xref: /openbmc/linux/drivers/md/raid5.c (revision b96fc2f3)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio_list *return_bi)
227 {
228 	struct bio *bi;
229 	while ((bi = bio_list_pop(return_bi)) != NULL) {
230 		bi->bi_iter.bi_size = 0;
231 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 					 bi, 0);
233 		bio_endio(bi);
234 	}
235 }
236 
237 static void print_raid5_conf (struct r5conf *conf);
238 
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 	return sh->check_state || sh->reconstruct_state ||
242 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245 
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 	struct r5conf *conf = sh->raid_conf;
249 	struct r5worker_group *group;
250 	int thread_cnt;
251 	int i, cpu = sh->cpu;
252 
253 	if (!cpu_online(cpu)) {
254 		cpu = cpumask_any(cpu_online_mask);
255 		sh->cpu = cpu;
256 	}
257 
258 	if (list_empty(&sh->lru)) {
259 		struct r5worker_group *group;
260 		group = conf->worker_groups + cpu_to_group(cpu);
261 		list_add_tail(&sh->lru, &group->handle_list);
262 		group->stripes_cnt++;
263 		sh->group = group;
264 	}
265 
266 	if (conf->worker_cnt_per_group == 0) {
267 		md_wakeup_thread(conf->mddev->thread);
268 		return;
269 	}
270 
271 	group = conf->worker_groups + cpu_to_group(sh->cpu);
272 
273 	group->workers[0].working = true;
274 	/* at least one worker should run to avoid race */
275 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276 
277 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 	/* wakeup more workers */
279 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 		if (group->workers[i].working == false) {
281 			group->workers[i].working = true;
282 			queue_work_on(sh->cpu, raid5_wq,
283 				      &group->workers[i].work);
284 			thread_cnt--;
285 		}
286 	}
287 }
288 
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 			      struct list_head *temp_inactive_list)
291 {
292 	BUG_ON(!list_empty(&sh->lru));
293 	BUG_ON(atomic_read(&conf->active_stripes)==0);
294 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 			list_add_tail(&sh->lru, &conf->delayed_list);
298 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 			   sh->bm_seq - conf->seq_write > 0)
300 			list_add_tail(&sh->lru, &conf->bitmap_list);
301 		else {
302 			clear_bit(STRIPE_DELAYED, &sh->state);
303 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 			if (conf->worker_cnt_per_group == 0) {
305 				list_add_tail(&sh->lru, &conf->handle_list);
306 			} else {
307 				raid5_wakeup_stripe_thread(sh);
308 				return;
309 			}
310 		}
311 		md_wakeup_thread(conf->mddev->thread);
312 	} else {
313 		BUG_ON(stripe_operations_active(sh));
314 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 			if (atomic_dec_return(&conf->preread_active_stripes)
316 			    < IO_THRESHOLD)
317 				md_wakeup_thread(conf->mddev->thread);
318 		atomic_dec(&conf->active_stripes);
319 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 			list_add_tail(&sh->lru, temp_inactive_list);
321 	}
322 }
323 
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 			     struct list_head *temp_inactive_list)
326 {
327 	if (atomic_dec_and_test(&sh->count))
328 		do_release_stripe(conf, sh, temp_inactive_list);
329 }
330 
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 					 struct list_head *temp_inactive_list,
340 					 int hash)
341 {
342 	int size;
343 	unsigned long do_wakeup = 0;
344 	int i = 0;
345 	unsigned long flags;
346 
347 	if (hash == NR_STRIPE_HASH_LOCKS) {
348 		size = NR_STRIPE_HASH_LOCKS;
349 		hash = NR_STRIPE_HASH_LOCKS - 1;
350 	} else
351 		size = 1;
352 	while (size) {
353 		struct list_head *list = &temp_inactive_list[size - 1];
354 
355 		/*
356 		 * We don't hold any lock here yet, get_active_stripe() might
357 		 * remove stripes from the list
358 		 */
359 		if (!list_empty_careful(list)) {
360 			spin_lock_irqsave(conf->hash_locks + hash, flags);
361 			if (list_empty(conf->inactive_list + hash) &&
362 			    !list_empty(list))
363 				atomic_dec(&conf->empty_inactive_list_nr);
364 			list_splice_tail_init(list, conf->inactive_list + hash);
365 			do_wakeup |= 1 << hash;
366 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 		}
368 		size--;
369 		hash--;
370 	}
371 
372 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 		if (do_wakeup & (1 << i))
374 			wake_up(&conf->wait_for_stripe[i]);
375 	}
376 
377 	if (do_wakeup) {
378 		if (atomic_read(&conf->active_stripes) == 0)
379 			wake_up(&conf->wait_for_quiescent);
380 		if (conf->retry_read_aligned)
381 			md_wakeup_thread(conf->mddev->thread);
382 	}
383 }
384 
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387 			       struct list_head *temp_inactive_list)
388 {
389 	struct stripe_head *sh;
390 	int count = 0;
391 	struct llist_node *head;
392 
393 	head = llist_del_all(&conf->released_stripes);
394 	head = llist_reverse_order(head);
395 	while (head) {
396 		int hash;
397 
398 		sh = llist_entry(head, struct stripe_head, release_list);
399 		head = llist_next(head);
400 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 		smp_mb();
402 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 		/*
404 		 * Don't worry the bit is set here, because if the bit is set
405 		 * again, the count is always > 1. This is true for
406 		 * STRIPE_ON_UNPLUG_LIST bit too.
407 		 */
408 		hash = sh->hash_lock_index;
409 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
410 		count++;
411 	}
412 
413 	return count;
414 }
415 
416 static void release_stripe(struct stripe_head *sh)
417 {
418 	struct r5conf *conf = sh->raid_conf;
419 	unsigned long flags;
420 	struct list_head list;
421 	int hash;
422 	bool wakeup;
423 
424 	/* Avoid release_list until the last reference.
425 	 */
426 	if (atomic_add_unless(&sh->count, -1, 1))
427 		return;
428 
429 	if (unlikely(!conf->mddev->thread) ||
430 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431 		goto slow_path;
432 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 	if (wakeup)
434 		md_wakeup_thread(conf->mddev->thread);
435 	return;
436 slow_path:
437 	local_irq_save(flags);
438 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440 		INIT_LIST_HEAD(&list);
441 		hash = sh->hash_lock_index;
442 		do_release_stripe(conf, sh, &list);
443 		spin_unlock(&conf->device_lock);
444 		release_inactive_stripe_list(conf, &list, hash);
445 	}
446 	local_irq_restore(flags);
447 }
448 
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451 	pr_debug("remove_hash(), stripe %llu\n",
452 		(unsigned long long)sh->sector);
453 
454 	hlist_del_init(&sh->hash);
455 }
456 
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
460 
461 	pr_debug("insert_hash(), stripe %llu\n",
462 		(unsigned long long)sh->sector);
463 
464 	hlist_add_head(&sh->hash, hp);
465 }
466 
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470 	struct stripe_head *sh = NULL;
471 	struct list_head *first;
472 
473 	if (list_empty(conf->inactive_list + hash))
474 		goto out;
475 	first = (conf->inactive_list + hash)->next;
476 	sh = list_entry(first, struct stripe_head, lru);
477 	list_del_init(first);
478 	remove_hash(sh);
479 	atomic_inc(&conf->active_stripes);
480 	BUG_ON(hash != sh->hash_lock_index);
481 	if (list_empty(conf->inactive_list + hash))
482 		atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484 	return sh;
485 }
486 
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489 	struct page *p;
490 	int i;
491 	int num = sh->raid_conf->pool_size;
492 
493 	for (i = 0; i < num ; i++) {
494 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495 		p = sh->dev[i].page;
496 		if (!p)
497 			continue;
498 		sh->dev[i].page = NULL;
499 		put_page(p);
500 	}
501 }
502 
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505 	int i;
506 	int num = sh->raid_conf->pool_size;
507 
508 	for (i = 0; i < num; i++) {
509 		struct page *page;
510 
511 		if (!(page = alloc_page(gfp))) {
512 			return 1;
513 		}
514 		sh->dev[i].page = page;
515 		sh->dev[i].orig_page = page;
516 	}
517 	return 0;
518 }
519 
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522 			    struct stripe_head *sh);
523 
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526 	struct r5conf *conf = sh->raid_conf;
527 	int i, seq;
528 
529 	BUG_ON(atomic_read(&sh->count) != 0);
530 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531 	BUG_ON(stripe_operations_active(sh));
532 	BUG_ON(sh->batch_head);
533 
534 	pr_debug("init_stripe called, stripe %llu\n",
535 		(unsigned long long)sector);
536 retry:
537 	seq = read_seqcount_begin(&conf->gen_lock);
538 	sh->generation = conf->generation - previous;
539 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540 	sh->sector = sector;
541 	stripe_set_idx(sector, conf, previous, sh);
542 	sh->state = 0;
543 
544 	for (i = sh->disks; i--; ) {
545 		struct r5dev *dev = &sh->dev[i];
546 
547 		if (dev->toread || dev->read || dev->towrite || dev->written ||
548 		    test_bit(R5_LOCKED, &dev->flags)) {
549 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550 			       (unsigned long long)sh->sector, i, dev->toread,
551 			       dev->read, dev->towrite, dev->written,
552 			       test_bit(R5_LOCKED, &dev->flags));
553 			WARN_ON(1);
554 		}
555 		dev->flags = 0;
556 		raid5_build_block(sh, i, previous);
557 	}
558 	if (read_seqcount_retry(&conf->gen_lock, seq))
559 		goto retry;
560 	sh->overwrite_disks = 0;
561 	insert_hash(conf, sh);
562 	sh->cpu = smp_processor_id();
563 	set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565 
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567 					 short generation)
568 {
569 	struct stripe_head *sh;
570 
571 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573 		if (sh->sector == sector && sh->generation == generation)
574 			return sh;
575 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576 	return NULL;
577 }
578 
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594 	int degraded, degraded2;
595 	int i;
596 
597 	rcu_read_lock();
598 	degraded = 0;
599 	for (i = 0; i < conf->previous_raid_disks; i++) {
600 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 		if (rdev && test_bit(Faulty, &rdev->flags))
602 			rdev = rcu_dereference(conf->disks[i].replacement);
603 		if (!rdev || test_bit(Faulty, &rdev->flags))
604 			degraded++;
605 		else if (test_bit(In_sync, &rdev->flags))
606 			;
607 		else
608 			/* not in-sync or faulty.
609 			 * If the reshape increases the number of devices,
610 			 * this is being recovered by the reshape, so
611 			 * this 'previous' section is not in_sync.
612 			 * If the number of devices is being reduced however,
613 			 * the device can only be part of the array if
614 			 * we are reverting a reshape, so this section will
615 			 * be in-sync.
616 			 */
617 			if (conf->raid_disks >= conf->previous_raid_disks)
618 				degraded++;
619 	}
620 	rcu_read_unlock();
621 	if (conf->raid_disks == conf->previous_raid_disks)
622 		return degraded;
623 	rcu_read_lock();
624 	degraded2 = 0;
625 	for (i = 0; i < conf->raid_disks; i++) {
626 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627 		if (rdev && test_bit(Faulty, &rdev->flags))
628 			rdev = rcu_dereference(conf->disks[i].replacement);
629 		if (!rdev || test_bit(Faulty, &rdev->flags))
630 			degraded2++;
631 		else if (test_bit(In_sync, &rdev->flags))
632 			;
633 		else
634 			/* not in-sync or faulty.
635 			 * If reshape increases the number of devices, this
636 			 * section has already been recovered, else it
637 			 * almost certainly hasn't.
638 			 */
639 			if (conf->raid_disks <= conf->previous_raid_disks)
640 				degraded2++;
641 	}
642 	rcu_read_unlock();
643 	if (degraded2 > degraded)
644 		return degraded2;
645 	return degraded;
646 }
647 
648 static int has_failed(struct r5conf *conf)
649 {
650 	int degraded;
651 
652 	if (conf->mddev->reshape_position == MaxSector)
653 		return conf->mddev->degraded > conf->max_degraded;
654 
655 	degraded = calc_degraded(conf);
656 	if (degraded > conf->max_degraded)
657 		return 1;
658 	return 0;
659 }
660 
661 static struct stripe_head *
662 get_active_stripe(struct r5conf *conf, sector_t sector,
663 		  int previous, int noblock, int noquiesce)
664 {
665 	struct stripe_head *sh;
666 	int hash = stripe_hash_locks_hash(sector);
667 
668 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669 
670 	spin_lock_irq(conf->hash_locks + hash);
671 
672 	do {
673 		wait_event_lock_irq(conf->wait_for_quiescent,
674 				    conf->quiesce == 0 || noquiesce,
675 				    *(conf->hash_locks + hash));
676 		sh = __find_stripe(conf, sector, conf->generation - previous);
677 		if (!sh) {
678 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679 				sh = get_free_stripe(conf, hash);
680 				if (!sh && !test_bit(R5_DID_ALLOC,
681 						     &conf->cache_state))
682 					set_bit(R5_ALLOC_MORE,
683 						&conf->cache_state);
684 			}
685 			if (noblock && sh == NULL)
686 				break;
687 			if (!sh) {
688 				set_bit(R5_INACTIVE_BLOCKED,
689 					&conf->cache_state);
690 				wait_event_exclusive_cmd(
691 					conf->wait_for_stripe[hash],
692 					!list_empty(conf->inactive_list + hash) &&
693 					(atomic_read(&conf->active_stripes)
694 					 < (conf->max_nr_stripes * 3 / 4)
695 					 || !test_bit(R5_INACTIVE_BLOCKED,
696 						      &conf->cache_state)),
697 					spin_unlock_irq(conf->hash_locks + hash),
698 					spin_lock_irq(conf->hash_locks + hash));
699 				clear_bit(R5_INACTIVE_BLOCKED,
700 					  &conf->cache_state);
701 			} else {
702 				init_stripe(sh, sector, previous);
703 				atomic_inc(&sh->count);
704 			}
705 		} else if (!atomic_inc_not_zero(&sh->count)) {
706 			spin_lock(&conf->device_lock);
707 			if (!atomic_read(&sh->count)) {
708 				if (!test_bit(STRIPE_HANDLE, &sh->state))
709 					atomic_inc(&conf->active_stripes);
710 				BUG_ON(list_empty(&sh->lru) &&
711 				       !test_bit(STRIPE_EXPANDING, &sh->state));
712 				list_del_init(&sh->lru);
713 				if (sh->group) {
714 					sh->group->stripes_cnt--;
715 					sh->group = NULL;
716 				}
717 			}
718 			atomic_inc(&sh->count);
719 			spin_unlock(&conf->device_lock);
720 		}
721 	} while (sh == NULL);
722 
723 	if (!list_empty(conf->inactive_list + hash))
724 		wake_up(&conf->wait_for_stripe[hash]);
725 
726 	spin_unlock_irq(conf->hash_locks + hash);
727 	return sh;
728 }
729 
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735 
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738 	local_irq_disable();
739 	if (sh1 > sh2) {
740 		spin_lock(&sh2->stripe_lock);
741 		spin_lock_nested(&sh1->stripe_lock, 1);
742 	} else {
743 		spin_lock(&sh1->stripe_lock);
744 		spin_lock_nested(&sh2->stripe_lock, 1);
745 	}
746 }
747 
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750 	spin_unlock(&sh1->stripe_lock);
751 	spin_unlock(&sh2->stripe_lock);
752 	local_irq_enable();
753 }
754 
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
759 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
760 		is_full_stripe_write(sh);
761 }
762 
763 /* we only do back search */
764 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765 {
766 	struct stripe_head *head;
767 	sector_t head_sector, tmp_sec;
768 	int hash;
769 	int dd_idx;
770 
771 	if (!stripe_can_batch(sh))
772 		return;
773 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774 	tmp_sec = sh->sector;
775 	if (!sector_div(tmp_sec, conf->chunk_sectors))
776 		return;
777 	head_sector = sh->sector - STRIPE_SECTORS;
778 
779 	hash = stripe_hash_locks_hash(head_sector);
780 	spin_lock_irq(conf->hash_locks + hash);
781 	head = __find_stripe(conf, head_sector, conf->generation);
782 	if (head && !atomic_inc_not_zero(&head->count)) {
783 		spin_lock(&conf->device_lock);
784 		if (!atomic_read(&head->count)) {
785 			if (!test_bit(STRIPE_HANDLE, &head->state))
786 				atomic_inc(&conf->active_stripes);
787 			BUG_ON(list_empty(&head->lru) &&
788 			       !test_bit(STRIPE_EXPANDING, &head->state));
789 			list_del_init(&head->lru);
790 			if (head->group) {
791 				head->group->stripes_cnt--;
792 				head->group = NULL;
793 			}
794 		}
795 		atomic_inc(&head->count);
796 		spin_unlock(&conf->device_lock);
797 	}
798 	spin_unlock_irq(conf->hash_locks + hash);
799 
800 	if (!head)
801 		return;
802 	if (!stripe_can_batch(head))
803 		goto out;
804 
805 	lock_two_stripes(head, sh);
806 	/* clear_batch_ready clear the flag */
807 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808 		goto unlock_out;
809 
810 	if (sh->batch_head)
811 		goto unlock_out;
812 
813 	dd_idx = 0;
814 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815 		dd_idx++;
816 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817 		goto unlock_out;
818 
819 	if (head->batch_head) {
820 		spin_lock(&head->batch_head->batch_lock);
821 		/* This batch list is already running */
822 		if (!stripe_can_batch(head)) {
823 			spin_unlock(&head->batch_head->batch_lock);
824 			goto unlock_out;
825 		}
826 
827 		/*
828 		 * at this point, head's BATCH_READY could be cleared, but we
829 		 * can still add the stripe to batch list
830 		 */
831 		list_add(&sh->batch_list, &head->batch_list);
832 		spin_unlock(&head->batch_head->batch_lock);
833 
834 		sh->batch_head = head->batch_head;
835 	} else {
836 		head->batch_head = head;
837 		sh->batch_head = head->batch_head;
838 		spin_lock(&head->batch_lock);
839 		list_add_tail(&sh->batch_list, &head->batch_list);
840 		spin_unlock(&head->batch_lock);
841 	}
842 
843 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844 		if (atomic_dec_return(&conf->preread_active_stripes)
845 		    < IO_THRESHOLD)
846 			md_wakeup_thread(conf->mddev->thread);
847 
848 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849 		int seq = sh->bm_seq;
850 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851 		    sh->batch_head->bm_seq > seq)
852 			seq = sh->batch_head->bm_seq;
853 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854 		sh->batch_head->bm_seq = seq;
855 	}
856 
857 	atomic_inc(&sh->count);
858 unlock_out:
859 	unlock_two_stripes(head, sh);
860 out:
861 	release_stripe(head);
862 }
863 
864 /* Determine if 'data_offset' or 'new_data_offset' should be used
865  * in this stripe_head.
866  */
867 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868 {
869 	sector_t progress = conf->reshape_progress;
870 	/* Need a memory barrier to make sure we see the value
871 	 * of conf->generation, or ->data_offset that was set before
872 	 * reshape_progress was updated.
873 	 */
874 	smp_rmb();
875 	if (progress == MaxSector)
876 		return 0;
877 	if (sh->generation == conf->generation - 1)
878 		return 0;
879 	/* We are in a reshape, and this is a new-generation stripe,
880 	 * so use new_data_offset.
881 	 */
882 	return 1;
883 }
884 
885 static void
886 raid5_end_read_request(struct bio *bi);
887 static void
888 raid5_end_write_request(struct bio *bi);
889 
890 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
891 {
892 	struct r5conf *conf = sh->raid_conf;
893 	int i, disks = sh->disks;
894 	struct stripe_head *head_sh = sh;
895 
896 	might_sleep();
897 
898 	for (i = disks; i--; ) {
899 		int rw;
900 		int replace_only = 0;
901 		struct bio *bi, *rbi;
902 		struct md_rdev *rdev, *rrdev = NULL;
903 
904 		sh = head_sh;
905 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
906 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
907 				rw = WRITE_FUA;
908 			else
909 				rw = WRITE;
910 			if (test_bit(R5_Discard, &sh->dev[i].flags))
911 				rw |= REQ_DISCARD;
912 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
913 			rw = READ;
914 		else if (test_and_clear_bit(R5_WantReplace,
915 					    &sh->dev[i].flags)) {
916 			rw = WRITE;
917 			replace_only = 1;
918 		} else
919 			continue;
920 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
921 			rw |= REQ_SYNC;
922 
923 again:
924 		bi = &sh->dev[i].req;
925 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
926 
927 		rcu_read_lock();
928 		rrdev = rcu_dereference(conf->disks[i].replacement);
929 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930 		rdev = rcu_dereference(conf->disks[i].rdev);
931 		if (!rdev) {
932 			rdev = rrdev;
933 			rrdev = NULL;
934 		}
935 		if (rw & WRITE) {
936 			if (replace_only)
937 				rdev = NULL;
938 			if (rdev == rrdev)
939 				/* We raced and saw duplicates */
940 				rrdev = NULL;
941 		} else {
942 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
943 				rdev = rrdev;
944 			rrdev = NULL;
945 		}
946 
947 		if (rdev && test_bit(Faulty, &rdev->flags))
948 			rdev = NULL;
949 		if (rdev)
950 			atomic_inc(&rdev->nr_pending);
951 		if (rrdev && test_bit(Faulty, &rrdev->flags))
952 			rrdev = NULL;
953 		if (rrdev)
954 			atomic_inc(&rrdev->nr_pending);
955 		rcu_read_unlock();
956 
957 		/* We have already checked bad blocks for reads.  Now
958 		 * need to check for writes.  We never accept write errors
959 		 * on the replacement, so we don't to check rrdev.
960 		 */
961 		while ((rw & WRITE) && rdev &&
962 		       test_bit(WriteErrorSeen, &rdev->flags)) {
963 			sector_t first_bad;
964 			int bad_sectors;
965 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
966 					      &first_bad, &bad_sectors);
967 			if (!bad)
968 				break;
969 
970 			if (bad < 0) {
971 				set_bit(BlockedBadBlocks, &rdev->flags);
972 				if (!conf->mddev->external &&
973 				    conf->mddev->flags) {
974 					/* It is very unlikely, but we might
975 					 * still need to write out the
976 					 * bad block log - better give it
977 					 * a chance*/
978 					md_check_recovery(conf->mddev);
979 				}
980 				/*
981 				 * Because md_wait_for_blocked_rdev
982 				 * will dec nr_pending, we must
983 				 * increment it first.
984 				 */
985 				atomic_inc(&rdev->nr_pending);
986 				md_wait_for_blocked_rdev(rdev, conf->mddev);
987 			} else {
988 				/* Acknowledged bad block - skip the write */
989 				rdev_dec_pending(rdev, conf->mddev);
990 				rdev = NULL;
991 			}
992 		}
993 
994 		if (rdev) {
995 			if (s->syncing || s->expanding || s->expanded
996 			    || s->replacing)
997 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
998 
999 			set_bit(STRIPE_IO_STARTED, &sh->state);
1000 
1001 			bio_reset(bi);
1002 			bi->bi_bdev = rdev->bdev;
1003 			bi->bi_rw = rw;
1004 			bi->bi_end_io = (rw & WRITE)
1005 				? raid5_end_write_request
1006 				: raid5_end_read_request;
1007 			bi->bi_private = sh;
1008 
1009 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010 				__func__, (unsigned long long)sh->sector,
1011 				bi->bi_rw, i);
1012 			atomic_inc(&sh->count);
1013 			if (sh != head_sh)
1014 				atomic_inc(&head_sh->count);
1015 			if (use_new_offset(conf, sh))
1016 				bi->bi_iter.bi_sector = (sh->sector
1017 						 + rdev->new_data_offset);
1018 			else
1019 				bi->bi_iter.bi_sector = (sh->sector
1020 						 + rdev->data_offset);
1021 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1022 				bi->bi_rw |= REQ_NOMERGE;
1023 
1024 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1025 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1026 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1027 			bi->bi_vcnt = 1;
1028 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1029 			bi->bi_io_vec[0].bv_offset = 0;
1030 			bi->bi_iter.bi_size = STRIPE_SIZE;
1031 			/*
1032 			 * If this is discard request, set bi_vcnt 0. We don't
1033 			 * want to confuse SCSI because SCSI will replace payload
1034 			 */
1035 			if (rw & REQ_DISCARD)
1036 				bi->bi_vcnt = 0;
1037 			if (rrdev)
1038 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1039 
1040 			if (conf->mddev->gendisk)
1041 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1042 						      bi, disk_devt(conf->mddev->gendisk),
1043 						      sh->dev[i].sector);
1044 			generic_make_request(bi);
1045 		}
1046 		if (rrdev) {
1047 			if (s->syncing || s->expanding || s->expanded
1048 			    || s->replacing)
1049 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1050 
1051 			set_bit(STRIPE_IO_STARTED, &sh->state);
1052 
1053 			bio_reset(rbi);
1054 			rbi->bi_bdev = rrdev->bdev;
1055 			rbi->bi_rw = rw;
1056 			BUG_ON(!(rw & WRITE));
1057 			rbi->bi_end_io = raid5_end_write_request;
1058 			rbi->bi_private = sh;
1059 
1060 			pr_debug("%s: for %llu schedule op %ld on "
1061 				 "replacement disc %d\n",
1062 				__func__, (unsigned long long)sh->sector,
1063 				rbi->bi_rw, i);
1064 			atomic_inc(&sh->count);
1065 			if (sh != head_sh)
1066 				atomic_inc(&head_sh->count);
1067 			if (use_new_offset(conf, sh))
1068 				rbi->bi_iter.bi_sector = (sh->sector
1069 						  + rrdev->new_data_offset);
1070 			else
1071 				rbi->bi_iter.bi_sector = (sh->sector
1072 						  + rrdev->data_offset);
1073 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1074 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1075 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1076 			rbi->bi_vcnt = 1;
1077 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1078 			rbi->bi_io_vec[0].bv_offset = 0;
1079 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1080 			/*
1081 			 * If this is discard request, set bi_vcnt 0. We don't
1082 			 * want to confuse SCSI because SCSI will replace payload
1083 			 */
1084 			if (rw & REQ_DISCARD)
1085 				rbi->bi_vcnt = 0;
1086 			if (conf->mddev->gendisk)
1087 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1088 						      rbi, disk_devt(conf->mddev->gendisk),
1089 						      sh->dev[i].sector);
1090 			generic_make_request(rbi);
1091 		}
1092 		if (!rdev && !rrdev) {
1093 			if (rw & WRITE)
1094 				set_bit(STRIPE_DEGRADED, &sh->state);
1095 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1096 				bi->bi_rw, i, (unsigned long long)sh->sector);
1097 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1098 			set_bit(STRIPE_HANDLE, &sh->state);
1099 		}
1100 
1101 		if (!head_sh->batch_head)
1102 			continue;
1103 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1104 				      batch_list);
1105 		if (sh != head_sh)
1106 			goto again;
1107 	}
1108 }
1109 
1110 static struct dma_async_tx_descriptor *
1111 async_copy_data(int frombio, struct bio *bio, struct page **page,
1112 	sector_t sector, struct dma_async_tx_descriptor *tx,
1113 	struct stripe_head *sh)
1114 {
1115 	struct bio_vec bvl;
1116 	struct bvec_iter iter;
1117 	struct page *bio_page;
1118 	int page_offset;
1119 	struct async_submit_ctl submit;
1120 	enum async_tx_flags flags = 0;
1121 
1122 	if (bio->bi_iter.bi_sector >= sector)
1123 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1124 	else
1125 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1126 
1127 	if (frombio)
1128 		flags |= ASYNC_TX_FENCE;
1129 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1130 
1131 	bio_for_each_segment(bvl, bio, iter) {
1132 		int len = bvl.bv_len;
1133 		int clen;
1134 		int b_offset = 0;
1135 
1136 		if (page_offset < 0) {
1137 			b_offset = -page_offset;
1138 			page_offset += b_offset;
1139 			len -= b_offset;
1140 		}
1141 
1142 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1143 			clen = STRIPE_SIZE - page_offset;
1144 		else
1145 			clen = len;
1146 
1147 		if (clen > 0) {
1148 			b_offset += bvl.bv_offset;
1149 			bio_page = bvl.bv_page;
1150 			if (frombio) {
1151 				if (sh->raid_conf->skip_copy &&
1152 				    b_offset == 0 && page_offset == 0 &&
1153 				    clen == STRIPE_SIZE)
1154 					*page = bio_page;
1155 				else
1156 					tx = async_memcpy(*page, bio_page, page_offset,
1157 						  b_offset, clen, &submit);
1158 			} else
1159 				tx = async_memcpy(bio_page, *page, b_offset,
1160 						  page_offset, clen, &submit);
1161 		}
1162 		/* chain the operations */
1163 		submit.depend_tx = tx;
1164 
1165 		if (clen < len) /* hit end of page */
1166 			break;
1167 		page_offset +=  len;
1168 	}
1169 
1170 	return tx;
1171 }
1172 
1173 static void ops_complete_biofill(void *stripe_head_ref)
1174 {
1175 	struct stripe_head *sh = stripe_head_ref;
1176 	struct bio_list return_bi = BIO_EMPTY_LIST;
1177 	int i;
1178 
1179 	pr_debug("%s: stripe %llu\n", __func__,
1180 		(unsigned long long)sh->sector);
1181 
1182 	/* clear completed biofills */
1183 	for (i = sh->disks; i--; ) {
1184 		struct r5dev *dev = &sh->dev[i];
1185 
1186 		/* acknowledge completion of a biofill operation */
1187 		/* and check if we need to reply to a read request,
1188 		 * new R5_Wantfill requests are held off until
1189 		 * !STRIPE_BIOFILL_RUN
1190 		 */
1191 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1192 			struct bio *rbi, *rbi2;
1193 
1194 			BUG_ON(!dev->read);
1195 			rbi = dev->read;
1196 			dev->read = NULL;
1197 			while (rbi && rbi->bi_iter.bi_sector <
1198 				dev->sector + STRIPE_SECTORS) {
1199 				rbi2 = r5_next_bio(rbi, dev->sector);
1200 				if (!raid5_dec_bi_active_stripes(rbi))
1201 					bio_list_add(&return_bi, rbi);
1202 				rbi = rbi2;
1203 			}
1204 		}
1205 	}
1206 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1207 
1208 	return_io(&return_bi);
1209 
1210 	set_bit(STRIPE_HANDLE, &sh->state);
1211 	release_stripe(sh);
1212 }
1213 
1214 static void ops_run_biofill(struct stripe_head *sh)
1215 {
1216 	struct dma_async_tx_descriptor *tx = NULL;
1217 	struct async_submit_ctl submit;
1218 	int i;
1219 
1220 	BUG_ON(sh->batch_head);
1221 	pr_debug("%s: stripe %llu\n", __func__,
1222 		(unsigned long long)sh->sector);
1223 
1224 	for (i = sh->disks; i--; ) {
1225 		struct r5dev *dev = &sh->dev[i];
1226 		if (test_bit(R5_Wantfill, &dev->flags)) {
1227 			struct bio *rbi;
1228 			spin_lock_irq(&sh->stripe_lock);
1229 			dev->read = rbi = dev->toread;
1230 			dev->toread = NULL;
1231 			spin_unlock_irq(&sh->stripe_lock);
1232 			while (rbi && rbi->bi_iter.bi_sector <
1233 				dev->sector + STRIPE_SECTORS) {
1234 				tx = async_copy_data(0, rbi, &dev->page,
1235 					dev->sector, tx, sh);
1236 				rbi = r5_next_bio(rbi, dev->sector);
1237 			}
1238 		}
1239 	}
1240 
1241 	atomic_inc(&sh->count);
1242 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1243 	async_trigger_callback(&submit);
1244 }
1245 
1246 static void mark_target_uptodate(struct stripe_head *sh, int target)
1247 {
1248 	struct r5dev *tgt;
1249 
1250 	if (target < 0)
1251 		return;
1252 
1253 	tgt = &sh->dev[target];
1254 	set_bit(R5_UPTODATE, &tgt->flags);
1255 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1256 	clear_bit(R5_Wantcompute, &tgt->flags);
1257 }
1258 
1259 static void ops_complete_compute(void *stripe_head_ref)
1260 {
1261 	struct stripe_head *sh = stripe_head_ref;
1262 
1263 	pr_debug("%s: stripe %llu\n", __func__,
1264 		(unsigned long long)sh->sector);
1265 
1266 	/* mark the computed target(s) as uptodate */
1267 	mark_target_uptodate(sh, sh->ops.target);
1268 	mark_target_uptodate(sh, sh->ops.target2);
1269 
1270 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1271 	if (sh->check_state == check_state_compute_run)
1272 		sh->check_state = check_state_compute_result;
1273 	set_bit(STRIPE_HANDLE, &sh->state);
1274 	release_stripe(sh);
1275 }
1276 
1277 /* return a pointer to the address conversion region of the scribble buffer */
1278 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1279 				 struct raid5_percpu *percpu, int i)
1280 {
1281 	void *addr;
1282 
1283 	addr = flex_array_get(percpu->scribble, i);
1284 	return addr + sizeof(struct page *) * (sh->disks + 2);
1285 }
1286 
1287 /* return a pointer to the address conversion region of the scribble buffer */
1288 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1289 {
1290 	void *addr;
1291 
1292 	addr = flex_array_get(percpu->scribble, i);
1293 	return addr;
1294 }
1295 
1296 static struct dma_async_tx_descriptor *
1297 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1298 {
1299 	int disks = sh->disks;
1300 	struct page **xor_srcs = to_addr_page(percpu, 0);
1301 	int target = sh->ops.target;
1302 	struct r5dev *tgt = &sh->dev[target];
1303 	struct page *xor_dest = tgt->page;
1304 	int count = 0;
1305 	struct dma_async_tx_descriptor *tx;
1306 	struct async_submit_ctl submit;
1307 	int i;
1308 
1309 	BUG_ON(sh->batch_head);
1310 
1311 	pr_debug("%s: stripe %llu block: %d\n",
1312 		__func__, (unsigned long long)sh->sector, target);
1313 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1314 
1315 	for (i = disks; i--; )
1316 		if (i != target)
1317 			xor_srcs[count++] = sh->dev[i].page;
1318 
1319 	atomic_inc(&sh->count);
1320 
1321 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1322 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1323 	if (unlikely(count == 1))
1324 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325 	else
1326 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327 
1328 	return tx;
1329 }
1330 
1331 /* set_syndrome_sources - populate source buffers for gen_syndrome
1332  * @srcs - (struct page *) array of size sh->disks
1333  * @sh - stripe_head to parse
1334  *
1335  * Populates srcs in proper layout order for the stripe and returns the
1336  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1337  * destination buffer is recorded in srcs[count] and the Q destination
1338  * is recorded in srcs[count+1]].
1339  */
1340 static int set_syndrome_sources(struct page **srcs,
1341 				struct stripe_head *sh,
1342 				int srctype)
1343 {
1344 	int disks = sh->disks;
1345 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1346 	int d0_idx = raid6_d0(sh);
1347 	int count;
1348 	int i;
1349 
1350 	for (i = 0; i < disks; i++)
1351 		srcs[i] = NULL;
1352 
1353 	count = 0;
1354 	i = d0_idx;
1355 	do {
1356 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1357 		struct r5dev *dev = &sh->dev[i];
1358 
1359 		if (i == sh->qd_idx || i == sh->pd_idx ||
1360 		    (srctype == SYNDROME_SRC_ALL) ||
1361 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1362 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1363 		    (srctype == SYNDROME_SRC_WRITTEN &&
1364 		     dev->written))
1365 			srcs[slot] = sh->dev[i].page;
1366 		i = raid6_next_disk(i, disks);
1367 	} while (i != d0_idx);
1368 
1369 	return syndrome_disks;
1370 }
1371 
1372 static struct dma_async_tx_descriptor *
1373 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1374 {
1375 	int disks = sh->disks;
1376 	struct page **blocks = to_addr_page(percpu, 0);
1377 	int target;
1378 	int qd_idx = sh->qd_idx;
1379 	struct dma_async_tx_descriptor *tx;
1380 	struct async_submit_ctl submit;
1381 	struct r5dev *tgt;
1382 	struct page *dest;
1383 	int i;
1384 	int count;
1385 
1386 	BUG_ON(sh->batch_head);
1387 	if (sh->ops.target < 0)
1388 		target = sh->ops.target2;
1389 	else if (sh->ops.target2 < 0)
1390 		target = sh->ops.target;
1391 	else
1392 		/* we should only have one valid target */
1393 		BUG();
1394 	BUG_ON(target < 0);
1395 	pr_debug("%s: stripe %llu block: %d\n",
1396 		__func__, (unsigned long long)sh->sector, target);
1397 
1398 	tgt = &sh->dev[target];
1399 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1400 	dest = tgt->page;
1401 
1402 	atomic_inc(&sh->count);
1403 
1404 	if (target == qd_idx) {
1405 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1406 		blocks[count] = NULL; /* regenerating p is not necessary */
1407 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1408 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1409 				  ops_complete_compute, sh,
1410 				  to_addr_conv(sh, percpu, 0));
1411 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1412 	} else {
1413 		/* Compute any data- or p-drive using XOR */
1414 		count = 0;
1415 		for (i = disks; i-- ; ) {
1416 			if (i == target || i == qd_idx)
1417 				continue;
1418 			blocks[count++] = sh->dev[i].page;
1419 		}
1420 
1421 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1422 				  NULL, ops_complete_compute, sh,
1423 				  to_addr_conv(sh, percpu, 0));
1424 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1425 	}
1426 
1427 	return tx;
1428 }
1429 
1430 static struct dma_async_tx_descriptor *
1431 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1432 {
1433 	int i, count, disks = sh->disks;
1434 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1435 	int d0_idx = raid6_d0(sh);
1436 	int faila = -1, failb = -1;
1437 	int target = sh->ops.target;
1438 	int target2 = sh->ops.target2;
1439 	struct r5dev *tgt = &sh->dev[target];
1440 	struct r5dev *tgt2 = &sh->dev[target2];
1441 	struct dma_async_tx_descriptor *tx;
1442 	struct page **blocks = to_addr_page(percpu, 0);
1443 	struct async_submit_ctl submit;
1444 
1445 	BUG_ON(sh->batch_head);
1446 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447 		 __func__, (unsigned long long)sh->sector, target, target2);
1448 	BUG_ON(target < 0 || target2 < 0);
1449 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1450 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1451 
1452 	/* we need to open-code set_syndrome_sources to handle the
1453 	 * slot number conversion for 'faila' and 'failb'
1454 	 */
1455 	for (i = 0; i < disks ; i++)
1456 		blocks[i] = NULL;
1457 	count = 0;
1458 	i = d0_idx;
1459 	do {
1460 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1461 
1462 		blocks[slot] = sh->dev[i].page;
1463 
1464 		if (i == target)
1465 			faila = slot;
1466 		if (i == target2)
1467 			failb = slot;
1468 		i = raid6_next_disk(i, disks);
1469 	} while (i != d0_idx);
1470 
1471 	BUG_ON(faila == failb);
1472 	if (failb < faila)
1473 		swap(faila, failb);
1474 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475 		 __func__, (unsigned long long)sh->sector, faila, failb);
1476 
1477 	atomic_inc(&sh->count);
1478 
1479 	if (failb == syndrome_disks+1) {
1480 		/* Q disk is one of the missing disks */
1481 		if (faila == syndrome_disks) {
1482 			/* Missing P+Q, just recompute */
1483 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1484 					  ops_complete_compute, sh,
1485 					  to_addr_conv(sh, percpu, 0));
1486 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1487 						  STRIPE_SIZE, &submit);
1488 		} else {
1489 			struct page *dest;
1490 			int data_target;
1491 			int qd_idx = sh->qd_idx;
1492 
1493 			/* Missing D+Q: recompute D from P, then recompute Q */
1494 			if (target == qd_idx)
1495 				data_target = target2;
1496 			else
1497 				data_target = target;
1498 
1499 			count = 0;
1500 			for (i = disks; i-- ; ) {
1501 				if (i == data_target || i == qd_idx)
1502 					continue;
1503 				blocks[count++] = sh->dev[i].page;
1504 			}
1505 			dest = sh->dev[data_target].page;
1506 			init_async_submit(&submit,
1507 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1508 					  NULL, NULL, NULL,
1509 					  to_addr_conv(sh, percpu, 0));
1510 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1511 				       &submit);
1512 
1513 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1514 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1515 					  ops_complete_compute, sh,
1516 					  to_addr_conv(sh, percpu, 0));
1517 			return async_gen_syndrome(blocks, 0, count+2,
1518 						  STRIPE_SIZE, &submit);
1519 		}
1520 	} else {
1521 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1522 				  ops_complete_compute, sh,
1523 				  to_addr_conv(sh, percpu, 0));
1524 		if (failb == syndrome_disks) {
1525 			/* We're missing D+P. */
1526 			return async_raid6_datap_recov(syndrome_disks+2,
1527 						       STRIPE_SIZE, faila,
1528 						       blocks, &submit);
1529 		} else {
1530 			/* We're missing D+D. */
1531 			return async_raid6_2data_recov(syndrome_disks+2,
1532 						       STRIPE_SIZE, faila, failb,
1533 						       blocks, &submit);
1534 		}
1535 	}
1536 }
1537 
1538 static void ops_complete_prexor(void *stripe_head_ref)
1539 {
1540 	struct stripe_head *sh = stripe_head_ref;
1541 
1542 	pr_debug("%s: stripe %llu\n", __func__,
1543 		(unsigned long long)sh->sector);
1544 }
1545 
1546 static struct dma_async_tx_descriptor *
1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548 		struct dma_async_tx_descriptor *tx)
1549 {
1550 	int disks = sh->disks;
1551 	struct page **xor_srcs = to_addr_page(percpu, 0);
1552 	int count = 0, pd_idx = sh->pd_idx, i;
1553 	struct async_submit_ctl submit;
1554 
1555 	/* existing parity data subtracted */
1556 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557 
1558 	BUG_ON(sh->batch_head);
1559 	pr_debug("%s: stripe %llu\n", __func__,
1560 		(unsigned long long)sh->sector);
1561 
1562 	for (i = disks; i--; ) {
1563 		struct r5dev *dev = &sh->dev[i];
1564 		/* Only process blocks that are known to be uptodate */
1565 		if (test_bit(R5_Wantdrain, &dev->flags))
1566 			xor_srcs[count++] = dev->page;
1567 	}
1568 
1569 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1570 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1572 
1573 	return tx;
1574 }
1575 
1576 static struct dma_async_tx_descriptor *
1577 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1578 		struct dma_async_tx_descriptor *tx)
1579 {
1580 	struct page **blocks = to_addr_page(percpu, 0);
1581 	int count;
1582 	struct async_submit_ctl submit;
1583 
1584 	pr_debug("%s: stripe %llu\n", __func__,
1585 		(unsigned long long)sh->sector);
1586 
1587 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1588 
1589 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1590 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1591 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1592 
1593 	return tx;
1594 }
1595 
1596 static struct dma_async_tx_descriptor *
1597 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1598 {
1599 	int disks = sh->disks;
1600 	int i;
1601 	struct stripe_head *head_sh = sh;
1602 
1603 	pr_debug("%s: stripe %llu\n", __func__,
1604 		(unsigned long long)sh->sector);
1605 
1606 	for (i = disks; i--; ) {
1607 		struct r5dev *dev;
1608 		struct bio *chosen;
1609 
1610 		sh = head_sh;
1611 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1612 			struct bio *wbi;
1613 
1614 again:
1615 			dev = &sh->dev[i];
1616 			spin_lock_irq(&sh->stripe_lock);
1617 			chosen = dev->towrite;
1618 			dev->towrite = NULL;
1619 			sh->overwrite_disks = 0;
1620 			BUG_ON(dev->written);
1621 			wbi = dev->written = chosen;
1622 			spin_unlock_irq(&sh->stripe_lock);
1623 			WARN_ON(dev->page != dev->orig_page);
1624 
1625 			while (wbi && wbi->bi_iter.bi_sector <
1626 				dev->sector + STRIPE_SECTORS) {
1627 				if (wbi->bi_rw & REQ_FUA)
1628 					set_bit(R5_WantFUA, &dev->flags);
1629 				if (wbi->bi_rw & REQ_SYNC)
1630 					set_bit(R5_SyncIO, &dev->flags);
1631 				if (wbi->bi_rw & REQ_DISCARD)
1632 					set_bit(R5_Discard, &dev->flags);
1633 				else {
1634 					tx = async_copy_data(1, wbi, &dev->page,
1635 						dev->sector, tx, sh);
1636 					if (dev->page != dev->orig_page) {
1637 						set_bit(R5_SkipCopy, &dev->flags);
1638 						clear_bit(R5_UPTODATE, &dev->flags);
1639 						clear_bit(R5_OVERWRITE, &dev->flags);
1640 					}
1641 				}
1642 				wbi = r5_next_bio(wbi, dev->sector);
1643 			}
1644 
1645 			if (head_sh->batch_head) {
1646 				sh = list_first_entry(&sh->batch_list,
1647 						      struct stripe_head,
1648 						      batch_list);
1649 				if (sh == head_sh)
1650 					continue;
1651 				goto again;
1652 			}
1653 		}
1654 	}
1655 
1656 	return tx;
1657 }
1658 
1659 static void ops_complete_reconstruct(void *stripe_head_ref)
1660 {
1661 	struct stripe_head *sh = stripe_head_ref;
1662 	int disks = sh->disks;
1663 	int pd_idx = sh->pd_idx;
1664 	int qd_idx = sh->qd_idx;
1665 	int i;
1666 	bool fua = false, sync = false, discard = false;
1667 
1668 	pr_debug("%s: stripe %llu\n", __func__,
1669 		(unsigned long long)sh->sector);
1670 
1671 	for (i = disks; i--; ) {
1672 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1673 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1674 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1675 	}
1676 
1677 	for (i = disks; i--; ) {
1678 		struct r5dev *dev = &sh->dev[i];
1679 
1680 		if (dev->written || i == pd_idx || i == qd_idx) {
1681 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1682 				set_bit(R5_UPTODATE, &dev->flags);
1683 			if (fua)
1684 				set_bit(R5_WantFUA, &dev->flags);
1685 			if (sync)
1686 				set_bit(R5_SyncIO, &dev->flags);
1687 		}
1688 	}
1689 
1690 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1691 		sh->reconstruct_state = reconstruct_state_drain_result;
1692 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1693 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1694 	else {
1695 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1696 		sh->reconstruct_state = reconstruct_state_result;
1697 	}
1698 
1699 	set_bit(STRIPE_HANDLE, &sh->state);
1700 	release_stripe(sh);
1701 }
1702 
1703 static void
1704 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1705 		     struct dma_async_tx_descriptor *tx)
1706 {
1707 	int disks = sh->disks;
1708 	struct page **xor_srcs;
1709 	struct async_submit_ctl submit;
1710 	int count, pd_idx = sh->pd_idx, i;
1711 	struct page *xor_dest;
1712 	int prexor = 0;
1713 	unsigned long flags;
1714 	int j = 0;
1715 	struct stripe_head *head_sh = sh;
1716 	int last_stripe;
1717 
1718 	pr_debug("%s: stripe %llu\n", __func__,
1719 		(unsigned long long)sh->sector);
1720 
1721 	for (i = 0; i < sh->disks; i++) {
1722 		if (pd_idx == i)
1723 			continue;
1724 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1725 			break;
1726 	}
1727 	if (i >= sh->disks) {
1728 		atomic_inc(&sh->count);
1729 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1730 		ops_complete_reconstruct(sh);
1731 		return;
1732 	}
1733 again:
1734 	count = 0;
1735 	xor_srcs = to_addr_page(percpu, j);
1736 	/* check if prexor is active which means only process blocks
1737 	 * that are part of a read-modify-write (written)
1738 	 */
1739 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1740 		prexor = 1;
1741 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1742 		for (i = disks; i--; ) {
1743 			struct r5dev *dev = &sh->dev[i];
1744 			if (head_sh->dev[i].written)
1745 				xor_srcs[count++] = dev->page;
1746 		}
1747 	} else {
1748 		xor_dest = sh->dev[pd_idx].page;
1749 		for (i = disks; i--; ) {
1750 			struct r5dev *dev = &sh->dev[i];
1751 			if (i != pd_idx)
1752 				xor_srcs[count++] = dev->page;
1753 		}
1754 	}
1755 
1756 	/* 1/ if we prexor'd then the dest is reused as a source
1757 	 * 2/ if we did not prexor then we are redoing the parity
1758 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1759 	 * for the synchronous xor case
1760 	 */
1761 	last_stripe = !head_sh->batch_head ||
1762 		list_first_entry(&sh->batch_list,
1763 				 struct stripe_head, batch_list) == head_sh;
1764 	if (last_stripe) {
1765 		flags = ASYNC_TX_ACK |
1766 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1767 
1768 		atomic_inc(&head_sh->count);
1769 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1770 				  to_addr_conv(sh, percpu, j));
1771 	} else {
1772 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1773 		init_async_submit(&submit, flags, tx, NULL, NULL,
1774 				  to_addr_conv(sh, percpu, j));
1775 	}
1776 
1777 	if (unlikely(count == 1))
1778 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1779 	else
1780 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1781 	if (!last_stripe) {
1782 		j++;
1783 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784 				      batch_list);
1785 		goto again;
1786 	}
1787 }
1788 
1789 static void
1790 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1791 		     struct dma_async_tx_descriptor *tx)
1792 {
1793 	struct async_submit_ctl submit;
1794 	struct page **blocks;
1795 	int count, i, j = 0;
1796 	struct stripe_head *head_sh = sh;
1797 	int last_stripe;
1798 	int synflags;
1799 	unsigned long txflags;
1800 
1801 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1802 
1803 	for (i = 0; i < sh->disks; i++) {
1804 		if (sh->pd_idx == i || sh->qd_idx == i)
1805 			continue;
1806 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1807 			break;
1808 	}
1809 	if (i >= sh->disks) {
1810 		atomic_inc(&sh->count);
1811 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1812 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1813 		ops_complete_reconstruct(sh);
1814 		return;
1815 	}
1816 
1817 again:
1818 	blocks = to_addr_page(percpu, j);
1819 
1820 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1821 		synflags = SYNDROME_SRC_WRITTEN;
1822 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1823 	} else {
1824 		synflags = SYNDROME_SRC_ALL;
1825 		txflags = ASYNC_TX_ACK;
1826 	}
1827 
1828 	count = set_syndrome_sources(blocks, sh, synflags);
1829 	last_stripe = !head_sh->batch_head ||
1830 		list_first_entry(&sh->batch_list,
1831 				 struct stripe_head, batch_list) == head_sh;
1832 
1833 	if (last_stripe) {
1834 		atomic_inc(&head_sh->count);
1835 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1836 				  head_sh, to_addr_conv(sh, percpu, j));
1837 	} else
1838 		init_async_submit(&submit, 0, tx, NULL, NULL,
1839 				  to_addr_conv(sh, percpu, j));
1840 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1841 	if (!last_stripe) {
1842 		j++;
1843 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1844 				      batch_list);
1845 		goto again;
1846 	}
1847 }
1848 
1849 static void ops_complete_check(void *stripe_head_ref)
1850 {
1851 	struct stripe_head *sh = stripe_head_ref;
1852 
1853 	pr_debug("%s: stripe %llu\n", __func__,
1854 		(unsigned long long)sh->sector);
1855 
1856 	sh->check_state = check_state_check_result;
1857 	set_bit(STRIPE_HANDLE, &sh->state);
1858 	release_stripe(sh);
1859 }
1860 
1861 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1862 {
1863 	int disks = sh->disks;
1864 	int pd_idx = sh->pd_idx;
1865 	int qd_idx = sh->qd_idx;
1866 	struct page *xor_dest;
1867 	struct page **xor_srcs = to_addr_page(percpu, 0);
1868 	struct dma_async_tx_descriptor *tx;
1869 	struct async_submit_ctl submit;
1870 	int count;
1871 	int i;
1872 
1873 	pr_debug("%s: stripe %llu\n", __func__,
1874 		(unsigned long long)sh->sector);
1875 
1876 	BUG_ON(sh->batch_head);
1877 	count = 0;
1878 	xor_dest = sh->dev[pd_idx].page;
1879 	xor_srcs[count++] = xor_dest;
1880 	for (i = disks; i--; ) {
1881 		if (i == pd_idx || i == qd_idx)
1882 			continue;
1883 		xor_srcs[count++] = sh->dev[i].page;
1884 	}
1885 
1886 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1887 			  to_addr_conv(sh, percpu, 0));
1888 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1889 			   &sh->ops.zero_sum_result, &submit);
1890 
1891 	atomic_inc(&sh->count);
1892 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1893 	tx = async_trigger_callback(&submit);
1894 }
1895 
1896 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1897 {
1898 	struct page **srcs = to_addr_page(percpu, 0);
1899 	struct async_submit_ctl submit;
1900 	int count;
1901 
1902 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1903 		(unsigned long long)sh->sector, checkp);
1904 
1905 	BUG_ON(sh->batch_head);
1906 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1907 	if (!checkp)
1908 		srcs[count] = NULL;
1909 
1910 	atomic_inc(&sh->count);
1911 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1912 			  sh, to_addr_conv(sh, percpu, 0));
1913 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1914 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1915 }
1916 
1917 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1918 {
1919 	int overlap_clear = 0, i, disks = sh->disks;
1920 	struct dma_async_tx_descriptor *tx = NULL;
1921 	struct r5conf *conf = sh->raid_conf;
1922 	int level = conf->level;
1923 	struct raid5_percpu *percpu;
1924 	unsigned long cpu;
1925 
1926 	cpu = get_cpu();
1927 	percpu = per_cpu_ptr(conf->percpu, cpu);
1928 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1929 		ops_run_biofill(sh);
1930 		overlap_clear++;
1931 	}
1932 
1933 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1934 		if (level < 6)
1935 			tx = ops_run_compute5(sh, percpu);
1936 		else {
1937 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1938 				tx = ops_run_compute6_1(sh, percpu);
1939 			else
1940 				tx = ops_run_compute6_2(sh, percpu);
1941 		}
1942 		/* terminate the chain if reconstruct is not set to be run */
1943 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1944 			async_tx_ack(tx);
1945 	}
1946 
1947 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1948 		if (level < 6)
1949 			tx = ops_run_prexor5(sh, percpu, tx);
1950 		else
1951 			tx = ops_run_prexor6(sh, percpu, tx);
1952 	}
1953 
1954 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1955 		tx = ops_run_biodrain(sh, tx);
1956 		overlap_clear++;
1957 	}
1958 
1959 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1960 		if (level < 6)
1961 			ops_run_reconstruct5(sh, percpu, tx);
1962 		else
1963 			ops_run_reconstruct6(sh, percpu, tx);
1964 	}
1965 
1966 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1967 		if (sh->check_state == check_state_run)
1968 			ops_run_check_p(sh, percpu);
1969 		else if (sh->check_state == check_state_run_q)
1970 			ops_run_check_pq(sh, percpu, 0);
1971 		else if (sh->check_state == check_state_run_pq)
1972 			ops_run_check_pq(sh, percpu, 1);
1973 		else
1974 			BUG();
1975 	}
1976 
1977 	if (overlap_clear && !sh->batch_head)
1978 		for (i = disks; i--; ) {
1979 			struct r5dev *dev = &sh->dev[i];
1980 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1981 				wake_up(&sh->raid_conf->wait_for_overlap);
1982 		}
1983 	put_cpu();
1984 }
1985 
1986 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1987 {
1988 	struct stripe_head *sh;
1989 
1990 	sh = kmem_cache_zalloc(sc, gfp);
1991 	if (sh) {
1992 		spin_lock_init(&sh->stripe_lock);
1993 		spin_lock_init(&sh->batch_lock);
1994 		INIT_LIST_HEAD(&sh->batch_list);
1995 		INIT_LIST_HEAD(&sh->lru);
1996 		atomic_set(&sh->count, 1);
1997 	}
1998 	return sh;
1999 }
2000 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2001 {
2002 	struct stripe_head *sh;
2003 
2004 	sh = alloc_stripe(conf->slab_cache, gfp);
2005 	if (!sh)
2006 		return 0;
2007 
2008 	sh->raid_conf = conf;
2009 
2010 	if (grow_buffers(sh, gfp)) {
2011 		shrink_buffers(sh);
2012 		kmem_cache_free(conf->slab_cache, sh);
2013 		return 0;
2014 	}
2015 	sh->hash_lock_index =
2016 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2017 	/* we just created an active stripe so... */
2018 	atomic_inc(&conf->active_stripes);
2019 
2020 	release_stripe(sh);
2021 	conf->max_nr_stripes++;
2022 	return 1;
2023 }
2024 
2025 static int grow_stripes(struct r5conf *conf, int num)
2026 {
2027 	struct kmem_cache *sc;
2028 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2029 
2030 	if (conf->mddev->gendisk)
2031 		sprintf(conf->cache_name[0],
2032 			"raid%d-%s", conf->level, mdname(conf->mddev));
2033 	else
2034 		sprintf(conf->cache_name[0],
2035 			"raid%d-%p", conf->level, conf->mddev);
2036 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2037 
2038 	conf->active_name = 0;
2039 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2040 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2041 			       0, 0, NULL);
2042 	if (!sc)
2043 		return 1;
2044 	conf->slab_cache = sc;
2045 	conf->pool_size = devs;
2046 	while (num--)
2047 		if (!grow_one_stripe(conf, GFP_KERNEL))
2048 			return 1;
2049 
2050 	return 0;
2051 }
2052 
2053 /**
2054  * scribble_len - return the required size of the scribble region
2055  * @num - total number of disks in the array
2056  *
2057  * The size must be enough to contain:
2058  * 1/ a struct page pointer for each device in the array +2
2059  * 2/ room to convert each entry in (1) to its corresponding dma
2060  *    (dma_map_page()) or page (page_address()) address.
2061  *
2062  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2063  * calculate over all devices (not just the data blocks), using zeros in place
2064  * of the P and Q blocks.
2065  */
2066 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2067 {
2068 	struct flex_array *ret;
2069 	size_t len;
2070 
2071 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2072 	ret = flex_array_alloc(len, cnt, flags);
2073 	if (!ret)
2074 		return NULL;
2075 	/* always prealloc all elements, so no locking is required */
2076 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2077 		flex_array_free(ret);
2078 		return NULL;
2079 	}
2080 	return ret;
2081 }
2082 
2083 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2084 {
2085 	unsigned long cpu;
2086 	int err = 0;
2087 
2088 	mddev_suspend(conf->mddev);
2089 	get_online_cpus();
2090 	for_each_present_cpu(cpu) {
2091 		struct raid5_percpu *percpu;
2092 		struct flex_array *scribble;
2093 
2094 		percpu = per_cpu_ptr(conf->percpu, cpu);
2095 		scribble = scribble_alloc(new_disks,
2096 					  new_sectors / STRIPE_SECTORS,
2097 					  GFP_NOIO);
2098 
2099 		if (scribble) {
2100 			flex_array_free(percpu->scribble);
2101 			percpu->scribble = scribble;
2102 		} else {
2103 			err = -ENOMEM;
2104 			break;
2105 		}
2106 	}
2107 	put_online_cpus();
2108 	mddev_resume(conf->mddev);
2109 	return err;
2110 }
2111 
2112 static int resize_stripes(struct r5conf *conf, int newsize)
2113 {
2114 	/* Make all the stripes able to hold 'newsize' devices.
2115 	 * New slots in each stripe get 'page' set to a new page.
2116 	 *
2117 	 * This happens in stages:
2118 	 * 1/ create a new kmem_cache and allocate the required number of
2119 	 *    stripe_heads.
2120 	 * 2/ gather all the old stripe_heads and transfer the pages across
2121 	 *    to the new stripe_heads.  This will have the side effect of
2122 	 *    freezing the array as once all stripe_heads have been collected,
2123 	 *    no IO will be possible.  Old stripe heads are freed once their
2124 	 *    pages have been transferred over, and the old kmem_cache is
2125 	 *    freed when all stripes are done.
2126 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2127 	 *    we simple return a failre status - no need to clean anything up.
2128 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2129 	 *    If this fails, we don't bother trying the shrink the
2130 	 *    stripe_heads down again, we just leave them as they are.
2131 	 *    As each stripe_head is processed the new one is released into
2132 	 *    active service.
2133 	 *
2134 	 * Once step2 is started, we cannot afford to wait for a write,
2135 	 * so we use GFP_NOIO allocations.
2136 	 */
2137 	struct stripe_head *osh, *nsh;
2138 	LIST_HEAD(newstripes);
2139 	struct disk_info *ndisks;
2140 	int err;
2141 	struct kmem_cache *sc;
2142 	int i;
2143 	int hash, cnt;
2144 
2145 	if (newsize <= conf->pool_size)
2146 		return 0; /* never bother to shrink */
2147 
2148 	err = md_allow_write(conf->mddev);
2149 	if (err)
2150 		return err;
2151 
2152 	/* Step 1 */
2153 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2154 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2155 			       0, 0, NULL);
2156 	if (!sc)
2157 		return -ENOMEM;
2158 
2159 	/* Need to ensure auto-resizing doesn't interfere */
2160 	mutex_lock(&conf->cache_size_mutex);
2161 
2162 	for (i = conf->max_nr_stripes; i; i--) {
2163 		nsh = alloc_stripe(sc, GFP_KERNEL);
2164 		if (!nsh)
2165 			break;
2166 
2167 		nsh->raid_conf = conf;
2168 		list_add(&nsh->lru, &newstripes);
2169 	}
2170 	if (i) {
2171 		/* didn't get enough, give up */
2172 		while (!list_empty(&newstripes)) {
2173 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2174 			list_del(&nsh->lru);
2175 			kmem_cache_free(sc, nsh);
2176 		}
2177 		kmem_cache_destroy(sc);
2178 		mutex_unlock(&conf->cache_size_mutex);
2179 		return -ENOMEM;
2180 	}
2181 	/* Step 2 - Must use GFP_NOIO now.
2182 	 * OK, we have enough stripes, start collecting inactive
2183 	 * stripes and copying them over
2184 	 */
2185 	hash = 0;
2186 	cnt = 0;
2187 	list_for_each_entry(nsh, &newstripes, lru) {
2188 		lock_device_hash_lock(conf, hash);
2189 		wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2190 				    !list_empty(conf->inactive_list + hash),
2191 				    unlock_device_hash_lock(conf, hash),
2192 				    lock_device_hash_lock(conf, hash));
2193 		osh = get_free_stripe(conf, hash);
2194 		unlock_device_hash_lock(conf, hash);
2195 
2196 		for(i=0; i<conf->pool_size; i++) {
2197 			nsh->dev[i].page = osh->dev[i].page;
2198 			nsh->dev[i].orig_page = osh->dev[i].page;
2199 		}
2200 		nsh->hash_lock_index = hash;
2201 		kmem_cache_free(conf->slab_cache, osh);
2202 		cnt++;
2203 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2204 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2205 			hash++;
2206 			cnt = 0;
2207 		}
2208 	}
2209 	kmem_cache_destroy(conf->slab_cache);
2210 
2211 	/* Step 3.
2212 	 * At this point, we are holding all the stripes so the array
2213 	 * is completely stalled, so now is a good time to resize
2214 	 * conf->disks and the scribble region
2215 	 */
2216 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2217 	if (ndisks) {
2218 		for (i=0; i<conf->raid_disks; i++)
2219 			ndisks[i] = conf->disks[i];
2220 		kfree(conf->disks);
2221 		conf->disks = ndisks;
2222 	} else
2223 		err = -ENOMEM;
2224 
2225 	mutex_unlock(&conf->cache_size_mutex);
2226 	/* Step 4, return new stripes to service */
2227 	while(!list_empty(&newstripes)) {
2228 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2229 		list_del_init(&nsh->lru);
2230 
2231 		for (i=conf->raid_disks; i < newsize; i++)
2232 			if (nsh->dev[i].page == NULL) {
2233 				struct page *p = alloc_page(GFP_NOIO);
2234 				nsh->dev[i].page = p;
2235 				nsh->dev[i].orig_page = p;
2236 				if (!p)
2237 					err = -ENOMEM;
2238 			}
2239 		release_stripe(nsh);
2240 	}
2241 	/* critical section pass, GFP_NOIO no longer needed */
2242 
2243 	conf->slab_cache = sc;
2244 	conf->active_name = 1-conf->active_name;
2245 	if (!err)
2246 		conf->pool_size = newsize;
2247 	return err;
2248 }
2249 
2250 static int drop_one_stripe(struct r5conf *conf)
2251 {
2252 	struct stripe_head *sh;
2253 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2254 
2255 	spin_lock_irq(conf->hash_locks + hash);
2256 	sh = get_free_stripe(conf, hash);
2257 	spin_unlock_irq(conf->hash_locks + hash);
2258 	if (!sh)
2259 		return 0;
2260 	BUG_ON(atomic_read(&sh->count));
2261 	shrink_buffers(sh);
2262 	kmem_cache_free(conf->slab_cache, sh);
2263 	atomic_dec(&conf->active_stripes);
2264 	conf->max_nr_stripes--;
2265 	return 1;
2266 }
2267 
2268 static void shrink_stripes(struct r5conf *conf)
2269 {
2270 	while (conf->max_nr_stripes &&
2271 	       drop_one_stripe(conf))
2272 		;
2273 
2274 	kmem_cache_destroy(conf->slab_cache);
2275 	conf->slab_cache = NULL;
2276 }
2277 
2278 static void raid5_end_read_request(struct bio * bi)
2279 {
2280 	struct stripe_head *sh = bi->bi_private;
2281 	struct r5conf *conf = sh->raid_conf;
2282 	int disks = sh->disks, i;
2283 	char b[BDEVNAME_SIZE];
2284 	struct md_rdev *rdev = NULL;
2285 	sector_t s;
2286 
2287 	for (i=0 ; i<disks; i++)
2288 		if (bi == &sh->dev[i].req)
2289 			break;
2290 
2291 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2292 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2293 		bi->bi_error);
2294 	if (i == disks) {
2295 		BUG();
2296 		return;
2297 	}
2298 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2299 		/* If replacement finished while this request was outstanding,
2300 		 * 'replacement' might be NULL already.
2301 		 * In that case it moved down to 'rdev'.
2302 		 * rdev is not removed until all requests are finished.
2303 		 */
2304 		rdev = conf->disks[i].replacement;
2305 	if (!rdev)
2306 		rdev = conf->disks[i].rdev;
2307 
2308 	if (use_new_offset(conf, sh))
2309 		s = sh->sector + rdev->new_data_offset;
2310 	else
2311 		s = sh->sector + rdev->data_offset;
2312 	if (!bi->bi_error) {
2313 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2314 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2315 			/* Note that this cannot happen on a
2316 			 * replacement device.  We just fail those on
2317 			 * any error
2318 			 */
2319 			printk_ratelimited(
2320 				KERN_INFO
2321 				"md/raid:%s: read error corrected"
2322 				" (%lu sectors at %llu on %s)\n",
2323 				mdname(conf->mddev), STRIPE_SECTORS,
2324 				(unsigned long long)s,
2325 				bdevname(rdev->bdev, b));
2326 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2327 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2328 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2329 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2330 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2331 
2332 		if (atomic_read(&rdev->read_errors))
2333 			atomic_set(&rdev->read_errors, 0);
2334 	} else {
2335 		const char *bdn = bdevname(rdev->bdev, b);
2336 		int retry = 0;
2337 		int set_bad = 0;
2338 
2339 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2340 		atomic_inc(&rdev->read_errors);
2341 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2342 			printk_ratelimited(
2343 				KERN_WARNING
2344 				"md/raid:%s: read error on replacement device "
2345 				"(sector %llu on %s).\n",
2346 				mdname(conf->mddev),
2347 				(unsigned long long)s,
2348 				bdn);
2349 		else if (conf->mddev->degraded >= conf->max_degraded) {
2350 			set_bad = 1;
2351 			printk_ratelimited(
2352 				KERN_WARNING
2353 				"md/raid:%s: read error not correctable "
2354 				"(sector %llu on %s).\n",
2355 				mdname(conf->mddev),
2356 				(unsigned long long)s,
2357 				bdn);
2358 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2359 			/* Oh, no!!! */
2360 			set_bad = 1;
2361 			printk_ratelimited(
2362 				KERN_WARNING
2363 				"md/raid:%s: read error NOT corrected!! "
2364 				"(sector %llu on %s).\n",
2365 				mdname(conf->mddev),
2366 				(unsigned long long)s,
2367 				bdn);
2368 		} else if (atomic_read(&rdev->read_errors)
2369 			 > conf->max_nr_stripes)
2370 			printk(KERN_WARNING
2371 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2372 			       mdname(conf->mddev), bdn);
2373 		else
2374 			retry = 1;
2375 		if (set_bad && test_bit(In_sync, &rdev->flags)
2376 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2377 			retry = 1;
2378 		if (retry)
2379 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2380 				set_bit(R5_ReadError, &sh->dev[i].flags);
2381 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2382 			} else
2383 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2384 		else {
2385 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2386 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2387 			if (!(set_bad
2388 			      && test_bit(In_sync, &rdev->flags)
2389 			      && rdev_set_badblocks(
2390 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2391 				md_error(conf->mddev, rdev);
2392 		}
2393 	}
2394 	rdev_dec_pending(rdev, conf->mddev);
2395 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2396 	set_bit(STRIPE_HANDLE, &sh->state);
2397 	release_stripe(sh);
2398 }
2399 
2400 static void raid5_end_write_request(struct bio *bi)
2401 {
2402 	struct stripe_head *sh = bi->bi_private;
2403 	struct r5conf *conf = sh->raid_conf;
2404 	int disks = sh->disks, i;
2405 	struct md_rdev *uninitialized_var(rdev);
2406 	sector_t first_bad;
2407 	int bad_sectors;
2408 	int replacement = 0;
2409 
2410 	for (i = 0 ; i < disks; i++) {
2411 		if (bi == &sh->dev[i].req) {
2412 			rdev = conf->disks[i].rdev;
2413 			break;
2414 		}
2415 		if (bi == &sh->dev[i].rreq) {
2416 			rdev = conf->disks[i].replacement;
2417 			if (rdev)
2418 				replacement = 1;
2419 			else
2420 				/* rdev was removed and 'replacement'
2421 				 * replaced it.  rdev is not removed
2422 				 * until all requests are finished.
2423 				 */
2424 				rdev = conf->disks[i].rdev;
2425 			break;
2426 		}
2427 	}
2428 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2429 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2430 		bi->bi_error);
2431 	if (i == disks) {
2432 		BUG();
2433 		return;
2434 	}
2435 
2436 	if (replacement) {
2437 		if (bi->bi_error)
2438 			md_error(conf->mddev, rdev);
2439 		else if (is_badblock(rdev, sh->sector,
2440 				     STRIPE_SECTORS,
2441 				     &first_bad, &bad_sectors))
2442 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2443 	} else {
2444 		if (bi->bi_error) {
2445 			set_bit(STRIPE_DEGRADED, &sh->state);
2446 			set_bit(WriteErrorSeen, &rdev->flags);
2447 			set_bit(R5_WriteError, &sh->dev[i].flags);
2448 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2449 				set_bit(MD_RECOVERY_NEEDED,
2450 					&rdev->mddev->recovery);
2451 		} else if (is_badblock(rdev, sh->sector,
2452 				       STRIPE_SECTORS,
2453 				       &first_bad, &bad_sectors)) {
2454 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2455 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2456 				/* That was a successful write so make
2457 				 * sure it looks like we already did
2458 				 * a re-write.
2459 				 */
2460 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2461 		}
2462 	}
2463 	rdev_dec_pending(rdev, conf->mddev);
2464 
2465 	if (sh->batch_head && bi->bi_error && !replacement)
2466 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2467 
2468 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2469 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2470 	set_bit(STRIPE_HANDLE, &sh->state);
2471 	release_stripe(sh);
2472 
2473 	if (sh->batch_head && sh != sh->batch_head)
2474 		release_stripe(sh->batch_head);
2475 }
2476 
2477 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2478 
2479 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2480 {
2481 	struct r5dev *dev = &sh->dev[i];
2482 
2483 	bio_init(&dev->req);
2484 	dev->req.bi_io_vec = &dev->vec;
2485 	dev->req.bi_max_vecs = 1;
2486 	dev->req.bi_private = sh;
2487 
2488 	bio_init(&dev->rreq);
2489 	dev->rreq.bi_io_vec = &dev->rvec;
2490 	dev->rreq.bi_max_vecs = 1;
2491 	dev->rreq.bi_private = sh;
2492 
2493 	dev->flags = 0;
2494 	dev->sector = compute_blocknr(sh, i, previous);
2495 }
2496 
2497 static void error(struct mddev *mddev, struct md_rdev *rdev)
2498 {
2499 	char b[BDEVNAME_SIZE];
2500 	struct r5conf *conf = mddev->private;
2501 	unsigned long flags;
2502 	pr_debug("raid456: error called\n");
2503 
2504 	spin_lock_irqsave(&conf->device_lock, flags);
2505 	clear_bit(In_sync, &rdev->flags);
2506 	mddev->degraded = calc_degraded(conf);
2507 	spin_unlock_irqrestore(&conf->device_lock, flags);
2508 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2509 
2510 	set_bit(Blocked, &rdev->flags);
2511 	set_bit(Faulty, &rdev->flags);
2512 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2513 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2514 	printk(KERN_ALERT
2515 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2516 	       "md/raid:%s: Operation continuing on %d devices.\n",
2517 	       mdname(mddev),
2518 	       bdevname(rdev->bdev, b),
2519 	       mdname(mddev),
2520 	       conf->raid_disks - mddev->degraded);
2521 }
2522 
2523 /*
2524  * Input: a 'big' sector number,
2525  * Output: index of the data and parity disk, and the sector # in them.
2526  */
2527 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2528 				     int previous, int *dd_idx,
2529 				     struct stripe_head *sh)
2530 {
2531 	sector_t stripe, stripe2;
2532 	sector_t chunk_number;
2533 	unsigned int chunk_offset;
2534 	int pd_idx, qd_idx;
2535 	int ddf_layout = 0;
2536 	sector_t new_sector;
2537 	int algorithm = previous ? conf->prev_algo
2538 				 : conf->algorithm;
2539 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2540 					 : conf->chunk_sectors;
2541 	int raid_disks = previous ? conf->previous_raid_disks
2542 				  : conf->raid_disks;
2543 	int data_disks = raid_disks - conf->max_degraded;
2544 
2545 	/* First compute the information on this sector */
2546 
2547 	/*
2548 	 * Compute the chunk number and the sector offset inside the chunk
2549 	 */
2550 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2551 	chunk_number = r_sector;
2552 
2553 	/*
2554 	 * Compute the stripe number
2555 	 */
2556 	stripe = chunk_number;
2557 	*dd_idx = sector_div(stripe, data_disks);
2558 	stripe2 = stripe;
2559 	/*
2560 	 * Select the parity disk based on the user selected algorithm.
2561 	 */
2562 	pd_idx = qd_idx = -1;
2563 	switch(conf->level) {
2564 	case 4:
2565 		pd_idx = data_disks;
2566 		break;
2567 	case 5:
2568 		switch (algorithm) {
2569 		case ALGORITHM_LEFT_ASYMMETRIC:
2570 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2571 			if (*dd_idx >= pd_idx)
2572 				(*dd_idx)++;
2573 			break;
2574 		case ALGORITHM_RIGHT_ASYMMETRIC:
2575 			pd_idx = sector_div(stripe2, raid_disks);
2576 			if (*dd_idx >= pd_idx)
2577 				(*dd_idx)++;
2578 			break;
2579 		case ALGORITHM_LEFT_SYMMETRIC:
2580 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2581 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2582 			break;
2583 		case ALGORITHM_RIGHT_SYMMETRIC:
2584 			pd_idx = sector_div(stripe2, raid_disks);
2585 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2586 			break;
2587 		case ALGORITHM_PARITY_0:
2588 			pd_idx = 0;
2589 			(*dd_idx)++;
2590 			break;
2591 		case ALGORITHM_PARITY_N:
2592 			pd_idx = data_disks;
2593 			break;
2594 		default:
2595 			BUG();
2596 		}
2597 		break;
2598 	case 6:
2599 
2600 		switch (algorithm) {
2601 		case ALGORITHM_LEFT_ASYMMETRIC:
2602 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2603 			qd_idx = pd_idx + 1;
2604 			if (pd_idx == raid_disks-1) {
2605 				(*dd_idx)++;	/* Q D D D P */
2606 				qd_idx = 0;
2607 			} else if (*dd_idx >= pd_idx)
2608 				(*dd_idx) += 2; /* D D P Q D */
2609 			break;
2610 		case ALGORITHM_RIGHT_ASYMMETRIC:
2611 			pd_idx = sector_div(stripe2, raid_disks);
2612 			qd_idx = pd_idx + 1;
2613 			if (pd_idx == raid_disks-1) {
2614 				(*dd_idx)++;	/* Q D D D P */
2615 				qd_idx = 0;
2616 			} else if (*dd_idx >= pd_idx)
2617 				(*dd_idx) += 2; /* D D P Q D */
2618 			break;
2619 		case ALGORITHM_LEFT_SYMMETRIC:
2620 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2621 			qd_idx = (pd_idx + 1) % raid_disks;
2622 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2623 			break;
2624 		case ALGORITHM_RIGHT_SYMMETRIC:
2625 			pd_idx = sector_div(stripe2, raid_disks);
2626 			qd_idx = (pd_idx + 1) % raid_disks;
2627 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2628 			break;
2629 
2630 		case ALGORITHM_PARITY_0:
2631 			pd_idx = 0;
2632 			qd_idx = 1;
2633 			(*dd_idx) += 2;
2634 			break;
2635 		case ALGORITHM_PARITY_N:
2636 			pd_idx = data_disks;
2637 			qd_idx = data_disks + 1;
2638 			break;
2639 
2640 		case ALGORITHM_ROTATING_ZERO_RESTART:
2641 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2642 			 * of blocks for computing Q is different.
2643 			 */
2644 			pd_idx = sector_div(stripe2, raid_disks);
2645 			qd_idx = pd_idx + 1;
2646 			if (pd_idx == raid_disks-1) {
2647 				(*dd_idx)++;	/* Q D D D P */
2648 				qd_idx = 0;
2649 			} else if (*dd_idx >= pd_idx)
2650 				(*dd_idx) += 2; /* D D P Q D */
2651 			ddf_layout = 1;
2652 			break;
2653 
2654 		case ALGORITHM_ROTATING_N_RESTART:
2655 			/* Same a left_asymmetric, by first stripe is
2656 			 * D D D P Q  rather than
2657 			 * Q D D D P
2658 			 */
2659 			stripe2 += 1;
2660 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2661 			qd_idx = pd_idx + 1;
2662 			if (pd_idx == raid_disks-1) {
2663 				(*dd_idx)++;	/* Q D D D P */
2664 				qd_idx = 0;
2665 			} else if (*dd_idx >= pd_idx)
2666 				(*dd_idx) += 2; /* D D P Q D */
2667 			ddf_layout = 1;
2668 			break;
2669 
2670 		case ALGORITHM_ROTATING_N_CONTINUE:
2671 			/* Same as left_symmetric but Q is before P */
2672 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2673 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2674 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2675 			ddf_layout = 1;
2676 			break;
2677 
2678 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2679 			/* RAID5 left_asymmetric, with Q on last device */
2680 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2681 			if (*dd_idx >= pd_idx)
2682 				(*dd_idx)++;
2683 			qd_idx = raid_disks - 1;
2684 			break;
2685 
2686 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2687 			pd_idx = sector_div(stripe2, raid_disks-1);
2688 			if (*dd_idx >= pd_idx)
2689 				(*dd_idx)++;
2690 			qd_idx = raid_disks - 1;
2691 			break;
2692 
2693 		case ALGORITHM_LEFT_SYMMETRIC_6:
2694 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2695 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2696 			qd_idx = raid_disks - 1;
2697 			break;
2698 
2699 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2700 			pd_idx = sector_div(stripe2, raid_disks-1);
2701 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2702 			qd_idx = raid_disks - 1;
2703 			break;
2704 
2705 		case ALGORITHM_PARITY_0_6:
2706 			pd_idx = 0;
2707 			(*dd_idx)++;
2708 			qd_idx = raid_disks - 1;
2709 			break;
2710 
2711 		default:
2712 			BUG();
2713 		}
2714 		break;
2715 	}
2716 
2717 	if (sh) {
2718 		sh->pd_idx = pd_idx;
2719 		sh->qd_idx = qd_idx;
2720 		sh->ddf_layout = ddf_layout;
2721 	}
2722 	/*
2723 	 * Finally, compute the new sector number
2724 	 */
2725 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2726 	return new_sector;
2727 }
2728 
2729 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2730 {
2731 	struct r5conf *conf = sh->raid_conf;
2732 	int raid_disks = sh->disks;
2733 	int data_disks = raid_disks - conf->max_degraded;
2734 	sector_t new_sector = sh->sector, check;
2735 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2736 					 : conf->chunk_sectors;
2737 	int algorithm = previous ? conf->prev_algo
2738 				 : conf->algorithm;
2739 	sector_t stripe;
2740 	int chunk_offset;
2741 	sector_t chunk_number;
2742 	int dummy1, dd_idx = i;
2743 	sector_t r_sector;
2744 	struct stripe_head sh2;
2745 
2746 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2747 	stripe = new_sector;
2748 
2749 	if (i == sh->pd_idx)
2750 		return 0;
2751 	switch(conf->level) {
2752 	case 4: break;
2753 	case 5:
2754 		switch (algorithm) {
2755 		case ALGORITHM_LEFT_ASYMMETRIC:
2756 		case ALGORITHM_RIGHT_ASYMMETRIC:
2757 			if (i > sh->pd_idx)
2758 				i--;
2759 			break;
2760 		case ALGORITHM_LEFT_SYMMETRIC:
2761 		case ALGORITHM_RIGHT_SYMMETRIC:
2762 			if (i < sh->pd_idx)
2763 				i += raid_disks;
2764 			i -= (sh->pd_idx + 1);
2765 			break;
2766 		case ALGORITHM_PARITY_0:
2767 			i -= 1;
2768 			break;
2769 		case ALGORITHM_PARITY_N:
2770 			break;
2771 		default:
2772 			BUG();
2773 		}
2774 		break;
2775 	case 6:
2776 		if (i == sh->qd_idx)
2777 			return 0; /* It is the Q disk */
2778 		switch (algorithm) {
2779 		case ALGORITHM_LEFT_ASYMMETRIC:
2780 		case ALGORITHM_RIGHT_ASYMMETRIC:
2781 		case ALGORITHM_ROTATING_ZERO_RESTART:
2782 		case ALGORITHM_ROTATING_N_RESTART:
2783 			if (sh->pd_idx == raid_disks-1)
2784 				i--;	/* Q D D D P */
2785 			else if (i > sh->pd_idx)
2786 				i -= 2; /* D D P Q D */
2787 			break;
2788 		case ALGORITHM_LEFT_SYMMETRIC:
2789 		case ALGORITHM_RIGHT_SYMMETRIC:
2790 			if (sh->pd_idx == raid_disks-1)
2791 				i--; /* Q D D D P */
2792 			else {
2793 				/* D D P Q D */
2794 				if (i < sh->pd_idx)
2795 					i += raid_disks;
2796 				i -= (sh->pd_idx + 2);
2797 			}
2798 			break;
2799 		case ALGORITHM_PARITY_0:
2800 			i -= 2;
2801 			break;
2802 		case ALGORITHM_PARITY_N:
2803 			break;
2804 		case ALGORITHM_ROTATING_N_CONTINUE:
2805 			/* Like left_symmetric, but P is before Q */
2806 			if (sh->pd_idx == 0)
2807 				i--;	/* P D D D Q */
2808 			else {
2809 				/* D D Q P D */
2810 				if (i < sh->pd_idx)
2811 					i += raid_disks;
2812 				i -= (sh->pd_idx + 1);
2813 			}
2814 			break;
2815 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2816 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2817 			if (i > sh->pd_idx)
2818 				i--;
2819 			break;
2820 		case ALGORITHM_LEFT_SYMMETRIC_6:
2821 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2822 			if (i < sh->pd_idx)
2823 				i += data_disks + 1;
2824 			i -= (sh->pd_idx + 1);
2825 			break;
2826 		case ALGORITHM_PARITY_0_6:
2827 			i -= 1;
2828 			break;
2829 		default:
2830 			BUG();
2831 		}
2832 		break;
2833 	}
2834 
2835 	chunk_number = stripe * data_disks + i;
2836 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2837 
2838 	check = raid5_compute_sector(conf, r_sector,
2839 				     previous, &dummy1, &sh2);
2840 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2841 		|| sh2.qd_idx != sh->qd_idx) {
2842 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2843 		       mdname(conf->mddev));
2844 		return 0;
2845 	}
2846 	return r_sector;
2847 }
2848 
2849 static void
2850 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2851 			 int rcw, int expand)
2852 {
2853 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2854 	struct r5conf *conf = sh->raid_conf;
2855 	int level = conf->level;
2856 
2857 	if (rcw) {
2858 
2859 		for (i = disks; i--; ) {
2860 			struct r5dev *dev = &sh->dev[i];
2861 
2862 			if (dev->towrite) {
2863 				set_bit(R5_LOCKED, &dev->flags);
2864 				set_bit(R5_Wantdrain, &dev->flags);
2865 				if (!expand)
2866 					clear_bit(R5_UPTODATE, &dev->flags);
2867 				s->locked++;
2868 			}
2869 		}
2870 		/* if we are not expanding this is a proper write request, and
2871 		 * there will be bios with new data to be drained into the
2872 		 * stripe cache
2873 		 */
2874 		if (!expand) {
2875 			if (!s->locked)
2876 				/* False alarm, nothing to do */
2877 				return;
2878 			sh->reconstruct_state = reconstruct_state_drain_run;
2879 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2880 		} else
2881 			sh->reconstruct_state = reconstruct_state_run;
2882 
2883 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2884 
2885 		if (s->locked + conf->max_degraded == disks)
2886 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2887 				atomic_inc(&conf->pending_full_writes);
2888 	} else {
2889 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2890 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2891 		BUG_ON(level == 6 &&
2892 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2893 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2894 
2895 		for (i = disks; i--; ) {
2896 			struct r5dev *dev = &sh->dev[i];
2897 			if (i == pd_idx || i == qd_idx)
2898 				continue;
2899 
2900 			if (dev->towrite &&
2901 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2902 			     test_bit(R5_Wantcompute, &dev->flags))) {
2903 				set_bit(R5_Wantdrain, &dev->flags);
2904 				set_bit(R5_LOCKED, &dev->flags);
2905 				clear_bit(R5_UPTODATE, &dev->flags);
2906 				s->locked++;
2907 			}
2908 		}
2909 		if (!s->locked)
2910 			/* False alarm - nothing to do */
2911 			return;
2912 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2913 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2914 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2915 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2916 	}
2917 
2918 	/* keep the parity disk(s) locked while asynchronous operations
2919 	 * are in flight
2920 	 */
2921 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2922 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2923 	s->locked++;
2924 
2925 	if (level == 6) {
2926 		int qd_idx = sh->qd_idx;
2927 		struct r5dev *dev = &sh->dev[qd_idx];
2928 
2929 		set_bit(R5_LOCKED, &dev->flags);
2930 		clear_bit(R5_UPTODATE, &dev->flags);
2931 		s->locked++;
2932 	}
2933 
2934 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2935 		__func__, (unsigned long long)sh->sector,
2936 		s->locked, s->ops_request);
2937 }
2938 
2939 /*
2940  * Each stripe/dev can have one or more bion attached.
2941  * toread/towrite point to the first in a chain.
2942  * The bi_next chain must be in order.
2943  */
2944 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2945 			  int forwrite, int previous)
2946 {
2947 	struct bio **bip;
2948 	struct r5conf *conf = sh->raid_conf;
2949 	int firstwrite=0;
2950 
2951 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2952 		(unsigned long long)bi->bi_iter.bi_sector,
2953 		(unsigned long long)sh->sector);
2954 
2955 	/*
2956 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2957 	 * reference count to avoid race. The reference count should already be
2958 	 * increased before this function is called (for example, in
2959 	 * make_request()), so other bio sharing this stripe will not free the
2960 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2961 	 * protect it.
2962 	 */
2963 	spin_lock_irq(&sh->stripe_lock);
2964 	/* Don't allow new IO added to stripes in batch list */
2965 	if (sh->batch_head)
2966 		goto overlap;
2967 	if (forwrite) {
2968 		bip = &sh->dev[dd_idx].towrite;
2969 		if (*bip == NULL)
2970 			firstwrite = 1;
2971 	} else
2972 		bip = &sh->dev[dd_idx].toread;
2973 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2974 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2975 			goto overlap;
2976 		bip = & (*bip)->bi_next;
2977 	}
2978 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2979 		goto overlap;
2980 
2981 	if (!forwrite || previous)
2982 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2983 
2984 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2985 	if (*bip)
2986 		bi->bi_next = *bip;
2987 	*bip = bi;
2988 	raid5_inc_bi_active_stripes(bi);
2989 
2990 	if (forwrite) {
2991 		/* check if page is covered */
2992 		sector_t sector = sh->dev[dd_idx].sector;
2993 		for (bi=sh->dev[dd_idx].towrite;
2994 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2995 			     bi && bi->bi_iter.bi_sector <= sector;
2996 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2997 			if (bio_end_sector(bi) >= sector)
2998 				sector = bio_end_sector(bi);
2999 		}
3000 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3001 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3002 				sh->overwrite_disks++;
3003 	}
3004 
3005 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3006 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3007 		(unsigned long long)sh->sector, dd_idx);
3008 
3009 	if (conf->mddev->bitmap && firstwrite) {
3010 		/* Cannot hold spinlock over bitmap_startwrite,
3011 		 * but must ensure this isn't added to a batch until
3012 		 * we have added to the bitmap and set bm_seq.
3013 		 * So set STRIPE_BITMAP_PENDING to prevent
3014 		 * batching.
3015 		 * If multiple add_stripe_bio() calls race here they
3016 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3017 		 * to complete "bitmap_startwrite" gets to set
3018 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3019 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3020 		 * any more.
3021 		 */
3022 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3023 		spin_unlock_irq(&sh->stripe_lock);
3024 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3025 				  STRIPE_SECTORS, 0);
3026 		spin_lock_irq(&sh->stripe_lock);
3027 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3028 		if (!sh->batch_head) {
3029 			sh->bm_seq = conf->seq_flush+1;
3030 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3031 		}
3032 	}
3033 	spin_unlock_irq(&sh->stripe_lock);
3034 
3035 	if (stripe_can_batch(sh))
3036 		stripe_add_to_batch_list(conf, sh);
3037 	return 1;
3038 
3039  overlap:
3040 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3041 	spin_unlock_irq(&sh->stripe_lock);
3042 	return 0;
3043 }
3044 
3045 static void end_reshape(struct r5conf *conf);
3046 
3047 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3048 			    struct stripe_head *sh)
3049 {
3050 	int sectors_per_chunk =
3051 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3052 	int dd_idx;
3053 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3054 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3055 
3056 	raid5_compute_sector(conf,
3057 			     stripe * (disks - conf->max_degraded)
3058 			     *sectors_per_chunk + chunk_offset,
3059 			     previous,
3060 			     &dd_idx, sh);
3061 }
3062 
3063 static void
3064 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3065 				struct stripe_head_state *s, int disks,
3066 				struct bio_list *return_bi)
3067 {
3068 	int i;
3069 	BUG_ON(sh->batch_head);
3070 	for (i = disks; i--; ) {
3071 		struct bio *bi;
3072 		int bitmap_end = 0;
3073 
3074 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3075 			struct md_rdev *rdev;
3076 			rcu_read_lock();
3077 			rdev = rcu_dereference(conf->disks[i].rdev);
3078 			if (rdev && test_bit(In_sync, &rdev->flags))
3079 				atomic_inc(&rdev->nr_pending);
3080 			else
3081 				rdev = NULL;
3082 			rcu_read_unlock();
3083 			if (rdev) {
3084 				if (!rdev_set_badblocks(
3085 					    rdev,
3086 					    sh->sector,
3087 					    STRIPE_SECTORS, 0))
3088 					md_error(conf->mddev, rdev);
3089 				rdev_dec_pending(rdev, conf->mddev);
3090 			}
3091 		}
3092 		spin_lock_irq(&sh->stripe_lock);
3093 		/* fail all writes first */
3094 		bi = sh->dev[i].towrite;
3095 		sh->dev[i].towrite = NULL;
3096 		sh->overwrite_disks = 0;
3097 		spin_unlock_irq(&sh->stripe_lock);
3098 		if (bi)
3099 			bitmap_end = 1;
3100 
3101 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3102 			wake_up(&conf->wait_for_overlap);
3103 
3104 		while (bi && bi->bi_iter.bi_sector <
3105 			sh->dev[i].sector + STRIPE_SECTORS) {
3106 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3107 
3108 			bi->bi_error = -EIO;
3109 			if (!raid5_dec_bi_active_stripes(bi)) {
3110 				md_write_end(conf->mddev);
3111 				bio_list_add(return_bi, bi);
3112 			}
3113 			bi = nextbi;
3114 		}
3115 		if (bitmap_end)
3116 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3117 				STRIPE_SECTORS, 0, 0);
3118 		bitmap_end = 0;
3119 		/* and fail all 'written' */
3120 		bi = sh->dev[i].written;
3121 		sh->dev[i].written = NULL;
3122 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3123 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3124 			sh->dev[i].page = sh->dev[i].orig_page;
3125 		}
3126 
3127 		if (bi) bitmap_end = 1;
3128 		while (bi && bi->bi_iter.bi_sector <
3129 		       sh->dev[i].sector + STRIPE_SECTORS) {
3130 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3131 
3132 			bi->bi_error = -EIO;
3133 			if (!raid5_dec_bi_active_stripes(bi)) {
3134 				md_write_end(conf->mddev);
3135 				bio_list_add(return_bi, bi);
3136 			}
3137 			bi = bi2;
3138 		}
3139 
3140 		/* fail any reads if this device is non-operational and
3141 		 * the data has not reached the cache yet.
3142 		 */
3143 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3144 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3145 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3146 			spin_lock_irq(&sh->stripe_lock);
3147 			bi = sh->dev[i].toread;
3148 			sh->dev[i].toread = NULL;
3149 			spin_unlock_irq(&sh->stripe_lock);
3150 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3151 				wake_up(&conf->wait_for_overlap);
3152 			if (bi)
3153 				s->to_read--;
3154 			while (bi && bi->bi_iter.bi_sector <
3155 			       sh->dev[i].sector + STRIPE_SECTORS) {
3156 				struct bio *nextbi =
3157 					r5_next_bio(bi, sh->dev[i].sector);
3158 
3159 				bi->bi_error = -EIO;
3160 				if (!raid5_dec_bi_active_stripes(bi))
3161 					bio_list_add(return_bi, bi);
3162 				bi = nextbi;
3163 			}
3164 		}
3165 		if (bitmap_end)
3166 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3167 					STRIPE_SECTORS, 0, 0);
3168 		/* If we were in the middle of a write the parity block might
3169 		 * still be locked - so just clear all R5_LOCKED flags
3170 		 */
3171 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3172 	}
3173 	s->to_write = 0;
3174 	s->written = 0;
3175 
3176 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3177 		if (atomic_dec_and_test(&conf->pending_full_writes))
3178 			md_wakeup_thread(conf->mddev->thread);
3179 }
3180 
3181 static void
3182 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3183 		   struct stripe_head_state *s)
3184 {
3185 	int abort = 0;
3186 	int i;
3187 
3188 	BUG_ON(sh->batch_head);
3189 	clear_bit(STRIPE_SYNCING, &sh->state);
3190 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3191 		wake_up(&conf->wait_for_overlap);
3192 	s->syncing = 0;
3193 	s->replacing = 0;
3194 	/* There is nothing more to do for sync/check/repair.
3195 	 * Don't even need to abort as that is handled elsewhere
3196 	 * if needed, and not always wanted e.g. if there is a known
3197 	 * bad block here.
3198 	 * For recover/replace we need to record a bad block on all
3199 	 * non-sync devices, or abort the recovery
3200 	 */
3201 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3202 		/* During recovery devices cannot be removed, so
3203 		 * locking and refcounting of rdevs is not needed
3204 		 */
3205 		for (i = 0; i < conf->raid_disks; i++) {
3206 			struct md_rdev *rdev = conf->disks[i].rdev;
3207 			if (rdev
3208 			    && !test_bit(Faulty, &rdev->flags)
3209 			    && !test_bit(In_sync, &rdev->flags)
3210 			    && !rdev_set_badblocks(rdev, sh->sector,
3211 						   STRIPE_SECTORS, 0))
3212 				abort = 1;
3213 			rdev = conf->disks[i].replacement;
3214 			if (rdev
3215 			    && !test_bit(Faulty, &rdev->flags)
3216 			    && !test_bit(In_sync, &rdev->flags)
3217 			    && !rdev_set_badblocks(rdev, sh->sector,
3218 						   STRIPE_SECTORS, 0))
3219 				abort = 1;
3220 		}
3221 		if (abort)
3222 			conf->recovery_disabled =
3223 				conf->mddev->recovery_disabled;
3224 	}
3225 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3226 }
3227 
3228 static int want_replace(struct stripe_head *sh, int disk_idx)
3229 {
3230 	struct md_rdev *rdev;
3231 	int rv = 0;
3232 	/* Doing recovery so rcu locking not required */
3233 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3234 	if (rdev
3235 	    && !test_bit(Faulty, &rdev->flags)
3236 	    && !test_bit(In_sync, &rdev->flags)
3237 	    && (rdev->recovery_offset <= sh->sector
3238 		|| rdev->mddev->recovery_cp <= sh->sector))
3239 		rv = 1;
3240 
3241 	return rv;
3242 }
3243 
3244 /* fetch_block - checks the given member device to see if its data needs
3245  * to be read or computed to satisfy a request.
3246  *
3247  * Returns 1 when no more member devices need to be checked, otherwise returns
3248  * 0 to tell the loop in handle_stripe_fill to continue
3249  */
3250 
3251 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3252 			   int disk_idx, int disks)
3253 {
3254 	struct r5dev *dev = &sh->dev[disk_idx];
3255 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3256 				  &sh->dev[s->failed_num[1]] };
3257 	int i;
3258 
3259 
3260 	if (test_bit(R5_LOCKED, &dev->flags) ||
3261 	    test_bit(R5_UPTODATE, &dev->flags))
3262 		/* No point reading this as we already have it or have
3263 		 * decided to get it.
3264 		 */
3265 		return 0;
3266 
3267 	if (dev->toread ||
3268 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3269 		/* We need this block to directly satisfy a request */
3270 		return 1;
3271 
3272 	if (s->syncing || s->expanding ||
3273 	    (s->replacing && want_replace(sh, disk_idx)))
3274 		/* When syncing, or expanding we read everything.
3275 		 * When replacing, we need the replaced block.
3276 		 */
3277 		return 1;
3278 
3279 	if ((s->failed >= 1 && fdev[0]->toread) ||
3280 	    (s->failed >= 2 && fdev[1]->toread))
3281 		/* If we want to read from a failed device, then
3282 		 * we need to actually read every other device.
3283 		 */
3284 		return 1;
3285 
3286 	/* Sometimes neither read-modify-write nor reconstruct-write
3287 	 * cycles can work.  In those cases we read every block we
3288 	 * can.  Then the parity-update is certain to have enough to
3289 	 * work with.
3290 	 * This can only be a problem when we need to write something,
3291 	 * and some device has failed.  If either of those tests
3292 	 * fail we need look no further.
3293 	 */
3294 	if (!s->failed || !s->to_write)
3295 		return 0;
3296 
3297 	if (test_bit(R5_Insync, &dev->flags) &&
3298 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3299 		/* Pre-reads at not permitted until after short delay
3300 		 * to gather multiple requests.  However if this
3301 		 * device is no Insync, the block could only be be computed
3302 		 * and there is no need to delay that.
3303 		 */
3304 		return 0;
3305 
3306 	for (i = 0; i < s->failed && i < 2; i++) {
3307 		if (fdev[i]->towrite &&
3308 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3309 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3310 			/* If we have a partial write to a failed
3311 			 * device, then we will need to reconstruct
3312 			 * the content of that device, so all other
3313 			 * devices must be read.
3314 			 */
3315 			return 1;
3316 	}
3317 
3318 	/* If we are forced to do a reconstruct-write, either because
3319 	 * the current RAID6 implementation only supports that, or
3320 	 * or because parity cannot be trusted and we are currently
3321 	 * recovering it, there is extra need to be careful.
3322 	 * If one of the devices that we would need to read, because
3323 	 * it is not being overwritten (and maybe not written at all)
3324 	 * is missing/faulty, then we need to read everything we can.
3325 	 */
3326 	if (sh->raid_conf->level != 6 &&
3327 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3328 		/* reconstruct-write isn't being forced */
3329 		return 0;
3330 	for (i = 0; i < s->failed && i < 2; i++) {
3331 		if (s->failed_num[i] != sh->pd_idx &&
3332 		    s->failed_num[i] != sh->qd_idx &&
3333 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3334 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3335 			return 1;
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3342 		       int disk_idx, int disks)
3343 {
3344 	struct r5dev *dev = &sh->dev[disk_idx];
3345 
3346 	/* is the data in this block needed, and can we get it? */
3347 	if (need_this_block(sh, s, disk_idx, disks)) {
3348 		/* we would like to get this block, possibly by computing it,
3349 		 * otherwise read it if the backing disk is insync
3350 		 */
3351 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3352 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3353 		BUG_ON(sh->batch_head);
3354 		if ((s->uptodate == disks - 1) &&
3355 		    (s->failed && (disk_idx == s->failed_num[0] ||
3356 				   disk_idx == s->failed_num[1]))) {
3357 			/* have disk failed, and we're requested to fetch it;
3358 			 * do compute it
3359 			 */
3360 			pr_debug("Computing stripe %llu block %d\n",
3361 			       (unsigned long long)sh->sector, disk_idx);
3362 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3363 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3364 			set_bit(R5_Wantcompute, &dev->flags);
3365 			sh->ops.target = disk_idx;
3366 			sh->ops.target2 = -1; /* no 2nd target */
3367 			s->req_compute = 1;
3368 			/* Careful: from this point on 'uptodate' is in the eye
3369 			 * of raid_run_ops which services 'compute' operations
3370 			 * before writes. R5_Wantcompute flags a block that will
3371 			 * be R5_UPTODATE by the time it is needed for a
3372 			 * subsequent operation.
3373 			 */
3374 			s->uptodate++;
3375 			return 1;
3376 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3377 			/* Computing 2-failure is *very* expensive; only
3378 			 * do it if failed >= 2
3379 			 */
3380 			int other;
3381 			for (other = disks; other--; ) {
3382 				if (other == disk_idx)
3383 					continue;
3384 				if (!test_bit(R5_UPTODATE,
3385 				      &sh->dev[other].flags))
3386 					break;
3387 			}
3388 			BUG_ON(other < 0);
3389 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3390 			       (unsigned long long)sh->sector,
3391 			       disk_idx, other);
3392 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3393 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3394 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3395 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3396 			sh->ops.target = disk_idx;
3397 			sh->ops.target2 = other;
3398 			s->uptodate += 2;
3399 			s->req_compute = 1;
3400 			return 1;
3401 		} else if (test_bit(R5_Insync, &dev->flags)) {
3402 			set_bit(R5_LOCKED, &dev->flags);
3403 			set_bit(R5_Wantread, &dev->flags);
3404 			s->locked++;
3405 			pr_debug("Reading block %d (sync=%d)\n",
3406 				disk_idx, s->syncing);
3407 		}
3408 	}
3409 
3410 	return 0;
3411 }
3412 
3413 /**
3414  * handle_stripe_fill - read or compute data to satisfy pending requests.
3415  */
3416 static void handle_stripe_fill(struct stripe_head *sh,
3417 			       struct stripe_head_state *s,
3418 			       int disks)
3419 {
3420 	int i;
3421 
3422 	/* look for blocks to read/compute, skip this if a compute
3423 	 * is already in flight, or if the stripe contents are in the
3424 	 * midst of changing due to a write
3425 	 */
3426 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3427 	    !sh->reconstruct_state)
3428 		for (i = disks; i--; )
3429 			if (fetch_block(sh, s, i, disks))
3430 				break;
3431 	set_bit(STRIPE_HANDLE, &sh->state);
3432 }
3433 
3434 static void break_stripe_batch_list(struct stripe_head *head_sh,
3435 				    unsigned long handle_flags);
3436 /* handle_stripe_clean_event
3437  * any written block on an uptodate or failed drive can be returned.
3438  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3439  * never LOCKED, so we don't need to test 'failed' directly.
3440  */
3441 static void handle_stripe_clean_event(struct r5conf *conf,
3442 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3443 {
3444 	int i;
3445 	struct r5dev *dev;
3446 	int discard_pending = 0;
3447 	struct stripe_head *head_sh = sh;
3448 	bool do_endio = false;
3449 
3450 	for (i = disks; i--; )
3451 		if (sh->dev[i].written) {
3452 			dev = &sh->dev[i];
3453 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3454 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3455 			     test_bit(R5_Discard, &dev->flags) ||
3456 			     test_bit(R5_SkipCopy, &dev->flags))) {
3457 				/* We can return any write requests */
3458 				struct bio *wbi, *wbi2;
3459 				pr_debug("Return write for disc %d\n", i);
3460 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3461 					clear_bit(R5_UPTODATE, &dev->flags);
3462 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3463 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3464 				}
3465 				do_endio = true;
3466 
3467 returnbi:
3468 				dev->page = dev->orig_page;
3469 				wbi = dev->written;
3470 				dev->written = NULL;
3471 				while (wbi && wbi->bi_iter.bi_sector <
3472 					dev->sector + STRIPE_SECTORS) {
3473 					wbi2 = r5_next_bio(wbi, dev->sector);
3474 					if (!raid5_dec_bi_active_stripes(wbi)) {
3475 						md_write_end(conf->mddev);
3476 						bio_list_add(return_bi, wbi);
3477 					}
3478 					wbi = wbi2;
3479 				}
3480 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3481 						STRIPE_SECTORS,
3482 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3483 						0);
3484 				if (head_sh->batch_head) {
3485 					sh = list_first_entry(&sh->batch_list,
3486 							      struct stripe_head,
3487 							      batch_list);
3488 					if (sh != head_sh) {
3489 						dev = &sh->dev[i];
3490 						goto returnbi;
3491 					}
3492 				}
3493 				sh = head_sh;
3494 				dev = &sh->dev[i];
3495 			} else if (test_bit(R5_Discard, &dev->flags))
3496 				discard_pending = 1;
3497 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3498 			WARN_ON(dev->page != dev->orig_page);
3499 		}
3500 	if (!discard_pending &&
3501 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3502 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3503 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3504 		if (sh->qd_idx >= 0) {
3505 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3506 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3507 		}
3508 		/* now that discard is done we can proceed with any sync */
3509 		clear_bit(STRIPE_DISCARD, &sh->state);
3510 		/*
3511 		 * SCSI discard will change some bio fields and the stripe has
3512 		 * no updated data, so remove it from hash list and the stripe
3513 		 * will be reinitialized
3514 		 */
3515 		spin_lock_irq(&conf->device_lock);
3516 unhash:
3517 		remove_hash(sh);
3518 		if (head_sh->batch_head) {
3519 			sh = list_first_entry(&sh->batch_list,
3520 					      struct stripe_head, batch_list);
3521 			if (sh != head_sh)
3522 					goto unhash;
3523 		}
3524 		spin_unlock_irq(&conf->device_lock);
3525 		sh = head_sh;
3526 
3527 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3528 			set_bit(STRIPE_HANDLE, &sh->state);
3529 
3530 	}
3531 
3532 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3533 		if (atomic_dec_and_test(&conf->pending_full_writes))
3534 			md_wakeup_thread(conf->mddev->thread);
3535 
3536 	if (head_sh->batch_head && do_endio)
3537 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3538 }
3539 
3540 static void handle_stripe_dirtying(struct r5conf *conf,
3541 				   struct stripe_head *sh,
3542 				   struct stripe_head_state *s,
3543 				   int disks)
3544 {
3545 	int rmw = 0, rcw = 0, i;
3546 	sector_t recovery_cp = conf->mddev->recovery_cp;
3547 
3548 	/* Check whether resync is now happening or should start.
3549 	 * If yes, then the array is dirty (after unclean shutdown or
3550 	 * initial creation), so parity in some stripes might be inconsistent.
3551 	 * In this case, we need to always do reconstruct-write, to ensure
3552 	 * that in case of drive failure or read-error correction, we
3553 	 * generate correct data from the parity.
3554 	 */
3555 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3556 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3557 	     s->failed == 0)) {
3558 		/* Calculate the real rcw later - for now make it
3559 		 * look like rcw is cheaper
3560 		 */
3561 		rcw = 1; rmw = 2;
3562 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3563 			 conf->rmw_level, (unsigned long long)recovery_cp,
3564 			 (unsigned long long)sh->sector);
3565 	} else for (i = disks; i--; ) {
3566 		/* would I have to read this buffer for read_modify_write */
3567 		struct r5dev *dev = &sh->dev[i];
3568 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3569 		    !test_bit(R5_LOCKED, &dev->flags) &&
3570 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3571 		      test_bit(R5_Wantcompute, &dev->flags))) {
3572 			if (test_bit(R5_Insync, &dev->flags))
3573 				rmw++;
3574 			else
3575 				rmw += 2*disks;  /* cannot read it */
3576 		}
3577 		/* Would I have to read this buffer for reconstruct_write */
3578 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3579 		    i != sh->pd_idx && i != sh->qd_idx &&
3580 		    !test_bit(R5_LOCKED, &dev->flags) &&
3581 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3582 		    test_bit(R5_Wantcompute, &dev->flags))) {
3583 			if (test_bit(R5_Insync, &dev->flags))
3584 				rcw++;
3585 			else
3586 				rcw += 2*disks;
3587 		}
3588 	}
3589 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3590 		(unsigned long long)sh->sector, rmw, rcw);
3591 	set_bit(STRIPE_HANDLE, &sh->state);
3592 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3593 		/* prefer read-modify-write, but need to get some data */
3594 		if (conf->mddev->queue)
3595 			blk_add_trace_msg(conf->mddev->queue,
3596 					  "raid5 rmw %llu %d",
3597 					  (unsigned long long)sh->sector, rmw);
3598 		for (i = disks; i--; ) {
3599 			struct r5dev *dev = &sh->dev[i];
3600 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3601 			    !test_bit(R5_LOCKED, &dev->flags) &&
3602 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3603 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3604 			    test_bit(R5_Insync, &dev->flags)) {
3605 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3606 					     &sh->state)) {
3607 					pr_debug("Read_old block %d for r-m-w\n",
3608 						 i);
3609 					set_bit(R5_LOCKED, &dev->flags);
3610 					set_bit(R5_Wantread, &dev->flags);
3611 					s->locked++;
3612 				} else {
3613 					set_bit(STRIPE_DELAYED, &sh->state);
3614 					set_bit(STRIPE_HANDLE, &sh->state);
3615 				}
3616 			}
3617 		}
3618 	}
3619 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3620 		/* want reconstruct write, but need to get some data */
3621 		int qread =0;
3622 		rcw = 0;
3623 		for (i = disks; i--; ) {
3624 			struct r5dev *dev = &sh->dev[i];
3625 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3626 			    i != sh->pd_idx && i != sh->qd_idx &&
3627 			    !test_bit(R5_LOCKED, &dev->flags) &&
3628 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3629 			      test_bit(R5_Wantcompute, &dev->flags))) {
3630 				rcw++;
3631 				if (test_bit(R5_Insync, &dev->flags) &&
3632 				    test_bit(STRIPE_PREREAD_ACTIVE,
3633 					     &sh->state)) {
3634 					pr_debug("Read_old block "
3635 						"%d for Reconstruct\n", i);
3636 					set_bit(R5_LOCKED, &dev->flags);
3637 					set_bit(R5_Wantread, &dev->flags);
3638 					s->locked++;
3639 					qread++;
3640 				} else {
3641 					set_bit(STRIPE_DELAYED, &sh->state);
3642 					set_bit(STRIPE_HANDLE, &sh->state);
3643 				}
3644 			}
3645 		}
3646 		if (rcw && conf->mddev->queue)
3647 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3648 					  (unsigned long long)sh->sector,
3649 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3650 	}
3651 
3652 	if (rcw > disks && rmw > disks &&
3653 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3654 		set_bit(STRIPE_DELAYED, &sh->state);
3655 
3656 	/* now if nothing is locked, and if we have enough data,
3657 	 * we can start a write request
3658 	 */
3659 	/* since handle_stripe can be called at any time we need to handle the
3660 	 * case where a compute block operation has been submitted and then a
3661 	 * subsequent call wants to start a write request.  raid_run_ops only
3662 	 * handles the case where compute block and reconstruct are requested
3663 	 * simultaneously.  If this is not the case then new writes need to be
3664 	 * held off until the compute completes.
3665 	 */
3666 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3667 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3668 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3669 		schedule_reconstruction(sh, s, rcw == 0, 0);
3670 }
3671 
3672 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3673 				struct stripe_head_state *s, int disks)
3674 {
3675 	struct r5dev *dev = NULL;
3676 
3677 	BUG_ON(sh->batch_head);
3678 	set_bit(STRIPE_HANDLE, &sh->state);
3679 
3680 	switch (sh->check_state) {
3681 	case check_state_idle:
3682 		/* start a new check operation if there are no failures */
3683 		if (s->failed == 0) {
3684 			BUG_ON(s->uptodate != disks);
3685 			sh->check_state = check_state_run;
3686 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3687 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3688 			s->uptodate--;
3689 			break;
3690 		}
3691 		dev = &sh->dev[s->failed_num[0]];
3692 		/* fall through */
3693 	case check_state_compute_result:
3694 		sh->check_state = check_state_idle;
3695 		if (!dev)
3696 			dev = &sh->dev[sh->pd_idx];
3697 
3698 		/* check that a write has not made the stripe insync */
3699 		if (test_bit(STRIPE_INSYNC, &sh->state))
3700 			break;
3701 
3702 		/* either failed parity check, or recovery is happening */
3703 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3704 		BUG_ON(s->uptodate != disks);
3705 
3706 		set_bit(R5_LOCKED, &dev->flags);
3707 		s->locked++;
3708 		set_bit(R5_Wantwrite, &dev->flags);
3709 
3710 		clear_bit(STRIPE_DEGRADED, &sh->state);
3711 		set_bit(STRIPE_INSYNC, &sh->state);
3712 		break;
3713 	case check_state_run:
3714 		break; /* we will be called again upon completion */
3715 	case check_state_check_result:
3716 		sh->check_state = check_state_idle;
3717 
3718 		/* if a failure occurred during the check operation, leave
3719 		 * STRIPE_INSYNC not set and let the stripe be handled again
3720 		 */
3721 		if (s->failed)
3722 			break;
3723 
3724 		/* handle a successful check operation, if parity is correct
3725 		 * we are done.  Otherwise update the mismatch count and repair
3726 		 * parity if !MD_RECOVERY_CHECK
3727 		 */
3728 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3729 			/* parity is correct (on disc,
3730 			 * not in buffer any more)
3731 			 */
3732 			set_bit(STRIPE_INSYNC, &sh->state);
3733 		else {
3734 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3735 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3736 				/* don't try to repair!! */
3737 				set_bit(STRIPE_INSYNC, &sh->state);
3738 			else {
3739 				sh->check_state = check_state_compute_run;
3740 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3741 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3742 				set_bit(R5_Wantcompute,
3743 					&sh->dev[sh->pd_idx].flags);
3744 				sh->ops.target = sh->pd_idx;
3745 				sh->ops.target2 = -1;
3746 				s->uptodate++;
3747 			}
3748 		}
3749 		break;
3750 	case check_state_compute_run:
3751 		break;
3752 	default:
3753 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3754 		       __func__, sh->check_state,
3755 		       (unsigned long long) sh->sector);
3756 		BUG();
3757 	}
3758 }
3759 
3760 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3761 				  struct stripe_head_state *s,
3762 				  int disks)
3763 {
3764 	int pd_idx = sh->pd_idx;
3765 	int qd_idx = sh->qd_idx;
3766 	struct r5dev *dev;
3767 
3768 	BUG_ON(sh->batch_head);
3769 	set_bit(STRIPE_HANDLE, &sh->state);
3770 
3771 	BUG_ON(s->failed > 2);
3772 
3773 	/* Want to check and possibly repair P and Q.
3774 	 * However there could be one 'failed' device, in which
3775 	 * case we can only check one of them, possibly using the
3776 	 * other to generate missing data
3777 	 */
3778 
3779 	switch (sh->check_state) {
3780 	case check_state_idle:
3781 		/* start a new check operation if there are < 2 failures */
3782 		if (s->failed == s->q_failed) {
3783 			/* The only possible failed device holds Q, so it
3784 			 * makes sense to check P (If anything else were failed,
3785 			 * we would have used P to recreate it).
3786 			 */
3787 			sh->check_state = check_state_run;
3788 		}
3789 		if (!s->q_failed && s->failed < 2) {
3790 			/* Q is not failed, and we didn't use it to generate
3791 			 * anything, so it makes sense to check it
3792 			 */
3793 			if (sh->check_state == check_state_run)
3794 				sh->check_state = check_state_run_pq;
3795 			else
3796 				sh->check_state = check_state_run_q;
3797 		}
3798 
3799 		/* discard potentially stale zero_sum_result */
3800 		sh->ops.zero_sum_result = 0;
3801 
3802 		if (sh->check_state == check_state_run) {
3803 			/* async_xor_zero_sum destroys the contents of P */
3804 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3805 			s->uptodate--;
3806 		}
3807 		if (sh->check_state >= check_state_run &&
3808 		    sh->check_state <= check_state_run_pq) {
3809 			/* async_syndrome_zero_sum preserves P and Q, so
3810 			 * no need to mark them !uptodate here
3811 			 */
3812 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3813 			break;
3814 		}
3815 
3816 		/* we have 2-disk failure */
3817 		BUG_ON(s->failed != 2);
3818 		/* fall through */
3819 	case check_state_compute_result:
3820 		sh->check_state = check_state_idle;
3821 
3822 		/* check that a write has not made the stripe insync */
3823 		if (test_bit(STRIPE_INSYNC, &sh->state))
3824 			break;
3825 
3826 		/* now write out any block on a failed drive,
3827 		 * or P or Q if they were recomputed
3828 		 */
3829 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3830 		if (s->failed == 2) {
3831 			dev = &sh->dev[s->failed_num[1]];
3832 			s->locked++;
3833 			set_bit(R5_LOCKED, &dev->flags);
3834 			set_bit(R5_Wantwrite, &dev->flags);
3835 		}
3836 		if (s->failed >= 1) {
3837 			dev = &sh->dev[s->failed_num[0]];
3838 			s->locked++;
3839 			set_bit(R5_LOCKED, &dev->flags);
3840 			set_bit(R5_Wantwrite, &dev->flags);
3841 		}
3842 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3843 			dev = &sh->dev[pd_idx];
3844 			s->locked++;
3845 			set_bit(R5_LOCKED, &dev->flags);
3846 			set_bit(R5_Wantwrite, &dev->flags);
3847 		}
3848 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3849 			dev = &sh->dev[qd_idx];
3850 			s->locked++;
3851 			set_bit(R5_LOCKED, &dev->flags);
3852 			set_bit(R5_Wantwrite, &dev->flags);
3853 		}
3854 		clear_bit(STRIPE_DEGRADED, &sh->state);
3855 
3856 		set_bit(STRIPE_INSYNC, &sh->state);
3857 		break;
3858 	case check_state_run:
3859 	case check_state_run_q:
3860 	case check_state_run_pq:
3861 		break; /* we will be called again upon completion */
3862 	case check_state_check_result:
3863 		sh->check_state = check_state_idle;
3864 
3865 		/* handle a successful check operation, if parity is correct
3866 		 * we are done.  Otherwise update the mismatch count and repair
3867 		 * parity if !MD_RECOVERY_CHECK
3868 		 */
3869 		if (sh->ops.zero_sum_result == 0) {
3870 			/* both parities are correct */
3871 			if (!s->failed)
3872 				set_bit(STRIPE_INSYNC, &sh->state);
3873 			else {
3874 				/* in contrast to the raid5 case we can validate
3875 				 * parity, but still have a failure to write
3876 				 * back
3877 				 */
3878 				sh->check_state = check_state_compute_result;
3879 				/* Returning at this point means that we may go
3880 				 * off and bring p and/or q uptodate again so
3881 				 * we make sure to check zero_sum_result again
3882 				 * to verify if p or q need writeback
3883 				 */
3884 			}
3885 		} else {
3886 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3887 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3888 				/* don't try to repair!! */
3889 				set_bit(STRIPE_INSYNC, &sh->state);
3890 			else {
3891 				int *target = &sh->ops.target;
3892 
3893 				sh->ops.target = -1;
3894 				sh->ops.target2 = -1;
3895 				sh->check_state = check_state_compute_run;
3896 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3897 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3898 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3899 					set_bit(R5_Wantcompute,
3900 						&sh->dev[pd_idx].flags);
3901 					*target = pd_idx;
3902 					target = &sh->ops.target2;
3903 					s->uptodate++;
3904 				}
3905 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3906 					set_bit(R5_Wantcompute,
3907 						&sh->dev[qd_idx].flags);
3908 					*target = qd_idx;
3909 					s->uptodate++;
3910 				}
3911 			}
3912 		}
3913 		break;
3914 	case check_state_compute_run:
3915 		break;
3916 	default:
3917 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3918 		       __func__, sh->check_state,
3919 		       (unsigned long long) sh->sector);
3920 		BUG();
3921 	}
3922 }
3923 
3924 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3925 {
3926 	int i;
3927 
3928 	/* We have read all the blocks in this stripe and now we need to
3929 	 * copy some of them into a target stripe for expand.
3930 	 */
3931 	struct dma_async_tx_descriptor *tx = NULL;
3932 	BUG_ON(sh->batch_head);
3933 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3934 	for (i = 0; i < sh->disks; i++)
3935 		if (i != sh->pd_idx && i != sh->qd_idx) {
3936 			int dd_idx, j;
3937 			struct stripe_head *sh2;
3938 			struct async_submit_ctl submit;
3939 
3940 			sector_t bn = compute_blocknr(sh, i, 1);
3941 			sector_t s = raid5_compute_sector(conf, bn, 0,
3942 							  &dd_idx, NULL);
3943 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3944 			if (sh2 == NULL)
3945 				/* so far only the early blocks of this stripe
3946 				 * have been requested.  When later blocks
3947 				 * get requested, we will try again
3948 				 */
3949 				continue;
3950 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3951 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3952 				/* must have already done this block */
3953 				release_stripe(sh2);
3954 				continue;
3955 			}
3956 
3957 			/* place all the copies on one channel */
3958 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3959 			tx = async_memcpy(sh2->dev[dd_idx].page,
3960 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3961 					  &submit);
3962 
3963 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3964 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3965 			for (j = 0; j < conf->raid_disks; j++)
3966 				if (j != sh2->pd_idx &&
3967 				    j != sh2->qd_idx &&
3968 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3969 					break;
3970 			if (j == conf->raid_disks) {
3971 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3972 				set_bit(STRIPE_HANDLE, &sh2->state);
3973 			}
3974 			release_stripe(sh2);
3975 
3976 		}
3977 	/* done submitting copies, wait for them to complete */
3978 	async_tx_quiesce(&tx);
3979 }
3980 
3981 /*
3982  * handle_stripe - do things to a stripe.
3983  *
3984  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3985  * state of various bits to see what needs to be done.
3986  * Possible results:
3987  *    return some read requests which now have data
3988  *    return some write requests which are safely on storage
3989  *    schedule a read on some buffers
3990  *    schedule a write of some buffers
3991  *    return confirmation of parity correctness
3992  *
3993  */
3994 
3995 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3996 {
3997 	struct r5conf *conf = sh->raid_conf;
3998 	int disks = sh->disks;
3999 	struct r5dev *dev;
4000 	int i;
4001 	int do_recovery = 0;
4002 
4003 	memset(s, 0, sizeof(*s));
4004 
4005 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4006 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4007 	s->failed_num[0] = -1;
4008 	s->failed_num[1] = -1;
4009 
4010 	/* Now to look around and see what can be done */
4011 	rcu_read_lock();
4012 	for (i=disks; i--; ) {
4013 		struct md_rdev *rdev;
4014 		sector_t first_bad;
4015 		int bad_sectors;
4016 		int is_bad = 0;
4017 
4018 		dev = &sh->dev[i];
4019 
4020 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4021 			 i, dev->flags,
4022 			 dev->toread, dev->towrite, dev->written);
4023 		/* maybe we can reply to a read
4024 		 *
4025 		 * new wantfill requests are only permitted while
4026 		 * ops_complete_biofill is guaranteed to be inactive
4027 		 */
4028 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4029 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4030 			set_bit(R5_Wantfill, &dev->flags);
4031 
4032 		/* now count some things */
4033 		if (test_bit(R5_LOCKED, &dev->flags))
4034 			s->locked++;
4035 		if (test_bit(R5_UPTODATE, &dev->flags))
4036 			s->uptodate++;
4037 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4038 			s->compute++;
4039 			BUG_ON(s->compute > 2);
4040 		}
4041 
4042 		if (test_bit(R5_Wantfill, &dev->flags))
4043 			s->to_fill++;
4044 		else if (dev->toread)
4045 			s->to_read++;
4046 		if (dev->towrite) {
4047 			s->to_write++;
4048 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4049 				s->non_overwrite++;
4050 		}
4051 		if (dev->written)
4052 			s->written++;
4053 		/* Prefer to use the replacement for reads, but only
4054 		 * if it is recovered enough and has no bad blocks.
4055 		 */
4056 		rdev = rcu_dereference(conf->disks[i].replacement);
4057 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4058 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4059 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4060 				 &first_bad, &bad_sectors))
4061 			set_bit(R5_ReadRepl, &dev->flags);
4062 		else {
4063 			if (rdev && !test_bit(Faulty, &rdev->flags))
4064 				set_bit(R5_NeedReplace, &dev->flags);
4065 			else
4066 				clear_bit(R5_NeedReplace, &dev->flags);
4067 			rdev = rcu_dereference(conf->disks[i].rdev);
4068 			clear_bit(R5_ReadRepl, &dev->flags);
4069 		}
4070 		if (rdev && test_bit(Faulty, &rdev->flags))
4071 			rdev = NULL;
4072 		if (rdev) {
4073 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4074 					     &first_bad, &bad_sectors);
4075 			if (s->blocked_rdev == NULL
4076 			    && (test_bit(Blocked, &rdev->flags)
4077 				|| is_bad < 0)) {
4078 				if (is_bad < 0)
4079 					set_bit(BlockedBadBlocks,
4080 						&rdev->flags);
4081 				s->blocked_rdev = rdev;
4082 				atomic_inc(&rdev->nr_pending);
4083 			}
4084 		}
4085 		clear_bit(R5_Insync, &dev->flags);
4086 		if (!rdev)
4087 			/* Not in-sync */;
4088 		else if (is_bad) {
4089 			/* also not in-sync */
4090 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4091 			    test_bit(R5_UPTODATE, &dev->flags)) {
4092 				/* treat as in-sync, but with a read error
4093 				 * which we can now try to correct
4094 				 */
4095 				set_bit(R5_Insync, &dev->flags);
4096 				set_bit(R5_ReadError, &dev->flags);
4097 			}
4098 		} else if (test_bit(In_sync, &rdev->flags))
4099 			set_bit(R5_Insync, &dev->flags);
4100 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4101 			/* in sync if before recovery_offset */
4102 			set_bit(R5_Insync, &dev->flags);
4103 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4104 			 test_bit(R5_Expanded, &dev->flags))
4105 			/* If we've reshaped into here, we assume it is Insync.
4106 			 * We will shortly update recovery_offset to make
4107 			 * it official.
4108 			 */
4109 			set_bit(R5_Insync, &dev->flags);
4110 
4111 		if (test_bit(R5_WriteError, &dev->flags)) {
4112 			/* This flag does not apply to '.replacement'
4113 			 * only to .rdev, so make sure to check that*/
4114 			struct md_rdev *rdev2 = rcu_dereference(
4115 				conf->disks[i].rdev);
4116 			if (rdev2 == rdev)
4117 				clear_bit(R5_Insync, &dev->flags);
4118 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4119 				s->handle_bad_blocks = 1;
4120 				atomic_inc(&rdev2->nr_pending);
4121 			} else
4122 				clear_bit(R5_WriteError, &dev->flags);
4123 		}
4124 		if (test_bit(R5_MadeGood, &dev->flags)) {
4125 			/* This flag does not apply to '.replacement'
4126 			 * only to .rdev, so make sure to check that*/
4127 			struct md_rdev *rdev2 = rcu_dereference(
4128 				conf->disks[i].rdev);
4129 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4130 				s->handle_bad_blocks = 1;
4131 				atomic_inc(&rdev2->nr_pending);
4132 			} else
4133 				clear_bit(R5_MadeGood, &dev->flags);
4134 		}
4135 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4136 			struct md_rdev *rdev2 = rcu_dereference(
4137 				conf->disks[i].replacement);
4138 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4139 				s->handle_bad_blocks = 1;
4140 				atomic_inc(&rdev2->nr_pending);
4141 			} else
4142 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4143 		}
4144 		if (!test_bit(R5_Insync, &dev->flags)) {
4145 			/* The ReadError flag will just be confusing now */
4146 			clear_bit(R5_ReadError, &dev->flags);
4147 			clear_bit(R5_ReWrite, &dev->flags);
4148 		}
4149 		if (test_bit(R5_ReadError, &dev->flags))
4150 			clear_bit(R5_Insync, &dev->flags);
4151 		if (!test_bit(R5_Insync, &dev->flags)) {
4152 			if (s->failed < 2)
4153 				s->failed_num[s->failed] = i;
4154 			s->failed++;
4155 			if (rdev && !test_bit(Faulty, &rdev->flags))
4156 				do_recovery = 1;
4157 		}
4158 	}
4159 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4160 		/* If there is a failed device being replaced,
4161 		 *     we must be recovering.
4162 		 * else if we are after recovery_cp, we must be syncing
4163 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4164 		 * else we can only be replacing
4165 		 * sync and recovery both need to read all devices, and so
4166 		 * use the same flag.
4167 		 */
4168 		if (do_recovery ||
4169 		    sh->sector >= conf->mddev->recovery_cp ||
4170 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4171 			s->syncing = 1;
4172 		else
4173 			s->replacing = 1;
4174 	}
4175 	rcu_read_unlock();
4176 }
4177 
4178 static int clear_batch_ready(struct stripe_head *sh)
4179 {
4180 	/* Return '1' if this is a member of batch, or
4181 	 * '0' if it is a lone stripe or a head which can now be
4182 	 * handled.
4183 	 */
4184 	struct stripe_head *tmp;
4185 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4186 		return (sh->batch_head && sh->batch_head != sh);
4187 	spin_lock(&sh->stripe_lock);
4188 	if (!sh->batch_head) {
4189 		spin_unlock(&sh->stripe_lock);
4190 		return 0;
4191 	}
4192 
4193 	/*
4194 	 * this stripe could be added to a batch list before we check
4195 	 * BATCH_READY, skips it
4196 	 */
4197 	if (sh->batch_head != sh) {
4198 		spin_unlock(&sh->stripe_lock);
4199 		return 1;
4200 	}
4201 	spin_lock(&sh->batch_lock);
4202 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4203 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4204 	spin_unlock(&sh->batch_lock);
4205 	spin_unlock(&sh->stripe_lock);
4206 
4207 	/*
4208 	 * BATCH_READY is cleared, no new stripes can be added.
4209 	 * batch_list can be accessed without lock
4210 	 */
4211 	return 0;
4212 }
4213 
4214 static void break_stripe_batch_list(struct stripe_head *head_sh,
4215 				    unsigned long handle_flags)
4216 {
4217 	struct stripe_head *sh, *next;
4218 	int i;
4219 	int do_wakeup = 0;
4220 
4221 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4222 
4223 		list_del_init(&sh->batch_list);
4224 
4225 		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4226 					  (1 << STRIPE_SYNCING) |
4227 					  (1 << STRIPE_REPLACED) |
4228 					  (1 << STRIPE_PREREAD_ACTIVE) |
4229 					  (1 << STRIPE_DELAYED) |
4230 					  (1 << STRIPE_BIT_DELAY) |
4231 					  (1 << STRIPE_FULL_WRITE) |
4232 					  (1 << STRIPE_BIOFILL_RUN) |
4233 					  (1 << STRIPE_COMPUTE_RUN)  |
4234 					  (1 << STRIPE_OPS_REQ_PENDING) |
4235 					  (1 << STRIPE_DISCARD) |
4236 					  (1 << STRIPE_BATCH_READY) |
4237 					  (1 << STRIPE_BATCH_ERR) |
4238 					  (1 << STRIPE_BITMAP_PENDING)));
4239 		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4240 					      (1 << STRIPE_REPLACED)));
4241 
4242 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4243 					    (1 << STRIPE_DEGRADED)),
4244 			      head_sh->state & (1 << STRIPE_INSYNC));
4245 
4246 		sh->check_state = head_sh->check_state;
4247 		sh->reconstruct_state = head_sh->reconstruct_state;
4248 		for (i = 0; i < sh->disks; i++) {
4249 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4250 				do_wakeup = 1;
4251 			sh->dev[i].flags = head_sh->dev[i].flags &
4252 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4253 		}
4254 		spin_lock_irq(&sh->stripe_lock);
4255 		sh->batch_head = NULL;
4256 		spin_unlock_irq(&sh->stripe_lock);
4257 		if (handle_flags == 0 ||
4258 		    sh->state & handle_flags)
4259 			set_bit(STRIPE_HANDLE, &sh->state);
4260 		release_stripe(sh);
4261 	}
4262 	spin_lock_irq(&head_sh->stripe_lock);
4263 	head_sh->batch_head = NULL;
4264 	spin_unlock_irq(&head_sh->stripe_lock);
4265 	for (i = 0; i < head_sh->disks; i++)
4266 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4267 			do_wakeup = 1;
4268 	if (head_sh->state & handle_flags)
4269 		set_bit(STRIPE_HANDLE, &head_sh->state);
4270 
4271 	if (do_wakeup)
4272 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4273 }
4274 
4275 static void handle_stripe(struct stripe_head *sh)
4276 {
4277 	struct stripe_head_state s;
4278 	struct r5conf *conf = sh->raid_conf;
4279 	int i;
4280 	int prexor;
4281 	int disks = sh->disks;
4282 	struct r5dev *pdev, *qdev;
4283 
4284 	clear_bit(STRIPE_HANDLE, &sh->state);
4285 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4286 		/* already being handled, ensure it gets handled
4287 		 * again when current action finishes */
4288 		set_bit(STRIPE_HANDLE, &sh->state);
4289 		return;
4290 	}
4291 
4292 	if (clear_batch_ready(sh) ) {
4293 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4294 		return;
4295 	}
4296 
4297 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4298 		break_stripe_batch_list(sh, 0);
4299 
4300 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4301 		spin_lock(&sh->stripe_lock);
4302 		/* Cannot process 'sync' concurrently with 'discard' */
4303 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4304 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4305 			set_bit(STRIPE_SYNCING, &sh->state);
4306 			clear_bit(STRIPE_INSYNC, &sh->state);
4307 			clear_bit(STRIPE_REPLACED, &sh->state);
4308 		}
4309 		spin_unlock(&sh->stripe_lock);
4310 	}
4311 	clear_bit(STRIPE_DELAYED, &sh->state);
4312 
4313 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4314 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4315 	       (unsigned long long)sh->sector, sh->state,
4316 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4317 	       sh->check_state, sh->reconstruct_state);
4318 
4319 	analyse_stripe(sh, &s);
4320 
4321 	if (s.handle_bad_blocks) {
4322 		set_bit(STRIPE_HANDLE, &sh->state);
4323 		goto finish;
4324 	}
4325 
4326 	if (unlikely(s.blocked_rdev)) {
4327 		if (s.syncing || s.expanding || s.expanded ||
4328 		    s.replacing || s.to_write || s.written) {
4329 			set_bit(STRIPE_HANDLE, &sh->state);
4330 			goto finish;
4331 		}
4332 		/* There is nothing for the blocked_rdev to block */
4333 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4334 		s.blocked_rdev = NULL;
4335 	}
4336 
4337 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4338 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4339 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4340 	}
4341 
4342 	pr_debug("locked=%d uptodate=%d to_read=%d"
4343 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4344 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4345 	       s.failed_num[0], s.failed_num[1]);
4346 	/* check if the array has lost more than max_degraded devices and,
4347 	 * if so, some requests might need to be failed.
4348 	 */
4349 	if (s.failed > conf->max_degraded) {
4350 		sh->check_state = 0;
4351 		sh->reconstruct_state = 0;
4352 		break_stripe_batch_list(sh, 0);
4353 		if (s.to_read+s.to_write+s.written)
4354 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4355 		if (s.syncing + s.replacing)
4356 			handle_failed_sync(conf, sh, &s);
4357 	}
4358 
4359 	/* Now we check to see if any write operations have recently
4360 	 * completed
4361 	 */
4362 	prexor = 0;
4363 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4364 		prexor = 1;
4365 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4366 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4367 		sh->reconstruct_state = reconstruct_state_idle;
4368 
4369 		/* All the 'written' buffers and the parity block are ready to
4370 		 * be written back to disk
4371 		 */
4372 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4373 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4374 		BUG_ON(sh->qd_idx >= 0 &&
4375 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4376 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4377 		for (i = disks; i--; ) {
4378 			struct r5dev *dev = &sh->dev[i];
4379 			if (test_bit(R5_LOCKED, &dev->flags) &&
4380 				(i == sh->pd_idx || i == sh->qd_idx ||
4381 				 dev->written)) {
4382 				pr_debug("Writing block %d\n", i);
4383 				set_bit(R5_Wantwrite, &dev->flags);
4384 				if (prexor)
4385 					continue;
4386 				if (s.failed > 1)
4387 					continue;
4388 				if (!test_bit(R5_Insync, &dev->flags) ||
4389 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4390 				     s.failed == 0))
4391 					set_bit(STRIPE_INSYNC, &sh->state);
4392 			}
4393 		}
4394 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4395 			s.dec_preread_active = 1;
4396 	}
4397 
4398 	/*
4399 	 * might be able to return some write requests if the parity blocks
4400 	 * are safe, or on a failed drive
4401 	 */
4402 	pdev = &sh->dev[sh->pd_idx];
4403 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4404 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4405 	qdev = &sh->dev[sh->qd_idx];
4406 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4407 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4408 		|| conf->level < 6;
4409 
4410 	if (s.written &&
4411 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4412 			     && !test_bit(R5_LOCKED, &pdev->flags)
4413 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4414 				 test_bit(R5_Discard, &pdev->flags))))) &&
4415 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4416 			     && !test_bit(R5_LOCKED, &qdev->flags)
4417 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4418 				 test_bit(R5_Discard, &qdev->flags))))))
4419 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4420 
4421 	/* Now we might consider reading some blocks, either to check/generate
4422 	 * parity, or to satisfy requests
4423 	 * or to load a block that is being partially written.
4424 	 */
4425 	if (s.to_read || s.non_overwrite
4426 	    || (conf->level == 6 && s.to_write && s.failed)
4427 	    || (s.syncing && (s.uptodate + s.compute < disks))
4428 	    || s.replacing
4429 	    || s.expanding)
4430 		handle_stripe_fill(sh, &s, disks);
4431 
4432 	/* Now to consider new write requests and what else, if anything
4433 	 * should be read.  We do not handle new writes when:
4434 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4435 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4436 	 *    block.
4437 	 */
4438 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4439 		handle_stripe_dirtying(conf, sh, &s, disks);
4440 
4441 	/* maybe we need to check and possibly fix the parity for this stripe
4442 	 * Any reads will already have been scheduled, so we just see if enough
4443 	 * data is available.  The parity check is held off while parity
4444 	 * dependent operations are in flight.
4445 	 */
4446 	if (sh->check_state ||
4447 	    (s.syncing && s.locked == 0 &&
4448 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4449 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4450 		if (conf->level == 6)
4451 			handle_parity_checks6(conf, sh, &s, disks);
4452 		else
4453 			handle_parity_checks5(conf, sh, &s, disks);
4454 	}
4455 
4456 	if ((s.replacing || s.syncing) && s.locked == 0
4457 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4458 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4459 		/* Write out to replacement devices where possible */
4460 		for (i = 0; i < conf->raid_disks; i++)
4461 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4462 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4463 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4464 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4465 				s.locked++;
4466 			}
4467 		if (s.replacing)
4468 			set_bit(STRIPE_INSYNC, &sh->state);
4469 		set_bit(STRIPE_REPLACED, &sh->state);
4470 	}
4471 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4472 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4473 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4474 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4475 		clear_bit(STRIPE_SYNCING, &sh->state);
4476 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4477 			wake_up(&conf->wait_for_overlap);
4478 	}
4479 
4480 	/* If the failed drives are just a ReadError, then we might need
4481 	 * to progress the repair/check process
4482 	 */
4483 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4484 		for (i = 0; i < s.failed; i++) {
4485 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4486 			if (test_bit(R5_ReadError, &dev->flags)
4487 			    && !test_bit(R5_LOCKED, &dev->flags)
4488 			    && test_bit(R5_UPTODATE, &dev->flags)
4489 				) {
4490 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4491 					set_bit(R5_Wantwrite, &dev->flags);
4492 					set_bit(R5_ReWrite, &dev->flags);
4493 					set_bit(R5_LOCKED, &dev->flags);
4494 					s.locked++;
4495 				} else {
4496 					/* let's read it back */
4497 					set_bit(R5_Wantread, &dev->flags);
4498 					set_bit(R5_LOCKED, &dev->flags);
4499 					s.locked++;
4500 				}
4501 			}
4502 		}
4503 
4504 	/* Finish reconstruct operations initiated by the expansion process */
4505 	if (sh->reconstruct_state == reconstruct_state_result) {
4506 		struct stripe_head *sh_src
4507 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
4508 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4509 			/* sh cannot be written until sh_src has been read.
4510 			 * so arrange for sh to be delayed a little
4511 			 */
4512 			set_bit(STRIPE_DELAYED, &sh->state);
4513 			set_bit(STRIPE_HANDLE, &sh->state);
4514 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4515 					      &sh_src->state))
4516 				atomic_inc(&conf->preread_active_stripes);
4517 			release_stripe(sh_src);
4518 			goto finish;
4519 		}
4520 		if (sh_src)
4521 			release_stripe(sh_src);
4522 
4523 		sh->reconstruct_state = reconstruct_state_idle;
4524 		clear_bit(STRIPE_EXPANDING, &sh->state);
4525 		for (i = conf->raid_disks; i--; ) {
4526 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4527 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4528 			s.locked++;
4529 		}
4530 	}
4531 
4532 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4533 	    !sh->reconstruct_state) {
4534 		/* Need to write out all blocks after computing parity */
4535 		sh->disks = conf->raid_disks;
4536 		stripe_set_idx(sh->sector, conf, 0, sh);
4537 		schedule_reconstruction(sh, &s, 1, 1);
4538 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4539 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4540 		atomic_dec(&conf->reshape_stripes);
4541 		wake_up(&conf->wait_for_overlap);
4542 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4543 	}
4544 
4545 	if (s.expanding && s.locked == 0 &&
4546 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4547 		handle_stripe_expansion(conf, sh);
4548 
4549 finish:
4550 	/* wait for this device to become unblocked */
4551 	if (unlikely(s.blocked_rdev)) {
4552 		if (conf->mddev->external)
4553 			md_wait_for_blocked_rdev(s.blocked_rdev,
4554 						 conf->mddev);
4555 		else
4556 			/* Internal metadata will immediately
4557 			 * be written by raid5d, so we don't
4558 			 * need to wait here.
4559 			 */
4560 			rdev_dec_pending(s.blocked_rdev,
4561 					 conf->mddev);
4562 	}
4563 
4564 	if (s.handle_bad_blocks)
4565 		for (i = disks; i--; ) {
4566 			struct md_rdev *rdev;
4567 			struct r5dev *dev = &sh->dev[i];
4568 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4569 				/* We own a safe reference to the rdev */
4570 				rdev = conf->disks[i].rdev;
4571 				if (!rdev_set_badblocks(rdev, sh->sector,
4572 							STRIPE_SECTORS, 0))
4573 					md_error(conf->mddev, rdev);
4574 				rdev_dec_pending(rdev, conf->mddev);
4575 			}
4576 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4577 				rdev = conf->disks[i].rdev;
4578 				rdev_clear_badblocks(rdev, sh->sector,
4579 						     STRIPE_SECTORS, 0);
4580 				rdev_dec_pending(rdev, conf->mddev);
4581 			}
4582 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4583 				rdev = conf->disks[i].replacement;
4584 				if (!rdev)
4585 					/* rdev have been moved down */
4586 					rdev = conf->disks[i].rdev;
4587 				rdev_clear_badblocks(rdev, sh->sector,
4588 						     STRIPE_SECTORS, 0);
4589 				rdev_dec_pending(rdev, conf->mddev);
4590 			}
4591 		}
4592 
4593 	if (s.ops_request)
4594 		raid_run_ops(sh, s.ops_request);
4595 
4596 	ops_run_io(sh, &s);
4597 
4598 	if (s.dec_preread_active) {
4599 		/* We delay this until after ops_run_io so that if make_request
4600 		 * is waiting on a flush, it won't continue until the writes
4601 		 * have actually been submitted.
4602 		 */
4603 		atomic_dec(&conf->preread_active_stripes);
4604 		if (atomic_read(&conf->preread_active_stripes) <
4605 		    IO_THRESHOLD)
4606 			md_wakeup_thread(conf->mddev->thread);
4607 	}
4608 
4609 	if (!bio_list_empty(&s.return_bi)) {
4610 		if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4611 			spin_lock_irq(&conf->device_lock);
4612 			bio_list_merge(&conf->return_bi, &s.return_bi);
4613 			spin_unlock_irq(&conf->device_lock);
4614 			md_wakeup_thread(conf->mddev->thread);
4615 		} else
4616 			return_io(&s.return_bi);
4617 	}
4618 
4619 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4620 }
4621 
4622 static void raid5_activate_delayed(struct r5conf *conf)
4623 {
4624 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4625 		while (!list_empty(&conf->delayed_list)) {
4626 			struct list_head *l = conf->delayed_list.next;
4627 			struct stripe_head *sh;
4628 			sh = list_entry(l, struct stripe_head, lru);
4629 			list_del_init(l);
4630 			clear_bit(STRIPE_DELAYED, &sh->state);
4631 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4632 				atomic_inc(&conf->preread_active_stripes);
4633 			list_add_tail(&sh->lru, &conf->hold_list);
4634 			raid5_wakeup_stripe_thread(sh);
4635 		}
4636 	}
4637 }
4638 
4639 static void activate_bit_delay(struct r5conf *conf,
4640 	struct list_head *temp_inactive_list)
4641 {
4642 	/* device_lock is held */
4643 	struct list_head head;
4644 	list_add(&head, &conf->bitmap_list);
4645 	list_del_init(&conf->bitmap_list);
4646 	while (!list_empty(&head)) {
4647 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4648 		int hash;
4649 		list_del_init(&sh->lru);
4650 		atomic_inc(&sh->count);
4651 		hash = sh->hash_lock_index;
4652 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4653 	}
4654 }
4655 
4656 static int raid5_congested(struct mddev *mddev, int bits)
4657 {
4658 	struct r5conf *conf = mddev->private;
4659 
4660 	/* No difference between reads and writes.  Just check
4661 	 * how busy the stripe_cache is
4662 	 */
4663 
4664 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4665 		return 1;
4666 	if (conf->quiesce)
4667 		return 1;
4668 	if (atomic_read(&conf->empty_inactive_list_nr))
4669 		return 1;
4670 
4671 	return 0;
4672 }
4673 
4674 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4675 {
4676 	struct r5conf *conf = mddev->private;
4677 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4678 	unsigned int chunk_sectors;
4679 	unsigned int bio_sectors = bio_sectors(bio);
4680 
4681 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4682 	return  chunk_sectors >=
4683 		((sector & (chunk_sectors - 1)) + bio_sectors);
4684 }
4685 
4686 /*
4687  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4688  *  later sampled by raid5d.
4689  */
4690 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4691 {
4692 	unsigned long flags;
4693 
4694 	spin_lock_irqsave(&conf->device_lock, flags);
4695 
4696 	bi->bi_next = conf->retry_read_aligned_list;
4697 	conf->retry_read_aligned_list = bi;
4698 
4699 	spin_unlock_irqrestore(&conf->device_lock, flags);
4700 	md_wakeup_thread(conf->mddev->thread);
4701 }
4702 
4703 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4704 {
4705 	struct bio *bi;
4706 
4707 	bi = conf->retry_read_aligned;
4708 	if (bi) {
4709 		conf->retry_read_aligned = NULL;
4710 		return bi;
4711 	}
4712 	bi = conf->retry_read_aligned_list;
4713 	if(bi) {
4714 		conf->retry_read_aligned_list = bi->bi_next;
4715 		bi->bi_next = NULL;
4716 		/*
4717 		 * this sets the active strip count to 1 and the processed
4718 		 * strip count to zero (upper 8 bits)
4719 		 */
4720 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4721 	}
4722 
4723 	return bi;
4724 }
4725 
4726 /*
4727  *  The "raid5_align_endio" should check if the read succeeded and if it
4728  *  did, call bio_endio on the original bio (having bio_put the new bio
4729  *  first).
4730  *  If the read failed..
4731  */
4732 static void raid5_align_endio(struct bio *bi)
4733 {
4734 	struct bio* raid_bi  = bi->bi_private;
4735 	struct mddev *mddev;
4736 	struct r5conf *conf;
4737 	struct md_rdev *rdev;
4738 	int error = bi->bi_error;
4739 
4740 	bio_put(bi);
4741 
4742 	rdev = (void*)raid_bi->bi_next;
4743 	raid_bi->bi_next = NULL;
4744 	mddev = rdev->mddev;
4745 	conf = mddev->private;
4746 
4747 	rdev_dec_pending(rdev, conf->mddev);
4748 
4749 	if (!error) {
4750 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4751 					 raid_bi, 0);
4752 		bio_endio(raid_bi);
4753 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4754 			wake_up(&conf->wait_for_quiescent);
4755 		return;
4756 	}
4757 
4758 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4759 
4760 	add_bio_to_retry(raid_bi, conf);
4761 }
4762 
4763 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4764 {
4765 	struct r5conf *conf = mddev->private;
4766 	int dd_idx;
4767 	struct bio* align_bi;
4768 	struct md_rdev *rdev;
4769 	sector_t end_sector;
4770 
4771 	if (!in_chunk_boundary(mddev, raid_bio)) {
4772 		pr_debug("%s: non aligned\n", __func__);
4773 		return 0;
4774 	}
4775 	/*
4776 	 * use bio_clone_mddev to make a copy of the bio
4777 	 */
4778 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4779 	if (!align_bi)
4780 		return 0;
4781 	/*
4782 	 *   set bi_end_io to a new function, and set bi_private to the
4783 	 *     original bio.
4784 	 */
4785 	align_bi->bi_end_io  = raid5_align_endio;
4786 	align_bi->bi_private = raid_bio;
4787 	/*
4788 	 *	compute position
4789 	 */
4790 	align_bi->bi_iter.bi_sector =
4791 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4792 				     0, &dd_idx, NULL);
4793 
4794 	end_sector = bio_end_sector(align_bi);
4795 	rcu_read_lock();
4796 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4797 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4798 	    rdev->recovery_offset < end_sector) {
4799 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4800 		if (rdev &&
4801 		    (test_bit(Faulty, &rdev->flags) ||
4802 		    !(test_bit(In_sync, &rdev->flags) ||
4803 		      rdev->recovery_offset >= end_sector)))
4804 			rdev = NULL;
4805 	}
4806 	if (rdev) {
4807 		sector_t first_bad;
4808 		int bad_sectors;
4809 
4810 		atomic_inc(&rdev->nr_pending);
4811 		rcu_read_unlock();
4812 		raid_bio->bi_next = (void*)rdev;
4813 		align_bi->bi_bdev =  rdev->bdev;
4814 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4815 
4816 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4817 				bio_sectors(align_bi),
4818 				&first_bad, &bad_sectors)) {
4819 			bio_put(align_bi);
4820 			rdev_dec_pending(rdev, mddev);
4821 			return 0;
4822 		}
4823 
4824 		/* No reshape active, so we can trust rdev->data_offset */
4825 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4826 
4827 		spin_lock_irq(&conf->device_lock);
4828 		wait_event_lock_irq(conf->wait_for_quiescent,
4829 				    conf->quiesce == 0,
4830 				    conf->device_lock);
4831 		atomic_inc(&conf->active_aligned_reads);
4832 		spin_unlock_irq(&conf->device_lock);
4833 
4834 		if (mddev->gendisk)
4835 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4836 					      align_bi, disk_devt(mddev->gendisk),
4837 					      raid_bio->bi_iter.bi_sector);
4838 		generic_make_request(align_bi);
4839 		return 1;
4840 	} else {
4841 		rcu_read_unlock();
4842 		bio_put(align_bi);
4843 		return 0;
4844 	}
4845 }
4846 
4847 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4848 {
4849 	struct bio *split;
4850 
4851 	do {
4852 		sector_t sector = raid_bio->bi_iter.bi_sector;
4853 		unsigned chunk_sects = mddev->chunk_sectors;
4854 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4855 
4856 		if (sectors < bio_sectors(raid_bio)) {
4857 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4858 			bio_chain(split, raid_bio);
4859 		} else
4860 			split = raid_bio;
4861 
4862 		if (!raid5_read_one_chunk(mddev, split)) {
4863 			if (split != raid_bio)
4864 				generic_make_request(raid_bio);
4865 			return split;
4866 		}
4867 	} while (split != raid_bio);
4868 
4869 	return NULL;
4870 }
4871 
4872 /* __get_priority_stripe - get the next stripe to process
4873  *
4874  * Full stripe writes are allowed to pass preread active stripes up until
4875  * the bypass_threshold is exceeded.  In general the bypass_count
4876  * increments when the handle_list is handled before the hold_list; however, it
4877  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4878  * stripe with in flight i/o.  The bypass_count will be reset when the
4879  * head of the hold_list has changed, i.e. the head was promoted to the
4880  * handle_list.
4881  */
4882 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4883 {
4884 	struct stripe_head *sh = NULL, *tmp;
4885 	struct list_head *handle_list = NULL;
4886 	struct r5worker_group *wg = NULL;
4887 
4888 	if (conf->worker_cnt_per_group == 0) {
4889 		handle_list = &conf->handle_list;
4890 	} else if (group != ANY_GROUP) {
4891 		handle_list = &conf->worker_groups[group].handle_list;
4892 		wg = &conf->worker_groups[group];
4893 	} else {
4894 		int i;
4895 		for (i = 0; i < conf->group_cnt; i++) {
4896 			handle_list = &conf->worker_groups[i].handle_list;
4897 			wg = &conf->worker_groups[i];
4898 			if (!list_empty(handle_list))
4899 				break;
4900 		}
4901 	}
4902 
4903 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4904 		  __func__,
4905 		  list_empty(handle_list) ? "empty" : "busy",
4906 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4907 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4908 
4909 	if (!list_empty(handle_list)) {
4910 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4911 
4912 		if (list_empty(&conf->hold_list))
4913 			conf->bypass_count = 0;
4914 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4915 			if (conf->hold_list.next == conf->last_hold)
4916 				conf->bypass_count++;
4917 			else {
4918 				conf->last_hold = conf->hold_list.next;
4919 				conf->bypass_count -= conf->bypass_threshold;
4920 				if (conf->bypass_count < 0)
4921 					conf->bypass_count = 0;
4922 			}
4923 		}
4924 	} else if (!list_empty(&conf->hold_list) &&
4925 		   ((conf->bypass_threshold &&
4926 		     conf->bypass_count > conf->bypass_threshold) ||
4927 		    atomic_read(&conf->pending_full_writes) == 0)) {
4928 
4929 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4930 			if (conf->worker_cnt_per_group == 0 ||
4931 			    group == ANY_GROUP ||
4932 			    !cpu_online(tmp->cpu) ||
4933 			    cpu_to_group(tmp->cpu) == group) {
4934 				sh = tmp;
4935 				break;
4936 			}
4937 		}
4938 
4939 		if (sh) {
4940 			conf->bypass_count -= conf->bypass_threshold;
4941 			if (conf->bypass_count < 0)
4942 				conf->bypass_count = 0;
4943 		}
4944 		wg = NULL;
4945 	}
4946 
4947 	if (!sh)
4948 		return NULL;
4949 
4950 	if (wg) {
4951 		wg->stripes_cnt--;
4952 		sh->group = NULL;
4953 	}
4954 	list_del_init(&sh->lru);
4955 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4956 	return sh;
4957 }
4958 
4959 struct raid5_plug_cb {
4960 	struct blk_plug_cb	cb;
4961 	struct list_head	list;
4962 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4963 };
4964 
4965 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4966 {
4967 	struct raid5_plug_cb *cb = container_of(
4968 		blk_cb, struct raid5_plug_cb, cb);
4969 	struct stripe_head *sh;
4970 	struct mddev *mddev = cb->cb.data;
4971 	struct r5conf *conf = mddev->private;
4972 	int cnt = 0;
4973 	int hash;
4974 
4975 	if (cb->list.next && !list_empty(&cb->list)) {
4976 		spin_lock_irq(&conf->device_lock);
4977 		while (!list_empty(&cb->list)) {
4978 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4979 			list_del_init(&sh->lru);
4980 			/*
4981 			 * avoid race release_stripe_plug() sees
4982 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4983 			 * is still in our list
4984 			 */
4985 			smp_mb__before_atomic();
4986 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4987 			/*
4988 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4989 			 * case, the count is always > 1 here
4990 			 */
4991 			hash = sh->hash_lock_index;
4992 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4993 			cnt++;
4994 		}
4995 		spin_unlock_irq(&conf->device_lock);
4996 	}
4997 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4998 				     NR_STRIPE_HASH_LOCKS);
4999 	if (mddev->queue)
5000 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5001 	kfree(cb);
5002 }
5003 
5004 static void release_stripe_plug(struct mddev *mddev,
5005 				struct stripe_head *sh)
5006 {
5007 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5008 		raid5_unplug, mddev,
5009 		sizeof(struct raid5_plug_cb));
5010 	struct raid5_plug_cb *cb;
5011 
5012 	if (!blk_cb) {
5013 		release_stripe(sh);
5014 		return;
5015 	}
5016 
5017 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5018 
5019 	if (cb->list.next == NULL) {
5020 		int i;
5021 		INIT_LIST_HEAD(&cb->list);
5022 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5023 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5024 	}
5025 
5026 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5027 		list_add_tail(&sh->lru, &cb->list);
5028 	else
5029 		release_stripe(sh);
5030 }
5031 
5032 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5033 {
5034 	struct r5conf *conf = mddev->private;
5035 	sector_t logical_sector, last_sector;
5036 	struct stripe_head *sh;
5037 	int remaining;
5038 	int stripe_sectors;
5039 
5040 	if (mddev->reshape_position != MaxSector)
5041 		/* Skip discard while reshape is happening */
5042 		return;
5043 
5044 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5045 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5046 
5047 	bi->bi_next = NULL;
5048 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5049 
5050 	stripe_sectors = conf->chunk_sectors *
5051 		(conf->raid_disks - conf->max_degraded);
5052 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5053 					       stripe_sectors);
5054 	sector_div(last_sector, stripe_sectors);
5055 
5056 	logical_sector *= conf->chunk_sectors;
5057 	last_sector *= conf->chunk_sectors;
5058 
5059 	for (; logical_sector < last_sector;
5060 	     logical_sector += STRIPE_SECTORS) {
5061 		DEFINE_WAIT(w);
5062 		int d;
5063 	again:
5064 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5065 		prepare_to_wait(&conf->wait_for_overlap, &w,
5066 				TASK_UNINTERRUPTIBLE);
5067 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5068 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5069 			release_stripe(sh);
5070 			schedule();
5071 			goto again;
5072 		}
5073 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5074 		spin_lock_irq(&sh->stripe_lock);
5075 		for (d = 0; d < conf->raid_disks; d++) {
5076 			if (d == sh->pd_idx || d == sh->qd_idx)
5077 				continue;
5078 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5079 				set_bit(R5_Overlap, &sh->dev[d].flags);
5080 				spin_unlock_irq(&sh->stripe_lock);
5081 				release_stripe(sh);
5082 				schedule();
5083 				goto again;
5084 			}
5085 		}
5086 		set_bit(STRIPE_DISCARD, &sh->state);
5087 		finish_wait(&conf->wait_for_overlap, &w);
5088 		sh->overwrite_disks = 0;
5089 		for (d = 0; d < conf->raid_disks; d++) {
5090 			if (d == sh->pd_idx || d == sh->qd_idx)
5091 				continue;
5092 			sh->dev[d].towrite = bi;
5093 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5094 			raid5_inc_bi_active_stripes(bi);
5095 			sh->overwrite_disks++;
5096 		}
5097 		spin_unlock_irq(&sh->stripe_lock);
5098 		if (conf->mddev->bitmap) {
5099 			for (d = 0;
5100 			     d < conf->raid_disks - conf->max_degraded;
5101 			     d++)
5102 				bitmap_startwrite(mddev->bitmap,
5103 						  sh->sector,
5104 						  STRIPE_SECTORS,
5105 						  0);
5106 			sh->bm_seq = conf->seq_flush + 1;
5107 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5108 		}
5109 
5110 		set_bit(STRIPE_HANDLE, &sh->state);
5111 		clear_bit(STRIPE_DELAYED, &sh->state);
5112 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5113 			atomic_inc(&conf->preread_active_stripes);
5114 		release_stripe_plug(mddev, sh);
5115 	}
5116 
5117 	remaining = raid5_dec_bi_active_stripes(bi);
5118 	if (remaining == 0) {
5119 		md_write_end(mddev);
5120 		bio_endio(bi);
5121 	}
5122 }
5123 
5124 static void make_request(struct mddev *mddev, struct bio * bi)
5125 {
5126 	struct r5conf *conf = mddev->private;
5127 	int dd_idx;
5128 	sector_t new_sector;
5129 	sector_t logical_sector, last_sector;
5130 	struct stripe_head *sh;
5131 	const int rw = bio_data_dir(bi);
5132 	int remaining;
5133 	DEFINE_WAIT(w);
5134 	bool do_prepare;
5135 
5136 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5137 		md_flush_request(mddev, bi);
5138 		return;
5139 	}
5140 
5141 	md_write_start(mddev, bi);
5142 
5143 	/*
5144 	 * If array is degraded, better not do chunk aligned read because
5145 	 * later we might have to read it again in order to reconstruct
5146 	 * data on failed drives.
5147 	 */
5148 	if (rw == READ && mddev->degraded == 0 &&
5149 	    mddev->reshape_position == MaxSector) {
5150 		bi = chunk_aligned_read(mddev, bi);
5151 		if (!bi)
5152 			return;
5153 	}
5154 
5155 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5156 		make_discard_request(mddev, bi);
5157 		return;
5158 	}
5159 
5160 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5161 	last_sector = bio_end_sector(bi);
5162 	bi->bi_next = NULL;
5163 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5164 
5165 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5166 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5167 		int previous;
5168 		int seq;
5169 
5170 		do_prepare = false;
5171 	retry:
5172 		seq = read_seqcount_begin(&conf->gen_lock);
5173 		previous = 0;
5174 		if (do_prepare)
5175 			prepare_to_wait(&conf->wait_for_overlap, &w,
5176 				TASK_UNINTERRUPTIBLE);
5177 		if (unlikely(conf->reshape_progress != MaxSector)) {
5178 			/* spinlock is needed as reshape_progress may be
5179 			 * 64bit on a 32bit platform, and so it might be
5180 			 * possible to see a half-updated value
5181 			 * Of course reshape_progress could change after
5182 			 * the lock is dropped, so once we get a reference
5183 			 * to the stripe that we think it is, we will have
5184 			 * to check again.
5185 			 */
5186 			spin_lock_irq(&conf->device_lock);
5187 			if (mddev->reshape_backwards
5188 			    ? logical_sector < conf->reshape_progress
5189 			    : logical_sector >= conf->reshape_progress) {
5190 				previous = 1;
5191 			} else {
5192 				if (mddev->reshape_backwards
5193 				    ? logical_sector < conf->reshape_safe
5194 				    : logical_sector >= conf->reshape_safe) {
5195 					spin_unlock_irq(&conf->device_lock);
5196 					schedule();
5197 					do_prepare = true;
5198 					goto retry;
5199 				}
5200 			}
5201 			spin_unlock_irq(&conf->device_lock);
5202 		}
5203 
5204 		new_sector = raid5_compute_sector(conf, logical_sector,
5205 						  previous,
5206 						  &dd_idx, NULL);
5207 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5208 			(unsigned long long)new_sector,
5209 			(unsigned long long)logical_sector);
5210 
5211 		sh = get_active_stripe(conf, new_sector, previous,
5212 				       (bi->bi_rw&RWA_MASK), 0);
5213 		if (sh) {
5214 			if (unlikely(previous)) {
5215 				/* expansion might have moved on while waiting for a
5216 				 * stripe, so we must do the range check again.
5217 				 * Expansion could still move past after this
5218 				 * test, but as we are holding a reference to
5219 				 * 'sh', we know that if that happens,
5220 				 *  STRIPE_EXPANDING will get set and the expansion
5221 				 * won't proceed until we finish with the stripe.
5222 				 */
5223 				int must_retry = 0;
5224 				spin_lock_irq(&conf->device_lock);
5225 				if (mddev->reshape_backwards
5226 				    ? logical_sector >= conf->reshape_progress
5227 				    : logical_sector < conf->reshape_progress)
5228 					/* mismatch, need to try again */
5229 					must_retry = 1;
5230 				spin_unlock_irq(&conf->device_lock);
5231 				if (must_retry) {
5232 					release_stripe(sh);
5233 					schedule();
5234 					do_prepare = true;
5235 					goto retry;
5236 				}
5237 			}
5238 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5239 				/* Might have got the wrong stripe_head
5240 				 * by accident
5241 				 */
5242 				release_stripe(sh);
5243 				goto retry;
5244 			}
5245 
5246 			if (rw == WRITE &&
5247 			    logical_sector >= mddev->suspend_lo &&
5248 			    logical_sector < mddev->suspend_hi) {
5249 				release_stripe(sh);
5250 				/* As the suspend_* range is controlled by
5251 				 * userspace, we want an interruptible
5252 				 * wait.
5253 				 */
5254 				flush_signals(current);
5255 				prepare_to_wait(&conf->wait_for_overlap,
5256 						&w, TASK_INTERRUPTIBLE);
5257 				if (logical_sector >= mddev->suspend_lo &&
5258 				    logical_sector < mddev->suspend_hi) {
5259 					schedule();
5260 					do_prepare = true;
5261 				}
5262 				goto retry;
5263 			}
5264 
5265 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5266 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5267 				/* Stripe is busy expanding or
5268 				 * add failed due to overlap.  Flush everything
5269 				 * and wait a while
5270 				 */
5271 				md_wakeup_thread(mddev->thread);
5272 				release_stripe(sh);
5273 				schedule();
5274 				do_prepare = true;
5275 				goto retry;
5276 			}
5277 			set_bit(STRIPE_HANDLE, &sh->state);
5278 			clear_bit(STRIPE_DELAYED, &sh->state);
5279 			if ((!sh->batch_head || sh == sh->batch_head) &&
5280 			    (bi->bi_rw & REQ_SYNC) &&
5281 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5282 				atomic_inc(&conf->preread_active_stripes);
5283 			release_stripe_plug(mddev, sh);
5284 		} else {
5285 			/* cannot get stripe for read-ahead, just give-up */
5286 			bi->bi_error = -EIO;
5287 			break;
5288 		}
5289 	}
5290 	finish_wait(&conf->wait_for_overlap, &w);
5291 
5292 	remaining = raid5_dec_bi_active_stripes(bi);
5293 	if (remaining == 0) {
5294 
5295 		if ( rw == WRITE )
5296 			md_write_end(mddev);
5297 
5298 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5299 					 bi, 0);
5300 		bio_endio(bi);
5301 	}
5302 }
5303 
5304 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5305 
5306 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5307 {
5308 	/* reshaping is quite different to recovery/resync so it is
5309 	 * handled quite separately ... here.
5310 	 *
5311 	 * On each call to sync_request, we gather one chunk worth of
5312 	 * destination stripes and flag them as expanding.
5313 	 * Then we find all the source stripes and request reads.
5314 	 * As the reads complete, handle_stripe will copy the data
5315 	 * into the destination stripe and release that stripe.
5316 	 */
5317 	struct r5conf *conf = mddev->private;
5318 	struct stripe_head *sh;
5319 	sector_t first_sector, last_sector;
5320 	int raid_disks = conf->previous_raid_disks;
5321 	int data_disks = raid_disks - conf->max_degraded;
5322 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5323 	int i;
5324 	int dd_idx;
5325 	sector_t writepos, readpos, safepos;
5326 	sector_t stripe_addr;
5327 	int reshape_sectors;
5328 	struct list_head stripes;
5329 	sector_t retn;
5330 
5331 	if (sector_nr == 0) {
5332 		/* If restarting in the middle, skip the initial sectors */
5333 		if (mddev->reshape_backwards &&
5334 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5335 			sector_nr = raid5_size(mddev, 0, 0)
5336 				- conf->reshape_progress;
5337 		} else if (mddev->reshape_backwards &&
5338 			   conf->reshape_progress == MaxSector) {
5339 			/* shouldn't happen, but just in case, finish up.*/
5340 			sector_nr = MaxSector;
5341 		} else if (!mddev->reshape_backwards &&
5342 			   conf->reshape_progress > 0)
5343 			sector_nr = conf->reshape_progress;
5344 		sector_div(sector_nr, new_data_disks);
5345 		if (sector_nr) {
5346 			mddev->curr_resync_completed = sector_nr;
5347 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5348 			*skipped = 1;
5349 			retn = sector_nr;
5350 			goto finish;
5351 		}
5352 	}
5353 
5354 	/* We need to process a full chunk at a time.
5355 	 * If old and new chunk sizes differ, we need to process the
5356 	 * largest of these
5357 	 */
5358 
5359 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5360 
5361 	/* We update the metadata at least every 10 seconds, or when
5362 	 * the data about to be copied would over-write the source of
5363 	 * the data at the front of the range.  i.e. one new_stripe
5364 	 * along from reshape_progress new_maps to after where
5365 	 * reshape_safe old_maps to
5366 	 */
5367 	writepos = conf->reshape_progress;
5368 	sector_div(writepos, new_data_disks);
5369 	readpos = conf->reshape_progress;
5370 	sector_div(readpos, data_disks);
5371 	safepos = conf->reshape_safe;
5372 	sector_div(safepos, data_disks);
5373 	if (mddev->reshape_backwards) {
5374 		BUG_ON(writepos < reshape_sectors);
5375 		writepos -= reshape_sectors;
5376 		readpos += reshape_sectors;
5377 		safepos += reshape_sectors;
5378 	} else {
5379 		writepos += reshape_sectors;
5380 		/* readpos and safepos are worst-case calculations.
5381 		 * A negative number is overly pessimistic, and causes
5382 		 * obvious problems for unsigned storage.  So clip to 0.
5383 		 */
5384 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5385 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5386 	}
5387 
5388 	/* Having calculated the 'writepos' possibly use it
5389 	 * to set 'stripe_addr' which is where we will write to.
5390 	 */
5391 	if (mddev->reshape_backwards) {
5392 		BUG_ON(conf->reshape_progress == 0);
5393 		stripe_addr = writepos;
5394 		BUG_ON((mddev->dev_sectors &
5395 			~((sector_t)reshape_sectors - 1))
5396 		       - reshape_sectors - stripe_addr
5397 		       != sector_nr);
5398 	} else {
5399 		BUG_ON(writepos != sector_nr + reshape_sectors);
5400 		stripe_addr = sector_nr;
5401 	}
5402 
5403 	/* 'writepos' is the most advanced device address we might write.
5404 	 * 'readpos' is the least advanced device address we might read.
5405 	 * 'safepos' is the least address recorded in the metadata as having
5406 	 *     been reshaped.
5407 	 * If there is a min_offset_diff, these are adjusted either by
5408 	 * increasing the safepos/readpos if diff is negative, or
5409 	 * increasing writepos if diff is positive.
5410 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5411 	 * ensure safety in the face of a crash - that must be done by userspace
5412 	 * making a backup of the data.  So in that case there is no particular
5413 	 * rush to update metadata.
5414 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5415 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5416 	 * we can be safe in the event of a crash.
5417 	 * So we insist on updating metadata if safepos is behind writepos and
5418 	 * readpos is beyond writepos.
5419 	 * In any case, update the metadata every 10 seconds.
5420 	 * Maybe that number should be configurable, but I'm not sure it is
5421 	 * worth it.... maybe it could be a multiple of safemode_delay???
5422 	 */
5423 	if (conf->min_offset_diff < 0) {
5424 		safepos += -conf->min_offset_diff;
5425 		readpos += -conf->min_offset_diff;
5426 	} else
5427 		writepos += conf->min_offset_diff;
5428 
5429 	if ((mddev->reshape_backwards
5430 	     ? (safepos > writepos && readpos < writepos)
5431 	     : (safepos < writepos && readpos > writepos)) ||
5432 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5433 		/* Cannot proceed until we've updated the superblock... */
5434 		wait_event(conf->wait_for_overlap,
5435 			   atomic_read(&conf->reshape_stripes)==0
5436 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5437 		if (atomic_read(&conf->reshape_stripes) != 0)
5438 			return 0;
5439 		mddev->reshape_position = conf->reshape_progress;
5440 		mddev->curr_resync_completed = sector_nr;
5441 		conf->reshape_checkpoint = jiffies;
5442 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5443 		md_wakeup_thread(mddev->thread);
5444 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5445 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5446 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5447 			return 0;
5448 		spin_lock_irq(&conf->device_lock);
5449 		conf->reshape_safe = mddev->reshape_position;
5450 		spin_unlock_irq(&conf->device_lock);
5451 		wake_up(&conf->wait_for_overlap);
5452 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5453 	}
5454 
5455 	INIT_LIST_HEAD(&stripes);
5456 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5457 		int j;
5458 		int skipped_disk = 0;
5459 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5460 		set_bit(STRIPE_EXPANDING, &sh->state);
5461 		atomic_inc(&conf->reshape_stripes);
5462 		/* If any of this stripe is beyond the end of the old
5463 		 * array, then we need to zero those blocks
5464 		 */
5465 		for (j=sh->disks; j--;) {
5466 			sector_t s;
5467 			if (j == sh->pd_idx)
5468 				continue;
5469 			if (conf->level == 6 &&
5470 			    j == sh->qd_idx)
5471 				continue;
5472 			s = compute_blocknr(sh, j, 0);
5473 			if (s < raid5_size(mddev, 0, 0)) {
5474 				skipped_disk = 1;
5475 				continue;
5476 			}
5477 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5478 			set_bit(R5_Expanded, &sh->dev[j].flags);
5479 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5480 		}
5481 		if (!skipped_disk) {
5482 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5483 			set_bit(STRIPE_HANDLE, &sh->state);
5484 		}
5485 		list_add(&sh->lru, &stripes);
5486 	}
5487 	spin_lock_irq(&conf->device_lock);
5488 	if (mddev->reshape_backwards)
5489 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5490 	else
5491 		conf->reshape_progress += reshape_sectors * new_data_disks;
5492 	spin_unlock_irq(&conf->device_lock);
5493 	/* Ok, those stripe are ready. We can start scheduling
5494 	 * reads on the source stripes.
5495 	 * The source stripes are determined by mapping the first and last
5496 	 * block on the destination stripes.
5497 	 */
5498 	first_sector =
5499 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5500 				     1, &dd_idx, NULL);
5501 	last_sector =
5502 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5503 					    * new_data_disks - 1),
5504 				     1, &dd_idx, NULL);
5505 	if (last_sector >= mddev->dev_sectors)
5506 		last_sector = mddev->dev_sectors - 1;
5507 	while (first_sector <= last_sector) {
5508 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5509 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5510 		set_bit(STRIPE_HANDLE, &sh->state);
5511 		release_stripe(sh);
5512 		first_sector += STRIPE_SECTORS;
5513 	}
5514 	/* Now that the sources are clearly marked, we can release
5515 	 * the destination stripes
5516 	 */
5517 	while (!list_empty(&stripes)) {
5518 		sh = list_entry(stripes.next, struct stripe_head, lru);
5519 		list_del_init(&sh->lru);
5520 		release_stripe(sh);
5521 	}
5522 	/* If this takes us to the resync_max point where we have to pause,
5523 	 * then we need to write out the superblock.
5524 	 */
5525 	sector_nr += reshape_sectors;
5526 	retn = reshape_sectors;
5527 finish:
5528 	if (mddev->curr_resync_completed > mddev->resync_max ||
5529 	    (sector_nr - mddev->curr_resync_completed) * 2
5530 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5531 		/* Cannot proceed until we've updated the superblock... */
5532 		wait_event(conf->wait_for_overlap,
5533 			   atomic_read(&conf->reshape_stripes) == 0
5534 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5535 		if (atomic_read(&conf->reshape_stripes) != 0)
5536 			goto ret;
5537 		mddev->reshape_position = conf->reshape_progress;
5538 		mddev->curr_resync_completed = sector_nr;
5539 		conf->reshape_checkpoint = jiffies;
5540 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5541 		md_wakeup_thread(mddev->thread);
5542 		wait_event(mddev->sb_wait,
5543 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5544 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5545 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5546 			goto ret;
5547 		spin_lock_irq(&conf->device_lock);
5548 		conf->reshape_safe = mddev->reshape_position;
5549 		spin_unlock_irq(&conf->device_lock);
5550 		wake_up(&conf->wait_for_overlap);
5551 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5552 	}
5553 ret:
5554 	return retn;
5555 }
5556 
5557 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5558 {
5559 	struct r5conf *conf = mddev->private;
5560 	struct stripe_head *sh;
5561 	sector_t max_sector = mddev->dev_sectors;
5562 	sector_t sync_blocks;
5563 	int still_degraded = 0;
5564 	int i;
5565 
5566 	if (sector_nr >= max_sector) {
5567 		/* just being told to finish up .. nothing much to do */
5568 
5569 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5570 			end_reshape(conf);
5571 			return 0;
5572 		}
5573 
5574 		if (mddev->curr_resync < max_sector) /* aborted */
5575 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5576 					&sync_blocks, 1);
5577 		else /* completed sync */
5578 			conf->fullsync = 0;
5579 		bitmap_close_sync(mddev->bitmap);
5580 
5581 		return 0;
5582 	}
5583 
5584 	/* Allow raid5_quiesce to complete */
5585 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5586 
5587 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5588 		return reshape_request(mddev, sector_nr, skipped);
5589 
5590 	/* No need to check resync_max as we never do more than one
5591 	 * stripe, and as resync_max will always be on a chunk boundary,
5592 	 * if the check in md_do_sync didn't fire, there is no chance
5593 	 * of overstepping resync_max here
5594 	 */
5595 
5596 	/* if there is too many failed drives and we are trying
5597 	 * to resync, then assert that we are finished, because there is
5598 	 * nothing we can do.
5599 	 */
5600 	if (mddev->degraded >= conf->max_degraded &&
5601 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5602 		sector_t rv = mddev->dev_sectors - sector_nr;
5603 		*skipped = 1;
5604 		return rv;
5605 	}
5606 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5607 	    !conf->fullsync &&
5608 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5609 	    sync_blocks >= STRIPE_SECTORS) {
5610 		/* we can skip this block, and probably more */
5611 		sync_blocks /= STRIPE_SECTORS;
5612 		*skipped = 1;
5613 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5614 	}
5615 
5616 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5617 
5618 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5619 	if (sh == NULL) {
5620 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5621 		/* make sure we don't swamp the stripe cache if someone else
5622 		 * is trying to get access
5623 		 */
5624 		schedule_timeout_uninterruptible(1);
5625 	}
5626 	/* Need to check if array will still be degraded after recovery/resync
5627 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5628 	 * one drive while leaving another faulty drive in array.
5629 	 */
5630 	rcu_read_lock();
5631 	for (i = 0; i < conf->raid_disks; i++) {
5632 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5633 
5634 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5635 			still_degraded = 1;
5636 	}
5637 	rcu_read_unlock();
5638 
5639 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5640 
5641 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5642 	set_bit(STRIPE_HANDLE, &sh->state);
5643 
5644 	release_stripe(sh);
5645 
5646 	return STRIPE_SECTORS;
5647 }
5648 
5649 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5650 {
5651 	/* We may not be able to submit a whole bio at once as there
5652 	 * may not be enough stripe_heads available.
5653 	 * We cannot pre-allocate enough stripe_heads as we may need
5654 	 * more than exist in the cache (if we allow ever large chunks).
5655 	 * So we do one stripe head at a time and record in
5656 	 * ->bi_hw_segments how many have been done.
5657 	 *
5658 	 * We *know* that this entire raid_bio is in one chunk, so
5659 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5660 	 */
5661 	struct stripe_head *sh;
5662 	int dd_idx;
5663 	sector_t sector, logical_sector, last_sector;
5664 	int scnt = 0;
5665 	int remaining;
5666 	int handled = 0;
5667 
5668 	logical_sector = raid_bio->bi_iter.bi_sector &
5669 		~((sector_t)STRIPE_SECTORS-1);
5670 	sector = raid5_compute_sector(conf, logical_sector,
5671 				      0, &dd_idx, NULL);
5672 	last_sector = bio_end_sector(raid_bio);
5673 
5674 	for (; logical_sector < last_sector;
5675 	     logical_sector += STRIPE_SECTORS,
5676 		     sector += STRIPE_SECTORS,
5677 		     scnt++) {
5678 
5679 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5680 			/* already done this stripe */
5681 			continue;
5682 
5683 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5684 
5685 		if (!sh) {
5686 			/* failed to get a stripe - must wait */
5687 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5688 			conf->retry_read_aligned = raid_bio;
5689 			return handled;
5690 		}
5691 
5692 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5693 			release_stripe(sh);
5694 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5695 			conf->retry_read_aligned = raid_bio;
5696 			return handled;
5697 		}
5698 
5699 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5700 		handle_stripe(sh);
5701 		release_stripe(sh);
5702 		handled++;
5703 	}
5704 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5705 	if (remaining == 0) {
5706 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5707 					 raid_bio, 0);
5708 		bio_endio(raid_bio);
5709 	}
5710 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5711 		wake_up(&conf->wait_for_quiescent);
5712 	return handled;
5713 }
5714 
5715 static int handle_active_stripes(struct r5conf *conf, int group,
5716 				 struct r5worker *worker,
5717 				 struct list_head *temp_inactive_list)
5718 {
5719 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5720 	int i, batch_size = 0, hash;
5721 	bool release_inactive = false;
5722 
5723 	while (batch_size < MAX_STRIPE_BATCH &&
5724 			(sh = __get_priority_stripe(conf, group)) != NULL)
5725 		batch[batch_size++] = sh;
5726 
5727 	if (batch_size == 0) {
5728 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5729 			if (!list_empty(temp_inactive_list + i))
5730 				break;
5731 		if (i == NR_STRIPE_HASH_LOCKS)
5732 			return batch_size;
5733 		release_inactive = true;
5734 	}
5735 	spin_unlock_irq(&conf->device_lock);
5736 
5737 	release_inactive_stripe_list(conf, temp_inactive_list,
5738 				     NR_STRIPE_HASH_LOCKS);
5739 
5740 	if (release_inactive) {
5741 		spin_lock_irq(&conf->device_lock);
5742 		return 0;
5743 	}
5744 
5745 	for (i = 0; i < batch_size; i++)
5746 		handle_stripe(batch[i]);
5747 
5748 	cond_resched();
5749 
5750 	spin_lock_irq(&conf->device_lock);
5751 	for (i = 0; i < batch_size; i++) {
5752 		hash = batch[i]->hash_lock_index;
5753 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5754 	}
5755 	return batch_size;
5756 }
5757 
5758 static void raid5_do_work(struct work_struct *work)
5759 {
5760 	struct r5worker *worker = container_of(work, struct r5worker, work);
5761 	struct r5worker_group *group = worker->group;
5762 	struct r5conf *conf = group->conf;
5763 	int group_id = group - conf->worker_groups;
5764 	int handled;
5765 	struct blk_plug plug;
5766 
5767 	pr_debug("+++ raid5worker active\n");
5768 
5769 	blk_start_plug(&plug);
5770 	handled = 0;
5771 	spin_lock_irq(&conf->device_lock);
5772 	while (1) {
5773 		int batch_size, released;
5774 
5775 		released = release_stripe_list(conf, worker->temp_inactive_list);
5776 
5777 		batch_size = handle_active_stripes(conf, group_id, worker,
5778 						   worker->temp_inactive_list);
5779 		worker->working = false;
5780 		if (!batch_size && !released)
5781 			break;
5782 		handled += batch_size;
5783 	}
5784 	pr_debug("%d stripes handled\n", handled);
5785 
5786 	spin_unlock_irq(&conf->device_lock);
5787 	blk_finish_plug(&plug);
5788 
5789 	pr_debug("--- raid5worker inactive\n");
5790 }
5791 
5792 /*
5793  * This is our raid5 kernel thread.
5794  *
5795  * We scan the hash table for stripes which can be handled now.
5796  * During the scan, completed stripes are saved for us by the interrupt
5797  * handler, so that they will not have to wait for our next wakeup.
5798  */
5799 static void raid5d(struct md_thread *thread)
5800 {
5801 	struct mddev *mddev = thread->mddev;
5802 	struct r5conf *conf = mddev->private;
5803 	int handled;
5804 	struct blk_plug plug;
5805 
5806 	pr_debug("+++ raid5d active\n");
5807 
5808 	md_check_recovery(mddev);
5809 
5810 	if (!bio_list_empty(&conf->return_bi) &&
5811 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5812 		struct bio_list tmp = BIO_EMPTY_LIST;
5813 		spin_lock_irq(&conf->device_lock);
5814 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5815 			bio_list_merge(&tmp, &conf->return_bi);
5816 			bio_list_init(&conf->return_bi);
5817 		}
5818 		spin_unlock_irq(&conf->device_lock);
5819 		return_io(&tmp);
5820 	}
5821 
5822 	blk_start_plug(&plug);
5823 	handled = 0;
5824 	spin_lock_irq(&conf->device_lock);
5825 	while (1) {
5826 		struct bio *bio;
5827 		int batch_size, released;
5828 
5829 		released = release_stripe_list(conf, conf->temp_inactive_list);
5830 		if (released)
5831 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5832 
5833 		if (
5834 		    !list_empty(&conf->bitmap_list)) {
5835 			/* Now is a good time to flush some bitmap updates */
5836 			conf->seq_flush++;
5837 			spin_unlock_irq(&conf->device_lock);
5838 			bitmap_unplug(mddev->bitmap);
5839 			spin_lock_irq(&conf->device_lock);
5840 			conf->seq_write = conf->seq_flush;
5841 			activate_bit_delay(conf, conf->temp_inactive_list);
5842 		}
5843 		raid5_activate_delayed(conf);
5844 
5845 		while ((bio = remove_bio_from_retry(conf))) {
5846 			int ok;
5847 			spin_unlock_irq(&conf->device_lock);
5848 			ok = retry_aligned_read(conf, bio);
5849 			spin_lock_irq(&conf->device_lock);
5850 			if (!ok)
5851 				break;
5852 			handled++;
5853 		}
5854 
5855 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5856 						   conf->temp_inactive_list);
5857 		if (!batch_size && !released)
5858 			break;
5859 		handled += batch_size;
5860 
5861 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5862 			spin_unlock_irq(&conf->device_lock);
5863 			md_check_recovery(mddev);
5864 			spin_lock_irq(&conf->device_lock);
5865 		}
5866 	}
5867 	pr_debug("%d stripes handled\n", handled);
5868 
5869 	spin_unlock_irq(&conf->device_lock);
5870 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5871 	    mutex_trylock(&conf->cache_size_mutex)) {
5872 		grow_one_stripe(conf, __GFP_NOWARN);
5873 		/* Set flag even if allocation failed.  This helps
5874 		 * slow down allocation requests when mem is short
5875 		 */
5876 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5877 		mutex_unlock(&conf->cache_size_mutex);
5878 	}
5879 
5880 	async_tx_issue_pending_all();
5881 	blk_finish_plug(&plug);
5882 
5883 	pr_debug("--- raid5d inactive\n");
5884 }
5885 
5886 static ssize_t
5887 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5888 {
5889 	struct r5conf *conf;
5890 	int ret = 0;
5891 	spin_lock(&mddev->lock);
5892 	conf = mddev->private;
5893 	if (conf)
5894 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5895 	spin_unlock(&mddev->lock);
5896 	return ret;
5897 }
5898 
5899 int
5900 raid5_set_cache_size(struct mddev *mddev, int size)
5901 {
5902 	struct r5conf *conf = mddev->private;
5903 	int err;
5904 
5905 	if (size <= 16 || size > 32768)
5906 		return -EINVAL;
5907 
5908 	conf->min_nr_stripes = size;
5909 	mutex_lock(&conf->cache_size_mutex);
5910 	while (size < conf->max_nr_stripes &&
5911 	       drop_one_stripe(conf))
5912 		;
5913 	mutex_unlock(&conf->cache_size_mutex);
5914 
5915 
5916 	err = md_allow_write(mddev);
5917 	if (err)
5918 		return err;
5919 
5920 	mutex_lock(&conf->cache_size_mutex);
5921 	while (size > conf->max_nr_stripes)
5922 		if (!grow_one_stripe(conf, GFP_KERNEL))
5923 			break;
5924 	mutex_unlock(&conf->cache_size_mutex);
5925 
5926 	return 0;
5927 }
5928 EXPORT_SYMBOL(raid5_set_cache_size);
5929 
5930 static ssize_t
5931 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5932 {
5933 	struct r5conf *conf;
5934 	unsigned long new;
5935 	int err;
5936 
5937 	if (len >= PAGE_SIZE)
5938 		return -EINVAL;
5939 	if (kstrtoul(page, 10, &new))
5940 		return -EINVAL;
5941 	err = mddev_lock(mddev);
5942 	if (err)
5943 		return err;
5944 	conf = mddev->private;
5945 	if (!conf)
5946 		err = -ENODEV;
5947 	else
5948 		err = raid5_set_cache_size(mddev, new);
5949 	mddev_unlock(mddev);
5950 
5951 	return err ?: len;
5952 }
5953 
5954 static struct md_sysfs_entry
5955 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5956 				raid5_show_stripe_cache_size,
5957 				raid5_store_stripe_cache_size);
5958 
5959 static ssize_t
5960 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5961 {
5962 	struct r5conf *conf = mddev->private;
5963 	if (conf)
5964 		return sprintf(page, "%d\n", conf->rmw_level);
5965 	else
5966 		return 0;
5967 }
5968 
5969 static ssize_t
5970 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5971 {
5972 	struct r5conf *conf = mddev->private;
5973 	unsigned long new;
5974 
5975 	if (!conf)
5976 		return -ENODEV;
5977 
5978 	if (len >= PAGE_SIZE)
5979 		return -EINVAL;
5980 
5981 	if (kstrtoul(page, 10, &new))
5982 		return -EINVAL;
5983 
5984 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5985 		return -EINVAL;
5986 
5987 	if (new != PARITY_DISABLE_RMW &&
5988 	    new != PARITY_ENABLE_RMW &&
5989 	    new != PARITY_PREFER_RMW)
5990 		return -EINVAL;
5991 
5992 	conf->rmw_level = new;
5993 	return len;
5994 }
5995 
5996 static struct md_sysfs_entry
5997 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5998 			 raid5_show_rmw_level,
5999 			 raid5_store_rmw_level);
6000 
6001 
6002 static ssize_t
6003 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6004 {
6005 	struct r5conf *conf;
6006 	int ret = 0;
6007 	spin_lock(&mddev->lock);
6008 	conf = mddev->private;
6009 	if (conf)
6010 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6011 	spin_unlock(&mddev->lock);
6012 	return ret;
6013 }
6014 
6015 static ssize_t
6016 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6017 {
6018 	struct r5conf *conf;
6019 	unsigned long new;
6020 	int err;
6021 
6022 	if (len >= PAGE_SIZE)
6023 		return -EINVAL;
6024 	if (kstrtoul(page, 10, &new))
6025 		return -EINVAL;
6026 
6027 	err = mddev_lock(mddev);
6028 	if (err)
6029 		return err;
6030 	conf = mddev->private;
6031 	if (!conf)
6032 		err = -ENODEV;
6033 	else if (new > conf->min_nr_stripes)
6034 		err = -EINVAL;
6035 	else
6036 		conf->bypass_threshold = new;
6037 	mddev_unlock(mddev);
6038 	return err ?: len;
6039 }
6040 
6041 static struct md_sysfs_entry
6042 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6043 					S_IRUGO | S_IWUSR,
6044 					raid5_show_preread_threshold,
6045 					raid5_store_preread_threshold);
6046 
6047 static ssize_t
6048 raid5_show_skip_copy(struct mddev *mddev, char *page)
6049 {
6050 	struct r5conf *conf;
6051 	int ret = 0;
6052 	spin_lock(&mddev->lock);
6053 	conf = mddev->private;
6054 	if (conf)
6055 		ret = sprintf(page, "%d\n", conf->skip_copy);
6056 	spin_unlock(&mddev->lock);
6057 	return ret;
6058 }
6059 
6060 static ssize_t
6061 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6062 {
6063 	struct r5conf *conf;
6064 	unsigned long new;
6065 	int err;
6066 
6067 	if (len >= PAGE_SIZE)
6068 		return -EINVAL;
6069 	if (kstrtoul(page, 10, &new))
6070 		return -EINVAL;
6071 	new = !!new;
6072 
6073 	err = mddev_lock(mddev);
6074 	if (err)
6075 		return err;
6076 	conf = mddev->private;
6077 	if (!conf)
6078 		err = -ENODEV;
6079 	else if (new != conf->skip_copy) {
6080 		mddev_suspend(mddev);
6081 		conf->skip_copy = new;
6082 		if (new)
6083 			mddev->queue->backing_dev_info.capabilities |=
6084 				BDI_CAP_STABLE_WRITES;
6085 		else
6086 			mddev->queue->backing_dev_info.capabilities &=
6087 				~BDI_CAP_STABLE_WRITES;
6088 		mddev_resume(mddev);
6089 	}
6090 	mddev_unlock(mddev);
6091 	return err ?: len;
6092 }
6093 
6094 static struct md_sysfs_entry
6095 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6096 					raid5_show_skip_copy,
6097 					raid5_store_skip_copy);
6098 
6099 static ssize_t
6100 stripe_cache_active_show(struct mddev *mddev, char *page)
6101 {
6102 	struct r5conf *conf = mddev->private;
6103 	if (conf)
6104 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6105 	else
6106 		return 0;
6107 }
6108 
6109 static struct md_sysfs_entry
6110 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6111 
6112 static ssize_t
6113 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6114 {
6115 	struct r5conf *conf;
6116 	int ret = 0;
6117 	spin_lock(&mddev->lock);
6118 	conf = mddev->private;
6119 	if (conf)
6120 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6121 	spin_unlock(&mddev->lock);
6122 	return ret;
6123 }
6124 
6125 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6126 			       int *group_cnt,
6127 			       int *worker_cnt_per_group,
6128 			       struct r5worker_group **worker_groups);
6129 static ssize_t
6130 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6131 {
6132 	struct r5conf *conf;
6133 	unsigned long new;
6134 	int err;
6135 	struct r5worker_group *new_groups, *old_groups;
6136 	int group_cnt, worker_cnt_per_group;
6137 
6138 	if (len >= PAGE_SIZE)
6139 		return -EINVAL;
6140 	if (kstrtoul(page, 10, &new))
6141 		return -EINVAL;
6142 
6143 	err = mddev_lock(mddev);
6144 	if (err)
6145 		return err;
6146 	conf = mddev->private;
6147 	if (!conf)
6148 		err = -ENODEV;
6149 	else if (new != conf->worker_cnt_per_group) {
6150 		mddev_suspend(mddev);
6151 
6152 		old_groups = conf->worker_groups;
6153 		if (old_groups)
6154 			flush_workqueue(raid5_wq);
6155 
6156 		err = alloc_thread_groups(conf, new,
6157 					  &group_cnt, &worker_cnt_per_group,
6158 					  &new_groups);
6159 		if (!err) {
6160 			spin_lock_irq(&conf->device_lock);
6161 			conf->group_cnt = group_cnt;
6162 			conf->worker_cnt_per_group = worker_cnt_per_group;
6163 			conf->worker_groups = new_groups;
6164 			spin_unlock_irq(&conf->device_lock);
6165 
6166 			if (old_groups)
6167 				kfree(old_groups[0].workers);
6168 			kfree(old_groups);
6169 		}
6170 		mddev_resume(mddev);
6171 	}
6172 	mddev_unlock(mddev);
6173 
6174 	return err ?: len;
6175 }
6176 
6177 static struct md_sysfs_entry
6178 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6179 				raid5_show_group_thread_cnt,
6180 				raid5_store_group_thread_cnt);
6181 
6182 static struct attribute *raid5_attrs[] =  {
6183 	&raid5_stripecache_size.attr,
6184 	&raid5_stripecache_active.attr,
6185 	&raid5_preread_bypass_threshold.attr,
6186 	&raid5_group_thread_cnt.attr,
6187 	&raid5_skip_copy.attr,
6188 	&raid5_rmw_level.attr,
6189 	NULL,
6190 };
6191 static struct attribute_group raid5_attrs_group = {
6192 	.name = NULL,
6193 	.attrs = raid5_attrs,
6194 };
6195 
6196 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6197 			       int *group_cnt,
6198 			       int *worker_cnt_per_group,
6199 			       struct r5worker_group **worker_groups)
6200 {
6201 	int i, j, k;
6202 	ssize_t size;
6203 	struct r5worker *workers;
6204 
6205 	*worker_cnt_per_group = cnt;
6206 	if (cnt == 0) {
6207 		*group_cnt = 0;
6208 		*worker_groups = NULL;
6209 		return 0;
6210 	}
6211 	*group_cnt = num_possible_nodes();
6212 	size = sizeof(struct r5worker) * cnt;
6213 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6214 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6215 				*group_cnt, GFP_NOIO);
6216 	if (!*worker_groups || !workers) {
6217 		kfree(workers);
6218 		kfree(*worker_groups);
6219 		return -ENOMEM;
6220 	}
6221 
6222 	for (i = 0; i < *group_cnt; i++) {
6223 		struct r5worker_group *group;
6224 
6225 		group = &(*worker_groups)[i];
6226 		INIT_LIST_HEAD(&group->handle_list);
6227 		group->conf = conf;
6228 		group->workers = workers + i * cnt;
6229 
6230 		for (j = 0; j < cnt; j++) {
6231 			struct r5worker *worker = group->workers + j;
6232 			worker->group = group;
6233 			INIT_WORK(&worker->work, raid5_do_work);
6234 
6235 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6236 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6237 		}
6238 	}
6239 
6240 	return 0;
6241 }
6242 
6243 static void free_thread_groups(struct r5conf *conf)
6244 {
6245 	if (conf->worker_groups)
6246 		kfree(conf->worker_groups[0].workers);
6247 	kfree(conf->worker_groups);
6248 	conf->worker_groups = NULL;
6249 }
6250 
6251 static sector_t
6252 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6253 {
6254 	struct r5conf *conf = mddev->private;
6255 
6256 	if (!sectors)
6257 		sectors = mddev->dev_sectors;
6258 	if (!raid_disks)
6259 		/* size is defined by the smallest of previous and new size */
6260 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6261 
6262 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6263 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6264 	return sectors * (raid_disks - conf->max_degraded);
6265 }
6266 
6267 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6268 {
6269 	safe_put_page(percpu->spare_page);
6270 	if (percpu->scribble)
6271 		flex_array_free(percpu->scribble);
6272 	percpu->spare_page = NULL;
6273 	percpu->scribble = NULL;
6274 }
6275 
6276 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6277 {
6278 	if (conf->level == 6 && !percpu->spare_page)
6279 		percpu->spare_page = alloc_page(GFP_KERNEL);
6280 	if (!percpu->scribble)
6281 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6282 						      conf->previous_raid_disks),
6283 						  max(conf->chunk_sectors,
6284 						      conf->prev_chunk_sectors)
6285 						   / STRIPE_SECTORS,
6286 						  GFP_KERNEL);
6287 
6288 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6289 		free_scratch_buffer(conf, percpu);
6290 		return -ENOMEM;
6291 	}
6292 
6293 	return 0;
6294 }
6295 
6296 static void raid5_free_percpu(struct r5conf *conf)
6297 {
6298 	unsigned long cpu;
6299 
6300 	if (!conf->percpu)
6301 		return;
6302 
6303 #ifdef CONFIG_HOTPLUG_CPU
6304 	unregister_cpu_notifier(&conf->cpu_notify);
6305 #endif
6306 
6307 	get_online_cpus();
6308 	for_each_possible_cpu(cpu)
6309 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6310 	put_online_cpus();
6311 
6312 	free_percpu(conf->percpu);
6313 }
6314 
6315 static void free_conf(struct r5conf *conf)
6316 {
6317 	if (conf->shrinker.seeks)
6318 		unregister_shrinker(&conf->shrinker);
6319 	free_thread_groups(conf);
6320 	shrink_stripes(conf);
6321 	raid5_free_percpu(conf);
6322 	kfree(conf->disks);
6323 	kfree(conf->stripe_hashtbl);
6324 	kfree(conf);
6325 }
6326 
6327 #ifdef CONFIG_HOTPLUG_CPU
6328 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6329 			      void *hcpu)
6330 {
6331 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6332 	long cpu = (long)hcpu;
6333 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6334 
6335 	switch (action) {
6336 	case CPU_UP_PREPARE:
6337 	case CPU_UP_PREPARE_FROZEN:
6338 		if (alloc_scratch_buffer(conf, percpu)) {
6339 			pr_err("%s: failed memory allocation for cpu%ld\n",
6340 			       __func__, cpu);
6341 			return notifier_from_errno(-ENOMEM);
6342 		}
6343 		break;
6344 	case CPU_DEAD:
6345 	case CPU_DEAD_FROZEN:
6346 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6347 		break;
6348 	default:
6349 		break;
6350 	}
6351 	return NOTIFY_OK;
6352 }
6353 #endif
6354 
6355 static int raid5_alloc_percpu(struct r5conf *conf)
6356 {
6357 	unsigned long cpu;
6358 	int err = 0;
6359 
6360 	conf->percpu = alloc_percpu(struct raid5_percpu);
6361 	if (!conf->percpu)
6362 		return -ENOMEM;
6363 
6364 #ifdef CONFIG_HOTPLUG_CPU
6365 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6366 	conf->cpu_notify.priority = 0;
6367 	err = register_cpu_notifier(&conf->cpu_notify);
6368 	if (err)
6369 		return err;
6370 #endif
6371 
6372 	get_online_cpus();
6373 	for_each_present_cpu(cpu) {
6374 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6375 		if (err) {
6376 			pr_err("%s: failed memory allocation for cpu%ld\n",
6377 			       __func__, cpu);
6378 			break;
6379 		}
6380 	}
6381 	put_online_cpus();
6382 
6383 	return err;
6384 }
6385 
6386 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6387 				      struct shrink_control *sc)
6388 {
6389 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6390 	unsigned long ret = SHRINK_STOP;
6391 
6392 	if (mutex_trylock(&conf->cache_size_mutex)) {
6393 		ret= 0;
6394 		while (ret < sc->nr_to_scan &&
6395 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6396 			if (drop_one_stripe(conf) == 0) {
6397 				ret = SHRINK_STOP;
6398 				break;
6399 			}
6400 			ret++;
6401 		}
6402 		mutex_unlock(&conf->cache_size_mutex);
6403 	}
6404 	return ret;
6405 }
6406 
6407 static unsigned long raid5_cache_count(struct shrinker *shrink,
6408 				       struct shrink_control *sc)
6409 {
6410 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6411 
6412 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6413 		/* unlikely, but not impossible */
6414 		return 0;
6415 	return conf->max_nr_stripes - conf->min_nr_stripes;
6416 }
6417 
6418 static struct r5conf *setup_conf(struct mddev *mddev)
6419 {
6420 	struct r5conf *conf;
6421 	int raid_disk, memory, max_disks;
6422 	struct md_rdev *rdev;
6423 	struct disk_info *disk;
6424 	char pers_name[6];
6425 	int i;
6426 	int group_cnt, worker_cnt_per_group;
6427 	struct r5worker_group *new_group;
6428 
6429 	if (mddev->new_level != 5
6430 	    && mddev->new_level != 4
6431 	    && mddev->new_level != 6) {
6432 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6433 		       mdname(mddev), mddev->new_level);
6434 		return ERR_PTR(-EIO);
6435 	}
6436 	if ((mddev->new_level == 5
6437 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6438 	    (mddev->new_level == 6
6439 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6440 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6441 		       mdname(mddev), mddev->new_layout);
6442 		return ERR_PTR(-EIO);
6443 	}
6444 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6445 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6446 		       mdname(mddev), mddev->raid_disks);
6447 		return ERR_PTR(-EINVAL);
6448 	}
6449 
6450 	if (!mddev->new_chunk_sectors ||
6451 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6452 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6453 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6454 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6455 		return ERR_PTR(-EINVAL);
6456 	}
6457 
6458 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6459 	if (conf == NULL)
6460 		goto abort;
6461 	/* Don't enable multi-threading by default*/
6462 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6463 				 &new_group)) {
6464 		conf->group_cnt = group_cnt;
6465 		conf->worker_cnt_per_group = worker_cnt_per_group;
6466 		conf->worker_groups = new_group;
6467 	} else
6468 		goto abort;
6469 	spin_lock_init(&conf->device_lock);
6470 	seqcount_init(&conf->gen_lock);
6471 	mutex_init(&conf->cache_size_mutex);
6472 	init_waitqueue_head(&conf->wait_for_quiescent);
6473 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6474 		init_waitqueue_head(&conf->wait_for_stripe[i]);
6475 	}
6476 	init_waitqueue_head(&conf->wait_for_overlap);
6477 	INIT_LIST_HEAD(&conf->handle_list);
6478 	INIT_LIST_HEAD(&conf->hold_list);
6479 	INIT_LIST_HEAD(&conf->delayed_list);
6480 	INIT_LIST_HEAD(&conf->bitmap_list);
6481 	bio_list_init(&conf->return_bi);
6482 	init_llist_head(&conf->released_stripes);
6483 	atomic_set(&conf->active_stripes, 0);
6484 	atomic_set(&conf->preread_active_stripes, 0);
6485 	atomic_set(&conf->active_aligned_reads, 0);
6486 	conf->bypass_threshold = BYPASS_THRESHOLD;
6487 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6488 
6489 	conf->raid_disks = mddev->raid_disks;
6490 	if (mddev->reshape_position == MaxSector)
6491 		conf->previous_raid_disks = mddev->raid_disks;
6492 	else
6493 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6494 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6495 
6496 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6497 			      GFP_KERNEL);
6498 	if (!conf->disks)
6499 		goto abort;
6500 
6501 	conf->mddev = mddev;
6502 
6503 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6504 		goto abort;
6505 
6506 	/* We init hash_locks[0] separately to that it can be used
6507 	 * as the reference lock in the spin_lock_nest_lock() call
6508 	 * in lock_all_device_hash_locks_irq in order to convince
6509 	 * lockdep that we know what we are doing.
6510 	 */
6511 	spin_lock_init(conf->hash_locks);
6512 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6513 		spin_lock_init(conf->hash_locks + i);
6514 
6515 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6516 		INIT_LIST_HEAD(conf->inactive_list + i);
6517 
6518 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6519 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6520 
6521 	conf->level = mddev->new_level;
6522 	conf->chunk_sectors = mddev->new_chunk_sectors;
6523 	if (raid5_alloc_percpu(conf) != 0)
6524 		goto abort;
6525 
6526 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6527 
6528 	rdev_for_each(rdev, mddev) {
6529 		raid_disk = rdev->raid_disk;
6530 		if (raid_disk >= max_disks
6531 		    || raid_disk < 0)
6532 			continue;
6533 		disk = conf->disks + raid_disk;
6534 
6535 		if (test_bit(Replacement, &rdev->flags)) {
6536 			if (disk->replacement)
6537 				goto abort;
6538 			disk->replacement = rdev;
6539 		} else {
6540 			if (disk->rdev)
6541 				goto abort;
6542 			disk->rdev = rdev;
6543 		}
6544 
6545 		if (test_bit(In_sync, &rdev->flags)) {
6546 			char b[BDEVNAME_SIZE];
6547 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6548 			       " disk %d\n",
6549 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6550 		} else if (rdev->saved_raid_disk != raid_disk)
6551 			/* Cannot rely on bitmap to complete recovery */
6552 			conf->fullsync = 1;
6553 	}
6554 
6555 	conf->level = mddev->new_level;
6556 	if (conf->level == 6) {
6557 		conf->max_degraded = 2;
6558 		if (raid6_call.xor_syndrome)
6559 			conf->rmw_level = PARITY_ENABLE_RMW;
6560 		else
6561 			conf->rmw_level = PARITY_DISABLE_RMW;
6562 	} else {
6563 		conf->max_degraded = 1;
6564 		conf->rmw_level = PARITY_ENABLE_RMW;
6565 	}
6566 	conf->algorithm = mddev->new_layout;
6567 	conf->reshape_progress = mddev->reshape_position;
6568 	if (conf->reshape_progress != MaxSector) {
6569 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6570 		conf->prev_algo = mddev->layout;
6571 	} else {
6572 		conf->prev_chunk_sectors = conf->chunk_sectors;
6573 		conf->prev_algo = conf->algorithm;
6574 	}
6575 
6576 	conf->min_nr_stripes = NR_STRIPES;
6577 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6578 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6579 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6580 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6581 		printk(KERN_ERR
6582 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6583 		       mdname(mddev), memory);
6584 		goto abort;
6585 	} else
6586 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6587 		       mdname(mddev), memory);
6588 	/*
6589 	 * Losing a stripe head costs more than the time to refill it,
6590 	 * it reduces the queue depth and so can hurt throughput.
6591 	 * So set it rather large, scaled by number of devices.
6592 	 */
6593 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6594 	conf->shrinker.scan_objects = raid5_cache_scan;
6595 	conf->shrinker.count_objects = raid5_cache_count;
6596 	conf->shrinker.batch = 128;
6597 	conf->shrinker.flags = 0;
6598 	register_shrinker(&conf->shrinker);
6599 
6600 	sprintf(pers_name, "raid%d", mddev->new_level);
6601 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6602 	if (!conf->thread) {
6603 		printk(KERN_ERR
6604 		       "md/raid:%s: couldn't allocate thread.\n",
6605 		       mdname(mddev));
6606 		goto abort;
6607 	}
6608 
6609 	return conf;
6610 
6611  abort:
6612 	if (conf) {
6613 		free_conf(conf);
6614 		return ERR_PTR(-EIO);
6615 	} else
6616 		return ERR_PTR(-ENOMEM);
6617 }
6618 
6619 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6620 {
6621 	switch (algo) {
6622 	case ALGORITHM_PARITY_0:
6623 		if (raid_disk < max_degraded)
6624 			return 1;
6625 		break;
6626 	case ALGORITHM_PARITY_N:
6627 		if (raid_disk >= raid_disks - max_degraded)
6628 			return 1;
6629 		break;
6630 	case ALGORITHM_PARITY_0_6:
6631 		if (raid_disk == 0 ||
6632 		    raid_disk == raid_disks - 1)
6633 			return 1;
6634 		break;
6635 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6636 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6637 	case ALGORITHM_LEFT_SYMMETRIC_6:
6638 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6639 		if (raid_disk == raid_disks - 1)
6640 			return 1;
6641 	}
6642 	return 0;
6643 }
6644 
6645 static int run(struct mddev *mddev)
6646 {
6647 	struct r5conf *conf;
6648 	int working_disks = 0;
6649 	int dirty_parity_disks = 0;
6650 	struct md_rdev *rdev;
6651 	sector_t reshape_offset = 0;
6652 	int i;
6653 	long long min_offset_diff = 0;
6654 	int first = 1;
6655 
6656 	if (mddev->recovery_cp != MaxSector)
6657 		printk(KERN_NOTICE "md/raid:%s: not clean"
6658 		       " -- starting background reconstruction\n",
6659 		       mdname(mddev));
6660 
6661 	rdev_for_each(rdev, mddev) {
6662 		long long diff;
6663 		if (rdev->raid_disk < 0)
6664 			continue;
6665 		diff = (rdev->new_data_offset - rdev->data_offset);
6666 		if (first) {
6667 			min_offset_diff = diff;
6668 			first = 0;
6669 		} else if (mddev->reshape_backwards &&
6670 			 diff < min_offset_diff)
6671 			min_offset_diff = diff;
6672 		else if (!mddev->reshape_backwards &&
6673 			 diff > min_offset_diff)
6674 			min_offset_diff = diff;
6675 	}
6676 
6677 	if (mddev->reshape_position != MaxSector) {
6678 		/* Check that we can continue the reshape.
6679 		 * Difficulties arise if the stripe we would write to
6680 		 * next is at or after the stripe we would read from next.
6681 		 * For a reshape that changes the number of devices, this
6682 		 * is only possible for a very short time, and mdadm makes
6683 		 * sure that time appears to have past before assembling
6684 		 * the array.  So we fail if that time hasn't passed.
6685 		 * For a reshape that keeps the number of devices the same
6686 		 * mdadm must be monitoring the reshape can keeping the
6687 		 * critical areas read-only and backed up.  It will start
6688 		 * the array in read-only mode, so we check for that.
6689 		 */
6690 		sector_t here_new, here_old;
6691 		int old_disks;
6692 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6693 		int chunk_sectors;
6694 		int new_data_disks;
6695 
6696 		if (mddev->new_level != mddev->level) {
6697 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6698 			       "required - aborting.\n",
6699 			       mdname(mddev));
6700 			return -EINVAL;
6701 		}
6702 		old_disks = mddev->raid_disks - mddev->delta_disks;
6703 		/* reshape_position must be on a new-stripe boundary, and one
6704 		 * further up in new geometry must map after here in old
6705 		 * geometry.
6706 		 * If the chunk sizes are different, then as we perform reshape
6707 		 * in units of the largest of the two, reshape_position needs
6708 		 * be a multiple of the largest chunk size times new data disks.
6709 		 */
6710 		here_new = mddev->reshape_position;
6711 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6712 		new_data_disks = mddev->raid_disks - max_degraded;
6713 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6714 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6715 			       "on a stripe boundary\n", mdname(mddev));
6716 			return -EINVAL;
6717 		}
6718 		reshape_offset = here_new * chunk_sectors;
6719 		/* here_new is the stripe we will write to */
6720 		here_old = mddev->reshape_position;
6721 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6722 		/* here_old is the first stripe that we might need to read
6723 		 * from */
6724 		if (mddev->delta_disks == 0) {
6725 			/* We cannot be sure it is safe to start an in-place
6726 			 * reshape.  It is only safe if user-space is monitoring
6727 			 * and taking constant backups.
6728 			 * mdadm always starts a situation like this in
6729 			 * readonly mode so it can take control before
6730 			 * allowing any writes.  So just check for that.
6731 			 */
6732 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6733 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6734 				/* not really in-place - so OK */;
6735 			else if (mddev->ro == 0) {
6736 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6737 				       "must be started in read-only mode "
6738 				       "- aborting\n",
6739 				       mdname(mddev));
6740 				return -EINVAL;
6741 			}
6742 		} else if (mddev->reshape_backwards
6743 		    ? (here_new * chunk_sectors + min_offset_diff <=
6744 		       here_old * chunk_sectors)
6745 		    : (here_new * chunk_sectors >=
6746 		       here_old * chunk_sectors + (-min_offset_diff))) {
6747 			/* Reading from the same stripe as writing to - bad */
6748 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6749 			       "auto-recovery - aborting.\n",
6750 			       mdname(mddev));
6751 			return -EINVAL;
6752 		}
6753 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6754 		       mdname(mddev));
6755 		/* OK, we should be able to continue; */
6756 	} else {
6757 		BUG_ON(mddev->level != mddev->new_level);
6758 		BUG_ON(mddev->layout != mddev->new_layout);
6759 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6760 		BUG_ON(mddev->delta_disks != 0);
6761 	}
6762 
6763 	if (mddev->private == NULL)
6764 		conf = setup_conf(mddev);
6765 	else
6766 		conf = mddev->private;
6767 
6768 	if (IS_ERR(conf))
6769 		return PTR_ERR(conf);
6770 
6771 	conf->min_offset_diff = min_offset_diff;
6772 	mddev->thread = conf->thread;
6773 	conf->thread = NULL;
6774 	mddev->private = conf;
6775 
6776 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6777 	     i++) {
6778 		rdev = conf->disks[i].rdev;
6779 		if (!rdev && conf->disks[i].replacement) {
6780 			/* The replacement is all we have yet */
6781 			rdev = conf->disks[i].replacement;
6782 			conf->disks[i].replacement = NULL;
6783 			clear_bit(Replacement, &rdev->flags);
6784 			conf->disks[i].rdev = rdev;
6785 		}
6786 		if (!rdev)
6787 			continue;
6788 		if (conf->disks[i].replacement &&
6789 		    conf->reshape_progress != MaxSector) {
6790 			/* replacements and reshape simply do not mix. */
6791 			printk(KERN_ERR "md: cannot handle concurrent "
6792 			       "replacement and reshape.\n");
6793 			goto abort;
6794 		}
6795 		if (test_bit(In_sync, &rdev->flags)) {
6796 			working_disks++;
6797 			continue;
6798 		}
6799 		/* This disc is not fully in-sync.  However if it
6800 		 * just stored parity (beyond the recovery_offset),
6801 		 * when we don't need to be concerned about the
6802 		 * array being dirty.
6803 		 * When reshape goes 'backwards', we never have
6804 		 * partially completed devices, so we only need
6805 		 * to worry about reshape going forwards.
6806 		 */
6807 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6808 		if (mddev->major_version == 0 &&
6809 		    mddev->minor_version > 90)
6810 			rdev->recovery_offset = reshape_offset;
6811 
6812 		if (rdev->recovery_offset < reshape_offset) {
6813 			/* We need to check old and new layout */
6814 			if (!only_parity(rdev->raid_disk,
6815 					 conf->algorithm,
6816 					 conf->raid_disks,
6817 					 conf->max_degraded))
6818 				continue;
6819 		}
6820 		if (!only_parity(rdev->raid_disk,
6821 				 conf->prev_algo,
6822 				 conf->previous_raid_disks,
6823 				 conf->max_degraded))
6824 			continue;
6825 		dirty_parity_disks++;
6826 	}
6827 
6828 	/*
6829 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6830 	 */
6831 	mddev->degraded = calc_degraded(conf);
6832 
6833 	if (has_failed(conf)) {
6834 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6835 			" (%d/%d failed)\n",
6836 			mdname(mddev), mddev->degraded, conf->raid_disks);
6837 		goto abort;
6838 	}
6839 
6840 	/* device size must be a multiple of chunk size */
6841 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6842 	mddev->resync_max_sectors = mddev->dev_sectors;
6843 
6844 	if (mddev->degraded > dirty_parity_disks &&
6845 	    mddev->recovery_cp != MaxSector) {
6846 		if (mddev->ok_start_degraded)
6847 			printk(KERN_WARNING
6848 			       "md/raid:%s: starting dirty degraded array"
6849 			       " - data corruption possible.\n",
6850 			       mdname(mddev));
6851 		else {
6852 			printk(KERN_ERR
6853 			       "md/raid:%s: cannot start dirty degraded array.\n",
6854 			       mdname(mddev));
6855 			goto abort;
6856 		}
6857 	}
6858 
6859 	if (mddev->degraded == 0)
6860 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6861 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6862 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6863 		       mddev->new_layout);
6864 	else
6865 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6866 		       " out of %d devices, algorithm %d\n",
6867 		       mdname(mddev), conf->level,
6868 		       mddev->raid_disks - mddev->degraded,
6869 		       mddev->raid_disks, mddev->new_layout);
6870 
6871 	print_raid5_conf(conf);
6872 
6873 	if (conf->reshape_progress != MaxSector) {
6874 		conf->reshape_safe = conf->reshape_progress;
6875 		atomic_set(&conf->reshape_stripes, 0);
6876 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6877 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6878 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6879 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6880 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6881 							"reshape");
6882 	}
6883 
6884 	/* Ok, everything is just fine now */
6885 	if (mddev->to_remove == &raid5_attrs_group)
6886 		mddev->to_remove = NULL;
6887 	else if (mddev->kobj.sd &&
6888 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6889 		printk(KERN_WARNING
6890 		       "raid5: failed to create sysfs attributes for %s\n",
6891 		       mdname(mddev));
6892 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6893 
6894 	if (mddev->queue) {
6895 		int chunk_size;
6896 		bool discard_supported = true;
6897 		/* read-ahead size must cover two whole stripes, which
6898 		 * is 2 * (datadisks) * chunksize where 'n' is the
6899 		 * number of raid devices
6900 		 */
6901 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6902 		int stripe = data_disks *
6903 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6904 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6905 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6906 
6907 		chunk_size = mddev->chunk_sectors << 9;
6908 		blk_queue_io_min(mddev->queue, chunk_size);
6909 		blk_queue_io_opt(mddev->queue, chunk_size *
6910 				 (conf->raid_disks - conf->max_degraded));
6911 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6912 		/*
6913 		 * We can only discard a whole stripe. It doesn't make sense to
6914 		 * discard data disk but write parity disk
6915 		 */
6916 		stripe = stripe * PAGE_SIZE;
6917 		/* Round up to power of 2, as discard handling
6918 		 * currently assumes that */
6919 		while ((stripe-1) & stripe)
6920 			stripe = (stripe | (stripe-1)) + 1;
6921 		mddev->queue->limits.discard_alignment = stripe;
6922 		mddev->queue->limits.discard_granularity = stripe;
6923 		/*
6924 		 * unaligned part of discard request will be ignored, so can't
6925 		 * guarantee discard_zeroes_data
6926 		 */
6927 		mddev->queue->limits.discard_zeroes_data = 0;
6928 
6929 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6930 
6931 		rdev_for_each(rdev, mddev) {
6932 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6933 					  rdev->data_offset << 9);
6934 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6935 					  rdev->new_data_offset << 9);
6936 			/*
6937 			 * discard_zeroes_data is required, otherwise data
6938 			 * could be lost. Consider a scenario: discard a stripe
6939 			 * (the stripe could be inconsistent if
6940 			 * discard_zeroes_data is 0); write one disk of the
6941 			 * stripe (the stripe could be inconsistent again
6942 			 * depending on which disks are used to calculate
6943 			 * parity); the disk is broken; The stripe data of this
6944 			 * disk is lost.
6945 			 */
6946 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6947 			    !bdev_get_queue(rdev->bdev)->
6948 						limits.discard_zeroes_data)
6949 				discard_supported = false;
6950 			/* Unfortunately, discard_zeroes_data is not currently
6951 			 * a guarantee - just a hint.  So we only allow DISCARD
6952 			 * if the sysadmin has confirmed that only safe devices
6953 			 * are in use by setting a module parameter.
6954 			 */
6955 			if (!devices_handle_discard_safely) {
6956 				if (discard_supported) {
6957 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6958 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6959 				}
6960 				discard_supported = false;
6961 			}
6962 		}
6963 
6964 		if (discard_supported &&
6965 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6966 		   mddev->queue->limits.discard_granularity >= stripe)
6967 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6968 						mddev->queue);
6969 		else
6970 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6971 						mddev->queue);
6972 	}
6973 
6974 	return 0;
6975 abort:
6976 	md_unregister_thread(&mddev->thread);
6977 	print_raid5_conf(conf);
6978 	free_conf(conf);
6979 	mddev->private = NULL;
6980 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6981 	return -EIO;
6982 }
6983 
6984 static void raid5_free(struct mddev *mddev, void *priv)
6985 {
6986 	struct r5conf *conf = priv;
6987 
6988 	free_conf(conf);
6989 	mddev->to_remove = &raid5_attrs_group;
6990 }
6991 
6992 static void status(struct seq_file *seq, struct mddev *mddev)
6993 {
6994 	struct r5conf *conf = mddev->private;
6995 	int i;
6996 
6997 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6998 		conf->chunk_sectors / 2, mddev->layout);
6999 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7000 	for (i = 0; i < conf->raid_disks; i++)
7001 		seq_printf (seq, "%s",
7002 			       conf->disks[i].rdev &&
7003 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7004 	seq_printf (seq, "]");
7005 }
7006 
7007 static void print_raid5_conf (struct r5conf *conf)
7008 {
7009 	int i;
7010 	struct disk_info *tmp;
7011 
7012 	printk(KERN_DEBUG "RAID conf printout:\n");
7013 	if (!conf) {
7014 		printk("(conf==NULL)\n");
7015 		return;
7016 	}
7017 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7018 	       conf->raid_disks,
7019 	       conf->raid_disks - conf->mddev->degraded);
7020 
7021 	for (i = 0; i < conf->raid_disks; i++) {
7022 		char b[BDEVNAME_SIZE];
7023 		tmp = conf->disks + i;
7024 		if (tmp->rdev)
7025 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7026 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7027 			       bdevname(tmp->rdev->bdev, b));
7028 	}
7029 }
7030 
7031 static int raid5_spare_active(struct mddev *mddev)
7032 {
7033 	int i;
7034 	struct r5conf *conf = mddev->private;
7035 	struct disk_info *tmp;
7036 	int count = 0;
7037 	unsigned long flags;
7038 
7039 	for (i = 0; i < conf->raid_disks; i++) {
7040 		tmp = conf->disks + i;
7041 		if (tmp->replacement
7042 		    && tmp->replacement->recovery_offset == MaxSector
7043 		    && !test_bit(Faulty, &tmp->replacement->flags)
7044 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7045 			/* Replacement has just become active. */
7046 			if (!tmp->rdev
7047 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7048 				count++;
7049 			if (tmp->rdev) {
7050 				/* Replaced device not technically faulty,
7051 				 * but we need to be sure it gets removed
7052 				 * and never re-added.
7053 				 */
7054 				set_bit(Faulty, &tmp->rdev->flags);
7055 				sysfs_notify_dirent_safe(
7056 					tmp->rdev->sysfs_state);
7057 			}
7058 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7059 		} else if (tmp->rdev
7060 		    && tmp->rdev->recovery_offset == MaxSector
7061 		    && !test_bit(Faulty, &tmp->rdev->flags)
7062 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7063 			count++;
7064 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7065 		}
7066 	}
7067 	spin_lock_irqsave(&conf->device_lock, flags);
7068 	mddev->degraded = calc_degraded(conf);
7069 	spin_unlock_irqrestore(&conf->device_lock, flags);
7070 	print_raid5_conf(conf);
7071 	return count;
7072 }
7073 
7074 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7075 {
7076 	struct r5conf *conf = mddev->private;
7077 	int err = 0;
7078 	int number = rdev->raid_disk;
7079 	struct md_rdev **rdevp;
7080 	struct disk_info *p = conf->disks + number;
7081 
7082 	print_raid5_conf(conf);
7083 	if (rdev == p->rdev)
7084 		rdevp = &p->rdev;
7085 	else if (rdev == p->replacement)
7086 		rdevp = &p->replacement;
7087 	else
7088 		return 0;
7089 
7090 	if (number >= conf->raid_disks &&
7091 	    conf->reshape_progress == MaxSector)
7092 		clear_bit(In_sync, &rdev->flags);
7093 
7094 	if (test_bit(In_sync, &rdev->flags) ||
7095 	    atomic_read(&rdev->nr_pending)) {
7096 		err = -EBUSY;
7097 		goto abort;
7098 	}
7099 	/* Only remove non-faulty devices if recovery
7100 	 * isn't possible.
7101 	 */
7102 	if (!test_bit(Faulty, &rdev->flags) &&
7103 	    mddev->recovery_disabled != conf->recovery_disabled &&
7104 	    !has_failed(conf) &&
7105 	    (!p->replacement || p->replacement == rdev) &&
7106 	    number < conf->raid_disks) {
7107 		err = -EBUSY;
7108 		goto abort;
7109 	}
7110 	*rdevp = NULL;
7111 	synchronize_rcu();
7112 	if (atomic_read(&rdev->nr_pending)) {
7113 		/* lost the race, try later */
7114 		err = -EBUSY;
7115 		*rdevp = rdev;
7116 	} else if (p->replacement) {
7117 		/* We must have just cleared 'rdev' */
7118 		p->rdev = p->replacement;
7119 		clear_bit(Replacement, &p->replacement->flags);
7120 		smp_mb(); /* Make sure other CPUs may see both as identical
7121 			   * but will never see neither - if they are careful
7122 			   */
7123 		p->replacement = NULL;
7124 		clear_bit(WantReplacement, &rdev->flags);
7125 	} else
7126 		/* We might have just removed the Replacement as faulty-
7127 		 * clear the bit just in case
7128 		 */
7129 		clear_bit(WantReplacement, &rdev->flags);
7130 abort:
7131 
7132 	print_raid5_conf(conf);
7133 	return err;
7134 }
7135 
7136 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7137 {
7138 	struct r5conf *conf = mddev->private;
7139 	int err = -EEXIST;
7140 	int disk;
7141 	struct disk_info *p;
7142 	int first = 0;
7143 	int last = conf->raid_disks - 1;
7144 
7145 	if (mddev->recovery_disabled == conf->recovery_disabled)
7146 		return -EBUSY;
7147 
7148 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7149 		/* no point adding a device */
7150 		return -EINVAL;
7151 
7152 	if (rdev->raid_disk >= 0)
7153 		first = last = rdev->raid_disk;
7154 
7155 	/*
7156 	 * find the disk ... but prefer rdev->saved_raid_disk
7157 	 * if possible.
7158 	 */
7159 	if (rdev->saved_raid_disk >= 0 &&
7160 	    rdev->saved_raid_disk >= first &&
7161 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7162 		first = rdev->saved_raid_disk;
7163 
7164 	for (disk = first; disk <= last; disk++) {
7165 		p = conf->disks + disk;
7166 		if (p->rdev == NULL) {
7167 			clear_bit(In_sync, &rdev->flags);
7168 			rdev->raid_disk = disk;
7169 			err = 0;
7170 			if (rdev->saved_raid_disk != disk)
7171 				conf->fullsync = 1;
7172 			rcu_assign_pointer(p->rdev, rdev);
7173 			goto out;
7174 		}
7175 	}
7176 	for (disk = first; disk <= last; disk++) {
7177 		p = conf->disks + disk;
7178 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7179 		    p->replacement == NULL) {
7180 			clear_bit(In_sync, &rdev->flags);
7181 			set_bit(Replacement, &rdev->flags);
7182 			rdev->raid_disk = disk;
7183 			err = 0;
7184 			conf->fullsync = 1;
7185 			rcu_assign_pointer(p->replacement, rdev);
7186 			break;
7187 		}
7188 	}
7189 out:
7190 	print_raid5_conf(conf);
7191 	return err;
7192 }
7193 
7194 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7195 {
7196 	/* no resync is happening, and there is enough space
7197 	 * on all devices, so we can resize.
7198 	 * We need to make sure resync covers any new space.
7199 	 * If the array is shrinking we should possibly wait until
7200 	 * any io in the removed space completes, but it hardly seems
7201 	 * worth it.
7202 	 */
7203 	sector_t newsize;
7204 	struct r5conf *conf = mddev->private;
7205 
7206 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7207 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7208 	if (mddev->external_size &&
7209 	    mddev->array_sectors > newsize)
7210 		return -EINVAL;
7211 	if (mddev->bitmap) {
7212 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7213 		if (ret)
7214 			return ret;
7215 	}
7216 	md_set_array_sectors(mddev, newsize);
7217 	set_capacity(mddev->gendisk, mddev->array_sectors);
7218 	revalidate_disk(mddev->gendisk);
7219 	if (sectors > mddev->dev_sectors &&
7220 	    mddev->recovery_cp > mddev->dev_sectors) {
7221 		mddev->recovery_cp = mddev->dev_sectors;
7222 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7223 	}
7224 	mddev->dev_sectors = sectors;
7225 	mddev->resync_max_sectors = sectors;
7226 	return 0;
7227 }
7228 
7229 static int check_stripe_cache(struct mddev *mddev)
7230 {
7231 	/* Can only proceed if there are plenty of stripe_heads.
7232 	 * We need a minimum of one full stripe,, and for sensible progress
7233 	 * it is best to have about 4 times that.
7234 	 * If we require 4 times, then the default 256 4K stripe_heads will
7235 	 * allow for chunk sizes up to 256K, which is probably OK.
7236 	 * If the chunk size is greater, user-space should request more
7237 	 * stripe_heads first.
7238 	 */
7239 	struct r5conf *conf = mddev->private;
7240 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7241 	    > conf->min_nr_stripes ||
7242 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7243 	    > conf->min_nr_stripes) {
7244 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7245 		       mdname(mddev),
7246 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7247 			/ STRIPE_SIZE)*4);
7248 		return 0;
7249 	}
7250 	return 1;
7251 }
7252 
7253 static int check_reshape(struct mddev *mddev)
7254 {
7255 	struct r5conf *conf = mddev->private;
7256 
7257 	if (mddev->delta_disks == 0 &&
7258 	    mddev->new_layout == mddev->layout &&
7259 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7260 		return 0; /* nothing to do */
7261 	if (has_failed(conf))
7262 		return -EINVAL;
7263 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7264 		/* We might be able to shrink, but the devices must
7265 		 * be made bigger first.
7266 		 * For raid6, 4 is the minimum size.
7267 		 * Otherwise 2 is the minimum
7268 		 */
7269 		int min = 2;
7270 		if (mddev->level == 6)
7271 			min = 4;
7272 		if (mddev->raid_disks + mddev->delta_disks < min)
7273 			return -EINVAL;
7274 	}
7275 
7276 	if (!check_stripe_cache(mddev))
7277 		return -ENOSPC;
7278 
7279 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7280 	    mddev->delta_disks > 0)
7281 		if (resize_chunks(conf,
7282 				  conf->previous_raid_disks
7283 				  + max(0, mddev->delta_disks),
7284 				  max(mddev->new_chunk_sectors,
7285 				      mddev->chunk_sectors)
7286 			    ) < 0)
7287 			return -ENOMEM;
7288 	return resize_stripes(conf, (conf->previous_raid_disks
7289 				     + mddev->delta_disks));
7290 }
7291 
7292 static int raid5_start_reshape(struct mddev *mddev)
7293 {
7294 	struct r5conf *conf = mddev->private;
7295 	struct md_rdev *rdev;
7296 	int spares = 0;
7297 	unsigned long flags;
7298 
7299 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7300 		return -EBUSY;
7301 
7302 	if (!check_stripe_cache(mddev))
7303 		return -ENOSPC;
7304 
7305 	if (has_failed(conf))
7306 		return -EINVAL;
7307 
7308 	rdev_for_each(rdev, mddev) {
7309 		if (!test_bit(In_sync, &rdev->flags)
7310 		    && !test_bit(Faulty, &rdev->flags))
7311 			spares++;
7312 	}
7313 
7314 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7315 		/* Not enough devices even to make a degraded array
7316 		 * of that size
7317 		 */
7318 		return -EINVAL;
7319 
7320 	/* Refuse to reduce size of the array.  Any reductions in
7321 	 * array size must be through explicit setting of array_size
7322 	 * attribute.
7323 	 */
7324 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7325 	    < mddev->array_sectors) {
7326 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7327 		       "before number of disks\n", mdname(mddev));
7328 		return -EINVAL;
7329 	}
7330 
7331 	atomic_set(&conf->reshape_stripes, 0);
7332 	spin_lock_irq(&conf->device_lock);
7333 	write_seqcount_begin(&conf->gen_lock);
7334 	conf->previous_raid_disks = conf->raid_disks;
7335 	conf->raid_disks += mddev->delta_disks;
7336 	conf->prev_chunk_sectors = conf->chunk_sectors;
7337 	conf->chunk_sectors = mddev->new_chunk_sectors;
7338 	conf->prev_algo = conf->algorithm;
7339 	conf->algorithm = mddev->new_layout;
7340 	conf->generation++;
7341 	/* Code that selects data_offset needs to see the generation update
7342 	 * if reshape_progress has been set - so a memory barrier needed.
7343 	 */
7344 	smp_mb();
7345 	if (mddev->reshape_backwards)
7346 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7347 	else
7348 		conf->reshape_progress = 0;
7349 	conf->reshape_safe = conf->reshape_progress;
7350 	write_seqcount_end(&conf->gen_lock);
7351 	spin_unlock_irq(&conf->device_lock);
7352 
7353 	/* Now make sure any requests that proceeded on the assumption
7354 	 * the reshape wasn't running - like Discard or Read - have
7355 	 * completed.
7356 	 */
7357 	mddev_suspend(mddev);
7358 	mddev_resume(mddev);
7359 
7360 	/* Add some new drives, as many as will fit.
7361 	 * We know there are enough to make the newly sized array work.
7362 	 * Don't add devices if we are reducing the number of
7363 	 * devices in the array.  This is because it is not possible
7364 	 * to correctly record the "partially reconstructed" state of
7365 	 * such devices during the reshape and confusion could result.
7366 	 */
7367 	if (mddev->delta_disks >= 0) {
7368 		rdev_for_each(rdev, mddev)
7369 			if (rdev->raid_disk < 0 &&
7370 			    !test_bit(Faulty, &rdev->flags)) {
7371 				if (raid5_add_disk(mddev, rdev) == 0) {
7372 					if (rdev->raid_disk
7373 					    >= conf->previous_raid_disks)
7374 						set_bit(In_sync, &rdev->flags);
7375 					else
7376 						rdev->recovery_offset = 0;
7377 
7378 					if (sysfs_link_rdev(mddev, rdev))
7379 						/* Failure here is OK */;
7380 				}
7381 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7382 				   && !test_bit(Faulty, &rdev->flags)) {
7383 				/* This is a spare that was manually added */
7384 				set_bit(In_sync, &rdev->flags);
7385 			}
7386 
7387 		/* When a reshape changes the number of devices,
7388 		 * ->degraded is measured against the larger of the
7389 		 * pre and post number of devices.
7390 		 */
7391 		spin_lock_irqsave(&conf->device_lock, flags);
7392 		mddev->degraded = calc_degraded(conf);
7393 		spin_unlock_irqrestore(&conf->device_lock, flags);
7394 	}
7395 	mddev->raid_disks = conf->raid_disks;
7396 	mddev->reshape_position = conf->reshape_progress;
7397 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7398 
7399 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7400 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7401 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7402 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7403 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7404 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7405 						"reshape");
7406 	if (!mddev->sync_thread) {
7407 		mddev->recovery = 0;
7408 		spin_lock_irq(&conf->device_lock);
7409 		write_seqcount_begin(&conf->gen_lock);
7410 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7411 		mddev->new_chunk_sectors =
7412 			conf->chunk_sectors = conf->prev_chunk_sectors;
7413 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7414 		rdev_for_each(rdev, mddev)
7415 			rdev->new_data_offset = rdev->data_offset;
7416 		smp_wmb();
7417 		conf->generation --;
7418 		conf->reshape_progress = MaxSector;
7419 		mddev->reshape_position = MaxSector;
7420 		write_seqcount_end(&conf->gen_lock);
7421 		spin_unlock_irq(&conf->device_lock);
7422 		return -EAGAIN;
7423 	}
7424 	conf->reshape_checkpoint = jiffies;
7425 	md_wakeup_thread(mddev->sync_thread);
7426 	md_new_event(mddev);
7427 	return 0;
7428 }
7429 
7430 /* This is called from the reshape thread and should make any
7431  * changes needed in 'conf'
7432  */
7433 static void end_reshape(struct r5conf *conf)
7434 {
7435 
7436 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7437 		struct md_rdev *rdev;
7438 
7439 		spin_lock_irq(&conf->device_lock);
7440 		conf->previous_raid_disks = conf->raid_disks;
7441 		rdev_for_each(rdev, conf->mddev)
7442 			rdev->data_offset = rdev->new_data_offset;
7443 		smp_wmb();
7444 		conf->reshape_progress = MaxSector;
7445 		conf->mddev->reshape_position = MaxSector;
7446 		spin_unlock_irq(&conf->device_lock);
7447 		wake_up(&conf->wait_for_overlap);
7448 
7449 		/* read-ahead size must cover two whole stripes, which is
7450 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7451 		 */
7452 		if (conf->mddev->queue) {
7453 			int data_disks = conf->raid_disks - conf->max_degraded;
7454 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7455 						   / PAGE_SIZE);
7456 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7457 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7458 		}
7459 	}
7460 }
7461 
7462 /* This is called from the raid5d thread with mddev_lock held.
7463  * It makes config changes to the device.
7464  */
7465 static void raid5_finish_reshape(struct mddev *mddev)
7466 {
7467 	struct r5conf *conf = mddev->private;
7468 
7469 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7470 
7471 		if (mddev->delta_disks > 0) {
7472 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7473 			set_capacity(mddev->gendisk, mddev->array_sectors);
7474 			revalidate_disk(mddev->gendisk);
7475 		} else {
7476 			int d;
7477 			spin_lock_irq(&conf->device_lock);
7478 			mddev->degraded = calc_degraded(conf);
7479 			spin_unlock_irq(&conf->device_lock);
7480 			for (d = conf->raid_disks ;
7481 			     d < conf->raid_disks - mddev->delta_disks;
7482 			     d++) {
7483 				struct md_rdev *rdev = conf->disks[d].rdev;
7484 				if (rdev)
7485 					clear_bit(In_sync, &rdev->flags);
7486 				rdev = conf->disks[d].replacement;
7487 				if (rdev)
7488 					clear_bit(In_sync, &rdev->flags);
7489 			}
7490 		}
7491 		mddev->layout = conf->algorithm;
7492 		mddev->chunk_sectors = conf->chunk_sectors;
7493 		mddev->reshape_position = MaxSector;
7494 		mddev->delta_disks = 0;
7495 		mddev->reshape_backwards = 0;
7496 	}
7497 }
7498 
7499 static void raid5_quiesce(struct mddev *mddev, int state)
7500 {
7501 	struct r5conf *conf = mddev->private;
7502 
7503 	switch(state) {
7504 	case 2: /* resume for a suspend */
7505 		wake_up(&conf->wait_for_overlap);
7506 		break;
7507 
7508 	case 1: /* stop all writes */
7509 		lock_all_device_hash_locks_irq(conf);
7510 		/* '2' tells resync/reshape to pause so that all
7511 		 * active stripes can drain
7512 		 */
7513 		conf->quiesce = 2;
7514 		wait_event_cmd(conf->wait_for_quiescent,
7515 				    atomic_read(&conf->active_stripes) == 0 &&
7516 				    atomic_read(&conf->active_aligned_reads) == 0,
7517 				    unlock_all_device_hash_locks_irq(conf),
7518 				    lock_all_device_hash_locks_irq(conf));
7519 		conf->quiesce = 1;
7520 		unlock_all_device_hash_locks_irq(conf);
7521 		/* allow reshape to continue */
7522 		wake_up(&conf->wait_for_overlap);
7523 		break;
7524 
7525 	case 0: /* re-enable writes */
7526 		lock_all_device_hash_locks_irq(conf);
7527 		conf->quiesce = 0;
7528 		wake_up(&conf->wait_for_quiescent);
7529 		wake_up(&conf->wait_for_overlap);
7530 		unlock_all_device_hash_locks_irq(conf);
7531 		break;
7532 	}
7533 }
7534 
7535 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7536 {
7537 	struct r0conf *raid0_conf = mddev->private;
7538 	sector_t sectors;
7539 
7540 	/* for raid0 takeover only one zone is supported */
7541 	if (raid0_conf->nr_strip_zones > 1) {
7542 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7543 		       mdname(mddev));
7544 		return ERR_PTR(-EINVAL);
7545 	}
7546 
7547 	sectors = raid0_conf->strip_zone[0].zone_end;
7548 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7549 	mddev->dev_sectors = sectors;
7550 	mddev->new_level = level;
7551 	mddev->new_layout = ALGORITHM_PARITY_N;
7552 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7553 	mddev->raid_disks += 1;
7554 	mddev->delta_disks = 1;
7555 	/* make sure it will be not marked as dirty */
7556 	mddev->recovery_cp = MaxSector;
7557 
7558 	return setup_conf(mddev);
7559 }
7560 
7561 static void *raid5_takeover_raid1(struct mddev *mddev)
7562 {
7563 	int chunksect;
7564 
7565 	if (mddev->raid_disks != 2 ||
7566 	    mddev->degraded > 1)
7567 		return ERR_PTR(-EINVAL);
7568 
7569 	/* Should check if there are write-behind devices? */
7570 
7571 	chunksect = 64*2; /* 64K by default */
7572 
7573 	/* The array must be an exact multiple of chunksize */
7574 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7575 		chunksect >>= 1;
7576 
7577 	if ((chunksect<<9) < STRIPE_SIZE)
7578 		/* array size does not allow a suitable chunk size */
7579 		return ERR_PTR(-EINVAL);
7580 
7581 	mddev->new_level = 5;
7582 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7583 	mddev->new_chunk_sectors = chunksect;
7584 
7585 	return setup_conf(mddev);
7586 }
7587 
7588 static void *raid5_takeover_raid6(struct mddev *mddev)
7589 {
7590 	int new_layout;
7591 
7592 	switch (mddev->layout) {
7593 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7594 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7595 		break;
7596 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7597 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7598 		break;
7599 	case ALGORITHM_LEFT_SYMMETRIC_6:
7600 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7601 		break;
7602 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7603 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7604 		break;
7605 	case ALGORITHM_PARITY_0_6:
7606 		new_layout = ALGORITHM_PARITY_0;
7607 		break;
7608 	case ALGORITHM_PARITY_N:
7609 		new_layout = ALGORITHM_PARITY_N;
7610 		break;
7611 	default:
7612 		return ERR_PTR(-EINVAL);
7613 	}
7614 	mddev->new_level = 5;
7615 	mddev->new_layout = new_layout;
7616 	mddev->delta_disks = -1;
7617 	mddev->raid_disks -= 1;
7618 	return setup_conf(mddev);
7619 }
7620 
7621 static int raid5_check_reshape(struct mddev *mddev)
7622 {
7623 	/* For a 2-drive array, the layout and chunk size can be changed
7624 	 * immediately as not restriping is needed.
7625 	 * For larger arrays we record the new value - after validation
7626 	 * to be used by a reshape pass.
7627 	 */
7628 	struct r5conf *conf = mddev->private;
7629 	int new_chunk = mddev->new_chunk_sectors;
7630 
7631 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7632 		return -EINVAL;
7633 	if (new_chunk > 0) {
7634 		if (!is_power_of_2(new_chunk))
7635 			return -EINVAL;
7636 		if (new_chunk < (PAGE_SIZE>>9))
7637 			return -EINVAL;
7638 		if (mddev->array_sectors & (new_chunk-1))
7639 			/* not factor of array size */
7640 			return -EINVAL;
7641 	}
7642 
7643 	/* They look valid */
7644 
7645 	if (mddev->raid_disks == 2) {
7646 		/* can make the change immediately */
7647 		if (mddev->new_layout >= 0) {
7648 			conf->algorithm = mddev->new_layout;
7649 			mddev->layout = mddev->new_layout;
7650 		}
7651 		if (new_chunk > 0) {
7652 			conf->chunk_sectors = new_chunk ;
7653 			mddev->chunk_sectors = new_chunk;
7654 		}
7655 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7656 		md_wakeup_thread(mddev->thread);
7657 	}
7658 	return check_reshape(mddev);
7659 }
7660 
7661 static int raid6_check_reshape(struct mddev *mddev)
7662 {
7663 	int new_chunk = mddev->new_chunk_sectors;
7664 
7665 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7666 		return -EINVAL;
7667 	if (new_chunk > 0) {
7668 		if (!is_power_of_2(new_chunk))
7669 			return -EINVAL;
7670 		if (new_chunk < (PAGE_SIZE >> 9))
7671 			return -EINVAL;
7672 		if (mddev->array_sectors & (new_chunk-1))
7673 			/* not factor of array size */
7674 			return -EINVAL;
7675 	}
7676 
7677 	/* They look valid */
7678 	return check_reshape(mddev);
7679 }
7680 
7681 static void *raid5_takeover(struct mddev *mddev)
7682 {
7683 	/* raid5 can take over:
7684 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7685 	 *  raid1 - if there are two drives.  We need to know the chunk size
7686 	 *  raid4 - trivial - just use a raid4 layout.
7687 	 *  raid6 - Providing it is a *_6 layout
7688 	 */
7689 	if (mddev->level == 0)
7690 		return raid45_takeover_raid0(mddev, 5);
7691 	if (mddev->level == 1)
7692 		return raid5_takeover_raid1(mddev);
7693 	if (mddev->level == 4) {
7694 		mddev->new_layout = ALGORITHM_PARITY_N;
7695 		mddev->new_level = 5;
7696 		return setup_conf(mddev);
7697 	}
7698 	if (mddev->level == 6)
7699 		return raid5_takeover_raid6(mddev);
7700 
7701 	return ERR_PTR(-EINVAL);
7702 }
7703 
7704 static void *raid4_takeover(struct mddev *mddev)
7705 {
7706 	/* raid4 can take over:
7707 	 *  raid0 - if there is only one strip zone
7708 	 *  raid5 - if layout is right
7709 	 */
7710 	if (mddev->level == 0)
7711 		return raid45_takeover_raid0(mddev, 4);
7712 	if (mddev->level == 5 &&
7713 	    mddev->layout == ALGORITHM_PARITY_N) {
7714 		mddev->new_layout = 0;
7715 		mddev->new_level = 4;
7716 		return setup_conf(mddev);
7717 	}
7718 	return ERR_PTR(-EINVAL);
7719 }
7720 
7721 static struct md_personality raid5_personality;
7722 
7723 static void *raid6_takeover(struct mddev *mddev)
7724 {
7725 	/* Currently can only take over a raid5.  We map the
7726 	 * personality to an equivalent raid6 personality
7727 	 * with the Q block at the end.
7728 	 */
7729 	int new_layout;
7730 
7731 	if (mddev->pers != &raid5_personality)
7732 		return ERR_PTR(-EINVAL);
7733 	if (mddev->degraded > 1)
7734 		return ERR_PTR(-EINVAL);
7735 	if (mddev->raid_disks > 253)
7736 		return ERR_PTR(-EINVAL);
7737 	if (mddev->raid_disks < 3)
7738 		return ERR_PTR(-EINVAL);
7739 
7740 	switch (mddev->layout) {
7741 	case ALGORITHM_LEFT_ASYMMETRIC:
7742 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7743 		break;
7744 	case ALGORITHM_RIGHT_ASYMMETRIC:
7745 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7746 		break;
7747 	case ALGORITHM_LEFT_SYMMETRIC:
7748 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7749 		break;
7750 	case ALGORITHM_RIGHT_SYMMETRIC:
7751 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7752 		break;
7753 	case ALGORITHM_PARITY_0:
7754 		new_layout = ALGORITHM_PARITY_0_6;
7755 		break;
7756 	case ALGORITHM_PARITY_N:
7757 		new_layout = ALGORITHM_PARITY_N;
7758 		break;
7759 	default:
7760 		return ERR_PTR(-EINVAL);
7761 	}
7762 	mddev->new_level = 6;
7763 	mddev->new_layout = new_layout;
7764 	mddev->delta_disks = 1;
7765 	mddev->raid_disks += 1;
7766 	return setup_conf(mddev);
7767 }
7768 
7769 static struct md_personality raid6_personality =
7770 {
7771 	.name		= "raid6",
7772 	.level		= 6,
7773 	.owner		= THIS_MODULE,
7774 	.make_request	= make_request,
7775 	.run		= run,
7776 	.free		= raid5_free,
7777 	.status		= status,
7778 	.error_handler	= error,
7779 	.hot_add_disk	= raid5_add_disk,
7780 	.hot_remove_disk= raid5_remove_disk,
7781 	.spare_active	= raid5_spare_active,
7782 	.sync_request	= sync_request,
7783 	.resize		= raid5_resize,
7784 	.size		= raid5_size,
7785 	.check_reshape	= raid6_check_reshape,
7786 	.start_reshape  = raid5_start_reshape,
7787 	.finish_reshape = raid5_finish_reshape,
7788 	.quiesce	= raid5_quiesce,
7789 	.takeover	= raid6_takeover,
7790 	.congested	= raid5_congested,
7791 };
7792 static struct md_personality raid5_personality =
7793 {
7794 	.name		= "raid5",
7795 	.level		= 5,
7796 	.owner		= THIS_MODULE,
7797 	.make_request	= make_request,
7798 	.run		= run,
7799 	.free		= raid5_free,
7800 	.status		= status,
7801 	.error_handler	= error,
7802 	.hot_add_disk	= raid5_add_disk,
7803 	.hot_remove_disk= raid5_remove_disk,
7804 	.spare_active	= raid5_spare_active,
7805 	.sync_request	= sync_request,
7806 	.resize		= raid5_resize,
7807 	.size		= raid5_size,
7808 	.check_reshape	= raid5_check_reshape,
7809 	.start_reshape  = raid5_start_reshape,
7810 	.finish_reshape = raid5_finish_reshape,
7811 	.quiesce	= raid5_quiesce,
7812 	.takeover	= raid5_takeover,
7813 	.congested	= raid5_congested,
7814 };
7815 
7816 static struct md_personality raid4_personality =
7817 {
7818 	.name		= "raid4",
7819 	.level		= 4,
7820 	.owner		= THIS_MODULE,
7821 	.make_request	= make_request,
7822 	.run		= run,
7823 	.free		= raid5_free,
7824 	.status		= status,
7825 	.error_handler	= error,
7826 	.hot_add_disk	= raid5_add_disk,
7827 	.hot_remove_disk= raid5_remove_disk,
7828 	.spare_active	= raid5_spare_active,
7829 	.sync_request	= sync_request,
7830 	.resize		= raid5_resize,
7831 	.size		= raid5_size,
7832 	.check_reshape	= raid5_check_reshape,
7833 	.start_reshape  = raid5_start_reshape,
7834 	.finish_reshape = raid5_finish_reshape,
7835 	.quiesce	= raid5_quiesce,
7836 	.takeover	= raid4_takeover,
7837 	.congested	= raid5_congested,
7838 };
7839 
7840 static int __init raid5_init(void)
7841 {
7842 	raid5_wq = alloc_workqueue("raid5wq",
7843 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7844 	if (!raid5_wq)
7845 		return -ENOMEM;
7846 	register_md_personality(&raid6_personality);
7847 	register_md_personality(&raid5_personality);
7848 	register_md_personality(&raid4_personality);
7849 	return 0;
7850 }
7851 
7852 static void raid5_exit(void)
7853 {
7854 	unregister_md_personality(&raid6_personality);
7855 	unregister_md_personality(&raid5_personality);
7856 	unregister_md_personality(&raid4_personality);
7857 	destroy_workqueue(raid5_wq);
7858 }
7859 
7860 module_init(raid5_init);
7861 module_exit(raid5_exit);
7862 MODULE_LICENSE("GPL");
7863 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7864 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7865 MODULE_ALIAS("md-raid5");
7866 MODULE_ALIAS("md-raid4");
7867 MODULE_ALIAS("md-level-5");
7868 MODULE_ALIAS("md-level-4");
7869 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7870 MODULE_ALIAS("md-raid6");
7871 MODULE_ALIAS("md-level-6");
7872 
7873 /* This used to be two separate modules, they were: */
7874 MODULE_ALIAS("raid5");
7875 MODULE_ALIAS("raid6");
7876