xref: /openbmc/linux/drivers/md/raid5.c (revision af958a38)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58 
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63 
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66 
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71 
72 #define NR_STRIPES		256
73 #define STRIPE_SIZE		PAGE_SIZE
74 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
76 #define	IO_THRESHOLD		1
77 #define BYPASS_THRESHOLD	1
78 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK		(NR_HASH - 1)
80 #define MAX_STRIPE_BATCH	8
81 
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 	return &conf->stripe_hashtbl[hash];
86 }
87 
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92 
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 	spin_lock_irq(conf->hash_locks + hash);
96 	spin_lock(&conf->device_lock);
97 }
98 
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101 	spin_unlock(&conf->device_lock);
102 	spin_unlock_irq(conf->hash_locks + hash);
103 }
104 
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107 	int i;
108 	local_irq_disable();
109 	spin_lock(conf->hash_locks);
110 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 	spin_lock(&conf->device_lock);
113 }
114 
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117 	int i;
118 	spin_unlock(&conf->device_lock);
119 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 		spin_unlock(conf->hash_locks + i - 1);
121 	local_irq_enable();
122 }
123 
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135 	int sectors = bio_sectors(bio);
136 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137 		return bio->bi_next;
138 	else
139 		return NULL;
140 }
141 
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 	return (atomic_read(segments) >> 16) & 0xffff;
150 }
151 
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 	return atomic_sub_return(1, segments) & 0xffff;
156 }
157 
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 	atomic_inc(segments);
162 }
163 
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 	unsigned int cnt)
166 {
167 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 	int old, new;
169 
170 	do {
171 		old = atomic_read(segments);
172 		new = (old & 0xffff) | (cnt << 16);
173 	} while (atomic_cmpxchg(segments, old, new) != old);
174 }
175 
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 	atomic_set(segments, cnt);
180 }
181 
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185 	if (sh->ddf_layout)
186 		/* ddf always start from first device */
187 		return 0;
188 	/* md starts just after Q block */
189 	if (sh->qd_idx == sh->disks - 1)
190 		return 0;
191 	else
192 		return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196 	disk++;
197 	return (disk < raid_disks) ? disk : 0;
198 }
199 
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 			     int *count, int syndrome_disks)
207 {
208 	int slot = *count;
209 
210 	if (sh->ddf_layout)
211 		(*count)++;
212 	if (idx == sh->pd_idx)
213 		return syndrome_disks;
214 	if (idx == sh->qd_idx)
215 		return syndrome_disks + 1;
216 	if (!sh->ddf_layout)
217 		(*count)++;
218 	return slot;
219 }
220 
221 static void return_io(struct bio *return_bi)
222 {
223 	struct bio *bi = return_bi;
224 	while (bi) {
225 
226 		return_bi = bi->bi_next;
227 		bi->bi_next = NULL;
228 		bi->bi_iter.bi_size = 0;
229 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 					 bi, 0);
231 		bio_endio(bi, 0);
232 		bi = return_bi;
233 	}
234 }
235 
236 static void print_raid5_conf (struct r5conf *conf);
237 
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 	return sh->check_state || sh->reconstruct_state ||
241 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244 
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 	struct r5conf *conf = sh->raid_conf;
248 	struct r5worker_group *group;
249 	int thread_cnt;
250 	int i, cpu = sh->cpu;
251 
252 	if (!cpu_online(cpu)) {
253 		cpu = cpumask_any(cpu_online_mask);
254 		sh->cpu = cpu;
255 	}
256 
257 	if (list_empty(&sh->lru)) {
258 		struct r5worker_group *group;
259 		group = conf->worker_groups + cpu_to_group(cpu);
260 		list_add_tail(&sh->lru, &group->handle_list);
261 		group->stripes_cnt++;
262 		sh->group = group;
263 	}
264 
265 	if (conf->worker_cnt_per_group == 0) {
266 		md_wakeup_thread(conf->mddev->thread);
267 		return;
268 	}
269 
270 	group = conf->worker_groups + cpu_to_group(sh->cpu);
271 
272 	group->workers[0].working = true;
273 	/* at least one worker should run to avoid race */
274 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275 
276 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 	/* wakeup more workers */
278 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 		if (group->workers[i].working == false) {
280 			group->workers[i].working = true;
281 			queue_work_on(sh->cpu, raid5_wq,
282 				      &group->workers[i].work);
283 			thread_cnt--;
284 		}
285 	}
286 }
287 
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 			      struct list_head *temp_inactive_list)
290 {
291 	BUG_ON(!list_empty(&sh->lru));
292 	BUG_ON(atomic_read(&conf->active_stripes)==0);
293 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
296 			list_add_tail(&sh->lru, &conf->delayed_list);
297 			if (atomic_read(&conf->preread_active_stripes)
298 			    < IO_THRESHOLD)
299 				md_wakeup_thread(conf->mddev->thread);
300 		} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
301 			   sh->bm_seq - conf->seq_write > 0)
302 			list_add_tail(&sh->lru, &conf->bitmap_list);
303 		else {
304 			clear_bit(STRIPE_DELAYED, &sh->state);
305 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
306 			if (conf->worker_cnt_per_group == 0) {
307 				list_add_tail(&sh->lru, &conf->handle_list);
308 			} else {
309 				raid5_wakeup_stripe_thread(sh);
310 				return;
311 			}
312 		}
313 		md_wakeup_thread(conf->mddev->thread);
314 	} else {
315 		BUG_ON(stripe_operations_active(sh));
316 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
317 			if (atomic_dec_return(&conf->preread_active_stripes)
318 			    < IO_THRESHOLD)
319 				md_wakeup_thread(conf->mddev->thread);
320 		atomic_dec(&conf->active_stripes);
321 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
322 			list_add_tail(&sh->lru, temp_inactive_list);
323 	}
324 }
325 
326 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
327 			     struct list_head *temp_inactive_list)
328 {
329 	if (atomic_dec_and_test(&sh->count))
330 		do_release_stripe(conf, sh, temp_inactive_list);
331 }
332 
333 /*
334  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
335  *
336  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
337  * given time. Adding stripes only takes device lock, while deleting stripes
338  * only takes hash lock.
339  */
340 static void release_inactive_stripe_list(struct r5conf *conf,
341 					 struct list_head *temp_inactive_list,
342 					 int hash)
343 {
344 	int size;
345 	bool do_wakeup = false;
346 	unsigned long flags;
347 
348 	if (hash == NR_STRIPE_HASH_LOCKS) {
349 		size = NR_STRIPE_HASH_LOCKS;
350 		hash = NR_STRIPE_HASH_LOCKS - 1;
351 	} else
352 		size = 1;
353 	while (size) {
354 		struct list_head *list = &temp_inactive_list[size - 1];
355 
356 		/*
357 		 * We don't hold any lock here yet, get_active_stripe() might
358 		 * remove stripes from the list
359 		 */
360 		if (!list_empty_careful(list)) {
361 			spin_lock_irqsave(conf->hash_locks + hash, flags);
362 			if (list_empty(conf->inactive_list + hash) &&
363 			    !list_empty(list))
364 				atomic_dec(&conf->empty_inactive_list_nr);
365 			list_splice_tail_init(list, conf->inactive_list + hash);
366 			do_wakeup = true;
367 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
368 		}
369 		size--;
370 		hash--;
371 	}
372 
373 	if (do_wakeup) {
374 		wake_up(&conf->wait_for_stripe);
375 		if (conf->retry_read_aligned)
376 			md_wakeup_thread(conf->mddev->thread);
377 	}
378 }
379 
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382 			       struct list_head *temp_inactive_list)
383 {
384 	struct stripe_head *sh;
385 	int count = 0;
386 	struct llist_node *head;
387 
388 	head = llist_del_all(&conf->released_stripes);
389 	head = llist_reverse_order(head);
390 	while (head) {
391 		int hash;
392 
393 		sh = llist_entry(head, struct stripe_head, release_list);
394 		head = llist_next(head);
395 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 		smp_mb();
397 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 		/*
399 		 * Don't worry the bit is set here, because if the bit is set
400 		 * again, the count is always > 1. This is true for
401 		 * STRIPE_ON_UNPLUG_LIST bit too.
402 		 */
403 		hash = sh->hash_lock_index;
404 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
405 		count++;
406 	}
407 
408 	return count;
409 }
410 
411 static void release_stripe(struct stripe_head *sh)
412 {
413 	struct r5conf *conf = sh->raid_conf;
414 	unsigned long flags;
415 	struct list_head list;
416 	int hash;
417 	bool wakeup;
418 
419 	/* Avoid release_list until the last reference.
420 	 */
421 	if (atomic_add_unless(&sh->count, -1, 1))
422 		return;
423 
424 	if (unlikely(!conf->mddev->thread) ||
425 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 		goto slow_path;
427 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 	if (wakeup)
429 		md_wakeup_thread(conf->mddev->thread);
430 	return;
431 slow_path:
432 	local_irq_save(flags);
433 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 		INIT_LIST_HEAD(&list);
436 		hash = sh->hash_lock_index;
437 		do_release_stripe(conf, sh, &list);
438 		spin_unlock(&conf->device_lock);
439 		release_inactive_stripe_list(conf, &list, hash);
440 	}
441 	local_irq_restore(flags);
442 }
443 
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446 	pr_debug("remove_hash(), stripe %llu\n",
447 		(unsigned long long)sh->sector);
448 
449 	hlist_del_init(&sh->hash);
450 }
451 
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
455 
456 	pr_debug("insert_hash(), stripe %llu\n",
457 		(unsigned long long)sh->sector);
458 
459 	hlist_add_head(&sh->hash, hp);
460 }
461 
462 
463 /* find an idle stripe, make sure it is unhashed, and return it. */
464 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
465 {
466 	struct stripe_head *sh = NULL;
467 	struct list_head *first;
468 
469 	if (list_empty(conf->inactive_list + hash))
470 		goto out;
471 	first = (conf->inactive_list + hash)->next;
472 	sh = list_entry(first, struct stripe_head, lru);
473 	list_del_init(first);
474 	remove_hash(sh);
475 	atomic_inc(&conf->active_stripes);
476 	BUG_ON(hash != sh->hash_lock_index);
477 	if (list_empty(conf->inactive_list + hash))
478 		atomic_inc(&conf->empty_inactive_list_nr);
479 out:
480 	return sh;
481 }
482 
483 static void shrink_buffers(struct stripe_head *sh)
484 {
485 	struct page *p;
486 	int i;
487 	int num = sh->raid_conf->pool_size;
488 
489 	for (i = 0; i < num ; i++) {
490 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
491 		p = sh->dev[i].page;
492 		if (!p)
493 			continue;
494 		sh->dev[i].page = NULL;
495 		put_page(p);
496 	}
497 }
498 
499 static int grow_buffers(struct stripe_head *sh)
500 {
501 	int i;
502 	int num = sh->raid_conf->pool_size;
503 
504 	for (i = 0; i < num; i++) {
505 		struct page *page;
506 
507 		if (!(page = alloc_page(GFP_KERNEL))) {
508 			return 1;
509 		}
510 		sh->dev[i].page = page;
511 		sh->dev[i].orig_page = page;
512 	}
513 	return 0;
514 }
515 
516 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
517 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
518 			    struct stripe_head *sh);
519 
520 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
521 {
522 	struct r5conf *conf = sh->raid_conf;
523 	int i, seq;
524 
525 	BUG_ON(atomic_read(&sh->count) != 0);
526 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
527 	BUG_ON(stripe_operations_active(sh));
528 
529 	pr_debug("init_stripe called, stripe %llu\n",
530 		(unsigned long long)sh->sector);
531 
532 	remove_hash(sh);
533 retry:
534 	seq = read_seqcount_begin(&conf->gen_lock);
535 	sh->generation = conf->generation - previous;
536 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 	sh->sector = sector;
538 	stripe_set_idx(sector, conf, previous, sh);
539 	sh->state = 0;
540 
541 
542 	for (i = sh->disks; i--; ) {
543 		struct r5dev *dev = &sh->dev[i];
544 
545 		if (dev->toread || dev->read || dev->towrite || dev->written ||
546 		    test_bit(R5_LOCKED, &dev->flags)) {
547 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
548 			       (unsigned long long)sh->sector, i, dev->toread,
549 			       dev->read, dev->towrite, dev->written,
550 			       test_bit(R5_LOCKED, &dev->flags));
551 			WARN_ON(1);
552 		}
553 		dev->flags = 0;
554 		raid5_build_block(sh, i, previous);
555 	}
556 	if (read_seqcount_retry(&conf->gen_lock, seq))
557 		goto retry;
558 	insert_hash(conf, sh);
559 	sh->cpu = smp_processor_id();
560 }
561 
562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
563 					 short generation)
564 {
565 	struct stripe_head *sh;
566 
567 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
568 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
569 		if (sh->sector == sector && sh->generation == generation)
570 			return sh;
571 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
572 	return NULL;
573 }
574 
575 /*
576  * Need to check if array has failed when deciding whether to:
577  *  - start an array
578  *  - remove non-faulty devices
579  *  - add a spare
580  *  - allow a reshape
581  * This determination is simple when no reshape is happening.
582  * However if there is a reshape, we need to carefully check
583  * both the before and after sections.
584  * This is because some failed devices may only affect one
585  * of the two sections, and some non-in_sync devices may
586  * be insync in the section most affected by failed devices.
587  */
588 static int calc_degraded(struct r5conf *conf)
589 {
590 	int degraded, degraded2;
591 	int i;
592 
593 	rcu_read_lock();
594 	degraded = 0;
595 	for (i = 0; i < conf->previous_raid_disks; i++) {
596 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
597 		if (rdev && test_bit(Faulty, &rdev->flags))
598 			rdev = rcu_dereference(conf->disks[i].replacement);
599 		if (!rdev || test_bit(Faulty, &rdev->flags))
600 			degraded++;
601 		else if (test_bit(In_sync, &rdev->flags))
602 			;
603 		else
604 			/* not in-sync or faulty.
605 			 * If the reshape increases the number of devices,
606 			 * this is being recovered by the reshape, so
607 			 * this 'previous' section is not in_sync.
608 			 * If the number of devices is being reduced however,
609 			 * the device can only be part of the array if
610 			 * we are reverting a reshape, so this section will
611 			 * be in-sync.
612 			 */
613 			if (conf->raid_disks >= conf->previous_raid_disks)
614 				degraded++;
615 	}
616 	rcu_read_unlock();
617 	if (conf->raid_disks == conf->previous_raid_disks)
618 		return degraded;
619 	rcu_read_lock();
620 	degraded2 = 0;
621 	for (i = 0; i < conf->raid_disks; i++) {
622 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
623 		if (rdev && test_bit(Faulty, &rdev->flags))
624 			rdev = rcu_dereference(conf->disks[i].replacement);
625 		if (!rdev || test_bit(Faulty, &rdev->flags))
626 			degraded2++;
627 		else if (test_bit(In_sync, &rdev->flags))
628 			;
629 		else
630 			/* not in-sync or faulty.
631 			 * If reshape increases the number of devices, this
632 			 * section has already been recovered, else it
633 			 * almost certainly hasn't.
634 			 */
635 			if (conf->raid_disks <= conf->previous_raid_disks)
636 				degraded2++;
637 	}
638 	rcu_read_unlock();
639 	if (degraded2 > degraded)
640 		return degraded2;
641 	return degraded;
642 }
643 
644 static int has_failed(struct r5conf *conf)
645 {
646 	int degraded;
647 
648 	if (conf->mddev->reshape_position == MaxSector)
649 		return conf->mddev->degraded > conf->max_degraded;
650 
651 	degraded = calc_degraded(conf);
652 	if (degraded > conf->max_degraded)
653 		return 1;
654 	return 0;
655 }
656 
657 static struct stripe_head *
658 get_active_stripe(struct r5conf *conf, sector_t sector,
659 		  int previous, int noblock, int noquiesce)
660 {
661 	struct stripe_head *sh;
662 	int hash = stripe_hash_locks_hash(sector);
663 
664 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665 
666 	spin_lock_irq(conf->hash_locks + hash);
667 
668 	do {
669 		wait_event_lock_irq(conf->wait_for_stripe,
670 				    conf->quiesce == 0 || noquiesce,
671 				    *(conf->hash_locks + hash));
672 		sh = __find_stripe(conf, sector, conf->generation - previous);
673 		if (!sh) {
674 			if (!conf->inactive_blocked)
675 				sh = get_free_stripe(conf, hash);
676 			if (noblock && sh == NULL)
677 				break;
678 			if (!sh) {
679 				conf->inactive_blocked = 1;
680 				wait_event_lock_irq(
681 					conf->wait_for_stripe,
682 					!list_empty(conf->inactive_list + hash) &&
683 					(atomic_read(&conf->active_stripes)
684 					 < (conf->max_nr_stripes * 3 / 4)
685 					 || !conf->inactive_blocked),
686 					*(conf->hash_locks + hash));
687 				conf->inactive_blocked = 0;
688 			} else {
689 				init_stripe(sh, sector, previous);
690 				atomic_inc(&sh->count);
691 			}
692 		} else if (!atomic_inc_not_zero(&sh->count)) {
693 			spin_lock(&conf->device_lock);
694 			if (!atomic_read(&sh->count)) {
695 				if (!test_bit(STRIPE_HANDLE, &sh->state))
696 					atomic_inc(&conf->active_stripes);
697 				BUG_ON(list_empty(&sh->lru) &&
698 				       !test_bit(STRIPE_EXPANDING, &sh->state));
699 				list_del_init(&sh->lru);
700 				if (sh->group) {
701 					sh->group->stripes_cnt--;
702 					sh->group = NULL;
703 				}
704 			}
705 			atomic_inc(&sh->count);
706 			spin_unlock(&conf->device_lock);
707 		}
708 	} while (sh == NULL);
709 
710 	spin_unlock_irq(conf->hash_locks + hash);
711 	return sh;
712 }
713 
714 /* Determine if 'data_offset' or 'new_data_offset' should be used
715  * in this stripe_head.
716  */
717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
718 {
719 	sector_t progress = conf->reshape_progress;
720 	/* Need a memory barrier to make sure we see the value
721 	 * of conf->generation, or ->data_offset that was set before
722 	 * reshape_progress was updated.
723 	 */
724 	smp_rmb();
725 	if (progress == MaxSector)
726 		return 0;
727 	if (sh->generation == conf->generation - 1)
728 		return 0;
729 	/* We are in a reshape, and this is a new-generation stripe,
730 	 * so use new_data_offset.
731 	 */
732 	return 1;
733 }
734 
735 static void
736 raid5_end_read_request(struct bio *bi, int error);
737 static void
738 raid5_end_write_request(struct bio *bi, int error);
739 
740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
741 {
742 	struct r5conf *conf = sh->raid_conf;
743 	int i, disks = sh->disks;
744 
745 	might_sleep();
746 
747 	for (i = disks; i--; ) {
748 		int rw;
749 		int replace_only = 0;
750 		struct bio *bi, *rbi;
751 		struct md_rdev *rdev, *rrdev = NULL;
752 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
753 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
754 				rw = WRITE_FUA;
755 			else
756 				rw = WRITE;
757 			if (test_bit(R5_Discard, &sh->dev[i].flags))
758 				rw |= REQ_DISCARD;
759 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
760 			rw = READ;
761 		else if (test_and_clear_bit(R5_WantReplace,
762 					    &sh->dev[i].flags)) {
763 			rw = WRITE;
764 			replace_only = 1;
765 		} else
766 			continue;
767 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
768 			rw |= REQ_SYNC;
769 
770 		bi = &sh->dev[i].req;
771 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
772 
773 		rcu_read_lock();
774 		rrdev = rcu_dereference(conf->disks[i].replacement);
775 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
776 		rdev = rcu_dereference(conf->disks[i].rdev);
777 		if (!rdev) {
778 			rdev = rrdev;
779 			rrdev = NULL;
780 		}
781 		if (rw & WRITE) {
782 			if (replace_only)
783 				rdev = NULL;
784 			if (rdev == rrdev)
785 				/* We raced and saw duplicates */
786 				rrdev = NULL;
787 		} else {
788 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
789 				rdev = rrdev;
790 			rrdev = NULL;
791 		}
792 
793 		if (rdev && test_bit(Faulty, &rdev->flags))
794 			rdev = NULL;
795 		if (rdev)
796 			atomic_inc(&rdev->nr_pending);
797 		if (rrdev && test_bit(Faulty, &rrdev->flags))
798 			rrdev = NULL;
799 		if (rrdev)
800 			atomic_inc(&rrdev->nr_pending);
801 		rcu_read_unlock();
802 
803 		/* We have already checked bad blocks for reads.  Now
804 		 * need to check for writes.  We never accept write errors
805 		 * on the replacement, so we don't to check rrdev.
806 		 */
807 		while ((rw & WRITE) && rdev &&
808 		       test_bit(WriteErrorSeen, &rdev->flags)) {
809 			sector_t first_bad;
810 			int bad_sectors;
811 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
812 					      &first_bad, &bad_sectors);
813 			if (!bad)
814 				break;
815 
816 			if (bad < 0) {
817 				set_bit(BlockedBadBlocks, &rdev->flags);
818 				if (!conf->mddev->external &&
819 				    conf->mddev->flags) {
820 					/* It is very unlikely, but we might
821 					 * still need to write out the
822 					 * bad block log - better give it
823 					 * a chance*/
824 					md_check_recovery(conf->mddev);
825 				}
826 				/*
827 				 * Because md_wait_for_blocked_rdev
828 				 * will dec nr_pending, we must
829 				 * increment it first.
830 				 */
831 				atomic_inc(&rdev->nr_pending);
832 				md_wait_for_blocked_rdev(rdev, conf->mddev);
833 			} else {
834 				/* Acknowledged bad block - skip the write */
835 				rdev_dec_pending(rdev, conf->mddev);
836 				rdev = NULL;
837 			}
838 		}
839 
840 		if (rdev) {
841 			if (s->syncing || s->expanding || s->expanded
842 			    || s->replacing)
843 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
844 
845 			set_bit(STRIPE_IO_STARTED, &sh->state);
846 
847 			bio_reset(bi);
848 			bi->bi_bdev = rdev->bdev;
849 			bi->bi_rw = rw;
850 			bi->bi_end_io = (rw & WRITE)
851 				? raid5_end_write_request
852 				: raid5_end_read_request;
853 			bi->bi_private = sh;
854 
855 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
856 				__func__, (unsigned long long)sh->sector,
857 				bi->bi_rw, i);
858 			atomic_inc(&sh->count);
859 			if (use_new_offset(conf, sh))
860 				bi->bi_iter.bi_sector = (sh->sector
861 						 + rdev->new_data_offset);
862 			else
863 				bi->bi_iter.bi_sector = (sh->sector
864 						 + rdev->data_offset);
865 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
866 				bi->bi_rw |= REQ_NOMERGE;
867 
868 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
869 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
870 			sh->dev[i].vec.bv_page = sh->dev[i].page;
871 			bi->bi_vcnt = 1;
872 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
873 			bi->bi_io_vec[0].bv_offset = 0;
874 			bi->bi_iter.bi_size = STRIPE_SIZE;
875 			/*
876 			 * If this is discard request, set bi_vcnt 0. We don't
877 			 * want to confuse SCSI because SCSI will replace payload
878 			 */
879 			if (rw & REQ_DISCARD)
880 				bi->bi_vcnt = 0;
881 			if (rrdev)
882 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
883 
884 			if (conf->mddev->gendisk)
885 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
886 						      bi, disk_devt(conf->mddev->gendisk),
887 						      sh->dev[i].sector);
888 			generic_make_request(bi);
889 		}
890 		if (rrdev) {
891 			if (s->syncing || s->expanding || s->expanded
892 			    || s->replacing)
893 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
894 
895 			set_bit(STRIPE_IO_STARTED, &sh->state);
896 
897 			bio_reset(rbi);
898 			rbi->bi_bdev = rrdev->bdev;
899 			rbi->bi_rw = rw;
900 			BUG_ON(!(rw & WRITE));
901 			rbi->bi_end_io = raid5_end_write_request;
902 			rbi->bi_private = sh;
903 
904 			pr_debug("%s: for %llu schedule op %ld on "
905 				 "replacement disc %d\n",
906 				__func__, (unsigned long long)sh->sector,
907 				rbi->bi_rw, i);
908 			atomic_inc(&sh->count);
909 			if (use_new_offset(conf, sh))
910 				rbi->bi_iter.bi_sector = (sh->sector
911 						  + rrdev->new_data_offset);
912 			else
913 				rbi->bi_iter.bi_sector = (sh->sector
914 						  + rrdev->data_offset);
915 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
916 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
917 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
918 			rbi->bi_vcnt = 1;
919 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
920 			rbi->bi_io_vec[0].bv_offset = 0;
921 			rbi->bi_iter.bi_size = STRIPE_SIZE;
922 			/*
923 			 * If this is discard request, set bi_vcnt 0. We don't
924 			 * want to confuse SCSI because SCSI will replace payload
925 			 */
926 			if (rw & REQ_DISCARD)
927 				rbi->bi_vcnt = 0;
928 			if (conf->mddev->gendisk)
929 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
930 						      rbi, disk_devt(conf->mddev->gendisk),
931 						      sh->dev[i].sector);
932 			generic_make_request(rbi);
933 		}
934 		if (!rdev && !rrdev) {
935 			if (rw & WRITE)
936 				set_bit(STRIPE_DEGRADED, &sh->state);
937 			pr_debug("skip op %ld on disc %d for sector %llu\n",
938 				bi->bi_rw, i, (unsigned long long)sh->sector);
939 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
940 			set_bit(STRIPE_HANDLE, &sh->state);
941 		}
942 	}
943 }
944 
945 static struct dma_async_tx_descriptor *
946 async_copy_data(int frombio, struct bio *bio, struct page **page,
947 	sector_t sector, struct dma_async_tx_descriptor *tx,
948 	struct stripe_head *sh)
949 {
950 	struct bio_vec bvl;
951 	struct bvec_iter iter;
952 	struct page *bio_page;
953 	int page_offset;
954 	struct async_submit_ctl submit;
955 	enum async_tx_flags flags = 0;
956 
957 	if (bio->bi_iter.bi_sector >= sector)
958 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
959 	else
960 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
961 
962 	if (frombio)
963 		flags |= ASYNC_TX_FENCE;
964 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
965 
966 	bio_for_each_segment(bvl, bio, iter) {
967 		int len = bvl.bv_len;
968 		int clen;
969 		int b_offset = 0;
970 
971 		if (page_offset < 0) {
972 			b_offset = -page_offset;
973 			page_offset += b_offset;
974 			len -= b_offset;
975 		}
976 
977 		if (len > 0 && page_offset + len > STRIPE_SIZE)
978 			clen = STRIPE_SIZE - page_offset;
979 		else
980 			clen = len;
981 
982 		if (clen > 0) {
983 			b_offset += bvl.bv_offset;
984 			bio_page = bvl.bv_page;
985 			if (frombio) {
986 				if (sh->raid_conf->skip_copy &&
987 				    b_offset == 0 && page_offset == 0 &&
988 				    clen == STRIPE_SIZE)
989 					*page = bio_page;
990 				else
991 					tx = async_memcpy(*page, bio_page, page_offset,
992 						  b_offset, clen, &submit);
993 			} else
994 				tx = async_memcpy(bio_page, *page, b_offset,
995 						  page_offset, clen, &submit);
996 		}
997 		/* chain the operations */
998 		submit.depend_tx = tx;
999 
1000 		if (clen < len) /* hit end of page */
1001 			break;
1002 		page_offset +=  len;
1003 	}
1004 
1005 	return tx;
1006 }
1007 
1008 static void ops_complete_biofill(void *stripe_head_ref)
1009 {
1010 	struct stripe_head *sh = stripe_head_ref;
1011 	struct bio *return_bi = NULL;
1012 	int i;
1013 
1014 	pr_debug("%s: stripe %llu\n", __func__,
1015 		(unsigned long long)sh->sector);
1016 
1017 	/* clear completed biofills */
1018 	for (i = sh->disks; i--; ) {
1019 		struct r5dev *dev = &sh->dev[i];
1020 
1021 		/* acknowledge completion of a biofill operation */
1022 		/* and check if we need to reply to a read request,
1023 		 * new R5_Wantfill requests are held off until
1024 		 * !STRIPE_BIOFILL_RUN
1025 		 */
1026 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027 			struct bio *rbi, *rbi2;
1028 
1029 			BUG_ON(!dev->read);
1030 			rbi = dev->read;
1031 			dev->read = NULL;
1032 			while (rbi && rbi->bi_iter.bi_sector <
1033 				dev->sector + STRIPE_SECTORS) {
1034 				rbi2 = r5_next_bio(rbi, dev->sector);
1035 				if (!raid5_dec_bi_active_stripes(rbi)) {
1036 					rbi->bi_next = return_bi;
1037 					return_bi = rbi;
1038 				}
1039 				rbi = rbi2;
1040 			}
1041 		}
1042 	}
1043 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1044 
1045 	return_io(return_bi);
1046 
1047 	set_bit(STRIPE_HANDLE, &sh->state);
1048 	release_stripe(sh);
1049 }
1050 
1051 static void ops_run_biofill(struct stripe_head *sh)
1052 {
1053 	struct dma_async_tx_descriptor *tx = NULL;
1054 	struct async_submit_ctl submit;
1055 	int i;
1056 
1057 	pr_debug("%s: stripe %llu\n", __func__,
1058 		(unsigned long long)sh->sector);
1059 
1060 	for (i = sh->disks; i--; ) {
1061 		struct r5dev *dev = &sh->dev[i];
1062 		if (test_bit(R5_Wantfill, &dev->flags)) {
1063 			struct bio *rbi;
1064 			spin_lock_irq(&sh->stripe_lock);
1065 			dev->read = rbi = dev->toread;
1066 			dev->toread = NULL;
1067 			spin_unlock_irq(&sh->stripe_lock);
1068 			while (rbi && rbi->bi_iter.bi_sector <
1069 				dev->sector + STRIPE_SECTORS) {
1070 				tx = async_copy_data(0, rbi, &dev->page,
1071 					dev->sector, tx, sh);
1072 				rbi = r5_next_bio(rbi, dev->sector);
1073 			}
1074 		}
1075 	}
1076 
1077 	atomic_inc(&sh->count);
1078 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079 	async_trigger_callback(&submit);
1080 }
1081 
1082 static void mark_target_uptodate(struct stripe_head *sh, int target)
1083 {
1084 	struct r5dev *tgt;
1085 
1086 	if (target < 0)
1087 		return;
1088 
1089 	tgt = &sh->dev[target];
1090 	set_bit(R5_UPTODATE, &tgt->flags);
1091 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092 	clear_bit(R5_Wantcompute, &tgt->flags);
1093 }
1094 
1095 static void ops_complete_compute(void *stripe_head_ref)
1096 {
1097 	struct stripe_head *sh = stripe_head_ref;
1098 
1099 	pr_debug("%s: stripe %llu\n", __func__,
1100 		(unsigned long long)sh->sector);
1101 
1102 	/* mark the computed target(s) as uptodate */
1103 	mark_target_uptodate(sh, sh->ops.target);
1104 	mark_target_uptodate(sh, sh->ops.target2);
1105 
1106 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107 	if (sh->check_state == check_state_compute_run)
1108 		sh->check_state = check_state_compute_result;
1109 	set_bit(STRIPE_HANDLE, &sh->state);
1110 	release_stripe(sh);
1111 }
1112 
1113 /* return a pointer to the address conversion region of the scribble buffer */
1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115 				 struct raid5_percpu *percpu)
1116 {
1117 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1118 }
1119 
1120 static struct dma_async_tx_descriptor *
1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1122 {
1123 	int disks = sh->disks;
1124 	struct page **xor_srcs = percpu->scribble;
1125 	int target = sh->ops.target;
1126 	struct r5dev *tgt = &sh->dev[target];
1127 	struct page *xor_dest = tgt->page;
1128 	int count = 0;
1129 	struct dma_async_tx_descriptor *tx;
1130 	struct async_submit_ctl submit;
1131 	int i;
1132 
1133 	pr_debug("%s: stripe %llu block: %d\n",
1134 		__func__, (unsigned long long)sh->sector, target);
1135 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1136 
1137 	for (i = disks; i--; )
1138 		if (i != target)
1139 			xor_srcs[count++] = sh->dev[i].page;
1140 
1141 	atomic_inc(&sh->count);
1142 
1143 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145 	if (unlikely(count == 1))
1146 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1147 	else
1148 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1149 
1150 	return tx;
1151 }
1152 
1153 /* set_syndrome_sources - populate source buffers for gen_syndrome
1154  * @srcs - (struct page *) array of size sh->disks
1155  * @sh - stripe_head to parse
1156  *
1157  * Populates srcs in proper layout order for the stripe and returns the
1158  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1159  * destination buffer is recorded in srcs[count] and the Q destination
1160  * is recorded in srcs[count+1]].
1161  */
1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1163 {
1164 	int disks = sh->disks;
1165 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166 	int d0_idx = raid6_d0(sh);
1167 	int count;
1168 	int i;
1169 
1170 	for (i = 0; i < disks; i++)
1171 		srcs[i] = NULL;
1172 
1173 	count = 0;
1174 	i = d0_idx;
1175 	do {
1176 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1177 
1178 		srcs[slot] = sh->dev[i].page;
1179 		i = raid6_next_disk(i, disks);
1180 	} while (i != d0_idx);
1181 
1182 	return syndrome_disks;
1183 }
1184 
1185 static struct dma_async_tx_descriptor *
1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1187 {
1188 	int disks = sh->disks;
1189 	struct page **blocks = percpu->scribble;
1190 	int target;
1191 	int qd_idx = sh->qd_idx;
1192 	struct dma_async_tx_descriptor *tx;
1193 	struct async_submit_ctl submit;
1194 	struct r5dev *tgt;
1195 	struct page *dest;
1196 	int i;
1197 	int count;
1198 
1199 	if (sh->ops.target < 0)
1200 		target = sh->ops.target2;
1201 	else if (sh->ops.target2 < 0)
1202 		target = sh->ops.target;
1203 	else
1204 		/* we should only have one valid target */
1205 		BUG();
1206 	BUG_ON(target < 0);
1207 	pr_debug("%s: stripe %llu block: %d\n",
1208 		__func__, (unsigned long long)sh->sector, target);
1209 
1210 	tgt = &sh->dev[target];
1211 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1212 	dest = tgt->page;
1213 
1214 	atomic_inc(&sh->count);
1215 
1216 	if (target == qd_idx) {
1217 		count = set_syndrome_sources(blocks, sh);
1218 		blocks[count] = NULL; /* regenerating p is not necessary */
1219 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221 				  ops_complete_compute, sh,
1222 				  to_addr_conv(sh, percpu));
1223 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1224 	} else {
1225 		/* Compute any data- or p-drive using XOR */
1226 		count = 0;
1227 		for (i = disks; i-- ; ) {
1228 			if (i == target || i == qd_idx)
1229 				continue;
1230 			blocks[count++] = sh->dev[i].page;
1231 		}
1232 
1233 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234 				  NULL, ops_complete_compute, sh,
1235 				  to_addr_conv(sh, percpu));
1236 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1237 	}
1238 
1239 	return tx;
1240 }
1241 
1242 static struct dma_async_tx_descriptor *
1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1244 {
1245 	int i, count, disks = sh->disks;
1246 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247 	int d0_idx = raid6_d0(sh);
1248 	int faila = -1, failb = -1;
1249 	int target = sh->ops.target;
1250 	int target2 = sh->ops.target2;
1251 	struct r5dev *tgt = &sh->dev[target];
1252 	struct r5dev *tgt2 = &sh->dev[target2];
1253 	struct dma_async_tx_descriptor *tx;
1254 	struct page **blocks = percpu->scribble;
1255 	struct async_submit_ctl submit;
1256 
1257 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258 		 __func__, (unsigned long long)sh->sector, target, target2);
1259 	BUG_ON(target < 0 || target2 < 0);
1260 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1262 
1263 	/* we need to open-code set_syndrome_sources to handle the
1264 	 * slot number conversion for 'faila' and 'failb'
1265 	 */
1266 	for (i = 0; i < disks ; i++)
1267 		blocks[i] = NULL;
1268 	count = 0;
1269 	i = d0_idx;
1270 	do {
1271 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1272 
1273 		blocks[slot] = sh->dev[i].page;
1274 
1275 		if (i == target)
1276 			faila = slot;
1277 		if (i == target2)
1278 			failb = slot;
1279 		i = raid6_next_disk(i, disks);
1280 	} while (i != d0_idx);
1281 
1282 	BUG_ON(faila == failb);
1283 	if (failb < faila)
1284 		swap(faila, failb);
1285 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286 		 __func__, (unsigned long long)sh->sector, faila, failb);
1287 
1288 	atomic_inc(&sh->count);
1289 
1290 	if (failb == syndrome_disks+1) {
1291 		/* Q disk is one of the missing disks */
1292 		if (faila == syndrome_disks) {
1293 			/* Missing P+Q, just recompute */
1294 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295 					  ops_complete_compute, sh,
1296 					  to_addr_conv(sh, percpu));
1297 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298 						  STRIPE_SIZE, &submit);
1299 		} else {
1300 			struct page *dest;
1301 			int data_target;
1302 			int qd_idx = sh->qd_idx;
1303 
1304 			/* Missing D+Q: recompute D from P, then recompute Q */
1305 			if (target == qd_idx)
1306 				data_target = target2;
1307 			else
1308 				data_target = target;
1309 
1310 			count = 0;
1311 			for (i = disks; i-- ; ) {
1312 				if (i == data_target || i == qd_idx)
1313 					continue;
1314 				blocks[count++] = sh->dev[i].page;
1315 			}
1316 			dest = sh->dev[data_target].page;
1317 			init_async_submit(&submit,
1318 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1319 					  NULL, NULL, NULL,
1320 					  to_addr_conv(sh, percpu));
1321 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1322 				       &submit);
1323 
1324 			count = set_syndrome_sources(blocks, sh);
1325 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326 					  ops_complete_compute, sh,
1327 					  to_addr_conv(sh, percpu));
1328 			return async_gen_syndrome(blocks, 0, count+2,
1329 						  STRIPE_SIZE, &submit);
1330 		}
1331 	} else {
1332 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333 				  ops_complete_compute, sh,
1334 				  to_addr_conv(sh, percpu));
1335 		if (failb == syndrome_disks) {
1336 			/* We're missing D+P. */
1337 			return async_raid6_datap_recov(syndrome_disks+2,
1338 						       STRIPE_SIZE, faila,
1339 						       blocks, &submit);
1340 		} else {
1341 			/* We're missing D+D. */
1342 			return async_raid6_2data_recov(syndrome_disks+2,
1343 						       STRIPE_SIZE, faila, failb,
1344 						       blocks, &submit);
1345 		}
1346 	}
1347 }
1348 
1349 
1350 static void ops_complete_prexor(void *stripe_head_ref)
1351 {
1352 	struct stripe_head *sh = stripe_head_ref;
1353 
1354 	pr_debug("%s: stripe %llu\n", __func__,
1355 		(unsigned long long)sh->sector);
1356 }
1357 
1358 static struct dma_async_tx_descriptor *
1359 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1360 	       struct dma_async_tx_descriptor *tx)
1361 {
1362 	int disks = sh->disks;
1363 	struct page **xor_srcs = percpu->scribble;
1364 	int count = 0, pd_idx = sh->pd_idx, i;
1365 	struct async_submit_ctl submit;
1366 
1367 	/* existing parity data subtracted */
1368 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1369 
1370 	pr_debug("%s: stripe %llu\n", __func__,
1371 		(unsigned long long)sh->sector);
1372 
1373 	for (i = disks; i--; ) {
1374 		struct r5dev *dev = &sh->dev[i];
1375 		/* Only process blocks that are known to be uptodate */
1376 		if (test_bit(R5_Wantdrain, &dev->flags))
1377 			xor_srcs[count++] = dev->page;
1378 	}
1379 
1380 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1381 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1382 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1383 
1384 	return tx;
1385 }
1386 
1387 static struct dma_async_tx_descriptor *
1388 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1389 {
1390 	int disks = sh->disks;
1391 	int i;
1392 
1393 	pr_debug("%s: stripe %llu\n", __func__,
1394 		(unsigned long long)sh->sector);
1395 
1396 	for (i = disks; i--; ) {
1397 		struct r5dev *dev = &sh->dev[i];
1398 		struct bio *chosen;
1399 
1400 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1401 			struct bio *wbi;
1402 
1403 			spin_lock_irq(&sh->stripe_lock);
1404 			chosen = dev->towrite;
1405 			dev->towrite = NULL;
1406 			BUG_ON(dev->written);
1407 			wbi = dev->written = chosen;
1408 			spin_unlock_irq(&sh->stripe_lock);
1409 			WARN_ON(dev->page != dev->orig_page);
1410 
1411 			while (wbi && wbi->bi_iter.bi_sector <
1412 				dev->sector + STRIPE_SECTORS) {
1413 				if (wbi->bi_rw & REQ_FUA)
1414 					set_bit(R5_WantFUA, &dev->flags);
1415 				if (wbi->bi_rw & REQ_SYNC)
1416 					set_bit(R5_SyncIO, &dev->flags);
1417 				if (wbi->bi_rw & REQ_DISCARD)
1418 					set_bit(R5_Discard, &dev->flags);
1419 				else {
1420 					tx = async_copy_data(1, wbi, &dev->page,
1421 						dev->sector, tx, sh);
1422 					if (dev->page != dev->orig_page) {
1423 						set_bit(R5_SkipCopy, &dev->flags);
1424 						clear_bit(R5_UPTODATE, &dev->flags);
1425 						clear_bit(R5_OVERWRITE, &dev->flags);
1426 					}
1427 				}
1428 				wbi = r5_next_bio(wbi, dev->sector);
1429 			}
1430 		}
1431 	}
1432 
1433 	return tx;
1434 }
1435 
1436 static void ops_complete_reconstruct(void *stripe_head_ref)
1437 {
1438 	struct stripe_head *sh = stripe_head_ref;
1439 	int disks = sh->disks;
1440 	int pd_idx = sh->pd_idx;
1441 	int qd_idx = sh->qd_idx;
1442 	int i;
1443 	bool fua = false, sync = false, discard = false;
1444 
1445 	pr_debug("%s: stripe %llu\n", __func__,
1446 		(unsigned long long)sh->sector);
1447 
1448 	for (i = disks; i--; ) {
1449 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1450 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1451 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1452 	}
1453 
1454 	for (i = disks; i--; ) {
1455 		struct r5dev *dev = &sh->dev[i];
1456 
1457 		if (dev->written || i == pd_idx || i == qd_idx) {
1458 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1459 				set_bit(R5_UPTODATE, &dev->flags);
1460 			if (fua)
1461 				set_bit(R5_WantFUA, &dev->flags);
1462 			if (sync)
1463 				set_bit(R5_SyncIO, &dev->flags);
1464 		}
1465 	}
1466 
1467 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1468 		sh->reconstruct_state = reconstruct_state_drain_result;
1469 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1470 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1471 	else {
1472 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1473 		sh->reconstruct_state = reconstruct_state_result;
1474 	}
1475 
1476 	set_bit(STRIPE_HANDLE, &sh->state);
1477 	release_stripe(sh);
1478 }
1479 
1480 static void
1481 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1482 		     struct dma_async_tx_descriptor *tx)
1483 {
1484 	int disks = sh->disks;
1485 	struct page **xor_srcs = percpu->scribble;
1486 	struct async_submit_ctl submit;
1487 	int count = 0, pd_idx = sh->pd_idx, i;
1488 	struct page *xor_dest;
1489 	int prexor = 0;
1490 	unsigned long flags;
1491 
1492 	pr_debug("%s: stripe %llu\n", __func__,
1493 		(unsigned long long)sh->sector);
1494 
1495 	for (i = 0; i < sh->disks; i++) {
1496 		if (pd_idx == i)
1497 			continue;
1498 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1499 			break;
1500 	}
1501 	if (i >= sh->disks) {
1502 		atomic_inc(&sh->count);
1503 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1504 		ops_complete_reconstruct(sh);
1505 		return;
1506 	}
1507 	/* check if prexor is active which means only process blocks
1508 	 * that are part of a read-modify-write (written)
1509 	 */
1510 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1511 		prexor = 1;
1512 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1513 		for (i = disks; i--; ) {
1514 			struct r5dev *dev = &sh->dev[i];
1515 			if (dev->written)
1516 				xor_srcs[count++] = dev->page;
1517 		}
1518 	} else {
1519 		xor_dest = sh->dev[pd_idx].page;
1520 		for (i = disks; i--; ) {
1521 			struct r5dev *dev = &sh->dev[i];
1522 			if (i != pd_idx)
1523 				xor_srcs[count++] = dev->page;
1524 		}
1525 	}
1526 
1527 	/* 1/ if we prexor'd then the dest is reused as a source
1528 	 * 2/ if we did not prexor then we are redoing the parity
1529 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1530 	 * for the synchronous xor case
1531 	 */
1532 	flags = ASYNC_TX_ACK |
1533 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1534 
1535 	atomic_inc(&sh->count);
1536 
1537 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1538 			  to_addr_conv(sh, percpu));
1539 	if (unlikely(count == 1))
1540 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1541 	else
1542 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1543 }
1544 
1545 static void
1546 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1547 		     struct dma_async_tx_descriptor *tx)
1548 {
1549 	struct async_submit_ctl submit;
1550 	struct page **blocks = percpu->scribble;
1551 	int count, i;
1552 
1553 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1554 
1555 	for (i = 0; i < sh->disks; i++) {
1556 		if (sh->pd_idx == i || sh->qd_idx == i)
1557 			continue;
1558 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1559 			break;
1560 	}
1561 	if (i >= sh->disks) {
1562 		atomic_inc(&sh->count);
1563 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1564 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1565 		ops_complete_reconstruct(sh);
1566 		return;
1567 	}
1568 
1569 	count = set_syndrome_sources(blocks, sh);
1570 
1571 	atomic_inc(&sh->count);
1572 
1573 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1574 			  sh, to_addr_conv(sh, percpu));
1575 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1576 }
1577 
1578 static void ops_complete_check(void *stripe_head_ref)
1579 {
1580 	struct stripe_head *sh = stripe_head_ref;
1581 
1582 	pr_debug("%s: stripe %llu\n", __func__,
1583 		(unsigned long long)sh->sector);
1584 
1585 	sh->check_state = check_state_check_result;
1586 	set_bit(STRIPE_HANDLE, &sh->state);
1587 	release_stripe(sh);
1588 }
1589 
1590 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1591 {
1592 	int disks = sh->disks;
1593 	int pd_idx = sh->pd_idx;
1594 	int qd_idx = sh->qd_idx;
1595 	struct page *xor_dest;
1596 	struct page **xor_srcs = percpu->scribble;
1597 	struct dma_async_tx_descriptor *tx;
1598 	struct async_submit_ctl submit;
1599 	int count;
1600 	int i;
1601 
1602 	pr_debug("%s: stripe %llu\n", __func__,
1603 		(unsigned long long)sh->sector);
1604 
1605 	count = 0;
1606 	xor_dest = sh->dev[pd_idx].page;
1607 	xor_srcs[count++] = xor_dest;
1608 	for (i = disks; i--; ) {
1609 		if (i == pd_idx || i == qd_idx)
1610 			continue;
1611 		xor_srcs[count++] = sh->dev[i].page;
1612 	}
1613 
1614 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1615 			  to_addr_conv(sh, percpu));
1616 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1617 			   &sh->ops.zero_sum_result, &submit);
1618 
1619 	atomic_inc(&sh->count);
1620 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1621 	tx = async_trigger_callback(&submit);
1622 }
1623 
1624 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1625 {
1626 	struct page **srcs = percpu->scribble;
1627 	struct async_submit_ctl submit;
1628 	int count;
1629 
1630 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1631 		(unsigned long long)sh->sector, checkp);
1632 
1633 	count = set_syndrome_sources(srcs, sh);
1634 	if (!checkp)
1635 		srcs[count] = NULL;
1636 
1637 	atomic_inc(&sh->count);
1638 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1639 			  sh, to_addr_conv(sh, percpu));
1640 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1641 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1642 }
1643 
1644 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1645 {
1646 	int overlap_clear = 0, i, disks = sh->disks;
1647 	struct dma_async_tx_descriptor *tx = NULL;
1648 	struct r5conf *conf = sh->raid_conf;
1649 	int level = conf->level;
1650 	struct raid5_percpu *percpu;
1651 	unsigned long cpu;
1652 
1653 	cpu = get_cpu();
1654 	percpu = per_cpu_ptr(conf->percpu, cpu);
1655 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1656 		ops_run_biofill(sh);
1657 		overlap_clear++;
1658 	}
1659 
1660 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1661 		if (level < 6)
1662 			tx = ops_run_compute5(sh, percpu);
1663 		else {
1664 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1665 				tx = ops_run_compute6_1(sh, percpu);
1666 			else
1667 				tx = ops_run_compute6_2(sh, percpu);
1668 		}
1669 		/* terminate the chain if reconstruct is not set to be run */
1670 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1671 			async_tx_ack(tx);
1672 	}
1673 
1674 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1675 		tx = ops_run_prexor(sh, percpu, tx);
1676 
1677 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1678 		tx = ops_run_biodrain(sh, tx);
1679 		overlap_clear++;
1680 	}
1681 
1682 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1683 		if (level < 6)
1684 			ops_run_reconstruct5(sh, percpu, tx);
1685 		else
1686 			ops_run_reconstruct6(sh, percpu, tx);
1687 	}
1688 
1689 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1690 		if (sh->check_state == check_state_run)
1691 			ops_run_check_p(sh, percpu);
1692 		else if (sh->check_state == check_state_run_q)
1693 			ops_run_check_pq(sh, percpu, 0);
1694 		else if (sh->check_state == check_state_run_pq)
1695 			ops_run_check_pq(sh, percpu, 1);
1696 		else
1697 			BUG();
1698 	}
1699 
1700 	if (overlap_clear)
1701 		for (i = disks; i--; ) {
1702 			struct r5dev *dev = &sh->dev[i];
1703 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1704 				wake_up(&sh->raid_conf->wait_for_overlap);
1705 		}
1706 	put_cpu();
1707 }
1708 
1709 static int grow_one_stripe(struct r5conf *conf, int hash)
1710 {
1711 	struct stripe_head *sh;
1712 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1713 	if (!sh)
1714 		return 0;
1715 
1716 	sh->raid_conf = conf;
1717 
1718 	spin_lock_init(&sh->stripe_lock);
1719 
1720 	if (grow_buffers(sh)) {
1721 		shrink_buffers(sh);
1722 		kmem_cache_free(conf->slab_cache, sh);
1723 		return 0;
1724 	}
1725 	sh->hash_lock_index = hash;
1726 	/* we just created an active stripe so... */
1727 	atomic_set(&sh->count, 1);
1728 	atomic_inc(&conf->active_stripes);
1729 	INIT_LIST_HEAD(&sh->lru);
1730 	release_stripe(sh);
1731 	return 1;
1732 }
1733 
1734 static int grow_stripes(struct r5conf *conf, int num)
1735 {
1736 	struct kmem_cache *sc;
1737 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1738 	int hash;
1739 
1740 	if (conf->mddev->gendisk)
1741 		sprintf(conf->cache_name[0],
1742 			"raid%d-%s", conf->level, mdname(conf->mddev));
1743 	else
1744 		sprintf(conf->cache_name[0],
1745 			"raid%d-%p", conf->level, conf->mddev);
1746 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1747 
1748 	conf->active_name = 0;
1749 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1750 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1751 			       0, 0, NULL);
1752 	if (!sc)
1753 		return 1;
1754 	conf->slab_cache = sc;
1755 	conf->pool_size = devs;
1756 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1757 	while (num--) {
1758 		if (!grow_one_stripe(conf, hash))
1759 			return 1;
1760 		conf->max_nr_stripes++;
1761 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1762 	}
1763 	return 0;
1764 }
1765 
1766 /**
1767  * scribble_len - return the required size of the scribble region
1768  * @num - total number of disks in the array
1769  *
1770  * The size must be enough to contain:
1771  * 1/ a struct page pointer for each device in the array +2
1772  * 2/ room to convert each entry in (1) to its corresponding dma
1773  *    (dma_map_page()) or page (page_address()) address.
1774  *
1775  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1776  * calculate over all devices (not just the data blocks), using zeros in place
1777  * of the P and Q blocks.
1778  */
1779 static size_t scribble_len(int num)
1780 {
1781 	size_t len;
1782 
1783 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1784 
1785 	return len;
1786 }
1787 
1788 static int resize_stripes(struct r5conf *conf, int newsize)
1789 {
1790 	/* Make all the stripes able to hold 'newsize' devices.
1791 	 * New slots in each stripe get 'page' set to a new page.
1792 	 *
1793 	 * This happens in stages:
1794 	 * 1/ create a new kmem_cache and allocate the required number of
1795 	 *    stripe_heads.
1796 	 * 2/ gather all the old stripe_heads and transfer the pages across
1797 	 *    to the new stripe_heads.  This will have the side effect of
1798 	 *    freezing the array as once all stripe_heads have been collected,
1799 	 *    no IO will be possible.  Old stripe heads are freed once their
1800 	 *    pages have been transferred over, and the old kmem_cache is
1801 	 *    freed when all stripes are done.
1802 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1803 	 *    we simple return a failre status - no need to clean anything up.
1804 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1805 	 *    If this fails, we don't bother trying the shrink the
1806 	 *    stripe_heads down again, we just leave them as they are.
1807 	 *    As each stripe_head is processed the new one is released into
1808 	 *    active service.
1809 	 *
1810 	 * Once step2 is started, we cannot afford to wait for a write,
1811 	 * so we use GFP_NOIO allocations.
1812 	 */
1813 	struct stripe_head *osh, *nsh;
1814 	LIST_HEAD(newstripes);
1815 	struct disk_info *ndisks;
1816 	unsigned long cpu;
1817 	int err;
1818 	struct kmem_cache *sc;
1819 	int i;
1820 	int hash, cnt;
1821 
1822 	if (newsize <= conf->pool_size)
1823 		return 0; /* never bother to shrink */
1824 
1825 	err = md_allow_write(conf->mddev);
1826 	if (err)
1827 		return err;
1828 
1829 	/* Step 1 */
1830 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1831 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1832 			       0, 0, NULL);
1833 	if (!sc)
1834 		return -ENOMEM;
1835 
1836 	for (i = conf->max_nr_stripes; i; i--) {
1837 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1838 		if (!nsh)
1839 			break;
1840 
1841 		nsh->raid_conf = conf;
1842 		spin_lock_init(&nsh->stripe_lock);
1843 
1844 		list_add(&nsh->lru, &newstripes);
1845 	}
1846 	if (i) {
1847 		/* didn't get enough, give up */
1848 		while (!list_empty(&newstripes)) {
1849 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1850 			list_del(&nsh->lru);
1851 			kmem_cache_free(sc, nsh);
1852 		}
1853 		kmem_cache_destroy(sc);
1854 		return -ENOMEM;
1855 	}
1856 	/* Step 2 - Must use GFP_NOIO now.
1857 	 * OK, we have enough stripes, start collecting inactive
1858 	 * stripes and copying them over
1859 	 */
1860 	hash = 0;
1861 	cnt = 0;
1862 	list_for_each_entry(nsh, &newstripes, lru) {
1863 		lock_device_hash_lock(conf, hash);
1864 		wait_event_cmd(conf->wait_for_stripe,
1865 				    !list_empty(conf->inactive_list + hash),
1866 				    unlock_device_hash_lock(conf, hash),
1867 				    lock_device_hash_lock(conf, hash));
1868 		osh = get_free_stripe(conf, hash);
1869 		unlock_device_hash_lock(conf, hash);
1870 		atomic_set(&nsh->count, 1);
1871 		for(i=0; i<conf->pool_size; i++) {
1872 			nsh->dev[i].page = osh->dev[i].page;
1873 			nsh->dev[i].orig_page = osh->dev[i].page;
1874 		}
1875 		for( ; i<newsize; i++)
1876 			nsh->dev[i].page = NULL;
1877 		nsh->hash_lock_index = hash;
1878 		kmem_cache_free(conf->slab_cache, osh);
1879 		cnt++;
1880 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1881 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1882 			hash++;
1883 			cnt = 0;
1884 		}
1885 	}
1886 	kmem_cache_destroy(conf->slab_cache);
1887 
1888 	/* Step 3.
1889 	 * At this point, we are holding all the stripes so the array
1890 	 * is completely stalled, so now is a good time to resize
1891 	 * conf->disks and the scribble region
1892 	 */
1893 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1894 	if (ndisks) {
1895 		for (i=0; i<conf->raid_disks; i++)
1896 			ndisks[i] = conf->disks[i];
1897 		kfree(conf->disks);
1898 		conf->disks = ndisks;
1899 	} else
1900 		err = -ENOMEM;
1901 
1902 	get_online_cpus();
1903 	conf->scribble_len = scribble_len(newsize);
1904 	for_each_present_cpu(cpu) {
1905 		struct raid5_percpu *percpu;
1906 		void *scribble;
1907 
1908 		percpu = per_cpu_ptr(conf->percpu, cpu);
1909 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1910 
1911 		if (scribble) {
1912 			kfree(percpu->scribble);
1913 			percpu->scribble = scribble;
1914 		} else {
1915 			err = -ENOMEM;
1916 			break;
1917 		}
1918 	}
1919 	put_online_cpus();
1920 
1921 	/* Step 4, return new stripes to service */
1922 	while(!list_empty(&newstripes)) {
1923 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1924 		list_del_init(&nsh->lru);
1925 
1926 		for (i=conf->raid_disks; i < newsize; i++)
1927 			if (nsh->dev[i].page == NULL) {
1928 				struct page *p = alloc_page(GFP_NOIO);
1929 				nsh->dev[i].page = p;
1930 				nsh->dev[i].orig_page = p;
1931 				if (!p)
1932 					err = -ENOMEM;
1933 			}
1934 		release_stripe(nsh);
1935 	}
1936 	/* critical section pass, GFP_NOIO no longer needed */
1937 
1938 	conf->slab_cache = sc;
1939 	conf->active_name = 1-conf->active_name;
1940 	conf->pool_size = newsize;
1941 	return err;
1942 }
1943 
1944 static int drop_one_stripe(struct r5conf *conf, int hash)
1945 {
1946 	struct stripe_head *sh;
1947 
1948 	spin_lock_irq(conf->hash_locks + hash);
1949 	sh = get_free_stripe(conf, hash);
1950 	spin_unlock_irq(conf->hash_locks + hash);
1951 	if (!sh)
1952 		return 0;
1953 	BUG_ON(atomic_read(&sh->count));
1954 	shrink_buffers(sh);
1955 	kmem_cache_free(conf->slab_cache, sh);
1956 	atomic_dec(&conf->active_stripes);
1957 	return 1;
1958 }
1959 
1960 static void shrink_stripes(struct r5conf *conf)
1961 {
1962 	int hash;
1963 	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1964 		while (drop_one_stripe(conf, hash))
1965 			;
1966 
1967 	if (conf->slab_cache)
1968 		kmem_cache_destroy(conf->slab_cache);
1969 	conf->slab_cache = NULL;
1970 }
1971 
1972 static void raid5_end_read_request(struct bio * bi, int error)
1973 {
1974 	struct stripe_head *sh = bi->bi_private;
1975 	struct r5conf *conf = sh->raid_conf;
1976 	int disks = sh->disks, i;
1977 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1978 	char b[BDEVNAME_SIZE];
1979 	struct md_rdev *rdev = NULL;
1980 	sector_t s;
1981 
1982 	for (i=0 ; i<disks; i++)
1983 		if (bi == &sh->dev[i].req)
1984 			break;
1985 
1986 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1987 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1988 		uptodate);
1989 	if (i == disks) {
1990 		BUG();
1991 		return;
1992 	}
1993 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1994 		/* If replacement finished while this request was outstanding,
1995 		 * 'replacement' might be NULL already.
1996 		 * In that case it moved down to 'rdev'.
1997 		 * rdev is not removed until all requests are finished.
1998 		 */
1999 		rdev = conf->disks[i].replacement;
2000 	if (!rdev)
2001 		rdev = conf->disks[i].rdev;
2002 
2003 	if (use_new_offset(conf, sh))
2004 		s = sh->sector + rdev->new_data_offset;
2005 	else
2006 		s = sh->sector + rdev->data_offset;
2007 	if (uptodate) {
2008 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2009 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2010 			/* Note that this cannot happen on a
2011 			 * replacement device.  We just fail those on
2012 			 * any error
2013 			 */
2014 			printk_ratelimited(
2015 				KERN_INFO
2016 				"md/raid:%s: read error corrected"
2017 				" (%lu sectors at %llu on %s)\n",
2018 				mdname(conf->mddev), STRIPE_SECTORS,
2019 				(unsigned long long)s,
2020 				bdevname(rdev->bdev, b));
2021 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2022 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2023 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2024 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2025 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2026 
2027 		if (atomic_read(&rdev->read_errors))
2028 			atomic_set(&rdev->read_errors, 0);
2029 	} else {
2030 		const char *bdn = bdevname(rdev->bdev, b);
2031 		int retry = 0;
2032 		int set_bad = 0;
2033 
2034 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2035 		atomic_inc(&rdev->read_errors);
2036 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2037 			printk_ratelimited(
2038 				KERN_WARNING
2039 				"md/raid:%s: read error on replacement device "
2040 				"(sector %llu on %s).\n",
2041 				mdname(conf->mddev),
2042 				(unsigned long long)s,
2043 				bdn);
2044 		else if (conf->mddev->degraded >= conf->max_degraded) {
2045 			set_bad = 1;
2046 			printk_ratelimited(
2047 				KERN_WARNING
2048 				"md/raid:%s: read error not correctable "
2049 				"(sector %llu on %s).\n",
2050 				mdname(conf->mddev),
2051 				(unsigned long long)s,
2052 				bdn);
2053 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2054 			/* Oh, no!!! */
2055 			set_bad = 1;
2056 			printk_ratelimited(
2057 				KERN_WARNING
2058 				"md/raid:%s: read error NOT corrected!! "
2059 				"(sector %llu on %s).\n",
2060 				mdname(conf->mddev),
2061 				(unsigned long long)s,
2062 				bdn);
2063 		} else if (atomic_read(&rdev->read_errors)
2064 			 > conf->max_nr_stripes)
2065 			printk(KERN_WARNING
2066 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2067 			       mdname(conf->mddev), bdn);
2068 		else
2069 			retry = 1;
2070 		if (set_bad && test_bit(In_sync, &rdev->flags)
2071 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2072 			retry = 1;
2073 		if (retry)
2074 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2075 				set_bit(R5_ReadError, &sh->dev[i].flags);
2076 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2077 			} else
2078 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2079 		else {
2080 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2081 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2082 			if (!(set_bad
2083 			      && test_bit(In_sync, &rdev->flags)
2084 			      && rdev_set_badblocks(
2085 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2086 				md_error(conf->mddev, rdev);
2087 		}
2088 	}
2089 	rdev_dec_pending(rdev, conf->mddev);
2090 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2091 	set_bit(STRIPE_HANDLE, &sh->state);
2092 	release_stripe(sh);
2093 }
2094 
2095 static void raid5_end_write_request(struct bio *bi, int error)
2096 {
2097 	struct stripe_head *sh = bi->bi_private;
2098 	struct r5conf *conf = sh->raid_conf;
2099 	int disks = sh->disks, i;
2100 	struct md_rdev *uninitialized_var(rdev);
2101 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2102 	sector_t first_bad;
2103 	int bad_sectors;
2104 	int replacement = 0;
2105 
2106 	for (i = 0 ; i < disks; i++) {
2107 		if (bi == &sh->dev[i].req) {
2108 			rdev = conf->disks[i].rdev;
2109 			break;
2110 		}
2111 		if (bi == &sh->dev[i].rreq) {
2112 			rdev = conf->disks[i].replacement;
2113 			if (rdev)
2114 				replacement = 1;
2115 			else
2116 				/* rdev was removed and 'replacement'
2117 				 * replaced it.  rdev is not removed
2118 				 * until all requests are finished.
2119 				 */
2120 				rdev = conf->disks[i].rdev;
2121 			break;
2122 		}
2123 	}
2124 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2125 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2126 		uptodate);
2127 	if (i == disks) {
2128 		BUG();
2129 		return;
2130 	}
2131 
2132 	if (replacement) {
2133 		if (!uptodate)
2134 			md_error(conf->mddev, rdev);
2135 		else if (is_badblock(rdev, sh->sector,
2136 				     STRIPE_SECTORS,
2137 				     &first_bad, &bad_sectors))
2138 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2139 	} else {
2140 		if (!uptodate) {
2141 			set_bit(STRIPE_DEGRADED, &sh->state);
2142 			set_bit(WriteErrorSeen, &rdev->flags);
2143 			set_bit(R5_WriteError, &sh->dev[i].flags);
2144 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2145 				set_bit(MD_RECOVERY_NEEDED,
2146 					&rdev->mddev->recovery);
2147 		} else if (is_badblock(rdev, sh->sector,
2148 				       STRIPE_SECTORS,
2149 				       &first_bad, &bad_sectors)) {
2150 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2151 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2152 				/* That was a successful write so make
2153 				 * sure it looks like we already did
2154 				 * a re-write.
2155 				 */
2156 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2157 		}
2158 	}
2159 	rdev_dec_pending(rdev, conf->mddev);
2160 
2161 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2162 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2163 	set_bit(STRIPE_HANDLE, &sh->state);
2164 	release_stripe(sh);
2165 }
2166 
2167 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2168 
2169 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2170 {
2171 	struct r5dev *dev = &sh->dev[i];
2172 
2173 	bio_init(&dev->req);
2174 	dev->req.bi_io_vec = &dev->vec;
2175 	dev->req.bi_max_vecs = 1;
2176 	dev->req.bi_private = sh;
2177 
2178 	bio_init(&dev->rreq);
2179 	dev->rreq.bi_io_vec = &dev->rvec;
2180 	dev->rreq.bi_max_vecs = 1;
2181 	dev->rreq.bi_private = sh;
2182 
2183 	dev->flags = 0;
2184 	dev->sector = compute_blocknr(sh, i, previous);
2185 }
2186 
2187 static void error(struct mddev *mddev, struct md_rdev *rdev)
2188 {
2189 	char b[BDEVNAME_SIZE];
2190 	struct r5conf *conf = mddev->private;
2191 	unsigned long flags;
2192 	pr_debug("raid456: error called\n");
2193 
2194 	spin_lock_irqsave(&conf->device_lock, flags);
2195 	clear_bit(In_sync, &rdev->flags);
2196 	mddev->degraded = calc_degraded(conf);
2197 	spin_unlock_irqrestore(&conf->device_lock, flags);
2198 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2199 
2200 	set_bit(Blocked, &rdev->flags);
2201 	set_bit(Faulty, &rdev->flags);
2202 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2203 	printk(KERN_ALERT
2204 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2205 	       "md/raid:%s: Operation continuing on %d devices.\n",
2206 	       mdname(mddev),
2207 	       bdevname(rdev->bdev, b),
2208 	       mdname(mddev),
2209 	       conf->raid_disks - mddev->degraded);
2210 }
2211 
2212 /*
2213  * Input: a 'big' sector number,
2214  * Output: index of the data and parity disk, and the sector # in them.
2215  */
2216 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2217 				     int previous, int *dd_idx,
2218 				     struct stripe_head *sh)
2219 {
2220 	sector_t stripe, stripe2;
2221 	sector_t chunk_number;
2222 	unsigned int chunk_offset;
2223 	int pd_idx, qd_idx;
2224 	int ddf_layout = 0;
2225 	sector_t new_sector;
2226 	int algorithm = previous ? conf->prev_algo
2227 				 : conf->algorithm;
2228 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2229 					 : conf->chunk_sectors;
2230 	int raid_disks = previous ? conf->previous_raid_disks
2231 				  : conf->raid_disks;
2232 	int data_disks = raid_disks - conf->max_degraded;
2233 
2234 	/* First compute the information on this sector */
2235 
2236 	/*
2237 	 * Compute the chunk number and the sector offset inside the chunk
2238 	 */
2239 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2240 	chunk_number = r_sector;
2241 
2242 	/*
2243 	 * Compute the stripe number
2244 	 */
2245 	stripe = chunk_number;
2246 	*dd_idx = sector_div(stripe, data_disks);
2247 	stripe2 = stripe;
2248 	/*
2249 	 * Select the parity disk based on the user selected algorithm.
2250 	 */
2251 	pd_idx = qd_idx = -1;
2252 	switch(conf->level) {
2253 	case 4:
2254 		pd_idx = data_disks;
2255 		break;
2256 	case 5:
2257 		switch (algorithm) {
2258 		case ALGORITHM_LEFT_ASYMMETRIC:
2259 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2260 			if (*dd_idx >= pd_idx)
2261 				(*dd_idx)++;
2262 			break;
2263 		case ALGORITHM_RIGHT_ASYMMETRIC:
2264 			pd_idx = sector_div(stripe2, raid_disks);
2265 			if (*dd_idx >= pd_idx)
2266 				(*dd_idx)++;
2267 			break;
2268 		case ALGORITHM_LEFT_SYMMETRIC:
2269 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2270 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2271 			break;
2272 		case ALGORITHM_RIGHT_SYMMETRIC:
2273 			pd_idx = sector_div(stripe2, raid_disks);
2274 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2275 			break;
2276 		case ALGORITHM_PARITY_0:
2277 			pd_idx = 0;
2278 			(*dd_idx)++;
2279 			break;
2280 		case ALGORITHM_PARITY_N:
2281 			pd_idx = data_disks;
2282 			break;
2283 		default:
2284 			BUG();
2285 		}
2286 		break;
2287 	case 6:
2288 
2289 		switch (algorithm) {
2290 		case ALGORITHM_LEFT_ASYMMETRIC:
2291 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2292 			qd_idx = pd_idx + 1;
2293 			if (pd_idx == raid_disks-1) {
2294 				(*dd_idx)++;	/* Q D D D P */
2295 				qd_idx = 0;
2296 			} else if (*dd_idx >= pd_idx)
2297 				(*dd_idx) += 2; /* D D P Q D */
2298 			break;
2299 		case ALGORITHM_RIGHT_ASYMMETRIC:
2300 			pd_idx = sector_div(stripe2, raid_disks);
2301 			qd_idx = pd_idx + 1;
2302 			if (pd_idx == raid_disks-1) {
2303 				(*dd_idx)++;	/* Q D D D P */
2304 				qd_idx = 0;
2305 			} else if (*dd_idx >= pd_idx)
2306 				(*dd_idx) += 2; /* D D P Q D */
2307 			break;
2308 		case ALGORITHM_LEFT_SYMMETRIC:
2309 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2310 			qd_idx = (pd_idx + 1) % raid_disks;
2311 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2312 			break;
2313 		case ALGORITHM_RIGHT_SYMMETRIC:
2314 			pd_idx = sector_div(stripe2, raid_disks);
2315 			qd_idx = (pd_idx + 1) % raid_disks;
2316 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2317 			break;
2318 
2319 		case ALGORITHM_PARITY_0:
2320 			pd_idx = 0;
2321 			qd_idx = 1;
2322 			(*dd_idx) += 2;
2323 			break;
2324 		case ALGORITHM_PARITY_N:
2325 			pd_idx = data_disks;
2326 			qd_idx = data_disks + 1;
2327 			break;
2328 
2329 		case ALGORITHM_ROTATING_ZERO_RESTART:
2330 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2331 			 * of blocks for computing Q is different.
2332 			 */
2333 			pd_idx = sector_div(stripe2, raid_disks);
2334 			qd_idx = pd_idx + 1;
2335 			if (pd_idx == raid_disks-1) {
2336 				(*dd_idx)++;	/* Q D D D P */
2337 				qd_idx = 0;
2338 			} else if (*dd_idx >= pd_idx)
2339 				(*dd_idx) += 2; /* D D P Q D */
2340 			ddf_layout = 1;
2341 			break;
2342 
2343 		case ALGORITHM_ROTATING_N_RESTART:
2344 			/* Same a left_asymmetric, by first stripe is
2345 			 * D D D P Q  rather than
2346 			 * Q D D D P
2347 			 */
2348 			stripe2 += 1;
2349 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2350 			qd_idx = pd_idx + 1;
2351 			if (pd_idx == raid_disks-1) {
2352 				(*dd_idx)++;	/* Q D D D P */
2353 				qd_idx = 0;
2354 			} else if (*dd_idx >= pd_idx)
2355 				(*dd_idx) += 2; /* D D P Q D */
2356 			ddf_layout = 1;
2357 			break;
2358 
2359 		case ALGORITHM_ROTATING_N_CONTINUE:
2360 			/* Same as left_symmetric but Q is before P */
2361 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2362 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2363 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2364 			ddf_layout = 1;
2365 			break;
2366 
2367 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2368 			/* RAID5 left_asymmetric, with Q on last device */
2369 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2370 			if (*dd_idx >= pd_idx)
2371 				(*dd_idx)++;
2372 			qd_idx = raid_disks - 1;
2373 			break;
2374 
2375 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2376 			pd_idx = sector_div(stripe2, raid_disks-1);
2377 			if (*dd_idx >= pd_idx)
2378 				(*dd_idx)++;
2379 			qd_idx = raid_disks - 1;
2380 			break;
2381 
2382 		case ALGORITHM_LEFT_SYMMETRIC_6:
2383 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2384 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2385 			qd_idx = raid_disks - 1;
2386 			break;
2387 
2388 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2389 			pd_idx = sector_div(stripe2, raid_disks-1);
2390 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2391 			qd_idx = raid_disks - 1;
2392 			break;
2393 
2394 		case ALGORITHM_PARITY_0_6:
2395 			pd_idx = 0;
2396 			(*dd_idx)++;
2397 			qd_idx = raid_disks - 1;
2398 			break;
2399 
2400 		default:
2401 			BUG();
2402 		}
2403 		break;
2404 	}
2405 
2406 	if (sh) {
2407 		sh->pd_idx = pd_idx;
2408 		sh->qd_idx = qd_idx;
2409 		sh->ddf_layout = ddf_layout;
2410 	}
2411 	/*
2412 	 * Finally, compute the new sector number
2413 	 */
2414 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2415 	return new_sector;
2416 }
2417 
2418 
2419 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2420 {
2421 	struct r5conf *conf = sh->raid_conf;
2422 	int raid_disks = sh->disks;
2423 	int data_disks = raid_disks - conf->max_degraded;
2424 	sector_t new_sector = sh->sector, check;
2425 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2426 					 : conf->chunk_sectors;
2427 	int algorithm = previous ? conf->prev_algo
2428 				 : conf->algorithm;
2429 	sector_t stripe;
2430 	int chunk_offset;
2431 	sector_t chunk_number;
2432 	int dummy1, dd_idx = i;
2433 	sector_t r_sector;
2434 	struct stripe_head sh2;
2435 
2436 
2437 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2438 	stripe = new_sector;
2439 
2440 	if (i == sh->pd_idx)
2441 		return 0;
2442 	switch(conf->level) {
2443 	case 4: break;
2444 	case 5:
2445 		switch (algorithm) {
2446 		case ALGORITHM_LEFT_ASYMMETRIC:
2447 		case ALGORITHM_RIGHT_ASYMMETRIC:
2448 			if (i > sh->pd_idx)
2449 				i--;
2450 			break;
2451 		case ALGORITHM_LEFT_SYMMETRIC:
2452 		case ALGORITHM_RIGHT_SYMMETRIC:
2453 			if (i < sh->pd_idx)
2454 				i += raid_disks;
2455 			i -= (sh->pd_idx + 1);
2456 			break;
2457 		case ALGORITHM_PARITY_0:
2458 			i -= 1;
2459 			break;
2460 		case ALGORITHM_PARITY_N:
2461 			break;
2462 		default:
2463 			BUG();
2464 		}
2465 		break;
2466 	case 6:
2467 		if (i == sh->qd_idx)
2468 			return 0; /* It is the Q disk */
2469 		switch (algorithm) {
2470 		case ALGORITHM_LEFT_ASYMMETRIC:
2471 		case ALGORITHM_RIGHT_ASYMMETRIC:
2472 		case ALGORITHM_ROTATING_ZERO_RESTART:
2473 		case ALGORITHM_ROTATING_N_RESTART:
2474 			if (sh->pd_idx == raid_disks-1)
2475 				i--;	/* Q D D D P */
2476 			else if (i > sh->pd_idx)
2477 				i -= 2; /* D D P Q D */
2478 			break;
2479 		case ALGORITHM_LEFT_SYMMETRIC:
2480 		case ALGORITHM_RIGHT_SYMMETRIC:
2481 			if (sh->pd_idx == raid_disks-1)
2482 				i--; /* Q D D D P */
2483 			else {
2484 				/* D D P Q D */
2485 				if (i < sh->pd_idx)
2486 					i += raid_disks;
2487 				i -= (sh->pd_idx + 2);
2488 			}
2489 			break;
2490 		case ALGORITHM_PARITY_0:
2491 			i -= 2;
2492 			break;
2493 		case ALGORITHM_PARITY_N:
2494 			break;
2495 		case ALGORITHM_ROTATING_N_CONTINUE:
2496 			/* Like left_symmetric, but P is before Q */
2497 			if (sh->pd_idx == 0)
2498 				i--;	/* P D D D Q */
2499 			else {
2500 				/* D D Q P D */
2501 				if (i < sh->pd_idx)
2502 					i += raid_disks;
2503 				i -= (sh->pd_idx + 1);
2504 			}
2505 			break;
2506 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2507 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2508 			if (i > sh->pd_idx)
2509 				i--;
2510 			break;
2511 		case ALGORITHM_LEFT_SYMMETRIC_6:
2512 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2513 			if (i < sh->pd_idx)
2514 				i += data_disks + 1;
2515 			i -= (sh->pd_idx + 1);
2516 			break;
2517 		case ALGORITHM_PARITY_0_6:
2518 			i -= 1;
2519 			break;
2520 		default:
2521 			BUG();
2522 		}
2523 		break;
2524 	}
2525 
2526 	chunk_number = stripe * data_disks + i;
2527 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2528 
2529 	check = raid5_compute_sector(conf, r_sector,
2530 				     previous, &dummy1, &sh2);
2531 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2532 		|| sh2.qd_idx != sh->qd_idx) {
2533 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2534 		       mdname(conf->mddev));
2535 		return 0;
2536 	}
2537 	return r_sector;
2538 }
2539 
2540 
2541 static void
2542 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2543 			 int rcw, int expand)
2544 {
2545 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2546 	struct r5conf *conf = sh->raid_conf;
2547 	int level = conf->level;
2548 
2549 	if (rcw) {
2550 
2551 		for (i = disks; i--; ) {
2552 			struct r5dev *dev = &sh->dev[i];
2553 
2554 			if (dev->towrite) {
2555 				set_bit(R5_LOCKED, &dev->flags);
2556 				set_bit(R5_Wantdrain, &dev->flags);
2557 				if (!expand)
2558 					clear_bit(R5_UPTODATE, &dev->flags);
2559 				s->locked++;
2560 			}
2561 		}
2562 		/* if we are not expanding this is a proper write request, and
2563 		 * there will be bios with new data to be drained into the
2564 		 * stripe cache
2565 		 */
2566 		if (!expand) {
2567 			if (!s->locked)
2568 				/* False alarm, nothing to do */
2569 				return;
2570 			sh->reconstruct_state = reconstruct_state_drain_run;
2571 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2572 		} else
2573 			sh->reconstruct_state = reconstruct_state_run;
2574 
2575 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2576 
2577 		if (s->locked + conf->max_degraded == disks)
2578 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2579 				atomic_inc(&conf->pending_full_writes);
2580 	} else {
2581 		BUG_ON(level == 6);
2582 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2583 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2584 
2585 		for (i = disks; i--; ) {
2586 			struct r5dev *dev = &sh->dev[i];
2587 			if (i == pd_idx)
2588 				continue;
2589 
2590 			if (dev->towrite &&
2591 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2592 			     test_bit(R5_Wantcompute, &dev->flags))) {
2593 				set_bit(R5_Wantdrain, &dev->flags);
2594 				set_bit(R5_LOCKED, &dev->flags);
2595 				clear_bit(R5_UPTODATE, &dev->flags);
2596 				s->locked++;
2597 			}
2598 		}
2599 		if (!s->locked)
2600 			/* False alarm - nothing to do */
2601 			return;
2602 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2603 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2604 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2605 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2606 	}
2607 
2608 	/* keep the parity disk(s) locked while asynchronous operations
2609 	 * are in flight
2610 	 */
2611 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2612 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2613 	s->locked++;
2614 
2615 	if (level == 6) {
2616 		int qd_idx = sh->qd_idx;
2617 		struct r5dev *dev = &sh->dev[qd_idx];
2618 
2619 		set_bit(R5_LOCKED, &dev->flags);
2620 		clear_bit(R5_UPTODATE, &dev->flags);
2621 		s->locked++;
2622 	}
2623 
2624 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2625 		__func__, (unsigned long long)sh->sector,
2626 		s->locked, s->ops_request);
2627 }
2628 
2629 /*
2630  * Each stripe/dev can have one or more bion attached.
2631  * toread/towrite point to the first in a chain.
2632  * The bi_next chain must be in order.
2633  */
2634 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2635 {
2636 	struct bio **bip;
2637 	struct r5conf *conf = sh->raid_conf;
2638 	int firstwrite=0;
2639 
2640 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2641 		(unsigned long long)bi->bi_iter.bi_sector,
2642 		(unsigned long long)sh->sector);
2643 
2644 	/*
2645 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2646 	 * reference count to avoid race. The reference count should already be
2647 	 * increased before this function is called (for example, in
2648 	 * make_request()), so other bio sharing this stripe will not free the
2649 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2650 	 * protect it.
2651 	 */
2652 	spin_lock_irq(&sh->stripe_lock);
2653 	if (forwrite) {
2654 		bip = &sh->dev[dd_idx].towrite;
2655 		if (*bip == NULL)
2656 			firstwrite = 1;
2657 	} else
2658 		bip = &sh->dev[dd_idx].toread;
2659 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2660 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2661 			goto overlap;
2662 		bip = & (*bip)->bi_next;
2663 	}
2664 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2665 		goto overlap;
2666 
2667 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2668 	if (*bip)
2669 		bi->bi_next = *bip;
2670 	*bip = bi;
2671 	raid5_inc_bi_active_stripes(bi);
2672 
2673 	if (forwrite) {
2674 		/* check if page is covered */
2675 		sector_t sector = sh->dev[dd_idx].sector;
2676 		for (bi=sh->dev[dd_idx].towrite;
2677 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2678 			     bi && bi->bi_iter.bi_sector <= sector;
2679 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2680 			if (bio_end_sector(bi) >= sector)
2681 				sector = bio_end_sector(bi);
2682 		}
2683 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2684 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2685 	}
2686 
2687 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2688 		(unsigned long long)(*bip)->bi_iter.bi_sector,
2689 		(unsigned long long)sh->sector, dd_idx);
2690 	spin_unlock_irq(&sh->stripe_lock);
2691 
2692 	if (conf->mddev->bitmap && firstwrite) {
2693 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2694 				  STRIPE_SECTORS, 0);
2695 		sh->bm_seq = conf->seq_flush+1;
2696 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2697 	}
2698 	return 1;
2699 
2700  overlap:
2701 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2702 	spin_unlock_irq(&sh->stripe_lock);
2703 	return 0;
2704 }
2705 
2706 static void end_reshape(struct r5conf *conf);
2707 
2708 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2709 			    struct stripe_head *sh)
2710 {
2711 	int sectors_per_chunk =
2712 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2713 	int dd_idx;
2714 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2715 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2716 
2717 	raid5_compute_sector(conf,
2718 			     stripe * (disks - conf->max_degraded)
2719 			     *sectors_per_chunk + chunk_offset,
2720 			     previous,
2721 			     &dd_idx, sh);
2722 }
2723 
2724 static void
2725 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2726 				struct stripe_head_state *s, int disks,
2727 				struct bio **return_bi)
2728 {
2729 	int i;
2730 	for (i = disks; i--; ) {
2731 		struct bio *bi;
2732 		int bitmap_end = 0;
2733 
2734 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2735 			struct md_rdev *rdev;
2736 			rcu_read_lock();
2737 			rdev = rcu_dereference(conf->disks[i].rdev);
2738 			if (rdev && test_bit(In_sync, &rdev->flags))
2739 				atomic_inc(&rdev->nr_pending);
2740 			else
2741 				rdev = NULL;
2742 			rcu_read_unlock();
2743 			if (rdev) {
2744 				if (!rdev_set_badblocks(
2745 					    rdev,
2746 					    sh->sector,
2747 					    STRIPE_SECTORS, 0))
2748 					md_error(conf->mddev, rdev);
2749 				rdev_dec_pending(rdev, conf->mddev);
2750 			}
2751 		}
2752 		spin_lock_irq(&sh->stripe_lock);
2753 		/* fail all writes first */
2754 		bi = sh->dev[i].towrite;
2755 		sh->dev[i].towrite = NULL;
2756 		spin_unlock_irq(&sh->stripe_lock);
2757 		if (bi)
2758 			bitmap_end = 1;
2759 
2760 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2761 			wake_up(&conf->wait_for_overlap);
2762 
2763 		while (bi && bi->bi_iter.bi_sector <
2764 			sh->dev[i].sector + STRIPE_SECTORS) {
2765 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2766 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2767 			if (!raid5_dec_bi_active_stripes(bi)) {
2768 				md_write_end(conf->mddev);
2769 				bi->bi_next = *return_bi;
2770 				*return_bi = bi;
2771 			}
2772 			bi = nextbi;
2773 		}
2774 		if (bitmap_end)
2775 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2776 				STRIPE_SECTORS, 0, 0);
2777 		bitmap_end = 0;
2778 		/* and fail all 'written' */
2779 		bi = sh->dev[i].written;
2780 		sh->dev[i].written = NULL;
2781 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2782 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2783 			sh->dev[i].page = sh->dev[i].orig_page;
2784 		}
2785 
2786 		if (bi) bitmap_end = 1;
2787 		while (bi && bi->bi_iter.bi_sector <
2788 		       sh->dev[i].sector + STRIPE_SECTORS) {
2789 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2790 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2791 			if (!raid5_dec_bi_active_stripes(bi)) {
2792 				md_write_end(conf->mddev);
2793 				bi->bi_next = *return_bi;
2794 				*return_bi = bi;
2795 			}
2796 			bi = bi2;
2797 		}
2798 
2799 		/* fail any reads if this device is non-operational and
2800 		 * the data has not reached the cache yet.
2801 		 */
2802 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2803 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2804 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2805 			spin_lock_irq(&sh->stripe_lock);
2806 			bi = sh->dev[i].toread;
2807 			sh->dev[i].toread = NULL;
2808 			spin_unlock_irq(&sh->stripe_lock);
2809 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2810 				wake_up(&conf->wait_for_overlap);
2811 			while (bi && bi->bi_iter.bi_sector <
2812 			       sh->dev[i].sector + STRIPE_SECTORS) {
2813 				struct bio *nextbi =
2814 					r5_next_bio(bi, sh->dev[i].sector);
2815 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2816 				if (!raid5_dec_bi_active_stripes(bi)) {
2817 					bi->bi_next = *return_bi;
2818 					*return_bi = bi;
2819 				}
2820 				bi = nextbi;
2821 			}
2822 		}
2823 		if (bitmap_end)
2824 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2825 					STRIPE_SECTORS, 0, 0);
2826 		/* If we were in the middle of a write the parity block might
2827 		 * still be locked - so just clear all R5_LOCKED flags
2828 		 */
2829 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2830 	}
2831 
2832 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2833 		if (atomic_dec_and_test(&conf->pending_full_writes))
2834 			md_wakeup_thread(conf->mddev->thread);
2835 }
2836 
2837 static void
2838 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2839 		   struct stripe_head_state *s)
2840 {
2841 	int abort = 0;
2842 	int i;
2843 
2844 	clear_bit(STRIPE_SYNCING, &sh->state);
2845 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2846 		wake_up(&conf->wait_for_overlap);
2847 	s->syncing = 0;
2848 	s->replacing = 0;
2849 	/* There is nothing more to do for sync/check/repair.
2850 	 * Don't even need to abort as that is handled elsewhere
2851 	 * if needed, and not always wanted e.g. if there is a known
2852 	 * bad block here.
2853 	 * For recover/replace we need to record a bad block on all
2854 	 * non-sync devices, or abort the recovery
2855 	 */
2856 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2857 		/* During recovery devices cannot be removed, so
2858 		 * locking and refcounting of rdevs is not needed
2859 		 */
2860 		for (i = 0; i < conf->raid_disks; i++) {
2861 			struct md_rdev *rdev = conf->disks[i].rdev;
2862 			if (rdev
2863 			    && !test_bit(Faulty, &rdev->flags)
2864 			    && !test_bit(In_sync, &rdev->flags)
2865 			    && !rdev_set_badblocks(rdev, sh->sector,
2866 						   STRIPE_SECTORS, 0))
2867 				abort = 1;
2868 			rdev = conf->disks[i].replacement;
2869 			if (rdev
2870 			    && !test_bit(Faulty, &rdev->flags)
2871 			    && !test_bit(In_sync, &rdev->flags)
2872 			    && !rdev_set_badblocks(rdev, sh->sector,
2873 						   STRIPE_SECTORS, 0))
2874 				abort = 1;
2875 		}
2876 		if (abort)
2877 			conf->recovery_disabled =
2878 				conf->mddev->recovery_disabled;
2879 	}
2880 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2881 }
2882 
2883 static int want_replace(struct stripe_head *sh, int disk_idx)
2884 {
2885 	struct md_rdev *rdev;
2886 	int rv = 0;
2887 	/* Doing recovery so rcu locking not required */
2888 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2889 	if (rdev
2890 	    && !test_bit(Faulty, &rdev->flags)
2891 	    && !test_bit(In_sync, &rdev->flags)
2892 	    && (rdev->recovery_offset <= sh->sector
2893 		|| rdev->mddev->recovery_cp <= sh->sector))
2894 		rv = 1;
2895 
2896 	return rv;
2897 }
2898 
2899 /* fetch_block - checks the given member device to see if its data needs
2900  * to be read or computed to satisfy a request.
2901  *
2902  * Returns 1 when no more member devices need to be checked, otherwise returns
2903  * 0 to tell the loop in handle_stripe_fill to continue
2904  */
2905 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2906 		       int disk_idx, int disks)
2907 {
2908 	struct r5dev *dev = &sh->dev[disk_idx];
2909 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2910 				  &sh->dev[s->failed_num[1]] };
2911 
2912 	/* is the data in this block needed, and can we get it? */
2913 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2914 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2915 	    (dev->toread ||
2916 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2917 	     s->syncing || s->expanding ||
2918 	     (s->replacing && want_replace(sh, disk_idx)) ||
2919 	     (s->failed >= 1 && fdev[0]->toread) ||
2920 	     (s->failed >= 2 && fdev[1]->toread) ||
2921 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2922 	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2923 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2924 	     (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2925 	      s->to_write - s->non_overwrite < sh->raid_conf->raid_disks - 2 &&
2926 	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2927 		/* we would like to get this block, possibly by computing it,
2928 		 * otherwise read it if the backing disk is insync
2929 		 */
2930 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2931 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2932 		if ((s->uptodate == disks - 1) &&
2933 		    (s->failed && (disk_idx == s->failed_num[0] ||
2934 				   disk_idx == s->failed_num[1]))) {
2935 			/* have disk failed, and we're requested to fetch it;
2936 			 * do compute it
2937 			 */
2938 			pr_debug("Computing stripe %llu block %d\n",
2939 			       (unsigned long long)sh->sector, disk_idx);
2940 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2941 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2942 			set_bit(R5_Wantcompute, &dev->flags);
2943 			sh->ops.target = disk_idx;
2944 			sh->ops.target2 = -1; /* no 2nd target */
2945 			s->req_compute = 1;
2946 			/* Careful: from this point on 'uptodate' is in the eye
2947 			 * of raid_run_ops which services 'compute' operations
2948 			 * before writes. R5_Wantcompute flags a block that will
2949 			 * be R5_UPTODATE by the time it is needed for a
2950 			 * subsequent operation.
2951 			 */
2952 			s->uptodate++;
2953 			return 1;
2954 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2955 			/* Computing 2-failure is *very* expensive; only
2956 			 * do it if failed >= 2
2957 			 */
2958 			int other;
2959 			for (other = disks; other--; ) {
2960 				if (other == disk_idx)
2961 					continue;
2962 				if (!test_bit(R5_UPTODATE,
2963 				      &sh->dev[other].flags))
2964 					break;
2965 			}
2966 			BUG_ON(other < 0);
2967 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2968 			       (unsigned long long)sh->sector,
2969 			       disk_idx, other);
2970 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2971 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2972 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2973 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2974 			sh->ops.target = disk_idx;
2975 			sh->ops.target2 = other;
2976 			s->uptodate += 2;
2977 			s->req_compute = 1;
2978 			return 1;
2979 		} else if (test_bit(R5_Insync, &dev->flags)) {
2980 			set_bit(R5_LOCKED, &dev->flags);
2981 			set_bit(R5_Wantread, &dev->flags);
2982 			s->locked++;
2983 			pr_debug("Reading block %d (sync=%d)\n",
2984 				disk_idx, s->syncing);
2985 		}
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 /**
2992  * handle_stripe_fill - read or compute data to satisfy pending requests.
2993  */
2994 static void handle_stripe_fill(struct stripe_head *sh,
2995 			       struct stripe_head_state *s,
2996 			       int disks)
2997 {
2998 	int i;
2999 
3000 	/* look for blocks to read/compute, skip this if a compute
3001 	 * is already in flight, or if the stripe contents are in the
3002 	 * midst of changing due to a write
3003 	 */
3004 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3005 	    !sh->reconstruct_state)
3006 		for (i = disks; i--; )
3007 			if (fetch_block(sh, s, i, disks))
3008 				break;
3009 	set_bit(STRIPE_HANDLE, &sh->state);
3010 }
3011 
3012 
3013 /* handle_stripe_clean_event
3014  * any written block on an uptodate or failed drive can be returned.
3015  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3016  * never LOCKED, so we don't need to test 'failed' directly.
3017  */
3018 static void handle_stripe_clean_event(struct r5conf *conf,
3019 	struct stripe_head *sh, int disks, struct bio **return_bi)
3020 {
3021 	int i;
3022 	struct r5dev *dev;
3023 	int discard_pending = 0;
3024 
3025 	for (i = disks; i--; )
3026 		if (sh->dev[i].written) {
3027 			dev = &sh->dev[i];
3028 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3029 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3030 			     test_bit(R5_Discard, &dev->flags) ||
3031 			     test_bit(R5_SkipCopy, &dev->flags))) {
3032 				/* We can return any write requests */
3033 				struct bio *wbi, *wbi2;
3034 				pr_debug("Return write for disc %d\n", i);
3035 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3036 					clear_bit(R5_UPTODATE, &dev->flags);
3037 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3038 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3039 					dev->page = dev->orig_page;
3040 				}
3041 				wbi = dev->written;
3042 				dev->written = NULL;
3043 				while (wbi && wbi->bi_iter.bi_sector <
3044 					dev->sector + STRIPE_SECTORS) {
3045 					wbi2 = r5_next_bio(wbi, dev->sector);
3046 					if (!raid5_dec_bi_active_stripes(wbi)) {
3047 						md_write_end(conf->mddev);
3048 						wbi->bi_next = *return_bi;
3049 						*return_bi = wbi;
3050 					}
3051 					wbi = wbi2;
3052 				}
3053 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3054 						STRIPE_SECTORS,
3055 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3056 						0);
3057 			} else if (test_bit(R5_Discard, &dev->flags))
3058 				discard_pending = 1;
3059 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3060 			WARN_ON(dev->page != dev->orig_page);
3061 		}
3062 	if (!discard_pending &&
3063 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3064 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3065 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3066 		if (sh->qd_idx >= 0) {
3067 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3068 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3069 		}
3070 		/* now that discard is done we can proceed with any sync */
3071 		clear_bit(STRIPE_DISCARD, &sh->state);
3072 		/*
3073 		 * SCSI discard will change some bio fields and the stripe has
3074 		 * no updated data, so remove it from hash list and the stripe
3075 		 * will be reinitialized
3076 		 */
3077 		spin_lock_irq(&conf->device_lock);
3078 		remove_hash(sh);
3079 		spin_unlock_irq(&conf->device_lock);
3080 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3081 			set_bit(STRIPE_HANDLE, &sh->state);
3082 
3083 	}
3084 
3085 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3086 		if (atomic_dec_and_test(&conf->pending_full_writes))
3087 			md_wakeup_thread(conf->mddev->thread);
3088 }
3089 
3090 static void handle_stripe_dirtying(struct r5conf *conf,
3091 				   struct stripe_head *sh,
3092 				   struct stripe_head_state *s,
3093 				   int disks)
3094 {
3095 	int rmw = 0, rcw = 0, i;
3096 	sector_t recovery_cp = conf->mddev->recovery_cp;
3097 
3098 	/* RAID6 requires 'rcw' in current implementation.
3099 	 * Otherwise, check whether resync is now happening or should start.
3100 	 * If yes, then the array is dirty (after unclean shutdown or
3101 	 * initial creation), so parity in some stripes might be inconsistent.
3102 	 * In this case, we need to always do reconstruct-write, to ensure
3103 	 * that in case of drive failure or read-error correction, we
3104 	 * generate correct data from the parity.
3105 	 */
3106 	if (conf->max_degraded == 2 ||
3107 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3108 		/* Calculate the real rcw later - for now make it
3109 		 * look like rcw is cheaper
3110 		 */
3111 		rcw = 1; rmw = 2;
3112 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3113 			 conf->max_degraded, (unsigned long long)recovery_cp,
3114 			 (unsigned long long)sh->sector);
3115 	} else for (i = disks; i--; ) {
3116 		/* would I have to read this buffer for read_modify_write */
3117 		struct r5dev *dev = &sh->dev[i];
3118 		if ((dev->towrite || i == sh->pd_idx) &&
3119 		    !test_bit(R5_LOCKED, &dev->flags) &&
3120 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3121 		      test_bit(R5_Wantcompute, &dev->flags))) {
3122 			if (test_bit(R5_Insync, &dev->flags))
3123 				rmw++;
3124 			else
3125 				rmw += 2*disks;  /* cannot read it */
3126 		}
3127 		/* Would I have to read this buffer for reconstruct_write */
3128 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3129 		    !test_bit(R5_LOCKED, &dev->flags) &&
3130 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3131 		    test_bit(R5_Wantcompute, &dev->flags))) {
3132 			if (test_bit(R5_Insync, &dev->flags))
3133 				rcw++;
3134 			else
3135 				rcw += 2*disks;
3136 		}
3137 	}
3138 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3139 		(unsigned long long)sh->sector, rmw, rcw);
3140 	set_bit(STRIPE_HANDLE, &sh->state);
3141 	if (rmw < rcw && rmw > 0) {
3142 		/* prefer read-modify-write, but need to get some data */
3143 		if (conf->mddev->queue)
3144 			blk_add_trace_msg(conf->mddev->queue,
3145 					  "raid5 rmw %llu %d",
3146 					  (unsigned long long)sh->sector, rmw);
3147 		for (i = disks; i--; ) {
3148 			struct r5dev *dev = &sh->dev[i];
3149 			if ((dev->towrite || i == sh->pd_idx) &&
3150 			    !test_bit(R5_LOCKED, &dev->flags) &&
3151 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3152 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3153 			    test_bit(R5_Insync, &dev->flags)) {
3154 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3155 					     &sh->state)) {
3156 					pr_debug("Read_old block %d for r-m-w\n",
3157 						 i);
3158 					set_bit(R5_LOCKED, &dev->flags);
3159 					set_bit(R5_Wantread, &dev->flags);
3160 					s->locked++;
3161 				} else {
3162 					set_bit(STRIPE_DELAYED, &sh->state);
3163 					set_bit(STRIPE_HANDLE, &sh->state);
3164 				}
3165 			}
3166 		}
3167 	}
3168 	if (rcw <= rmw && rcw > 0) {
3169 		/* want reconstruct write, but need to get some data */
3170 		int qread =0;
3171 		rcw = 0;
3172 		for (i = disks; i--; ) {
3173 			struct r5dev *dev = &sh->dev[i];
3174 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3175 			    i != sh->pd_idx && i != sh->qd_idx &&
3176 			    !test_bit(R5_LOCKED, &dev->flags) &&
3177 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3178 			      test_bit(R5_Wantcompute, &dev->flags))) {
3179 				rcw++;
3180 				if (test_bit(R5_Insync, &dev->flags) &&
3181 				    test_bit(STRIPE_PREREAD_ACTIVE,
3182 					     &sh->state)) {
3183 					pr_debug("Read_old block "
3184 						"%d for Reconstruct\n", i);
3185 					set_bit(R5_LOCKED, &dev->flags);
3186 					set_bit(R5_Wantread, &dev->flags);
3187 					s->locked++;
3188 					qread++;
3189 				} else {
3190 					set_bit(STRIPE_DELAYED, &sh->state);
3191 					set_bit(STRIPE_HANDLE, &sh->state);
3192 				}
3193 			}
3194 		}
3195 		if (rcw && conf->mddev->queue)
3196 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3197 					  (unsigned long long)sh->sector,
3198 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3199 	}
3200 	/* now if nothing is locked, and if we have enough data,
3201 	 * we can start a write request
3202 	 */
3203 	/* since handle_stripe can be called at any time we need to handle the
3204 	 * case where a compute block operation has been submitted and then a
3205 	 * subsequent call wants to start a write request.  raid_run_ops only
3206 	 * handles the case where compute block and reconstruct are requested
3207 	 * simultaneously.  If this is not the case then new writes need to be
3208 	 * held off until the compute completes.
3209 	 */
3210 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3211 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3212 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3213 		schedule_reconstruction(sh, s, rcw == 0, 0);
3214 }
3215 
3216 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3217 				struct stripe_head_state *s, int disks)
3218 {
3219 	struct r5dev *dev = NULL;
3220 
3221 	set_bit(STRIPE_HANDLE, &sh->state);
3222 
3223 	switch (sh->check_state) {
3224 	case check_state_idle:
3225 		/* start a new check operation if there are no failures */
3226 		if (s->failed == 0) {
3227 			BUG_ON(s->uptodate != disks);
3228 			sh->check_state = check_state_run;
3229 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3230 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3231 			s->uptodate--;
3232 			break;
3233 		}
3234 		dev = &sh->dev[s->failed_num[0]];
3235 		/* fall through */
3236 	case check_state_compute_result:
3237 		sh->check_state = check_state_idle;
3238 		if (!dev)
3239 			dev = &sh->dev[sh->pd_idx];
3240 
3241 		/* check that a write has not made the stripe insync */
3242 		if (test_bit(STRIPE_INSYNC, &sh->state))
3243 			break;
3244 
3245 		/* either failed parity check, or recovery is happening */
3246 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3247 		BUG_ON(s->uptodate != disks);
3248 
3249 		set_bit(R5_LOCKED, &dev->flags);
3250 		s->locked++;
3251 		set_bit(R5_Wantwrite, &dev->flags);
3252 
3253 		clear_bit(STRIPE_DEGRADED, &sh->state);
3254 		set_bit(STRIPE_INSYNC, &sh->state);
3255 		break;
3256 	case check_state_run:
3257 		break; /* we will be called again upon completion */
3258 	case check_state_check_result:
3259 		sh->check_state = check_state_idle;
3260 
3261 		/* if a failure occurred during the check operation, leave
3262 		 * STRIPE_INSYNC not set and let the stripe be handled again
3263 		 */
3264 		if (s->failed)
3265 			break;
3266 
3267 		/* handle a successful check operation, if parity is correct
3268 		 * we are done.  Otherwise update the mismatch count and repair
3269 		 * parity if !MD_RECOVERY_CHECK
3270 		 */
3271 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3272 			/* parity is correct (on disc,
3273 			 * not in buffer any more)
3274 			 */
3275 			set_bit(STRIPE_INSYNC, &sh->state);
3276 		else {
3277 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3278 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3279 				/* don't try to repair!! */
3280 				set_bit(STRIPE_INSYNC, &sh->state);
3281 			else {
3282 				sh->check_state = check_state_compute_run;
3283 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3284 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3285 				set_bit(R5_Wantcompute,
3286 					&sh->dev[sh->pd_idx].flags);
3287 				sh->ops.target = sh->pd_idx;
3288 				sh->ops.target2 = -1;
3289 				s->uptodate++;
3290 			}
3291 		}
3292 		break;
3293 	case check_state_compute_run:
3294 		break;
3295 	default:
3296 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3297 		       __func__, sh->check_state,
3298 		       (unsigned long long) sh->sector);
3299 		BUG();
3300 	}
3301 }
3302 
3303 
3304 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3305 				  struct stripe_head_state *s,
3306 				  int disks)
3307 {
3308 	int pd_idx = sh->pd_idx;
3309 	int qd_idx = sh->qd_idx;
3310 	struct r5dev *dev;
3311 
3312 	set_bit(STRIPE_HANDLE, &sh->state);
3313 
3314 	BUG_ON(s->failed > 2);
3315 
3316 	/* Want to check and possibly repair P and Q.
3317 	 * However there could be one 'failed' device, in which
3318 	 * case we can only check one of them, possibly using the
3319 	 * other to generate missing data
3320 	 */
3321 
3322 	switch (sh->check_state) {
3323 	case check_state_idle:
3324 		/* start a new check operation if there are < 2 failures */
3325 		if (s->failed == s->q_failed) {
3326 			/* The only possible failed device holds Q, so it
3327 			 * makes sense to check P (If anything else were failed,
3328 			 * we would have used P to recreate it).
3329 			 */
3330 			sh->check_state = check_state_run;
3331 		}
3332 		if (!s->q_failed && s->failed < 2) {
3333 			/* Q is not failed, and we didn't use it to generate
3334 			 * anything, so it makes sense to check it
3335 			 */
3336 			if (sh->check_state == check_state_run)
3337 				sh->check_state = check_state_run_pq;
3338 			else
3339 				sh->check_state = check_state_run_q;
3340 		}
3341 
3342 		/* discard potentially stale zero_sum_result */
3343 		sh->ops.zero_sum_result = 0;
3344 
3345 		if (sh->check_state == check_state_run) {
3346 			/* async_xor_zero_sum destroys the contents of P */
3347 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3348 			s->uptodate--;
3349 		}
3350 		if (sh->check_state >= check_state_run &&
3351 		    sh->check_state <= check_state_run_pq) {
3352 			/* async_syndrome_zero_sum preserves P and Q, so
3353 			 * no need to mark them !uptodate here
3354 			 */
3355 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3356 			break;
3357 		}
3358 
3359 		/* we have 2-disk failure */
3360 		BUG_ON(s->failed != 2);
3361 		/* fall through */
3362 	case check_state_compute_result:
3363 		sh->check_state = check_state_idle;
3364 
3365 		/* check that a write has not made the stripe insync */
3366 		if (test_bit(STRIPE_INSYNC, &sh->state))
3367 			break;
3368 
3369 		/* now write out any block on a failed drive,
3370 		 * or P or Q if they were recomputed
3371 		 */
3372 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3373 		if (s->failed == 2) {
3374 			dev = &sh->dev[s->failed_num[1]];
3375 			s->locked++;
3376 			set_bit(R5_LOCKED, &dev->flags);
3377 			set_bit(R5_Wantwrite, &dev->flags);
3378 		}
3379 		if (s->failed >= 1) {
3380 			dev = &sh->dev[s->failed_num[0]];
3381 			s->locked++;
3382 			set_bit(R5_LOCKED, &dev->flags);
3383 			set_bit(R5_Wantwrite, &dev->flags);
3384 		}
3385 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3386 			dev = &sh->dev[pd_idx];
3387 			s->locked++;
3388 			set_bit(R5_LOCKED, &dev->flags);
3389 			set_bit(R5_Wantwrite, &dev->flags);
3390 		}
3391 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3392 			dev = &sh->dev[qd_idx];
3393 			s->locked++;
3394 			set_bit(R5_LOCKED, &dev->flags);
3395 			set_bit(R5_Wantwrite, &dev->flags);
3396 		}
3397 		clear_bit(STRIPE_DEGRADED, &sh->state);
3398 
3399 		set_bit(STRIPE_INSYNC, &sh->state);
3400 		break;
3401 	case check_state_run:
3402 	case check_state_run_q:
3403 	case check_state_run_pq:
3404 		break; /* we will be called again upon completion */
3405 	case check_state_check_result:
3406 		sh->check_state = check_state_idle;
3407 
3408 		/* handle a successful check operation, if parity is correct
3409 		 * we are done.  Otherwise update the mismatch count and repair
3410 		 * parity if !MD_RECOVERY_CHECK
3411 		 */
3412 		if (sh->ops.zero_sum_result == 0) {
3413 			/* both parities are correct */
3414 			if (!s->failed)
3415 				set_bit(STRIPE_INSYNC, &sh->state);
3416 			else {
3417 				/* in contrast to the raid5 case we can validate
3418 				 * parity, but still have a failure to write
3419 				 * back
3420 				 */
3421 				sh->check_state = check_state_compute_result;
3422 				/* Returning at this point means that we may go
3423 				 * off and bring p and/or q uptodate again so
3424 				 * we make sure to check zero_sum_result again
3425 				 * to verify if p or q need writeback
3426 				 */
3427 			}
3428 		} else {
3429 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3430 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3431 				/* don't try to repair!! */
3432 				set_bit(STRIPE_INSYNC, &sh->state);
3433 			else {
3434 				int *target = &sh->ops.target;
3435 
3436 				sh->ops.target = -1;
3437 				sh->ops.target2 = -1;
3438 				sh->check_state = check_state_compute_run;
3439 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3440 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3441 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3442 					set_bit(R5_Wantcompute,
3443 						&sh->dev[pd_idx].flags);
3444 					*target = pd_idx;
3445 					target = &sh->ops.target2;
3446 					s->uptodate++;
3447 				}
3448 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3449 					set_bit(R5_Wantcompute,
3450 						&sh->dev[qd_idx].flags);
3451 					*target = qd_idx;
3452 					s->uptodate++;
3453 				}
3454 			}
3455 		}
3456 		break;
3457 	case check_state_compute_run:
3458 		break;
3459 	default:
3460 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3461 		       __func__, sh->check_state,
3462 		       (unsigned long long) sh->sector);
3463 		BUG();
3464 	}
3465 }
3466 
3467 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3468 {
3469 	int i;
3470 
3471 	/* We have read all the blocks in this stripe and now we need to
3472 	 * copy some of them into a target stripe for expand.
3473 	 */
3474 	struct dma_async_tx_descriptor *tx = NULL;
3475 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3476 	for (i = 0; i < sh->disks; i++)
3477 		if (i != sh->pd_idx && i != sh->qd_idx) {
3478 			int dd_idx, j;
3479 			struct stripe_head *sh2;
3480 			struct async_submit_ctl submit;
3481 
3482 			sector_t bn = compute_blocknr(sh, i, 1);
3483 			sector_t s = raid5_compute_sector(conf, bn, 0,
3484 							  &dd_idx, NULL);
3485 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3486 			if (sh2 == NULL)
3487 				/* so far only the early blocks of this stripe
3488 				 * have been requested.  When later blocks
3489 				 * get requested, we will try again
3490 				 */
3491 				continue;
3492 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3493 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3494 				/* must have already done this block */
3495 				release_stripe(sh2);
3496 				continue;
3497 			}
3498 
3499 			/* place all the copies on one channel */
3500 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3501 			tx = async_memcpy(sh2->dev[dd_idx].page,
3502 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3503 					  &submit);
3504 
3505 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3506 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3507 			for (j = 0; j < conf->raid_disks; j++)
3508 				if (j != sh2->pd_idx &&
3509 				    j != sh2->qd_idx &&
3510 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3511 					break;
3512 			if (j == conf->raid_disks) {
3513 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3514 				set_bit(STRIPE_HANDLE, &sh2->state);
3515 			}
3516 			release_stripe(sh2);
3517 
3518 		}
3519 	/* done submitting copies, wait for them to complete */
3520 	async_tx_quiesce(&tx);
3521 }
3522 
3523 /*
3524  * handle_stripe - do things to a stripe.
3525  *
3526  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3527  * state of various bits to see what needs to be done.
3528  * Possible results:
3529  *    return some read requests which now have data
3530  *    return some write requests which are safely on storage
3531  *    schedule a read on some buffers
3532  *    schedule a write of some buffers
3533  *    return confirmation of parity correctness
3534  *
3535  */
3536 
3537 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3538 {
3539 	struct r5conf *conf = sh->raid_conf;
3540 	int disks = sh->disks;
3541 	struct r5dev *dev;
3542 	int i;
3543 	int do_recovery = 0;
3544 
3545 	memset(s, 0, sizeof(*s));
3546 
3547 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3548 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3549 	s->failed_num[0] = -1;
3550 	s->failed_num[1] = -1;
3551 
3552 	/* Now to look around and see what can be done */
3553 	rcu_read_lock();
3554 	for (i=disks; i--; ) {
3555 		struct md_rdev *rdev;
3556 		sector_t first_bad;
3557 		int bad_sectors;
3558 		int is_bad = 0;
3559 
3560 		dev = &sh->dev[i];
3561 
3562 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3563 			 i, dev->flags,
3564 			 dev->toread, dev->towrite, dev->written);
3565 		/* maybe we can reply to a read
3566 		 *
3567 		 * new wantfill requests are only permitted while
3568 		 * ops_complete_biofill is guaranteed to be inactive
3569 		 */
3570 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3571 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3572 			set_bit(R5_Wantfill, &dev->flags);
3573 
3574 		/* now count some things */
3575 		if (test_bit(R5_LOCKED, &dev->flags))
3576 			s->locked++;
3577 		if (test_bit(R5_UPTODATE, &dev->flags))
3578 			s->uptodate++;
3579 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3580 			s->compute++;
3581 			BUG_ON(s->compute > 2);
3582 		}
3583 
3584 		if (test_bit(R5_Wantfill, &dev->flags))
3585 			s->to_fill++;
3586 		else if (dev->toread)
3587 			s->to_read++;
3588 		if (dev->towrite) {
3589 			s->to_write++;
3590 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3591 				s->non_overwrite++;
3592 		}
3593 		if (dev->written)
3594 			s->written++;
3595 		/* Prefer to use the replacement for reads, but only
3596 		 * if it is recovered enough and has no bad blocks.
3597 		 */
3598 		rdev = rcu_dereference(conf->disks[i].replacement);
3599 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3600 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3601 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3602 				 &first_bad, &bad_sectors))
3603 			set_bit(R5_ReadRepl, &dev->flags);
3604 		else {
3605 			if (rdev)
3606 				set_bit(R5_NeedReplace, &dev->flags);
3607 			rdev = rcu_dereference(conf->disks[i].rdev);
3608 			clear_bit(R5_ReadRepl, &dev->flags);
3609 		}
3610 		if (rdev && test_bit(Faulty, &rdev->flags))
3611 			rdev = NULL;
3612 		if (rdev) {
3613 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3614 					     &first_bad, &bad_sectors);
3615 			if (s->blocked_rdev == NULL
3616 			    && (test_bit(Blocked, &rdev->flags)
3617 				|| is_bad < 0)) {
3618 				if (is_bad < 0)
3619 					set_bit(BlockedBadBlocks,
3620 						&rdev->flags);
3621 				s->blocked_rdev = rdev;
3622 				atomic_inc(&rdev->nr_pending);
3623 			}
3624 		}
3625 		clear_bit(R5_Insync, &dev->flags);
3626 		if (!rdev)
3627 			/* Not in-sync */;
3628 		else if (is_bad) {
3629 			/* also not in-sync */
3630 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3631 			    test_bit(R5_UPTODATE, &dev->flags)) {
3632 				/* treat as in-sync, but with a read error
3633 				 * which we can now try to correct
3634 				 */
3635 				set_bit(R5_Insync, &dev->flags);
3636 				set_bit(R5_ReadError, &dev->flags);
3637 			}
3638 		} else if (test_bit(In_sync, &rdev->flags))
3639 			set_bit(R5_Insync, &dev->flags);
3640 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3641 			/* in sync if before recovery_offset */
3642 			set_bit(R5_Insync, &dev->flags);
3643 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3644 			 test_bit(R5_Expanded, &dev->flags))
3645 			/* If we've reshaped into here, we assume it is Insync.
3646 			 * We will shortly update recovery_offset to make
3647 			 * it official.
3648 			 */
3649 			set_bit(R5_Insync, &dev->flags);
3650 
3651 		if (test_bit(R5_WriteError, &dev->flags)) {
3652 			/* This flag does not apply to '.replacement'
3653 			 * only to .rdev, so make sure to check that*/
3654 			struct md_rdev *rdev2 = rcu_dereference(
3655 				conf->disks[i].rdev);
3656 			if (rdev2 == rdev)
3657 				clear_bit(R5_Insync, &dev->flags);
3658 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3659 				s->handle_bad_blocks = 1;
3660 				atomic_inc(&rdev2->nr_pending);
3661 			} else
3662 				clear_bit(R5_WriteError, &dev->flags);
3663 		}
3664 		if (test_bit(R5_MadeGood, &dev->flags)) {
3665 			/* This flag does not apply to '.replacement'
3666 			 * only to .rdev, so make sure to check that*/
3667 			struct md_rdev *rdev2 = rcu_dereference(
3668 				conf->disks[i].rdev);
3669 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3670 				s->handle_bad_blocks = 1;
3671 				atomic_inc(&rdev2->nr_pending);
3672 			} else
3673 				clear_bit(R5_MadeGood, &dev->flags);
3674 		}
3675 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3676 			struct md_rdev *rdev2 = rcu_dereference(
3677 				conf->disks[i].replacement);
3678 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3679 				s->handle_bad_blocks = 1;
3680 				atomic_inc(&rdev2->nr_pending);
3681 			} else
3682 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3683 		}
3684 		if (!test_bit(R5_Insync, &dev->flags)) {
3685 			/* The ReadError flag will just be confusing now */
3686 			clear_bit(R5_ReadError, &dev->flags);
3687 			clear_bit(R5_ReWrite, &dev->flags);
3688 		}
3689 		if (test_bit(R5_ReadError, &dev->flags))
3690 			clear_bit(R5_Insync, &dev->flags);
3691 		if (!test_bit(R5_Insync, &dev->flags)) {
3692 			if (s->failed < 2)
3693 				s->failed_num[s->failed] = i;
3694 			s->failed++;
3695 			if (rdev && !test_bit(Faulty, &rdev->flags))
3696 				do_recovery = 1;
3697 		}
3698 	}
3699 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3700 		/* If there is a failed device being replaced,
3701 		 *     we must be recovering.
3702 		 * else if we are after recovery_cp, we must be syncing
3703 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3704 		 * else we can only be replacing
3705 		 * sync and recovery both need to read all devices, and so
3706 		 * use the same flag.
3707 		 */
3708 		if (do_recovery ||
3709 		    sh->sector >= conf->mddev->recovery_cp ||
3710 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3711 			s->syncing = 1;
3712 		else
3713 			s->replacing = 1;
3714 	}
3715 	rcu_read_unlock();
3716 }
3717 
3718 static void handle_stripe(struct stripe_head *sh)
3719 {
3720 	struct stripe_head_state s;
3721 	struct r5conf *conf = sh->raid_conf;
3722 	int i;
3723 	int prexor;
3724 	int disks = sh->disks;
3725 	struct r5dev *pdev, *qdev;
3726 
3727 	clear_bit(STRIPE_HANDLE, &sh->state);
3728 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3729 		/* already being handled, ensure it gets handled
3730 		 * again when current action finishes */
3731 		set_bit(STRIPE_HANDLE, &sh->state);
3732 		return;
3733 	}
3734 
3735 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3736 		spin_lock(&sh->stripe_lock);
3737 		/* Cannot process 'sync' concurrently with 'discard' */
3738 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3739 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3740 			set_bit(STRIPE_SYNCING, &sh->state);
3741 			clear_bit(STRIPE_INSYNC, &sh->state);
3742 			clear_bit(STRIPE_REPLACED, &sh->state);
3743 		}
3744 		spin_unlock(&sh->stripe_lock);
3745 	}
3746 	clear_bit(STRIPE_DELAYED, &sh->state);
3747 
3748 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3749 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3750 	       (unsigned long long)sh->sector, sh->state,
3751 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3752 	       sh->check_state, sh->reconstruct_state);
3753 
3754 	analyse_stripe(sh, &s);
3755 
3756 	if (s.handle_bad_blocks) {
3757 		set_bit(STRIPE_HANDLE, &sh->state);
3758 		goto finish;
3759 	}
3760 
3761 	if (unlikely(s.blocked_rdev)) {
3762 		if (s.syncing || s.expanding || s.expanded ||
3763 		    s.replacing || s.to_write || s.written) {
3764 			set_bit(STRIPE_HANDLE, &sh->state);
3765 			goto finish;
3766 		}
3767 		/* There is nothing for the blocked_rdev to block */
3768 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3769 		s.blocked_rdev = NULL;
3770 	}
3771 
3772 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3773 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3774 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3775 	}
3776 
3777 	pr_debug("locked=%d uptodate=%d to_read=%d"
3778 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3779 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3780 	       s.failed_num[0], s.failed_num[1]);
3781 	/* check if the array has lost more than max_degraded devices and,
3782 	 * if so, some requests might need to be failed.
3783 	 */
3784 	if (s.failed > conf->max_degraded) {
3785 		sh->check_state = 0;
3786 		sh->reconstruct_state = 0;
3787 		if (s.to_read+s.to_write+s.written)
3788 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3789 		if (s.syncing + s.replacing)
3790 			handle_failed_sync(conf, sh, &s);
3791 	}
3792 
3793 	/* Now we check to see if any write operations have recently
3794 	 * completed
3795 	 */
3796 	prexor = 0;
3797 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3798 		prexor = 1;
3799 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3800 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3801 		sh->reconstruct_state = reconstruct_state_idle;
3802 
3803 		/* All the 'written' buffers and the parity block are ready to
3804 		 * be written back to disk
3805 		 */
3806 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3807 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3808 		BUG_ON(sh->qd_idx >= 0 &&
3809 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3810 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3811 		for (i = disks; i--; ) {
3812 			struct r5dev *dev = &sh->dev[i];
3813 			if (test_bit(R5_LOCKED, &dev->flags) &&
3814 				(i == sh->pd_idx || i == sh->qd_idx ||
3815 				 dev->written)) {
3816 				pr_debug("Writing block %d\n", i);
3817 				set_bit(R5_Wantwrite, &dev->flags);
3818 				if (prexor)
3819 					continue;
3820 				if (s.failed > 1)
3821 					continue;
3822 				if (!test_bit(R5_Insync, &dev->flags) ||
3823 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3824 				     s.failed == 0))
3825 					set_bit(STRIPE_INSYNC, &sh->state);
3826 			}
3827 		}
3828 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3829 			s.dec_preread_active = 1;
3830 	}
3831 
3832 	/*
3833 	 * might be able to return some write requests if the parity blocks
3834 	 * are safe, or on a failed drive
3835 	 */
3836 	pdev = &sh->dev[sh->pd_idx];
3837 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3838 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3839 	qdev = &sh->dev[sh->qd_idx];
3840 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3841 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3842 		|| conf->level < 6;
3843 
3844 	if (s.written &&
3845 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3846 			     && !test_bit(R5_LOCKED, &pdev->flags)
3847 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3848 				 test_bit(R5_Discard, &pdev->flags))))) &&
3849 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3850 			     && !test_bit(R5_LOCKED, &qdev->flags)
3851 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3852 				 test_bit(R5_Discard, &qdev->flags))))))
3853 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3854 
3855 	/* Now we might consider reading some blocks, either to check/generate
3856 	 * parity, or to satisfy requests
3857 	 * or to load a block that is being partially written.
3858 	 */
3859 	if (s.to_read || s.non_overwrite
3860 	    || (conf->level == 6 && s.to_write && s.failed)
3861 	    || (s.syncing && (s.uptodate + s.compute < disks))
3862 	    || s.replacing
3863 	    || s.expanding)
3864 		handle_stripe_fill(sh, &s, disks);
3865 
3866 	/* Now to consider new write requests and what else, if anything
3867 	 * should be read.  We do not handle new writes when:
3868 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3869 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3870 	 *    block.
3871 	 */
3872 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3873 		handle_stripe_dirtying(conf, sh, &s, disks);
3874 
3875 	/* maybe we need to check and possibly fix the parity for this stripe
3876 	 * Any reads will already have been scheduled, so we just see if enough
3877 	 * data is available.  The parity check is held off while parity
3878 	 * dependent operations are in flight.
3879 	 */
3880 	if (sh->check_state ||
3881 	    (s.syncing && s.locked == 0 &&
3882 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3883 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3884 		if (conf->level == 6)
3885 			handle_parity_checks6(conf, sh, &s, disks);
3886 		else
3887 			handle_parity_checks5(conf, sh, &s, disks);
3888 	}
3889 
3890 	if ((s.replacing || s.syncing) && s.locked == 0
3891 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3892 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3893 		/* Write out to replacement devices where possible */
3894 		for (i = 0; i < conf->raid_disks; i++)
3895 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3896 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3897 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3898 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3899 				s.locked++;
3900 			}
3901 		if (s.replacing)
3902 			set_bit(STRIPE_INSYNC, &sh->state);
3903 		set_bit(STRIPE_REPLACED, &sh->state);
3904 	}
3905 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3906 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3907 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3908 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3909 		clear_bit(STRIPE_SYNCING, &sh->state);
3910 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3911 			wake_up(&conf->wait_for_overlap);
3912 	}
3913 
3914 	/* If the failed drives are just a ReadError, then we might need
3915 	 * to progress the repair/check process
3916 	 */
3917 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3918 		for (i = 0; i < s.failed; i++) {
3919 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3920 			if (test_bit(R5_ReadError, &dev->flags)
3921 			    && !test_bit(R5_LOCKED, &dev->flags)
3922 			    && test_bit(R5_UPTODATE, &dev->flags)
3923 				) {
3924 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3925 					set_bit(R5_Wantwrite, &dev->flags);
3926 					set_bit(R5_ReWrite, &dev->flags);
3927 					set_bit(R5_LOCKED, &dev->flags);
3928 					s.locked++;
3929 				} else {
3930 					/* let's read it back */
3931 					set_bit(R5_Wantread, &dev->flags);
3932 					set_bit(R5_LOCKED, &dev->flags);
3933 					s.locked++;
3934 				}
3935 			}
3936 		}
3937 
3938 
3939 	/* Finish reconstruct operations initiated by the expansion process */
3940 	if (sh->reconstruct_state == reconstruct_state_result) {
3941 		struct stripe_head *sh_src
3942 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3943 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3944 			/* sh cannot be written until sh_src has been read.
3945 			 * so arrange for sh to be delayed a little
3946 			 */
3947 			set_bit(STRIPE_DELAYED, &sh->state);
3948 			set_bit(STRIPE_HANDLE, &sh->state);
3949 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3950 					      &sh_src->state))
3951 				atomic_inc(&conf->preread_active_stripes);
3952 			release_stripe(sh_src);
3953 			goto finish;
3954 		}
3955 		if (sh_src)
3956 			release_stripe(sh_src);
3957 
3958 		sh->reconstruct_state = reconstruct_state_idle;
3959 		clear_bit(STRIPE_EXPANDING, &sh->state);
3960 		for (i = conf->raid_disks; i--; ) {
3961 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3962 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3963 			s.locked++;
3964 		}
3965 	}
3966 
3967 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3968 	    !sh->reconstruct_state) {
3969 		/* Need to write out all blocks after computing parity */
3970 		sh->disks = conf->raid_disks;
3971 		stripe_set_idx(sh->sector, conf, 0, sh);
3972 		schedule_reconstruction(sh, &s, 1, 1);
3973 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3974 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3975 		atomic_dec(&conf->reshape_stripes);
3976 		wake_up(&conf->wait_for_overlap);
3977 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3978 	}
3979 
3980 	if (s.expanding && s.locked == 0 &&
3981 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3982 		handle_stripe_expansion(conf, sh);
3983 
3984 finish:
3985 	/* wait for this device to become unblocked */
3986 	if (unlikely(s.blocked_rdev)) {
3987 		if (conf->mddev->external)
3988 			md_wait_for_blocked_rdev(s.blocked_rdev,
3989 						 conf->mddev);
3990 		else
3991 			/* Internal metadata will immediately
3992 			 * be written by raid5d, so we don't
3993 			 * need to wait here.
3994 			 */
3995 			rdev_dec_pending(s.blocked_rdev,
3996 					 conf->mddev);
3997 	}
3998 
3999 	if (s.handle_bad_blocks)
4000 		for (i = disks; i--; ) {
4001 			struct md_rdev *rdev;
4002 			struct r5dev *dev = &sh->dev[i];
4003 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4004 				/* We own a safe reference to the rdev */
4005 				rdev = conf->disks[i].rdev;
4006 				if (!rdev_set_badblocks(rdev, sh->sector,
4007 							STRIPE_SECTORS, 0))
4008 					md_error(conf->mddev, rdev);
4009 				rdev_dec_pending(rdev, conf->mddev);
4010 			}
4011 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4012 				rdev = conf->disks[i].rdev;
4013 				rdev_clear_badblocks(rdev, sh->sector,
4014 						     STRIPE_SECTORS, 0);
4015 				rdev_dec_pending(rdev, conf->mddev);
4016 			}
4017 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4018 				rdev = conf->disks[i].replacement;
4019 				if (!rdev)
4020 					/* rdev have been moved down */
4021 					rdev = conf->disks[i].rdev;
4022 				rdev_clear_badblocks(rdev, sh->sector,
4023 						     STRIPE_SECTORS, 0);
4024 				rdev_dec_pending(rdev, conf->mddev);
4025 			}
4026 		}
4027 
4028 	if (s.ops_request)
4029 		raid_run_ops(sh, s.ops_request);
4030 
4031 	ops_run_io(sh, &s);
4032 
4033 	if (s.dec_preread_active) {
4034 		/* We delay this until after ops_run_io so that if make_request
4035 		 * is waiting on a flush, it won't continue until the writes
4036 		 * have actually been submitted.
4037 		 */
4038 		atomic_dec(&conf->preread_active_stripes);
4039 		if (atomic_read(&conf->preread_active_stripes) <
4040 		    IO_THRESHOLD)
4041 			md_wakeup_thread(conf->mddev->thread);
4042 	}
4043 
4044 	return_io(s.return_bi);
4045 
4046 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4047 }
4048 
4049 static void raid5_activate_delayed(struct r5conf *conf)
4050 {
4051 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4052 		while (!list_empty(&conf->delayed_list)) {
4053 			struct list_head *l = conf->delayed_list.next;
4054 			struct stripe_head *sh;
4055 			sh = list_entry(l, struct stripe_head, lru);
4056 			list_del_init(l);
4057 			clear_bit(STRIPE_DELAYED, &sh->state);
4058 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4059 				atomic_inc(&conf->preread_active_stripes);
4060 			list_add_tail(&sh->lru, &conf->hold_list);
4061 			raid5_wakeup_stripe_thread(sh);
4062 		}
4063 	}
4064 }
4065 
4066 static void activate_bit_delay(struct r5conf *conf,
4067 	struct list_head *temp_inactive_list)
4068 {
4069 	/* device_lock is held */
4070 	struct list_head head;
4071 	list_add(&head, &conf->bitmap_list);
4072 	list_del_init(&conf->bitmap_list);
4073 	while (!list_empty(&head)) {
4074 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4075 		int hash;
4076 		list_del_init(&sh->lru);
4077 		atomic_inc(&sh->count);
4078 		hash = sh->hash_lock_index;
4079 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4080 	}
4081 }
4082 
4083 int md_raid5_congested(struct mddev *mddev, int bits)
4084 {
4085 	struct r5conf *conf = mddev->private;
4086 
4087 	/* No difference between reads and writes.  Just check
4088 	 * how busy the stripe_cache is
4089 	 */
4090 
4091 	if (conf->inactive_blocked)
4092 		return 1;
4093 	if (conf->quiesce)
4094 		return 1;
4095 	if (atomic_read(&conf->empty_inactive_list_nr))
4096 		return 1;
4097 
4098 	return 0;
4099 }
4100 EXPORT_SYMBOL_GPL(md_raid5_congested);
4101 
4102 static int raid5_congested(void *data, int bits)
4103 {
4104 	struct mddev *mddev = data;
4105 
4106 	return mddev_congested(mddev, bits) ||
4107 		md_raid5_congested(mddev, bits);
4108 }
4109 
4110 /* We want read requests to align with chunks where possible,
4111  * but write requests don't need to.
4112  */
4113 static int raid5_mergeable_bvec(struct request_queue *q,
4114 				struct bvec_merge_data *bvm,
4115 				struct bio_vec *biovec)
4116 {
4117 	struct mddev *mddev = q->queuedata;
4118 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4119 	int max;
4120 	unsigned int chunk_sectors = mddev->chunk_sectors;
4121 	unsigned int bio_sectors = bvm->bi_size >> 9;
4122 
4123 	if ((bvm->bi_rw & 1) == WRITE)
4124 		return biovec->bv_len; /* always allow writes to be mergeable */
4125 
4126 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4127 		chunk_sectors = mddev->new_chunk_sectors;
4128 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4129 	if (max < 0) max = 0;
4130 	if (max <= biovec->bv_len && bio_sectors == 0)
4131 		return biovec->bv_len;
4132 	else
4133 		return max;
4134 }
4135 
4136 
4137 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4138 {
4139 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4140 	unsigned int chunk_sectors = mddev->chunk_sectors;
4141 	unsigned int bio_sectors = bio_sectors(bio);
4142 
4143 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4144 		chunk_sectors = mddev->new_chunk_sectors;
4145 	return  chunk_sectors >=
4146 		((sector & (chunk_sectors - 1)) + bio_sectors);
4147 }
4148 
4149 /*
4150  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4151  *  later sampled by raid5d.
4152  */
4153 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4154 {
4155 	unsigned long flags;
4156 
4157 	spin_lock_irqsave(&conf->device_lock, flags);
4158 
4159 	bi->bi_next = conf->retry_read_aligned_list;
4160 	conf->retry_read_aligned_list = bi;
4161 
4162 	spin_unlock_irqrestore(&conf->device_lock, flags);
4163 	md_wakeup_thread(conf->mddev->thread);
4164 }
4165 
4166 
4167 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4168 {
4169 	struct bio *bi;
4170 
4171 	bi = conf->retry_read_aligned;
4172 	if (bi) {
4173 		conf->retry_read_aligned = NULL;
4174 		return bi;
4175 	}
4176 	bi = conf->retry_read_aligned_list;
4177 	if(bi) {
4178 		conf->retry_read_aligned_list = bi->bi_next;
4179 		bi->bi_next = NULL;
4180 		/*
4181 		 * this sets the active strip count to 1 and the processed
4182 		 * strip count to zero (upper 8 bits)
4183 		 */
4184 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4185 	}
4186 
4187 	return bi;
4188 }
4189 
4190 
4191 /*
4192  *  The "raid5_align_endio" should check if the read succeeded and if it
4193  *  did, call bio_endio on the original bio (having bio_put the new bio
4194  *  first).
4195  *  If the read failed..
4196  */
4197 static void raid5_align_endio(struct bio *bi, int error)
4198 {
4199 	struct bio* raid_bi  = bi->bi_private;
4200 	struct mddev *mddev;
4201 	struct r5conf *conf;
4202 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4203 	struct md_rdev *rdev;
4204 
4205 	bio_put(bi);
4206 
4207 	rdev = (void*)raid_bi->bi_next;
4208 	raid_bi->bi_next = NULL;
4209 	mddev = rdev->mddev;
4210 	conf = mddev->private;
4211 
4212 	rdev_dec_pending(rdev, conf->mddev);
4213 
4214 	if (!error && uptodate) {
4215 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4216 					 raid_bi, 0);
4217 		bio_endio(raid_bi, 0);
4218 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4219 			wake_up(&conf->wait_for_stripe);
4220 		return;
4221 	}
4222 
4223 
4224 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4225 
4226 	add_bio_to_retry(raid_bi, conf);
4227 }
4228 
4229 static int bio_fits_rdev(struct bio *bi)
4230 {
4231 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4232 
4233 	if (bio_sectors(bi) > queue_max_sectors(q))
4234 		return 0;
4235 	blk_recount_segments(q, bi);
4236 	if (bi->bi_phys_segments > queue_max_segments(q))
4237 		return 0;
4238 
4239 	if (q->merge_bvec_fn)
4240 		/* it's too hard to apply the merge_bvec_fn at this stage,
4241 		 * just just give up
4242 		 */
4243 		return 0;
4244 
4245 	return 1;
4246 }
4247 
4248 
4249 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4250 {
4251 	struct r5conf *conf = mddev->private;
4252 	int dd_idx;
4253 	struct bio* align_bi;
4254 	struct md_rdev *rdev;
4255 	sector_t end_sector;
4256 
4257 	if (!in_chunk_boundary(mddev, raid_bio)) {
4258 		pr_debug("chunk_aligned_read : non aligned\n");
4259 		return 0;
4260 	}
4261 	/*
4262 	 * use bio_clone_mddev to make a copy of the bio
4263 	 */
4264 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4265 	if (!align_bi)
4266 		return 0;
4267 	/*
4268 	 *   set bi_end_io to a new function, and set bi_private to the
4269 	 *     original bio.
4270 	 */
4271 	align_bi->bi_end_io  = raid5_align_endio;
4272 	align_bi->bi_private = raid_bio;
4273 	/*
4274 	 *	compute position
4275 	 */
4276 	align_bi->bi_iter.bi_sector =
4277 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4278 				     0, &dd_idx, NULL);
4279 
4280 	end_sector = bio_end_sector(align_bi);
4281 	rcu_read_lock();
4282 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4283 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4284 	    rdev->recovery_offset < end_sector) {
4285 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4286 		if (rdev &&
4287 		    (test_bit(Faulty, &rdev->flags) ||
4288 		    !(test_bit(In_sync, &rdev->flags) ||
4289 		      rdev->recovery_offset >= end_sector)))
4290 			rdev = NULL;
4291 	}
4292 	if (rdev) {
4293 		sector_t first_bad;
4294 		int bad_sectors;
4295 
4296 		atomic_inc(&rdev->nr_pending);
4297 		rcu_read_unlock();
4298 		raid_bio->bi_next = (void*)rdev;
4299 		align_bi->bi_bdev =  rdev->bdev;
4300 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4301 
4302 		if (!bio_fits_rdev(align_bi) ||
4303 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4304 				bio_sectors(align_bi),
4305 				&first_bad, &bad_sectors)) {
4306 			/* too big in some way, or has a known bad block */
4307 			bio_put(align_bi);
4308 			rdev_dec_pending(rdev, mddev);
4309 			return 0;
4310 		}
4311 
4312 		/* No reshape active, so we can trust rdev->data_offset */
4313 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4314 
4315 		spin_lock_irq(&conf->device_lock);
4316 		wait_event_lock_irq(conf->wait_for_stripe,
4317 				    conf->quiesce == 0,
4318 				    conf->device_lock);
4319 		atomic_inc(&conf->active_aligned_reads);
4320 		spin_unlock_irq(&conf->device_lock);
4321 
4322 		if (mddev->gendisk)
4323 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4324 					      align_bi, disk_devt(mddev->gendisk),
4325 					      raid_bio->bi_iter.bi_sector);
4326 		generic_make_request(align_bi);
4327 		return 1;
4328 	} else {
4329 		rcu_read_unlock();
4330 		bio_put(align_bi);
4331 		return 0;
4332 	}
4333 }
4334 
4335 /* __get_priority_stripe - get the next stripe to process
4336  *
4337  * Full stripe writes are allowed to pass preread active stripes up until
4338  * the bypass_threshold is exceeded.  In general the bypass_count
4339  * increments when the handle_list is handled before the hold_list; however, it
4340  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4341  * stripe with in flight i/o.  The bypass_count will be reset when the
4342  * head of the hold_list has changed, i.e. the head was promoted to the
4343  * handle_list.
4344  */
4345 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4346 {
4347 	struct stripe_head *sh = NULL, *tmp;
4348 	struct list_head *handle_list = NULL;
4349 	struct r5worker_group *wg = NULL;
4350 
4351 	if (conf->worker_cnt_per_group == 0) {
4352 		handle_list = &conf->handle_list;
4353 	} else if (group != ANY_GROUP) {
4354 		handle_list = &conf->worker_groups[group].handle_list;
4355 		wg = &conf->worker_groups[group];
4356 	} else {
4357 		int i;
4358 		for (i = 0; i < conf->group_cnt; i++) {
4359 			handle_list = &conf->worker_groups[i].handle_list;
4360 			wg = &conf->worker_groups[i];
4361 			if (!list_empty(handle_list))
4362 				break;
4363 		}
4364 	}
4365 
4366 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4367 		  __func__,
4368 		  list_empty(handle_list) ? "empty" : "busy",
4369 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4370 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4371 
4372 	if (!list_empty(handle_list)) {
4373 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4374 
4375 		if (list_empty(&conf->hold_list))
4376 			conf->bypass_count = 0;
4377 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4378 			if (conf->hold_list.next == conf->last_hold)
4379 				conf->bypass_count++;
4380 			else {
4381 				conf->last_hold = conf->hold_list.next;
4382 				conf->bypass_count -= conf->bypass_threshold;
4383 				if (conf->bypass_count < 0)
4384 					conf->bypass_count = 0;
4385 			}
4386 		}
4387 	} else if (!list_empty(&conf->hold_list) &&
4388 		   ((conf->bypass_threshold &&
4389 		     conf->bypass_count > conf->bypass_threshold) ||
4390 		    atomic_read(&conf->pending_full_writes) == 0)) {
4391 
4392 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4393 			if (conf->worker_cnt_per_group == 0 ||
4394 			    group == ANY_GROUP ||
4395 			    !cpu_online(tmp->cpu) ||
4396 			    cpu_to_group(tmp->cpu) == group) {
4397 				sh = tmp;
4398 				break;
4399 			}
4400 		}
4401 
4402 		if (sh) {
4403 			conf->bypass_count -= conf->bypass_threshold;
4404 			if (conf->bypass_count < 0)
4405 				conf->bypass_count = 0;
4406 		}
4407 		wg = NULL;
4408 	}
4409 
4410 	if (!sh)
4411 		return NULL;
4412 
4413 	if (wg) {
4414 		wg->stripes_cnt--;
4415 		sh->group = NULL;
4416 	}
4417 	list_del_init(&sh->lru);
4418 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4419 	return sh;
4420 }
4421 
4422 struct raid5_plug_cb {
4423 	struct blk_plug_cb	cb;
4424 	struct list_head	list;
4425 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4426 };
4427 
4428 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4429 {
4430 	struct raid5_plug_cb *cb = container_of(
4431 		blk_cb, struct raid5_plug_cb, cb);
4432 	struct stripe_head *sh;
4433 	struct mddev *mddev = cb->cb.data;
4434 	struct r5conf *conf = mddev->private;
4435 	int cnt = 0;
4436 	int hash;
4437 
4438 	if (cb->list.next && !list_empty(&cb->list)) {
4439 		spin_lock_irq(&conf->device_lock);
4440 		while (!list_empty(&cb->list)) {
4441 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4442 			list_del_init(&sh->lru);
4443 			/*
4444 			 * avoid race release_stripe_plug() sees
4445 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4446 			 * is still in our list
4447 			 */
4448 			smp_mb__before_atomic();
4449 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4450 			/*
4451 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4452 			 * case, the count is always > 1 here
4453 			 */
4454 			hash = sh->hash_lock_index;
4455 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4456 			cnt++;
4457 		}
4458 		spin_unlock_irq(&conf->device_lock);
4459 	}
4460 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4461 				     NR_STRIPE_HASH_LOCKS);
4462 	if (mddev->queue)
4463 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4464 	kfree(cb);
4465 }
4466 
4467 static void release_stripe_plug(struct mddev *mddev,
4468 				struct stripe_head *sh)
4469 {
4470 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4471 		raid5_unplug, mddev,
4472 		sizeof(struct raid5_plug_cb));
4473 	struct raid5_plug_cb *cb;
4474 
4475 	if (!blk_cb) {
4476 		release_stripe(sh);
4477 		return;
4478 	}
4479 
4480 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4481 
4482 	if (cb->list.next == NULL) {
4483 		int i;
4484 		INIT_LIST_HEAD(&cb->list);
4485 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4486 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4487 	}
4488 
4489 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4490 		list_add_tail(&sh->lru, &cb->list);
4491 	else
4492 		release_stripe(sh);
4493 }
4494 
4495 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4496 {
4497 	struct r5conf *conf = mddev->private;
4498 	sector_t logical_sector, last_sector;
4499 	struct stripe_head *sh;
4500 	int remaining;
4501 	int stripe_sectors;
4502 
4503 	if (mddev->reshape_position != MaxSector)
4504 		/* Skip discard while reshape is happening */
4505 		return;
4506 
4507 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4508 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4509 
4510 	bi->bi_next = NULL;
4511 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4512 
4513 	stripe_sectors = conf->chunk_sectors *
4514 		(conf->raid_disks - conf->max_degraded);
4515 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4516 					       stripe_sectors);
4517 	sector_div(last_sector, stripe_sectors);
4518 
4519 	logical_sector *= conf->chunk_sectors;
4520 	last_sector *= conf->chunk_sectors;
4521 
4522 	for (; logical_sector < last_sector;
4523 	     logical_sector += STRIPE_SECTORS) {
4524 		DEFINE_WAIT(w);
4525 		int d;
4526 	again:
4527 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4528 		prepare_to_wait(&conf->wait_for_overlap, &w,
4529 				TASK_UNINTERRUPTIBLE);
4530 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4531 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4532 			release_stripe(sh);
4533 			schedule();
4534 			goto again;
4535 		}
4536 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4537 		spin_lock_irq(&sh->stripe_lock);
4538 		for (d = 0; d < conf->raid_disks; d++) {
4539 			if (d == sh->pd_idx || d == sh->qd_idx)
4540 				continue;
4541 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4542 				set_bit(R5_Overlap, &sh->dev[d].flags);
4543 				spin_unlock_irq(&sh->stripe_lock);
4544 				release_stripe(sh);
4545 				schedule();
4546 				goto again;
4547 			}
4548 		}
4549 		set_bit(STRIPE_DISCARD, &sh->state);
4550 		finish_wait(&conf->wait_for_overlap, &w);
4551 		for (d = 0; d < conf->raid_disks; d++) {
4552 			if (d == sh->pd_idx || d == sh->qd_idx)
4553 				continue;
4554 			sh->dev[d].towrite = bi;
4555 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4556 			raid5_inc_bi_active_stripes(bi);
4557 		}
4558 		spin_unlock_irq(&sh->stripe_lock);
4559 		if (conf->mddev->bitmap) {
4560 			for (d = 0;
4561 			     d < conf->raid_disks - conf->max_degraded;
4562 			     d++)
4563 				bitmap_startwrite(mddev->bitmap,
4564 						  sh->sector,
4565 						  STRIPE_SECTORS,
4566 						  0);
4567 			sh->bm_seq = conf->seq_flush + 1;
4568 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4569 		}
4570 
4571 		set_bit(STRIPE_HANDLE, &sh->state);
4572 		clear_bit(STRIPE_DELAYED, &sh->state);
4573 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4574 			atomic_inc(&conf->preread_active_stripes);
4575 		release_stripe_plug(mddev, sh);
4576 	}
4577 
4578 	remaining = raid5_dec_bi_active_stripes(bi);
4579 	if (remaining == 0) {
4580 		md_write_end(mddev);
4581 		bio_endio(bi, 0);
4582 	}
4583 }
4584 
4585 static void make_request(struct mddev *mddev, struct bio * bi)
4586 {
4587 	struct r5conf *conf = mddev->private;
4588 	int dd_idx;
4589 	sector_t new_sector;
4590 	sector_t logical_sector, last_sector;
4591 	struct stripe_head *sh;
4592 	const int rw = bio_data_dir(bi);
4593 	int remaining;
4594 	DEFINE_WAIT(w);
4595 	bool do_prepare;
4596 
4597 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4598 		md_flush_request(mddev, bi);
4599 		return;
4600 	}
4601 
4602 	md_write_start(mddev, bi);
4603 
4604 	if (rw == READ &&
4605 	     mddev->reshape_position == MaxSector &&
4606 	     chunk_aligned_read(mddev,bi))
4607 		return;
4608 
4609 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4610 		make_discard_request(mddev, bi);
4611 		return;
4612 	}
4613 
4614 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4615 	last_sector = bio_end_sector(bi);
4616 	bi->bi_next = NULL;
4617 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4618 
4619 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4620 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4621 		int previous;
4622 		int seq;
4623 
4624 		do_prepare = false;
4625 	retry:
4626 		seq = read_seqcount_begin(&conf->gen_lock);
4627 		previous = 0;
4628 		if (do_prepare)
4629 			prepare_to_wait(&conf->wait_for_overlap, &w,
4630 				TASK_UNINTERRUPTIBLE);
4631 		if (unlikely(conf->reshape_progress != MaxSector)) {
4632 			/* spinlock is needed as reshape_progress may be
4633 			 * 64bit on a 32bit platform, and so it might be
4634 			 * possible to see a half-updated value
4635 			 * Of course reshape_progress could change after
4636 			 * the lock is dropped, so once we get a reference
4637 			 * to the stripe that we think it is, we will have
4638 			 * to check again.
4639 			 */
4640 			spin_lock_irq(&conf->device_lock);
4641 			if (mddev->reshape_backwards
4642 			    ? logical_sector < conf->reshape_progress
4643 			    : logical_sector >= conf->reshape_progress) {
4644 				previous = 1;
4645 			} else {
4646 				if (mddev->reshape_backwards
4647 				    ? logical_sector < conf->reshape_safe
4648 				    : logical_sector >= conf->reshape_safe) {
4649 					spin_unlock_irq(&conf->device_lock);
4650 					schedule();
4651 					do_prepare = true;
4652 					goto retry;
4653 				}
4654 			}
4655 			spin_unlock_irq(&conf->device_lock);
4656 		}
4657 
4658 		new_sector = raid5_compute_sector(conf, logical_sector,
4659 						  previous,
4660 						  &dd_idx, NULL);
4661 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4662 			(unsigned long long)new_sector,
4663 			(unsigned long long)logical_sector);
4664 
4665 		sh = get_active_stripe(conf, new_sector, previous,
4666 				       (bi->bi_rw&RWA_MASK), 0);
4667 		if (sh) {
4668 			if (unlikely(previous)) {
4669 				/* expansion might have moved on while waiting for a
4670 				 * stripe, so we must do the range check again.
4671 				 * Expansion could still move past after this
4672 				 * test, but as we are holding a reference to
4673 				 * 'sh', we know that if that happens,
4674 				 *  STRIPE_EXPANDING will get set and the expansion
4675 				 * won't proceed until we finish with the stripe.
4676 				 */
4677 				int must_retry = 0;
4678 				spin_lock_irq(&conf->device_lock);
4679 				if (mddev->reshape_backwards
4680 				    ? logical_sector >= conf->reshape_progress
4681 				    : logical_sector < conf->reshape_progress)
4682 					/* mismatch, need to try again */
4683 					must_retry = 1;
4684 				spin_unlock_irq(&conf->device_lock);
4685 				if (must_retry) {
4686 					release_stripe(sh);
4687 					schedule();
4688 					do_prepare = true;
4689 					goto retry;
4690 				}
4691 			}
4692 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4693 				/* Might have got the wrong stripe_head
4694 				 * by accident
4695 				 */
4696 				release_stripe(sh);
4697 				goto retry;
4698 			}
4699 
4700 			if (rw == WRITE &&
4701 			    logical_sector >= mddev->suspend_lo &&
4702 			    logical_sector < mddev->suspend_hi) {
4703 				release_stripe(sh);
4704 				/* As the suspend_* range is controlled by
4705 				 * userspace, we want an interruptible
4706 				 * wait.
4707 				 */
4708 				flush_signals(current);
4709 				prepare_to_wait(&conf->wait_for_overlap,
4710 						&w, TASK_INTERRUPTIBLE);
4711 				if (logical_sector >= mddev->suspend_lo &&
4712 				    logical_sector < mddev->suspend_hi) {
4713 					schedule();
4714 					do_prepare = true;
4715 				}
4716 				goto retry;
4717 			}
4718 
4719 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4720 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4721 				/* Stripe is busy expanding or
4722 				 * add failed due to overlap.  Flush everything
4723 				 * and wait a while
4724 				 */
4725 				md_wakeup_thread(mddev->thread);
4726 				release_stripe(sh);
4727 				schedule();
4728 				do_prepare = true;
4729 				goto retry;
4730 			}
4731 			set_bit(STRIPE_HANDLE, &sh->state);
4732 			clear_bit(STRIPE_DELAYED, &sh->state);
4733 			if ((bi->bi_rw & REQ_SYNC) &&
4734 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4735 				atomic_inc(&conf->preread_active_stripes);
4736 			release_stripe_plug(mddev, sh);
4737 		} else {
4738 			/* cannot get stripe for read-ahead, just give-up */
4739 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4740 			break;
4741 		}
4742 	}
4743 	finish_wait(&conf->wait_for_overlap, &w);
4744 
4745 	remaining = raid5_dec_bi_active_stripes(bi);
4746 	if (remaining == 0) {
4747 
4748 		if ( rw == WRITE )
4749 			md_write_end(mddev);
4750 
4751 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4752 					 bi, 0);
4753 		bio_endio(bi, 0);
4754 	}
4755 }
4756 
4757 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4758 
4759 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4760 {
4761 	/* reshaping is quite different to recovery/resync so it is
4762 	 * handled quite separately ... here.
4763 	 *
4764 	 * On each call to sync_request, we gather one chunk worth of
4765 	 * destination stripes and flag them as expanding.
4766 	 * Then we find all the source stripes and request reads.
4767 	 * As the reads complete, handle_stripe will copy the data
4768 	 * into the destination stripe and release that stripe.
4769 	 */
4770 	struct r5conf *conf = mddev->private;
4771 	struct stripe_head *sh;
4772 	sector_t first_sector, last_sector;
4773 	int raid_disks = conf->previous_raid_disks;
4774 	int data_disks = raid_disks - conf->max_degraded;
4775 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4776 	int i;
4777 	int dd_idx;
4778 	sector_t writepos, readpos, safepos;
4779 	sector_t stripe_addr;
4780 	int reshape_sectors;
4781 	struct list_head stripes;
4782 
4783 	if (sector_nr == 0) {
4784 		/* If restarting in the middle, skip the initial sectors */
4785 		if (mddev->reshape_backwards &&
4786 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4787 			sector_nr = raid5_size(mddev, 0, 0)
4788 				- conf->reshape_progress;
4789 		} else if (!mddev->reshape_backwards &&
4790 			   conf->reshape_progress > 0)
4791 			sector_nr = conf->reshape_progress;
4792 		sector_div(sector_nr, new_data_disks);
4793 		if (sector_nr) {
4794 			mddev->curr_resync_completed = sector_nr;
4795 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4796 			*skipped = 1;
4797 			return sector_nr;
4798 		}
4799 	}
4800 
4801 	/* We need to process a full chunk at a time.
4802 	 * If old and new chunk sizes differ, we need to process the
4803 	 * largest of these
4804 	 */
4805 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4806 		reshape_sectors = mddev->new_chunk_sectors;
4807 	else
4808 		reshape_sectors = mddev->chunk_sectors;
4809 
4810 	/* We update the metadata at least every 10 seconds, or when
4811 	 * the data about to be copied would over-write the source of
4812 	 * the data at the front of the range.  i.e. one new_stripe
4813 	 * along from reshape_progress new_maps to after where
4814 	 * reshape_safe old_maps to
4815 	 */
4816 	writepos = conf->reshape_progress;
4817 	sector_div(writepos, new_data_disks);
4818 	readpos = conf->reshape_progress;
4819 	sector_div(readpos, data_disks);
4820 	safepos = conf->reshape_safe;
4821 	sector_div(safepos, data_disks);
4822 	if (mddev->reshape_backwards) {
4823 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4824 		readpos += reshape_sectors;
4825 		safepos += reshape_sectors;
4826 	} else {
4827 		writepos += reshape_sectors;
4828 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4829 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4830 	}
4831 
4832 	/* Having calculated the 'writepos' possibly use it
4833 	 * to set 'stripe_addr' which is where we will write to.
4834 	 */
4835 	if (mddev->reshape_backwards) {
4836 		BUG_ON(conf->reshape_progress == 0);
4837 		stripe_addr = writepos;
4838 		BUG_ON((mddev->dev_sectors &
4839 			~((sector_t)reshape_sectors - 1))
4840 		       - reshape_sectors - stripe_addr
4841 		       != sector_nr);
4842 	} else {
4843 		BUG_ON(writepos != sector_nr + reshape_sectors);
4844 		stripe_addr = sector_nr;
4845 	}
4846 
4847 	/* 'writepos' is the most advanced device address we might write.
4848 	 * 'readpos' is the least advanced device address we might read.
4849 	 * 'safepos' is the least address recorded in the metadata as having
4850 	 *     been reshaped.
4851 	 * If there is a min_offset_diff, these are adjusted either by
4852 	 * increasing the safepos/readpos if diff is negative, or
4853 	 * increasing writepos if diff is positive.
4854 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4855 	 * ensure safety in the face of a crash - that must be done by userspace
4856 	 * making a backup of the data.  So in that case there is no particular
4857 	 * rush to update metadata.
4858 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4859 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4860 	 * we can be safe in the event of a crash.
4861 	 * So we insist on updating metadata if safepos is behind writepos and
4862 	 * readpos is beyond writepos.
4863 	 * In any case, update the metadata every 10 seconds.
4864 	 * Maybe that number should be configurable, but I'm not sure it is
4865 	 * worth it.... maybe it could be a multiple of safemode_delay???
4866 	 */
4867 	if (conf->min_offset_diff < 0) {
4868 		safepos += -conf->min_offset_diff;
4869 		readpos += -conf->min_offset_diff;
4870 	} else
4871 		writepos += conf->min_offset_diff;
4872 
4873 	if ((mddev->reshape_backwards
4874 	     ? (safepos > writepos && readpos < writepos)
4875 	     : (safepos < writepos && readpos > writepos)) ||
4876 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4877 		/* Cannot proceed until we've updated the superblock... */
4878 		wait_event(conf->wait_for_overlap,
4879 			   atomic_read(&conf->reshape_stripes)==0
4880 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4881 		if (atomic_read(&conf->reshape_stripes) != 0)
4882 			return 0;
4883 		mddev->reshape_position = conf->reshape_progress;
4884 		mddev->curr_resync_completed = sector_nr;
4885 		conf->reshape_checkpoint = jiffies;
4886 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4887 		md_wakeup_thread(mddev->thread);
4888 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4889 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4890 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4891 			return 0;
4892 		spin_lock_irq(&conf->device_lock);
4893 		conf->reshape_safe = mddev->reshape_position;
4894 		spin_unlock_irq(&conf->device_lock);
4895 		wake_up(&conf->wait_for_overlap);
4896 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4897 	}
4898 
4899 	INIT_LIST_HEAD(&stripes);
4900 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4901 		int j;
4902 		int skipped_disk = 0;
4903 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4904 		set_bit(STRIPE_EXPANDING, &sh->state);
4905 		atomic_inc(&conf->reshape_stripes);
4906 		/* If any of this stripe is beyond the end of the old
4907 		 * array, then we need to zero those blocks
4908 		 */
4909 		for (j=sh->disks; j--;) {
4910 			sector_t s;
4911 			if (j == sh->pd_idx)
4912 				continue;
4913 			if (conf->level == 6 &&
4914 			    j == sh->qd_idx)
4915 				continue;
4916 			s = compute_blocknr(sh, j, 0);
4917 			if (s < raid5_size(mddev, 0, 0)) {
4918 				skipped_disk = 1;
4919 				continue;
4920 			}
4921 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4922 			set_bit(R5_Expanded, &sh->dev[j].flags);
4923 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4924 		}
4925 		if (!skipped_disk) {
4926 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4927 			set_bit(STRIPE_HANDLE, &sh->state);
4928 		}
4929 		list_add(&sh->lru, &stripes);
4930 	}
4931 	spin_lock_irq(&conf->device_lock);
4932 	if (mddev->reshape_backwards)
4933 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4934 	else
4935 		conf->reshape_progress += reshape_sectors * new_data_disks;
4936 	spin_unlock_irq(&conf->device_lock);
4937 	/* Ok, those stripe are ready. We can start scheduling
4938 	 * reads on the source stripes.
4939 	 * The source stripes are determined by mapping the first and last
4940 	 * block on the destination stripes.
4941 	 */
4942 	first_sector =
4943 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4944 				     1, &dd_idx, NULL);
4945 	last_sector =
4946 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4947 					    * new_data_disks - 1),
4948 				     1, &dd_idx, NULL);
4949 	if (last_sector >= mddev->dev_sectors)
4950 		last_sector = mddev->dev_sectors - 1;
4951 	while (first_sector <= last_sector) {
4952 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4953 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4954 		set_bit(STRIPE_HANDLE, &sh->state);
4955 		release_stripe(sh);
4956 		first_sector += STRIPE_SECTORS;
4957 	}
4958 	/* Now that the sources are clearly marked, we can release
4959 	 * the destination stripes
4960 	 */
4961 	while (!list_empty(&stripes)) {
4962 		sh = list_entry(stripes.next, struct stripe_head, lru);
4963 		list_del_init(&sh->lru);
4964 		release_stripe(sh);
4965 	}
4966 	/* If this takes us to the resync_max point where we have to pause,
4967 	 * then we need to write out the superblock.
4968 	 */
4969 	sector_nr += reshape_sectors;
4970 	if ((sector_nr - mddev->curr_resync_completed) * 2
4971 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4972 		/* Cannot proceed until we've updated the superblock... */
4973 		wait_event(conf->wait_for_overlap,
4974 			   atomic_read(&conf->reshape_stripes) == 0
4975 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4976 		if (atomic_read(&conf->reshape_stripes) != 0)
4977 			goto ret;
4978 		mddev->reshape_position = conf->reshape_progress;
4979 		mddev->curr_resync_completed = sector_nr;
4980 		conf->reshape_checkpoint = jiffies;
4981 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4982 		md_wakeup_thread(mddev->thread);
4983 		wait_event(mddev->sb_wait,
4984 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4985 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4986 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4987 			goto ret;
4988 		spin_lock_irq(&conf->device_lock);
4989 		conf->reshape_safe = mddev->reshape_position;
4990 		spin_unlock_irq(&conf->device_lock);
4991 		wake_up(&conf->wait_for_overlap);
4992 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4993 	}
4994 ret:
4995 	return reshape_sectors;
4996 }
4997 
4998 /* FIXME go_faster isn't used */
4999 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
5000 {
5001 	struct r5conf *conf = mddev->private;
5002 	struct stripe_head *sh;
5003 	sector_t max_sector = mddev->dev_sectors;
5004 	sector_t sync_blocks;
5005 	int still_degraded = 0;
5006 	int i;
5007 
5008 	if (sector_nr >= max_sector) {
5009 		/* just being told to finish up .. nothing much to do */
5010 
5011 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5012 			end_reshape(conf);
5013 			return 0;
5014 		}
5015 
5016 		if (mddev->curr_resync < max_sector) /* aborted */
5017 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5018 					&sync_blocks, 1);
5019 		else /* completed sync */
5020 			conf->fullsync = 0;
5021 		bitmap_close_sync(mddev->bitmap);
5022 
5023 		return 0;
5024 	}
5025 
5026 	/* Allow raid5_quiesce to complete */
5027 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5028 
5029 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5030 		return reshape_request(mddev, sector_nr, skipped);
5031 
5032 	/* No need to check resync_max as we never do more than one
5033 	 * stripe, and as resync_max will always be on a chunk boundary,
5034 	 * if the check in md_do_sync didn't fire, there is no chance
5035 	 * of overstepping resync_max here
5036 	 */
5037 
5038 	/* if there is too many failed drives and we are trying
5039 	 * to resync, then assert that we are finished, because there is
5040 	 * nothing we can do.
5041 	 */
5042 	if (mddev->degraded >= conf->max_degraded &&
5043 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5044 		sector_t rv = mddev->dev_sectors - sector_nr;
5045 		*skipped = 1;
5046 		return rv;
5047 	}
5048 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5049 	    !conf->fullsync &&
5050 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5051 	    sync_blocks >= STRIPE_SECTORS) {
5052 		/* we can skip this block, and probably more */
5053 		sync_blocks /= STRIPE_SECTORS;
5054 		*skipped = 1;
5055 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5056 	}
5057 
5058 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5059 
5060 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5061 	if (sh == NULL) {
5062 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5063 		/* make sure we don't swamp the stripe cache if someone else
5064 		 * is trying to get access
5065 		 */
5066 		schedule_timeout_uninterruptible(1);
5067 	}
5068 	/* Need to check if array will still be degraded after recovery/resync
5069 	 * We don't need to check the 'failed' flag as when that gets set,
5070 	 * recovery aborts.
5071 	 */
5072 	for (i = 0; i < conf->raid_disks; i++)
5073 		if (conf->disks[i].rdev == NULL)
5074 			still_degraded = 1;
5075 
5076 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5077 
5078 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5079 	set_bit(STRIPE_HANDLE, &sh->state);
5080 
5081 	release_stripe(sh);
5082 
5083 	return STRIPE_SECTORS;
5084 }
5085 
5086 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5087 {
5088 	/* We may not be able to submit a whole bio at once as there
5089 	 * may not be enough stripe_heads available.
5090 	 * We cannot pre-allocate enough stripe_heads as we may need
5091 	 * more than exist in the cache (if we allow ever large chunks).
5092 	 * So we do one stripe head at a time and record in
5093 	 * ->bi_hw_segments how many have been done.
5094 	 *
5095 	 * We *know* that this entire raid_bio is in one chunk, so
5096 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5097 	 */
5098 	struct stripe_head *sh;
5099 	int dd_idx;
5100 	sector_t sector, logical_sector, last_sector;
5101 	int scnt = 0;
5102 	int remaining;
5103 	int handled = 0;
5104 
5105 	logical_sector = raid_bio->bi_iter.bi_sector &
5106 		~((sector_t)STRIPE_SECTORS-1);
5107 	sector = raid5_compute_sector(conf, logical_sector,
5108 				      0, &dd_idx, NULL);
5109 	last_sector = bio_end_sector(raid_bio);
5110 
5111 	for (; logical_sector < last_sector;
5112 	     logical_sector += STRIPE_SECTORS,
5113 		     sector += STRIPE_SECTORS,
5114 		     scnt++) {
5115 
5116 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5117 			/* already done this stripe */
5118 			continue;
5119 
5120 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5121 
5122 		if (!sh) {
5123 			/* failed to get a stripe - must wait */
5124 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5125 			conf->retry_read_aligned = raid_bio;
5126 			return handled;
5127 		}
5128 
5129 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5130 			release_stripe(sh);
5131 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5132 			conf->retry_read_aligned = raid_bio;
5133 			return handled;
5134 		}
5135 
5136 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5137 		handle_stripe(sh);
5138 		release_stripe(sh);
5139 		handled++;
5140 	}
5141 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5142 	if (remaining == 0) {
5143 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5144 					 raid_bio, 0);
5145 		bio_endio(raid_bio, 0);
5146 	}
5147 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5148 		wake_up(&conf->wait_for_stripe);
5149 	return handled;
5150 }
5151 
5152 static int handle_active_stripes(struct r5conf *conf, int group,
5153 				 struct r5worker *worker,
5154 				 struct list_head *temp_inactive_list)
5155 {
5156 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5157 	int i, batch_size = 0, hash;
5158 	bool release_inactive = false;
5159 
5160 	while (batch_size < MAX_STRIPE_BATCH &&
5161 			(sh = __get_priority_stripe(conf, group)) != NULL)
5162 		batch[batch_size++] = sh;
5163 
5164 	if (batch_size == 0) {
5165 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5166 			if (!list_empty(temp_inactive_list + i))
5167 				break;
5168 		if (i == NR_STRIPE_HASH_LOCKS)
5169 			return batch_size;
5170 		release_inactive = true;
5171 	}
5172 	spin_unlock_irq(&conf->device_lock);
5173 
5174 	release_inactive_stripe_list(conf, temp_inactive_list,
5175 				     NR_STRIPE_HASH_LOCKS);
5176 
5177 	if (release_inactive) {
5178 		spin_lock_irq(&conf->device_lock);
5179 		return 0;
5180 	}
5181 
5182 	for (i = 0; i < batch_size; i++)
5183 		handle_stripe(batch[i]);
5184 
5185 	cond_resched();
5186 
5187 	spin_lock_irq(&conf->device_lock);
5188 	for (i = 0; i < batch_size; i++) {
5189 		hash = batch[i]->hash_lock_index;
5190 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5191 	}
5192 	return batch_size;
5193 }
5194 
5195 static void raid5_do_work(struct work_struct *work)
5196 {
5197 	struct r5worker *worker = container_of(work, struct r5worker, work);
5198 	struct r5worker_group *group = worker->group;
5199 	struct r5conf *conf = group->conf;
5200 	int group_id = group - conf->worker_groups;
5201 	int handled;
5202 	struct blk_plug plug;
5203 
5204 	pr_debug("+++ raid5worker active\n");
5205 
5206 	blk_start_plug(&plug);
5207 	handled = 0;
5208 	spin_lock_irq(&conf->device_lock);
5209 	while (1) {
5210 		int batch_size, released;
5211 
5212 		released = release_stripe_list(conf, worker->temp_inactive_list);
5213 
5214 		batch_size = handle_active_stripes(conf, group_id, worker,
5215 						   worker->temp_inactive_list);
5216 		worker->working = false;
5217 		if (!batch_size && !released)
5218 			break;
5219 		handled += batch_size;
5220 	}
5221 	pr_debug("%d stripes handled\n", handled);
5222 
5223 	spin_unlock_irq(&conf->device_lock);
5224 	blk_finish_plug(&plug);
5225 
5226 	pr_debug("--- raid5worker inactive\n");
5227 }
5228 
5229 /*
5230  * This is our raid5 kernel thread.
5231  *
5232  * We scan the hash table for stripes which can be handled now.
5233  * During the scan, completed stripes are saved for us by the interrupt
5234  * handler, so that they will not have to wait for our next wakeup.
5235  */
5236 static void raid5d(struct md_thread *thread)
5237 {
5238 	struct mddev *mddev = thread->mddev;
5239 	struct r5conf *conf = mddev->private;
5240 	int handled;
5241 	struct blk_plug plug;
5242 
5243 	pr_debug("+++ raid5d active\n");
5244 
5245 	md_check_recovery(mddev);
5246 
5247 	blk_start_plug(&plug);
5248 	handled = 0;
5249 	spin_lock_irq(&conf->device_lock);
5250 	while (1) {
5251 		struct bio *bio;
5252 		int batch_size, released;
5253 
5254 		released = release_stripe_list(conf, conf->temp_inactive_list);
5255 
5256 		if (
5257 		    !list_empty(&conf->bitmap_list)) {
5258 			/* Now is a good time to flush some bitmap updates */
5259 			conf->seq_flush++;
5260 			spin_unlock_irq(&conf->device_lock);
5261 			bitmap_unplug(mddev->bitmap);
5262 			spin_lock_irq(&conf->device_lock);
5263 			conf->seq_write = conf->seq_flush;
5264 			activate_bit_delay(conf, conf->temp_inactive_list);
5265 		}
5266 		raid5_activate_delayed(conf);
5267 
5268 		while ((bio = remove_bio_from_retry(conf))) {
5269 			int ok;
5270 			spin_unlock_irq(&conf->device_lock);
5271 			ok = retry_aligned_read(conf, bio);
5272 			spin_lock_irq(&conf->device_lock);
5273 			if (!ok)
5274 				break;
5275 			handled++;
5276 		}
5277 
5278 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5279 						   conf->temp_inactive_list);
5280 		if (!batch_size && !released)
5281 			break;
5282 		handled += batch_size;
5283 
5284 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5285 			spin_unlock_irq(&conf->device_lock);
5286 			md_check_recovery(mddev);
5287 			spin_lock_irq(&conf->device_lock);
5288 		}
5289 	}
5290 	pr_debug("%d stripes handled\n", handled);
5291 
5292 	spin_unlock_irq(&conf->device_lock);
5293 
5294 	async_tx_issue_pending_all();
5295 	blk_finish_plug(&plug);
5296 
5297 	pr_debug("--- raid5d inactive\n");
5298 }
5299 
5300 static ssize_t
5301 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5302 {
5303 	struct r5conf *conf = mddev->private;
5304 	if (conf)
5305 		return sprintf(page, "%d\n", conf->max_nr_stripes);
5306 	else
5307 		return 0;
5308 }
5309 
5310 int
5311 raid5_set_cache_size(struct mddev *mddev, int size)
5312 {
5313 	struct r5conf *conf = mddev->private;
5314 	int err;
5315 	int hash;
5316 
5317 	if (size <= 16 || size > 32768)
5318 		return -EINVAL;
5319 	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5320 	while (size < conf->max_nr_stripes) {
5321 		if (drop_one_stripe(conf, hash))
5322 			conf->max_nr_stripes--;
5323 		else
5324 			break;
5325 		hash--;
5326 		if (hash < 0)
5327 			hash = NR_STRIPE_HASH_LOCKS - 1;
5328 	}
5329 	err = md_allow_write(mddev);
5330 	if (err)
5331 		return err;
5332 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5333 	while (size > conf->max_nr_stripes) {
5334 		if (grow_one_stripe(conf, hash))
5335 			conf->max_nr_stripes++;
5336 		else break;
5337 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5338 	}
5339 	return 0;
5340 }
5341 EXPORT_SYMBOL(raid5_set_cache_size);
5342 
5343 static ssize_t
5344 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5345 {
5346 	struct r5conf *conf = mddev->private;
5347 	unsigned long new;
5348 	int err;
5349 
5350 	if (len >= PAGE_SIZE)
5351 		return -EINVAL;
5352 	if (!conf)
5353 		return -ENODEV;
5354 
5355 	if (kstrtoul(page, 10, &new))
5356 		return -EINVAL;
5357 	err = raid5_set_cache_size(mddev, new);
5358 	if (err)
5359 		return err;
5360 	return len;
5361 }
5362 
5363 static struct md_sysfs_entry
5364 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5365 				raid5_show_stripe_cache_size,
5366 				raid5_store_stripe_cache_size);
5367 
5368 static ssize_t
5369 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5370 {
5371 	struct r5conf *conf = mddev->private;
5372 	if (conf)
5373 		return sprintf(page, "%d\n", conf->bypass_threshold);
5374 	else
5375 		return 0;
5376 }
5377 
5378 static ssize_t
5379 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5380 {
5381 	struct r5conf *conf = mddev->private;
5382 	unsigned long new;
5383 	if (len >= PAGE_SIZE)
5384 		return -EINVAL;
5385 	if (!conf)
5386 		return -ENODEV;
5387 
5388 	if (kstrtoul(page, 10, &new))
5389 		return -EINVAL;
5390 	if (new > conf->max_nr_stripes)
5391 		return -EINVAL;
5392 	conf->bypass_threshold = new;
5393 	return len;
5394 }
5395 
5396 static struct md_sysfs_entry
5397 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5398 					S_IRUGO | S_IWUSR,
5399 					raid5_show_preread_threshold,
5400 					raid5_store_preread_threshold);
5401 
5402 static ssize_t
5403 raid5_show_skip_copy(struct mddev *mddev, char *page)
5404 {
5405 	struct r5conf *conf = mddev->private;
5406 	if (conf)
5407 		return sprintf(page, "%d\n", conf->skip_copy);
5408 	else
5409 		return 0;
5410 }
5411 
5412 static ssize_t
5413 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5414 {
5415 	struct r5conf *conf = mddev->private;
5416 	unsigned long new;
5417 	if (len >= PAGE_SIZE)
5418 		return -EINVAL;
5419 	if (!conf)
5420 		return -ENODEV;
5421 
5422 	if (kstrtoul(page, 10, &new))
5423 		return -EINVAL;
5424 	new = !!new;
5425 	if (new == conf->skip_copy)
5426 		return len;
5427 
5428 	mddev_suspend(mddev);
5429 	conf->skip_copy = new;
5430 	if (new)
5431 		mddev->queue->backing_dev_info.capabilities |=
5432 						BDI_CAP_STABLE_WRITES;
5433 	else
5434 		mddev->queue->backing_dev_info.capabilities &=
5435 						~BDI_CAP_STABLE_WRITES;
5436 	mddev_resume(mddev);
5437 	return len;
5438 }
5439 
5440 static struct md_sysfs_entry
5441 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5442 					raid5_show_skip_copy,
5443 					raid5_store_skip_copy);
5444 
5445 
5446 static ssize_t
5447 stripe_cache_active_show(struct mddev *mddev, char *page)
5448 {
5449 	struct r5conf *conf = mddev->private;
5450 	if (conf)
5451 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5452 	else
5453 		return 0;
5454 }
5455 
5456 static struct md_sysfs_entry
5457 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5458 
5459 static ssize_t
5460 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5461 {
5462 	struct r5conf *conf = mddev->private;
5463 	if (conf)
5464 		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5465 	else
5466 		return 0;
5467 }
5468 
5469 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5470 			       int *group_cnt,
5471 			       int *worker_cnt_per_group,
5472 			       struct r5worker_group **worker_groups);
5473 static ssize_t
5474 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5475 {
5476 	struct r5conf *conf = mddev->private;
5477 	unsigned long new;
5478 	int err;
5479 	struct r5worker_group *new_groups, *old_groups;
5480 	int group_cnt, worker_cnt_per_group;
5481 
5482 	if (len >= PAGE_SIZE)
5483 		return -EINVAL;
5484 	if (!conf)
5485 		return -ENODEV;
5486 
5487 	if (kstrtoul(page, 10, &new))
5488 		return -EINVAL;
5489 
5490 	if (new == conf->worker_cnt_per_group)
5491 		return len;
5492 
5493 	mddev_suspend(mddev);
5494 
5495 	old_groups = conf->worker_groups;
5496 	if (old_groups)
5497 		flush_workqueue(raid5_wq);
5498 
5499 	err = alloc_thread_groups(conf, new,
5500 				  &group_cnt, &worker_cnt_per_group,
5501 				  &new_groups);
5502 	if (!err) {
5503 		spin_lock_irq(&conf->device_lock);
5504 		conf->group_cnt = group_cnt;
5505 		conf->worker_cnt_per_group = worker_cnt_per_group;
5506 		conf->worker_groups = new_groups;
5507 		spin_unlock_irq(&conf->device_lock);
5508 
5509 		if (old_groups)
5510 			kfree(old_groups[0].workers);
5511 		kfree(old_groups);
5512 	}
5513 
5514 	mddev_resume(mddev);
5515 
5516 	if (err)
5517 		return err;
5518 	return len;
5519 }
5520 
5521 static struct md_sysfs_entry
5522 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5523 				raid5_show_group_thread_cnt,
5524 				raid5_store_group_thread_cnt);
5525 
5526 static struct attribute *raid5_attrs[] =  {
5527 	&raid5_stripecache_size.attr,
5528 	&raid5_stripecache_active.attr,
5529 	&raid5_preread_bypass_threshold.attr,
5530 	&raid5_group_thread_cnt.attr,
5531 	&raid5_skip_copy.attr,
5532 	NULL,
5533 };
5534 static struct attribute_group raid5_attrs_group = {
5535 	.name = NULL,
5536 	.attrs = raid5_attrs,
5537 };
5538 
5539 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5540 			       int *group_cnt,
5541 			       int *worker_cnt_per_group,
5542 			       struct r5worker_group **worker_groups)
5543 {
5544 	int i, j, k;
5545 	ssize_t size;
5546 	struct r5worker *workers;
5547 
5548 	*worker_cnt_per_group = cnt;
5549 	if (cnt == 0) {
5550 		*group_cnt = 0;
5551 		*worker_groups = NULL;
5552 		return 0;
5553 	}
5554 	*group_cnt = num_possible_nodes();
5555 	size = sizeof(struct r5worker) * cnt;
5556 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
5557 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
5558 				*group_cnt, GFP_NOIO);
5559 	if (!*worker_groups || !workers) {
5560 		kfree(workers);
5561 		kfree(*worker_groups);
5562 		return -ENOMEM;
5563 	}
5564 
5565 	for (i = 0; i < *group_cnt; i++) {
5566 		struct r5worker_group *group;
5567 
5568 		group = &(*worker_groups)[i];
5569 		INIT_LIST_HEAD(&group->handle_list);
5570 		group->conf = conf;
5571 		group->workers = workers + i * cnt;
5572 
5573 		for (j = 0; j < cnt; j++) {
5574 			struct r5worker *worker = group->workers + j;
5575 			worker->group = group;
5576 			INIT_WORK(&worker->work, raid5_do_work);
5577 
5578 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5579 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5580 		}
5581 	}
5582 
5583 	return 0;
5584 }
5585 
5586 static void free_thread_groups(struct r5conf *conf)
5587 {
5588 	if (conf->worker_groups)
5589 		kfree(conf->worker_groups[0].workers);
5590 	kfree(conf->worker_groups);
5591 	conf->worker_groups = NULL;
5592 }
5593 
5594 static sector_t
5595 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5596 {
5597 	struct r5conf *conf = mddev->private;
5598 
5599 	if (!sectors)
5600 		sectors = mddev->dev_sectors;
5601 	if (!raid_disks)
5602 		/* size is defined by the smallest of previous and new size */
5603 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5604 
5605 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5606 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5607 	return sectors * (raid_disks - conf->max_degraded);
5608 }
5609 
5610 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5611 {
5612 	safe_put_page(percpu->spare_page);
5613 	kfree(percpu->scribble);
5614 	percpu->spare_page = NULL;
5615 	percpu->scribble = NULL;
5616 }
5617 
5618 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5619 {
5620 	if (conf->level == 6 && !percpu->spare_page)
5621 		percpu->spare_page = alloc_page(GFP_KERNEL);
5622 	if (!percpu->scribble)
5623 		percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5624 
5625 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5626 		free_scratch_buffer(conf, percpu);
5627 		return -ENOMEM;
5628 	}
5629 
5630 	return 0;
5631 }
5632 
5633 static void raid5_free_percpu(struct r5conf *conf)
5634 {
5635 	unsigned long cpu;
5636 
5637 	if (!conf->percpu)
5638 		return;
5639 
5640 #ifdef CONFIG_HOTPLUG_CPU
5641 	unregister_cpu_notifier(&conf->cpu_notify);
5642 #endif
5643 
5644 	get_online_cpus();
5645 	for_each_possible_cpu(cpu)
5646 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5647 	put_online_cpus();
5648 
5649 	free_percpu(conf->percpu);
5650 }
5651 
5652 static void free_conf(struct r5conf *conf)
5653 {
5654 	free_thread_groups(conf);
5655 	shrink_stripes(conf);
5656 	raid5_free_percpu(conf);
5657 	kfree(conf->disks);
5658 	kfree(conf->stripe_hashtbl);
5659 	kfree(conf);
5660 }
5661 
5662 #ifdef CONFIG_HOTPLUG_CPU
5663 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5664 			      void *hcpu)
5665 {
5666 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5667 	long cpu = (long)hcpu;
5668 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5669 
5670 	switch (action) {
5671 	case CPU_UP_PREPARE:
5672 	case CPU_UP_PREPARE_FROZEN:
5673 		if (alloc_scratch_buffer(conf, percpu)) {
5674 			pr_err("%s: failed memory allocation for cpu%ld\n",
5675 			       __func__, cpu);
5676 			return notifier_from_errno(-ENOMEM);
5677 		}
5678 		break;
5679 	case CPU_DEAD:
5680 	case CPU_DEAD_FROZEN:
5681 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5682 		break;
5683 	default:
5684 		break;
5685 	}
5686 	return NOTIFY_OK;
5687 }
5688 #endif
5689 
5690 static int raid5_alloc_percpu(struct r5conf *conf)
5691 {
5692 	unsigned long cpu;
5693 	int err = 0;
5694 
5695 	conf->percpu = alloc_percpu(struct raid5_percpu);
5696 	if (!conf->percpu)
5697 		return -ENOMEM;
5698 
5699 #ifdef CONFIG_HOTPLUG_CPU
5700 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5701 	conf->cpu_notify.priority = 0;
5702 	err = register_cpu_notifier(&conf->cpu_notify);
5703 	if (err)
5704 		return err;
5705 #endif
5706 
5707 	get_online_cpus();
5708 	for_each_present_cpu(cpu) {
5709 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5710 		if (err) {
5711 			pr_err("%s: failed memory allocation for cpu%ld\n",
5712 			       __func__, cpu);
5713 			break;
5714 		}
5715 	}
5716 	put_online_cpus();
5717 
5718 	return err;
5719 }
5720 
5721 static struct r5conf *setup_conf(struct mddev *mddev)
5722 {
5723 	struct r5conf *conf;
5724 	int raid_disk, memory, max_disks;
5725 	struct md_rdev *rdev;
5726 	struct disk_info *disk;
5727 	char pers_name[6];
5728 	int i;
5729 	int group_cnt, worker_cnt_per_group;
5730 	struct r5worker_group *new_group;
5731 
5732 	if (mddev->new_level != 5
5733 	    && mddev->new_level != 4
5734 	    && mddev->new_level != 6) {
5735 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5736 		       mdname(mddev), mddev->new_level);
5737 		return ERR_PTR(-EIO);
5738 	}
5739 	if ((mddev->new_level == 5
5740 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5741 	    (mddev->new_level == 6
5742 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5743 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5744 		       mdname(mddev), mddev->new_layout);
5745 		return ERR_PTR(-EIO);
5746 	}
5747 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5748 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5749 		       mdname(mddev), mddev->raid_disks);
5750 		return ERR_PTR(-EINVAL);
5751 	}
5752 
5753 	if (!mddev->new_chunk_sectors ||
5754 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5755 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5756 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5757 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5758 		return ERR_PTR(-EINVAL);
5759 	}
5760 
5761 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5762 	if (conf == NULL)
5763 		goto abort;
5764 	/* Don't enable multi-threading by default*/
5765 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5766 				 &new_group)) {
5767 		conf->group_cnt = group_cnt;
5768 		conf->worker_cnt_per_group = worker_cnt_per_group;
5769 		conf->worker_groups = new_group;
5770 	} else
5771 		goto abort;
5772 	spin_lock_init(&conf->device_lock);
5773 	seqcount_init(&conf->gen_lock);
5774 	init_waitqueue_head(&conf->wait_for_stripe);
5775 	init_waitqueue_head(&conf->wait_for_overlap);
5776 	INIT_LIST_HEAD(&conf->handle_list);
5777 	INIT_LIST_HEAD(&conf->hold_list);
5778 	INIT_LIST_HEAD(&conf->delayed_list);
5779 	INIT_LIST_HEAD(&conf->bitmap_list);
5780 	init_llist_head(&conf->released_stripes);
5781 	atomic_set(&conf->active_stripes, 0);
5782 	atomic_set(&conf->preread_active_stripes, 0);
5783 	atomic_set(&conf->active_aligned_reads, 0);
5784 	conf->bypass_threshold = BYPASS_THRESHOLD;
5785 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5786 
5787 	conf->raid_disks = mddev->raid_disks;
5788 	if (mddev->reshape_position == MaxSector)
5789 		conf->previous_raid_disks = mddev->raid_disks;
5790 	else
5791 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5792 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5793 	conf->scribble_len = scribble_len(max_disks);
5794 
5795 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5796 			      GFP_KERNEL);
5797 	if (!conf->disks)
5798 		goto abort;
5799 
5800 	conf->mddev = mddev;
5801 
5802 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5803 		goto abort;
5804 
5805 	/* We init hash_locks[0] separately to that it can be used
5806 	 * as the reference lock in the spin_lock_nest_lock() call
5807 	 * in lock_all_device_hash_locks_irq in order to convince
5808 	 * lockdep that we know what we are doing.
5809 	 */
5810 	spin_lock_init(conf->hash_locks);
5811 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5812 		spin_lock_init(conf->hash_locks + i);
5813 
5814 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5815 		INIT_LIST_HEAD(conf->inactive_list + i);
5816 
5817 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5818 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
5819 
5820 	conf->level = mddev->new_level;
5821 	if (raid5_alloc_percpu(conf) != 0)
5822 		goto abort;
5823 
5824 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5825 
5826 	rdev_for_each(rdev, mddev) {
5827 		raid_disk = rdev->raid_disk;
5828 		if (raid_disk >= max_disks
5829 		    || raid_disk < 0)
5830 			continue;
5831 		disk = conf->disks + raid_disk;
5832 
5833 		if (test_bit(Replacement, &rdev->flags)) {
5834 			if (disk->replacement)
5835 				goto abort;
5836 			disk->replacement = rdev;
5837 		} else {
5838 			if (disk->rdev)
5839 				goto abort;
5840 			disk->rdev = rdev;
5841 		}
5842 
5843 		if (test_bit(In_sync, &rdev->flags)) {
5844 			char b[BDEVNAME_SIZE];
5845 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5846 			       " disk %d\n",
5847 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5848 		} else if (rdev->saved_raid_disk != raid_disk)
5849 			/* Cannot rely on bitmap to complete recovery */
5850 			conf->fullsync = 1;
5851 	}
5852 
5853 	conf->chunk_sectors = mddev->new_chunk_sectors;
5854 	conf->level = mddev->new_level;
5855 	if (conf->level == 6)
5856 		conf->max_degraded = 2;
5857 	else
5858 		conf->max_degraded = 1;
5859 	conf->algorithm = mddev->new_layout;
5860 	conf->reshape_progress = mddev->reshape_position;
5861 	if (conf->reshape_progress != MaxSector) {
5862 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5863 		conf->prev_algo = mddev->layout;
5864 	}
5865 
5866 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5867 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5868 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5869 	if (grow_stripes(conf, NR_STRIPES)) {
5870 		printk(KERN_ERR
5871 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5872 		       mdname(mddev), memory);
5873 		goto abort;
5874 	} else
5875 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5876 		       mdname(mddev), memory);
5877 
5878 	sprintf(pers_name, "raid%d", mddev->new_level);
5879 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5880 	if (!conf->thread) {
5881 		printk(KERN_ERR
5882 		       "md/raid:%s: couldn't allocate thread.\n",
5883 		       mdname(mddev));
5884 		goto abort;
5885 	}
5886 
5887 	return conf;
5888 
5889  abort:
5890 	if (conf) {
5891 		free_conf(conf);
5892 		return ERR_PTR(-EIO);
5893 	} else
5894 		return ERR_PTR(-ENOMEM);
5895 }
5896 
5897 
5898 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5899 {
5900 	switch (algo) {
5901 	case ALGORITHM_PARITY_0:
5902 		if (raid_disk < max_degraded)
5903 			return 1;
5904 		break;
5905 	case ALGORITHM_PARITY_N:
5906 		if (raid_disk >= raid_disks - max_degraded)
5907 			return 1;
5908 		break;
5909 	case ALGORITHM_PARITY_0_6:
5910 		if (raid_disk == 0 ||
5911 		    raid_disk == raid_disks - 1)
5912 			return 1;
5913 		break;
5914 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5915 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5916 	case ALGORITHM_LEFT_SYMMETRIC_6:
5917 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5918 		if (raid_disk == raid_disks - 1)
5919 			return 1;
5920 	}
5921 	return 0;
5922 }
5923 
5924 static int run(struct mddev *mddev)
5925 {
5926 	struct r5conf *conf;
5927 	int working_disks = 0;
5928 	int dirty_parity_disks = 0;
5929 	struct md_rdev *rdev;
5930 	sector_t reshape_offset = 0;
5931 	int i;
5932 	long long min_offset_diff = 0;
5933 	int first = 1;
5934 
5935 	if (mddev->recovery_cp != MaxSector)
5936 		printk(KERN_NOTICE "md/raid:%s: not clean"
5937 		       " -- starting background reconstruction\n",
5938 		       mdname(mddev));
5939 
5940 	rdev_for_each(rdev, mddev) {
5941 		long long diff;
5942 		if (rdev->raid_disk < 0)
5943 			continue;
5944 		diff = (rdev->new_data_offset - rdev->data_offset);
5945 		if (first) {
5946 			min_offset_diff = diff;
5947 			first = 0;
5948 		} else if (mddev->reshape_backwards &&
5949 			 diff < min_offset_diff)
5950 			min_offset_diff = diff;
5951 		else if (!mddev->reshape_backwards &&
5952 			 diff > min_offset_diff)
5953 			min_offset_diff = diff;
5954 	}
5955 
5956 	if (mddev->reshape_position != MaxSector) {
5957 		/* Check that we can continue the reshape.
5958 		 * Difficulties arise if the stripe we would write to
5959 		 * next is at or after the stripe we would read from next.
5960 		 * For a reshape that changes the number of devices, this
5961 		 * is only possible for a very short time, and mdadm makes
5962 		 * sure that time appears to have past before assembling
5963 		 * the array.  So we fail if that time hasn't passed.
5964 		 * For a reshape that keeps the number of devices the same
5965 		 * mdadm must be monitoring the reshape can keeping the
5966 		 * critical areas read-only and backed up.  It will start
5967 		 * the array in read-only mode, so we check for that.
5968 		 */
5969 		sector_t here_new, here_old;
5970 		int old_disks;
5971 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5972 
5973 		if (mddev->new_level != mddev->level) {
5974 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5975 			       "required - aborting.\n",
5976 			       mdname(mddev));
5977 			return -EINVAL;
5978 		}
5979 		old_disks = mddev->raid_disks - mddev->delta_disks;
5980 		/* reshape_position must be on a new-stripe boundary, and one
5981 		 * further up in new geometry must map after here in old
5982 		 * geometry.
5983 		 */
5984 		here_new = mddev->reshape_position;
5985 		if (sector_div(here_new, mddev->new_chunk_sectors *
5986 			       (mddev->raid_disks - max_degraded))) {
5987 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5988 			       "on a stripe boundary\n", mdname(mddev));
5989 			return -EINVAL;
5990 		}
5991 		reshape_offset = here_new * mddev->new_chunk_sectors;
5992 		/* here_new is the stripe we will write to */
5993 		here_old = mddev->reshape_position;
5994 		sector_div(here_old, mddev->chunk_sectors *
5995 			   (old_disks-max_degraded));
5996 		/* here_old is the first stripe that we might need to read
5997 		 * from */
5998 		if (mddev->delta_disks == 0) {
5999 			if ((here_new * mddev->new_chunk_sectors !=
6000 			     here_old * mddev->chunk_sectors)) {
6001 				printk(KERN_ERR "md/raid:%s: reshape position is"
6002 				       " confused - aborting\n", mdname(mddev));
6003 				return -EINVAL;
6004 			}
6005 			/* We cannot be sure it is safe to start an in-place
6006 			 * reshape.  It is only safe if user-space is monitoring
6007 			 * and taking constant backups.
6008 			 * mdadm always starts a situation like this in
6009 			 * readonly mode so it can take control before
6010 			 * allowing any writes.  So just check for that.
6011 			 */
6012 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6013 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6014 				/* not really in-place - so OK */;
6015 			else if (mddev->ro == 0) {
6016 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6017 				       "must be started in read-only mode "
6018 				       "- aborting\n",
6019 				       mdname(mddev));
6020 				return -EINVAL;
6021 			}
6022 		} else if (mddev->reshape_backwards
6023 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6024 		       here_old * mddev->chunk_sectors)
6025 		    : (here_new * mddev->new_chunk_sectors >=
6026 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6027 			/* Reading from the same stripe as writing to - bad */
6028 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6029 			       "auto-recovery - aborting.\n",
6030 			       mdname(mddev));
6031 			return -EINVAL;
6032 		}
6033 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6034 		       mdname(mddev));
6035 		/* OK, we should be able to continue; */
6036 	} else {
6037 		BUG_ON(mddev->level != mddev->new_level);
6038 		BUG_ON(mddev->layout != mddev->new_layout);
6039 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6040 		BUG_ON(mddev->delta_disks != 0);
6041 	}
6042 
6043 	if (mddev->private == NULL)
6044 		conf = setup_conf(mddev);
6045 	else
6046 		conf = mddev->private;
6047 
6048 	if (IS_ERR(conf))
6049 		return PTR_ERR(conf);
6050 
6051 	conf->min_offset_diff = min_offset_diff;
6052 	mddev->thread = conf->thread;
6053 	conf->thread = NULL;
6054 	mddev->private = conf;
6055 
6056 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6057 	     i++) {
6058 		rdev = conf->disks[i].rdev;
6059 		if (!rdev && conf->disks[i].replacement) {
6060 			/* The replacement is all we have yet */
6061 			rdev = conf->disks[i].replacement;
6062 			conf->disks[i].replacement = NULL;
6063 			clear_bit(Replacement, &rdev->flags);
6064 			conf->disks[i].rdev = rdev;
6065 		}
6066 		if (!rdev)
6067 			continue;
6068 		if (conf->disks[i].replacement &&
6069 		    conf->reshape_progress != MaxSector) {
6070 			/* replacements and reshape simply do not mix. */
6071 			printk(KERN_ERR "md: cannot handle concurrent "
6072 			       "replacement and reshape.\n");
6073 			goto abort;
6074 		}
6075 		if (test_bit(In_sync, &rdev->flags)) {
6076 			working_disks++;
6077 			continue;
6078 		}
6079 		/* This disc is not fully in-sync.  However if it
6080 		 * just stored parity (beyond the recovery_offset),
6081 		 * when we don't need to be concerned about the
6082 		 * array being dirty.
6083 		 * When reshape goes 'backwards', we never have
6084 		 * partially completed devices, so we only need
6085 		 * to worry about reshape going forwards.
6086 		 */
6087 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6088 		if (mddev->major_version == 0 &&
6089 		    mddev->minor_version > 90)
6090 			rdev->recovery_offset = reshape_offset;
6091 
6092 		if (rdev->recovery_offset < reshape_offset) {
6093 			/* We need to check old and new layout */
6094 			if (!only_parity(rdev->raid_disk,
6095 					 conf->algorithm,
6096 					 conf->raid_disks,
6097 					 conf->max_degraded))
6098 				continue;
6099 		}
6100 		if (!only_parity(rdev->raid_disk,
6101 				 conf->prev_algo,
6102 				 conf->previous_raid_disks,
6103 				 conf->max_degraded))
6104 			continue;
6105 		dirty_parity_disks++;
6106 	}
6107 
6108 	/*
6109 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6110 	 */
6111 	mddev->degraded = calc_degraded(conf);
6112 
6113 	if (has_failed(conf)) {
6114 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6115 			" (%d/%d failed)\n",
6116 			mdname(mddev), mddev->degraded, conf->raid_disks);
6117 		goto abort;
6118 	}
6119 
6120 	/* device size must be a multiple of chunk size */
6121 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6122 	mddev->resync_max_sectors = mddev->dev_sectors;
6123 
6124 	if (mddev->degraded > dirty_parity_disks &&
6125 	    mddev->recovery_cp != MaxSector) {
6126 		if (mddev->ok_start_degraded)
6127 			printk(KERN_WARNING
6128 			       "md/raid:%s: starting dirty degraded array"
6129 			       " - data corruption possible.\n",
6130 			       mdname(mddev));
6131 		else {
6132 			printk(KERN_ERR
6133 			       "md/raid:%s: cannot start dirty degraded array.\n",
6134 			       mdname(mddev));
6135 			goto abort;
6136 		}
6137 	}
6138 
6139 	if (mddev->degraded == 0)
6140 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6141 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6142 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6143 		       mddev->new_layout);
6144 	else
6145 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6146 		       " out of %d devices, algorithm %d\n",
6147 		       mdname(mddev), conf->level,
6148 		       mddev->raid_disks - mddev->degraded,
6149 		       mddev->raid_disks, mddev->new_layout);
6150 
6151 	print_raid5_conf(conf);
6152 
6153 	if (conf->reshape_progress != MaxSector) {
6154 		conf->reshape_safe = conf->reshape_progress;
6155 		atomic_set(&conf->reshape_stripes, 0);
6156 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6157 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6158 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6159 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6160 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6161 							"reshape");
6162 	}
6163 
6164 
6165 	/* Ok, everything is just fine now */
6166 	if (mddev->to_remove == &raid5_attrs_group)
6167 		mddev->to_remove = NULL;
6168 	else if (mddev->kobj.sd &&
6169 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6170 		printk(KERN_WARNING
6171 		       "raid5: failed to create sysfs attributes for %s\n",
6172 		       mdname(mddev));
6173 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6174 
6175 	if (mddev->queue) {
6176 		int chunk_size;
6177 		bool discard_supported = true;
6178 		/* read-ahead size must cover two whole stripes, which
6179 		 * is 2 * (datadisks) * chunksize where 'n' is the
6180 		 * number of raid devices
6181 		 */
6182 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6183 		int stripe = data_disks *
6184 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6185 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6186 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6187 
6188 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6189 
6190 		mddev->queue->backing_dev_info.congested_data = mddev;
6191 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6192 
6193 		chunk_size = mddev->chunk_sectors << 9;
6194 		blk_queue_io_min(mddev->queue, chunk_size);
6195 		blk_queue_io_opt(mddev->queue, chunk_size *
6196 				 (conf->raid_disks - conf->max_degraded));
6197 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6198 		/*
6199 		 * We can only discard a whole stripe. It doesn't make sense to
6200 		 * discard data disk but write parity disk
6201 		 */
6202 		stripe = stripe * PAGE_SIZE;
6203 		/* Round up to power of 2, as discard handling
6204 		 * currently assumes that */
6205 		while ((stripe-1) & stripe)
6206 			stripe = (stripe | (stripe-1)) + 1;
6207 		mddev->queue->limits.discard_alignment = stripe;
6208 		mddev->queue->limits.discard_granularity = stripe;
6209 		/*
6210 		 * unaligned part of discard request will be ignored, so can't
6211 		 * guarantee discard_zerors_data
6212 		 */
6213 		mddev->queue->limits.discard_zeroes_data = 0;
6214 
6215 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6216 
6217 		rdev_for_each(rdev, mddev) {
6218 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6219 					  rdev->data_offset << 9);
6220 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6221 					  rdev->new_data_offset << 9);
6222 			/*
6223 			 * discard_zeroes_data is required, otherwise data
6224 			 * could be lost. Consider a scenario: discard a stripe
6225 			 * (the stripe could be inconsistent if
6226 			 * discard_zeroes_data is 0); write one disk of the
6227 			 * stripe (the stripe could be inconsistent again
6228 			 * depending on which disks are used to calculate
6229 			 * parity); the disk is broken; The stripe data of this
6230 			 * disk is lost.
6231 			 */
6232 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6233 			    !bdev_get_queue(rdev->bdev)->
6234 						limits.discard_zeroes_data)
6235 				discard_supported = false;
6236 		}
6237 
6238 		if (discard_supported &&
6239 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6240 		   mddev->queue->limits.discard_granularity >= stripe)
6241 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6242 						mddev->queue);
6243 		else
6244 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6245 						mddev->queue);
6246 	}
6247 
6248 	return 0;
6249 abort:
6250 	md_unregister_thread(&mddev->thread);
6251 	print_raid5_conf(conf);
6252 	free_conf(conf);
6253 	mddev->private = NULL;
6254 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6255 	return -EIO;
6256 }
6257 
6258 static int stop(struct mddev *mddev)
6259 {
6260 	struct r5conf *conf = mddev->private;
6261 
6262 	md_unregister_thread(&mddev->thread);
6263 	if (mddev->queue)
6264 		mddev->queue->backing_dev_info.congested_fn = NULL;
6265 	free_conf(conf);
6266 	mddev->private = NULL;
6267 	mddev->to_remove = &raid5_attrs_group;
6268 	return 0;
6269 }
6270 
6271 static void status(struct seq_file *seq, struct mddev *mddev)
6272 {
6273 	struct r5conf *conf = mddev->private;
6274 	int i;
6275 
6276 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6277 		mddev->chunk_sectors / 2, mddev->layout);
6278 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6279 	for (i = 0; i < conf->raid_disks; i++)
6280 		seq_printf (seq, "%s",
6281 			       conf->disks[i].rdev &&
6282 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6283 	seq_printf (seq, "]");
6284 }
6285 
6286 static void print_raid5_conf (struct r5conf *conf)
6287 {
6288 	int i;
6289 	struct disk_info *tmp;
6290 
6291 	printk(KERN_DEBUG "RAID conf printout:\n");
6292 	if (!conf) {
6293 		printk("(conf==NULL)\n");
6294 		return;
6295 	}
6296 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6297 	       conf->raid_disks,
6298 	       conf->raid_disks - conf->mddev->degraded);
6299 
6300 	for (i = 0; i < conf->raid_disks; i++) {
6301 		char b[BDEVNAME_SIZE];
6302 		tmp = conf->disks + i;
6303 		if (tmp->rdev)
6304 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6305 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6306 			       bdevname(tmp->rdev->bdev, b));
6307 	}
6308 }
6309 
6310 static int raid5_spare_active(struct mddev *mddev)
6311 {
6312 	int i;
6313 	struct r5conf *conf = mddev->private;
6314 	struct disk_info *tmp;
6315 	int count = 0;
6316 	unsigned long flags;
6317 
6318 	for (i = 0; i < conf->raid_disks; i++) {
6319 		tmp = conf->disks + i;
6320 		if (tmp->replacement
6321 		    && tmp->replacement->recovery_offset == MaxSector
6322 		    && !test_bit(Faulty, &tmp->replacement->flags)
6323 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6324 			/* Replacement has just become active. */
6325 			if (!tmp->rdev
6326 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6327 				count++;
6328 			if (tmp->rdev) {
6329 				/* Replaced device not technically faulty,
6330 				 * but we need to be sure it gets removed
6331 				 * and never re-added.
6332 				 */
6333 				set_bit(Faulty, &tmp->rdev->flags);
6334 				sysfs_notify_dirent_safe(
6335 					tmp->rdev->sysfs_state);
6336 			}
6337 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6338 		} else if (tmp->rdev
6339 		    && tmp->rdev->recovery_offset == MaxSector
6340 		    && !test_bit(Faulty, &tmp->rdev->flags)
6341 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6342 			count++;
6343 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6344 		}
6345 	}
6346 	spin_lock_irqsave(&conf->device_lock, flags);
6347 	mddev->degraded = calc_degraded(conf);
6348 	spin_unlock_irqrestore(&conf->device_lock, flags);
6349 	print_raid5_conf(conf);
6350 	return count;
6351 }
6352 
6353 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6354 {
6355 	struct r5conf *conf = mddev->private;
6356 	int err = 0;
6357 	int number = rdev->raid_disk;
6358 	struct md_rdev **rdevp;
6359 	struct disk_info *p = conf->disks + number;
6360 
6361 	print_raid5_conf(conf);
6362 	if (rdev == p->rdev)
6363 		rdevp = &p->rdev;
6364 	else if (rdev == p->replacement)
6365 		rdevp = &p->replacement;
6366 	else
6367 		return 0;
6368 
6369 	if (number >= conf->raid_disks &&
6370 	    conf->reshape_progress == MaxSector)
6371 		clear_bit(In_sync, &rdev->flags);
6372 
6373 	if (test_bit(In_sync, &rdev->flags) ||
6374 	    atomic_read(&rdev->nr_pending)) {
6375 		err = -EBUSY;
6376 		goto abort;
6377 	}
6378 	/* Only remove non-faulty devices if recovery
6379 	 * isn't possible.
6380 	 */
6381 	if (!test_bit(Faulty, &rdev->flags) &&
6382 	    mddev->recovery_disabled != conf->recovery_disabled &&
6383 	    !has_failed(conf) &&
6384 	    (!p->replacement || p->replacement == rdev) &&
6385 	    number < conf->raid_disks) {
6386 		err = -EBUSY;
6387 		goto abort;
6388 	}
6389 	*rdevp = NULL;
6390 	synchronize_rcu();
6391 	if (atomic_read(&rdev->nr_pending)) {
6392 		/* lost the race, try later */
6393 		err = -EBUSY;
6394 		*rdevp = rdev;
6395 	} else if (p->replacement) {
6396 		/* We must have just cleared 'rdev' */
6397 		p->rdev = p->replacement;
6398 		clear_bit(Replacement, &p->replacement->flags);
6399 		smp_mb(); /* Make sure other CPUs may see both as identical
6400 			   * but will never see neither - if they are careful
6401 			   */
6402 		p->replacement = NULL;
6403 		clear_bit(WantReplacement, &rdev->flags);
6404 	} else
6405 		/* We might have just removed the Replacement as faulty-
6406 		 * clear the bit just in case
6407 		 */
6408 		clear_bit(WantReplacement, &rdev->flags);
6409 abort:
6410 
6411 	print_raid5_conf(conf);
6412 	return err;
6413 }
6414 
6415 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6416 {
6417 	struct r5conf *conf = mddev->private;
6418 	int err = -EEXIST;
6419 	int disk;
6420 	struct disk_info *p;
6421 	int first = 0;
6422 	int last = conf->raid_disks - 1;
6423 
6424 	if (mddev->recovery_disabled == conf->recovery_disabled)
6425 		return -EBUSY;
6426 
6427 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6428 		/* no point adding a device */
6429 		return -EINVAL;
6430 
6431 	if (rdev->raid_disk >= 0)
6432 		first = last = rdev->raid_disk;
6433 
6434 	/*
6435 	 * find the disk ... but prefer rdev->saved_raid_disk
6436 	 * if possible.
6437 	 */
6438 	if (rdev->saved_raid_disk >= 0 &&
6439 	    rdev->saved_raid_disk >= first &&
6440 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6441 		first = rdev->saved_raid_disk;
6442 
6443 	for (disk = first; disk <= last; disk++) {
6444 		p = conf->disks + disk;
6445 		if (p->rdev == NULL) {
6446 			clear_bit(In_sync, &rdev->flags);
6447 			rdev->raid_disk = disk;
6448 			err = 0;
6449 			if (rdev->saved_raid_disk != disk)
6450 				conf->fullsync = 1;
6451 			rcu_assign_pointer(p->rdev, rdev);
6452 			goto out;
6453 		}
6454 	}
6455 	for (disk = first; disk <= last; disk++) {
6456 		p = conf->disks + disk;
6457 		if (test_bit(WantReplacement, &p->rdev->flags) &&
6458 		    p->replacement == NULL) {
6459 			clear_bit(In_sync, &rdev->flags);
6460 			set_bit(Replacement, &rdev->flags);
6461 			rdev->raid_disk = disk;
6462 			err = 0;
6463 			conf->fullsync = 1;
6464 			rcu_assign_pointer(p->replacement, rdev);
6465 			break;
6466 		}
6467 	}
6468 out:
6469 	print_raid5_conf(conf);
6470 	return err;
6471 }
6472 
6473 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6474 {
6475 	/* no resync is happening, and there is enough space
6476 	 * on all devices, so we can resize.
6477 	 * We need to make sure resync covers any new space.
6478 	 * If the array is shrinking we should possibly wait until
6479 	 * any io in the removed space completes, but it hardly seems
6480 	 * worth it.
6481 	 */
6482 	sector_t newsize;
6483 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6484 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6485 	if (mddev->external_size &&
6486 	    mddev->array_sectors > newsize)
6487 		return -EINVAL;
6488 	if (mddev->bitmap) {
6489 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6490 		if (ret)
6491 			return ret;
6492 	}
6493 	md_set_array_sectors(mddev, newsize);
6494 	set_capacity(mddev->gendisk, mddev->array_sectors);
6495 	revalidate_disk(mddev->gendisk);
6496 	if (sectors > mddev->dev_sectors &&
6497 	    mddev->recovery_cp > mddev->dev_sectors) {
6498 		mddev->recovery_cp = mddev->dev_sectors;
6499 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6500 	}
6501 	mddev->dev_sectors = sectors;
6502 	mddev->resync_max_sectors = sectors;
6503 	return 0;
6504 }
6505 
6506 static int check_stripe_cache(struct mddev *mddev)
6507 {
6508 	/* Can only proceed if there are plenty of stripe_heads.
6509 	 * We need a minimum of one full stripe,, and for sensible progress
6510 	 * it is best to have about 4 times that.
6511 	 * If we require 4 times, then the default 256 4K stripe_heads will
6512 	 * allow for chunk sizes up to 256K, which is probably OK.
6513 	 * If the chunk size is greater, user-space should request more
6514 	 * stripe_heads first.
6515 	 */
6516 	struct r5conf *conf = mddev->private;
6517 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6518 	    > conf->max_nr_stripes ||
6519 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6520 	    > conf->max_nr_stripes) {
6521 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6522 		       mdname(mddev),
6523 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6524 			/ STRIPE_SIZE)*4);
6525 		return 0;
6526 	}
6527 	return 1;
6528 }
6529 
6530 static int check_reshape(struct mddev *mddev)
6531 {
6532 	struct r5conf *conf = mddev->private;
6533 
6534 	if (mddev->delta_disks == 0 &&
6535 	    mddev->new_layout == mddev->layout &&
6536 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6537 		return 0; /* nothing to do */
6538 	if (has_failed(conf))
6539 		return -EINVAL;
6540 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6541 		/* We might be able to shrink, but the devices must
6542 		 * be made bigger first.
6543 		 * For raid6, 4 is the minimum size.
6544 		 * Otherwise 2 is the minimum
6545 		 */
6546 		int min = 2;
6547 		if (mddev->level == 6)
6548 			min = 4;
6549 		if (mddev->raid_disks + mddev->delta_disks < min)
6550 			return -EINVAL;
6551 	}
6552 
6553 	if (!check_stripe_cache(mddev))
6554 		return -ENOSPC;
6555 
6556 	return resize_stripes(conf, (conf->previous_raid_disks
6557 				     + mddev->delta_disks));
6558 }
6559 
6560 static int raid5_start_reshape(struct mddev *mddev)
6561 {
6562 	struct r5conf *conf = mddev->private;
6563 	struct md_rdev *rdev;
6564 	int spares = 0;
6565 	unsigned long flags;
6566 
6567 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6568 		return -EBUSY;
6569 
6570 	if (!check_stripe_cache(mddev))
6571 		return -ENOSPC;
6572 
6573 	if (has_failed(conf))
6574 		return -EINVAL;
6575 
6576 	rdev_for_each(rdev, mddev) {
6577 		if (!test_bit(In_sync, &rdev->flags)
6578 		    && !test_bit(Faulty, &rdev->flags))
6579 			spares++;
6580 	}
6581 
6582 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6583 		/* Not enough devices even to make a degraded array
6584 		 * of that size
6585 		 */
6586 		return -EINVAL;
6587 
6588 	/* Refuse to reduce size of the array.  Any reductions in
6589 	 * array size must be through explicit setting of array_size
6590 	 * attribute.
6591 	 */
6592 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6593 	    < mddev->array_sectors) {
6594 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6595 		       "before number of disks\n", mdname(mddev));
6596 		return -EINVAL;
6597 	}
6598 
6599 	atomic_set(&conf->reshape_stripes, 0);
6600 	spin_lock_irq(&conf->device_lock);
6601 	write_seqcount_begin(&conf->gen_lock);
6602 	conf->previous_raid_disks = conf->raid_disks;
6603 	conf->raid_disks += mddev->delta_disks;
6604 	conf->prev_chunk_sectors = conf->chunk_sectors;
6605 	conf->chunk_sectors = mddev->new_chunk_sectors;
6606 	conf->prev_algo = conf->algorithm;
6607 	conf->algorithm = mddev->new_layout;
6608 	conf->generation++;
6609 	/* Code that selects data_offset needs to see the generation update
6610 	 * if reshape_progress has been set - so a memory barrier needed.
6611 	 */
6612 	smp_mb();
6613 	if (mddev->reshape_backwards)
6614 		conf->reshape_progress = raid5_size(mddev, 0, 0);
6615 	else
6616 		conf->reshape_progress = 0;
6617 	conf->reshape_safe = conf->reshape_progress;
6618 	write_seqcount_end(&conf->gen_lock);
6619 	spin_unlock_irq(&conf->device_lock);
6620 
6621 	/* Now make sure any requests that proceeded on the assumption
6622 	 * the reshape wasn't running - like Discard or Read - have
6623 	 * completed.
6624 	 */
6625 	mddev_suspend(mddev);
6626 	mddev_resume(mddev);
6627 
6628 	/* Add some new drives, as many as will fit.
6629 	 * We know there are enough to make the newly sized array work.
6630 	 * Don't add devices if we are reducing the number of
6631 	 * devices in the array.  This is because it is not possible
6632 	 * to correctly record the "partially reconstructed" state of
6633 	 * such devices during the reshape and confusion could result.
6634 	 */
6635 	if (mddev->delta_disks >= 0) {
6636 		rdev_for_each(rdev, mddev)
6637 			if (rdev->raid_disk < 0 &&
6638 			    !test_bit(Faulty, &rdev->flags)) {
6639 				if (raid5_add_disk(mddev, rdev) == 0) {
6640 					if (rdev->raid_disk
6641 					    >= conf->previous_raid_disks)
6642 						set_bit(In_sync, &rdev->flags);
6643 					else
6644 						rdev->recovery_offset = 0;
6645 
6646 					if (sysfs_link_rdev(mddev, rdev))
6647 						/* Failure here is OK */;
6648 				}
6649 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6650 				   && !test_bit(Faulty, &rdev->flags)) {
6651 				/* This is a spare that was manually added */
6652 				set_bit(In_sync, &rdev->flags);
6653 			}
6654 
6655 		/* When a reshape changes the number of devices,
6656 		 * ->degraded is measured against the larger of the
6657 		 * pre and post number of devices.
6658 		 */
6659 		spin_lock_irqsave(&conf->device_lock, flags);
6660 		mddev->degraded = calc_degraded(conf);
6661 		spin_unlock_irqrestore(&conf->device_lock, flags);
6662 	}
6663 	mddev->raid_disks = conf->raid_disks;
6664 	mddev->reshape_position = conf->reshape_progress;
6665 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6666 
6667 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6668 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6669 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6670 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6671 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6672 						"reshape");
6673 	if (!mddev->sync_thread) {
6674 		mddev->recovery = 0;
6675 		spin_lock_irq(&conf->device_lock);
6676 		write_seqcount_begin(&conf->gen_lock);
6677 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6678 		mddev->new_chunk_sectors =
6679 			conf->chunk_sectors = conf->prev_chunk_sectors;
6680 		mddev->new_layout = conf->algorithm = conf->prev_algo;
6681 		rdev_for_each(rdev, mddev)
6682 			rdev->new_data_offset = rdev->data_offset;
6683 		smp_wmb();
6684 		conf->generation --;
6685 		conf->reshape_progress = MaxSector;
6686 		mddev->reshape_position = MaxSector;
6687 		write_seqcount_end(&conf->gen_lock);
6688 		spin_unlock_irq(&conf->device_lock);
6689 		return -EAGAIN;
6690 	}
6691 	conf->reshape_checkpoint = jiffies;
6692 	md_wakeup_thread(mddev->sync_thread);
6693 	md_new_event(mddev);
6694 	return 0;
6695 }
6696 
6697 /* This is called from the reshape thread and should make any
6698  * changes needed in 'conf'
6699  */
6700 static void end_reshape(struct r5conf *conf)
6701 {
6702 
6703 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6704 		struct md_rdev *rdev;
6705 
6706 		spin_lock_irq(&conf->device_lock);
6707 		conf->previous_raid_disks = conf->raid_disks;
6708 		rdev_for_each(rdev, conf->mddev)
6709 			rdev->data_offset = rdev->new_data_offset;
6710 		smp_wmb();
6711 		conf->reshape_progress = MaxSector;
6712 		spin_unlock_irq(&conf->device_lock);
6713 		wake_up(&conf->wait_for_overlap);
6714 
6715 		/* read-ahead size must cover two whole stripes, which is
6716 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6717 		 */
6718 		if (conf->mddev->queue) {
6719 			int data_disks = conf->raid_disks - conf->max_degraded;
6720 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6721 						   / PAGE_SIZE);
6722 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6723 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6724 		}
6725 	}
6726 }
6727 
6728 /* This is called from the raid5d thread with mddev_lock held.
6729  * It makes config changes to the device.
6730  */
6731 static void raid5_finish_reshape(struct mddev *mddev)
6732 {
6733 	struct r5conf *conf = mddev->private;
6734 
6735 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6736 
6737 		if (mddev->delta_disks > 0) {
6738 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6739 			set_capacity(mddev->gendisk, mddev->array_sectors);
6740 			revalidate_disk(mddev->gendisk);
6741 		} else {
6742 			int d;
6743 			spin_lock_irq(&conf->device_lock);
6744 			mddev->degraded = calc_degraded(conf);
6745 			spin_unlock_irq(&conf->device_lock);
6746 			for (d = conf->raid_disks ;
6747 			     d < conf->raid_disks - mddev->delta_disks;
6748 			     d++) {
6749 				struct md_rdev *rdev = conf->disks[d].rdev;
6750 				if (rdev)
6751 					clear_bit(In_sync, &rdev->flags);
6752 				rdev = conf->disks[d].replacement;
6753 				if (rdev)
6754 					clear_bit(In_sync, &rdev->flags);
6755 			}
6756 		}
6757 		mddev->layout = conf->algorithm;
6758 		mddev->chunk_sectors = conf->chunk_sectors;
6759 		mddev->reshape_position = MaxSector;
6760 		mddev->delta_disks = 0;
6761 		mddev->reshape_backwards = 0;
6762 	}
6763 }
6764 
6765 static void raid5_quiesce(struct mddev *mddev, int state)
6766 {
6767 	struct r5conf *conf = mddev->private;
6768 
6769 	switch(state) {
6770 	case 2: /* resume for a suspend */
6771 		wake_up(&conf->wait_for_overlap);
6772 		break;
6773 
6774 	case 1: /* stop all writes */
6775 		lock_all_device_hash_locks_irq(conf);
6776 		/* '2' tells resync/reshape to pause so that all
6777 		 * active stripes can drain
6778 		 */
6779 		conf->quiesce = 2;
6780 		wait_event_cmd(conf->wait_for_stripe,
6781 				    atomic_read(&conf->active_stripes) == 0 &&
6782 				    atomic_read(&conf->active_aligned_reads) == 0,
6783 				    unlock_all_device_hash_locks_irq(conf),
6784 				    lock_all_device_hash_locks_irq(conf));
6785 		conf->quiesce = 1;
6786 		unlock_all_device_hash_locks_irq(conf);
6787 		/* allow reshape to continue */
6788 		wake_up(&conf->wait_for_overlap);
6789 		break;
6790 
6791 	case 0: /* re-enable writes */
6792 		lock_all_device_hash_locks_irq(conf);
6793 		conf->quiesce = 0;
6794 		wake_up(&conf->wait_for_stripe);
6795 		wake_up(&conf->wait_for_overlap);
6796 		unlock_all_device_hash_locks_irq(conf);
6797 		break;
6798 	}
6799 }
6800 
6801 
6802 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6803 {
6804 	struct r0conf *raid0_conf = mddev->private;
6805 	sector_t sectors;
6806 
6807 	/* for raid0 takeover only one zone is supported */
6808 	if (raid0_conf->nr_strip_zones > 1) {
6809 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6810 		       mdname(mddev));
6811 		return ERR_PTR(-EINVAL);
6812 	}
6813 
6814 	sectors = raid0_conf->strip_zone[0].zone_end;
6815 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6816 	mddev->dev_sectors = sectors;
6817 	mddev->new_level = level;
6818 	mddev->new_layout = ALGORITHM_PARITY_N;
6819 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6820 	mddev->raid_disks += 1;
6821 	mddev->delta_disks = 1;
6822 	/* make sure it will be not marked as dirty */
6823 	mddev->recovery_cp = MaxSector;
6824 
6825 	return setup_conf(mddev);
6826 }
6827 
6828 
6829 static void *raid5_takeover_raid1(struct mddev *mddev)
6830 {
6831 	int chunksect;
6832 
6833 	if (mddev->raid_disks != 2 ||
6834 	    mddev->degraded > 1)
6835 		return ERR_PTR(-EINVAL);
6836 
6837 	/* Should check if there are write-behind devices? */
6838 
6839 	chunksect = 64*2; /* 64K by default */
6840 
6841 	/* The array must be an exact multiple of chunksize */
6842 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6843 		chunksect >>= 1;
6844 
6845 	if ((chunksect<<9) < STRIPE_SIZE)
6846 		/* array size does not allow a suitable chunk size */
6847 		return ERR_PTR(-EINVAL);
6848 
6849 	mddev->new_level = 5;
6850 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6851 	mddev->new_chunk_sectors = chunksect;
6852 
6853 	return setup_conf(mddev);
6854 }
6855 
6856 static void *raid5_takeover_raid6(struct mddev *mddev)
6857 {
6858 	int new_layout;
6859 
6860 	switch (mddev->layout) {
6861 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6862 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6863 		break;
6864 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6865 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6866 		break;
6867 	case ALGORITHM_LEFT_SYMMETRIC_6:
6868 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6869 		break;
6870 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6871 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6872 		break;
6873 	case ALGORITHM_PARITY_0_6:
6874 		new_layout = ALGORITHM_PARITY_0;
6875 		break;
6876 	case ALGORITHM_PARITY_N:
6877 		new_layout = ALGORITHM_PARITY_N;
6878 		break;
6879 	default:
6880 		return ERR_PTR(-EINVAL);
6881 	}
6882 	mddev->new_level = 5;
6883 	mddev->new_layout = new_layout;
6884 	mddev->delta_disks = -1;
6885 	mddev->raid_disks -= 1;
6886 	return setup_conf(mddev);
6887 }
6888 
6889 
6890 static int raid5_check_reshape(struct mddev *mddev)
6891 {
6892 	/* For a 2-drive array, the layout and chunk size can be changed
6893 	 * immediately as not restriping is needed.
6894 	 * For larger arrays we record the new value - after validation
6895 	 * to be used by a reshape pass.
6896 	 */
6897 	struct r5conf *conf = mddev->private;
6898 	int new_chunk = mddev->new_chunk_sectors;
6899 
6900 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6901 		return -EINVAL;
6902 	if (new_chunk > 0) {
6903 		if (!is_power_of_2(new_chunk))
6904 			return -EINVAL;
6905 		if (new_chunk < (PAGE_SIZE>>9))
6906 			return -EINVAL;
6907 		if (mddev->array_sectors & (new_chunk-1))
6908 			/* not factor of array size */
6909 			return -EINVAL;
6910 	}
6911 
6912 	/* They look valid */
6913 
6914 	if (mddev->raid_disks == 2) {
6915 		/* can make the change immediately */
6916 		if (mddev->new_layout >= 0) {
6917 			conf->algorithm = mddev->new_layout;
6918 			mddev->layout = mddev->new_layout;
6919 		}
6920 		if (new_chunk > 0) {
6921 			conf->chunk_sectors = new_chunk ;
6922 			mddev->chunk_sectors = new_chunk;
6923 		}
6924 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6925 		md_wakeup_thread(mddev->thread);
6926 	}
6927 	return check_reshape(mddev);
6928 }
6929 
6930 static int raid6_check_reshape(struct mddev *mddev)
6931 {
6932 	int new_chunk = mddev->new_chunk_sectors;
6933 
6934 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6935 		return -EINVAL;
6936 	if (new_chunk > 0) {
6937 		if (!is_power_of_2(new_chunk))
6938 			return -EINVAL;
6939 		if (new_chunk < (PAGE_SIZE >> 9))
6940 			return -EINVAL;
6941 		if (mddev->array_sectors & (new_chunk-1))
6942 			/* not factor of array size */
6943 			return -EINVAL;
6944 	}
6945 
6946 	/* They look valid */
6947 	return check_reshape(mddev);
6948 }
6949 
6950 static void *raid5_takeover(struct mddev *mddev)
6951 {
6952 	/* raid5 can take over:
6953 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6954 	 *  raid1 - if there are two drives.  We need to know the chunk size
6955 	 *  raid4 - trivial - just use a raid4 layout.
6956 	 *  raid6 - Providing it is a *_6 layout
6957 	 */
6958 	if (mddev->level == 0)
6959 		return raid45_takeover_raid0(mddev, 5);
6960 	if (mddev->level == 1)
6961 		return raid5_takeover_raid1(mddev);
6962 	if (mddev->level == 4) {
6963 		mddev->new_layout = ALGORITHM_PARITY_N;
6964 		mddev->new_level = 5;
6965 		return setup_conf(mddev);
6966 	}
6967 	if (mddev->level == 6)
6968 		return raid5_takeover_raid6(mddev);
6969 
6970 	return ERR_PTR(-EINVAL);
6971 }
6972 
6973 static void *raid4_takeover(struct mddev *mddev)
6974 {
6975 	/* raid4 can take over:
6976 	 *  raid0 - if there is only one strip zone
6977 	 *  raid5 - if layout is right
6978 	 */
6979 	if (mddev->level == 0)
6980 		return raid45_takeover_raid0(mddev, 4);
6981 	if (mddev->level == 5 &&
6982 	    mddev->layout == ALGORITHM_PARITY_N) {
6983 		mddev->new_layout = 0;
6984 		mddev->new_level = 4;
6985 		return setup_conf(mddev);
6986 	}
6987 	return ERR_PTR(-EINVAL);
6988 }
6989 
6990 static struct md_personality raid5_personality;
6991 
6992 static void *raid6_takeover(struct mddev *mddev)
6993 {
6994 	/* Currently can only take over a raid5.  We map the
6995 	 * personality to an equivalent raid6 personality
6996 	 * with the Q block at the end.
6997 	 */
6998 	int new_layout;
6999 
7000 	if (mddev->pers != &raid5_personality)
7001 		return ERR_PTR(-EINVAL);
7002 	if (mddev->degraded > 1)
7003 		return ERR_PTR(-EINVAL);
7004 	if (mddev->raid_disks > 253)
7005 		return ERR_PTR(-EINVAL);
7006 	if (mddev->raid_disks < 3)
7007 		return ERR_PTR(-EINVAL);
7008 
7009 	switch (mddev->layout) {
7010 	case ALGORITHM_LEFT_ASYMMETRIC:
7011 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7012 		break;
7013 	case ALGORITHM_RIGHT_ASYMMETRIC:
7014 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7015 		break;
7016 	case ALGORITHM_LEFT_SYMMETRIC:
7017 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7018 		break;
7019 	case ALGORITHM_RIGHT_SYMMETRIC:
7020 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7021 		break;
7022 	case ALGORITHM_PARITY_0:
7023 		new_layout = ALGORITHM_PARITY_0_6;
7024 		break;
7025 	case ALGORITHM_PARITY_N:
7026 		new_layout = ALGORITHM_PARITY_N;
7027 		break;
7028 	default:
7029 		return ERR_PTR(-EINVAL);
7030 	}
7031 	mddev->new_level = 6;
7032 	mddev->new_layout = new_layout;
7033 	mddev->delta_disks = 1;
7034 	mddev->raid_disks += 1;
7035 	return setup_conf(mddev);
7036 }
7037 
7038 
7039 static struct md_personality raid6_personality =
7040 {
7041 	.name		= "raid6",
7042 	.level		= 6,
7043 	.owner		= THIS_MODULE,
7044 	.make_request	= make_request,
7045 	.run		= run,
7046 	.stop		= stop,
7047 	.status		= status,
7048 	.error_handler	= error,
7049 	.hot_add_disk	= raid5_add_disk,
7050 	.hot_remove_disk= raid5_remove_disk,
7051 	.spare_active	= raid5_spare_active,
7052 	.sync_request	= sync_request,
7053 	.resize		= raid5_resize,
7054 	.size		= raid5_size,
7055 	.check_reshape	= raid6_check_reshape,
7056 	.start_reshape  = raid5_start_reshape,
7057 	.finish_reshape = raid5_finish_reshape,
7058 	.quiesce	= raid5_quiesce,
7059 	.takeover	= raid6_takeover,
7060 };
7061 static struct md_personality raid5_personality =
7062 {
7063 	.name		= "raid5",
7064 	.level		= 5,
7065 	.owner		= THIS_MODULE,
7066 	.make_request	= make_request,
7067 	.run		= run,
7068 	.stop		= stop,
7069 	.status		= status,
7070 	.error_handler	= error,
7071 	.hot_add_disk	= raid5_add_disk,
7072 	.hot_remove_disk= raid5_remove_disk,
7073 	.spare_active	= raid5_spare_active,
7074 	.sync_request	= sync_request,
7075 	.resize		= raid5_resize,
7076 	.size		= raid5_size,
7077 	.check_reshape	= raid5_check_reshape,
7078 	.start_reshape  = raid5_start_reshape,
7079 	.finish_reshape = raid5_finish_reshape,
7080 	.quiesce	= raid5_quiesce,
7081 	.takeover	= raid5_takeover,
7082 };
7083 
7084 static struct md_personality raid4_personality =
7085 {
7086 	.name		= "raid4",
7087 	.level		= 4,
7088 	.owner		= THIS_MODULE,
7089 	.make_request	= make_request,
7090 	.run		= run,
7091 	.stop		= stop,
7092 	.status		= status,
7093 	.error_handler	= error,
7094 	.hot_add_disk	= raid5_add_disk,
7095 	.hot_remove_disk= raid5_remove_disk,
7096 	.spare_active	= raid5_spare_active,
7097 	.sync_request	= sync_request,
7098 	.resize		= raid5_resize,
7099 	.size		= raid5_size,
7100 	.check_reshape	= raid5_check_reshape,
7101 	.start_reshape  = raid5_start_reshape,
7102 	.finish_reshape = raid5_finish_reshape,
7103 	.quiesce	= raid5_quiesce,
7104 	.takeover	= raid4_takeover,
7105 };
7106 
7107 static int __init raid5_init(void)
7108 {
7109 	raid5_wq = alloc_workqueue("raid5wq",
7110 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7111 	if (!raid5_wq)
7112 		return -ENOMEM;
7113 	register_md_personality(&raid6_personality);
7114 	register_md_personality(&raid5_personality);
7115 	register_md_personality(&raid4_personality);
7116 	return 0;
7117 }
7118 
7119 static void raid5_exit(void)
7120 {
7121 	unregister_md_personality(&raid6_personality);
7122 	unregister_md_personality(&raid5_personality);
7123 	unregister_md_personality(&raid4_personality);
7124 	destroy_workqueue(raid5_wq);
7125 }
7126 
7127 module_init(raid5_init);
7128 module_exit(raid5_exit);
7129 MODULE_LICENSE("GPL");
7130 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7131 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7132 MODULE_ALIAS("md-raid5");
7133 MODULE_ALIAS("md-raid4");
7134 MODULE_ALIAS("md-level-5");
7135 MODULE_ALIAS("md-level-4");
7136 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7137 MODULE_ALIAS("md-raid6");
7138 MODULE_ALIAS("md-level-6");
7139 
7140 /* This used to be two separate modules, they were: */
7141 MODULE_ALIAS("raid5");
7142 MODULE_ALIAS("raid6");
7143