xref: /openbmc/linux/drivers/md/raid5.c (revision a8c5cb99)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
61 
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
67 
68 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
69 
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
72 
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
78 
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
80 {
81 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 	return &conf->stripe_hashtbl[hash];
83 }
84 
85 static inline int stripe_hash_locks_hash(sector_t sect)
86 {
87 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88 }
89 
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91 {
92 	spin_lock_irq(conf->hash_locks + hash);
93 	spin_lock(&conf->device_lock);
94 }
95 
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 {
98 	spin_unlock(&conf->device_lock);
99 	spin_unlock_irq(conf->hash_locks + hash);
100 }
101 
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_lock_irq(conf->hash_locks);
106 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 	spin_lock(&conf->device_lock);
109 }
110 
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 	int i;
114 	spin_unlock(&conf->device_lock);
115 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 		spin_unlock(conf->hash_locks + i);
117 	spin_unlock_irq(conf->hash_locks);
118 }
119 
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 	if (sh->ddf_layout)
124 		/* ddf always start from first device */
125 		return 0;
126 	/* md starts just after Q block */
127 	if (sh->qd_idx == sh->disks - 1)
128 		return 0;
129 	else
130 		return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 	disk++;
135 	return (disk < raid_disks) ? disk : 0;
136 }
137 
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139  * We need to map each disk to a 'slot', where the data disks are slot
140  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141  * is raid_disks-1.  This help does that mapping.
142  */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 			     int *count, int syndrome_disks)
145 {
146 	int slot = *count;
147 
148 	if (sh->ddf_layout)
149 		(*count)++;
150 	if (idx == sh->pd_idx)
151 		return syndrome_disks;
152 	if (idx == sh->qd_idx)
153 		return syndrome_disks + 1;
154 	if (!sh->ddf_layout)
155 		(*count)++;
156 	return slot;
157 }
158 
159 static void print_raid5_conf (struct r5conf *conf);
160 
161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163 	return sh->check_state || sh->reconstruct_state ||
164 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167 
168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174 
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177 	struct r5conf *conf = sh->raid_conf;
178 	struct r5worker_group *group;
179 	int thread_cnt;
180 	int i, cpu = sh->cpu;
181 
182 	if (!cpu_online(cpu)) {
183 		cpu = cpumask_any(cpu_online_mask);
184 		sh->cpu = cpu;
185 	}
186 
187 	if (list_empty(&sh->lru)) {
188 		struct r5worker_group *group;
189 		group = conf->worker_groups + cpu_to_group(cpu);
190 		if (stripe_is_lowprio(sh))
191 			list_add_tail(&sh->lru, &group->loprio_list);
192 		else
193 			list_add_tail(&sh->lru, &group->handle_list);
194 		group->stripes_cnt++;
195 		sh->group = group;
196 	}
197 
198 	if (conf->worker_cnt_per_group == 0) {
199 		md_wakeup_thread(conf->mddev->thread);
200 		return;
201 	}
202 
203 	group = conf->worker_groups + cpu_to_group(sh->cpu);
204 
205 	group->workers[0].working = true;
206 	/* at least one worker should run to avoid race */
207 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208 
209 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 	/* wakeup more workers */
211 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 		if (group->workers[i].working == false) {
213 			group->workers[i].working = true;
214 			queue_work_on(sh->cpu, raid5_wq,
215 				      &group->workers[i].work);
216 			thread_cnt--;
217 		}
218 	}
219 }
220 
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 			      struct list_head *temp_inactive_list)
223 {
224 	int i;
225 	int injournal = 0;	/* number of date pages with R5_InJournal */
226 
227 	BUG_ON(!list_empty(&sh->lru));
228 	BUG_ON(atomic_read(&conf->active_stripes)==0);
229 
230 	if (r5c_is_writeback(conf->log))
231 		for (i = sh->disks; i--; )
232 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 				injournal++;
234 	/*
235 	 * In the following cases, the stripe cannot be released to cached
236 	 * lists. Therefore, we make the stripe write out and set
237 	 * STRIPE_HANDLE:
238 	 *   1. when quiesce in r5c write back;
239 	 *   2. when resync is requested fot the stripe.
240 	 */
241 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
243 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 			r5c_make_stripe_write_out(sh);
246 		set_bit(STRIPE_HANDLE, &sh->state);
247 	}
248 
249 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 			list_add_tail(&sh->lru, &conf->delayed_list);
253 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 			   sh->bm_seq - conf->seq_write > 0)
255 			list_add_tail(&sh->lru, &conf->bitmap_list);
256 		else {
257 			clear_bit(STRIPE_DELAYED, &sh->state);
258 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 			if (conf->worker_cnt_per_group == 0) {
260 				if (stripe_is_lowprio(sh))
261 					list_add_tail(&sh->lru,
262 							&conf->loprio_list);
263 				else
264 					list_add_tail(&sh->lru,
265 							&conf->handle_list);
266 			} else {
267 				raid5_wakeup_stripe_thread(sh);
268 				return;
269 			}
270 		}
271 		md_wakeup_thread(conf->mddev->thread);
272 	} else {
273 		BUG_ON(stripe_operations_active(sh));
274 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 			if (atomic_dec_return(&conf->preread_active_stripes)
276 			    < IO_THRESHOLD)
277 				md_wakeup_thread(conf->mddev->thread);
278 		atomic_dec(&conf->active_stripes);
279 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 			if (!r5c_is_writeback(conf->log))
281 				list_add_tail(&sh->lru, temp_inactive_list);
282 			else {
283 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 				if (injournal == 0)
285 					list_add_tail(&sh->lru, temp_inactive_list);
286 				else if (injournal == conf->raid_disks - conf->max_degraded) {
287 					/* full stripe */
288 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 						atomic_inc(&conf->r5c_cached_full_stripes);
290 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 						atomic_dec(&conf->r5c_cached_partial_stripes);
292 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 					r5c_check_cached_full_stripe(conf);
294 				} else
295 					/*
296 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 					 * r5c_try_caching_write(). No need to
298 					 * set it again.
299 					 */
300 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301 			}
302 		}
303 	}
304 }
305 
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 			     struct list_head *temp_inactive_list)
308 {
309 	if (atomic_dec_and_test(&sh->count))
310 		do_release_stripe(conf, sh, temp_inactive_list);
311 }
312 
313 /*
314  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315  *
316  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317  * given time. Adding stripes only takes device lock, while deleting stripes
318  * only takes hash lock.
319  */
320 static void release_inactive_stripe_list(struct r5conf *conf,
321 					 struct list_head *temp_inactive_list,
322 					 int hash)
323 {
324 	int size;
325 	bool do_wakeup = false;
326 	unsigned long flags;
327 
328 	if (hash == NR_STRIPE_HASH_LOCKS) {
329 		size = NR_STRIPE_HASH_LOCKS;
330 		hash = NR_STRIPE_HASH_LOCKS - 1;
331 	} else
332 		size = 1;
333 	while (size) {
334 		struct list_head *list = &temp_inactive_list[size - 1];
335 
336 		/*
337 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 		 * remove stripes from the list
339 		 */
340 		if (!list_empty_careful(list)) {
341 			spin_lock_irqsave(conf->hash_locks + hash, flags);
342 			if (list_empty(conf->inactive_list + hash) &&
343 			    !list_empty(list))
344 				atomic_dec(&conf->empty_inactive_list_nr);
345 			list_splice_tail_init(list, conf->inactive_list + hash);
346 			do_wakeup = true;
347 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 		}
349 		size--;
350 		hash--;
351 	}
352 
353 	if (do_wakeup) {
354 		wake_up(&conf->wait_for_stripe);
355 		if (atomic_read(&conf->active_stripes) == 0)
356 			wake_up(&conf->wait_for_quiescent);
357 		if (conf->retry_read_aligned)
358 			md_wakeup_thread(conf->mddev->thread);
359 	}
360 }
361 
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364 			       struct list_head *temp_inactive_list)
365 {
366 	struct stripe_head *sh, *t;
367 	int count = 0;
368 	struct llist_node *head;
369 
370 	head = llist_del_all(&conf->released_stripes);
371 	head = llist_reverse_order(head);
372 	llist_for_each_entry_safe(sh, t, head, release_list) {
373 		int hash;
374 
375 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 		smp_mb();
377 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 		/*
379 		 * Don't worry the bit is set here, because if the bit is set
380 		 * again, the count is always > 1. This is true for
381 		 * STRIPE_ON_UNPLUG_LIST bit too.
382 		 */
383 		hash = sh->hash_lock_index;
384 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
385 		count++;
386 	}
387 
388 	return count;
389 }
390 
391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 	struct r5conf *conf = sh->raid_conf;
394 	unsigned long flags;
395 	struct list_head list;
396 	int hash;
397 	bool wakeup;
398 
399 	/* Avoid release_list until the last reference.
400 	 */
401 	if (atomic_add_unless(&sh->count, -1, 1))
402 		return;
403 
404 	if (unlikely(!conf->mddev->thread) ||
405 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 		goto slow_path;
407 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 	if (wakeup)
409 		md_wakeup_thread(conf->mddev->thread);
410 	return;
411 slow_path:
412 	local_irq_save(flags);
413 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
414 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
415 		INIT_LIST_HEAD(&list);
416 		hash = sh->hash_lock_index;
417 		do_release_stripe(conf, sh, &list);
418 		spin_unlock(&conf->device_lock);
419 		release_inactive_stripe_list(conf, &list, hash);
420 	}
421 	local_irq_restore(flags);
422 }
423 
424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 	pr_debug("remove_hash(), stripe %llu\n",
427 		(unsigned long long)sh->sector);
428 
429 	hlist_del_init(&sh->hash);
430 }
431 
432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
435 
436 	pr_debug("insert_hash(), stripe %llu\n",
437 		(unsigned long long)sh->sector);
438 
439 	hlist_add_head(&sh->hash, hp);
440 }
441 
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 	struct stripe_head *sh = NULL;
446 	struct list_head *first;
447 
448 	if (list_empty(conf->inactive_list + hash))
449 		goto out;
450 	first = (conf->inactive_list + hash)->next;
451 	sh = list_entry(first, struct stripe_head, lru);
452 	list_del_init(first);
453 	remove_hash(sh);
454 	atomic_inc(&conf->active_stripes);
455 	BUG_ON(hash != sh->hash_lock_index);
456 	if (list_empty(conf->inactive_list + hash))
457 		atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 	return sh;
460 }
461 
462 static void shrink_buffers(struct stripe_head *sh)
463 {
464 	struct page *p;
465 	int i;
466 	int num = sh->raid_conf->pool_size;
467 
468 	for (i = 0; i < num ; i++) {
469 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
470 		p = sh->dev[i].page;
471 		if (!p)
472 			continue;
473 		sh->dev[i].page = NULL;
474 		put_page(p);
475 	}
476 }
477 
478 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
479 {
480 	int i;
481 	int num = sh->raid_conf->pool_size;
482 
483 	for (i = 0; i < num; i++) {
484 		struct page *page;
485 
486 		if (!(page = alloc_page(gfp))) {
487 			return 1;
488 		}
489 		sh->dev[i].page = page;
490 		sh->dev[i].orig_page = page;
491 	}
492 
493 	return 0;
494 }
495 
496 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
497 			    struct stripe_head *sh);
498 
499 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
500 {
501 	struct r5conf *conf = sh->raid_conf;
502 	int i, seq;
503 
504 	BUG_ON(atomic_read(&sh->count) != 0);
505 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
506 	BUG_ON(stripe_operations_active(sh));
507 	BUG_ON(sh->batch_head);
508 
509 	pr_debug("init_stripe called, stripe %llu\n",
510 		(unsigned long long)sector);
511 retry:
512 	seq = read_seqcount_begin(&conf->gen_lock);
513 	sh->generation = conf->generation - previous;
514 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
515 	sh->sector = sector;
516 	stripe_set_idx(sector, conf, previous, sh);
517 	sh->state = 0;
518 
519 	for (i = sh->disks; i--; ) {
520 		struct r5dev *dev = &sh->dev[i];
521 
522 		if (dev->toread || dev->read || dev->towrite || dev->written ||
523 		    test_bit(R5_LOCKED, &dev->flags)) {
524 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
525 			       (unsigned long long)sh->sector, i, dev->toread,
526 			       dev->read, dev->towrite, dev->written,
527 			       test_bit(R5_LOCKED, &dev->flags));
528 			WARN_ON(1);
529 		}
530 		dev->flags = 0;
531 		dev->sector = raid5_compute_blocknr(sh, i, previous);
532 	}
533 	if (read_seqcount_retry(&conf->gen_lock, seq))
534 		goto retry;
535 	sh->overwrite_disks = 0;
536 	insert_hash(conf, sh);
537 	sh->cpu = smp_processor_id();
538 	set_bit(STRIPE_BATCH_READY, &sh->state);
539 }
540 
541 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
542 					 short generation)
543 {
544 	struct stripe_head *sh;
545 
546 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
547 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
548 		if (sh->sector == sector && sh->generation == generation)
549 			return sh;
550 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
551 	return NULL;
552 }
553 
554 /*
555  * Need to check if array has failed when deciding whether to:
556  *  - start an array
557  *  - remove non-faulty devices
558  *  - add a spare
559  *  - allow a reshape
560  * This determination is simple when no reshape is happening.
561  * However if there is a reshape, we need to carefully check
562  * both the before and after sections.
563  * This is because some failed devices may only affect one
564  * of the two sections, and some non-in_sync devices may
565  * be insync in the section most affected by failed devices.
566  */
567 int raid5_calc_degraded(struct r5conf *conf)
568 {
569 	int degraded, degraded2;
570 	int i;
571 
572 	rcu_read_lock();
573 	degraded = 0;
574 	for (i = 0; i < conf->previous_raid_disks; i++) {
575 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
576 		if (rdev && test_bit(Faulty, &rdev->flags))
577 			rdev = rcu_dereference(conf->disks[i].replacement);
578 		if (!rdev || test_bit(Faulty, &rdev->flags))
579 			degraded++;
580 		else if (test_bit(In_sync, &rdev->flags))
581 			;
582 		else
583 			/* not in-sync or faulty.
584 			 * If the reshape increases the number of devices,
585 			 * this is being recovered by the reshape, so
586 			 * this 'previous' section is not in_sync.
587 			 * If the number of devices is being reduced however,
588 			 * the device can only be part of the array if
589 			 * we are reverting a reshape, so this section will
590 			 * be in-sync.
591 			 */
592 			if (conf->raid_disks >= conf->previous_raid_disks)
593 				degraded++;
594 	}
595 	rcu_read_unlock();
596 	if (conf->raid_disks == conf->previous_raid_disks)
597 		return degraded;
598 	rcu_read_lock();
599 	degraded2 = 0;
600 	for (i = 0; i < conf->raid_disks; i++) {
601 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
602 		if (rdev && test_bit(Faulty, &rdev->flags))
603 			rdev = rcu_dereference(conf->disks[i].replacement);
604 		if (!rdev || test_bit(Faulty, &rdev->flags))
605 			degraded2++;
606 		else if (test_bit(In_sync, &rdev->flags))
607 			;
608 		else
609 			/* not in-sync or faulty.
610 			 * If reshape increases the number of devices, this
611 			 * section has already been recovered, else it
612 			 * almost certainly hasn't.
613 			 */
614 			if (conf->raid_disks <= conf->previous_raid_disks)
615 				degraded2++;
616 	}
617 	rcu_read_unlock();
618 	if (degraded2 > degraded)
619 		return degraded2;
620 	return degraded;
621 }
622 
623 static int has_failed(struct r5conf *conf)
624 {
625 	int degraded;
626 
627 	if (conf->mddev->reshape_position == MaxSector)
628 		return conf->mddev->degraded > conf->max_degraded;
629 
630 	degraded = raid5_calc_degraded(conf);
631 	if (degraded > conf->max_degraded)
632 		return 1;
633 	return 0;
634 }
635 
636 struct stripe_head *
637 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
638 			int previous, int noblock, int noquiesce)
639 {
640 	struct stripe_head *sh;
641 	int hash = stripe_hash_locks_hash(sector);
642 	int inc_empty_inactive_list_flag;
643 
644 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
645 
646 	spin_lock_irq(conf->hash_locks + hash);
647 
648 	do {
649 		wait_event_lock_irq(conf->wait_for_quiescent,
650 				    conf->quiesce == 0 || noquiesce,
651 				    *(conf->hash_locks + hash));
652 		sh = __find_stripe(conf, sector, conf->generation - previous);
653 		if (!sh) {
654 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
655 				sh = get_free_stripe(conf, hash);
656 				if (!sh && !test_bit(R5_DID_ALLOC,
657 						     &conf->cache_state))
658 					set_bit(R5_ALLOC_MORE,
659 						&conf->cache_state);
660 			}
661 			if (noblock && sh == NULL)
662 				break;
663 
664 			r5c_check_stripe_cache_usage(conf);
665 			if (!sh) {
666 				set_bit(R5_INACTIVE_BLOCKED,
667 					&conf->cache_state);
668 				r5l_wake_reclaim(conf->log, 0);
669 				wait_event_lock_irq(
670 					conf->wait_for_stripe,
671 					!list_empty(conf->inactive_list + hash) &&
672 					(atomic_read(&conf->active_stripes)
673 					 < (conf->max_nr_stripes * 3 / 4)
674 					 || !test_bit(R5_INACTIVE_BLOCKED,
675 						      &conf->cache_state)),
676 					*(conf->hash_locks + hash));
677 				clear_bit(R5_INACTIVE_BLOCKED,
678 					  &conf->cache_state);
679 			} else {
680 				init_stripe(sh, sector, previous);
681 				atomic_inc(&sh->count);
682 			}
683 		} else if (!atomic_inc_not_zero(&sh->count)) {
684 			spin_lock(&conf->device_lock);
685 			if (!atomic_read(&sh->count)) {
686 				if (!test_bit(STRIPE_HANDLE, &sh->state))
687 					atomic_inc(&conf->active_stripes);
688 				BUG_ON(list_empty(&sh->lru) &&
689 				       !test_bit(STRIPE_EXPANDING, &sh->state));
690 				inc_empty_inactive_list_flag = 0;
691 				if (!list_empty(conf->inactive_list + hash))
692 					inc_empty_inactive_list_flag = 1;
693 				list_del_init(&sh->lru);
694 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
695 					atomic_inc(&conf->empty_inactive_list_nr);
696 				if (sh->group) {
697 					sh->group->stripes_cnt--;
698 					sh->group = NULL;
699 				}
700 			}
701 			atomic_inc(&sh->count);
702 			spin_unlock(&conf->device_lock);
703 		}
704 	} while (sh == NULL);
705 
706 	spin_unlock_irq(conf->hash_locks + hash);
707 	return sh;
708 }
709 
710 static bool is_full_stripe_write(struct stripe_head *sh)
711 {
712 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
713 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
714 }
715 
716 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
717 {
718 	if (sh1 > sh2) {
719 		spin_lock_irq(&sh2->stripe_lock);
720 		spin_lock_nested(&sh1->stripe_lock, 1);
721 	} else {
722 		spin_lock_irq(&sh1->stripe_lock);
723 		spin_lock_nested(&sh2->stripe_lock, 1);
724 	}
725 }
726 
727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 	spin_unlock(&sh1->stripe_lock);
730 	spin_unlock_irq(&sh2->stripe_lock);
731 }
732 
733 /* Only freshly new full stripe normal write stripe can be added to a batch list */
734 static bool stripe_can_batch(struct stripe_head *sh)
735 {
736 	struct r5conf *conf = sh->raid_conf;
737 
738 	if (conf->log || raid5_has_ppl(conf))
739 		return false;
740 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
741 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
742 		is_full_stripe_write(sh);
743 }
744 
745 /* we only do back search */
746 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
747 {
748 	struct stripe_head *head;
749 	sector_t head_sector, tmp_sec;
750 	int hash;
751 	int dd_idx;
752 	int inc_empty_inactive_list_flag;
753 
754 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
755 	tmp_sec = sh->sector;
756 	if (!sector_div(tmp_sec, conf->chunk_sectors))
757 		return;
758 	head_sector = sh->sector - STRIPE_SECTORS;
759 
760 	hash = stripe_hash_locks_hash(head_sector);
761 	spin_lock_irq(conf->hash_locks + hash);
762 	head = __find_stripe(conf, head_sector, conf->generation);
763 	if (head && !atomic_inc_not_zero(&head->count)) {
764 		spin_lock(&conf->device_lock);
765 		if (!atomic_read(&head->count)) {
766 			if (!test_bit(STRIPE_HANDLE, &head->state))
767 				atomic_inc(&conf->active_stripes);
768 			BUG_ON(list_empty(&head->lru) &&
769 			       !test_bit(STRIPE_EXPANDING, &head->state));
770 			inc_empty_inactive_list_flag = 0;
771 			if (!list_empty(conf->inactive_list + hash))
772 				inc_empty_inactive_list_flag = 1;
773 			list_del_init(&head->lru);
774 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
775 				atomic_inc(&conf->empty_inactive_list_nr);
776 			if (head->group) {
777 				head->group->stripes_cnt--;
778 				head->group = NULL;
779 			}
780 		}
781 		atomic_inc(&head->count);
782 		spin_unlock(&conf->device_lock);
783 	}
784 	spin_unlock_irq(conf->hash_locks + hash);
785 
786 	if (!head)
787 		return;
788 	if (!stripe_can_batch(head))
789 		goto out;
790 
791 	lock_two_stripes(head, sh);
792 	/* clear_batch_ready clear the flag */
793 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
794 		goto unlock_out;
795 
796 	if (sh->batch_head)
797 		goto unlock_out;
798 
799 	dd_idx = 0;
800 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
801 		dd_idx++;
802 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
803 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
804 		goto unlock_out;
805 
806 	if (head->batch_head) {
807 		spin_lock(&head->batch_head->batch_lock);
808 		/* This batch list is already running */
809 		if (!stripe_can_batch(head)) {
810 			spin_unlock(&head->batch_head->batch_lock);
811 			goto unlock_out;
812 		}
813 		/*
814 		 * We must assign batch_head of this stripe within the
815 		 * batch_lock, otherwise clear_batch_ready of batch head
816 		 * stripe could clear BATCH_READY bit of this stripe and
817 		 * this stripe->batch_head doesn't get assigned, which
818 		 * could confuse clear_batch_ready for this stripe
819 		 */
820 		sh->batch_head = head->batch_head;
821 
822 		/*
823 		 * at this point, head's BATCH_READY could be cleared, but we
824 		 * can still add the stripe to batch list
825 		 */
826 		list_add(&sh->batch_list, &head->batch_list);
827 		spin_unlock(&head->batch_head->batch_lock);
828 	} else {
829 		head->batch_head = head;
830 		sh->batch_head = head->batch_head;
831 		spin_lock(&head->batch_lock);
832 		list_add_tail(&sh->batch_list, &head->batch_list);
833 		spin_unlock(&head->batch_lock);
834 	}
835 
836 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 		if (atomic_dec_return(&conf->preread_active_stripes)
838 		    < IO_THRESHOLD)
839 			md_wakeup_thread(conf->mddev->thread);
840 
841 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 		int seq = sh->bm_seq;
843 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 		    sh->batch_head->bm_seq > seq)
845 			seq = sh->batch_head->bm_seq;
846 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 		sh->batch_head->bm_seq = seq;
848 	}
849 
850 	atomic_inc(&sh->count);
851 unlock_out:
852 	unlock_two_stripes(head, sh);
853 out:
854 	raid5_release_stripe(head);
855 }
856 
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858  * in this stripe_head.
859  */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862 	sector_t progress = conf->reshape_progress;
863 	/* Need a memory barrier to make sure we see the value
864 	 * of conf->generation, or ->data_offset that was set before
865 	 * reshape_progress was updated.
866 	 */
867 	smp_rmb();
868 	if (progress == MaxSector)
869 		return 0;
870 	if (sh->generation == conf->generation - 1)
871 		return 0;
872 	/* We are in a reshape, and this is a new-generation stripe,
873 	 * so use new_data_offset.
874 	 */
875 	return 1;
876 }
877 
878 static void dispatch_bio_list(struct bio_list *tmp)
879 {
880 	struct bio *bio;
881 
882 	while ((bio = bio_list_pop(tmp)))
883 		generic_make_request(bio);
884 }
885 
886 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
887 {
888 	const struct r5pending_data *da = list_entry(a,
889 				struct r5pending_data, sibling);
890 	const struct r5pending_data *db = list_entry(b,
891 				struct r5pending_data, sibling);
892 	if (da->sector > db->sector)
893 		return 1;
894 	if (da->sector < db->sector)
895 		return -1;
896 	return 0;
897 }
898 
899 static void dispatch_defer_bios(struct r5conf *conf, int target,
900 				struct bio_list *list)
901 {
902 	struct r5pending_data *data;
903 	struct list_head *first, *next = NULL;
904 	int cnt = 0;
905 
906 	if (conf->pending_data_cnt == 0)
907 		return;
908 
909 	list_sort(NULL, &conf->pending_list, cmp_stripe);
910 
911 	first = conf->pending_list.next;
912 
913 	/* temporarily move the head */
914 	if (conf->next_pending_data)
915 		list_move_tail(&conf->pending_list,
916 				&conf->next_pending_data->sibling);
917 
918 	while (!list_empty(&conf->pending_list)) {
919 		data = list_first_entry(&conf->pending_list,
920 			struct r5pending_data, sibling);
921 		if (&data->sibling == first)
922 			first = data->sibling.next;
923 		next = data->sibling.next;
924 
925 		bio_list_merge(list, &data->bios);
926 		list_move(&data->sibling, &conf->free_list);
927 		cnt++;
928 		if (cnt >= target)
929 			break;
930 	}
931 	conf->pending_data_cnt -= cnt;
932 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
933 
934 	if (next != &conf->pending_list)
935 		conf->next_pending_data = list_entry(next,
936 				struct r5pending_data, sibling);
937 	else
938 		conf->next_pending_data = NULL;
939 	/* list isn't empty */
940 	if (first != &conf->pending_list)
941 		list_move_tail(&conf->pending_list, first);
942 }
943 
944 static void flush_deferred_bios(struct r5conf *conf)
945 {
946 	struct bio_list tmp = BIO_EMPTY_LIST;
947 
948 	if (conf->pending_data_cnt == 0)
949 		return;
950 
951 	spin_lock(&conf->pending_bios_lock);
952 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
953 	BUG_ON(conf->pending_data_cnt != 0);
954 	spin_unlock(&conf->pending_bios_lock);
955 
956 	dispatch_bio_list(&tmp);
957 }
958 
959 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
960 				struct bio_list *bios)
961 {
962 	struct bio_list tmp = BIO_EMPTY_LIST;
963 	struct r5pending_data *ent;
964 
965 	spin_lock(&conf->pending_bios_lock);
966 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
967 							sibling);
968 	list_move_tail(&ent->sibling, &conf->pending_list);
969 	ent->sector = sector;
970 	bio_list_init(&ent->bios);
971 	bio_list_merge(&ent->bios, bios);
972 	conf->pending_data_cnt++;
973 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
974 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
975 
976 	spin_unlock(&conf->pending_bios_lock);
977 
978 	dispatch_bio_list(&tmp);
979 }
980 
981 static void
982 raid5_end_read_request(struct bio *bi);
983 static void
984 raid5_end_write_request(struct bio *bi);
985 
986 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
987 {
988 	struct r5conf *conf = sh->raid_conf;
989 	int i, disks = sh->disks;
990 	struct stripe_head *head_sh = sh;
991 	struct bio_list pending_bios = BIO_EMPTY_LIST;
992 	bool should_defer;
993 
994 	might_sleep();
995 
996 	if (log_stripe(sh, s) == 0)
997 		return;
998 
999 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1000 
1001 	for (i = disks; i--; ) {
1002 		int op, op_flags = 0;
1003 		int replace_only = 0;
1004 		struct bio *bi, *rbi;
1005 		struct md_rdev *rdev, *rrdev = NULL;
1006 
1007 		sh = head_sh;
1008 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1009 			op = REQ_OP_WRITE;
1010 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1011 				op_flags = REQ_FUA;
1012 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1013 				op = REQ_OP_DISCARD;
1014 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1015 			op = REQ_OP_READ;
1016 		else if (test_and_clear_bit(R5_WantReplace,
1017 					    &sh->dev[i].flags)) {
1018 			op = REQ_OP_WRITE;
1019 			replace_only = 1;
1020 		} else
1021 			continue;
1022 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1023 			op_flags |= REQ_SYNC;
1024 
1025 again:
1026 		bi = &sh->dev[i].req;
1027 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1028 
1029 		rcu_read_lock();
1030 		rrdev = rcu_dereference(conf->disks[i].replacement);
1031 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1032 		rdev = rcu_dereference(conf->disks[i].rdev);
1033 		if (!rdev) {
1034 			rdev = rrdev;
1035 			rrdev = NULL;
1036 		}
1037 		if (op_is_write(op)) {
1038 			if (replace_only)
1039 				rdev = NULL;
1040 			if (rdev == rrdev)
1041 				/* We raced and saw duplicates */
1042 				rrdev = NULL;
1043 		} else {
1044 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1045 				rdev = rrdev;
1046 			rrdev = NULL;
1047 		}
1048 
1049 		if (rdev && test_bit(Faulty, &rdev->flags))
1050 			rdev = NULL;
1051 		if (rdev)
1052 			atomic_inc(&rdev->nr_pending);
1053 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1054 			rrdev = NULL;
1055 		if (rrdev)
1056 			atomic_inc(&rrdev->nr_pending);
1057 		rcu_read_unlock();
1058 
1059 		/* We have already checked bad blocks for reads.  Now
1060 		 * need to check for writes.  We never accept write errors
1061 		 * on the replacement, so we don't to check rrdev.
1062 		 */
1063 		while (op_is_write(op) && rdev &&
1064 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1065 			sector_t first_bad;
1066 			int bad_sectors;
1067 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1068 					      &first_bad, &bad_sectors);
1069 			if (!bad)
1070 				break;
1071 
1072 			if (bad < 0) {
1073 				set_bit(BlockedBadBlocks, &rdev->flags);
1074 				if (!conf->mddev->external &&
1075 				    conf->mddev->sb_flags) {
1076 					/* It is very unlikely, but we might
1077 					 * still need to write out the
1078 					 * bad block log - better give it
1079 					 * a chance*/
1080 					md_check_recovery(conf->mddev);
1081 				}
1082 				/*
1083 				 * Because md_wait_for_blocked_rdev
1084 				 * will dec nr_pending, we must
1085 				 * increment it first.
1086 				 */
1087 				atomic_inc(&rdev->nr_pending);
1088 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1089 			} else {
1090 				/* Acknowledged bad block - skip the write */
1091 				rdev_dec_pending(rdev, conf->mddev);
1092 				rdev = NULL;
1093 			}
1094 		}
1095 
1096 		if (rdev) {
1097 			if (s->syncing || s->expanding || s->expanded
1098 			    || s->replacing)
1099 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1100 
1101 			set_bit(STRIPE_IO_STARTED, &sh->state);
1102 
1103 			bio_set_dev(bi, rdev->bdev);
1104 			bio_set_op_attrs(bi, op, op_flags);
1105 			bi->bi_end_io = op_is_write(op)
1106 				? raid5_end_write_request
1107 				: raid5_end_read_request;
1108 			bi->bi_private = sh;
1109 
1110 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1111 				__func__, (unsigned long long)sh->sector,
1112 				bi->bi_opf, i);
1113 			atomic_inc(&sh->count);
1114 			if (sh != head_sh)
1115 				atomic_inc(&head_sh->count);
1116 			if (use_new_offset(conf, sh))
1117 				bi->bi_iter.bi_sector = (sh->sector
1118 						 + rdev->new_data_offset);
1119 			else
1120 				bi->bi_iter.bi_sector = (sh->sector
1121 						 + rdev->data_offset);
1122 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1123 				bi->bi_opf |= REQ_NOMERGE;
1124 
1125 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1126 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1127 
1128 			if (!op_is_write(op) &&
1129 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1130 				/*
1131 				 * issuing read for a page in journal, this
1132 				 * must be preparing for prexor in rmw; read
1133 				 * the data into orig_page
1134 				 */
1135 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1136 			else
1137 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1138 			bi->bi_vcnt = 1;
1139 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1140 			bi->bi_io_vec[0].bv_offset = 0;
1141 			bi->bi_iter.bi_size = STRIPE_SIZE;
1142 			bi->bi_write_hint = sh->dev[i].write_hint;
1143 			if (!rrdev)
1144 				sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1145 			/*
1146 			 * If this is discard request, set bi_vcnt 0. We don't
1147 			 * want to confuse SCSI because SCSI will replace payload
1148 			 */
1149 			if (op == REQ_OP_DISCARD)
1150 				bi->bi_vcnt = 0;
1151 			if (rrdev)
1152 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1153 
1154 			if (conf->mddev->gendisk)
1155 				trace_block_bio_remap(bi->bi_disk->queue,
1156 						      bi, disk_devt(conf->mddev->gendisk),
1157 						      sh->dev[i].sector);
1158 			if (should_defer && op_is_write(op))
1159 				bio_list_add(&pending_bios, bi);
1160 			else
1161 				generic_make_request(bi);
1162 		}
1163 		if (rrdev) {
1164 			if (s->syncing || s->expanding || s->expanded
1165 			    || s->replacing)
1166 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1167 
1168 			set_bit(STRIPE_IO_STARTED, &sh->state);
1169 
1170 			bio_set_dev(rbi, rrdev->bdev);
1171 			bio_set_op_attrs(rbi, op, op_flags);
1172 			BUG_ON(!op_is_write(op));
1173 			rbi->bi_end_io = raid5_end_write_request;
1174 			rbi->bi_private = sh;
1175 
1176 			pr_debug("%s: for %llu schedule op %d on "
1177 				 "replacement disc %d\n",
1178 				__func__, (unsigned long long)sh->sector,
1179 				rbi->bi_opf, i);
1180 			atomic_inc(&sh->count);
1181 			if (sh != head_sh)
1182 				atomic_inc(&head_sh->count);
1183 			if (use_new_offset(conf, sh))
1184 				rbi->bi_iter.bi_sector = (sh->sector
1185 						  + rrdev->new_data_offset);
1186 			else
1187 				rbi->bi_iter.bi_sector = (sh->sector
1188 						  + rrdev->data_offset);
1189 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1190 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1191 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1192 			rbi->bi_vcnt = 1;
1193 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1194 			rbi->bi_io_vec[0].bv_offset = 0;
1195 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1196 			rbi->bi_write_hint = sh->dev[i].write_hint;
1197 			sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1198 			/*
1199 			 * If this is discard request, set bi_vcnt 0. We don't
1200 			 * want to confuse SCSI because SCSI will replace payload
1201 			 */
1202 			if (op == REQ_OP_DISCARD)
1203 				rbi->bi_vcnt = 0;
1204 			if (conf->mddev->gendisk)
1205 				trace_block_bio_remap(rbi->bi_disk->queue,
1206 						      rbi, disk_devt(conf->mddev->gendisk),
1207 						      sh->dev[i].sector);
1208 			if (should_defer && op_is_write(op))
1209 				bio_list_add(&pending_bios, rbi);
1210 			else
1211 				generic_make_request(rbi);
1212 		}
1213 		if (!rdev && !rrdev) {
1214 			if (op_is_write(op))
1215 				set_bit(STRIPE_DEGRADED, &sh->state);
1216 			pr_debug("skip op %d on disc %d for sector %llu\n",
1217 				bi->bi_opf, i, (unsigned long long)sh->sector);
1218 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1219 			set_bit(STRIPE_HANDLE, &sh->state);
1220 		}
1221 
1222 		if (!head_sh->batch_head)
1223 			continue;
1224 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1225 				      batch_list);
1226 		if (sh != head_sh)
1227 			goto again;
1228 	}
1229 
1230 	if (should_defer && !bio_list_empty(&pending_bios))
1231 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1232 }
1233 
1234 static struct dma_async_tx_descriptor *
1235 async_copy_data(int frombio, struct bio *bio, struct page **page,
1236 	sector_t sector, struct dma_async_tx_descriptor *tx,
1237 	struct stripe_head *sh, int no_skipcopy)
1238 {
1239 	struct bio_vec bvl;
1240 	struct bvec_iter iter;
1241 	struct page *bio_page;
1242 	int page_offset;
1243 	struct async_submit_ctl submit;
1244 	enum async_tx_flags flags = 0;
1245 
1246 	if (bio->bi_iter.bi_sector >= sector)
1247 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1248 	else
1249 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1250 
1251 	if (frombio)
1252 		flags |= ASYNC_TX_FENCE;
1253 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1254 
1255 	bio_for_each_segment(bvl, bio, iter) {
1256 		int len = bvl.bv_len;
1257 		int clen;
1258 		int b_offset = 0;
1259 
1260 		if (page_offset < 0) {
1261 			b_offset = -page_offset;
1262 			page_offset += b_offset;
1263 			len -= b_offset;
1264 		}
1265 
1266 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1267 			clen = STRIPE_SIZE - page_offset;
1268 		else
1269 			clen = len;
1270 
1271 		if (clen > 0) {
1272 			b_offset += bvl.bv_offset;
1273 			bio_page = bvl.bv_page;
1274 			if (frombio) {
1275 				if (sh->raid_conf->skip_copy &&
1276 				    b_offset == 0 && page_offset == 0 &&
1277 				    clen == STRIPE_SIZE &&
1278 				    !no_skipcopy)
1279 					*page = bio_page;
1280 				else
1281 					tx = async_memcpy(*page, bio_page, page_offset,
1282 						  b_offset, clen, &submit);
1283 			} else
1284 				tx = async_memcpy(bio_page, *page, b_offset,
1285 						  page_offset, clen, &submit);
1286 		}
1287 		/* chain the operations */
1288 		submit.depend_tx = tx;
1289 
1290 		if (clen < len) /* hit end of page */
1291 			break;
1292 		page_offset +=  len;
1293 	}
1294 
1295 	return tx;
1296 }
1297 
1298 static void ops_complete_biofill(void *stripe_head_ref)
1299 {
1300 	struct stripe_head *sh = stripe_head_ref;
1301 	int i;
1302 
1303 	pr_debug("%s: stripe %llu\n", __func__,
1304 		(unsigned long long)sh->sector);
1305 
1306 	/* clear completed biofills */
1307 	for (i = sh->disks; i--; ) {
1308 		struct r5dev *dev = &sh->dev[i];
1309 
1310 		/* acknowledge completion of a biofill operation */
1311 		/* and check if we need to reply to a read request,
1312 		 * new R5_Wantfill requests are held off until
1313 		 * !STRIPE_BIOFILL_RUN
1314 		 */
1315 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1316 			struct bio *rbi, *rbi2;
1317 
1318 			BUG_ON(!dev->read);
1319 			rbi = dev->read;
1320 			dev->read = NULL;
1321 			while (rbi && rbi->bi_iter.bi_sector <
1322 				dev->sector + STRIPE_SECTORS) {
1323 				rbi2 = r5_next_bio(rbi, dev->sector);
1324 				bio_endio(rbi);
1325 				rbi = rbi2;
1326 			}
1327 		}
1328 	}
1329 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1330 
1331 	set_bit(STRIPE_HANDLE, &sh->state);
1332 	raid5_release_stripe(sh);
1333 }
1334 
1335 static void ops_run_biofill(struct stripe_head *sh)
1336 {
1337 	struct dma_async_tx_descriptor *tx = NULL;
1338 	struct async_submit_ctl submit;
1339 	int i;
1340 
1341 	BUG_ON(sh->batch_head);
1342 	pr_debug("%s: stripe %llu\n", __func__,
1343 		(unsigned long long)sh->sector);
1344 
1345 	for (i = sh->disks; i--; ) {
1346 		struct r5dev *dev = &sh->dev[i];
1347 		if (test_bit(R5_Wantfill, &dev->flags)) {
1348 			struct bio *rbi;
1349 			spin_lock_irq(&sh->stripe_lock);
1350 			dev->read = rbi = dev->toread;
1351 			dev->toread = NULL;
1352 			spin_unlock_irq(&sh->stripe_lock);
1353 			while (rbi && rbi->bi_iter.bi_sector <
1354 				dev->sector + STRIPE_SECTORS) {
1355 				tx = async_copy_data(0, rbi, &dev->page,
1356 						     dev->sector, tx, sh, 0);
1357 				rbi = r5_next_bio(rbi, dev->sector);
1358 			}
1359 		}
1360 	}
1361 
1362 	atomic_inc(&sh->count);
1363 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1364 	async_trigger_callback(&submit);
1365 }
1366 
1367 static void mark_target_uptodate(struct stripe_head *sh, int target)
1368 {
1369 	struct r5dev *tgt;
1370 
1371 	if (target < 0)
1372 		return;
1373 
1374 	tgt = &sh->dev[target];
1375 	set_bit(R5_UPTODATE, &tgt->flags);
1376 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1377 	clear_bit(R5_Wantcompute, &tgt->flags);
1378 }
1379 
1380 static void ops_complete_compute(void *stripe_head_ref)
1381 {
1382 	struct stripe_head *sh = stripe_head_ref;
1383 
1384 	pr_debug("%s: stripe %llu\n", __func__,
1385 		(unsigned long long)sh->sector);
1386 
1387 	/* mark the computed target(s) as uptodate */
1388 	mark_target_uptodate(sh, sh->ops.target);
1389 	mark_target_uptodate(sh, sh->ops.target2);
1390 
1391 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1392 	if (sh->check_state == check_state_compute_run)
1393 		sh->check_state = check_state_compute_result;
1394 	set_bit(STRIPE_HANDLE, &sh->state);
1395 	raid5_release_stripe(sh);
1396 }
1397 
1398 /* return a pointer to the address conversion region of the scribble buffer */
1399 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1400 				 struct raid5_percpu *percpu, int i)
1401 {
1402 	void *addr;
1403 
1404 	addr = flex_array_get(percpu->scribble, i);
1405 	return addr + sizeof(struct page *) * (sh->disks + 2);
1406 }
1407 
1408 /* return a pointer to the address conversion region of the scribble buffer */
1409 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1410 {
1411 	void *addr;
1412 
1413 	addr = flex_array_get(percpu->scribble, i);
1414 	return addr;
1415 }
1416 
1417 static struct dma_async_tx_descriptor *
1418 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1419 {
1420 	int disks = sh->disks;
1421 	struct page **xor_srcs = to_addr_page(percpu, 0);
1422 	int target = sh->ops.target;
1423 	struct r5dev *tgt = &sh->dev[target];
1424 	struct page *xor_dest = tgt->page;
1425 	int count = 0;
1426 	struct dma_async_tx_descriptor *tx;
1427 	struct async_submit_ctl submit;
1428 	int i;
1429 
1430 	BUG_ON(sh->batch_head);
1431 
1432 	pr_debug("%s: stripe %llu block: %d\n",
1433 		__func__, (unsigned long long)sh->sector, target);
1434 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1435 
1436 	for (i = disks; i--; )
1437 		if (i != target)
1438 			xor_srcs[count++] = sh->dev[i].page;
1439 
1440 	atomic_inc(&sh->count);
1441 
1442 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1443 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1444 	if (unlikely(count == 1))
1445 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1446 	else
1447 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1448 
1449 	return tx;
1450 }
1451 
1452 /* set_syndrome_sources - populate source buffers for gen_syndrome
1453  * @srcs - (struct page *) array of size sh->disks
1454  * @sh - stripe_head to parse
1455  *
1456  * Populates srcs in proper layout order for the stripe and returns the
1457  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1458  * destination buffer is recorded in srcs[count] and the Q destination
1459  * is recorded in srcs[count+1]].
1460  */
1461 static int set_syndrome_sources(struct page **srcs,
1462 				struct stripe_head *sh,
1463 				int srctype)
1464 {
1465 	int disks = sh->disks;
1466 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1467 	int d0_idx = raid6_d0(sh);
1468 	int count;
1469 	int i;
1470 
1471 	for (i = 0; i < disks; i++)
1472 		srcs[i] = NULL;
1473 
1474 	count = 0;
1475 	i = d0_idx;
1476 	do {
1477 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1478 		struct r5dev *dev = &sh->dev[i];
1479 
1480 		if (i == sh->qd_idx || i == sh->pd_idx ||
1481 		    (srctype == SYNDROME_SRC_ALL) ||
1482 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1483 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1484 		      test_bit(R5_InJournal, &dev->flags))) ||
1485 		    (srctype == SYNDROME_SRC_WRITTEN &&
1486 		     (dev->written ||
1487 		      test_bit(R5_InJournal, &dev->flags)))) {
1488 			if (test_bit(R5_InJournal, &dev->flags))
1489 				srcs[slot] = sh->dev[i].orig_page;
1490 			else
1491 				srcs[slot] = sh->dev[i].page;
1492 		}
1493 		i = raid6_next_disk(i, disks);
1494 	} while (i != d0_idx);
1495 
1496 	return syndrome_disks;
1497 }
1498 
1499 static struct dma_async_tx_descriptor *
1500 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1501 {
1502 	int disks = sh->disks;
1503 	struct page **blocks = to_addr_page(percpu, 0);
1504 	int target;
1505 	int qd_idx = sh->qd_idx;
1506 	struct dma_async_tx_descriptor *tx;
1507 	struct async_submit_ctl submit;
1508 	struct r5dev *tgt;
1509 	struct page *dest;
1510 	int i;
1511 	int count;
1512 
1513 	BUG_ON(sh->batch_head);
1514 	if (sh->ops.target < 0)
1515 		target = sh->ops.target2;
1516 	else if (sh->ops.target2 < 0)
1517 		target = sh->ops.target;
1518 	else
1519 		/* we should only have one valid target */
1520 		BUG();
1521 	BUG_ON(target < 0);
1522 	pr_debug("%s: stripe %llu block: %d\n",
1523 		__func__, (unsigned long long)sh->sector, target);
1524 
1525 	tgt = &sh->dev[target];
1526 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1527 	dest = tgt->page;
1528 
1529 	atomic_inc(&sh->count);
1530 
1531 	if (target == qd_idx) {
1532 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1533 		blocks[count] = NULL; /* regenerating p is not necessary */
1534 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1535 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1536 				  ops_complete_compute, sh,
1537 				  to_addr_conv(sh, percpu, 0));
1538 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1539 	} else {
1540 		/* Compute any data- or p-drive using XOR */
1541 		count = 0;
1542 		for (i = disks; i-- ; ) {
1543 			if (i == target || i == qd_idx)
1544 				continue;
1545 			blocks[count++] = sh->dev[i].page;
1546 		}
1547 
1548 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1549 				  NULL, ops_complete_compute, sh,
1550 				  to_addr_conv(sh, percpu, 0));
1551 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1552 	}
1553 
1554 	return tx;
1555 }
1556 
1557 static struct dma_async_tx_descriptor *
1558 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1559 {
1560 	int i, count, disks = sh->disks;
1561 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1562 	int d0_idx = raid6_d0(sh);
1563 	int faila = -1, failb = -1;
1564 	int target = sh->ops.target;
1565 	int target2 = sh->ops.target2;
1566 	struct r5dev *tgt = &sh->dev[target];
1567 	struct r5dev *tgt2 = &sh->dev[target2];
1568 	struct dma_async_tx_descriptor *tx;
1569 	struct page **blocks = to_addr_page(percpu, 0);
1570 	struct async_submit_ctl submit;
1571 
1572 	BUG_ON(sh->batch_head);
1573 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1574 		 __func__, (unsigned long long)sh->sector, target, target2);
1575 	BUG_ON(target < 0 || target2 < 0);
1576 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1577 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1578 
1579 	/* we need to open-code set_syndrome_sources to handle the
1580 	 * slot number conversion for 'faila' and 'failb'
1581 	 */
1582 	for (i = 0; i < disks ; i++)
1583 		blocks[i] = NULL;
1584 	count = 0;
1585 	i = d0_idx;
1586 	do {
1587 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1588 
1589 		blocks[slot] = sh->dev[i].page;
1590 
1591 		if (i == target)
1592 			faila = slot;
1593 		if (i == target2)
1594 			failb = slot;
1595 		i = raid6_next_disk(i, disks);
1596 	} while (i != d0_idx);
1597 
1598 	BUG_ON(faila == failb);
1599 	if (failb < faila)
1600 		swap(faila, failb);
1601 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1602 		 __func__, (unsigned long long)sh->sector, faila, failb);
1603 
1604 	atomic_inc(&sh->count);
1605 
1606 	if (failb == syndrome_disks+1) {
1607 		/* Q disk is one of the missing disks */
1608 		if (faila == syndrome_disks) {
1609 			/* Missing P+Q, just recompute */
1610 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1611 					  ops_complete_compute, sh,
1612 					  to_addr_conv(sh, percpu, 0));
1613 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1614 						  STRIPE_SIZE, &submit);
1615 		} else {
1616 			struct page *dest;
1617 			int data_target;
1618 			int qd_idx = sh->qd_idx;
1619 
1620 			/* Missing D+Q: recompute D from P, then recompute Q */
1621 			if (target == qd_idx)
1622 				data_target = target2;
1623 			else
1624 				data_target = target;
1625 
1626 			count = 0;
1627 			for (i = disks; i-- ; ) {
1628 				if (i == data_target || i == qd_idx)
1629 					continue;
1630 				blocks[count++] = sh->dev[i].page;
1631 			}
1632 			dest = sh->dev[data_target].page;
1633 			init_async_submit(&submit,
1634 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1635 					  NULL, NULL, NULL,
1636 					  to_addr_conv(sh, percpu, 0));
1637 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1638 				       &submit);
1639 
1640 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1641 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1642 					  ops_complete_compute, sh,
1643 					  to_addr_conv(sh, percpu, 0));
1644 			return async_gen_syndrome(blocks, 0, count+2,
1645 						  STRIPE_SIZE, &submit);
1646 		}
1647 	} else {
1648 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1649 				  ops_complete_compute, sh,
1650 				  to_addr_conv(sh, percpu, 0));
1651 		if (failb == syndrome_disks) {
1652 			/* We're missing D+P. */
1653 			return async_raid6_datap_recov(syndrome_disks+2,
1654 						       STRIPE_SIZE, faila,
1655 						       blocks, &submit);
1656 		} else {
1657 			/* We're missing D+D. */
1658 			return async_raid6_2data_recov(syndrome_disks+2,
1659 						       STRIPE_SIZE, faila, failb,
1660 						       blocks, &submit);
1661 		}
1662 	}
1663 }
1664 
1665 static void ops_complete_prexor(void *stripe_head_ref)
1666 {
1667 	struct stripe_head *sh = stripe_head_ref;
1668 
1669 	pr_debug("%s: stripe %llu\n", __func__,
1670 		(unsigned long long)sh->sector);
1671 
1672 	if (r5c_is_writeback(sh->raid_conf->log))
1673 		/*
1674 		 * raid5-cache write back uses orig_page during prexor.
1675 		 * After prexor, it is time to free orig_page
1676 		 */
1677 		r5c_release_extra_page(sh);
1678 }
1679 
1680 static struct dma_async_tx_descriptor *
1681 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1682 		struct dma_async_tx_descriptor *tx)
1683 {
1684 	int disks = sh->disks;
1685 	struct page **xor_srcs = to_addr_page(percpu, 0);
1686 	int count = 0, pd_idx = sh->pd_idx, i;
1687 	struct async_submit_ctl submit;
1688 
1689 	/* existing parity data subtracted */
1690 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1691 
1692 	BUG_ON(sh->batch_head);
1693 	pr_debug("%s: stripe %llu\n", __func__,
1694 		(unsigned long long)sh->sector);
1695 
1696 	for (i = disks; i--; ) {
1697 		struct r5dev *dev = &sh->dev[i];
1698 		/* Only process blocks that are known to be uptodate */
1699 		if (test_bit(R5_InJournal, &dev->flags))
1700 			xor_srcs[count++] = dev->orig_page;
1701 		else if (test_bit(R5_Wantdrain, &dev->flags))
1702 			xor_srcs[count++] = dev->page;
1703 	}
1704 
1705 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1706 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1707 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1708 
1709 	return tx;
1710 }
1711 
1712 static struct dma_async_tx_descriptor *
1713 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1714 		struct dma_async_tx_descriptor *tx)
1715 {
1716 	struct page **blocks = to_addr_page(percpu, 0);
1717 	int count;
1718 	struct async_submit_ctl submit;
1719 
1720 	pr_debug("%s: stripe %llu\n", __func__,
1721 		(unsigned long long)sh->sector);
1722 
1723 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1724 
1725 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1726 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1727 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1728 
1729 	return tx;
1730 }
1731 
1732 static struct dma_async_tx_descriptor *
1733 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1734 {
1735 	struct r5conf *conf = sh->raid_conf;
1736 	int disks = sh->disks;
1737 	int i;
1738 	struct stripe_head *head_sh = sh;
1739 
1740 	pr_debug("%s: stripe %llu\n", __func__,
1741 		(unsigned long long)sh->sector);
1742 
1743 	for (i = disks; i--; ) {
1744 		struct r5dev *dev;
1745 		struct bio *chosen;
1746 
1747 		sh = head_sh;
1748 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1749 			struct bio *wbi;
1750 
1751 again:
1752 			dev = &sh->dev[i];
1753 			/*
1754 			 * clear R5_InJournal, so when rewriting a page in
1755 			 * journal, it is not skipped by r5l_log_stripe()
1756 			 */
1757 			clear_bit(R5_InJournal, &dev->flags);
1758 			spin_lock_irq(&sh->stripe_lock);
1759 			chosen = dev->towrite;
1760 			dev->towrite = NULL;
1761 			sh->overwrite_disks = 0;
1762 			BUG_ON(dev->written);
1763 			wbi = dev->written = chosen;
1764 			spin_unlock_irq(&sh->stripe_lock);
1765 			WARN_ON(dev->page != dev->orig_page);
1766 
1767 			while (wbi && wbi->bi_iter.bi_sector <
1768 				dev->sector + STRIPE_SECTORS) {
1769 				if (wbi->bi_opf & REQ_FUA)
1770 					set_bit(R5_WantFUA, &dev->flags);
1771 				if (wbi->bi_opf & REQ_SYNC)
1772 					set_bit(R5_SyncIO, &dev->flags);
1773 				if (bio_op(wbi) == REQ_OP_DISCARD)
1774 					set_bit(R5_Discard, &dev->flags);
1775 				else {
1776 					tx = async_copy_data(1, wbi, &dev->page,
1777 							     dev->sector, tx, sh,
1778 							     r5c_is_writeback(conf->log));
1779 					if (dev->page != dev->orig_page &&
1780 					    !r5c_is_writeback(conf->log)) {
1781 						set_bit(R5_SkipCopy, &dev->flags);
1782 						clear_bit(R5_UPTODATE, &dev->flags);
1783 						clear_bit(R5_OVERWRITE, &dev->flags);
1784 					}
1785 				}
1786 				wbi = r5_next_bio(wbi, dev->sector);
1787 			}
1788 
1789 			if (head_sh->batch_head) {
1790 				sh = list_first_entry(&sh->batch_list,
1791 						      struct stripe_head,
1792 						      batch_list);
1793 				if (sh == head_sh)
1794 					continue;
1795 				goto again;
1796 			}
1797 		}
1798 	}
1799 
1800 	return tx;
1801 }
1802 
1803 static void ops_complete_reconstruct(void *stripe_head_ref)
1804 {
1805 	struct stripe_head *sh = stripe_head_ref;
1806 	int disks = sh->disks;
1807 	int pd_idx = sh->pd_idx;
1808 	int qd_idx = sh->qd_idx;
1809 	int i;
1810 	bool fua = false, sync = false, discard = false;
1811 
1812 	pr_debug("%s: stripe %llu\n", __func__,
1813 		(unsigned long long)sh->sector);
1814 
1815 	for (i = disks; i--; ) {
1816 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1817 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1818 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1819 	}
1820 
1821 	for (i = disks; i--; ) {
1822 		struct r5dev *dev = &sh->dev[i];
1823 
1824 		if (dev->written || i == pd_idx || i == qd_idx) {
1825 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1826 				set_bit(R5_UPTODATE, &dev->flags);
1827 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1828 					set_bit(R5_Expanded, &dev->flags);
1829 			}
1830 			if (fua)
1831 				set_bit(R5_WantFUA, &dev->flags);
1832 			if (sync)
1833 				set_bit(R5_SyncIO, &dev->flags);
1834 		}
1835 	}
1836 
1837 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1838 		sh->reconstruct_state = reconstruct_state_drain_result;
1839 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1840 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1841 	else {
1842 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1843 		sh->reconstruct_state = reconstruct_state_result;
1844 	}
1845 
1846 	set_bit(STRIPE_HANDLE, &sh->state);
1847 	raid5_release_stripe(sh);
1848 }
1849 
1850 static void
1851 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1852 		     struct dma_async_tx_descriptor *tx)
1853 {
1854 	int disks = sh->disks;
1855 	struct page **xor_srcs;
1856 	struct async_submit_ctl submit;
1857 	int count, pd_idx = sh->pd_idx, i;
1858 	struct page *xor_dest;
1859 	int prexor = 0;
1860 	unsigned long flags;
1861 	int j = 0;
1862 	struct stripe_head *head_sh = sh;
1863 	int last_stripe;
1864 
1865 	pr_debug("%s: stripe %llu\n", __func__,
1866 		(unsigned long long)sh->sector);
1867 
1868 	for (i = 0; i < sh->disks; i++) {
1869 		if (pd_idx == i)
1870 			continue;
1871 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1872 			break;
1873 	}
1874 	if (i >= sh->disks) {
1875 		atomic_inc(&sh->count);
1876 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1877 		ops_complete_reconstruct(sh);
1878 		return;
1879 	}
1880 again:
1881 	count = 0;
1882 	xor_srcs = to_addr_page(percpu, j);
1883 	/* check if prexor is active which means only process blocks
1884 	 * that are part of a read-modify-write (written)
1885 	 */
1886 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1887 		prexor = 1;
1888 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1889 		for (i = disks; i--; ) {
1890 			struct r5dev *dev = &sh->dev[i];
1891 			if (head_sh->dev[i].written ||
1892 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1893 				xor_srcs[count++] = dev->page;
1894 		}
1895 	} else {
1896 		xor_dest = sh->dev[pd_idx].page;
1897 		for (i = disks; i--; ) {
1898 			struct r5dev *dev = &sh->dev[i];
1899 			if (i != pd_idx)
1900 				xor_srcs[count++] = dev->page;
1901 		}
1902 	}
1903 
1904 	/* 1/ if we prexor'd then the dest is reused as a source
1905 	 * 2/ if we did not prexor then we are redoing the parity
1906 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1907 	 * for the synchronous xor case
1908 	 */
1909 	last_stripe = !head_sh->batch_head ||
1910 		list_first_entry(&sh->batch_list,
1911 				 struct stripe_head, batch_list) == head_sh;
1912 	if (last_stripe) {
1913 		flags = ASYNC_TX_ACK |
1914 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1915 
1916 		atomic_inc(&head_sh->count);
1917 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1918 				  to_addr_conv(sh, percpu, j));
1919 	} else {
1920 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1921 		init_async_submit(&submit, flags, tx, NULL, NULL,
1922 				  to_addr_conv(sh, percpu, j));
1923 	}
1924 
1925 	if (unlikely(count == 1))
1926 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1927 	else
1928 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1929 	if (!last_stripe) {
1930 		j++;
1931 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1932 				      batch_list);
1933 		goto again;
1934 	}
1935 }
1936 
1937 static void
1938 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1939 		     struct dma_async_tx_descriptor *tx)
1940 {
1941 	struct async_submit_ctl submit;
1942 	struct page **blocks;
1943 	int count, i, j = 0;
1944 	struct stripe_head *head_sh = sh;
1945 	int last_stripe;
1946 	int synflags;
1947 	unsigned long txflags;
1948 
1949 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1950 
1951 	for (i = 0; i < sh->disks; i++) {
1952 		if (sh->pd_idx == i || sh->qd_idx == i)
1953 			continue;
1954 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1955 			break;
1956 	}
1957 	if (i >= sh->disks) {
1958 		atomic_inc(&sh->count);
1959 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1960 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1961 		ops_complete_reconstruct(sh);
1962 		return;
1963 	}
1964 
1965 again:
1966 	blocks = to_addr_page(percpu, j);
1967 
1968 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1969 		synflags = SYNDROME_SRC_WRITTEN;
1970 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1971 	} else {
1972 		synflags = SYNDROME_SRC_ALL;
1973 		txflags = ASYNC_TX_ACK;
1974 	}
1975 
1976 	count = set_syndrome_sources(blocks, sh, synflags);
1977 	last_stripe = !head_sh->batch_head ||
1978 		list_first_entry(&sh->batch_list,
1979 				 struct stripe_head, batch_list) == head_sh;
1980 
1981 	if (last_stripe) {
1982 		atomic_inc(&head_sh->count);
1983 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1984 				  head_sh, to_addr_conv(sh, percpu, j));
1985 	} else
1986 		init_async_submit(&submit, 0, tx, NULL, NULL,
1987 				  to_addr_conv(sh, percpu, j));
1988 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1989 	if (!last_stripe) {
1990 		j++;
1991 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1992 				      batch_list);
1993 		goto again;
1994 	}
1995 }
1996 
1997 static void ops_complete_check(void *stripe_head_ref)
1998 {
1999 	struct stripe_head *sh = stripe_head_ref;
2000 
2001 	pr_debug("%s: stripe %llu\n", __func__,
2002 		(unsigned long long)sh->sector);
2003 
2004 	sh->check_state = check_state_check_result;
2005 	set_bit(STRIPE_HANDLE, &sh->state);
2006 	raid5_release_stripe(sh);
2007 }
2008 
2009 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2010 {
2011 	int disks = sh->disks;
2012 	int pd_idx = sh->pd_idx;
2013 	int qd_idx = sh->qd_idx;
2014 	struct page *xor_dest;
2015 	struct page **xor_srcs = to_addr_page(percpu, 0);
2016 	struct dma_async_tx_descriptor *tx;
2017 	struct async_submit_ctl submit;
2018 	int count;
2019 	int i;
2020 
2021 	pr_debug("%s: stripe %llu\n", __func__,
2022 		(unsigned long long)sh->sector);
2023 
2024 	BUG_ON(sh->batch_head);
2025 	count = 0;
2026 	xor_dest = sh->dev[pd_idx].page;
2027 	xor_srcs[count++] = xor_dest;
2028 	for (i = disks; i--; ) {
2029 		if (i == pd_idx || i == qd_idx)
2030 			continue;
2031 		xor_srcs[count++] = sh->dev[i].page;
2032 	}
2033 
2034 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2035 			  to_addr_conv(sh, percpu, 0));
2036 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2037 			   &sh->ops.zero_sum_result, &submit);
2038 
2039 	atomic_inc(&sh->count);
2040 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2041 	tx = async_trigger_callback(&submit);
2042 }
2043 
2044 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2045 {
2046 	struct page **srcs = to_addr_page(percpu, 0);
2047 	struct async_submit_ctl submit;
2048 	int count;
2049 
2050 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2051 		(unsigned long long)sh->sector, checkp);
2052 
2053 	BUG_ON(sh->batch_head);
2054 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2055 	if (!checkp)
2056 		srcs[count] = NULL;
2057 
2058 	atomic_inc(&sh->count);
2059 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2060 			  sh, to_addr_conv(sh, percpu, 0));
2061 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2062 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2063 }
2064 
2065 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2066 {
2067 	int overlap_clear = 0, i, disks = sh->disks;
2068 	struct dma_async_tx_descriptor *tx = NULL;
2069 	struct r5conf *conf = sh->raid_conf;
2070 	int level = conf->level;
2071 	struct raid5_percpu *percpu;
2072 	unsigned long cpu;
2073 
2074 	cpu = get_cpu();
2075 	percpu = per_cpu_ptr(conf->percpu, cpu);
2076 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2077 		ops_run_biofill(sh);
2078 		overlap_clear++;
2079 	}
2080 
2081 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2082 		if (level < 6)
2083 			tx = ops_run_compute5(sh, percpu);
2084 		else {
2085 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2086 				tx = ops_run_compute6_1(sh, percpu);
2087 			else
2088 				tx = ops_run_compute6_2(sh, percpu);
2089 		}
2090 		/* terminate the chain if reconstruct is not set to be run */
2091 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2092 			async_tx_ack(tx);
2093 	}
2094 
2095 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2096 		if (level < 6)
2097 			tx = ops_run_prexor5(sh, percpu, tx);
2098 		else
2099 			tx = ops_run_prexor6(sh, percpu, tx);
2100 	}
2101 
2102 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2103 		tx = ops_run_partial_parity(sh, percpu, tx);
2104 
2105 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2106 		tx = ops_run_biodrain(sh, tx);
2107 		overlap_clear++;
2108 	}
2109 
2110 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2111 		if (level < 6)
2112 			ops_run_reconstruct5(sh, percpu, tx);
2113 		else
2114 			ops_run_reconstruct6(sh, percpu, tx);
2115 	}
2116 
2117 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2118 		if (sh->check_state == check_state_run)
2119 			ops_run_check_p(sh, percpu);
2120 		else if (sh->check_state == check_state_run_q)
2121 			ops_run_check_pq(sh, percpu, 0);
2122 		else if (sh->check_state == check_state_run_pq)
2123 			ops_run_check_pq(sh, percpu, 1);
2124 		else
2125 			BUG();
2126 	}
2127 
2128 	if (overlap_clear && !sh->batch_head)
2129 		for (i = disks; i--; ) {
2130 			struct r5dev *dev = &sh->dev[i];
2131 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2132 				wake_up(&sh->raid_conf->wait_for_overlap);
2133 		}
2134 	put_cpu();
2135 }
2136 
2137 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2138 {
2139 	if (sh->ppl_page)
2140 		__free_page(sh->ppl_page);
2141 	kmem_cache_free(sc, sh);
2142 }
2143 
2144 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2145 	int disks, struct r5conf *conf)
2146 {
2147 	struct stripe_head *sh;
2148 	int i;
2149 
2150 	sh = kmem_cache_zalloc(sc, gfp);
2151 	if (sh) {
2152 		spin_lock_init(&sh->stripe_lock);
2153 		spin_lock_init(&sh->batch_lock);
2154 		INIT_LIST_HEAD(&sh->batch_list);
2155 		INIT_LIST_HEAD(&sh->lru);
2156 		INIT_LIST_HEAD(&sh->r5c);
2157 		INIT_LIST_HEAD(&sh->log_list);
2158 		atomic_set(&sh->count, 1);
2159 		sh->raid_conf = conf;
2160 		sh->log_start = MaxSector;
2161 		for (i = 0; i < disks; i++) {
2162 			struct r5dev *dev = &sh->dev[i];
2163 
2164 			bio_init(&dev->req, &dev->vec, 1);
2165 			bio_init(&dev->rreq, &dev->rvec, 1);
2166 		}
2167 
2168 		if (raid5_has_ppl(conf)) {
2169 			sh->ppl_page = alloc_page(gfp);
2170 			if (!sh->ppl_page) {
2171 				free_stripe(sc, sh);
2172 				sh = NULL;
2173 			}
2174 		}
2175 	}
2176 	return sh;
2177 }
2178 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2179 {
2180 	struct stripe_head *sh;
2181 
2182 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2183 	if (!sh)
2184 		return 0;
2185 
2186 	if (grow_buffers(sh, gfp)) {
2187 		shrink_buffers(sh);
2188 		free_stripe(conf->slab_cache, sh);
2189 		return 0;
2190 	}
2191 	sh->hash_lock_index =
2192 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2193 	/* we just created an active stripe so... */
2194 	atomic_inc(&conf->active_stripes);
2195 
2196 	raid5_release_stripe(sh);
2197 	conf->max_nr_stripes++;
2198 	return 1;
2199 }
2200 
2201 static int grow_stripes(struct r5conf *conf, int num)
2202 {
2203 	struct kmem_cache *sc;
2204 	size_t namelen = sizeof(conf->cache_name[0]);
2205 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2206 
2207 	if (conf->mddev->gendisk)
2208 		snprintf(conf->cache_name[0], namelen,
2209 			"raid%d-%s", conf->level, mdname(conf->mddev));
2210 	else
2211 		snprintf(conf->cache_name[0], namelen,
2212 			"raid%d-%p", conf->level, conf->mddev);
2213 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2214 
2215 	conf->active_name = 0;
2216 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2217 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2218 			       0, 0, NULL);
2219 	if (!sc)
2220 		return 1;
2221 	conf->slab_cache = sc;
2222 	conf->pool_size = devs;
2223 	while (num--)
2224 		if (!grow_one_stripe(conf, GFP_KERNEL))
2225 			return 1;
2226 
2227 	return 0;
2228 }
2229 
2230 /**
2231  * scribble_len - return the required size of the scribble region
2232  * @num - total number of disks in the array
2233  *
2234  * The size must be enough to contain:
2235  * 1/ a struct page pointer for each device in the array +2
2236  * 2/ room to convert each entry in (1) to its corresponding dma
2237  *    (dma_map_page()) or page (page_address()) address.
2238  *
2239  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2240  * calculate over all devices (not just the data blocks), using zeros in place
2241  * of the P and Q blocks.
2242  */
2243 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2244 {
2245 	struct flex_array *ret;
2246 	size_t len;
2247 
2248 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2249 	ret = flex_array_alloc(len, cnt, flags);
2250 	if (!ret)
2251 		return NULL;
2252 	/* always prealloc all elements, so no locking is required */
2253 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2254 		flex_array_free(ret);
2255 		return NULL;
2256 	}
2257 	return ret;
2258 }
2259 
2260 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2261 {
2262 	unsigned long cpu;
2263 	int err = 0;
2264 
2265 	/*
2266 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2267 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2268 	 * should equal to new_disks and new_sectors
2269 	 */
2270 	if (conf->scribble_disks >= new_disks &&
2271 	    conf->scribble_sectors >= new_sectors)
2272 		return 0;
2273 	mddev_suspend(conf->mddev);
2274 	get_online_cpus();
2275 	for_each_present_cpu(cpu) {
2276 		struct raid5_percpu *percpu;
2277 		struct flex_array *scribble;
2278 
2279 		percpu = per_cpu_ptr(conf->percpu, cpu);
2280 		scribble = scribble_alloc(new_disks,
2281 					  new_sectors / STRIPE_SECTORS,
2282 					  GFP_NOIO);
2283 
2284 		if (scribble) {
2285 			flex_array_free(percpu->scribble);
2286 			percpu->scribble = scribble;
2287 		} else {
2288 			err = -ENOMEM;
2289 			break;
2290 		}
2291 	}
2292 	put_online_cpus();
2293 	mddev_resume(conf->mddev);
2294 	if (!err) {
2295 		conf->scribble_disks = new_disks;
2296 		conf->scribble_sectors = new_sectors;
2297 	}
2298 	return err;
2299 }
2300 
2301 static int resize_stripes(struct r5conf *conf, int newsize)
2302 {
2303 	/* Make all the stripes able to hold 'newsize' devices.
2304 	 * New slots in each stripe get 'page' set to a new page.
2305 	 *
2306 	 * This happens in stages:
2307 	 * 1/ create a new kmem_cache and allocate the required number of
2308 	 *    stripe_heads.
2309 	 * 2/ gather all the old stripe_heads and transfer the pages across
2310 	 *    to the new stripe_heads.  This will have the side effect of
2311 	 *    freezing the array as once all stripe_heads have been collected,
2312 	 *    no IO will be possible.  Old stripe heads are freed once their
2313 	 *    pages have been transferred over, and the old kmem_cache is
2314 	 *    freed when all stripes are done.
2315 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2316 	 *    we simple return a failure status - no need to clean anything up.
2317 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2318 	 *    If this fails, we don't bother trying the shrink the
2319 	 *    stripe_heads down again, we just leave them as they are.
2320 	 *    As each stripe_head is processed the new one is released into
2321 	 *    active service.
2322 	 *
2323 	 * Once step2 is started, we cannot afford to wait for a write,
2324 	 * so we use GFP_NOIO allocations.
2325 	 */
2326 	struct stripe_head *osh, *nsh;
2327 	LIST_HEAD(newstripes);
2328 	struct disk_info *ndisks;
2329 	int err = 0;
2330 	struct kmem_cache *sc;
2331 	int i;
2332 	int hash, cnt;
2333 
2334 	md_allow_write(conf->mddev);
2335 
2336 	/* Step 1 */
2337 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2338 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2339 			       0, 0, NULL);
2340 	if (!sc)
2341 		return -ENOMEM;
2342 
2343 	/* Need to ensure auto-resizing doesn't interfere */
2344 	mutex_lock(&conf->cache_size_mutex);
2345 
2346 	for (i = conf->max_nr_stripes; i; i--) {
2347 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2348 		if (!nsh)
2349 			break;
2350 
2351 		list_add(&nsh->lru, &newstripes);
2352 	}
2353 	if (i) {
2354 		/* didn't get enough, give up */
2355 		while (!list_empty(&newstripes)) {
2356 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2357 			list_del(&nsh->lru);
2358 			free_stripe(sc, nsh);
2359 		}
2360 		kmem_cache_destroy(sc);
2361 		mutex_unlock(&conf->cache_size_mutex);
2362 		return -ENOMEM;
2363 	}
2364 	/* Step 2 - Must use GFP_NOIO now.
2365 	 * OK, we have enough stripes, start collecting inactive
2366 	 * stripes and copying them over
2367 	 */
2368 	hash = 0;
2369 	cnt = 0;
2370 	list_for_each_entry(nsh, &newstripes, lru) {
2371 		lock_device_hash_lock(conf, hash);
2372 		wait_event_cmd(conf->wait_for_stripe,
2373 				    !list_empty(conf->inactive_list + hash),
2374 				    unlock_device_hash_lock(conf, hash),
2375 				    lock_device_hash_lock(conf, hash));
2376 		osh = get_free_stripe(conf, hash);
2377 		unlock_device_hash_lock(conf, hash);
2378 
2379 		for(i=0; i<conf->pool_size; i++) {
2380 			nsh->dev[i].page = osh->dev[i].page;
2381 			nsh->dev[i].orig_page = osh->dev[i].page;
2382 		}
2383 		nsh->hash_lock_index = hash;
2384 		free_stripe(conf->slab_cache, osh);
2385 		cnt++;
2386 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2387 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2388 			hash++;
2389 			cnt = 0;
2390 		}
2391 	}
2392 	kmem_cache_destroy(conf->slab_cache);
2393 
2394 	/* Step 3.
2395 	 * At this point, we are holding all the stripes so the array
2396 	 * is completely stalled, so now is a good time to resize
2397 	 * conf->disks and the scribble region
2398 	 */
2399 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2400 	if (ndisks) {
2401 		for (i = 0; i < conf->pool_size; i++)
2402 			ndisks[i] = conf->disks[i];
2403 
2404 		for (i = conf->pool_size; i < newsize; i++) {
2405 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2406 			if (!ndisks[i].extra_page)
2407 				err = -ENOMEM;
2408 		}
2409 
2410 		if (err) {
2411 			for (i = conf->pool_size; i < newsize; i++)
2412 				if (ndisks[i].extra_page)
2413 					put_page(ndisks[i].extra_page);
2414 			kfree(ndisks);
2415 		} else {
2416 			kfree(conf->disks);
2417 			conf->disks = ndisks;
2418 		}
2419 	} else
2420 		err = -ENOMEM;
2421 
2422 	mutex_unlock(&conf->cache_size_mutex);
2423 
2424 	conf->slab_cache = sc;
2425 	conf->active_name = 1-conf->active_name;
2426 
2427 	/* Step 4, return new stripes to service */
2428 	while(!list_empty(&newstripes)) {
2429 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2430 		list_del_init(&nsh->lru);
2431 
2432 		for (i=conf->raid_disks; i < newsize; i++)
2433 			if (nsh->dev[i].page == NULL) {
2434 				struct page *p = alloc_page(GFP_NOIO);
2435 				nsh->dev[i].page = p;
2436 				nsh->dev[i].orig_page = p;
2437 				if (!p)
2438 					err = -ENOMEM;
2439 			}
2440 		raid5_release_stripe(nsh);
2441 	}
2442 	/* critical section pass, GFP_NOIO no longer needed */
2443 
2444 	if (!err)
2445 		conf->pool_size = newsize;
2446 	return err;
2447 }
2448 
2449 static int drop_one_stripe(struct r5conf *conf)
2450 {
2451 	struct stripe_head *sh;
2452 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2453 
2454 	spin_lock_irq(conf->hash_locks + hash);
2455 	sh = get_free_stripe(conf, hash);
2456 	spin_unlock_irq(conf->hash_locks + hash);
2457 	if (!sh)
2458 		return 0;
2459 	BUG_ON(atomic_read(&sh->count));
2460 	shrink_buffers(sh);
2461 	free_stripe(conf->slab_cache, sh);
2462 	atomic_dec(&conf->active_stripes);
2463 	conf->max_nr_stripes--;
2464 	return 1;
2465 }
2466 
2467 static void shrink_stripes(struct r5conf *conf)
2468 {
2469 	while (conf->max_nr_stripes &&
2470 	       drop_one_stripe(conf))
2471 		;
2472 
2473 	kmem_cache_destroy(conf->slab_cache);
2474 	conf->slab_cache = NULL;
2475 }
2476 
2477 static void raid5_end_read_request(struct bio * bi)
2478 {
2479 	struct stripe_head *sh = bi->bi_private;
2480 	struct r5conf *conf = sh->raid_conf;
2481 	int disks = sh->disks, i;
2482 	char b[BDEVNAME_SIZE];
2483 	struct md_rdev *rdev = NULL;
2484 	sector_t s;
2485 
2486 	for (i=0 ; i<disks; i++)
2487 		if (bi == &sh->dev[i].req)
2488 			break;
2489 
2490 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2491 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2492 		bi->bi_status);
2493 	if (i == disks) {
2494 		bio_reset(bi);
2495 		BUG();
2496 		return;
2497 	}
2498 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2499 		/* If replacement finished while this request was outstanding,
2500 		 * 'replacement' might be NULL already.
2501 		 * In that case it moved down to 'rdev'.
2502 		 * rdev is not removed until all requests are finished.
2503 		 */
2504 		rdev = conf->disks[i].replacement;
2505 	if (!rdev)
2506 		rdev = conf->disks[i].rdev;
2507 
2508 	if (use_new_offset(conf, sh))
2509 		s = sh->sector + rdev->new_data_offset;
2510 	else
2511 		s = sh->sector + rdev->data_offset;
2512 	if (!bi->bi_status) {
2513 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2514 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2515 			/* Note that this cannot happen on a
2516 			 * replacement device.  We just fail those on
2517 			 * any error
2518 			 */
2519 			pr_info_ratelimited(
2520 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2521 				mdname(conf->mddev), STRIPE_SECTORS,
2522 				(unsigned long long)s,
2523 				bdevname(rdev->bdev, b));
2524 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2525 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2526 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2527 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2528 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2529 
2530 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2531 			/*
2532 			 * end read for a page in journal, this
2533 			 * must be preparing for prexor in rmw
2534 			 */
2535 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2536 
2537 		if (atomic_read(&rdev->read_errors))
2538 			atomic_set(&rdev->read_errors, 0);
2539 	} else {
2540 		const char *bdn = bdevname(rdev->bdev, b);
2541 		int retry = 0;
2542 		int set_bad = 0;
2543 
2544 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2545 		atomic_inc(&rdev->read_errors);
2546 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2547 			pr_warn_ratelimited(
2548 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2549 				mdname(conf->mddev),
2550 				(unsigned long long)s,
2551 				bdn);
2552 		else if (conf->mddev->degraded >= conf->max_degraded) {
2553 			set_bad = 1;
2554 			pr_warn_ratelimited(
2555 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2556 				mdname(conf->mddev),
2557 				(unsigned long long)s,
2558 				bdn);
2559 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2560 			/* Oh, no!!! */
2561 			set_bad = 1;
2562 			pr_warn_ratelimited(
2563 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2564 				mdname(conf->mddev),
2565 				(unsigned long long)s,
2566 				bdn);
2567 		} else if (atomic_read(&rdev->read_errors)
2568 			 > conf->max_nr_stripes)
2569 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2570 			       mdname(conf->mddev), bdn);
2571 		else
2572 			retry = 1;
2573 		if (set_bad && test_bit(In_sync, &rdev->flags)
2574 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2575 			retry = 1;
2576 		if (retry)
2577 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2578 				set_bit(R5_ReadError, &sh->dev[i].flags);
2579 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580 			} else
2581 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2582 		else {
2583 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2584 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2585 			if (!(set_bad
2586 			      && test_bit(In_sync, &rdev->flags)
2587 			      && rdev_set_badblocks(
2588 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2589 				md_error(conf->mddev, rdev);
2590 		}
2591 	}
2592 	rdev_dec_pending(rdev, conf->mddev);
2593 	bio_reset(bi);
2594 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2595 	set_bit(STRIPE_HANDLE, &sh->state);
2596 	raid5_release_stripe(sh);
2597 }
2598 
2599 static void raid5_end_write_request(struct bio *bi)
2600 {
2601 	struct stripe_head *sh = bi->bi_private;
2602 	struct r5conf *conf = sh->raid_conf;
2603 	int disks = sh->disks, i;
2604 	struct md_rdev *uninitialized_var(rdev);
2605 	sector_t first_bad;
2606 	int bad_sectors;
2607 	int replacement = 0;
2608 
2609 	for (i = 0 ; i < disks; i++) {
2610 		if (bi == &sh->dev[i].req) {
2611 			rdev = conf->disks[i].rdev;
2612 			break;
2613 		}
2614 		if (bi == &sh->dev[i].rreq) {
2615 			rdev = conf->disks[i].replacement;
2616 			if (rdev)
2617 				replacement = 1;
2618 			else
2619 				/* rdev was removed and 'replacement'
2620 				 * replaced it.  rdev is not removed
2621 				 * until all requests are finished.
2622 				 */
2623 				rdev = conf->disks[i].rdev;
2624 			break;
2625 		}
2626 	}
2627 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2628 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2629 		bi->bi_status);
2630 	if (i == disks) {
2631 		bio_reset(bi);
2632 		BUG();
2633 		return;
2634 	}
2635 
2636 	if (replacement) {
2637 		if (bi->bi_status)
2638 			md_error(conf->mddev, rdev);
2639 		else if (is_badblock(rdev, sh->sector,
2640 				     STRIPE_SECTORS,
2641 				     &first_bad, &bad_sectors))
2642 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2643 	} else {
2644 		if (bi->bi_status) {
2645 			set_bit(STRIPE_DEGRADED, &sh->state);
2646 			set_bit(WriteErrorSeen, &rdev->flags);
2647 			set_bit(R5_WriteError, &sh->dev[i].flags);
2648 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2649 				set_bit(MD_RECOVERY_NEEDED,
2650 					&rdev->mddev->recovery);
2651 		} else if (is_badblock(rdev, sh->sector,
2652 				       STRIPE_SECTORS,
2653 				       &first_bad, &bad_sectors)) {
2654 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2655 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2656 				/* That was a successful write so make
2657 				 * sure it looks like we already did
2658 				 * a re-write.
2659 				 */
2660 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2661 		}
2662 	}
2663 	rdev_dec_pending(rdev, conf->mddev);
2664 
2665 	if (sh->batch_head && bi->bi_status && !replacement)
2666 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2667 
2668 	bio_reset(bi);
2669 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2670 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2671 	set_bit(STRIPE_HANDLE, &sh->state);
2672 	raid5_release_stripe(sh);
2673 
2674 	if (sh->batch_head && sh != sh->batch_head)
2675 		raid5_release_stripe(sh->batch_head);
2676 }
2677 
2678 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2679 {
2680 	char b[BDEVNAME_SIZE];
2681 	struct r5conf *conf = mddev->private;
2682 	unsigned long flags;
2683 	pr_debug("raid456: error called\n");
2684 
2685 	spin_lock_irqsave(&conf->device_lock, flags);
2686 	set_bit(Faulty, &rdev->flags);
2687 	clear_bit(In_sync, &rdev->flags);
2688 	mddev->degraded = raid5_calc_degraded(conf);
2689 	spin_unlock_irqrestore(&conf->device_lock, flags);
2690 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2691 
2692 	set_bit(Blocked, &rdev->flags);
2693 	set_mask_bits(&mddev->sb_flags, 0,
2694 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2695 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2696 		"md/raid:%s: Operation continuing on %d devices.\n",
2697 		mdname(mddev),
2698 		bdevname(rdev->bdev, b),
2699 		mdname(mddev),
2700 		conf->raid_disks - mddev->degraded);
2701 	r5c_update_on_rdev_error(mddev, rdev);
2702 }
2703 
2704 /*
2705  * Input: a 'big' sector number,
2706  * Output: index of the data and parity disk, and the sector # in them.
2707  */
2708 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2709 			      int previous, int *dd_idx,
2710 			      struct stripe_head *sh)
2711 {
2712 	sector_t stripe, stripe2;
2713 	sector_t chunk_number;
2714 	unsigned int chunk_offset;
2715 	int pd_idx, qd_idx;
2716 	int ddf_layout = 0;
2717 	sector_t new_sector;
2718 	int algorithm = previous ? conf->prev_algo
2719 				 : conf->algorithm;
2720 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2721 					 : conf->chunk_sectors;
2722 	int raid_disks = previous ? conf->previous_raid_disks
2723 				  : conf->raid_disks;
2724 	int data_disks = raid_disks - conf->max_degraded;
2725 
2726 	/* First compute the information on this sector */
2727 
2728 	/*
2729 	 * Compute the chunk number and the sector offset inside the chunk
2730 	 */
2731 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2732 	chunk_number = r_sector;
2733 
2734 	/*
2735 	 * Compute the stripe number
2736 	 */
2737 	stripe = chunk_number;
2738 	*dd_idx = sector_div(stripe, data_disks);
2739 	stripe2 = stripe;
2740 	/*
2741 	 * Select the parity disk based on the user selected algorithm.
2742 	 */
2743 	pd_idx = qd_idx = -1;
2744 	switch(conf->level) {
2745 	case 4:
2746 		pd_idx = data_disks;
2747 		break;
2748 	case 5:
2749 		switch (algorithm) {
2750 		case ALGORITHM_LEFT_ASYMMETRIC:
2751 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2752 			if (*dd_idx >= pd_idx)
2753 				(*dd_idx)++;
2754 			break;
2755 		case ALGORITHM_RIGHT_ASYMMETRIC:
2756 			pd_idx = sector_div(stripe2, raid_disks);
2757 			if (*dd_idx >= pd_idx)
2758 				(*dd_idx)++;
2759 			break;
2760 		case ALGORITHM_LEFT_SYMMETRIC:
2761 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2762 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2763 			break;
2764 		case ALGORITHM_RIGHT_SYMMETRIC:
2765 			pd_idx = sector_div(stripe2, raid_disks);
2766 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2767 			break;
2768 		case ALGORITHM_PARITY_0:
2769 			pd_idx = 0;
2770 			(*dd_idx)++;
2771 			break;
2772 		case ALGORITHM_PARITY_N:
2773 			pd_idx = data_disks;
2774 			break;
2775 		default:
2776 			BUG();
2777 		}
2778 		break;
2779 	case 6:
2780 
2781 		switch (algorithm) {
2782 		case ALGORITHM_LEFT_ASYMMETRIC:
2783 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2784 			qd_idx = pd_idx + 1;
2785 			if (pd_idx == raid_disks-1) {
2786 				(*dd_idx)++;	/* Q D D D P */
2787 				qd_idx = 0;
2788 			} else if (*dd_idx >= pd_idx)
2789 				(*dd_idx) += 2; /* D D P Q D */
2790 			break;
2791 		case ALGORITHM_RIGHT_ASYMMETRIC:
2792 			pd_idx = sector_div(stripe2, raid_disks);
2793 			qd_idx = pd_idx + 1;
2794 			if (pd_idx == raid_disks-1) {
2795 				(*dd_idx)++;	/* Q D D D P */
2796 				qd_idx = 0;
2797 			} else if (*dd_idx >= pd_idx)
2798 				(*dd_idx) += 2; /* D D P Q D */
2799 			break;
2800 		case ALGORITHM_LEFT_SYMMETRIC:
2801 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2802 			qd_idx = (pd_idx + 1) % raid_disks;
2803 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804 			break;
2805 		case ALGORITHM_RIGHT_SYMMETRIC:
2806 			pd_idx = sector_div(stripe2, raid_disks);
2807 			qd_idx = (pd_idx + 1) % raid_disks;
2808 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2809 			break;
2810 
2811 		case ALGORITHM_PARITY_0:
2812 			pd_idx = 0;
2813 			qd_idx = 1;
2814 			(*dd_idx) += 2;
2815 			break;
2816 		case ALGORITHM_PARITY_N:
2817 			pd_idx = data_disks;
2818 			qd_idx = data_disks + 1;
2819 			break;
2820 
2821 		case ALGORITHM_ROTATING_ZERO_RESTART:
2822 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2823 			 * of blocks for computing Q is different.
2824 			 */
2825 			pd_idx = sector_div(stripe2, raid_disks);
2826 			qd_idx = pd_idx + 1;
2827 			if (pd_idx == raid_disks-1) {
2828 				(*dd_idx)++;	/* Q D D D P */
2829 				qd_idx = 0;
2830 			} else if (*dd_idx >= pd_idx)
2831 				(*dd_idx) += 2; /* D D P Q D */
2832 			ddf_layout = 1;
2833 			break;
2834 
2835 		case ALGORITHM_ROTATING_N_RESTART:
2836 			/* Same a left_asymmetric, by first stripe is
2837 			 * D D D P Q  rather than
2838 			 * Q D D D P
2839 			 */
2840 			stripe2 += 1;
2841 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2842 			qd_idx = pd_idx + 1;
2843 			if (pd_idx == raid_disks-1) {
2844 				(*dd_idx)++;	/* Q D D D P */
2845 				qd_idx = 0;
2846 			} else if (*dd_idx >= pd_idx)
2847 				(*dd_idx) += 2; /* D D P Q D */
2848 			ddf_layout = 1;
2849 			break;
2850 
2851 		case ALGORITHM_ROTATING_N_CONTINUE:
2852 			/* Same as left_symmetric but Q is before P */
2853 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2854 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2855 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2856 			ddf_layout = 1;
2857 			break;
2858 
2859 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2860 			/* RAID5 left_asymmetric, with Q on last device */
2861 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2862 			if (*dd_idx >= pd_idx)
2863 				(*dd_idx)++;
2864 			qd_idx = raid_disks - 1;
2865 			break;
2866 
2867 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2868 			pd_idx = sector_div(stripe2, raid_disks-1);
2869 			if (*dd_idx >= pd_idx)
2870 				(*dd_idx)++;
2871 			qd_idx = raid_disks - 1;
2872 			break;
2873 
2874 		case ALGORITHM_LEFT_SYMMETRIC_6:
2875 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2876 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2877 			qd_idx = raid_disks - 1;
2878 			break;
2879 
2880 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2881 			pd_idx = sector_div(stripe2, raid_disks-1);
2882 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2883 			qd_idx = raid_disks - 1;
2884 			break;
2885 
2886 		case ALGORITHM_PARITY_0_6:
2887 			pd_idx = 0;
2888 			(*dd_idx)++;
2889 			qd_idx = raid_disks - 1;
2890 			break;
2891 
2892 		default:
2893 			BUG();
2894 		}
2895 		break;
2896 	}
2897 
2898 	if (sh) {
2899 		sh->pd_idx = pd_idx;
2900 		sh->qd_idx = qd_idx;
2901 		sh->ddf_layout = ddf_layout;
2902 	}
2903 	/*
2904 	 * Finally, compute the new sector number
2905 	 */
2906 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2907 	return new_sector;
2908 }
2909 
2910 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2911 {
2912 	struct r5conf *conf = sh->raid_conf;
2913 	int raid_disks = sh->disks;
2914 	int data_disks = raid_disks - conf->max_degraded;
2915 	sector_t new_sector = sh->sector, check;
2916 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2917 					 : conf->chunk_sectors;
2918 	int algorithm = previous ? conf->prev_algo
2919 				 : conf->algorithm;
2920 	sector_t stripe;
2921 	int chunk_offset;
2922 	sector_t chunk_number;
2923 	int dummy1, dd_idx = i;
2924 	sector_t r_sector;
2925 	struct stripe_head sh2;
2926 
2927 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2928 	stripe = new_sector;
2929 
2930 	if (i == sh->pd_idx)
2931 		return 0;
2932 	switch(conf->level) {
2933 	case 4: break;
2934 	case 5:
2935 		switch (algorithm) {
2936 		case ALGORITHM_LEFT_ASYMMETRIC:
2937 		case ALGORITHM_RIGHT_ASYMMETRIC:
2938 			if (i > sh->pd_idx)
2939 				i--;
2940 			break;
2941 		case ALGORITHM_LEFT_SYMMETRIC:
2942 		case ALGORITHM_RIGHT_SYMMETRIC:
2943 			if (i < sh->pd_idx)
2944 				i += raid_disks;
2945 			i -= (sh->pd_idx + 1);
2946 			break;
2947 		case ALGORITHM_PARITY_0:
2948 			i -= 1;
2949 			break;
2950 		case ALGORITHM_PARITY_N:
2951 			break;
2952 		default:
2953 			BUG();
2954 		}
2955 		break;
2956 	case 6:
2957 		if (i == sh->qd_idx)
2958 			return 0; /* It is the Q disk */
2959 		switch (algorithm) {
2960 		case ALGORITHM_LEFT_ASYMMETRIC:
2961 		case ALGORITHM_RIGHT_ASYMMETRIC:
2962 		case ALGORITHM_ROTATING_ZERO_RESTART:
2963 		case ALGORITHM_ROTATING_N_RESTART:
2964 			if (sh->pd_idx == raid_disks-1)
2965 				i--;	/* Q D D D P */
2966 			else if (i > sh->pd_idx)
2967 				i -= 2; /* D D P Q D */
2968 			break;
2969 		case ALGORITHM_LEFT_SYMMETRIC:
2970 		case ALGORITHM_RIGHT_SYMMETRIC:
2971 			if (sh->pd_idx == raid_disks-1)
2972 				i--; /* Q D D D P */
2973 			else {
2974 				/* D D P Q D */
2975 				if (i < sh->pd_idx)
2976 					i += raid_disks;
2977 				i -= (sh->pd_idx + 2);
2978 			}
2979 			break;
2980 		case ALGORITHM_PARITY_0:
2981 			i -= 2;
2982 			break;
2983 		case ALGORITHM_PARITY_N:
2984 			break;
2985 		case ALGORITHM_ROTATING_N_CONTINUE:
2986 			/* Like left_symmetric, but P is before Q */
2987 			if (sh->pd_idx == 0)
2988 				i--;	/* P D D D Q */
2989 			else {
2990 				/* D D Q P D */
2991 				if (i < sh->pd_idx)
2992 					i += raid_disks;
2993 				i -= (sh->pd_idx + 1);
2994 			}
2995 			break;
2996 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2997 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2998 			if (i > sh->pd_idx)
2999 				i--;
3000 			break;
3001 		case ALGORITHM_LEFT_SYMMETRIC_6:
3002 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3003 			if (i < sh->pd_idx)
3004 				i += data_disks + 1;
3005 			i -= (sh->pd_idx + 1);
3006 			break;
3007 		case ALGORITHM_PARITY_0_6:
3008 			i -= 1;
3009 			break;
3010 		default:
3011 			BUG();
3012 		}
3013 		break;
3014 	}
3015 
3016 	chunk_number = stripe * data_disks + i;
3017 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3018 
3019 	check = raid5_compute_sector(conf, r_sector,
3020 				     previous, &dummy1, &sh2);
3021 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3022 		|| sh2.qd_idx != sh->qd_idx) {
3023 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3024 			mdname(conf->mddev));
3025 		return 0;
3026 	}
3027 	return r_sector;
3028 }
3029 
3030 /*
3031  * There are cases where we want handle_stripe_dirtying() and
3032  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3033  *
3034  * This function checks whether we want to delay the towrite. Specifically,
3035  * we delay the towrite when:
3036  *
3037  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3038  *      stripe has data in journal (for other devices).
3039  *
3040  *      In this case, when reading data for the non-overwrite dev, it is
3041  *      necessary to handle complex rmw of write back cache (prexor with
3042  *      orig_page, and xor with page). To keep read path simple, we would
3043  *      like to flush data in journal to RAID disks first, so complex rmw
3044  *      is handled in the write patch (handle_stripe_dirtying).
3045  *
3046  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3047  *
3048  *      It is important to be able to flush all stripes in raid5-cache.
3049  *      Therefore, we need reserve some space on the journal device for
3050  *      these flushes. If flush operation includes pending writes to the
3051  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3052  *      for the flush out. If we exclude these pending writes from flush
3053  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3054  *      Therefore, excluding pending writes in these cases enables more
3055  *      efficient use of the journal device.
3056  *
3057  *      Note: To make sure the stripe makes progress, we only delay
3058  *      towrite for stripes with data already in journal (injournal > 0).
3059  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3060  *      no_space_stripes list.
3061  *
3062  *   3. during journal failure
3063  *      In journal failure, we try to flush all cached data to raid disks
3064  *      based on data in stripe cache. The array is read-only to upper
3065  *      layers, so we would skip all pending writes.
3066  *
3067  */
3068 static inline bool delay_towrite(struct r5conf *conf,
3069 				 struct r5dev *dev,
3070 				 struct stripe_head_state *s)
3071 {
3072 	/* case 1 above */
3073 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3074 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3075 		return true;
3076 	/* case 2 above */
3077 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3078 	    s->injournal > 0)
3079 		return true;
3080 	/* case 3 above */
3081 	if (s->log_failed && s->injournal)
3082 		return true;
3083 	return false;
3084 }
3085 
3086 static void
3087 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3088 			 int rcw, int expand)
3089 {
3090 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3091 	struct r5conf *conf = sh->raid_conf;
3092 	int level = conf->level;
3093 
3094 	if (rcw) {
3095 		/*
3096 		 * In some cases, handle_stripe_dirtying initially decided to
3097 		 * run rmw and allocates extra page for prexor. However, rcw is
3098 		 * cheaper later on. We need to free the extra page now,
3099 		 * because we won't be able to do that in ops_complete_prexor().
3100 		 */
3101 		r5c_release_extra_page(sh);
3102 
3103 		for (i = disks; i--; ) {
3104 			struct r5dev *dev = &sh->dev[i];
3105 
3106 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3107 				set_bit(R5_LOCKED, &dev->flags);
3108 				set_bit(R5_Wantdrain, &dev->flags);
3109 				if (!expand)
3110 					clear_bit(R5_UPTODATE, &dev->flags);
3111 				s->locked++;
3112 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3113 				set_bit(R5_LOCKED, &dev->flags);
3114 				s->locked++;
3115 			}
3116 		}
3117 		/* if we are not expanding this is a proper write request, and
3118 		 * there will be bios with new data to be drained into the
3119 		 * stripe cache
3120 		 */
3121 		if (!expand) {
3122 			if (!s->locked)
3123 				/* False alarm, nothing to do */
3124 				return;
3125 			sh->reconstruct_state = reconstruct_state_drain_run;
3126 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3127 		} else
3128 			sh->reconstruct_state = reconstruct_state_run;
3129 
3130 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3131 
3132 		if (s->locked + conf->max_degraded == disks)
3133 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3134 				atomic_inc(&conf->pending_full_writes);
3135 	} else {
3136 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3137 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3138 		BUG_ON(level == 6 &&
3139 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3140 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3141 
3142 		for (i = disks; i--; ) {
3143 			struct r5dev *dev = &sh->dev[i];
3144 			if (i == pd_idx || i == qd_idx)
3145 				continue;
3146 
3147 			if (dev->towrite &&
3148 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3149 			     test_bit(R5_Wantcompute, &dev->flags))) {
3150 				set_bit(R5_Wantdrain, &dev->flags);
3151 				set_bit(R5_LOCKED, &dev->flags);
3152 				clear_bit(R5_UPTODATE, &dev->flags);
3153 				s->locked++;
3154 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3155 				set_bit(R5_LOCKED, &dev->flags);
3156 				s->locked++;
3157 			}
3158 		}
3159 		if (!s->locked)
3160 			/* False alarm - nothing to do */
3161 			return;
3162 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3163 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3164 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3165 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3166 	}
3167 
3168 	/* keep the parity disk(s) locked while asynchronous operations
3169 	 * are in flight
3170 	 */
3171 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3172 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3173 	s->locked++;
3174 
3175 	if (level == 6) {
3176 		int qd_idx = sh->qd_idx;
3177 		struct r5dev *dev = &sh->dev[qd_idx];
3178 
3179 		set_bit(R5_LOCKED, &dev->flags);
3180 		clear_bit(R5_UPTODATE, &dev->flags);
3181 		s->locked++;
3182 	}
3183 
3184 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3185 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3186 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3187 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3188 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3189 
3190 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3191 		__func__, (unsigned long long)sh->sector,
3192 		s->locked, s->ops_request);
3193 }
3194 
3195 /*
3196  * Each stripe/dev can have one or more bion attached.
3197  * toread/towrite point to the first in a chain.
3198  * The bi_next chain must be in order.
3199  */
3200 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3201 			  int forwrite, int previous)
3202 {
3203 	struct bio **bip;
3204 	struct r5conf *conf = sh->raid_conf;
3205 	int firstwrite=0;
3206 
3207 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3208 		(unsigned long long)bi->bi_iter.bi_sector,
3209 		(unsigned long long)sh->sector);
3210 
3211 	spin_lock_irq(&sh->stripe_lock);
3212 	sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3213 	/* Don't allow new IO added to stripes in batch list */
3214 	if (sh->batch_head)
3215 		goto overlap;
3216 	if (forwrite) {
3217 		bip = &sh->dev[dd_idx].towrite;
3218 		if (*bip == NULL)
3219 			firstwrite = 1;
3220 	} else
3221 		bip = &sh->dev[dd_idx].toread;
3222 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3223 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3224 			goto overlap;
3225 		bip = & (*bip)->bi_next;
3226 	}
3227 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3228 		goto overlap;
3229 
3230 	if (forwrite && raid5_has_ppl(conf)) {
3231 		/*
3232 		 * With PPL only writes to consecutive data chunks within a
3233 		 * stripe are allowed because for a single stripe_head we can
3234 		 * only have one PPL entry at a time, which describes one data
3235 		 * range. Not really an overlap, but wait_for_overlap can be
3236 		 * used to handle this.
3237 		 */
3238 		sector_t sector;
3239 		sector_t first = 0;
3240 		sector_t last = 0;
3241 		int count = 0;
3242 		int i;
3243 
3244 		for (i = 0; i < sh->disks; i++) {
3245 			if (i != sh->pd_idx &&
3246 			    (i == dd_idx || sh->dev[i].towrite)) {
3247 				sector = sh->dev[i].sector;
3248 				if (count == 0 || sector < first)
3249 					first = sector;
3250 				if (sector > last)
3251 					last = sector;
3252 				count++;
3253 			}
3254 		}
3255 
3256 		if (first + conf->chunk_sectors * (count - 1) != last)
3257 			goto overlap;
3258 	}
3259 
3260 	if (!forwrite || previous)
3261 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3262 
3263 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3264 	if (*bip)
3265 		bi->bi_next = *bip;
3266 	*bip = bi;
3267 	bio_inc_remaining(bi);
3268 	md_write_inc(conf->mddev, bi);
3269 
3270 	if (forwrite) {
3271 		/* check if page is covered */
3272 		sector_t sector = sh->dev[dd_idx].sector;
3273 		for (bi=sh->dev[dd_idx].towrite;
3274 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3275 			     bi && bi->bi_iter.bi_sector <= sector;
3276 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3277 			if (bio_end_sector(bi) >= sector)
3278 				sector = bio_end_sector(bi);
3279 		}
3280 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3281 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3282 				sh->overwrite_disks++;
3283 	}
3284 
3285 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3286 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3287 		(unsigned long long)sh->sector, dd_idx);
3288 
3289 	if (conf->mddev->bitmap && firstwrite) {
3290 		/* Cannot hold spinlock over bitmap_startwrite,
3291 		 * but must ensure this isn't added to a batch until
3292 		 * we have added to the bitmap and set bm_seq.
3293 		 * So set STRIPE_BITMAP_PENDING to prevent
3294 		 * batching.
3295 		 * If multiple add_stripe_bio() calls race here they
3296 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3297 		 * to complete "bitmap_startwrite" gets to set
3298 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3299 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3300 		 * any more.
3301 		 */
3302 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3303 		spin_unlock_irq(&sh->stripe_lock);
3304 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3305 				  STRIPE_SECTORS, 0);
3306 		spin_lock_irq(&sh->stripe_lock);
3307 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3308 		if (!sh->batch_head) {
3309 			sh->bm_seq = conf->seq_flush+1;
3310 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3311 		}
3312 	}
3313 	spin_unlock_irq(&sh->stripe_lock);
3314 
3315 	if (stripe_can_batch(sh))
3316 		stripe_add_to_batch_list(conf, sh);
3317 	return 1;
3318 
3319  overlap:
3320 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3321 	spin_unlock_irq(&sh->stripe_lock);
3322 	return 0;
3323 }
3324 
3325 static void end_reshape(struct r5conf *conf);
3326 
3327 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3328 			    struct stripe_head *sh)
3329 {
3330 	int sectors_per_chunk =
3331 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3332 	int dd_idx;
3333 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3334 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3335 
3336 	raid5_compute_sector(conf,
3337 			     stripe * (disks - conf->max_degraded)
3338 			     *sectors_per_chunk + chunk_offset,
3339 			     previous,
3340 			     &dd_idx, sh);
3341 }
3342 
3343 static void
3344 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3345 		     struct stripe_head_state *s, int disks)
3346 {
3347 	int i;
3348 	BUG_ON(sh->batch_head);
3349 	for (i = disks; i--; ) {
3350 		struct bio *bi;
3351 		int bitmap_end = 0;
3352 
3353 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3354 			struct md_rdev *rdev;
3355 			rcu_read_lock();
3356 			rdev = rcu_dereference(conf->disks[i].rdev);
3357 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3358 			    !test_bit(Faulty, &rdev->flags))
3359 				atomic_inc(&rdev->nr_pending);
3360 			else
3361 				rdev = NULL;
3362 			rcu_read_unlock();
3363 			if (rdev) {
3364 				if (!rdev_set_badblocks(
3365 					    rdev,
3366 					    sh->sector,
3367 					    STRIPE_SECTORS, 0))
3368 					md_error(conf->mddev, rdev);
3369 				rdev_dec_pending(rdev, conf->mddev);
3370 			}
3371 		}
3372 		spin_lock_irq(&sh->stripe_lock);
3373 		/* fail all writes first */
3374 		bi = sh->dev[i].towrite;
3375 		sh->dev[i].towrite = NULL;
3376 		sh->overwrite_disks = 0;
3377 		spin_unlock_irq(&sh->stripe_lock);
3378 		if (bi)
3379 			bitmap_end = 1;
3380 
3381 		log_stripe_write_finished(sh);
3382 
3383 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3384 			wake_up(&conf->wait_for_overlap);
3385 
3386 		while (bi && bi->bi_iter.bi_sector <
3387 			sh->dev[i].sector + STRIPE_SECTORS) {
3388 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3389 
3390 			md_write_end(conf->mddev);
3391 			bio_io_error(bi);
3392 			bi = nextbi;
3393 		}
3394 		if (bitmap_end)
3395 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3396 				STRIPE_SECTORS, 0, 0);
3397 		bitmap_end = 0;
3398 		/* and fail all 'written' */
3399 		bi = sh->dev[i].written;
3400 		sh->dev[i].written = NULL;
3401 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3402 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3403 			sh->dev[i].page = sh->dev[i].orig_page;
3404 		}
3405 
3406 		if (bi) bitmap_end = 1;
3407 		while (bi && bi->bi_iter.bi_sector <
3408 		       sh->dev[i].sector + STRIPE_SECTORS) {
3409 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3410 
3411 			md_write_end(conf->mddev);
3412 			bio_io_error(bi);
3413 			bi = bi2;
3414 		}
3415 
3416 		/* fail any reads if this device is non-operational and
3417 		 * the data has not reached the cache yet.
3418 		 */
3419 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3420 		    s->failed > conf->max_degraded &&
3421 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3422 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3423 			spin_lock_irq(&sh->stripe_lock);
3424 			bi = sh->dev[i].toread;
3425 			sh->dev[i].toread = NULL;
3426 			spin_unlock_irq(&sh->stripe_lock);
3427 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3428 				wake_up(&conf->wait_for_overlap);
3429 			if (bi)
3430 				s->to_read--;
3431 			while (bi && bi->bi_iter.bi_sector <
3432 			       sh->dev[i].sector + STRIPE_SECTORS) {
3433 				struct bio *nextbi =
3434 					r5_next_bio(bi, sh->dev[i].sector);
3435 
3436 				bio_io_error(bi);
3437 				bi = nextbi;
3438 			}
3439 		}
3440 		if (bitmap_end)
3441 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3442 					STRIPE_SECTORS, 0, 0);
3443 		/* If we were in the middle of a write the parity block might
3444 		 * still be locked - so just clear all R5_LOCKED flags
3445 		 */
3446 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3447 	}
3448 	s->to_write = 0;
3449 	s->written = 0;
3450 
3451 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3452 		if (atomic_dec_and_test(&conf->pending_full_writes))
3453 			md_wakeup_thread(conf->mddev->thread);
3454 }
3455 
3456 static void
3457 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3458 		   struct stripe_head_state *s)
3459 {
3460 	int abort = 0;
3461 	int i;
3462 
3463 	BUG_ON(sh->batch_head);
3464 	clear_bit(STRIPE_SYNCING, &sh->state);
3465 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3466 		wake_up(&conf->wait_for_overlap);
3467 	s->syncing = 0;
3468 	s->replacing = 0;
3469 	/* There is nothing more to do for sync/check/repair.
3470 	 * Don't even need to abort as that is handled elsewhere
3471 	 * if needed, and not always wanted e.g. if there is a known
3472 	 * bad block here.
3473 	 * For recover/replace we need to record a bad block on all
3474 	 * non-sync devices, or abort the recovery
3475 	 */
3476 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3477 		/* During recovery devices cannot be removed, so
3478 		 * locking and refcounting of rdevs is not needed
3479 		 */
3480 		rcu_read_lock();
3481 		for (i = 0; i < conf->raid_disks; i++) {
3482 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3483 			if (rdev
3484 			    && !test_bit(Faulty, &rdev->flags)
3485 			    && !test_bit(In_sync, &rdev->flags)
3486 			    && !rdev_set_badblocks(rdev, sh->sector,
3487 						   STRIPE_SECTORS, 0))
3488 				abort = 1;
3489 			rdev = rcu_dereference(conf->disks[i].replacement);
3490 			if (rdev
3491 			    && !test_bit(Faulty, &rdev->flags)
3492 			    && !test_bit(In_sync, &rdev->flags)
3493 			    && !rdev_set_badblocks(rdev, sh->sector,
3494 						   STRIPE_SECTORS, 0))
3495 				abort = 1;
3496 		}
3497 		rcu_read_unlock();
3498 		if (abort)
3499 			conf->recovery_disabled =
3500 				conf->mddev->recovery_disabled;
3501 	}
3502 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3503 }
3504 
3505 static int want_replace(struct stripe_head *sh, int disk_idx)
3506 {
3507 	struct md_rdev *rdev;
3508 	int rv = 0;
3509 
3510 	rcu_read_lock();
3511 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3512 	if (rdev
3513 	    && !test_bit(Faulty, &rdev->flags)
3514 	    && !test_bit(In_sync, &rdev->flags)
3515 	    && (rdev->recovery_offset <= sh->sector
3516 		|| rdev->mddev->recovery_cp <= sh->sector))
3517 		rv = 1;
3518 	rcu_read_unlock();
3519 	return rv;
3520 }
3521 
3522 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3523 			   int disk_idx, int disks)
3524 {
3525 	struct r5dev *dev = &sh->dev[disk_idx];
3526 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3527 				  &sh->dev[s->failed_num[1]] };
3528 	int i;
3529 
3530 
3531 	if (test_bit(R5_LOCKED, &dev->flags) ||
3532 	    test_bit(R5_UPTODATE, &dev->flags))
3533 		/* No point reading this as we already have it or have
3534 		 * decided to get it.
3535 		 */
3536 		return 0;
3537 
3538 	if (dev->toread ||
3539 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3540 		/* We need this block to directly satisfy a request */
3541 		return 1;
3542 
3543 	if (s->syncing || s->expanding ||
3544 	    (s->replacing && want_replace(sh, disk_idx)))
3545 		/* When syncing, or expanding we read everything.
3546 		 * When replacing, we need the replaced block.
3547 		 */
3548 		return 1;
3549 
3550 	if ((s->failed >= 1 && fdev[0]->toread) ||
3551 	    (s->failed >= 2 && fdev[1]->toread))
3552 		/* If we want to read from a failed device, then
3553 		 * we need to actually read every other device.
3554 		 */
3555 		return 1;
3556 
3557 	/* Sometimes neither read-modify-write nor reconstruct-write
3558 	 * cycles can work.  In those cases we read every block we
3559 	 * can.  Then the parity-update is certain to have enough to
3560 	 * work with.
3561 	 * This can only be a problem when we need to write something,
3562 	 * and some device has failed.  If either of those tests
3563 	 * fail we need look no further.
3564 	 */
3565 	if (!s->failed || !s->to_write)
3566 		return 0;
3567 
3568 	if (test_bit(R5_Insync, &dev->flags) &&
3569 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3570 		/* Pre-reads at not permitted until after short delay
3571 		 * to gather multiple requests.  However if this
3572 		 * device is no Insync, the block could only be computed
3573 		 * and there is no need to delay that.
3574 		 */
3575 		return 0;
3576 
3577 	for (i = 0; i < s->failed && i < 2; i++) {
3578 		if (fdev[i]->towrite &&
3579 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3580 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3581 			/* If we have a partial write to a failed
3582 			 * device, then we will need to reconstruct
3583 			 * the content of that device, so all other
3584 			 * devices must be read.
3585 			 */
3586 			return 1;
3587 	}
3588 
3589 	/* If we are forced to do a reconstruct-write, either because
3590 	 * the current RAID6 implementation only supports that, or
3591 	 * because parity cannot be trusted and we are currently
3592 	 * recovering it, there is extra need to be careful.
3593 	 * If one of the devices that we would need to read, because
3594 	 * it is not being overwritten (and maybe not written at all)
3595 	 * is missing/faulty, then we need to read everything we can.
3596 	 */
3597 	if (sh->raid_conf->level != 6 &&
3598 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3599 		/* reconstruct-write isn't being forced */
3600 		return 0;
3601 	for (i = 0; i < s->failed && i < 2; i++) {
3602 		if (s->failed_num[i] != sh->pd_idx &&
3603 		    s->failed_num[i] != sh->qd_idx &&
3604 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3605 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3606 			return 1;
3607 	}
3608 
3609 	return 0;
3610 }
3611 
3612 /* fetch_block - checks the given member device to see if its data needs
3613  * to be read or computed to satisfy a request.
3614  *
3615  * Returns 1 when no more member devices need to be checked, otherwise returns
3616  * 0 to tell the loop in handle_stripe_fill to continue
3617  */
3618 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3619 		       int disk_idx, int disks)
3620 {
3621 	struct r5dev *dev = &sh->dev[disk_idx];
3622 
3623 	/* is the data in this block needed, and can we get it? */
3624 	if (need_this_block(sh, s, disk_idx, disks)) {
3625 		/* we would like to get this block, possibly by computing it,
3626 		 * otherwise read it if the backing disk is insync
3627 		 */
3628 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3629 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3630 		BUG_ON(sh->batch_head);
3631 
3632 		/*
3633 		 * In the raid6 case if the only non-uptodate disk is P
3634 		 * then we already trusted P to compute the other failed
3635 		 * drives. It is safe to compute rather than re-read P.
3636 		 * In other cases we only compute blocks from failed
3637 		 * devices, otherwise check/repair might fail to detect
3638 		 * a real inconsistency.
3639 		 */
3640 
3641 		if ((s->uptodate == disks - 1) &&
3642 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3643 		    (s->failed && (disk_idx == s->failed_num[0] ||
3644 				   disk_idx == s->failed_num[1])))) {
3645 			/* have disk failed, and we're requested to fetch it;
3646 			 * do compute it
3647 			 */
3648 			pr_debug("Computing stripe %llu block %d\n",
3649 			       (unsigned long long)sh->sector, disk_idx);
3650 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3651 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3652 			set_bit(R5_Wantcompute, &dev->flags);
3653 			sh->ops.target = disk_idx;
3654 			sh->ops.target2 = -1; /* no 2nd target */
3655 			s->req_compute = 1;
3656 			/* Careful: from this point on 'uptodate' is in the eye
3657 			 * of raid_run_ops which services 'compute' operations
3658 			 * before writes. R5_Wantcompute flags a block that will
3659 			 * be R5_UPTODATE by the time it is needed for a
3660 			 * subsequent operation.
3661 			 */
3662 			s->uptodate++;
3663 			return 1;
3664 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3665 			/* Computing 2-failure is *very* expensive; only
3666 			 * do it if failed >= 2
3667 			 */
3668 			int other;
3669 			for (other = disks; other--; ) {
3670 				if (other == disk_idx)
3671 					continue;
3672 				if (!test_bit(R5_UPTODATE,
3673 				      &sh->dev[other].flags))
3674 					break;
3675 			}
3676 			BUG_ON(other < 0);
3677 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3678 			       (unsigned long long)sh->sector,
3679 			       disk_idx, other);
3680 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3681 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3682 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3683 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3684 			sh->ops.target = disk_idx;
3685 			sh->ops.target2 = other;
3686 			s->uptodate += 2;
3687 			s->req_compute = 1;
3688 			return 1;
3689 		} else if (test_bit(R5_Insync, &dev->flags)) {
3690 			set_bit(R5_LOCKED, &dev->flags);
3691 			set_bit(R5_Wantread, &dev->flags);
3692 			s->locked++;
3693 			pr_debug("Reading block %d (sync=%d)\n",
3694 				disk_idx, s->syncing);
3695 		}
3696 	}
3697 
3698 	return 0;
3699 }
3700 
3701 /**
3702  * handle_stripe_fill - read or compute data to satisfy pending requests.
3703  */
3704 static void handle_stripe_fill(struct stripe_head *sh,
3705 			       struct stripe_head_state *s,
3706 			       int disks)
3707 {
3708 	int i;
3709 
3710 	/* look for blocks to read/compute, skip this if a compute
3711 	 * is already in flight, or if the stripe contents are in the
3712 	 * midst of changing due to a write
3713 	 */
3714 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3715 	    !sh->reconstruct_state) {
3716 
3717 		/*
3718 		 * For degraded stripe with data in journal, do not handle
3719 		 * read requests yet, instead, flush the stripe to raid
3720 		 * disks first, this avoids handling complex rmw of write
3721 		 * back cache (prexor with orig_page, and then xor with
3722 		 * page) in the read path
3723 		 */
3724 		if (s->injournal && s->failed) {
3725 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3726 				r5c_make_stripe_write_out(sh);
3727 			goto out;
3728 		}
3729 
3730 		for (i = disks; i--; )
3731 			if (fetch_block(sh, s, i, disks))
3732 				break;
3733 	}
3734 out:
3735 	set_bit(STRIPE_HANDLE, &sh->state);
3736 }
3737 
3738 static void break_stripe_batch_list(struct stripe_head *head_sh,
3739 				    unsigned long handle_flags);
3740 /* handle_stripe_clean_event
3741  * any written block on an uptodate or failed drive can be returned.
3742  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3743  * never LOCKED, so we don't need to test 'failed' directly.
3744  */
3745 static void handle_stripe_clean_event(struct r5conf *conf,
3746 	struct stripe_head *sh, int disks)
3747 {
3748 	int i;
3749 	struct r5dev *dev;
3750 	int discard_pending = 0;
3751 	struct stripe_head *head_sh = sh;
3752 	bool do_endio = false;
3753 
3754 	for (i = disks; i--; )
3755 		if (sh->dev[i].written) {
3756 			dev = &sh->dev[i];
3757 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3758 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3759 			     test_bit(R5_Discard, &dev->flags) ||
3760 			     test_bit(R5_SkipCopy, &dev->flags))) {
3761 				/* We can return any write requests */
3762 				struct bio *wbi, *wbi2;
3763 				pr_debug("Return write for disc %d\n", i);
3764 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3765 					clear_bit(R5_UPTODATE, &dev->flags);
3766 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3767 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3768 				}
3769 				do_endio = true;
3770 
3771 returnbi:
3772 				dev->page = dev->orig_page;
3773 				wbi = dev->written;
3774 				dev->written = NULL;
3775 				while (wbi && wbi->bi_iter.bi_sector <
3776 					dev->sector + STRIPE_SECTORS) {
3777 					wbi2 = r5_next_bio(wbi, dev->sector);
3778 					md_write_end(conf->mddev);
3779 					bio_endio(wbi);
3780 					wbi = wbi2;
3781 				}
3782 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3783 						STRIPE_SECTORS,
3784 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3785 						0);
3786 				if (head_sh->batch_head) {
3787 					sh = list_first_entry(&sh->batch_list,
3788 							      struct stripe_head,
3789 							      batch_list);
3790 					if (sh != head_sh) {
3791 						dev = &sh->dev[i];
3792 						goto returnbi;
3793 					}
3794 				}
3795 				sh = head_sh;
3796 				dev = &sh->dev[i];
3797 			} else if (test_bit(R5_Discard, &dev->flags))
3798 				discard_pending = 1;
3799 		}
3800 
3801 	log_stripe_write_finished(sh);
3802 
3803 	if (!discard_pending &&
3804 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3805 		int hash;
3806 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3807 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3808 		if (sh->qd_idx >= 0) {
3809 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3810 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3811 		}
3812 		/* now that discard is done we can proceed with any sync */
3813 		clear_bit(STRIPE_DISCARD, &sh->state);
3814 		/*
3815 		 * SCSI discard will change some bio fields and the stripe has
3816 		 * no updated data, so remove it from hash list and the stripe
3817 		 * will be reinitialized
3818 		 */
3819 unhash:
3820 		hash = sh->hash_lock_index;
3821 		spin_lock_irq(conf->hash_locks + hash);
3822 		remove_hash(sh);
3823 		spin_unlock_irq(conf->hash_locks + hash);
3824 		if (head_sh->batch_head) {
3825 			sh = list_first_entry(&sh->batch_list,
3826 					      struct stripe_head, batch_list);
3827 			if (sh != head_sh)
3828 					goto unhash;
3829 		}
3830 		sh = head_sh;
3831 
3832 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3833 			set_bit(STRIPE_HANDLE, &sh->state);
3834 
3835 	}
3836 
3837 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3838 		if (atomic_dec_and_test(&conf->pending_full_writes))
3839 			md_wakeup_thread(conf->mddev->thread);
3840 
3841 	if (head_sh->batch_head && do_endio)
3842 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3843 }
3844 
3845 /*
3846  * For RMW in write back cache, we need extra page in prexor to store the
3847  * old data. This page is stored in dev->orig_page.
3848  *
3849  * This function checks whether we have data for prexor. The exact logic
3850  * is:
3851  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3852  */
3853 static inline bool uptodate_for_rmw(struct r5dev *dev)
3854 {
3855 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3856 		(!test_bit(R5_InJournal, &dev->flags) ||
3857 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3858 }
3859 
3860 static int handle_stripe_dirtying(struct r5conf *conf,
3861 				  struct stripe_head *sh,
3862 				  struct stripe_head_state *s,
3863 				  int disks)
3864 {
3865 	int rmw = 0, rcw = 0, i;
3866 	sector_t recovery_cp = conf->mddev->recovery_cp;
3867 
3868 	/* Check whether resync is now happening or should start.
3869 	 * If yes, then the array is dirty (after unclean shutdown or
3870 	 * initial creation), so parity in some stripes might be inconsistent.
3871 	 * In this case, we need to always do reconstruct-write, to ensure
3872 	 * that in case of drive failure or read-error correction, we
3873 	 * generate correct data from the parity.
3874 	 */
3875 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3876 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3877 	     s->failed == 0)) {
3878 		/* Calculate the real rcw later - for now make it
3879 		 * look like rcw is cheaper
3880 		 */
3881 		rcw = 1; rmw = 2;
3882 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3883 			 conf->rmw_level, (unsigned long long)recovery_cp,
3884 			 (unsigned long long)sh->sector);
3885 	} else for (i = disks; i--; ) {
3886 		/* would I have to read this buffer for read_modify_write */
3887 		struct r5dev *dev = &sh->dev[i];
3888 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3889 		     i == sh->pd_idx || i == sh->qd_idx ||
3890 		     test_bit(R5_InJournal, &dev->flags)) &&
3891 		    !test_bit(R5_LOCKED, &dev->flags) &&
3892 		    !(uptodate_for_rmw(dev) ||
3893 		      test_bit(R5_Wantcompute, &dev->flags))) {
3894 			if (test_bit(R5_Insync, &dev->flags))
3895 				rmw++;
3896 			else
3897 				rmw += 2*disks;  /* cannot read it */
3898 		}
3899 		/* Would I have to read this buffer for reconstruct_write */
3900 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3901 		    i != sh->pd_idx && i != sh->qd_idx &&
3902 		    !test_bit(R5_LOCKED, &dev->flags) &&
3903 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3904 		      test_bit(R5_Wantcompute, &dev->flags))) {
3905 			if (test_bit(R5_Insync, &dev->flags))
3906 				rcw++;
3907 			else
3908 				rcw += 2*disks;
3909 		}
3910 	}
3911 
3912 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3913 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3914 	set_bit(STRIPE_HANDLE, &sh->state);
3915 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3916 		/* prefer read-modify-write, but need to get some data */
3917 		if (conf->mddev->queue)
3918 			blk_add_trace_msg(conf->mddev->queue,
3919 					  "raid5 rmw %llu %d",
3920 					  (unsigned long long)sh->sector, rmw);
3921 		for (i = disks; i--; ) {
3922 			struct r5dev *dev = &sh->dev[i];
3923 			if (test_bit(R5_InJournal, &dev->flags) &&
3924 			    dev->page == dev->orig_page &&
3925 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3926 				/* alloc page for prexor */
3927 				struct page *p = alloc_page(GFP_NOIO);
3928 
3929 				if (p) {
3930 					dev->orig_page = p;
3931 					continue;
3932 				}
3933 
3934 				/*
3935 				 * alloc_page() failed, try use
3936 				 * disk_info->extra_page
3937 				 */
3938 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3939 						      &conf->cache_state)) {
3940 					r5c_use_extra_page(sh);
3941 					break;
3942 				}
3943 
3944 				/* extra_page in use, add to delayed_list */
3945 				set_bit(STRIPE_DELAYED, &sh->state);
3946 				s->waiting_extra_page = 1;
3947 				return -EAGAIN;
3948 			}
3949 		}
3950 
3951 		for (i = disks; i--; ) {
3952 			struct r5dev *dev = &sh->dev[i];
3953 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3954 			     i == sh->pd_idx || i == sh->qd_idx ||
3955 			     test_bit(R5_InJournal, &dev->flags)) &&
3956 			    !test_bit(R5_LOCKED, &dev->flags) &&
3957 			    !(uptodate_for_rmw(dev) ||
3958 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3959 			    test_bit(R5_Insync, &dev->flags)) {
3960 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3961 					     &sh->state)) {
3962 					pr_debug("Read_old block %d for r-m-w\n",
3963 						 i);
3964 					set_bit(R5_LOCKED, &dev->flags);
3965 					set_bit(R5_Wantread, &dev->flags);
3966 					s->locked++;
3967 				} else {
3968 					set_bit(STRIPE_DELAYED, &sh->state);
3969 					set_bit(STRIPE_HANDLE, &sh->state);
3970 				}
3971 			}
3972 		}
3973 	}
3974 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3975 		/* want reconstruct write, but need to get some data */
3976 		int qread =0;
3977 		rcw = 0;
3978 		for (i = disks; i--; ) {
3979 			struct r5dev *dev = &sh->dev[i];
3980 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3981 			    i != sh->pd_idx && i != sh->qd_idx &&
3982 			    !test_bit(R5_LOCKED, &dev->flags) &&
3983 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3984 			      test_bit(R5_Wantcompute, &dev->flags))) {
3985 				rcw++;
3986 				if (test_bit(R5_Insync, &dev->flags) &&
3987 				    test_bit(STRIPE_PREREAD_ACTIVE,
3988 					     &sh->state)) {
3989 					pr_debug("Read_old block "
3990 						"%d for Reconstruct\n", i);
3991 					set_bit(R5_LOCKED, &dev->flags);
3992 					set_bit(R5_Wantread, &dev->flags);
3993 					s->locked++;
3994 					qread++;
3995 				} else {
3996 					set_bit(STRIPE_DELAYED, &sh->state);
3997 					set_bit(STRIPE_HANDLE, &sh->state);
3998 				}
3999 			}
4000 		}
4001 		if (rcw && conf->mddev->queue)
4002 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4003 					  (unsigned long long)sh->sector,
4004 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4005 	}
4006 
4007 	if (rcw > disks && rmw > disks &&
4008 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4009 		set_bit(STRIPE_DELAYED, &sh->state);
4010 
4011 	/* now if nothing is locked, and if we have enough data,
4012 	 * we can start a write request
4013 	 */
4014 	/* since handle_stripe can be called at any time we need to handle the
4015 	 * case where a compute block operation has been submitted and then a
4016 	 * subsequent call wants to start a write request.  raid_run_ops only
4017 	 * handles the case where compute block and reconstruct are requested
4018 	 * simultaneously.  If this is not the case then new writes need to be
4019 	 * held off until the compute completes.
4020 	 */
4021 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4022 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4023 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4024 		schedule_reconstruction(sh, s, rcw == 0, 0);
4025 	return 0;
4026 }
4027 
4028 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4029 				struct stripe_head_state *s, int disks)
4030 {
4031 	struct r5dev *dev = NULL;
4032 
4033 	BUG_ON(sh->batch_head);
4034 	set_bit(STRIPE_HANDLE, &sh->state);
4035 
4036 	switch (sh->check_state) {
4037 	case check_state_idle:
4038 		/* start a new check operation if there are no failures */
4039 		if (s->failed == 0) {
4040 			BUG_ON(s->uptodate != disks);
4041 			sh->check_state = check_state_run;
4042 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4043 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4044 			s->uptodate--;
4045 			break;
4046 		}
4047 		dev = &sh->dev[s->failed_num[0]];
4048 		/* fall through */
4049 	case check_state_compute_result:
4050 		sh->check_state = check_state_idle;
4051 		if (!dev)
4052 			dev = &sh->dev[sh->pd_idx];
4053 
4054 		/* check that a write has not made the stripe insync */
4055 		if (test_bit(STRIPE_INSYNC, &sh->state))
4056 			break;
4057 
4058 		/* either failed parity check, or recovery is happening */
4059 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4060 		BUG_ON(s->uptodate != disks);
4061 
4062 		set_bit(R5_LOCKED, &dev->flags);
4063 		s->locked++;
4064 		set_bit(R5_Wantwrite, &dev->flags);
4065 
4066 		clear_bit(STRIPE_DEGRADED, &sh->state);
4067 		set_bit(STRIPE_INSYNC, &sh->state);
4068 		break;
4069 	case check_state_run:
4070 		break; /* we will be called again upon completion */
4071 	case check_state_check_result:
4072 		sh->check_state = check_state_idle;
4073 
4074 		/* if a failure occurred during the check operation, leave
4075 		 * STRIPE_INSYNC not set and let the stripe be handled again
4076 		 */
4077 		if (s->failed)
4078 			break;
4079 
4080 		/* handle a successful check operation, if parity is correct
4081 		 * we are done.  Otherwise update the mismatch count and repair
4082 		 * parity if !MD_RECOVERY_CHECK
4083 		 */
4084 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4085 			/* parity is correct (on disc,
4086 			 * not in buffer any more)
4087 			 */
4088 			set_bit(STRIPE_INSYNC, &sh->state);
4089 		else {
4090 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4091 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4092 				/* don't try to repair!! */
4093 				set_bit(STRIPE_INSYNC, &sh->state);
4094 				pr_warn_ratelimited("%s: mismatch sector in range "
4095 						    "%llu-%llu\n", mdname(conf->mddev),
4096 						    (unsigned long long) sh->sector,
4097 						    (unsigned long long) sh->sector +
4098 						    STRIPE_SECTORS);
4099 			} else {
4100 				sh->check_state = check_state_compute_run;
4101 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4102 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4103 				set_bit(R5_Wantcompute,
4104 					&sh->dev[sh->pd_idx].flags);
4105 				sh->ops.target = sh->pd_idx;
4106 				sh->ops.target2 = -1;
4107 				s->uptodate++;
4108 			}
4109 		}
4110 		break;
4111 	case check_state_compute_run:
4112 		break;
4113 	default:
4114 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4115 		       __func__, sh->check_state,
4116 		       (unsigned long long) sh->sector);
4117 		BUG();
4118 	}
4119 }
4120 
4121 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4122 				  struct stripe_head_state *s,
4123 				  int disks)
4124 {
4125 	int pd_idx = sh->pd_idx;
4126 	int qd_idx = sh->qd_idx;
4127 	struct r5dev *dev;
4128 
4129 	BUG_ON(sh->batch_head);
4130 	set_bit(STRIPE_HANDLE, &sh->state);
4131 
4132 	BUG_ON(s->failed > 2);
4133 
4134 	/* Want to check and possibly repair P and Q.
4135 	 * However there could be one 'failed' device, in which
4136 	 * case we can only check one of them, possibly using the
4137 	 * other to generate missing data
4138 	 */
4139 
4140 	switch (sh->check_state) {
4141 	case check_state_idle:
4142 		/* start a new check operation if there are < 2 failures */
4143 		if (s->failed == s->q_failed) {
4144 			/* The only possible failed device holds Q, so it
4145 			 * makes sense to check P (If anything else were failed,
4146 			 * we would have used P to recreate it).
4147 			 */
4148 			sh->check_state = check_state_run;
4149 		}
4150 		if (!s->q_failed && s->failed < 2) {
4151 			/* Q is not failed, and we didn't use it to generate
4152 			 * anything, so it makes sense to check it
4153 			 */
4154 			if (sh->check_state == check_state_run)
4155 				sh->check_state = check_state_run_pq;
4156 			else
4157 				sh->check_state = check_state_run_q;
4158 		}
4159 
4160 		/* discard potentially stale zero_sum_result */
4161 		sh->ops.zero_sum_result = 0;
4162 
4163 		if (sh->check_state == check_state_run) {
4164 			/* async_xor_zero_sum destroys the contents of P */
4165 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4166 			s->uptodate--;
4167 		}
4168 		if (sh->check_state >= check_state_run &&
4169 		    sh->check_state <= check_state_run_pq) {
4170 			/* async_syndrome_zero_sum preserves P and Q, so
4171 			 * no need to mark them !uptodate here
4172 			 */
4173 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4174 			break;
4175 		}
4176 
4177 		/* we have 2-disk failure */
4178 		BUG_ON(s->failed != 2);
4179 		/* fall through */
4180 	case check_state_compute_result:
4181 		sh->check_state = check_state_idle;
4182 
4183 		/* check that a write has not made the stripe insync */
4184 		if (test_bit(STRIPE_INSYNC, &sh->state))
4185 			break;
4186 
4187 		/* now write out any block on a failed drive,
4188 		 * or P or Q if they were recomputed
4189 		 */
4190 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4191 		if (s->failed == 2) {
4192 			dev = &sh->dev[s->failed_num[1]];
4193 			s->locked++;
4194 			set_bit(R5_LOCKED, &dev->flags);
4195 			set_bit(R5_Wantwrite, &dev->flags);
4196 		}
4197 		if (s->failed >= 1) {
4198 			dev = &sh->dev[s->failed_num[0]];
4199 			s->locked++;
4200 			set_bit(R5_LOCKED, &dev->flags);
4201 			set_bit(R5_Wantwrite, &dev->flags);
4202 		}
4203 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4204 			dev = &sh->dev[pd_idx];
4205 			s->locked++;
4206 			set_bit(R5_LOCKED, &dev->flags);
4207 			set_bit(R5_Wantwrite, &dev->flags);
4208 		}
4209 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4210 			dev = &sh->dev[qd_idx];
4211 			s->locked++;
4212 			set_bit(R5_LOCKED, &dev->flags);
4213 			set_bit(R5_Wantwrite, &dev->flags);
4214 		}
4215 		clear_bit(STRIPE_DEGRADED, &sh->state);
4216 
4217 		set_bit(STRIPE_INSYNC, &sh->state);
4218 		break;
4219 	case check_state_run:
4220 	case check_state_run_q:
4221 	case check_state_run_pq:
4222 		break; /* we will be called again upon completion */
4223 	case check_state_check_result:
4224 		sh->check_state = check_state_idle;
4225 
4226 		/* handle a successful check operation, if parity is correct
4227 		 * we are done.  Otherwise update the mismatch count and repair
4228 		 * parity if !MD_RECOVERY_CHECK
4229 		 */
4230 		if (sh->ops.zero_sum_result == 0) {
4231 			/* both parities are correct */
4232 			if (!s->failed)
4233 				set_bit(STRIPE_INSYNC, &sh->state);
4234 			else {
4235 				/* in contrast to the raid5 case we can validate
4236 				 * parity, but still have a failure to write
4237 				 * back
4238 				 */
4239 				sh->check_state = check_state_compute_result;
4240 				/* Returning at this point means that we may go
4241 				 * off and bring p and/or q uptodate again so
4242 				 * we make sure to check zero_sum_result again
4243 				 * to verify if p or q need writeback
4244 				 */
4245 			}
4246 		} else {
4247 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4248 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4249 				/* don't try to repair!! */
4250 				set_bit(STRIPE_INSYNC, &sh->state);
4251 				pr_warn_ratelimited("%s: mismatch sector in range "
4252 						    "%llu-%llu\n", mdname(conf->mddev),
4253 						    (unsigned long long) sh->sector,
4254 						    (unsigned long long) sh->sector +
4255 						    STRIPE_SECTORS);
4256 			} else {
4257 				int *target = &sh->ops.target;
4258 
4259 				sh->ops.target = -1;
4260 				sh->ops.target2 = -1;
4261 				sh->check_state = check_state_compute_run;
4262 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4263 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4264 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4265 					set_bit(R5_Wantcompute,
4266 						&sh->dev[pd_idx].flags);
4267 					*target = pd_idx;
4268 					target = &sh->ops.target2;
4269 					s->uptodate++;
4270 				}
4271 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4272 					set_bit(R5_Wantcompute,
4273 						&sh->dev[qd_idx].flags);
4274 					*target = qd_idx;
4275 					s->uptodate++;
4276 				}
4277 			}
4278 		}
4279 		break;
4280 	case check_state_compute_run:
4281 		break;
4282 	default:
4283 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4284 			__func__, sh->check_state,
4285 			(unsigned long long) sh->sector);
4286 		BUG();
4287 	}
4288 }
4289 
4290 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4291 {
4292 	int i;
4293 
4294 	/* We have read all the blocks in this stripe and now we need to
4295 	 * copy some of them into a target stripe for expand.
4296 	 */
4297 	struct dma_async_tx_descriptor *tx = NULL;
4298 	BUG_ON(sh->batch_head);
4299 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4300 	for (i = 0; i < sh->disks; i++)
4301 		if (i != sh->pd_idx && i != sh->qd_idx) {
4302 			int dd_idx, j;
4303 			struct stripe_head *sh2;
4304 			struct async_submit_ctl submit;
4305 
4306 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4307 			sector_t s = raid5_compute_sector(conf, bn, 0,
4308 							  &dd_idx, NULL);
4309 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4310 			if (sh2 == NULL)
4311 				/* so far only the early blocks of this stripe
4312 				 * have been requested.  When later blocks
4313 				 * get requested, we will try again
4314 				 */
4315 				continue;
4316 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4317 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4318 				/* must have already done this block */
4319 				raid5_release_stripe(sh2);
4320 				continue;
4321 			}
4322 
4323 			/* place all the copies on one channel */
4324 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4325 			tx = async_memcpy(sh2->dev[dd_idx].page,
4326 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4327 					  &submit);
4328 
4329 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4330 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4331 			for (j = 0; j < conf->raid_disks; j++)
4332 				if (j != sh2->pd_idx &&
4333 				    j != sh2->qd_idx &&
4334 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4335 					break;
4336 			if (j == conf->raid_disks) {
4337 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4338 				set_bit(STRIPE_HANDLE, &sh2->state);
4339 			}
4340 			raid5_release_stripe(sh2);
4341 
4342 		}
4343 	/* done submitting copies, wait for them to complete */
4344 	async_tx_quiesce(&tx);
4345 }
4346 
4347 /*
4348  * handle_stripe - do things to a stripe.
4349  *
4350  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4351  * state of various bits to see what needs to be done.
4352  * Possible results:
4353  *    return some read requests which now have data
4354  *    return some write requests which are safely on storage
4355  *    schedule a read on some buffers
4356  *    schedule a write of some buffers
4357  *    return confirmation of parity correctness
4358  *
4359  */
4360 
4361 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4362 {
4363 	struct r5conf *conf = sh->raid_conf;
4364 	int disks = sh->disks;
4365 	struct r5dev *dev;
4366 	int i;
4367 	int do_recovery = 0;
4368 
4369 	memset(s, 0, sizeof(*s));
4370 
4371 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4372 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4373 	s->failed_num[0] = -1;
4374 	s->failed_num[1] = -1;
4375 	s->log_failed = r5l_log_disk_error(conf);
4376 
4377 	/* Now to look around and see what can be done */
4378 	rcu_read_lock();
4379 	for (i=disks; i--; ) {
4380 		struct md_rdev *rdev;
4381 		sector_t first_bad;
4382 		int bad_sectors;
4383 		int is_bad = 0;
4384 
4385 		dev = &sh->dev[i];
4386 
4387 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4388 			 i, dev->flags,
4389 			 dev->toread, dev->towrite, dev->written);
4390 		/* maybe we can reply to a read
4391 		 *
4392 		 * new wantfill requests are only permitted while
4393 		 * ops_complete_biofill is guaranteed to be inactive
4394 		 */
4395 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4396 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4397 			set_bit(R5_Wantfill, &dev->flags);
4398 
4399 		/* now count some things */
4400 		if (test_bit(R5_LOCKED, &dev->flags))
4401 			s->locked++;
4402 		if (test_bit(R5_UPTODATE, &dev->flags))
4403 			s->uptodate++;
4404 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4405 			s->compute++;
4406 			BUG_ON(s->compute > 2);
4407 		}
4408 
4409 		if (test_bit(R5_Wantfill, &dev->flags))
4410 			s->to_fill++;
4411 		else if (dev->toread)
4412 			s->to_read++;
4413 		if (dev->towrite) {
4414 			s->to_write++;
4415 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4416 				s->non_overwrite++;
4417 		}
4418 		if (dev->written)
4419 			s->written++;
4420 		/* Prefer to use the replacement for reads, but only
4421 		 * if it is recovered enough and has no bad blocks.
4422 		 */
4423 		rdev = rcu_dereference(conf->disks[i].replacement);
4424 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4425 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4426 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4427 				 &first_bad, &bad_sectors))
4428 			set_bit(R5_ReadRepl, &dev->flags);
4429 		else {
4430 			if (rdev && !test_bit(Faulty, &rdev->flags))
4431 				set_bit(R5_NeedReplace, &dev->flags);
4432 			else
4433 				clear_bit(R5_NeedReplace, &dev->flags);
4434 			rdev = rcu_dereference(conf->disks[i].rdev);
4435 			clear_bit(R5_ReadRepl, &dev->flags);
4436 		}
4437 		if (rdev && test_bit(Faulty, &rdev->flags))
4438 			rdev = NULL;
4439 		if (rdev) {
4440 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4441 					     &first_bad, &bad_sectors);
4442 			if (s->blocked_rdev == NULL
4443 			    && (test_bit(Blocked, &rdev->flags)
4444 				|| is_bad < 0)) {
4445 				if (is_bad < 0)
4446 					set_bit(BlockedBadBlocks,
4447 						&rdev->flags);
4448 				s->blocked_rdev = rdev;
4449 				atomic_inc(&rdev->nr_pending);
4450 			}
4451 		}
4452 		clear_bit(R5_Insync, &dev->flags);
4453 		if (!rdev)
4454 			/* Not in-sync */;
4455 		else if (is_bad) {
4456 			/* also not in-sync */
4457 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4458 			    test_bit(R5_UPTODATE, &dev->flags)) {
4459 				/* treat as in-sync, but with a read error
4460 				 * which we can now try to correct
4461 				 */
4462 				set_bit(R5_Insync, &dev->flags);
4463 				set_bit(R5_ReadError, &dev->flags);
4464 			}
4465 		} else if (test_bit(In_sync, &rdev->flags))
4466 			set_bit(R5_Insync, &dev->flags);
4467 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4468 			/* in sync if before recovery_offset */
4469 			set_bit(R5_Insync, &dev->flags);
4470 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4471 			 test_bit(R5_Expanded, &dev->flags))
4472 			/* If we've reshaped into here, we assume it is Insync.
4473 			 * We will shortly update recovery_offset to make
4474 			 * it official.
4475 			 */
4476 			set_bit(R5_Insync, &dev->flags);
4477 
4478 		if (test_bit(R5_WriteError, &dev->flags)) {
4479 			/* This flag does not apply to '.replacement'
4480 			 * only to .rdev, so make sure to check that*/
4481 			struct md_rdev *rdev2 = rcu_dereference(
4482 				conf->disks[i].rdev);
4483 			if (rdev2 == rdev)
4484 				clear_bit(R5_Insync, &dev->flags);
4485 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4486 				s->handle_bad_blocks = 1;
4487 				atomic_inc(&rdev2->nr_pending);
4488 			} else
4489 				clear_bit(R5_WriteError, &dev->flags);
4490 		}
4491 		if (test_bit(R5_MadeGood, &dev->flags)) {
4492 			/* This flag does not apply to '.replacement'
4493 			 * only to .rdev, so make sure to check that*/
4494 			struct md_rdev *rdev2 = rcu_dereference(
4495 				conf->disks[i].rdev);
4496 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4497 				s->handle_bad_blocks = 1;
4498 				atomic_inc(&rdev2->nr_pending);
4499 			} else
4500 				clear_bit(R5_MadeGood, &dev->flags);
4501 		}
4502 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4503 			struct md_rdev *rdev2 = rcu_dereference(
4504 				conf->disks[i].replacement);
4505 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4506 				s->handle_bad_blocks = 1;
4507 				atomic_inc(&rdev2->nr_pending);
4508 			} else
4509 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4510 		}
4511 		if (!test_bit(R5_Insync, &dev->flags)) {
4512 			/* The ReadError flag will just be confusing now */
4513 			clear_bit(R5_ReadError, &dev->flags);
4514 			clear_bit(R5_ReWrite, &dev->flags);
4515 		}
4516 		if (test_bit(R5_ReadError, &dev->flags))
4517 			clear_bit(R5_Insync, &dev->flags);
4518 		if (!test_bit(R5_Insync, &dev->flags)) {
4519 			if (s->failed < 2)
4520 				s->failed_num[s->failed] = i;
4521 			s->failed++;
4522 			if (rdev && !test_bit(Faulty, &rdev->flags))
4523 				do_recovery = 1;
4524 		}
4525 
4526 		if (test_bit(R5_InJournal, &dev->flags))
4527 			s->injournal++;
4528 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4529 			s->just_cached++;
4530 	}
4531 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4532 		/* If there is a failed device being replaced,
4533 		 *     we must be recovering.
4534 		 * else if we are after recovery_cp, we must be syncing
4535 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4536 		 * else we can only be replacing
4537 		 * sync and recovery both need to read all devices, and so
4538 		 * use the same flag.
4539 		 */
4540 		if (do_recovery ||
4541 		    sh->sector >= conf->mddev->recovery_cp ||
4542 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4543 			s->syncing = 1;
4544 		else
4545 			s->replacing = 1;
4546 	}
4547 	rcu_read_unlock();
4548 }
4549 
4550 static int clear_batch_ready(struct stripe_head *sh)
4551 {
4552 	/* Return '1' if this is a member of batch, or
4553 	 * '0' if it is a lone stripe or a head which can now be
4554 	 * handled.
4555 	 */
4556 	struct stripe_head *tmp;
4557 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4558 		return (sh->batch_head && sh->batch_head != sh);
4559 	spin_lock(&sh->stripe_lock);
4560 	if (!sh->batch_head) {
4561 		spin_unlock(&sh->stripe_lock);
4562 		return 0;
4563 	}
4564 
4565 	/*
4566 	 * this stripe could be added to a batch list before we check
4567 	 * BATCH_READY, skips it
4568 	 */
4569 	if (sh->batch_head != sh) {
4570 		spin_unlock(&sh->stripe_lock);
4571 		return 1;
4572 	}
4573 	spin_lock(&sh->batch_lock);
4574 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4575 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4576 	spin_unlock(&sh->batch_lock);
4577 	spin_unlock(&sh->stripe_lock);
4578 
4579 	/*
4580 	 * BATCH_READY is cleared, no new stripes can be added.
4581 	 * batch_list can be accessed without lock
4582 	 */
4583 	return 0;
4584 }
4585 
4586 static void break_stripe_batch_list(struct stripe_head *head_sh,
4587 				    unsigned long handle_flags)
4588 {
4589 	struct stripe_head *sh, *next;
4590 	int i;
4591 	int do_wakeup = 0;
4592 
4593 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4594 
4595 		list_del_init(&sh->batch_list);
4596 
4597 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4598 					  (1 << STRIPE_SYNCING) |
4599 					  (1 << STRIPE_REPLACED) |
4600 					  (1 << STRIPE_DELAYED) |
4601 					  (1 << STRIPE_BIT_DELAY) |
4602 					  (1 << STRIPE_FULL_WRITE) |
4603 					  (1 << STRIPE_BIOFILL_RUN) |
4604 					  (1 << STRIPE_COMPUTE_RUN)  |
4605 					  (1 << STRIPE_OPS_REQ_PENDING) |
4606 					  (1 << STRIPE_DISCARD) |
4607 					  (1 << STRIPE_BATCH_READY) |
4608 					  (1 << STRIPE_BATCH_ERR) |
4609 					  (1 << STRIPE_BITMAP_PENDING)),
4610 			"stripe state: %lx\n", sh->state);
4611 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4612 					      (1 << STRIPE_REPLACED)),
4613 			"head stripe state: %lx\n", head_sh->state);
4614 
4615 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4616 					    (1 << STRIPE_PREREAD_ACTIVE) |
4617 					    (1 << STRIPE_DEGRADED) |
4618 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4619 			      head_sh->state & (1 << STRIPE_INSYNC));
4620 
4621 		sh->check_state = head_sh->check_state;
4622 		sh->reconstruct_state = head_sh->reconstruct_state;
4623 		spin_lock_irq(&sh->stripe_lock);
4624 		sh->batch_head = NULL;
4625 		spin_unlock_irq(&sh->stripe_lock);
4626 		for (i = 0; i < sh->disks; i++) {
4627 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4628 				do_wakeup = 1;
4629 			sh->dev[i].flags = head_sh->dev[i].flags &
4630 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4631 		}
4632 		if (handle_flags == 0 ||
4633 		    sh->state & handle_flags)
4634 			set_bit(STRIPE_HANDLE, &sh->state);
4635 		raid5_release_stripe(sh);
4636 	}
4637 	spin_lock_irq(&head_sh->stripe_lock);
4638 	head_sh->batch_head = NULL;
4639 	spin_unlock_irq(&head_sh->stripe_lock);
4640 	for (i = 0; i < head_sh->disks; i++)
4641 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4642 			do_wakeup = 1;
4643 	if (head_sh->state & handle_flags)
4644 		set_bit(STRIPE_HANDLE, &head_sh->state);
4645 
4646 	if (do_wakeup)
4647 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4648 }
4649 
4650 static void handle_stripe(struct stripe_head *sh)
4651 {
4652 	struct stripe_head_state s;
4653 	struct r5conf *conf = sh->raid_conf;
4654 	int i;
4655 	int prexor;
4656 	int disks = sh->disks;
4657 	struct r5dev *pdev, *qdev;
4658 
4659 	clear_bit(STRIPE_HANDLE, &sh->state);
4660 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4661 		/* already being handled, ensure it gets handled
4662 		 * again when current action finishes */
4663 		set_bit(STRIPE_HANDLE, &sh->state);
4664 		return;
4665 	}
4666 
4667 	if (clear_batch_ready(sh) ) {
4668 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4669 		return;
4670 	}
4671 
4672 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4673 		break_stripe_batch_list(sh, 0);
4674 
4675 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4676 		spin_lock(&sh->stripe_lock);
4677 		/*
4678 		 * Cannot process 'sync' concurrently with 'discard'.
4679 		 * Flush data in r5cache before 'sync'.
4680 		 */
4681 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4682 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4683 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4684 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4685 			set_bit(STRIPE_SYNCING, &sh->state);
4686 			clear_bit(STRIPE_INSYNC, &sh->state);
4687 			clear_bit(STRIPE_REPLACED, &sh->state);
4688 		}
4689 		spin_unlock(&sh->stripe_lock);
4690 	}
4691 	clear_bit(STRIPE_DELAYED, &sh->state);
4692 
4693 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4694 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4695 	       (unsigned long long)sh->sector, sh->state,
4696 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4697 	       sh->check_state, sh->reconstruct_state);
4698 
4699 	analyse_stripe(sh, &s);
4700 
4701 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4702 		goto finish;
4703 
4704 	if (s.handle_bad_blocks ||
4705 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4706 		set_bit(STRIPE_HANDLE, &sh->state);
4707 		goto finish;
4708 	}
4709 
4710 	if (unlikely(s.blocked_rdev)) {
4711 		if (s.syncing || s.expanding || s.expanded ||
4712 		    s.replacing || s.to_write || s.written) {
4713 			set_bit(STRIPE_HANDLE, &sh->state);
4714 			goto finish;
4715 		}
4716 		/* There is nothing for the blocked_rdev to block */
4717 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4718 		s.blocked_rdev = NULL;
4719 	}
4720 
4721 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4722 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4723 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4724 	}
4725 
4726 	pr_debug("locked=%d uptodate=%d to_read=%d"
4727 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4728 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4729 	       s.failed_num[0], s.failed_num[1]);
4730 	/*
4731 	 * check if the array has lost more than max_degraded devices and,
4732 	 * if so, some requests might need to be failed.
4733 	 *
4734 	 * When journal device failed (log_failed), we will only process
4735 	 * the stripe if there is data need write to raid disks
4736 	 */
4737 	if (s.failed > conf->max_degraded ||
4738 	    (s.log_failed && s.injournal == 0)) {
4739 		sh->check_state = 0;
4740 		sh->reconstruct_state = 0;
4741 		break_stripe_batch_list(sh, 0);
4742 		if (s.to_read+s.to_write+s.written)
4743 			handle_failed_stripe(conf, sh, &s, disks);
4744 		if (s.syncing + s.replacing)
4745 			handle_failed_sync(conf, sh, &s);
4746 	}
4747 
4748 	/* Now we check to see if any write operations have recently
4749 	 * completed
4750 	 */
4751 	prexor = 0;
4752 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4753 		prexor = 1;
4754 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4755 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4756 		sh->reconstruct_state = reconstruct_state_idle;
4757 
4758 		/* All the 'written' buffers and the parity block are ready to
4759 		 * be written back to disk
4760 		 */
4761 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4762 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4763 		BUG_ON(sh->qd_idx >= 0 &&
4764 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4765 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4766 		for (i = disks; i--; ) {
4767 			struct r5dev *dev = &sh->dev[i];
4768 			if (test_bit(R5_LOCKED, &dev->flags) &&
4769 				(i == sh->pd_idx || i == sh->qd_idx ||
4770 				 dev->written || test_bit(R5_InJournal,
4771 							  &dev->flags))) {
4772 				pr_debug("Writing block %d\n", i);
4773 				set_bit(R5_Wantwrite, &dev->flags);
4774 				if (prexor)
4775 					continue;
4776 				if (s.failed > 1)
4777 					continue;
4778 				if (!test_bit(R5_Insync, &dev->flags) ||
4779 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4780 				     s.failed == 0))
4781 					set_bit(STRIPE_INSYNC, &sh->state);
4782 			}
4783 		}
4784 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4785 			s.dec_preread_active = 1;
4786 	}
4787 
4788 	/*
4789 	 * might be able to return some write requests if the parity blocks
4790 	 * are safe, or on a failed drive
4791 	 */
4792 	pdev = &sh->dev[sh->pd_idx];
4793 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4794 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4795 	qdev = &sh->dev[sh->qd_idx];
4796 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4797 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4798 		|| conf->level < 6;
4799 
4800 	if (s.written &&
4801 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4802 			     && !test_bit(R5_LOCKED, &pdev->flags)
4803 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4804 				 test_bit(R5_Discard, &pdev->flags))))) &&
4805 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4806 			     && !test_bit(R5_LOCKED, &qdev->flags)
4807 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4808 				 test_bit(R5_Discard, &qdev->flags))))))
4809 		handle_stripe_clean_event(conf, sh, disks);
4810 
4811 	if (s.just_cached)
4812 		r5c_handle_cached_data_endio(conf, sh, disks);
4813 	log_stripe_write_finished(sh);
4814 
4815 	/* Now we might consider reading some blocks, either to check/generate
4816 	 * parity, or to satisfy requests
4817 	 * or to load a block that is being partially written.
4818 	 */
4819 	if (s.to_read || s.non_overwrite
4820 	    || (conf->level == 6 && s.to_write && s.failed)
4821 	    || (s.syncing && (s.uptodate + s.compute < disks))
4822 	    || s.replacing
4823 	    || s.expanding)
4824 		handle_stripe_fill(sh, &s, disks);
4825 
4826 	/*
4827 	 * When the stripe finishes full journal write cycle (write to journal
4828 	 * and raid disk), this is the clean up procedure so it is ready for
4829 	 * next operation.
4830 	 */
4831 	r5c_finish_stripe_write_out(conf, sh, &s);
4832 
4833 	/*
4834 	 * Now to consider new write requests, cache write back and what else,
4835 	 * if anything should be read.  We do not handle new writes when:
4836 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4837 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4838 	 *    block.
4839 	 * 3/ A r5c cache log write is in flight.
4840 	 */
4841 
4842 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4843 		if (!r5c_is_writeback(conf->log)) {
4844 			if (s.to_write)
4845 				handle_stripe_dirtying(conf, sh, &s, disks);
4846 		} else { /* write back cache */
4847 			int ret = 0;
4848 
4849 			/* First, try handle writes in caching phase */
4850 			if (s.to_write)
4851 				ret = r5c_try_caching_write(conf, sh, &s,
4852 							    disks);
4853 			/*
4854 			 * If caching phase failed: ret == -EAGAIN
4855 			 *    OR
4856 			 * stripe under reclaim: !caching && injournal
4857 			 *
4858 			 * fall back to handle_stripe_dirtying()
4859 			 */
4860 			if (ret == -EAGAIN ||
4861 			    /* stripe under reclaim: !caching && injournal */
4862 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4863 			     s.injournal > 0)) {
4864 				ret = handle_stripe_dirtying(conf, sh, &s,
4865 							     disks);
4866 				if (ret == -EAGAIN)
4867 					goto finish;
4868 			}
4869 		}
4870 	}
4871 
4872 	/* maybe we need to check and possibly fix the parity for this stripe
4873 	 * Any reads will already have been scheduled, so we just see if enough
4874 	 * data is available.  The parity check is held off while parity
4875 	 * dependent operations are in flight.
4876 	 */
4877 	if (sh->check_state ||
4878 	    (s.syncing && s.locked == 0 &&
4879 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4880 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4881 		if (conf->level == 6)
4882 			handle_parity_checks6(conf, sh, &s, disks);
4883 		else
4884 			handle_parity_checks5(conf, sh, &s, disks);
4885 	}
4886 
4887 	if ((s.replacing || s.syncing) && s.locked == 0
4888 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4889 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4890 		/* Write out to replacement devices where possible */
4891 		for (i = 0; i < conf->raid_disks; i++)
4892 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4893 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4894 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4895 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4896 				s.locked++;
4897 			}
4898 		if (s.replacing)
4899 			set_bit(STRIPE_INSYNC, &sh->state);
4900 		set_bit(STRIPE_REPLACED, &sh->state);
4901 	}
4902 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4903 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4904 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4905 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4906 		clear_bit(STRIPE_SYNCING, &sh->state);
4907 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4908 			wake_up(&conf->wait_for_overlap);
4909 	}
4910 
4911 	/* If the failed drives are just a ReadError, then we might need
4912 	 * to progress the repair/check process
4913 	 */
4914 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4915 		for (i = 0; i < s.failed; i++) {
4916 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4917 			if (test_bit(R5_ReadError, &dev->flags)
4918 			    && !test_bit(R5_LOCKED, &dev->flags)
4919 			    && test_bit(R5_UPTODATE, &dev->flags)
4920 				) {
4921 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4922 					set_bit(R5_Wantwrite, &dev->flags);
4923 					set_bit(R5_ReWrite, &dev->flags);
4924 					set_bit(R5_LOCKED, &dev->flags);
4925 					s.locked++;
4926 				} else {
4927 					/* let's read it back */
4928 					set_bit(R5_Wantread, &dev->flags);
4929 					set_bit(R5_LOCKED, &dev->flags);
4930 					s.locked++;
4931 				}
4932 			}
4933 		}
4934 
4935 	/* Finish reconstruct operations initiated by the expansion process */
4936 	if (sh->reconstruct_state == reconstruct_state_result) {
4937 		struct stripe_head *sh_src
4938 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4939 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4940 			/* sh cannot be written until sh_src has been read.
4941 			 * so arrange for sh to be delayed a little
4942 			 */
4943 			set_bit(STRIPE_DELAYED, &sh->state);
4944 			set_bit(STRIPE_HANDLE, &sh->state);
4945 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4946 					      &sh_src->state))
4947 				atomic_inc(&conf->preread_active_stripes);
4948 			raid5_release_stripe(sh_src);
4949 			goto finish;
4950 		}
4951 		if (sh_src)
4952 			raid5_release_stripe(sh_src);
4953 
4954 		sh->reconstruct_state = reconstruct_state_idle;
4955 		clear_bit(STRIPE_EXPANDING, &sh->state);
4956 		for (i = conf->raid_disks; i--; ) {
4957 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4958 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4959 			s.locked++;
4960 		}
4961 	}
4962 
4963 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4964 	    !sh->reconstruct_state) {
4965 		/* Need to write out all blocks after computing parity */
4966 		sh->disks = conf->raid_disks;
4967 		stripe_set_idx(sh->sector, conf, 0, sh);
4968 		schedule_reconstruction(sh, &s, 1, 1);
4969 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4970 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4971 		atomic_dec(&conf->reshape_stripes);
4972 		wake_up(&conf->wait_for_overlap);
4973 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4974 	}
4975 
4976 	if (s.expanding && s.locked == 0 &&
4977 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4978 		handle_stripe_expansion(conf, sh);
4979 
4980 finish:
4981 	/* wait for this device to become unblocked */
4982 	if (unlikely(s.blocked_rdev)) {
4983 		if (conf->mddev->external)
4984 			md_wait_for_blocked_rdev(s.blocked_rdev,
4985 						 conf->mddev);
4986 		else
4987 			/* Internal metadata will immediately
4988 			 * be written by raid5d, so we don't
4989 			 * need to wait here.
4990 			 */
4991 			rdev_dec_pending(s.blocked_rdev,
4992 					 conf->mddev);
4993 	}
4994 
4995 	if (s.handle_bad_blocks)
4996 		for (i = disks; i--; ) {
4997 			struct md_rdev *rdev;
4998 			struct r5dev *dev = &sh->dev[i];
4999 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5000 				/* We own a safe reference to the rdev */
5001 				rdev = conf->disks[i].rdev;
5002 				if (!rdev_set_badblocks(rdev, sh->sector,
5003 							STRIPE_SECTORS, 0))
5004 					md_error(conf->mddev, rdev);
5005 				rdev_dec_pending(rdev, conf->mddev);
5006 			}
5007 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5008 				rdev = conf->disks[i].rdev;
5009 				rdev_clear_badblocks(rdev, sh->sector,
5010 						     STRIPE_SECTORS, 0);
5011 				rdev_dec_pending(rdev, conf->mddev);
5012 			}
5013 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5014 				rdev = conf->disks[i].replacement;
5015 				if (!rdev)
5016 					/* rdev have been moved down */
5017 					rdev = conf->disks[i].rdev;
5018 				rdev_clear_badblocks(rdev, sh->sector,
5019 						     STRIPE_SECTORS, 0);
5020 				rdev_dec_pending(rdev, conf->mddev);
5021 			}
5022 		}
5023 
5024 	if (s.ops_request)
5025 		raid_run_ops(sh, s.ops_request);
5026 
5027 	ops_run_io(sh, &s);
5028 
5029 	if (s.dec_preread_active) {
5030 		/* We delay this until after ops_run_io so that if make_request
5031 		 * is waiting on a flush, it won't continue until the writes
5032 		 * have actually been submitted.
5033 		 */
5034 		atomic_dec(&conf->preread_active_stripes);
5035 		if (atomic_read(&conf->preread_active_stripes) <
5036 		    IO_THRESHOLD)
5037 			md_wakeup_thread(conf->mddev->thread);
5038 	}
5039 
5040 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5041 }
5042 
5043 static void raid5_activate_delayed(struct r5conf *conf)
5044 {
5045 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5046 		while (!list_empty(&conf->delayed_list)) {
5047 			struct list_head *l = conf->delayed_list.next;
5048 			struct stripe_head *sh;
5049 			sh = list_entry(l, struct stripe_head, lru);
5050 			list_del_init(l);
5051 			clear_bit(STRIPE_DELAYED, &sh->state);
5052 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5053 				atomic_inc(&conf->preread_active_stripes);
5054 			list_add_tail(&sh->lru, &conf->hold_list);
5055 			raid5_wakeup_stripe_thread(sh);
5056 		}
5057 	}
5058 }
5059 
5060 static void activate_bit_delay(struct r5conf *conf,
5061 	struct list_head *temp_inactive_list)
5062 {
5063 	/* device_lock is held */
5064 	struct list_head head;
5065 	list_add(&head, &conf->bitmap_list);
5066 	list_del_init(&conf->bitmap_list);
5067 	while (!list_empty(&head)) {
5068 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5069 		int hash;
5070 		list_del_init(&sh->lru);
5071 		atomic_inc(&sh->count);
5072 		hash = sh->hash_lock_index;
5073 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5074 	}
5075 }
5076 
5077 static int raid5_congested(struct mddev *mddev, int bits)
5078 {
5079 	struct r5conf *conf = mddev->private;
5080 
5081 	/* No difference between reads and writes.  Just check
5082 	 * how busy the stripe_cache is
5083 	 */
5084 
5085 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5086 		return 1;
5087 
5088 	/* Also checks whether there is pressure on r5cache log space */
5089 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5090 		return 1;
5091 	if (conf->quiesce)
5092 		return 1;
5093 	if (atomic_read(&conf->empty_inactive_list_nr))
5094 		return 1;
5095 
5096 	return 0;
5097 }
5098 
5099 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5100 {
5101 	struct r5conf *conf = mddev->private;
5102 	sector_t sector = bio->bi_iter.bi_sector;
5103 	unsigned int chunk_sectors;
5104 	unsigned int bio_sectors = bio_sectors(bio);
5105 
5106 	WARN_ON_ONCE(bio->bi_partno);
5107 
5108 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5109 	return  chunk_sectors >=
5110 		((sector & (chunk_sectors - 1)) + bio_sectors);
5111 }
5112 
5113 /*
5114  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5115  *  later sampled by raid5d.
5116  */
5117 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5118 {
5119 	unsigned long flags;
5120 
5121 	spin_lock_irqsave(&conf->device_lock, flags);
5122 
5123 	bi->bi_next = conf->retry_read_aligned_list;
5124 	conf->retry_read_aligned_list = bi;
5125 
5126 	spin_unlock_irqrestore(&conf->device_lock, flags);
5127 	md_wakeup_thread(conf->mddev->thread);
5128 }
5129 
5130 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5131 					 unsigned int *offset)
5132 {
5133 	struct bio *bi;
5134 
5135 	bi = conf->retry_read_aligned;
5136 	if (bi) {
5137 		*offset = conf->retry_read_offset;
5138 		conf->retry_read_aligned = NULL;
5139 		return bi;
5140 	}
5141 	bi = conf->retry_read_aligned_list;
5142 	if(bi) {
5143 		conf->retry_read_aligned_list = bi->bi_next;
5144 		bi->bi_next = NULL;
5145 		*offset = 0;
5146 	}
5147 
5148 	return bi;
5149 }
5150 
5151 /*
5152  *  The "raid5_align_endio" should check if the read succeeded and if it
5153  *  did, call bio_endio on the original bio (having bio_put the new bio
5154  *  first).
5155  *  If the read failed..
5156  */
5157 static void raid5_align_endio(struct bio *bi)
5158 {
5159 	struct bio* raid_bi  = bi->bi_private;
5160 	struct mddev *mddev;
5161 	struct r5conf *conf;
5162 	struct md_rdev *rdev;
5163 	blk_status_t error = bi->bi_status;
5164 
5165 	bio_put(bi);
5166 
5167 	rdev = (void*)raid_bi->bi_next;
5168 	raid_bi->bi_next = NULL;
5169 	mddev = rdev->mddev;
5170 	conf = mddev->private;
5171 
5172 	rdev_dec_pending(rdev, conf->mddev);
5173 
5174 	if (!error) {
5175 		bio_endio(raid_bi);
5176 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5177 			wake_up(&conf->wait_for_quiescent);
5178 		return;
5179 	}
5180 
5181 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5182 
5183 	add_bio_to_retry(raid_bi, conf);
5184 }
5185 
5186 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5187 {
5188 	struct r5conf *conf = mddev->private;
5189 	int dd_idx;
5190 	struct bio* align_bi;
5191 	struct md_rdev *rdev;
5192 	sector_t end_sector;
5193 
5194 	if (!in_chunk_boundary(mddev, raid_bio)) {
5195 		pr_debug("%s: non aligned\n", __func__);
5196 		return 0;
5197 	}
5198 	/*
5199 	 * use bio_clone_fast to make a copy of the bio
5200 	 */
5201 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5202 	if (!align_bi)
5203 		return 0;
5204 	/*
5205 	 *   set bi_end_io to a new function, and set bi_private to the
5206 	 *     original bio.
5207 	 */
5208 	align_bi->bi_end_io  = raid5_align_endio;
5209 	align_bi->bi_private = raid_bio;
5210 	/*
5211 	 *	compute position
5212 	 */
5213 	align_bi->bi_iter.bi_sector =
5214 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5215 				     0, &dd_idx, NULL);
5216 
5217 	end_sector = bio_end_sector(align_bi);
5218 	rcu_read_lock();
5219 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5220 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5221 	    rdev->recovery_offset < end_sector) {
5222 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5223 		if (rdev &&
5224 		    (test_bit(Faulty, &rdev->flags) ||
5225 		    !(test_bit(In_sync, &rdev->flags) ||
5226 		      rdev->recovery_offset >= end_sector)))
5227 			rdev = NULL;
5228 	}
5229 
5230 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5231 		rcu_read_unlock();
5232 		bio_put(align_bi);
5233 		return 0;
5234 	}
5235 
5236 	if (rdev) {
5237 		sector_t first_bad;
5238 		int bad_sectors;
5239 
5240 		atomic_inc(&rdev->nr_pending);
5241 		rcu_read_unlock();
5242 		raid_bio->bi_next = (void*)rdev;
5243 		bio_set_dev(align_bi, rdev->bdev);
5244 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5245 
5246 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5247 				bio_sectors(align_bi),
5248 				&first_bad, &bad_sectors)) {
5249 			bio_put(align_bi);
5250 			rdev_dec_pending(rdev, mddev);
5251 			return 0;
5252 		}
5253 
5254 		/* No reshape active, so we can trust rdev->data_offset */
5255 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5256 
5257 		spin_lock_irq(&conf->device_lock);
5258 		wait_event_lock_irq(conf->wait_for_quiescent,
5259 				    conf->quiesce == 0,
5260 				    conf->device_lock);
5261 		atomic_inc(&conf->active_aligned_reads);
5262 		spin_unlock_irq(&conf->device_lock);
5263 
5264 		if (mddev->gendisk)
5265 			trace_block_bio_remap(align_bi->bi_disk->queue,
5266 					      align_bi, disk_devt(mddev->gendisk),
5267 					      raid_bio->bi_iter.bi_sector);
5268 		generic_make_request(align_bi);
5269 		return 1;
5270 	} else {
5271 		rcu_read_unlock();
5272 		bio_put(align_bi);
5273 		return 0;
5274 	}
5275 }
5276 
5277 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5278 {
5279 	struct bio *split;
5280 	sector_t sector = raid_bio->bi_iter.bi_sector;
5281 	unsigned chunk_sects = mddev->chunk_sectors;
5282 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5283 
5284 	if (sectors < bio_sectors(raid_bio)) {
5285 		struct r5conf *conf = mddev->private;
5286 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5287 		bio_chain(split, raid_bio);
5288 		generic_make_request(raid_bio);
5289 		raid_bio = split;
5290 	}
5291 
5292 	if (!raid5_read_one_chunk(mddev, raid_bio))
5293 		return raid_bio;
5294 
5295 	return NULL;
5296 }
5297 
5298 /* __get_priority_stripe - get the next stripe to process
5299  *
5300  * Full stripe writes are allowed to pass preread active stripes up until
5301  * the bypass_threshold is exceeded.  In general the bypass_count
5302  * increments when the handle_list is handled before the hold_list; however, it
5303  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5304  * stripe with in flight i/o.  The bypass_count will be reset when the
5305  * head of the hold_list has changed, i.e. the head was promoted to the
5306  * handle_list.
5307  */
5308 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5309 {
5310 	struct stripe_head *sh, *tmp;
5311 	struct list_head *handle_list = NULL;
5312 	struct r5worker_group *wg;
5313 	bool second_try = !r5c_is_writeback(conf->log) &&
5314 		!r5l_log_disk_error(conf);
5315 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5316 		r5l_log_disk_error(conf);
5317 
5318 again:
5319 	wg = NULL;
5320 	sh = NULL;
5321 	if (conf->worker_cnt_per_group == 0) {
5322 		handle_list = try_loprio ? &conf->loprio_list :
5323 					&conf->handle_list;
5324 	} else if (group != ANY_GROUP) {
5325 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5326 				&conf->worker_groups[group].handle_list;
5327 		wg = &conf->worker_groups[group];
5328 	} else {
5329 		int i;
5330 		for (i = 0; i < conf->group_cnt; i++) {
5331 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5332 				&conf->worker_groups[i].handle_list;
5333 			wg = &conf->worker_groups[i];
5334 			if (!list_empty(handle_list))
5335 				break;
5336 		}
5337 	}
5338 
5339 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5340 		  __func__,
5341 		  list_empty(handle_list) ? "empty" : "busy",
5342 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5343 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5344 
5345 	if (!list_empty(handle_list)) {
5346 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5347 
5348 		if (list_empty(&conf->hold_list))
5349 			conf->bypass_count = 0;
5350 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5351 			if (conf->hold_list.next == conf->last_hold)
5352 				conf->bypass_count++;
5353 			else {
5354 				conf->last_hold = conf->hold_list.next;
5355 				conf->bypass_count -= conf->bypass_threshold;
5356 				if (conf->bypass_count < 0)
5357 					conf->bypass_count = 0;
5358 			}
5359 		}
5360 	} else if (!list_empty(&conf->hold_list) &&
5361 		   ((conf->bypass_threshold &&
5362 		     conf->bypass_count > conf->bypass_threshold) ||
5363 		    atomic_read(&conf->pending_full_writes) == 0)) {
5364 
5365 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5366 			if (conf->worker_cnt_per_group == 0 ||
5367 			    group == ANY_GROUP ||
5368 			    !cpu_online(tmp->cpu) ||
5369 			    cpu_to_group(tmp->cpu) == group) {
5370 				sh = tmp;
5371 				break;
5372 			}
5373 		}
5374 
5375 		if (sh) {
5376 			conf->bypass_count -= conf->bypass_threshold;
5377 			if (conf->bypass_count < 0)
5378 				conf->bypass_count = 0;
5379 		}
5380 		wg = NULL;
5381 	}
5382 
5383 	if (!sh) {
5384 		if (second_try)
5385 			return NULL;
5386 		second_try = true;
5387 		try_loprio = !try_loprio;
5388 		goto again;
5389 	}
5390 
5391 	if (wg) {
5392 		wg->stripes_cnt--;
5393 		sh->group = NULL;
5394 	}
5395 	list_del_init(&sh->lru);
5396 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5397 	return sh;
5398 }
5399 
5400 struct raid5_plug_cb {
5401 	struct blk_plug_cb	cb;
5402 	struct list_head	list;
5403 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5404 };
5405 
5406 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5407 {
5408 	struct raid5_plug_cb *cb = container_of(
5409 		blk_cb, struct raid5_plug_cb, cb);
5410 	struct stripe_head *sh;
5411 	struct mddev *mddev = cb->cb.data;
5412 	struct r5conf *conf = mddev->private;
5413 	int cnt = 0;
5414 	int hash;
5415 
5416 	if (cb->list.next && !list_empty(&cb->list)) {
5417 		spin_lock_irq(&conf->device_lock);
5418 		while (!list_empty(&cb->list)) {
5419 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5420 			list_del_init(&sh->lru);
5421 			/*
5422 			 * avoid race release_stripe_plug() sees
5423 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5424 			 * is still in our list
5425 			 */
5426 			smp_mb__before_atomic();
5427 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5428 			/*
5429 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5430 			 * case, the count is always > 1 here
5431 			 */
5432 			hash = sh->hash_lock_index;
5433 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5434 			cnt++;
5435 		}
5436 		spin_unlock_irq(&conf->device_lock);
5437 	}
5438 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5439 				     NR_STRIPE_HASH_LOCKS);
5440 	if (mddev->queue)
5441 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5442 	kfree(cb);
5443 }
5444 
5445 static void release_stripe_plug(struct mddev *mddev,
5446 				struct stripe_head *sh)
5447 {
5448 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5449 		raid5_unplug, mddev,
5450 		sizeof(struct raid5_plug_cb));
5451 	struct raid5_plug_cb *cb;
5452 
5453 	if (!blk_cb) {
5454 		raid5_release_stripe(sh);
5455 		return;
5456 	}
5457 
5458 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5459 
5460 	if (cb->list.next == NULL) {
5461 		int i;
5462 		INIT_LIST_HEAD(&cb->list);
5463 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5464 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5465 	}
5466 
5467 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5468 		list_add_tail(&sh->lru, &cb->list);
5469 	else
5470 		raid5_release_stripe(sh);
5471 }
5472 
5473 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5474 {
5475 	struct r5conf *conf = mddev->private;
5476 	sector_t logical_sector, last_sector;
5477 	struct stripe_head *sh;
5478 	int stripe_sectors;
5479 
5480 	if (mddev->reshape_position != MaxSector)
5481 		/* Skip discard while reshape is happening */
5482 		return;
5483 
5484 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5485 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5486 
5487 	bi->bi_next = NULL;
5488 
5489 	stripe_sectors = conf->chunk_sectors *
5490 		(conf->raid_disks - conf->max_degraded);
5491 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5492 					       stripe_sectors);
5493 	sector_div(last_sector, stripe_sectors);
5494 
5495 	logical_sector *= conf->chunk_sectors;
5496 	last_sector *= conf->chunk_sectors;
5497 
5498 	for (; logical_sector < last_sector;
5499 	     logical_sector += STRIPE_SECTORS) {
5500 		DEFINE_WAIT(w);
5501 		int d;
5502 	again:
5503 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5504 		prepare_to_wait(&conf->wait_for_overlap, &w,
5505 				TASK_UNINTERRUPTIBLE);
5506 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5507 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5508 			raid5_release_stripe(sh);
5509 			schedule();
5510 			goto again;
5511 		}
5512 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5513 		spin_lock_irq(&sh->stripe_lock);
5514 		for (d = 0; d < conf->raid_disks; d++) {
5515 			if (d == sh->pd_idx || d == sh->qd_idx)
5516 				continue;
5517 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5518 				set_bit(R5_Overlap, &sh->dev[d].flags);
5519 				spin_unlock_irq(&sh->stripe_lock);
5520 				raid5_release_stripe(sh);
5521 				schedule();
5522 				goto again;
5523 			}
5524 		}
5525 		set_bit(STRIPE_DISCARD, &sh->state);
5526 		finish_wait(&conf->wait_for_overlap, &w);
5527 		sh->overwrite_disks = 0;
5528 		for (d = 0; d < conf->raid_disks; d++) {
5529 			if (d == sh->pd_idx || d == sh->qd_idx)
5530 				continue;
5531 			sh->dev[d].towrite = bi;
5532 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5533 			bio_inc_remaining(bi);
5534 			md_write_inc(mddev, bi);
5535 			sh->overwrite_disks++;
5536 		}
5537 		spin_unlock_irq(&sh->stripe_lock);
5538 		if (conf->mddev->bitmap) {
5539 			for (d = 0;
5540 			     d < conf->raid_disks - conf->max_degraded;
5541 			     d++)
5542 				bitmap_startwrite(mddev->bitmap,
5543 						  sh->sector,
5544 						  STRIPE_SECTORS,
5545 						  0);
5546 			sh->bm_seq = conf->seq_flush + 1;
5547 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5548 		}
5549 
5550 		set_bit(STRIPE_HANDLE, &sh->state);
5551 		clear_bit(STRIPE_DELAYED, &sh->state);
5552 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5553 			atomic_inc(&conf->preread_active_stripes);
5554 		release_stripe_plug(mddev, sh);
5555 	}
5556 
5557 	bio_endio(bi);
5558 }
5559 
5560 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5561 {
5562 	struct r5conf *conf = mddev->private;
5563 	int dd_idx;
5564 	sector_t new_sector;
5565 	sector_t logical_sector, last_sector;
5566 	struct stripe_head *sh;
5567 	const int rw = bio_data_dir(bi);
5568 	DEFINE_WAIT(w);
5569 	bool do_prepare;
5570 	bool do_flush = false;
5571 
5572 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5573 		int ret = log_handle_flush_request(conf, bi);
5574 
5575 		if (ret == 0)
5576 			return true;
5577 		if (ret == -ENODEV) {
5578 			md_flush_request(mddev, bi);
5579 			return true;
5580 		}
5581 		/* ret == -EAGAIN, fallback */
5582 		/*
5583 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5584 		 * we need to flush journal device
5585 		 */
5586 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5587 	}
5588 
5589 	if (!md_write_start(mddev, bi))
5590 		return false;
5591 	/*
5592 	 * If array is degraded, better not do chunk aligned read because
5593 	 * later we might have to read it again in order to reconstruct
5594 	 * data on failed drives.
5595 	 */
5596 	if (rw == READ && mddev->degraded == 0 &&
5597 	    mddev->reshape_position == MaxSector) {
5598 		bi = chunk_aligned_read(mddev, bi);
5599 		if (!bi)
5600 			return true;
5601 	}
5602 
5603 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5604 		make_discard_request(mddev, bi);
5605 		md_write_end(mddev);
5606 		return true;
5607 	}
5608 
5609 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5610 	last_sector = bio_end_sector(bi);
5611 	bi->bi_next = NULL;
5612 
5613 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5614 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5615 		int previous;
5616 		int seq;
5617 
5618 		do_prepare = false;
5619 	retry:
5620 		seq = read_seqcount_begin(&conf->gen_lock);
5621 		previous = 0;
5622 		if (do_prepare)
5623 			prepare_to_wait(&conf->wait_for_overlap, &w,
5624 				TASK_UNINTERRUPTIBLE);
5625 		if (unlikely(conf->reshape_progress != MaxSector)) {
5626 			/* spinlock is needed as reshape_progress may be
5627 			 * 64bit on a 32bit platform, and so it might be
5628 			 * possible to see a half-updated value
5629 			 * Of course reshape_progress could change after
5630 			 * the lock is dropped, so once we get a reference
5631 			 * to the stripe that we think it is, we will have
5632 			 * to check again.
5633 			 */
5634 			spin_lock_irq(&conf->device_lock);
5635 			if (mddev->reshape_backwards
5636 			    ? logical_sector < conf->reshape_progress
5637 			    : logical_sector >= conf->reshape_progress) {
5638 				previous = 1;
5639 			} else {
5640 				if (mddev->reshape_backwards
5641 				    ? logical_sector < conf->reshape_safe
5642 				    : logical_sector >= conf->reshape_safe) {
5643 					spin_unlock_irq(&conf->device_lock);
5644 					schedule();
5645 					do_prepare = true;
5646 					goto retry;
5647 				}
5648 			}
5649 			spin_unlock_irq(&conf->device_lock);
5650 		}
5651 
5652 		new_sector = raid5_compute_sector(conf, logical_sector,
5653 						  previous,
5654 						  &dd_idx, NULL);
5655 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5656 			(unsigned long long)new_sector,
5657 			(unsigned long long)logical_sector);
5658 
5659 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5660 				       (bi->bi_opf & REQ_RAHEAD), 0);
5661 		if (sh) {
5662 			if (unlikely(previous)) {
5663 				/* expansion might have moved on while waiting for a
5664 				 * stripe, so we must do the range check again.
5665 				 * Expansion could still move past after this
5666 				 * test, but as we are holding a reference to
5667 				 * 'sh', we know that if that happens,
5668 				 *  STRIPE_EXPANDING will get set and the expansion
5669 				 * won't proceed until we finish with the stripe.
5670 				 */
5671 				int must_retry = 0;
5672 				spin_lock_irq(&conf->device_lock);
5673 				if (mddev->reshape_backwards
5674 				    ? logical_sector >= conf->reshape_progress
5675 				    : logical_sector < conf->reshape_progress)
5676 					/* mismatch, need to try again */
5677 					must_retry = 1;
5678 				spin_unlock_irq(&conf->device_lock);
5679 				if (must_retry) {
5680 					raid5_release_stripe(sh);
5681 					schedule();
5682 					do_prepare = true;
5683 					goto retry;
5684 				}
5685 			}
5686 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5687 				/* Might have got the wrong stripe_head
5688 				 * by accident
5689 				 */
5690 				raid5_release_stripe(sh);
5691 				goto retry;
5692 			}
5693 
5694 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5695 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5696 				/* Stripe is busy expanding or
5697 				 * add failed due to overlap.  Flush everything
5698 				 * and wait a while
5699 				 */
5700 				md_wakeup_thread(mddev->thread);
5701 				raid5_release_stripe(sh);
5702 				schedule();
5703 				do_prepare = true;
5704 				goto retry;
5705 			}
5706 			if (do_flush) {
5707 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5708 				/* we only need flush for one stripe */
5709 				do_flush = false;
5710 			}
5711 
5712 			set_bit(STRIPE_HANDLE, &sh->state);
5713 			clear_bit(STRIPE_DELAYED, &sh->state);
5714 			if ((!sh->batch_head || sh == sh->batch_head) &&
5715 			    (bi->bi_opf & REQ_SYNC) &&
5716 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5717 				atomic_inc(&conf->preread_active_stripes);
5718 			release_stripe_plug(mddev, sh);
5719 		} else {
5720 			/* cannot get stripe for read-ahead, just give-up */
5721 			bi->bi_status = BLK_STS_IOERR;
5722 			break;
5723 		}
5724 	}
5725 	finish_wait(&conf->wait_for_overlap, &w);
5726 
5727 	if (rw == WRITE)
5728 		md_write_end(mddev);
5729 	bio_endio(bi);
5730 	return true;
5731 }
5732 
5733 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5734 
5735 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5736 {
5737 	/* reshaping is quite different to recovery/resync so it is
5738 	 * handled quite separately ... here.
5739 	 *
5740 	 * On each call to sync_request, we gather one chunk worth of
5741 	 * destination stripes and flag them as expanding.
5742 	 * Then we find all the source stripes and request reads.
5743 	 * As the reads complete, handle_stripe will copy the data
5744 	 * into the destination stripe and release that stripe.
5745 	 */
5746 	struct r5conf *conf = mddev->private;
5747 	struct stripe_head *sh;
5748 	struct md_rdev *rdev;
5749 	sector_t first_sector, last_sector;
5750 	int raid_disks = conf->previous_raid_disks;
5751 	int data_disks = raid_disks - conf->max_degraded;
5752 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5753 	int i;
5754 	int dd_idx;
5755 	sector_t writepos, readpos, safepos;
5756 	sector_t stripe_addr;
5757 	int reshape_sectors;
5758 	struct list_head stripes;
5759 	sector_t retn;
5760 
5761 	if (sector_nr == 0) {
5762 		/* If restarting in the middle, skip the initial sectors */
5763 		if (mddev->reshape_backwards &&
5764 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5765 			sector_nr = raid5_size(mddev, 0, 0)
5766 				- conf->reshape_progress;
5767 		} else if (mddev->reshape_backwards &&
5768 			   conf->reshape_progress == MaxSector) {
5769 			/* shouldn't happen, but just in case, finish up.*/
5770 			sector_nr = MaxSector;
5771 		} else if (!mddev->reshape_backwards &&
5772 			   conf->reshape_progress > 0)
5773 			sector_nr = conf->reshape_progress;
5774 		sector_div(sector_nr, new_data_disks);
5775 		if (sector_nr) {
5776 			mddev->curr_resync_completed = sector_nr;
5777 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5778 			*skipped = 1;
5779 			retn = sector_nr;
5780 			goto finish;
5781 		}
5782 	}
5783 
5784 	/* We need to process a full chunk at a time.
5785 	 * If old and new chunk sizes differ, we need to process the
5786 	 * largest of these
5787 	 */
5788 
5789 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5790 
5791 	/* We update the metadata at least every 10 seconds, or when
5792 	 * the data about to be copied would over-write the source of
5793 	 * the data at the front of the range.  i.e. one new_stripe
5794 	 * along from reshape_progress new_maps to after where
5795 	 * reshape_safe old_maps to
5796 	 */
5797 	writepos = conf->reshape_progress;
5798 	sector_div(writepos, new_data_disks);
5799 	readpos = conf->reshape_progress;
5800 	sector_div(readpos, data_disks);
5801 	safepos = conf->reshape_safe;
5802 	sector_div(safepos, data_disks);
5803 	if (mddev->reshape_backwards) {
5804 		BUG_ON(writepos < reshape_sectors);
5805 		writepos -= reshape_sectors;
5806 		readpos += reshape_sectors;
5807 		safepos += reshape_sectors;
5808 	} else {
5809 		writepos += reshape_sectors;
5810 		/* readpos and safepos are worst-case calculations.
5811 		 * A negative number is overly pessimistic, and causes
5812 		 * obvious problems for unsigned storage.  So clip to 0.
5813 		 */
5814 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5815 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5816 	}
5817 
5818 	/* Having calculated the 'writepos' possibly use it
5819 	 * to set 'stripe_addr' which is where we will write to.
5820 	 */
5821 	if (mddev->reshape_backwards) {
5822 		BUG_ON(conf->reshape_progress == 0);
5823 		stripe_addr = writepos;
5824 		BUG_ON((mddev->dev_sectors &
5825 			~((sector_t)reshape_sectors - 1))
5826 		       - reshape_sectors - stripe_addr
5827 		       != sector_nr);
5828 	} else {
5829 		BUG_ON(writepos != sector_nr + reshape_sectors);
5830 		stripe_addr = sector_nr;
5831 	}
5832 
5833 	/* 'writepos' is the most advanced device address we might write.
5834 	 * 'readpos' is the least advanced device address we might read.
5835 	 * 'safepos' is the least address recorded in the metadata as having
5836 	 *     been reshaped.
5837 	 * If there is a min_offset_diff, these are adjusted either by
5838 	 * increasing the safepos/readpos if diff is negative, or
5839 	 * increasing writepos if diff is positive.
5840 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5841 	 * ensure safety in the face of a crash - that must be done by userspace
5842 	 * making a backup of the data.  So in that case there is no particular
5843 	 * rush to update metadata.
5844 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5845 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5846 	 * we can be safe in the event of a crash.
5847 	 * So we insist on updating metadata if safepos is behind writepos and
5848 	 * readpos is beyond writepos.
5849 	 * In any case, update the metadata every 10 seconds.
5850 	 * Maybe that number should be configurable, but I'm not sure it is
5851 	 * worth it.... maybe it could be a multiple of safemode_delay???
5852 	 */
5853 	if (conf->min_offset_diff < 0) {
5854 		safepos += -conf->min_offset_diff;
5855 		readpos += -conf->min_offset_diff;
5856 	} else
5857 		writepos += conf->min_offset_diff;
5858 
5859 	if ((mddev->reshape_backwards
5860 	     ? (safepos > writepos && readpos < writepos)
5861 	     : (safepos < writepos && readpos > writepos)) ||
5862 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5863 		/* Cannot proceed until we've updated the superblock... */
5864 		wait_event(conf->wait_for_overlap,
5865 			   atomic_read(&conf->reshape_stripes)==0
5866 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5867 		if (atomic_read(&conf->reshape_stripes) != 0)
5868 			return 0;
5869 		mddev->reshape_position = conf->reshape_progress;
5870 		mddev->curr_resync_completed = sector_nr;
5871 		if (!mddev->reshape_backwards)
5872 			/* Can update recovery_offset */
5873 			rdev_for_each(rdev, mddev)
5874 				if (rdev->raid_disk >= 0 &&
5875 				    !test_bit(Journal, &rdev->flags) &&
5876 				    !test_bit(In_sync, &rdev->flags) &&
5877 				    rdev->recovery_offset < sector_nr)
5878 					rdev->recovery_offset = sector_nr;
5879 
5880 		conf->reshape_checkpoint = jiffies;
5881 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5882 		md_wakeup_thread(mddev->thread);
5883 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5884 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5885 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5886 			return 0;
5887 		spin_lock_irq(&conf->device_lock);
5888 		conf->reshape_safe = mddev->reshape_position;
5889 		spin_unlock_irq(&conf->device_lock);
5890 		wake_up(&conf->wait_for_overlap);
5891 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5892 	}
5893 
5894 	INIT_LIST_HEAD(&stripes);
5895 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5896 		int j;
5897 		int skipped_disk = 0;
5898 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5899 		set_bit(STRIPE_EXPANDING, &sh->state);
5900 		atomic_inc(&conf->reshape_stripes);
5901 		/* If any of this stripe is beyond the end of the old
5902 		 * array, then we need to zero those blocks
5903 		 */
5904 		for (j=sh->disks; j--;) {
5905 			sector_t s;
5906 			if (j == sh->pd_idx)
5907 				continue;
5908 			if (conf->level == 6 &&
5909 			    j == sh->qd_idx)
5910 				continue;
5911 			s = raid5_compute_blocknr(sh, j, 0);
5912 			if (s < raid5_size(mddev, 0, 0)) {
5913 				skipped_disk = 1;
5914 				continue;
5915 			}
5916 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5917 			set_bit(R5_Expanded, &sh->dev[j].flags);
5918 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5919 		}
5920 		if (!skipped_disk) {
5921 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5922 			set_bit(STRIPE_HANDLE, &sh->state);
5923 		}
5924 		list_add(&sh->lru, &stripes);
5925 	}
5926 	spin_lock_irq(&conf->device_lock);
5927 	if (mddev->reshape_backwards)
5928 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5929 	else
5930 		conf->reshape_progress += reshape_sectors * new_data_disks;
5931 	spin_unlock_irq(&conf->device_lock);
5932 	/* Ok, those stripe are ready. We can start scheduling
5933 	 * reads on the source stripes.
5934 	 * The source stripes are determined by mapping the first and last
5935 	 * block on the destination stripes.
5936 	 */
5937 	first_sector =
5938 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5939 				     1, &dd_idx, NULL);
5940 	last_sector =
5941 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5942 					    * new_data_disks - 1),
5943 				     1, &dd_idx, NULL);
5944 	if (last_sector >= mddev->dev_sectors)
5945 		last_sector = mddev->dev_sectors - 1;
5946 	while (first_sector <= last_sector) {
5947 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5948 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5949 		set_bit(STRIPE_HANDLE, &sh->state);
5950 		raid5_release_stripe(sh);
5951 		first_sector += STRIPE_SECTORS;
5952 	}
5953 	/* Now that the sources are clearly marked, we can release
5954 	 * the destination stripes
5955 	 */
5956 	while (!list_empty(&stripes)) {
5957 		sh = list_entry(stripes.next, struct stripe_head, lru);
5958 		list_del_init(&sh->lru);
5959 		raid5_release_stripe(sh);
5960 	}
5961 	/* If this takes us to the resync_max point where we have to pause,
5962 	 * then we need to write out the superblock.
5963 	 */
5964 	sector_nr += reshape_sectors;
5965 	retn = reshape_sectors;
5966 finish:
5967 	if (mddev->curr_resync_completed > mddev->resync_max ||
5968 	    (sector_nr - mddev->curr_resync_completed) * 2
5969 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5970 		/* Cannot proceed until we've updated the superblock... */
5971 		wait_event(conf->wait_for_overlap,
5972 			   atomic_read(&conf->reshape_stripes) == 0
5973 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5974 		if (atomic_read(&conf->reshape_stripes) != 0)
5975 			goto ret;
5976 		mddev->reshape_position = conf->reshape_progress;
5977 		mddev->curr_resync_completed = sector_nr;
5978 		if (!mddev->reshape_backwards)
5979 			/* Can update recovery_offset */
5980 			rdev_for_each(rdev, mddev)
5981 				if (rdev->raid_disk >= 0 &&
5982 				    !test_bit(Journal, &rdev->flags) &&
5983 				    !test_bit(In_sync, &rdev->flags) &&
5984 				    rdev->recovery_offset < sector_nr)
5985 					rdev->recovery_offset = sector_nr;
5986 		conf->reshape_checkpoint = jiffies;
5987 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5988 		md_wakeup_thread(mddev->thread);
5989 		wait_event(mddev->sb_wait,
5990 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5991 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5992 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5993 			goto ret;
5994 		spin_lock_irq(&conf->device_lock);
5995 		conf->reshape_safe = mddev->reshape_position;
5996 		spin_unlock_irq(&conf->device_lock);
5997 		wake_up(&conf->wait_for_overlap);
5998 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5999 	}
6000 ret:
6001 	return retn;
6002 }
6003 
6004 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6005 					  int *skipped)
6006 {
6007 	struct r5conf *conf = mddev->private;
6008 	struct stripe_head *sh;
6009 	sector_t max_sector = mddev->dev_sectors;
6010 	sector_t sync_blocks;
6011 	int still_degraded = 0;
6012 	int i;
6013 
6014 	if (sector_nr >= max_sector) {
6015 		/* just being told to finish up .. nothing much to do */
6016 
6017 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6018 			end_reshape(conf);
6019 			return 0;
6020 		}
6021 
6022 		if (mddev->curr_resync < max_sector) /* aborted */
6023 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6024 					&sync_blocks, 1);
6025 		else /* completed sync */
6026 			conf->fullsync = 0;
6027 		bitmap_close_sync(mddev->bitmap);
6028 
6029 		return 0;
6030 	}
6031 
6032 	/* Allow raid5_quiesce to complete */
6033 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6034 
6035 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6036 		return reshape_request(mddev, sector_nr, skipped);
6037 
6038 	/* No need to check resync_max as we never do more than one
6039 	 * stripe, and as resync_max will always be on a chunk boundary,
6040 	 * if the check in md_do_sync didn't fire, there is no chance
6041 	 * of overstepping resync_max here
6042 	 */
6043 
6044 	/* if there is too many failed drives and we are trying
6045 	 * to resync, then assert that we are finished, because there is
6046 	 * nothing we can do.
6047 	 */
6048 	if (mddev->degraded >= conf->max_degraded &&
6049 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6050 		sector_t rv = mddev->dev_sectors - sector_nr;
6051 		*skipped = 1;
6052 		return rv;
6053 	}
6054 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6055 	    !conf->fullsync &&
6056 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6057 	    sync_blocks >= STRIPE_SECTORS) {
6058 		/* we can skip this block, and probably more */
6059 		sync_blocks /= STRIPE_SECTORS;
6060 		*skipped = 1;
6061 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6062 	}
6063 
6064 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6065 
6066 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6067 	if (sh == NULL) {
6068 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6069 		/* make sure we don't swamp the stripe cache if someone else
6070 		 * is trying to get access
6071 		 */
6072 		schedule_timeout_uninterruptible(1);
6073 	}
6074 	/* Need to check if array will still be degraded after recovery/resync
6075 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6076 	 * one drive while leaving another faulty drive in array.
6077 	 */
6078 	rcu_read_lock();
6079 	for (i = 0; i < conf->raid_disks; i++) {
6080 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6081 
6082 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6083 			still_degraded = 1;
6084 	}
6085 	rcu_read_unlock();
6086 
6087 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6088 
6089 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6090 	set_bit(STRIPE_HANDLE, &sh->state);
6091 
6092 	raid5_release_stripe(sh);
6093 
6094 	return STRIPE_SECTORS;
6095 }
6096 
6097 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6098 			       unsigned int offset)
6099 {
6100 	/* We may not be able to submit a whole bio at once as there
6101 	 * may not be enough stripe_heads available.
6102 	 * We cannot pre-allocate enough stripe_heads as we may need
6103 	 * more than exist in the cache (if we allow ever large chunks).
6104 	 * So we do one stripe head at a time and record in
6105 	 * ->bi_hw_segments how many have been done.
6106 	 *
6107 	 * We *know* that this entire raid_bio is in one chunk, so
6108 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6109 	 */
6110 	struct stripe_head *sh;
6111 	int dd_idx;
6112 	sector_t sector, logical_sector, last_sector;
6113 	int scnt = 0;
6114 	int handled = 0;
6115 
6116 	logical_sector = raid_bio->bi_iter.bi_sector &
6117 		~((sector_t)STRIPE_SECTORS-1);
6118 	sector = raid5_compute_sector(conf, logical_sector,
6119 				      0, &dd_idx, NULL);
6120 	last_sector = bio_end_sector(raid_bio);
6121 
6122 	for (; logical_sector < last_sector;
6123 	     logical_sector += STRIPE_SECTORS,
6124 		     sector += STRIPE_SECTORS,
6125 		     scnt++) {
6126 
6127 		if (scnt < offset)
6128 			/* already done this stripe */
6129 			continue;
6130 
6131 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6132 
6133 		if (!sh) {
6134 			/* failed to get a stripe - must wait */
6135 			conf->retry_read_aligned = raid_bio;
6136 			conf->retry_read_offset = scnt;
6137 			return handled;
6138 		}
6139 
6140 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6141 			raid5_release_stripe(sh);
6142 			conf->retry_read_aligned = raid_bio;
6143 			conf->retry_read_offset = scnt;
6144 			return handled;
6145 		}
6146 
6147 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6148 		handle_stripe(sh);
6149 		raid5_release_stripe(sh);
6150 		handled++;
6151 	}
6152 
6153 	bio_endio(raid_bio);
6154 
6155 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6156 		wake_up(&conf->wait_for_quiescent);
6157 	return handled;
6158 }
6159 
6160 static int handle_active_stripes(struct r5conf *conf, int group,
6161 				 struct r5worker *worker,
6162 				 struct list_head *temp_inactive_list)
6163 {
6164 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6165 	int i, batch_size = 0, hash;
6166 	bool release_inactive = false;
6167 
6168 	while (batch_size < MAX_STRIPE_BATCH &&
6169 			(sh = __get_priority_stripe(conf, group)) != NULL)
6170 		batch[batch_size++] = sh;
6171 
6172 	if (batch_size == 0) {
6173 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6174 			if (!list_empty(temp_inactive_list + i))
6175 				break;
6176 		if (i == NR_STRIPE_HASH_LOCKS) {
6177 			spin_unlock_irq(&conf->device_lock);
6178 			log_flush_stripe_to_raid(conf);
6179 			spin_lock_irq(&conf->device_lock);
6180 			return batch_size;
6181 		}
6182 		release_inactive = true;
6183 	}
6184 	spin_unlock_irq(&conf->device_lock);
6185 
6186 	release_inactive_stripe_list(conf, temp_inactive_list,
6187 				     NR_STRIPE_HASH_LOCKS);
6188 
6189 	r5l_flush_stripe_to_raid(conf->log);
6190 	if (release_inactive) {
6191 		spin_lock_irq(&conf->device_lock);
6192 		return 0;
6193 	}
6194 
6195 	for (i = 0; i < batch_size; i++)
6196 		handle_stripe(batch[i]);
6197 	log_write_stripe_run(conf);
6198 
6199 	cond_resched();
6200 
6201 	spin_lock_irq(&conf->device_lock);
6202 	for (i = 0; i < batch_size; i++) {
6203 		hash = batch[i]->hash_lock_index;
6204 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6205 	}
6206 	return batch_size;
6207 }
6208 
6209 static void raid5_do_work(struct work_struct *work)
6210 {
6211 	struct r5worker *worker = container_of(work, struct r5worker, work);
6212 	struct r5worker_group *group = worker->group;
6213 	struct r5conf *conf = group->conf;
6214 	struct mddev *mddev = conf->mddev;
6215 	int group_id = group - conf->worker_groups;
6216 	int handled;
6217 	struct blk_plug plug;
6218 
6219 	pr_debug("+++ raid5worker active\n");
6220 
6221 	blk_start_plug(&plug);
6222 	handled = 0;
6223 	spin_lock_irq(&conf->device_lock);
6224 	while (1) {
6225 		int batch_size, released;
6226 
6227 		released = release_stripe_list(conf, worker->temp_inactive_list);
6228 
6229 		batch_size = handle_active_stripes(conf, group_id, worker,
6230 						   worker->temp_inactive_list);
6231 		worker->working = false;
6232 		if (!batch_size && !released)
6233 			break;
6234 		handled += batch_size;
6235 		wait_event_lock_irq(mddev->sb_wait,
6236 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6237 			conf->device_lock);
6238 	}
6239 	pr_debug("%d stripes handled\n", handled);
6240 
6241 	spin_unlock_irq(&conf->device_lock);
6242 
6243 	flush_deferred_bios(conf);
6244 
6245 	r5l_flush_stripe_to_raid(conf->log);
6246 
6247 	async_tx_issue_pending_all();
6248 	blk_finish_plug(&plug);
6249 
6250 	pr_debug("--- raid5worker inactive\n");
6251 }
6252 
6253 /*
6254  * This is our raid5 kernel thread.
6255  *
6256  * We scan the hash table for stripes which can be handled now.
6257  * During the scan, completed stripes are saved for us by the interrupt
6258  * handler, so that they will not have to wait for our next wakeup.
6259  */
6260 static void raid5d(struct md_thread *thread)
6261 {
6262 	struct mddev *mddev = thread->mddev;
6263 	struct r5conf *conf = mddev->private;
6264 	int handled;
6265 	struct blk_plug plug;
6266 
6267 	pr_debug("+++ raid5d active\n");
6268 
6269 	md_check_recovery(mddev);
6270 
6271 	blk_start_plug(&plug);
6272 	handled = 0;
6273 	spin_lock_irq(&conf->device_lock);
6274 	while (1) {
6275 		struct bio *bio;
6276 		int batch_size, released;
6277 		unsigned int offset;
6278 
6279 		released = release_stripe_list(conf, conf->temp_inactive_list);
6280 		if (released)
6281 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6282 
6283 		if (
6284 		    !list_empty(&conf->bitmap_list)) {
6285 			/* Now is a good time to flush some bitmap updates */
6286 			conf->seq_flush++;
6287 			spin_unlock_irq(&conf->device_lock);
6288 			bitmap_unplug(mddev->bitmap);
6289 			spin_lock_irq(&conf->device_lock);
6290 			conf->seq_write = conf->seq_flush;
6291 			activate_bit_delay(conf, conf->temp_inactive_list);
6292 		}
6293 		raid5_activate_delayed(conf);
6294 
6295 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6296 			int ok;
6297 			spin_unlock_irq(&conf->device_lock);
6298 			ok = retry_aligned_read(conf, bio, offset);
6299 			spin_lock_irq(&conf->device_lock);
6300 			if (!ok)
6301 				break;
6302 			handled++;
6303 		}
6304 
6305 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6306 						   conf->temp_inactive_list);
6307 		if (!batch_size && !released)
6308 			break;
6309 		handled += batch_size;
6310 
6311 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6312 			spin_unlock_irq(&conf->device_lock);
6313 			md_check_recovery(mddev);
6314 			spin_lock_irq(&conf->device_lock);
6315 		}
6316 	}
6317 	pr_debug("%d stripes handled\n", handled);
6318 
6319 	spin_unlock_irq(&conf->device_lock);
6320 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6321 	    mutex_trylock(&conf->cache_size_mutex)) {
6322 		grow_one_stripe(conf, __GFP_NOWARN);
6323 		/* Set flag even if allocation failed.  This helps
6324 		 * slow down allocation requests when mem is short
6325 		 */
6326 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6327 		mutex_unlock(&conf->cache_size_mutex);
6328 	}
6329 
6330 	flush_deferred_bios(conf);
6331 
6332 	r5l_flush_stripe_to_raid(conf->log);
6333 
6334 	async_tx_issue_pending_all();
6335 	blk_finish_plug(&plug);
6336 
6337 	pr_debug("--- raid5d inactive\n");
6338 }
6339 
6340 static ssize_t
6341 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6342 {
6343 	struct r5conf *conf;
6344 	int ret = 0;
6345 	spin_lock(&mddev->lock);
6346 	conf = mddev->private;
6347 	if (conf)
6348 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6349 	spin_unlock(&mddev->lock);
6350 	return ret;
6351 }
6352 
6353 int
6354 raid5_set_cache_size(struct mddev *mddev, int size)
6355 {
6356 	struct r5conf *conf = mddev->private;
6357 
6358 	if (size <= 16 || size > 32768)
6359 		return -EINVAL;
6360 
6361 	conf->min_nr_stripes = size;
6362 	mutex_lock(&conf->cache_size_mutex);
6363 	while (size < conf->max_nr_stripes &&
6364 	       drop_one_stripe(conf))
6365 		;
6366 	mutex_unlock(&conf->cache_size_mutex);
6367 
6368 	md_allow_write(mddev);
6369 
6370 	mutex_lock(&conf->cache_size_mutex);
6371 	while (size > conf->max_nr_stripes)
6372 		if (!grow_one_stripe(conf, GFP_KERNEL))
6373 			break;
6374 	mutex_unlock(&conf->cache_size_mutex);
6375 
6376 	return 0;
6377 }
6378 EXPORT_SYMBOL(raid5_set_cache_size);
6379 
6380 static ssize_t
6381 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6382 {
6383 	struct r5conf *conf;
6384 	unsigned long new;
6385 	int err;
6386 
6387 	if (len >= PAGE_SIZE)
6388 		return -EINVAL;
6389 	if (kstrtoul(page, 10, &new))
6390 		return -EINVAL;
6391 	err = mddev_lock(mddev);
6392 	if (err)
6393 		return err;
6394 	conf = mddev->private;
6395 	if (!conf)
6396 		err = -ENODEV;
6397 	else
6398 		err = raid5_set_cache_size(mddev, new);
6399 	mddev_unlock(mddev);
6400 
6401 	return err ?: len;
6402 }
6403 
6404 static struct md_sysfs_entry
6405 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6406 				raid5_show_stripe_cache_size,
6407 				raid5_store_stripe_cache_size);
6408 
6409 static ssize_t
6410 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6411 {
6412 	struct r5conf *conf = mddev->private;
6413 	if (conf)
6414 		return sprintf(page, "%d\n", conf->rmw_level);
6415 	else
6416 		return 0;
6417 }
6418 
6419 static ssize_t
6420 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6421 {
6422 	struct r5conf *conf = mddev->private;
6423 	unsigned long new;
6424 
6425 	if (!conf)
6426 		return -ENODEV;
6427 
6428 	if (len >= PAGE_SIZE)
6429 		return -EINVAL;
6430 
6431 	if (kstrtoul(page, 10, &new))
6432 		return -EINVAL;
6433 
6434 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6435 		return -EINVAL;
6436 
6437 	if (new != PARITY_DISABLE_RMW &&
6438 	    new != PARITY_ENABLE_RMW &&
6439 	    new != PARITY_PREFER_RMW)
6440 		return -EINVAL;
6441 
6442 	conf->rmw_level = new;
6443 	return len;
6444 }
6445 
6446 static struct md_sysfs_entry
6447 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6448 			 raid5_show_rmw_level,
6449 			 raid5_store_rmw_level);
6450 
6451 
6452 static ssize_t
6453 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6454 {
6455 	struct r5conf *conf;
6456 	int ret = 0;
6457 	spin_lock(&mddev->lock);
6458 	conf = mddev->private;
6459 	if (conf)
6460 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6461 	spin_unlock(&mddev->lock);
6462 	return ret;
6463 }
6464 
6465 static ssize_t
6466 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6467 {
6468 	struct r5conf *conf;
6469 	unsigned long new;
6470 	int err;
6471 
6472 	if (len >= PAGE_SIZE)
6473 		return -EINVAL;
6474 	if (kstrtoul(page, 10, &new))
6475 		return -EINVAL;
6476 
6477 	err = mddev_lock(mddev);
6478 	if (err)
6479 		return err;
6480 	conf = mddev->private;
6481 	if (!conf)
6482 		err = -ENODEV;
6483 	else if (new > conf->min_nr_stripes)
6484 		err = -EINVAL;
6485 	else
6486 		conf->bypass_threshold = new;
6487 	mddev_unlock(mddev);
6488 	return err ?: len;
6489 }
6490 
6491 static struct md_sysfs_entry
6492 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6493 					S_IRUGO | S_IWUSR,
6494 					raid5_show_preread_threshold,
6495 					raid5_store_preread_threshold);
6496 
6497 static ssize_t
6498 raid5_show_skip_copy(struct mddev *mddev, char *page)
6499 {
6500 	struct r5conf *conf;
6501 	int ret = 0;
6502 	spin_lock(&mddev->lock);
6503 	conf = mddev->private;
6504 	if (conf)
6505 		ret = sprintf(page, "%d\n", conf->skip_copy);
6506 	spin_unlock(&mddev->lock);
6507 	return ret;
6508 }
6509 
6510 static ssize_t
6511 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6512 {
6513 	struct r5conf *conf;
6514 	unsigned long new;
6515 	int err;
6516 
6517 	if (len >= PAGE_SIZE)
6518 		return -EINVAL;
6519 	if (kstrtoul(page, 10, &new))
6520 		return -EINVAL;
6521 	new = !!new;
6522 
6523 	err = mddev_lock(mddev);
6524 	if (err)
6525 		return err;
6526 	conf = mddev->private;
6527 	if (!conf)
6528 		err = -ENODEV;
6529 	else if (new != conf->skip_copy) {
6530 		mddev_suspend(mddev);
6531 		conf->skip_copy = new;
6532 		if (new)
6533 			mddev->queue->backing_dev_info->capabilities |=
6534 				BDI_CAP_STABLE_WRITES;
6535 		else
6536 			mddev->queue->backing_dev_info->capabilities &=
6537 				~BDI_CAP_STABLE_WRITES;
6538 		mddev_resume(mddev);
6539 	}
6540 	mddev_unlock(mddev);
6541 	return err ?: len;
6542 }
6543 
6544 static struct md_sysfs_entry
6545 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6546 					raid5_show_skip_copy,
6547 					raid5_store_skip_copy);
6548 
6549 static ssize_t
6550 stripe_cache_active_show(struct mddev *mddev, char *page)
6551 {
6552 	struct r5conf *conf = mddev->private;
6553 	if (conf)
6554 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6555 	else
6556 		return 0;
6557 }
6558 
6559 static struct md_sysfs_entry
6560 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6561 
6562 static ssize_t
6563 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6564 {
6565 	struct r5conf *conf;
6566 	int ret = 0;
6567 	spin_lock(&mddev->lock);
6568 	conf = mddev->private;
6569 	if (conf)
6570 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6571 	spin_unlock(&mddev->lock);
6572 	return ret;
6573 }
6574 
6575 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6576 			       int *group_cnt,
6577 			       int *worker_cnt_per_group,
6578 			       struct r5worker_group **worker_groups);
6579 static ssize_t
6580 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6581 {
6582 	struct r5conf *conf;
6583 	unsigned int new;
6584 	int err;
6585 	struct r5worker_group *new_groups, *old_groups;
6586 	int group_cnt, worker_cnt_per_group;
6587 
6588 	if (len >= PAGE_SIZE)
6589 		return -EINVAL;
6590 	if (kstrtouint(page, 10, &new))
6591 		return -EINVAL;
6592 	/* 8192 should be big enough */
6593 	if (new > 8192)
6594 		return -EINVAL;
6595 
6596 	err = mddev_lock(mddev);
6597 	if (err)
6598 		return err;
6599 	conf = mddev->private;
6600 	if (!conf)
6601 		err = -ENODEV;
6602 	else if (new != conf->worker_cnt_per_group) {
6603 		mddev_suspend(mddev);
6604 
6605 		old_groups = conf->worker_groups;
6606 		if (old_groups)
6607 			flush_workqueue(raid5_wq);
6608 
6609 		err = alloc_thread_groups(conf, new,
6610 					  &group_cnt, &worker_cnt_per_group,
6611 					  &new_groups);
6612 		if (!err) {
6613 			spin_lock_irq(&conf->device_lock);
6614 			conf->group_cnt = group_cnt;
6615 			conf->worker_cnt_per_group = worker_cnt_per_group;
6616 			conf->worker_groups = new_groups;
6617 			spin_unlock_irq(&conf->device_lock);
6618 
6619 			if (old_groups)
6620 				kfree(old_groups[0].workers);
6621 			kfree(old_groups);
6622 		}
6623 		mddev_resume(mddev);
6624 	}
6625 	mddev_unlock(mddev);
6626 
6627 	return err ?: len;
6628 }
6629 
6630 static struct md_sysfs_entry
6631 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6632 				raid5_show_group_thread_cnt,
6633 				raid5_store_group_thread_cnt);
6634 
6635 static struct attribute *raid5_attrs[] =  {
6636 	&raid5_stripecache_size.attr,
6637 	&raid5_stripecache_active.attr,
6638 	&raid5_preread_bypass_threshold.attr,
6639 	&raid5_group_thread_cnt.attr,
6640 	&raid5_skip_copy.attr,
6641 	&raid5_rmw_level.attr,
6642 	&r5c_journal_mode.attr,
6643 	NULL,
6644 };
6645 static struct attribute_group raid5_attrs_group = {
6646 	.name = NULL,
6647 	.attrs = raid5_attrs,
6648 };
6649 
6650 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6651 			       int *group_cnt,
6652 			       int *worker_cnt_per_group,
6653 			       struct r5worker_group **worker_groups)
6654 {
6655 	int i, j, k;
6656 	ssize_t size;
6657 	struct r5worker *workers;
6658 
6659 	*worker_cnt_per_group = cnt;
6660 	if (cnt == 0) {
6661 		*group_cnt = 0;
6662 		*worker_groups = NULL;
6663 		return 0;
6664 	}
6665 	*group_cnt = num_possible_nodes();
6666 	size = sizeof(struct r5worker) * cnt;
6667 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6668 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6669 				 GFP_NOIO);
6670 	if (!*worker_groups || !workers) {
6671 		kfree(workers);
6672 		kfree(*worker_groups);
6673 		return -ENOMEM;
6674 	}
6675 
6676 	for (i = 0; i < *group_cnt; i++) {
6677 		struct r5worker_group *group;
6678 
6679 		group = &(*worker_groups)[i];
6680 		INIT_LIST_HEAD(&group->handle_list);
6681 		INIT_LIST_HEAD(&group->loprio_list);
6682 		group->conf = conf;
6683 		group->workers = workers + i * cnt;
6684 
6685 		for (j = 0; j < cnt; j++) {
6686 			struct r5worker *worker = group->workers + j;
6687 			worker->group = group;
6688 			INIT_WORK(&worker->work, raid5_do_work);
6689 
6690 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6691 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6692 		}
6693 	}
6694 
6695 	return 0;
6696 }
6697 
6698 static void free_thread_groups(struct r5conf *conf)
6699 {
6700 	if (conf->worker_groups)
6701 		kfree(conf->worker_groups[0].workers);
6702 	kfree(conf->worker_groups);
6703 	conf->worker_groups = NULL;
6704 }
6705 
6706 static sector_t
6707 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6708 {
6709 	struct r5conf *conf = mddev->private;
6710 
6711 	if (!sectors)
6712 		sectors = mddev->dev_sectors;
6713 	if (!raid_disks)
6714 		/* size is defined by the smallest of previous and new size */
6715 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6716 
6717 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6718 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6719 	return sectors * (raid_disks - conf->max_degraded);
6720 }
6721 
6722 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6723 {
6724 	safe_put_page(percpu->spare_page);
6725 	if (percpu->scribble)
6726 		flex_array_free(percpu->scribble);
6727 	percpu->spare_page = NULL;
6728 	percpu->scribble = NULL;
6729 }
6730 
6731 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6732 {
6733 	if (conf->level == 6 && !percpu->spare_page)
6734 		percpu->spare_page = alloc_page(GFP_KERNEL);
6735 	if (!percpu->scribble)
6736 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6737 						      conf->previous_raid_disks),
6738 						  max(conf->chunk_sectors,
6739 						      conf->prev_chunk_sectors)
6740 						   / STRIPE_SECTORS,
6741 						  GFP_KERNEL);
6742 
6743 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6744 		free_scratch_buffer(conf, percpu);
6745 		return -ENOMEM;
6746 	}
6747 
6748 	return 0;
6749 }
6750 
6751 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6752 {
6753 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6754 
6755 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6756 	return 0;
6757 }
6758 
6759 static void raid5_free_percpu(struct r5conf *conf)
6760 {
6761 	if (!conf->percpu)
6762 		return;
6763 
6764 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6765 	free_percpu(conf->percpu);
6766 }
6767 
6768 static void free_conf(struct r5conf *conf)
6769 {
6770 	int i;
6771 
6772 	log_exit(conf);
6773 
6774 	unregister_shrinker(&conf->shrinker);
6775 	free_thread_groups(conf);
6776 	shrink_stripes(conf);
6777 	raid5_free_percpu(conf);
6778 	for (i = 0; i < conf->pool_size; i++)
6779 		if (conf->disks[i].extra_page)
6780 			put_page(conf->disks[i].extra_page);
6781 	kfree(conf->disks);
6782 	bioset_exit(&conf->bio_split);
6783 	kfree(conf->stripe_hashtbl);
6784 	kfree(conf->pending_data);
6785 	kfree(conf);
6786 }
6787 
6788 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6789 {
6790 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6791 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6792 
6793 	if (alloc_scratch_buffer(conf, percpu)) {
6794 		pr_warn("%s: failed memory allocation for cpu%u\n",
6795 			__func__, cpu);
6796 		return -ENOMEM;
6797 	}
6798 	return 0;
6799 }
6800 
6801 static int raid5_alloc_percpu(struct r5conf *conf)
6802 {
6803 	int err = 0;
6804 
6805 	conf->percpu = alloc_percpu(struct raid5_percpu);
6806 	if (!conf->percpu)
6807 		return -ENOMEM;
6808 
6809 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6810 	if (!err) {
6811 		conf->scribble_disks = max(conf->raid_disks,
6812 			conf->previous_raid_disks);
6813 		conf->scribble_sectors = max(conf->chunk_sectors,
6814 			conf->prev_chunk_sectors);
6815 	}
6816 	return err;
6817 }
6818 
6819 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6820 				      struct shrink_control *sc)
6821 {
6822 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6823 	unsigned long ret = SHRINK_STOP;
6824 
6825 	if (mutex_trylock(&conf->cache_size_mutex)) {
6826 		ret= 0;
6827 		while (ret < sc->nr_to_scan &&
6828 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6829 			if (drop_one_stripe(conf) == 0) {
6830 				ret = SHRINK_STOP;
6831 				break;
6832 			}
6833 			ret++;
6834 		}
6835 		mutex_unlock(&conf->cache_size_mutex);
6836 	}
6837 	return ret;
6838 }
6839 
6840 static unsigned long raid5_cache_count(struct shrinker *shrink,
6841 				       struct shrink_control *sc)
6842 {
6843 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6844 
6845 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6846 		/* unlikely, but not impossible */
6847 		return 0;
6848 	return conf->max_nr_stripes - conf->min_nr_stripes;
6849 }
6850 
6851 static struct r5conf *setup_conf(struct mddev *mddev)
6852 {
6853 	struct r5conf *conf;
6854 	int raid_disk, memory, max_disks;
6855 	struct md_rdev *rdev;
6856 	struct disk_info *disk;
6857 	char pers_name[6];
6858 	int i;
6859 	int group_cnt, worker_cnt_per_group;
6860 	struct r5worker_group *new_group;
6861 	int ret;
6862 
6863 	if (mddev->new_level != 5
6864 	    && mddev->new_level != 4
6865 	    && mddev->new_level != 6) {
6866 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6867 			mdname(mddev), mddev->new_level);
6868 		return ERR_PTR(-EIO);
6869 	}
6870 	if ((mddev->new_level == 5
6871 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6872 	    (mddev->new_level == 6
6873 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6874 		pr_warn("md/raid:%s: layout %d not supported\n",
6875 			mdname(mddev), mddev->new_layout);
6876 		return ERR_PTR(-EIO);
6877 	}
6878 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6879 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6880 			mdname(mddev), mddev->raid_disks);
6881 		return ERR_PTR(-EINVAL);
6882 	}
6883 
6884 	if (!mddev->new_chunk_sectors ||
6885 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6886 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6887 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6888 			mdname(mddev), mddev->new_chunk_sectors << 9);
6889 		return ERR_PTR(-EINVAL);
6890 	}
6891 
6892 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6893 	if (conf == NULL)
6894 		goto abort;
6895 	INIT_LIST_HEAD(&conf->free_list);
6896 	INIT_LIST_HEAD(&conf->pending_list);
6897 	conf->pending_data = kcalloc(PENDING_IO_MAX,
6898 				     sizeof(struct r5pending_data),
6899 				     GFP_KERNEL);
6900 	if (!conf->pending_data)
6901 		goto abort;
6902 	for (i = 0; i < PENDING_IO_MAX; i++)
6903 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6904 	/* Don't enable multi-threading by default*/
6905 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6906 				 &new_group)) {
6907 		conf->group_cnt = group_cnt;
6908 		conf->worker_cnt_per_group = worker_cnt_per_group;
6909 		conf->worker_groups = new_group;
6910 	} else
6911 		goto abort;
6912 	spin_lock_init(&conf->device_lock);
6913 	seqcount_init(&conf->gen_lock);
6914 	mutex_init(&conf->cache_size_mutex);
6915 	init_waitqueue_head(&conf->wait_for_quiescent);
6916 	init_waitqueue_head(&conf->wait_for_stripe);
6917 	init_waitqueue_head(&conf->wait_for_overlap);
6918 	INIT_LIST_HEAD(&conf->handle_list);
6919 	INIT_LIST_HEAD(&conf->loprio_list);
6920 	INIT_LIST_HEAD(&conf->hold_list);
6921 	INIT_LIST_HEAD(&conf->delayed_list);
6922 	INIT_LIST_HEAD(&conf->bitmap_list);
6923 	init_llist_head(&conf->released_stripes);
6924 	atomic_set(&conf->active_stripes, 0);
6925 	atomic_set(&conf->preread_active_stripes, 0);
6926 	atomic_set(&conf->active_aligned_reads, 0);
6927 	spin_lock_init(&conf->pending_bios_lock);
6928 	conf->batch_bio_dispatch = true;
6929 	rdev_for_each(rdev, mddev) {
6930 		if (test_bit(Journal, &rdev->flags))
6931 			continue;
6932 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6933 			conf->batch_bio_dispatch = false;
6934 			break;
6935 		}
6936 	}
6937 
6938 	conf->bypass_threshold = BYPASS_THRESHOLD;
6939 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6940 
6941 	conf->raid_disks = mddev->raid_disks;
6942 	if (mddev->reshape_position == MaxSector)
6943 		conf->previous_raid_disks = mddev->raid_disks;
6944 	else
6945 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6946 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6947 
6948 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6949 			      GFP_KERNEL);
6950 
6951 	if (!conf->disks)
6952 		goto abort;
6953 
6954 	for (i = 0; i < max_disks; i++) {
6955 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6956 		if (!conf->disks[i].extra_page)
6957 			goto abort;
6958 	}
6959 
6960 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6961 	if (ret)
6962 		goto abort;
6963 	conf->mddev = mddev;
6964 
6965 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6966 		goto abort;
6967 
6968 	/* We init hash_locks[0] separately to that it can be used
6969 	 * as the reference lock in the spin_lock_nest_lock() call
6970 	 * in lock_all_device_hash_locks_irq in order to convince
6971 	 * lockdep that we know what we are doing.
6972 	 */
6973 	spin_lock_init(conf->hash_locks);
6974 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6975 		spin_lock_init(conf->hash_locks + i);
6976 
6977 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6978 		INIT_LIST_HEAD(conf->inactive_list + i);
6979 
6980 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6981 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6982 
6983 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6984 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6985 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6986 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6987 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6988 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6989 
6990 	conf->level = mddev->new_level;
6991 	conf->chunk_sectors = mddev->new_chunk_sectors;
6992 	if (raid5_alloc_percpu(conf) != 0)
6993 		goto abort;
6994 
6995 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6996 
6997 	rdev_for_each(rdev, mddev) {
6998 		raid_disk = rdev->raid_disk;
6999 		if (raid_disk >= max_disks
7000 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7001 			continue;
7002 		disk = conf->disks + raid_disk;
7003 
7004 		if (test_bit(Replacement, &rdev->flags)) {
7005 			if (disk->replacement)
7006 				goto abort;
7007 			disk->replacement = rdev;
7008 		} else {
7009 			if (disk->rdev)
7010 				goto abort;
7011 			disk->rdev = rdev;
7012 		}
7013 
7014 		if (test_bit(In_sync, &rdev->flags)) {
7015 			char b[BDEVNAME_SIZE];
7016 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7017 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7018 		} else if (rdev->saved_raid_disk != raid_disk)
7019 			/* Cannot rely on bitmap to complete recovery */
7020 			conf->fullsync = 1;
7021 	}
7022 
7023 	conf->level = mddev->new_level;
7024 	if (conf->level == 6) {
7025 		conf->max_degraded = 2;
7026 		if (raid6_call.xor_syndrome)
7027 			conf->rmw_level = PARITY_ENABLE_RMW;
7028 		else
7029 			conf->rmw_level = PARITY_DISABLE_RMW;
7030 	} else {
7031 		conf->max_degraded = 1;
7032 		conf->rmw_level = PARITY_ENABLE_RMW;
7033 	}
7034 	conf->algorithm = mddev->new_layout;
7035 	conf->reshape_progress = mddev->reshape_position;
7036 	if (conf->reshape_progress != MaxSector) {
7037 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7038 		conf->prev_algo = mddev->layout;
7039 	} else {
7040 		conf->prev_chunk_sectors = conf->chunk_sectors;
7041 		conf->prev_algo = conf->algorithm;
7042 	}
7043 
7044 	conf->min_nr_stripes = NR_STRIPES;
7045 	if (mddev->reshape_position != MaxSector) {
7046 		int stripes = max_t(int,
7047 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7048 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7049 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7050 		if (conf->min_nr_stripes != NR_STRIPES)
7051 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7052 				mdname(mddev), conf->min_nr_stripes);
7053 	}
7054 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7055 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7056 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7057 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7058 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7059 			mdname(mddev), memory);
7060 		goto abort;
7061 	} else
7062 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7063 	/*
7064 	 * Losing a stripe head costs more than the time to refill it,
7065 	 * it reduces the queue depth and so can hurt throughput.
7066 	 * So set it rather large, scaled by number of devices.
7067 	 */
7068 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7069 	conf->shrinker.scan_objects = raid5_cache_scan;
7070 	conf->shrinker.count_objects = raid5_cache_count;
7071 	conf->shrinker.batch = 128;
7072 	conf->shrinker.flags = 0;
7073 	if (register_shrinker(&conf->shrinker)) {
7074 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7075 			mdname(mddev));
7076 		goto abort;
7077 	}
7078 
7079 	sprintf(pers_name, "raid%d", mddev->new_level);
7080 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7081 	if (!conf->thread) {
7082 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7083 			mdname(mddev));
7084 		goto abort;
7085 	}
7086 
7087 	return conf;
7088 
7089  abort:
7090 	if (conf) {
7091 		free_conf(conf);
7092 		return ERR_PTR(-EIO);
7093 	} else
7094 		return ERR_PTR(-ENOMEM);
7095 }
7096 
7097 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7098 {
7099 	switch (algo) {
7100 	case ALGORITHM_PARITY_0:
7101 		if (raid_disk < max_degraded)
7102 			return 1;
7103 		break;
7104 	case ALGORITHM_PARITY_N:
7105 		if (raid_disk >= raid_disks - max_degraded)
7106 			return 1;
7107 		break;
7108 	case ALGORITHM_PARITY_0_6:
7109 		if (raid_disk == 0 ||
7110 		    raid_disk == raid_disks - 1)
7111 			return 1;
7112 		break;
7113 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7114 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7115 	case ALGORITHM_LEFT_SYMMETRIC_6:
7116 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7117 		if (raid_disk == raid_disks - 1)
7118 			return 1;
7119 	}
7120 	return 0;
7121 }
7122 
7123 static int raid5_run(struct mddev *mddev)
7124 {
7125 	struct r5conf *conf;
7126 	int working_disks = 0;
7127 	int dirty_parity_disks = 0;
7128 	struct md_rdev *rdev;
7129 	struct md_rdev *journal_dev = NULL;
7130 	sector_t reshape_offset = 0;
7131 	int i;
7132 	long long min_offset_diff = 0;
7133 	int first = 1;
7134 
7135 	if (mddev_init_writes_pending(mddev) < 0)
7136 		return -ENOMEM;
7137 
7138 	if (mddev->recovery_cp != MaxSector)
7139 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7140 			  mdname(mddev));
7141 
7142 	rdev_for_each(rdev, mddev) {
7143 		long long diff;
7144 
7145 		if (test_bit(Journal, &rdev->flags)) {
7146 			journal_dev = rdev;
7147 			continue;
7148 		}
7149 		if (rdev->raid_disk < 0)
7150 			continue;
7151 		diff = (rdev->new_data_offset - rdev->data_offset);
7152 		if (first) {
7153 			min_offset_diff = diff;
7154 			first = 0;
7155 		} else if (mddev->reshape_backwards &&
7156 			 diff < min_offset_diff)
7157 			min_offset_diff = diff;
7158 		else if (!mddev->reshape_backwards &&
7159 			 diff > min_offset_diff)
7160 			min_offset_diff = diff;
7161 	}
7162 
7163 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7164 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7165 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7166 			  mdname(mddev));
7167 		return -EINVAL;
7168 	}
7169 
7170 	if (mddev->reshape_position != MaxSector) {
7171 		/* Check that we can continue the reshape.
7172 		 * Difficulties arise if the stripe we would write to
7173 		 * next is at or after the stripe we would read from next.
7174 		 * For a reshape that changes the number of devices, this
7175 		 * is only possible for a very short time, and mdadm makes
7176 		 * sure that time appears to have past before assembling
7177 		 * the array.  So we fail if that time hasn't passed.
7178 		 * For a reshape that keeps the number of devices the same
7179 		 * mdadm must be monitoring the reshape can keeping the
7180 		 * critical areas read-only and backed up.  It will start
7181 		 * the array in read-only mode, so we check for that.
7182 		 */
7183 		sector_t here_new, here_old;
7184 		int old_disks;
7185 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7186 		int chunk_sectors;
7187 		int new_data_disks;
7188 
7189 		if (journal_dev) {
7190 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7191 				mdname(mddev));
7192 			return -EINVAL;
7193 		}
7194 
7195 		if (mddev->new_level != mddev->level) {
7196 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7197 				mdname(mddev));
7198 			return -EINVAL;
7199 		}
7200 		old_disks = mddev->raid_disks - mddev->delta_disks;
7201 		/* reshape_position must be on a new-stripe boundary, and one
7202 		 * further up in new geometry must map after here in old
7203 		 * geometry.
7204 		 * If the chunk sizes are different, then as we perform reshape
7205 		 * in units of the largest of the two, reshape_position needs
7206 		 * be a multiple of the largest chunk size times new data disks.
7207 		 */
7208 		here_new = mddev->reshape_position;
7209 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7210 		new_data_disks = mddev->raid_disks - max_degraded;
7211 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7212 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7213 				mdname(mddev));
7214 			return -EINVAL;
7215 		}
7216 		reshape_offset = here_new * chunk_sectors;
7217 		/* here_new is the stripe we will write to */
7218 		here_old = mddev->reshape_position;
7219 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7220 		/* here_old is the first stripe that we might need to read
7221 		 * from */
7222 		if (mddev->delta_disks == 0) {
7223 			/* We cannot be sure it is safe to start an in-place
7224 			 * reshape.  It is only safe if user-space is monitoring
7225 			 * and taking constant backups.
7226 			 * mdadm always starts a situation like this in
7227 			 * readonly mode so it can take control before
7228 			 * allowing any writes.  So just check for that.
7229 			 */
7230 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7231 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7232 				/* not really in-place - so OK */;
7233 			else if (mddev->ro == 0) {
7234 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7235 					mdname(mddev));
7236 				return -EINVAL;
7237 			}
7238 		} else if (mddev->reshape_backwards
7239 		    ? (here_new * chunk_sectors + min_offset_diff <=
7240 		       here_old * chunk_sectors)
7241 		    : (here_new * chunk_sectors >=
7242 		       here_old * chunk_sectors + (-min_offset_diff))) {
7243 			/* Reading from the same stripe as writing to - bad */
7244 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7245 				mdname(mddev));
7246 			return -EINVAL;
7247 		}
7248 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7249 		/* OK, we should be able to continue; */
7250 	} else {
7251 		BUG_ON(mddev->level != mddev->new_level);
7252 		BUG_ON(mddev->layout != mddev->new_layout);
7253 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7254 		BUG_ON(mddev->delta_disks != 0);
7255 	}
7256 
7257 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7258 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7259 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7260 			mdname(mddev));
7261 		clear_bit(MD_HAS_PPL, &mddev->flags);
7262 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7263 	}
7264 
7265 	if (mddev->private == NULL)
7266 		conf = setup_conf(mddev);
7267 	else
7268 		conf = mddev->private;
7269 
7270 	if (IS_ERR(conf))
7271 		return PTR_ERR(conf);
7272 
7273 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7274 		if (!journal_dev) {
7275 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7276 				mdname(mddev));
7277 			mddev->ro = 1;
7278 			set_disk_ro(mddev->gendisk, 1);
7279 		} else if (mddev->recovery_cp == MaxSector)
7280 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7281 	}
7282 
7283 	conf->min_offset_diff = min_offset_diff;
7284 	mddev->thread = conf->thread;
7285 	conf->thread = NULL;
7286 	mddev->private = conf;
7287 
7288 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7289 	     i++) {
7290 		rdev = conf->disks[i].rdev;
7291 		if (!rdev && conf->disks[i].replacement) {
7292 			/* The replacement is all we have yet */
7293 			rdev = conf->disks[i].replacement;
7294 			conf->disks[i].replacement = NULL;
7295 			clear_bit(Replacement, &rdev->flags);
7296 			conf->disks[i].rdev = rdev;
7297 		}
7298 		if (!rdev)
7299 			continue;
7300 		if (conf->disks[i].replacement &&
7301 		    conf->reshape_progress != MaxSector) {
7302 			/* replacements and reshape simply do not mix. */
7303 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7304 			goto abort;
7305 		}
7306 		if (test_bit(In_sync, &rdev->flags)) {
7307 			working_disks++;
7308 			continue;
7309 		}
7310 		/* This disc is not fully in-sync.  However if it
7311 		 * just stored parity (beyond the recovery_offset),
7312 		 * when we don't need to be concerned about the
7313 		 * array being dirty.
7314 		 * When reshape goes 'backwards', we never have
7315 		 * partially completed devices, so we only need
7316 		 * to worry about reshape going forwards.
7317 		 */
7318 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7319 		if (mddev->major_version == 0 &&
7320 		    mddev->minor_version > 90)
7321 			rdev->recovery_offset = reshape_offset;
7322 
7323 		if (rdev->recovery_offset < reshape_offset) {
7324 			/* We need to check old and new layout */
7325 			if (!only_parity(rdev->raid_disk,
7326 					 conf->algorithm,
7327 					 conf->raid_disks,
7328 					 conf->max_degraded))
7329 				continue;
7330 		}
7331 		if (!only_parity(rdev->raid_disk,
7332 				 conf->prev_algo,
7333 				 conf->previous_raid_disks,
7334 				 conf->max_degraded))
7335 			continue;
7336 		dirty_parity_disks++;
7337 	}
7338 
7339 	/*
7340 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7341 	 */
7342 	mddev->degraded = raid5_calc_degraded(conf);
7343 
7344 	if (has_failed(conf)) {
7345 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7346 			mdname(mddev), mddev->degraded, conf->raid_disks);
7347 		goto abort;
7348 	}
7349 
7350 	/* device size must be a multiple of chunk size */
7351 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7352 	mddev->resync_max_sectors = mddev->dev_sectors;
7353 
7354 	if (mddev->degraded > dirty_parity_disks &&
7355 	    mddev->recovery_cp != MaxSector) {
7356 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7357 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7358 				mdname(mddev));
7359 		else if (mddev->ok_start_degraded)
7360 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7361 				mdname(mddev));
7362 		else {
7363 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7364 				mdname(mddev));
7365 			goto abort;
7366 		}
7367 	}
7368 
7369 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7370 		mdname(mddev), conf->level,
7371 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7372 		mddev->new_layout);
7373 
7374 	print_raid5_conf(conf);
7375 
7376 	if (conf->reshape_progress != MaxSector) {
7377 		conf->reshape_safe = conf->reshape_progress;
7378 		atomic_set(&conf->reshape_stripes, 0);
7379 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7380 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7381 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7382 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7383 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7384 							"reshape");
7385 	}
7386 
7387 	/* Ok, everything is just fine now */
7388 	if (mddev->to_remove == &raid5_attrs_group)
7389 		mddev->to_remove = NULL;
7390 	else if (mddev->kobj.sd &&
7391 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7392 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7393 			mdname(mddev));
7394 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7395 
7396 	if (mddev->queue) {
7397 		int chunk_size;
7398 		/* read-ahead size must cover two whole stripes, which
7399 		 * is 2 * (datadisks) * chunksize where 'n' is the
7400 		 * number of raid devices
7401 		 */
7402 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7403 		int stripe = data_disks *
7404 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7405 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7406 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7407 
7408 		chunk_size = mddev->chunk_sectors << 9;
7409 		blk_queue_io_min(mddev->queue, chunk_size);
7410 		blk_queue_io_opt(mddev->queue, chunk_size *
7411 				 (conf->raid_disks - conf->max_degraded));
7412 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7413 		/*
7414 		 * We can only discard a whole stripe. It doesn't make sense to
7415 		 * discard data disk but write parity disk
7416 		 */
7417 		stripe = stripe * PAGE_SIZE;
7418 		/* Round up to power of 2, as discard handling
7419 		 * currently assumes that */
7420 		while ((stripe-1) & stripe)
7421 			stripe = (stripe | (stripe-1)) + 1;
7422 		mddev->queue->limits.discard_alignment = stripe;
7423 		mddev->queue->limits.discard_granularity = stripe;
7424 
7425 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7426 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7427 
7428 		rdev_for_each(rdev, mddev) {
7429 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7430 					  rdev->data_offset << 9);
7431 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7432 					  rdev->new_data_offset << 9);
7433 		}
7434 
7435 		/*
7436 		 * zeroing is required, otherwise data
7437 		 * could be lost. Consider a scenario: discard a stripe
7438 		 * (the stripe could be inconsistent if
7439 		 * discard_zeroes_data is 0); write one disk of the
7440 		 * stripe (the stripe could be inconsistent again
7441 		 * depending on which disks are used to calculate
7442 		 * parity); the disk is broken; The stripe data of this
7443 		 * disk is lost.
7444 		 *
7445 		 * We only allow DISCARD if the sysadmin has confirmed that
7446 		 * only safe devices are in use by setting a module parameter.
7447 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7448 		 * requests, as that is required to be safe.
7449 		 */
7450 		if (devices_handle_discard_safely &&
7451 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7452 		    mddev->queue->limits.discard_granularity >= stripe)
7453 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7454 						mddev->queue);
7455 		else
7456 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7457 						mddev->queue);
7458 
7459 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7460 	}
7461 
7462 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7463 		goto abort;
7464 
7465 	return 0;
7466 abort:
7467 	md_unregister_thread(&mddev->thread);
7468 	print_raid5_conf(conf);
7469 	free_conf(conf);
7470 	mddev->private = NULL;
7471 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7472 	return -EIO;
7473 }
7474 
7475 static void raid5_free(struct mddev *mddev, void *priv)
7476 {
7477 	struct r5conf *conf = priv;
7478 
7479 	free_conf(conf);
7480 	mddev->to_remove = &raid5_attrs_group;
7481 }
7482 
7483 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7484 {
7485 	struct r5conf *conf = mddev->private;
7486 	int i;
7487 
7488 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7489 		conf->chunk_sectors / 2, mddev->layout);
7490 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7491 	rcu_read_lock();
7492 	for (i = 0; i < conf->raid_disks; i++) {
7493 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7494 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7495 	}
7496 	rcu_read_unlock();
7497 	seq_printf (seq, "]");
7498 }
7499 
7500 static void print_raid5_conf (struct r5conf *conf)
7501 {
7502 	int i;
7503 	struct disk_info *tmp;
7504 
7505 	pr_debug("RAID conf printout:\n");
7506 	if (!conf) {
7507 		pr_debug("(conf==NULL)\n");
7508 		return;
7509 	}
7510 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7511 	       conf->raid_disks,
7512 	       conf->raid_disks - conf->mddev->degraded);
7513 
7514 	for (i = 0; i < conf->raid_disks; i++) {
7515 		char b[BDEVNAME_SIZE];
7516 		tmp = conf->disks + i;
7517 		if (tmp->rdev)
7518 			pr_debug(" disk %d, o:%d, dev:%s\n",
7519 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7520 			       bdevname(tmp->rdev->bdev, b));
7521 	}
7522 }
7523 
7524 static int raid5_spare_active(struct mddev *mddev)
7525 {
7526 	int i;
7527 	struct r5conf *conf = mddev->private;
7528 	struct disk_info *tmp;
7529 	int count = 0;
7530 	unsigned long flags;
7531 
7532 	for (i = 0; i < conf->raid_disks; i++) {
7533 		tmp = conf->disks + i;
7534 		if (tmp->replacement
7535 		    && tmp->replacement->recovery_offset == MaxSector
7536 		    && !test_bit(Faulty, &tmp->replacement->flags)
7537 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7538 			/* Replacement has just become active. */
7539 			if (!tmp->rdev
7540 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7541 				count++;
7542 			if (tmp->rdev) {
7543 				/* Replaced device not technically faulty,
7544 				 * but we need to be sure it gets removed
7545 				 * and never re-added.
7546 				 */
7547 				set_bit(Faulty, &tmp->rdev->flags);
7548 				sysfs_notify_dirent_safe(
7549 					tmp->rdev->sysfs_state);
7550 			}
7551 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7552 		} else if (tmp->rdev
7553 		    && tmp->rdev->recovery_offset == MaxSector
7554 		    && !test_bit(Faulty, &tmp->rdev->flags)
7555 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7556 			count++;
7557 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7558 		}
7559 	}
7560 	spin_lock_irqsave(&conf->device_lock, flags);
7561 	mddev->degraded = raid5_calc_degraded(conf);
7562 	spin_unlock_irqrestore(&conf->device_lock, flags);
7563 	print_raid5_conf(conf);
7564 	return count;
7565 }
7566 
7567 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7568 {
7569 	struct r5conf *conf = mddev->private;
7570 	int err = 0;
7571 	int number = rdev->raid_disk;
7572 	struct md_rdev **rdevp;
7573 	struct disk_info *p = conf->disks + number;
7574 
7575 	print_raid5_conf(conf);
7576 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7577 		/*
7578 		 * we can't wait pending write here, as this is called in
7579 		 * raid5d, wait will deadlock.
7580 		 * neilb: there is no locking about new writes here,
7581 		 * so this cannot be safe.
7582 		 */
7583 		if (atomic_read(&conf->active_stripes) ||
7584 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7585 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7586 			return -EBUSY;
7587 		}
7588 		log_exit(conf);
7589 		return 0;
7590 	}
7591 	if (rdev == p->rdev)
7592 		rdevp = &p->rdev;
7593 	else if (rdev == p->replacement)
7594 		rdevp = &p->replacement;
7595 	else
7596 		return 0;
7597 
7598 	if (number >= conf->raid_disks &&
7599 	    conf->reshape_progress == MaxSector)
7600 		clear_bit(In_sync, &rdev->flags);
7601 
7602 	if (test_bit(In_sync, &rdev->flags) ||
7603 	    atomic_read(&rdev->nr_pending)) {
7604 		err = -EBUSY;
7605 		goto abort;
7606 	}
7607 	/* Only remove non-faulty devices if recovery
7608 	 * isn't possible.
7609 	 */
7610 	if (!test_bit(Faulty, &rdev->flags) &&
7611 	    mddev->recovery_disabled != conf->recovery_disabled &&
7612 	    !has_failed(conf) &&
7613 	    (!p->replacement || p->replacement == rdev) &&
7614 	    number < conf->raid_disks) {
7615 		err = -EBUSY;
7616 		goto abort;
7617 	}
7618 	*rdevp = NULL;
7619 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7620 		synchronize_rcu();
7621 		if (atomic_read(&rdev->nr_pending)) {
7622 			/* lost the race, try later */
7623 			err = -EBUSY;
7624 			*rdevp = rdev;
7625 		}
7626 	}
7627 	if (!err) {
7628 		err = log_modify(conf, rdev, false);
7629 		if (err)
7630 			goto abort;
7631 	}
7632 	if (p->replacement) {
7633 		/* We must have just cleared 'rdev' */
7634 		p->rdev = p->replacement;
7635 		clear_bit(Replacement, &p->replacement->flags);
7636 		smp_mb(); /* Make sure other CPUs may see both as identical
7637 			   * but will never see neither - if they are careful
7638 			   */
7639 		p->replacement = NULL;
7640 
7641 		if (!err)
7642 			err = log_modify(conf, p->rdev, true);
7643 	}
7644 
7645 	clear_bit(WantReplacement, &rdev->flags);
7646 abort:
7647 
7648 	print_raid5_conf(conf);
7649 	return err;
7650 }
7651 
7652 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7653 {
7654 	struct r5conf *conf = mddev->private;
7655 	int err = -EEXIST;
7656 	int disk;
7657 	struct disk_info *p;
7658 	int first = 0;
7659 	int last = conf->raid_disks - 1;
7660 
7661 	if (test_bit(Journal, &rdev->flags)) {
7662 		if (conf->log)
7663 			return -EBUSY;
7664 
7665 		rdev->raid_disk = 0;
7666 		/*
7667 		 * The array is in readonly mode if journal is missing, so no
7668 		 * write requests running. We should be safe
7669 		 */
7670 		log_init(conf, rdev, false);
7671 		return 0;
7672 	}
7673 	if (mddev->recovery_disabled == conf->recovery_disabled)
7674 		return -EBUSY;
7675 
7676 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7677 		/* no point adding a device */
7678 		return -EINVAL;
7679 
7680 	if (rdev->raid_disk >= 0)
7681 		first = last = rdev->raid_disk;
7682 
7683 	/*
7684 	 * find the disk ... but prefer rdev->saved_raid_disk
7685 	 * if possible.
7686 	 */
7687 	if (rdev->saved_raid_disk >= 0 &&
7688 	    rdev->saved_raid_disk >= first &&
7689 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7690 		first = rdev->saved_raid_disk;
7691 
7692 	for (disk = first; disk <= last; disk++) {
7693 		p = conf->disks + disk;
7694 		if (p->rdev == NULL) {
7695 			clear_bit(In_sync, &rdev->flags);
7696 			rdev->raid_disk = disk;
7697 			if (rdev->saved_raid_disk != disk)
7698 				conf->fullsync = 1;
7699 			rcu_assign_pointer(p->rdev, rdev);
7700 
7701 			err = log_modify(conf, rdev, true);
7702 
7703 			goto out;
7704 		}
7705 	}
7706 	for (disk = first; disk <= last; disk++) {
7707 		p = conf->disks + disk;
7708 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7709 		    p->replacement == NULL) {
7710 			clear_bit(In_sync, &rdev->flags);
7711 			set_bit(Replacement, &rdev->flags);
7712 			rdev->raid_disk = disk;
7713 			err = 0;
7714 			conf->fullsync = 1;
7715 			rcu_assign_pointer(p->replacement, rdev);
7716 			break;
7717 		}
7718 	}
7719 out:
7720 	print_raid5_conf(conf);
7721 	return err;
7722 }
7723 
7724 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7725 {
7726 	/* no resync is happening, and there is enough space
7727 	 * on all devices, so we can resize.
7728 	 * We need to make sure resync covers any new space.
7729 	 * If the array is shrinking we should possibly wait until
7730 	 * any io in the removed space completes, but it hardly seems
7731 	 * worth it.
7732 	 */
7733 	sector_t newsize;
7734 	struct r5conf *conf = mddev->private;
7735 
7736 	if (conf->log || raid5_has_ppl(conf))
7737 		return -EINVAL;
7738 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7739 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7740 	if (mddev->external_size &&
7741 	    mddev->array_sectors > newsize)
7742 		return -EINVAL;
7743 	if (mddev->bitmap) {
7744 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7745 		if (ret)
7746 			return ret;
7747 	}
7748 	md_set_array_sectors(mddev, newsize);
7749 	if (sectors > mddev->dev_sectors &&
7750 	    mddev->recovery_cp > mddev->dev_sectors) {
7751 		mddev->recovery_cp = mddev->dev_sectors;
7752 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7753 	}
7754 	mddev->dev_sectors = sectors;
7755 	mddev->resync_max_sectors = sectors;
7756 	return 0;
7757 }
7758 
7759 static int check_stripe_cache(struct mddev *mddev)
7760 {
7761 	/* Can only proceed if there are plenty of stripe_heads.
7762 	 * We need a minimum of one full stripe,, and for sensible progress
7763 	 * it is best to have about 4 times that.
7764 	 * If we require 4 times, then the default 256 4K stripe_heads will
7765 	 * allow for chunk sizes up to 256K, which is probably OK.
7766 	 * If the chunk size is greater, user-space should request more
7767 	 * stripe_heads first.
7768 	 */
7769 	struct r5conf *conf = mddev->private;
7770 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7771 	    > conf->min_nr_stripes ||
7772 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7773 	    > conf->min_nr_stripes) {
7774 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7775 			mdname(mddev),
7776 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7777 			 / STRIPE_SIZE)*4);
7778 		return 0;
7779 	}
7780 	return 1;
7781 }
7782 
7783 static int check_reshape(struct mddev *mddev)
7784 {
7785 	struct r5conf *conf = mddev->private;
7786 
7787 	if (conf->log || raid5_has_ppl(conf))
7788 		return -EINVAL;
7789 	if (mddev->delta_disks == 0 &&
7790 	    mddev->new_layout == mddev->layout &&
7791 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7792 		return 0; /* nothing to do */
7793 	if (has_failed(conf))
7794 		return -EINVAL;
7795 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7796 		/* We might be able to shrink, but the devices must
7797 		 * be made bigger first.
7798 		 * For raid6, 4 is the minimum size.
7799 		 * Otherwise 2 is the minimum
7800 		 */
7801 		int min = 2;
7802 		if (mddev->level == 6)
7803 			min = 4;
7804 		if (mddev->raid_disks + mddev->delta_disks < min)
7805 			return -EINVAL;
7806 	}
7807 
7808 	if (!check_stripe_cache(mddev))
7809 		return -ENOSPC;
7810 
7811 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7812 	    mddev->delta_disks > 0)
7813 		if (resize_chunks(conf,
7814 				  conf->previous_raid_disks
7815 				  + max(0, mddev->delta_disks),
7816 				  max(mddev->new_chunk_sectors,
7817 				      mddev->chunk_sectors)
7818 			    ) < 0)
7819 			return -ENOMEM;
7820 
7821 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7822 		return 0; /* never bother to shrink */
7823 	return resize_stripes(conf, (conf->previous_raid_disks
7824 				     + mddev->delta_disks));
7825 }
7826 
7827 static int raid5_start_reshape(struct mddev *mddev)
7828 {
7829 	struct r5conf *conf = mddev->private;
7830 	struct md_rdev *rdev;
7831 	int spares = 0;
7832 	unsigned long flags;
7833 
7834 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7835 		return -EBUSY;
7836 
7837 	if (!check_stripe_cache(mddev))
7838 		return -ENOSPC;
7839 
7840 	if (has_failed(conf))
7841 		return -EINVAL;
7842 
7843 	rdev_for_each(rdev, mddev) {
7844 		if (!test_bit(In_sync, &rdev->flags)
7845 		    && !test_bit(Faulty, &rdev->flags))
7846 			spares++;
7847 	}
7848 
7849 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7850 		/* Not enough devices even to make a degraded array
7851 		 * of that size
7852 		 */
7853 		return -EINVAL;
7854 
7855 	/* Refuse to reduce size of the array.  Any reductions in
7856 	 * array size must be through explicit setting of array_size
7857 	 * attribute.
7858 	 */
7859 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7860 	    < mddev->array_sectors) {
7861 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7862 			mdname(mddev));
7863 		return -EINVAL;
7864 	}
7865 
7866 	atomic_set(&conf->reshape_stripes, 0);
7867 	spin_lock_irq(&conf->device_lock);
7868 	write_seqcount_begin(&conf->gen_lock);
7869 	conf->previous_raid_disks = conf->raid_disks;
7870 	conf->raid_disks += mddev->delta_disks;
7871 	conf->prev_chunk_sectors = conf->chunk_sectors;
7872 	conf->chunk_sectors = mddev->new_chunk_sectors;
7873 	conf->prev_algo = conf->algorithm;
7874 	conf->algorithm = mddev->new_layout;
7875 	conf->generation++;
7876 	/* Code that selects data_offset needs to see the generation update
7877 	 * if reshape_progress has been set - so a memory barrier needed.
7878 	 */
7879 	smp_mb();
7880 	if (mddev->reshape_backwards)
7881 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7882 	else
7883 		conf->reshape_progress = 0;
7884 	conf->reshape_safe = conf->reshape_progress;
7885 	write_seqcount_end(&conf->gen_lock);
7886 	spin_unlock_irq(&conf->device_lock);
7887 
7888 	/* Now make sure any requests that proceeded on the assumption
7889 	 * the reshape wasn't running - like Discard or Read - have
7890 	 * completed.
7891 	 */
7892 	mddev_suspend(mddev);
7893 	mddev_resume(mddev);
7894 
7895 	/* Add some new drives, as many as will fit.
7896 	 * We know there are enough to make the newly sized array work.
7897 	 * Don't add devices if we are reducing the number of
7898 	 * devices in the array.  This is because it is not possible
7899 	 * to correctly record the "partially reconstructed" state of
7900 	 * such devices during the reshape and confusion could result.
7901 	 */
7902 	if (mddev->delta_disks >= 0) {
7903 		rdev_for_each(rdev, mddev)
7904 			if (rdev->raid_disk < 0 &&
7905 			    !test_bit(Faulty, &rdev->flags)) {
7906 				if (raid5_add_disk(mddev, rdev) == 0) {
7907 					if (rdev->raid_disk
7908 					    >= conf->previous_raid_disks)
7909 						set_bit(In_sync, &rdev->flags);
7910 					else
7911 						rdev->recovery_offset = 0;
7912 
7913 					if (sysfs_link_rdev(mddev, rdev))
7914 						/* Failure here is OK */;
7915 				}
7916 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7917 				   && !test_bit(Faulty, &rdev->flags)) {
7918 				/* This is a spare that was manually added */
7919 				set_bit(In_sync, &rdev->flags);
7920 			}
7921 
7922 		/* When a reshape changes the number of devices,
7923 		 * ->degraded is measured against the larger of the
7924 		 * pre and post number of devices.
7925 		 */
7926 		spin_lock_irqsave(&conf->device_lock, flags);
7927 		mddev->degraded = raid5_calc_degraded(conf);
7928 		spin_unlock_irqrestore(&conf->device_lock, flags);
7929 	}
7930 	mddev->raid_disks = conf->raid_disks;
7931 	mddev->reshape_position = conf->reshape_progress;
7932 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7933 
7934 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7935 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7936 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7937 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7938 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7939 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7940 						"reshape");
7941 	if (!mddev->sync_thread) {
7942 		mddev->recovery = 0;
7943 		spin_lock_irq(&conf->device_lock);
7944 		write_seqcount_begin(&conf->gen_lock);
7945 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7946 		mddev->new_chunk_sectors =
7947 			conf->chunk_sectors = conf->prev_chunk_sectors;
7948 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7949 		rdev_for_each(rdev, mddev)
7950 			rdev->new_data_offset = rdev->data_offset;
7951 		smp_wmb();
7952 		conf->generation --;
7953 		conf->reshape_progress = MaxSector;
7954 		mddev->reshape_position = MaxSector;
7955 		write_seqcount_end(&conf->gen_lock);
7956 		spin_unlock_irq(&conf->device_lock);
7957 		return -EAGAIN;
7958 	}
7959 	conf->reshape_checkpoint = jiffies;
7960 	md_wakeup_thread(mddev->sync_thread);
7961 	md_new_event(mddev);
7962 	return 0;
7963 }
7964 
7965 /* This is called from the reshape thread and should make any
7966  * changes needed in 'conf'
7967  */
7968 static void end_reshape(struct r5conf *conf)
7969 {
7970 
7971 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7972 		struct md_rdev *rdev;
7973 
7974 		spin_lock_irq(&conf->device_lock);
7975 		conf->previous_raid_disks = conf->raid_disks;
7976 		md_finish_reshape(conf->mddev);
7977 		smp_wmb();
7978 		conf->reshape_progress = MaxSector;
7979 		conf->mddev->reshape_position = MaxSector;
7980 		rdev_for_each(rdev, conf->mddev)
7981 			if (rdev->raid_disk >= 0 &&
7982 			    !test_bit(Journal, &rdev->flags) &&
7983 			    !test_bit(In_sync, &rdev->flags))
7984 				rdev->recovery_offset = MaxSector;
7985 		spin_unlock_irq(&conf->device_lock);
7986 		wake_up(&conf->wait_for_overlap);
7987 
7988 		/* read-ahead size must cover two whole stripes, which is
7989 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7990 		 */
7991 		if (conf->mddev->queue) {
7992 			int data_disks = conf->raid_disks - conf->max_degraded;
7993 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7994 						   / PAGE_SIZE);
7995 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7996 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7997 		}
7998 	}
7999 }
8000 
8001 /* This is called from the raid5d thread with mddev_lock held.
8002  * It makes config changes to the device.
8003  */
8004 static void raid5_finish_reshape(struct mddev *mddev)
8005 {
8006 	struct r5conf *conf = mddev->private;
8007 
8008 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8009 
8010 		if (mddev->delta_disks <= 0) {
8011 			int d;
8012 			spin_lock_irq(&conf->device_lock);
8013 			mddev->degraded = raid5_calc_degraded(conf);
8014 			spin_unlock_irq(&conf->device_lock);
8015 			for (d = conf->raid_disks ;
8016 			     d < conf->raid_disks - mddev->delta_disks;
8017 			     d++) {
8018 				struct md_rdev *rdev = conf->disks[d].rdev;
8019 				if (rdev)
8020 					clear_bit(In_sync, &rdev->flags);
8021 				rdev = conf->disks[d].replacement;
8022 				if (rdev)
8023 					clear_bit(In_sync, &rdev->flags);
8024 			}
8025 		}
8026 		mddev->layout = conf->algorithm;
8027 		mddev->chunk_sectors = conf->chunk_sectors;
8028 		mddev->reshape_position = MaxSector;
8029 		mddev->delta_disks = 0;
8030 		mddev->reshape_backwards = 0;
8031 	}
8032 }
8033 
8034 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8035 {
8036 	struct r5conf *conf = mddev->private;
8037 
8038 	if (quiesce) {
8039 		/* stop all writes */
8040 		lock_all_device_hash_locks_irq(conf);
8041 		/* '2' tells resync/reshape to pause so that all
8042 		 * active stripes can drain
8043 		 */
8044 		r5c_flush_cache(conf, INT_MAX);
8045 		conf->quiesce = 2;
8046 		wait_event_cmd(conf->wait_for_quiescent,
8047 				    atomic_read(&conf->active_stripes) == 0 &&
8048 				    atomic_read(&conf->active_aligned_reads) == 0,
8049 				    unlock_all_device_hash_locks_irq(conf),
8050 				    lock_all_device_hash_locks_irq(conf));
8051 		conf->quiesce = 1;
8052 		unlock_all_device_hash_locks_irq(conf);
8053 		/* allow reshape to continue */
8054 		wake_up(&conf->wait_for_overlap);
8055 	} else {
8056 		/* re-enable writes */
8057 		lock_all_device_hash_locks_irq(conf);
8058 		conf->quiesce = 0;
8059 		wake_up(&conf->wait_for_quiescent);
8060 		wake_up(&conf->wait_for_overlap);
8061 		unlock_all_device_hash_locks_irq(conf);
8062 	}
8063 	log_quiesce(conf, quiesce);
8064 }
8065 
8066 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8067 {
8068 	struct r0conf *raid0_conf = mddev->private;
8069 	sector_t sectors;
8070 
8071 	/* for raid0 takeover only one zone is supported */
8072 	if (raid0_conf->nr_strip_zones > 1) {
8073 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8074 			mdname(mddev));
8075 		return ERR_PTR(-EINVAL);
8076 	}
8077 
8078 	sectors = raid0_conf->strip_zone[0].zone_end;
8079 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8080 	mddev->dev_sectors = sectors;
8081 	mddev->new_level = level;
8082 	mddev->new_layout = ALGORITHM_PARITY_N;
8083 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8084 	mddev->raid_disks += 1;
8085 	mddev->delta_disks = 1;
8086 	/* make sure it will be not marked as dirty */
8087 	mddev->recovery_cp = MaxSector;
8088 
8089 	return setup_conf(mddev);
8090 }
8091 
8092 static void *raid5_takeover_raid1(struct mddev *mddev)
8093 {
8094 	int chunksect;
8095 	void *ret;
8096 
8097 	if (mddev->raid_disks != 2 ||
8098 	    mddev->degraded > 1)
8099 		return ERR_PTR(-EINVAL);
8100 
8101 	/* Should check if there are write-behind devices? */
8102 
8103 	chunksect = 64*2; /* 64K by default */
8104 
8105 	/* The array must be an exact multiple of chunksize */
8106 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8107 		chunksect >>= 1;
8108 
8109 	if ((chunksect<<9) < STRIPE_SIZE)
8110 		/* array size does not allow a suitable chunk size */
8111 		return ERR_PTR(-EINVAL);
8112 
8113 	mddev->new_level = 5;
8114 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8115 	mddev->new_chunk_sectors = chunksect;
8116 
8117 	ret = setup_conf(mddev);
8118 	if (!IS_ERR(ret))
8119 		mddev_clear_unsupported_flags(mddev,
8120 			UNSUPPORTED_MDDEV_FLAGS);
8121 	return ret;
8122 }
8123 
8124 static void *raid5_takeover_raid6(struct mddev *mddev)
8125 {
8126 	int new_layout;
8127 
8128 	switch (mddev->layout) {
8129 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8130 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8131 		break;
8132 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8133 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8134 		break;
8135 	case ALGORITHM_LEFT_SYMMETRIC_6:
8136 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8137 		break;
8138 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8139 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8140 		break;
8141 	case ALGORITHM_PARITY_0_6:
8142 		new_layout = ALGORITHM_PARITY_0;
8143 		break;
8144 	case ALGORITHM_PARITY_N:
8145 		new_layout = ALGORITHM_PARITY_N;
8146 		break;
8147 	default:
8148 		return ERR_PTR(-EINVAL);
8149 	}
8150 	mddev->new_level = 5;
8151 	mddev->new_layout = new_layout;
8152 	mddev->delta_disks = -1;
8153 	mddev->raid_disks -= 1;
8154 	return setup_conf(mddev);
8155 }
8156 
8157 static int raid5_check_reshape(struct mddev *mddev)
8158 {
8159 	/* For a 2-drive array, the layout and chunk size can be changed
8160 	 * immediately as not restriping is needed.
8161 	 * For larger arrays we record the new value - after validation
8162 	 * to be used by a reshape pass.
8163 	 */
8164 	struct r5conf *conf = mddev->private;
8165 	int new_chunk = mddev->new_chunk_sectors;
8166 
8167 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8168 		return -EINVAL;
8169 	if (new_chunk > 0) {
8170 		if (!is_power_of_2(new_chunk))
8171 			return -EINVAL;
8172 		if (new_chunk < (PAGE_SIZE>>9))
8173 			return -EINVAL;
8174 		if (mddev->array_sectors & (new_chunk-1))
8175 			/* not factor of array size */
8176 			return -EINVAL;
8177 	}
8178 
8179 	/* They look valid */
8180 
8181 	if (mddev->raid_disks == 2) {
8182 		/* can make the change immediately */
8183 		if (mddev->new_layout >= 0) {
8184 			conf->algorithm = mddev->new_layout;
8185 			mddev->layout = mddev->new_layout;
8186 		}
8187 		if (new_chunk > 0) {
8188 			conf->chunk_sectors = new_chunk ;
8189 			mddev->chunk_sectors = new_chunk;
8190 		}
8191 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8192 		md_wakeup_thread(mddev->thread);
8193 	}
8194 	return check_reshape(mddev);
8195 }
8196 
8197 static int raid6_check_reshape(struct mddev *mddev)
8198 {
8199 	int new_chunk = mddev->new_chunk_sectors;
8200 
8201 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8202 		return -EINVAL;
8203 	if (new_chunk > 0) {
8204 		if (!is_power_of_2(new_chunk))
8205 			return -EINVAL;
8206 		if (new_chunk < (PAGE_SIZE >> 9))
8207 			return -EINVAL;
8208 		if (mddev->array_sectors & (new_chunk-1))
8209 			/* not factor of array size */
8210 			return -EINVAL;
8211 	}
8212 
8213 	/* They look valid */
8214 	return check_reshape(mddev);
8215 }
8216 
8217 static void *raid5_takeover(struct mddev *mddev)
8218 {
8219 	/* raid5 can take over:
8220 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8221 	 *  raid1 - if there are two drives.  We need to know the chunk size
8222 	 *  raid4 - trivial - just use a raid4 layout.
8223 	 *  raid6 - Providing it is a *_6 layout
8224 	 */
8225 	if (mddev->level == 0)
8226 		return raid45_takeover_raid0(mddev, 5);
8227 	if (mddev->level == 1)
8228 		return raid5_takeover_raid1(mddev);
8229 	if (mddev->level == 4) {
8230 		mddev->new_layout = ALGORITHM_PARITY_N;
8231 		mddev->new_level = 5;
8232 		return setup_conf(mddev);
8233 	}
8234 	if (mddev->level == 6)
8235 		return raid5_takeover_raid6(mddev);
8236 
8237 	return ERR_PTR(-EINVAL);
8238 }
8239 
8240 static void *raid4_takeover(struct mddev *mddev)
8241 {
8242 	/* raid4 can take over:
8243 	 *  raid0 - if there is only one strip zone
8244 	 *  raid5 - if layout is right
8245 	 */
8246 	if (mddev->level == 0)
8247 		return raid45_takeover_raid0(mddev, 4);
8248 	if (mddev->level == 5 &&
8249 	    mddev->layout == ALGORITHM_PARITY_N) {
8250 		mddev->new_layout = 0;
8251 		mddev->new_level = 4;
8252 		return setup_conf(mddev);
8253 	}
8254 	return ERR_PTR(-EINVAL);
8255 }
8256 
8257 static struct md_personality raid5_personality;
8258 
8259 static void *raid6_takeover(struct mddev *mddev)
8260 {
8261 	/* Currently can only take over a raid5.  We map the
8262 	 * personality to an equivalent raid6 personality
8263 	 * with the Q block at the end.
8264 	 */
8265 	int new_layout;
8266 
8267 	if (mddev->pers != &raid5_personality)
8268 		return ERR_PTR(-EINVAL);
8269 	if (mddev->degraded > 1)
8270 		return ERR_PTR(-EINVAL);
8271 	if (mddev->raid_disks > 253)
8272 		return ERR_PTR(-EINVAL);
8273 	if (mddev->raid_disks < 3)
8274 		return ERR_PTR(-EINVAL);
8275 
8276 	switch (mddev->layout) {
8277 	case ALGORITHM_LEFT_ASYMMETRIC:
8278 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8279 		break;
8280 	case ALGORITHM_RIGHT_ASYMMETRIC:
8281 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8282 		break;
8283 	case ALGORITHM_LEFT_SYMMETRIC:
8284 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8285 		break;
8286 	case ALGORITHM_RIGHT_SYMMETRIC:
8287 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8288 		break;
8289 	case ALGORITHM_PARITY_0:
8290 		new_layout = ALGORITHM_PARITY_0_6;
8291 		break;
8292 	case ALGORITHM_PARITY_N:
8293 		new_layout = ALGORITHM_PARITY_N;
8294 		break;
8295 	default:
8296 		return ERR_PTR(-EINVAL);
8297 	}
8298 	mddev->new_level = 6;
8299 	mddev->new_layout = new_layout;
8300 	mddev->delta_disks = 1;
8301 	mddev->raid_disks += 1;
8302 	return setup_conf(mddev);
8303 }
8304 
8305 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8306 {
8307 	struct r5conf *conf;
8308 	int err;
8309 
8310 	err = mddev_lock(mddev);
8311 	if (err)
8312 		return err;
8313 	conf = mddev->private;
8314 	if (!conf) {
8315 		mddev_unlock(mddev);
8316 		return -ENODEV;
8317 	}
8318 
8319 	if (strncmp(buf, "ppl", 3) == 0) {
8320 		/* ppl only works with RAID 5 */
8321 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8322 			err = log_init(conf, NULL, true);
8323 			if (!err) {
8324 				err = resize_stripes(conf, conf->pool_size);
8325 				if (err)
8326 					log_exit(conf);
8327 			}
8328 		} else
8329 			err = -EINVAL;
8330 	} else if (strncmp(buf, "resync", 6) == 0) {
8331 		if (raid5_has_ppl(conf)) {
8332 			mddev_suspend(mddev);
8333 			log_exit(conf);
8334 			mddev_resume(mddev);
8335 			err = resize_stripes(conf, conf->pool_size);
8336 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8337 			   r5l_log_disk_error(conf)) {
8338 			bool journal_dev_exists = false;
8339 			struct md_rdev *rdev;
8340 
8341 			rdev_for_each(rdev, mddev)
8342 				if (test_bit(Journal, &rdev->flags)) {
8343 					journal_dev_exists = true;
8344 					break;
8345 				}
8346 
8347 			if (!journal_dev_exists) {
8348 				mddev_suspend(mddev);
8349 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8350 				mddev_resume(mddev);
8351 			} else  /* need remove journal device first */
8352 				err = -EBUSY;
8353 		} else
8354 			err = -EINVAL;
8355 	} else {
8356 		err = -EINVAL;
8357 	}
8358 
8359 	if (!err)
8360 		md_update_sb(mddev, 1);
8361 
8362 	mddev_unlock(mddev);
8363 
8364 	return err;
8365 }
8366 
8367 static int raid5_start(struct mddev *mddev)
8368 {
8369 	struct r5conf *conf = mddev->private;
8370 
8371 	return r5l_start(conf->log);
8372 }
8373 
8374 static struct md_personality raid6_personality =
8375 {
8376 	.name		= "raid6",
8377 	.level		= 6,
8378 	.owner		= THIS_MODULE,
8379 	.make_request	= raid5_make_request,
8380 	.run		= raid5_run,
8381 	.start		= raid5_start,
8382 	.free		= raid5_free,
8383 	.status		= raid5_status,
8384 	.error_handler	= raid5_error,
8385 	.hot_add_disk	= raid5_add_disk,
8386 	.hot_remove_disk= raid5_remove_disk,
8387 	.spare_active	= raid5_spare_active,
8388 	.sync_request	= raid5_sync_request,
8389 	.resize		= raid5_resize,
8390 	.size		= raid5_size,
8391 	.check_reshape	= raid6_check_reshape,
8392 	.start_reshape  = raid5_start_reshape,
8393 	.finish_reshape = raid5_finish_reshape,
8394 	.quiesce	= raid5_quiesce,
8395 	.takeover	= raid6_takeover,
8396 	.congested	= raid5_congested,
8397 	.change_consistency_policy = raid5_change_consistency_policy,
8398 };
8399 static struct md_personality raid5_personality =
8400 {
8401 	.name		= "raid5",
8402 	.level		= 5,
8403 	.owner		= THIS_MODULE,
8404 	.make_request	= raid5_make_request,
8405 	.run		= raid5_run,
8406 	.start		= raid5_start,
8407 	.free		= raid5_free,
8408 	.status		= raid5_status,
8409 	.error_handler	= raid5_error,
8410 	.hot_add_disk	= raid5_add_disk,
8411 	.hot_remove_disk= raid5_remove_disk,
8412 	.spare_active	= raid5_spare_active,
8413 	.sync_request	= raid5_sync_request,
8414 	.resize		= raid5_resize,
8415 	.size		= raid5_size,
8416 	.check_reshape	= raid5_check_reshape,
8417 	.start_reshape  = raid5_start_reshape,
8418 	.finish_reshape = raid5_finish_reshape,
8419 	.quiesce	= raid5_quiesce,
8420 	.takeover	= raid5_takeover,
8421 	.congested	= raid5_congested,
8422 	.change_consistency_policy = raid5_change_consistency_policy,
8423 };
8424 
8425 static struct md_personality raid4_personality =
8426 {
8427 	.name		= "raid4",
8428 	.level		= 4,
8429 	.owner		= THIS_MODULE,
8430 	.make_request	= raid5_make_request,
8431 	.run		= raid5_run,
8432 	.start		= raid5_start,
8433 	.free		= raid5_free,
8434 	.status		= raid5_status,
8435 	.error_handler	= raid5_error,
8436 	.hot_add_disk	= raid5_add_disk,
8437 	.hot_remove_disk= raid5_remove_disk,
8438 	.spare_active	= raid5_spare_active,
8439 	.sync_request	= raid5_sync_request,
8440 	.resize		= raid5_resize,
8441 	.size		= raid5_size,
8442 	.check_reshape	= raid5_check_reshape,
8443 	.start_reshape  = raid5_start_reshape,
8444 	.finish_reshape = raid5_finish_reshape,
8445 	.quiesce	= raid5_quiesce,
8446 	.takeover	= raid4_takeover,
8447 	.congested	= raid5_congested,
8448 	.change_consistency_policy = raid5_change_consistency_policy,
8449 };
8450 
8451 static int __init raid5_init(void)
8452 {
8453 	int ret;
8454 
8455 	raid5_wq = alloc_workqueue("raid5wq",
8456 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8457 	if (!raid5_wq)
8458 		return -ENOMEM;
8459 
8460 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8461 				      "md/raid5:prepare",
8462 				      raid456_cpu_up_prepare,
8463 				      raid456_cpu_dead);
8464 	if (ret) {
8465 		destroy_workqueue(raid5_wq);
8466 		return ret;
8467 	}
8468 	register_md_personality(&raid6_personality);
8469 	register_md_personality(&raid5_personality);
8470 	register_md_personality(&raid4_personality);
8471 	return 0;
8472 }
8473 
8474 static void raid5_exit(void)
8475 {
8476 	unregister_md_personality(&raid6_personality);
8477 	unregister_md_personality(&raid5_personality);
8478 	unregister_md_personality(&raid4_personality);
8479 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8480 	destroy_workqueue(raid5_wq);
8481 }
8482 
8483 module_init(raid5_init);
8484 module_exit(raid5_exit);
8485 MODULE_LICENSE("GPL");
8486 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8487 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8488 MODULE_ALIAS("md-raid5");
8489 MODULE_ALIAS("md-raid4");
8490 MODULE_ALIAS("md-level-5");
8491 MODULE_ALIAS("md-level-4");
8492 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8493 MODULE_ALIAS("md-raid6");
8494 MODULE_ALIAS("md-level-6");
8495 
8496 /* This used to be two separate modules, they were: */
8497 MODULE_ALIAS("raid5");
8498 MODULE_ALIAS("raid6");
8499