1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->bm_write is the number of the last batch successfully written. 31 * conf->bm_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is bm_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/module.h> 47 #include <linux/slab.h> 48 #include <linux/highmem.h> 49 #include <linux/bitops.h> 50 #include <linux/kthread.h> 51 #include <asm/atomic.h> 52 #include "raid6.h" 53 54 #include <linux/raid/bitmap.h> 55 #include <linux/async_tx.h> 56 57 /* 58 * Stripe cache 59 */ 60 61 #define NR_STRIPES 256 62 #define STRIPE_SIZE PAGE_SIZE 63 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 64 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 65 #define IO_THRESHOLD 1 66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 67 #define HASH_MASK (NR_HASH - 1) 68 69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) 70 71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 72 * order without overlap. There may be several bio's per stripe+device, and 73 * a bio could span several devices. 74 * When walking this list for a particular stripe+device, we must never proceed 75 * beyond a bio that extends past this device, as the next bio might no longer 76 * be valid. 77 * This macro is used to determine the 'next' bio in the list, given the sector 78 * of the current stripe+device 79 */ 80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) 81 /* 82 * The following can be used to debug the driver 83 */ 84 #define RAID5_PARANOIA 1 85 #if RAID5_PARANOIA && defined(CONFIG_SMP) 86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) 87 #else 88 # define CHECK_DEVLOCK() 89 #endif 90 91 #ifdef DEBUG 92 #define inline 93 #define __inline__ 94 #endif 95 96 #if !RAID6_USE_EMPTY_ZERO_PAGE 97 /* In .bss so it's zeroed */ 98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); 99 #endif 100 101 static inline int raid6_next_disk(int disk, int raid_disks) 102 { 103 disk++; 104 return (disk < raid_disks) ? disk : 0; 105 } 106 107 static void return_io(struct bio *return_bi) 108 { 109 struct bio *bi = return_bi; 110 while (bi) { 111 112 return_bi = bi->bi_next; 113 bi->bi_next = NULL; 114 bi->bi_size = 0; 115 bi->bi_end_io(bi, 116 test_bit(BIO_UPTODATE, &bi->bi_flags) 117 ? 0 : -EIO); 118 bi = return_bi; 119 } 120 } 121 122 static void print_raid5_conf (raid5_conf_t *conf); 123 124 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) 125 { 126 if (atomic_dec_and_test(&sh->count)) { 127 BUG_ON(!list_empty(&sh->lru)); 128 BUG_ON(atomic_read(&conf->active_stripes)==0); 129 if (test_bit(STRIPE_HANDLE, &sh->state)) { 130 if (test_bit(STRIPE_DELAYED, &sh->state)) { 131 list_add_tail(&sh->lru, &conf->delayed_list); 132 blk_plug_device(conf->mddev->queue); 133 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 134 sh->bm_seq - conf->seq_write > 0) { 135 list_add_tail(&sh->lru, &conf->bitmap_list); 136 blk_plug_device(conf->mddev->queue); 137 } else { 138 clear_bit(STRIPE_BIT_DELAY, &sh->state); 139 list_add_tail(&sh->lru, &conf->handle_list); 140 } 141 md_wakeup_thread(conf->mddev->thread); 142 } else { 143 BUG_ON(sh->ops.pending); 144 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 145 atomic_dec(&conf->preread_active_stripes); 146 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 147 md_wakeup_thread(conf->mddev->thread); 148 } 149 atomic_dec(&conf->active_stripes); 150 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 151 list_add_tail(&sh->lru, &conf->inactive_list); 152 wake_up(&conf->wait_for_stripe); 153 if (conf->retry_read_aligned) 154 md_wakeup_thread(conf->mddev->thread); 155 } 156 } 157 } 158 } 159 static void release_stripe(struct stripe_head *sh) 160 { 161 raid5_conf_t *conf = sh->raid_conf; 162 unsigned long flags; 163 164 spin_lock_irqsave(&conf->device_lock, flags); 165 __release_stripe(conf, sh); 166 spin_unlock_irqrestore(&conf->device_lock, flags); 167 } 168 169 static inline void remove_hash(struct stripe_head *sh) 170 { 171 pr_debug("remove_hash(), stripe %llu\n", 172 (unsigned long long)sh->sector); 173 174 hlist_del_init(&sh->hash); 175 } 176 177 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) 178 { 179 struct hlist_head *hp = stripe_hash(conf, sh->sector); 180 181 pr_debug("insert_hash(), stripe %llu\n", 182 (unsigned long long)sh->sector); 183 184 CHECK_DEVLOCK(); 185 hlist_add_head(&sh->hash, hp); 186 } 187 188 189 /* find an idle stripe, make sure it is unhashed, and return it. */ 190 static struct stripe_head *get_free_stripe(raid5_conf_t *conf) 191 { 192 struct stripe_head *sh = NULL; 193 struct list_head *first; 194 195 CHECK_DEVLOCK(); 196 if (list_empty(&conf->inactive_list)) 197 goto out; 198 first = conf->inactive_list.next; 199 sh = list_entry(first, struct stripe_head, lru); 200 list_del_init(first); 201 remove_hash(sh); 202 atomic_inc(&conf->active_stripes); 203 out: 204 return sh; 205 } 206 207 static void shrink_buffers(struct stripe_head *sh, int num) 208 { 209 struct page *p; 210 int i; 211 212 for (i=0; i<num ; i++) { 213 p = sh->dev[i].page; 214 if (!p) 215 continue; 216 sh->dev[i].page = NULL; 217 put_page(p); 218 } 219 } 220 221 static int grow_buffers(struct stripe_head *sh, int num) 222 { 223 int i; 224 225 for (i=0; i<num; i++) { 226 struct page *page; 227 228 if (!(page = alloc_page(GFP_KERNEL))) { 229 return 1; 230 } 231 sh->dev[i].page = page; 232 } 233 return 0; 234 } 235 236 static void raid5_build_block (struct stripe_head *sh, int i); 237 238 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks) 239 { 240 raid5_conf_t *conf = sh->raid_conf; 241 int i; 242 243 BUG_ON(atomic_read(&sh->count) != 0); 244 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 245 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete); 246 247 CHECK_DEVLOCK(); 248 pr_debug("init_stripe called, stripe %llu\n", 249 (unsigned long long)sh->sector); 250 251 remove_hash(sh); 252 253 sh->sector = sector; 254 sh->pd_idx = pd_idx; 255 sh->state = 0; 256 257 sh->disks = disks; 258 259 for (i = sh->disks; i--; ) { 260 struct r5dev *dev = &sh->dev[i]; 261 262 if (dev->toread || dev->read || dev->towrite || dev->written || 263 test_bit(R5_LOCKED, &dev->flags)) { 264 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 265 (unsigned long long)sh->sector, i, dev->toread, 266 dev->read, dev->towrite, dev->written, 267 test_bit(R5_LOCKED, &dev->flags)); 268 BUG(); 269 } 270 dev->flags = 0; 271 raid5_build_block(sh, i); 272 } 273 insert_hash(conf, sh); 274 } 275 276 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks) 277 { 278 struct stripe_head *sh; 279 struct hlist_node *hn; 280 281 CHECK_DEVLOCK(); 282 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 283 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 284 if (sh->sector == sector && sh->disks == disks) 285 return sh; 286 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 287 return NULL; 288 } 289 290 static void unplug_slaves(mddev_t *mddev); 291 static void raid5_unplug_device(struct request_queue *q); 292 293 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks, 294 int pd_idx, int noblock) 295 { 296 struct stripe_head *sh; 297 298 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 299 300 spin_lock_irq(&conf->device_lock); 301 302 do { 303 wait_event_lock_irq(conf->wait_for_stripe, 304 conf->quiesce == 0, 305 conf->device_lock, /* nothing */); 306 sh = __find_stripe(conf, sector, disks); 307 if (!sh) { 308 if (!conf->inactive_blocked) 309 sh = get_free_stripe(conf); 310 if (noblock && sh == NULL) 311 break; 312 if (!sh) { 313 conf->inactive_blocked = 1; 314 wait_event_lock_irq(conf->wait_for_stripe, 315 !list_empty(&conf->inactive_list) && 316 (atomic_read(&conf->active_stripes) 317 < (conf->max_nr_stripes *3/4) 318 || !conf->inactive_blocked), 319 conf->device_lock, 320 raid5_unplug_device(conf->mddev->queue) 321 ); 322 conf->inactive_blocked = 0; 323 } else 324 init_stripe(sh, sector, pd_idx, disks); 325 } else { 326 if (atomic_read(&sh->count)) { 327 BUG_ON(!list_empty(&sh->lru)); 328 } else { 329 if (!test_bit(STRIPE_HANDLE, &sh->state)) 330 atomic_inc(&conf->active_stripes); 331 if (list_empty(&sh->lru) && 332 !test_bit(STRIPE_EXPANDING, &sh->state)) 333 BUG(); 334 list_del_init(&sh->lru); 335 } 336 } 337 } while (sh == NULL); 338 339 if (sh) 340 atomic_inc(&sh->count); 341 342 spin_unlock_irq(&conf->device_lock); 343 return sh; 344 } 345 346 /* test_and_ack_op() ensures that we only dequeue an operation once */ 347 #define test_and_ack_op(op, pend) \ 348 do { \ 349 if (test_bit(op, &sh->ops.pending) && \ 350 !test_bit(op, &sh->ops.complete)) { \ 351 if (test_and_set_bit(op, &sh->ops.ack)) \ 352 clear_bit(op, &pend); \ 353 else \ 354 ack++; \ 355 } else \ 356 clear_bit(op, &pend); \ 357 } while (0) 358 359 /* find new work to run, do not resubmit work that is already 360 * in flight 361 */ 362 static unsigned long get_stripe_work(struct stripe_head *sh) 363 { 364 unsigned long pending; 365 int ack = 0; 366 367 pending = sh->ops.pending; 368 369 test_and_ack_op(STRIPE_OP_BIOFILL, pending); 370 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending); 371 test_and_ack_op(STRIPE_OP_PREXOR, pending); 372 test_and_ack_op(STRIPE_OP_BIODRAIN, pending); 373 test_and_ack_op(STRIPE_OP_POSTXOR, pending); 374 test_and_ack_op(STRIPE_OP_CHECK, pending); 375 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending)) 376 ack++; 377 378 sh->ops.count -= ack; 379 if (unlikely(sh->ops.count < 0)) { 380 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx " 381 "ops.complete: %#lx\n", pending, sh->ops.pending, 382 sh->ops.ack, sh->ops.complete); 383 BUG(); 384 } 385 386 return pending; 387 } 388 389 static void 390 raid5_end_read_request(struct bio *bi, int error); 391 static void 392 raid5_end_write_request(struct bio *bi, int error); 393 394 static void ops_run_io(struct stripe_head *sh) 395 { 396 raid5_conf_t *conf = sh->raid_conf; 397 int i, disks = sh->disks; 398 399 might_sleep(); 400 401 for (i = disks; i--; ) { 402 int rw; 403 struct bio *bi; 404 mdk_rdev_t *rdev; 405 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 406 rw = WRITE; 407 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 408 rw = READ; 409 else 410 continue; 411 412 bi = &sh->dev[i].req; 413 414 bi->bi_rw = rw; 415 if (rw == WRITE) 416 bi->bi_end_io = raid5_end_write_request; 417 else 418 bi->bi_end_io = raid5_end_read_request; 419 420 rcu_read_lock(); 421 rdev = rcu_dereference(conf->disks[i].rdev); 422 if (rdev && test_bit(Faulty, &rdev->flags)) 423 rdev = NULL; 424 if (rdev) 425 atomic_inc(&rdev->nr_pending); 426 rcu_read_unlock(); 427 428 if (rdev) { 429 if (test_bit(STRIPE_SYNCING, &sh->state) || 430 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) || 431 test_bit(STRIPE_EXPAND_READY, &sh->state)) 432 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 433 434 bi->bi_bdev = rdev->bdev; 435 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 436 __FUNCTION__, (unsigned long long)sh->sector, 437 bi->bi_rw, i); 438 atomic_inc(&sh->count); 439 bi->bi_sector = sh->sector + rdev->data_offset; 440 bi->bi_flags = 1 << BIO_UPTODATE; 441 bi->bi_vcnt = 1; 442 bi->bi_max_vecs = 1; 443 bi->bi_idx = 0; 444 bi->bi_io_vec = &sh->dev[i].vec; 445 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 446 bi->bi_io_vec[0].bv_offset = 0; 447 bi->bi_size = STRIPE_SIZE; 448 bi->bi_next = NULL; 449 if (rw == WRITE && 450 test_bit(R5_ReWrite, &sh->dev[i].flags)) 451 atomic_add(STRIPE_SECTORS, 452 &rdev->corrected_errors); 453 generic_make_request(bi); 454 } else { 455 if (rw == WRITE) 456 set_bit(STRIPE_DEGRADED, &sh->state); 457 pr_debug("skip op %ld on disc %d for sector %llu\n", 458 bi->bi_rw, i, (unsigned long long)sh->sector); 459 clear_bit(R5_LOCKED, &sh->dev[i].flags); 460 set_bit(STRIPE_HANDLE, &sh->state); 461 } 462 } 463 } 464 465 static struct dma_async_tx_descriptor * 466 async_copy_data(int frombio, struct bio *bio, struct page *page, 467 sector_t sector, struct dma_async_tx_descriptor *tx) 468 { 469 struct bio_vec *bvl; 470 struct page *bio_page; 471 int i; 472 int page_offset; 473 474 if (bio->bi_sector >= sector) 475 page_offset = (signed)(bio->bi_sector - sector) * 512; 476 else 477 page_offset = (signed)(sector - bio->bi_sector) * -512; 478 bio_for_each_segment(bvl, bio, i) { 479 int len = bio_iovec_idx(bio, i)->bv_len; 480 int clen; 481 int b_offset = 0; 482 483 if (page_offset < 0) { 484 b_offset = -page_offset; 485 page_offset += b_offset; 486 len -= b_offset; 487 } 488 489 if (len > 0 && page_offset + len > STRIPE_SIZE) 490 clen = STRIPE_SIZE - page_offset; 491 else 492 clen = len; 493 494 if (clen > 0) { 495 b_offset += bio_iovec_idx(bio, i)->bv_offset; 496 bio_page = bio_iovec_idx(bio, i)->bv_page; 497 if (frombio) 498 tx = async_memcpy(page, bio_page, page_offset, 499 b_offset, clen, 500 ASYNC_TX_DEP_ACK, 501 tx, NULL, NULL); 502 else 503 tx = async_memcpy(bio_page, page, b_offset, 504 page_offset, clen, 505 ASYNC_TX_DEP_ACK, 506 tx, NULL, NULL); 507 } 508 if (clen < len) /* hit end of page */ 509 break; 510 page_offset += len; 511 } 512 513 return tx; 514 } 515 516 static void ops_complete_biofill(void *stripe_head_ref) 517 { 518 struct stripe_head *sh = stripe_head_ref; 519 struct bio *return_bi = NULL; 520 raid5_conf_t *conf = sh->raid_conf; 521 int i; 522 523 pr_debug("%s: stripe %llu\n", __FUNCTION__, 524 (unsigned long long)sh->sector); 525 526 /* clear completed biofills */ 527 for (i = sh->disks; i--; ) { 528 struct r5dev *dev = &sh->dev[i]; 529 530 /* acknowledge completion of a biofill operation */ 531 /* and check if we need to reply to a read request, 532 * new R5_Wantfill requests are held off until 533 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending) 534 */ 535 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 536 struct bio *rbi, *rbi2; 537 538 /* The access to dev->read is outside of the 539 * spin_lock_irq(&conf->device_lock), but is protected 540 * by the STRIPE_OP_BIOFILL pending bit 541 */ 542 BUG_ON(!dev->read); 543 rbi = dev->read; 544 dev->read = NULL; 545 while (rbi && rbi->bi_sector < 546 dev->sector + STRIPE_SECTORS) { 547 rbi2 = r5_next_bio(rbi, dev->sector); 548 spin_lock_irq(&conf->device_lock); 549 if (--rbi->bi_phys_segments == 0) { 550 rbi->bi_next = return_bi; 551 return_bi = rbi; 552 } 553 spin_unlock_irq(&conf->device_lock); 554 rbi = rbi2; 555 } 556 } 557 } 558 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete); 559 560 return_io(return_bi); 561 562 set_bit(STRIPE_HANDLE, &sh->state); 563 release_stripe(sh); 564 } 565 566 static void ops_run_biofill(struct stripe_head *sh) 567 { 568 struct dma_async_tx_descriptor *tx = NULL; 569 raid5_conf_t *conf = sh->raid_conf; 570 int i; 571 572 pr_debug("%s: stripe %llu\n", __FUNCTION__, 573 (unsigned long long)sh->sector); 574 575 for (i = sh->disks; i--; ) { 576 struct r5dev *dev = &sh->dev[i]; 577 if (test_bit(R5_Wantfill, &dev->flags)) { 578 struct bio *rbi; 579 spin_lock_irq(&conf->device_lock); 580 dev->read = rbi = dev->toread; 581 dev->toread = NULL; 582 spin_unlock_irq(&conf->device_lock); 583 while (rbi && rbi->bi_sector < 584 dev->sector + STRIPE_SECTORS) { 585 tx = async_copy_data(0, rbi, dev->page, 586 dev->sector, tx); 587 rbi = r5_next_bio(rbi, dev->sector); 588 } 589 } 590 } 591 592 atomic_inc(&sh->count); 593 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, 594 ops_complete_biofill, sh); 595 } 596 597 static void ops_complete_compute5(void *stripe_head_ref) 598 { 599 struct stripe_head *sh = stripe_head_ref; 600 int target = sh->ops.target; 601 struct r5dev *tgt = &sh->dev[target]; 602 603 pr_debug("%s: stripe %llu\n", __FUNCTION__, 604 (unsigned long long)sh->sector); 605 606 set_bit(R5_UPTODATE, &tgt->flags); 607 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 608 clear_bit(R5_Wantcompute, &tgt->flags); 609 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete); 610 set_bit(STRIPE_HANDLE, &sh->state); 611 release_stripe(sh); 612 } 613 614 static struct dma_async_tx_descriptor * 615 ops_run_compute5(struct stripe_head *sh, unsigned long pending) 616 { 617 /* kernel stack size limits the total number of disks */ 618 int disks = sh->disks; 619 struct page *xor_srcs[disks]; 620 int target = sh->ops.target; 621 struct r5dev *tgt = &sh->dev[target]; 622 struct page *xor_dest = tgt->page; 623 int count = 0; 624 struct dma_async_tx_descriptor *tx; 625 int i; 626 627 pr_debug("%s: stripe %llu block: %d\n", 628 __FUNCTION__, (unsigned long long)sh->sector, target); 629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 630 631 for (i = disks; i--; ) 632 if (i != target) 633 xor_srcs[count++] = sh->dev[i].page; 634 635 atomic_inc(&sh->count); 636 637 if (unlikely(count == 1)) 638 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, 639 0, NULL, ops_complete_compute5, sh); 640 else 641 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 642 ASYNC_TX_XOR_ZERO_DST, NULL, 643 ops_complete_compute5, sh); 644 645 /* ack now if postxor is not set to be run */ 646 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending)) 647 async_tx_ack(tx); 648 649 return tx; 650 } 651 652 static void ops_complete_prexor(void *stripe_head_ref) 653 { 654 struct stripe_head *sh = stripe_head_ref; 655 656 pr_debug("%s: stripe %llu\n", __FUNCTION__, 657 (unsigned long long)sh->sector); 658 659 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete); 660 } 661 662 static struct dma_async_tx_descriptor * 663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 664 { 665 /* kernel stack size limits the total number of disks */ 666 int disks = sh->disks; 667 struct page *xor_srcs[disks]; 668 int count = 0, pd_idx = sh->pd_idx, i; 669 670 /* existing parity data subtracted */ 671 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 672 673 pr_debug("%s: stripe %llu\n", __FUNCTION__, 674 (unsigned long long)sh->sector); 675 676 for (i = disks; i--; ) { 677 struct r5dev *dev = &sh->dev[i]; 678 /* Only process blocks that are known to be uptodate */ 679 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags)) 680 xor_srcs[count++] = dev->page; 681 } 682 683 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 684 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx, 685 ops_complete_prexor, sh); 686 687 return tx; 688 } 689 690 static struct dma_async_tx_descriptor * 691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx, 692 unsigned long pending) 693 { 694 int disks = sh->disks; 695 int pd_idx = sh->pd_idx, i; 696 697 /* check if prexor is active which means only process blocks 698 * that are part of a read-modify-write (Wantprexor) 699 */ 700 int prexor = test_bit(STRIPE_OP_PREXOR, &pending); 701 702 pr_debug("%s: stripe %llu\n", __FUNCTION__, 703 (unsigned long long)sh->sector); 704 705 for (i = disks; i--; ) { 706 struct r5dev *dev = &sh->dev[i]; 707 struct bio *chosen; 708 int towrite; 709 710 towrite = 0; 711 if (prexor) { /* rmw */ 712 if (dev->towrite && 713 test_bit(R5_Wantprexor, &dev->flags)) 714 towrite = 1; 715 } else { /* rcw */ 716 if (i != pd_idx && dev->towrite && 717 test_bit(R5_LOCKED, &dev->flags)) 718 towrite = 1; 719 } 720 721 if (towrite) { 722 struct bio *wbi; 723 724 spin_lock(&sh->lock); 725 chosen = dev->towrite; 726 dev->towrite = NULL; 727 BUG_ON(dev->written); 728 wbi = dev->written = chosen; 729 spin_unlock(&sh->lock); 730 731 while (wbi && wbi->bi_sector < 732 dev->sector + STRIPE_SECTORS) { 733 tx = async_copy_data(1, wbi, dev->page, 734 dev->sector, tx); 735 wbi = r5_next_bio(wbi, dev->sector); 736 } 737 } 738 } 739 740 return tx; 741 } 742 743 static void ops_complete_postxor(void *stripe_head_ref) 744 { 745 struct stripe_head *sh = stripe_head_ref; 746 747 pr_debug("%s: stripe %llu\n", __FUNCTION__, 748 (unsigned long long)sh->sector); 749 750 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete); 751 set_bit(STRIPE_HANDLE, &sh->state); 752 release_stripe(sh); 753 } 754 755 static void ops_complete_write(void *stripe_head_ref) 756 { 757 struct stripe_head *sh = stripe_head_ref; 758 int disks = sh->disks, i, pd_idx = sh->pd_idx; 759 760 pr_debug("%s: stripe %llu\n", __FUNCTION__, 761 (unsigned long long)sh->sector); 762 763 for (i = disks; i--; ) { 764 struct r5dev *dev = &sh->dev[i]; 765 if (dev->written || i == pd_idx) 766 set_bit(R5_UPTODATE, &dev->flags); 767 } 768 769 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete); 770 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete); 771 772 set_bit(STRIPE_HANDLE, &sh->state); 773 release_stripe(sh); 774 } 775 776 static void 777 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx, 778 unsigned long pending) 779 { 780 /* kernel stack size limits the total number of disks */ 781 int disks = sh->disks; 782 struct page *xor_srcs[disks]; 783 784 int count = 0, pd_idx = sh->pd_idx, i; 785 struct page *xor_dest; 786 int prexor = test_bit(STRIPE_OP_PREXOR, &pending); 787 unsigned long flags; 788 dma_async_tx_callback callback; 789 790 pr_debug("%s: stripe %llu\n", __FUNCTION__, 791 (unsigned long long)sh->sector); 792 793 /* check if prexor is active which means only process blocks 794 * that are part of a read-modify-write (written) 795 */ 796 if (prexor) { 797 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 798 for (i = disks; i--; ) { 799 struct r5dev *dev = &sh->dev[i]; 800 if (dev->written) 801 xor_srcs[count++] = dev->page; 802 } 803 } else { 804 xor_dest = sh->dev[pd_idx].page; 805 for (i = disks; i--; ) { 806 struct r5dev *dev = &sh->dev[i]; 807 if (i != pd_idx) 808 xor_srcs[count++] = dev->page; 809 } 810 } 811 812 /* check whether this postxor is part of a write */ 813 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ? 814 ops_complete_write : ops_complete_postxor; 815 816 /* 1/ if we prexor'd then the dest is reused as a source 817 * 2/ if we did not prexor then we are redoing the parity 818 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 819 * for the synchronous xor case 820 */ 821 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK | 822 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 823 824 atomic_inc(&sh->count); 825 826 if (unlikely(count == 1)) { 827 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST); 828 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, 829 flags, tx, callback, sh); 830 } else 831 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 832 flags, tx, callback, sh); 833 } 834 835 static void ops_complete_check(void *stripe_head_ref) 836 { 837 struct stripe_head *sh = stripe_head_ref; 838 int pd_idx = sh->pd_idx; 839 840 pr_debug("%s: stripe %llu\n", __FUNCTION__, 841 (unsigned long long)sh->sector); 842 843 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) && 844 sh->ops.zero_sum_result == 0) 845 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 846 847 set_bit(STRIPE_OP_CHECK, &sh->ops.complete); 848 set_bit(STRIPE_HANDLE, &sh->state); 849 release_stripe(sh); 850 } 851 852 static void ops_run_check(struct stripe_head *sh) 853 { 854 /* kernel stack size limits the total number of disks */ 855 int disks = sh->disks; 856 struct page *xor_srcs[disks]; 857 struct dma_async_tx_descriptor *tx; 858 859 int count = 0, pd_idx = sh->pd_idx, i; 860 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 861 862 pr_debug("%s: stripe %llu\n", __FUNCTION__, 863 (unsigned long long)sh->sector); 864 865 for (i = disks; i--; ) { 866 struct r5dev *dev = &sh->dev[i]; 867 if (i != pd_idx) 868 xor_srcs[count++] = dev->page; 869 } 870 871 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 872 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL); 873 874 if (tx) 875 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending); 876 else 877 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending); 878 879 atomic_inc(&sh->count); 880 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx, 881 ops_complete_check, sh); 882 } 883 884 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending) 885 { 886 int overlap_clear = 0, i, disks = sh->disks; 887 struct dma_async_tx_descriptor *tx = NULL; 888 889 if (test_bit(STRIPE_OP_BIOFILL, &pending)) { 890 ops_run_biofill(sh); 891 overlap_clear++; 892 } 893 894 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending)) 895 tx = ops_run_compute5(sh, pending); 896 897 if (test_bit(STRIPE_OP_PREXOR, &pending)) 898 tx = ops_run_prexor(sh, tx); 899 900 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) { 901 tx = ops_run_biodrain(sh, tx, pending); 902 overlap_clear++; 903 } 904 905 if (test_bit(STRIPE_OP_POSTXOR, &pending)) 906 ops_run_postxor(sh, tx, pending); 907 908 if (test_bit(STRIPE_OP_CHECK, &pending)) 909 ops_run_check(sh); 910 911 if (test_bit(STRIPE_OP_IO, &pending)) 912 ops_run_io(sh); 913 914 if (overlap_clear) 915 for (i = disks; i--; ) { 916 struct r5dev *dev = &sh->dev[i]; 917 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 918 wake_up(&sh->raid_conf->wait_for_overlap); 919 } 920 } 921 922 static int grow_one_stripe(raid5_conf_t *conf) 923 { 924 struct stripe_head *sh; 925 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); 926 if (!sh) 927 return 0; 928 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev)); 929 sh->raid_conf = conf; 930 spin_lock_init(&sh->lock); 931 932 if (grow_buffers(sh, conf->raid_disks)) { 933 shrink_buffers(sh, conf->raid_disks); 934 kmem_cache_free(conf->slab_cache, sh); 935 return 0; 936 } 937 sh->disks = conf->raid_disks; 938 /* we just created an active stripe so... */ 939 atomic_set(&sh->count, 1); 940 atomic_inc(&conf->active_stripes); 941 INIT_LIST_HEAD(&sh->lru); 942 release_stripe(sh); 943 return 1; 944 } 945 946 static int grow_stripes(raid5_conf_t *conf, int num) 947 { 948 struct kmem_cache *sc; 949 int devs = conf->raid_disks; 950 951 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev)); 952 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev)); 953 conf->active_name = 0; 954 sc = kmem_cache_create(conf->cache_name[conf->active_name], 955 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 956 0, 0, NULL); 957 if (!sc) 958 return 1; 959 conf->slab_cache = sc; 960 conf->pool_size = devs; 961 while (num--) 962 if (!grow_one_stripe(conf)) 963 return 1; 964 return 0; 965 } 966 967 #ifdef CONFIG_MD_RAID5_RESHAPE 968 static int resize_stripes(raid5_conf_t *conf, int newsize) 969 { 970 /* Make all the stripes able to hold 'newsize' devices. 971 * New slots in each stripe get 'page' set to a new page. 972 * 973 * This happens in stages: 974 * 1/ create a new kmem_cache and allocate the required number of 975 * stripe_heads. 976 * 2/ gather all the old stripe_heads and tranfer the pages across 977 * to the new stripe_heads. This will have the side effect of 978 * freezing the array as once all stripe_heads have been collected, 979 * no IO will be possible. Old stripe heads are freed once their 980 * pages have been transferred over, and the old kmem_cache is 981 * freed when all stripes are done. 982 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 983 * we simple return a failre status - no need to clean anything up. 984 * 4/ allocate new pages for the new slots in the new stripe_heads. 985 * If this fails, we don't bother trying the shrink the 986 * stripe_heads down again, we just leave them as they are. 987 * As each stripe_head is processed the new one is released into 988 * active service. 989 * 990 * Once step2 is started, we cannot afford to wait for a write, 991 * so we use GFP_NOIO allocations. 992 */ 993 struct stripe_head *osh, *nsh; 994 LIST_HEAD(newstripes); 995 struct disk_info *ndisks; 996 int err = 0; 997 struct kmem_cache *sc; 998 int i; 999 1000 if (newsize <= conf->pool_size) 1001 return 0; /* never bother to shrink */ 1002 1003 md_allow_write(conf->mddev); 1004 1005 /* Step 1 */ 1006 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1007 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1008 0, 0, NULL); 1009 if (!sc) 1010 return -ENOMEM; 1011 1012 for (i = conf->max_nr_stripes; i; i--) { 1013 nsh = kmem_cache_alloc(sc, GFP_KERNEL); 1014 if (!nsh) 1015 break; 1016 1017 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); 1018 1019 nsh->raid_conf = conf; 1020 spin_lock_init(&nsh->lock); 1021 1022 list_add(&nsh->lru, &newstripes); 1023 } 1024 if (i) { 1025 /* didn't get enough, give up */ 1026 while (!list_empty(&newstripes)) { 1027 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1028 list_del(&nsh->lru); 1029 kmem_cache_free(sc, nsh); 1030 } 1031 kmem_cache_destroy(sc); 1032 return -ENOMEM; 1033 } 1034 /* Step 2 - Must use GFP_NOIO now. 1035 * OK, we have enough stripes, start collecting inactive 1036 * stripes and copying them over 1037 */ 1038 list_for_each_entry(nsh, &newstripes, lru) { 1039 spin_lock_irq(&conf->device_lock); 1040 wait_event_lock_irq(conf->wait_for_stripe, 1041 !list_empty(&conf->inactive_list), 1042 conf->device_lock, 1043 unplug_slaves(conf->mddev) 1044 ); 1045 osh = get_free_stripe(conf); 1046 spin_unlock_irq(&conf->device_lock); 1047 atomic_set(&nsh->count, 1); 1048 for(i=0; i<conf->pool_size; i++) 1049 nsh->dev[i].page = osh->dev[i].page; 1050 for( ; i<newsize; i++) 1051 nsh->dev[i].page = NULL; 1052 kmem_cache_free(conf->slab_cache, osh); 1053 } 1054 kmem_cache_destroy(conf->slab_cache); 1055 1056 /* Step 3. 1057 * At this point, we are holding all the stripes so the array 1058 * is completely stalled, so now is a good time to resize 1059 * conf->disks. 1060 */ 1061 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1062 if (ndisks) { 1063 for (i=0; i<conf->raid_disks; i++) 1064 ndisks[i] = conf->disks[i]; 1065 kfree(conf->disks); 1066 conf->disks = ndisks; 1067 } else 1068 err = -ENOMEM; 1069 1070 /* Step 4, return new stripes to service */ 1071 while(!list_empty(&newstripes)) { 1072 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1073 list_del_init(&nsh->lru); 1074 for (i=conf->raid_disks; i < newsize; i++) 1075 if (nsh->dev[i].page == NULL) { 1076 struct page *p = alloc_page(GFP_NOIO); 1077 nsh->dev[i].page = p; 1078 if (!p) 1079 err = -ENOMEM; 1080 } 1081 release_stripe(nsh); 1082 } 1083 /* critical section pass, GFP_NOIO no longer needed */ 1084 1085 conf->slab_cache = sc; 1086 conf->active_name = 1-conf->active_name; 1087 conf->pool_size = newsize; 1088 return err; 1089 } 1090 #endif 1091 1092 static int drop_one_stripe(raid5_conf_t *conf) 1093 { 1094 struct stripe_head *sh; 1095 1096 spin_lock_irq(&conf->device_lock); 1097 sh = get_free_stripe(conf); 1098 spin_unlock_irq(&conf->device_lock); 1099 if (!sh) 1100 return 0; 1101 BUG_ON(atomic_read(&sh->count)); 1102 shrink_buffers(sh, conf->pool_size); 1103 kmem_cache_free(conf->slab_cache, sh); 1104 atomic_dec(&conf->active_stripes); 1105 return 1; 1106 } 1107 1108 static void shrink_stripes(raid5_conf_t *conf) 1109 { 1110 while (drop_one_stripe(conf)) 1111 ; 1112 1113 if (conf->slab_cache) 1114 kmem_cache_destroy(conf->slab_cache); 1115 conf->slab_cache = NULL; 1116 } 1117 1118 static void raid5_end_read_request(struct bio * bi, int error) 1119 { 1120 struct stripe_head *sh = bi->bi_private; 1121 raid5_conf_t *conf = sh->raid_conf; 1122 int disks = sh->disks, i; 1123 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1124 char b[BDEVNAME_SIZE]; 1125 mdk_rdev_t *rdev; 1126 1127 1128 for (i=0 ; i<disks; i++) 1129 if (bi == &sh->dev[i].req) 1130 break; 1131 1132 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1133 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1134 uptodate); 1135 if (i == disks) { 1136 BUG(); 1137 return; 1138 } 1139 1140 if (uptodate) { 1141 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1142 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1143 rdev = conf->disks[i].rdev; 1144 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n", 1145 mdname(conf->mddev), STRIPE_SECTORS, 1146 (unsigned long long)(sh->sector + rdev->data_offset), 1147 bdevname(rdev->bdev, b)); 1148 clear_bit(R5_ReadError, &sh->dev[i].flags); 1149 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1150 } 1151 if (atomic_read(&conf->disks[i].rdev->read_errors)) 1152 atomic_set(&conf->disks[i].rdev->read_errors, 0); 1153 } else { 1154 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); 1155 int retry = 0; 1156 rdev = conf->disks[i].rdev; 1157 1158 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1159 atomic_inc(&rdev->read_errors); 1160 if (conf->mddev->degraded) 1161 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n", 1162 mdname(conf->mddev), 1163 (unsigned long long)(sh->sector + rdev->data_offset), 1164 bdn); 1165 else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) 1166 /* Oh, no!!! */ 1167 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n", 1168 mdname(conf->mddev), 1169 (unsigned long long)(sh->sector + rdev->data_offset), 1170 bdn); 1171 else if (atomic_read(&rdev->read_errors) 1172 > conf->max_nr_stripes) 1173 printk(KERN_WARNING 1174 "raid5:%s: Too many read errors, failing device %s.\n", 1175 mdname(conf->mddev), bdn); 1176 else 1177 retry = 1; 1178 if (retry) 1179 set_bit(R5_ReadError, &sh->dev[i].flags); 1180 else { 1181 clear_bit(R5_ReadError, &sh->dev[i].flags); 1182 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1183 md_error(conf->mddev, rdev); 1184 } 1185 } 1186 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1187 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1188 set_bit(STRIPE_HANDLE, &sh->state); 1189 release_stripe(sh); 1190 } 1191 1192 static void raid5_end_write_request (struct bio *bi, int error) 1193 { 1194 struct stripe_head *sh = bi->bi_private; 1195 raid5_conf_t *conf = sh->raid_conf; 1196 int disks = sh->disks, i; 1197 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1198 1199 for (i=0 ; i<disks; i++) 1200 if (bi == &sh->dev[i].req) 1201 break; 1202 1203 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1204 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1205 uptodate); 1206 if (i == disks) { 1207 BUG(); 1208 return; 1209 } 1210 1211 if (!uptodate) 1212 md_error(conf->mddev, conf->disks[i].rdev); 1213 1214 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1215 1216 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1217 set_bit(STRIPE_HANDLE, &sh->state); 1218 release_stripe(sh); 1219 } 1220 1221 1222 static sector_t compute_blocknr(struct stripe_head *sh, int i); 1223 1224 static void raid5_build_block (struct stripe_head *sh, int i) 1225 { 1226 struct r5dev *dev = &sh->dev[i]; 1227 1228 bio_init(&dev->req); 1229 dev->req.bi_io_vec = &dev->vec; 1230 dev->req.bi_vcnt++; 1231 dev->req.bi_max_vecs++; 1232 dev->vec.bv_page = dev->page; 1233 dev->vec.bv_len = STRIPE_SIZE; 1234 dev->vec.bv_offset = 0; 1235 1236 dev->req.bi_sector = sh->sector; 1237 dev->req.bi_private = sh; 1238 1239 dev->flags = 0; 1240 dev->sector = compute_blocknr(sh, i); 1241 } 1242 1243 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1244 { 1245 char b[BDEVNAME_SIZE]; 1246 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 1247 pr_debug("raid5: error called\n"); 1248 1249 if (!test_bit(Faulty, &rdev->flags)) { 1250 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1251 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1252 unsigned long flags; 1253 spin_lock_irqsave(&conf->device_lock, flags); 1254 mddev->degraded++; 1255 spin_unlock_irqrestore(&conf->device_lock, flags); 1256 /* 1257 * if recovery was running, make sure it aborts. 1258 */ 1259 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 1260 } 1261 set_bit(Faulty, &rdev->flags); 1262 printk (KERN_ALERT 1263 "raid5: Disk failure on %s, disabling device." 1264 " Operation continuing on %d devices\n", 1265 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1266 } 1267 } 1268 1269 /* 1270 * Input: a 'big' sector number, 1271 * Output: index of the data and parity disk, and the sector # in them. 1272 */ 1273 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks, 1274 unsigned int data_disks, unsigned int * dd_idx, 1275 unsigned int * pd_idx, raid5_conf_t *conf) 1276 { 1277 long stripe; 1278 unsigned long chunk_number; 1279 unsigned int chunk_offset; 1280 sector_t new_sector; 1281 int sectors_per_chunk = conf->chunk_size >> 9; 1282 1283 /* First compute the information on this sector */ 1284 1285 /* 1286 * Compute the chunk number and the sector offset inside the chunk 1287 */ 1288 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1289 chunk_number = r_sector; 1290 BUG_ON(r_sector != chunk_number); 1291 1292 /* 1293 * Compute the stripe number 1294 */ 1295 stripe = chunk_number / data_disks; 1296 1297 /* 1298 * Compute the data disk and parity disk indexes inside the stripe 1299 */ 1300 *dd_idx = chunk_number % data_disks; 1301 1302 /* 1303 * Select the parity disk based on the user selected algorithm. 1304 */ 1305 switch(conf->level) { 1306 case 4: 1307 *pd_idx = data_disks; 1308 break; 1309 case 5: 1310 switch (conf->algorithm) { 1311 case ALGORITHM_LEFT_ASYMMETRIC: 1312 *pd_idx = data_disks - stripe % raid_disks; 1313 if (*dd_idx >= *pd_idx) 1314 (*dd_idx)++; 1315 break; 1316 case ALGORITHM_RIGHT_ASYMMETRIC: 1317 *pd_idx = stripe % raid_disks; 1318 if (*dd_idx >= *pd_idx) 1319 (*dd_idx)++; 1320 break; 1321 case ALGORITHM_LEFT_SYMMETRIC: 1322 *pd_idx = data_disks - stripe % raid_disks; 1323 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 1324 break; 1325 case ALGORITHM_RIGHT_SYMMETRIC: 1326 *pd_idx = stripe % raid_disks; 1327 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 1328 break; 1329 default: 1330 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 1331 conf->algorithm); 1332 } 1333 break; 1334 case 6: 1335 1336 /**** FIX THIS ****/ 1337 switch (conf->algorithm) { 1338 case ALGORITHM_LEFT_ASYMMETRIC: 1339 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 1340 if (*pd_idx == raid_disks-1) 1341 (*dd_idx)++; /* Q D D D P */ 1342 else if (*dd_idx >= *pd_idx) 1343 (*dd_idx) += 2; /* D D P Q D */ 1344 break; 1345 case ALGORITHM_RIGHT_ASYMMETRIC: 1346 *pd_idx = stripe % raid_disks; 1347 if (*pd_idx == raid_disks-1) 1348 (*dd_idx)++; /* Q D D D P */ 1349 else if (*dd_idx >= *pd_idx) 1350 (*dd_idx) += 2; /* D D P Q D */ 1351 break; 1352 case ALGORITHM_LEFT_SYMMETRIC: 1353 *pd_idx = raid_disks - 1 - (stripe % raid_disks); 1354 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 1355 break; 1356 case ALGORITHM_RIGHT_SYMMETRIC: 1357 *pd_idx = stripe % raid_disks; 1358 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; 1359 break; 1360 default: 1361 printk (KERN_CRIT "raid6: unsupported algorithm %d\n", 1362 conf->algorithm); 1363 } 1364 break; 1365 } 1366 1367 /* 1368 * Finally, compute the new sector number 1369 */ 1370 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 1371 return new_sector; 1372 } 1373 1374 1375 static sector_t compute_blocknr(struct stripe_head *sh, int i) 1376 { 1377 raid5_conf_t *conf = sh->raid_conf; 1378 int raid_disks = sh->disks; 1379 int data_disks = raid_disks - conf->max_degraded; 1380 sector_t new_sector = sh->sector, check; 1381 int sectors_per_chunk = conf->chunk_size >> 9; 1382 sector_t stripe; 1383 int chunk_offset; 1384 int chunk_number, dummy1, dummy2, dd_idx = i; 1385 sector_t r_sector; 1386 1387 1388 chunk_offset = sector_div(new_sector, sectors_per_chunk); 1389 stripe = new_sector; 1390 BUG_ON(new_sector != stripe); 1391 1392 if (i == sh->pd_idx) 1393 return 0; 1394 switch(conf->level) { 1395 case 4: break; 1396 case 5: 1397 switch (conf->algorithm) { 1398 case ALGORITHM_LEFT_ASYMMETRIC: 1399 case ALGORITHM_RIGHT_ASYMMETRIC: 1400 if (i > sh->pd_idx) 1401 i--; 1402 break; 1403 case ALGORITHM_LEFT_SYMMETRIC: 1404 case ALGORITHM_RIGHT_SYMMETRIC: 1405 if (i < sh->pd_idx) 1406 i += raid_disks; 1407 i -= (sh->pd_idx + 1); 1408 break; 1409 default: 1410 printk(KERN_ERR "raid5: unsupported algorithm %d\n", 1411 conf->algorithm); 1412 } 1413 break; 1414 case 6: 1415 if (i == raid6_next_disk(sh->pd_idx, raid_disks)) 1416 return 0; /* It is the Q disk */ 1417 switch (conf->algorithm) { 1418 case ALGORITHM_LEFT_ASYMMETRIC: 1419 case ALGORITHM_RIGHT_ASYMMETRIC: 1420 if (sh->pd_idx == raid_disks-1) 1421 i--; /* Q D D D P */ 1422 else if (i > sh->pd_idx) 1423 i -= 2; /* D D P Q D */ 1424 break; 1425 case ALGORITHM_LEFT_SYMMETRIC: 1426 case ALGORITHM_RIGHT_SYMMETRIC: 1427 if (sh->pd_idx == raid_disks-1) 1428 i--; /* Q D D D P */ 1429 else { 1430 /* D D P Q D */ 1431 if (i < sh->pd_idx) 1432 i += raid_disks; 1433 i -= (sh->pd_idx + 2); 1434 } 1435 break; 1436 default: 1437 printk (KERN_CRIT "raid6: unsupported algorithm %d\n", 1438 conf->algorithm); 1439 } 1440 break; 1441 } 1442 1443 chunk_number = stripe * data_disks + i; 1444 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; 1445 1446 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); 1447 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { 1448 printk(KERN_ERR "compute_blocknr: map not correct\n"); 1449 return 0; 1450 } 1451 return r_sector; 1452 } 1453 1454 1455 1456 /* 1457 * Copy data between a page in the stripe cache, and one or more bion 1458 * The page could align with the middle of the bio, or there could be 1459 * several bion, each with several bio_vecs, which cover part of the page 1460 * Multiple bion are linked together on bi_next. There may be extras 1461 * at the end of this list. We ignore them. 1462 */ 1463 static void copy_data(int frombio, struct bio *bio, 1464 struct page *page, 1465 sector_t sector) 1466 { 1467 char *pa = page_address(page); 1468 struct bio_vec *bvl; 1469 int i; 1470 int page_offset; 1471 1472 if (bio->bi_sector >= sector) 1473 page_offset = (signed)(bio->bi_sector - sector) * 512; 1474 else 1475 page_offset = (signed)(sector - bio->bi_sector) * -512; 1476 bio_for_each_segment(bvl, bio, i) { 1477 int len = bio_iovec_idx(bio,i)->bv_len; 1478 int clen; 1479 int b_offset = 0; 1480 1481 if (page_offset < 0) { 1482 b_offset = -page_offset; 1483 page_offset += b_offset; 1484 len -= b_offset; 1485 } 1486 1487 if (len > 0 && page_offset + len > STRIPE_SIZE) 1488 clen = STRIPE_SIZE - page_offset; 1489 else clen = len; 1490 1491 if (clen > 0) { 1492 char *ba = __bio_kmap_atomic(bio, i, KM_USER0); 1493 if (frombio) 1494 memcpy(pa+page_offset, ba+b_offset, clen); 1495 else 1496 memcpy(ba+b_offset, pa+page_offset, clen); 1497 __bio_kunmap_atomic(ba, KM_USER0); 1498 } 1499 if (clen < len) /* hit end of page */ 1500 break; 1501 page_offset += len; 1502 } 1503 } 1504 1505 #define check_xor() do { \ 1506 if (count == MAX_XOR_BLOCKS) { \ 1507 xor_blocks(count, STRIPE_SIZE, dest, ptr);\ 1508 count = 0; \ 1509 } \ 1510 } while(0) 1511 1512 static void compute_parity6(struct stripe_head *sh, int method) 1513 { 1514 raid6_conf_t *conf = sh->raid_conf; 1515 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count; 1516 struct bio *chosen; 1517 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1518 void *ptrs[disks]; 1519 1520 qd_idx = raid6_next_disk(pd_idx, disks); 1521 d0_idx = raid6_next_disk(qd_idx, disks); 1522 1523 pr_debug("compute_parity, stripe %llu, method %d\n", 1524 (unsigned long long)sh->sector, method); 1525 1526 switch(method) { 1527 case READ_MODIFY_WRITE: 1528 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */ 1529 case RECONSTRUCT_WRITE: 1530 for (i= disks; i-- ;) 1531 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { 1532 chosen = sh->dev[i].towrite; 1533 sh->dev[i].towrite = NULL; 1534 1535 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1536 wake_up(&conf->wait_for_overlap); 1537 1538 BUG_ON(sh->dev[i].written); 1539 sh->dev[i].written = chosen; 1540 } 1541 break; 1542 case CHECK_PARITY: 1543 BUG(); /* Not implemented yet */ 1544 } 1545 1546 for (i = disks; i--;) 1547 if (sh->dev[i].written) { 1548 sector_t sector = sh->dev[i].sector; 1549 struct bio *wbi = sh->dev[i].written; 1550 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { 1551 copy_data(1, wbi, sh->dev[i].page, sector); 1552 wbi = r5_next_bio(wbi, sector); 1553 } 1554 1555 set_bit(R5_LOCKED, &sh->dev[i].flags); 1556 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1557 } 1558 1559 // switch(method) { 1560 // case RECONSTRUCT_WRITE: 1561 // case CHECK_PARITY: 1562 // case UPDATE_PARITY: 1563 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */ 1564 /* FIX: Is this ordering of drives even remotely optimal? */ 1565 count = 0; 1566 i = d0_idx; 1567 do { 1568 ptrs[count++] = page_address(sh->dev[i].page); 1569 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1570 printk("block %d/%d not uptodate on parity calc\n", i,count); 1571 i = raid6_next_disk(i, disks); 1572 } while ( i != d0_idx ); 1573 // break; 1574 // } 1575 1576 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); 1577 1578 switch(method) { 1579 case RECONSTRUCT_WRITE: 1580 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1581 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1582 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1583 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags); 1584 break; 1585 case UPDATE_PARITY: 1586 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1587 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); 1588 break; 1589 } 1590 } 1591 1592 1593 /* Compute one missing block */ 1594 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero) 1595 { 1596 int i, count, disks = sh->disks; 1597 void *ptr[MAX_XOR_BLOCKS], *dest, *p; 1598 int pd_idx = sh->pd_idx; 1599 int qd_idx = raid6_next_disk(pd_idx, disks); 1600 1601 pr_debug("compute_block_1, stripe %llu, idx %d\n", 1602 (unsigned long long)sh->sector, dd_idx); 1603 1604 if ( dd_idx == qd_idx ) { 1605 /* We're actually computing the Q drive */ 1606 compute_parity6(sh, UPDATE_PARITY); 1607 } else { 1608 dest = page_address(sh->dev[dd_idx].page); 1609 if (!nozero) memset(dest, 0, STRIPE_SIZE); 1610 count = 0; 1611 for (i = disks ; i--; ) { 1612 if (i == dd_idx || i == qd_idx) 1613 continue; 1614 p = page_address(sh->dev[i].page); 1615 if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1616 ptr[count++] = p; 1617 else 1618 printk("compute_block() %d, stripe %llu, %d" 1619 " not present\n", dd_idx, 1620 (unsigned long long)sh->sector, i); 1621 1622 check_xor(); 1623 } 1624 if (count) 1625 xor_blocks(count, STRIPE_SIZE, dest, ptr); 1626 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1627 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 1628 } 1629 } 1630 1631 /* Compute two missing blocks */ 1632 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) 1633 { 1634 int i, count, disks = sh->disks; 1635 int pd_idx = sh->pd_idx; 1636 int qd_idx = raid6_next_disk(pd_idx, disks); 1637 int d0_idx = raid6_next_disk(qd_idx, disks); 1638 int faila, failb; 1639 1640 /* faila and failb are disk numbers relative to d0_idx */ 1641 /* pd_idx become disks-2 and qd_idx become disks-1 */ 1642 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; 1643 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; 1644 1645 BUG_ON(faila == failb); 1646 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } 1647 1648 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", 1649 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); 1650 1651 if ( failb == disks-1 ) { 1652 /* Q disk is one of the missing disks */ 1653 if ( faila == disks-2 ) { 1654 /* Missing P+Q, just recompute */ 1655 compute_parity6(sh, UPDATE_PARITY); 1656 return; 1657 } else { 1658 /* We're missing D+Q; recompute D from P */ 1659 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0); 1660 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */ 1661 return; 1662 } 1663 } 1664 1665 /* We're missing D+P or D+D; build pointer table */ 1666 { 1667 /**** FIX THIS: This could be very bad if disks is close to 256 ****/ 1668 void *ptrs[disks]; 1669 1670 count = 0; 1671 i = d0_idx; 1672 do { 1673 ptrs[count++] = page_address(sh->dev[i].page); 1674 i = raid6_next_disk(i, disks); 1675 if (i != dd_idx1 && i != dd_idx2 && 1676 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) 1677 printk("compute_2 with missing block %d/%d\n", count, i); 1678 } while ( i != d0_idx ); 1679 1680 if ( failb == disks-2 ) { 1681 /* We're missing D+P. */ 1682 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); 1683 } else { 1684 /* We're missing D+D. */ 1685 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); 1686 } 1687 1688 /* Both the above update both missing blocks */ 1689 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); 1690 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); 1691 } 1692 } 1693 1694 static int 1695 handle_write_operations5(struct stripe_head *sh, int rcw, int expand) 1696 { 1697 int i, pd_idx = sh->pd_idx, disks = sh->disks; 1698 int locked = 0; 1699 1700 if (rcw) { 1701 /* if we are not expanding this is a proper write request, and 1702 * there will be bios with new data to be drained into the 1703 * stripe cache 1704 */ 1705 if (!expand) { 1706 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending); 1707 sh->ops.count++; 1708 } 1709 1710 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending); 1711 sh->ops.count++; 1712 1713 for (i = disks; i--; ) { 1714 struct r5dev *dev = &sh->dev[i]; 1715 1716 if (dev->towrite) { 1717 set_bit(R5_LOCKED, &dev->flags); 1718 if (!expand) 1719 clear_bit(R5_UPTODATE, &dev->flags); 1720 locked++; 1721 } 1722 } 1723 } else { 1724 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 1725 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 1726 1727 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending); 1728 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending); 1729 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending); 1730 1731 sh->ops.count += 3; 1732 1733 for (i = disks; i--; ) { 1734 struct r5dev *dev = &sh->dev[i]; 1735 if (i == pd_idx) 1736 continue; 1737 1738 /* For a read-modify write there may be blocks that are 1739 * locked for reading while others are ready to be 1740 * written so we distinguish these blocks by the 1741 * R5_Wantprexor bit 1742 */ 1743 if (dev->towrite && 1744 (test_bit(R5_UPTODATE, &dev->flags) || 1745 test_bit(R5_Wantcompute, &dev->flags))) { 1746 set_bit(R5_Wantprexor, &dev->flags); 1747 set_bit(R5_LOCKED, &dev->flags); 1748 clear_bit(R5_UPTODATE, &dev->flags); 1749 locked++; 1750 } 1751 } 1752 } 1753 1754 /* keep the parity disk locked while asynchronous operations 1755 * are in flight 1756 */ 1757 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 1758 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 1759 locked++; 1760 1761 pr_debug("%s: stripe %llu locked: %d pending: %lx\n", 1762 __FUNCTION__, (unsigned long long)sh->sector, 1763 locked, sh->ops.pending); 1764 1765 return locked; 1766 } 1767 1768 /* 1769 * Each stripe/dev can have one or more bion attached. 1770 * toread/towrite point to the first in a chain. 1771 * The bi_next chain must be in order. 1772 */ 1773 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 1774 { 1775 struct bio **bip; 1776 raid5_conf_t *conf = sh->raid_conf; 1777 int firstwrite=0; 1778 1779 pr_debug("adding bh b#%llu to stripe s#%llu\n", 1780 (unsigned long long)bi->bi_sector, 1781 (unsigned long long)sh->sector); 1782 1783 1784 spin_lock(&sh->lock); 1785 spin_lock_irq(&conf->device_lock); 1786 if (forwrite) { 1787 bip = &sh->dev[dd_idx].towrite; 1788 if (*bip == NULL && sh->dev[dd_idx].written == NULL) 1789 firstwrite = 1; 1790 } else 1791 bip = &sh->dev[dd_idx].toread; 1792 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 1793 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 1794 goto overlap; 1795 bip = & (*bip)->bi_next; 1796 } 1797 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 1798 goto overlap; 1799 1800 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 1801 if (*bip) 1802 bi->bi_next = *bip; 1803 *bip = bi; 1804 bi->bi_phys_segments ++; 1805 spin_unlock_irq(&conf->device_lock); 1806 spin_unlock(&sh->lock); 1807 1808 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 1809 (unsigned long long)bi->bi_sector, 1810 (unsigned long long)sh->sector, dd_idx); 1811 1812 if (conf->mddev->bitmap && firstwrite) { 1813 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 1814 STRIPE_SECTORS, 0); 1815 sh->bm_seq = conf->seq_flush+1; 1816 set_bit(STRIPE_BIT_DELAY, &sh->state); 1817 } 1818 1819 if (forwrite) { 1820 /* check if page is covered */ 1821 sector_t sector = sh->dev[dd_idx].sector; 1822 for (bi=sh->dev[dd_idx].towrite; 1823 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 1824 bi && bi->bi_sector <= sector; 1825 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 1826 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 1827 sector = bi->bi_sector + (bi->bi_size>>9); 1828 } 1829 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 1830 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 1831 } 1832 return 1; 1833 1834 overlap: 1835 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 1836 spin_unlock_irq(&conf->device_lock); 1837 spin_unlock(&sh->lock); 1838 return 0; 1839 } 1840 1841 static void end_reshape(raid5_conf_t *conf); 1842 1843 static int page_is_zero(struct page *p) 1844 { 1845 char *a = page_address(p); 1846 return ((*(u32*)a) == 0 && 1847 memcmp(a, a+4, STRIPE_SIZE-4)==0); 1848 } 1849 1850 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks) 1851 { 1852 int sectors_per_chunk = conf->chunk_size >> 9; 1853 int pd_idx, dd_idx; 1854 int chunk_offset = sector_div(stripe, sectors_per_chunk); 1855 1856 raid5_compute_sector(stripe * (disks - conf->max_degraded) 1857 *sectors_per_chunk + chunk_offset, 1858 disks, disks - conf->max_degraded, 1859 &dd_idx, &pd_idx, conf); 1860 return pd_idx; 1861 } 1862 1863 static void 1864 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh, 1865 struct stripe_head_state *s, int disks, 1866 struct bio **return_bi) 1867 { 1868 int i; 1869 for (i = disks; i--; ) { 1870 struct bio *bi; 1871 int bitmap_end = 0; 1872 1873 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1874 mdk_rdev_t *rdev; 1875 rcu_read_lock(); 1876 rdev = rcu_dereference(conf->disks[i].rdev); 1877 if (rdev && test_bit(In_sync, &rdev->flags)) 1878 /* multiple read failures in one stripe */ 1879 md_error(conf->mddev, rdev); 1880 rcu_read_unlock(); 1881 } 1882 spin_lock_irq(&conf->device_lock); 1883 /* fail all writes first */ 1884 bi = sh->dev[i].towrite; 1885 sh->dev[i].towrite = NULL; 1886 if (bi) { 1887 s->to_write--; 1888 bitmap_end = 1; 1889 } 1890 1891 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1892 wake_up(&conf->wait_for_overlap); 1893 1894 while (bi && bi->bi_sector < 1895 sh->dev[i].sector + STRIPE_SECTORS) { 1896 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1897 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1898 if (--bi->bi_phys_segments == 0) { 1899 md_write_end(conf->mddev); 1900 bi->bi_next = *return_bi; 1901 *return_bi = bi; 1902 } 1903 bi = nextbi; 1904 } 1905 /* and fail all 'written' */ 1906 bi = sh->dev[i].written; 1907 sh->dev[i].written = NULL; 1908 if (bi) bitmap_end = 1; 1909 while (bi && bi->bi_sector < 1910 sh->dev[i].sector + STRIPE_SECTORS) { 1911 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 1912 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1913 if (--bi->bi_phys_segments == 0) { 1914 md_write_end(conf->mddev); 1915 bi->bi_next = *return_bi; 1916 *return_bi = bi; 1917 } 1918 bi = bi2; 1919 } 1920 1921 /* fail any reads if this device is non-operational and 1922 * the data has not reached the cache yet. 1923 */ 1924 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 1925 (!test_bit(R5_Insync, &sh->dev[i].flags) || 1926 test_bit(R5_ReadError, &sh->dev[i].flags))) { 1927 bi = sh->dev[i].toread; 1928 sh->dev[i].toread = NULL; 1929 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1930 wake_up(&conf->wait_for_overlap); 1931 if (bi) s->to_read--; 1932 while (bi && bi->bi_sector < 1933 sh->dev[i].sector + STRIPE_SECTORS) { 1934 struct bio *nextbi = 1935 r5_next_bio(bi, sh->dev[i].sector); 1936 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1937 if (--bi->bi_phys_segments == 0) { 1938 bi->bi_next = *return_bi; 1939 *return_bi = bi; 1940 } 1941 bi = nextbi; 1942 } 1943 } 1944 spin_unlock_irq(&conf->device_lock); 1945 if (bitmap_end) 1946 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 1947 STRIPE_SECTORS, 0, 0); 1948 } 1949 1950 } 1951 1952 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks 1953 * to process 1954 */ 1955 static int __handle_issuing_new_read_requests5(struct stripe_head *sh, 1956 struct stripe_head_state *s, int disk_idx, int disks) 1957 { 1958 struct r5dev *dev = &sh->dev[disk_idx]; 1959 struct r5dev *failed_dev = &sh->dev[s->failed_num]; 1960 1961 /* don't schedule compute operations or reads on the parity block while 1962 * a check is in flight 1963 */ 1964 if ((disk_idx == sh->pd_idx) && 1965 test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) 1966 return ~0; 1967 1968 /* is the data in this block needed, and can we get it? */ 1969 if (!test_bit(R5_LOCKED, &dev->flags) && 1970 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread || 1971 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 1972 s->syncing || s->expanding || (s->failed && 1973 (failed_dev->toread || (failed_dev->towrite && 1974 !test_bit(R5_OVERWRITE, &failed_dev->flags) 1975 ))))) { 1976 /* 1/ We would like to get this block, possibly by computing it, 1977 * but we might not be able to. 1978 * 1979 * 2/ Since parity check operations potentially make the parity 1980 * block !uptodate it will need to be refreshed before any 1981 * compute operations on data disks are scheduled. 1982 * 1983 * 3/ We hold off parity block re-reads until check operations 1984 * have quiesced. 1985 */ 1986 if ((s->uptodate == disks - 1) && 1987 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) { 1988 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending); 1989 set_bit(R5_Wantcompute, &dev->flags); 1990 sh->ops.target = disk_idx; 1991 s->req_compute = 1; 1992 sh->ops.count++; 1993 /* Careful: from this point on 'uptodate' is in the eye 1994 * of raid5_run_ops which services 'compute' operations 1995 * before writes. R5_Wantcompute flags a block that will 1996 * be R5_UPTODATE by the time it is needed for a 1997 * subsequent operation. 1998 */ 1999 s->uptodate++; 2000 return 0; /* uptodate + compute == disks */ 2001 } else if ((s->uptodate < disks - 1) && 2002 test_bit(R5_Insync, &dev->flags)) { 2003 /* Note: we hold off compute operations while checks are 2004 * in flight, but we still prefer 'compute' over 'read' 2005 * hence we only read if (uptodate < * disks-1) 2006 */ 2007 set_bit(R5_LOCKED, &dev->flags); 2008 set_bit(R5_Wantread, &dev->flags); 2009 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2010 sh->ops.count++; 2011 s->locked++; 2012 pr_debug("Reading block %d (sync=%d)\n", disk_idx, 2013 s->syncing); 2014 } 2015 } 2016 2017 return ~0; 2018 } 2019 2020 static void handle_issuing_new_read_requests5(struct stripe_head *sh, 2021 struct stripe_head_state *s, int disks) 2022 { 2023 int i; 2024 2025 /* Clear completed compute operations. Parity recovery 2026 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled 2027 * later on in this routine 2028 */ 2029 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) && 2030 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) { 2031 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete); 2032 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack); 2033 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending); 2034 } 2035 2036 /* look for blocks to read/compute, skip this if a compute 2037 * is already in flight, or if the stripe contents are in the 2038 * midst of changing due to a write 2039 */ 2040 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) && 2041 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) && 2042 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) { 2043 for (i = disks; i--; ) 2044 if (__handle_issuing_new_read_requests5( 2045 sh, s, i, disks) == 0) 2046 break; 2047 } 2048 set_bit(STRIPE_HANDLE, &sh->state); 2049 } 2050 2051 static void handle_issuing_new_read_requests6(struct stripe_head *sh, 2052 struct stripe_head_state *s, struct r6_state *r6s, 2053 int disks) 2054 { 2055 int i; 2056 for (i = disks; i--; ) { 2057 struct r5dev *dev = &sh->dev[i]; 2058 if (!test_bit(R5_LOCKED, &dev->flags) && 2059 !test_bit(R5_UPTODATE, &dev->flags) && 2060 (dev->toread || (dev->towrite && 2061 !test_bit(R5_OVERWRITE, &dev->flags)) || 2062 s->syncing || s->expanding || 2063 (s->failed >= 1 && 2064 (sh->dev[r6s->failed_num[0]].toread || 2065 s->to_write)) || 2066 (s->failed >= 2 && 2067 (sh->dev[r6s->failed_num[1]].toread || 2068 s->to_write)))) { 2069 /* we would like to get this block, possibly 2070 * by computing it, but we might not be able to 2071 */ 2072 if (s->uptodate == disks-1) { 2073 pr_debug("Computing stripe %llu block %d\n", 2074 (unsigned long long)sh->sector, i); 2075 compute_block_1(sh, i, 0); 2076 s->uptodate++; 2077 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) { 2078 /* Computing 2-failure is *very* expensive; only 2079 * do it if failed >= 2 2080 */ 2081 int other; 2082 for (other = disks; other--; ) { 2083 if (other == i) 2084 continue; 2085 if (!test_bit(R5_UPTODATE, 2086 &sh->dev[other].flags)) 2087 break; 2088 } 2089 BUG_ON(other < 0); 2090 pr_debug("Computing stripe %llu blocks %d,%d\n", 2091 (unsigned long long)sh->sector, 2092 i, other); 2093 compute_block_2(sh, i, other); 2094 s->uptodate += 2; 2095 } else if (test_bit(R5_Insync, &dev->flags)) { 2096 set_bit(R5_LOCKED, &dev->flags); 2097 set_bit(R5_Wantread, &dev->flags); 2098 s->locked++; 2099 pr_debug("Reading block %d (sync=%d)\n", 2100 i, s->syncing); 2101 } 2102 } 2103 } 2104 set_bit(STRIPE_HANDLE, &sh->state); 2105 } 2106 2107 2108 /* handle_completed_write_requests 2109 * any written block on an uptodate or failed drive can be returned. 2110 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2111 * never LOCKED, so we don't need to test 'failed' directly. 2112 */ 2113 static void handle_completed_write_requests(raid5_conf_t *conf, 2114 struct stripe_head *sh, int disks, struct bio **return_bi) 2115 { 2116 int i; 2117 struct r5dev *dev; 2118 2119 for (i = disks; i--; ) 2120 if (sh->dev[i].written) { 2121 dev = &sh->dev[i]; 2122 if (!test_bit(R5_LOCKED, &dev->flags) && 2123 test_bit(R5_UPTODATE, &dev->flags)) { 2124 /* We can return any write requests */ 2125 struct bio *wbi, *wbi2; 2126 int bitmap_end = 0; 2127 pr_debug("Return write for disc %d\n", i); 2128 spin_lock_irq(&conf->device_lock); 2129 wbi = dev->written; 2130 dev->written = NULL; 2131 while (wbi && wbi->bi_sector < 2132 dev->sector + STRIPE_SECTORS) { 2133 wbi2 = r5_next_bio(wbi, dev->sector); 2134 if (--wbi->bi_phys_segments == 0) { 2135 md_write_end(conf->mddev); 2136 wbi->bi_next = *return_bi; 2137 *return_bi = wbi; 2138 } 2139 wbi = wbi2; 2140 } 2141 if (dev->towrite == NULL) 2142 bitmap_end = 1; 2143 spin_unlock_irq(&conf->device_lock); 2144 if (bitmap_end) 2145 bitmap_endwrite(conf->mddev->bitmap, 2146 sh->sector, 2147 STRIPE_SECTORS, 2148 !test_bit(STRIPE_DEGRADED, &sh->state), 2149 0); 2150 } 2151 } 2152 } 2153 2154 static void handle_issuing_new_write_requests5(raid5_conf_t *conf, 2155 struct stripe_head *sh, struct stripe_head_state *s, int disks) 2156 { 2157 int rmw = 0, rcw = 0, i; 2158 for (i = disks; i--; ) { 2159 /* would I have to read this buffer for read_modify_write */ 2160 struct r5dev *dev = &sh->dev[i]; 2161 if ((dev->towrite || i == sh->pd_idx) && 2162 !test_bit(R5_LOCKED, &dev->flags) && 2163 !(test_bit(R5_UPTODATE, &dev->flags) || 2164 test_bit(R5_Wantcompute, &dev->flags))) { 2165 if (test_bit(R5_Insync, &dev->flags)) 2166 rmw++; 2167 else 2168 rmw += 2*disks; /* cannot read it */ 2169 } 2170 /* Would I have to read this buffer for reconstruct_write */ 2171 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2172 !test_bit(R5_LOCKED, &dev->flags) && 2173 !(test_bit(R5_UPTODATE, &dev->flags) || 2174 test_bit(R5_Wantcompute, &dev->flags))) { 2175 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2176 else 2177 rcw += 2*disks; 2178 } 2179 } 2180 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2181 (unsigned long long)sh->sector, rmw, rcw); 2182 set_bit(STRIPE_HANDLE, &sh->state); 2183 if (rmw < rcw && rmw > 0) 2184 /* prefer read-modify-write, but need to get some data */ 2185 for (i = disks; i--; ) { 2186 struct r5dev *dev = &sh->dev[i]; 2187 if ((dev->towrite || i == sh->pd_idx) && 2188 !test_bit(R5_LOCKED, &dev->flags) && 2189 !(test_bit(R5_UPTODATE, &dev->flags) || 2190 test_bit(R5_Wantcompute, &dev->flags)) && 2191 test_bit(R5_Insync, &dev->flags)) { 2192 if ( 2193 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2194 pr_debug("Read_old block " 2195 "%d for r-m-w\n", i); 2196 set_bit(R5_LOCKED, &dev->flags); 2197 set_bit(R5_Wantread, &dev->flags); 2198 if (!test_and_set_bit( 2199 STRIPE_OP_IO, &sh->ops.pending)) 2200 sh->ops.count++; 2201 s->locked++; 2202 } else { 2203 set_bit(STRIPE_DELAYED, &sh->state); 2204 set_bit(STRIPE_HANDLE, &sh->state); 2205 } 2206 } 2207 } 2208 if (rcw <= rmw && rcw > 0) 2209 /* want reconstruct write, but need to get some data */ 2210 for (i = disks; i--; ) { 2211 struct r5dev *dev = &sh->dev[i]; 2212 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2213 i != sh->pd_idx && 2214 !test_bit(R5_LOCKED, &dev->flags) && 2215 !(test_bit(R5_UPTODATE, &dev->flags) || 2216 test_bit(R5_Wantcompute, &dev->flags)) && 2217 test_bit(R5_Insync, &dev->flags)) { 2218 if ( 2219 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2220 pr_debug("Read_old block " 2221 "%d for Reconstruct\n", i); 2222 set_bit(R5_LOCKED, &dev->flags); 2223 set_bit(R5_Wantread, &dev->flags); 2224 if (!test_and_set_bit( 2225 STRIPE_OP_IO, &sh->ops.pending)) 2226 sh->ops.count++; 2227 s->locked++; 2228 } else { 2229 set_bit(STRIPE_DELAYED, &sh->state); 2230 set_bit(STRIPE_HANDLE, &sh->state); 2231 } 2232 } 2233 } 2234 /* now if nothing is locked, and if we have enough data, 2235 * we can start a write request 2236 */ 2237 /* since handle_stripe can be called at any time we need to handle the 2238 * case where a compute block operation has been submitted and then a 2239 * subsequent call wants to start a write request. raid5_run_ops only 2240 * handles the case where compute block and postxor are requested 2241 * simultaneously. If this is not the case then new writes need to be 2242 * held off until the compute completes. 2243 */ 2244 if ((s->req_compute || 2245 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) && 2246 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2247 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2248 s->locked += handle_write_operations5(sh, rcw == 0, 0); 2249 } 2250 2251 static void handle_issuing_new_write_requests6(raid5_conf_t *conf, 2252 struct stripe_head *sh, struct stripe_head_state *s, 2253 struct r6_state *r6s, int disks) 2254 { 2255 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i; 2256 int qd_idx = r6s->qd_idx; 2257 for (i = disks; i--; ) { 2258 struct r5dev *dev = &sh->dev[i]; 2259 /* Would I have to read this buffer for reconstruct_write */ 2260 if (!test_bit(R5_OVERWRITE, &dev->flags) 2261 && i != pd_idx && i != qd_idx 2262 && (!test_bit(R5_LOCKED, &dev->flags) 2263 ) && 2264 !test_bit(R5_UPTODATE, &dev->flags)) { 2265 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2266 else { 2267 pr_debug("raid6: must_compute: " 2268 "disk %d flags=%#lx\n", i, dev->flags); 2269 must_compute++; 2270 } 2271 } 2272 } 2273 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n", 2274 (unsigned long long)sh->sector, rcw, must_compute); 2275 set_bit(STRIPE_HANDLE, &sh->state); 2276 2277 if (rcw > 0) 2278 /* want reconstruct write, but need to get some data */ 2279 for (i = disks; i--; ) { 2280 struct r5dev *dev = &sh->dev[i]; 2281 if (!test_bit(R5_OVERWRITE, &dev->flags) 2282 && !(s->failed == 0 && (i == pd_idx || i == qd_idx)) 2283 && !test_bit(R5_LOCKED, &dev->flags) && 2284 !test_bit(R5_UPTODATE, &dev->flags) && 2285 test_bit(R5_Insync, &dev->flags)) { 2286 if ( 2287 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2288 pr_debug("Read_old stripe %llu " 2289 "block %d for Reconstruct\n", 2290 (unsigned long long)sh->sector, i); 2291 set_bit(R5_LOCKED, &dev->flags); 2292 set_bit(R5_Wantread, &dev->flags); 2293 s->locked++; 2294 } else { 2295 pr_debug("Request delayed stripe %llu " 2296 "block %d for Reconstruct\n", 2297 (unsigned long long)sh->sector, i); 2298 set_bit(STRIPE_DELAYED, &sh->state); 2299 set_bit(STRIPE_HANDLE, &sh->state); 2300 } 2301 } 2302 } 2303 /* now if nothing is locked, and if we have enough data, we can start a 2304 * write request 2305 */ 2306 if (s->locked == 0 && rcw == 0 && 2307 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 2308 if (must_compute > 0) { 2309 /* We have failed blocks and need to compute them */ 2310 switch (s->failed) { 2311 case 0: 2312 BUG(); 2313 case 1: 2314 compute_block_1(sh, r6s->failed_num[0], 0); 2315 break; 2316 case 2: 2317 compute_block_2(sh, r6s->failed_num[0], 2318 r6s->failed_num[1]); 2319 break; 2320 default: /* This request should have been failed? */ 2321 BUG(); 2322 } 2323 } 2324 2325 pr_debug("Computing parity for stripe %llu\n", 2326 (unsigned long long)sh->sector); 2327 compute_parity6(sh, RECONSTRUCT_WRITE); 2328 /* now every locked buffer is ready to be written */ 2329 for (i = disks; i--; ) 2330 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { 2331 pr_debug("Writing stripe %llu block %d\n", 2332 (unsigned long long)sh->sector, i); 2333 s->locked++; 2334 set_bit(R5_Wantwrite, &sh->dev[i].flags); 2335 } 2336 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */ 2337 set_bit(STRIPE_INSYNC, &sh->state); 2338 2339 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2340 atomic_dec(&conf->preread_active_stripes); 2341 if (atomic_read(&conf->preread_active_stripes) < 2342 IO_THRESHOLD) 2343 md_wakeup_thread(conf->mddev->thread); 2344 } 2345 } 2346 } 2347 2348 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh, 2349 struct stripe_head_state *s, int disks) 2350 { 2351 set_bit(STRIPE_HANDLE, &sh->state); 2352 /* Take one of the following actions: 2353 * 1/ start a check parity operation if (uptodate == disks) 2354 * 2/ finish a check parity operation and act on the result 2355 * 3/ skip to the writeback section if we previously 2356 * initiated a recovery operation 2357 */ 2358 if (s->failed == 0 && 2359 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) { 2360 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) { 2361 BUG_ON(s->uptodate != disks); 2362 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2363 sh->ops.count++; 2364 s->uptodate--; 2365 } else if ( 2366 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) { 2367 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack); 2368 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending); 2369 2370 if (sh->ops.zero_sum_result == 0) 2371 /* parity is correct (on disc, 2372 * not in buffer any more) 2373 */ 2374 set_bit(STRIPE_INSYNC, &sh->state); 2375 else { 2376 conf->mddev->resync_mismatches += 2377 STRIPE_SECTORS; 2378 if (test_bit( 2379 MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2380 /* don't try to repair!! */ 2381 set_bit(STRIPE_INSYNC, &sh->state); 2382 else { 2383 set_bit(STRIPE_OP_COMPUTE_BLK, 2384 &sh->ops.pending); 2385 set_bit(STRIPE_OP_MOD_REPAIR_PD, 2386 &sh->ops.pending); 2387 set_bit(R5_Wantcompute, 2388 &sh->dev[sh->pd_idx].flags); 2389 sh->ops.target = sh->pd_idx; 2390 sh->ops.count++; 2391 s->uptodate++; 2392 } 2393 } 2394 } 2395 } 2396 2397 /* check if we can clear a parity disk reconstruct */ 2398 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) && 2399 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) { 2400 2401 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending); 2402 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete); 2403 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack); 2404 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending); 2405 } 2406 2407 /* Wait for check parity and compute block operations to complete 2408 * before write-back 2409 */ 2410 if (!test_bit(STRIPE_INSYNC, &sh->state) && 2411 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) && 2412 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) { 2413 struct r5dev *dev; 2414 /* either failed parity check, or recovery is happening */ 2415 if (s->failed == 0) 2416 s->failed_num = sh->pd_idx; 2417 dev = &sh->dev[s->failed_num]; 2418 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2419 BUG_ON(s->uptodate != disks); 2420 2421 set_bit(R5_LOCKED, &dev->flags); 2422 set_bit(R5_Wantwrite, &dev->flags); 2423 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2424 sh->ops.count++; 2425 2426 clear_bit(STRIPE_DEGRADED, &sh->state); 2427 s->locked++; 2428 set_bit(STRIPE_INSYNC, &sh->state); 2429 } 2430 } 2431 2432 2433 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh, 2434 struct stripe_head_state *s, 2435 struct r6_state *r6s, struct page *tmp_page, 2436 int disks) 2437 { 2438 int update_p = 0, update_q = 0; 2439 struct r5dev *dev; 2440 int pd_idx = sh->pd_idx; 2441 int qd_idx = r6s->qd_idx; 2442 2443 set_bit(STRIPE_HANDLE, &sh->state); 2444 2445 BUG_ON(s->failed > 2); 2446 BUG_ON(s->uptodate < disks); 2447 /* Want to check and possibly repair P and Q. 2448 * However there could be one 'failed' device, in which 2449 * case we can only check one of them, possibly using the 2450 * other to generate missing data 2451 */ 2452 2453 /* If !tmp_page, we cannot do the calculations, 2454 * but as we have set STRIPE_HANDLE, we will soon be called 2455 * by stripe_handle with a tmp_page - just wait until then. 2456 */ 2457 if (tmp_page) { 2458 if (s->failed == r6s->q_failed) { 2459 /* The only possible failed device holds 'Q', so it 2460 * makes sense to check P (If anything else were failed, 2461 * we would have used P to recreate it). 2462 */ 2463 compute_block_1(sh, pd_idx, 1); 2464 if (!page_is_zero(sh->dev[pd_idx].page)) { 2465 compute_block_1(sh, pd_idx, 0); 2466 update_p = 1; 2467 } 2468 } 2469 if (!r6s->q_failed && s->failed < 2) { 2470 /* q is not failed, and we didn't use it to generate 2471 * anything, so it makes sense to check it 2472 */ 2473 memcpy(page_address(tmp_page), 2474 page_address(sh->dev[qd_idx].page), 2475 STRIPE_SIZE); 2476 compute_parity6(sh, UPDATE_PARITY); 2477 if (memcmp(page_address(tmp_page), 2478 page_address(sh->dev[qd_idx].page), 2479 STRIPE_SIZE) != 0) { 2480 clear_bit(STRIPE_INSYNC, &sh->state); 2481 update_q = 1; 2482 } 2483 } 2484 if (update_p || update_q) { 2485 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2486 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2487 /* don't try to repair!! */ 2488 update_p = update_q = 0; 2489 } 2490 2491 /* now write out any block on a failed drive, 2492 * or P or Q if they need it 2493 */ 2494 2495 if (s->failed == 2) { 2496 dev = &sh->dev[r6s->failed_num[1]]; 2497 s->locked++; 2498 set_bit(R5_LOCKED, &dev->flags); 2499 set_bit(R5_Wantwrite, &dev->flags); 2500 } 2501 if (s->failed >= 1) { 2502 dev = &sh->dev[r6s->failed_num[0]]; 2503 s->locked++; 2504 set_bit(R5_LOCKED, &dev->flags); 2505 set_bit(R5_Wantwrite, &dev->flags); 2506 } 2507 2508 if (update_p) { 2509 dev = &sh->dev[pd_idx]; 2510 s->locked++; 2511 set_bit(R5_LOCKED, &dev->flags); 2512 set_bit(R5_Wantwrite, &dev->flags); 2513 } 2514 if (update_q) { 2515 dev = &sh->dev[qd_idx]; 2516 s->locked++; 2517 set_bit(R5_LOCKED, &dev->flags); 2518 set_bit(R5_Wantwrite, &dev->flags); 2519 } 2520 clear_bit(STRIPE_DEGRADED, &sh->state); 2521 2522 set_bit(STRIPE_INSYNC, &sh->state); 2523 } 2524 } 2525 2526 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh, 2527 struct r6_state *r6s) 2528 { 2529 int i; 2530 2531 /* We have read all the blocks in this stripe and now we need to 2532 * copy some of them into a target stripe for expand. 2533 */ 2534 struct dma_async_tx_descriptor *tx = NULL; 2535 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2536 for (i = 0; i < sh->disks; i++) 2537 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) { 2538 int dd_idx, pd_idx, j; 2539 struct stripe_head *sh2; 2540 2541 sector_t bn = compute_blocknr(sh, i); 2542 sector_t s = raid5_compute_sector(bn, conf->raid_disks, 2543 conf->raid_disks - 2544 conf->max_degraded, &dd_idx, 2545 &pd_idx, conf); 2546 sh2 = get_active_stripe(conf, s, conf->raid_disks, 2547 pd_idx, 1); 2548 if (sh2 == NULL) 2549 /* so far only the early blocks of this stripe 2550 * have been requested. When later blocks 2551 * get requested, we will try again 2552 */ 2553 continue; 2554 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 2555 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 2556 /* must have already done this block */ 2557 release_stripe(sh2); 2558 continue; 2559 } 2560 2561 /* place all the copies on one channel */ 2562 tx = async_memcpy(sh2->dev[dd_idx].page, 2563 sh->dev[i].page, 0, 0, STRIPE_SIZE, 2564 ASYNC_TX_DEP_ACK, tx, NULL, NULL); 2565 2566 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 2567 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 2568 for (j = 0; j < conf->raid_disks; j++) 2569 if (j != sh2->pd_idx && 2570 (!r6s || j != raid6_next_disk(sh2->pd_idx, 2571 sh2->disks)) && 2572 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 2573 break; 2574 if (j == conf->raid_disks) { 2575 set_bit(STRIPE_EXPAND_READY, &sh2->state); 2576 set_bit(STRIPE_HANDLE, &sh2->state); 2577 } 2578 release_stripe(sh2); 2579 2580 } 2581 /* done submitting copies, wait for them to complete */ 2582 if (tx) { 2583 async_tx_ack(tx); 2584 dma_wait_for_async_tx(tx); 2585 } 2586 } 2587 2588 /* 2589 * handle_stripe - do things to a stripe. 2590 * 2591 * We lock the stripe and then examine the state of various bits 2592 * to see what needs to be done. 2593 * Possible results: 2594 * return some read request which now have data 2595 * return some write requests which are safely on disc 2596 * schedule a read on some buffers 2597 * schedule a write of some buffers 2598 * return confirmation of parity correctness 2599 * 2600 * buffers are taken off read_list or write_list, and bh_cache buffers 2601 * get BH_Lock set before the stripe lock is released. 2602 * 2603 */ 2604 2605 static void handle_stripe5(struct stripe_head *sh) 2606 { 2607 raid5_conf_t *conf = sh->raid_conf; 2608 int disks = sh->disks, i; 2609 struct bio *return_bi = NULL; 2610 struct stripe_head_state s; 2611 struct r5dev *dev; 2612 unsigned long pending = 0; 2613 2614 memset(&s, 0, sizeof(s)); 2615 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d " 2616 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state, 2617 atomic_read(&sh->count), sh->pd_idx, 2618 sh->ops.pending, sh->ops.ack, sh->ops.complete); 2619 2620 spin_lock(&sh->lock); 2621 clear_bit(STRIPE_HANDLE, &sh->state); 2622 clear_bit(STRIPE_DELAYED, &sh->state); 2623 2624 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 2625 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2626 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 2627 /* Now to look around and see what can be done */ 2628 2629 /* clean-up completed biofill operations */ 2630 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) { 2631 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending); 2632 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack); 2633 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete); 2634 } 2635 2636 rcu_read_lock(); 2637 for (i=disks; i--; ) { 2638 mdk_rdev_t *rdev; 2639 struct r5dev *dev = &sh->dev[i]; 2640 clear_bit(R5_Insync, &dev->flags); 2641 2642 pr_debug("check %d: state 0x%lx toread %p read %p write %p " 2643 "written %p\n", i, dev->flags, dev->toread, dev->read, 2644 dev->towrite, dev->written); 2645 2646 /* maybe we can request a biofill operation 2647 * 2648 * new wantfill requests are only permitted while 2649 * STRIPE_OP_BIOFILL is clear 2650 */ 2651 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 2652 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)) 2653 set_bit(R5_Wantfill, &dev->flags); 2654 2655 /* now count some things */ 2656 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 2657 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 2658 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++; 2659 2660 if (test_bit(R5_Wantfill, &dev->flags)) 2661 s.to_fill++; 2662 else if (dev->toread) 2663 s.to_read++; 2664 if (dev->towrite) { 2665 s.to_write++; 2666 if (!test_bit(R5_OVERWRITE, &dev->flags)) 2667 s.non_overwrite++; 2668 } 2669 if (dev->written) 2670 s.written++; 2671 rdev = rcu_dereference(conf->disks[i].rdev); 2672 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 2673 /* The ReadError flag will just be confusing now */ 2674 clear_bit(R5_ReadError, &dev->flags); 2675 clear_bit(R5_ReWrite, &dev->flags); 2676 } 2677 if (!rdev || !test_bit(In_sync, &rdev->flags) 2678 || test_bit(R5_ReadError, &dev->flags)) { 2679 s.failed++; 2680 s.failed_num = i; 2681 } else 2682 set_bit(R5_Insync, &dev->flags); 2683 } 2684 rcu_read_unlock(); 2685 2686 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)) 2687 sh->ops.count++; 2688 2689 pr_debug("locked=%d uptodate=%d to_read=%d" 2690 " to_write=%d failed=%d failed_num=%d\n", 2691 s.locked, s.uptodate, s.to_read, s.to_write, 2692 s.failed, s.failed_num); 2693 /* check if the array has lost two devices and, if so, some requests might 2694 * need to be failed 2695 */ 2696 if (s.failed > 1 && s.to_read+s.to_write+s.written) 2697 handle_requests_to_failed_array(conf, sh, &s, disks, 2698 &return_bi); 2699 if (s.failed > 1 && s.syncing) { 2700 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 2701 clear_bit(STRIPE_SYNCING, &sh->state); 2702 s.syncing = 0; 2703 } 2704 2705 /* might be able to return some write requests if the parity block 2706 * is safe, or on a failed drive 2707 */ 2708 dev = &sh->dev[sh->pd_idx]; 2709 if ( s.written && 2710 ((test_bit(R5_Insync, &dev->flags) && 2711 !test_bit(R5_LOCKED, &dev->flags) && 2712 test_bit(R5_UPTODATE, &dev->flags)) || 2713 (s.failed == 1 && s.failed_num == sh->pd_idx))) 2714 handle_completed_write_requests(conf, sh, disks, &return_bi); 2715 2716 /* Now we might consider reading some blocks, either to check/generate 2717 * parity, or to satisfy requests 2718 * or to load a block that is being partially written. 2719 */ 2720 if (s.to_read || s.non_overwrite || 2721 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding || 2722 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) 2723 handle_issuing_new_read_requests5(sh, &s, disks); 2724 2725 /* Now we check to see if any write operations have recently 2726 * completed 2727 */ 2728 2729 /* leave prexor set until postxor is done, allows us to distinguish 2730 * a rmw from a rcw during biodrain 2731 */ 2732 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) && 2733 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) { 2734 2735 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete); 2736 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack); 2737 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending); 2738 2739 for (i = disks; i--; ) 2740 clear_bit(R5_Wantprexor, &sh->dev[i].flags); 2741 } 2742 2743 /* if only POSTXOR is set then this is an 'expand' postxor */ 2744 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) && 2745 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) { 2746 2747 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete); 2748 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack); 2749 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending); 2750 2751 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete); 2752 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack); 2753 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending); 2754 2755 /* All the 'written' buffers and the parity block are ready to 2756 * be written back to disk 2757 */ 2758 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); 2759 for (i = disks; i--; ) { 2760 dev = &sh->dev[i]; 2761 if (test_bit(R5_LOCKED, &dev->flags) && 2762 (i == sh->pd_idx || dev->written)) { 2763 pr_debug("Writing block %d\n", i); 2764 set_bit(R5_Wantwrite, &dev->flags); 2765 if (!test_and_set_bit( 2766 STRIPE_OP_IO, &sh->ops.pending)) 2767 sh->ops.count++; 2768 if (!test_bit(R5_Insync, &dev->flags) || 2769 (i == sh->pd_idx && s.failed == 0)) 2770 set_bit(STRIPE_INSYNC, &sh->state); 2771 } 2772 } 2773 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2774 atomic_dec(&conf->preread_active_stripes); 2775 if (atomic_read(&conf->preread_active_stripes) < 2776 IO_THRESHOLD) 2777 md_wakeup_thread(conf->mddev->thread); 2778 } 2779 } 2780 2781 /* Now to consider new write requests and what else, if anything 2782 * should be read. We do not handle new writes when: 2783 * 1/ A 'write' operation (copy+xor) is already in flight. 2784 * 2/ A 'check' operation is in flight, as it may clobber the parity 2785 * block. 2786 */ 2787 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) && 2788 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) 2789 handle_issuing_new_write_requests5(conf, sh, &s, disks); 2790 2791 /* maybe we need to check and possibly fix the parity for this stripe 2792 * Any reads will already have been scheduled, so we just see if enough 2793 * data is available. The parity check is held off while parity 2794 * dependent operations are in flight. 2795 */ 2796 if ((s.syncing && s.locked == 0 && 2797 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) && 2798 !test_bit(STRIPE_INSYNC, &sh->state)) || 2799 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) || 2800 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) 2801 handle_parity_checks5(conf, sh, &s, disks); 2802 2803 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 2804 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 2805 clear_bit(STRIPE_SYNCING, &sh->state); 2806 } 2807 2808 /* If the failed drive is just a ReadError, then we might need to progress 2809 * the repair/check process 2810 */ 2811 if (s.failed == 1 && !conf->mddev->ro && 2812 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags) 2813 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags) 2814 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags) 2815 ) { 2816 dev = &sh->dev[s.failed_num]; 2817 if (!test_bit(R5_ReWrite, &dev->flags)) { 2818 set_bit(R5_Wantwrite, &dev->flags); 2819 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2820 sh->ops.count++; 2821 set_bit(R5_ReWrite, &dev->flags); 2822 set_bit(R5_LOCKED, &dev->flags); 2823 s.locked++; 2824 } else { 2825 /* let's read it back */ 2826 set_bit(R5_Wantread, &dev->flags); 2827 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2828 sh->ops.count++; 2829 set_bit(R5_LOCKED, &dev->flags); 2830 s.locked++; 2831 } 2832 } 2833 2834 /* Finish postxor operations initiated by the expansion 2835 * process 2836 */ 2837 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) && 2838 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) { 2839 2840 clear_bit(STRIPE_EXPANDING, &sh->state); 2841 2842 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending); 2843 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack); 2844 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete); 2845 2846 for (i = conf->raid_disks; i--; ) { 2847 set_bit(R5_Wantwrite, &sh->dev[i].flags); 2848 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending)) 2849 sh->ops.count++; 2850 } 2851 } 2852 2853 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 2854 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) { 2855 /* Need to write out all blocks after computing parity */ 2856 sh->disks = conf->raid_disks; 2857 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, 2858 conf->raid_disks); 2859 s.locked += handle_write_operations5(sh, 1, 1); 2860 } else if (s.expanded && 2861 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) { 2862 clear_bit(STRIPE_EXPAND_READY, &sh->state); 2863 atomic_dec(&conf->reshape_stripes); 2864 wake_up(&conf->wait_for_overlap); 2865 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 2866 } 2867 2868 if (s.expanding && s.locked == 0 && 2869 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) 2870 handle_stripe_expansion(conf, sh, NULL); 2871 2872 if (sh->ops.count) 2873 pending = get_stripe_work(sh); 2874 2875 spin_unlock(&sh->lock); 2876 2877 if (pending) 2878 raid5_run_ops(sh, pending); 2879 2880 return_io(return_bi); 2881 2882 } 2883 2884 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page) 2885 { 2886 raid6_conf_t *conf = sh->raid_conf; 2887 int disks = sh->disks; 2888 struct bio *return_bi = NULL; 2889 int i, pd_idx = sh->pd_idx; 2890 struct stripe_head_state s; 2891 struct r6_state r6s; 2892 struct r5dev *dev, *pdev, *qdev; 2893 2894 r6s.qd_idx = raid6_next_disk(pd_idx, disks); 2895 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 2896 "pd_idx=%d, qd_idx=%d\n", 2897 (unsigned long long)sh->sector, sh->state, 2898 atomic_read(&sh->count), pd_idx, r6s.qd_idx); 2899 memset(&s, 0, sizeof(s)); 2900 2901 spin_lock(&sh->lock); 2902 clear_bit(STRIPE_HANDLE, &sh->state); 2903 clear_bit(STRIPE_DELAYED, &sh->state); 2904 2905 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 2906 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2907 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 2908 /* Now to look around and see what can be done */ 2909 2910 rcu_read_lock(); 2911 for (i=disks; i--; ) { 2912 mdk_rdev_t *rdev; 2913 dev = &sh->dev[i]; 2914 clear_bit(R5_Insync, &dev->flags); 2915 2916 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 2917 i, dev->flags, dev->toread, dev->towrite, dev->written); 2918 /* maybe we can reply to a read */ 2919 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { 2920 struct bio *rbi, *rbi2; 2921 pr_debug("Return read for disc %d\n", i); 2922 spin_lock_irq(&conf->device_lock); 2923 rbi = dev->toread; 2924 dev->toread = NULL; 2925 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2926 wake_up(&conf->wait_for_overlap); 2927 spin_unlock_irq(&conf->device_lock); 2928 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { 2929 copy_data(0, rbi, dev->page, dev->sector); 2930 rbi2 = r5_next_bio(rbi, dev->sector); 2931 spin_lock_irq(&conf->device_lock); 2932 if (--rbi->bi_phys_segments == 0) { 2933 rbi->bi_next = return_bi; 2934 return_bi = rbi; 2935 } 2936 spin_unlock_irq(&conf->device_lock); 2937 rbi = rbi2; 2938 } 2939 } 2940 2941 /* now count some things */ 2942 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 2943 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 2944 2945 2946 if (dev->toread) 2947 s.to_read++; 2948 if (dev->towrite) { 2949 s.to_write++; 2950 if (!test_bit(R5_OVERWRITE, &dev->flags)) 2951 s.non_overwrite++; 2952 } 2953 if (dev->written) 2954 s.written++; 2955 rdev = rcu_dereference(conf->disks[i].rdev); 2956 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 2957 /* The ReadError flag will just be confusing now */ 2958 clear_bit(R5_ReadError, &dev->flags); 2959 clear_bit(R5_ReWrite, &dev->flags); 2960 } 2961 if (!rdev || !test_bit(In_sync, &rdev->flags) 2962 || test_bit(R5_ReadError, &dev->flags)) { 2963 if (s.failed < 2) 2964 r6s.failed_num[s.failed] = i; 2965 s.failed++; 2966 } else 2967 set_bit(R5_Insync, &dev->flags); 2968 } 2969 rcu_read_unlock(); 2970 pr_debug("locked=%d uptodate=%d to_read=%d" 2971 " to_write=%d failed=%d failed_num=%d,%d\n", 2972 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 2973 r6s.failed_num[0], r6s.failed_num[1]); 2974 /* check if the array has lost >2 devices and, if so, some requests 2975 * might need to be failed 2976 */ 2977 if (s.failed > 2 && s.to_read+s.to_write+s.written) 2978 handle_requests_to_failed_array(conf, sh, &s, disks, 2979 &return_bi); 2980 if (s.failed > 2 && s.syncing) { 2981 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 2982 clear_bit(STRIPE_SYNCING, &sh->state); 2983 s.syncing = 0; 2984 } 2985 2986 /* 2987 * might be able to return some write requests if the parity blocks 2988 * are safe, or on a failed drive 2989 */ 2990 pdev = &sh->dev[pd_idx]; 2991 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx) 2992 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx); 2993 qdev = &sh->dev[r6s.qd_idx]; 2994 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx) 2995 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx); 2996 2997 if ( s.written && 2998 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 2999 && !test_bit(R5_LOCKED, &pdev->flags) 3000 && test_bit(R5_UPTODATE, &pdev->flags)))) && 3001 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3002 && !test_bit(R5_LOCKED, &qdev->flags) 3003 && test_bit(R5_UPTODATE, &qdev->flags))))) 3004 handle_completed_write_requests(conf, sh, disks, &return_bi); 3005 3006 /* Now we might consider reading some blocks, either to check/generate 3007 * parity, or to satisfy requests 3008 * or to load a block that is being partially written. 3009 */ 3010 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) || 3011 (s.syncing && (s.uptodate < disks)) || s.expanding) 3012 handle_issuing_new_read_requests6(sh, &s, &r6s, disks); 3013 3014 /* now to consider writing and what else, if anything should be read */ 3015 if (s.to_write) 3016 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks); 3017 3018 /* maybe we need to check and possibly fix the parity for this stripe 3019 * Any reads will already have been scheduled, so we just see if enough 3020 * data is available 3021 */ 3022 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) 3023 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks); 3024 3025 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 3026 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 3027 clear_bit(STRIPE_SYNCING, &sh->state); 3028 } 3029 3030 /* If the failed drives are just a ReadError, then we might need 3031 * to progress the repair/check process 3032 */ 3033 if (s.failed <= 2 && !conf->mddev->ro) 3034 for (i = 0; i < s.failed; i++) { 3035 dev = &sh->dev[r6s.failed_num[i]]; 3036 if (test_bit(R5_ReadError, &dev->flags) 3037 && !test_bit(R5_LOCKED, &dev->flags) 3038 && test_bit(R5_UPTODATE, &dev->flags) 3039 ) { 3040 if (!test_bit(R5_ReWrite, &dev->flags)) { 3041 set_bit(R5_Wantwrite, &dev->flags); 3042 set_bit(R5_ReWrite, &dev->flags); 3043 set_bit(R5_LOCKED, &dev->flags); 3044 } else { 3045 /* let's read it back */ 3046 set_bit(R5_Wantread, &dev->flags); 3047 set_bit(R5_LOCKED, &dev->flags); 3048 } 3049 } 3050 } 3051 3052 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) { 3053 /* Need to write out all blocks after computing P&Q */ 3054 sh->disks = conf->raid_disks; 3055 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, 3056 conf->raid_disks); 3057 compute_parity6(sh, RECONSTRUCT_WRITE); 3058 for (i = conf->raid_disks ; i-- ; ) { 3059 set_bit(R5_LOCKED, &sh->dev[i].flags); 3060 s.locked++; 3061 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3062 } 3063 clear_bit(STRIPE_EXPANDING, &sh->state); 3064 } else if (s.expanded) { 3065 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3066 atomic_dec(&conf->reshape_stripes); 3067 wake_up(&conf->wait_for_overlap); 3068 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3069 } 3070 3071 if (s.expanding && s.locked == 0 && 3072 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) 3073 handle_stripe_expansion(conf, sh, &r6s); 3074 3075 spin_unlock(&sh->lock); 3076 3077 return_io(return_bi); 3078 3079 for (i=disks; i-- ;) { 3080 int rw; 3081 struct bio *bi; 3082 mdk_rdev_t *rdev; 3083 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 3084 rw = WRITE; 3085 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 3086 rw = READ; 3087 else 3088 continue; 3089 3090 bi = &sh->dev[i].req; 3091 3092 bi->bi_rw = rw; 3093 if (rw == WRITE) 3094 bi->bi_end_io = raid5_end_write_request; 3095 else 3096 bi->bi_end_io = raid5_end_read_request; 3097 3098 rcu_read_lock(); 3099 rdev = rcu_dereference(conf->disks[i].rdev); 3100 if (rdev && test_bit(Faulty, &rdev->flags)) 3101 rdev = NULL; 3102 if (rdev) 3103 atomic_inc(&rdev->nr_pending); 3104 rcu_read_unlock(); 3105 3106 if (rdev) { 3107 if (s.syncing || s.expanding || s.expanded) 3108 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 3109 3110 bi->bi_bdev = rdev->bdev; 3111 pr_debug("for %llu schedule op %ld on disc %d\n", 3112 (unsigned long long)sh->sector, bi->bi_rw, i); 3113 atomic_inc(&sh->count); 3114 bi->bi_sector = sh->sector + rdev->data_offset; 3115 bi->bi_flags = 1 << BIO_UPTODATE; 3116 bi->bi_vcnt = 1; 3117 bi->bi_max_vecs = 1; 3118 bi->bi_idx = 0; 3119 bi->bi_io_vec = &sh->dev[i].vec; 3120 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 3121 bi->bi_io_vec[0].bv_offset = 0; 3122 bi->bi_size = STRIPE_SIZE; 3123 bi->bi_next = NULL; 3124 if (rw == WRITE && 3125 test_bit(R5_ReWrite, &sh->dev[i].flags)) 3126 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 3127 generic_make_request(bi); 3128 } else { 3129 if (rw == WRITE) 3130 set_bit(STRIPE_DEGRADED, &sh->state); 3131 pr_debug("skip op %ld on disc %d for sector %llu\n", 3132 bi->bi_rw, i, (unsigned long long)sh->sector); 3133 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3134 set_bit(STRIPE_HANDLE, &sh->state); 3135 } 3136 } 3137 } 3138 3139 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page) 3140 { 3141 if (sh->raid_conf->level == 6) 3142 handle_stripe6(sh, tmp_page); 3143 else 3144 handle_stripe5(sh); 3145 } 3146 3147 3148 3149 static void raid5_activate_delayed(raid5_conf_t *conf) 3150 { 3151 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3152 while (!list_empty(&conf->delayed_list)) { 3153 struct list_head *l = conf->delayed_list.next; 3154 struct stripe_head *sh; 3155 sh = list_entry(l, struct stripe_head, lru); 3156 list_del_init(l); 3157 clear_bit(STRIPE_DELAYED, &sh->state); 3158 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3159 atomic_inc(&conf->preread_active_stripes); 3160 list_add_tail(&sh->lru, &conf->handle_list); 3161 } 3162 } else 3163 blk_plug_device(conf->mddev->queue); 3164 } 3165 3166 static void activate_bit_delay(raid5_conf_t *conf) 3167 { 3168 /* device_lock is held */ 3169 struct list_head head; 3170 list_add(&head, &conf->bitmap_list); 3171 list_del_init(&conf->bitmap_list); 3172 while (!list_empty(&head)) { 3173 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3174 list_del_init(&sh->lru); 3175 atomic_inc(&sh->count); 3176 __release_stripe(conf, sh); 3177 } 3178 } 3179 3180 static void unplug_slaves(mddev_t *mddev) 3181 { 3182 raid5_conf_t *conf = mddev_to_conf(mddev); 3183 int i; 3184 3185 rcu_read_lock(); 3186 for (i=0; i<mddev->raid_disks; i++) { 3187 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 3188 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 3189 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 3190 3191 atomic_inc(&rdev->nr_pending); 3192 rcu_read_unlock(); 3193 3194 blk_unplug(r_queue); 3195 3196 rdev_dec_pending(rdev, mddev); 3197 rcu_read_lock(); 3198 } 3199 } 3200 rcu_read_unlock(); 3201 } 3202 3203 static void raid5_unplug_device(struct request_queue *q) 3204 { 3205 mddev_t *mddev = q->queuedata; 3206 raid5_conf_t *conf = mddev_to_conf(mddev); 3207 unsigned long flags; 3208 3209 spin_lock_irqsave(&conf->device_lock, flags); 3210 3211 if (blk_remove_plug(q)) { 3212 conf->seq_flush++; 3213 raid5_activate_delayed(conf); 3214 } 3215 md_wakeup_thread(mddev->thread); 3216 3217 spin_unlock_irqrestore(&conf->device_lock, flags); 3218 3219 unplug_slaves(mddev); 3220 } 3221 3222 static int raid5_congested(void *data, int bits) 3223 { 3224 mddev_t *mddev = data; 3225 raid5_conf_t *conf = mddev_to_conf(mddev); 3226 3227 /* No difference between reads and writes. Just check 3228 * how busy the stripe_cache is 3229 */ 3230 if (conf->inactive_blocked) 3231 return 1; 3232 if (conf->quiesce) 3233 return 1; 3234 if (list_empty_careful(&conf->inactive_list)) 3235 return 1; 3236 3237 return 0; 3238 } 3239 3240 /* We want read requests to align with chunks where possible, 3241 * but write requests don't need to. 3242 */ 3243 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec) 3244 { 3245 mddev_t *mddev = q->queuedata; 3246 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3247 int max; 3248 unsigned int chunk_sectors = mddev->chunk_size >> 9; 3249 unsigned int bio_sectors = bio->bi_size >> 9; 3250 3251 if (bio_data_dir(bio) == WRITE) 3252 return biovec->bv_len; /* always allow writes to be mergeable */ 3253 3254 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3255 if (max < 0) max = 0; 3256 if (max <= biovec->bv_len && bio_sectors == 0) 3257 return biovec->bv_len; 3258 else 3259 return max; 3260 } 3261 3262 3263 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio) 3264 { 3265 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3266 unsigned int chunk_sectors = mddev->chunk_size >> 9; 3267 unsigned int bio_sectors = bio->bi_size >> 9; 3268 3269 return chunk_sectors >= 3270 ((sector & (chunk_sectors - 1)) + bio_sectors); 3271 } 3272 3273 /* 3274 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3275 * later sampled by raid5d. 3276 */ 3277 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf) 3278 { 3279 unsigned long flags; 3280 3281 spin_lock_irqsave(&conf->device_lock, flags); 3282 3283 bi->bi_next = conf->retry_read_aligned_list; 3284 conf->retry_read_aligned_list = bi; 3285 3286 spin_unlock_irqrestore(&conf->device_lock, flags); 3287 md_wakeup_thread(conf->mddev->thread); 3288 } 3289 3290 3291 static struct bio *remove_bio_from_retry(raid5_conf_t *conf) 3292 { 3293 struct bio *bi; 3294 3295 bi = conf->retry_read_aligned; 3296 if (bi) { 3297 conf->retry_read_aligned = NULL; 3298 return bi; 3299 } 3300 bi = conf->retry_read_aligned_list; 3301 if(bi) { 3302 conf->retry_read_aligned_list = bi->bi_next; 3303 bi->bi_next = NULL; 3304 bi->bi_phys_segments = 1; /* biased count of active stripes */ 3305 bi->bi_hw_segments = 0; /* count of processed stripes */ 3306 } 3307 3308 return bi; 3309 } 3310 3311 3312 /* 3313 * The "raid5_align_endio" should check if the read succeeded and if it 3314 * did, call bio_endio on the original bio (having bio_put the new bio 3315 * first). 3316 * If the read failed.. 3317 */ 3318 static void raid5_align_endio(struct bio *bi, int error) 3319 { 3320 struct bio* raid_bi = bi->bi_private; 3321 mddev_t *mddev; 3322 raid5_conf_t *conf; 3323 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3324 mdk_rdev_t *rdev; 3325 3326 bio_put(bi); 3327 3328 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata; 3329 conf = mddev_to_conf(mddev); 3330 rdev = (void*)raid_bi->bi_next; 3331 raid_bi->bi_next = NULL; 3332 3333 rdev_dec_pending(rdev, conf->mddev); 3334 3335 if (!error && uptodate) { 3336 bio_endio(raid_bi, 0); 3337 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3338 wake_up(&conf->wait_for_stripe); 3339 return; 3340 } 3341 3342 3343 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3344 3345 add_bio_to_retry(raid_bi, conf); 3346 } 3347 3348 static int bio_fits_rdev(struct bio *bi) 3349 { 3350 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3351 3352 if ((bi->bi_size>>9) > q->max_sectors) 3353 return 0; 3354 blk_recount_segments(q, bi); 3355 if (bi->bi_phys_segments > q->max_phys_segments || 3356 bi->bi_hw_segments > q->max_hw_segments) 3357 return 0; 3358 3359 if (q->merge_bvec_fn) 3360 /* it's too hard to apply the merge_bvec_fn at this stage, 3361 * just just give up 3362 */ 3363 return 0; 3364 3365 return 1; 3366 } 3367 3368 3369 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio) 3370 { 3371 mddev_t *mddev = q->queuedata; 3372 raid5_conf_t *conf = mddev_to_conf(mddev); 3373 const unsigned int raid_disks = conf->raid_disks; 3374 const unsigned int data_disks = raid_disks - conf->max_degraded; 3375 unsigned int dd_idx, pd_idx; 3376 struct bio* align_bi; 3377 mdk_rdev_t *rdev; 3378 3379 if (!in_chunk_boundary(mddev, raid_bio)) { 3380 pr_debug("chunk_aligned_read : non aligned\n"); 3381 return 0; 3382 } 3383 /* 3384 * use bio_clone to make a copy of the bio 3385 */ 3386 align_bi = bio_clone(raid_bio, GFP_NOIO); 3387 if (!align_bi) 3388 return 0; 3389 /* 3390 * set bi_end_io to a new function, and set bi_private to the 3391 * original bio. 3392 */ 3393 align_bi->bi_end_io = raid5_align_endio; 3394 align_bi->bi_private = raid_bio; 3395 /* 3396 * compute position 3397 */ 3398 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector, 3399 raid_disks, 3400 data_disks, 3401 &dd_idx, 3402 &pd_idx, 3403 conf); 3404 3405 rcu_read_lock(); 3406 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3407 if (rdev && test_bit(In_sync, &rdev->flags)) { 3408 atomic_inc(&rdev->nr_pending); 3409 rcu_read_unlock(); 3410 raid_bio->bi_next = (void*)rdev; 3411 align_bi->bi_bdev = rdev->bdev; 3412 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 3413 align_bi->bi_sector += rdev->data_offset; 3414 3415 if (!bio_fits_rdev(align_bi)) { 3416 /* too big in some way */ 3417 bio_put(align_bi); 3418 rdev_dec_pending(rdev, mddev); 3419 return 0; 3420 } 3421 3422 spin_lock_irq(&conf->device_lock); 3423 wait_event_lock_irq(conf->wait_for_stripe, 3424 conf->quiesce == 0, 3425 conf->device_lock, /* nothing */); 3426 atomic_inc(&conf->active_aligned_reads); 3427 spin_unlock_irq(&conf->device_lock); 3428 3429 generic_make_request(align_bi); 3430 return 1; 3431 } else { 3432 rcu_read_unlock(); 3433 bio_put(align_bi); 3434 return 0; 3435 } 3436 } 3437 3438 3439 static int make_request(struct request_queue *q, struct bio * bi) 3440 { 3441 mddev_t *mddev = q->queuedata; 3442 raid5_conf_t *conf = mddev_to_conf(mddev); 3443 unsigned int dd_idx, pd_idx; 3444 sector_t new_sector; 3445 sector_t logical_sector, last_sector; 3446 struct stripe_head *sh; 3447 const int rw = bio_data_dir(bi); 3448 int remaining; 3449 3450 if (unlikely(bio_barrier(bi))) { 3451 bio_endio(bi, -EOPNOTSUPP); 3452 return 0; 3453 } 3454 3455 md_write_start(mddev, bi); 3456 3457 disk_stat_inc(mddev->gendisk, ios[rw]); 3458 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi)); 3459 3460 if (rw == READ && 3461 mddev->reshape_position == MaxSector && 3462 chunk_aligned_read(q,bi)) 3463 return 0; 3464 3465 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 3466 last_sector = bi->bi_sector + (bi->bi_size>>9); 3467 bi->bi_next = NULL; 3468 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 3469 3470 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 3471 DEFINE_WAIT(w); 3472 int disks, data_disks; 3473 3474 retry: 3475 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 3476 if (likely(conf->expand_progress == MaxSector)) 3477 disks = conf->raid_disks; 3478 else { 3479 /* spinlock is needed as expand_progress may be 3480 * 64bit on a 32bit platform, and so it might be 3481 * possible to see a half-updated value 3482 * Ofcourse expand_progress could change after 3483 * the lock is dropped, so once we get a reference 3484 * to the stripe that we think it is, we will have 3485 * to check again. 3486 */ 3487 spin_lock_irq(&conf->device_lock); 3488 disks = conf->raid_disks; 3489 if (logical_sector >= conf->expand_progress) 3490 disks = conf->previous_raid_disks; 3491 else { 3492 if (logical_sector >= conf->expand_lo) { 3493 spin_unlock_irq(&conf->device_lock); 3494 schedule(); 3495 goto retry; 3496 } 3497 } 3498 spin_unlock_irq(&conf->device_lock); 3499 } 3500 data_disks = disks - conf->max_degraded; 3501 3502 new_sector = raid5_compute_sector(logical_sector, disks, data_disks, 3503 &dd_idx, &pd_idx, conf); 3504 pr_debug("raid5: make_request, sector %llu logical %llu\n", 3505 (unsigned long long)new_sector, 3506 (unsigned long long)logical_sector); 3507 3508 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK)); 3509 if (sh) { 3510 if (unlikely(conf->expand_progress != MaxSector)) { 3511 /* expansion might have moved on while waiting for a 3512 * stripe, so we must do the range check again. 3513 * Expansion could still move past after this 3514 * test, but as we are holding a reference to 3515 * 'sh', we know that if that happens, 3516 * STRIPE_EXPANDING will get set and the expansion 3517 * won't proceed until we finish with the stripe. 3518 */ 3519 int must_retry = 0; 3520 spin_lock_irq(&conf->device_lock); 3521 if (logical_sector < conf->expand_progress && 3522 disks == conf->previous_raid_disks) 3523 /* mismatch, need to try again */ 3524 must_retry = 1; 3525 spin_unlock_irq(&conf->device_lock); 3526 if (must_retry) { 3527 release_stripe(sh); 3528 goto retry; 3529 } 3530 } 3531 /* FIXME what if we get a false positive because these 3532 * are being updated. 3533 */ 3534 if (logical_sector >= mddev->suspend_lo && 3535 logical_sector < mddev->suspend_hi) { 3536 release_stripe(sh); 3537 schedule(); 3538 goto retry; 3539 } 3540 3541 if (test_bit(STRIPE_EXPANDING, &sh->state) || 3542 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { 3543 /* Stripe is busy expanding or 3544 * add failed due to overlap. Flush everything 3545 * and wait a while 3546 */ 3547 raid5_unplug_device(mddev->queue); 3548 release_stripe(sh); 3549 schedule(); 3550 goto retry; 3551 } 3552 finish_wait(&conf->wait_for_overlap, &w); 3553 set_bit(STRIPE_HANDLE, &sh->state); 3554 clear_bit(STRIPE_DELAYED, &sh->state); 3555 release_stripe(sh); 3556 } else { 3557 /* cannot get stripe for read-ahead, just give-up */ 3558 clear_bit(BIO_UPTODATE, &bi->bi_flags); 3559 finish_wait(&conf->wait_for_overlap, &w); 3560 break; 3561 } 3562 3563 } 3564 spin_lock_irq(&conf->device_lock); 3565 remaining = --bi->bi_phys_segments; 3566 spin_unlock_irq(&conf->device_lock); 3567 if (remaining == 0) { 3568 3569 if ( rw == WRITE ) 3570 md_write_end(mddev); 3571 3572 bi->bi_end_io(bi, 3573 test_bit(BIO_UPTODATE, &bi->bi_flags) 3574 ? 0 : -EIO); 3575 } 3576 return 0; 3577 } 3578 3579 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped) 3580 { 3581 /* reshaping is quite different to recovery/resync so it is 3582 * handled quite separately ... here. 3583 * 3584 * On each call to sync_request, we gather one chunk worth of 3585 * destination stripes and flag them as expanding. 3586 * Then we find all the source stripes and request reads. 3587 * As the reads complete, handle_stripe will copy the data 3588 * into the destination stripe and release that stripe. 3589 */ 3590 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3591 struct stripe_head *sh; 3592 int pd_idx; 3593 sector_t first_sector, last_sector; 3594 int raid_disks = conf->previous_raid_disks; 3595 int data_disks = raid_disks - conf->max_degraded; 3596 int new_data_disks = conf->raid_disks - conf->max_degraded; 3597 int i; 3598 int dd_idx; 3599 sector_t writepos, safepos, gap; 3600 3601 if (sector_nr == 0 && 3602 conf->expand_progress != 0) { 3603 /* restarting in the middle, skip the initial sectors */ 3604 sector_nr = conf->expand_progress; 3605 sector_div(sector_nr, new_data_disks); 3606 *skipped = 1; 3607 return sector_nr; 3608 } 3609 3610 /* we update the metadata when there is more than 3Meg 3611 * in the block range (that is rather arbitrary, should 3612 * probably be time based) or when the data about to be 3613 * copied would over-write the source of the data at 3614 * the front of the range. 3615 * i.e. one new_stripe forward from expand_progress new_maps 3616 * to after where expand_lo old_maps to 3617 */ 3618 writepos = conf->expand_progress + 3619 conf->chunk_size/512*(new_data_disks); 3620 sector_div(writepos, new_data_disks); 3621 safepos = conf->expand_lo; 3622 sector_div(safepos, data_disks); 3623 gap = conf->expand_progress - conf->expand_lo; 3624 3625 if (writepos >= safepos || 3626 gap > (new_data_disks)*3000*2 /*3Meg*/) { 3627 /* Cannot proceed until we've updated the superblock... */ 3628 wait_event(conf->wait_for_overlap, 3629 atomic_read(&conf->reshape_stripes)==0); 3630 mddev->reshape_position = conf->expand_progress; 3631 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3632 md_wakeup_thread(mddev->thread); 3633 wait_event(mddev->sb_wait, mddev->flags == 0 || 3634 kthread_should_stop()); 3635 spin_lock_irq(&conf->device_lock); 3636 conf->expand_lo = mddev->reshape_position; 3637 spin_unlock_irq(&conf->device_lock); 3638 wake_up(&conf->wait_for_overlap); 3639 } 3640 3641 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) { 3642 int j; 3643 int skipped = 0; 3644 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks); 3645 sh = get_active_stripe(conf, sector_nr+i, 3646 conf->raid_disks, pd_idx, 0); 3647 set_bit(STRIPE_EXPANDING, &sh->state); 3648 atomic_inc(&conf->reshape_stripes); 3649 /* If any of this stripe is beyond the end of the old 3650 * array, then we need to zero those blocks 3651 */ 3652 for (j=sh->disks; j--;) { 3653 sector_t s; 3654 if (j == sh->pd_idx) 3655 continue; 3656 if (conf->level == 6 && 3657 j == raid6_next_disk(sh->pd_idx, sh->disks)) 3658 continue; 3659 s = compute_blocknr(sh, j); 3660 if (s < (mddev->array_size<<1)) { 3661 skipped = 1; 3662 continue; 3663 } 3664 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 3665 set_bit(R5_Expanded, &sh->dev[j].flags); 3666 set_bit(R5_UPTODATE, &sh->dev[j].flags); 3667 } 3668 if (!skipped) { 3669 set_bit(STRIPE_EXPAND_READY, &sh->state); 3670 set_bit(STRIPE_HANDLE, &sh->state); 3671 } 3672 release_stripe(sh); 3673 } 3674 spin_lock_irq(&conf->device_lock); 3675 conf->expand_progress = (sector_nr + i) * new_data_disks; 3676 spin_unlock_irq(&conf->device_lock); 3677 /* Ok, those stripe are ready. We can start scheduling 3678 * reads on the source stripes. 3679 * The source stripes are determined by mapping the first and last 3680 * block on the destination stripes. 3681 */ 3682 first_sector = 3683 raid5_compute_sector(sector_nr*(new_data_disks), 3684 raid_disks, data_disks, 3685 &dd_idx, &pd_idx, conf); 3686 last_sector = 3687 raid5_compute_sector((sector_nr+conf->chunk_size/512) 3688 *(new_data_disks) -1, 3689 raid_disks, data_disks, 3690 &dd_idx, &pd_idx, conf); 3691 if (last_sector >= (mddev->size<<1)) 3692 last_sector = (mddev->size<<1)-1; 3693 while (first_sector <= last_sector) { 3694 pd_idx = stripe_to_pdidx(first_sector, conf, 3695 conf->previous_raid_disks); 3696 sh = get_active_stripe(conf, first_sector, 3697 conf->previous_raid_disks, pd_idx, 0); 3698 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3699 set_bit(STRIPE_HANDLE, &sh->state); 3700 release_stripe(sh); 3701 first_sector += STRIPE_SECTORS; 3702 } 3703 /* If this takes us to the resync_max point where we have to pause, 3704 * then we need to write out the superblock. 3705 */ 3706 sector_nr += conf->chunk_size>>9; 3707 if (sector_nr >= mddev->resync_max) { 3708 /* Cannot proceed until we've updated the superblock... */ 3709 wait_event(conf->wait_for_overlap, 3710 atomic_read(&conf->reshape_stripes) == 0); 3711 mddev->reshape_position = conf->expand_progress; 3712 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3713 md_wakeup_thread(mddev->thread); 3714 wait_event(mddev->sb_wait, 3715 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 3716 || kthread_should_stop()); 3717 spin_lock_irq(&conf->device_lock); 3718 conf->expand_lo = mddev->reshape_position; 3719 spin_unlock_irq(&conf->device_lock); 3720 wake_up(&conf->wait_for_overlap); 3721 } 3722 return conf->chunk_size>>9; 3723 } 3724 3725 /* FIXME go_faster isn't used */ 3726 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 3727 { 3728 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 3729 struct stripe_head *sh; 3730 int pd_idx; 3731 int raid_disks = conf->raid_disks; 3732 sector_t max_sector = mddev->size << 1; 3733 int sync_blocks; 3734 int still_degraded = 0; 3735 int i; 3736 3737 if (sector_nr >= max_sector) { 3738 /* just being told to finish up .. nothing much to do */ 3739 unplug_slaves(mddev); 3740 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3741 end_reshape(conf); 3742 return 0; 3743 } 3744 3745 if (mddev->curr_resync < max_sector) /* aborted */ 3746 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3747 &sync_blocks, 1); 3748 else /* completed sync */ 3749 conf->fullsync = 0; 3750 bitmap_close_sync(mddev->bitmap); 3751 3752 return 0; 3753 } 3754 3755 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3756 return reshape_request(mddev, sector_nr, skipped); 3757 3758 /* No need to check resync_max as we never do more than one 3759 * stripe, and as resync_max will always be on a chunk boundary, 3760 * if the check in md_do_sync didn't fire, there is no chance 3761 * of overstepping resync_max here 3762 */ 3763 3764 /* if there is too many failed drives and we are trying 3765 * to resync, then assert that we are finished, because there is 3766 * nothing we can do. 3767 */ 3768 if (mddev->degraded >= conf->max_degraded && 3769 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3770 sector_t rv = (mddev->size << 1) - sector_nr; 3771 *skipped = 1; 3772 return rv; 3773 } 3774 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 3775 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3776 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 3777 /* we can skip this block, and probably more */ 3778 sync_blocks /= STRIPE_SECTORS; 3779 *skipped = 1; 3780 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 3781 } 3782 3783 3784 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3785 3786 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks); 3787 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1); 3788 if (sh == NULL) { 3789 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0); 3790 /* make sure we don't swamp the stripe cache if someone else 3791 * is trying to get access 3792 */ 3793 schedule_timeout_uninterruptible(1); 3794 } 3795 /* Need to check if array will still be degraded after recovery/resync 3796 * We don't need to check the 'failed' flag as when that gets set, 3797 * recovery aborts. 3798 */ 3799 for (i=0; i<mddev->raid_disks; i++) 3800 if (conf->disks[i].rdev == NULL) 3801 still_degraded = 1; 3802 3803 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 3804 3805 spin_lock(&sh->lock); 3806 set_bit(STRIPE_SYNCING, &sh->state); 3807 clear_bit(STRIPE_INSYNC, &sh->state); 3808 spin_unlock(&sh->lock); 3809 3810 handle_stripe(sh, NULL); 3811 release_stripe(sh); 3812 3813 return STRIPE_SECTORS; 3814 } 3815 3816 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio) 3817 { 3818 /* We may not be able to submit a whole bio at once as there 3819 * may not be enough stripe_heads available. 3820 * We cannot pre-allocate enough stripe_heads as we may need 3821 * more than exist in the cache (if we allow ever large chunks). 3822 * So we do one stripe head at a time and record in 3823 * ->bi_hw_segments how many have been done. 3824 * 3825 * We *know* that this entire raid_bio is in one chunk, so 3826 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 3827 */ 3828 struct stripe_head *sh; 3829 int dd_idx, pd_idx; 3830 sector_t sector, logical_sector, last_sector; 3831 int scnt = 0; 3832 int remaining; 3833 int handled = 0; 3834 3835 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 3836 sector = raid5_compute_sector( logical_sector, 3837 conf->raid_disks, 3838 conf->raid_disks - conf->max_degraded, 3839 &dd_idx, 3840 &pd_idx, 3841 conf); 3842 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 3843 3844 for (; logical_sector < last_sector; 3845 logical_sector += STRIPE_SECTORS, 3846 sector += STRIPE_SECTORS, 3847 scnt++) { 3848 3849 if (scnt < raid_bio->bi_hw_segments) 3850 /* already done this stripe */ 3851 continue; 3852 3853 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1); 3854 3855 if (!sh) { 3856 /* failed to get a stripe - must wait */ 3857 raid_bio->bi_hw_segments = scnt; 3858 conf->retry_read_aligned = raid_bio; 3859 return handled; 3860 } 3861 3862 set_bit(R5_ReadError, &sh->dev[dd_idx].flags); 3863 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 3864 release_stripe(sh); 3865 raid_bio->bi_hw_segments = scnt; 3866 conf->retry_read_aligned = raid_bio; 3867 return handled; 3868 } 3869 3870 handle_stripe(sh, NULL); 3871 release_stripe(sh); 3872 handled++; 3873 } 3874 spin_lock_irq(&conf->device_lock); 3875 remaining = --raid_bio->bi_phys_segments; 3876 spin_unlock_irq(&conf->device_lock); 3877 if (remaining == 0) { 3878 3879 raid_bio->bi_end_io(raid_bio, 3880 test_bit(BIO_UPTODATE, &raid_bio->bi_flags) 3881 ? 0 : -EIO); 3882 } 3883 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3884 wake_up(&conf->wait_for_stripe); 3885 return handled; 3886 } 3887 3888 3889 3890 /* 3891 * This is our raid5 kernel thread. 3892 * 3893 * We scan the hash table for stripes which can be handled now. 3894 * During the scan, completed stripes are saved for us by the interrupt 3895 * handler, so that they will not have to wait for our next wakeup. 3896 */ 3897 static void raid5d(mddev_t *mddev) 3898 { 3899 struct stripe_head *sh; 3900 raid5_conf_t *conf = mddev_to_conf(mddev); 3901 int handled; 3902 3903 pr_debug("+++ raid5d active\n"); 3904 3905 md_check_recovery(mddev); 3906 3907 handled = 0; 3908 spin_lock_irq(&conf->device_lock); 3909 while (1) { 3910 struct list_head *first; 3911 struct bio *bio; 3912 3913 if (conf->seq_flush != conf->seq_write) { 3914 int seq = conf->seq_flush; 3915 spin_unlock_irq(&conf->device_lock); 3916 bitmap_unplug(mddev->bitmap); 3917 spin_lock_irq(&conf->device_lock); 3918 conf->seq_write = seq; 3919 activate_bit_delay(conf); 3920 } 3921 3922 while ((bio = remove_bio_from_retry(conf))) { 3923 int ok; 3924 spin_unlock_irq(&conf->device_lock); 3925 ok = retry_aligned_read(conf, bio); 3926 spin_lock_irq(&conf->device_lock); 3927 if (!ok) 3928 break; 3929 handled++; 3930 } 3931 3932 if (list_empty(&conf->handle_list)) { 3933 async_tx_issue_pending_all(); 3934 break; 3935 } 3936 3937 first = conf->handle_list.next; 3938 sh = list_entry(first, struct stripe_head, lru); 3939 3940 list_del_init(first); 3941 atomic_inc(&sh->count); 3942 BUG_ON(atomic_read(&sh->count)!= 1); 3943 spin_unlock_irq(&conf->device_lock); 3944 3945 handled++; 3946 handle_stripe(sh, conf->spare_page); 3947 release_stripe(sh); 3948 3949 spin_lock_irq(&conf->device_lock); 3950 } 3951 pr_debug("%d stripes handled\n", handled); 3952 3953 spin_unlock_irq(&conf->device_lock); 3954 3955 unplug_slaves(mddev); 3956 3957 pr_debug("--- raid5d inactive\n"); 3958 } 3959 3960 static ssize_t 3961 raid5_show_stripe_cache_size(mddev_t *mddev, char *page) 3962 { 3963 raid5_conf_t *conf = mddev_to_conf(mddev); 3964 if (conf) 3965 return sprintf(page, "%d\n", conf->max_nr_stripes); 3966 else 3967 return 0; 3968 } 3969 3970 static ssize_t 3971 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len) 3972 { 3973 raid5_conf_t *conf = mddev_to_conf(mddev); 3974 char *end; 3975 int new; 3976 if (len >= PAGE_SIZE) 3977 return -EINVAL; 3978 if (!conf) 3979 return -ENODEV; 3980 3981 new = simple_strtoul(page, &end, 10); 3982 if (!*page || (*end && *end != '\n') ) 3983 return -EINVAL; 3984 if (new <= 16 || new > 32768) 3985 return -EINVAL; 3986 while (new < conf->max_nr_stripes) { 3987 if (drop_one_stripe(conf)) 3988 conf->max_nr_stripes--; 3989 else 3990 break; 3991 } 3992 md_allow_write(mddev); 3993 while (new > conf->max_nr_stripes) { 3994 if (grow_one_stripe(conf)) 3995 conf->max_nr_stripes++; 3996 else break; 3997 } 3998 return len; 3999 } 4000 4001 static struct md_sysfs_entry 4002 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 4003 raid5_show_stripe_cache_size, 4004 raid5_store_stripe_cache_size); 4005 4006 static ssize_t 4007 stripe_cache_active_show(mddev_t *mddev, char *page) 4008 { 4009 raid5_conf_t *conf = mddev_to_conf(mddev); 4010 if (conf) 4011 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 4012 else 4013 return 0; 4014 } 4015 4016 static struct md_sysfs_entry 4017 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 4018 4019 static struct attribute *raid5_attrs[] = { 4020 &raid5_stripecache_size.attr, 4021 &raid5_stripecache_active.attr, 4022 NULL, 4023 }; 4024 static struct attribute_group raid5_attrs_group = { 4025 .name = NULL, 4026 .attrs = raid5_attrs, 4027 }; 4028 4029 static int run(mddev_t *mddev) 4030 { 4031 raid5_conf_t *conf; 4032 int raid_disk, memory; 4033 mdk_rdev_t *rdev; 4034 struct disk_info *disk; 4035 struct list_head *tmp; 4036 int working_disks = 0; 4037 4038 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) { 4039 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n", 4040 mdname(mddev), mddev->level); 4041 return -EIO; 4042 } 4043 4044 if (mddev->reshape_position != MaxSector) { 4045 /* Check that we can continue the reshape. 4046 * Currently only disks can change, it must 4047 * increase, and we must be past the point where 4048 * a stripe over-writes itself 4049 */ 4050 sector_t here_new, here_old; 4051 int old_disks; 4052 int max_degraded = (mddev->level == 5 ? 1 : 2); 4053 4054 if (mddev->new_level != mddev->level || 4055 mddev->new_layout != mddev->layout || 4056 mddev->new_chunk != mddev->chunk_size) { 4057 printk(KERN_ERR "raid5: %s: unsupported reshape " 4058 "required - aborting.\n", 4059 mdname(mddev)); 4060 return -EINVAL; 4061 } 4062 if (mddev->delta_disks <= 0) { 4063 printk(KERN_ERR "raid5: %s: unsupported reshape " 4064 "(reduce disks) required - aborting.\n", 4065 mdname(mddev)); 4066 return -EINVAL; 4067 } 4068 old_disks = mddev->raid_disks - mddev->delta_disks; 4069 /* reshape_position must be on a new-stripe boundary, and one 4070 * further up in new geometry must map after here in old 4071 * geometry. 4072 */ 4073 here_new = mddev->reshape_position; 4074 if (sector_div(here_new, (mddev->chunk_size>>9)* 4075 (mddev->raid_disks - max_degraded))) { 4076 printk(KERN_ERR "raid5: reshape_position not " 4077 "on a stripe boundary\n"); 4078 return -EINVAL; 4079 } 4080 /* here_new is the stripe we will write to */ 4081 here_old = mddev->reshape_position; 4082 sector_div(here_old, (mddev->chunk_size>>9)* 4083 (old_disks-max_degraded)); 4084 /* here_old is the first stripe that we might need to read 4085 * from */ 4086 if (here_new >= here_old) { 4087 /* Reading from the same stripe as writing to - bad */ 4088 printk(KERN_ERR "raid5: reshape_position too early for " 4089 "auto-recovery - aborting.\n"); 4090 return -EINVAL; 4091 } 4092 printk(KERN_INFO "raid5: reshape will continue\n"); 4093 /* OK, we should be able to continue; */ 4094 } 4095 4096 4097 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL); 4098 if ((conf = mddev->private) == NULL) 4099 goto abort; 4100 if (mddev->reshape_position == MaxSector) { 4101 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks; 4102 } else { 4103 conf->raid_disks = mddev->raid_disks; 4104 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 4105 } 4106 4107 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info), 4108 GFP_KERNEL); 4109 if (!conf->disks) 4110 goto abort; 4111 4112 conf->mddev = mddev; 4113 4114 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 4115 goto abort; 4116 4117 if (mddev->level == 6) { 4118 conf->spare_page = alloc_page(GFP_KERNEL); 4119 if (!conf->spare_page) 4120 goto abort; 4121 } 4122 spin_lock_init(&conf->device_lock); 4123 init_waitqueue_head(&conf->wait_for_stripe); 4124 init_waitqueue_head(&conf->wait_for_overlap); 4125 INIT_LIST_HEAD(&conf->handle_list); 4126 INIT_LIST_HEAD(&conf->delayed_list); 4127 INIT_LIST_HEAD(&conf->bitmap_list); 4128 INIT_LIST_HEAD(&conf->inactive_list); 4129 atomic_set(&conf->active_stripes, 0); 4130 atomic_set(&conf->preread_active_stripes, 0); 4131 atomic_set(&conf->active_aligned_reads, 0); 4132 4133 pr_debug("raid5: run(%s) called.\n", mdname(mddev)); 4134 4135 rdev_for_each(rdev, tmp, mddev) { 4136 raid_disk = rdev->raid_disk; 4137 if (raid_disk >= conf->raid_disks 4138 || raid_disk < 0) 4139 continue; 4140 disk = conf->disks + raid_disk; 4141 4142 disk->rdev = rdev; 4143 4144 if (test_bit(In_sync, &rdev->flags)) { 4145 char b[BDEVNAME_SIZE]; 4146 printk(KERN_INFO "raid5: device %s operational as raid" 4147 " disk %d\n", bdevname(rdev->bdev,b), 4148 raid_disk); 4149 working_disks++; 4150 } 4151 } 4152 4153 /* 4154 * 0 for a fully functional array, 1 or 2 for a degraded array. 4155 */ 4156 mddev->degraded = conf->raid_disks - working_disks; 4157 conf->mddev = mddev; 4158 conf->chunk_size = mddev->chunk_size; 4159 conf->level = mddev->level; 4160 if (conf->level == 6) 4161 conf->max_degraded = 2; 4162 else 4163 conf->max_degraded = 1; 4164 conf->algorithm = mddev->layout; 4165 conf->max_nr_stripes = NR_STRIPES; 4166 conf->expand_progress = mddev->reshape_position; 4167 4168 /* device size must be a multiple of chunk size */ 4169 mddev->size &= ~(mddev->chunk_size/1024 -1); 4170 mddev->resync_max_sectors = mddev->size << 1; 4171 4172 if (conf->level == 6 && conf->raid_disks < 4) { 4173 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n", 4174 mdname(mddev), conf->raid_disks); 4175 goto abort; 4176 } 4177 if (!conf->chunk_size || conf->chunk_size % 4) { 4178 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", 4179 conf->chunk_size, mdname(mddev)); 4180 goto abort; 4181 } 4182 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { 4183 printk(KERN_ERR 4184 "raid5: unsupported parity algorithm %d for %s\n", 4185 conf->algorithm, mdname(mddev)); 4186 goto abort; 4187 } 4188 if (mddev->degraded > conf->max_degraded) { 4189 printk(KERN_ERR "raid5: not enough operational devices for %s" 4190 " (%d/%d failed)\n", 4191 mdname(mddev), mddev->degraded, conf->raid_disks); 4192 goto abort; 4193 } 4194 4195 if (mddev->degraded > 0 && 4196 mddev->recovery_cp != MaxSector) { 4197 if (mddev->ok_start_degraded) 4198 printk(KERN_WARNING 4199 "raid5: starting dirty degraded array: %s" 4200 "- data corruption possible.\n", 4201 mdname(mddev)); 4202 else { 4203 printk(KERN_ERR 4204 "raid5: cannot start dirty degraded array for %s\n", 4205 mdname(mddev)); 4206 goto abort; 4207 } 4208 } 4209 4210 { 4211 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5"); 4212 if (!mddev->thread) { 4213 printk(KERN_ERR 4214 "raid5: couldn't allocate thread for %s\n", 4215 mdname(mddev)); 4216 goto abort; 4217 } 4218 } 4219 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 4220 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 4221 if (grow_stripes(conf, conf->max_nr_stripes)) { 4222 printk(KERN_ERR 4223 "raid5: couldn't allocate %dkB for buffers\n", memory); 4224 shrink_stripes(conf); 4225 md_unregister_thread(mddev->thread); 4226 goto abort; 4227 } else 4228 printk(KERN_INFO "raid5: allocated %dkB for %s\n", 4229 memory, mdname(mddev)); 4230 4231 if (mddev->degraded == 0) 4232 printk("raid5: raid level %d set %s active with %d out of %d" 4233 " devices, algorithm %d\n", conf->level, mdname(mddev), 4234 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 4235 conf->algorithm); 4236 else 4237 printk(KERN_ALERT "raid5: raid level %d set %s active with %d" 4238 " out of %d devices, algorithm %d\n", conf->level, 4239 mdname(mddev), mddev->raid_disks - mddev->degraded, 4240 mddev->raid_disks, conf->algorithm); 4241 4242 print_raid5_conf(conf); 4243 4244 if (conf->expand_progress != MaxSector) { 4245 printk("...ok start reshape thread\n"); 4246 conf->expand_lo = conf->expand_progress; 4247 atomic_set(&conf->reshape_stripes, 0); 4248 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4249 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4250 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4251 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4252 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4253 "%s_reshape"); 4254 } 4255 4256 /* read-ahead size must cover two whole stripes, which is 4257 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4258 */ 4259 { 4260 int data_disks = conf->previous_raid_disks - conf->max_degraded; 4261 int stripe = data_disks * 4262 (mddev->chunk_size / PAGE_SIZE); 4263 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4264 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4265 } 4266 4267 /* Ok, everything is just fine now */ 4268 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 4269 printk(KERN_WARNING 4270 "raid5: failed to create sysfs attributes for %s\n", 4271 mdname(mddev)); 4272 4273 mddev->queue->unplug_fn = raid5_unplug_device; 4274 mddev->queue->backing_dev_info.congested_data = mddev; 4275 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 4276 4277 mddev->array_size = mddev->size * (conf->previous_raid_disks - 4278 conf->max_degraded); 4279 4280 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 4281 4282 return 0; 4283 abort: 4284 if (conf) { 4285 print_raid5_conf(conf); 4286 safe_put_page(conf->spare_page); 4287 kfree(conf->disks); 4288 kfree(conf->stripe_hashtbl); 4289 kfree(conf); 4290 } 4291 mddev->private = NULL; 4292 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev)); 4293 return -EIO; 4294 } 4295 4296 4297 4298 static int stop(mddev_t *mddev) 4299 { 4300 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 4301 4302 md_unregister_thread(mddev->thread); 4303 mddev->thread = NULL; 4304 shrink_stripes(conf); 4305 kfree(conf->stripe_hashtbl); 4306 mddev->queue->backing_dev_info.congested_fn = NULL; 4307 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 4308 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group); 4309 kfree(conf->disks); 4310 kfree(conf); 4311 mddev->private = NULL; 4312 return 0; 4313 } 4314 4315 #ifdef DEBUG 4316 static void print_sh (struct seq_file *seq, struct stripe_head *sh) 4317 { 4318 int i; 4319 4320 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", 4321 (unsigned long long)sh->sector, sh->pd_idx, sh->state); 4322 seq_printf(seq, "sh %llu, count %d.\n", 4323 (unsigned long long)sh->sector, atomic_read(&sh->count)); 4324 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); 4325 for (i = 0; i < sh->disks; i++) { 4326 seq_printf(seq, "(cache%d: %p %ld) ", 4327 i, sh->dev[i].page, sh->dev[i].flags); 4328 } 4329 seq_printf(seq, "\n"); 4330 } 4331 4332 static void printall (struct seq_file *seq, raid5_conf_t *conf) 4333 { 4334 struct stripe_head *sh; 4335 struct hlist_node *hn; 4336 int i; 4337 4338 spin_lock_irq(&conf->device_lock); 4339 for (i = 0; i < NR_HASH; i++) { 4340 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) { 4341 if (sh->raid_conf != conf) 4342 continue; 4343 print_sh(seq, sh); 4344 } 4345 } 4346 spin_unlock_irq(&conf->device_lock); 4347 } 4348 #endif 4349 4350 static void status (struct seq_file *seq, mddev_t *mddev) 4351 { 4352 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 4353 int i; 4354 4355 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); 4356 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 4357 for (i = 0; i < conf->raid_disks; i++) 4358 seq_printf (seq, "%s", 4359 conf->disks[i].rdev && 4360 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 4361 seq_printf (seq, "]"); 4362 #ifdef DEBUG 4363 seq_printf (seq, "\n"); 4364 printall(seq, conf); 4365 #endif 4366 } 4367 4368 static void print_raid5_conf (raid5_conf_t *conf) 4369 { 4370 int i; 4371 struct disk_info *tmp; 4372 4373 printk("RAID5 conf printout:\n"); 4374 if (!conf) { 4375 printk("(conf==NULL)\n"); 4376 return; 4377 } 4378 printk(" --- rd:%d wd:%d\n", conf->raid_disks, 4379 conf->raid_disks - conf->mddev->degraded); 4380 4381 for (i = 0; i < conf->raid_disks; i++) { 4382 char b[BDEVNAME_SIZE]; 4383 tmp = conf->disks + i; 4384 if (tmp->rdev) 4385 printk(" disk %d, o:%d, dev:%s\n", 4386 i, !test_bit(Faulty, &tmp->rdev->flags), 4387 bdevname(tmp->rdev->bdev,b)); 4388 } 4389 } 4390 4391 static int raid5_spare_active(mddev_t *mddev) 4392 { 4393 int i; 4394 raid5_conf_t *conf = mddev->private; 4395 struct disk_info *tmp; 4396 4397 for (i = 0; i < conf->raid_disks; i++) { 4398 tmp = conf->disks + i; 4399 if (tmp->rdev 4400 && !test_bit(Faulty, &tmp->rdev->flags) 4401 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 4402 unsigned long flags; 4403 spin_lock_irqsave(&conf->device_lock, flags); 4404 mddev->degraded--; 4405 spin_unlock_irqrestore(&conf->device_lock, flags); 4406 } 4407 } 4408 print_raid5_conf(conf); 4409 return 0; 4410 } 4411 4412 static int raid5_remove_disk(mddev_t *mddev, int number) 4413 { 4414 raid5_conf_t *conf = mddev->private; 4415 int err = 0; 4416 mdk_rdev_t *rdev; 4417 struct disk_info *p = conf->disks + number; 4418 4419 print_raid5_conf(conf); 4420 rdev = p->rdev; 4421 if (rdev) { 4422 if (test_bit(In_sync, &rdev->flags) || 4423 atomic_read(&rdev->nr_pending)) { 4424 err = -EBUSY; 4425 goto abort; 4426 } 4427 p->rdev = NULL; 4428 synchronize_rcu(); 4429 if (atomic_read(&rdev->nr_pending)) { 4430 /* lost the race, try later */ 4431 err = -EBUSY; 4432 p->rdev = rdev; 4433 } 4434 } 4435 abort: 4436 4437 print_raid5_conf(conf); 4438 return err; 4439 } 4440 4441 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 4442 { 4443 raid5_conf_t *conf = mddev->private; 4444 int found = 0; 4445 int disk; 4446 struct disk_info *p; 4447 4448 if (mddev->degraded > conf->max_degraded) 4449 /* no point adding a device */ 4450 return 0; 4451 4452 /* 4453 * find the disk ... but prefer rdev->saved_raid_disk 4454 * if possible. 4455 */ 4456 if (rdev->saved_raid_disk >= 0 && 4457 conf->disks[rdev->saved_raid_disk].rdev == NULL) 4458 disk = rdev->saved_raid_disk; 4459 else 4460 disk = 0; 4461 for ( ; disk < conf->raid_disks; disk++) 4462 if ((p=conf->disks + disk)->rdev == NULL) { 4463 clear_bit(In_sync, &rdev->flags); 4464 rdev->raid_disk = disk; 4465 found = 1; 4466 if (rdev->saved_raid_disk != disk) 4467 conf->fullsync = 1; 4468 rcu_assign_pointer(p->rdev, rdev); 4469 break; 4470 } 4471 print_raid5_conf(conf); 4472 return found; 4473 } 4474 4475 static int raid5_resize(mddev_t *mddev, sector_t sectors) 4476 { 4477 /* no resync is happening, and there is enough space 4478 * on all devices, so we can resize. 4479 * We need to make sure resync covers any new space. 4480 * If the array is shrinking we should possibly wait until 4481 * any io in the removed space completes, but it hardly seems 4482 * worth it. 4483 */ 4484 raid5_conf_t *conf = mddev_to_conf(mddev); 4485 4486 sectors &= ~((sector_t)mddev->chunk_size/512 - 1); 4487 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1; 4488 set_capacity(mddev->gendisk, mddev->array_size << 1); 4489 mddev->changed = 1; 4490 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) { 4491 mddev->recovery_cp = mddev->size << 1; 4492 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4493 } 4494 mddev->size = sectors /2; 4495 mddev->resync_max_sectors = sectors; 4496 return 0; 4497 } 4498 4499 #ifdef CONFIG_MD_RAID5_RESHAPE 4500 static int raid5_check_reshape(mddev_t *mddev) 4501 { 4502 raid5_conf_t *conf = mddev_to_conf(mddev); 4503 int err; 4504 4505 if (mddev->delta_disks < 0 || 4506 mddev->new_level != mddev->level) 4507 return -EINVAL; /* Cannot shrink array or change level yet */ 4508 if (mddev->delta_disks == 0) 4509 return 0; /* nothing to do */ 4510 4511 /* Can only proceed if there are plenty of stripe_heads. 4512 * We need a minimum of one full stripe,, and for sensible progress 4513 * it is best to have about 4 times that. 4514 * If we require 4 times, then the default 256 4K stripe_heads will 4515 * allow for chunk sizes up to 256K, which is probably OK. 4516 * If the chunk size is greater, user-space should request more 4517 * stripe_heads first. 4518 */ 4519 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes || 4520 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) { 4521 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n", 4522 (mddev->chunk_size / STRIPE_SIZE)*4); 4523 return -ENOSPC; 4524 } 4525 4526 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks); 4527 if (err) 4528 return err; 4529 4530 if (mddev->degraded > conf->max_degraded) 4531 return -EINVAL; 4532 /* looks like we might be able to manage this */ 4533 return 0; 4534 } 4535 4536 static int raid5_start_reshape(mddev_t *mddev) 4537 { 4538 raid5_conf_t *conf = mddev_to_conf(mddev); 4539 mdk_rdev_t *rdev; 4540 struct list_head *rtmp; 4541 int spares = 0; 4542 int added_devices = 0; 4543 unsigned long flags; 4544 4545 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4546 return -EBUSY; 4547 4548 rdev_for_each(rdev, rtmp, mddev) 4549 if (rdev->raid_disk < 0 && 4550 !test_bit(Faulty, &rdev->flags)) 4551 spares++; 4552 4553 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 4554 /* Not enough devices even to make a degraded array 4555 * of that size 4556 */ 4557 return -EINVAL; 4558 4559 atomic_set(&conf->reshape_stripes, 0); 4560 spin_lock_irq(&conf->device_lock); 4561 conf->previous_raid_disks = conf->raid_disks; 4562 conf->raid_disks += mddev->delta_disks; 4563 conf->expand_progress = 0; 4564 conf->expand_lo = 0; 4565 spin_unlock_irq(&conf->device_lock); 4566 4567 /* Add some new drives, as many as will fit. 4568 * We know there are enough to make the newly sized array work. 4569 */ 4570 rdev_for_each(rdev, rtmp, mddev) 4571 if (rdev->raid_disk < 0 && 4572 !test_bit(Faulty, &rdev->flags)) { 4573 if (raid5_add_disk(mddev, rdev)) { 4574 char nm[20]; 4575 set_bit(In_sync, &rdev->flags); 4576 added_devices++; 4577 rdev->recovery_offset = 0; 4578 sprintf(nm, "rd%d", rdev->raid_disk); 4579 if (sysfs_create_link(&mddev->kobj, 4580 &rdev->kobj, nm)) 4581 printk(KERN_WARNING 4582 "raid5: failed to create " 4583 " link %s for %s\n", 4584 nm, mdname(mddev)); 4585 } else 4586 break; 4587 } 4588 4589 spin_lock_irqsave(&conf->device_lock, flags); 4590 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices; 4591 spin_unlock_irqrestore(&conf->device_lock, flags); 4592 mddev->raid_disks = conf->raid_disks; 4593 mddev->reshape_position = 0; 4594 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4595 4596 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4597 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4598 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4599 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4600 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4601 "%s_reshape"); 4602 if (!mddev->sync_thread) { 4603 mddev->recovery = 0; 4604 spin_lock_irq(&conf->device_lock); 4605 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 4606 conf->expand_progress = MaxSector; 4607 spin_unlock_irq(&conf->device_lock); 4608 return -EAGAIN; 4609 } 4610 md_wakeup_thread(mddev->sync_thread); 4611 md_new_event(mddev); 4612 return 0; 4613 } 4614 #endif 4615 4616 static void end_reshape(raid5_conf_t *conf) 4617 { 4618 struct block_device *bdev; 4619 4620 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 4621 conf->mddev->array_size = conf->mddev->size * 4622 (conf->raid_disks - conf->max_degraded); 4623 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1); 4624 conf->mddev->changed = 1; 4625 4626 bdev = bdget_disk(conf->mddev->gendisk, 0); 4627 if (bdev) { 4628 mutex_lock(&bdev->bd_inode->i_mutex); 4629 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10); 4630 mutex_unlock(&bdev->bd_inode->i_mutex); 4631 bdput(bdev); 4632 } 4633 spin_lock_irq(&conf->device_lock); 4634 conf->expand_progress = MaxSector; 4635 spin_unlock_irq(&conf->device_lock); 4636 conf->mddev->reshape_position = MaxSector; 4637 4638 /* read-ahead size must cover two whole stripes, which is 4639 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4640 */ 4641 { 4642 int data_disks = conf->previous_raid_disks - conf->max_degraded; 4643 int stripe = data_disks * 4644 (conf->mddev->chunk_size / PAGE_SIZE); 4645 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4646 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4647 } 4648 } 4649 } 4650 4651 static void raid5_quiesce(mddev_t *mddev, int state) 4652 { 4653 raid5_conf_t *conf = mddev_to_conf(mddev); 4654 4655 switch(state) { 4656 case 2: /* resume for a suspend */ 4657 wake_up(&conf->wait_for_overlap); 4658 break; 4659 4660 case 1: /* stop all writes */ 4661 spin_lock_irq(&conf->device_lock); 4662 conf->quiesce = 1; 4663 wait_event_lock_irq(conf->wait_for_stripe, 4664 atomic_read(&conf->active_stripes) == 0 && 4665 atomic_read(&conf->active_aligned_reads) == 0, 4666 conf->device_lock, /* nothing */); 4667 spin_unlock_irq(&conf->device_lock); 4668 break; 4669 4670 case 0: /* re-enable writes */ 4671 spin_lock_irq(&conf->device_lock); 4672 conf->quiesce = 0; 4673 wake_up(&conf->wait_for_stripe); 4674 wake_up(&conf->wait_for_overlap); 4675 spin_unlock_irq(&conf->device_lock); 4676 break; 4677 } 4678 } 4679 4680 static struct mdk_personality raid6_personality = 4681 { 4682 .name = "raid6", 4683 .level = 6, 4684 .owner = THIS_MODULE, 4685 .make_request = make_request, 4686 .run = run, 4687 .stop = stop, 4688 .status = status, 4689 .error_handler = error, 4690 .hot_add_disk = raid5_add_disk, 4691 .hot_remove_disk= raid5_remove_disk, 4692 .spare_active = raid5_spare_active, 4693 .sync_request = sync_request, 4694 .resize = raid5_resize, 4695 #ifdef CONFIG_MD_RAID5_RESHAPE 4696 .check_reshape = raid5_check_reshape, 4697 .start_reshape = raid5_start_reshape, 4698 #endif 4699 .quiesce = raid5_quiesce, 4700 }; 4701 static struct mdk_personality raid5_personality = 4702 { 4703 .name = "raid5", 4704 .level = 5, 4705 .owner = THIS_MODULE, 4706 .make_request = make_request, 4707 .run = run, 4708 .stop = stop, 4709 .status = status, 4710 .error_handler = error, 4711 .hot_add_disk = raid5_add_disk, 4712 .hot_remove_disk= raid5_remove_disk, 4713 .spare_active = raid5_spare_active, 4714 .sync_request = sync_request, 4715 .resize = raid5_resize, 4716 #ifdef CONFIG_MD_RAID5_RESHAPE 4717 .check_reshape = raid5_check_reshape, 4718 .start_reshape = raid5_start_reshape, 4719 #endif 4720 .quiesce = raid5_quiesce, 4721 }; 4722 4723 static struct mdk_personality raid4_personality = 4724 { 4725 .name = "raid4", 4726 .level = 4, 4727 .owner = THIS_MODULE, 4728 .make_request = make_request, 4729 .run = run, 4730 .stop = stop, 4731 .status = status, 4732 .error_handler = error, 4733 .hot_add_disk = raid5_add_disk, 4734 .hot_remove_disk= raid5_remove_disk, 4735 .spare_active = raid5_spare_active, 4736 .sync_request = sync_request, 4737 .resize = raid5_resize, 4738 #ifdef CONFIG_MD_RAID5_RESHAPE 4739 .check_reshape = raid5_check_reshape, 4740 .start_reshape = raid5_start_reshape, 4741 #endif 4742 .quiesce = raid5_quiesce, 4743 }; 4744 4745 static int __init raid5_init(void) 4746 { 4747 int e; 4748 4749 e = raid6_select_algo(); 4750 if ( e ) 4751 return e; 4752 register_md_personality(&raid6_personality); 4753 register_md_personality(&raid5_personality); 4754 register_md_personality(&raid4_personality); 4755 return 0; 4756 } 4757 4758 static void raid5_exit(void) 4759 { 4760 unregister_md_personality(&raid6_personality); 4761 unregister_md_personality(&raid5_personality); 4762 unregister_md_personality(&raid4_personality); 4763 } 4764 4765 module_init(raid5_init); 4766 module_exit(raid5_exit); 4767 MODULE_LICENSE("GPL"); 4768 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 4769 MODULE_ALIAS("md-raid5"); 4770 MODULE_ALIAS("md-raid4"); 4771 MODULE_ALIAS("md-level-5"); 4772 MODULE_ALIAS("md-level-4"); 4773 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 4774 MODULE_ALIAS("md-raid6"); 4775 MODULE_ALIAS("md-level-6"); 4776 4777 /* This used to be two separate modules, they were: */ 4778 MODULE_ALIAS("raid5"); 4779 MODULE_ALIAS("raid6"); 4780