xref: /openbmc/linux/drivers/md/raid5.c (revision b627b4ed)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include "md.h"
52 #include "raid5.h"
53 #include "bitmap.h"
54 
55 /*
56  * Stripe cache
57  */
58 
59 #define NR_STRIPES		256
60 #define STRIPE_SIZE		PAGE_SIZE
61 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
63 #define	IO_THRESHOLD		1
64 #define BYPASS_THRESHOLD	1
65 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK		(NR_HASH - 1)
67 
68 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69 
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA	1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89 
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94 
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96 
97 /*
98  * We maintain a biased count of active stripes in the bottom 16 bits of
99  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100  */
101 static inline int raid5_bi_phys_segments(struct bio *bio)
102 {
103 	return bio->bi_phys_segments & 0xffff;
104 }
105 
106 static inline int raid5_bi_hw_segments(struct bio *bio)
107 {
108 	return (bio->bi_phys_segments >> 16) & 0xffff;
109 }
110 
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112 {
113 	--bio->bi_phys_segments;
114 	return raid5_bi_phys_segments(bio);
115 }
116 
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118 {
119 	unsigned short val = raid5_bi_hw_segments(bio);
120 
121 	--val;
122 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123 	return val;
124 }
125 
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127 {
128 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129 }
130 
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
133 {
134 	if (sh->ddf_layout)
135 		/* ddf always start from first device */
136 		return 0;
137 	/* md starts just after Q block */
138 	if (sh->qd_idx == sh->disks - 1)
139 		return 0;
140 	else
141 		return sh->qd_idx + 1;
142 }
143 static inline int raid6_next_disk(int disk, int raid_disks)
144 {
145 	disk++;
146 	return (disk < raid_disks) ? disk : 0;
147 }
148 
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150  * We need to map each disk to a 'slot', where the data disks are slot
151  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152  * is raid_disks-1.  This help does that mapping.
153  */
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155 			     int *count, int syndrome_disks)
156 {
157 	int slot;
158 
159 	if (idx == sh->pd_idx)
160 		return syndrome_disks;
161 	if (idx == sh->qd_idx)
162 		return syndrome_disks + 1;
163 	slot = (*count)++;
164 	return slot;
165 }
166 
167 static void return_io(struct bio *return_bi)
168 {
169 	struct bio *bi = return_bi;
170 	while (bi) {
171 
172 		return_bi = bi->bi_next;
173 		bi->bi_next = NULL;
174 		bi->bi_size = 0;
175 		bio_endio(bi, 0);
176 		bi = return_bi;
177 	}
178 }
179 
180 static void print_raid5_conf (raid5_conf_t *conf);
181 
182 static int stripe_operations_active(struct stripe_head *sh)
183 {
184 	return sh->check_state || sh->reconstruct_state ||
185 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187 }
188 
189 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
190 {
191 	if (atomic_dec_and_test(&sh->count)) {
192 		BUG_ON(!list_empty(&sh->lru));
193 		BUG_ON(atomic_read(&conf->active_stripes)==0);
194 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
195 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
196 				list_add_tail(&sh->lru, &conf->delayed_list);
197 				blk_plug_device(conf->mddev->queue);
198 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199 				   sh->bm_seq - conf->seq_write > 0) {
200 				list_add_tail(&sh->lru, &conf->bitmap_list);
201 				blk_plug_device(conf->mddev->queue);
202 			} else {
203 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
204 				list_add_tail(&sh->lru, &conf->handle_list);
205 			}
206 			md_wakeup_thread(conf->mddev->thread);
207 		} else {
208 			BUG_ON(stripe_operations_active(sh));
209 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210 				atomic_dec(&conf->preread_active_stripes);
211 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212 					md_wakeup_thread(conf->mddev->thread);
213 			}
214 			atomic_dec(&conf->active_stripes);
215 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216 				list_add_tail(&sh->lru, &conf->inactive_list);
217 				wake_up(&conf->wait_for_stripe);
218 				if (conf->retry_read_aligned)
219 					md_wakeup_thread(conf->mddev->thread);
220 			}
221 		}
222 	}
223 }
224 
225 static void release_stripe(struct stripe_head *sh)
226 {
227 	raid5_conf_t *conf = sh->raid_conf;
228 	unsigned long flags;
229 
230 	spin_lock_irqsave(&conf->device_lock, flags);
231 	__release_stripe(conf, sh);
232 	spin_unlock_irqrestore(&conf->device_lock, flags);
233 }
234 
235 static inline void remove_hash(struct stripe_head *sh)
236 {
237 	pr_debug("remove_hash(), stripe %llu\n",
238 		(unsigned long long)sh->sector);
239 
240 	hlist_del_init(&sh->hash);
241 }
242 
243 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
244 {
245 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
246 
247 	pr_debug("insert_hash(), stripe %llu\n",
248 		(unsigned long long)sh->sector);
249 
250 	CHECK_DEVLOCK();
251 	hlist_add_head(&sh->hash, hp);
252 }
253 
254 
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257 {
258 	struct stripe_head *sh = NULL;
259 	struct list_head *first;
260 
261 	CHECK_DEVLOCK();
262 	if (list_empty(&conf->inactive_list))
263 		goto out;
264 	first = conf->inactive_list.next;
265 	sh = list_entry(first, struct stripe_head, lru);
266 	list_del_init(first);
267 	remove_hash(sh);
268 	atomic_inc(&conf->active_stripes);
269 out:
270 	return sh;
271 }
272 
273 static void shrink_buffers(struct stripe_head *sh, int num)
274 {
275 	struct page *p;
276 	int i;
277 
278 	for (i=0; i<num ; i++) {
279 		p = sh->dev[i].page;
280 		if (!p)
281 			continue;
282 		sh->dev[i].page = NULL;
283 		put_page(p);
284 	}
285 }
286 
287 static int grow_buffers(struct stripe_head *sh, int num)
288 {
289 	int i;
290 
291 	for (i=0; i<num; i++) {
292 		struct page *page;
293 
294 		if (!(page = alloc_page(GFP_KERNEL))) {
295 			return 1;
296 		}
297 		sh->dev[i].page = page;
298 	}
299 	return 0;
300 }
301 
302 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304 			    struct stripe_head *sh);
305 
306 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
307 {
308 	raid5_conf_t *conf = sh->raid_conf;
309 	int i;
310 
311 	BUG_ON(atomic_read(&sh->count) != 0);
312 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313 	BUG_ON(stripe_operations_active(sh));
314 
315 	CHECK_DEVLOCK();
316 	pr_debug("init_stripe called, stripe %llu\n",
317 		(unsigned long long)sh->sector);
318 
319 	remove_hash(sh);
320 
321 	sh->generation = conf->generation - previous;
322 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323 	sh->sector = sector;
324 	stripe_set_idx(sector, conf, previous, sh);
325 	sh->state = 0;
326 
327 
328 	for (i = sh->disks; i--; ) {
329 		struct r5dev *dev = &sh->dev[i];
330 
331 		if (dev->toread || dev->read || dev->towrite || dev->written ||
332 		    test_bit(R5_LOCKED, &dev->flags)) {
333 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334 			       (unsigned long long)sh->sector, i, dev->toread,
335 			       dev->read, dev->towrite, dev->written,
336 			       test_bit(R5_LOCKED, &dev->flags));
337 			BUG();
338 		}
339 		dev->flags = 0;
340 		raid5_build_block(sh, i, previous);
341 	}
342 	insert_hash(conf, sh);
343 }
344 
345 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346 					 short generation)
347 {
348 	struct stripe_head *sh;
349 	struct hlist_node *hn;
350 
351 	CHECK_DEVLOCK();
352 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354 		if (sh->sector == sector && sh->generation == generation)
355 			return sh;
356 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357 	return NULL;
358 }
359 
360 static void unplug_slaves(mddev_t *mddev);
361 static void raid5_unplug_device(struct request_queue *q);
362 
363 static struct stripe_head *
364 get_active_stripe(raid5_conf_t *conf, sector_t sector,
365 		  int previous, int noblock)
366 {
367 	struct stripe_head *sh;
368 
369 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370 
371 	spin_lock_irq(&conf->device_lock);
372 
373 	do {
374 		wait_event_lock_irq(conf->wait_for_stripe,
375 				    conf->quiesce == 0,
376 				    conf->device_lock, /* nothing */);
377 		sh = __find_stripe(conf, sector, conf->generation - previous);
378 		if (!sh) {
379 			if (!conf->inactive_blocked)
380 				sh = get_free_stripe(conf);
381 			if (noblock && sh == NULL)
382 				break;
383 			if (!sh) {
384 				conf->inactive_blocked = 1;
385 				wait_event_lock_irq(conf->wait_for_stripe,
386 						    !list_empty(&conf->inactive_list) &&
387 						    (atomic_read(&conf->active_stripes)
388 						     < (conf->max_nr_stripes *3/4)
389 						     || !conf->inactive_blocked),
390 						    conf->device_lock,
391 						    raid5_unplug_device(conf->mddev->queue)
392 					);
393 				conf->inactive_blocked = 0;
394 			} else
395 				init_stripe(sh, sector, previous);
396 		} else {
397 			if (atomic_read(&sh->count)) {
398 				BUG_ON(!list_empty(&sh->lru)
399 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
400 			} else {
401 				if (!test_bit(STRIPE_HANDLE, &sh->state))
402 					atomic_inc(&conf->active_stripes);
403 				if (list_empty(&sh->lru) &&
404 				    !test_bit(STRIPE_EXPANDING, &sh->state))
405 					BUG();
406 				list_del_init(&sh->lru);
407 			}
408 		}
409 	} while (sh == NULL);
410 
411 	if (sh)
412 		atomic_inc(&sh->count);
413 
414 	spin_unlock_irq(&conf->device_lock);
415 	return sh;
416 }
417 
418 static void
419 raid5_end_read_request(struct bio *bi, int error);
420 static void
421 raid5_end_write_request(struct bio *bi, int error);
422 
423 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
424 {
425 	raid5_conf_t *conf = sh->raid_conf;
426 	int i, disks = sh->disks;
427 
428 	might_sleep();
429 
430 	for (i = disks; i--; ) {
431 		int rw;
432 		struct bio *bi;
433 		mdk_rdev_t *rdev;
434 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
435 			rw = WRITE;
436 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
437 			rw = READ;
438 		else
439 			continue;
440 
441 		bi = &sh->dev[i].req;
442 
443 		bi->bi_rw = rw;
444 		if (rw == WRITE)
445 			bi->bi_end_io = raid5_end_write_request;
446 		else
447 			bi->bi_end_io = raid5_end_read_request;
448 
449 		rcu_read_lock();
450 		rdev = rcu_dereference(conf->disks[i].rdev);
451 		if (rdev && test_bit(Faulty, &rdev->flags))
452 			rdev = NULL;
453 		if (rdev)
454 			atomic_inc(&rdev->nr_pending);
455 		rcu_read_unlock();
456 
457 		if (rdev) {
458 			if (s->syncing || s->expanding || s->expanded)
459 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
460 
461 			set_bit(STRIPE_IO_STARTED, &sh->state);
462 
463 			bi->bi_bdev = rdev->bdev;
464 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
465 				__func__, (unsigned long long)sh->sector,
466 				bi->bi_rw, i);
467 			atomic_inc(&sh->count);
468 			bi->bi_sector = sh->sector + rdev->data_offset;
469 			bi->bi_flags = 1 << BIO_UPTODATE;
470 			bi->bi_vcnt = 1;
471 			bi->bi_max_vecs = 1;
472 			bi->bi_idx = 0;
473 			bi->bi_io_vec = &sh->dev[i].vec;
474 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
475 			bi->bi_io_vec[0].bv_offset = 0;
476 			bi->bi_size = STRIPE_SIZE;
477 			bi->bi_next = NULL;
478 			if (rw == WRITE &&
479 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
480 				atomic_add(STRIPE_SECTORS,
481 					&rdev->corrected_errors);
482 			generic_make_request(bi);
483 		} else {
484 			if (rw == WRITE)
485 				set_bit(STRIPE_DEGRADED, &sh->state);
486 			pr_debug("skip op %ld on disc %d for sector %llu\n",
487 				bi->bi_rw, i, (unsigned long long)sh->sector);
488 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
489 			set_bit(STRIPE_HANDLE, &sh->state);
490 		}
491 	}
492 }
493 
494 static struct dma_async_tx_descriptor *
495 async_copy_data(int frombio, struct bio *bio, struct page *page,
496 	sector_t sector, struct dma_async_tx_descriptor *tx)
497 {
498 	struct bio_vec *bvl;
499 	struct page *bio_page;
500 	int i;
501 	int page_offset;
502 
503 	if (bio->bi_sector >= sector)
504 		page_offset = (signed)(bio->bi_sector - sector) * 512;
505 	else
506 		page_offset = (signed)(sector - bio->bi_sector) * -512;
507 	bio_for_each_segment(bvl, bio, i) {
508 		int len = bio_iovec_idx(bio, i)->bv_len;
509 		int clen;
510 		int b_offset = 0;
511 
512 		if (page_offset < 0) {
513 			b_offset = -page_offset;
514 			page_offset += b_offset;
515 			len -= b_offset;
516 		}
517 
518 		if (len > 0 && page_offset + len > STRIPE_SIZE)
519 			clen = STRIPE_SIZE - page_offset;
520 		else
521 			clen = len;
522 
523 		if (clen > 0) {
524 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
525 			bio_page = bio_iovec_idx(bio, i)->bv_page;
526 			if (frombio)
527 				tx = async_memcpy(page, bio_page, page_offset,
528 					b_offset, clen,
529 					ASYNC_TX_DEP_ACK,
530 					tx, NULL, NULL);
531 			else
532 				tx = async_memcpy(bio_page, page, b_offset,
533 					page_offset, clen,
534 					ASYNC_TX_DEP_ACK,
535 					tx, NULL, NULL);
536 		}
537 		if (clen < len) /* hit end of page */
538 			break;
539 		page_offset +=  len;
540 	}
541 
542 	return tx;
543 }
544 
545 static void ops_complete_biofill(void *stripe_head_ref)
546 {
547 	struct stripe_head *sh = stripe_head_ref;
548 	struct bio *return_bi = NULL;
549 	raid5_conf_t *conf = sh->raid_conf;
550 	int i;
551 
552 	pr_debug("%s: stripe %llu\n", __func__,
553 		(unsigned long long)sh->sector);
554 
555 	/* clear completed biofills */
556 	spin_lock_irq(&conf->device_lock);
557 	for (i = sh->disks; i--; ) {
558 		struct r5dev *dev = &sh->dev[i];
559 
560 		/* acknowledge completion of a biofill operation */
561 		/* and check if we need to reply to a read request,
562 		 * new R5_Wantfill requests are held off until
563 		 * !STRIPE_BIOFILL_RUN
564 		 */
565 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
566 			struct bio *rbi, *rbi2;
567 
568 			BUG_ON(!dev->read);
569 			rbi = dev->read;
570 			dev->read = NULL;
571 			while (rbi && rbi->bi_sector <
572 				dev->sector + STRIPE_SECTORS) {
573 				rbi2 = r5_next_bio(rbi, dev->sector);
574 				if (!raid5_dec_bi_phys_segments(rbi)) {
575 					rbi->bi_next = return_bi;
576 					return_bi = rbi;
577 				}
578 				rbi = rbi2;
579 			}
580 		}
581 	}
582 	spin_unlock_irq(&conf->device_lock);
583 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
584 
585 	return_io(return_bi);
586 
587 	set_bit(STRIPE_HANDLE, &sh->state);
588 	release_stripe(sh);
589 }
590 
591 static void ops_run_biofill(struct stripe_head *sh)
592 {
593 	struct dma_async_tx_descriptor *tx = NULL;
594 	raid5_conf_t *conf = sh->raid_conf;
595 	int i;
596 
597 	pr_debug("%s: stripe %llu\n", __func__,
598 		(unsigned long long)sh->sector);
599 
600 	for (i = sh->disks; i--; ) {
601 		struct r5dev *dev = &sh->dev[i];
602 		if (test_bit(R5_Wantfill, &dev->flags)) {
603 			struct bio *rbi;
604 			spin_lock_irq(&conf->device_lock);
605 			dev->read = rbi = dev->toread;
606 			dev->toread = NULL;
607 			spin_unlock_irq(&conf->device_lock);
608 			while (rbi && rbi->bi_sector <
609 				dev->sector + STRIPE_SECTORS) {
610 				tx = async_copy_data(0, rbi, dev->page,
611 					dev->sector, tx);
612 				rbi = r5_next_bio(rbi, dev->sector);
613 			}
614 		}
615 	}
616 
617 	atomic_inc(&sh->count);
618 	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
619 		ops_complete_biofill, sh);
620 }
621 
622 static void ops_complete_compute5(void *stripe_head_ref)
623 {
624 	struct stripe_head *sh = stripe_head_ref;
625 	int target = sh->ops.target;
626 	struct r5dev *tgt = &sh->dev[target];
627 
628 	pr_debug("%s: stripe %llu\n", __func__,
629 		(unsigned long long)sh->sector);
630 
631 	set_bit(R5_UPTODATE, &tgt->flags);
632 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
633 	clear_bit(R5_Wantcompute, &tgt->flags);
634 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
635 	if (sh->check_state == check_state_compute_run)
636 		sh->check_state = check_state_compute_result;
637 	set_bit(STRIPE_HANDLE, &sh->state);
638 	release_stripe(sh);
639 }
640 
641 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
642 {
643 	/* kernel stack size limits the total number of disks */
644 	int disks = sh->disks;
645 	struct page *xor_srcs[disks];
646 	int target = sh->ops.target;
647 	struct r5dev *tgt = &sh->dev[target];
648 	struct page *xor_dest = tgt->page;
649 	int count = 0;
650 	struct dma_async_tx_descriptor *tx;
651 	int i;
652 
653 	pr_debug("%s: stripe %llu block: %d\n",
654 		__func__, (unsigned long long)sh->sector, target);
655 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
656 
657 	for (i = disks; i--; )
658 		if (i != target)
659 			xor_srcs[count++] = sh->dev[i].page;
660 
661 	atomic_inc(&sh->count);
662 
663 	if (unlikely(count == 1))
664 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
665 			0, NULL, ops_complete_compute5, sh);
666 	else
667 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
668 			ASYNC_TX_XOR_ZERO_DST, NULL,
669 			ops_complete_compute5, sh);
670 
671 	return tx;
672 }
673 
674 static void ops_complete_prexor(void *stripe_head_ref)
675 {
676 	struct stripe_head *sh = stripe_head_ref;
677 
678 	pr_debug("%s: stripe %llu\n", __func__,
679 		(unsigned long long)sh->sector);
680 }
681 
682 static struct dma_async_tx_descriptor *
683 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
684 {
685 	/* kernel stack size limits the total number of disks */
686 	int disks = sh->disks;
687 	struct page *xor_srcs[disks];
688 	int count = 0, pd_idx = sh->pd_idx, i;
689 
690 	/* existing parity data subtracted */
691 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
692 
693 	pr_debug("%s: stripe %llu\n", __func__,
694 		(unsigned long long)sh->sector);
695 
696 	for (i = disks; i--; ) {
697 		struct r5dev *dev = &sh->dev[i];
698 		/* Only process blocks that are known to be uptodate */
699 		if (test_bit(R5_Wantdrain, &dev->flags))
700 			xor_srcs[count++] = dev->page;
701 	}
702 
703 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
704 		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
705 		ops_complete_prexor, sh);
706 
707 	return tx;
708 }
709 
710 static struct dma_async_tx_descriptor *
711 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
712 {
713 	int disks = sh->disks;
714 	int i;
715 
716 	pr_debug("%s: stripe %llu\n", __func__,
717 		(unsigned long long)sh->sector);
718 
719 	for (i = disks; i--; ) {
720 		struct r5dev *dev = &sh->dev[i];
721 		struct bio *chosen;
722 
723 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
724 			struct bio *wbi;
725 
726 			spin_lock(&sh->lock);
727 			chosen = dev->towrite;
728 			dev->towrite = NULL;
729 			BUG_ON(dev->written);
730 			wbi = dev->written = chosen;
731 			spin_unlock(&sh->lock);
732 
733 			while (wbi && wbi->bi_sector <
734 				dev->sector + STRIPE_SECTORS) {
735 				tx = async_copy_data(1, wbi, dev->page,
736 					dev->sector, tx);
737 				wbi = r5_next_bio(wbi, dev->sector);
738 			}
739 		}
740 	}
741 
742 	return tx;
743 }
744 
745 static void ops_complete_postxor(void *stripe_head_ref)
746 {
747 	struct stripe_head *sh = stripe_head_ref;
748 	int disks = sh->disks, i, pd_idx = sh->pd_idx;
749 
750 	pr_debug("%s: stripe %llu\n", __func__,
751 		(unsigned long long)sh->sector);
752 
753 	for (i = disks; i--; ) {
754 		struct r5dev *dev = &sh->dev[i];
755 		if (dev->written || i == pd_idx)
756 			set_bit(R5_UPTODATE, &dev->flags);
757 	}
758 
759 	if (sh->reconstruct_state == reconstruct_state_drain_run)
760 		sh->reconstruct_state = reconstruct_state_drain_result;
761 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
762 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
763 	else {
764 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
765 		sh->reconstruct_state = reconstruct_state_result;
766 	}
767 
768 	set_bit(STRIPE_HANDLE, &sh->state);
769 	release_stripe(sh);
770 }
771 
772 static void
773 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
774 {
775 	/* kernel stack size limits the total number of disks */
776 	int disks = sh->disks;
777 	struct page *xor_srcs[disks];
778 
779 	int count = 0, pd_idx = sh->pd_idx, i;
780 	struct page *xor_dest;
781 	int prexor = 0;
782 	unsigned long flags;
783 
784 	pr_debug("%s: stripe %llu\n", __func__,
785 		(unsigned long long)sh->sector);
786 
787 	/* check if prexor is active which means only process blocks
788 	 * that are part of a read-modify-write (written)
789 	 */
790 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
791 		prexor = 1;
792 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
793 		for (i = disks; i--; ) {
794 			struct r5dev *dev = &sh->dev[i];
795 			if (dev->written)
796 				xor_srcs[count++] = dev->page;
797 		}
798 	} else {
799 		xor_dest = sh->dev[pd_idx].page;
800 		for (i = disks; i--; ) {
801 			struct r5dev *dev = &sh->dev[i];
802 			if (i != pd_idx)
803 				xor_srcs[count++] = dev->page;
804 		}
805 	}
806 
807 	/* 1/ if we prexor'd then the dest is reused as a source
808 	 * 2/ if we did not prexor then we are redoing the parity
809 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
810 	 * for the synchronous xor case
811 	 */
812 	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
813 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
814 
815 	atomic_inc(&sh->count);
816 
817 	if (unlikely(count == 1)) {
818 		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
819 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
820 			flags, tx, ops_complete_postxor, sh);
821 	} else
822 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
823 			flags, tx, ops_complete_postxor, sh);
824 }
825 
826 static void ops_complete_check(void *stripe_head_ref)
827 {
828 	struct stripe_head *sh = stripe_head_ref;
829 
830 	pr_debug("%s: stripe %llu\n", __func__,
831 		(unsigned long long)sh->sector);
832 
833 	sh->check_state = check_state_check_result;
834 	set_bit(STRIPE_HANDLE, &sh->state);
835 	release_stripe(sh);
836 }
837 
838 static void ops_run_check(struct stripe_head *sh)
839 {
840 	/* kernel stack size limits the total number of disks */
841 	int disks = sh->disks;
842 	struct page *xor_srcs[disks];
843 	struct dma_async_tx_descriptor *tx;
844 
845 	int count = 0, pd_idx = sh->pd_idx, i;
846 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
847 
848 	pr_debug("%s: stripe %llu\n", __func__,
849 		(unsigned long long)sh->sector);
850 
851 	for (i = disks; i--; ) {
852 		struct r5dev *dev = &sh->dev[i];
853 		if (i != pd_idx)
854 			xor_srcs[count++] = dev->page;
855 	}
856 
857 	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
858 		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
859 
860 	atomic_inc(&sh->count);
861 	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
862 		ops_complete_check, sh);
863 }
864 
865 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
866 {
867 	int overlap_clear = 0, i, disks = sh->disks;
868 	struct dma_async_tx_descriptor *tx = NULL;
869 
870 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
871 		ops_run_biofill(sh);
872 		overlap_clear++;
873 	}
874 
875 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
876 		tx = ops_run_compute5(sh);
877 		/* terminate the chain if postxor is not set to be run */
878 		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
879 			async_tx_ack(tx);
880 	}
881 
882 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
883 		tx = ops_run_prexor(sh, tx);
884 
885 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
886 		tx = ops_run_biodrain(sh, tx);
887 		overlap_clear++;
888 	}
889 
890 	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
891 		ops_run_postxor(sh, tx);
892 
893 	if (test_bit(STRIPE_OP_CHECK, &ops_request))
894 		ops_run_check(sh);
895 
896 	if (overlap_clear)
897 		for (i = disks; i--; ) {
898 			struct r5dev *dev = &sh->dev[i];
899 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
900 				wake_up(&sh->raid_conf->wait_for_overlap);
901 		}
902 }
903 
904 static int grow_one_stripe(raid5_conf_t *conf)
905 {
906 	struct stripe_head *sh;
907 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
908 	if (!sh)
909 		return 0;
910 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
911 	sh->raid_conf = conf;
912 	spin_lock_init(&sh->lock);
913 
914 	if (grow_buffers(sh, conf->raid_disks)) {
915 		shrink_buffers(sh, conf->raid_disks);
916 		kmem_cache_free(conf->slab_cache, sh);
917 		return 0;
918 	}
919 	sh->disks = conf->raid_disks;
920 	/* we just created an active stripe so... */
921 	atomic_set(&sh->count, 1);
922 	atomic_inc(&conf->active_stripes);
923 	INIT_LIST_HEAD(&sh->lru);
924 	release_stripe(sh);
925 	return 1;
926 }
927 
928 static int grow_stripes(raid5_conf_t *conf, int num)
929 {
930 	struct kmem_cache *sc;
931 	int devs = conf->raid_disks;
932 
933 	sprintf(conf->cache_name[0],
934 		"raid%d-%s", conf->level, mdname(conf->mddev));
935 	sprintf(conf->cache_name[1],
936 		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
937 	conf->active_name = 0;
938 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
939 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
940 			       0, 0, NULL);
941 	if (!sc)
942 		return 1;
943 	conf->slab_cache = sc;
944 	conf->pool_size = devs;
945 	while (num--)
946 		if (!grow_one_stripe(conf))
947 			return 1;
948 	return 0;
949 }
950 
951 static int resize_stripes(raid5_conf_t *conf, int newsize)
952 {
953 	/* Make all the stripes able to hold 'newsize' devices.
954 	 * New slots in each stripe get 'page' set to a new page.
955 	 *
956 	 * This happens in stages:
957 	 * 1/ create a new kmem_cache and allocate the required number of
958 	 *    stripe_heads.
959 	 * 2/ gather all the old stripe_heads and tranfer the pages across
960 	 *    to the new stripe_heads.  This will have the side effect of
961 	 *    freezing the array as once all stripe_heads have been collected,
962 	 *    no IO will be possible.  Old stripe heads are freed once their
963 	 *    pages have been transferred over, and the old kmem_cache is
964 	 *    freed when all stripes are done.
965 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
966 	 *    we simple return a failre status - no need to clean anything up.
967 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
968 	 *    If this fails, we don't bother trying the shrink the
969 	 *    stripe_heads down again, we just leave them as they are.
970 	 *    As each stripe_head is processed the new one is released into
971 	 *    active service.
972 	 *
973 	 * Once step2 is started, we cannot afford to wait for a write,
974 	 * so we use GFP_NOIO allocations.
975 	 */
976 	struct stripe_head *osh, *nsh;
977 	LIST_HEAD(newstripes);
978 	struct disk_info *ndisks;
979 	int err;
980 	struct kmem_cache *sc;
981 	int i;
982 
983 	if (newsize <= conf->pool_size)
984 		return 0; /* never bother to shrink */
985 
986 	err = md_allow_write(conf->mddev);
987 	if (err)
988 		return err;
989 
990 	/* Step 1 */
991 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
993 			       0, 0, NULL);
994 	if (!sc)
995 		return -ENOMEM;
996 
997 	for (i = conf->max_nr_stripes; i; i--) {
998 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999 		if (!nsh)
1000 			break;
1001 
1002 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003 
1004 		nsh->raid_conf = conf;
1005 		spin_lock_init(&nsh->lock);
1006 
1007 		list_add(&nsh->lru, &newstripes);
1008 	}
1009 	if (i) {
1010 		/* didn't get enough, give up */
1011 		while (!list_empty(&newstripes)) {
1012 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013 			list_del(&nsh->lru);
1014 			kmem_cache_free(sc, nsh);
1015 		}
1016 		kmem_cache_destroy(sc);
1017 		return -ENOMEM;
1018 	}
1019 	/* Step 2 - Must use GFP_NOIO now.
1020 	 * OK, we have enough stripes, start collecting inactive
1021 	 * stripes and copying them over
1022 	 */
1023 	list_for_each_entry(nsh, &newstripes, lru) {
1024 		spin_lock_irq(&conf->device_lock);
1025 		wait_event_lock_irq(conf->wait_for_stripe,
1026 				    !list_empty(&conf->inactive_list),
1027 				    conf->device_lock,
1028 				    unplug_slaves(conf->mddev)
1029 			);
1030 		osh = get_free_stripe(conf);
1031 		spin_unlock_irq(&conf->device_lock);
1032 		atomic_set(&nsh->count, 1);
1033 		for(i=0; i<conf->pool_size; i++)
1034 			nsh->dev[i].page = osh->dev[i].page;
1035 		for( ; i<newsize; i++)
1036 			nsh->dev[i].page = NULL;
1037 		kmem_cache_free(conf->slab_cache, osh);
1038 	}
1039 	kmem_cache_destroy(conf->slab_cache);
1040 
1041 	/* Step 3.
1042 	 * At this point, we are holding all the stripes so the array
1043 	 * is completely stalled, so now is a good time to resize
1044 	 * conf->disks.
1045 	 */
1046 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047 	if (ndisks) {
1048 		for (i=0; i<conf->raid_disks; i++)
1049 			ndisks[i] = conf->disks[i];
1050 		kfree(conf->disks);
1051 		conf->disks = ndisks;
1052 	} else
1053 		err = -ENOMEM;
1054 
1055 	/* Step 4, return new stripes to service */
1056 	while(!list_empty(&newstripes)) {
1057 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058 		list_del_init(&nsh->lru);
1059 		for (i=conf->raid_disks; i < newsize; i++)
1060 			if (nsh->dev[i].page == NULL) {
1061 				struct page *p = alloc_page(GFP_NOIO);
1062 				nsh->dev[i].page = p;
1063 				if (!p)
1064 					err = -ENOMEM;
1065 			}
1066 		release_stripe(nsh);
1067 	}
1068 	/* critical section pass, GFP_NOIO no longer needed */
1069 
1070 	conf->slab_cache = sc;
1071 	conf->active_name = 1-conf->active_name;
1072 	conf->pool_size = newsize;
1073 	return err;
1074 }
1075 
1076 static int drop_one_stripe(raid5_conf_t *conf)
1077 {
1078 	struct stripe_head *sh;
1079 
1080 	spin_lock_irq(&conf->device_lock);
1081 	sh = get_free_stripe(conf);
1082 	spin_unlock_irq(&conf->device_lock);
1083 	if (!sh)
1084 		return 0;
1085 	BUG_ON(atomic_read(&sh->count));
1086 	shrink_buffers(sh, conf->pool_size);
1087 	kmem_cache_free(conf->slab_cache, sh);
1088 	atomic_dec(&conf->active_stripes);
1089 	return 1;
1090 }
1091 
1092 static void shrink_stripes(raid5_conf_t *conf)
1093 {
1094 	while (drop_one_stripe(conf))
1095 		;
1096 
1097 	if (conf->slab_cache)
1098 		kmem_cache_destroy(conf->slab_cache);
1099 	conf->slab_cache = NULL;
1100 }
1101 
1102 static void raid5_end_read_request(struct bio * bi, int error)
1103 {
1104 	struct stripe_head *sh = bi->bi_private;
1105 	raid5_conf_t *conf = sh->raid_conf;
1106 	int disks = sh->disks, i;
1107 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1108 	char b[BDEVNAME_SIZE];
1109 	mdk_rdev_t *rdev;
1110 
1111 
1112 	for (i=0 ; i<disks; i++)
1113 		if (bi == &sh->dev[i].req)
1114 			break;
1115 
1116 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1117 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1118 		uptodate);
1119 	if (i == disks) {
1120 		BUG();
1121 		return;
1122 	}
1123 
1124 	if (uptodate) {
1125 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1126 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1127 			rdev = conf->disks[i].rdev;
1128 			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1129 				  " (%lu sectors at %llu on %s)\n",
1130 				  mdname(conf->mddev), STRIPE_SECTORS,
1131 				  (unsigned long long)(sh->sector
1132 						       + rdev->data_offset),
1133 				  bdevname(rdev->bdev, b));
1134 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1135 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1136 		}
1137 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1138 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1139 	} else {
1140 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1141 		int retry = 0;
1142 		rdev = conf->disks[i].rdev;
1143 
1144 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1145 		atomic_inc(&rdev->read_errors);
1146 		if (conf->mddev->degraded)
1147 			printk_rl(KERN_WARNING
1148 				  "raid5:%s: read error not correctable "
1149 				  "(sector %llu on %s).\n",
1150 				  mdname(conf->mddev),
1151 				  (unsigned long long)(sh->sector
1152 						       + rdev->data_offset),
1153 				  bdn);
1154 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1155 			/* Oh, no!!! */
1156 			printk_rl(KERN_WARNING
1157 				  "raid5:%s: read error NOT corrected!! "
1158 				  "(sector %llu on %s).\n",
1159 				  mdname(conf->mddev),
1160 				  (unsigned long long)(sh->sector
1161 						       + rdev->data_offset),
1162 				  bdn);
1163 		else if (atomic_read(&rdev->read_errors)
1164 			 > conf->max_nr_stripes)
1165 			printk(KERN_WARNING
1166 			       "raid5:%s: Too many read errors, failing device %s.\n",
1167 			       mdname(conf->mddev), bdn);
1168 		else
1169 			retry = 1;
1170 		if (retry)
1171 			set_bit(R5_ReadError, &sh->dev[i].flags);
1172 		else {
1173 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1174 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1175 			md_error(conf->mddev, rdev);
1176 		}
1177 	}
1178 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1179 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1180 	set_bit(STRIPE_HANDLE, &sh->state);
1181 	release_stripe(sh);
1182 }
1183 
1184 static void raid5_end_write_request(struct bio *bi, int error)
1185 {
1186 	struct stripe_head *sh = bi->bi_private;
1187 	raid5_conf_t *conf = sh->raid_conf;
1188 	int disks = sh->disks, i;
1189 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1190 
1191 	for (i=0 ; i<disks; i++)
1192 		if (bi == &sh->dev[i].req)
1193 			break;
1194 
1195 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1196 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1197 		uptodate);
1198 	if (i == disks) {
1199 		BUG();
1200 		return;
1201 	}
1202 
1203 	if (!uptodate)
1204 		md_error(conf->mddev, conf->disks[i].rdev);
1205 
1206 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1207 
1208 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209 	set_bit(STRIPE_HANDLE, &sh->state);
1210 	release_stripe(sh);
1211 }
1212 
1213 
1214 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1215 
1216 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1217 {
1218 	struct r5dev *dev = &sh->dev[i];
1219 
1220 	bio_init(&dev->req);
1221 	dev->req.bi_io_vec = &dev->vec;
1222 	dev->req.bi_vcnt++;
1223 	dev->req.bi_max_vecs++;
1224 	dev->vec.bv_page = dev->page;
1225 	dev->vec.bv_len = STRIPE_SIZE;
1226 	dev->vec.bv_offset = 0;
1227 
1228 	dev->req.bi_sector = sh->sector;
1229 	dev->req.bi_private = sh;
1230 
1231 	dev->flags = 0;
1232 	dev->sector = compute_blocknr(sh, i, previous);
1233 }
1234 
1235 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1236 {
1237 	char b[BDEVNAME_SIZE];
1238 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1239 	pr_debug("raid5: error called\n");
1240 
1241 	if (!test_bit(Faulty, &rdev->flags)) {
1242 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1243 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1244 			unsigned long flags;
1245 			spin_lock_irqsave(&conf->device_lock, flags);
1246 			mddev->degraded++;
1247 			spin_unlock_irqrestore(&conf->device_lock, flags);
1248 			/*
1249 			 * if recovery was running, make sure it aborts.
1250 			 */
1251 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1252 		}
1253 		set_bit(Faulty, &rdev->flags);
1254 		printk(KERN_ALERT
1255 		       "raid5: Disk failure on %s, disabling device.\n"
1256 		       "raid5: Operation continuing on %d devices.\n",
1257 		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1258 	}
1259 }
1260 
1261 /*
1262  * Input: a 'big' sector number,
1263  * Output: index of the data and parity disk, and the sector # in them.
1264  */
1265 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1266 				     int previous, int *dd_idx,
1267 				     struct stripe_head *sh)
1268 {
1269 	long stripe;
1270 	unsigned long chunk_number;
1271 	unsigned int chunk_offset;
1272 	int pd_idx, qd_idx;
1273 	int ddf_layout = 0;
1274 	sector_t new_sector;
1275 	int algorithm = previous ? conf->prev_algo
1276 				 : conf->algorithm;
1277 	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1278 					 : (conf->chunk_size >> 9);
1279 	int raid_disks = previous ? conf->previous_raid_disks
1280 				  : conf->raid_disks;
1281 	int data_disks = raid_disks - conf->max_degraded;
1282 
1283 	/* First compute the information on this sector */
1284 
1285 	/*
1286 	 * Compute the chunk number and the sector offset inside the chunk
1287 	 */
1288 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289 	chunk_number = r_sector;
1290 	BUG_ON(r_sector != chunk_number);
1291 
1292 	/*
1293 	 * Compute the stripe number
1294 	 */
1295 	stripe = chunk_number / data_disks;
1296 
1297 	/*
1298 	 * Compute the data disk and parity disk indexes inside the stripe
1299 	 */
1300 	*dd_idx = chunk_number % data_disks;
1301 
1302 	/*
1303 	 * Select the parity disk based on the user selected algorithm.
1304 	 */
1305 	pd_idx = qd_idx = ~0;
1306 	switch(conf->level) {
1307 	case 4:
1308 		pd_idx = data_disks;
1309 		break;
1310 	case 5:
1311 		switch (algorithm) {
1312 		case ALGORITHM_LEFT_ASYMMETRIC:
1313 			pd_idx = data_disks - stripe % raid_disks;
1314 			if (*dd_idx >= pd_idx)
1315 				(*dd_idx)++;
1316 			break;
1317 		case ALGORITHM_RIGHT_ASYMMETRIC:
1318 			pd_idx = stripe % raid_disks;
1319 			if (*dd_idx >= pd_idx)
1320 				(*dd_idx)++;
1321 			break;
1322 		case ALGORITHM_LEFT_SYMMETRIC:
1323 			pd_idx = data_disks - stripe % raid_disks;
1324 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1325 			break;
1326 		case ALGORITHM_RIGHT_SYMMETRIC:
1327 			pd_idx = stripe % raid_disks;
1328 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1329 			break;
1330 		case ALGORITHM_PARITY_0:
1331 			pd_idx = 0;
1332 			(*dd_idx)++;
1333 			break;
1334 		case ALGORITHM_PARITY_N:
1335 			pd_idx = data_disks;
1336 			break;
1337 		default:
1338 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1339 				algorithm);
1340 			BUG();
1341 		}
1342 		break;
1343 	case 6:
1344 
1345 		switch (algorithm) {
1346 		case ALGORITHM_LEFT_ASYMMETRIC:
1347 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1348 			qd_idx = pd_idx + 1;
1349 			if (pd_idx == raid_disks-1) {
1350 				(*dd_idx)++;	/* Q D D D P */
1351 				qd_idx = 0;
1352 			} else if (*dd_idx >= pd_idx)
1353 				(*dd_idx) += 2; /* D D P Q D */
1354 			break;
1355 		case ALGORITHM_RIGHT_ASYMMETRIC:
1356 			pd_idx = stripe % raid_disks;
1357 			qd_idx = pd_idx + 1;
1358 			if (pd_idx == raid_disks-1) {
1359 				(*dd_idx)++;	/* Q D D D P */
1360 				qd_idx = 0;
1361 			} else if (*dd_idx >= pd_idx)
1362 				(*dd_idx) += 2; /* D D P Q D */
1363 			break;
1364 		case ALGORITHM_LEFT_SYMMETRIC:
1365 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1366 			qd_idx = (pd_idx + 1) % raid_disks;
1367 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1368 			break;
1369 		case ALGORITHM_RIGHT_SYMMETRIC:
1370 			pd_idx = stripe % raid_disks;
1371 			qd_idx = (pd_idx + 1) % raid_disks;
1372 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1373 			break;
1374 
1375 		case ALGORITHM_PARITY_0:
1376 			pd_idx = 0;
1377 			qd_idx = 1;
1378 			(*dd_idx) += 2;
1379 			break;
1380 		case ALGORITHM_PARITY_N:
1381 			pd_idx = data_disks;
1382 			qd_idx = data_disks + 1;
1383 			break;
1384 
1385 		case ALGORITHM_ROTATING_ZERO_RESTART:
1386 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1387 			 * of blocks for computing Q is different.
1388 			 */
1389 			pd_idx = stripe % raid_disks;
1390 			qd_idx = pd_idx + 1;
1391 			if (pd_idx == raid_disks-1) {
1392 				(*dd_idx)++;	/* Q D D D P */
1393 				qd_idx = 0;
1394 			} else if (*dd_idx >= pd_idx)
1395 				(*dd_idx) += 2; /* D D P Q D */
1396 			ddf_layout = 1;
1397 			break;
1398 
1399 		case ALGORITHM_ROTATING_N_RESTART:
1400 			/* Same a left_asymmetric, by first stripe is
1401 			 * D D D P Q  rather than
1402 			 * Q D D D P
1403 			 */
1404 			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1405 			qd_idx = pd_idx + 1;
1406 			if (pd_idx == raid_disks-1) {
1407 				(*dd_idx)++;	/* Q D D D P */
1408 				qd_idx = 0;
1409 			} else if (*dd_idx >= pd_idx)
1410 				(*dd_idx) += 2; /* D D P Q D */
1411 			ddf_layout = 1;
1412 			break;
1413 
1414 		case ALGORITHM_ROTATING_N_CONTINUE:
1415 			/* Same as left_symmetric but Q is before P */
1416 			pd_idx = raid_disks - 1 - (stripe % raid_disks);
1417 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1418 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1419 			ddf_layout = 1;
1420 			break;
1421 
1422 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1423 			/* RAID5 left_asymmetric, with Q on last device */
1424 			pd_idx = data_disks - stripe % (raid_disks-1);
1425 			if (*dd_idx >= pd_idx)
1426 				(*dd_idx)++;
1427 			qd_idx = raid_disks - 1;
1428 			break;
1429 
1430 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1431 			pd_idx = stripe % (raid_disks-1);
1432 			if (*dd_idx >= pd_idx)
1433 				(*dd_idx)++;
1434 			qd_idx = raid_disks - 1;
1435 			break;
1436 
1437 		case ALGORITHM_LEFT_SYMMETRIC_6:
1438 			pd_idx = data_disks - stripe % (raid_disks-1);
1439 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1440 			qd_idx = raid_disks - 1;
1441 			break;
1442 
1443 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1444 			pd_idx = stripe % (raid_disks-1);
1445 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1446 			qd_idx = raid_disks - 1;
1447 			break;
1448 
1449 		case ALGORITHM_PARITY_0_6:
1450 			pd_idx = 0;
1451 			(*dd_idx)++;
1452 			qd_idx = raid_disks - 1;
1453 			break;
1454 
1455 
1456 		default:
1457 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1458 			       algorithm);
1459 			BUG();
1460 		}
1461 		break;
1462 	}
1463 
1464 	if (sh) {
1465 		sh->pd_idx = pd_idx;
1466 		sh->qd_idx = qd_idx;
1467 		sh->ddf_layout = ddf_layout;
1468 	}
1469 	/*
1470 	 * Finally, compute the new sector number
1471 	 */
1472 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1473 	return new_sector;
1474 }
1475 
1476 
1477 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1478 {
1479 	raid5_conf_t *conf = sh->raid_conf;
1480 	int raid_disks = sh->disks;
1481 	int data_disks = raid_disks - conf->max_degraded;
1482 	sector_t new_sector = sh->sector, check;
1483 	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1484 					 : (conf->chunk_size >> 9);
1485 	int algorithm = previous ? conf->prev_algo
1486 				 : conf->algorithm;
1487 	sector_t stripe;
1488 	int chunk_offset;
1489 	int chunk_number, dummy1, dd_idx = i;
1490 	sector_t r_sector;
1491 	struct stripe_head sh2;
1492 
1493 
1494 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1495 	stripe = new_sector;
1496 	BUG_ON(new_sector != stripe);
1497 
1498 	if (i == sh->pd_idx)
1499 		return 0;
1500 	switch(conf->level) {
1501 	case 4: break;
1502 	case 5:
1503 		switch (algorithm) {
1504 		case ALGORITHM_LEFT_ASYMMETRIC:
1505 		case ALGORITHM_RIGHT_ASYMMETRIC:
1506 			if (i > sh->pd_idx)
1507 				i--;
1508 			break;
1509 		case ALGORITHM_LEFT_SYMMETRIC:
1510 		case ALGORITHM_RIGHT_SYMMETRIC:
1511 			if (i < sh->pd_idx)
1512 				i += raid_disks;
1513 			i -= (sh->pd_idx + 1);
1514 			break;
1515 		case ALGORITHM_PARITY_0:
1516 			i -= 1;
1517 			break;
1518 		case ALGORITHM_PARITY_N:
1519 			break;
1520 		default:
1521 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1522 			       algorithm);
1523 			BUG();
1524 		}
1525 		break;
1526 	case 6:
1527 		if (i == sh->qd_idx)
1528 			return 0; /* It is the Q disk */
1529 		switch (algorithm) {
1530 		case ALGORITHM_LEFT_ASYMMETRIC:
1531 		case ALGORITHM_RIGHT_ASYMMETRIC:
1532 		case ALGORITHM_ROTATING_ZERO_RESTART:
1533 		case ALGORITHM_ROTATING_N_RESTART:
1534 			if (sh->pd_idx == raid_disks-1)
1535 				i--;	/* Q D D D P */
1536 			else if (i > sh->pd_idx)
1537 				i -= 2; /* D D P Q D */
1538 			break;
1539 		case ALGORITHM_LEFT_SYMMETRIC:
1540 		case ALGORITHM_RIGHT_SYMMETRIC:
1541 			if (sh->pd_idx == raid_disks-1)
1542 				i--; /* Q D D D P */
1543 			else {
1544 				/* D D P Q D */
1545 				if (i < sh->pd_idx)
1546 					i += raid_disks;
1547 				i -= (sh->pd_idx + 2);
1548 			}
1549 			break;
1550 		case ALGORITHM_PARITY_0:
1551 			i -= 2;
1552 			break;
1553 		case ALGORITHM_PARITY_N:
1554 			break;
1555 		case ALGORITHM_ROTATING_N_CONTINUE:
1556 			if (sh->pd_idx == 0)
1557 				i--;	/* P D D D Q */
1558 			else if (i > sh->pd_idx)
1559 				i -= 2; /* D D Q P D */
1560 			break;
1561 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1562 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1563 			if (i > sh->pd_idx)
1564 				i--;
1565 			break;
1566 		case ALGORITHM_LEFT_SYMMETRIC_6:
1567 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1568 			if (i < sh->pd_idx)
1569 				i += data_disks + 1;
1570 			i -= (sh->pd_idx + 1);
1571 			break;
1572 		case ALGORITHM_PARITY_0_6:
1573 			i -= 1;
1574 			break;
1575 		default:
1576 			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1577 			       algorithm);
1578 			BUG();
1579 		}
1580 		break;
1581 	}
1582 
1583 	chunk_number = stripe * data_disks + i;
1584 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1585 
1586 	check = raid5_compute_sector(conf, r_sector,
1587 				     previous, &dummy1, &sh2);
1588 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1589 		|| sh2.qd_idx != sh->qd_idx) {
1590 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1591 		return 0;
1592 	}
1593 	return r_sector;
1594 }
1595 
1596 
1597 
1598 /*
1599  * Copy data between a page in the stripe cache, and one or more bion
1600  * The page could align with the middle of the bio, or there could be
1601  * several bion, each with several bio_vecs, which cover part of the page
1602  * Multiple bion are linked together on bi_next.  There may be extras
1603  * at the end of this list.  We ignore them.
1604  */
1605 static void copy_data(int frombio, struct bio *bio,
1606 		     struct page *page,
1607 		     sector_t sector)
1608 {
1609 	char *pa = page_address(page);
1610 	struct bio_vec *bvl;
1611 	int i;
1612 	int page_offset;
1613 
1614 	if (bio->bi_sector >= sector)
1615 		page_offset = (signed)(bio->bi_sector - sector) * 512;
1616 	else
1617 		page_offset = (signed)(sector - bio->bi_sector) * -512;
1618 	bio_for_each_segment(bvl, bio, i) {
1619 		int len = bio_iovec_idx(bio,i)->bv_len;
1620 		int clen;
1621 		int b_offset = 0;
1622 
1623 		if (page_offset < 0) {
1624 			b_offset = -page_offset;
1625 			page_offset += b_offset;
1626 			len -= b_offset;
1627 		}
1628 
1629 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1630 			clen = STRIPE_SIZE - page_offset;
1631 		else clen = len;
1632 
1633 		if (clen > 0) {
1634 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1635 			if (frombio)
1636 				memcpy(pa+page_offset, ba+b_offset, clen);
1637 			else
1638 				memcpy(ba+b_offset, pa+page_offset, clen);
1639 			__bio_kunmap_atomic(ba, KM_USER0);
1640 		}
1641 		if (clen < len) /* hit end of page */
1642 			break;
1643 		page_offset +=  len;
1644 	}
1645 }
1646 
1647 #define check_xor()	do {						  \
1648 				if (count == MAX_XOR_BLOCKS) {		  \
1649 				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1650 				count = 0;				  \
1651 			   }						  \
1652 			} while(0)
1653 
1654 static void compute_parity6(struct stripe_head *sh, int method)
1655 {
1656 	raid5_conf_t *conf = sh->raid_conf;
1657 	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1658 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1659 	struct bio *chosen;
1660 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661 	void *ptrs[syndrome_disks+2];
1662 
1663 	pd_idx = sh->pd_idx;
1664 	qd_idx = sh->qd_idx;
1665 	d0_idx = raid6_d0(sh);
1666 
1667 	pr_debug("compute_parity, stripe %llu, method %d\n",
1668 		(unsigned long long)sh->sector, method);
1669 
1670 	switch(method) {
1671 	case READ_MODIFY_WRITE:
1672 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1673 	case RECONSTRUCT_WRITE:
1674 		for (i= disks; i-- ;)
1675 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1676 				chosen = sh->dev[i].towrite;
1677 				sh->dev[i].towrite = NULL;
1678 
1679 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1680 					wake_up(&conf->wait_for_overlap);
1681 
1682 				BUG_ON(sh->dev[i].written);
1683 				sh->dev[i].written = chosen;
1684 			}
1685 		break;
1686 	case CHECK_PARITY:
1687 		BUG();		/* Not implemented yet */
1688 	}
1689 
1690 	for (i = disks; i--;)
1691 		if (sh->dev[i].written) {
1692 			sector_t sector = sh->dev[i].sector;
1693 			struct bio *wbi = sh->dev[i].written;
1694 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1695 				copy_data(1, wbi, sh->dev[i].page, sector);
1696 				wbi = r5_next_bio(wbi, sector);
1697 			}
1698 
1699 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1700 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1701 		}
1702 
1703 	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1704 
1705 	for (i = 0; i < disks; i++)
1706 		ptrs[i] = (void *)raid6_empty_zero_page;
1707 
1708 	count = 0;
1709 	i = d0_idx;
1710 	do {
1711 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1712 
1713 		ptrs[slot] = page_address(sh->dev[i].page);
1714 		if (slot < syndrome_disks &&
1715 		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1716 			printk(KERN_ERR "block %d/%d not uptodate "
1717 			       "on parity calc\n", i, count);
1718 			BUG();
1719 		}
1720 
1721 		i = raid6_next_disk(i, disks);
1722 	} while (i != d0_idx);
1723 	BUG_ON(count != syndrome_disks);
1724 
1725 	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1726 
1727 	switch(method) {
1728 	case RECONSTRUCT_WRITE:
1729 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1730 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1731 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1732 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1733 		break;
1734 	case UPDATE_PARITY:
1735 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1736 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1737 		break;
1738 	}
1739 }
1740 
1741 
1742 /* Compute one missing block */
1743 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1744 {
1745 	int i, count, disks = sh->disks;
1746 	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1747 	int qd_idx = sh->qd_idx;
1748 
1749 	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1750 		(unsigned long long)sh->sector, dd_idx);
1751 
1752 	if ( dd_idx == qd_idx ) {
1753 		/* We're actually computing the Q drive */
1754 		compute_parity6(sh, UPDATE_PARITY);
1755 	} else {
1756 		dest = page_address(sh->dev[dd_idx].page);
1757 		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1758 		count = 0;
1759 		for (i = disks ; i--; ) {
1760 			if (i == dd_idx || i == qd_idx)
1761 				continue;
1762 			p = page_address(sh->dev[i].page);
1763 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1764 				ptr[count++] = p;
1765 			else
1766 				printk("compute_block() %d, stripe %llu, %d"
1767 				       " not present\n", dd_idx,
1768 				       (unsigned long long)sh->sector, i);
1769 
1770 			check_xor();
1771 		}
1772 		if (count)
1773 			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1774 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1775 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1776 	}
1777 }
1778 
1779 /* Compute two missing blocks */
1780 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1781 {
1782 	int i, count, disks = sh->disks;
1783 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1784 	int d0_idx = raid6_d0(sh);
1785 	int faila = -1, failb = -1;
1786 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1787 	void *ptrs[syndrome_disks+2];
1788 
1789 	for (i = 0; i < disks ; i++)
1790 		ptrs[i] = (void *)raid6_empty_zero_page;
1791 	count = 0;
1792 	i = d0_idx;
1793 	do {
1794 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1795 
1796 		ptrs[slot] = page_address(sh->dev[i].page);
1797 
1798 		if (i == dd_idx1)
1799 			faila = slot;
1800 		if (i == dd_idx2)
1801 			failb = slot;
1802 		i = raid6_next_disk(i, disks);
1803 	} while (i != d0_idx);
1804 	BUG_ON(count != syndrome_disks);
1805 
1806 	BUG_ON(faila == failb);
1807 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1808 
1809 	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1810 		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1811 		 faila, failb);
1812 
1813 	if (failb == syndrome_disks+1) {
1814 		/* Q disk is one of the missing disks */
1815 		if (faila == syndrome_disks) {
1816 			/* Missing P+Q, just recompute */
1817 			compute_parity6(sh, UPDATE_PARITY);
1818 			return;
1819 		} else {
1820 			/* We're missing D+Q; recompute D from P */
1821 			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1822 					     dd_idx2 : dd_idx1),
1823 					0);
1824 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1825 			return;
1826 		}
1827 	}
1828 
1829 	/* We're missing D+P or D+D; */
1830 	if (failb == syndrome_disks) {
1831 		/* We're missing D+P. */
1832 		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1833 	} else {
1834 		/* We're missing D+D. */
1835 		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1836 				  ptrs);
1837 	}
1838 
1839 	/* Both the above update both missing blocks */
1840 	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1841 	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1842 }
1843 
1844 static void
1845 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1846 			 int rcw, int expand)
1847 {
1848 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1849 
1850 	if (rcw) {
1851 		/* if we are not expanding this is a proper write request, and
1852 		 * there will be bios with new data to be drained into the
1853 		 * stripe cache
1854 		 */
1855 		if (!expand) {
1856 			sh->reconstruct_state = reconstruct_state_drain_run;
1857 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1858 		} else
1859 			sh->reconstruct_state = reconstruct_state_run;
1860 
1861 		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1862 
1863 		for (i = disks; i--; ) {
1864 			struct r5dev *dev = &sh->dev[i];
1865 
1866 			if (dev->towrite) {
1867 				set_bit(R5_LOCKED, &dev->flags);
1868 				set_bit(R5_Wantdrain, &dev->flags);
1869 				if (!expand)
1870 					clear_bit(R5_UPTODATE, &dev->flags);
1871 				s->locked++;
1872 			}
1873 		}
1874 		if (s->locked + 1 == disks)
1875 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1876 				atomic_inc(&sh->raid_conf->pending_full_writes);
1877 	} else {
1878 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1879 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1880 
1881 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1882 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1883 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1884 		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1885 
1886 		for (i = disks; i--; ) {
1887 			struct r5dev *dev = &sh->dev[i];
1888 			if (i == pd_idx)
1889 				continue;
1890 
1891 			if (dev->towrite &&
1892 			    (test_bit(R5_UPTODATE, &dev->flags) ||
1893 			     test_bit(R5_Wantcompute, &dev->flags))) {
1894 				set_bit(R5_Wantdrain, &dev->flags);
1895 				set_bit(R5_LOCKED, &dev->flags);
1896 				clear_bit(R5_UPTODATE, &dev->flags);
1897 				s->locked++;
1898 			}
1899 		}
1900 	}
1901 
1902 	/* keep the parity disk locked while asynchronous operations
1903 	 * are in flight
1904 	 */
1905 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1906 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1907 	s->locked++;
1908 
1909 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1910 		__func__, (unsigned long long)sh->sector,
1911 		s->locked, s->ops_request);
1912 }
1913 
1914 /*
1915  * Each stripe/dev can have one or more bion attached.
1916  * toread/towrite point to the first in a chain.
1917  * The bi_next chain must be in order.
1918  */
1919 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1920 {
1921 	struct bio **bip;
1922 	raid5_conf_t *conf = sh->raid_conf;
1923 	int firstwrite=0;
1924 
1925 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1926 		(unsigned long long)bi->bi_sector,
1927 		(unsigned long long)sh->sector);
1928 
1929 
1930 	spin_lock(&sh->lock);
1931 	spin_lock_irq(&conf->device_lock);
1932 	if (forwrite) {
1933 		bip = &sh->dev[dd_idx].towrite;
1934 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1935 			firstwrite = 1;
1936 	} else
1937 		bip = &sh->dev[dd_idx].toread;
1938 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1939 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1940 			goto overlap;
1941 		bip = & (*bip)->bi_next;
1942 	}
1943 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1944 		goto overlap;
1945 
1946 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1947 	if (*bip)
1948 		bi->bi_next = *bip;
1949 	*bip = bi;
1950 	bi->bi_phys_segments++;
1951 	spin_unlock_irq(&conf->device_lock);
1952 	spin_unlock(&sh->lock);
1953 
1954 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1955 		(unsigned long long)bi->bi_sector,
1956 		(unsigned long long)sh->sector, dd_idx);
1957 
1958 	if (conf->mddev->bitmap && firstwrite) {
1959 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1960 				  STRIPE_SECTORS, 0);
1961 		sh->bm_seq = conf->seq_flush+1;
1962 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1963 	}
1964 
1965 	if (forwrite) {
1966 		/* check if page is covered */
1967 		sector_t sector = sh->dev[dd_idx].sector;
1968 		for (bi=sh->dev[dd_idx].towrite;
1969 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1970 			     bi && bi->bi_sector <= sector;
1971 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1972 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1973 				sector = bi->bi_sector + (bi->bi_size>>9);
1974 		}
1975 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1976 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1977 	}
1978 	return 1;
1979 
1980  overlap:
1981 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1982 	spin_unlock_irq(&conf->device_lock);
1983 	spin_unlock(&sh->lock);
1984 	return 0;
1985 }
1986 
1987 static void end_reshape(raid5_conf_t *conf);
1988 
1989 static int page_is_zero(struct page *p)
1990 {
1991 	char *a = page_address(p);
1992 	return ((*(u32*)a) == 0 &&
1993 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1994 }
1995 
1996 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1997 			    struct stripe_head *sh)
1998 {
1999 	int sectors_per_chunk =
2000 		previous ? (conf->prev_chunk >> 9)
2001 			 : (conf->chunk_size >> 9);
2002 	int dd_idx;
2003 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2004 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2005 
2006 	raid5_compute_sector(conf,
2007 			     stripe * (disks - conf->max_degraded)
2008 			     *sectors_per_chunk + chunk_offset,
2009 			     previous,
2010 			     &dd_idx, sh);
2011 }
2012 
2013 static void
2014 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2015 				struct stripe_head_state *s, int disks,
2016 				struct bio **return_bi)
2017 {
2018 	int i;
2019 	for (i = disks; i--; ) {
2020 		struct bio *bi;
2021 		int bitmap_end = 0;
2022 
2023 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2024 			mdk_rdev_t *rdev;
2025 			rcu_read_lock();
2026 			rdev = rcu_dereference(conf->disks[i].rdev);
2027 			if (rdev && test_bit(In_sync, &rdev->flags))
2028 				/* multiple read failures in one stripe */
2029 				md_error(conf->mddev, rdev);
2030 			rcu_read_unlock();
2031 		}
2032 		spin_lock_irq(&conf->device_lock);
2033 		/* fail all writes first */
2034 		bi = sh->dev[i].towrite;
2035 		sh->dev[i].towrite = NULL;
2036 		if (bi) {
2037 			s->to_write--;
2038 			bitmap_end = 1;
2039 		}
2040 
2041 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2042 			wake_up(&conf->wait_for_overlap);
2043 
2044 		while (bi && bi->bi_sector <
2045 			sh->dev[i].sector + STRIPE_SECTORS) {
2046 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2047 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2048 			if (!raid5_dec_bi_phys_segments(bi)) {
2049 				md_write_end(conf->mddev);
2050 				bi->bi_next = *return_bi;
2051 				*return_bi = bi;
2052 			}
2053 			bi = nextbi;
2054 		}
2055 		/* and fail all 'written' */
2056 		bi = sh->dev[i].written;
2057 		sh->dev[i].written = NULL;
2058 		if (bi) bitmap_end = 1;
2059 		while (bi && bi->bi_sector <
2060 		       sh->dev[i].sector + STRIPE_SECTORS) {
2061 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2062 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2063 			if (!raid5_dec_bi_phys_segments(bi)) {
2064 				md_write_end(conf->mddev);
2065 				bi->bi_next = *return_bi;
2066 				*return_bi = bi;
2067 			}
2068 			bi = bi2;
2069 		}
2070 
2071 		/* fail any reads if this device is non-operational and
2072 		 * the data has not reached the cache yet.
2073 		 */
2074 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2075 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2076 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2077 			bi = sh->dev[i].toread;
2078 			sh->dev[i].toread = NULL;
2079 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2080 				wake_up(&conf->wait_for_overlap);
2081 			if (bi) s->to_read--;
2082 			while (bi && bi->bi_sector <
2083 			       sh->dev[i].sector + STRIPE_SECTORS) {
2084 				struct bio *nextbi =
2085 					r5_next_bio(bi, sh->dev[i].sector);
2086 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2087 				if (!raid5_dec_bi_phys_segments(bi)) {
2088 					bi->bi_next = *return_bi;
2089 					*return_bi = bi;
2090 				}
2091 				bi = nextbi;
2092 			}
2093 		}
2094 		spin_unlock_irq(&conf->device_lock);
2095 		if (bitmap_end)
2096 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2097 					STRIPE_SECTORS, 0, 0);
2098 	}
2099 
2100 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2101 		if (atomic_dec_and_test(&conf->pending_full_writes))
2102 			md_wakeup_thread(conf->mddev->thread);
2103 }
2104 
2105 /* fetch_block5 - checks the given member device to see if its data needs
2106  * to be read or computed to satisfy a request.
2107  *
2108  * Returns 1 when no more member devices need to be checked, otherwise returns
2109  * 0 to tell the loop in handle_stripe_fill5 to continue
2110  */
2111 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2112 			int disk_idx, int disks)
2113 {
2114 	struct r5dev *dev = &sh->dev[disk_idx];
2115 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2116 
2117 	/* is the data in this block needed, and can we get it? */
2118 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2119 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2120 	    (dev->toread ||
2121 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2122 	     s->syncing || s->expanding ||
2123 	     (s->failed &&
2124 	      (failed_dev->toread ||
2125 	       (failed_dev->towrite &&
2126 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2127 		/* We would like to get this block, possibly by computing it,
2128 		 * otherwise read it if the backing disk is insync
2129 		 */
2130 		if ((s->uptodate == disks - 1) &&
2131 		    (s->failed && disk_idx == s->failed_num)) {
2132 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2133 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2134 			set_bit(R5_Wantcompute, &dev->flags);
2135 			sh->ops.target = disk_idx;
2136 			s->req_compute = 1;
2137 			/* Careful: from this point on 'uptodate' is in the eye
2138 			 * of raid5_run_ops which services 'compute' operations
2139 			 * before writes. R5_Wantcompute flags a block that will
2140 			 * be R5_UPTODATE by the time it is needed for a
2141 			 * subsequent operation.
2142 			 */
2143 			s->uptodate++;
2144 			return 1; /* uptodate + compute == disks */
2145 		} else if (test_bit(R5_Insync, &dev->flags)) {
2146 			set_bit(R5_LOCKED, &dev->flags);
2147 			set_bit(R5_Wantread, &dev->flags);
2148 			s->locked++;
2149 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2150 				s->syncing);
2151 		}
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 /**
2158  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2159  */
2160 static void handle_stripe_fill5(struct stripe_head *sh,
2161 			struct stripe_head_state *s, int disks)
2162 {
2163 	int i;
2164 
2165 	/* look for blocks to read/compute, skip this if a compute
2166 	 * is already in flight, or if the stripe contents are in the
2167 	 * midst of changing due to a write
2168 	 */
2169 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2170 	    !sh->reconstruct_state)
2171 		for (i = disks; i--; )
2172 			if (fetch_block5(sh, s, i, disks))
2173 				break;
2174 	set_bit(STRIPE_HANDLE, &sh->state);
2175 }
2176 
2177 static void handle_stripe_fill6(struct stripe_head *sh,
2178 			struct stripe_head_state *s, struct r6_state *r6s,
2179 			int disks)
2180 {
2181 	int i;
2182 	for (i = disks; i--; ) {
2183 		struct r5dev *dev = &sh->dev[i];
2184 		if (!test_bit(R5_LOCKED, &dev->flags) &&
2185 		    !test_bit(R5_UPTODATE, &dev->flags) &&
2186 		    (dev->toread || (dev->towrite &&
2187 		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2188 		     s->syncing || s->expanding ||
2189 		     (s->failed >= 1 &&
2190 		      (sh->dev[r6s->failed_num[0]].toread ||
2191 		       s->to_write)) ||
2192 		     (s->failed >= 2 &&
2193 		      (sh->dev[r6s->failed_num[1]].toread ||
2194 		       s->to_write)))) {
2195 			/* we would like to get this block, possibly
2196 			 * by computing it, but we might not be able to
2197 			 */
2198 			if ((s->uptodate == disks - 1) &&
2199 			    (s->failed && (i == r6s->failed_num[0] ||
2200 					   i == r6s->failed_num[1]))) {
2201 				pr_debug("Computing stripe %llu block %d\n",
2202 				       (unsigned long long)sh->sector, i);
2203 				compute_block_1(sh, i, 0);
2204 				s->uptodate++;
2205 			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2206 				/* Computing 2-failure is *very* expensive; only
2207 				 * do it if failed >= 2
2208 				 */
2209 				int other;
2210 				for (other = disks; other--; ) {
2211 					if (other == i)
2212 						continue;
2213 					if (!test_bit(R5_UPTODATE,
2214 					      &sh->dev[other].flags))
2215 						break;
2216 				}
2217 				BUG_ON(other < 0);
2218 				pr_debug("Computing stripe %llu blocks %d,%d\n",
2219 				       (unsigned long long)sh->sector,
2220 				       i, other);
2221 				compute_block_2(sh, i, other);
2222 				s->uptodate += 2;
2223 			} else if (test_bit(R5_Insync, &dev->flags)) {
2224 				set_bit(R5_LOCKED, &dev->flags);
2225 				set_bit(R5_Wantread, &dev->flags);
2226 				s->locked++;
2227 				pr_debug("Reading block %d (sync=%d)\n",
2228 					i, s->syncing);
2229 			}
2230 		}
2231 	}
2232 	set_bit(STRIPE_HANDLE, &sh->state);
2233 }
2234 
2235 
2236 /* handle_stripe_clean_event
2237  * any written block on an uptodate or failed drive can be returned.
2238  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2239  * never LOCKED, so we don't need to test 'failed' directly.
2240  */
2241 static void handle_stripe_clean_event(raid5_conf_t *conf,
2242 	struct stripe_head *sh, int disks, struct bio **return_bi)
2243 {
2244 	int i;
2245 	struct r5dev *dev;
2246 
2247 	for (i = disks; i--; )
2248 		if (sh->dev[i].written) {
2249 			dev = &sh->dev[i];
2250 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2251 				test_bit(R5_UPTODATE, &dev->flags)) {
2252 				/* We can return any write requests */
2253 				struct bio *wbi, *wbi2;
2254 				int bitmap_end = 0;
2255 				pr_debug("Return write for disc %d\n", i);
2256 				spin_lock_irq(&conf->device_lock);
2257 				wbi = dev->written;
2258 				dev->written = NULL;
2259 				while (wbi && wbi->bi_sector <
2260 					dev->sector + STRIPE_SECTORS) {
2261 					wbi2 = r5_next_bio(wbi, dev->sector);
2262 					if (!raid5_dec_bi_phys_segments(wbi)) {
2263 						md_write_end(conf->mddev);
2264 						wbi->bi_next = *return_bi;
2265 						*return_bi = wbi;
2266 					}
2267 					wbi = wbi2;
2268 				}
2269 				if (dev->towrite == NULL)
2270 					bitmap_end = 1;
2271 				spin_unlock_irq(&conf->device_lock);
2272 				if (bitmap_end)
2273 					bitmap_endwrite(conf->mddev->bitmap,
2274 							sh->sector,
2275 							STRIPE_SECTORS,
2276 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2277 							0);
2278 			}
2279 		}
2280 
2281 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2282 		if (atomic_dec_and_test(&conf->pending_full_writes))
2283 			md_wakeup_thread(conf->mddev->thread);
2284 }
2285 
2286 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2287 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2288 {
2289 	int rmw = 0, rcw = 0, i;
2290 	for (i = disks; i--; ) {
2291 		/* would I have to read this buffer for read_modify_write */
2292 		struct r5dev *dev = &sh->dev[i];
2293 		if ((dev->towrite || i == sh->pd_idx) &&
2294 		    !test_bit(R5_LOCKED, &dev->flags) &&
2295 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2296 		      test_bit(R5_Wantcompute, &dev->flags))) {
2297 			if (test_bit(R5_Insync, &dev->flags))
2298 				rmw++;
2299 			else
2300 				rmw += 2*disks;  /* cannot read it */
2301 		}
2302 		/* Would I have to read this buffer for reconstruct_write */
2303 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2304 		    !test_bit(R5_LOCKED, &dev->flags) &&
2305 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2306 		    test_bit(R5_Wantcompute, &dev->flags))) {
2307 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2308 			else
2309 				rcw += 2*disks;
2310 		}
2311 	}
2312 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2313 		(unsigned long long)sh->sector, rmw, rcw);
2314 	set_bit(STRIPE_HANDLE, &sh->state);
2315 	if (rmw < rcw && rmw > 0)
2316 		/* prefer read-modify-write, but need to get some data */
2317 		for (i = disks; i--; ) {
2318 			struct r5dev *dev = &sh->dev[i];
2319 			if ((dev->towrite || i == sh->pd_idx) &&
2320 			    !test_bit(R5_LOCKED, &dev->flags) &&
2321 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2322 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2323 			    test_bit(R5_Insync, &dev->flags)) {
2324 				if (
2325 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2326 					pr_debug("Read_old block "
2327 						"%d for r-m-w\n", i);
2328 					set_bit(R5_LOCKED, &dev->flags);
2329 					set_bit(R5_Wantread, &dev->flags);
2330 					s->locked++;
2331 				} else {
2332 					set_bit(STRIPE_DELAYED, &sh->state);
2333 					set_bit(STRIPE_HANDLE, &sh->state);
2334 				}
2335 			}
2336 		}
2337 	if (rcw <= rmw && rcw > 0)
2338 		/* want reconstruct write, but need to get some data */
2339 		for (i = disks; i--; ) {
2340 			struct r5dev *dev = &sh->dev[i];
2341 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2342 			    i != sh->pd_idx &&
2343 			    !test_bit(R5_LOCKED, &dev->flags) &&
2344 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2345 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2346 			    test_bit(R5_Insync, &dev->flags)) {
2347 				if (
2348 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2349 					pr_debug("Read_old block "
2350 						"%d for Reconstruct\n", i);
2351 					set_bit(R5_LOCKED, &dev->flags);
2352 					set_bit(R5_Wantread, &dev->flags);
2353 					s->locked++;
2354 				} else {
2355 					set_bit(STRIPE_DELAYED, &sh->state);
2356 					set_bit(STRIPE_HANDLE, &sh->state);
2357 				}
2358 			}
2359 		}
2360 	/* now if nothing is locked, and if we have enough data,
2361 	 * we can start a write request
2362 	 */
2363 	/* since handle_stripe can be called at any time we need to handle the
2364 	 * case where a compute block operation has been submitted and then a
2365 	 * subsequent call wants to start a write request.  raid5_run_ops only
2366 	 * handles the case where compute block and postxor are requested
2367 	 * simultaneously.  If this is not the case then new writes need to be
2368 	 * held off until the compute completes.
2369 	 */
2370 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2371 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2372 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2373 		schedule_reconstruction5(sh, s, rcw == 0, 0);
2374 }
2375 
2376 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2377 		struct stripe_head *sh,	struct stripe_head_state *s,
2378 		struct r6_state *r6s, int disks)
2379 {
2380 	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2381 	int qd_idx = sh->qd_idx;
2382 	for (i = disks; i--; ) {
2383 		struct r5dev *dev = &sh->dev[i];
2384 		/* Would I have to read this buffer for reconstruct_write */
2385 		if (!test_bit(R5_OVERWRITE, &dev->flags)
2386 		    && i != pd_idx && i != qd_idx
2387 		    && (!test_bit(R5_LOCKED, &dev->flags)
2388 			    ) &&
2389 		    !test_bit(R5_UPTODATE, &dev->flags)) {
2390 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2391 			else {
2392 				pr_debug("raid6: must_compute: "
2393 					"disk %d flags=%#lx\n", i, dev->flags);
2394 				must_compute++;
2395 			}
2396 		}
2397 	}
2398 	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2399 	       (unsigned long long)sh->sector, rcw, must_compute);
2400 	set_bit(STRIPE_HANDLE, &sh->state);
2401 
2402 	if (rcw > 0)
2403 		/* want reconstruct write, but need to get some data */
2404 		for (i = disks; i--; ) {
2405 			struct r5dev *dev = &sh->dev[i];
2406 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2407 			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2408 			    && !test_bit(R5_LOCKED, &dev->flags) &&
2409 			    !test_bit(R5_UPTODATE, &dev->flags) &&
2410 			    test_bit(R5_Insync, &dev->flags)) {
2411 				if (
2412 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2413 					pr_debug("Read_old stripe %llu "
2414 						"block %d for Reconstruct\n",
2415 					     (unsigned long long)sh->sector, i);
2416 					set_bit(R5_LOCKED, &dev->flags);
2417 					set_bit(R5_Wantread, &dev->flags);
2418 					s->locked++;
2419 				} else {
2420 					pr_debug("Request delayed stripe %llu "
2421 						"block %d for Reconstruct\n",
2422 					     (unsigned long long)sh->sector, i);
2423 					set_bit(STRIPE_DELAYED, &sh->state);
2424 					set_bit(STRIPE_HANDLE, &sh->state);
2425 				}
2426 			}
2427 		}
2428 	/* now if nothing is locked, and if we have enough data, we can start a
2429 	 * write request
2430 	 */
2431 	if (s->locked == 0 && rcw == 0 &&
2432 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2433 		if (must_compute > 0) {
2434 			/* We have failed blocks and need to compute them */
2435 			switch (s->failed) {
2436 			case 0:
2437 				BUG();
2438 			case 1:
2439 				compute_block_1(sh, r6s->failed_num[0], 0);
2440 				break;
2441 			case 2:
2442 				compute_block_2(sh, r6s->failed_num[0],
2443 						r6s->failed_num[1]);
2444 				break;
2445 			default: /* This request should have been failed? */
2446 				BUG();
2447 			}
2448 		}
2449 
2450 		pr_debug("Computing parity for stripe %llu\n",
2451 			(unsigned long long)sh->sector);
2452 		compute_parity6(sh, RECONSTRUCT_WRITE);
2453 		/* now every locked buffer is ready to be written */
2454 		for (i = disks; i--; )
2455 			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2456 				pr_debug("Writing stripe %llu block %d\n",
2457 				       (unsigned long long)sh->sector, i);
2458 				s->locked++;
2459 				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2460 			}
2461 		if (s->locked == disks)
2462 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2463 				atomic_inc(&conf->pending_full_writes);
2464 		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2465 		set_bit(STRIPE_INSYNC, &sh->state);
2466 
2467 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2468 			atomic_dec(&conf->preread_active_stripes);
2469 			if (atomic_read(&conf->preread_active_stripes) <
2470 			    IO_THRESHOLD)
2471 				md_wakeup_thread(conf->mddev->thread);
2472 		}
2473 	}
2474 }
2475 
2476 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2477 				struct stripe_head_state *s, int disks)
2478 {
2479 	struct r5dev *dev = NULL;
2480 
2481 	set_bit(STRIPE_HANDLE, &sh->state);
2482 
2483 	switch (sh->check_state) {
2484 	case check_state_idle:
2485 		/* start a new check operation if there are no failures */
2486 		if (s->failed == 0) {
2487 			BUG_ON(s->uptodate != disks);
2488 			sh->check_state = check_state_run;
2489 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2490 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2491 			s->uptodate--;
2492 			break;
2493 		}
2494 		dev = &sh->dev[s->failed_num];
2495 		/* fall through */
2496 	case check_state_compute_result:
2497 		sh->check_state = check_state_idle;
2498 		if (!dev)
2499 			dev = &sh->dev[sh->pd_idx];
2500 
2501 		/* check that a write has not made the stripe insync */
2502 		if (test_bit(STRIPE_INSYNC, &sh->state))
2503 			break;
2504 
2505 		/* either failed parity check, or recovery is happening */
2506 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2507 		BUG_ON(s->uptodate != disks);
2508 
2509 		set_bit(R5_LOCKED, &dev->flags);
2510 		s->locked++;
2511 		set_bit(R5_Wantwrite, &dev->flags);
2512 
2513 		clear_bit(STRIPE_DEGRADED, &sh->state);
2514 		set_bit(STRIPE_INSYNC, &sh->state);
2515 		break;
2516 	case check_state_run:
2517 		break; /* we will be called again upon completion */
2518 	case check_state_check_result:
2519 		sh->check_state = check_state_idle;
2520 
2521 		/* if a failure occurred during the check operation, leave
2522 		 * STRIPE_INSYNC not set and let the stripe be handled again
2523 		 */
2524 		if (s->failed)
2525 			break;
2526 
2527 		/* handle a successful check operation, if parity is correct
2528 		 * we are done.  Otherwise update the mismatch count and repair
2529 		 * parity if !MD_RECOVERY_CHECK
2530 		 */
2531 		if (sh->ops.zero_sum_result == 0)
2532 			/* parity is correct (on disc,
2533 			 * not in buffer any more)
2534 			 */
2535 			set_bit(STRIPE_INSYNC, &sh->state);
2536 		else {
2537 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2538 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2539 				/* don't try to repair!! */
2540 				set_bit(STRIPE_INSYNC, &sh->state);
2541 			else {
2542 				sh->check_state = check_state_compute_run;
2543 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2544 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2545 				set_bit(R5_Wantcompute,
2546 					&sh->dev[sh->pd_idx].flags);
2547 				sh->ops.target = sh->pd_idx;
2548 				s->uptodate++;
2549 			}
2550 		}
2551 		break;
2552 	case check_state_compute_run:
2553 		break;
2554 	default:
2555 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2556 		       __func__, sh->check_state,
2557 		       (unsigned long long) sh->sector);
2558 		BUG();
2559 	}
2560 }
2561 
2562 
2563 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2564 				struct stripe_head_state *s,
2565 				struct r6_state *r6s, struct page *tmp_page,
2566 				int disks)
2567 {
2568 	int update_p = 0, update_q = 0;
2569 	struct r5dev *dev;
2570 	int pd_idx = sh->pd_idx;
2571 	int qd_idx = sh->qd_idx;
2572 
2573 	set_bit(STRIPE_HANDLE, &sh->state);
2574 
2575 	BUG_ON(s->failed > 2);
2576 	BUG_ON(s->uptodate < disks);
2577 	/* Want to check and possibly repair P and Q.
2578 	 * However there could be one 'failed' device, in which
2579 	 * case we can only check one of them, possibly using the
2580 	 * other to generate missing data
2581 	 */
2582 
2583 	/* If !tmp_page, we cannot do the calculations,
2584 	 * but as we have set STRIPE_HANDLE, we will soon be called
2585 	 * by stripe_handle with a tmp_page - just wait until then.
2586 	 */
2587 	if (tmp_page) {
2588 		if (s->failed == r6s->q_failed) {
2589 			/* The only possible failed device holds 'Q', so it
2590 			 * makes sense to check P (If anything else were failed,
2591 			 * we would have used P to recreate it).
2592 			 */
2593 			compute_block_1(sh, pd_idx, 1);
2594 			if (!page_is_zero(sh->dev[pd_idx].page)) {
2595 				compute_block_1(sh, pd_idx, 0);
2596 				update_p = 1;
2597 			}
2598 		}
2599 		if (!r6s->q_failed && s->failed < 2) {
2600 			/* q is not failed, and we didn't use it to generate
2601 			 * anything, so it makes sense to check it
2602 			 */
2603 			memcpy(page_address(tmp_page),
2604 			       page_address(sh->dev[qd_idx].page),
2605 			       STRIPE_SIZE);
2606 			compute_parity6(sh, UPDATE_PARITY);
2607 			if (memcmp(page_address(tmp_page),
2608 				   page_address(sh->dev[qd_idx].page),
2609 				   STRIPE_SIZE) != 0) {
2610 				clear_bit(STRIPE_INSYNC, &sh->state);
2611 				update_q = 1;
2612 			}
2613 		}
2614 		if (update_p || update_q) {
2615 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2616 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2617 				/* don't try to repair!! */
2618 				update_p = update_q = 0;
2619 		}
2620 
2621 		/* now write out any block on a failed drive,
2622 		 * or P or Q if they need it
2623 		 */
2624 
2625 		if (s->failed == 2) {
2626 			dev = &sh->dev[r6s->failed_num[1]];
2627 			s->locked++;
2628 			set_bit(R5_LOCKED, &dev->flags);
2629 			set_bit(R5_Wantwrite, &dev->flags);
2630 		}
2631 		if (s->failed >= 1) {
2632 			dev = &sh->dev[r6s->failed_num[0]];
2633 			s->locked++;
2634 			set_bit(R5_LOCKED, &dev->flags);
2635 			set_bit(R5_Wantwrite, &dev->flags);
2636 		}
2637 
2638 		if (update_p) {
2639 			dev = &sh->dev[pd_idx];
2640 			s->locked++;
2641 			set_bit(R5_LOCKED, &dev->flags);
2642 			set_bit(R5_Wantwrite, &dev->flags);
2643 		}
2644 		if (update_q) {
2645 			dev = &sh->dev[qd_idx];
2646 			s->locked++;
2647 			set_bit(R5_LOCKED, &dev->flags);
2648 			set_bit(R5_Wantwrite, &dev->flags);
2649 		}
2650 		clear_bit(STRIPE_DEGRADED, &sh->state);
2651 
2652 		set_bit(STRIPE_INSYNC, &sh->state);
2653 	}
2654 }
2655 
2656 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2657 				struct r6_state *r6s)
2658 {
2659 	int i;
2660 
2661 	/* We have read all the blocks in this stripe and now we need to
2662 	 * copy some of them into a target stripe for expand.
2663 	 */
2664 	struct dma_async_tx_descriptor *tx = NULL;
2665 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2666 	for (i = 0; i < sh->disks; i++)
2667 		if (i != sh->pd_idx && i != sh->qd_idx) {
2668 			int dd_idx, j;
2669 			struct stripe_head *sh2;
2670 
2671 			sector_t bn = compute_blocknr(sh, i, 1);
2672 			sector_t s = raid5_compute_sector(conf, bn, 0,
2673 							  &dd_idx, NULL);
2674 			sh2 = get_active_stripe(conf, s, 0, 1);
2675 			if (sh2 == NULL)
2676 				/* so far only the early blocks of this stripe
2677 				 * have been requested.  When later blocks
2678 				 * get requested, we will try again
2679 				 */
2680 				continue;
2681 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2682 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2683 				/* must have already done this block */
2684 				release_stripe(sh2);
2685 				continue;
2686 			}
2687 
2688 			/* place all the copies on one channel */
2689 			tx = async_memcpy(sh2->dev[dd_idx].page,
2690 				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2691 				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2692 
2693 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2694 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2695 			for (j = 0; j < conf->raid_disks; j++)
2696 				if (j != sh2->pd_idx &&
2697 				    (!r6s || j != sh2->qd_idx) &&
2698 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2699 					break;
2700 			if (j == conf->raid_disks) {
2701 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2702 				set_bit(STRIPE_HANDLE, &sh2->state);
2703 			}
2704 			release_stripe(sh2);
2705 
2706 		}
2707 	/* done submitting copies, wait for them to complete */
2708 	if (tx) {
2709 		async_tx_ack(tx);
2710 		dma_wait_for_async_tx(tx);
2711 	}
2712 }
2713 
2714 
2715 /*
2716  * handle_stripe - do things to a stripe.
2717  *
2718  * We lock the stripe and then examine the state of various bits
2719  * to see what needs to be done.
2720  * Possible results:
2721  *    return some read request which now have data
2722  *    return some write requests which are safely on disc
2723  *    schedule a read on some buffers
2724  *    schedule a write of some buffers
2725  *    return confirmation of parity correctness
2726  *
2727  * buffers are taken off read_list or write_list, and bh_cache buffers
2728  * get BH_Lock set before the stripe lock is released.
2729  *
2730  */
2731 
2732 static bool handle_stripe5(struct stripe_head *sh)
2733 {
2734 	raid5_conf_t *conf = sh->raid_conf;
2735 	int disks = sh->disks, i;
2736 	struct bio *return_bi = NULL;
2737 	struct stripe_head_state s;
2738 	struct r5dev *dev;
2739 	mdk_rdev_t *blocked_rdev = NULL;
2740 	int prexor;
2741 
2742 	memset(&s, 0, sizeof(s));
2743 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2744 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2745 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2746 		 sh->reconstruct_state);
2747 
2748 	spin_lock(&sh->lock);
2749 	clear_bit(STRIPE_HANDLE, &sh->state);
2750 	clear_bit(STRIPE_DELAYED, &sh->state);
2751 
2752 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2753 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2754 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2755 
2756 	/* Now to look around and see what can be done */
2757 	rcu_read_lock();
2758 	for (i=disks; i--; ) {
2759 		mdk_rdev_t *rdev;
2760 		struct r5dev *dev = &sh->dev[i];
2761 		clear_bit(R5_Insync, &dev->flags);
2762 
2763 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2764 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2765 			dev->towrite, dev->written);
2766 
2767 		/* maybe we can request a biofill operation
2768 		 *
2769 		 * new wantfill requests are only permitted while
2770 		 * ops_complete_biofill is guaranteed to be inactive
2771 		 */
2772 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2773 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2774 			set_bit(R5_Wantfill, &dev->flags);
2775 
2776 		/* now count some things */
2777 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2778 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2779 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2780 
2781 		if (test_bit(R5_Wantfill, &dev->flags))
2782 			s.to_fill++;
2783 		else if (dev->toread)
2784 			s.to_read++;
2785 		if (dev->towrite) {
2786 			s.to_write++;
2787 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2788 				s.non_overwrite++;
2789 		}
2790 		if (dev->written)
2791 			s.written++;
2792 		rdev = rcu_dereference(conf->disks[i].rdev);
2793 		if (blocked_rdev == NULL &&
2794 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2795 			blocked_rdev = rdev;
2796 			atomic_inc(&rdev->nr_pending);
2797 		}
2798 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2799 			/* The ReadError flag will just be confusing now */
2800 			clear_bit(R5_ReadError, &dev->flags);
2801 			clear_bit(R5_ReWrite, &dev->flags);
2802 		}
2803 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2804 		    || test_bit(R5_ReadError, &dev->flags)) {
2805 			s.failed++;
2806 			s.failed_num = i;
2807 		} else
2808 			set_bit(R5_Insync, &dev->flags);
2809 	}
2810 	rcu_read_unlock();
2811 
2812 	if (unlikely(blocked_rdev)) {
2813 		if (s.syncing || s.expanding || s.expanded ||
2814 		    s.to_write || s.written) {
2815 			set_bit(STRIPE_HANDLE, &sh->state);
2816 			goto unlock;
2817 		}
2818 		/* There is nothing for the blocked_rdev to block */
2819 		rdev_dec_pending(blocked_rdev, conf->mddev);
2820 		blocked_rdev = NULL;
2821 	}
2822 
2823 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2824 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2825 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2826 	}
2827 
2828 	pr_debug("locked=%d uptodate=%d to_read=%d"
2829 		" to_write=%d failed=%d failed_num=%d\n",
2830 		s.locked, s.uptodate, s.to_read, s.to_write,
2831 		s.failed, s.failed_num);
2832 	/* check if the array has lost two devices and, if so, some requests might
2833 	 * need to be failed
2834 	 */
2835 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2836 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2837 	if (s.failed > 1 && s.syncing) {
2838 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2839 		clear_bit(STRIPE_SYNCING, &sh->state);
2840 		s.syncing = 0;
2841 	}
2842 
2843 	/* might be able to return some write requests if the parity block
2844 	 * is safe, or on a failed drive
2845 	 */
2846 	dev = &sh->dev[sh->pd_idx];
2847 	if ( s.written &&
2848 	     ((test_bit(R5_Insync, &dev->flags) &&
2849 	       !test_bit(R5_LOCKED, &dev->flags) &&
2850 	       test_bit(R5_UPTODATE, &dev->flags)) ||
2851 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2852 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2853 
2854 	/* Now we might consider reading some blocks, either to check/generate
2855 	 * parity, or to satisfy requests
2856 	 * or to load a block that is being partially written.
2857 	 */
2858 	if (s.to_read || s.non_overwrite ||
2859 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2860 		handle_stripe_fill5(sh, &s, disks);
2861 
2862 	/* Now we check to see if any write operations have recently
2863 	 * completed
2864 	 */
2865 	prexor = 0;
2866 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2867 		prexor = 1;
2868 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
2869 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2870 		sh->reconstruct_state = reconstruct_state_idle;
2871 
2872 		/* All the 'written' buffers and the parity block are ready to
2873 		 * be written back to disk
2874 		 */
2875 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2876 		for (i = disks; i--; ) {
2877 			dev = &sh->dev[i];
2878 			if (test_bit(R5_LOCKED, &dev->flags) &&
2879 				(i == sh->pd_idx || dev->written)) {
2880 				pr_debug("Writing block %d\n", i);
2881 				set_bit(R5_Wantwrite, &dev->flags);
2882 				if (prexor)
2883 					continue;
2884 				if (!test_bit(R5_Insync, &dev->flags) ||
2885 				    (i == sh->pd_idx && s.failed == 0))
2886 					set_bit(STRIPE_INSYNC, &sh->state);
2887 			}
2888 		}
2889 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2890 			atomic_dec(&conf->preread_active_stripes);
2891 			if (atomic_read(&conf->preread_active_stripes) <
2892 				IO_THRESHOLD)
2893 				md_wakeup_thread(conf->mddev->thread);
2894 		}
2895 	}
2896 
2897 	/* Now to consider new write requests and what else, if anything
2898 	 * should be read.  We do not handle new writes when:
2899 	 * 1/ A 'write' operation (copy+xor) is already in flight.
2900 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2901 	 *    block.
2902 	 */
2903 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2904 		handle_stripe_dirtying5(conf, sh, &s, disks);
2905 
2906 	/* maybe we need to check and possibly fix the parity for this stripe
2907 	 * Any reads will already have been scheduled, so we just see if enough
2908 	 * data is available.  The parity check is held off while parity
2909 	 * dependent operations are in flight.
2910 	 */
2911 	if (sh->check_state ||
2912 	    (s.syncing && s.locked == 0 &&
2913 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2914 	     !test_bit(STRIPE_INSYNC, &sh->state)))
2915 		handle_parity_checks5(conf, sh, &s, disks);
2916 
2917 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2918 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2919 		clear_bit(STRIPE_SYNCING, &sh->state);
2920 	}
2921 
2922 	/* If the failed drive is just a ReadError, then we might need to progress
2923 	 * the repair/check process
2924 	 */
2925 	if (s.failed == 1 && !conf->mddev->ro &&
2926 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2927 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2928 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2929 		) {
2930 		dev = &sh->dev[s.failed_num];
2931 		if (!test_bit(R5_ReWrite, &dev->flags)) {
2932 			set_bit(R5_Wantwrite, &dev->flags);
2933 			set_bit(R5_ReWrite, &dev->flags);
2934 			set_bit(R5_LOCKED, &dev->flags);
2935 			s.locked++;
2936 		} else {
2937 			/* let's read it back */
2938 			set_bit(R5_Wantread, &dev->flags);
2939 			set_bit(R5_LOCKED, &dev->flags);
2940 			s.locked++;
2941 		}
2942 	}
2943 
2944 	/* Finish reconstruct operations initiated by the expansion process */
2945 	if (sh->reconstruct_state == reconstruct_state_result) {
2946 		struct stripe_head *sh2
2947 			= get_active_stripe(conf, sh->sector, 1, 1);
2948 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
2949 			/* sh cannot be written until sh2 has been read.
2950 			 * so arrange for sh to be delayed a little
2951 			 */
2952 			set_bit(STRIPE_DELAYED, &sh->state);
2953 			set_bit(STRIPE_HANDLE, &sh->state);
2954 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
2955 					      &sh2->state))
2956 				atomic_inc(&conf->preread_active_stripes);
2957 			release_stripe(sh2);
2958 			goto unlock;
2959 		}
2960 		if (sh2)
2961 			release_stripe(sh2);
2962 
2963 		sh->reconstruct_state = reconstruct_state_idle;
2964 		clear_bit(STRIPE_EXPANDING, &sh->state);
2965 		for (i = conf->raid_disks; i--; ) {
2966 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2967 			set_bit(R5_LOCKED, &sh->dev[i].flags);
2968 			s.locked++;
2969 		}
2970 	}
2971 
2972 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2973 	    !sh->reconstruct_state) {
2974 		/* Need to write out all blocks after computing parity */
2975 		sh->disks = conf->raid_disks;
2976 		stripe_set_idx(sh->sector, conf, 0, sh);
2977 		schedule_reconstruction5(sh, &s, 1, 1);
2978 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2979 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2980 		atomic_dec(&conf->reshape_stripes);
2981 		wake_up(&conf->wait_for_overlap);
2982 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2983 	}
2984 
2985 	if (s.expanding && s.locked == 0 &&
2986 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2987 		handle_stripe_expansion(conf, sh, NULL);
2988 
2989  unlock:
2990 	spin_unlock(&sh->lock);
2991 
2992 	/* wait for this device to become unblocked */
2993 	if (unlikely(blocked_rdev))
2994 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2995 
2996 	if (s.ops_request)
2997 		raid5_run_ops(sh, s.ops_request);
2998 
2999 	ops_run_io(sh, &s);
3000 
3001 	return_io(return_bi);
3002 
3003 	return blocked_rdev == NULL;
3004 }
3005 
3006 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
3007 {
3008 	raid5_conf_t *conf = sh->raid_conf;
3009 	int disks = sh->disks;
3010 	struct bio *return_bi = NULL;
3011 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3012 	struct stripe_head_state s;
3013 	struct r6_state r6s;
3014 	struct r5dev *dev, *pdev, *qdev;
3015 	mdk_rdev_t *blocked_rdev = NULL;
3016 
3017 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3018 		"pd_idx=%d, qd_idx=%d\n",
3019 	       (unsigned long long)sh->sector, sh->state,
3020 	       atomic_read(&sh->count), pd_idx, qd_idx);
3021 	memset(&s, 0, sizeof(s));
3022 
3023 	spin_lock(&sh->lock);
3024 	clear_bit(STRIPE_HANDLE, &sh->state);
3025 	clear_bit(STRIPE_DELAYED, &sh->state);
3026 
3027 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3028 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3029 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3030 	/* Now to look around and see what can be done */
3031 
3032 	rcu_read_lock();
3033 	for (i=disks; i--; ) {
3034 		mdk_rdev_t *rdev;
3035 		dev = &sh->dev[i];
3036 		clear_bit(R5_Insync, &dev->flags);
3037 
3038 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3039 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3040 		/* maybe we can reply to a read */
3041 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3042 			struct bio *rbi, *rbi2;
3043 			pr_debug("Return read for disc %d\n", i);
3044 			spin_lock_irq(&conf->device_lock);
3045 			rbi = dev->toread;
3046 			dev->toread = NULL;
3047 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
3048 				wake_up(&conf->wait_for_overlap);
3049 			spin_unlock_irq(&conf->device_lock);
3050 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3051 				copy_data(0, rbi, dev->page, dev->sector);
3052 				rbi2 = r5_next_bio(rbi, dev->sector);
3053 				spin_lock_irq(&conf->device_lock);
3054 				if (!raid5_dec_bi_phys_segments(rbi)) {
3055 					rbi->bi_next = return_bi;
3056 					return_bi = rbi;
3057 				}
3058 				spin_unlock_irq(&conf->device_lock);
3059 				rbi = rbi2;
3060 			}
3061 		}
3062 
3063 		/* now count some things */
3064 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3065 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3066 
3067 
3068 		if (dev->toread)
3069 			s.to_read++;
3070 		if (dev->towrite) {
3071 			s.to_write++;
3072 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3073 				s.non_overwrite++;
3074 		}
3075 		if (dev->written)
3076 			s.written++;
3077 		rdev = rcu_dereference(conf->disks[i].rdev);
3078 		if (blocked_rdev == NULL &&
3079 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3080 			blocked_rdev = rdev;
3081 			atomic_inc(&rdev->nr_pending);
3082 		}
3083 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3084 			/* The ReadError flag will just be confusing now */
3085 			clear_bit(R5_ReadError, &dev->flags);
3086 			clear_bit(R5_ReWrite, &dev->flags);
3087 		}
3088 		if (!rdev || !test_bit(In_sync, &rdev->flags)
3089 		    || test_bit(R5_ReadError, &dev->flags)) {
3090 			if (s.failed < 2)
3091 				r6s.failed_num[s.failed] = i;
3092 			s.failed++;
3093 		} else
3094 			set_bit(R5_Insync, &dev->flags);
3095 	}
3096 	rcu_read_unlock();
3097 
3098 	if (unlikely(blocked_rdev)) {
3099 		if (s.syncing || s.expanding || s.expanded ||
3100 		    s.to_write || s.written) {
3101 			set_bit(STRIPE_HANDLE, &sh->state);
3102 			goto unlock;
3103 		}
3104 		/* There is nothing for the blocked_rdev to block */
3105 		rdev_dec_pending(blocked_rdev, conf->mddev);
3106 		blocked_rdev = NULL;
3107 	}
3108 
3109 	pr_debug("locked=%d uptodate=%d to_read=%d"
3110 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3111 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3112 	       r6s.failed_num[0], r6s.failed_num[1]);
3113 	/* check if the array has lost >2 devices and, if so, some requests
3114 	 * might need to be failed
3115 	 */
3116 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3117 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3118 	if (s.failed > 2 && s.syncing) {
3119 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3120 		clear_bit(STRIPE_SYNCING, &sh->state);
3121 		s.syncing = 0;
3122 	}
3123 
3124 	/*
3125 	 * might be able to return some write requests if the parity blocks
3126 	 * are safe, or on a failed drive
3127 	 */
3128 	pdev = &sh->dev[pd_idx];
3129 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3130 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3131 	qdev = &sh->dev[qd_idx];
3132 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3133 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3134 
3135 	if ( s.written &&
3136 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3137 			     && !test_bit(R5_LOCKED, &pdev->flags)
3138 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3139 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3140 			     && !test_bit(R5_LOCKED, &qdev->flags)
3141 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3142 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3143 
3144 	/* Now we might consider reading some blocks, either to check/generate
3145 	 * parity, or to satisfy requests
3146 	 * or to load a block that is being partially written.
3147 	 */
3148 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3149 	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3150 		handle_stripe_fill6(sh, &s, &r6s, disks);
3151 
3152 	/* now to consider writing and what else, if anything should be read */
3153 	if (s.to_write)
3154 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3155 
3156 	/* maybe we need to check and possibly fix the parity for this stripe
3157 	 * Any reads will already have been scheduled, so we just see if enough
3158 	 * data is available
3159 	 */
3160 	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3161 		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3162 
3163 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3164 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3165 		clear_bit(STRIPE_SYNCING, &sh->state);
3166 	}
3167 
3168 	/* If the failed drives are just a ReadError, then we might need
3169 	 * to progress the repair/check process
3170 	 */
3171 	if (s.failed <= 2 && !conf->mddev->ro)
3172 		for (i = 0; i < s.failed; i++) {
3173 			dev = &sh->dev[r6s.failed_num[i]];
3174 			if (test_bit(R5_ReadError, &dev->flags)
3175 			    && !test_bit(R5_LOCKED, &dev->flags)
3176 			    && test_bit(R5_UPTODATE, &dev->flags)
3177 				) {
3178 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3179 					set_bit(R5_Wantwrite, &dev->flags);
3180 					set_bit(R5_ReWrite, &dev->flags);
3181 					set_bit(R5_LOCKED, &dev->flags);
3182 				} else {
3183 					/* let's read it back */
3184 					set_bit(R5_Wantread, &dev->flags);
3185 					set_bit(R5_LOCKED, &dev->flags);
3186 				}
3187 			}
3188 		}
3189 
3190 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3191 		struct stripe_head *sh2
3192 			= get_active_stripe(conf, sh->sector, 1, 1);
3193 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3194 			/* sh cannot be written until sh2 has been read.
3195 			 * so arrange for sh to be delayed a little
3196 			 */
3197 			set_bit(STRIPE_DELAYED, &sh->state);
3198 			set_bit(STRIPE_HANDLE, &sh->state);
3199 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3200 					      &sh2->state))
3201 				atomic_inc(&conf->preread_active_stripes);
3202 			release_stripe(sh2);
3203 			goto unlock;
3204 		}
3205 		if (sh2)
3206 			release_stripe(sh2);
3207 
3208 		/* Need to write out all blocks after computing P&Q */
3209 		sh->disks = conf->raid_disks;
3210 		stripe_set_idx(sh->sector, conf, 0, sh);
3211 		compute_parity6(sh, RECONSTRUCT_WRITE);
3212 		for (i = conf->raid_disks ; i-- ;  ) {
3213 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3214 			s.locked++;
3215 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3216 		}
3217 		clear_bit(STRIPE_EXPANDING, &sh->state);
3218 	} else if (s.expanded) {
3219 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3220 		atomic_dec(&conf->reshape_stripes);
3221 		wake_up(&conf->wait_for_overlap);
3222 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3223 	}
3224 
3225 	if (s.expanding && s.locked == 0 &&
3226 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3227 		handle_stripe_expansion(conf, sh, &r6s);
3228 
3229  unlock:
3230 	spin_unlock(&sh->lock);
3231 
3232 	/* wait for this device to become unblocked */
3233 	if (unlikely(blocked_rdev))
3234 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3235 
3236 	ops_run_io(sh, &s);
3237 
3238 	return_io(return_bi);
3239 
3240 	return blocked_rdev == NULL;
3241 }
3242 
3243 /* returns true if the stripe was handled */
3244 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3245 {
3246 	if (sh->raid_conf->level == 6)
3247 		return handle_stripe6(sh, tmp_page);
3248 	else
3249 		return handle_stripe5(sh);
3250 }
3251 
3252 
3253 
3254 static void raid5_activate_delayed(raid5_conf_t *conf)
3255 {
3256 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3257 		while (!list_empty(&conf->delayed_list)) {
3258 			struct list_head *l = conf->delayed_list.next;
3259 			struct stripe_head *sh;
3260 			sh = list_entry(l, struct stripe_head, lru);
3261 			list_del_init(l);
3262 			clear_bit(STRIPE_DELAYED, &sh->state);
3263 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3264 				atomic_inc(&conf->preread_active_stripes);
3265 			list_add_tail(&sh->lru, &conf->hold_list);
3266 		}
3267 	} else
3268 		blk_plug_device(conf->mddev->queue);
3269 }
3270 
3271 static void activate_bit_delay(raid5_conf_t *conf)
3272 {
3273 	/* device_lock is held */
3274 	struct list_head head;
3275 	list_add(&head, &conf->bitmap_list);
3276 	list_del_init(&conf->bitmap_list);
3277 	while (!list_empty(&head)) {
3278 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3279 		list_del_init(&sh->lru);
3280 		atomic_inc(&sh->count);
3281 		__release_stripe(conf, sh);
3282 	}
3283 }
3284 
3285 static void unplug_slaves(mddev_t *mddev)
3286 {
3287 	raid5_conf_t *conf = mddev_to_conf(mddev);
3288 	int i;
3289 
3290 	rcu_read_lock();
3291 	for (i=0; i<mddev->raid_disks; i++) {
3292 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3293 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3294 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3295 
3296 			atomic_inc(&rdev->nr_pending);
3297 			rcu_read_unlock();
3298 
3299 			blk_unplug(r_queue);
3300 
3301 			rdev_dec_pending(rdev, mddev);
3302 			rcu_read_lock();
3303 		}
3304 	}
3305 	rcu_read_unlock();
3306 }
3307 
3308 static void raid5_unplug_device(struct request_queue *q)
3309 {
3310 	mddev_t *mddev = q->queuedata;
3311 	raid5_conf_t *conf = mddev_to_conf(mddev);
3312 	unsigned long flags;
3313 
3314 	spin_lock_irqsave(&conf->device_lock, flags);
3315 
3316 	if (blk_remove_plug(q)) {
3317 		conf->seq_flush++;
3318 		raid5_activate_delayed(conf);
3319 	}
3320 	md_wakeup_thread(mddev->thread);
3321 
3322 	spin_unlock_irqrestore(&conf->device_lock, flags);
3323 
3324 	unplug_slaves(mddev);
3325 }
3326 
3327 static int raid5_congested(void *data, int bits)
3328 {
3329 	mddev_t *mddev = data;
3330 	raid5_conf_t *conf = mddev_to_conf(mddev);
3331 
3332 	/* No difference between reads and writes.  Just check
3333 	 * how busy the stripe_cache is
3334 	 */
3335 	if (conf->inactive_blocked)
3336 		return 1;
3337 	if (conf->quiesce)
3338 		return 1;
3339 	if (list_empty_careful(&conf->inactive_list))
3340 		return 1;
3341 
3342 	return 0;
3343 }
3344 
3345 /* We want read requests to align with chunks where possible,
3346  * but write requests don't need to.
3347  */
3348 static int raid5_mergeable_bvec(struct request_queue *q,
3349 				struct bvec_merge_data *bvm,
3350 				struct bio_vec *biovec)
3351 {
3352 	mddev_t *mddev = q->queuedata;
3353 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3354 	int max;
3355 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3356 	unsigned int bio_sectors = bvm->bi_size >> 9;
3357 
3358 	if ((bvm->bi_rw & 1) == WRITE)
3359 		return biovec->bv_len; /* always allow writes to be mergeable */
3360 
3361 	if (mddev->new_chunk < mddev->chunk_size)
3362 		chunk_sectors = mddev->new_chunk >> 9;
3363 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3364 	if (max < 0) max = 0;
3365 	if (max <= biovec->bv_len && bio_sectors == 0)
3366 		return biovec->bv_len;
3367 	else
3368 		return max;
3369 }
3370 
3371 
3372 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3373 {
3374 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3375 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3376 	unsigned int bio_sectors = bio->bi_size >> 9;
3377 
3378 	if (mddev->new_chunk < mddev->chunk_size)
3379 		chunk_sectors = mddev->new_chunk >> 9;
3380 	return  chunk_sectors >=
3381 		((sector & (chunk_sectors - 1)) + bio_sectors);
3382 }
3383 
3384 /*
3385  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3386  *  later sampled by raid5d.
3387  */
3388 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3389 {
3390 	unsigned long flags;
3391 
3392 	spin_lock_irqsave(&conf->device_lock, flags);
3393 
3394 	bi->bi_next = conf->retry_read_aligned_list;
3395 	conf->retry_read_aligned_list = bi;
3396 
3397 	spin_unlock_irqrestore(&conf->device_lock, flags);
3398 	md_wakeup_thread(conf->mddev->thread);
3399 }
3400 
3401 
3402 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3403 {
3404 	struct bio *bi;
3405 
3406 	bi = conf->retry_read_aligned;
3407 	if (bi) {
3408 		conf->retry_read_aligned = NULL;
3409 		return bi;
3410 	}
3411 	bi = conf->retry_read_aligned_list;
3412 	if(bi) {
3413 		conf->retry_read_aligned_list = bi->bi_next;
3414 		bi->bi_next = NULL;
3415 		/*
3416 		 * this sets the active strip count to 1 and the processed
3417 		 * strip count to zero (upper 8 bits)
3418 		 */
3419 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3420 	}
3421 
3422 	return bi;
3423 }
3424 
3425 
3426 /*
3427  *  The "raid5_align_endio" should check if the read succeeded and if it
3428  *  did, call bio_endio on the original bio (having bio_put the new bio
3429  *  first).
3430  *  If the read failed..
3431  */
3432 static void raid5_align_endio(struct bio *bi, int error)
3433 {
3434 	struct bio* raid_bi  = bi->bi_private;
3435 	mddev_t *mddev;
3436 	raid5_conf_t *conf;
3437 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3438 	mdk_rdev_t *rdev;
3439 
3440 	bio_put(bi);
3441 
3442 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3443 	conf = mddev_to_conf(mddev);
3444 	rdev = (void*)raid_bi->bi_next;
3445 	raid_bi->bi_next = NULL;
3446 
3447 	rdev_dec_pending(rdev, conf->mddev);
3448 
3449 	if (!error && uptodate) {
3450 		bio_endio(raid_bi, 0);
3451 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3452 			wake_up(&conf->wait_for_stripe);
3453 		return;
3454 	}
3455 
3456 
3457 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3458 
3459 	add_bio_to_retry(raid_bi, conf);
3460 }
3461 
3462 static int bio_fits_rdev(struct bio *bi)
3463 {
3464 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3465 
3466 	if ((bi->bi_size>>9) > q->max_sectors)
3467 		return 0;
3468 	blk_recount_segments(q, bi);
3469 	if (bi->bi_phys_segments > q->max_phys_segments)
3470 		return 0;
3471 
3472 	if (q->merge_bvec_fn)
3473 		/* it's too hard to apply the merge_bvec_fn at this stage,
3474 		 * just just give up
3475 		 */
3476 		return 0;
3477 
3478 	return 1;
3479 }
3480 
3481 
3482 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3483 {
3484 	mddev_t *mddev = q->queuedata;
3485 	raid5_conf_t *conf = mddev_to_conf(mddev);
3486 	unsigned int dd_idx;
3487 	struct bio* align_bi;
3488 	mdk_rdev_t *rdev;
3489 
3490 	if (!in_chunk_boundary(mddev, raid_bio)) {
3491 		pr_debug("chunk_aligned_read : non aligned\n");
3492 		return 0;
3493 	}
3494 	/*
3495 	 * use bio_clone to make a copy of the bio
3496 	 */
3497 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3498 	if (!align_bi)
3499 		return 0;
3500 	/*
3501 	 *   set bi_end_io to a new function, and set bi_private to the
3502 	 *     original bio.
3503 	 */
3504 	align_bi->bi_end_io  = raid5_align_endio;
3505 	align_bi->bi_private = raid_bio;
3506 	/*
3507 	 *	compute position
3508 	 */
3509 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3510 						    0,
3511 						    &dd_idx, NULL);
3512 
3513 	rcu_read_lock();
3514 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3515 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3516 		atomic_inc(&rdev->nr_pending);
3517 		rcu_read_unlock();
3518 		raid_bio->bi_next = (void*)rdev;
3519 		align_bi->bi_bdev =  rdev->bdev;
3520 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3521 		align_bi->bi_sector += rdev->data_offset;
3522 
3523 		if (!bio_fits_rdev(align_bi)) {
3524 			/* too big in some way */
3525 			bio_put(align_bi);
3526 			rdev_dec_pending(rdev, mddev);
3527 			return 0;
3528 		}
3529 
3530 		spin_lock_irq(&conf->device_lock);
3531 		wait_event_lock_irq(conf->wait_for_stripe,
3532 				    conf->quiesce == 0,
3533 				    conf->device_lock, /* nothing */);
3534 		atomic_inc(&conf->active_aligned_reads);
3535 		spin_unlock_irq(&conf->device_lock);
3536 
3537 		generic_make_request(align_bi);
3538 		return 1;
3539 	} else {
3540 		rcu_read_unlock();
3541 		bio_put(align_bi);
3542 		return 0;
3543 	}
3544 }
3545 
3546 /* __get_priority_stripe - get the next stripe to process
3547  *
3548  * Full stripe writes are allowed to pass preread active stripes up until
3549  * the bypass_threshold is exceeded.  In general the bypass_count
3550  * increments when the handle_list is handled before the hold_list; however, it
3551  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3552  * stripe with in flight i/o.  The bypass_count will be reset when the
3553  * head of the hold_list has changed, i.e. the head was promoted to the
3554  * handle_list.
3555  */
3556 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3557 {
3558 	struct stripe_head *sh;
3559 
3560 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3561 		  __func__,
3562 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3563 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3564 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3565 
3566 	if (!list_empty(&conf->handle_list)) {
3567 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3568 
3569 		if (list_empty(&conf->hold_list))
3570 			conf->bypass_count = 0;
3571 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3572 			if (conf->hold_list.next == conf->last_hold)
3573 				conf->bypass_count++;
3574 			else {
3575 				conf->last_hold = conf->hold_list.next;
3576 				conf->bypass_count -= conf->bypass_threshold;
3577 				if (conf->bypass_count < 0)
3578 					conf->bypass_count = 0;
3579 			}
3580 		}
3581 	} else if (!list_empty(&conf->hold_list) &&
3582 		   ((conf->bypass_threshold &&
3583 		     conf->bypass_count > conf->bypass_threshold) ||
3584 		    atomic_read(&conf->pending_full_writes) == 0)) {
3585 		sh = list_entry(conf->hold_list.next,
3586 				typeof(*sh), lru);
3587 		conf->bypass_count -= conf->bypass_threshold;
3588 		if (conf->bypass_count < 0)
3589 			conf->bypass_count = 0;
3590 	} else
3591 		return NULL;
3592 
3593 	list_del_init(&sh->lru);
3594 	atomic_inc(&sh->count);
3595 	BUG_ON(atomic_read(&sh->count) != 1);
3596 	return sh;
3597 }
3598 
3599 static int make_request(struct request_queue *q, struct bio * bi)
3600 {
3601 	mddev_t *mddev = q->queuedata;
3602 	raid5_conf_t *conf = mddev_to_conf(mddev);
3603 	int dd_idx;
3604 	sector_t new_sector;
3605 	sector_t logical_sector, last_sector;
3606 	struct stripe_head *sh;
3607 	const int rw = bio_data_dir(bi);
3608 	int cpu, remaining;
3609 
3610 	if (unlikely(bio_barrier(bi))) {
3611 		bio_endio(bi, -EOPNOTSUPP);
3612 		return 0;
3613 	}
3614 
3615 	md_write_start(mddev, bi);
3616 
3617 	cpu = part_stat_lock();
3618 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3619 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3620 		      bio_sectors(bi));
3621 	part_stat_unlock();
3622 
3623 	if (rw == READ &&
3624 	     mddev->reshape_position == MaxSector &&
3625 	     chunk_aligned_read(q,bi))
3626 		return 0;
3627 
3628 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3629 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3630 	bi->bi_next = NULL;
3631 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3632 
3633 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3634 		DEFINE_WAIT(w);
3635 		int disks, data_disks;
3636 		int previous;
3637 
3638 	retry:
3639 		previous = 0;
3640 		disks = conf->raid_disks;
3641 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3642 		if (unlikely(conf->reshape_progress != MaxSector)) {
3643 			/* spinlock is needed as reshape_progress may be
3644 			 * 64bit on a 32bit platform, and so it might be
3645 			 * possible to see a half-updated value
3646 			 * Ofcourse reshape_progress could change after
3647 			 * the lock is dropped, so once we get a reference
3648 			 * to the stripe that we think it is, we will have
3649 			 * to check again.
3650 			 */
3651 			spin_lock_irq(&conf->device_lock);
3652 			if (mddev->delta_disks < 0
3653 			    ? logical_sector < conf->reshape_progress
3654 			    : logical_sector >= conf->reshape_progress) {
3655 				disks = conf->previous_raid_disks;
3656 				previous = 1;
3657 			} else {
3658 				if (mddev->delta_disks < 0
3659 				    ? logical_sector < conf->reshape_safe
3660 				    : logical_sector >= conf->reshape_safe) {
3661 					spin_unlock_irq(&conf->device_lock);
3662 					schedule();
3663 					goto retry;
3664 				}
3665 			}
3666 			spin_unlock_irq(&conf->device_lock);
3667 		}
3668 		data_disks = disks - conf->max_degraded;
3669 
3670 		new_sector = raid5_compute_sector(conf, logical_sector,
3671 						  previous,
3672 						  &dd_idx, NULL);
3673 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3674 			(unsigned long long)new_sector,
3675 			(unsigned long long)logical_sector);
3676 
3677 		sh = get_active_stripe(conf, new_sector, previous,
3678 				       (bi->bi_rw&RWA_MASK));
3679 		if (sh) {
3680 			if (unlikely(previous)) {
3681 				/* expansion might have moved on while waiting for a
3682 				 * stripe, so we must do the range check again.
3683 				 * Expansion could still move past after this
3684 				 * test, but as we are holding a reference to
3685 				 * 'sh', we know that if that happens,
3686 				 *  STRIPE_EXPANDING will get set and the expansion
3687 				 * won't proceed until we finish with the stripe.
3688 				 */
3689 				int must_retry = 0;
3690 				spin_lock_irq(&conf->device_lock);
3691 				if (mddev->delta_disks < 0
3692 				    ? logical_sector >= conf->reshape_progress
3693 				    : logical_sector < conf->reshape_progress)
3694 					/* mismatch, need to try again */
3695 					must_retry = 1;
3696 				spin_unlock_irq(&conf->device_lock);
3697 				if (must_retry) {
3698 					release_stripe(sh);
3699 					goto retry;
3700 				}
3701 			}
3702 			/* FIXME what if we get a false positive because these
3703 			 * are being updated.
3704 			 */
3705 			if (logical_sector >= mddev->suspend_lo &&
3706 			    logical_sector < mddev->suspend_hi) {
3707 				release_stripe(sh);
3708 				schedule();
3709 				goto retry;
3710 			}
3711 
3712 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3713 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3714 				/* Stripe is busy expanding or
3715 				 * add failed due to overlap.  Flush everything
3716 				 * and wait a while
3717 				 */
3718 				raid5_unplug_device(mddev->queue);
3719 				release_stripe(sh);
3720 				schedule();
3721 				goto retry;
3722 			}
3723 			finish_wait(&conf->wait_for_overlap, &w);
3724 			set_bit(STRIPE_HANDLE, &sh->state);
3725 			clear_bit(STRIPE_DELAYED, &sh->state);
3726 			release_stripe(sh);
3727 		} else {
3728 			/* cannot get stripe for read-ahead, just give-up */
3729 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3730 			finish_wait(&conf->wait_for_overlap, &w);
3731 			break;
3732 		}
3733 
3734 	}
3735 	spin_lock_irq(&conf->device_lock);
3736 	remaining = raid5_dec_bi_phys_segments(bi);
3737 	spin_unlock_irq(&conf->device_lock);
3738 	if (remaining == 0) {
3739 
3740 		if ( rw == WRITE )
3741 			md_write_end(mddev);
3742 
3743 		bio_endio(bi, 0);
3744 	}
3745 	return 0;
3746 }
3747 
3748 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3749 
3750 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3751 {
3752 	/* reshaping is quite different to recovery/resync so it is
3753 	 * handled quite separately ... here.
3754 	 *
3755 	 * On each call to sync_request, we gather one chunk worth of
3756 	 * destination stripes and flag them as expanding.
3757 	 * Then we find all the source stripes and request reads.
3758 	 * As the reads complete, handle_stripe will copy the data
3759 	 * into the destination stripe and release that stripe.
3760 	 */
3761 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3762 	struct stripe_head *sh;
3763 	sector_t first_sector, last_sector;
3764 	int raid_disks = conf->previous_raid_disks;
3765 	int data_disks = raid_disks - conf->max_degraded;
3766 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3767 	int i;
3768 	int dd_idx;
3769 	sector_t writepos, readpos, safepos;
3770 	sector_t stripe_addr;
3771 	int reshape_sectors;
3772 	struct list_head stripes;
3773 
3774 	if (sector_nr == 0) {
3775 		/* If restarting in the middle, skip the initial sectors */
3776 		if (mddev->delta_disks < 0 &&
3777 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3778 			sector_nr = raid5_size(mddev, 0, 0)
3779 				- conf->reshape_progress;
3780 		} else if (mddev->delta_disks > 0 &&
3781 			   conf->reshape_progress > 0)
3782 			sector_nr = conf->reshape_progress;
3783 		sector_div(sector_nr, new_data_disks);
3784 		if (sector_nr) {
3785 			*skipped = 1;
3786 			return sector_nr;
3787 		}
3788 	}
3789 
3790 	/* We need to process a full chunk at a time.
3791 	 * If old and new chunk sizes differ, we need to process the
3792 	 * largest of these
3793 	 */
3794 	if (mddev->new_chunk > mddev->chunk_size)
3795 		reshape_sectors = mddev->new_chunk / 512;
3796 	else
3797 		reshape_sectors = mddev->chunk_size / 512;
3798 
3799 	/* we update the metadata when there is more than 3Meg
3800 	 * in the block range (that is rather arbitrary, should
3801 	 * probably be time based) or when the data about to be
3802 	 * copied would over-write the source of the data at
3803 	 * the front of the range.
3804 	 * i.e. one new_stripe along from reshape_progress new_maps
3805 	 * to after where reshape_safe old_maps to
3806 	 */
3807 	writepos = conf->reshape_progress;
3808 	sector_div(writepos, new_data_disks);
3809 	readpos = conf->reshape_progress;
3810 	sector_div(readpos, data_disks);
3811 	safepos = conf->reshape_safe;
3812 	sector_div(safepos, data_disks);
3813 	if (mddev->delta_disks < 0) {
3814 		writepos -= reshape_sectors;
3815 		readpos += reshape_sectors;
3816 		safepos += reshape_sectors;
3817 	} else {
3818 		writepos += reshape_sectors;
3819 		readpos -= reshape_sectors;
3820 		safepos -= reshape_sectors;
3821 	}
3822 
3823 	/* 'writepos' is the most advanced device address we might write.
3824 	 * 'readpos' is the least advanced device address we might read.
3825 	 * 'safepos' is the least address recorded in the metadata as having
3826 	 *     been reshaped.
3827 	 * If 'readpos' is behind 'writepos', then there is no way that we can
3828 	 * ensure safety in the face of a crash - that must be done by userspace
3829 	 * making a backup of the data.  So in that case there is no particular
3830 	 * rush to update metadata.
3831 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3832 	 * update the metadata to advance 'safepos' to match 'readpos' so that
3833 	 * we can be safe in the event of a crash.
3834 	 * So we insist on updating metadata if safepos is behind writepos and
3835 	 * readpos is beyond writepos.
3836 	 * In any case, update the metadata every 10 seconds.
3837 	 * Maybe that number should be configurable, but I'm not sure it is
3838 	 * worth it.... maybe it could be a multiple of safemode_delay???
3839 	 */
3840 	if ((mddev->delta_disks < 0
3841 	     ? (safepos > writepos && readpos < writepos)
3842 	     : (safepos < writepos && readpos > writepos)) ||
3843 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3844 		/* Cannot proceed until we've updated the superblock... */
3845 		wait_event(conf->wait_for_overlap,
3846 			   atomic_read(&conf->reshape_stripes)==0);
3847 		mddev->reshape_position = conf->reshape_progress;
3848 		conf->reshape_checkpoint = jiffies;
3849 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3850 		md_wakeup_thread(mddev->thread);
3851 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3852 			   kthread_should_stop());
3853 		spin_lock_irq(&conf->device_lock);
3854 		conf->reshape_safe = mddev->reshape_position;
3855 		spin_unlock_irq(&conf->device_lock);
3856 		wake_up(&conf->wait_for_overlap);
3857 	}
3858 
3859 	if (mddev->delta_disks < 0) {
3860 		BUG_ON(conf->reshape_progress == 0);
3861 		stripe_addr = writepos;
3862 		BUG_ON((mddev->dev_sectors &
3863 			~((sector_t)reshape_sectors - 1))
3864 		       - reshape_sectors - stripe_addr
3865 		       != sector_nr);
3866 	} else {
3867 		BUG_ON(writepos != sector_nr + reshape_sectors);
3868 		stripe_addr = sector_nr;
3869 	}
3870 	INIT_LIST_HEAD(&stripes);
3871 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3872 		int j;
3873 		int skipped = 0;
3874 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3875 		set_bit(STRIPE_EXPANDING, &sh->state);
3876 		atomic_inc(&conf->reshape_stripes);
3877 		/* If any of this stripe is beyond the end of the old
3878 		 * array, then we need to zero those blocks
3879 		 */
3880 		for (j=sh->disks; j--;) {
3881 			sector_t s;
3882 			if (j == sh->pd_idx)
3883 				continue;
3884 			if (conf->level == 6 &&
3885 			    j == sh->qd_idx)
3886 				continue;
3887 			s = compute_blocknr(sh, j, 0);
3888 			if (s < raid5_size(mddev, 0, 0)) {
3889 				skipped = 1;
3890 				continue;
3891 			}
3892 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3893 			set_bit(R5_Expanded, &sh->dev[j].flags);
3894 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3895 		}
3896 		if (!skipped) {
3897 			set_bit(STRIPE_EXPAND_READY, &sh->state);
3898 			set_bit(STRIPE_HANDLE, &sh->state);
3899 		}
3900 		list_add(&sh->lru, &stripes);
3901 	}
3902 	spin_lock_irq(&conf->device_lock);
3903 	if (mddev->delta_disks < 0)
3904 		conf->reshape_progress -= reshape_sectors * new_data_disks;
3905 	else
3906 		conf->reshape_progress += reshape_sectors * new_data_disks;
3907 	spin_unlock_irq(&conf->device_lock);
3908 	/* Ok, those stripe are ready. We can start scheduling
3909 	 * reads on the source stripes.
3910 	 * The source stripes are determined by mapping the first and last
3911 	 * block on the destination stripes.
3912 	 */
3913 	first_sector =
3914 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3915 				     1, &dd_idx, NULL);
3916 	last_sector =
3917 		raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3918 					    *(new_data_disks) - 1),
3919 				     1, &dd_idx, NULL);
3920 	if (last_sector >= mddev->dev_sectors)
3921 		last_sector = mddev->dev_sectors - 1;
3922 	while (first_sector <= last_sector) {
3923 		sh = get_active_stripe(conf, first_sector, 1, 0);
3924 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3925 		set_bit(STRIPE_HANDLE, &sh->state);
3926 		release_stripe(sh);
3927 		first_sector += STRIPE_SECTORS;
3928 	}
3929 	/* Now that the sources are clearly marked, we can release
3930 	 * the destination stripes
3931 	 */
3932 	while (!list_empty(&stripes)) {
3933 		sh = list_entry(stripes.next, struct stripe_head, lru);
3934 		list_del_init(&sh->lru);
3935 		release_stripe(sh);
3936 	}
3937 	/* If this takes us to the resync_max point where we have to pause,
3938 	 * then we need to write out the superblock.
3939 	 */
3940 	sector_nr += reshape_sectors;
3941 	if (sector_nr >= mddev->resync_max) {
3942 		/* Cannot proceed until we've updated the superblock... */
3943 		wait_event(conf->wait_for_overlap,
3944 			   atomic_read(&conf->reshape_stripes) == 0);
3945 		mddev->reshape_position = conf->reshape_progress;
3946 		conf->reshape_checkpoint = jiffies;
3947 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3948 		md_wakeup_thread(mddev->thread);
3949 		wait_event(mddev->sb_wait,
3950 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3951 			   || kthread_should_stop());
3952 		spin_lock_irq(&conf->device_lock);
3953 		conf->reshape_safe = mddev->reshape_position;
3954 		spin_unlock_irq(&conf->device_lock);
3955 		wake_up(&conf->wait_for_overlap);
3956 	}
3957 	return reshape_sectors;
3958 }
3959 
3960 /* FIXME go_faster isn't used */
3961 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3962 {
3963 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3964 	struct stripe_head *sh;
3965 	sector_t max_sector = mddev->dev_sectors;
3966 	int sync_blocks;
3967 	int still_degraded = 0;
3968 	int i;
3969 
3970 	if (sector_nr >= max_sector) {
3971 		/* just being told to finish up .. nothing much to do */
3972 		unplug_slaves(mddev);
3973 
3974 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3975 			end_reshape(conf);
3976 			return 0;
3977 		}
3978 
3979 		if (mddev->curr_resync < max_sector) /* aborted */
3980 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3981 					&sync_blocks, 1);
3982 		else /* completed sync */
3983 			conf->fullsync = 0;
3984 		bitmap_close_sync(mddev->bitmap);
3985 
3986 		return 0;
3987 	}
3988 
3989 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3990 		return reshape_request(mddev, sector_nr, skipped);
3991 
3992 	/* No need to check resync_max as we never do more than one
3993 	 * stripe, and as resync_max will always be on a chunk boundary,
3994 	 * if the check in md_do_sync didn't fire, there is no chance
3995 	 * of overstepping resync_max here
3996 	 */
3997 
3998 	/* if there is too many failed drives and we are trying
3999 	 * to resync, then assert that we are finished, because there is
4000 	 * nothing we can do.
4001 	 */
4002 	if (mddev->degraded >= conf->max_degraded &&
4003 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4004 		sector_t rv = mddev->dev_sectors - sector_nr;
4005 		*skipped = 1;
4006 		return rv;
4007 	}
4008 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4009 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4010 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4011 		/* we can skip this block, and probably more */
4012 		sync_blocks /= STRIPE_SECTORS;
4013 		*skipped = 1;
4014 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4015 	}
4016 
4017 
4018 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4019 
4020 	sh = get_active_stripe(conf, sector_nr, 0, 1);
4021 	if (sh == NULL) {
4022 		sh = get_active_stripe(conf, sector_nr, 0, 0);
4023 		/* make sure we don't swamp the stripe cache if someone else
4024 		 * is trying to get access
4025 		 */
4026 		schedule_timeout_uninterruptible(1);
4027 	}
4028 	/* Need to check if array will still be degraded after recovery/resync
4029 	 * We don't need to check the 'failed' flag as when that gets set,
4030 	 * recovery aborts.
4031 	 */
4032 	for (i=0; i<mddev->raid_disks; i++)
4033 		if (conf->disks[i].rdev == NULL)
4034 			still_degraded = 1;
4035 
4036 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4037 
4038 	spin_lock(&sh->lock);
4039 	set_bit(STRIPE_SYNCING, &sh->state);
4040 	clear_bit(STRIPE_INSYNC, &sh->state);
4041 	spin_unlock(&sh->lock);
4042 
4043 	/* wait for any blocked device to be handled */
4044 	while(unlikely(!handle_stripe(sh, NULL)))
4045 		;
4046 	release_stripe(sh);
4047 
4048 	return STRIPE_SECTORS;
4049 }
4050 
4051 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4052 {
4053 	/* We may not be able to submit a whole bio at once as there
4054 	 * may not be enough stripe_heads available.
4055 	 * We cannot pre-allocate enough stripe_heads as we may need
4056 	 * more than exist in the cache (if we allow ever large chunks).
4057 	 * So we do one stripe head at a time and record in
4058 	 * ->bi_hw_segments how many have been done.
4059 	 *
4060 	 * We *know* that this entire raid_bio is in one chunk, so
4061 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4062 	 */
4063 	struct stripe_head *sh;
4064 	int dd_idx;
4065 	sector_t sector, logical_sector, last_sector;
4066 	int scnt = 0;
4067 	int remaining;
4068 	int handled = 0;
4069 
4070 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4071 	sector = raid5_compute_sector(conf, logical_sector,
4072 				      0, &dd_idx, NULL);
4073 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4074 
4075 	for (; logical_sector < last_sector;
4076 	     logical_sector += STRIPE_SECTORS,
4077 		     sector += STRIPE_SECTORS,
4078 		     scnt++) {
4079 
4080 		if (scnt < raid5_bi_hw_segments(raid_bio))
4081 			/* already done this stripe */
4082 			continue;
4083 
4084 		sh = get_active_stripe(conf, sector, 0, 1);
4085 
4086 		if (!sh) {
4087 			/* failed to get a stripe - must wait */
4088 			raid5_set_bi_hw_segments(raid_bio, scnt);
4089 			conf->retry_read_aligned = raid_bio;
4090 			return handled;
4091 		}
4092 
4093 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4094 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4095 			release_stripe(sh);
4096 			raid5_set_bi_hw_segments(raid_bio, scnt);
4097 			conf->retry_read_aligned = raid_bio;
4098 			return handled;
4099 		}
4100 
4101 		handle_stripe(sh, NULL);
4102 		release_stripe(sh);
4103 		handled++;
4104 	}
4105 	spin_lock_irq(&conf->device_lock);
4106 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4107 	spin_unlock_irq(&conf->device_lock);
4108 	if (remaining == 0)
4109 		bio_endio(raid_bio, 0);
4110 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4111 		wake_up(&conf->wait_for_stripe);
4112 	return handled;
4113 }
4114 
4115 
4116 
4117 /*
4118  * This is our raid5 kernel thread.
4119  *
4120  * We scan the hash table for stripes which can be handled now.
4121  * During the scan, completed stripes are saved for us by the interrupt
4122  * handler, so that they will not have to wait for our next wakeup.
4123  */
4124 static void raid5d(mddev_t *mddev)
4125 {
4126 	struct stripe_head *sh;
4127 	raid5_conf_t *conf = mddev_to_conf(mddev);
4128 	int handled;
4129 
4130 	pr_debug("+++ raid5d active\n");
4131 
4132 	md_check_recovery(mddev);
4133 
4134 	handled = 0;
4135 	spin_lock_irq(&conf->device_lock);
4136 	while (1) {
4137 		struct bio *bio;
4138 
4139 		if (conf->seq_flush != conf->seq_write) {
4140 			int seq = conf->seq_flush;
4141 			spin_unlock_irq(&conf->device_lock);
4142 			bitmap_unplug(mddev->bitmap);
4143 			spin_lock_irq(&conf->device_lock);
4144 			conf->seq_write = seq;
4145 			activate_bit_delay(conf);
4146 		}
4147 
4148 		while ((bio = remove_bio_from_retry(conf))) {
4149 			int ok;
4150 			spin_unlock_irq(&conf->device_lock);
4151 			ok = retry_aligned_read(conf, bio);
4152 			spin_lock_irq(&conf->device_lock);
4153 			if (!ok)
4154 				break;
4155 			handled++;
4156 		}
4157 
4158 		sh = __get_priority_stripe(conf);
4159 
4160 		if (!sh)
4161 			break;
4162 		spin_unlock_irq(&conf->device_lock);
4163 
4164 		handled++;
4165 		handle_stripe(sh, conf->spare_page);
4166 		release_stripe(sh);
4167 
4168 		spin_lock_irq(&conf->device_lock);
4169 	}
4170 	pr_debug("%d stripes handled\n", handled);
4171 
4172 	spin_unlock_irq(&conf->device_lock);
4173 
4174 	async_tx_issue_pending_all();
4175 	unplug_slaves(mddev);
4176 
4177 	pr_debug("--- raid5d inactive\n");
4178 }
4179 
4180 static ssize_t
4181 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4182 {
4183 	raid5_conf_t *conf = mddev_to_conf(mddev);
4184 	if (conf)
4185 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4186 	else
4187 		return 0;
4188 }
4189 
4190 static ssize_t
4191 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4192 {
4193 	raid5_conf_t *conf = mddev_to_conf(mddev);
4194 	unsigned long new;
4195 	int err;
4196 
4197 	if (len >= PAGE_SIZE)
4198 		return -EINVAL;
4199 	if (!conf)
4200 		return -ENODEV;
4201 
4202 	if (strict_strtoul(page, 10, &new))
4203 		return -EINVAL;
4204 	if (new <= 16 || new > 32768)
4205 		return -EINVAL;
4206 	while (new < conf->max_nr_stripes) {
4207 		if (drop_one_stripe(conf))
4208 			conf->max_nr_stripes--;
4209 		else
4210 			break;
4211 	}
4212 	err = md_allow_write(mddev);
4213 	if (err)
4214 		return err;
4215 	while (new > conf->max_nr_stripes) {
4216 		if (grow_one_stripe(conf))
4217 			conf->max_nr_stripes++;
4218 		else break;
4219 	}
4220 	return len;
4221 }
4222 
4223 static struct md_sysfs_entry
4224 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4225 				raid5_show_stripe_cache_size,
4226 				raid5_store_stripe_cache_size);
4227 
4228 static ssize_t
4229 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4230 {
4231 	raid5_conf_t *conf = mddev_to_conf(mddev);
4232 	if (conf)
4233 		return sprintf(page, "%d\n", conf->bypass_threshold);
4234 	else
4235 		return 0;
4236 }
4237 
4238 static ssize_t
4239 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4240 {
4241 	raid5_conf_t *conf = mddev_to_conf(mddev);
4242 	unsigned long new;
4243 	if (len >= PAGE_SIZE)
4244 		return -EINVAL;
4245 	if (!conf)
4246 		return -ENODEV;
4247 
4248 	if (strict_strtoul(page, 10, &new))
4249 		return -EINVAL;
4250 	if (new > conf->max_nr_stripes)
4251 		return -EINVAL;
4252 	conf->bypass_threshold = new;
4253 	return len;
4254 }
4255 
4256 static struct md_sysfs_entry
4257 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4258 					S_IRUGO | S_IWUSR,
4259 					raid5_show_preread_threshold,
4260 					raid5_store_preread_threshold);
4261 
4262 static ssize_t
4263 stripe_cache_active_show(mddev_t *mddev, char *page)
4264 {
4265 	raid5_conf_t *conf = mddev_to_conf(mddev);
4266 	if (conf)
4267 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4268 	else
4269 		return 0;
4270 }
4271 
4272 static struct md_sysfs_entry
4273 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4274 
4275 static struct attribute *raid5_attrs[] =  {
4276 	&raid5_stripecache_size.attr,
4277 	&raid5_stripecache_active.attr,
4278 	&raid5_preread_bypass_threshold.attr,
4279 	NULL,
4280 };
4281 static struct attribute_group raid5_attrs_group = {
4282 	.name = NULL,
4283 	.attrs = raid5_attrs,
4284 };
4285 
4286 static sector_t
4287 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4288 {
4289 	raid5_conf_t *conf = mddev_to_conf(mddev);
4290 
4291 	if (!sectors)
4292 		sectors = mddev->dev_sectors;
4293 	if (!raid_disks) {
4294 		/* size is defined by the smallest of previous and new size */
4295 		if (conf->raid_disks < conf->previous_raid_disks)
4296 			raid_disks = conf->raid_disks;
4297 		else
4298 			raid_disks = conf->previous_raid_disks;
4299 	}
4300 
4301 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4302 	sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4303 	return sectors * (raid_disks - conf->max_degraded);
4304 }
4305 
4306 static raid5_conf_t *setup_conf(mddev_t *mddev)
4307 {
4308 	raid5_conf_t *conf;
4309 	int raid_disk, memory;
4310 	mdk_rdev_t *rdev;
4311 	struct disk_info *disk;
4312 
4313 	if (mddev->new_level != 5
4314 	    && mddev->new_level != 4
4315 	    && mddev->new_level != 6) {
4316 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4317 		       mdname(mddev), mddev->new_level);
4318 		return ERR_PTR(-EIO);
4319 	}
4320 	if ((mddev->new_level == 5
4321 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4322 	    (mddev->new_level == 6
4323 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4324 		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4325 		       mdname(mddev), mddev->new_layout);
4326 		return ERR_PTR(-EIO);
4327 	}
4328 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4329 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4330 		       mdname(mddev), mddev->raid_disks);
4331 		return ERR_PTR(-EINVAL);
4332 	}
4333 
4334 	if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4335 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4336 			mddev->new_chunk, mdname(mddev));
4337 		return ERR_PTR(-EINVAL);
4338 	}
4339 
4340 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4341 	if (conf == NULL)
4342 		goto abort;
4343 
4344 	conf->raid_disks = mddev->raid_disks;
4345 	if (mddev->reshape_position == MaxSector)
4346 		conf->previous_raid_disks = mddev->raid_disks;
4347 	else
4348 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4349 
4350 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4351 			      GFP_KERNEL);
4352 	if (!conf->disks)
4353 		goto abort;
4354 
4355 	conf->mddev = mddev;
4356 
4357 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4358 		goto abort;
4359 
4360 	if (mddev->new_level == 6) {
4361 		conf->spare_page = alloc_page(GFP_KERNEL);
4362 		if (!conf->spare_page)
4363 			goto abort;
4364 	}
4365 	spin_lock_init(&conf->device_lock);
4366 	init_waitqueue_head(&conf->wait_for_stripe);
4367 	init_waitqueue_head(&conf->wait_for_overlap);
4368 	INIT_LIST_HEAD(&conf->handle_list);
4369 	INIT_LIST_HEAD(&conf->hold_list);
4370 	INIT_LIST_HEAD(&conf->delayed_list);
4371 	INIT_LIST_HEAD(&conf->bitmap_list);
4372 	INIT_LIST_HEAD(&conf->inactive_list);
4373 	atomic_set(&conf->active_stripes, 0);
4374 	atomic_set(&conf->preread_active_stripes, 0);
4375 	atomic_set(&conf->active_aligned_reads, 0);
4376 	conf->bypass_threshold = BYPASS_THRESHOLD;
4377 
4378 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4379 
4380 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4381 		raid_disk = rdev->raid_disk;
4382 		if (raid_disk >= conf->raid_disks
4383 		    || raid_disk < 0)
4384 			continue;
4385 		disk = conf->disks + raid_disk;
4386 
4387 		disk->rdev = rdev;
4388 
4389 		if (test_bit(In_sync, &rdev->flags)) {
4390 			char b[BDEVNAME_SIZE];
4391 			printk(KERN_INFO "raid5: device %s operational as raid"
4392 				" disk %d\n", bdevname(rdev->bdev,b),
4393 				raid_disk);
4394 		} else
4395 			/* Cannot rely on bitmap to complete recovery */
4396 			conf->fullsync = 1;
4397 	}
4398 
4399 	conf->chunk_size = mddev->new_chunk;
4400 	conf->level = mddev->new_level;
4401 	if (conf->level == 6)
4402 		conf->max_degraded = 2;
4403 	else
4404 		conf->max_degraded = 1;
4405 	conf->algorithm = mddev->new_layout;
4406 	conf->max_nr_stripes = NR_STRIPES;
4407 	conf->reshape_progress = mddev->reshape_position;
4408 	if (conf->reshape_progress != MaxSector) {
4409 		conf->prev_chunk = mddev->chunk_size;
4410 		conf->prev_algo = mddev->layout;
4411 	}
4412 
4413 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4414 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4415 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4416 		printk(KERN_ERR
4417 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4418 		goto abort;
4419 	} else
4420 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4421 			memory, mdname(mddev));
4422 
4423 	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4424 	if (!conf->thread) {
4425 		printk(KERN_ERR
4426 		       "raid5: couldn't allocate thread for %s\n",
4427 		       mdname(mddev));
4428 		goto abort;
4429 	}
4430 
4431 	return conf;
4432 
4433  abort:
4434 	if (conf) {
4435 		shrink_stripes(conf);
4436 		safe_put_page(conf->spare_page);
4437 		kfree(conf->disks);
4438 		kfree(conf->stripe_hashtbl);
4439 		kfree(conf);
4440 		return ERR_PTR(-EIO);
4441 	} else
4442 		return ERR_PTR(-ENOMEM);
4443 }
4444 
4445 static int run(mddev_t *mddev)
4446 {
4447 	raid5_conf_t *conf;
4448 	int working_disks = 0;
4449 	mdk_rdev_t *rdev;
4450 
4451 	if (mddev->reshape_position != MaxSector) {
4452 		/* Check that we can continue the reshape.
4453 		 * Currently only disks can change, it must
4454 		 * increase, and we must be past the point where
4455 		 * a stripe over-writes itself
4456 		 */
4457 		sector_t here_new, here_old;
4458 		int old_disks;
4459 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4460 
4461 		if (mddev->new_level != mddev->level) {
4462 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4463 			       "required - aborting.\n",
4464 			       mdname(mddev));
4465 			return -EINVAL;
4466 		}
4467 		old_disks = mddev->raid_disks - mddev->delta_disks;
4468 		/* reshape_position must be on a new-stripe boundary, and one
4469 		 * further up in new geometry must map after here in old
4470 		 * geometry.
4471 		 */
4472 		here_new = mddev->reshape_position;
4473 		if (sector_div(here_new, (mddev->new_chunk>>9)*
4474 			       (mddev->raid_disks - max_degraded))) {
4475 			printk(KERN_ERR "raid5: reshape_position not "
4476 			       "on a stripe boundary\n");
4477 			return -EINVAL;
4478 		}
4479 		/* here_new is the stripe we will write to */
4480 		here_old = mddev->reshape_position;
4481 		sector_div(here_old, (mddev->chunk_size>>9)*
4482 			   (old_disks-max_degraded));
4483 		/* here_old is the first stripe that we might need to read
4484 		 * from */
4485 		if (here_new >= here_old) {
4486 			/* Reading from the same stripe as writing to - bad */
4487 			printk(KERN_ERR "raid5: reshape_position too early for "
4488 			       "auto-recovery - aborting.\n");
4489 			return -EINVAL;
4490 		}
4491 		printk(KERN_INFO "raid5: reshape will continue\n");
4492 		/* OK, we should be able to continue; */
4493 	} else {
4494 		BUG_ON(mddev->level != mddev->new_level);
4495 		BUG_ON(mddev->layout != mddev->new_layout);
4496 		BUG_ON(mddev->chunk_size != mddev->new_chunk);
4497 		BUG_ON(mddev->delta_disks != 0);
4498 	}
4499 
4500 	if (mddev->private == NULL)
4501 		conf = setup_conf(mddev);
4502 	else
4503 		conf = mddev->private;
4504 
4505 	if (IS_ERR(conf))
4506 		return PTR_ERR(conf);
4507 
4508 	mddev->thread = conf->thread;
4509 	conf->thread = NULL;
4510 	mddev->private = conf;
4511 
4512 	/*
4513 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4514 	 */
4515 	list_for_each_entry(rdev, &mddev->disks, same_set)
4516 		if (rdev->raid_disk >= 0 &&
4517 		    test_bit(In_sync, &rdev->flags))
4518 			working_disks++;
4519 
4520 	mddev->degraded = conf->raid_disks - working_disks;
4521 
4522 	if (mddev->degraded > conf->max_degraded) {
4523 		printk(KERN_ERR "raid5: not enough operational devices for %s"
4524 			" (%d/%d failed)\n",
4525 			mdname(mddev), mddev->degraded, conf->raid_disks);
4526 		goto abort;
4527 	}
4528 
4529 	/* device size must be a multiple of chunk size */
4530 	mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4531 	mddev->resync_max_sectors = mddev->dev_sectors;
4532 
4533 	if (mddev->degraded > 0 &&
4534 	    mddev->recovery_cp != MaxSector) {
4535 		if (mddev->ok_start_degraded)
4536 			printk(KERN_WARNING
4537 			       "raid5: starting dirty degraded array: %s"
4538 			       "- data corruption possible.\n",
4539 			       mdname(mddev));
4540 		else {
4541 			printk(KERN_ERR
4542 			       "raid5: cannot start dirty degraded array for %s\n",
4543 			       mdname(mddev));
4544 			goto abort;
4545 		}
4546 	}
4547 
4548 	if (mddev->degraded == 0)
4549 		printk("raid5: raid level %d set %s active with %d out of %d"
4550 		       " devices, algorithm %d\n", conf->level, mdname(mddev),
4551 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4552 		       mddev->new_layout);
4553 	else
4554 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4555 			" out of %d devices, algorithm %d\n", conf->level,
4556 			mdname(mddev), mddev->raid_disks - mddev->degraded,
4557 			mddev->raid_disks, mddev->new_layout);
4558 
4559 	print_raid5_conf(conf);
4560 
4561 	if (conf->reshape_progress != MaxSector) {
4562 		printk("...ok start reshape thread\n");
4563 		conf->reshape_safe = conf->reshape_progress;
4564 		atomic_set(&conf->reshape_stripes, 0);
4565 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4566 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4567 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4568 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4569 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4570 							"%s_reshape");
4571 	}
4572 
4573 	/* read-ahead size must cover two whole stripes, which is
4574 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4575 	 */
4576 	{
4577 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4578 		int stripe = data_disks *
4579 			(mddev->chunk_size / PAGE_SIZE);
4580 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4581 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4582 	}
4583 
4584 	/* Ok, everything is just fine now */
4585 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4586 		printk(KERN_WARNING
4587 		       "raid5: failed to create sysfs attributes for %s\n",
4588 		       mdname(mddev));
4589 
4590 	mddev->queue->queue_lock = &conf->device_lock;
4591 
4592 	mddev->queue->unplug_fn = raid5_unplug_device;
4593 	mddev->queue->backing_dev_info.congested_data = mddev;
4594 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4595 
4596 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4597 
4598 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4599 
4600 	return 0;
4601 abort:
4602 	md_unregister_thread(mddev->thread);
4603 	mddev->thread = NULL;
4604 	if (conf) {
4605 		shrink_stripes(conf);
4606 		print_raid5_conf(conf);
4607 		safe_put_page(conf->spare_page);
4608 		kfree(conf->disks);
4609 		kfree(conf->stripe_hashtbl);
4610 		kfree(conf);
4611 	}
4612 	mddev->private = NULL;
4613 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4614 	return -EIO;
4615 }
4616 
4617 
4618 
4619 static int stop(mddev_t *mddev)
4620 {
4621 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4622 
4623 	md_unregister_thread(mddev->thread);
4624 	mddev->thread = NULL;
4625 	shrink_stripes(conf);
4626 	kfree(conf->stripe_hashtbl);
4627 	mddev->queue->backing_dev_info.congested_fn = NULL;
4628 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4629 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4630 	kfree(conf->disks);
4631 	kfree(conf);
4632 	mddev->private = NULL;
4633 	return 0;
4634 }
4635 
4636 #ifdef DEBUG
4637 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4638 {
4639 	int i;
4640 
4641 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4642 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4643 	seq_printf(seq, "sh %llu,  count %d.\n",
4644 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4645 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4646 	for (i = 0; i < sh->disks; i++) {
4647 		seq_printf(seq, "(cache%d: %p %ld) ",
4648 			   i, sh->dev[i].page, sh->dev[i].flags);
4649 	}
4650 	seq_printf(seq, "\n");
4651 }
4652 
4653 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4654 {
4655 	struct stripe_head *sh;
4656 	struct hlist_node *hn;
4657 	int i;
4658 
4659 	spin_lock_irq(&conf->device_lock);
4660 	for (i = 0; i < NR_HASH; i++) {
4661 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4662 			if (sh->raid_conf != conf)
4663 				continue;
4664 			print_sh(seq, sh);
4665 		}
4666 	}
4667 	spin_unlock_irq(&conf->device_lock);
4668 }
4669 #endif
4670 
4671 static void status(struct seq_file *seq, mddev_t *mddev)
4672 {
4673 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4674 	int i;
4675 
4676 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4677 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4678 	for (i = 0; i < conf->raid_disks; i++)
4679 		seq_printf (seq, "%s",
4680 			       conf->disks[i].rdev &&
4681 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4682 	seq_printf (seq, "]");
4683 #ifdef DEBUG
4684 	seq_printf (seq, "\n");
4685 	printall(seq, conf);
4686 #endif
4687 }
4688 
4689 static void print_raid5_conf (raid5_conf_t *conf)
4690 {
4691 	int i;
4692 	struct disk_info *tmp;
4693 
4694 	printk("RAID5 conf printout:\n");
4695 	if (!conf) {
4696 		printk("(conf==NULL)\n");
4697 		return;
4698 	}
4699 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4700 		 conf->raid_disks - conf->mddev->degraded);
4701 
4702 	for (i = 0; i < conf->raid_disks; i++) {
4703 		char b[BDEVNAME_SIZE];
4704 		tmp = conf->disks + i;
4705 		if (tmp->rdev)
4706 		printk(" disk %d, o:%d, dev:%s\n",
4707 			i, !test_bit(Faulty, &tmp->rdev->flags),
4708 			bdevname(tmp->rdev->bdev,b));
4709 	}
4710 }
4711 
4712 static int raid5_spare_active(mddev_t *mddev)
4713 {
4714 	int i;
4715 	raid5_conf_t *conf = mddev->private;
4716 	struct disk_info *tmp;
4717 
4718 	for (i = 0; i < conf->raid_disks; i++) {
4719 		tmp = conf->disks + i;
4720 		if (tmp->rdev
4721 		    && !test_bit(Faulty, &tmp->rdev->flags)
4722 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4723 			unsigned long flags;
4724 			spin_lock_irqsave(&conf->device_lock, flags);
4725 			mddev->degraded--;
4726 			spin_unlock_irqrestore(&conf->device_lock, flags);
4727 		}
4728 	}
4729 	print_raid5_conf(conf);
4730 	return 0;
4731 }
4732 
4733 static int raid5_remove_disk(mddev_t *mddev, int number)
4734 {
4735 	raid5_conf_t *conf = mddev->private;
4736 	int err = 0;
4737 	mdk_rdev_t *rdev;
4738 	struct disk_info *p = conf->disks + number;
4739 
4740 	print_raid5_conf(conf);
4741 	rdev = p->rdev;
4742 	if (rdev) {
4743 		if (number >= conf->raid_disks &&
4744 		    conf->reshape_progress == MaxSector)
4745 			clear_bit(In_sync, &rdev->flags);
4746 
4747 		if (test_bit(In_sync, &rdev->flags) ||
4748 		    atomic_read(&rdev->nr_pending)) {
4749 			err = -EBUSY;
4750 			goto abort;
4751 		}
4752 		/* Only remove non-faulty devices if recovery
4753 		 * isn't possible.
4754 		 */
4755 		if (!test_bit(Faulty, &rdev->flags) &&
4756 		    mddev->degraded <= conf->max_degraded &&
4757 		    number < conf->raid_disks) {
4758 			err = -EBUSY;
4759 			goto abort;
4760 		}
4761 		p->rdev = NULL;
4762 		synchronize_rcu();
4763 		if (atomic_read(&rdev->nr_pending)) {
4764 			/* lost the race, try later */
4765 			err = -EBUSY;
4766 			p->rdev = rdev;
4767 		}
4768 	}
4769 abort:
4770 
4771 	print_raid5_conf(conf);
4772 	return err;
4773 }
4774 
4775 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4776 {
4777 	raid5_conf_t *conf = mddev->private;
4778 	int err = -EEXIST;
4779 	int disk;
4780 	struct disk_info *p;
4781 	int first = 0;
4782 	int last = conf->raid_disks - 1;
4783 
4784 	if (mddev->degraded > conf->max_degraded)
4785 		/* no point adding a device */
4786 		return -EINVAL;
4787 
4788 	if (rdev->raid_disk >= 0)
4789 		first = last = rdev->raid_disk;
4790 
4791 	/*
4792 	 * find the disk ... but prefer rdev->saved_raid_disk
4793 	 * if possible.
4794 	 */
4795 	if (rdev->saved_raid_disk >= 0 &&
4796 	    rdev->saved_raid_disk >= first &&
4797 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4798 		disk = rdev->saved_raid_disk;
4799 	else
4800 		disk = first;
4801 	for ( ; disk <= last ; disk++)
4802 		if ((p=conf->disks + disk)->rdev == NULL) {
4803 			clear_bit(In_sync, &rdev->flags);
4804 			rdev->raid_disk = disk;
4805 			err = 0;
4806 			if (rdev->saved_raid_disk != disk)
4807 				conf->fullsync = 1;
4808 			rcu_assign_pointer(p->rdev, rdev);
4809 			break;
4810 		}
4811 	print_raid5_conf(conf);
4812 	return err;
4813 }
4814 
4815 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4816 {
4817 	/* no resync is happening, and there is enough space
4818 	 * on all devices, so we can resize.
4819 	 * We need to make sure resync covers any new space.
4820 	 * If the array is shrinking we should possibly wait until
4821 	 * any io in the removed space completes, but it hardly seems
4822 	 * worth it.
4823 	 */
4824 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4825 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4826 					       mddev->raid_disks));
4827 	if (mddev->array_sectors >
4828 	    raid5_size(mddev, sectors, mddev->raid_disks))
4829 		return -EINVAL;
4830 	set_capacity(mddev->gendisk, mddev->array_sectors);
4831 	mddev->changed = 1;
4832 	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4833 		mddev->recovery_cp = mddev->dev_sectors;
4834 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4835 	}
4836 	mddev->dev_sectors = sectors;
4837 	mddev->resync_max_sectors = sectors;
4838 	return 0;
4839 }
4840 
4841 static int raid5_check_reshape(mddev_t *mddev)
4842 {
4843 	raid5_conf_t *conf = mddev_to_conf(mddev);
4844 
4845 	if (mddev->delta_disks == 0 &&
4846 	    mddev->new_layout == mddev->layout &&
4847 	    mddev->new_chunk == mddev->chunk_size)
4848 		return -EINVAL; /* nothing to do */
4849 	if (mddev->bitmap)
4850 		/* Cannot grow a bitmap yet */
4851 		return -EBUSY;
4852 	if (mddev->degraded > conf->max_degraded)
4853 		return -EINVAL;
4854 	if (mddev->delta_disks < 0) {
4855 		/* We might be able to shrink, but the devices must
4856 		 * be made bigger first.
4857 		 * For raid6, 4 is the minimum size.
4858 		 * Otherwise 2 is the minimum
4859 		 */
4860 		int min = 2;
4861 		if (mddev->level == 6)
4862 			min = 4;
4863 		if (mddev->raid_disks + mddev->delta_disks < min)
4864 			return -EINVAL;
4865 	}
4866 
4867 	/* Can only proceed if there are plenty of stripe_heads.
4868 	 * We need a minimum of one full stripe,, and for sensible progress
4869 	 * it is best to have about 4 times that.
4870 	 * If we require 4 times, then the default 256 4K stripe_heads will
4871 	 * allow for chunk sizes up to 256K, which is probably OK.
4872 	 * If the chunk size is greater, user-space should request more
4873 	 * stripe_heads first.
4874 	 */
4875 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4876 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4877 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4878 		       (max(mddev->chunk_size, mddev->new_chunk)
4879 			/ STRIPE_SIZE)*4);
4880 		return -ENOSPC;
4881 	}
4882 
4883 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4884 }
4885 
4886 static int raid5_start_reshape(mddev_t *mddev)
4887 {
4888 	raid5_conf_t *conf = mddev_to_conf(mddev);
4889 	mdk_rdev_t *rdev;
4890 	int spares = 0;
4891 	int added_devices = 0;
4892 	unsigned long flags;
4893 
4894 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4895 		return -EBUSY;
4896 
4897 	list_for_each_entry(rdev, &mddev->disks, same_set)
4898 		if (rdev->raid_disk < 0 &&
4899 		    !test_bit(Faulty, &rdev->flags))
4900 			spares++;
4901 
4902 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4903 		/* Not enough devices even to make a degraded array
4904 		 * of that size
4905 		 */
4906 		return -EINVAL;
4907 
4908 	/* Refuse to reduce size of the array.  Any reductions in
4909 	 * array size must be through explicit setting of array_size
4910 	 * attribute.
4911 	 */
4912 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4913 	    < mddev->array_sectors) {
4914 		printk(KERN_ERR "md: %s: array size must be reduced "
4915 		       "before number of disks\n", mdname(mddev));
4916 		return -EINVAL;
4917 	}
4918 
4919 	atomic_set(&conf->reshape_stripes, 0);
4920 	spin_lock_irq(&conf->device_lock);
4921 	conf->previous_raid_disks = conf->raid_disks;
4922 	conf->raid_disks += mddev->delta_disks;
4923 	conf->prev_chunk = conf->chunk_size;
4924 	conf->chunk_size = mddev->new_chunk;
4925 	conf->prev_algo = conf->algorithm;
4926 	conf->algorithm = mddev->new_layout;
4927 	if (mddev->delta_disks < 0)
4928 		conf->reshape_progress = raid5_size(mddev, 0, 0);
4929 	else
4930 		conf->reshape_progress = 0;
4931 	conf->reshape_safe = conf->reshape_progress;
4932 	conf->generation++;
4933 	spin_unlock_irq(&conf->device_lock);
4934 
4935 	/* Add some new drives, as many as will fit.
4936 	 * We know there are enough to make the newly sized array work.
4937 	 */
4938 	list_for_each_entry(rdev, &mddev->disks, same_set)
4939 		if (rdev->raid_disk < 0 &&
4940 		    !test_bit(Faulty, &rdev->flags)) {
4941 			if (raid5_add_disk(mddev, rdev) == 0) {
4942 				char nm[20];
4943 				set_bit(In_sync, &rdev->flags);
4944 				added_devices++;
4945 				rdev->recovery_offset = 0;
4946 				sprintf(nm, "rd%d", rdev->raid_disk);
4947 				if (sysfs_create_link(&mddev->kobj,
4948 						      &rdev->kobj, nm))
4949 					printk(KERN_WARNING
4950 					       "raid5: failed to create "
4951 					       " link %s for %s\n",
4952 					       nm, mdname(mddev));
4953 			} else
4954 				break;
4955 		}
4956 
4957 	if (mddev->delta_disks > 0) {
4958 		spin_lock_irqsave(&conf->device_lock, flags);
4959 		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4960 			- added_devices;
4961 		spin_unlock_irqrestore(&conf->device_lock, flags);
4962 	}
4963 	mddev->raid_disks = conf->raid_disks;
4964 	mddev->reshape_position = 0;
4965 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4966 
4967 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4968 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4969 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4970 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4971 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4972 						"%s_reshape");
4973 	if (!mddev->sync_thread) {
4974 		mddev->recovery = 0;
4975 		spin_lock_irq(&conf->device_lock);
4976 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4977 		conf->reshape_progress = MaxSector;
4978 		spin_unlock_irq(&conf->device_lock);
4979 		return -EAGAIN;
4980 	}
4981 	conf->reshape_checkpoint = jiffies;
4982 	md_wakeup_thread(mddev->sync_thread);
4983 	md_new_event(mddev);
4984 	return 0;
4985 }
4986 
4987 /* This is called from the reshape thread and should make any
4988  * changes needed in 'conf'
4989  */
4990 static void end_reshape(raid5_conf_t *conf)
4991 {
4992 
4993 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4994 
4995 		spin_lock_irq(&conf->device_lock);
4996 		conf->previous_raid_disks = conf->raid_disks;
4997 		conf->reshape_progress = MaxSector;
4998 		spin_unlock_irq(&conf->device_lock);
4999 		wake_up(&conf->wait_for_overlap);
5000 
5001 		/* read-ahead size must cover two whole stripes, which is
5002 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5003 		 */
5004 		{
5005 			int data_disks = conf->raid_disks - conf->max_degraded;
5006 			int stripe = data_disks * (conf->chunk_size
5007 						   / PAGE_SIZE);
5008 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5009 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5010 		}
5011 	}
5012 }
5013 
5014 /* This is called from the raid5d thread with mddev_lock held.
5015  * It makes config changes to the device.
5016  */
5017 static void raid5_finish_reshape(mddev_t *mddev)
5018 {
5019 	struct block_device *bdev;
5020 	raid5_conf_t *conf = mddev_to_conf(mddev);
5021 
5022 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5023 
5024 		if (mddev->delta_disks > 0) {
5025 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5026 			set_capacity(mddev->gendisk, mddev->array_sectors);
5027 			mddev->changed = 1;
5028 
5029 			bdev = bdget_disk(mddev->gendisk, 0);
5030 			if (bdev) {
5031 				mutex_lock(&bdev->bd_inode->i_mutex);
5032 				i_size_write(bdev->bd_inode,
5033 					     (loff_t)mddev->array_sectors << 9);
5034 				mutex_unlock(&bdev->bd_inode->i_mutex);
5035 				bdput(bdev);
5036 			}
5037 		} else {
5038 			int d;
5039 			mddev->degraded = conf->raid_disks;
5040 			for (d = 0; d < conf->raid_disks ; d++)
5041 				if (conf->disks[d].rdev &&
5042 				    test_bit(In_sync,
5043 					     &conf->disks[d].rdev->flags))
5044 					mddev->degraded--;
5045 			for (d = conf->raid_disks ;
5046 			     d < conf->raid_disks - mddev->delta_disks;
5047 			     d++)
5048 				raid5_remove_disk(mddev, d);
5049 		}
5050 		mddev->layout = conf->algorithm;
5051 		mddev->chunk_size = conf->chunk_size;
5052 		mddev->reshape_position = MaxSector;
5053 		mddev->delta_disks = 0;
5054 	}
5055 }
5056 
5057 static void raid5_quiesce(mddev_t *mddev, int state)
5058 {
5059 	raid5_conf_t *conf = mddev_to_conf(mddev);
5060 
5061 	switch(state) {
5062 	case 2: /* resume for a suspend */
5063 		wake_up(&conf->wait_for_overlap);
5064 		break;
5065 
5066 	case 1: /* stop all writes */
5067 		spin_lock_irq(&conf->device_lock);
5068 		conf->quiesce = 1;
5069 		wait_event_lock_irq(conf->wait_for_stripe,
5070 				    atomic_read(&conf->active_stripes) == 0 &&
5071 				    atomic_read(&conf->active_aligned_reads) == 0,
5072 				    conf->device_lock, /* nothing */);
5073 		spin_unlock_irq(&conf->device_lock);
5074 		break;
5075 
5076 	case 0: /* re-enable writes */
5077 		spin_lock_irq(&conf->device_lock);
5078 		conf->quiesce = 0;
5079 		wake_up(&conf->wait_for_stripe);
5080 		wake_up(&conf->wait_for_overlap);
5081 		spin_unlock_irq(&conf->device_lock);
5082 		break;
5083 	}
5084 }
5085 
5086 
5087 static void *raid5_takeover_raid1(mddev_t *mddev)
5088 {
5089 	int chunksect;
5090 
5091 	if (mddev->raid_disks != 2 ||
5092 	    mddev->degraded > 1)
5093 		return ERR_PTR(-EINVAL);
5094 
5095 	/* Should check if there are write-behind devices? */
5096 
5097 	chunksect = 64*2; /* 64K by default */
5098 
5099 	/* The array must be an exact multiple of chunksize */
5100 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5101 		chunksect >>= 1;
5102 
5103 	if ((chunksect<<9) < STRIPE_SIZE)
5104 		/* array size does not allow a suitable chunk size */
5105 		return ERR_PTR(-EINVAL);
5106 
5107 	mddev->new_level = 5;
5108 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5109 	mddev->new_chunk = chunksect << 9;
5110 
5111 	return setup_conf(mddev);
5112 }
5113 
5114 static void *raid5_takeover_raid6(mddev_t *mddev)
5115 {
5116 	int new_layout;
5117 
5118 	switch (mddev->layout) {
5119 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5120 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5121 		break;
5122 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5123 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5124 		break;
5125 	case ALGORITHM_LEFT_SYMMETRIC_6:
5126 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5127 		break;
5128 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5129 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5130 		break;
5131 	case ALGORITHM_PARITY_0_6:
5132 		new_layout = ALGORITHM_PARITY_0;
5133 		break;
5134 	case ALGORITHM_PARITY_N:
5135 		new_layout = ALGORITHM_PARITY_N;
5136 		break;
5137 	default:
5138 		return ERR_PTR(-EINVAL);
5139 	}
5140 	mddev->new_level = 5;
5141 	mddev->new_layout = new_layout;
5142 	mddev->delta_disks = -1;
5143 	mddev->raid_disks -= 1;
5144 	return setup_conf(mddev);
5145 }
5146 
5147 
5148 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5149 {
5150 	/* For a 2-drive array, the layout and chunk size can be changed
5151 	 * immediately as not restriping is needed.
5152 	 * For larger arrays we record the new value - after validation
5153 	 * to be used by a reshape pass.
5154 	 */
5155 	raid5_conf_t *conf = mddev_to_conf(mddev);
5156 
5157 	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5158 		return -EINVAL;
5159 	if (new_chunk > 0) {
5160 		if (new_chunk & (new_chunk-1))
5161 			/* not a power of 2 */
5162 			return -EINVAL;
5163 		if (new_chunk < PAGE_SIZE)
5164 			return -EINVAL;
5165 		if (mddev->array_sectors & ((new_chunk>>9)-1))
5166 			/* not factor of array size */
5167 			return -EINVAL;
5168 	}
5169 
5170 	/* They look valid */
5171 
5172 	if (mddev->raid_disks == 2) {
5173 
5174 		if (new_layout >= 0) {
5175 			conf->algorithm = new_layout;
5176 			mddev->layout = mddev->new_layout = new_layout;
5177 		}
5178 		if (new_chunk > 0) {
5179 			conf->chunk_size = new_chunk;
5180 			mddev->chunk_size = mddev->new_chunk = new_chunk;
5181 		}
5182 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5183 		md_wakeup_thread(mddev->thread);
5184 	} else {
5185 		if (new_layout >= 0)
5186 			mddev->new_layout = new_layout;
5187 		if (new_chunk > 0)
5188 			mddev->new_chunk = new_chunk;
5189 	}
5190 	return 0;
5191 }
5192 
5193 static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5194 {
5195 	if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5196 		return -EINVAL;
5197 	if (new_chunk > 0) {
5198 		if (new_chunk & (new_chunk-1))
5199 			/* not a power of 2 */
5200 			return -EINVAL;
5201 		if (new_chunk < PAGE_SIZE)
5202 			return -EINVAL;
5203 		if (mddev->array_sectors & ((new_chunk>>9)-1))
5204 			/* not factor of array size */
5205 			return -EINVAL;
5206 	}
5207 
5208 	/* They look valid */
5209 
5210 	if (new_layout >= 0)
5211 		mddev->new_layout = new_layout;
5212 	if (new_chunk > 0)
5213 		mddev->new_chunk = new_chunk;
5214 
5215 	return 0;
5216 }
5217 
5218 static void *raid5_takeover(mddev_t *mddev)
5219 {
5220 	/* raid5 can take over:
5221 	 *  raid0 - if all devices are the same - make it a raid4 layout
5222 	 *  raid1 - if there are two drives.  We need to know the chunk size
5223 	 *  raid4 - trivial - just use a raid4 layout.
5224 	 *  raid6 - Providing it is a *_6 layout
5225 	 *
5226 	 * For now, just do raid1
5227 	 */
5228 
5229 	if (mddev->level == 1)
5230 		return raid5_takeover_raid1(mddev);
5231 	if (mddev->level == 4) {
5232 		mddev->new_layout = ALGORITHM_PARITY_N;
5233 		mddev->new_level = 5;
5234 		return setup_conf(mddev);
5235 	}
5236 	if (mddev->level == 6)
5237 		return raid5_takeover_raid6(mddev);
5238 
5239 	return ERR_PTR(-EINVAL);
5240 }
5241 
5242 
5243 static struct mdk_personality raid5_personality;
5244 
5245 static void *raid6_takeover(mddev_t *mddev)
5246 {
5247 	/* Currently can only take over a raid5.  We map the
5248 	 * personality to an equivalent raid6 personality
5249 	 * with the Q block at the end.
5250 	 */
5251 	int new_layout;
5252 
5253 	if (mddev->pers != &raid5_personality)
5254 		return ERR_PTR(-EINVAL);
5255 	if (mddev->degraded > 1)
5256 		return ERR_PTR(-EINVAL);
5257 	if (mddev->raid_disks > 253)
5258 		return ERR_PTR(-EINVAL);
5259 	if (mddev->raid_disks < 3)
5260 		return ERR_PTR(-EINVAL);
5261 
5262 	switch (mddev->layout) {
5263 	case ALGORITHM_LEFT_ASYMMETRIC:
5264 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5265 		break;
5266 	case ALGORITHM_RIGHT_ASYMMETRIC:
5267 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5268 		break;
5269 	case ALGORITHM_LEFT_SYMMETRIC:
5270 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5271 		break;
5272 	case ALGORITHM_RIGHT_SYMMETRIC:
5273 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5274 		break;
5275 	case ALGORITHM_PARITY_0:
5276 		new_layout = ALGORITHM_PARITY_0_6;
5277 		break;
5278 	case ALGORITHM_PARITY_N:
5279 		new_layout = ALGORITHM_PARITY_N;
5280 		break;
5281 	default:
5282 		return ERR_PTR(-EINVAL);
5283 	}
5284 	mddev->new_level = 6;
5285 	mddev->new_layout = new_layout;
5286 	mddev->delta_disks = 1;
5287 	mddev->raid_disks += 1;
5288 	return setup_conf(mddev);
5289 }
5290 
5291 
5292 static struct mdk_personality raid6_personality =
5293 {
5294 	.name		= "raid6",
5295 	.level		= 6,
5296 	.owner		= THIS_MODULE,
5297 	.make_request	= make_request,
5298 	.run		= run,
5299 	.stop		= stop,
5300 	.status		= status,
5301 	.error_handler	= error,
5302 	.hot_add_disk	= raid5_add_disk,
5303 	.hot_remove_disk= raid5_remove_disk,
5304 	.spare_active	= raid5_spare_active,
5305 	.sync_request	= sync_request,
5306 	.resize		= raid5_resize,
5307 	.size		= raid5_size,
5308 	.check_reshape	= raid5_check_reshape,
5309 	.start_reshape  = raid5_start_reshape,
5310 	.finish_reshape = raid5_finish_reshape,
5311 	.quiesce	= raid5_quiesce,
5312 	.takeover	= raid6_takeover,
5313 	.reconfig	= raid6_reconfig,
5314 };
5315 static struct mdk_personality raid5_personality =
5316 {
5317 	.name		= "raid5",
5318 	.level		= 5,
5319 	.owner		= THIS_MODULE,
5320 	.make_request	= make_request,
5321 	.run		= run,
5322 	.stop		= stop,
5323 	.status		= status,
5324 	.error_handler	= error,
5325 	.hot_add_disk	= raid5_add_disk,
5326 	.hot_remove_disk= raid5_remove_disk,
5327 	.spare_active	= raid5_spare_active,
5328 	.sync_request	= sync_request,
5329 	.resize		= raid5_resize,
5330 	.size		= raid5_size,
5331 	.check_reshape	= raid5_check_reshape,
5332 	.start_reshape  = raid5_start_reshape,
5333 	.finish_reshape = raid5_finish_reshape,
5334 	.quiesce	= raid5_quiesce,
5335 	.takeover	= raid5_takeover,
5336 	.reconfig	= raid5_reconfig,
5337 };
5338 
5339 static struct mdk_personality raid4_personality =
5340 {
5341 	.name		= "raid4",
5342 	.level		= 4,
5343 	.owner		= THIS_MODULE,
5344 	.make_request	= make_request,
5345 	.run		= run,
5346 	.stop		= stop,
5347 	.status		= status,
5348 	.error_handler	= error,
5349 	.hot_add_disk	= raid5_add_disk,
5350 	.hot_remove_disk= raid5_remove_disk,
5351 	.spare_active	= raid5_spare_active,
5352 	.sync_request	= sync_request,
5353 	.resize		= raid5_resize,
5354 	.size		= raid5_size,
5355 	.check_reshape	= raid5_check_reshape,
5356 	.start_reshape  = raid5_start_reshape,
5357 	.finish_reshape = raid5_finish_reshape,
5358 	.quiesce	= raid5_quiesce,
5359 };
5360 
5361 static int __init raid5_init(void)
5362 {
5363 	register_md_personality(&raid6_personality);
5364 	register_md_personality(&raid5_personality);
5365 	register_md_personality(&raid4_personality);
5366 	return 0;
5367 }
5368 
5369 static void raid5_exit(void)
5370 {
5371 	unregister_md_personality(&raid6_personality);
5372 	unregister_md_personality(&raid5_personality);
5373 	unregister_md_personality(&raid4_personality);
5374 }
5375 
5376 module_init(raid5_init);
5377 module_exit(raid5_exit);
5378 MODULE_LICENSE("GPL");
5379 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5380 MODULE_ALIAS("md-raid5");
5381 MODULE_ALIAS("md-raid4");
5382 MODULE_ALIAS("md-level-5");
5383 MODULE_ALIAS("md-level-4");
5384 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5385 MODULE_ALIAS("md-raid6");
5386 MODULE_ALIAS("md-level-6");
5387 
5388 /* This used to be two separate modules, they were: */
5389 MODULE_ALIAS("raid5");
5390 MODULE_ALIAS("raid6");
5391