 		handled++;
4502 	}
4503 	spin_lock_irq(&conf->device_lock);
4504 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4505 	spin_unlock_irq(&conf->device_lock);
4506 	if (remaining == 0)
4507 		bio_endio(raid_bio, 0);
4508 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4509 		wake_up(&conf->wait_for_stripe);
4510 	return handled;
4511 }
4512 
4513 
4514 /*
4515  * This is our raid5 kernel thread.
4516  *
4517  * We scan the hash table for stripes which can be handled now.
4518  * During the scan, completed stripes are saved for us by the interrupt
4519  * handler, so that they will not have to wait for our next wakeup.
4520  */
4521 static void raid5d(mddev_t *mddev)
4522 {
4523 	struct stripe_head *sh;
4524 	raid5_conf_t *conf = mddev->private;
4525 	int handled;
4526 
4527 	pr_debug("+++ raid5d active\n");
4528 
4529 	md_check_recovery(mddev);
4530 
4531 	handled = 0;
4532 	spin_lock_irq(&conf->device_lock);
4533 	while (1) {
4534 		struct bio *bio;
4535 
4536 		if (conf->seq_flush != conf->seq_write) {
4537 			int seq = conf->seq_flush;
4538 			spin_unlock_irq(&conf->device_lock);
4539 			bitmap_unplug(mddev->bitmap);
4540 			spin_lock_irq(&conf->device_lock);
4541 			conf->seq_write = seq;
4542 			activate_bit_delay(conf);
4543 		}
4544 
4545 		while ((bio = remove_bio_from_retry(conf))) {
4546 			int ok;
4547 			spin_unlock_irq(&conf->device_lock);
4548 			ok = retry_aligned_read(conf, bio);
4549 			spin_lock_irq(&conf->device_lock);
4550 			if (!ok)
4551 				break;
4552 			handled++;
4553 		}
4554 
4555 		sh = __get_priority_stripe(conf);
4556 
4557 		if (!sh)
4558 			break;
4559 		spin_unlock_irq(&conf->device_lock);
4560 
4561 		handled++;
4562 		handle_stripe(sh);
4563 		release_stripe(sh);
4564 		cond_resched();
4565 
4566 		spin_lock_irq(&conf->device_lock);
4567 	}
4568 	pr_debug("%d stripes handled\n", handled);
4569 
4570 	spin_unlock_irq(&conf->device_lock);
4571 
4572 	async_tx_issue_pending_all();
4573 	unplug_slaves(mddev);
4574 
4575 	pr_debug("--- raid5d inactive\n");
4576 }
4577 
4578 static ssize_t
4579 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4580 {
4581 	raid5_conf_t *conf = mddev->private;
4582 	if (conf)
4583 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4584 	else
4585 		return 0;
4586 }
4587 
4588 int
4589 raid5_set_cache_size(mddev_t *mddev, int size)
4590 {
4591 	raid5_conf_t *conf = mddev->private;
4592 	int err;
4593 
4594 	if (size <= 16 || size > 32768)
4595 		return -EINVAL;
4596 	while (size < conf->max_nr_stripes) {
4597 		if (drop_one_stripe(conf))
4598 			conf->max_nr_stripes--;
4599 		else
4600 			break;
4601 	}
4602 	err = md_allow_write(mddev);
4603 	if (err)
4604 		return err;
4605 	while (size > conf->max_nr_stripes) {
4606 		if (grow_one_stripe(conf))
4607 			conf->max_nr_stripes++;
4608 		else break;
4609 	}
4610 	return 0;
4611 }
4612 EXPORT_SYMBOL(raid5_set_cache_size);
4613 
4614 static ssize_t
4615 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4616 {
4617 	raid5_conf_t *conf = mddev->private;
4618 	unsigned long new;
4619 	int err;
4620 
4621 	if (len >= PAGE_SIZE)
4622 		return -EINVAL;
4623 	if (!conf)
4624 		return -ENODEV;
4625 
4626 	if (strict_strtoul(page, 10, &new))
4627 		return -EINVAL;
4628 	err = raid5_set_cache_size(mddev, new);
4629 	if (err)
4630 		return err;
4631 	return len;
4632 }
4633 
4634 static struct md_sysfs_entry
4635 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4636 				raid5_show_stripe_cache_size,
4637 				raid5_store_stripe_cache_size);
4638 
4639 static ssize_t
4640 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4641 {
4642 	raid5_conf_t *conf = mddev->private;
4643 	if (conf)
4644 		return sprintf(page, "%d\n", conf->bypass_threshold);
4645 	else
4646 		return 0;
4647 }
4648 
4649 static ssize_t
4650 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4651 {
4652 	raid5_conf_t *conf = mddev->private;
4653 	unsigned long new;
4654 	if (len >= PAGE_SIZE)
4655 		return -EINVAL;
4656 	if (!conf)
4657 		return -ENODEV;
4658 
4659 	if (strict_strtoul(page, 10, &new))
4660 		return -EINVAL;
4661 	if (new > conf->max_nr_stripes)
4662 		return -EINVAL;
4663 	conf->bypass_threshold = new;
4664 	return len;
4665 }
4666 
4667 static struct md_sysfs_entry
4668 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4669 					S_IRUGO | S_IWUSR,
4670 					raid5_show_preread_threshold,
4671 					raid5_store_preread_threshold);
4672 
4673 static ssize_t
4674 stripe_cache_active_show(mddev_t *mddev, char *page)
4675 {
4676 	raid5_conf_t *conf = mddev->private;
4677 	if (conf)
4678 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4679 	else
4680 		return 0;
4681 }
4682 
4683 static struct md_sysfs_entry
4684 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4685 
4686 static struct attribute *raid5_attrs[] =  {
4687 	&raid5_stripecache_size.attr,
4688 	&raid5_stripecache_active.attr,
4689 	&raid5_preread_bypass_threshold.attr,
4690 	NULL,
4691 };
4692 static struct attribute_group raid5_attrs_group = {
4693 	.name = NULL,
4694 	.attrs = raid5_attrs,
4695 };
4696 
4697 static sector_t
4698 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4699 {
4700 	raid5_conf_t *conf = mddev->private;
4701 
4702 	if (!sectors)
4703 		sectors = mddev->dev_sectors;
4704 	if (!raid_disks)
4705 		/* size is defined by the smallest of previous and new size */
4706 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4707 
4708 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4709 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4710 	return sectors * (raid_disks - conf->max_degraded);
4711 }
4712 
4713 static void raid5_free_percpu(raid5_conf_t *conf)
4714 {
4715 	struct raid5_percpu *percpu;
4716 	unsigned long cpu;
4717 
4718 	if (!conf->percpu)
4719 		return;
4720 
4721 	get_online_cpus();
4722 	for_each_possible_cpu(cpu) {
4723 		percpu = per_cpu_ptr(conf->percpu, cpu);
4724 		safe_put_page(percpu->spare_page);
4725 		kfree(percpu->scribble);
4726 	}
4727 #ifdef CONFIG_HOTPLUG_CPU
4728 	unregister_cpu_notifier(&conf->cpu_notify);
4729 #endif
4730 	put_online_cpus();
4731 
4732 	free_percpu(conf->percpu);
4733 }
4734 
4735 static void free_conf(raid5_conf_t *conf)
4736 {
4737 	shrink_stripes(conf);
4738 	raid5_free_percpu(conf);
4739 	kfree(conf->disks);
4740 	kfree(conf->stripe_hashtbl);
4741 	kfree(conf);
4742 }
4743 
4744 #ifdef CONFIG_HOTPLUG_CPU
4745 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4746 			      void *hcpu)
4747 {
4748 	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4749 	long cpu = (long)hcpu;
4750 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4751 
4752 	switch (action) {
4753 	case CPU_UP_PREPARE:
4754 	case CPU_UP_PREPARE_FROZEN:
4755 		if (conf->level == 6 && !percpu->spare_page)
4756 			percpu->spare_page = alloc_page(GFP_KERNEL);
4757 		if (!percpu->scribble)
4758 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4759 
4760 		if (!percpu->scribble ||
4761 		    (conf->level == 6 && !percpu->spare_page)) {
4762 			safe_put_page(percpu->spare_page);
4763 			kfree(percpu->scribble);
4764 			pr_err("%s: failed memory allocation for cpu%ld\n",
4765 			       __func__, cpu);
4766 			return notifier_from_errno(-ENOMEM);
4767 		}
4768 		break;
4769 	case CPU_DEAD:
4770 	case CPU_DEAD_FROZEN:
4771 		safe_put_page(percpu->spare_page);
4772 		kfree(percpu->scribble);
4773 		percpu->spare_page = NULL;
4774 		percpu->scribble = NULL;
4775 		break;
4776 	default:
4777 		break;
4778 	}
4779 	return NOTIFY_OK;
4780 }
4781 #endif
4782 
4783 static int raid5_alloc_percpu(raid5_conf_t *conf)
4784 {
4785 	unsigned long cpu;
4786 	struct page *spare_page;
4787 	struct raid5_percpu __percpu *allcpus;
4788 	void *scribble;
4789 	int err;
4790 
4791 	allcpus = alloc_percpu(struct raid5_percpu);
4792 	if (!allcpus)
4793 		return -ENOMEM;
4794 	conf->percpu = allcpus;
4795 
4796 	get_online_cpus();
4797 	err = 0;
4798 	for_each_present_cpu(cpu) {
4799 		if (conf->level == 6) {
4800 			spare_page = alloc_page(GFP_KERNEL);
4801 			if (!spare_page) {
4802 				err = -ENOMEM;
4803 				break;
4804 			}
4805 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4806 		}
4807 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4808 		if (!scribble) {
4809 			err = -ENOMEM;
4810 			break;
4811 		}
4812 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4813 	}
4814 #ifdef CONFIG_HOTPLUG_CPU
4815 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4816 	conf->cpu_notify.priority = 0;
4817 	if (err == 0)
4818 		err = register_cpu_notifier(&conf->cpu_notify);
4819 #endif
4820 	put_online_cpus();
4821 
4822 	return err;
4823 }
4824 
4825 static raid5_conf_t *setup_conf(mddev_t *mddev)
4826 {
4827 	raid5_conf_t *conf;
4828 	int raid_disk, memory, max_disks;
4829 	mdk_rdev_t *rdev;
4830 	struct disk_info *disk;
4831 
4832 	if (mddev->new_level != 5
4833 	    && mddev->new_level != 4
4834 	    && mddev->new_level != 6) {
4835 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4836 		       mdname(mddev), mddev->new_level);
4837 		return ERR_PTR(-EIO);
4838 	}
4839 	if ((mddev->new_level == 5
4840 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4841 	    (mddev->new_level == 6
4842 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4843 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4844 		       mdname(mddev), mddev->new_layout);
4845 		return ERR_PTR(-EIO);
4846 	}
4847 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4848 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4849 		       mdname(mddev), mddev->raid_disks);
4850 		return ERR_PTR(-EINVAL);
4851 	}
4852 
4853 	if (!mddev->new_chunk_sectors ||
4854 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4855 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4856 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4857 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4858 		return ERR_PTR(-EINVAL);
4859 	}
4860 
4861 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4862 	if (conf == NULL)
4863 		goto abort;
4864 	spin_lock_init(&conf->device_lock);
4865 	init_waitqueue_head(&conf->wait_for_stripe);
4866 	init_waitqueue_head(&conf->wait_for_overlap);
4867 	INIT_LIST_HEAD(&conf->handle_list);
4868 	INIT_LIST_HEAD(&conf->hold_list);
4869 	INIT_LIST_HEAD(&conf->delayed_list);
4870 	INIT_LIST_HEAD(&conf->bitmap_list);
4871 	INIT_LIST_HEAD(&conf->inactive_list);
4872 	atomic_set(&conf->active_stripes, 0);
4873 	atomic_set(&conf->preread_active_stripes, 0);
4874 	atomic_set(&conf->active_aligned_reads, 0);
4875 	conf->bypass_threshold = BYPASS_THRESHOLD;
4876 
4877 	conf->raid_disks = mddev->raid_disks;
4878 	if (mddev->reshape_position == MaxSector)
4879 		conf->previous_raid_disks = mddev->raid_disks;
4880 	else
4881 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4882 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4883 	conf->scribble_len = scribble_len(max_disks);
4884 
4885 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4886 			      GFP_KERNEL);
4887 	if (!conf->disks)
4888 		goto abort;
4889 
4890 	conf->mddev = mddev;
4891 
4892 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4893 		goto abort;
4894 
4895 	conf->level = mddev->new_level;
4896 	if (raid5_alloc_percpu(conf) != 0)
4897 		goto abort;
4898 
4899 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4900 
4901 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4902 		raid_disk = rdev->raid_disk;
4903 		if (raid_disk >= max_disks
4904 		    || raid_disk < 0)
4905 			continue;
4906 		disk = conf->disks + raid_disk;
4907 
4908 		disk->rdev = rdev;
4909 
4910 		if (test_bit(In_sync, &rdev->flags)) {
4911 			char b[BDEVNAME_SIZE];
4912 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4913 			       " disk %d\n",
4914 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4915 		} else
4916 			/* Cannot rely on bitmap to complete recovery */
4917 			conf->fullsync = 1;
4918 	}
4919 
4920 	conf->chunk_sectors = mddev->new_chunk_sectors;
4921 	conf->level = mddev->new_level;
4922 	if (conf->level == 6)
4923 		conf->max_degraded = 2;
4924 	else
4925 		conf->max_degraded = 1;
4926 	conf->algorithm = mddev->new_layout;
4927 	conf->max_nr_stripes = NR_STRIPES;
4928 	conf->reshape_progress = mddev->reshape_position;
4929 	if (conf->reshape_progress != MaxSector) {
4930 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4931 		conf->prev_algo = mddev->layout;
4932 	}
4933 
4934 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4935 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4936 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4937 		printk(KERN_ERR
4938 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4939 		       mdname(mddev), memory);
4940 		goto abort;
4941 	} else
4942 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4943 		       mdname(mddev), memory);
4944 
4945 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4946 	if (!conf->thread) {
4947 		printk(KERN_ERR
4948 		       "md/raid:%s: couldn't allocate thread.\n",
4949 		       mdname(mddev));
4950 		goto abort;
4951 	}
4952 
4953 	return conf;
4954 
4955  abort:
4956 	if (conf) {
4957 		free_conf(conf);
4958 		return ERR_PTR(-EIO);
4959 	} else
4960 		return ERR_PTR(-ENOMEM);
4961 }
4962 
4963 
4964 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4965 {
4966 	switch (algo) {
4967 	case ALGORITHM_PARITY_0:
4968 		if (raid_disk < max_degraded)
4969 			return 1;
4970 		break;
4971 	case ALGORITHM_PARITY_N:
4972 		if (raid_disk >= raid_disks - max_degraded)
4973 			return 1;
4974 		break;
4975 	case ALGORITHM_PARITY_0_6:
4976 		if (raid_disk == 0 ||
4977 		    raid_disk == raid_disks - 1)
4978 			return 1;
4979 		break;
4980 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4981 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4982 	case ALGORITHM_LEFT_SYMMETRIC_6:
4983 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4984 		if (raid_disk == raid_disks - 1)
4985 			return 1;
4986 	}
4987 	return 0;
4988 }
4989 
4990 static int run(mddev_t *mddev)
4991 {
4992 	raid5_conf_t *conf;
4993 	int working_disks = 0;
4994 	int dirty_parity_disks = 0;
4995 	mdk_rdev_t *rdev;
4996 	sector_t reshape_offset = 0;
4997 
4998 	if (mddev->recovery_cp != MaxSector)
4999 		printk(KERN_NOTICE "md/raid:%s: not clean"
5000 		       " -- starting background reconstruction\n",
5001 		       mdname(mddev));
5002 	if (mddev->reshape_position != MaxSector) {
5003 		/* Check that we can continue the reshape.
5004 		 * Currently only disks can change, it must
5005 		 * increase, and we must be past the point where
5006 		 * a stripe over-writes itself
5007 		 */
5008 		sector_t here_new, here_old;
5009 		int old_disks;
5010 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5011 
5012 		if (mddev->new_level != mddev->level) {
5013 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5014 			       "required - aborting.\n",
5015 			       mdname(mddev));
5016 			return -EINVAL;
5017 		}
5018 		old_disks = mddev->raid_disks - mddev->delta_disks;
5019 		/* reshape_position must be on a new-stripe boundary, and one
5020 		 * further up in new geometry must map after here in old
5021 		 * geometry.
5022 		 */
5023 		here_new = mddev->reshape_position;
5024 		if (sector_div(here_new, mddev->new_chunk_sectors *
5025 			       (mddev->raid_disks - max_degraded))) {
5026 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5027 			       "on a stripe boundary\n", mdname(mddev));
5028 			return -EINVAL;
5029 		}
5030 		reshape_offset = here_new * mddev->new_chunk_sectors;
5031 		/* here_new is the stripe we will write to */
5032 		here_old = mddev->reshape_position;
5033 		sector_div(here_old, mddev->chunk_sectors *
5034 			   (old_disks-max_degraded));
5035 		/* here_old is the first stripe that we might need to read
5036 		 * from */
5037 		if (mddev->delta_disks == 0) {
5038 			/* We cannot be sure it is safe to start an in-place
5039 			 * reshape.  It is only safe if user-space if monitoring
5040 			 * and taking constant backups.
5041 			 * mdadm always starts a situation like this in
5042 			 * readonly mode so it can take control before
5043 			 * allowing any writes.  So just check for that.
5044 			 */
5045 			if ((here_new * mddev->new_chunk_sectors !=
5046 			     here_old * mddev->chunk_sectors) ||
5047 			    mddev->ro == 0) {
5048 				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5049 				       " in read-only mode - aborting\n",
5050 				       mdname(mddev));
5051 				return -EINVAL;
5052 			}
5053 		} else if (mddev->delta_disks < 0
5054 		    ? (here_new * mddev->new_chunk_sectors <=
5055 		       here_old * mddev->chunk_sectors)
5056 		    : (here_new * mddev->new_chunk_sectors >=
5057 		       here_old * mddev->chunk_sectors)) {
5058 			/* Reading from the same stripe as writing to - bad */
5059 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5060 			       "auto-recovery - aborting.\n",
5061 			       mdname(mddev));
5062 			return -EINVAL;
5063 		}
5064 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5065 		       mdname(mddev));
5066 		/* OK, we should be able to continue; */
5067 	} else {
5068 		BUG_ON(mddev->level != mddev->new_level);
5069 		BUG_ON(mddev->layout != mddev->new_layout);
5070 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5071 		BUG_ON(mddev->delta_disks != 0);
5072 	}
5073 
5074 	if (mddev->private == NULL)
5075 		conf = setup_conf(mddev);
5076 	else
5077 		conf = mddev->private;
5078 
5079 	if (IS_ERR(conf))
5080 		return PTR_ERR(conf);
5081 
5082 	mddev->thread = conf->thread;
5083 	conf->thread = NULL;
5084 	mddev->private = conf;
5085 
5086 	/*
5087 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5088 	 */
5089 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5090 		if (rdev->raid_disk < 0)
5091 			continue;
5092 		if (test_bit(In_sync, &rdev->flags)) {
5093 			working_disks++;
5094 			continue;
5095 		}
5096 		/* This disc is not fully in-sync.  However if it
5097 		 * just stored parity (beyond the recovery_offset),
5098 		 * when we don't need to be concerned about the
5099 		 * array being dirty.
5100 		 * When reshape goes 'backwards', we never have
5101 		 * partially completed devices, so we only need
5102 		 * to worry about reshape going forwards.
5103 		 */
5104 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5105 		if (mddev->major_version == 0 &&
5106 		    mddev->minor_version > 90)
5107 			rdev->recovery_offset = reshape_offset;
5108 
5109 		if (rdev->recovery_offset < reshape_offset) {
5110 			/* We need to check old and new layout */
5111 			if (!only_parity(rdev->raid_disk,
5112 					 conf->algorithm,
5113 					 conf->raid_disks,
5114 					 conf->max_degraded))
5115 				continue;
5116 		}
5117 		if (!only_parity(rdev->raid_disk,
5118 				 conf->prev_algo,
5119 				 conf->previous_raid_disks,
5120 				 conf->max_degraded))
5121 			continue;
5122 		dirty_parity_disks++;
5123 	}
5124 
5125 	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5126 			   - working_disks);
5127 
5128 	if (has_failed(conf)) {
5129 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5130 			" (%d/%d failed)\n",
5131 			mdname(mddev), mddev->degraded, conf->raid_disks);
5132 		goto abort;
5133 	}
5134 
5135 	/* device size must be a multiple of chunk size */
5136 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5137 	mddev->resync_max_sectors = mddev->dev_sectors;
5138 
5139 	if (mddev->degraded > dirty_parity_disks &&
5140 	    mddev->recovery_cp != MaxSector) {
5141 		if (mddev->ok_start_degraded)
5142 			printk(KERN_WARNING
5143 			       "md/raid:%s: starting dirty degraded array"
5144 			       " - data corruption possible.\n",
5145 			       mdname(mddev));
5146 		else {
5147 			printk(KERN_ERR
5148 			       "md/raid:%s: cannot start dirty degraded array.\n",
5149 			       mdname(mddev));
5150 			goto abort;
5151 		}
5152 	}
5153 
5154 	if (mddev->degraded == 0)
5155 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5156 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5157 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5158 		       mddev->new_layout);
5159 	else
5160 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5161 		       " out of %d devices, algorithm %d\n",
5162 		       mdname(mddev), conf->level,
5163 		       mddev->raid_disks - mddev->degraded,
5164 		       mddev->raid_disks, mddev->new_layout);
5165 
5166 	print_raid5_conf(conf);
5167 
5168 	if (conf->reshape_progress != MaxSector) {
5169 		conf->reshape_safe = conf->reshape_progress;
5170 		atomic_set(&conf->reshape_stripes, 0);
5171 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5172 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5173 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5174 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5175 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5176 							"reshape");
5177 	}
5178 
5179 
5180 	/* Ok, everything is just fine now */
5181 	if (mddev->to_remove == &raid5_attrs_group)
5182 		mddev->to_remove = NULL;
5183 	else if (mddev->kobj.sd &&
5184 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5185 		printk(KERN_WARNING
5186 		       "raid5: failed to create sysfs attributes for %s\n",
5187 		       mdname(mddev));
5188 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5189 
5190 	plugger_init(&conf->plug, raid5_unplug);
5191 	mddev->plug = &conf->plug;
5192 	if (mddev->queue) {
5193 		int chunk_size;
5194 		/* read-ahead size must cover two whole stripes, which
5195 		 * is 2 * (datadisks) * chunksize where 'n' is the
5196 		 * number of raid devices
5197 		 */
5198 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5199 		int stripe = data_disks *
5200 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5201 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5202 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5203 
5204 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5205 
5206 		mddev->queue->backing_dev_info.congested_data = mddev;
5207 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5208 		mddev->queue->queue_lock = &conf->device_lock;
5209 		mddev->queue->unplug_fn = raid5_unplug_queue;
5210 
5211 		chunk_size = mddev->chunk_sectors << 9;
5212 		blk_queue_io_min(mddev->queue, chunk_size);
5213 		blk_queue_io_opt(mddev->queue, chunk_size *
5214 				 (conf->raid_disks - conf->max_degraded));
5215 
5216 		list_for_each_entry(rdev, &mddev->disks, same_set)
5217 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5218 					  rdev->data_offset << 9);
5219 	}
5220 
5221 	return 0;
5222 abort:
5223 	md_unregister_thread(mddev->thread);
5224 	mddev->thread = NULL;
5225 	if (conf) {
5226 		print_raid5_conf(conf);
5227 		free_conf(conf);
5228 	}
5229 	mddev->private = NULL;
5230 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5231 	return -EIO;
5232 }
5233 
5234 static int stop(mddev_t *mddev)
5235 {
5236 	raid5_conf_t *conf = mddev->private;
5237 
5238 	md_unregister_thread(mddev->thread);
5239 	mddev->thread = NULL;
5240 	if (mddev->queue)
5241 		mddev->queue->backing_dev_info.congested_fn = NULL;
5242 	plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5243 	free_conf(conf);
5244 	mddev->private = NULL;
5245 	mddev->to_remove = &raid5_attrs_group;
5246 	return 0;
5247 }
5248 
5249 #ifdef DEBUG
5250 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5251 {
5252 	int i;
5253 
5254 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5255 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5256 	seq_printf(seq, "sh %llu,  count %d.\n",
5257 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5258 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5259 	for (i = 0; i < sh->disks; i++) {
5260 		seq_printf(seq, "(cache%d: %p %ld) ",
5261 			   i, sh->dev[i].page, sh->dev[i].flags);
5262 	}
5263 	seq_printf(seq, "\n");
5264 }
5265 
5266 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5267 {
5268 	struct stripe_head *sh;
5269 	struct hlist_node *hn;
5270 	int i;
5271 
5272 	spin_lock_irq(&conf->device_lock);
5273 	for (i = 0; i < NR_HASH; i++) {
5274 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5275 			if (sh->raid_conf != conf)
5276 				continue;
5277 			print_sh(seq, sh);
5278 		}
5279 	}
5280 	spin_unlock_irq(&conf->device_lock);
5281 }
5282 #endif
5283 
5284 static void status(struct seq_file *seq, mddev_t *mddev)
5285 {
5286 	raid5_conf_t *conf = mddev->private;
5287 	int i;
5288 
5289 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5290 		mddev->chunk_sectors / 2, mddev->layout);
5291 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5292 	for (i = 0; i < conf->raid_disks; i++)
5293 		seq_printf (seq, "%s",
5294 			       conf->disks[i].rdev &&
5295 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5296 	seq_printf (seq, "]");
5297 #ifdef DEBUG
5298 	seq_printf (seq, "\n");
5299 	printall(seq, conf);
5300 #endif
5301 }
5302 
5303 static void print_raid5_conf (raid5_conf_t *conf)
5304 {
5305 	int i;
5306 	struct disk_info *tmp;
5307 
5308 	printk(KERN_DEBUG "RAID conf printout:\n");
5309 	if (!conf) {
5310 		printk("(conf==NULL)\n");
5311 		return;
5312 	}
5313 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5314 	       conf->raid_disks,
5315 	       conf->raid_disks - conf->mddev->degraded);
5316 
5317 	for (i = 0; i < conf->raid_disks; i++) {
5318 		char b[BDEVNAME_SIZE];
5319 		tmp = conf->disks + i;
5320 		if (tmp->rdev)
5321 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5322 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5323 			       bdevname(tmp->rdev->bdev, b));
5324 	}
5325 }
5326 
5327 static int raid5_spare_active(mddev_t *mddev)
5328 {
5329 	int i;
5330 	raid5_conf_t *conf = mddev->private;
5331 	struct disk_info *tmp;
5332 	int count = 0;
5333 	unsigned long flags;
5334 
5335 	for (i = 0; i < conf->raid_disks; i++) {
5336 		tmp = conf->disks + i;
5337 		if (tmp->rdev
5338 		    && tmp->rdev->recovery_offset == MaxSector
5339 		    && !test_bit(Faulty, &tmp->rdev->flags)
5340 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5341 			count++;
5342 			sysfs_notify_dirent(tmp->rdev->sysfs_state);
5343 		}
5344 	}
5345 	spin_lock_irqsave(&conf->device_lock, flags);
5346 	mddev->degraded -= count;
5347 	spin_unlock_irqrestore(&conf->device_lock, flags);
5348 	print_raid5_conf(conf);
5349 	return count;
5350 }
5351 
5352 static int raid5_remove_disk(mddev_t *mddev, int number)
5353 {
5354 	raid5_conf_t *conf = mddev->private;
5355 	int err = 0;
5356 	mdk_rdev_t *rdev;
5357 	struct disk_info *p = conf->disks + number;
5358 
5359 	print_raid5_conf(conf);
5360 	rdev = p->rdev;
5361 	if (rdev) {
5362 		if (number >= conf->raid_disks &&
5363 		    conf->reshape_progress == MaxSector)
5364 			clear_bit(In_sync, &rdev->flags);
5365 
5366 		if (test_bit(In_sync, &rdev->flags) ||
5367 		    atomic_read(&rdev->nr_pending)) {
5368 			err = -EBUSY;
5369 			goto abort;
5370 		}
5371 		/* Only remove non-faulty devices if recovery
5372 		 * isn't possible.
5373 		 */
5374 		if (!test_bit(Faulty, &rdev->flags) &&
5375 		    !has_failed(conf) &&
5376 		    number < conf->raid_disks) {
5377 			err = -EBUSY;
5378 			goto abort;
5379 		}
5380 		p->rdev = NULL;
5381 		synchronize_rcu();
5382 		if (atomic_read(&rdev->nr_pending)) {
5383 			/* lost the race, try later */
5384 			err = -EBUSY;
5385 			p->rdev = rdev;
5386 		}
5387 	}
5388 abort:
5389 
5390 	print_raid5_conf(conf);
5391 	return err;
5392 }
5393 
5394 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5395 {
5396 	raid5_conf_t *conf = mddev->private;
5397 	int err = -EEXIST;
5398 	int disk;
5399 	struct disk_info *p;
5400 	int first = 0;
5401 	int last = conf->raid_disks - 1;
5402 
5403 	if (has_failed(conf))
5404 		/* no point adding a device */
5405 		return -EINVAL;
5406 
5407 	if (rdev->raid_disk >= 0)
5408 		first = last = rdev->raid_disk;
5409 
5410 	/*
5411 	 * find the disk ... but prefer rdev->saved_raid_disk
5412 	 * if possible.
5413 	 */
5414 	if (rdev->saved_raid_disk >= 0 &&
5415 	    rdev->saved_raid_disk >= first &&
5416 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5417 		disk = rdev->saved_raid_disk;
5418 	else
5419 		disk = first;
5420 	for ( ; disk <= last ; disk++)
5421 		if ((p=conf->disks + disk)->rdev == NULL) {
5422 			clear_bit(In_sync, &rdev->flags);
5423 			rdev->raid_disk = disk;
5424 			err = 0;
5425 			if (rdev->saved_raid_disk != disk)
5426 				conf->fullsync = 1;
5427 			rcu_assign_pointer(p->rdev, rdev);
5428 			break;
5429 		}
5430 	print_raid5_conf(conf);
5431 	return err;
5432 }
5433 
5434 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5435 {
5436 	/* no resync is happening, and there is enough space
5437 	 * on all devices, so we can resize.
5438 	 * We need to make sure resync covers any new space.
5439 	 * If the array is shrinking we should possibly wait until
5440 	 * any io in the removed space completes, but it hardly seems
5441 	 * worth it.
5442 	 */
5443 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5444 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5445 					       mddev->raid_disks));
5446 	if (mddev->array_sectors >
5447 	    raid5_size(mddev, sectors, mddev->raid_disks))
5448 		return -EINVAL;
5449 	set_capacity(mddev->gendisk, mddev->array_sectors);
5450 	revalidate_disk(mddev->gendisk);
5451 	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5452 		mddev->recovery_cp = mddev->dev_sectors;
5453 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5454 	}
5455 	mddev->dev_sectors = sectors;
5456 	mddev->resync_max_sectors = sectors;
5457 	return 0;
5458 }
5459 
5460 static int check_stripe_cache(mddev_t *mddev)
5461 {
5462 	/* Can only proceed if there are plenty of stripe_heads.
5463 	 * We need a minimum of one full stripe,, and for sensible progress
5464 	 * it is best to have about 4 times that.
5465 	 * If we require 4 times, then the default 256 4K stripe_heads will
5466 	 * allow for chunk sizes up to 256K, which is probably OK.
5467 	 * If the chunk size is greater, user-space should request more
5468 	 * stripe_heads first.
5469 	 */
5470 	raid5_conf_t *conf = mddev->private;
5471 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5472 	    > conf->max_nr_stripes ||
5473 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5474 	    > conf->max_nr_stripes) {
5475 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5476 		       mdname(mddev),
5477 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5478 			/ STRIPE_SIZE)*4);
5479 		return 0;
5480 	}
5481 	return 1;
5482 }
5483 
5484 static int check_reshape(mddev_t *mddev)
5485 {
5486 	raid5_conf_t *conf = mddev->private;
5487 
5488 	if (mddev->delta_disks == 0 &&
5489 	    mddev->new_layout == mddev->layout &&
5490 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5491 		return 0; /* nothing to do */
5492 	if (mddev->bitmap)
5493 		/* Cannot grow a bitmap yet */
5494 		return -EBUSY;
5495 	if (has_failed(conf))
5496 		return -EINVAL;
5497 	if (mddev->delta_disks < 0) {
5498 		/* We might be able to shrink, but the devices must
5499 		 * be made bigger first.
5500 		 * For raid6, 4 is the minimum size.
5501 		 * Otherwise 2 is the minimum
5502 		 */
5503 		int min = 2;
5504 		if (mddev->level == 6)
5505 			min = 4;
5506 		if (mddev->raid_disks + mddev->delta_disks < min)
5507 			return -EINVAL;
5508 	}
5509 
5510 	if (!check_stripe_cache(mddev))
5511 		return -ENOSPC;
5512 
5513 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5514 }
5515 
5516 static int raid5_start_reshape(mddev_t *mddev)
5517 {
5518 	raid5_conf_t *conf = mddev->private;
5519 	mdk_rdev_t *rdev;
5520 	int spares = 0;
5521 	int added_devices = 0;
5522 	unsigned long flags;
5523 
5524 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5525 		return -EBUSY;
5526 
5527 	if (!check_stripe_cache(mddev))
5528 		return -ENOSPC;
5529 
5530 	list_for_each_entry(rdev, &mddev->disks, same_set)
5531 		if (rdev->raid_disk < 0 &&
5532 		    !test_bit(Faulty, &rdev->flags))
5533 			spares++;
5534 
5535 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5536 		/* Not enough devices even to make a degraded array
5537 		 * of that size
5538 		 */
5539 		return -EINVAL;
5540 
5541 	/* Refuse to reduce size of the array.  Any reductions in
5542 	 * array size must be through explicit setting of array_size
5543 	 * attribute.
5544 	 */
5545 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5546 	    < mddev->array_sectors) {
5547 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5548 		       "before number of disks\n", mdname(mddev));
5549 		return -EINVAL;
5550 	}
5551 
5552 	atomic_set(&conf->reshape_stripes, 0);
5553 	spin_lock_irq(&conf->device_lock);
5554 	conf->previous_raid_disks = conf->raid_disks;
5555 	conf->raid_disks += mddev->delta_disks;
5556 	conf->prev_chunk_sectors = conf->chunk_sectors;
5557 	conf->chunk_sectors = mddev->new_chunk_sectors;
5558 	conf->prev_algo = conf->algorithm;
5559 	conf->algorithm = mddev->new_layout;
5560 	if (mddev->delta_disks < 0)
5561 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5562 	else
5563 		conf->reshape_progress = 0;
5564 	conf->reshape_safe = conf->reshape_progress;
5565 	conf->generation++;
5566 	spin_unlock_irq(&conf->device_lock);
5567 
5568 	/* Add some new drives, as many as will fit.
5569 	 * We know there are enough to make the newly sized array work.
5570 	 * Don't add devices if we are reducing the number of
5571 	 * devices in the array.  This is because it is not possible
5572 	 * to correctly record the "partially reconstructed" state of
5573 	 * such devices during the reshape and confusion could result.
5574 	 */
5575 	if (mddev->delta_disks >= 0)
5576 	    list_for_each_entry(rdev, &mddev->disks, same_set)
5577 		if (rdev->raid_disk < 0 &&
5578 		    !test_bit(Faulty, &rdev->flags)) {
5579 			if (raid5_add_disk(mddev, rdev) == 0) {
5580 				char nm[20];
5581 				if (rdev->raid_disk >= conf->previous_raid_disks) {
5582 					set_bit(In_sync, &rdev->flags);
5583 					added_devices++;
5584 				} else
5585 					rdev->recovery_offset = 0;
5586 				sprintf(nm, "rd%d", rdev->raid_disk);
5587 				if (sysfs_create_link(&mddev->kobj,
5588 						      &rdev->kobj, nm))
5589 					/* Failure here is OK */;
5590 			} else
5591 				break;
5592 		}
5593 
5594 	/* When a reshape changes the number of devices, ->degraded
5595 	 * is measured against the larger of the pre and post number of
5596 	 * devices.*/
5597 	if (mddev->delta_disks > 0) {
5598 		spin_lock_irqsave(&conf->device_lock, flags);
5599 		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5600 			- added_devices;
5601 		spin_unlock_irqrestore(&conf->device_lock, flags);
5602 	}
5603 	mddev->raid_disks = conf->raid_disks;
5604 	mddev->reshape_position = conf->reshape_progress;
5605 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5606 
5607 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5608 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5609 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5610 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5611 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5612 						"reshape");
5613 	if (!mddev->sync_thread) {
5614 		mddev->recovery = 0;
5615 		spin_lock_irq(&conf->device_lock);
5616 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5617 		conf->reshape_progress = MaxSector;
5618 		spin_unlock_irq(&conf->device_lock);
5619 		return -EAGAIN;
5620 	}
5621 	conf->reshape_checkpoint = jiffies;
5622 	md_wakeup_thread(mddev->sync_thread);
5623 	md_new_event(mddev);
5624 	return 0;
5625 }
5626 
5627 /* This is called from the reshape thread and should make any
5628  * changes needed in 'conf'
5629  */
5630 static void end_reshape(raid5_conf_t *conf)
5631 {
5632 
5633 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5634 
5635 		spin_lock_irq(&conf->device_lock);
5636 		conf->previous_raid_disks = conf->raid_disks;
5637 		conf->reshape_progress = MaxSector;
5638 		spin_unlock_irq(&conf->device_lock);
5639 		wake_up(&conf->wait_for_overlap);
5640 
5641 		/* read-ahead size must cover two whole stripes, which is
5642 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5643 		 */
5644 		if (conf->mddev->queue) {
5645 			int data_disks = conf->raid_disks - conf->max_degraded;
5646 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5647 						   / PAGE_SIZE);
5648 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5649 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5650 		}
5651 	}
5652 }
5653 
5654 /* This is called from the raid5d thread with mddev_lock held.
5655  * It makes config changes to the device.
5656  */
5657 static void raid5_finish_reshape(mddev_t *mddev)
5658 {
5659 	raid5_conf_t *conf = mddev->private;
5660 
5661 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5662 
5663 		if (mddev->delta_disks > 0) {
5664 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5665 			set_capacity(mddev->gendisk, mddev->array_sectors);
5666 			revalidate_disk(mddev->gendisk);
5667 		} else {
5668 			int d;
5669 			mddev->degraded = conf->raid_disks;
5670 			for (d = 0; d < conf->raid_disks ; d++)
5671 				if (conf->disks[d].rdev &&
5672 				    test_bit(In_sync,
5673 					     &conf->disks[d].rdev->flags))
5674 					mddev->degraded--;
5675 			for (d = conf->raid_disks ;
5676 			     d < conf->raid_disks - mddev->delta_disks;
5677 			     d++) {
5678 				mdk_rdev_t *rdev = conf->disks[d].rdev;
5679 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5680 					char nm[20];
5681 					sprintf(nm, "rd%d", rdev->raid_disk);
5682 					sysfs_remove_link(&mddev->kobj, nm);
5683 					rdev->raid_disk = -1;
5684 				}
5685 			}
5686 		}
5687 		mddev->layout = conf->algorithm;
5688 		mddev->chunk_sectors = conf->chunk_sectors;
5689 		mddev->reshape_position = MaxSector;
5690 		mddev->delta_disks = 0;
5691 	}
5692 }
5693 
5694 static void raid5_quiesce(mddev_t *mddev, int state)
5695 {
5696 	raid5_conf_t *conf = mddev->private;
5697 
5698 	switch(state) {
5699 	case 2: /* resume for a suspend */
5700 		wake_up(&conf->wait_for_overlap);
5701 		break;
5702 
5703 	case 1: /* stop all writes */
5704 		spin_lock_irq(&conf->device_lock);
5705 		/* '2' tells resync/reshape to pause so that all
5706 		 * active stripes can drain
5707 		 */
5708 		conf->quiesce = 2;
5709 		wait_event_lock_irq(conf->wait_for_stripe,
5710 				    atomic_read(&conf->active_stripes) == 0 &&
5711 				    atomic_read(&conf->active_aligned_reads) == 0,
5712 				    conf->device_lock, /* nothing */);
5713 		conf->quiesce = 1;
5714 		spin_unlock_irq(&conf->device_lock);
5715 		/* allow reshape to continue */
5716 		wake_up(&conf->wait_for_overlap);
5717 		break;
5718 
5719 	case 0: /* re-enable writes */
5720 		spin_lock_irq(&conf->device_lock);
5721 		conf->quiesce = 0;
5722 		wake_up(&conf->wait_for_stripe);
5723 		wake_up(&conf->wait_for_overlap);
5724 		spin_unlock_irq(&conf->device_lock);
5725 		break;
5726 	}
5727 }
5728 
5729 
5730 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5731 {
5732 	struct raid0_private_data *raid0_priv = mddev->private;
5733 
5734 	/* for raid0 takeover only one zone is supported */
5735 	if (raid0_priv->nr_strip_zones > 1) {
5736 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5737 		       mdname(mddev));
5738 		return ERR_PTR(-EINVAL);
5739 	}
5740 
5741 	mddev->new_level = level;
5742 	mddev->new_layout = ALGORITHM_PARITY_N;
5743 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5744 	mddev->raid_disks += 1;
5745 	mddev->delta_disks = 1;
5746 	/* make sure it will be not marked as dirty */
5747 	mddev->recovery_cp = MaxSector;
5748 
5749 	return setup_conf(mddev);
5750 }
5751 
5752 
5753 static void *raid5_takeover_raid1(mddev_t *mddev)
5754 {
5755 	int chunksect;
5756 
5757 	if (mddev->raid_disks != 2 ||
5758 	    mddev->degraded > 1)
5759 		return ERR_PTR(-EINVAL);
5760 
5761 	/* Should check if there are write-behind devices? */
5762 
5763 	chunksect = 64*2; /* 64K by default */
5764 
5765 	/* The array must be an exact multiple of chunksize */
5766 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5767 		chunksect >>= 1;
5768 
5769 	if ((chunksect<<9) < STRIPE_SIZE)
5770 		/* array size does not allow a suitable chunk size */
5771 		return ERR_PTR(-EINVAL);
5772 
5773 	mddev->new_level = 5;
5774 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5775 	mddev->new_chunk_sectors = chunksect;
5776 
5777 	return setup_conf(mddev);
5778 }
5779 
5780 static void *raid5_takeover_raid6(mddev_t *mddev)
5781 {
5782 	int new_layout;
5783 
5784 	switch (mddev->layout) {
5785 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5786 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5787 		break;
5788 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5789 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5790 		break;
5791 	case ALGORITHM_LEFT_SYMMETRIC_6:
5792 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5793 		break;
5794 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5795 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5796 		break;
5797 	case ALGORITHM_PARITY_0_6:
5798 		new_layout = ALGORITHM_PARITY_0;
5799 		break;
5800 	case ALGORITHM_PARITY_N:
5801 		new_layout = ALGORITHM_PARITY_N;
5802 		break;
5803 	default:
5804 		return ERR_PTR(-EINVAL);
5805 	}
5806 	mddev->new_level = 5;
5807 	mddev->new_layout = new_layout;
5808 	mddev->delta_disks = -1;
5809 	mddev->raid_disks -= 1;
5810 	return setup_conf(mddev);
5811 }
5812 
5813 
5814 static int raid5_check_reshape(mddev_t *mddev)
5815 {
5816 	/* For a 2-drive array, the layout and chunk size can be changed
5817 	 * immediately as not restriping is needed.
5818 	 * For larger arrays we record the new value - after validation
5819 	 * to be used by a reshape pass.
5820 	 */
5821 	raid5_conf_t *conf = mddev->private;
5822 	int new_chunk = mddev->new_chunk_sectors;
5823 
5824 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5825 		return -EINVAL;
5826 	if (new_chunk > 0) {
5827 		if (!is_power_of_2(new_chunk))
5828 			return -EINVAL;
5829 		if (new_chunk < (PAGE_SIZE>>9))
5830 			return -EINVAL;
5831 		if (mddev->array_sectors & (new_chunk-1))
5832 			/* not factor of array size */
5833 			return -EINVAL;
5834 	}
5835 
5836 	/* They look valid */
5837 
5838 	if (mddev->raid_disks == 2) {
5839 		/* can make the change immediately */
5840 		if (mddev->new_layout >= 0) {
5841 			conf->algorithm = mddev->new_layout;
5842 			mddev->layout = mddev->new_layout;
5843 		}
5844 		if (new_chunk > 0) {
5845 			conf->chunk_sectors = new_chunk ;
5846 			mddev->chunk_sectors = new_chunk;
5847 		}
5848 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5849 		md_wakeup_thread(mddev->thread);
5850 	}
5851 	return check_reshape(mddev);
5852 }
5853 
5854 static int raid6_check_reshape(mddev_t *mddev)
5855 {
5856 	int new_chunk = mddev->new_chunk_sectors;
5857 
5858 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5859 		return -EINVAL;
5860 	if (new_chunk > 0) {
5861 		if (!is_power_of_2(new_chunk))
5862 			return -EINVAL;
5863 		if (new_chunk < (PAGE_SIZE >> 9))
5864 			return -EINVAL;
5865 		if (mddev->array_sectors & (new_chunk-1))
5866 			/* not factor of array size */
5867 			return -EINVAL;
5868 	}
5869 
5870 	/* They look valid */
5871 	return check_reshape(mddev);
5872 }
5873 
5874 static void *raid5_takeover(mddev_t *mddev)
5875 {
5876 	/* raid5 can take over:
5877 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5878 	 *  raid1 - if there are two drives.  We need to know the chunk size
5879 	 *  raid4 - trivial - just use a raid4 layout.
5880 	 *  raid6 - Providing it is a *_6 layout
5881 	 */
5882 	if (mddev->level == 0)
5883 		return raid45_takeover_raid0(mddev, 5);
5884 	if (mddev->level == 1)
5885 		return raid5_takeover_raid1(mddev);
5886 	if (mddev->level == 4) {
5887 		mddev->new_layout = ALGORITHM_PARITY_N;
5888 		mddev->new_level = 5;
5889 		return setup_conf(mddev);
5890 	}
5891 	if (mddev->level == 6)
5892 		return raid5_takeover_raid6(mddev);
5893 
5894 	return ERR_PTR(-EINVAL);
5895 }
5896 
5897 static void *raid4_takeover(mddev_t *mddev)
5898 {
5899 	/* raid4 can take over:
5900 	 *  raid0 - if there is only one strip zone
5901 	 *  raid5 - if layout is right
5902 	 */
5903 	if (mddev->level == 0)
5904 		return raid45_takeover_raid0(mddev, 4);
5905 	if (mddev->level == 5 &&
5906 	    mddev->layout == ALGORITHM_PARITY_N) {
5907 		mddev->new_layout = 0;
5908 		mddev->new_level = 4;
5909 		return setup_conf(mddev);
5910 	}
5911 	return ERR_PTR(-EINVAL);
5912 }
5913 
5914 static struct mdk_personality raid5_personality;
5915 
5916 static void *raid6_takeover(mddev_t *mddev)
5917 {
5918 	/* Currently can only take over a raid5.  We map the
5919 	 * personality to an equivalent raid6 personality
5920 	 * with the Q block at the end.
5921 	 */
5922 	int new_layout;
5923 
5924 	if (mddev->pers != &raid5_personality)
5925 		return ERR_PTR(-EINVAL);
5926 	if (mddev->degraded > 1)
5927 		return ERR_PTR(-EINVAL);
5928 	if (mddev->raid_disks > 253)
5929 		return ERR_PTR(-EINVAL);
5930 	if (mddev->raid_disks < 3)
5931 		return ERR_PTR(-EINVAL);
5932 
5933 	switch (mddev->layout) {
5934 	case ALGORITHM_LEFT_ASYMMETRIC:
5935 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5936 		break;
5937 	case ALGORITHM_RIGHT_ASYMMETRIC:
5938 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5939 		break;
5940 	case ALGORITHM_LEFT_SYMMETRIC:
5941 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5942 		break;
5943 	case ALGORITHM_RIGHT_SYMMETRIC:
5944 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5945 		break;
5946 	case ALGORITHM_PARITY_0:
5947 		new_layout = ALGORITHM_PARITY_0_6;
5948 		break;
5949 	case ALGORITHM_PARITY_N:
5950 		new_layout = ALGORITHM_PARITY_N;
5951 		break;
5952 	default:
5953 		return ERR_PTR(-EINVAL);
5954 	}
5955 	mddev->new_level = 6;
5956 	mddev->new_layout = new_layout;
5957 	mddev->delta_disks = 1;
5958 	mddev->raid_disks += 1;
5959 	return setup_conf(mddev);
5960 }
5961 
5962 
5963 static struct mdk_personality raid6_personality =
5964 {
5965 	.name		= "raid6",
5966 	.level		= 6,
5967 	.owner		= THIS_MODULE,
5968 	.make_request	= make_request,
5969 	.run		= run,
5970 	.stop		= stop,
5971 	.status		= status,
5972 	.error_handler	= error,
5973 	.hot_add_disk	= raid5_add_disk,
5974 	.hot_remove_disk= raid5_remove_disk,
5975 	.spare_active	= raid5_spare_active,
5976 	.sync_request	= sync_request,
5977 	.resize		= raid5_resize,
5978 	.size		= raid5_size,
5979 	.check_reshape	= raid6_check_reshape,
5980 	.start_reshape  = raid5_start_reshape,
5981 	.finish_reshape = raid5_finish_reshape,
5982 	.quiesce	= raid5_quiesce,
5983 	.takeover	= raid6_takeover,
5984 };
5985 static struct mdk_personality raid5_personality =
5986 {
5987 	.name		= "raid5",
5988 	.level		= 5,
5989 	.owner		= THIS_MODULE,
5990 	.make_request	= make_request,
5991 	.run		= run,
5992 	.stop		= stop,
5993 	.status		= status,
5994 	.error_handler	= error,
5995 	.hot_add_disk	= raid5_add_disk,
5996 	.hot_remove_disk= raid5_remove_disk,
5997 	.spare_active	= raid5_spare_active,
5998 	.sync_request	= sync_request,
5999 	.resize		= raid5_resize,
6000 	.size		= raid5_size,
6001 	.check_reshape	= raid5_check_reshape,
6002 	.start_reshape  = raid5_start_reshape,
6003 	.finish_reshape = raid5_finish_reshape,
6004 	.quiesce	= raid5_quiesce,
6005 	.takeover	= raid5_takeover,
6006 };
6007 
6008 static struct mdk_personality raid4_personality =
6009 {
6010 	.name		= "raid4",
6011 	.level		= 4,
6012 	.owner		= THIS_MODULE,
6013 	.make_request	= make_request,
6014 	.run		= run,
6015 	.stop		= stop,
6016 	.status		= status,
6017 	.error_handler	= error,
6018 	.hot_add_disk	= raid5_add_disk,
6019 	.hot_remove_disk= raid5_remove_disk,
6020 	.spare_active	= raid5_spare_active,
6021 	.sync_request	= sync_request,
6022 	.resize		= raid5_resize,
6023 	.size		= raid5_size,
6024 	.check_reshape	= raid5_check_reshape,
6025 	.start_reshape  = raid5_start_reshape,
6026 	.finish_reshape = raid5_finish_reshape,
6027 	.quiesce	= raid5_quiesce,
6028 	.takeover	= raid4_takeover,
6029 };
6030 
6031 static int __init raid5_init(void)
6032 {
6033 	register_md_personality(&raid6_personality);
6034 	register_md_personality(&raid5_personality);
6035 	register_md_personality(&raid4_personality);
6036 	return 0;
6037 }
6038 
6039 static void raid5_exit(void)
6040 {
6041 	unregister_md_personality(&raid6_personality);
6042 	unregister_md_personality(&raid5_personality);
6043 	unregister_md_personality(&raid4_personality);
6044 }
6045 
6046 module_init(raid5_init);
6047 module_exit(raid5_exit);
6048 MODULE_LICENSE("GPL");
6049 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6050 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6051 MODULE_ALIAS("md-raid5");
6052 MODULE_ALIAS("md-raid4");
6053 MODULE_ALIAS("md-level-5");
6054 MODULE_ALIAS("md-level-4");
6055 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6056 MODULE_ALIAS("md-raid6");
6057 MODULE_ALIAS("md-level-6");
6058 
6059 /* This used to be two separate modules, they were: */
6060 MODULE_ALIAS("raid5");
6061 MODULE_ALIAS("raid6");
6062