1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 static bool devices_handle_discard_safely = false; 65 module_param(devices_handle_discard_safely, bool, 0644); 66 MODULE_PARM_DESC(devices_handle_discard_safely, 67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 68 static struct workqueue_struct *raid5_wq; 69 70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 71 { 72 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 73 return &conf->stripe_hashtbl[hash]; 74 } 75 76 static inline int stripe_hash_locks_hash(sector_t sect) 77 { 78 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 79 } 80 81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 82 { 83 spin_lock_irq(conf->hash_locks + hash); 84 spin_lock(&conf->device_lock); 85 } 86 87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 88 { 89 spin_unlock(&conf->device_lock); 90 spin_unlock_irq(conf->hash_locks + hash); 91 } 92 93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 94 { 95 int i; 96 spin_lock_irq(conf->hash_locks); 97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 99 spin_lock(&conf->device_lock); 100 } 101 102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 103 { 104 int i; 105 spin_unlock(&conf->device_lock); 106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 107 spin_unlock(conf->hash_locks + i); 108 spin_unlock_irq(conf->hash_locks); 109 } 110 111 /* Find first data disk in a raid6 stripe */ 112 static inline int raid6_d0(struct stripe_head *sh) 113 { 114 if (sh->ddf_layout) 115 /* ddf always start from first device */ 116 return 0; 117 /* md starts just after Q block */ 118 if (sh->qd_idx == sh->disks - 1) 119 return 0; 120 else 121 return sh->qd_idx + 1; 122 } 123 static inline int raid6_next_disk(int disk, int raid_disks) 124 { 125 disk++; 126 return (disk < raid_disks) ? disk : 0; 127 } 128 129 /* When walking through the disks in a raid5, starting at raid6_d0, 130 * We need to map each disk to a 'slot', where the data disks are slot 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 132 * is raid_disks-1. This help does that mapping. 133 */ 134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 135 int *count, int syndrome_disks) 136 { 137 int slot = *count; 138 139 if (sh->ddf_layout) 140 (*count)++; 141 if (idx == sh->pd_idx) 142 return syndrome_disks; 143 if (idx == sh->qd_idx) 144 return syndrome_disks + 1; 145 if (!sh->ddf_layout) 146 (*count)++; 147 return slot; 148 } 149 150 static void print_raid5_conf (struct r5conf *conf); 151 152 static int stripe_operations_active(struct stripe_head *sh) 153 { 154 return sh->check_state || sh->reconstruct_state || 155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 156 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 157 } 158 159 static bool stripe_is_lowprio(struct stripe_head *sh) 160 { 161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 163 !test_bit(STRIPE_R5C_CACHING, &sh->state); 164 } 165 166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 167 { 168 struct r5conf *conf = sh->raid_conf; 169 struct r5worker_group *group; 170 int thread_cnt; 171 int i, cpu = sh->cpu; 172 173 if (!cpu_online(cpu)) { 174 cpu = cpumask_any(cpu_online_mask); 175 sh->cpu = cpu; 176 } 177 178 if (list_empty(&sh->lru)) { 179 struct r5worker_group *group; 180 group = conf->worker_groups + cpu_to_group(cpu); 181 if (stripe_is_lowprio(sh)) 182 list_add_tail(&sh->lru, &group->loprio_list); 183 else 184 list_add_tail(&sh->lru, &group->handle_list); 185 group->stripes_cnt++; 186 sh->group = group; 187 } 188 189 if (conf->worker_cnt_per_group == 0) { 190 md_wakeup_thread(conf->mddev->thread); 191 return; 192 } 193 194 group = conf->worker_groups + cpu_to_group(sh->cpu); 195 196 group->workers[0].working = true; 197 /* at least one worker should run to avoid race */ 198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 199 200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 201 /* wakeup more workers */ 202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 203 if (group->workers[i].working == false) { 204 group->workers[i].working = true; 205 queue_work_on(sh->cpu, raid5_wq, 206 &group->workers[i].work); 207 thread_cnt--; 208 } 209 } 210 } 211 212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 213 struct list_head *temp_inactive_list) 214 { 215 int i; 216 int injournal = 0; /* number of date pages with R5_InJournal */ 217 218 BUG_ON(!list_empty(&sh->lru)); 219 BUG_ON(atomic_read(&conf->active_stripes)==0); 220 221 if (r5c_is_writeback(conf->log)) 222 for (i = sh->disks; i--; ) 223 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 224 injournal++; 225 /* 226 * In the following cases, the stripe cannot be released to cached 227 * lists. Therefore, we make the stripe write out and set 228 * STRIPE_HANDLE: 229 * 1. when quiesce in r5c write back; 230 * 2. when resync is requested fot the stripe. 231 */ 232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 233 (conf->quiesce && r5c_is_writeback(conf->log) && 234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 235 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 236 r5c_make_stripe_write_out(sh); 237 set_bit(STRIPE_HANDLE, &sh->state); 238 } 239 240 if (test_bit(STRIPE_HANDLE, &sh->state)) { 241 if (test_bit(STRIPE_DELAYED, &sh->state) && 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 243 list_add_tail(&sh->lru, &conf->delayed_list); 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 245 sh->bm_seq - conf->seq_write > 0) 246 list_add_tail(&sh->lru, &conf->bitmap_list); 247 else { 248 clear_bit(STRIPE_DELAYED, &sh->state); 249 clear_bit(STRIPE_BIT_DELAY, &sh->state); 250 if (conf->worker_cnt_per_group == 0) { 251 if (stripe_is_lowprio(sh)) 252 list_add_tail(&sh->lru, 253 &conf->loprio_list); 254 else 255 list_add_tail(&sh->lru, 256 &conf->handle_list); 257 } else { 258 raid5_wakeup_stripe_thread(sh); 259 return; 260 } 261 } 262 md_wakeup_thread(conf->mddev->thread); 263 } else { 264 BUG_ON(stripe_operations_active(sh)); 265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 266 if (atomic_dec_return(&conf->preread_active_stripes) 267 < IO_THRESHOLD) 268 md_wakeup_thread(conf->mddev->thread); 269 atomic_dec(&conf->active_stripes); 270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 271 if (!r5c_is_writeback(conf->log)) 272 list_add_tail(&sh->lru, temp_inactive_list); 273 else { 274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 275 if (injournal == 0) 276 list_add_tail(&sh->lru, temp_inactive_list); 277 else if (injournal == conf->raid_disks - conf->max_degraded) { 278 /* full stripe */ 279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 280 atomic_inc(&conf->r5c_cached_full_stripes); 281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 282 atomic_dec(&conf->r5c_cached_partial_stripes); 283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 284 r5c_check_cached_full_stripe(conf); 285 } else 286 /* 287 * STRIPE_R5C_PARTIAL_STRIPE is set in 288 * r5c_try_caching_write(). No need to 289 * set it again. 290 */ 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 292 } 293 } 294 } 295 } 296 297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 298 struct list_head *temp_inactive_list) 299 { 300 if (atomic_dec_and_test(&sh->count)) 301 do_release_stripe(conf, sh, temp_inactive_list); 302 } 303 304 /* 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 306 * 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 308 * given time. Adding stripes only takes device lock, while deleting stripes 309 * only takes hash lock. 310 */ 311 static void release_inactive_stripe_list(struct r5conf *conf, 312 struct list_head *temp_inactive_list, 313 int hash) 314 { 315 int size; 316 bool do_wakeup = false; 317 unsigned long flags; 318 319 if (hash == NR_STRIPE_HASH_LOCKS) { 320 size = NR_STRIPE_HASH_LOCKS; 321 hash = NR_STRIPE_HASH_LOCKS - 1; 322 } else 323 size = 1; 324 while (size) { 325 struct list_head *list = &temp_inactive_list[size - 1]; 326 327 /* 328 * We don't hold any lock here yet, raid5_get_active_stripe() might 329 * remove stripes from the list 330 */ 331 if (!list_empty_careful(list)) { 332 spin_lock_irqsave(conf->hash_locks + hash, flags); 333 if (list_empty(conf->inactive_list + hash) && 334 !list_empty(list)) 335 atomic_dec(&conf->empty_inactive_list_nr); 336 list_splice_tail_init(list, conf->inactive_list + hash); 337 do_wakeup = true; 338 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 339 } 340 size--; 341 hash--; 342 } 343 344 if (do_wakeup) { 345 wake_up(&conf->wait_for_stripe); 346 if (atomic_read(&conf->active_stripes) == 0) 347 wake_up(&conf->wait_for_quiescent); 348 if (conf->retry_read_aligned) 349 md_wakeup_thread(conf->mddev->thread); 350 } 351 } 352 353 /* should hold conf->device_lock already */ 354 static int release_stripe_list(struct r5conf *conf, 355 struct list_head *temp_inactive_list) 356 { 357 struct stripe_head *sh, *t; 358 int count = 0; 359 struct llist_node *head; 360 361 head = llist_del_all(&conf->released_stripes); 362 head = llist_reverse_order(head); 363 llist_for_each_entry_safe(sh, t, head, release_list) { 364 int hash; 365 366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 367 smp_mb(); 368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 369 /* 370 * Don't worry the bit is set here, because if the bit is set 371 * again, the count is always > 1. This is true for 372 * STRIPE_ON_UNPLUG_LIST bit too. 373 */ 374 hash = sh->hash_lock_index; 375 __release_stripe(conf, sh, &temp_inactive_list[hash]); 376 count++; 377 } 378 379 return count; 380 } 381 382 void raid5_release_stripe(struct stripe_head *sh) 383 { 384 struct r5conf *conf = sh->raid_conf; 385 unsigned long flags; 386 struct list_head list; 387 int hash; 388 bool wakeup; 389 390 /* Avoid release_list until the last reference. 391 */ 392 if (atomic_add_unless(&sh->count, -1, 1)) 393 return; 394 395 if (unlikely(!conf->mddev->thread) || 396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 397 goto slow_path; 398 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 399 if (wakeup) 400 md_wakeup_thread(conf->mddev->thread); 401 return; 402 slow_path: 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 405 INIT_LIST_HEAD(&list); 406 hash = sh->hash_lock_index; 407 do_release_stripe(conf, sh, &list); 408 spin_unlock_irqrestore(&conf->device_lock, flags); 409 release_inactive_stripe_list(conf, &list, hash); 410 } 411 } 412 413 static inline void remove_hash(struct stripe_head *sh) 414 { 415 pr_debug("remove_hash(), stripe %llu\n", 416 (unsigned long long)sh->sector); 417 418 hlist_del_init(&sh->hash); 419 } 420 421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 422 { 423 struct hlist_head *hp = stripe_hash(conf, sh->sector); 424 425 pr_debug("insert_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_add_head(&sh->hash, hp); 429 } 430 431 /* find an idle stripe, make sure it is unhashed, and return it. */ 432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 433 { 434 struct stripe_head *sh = NULL; 435 struct list_head *first; 436 437 if (list_empty(conf->inactive_list + hash)) 438 goto out; 439 first = (conf->inactive_list + hash)->next; 440 sh = list_entry(first, struct stripe_head, lru); 441 list_del_init(first); 442 remove_hash(sh); 443 atomic_inc(&conf->active_stripes); 444 BUG_ON(hash != sh->hash_lock_index); 445 if (list_empty(conf->inactive_list + hash)) 446 atomic_inc(&conf->empty_inactive_list_nr); 447 out: 448 return sh; 449 } 450 451 static void shrink_buffers(struct stripe_head *sh) 452 { 453 struct page *p; 454 int i; 455 int num = sh->raid_conf->pool_size; 456 457 for (i = 0; i < num ; i++) { 458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 459 p = sh->dev[i].page; 460 if (!p) 461 continue; 462 sh->dev[i].page = NULL; 463 put_page(p); 464 } 465 } 466 467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 468 { 469 int i; 470 int num = sh->raid_conf->pool_size; 471 472 for (i = 0; i < num; i++) { 473 struct page *page; 474 475 if (!(page = alloc_page(gfp))) { 476 return 1; 477 } 478 sh->dev[i].page = page; 479 sh->dev[i].orig_page = page; 480 } 481 482 return 0; 483 } 484 485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 486 struct stripe_head *sh); 487 488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 489 { 490 struct r5conf *conf = sh->raid_conf; 491 int i, seq; 492 493 BUG_ON(atomic_read(&sh->count) != 0); 494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 495 BUG_ON(stripe_operations_active(sh)); 496 BUG_ON(sh->batch_head); 497 498 pr_debug("init_stripe called, stripe %llu\n", 499 (unsigned long long)sector); 500 retry: 501 seq = read_seqcount_begin(&conf->gen_lock); 502 sh->generation = conf->generation - previous; 503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 504 sh->sector = sector; 505 stripe_set_idx(sector, conf, previous, sh); 506 sh->state = 0; 507 508 for (i = sh->disks; i--; ) { 509 struct r5dev *dev = &sh->dev[i]; 510 511 if (dev->toread || dev->read || dev->towrite || dev->written || 512 test_bit(R5_LOCKED, &dev->flags)) { 513 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 514 (unsigned long long)sh->sector, i, dev->toread, 515 dev->read, dev->towrite, dev->written, 516 test_bit(R5_LOCKED, &dev->flags)); 517 WARN_ON(1); 518 } 519 dev->flags = 0; 520 dev->sector = raid5_compute_blocknr(sh, i, previous); 521 } 522 if (read_seqcount_retry(&conf->gen_lock, seq)) 523 goto retry; 524 sh->overwrite_disks = 0; 525 insert_hash(conf, sh); 526 sh->cpu = smp_processor_id(); 527 set_bit(STRIPE_BATCH_READY, &sh->state); 528 } 529 530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 531 short generation) 532 { 533 struct stripe_head *sh; 534 535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 537 if (sh->sector == sector && sh->generation == generation) 538 return sh; 539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 540 return NULL; 541 } 542 543 /* 544 * Need to check if array has failed when deciding whether to: 545 * - start an array 546 * - remove non-faulty devices 547 * - add a spare 548 * - allow a reshape 549 * This determination is simple when no reshape is happening. 550 * However if there is a reshape, we need to carefully check 551 * both the before and after sections. 552 * This is because some failed devices may only affect one 553 * of the two sections, and some non-in_sync devices may 554 * be insync in the section most affected by failed devices. 555 */ 556 int raid5_calc_degraded(struct r5conf *conf) 557 { 558 int degraded, degraded2; 559 int i; 560 561 rcu_read_lock(); 562 degraded = 0; 563 for (i = 0; i < conf->previous_raid_disks; i++) { 564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 565 if (rdev && test_bit(Faulty, &rdev->flags)) 566 rdev = rcu_dereference(conf->disks[i].replacement); 567 if (!rdev || test_bit(Faulty, &rdev->flags)) 568 degraded++; 569 else if (test_bit(In_sync, &rdev->flags)) 570 ; 571 else 572 /* not in-sync or faulty. 573 * If the reshape increases the number of devices, 574 * this is being recovered by the reshape, so 575 * this 'previous' section is not in_sync. 576 * If the number of devices is being reduced however, 577 * the device can only be part of the array if 578 * we are reverting a reshape, so this section will 579 * be in-sync. 580 */ 581 if (conf->raid_disks >= conf->previous_raid_disks) 582 degraded++; 583 } 584 rcu_read_unlock(); 585 if (conf->raid_disks == conf->previous_raid_disks) 586 return degraded; 587 rcu_read_lock(); 588 degraded2 = 0; 589 for (i = 0; i < conf->raid_disks; i++) { 590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 591 if (rdev && test_bit(Faulty, &rdev->flags)) 592 rdev = rcu_dereference(conf->disks[i].replacement); 593 if (!rdev || test_bit(Faulty, &rdev->flags)) 594 degraded2++; 595 else if (test_bit(In_sync, &rdev->flags)) 596 ; 597 else 598 /* not in-sync or faulty. 599 * If reshape increases the number of devices, this 600 * section has already been recovered, else it 601 * almost certainly hasn't. 602 */ 603 if (conf->raid_disks <= conf->previous_raid_disks) 604 degraded2++; 605 } 606 rcu_read_unlock(); 607 if (degraded2 > degraded) 608 return degraded2; 609 return degraded; 610 } 611 612 static int has_failed(struct r5conf *conf) 613 { 614 int degraded; 615 616 if (conf->mddev->reshape_position == MaxSector) 617 return conf->mddev->degraded > conf->max_degraded; 618 619 degraded = raid5_calc_degraded(conf); 620 if (degraded > conf->max_degraded) 621 return 1; 622 return 0; 623 } 624 625 struct stripe_head * 626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 627 int previous, int noblock, int noquiesce) 628 { 629 struct stripe_head *sh; 630 int hash = stripe_hash_locks_hash(sector); 631 int inc_empty_inactive_list_flag; 632 633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 634 635 spin_lock_irq(conf->hash_locks + hash); 636 637 do { 638 wait_event_lock_irq(conf->wait_for_quiescent, 639 conf->quiesce == 0 || noquiesce, 640 *(conf->hash_locks + hash)); 641 sh = __find_stripe(conf, sector, conf->generation - previous); 642 if (!sh) { 643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 644 sh = get_free_stripe(conf, hash); 645 if (!sh && !test_bit(R5_DID_ALLOC, 646 &conf->cache_state)) 647 set_bit(R5_ALLOC_MORE, 648 &conf->cache_state); 649 } 650 if (noblock && sh == NULL) 651 break; 652 653 r5c_check_stripe_cache_usage(conf); 654 if (!sh) { 655 set_bit(R5_INACTIVE_BLOCKED, 656 &conf->cache_state); 657 r5l_wake_reclaim(conf->log, 0); 658 wait_event_lock_irq( 659 conf->wait_for_stripe, 660 !list_empty(conf->inactive_list + hash) && 661 (atomic_read(&conf->active_stripes) 662 < (conf->max_nr_stripes * 3 / 4) 663 || !test_bit(R5_INACTIVE_BLOCKED, 664 &conf->cache_state)), 665 *(conf->hash_locks + hash)); 666 clear_bit(R5_INACTIVE_BLOCKED, 667 &conf->cache_state); 668 } else { 669 init_stripe(sh, sector, previous); 670 atomic_inc(&sh->count); 671 } 672 } else if (!atomic_inc_not_zero(&sh->count)) { 673 spin_lock(&conf->device_lock); 674 if (!atomic_read(&sh->count)) { 675 if (!test_bit(STRIPE_HANDLE, &sh->state)) 676 atomic_inc(&conf->active_stripes); 677 BUG_ON(list_empty(&sh->lru) && 678 !test_bit(STRIPE_EXPANDING, &sh->state)); 679 inc_empty_inactive_list_flag = 0; 680 if (!list_empty(conf->inactive_list + hash)) 681 inc_empty_inactive_list_flag = 1; 682 list_del_init(&sh->lru); 683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 684 atomic_inc(&conf->empty_inactive_list_nr); 685 if (sh->group) { 686 sh->group->stripes_cnt--; 687 sh->group = NULL; 688 } 689 } 690 atomic_inc(&sh->count); 691 spin_unlock(&conf->device_lock); 692 } 693 } while (sh == NULL); 694 695 spin_unlock_irq(conf->hash_locks + hash); 696 return sh; 697 } 698 699 static bool is_full_stripe_write(struct stripe_head *sh) 700 { 701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 703 } 704 705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 706 __acquires(&sh1->stripe_lock) 707 __acquires(&sh2->stripe_lock) 708 { 709 if (sh1 > sh2) { 710 spin_lock_irq(&sh2->stripe_lock); 711 spin_lock_nested(&sh1->stripe_lock, 1); 712 } else { 713 spin_lock_irq(&sh1->stripe_lock); 714 spin_lock_nested(&sh2->stripe_lock, 1); 715 } 716 } 717 718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 719 __releases(&sh1->stripe_lock) 720 __releases(&sh2->stripe_lock) 721 { 722 spin_unlock(&sh1->stripe_lock); 723 spin_unlock_irq(&sh2->stripe_lock); 724 } 725 726 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 727 static bool stripe_can_batch(struct stripe_head *sh) 728 { 729 struct r5conf *conf = sh->raid_conf; 730 731 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 732 return false; 733 return test_bit(STRIPE_BATCH_READY, &sh->state) && 734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 735 is_full_stripe_write(sh); 736 } 737 738 /* we only do back search */ 739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 740 { 741 struct stripe_head *head; 742 sector_t head_sector, tmp_sec; 743 int hash; 744 int dd_idx; 745 int inc_empty_inactive_list_flag; 746 747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 748 tmp_sec = sh->sector; 749 if (!sector_div(tmp_sec, conf->chunk_sectors)) 750 return; 751 head_sector = sh->sector - STRIPE_SECTORS; 752 753 hash = stripe_hash_locks_hash(head_sector); 754 spin_lock_irq(conf->hash_locks + hash); 755 head = __find_stripe(conf, head_sector, conf->generation); 756 if (head && !atomic_inc_not_zero(&head->count)) { 757 spin_lock(&conf->device_lock); 758 if (!atomic_read(&head->count)) { 759 if (!test_bit(STRIPE_HANDLE, &head->state)) 760 atomic_inc(&conf->active_stripes); 761 BUG_ON(list_empty(&head->lru) && 762 !test_bit(STRIPE_EXPANDING, &head->state)); 763 inc_empty_inactive_list_flag = 0; 764 if (!list_empty(conf->inactive_list + hash)) 765 inc_empty_inactive_list_flag = 1; 766 list_del_init(&head->lru); 767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 768 atomic_inc(&conf->empty_inactive_list_nr); 769 if (head->group) { 770 head->group->stripes_cnt--; 771 head->group = NULL; 772 } 773 } 774 atomic_inc(&head->count); 775 spin_unlock(&conf->device_lock); 776 } 777 spin_unlock_irq(conf->hash_locks + hash); 778 779 if (!head) 780 return; 781 if (!stripe_can_batch(head)) 782 goto out; 783 784 lock_two_stripes(head, sh); 785 /* clear_batch_ready clear the flag */ 786 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 787 goto unlock_out; 788 789 if (sh->batch_head) 790 goto unlock_out; 791 792 dd_idx = 0; 793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 794 dd_idx++; 795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 797 goto unlock_out; 798 799 if (head->batch_head) { 800 spin_lock(&head->batch_head->batch_lock); 801 /* This batch list is already running */ 802 if (!stripe_can_batch(head)) { 803 spin_unlock(&head->batch_head->batch_lock); 804 goto unlock_out; 805 } 806 /* 807 * We must assign batch_head of this stripe within the 808 * batch_lock, otherwise clear_batch_ready of batch head 809 * stripe could clear BATCH_READY bit of this stripe and 810 * this stripe->batch_head doesn't get assigned, which 811 * could confuse clear_batch_ready for this stripe 812 */ 813 sh->batch_head = head->batch_head; 814 815 /* 816 * at this point, head's BATCH_READY could be cleared, but we 817 * can still add the stripe to batch list 818 */ 819 list_add(&sh->batch_list, &head->batch_list); 820 spin_unlock(&head->batch_head->batch_lock); 821 } else { 822 head->batch_head = head; 823 sh->batch_head = head->batch_head; 824 spin_lock(&head->batch_lock); 825 list_add_tail(&sh->batch_list, &head->batch_list); 826 spin_unlock(&head->batch_lock); 827 } 828 829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 830 if (atomic_dec_return(&conf->preread_active_stripes) 831 < IO_THRESHOLD) 832 md_wakeup_thread(conf->mddev->thread); 833 834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 835 int seq = sh->bm_seq; 836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 837 sh->batch_head->bm_seq > seq) 838 seq = sh->batch_head->bm_seq; 839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 840 sh->batch_head->bm_seq = seq; 841 } 842 843 atomic_inc(&sh->count); 844 unlock_out: 845 unlock_two_stripes(head, sh); 846 out: 847 raid5_release_stripe(head); 848 } 849 850 /* Determine if 'data_offset' or 'new_data_offset' should be used 851 * in this stripe_head. 852 */ 853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 854 { 855 sector_t progress = conf->reshape_progress; 856 /* Need a memory barrier to make sure we see the value 857 * of conf->generation, or ->data_offset that was set before 858 * reshape_progress was updated. 859 */ 860 smp_rmb(); 861 if (progress == MaxSector) 862 return 0; 863 if (sh->generation == conf->generation - 1) 864 return 0; 865 /* We are in a reshape, and this is a new-generation stripe, 866 * so use new_data_offset. 867 */ 868 return 1; 869 } 870 871 static void dispatch_bio_list(struct bio_list *tmp) 872 { 873 struct bio *bio; 874 875 while ((bio = bio_list_pop(tmp))) 876 generic_make_request(bio); 877 } 878 879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b) 880 { 881 const struct r5pending_data *da = list_entry(a, 882 struct r5pending_data, sibling); 883 const struct r5pending_data *db = list_entry(b, 884 struct r5pending_data, sibling); 885 if (da->sector > db->sector) 886 return 1; 887 if (da->sector < db->sector) 888 return -1; 889 return 0; 890 } 891 892 static void dispatch_defer_bios(struct r5conf *conf, int target, 893 struct bio_list *list) 894 { 895 struct r5pending_data *data; 896 struct list_head *first, *next = NULL; 897 int cnt = 0; 898 899 if (conf->pending_data_cnt == 0) 900 return; 901 902 list_sort(NULL, &conf->pending_list, cmp_stripe); 903 904 first = conf->pending_list.next; 905 906 /* temporarily move the head */ 907 if (conf->next_pending_data) 908 list_move_tail(&conf->pending_list, 909 &conf->next_pending_data->sibling); 910 911 while (!list_empty(&conf->pending_list)) { 912 data = list_first_entry(&conf->pending_list, 913 struct r5pending_data, sibling); 914 if (&data->sibling == first) 915 first = data->sibling.next; 916 next = data->sibling.next; 917 918 bio_list_merge(list, &data->bios); 919 list_move(&data->sibling, &conf->free_list); 920 cnt++; 921 if (cnt >= target) 922 break; 923 } 924 conf->pending_data_cnt -= cnt; 925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 926 927 if (next != &conf->pending_list) 928 conf->next_pending_data = list_entry(next, 929 struct r5pending_data, sibling); 930 else 931 conf->next_pending_data = NULL; 932 /* list isn't empty */ 933 if (first != &conf->pending_list) 934 list_move_tail(&conf->pending_list, first); 935 } 936 937 static void flush_deferred_bios(struct r5conf *conf) 938 { 939 struct bio_list tmp = BIO_EMPTY_LIST; 940 941 if (conf->pending_data_cnt == 0) 942 return; 943 944 spin_lock(&conf->pending_bios_lock); 945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 946 BUG_ON(conf->pending_data_cnt != 0); 947 spin_unlock(&conf->pending_bios_lock); 948 949 dispatch_bio_list(&tmp); 950 } 951 952 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 953 struct bio_list *bios) 954 { 955 struct bio_list tmp = BIO_EMPTY_LIST; 956 struct r5pending_data *ent; 957 958 spin_lock(&conf->pending_bios_lock); 959 ent = list_first_entry(&conf->free_list, struct r5pending_data, 960 sibling); 961 list_move_tail(&ent->sibling, &conf->pending_list); 962 ent->sector = sector; 963 bio_list_init(&ent->bios); 964 bio_list_merge(&ent->bios, bios); 965 conf->pending_data_cnt++; 966 if (conf->pending_data_cnt >= PENDING_IO_MAX) 967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 968 969 spin_unlock(&conf->pending_bios_lock); 970 971 dispatch_bio_list(&tmp); 972 } 973 974 static void 975 raid5_end_read_request(struct bio *bi); 976 static void 977 raid5_end_write_request(struct bio *bi); 978 979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 980 { 981 struct r5conf *conf = sh->raid_conf; 982 int i, disks = sh->disks; 983 struct stripe_head *head_sh = sh; 984 struct bio_list pending_bios = BIO_EMPTY_LIST; 985 bool should_defer; 986 987 might_sleep(); 988 989 if (log_stripe(sh, s) == 0) 990 return; 991 992 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 993 994 for (i = disks; i--; ) { 995 int op, op_flags = 0; 996 int replace_only = 0; 997 struct bio *bi, *rbi; 998 struct md_rdev *rdev, *rrdev = NULL; 999 1000 sh = head_sh; 1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1002 op = REQ_OP_WRITE; 1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1004 op_flags = REQ_FUA; 1005 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1006 op = REQ_OP_DISCARD; 1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1008 op = REQ_OP_READ; 1009 else if (test_and_clear_bit(R5_WantReplace, 1010 &sh->dev[i].flags)) { 1011 op = REQ_OP_WRITE; 1012 replace_only = 1; 1013 } else 1014 continue; 1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1016 op_flags |= REQ_SYNC; 1017 1018 again: 1019 bi = &sh->dev[i].req; 1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1021 1022 rcu_read_lock(); 1023 rrdev = rcu_dereference(conf->disks[i].replacement); 1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1025 rdev = rcu_dereference(conf->disks[i].rdev); 1026 if (!rdev) { 1027 rdev = rrdev; 1028 rrdev = NULL; 1029 } 1030 if (op_is_write(op)) { 1031 if (replace_only) 1032 rdev = NULL; 1033 if (rdev == rrdev) 1034 /* We raced and saw duplicates */ 1035 rrdev = NULL; 1036 } else { 1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1038 rdev = rrdev; 1039 rrdev = NULL; 1040 } 1041 1042 if (rdev && test_bit(Faulty, &rdev->flags)) 1043 rdev = NULL; 1044 if (rdev) 1045 atomic_inc(&rdev->nr_pending); 1046 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1047 rrdev = NULL; 1048 if (rrdev) 1049 atomic_inc(&rrdev->nr_pending); 1050 rcu_read_unlock(); 1051 1052 /* We have already checked bad blocks for reads. Now 1053 * need to check for writes. We never accept write errors 1054 * on the replacement, so we don't to check rrdev. 1055 */ 1056 while (op_is_write(op) && rdev && 1057 test_bit(WriteErrorSeen, &rdev->flags)) { 1058 sector_t first_bad; 1059 int bad_sectors; 1060 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 1061 &first_bad, &bad_sectors); 1062 if (!bad) 1063 break; 1064 1065 if (bad < 0) { 1066 set_bit(BlockedBadBlocks, &rdev->flags); 1067 if (!conf->mddev->external && 1068 conf->mddev->sb_flags) { 1069 /* It is very unlikely, but we might 1070 * still need to write out the 1071 * bad block log - better give it 1072 * a chance*/ 1073 md_check_recovery(conf->mddev); 1074 } 1075 /* 1076 * Because md_wait_for_blocked_rdev 1077 * will dec nr_pending, we must 1078 * increment it first. 1079 */ 1080 atomic_inc(&rdev->nr_pending); 1081 md_wait_for_blocked_rdev(rdev, conf->mddev); 1082 } else { 1083 /* Acknowledged bad block - skip the write */ 1084 rdev_dec_pending(rdev, conf->mddev); 1085 rdev = NULL; 1086 } 1087 } 1088 1089 if (rdev) { 1090 if (s->syncing || s->expanding || s->expanded 1091 || s->replacing) 1092 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1093 1094 set_bit(STRIPE_IO_STARTED, &sh->state); 1095 1096 bio_set_dev(bi, rdev->bdev); 1097 bio_set_op_attrs(bi, op, op_flags); 1098 bi->bi_end_io = op_is_write(op) 1099 ? raid5_end_write_request 1100 : raid5_end_read_request; 1101 bi->bi_private = sh; 1102 1103 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1104 __func__, (unsigned long long)sh->sector, 1105 bi->bi_opf, i); 1106 atomic_inc(&sh->count); 1107 if (sh != head_sh) 1108 atomic_inc(&head_sh->count); 1109 if (use_new_offset(conf, sh)) 1110 bi->bi_iter.bi_sector = (sh->sector 1111 + rdev->new_data_offset); 1112 else 1113 bi->bi_iter.bi_sector = (sh->sector 1114 + rdev->data_offset); 1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1116 bi->bi_opf |= REQ_NOMERGE; 1117 1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1120 1121 if (!op_is_write(op) && 1122 test_bit(R5_InJournal, &sh->dev[i].flags)) 1123 /* 1124 * issuing read for a page in journal, this 1125 * must be preparing for prexor in rmw; read 1126 * the data into orig_page 1127 */ 1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1129 else 1130 sh->dev[i].vec.bv_page = sh->dev[i].page; 1131 bi->bi_vcnt = 1; 1132 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1133 bi->bi_io_vec[0].bv_offset = 0; 1134 bi->bi_iter.bi_size = STRIPE_SIZE; 1135 bi->bi_write_hint = sh->dev[i].write_hint; 1136 if (!rrdev) 1137 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; 1138 /* 1139 * If this is discard request, set bi_vcnt 0. We don't 1140 * want to confuse SCSI because SCSI will replace payload 1141 */ 1142 if (op == REQ_OP_DISCARD) 1143 bi->bi_vcnt = 0; 1144 if (rrdev) 1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1146 1147 if (conf->mddev->gendisk) 1148 trace_block_bio_remap(bi->bi_disk->queue, 1149 bi, disk_devt(conf->mddev->gendisk), 1150 sh->dev[i].sector); 1151 if (should_defer && op_is_write(op)) 1152 bio_list_add(&pending_bios, bi); 1153 else 1154 generic_make_request(bi); 1155 } 1156 if (rrdev) { 1157 if (s->syncing || s->expanding || s->expanded 1158 || s->replacing) 1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1160 1161 set_bit(STRIPE_IO_STARTED, &sh->state); 1162 1163 bio_set_dev(rbi, rrdev->bdev); 1164 bio_set_op_attrs(rbi, op, op_flags); 1165 BUG_ON(!op_is_write(op)); 1166 rbi->bi_end_io = raid5_end_write_request; 1167 rbi->bi_private = sh; 1168 1169 pr_debug("%s: for %llu schedule op %d on " 1170 "replacement disc %d\n", 1171 __func__, (unsigned long long)sh->sector, 1172 rbi->bi_opf, i); 1173 atomic_inc(&sh->count); 1174 if (sh != head_sh) 1175 atomic_inc(&head_sh->count); 1176 if (use_new_offset(conf, sh)) 1177 rbi->bi_iter.bi_sector = (sh->sector 1178 + rrdev->new_data_offset); 1179 else 1180 rbi->bi_iter.bi_sector = (sh->sector 1181 + rrdev->data_offset); 1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1184 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1185 rbi->bi_vcnt = 1; 1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1187 rbi->bi_io_vec[0].bv_offset = 0; 1188 rbi->bi_iter.bi_size = STRIPE_SIZE; 1189 rbi->bi_write_hint = sh->dev[i].write_hint; 1190 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; 1191 /* 1192 * If this is discard request, set bi_vcnt 0. We don't 1193 * want to confuse SCSI because SCSI will replace payload 1194 */ 1195 if (op == REQ_OP_DISCARD) 1196 rbi->bi_vcnt = 0; 1197 if (conf->mddev->gendisk) 1198 trace_block_bio_remap(rbi->bi_disk->queue, 1199 rbi, disk_devt(conf->mddev->gendisk), 1200 sh->dev[i].sector); 1201 if (should_defer && op_is_write(op)) 1202 bio_list_add(&pending_bios, rbi); 1203 else 1204 generic_make_request(rbi); 1205 } 1206 if (!rdev && !rrdev) { 1207 if (op_is_write(op)) 1208 set_bit(STRIPE_DEGRADED, &sh->state); 1209 pr_debug("skip op %d on disc %d for sector %llu\n", 1210 bi->bi_opf, i, (unsigned long long)sh->sector); 1211 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1212 set_bit(STRIPE_HANDLE, &sh->state); 1213 } 1214 1215 if (!head_sh->batch_head) 1216 continue; 1217 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1218 batch_list); 1219 if (sh != head_sh) 1220 goto again; 1221 } 1222 1223 if (should_defer && !bio_list_empty(&pending_bios)) 1224 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1225 } 1226 1227 static struct dma_async_tx_descriptor * 1228 async_copy_data(int frombio, struct bio *bio, struct page **page, 1229 sector_t sector, struct dma_async_tx_descriptor *tx, 1230 struct stripe_head *sh, int no_skipcopy) 1231 { 1232 struct bio_vec bvl; 1233 struct bvec_iter iter; 1234 struct page *bio_page; 1235 int page_offset; 1236 struct async_submit_ctl submit; 1237 enum async_tx_flags flags = 0; 1238 1239 if (bio->bi_iter.bi_sector >= sector) 1240 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1241 else 1242 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1243 1244 if (frombio) 1245 flags |= ASYNC_TX_FENCE; 1246 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1247 1248 bio_for_each_segment(bvl, bio, iter) { 1249 int len = bvl.bv_len; 1250 int clen; 1251 int b_offset = 0; 1252 1253 if (page_offset < 0) { 1254 b_offset = -page_offset; 1255 page_offset += b_offset; 1256 len -= b_offset; 1257 } 1258 1259 if (len > 0 && page_offset + len > STRIPE_SIZE) 1260 clen = STRIPE_SIZE - page_offset; 1261 else 1262 clen = len; 1263 1264 if (clen > 0) { 1265 b_offset += bvl.bv_offset; 1266 bio_page = bvl.bv_page; 1267 if (frombio) { 1268 if (sh->raid_conf->skip_copy && 1269 b_offset == 0 && page_offset == 0 && 1270 clen == STRIPE_SIZE && 1271 !no_skipcopy) 1272 *page = bio_page; 1273 else 1274 tx = async_memcpy(*page, bio_page, page_offset, 1275 b_offset, clen, &submit); 1276 } else 1277 tx = async_memcpy(bio_page, *page, b_offset, 1278 page_offset, clen, &submit); 1279 } 1280 /* chain the operations */ 1281 submit.depend_tx = tx; 1282 1283 if (clen < len) /* hit end of page */ 1284 break; 1285 page_offset += len; 1286 } 1287 1288 return tx; 1289 } 1290 1291 static void ops_complete_biofill(void *stripe_head_ref) 1292 { 1293 struct stripe_head *sh = stripe_head_ref; 1294 int i; 1295 1296 pr_debug("%s: stripe %llu\n", __func__, 1297 (unsigned long long)sh->sector); 1298 1299 /* clear completed biofills */ 1300 for (i = sh->disks; i--; ) { 1301 struct r5dev *dev = &sh->dev[i]; 1302 1303 /* acknowledge completion of a biofill operation */ 1304 /* and check if we need to reply to a read request, 1305 * new R5_Wantfill requests are held off until 1306 * !STRIPE_BIOFILL_RUN 1307 */ 1308 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1309 struct bio *rbi, *rbi2; 1310 1311 BUG_ON(!dev->read); 1312 rbi = dev->read; 1313 dev->read = NULL; 1314 while (rbi && rbi->bi_iter.bi_sector < 1315 dev->sector + STRIPE_SECTORS) { 1316 rbi2 = r5_next_bio(rbi, dev->sector); 1317 bio_endio(rbi); 1318 rbi = rbi2; 1319 } 1320 } 1321 } 1322 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1323 1324 set_bit(STRIPE_HANDLE, &sh->state); 1325 raid5_release_stripe(sh); 1326 } 1327 1328 static void ops_run_biofill(struct stripe_head *sh) 1329 { 1330 struct dma_async_tx_descriptor *tx = NULL; 1331 struct async_submit_ctl submit; 1332 int i; 1333 1334 BUG_ON(sh->batch_head); 1335 pr_debug("%s: stripe %llu\n", __func__, 1336 (unsigned long long)sh->sector); 1337 1338 for (i = sh->disks; i--; ) { 1339 struct r5dev *dev = &sh->dev[i]; 1340 if (test_bit(R5_Wantfill, &dev->flags)) { 1341 struct bio *rbi; 1342 spin_lock_irq(&sh->stripe_lock); 1343 dev->read = rbi = dev->toread; 1344 dev->toread = NULL; 1345 spin_unlock_irq(&sh->stripe_lock); 1346 while (rbi && rbi->bi_iter.bi_sector < 1347 dev->sector + STRIPE_SECTORS) { 1348 tx = async_copy_data(0, rbi, &dev->page, 1349 dev->sector, tx, sh, 0); 1350 rbi = r5_next_bio(rbi, dev->sector); 1351 } 1352 } 1353 } 1354 1355 atomic_inc(&sh->count); 1356 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1357 async_trigger_callback(&submit); 1358 } 1359 1360 static void mark_target_uptodate(struct stripe_head *sh, int target) 1361 { 1362 struct r5dev *tgt; 1363 1364 if (target < 0) 1365 return; 1366 1367 tgt = &sh->dev[target]; 1368 set_bit(R5_UPTODATE, &tgt->flags); 1369 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1370 clear_bit(R5_Wantcompute, &tgt->flags); 1371 } 1372 1373 static void ops_complete_compute(void *stripe_head_ref) 1374 { 1375 struct stripe_head *sh = stripe_head_ref; 1376 1377 pr_debug("%s: stripe %llu\n", __func__, 1378 (unsigned long long)sh->sector); 1379 1380 /* mark the computed target(s) as uptodate */ 1381 mark_target_uptodate(sh, sh->ops.target); 1382 mark_target_uptodate(sh, sh->ops.target2); 1383 1384 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1385 if (sh->check_state == check_state_compute_run) 1386 sh->check_state = check_state_compute_result; 1387 set_bit(STRIPE_HANDLE, &sh->state); 1388 raid5_release_stripe(sh); 1389 } 1390 1391 /* return a pointer to the address conversion region of the scribble buffer */ 1392 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1393 { 1394 return percpu->scribble + i * percpu->scribble_obj_size; 1395 } 1396 1397 /* return a pointer to the address conversion region of the scribble buffer */ 1398 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1399 struct raid5_percpu *percpu, int i) 1400 { 1401 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1402 } 1403 1404 static struct dma_async_tx_descriptor * 1405 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1406 { 1407 int disks = sh->disks; 1408 struct page **xor_srcs = to_addr_page(percpu, 0); 1409 int target = sh->ops.target; 1410 struct r5dev *tgt = &sh->dev[target]; 1411 struct page *xor_dest = tgt->page; 1412 int count = 0; 1413 struct dma_async_tx_descriptor *tx; 1414 struct async_submit_ctl submit; 1415 int i; 1416 1417 BUG_ON(sh->batch_head); 1418 1419 pr_debug("%s: stripe %llu block: %d\n", 1420 __func__, (unsigned long long)sh->sector, target); 1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1422 1423 for (i = disks; i--; ) 1424 if (i != target) 1425 xor_srcs[count++] = sh->dev[i].page; 1426 1427 atomic_inc(&sh->count); 1428 1429 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1430 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1431 if (unlikely(count == 1)) 1432 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1433 else 1434 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1435 1436 return tx; 1437 } 1438 1439 /* set_syndrome_sources - populate source buffers for gen_syndrome 1440 * @srcs - (struct page *) array of size sh->disks 1441 * @sh - stripe_head to parse 1442 * 1443 * Populates srcs in proper layout order for the stripe and returns the 1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1445 * destination buffer is recorded in srcs[count] and the Q destination 1446 * is recorded in srcs[count+1]]. 1447 */ 1448 static int set_syndrome_sources(struct page **srcs, 1449 struct stripe_head *sh, 1450 int srctype) 1451 { 1452 int disks = sh->disks; 1453 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1454 int d0_idx = raid6_d0(sh); 1455 int count; 1456 int i; 1457 1458 for (i = 0; i < disks; i++) 1459 srcs[i] = NULL; 1460 1461 count = 0; 1462 i = d0_idx; 1463 do { 1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1465 struct r5dev *dev = &sh->dev[i]; 1466 1467 if (i == sh->qd_idx || i == sh->pd_idx || 1468 (srctype == SYNDROME_SRC_ALL) || 1469 (srctype == SYNDROME_SRC_WANT_DRAIN && 1470 (test_bit(R5_Wantdrain, &dev->flags) || 1471 test_bit(R5_InJournal, &dev->flags))) || 1472 (srctype == SYNDROME_SRC_WRITTEN && 1473 (dev->written || 1474 test_bit(R5_InJournal, &dev->flags)))) { 1475 if (test_bit(R5_InJournal, &dev->flags)) 1476 srcs[slot] = sh->dev[i].orig_page; 1477 else 1478 srcs[slot] = sh->dev[i].page; 1479 } 1480 i = raid6_next_disk(i, disks); 1481 } while (i != d0_idx); 1482 1483 return syndrome_disks; 1484 } 1485 1486 static struct dma_async_tx_descriptor * 1487 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1488 { 1489 int disks = sh->disks; 1490 struct page **blocks = to_addr_page(percpu, 0); 1491 int target; 1492 int qd_idx = sh->qd_idx; 1493 struct dma_async_tx_descriptor *tx; 1494 struct async_submit_ctl submit; 1495 struct r5dev *tgt; 1496 struct page *dest; 1497 int i; 1498 int count; 1499 1500 BUG_ON(sh->batch_head); 1501 if (sh->ops.target < 0) 1502 target = sh->ops.target2; 1503 else if (sh->ops.target2 < 0) 1504 target = sh->ops.target; 1505 else 1506 /* we should only have one valid target */ 1507 BUG(); 1508 BUG_ON(target < 0); 1509 pr_debug("%s: stripe %llu block: %d\n", 1510 __func__, (unsigned long long)sh->sector, target); 1511 1512 tgt = &sh->dev[target]; 1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1514 dest = tgt->page; 1515 1516 atomic_inc(&sh->count); 1517 1518 if (target == qd_idx) { 1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1520 blocks[count] = NULL; /* regenerating p is not necessary */ 1521 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1522 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1523 ops_complete_compute, sh, 1524 to_addr_conv(sh, percpu, 0)); 1525 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1526 } else { 1527 /* Compute any data- or p-drive using XOR */ 1528 count = 0; 1529 for (i = disks; i-- ; ) { 1530 if (i == target || i == qd_idx) 1531 continue; 1532 blocks[count++] = sh->dev[i].page; 1533 } 1534 1535 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1536 NULL, ops_complete_compute, sh, 1537 to_addr_conv(sh, percpu, 0)); 1538 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1539 } 1540 1541 return tx; 1542 } 1543 1544 static struct dma_async_tx_descriptor * 1545 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1546 { 1547 int i, count, disks = sh->disks; 1548 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1549 int d0_idx = raid6_d0(sh); 1550 int faila = -1, failb = -1; 1551 int target = sh->ops.target; 1552 int target2 = sh->ops.target2; 1553 struct r5dev *tgt = &sh->dev[target]; 1554 struct r5dev *tgt2 = &sh->dev[target2]; 1555 struct dma_async_tx_descriptor *tx; 1556 struct page **blocks = to_addr_page(percpu, 0); 1557 struct async_submit_ctl submit; 1558 1559 BUG_ON(sh->batch_head); 1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1561 __func__, (unsigned long long)sh->sector, target, target2); 1562 BUG_ON(target < 0 || target2 < 0); 1563 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1564 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1565 1566 /* we need to open-code set_syndrome_sources to handle the 1567 * slot number conversion for 'faila' and 'failb' 1568 */ 1569 for (i = 0; i < disks ; i++) 1570 blocks[i] = NULL; 1571 count = 0; 1572 i = d0_idx; 1573 do { 1574 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1575 1576 blocks[slot] = sh->dev[i].page; 1577 1578 if (i == target) 1579 faila = slot; 1580 if (i == target2) 1581 failb = slot; 1582 i = raid6_next_disk(i, disks); 1583 } while (i != d0_idx); 1584 1585 BUG_ON(faila == failb); 1586 if (failb < faila) 1587 swap(faila, failb); 1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1589 __func__, (unsigned long long)sh->sector, faila, failb); 1590 1591 atomic_inc(&sh->count); 1592 1593 if (failb == syndrome_disks+1) { 1594 /* Q disk is one of the missing disks */ 1595 if (faila == syndrome_disks) { 1596 /* Missing P+Q, just recompute */ 1597 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1598 ops_complete_compute, sh, 1599 to_addr_conv(sh, percpu, 0)); 1600 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1601 STRIPE_SIZE, &submit); 1602 } else { 1603 struct page *dest; 1604 int data_target; 1605 int qd_idx = sh->qd_idx; 1606 1607 /* Missing D+Q: recompute D from P, then recompute Q */ 1608 if (target == qd_idx) 1609 data_target = target2; 1610 else 1611 data_target = target; 1612 1613 count = 0; 1614 for (i = disks; i-- ; ) { 1615 if (i == data_target || i == qd_idx) 1616 continue; 1617 blocks[count++] = sh->dev[i].page; 1618 } 1619 dest = sh->dev[data_target].page; 1620 init_async_submit(&submit, 1621 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1622 NULL, NULL, NULL, 1623 to_addr_conv(sh, percpu, 0)); 1624 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1625 &submit); 1626 1627 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1628 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1629 ops_complete_compute, sh, 1630 to_addr_conv(sh, percpu, 0)); 1631 return async_gen_syndrome(blocks, 0, count+2, 1632 STRIPE_SIZE, &submit); 1633 } 1634 } else { 1635 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1636 ops_complete_compute, sh, 1637 to_addr_conv(sh, percpu, 0)); 1638 if (failb == syndrome_disks) { 1639 /* We're missing D+P. */ 1640 return async_raid6_datap_recov(syndrome_disks+2, 1641 STRIPE_SIZE, faila, 1642 blocks, &submit); 1643 } else { 1644 /* We're missing D+D. */ 1645 return async_raid6_2data_recov(syndrome_disks+2, 1646 STRIPE_SIZE, faila, failb, 1647 blocks, &submit); 1648 } 1649 } 1650 } 1651 1652 static void ops_complete_prexor(void *stripe_head_ref) 1653 { 1654 struct stripe_head *sh = stripe_head_ref; 1655 1656 pr_debug("%s: stripe %llu\n", __func__, 1657 (unsigned long long)sh->sector); 1658 1659 if (r5c_is_writeback(sh->raid_conf->log)) 1660 /* 1661 * raid5-cache write back uses orig_page during prexor. 1662 * After prexor, it is time to free orig_page 1663 */ 1664 r5c_release_extra_page(sh); 1665 } 1666 1667 static struct dma_async_tx_descriptor * 1668 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1669 struct dma_async_tx_descriptor *tx) 1670 { 1671 int disks = sh->disks; 1672 struct page **xor_srcs = to_addr_page(percpu, 0); 1673 int count = 0, pd_idx = sh->pd_idx, i; 1674 struct async_submit_ctl submit; 1675 1676 /* existing parity data subtracted */ 1677 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1678 1679 BUG_ON(sh->batch_head); 1680 pr_debug("%s: stripe %llu\n", __func__, 1681 (unsigned long long)sh->sector); 1682 1683 for (i = disks; i--; ) { 1684 struct r5dev *dev = &sh->dev[i]; 1685 /* Only process blocks that are known to be uptodate */ 1686 if (test_bit(R5_InJournal, &dev->flags)) 1687 xor_srcs[count++] = dev->orig_page; 1688 else if (test_bit(R5_Wantdrain, &dev->flags)) 1689 xor_srcs[count++] = dev->page; 1690 } 1691 1692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1693 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1694 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1695 1696 return tx; 1697 } 1698 1699 static struct dma_async_tx_descriptor * 1700 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1701 struct dma_async_tx_descriptor *tx) 1702 { 1703 struct page **blocks = to_addr_page(percpu, 0); 1704 int count; 1705 struct async_submit_ctl submit; 1706 1707 pr_debug("%s: stripe %llu\n", __func__, 1708 (unsigned long long)sh->sector); 1709 1710 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1711 1712 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1713 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1714 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1715 1716 return tx; 1717 } 1718 1719 static struct dma_async_tx_descriptor * 1720 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1721 { 1722 struct r5conf *conf = sh->raid_conf; 1723 int disks = sh->disks; 1724 int i; 1725 struct stripe_head *head_sh = sh; 1726 1727 pr_debug("%s: stripe %llu\n", __func__, 1728 (unsigned long long)sh->sector); 1729 1730 for (i = disks; i--; ) { 1731 struct r5dev *dev; 1732 struct bio *chosen; 1733 1734 sh = head_sh; 1735 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1736 struct bio *wbi; 1737 1738 again: 1739 dev = &sh->dev[i]; 1740 /* 1741 * clear R5_InJournal, so when rewriting a page in 1742 * journal, it is not skipped by r5l_log_stripe() 1743 */ 1744 clear_bit(R5_InJournal, &dev->flags); 1745 spin_lock_irq(&sh->stripe_lock); 1746 chosen = dev->towrite; 1747 dev->towrite = NULL; 1748 sh->overwrite_disks = 0; 1749 BUG_ON(dev->written); 1750 wbi = dev->written = chosen; 1751 spin_unlock_irq(&sh->stripe_lock); 1752 WARN_ON(dev->page != dev->orig_page); 1753 1754 while (wbi && wbi->bi_iter.bi_sector < 1755 dev->sector + STRIPE_SECTORS) { 1756 if (wbi->bi_opf & REQ_FUA) 1757 set_bit(R5_WantFUA, &dev->flags); 1758 if (wbi->bi_opf & REQ_SYNC) 1759 set_bit(R5_SyncIO, &dev->flags); 1760 if (bio_op(wbi) == REQ_OP_DISCARD) 1761 set_bit(R5_Discard, &dev->flags); 1762 else { 1763 tx = async_copy_data(1, wbi, &dev->page, 1764 dev->sector, tx, sh, 1765 r5c_is_writeback(conf->log)); 1766 if (dev->page != dev->orig_page && 1767 !r5c_is_writeback(conf->log)) { 1768 set_bit(R5_SkipCopy, &dev->flags); 1769 clear_bit(R5_UPTODATE, &dev->flags); 1770 clear_bit(R5_OVERWRITE, &dev->flags); 1771 } 1772 } 1773 wbi = r5_next_bio(wbi, dev->sector); 1774 } 1775 1776 if (head_sh->batch_head) { 1777 sh = list_first_entry(&sh->batch_list, 1778 struct stripe_head, 1779 batch_list); 1780 if (sh == head_sh) 1781 continue; 1782 goto again; 1783 } 1784 } 1785 } 1786 1787 return tx; 1788 } 1789 1790 static void ops_complete_reconstruct(void *stripe_head_ref) 1791 { 1792 struct stripe_head *sh = stripe_head_ref; 1793 int disks = sh->disks; 1794 int pd_idx = sh->pd_idx; 1795 int qd_idx = sh->qd_idx; 1796 int i; 1797 bool fua = false, sync = false, discard = false; 1798 1799 pr_debug("%s: stripe %llu\n", __func__, 1800 (unsigned long long)sh->sector); 1801 1802 for (i = disks; i--; ) { 1803 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1804 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1805 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1806 } 1807 1808 for (i = disks; i--; ) { 1809 struct r5dev *dev = &sh->dev[i]; 1810 1811 if (dev->written || i == pd_idx || i == qd_idx) { 1812 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1813 set_bit(R5_UPTODATE, &dev->flags); 1814 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1815 set_bit(R5_Expanded, &dev->flags); 1816 } 1817 if (fua) 1818 set_bit(R5_WantFUA, &dev->flags); 1819 if (sync) 1820 set_bit(R5_SyncIO, &dev->flags); 1821 } 1822 } 1823 1824 if (sh->reconstruct_state == reconstruct_state_drain_run) 1825 sh->reconstruct_state = reconstruct_state_drain_result; 1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1828 else { 1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1830 sh->reconstruct_state = reconstruct_state_result; 1831 } 1832 1833 set_bit(STRIPE_HANDLE, &sh->state); 1834 raid5_release_stripe(sh); 1835 } 1836 1837 static void 1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1839 struct dma_async_tx_descriptor *tx) 1840 { 1841 int disks = sh->disks; 1842 struct page **xor_srcs; 1843 struct async_submit_ctl submit; 1844 int count, pd_idx = sh->pd_idx, i; 1845 struct page *xor_dest; 1846 int prexor = 0; 1847 unsigned long flags; 1848 int j = 0; 1849 struct stripe_head *head_sh = sh; 1850 int last_stripe; 1851 1852 pr_debug("%s: stripe %llu\n", __func__, 1853 (unsigned long long)sh->sector); 1854 1855 for (i = 0; i < sh->disks; i++) { 1856 if (pd_idx == i) 1857 continue; 1858 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1859 break; 1860 } 1861 if (i >= sh->disks) { 1862 atomic_inc(&sh->count); 1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1864 ops_complete_reconstruct(sh); 1865 return; 1866 } 1867 again: 1868 count = 0; 1869 xor_srcs = to_addr_page(percpu, j); 1870 /* check if prexor is active which means only process blocks 1871 * that are part of a read-modify-write (written) 1872 */ 1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1874 prexor = 1; 1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1876 for (i = disks; i--; ) { 1877 struct r5dev *dev = &sh->dev[i]; 1878 if (head_sh->dev[i].written || 1879 test_bit(R5_InJournal, &head_sh->dev[i].flags)) 1880 xor_srcs[count++] = dev->page; 1881 } 1882 } else { 1883 xor_dest = sh->dev[pd_idx].page; 1884 for (i = disks; i--; ) { 1885 struct r5dev *dev = &sh->dev[i]; 1886 if (i != pd_idx) 1887 xor_srcs[count++] = dev->page; 1888 } 1889 } 1890 1891 /* 1/ if we prexor'd then the dest is reused as a source 1892 * 2/ if we did not prexor then we are redoing the parity 1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1894 * for the synchronous xor case 1895 */ 1896 last_stripe = !head_sh->batch_head || 1897 list_first_entry(&sh->batch_list, 1898 struct stripe_head, batch_list) == head_sh; 1899 if (last_stripe) { 1900 flags = ASYNC_TX_ACK | 1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1902 1903 atomic_inc(&head_sh->count); 1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1905 to_addr_conv(sh, percpu, j)); 1906 } else { 1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1908 init_async_submit(&submit, flags, tx, NULL, NULL, 1909 to_addr_conv(sh, percpu, j)); 1910 } 1911 1912 if (unlikely(count == 1)) 1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1914 else 1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1916 if (!last_stripe) { 1917 j++; 1918 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1919 batch_list); 1920 goto again; 1921 } 1922 } 1923 1924 static void 1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1926 struct dma_async_tx_descriptor *tx) 1927 { 1928 struct async_submit_ctl submit; 1929 struct page **blocks; 1930 int count, i, j = 0; 1931 struct stripe_head *head_sh = sh; 1932 int last_stripe; 1933 int synflags; 1934 unsigned long txflags; 1935 1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1937 1938 for (i = 0; i < sh->disks; i++) { 1939 if (sh->pd_idx == i || sh->qd_idx == i) 1940 continue; 1941 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1942 break; 1943 } 1944 if (i >= sh->disks) { 1945 atomic_inc(&sh->count); 1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1948 ops_complete_reconstruct(sh); 1949 return; 1950 } 1951 1952 again: 1953 blocks = to_addr_page(percpu, j); 1954 1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1956 synflags = SYNDROME_SRC_WRITTEN; 1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1958 } else { 1959 synflags = SYNDROME_SRC_ALL; 1960 txflags = ASYNC_TX_ACK; 1961 } 1962 1963 count = set_syndrome_sources(blocks, sh, synflags); 1964 last_stripe = !head_sh->batch_head || 1965 list_first_entry(&sh->batch_list, 1966 struct stripe_head, batch_list) == head_sh; 1967 1968 if (last_stripe) { 1969 atomic_inc(&head_sh->count); 1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1971 head_sh, to_addr_conv(sh, percpu, j)); 1972 } else 1973 init_async_submit(&submit, 0, tx, NULL, NULL, 1974 to_addr_conv(sh, percpu, j)); 1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1976 if (!last_stripe) { 1977 j++; 1978 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1979 batch_list); 1980 goto again; 1981 } 1982 } 1983 1984 static void ops_complete_check(void *stripe_head_ref) 1985 { 1986 struct stripe_head *sh = stripe_head_ref; 1987 1988 pr_debug("%s: stripe %llu\n", __func__, 1989 (unsigned long long)sh->sector); 1990 1991 sh->check_state = check_state_check_result; 1992 set_bit(STRIPE_HANDLE, &sh->state); 1993 raid5_release_stripe(sh); 1994 } 1995 1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1997 { 1998 int disks = sh->disks; 1999 int pd_idx = sh->pd_idx; 2000 int qd_idx = sh->qd_idx; 2001 struct page *xor_dest; 2002 struct page **xor_srcs = to_addr_page(percpu, 0); 2003 struct dma_async_tx_descriptor *tx; 2004 struct async_submit_ctl submit; 2005 int count; 2006 int i; 2007 2008 pr_debug("%s: stripe %llu\n", __func__, 2009 (unsigned long long)sh->sector); 2010 2011 BUG_ON(sh->batch_head); 2012 count = 0; 2013 xor_dest = sh->dev[pd_idx].page; 2014 xor_srcs[count++] = xor_dest; 2015 for (i = disks; i--; ) { 2016 if (i == pd_idx || i == qd_idx) 2017 continue; 2018 xor_srcs[count++] = sh->dev[i].page; 2019 } 2020 2021 init_async_submit(&submit, 0, NULL, NULL, NULL, 2022 to_addr_conv(sh, percpu, 0)); 2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 2024 &sh->ops.zero_sum_result, &submit); 2025 2026 atomic_inc(&sh->count); 2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2028 tx = async_trigger_callback(&submit); 2029 } 2030 2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2032 { 2033 struct page **srcs = to_addr_page(percpu, 0); 2034 struct async_submit_ctl submit; 2035 int count; 2036 2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2038 (unsigned long long)sh->sector, checkp); 2039 2040 BUG_ON(sh->batch_head); 2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 2042 if (!checkp) 2043 srcs[count] = NULL; 2044 2045 atomic_inc(&sh->count); 2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2047 sh, to_addr_conv(sh, percpu, 0)); 2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 2050 } 2051 2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2053 { 2054 int overlap_clear = 0, i, disks = sh->disks; 2055 struct dma_async_tx_descriptor *tx = NULL; 2056 struct r5conf *conf = sh->raid_conf; 2057 int level = conf->level; 2058 struct raid5_percpu *percpu; 2059 unsigned long cpu; 2060 2061 cpu = get_cpu(); 2062 percpu = per_cpu_ptr(conf->percpu, cpu); 2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2064 ops_run_biofill(sh); 2065 overlap_clear++; 2066 } 2067 2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2069 if (level < 6) 2070 tx = ops_run_compute5(sh, percpu); 2071 else { 2072 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2073 tx = ops_run_compute6_1(sh, percpu); 2074 else 2075 tx = ops_run_compute6_2(sh, percpu); 2076 } 2077 /* terminate the chain if reconstruct is not set to be run */ 2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2079 async_tx_ack(tx); 2080 } 2081 2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2083 if (level < 6) 2084 tx = ops_run_prexor5(sh, percpu, tx); 2085 else 2086 tx = ops_run_prexor6(sh, percpu, tx); 2087 } 2088 2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2090 tx = ops_run_partial_parity(sh, percpu, tx); 2091 2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2093 tx = ops_run_biodrain(sh, tx); 2094 overlap_clear++; 2095 } 2096 2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2098 if (level < 6) 2099 ops_run_reconstruct5(sh, percpu, tx); 2100 else 2101 ops_run_reconstruct6(sh, percpu, tx); 2102 } 2103 2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2105 if (sh->check_state == check_state_run) 2106 ops_run_check_p(sh, percpu); 2107 else if (sh->check_state == check_state_run_q) 2108 ops_run_check_pq(sh, percpu, 0); 2109 else if (sh->check_state == check_state_run_pq) 2110 ops_run_check_pq(sh, percpu, 1); 2111 else 2112 BUG(); 2113 } 2114 2115 if (overlap_clear && !sh->batch_head) 2116 for (i = disks; i--; ) { 2117 struct r5dev *dev = &sh->dev[i]; 2118 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2119 wake_up(&sh->raid_conf->wait_for_overlap); 2120 } 2121 put_cpu(); 2122 } 2123 2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2125 { 2126 if (sh->ppl_page) 2127 __free_page(sh->ppl_page); 2128 kmem_cache_free(sc, sh); 2129 } 2130 2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2132 int disks, struct r5conf *conf) 2133 { 2134 struct stripe_head *sh; 2135 int i; 2136 2137 sh = kmem_cache_zalloc(sc, gfp); 2138 if (sh) { 2139 spin_lock_init(&sh->stripe_lock); 2140 spin_lock_init(&sh->batch_lock); 2141 INIT_LIST_HEAD(&sh->batch_list); 2142 INIT_LIST_HEAD(&sh->lru); 2143 INIT_LIST_HEAD(&sh->r5c); 2144 INIT_LIST_HEAD(&sh->log_list); 2145 atomic_set(&sh->count, 1); 2146 sh->raid_conf = conf; 2147 sh->log_start = MaxSector; 2148 for (i = 0; i < disks; i++) { 2149 struct r5dev *dev = &sh->dev[i]; 2150 2151 bio_init(&dev->req, &dev->vec, 1); 2152 bio_init(&dev->rreq, &dev->rvec, 1); 2153 } 2154 2155 if (raid5_has_ppl(conf)) { 2156 sh->ppl_page = alloc_page(gfp); 2157 if (!sh->ppl_page) { 2158 free_stripe(sc, sh); 2159 sh = NULL; 2160 } 2161 } 2162 } 2163 return sh; 2164 } 2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2166 { 2167 struct stripe_head *sh; 2168 2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2170 if (!sh) 2171 return 0; 2172 2173 if (grow_buffers(sh, gfp)) { 2174 shrink_buffers(sh); 2175 free_stripe(conf->slab_cache, sh); 2176 return 0; 2177 } 2178 sh->hash_lock_index = 2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2180 /* we just created an active stripe so... */ 2181 atomic_inc(&conf->active_stripes); 2182 2183 raid5_release_stripe(sh); 2184 conf->max_nr_stripes++; 2185 return 1; 2186 } 2187 2188 static int grow_stripes(struct r5conf *conf, int num) 2189 { 2190 struct kmem_cache *sc; 2191 size_t namelen = sizeof(conf->cache_name[0]); 2192 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2193 2194 if (conf->mddev->gendisk) 2195 snprintf(conf->cache_name[0], namelen, 2196 "raid%d-%s", conf->level, mdname(conf->mddev)); 2197 else 2198 snprintf(conf->cache_name[0], namelen, 2199 "raid%d-%p", conf->level, conf->mddev); 2200 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2201 2202 conf->active_name = 0; 2203 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2205 0, 0, NULL); 2206 if (!sc) 2207 return 1; 2208 conf->slab_cache = sc; 2209 conf->pool_size = devs; 2210 while (num--) 2211 if (!grow_one_stripe(conf, GFP_KERNEL)) 2212 return 1; 2213 2214 return 0; 2215 } 2216 2217 /** 2218 * scribble_len - return the required size of the scribble region 2219 * @num - total number of disks in the array 2220 * 2221 * The size must be enough to contain: 2222 * 1/ a struct page pointer for each device in the array +2 2223 * 2/ room to convert each entry in (1) to its corresponding dma 2224 * (dma_map_page()) or page (page_address()) address. 2225 * 2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2227 * calculate over all devices (not just the data blocks), using zeros in place 2228 * of the P and Q blocks. 2229 */ 2230 static int scribble_alloc(struct raid5_percpu *percpu, 2231 int num, int cnt, gfp_t flags) 2232 { 2233 size_t obj_size = 2234 sizeof(struct page *) * (num+2) + 2235 sizeof(addr_conv_t) * (num+2); 2236 void *scribble; 2237 2238 scribble = kvmalloc_array(cnt, obj_size, flags); 2239 if (!scribble) 2240 return -ENOMEM; 2241 2242 kvfree(percpu->scribble); 2243 2244 percpu->scribble = scribble; 2245 percpu->scribble_obj_size = obj_size; 2246 return 0; 2247 } 2248 2249 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2250 { 2251 unsigned long cpu; 2252 int err = 0; 2253 2254 /* 2255 * Never shrink. And mddev_suspend() could deadlock if this is called 2256 * from raid5d. In that case, scribble_disks and scribble_sectors 2257 * should equal to new_disks and new_sectors 2258 */ 2259 if (conf->scribble_disks >= new_disks && 2260 conf->scribble_sectors >= new_sectors) 2261 return 0; 2262 mddev_suspend(conf->mddev); 2263 get_online_cpus(); 2264 2265 for_each_present_cpu(cpu) { 2266 struct raid5_percpu *percpu; 2267 2268 percpu = per_cpu_ptr(conf->percpu, cpu); 2269 err = scribble_alloc(percpu, new_disks, 2270 new_sectors / STRIPE_SECTORS, 2271 GFP_NOIO); 2272 if (err) 2273 break; 2274 } 2275 2276 put_online_cpus(); 2277 mddev_resume(conf->mddev); 2278 if (!err) { 2279 conf->scribble_disks = new_disks; 2280 conf->scribble_sectors = new_sectors; 2281 } 2282 return err; 2283 } 2284 2285 static int resize_stripes(struct r5conf *conf, int newsize) 2286 { 2287 /* Make all the stripes able to hold 'newsize' devices. 2288 * New slots in each stripe get 'page' set to a new page. 2289 * 2290 * This happens in stages: 2291 * 1/ create a new kmem_cache and allocate the required number of 2292 * stripe_heads. 2293 * 2/ gather all the old stripe_heads and transfer the pages across 2294 * to the new stripe_heads. This will have the side effect of 2295 * freezing the array as once all stripe_heads have been collected, 2296 * no IO will be possible. Old stripe heads are freed once their 2297 * pages have been transferred over, and the old kmem_cache is 2298 * freed when all stripes are done. 2299 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2300 * we simple return a failure status - no need to clean anything up. 2301 * 4/ allocate new pages for the new slots in the new stripe_heads. 2302 * If this fails, we don't bother trying the shrink the 2303 * stripe_heads down again, we just leave them as they are. 2304 * As each stripe_head is processed the new one is released into 2305 * active service. 2306 * 2307 * Once step2 is started, we cannot afford to wait for a write, 2308 * so we use GFP_NOIO allocations. 2309 */ 2310 struct stripe_head *osh, *nsh; 2311 LIST_HEAD(newstripes); 2312 struct disk_info *ndisks; 2313 int err = 0; 2314 struct kmem_cache *sc; 2315 int i; 2316 int hash, cnt; 2317 2318 md_allow_write(conf->mddev); 2319 2320 /* Step 1 */ 2321 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2322 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2323 0, 0, NULL); 2324 if (!sc) 2325 return -ENOMEM; 2326 2327 /* Need to ensure auto-resizing doesn't interfere */ 2328 mutex_lock(&conf->cache_size_mutex); 2329 2330 for (i = conf->max_nr_stripes; i; i--) { 2331 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2332 if (!nsh) 2333 break; 2334 2335 list_add(&nsh->lru, &newstripes); 2336 } 2337 if (i) { 2338 /* didn't get enough, give up */ 2339 while (!list_empty(&newstripes)) { 2340 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2341 list_del(&nsh->lru); 2342 free_stripe(sc, nsh); 2343 } 2344 kmem_cache_destroy(sc); 2345 mutex_unlock(&conf->cache_size_mutex); 2346 return -ENOMEM; 2347 } 2348 /* Step 2 - Must use GFP_NOIO now. 2349 * OK, we have enough stripes, start collecting inactive 2350 * stripes and copying them over 2351 */ 2352 hash = 0; 2353 cnt = 0; 2354 list_for_each_entry(nsh, &newstripes, lru) { 2355 lock_device_hash_lock(conf, hash); 2356 wait_event_cmd(conf->wait_for_stripe, 2357 !list_empty(conf->inactive_list + hash), 2358 unlock_device_hash_lock(conf, hash), 2359 lock_device_hash_lock(conf, hash)); 2360 osh = get_free_stripe(conf, hash); 2361 unlock_device_hash_lock(conf, hash); 2362 2363 for(i=0; i<conf->pool_size; i++) { 2364 nsh->dev[i].page = osh->dev[i].page; 2365 nsh->dev[i].orig_page = osh->dev[i].page; 2366 } 2367 nsh->hash_lock_index = hash; 2368 free_stripe(conf->slab_cache, osh); 2369 cnt++; 2370 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2371 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2372 hash++; 2373 cnt = 0; 2374 } 2375 } 2376 kmem_cache_destroy(conf->slab_cache); 2377 2378 /* Step 3. 2379 * At this point, we are holding all the stripes so the array 2380 * is completely stalled, so now is a good time to resize 2381 * conf->disks and the scribble region 2382 */ 2383 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2384 if (ndisks) { 2385 for (i = 0; i < conf->pool_size; i++) 2386 ndisks[i] = conf->disks[i]; 2387 2388 for (i = conf->pool_size; i < newsize; i++) { 2389 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2390 if (!ndisks[i].extra_page) 2391 err = -ENOMEM; 2392 } 2393 2394 if (err) { 2395 for (i = conf->pool_size; i < newsize; i++) 2396 if (ndisks[i].extra_page) 2397 put_page(ndisks[i].extra_page); 2398 kfree(ndisks); 2399 } else { 2400 kfree(conf->disks); 2401 conf->disks = ndisks; 2402 } 2403 } else 2404 err = -ENOMEM; 2405 2406 mutex_unlock(&conf->cache_size_mutex); 2407 2408 conf->slab_cache = sc; 2409 conf->active_name = 1-conf->active_name; 2410 2411 /* Step 4, return new stripes to service */ 2412 while(!list_empty(&newstripes)) { 2413 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2414 list_del_init(&nsh->lru); 2415 2416 for (i=conf->raid_disks; i < newsize; i++) 2417 if (nsh->dev[i].page == NULL) { 2418 struct page *p = alloc_page(GFP_NOIO); 2419 nsh->dev[i].page = p; 2420 nsh->dev[i].orig_page = p; 2421 if (!p) 2422 err = -ENOMEM; 2423 } 2424 raid5_release_stripe(nsh); 2425 } 2426 /* critical section pass, GFP_NOIO no longer needed */ 2427 2428 if (!err) 2429 conf->pool_size = newsize; 2430 return err; 2431 } 2432 2433 static int drop_one_stripe(struct r5conf *conf) 2434 { 2435 struct stripe_head *sh; 2436 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2437 2438 spin_lock_irq(conf->hash_locks + hash); 2439 sh = get_free_stripe(conf, hash); 2440 spin_unlock_irq(conf->hash_locks + hash); 2441 if (!sh) 2442 return 0; 2443 BUG_ON(atomic_read(&sh->count)); 2444 shrink_buffers(sh); 2445 free_stripe(conf->slab_cache, sh); 2446 atomic_dec(&conf->active_stripes); 2447 conf->max_nr_stripes--; 2448 return 1; 2449 } 2450 2451 static void shrink_stripes(struct r5conf *conf) 2452 { 2453 while (conf->max_nr_stripes && 2454 drop_one_stripe(conf)) 2455 ; 2456 2457 kmem_cache_destroy(conf->slab_cache); 2458 conf->slab_cache = NULL; 2459 } 2460 2461 static void raid5_end_read_request(struct bio * bi) 2462 { 2463 struct stripe_head *sh = bi->bi_private; 2464 struct r5conf *conf = sh->raid_conf; 2465 int disks = sh->disks, i; 2466 char b[BDEVNAME_SIZE]; 2467 struct md_rdev *rdev = NULL; 2468 sector_t s; 2469 2470 for (i=0 ; i<disks; i++) 2471 if (bi == &sh->dev[i].req) 2472 break; 2473 2474 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2475 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2476 bi->bi_status); 2477 if (i == disks) { 2478 bio_reset(bi); 2479 BUG(); 2480 return; 2481 } 2482 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2483 /* If replacement finished while this request was outstanding, 2484 * 'replacement' might be NULL already. 2485 * In that case it moved down to 'rdev'. 2486 * rdev is not removed until all requests are finished. 2487 */ 2488 rdev = conf->disks[i].replacement; 2489 if (!rdev) 2490 rdev = conf->disks[i].rdev; 2491 2492 if (use_new_offset(conf, sh)) 2493 s = sh->sector + rdev->new_data_offset; 2494 else 2495 s = sh->sector + rdev->data_offset; 2496 if (!bi->bi_status) { 2497 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2498 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2499 /* Note that this cannot happen on a 2500 * replacement device. We just fail those on 2501 * any error 2502 */ 2503 pr_info_ratelimited( 2504 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2505 mdname(conf->mddev), STRIPE_SECTORS, 2506 (unsigned long long)s, 2507 bdevname(rdev->bdev, b)); 2508 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2509 clear_bit(R5_ReadError, &sh->dev[i].flags); 2510 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2511 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2512 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2513 2514 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2515 /* 2516 * end read for a page in journal, this 2517 * must be preparing for prexor in rmw 2518 */ 2519 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2520 2521 if (atomic_read(&rdev->read_errors)) 2522 atomic_set(&rdev->read_errors, 0); 2523 } else { 2524 const char *bdn = bdevname(rdev->bdev, b); 2525 int retry = 0; 2526 int set_bad = 0; 2527 2528 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2529 atomic_inc(&rdev->read_errors); 2530 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2531 pr_warn_ratelimited( 2532 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2533 mdname(conf->mddev), 2534 (unsigned long long)s, 2535 bdn); 2536 else if (conf->mddev->degraded >= conf->max_degraded) { 2537 set_bad = 1; 2538 pr_warn_ratelimited( 2539 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2540 mdname(conf->mddev), 2541 (unsigned long long)s, 2542 bdn); 2543 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2544 /* Oh, no!!! */ 2545 set_bad = 1; 2546 pr_warn_ratelimited( 2547 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2548 mdname(conf->mddev), 2549 (unsigned long long)s, 2550 bdn); 2551 } else if (atomic_read(&rdev->read_errors) 2552 > conf->max_nr_stripes) 2553 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2554 mdname(conf->mddev), bdn); 2555 else 2556 retry = 1; 2557 if (set_bad && test_bit(In_sync, &rdev->flags) 2558 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2559 retry = 1; 2560 if (retry) 2561 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2562 set_bit(R5_ReadError, &sh->dev[i].flags); 2563 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2564 } else 2565 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2566 else { 2567 clear_bit(R5_ReadError, &sh->dev[i].flags); 2568 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2569 if (!(set_bad 2570 && test_bit(In_sync, &rdev->flags) 2571 && rdev_set_badblocks( 2572 rdev, sh->sector, STRIPE_SECTORS, 0))) 2573 md_error(conf->mddev, rdev); 2574 } 2575 } 2576 rdev_dec_pending(rdev, conf->mddev); 2577 bio_reset(bi); 2578 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2579 set_bit(STRIPE_HANDLE, &sh->state); 2580 raid5_release_stripe(sh); 2581 } 2582 2583 static void raid5_end_write_request(struct bio *bi) 2584 { 2585 struct stripe_head *sh = bi->bi_private; 2586 struct r5conf *conf = sh->raid_conf; 2587 int disks = sh->disks, i; 2588 struct md_rdev *uninitialized_var(rdev); 2589 sector_t first_bad; 2590 int bad_sectors; 2591 int replacement = 0; 2592 2593 for (i = 0 ; i < disks; i++) { 2594 if (bi == &sh->dev[i].req) { 2595 rdev = conf->disks[i].rdev; 2596 break; 2597 } 2598 if (bi == &sh->dev[i].rreq) { 2599 rdev = conf->disks[i].replacement; 2600 if (rdev) 2601 replacement = 1; 2602 else 2603 /* rdev was removed and 'replacement' 2604 * replaced it. rdev is not removed 2605 * until all requests are finished. 2606 */ 2607 rdev = conf->disks[i].rdev; 2608 break; 2609 } 2610 } 2611 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2612 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2613 bi->bi_status); 2614 if (i == disks) { 2615 bio_reset(bi); 2616 BUG(); 2617 return; 2618 } 2619 2620 if (replacement) { 2621 if (bi->bi_status) 2622 md_error(conf->mddev, rdev); 2623 else if (is_badblock(rdev, sh->sector, 2624 STRIPE_SECTORS, 2625 &first_bad, &bad_sectors)) 2626 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2627 } else { 2628 if (bi->bi_status) { 2629 set_bit(STRIPE_DEGRADED, &sh->state); 2630 set_bit(WriteErrorSeen, &rdev->flags); 2631 set_bit(R5_WriteError, &sh->dev[i].flags); 2632 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2633 set_bit(MD_RECOVERY_NEEDED, 2634 &rdev->mddev->recovery); 2635 } else if (is_badblock(rdev, sh->sector, 2636 STRIPE_SECTORS, 2637 &first_bad, &bad_sectors)) { 2638 set_bit(R5_MadeGood, &sh->dev[i].flags); 2639 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2640 /* That was a successful write so make 2641 * sure it looks like we already did 2642 * a re-write. 2643 */ 2644 set_bit(R5_ReWrite, &sh->dev[i].flags); 2645 } 2646 } 2647 rdev_dec_pending(rdev, conf->mddev); 2648 2649 if (sh->batch_head && bi->bi_status && !replacement) 2650 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2651 2652 bio_reset(bi); 2653 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2654 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2655 set_bit(STRIPE_HANDLE, &sh->state); 2656 raid5_release_stripe(sh); 2657 2658 if (sh->batch_head && sh != sh->batch_head) 2659 raid5_release_stripe(sh->batch_head); 2660 } 2661 2662 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2663 { 2664 char b[BDEVNAME_SIZE]; 2665 struct r5conf *conf = mddev->private; 2666 unsigned long flags; 2667 pr_debug("raid456: error called\n"); 2668 2669 spin_lock_irqsave(&conf->device_lock, flags); 2670 2671 if (test_bit(In_sync, &rdev->flags) && 2672 mddev->degraded == conf->max_degraded) { 2673 /* 2674 * Don't allow to achieve failed state 2675 * Don't try to recover this device 2676 */ 2677 conf->recovery_disabled = mddev->recovery_disabled; 2678 spin_unlock_irqrestore(&conf->device_lock, flags); 2679 return; 2680 } 2681 2682 set_bit(Faulty, &rdev->flags); 2683 clear_bit(In_sync, &rdev->flags); 2684 mddev->degraded = raid5_calc_degraded(conf); 2685 spin_unlock_irqrestore(&conf->device_lock, flags); 2686 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2687 2688 set_bit(Blocked, &rdev->flags); 2689 set_mask_bits(&mddev->sb_flags, 0, 2690 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2691 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2692 "md/raid:%s: Operation continuing on %d devices.\n", 2693 mdname(mddev), 2694 bdevname(rdev->bdev, b), 2695 mdname(mddev), 2696 conf->raid_disks - mddev->degraded); 2697 r5c_update_on_rdev_error(mddev, rdev); 2698 } 2699 2700 /* 2701 * Input: a 'big' sector number, 2702 * Output: index of the data and parity disk, and the sector # in them. 2703 */ 2704 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2705 int previous, int *dd_idx, 2706 struct stripe_head *sh) 2707 { 2708 sector_t stripe, stripe2; 2709 sector_t chunk_number; 2710 unsigned int chunk_offset; 2711 int pd_idx, qd_idx; 2712 int ddf_layout = 0; 2713 sector_t new_sector; 2714 int algorithm = previous ? conf->prev_algo 2715 : conf->algorithm; 2716 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2717 : conf->chunk_sectors; 2718 int raid_disks = previous ? conf->previous_raid_disks 2719 : conf->raid_disks; 2720 int data_disks = raid_disks - conf->max_degraded; 2721 2722 /* First compute the information on this sector */ 2723 2724 /* 2725 * Compute the chunk number and the sector offset inside the chunk 2726 */ 2727 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2728 chunk_number = r_sector; 2729 2730 /* 2731 * Compute the stripe number 2732 */ 2733 stripe = chunk_number; 2734 *dd_idx = sector_div(stripe, data_disks); 2735 stripe2 = stripe; 2736 /* 2737 * Select the parity disk based on the user selected algorithm. 2738 */ 2739 pd_idx = qd_idx = -1; 2740 switch(conf->level) { 2741 case 4: 2742 pd_idx = data_disks; 2743 break; 2744 case 5: 2745 switch (algorithm) { 2746 case ALGORITHM_LEFT_ASYMMETRIC: 2747 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2748 if (*dd_idx >= pd_idx) 2749 (*dd_idx)++; 2750 break; 2751 case ALGORITHM_RIGHT_ASYMMETRIC: 2752 pd_idx = sector_div(stripe2, raid_disks); 2753 if (*dd_idx >= pd_idx) 2754 (*dd_idx)++; 2755 break; 2756 case ALGORITHM_LEFT_SYMMETRIC: 2757 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2758 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2759 break; 2760 case ALGORITHM_RIGHT_SYMMETRIC: 2761 pd_idx = sector_div(stripe2, raid_disks); 2762 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2763 break; 2764 case ALGORITHM_PARITY_0: 2765 pd_idx = 0; 2766 (*dd_idx)++; 2767 break; 2768 case ALGORITHM_PARITY_N: 2769 pd_idx = data_disks; 2770 break; 2771 default: 2772 BUG(); 2773 } 2774 break; 2775 case 6: 2776 2777 switch (algorithm) { 2778 case ALGORITHM_LEFT_ASYMMETRIC: 2779 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2780 qd_idx = pd_idx + 1; 2781 if (pd_idx == raid_disks-1) { 2782 (*dd_idx)++; /* Q D D D P */ 2783 qd_idx = 0; 2784 } else if (*dd_idx >= pd_idx) 2785 (*dd_idx) += 2; /* D D P Q D */ 2786 break; 2787 case ALGORITHM_RIGHT_ASYMMETRIC: 2788 pd_idx = sector_div(stripe2, raid_disks); 2789 qd_idx = pd_idx + 1; 2790 if (pd_idx == raid_disks-1) { 2791 (*dd_idx)++; /* Q D D D P */ 2792 qd_idx = 0; 2793 } else if (*dd_idx >= pd_idx) 2794 (*dd_idx) += 2; /* D D P Q D */ 2795 break; 2796 case ALGORITHM_LEFT_SYMMETRIC: 2797 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2798 qd_idx = (pd_idx + 1) % raid_disks; 2799 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2800 break; 2801 case ALGORITHM_RIGHT_SYMMETRIC: 2802 pd_idx = sector_div(stripe2, raid_disks); 2803 qd_idx = (pd_idx + 1) % raid_disks; 2804 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2805 break; 2806 2807 case ALGORITHM_PARITY_0: 2808 pd_idx = 0; 2809 qd_idx = 1; 2810 (*dd_idx) += 2; 2811 break; 2812 case ALGORITHM_PARITY_N: 2813 pd_idx = data_disks; 2814 qd_idx = data_disks + 1; 2815 break; 2816 2817 case ALGORITHM_ROTATING_ZERO_RESTART: 2818 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2819 * of blocks for computing Q is different. 2820 */ 2821 pd_idx = sector_div(stripe2, raid_disks); 2822 qd_idx = pd_idx + 1; 2823 if (pd_idx == raid_disks-1) { 2824 (*dd_idx)++; /* Q D D D P */ 2825 qd_idx = 0; 2826 } else if (*dd_idx >= pd_idx) 2827 (*dd_idx) += 2; /* D D P Q D */ 2828 ddf_layout = 1; 2829 break; 2830 2831 case ALGORITHM_ROTATING_N_RESTART: 2832 /* Same a left_asymmetric, by first stripe is 2833 * D D D P Q rather than 2834 * Q D D D P 2835 */ 2836 stripe2 += 1; 2837 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2838 qd_idx = pd_idx + 1; 2839 if (pd_idx == raid_disks-1) { 2840 (*dd_idx)++; /* Q D D D P */ 2841 qd_idx = 0; 2842 } else if (*dd_idx >= pd_idx) 2843 (*dd_idx) += 2; /* D D P Q D */ 2844 ddf_layout = 1; 2845 break; 2846 2847 case ALGORITHM_ROTATING_N_CONTINUE: 2848 /* Same as left_symmetric but Q is before P */ 2849 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2850 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2851 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2852 ddf_layout = 1; 2853 break; 2854 2855 case ALGORITHM_LEFT_ASYMMETRIC_6: 2856 /* RAID5 left_asymmetric, with Q on last device */ 2857 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2858 if (*dd_idx >= pd_idx) 2859 (*dd_idx)++; 2860 qd_idx = raid_disks - 1; 2861 break; 2862 2863 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2864 pd_idx = sector_div(stripe2, raid_disks-1); 2865 if (*dd_idx >= pd_idx) 2866 (*dd_idx)++; 2867 qd_idx = raid_disks - 1; 2868 break; 2869 2870 case ALGORITHM_LEFT_SYMMETRIC_6: 2871 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2872 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2873 qd_idx = raid_disks - 1; 2874 break; 2875 2876 case ALGORITHM_RIGHT_SYMMETRIC_6: 2877 pd_idx = sector_div(stripe2, raid_disks-1); 2878 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2879 qd_idx = raid_disks - 1; 2880 break; 2881 2882 case ALGORITHM_PARITY_0_6: 2883 pd_idx = 0; 2884 (*dd_idx)++; 2885 qd_idx = raid_disks - 1; 2886 break; 2887 2888 default: 2889 BUG(); 2890 } 2891 break; 2892 } 2893 2894 if (sh) { 2895 sh->pd_idx = pd_idx; 2896 sh->qd_idx = qd_idx; 2897 sh->ddf_layout = ddf_layout; 2898 } 2899 /* 2900 * Finally, compute the new sector number 2901 */ 2902 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2903 return new_sector; 2904 } 2905 2906 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2907 { 2908 struct r5conf *conf = sh->raid_conf; 2909 int raid_disks = sh->disks; 2910 int data_disks = raid_disks - conf->max_degraded; 2911 sector_t new_sector = sh->sector, check; 2912 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2913 : conf->chunk_sectors; 2914 int algorithm = previous ? conf->prev_algo 2915 : conf->algorithm; 2916 sector_t stripe; 2917 int chunk_offset; 2918 sector_t chunk_number; 2919 int dummy1, dd_idx = i; 2920 sector_t r_sector; 2921 struct stripe_head sh2; 2922 2923 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2924 stripe = new_sector; 2925 2926 if (i == sh->pd_idx) 2927 return 0; 2928 switch(conf->level) { 2929 case 4: break; 2930 case 5: 2931 switch (algorithm) { 2932 case ALGORITHM_LEFT_ASYMMETRIC: 2933 case ALGORITHM_RIGHT_ASYMMETRIC: 2934 if (i > sh->pd_idx) 2935 i--; 2936 break; 2937 case ALGORITHM_LEFT_SYMMETRIC: 2938 case ALGORITHM_RIGHT_SYMMETRIC: 2939 if (i < sh->pd_idx) 2940 i += raid_disks; 2941 i -= (sh->pd_idx + 1); 2942 break; 2943 case ALGORITHM_PARITY_0: 2944 i -= 1; 2945 break; 2946 case ALGORITHM_PARITY_N: 2947 break; 2948 default: 2949 BUG(); 2950 } 2951 break; 2952 case 6: 2953 if (i == sh->qd_idx) 2954 return 0; /* It is the Q disk */ 2955 switch (algorithm) { 2956 case ALGORITHM_LEFT_ASYMMETRIC: 2957 case ALGORITHM_RIGHT_ASYMMETRIC: 2958 case ALGORITHM_ROTATING_ZERO_RESTART: 2959 case ALGORITHM_ROTATING_N_RESTART: 2960 if (sh->pd_idx == raid_disks-1) 2961 i--; /* Q D D D P */ 2962 else if (i > sh->pd_idx) 2963 i -= 2; /* D D P Q D */ 2964 break; 2965 case ALGORITHM_LEFT_SYMMETRIC: 2966 case ALGORITHM_RIGHT_SYMMETRIC: 2967 if (sh->pd_idx == raid_disks-1) 2968 i--; /* Q D D D P */ 2969 else { 2970 /* D D P Q D */ 2971 if (i < sh->pd_idx) 2972 i += raid_disks; 2973 i -= (sh->pd_idx + 2); 2974 } 2975 break; 2976 case ALGORITHM_PARITY_0: 2977 i -= 2; 2978 break; 2979 case ALGORITHM_PARITY_N: 2980 break; 2981 case ALGORITHM_ROTATING_N_CONTINUE: 2982 /* Like left_symmetric, but P is before Q */ 2983 if (sh->pd_idx == 0) 2984 i--; /* P D D D Q */ 2985 else { 2986 /* D D Q P D */ 2987 if (i < sh->pd_idx) 2988 i += raid_disks; 2989 i -= (sh->pd_idx + 1); 2990 } 2991 break; 2992 case ALGORITHM_LEFT_ASYMMETRIC_6: 2993 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2994 if (i > sh->pd_idx) 2995 i--; 2996 break; 2997 case ALGORITHM_LEFT_SYMMETRIC_6: 2998 case ALGORITHM_RIGHT_SYMMETRIC_6: 2999 if (i < sh->pd_idx) 3000 i += data_disks + 1; 3001 i -= (sh->pd_idx + 1); 3002 break; 3003 case ALGORITHM_PARITY_0_6: 3004 i -= 1; 3005 break; 3006 default: 3007 BUG(); 3008 } 3009 break; 3010 } 3011 3012 chunk_number = stripe * data_disks + i; 3013 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3014 3015 check = raid5_compute_sector(conf, r_sector, 3016 previous, &dummy1, &sh2); 3017 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3018 || sh2.qd_idx != sh->qd_idx) { 3019 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3020 mdname(conf->mddev)); 3021 return 0; 3022 } 3023 return r_sector; 3024 } 3025 3026 /* 3027 * There are cases where we want handle_stripe_dirtying() and 3028 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3029 * 3030 * This function checks whether we want to delay the towrite. Specifically, 3031 * we delay the towrite when: 3032 * 3033 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3034 * stripe has data in journal (for other devices). 3035 * 3036 * In this case, when reading data for the non-overwrite dev, it is 3037 * necessary to handle complex rmw of write back cache (prexor with 3038 * orig_page, and xor with page). To keep read path simple, we would 3039 * like to flush data in journal to RAID disks first, so complex rmw 3040 * is handled in the write patch (handle_stripe_dirtying). 3041 * 3042 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3043 * 3044 * It is important to be able to flush all stripes in raid5-cache. 3045 * Therefore, we need reserve some space on the journal device for 3046 * these flushes. If flush operation includes pending writes to the 3047 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3048 * for the flush out. If we exclude these pending writes from flush 3049 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3050 * Therefore, excluding pending writes in these cases enables more 3051 * efficient use of the journal device. 3052 * 3053 * Note: To make sure the stripe makes progress, we only delay 3054 * towrite for stripes with data already in journal (injournal > 0). 3055 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3056 * no_space_stripes list. 3057 * 3058 * 3. during journal failure 3059 * In journal failure, we try to flush all cached data to raid disks 3060 * based on data in stripe cache. The array is read-only to upper 3061 * layers, so we would skip all pending writes. 3062 * 3063 */ 3064 static inline bool delay_towrite(struct r5conf *conf, 3065 struct r5dev *dev, 3066 struct stripe_head_state *s) 3067 { 3068 /* case 1 above */ 3069 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3070 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3071 return true; 3072 /* case 2 above */ 3073 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3074 s->injournal > 0) 3075 return true; 3076 /* case 3 above */ 3077 if (s->log_failed && s->injournal) 3078 return true; 3079 return false; 3080 } 3081 3082 static void 3083 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3084 int rcw, int expand) 3085 { 3086 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3087 struct r5conf *conf = sh->raid_conf; 3088 int level = conf->level; 3089 3090 if (rcw) { 3091 /* 3092 * In some cases, handle_stripe_dirtying initially decided to 3093 * run rmw and allocates extra page for prexor. However, rcw is 3094 * cheaper later on. We need to free the extra page now, 3095 * because we won't be able to do that in ops_complete_prexor(). 3096 */ 3097 r5c_release_extra_page(sh); 3098 3099 for (i = disks; i--; ) { 3100 struct r5dev *dev = &sh->dev[i]; 3101 3102 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3103 set_bit(R5_LOCKED, &dev->flags); 3104 set_bit(R5_Wantdrain, &dev->flags); 3105 if (!expand) 3106 clear_bit(R5_UPTODATE, &dev->flags); 3107 s->locked++; 3108 } else if (test_bit(R5_InJournal, &dev->flags)) { 3109 set_bit(R5_LOCKED, &dev->flags); 3110 s->locked++; 3111 } 3112 } 3113 /* if we are not expanding this is a proper write request, and 3114 * there will be bios with new data to be drained into the 3115 * stripe cache 3116 */ 3117 if (!expand) { 3118 if (!s->locked) 3119 /* False alarm, nothing to do */ 3120 return; 3121 sh->reconstruct_state = reconstruct_state_drain_run; 3122 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3123 } else 3124 sh->reconstruct_state = reconstruct_state_run; 3125 3126 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3127 3128 if (s->locked + conf->max_degraded == disks) 3129 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3130 atomic_inc(&conf->pending_full_writes); 3131 } else { 3132 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3133 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3134 BUG_ON(level == 6 && 3135 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3136 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3137 3138 for (i = disks; i--; ) { 3139 struct r5dev *dev = &sh->dev[i]; 3140 if (i == pd_idx || i == qd_idx) 3141 continue; 3142 3143 if (dev->towrite && 3144 (test_bit(R5_UPTODATE, &dev->flags) || 3145 test_bit(R5_Wantcompute, &dev->flags))) { 3146 set_bit(R5_Wantdrain, &dev->flags); 3147 set_bit(R5_LOCKED, &dev->flags); 3148 clear_bit(R5_UPTODATE, &dev->flags); 3149 s->locked++; 3150 } else if (test_bit(R5_InJournal, &dev->flags)) { 3151 set_bit(R5_LOCKED, &dev->flags); 3152 s->locked++; 3153 } 3154 } 3155 if (!s->locked) 3156 /* False alarm - nothing to do */ 3157 return; 3158 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3159 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3160 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3161 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3162 } 3163 3164 /* keep the parity disk(s) locked while asynchronous operations 3165 * are in flight 3166 */ 3167 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3168 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3169 s->locked++; 3170 3171 if (level == 6) { 3172 int qd_idx = sh->qd_idx; 3173 struct r5dev *dev = &sh->dev[qd_idx]; 3174 3175 set_bit(R5_LOCKED, &dev->flags); 3176 clear_bit(R5_UPTODATE, &dev->flags); 3177 s->locked++; 3178 } 3179 3180 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3181 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3182 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3183 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3184 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3185 3186 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3187 __func__, (unsigned long long)sh->sector, 3188 s->locked, s->ops_request); 3189 } 3190 3191 /* 3192 * Each stripe/dev can have one or more bion attached. 3193 * toread/towrite point to the first in a chain. 3194 * The bi_next chain must be in order. 3195 */ 3196 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3197 int forwrite, int previous) 3198 { 3199 struct bio **bip; 3200 struct r5conf *conf = sh->raid_conf; 3201 int firstwrite=0; 3202 3203 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3204 (unsigned long long)bi->bi_iter.bi_sector, 3205 (unsigned long long)sh->sector); 3206 3207 spin_lock_irq(&sh->stripe_lock); 3208 sh->dev[dd_idx].write_hint = bi->bi_write_hint; 3209 /* Don't allow new IO added to stripes in batch list */ 3210 if (sh->batch_head) 3211 goto overlap; 3212 if (forwrite) { 3213 bip = &sh->dev[dd_idx].towrite; 3214 if (*bip == NULL) 3215 firstwrite = 1; 3216 } else 3217 bip = &sh->dev[dd_idx].toread; 3218 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3219 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3220 goto overlap; 3221 bip = & (*bip)->bi_next; 3222 } 3223 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3224 goto overlap; 3225 3226 if (forwrite && raid5_has_ppl(conf)) { 3227 /* 3228 * With PPL only writes to consecutive data chunks within a 3229 * stripe are allowed because for a single stripe_head we can 3230 * only have one PPL entry at a time, which describes one data 3231 * range. Not really an overlap, but wait_for_overlap can be 3232 * used to handle this. 3233 */ 3234 sector_t sector; 3235 sector_t first = 0; 3236 sector_t last = 0; 3237 int count = 0; 3238 int i; 3239 3240 for (i = 0; i < sh->disks; i++) { 3241 if (i != sh->pd_idx && 3242 (i == dd_idx || sh->dev[i].towrite)) { 3243 sector = sh->dev[i].sector; 3244 if (count == 0 || sector < first) 3245 first = sector; 3246 if (sector > last) 3247 last = sector; 3248 count++; 3249 } 3250 } 3251 3252 if (first + conf->chunk_sectors * (count - 1) != last) 3253 goto overlap; 3254 } 3255 3256 if (!forwrite || previous) 3257 clear_bit(STRIPE_BATCH_READY, &sh->state); 3258 3259 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3260 if (*bip) 3261 bi->bi_next = *bip; 3262 *bip = bi; 3263 bio_inc_remaining(bi); 3264 md_write_inc(conf->mddev, bi); 3265 3266 if (forwrite) { 3267 /* check if page is covered */ 3268 sector_t sector = sh->dev[dd_idx].sector; 3269 for (bi=sh->dev[dd_idx].towrite; 3270 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3271 bi && bi->bi_iter.bi_sector <= sector; 3272 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3273 if (bio_end_sector(bi) >= sector) 3274 sector = bio_end_sector(bi); 3275 } 3276 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3277 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3278 sh->overwrite_disks++; 3279 } 3280 3281 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3282 (unsigned long long)(*bip)->bi_iter.bi_sector, 3283 (unsigned long long)sh->sector, dd_idx); 3284 3285 if (conf->mddev->bitmap && firstwrite) { 3286 /* Cannot hold spinlock over bitmap_startwrite, 3287 * but must ensure this isn't added to a batch until 3288 * we have added to the bitmap and set bm_seq. 3289 * So set STRIPE_BITMAP_PENDING to prevent 3290 * batching. 3291 * If multiple add_stripe_bio() calls race here they 3292 * much all set STRIPE_BITMAP_PENDING. So only the first one 3293 * to complete "bitmap_startwrite" gets to set 3294 * STRIPE_BIT_DELAY. This is important as once a stripe 3295 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3296 * any more. 3297 */ 3298 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3299 spin_unlock_irq(&sh->stripe_lock); 3300 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3301 STRIPE_SECTORS, 0); 3302 spin_lock_irq(&sh->stripe_lock); 3303 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3304 if (!sh->batch_head) { 3305 sh->bm_seq = conf->seq_flush+1; 3306 set_bit(STRIPE_BIT_DELAY, &sh->state); 3307 } 3308 } 3309 spin_unlock_irq(&sh->stripe_lock); 3310 3311 if (stripe_can_batch(sh)) 3312 stripe_add_to_batch_list(conf, sh); 3313 return 1; 3314 3315 overlap: 3316 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3317 spin_unlock_irq(&sh->stripe_lock); 3318 return 0; 3319 } 3320 3321 static void end_reshape(struct r5conf *conf); 3322 3323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3324 struct stripe_head *sh) 3325 { 3326 int sectors_per_chunk = 3327 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3328 int dd_idx; 3329 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3330 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3331 3332 raid5_compute_sector(conf, 3333 stripe * (disks - conf->max_degraded) 3334 *sectors_per_chunk + chunk_offset, 3335 previous, 3336 &dd_idx, sh); 3337 } 3338 3339 static void 3340 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3341 struct stripe_head_state *s, int disks) 3342 { 3343 int i; 3344 BUG_ON(sh->batch_head); 3345 for (i = disks; i--; ) { 3346 struct bio *bi; 3347 int bitmap_end = 0; 3348 3349 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3350 struct md_rdev *rdev; 3351 rcu_read_lock(); 3352 rdev = rcu_dereference(conf->disks[i].rdev); 3353 if (rdev && test_bit(In_sync, &rdev->flags) && 3354 !test_bit(Faulty, &rdev->flags)) 3355 atomic_inc(&rdev->nr_pending); 3356 else 3357 rdev = NULL; 3358 rcu_read_unlock(); 3359 if (rdev) { 3360 if (!rdev_set_badblocks( 3361 rdev, 3362 sh->sector, 3363 STRIPE_SECTORS, 0)) 3364 md_error(conf->mddev, rdev); 3365 rdev_dec_pending(rdev, conf->mddev); 3366 } 3367 } 3368 spin_lock_irq(&sh->stripe_lock); 3369 /* fail all writes first */ 3370 bi = sh->dev[i].towrite; 3371 sh->dev[i].towrite = NULL; 3372 sh->overwrite_disks = 0; 3373 spin_unlock_irq(&sh->stripe_lock); 3374 if (bi) 3375 bitmap_end = 1; 3376 3377 log_stripe_write_finished(sh); 3378 3379 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3380 wake_up(&conf->wait_for_overlap); 3381 3382 while (bi && bi->bi_iter.bi_sector < 3383 sh->dev[i].sector + STRIPE_SECTORS) { 3384 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3385 3386 md_write_end(conf->mddev); 3387 bio_io_error(bi); 3388 bi = nextbi; 3389 } 3390 if (bitmap_end) 3391 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3392 STRIPE_SECTORS, 0, 0); 3393 bitmap_end = 0; 3394 /* and fail all 'written' */ 3395 bi = sh->dev[i].written; 3396 sh->dev[i].written = NULL; 3397 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3398 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3399 sh->dev[i].page = sh->dev[i].orig_page; 3400 } 3401 3402 if (bi) bitmap_end = 1; 3403 while (bi && bi->bi_iter.bi_sector < 3404 sh->dev[i].sector + STRIPE_SECTORS) { 3405 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3406 3407 md_write_end(conf->mddev); 3408 bio_io_error(bi); 3409 bi = bi2; 3410 } 3411 3412 /* fail any reads if this device is non-operational and 3413 * the data has not reached the cache yet. 3414 */ 3415 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3416 s->failed > conf->max_degraded && 3417 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3418 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3419 spin_lock_irq(&sh->stripe_lock); 3420 bi = sh->dev[i].toread; 3421 sh->dev[i].toread = NULL; 3422 spin_unlock_irq(&sh->stripe_lock); 3423 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3424 wake_up(&conf->wait_for_overlap); 3425 if (bi) 3426 s->to_read--; 3427 while (bi && bi->bi_iter.bi_sector < 3428 sh->dev[i].sector + STRIPE_SECTORS) { 3429 struct bio *nextbi = 3430 r5_next_bio(bi, sh->dev[i].sector); 3431 3432 bio_io_error(bi); 3433 bi = nextbi; 3434 } 3435 } 3436 if (bitmap_end) 3437 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3438 STRIPE_SECTORS, 0, 0); 3439 /* If we were in the middle of a write the parity block might 3440 * still be locked - so just clear all R5_LOCKED flags 3441 */ 3442 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3443 } 3444 s->to_write = 0; 3445 s->written = 0; 3446 3447 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3448 if (atomic_dec_and_test(&conf->pending_full_writes)) 3449 md_wakeup_thread(conf->mddev->thread); 3450 } 3451 3452 static void 3453 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3454 struct stripe_head_state *s) 3455 { 3456 int abort = 0; 3457 int i; 3458 3459 BUG_ON(sh->batch_head); 3460 clear_bit(STRIPE_SYNCING, &sh->state); 3461 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3462 wake_up(&conf->wait_for_overlap); 3463 s->syncing = 0; 3464 s->replacing = 0; 3465 /* There is nothing more to do for sync/check/repair. 3466 * Don't even need to abort as that is handled elsewhere 3467 * if needed, and not always wanted e.g. if there is a known 3468 * bad block here. 3469 * For recover/replace we need to record a bad block on all 3470 * non-sync devices, or abort the recovery 3471 */ 3472 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3473 /* During recovery devices cannot be removed, so 3474 * locking and refcounting of rdevs is not needed 3475 */ 3476 rcu_read_lock(); 3477 for (i = 0; i < conf->raid_disks; i++) { 3478 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3479 if (rdev 3480 && !test_bit(Faulty, &rdev->flags) 3481 && !test_bit(In_sync, &rdev->flags) 3482 && !rdev_set_badblocks(rdev, sh->sector, 3483 STRIPE_SECTORS, 0)) 3484 abort = 1; 3485 rdev = rcu_dereference(conf->disks[i].replacement); 3486 if (rdev 3487 && !test_bit(Faulty, &rdev->flags) 3488 && !test_bit(In_sync, &rdev->flags) 3489 && !rdev_set_badblocks(rdev, sh->sector, 3490 STRIPE_SECTORS, 0)) 3491 abort = 1; 3492 } 3493 rcu_read_unlock(); 3494 if (abort) 3495 conf->recovery_disabled = 3496 conf->mddev->recovery_disabled; 3497 } 3498 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3499 } 3500 3501 static int want_replace(struct stripe_head *sh, int disk_idx) 3502 { 3503 struct md_rdev *rdev; 3504 int rv = 0; 3505 3506 rcu_read_lock(); 3507 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3508 if (rdev 3509 && !test_bit(Faulty, &rdev->flags) 3510 && !test_bit(In_sync, &rdev->flags) 3511 && (rdev->recovery_offset <= sh->sector 3512 || rdev->mddev->recovery_cp <= sh->sector)) 3513 rv = 1; 3514 rcu_read_unlock(); 3515 return rv; 3516 } 3517 3518 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3519 int disk_idx, int disks) 3520 { 3521 struct r5dev *dev = &sh->dev[disk_idx]; 3522 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3523 &sh->dev[s->failed_num[1]] }; 3524 int i; 3525 3526 3527 if (test_bit(R5_LOCKED, &dev->flags) || 3528 test_bit(R5_UPTODATE, &dev->flags)) 3529 /* No point reading this as we already have it or have 3530 * decided to get it. 3531 */ 3532 return 0; 3533 3534 if (dev->toread || 3535 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3536 /* We need this block to directly satisfy a request */ 3537 return 1; 3538 3539 if (s->syncing || s->expanding || 3540 (s->replacing && want_replace(sh, disk_idx))) 3541 /* When syncing, or expanding we read everything. 3542 * When replacing, we need the replaced block. 3543 */ 3544 return 1; 3545 3546 if ((s->failed >= 1 && fdev[0]->toread) || 3547 (s->failed >= 2 && fdev[1]->toread)) 3548 /* If we want to read from a failed device, then 3549 * we need to actually read every other device. 3550 */ 3551 return 1; 3552 3553 /* Sometimes neither read-modify-write nor reconstruct-write 3554 * cycles can work. In those cases we read every block we 3555 * can. Then the parity-update is certain to have enough to 3556 * work with. 3557 * This can only be a problem when we need to write something, 3558 * and some device has failed. If either of those tests 3559 * fail we need look no further. 3560 */ 3561 if (!s->failed || !s->to_write) 3562 return 0; 3563 3564 if (test_bit(R5_Insync, &dev->flags) && 3565 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3566 /* Pre-reads at not permitted until after short delay 3567 * to gather multiple requests. However if this 3568 * device is no Insync, the block could only be computed 3569 * and there is no need to delay that. 3570 */ 3571 return 0; 3572 3573 for (i = 0; i < s->failed && i < 2; i++) { 3574 if (fdev[i]->towrite && 3575 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3576 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3577 /* If we have a partial write to a failed 3578 * device, then we will need to reconstruct 3579 * the content of that device, so all other 3580 * devices must be read. 3581 */ 3582 return 1; 3583 } 3584 3585 /* If we are forced to do a reconstruct-write, either because 3586 * the current RAID6 implementation only supports that, or 3587 * because parity cannot be trusted and we are currently 3588 * recovering it, there is extra need to be careful. 3589 * If one of the devices that we would need to read, because 3590 * it is not being overwritten (and maybe not written at all) 3591 * is missing/faulty, then we need to read everything we can. 3592 */ 3593 if (sh->raid_conf->level != 6 && 3594 sh->sector < sh->raid_conf->mddev->recovery_cp) 3595 /* reconstruct-write isn't being forced */ 3596 return 0; 3597 for (i = 0; i < s->failed && i < 2; i++) { 3598 if (s->failed_num[i] != sh->pd_idx && 3599 s->failed_num[i] != sh->qd_idx && 3600 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3601 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3602 return 1; 3603 } 3604 3605 return 0; 3606 } 3607 3608 /* fetch_block - checks the given member device to see if its data needs 3609 * to be read or computed to satisfy a request. 3610 * 3611 * Returns 1 when no more member devices need to be checked, otherwise returns 3612 * 0 to tell the loop in handle_stripe_fill to continue 3613 */ 3614 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3615 int disk_idx, int disks) 3616 { 3617 struct r5dev *dev = &sh->dev[disk_idx]; 3618 3619 /* is the data in this block needed, and can we get it? */ 3620 if (need_this_block(sh, s, disk_idx, disks)) { 3621 /* we would like to get this block, possibly by computing it, 3622 * otherwise read it if the backing disk is insync 3623 */ 3624 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3625 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3626 BUG_ON(sh->batch_head); 3627 3628 /* 3629 * In the raid6 case if the only non-uptodate disk is P 3630 * then we already trusted P to compute the other failed 3631 * drives. It is safe to compute rather than re-read P. 3632 * In other cases we only compute blocks from failed 3633 * devices, otherwise check/repair might fail to detect 3634 * a real inconsistency. 3635 */ 3636 3637 if ((s->uptodate == disks - 1) && 3638 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3639 (s->failed && (disk_idx == s->failed_num[0] || 3640 disk_idx == s->failed_num[1])))) { 3641 /* have disk failed, and we're requested to fetch it; 3642 * do compute it 3643 */ 3644 pr_debug("Computing stripe %llu block %d\n", 3645 (unsigned long long)sh->sector, disk_idx); 3646 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3647 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3648 set_bit(R5_Wantcompute, &dev->flags); 3649 sh->ops.target = disk_idx; 3650 sh->ops.target2 = -1; /* no 2nd target */ 3651 s->req_compute = 1; 3652 /* Careful: from this point on 'uptodate' is in the eye 3653 * of raid_run_ops which services 'compute' operations 3654 * before writes. R5_Wantcompute flags a block that will 3655 * be R5_UPTODATE by the time it is needed for a 3656 * subsequent operation. 3657 */ 3658 s->uptodate++; 3659 return 1; 3660 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3661 /* Computing 2-failure is *very* expensive; only 3662 * do it if failed >= 2 3663 */ 3664 int other; 3665 for (other = disks; other--; ) { 3666 if (other == disk_idx) 3667 continue; 3668 if (!test_bit(R5_UPTODATE, 3669 &sh->dev[other].flags)) 3670 break; 3671 } 3672 BUG_ON(other < 0); 3673 pr_debug("Computing stripe %llu blocks %d,%d\n", 3674 (unsigned long long)sh->sector, 3675 disk_idx, other); 3676 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3677 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3678 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3679 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3680 sh->ops.target = disk_idx; 3681 sh->ops.target2 = other; 3682 s->uptodate += 2; 3683 s->req_compute = 1; 3684 return 1; 3685 } else if (test_bit(R5_Insync, &dev->flags)) { 3686 set_bit(R5_LOCKED, &dev->flags); 3687 set_bit(R5_Wantread, &dev->flags); 3688 s->locked++; 3689 pr_debug("Reading block %d (sync=%d)\n", 3690 disk_idx, s->syncing); 3691 } 3692 } 3693 3694 return 0; 3695 } 3696 3697 /** 3698 * handle_stripe_fill - read or compute data to satisfy pending requests. 3699 */ 3700 static void handle_stripe_fill(struct stripe_head *sh, 3701 struct stripe_head_state *s, 3702 int disks) 3703 { 3704 int i; 3705 3706 /* look for blocks to read/compute, skip this if a compute 3707 * is already in flight, or if the stripe contents are in the 3708 * midst of changing due to a write 3709 */ 3710 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3711 !sh->reconstruct_state) { 3712 3713 /* 3714 * For degraded stripe with data in journal, do not handle 3715 * read requests yet, instead, flush the stripe to raid 3716 * disks first, this avoids handling complex rmw of write 3717 * back cache (prexor with orig_page, and then xor with 3718 * page) in the read path 3719 */ 3720 if (s->injournal && s->failed) { 3721 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3722 r5c_make_stripe_write_out(sh); 3723 goto out; 3724 } 3725 3726 for (i = disks; i--; ) 3727 if (fetch_block(sh, s, i, disks)) 3728 break; 3729 } 3730 out: 3731 set_bit(STRIPE_HANDLE, &sh->state); 3732 } 3733 3734 static void break_stripe_batch_list(struct stripe_head *head_sh, 3735 unsigned long handle_flags); 3736 /* handle_stripe_clean_event 3737 * any written block on an uptodate or failed drive can be returned. 3738 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3739 * never LOCKED, so we don't need to test 'failed' directly. 3740 */ 3741 static void handle_stripe_clean_event(struct r5conf *conf, 3742 struct stripe_head *sh, int disks) 3743 { 3744 int i; 3745 struct r5dev *dev; 3746 int discard_pending = 0; 3747 struct stripe_head *head_sh = sh; 3748 bool do_endio = false; 3749 3750 for (i = disks; i--; ) 3751 if (sh->dev[i].written) { 3752 dev = &sh->dev[i]; 3753 if (!test_bit(R5_LOCKED, &dev->flags) && 3754 (test_bit(R5_UPTODATE, &dev->flags) || 3755 test_bit(R5_Discard, &dev->flags) || 3756 test_bit(R5_SkipCopy, &dev->flags))) { 3757 /* We can return any write requests */ 3758 struct bio *wbi, *wbi2; 3759 pr_debug("Return write for disc %d\n", i); 3760 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3761 clear_bit(R5_UPTODATE, &dev->flags); 3762 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3763 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3764 } 3765 do_endio = true; 3766 3767 returnbi: 3768 dev->page = dev->orig_page; 3769 wbi = dev->written; 3770 dev->written = NULL; 3771 while (wbi && wbi->bi_iter.bi_sector < 3772 dev->sector + STRIPE_SECTORS) { 3773 wbi2 = r5_next_bio(wbi, dev->sector); 3774 md_write_end(conf->mddev); 3775 bio_endio(wbi); 3776 wbi = wbi2; 3777 } 3778 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3779 STRIPE_SECTORS, 3780 !test_bit(STRIPE_DEGRADED, &sh->state), 3781 0); 3782 if (head_sh->batch_head) { 3783 sh = list_first_entry(&sh->batch_list, 3784 struct stripe_head, 3785 batch_list); 3786 if (sh != head_sh) { 3787 dev = &sh->dev[i]; 3788 goto returnbi; 3789 } 3790 } 3791 sh = head_sh; 3792 dev = &sh->dev[i]; 3793 } else if (test_bit(R5_Discard, &dev->flags)) 3794 discard_pending = 1; 3795 } 3796 3797 log_stripe_write_finished(sh); 3798 3799 if (!discard_pending && 3800 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3801 int hash; 3802 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3803 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3804 if (sh->qd_idx >= 0) { 3805 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3806 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3807 } 3808 /* now that discard is done we can proceed with any sync */ 3809 clear_bit(STRIPE_DISCARD, &sh->state); 3810 /* 3811 * SCSI discard will change some bio fields and the stripe has 3812 * no updated data, so remove it from hash list and the stripe 3813 * will be reinitialized 3814 */ 3815 unhash: 3816 hash = sh->hash_lock_index; 3817 spin_lock_irq(conf->hash_locks + hash); 3818 remove_hash(sh); 3819 spin_unlock_irq(conf->hash_locks + hash); 3820 if (head_sh->batch_head) { 3821 sh = list_first_entry(&sh->batch_list, 3822 struct stripe_head, batch_list); 3823 if (sh != head_sh) 3824 goto unhash; 3825 } 3826 sh = head_sh; 3827 3828 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3829 set_bit(STRIPE_HANDLE, &sh->state); 3830 3831 } 3832 3833 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3834 if (atomic_dec_and_test(&conf->pending_full_writes)) 3835 md_wakeup_thread(conf->mddev->thread); 3836 3837 if (head_sh->batch_head && do_endio) 3838 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3839 } 3840 3841 /* 3842 * For RMW in write back cache, we need extra page in prexor to store the 3843 * old data. This page is stored in dev->orig_page. 3844 * 3845 * This function checks whether we have data for prexor. The exact logic 3846 * is: 3847 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 3848 */ 3849 static inline bool uptodate_for_rmw(struct r5dev *dev) 3850 { 3851 return (test_bit(R5_UPTODATE, &dev->flags)) && 3852 (!test_bit(R5_InJournal, &dev->flags) || 3853 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 3854 } 3855 3856 static int handle_stripe_dirtying(struct r5conf *conf, 3857 struct stripe_head *sh, 3858 struct stripe_head_state *s, 3859 int disks) 3860 { 3861 int rmw = 0, rcw = 0, i; 3862 sector_t recovery_cp = conf->mddev->recovery_cp; 3863 3864 /* Check whether resync is now happening or should start. 3865 * If yes, then the array is dirty (after unclean shutdown or 3866 * initial creation), so parity in some stripes might be inconsistent. 3867 * In this case, we need to always do reconstruct-write, to ensure 3868 * that in case of drive failure or read-error correction, we 3869 * generate correct data from the parity. 3870 */ 3871 if (conf->rmw_level == PARITY_DISABLE_RMW || 3872 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3873 s->failed == 0)) { 3874 /* Calculate the real rcw later - for now make it 3875 * look like rcw is cheaper 3876 */ 3877 rcw = 1; rmw = 2; 3878 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3879 conf->rmw_level, (unsigned long long)recovery_cp, 3880 (unsigned long long)sh->sector); 3881 } else for (i = disks; i--; ) { 3882 /* would I have to read this buffer for read_modify_write */ 3883 struct r5dev *dev = &sh->dev[i]; 3884 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3885 i == sh->pd_idx || i == sh->qd_idx || 3886 test_bit(R5_InJournal, &dev->flags)) && 3887 !test_bit(R5_LOCKED, &dev->flags) && 3888 !(uptodate_for_rmw(dev) || 3889 test_bit(R5_Wantcompute, &dev->flags))) { 3890 if (test_bit(R5_Insync, &dev->flags)) 3891 rmw++; 3892 else 3893 rmw += 2*disks; /* cannot read it */ 3894 } 3895 /* Would I have to read this buffer for reconstruct_write */ 3896 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3897 i != sh->pd_idx && i != sh->qd_idx && 3898 !test_bit(R5_LOCKED, &dev->flags) && 3899 !(test_bit(R5_UPTODATE, &dev->flags) || 3900 test_bit(R5_Wantcompute, &dev->flags))) { 3901 if (test_bit(R5_Insync, &dev->flags)) 3902 rcw++; 3903 else 3904 rcw += 2*disks; 3905 } 3906 } 3907 3908 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 3909 (unsigned long long)sh->sector, sh->state, rmw, rcw); 3910 set_bit(STRIPE_HANDLE, &sh->state); 3911 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3912 /* prefer read-modify-write, but need to get some data */ 3913 if (conf->mddev->queue) 3914 blk_add_trace_msg(conf->mddev->queue, 3915 "raid5 rmw %llu %d", 3916 (unsigned long long)sh->sector, rmw); 3917 for (i = disks; i--; ) { 3918 struct r5dev *dev = &sh->dev[i]; 3919 if (test_bit(R5_InJournal, &dev->flags) && 3920 dev->page == dev->orig_page && 3921 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 3922 /* alloc page for prexor */ 3923 struct page *p = alloc_page(GFP_NOIO); 3924 3925 if (p) { 3926 dev->orig_page = p; 3927 continue; 3928 } 3929 3930 /* 3931 * alloc_page() failed, try use 3932 * disk_info->extra_page 3933 */ 3934 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 3935 &conf->cache_state)) { 3936 r5c_use_extra_page(sh); 3937 break; 3938 } 3939 3940 /* extra_page in use, add to delayed_list */ 3941 set_bit(STRIPE_DELAYED, &sh->state); 3942 s->waiting_extra_page = 1; 3943 return -EAGAIN; 3944 } 3945 } 3946 3947 for (i = disks; i--; ) { 3948 struct r5dev *dev = &sh->dev[i]; 3949 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3950 i == sh->pd_idx || i == sh->qd_idx || 3951 test_bit(R5_InJournal, &dev->flags)) && 3952 !test_bit(R5_LOCKED, &dev->flags) && 3953 !(uptodate_for_rmw(dev) || 3954 test_bit(R5_Wantcompute, &dev->flags)) && 3955 test_bit(R5_Insync, &dev->flags)) { 3956 if (test_bit(STRIPE_PREREAD_ACTIVE, 3957 &sh->state)) { 3958 pr_debug("Read_old block %d for r-m-w\n", 3959 i); 3960 set_bit(R5_LOCKED, &dev->flags); 3961 set_bit(R5_Wantread, &dev->flags); 3962 s->locked++; 3963 } else { 3964 set_bit(STRIPE_DELAYED, &sh->state); 3965 set_bit(STRIPE_HANDLE, &sh->state); 3966 } 3967 } 3968 } 3969 } 3970 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3971 /* want reconstruct write, but need to get some data */ 3972 int qread =0; 3973 rcw = 0; 3974 for (i = disks; i--; ) { 3975 struct r5dev *dev = &sh->dev[i]; 3976 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3977 i != sh->pd_idx && i != sh->qd_idx && 3978 !test_bit(R5_LOCKED, &dev->flags) && 3979 !(test_bit(R5_UPTODATE, &dev->flags) || 3980 test_bit(R5_Wantcompute, &dev->flags))) { 3981 rcw++; 3982 if (test_bit(R5_Insync, &dev->flags) && 3983 test_bit(STRIPE_PREREAD_ACTIVE, 3984 &sh->state)) { 3985 pr_debug("Read_old block " 3986 "%d for Reconstruct\n", i); 3987 set_bit(R5_LOCKED, &dev->flags); 3988 set_bit(R5_Wantread, &dev->flags); 3989 s->locked++; 3990 qread++; 3991 } else { 3992 set_bit(STRIPE_DELAYED, &sh->state); 3993 set_bit(STRIPE_HANDLE, &sh->state); 3994 } 3995 } 3996 } 3997 if (rcw && conf->mddev->queue) 3998 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3999 (unsigned long long)sh->sector, 4000 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4001 } 4002 4003 if (rcw > disks && rmw > disks && 4004 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4005 set_bit(STRIPE_DELAYED, &sh->state); 4006 4007 /* now if nothing is locked, and if we have enough data, 4008 * we can start a write request 4009 */ 4010 /* since handle_stripe can be called at any time we need to handle the 4011 * case where a compute block operation has been submitted and then a 4012 * subsequent call wants to start a write request. raid_run_ops only 4013 * handles the case where compute block and reconstruct are requested 4014 * simultaneously. If this is not the case then new writes need to be 4015 * held off until the compute completes. 4016 */ 4017 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4018 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4019 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4020 schedule_reconstruction(sh, s, rcw == 0, 0); 4021 return 0; 4022 } 4023 4024 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4025 struct stripe_head_state *s, int disks) 4026 { 4027 struct r5dev *dev = NULL; 4028 4029 BUG_ON(sh->batch_head); 4030 set_bit(STRIPE_HANDLE, &sh->state); 4031 4032 switch (sh->check_state) { 4033 case check_state_idle: 4034 /* start a new check operation if there are no failures */ 4035 if (s->failed == 0) { 4036 BUG_ON(s->uptodate != disks); 4037 sh->check_state = check_state_run; 4038 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4039 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4040 s->uptodate--; 4041 break; 4042 } 4043 dev = &sh->dev[s->failed_num[0]]; 4044 /* fall through */ 4045 case check_state_compute_result: 4046 sh->check_state = check_state_idle; 4047 if (!dev) 4048 dev = &sh->dev[sh->pd_idx]; 4049 4050 /* check that a write has not made the stripe insync */ 4051 if (test_bit(STRIPE_INSYNC, &sh->state)) 4052 break; 4053 4054 /* either failed parity check, or recovery is happening */ 4055 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4056 BUG_ON(s->uptodate != disks); 4057 4058 set_bit(R5_LOCKED, &dev->flags); 4059 s->locked++; 4060 set_bit(R5_Wantwrite, &dev->flags); 4061 4062 clear_bit(STRIPE_DEGRADED, &sh->state); 4063 set_bit(STRIPE_INSYNC, &sh->state); 4064 break; 4065 case check_state_run: 4066 break; /* we will be called again upon completion */ 4067 case check_state_check_result: 4068 sh->check_state = check_state_idle; 4069 4070 /* if a failure occurred during the check operation, leave 4071 * STRIPE_INSYNC not set and let the stripe be handled again 4072 */ 4073 if (s->failed) 4074 break; 4075 4076 /* handle a successful check operation, if parity is correct 4077 * we are done. Otherwise update the mismatch count and repair 4078 * parity if !MD_RECOVERY_CHECK 4079 */ 4080 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4081 /* parity is correct (on disc, 4082 * not in buffer any more) 4083 */ 4084 set_bit(STRIPE_INSYNC, &sh->state); 4085 else { 4086 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4087 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4088 /* don't try to repair!! */ 4089 set_bit(STRIPE_INSYNC, &sh->state); 4090 pr_warn_ratelimited("%s: mismatch sector in range " 4091 "%llu-%llu\n", mdname(conf->mddev), 4092 (unsigned long long) sh->sector, 4093 (unsigned long long) sh->sector + 4094 STRIPE_SECTORS); 4095 } else { 4096 sh->check_state = check_state_compute_run; 4097 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4098 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4099 set_bit(R5_Wantcompute, 4100 &sh->dev[sh->pd_idx].flags); 4101 sh->ops.target = sh->pd_idx; 4102 sh->ops.target2 = -1; 4103 s->uptodate++; 4104 } 4105 } 4106 break; 4107 case check_state_compute_run: 4108 break; 4109 default: 4110 pr_err("%s: unknown check_state: %d sector: %llu\n", 4111 __func__, sh->check_state, 4112 (unsigned long long) sh->sector); 4113 BUG(); 4114 } 4115 } 4116 4117 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4118 struct stripe_head_state *s, 4119 int disks) 4120 { 4121 int pd_idx = sh->pd_idx; 4122 int qd_idx = sh->qd_idx; 4123 struct r5dev *dev; 4124 4125 BUG_ON(sh->batch_head); 4126 set_bit(STRIPE_HANDLE, &sh->state); 4127 4128 BUG_ON(s->failed > 2); 4129 4130 /* Want to check and possibly repair P and Q. 4131 * However there could be one 'failed' device, in which 4132 * case we can only check one of them, possibly using the 4133 * other to generate missing data 4134 */ 4135 4136 switch (sh->check_state) { 4137 case check_state_idle: 4138 /* start a new check operation if there are < 2 failures */ 4139 if (s->failed == s->q_failed) { 4140 /* The only possible failed device holds Q, so it 4141 * makes sense to check P (If anything else were failed, 4142 * we would have used P to recreate it). 4143 */ 4144 sh->check_state = check_state_run; 4145 } 4146 if (!s->q_failed && s->failed < 2) { 4147 /* Q is not failed, and we didn't use it to generate 4148 * anything, so it makes sense to check it 4149 */ 4150 if (sh->check_state == check_state_run) 4151 sh->check_state = check_state_run_pq; 4152 else 4153 sh->check_state = check_state_run_q; 4154 } 4155 4156 /* discard potentially stale zero_sum_result */ 4157 sh->ops.zero_sum_result = 0; 4158 4159 if (sh->check_state == check_state_run) { 4160 /* async_xor_zero_sum destroys the contents of P */ 4161 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4162 s->uptodate--; 4163 } 4164 if (sh->check_state >= check_state_run && 4165 sh->check_state <= check_state_run_pq) { 4166 /* async_syndrome_zero_sum preserves P and Q, so 4167 * no need to mark them !uptodate here 4168 */ 4169 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4170 break; 4171 } 4172 4173 /* we have 2-disk failure */ 4174 BUG_ON(s->failed != 2); 4175 /* fall through */ 4176 case check_state_compute_result: 4177 sh->check_state = check_state_idle; 4178 4179 /* check that a write has not made the stripe insync */ 4180 if (test_bit(STRIPE_INSYNC, &sh->state)) 4181 break; 4182 4183 /* now write out any block on a failed drive, 4184 * or P or Q if they were recomputed 4185 */ 4186 dev = NULL; 4187 if (s->failed == 2) { 4188 dev = &sh->dev[s->failed_num[1]]; 4189 s->locked++; 4190 set_bit(R5_LOCKED, &dev->flags); 4191 set_bit(R5_Wantwrite, &dev->flags); 4192 } 4193 if (s->failed >= 1) { 4194 dev = &sh->dev[s->failed_num[0]]; 4195 s->locked++; 4196 set_bit(R5_LOCKED, &dev->flags); 4197 set_bit(R5_Wantwrite, &dev->flags); 4198 } 4199 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4200 dev = &sh->dev[pd_idx]; 4201 s->locked++; 4202 set_bit(R5_LOCKED, &dev->flags); 4203 set_bit(R5_Wantwrite, &dev->flags); 4204 } 4205 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4206 dev = &sh->dev[qd_idx]; 4207 s->locked++; 4208 set_bit(R5_LOCKED, &dev->flags); 4209 set_bit(R5_Wantwrite, &dev->flags); 4210 } 4211 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4212 "%s: disk%td not up to date\n", 4213 mdname(conf->mddev), 4214 dev - (struct r5dev *) &sh->dev)) { 4215 clear_bit(R5_LOCKED, &dev->flags); 4216 clear_bit(R5_Wantwrite, &dev->flags); 4217 s->locked--; 4218 } 4219 clear_bit(STRIPE_DEGRADED, &sh->state); 4220 4221 set_bit(STRIPE_INSYNC, &sh->state); 4222 break; 4223 case check_state_run: 4224 case check_state_run_q: 4225 case check_state_run_pq: 4226 break; /* we will be called again upon completion */ 4227 case check_state_check_result: 4228 sh->check_state = check_state_idle; 4229 4230 /* handle a successful check operation, if parity is correct 4231 * we are done. Otherwise update the mismatch count and repair 4232 * parity if !MD_RECOVERY_CHECK 4233 */ 4234 if (sh->ops.zero_sum_result == 0) { 4235 /* both parities are correct */ 4236 if (!s->failed) 4237 set_bit(STRIPE_INSYNC, &sh->state); 4238 else { 4239 /* in contrast to the raid5 case we can validate 4240 * parity, but still have a failure to write 4241 * back 4242 */ 4243 sh->check_state = check_state_compute_result; 4244 /* Returning at this point means that we may go 4245 * off and bring p and/or q uptodate again so 4246 * we make sure to check zero_sum_result again 4247 * to verify if p or q need writeback 4248 */ 4249 } 4250 } else { 4251 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4252 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4253 /* don't try to repair!! */ 4254 set_bit(STRIPE_INSYNC, &sh->state); 4255 pr_warn_ratelimited("%s: mismatch sector in range " 4256 "%llu-%llu\n", mdname(conf->mddev), 4257 (unsigned long long) sh->sector, 4258 (unsigned long long) sh->sector + 4259 STRIPE_SECTORS); 4260 } else { 4261 int *target = &sh->ops.target; 4262 4263 sh->ops.target = -1; 4264 sh->ops.target2 = -1; 4265 sh->check_state = check_state_compute_run; 4266 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4267 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4268 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4269 set_bit(R5_Wantcompute, 4270 &sh->dev[pd_idx].flags); 4271 *target = pd_idx; 4272 target = &sh->ops.target2; 4273 s->uptodate++; 4274 } 4275 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4276 set_bit(R5_Wantcompute, 4277 &sh->dev[qd_idx].flags); 4278 *target = qd_idx; 4279 s->uptodate++; 4280 } 4281 } 4282 } 4283 break; 4284 case check_state_compute_run: 4285 break; 4286 default: 4287 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4288 __func__, sh->check_state, 4289 (unsigned long long) sh->sector); 4290 BUG(); 4291 } 4292 } 4293 4294 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4295 { 4296 int i; 4297 4298 /* We have read all the blocks in this stripe and now we need to 4299 * copy some of them into a target stripe for expand. 4300 */ 4301 struct dma_async_tx_descriptor *tx = NULL; 4302 BUG_ON(sh->batch_head); 4303 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4304 for (i = 0; i < sh->disks; i++) 4305 if (i != sh->pd_idx && i != sh->qd_idx) { 4306 int dd_idx, j; 4307 struct stripe_head *sh2; 4308 struct async_submit_ctl submit; 4309 4310 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4311 sector_t s = raid5_compute_sector(conf, bn, 0, 4312 &dd_idx, NULL); 4313 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4314 if (sh2 == NULL) 4315 /* so far only the early blocks of this stripe 4316 * have been requested. When later blocks 4317 * get requested, we will try again 4318 */ 4319 continue; 4320 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4321 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4322 /* must have already done this block */ 4323 raid5_release_stripe(sh2); 4324 continue; 4325 } 4326 4327 /* place all the copies on one channel */ 4328 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4329 tx = async_memcpy(sh2->dev[dd_idx].page, 4330 sh->dev[i].page, 0, 0, STRIPE_SIZE, 4331 &submit); 4332 4333 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4334 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4335 for (j = 0; j < conf->raid_disks; j++) 4336 if (j != sh2->pd_idx && 4337 j != sh2->qd_idx && 4338 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4339 break; 4340 if (j == conf->raid_disks) { 4341 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4342 set_bit(STRIPE_HANDLE, &sh2->state); 4343 } 4344 raid5_release_stripe(sh2); 4345 4346 } 4347 /* done submitting copies, wait for them to complete */ 4348 async_tx_quiesce(&tx); 4349 } 4350 4351 /* 4352 * handle_stripe - do things to a stripe. 4353 * 4354 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4355 * state of various bits to see what needs to be done. 4356 * Possible results: 4357 * return some read requests which now have data 4358 * return some write requests which are safely on storage 4359 * schedule a read on some buffers 4360 * schedule a write of some buffers 4361 * return confirmation of parity correctness 4362 * 4363 */ 4364 4365 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4366 { 4367 struct r5conf *conf = sh->raid_conf; 4368 int disks = sh->disks; 4369 struct r5dev *dev; 4370 int i; 4371 int do_recovery = 0; 4372 4373 memset(s, 0, sizeof(*s)); 4374 4375 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4376 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4377 s->failed_num[0] = -1; 4378 s->failed_num[1] = -1; 4379 s->log_failed = r5l_log_disk_error(conf); 4380 4381 /* Now to look around and see what can be done */ 4382 rcu_read_lock(); 4383 for (i=disks; i--; ) { 4384 struct md_rdev *rdev; 4385 sector_t first_bad; 4386 int bad_sectors; 4387 int is_bad = 0; 4388 4389 dev = &sh->dev[i]; 4390 4391 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4392 i, dev->flags, 4393 dev->toread, dev->towrite, dev->written); 4394 /* maybe we can reply to a read 4395 * 4396 * new wantfill requests are only permitted while 4397 * ops_complete_biofill is guaranteed to be inactive 4398 */ 4399 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4400 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4401 set_bit(R5_Wantfill, &dev->flags); 4402 4403 /* now count some things */ 4404 if (test_bit(R5_LOCKED, &dev->flags)) 4405 s->locked++; 4406 if (test_bit(R5_UPTODATE, &dev->flags)) 4407 s->uptodate++; 4408 if (test_bit(R5_Wantcompute, &dev->flags)) { 4409 s->compute++; 4410 BUG_ON(s->compute > 2); 4411 } 4412 4413 if (test_bit(R5_Wantfill, &dev->flags)) 4414 s->to_fill++; 4415 else if (dev->toread) 4416 s->to_read++; 4417 if (dev->towrite) { 4418 s->to_write++; 4419 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4420 s->non_overwrite++; 4421 } 4422 if (dev->written) 4423 s->written++; 4424 /* Prefer to use the replacement for reads, but only 4425 * if it is recovered enough and has no bad blocks. 4426 */ 4427 rdev = rcu_dereference(conf->disks[i].replacement); 4428 if (rdev && !test_bit(Faulty, &rdev->flags) && 4429 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4430 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4431 &first_bad, &bad_sectors)) 4432 set_bit(R5_ReadRepl, &dev->flags); 4433 else { 4434 if (rdev && !test_bit(Faulty, &rdev->flags)) 4435 set_bit(R5_NeedReplace, &dev->flags); 4436 else 4437 clear_bit(R5_NeedReplace, &dev->flags); 4438 rdev = rcu_dereference(conf->disks[i].rdev); 4439 clear_bit(R5_ReadRepl, &dev->flags); 4440 } 4441 if (rdev && test_bit(Faulty, &rdev->flags)) 4442 rdev = NULL; 4443 if (rdev) { 4444 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4445 &first_bad, &bad_sectors); 4446 if (s->blocked_rdev == NULL 4447 && (test_bit(Blocked, &rdev->flags) 4448 || is_bad < 0)) { 4449 if (is_bad < 0) 4450 set_bit(BlockedBadBlocks, 4451 &rdev->flags); 4452 s->blocked_rdev = rdev; 4453 atomic_inc(&rdev->nr_pending); 4454 } 4455 } 4456 clear_bit(R5_Insync, &dev->flags); 4457 if (!rdev) 4458 /* Not in-sync */; 4459 else if (is_bad) { 4460 /* also not in-sync */ 4461 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4462 test_bit(R5_UPTODATE, &dev->flags)) { 4463 /* treat as in-sync, but with a read error 4464 * which we can now try to correct 4465 */ 4466 set_bit(R5_Insync, &dev->flags); 4467 set_bit(R5_ReadError, &dev->flags); 4468 } 4469 } else if (test_bit(In_sync, &rdev->flags)) 4470 set_bit(R5_Insync, &dev->flags); 4471 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4472 /* in sync if before recovery_offset */ 4473 set_bit(R5_Insync, &dev->flags); 4474 else if (test_bit(R5_UPTODATE, &dev->flags) && 4475 test_bit(R5_Expanded, &dev->flags)) 4476 /* If we've reshaped into here, we assume it is Insync. 4477 * We will shortly update recovery_offset to make 4478 * it official. 4479 */ 4480 set_bit(R5_Insync, &dev->flags); 4481 4482 if (test_bit(R5_WriteError, &dev->flags)) { 4483 /* This flag does not apply to '.replacement' 4484 * only to .rdev, so make sure to check that*/ 4485 struct md_rdev *rdev2 = rcu_dereference( 4486 conf->disks[i].rdev); 4487 if (rdev2 == rdev) 4488 clear_bit(R5_Insync, &dev->flags); 4489 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4490 s->handle_bad_blocks = 1; 4491 atomic_inc(&rdev2->nr_pending); 4492 } else 4493 clear_bit(R5_WriteError, &dev->flags); 4494 } 4495 if (test_bit(R5_MadeGood, &dev->flags)) { 4496 /* This flag does not apply to '.replacement' 4497 * only to .rdev, so make sure to check that*/ 4498 struct md_rdev *rdev2 = rcu_dereference( 4499 conf->disks[i].rdev); 4500 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4501 s->handle_bad_blocks = 1; 4502 atomic_inc(&rdev2->nr_pending); 4503 } else 4504 clear_bit(R5_MadeGood, &dev->flags); 4505 } 4506 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4507 struct md_rdev *rdev2 = rcu_dereference( 4508 conf->disks[i].replacement); 4509 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4510 s->handle_bad_blocks = 1; 4511 atomic_inc(&rdev2->nr_pending); 4512 } else 4513 clear_bit(R5_MadeGoodRepl, &dev->flags); 4514 } 4515 if (!test_bit(R5_Insync, &dev->flags)) { 4516 /* The ReadError flag will just be confusing now */ 4517 clear_bit(R5_ReadError, &dev->flags); 4518 clear_bit(R5_ReWrite, &dev->flags); 4519 } 4520 if (test_bit(R5_ReadError, &dev->flags)) 4521 clear_bit(R5_Insync, &dev->flags); 4522 if (!test_bit(R5_Insync, &dev->flags)) { 4523 if (s->failed < 2) 4524 s->failed_num[s->failed] = i; 4525 s->failed++; 4526 if (rdev && !test_bit(Faulty, &rdev->flags)) 4527 do_recovery = 1; 4528 else if (!rdev) { 4529 rdev = rcu_dereference( 4530 conf->disks[i].replacement); 4531 if (rdev && !test_bit(Faulty, &rdev->flags)) 4532 do_recovery = 1; 4533 } 4534 } 4535 4536 if (test_bit(R5_InJournal, &dev->flags)) 4537 s->injournal++; 4538 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4539 s->just_cached++; 4540 } 4541 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4542 /* If there is a failed device being replaced, 4543 * we must be recovering. 4544 * else if we are after recovery_cp, we must be syncing 4545 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4546 * else we can only be replacing 4547 * sync and recovery both need to read all devices, and so 4548 * use the same flag. 4549 */ 4550 if (do_recovery || 4551 sh->sector >= conf->mddev->recovery_cp || 4552 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4553 s->syncing = 1; 4554 else 4555 s->replacing = 1; 4556 } 4557 rcu_read_unlock(); 4558 } 4559 4560 static int clear_batch_ready(struct stripe_head *sh) 4561 { 4562 /* Return '1' if this is a member of batch, or 4563 * '0' if it is a lone stripe or a head which can now be 4564 * handled. 4565 */ 4566 struct stripe_head *tmp; 4567 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4568 return (sh->batch_head && sh->batch_head != sh); 4569 spin_lock(&sh->stripe_lock); 4570 if (!sh->batch_head) { 4571 spin_unlock(&sh->stripe_lock); 4572 return 0; 4573 } 4574 4575 /* 4576 * this stripe could be added to a batch list before we check 4577 * BATCH_READY, skips it 4578 */ 4579 if (sh->batch_head != sh) { 4580 spin_unlock(&sh->stripe_lock); 4581 return 1; 4582 } 4583 spin_lock(&sh->batch_lock); 4584 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4585 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4586 spin_unlock(&sh->batch_lock); 4587 spin_unlock(&sh->stripe_lock); 4588 4589 /* 4590 * BATCH_READY is cleared, no new stripes can be added. 4591 * batch_list can be accessed without lock 4592 */ 4593 return 0; 4594 } 4595 4596 static void break_stripe_batch_list(struct stripe_head *head_sh, 4597 unsigned long handle_flags) 4598 { 4599 struct stripe_head *sh, *next; 4600 int i; 4601 int do_wakeup = 0; 4602 4603 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4604 4605 list_del_init(&sh->batch_list); 4606 4607 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4608 (1 << STRIPE_SYNCING) | 4609 (1 << STRIPE_REPLACED) | 4610 (1 << STRIPE_DELAYED) | 4611 (1 << STRIPE_BIT_DELAY) | 4612 (1 << STRIPE_FULL_WRITE) | 4613 (1 << STRIPE_BIOFILL_RUN) | 4614 (1 << STRIPE_COMPUTE_RUN) | 4615 (1 << STRIPE_OPS_REQ_PENDING) | 4616 (1 << STRIPE_DISCARD) | 4617 (1 << STRIPE_BATCH_READY) | 4618 (1 << STRIPE_BATCH_ERR) | 4619 (1 << STRIPE_BITMAP_PENDING)), 4620 "stripe state: %lx\n", sh->state); 4621 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4622 (1 << STRIPE_REPLACED)), 4623 "head stripe state: %lx\n", head_sh->state); 4624 4625 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4626 (1 << STRIPE_PREREAD_ACTIVE) | 4627 (1 << STRIPE_DEGRADED) | 4628 (1 << STRIPE_ON_UNPLUG_LIST)), 4629 head_sh->state & (1 << STRIPE_INSYNC)); 4630 4631 sh->check_state = head_sh->check_state; 4632 sh->reconstruct_state = head_sh->reconstruct_state; 4633 spin_lock_irq(&sh->stripe_lock); 4634 sh->batch_head = NULL; 4635 spin_unlock_irq(&sh->stripe_lock); 4636 for (i = 0; i < sh->disks; i++) { 4637 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4638 do_wakeup = 1; 4639 sh->dev[i].flags = head_sh->dev[i].flags & 4640 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4641 } 4642 if (handle_flags == 0 || 4643 sh->state & handle_flags) 4644 set_bit(STRIPE_HANDLE, &sh->state); 4645 raid5_release_stripe(sh); 4646 } 4647 spin_lock_irq(&head_sh->stripe_lock); 4648 head_sh->batch_head = NULL; 4649 spin_unlock_irq(&head_sh->stripe_lock); 4650 for (i = 0; i < head_sh->disks; i++) 4651 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4652 do_wakeup = 1; 4653 if (head_sh->state & handle_flags) 4654 set_bit(STRIPE_HANDLE, &head_sh->state); 4655 4656 if (do_wakeup) 4657 wake_up(&head_sh->raid_conf->wait_for_overlap); 4658 } 4659 4660 static void handle_stripe(struct stripe_head *sh) 4661 { 4662 struct stripe_head_state s; 4663 struct r5conf *conf = sh->raid_conf; 4664 int i; 4665 int prexor; 4666 int disks = sh->disks; 4667 struct r5dev *pdev, *qdev; 4668 4669 clear_bit(STRIPE_HANDLE, &sh->state); 4670 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4671 /* already being handled, ensure it gets handled 4672 * again when current action finishes */ 4673 set_bit(STRIPE_HANDLE, &sh->state); 4674 return; 4675 } 4676 4677 if (clear_batch_ready(sh) ) { 4678 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4679 return; 4680 } 4681 4682 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4683 break_stripe_batch_list(sh, 0); 4684 4685 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4686 spin_lock(&sh->stripe_lock); 4687 /* 4688 * Cannot process 'sync' concurrently with 'discard'. 4689 * Flush data in r5cache before 'sync'. 4690 */ 4691 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4692 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4693 !test_bit(STRIPE_DISCARD, &sh->state) && 4694 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4695 set_bit(STRIPE_SYNCING, &sh->state); 4696 clear_bit(STRIPE_INSYNC, &sh->state); 4697 clear_bit(STRIPE_REPLACED, &sh->state); 4698 } 4699 spin_unlock(&sh->stripe_lock); 4700 } 4701 clear_bit(STRIPE_DELAYED, &sh->state); 4702 4703 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4704 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4705 (unsigned long long)sh->sector, sh->state, 4706 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4707 sh->check_state, sh->reconstruct_state); 4708 4709 analyse_stripe(sh, &s); 4710 4711 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4712 goto finish; 4713 4714 if (s.handle_bad_blocks || 4715 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4716 set_bit(STRIPE_HANDLE, &sh->state); 4717 goto finish; 4718 } 4719 4720 if (unlikely(s.blocked_rdev)) { 4721 if (s.syncing || s.expanding || s.expanded || 4722 s.replacing || s.to_write || s.written) { 4723 set_bit(STRIPE_HANDLE, &sh->state); 4724 goto finish; 4725 } 4726 /* There is nothing for the blocked_rdev to block */ 4727 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4728 s.blocked_rdev = NULL; 4729 } 4730 4731 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4732 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4733 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4734 } 4735 4736 pr_debug("locked=%d uptodate=%d to_read=%d" 4737 " to_write=%d failed=%d failed_num=%d,%d\n", 4738 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4739 s.failed_num[0], s.failed_num[1]); 4740 /* 4741 * check if the array has lost more than max_degraded devices and, 4742 * if so, some requests might need to be failed. 4743 * 4744 * When journal device failed (log_failed), we will only process 4745 * the stripe if there is data need write to raid disks 4746 */ 4747 if (s.failed > conf->max_degraded || 4748 (s.log_failed && s.injournal == 0)) { 4749 sh->check_state = 0; 4750 sh->reconstruct_state = 0; 4751 break_stripe_batch_list(sh, 0); 4752 if (s.to_read+s.to_write+s.written) 4753 handle_failed_stripe(conf, sh, &s, disks); 4754 if (s.syncing + s.replacing) 4755 handle_failed_sync(conf, sh, &s); 4756 } 4757 4758 /* Now we check to see if any write operations have recently 4759 * completed 4760 */ 4761 prexor = 0; 4762 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4763 prexor = 1; 4764 if (sh->reconstruct_state == reconstruct_state_drain_result || 4765 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4766 sh->reconstruct_state = reconstruct_state_idle; 4767 4768 /* All the 'written' buffers and the parity block are ready to 4769 * be written back to disk 4770 */ 4771 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4772 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4773 BUG_ON(sh->qd_idx >= 0 && 4774 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4775 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4776 for (i = disks; i--; ) { 4777 struct r5dev *dev = &sh->dev[i]; 4778 if (test_bit(R5_LOCKED, &dev->flags) && 4779 (i == sh->pd_idx || i == sh->qd_idx || 4780 dev->written || test_bit(R5_InJournal, 4781 &dev->flags))) { 4782 pr_debug("Writing block %d\n", i); 4783 set_bit(R5_Wantwrite, &dev->flags); 4784 if (prexor) 4785 continue; 4786 if (s.failed > 1) 4787 continue; 4788 if (!test_bit(R5_Insync, &dev->flags) || 4789 ((i == sh->pd_idx || i == sh->qd_idx) && 4790 s.failed == 0)) 4791 set_bit(STRIPE_INSYNC, &sh->state); 4792 } 4793 } 4794 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4795 s.dec_preread_active = 1; 4796 } 4797 4798 /* 4799 * might be able to return some write requests if the parity blocks 4800 * are safe, or on a failed drive 4801 */ 4802 pdev = &sh->dev[sh->pd_idx]; 4803 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4804 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4805 qdev = &sh->dev[sh->qd_idx]; 4806 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4807 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4808 || conf->level < 6; 4809 4810 if (s.written && 4811 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4812 && !test_bit(R5_LOCKED, &pdev->flags) 4813 && (test_bit(R5_UPTODATE, &pdev->flags) || 4814 test_bit(R5_Discard, &pdev->flags))))) && 4815 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4816 && !test_bit(R5_LOCKED, &qdev->flags) 4817 && (test_bit(R5_UPTODATE, &qdev->flags) || 4818 test_bit(R5_Discard, &qdev->flags)))))) 4819 handle_stripe_clean_event(conf, sh, disks); 4820 4821 if (s.just_cached) 4822 r5c_handle_cached_data_endio(conf, sh, disks); 4823 log_stripe_write_finished(sh); 4824 4825 /* Now we might consider reading some blocks, either to check/generate 4826 * parity, or to satisfy requests 4827 * or to load a block that is being partially written. 4828 */ 4829 if (s.to_read || s.non_overwrite 4830 || (conf->level == 6 && s.to_write && s.failed) 4831 || (s.syncing && (s.uptodate + s.compute < disks)) 4832 || s.replacing 4833 || s.expanding) 4834 handle_stripe_fill(sh, &s, disks); 4835 4836 /* 4837 * When the stripe finishes full journal write cycle (write to journal 4838 * and raid disk), this is the clean up procedure so it is ready for 4839 * next operation. 4840 */ 4841 r5c_finish_stripe_write_out(conf, sh, &s); 4842 4843 /* 4844 * Now to consider new write requests, cache write back and what else, 4845 * if anything should be read. We do not handle new writes when: 4846 * 1/ A 'write' operation (copy+xor) is already in flight. 4847 * 2/ A 'check' operation is in flight, as it may clobber the parity 4848 * block. 4849 * 3/ A r5c cache log write is in flight. 4850 */ 4851 4852 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 4853 if (!r5c_is_writeback(conf->log)) { 4854 if (s.to_write) 4855 handle_stripe_dirtying(conf, sh, &s, disks); 4856 } else { /* write back cache */ 4857 int ret = 0; 4858 4859 /* First, try handle writes in caching phase */ 4860 if (s.to_write) 4861 ret = r5c_try_caching_write(conf, sh, &s, 4862 disks); 4863 /* 4864 * If caching phase failed: ret == -EAGAIN 4865 * OR 4866 * stripe under reclaim: !caching && injournal 4867 * 4868 * fall back to handle_stripe_dirtying() 4869 */ 4870 if (ret == -EAGAIN || 4871 /* stripe under reclaim: !caching && injournal */ 4872 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 4873 s.injournal > 0)) { 4874 ret = handle_stripe_dirtying(conf, sh, &s, 4875 disks); 4876 if (ret == -EAGAIN) 4877 goto finish; 4878 } 4879 } 4880 } 4881 4882 /* maybe we need to check and possibly fix the parity for this stripe 4883 * Any reads will already have been scheduled, so we just see if enough 4884 * data is available. The parity check is held off while parity 4885 * dependent operations are in flight. 4886 */ 4887 if (sh->check_state || 4888 (s.syncing && s.locked == 0 && 4889 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4890 !test_bit(STRIPE_INSYNC, &sh->state))) { 4891 if (conf->level == 6) 4892 handle_parity_checks6(conf, sh, &s, disks); 4893 else 4894 handle_parity_checks5(conf, sh, &s, disks); 4895 } 4896 4897 if ((s.replacing || s.syncing) && s.locked == 0 4898 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4899 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4900 /* Write out to replacement devices where possible */ 4901 for (i = 0; i < conf->raid_disks; i++) 4902 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4903 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4904 set_bit(R5_WantReplace, &sh->dev[i].flags); 4905 set_bit(R5_LOCKED, &sh->dev[i].flags); 4906 s.locked++; 4907 } 4908 if (s.replacing) 4909 set_bit(STRIPE_INSYNC, &sh->state); 4910 set_bit(STRIPE_REPLACED, &sh->state); 4911 } 4912 if ((s.syncing || s.replacing) && s.locked == 0 && 4913 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4914 test_bit(STRIPE_INSYNC, &sh->state)) { 4915 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4916 clear_bit(STRIPE_SYNCING, &sh->state); 4917 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4918 wake_up(&conf->wait_for_overlap); 4919 } 4920 4921 /* If the failed drives are just a ReadError, then we might need 4922 * to progress the repair/check process 4923 */ 4924 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4925 for (i = 0; i < s.failed; i++) { 4926 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4927 if (test_bit(R5_ReadError, &dev->flags) 4928 && !test_bit(R5_LOCKED, &dev->flags) 4929 && test_bit(R5_UPTODATE, &dev->flags) 4930 ) { 4931 if (!test_bit(R5_ReWrite, &dev->flags)) { 4932 set_bit(R5_Wantwrite, &dev->flags); 4933 set_bit(R5_ReWrite, &dev->flags); 4934 set_bit(R5_LOCKED, &dev->flags); 4935 s.locked++; 4936 } else { 4937 /* let's read it back */ 4938 set_bit(R5_Wantread, &dev->flags); 4939 set_bit(R5_LOCKED, &dev->flags); 4940 s.locked++; 4941 } 4942 } 4943 } 4944 4945 /* Finish reconstruct operations initiated by the expansion process */ 4946 if (sh->reconstruct_state == reconstruct_state_result) { 4947 struct stripe_head *sh_src 4948 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4949 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4950 /* sh cannot be written until sh_src has been read. 4951 * so arrange for sh to be delayed a little 4952 */ 4953 set_bit(STRIPE_DELAYED, &sh->state); 4954 set_bit(STRIPE_HANDLE, &sh->state); 4955 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4956 &sh_src->state)) 4957 atomic_inc(&conf->preread_active_stripes); 4958 raid5_release_stripe(sh_src); 4959 goto finish; 4960 } 4961 if (sh_src) 4962 raid5_release_stripe(sh_src); 4963 4964 sh->reconstruct_state = reconstruct_state_idle; 4965 clear_bit(STRIPE_EXPANDING, &sh->state); 4966 for (i = conf->raid_disks; i--; ) { 4967 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4968 set_bit(R5_LOCKED, &sh->dev[i].flags); 4969 s.locked++; 4970 } 4971 } 4972 4973 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4974 !sh->reconstruct_state) { 4975 /* Need to write out all blocks after computing parity */ 4976 sh->disks = conf->raid_disks; 4977 stripe_set_idx(sh->sector, conf, 0, sh); 4978 schedule_reconstruction(sh, &s, 1, 1); 4979 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4980 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4981 atomic_dec(&conf->reshape_stripes); 4982 wake_up(&conf->wait_for_overlap); 4983 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4984 } 4985 4986 if (s.expanding && s.locked == 0 && 4987 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4988 handle_stripe_expansion(conf, sh); 4989 4990 finish: 4991 /* wait for this device to become unblocked */ 4992 if (unlikely(s.blocked_rdev)) { 4993 if (conf->mddev->external) 4994 md_wait_for_blocked_rdev(s.blocked_rdev, 4995 conf->mddev); 4996 else 4997 /* Internal metadata will immediately 4998 * be written by raid5d, so we don't 4999 * need to wait here. 5000 */ 5001 rdev_dec_pending(s.blocked_rdev, 5002 conf->mddev); 5003 } 5004 5005 if (s.handle_bad_blocks) 5006 for (i = disks; i--; ) { 5007 struct md_rdev *rdev; 5008 struct r5dev *dev = &sh->dev[i]; 5009 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5010 /* We own a safe reference to the rdev */ 5011 rdev = conf->disks[i].rdev; 5012 if (!rdev_set_badblocks(rdev, sh->sector, 5013 STRIPE_SECTORS, 0)) 5014 md_error(conf->mddev, rdev); 5015 rdev_dec_pending(rdev, conf->mddev); 5016 } 5017 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5018 rdev = conf->disks[i].rdev; 5019 rdev_clear_badblocks(rdev, sh->sector, 5020 STRIPE_SECTORS, 0); 5021 rdev_dec_pending(rdev, conf->mddev); 5022 } 5023 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5024 rdev = conf->disks[i].replacement; 5025 if (!rdev) 5026 /* rdev have been moved down */ 5027 rdev = conf->disks[i].rdev; 5028 rdev_clear_badblocks(rdev, sh->sector, 5029 STRIPE_SECTORS, 0); 5030 rdev_dec_pending(rdev, conf->mddev); 5031 } 5032 } 5033 5034 if (s.ops_request) 5035 raid_run_ops(sh, s.ops_request); 5036 5037 ops_run_io(sh, &s); 5038 5039 if (s.dec_preread_active) { 5040 /* We delay this until after ops_run_io so that if make_request 5041 * is waiting on a flush, it won't continue until the writes 5042 * have actually been submitted. 5043 */ 5044 atomic_dec(&conf->preread_active_stripes); 5045 if (atomic_read(&conf->preread_active_stripes) < 5046 IO_THRESHOLD) 5047 md_wakeup_thread(conf->mddev->thread); 5048 } 5049 5050 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5051 } 5052 5053 static void raid5_activate_delayed(struct r5conf *conf) 5054 { 5055 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5056 while (!list_empty(&conf->delayed_list)) { 5057 struct list_head *l = conf->delayed_list.next; 5058 struct stripe_head *sh; 5059 sh = list_entry(l, struct stripe_head, lru); 5060 list_del_init(l); 5061 clear_bit(STRIPE_DELAYED, &sh->state); 5062 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5063 atomic_inc(&conf->preread_active_stripes); 5064 list_add_tail(&sh->lru, &conf->hold_list); 5065 raid5_wakeup_stripe_thread(sh); 5066 } 5067 } 5068 } 5069 5070 static void activate_bit_delay(struct r5conf *conf, 5071 struct list_head *temp_inactive_list) 5072 { 5073 /* device_lock is held */ 5074 struct list_head head; 5075 list_add(&head, &conf->bitmap_list); 5076 list_del_init(&conf->bitmap_list); 5077 while (!list_empty(&head)) { 5078 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5079 int hash; 5080 list_del_init(&sh->lru); 5081 atomic_inc(&sh->count); 5082 hash = sh->hash_lock_index; 5083 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5084 } 5085 } 5086 5087 static int raid5_congested(struct mddev *mddev, int bits) 5088 { 5089 struct r5conf *conf = mddev->private; 5090 5091 /* No difference between reads and writes. Just check 5092 * how busy the stripe_cache is 5093 */ 5094 5095 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 5096 return 1; 5097 5098 /* Also checks whether there is pressure on r5cache log space */ 5099 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 5100 return 1; 5101 if (conf->quiesce) 5102 return 1; 5103 if (atomic_read(&conf->empty_inactive_list_nr)) 5104 return 1; 5105 5106 return 0; 5107 } 5108 5109 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5110 { 5111 struct r5conf *conf = mddev->private; 5112 sector_t sector = bio->bi_iter.bi_sector; 5113 unsigned int chunk_sectors; 5114 unsigned int bio_sectors = bio_sectors(bio); 5115 5116 WARN_ON_ONCE(bio->bi_partno); 5117 5118 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5119 return chunk_sectors >= 5120 ((sector & (chunk_sectors - 1)) + bio_sectors); 5121 } 5122 5123 /* 5124 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5125 * later sampled by raid5d. 5126 */ 5127 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5128 { 5129 unsigned long flags; 5130 5131 spin_lock_irqsave(&conf->device_lock, flags); 5132 5133 bi->bi_next = conf->retry_read_aligned_list; 5134 conf->retry_read_aligned_list = bi; 5135 5136 spin_unlock_irqrestore(&conf->device_lock, flags); 5137 md_wakeup_thread(conf->mddev->thread); 5138 } 5139 5140 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5141 unsigned int *offset) 5142 { 5143 struct bio *bi; 5144 5145 bi = conf->retry_read_aligned; 5146 if (bi) { 5147 *offset = conf->retry_read_offset; 5148 conf->retry_read_aligned = NULL; 5149 return bi; 5150 } 5151 bi = conf->retry_read_aligned_list; 5152 if(bi) { 5153 conf->retry_read_aligned_list = bi->bi_next; 5154 bi->bi_next = NULL; 5155 *offset = 0; 5156 } 5157 5158 return bi; 5159 } 5160 5161 /* 5162 * The "raid5_align_endio" should check if the read succeeded and if it 5163 * did, call bio_endio on the original bio (having bio_put the new bio 5164 * first). 5165 * If the read failed.. 5166 */ 5167 static void raid5_align_endio(struct bio *bi) 5168 { 5169 struct bio* raid_bi = bi->bi_private; 5170 struct mddev *mddev; 5171 struct r5conf *conf; 5172 struct md_rdev *rdev; 5173 blk_status_t error = bi->bi_status; 5174 5175 bio_put(bi); 5176 5177 rdev = (void*)raid_bi->bi_next; 5178 raid_bi->bi_next = NULL; 5179 mddev = rdev->mddev; 5180 conf = mddev->private; 5181 5182 rdev_dec_pending(rdev, conf->mddev); 5183 5184 if (!error) { 5185 bio_endio(raid_bi); 5186 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5187 wake_up(&conf->wait_for_quiescent); 5188 return; 5189 } 5190 5191 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5192 5193 add_bio_to_retry(raid_bi, conf); 5194 } 5195 5196 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5197 { 5198 struct r5conf *conf = mddev->private; 5199 int dd_idx; 5200 struct bio* align_bi; 5201 struct md_rdev *rdev; 5202 sector_t end_sector; 5203 5204 if (!in_chunk_boundary(mddev, raid_bio)) { 5205 pr_debug("%s: non aligned\n", __func__); 5206 return 0; 5207 } 5208 /* 5209 * use bio_clone_fast to make a copy of the bio 5210 */ 5211 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set); 5212 if (!align_bi) 5213 return 0; 5214 /* 5215 * set bi_end_io to a new function, and set bi_private to the 5216 * original bio. 5217 */ 5218 align_bi->bi_end_io = raid5_align_endio; 5219 align_bi->bi_private = raid_bio; 5220 /* 5221 * compute position 5222 */ 5223 align_bi->bi_iter.bi_sector = 5224 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5225 0, &dd_idx, NULL); 5226 5227 end_sector = bio_end_sector(align_bi); 5228 rcu_read_lock(); 5229 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5230 if (!rdev || test_bit(Faulty, &rdev->flags) || 5231 rdev->recovery_offset < end_sector) { 5232 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5233 if (rdev && 5234 (test_bit(Faulty, &rdev->flags) || 5235 !(test_bit(In_sync, &rdev->flags) || 5236 rdev->recovery_offset >= end_sector))) 5237 rdev = NULL; 5238 } 5239 5240 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5241 rcu_read_unlock(); 5242 bio_put(align_bi); 5243 return 0; 5244 } 5245 5246 if (rdev) { 5247 sector_t first_bad; 5248 int bad_sectors; 5249 5250 atomic_inc(&rdev->nr_pending); 5251 rcu_read_unlock(); 5252 raid_bio->bi_next = (void*)rdev; 5253 bio_set_dev(align_bi, rdev->bdev); 5254 5255 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5256 bio_sectors(align_bi), 5257 &first_bad, &bad_sectors)) { 5258 bio_put(align_bi); 5259 rdev_dec_pending(rdev, mddev); 5260 return 0; 5261 } 5262 5263 /* No reshape active, so we can trust rdev->data_offset */ 5264 align_bi->bi_iter.bi_sector += rdev->data_offset; 5265 5266 spin_lock_irq(&conf->device_lock); 5267 wait_event_lock_irq(conf->wait_for_quiescent, 5268 conf->quiesce == 0, 5269 conf->device_lock); 5270 atomic_inc(&conf->active_aligned_reads); 5271 spin_unlock_irq(&conf->device_lock); 5272 5273 if (mddev->gendisk) 5274 trace_block_bio_remap(align_bi->bi_disk->queue, 5275 align_bi, disk_devt(mddev->gendisk), 5276 raid_bio->bi_iter.bi_sector); 5277 generic_make_request(align_bi); 5278 return 1; 5279 } else { 5280 rcu_read_unlock(); 5281 bio_put(align_bi); 5282 return 0; 5283 } 5284 } 5285 5286 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5287 { 5288 struct bio *split; 5289 sector_t sector = raid_bio->bi_iter.bi_sector; 5290 unsigned chunk_sects = mddev->chunk_sectors; 5291 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5292 5293 if (sectors < bio_sectors(raid_bio)) { 5294 struct r5conf *conf = mddev->private; 5295 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5296 bio_chain(split, raid_bio); 5297 generic_make_request(raid_bio); 5298 raid_bio = split; 5299 } 5300 5301 if (!raid5_read_one_chunk(mddev, raid_bio)) 5302 return raid_bio; 5303 5304 return NULL; 5305 } 5306 5307 /* __get_priority_stripe - get the next stripe to process 5308 * 5309 * Full stripe writes are allowed to pass preread active stripes up until 5310 * the bypass_threshold is exceeded. In general the bypass_count 5311 * increments when the handle_list is handled before the hold_list; however, it 5312 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5313 * stripe with in flight i/o. The bypass_count will be reset when the 5314 * head of the hold_list has changed, i.e. the head was promoted to the 5315 * handle_list. 5316 */ 5317 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5318 { 5319 struct stripe_head *sh, *tmp; 5320 struct list_head *handle_list = NULL; 5321 struct r5worker_group *wg; 5322 bool second_try = !r5c_is_writeback(conf->log) && 5323 !r5l_log_disk_error(conf); 5324 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5325 r5l_log_disk_error(conf); 5326 5327 again: 5328 wg = NULL; 5329 sh = NULL; 5330 if (conf->worker_cnt_per_group == 0) { 5331 handle_list = try_loprio ? &conf->loprio_list : 5332 &conf->handle_list; 5333 } else if (group != ANY_GROUP) { 5334 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5335 &conf->worker_groups[group].handle_list; 5336 wg = &conf->worker_groups[group]; 5337 } else { 5338 int i; 5339 for (i = 0; i < conf->group_cnt; i++) { 5340 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5341 &conf->worker_groups[i].handle_list; 5342 wg = &conf->worker_groups[i]; 5343 if (!list_empty(handle_list)) 5344 break; 5345 } 5346 } 5347 5348 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5349 __func__, 5350 list_empty(handle_list) ? "empty" : "busy", 5351 list_empty(&conf->hold_list) ? "empty" : "busy", 5352 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5353 5354 if (!list_empty(handle_list)) { 5355 sh = list_entry(handle_list->next, typeof(*sh), lru); 5356 5357 if (list_empty(&conf->hold_list)) 5358 conf->bypass_count = 0; 5359 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5360 if (conf->hold_list.next == conf->last_hold) 5361 conf->bypass_count++; 5362 else { 5363 conf->last_hold = conf->hold_list.next; 5364 conf->bypass_count -= conf->bypass_threshold; 5365 if (conf->bypass_count < 0) 5366 conf->bypass_count = 0; 5367 } 5368 } 5369 } else if (!list_empty(&conf->hold_list) && 5370 ((conf->bypass_threshold && 5371 conf->bypass_count > conf->bypass_threshold) || 5372 atomic_read(&conf->pending_full_writes) == 0)) { 5373 5374 list_for_each_entry(tmp, &conf->hold_list, lru) { 5375 if (conf->worker_cnt_per_group == 0 || 5376 group == ANY_GROUP || 5377 !cpu_online(tmp->cpu) || 5378 cpu_to_group(tmp->cpu) == group) { 5379 sh = tmp; 5380 break; 5381 } 5382 } 5383 5384 if (sh) { 5385 conf->bypass_count -= conf->bypass_threshold; 5386 if (conf->bypass_count < 0) 5387 conf->bypass_count = 0; 5388 } 5389 wg = NULL; 5390 } 5391 5392 if (!sh) { 5393 if (second_try) 5394 return NULL; 5395 second_try = true; 5396 try_loprio = !try_loprio; 5397 goto again; 5398 } 5399 5400 if (wg) { 5401 wg->stripes_cnt--; 5402 sh->group = NULL; 5403 } 5404 list_del_init(&sh->lru); 5405 BUG_ON(atomic_inc_return(&sh->count) != 1); 5406 return sh; 5407 } 5408 5409 struct raid5_plug_cb { 5410 struct blk_plug_cb cb; 5411 struct list_head list; 5412 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5413 }; 5414 5415 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5416 { 5417 struct raid5_plug_cb *cb = container_of( 5418 blk_cb, struct raid5_plug_cb, cb); 5419 struct stripe_head *sh; 5420 struct mddev *mddev = cb->cb.data; 5421 struct r5conf *conf = mddev->private; 5422 int cnt = 0; 5423 int hash; 5424 5425 if (cb->list.next && !list_empty(&cb->list)) { 5426 spin_lock_irq(&conf->device_lock); 5427 while (!list_empty(&cb->list)) { 5428 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5429 list_del_init(&sh->lru); 5430 /* 5431 * avoid race release_stripe_plug() sees 5432 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5433 * is still in our list 5434 */ 5435 smp_mb__before_atomic(); 5436 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5437 /* 5438 * STRIPE_ON_RELEASE_LIST could be set here. In that 5439 * case, the count is always > 1 here 5440 */ 5441 hash = sh->hash_lock_index; 5442 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5443 cnt++; 5444 } 5445 spin_unlock_irq(&conf->device_lock); 5446 } 5447 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5448 NR_STRIPE_HASH_LOCKS); 5449 if (mddev->queue) 5450 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5451 kfree(cb); 5452 } 5453 5454 static void release_stripe_plug(struct mddev *mddev, 5455 struct stripe_head *sh) 5456 { 5457 struct blk_plug_cb *blk_cb = blk_check_plugged( 5458 raid5_unplug, mddev, 5459 sizeof(struct raid5_plug_cb)); 5460 struct raid5_plug_cb *cb; 5461 5462 if (!blk_cb) { 5463 raid5_release_stripe(sh); 5464 return; 5465 } 5466 5467 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5468 5469 if (cb->list.next == NULL) { 5470 int i; 5471 INIT_LIST_HEAD(&cb->list); 5472 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5473 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5474 } 5475 5476 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5477 list_add_tail(&sh->lru, &cb->list); 5478 else 5479 raid5_release_stripe(sh); 5480 } 5481 5482 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5483 { 5484 struct r5conf *conf = mddev->private; 5485 sector_t logical_sector, last_sector; 5486 struct stripe_head *sh; 5487 int stripe_sectors; 5488 5489 if (mddev->reshape_position != MaxSector) 5490 /* Skip discard while reshape is happening */ 5491 return; 5492 5493 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5494 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5495 5496 bi->bi_next = NULL; 5497 5498 stripe_sectors = conf->chunk_sectors * 5499 (conf->raid_disks - conf->max_degraded); 5500 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5501 stripe_sectors); 5502 sector_div(last_sector, stripe_sectors); 5503 5504 logical_sector *= conf->chunk_sectors; 5505 last_sector *= conf->chunk_sectors; 5506 5507 for (; logical_sector < last_sector; 5508 logical_sector += STRIPE_SECTORS) { 5509 DEFINE_WAIT(w); 5510 int d; 5511 again: 5512 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5513 prepare_to_wait(&conf->wait_for_overlap, &w, 5514 TASK_UNINTERRUPTIBLE); 5515 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5516 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5517 raid5_release_stripe(sh); 5518 schedule(); 5519 goto again; 5520 } 5521 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5522 spin_lock_irq(&sh->stripe_lock); 5523 for (d = 0; d < conf->raid_disks; d++) { 5524 if (d == sh->pd_idx || d == sh->qd_idx) 5525 continue; 5526 if (sh->dev[d].towrite || sh->dev[d].toread) { 5527 set_bit(R5_Overlap, &sh->dev[d].flags); 5528 spin_unlock_irq(&sh->stripe_lock); 5529 raid5_release_stripe(sh); 5530 schedule(); 5531 goto again; 5532 } 5533 } 5534 set_bit(STRIPE_DISCARD, &sh->state); 5535 finish_wait(&conf->wait_for_overlap, &w); 5536 sh->overwrite_disks = 0; 5537 for (d = 0; d < conf->raid_disks; d++) { 5538 if (d == sh->pd_idx || d == sh->qd_idx) 5539 continue; 5540 sh->dev[d].towrite = bi; 5541 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5542 bio_inc_remaining(bi); 5543 md_write_inc(mddev, bi); 5544 sh->overwrite_disks++; 5545 } 5546 spin_unlock_irq(&sh->stripe_lock); 5547 if (conf->mddev->bitmap) { 5548 for (d = 0; 5549 d < conf->raid_disks - conf->max_degraded; 5550 d++) 5551 md_bitmap_startwrite(mddev->bitmap, 5552 sh->sector, 5553 STRIPE_SECTORS, 5554 0); 5555 sh->bm_seq = conf->seq_flush + 1; 5556 set_bit(STRIPE_BIT_DELAY, &sh->state); 5557 } 5558 5559 set_bit(STRIPE_HANDLE, &sh->state); 5560 clear_bit(STRIPE_DELAYED, &sh->state); 5561 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5562 atomic_inc(&conf->preread_active_stripes); 5563 release_stripe_plug(mddev, sh); 5564 } 5565 5566 bio_endio(bi); 5567 } 5568 5569 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5570 { 5571 struct r5conf *conf = mddev->private; 5572 int dd_idx; 5573 sector_t new_sector; 5574 sector_t logical_sector, last_sector; 5575 struct stripe_head *sh; 5576 const int rw = bio_data_dir(bi); 5577 DEFINE_WAIT(w); 5578 bool do_prepare; 5579 bool do_flush = false; 5580 5581 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5582 int ret = log_handle_flush_request(conf, bi); 5583 5584 if (ret == 0) 5585 return true; 5586 if (ret == -ENODEV) { 5587 md_flush_request(mddev, bi); 5588 return true; 5589 } 5590 /* ret == -EAGAIN, fallback */ 5591 /* 5592 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5593 * we need to flush journal device 5594 */ 5595 do_flush = bi->bi_opf & REQ_PREFLUSH; 5596 } 5597 5598 if (!md_write_start(mddev, bi)) 5599 return false; 5600 /* 5601 * If array is degraded, better not do chunk aligned read because 5602 * later we might have to read it again in order to reconstruct 5603 * data on failed drives. 5604 */ 5605 if (rw == READ && mddev->degraded == 0 && 5606 mddev->reshape_position == MaxSector) { 5607 bi = chunk_aligned_read(mddev, bi); 5608 if (!bi) 5609 return true; 5610 } 5611 5612 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5613 make_discard_request(mddev, bi); 5614 md_write_end(mddev); 5615 return true; 5616 } 5617 5618 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5619 last_sector = bio_end_sector(bi); 5620 bi->bi_next = NULL; 5621 5622 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5623 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5624 int previous; 5625 int seq; 5626 5627 do_prepare = false; 5628 retry: 5629 seq = read_seqcount_begin(&conf->gen_lock); 5630 previous = 0; 5631 if (do_prepare) 5632 prepare_to_wait(&conf->wait_for_overlap, &w, 5633 TASK_UNINTERRUPTIBLE); 5634 if (unlikely(conf->reshape_progress != MaxSector)) { 5635 /* spinlock is needed as reshape_progress may be 5636 * 64bit on a 32bit platform, and so it might be 5637 * possible to see a half-updated value 5638 * Of course reshape_progress could change after 5639 * the lock is dropped, so once we get a reference 5640 * to the stripe that we think it is, we will have 5641 * to check again. 5642 */ 5643 spin_lock_irq(&conf->device_lock); 5644 if (mddev->reshape_backwards 5645 ? logical_sector < conf->reshape_progress 5646 : logical_sector >= conf->reshape_progress) { 5647 previous = 1; 5648 } else { 5649 if (mddev->reshape_backwards 5650 ? logical_sector < conf->reshape_safe 5651 : logical_sector >= conf->reshape_safe) { 5652 spin_unlock_irq(&conf->device_lock); 5653 schedule(); 5654 do_prepare = true; 5655 goto retry; 5656 } 5657 } 5658 spin_unlock_irq(&conf->device_lock); 5659 } 5660 5661 new_sector = raid5_compute_sector(conf, logical_sector, 5662 previous, 5663 &dd_idx, NULL); 5664 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5665 (unsigned long long)new_sector, 5666 (unsigned long long)logical_sector); 5667 5668 sh = raid5_get_active_stripe(conf, new_sector, previous, 5669 (bi->bi_opf & REQ_RAHEAD), 0); 5670 if (sh) { 5671 if (unlikely(previous)) { 5672 /* expansion might have moved on while waiting for a 5673 * stripe, so we must do the range check again. 5674 * Expansion could still move past after this 5675 * test, but as we are holding a reference to 5676 * 'sh', we know that if that happens, 5677 * STRIPE_EXPANDING will get set and the expansion 5678 * won't proceed until we finish with the stripe. 5679 */ 5680 int must_retry = 0; 5681 spin_lock_irq(&conf->device_lock); 5682 if (mddev->reshape_backwards 5683 ? logical_sector >= conf->reshape_progress 5684 : logical_sector < conf->reshape_progress) 5685 /* mismatch, need to try again */ 5686 must_retry = 1; 5687 spin_unlock_irq(&conf->device_lock); 5688 if (must_retry) { 5689 raid5_release_stripe(sh); 5690 schedule(); 5691 do_prepare = true; 5692 goto retry; 5693 } 5694 } 5695 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5696 /* Might have got the wrong stripe_head 5697 * by accident 5698 */ 5699 raid5_release_stripe(sh); 5700 goto retry; 5701 } 5702 5703 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5704 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5705 /* Stripe is busy expanding or 5706 * add failed due to overlap. Flush everything 5707 * and wait a while 5708 */ 5709 md_wakeup_thread(mddev->thread); 5710 raid5_release_stripe(sh); 5711 schedule(); 5712 do_prepare = true; 5713 goto retry; 5714 } 5715 if (do_flush) { 5716 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5717 /* we only need flush for one stripe */ 5718 do_flush = false; 5719 } 5720 5721 set_bit(STRIPE_HANDLE, &sh->state); 5722 clear_bit(STRIPE_DELAYED, &sh->state); 5723 if ((!sh->batch_head || sh == sh->batch_head) && 5724 (bi->bi_opf & REQ_SYNC) && 5725 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5726 atomic_inc(&conf->preread_active_stripes); 5727 release_stripe_plug(mddev, sh); 5728 } else { 5729 /* cannot get stripe for read-ahead, just give-up */ 5730 bi->bi_status = BLK_STS_IOERR; 5731 break; 5732 } 5733 } 5734 finish_wait(&conf->wait_for_overlap, &w); 5735 5736 if (rw == WRITE) 5737 md_write_end(mddev); 5738 bio_endio(bi); 5739 return true; 5740 } 5741 5742 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5743 5744 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5745 { 5746 /* reshaping is quite different to recovery/resync so it is 5747 * handled quite separately ... here. 5748 * 5749 * On each call to sync_request, we gather one chunk worth of 5750 * destination stripes and flag them as expanding. 5751 * Then we find all the source stripes and request reads. 5752 * As the reads complete, handle_stripe will copy the data 5753 * into the destination stripe and release that stripe. 5754 */ 5755 struct r5conf *conf = mddev->private; 5756 struct stripe_head *sh; 5757 struct md_rdev *rdev; 5758 sector_t first_sector, last_sector; 5759 int raid_disks = conf->previous_raid_disks; 5760 int data_disks = raid_disks - conf->max_degraded; 5761 int new_data_disks = conf->raid_disks - conf->max_degraded; 5762 int i; 5763 int dd_idx; 5764 sector_t writepos, readpos, safepos; 5765 sector_t stripe_addr; 5766 int reshape_sectors; 5767 struct list_head stripes; 5768 sector_t retn; 5769 5770 if (sector_nr == 0) { 5771 /* If restarting in the middle, skip the initial sectors */ 5772 if (mddev->reshape_backwards && 5773 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5774 sector_nr = raid5_size(mddev, 0, 0) 5775 - conf->reshape_progress; 5776 } else if (mddev->reshape_backwards && 5777 conf->reshape_progress == MaxSector) { 5778 /* shouldn't happen, but just in case, finish up.*/ 5779 sector_nr = MaxSector; 5780 } else if (!mddev->reshape_backwards && 5781 conf->reshape_progress > 0) 5782 sector_nr = conf->reshape_progress; 5783 sector_div(sector_nr, new_data_disks); 5784 if (sector_nr) { 5785 mddev->curr_resync_completed = sector_nr; 5786 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5787 *skipped = 1; 5788 retn = sector_nr; 5789 goto finish; 5790 } 5791 } 5792 5793 /* We need to process a full chunk at a time. 5794 * If old and new chunk sizes differ, we need to process the 5795 * largest of these 5796 */ 5797 5798 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5799 5800 /* We update the metadata at least every 10 seconds, or when 5801 * the data about to be copied would over-write the source of 5802 * the data at the front of the range. i.e. one new_stripe 5803 * along from reshape_progress new_maps to after where 5804 * reshape_safe old_maps to 5805 */ 5806 writepos = conf->reshape_progress; 5807 sector_div(writepos, new_data_disks); 5808 readpos = conf->reshape_progress; 5809 sector_div(readpos, data_disks); 5810 safepos = conf->reshape_safe; 5811 sector_div(safepos, data_disks); 5812 if (mddev->reshape_backwards) { 5813 BUG_ON(writepos < reshape_sectors); 5814 writepos -= reshape_sectors; 5815 readpos += reshape_sectors; 5816 safepos += reshape_sectors; 5817 } else { 5818 writepos += reshape_sectors; 5819 /* readpos and safepos are worst-case calculations. 5820 * A negative number is overly pessimistic, and causes 5821 * obvious problems for unsigned storage. So clip to 0. 5822 */ 5823 readpos -= min_t(sector_t, reshape_sectors, readpos); 5824 safepos -= min_t(sector_t, reshape_sectors, safepos); 5825 } 5826 5827 /* Having calculated the 'writepos' possibly use it 5828 * to set 'stripe_addr' which is where we will write to. 5829 */ 5830 if (mddev->reshape_backwards) { 5831 BUG_ON(conf->reshape_progress == 0); 5832 stripe_addr = writepos; 5833 BUG_ON((mddev->dev_sectors & 5834 ~((sector_t)reshape_sectors - 1)) 5835 - reshape_sectors - stripe_addr 5836 != sector_nr); 5837 } else { 5838 BUG_ON(writepos != sector_nr + reshape_sectors); 5839 stripe_addr = sector_nr; 5840 } 5841 5842 /* 'writepos' is the most advanced device address we might write. 5843 * 'readpos' is the least advanced device address we might read. 5844 * 'safepos' is the least address recorded in the metadata as having 5845 * been reshaped. 5846 * If there is a min_offset_diff, these are adjusted either by 5847 * increasing the safepos/readpos if diff is negative, or 5848 * increasing writepos if diff is positive. 5849 * If 'readpos' is then behind 'writepos', there is no way that we can 5850 * ensure safety in the face of a crash - that must be done by userspace 5851 * making a backup of the data. So in that case there is no particular 5852 * rush to update metadata. 5853 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5854 * update the metadata to advance 'safepos' to match 'readpos' so that 5855 * we can be safe in the event of a crash. 5856 * So we insist on updating metadata if safepos is behind writepos and 5857 * readpos is beyond writepos. 5858 * In any case, update the metadata every 10 seconds. 5859 * Maybe that number should be configurable, but I'm not sure it is 5860 * worth it.... maybe it could be a multiple of safemode_delay??? 5861 */ 5862 if (conf->min_offset_diff < 0) { 5863 safepos += -conf->min_offset_diff; 5864 readpos += -conf->min_offset_diff; 5865 } else 5866 writepos += conf->min_offset_diff; 5867 5868 if ((mddev->reshape_backwards 5869 ? (safepos > writepos && readpos < writepos) 5870 : (safepos < writepos && readpos > writepos)) || 5871 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5872 /* Cannot proceed until we've updated the superblock... */ 5873 wait_event(conf->wait_for_overlap, 5874 atomic_read(&conf->reshape_stripes)==0 5875 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5876 if (atomic_read(&conf->reshape_stripes) != 0) 5877 return 0; 5878 mddev->reshape_position = conf->reshape_progress; 5879 mddev->curr_resync_completed = sector_nr; 5880 if (!mddev->reshape_backwards) 5881 /* Can update recovery_offset */ 5882 rdev_for_each(rdev, mddev) 5883 if (rdev->raid_disk >= 0 && 5884 !test_bit(Journal, &rdev->flags) && 5885 !test_bit(In_sync, &rdev->flags) && 5886 rdev->recovery_offset < sector_nr) 5887 rdev->recovery_offset = sector_nr; 5888 5889 conf->reshape_checkpoint = jiffies; 5890 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5891 md_wakeup_thread(mddev->thread); 5892 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 5893 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5894 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5895 return 0; 5896 spin_lock_irq(&conf->device_lock); 5897 conf->reshape_safe = mddev->reshape_position; 5898 spin_unlock_irq(&conf->device_lock); 5899 wake_up(&conf->wait_for_overlap); 5900 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5901 } 5902 5903 INIT_LIST_HEAD(&stripes); 5904 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5905 int j; 5906 int skipped_disk = 0; 5907 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5908 set_bit(STRIPE_EXPANDING, &sh->state); 5909 atomic_inc(&conf->reshape_stripes); 5910 /* If any of this stripe is beyond the end of the old 5911 * array, then we need to zero those blocks 5912 */ 5913 for (j=sh->disks; j--;) { 5914 sector_t s; 5915 if (j == sh->pd_idx) 5916 continue; 5917 if (conf->level == 6 && 5918 j == sh->qd_idx) 5919 continue; 5920 s = raid5_compute_blocknr(sh, j, 0); 5921 if (s < raid5_size(mddev, 0, 0)) { 5922 skipped_disk = 1; 5923 continue; 5924 } 5925 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5926 set_bit(R5_Expanded, &sh->dev[j].flags); 5927 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5928 } 5929 if (!skipped_disk) { 5930 set_bit(STRIPE_EXPAND_READY, &sh->state); 5931 set_bit(STRIPE_HANDLE, &sh->state); 5932 } 5933 list_add(&sh->lru, &stripes); 5934 } 5935 spin_lock_irq(&conf->device_lock); 5936 if (mddev->reshape_backwards) 5937 conf->reshape_progress -= reshape_sectors * new_data_disks; 5938 else 5939 conf->reshape_progress += reshape_sectors * new_data_disks; 5940 spin_unlock_irq(&conf->device_lock); 5941 /* Ok, those stripe are ready. We can start scheduling 5942 * reads on the source stripes. 5943 * The source stripes are determined by mapping the first and last 5944 * block on the destination stripes. 5945 */ 5946 first_sector = 5947 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5948 1, &dd_idx, NULL); 5949 last_sector = 5950 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5951 * new_data_disks - 1), 5952 1, &dd_idx, NULL); 5953 if (last_sector >= mddev->dev_sectors) 5954 last_sector = mddev->dev_sectors - 1; 5955 while (first_sector <= last_sector) { 5956 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5957 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5958 set_bit(STRIPE_HANDLE, &sh->state); 5959 raid5_release_stripe(sh); 5960 first_sector += STRIPE_SECTORS; 5961 } 5962 /* Now that the sources are clearly marked, we can release 5963 * the destination stripes 5964 */ 5965 while (!list_empty(&stripes)) { 5966 sh = list_entry(stripes.next, struct stripe_head, lru); 5967 list_del_init(&sh->lru); 5968 raid5_release_stripe(sh); 5969 } 5970 /* If this takes us to the resync_max point where we have to pause, 5971 * then we need to write out the superblock. 5972 */ 5973 sector_nr += reshape_sectors; 5974 retn = reshape_sectors; 5975 finish: 5976 if (mddev->curr_resync_completed > mddev->resync_max || 5977 (sector_nr - mddev->curr_resync_completed) * 2 5978 >= mddev->resync_max - mddev->curr_resync_completed) { 5979 /* Cannot proceed until we've updated the superblock... */ 5980 wait_event(conf->wait_for_overlap, 5981 atomic_read(&conf->reshape_stripes) == 0 5982 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5983 if (atomic_read(&conf->reshape_stripes) != 0) 5984 goto ret; 5985 mddev->reshape_position = conf->reshape_progress; 5986 mddev->curr_resync_completed = sector_nr; 5987 if (!mddev->reshape_backwards) 5988 /* Can update recovery_offset */ 5989 rdev_for_each(rdev, mddev) 5990 if (rdev->raid_disk >= 0 && 5991 !test_bit(Journal, &rdev->flags) && 5992 !test_bit(In_sync, &rdev->flags) && 5993 rdev->recovery_offset < sector_nr) 5994 rdev->recovery_offset = sector_nr; 5995 conf->reshape_checkpoint = jiffies; 5996 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5997 md_wakeup_thread(mddev->thread); 5998 wait_event(mddev->sb_wait, 5999 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6000 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6001 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6002 goto ret; 6003 spin_lock_irq(&conf->device_lock); 6004 conf->reshape_safe = mddev->reshape_position; 6005 spin_unlock_irq(&conf->device_lock); 6006 wake_up(&conf->wait_for_overlap); 6007 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6008 } 6009 ret: 6010 return retn; 6011 } 6012 6013 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6014 int *skipped) 6015 { 6016 struct r5conf *conf = mddev->private; 6017 struct stripe_head *sh; 6018 sector_t max_sector = mddev->dev_sectors; 6019 sector_t sync_blocks; 6020 int still_degraded = 0; 6021 int i; 6022 6023 if (sector_nr >= max_sector) { 6024 /* just being told to finish up .. nothing much to do */ 6025 6026 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6027 end_reshape(conf); 6028 return 0; 6029 } 6030 6031 if (mddev->curr_resync < max_sector) /* aborted */ 6032 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6033 &sync_blocks, 1); 6034 else /* completed sync */ 6035 conf->fullsync = 0; 6036 md_bitmap_close_sync(mddev->bitmap); 6037 6038 return 0; 6039 } 6040 6041 /* Allow raid5_quiesce to complete */ 6042 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6043 6044 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6045 return reshape_request(mddev, sector_nr, skipped); 6046 6047 /* No need to check resync_max as we never do more than one 6048 * stripe, and as resync_max will always be on a chunk boundary, 6049 * if the check in md_do_sync didn't fire, there is no chance 6050 * of overstepping resync_max here 6051 */ 6052 6053 /* if there is too many failed drives and we are trying 6054 * to resync, then assert that we are finished, because there is 6055 * nothing we can do. 6056 */ 6057 if (mddev->degraded >= conf->max_degraded && 6058 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6059 sector_t rv = mddev->dev_sectors - sector_nr; 6060 *skipped = 1; 6061 return rv; 6062 } 6063 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6064 !conf->fullsync && 6065 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6066 sync_blocks >= STRIPE_SECTORS) { 6067 /* we can skip this block, and probably more */ 6068 sync_blocks /= STRIPE_SECTORS; 6069 *skipped = 1; 6070 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 6071 } 6072 6073 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6074 6075 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6076 if (sh == NULL) { 6077 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6078 /* make sure we don't swamp the stripe cache if someone else 6079 * is trying to get access 6080 */ 6081 schedule_timeout_uninterruptible(1); 6082 } 6083 /* Need to check if array will still be degraded after recovery/resync 6084 * Note in case of > 1 drive failures it's possible we're rebuilding 6085 * one drive while leaving another faulty drive in array. 6086 */ 6087 rcu_read_lock(); 6088 for (i = 0; i < conf->raid_disks; i++) { 6089 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6090 6091 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6092 still_degraded = 1; 6093 } 6094 rcu_read_unlock(); 6095 6096 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6097 6098 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6099 set_bit(STRIPE_HANDLE, &sh->state); 6100 6101 raid5_release_stripe(sh); 6102 6103 return STRIPE_SECTORS; 6104 } 6105 6106 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6107 unsigned int offset) 6108 { 6109 /* We may not be able to submit a whole bio at once as there 6110 * may not be enough stripe_heads available. 6111 * We cannot pre-allocate enough stripe_heads as we may need 6112 * more than exist in the cache (if we allow ever large chunks). 6113 * So we do one stripe head at a time and record in 6114 * ->bi_hw_segments how many have been done. 6115 * 6116 * We *know* that this entire raid_bio is in one chunk, so 6117 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6118 */ 6119 struct stripe_head *sh; 6120 int dd_idx; 6121 sector_t sector, logical_sector, last_sector; 6122 int scnt = 0; 6123 int handled = 0; 6124 6125 logical_sector = raid_bio->bi_iter.bi_sector & 6126 ~((sector_t)STRIPE_SECTORS-1); 6127 sector = raid5_compute_sector(conf, logical_sector, 6128 0, &dd_idx, NULL); 6129 last_sector = bio_end_sector(raid_bio); 6130 6131 for (; logical_sector < last_sector; 6132 logical_sector += STRIPE_SECTORS, 6133 sector += STRIPE_SECTORS, 6134 scnt++) { 6135 6136 if (scnt < offset) 6137 /* already done this stripe */ 6138 continue; 6139 6140 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6141 6142 if (!sh) { 6143 /* failed to get a stripe - must wait */ 6144 conf->retry_read_aligned = raid_bio; 6145 conf->retry_read_offset = scnt; 6146 return handled; 6147 } 6148 6149 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6150 raid5_release_stripe(sh); 6151 conf->retry_read_aligned = raid_bio; 6152 conf->retry_read_offset = scnt; 6153 return handled; 6154 } 6155 6156 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6157 handle_stripe(sh); 6158 raid5_release_stripe(sh); 6159 handled++; 6160 } 6161 6162 bio_endio(raid_bio); 6163 6164 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6165 wake_up(&conf->wait_for_quiescent); 6166 return handled; 6167 } 6168 6169 static int handle_active_stripes(struct r5conf *conf, int group, 6170 struct r5worker *worker, 6171 struct list_head *temp_inactive_list) 6172 __releases(&conf->device_lock) 6173 __acquires(&conf->device_lock) 6174 { 6175 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6176 int i, batch_size = 0, hash; 6177 bool release_inactive = false; 6178 6179 while (batch_size < MAX_STRIPE_BATCH && 6180 (sh = __get_priority_stripe(conf, group)) != NULL) 6181 batch[batch_size++] = sh; 6182 6183 if (batch_size == 0) { 6184 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6185 if (!list_empty(temp_inactive_list + i)) 6186 break; 6187 if (i == NR_STRIPE_HASH_LOCKS) { 6188 spin_unlock_irq(&conf->device_lock); 6189 log_flush_stripe_to_raid(conf); 6190 spin_lock_irq(&conf->device_lock); 6191 return batch_size; 6192 } 6193 release_inactive = true; 6194 } 6195 spin_unlock_irq(&conf->device_lock); 6196 6197 release_inactive_stripe_list(conf, temp_inactive_list, 6198 NR_STRIPE_HASH_LOCKS); 6199 6200 r5l_flush_stripe_to_raid(conf->log); 6201 if (release_inactive) { 6202 spin_lock_irq(&conf->device_lock); 6203 return 0; 6204 } 6205 6206 for (i = 0; i < batch_size; i++) 6207 handle_stripe(batch[i]); 6208 log_write_stripe_run(conf); 6209 6210 cond_resched(); 6211 6212 spin_lock_irq(&conf->device_lock); 6213 for (i = 0; i < batch_size; i++) { 6214 hash = batch[i]->hash_lock_index; 6215 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6216 } 6217 return batch_size; 6218 } 6219 6220 static void raid5_do_work(struct work_struct *work) 6221 { 6222 struct r5worker *worker = container_of(work, struct r5worker, work); 6223 struct r5worker_group *group = worker->group; 6224 struct r5conf *conf = group->conf; 6225 struct mddev *mddev = conf->mddev; 6226 int group_id = group - conf->worker_groups; 6227 int handled; 6228 struct blk_plug plug; 6229 6230 pr_debug("+++ raid5worker active\n"); 6231 6232 blk_start_plug(&plug); 6233 handled = 0; 6234 spin_lock_irq(&conf->device_lock); 6235 while (1) { 6236 int batch_size, released; 6237 6238 released = release_stripe_list(conf, worker->temp_inactive_list); 6239 6240 batch_size = handle_active_stripes(conf, group_id, worker, 6241 worker->temp_inactive_list); 6242 worker->working = false; 6243 if (!batch_size && !released) 6244 break; 6245 handled += batch_size; 6246 wait_event_lock_irq(mddev->sb_wait, 6247 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6248 conf->device_lock); 6249 } 6250 pr_debug("%d stripes handled\n", handled); 6251 6252 spin_unlock_irq(&conf->device_lock); 6253 6254 flush_deferred_bios(conf); 6255 6256 r5l_flush_stripe_to_raid(conf->log); 6257 6258 async_tx_issue_pending_all(); 6259 blk_finish_plug(&plug); 6260 6261 pr_debug("--- raid5worker inactive\n"); 6262 } 6263 6264 /* 6265 * This is our raid5 kernel thread. 6266 * 6267 * We scan the hash table for stripes which can be handled now. 6268 * During the scan, completed stripes are saved for us by the interrupt 6269 * handler, so that they will not have to wait for our next wakeup. 6270 */ 6271 static void raid5d(struct md_thread *thread) 6272 { 6273 struct mddev *mddev = thread->mddev; 6274 struct r5conf *conf = mddev->private; 6275 int handled; 6276 struct blk_plug plug; 6277 6278 pr_debug("+++ raid5d active\n"); 6279 6280 md_check_recovery(mddev); 6281 6282 blk_start_plug(&plug); 6283 handled = 0; 6284 spin_lock_irq(&conf->device_lock); 6285 while (1) { 6286 struct bio *bio; 6287 int batch_size, released; 6288 unsigned int offset; 6289 6290 released = release_stripe_list(conf, conf->temp_inactive_list); 6291 if (released) 6292 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6293 6294 if ( 6295 !list_empty(&conf->bitmap_list)) { 6296 /* Now is a good time to flush some bitmap updates */ 6297 conf->seq_flush++; 6298 spin_unlock_irq(&conf->device_lock); 6299 md_bitmap_unplug(mddev->bitmap); 6300 spin_lock_irq(&conf->device_lock); 6301 conf->seq_write = conf->seq_flush; 6302 activate_bit_delay(conf, conf->temp_inactive_list); 6303 } 6304 raid5_activate_delayed(conf); 6305 6306 while ((bio = remove_bio_from_retry(conf, &offset))) { 6307 int ok; 6308 spin_unlock_irq(&conf->device_lock); 6309 ok = retry_aligned_read(conf, bio, offset); 6310 spin_lock_irq(&conf->device_lock); 6311 if (!ok) 6312 break; 6313 handled++; 6314 } 6315 6316 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6317 conf->temp_inactive_list); 6318 if (!batch_size && !released) 6319 break; 6320 handled += batch_size; 6321 6322 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6323 spin_unlock_irq(&conf->device_lock); 6324 md_check_recovery(mddev); 6325 spin_lock_irq(&conf->device_lock); 6326 } 6327 } 6328 pr_debug("%d stripes handled\n", handled); 6329 6330 spin_unlock_irq(&conf->device_lock); 6331 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6332 mutex_trylock(&conf->cache_size_mutex)) { 6333 grow_one_stripe(conf, __GFP_NOWARN); 6334 /* Set flag even if allocation failed. This helps 6335 * slow down allocation requests when mem is short 6336 */ 6337 set_bit(R5_DID_ALLOC, &conf->cache_state); 6338 mutex_unlock(&conf->cache_size_mutex); 6339 } 6340 6341 flush_deferred_bios(conf); 6342 6343 r5l_flush_stripe_to_raid(conf->log); 6344 6345 async_tx_issue_pending_all(); 6346 blk_finish_plug(&plug); 6347 6348 pr_debug("--- raid5d inactive\n"); 6349 } 6350 6351 static ssize_t 6352 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6353 { 6354 struct r5conf *conf; 6355 int ret = 0; 6356 spin_lock(&mddev->lock); 6357 conf = mddev->private; 6358 if (conf) 6359 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6360 spin_unlock(&mddev->lock); 6361 return ret; 6362 } 6363 6364 int 6365 raid5_set_cache_size(struct mddev *mddev, int size) 6366 { 6367 int result = 0; 6368 struct r5conf *conf = mddev->private; 6369 6370 if (size <= 16 || size > 32768) 6371 return -EINVAL; 6372 6373 conf->min_nr_stripes = size; 6374 mutex_lock(&conf->cache_size_mutex); 6375 while (size < conf->max_nr_stripes && 6376 drop_one_stripe(conf)) 6377 ; 6378 mutex_unlock(&conf->cache_size_mutex); 6379 6380 md_allow_write(mddev); 6381 6382 mutex_lock(&conf->cache_size_mutex); 6383 while (size > conf->max_nr_stripes) 6384 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6385 conf->min_nr_stripes = conf->max_nr_stripes; 6386 result = -ENOMEM; 6387 break; 6388 } 6389 mutex_unlock(&conf->cache_size_mutex); 6390 6391 return result; 6392 } 6393 EXPORT_SYMBOL(raid5_set_cache_size); 6394 6395 static ssize_t 6396 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6397 { 6398 struct r5conf *conf; 6399 unsigned long new; 6400 int err; 6401 6402 if (len >= PAGE_SIZE) 6403 return -EINVAL; 6404 if (kstrtoul(page, 10, &new)) 6405 return -EINVAL; 6406 err = mddev_lock(mddev); 6407 if (err) 6408 return err; 6409 conf = mddev->private; 6410 if (!conf) 6411 err = -ENODEV; 6412 else 6413 err = raid5_set_cache_size(mddev, new); 6414 mddev_unlock(mddev); 6415 6416 return err ?: len; 6417 } 6418 6419 static struct md_sysfs_entry 6420 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6421 raid5_show_stripe_cache_size, 6422 raid5_store_stripe_cache_size); 6423 6424 static ssize_t 6425 raid5_show_rmw_level(struct mddev *mddev, char *page) 6426 { 6427 struct r5conf *conf = mddev->private; 6428 if (conf) 6429 return sprintf(page, "%d\n", conf->rmw_level); 6430 else 6431 return 0; 6432 } 6433 6434 static ssize_t 6435 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6436 { 6437 struct r5conf *conf = mddev->private; 6438 unsigned long new; 6439 6440 if (!conf) 6441 return -ENODEV; 6442 6443 if (len >= PAGE_SIZE) 6444 return -EINVAL; 6445 6446 if (kstrtoul(page, 10, &new)) 6447 return -EINVAL; 6448 6449 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6450 return -EINVAL; 6451 6452 if (new != PARITY_DISABLE_RMW && 6453 new != PARITY_ENABLE_RMW && 6454 new != PARITY_PREFER_RMW) 6455 return -EINVAL; 6456 6457 conf->rmw_level = new; 6458 return len; 6459 } 6460 6461 static struct md_sysfs_entry 6462 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6463 raid5_show_rmw_level, 6464 raid5_store_rmw_level); 6465 6466 6467 static ssize_t 6468 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6469 { 6470 struct r5conf *conf; 6471 int ret = 0; 6472 spin_lock(&mddev->lock); 6473 conf = mddev->private; 6474 if (conf) 6475 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6476 spin_unlock(&mddev->lock); 6477 return ret; 6478 } 6479 6480 static ssize_t 6481 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6482 { 6483 struct r5conf *conf; 6484 unsigned long new; 6485 int err; 6486 6487 if (len >= PAGE_SIZE) 6488 return -EINVAL; 6489 if (kstrtoul(page, 10, &new)) 6490 return -EINVAL; 6491 6492 err = mddev_lock(mddev); 6493 if (err) 6494 return err; 6495 conf = mddev->private; 6496 if (!conf) 6497 err = -ENODEV; 6498 else if (new > conf->min_nr_stripes) 6499 err = -EINVAL; 6500 else 6501 conf->bypass_threshold = new; 6502 mddev_unlock(mddev); 6503 return err ?: len; 6504 } 6505 6506 static struct md_sysfs_entry 6507 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6508 S_IRUGO | S_IWUSR, 6509 raid5_show_preread_threshold, 6510 raid5_store_preread_threshold); 6511 6512 static ssize_t 6513 raid5_show_skip_copy(struct mddev *mddev, char *page) 6514 { 6515 struct r5conf *conf; 6516 int ret = 0; 6517 spin_lock(&mddev->lock); 6518 conf = mddev->private; 6519 if (conf) 6520 ret = sprintf(page, "%d\n", conf->skip_copy); 6521 spin_unlock(&mddev->lock); 6522 return ret; 6523 } 6524 6525 static ssize_t 6526 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6527 { 6528 struct r5conf *conf; 6529 unsigned long new; 6530 int err; 6531 6532 if (len >= PAGE_SIZE) 6533 return -EINVAL; 6534 if (kstrtoul(page, 10, &new)) 6535 return -EINVAL; 6536 new = !!new; 6537 6538 err = mddev_lock(mddev); 6539 if (err) 6540 return err; 6541 conf = mddev->private; 6542 if (!conf) 6543 err = -ENODEV; 6544 else if (new != conf->skip_copy) { 6545 mddev_suspend(mddev); 6546 conf->skip_copy = new; 6547 if (new) 6548 mddev->queue->backing_dev_info->capabilities |= 6549 BDI_CAP_STABLE_WRITES; 6550 else 6551 mddev->queue->backing_dev_info->capabilities &= 6552 ~BDI_CAP_STABLE_WRITES; 6553 mddev_resume(mddev); 6554 } 6555 mddev_unlock(mddev); 6556 return err ?: len; 6557 } 6558 6559 static struct md_sysfs_entry 6560 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6561 raid5_show_skip_copy, 6562 raid5_store_skip_copy); 6563 6564 static ssize_t 6565 stripe_cache_active_show(struct mddev *mddev, char *page) 6566 { 6567 struct r5conf *conf = mddev->private; 6568 if (conf) 6569 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6570 else 6571 return 0; 6572 } 6573 6574 static struct md_sysfs_entry 6575 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6576 6577 static ssize_t 6578 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6579 { 6580 struct r5conf *conf; 6581 int ret = 0; 6582 spin_lock(&mddev->lock); 6583 conf = mddev->private; 6584 if (conf) 6585 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6586 spin_unlock(&mddev->lock); 6587 return ret; 6588 } 6589 6590 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6591 int *group_cnt, 6592 int *worker_cnt_per_group, 6593 struct r5worker_group **worker_groups); 6594 static ssize_t 6595 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6596 { 6597 struct r5conf *conf; 6598 unsigned int new; 6599 int err; 6600 struct r5worker_group *new_groups, *old_groups; 6601 int group_cnt, worker_cnt_per_group; 6602 6603 if (len >= PAGE_SIZE) 6604 return -EINVAL; 6605 if (kstrtouint(page, 10, &new)) 6606 return -EINVAL; 6607 /* 8192 should be big enough */ 6608 if (new > 8192) 6609 return -EINVAL; 6610 6611 err = mddev_lock(mddev); 6612 if (err) 6613 return err; 6614 conf = mddev->private; 6615 if (!conf) 6616 err = -ENODEV; 6617 else if (new != conf->worker_cnt_per_group) { 6618 mddev_suspend(mddev); 6619 6620 old_groups = conf->worker_groups; 6621 if (old_groups) 6622 flush_workqueue(raid5_wq); 6623 6624 err = alloc_thread_groups(conf, new, 6625 &group_cnt, &worker_cnt_per_group, 6626 &new_groups); 6627 if (!err) { 6628 spin_lock_irq(&conf->device_lock); 6629 conf->group_cnt = group_cnt; 6630 conf->worker_cnt_per_group = worker_cnt_per_group; 6631 conf->worker_groups = new_groups; 6632 spin_unlock_irq(&conf->device_lock); 6633 6634 if (old_groups) 6635 kfree(old_groups[0].workers); 6636 kfree(old_groups); 6637 } 6638 mddev_resume(mddev); 6639 } 6640 mddev_unlock(mddev); 6641 6642 return err ?: len; 6643 } 6644 6645 static struct md_sysfs_entry 6646 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6647 raid5_show_group_thread_cnt, 6648 raid5_store_group_thread_cnt); 6649 6650 static struct attribute *raid5_attrs[] = { 6651 &raid5_stripecache_size.attr, 6652 &raid5_stripecache_active.attr, 6653 &raid5_preread_bypass_threshold.attr, 6654 &raid5_group_thread_cnt.attr, 6655 &raid5_skip_copy.attr, 6656 &raid5_rmw_level.attr, 6657 &r5c_journal_mode.attr, 6658 &ppl_write_hint.attr, 6659 NULL, 6660 }; 6661 static struct attribute_group raid5_attrs_group = { 6662 .name = NULL, 6663 .attrs = raid5_attrs, 6664 }; 6665 6666 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6667 int *group_cnt, 6668 int *worker_cnt_per_group, 6669 struct r5worker_group **worker_groups) 6670 { 6671 int i, j, k; 6672 ssize_t size; 6673 struct r5worker *workers; 6674 6675 *worker_cnt_per_group = cnt; 6676 if (cnt == 0) { 6677 *group_cnt = 0; 6678 *worker_groups = NULL; 6679 return 0; 6680 } 6681 *group_cnt = num_possible_nodes(); 6682 size = sizeof(struct r5worker) * cnt; 6683 workers = kcalloc(size, *group_cnt, GFP_NOIO); 6684 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 6685 GFP_NOIO); 6686 if (!*worker_groups || !workers) { 6687 kfree(workers); 6688 kfree(*worker_groups); 6689 return -ENOMEM; 6690 } 6691 6692 for (i = 0; i < *group_cnt; i++) { 6693 struct r5worker_group *group; 6694 6695 group = &(*worker_groups)[i]; 6696 INIT_LIST_HEAD(&group->handle_list); 6697 INIT_LIST_HEAD(&group->loprio_list); 6698 group->conf = conf; 6699 group->workers = workers + i * cnt; 6700 6701 for (j = 0; j < cnt; j++) { 6702 struct r5worker *worker = group->workers + j; 6703 worker->group = group; 6704 INIT_WORK(&worker->work, raid5_do_work); 6705 6706 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6707 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6708 } 6709 } 6710 6711 return 0; 6712 } 6713 6714 static void free_thread_groups(struct r5conf *conf) 6715 { 6716 if (conf->worker_groups) 6717 kfree(conf->worker_groups[0].workers); 6718 kfree(conf->worker_groups); 6719 conf->worker_groups = NULL; 6720 } 6721 6722 static sector_t 6723 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6724 { 6725 struct r5conf *conf = mddev->private; 6726 6727 if (!sectors) 6728 sectors = mddev->dev_sectors; 6729 if (!raid_disks) 6730 /* size is defined by the smallest of previous and new size */ 6731 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6732 6733 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6734 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6735 return sectors * (raid_disks - conf->max_degraded); 6736 } 6737 6738 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6739 { 6740 safe_put_page(percpu->spare_page); 6741 percpu->spare_page = NULL; 6742 kvfree(percpu->scribble); 6743 percpu->scribble = NULL; 6744 } 6745 6746 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6747 { 6748 if (conf->level == 6 && !percpu->spare_page) { 6749 percpu->spare_page = alloc_page(GFP_KERNEL); 6750 if (!percpu->spare_page) 6751 return -ENOMEM; 6752 } 6753 6754 if (scribble_alloc(percpu, 6755 max(conf->raid_disks, 6756 conf->previous_raid_disks), 6757 max(conf->chunk_sectors, 6758 conf->prev_chunk_sectors) 6759 / STRIPE_SECTORS, 6760 GFP_KERNEL)) { 6761 free_scratch_buffer(conf, percpu); 6762 return -ENOMEM; 6763 } 6764 6765 return 0; 6766 } 6767 6768 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 6769 { 6770 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6771 6772 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6773 return 0; 6774 } 6775 6776 static void raid5_free_percpu(struct r5conf *conf) 6777 { 6778 if (!conf->percpu) 6779 return; 6780 6781 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6782 free_percpu(conf->percpu); 6783 } 6784 6785 static void free_conf(struct r5conf *conf) 6786 { 6787 int i; 6788 6789 log_exit(conf); 6790 6791 unregister_shrinker(&conf->shrinker); 6792 free_thread_groups(conf); 6793 shrink_stripes(conf); 6794 raid5_free_percpu(conf); 6795 for (i = 0; i < conf->pool_size; i++) 6796 if (conf->disks[i].extra_page) 6797 put_page(conf->disks[i].extra_page); 6798 kfree(conf->disks); 6799 bioset_exit(&conf->bio_split); 6800 kfree(conf->stripe_hashtbl); 6801 kfree(conf->pending_data); 6802 kfree(conf); 6803 } 6804 6805 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 6806 { 6807 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6808 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6809 6810 if (alloc_scratch_buffer(conf, percpu)) { 6811 pr_warn("%s: failed memory allocation for cpu%u\n", 6812 __func__, cpu); 6813 return -ENOMEM; 6814 } 6815 return 0; 6816 } 6817 6818 static int raid5_alloc_percpu(struct r5conf *conf) 6819 { 6820 int err = 0; 6821 6822 conf->percpu = alloc_percpu(struct raid5_percpu); 6823 if (!conf->percpu) 6824 return -ENOMEM; 6825 6826 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6827 if (!err) { 6828 conf->scribble_disks = max(conf->raid_disks, 6829 conf->previous_raid_disks); 6830 conf->scribble_sectors = max(conf->chunk_sectors, 6831 conf->prev_chunk_sectors); 6832 } 6833 return err; 6834 } 6835 6836 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6837 struct shrink_control *sc) 6838 { 6839 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6840 unsigned long ret = SHRINK_STOP; 6841 6842 if (mutex_trylock(&conf->cache_size_mutex)) { 6843 ret= 0; 6844 while (ret < sc->nr_to_scan && 6845 conf->max_nr_stripes > conf->min_nr_stripes) { 6846 if (drop_one_stripe(conf) == 0) { 6847 ret = SHRINK_STOP; 6848 break; 6849 } 6850 ret++; 6851 } 6852 mutex_unlock(&conf->cache_size_mutex); 6853 } 6854 return ret; 6855 } 6856 6857 static unsigned long raid5_cache_count(struct shrinker *shrink, 6858 struct shrink_control *sc) 6859 { 6860 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6861 6862 if (conf->max_nr_stripes < conf->min_nr_stripes) 6863 /* unlikely, but not impossible */ 6864 return 0; 6865 return conf->max_nr_stripes - conf->min_nr_stripes; 6866 } 6867 6868 static struct r5conf *setup_conf(struct mddev *mddev) 6869 { 6870 struct r5conf *conf; 6871 int raid_disk, memory, max_disks; 6872 struct md_rdev *rdev; 6873 struct disk_info *disk; 6874 char pers_name[6]; 6875 int i; 6876 int group_cnt, worker_cnt_per_group; 6877 struct r5worker_group *new_group; 6878 int ret; 6879 6880 if (mddev->new_level != 5 6881 && mddev->new_level != 4 6882 && mddev->new_level != 6) { 6883 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6884 mdname(mddev), mddev->new_level); 6885 return ERR_PTR(-EIO); 6886 } 6887 if ((mddev->new_level == 5 6888 && !algorithm_valid_raid5(mddev->new_layout)) || 6889 (mddev->new_level == 6 6890 && !algorithm_valid_raid6(mddev->new_layout))) { 6891 pr_warn("md/raid:%s: layout %d not supported\n", 6892 mdname(mddev), mddev->new_layout); 6893 return ERR_PTR(-EIO); 6894 } 6895 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6896 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6897 mdname(mddev), mddev->raid_disks); 6898 return ERR_PTR(-EINVAL); 6899 } 6900 6901 if (!mddev->new_chunk_sectors || 6902 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6903 !is_power_of_2(mddev->new_chunk_sectors)) { 6904 pr_warn("md/raid:%s: invalid chunk size %d\n", 6905 mdname(mddev), mddev->new_chunk_sectors << 9); 6906 return ERR_PTR(-EINVAL); 6907 } 6908 6909 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6910 if (conf == NULL) 6911 goto abort; 6912 INIT_LIST_HEAD(&conf->free_list); 6913 INIT_LIST_HEAD(&conf->pending_list); 6914 conf->pending_data = kcalloc(PENDING_IO_MAX, 6915 sizeof(struct r5pending_data), 6916 GFP_KERNEL); 6917 if (!conf->pending_data) 6918 goto abort; 6919 for (i = 0; i < PENDING_IO_MAX; i++) 6920 list_add(&conf->pending_data[i].sibling, &conf->free_list); 6921 /* Don't enable multi-threading by default*/ 6922 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6923 &new_group)) { 6924 conf->group_cnt = group_cnt; 6925 conf->worker_cnt_per_group = worker_cnt_per_group; 6926 conf->worker_groups = new_group; 6927 } else 6928 goto abort; 6929 spin_lock_init(&conf->device_lock); 6930 seqcount_init(&conf->gen_lock); 6931 mutex_init(&conf->cache_size_mutex); 6932 init_waitqueue_head(&conf->wait_for_quiescent); 6933 init_waitqueue_head(&conf->wait_for_stripe); 6934 init_waitqueue_head(&conf->wait_for_overlap); 6935 INIT_LIST_HEAD(&conf->handle_list); 6936 INIT_LIST_HEAD(&conf->loprio_list); 6937 INIT_LIST_HEAD(&conf->hold_list); 6938 INIT_LIST_HEAD(&conf->delayed_list); 6939 INIT_LIST_HEAD(&conf->bitmap_list); 6940 init_llist_head(&conf->released_stripes); 6941 atomic_set(&conf->active_stripes, 0); 6942 atomic_set(&conf->preread_active_stripes, 0); 6943 atomic_set(&conf->active_aligned_reads, 0); 6944 spin_lock_init(&conf->pending_bios_lock); 6945 conf->batch_bio_dispatch = true; 6946 rdev_for_each(rdev, mddev) { 6947 if (test_bit(Journal, &rdev->flags)) 6948 continue; 6949 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6950 conf->batch_bio_dispatch = false; 6951 break; 6952 } 6953 } 6954 6955 conf->bypass_threshold = BYPASS_THRESHOLD; 6956 conf->recovery_disabled = mddev->recovery_disabled - 1; 6957 6958 conf->raid_disks = mddev->raid_disks; 6959 if (mddev->reshape_position == MaxSector) 6960 conf->previous_raid_disks = mddev->raid_disks; 6961 else 6962 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6963 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6964 6965 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 6966 GFP_KERNEL); 6967 6968 if (!conf->disks) 6969 goto abort; 6970 6971 for (i = 0; i < max_disks; i++) { 6972 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 6973 if (!conf->disks[i].extra_page) 6974 goto abort; 6975 } 6976 6977 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 6978 if (ret) 6979 goto abort; 6980 conf->mddev = mddev; 6981 6982 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6983 goto abort; 6984 6985 /* We init hash_locks[0] separately to that it can be used 6986 * as the reference lock in the spin_lock_nest_lock() call 6987 * in lock_all_device_hash_locks_irq in order to convince 6988 * lockdep that we know what we are doing. 6989 */ 6990 spin_lock_init(conf->hash_locks); 6991 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6992 spin_lock_init(conf->hash_locks + i); 6993 6994 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6995 INIT_LIST_HEAD(conf->inactive_list + i); 6996 6997 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6998 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6999 7000 atomic_set(&conf->r5c_cached_full_stripes, 0); 7001 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7002 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7003 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7004 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7005 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7006 7007 conf->level = mddev->new_level; 7008 conf->chunk_sectors = mddev->new_chunk_sectors; 7009 if (raid5_alloc_percpu(conf) != 0) 7010 goto abort; 7011 7012 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7013 7014 rdev_for_each(rdev, mddev) { 7015 raid_disk = rdev->raid_disk; 7016 if (raid_disk >= max_disks 7017 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7018 continue; 7019 disk = conf->disks + raid_disk; 7020 7021 if (test_bit(Replacement, &rdev->flags)) { 7022 if (disk->replacement) 7023 goto abort; 7024 disk->replacement = rdev; 7025 } else { 7026 if (disk->rdev) 7027 goto abort; 7028 disk->rdev = rdev; 7029 } 7030 7031 if (test_bit(In_sync, &rdev->flags)) { 7032 char b[BDEVNAME_SIZE]; 7033 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7034 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7035 } else if (rdev->saved_raid_disk != raid_disk) 7036 /* Cannot rely on bitmap to complete recovery */ 7037 conf->fullsync = 1; 7038 } 7039 7040 conf->level = mddev->new_level; 7041 if (conf->level == 6) { 7042 conf->max_degraded = 2; 7043 if (raid6_call.xor_syndrome) 7044 conf->rmw_level = PARITY_ENABLE_RMW; 7045 else 7046 conf->rmw_level = PARITY_DISABLE_RMW; 7047 } else { 7048 conf->max_degraded = 1; 7049 conf->rmw_level = PARITY_ENABLE_RMW; 7050 } 7051 conf->algorithm = mddev->new_layout; 7052 conf->reshape_progress = mddev->reshape_position; 7053 if (conf->reshape_progress != MaxSector) { 7054 conf->prev_chunk_sectors = mddev->chunk_sectors; 7055 conf->prev_algo = mddev->layout; 7056 } else { 7057 conf->prev_chunk_sectors = conf->chunk_sectors; 7058 conf->prev_algo = conf->algorithm; 7059 } 7060 7061 conf->min_nr_stripes = NR_STRIPES; 7062 if (mddev->reshape_position != MaxSector) { 7063 int stripes = max_t(int, 7064 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, 7065 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); 7066 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7067 if (conf->min_nr_stripes != NR_STRIPES) 7068 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7069 mdname(mddev), conf->min_nr_stripes); 7070 } 7071 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7072 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7073 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7074 if (grow_stripes(conf, conf->min_nr_stripes)) { 7075 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7076 mdname(mddev), memory); 7077 goto abort; 7078 } else 7079 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7080 /* 7081 * Losing a stripe head costs more than the time to refill it, 7082 * it reduces the queue depth and so can hurt throughput. 7083 * So set it rather large, scaled by number of devices. 7084 */ 7085 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7086 conf->shrinker.scan_objects = raid5_cache_scan; 7087 conf->shrinker.count_objects = raid5_cache_count; 7088 conf->shrinker.batch = 128; 7089 conf->shrinker.flags = 0; 7090 if (register_shrinker(&conf->shrinker)) { 7091 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7092 mdname(mddev)); 7093 goto abort; 7094 } 7095 7096 sprintf(pers_name, "raid%d", mddev->new_level); 7097 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7098 if (!conf->thread) { 7099 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7100 mdname(mddev)); 7101 goto abort; 7102 } 7103 7104 return conf; 7105 7106 abort: 7107 if (conf) { 7108 free_conf(conf); 7109 return ERR_PTR(-EIO); 7110 } else 7111 return ERR_PTR(-ENOMEM); 7112 } 7113 7114 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7115 { 7116 switch (algo) { 7117 case ALGORITHM_PARITY_0: 7118 if (raid_disk < max_degraded) 7119 return 1; 7120 break; 7121 case ALGORITHM_PARITY_N: 7122 if (raid_disk >= raid_disks - max_degraded) 7123 return 1; 7124 break; 7125 case ALGORITHM_PARITY_0_6: 7126 if (raid_disk == 0 || 7127 raid_disk == raid_disks - 1) 7128 return 1; 7129 break; 7130 case ALGORITHM_LEFT_ASYMMETRIC_6: 7131 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7132 case ALGORITHM_LEFT_SYMMETRIC_6: 7133 case ALGORITHM_RIGHT_SYMMETRIC_6: 7134 if (raid_disk == raid_disks - 1) 7135 return 1; 7136 } 7137 return 0; 7138 } 7139 7140 static int raid5_run(struct mddev *mddev) 7141 { 7142 struct r5conf *conf; 7143 int working_disks = 0; 7144 int dirty_parity_disks = 0; 7145 struct md_rdev *rdev; 7146 struct md_rdev *journal_dev = NULL; 7147 sector_t reshape_offset = 0; 7148 int i; 7149 long long min_offset_diff = 0; 7150 int first = 1; 7151 7152 if (mddev_init_writes_pending(mddev) < 0) 7153 return -ENOMEM; 7154 7155 if (mddev->recovery_cp != MaxSector) 7156 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7157 mdname(mddev)); 7158 7159 rdev_for_each(rdev, mddev) { 7160 long long diff; 7161 7162 if (test_bit(Journal, &rdev->flags)) { 7163 journal_dev = rdev; 7164 continue; 7165 } 7166 if (rdev->raid_disk < 0) 7167 continue; 7168 diff = (rdev->new_data_offset - rdev->data_offset); 7169 if (first) { 7170 min_offset_diff = diff; 7171 first = 0; 7172 } else if (mddev->reshape_backwards && 7173 diff < min_offset_diff) 7174 min_offset_diff = diff; 7175 else if (!mddev->reshape_backwards && 7176 diff > min_offset_diff) 7177 min_offset_diff = diff; 7178 } 7179 7180 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7181 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7182 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7183 mdname(mddev)); 7184 return -EINVAL; 7185 } 7186 7187 if (mddev->reshape_position != MaxSector) { 7188 /* Check that we can continue the reshape. 7189 * Difficulties arise if the stripe we would write to 7190 * next is at or after the stripe we would read from next. 7191 * For a reshape that changes the number of devices, this 7192 * is only possible for a very short time, and mdadm makes 7193 * sure that time appears to have past before assembling 7194 * the array. So we fail if that time hasn't passed. 7195 * For a reshape that keeps the number of devices the same 7196 * mdadm must be monitoring the reshape can keeping the 7197 * critical areas read-only and backed up. It will start 7198 * the array in read-only mode, so we check for that. 7199 */ 7200 sector_t here_new, here_old; 7201 int old_disks; 7202 int max_degraded = (mddev->level == 6 ? 2 : 1); 7203 int chunk_sectors; 7204 int new_data_disks; 7205 7206 if (journal_dev) { 7207 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7208 mdname(mddev)); 7209 return -EINVAL; 7210 } 7211 7212 if (mddev->new_level != mddev->level) { 7213 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7214 mdname(mddev)); 7215 return -EINVAL; 7216 } 7217 old_disks = mddev->raid_disks - mddev->delta_disks; 7218 /* reshape_position must be on a new-stripe boundary, and one 7219 * further up in new geometry must map after here in old 7220 * geometry. 7221 * If the chunk sizes are different, then as we perform reshape 7222 * in units of the largest of the two, reshape_position needs 7223 * be a multiple of the largest chunk size times new data disks. 7224 */ 7225 here_new = mddev->reshape_position; 7226 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7227 new_data_disks = mddev->raid_disks - max_degraded; 7228 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7229 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7230 mdname(mddev)); 7231 return -EINVAL; 7232 } 7233 reshape_offset = here_new * chunk_sectors; 7234 /* here_new is the stripe we will write to */ 7235 here_old = mddev->reshape_position; 7236 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7237 /* here_old is the first stripe that we might need to read 7238 * from */ 7239 if (mddev->delta_disks == 0) { 7240 /* We cannot be sure it is safe to start an in-place 7241 * reshape. It is only safe if user-space is monitoring 7242 * and taking constant backups. 7243 * mdadm always starts a situation like this in 7244 * readonly mode so it can take control before 7245 * allowing any writes. So just check for that. 7246 */ 7247 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7248 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7249 /* not really in-place - so OK */; 7250 else if (mddev->ro == 0) { 7251 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7252 mdname(mddev)); 7253 return -EINVAL; 7254 } 7255 } else if (mddev->reshape_backwards 7256 ? (here_new * chunk_sectors + min_offset_diff <= 7257 here_old * chunk_sectors) 7258 : (here_new * chunk_sectors >= 7259 here_old * chunk_sectors + (-min_offset_diff))) { 7260 /* Reading from the same stripe as writing to - bad */ 7261 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7262 mdname(mddev)); 7263 return -EINVAL; 7264 } 7265 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7266 /* OK, we should be able to continue; */ 7267 } else { 7268 BUG_ON(mddev->level != mddev->new_level); 7269 BUG_ON(mddev->layout != mddev->new_layout); 7270 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7271 BUG_ON(mddev->delta_disks != 0); 7272 } 7273 7274 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7275 test_bit(MD_HAS_PPL, &mddev->flags)) { 7276 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7277 mdname(mddev)); 7278 clear_bit(MD_HAS_PPL, &mddev->flags); 7279 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7280 } 7281 7282 if (mddev->private == NULL) 7283 conf = setup_conf(mddev); 7284 else 7285 conf = mddev->private; 7286 7287 if (IS_ERR(conf)) 7288 return PTR_ERR(conf); 7289 7290 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7291 if (!journal_dev) { 7292 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7293 mdname(mddev)); 7294 mddev->ro = 1; 7295 set_disk_ro(mddev->gendisk, 1); 7296 } else if (mddev->recovery_cp == MaxSector) 7297 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7298 } 7299 7300 conf->min_offset_diff = min_offset_diff; 7301 mddev->thread = conf->thread; 7302 conf->thread = NULL; 7303 mddev->private = conf; 7304 7305 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7306 i++) { 7307 rdev = conf->disks[i].rdev; 7308 if (!rdev && conf->disks[i].replacement) { 7309 /* The replacement is all we have yet */ 7310 rdev = conf->disks[i].replacement; 7311 conf->disks[i].replacement = NULL; 7312 clear_bit(Replacement, &rdev->flags); 7313 conf->disks[i].rdev = rdev; 7314 } 7315 if (!rdev) 7316 continue; 7317 if (conf->disks[i].replacement && 7318 conf->reshape_progress != MaxSector) { 7319 /* replacements and reshape simply do not mix. */ 7320 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7321 goto abort; 7322 } 7323 if (test_bit(In_sync, &rdev->flags)) { 7324 working_disks++; 7325 continue; 7326 } 7327 /* This disc is not fully in-sync. However if it 7328 * just stored parity (beyond the recovery_offset), 7329 * when we don't need to be concerned about the 7330 * array being dirty. 7331 * When reshape goes 'backwards', we never have 7332 * partially completed devices, so we only need 7333 * to worry about reshape going forwards. 7334 */ 7335 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7336 if (mddev->major_version == 0 && 7337 mddev->minor_version > 90) 7338 rdev->recovery_offset = reshape_offset; 7339 7340 if (rdev->recovery_offset < reshape_offset) { 7341 /* We need to check old and new layout */ 7342 if (!only_parity(rdev->raid_disk, 7343 conf->algorithm, 7344 conf->raid_disks, 7345 conf->max_degraded)) 7346 continue; 7347 } 7348 if (!only_parity(rdev->raid_disk, 7349 conf->prev_algo, 7350 conf->previous_raid_disks, 7351 conf->max_degraded)) 7352 continue; 7353 dirty_parity_disks++; 7354 } 7355 7356 /* 7357 * 0 for a fully functional array, 1 or 2 for a degraded array. 7358 */ 7359 mddev->degraded = raid5_calc_degraded(conf); 7360 7361 if (has_failed(conf)) { 7362 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7363 mdname(mddev), mddev->degraded, conf->raid_disks); 7364 goto abort; 7365 } 7366 7367 /* device size must be a multiple of chunk size */ 7368 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7369 mddev->resync_max_sectors = mddev->dev_sectors; 7370 7371 if (mddev->degraded > dirty_parity_disks && 7372 mddev->recovery_cp != MaxSector) { 7373 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7374 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7375 mdname(mddev)); 7376 else if (mddev->ok_start_degraded) 7377 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7378 mdname(mddev)); 7379 else { 7380 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7381 mdname(mddev)); 7382 goto abort; 7383 } 7384 } 7385 7386 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7387 mdname(mddev), conf->level, 7388 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7389 mddev->new_layout); 7390 7391 print_raid5_conf(conf); 7392 7393 if (conf->reshape_progress != MaxSector) { 7394 conf->reshape_safe = conf->reshape_progress; 7395 atomic_set(&conf->reshape_stripes, 0); 7396 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7397 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7398 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7399 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7400 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7401 "reshape"); 7402 if (!mddev->sync_thread) 7403 goto abort; 7404 } 7405 7406 /* Ok, everything is just fine now */ 7407 if (mddev->to_remove == &raid5_attrs_group) 7408 mddev->to_remove = NULL; 7409 else if (mddev->kobj.sd && 7410 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7411 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7412 mdname(mddev)); 7413 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7414 7415 if (mddev->queue) { 7416 int chunk_size; 7417 /* read-ahead size must cover two whole stripes, which 7418 * is 2 * (datadisks) * chunksize where 'n' is the 7419 * number of raid devices 7420 */ 7421 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7422 int stripe = data_disks * 7423 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7424 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7425 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7426 7427 chunk_size = mddev->chunk_sectors << 9; 7428 blk_queue_io_min(mddev->queue, chunk_size); 7429 blk_queue_io_opt(mddev->queue, chunk_size * 7430 (conf->raid_disks - conf->max_degraded)); 7431 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7432 /* 7433 * We can only discard a whole stripe. It doesn't make sense to 7434 * discard data disk but write parity disk 7435 */ 7436 stripe = stripe * PAGE_SIZE; 7437 /* Round up to power of 2, as discard handling 7438 * currently assumes that */ 7439 while ((stripe-1) & stripe) 7440 stripe = (stripe | (stripe-1)) + 1; 7441 mddev->queue->limits.discard_alignment = stripe; 7442 mddev->queue->limits.discard_granularity = stripe; 7443 7444 blk_queue_max_write_same_sectors(mddev->queue, 0); 7445 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7446 7447 rdev_for_each(rdev, mddev) { 7448 disk_stack_limits(mddev->gendisk, rdev->bdev, 7449 rdev->data_offset << 9); 7450 disk_stack_limits(mddev->gendisk, rdev->bdev, 7451 rdev->new_data_offset << 9); 7452 } 7453 7454 /* 7455 * zeroing is required, otherwise data 7456 * could be lost. Consider a scenario: discard a stripe 7457 * (the stripe could be inconsistent if 7458 * discard_zeroes_data is 0); write one disk of the 7459 * stripe (the stripe could be inconsistent again 7460 * depending on which disks are used to calculate 7461 * parity); the disk is broken; The stripe data of this 7462 * disk is lost. 7463 * 7464 * We only allow DISCARD if the sysadmin has confirmed that 7465 * only safe devices are in use by setting a module parameter. 7466 * A better idea might be to turn DISCARD into WRITE_ZEROES 7467 * requests, as that is required to be safe. 7468 */ 7469 if (devices_handle_discard_safely && 7470 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7471 mddev->queue->limits.discard_granularity >= stripe) 7472 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 7473 mddev->queue); 7474 else 7475 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 7476 mddev->queue); 7477 7478 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7479 } 7480 7481 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7482 goto abort; 7483 7484 return 0; 7485 abort: 7486 md_unregister_thread(&mddev->thread); 7487 print_raid5_conf(conf); 7488 free_conf(conf); 7489 mddev->private = NULL; 7490 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7491 return -EIO; 7492 } 7493 7494 static void raid5_free(struct mddev *mddev, void *priv) 7495 { 7496 struct r5conf *conf = priv; 7497 7498 free_conf(conf); 7499 mddev->to_remove = &raid5_attrs_group; 7500 } 7501 7502 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7503 { 7504 struct r5conf *conf = mddev->private; 7505 int i; 7506 7507 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7508 conf->chunk_sectors / 2, mddev->layout); 7509 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7510 rcu_read_lock(); 7511 for (i = 0; i < conf->raid_disks; i++) { 7512 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7513 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7514 } 7515 rcu_read_unlock(); 7516 seq_printf (seq, "]"); 7517 } 7518 7519 static void print_raid5_conf (struct r5conf *conf) 7520 { 7521 int i; 7522 struct disk_info *tmp; 7523 7524 pr_debug("RAID conf printout:\n"); 7525 if (!conf) { 7526 pr_debug("(conf==NULL)\n"); 7527 return; 7528 } 7529 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7530 conf->raid_disks, 7531 conf->raid_disks - conf->mddev->degraded); 7532 7533 for (i = 0; i < conf->raid_disks; i++) { 7534 char b[BDEVNAME_SIZE]; 7535 tmp = conf->disks + i; 7536 if (tmp->rdev) 7537 pr_debug(" disk %d, o:%d, dev:%s\n", 7538 i, !test_bit(Faulty, &tmp->rdev->flags), 7539 bdevname(tmp->rdev->bdev, b)); 7540 } 7541 } 7542 7543 static int raid5_spare_active(struct mddev *mddev) 7544 { 7545 int i; 7546 struct r5conf *conf = mddev->private; 7547 struct disk_info *tmp; 7548 int count = 0; 7549 unsigned long flags; 7550 7551 for (i = 0; i < conf->raid_disks; i++) { 7552 tmp = conf->disks + i; 7553 if (tmp->replacement 7554 && tmp->replacement->recovery_offset == MaxSector 7555 && !test_bit(Faulty, &tmp->replacement->flags) 7556 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7557 /* Replacement has just become active. */ 7558 if (!tmp->rdev 7559 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7560 count++; 7561 if (tmp->rdev) { 7562 /* Replaced device not technically faulty, 7563 * but we need to be sure it gets removed 7564 * and never re-added. 7565 */ 7566 set_bit(Faulty, &tmp->rdev->flags); 7567 sysfs_notify_dirent_safe( 7568 tmp->rdev->sysfs_state); 7569 } 7570 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7571 } else if (tmp->rdev 7572 && tmp->rdev->recovery_offset == MaxSector 7573 && !test_bit(Faulty, &tmp->rdev->flags) 7574 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7575 count++; 7576 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7577 } 7578 } 7579 spin_lock_irqsave(&conf->device_lock, flags); 7580 mddev->degraded = raid5_calc_degraded(conf); 7581 spin_unlock_irqrestore(&conf->device_lock, flags); 7582 print_raid5_conf(conf); 7583 return count; 7584 } 7585 7586 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7587 { 7588 struct r5conf *conf = mddev->private; 7589 int err = 0; 7590 int number = rdev->raid_disk; 7591 struct md_rdev **rdevp; 7592 struct disk_info *p = conf->disks + number; 7593 7594 print_raid5_conf(conf); 7595 if (test_bit(Journal, &rdev->flags) && conf->log) { 7596 /* 7597 * we can't wait pending write here, as this is called in 7598 * raid5d, wait will deadlock. 7599 * neilb: there is no locking about new writes here, 7600 * so this cannot be safe. 7601 */ 7602 if (atomic_read(&conf->active_stripes) || 7603 atomic_read(&conf->r5c_cached_full_stripes) || 7604 atomic_read(&conf->r5c_cached_partial_stripes)) { 7605 return -EBUSY; 7606 } 7607 log_exit(conf); 7608 return 0; 7609 } 7610 if (rdev == p->rdev) 7611 rdevp = &p->rdev; 7612 else if (rdev == p->replacement) 7613 rdevp = &p->replacement; 7614 else 7615 return 0; 7616 7617 if (number >= conf->raid_disks && 7618 conf->reshape_progress == MaxSector) 7619 clear_bit(In_sync, &rdev->flags); 7620 7621 if (test_bit(In_sync, &rdev->flags) || 7622 atomic_read(&rdev->nr_pending)) { 7623 err = -EBUSY; 7624 goto abort; 7625 } 7626 /* Only remove non-faulty devices if recovery 7627 * isn't possible. 7628 */ 7629 if (!test_bit(Faulty, &rdev->flags) && 7630 mddev->recovery_disabled != conf->recovery_disabled && 7631 !has_failed(conf) && 7632 (!p->replacement || p->replacement == rdev) && 7633 number < conf->raid_disks) { 7634 err = -EBUSY; 7635 goto abort; 7636 } 7637 *rdevp = NULL; 7638 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7639 synchronize_rcu(); 7640 if (atomic_read(&rdev->nr_pending)) { 7641 /* lost the race, try later */ 7642 err = -EBUSY; 7643 *rdevp = rdev; 7644 } 7645 } 7646 if (!err) { 7647 err = log_modify(conf, rdev, false); 7648 if (err) 7649 goto abort; 7650 } 7651 if (p->replacement) { 7652 /* We must have just cleared 'rdev' */ 7653 p->rdev = p->replacement; 7654 clear_bit(Replacement, &p->replacement->flags); 7655 smp_mb(); /* Make sure other CPUs may see both as identical 7656 * but will never see neither - if they are careful 7657 */ 7658 p->replacement = NULL; 7659 7660 if (!err) 7661 err = log_modify(conf, p->rdev, true); 7662 } 7663 7664 clear_bit(WantReplacement, &rdev->flags); 7665 abort: 7666 7667 print_raid5_conf(conf); 7668 return err; 7669 } 7670 7671 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7672 { 7673 struct r5conf *conf = mddev->private; 7674 int ret, err = -EEXIST; 7675 int disk; 7676 struct disk_info *p; 7677 int first = 0; 7678 int last = conf->raid_disks - 1; 7679 7680 if (test_bit(Journal, &rdev->flags)) { 7681 if (conf->log) 7682 return -EBUSY; 7683 7684 rdev->raid_disk = 0; 7685 /* 7686 * The array is in readonly mode if journal is missing, so no 7687 * write requests running. We should be safe 7688 */ 7689 ret = log_init(conf, rdev, false); 7690 if (ret) 7691 return ret; 7692 7693 ret = r5l_start(conf->log); 7694 if (ret) 7695 return ret; 7696 7697 return 0; 7698 } 7699 if (mddev->recovery_disabled == conf->recovery_disabled) 7700 return -EBUSY; 7701 7702 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7703 /* no point adding a device */ 7704 return -EINVAL; 7705 7706 if (rdev->raid_disk >= 0) 7707 first = last = rdev->raid_disk; 7708 7709 /* 7710 * find the disk ... but prefer rdev->saved_raid_disk 7711 * if possible. 7712 */ 7713 if (rdev->saved_raid_disk >= 0 && 7714 rdev->saved_raid_disk >= first && 7715 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7716 first = rdev->saved_raid_disk; 7717 7718 for (disk = first; disk <= last; disk++) { 7719 p = conf->disks + disk; 7720 if (p->rdev == NULL) { 7721 clear_bit(In_sync, &rdev->flags); 7722 rdev->raid_disk = disk; 7723 if (rdev->saved_raid_disk != disk) 7724 conf->fullsync = 1; 7725 rcu_assign_pointer(p->rdev, rdev); 7726 7727 err = log_modify(conf, rdev, true); 7728 7729 goto out; 7730 } 7731 } 7732 for (disk = first; disk <= last; disk++) { 7733 p = conf->disks + disk; 7734 if (test_bit(WantReplacement, &p->rdev->flags) && 7735 p->replacement == NULL) { 7736 clear_bit(In_sync, &rdev->flags); 7737 set_bit(Replacement, &rdev->flags); 7738 rdev->raid_disk = disk; 7739 err = 0; 7740 conf->fullsync = 1; 7741 rcu_assign_pointer(p->replacement, rdev); 7742 break; 7743 } 7744 } 7745 out: 7746 print_raid5_conf(conf); 7747 return err; 7748 } 7749 7750 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7751 { 7752 /* no resync is happening, and there is enough space 7753 * on all devices, so we can resize. 7754 * We need to make sure resync covers any new space. 7755 * If the array is shrinking we should possibly wait until 7756 * any io in the removed space completes, but it hardly seems 7757 * worth it. 7758 */ 7759 sector_t newsize; 7760 struct r5conf *conf = mddev->private; 7761 7762 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 7763 return -EINVAL; 7764 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7765 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7766 if (mddev->external_size && 7767 mddev->array_sectors > newsize) 7768 return -EINVAL; 7769 if (mddev->bitmap) { 7770 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 7771 if (ret) 7772 return ret; 7773 } 7774 md_set_array_sectors(mddev, newsize); 7775 if (sectors > mddev->dev_sectors && 7776 mddev->recovery_cp > mddev->dev_sectors) { 7777 mddev->recovery_cp = mddev->dev_sectors; 7778 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7779 } 7780 mddev->dev_sectors = sectors; 7781 mddev->resync_max_sectors = sectors; 7782 return 0; 7783 } 7784 7785 static int check_stripe_cache(struct mddev *mddev) 7786 { 7787 /* Can only proceed if there are plenty of stripe_heads. 7788 * We need a minimum of one full stripe,, and for sensible progress 7789 * it is best to have about 4 times that. 7790 * If we require 4 times, then the default 256 4K stripe_heads will 7791 * allow for chunk sizes up to 256K, which is probably OK. 7792 * If the chunk size is greater, user-space should request more 7793 * stripe_heads first. 7794 */ 7795 struct r5conf *conf = mddev->private; 7796 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7797 > conf->min_nr_stripes || 7798 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7799 > conf->min_nr_stripes) { 7800 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7801 mdname(mddev), 7802 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7803 / STRIPE_SIZE)*4); 7804 return 0; 7805 } 7806 return 1; 7807 } 7808 7809 static int check_reshape(struct mddev *mddev) 7810 { 7811 struct r5conf *conf = mddev->private; 7812 7813 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 7814 return -EINVAL; 7815 if (mddev->delta_disks == 0 && 7816 mddev->new_layout == mddev->layout && 7817 mddev->new_chunk_sectors == mddev->chunk_sectors) 7818 return 0; /* nothing to do */ 7819 if (has_failed(conf)) 7820 return -EINVAL; 7821 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7822 /* We might be able to shrink, but the devices must 7823 * be made bigger first. 7824 * For raid6, 4 is the minimum size. 7825 * Otherwise 2 is the minimum 7826 */ 7827 int min = 2; 7828 if (mddev->level == 6) 7829 min = 4; 7830 if (mddev->raid_disks + mddev->delta_disks < min) 7831 return -EINVAL; 7832 } 7833 7834 if (!check_stripe_cache(mddev)) 7835 return -ENOSPC; 7836 7837 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7838 mddev->delta_disks > 0) 7839 if (resize_chunks(conf, 7840 conf->previous_raid_disks 7841 + max(0, mddev->delta_disks), 7842 max(mddev->new_chunk_sectors, 7843 mddev->chunk_sectors) 7844 ) < 0) 7845 return -ENOMEM; 7846 7847 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 7848 return 0; /* never bother to shrink */ 7849 return resize_stripes(conf, (conf->previous_raid_disks 7850 + mddev->delta_disks)); 7851 } 7852 7853 static int raid5_start_reshape(struct mddev *mddev) 7854 { 7855 struct r5conf *conf = mddev->private; 7856 struct md_rdev *rdev; 7857 int spares = 0; 7858 unsigned long flags; 7859 7860 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7861 return -EBUSY; 7862 7863 if (!check_stripe_cache(mddev)) 7864 return -ENOSPC; 7865 7866 if (has_failed(conf)) 7867 return -EINVAL; 7868 7869 rdev_for_each(rdev, mddev) { 7870 if (!test_bit(In_sync, &rdev->flags) 7871 && !test_bit(Faulty, &rdev->flags)) 7872 spares++; 7873 } 7874 7875 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7876 /* Not enough devices even to make a degraded array 7877 * of that size 7878 */ 7879 return -EINVAL; 7880 7881 /* Refuse to reduce size of the array. Any reductions in 7882 * array size must be through explicit setting of array_size 7883 * attribute. 7884 */ 7885 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7886 < mddev->array_sectors) { 7887 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 7888 mdname(mddev)); 7889 return -EINVAL; 7890 } 7891 7892 atomic_set(&conf->reshape_stripes, 0); 7893 spin_lock_irq(&conf->device_lock); 7894 write_seqcount_begin(&conf->gen_lock); 7895 conf->previous_raid_disks = conf->raid_disks; 7896 conf->raid_disks += mddev->delta_disks; 7897 conf->prev_chunk_sectors = conf->chunk_sectors; 7898 conf->chunk_sectors = mddev->new_chunk_sectors; 7899 conf->prev_algo = conf->algorithm; 7900 conf->algorithm = mddev->new_layout; 7901 conf->generation++; 7902 /* Code that selects data_offset needs to see the generation update 7903 * if reshape_progress has been set - so a memory barrier needed. 7904 */ 7905 smp_mb(); 7906 if (mddev->reshape_backwards) 7907 conf->reshape_progress = raid5_size(mddev, 0, 0); 7908 else 7909 conf->reshape_progress = 0; 7910 conf->reshape_safe = conf->reshape_progress; 7911 write_seqcount_end(&conf->gen_lock); 7912 spin_unlock_irq(&conf->device_lock); 7913 7914 /* Now make sure any requests that proceeded on the assumption 7915 * the reshape wasn't running - like Discard or Read - have 7916 * completed. 7917 */ 7918 mddev_suspend(mddev); 7919 mddev_resume(mddev); 7920 7921 /* Add some new drives, as many as will fit. 7922 * We know there are enough to make the newly sized array work. 7923 * Don't add devices if we are reducing the number of 7924 * devices in the array. This is because it is not possible 7925 * to correctly record the "partially reconstructed" state of 7926 * such devices during the reshape and confusion could result. 7927 */ 7928 if (mddev->delta_disks >= 0) { 7929 rdev_for_each(rdev, mddev) 7930 if (rdev->raid_disk < 0 && 7931 !test_bit(Faulty, &rdev->flags)) { 7932 if (raid5_add_disk(mddev, rdev) == 0) { 7933 if (rdev->raid_disk 7934 >= conf->previous_raid_disks) 7935 set_bit(In_sync, &rdev->flags); 7936 else 7937 rdev->recovery_offset = 0; 7938 7939 if (sysfs_link_rdev(mddev, rdev)) 7940 /* Failure here is OK */; 7941 } 7942 } else if (rdev->raid_disk >= conf->previous_raid_disks 7943 && !test_bit(Faulty, &rdev->flags)) { 7944 /* This is a spare that was manually added */ 7945 set_bit(In_sync, &rdev->flags); 7946 } 7947 7948 /* When a reshape changes the number of devices, 7949 * ->degraded is measured against the larger of the 7950 * pre and post number of devices. 7951 */ 7952 spin_lock_irqsave(&conf->device_lock, flags); 7953 mddev->degraded = raid5_calc_degraded(conf); 7954 spin_unlock_irqrestore(&conf->device_lock, flags); 7955 } 7956 mddev->raid_disks = conf->raid_disks; 7957 mddev->reshape_position = conf->reshape_progress; 7958 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7959 7960 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7961 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7962 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7963 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7964 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7965 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7966 "reshape"); 7967 if (!mddev->sync_thread) { 7968 mddev->recovery = 0; 7969 spin_lock_irq(&conf->device_lock); 7970 write_seqcount_begin(&conf->gen_lock); 7971 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7972 mddev->new_chunk_sectors = 7973 conf->chunk_sectors = conf->prev_chunk_sectors; 7974 mddev->new_layout = conf->algorithm = conf->prev_algo; 7975 rdev_for_each(rdev, mddev) 7976 rdev->new_data_offset = rdev->data_offset; 7977 smp_wmb(); 7978 conf->generation --; 7979 conf->reshape_progress = MaxSector; 7980 mddev->reshape_position = MaxSector; 7981 write_seqcount_end(&conf->gen_lock); 7982 spin_unlock_irq(&conf->device_lock); 7983 return -EAGAIN; 7984 } 7985 conf->reshape_checkpoint = jiffies; 7986 md_wakeup_thread(mddev->sync_thread); 7987 md_new_event(mddev); 7988 return 0; 7989 } 7990 7991 /* This is called from the reshape thread and should make any 7992 * changes needed in 'conf' 7993 */ 7994 static void end_reshape(struct r5conf *conf) 7995 { 7996 7997 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7998 struct md_rdev *rdev; 7999 8000 spin_lock_irq(&conf->device_lock); 8001 conf->previous_raid_disks = conf->raid_disks; 8002 md_finish_reshape(conf->mddev); 8003 smp_wmb(); 8004 conf->reshape_progress = MaxSector; 8005 conf->mddev->reshape_position = MaxSector; 8006 rdev_for_each(rdev, conf->mddev) 8007 if (rdev->raid_disk >= 0 && 8008 !test_bit(Journal, &rdev->flags) && 8009 !test_bit(In_sync, &rdev->flags)) 8010 rdev->recovery_offset = MaxSector; 8011 spin_unlock_irq(&conf->device_lock); 8012 wake_up(&conf->wait_for_overlap); 8013 8014 /* read-ahead size must cover two whole stripes, which is 8015 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 8016 */ 8017 if (conf->mddev->queue) { 8018 int data_disks = conf->raid_disks - conf->max_degraded; 8019 int stripe = data_disks * ((conf->chunk_sectors << 9) 8020 / PAGE_SIZE); 8021 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 8022 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 8023 } 8024 } 8025 } 8026 8027 /* This is called from the raid5d thread with mddev_lock held. 8028 * It makes config changes to the device. 8029 */ 8030 static void raid5_finish_reshape(struct mddev *mddev) 8031 { 8032 struct r5conf *conf = mddev->private; 8033 8034 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8035 8036 if (mddev->delta_disks <= 0) { 8037 int d; 8038 spin_lock_irq(&conf->device_lock); 8039 mddev->degraded = raid5_calc_degraded(conf); 8040 spin_unlock_irq(&conf->device_lock); 8041 for (d = conf->raid_disks ; 8042 d < conf->raid_disks - mddev->delta_disks; 8043 d++) { 8044 struct md_rdev *rdev = conf->disks[d].rdev; 8045 if (rdev) 8046 clear_bit(In_sync, &rdev->flags); 8047 rdev = conf->disks[d].replacement; 8048 if (rdev) 8049 clear_bit(In_sync, &rdev->flags); 8050 } 8051 } 8052 mddev->layout = conf->algorithm; 8053 mddev->chunk_sectors = conf->chunk_sectors; 8054 mddev->reshape_position = MaxSector; 8055 mddev->delta_disks = 0; 8056 mddev->reshape_backwards = 0; 8057 } 8058 } 8059 8060 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8061 { 8062 struct r5conf *conf = mddev->private; 8063 8064 if (quiesce) { 8065 /* stop all writes */ 8066 lock_all_device_hash_locks_irq(conf); 8067 /* '2' tells resync/reshape to pause so that all 8068 * active stripes can drain 8069 */ 8070 r5c_flush_cache(conf, INT_MAX); 8071 conf->quiesce = 2; 8072 wait_event_cmd(conf->wait_for_quiescent, 8073 atomic_read(&conf->active_stripes) == 0 && 8074 atomic_read(&conf->active_aligned_reads) == 0, 8075 unlock_all_device_hash_locks_irq(conf), 8076 lock_all_device_hash_locks_irq(conf)); 8077 conf->quiesce = 1; 8078 unlock_all_device_hash_locks_irq(conf); 8079 /* allow reshape to continue */ 8080 wake_up(&conf->wait_for_overlap); 8081 } else { 8082 /* re-enable writes */ 8083 lock_all_device_hash_locks_irq(conf); 8084 conf->quiesce = 0; 8085 wake_up(&conf->wait_for_quiescent); 8086 wake_up(&conf->wait_for_overlap); 8087 unlock_all_device_hash_locks_irq(conf); 8088 } 8089 log_quiesce(conf, quiesce); 8090 } 8091 8092 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8093 { 8094 struct r0conf *raid0_conf = mddev->private; 8095 sector_t sectors; 8096 8097 /* for raid0 takeover only one zone is supported */ 8098 if (raid0_conf->nr_strip_zones > 1) { 8099 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8100 mdname(mddev)); 8101 return ERR_PTR(-EINVAL); 8102 } 8103 8104 sectors = raid0_conf->strip_zone[0].zone_end; 8105 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8106 mddev->dev_sectors = sectors; 8107 mddev->new_level = level; 8108 mddev->new_layout = ALGORITHM_PARITY_N; 8109 mddev->new_chunk_sectors = mddev->chunk_sectors; 8110 mddev->raid_disks += 1; 8111 mddev->delta_disks = 1; 8112 /* make sure it will be not marked as dirty */ 8113 mddev->recovery_cp = MaxSector; 8114 8115 return setup_conf(mddev); 8116 } 8117 8118 static void *raid5_takeover_raid1(struct mddev *mddev) 8119 { 8120 int chunksect; 8121 void *ret; 8122 8123 if (mddev->raid_disks != 2 || 8124 mddev->degraded > 1) 8125 return ERR_PTR(-EINVAL); 8126 8127 /* Should check if there are write-behind devices? */ 8128 8129 chunksect = 64*2; /* 64K by default */ 8130 8131 /* The array must be an exact multiple of chunksize */ 8132 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8133 chunksect >>= 1; 8134 8135 if ((chunksect<<9) < STRIPE_SIZE) 8136 /* array size does not allow a suitable chunk size */ 8137 return ERR_PTR(-EINVAL); 8138 8139 mddev->new_level = 5; 8140 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8141 mddev->new_chunk_sectors = chunksect; 8142 8143 ret = setup_conf(mddev); 8144 if (!IS_ERR(ret)) 8145 mddev_clear_unsupported_flags(mddev, 8146 UNSUPPORTED_MDDEV_FLAGS); 8147 return ret; 8148 } 8149 8150 static void *raid5_takeover_raid6(struct mddev *mddev) 8151 { 8152 int new_layout; 8153 8154 switch (mddev->layout) { 8155 case ALGORITHM_LEFT_ASYMMETRIC_6: 8156 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8157 break; 8158 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8159 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8160 break; 8161 case ALGORITHM_LEFT_SYMMETRIC_6: 8162 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8163 break; 8164 case ALGORITHM_RIGHT_SYMMETRIC_6: 8165 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8166 break; 8167 case ALGORITHM_PARITY_0_6: 8168 new_layout = ALGORITHM_PARITY_0; 8169 break; 8170 case ALGORITHM_PARITY_N: 8171 new_layout = ALGORITHM_PARITY_N; 8172 break; 8173 default: 8174 return ERR_PTR(-EINVAL); 8175 } 8176 mddev->new_level = 5; 8177 mddev->new_layout = new_layout; 8178 mddev->delta_disks = -1; 8179 mddev->raid_disks -= 1; 8180 return setup_conf(mddev); 8181 } 8182 8183 static int raid5_check_reshape(struct mddev *mddev) 8184 { 8185 /* For a 2-drive array, the layout and chunk size can be changed 8186 * immediately as not restriping is needed. 8187 * For larger arrays we record the new value - after validation 8188 * to be used by a reshape pass. 8189 */ 8190 struct r5conf *conf = mddev->private; 8191 int new_chunk = mddev->new_chunk_sectors; 8192 8193 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8194 return -EINVAL; 8195 if (new_chunk > 0) { 8196 if (!is_power_of_2(new_chunk)) 8197 return -EINVAL; 8198 if (new_chunk < (PAGE_SIZE>>9)) 8199 return -EINVAL; 8200 if (mddev->array_sectors & (new_chunk-1)) 8201 /* not factor of array size */ 8202 return -EINVAL; 8203 } 8204 8205 /* They look valid */ 8206 8207 if (mddev->raid_disks == 2) { 8208 /* can make the change immediately */ 8209 if (mddev->new_layout >= 0) { 8210 conf->algorithm = mddev->new_layout; 8211 mddev->layout = mddev->new_layout; 8212 } 8213 if (new_chunk > 0) { 8214 conf->chunk_sectors = new_chunk ; 8215 mddev->chunk_sectors = new_chunk; 8216 } 8217 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8218 md_wakeup_thread(mddev->thread); 8219 } 8220 return check_reshape(mddev); 8221 } 8222 8223 static int raid6_check_reshape(struct mddev *mddev) 8224 { 8225 int new_chunk = mddev->new_chunk_sectors; 8226 8227 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8228 return -EINVAL; 8229 if (new_chunk > 0) { 8230 if (!is_power_of_2(new_chunk)) 8231 return -EINVAL; 8232 if (new_chunk < (PAGE_SIZE >> 9)) 8233 return -EINVAL; 8234 if (mddev->array_sectors & (new_chunk-1)) 8235 /* not factor of array size */ 8236 return -EINVAL; 8237 } 8238 8239 /* They look valid */ 8240 return check_reshape(mddev); 8241 } 8242 8243 static void *raid5_takeover(struct mddev *mddev) 8244 { 8245 /* raid5 can take over: 8246 * raid0 - if there is only one strip zone - make it a raid4 layout 8247 * raid1 - if there are two drives. We need to know the chunk size 8248 * raid4 - trivial - just use a raid4 layout. 8249 * raid6 - Providing it is a *_6 layout 8250 */ 8251 if (mddev->level == 0) 8252 return raid45_takeover_raid0(mddev, 5); 8253 if (mddev->level == 1) 8254 return raid5_takeover_raid1(mddev); 8255 if (mddev->level == 4) { 8256 mddev->new_layout = ALGORITHM_PARITY_N; 8257 mddev->new_level = 5; 8258 return setup_conf(mddev); 8259 } 8260 if (mddev->level == 6) 8261 return raid5_takeover_raid6(mddev); 8262 8263 return ERR_PTR(-EINVAL); 8264 } 8265 8266 static void *raid4_takeover(struct mddev *mddev) 8267 { 8268 /* raid4 can take over: 8269 * raid0 - if there is only one strip zone 8270 * raid5 - if layout is right 8271 */ 8272 if (mddev->level == 0) 8273 return raid45_takeover_raid0(mddev, 4); 8274 if (mddev->level == 5 && 8275 mddev->layout == ALGORITHM_PARITY_N) { 8276 mddev->new_layout = 0; 8277 mddev->new_level = 4; 8278 return setup_conf(mddev); 8279 } 8280 return ERR_PTR(-EINVAL); 8281 } 8282 8283 static struct md_personality raid5_personality; 8284 8285 static void *raid6_takeover(struct mddev *mddev) 8286 { 8287 /* Currently can only take over a raid5. We map the 8288 * personality to an equivalent raid6 personality 8289 * with the Q block at the end. 8290 */ 8291 int new_layout; 8292 8293 if (mddev->pers != &raid5_personality) 8294 return ERR_PTR(-EINVAL); 8295 if (mddev->degraded > 1) 8296 return ERR_PTR(-EINVAL); 8297 if (mddev->raid_disks > 253) 8298 return ERR_PTR(-EINVAL); 8299 if (mddev->raid_disks < 3) 8300 return ERR_PTR(-EINVAL); 8301 8302 switch (mddev->layout) { 8303 case ALGORITHM_LEFT_ASYMMETRIC: 8304 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8305 break; 8306 case ALGORITHM_RIGHT_ASYMMETRIC: 8307 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8308 break; 8309 case ALGORITHM_LEFT_SYMMETRIC: 8310 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8311 break; 8312 case ALGORITHM_RIGHT_SYMMETRIC: 8313 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8314 break; 8315 case ALGORITHM_PARITY_0: 8316 new_layout = ALGORITHM_PARITY_0_6; 8317 break; 8318 case ALGORITHM_PARITY_N: 8319 new_layout = ALGORITHM_PARITY_N; 8320 break; 8321 default: 8322 return ERR_PTR(-EINVAL); 8323 } 8324 mddev->new_level = 6; 8325 mddev->new_layout = new_layout; 8326 mddev->delta_disks = 1; 8327 mddev->raid_disks += 1; 8328 return setup_conf(mddev); 8329 } 8330 8331 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8332 { 8333 struct r5conf *conf; 8334 int err; 8335 8336 err = mddev_lock(mddev); 8337 if (err) 8338 return err; 8339 conf = mddev->private; 8340 if (!conf) { 8341 mddev_unlock(mddev); 8342 return -ENODEV; 8343 } 8344 8345 if (strncmp(buf, "ppl", 3) == 0) { 8346 /* ppl only works with RAID 5 */ 8347 if (!raid5_has_ppl(conf) && conf->level == 5) { 8348 err = log_init(conf, NULL, true); 8349 if (!err) { 8350 err = resize_stripes(conf, conf->pool_size); 8351 if (err) 8352 log_exit(conf); 8353 } 8354 } else 8355 err = -EINVAL; 8356 } else if (strncmp(buf, "resync", 6) == 0) { 8357 if (raid5_has_ppl(conf)) { 8358 mddev_suspend(mddev); 8359 log_exit(conf); 8360 mddev_resume(mddev); 8361 err = resize_stripes(conf, conf->pool_size); 8362 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8363 r5l_log_disk_error(conf)) { 8364 bool journal_dev_exists = false; 8365 struct md_rdev *rdev; 8366 8367 rdev_for_each(rdev, mddev) 8368 if (test_bit(Journal, &rdev->flags)) { 8369 journal_dev_exists = true; 8370 break; 8371 } 8372 8373 if (!journal_dev_exists) { 8374 mddev_suspend(mddev); 8375 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8376 mddev_resume(mddev); 8377 } else /* need remove journal device first */ 8378 err = -EBUSY; 8379 } else 8380 err = -EINVAL; 8381 } else { 8382 err = -EINVAL; 8383 } 8384 8385 if (!err) 8386 md_update_sb(mddev, 1); 8387 8388 mddev_unlock(mddev); 8389 8390 return err; 8391 } 8392 8393 static int raid5_start(struct mddev *mddev) 8394 { 8395 struct r5conf *conf = mddev->private; 8396 8397 return r5l_start(conf->log); 8398 } 8399 8400 static struct md_personality raid6_personality = 8401 { 8402 .name = "raid6", 8403 .level = 6, 8404 .owner = THIS_MODULE, 8405 .make_request = raid5_make_request, 8406 .run = raid5_run, 8407 .start = raid5_start, 8408 .free = raid5_free, 8409 .status = raid5_status, 8410 .error_handler = raid5_error, 8411 .hot_add_disk = raid5_add_disk, 8412 .hot_remove_disk= raid5_remove_disk, 8413 .spare_active = raid5_spare_active, 8414 .sync_request = raid5_sync_request, 8415 .resize = raid5_resize, 8416 .size = raid5_size, 8417 .check_reshape = raid6_check_reshape, 8418 .start_reshape = raid5_start_reshape, 8419 .finish_reshape = raid5_finish_reshape, 8420 .quiesce = raid5_quiesce, 8421 .takeover = raid6_takeover, 8422 .congested = raid5_congested, 8423 .change_consistency_policy = raid5_change_consistency_policy, 8424 }; 8425 static struct md_personality raid5_personality = 8426 { 8427 .name = "raid5", 8428 .level = 5, 8429 .owner = THIS_MODULE, 8430 .make_request = raid5_make_request, 8431 .run = raid5_run, 8432 .start = raid5_start, 8433 .free = raid5_free, 8434 .status = raid5_status, 8435 .error_handler = raid5_error, 8436 .hot_add_disk = raid5_add_disk, 8437 .hot_remove_disk= raid5_remove_disk, 8438 .spare_active = raid5_spare_active, 8439 .sync_request = raid5_sync_request, 8440 .resize = raid5_resize, 8441 .size = raid5_size, 8442 .check_reshape = raid5_check_reshape, 8443 .start_reshape = raid5_start_reshape, 8444 .finish_reshape = raid5_finish_reshape, 8445 .quiesce = raid5_quiesce, 8446 .takeover = raid5_takeover, 8447 .congested = raid5_congested, 8448 .change_consistency_policy = raid5_change_consistency_policy, 8449 }; 8450 8451 static struct md_personality raid4_personality = 8452 { 8453 .name = "raid4", 8454 .level = 4, 8455 .owner = THIS_MODULE, 8456 .make_request = raid5_make_request, 8457 .run = raid5_run, 8458 .start = raid5_start, 8459 .free = raid5_free, 8460 .status = raid5_status, 8461 .error_handler = raid5_error, 8462 .hot_add_disk = raid5_add_disk, 8463 .hot_remove_disk= raid5_remove_disk, 8464 .spare_active = raid5_spare_active, 8465 .sync_request = raid5_sync_request, 8466 .resize = raid5_resize, 8467 .size = raid5_size, 8468 .check_reshape = raid5_check_reshape, 8469 .start_reshape = raid5_start_reshape, 8470 .finish_reshape = raid5_finish_reshape, 8471 .quiesce = raid5_quiesce, 8472 .takeover = raid4_takeover, 8473 .congested = raid5_congested, 8474 .change_consistency_policy = raid5_change_consistency_policy, 8475 }; 8476 8477 static int __init raid5_init(void) 8478 { 8479 int ret; 8480 8481 raid5_wq = alloc_workqueue("raid5wq", 8482 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8483 if (!raid5_wq) 8484 return -ENOMEM; 8485 8486 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8487 "md/raid5:prepare", 8488 raid456_cpu_up_prepare, 8489 raid456_cpu_dead); 8490 if (ret) { 8491 destroy_workqueue(raid5_wq); 8492 return ret; 8493 } 8494 register_md_personality(&raid6_personality); 8495 register_md_personality(&raid5_personality); 8496 register_md_personality(&raid4_personality); 8497 return 0; 8498 } 8499 8500 static void raid5_exit(void) 8501 { 8502 unregister_md_personality(&raid6_personality); 8503 unregister_md_personality(&raid5_personality); 8504 unregister_md_personality(&raid4_personality); 8505 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8506 destroy_workqueue(raid5_wq); 8507 } 8508 8509 module_init(raid5_init); 8510 module_exit(raid5_exit); 8511 MODULE_LICENSE("GPL"); 8512 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8513 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8514 MODULE_ALIAS("md-raid5"); 8515 MODULE_ALIAS("md-raid4"); 8516 MODULE_ALIAS("md-level-5"); 8517 MODULE_ALIAS("md-level-4"); 8518 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8519 MODULE_ALIAS("md-raid6"); 8520 MODULE_ALIAS("md-level-6"); 8521 8522 /* This used to be two separate modules, they were: */ 8523 MODULE_ALIAS("raid5"); 8524 MODULE_ALIAS("raid6"); 8525