1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <trace/events/block.h> 59 60 #include "md.h" 61 #include "raid5.h" 62 #include "raid0.h" 63 #include "bitmap.h" 64 65 #define cpu_to_group(cpu) cpu_to_node(cpu) 66 #define ANY_GROUP NUMA_NO_NODE 67 68 static bool devices_handle_discard_safely = false; 69 module_param(devices_handle_discard_safely, bool, 0644); 70 MODULE_PARM_DESC(devices_handle_discard_safely, 71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 72 static struct workqueue_struct *raid5_wq; 73 /* 74 * Stripe cache 75 */ 76 77 #define NR_STRIPES 256 78 #define STRIPE_SIZE PAGE_SIZE 79 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 80 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 81 #define IO_THRESHOLD 1 82 #define BYPASS_THRESHOLD 1 83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 84 #define HASH_MASK (NR_HASH - 1) 85 #define MAX_STRIPE_BATCH 8 86 87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 88 { 89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 90 return &conf->stripe_hashtbl[hash]; 91 } 92 93 static inline int stripe_hash_locks_hash(sector_t sect) 94 { 95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 96 } 97 98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 99 { 100 spin_lock_irq(conf->hash_locks + hash); 101 spin_lock(&conf->device_lock); 102 } 103 104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 105 { 106 spin_unlock(&conf->device_lock); 107 spin_unlock_irq(conf->hash_locks + hash); 108 } 109 110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 111 { 112 int i; 113 local_irq_disable(); 114 spin_lock(conf->hash_locks); 115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 117 spin_lock(&conf->device_lock); 118 } 119 120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 121 { 122 int i; 123 spin_unlock(&conf->device_lock); 124 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 125 spin_unlock(conf->hash_locks + i - 1); 126 local_irq_enable(); 127 } 128 129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 130 * order without overlap. There may be several bio's per stripe+device, and 131 * a bio could span several devices. 132 * When walking this list for a particular stripe+device, we must never proceed 133 * beyond a bio that extends past this device, as the next bio might no longer 134 * be valid. 135 * This function is used to determine the 'next' bio in the list, given the sector 136 * of the current stripe+device 137 */ 138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 139 { 140 int sectors = bio_sectors(bio); 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 142 return bio->bi_next; 143 else 144 return NULL; 145 } 146 147 /* 148 * We maintain a biased count of active stripes in the bottom 16 bits of 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 150 */ 151 static inline int raid5_bi_processed_stripes(struct bio *bio) 152 { 153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 154 return (atomic_read(segments) >> 16) & 0xffff; 155 } 156 157 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 158 { 159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 160 return atomic_sub_return(1, segments) & 0xffff; 161 } 162 163 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 164 { 165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 166 atomic_inc(segments); 167 } 168 169 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 170 unsigned int cnt) 171 { 172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 173 int old, new; 174 175 do { 176 old = atomic_read(segments); 177 new = (old & 0xffff) | (cnt << 16); 178 } while (atomic_cmpxchg(segments, old, new) != old); 179 } 180 181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 182 { 183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 184 atomic_set(segments, cnt); 185 } 186 187 /* Find first data disk in a raid6 stripe */ 188 static inline int raid6_d0(struct stripe_head *sh) 189 { 190 if (sh->ddf_layout) 191 /* ddf always start from first device */ 192 return 0; 193 /* md starts just after Q block */ 194 if (sh->qd_idx == sh->disks - 1) 195 return 0; 196 else 197 return sh->qd_idx + 1; 198 } 199 static inline int raid6_next_disk(int disk, int raid_disks) 200 { 201 disk++; 202 return (disk < raid_disks) ? disk : 0; 203 } 204 205 /* When walking through the disks in a raid5, starting at raid6_d0, 206 * We need to map each disk to a 'slot', where the data disks are slot 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 208 * is raid_disks-1. This help does that mapping. 209 */ 210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 211 int *count, int syndrome_disks) 212 { 213 int slot = *count; 214 215 if (sh->ddf_layout) 216 (*count)++; 217 if (idx == sh->pd_idx) 218 return syndrome_disks; 219 if (idx == sh->qd_idx) 220 return syndrome_disks + 1; 221 if (!sh->ddf_layout) 222 (*count)++; 223 return slot; 224 } 225 226 static void return_io(struct bio_list *return_bi) 227 { 228 struct bio *bi; 229 while ((bi = bio_list_pop(return_bi)) != NULL) { 230 bi->bi_iter.bi_size = 0; 231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 232 bi, 0); 233 bio_endio(bi); 234 } 235 } 236 237 static void print_raid5_conf (struct r5conf *conf); 238 239 static int stripe_operations_active(struct stripe_head *sh) 240 { 241 return sh->check_state || sh->reconstruct_state || 242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 243 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 244 } 245 246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 247 { 248 struct r5conf *conf = sh->raid_conf; 249 struct r5worker_group *group; 250 int thread_cnt; 251 int i, cpu = sh->cpu; 252 253 if (!cpu_online(cpu)) { 254 cpu = cpumask_any(cpu_online_mask); 255 sh->cpu = cpu; 256 } 257 258 if (list_empty(&sh->lru)) { 259 struct r5worker_group *group; 260 group = conf->worker_groups + cpu_to_group(cpu); 261 list_add_tail(&sh->lru, &group->handle_list); 262 group->stripes_cnt++; 263 sh->group = group; 264 } 265 266 if (conf->worker_cnt_per_group == 0) { 267 md_wakeup_thread(conf->mddev->thread); 268 return; 269 } 270 271 group = conf->worker_groups + cpu_to_group(sh->cpu); 272 273 group->workers[0].working = true; 274 /* at least one worker should run to avoid race */ 275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 276 277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 278 /* wakeup more workers */ 279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 280 if (group->workers[i].working == false) { 281 group->workers[i].working = true; 282 queue_work_on(sh->cpu, raid5_wq, 283 &group->workers[i].work); 284 thread_cnt--; 285 } 286 } 287 } 288 289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 290 struct list_head *temp_inactive_list) 291 { 292 BUG_ON(!list_empty(&sh->lru)); 293 BUG_ON(atomic_read(&conf->active_stripes)==0); 294 if (test_bit(STRIPE_HANDLE, &sh->state)) { 295 if (test_bit(STRIPE_DELAYED, &sh->state) && 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 297 list_add_tail(&sh->lru, &conf->delayed_list); 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 299 sh->bm_seq - conf->seq_write > 0) 300 list_add_tail(&sh->lru, &conf->bitmap_list); 301 else { 302 clear_bit(STRIPE_DELAYED, &sh->state); 303 clear_bit(STRIPE_BIT_DELAY, &sh->state); 304 if (conf->worker_cnt_per_group == 0) { 305 list_add_tail(&sh->lru, &conf->handle_list); 306 } else { 307 raid5_wakeup_stripe_thread(sh); 308 return; 309 } 310 } 311 md_wakeup_thread(conf->mddev->thread); 312 } else { 313 BUG_ON(stripe_operations_active(sh)); 314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 315 if (atomic_dec_return(&conf->preread_active_stripes) 316 < IO_THRESHOLD) 317 md_wakeup_thread(conf->mddev->thread); 318 atomic_dec(&conf->active_stripes); 319 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 320 list_add_tail(&sh->lru, temp_inactive_list); 321 } 322 } 323 324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 325 struct list_head *temp_inactive_list) 326 { 327 if (atomic_dec_and_test(&sh->count)) 328 do_release_stripe(conf, sh, temp_inactive_list); 329 } 330 331 /* 332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 333 * 334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 335 * given time. Adding stripes only takes device lock, while deleting stripes 336 * only takes hash lock. 337 */ 338 static void release_inactive_stripe_list(struct r5conf *conf, 339 struct list_head *temp_inactive_list, 340 int hash) 341 { 342 int size; 343 unsigned long do_wakeup = 0; 344 int i = 0; 345 unsigned long flags; 346 347 if (hash == NR_STRIPE_HASH_LOCKS) { 348 size = NR_STRIPE_HASH_LOCKS; 349 hash = NR_STRIPE_HASH_LOCKS - 1; 350 } else 351 size = 1; 352 while (size) { 353 struct list_head *list = &temp_inactive_list[size - 1]; 354 355 /* 356 * We don't hold any lock here yet, raid5_get_active_stripe() might 357 * remove stripes from the list 358 */ 359 if (!list_empty_careful(list)) { 360 spin_lock_irqsave(conf->hash_locks + hash, flags); 361 if (list_empty(conf->inactive_list + hash) && 362 !list_empty(list)) 363 atomic_dec(&conf->empty_inactive_list_nr); 364 list_splice_tail_init(list, conf->inactive_list + hash); 365 do_wakeup |= 1 << hash; 366 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 367 } 368 size--; 369 hash--; 370 } 371 372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) { 373 if (do_wakeup & (1 << i)) 374 wake_up(&conf->wait_for_stripe[i]); 375 } 376 377 if (do_wakeup) { 378 if (atomic_read(&conf->active_stripes) == 0) 379 wake_up(&conf->wait_for_quiescent); 380 if (conf->retry_read_aligned) 381 md_wakeup_thread(conf->mddev->thread); 382 } 383 } 384 385 /* should hold conf->device_lock already */ 386 static int release_stripe_list(struct r5conf *conf, 387 struct list_head *temp_inactive_list) 388 { 389 struct stripe_head *sh; 390 int count = 0; 391 struct llist_node *head; 392 393 head = llist_del_all(&conf->released_stripes); 394 head = llist_reverse_order(head); 395 while (head) { 396 int hash; 397 398 sh = llist_entry(head, struct stripe_head, release_list); 399 head = llist_next(head); 400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 401 smp_mb(); 402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 403 /* 404 * Don't worry the bit is set here, because if the bit is set 405 * again, the count is always > 1. This is true for 406 * STRIPE_ON_UNPLUG_LIST bit too. 407 */ 408 hash = sh->hash_lock_index; 409 __release_stripe(conf, sh, &temp_inactive_list[hash]); 410 count++; 411 } 412 413 return count; 414 } 415 416 void raid5_release_stripe(struct stripe_head *sh) 417 { 418 struct r5conf *conf = sh->raid_conf; 419 unsigned long flags; 420 struct list_head list; 421 int hash; 422 bool wakeup; 423 424 /* Avoid release_list until the last reference. 425 */ 426 if (atomic_add_unless(&sh->count, -1, 1)) 427 return; 428 429 if (unlikely(!conf->mddev->thread) || 430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 431 goto slow_path; 432 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 433 if (wakeup) 434 md_wakeup_thread(conf->mddev->thread); 435 return; 436 slow_path: 437 local_irq_save(flags); 438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 440 INIT_LIST_HEAD(&list); 441 hash = sh->hash_lock_index; 442 do_release_stripe(conf, sh, &list); 443 spin_unlock(&conf->device_lock); 444 release_inactive_stripe_list(conf, &list, hash); 445 } 446 local_irq_restore(flags); 447 } 448 449 static inline void remove_hash(struct stripe_head *sh) 450 { 451 pr_debug("remove_hash(), stripe %llu\n", 452 (unsigned long long)sh->sector); 453 454 hlist_del_init(&sh->hash); 455 } 456 457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 458 { 459 struct hlist_head *hp = stripe_hash(conf, sh->sector); 460 461 pr_debug("insert_hash(), stripe %llu\n", 462 (unsigned long long)sh->sector); 463 464 hlist_add_head(&sh->hash, hp); 465 } 466 467 /* find an idle stripe, make sure it is unhashed, and return it. */ 468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 469 { 470 struct stripe_head *sh = NULL; 471 struct list_head *first; 472 473 if (list_empty(conf->inactive_list + hash)) 474 goto out; 475 first = (conf->inactive_list + hash)->next; 476 sh = list_entry(first, struct stripe_head, lru); 477 list_del_init(first); 478 remove_hash(sh); 479 atomic_inc(&conf->active_stripes); 480 BUG_ON(hash != sh->hash_lock_index); 481 if (list_empty(conf->inactive_list + hash)) 482 atomic_inc(&conf->empty_inactive_list_nr); 483 out: 484 return sh; 485 } 486 487 static void shrink_buffers(struct stripe_head *sh) 488 { 489 struct page *p; 490 int i; 491 int num = sh->raid_conf->pool_size; 492 493 for (i = 0; i < num ; i++) { 494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 495 p = sh->dev[i].page; 496 if (!p) 497 continue; 498 sh->dev[i].page = NULL; 499 put_page(p); 500 } 501 } 502 503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 504 { 505 int i; 506 int num = sh->raid_conf->pool_size; 507 508 for (i = 0; i < num; i++) { 509 struct page *page; 510 511 if (!(page = alloc_page(gfp))) { 512 return 1; 513 } 514 sh->dev[i].page = page; 515 sh->dev[i].orig_page = page; 516 } 517 return 0; 518 } 519 520 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 522 struct stripe_head *sh); 523 524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 525 { 526 struct r5conf *conf = sh->raid_conf; 527 int i, seq; 528 529 BUG_ON(atomic_read(&sh->count) != 0); 530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 531 BUG_ON(stripe_operations_active(sh)); 532 BUG_ON(sh->batch_head); 533 534 pr_debug("init_stripe called, stripe %llu\n", 535 (unsigned long long)sector); 536 retry: 537 seq = read_seqcount_begin(&conf->gen_lock); 538 sh->generation = conf->generation - previous; 539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 540 sh->sector = sector; 541 stripe_set_idx(sector, conf, previous, sh); 542 sh->state = 0; 543 544 for (i = sh->disks; i--; ) { 545 struct r5dev *dev = &sh->dev[i]; 546 547 if (dev->toread || dev->read || dev->towrite || dev->written || 548 test_bit(R5_LOCKED, &dev->flags)) { 549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 550 (unsigned long long)sh->sector, i, dev->toread, 551 dev->read, dev->towrite, dev->written, 552 test_bit(R5_LOCKED, &dev->flags)); 553 WARN_ON(1); 554 } 555 dev->flags = 0; 556 raid5_build_block(sh, i, previous); 557 } 558 if (read_seqcount_retry(&conf->gen_lock, seq)) 559 goto retry; 560 sh->overwrite_disks = 0; 561 insert_hash(conf, sh); 562 sh->cpu = smp_processor_id(); 563 set_bit(STRIPE_BATCH_READY, &sh->state); 564 } 565 566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 567 short generation) 568 { 569 struct stripe_head *sh; 570 571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 573 if (sh->sector == sector && sh->generation == generation) 574 return sh; 575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 576 return NULL; 577 } 578 579 /* 580 * Need to check if array has failed when deciding whether to: 581 * - start an array 582 * - remove non-faulty devices 583 * - add a spare 584 * - allow a reshape 585 * This determination is simple when no reshape is happening. 586 * However if there is a reshape, we need to carefully check 587 * both the before and after sections. 588 * This is because some failed devices may only affect one 589 * of the two sections, and some non-in_sync devices may 590 * be insync in the section most affected by failed devices. 591 */ 592 static int calc_degraded(struct r5conf *conf) 593 { 594 int degraded, degraded2; 595 int i; 596 597 rcu_read_lock(); 598 degraded = 0; 599 for (i = 0; i < conf->previous_raid_disks; i++) { 600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 601 if (rdev && test_bit(Faulty, &rdev->flags)) 602 rdev = rcu_dereference(conf->disks[i].replacement); 603 if (!rdev || test_bit(Faulty, &rdev->flags)) 604 degraded++; 605 else if (test_bit(In_sync, &rdev->flags)) 606 ; 607 else 608 /* not in-sync or faulty. 609 * If the reshape increases the number of devices, 610 * this is being recovered by the reshape, so 611 * this 'previous' section is not in_sync. 612 * If the number of devices is being reduced however, 613 * the device can only be part of the array if 614 * we are reverting a reshape, so this section will 615 * be in-sync. 616 */ 617 if (conf->raid_disks >= conf->previous_raid_disks) 618 degraded++; 619 } 620 rcu_read_unlock(); 621 if (conf->raid_disks == conf->previous_raid_disks) 622 return degraded; 623 rcu_read_lock(); 624 degraded2 = 0; 625 for (i = 0; i < conf->raid_disks; i++) { 626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 627 if (rdev && test_bit(Faulty, &rdev->flags)) 628 rdev = rcu_dereference(conf->disks[i].replacement); 629 if (!rdev || test_bit(Faulty, &rdev->flags)) 630 degraded2++; 631 else if (test_bit(In_sync, &rdev->flags)) 632 ; 633 else 634 /* not in-sync or faulty. 635 * If reshape increases the number of devices, this 636 * section has already been recovered, else it 637 * almost certainly hasn't. 638 */ 639 if (conf->raid_disks <= conf->previous_raid_disks) 640 degraded2++; 641 } 642 rcu_read_unlock(); 643 if (degraded2 > degraded) 644 return degraded2; 645 return degraded; 646 } 647 648 static int has_failed(struct r5conf *conf) 649 { 650 int degraded; 651 652 if (conf->mddev->reshape_position == MaxSector) 653 return conf->mddev->degraded > conf->max_degraded; 654 655 degraded = calc_degraded(conf); 656 if (degraded > conf->max_degraded) 657 return 1; 658 return 0; 659 } 660 661 struct stripe_head * 662 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 663 int previous, int noblock, int noquiesce) 664 { 665 struct stripe_head *sh; 666 int hash = stripe_hash_locks_hash(sector); 667 668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 669 670 spin_lock_irq(conf->hash_locks + hash); 671 672 do { 673 wait_event_lock_irq(conf->wait_for_quiescent, 674 conf->quiesce == 0 || noquiesce, 675 *(conf->hash_locks + hash)); 676 sh = __find_stripe(conf, sector, conf->generation - previous); 677 if (!sh) { 678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 679 sh = get_free_stripe(conf, hash); 680 if (!sh && !test_bit(R5_DID_ALLOC, 681 &conf->cache_state)) 682 set_bit(R5_ALLOC_MORE, 683 &conf->cache_state); 684 } 685 if (noblock && sh == NULL) 686 break; 687 if (!sh) { 688 set_bit(R5_INACTIVE_BLOCKED, 689 &conf->cache_state); 690 wait_event_exclusive_cmd( 691 conf->wait_for_stripe[hash], 692 !list_empty(conf->inactive_list + hash) && 693 (atomic_read(&conf->active_stripes) 694 < (conf->max_nr_stripes * 3 / 4) 695 || !test_bit(R5_INACTIVE_BLOCKED, 696 &conf->cache_state)), 697 spin_unlock_irq(conf->hash_locks + hash), 698 spin_lock_irq(conf->hash_locks + hash)); 699 clear_bit(R5_INACTIVE_BLOCKED, 700 &conf->cache_state); 701 } else { 702 init_stripe(sh, sector, previous); 703 atomic_inc(&sh->count); 704 } 705 } else if (!atomic_inc_not_zero(&sh->count)) { 706 spin_lock(&conf->device_lock); 707 if (!atomic_read(&sh->count)) { 708 if (!test_bit(STRIPE_HANDLE, &sh->state)) 709 atomic_inc(&conf->active_stripes); 710 BUG_ON(list_empty(&sh->lru) && 711 !test_bit(STRIPE_EXPANDING, &sh->state)); 712 list_del_init(&sh->lru); 713 if (sh->group) { 714 sh->group->stripes_cnt--; 715 sh->group = NULL; 716 } 717 } 718 atomic_inc(&sh->count); 719 spin_unlock(&conf->device_lock); 720 } 721 } while (sh == NULL); 722 723 if (!list_empty(conf->inactive_list + hash)) 724 wake_up(&conf->wait_for_stripe[hash]); 725 726 spin_unlock_irq(conf->hash_locks + hash); 727 return sh; 728 } 729 730 static bool is_full_stripe_write(struct stripe_head *sh) 731 { 732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 734 } 735 736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 737 { 738 local_irq_disable(); 739 if (sh1 > sh2) { 740 spin_lock(&sh2->stripe_lock); 741 spin_lock_nested(&sh1->stripe_lock, 1); 742 } else { 743 spin_lock(&sh1->stripe_lock); 744 spin_lock_nested(&sh2->stripe_lock, 1); 745 } 746 } 747 748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 749 { 750 spin_unlock(&sh1->stripe_lock); 751 spin_unlock(&sh2->stripe_lock); 752 local_irq_enable(); 753 } 754 755 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 756 static bool stripe_can_batch(struct stripe_head *sh) 757 { 758 struct r5conf *conf = sh->raid_conf; 759 760 if (conf->log) 761 return false; 762 return test_bit(STRIPE_BATCH_READY, &sh->state) && 763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 764 is_full_stripe_write(sh); 765 } 766 767 /* we only do back search */ 768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 769 { 770 struct stripe_head *head; 771 sector_t head_sector, tmp_sec; 772 int hash; 773 int dd_idx; 774 775 if (!stripe_can_batch(sh)) 776 return; 777 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 778 tmp_sec = sh->sector; 779 if (!sector_div(tmp_sec, conf->chunk_sectors)) 780 return; 781 head_sector = sh->sector - STRIPE_SECTORS; 782 783 hash = stripe_hash_locks_hash(head_sector); 784 spin_lock_irq(conf->hash_locks + hash); 785 head = __find_stripe(conf, head_sector, conf->generation); 786 if (head && !atomic_inc_not_zero(&head->count)) { 787 spin_lock(&conf->device_lock); 788 if (!atomic_read(&head->count)) { 789 if (!test_bit(STRIPE_HANDLE, &head->state)) 790 atomic_inc(&conf->active_stripes); 791 BUG_ON(list_empty(&head->lru) && 792 !test_bit(STRIPE_EXPANDING, &head->state)); 793 list_del_init(&head->lru); 794 if (head->group) { 795 head->group->stripes_cnt--; 796 head->group = NULL; 797 } 798 } 799 atomic_inc(&head->count); 800 spin_unlock(&conf->device_lock); 801 } 802 spin_unlock_irq(conf->hash_locks + hash); 803 804 if (!head) 805 return; 806 if (!stripe_can_batch(head)) 807 goto out; 808 809 lock_two_stripes(head, sh); 810 /* clear_batch_ready clear the flag */ 811 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 812 goto unlock_out; 813 814 if (sh->batch_head) 815 goto unlock_out; 816 817 dd_idx = 0; 818 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 819 dd_idx++; 820 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw) 821 goto unlock_out; 822 823 if (head->batch_head) { 824 spin_lock(&head->batch_head->batch_lock); 825 /* This batch list is already running */ 826 if (!stripe_can_batch(head)) { 827 spin_unlock(&head->batch_head->batch_lock); 828 goto unlock_out; 829 } 830 831 /* 832 * at this point, head's BATCH_READY could be cleared, but we 833 * can still add the stripe to batch list 834 */ 835 list_add(&sh->batch_list, &head->batch_list); 836 spin_unlock(&head->batch_head->batch_lock); 837 838 sh->batch_head = head->batch_head; 839 } else { 840 head->batch_head = head; 841 sh->batch_head = head->batch_head; 842 spin_lock(&head->batch_lock); 843 list_add_tail(&sh->batch_list, &head->batch_list); 844 spin_unlock(&head->batch_lock); 845 } 846 847 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 848 if (atomic_dec_return(&conf->preread_active_stripes) 849 < IO_THRESHOLD) 850 md_wakeup_thread(conf->mddev->thread); 851 852 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 853 int seq = sh->bm_seq; 854 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 855 sh->batch_head->bm_seq > seq) 856 seq = sh->batch_head->bm_seq; 857 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 858 sh->batch_head->bm_seq = seq; 859 } 860 861 atomic_inc(&sh->count); 862 unlock_out: 863 unlock_two_stripes(head, sh); 864 out: 865 raid5_release_stripe(head); 866 } 867 868 /* Determine if 'data_offset' or 'new_data_offset' should be used 869 * in this stripe_head. 870 */ 871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 872 { 873 sector_t progress = conf->reshape_progress; 874 /* Need a memory barrier to make sure we see the value 875 * of conf->generation, or ->data_offset that was set before 876 * reshape_progress was updated. 877 */ 878 smp_rmb(); 879 if (progress == MaxSector) 880 return 0; 881 if (sh->generation == conf->generation - 1) 882 return 0; 883 /* We are in a reshape, and this is a new-generation stripe, 884 * so use new_data_offset. 885 */ 886 return 1; 887 } 888 889 static void 890 raid5_end_read_request(struct bio *bi); 891 static void 892 raid5_end_write_request(struct bio *bi); 893 894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 895 { 896 struct r5conf *conf = sh->raid_conf; 897 int i, disks = sh->disks; 898 struct stripe_head *head_sh = sh; 899 900 might_sleep(); 901 902 if (r5l_write_stripe(conf->log, sh) == 0) 903 return; 904 for (i = disks; i--; ) { 905 int rw; 906 int replace_only = 0; 907 struct bio *bi, *rbi; 908 struct md_rdev *rdev, *rrdev = NULL; 909 910 sh = head_sh; 911 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 912 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 913 rw = WRITE_FUA; 914 else 915 rw = WRITE; 916 if (test_bit(R5_Discard, &sh->dev[i].flags)) 917 rw |= REQ_DISCARD; 918 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 919 rw = READ; 920 else if (test_and_clear_bit(R5_WantReplace, 921 &sh->dev[i].flags)) { 922 rw = WRITE; 923 replace_only = 1; 924 } else 925 continue; 926 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 927 rw |= REQ_SYNC; 928 929 again: 930 bi = &sh->dev[i].req; 931 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 932 933 rcu_read_lock(); 934 rrdev = rcu_dereference(conf->disks[i].replacement); 935 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 936 rdev = rcu_dereference(conf->disks[i].rdev); 937 if (!rdev) { 938 rdev = rrdev; 939 rrdev = NULL; 940 } 941 if (rw & WRITE) { 942 if (replace_only) 943 rdev = NULL; 944 if (rdev == rrdev) 945 /* We raced and saw duplicates */ 946 rrdev = NULL; 947 } else { 948 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 949 rdev = rrdev; 950 rrdev = NULL; 951 } 952 953 if (rdev && test_bit(Faulty, &rdev->flags)) 954 rdev = NULL; 955 if (rdev) 956 atomic_inc(&rdev->nr_pending); 957 if (rrdev && test_bit(Faulty, &rrdev->flags)) 958 rrdev = NULL; 959 if (rrdev) 960 atomic_inc(&rrdev->nr_pending); 961 rcu_read_unlock(); 962 963 /* We have already checked bad blocks for reads. Now 964 * need to check for writes. We never accept write errors 965 * on the replacement, so we don't to check rrdev. 966 */ 967 while ((rw & WRITE) && rdev && 968 test_bit(WriteErrorSeen, &rdev->flags)) { 969 sector_t first_bad; 970 int bad_sectors; 971 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 972 &first_bad, &bad_sectors); 973 if (!bad) 974 break; 975 976 if (bad < 0) { 977 set_bit(BlockedBadBlocks, &rdev->flags); 978 if (!conf->mddev->external && 979 conf->mddev->flags) { 980 /* It is very unlikely, but we might 981 * still need to write out the 982 * bad block log - better give it 983 * a chance*/ 984 md_check_recovery(conf->mddev); 985 } 986 /* 987 * Because md_wait_for_blocked_rdev 988 * will dec nr_pending, we must 989 * increment it first. 990 */ 991 atomic_inc(&rdev->nr_pending); 992 md_wait_for_blocked_rdev(rdev, conf->mddev); 993 } else { 994 /* Acknowledged bad block - skip the write */ 995 rdev_dec_pending(rdev, conf->mddev); 996 rdev = NULL; 997 } 998 } 999 1000 if (rdev) { 1001 if (s->syncing || s->expanding || s->expanded 1002 || s->replacing) 1003 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1004 1005 set_bit(STRIPE_IO_STARTED, &sh->state); 1006 1007 bio_reset(bi); 1008 bi->bi_bdev = rdev->bdev; 1009 bi->bi_rw = rw; 1010 bi->bi_end_io = (rw & WRITE) 1011 ? raid5_end_write_request 1012 : raid5_end_read_request; 1013 bi->bi_private = sh; 1014 1015 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 1016 __func__, (unsigned long long)sh->sector, 1017 bi->bi_rw, i); 1018 atomic_inc(&sh->count); 1019 if (sh != head_sh) 1020 atomic_inc(&head_sh->count); 1021 if (use_new_offset(conf, sh)) 1022 bi->bi_iter.bi_sector = (sh->sector 1023 + rdev->new_data_offset); 1024 else 1025 bi->bi_iter.bi_sector = (sh->sector 1026 + rdev->data_offset); 1027 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1028 bi->bi_rw |= REQ_NOMERGE; 1029 1030 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1031 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1032 sh->dev[i].vec.bv_page = sh->dev[i].page; 1033 bi->bi_vcnt = 1; 1034 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1035 bi->bi_io_vec[0].bv_offset = 0; 1036 bi->bi_iter.bi_size = STRIPE_SIZE; 1037 /* 1038 * If this is discard request, set bi_vcnt 0. We don't 1039 * want to confuse SCSI because SCSI will replace payload 1040 */ 1041 if (rw & REQ_DISCARD) 1042 bi->bi_vcnt = 0; 1043 if (rrdev) 1044 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1045 1046 if (conf->mddev->gendisk) 1047 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1048 bi, disk_devt(conf->mddev->gendisk), 1049 sh->dev[i].sector); 1050 generic_make_request(bi); 1051 } 1052 if (rrdev) { 1053 if (s->syncing || s->expanding || s->expanded 1054 || s->replacing) 1055 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1056 1057 set_bit(STRIPE_IO_STARTED, &sh->state); 1058 1059 bio_reset(rbi); 1060 rbi->bi_bdev = rrdev->bdev; 1061 rbi->bi_rw = rw; 1062 BUG_ON(!(rw & WRITE)); 1063 rbi->bi_end_io = raid5_end_write_request; 1064 rbi->bi_private = sh; 1065 1066 pr_debug("%s: for %llu schedule op %ld on " 1067 "replacement disc %d\n", 1068 __func__, (unsigned long long)sh->sector, 1069 rbi->bi_rw, i); 1070 atomic_inc(&sh->count); 1071 if (sh != head_sh) 1072 atomic_inc(&head_sh->count); 1073 if (use_new_offset(conf, sh)) 1074 rbi->bi_iter.bi_sector = (sh->sector 1075 + rrdev->new_data_offset); 1076 else 1077 rbi->bi_iter.bi_sector = (sh->sector 1078 + rrdev->data_offset); 1079 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1080 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1081 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1082 rbi->bi_vcnt = 1; 1083 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1084 rbi->bi_io_vec[0].bv_offset = 0; 1085 rbi->bi_iter.bi_size = STRIPE_SIZE; 1086 /* 1087 * If this is discard request, set bi_vcnt 0. We don't 1088 * want to confuse SCSI because SCSI will replace payload 1089 */ 1090 if (rw & REQ_DISCARD) 1091 rbi->bi_vcnt = 0; 1092 if (conf->mddev->gendisk) 1093 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1094 rbi, disk_devt(conf->mddev->gendisk), 1095 sh->dev[i].sector); 1096 generic_make_request(rbi); 1097 } 1098 if (!rdev && !rrdev) { 1099 if (rw & WRITE) 1100 set_bit(STRIPE_DEGRADED, &sh->state); 1101 pr_debug("skip op %ld on disc %d for sector %llu\n", 1102 bi->bi_rw, i, (unsigned long long)sh->sector); 1103 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1104 set_bit(STRIPE_HANDLE, &sh->state); 1105 } 1106 1107 if (!head_sh->batch_head) 1108 continue; 1109 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1110 batch_list); 1111 if (sh != head_sh) 1112 goto again; 1113 } 1114 } 1115 1116 static struct dma_async_tx_descriptor * 1117 async_copy_data(int frombio, struct bio *bio, struct page **page, 1118 sector_t sector, struct dma_async_tx_descriptor *tx, 1119 struct stripe_head *sh) 1120 { 1121 struct bio_vec bvl; 1122 struct bvec_iter iter; 1123 struct page *bio_page; 1124 int page_offset; 1125 struct async_submit_ctl submit; 1126 enum async_tx_flags flags = 0; 1127 1128 if (bio->bi_iter.bi_sector >= sector) 1129 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1130 else 1131 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1132 1133 if (frombio) 1134 flags |= ASYNC_TX_FENCE; 1135 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1136 1137 bio_for_each_segment(bvl, bio, iter) { 1138 int len = bvl.bv_len; 1139 int clen; 1140 int b_offset = 0; 1141 1142 if (page_offset < 0) { 1143 b_offset = -page_offset; 1144 page_offset += b_offset; 1145 len -= b_offset; 1146 } 1147 1148 if (len > 0 && page_offset + len > STRIPE_SIZE) 1149 clen = STRIPE_SIZE - page_offset; 1150 else 1151 clen = len; 1152 1153 if (clen > 0) { 1154 b_offset += bvl.bv_offset; 1155 bio_page = bvl.bv_page; 1156 if (frombio) { 1157 if (sh->raid_conf->skip_copy && 1158 b_offset == 0 && page_offset == 0 && 1159 clen == STRIPE_SIZE) 1160 *page = bio_page; 1161 else 1162 tx = async_memcpy(*page, bio_page, page_offset, 1163 b_offset, clen, &submit); 1164 } else 1165 tx = async_memcpy(bio_page, *page, b_offset, 1166 page_offset, clen, &submit); 1167 } 1168 /* chain the operations */ 1169 submit.depend_tx = tx; 1170 1171 if (clen < len) /* hit end of page */ 1172 break; 1173 page_offset += len; 1174 } 1175 1176 return tx; 1177 } 1178 1179 static void ops_complete_biofill(void *stripe_head_ref) 1180 { 1181 struct stripe_head *sh = stripe_head_ref; 1182 struct bio_list return_bi = BIO_EMPTY_LIST; 1183 int i; 1184 1185 pr_debug("%s: stripe %llu\n", __func__, 1186 (unsigned long long)sh->sector); 1187 1188 /* clear completed biofills */ 1189 for (i = sh->disks; i--; ) { 1190 struct r5dev *dev = &sh->dev[i]; 1191 1192 /* acknowledge completion of a biofill operation */ 1193 /* and check if we need to reply to a read request, 1194 * new R5_Wantfill requests are held off until 1195 * !STRIPE_BIOFILL_RUN 1196 */ 1197 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1198 struct bio *rbi, *rbi2; 1199 1200 BUG_ON(!dev->read); 1201 rbi = dev->read; 1202 dev->read = NULL; 1203 while (rbi && rbi->bi_iter.bi_sector < 1204 dev->sector + STRIPE_SECTORS) { 1205 rbi2 = r5_next_bio(rbi, dev->sector); 1206 if (!raid5_dec_bi_active_stripes(rbi)) 1207 bio_list_add(&return_bi, rbi); 1208 rbi = rbi2; 1209 } 1210 } 1211 } 1212 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1213 1214 return_io(&return_bi); 1215 1216 set_bit(STRIPE_HANDLE, &sh->state); 1217 raid5_release_stripe(sh); 1218 } 1219 1220 static void ops_run_biofill(struct stripe_head *sh) 1221 { 1222 struct dma_async_tx_descriptor *tx = NULL; 1223 struct async_submit_ctl submit; 1224 int i; 1225 1226 BUG_ON(sh->batch_head); 1227 pr_debug("%s: stripe %llu\n", __func__, 1228 (unsigned long long)sh->sector); 1229 1230 for (i = sh->disks; i--; ) { 1231 struct r5dev *dev = &sh->dev[i]; 1232 if (test_bit(R5_Wantfill, &dev->flags)) { 1233 struct bio *rbi; 1234 spin_lock_irq(&sh->stripe_lock); 1235 dev->read = rbi = dev->toread; 1236 dev->toread = NULL; 1237 spin_unlock_irq(&sh->stripe_lock); 1238 while (rbi && rbi->bi_iter.bi_sector < 1239 dev->sector + STRIPE_SECTORS) { 1240 tx = async_copy_data(0, rbi, &dev->page, 1241 dev->sector, tx, sh); 1242 rbi = r5_next_bio(rbi, dev->sector); 1243 } 1244 } 1245 } 1246 1247 atomic_inc(&sh->count); 1248 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1249 async_trigger_callback(&submit); 1250 } 1251 1252 static void mark_target_uptodate(struct stripe_head *sh, int target) 1253 { 1254 struct r5dev *tgt; 1255 1256 if (target < 0) 1257 return; 1258 1259 tgt = &sh->dev[target]; 1260 set_bit(R5_UPTODATE, &tgt->flags); 1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1262 clear_bit(R5_Wantcompute, &tgt->flags); 1263 } 1264 1265 static void ops_complete_compute(void *stripe_head_ref) 1266 { 1267 struct stripe_head *sh = stripe_head_ref; 1268 1269 pr_debug("%s: stripe %llu\n", __func__, 1270 (unsigned long long)sh->sector); 1271 1272 /* mark the computed target(s) as uptodate */ 1273 mark_target_uptodate(sh, sh->ops.target); 1274 mark_target_uptodate(sh, sh->ops.target2); 1275 1276 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1277 if (sh->check_state == check_state_compute_run) 1278 sh->check_state = check_state_compute_result; 1279 set_bit(STRIPE_HANDLE, &sh->state); 1280 raid5_release_stripe(sh); 1281 } 1282 1283 /* return a pointer to the address conversion region of the scribble buffer */ 1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1285 struct raid5_percpu *percpu, int i) 1286 { 1287 void *addr; 1288 1289 addr = flex_array_get(percpu->scribble, i); 1290 return addr + sizeof(struct page *) * (sh->disks + 2); 1291 } 1292 1293 /* return a pointer to the address conversion region of the scribble buffer */ 1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1295 { 1296 void *addr; 1297 1298 addr = flex_array_get(percpu->scribble, i); 1299 return addr; 1300 } 1301 1302 static struct dma_async_tx_descriptor * 1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1304 { 1305 int disks = sh->disks; 1306 struct page **xor_srcs = to_addr_page(percpu, 0); 1307 int target = sh->ops.target; 1308 struct r5dev *tgt = &sh->dev[target]; 1309 struct page *xor_dest = tgt->page; 1310 int count = 0; 1311 struct dma_async_tx_descriptor *tx; 1312 struct async_submit_ctl submit; 1313 int i; 1314 1315 BUG_ON(sh->batch_head); 1316 1317 pr_debug("%s: stripe %llu block: %d\n", 1318 __func__, (unsigned long long)sh->sector, target); 1319 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1320 1321 for (i = disks; i--; ) 1322 if (i != target) 1323 xor_srcs[count++] = sh->dev[i].page; 1324 1325 atomic_inc(&sh->count); 1326 1327 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1328 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1329 if (unlikely(count == 1)) 1330 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1331 else 1332 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1333 1334 return tx; 1335 } 1336 1337 /* set_syndrome_sources - populate source buffers for gen_syndrome 1338 * @srcs - (struct page *) array of size sh->disks 1339 * @sh - stripe_head to parse 1340 * 1341 * Populates srcs in proper layout order for the stripe and returns the 1342 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1343 * destination buffer is recorded in srcs[count] and the Q destination 1344 * is recorded in srcs[count+1]]. 1345 */ 1346 static int set_syndrome_sources(struct page **srcs, 1347 struct stripe_head *sh, 1348 int srctype) 1349 { 1350 int disks = sh->disks; 1351 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1352 int d0_idx = raid6_d0(sh); 1353 int count; 1354 int i; 1355 1356 for (i = 0; i < disks; i++) 1357 srcs[i] = NULL; 1358 1359 count = 0; 1360 i = d0_idx; 1361 do { 1362 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1363 struct r5dev *dev = &sh->dev[i]; 1364 1365 if (i == sh->qd_idx || i == sh->pd_idx || 1366 (srctype == SYNDROME_SRC_ALL) || 1367 (srctype == SYNDROME_SRC_WANT_DRAIN && 1368 test_bit(R5_Wantdrain, &dev->flags)) || 1369 (srctype == SYNDROME_SRC_WRITTEN && 1370 dev->written)) 1371 srcs[slot] = sh->dev[i].page; 1372 i = raid6_next_disk(i, disks); 1373 } while (i != d0_idx); 1374 1375 return syndrome_disks; 1376 } 1377 1378 static struct dma_async_tx_descriptor * 1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1380 { 1381 int disks = sh->disks; 1382 struct page **blocks = to_addr_page(percpu, 0); 1383 int target; 1384 int qd_idx = sh->qd_idx; 1385 struct dma_async_tx_descriptor *tx; 1386 struct async_submit_ctl submit; 1387 struct r5dev *tgt; 1388 struct page *dest; 1389 int i; 1390 int count; 1391 1392 BUG_ON(sh->batch_head); 1393 if (sh->ops.target < 0) 1394 target = sh->ops.target2; 1395 else if (sh->ops.target2 < 0) 1396 target = sh->ops.target; 1397 else 1398 /* we should only have one valid target */ 1399 BUG(); 1400 BUG_ON(target < 0); 1401 pr_debug("%s: stripe %llu block: %d\n", 1402 __func__, (unsigned long long)sh->sector, target); 1403 1404 tgt = &sh->dev[target]; 1405 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1406 dest = tgt->page; 1407 1408 atomic_inc(&sh->count); 1409 1410 if (target == qd_idx) { 1411 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1412 blocks[count] = NULL; /* regenerating p is not necessary */ 1413 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1414 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1415 ops_complete_compute, sh, 1416 to_addr_conv(sh, percpu, 0)); 1417 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1418 } else { 1419 /* Compute any data- or p-drive using XOR */ 1420 count = 0; 1421 for (i = disks; i-- ; ) { 1422 if (i == target || i == qd_idx) 1423 continue; 1424 blocks[count++] = sh->dev[i].page; 1425 } 1426 1427 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1428 NULL, ops_complete_compute, sh, 1429 to_addr_conv(sh, percpu, 0)); 1430 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1431 } 1432 1433 return tx; 1434 } 1435 1436 static struct dma_async_tx_descriptor * 1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1438 { 1439 int i, count, disks = sh->disks; 1440 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1441 int d0_idx = raid6_d0(sh); 1442 int faila = -1, failb = -1; 1443 int target = sh->ops.target; 1444 int target2 = sh->ops.target2; 1445 struct r5dev *tgt = &sh->dev[target]; 1446 struct r5dev *tgt2 = &sh->dev[target2]; 1447 struct dma_async_tx_descriptor *tx; 1448 struct page **blocks = to_addr_page(percpu, 0); 1449 struct async_submit_ctl submit; 1450 1451 BUG_ON(sh->batch_head); 1452 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1453 __func__, (unsigned long long)sh->sector, target, target2); 1454 BUG_ON(target < 0 || target2 < 0); 1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1456 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1457 1458 /* we need to open-code set_syndrome_sources to handle the 1459 * slot number conversion for 'faila' and 'failb' 1460 */ 1461 for (i = 0; i < disks ; i++) 1462 blocks[i] = NULL; 1463 count = 0; 1464 i = d0_idx; 1465 do { 1466 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1467 1468 blocks[slot] = sh->dev[i].page; 1469 1470 if (i == target) 1471 faila = slot; 1472 if (i == target2) 1473 failb = slot; 1474 i = raid6_next_disk(i, disks); 1475 } while (i != d0_idx); 1476 1477 BUG_ON(faila == failb); 1478 if (failb < faila) 1479 swap(faila, failb); 1480 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1481 __func__, (unsigned long long)sh->sector, faila, failb); 1482 1483 atomic_inc(&sh->count); 1484 1485 if (failb == syndrome_disks+1) { 1486 /* Q disk is one of the missing disks */ 1487 if (faila == syndrome_disks) { 1488 /* Missing P+Q, just recompute */ 1489 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1490 ops_complete_compute, sh, 1491 to_addr_conv(sh, percpu, 0)); 1492 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1493 STRIPE_SIZE, &submit); 1494 } else { 1495 struct page *dest; 1496 int data_target; 1497 int qd_idx = sh->qd_idx; 1498 1499 /* Missing D+Q: recompute D from P, then recompute Q */ 1500 if (target == qd_idx) 1501 data_target = target2; 1502 else 1503 data_target = target; 1504 1505 count = 0; 1506 for (i = disks; i-- ; ) { 1507 if (i == data_target || i == qd_idx) 1508 continue; 1509 blocks[count++] = sh->dev[i].page; 1510 } 1511 dest = sh->dev[data_target].page; 1512 init_async_submit(&submit, 1513 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1514 NULL, NULL, NULL, 1515 to_addr_conv(sh, percpu, 0)); 1516 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1517 &submit); 1518 1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1520 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1521 ops_complete_compute, sh, 1522 to_addr_conv(sh, percpu, 0)); 1523 return async_gen_syndrome(blocks, 0, count+2, 1524 STRIPE_SIZE, &submit); 1525 } 1526 } else { 1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1528 ops_complete_compute, sh, 1529 to_addr_conv(sh, percpu, 0)); 1530 if (failb == syndrome_disks) { 1531 /* We're missing D+P. */ 1532 return async_raid6_datap_recov(syndrome_disks+2, 1533 STRIPE_SIZE, faila, 1534 blocks, &submit); 1535 } else { 1536 /* We're missing D+D. */ 1537 return async_raid6_2data_recov(syndrome_disks+2, 1538 STRIPE_SIZE, faila, failb, 1539 blocks, &submit); 1540 } 1541 } 1542 } 1543 1544 static void ops_complete_prexor(void *stripe_head_ref) 1545 { 1546 struct stripe_head *sh = stripe_head_ref; 1547 1548 pr_debug("%s: stripe %llu\n", __func__, 1549 (unsigned long long)sh->sector); 1550 } 1551 1552 static struct dma_async_tx_descriptor * 1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1554 struct dma_async_tx_descriptor *tx) 1555 { 1556 int disks = sh->disks; 1557 struct page **xor_srcs = to_addr_page(percpu, 0); 1558 int count = 0, pd_idx = sh->pd_idx, i; 1559 struct async_submit_ctl submit; 1560 1561 /* existing parity data subtracted */ 1562 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1563 1564 BUG_ON(sh->batch_head); 1565 pr_debug("%s: stripe %llu\n", __func__, 1566 (unsigned long long)sh->sector); 1567 1568 for (i = disks; i--; ) { 1569 struct r5dev *dev = &sh->dev[i]; 1570 /* Only process blocks that are known to be uptodate */ 1571 if (test_bit(R5_Wantdrain, &dev->flags)) 1572 xor_srcs[count++] = dev->page; 1573 } 1574 1575 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1576 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1577 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1578 1579 return tx; 1580 } 1581 1582 static struct dma_async_tx_descriptor * 1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1584 struct dma_async_tx_descriptor *tx) 1585 { 1586 struct page **blocks = to_addr_page(percpu, 0); 1587 int count; 1588 struct async_submit_ctl submit; 1589 1590 pr_debug("%s: stripe %llu\n", __func__, 1591 (unsigned long long)sh->sector); 1592 1593 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1594 1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1596 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1597 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1598 1599 return tx; 1600 } 1601 1602 static struct dma_async_tx_descriptor * 1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1604 { 1605 int disks = sh->disks; 1606 int i; 1607 struct stripe_head *head_sh = sh; 1608 1609 pr_debug("%s: stripe %llu\n", __func__, 1610 (unsigned long long)sh->sector); 1611 1612 for (i = disks; i--; ) { 1613 struct r5dev *dev; 1614 struct bio *chosen; 1615 1616 sh = head_sh; 1617 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1618 struct bio *wbi; 1619 1620 again: 1621 dev = &sh->dev[i]; 1622 spin_lock_irq(&sh->stripe_lock); 1623 chosen = dev->towrite; 1624 dev->towrite = NULL; 1625 sh->overwrite_disks = 0; 1626 BUG_ON(dev->written); 1627 wbi = dev->written = chosen; 1628 spin_unlock_irq(&sh->stripe_lock); 1629 WARN_ON(dev->page != dev->orig_page); 1630 1631 while (wbi && wbi->bi_iter.bi_sector < 1632 dev->sector + STRIPE_SECTORS) { 1633 if (wbi->bi_rw & REQ_FUA) 1634 set_bit(R5_WantFUA, &dev->flags); 1635 if (wbi->bi_rw & REQ_SYNC) 1636 set_bit(R5_SyncIO, &dev->flags); 1637 if (wbi->bi_rw & REQ_DISCARD) 1638 set_bit(R5_Discard, &dev->flags); 1639 else { 1640 tx = async_copy_data(1, wbi, &dev->page, 1641 dev->sector, tx, sh); 1642 if (dev->page != dev->orig_page) { 1643 set_bit(R5_SkipCopy, &dev->flags); 1644 clear_bit(R5_UPTODATE, &dev->flags); 1645 clear_bit(R5_OVERWRITE, &dev->flags); 1646 } 1647 } 1648 wbi = r5_next_bio(wbi, dev->sector); 1649 } 1650 1651 if (head_sh->batch_head) { 1652 sh = list_first_entry(&sh->batch_list, 1653 struct stripe_head, 1654 batch_list); 1655 if (sh == head_sh) 1656 continue; 1657 goto again; 1658 } 1659 } 1660 } 1661 1662 return tx; 1663 } 1664 1665 static void ops_complete_reconstruct(void *stripe_head_ref) 1666 { 1667 struct stripe_head *sh = stripe_head_ref; 1668 int disks = sh->disks; 1669 int pd_idx = sh->pd_idx; 1670 int qd_idx = sh->qd_idx; 1671 int i; 1672 bool fua = false, sync = false, discard = false; 1673 1674 pr_debug("%s: stripe %llu\n", __func__, 1675 (unsigned long long)sh->sector); 1676 1677 for (i = disks; i--; ) { 1678 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1679 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1680 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1681 } 1682 1683 for (i = disks; i--; ) { 1684 struct r5dev *dev = &sh->dev[i]; 1685 1686 if (dev->written || i == pd_idx || i == qd_idx) { 1687 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1688 set_bit(R5_UPTODATE, &dev->flags); 1689 if (fua) 1690 set_bit(R5_WantFUA, &dev->flags); 1691 if (sync) 1692 set_bit(R5_SyncIO, &dev->flags); 1693 } 1694 } 1695 1696 if (sh->reconstruct_state == reconstruct_state_drain_run) 1697 sh->reconstruct_state = reconstruct_state_drain_result; 1698 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1699 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1700 else { 1701 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1702 sh->reconstruct_state = reconstruct_state_result; 1703 } 1704 1705 set_bit(STRIPE_HANDLE, &sh->state); 1706 raid5_release_stripe(sh); 1707 } 1708 1709 static void 1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1711 struct dma_async_tx_descriptor *tx) 1712 { 1713 int disks = sh->disks; 1714 struct page **xor_srcs; 1715 struct async_submit_ctl submit; 1716 int count, pd_idx = sh->pd_idx, i; 1717 struct page *xor_dest; 1718 int prexor = 0; 1719 unsigned long flags; 1720 int j = 0; 1721 struct stripe_head *head_sh = sh; 1722 int last_stripe; 1723 1724 pr_debug("%s: stripe %llu\n", __func__, 1725 (unsigned long long)sh->sector); 1726 1727 for (i = 0; i < sh->disks; i++) { 1728 if (pd_idx == i) 1729 continue; 1730 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1731 break; 1732 } 1733 if (i >= sh->disks) { 1734 atomic_inc(&sh->count); 1735 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1736 ops_complete_reconstruct(sh); 1737 return; 1738 } 1739 again: 1740 count = 0; 1741 xor_srcs = to_addr_page(percpu, j); 1742 /* check if prexor is active which means only process blocks 1743 * that are part of a read-modify-write (written) 1744 */ 1745 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1746 prexor = 1; 1747 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1748 for (i = disks; i--; ) { 1749 struct r5dev *dev = &sh->dev[i]; 1750 if (head_sh->dev[i].written) 1751 xor_srcs[count++] = dev->page; 1752 } 1753 } else { 1754 xor_dest = sh->dev[pd_idx].page; 1755 for (i = disks; i--; ) { 1756 struct r5dev *dev = &sh->dev[i]; 1757 if (i != pd_idx) 1758 xor_srcs[count++] = dev->page; 1759 } 1760 } 1761 1762 /* 1/ if we prexor'd then the dest is reused as a source 1763 * 2/ if we did not prexor then we are redoing the parity 1764 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1765 * for the synchronous xor case 1766 */ 1767 last_stripe = !head_sh->batch_head || 1768 list_first_entry(&sh->batch_list, 1769 struct stripe_head, batch_list) == head_sh; 1770 if (last_stripe) { 1771 flags = ASYNC_TX_ACK | 1772 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1773 1774 atomic_inc(&head_sh->count); 1775 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1776 to_addr_conv(sh, percpu, j)); 1777 } else { 1778 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1779 init_async_submit(&submit, flags, tx, NULL, NULL, 1780 to_addr_conv(sh, percpu, j)); 1781 } 1782 1783 if (unlikely(count == 1)) 1784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1785 else 1786 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1787 if (!last_stripe) { 1788 j++; 1789 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1790 batch_list); 1791 goto again; 1792 } 1793 } 1794 1795 static void 1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1797 struct dma_async_tx_descriptor *tx) 1798 { 1799 struct async_submit_ctl submit; 1800 struct page **blocks; 1801 int count, i, j = 0; 1802 struct stripe_head *head_sh = sh; 1803 int last_stripe; 1804 int synflags; 1805 unsigned long txflags; 1806 1807 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1808 1809 for (i = 0; i < sh->disks; i++) { 1810 if (sh->pd_idx == i || sh->qd_idx == i) 1811 continue; 1812 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1813 break; 1814 } 1815 if (i >= sh->disks) { 1816 atomic_inc(&sh->count); 1817 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1818 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1819 ops_complete_reconstruct(sh); 1820 return; 1821 } 1822 1823 again: 1824 blocks = to_addr_page(percpu, j); 1825 1826 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1827 synflags = SYNDROME_SRC_WRITTEN; 1828 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1829 } else { 1830 synflags = SYNDROME_SRC_ALL; 1831 txflags = ASYNC_TX_ACK; 1832 } 1833 1834 count = set_syndrome_sources(blocks, sh, synflags); 1835 last_stripe = !head_sh->batch_head || 1836 list_first_entry(&sh->batch_list, 1837 struct stripe_head, batch_list) == head_sh; 1838 1839 if (last_stripe) { 1840 atomic_inc(&head_sh->count); 1841 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1842 head_sh, to_addr_conv(sh, percpu, j)); 1843 } else 1844 init_async_submit(&submit, 0, tx, NULL, NULL, 1845 to_addr_conv(sh, percpu, j)); 1846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1847 if (!last_stripe) { 1848 j++; 1849 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1850 batch_list); 1851 goto again; 1852 } 1853 } 1854 1855 static void ops_complete_check(void *stripe_head_ref) 1856 { 1857 struct stripe_head *sh = stripe_head_ref; 1858 1859 pr_debug("%s: stripe %llu\n", __func__, 1860 (unsigned long long)sh->sector); 1861 1862 sh->check_state = check_state_check_result; 1863 set_bit(STRIPE_HANDLE, &sh->state); 1864 raid5_release_stripe(sh); 1865 } 1866 1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1868 { 1869 int disks = sh->disks; 1870 int pd_idx = sh->pd_idx; 1871 int qd_idx = sh->qd_idx; 1872 struct page *xor_dest; 1873 struct page **xor_srcs = to_addr_page(percpu, 0); 1874 struct dma_async_tx_descriptor *tx; 1875 struct async_submit_ctl submit; 1876 int count; 1877 int i; 1878 1879 pr_debug("%s: stripe %llu\n", __func__, 1880 (unsigned long long)sh->sector); 1881 1882 BUG_ON(sh->batch_head); 1883 count = 0; 1884 xor_dest = sh->dev[pd_idx].page; 1885 xor_srcs[count++] = xor_dest; 1886 for (i = disks; i--; ) { 1887 if (i == pd_idx || i == qd_idx) 1888 continue; 1889 xor_srcs[count++] = sh->dev[i].page; 1890 } 1891 1892 init_async_submit(&submit, 0, NULL, NULL, NULL, 1893 to_addr_conv(sh, percpu, 0)); 1894 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1895 &sh->ops.zero_sum_result, &submit); 1896 1897 atomic_inc(&sh->count); 1898 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1899 tx = async_trigger_callback(&submit); 1900 } 1901 1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1903 { 1904 struct page **srcs = to_addr_page(percpu, 0); 1905 struct async_submit_ctl submit; 1906 int count; 1907 1908 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1909 (unsigned long long)sh->sector, checkp); 1910 1911 BUG_ON(sh->batch_head); 1912 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1913 if (!checkp) 1914 srcs[count] = NULL; 1915 1916 atomic_inc(&sh->count); 1917 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1918 sh, to_addr_conv(sh, percpu, 0)); 1919 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1920 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1921 } 1922 1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1924 { 1925 int overlap_clear = 0, i, disks = sh->disks; 1926 struct dma_async_tx_descriptor *tx = NULL; 1927 struct r5conf *conf = sh->raid_conf; 1928 int level = conf->level; 1929 struct raid5_percpu *percpu; 1930 unsigned long cpu; 1931 1932 cpu = get_cpu(); 1933 percpu = per_cpu_ptr(conf->percpu, cpu); 1934 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1935 ops_run_biofill(sh); 1936 overlap_clear++; 1937 } 1938 1939 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1940 if (level < 6) 1941 tx = ops_run_compute5(sh, percpu); 1942 else { 1943 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1944 tx = ops_run_compute6_1(sh, percpu); 1945 else 1946 tx = ops_run_compute6_2(sh, percpu); 1947 } 1948 /* terminate the chain if reconstruct is not set to be run */ 1949 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1950 async_tx_ack(tx); 1951 } 1952 1953 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 1954 if (level < 6) 1955 tx = ops_run_prexor5(sh, percpu, tx); 1956 else 1957 tx = ops_run_prexor6(sh, percpu, tx); 1958 } 1959 1960 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1961 tx = ops_run_biodrain(sh, tx); 1962 overlap_clear++; 1963 } 1964 1965 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1966 if (level < 6) 1967 ops_run_reconstruct5(sh, percpu, tx); 1968 else 1969 ops_run_reconstruct6(sh, percpu, tx); 1970 } 1971 1972 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1973 if (sh->check_state == check_state_run) 1974 ops_run_check_p(sh, percpu); 1975 else if (sh->check_state == check_state_run_q) 1976 ops_run_check_pq(sh, percpu, 0); 1977 else if (sh->check_state == check_state_run_pq) 1978 ops_run_check_pq(sh, percpu, 1); 1979 else 1980 BUG(); 1981 } 1982 1983 if (overlap_clear && !sh->batch_head) 1984 for (i = disks; i--; ) { 1985 struct r5dev *dev = &sh->dev[i]; 1986 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1987 wake_up(&sh->raid_conf->wait_for_overlap); 1988 } 1989 put_cpu(); 1990 } 1991 1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp) 1993 { 1994 struct stripe_head *sh; 1995 1996 sh = kmem_cache_zalloc(sc, gfp); 1997 if (sh) { 1998 spin_lock_init(&sh->stripe_lock); 1999 spin_lock_init(&sh->batch_lock); 2000 INIT_LIST_HEAD(&sh->batch_list); 2001 INIT_LIST_HEAD(&sh->lru); 2002 atomic_set(&sh->count, 1); 2003 } 2004 return sh; 2005 } 2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2007 { 2008 struct stripe_head *sh; 2009 2010 sh = alloc_stripe(conf->slab_cache, gfp); 2011 if (!sh) 2012 return 0; 2013 2014 sh->raid_conf = conf; 2015 2016 if (grow_buffers(sh, gfp)) { 2017 shrink_buffers(sh); 2018 kmem_cache_free(conf->slab_cache, sh); 2019 return 0; 2020 } 2021 sh->hash_lock_index = 2022 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2023 /* we just created an active stripe so... */ 2024 atomic_inc(&conf->active_stripes); 2025 2026 raid5_release_stripe(sh); 2027 conf->max_nr_stripes++; 2028 return 1; 2029 } 2030 2031 static int grow_stripes(struct r5conf *conf, int num) 2032 { 2033 struct kmem_cache *sc; 2034 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2035 2036 if (conf->mddev->gendisk) 2037 sprintf(conf->cache_name[0], 2038 "raid%d-%s", conf->level, mdname(conf->mddev)); 2039 else 2040 sprintf(conf->cache_name[0], 2041 "raid%d-%p", conf->level, conf->mddev); 2042 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2043 2044 conf->active_name = 0; 2045 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2046 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2047 0, 0, NULL); 2048 if (!sc) 2049 return 1; 2050 conf->slab_cache = sc; 2051 conf->pool_size = devs; 2052 while (num--) 2053 if (!grow_one_stripe(conf, GFP_KERNEL)) 2054 return 1; 2055 2056 return 0; 2057 } 2058 2059 /** 2060 * scribble_len - return the required size of the scribble region 2061 * @num - total number of disks in the array 2062 * 2063 * The size must be enough to contain: 2064 * 1/ a struct page pointer for each device in the array +2 2065 * 2/ room to convert each entry in (1) to its corresponding dma 2066 * (dma_map_page()) or page (page_address()) address. 2067 * 2068 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2069 * calculate over all devices (not just the data blocks), using zeros in place 2070 * of the P and Q blocks. 2071 */ 2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2073 { 2074 struct flex_array *ret; 2075 size_t len; 2076 2077 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2078 ret = flex_array_alloc(len, cnt, flags); 2079 if (!ret) 2080 return NULL; 2081 /* always prealloc all elements, so no locking is required */ 2082 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2083 flex_array_free(ret); 2084 return NULL; 2085 } 2086 return ret; 2087 } 2088 2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2090 { 2091 unsigned long cpu; 2092 int err = 0; 2093 2094 mddev_suspend(conf->mddev); 2095 get_online_cpus(); 2096 for_each_present_cpu(cpu) { 2097 struct raid5_percpu *percpu; 2098 struct flex_array *scribble; 2099 2100 percpu = per_cpu_ptr(conf->percpu, cpu); 2101 scribble = scribble_alloc(new_disks, 2102 new_sectors / STRIPE_SECTORS, 2103 GFP_NOIO); 2104 2105 if (scribble) { 2106 flex_array_free(percpu->scribble); 2107 percpu->scribble = scribble; 2108 } else { 2109 err = -ENOMEM; 2110 break; 2111 } 2112 } 2113 put_online_cpus(); 2114 mddev_resume(conf->mddev); 2115 return err; 2116 } 2117 2118 static int resize_stripes(struct r5conf *conf, int newsize) 2119 { 2120 /* Make all the stripes able to hold 'newsize' devices. 2121 * New slots in each stripe get 'page' set to a new page. 2122 * 2123 * This happens in stages: 2124 * 1/ create a new kmem_cache and allocate the required number of 2125 * stripe_heads. 2126 * 2/ gather all the old stripe_heads and transfer the pages across 2127 * to the new stripe_heads. This will have the side effect of 2128 * freezing the array as once all stripe_heads have been collected, 2129 * no IO will be possible. Old stripe heads are freed once their 2130 * pages have been transferred over, and the old kmem_cache is 2131 * freed when all stripes are done. 2132 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2133 * we simple return a failre status - no need to clean anything up. 2134 * 4/ allocate new pages for the new slots in the new stripe_heads. 2135 * If this fails, we don't bother trying the shrink the 2136 * stripe_heads down again, we just leave them as they are. 2137 * As each stripe_head is processed the new one is released into 2138 * active service. 2139 * 2140 * Once step2 is started, we cannot afford to wait for a write, 2141 * so we use GFP_NOIO allocations. 2142 */ 2143 struct stripe_head *osh, *nsh; 2144 LIST_HEAD(newstripes); 2145 struct disk_info *ndisks; 2146 int err; 2147 struct kmem_cache *sc; 2148 int i; 2149 int hash, cnt; 2150 2151 if (newsize <= conf->pool_size) 2152 return 0; /* never bother to shrink */ 2153 2154 err = md_allow_write(conf->mddev); 2155 if (err) 2156 return err; 2157 2158 /* Step 1 */ 2159 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2160 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2161 0, 0, NULL); 2162 if (!sc) 2163 return -ENOMEM; 2164 2165 /* Need to ensure auto-resizing doesn't interfere */ 2166 mutex_lock(&conf->cache_size_mutex); 2167 2168 for (i = conf->max_nr_stripes; i; i--) { 2169 nsh = alloc_stripe(sc, GFP_KERNEL); 2170 if (!nsh) 2171 break; 2172 2173 nsh->raid_conf = conf; 2174 list_add(&nsh->lru, &newstripes); 2175 } 2176 if (i) { 2177 /* didn't get enough, give up */ 2178 while (!list_empty(&newstripes)) { 2179 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2180 list_del(&nsh->lru); 2181 kmem_cache_free(sc, nsh); 2182 } 2183 kmem_cache_destroy(sc); 2184 mutex_unlock(&conf->cache_size_mutex); 2185 return -ENOMEM; 2186 } 2187 /* Step 2 - Must use GFP_NOIO now. 2188 * OK, we have enough stripes, start collecting inactive 2189 * stripes and copying them over 2190 */ 2191 hash = 0; 2192 cnt = 0; 2193 list_for_each_entry(nsh, &newstripes, lru) { 2194 lock_device_hash_lock(conf, hash); 2195 wait_event_exclusive_cmd(conf->wait_for_stripe[hash], 2196 !list_empty(conf->inactive_list + hash), 2197 unlock_device_hash_lock(conf, hash), 2198 lock_device_hash_lock(conf, hash)); 2199 osh = get_free_stripe(conf, hash); 2200 unlock_device_hash_lock(conf, hash); 2201 2202 for(i=0; i<conf->pool_size; i++) { 2203 nsh->dev[i].page = osh->dev[i].page; 2204 nsh->dev[i].orig_page = osh->dev[i].page; 2205 } 2206 nsh->hash_lock_index = hash; 2207 kmem_cache_free(conf->slab_cache, osh); 2208 cnt++; 2209 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2210 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2211 hash++; 2212 cnt = 0; 2213 } 2214 } 2215 kmem_cache_destroy(conf->slab_cache); 2216 2217 /* Step 3. 2218 * At this point, we are holding all the stripes so the array 2219 * is completely stalled, so now is a good time to resize 2220 * conf->disks and the scribble region 2221 */ 2222 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2223 if (ndisks) { 2224 for (i=0; i<conf->raid_disks; i++) 2225 ndisks[i] = conf->disks[i]; 2226 kfree(conf->disks); 2227 conf->disks = ndisks; 2228 } else 2229 err = -ENOMEM; 2230 2231 mutex_unlock(&conf->cache_size_mutex); 2232 /* Step 4, return new stripes to service */ 2233 while(!list_empty(&newstripes)) { 2234 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2235 list_del_init(&nsh->lru); 2236 2237 for (i=conf->raid_disks; i < newsize; i++) 2238 if (nsh->dev[i].page == NULL) { 2239 struct page *p = alloc_page(GFP_NOIO); 2240 nsh->dev[i].page = p; 2241 nsh->dev[i].orig_page = p; 2242 if (!p) 2243 err = -ENOMEM; 2244 } 2245 raid5_release_stripe(nsh); 2246 } 2247 /* critical section pass, GFP_NOIO no longer needed */ 2248 2249 conf->slab_cache = sc; 2250 conf->active_name = 1-conf->active_name; 2251 if (!err) 2252 conf->pool_size = newsize; 2253 return err; 2254 } 2255 2256 static int drop_one_stripe(struct r5conf *conf) 2257 { 2258 struct stripe_head *sh; 2259 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2260 2261 spin_lock_irq(conf->hash_locks + hash); 2262 sh = get_free_stripe(conf, hash); 2263 spin_unlock_irq(conf->hash_locks + hash); 2264 if (!sh) 2265 return 0; 2266 BUG_ON(atomic_read(&sh->count)); 2267 shrink_buffers(sh); 2268 kmem_cache_free(conf->slab_cache, sh); 2269 atomic_dec(&conf->active_stripes); 2270 conf->max_nr_stripes--; 2271 return 1; 2272 } 2273 2274 static void shrink_stripes(struct r5conf *conf) 2275 { 2276 while (conf->max_nr_stripes && 2277 drop_one_stripe(conf)) 2278 ; 2279 2280 kmem_cache_destroy(conf->slab_cache); 2281 conf->slab_cache = NULL; 2282 } 2283 2284 static void raid5_end_read_request(struct bio * bi) 2285 { 2286 struct stripe_head *sh = bi->bi_private; 2287 struct r5conf *conf = sh->raid_conf; 2288 int disks = sh->disks, i; 2289 char b[BDEVNAME_SIZE]; 2290 struct md_rdev *rdev = NULL; 2291 sector_t s; 2292 2293 for (i=0 ; i<disks; i++) 2294 if (bi == &sh->dev[i].req) 2295 break; 2296 2297 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2298 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2299 bi->bi_error); 2300 if (i == disks) { 2301 BUG(); 2302 return; 2303 } 2304 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2305 /* If replacement finished while this request was outstanding, 2306 * 'replacement' might be NULL already. 2307 * In that case it moved down to 'rdev'. 2308 * rdev is not removed until all requests are finished. 2309 */ 2310 rdev = conf->disks[i].replacement; 2311 if (!rdev) 2312 rdev = conf->disks[i].rdev; 2313 2314 if (use_new_offset(conf, sh)) 2315 s = sh->sector + rdev->new_data_offset; 2316 else 2317 s = sh->sector + rdev->data_offset; 2318 if (!bi->bi_error) { 2319 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2320 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2321 /* Note that this cannot happen on a 2322 * replacement device. We just fail those on 2323 * any error 2324 */ 2325 printk_ratelimited( 2326 KERN_INFO 2327 "md/raid:%s: read error corrected" 2328 " (%lu sectors at %llu on %s)\n", 2329 mdname(conf->mddev), STRIPE_SECTORS, 2330 (unsigned long long)s, 2331 bdevname(rdev->bdev, b)); 2332 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2333 clear_bit(R5_ReadError, &sh->dev[i].flags); 2334 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2335 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2336 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2337 2338 if (atomic_read(&rdev->read_errors)) 2339 atomic_set(&rdev->read_errors, 0); 2340 } else { 2341 const char *bdn = bdevname(rdev->bdev, b); 2342 int retry = 0; 2343 int set_bad = 0; 2344 2345 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2346 atomic_inc(&rdev->read_errors); 2347 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2348 printk_ratelimited( 2349 KERN_WARNING 2350 "md/raid:%s: read error on replacement device " 2351 "(sector %llu on %s).\n", 2352 mdname(conf->mddev), 2353 (unsigned long long)s, 2354 bdn); 2355 else if (conf->mddev->degraded >= conf->max_degraded) { 2356 set_bad = 1; 2357 printk_ratelimited( 2358 KERN_WARNING 2359 "md/raid:%s: read error not correctable " 2360 "(sector %llu on %s).\n", 2361 mdname(conf->mddev), 2362 (unsigned long long)s, 2363 bdn); 2364 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2365 /* Oh, no!!! */ 2366 set_bad = 1; 2367 printk_ratelimited( 2368 KERN_WARNING 2369 "md/raid:%s: read error NOT corrected!! " 2370 "(sector %llu on %s).\n", 2371 mdname(conf->mddev), 2372 (unsigned long long)s, 2373 bdn); 2374 } else if (atomic_read(&rdev->read_errors) 2375 > conf->max_nr_stripes) 2376 printk(KERN_WARNING 2377 "md/raid:%s: Too many read errors, failing device %s.\n", 2378 mdname(conf->mddev), bdn); 2379 else 2380 retry = 1; 2381 if (set_bad && test_bit(In_sync, &rdev->flags) 2382 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2383 retry = 1; 2384 if (retry) 2385 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2386 set_bit(R5_ReadError, &sh->dev[i].flags); 2387 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2388 } else 2389 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2390 else { 2391 clear_bit(R5_ReadError, &sh->dev[i].flags); 2392 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2393 if (!(set_bad 2394 && test_bit(In_sync, &rdev->flags) 2395 && rdev_set_badblocks( 2396 rdev, sh->sector, STRIPE_SECTORS, 0))) 2397 md_error(conf->mddev, rdev); 2398 } 2399 } 2400 rdev_dec_pending(rdev, conf->mddev); 2401 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2402 set_bit(STRIPE_HANDLE, &sh->state); 2403 raid5_release_stripe(sh); 2404 } 2405 2406 static void raid5_end_write_request(struct bio *bi) 2407 { 2408 struct stripe_head *sh = bi->bi_private; 2409 struct r5conf *conf = sh->raid_conf; 2410 int disks = sh->disks, i; 2411 struct md_rdev *uninitialized_var(rdev); 2412 sector_t first_bad; 2413 int bad_sectors; 2414 int replacement = 0; 2415 2416 for (i = 0 ; i < disks; i++) { 2417 if (bi == &sh->dev[i].req) { 2418 rdev = conf->disks[i].rdev; 2419 break; 2420 } 2421 if (bi == &sh->dev[i].rreq) { 2422 rdev = conf->disks[i].replacement; 2423 if (rdev) 2424 replacement = 1; 2425 else 2426 /* rdev was removed and 'replacement' 2427 * replaced it. rdev is not removed 2428 * until all requests are finished. 2429 */ 2430 rdev = conf->disks[i].rdev; 2431 break; 2432 } 2433 } 2434 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2435 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2436 bi->bi_error); 2437 if (i == disks) { 2438 BUG(); 2439 return; 2440 } 2441 2442 if (replacement) { 2443 if (bi->bi_error) 2444 md_error(conf->mddev, rdev); 2445 else if (is_badblock(rdev, sh->sector, 2446 STRIPE_SECTORS, 2447 &first_bad, &bad_sectors)) 2448 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2449 } else { 2450 if (bi->bi_error) { 2451 set_bit(STRIPE_DEGRADED, &sh->state); 2452 set_bit(WriteErrorSeen, &rdev->flags); 2453 set_bit(R5_WriteError, &sh->dev[i].flags); 2454 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2455 set_bit(MD_RECOVERY_NEEDED, 2456 &rdev->mddev->recovery); 2457 } else if (is_badblock(rdev, sh->sector, 2458 STRIPE_SECTORS, 2459 &first_bad, &bad_sectors)) { 2460 set_bit(R5_MadeGood, &sh->dev[i].flags); 2461 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2462 /* That was a successful write so make 2463 * sure it looks like we already did 2464 * a re-write. 2465 */ 2466 set_bit(R5_ReWrite, &sh->dev[i].flags); 2467 } 2468 } 2469 rdev_dec_pending(rdev, conf->mddev); 2470 2471 if (sh->batch_head && bi->bi_error && !replacement) 2472 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2473 2474 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2475 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2476 set_bit(STRIPE_HANDLE, &sh->state); 2477 raid5_release_stripe(sh); 2478 2479 if (sh->batch_head && sh != sh->batch_head) 2480 raid5_release_stripe(sh->batch_head); 2481 } 2482 2483 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2484 { 2485 struct r5dev *dev = &sh->dev[i]; 2486 2487 bio_init(&dev->req); 2488 dev->req.bi_io_vec = &dev->vec; 2489 dev->req.bi_max_vecs = 1; 2490 dev->req.bi_private = sh; 2491 2492 bio_init(&dev->rreq); 2493 dev->rreq.bi_io_vec = &dev->rvec; 2494 dev->rreq.bi_max_vecs = 1; 2495 dev->rreq.bi_private = sh; 2496 2497 dev->flags = 0; 2498 dev->sector = raid5_compute_blocknr(sh, i, previous); 2499 } 2500 2501 static void error(struct mddev *mddev, struct md_rdev *rdev) 2502 { 2503 char b[BDEVNAME_SIZE]; 2504 struct r5conf *conf = mddev->private; 2505 unsigned long flags; 2506 pr_debug("raid456: error called\n"); 2507 2508 spin_lock_irqsave(&conf->device_lock, flags); 2509 clear_bit(In_sync, &rdev->flags); 2510 mddev->degraded = calc_degraded(conf); 2511 spin_unlock_irqrestore(&conf->device_lock, flags); 2512 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2513 2514 set_bit(Blocked, &rdev->flags); 2515 set_bit(Faulty, &rdev->flags); 2516 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2517 set_bit(MD_CHANGE_PENDING, &mddev->flags); 2518 printk(KERN_ALERT 2519 "md/raid:%s: Disk failure on %s, disabling device.\n" 2520 "md/raid:%s: Operation continuing on %d devices.\n", 2521 mdname(mddev), 2522 bdevname(rdev->bdev, b), 2523 mdname(mddev), 2524 conf->raid_disks - mddev->degraded); 2525 } 2526 2527 /* 2528 * Input: a 'big' sector number, 2529 * Output: index of the data and parity disk, and the sector # in them. 2530 */ 2531 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2532 int previous, int *dd_idx, 2533 struct stripe_head *sh) 2534 { 2535 sector_t stripe, stripe2; 2536 sector_t chunk_number; 2537 unsigned int chunk_offset; 2538 int pd_idx, qd_idx; 2539 int ddf_layout = 0; 2540 sector_t new_sector; 2541 int algorithm = previous ? conf->prev_algo 2542 : conf->algorithm; 2543 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2544 : conf->chunk_sectors; 2545 int raid_disks = previous ? conf->previous_raid_disks 2546 : conf->raid_disks; 2547 int data_disks = raid_disks - conf->max_degraded; 2548 2549 /* First compute the information on this sector */ 2550 2551 /* 2552 * Compute the chunk number and the sector offset inside the chunk 2553 */ 2554 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2555 chunk_number = r_sector; 2556 2557 /* 2558 * Compute the stripe number 2559 */ 2560 stripe = chunk_number; 2561 *dd_idx = sector_div(stripe, data_disks); 2562 stripe2 = stripe; 2563 /* 2564 * Select the parity disk based on the user selected algorithm. 2565 */ 2566 pd_idx = qd_idx = -1; 2567 switch(conf->level) { 2568 case 4: 2569 pd_idx = data_disks; 2570 break; 2571 case 5: 2572 switch (algorithm) { 2573 case ALGORITHM_LEFT_ASYMMETRIC: 2574 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2575 if (*dd_idx >= pd_idx) 2576 (*dd_idx)++; 2577 break; 2578 case ALGORITHM_RIGHT_ASYMMETRIC: 2579 pd_idx = sector_div(stripe2, raid_disks); 2580 if (*dd_idx >= pd_idx) 2581 (*dd_idx)++; 2582 break; 2583 case ALGORITHM_LEFT_SYMMETRIC: 2584 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2585 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2586 break; 2587 case ALGORITHM_RIGHT_SYMMETRIC: 2588 pd_idx = sector_div(stripe2, raid_disks); 2589 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2590 break; 2591 case ALGORITHM_PARITY_0: 2592 pd_idx = 0; 2593 (*dd_idx)++; 2594 break; 2595 case ALGORITHM_PARITY_N: 2596 pd_idx = data_disks; 2597 break; 2598 default: 2599 BUG(); 2600 } 2601 break; 2602 case 6: 2603 2604 switch (algorithm) { 2605 case ALGORITHM_LEFT_ASYMMETRIC: 2606 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2607 qd_idx = pd_idx + 1; 2608 if (pd_idx == raid_disks-1) { 2609 (*dd_idx)++; /* Q D D D P */ 2610 qd_idx = 0; 2611 } else if (*dd_idx >= pd_idx) 2612 (*dd_idx) += 2; /* D D P Q D */ 2613 break; 2614 case ALGORITHM_RIGHT_ASYMMETRIC: 2615 pd_idx = sector_div(stripe2, raid_disks); 2616 qd_idx = pd_idx + 1; 2617 if (pd_idx == raid_disks-1) { 2618 (*dd_idx)++; /* Q D D D P */ 2619 qd_idx = 0; 2620 } else if (*dd_idx >= pd_idx) 2621 (*dd_idx) += 2; /* D D P Q D */ 2622 break; 2623 case ALGORITHM_LEFT_SYMMETRIC: 2624 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2625 qd_idx = (pd_idx + 1) % raid_disks; 2626 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2627 break; 2628 case ALGORITHM_RIGHT_SYMMETRIC: 2629 pd_idx = sector_div(stripe2, raid_disks); 2630 qd_idx = (pd_idx + 1) % raid_disks; 2631 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2632 break; 2633 2634 case ALGORITHM_PARITY_0: 2635 pd_idx = 0; 2636 qd_idx = 1; 2637 (*dd_idx) += 2; 2638 break; 2639 case ALGORITHM_PARITY_N: 2640 pd_idx = data_disks; 2641 qd_idx = data_disks + 1; 2642 break; 2643 2644 case ALGORITHM_ROTATING_ZERO_RESTART: 2645 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2646 * of blocks for computing Q is different. 2647 */ 2648 pd_idx = sector_div(stripe2, raid_disks); 2649 qd_idx = pd_idx + 1; 2650 if (pd_idx == raid_disks-1) { 2651 (*dd_idx)++; /* Q D D D P */ 2652 qd_idx = 0; 2653 } else if (*dd_idx >= pd_idx) 2654 (*dd_idx) += 2; /* D D P Q D */ 2655 ddf_layout = 1; 2656 break; 2657 2658 case ALGORITHM_ROTATING_N_RESTART: 2659 /* Same a left_asymmetric, by first stripe is 2660 * D D D P Q rather than 2661 * Q D D D P 2662 */ 2663 stripe2 += 1; 2664 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2665 qd_idx = pd_idx + 1; 2666 if (pd_idx == raid_disks-1) { 2667 (*dd_idx)++; /* Q D D D P */ 2668 qd_idx = 0; 2669 } else if (*dd_idx >= pd_idx) 2670 (*dd_idx) += 2; /* D D P Q D */ 2671 ddf_layout = 1; 2672 break; 2673 2674 case ALGORITHM_ROTATING_N_CONTINUE: 2675 /* Same as left_symmetric but Q is before P */ 2676 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2677 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2678 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2679 ddf_layout = 1; 2680 break; 2681 2682 case ALGORITHM_LEFT_ASYMMETRIC_6: 2683 /* RAID5 left_asymmetric, with Q on last device */ 2684 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2685 if (*dd_idx >= pd_idx) 2686 (*dd_idx)++; 2687 qd_idx = raid_disks - 1; 2688 break; 2689 2690 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2691 pd_idx = sector_div(stripe2, raid_disks-1); 2692 if (*dd_idx >= pd_idx) 2693 (*dd_idx)++; 2694 qd_idx = raid_disks - 1; 2695 break; 2696 2697 case ALGORITHM_LEFT_SYMMETRIC_6: 2698 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2699 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2700 qd_idx = raid_disks - 1; 2701 break; 2702 2703 case ALGORITHM_RIGHT_SYMMETRIC_6: 2704 pd_idx = sector_div(stripe2, raid_disks-1); 2705 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2706 qd_idx = raid_disks - 1; 2707 break; 2708 2709 case ALGORITHM_PARITY_0_6: 2710 pd_idx = 0; 2711 (*dd_idx)++; 2712 qd_idx = raid_disks - 1; 2713 break; 2714 2715 default: 2716 BUG(); 2717 } 2718 break; 2719 } 2720 2721 if (sh) { 2722 sh->pd_idx = pd_idx; 2723 sh->qd_idx = qd_idx; 2724 sh->ddf_layout = ddf_layout; 2725 } 2726 /* 2727 * Finally, compute the new sector number 2728 */ 2729 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2730 return new_sector; 2731 } 2732 2733 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2734 { 2735 struct r5conf *conf = sh->raid_conf; 2736 int raid_disks = sh->disks; 2737 int data_disks = raid_disks - conf->max_degraded; 2738 sector_t new_sector = sh->sector, check; 2739 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2740 : conf->chunk_sectors; 2741 int algorithm = previous ? conf->prev_algo 2742 : conf->algorithm; 2743 sector_t stripe; 2744 int chunk_offset; 2745 sector_t chunk_number; 2746 int dummy1, dd_idx = i; 2747 sector_t r_sector; 2748 struct stripe_head sh2; 2749 2750 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2751 stripe = new_sector; 2752 2753 if (i == sh->pd_idx) 2754 return 0; 2755 switch(conf->level) { 2756 case 4: break; 2757 case 5: 2758 switch (algorithm) { 2759 case ALGORITHM_LEFT_ASYMMETRIC: 2760 case ALGORITHM_RIGHT_ASYMMETRIC: 2761 if (i > sh->pd_idx) 2762 i--; 2763 break; 2764 case ALGORITHM_LEFT_SYMMETRIC: 2765 case ALGORITHM_RIGHT_SYMMETRIC: 2766 if (i < sh->pd_idx) 2767 i += raid_disks; 2768 i -= (sh->pd_idx + 1); 2769 break; 2770 case ALGORITHM_PARITY_0: 2771 i -= 1; 2772 break; 2773 case ALGORITHM_PARITY_N: 2774 break; 2775 default: 2776 BUG(); 2777 } 2778 break; 2779 case 6: 2780 if (i == sh->qd_idx) 2781 return 0; /* It is the Q disk */ 2782 switch (algorithm) { 2783 case ALGORITHM_LEFT_ASYMMETRIC: 2784 case ALGORITHM_RIGHT_ASYMMETRIC: 2785 case ALGORITHM_ROTATING_ZERO_RESTART: 2786 case ALGORITHM_ROTATING_N_RESTART: 2787 if (sh->pd_idx == raid_disks-1) 2788 i--; /* Q D D D P */ 2789 else if (i > sh->pd_idx) 2790 i -= 2; /* D D P Q D */ 2791 break; 2792 case ALGORITHM_LEFT_SYMMETRIC: 2793 case ALGORITHM_RIGHT_SYMMETRIC: 2794 if (sh->pd_idx == raid_disks-1) 2795 i--; /* Q D D D P */ 2796 else { 2797 /* D D P Q D */ 2798 if (i < sh->pd_idx) 2799 i += raid_disks; 2800 i -= (sh->pd_idx + 2); 2801 } 2802 break; 2803 case ALGORITHM_PARITY_0: 2804 i -= 2; 2805 break; 2806 case ALGORITHM_PARITY_N: 2807 break; 2808 case ALGORITHM_ROTATING_N_CONTINUE: 2809 /* Like left_symmetric, but P is before Q */ 2810 if (sh->pd_idx == 0) 2811 i--; /* P D D D Q */ 2812 else { 2813 /* D D Q P D */ 2814 if (i < sh->pd_idx) 2815 i += raid_disks; 2816 i -= (sh->pd_idx + 1); 2817 } 2818 break; 2819 case ALGORITHM_LEFT_ASYMMETRIC_6: 2820 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2821 if (i > sh->pd_idx) 2822 i--; 2823 break; 2824 case ALGORITHM_LEFT_SYMMETRIC_6: 2825 case ALGORITHM_RIGHT_SYMMETRIC_6: 2826 if (i < sh->pd_idx) 2827 i += data_disks + 1; 2828 i -= (sh->pd_idx + 1); 2829 break; 2830 case ALGORITHM_PARITY_0_6: 2831 i -= 1; 2832 break; 2833 default: 2834 BUG(); 2835 } 2836 break; 2837 } 2838 2839 chunk_number = stripe * data_disks + i; 2840 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2841 2842 check = raid5_compute_sector(conf, r_sector, 2843 previous, &dummy1, &sh2); 2844 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2845 || sh2.qd_idx != sh->qd_idx) { 2846 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2847 mdname(conf->mddev)); 2848 return 0; 2849 } 2850 return r_sector; 2851 } 2852 2853 static void 2854 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2855 int rcw, int expand) 2856 { 2857 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2858 struct r5conf *conf = sh->raid_conf; 2859 int level = conf->level; 2860 2861 if (rcw) { 2862 2863 for (i = disks; i--; ) { 2864 struct r5dev *dev = &sh->dev[i]; 2865 2866 if (dev->towrite) { 2867 set_bit(R5_LOCKED, &dev->flags); 2868 set_bit(R5_Wantdrain, &dev->flags); 2869 if (!expand) 2870 clear_bit(R5_UPTODATE, &dev->flags); 2871 s->locked++; 2872 } 2873 } 2874 /* if we are not expanding this is a proper write request, and 2875 * there will be bios with new data to be drained into the 2876 * stripe cache 2877 */ 2878 if (!expand) { 2879 if (!s->locked) 2880 /* False alarm, nothing to do */ 2881 return; 2882 sh->reconstruct_state = reconstruct_state_drain_run; 2883 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2884 } else 2885 sh->reconstruct_state = reconstruct_state_run; 2886 2887 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2888 2889 if (s->locked + conf->max_degraded == disks) 2890 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2891 atomic_inc(&conf->pending_full_writes); 2892 } else { 2893 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2894 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2895 BUG_ON(level == 6 && 2896 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 2897 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 2898 2899 for (i = disks; i--; ) { 2900 struct r5dev *dev = &sh->dev[i]; 2901 if (i == pd_idx || i == qd_idx) 2902 continue; 2903 2904 if (dev->towrite && 2905 (test_bit(R5_UPTODATE, &dev->flags) || 2906 test_bit(R5_Wantcompute, &dev->flags))) { 2907 set_bit(R5_Wantdrain, &dev->flags); 2908 set_bit(R5_LOCKED, &dev->flags); 2909 clear_bit(R5_UPTODATE, &dev->flags); 2910 s->locked++; 2911 } 2912 } 2913 if (!s->locked) 2914 /* False alarm - nothing to do */ 2915 return; 2916 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2917 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2918 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2919 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2920 } 2921 2922 /* keep the parity disk(s) locked while asynchronous operations 2923 * are in flight 2924 */ 2925 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2926 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2927 s->locked++; 2928 2929 if (level == 6) { 2930 int qd_idx = sh->qd_idx; 2931 struct r5dev *dev = &sh->dev[qd_idx]; 2932 2933 set_bit(R5_LOCKED, &dev->flags); 2934 clear_bit(R5_UPTODATE, &dev->flags); 2935 s->locked++; 2936 } 2937 2938 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2939 __func__, (unsigned long long)sh->sector, 2940 s->locked, s->ops_request); 2941 } 2942 2943 /* 2944 * Each stripe/dev can have one or more bion attached. 2945 * toread/towrite point to the first in a chain. 2946 * The bi_next chain must be in order. 2947 */ 2948 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 2949 int forwrite, int previous) 2950 { 2951 struct bio **bip; 2952 struct r5conf *conf = sh->raid_conf; 2953 int firstwrite=0; 2954 2955 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2956 (unsigned long long)bi->bi_iter.bi_sector, 2957 (unsigned long long)sh->sector); 2958 2959 /* 2960 * If several bio share a stripe. The bio bi_phys_segments acts as a 2961 * reference count to avoid race. The reference count should already be 2962 * increased before this function is called (for example, in 2963 * make_request()), so other bio sharing this stripe will not free the 2964 * stripe. If a stripe is owned by one stripe, the stripe lock will 2965 * protect it. 2966 */ 2967 spin_lock_irq(&sh->stripe_lock); 2968 /* Don't allow new IO added to stripes in batch list */ 2969 if (sh->batch_head) 2970 goto overlap; 2971 if (forwrite) { 2972 bip = &sh->dev[dd_idx].towrite; 2973 if (*bip == NULL) 2974 firstwrite = 1; 2975 } else 2976 bip = &sh->dev[dd_idx].toread; 2977 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2978 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2979 goto overlap; 2980 bip = & (*bip)->bi_next; 2981 } 2982 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2983 goto overlap; 2984 2985 if (!forwrite || previous) 2986 clear_bit(STRIPE_BATCH_READY, &sh->state); 2987 2988 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2989 if (*bip) 2990 bi->bi_next = *bip; 2991 *bip = bi; 2992 raid5_inc_bi_active_stripes(bi); 2993 2994 if (forwrite) { 2995 /* check if page is covered */ 2996 sector_t sector = sh->dev[dd_idx].sector; 2997 for (bi=sh->dev[dd_idx].towrite; 2998 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2999 bi && bi->bi_iter.bi_sector <= sector; 3000 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3001 if (bio_end_sector(bi) >= sector) 3002 sector = bio_end_sector(bi); 3003 } 3004 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3005 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3006 sh->overwrite_disks++; 3007 } 3008 3009 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3010 (unsigned long long)(*bip)->bi_iter.bi_sector, 3011 (unsigned long long)sh->sector, dd_idx); 3012 3013 if (conf->mddev->bitmap && firstwrite) { 3014 /* Cannot hold spinlock over bitmap_startwrite, 3015 * but must ensure this isn't added to a batch until 3016 * we have added to the bitmap and set bm_seq. 3017 * So set STRIPE_BITMAP_PENDING to prevent 3018 * batching. 3019 * If multiple add_stripe_bio() calls race here they 3020 * much all set STRIPE_BITMAP_PENDING. So only the first one 3021 * to complete "bitmap_startwrite" gets to set 3022 * STRIPE_BIT_DELAY. This is important as once a stripe 3023 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3024 * any more. 3025 */ 3026 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3027 spin_unlock_irq(&sh->stripe_lock); 3028 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3029 STRIPE_SECTORS, 0); 3030 spin_lock_irq(&sh->stripe_lock); 3031 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3032 if (!sh->batch_head) { 3033 sh->bm_seq = conf->seq_flush+1; 3034 set_bit(STRIPE_BIT_DELAY, &sh->state); 3035 } 3036 } 3037 spin_unlock_irq(&sh->stripe_lock); 3038 3039 if (stripe_can_batch(sh)) 3040 stripe_add_to_batch_list(conf, sh); 3041 return 1; 3042 3043 overlap: 3044 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3045 spin_unlock_irq(&sh->stripe_lock); 3046 return 0; 3047 } 3048 3049 static void end_reshape(struct r5conf *conf); 3050 3051 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3052 struct stripe_head *sh) 3053 { 3054 int sectors_per_chunk = 3055 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3056 int dd_idx; 3057 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3058 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3059 3060 raid5_compute_sector(conf, 3061 stripe * (disks - conf->max_degraded) 3062 *sectors_per_chunk + chunk_offset, 3063 previous, 3064 &dd_idx, sh); 3065 } 3066 3067 static void 3068 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3069 struct stripe_head_state *s, int disks, 3070 struct bio_list *return_bi) 3071 { 3072 int i; 3073 BUG_ON(sh->batch_head); 3074 for (i = disks; i--; ) { 3075 struct bio *bi; 3076 int bitmap_end = 0; 3077 3078 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3079 struct md_rdev *rdev; 3080 rcu_read_lock(); 3081 rdev = rcu_dereference(conf->disks[i].rdev); 3082 if (rdev && test_bit(In_sync, &rdev->flags)) 3083 atomic_inc(&rdev->nr_pending); 3084 else 3085 rdev = NULL; 3086 rcu_read_unlock(); 3087 if (rdev) { 3088 if (!rdev_set_badblocks( 3089 rdev, 3090 sh->sector, 3091 STRIPE_SECTORS, 0)) 3092 md_error(conf->mddev, rdev); 3093 rdev_dec_pending(rdev, conf->mddev); 3094 } 3095 } 3096 spin_lock_irq(&sh->stripe_lock); 3097 /* fail all writes first */ 3098 bi = sh->dev[i].towrite; 3099 sh->dev[i].towrite = NULL; 3100 sh->overwrite_disks = 0; 3101 spin_unlock_irq(&sh->stripe_lock); 3102 if (bi) 3103 bitmap_end = 1; 3104 3105 r5l_stripe_write_finished(sh); 3106 3107 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3108 wake_up(&conf->wait_for_overlap); 3109 3110 while (bi && bi->bi_iter.bi_sector < 3111 sh->dev[i].sector + STRIPE_SECTORS) { 3112 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3113 3114 bi->bi_error = -EIO; 3115 if (!raid5_dec_bi_active_stripes(bi)) { 3116 md_write_end(conf->mddev); 3117 bio_list_add(return_bi, bi); 3118 } 3119 bi = nextbi; 3120 } 3121 if (bitmap_end) 3122 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3123 STRIPE_SECTORS, 0, 0); 3124 bitmap_end = 0; 3125 /* and fail all 'written' */ 3126 bi = sh->dev[i].written; 3127 sh->dev[i].written = NULL; 3128 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3129 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3130 sh->dev[i].page = sh->dev[i].orig_page; 3131 } 3132 3133 if (bi) bitmap_end = 1; 3134 while (bi && bi->bi_iter.bi_sector < 3135 sh->dev[i].sector + STRIPE_SECTORS) { 3136 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3137 3138 bi->bi_error = -EIO; 3139 if (!raid5_dec_bi_active_stripes(bi)) { 3140 md_write_end(conf->mddev); 3141 bio_list_add(return_bi, bi); 3142 } 3143 bi = bi2; 3144 } 3145 3146 /* fail any reads if this device is non-operational and 3147 * the data has not reached the cache yet. 3148 */ 3149 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3150 s->failed > conf->max_degraded && 3151 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3152 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3153 spin_lock_irq(&sh->stripe_lock); 3154 bi = sh->dev[i].toread; 3155 sh->dev[i].toread = NULL; 3156 spin_unlock_irq(&sh->stripe_lock); 3157 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3158 wake_up(&conf->wait_for_overlap); 3159 if (bi) 3160 s->to_read--; 3161 while (bi && bi->bi_iter.bi_sector < 3162 sh->dev[i].sector + STRIPE_SECTORS) { 3163 struct bio *nextbi = 3164 r5_next_bio(bi, sh->dev[i].sector); 3165 3166 bi->bi_error = -EIO; 3167 if (!raid5_dec_bi_active_stripes(bi)) 3168 bio_list_add(return_bi, bi); 3169 bi = nextbi; 3170 } 3171 } 3172 if (bitmap_end) 3173 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3174 STRIPE_SECTORS, 0, 0); 3175 /* If we were in the middle of a write the parity block might 3176 * still be locked - so just clear all R5_LOCKED flags 3177 */ 3178 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3179 } 3180 s->to_write = 0; 3181 s->written = 0; 3182 3183 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3184 if (atomic_dec_and_test(&conf->pending_full_writes)) 3185 md_wakeup_thread(conf->mddev->thread); 3186 } 3187 3188 static void 3189 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3190 struct stripe_head_state *s) 3191 { 3192 int abort = 0; 3193 int i; 3194 3195 BUG_ON(sh->batch_head); 3196 clear_bit(STRIPE_SYNCING, &sh->state); 3197 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3198 wake_up(&conf->wait_for_overlap); 3199 s->syncing = 0; 3200 s->replacing = 0; 3201 /* There is nothing more to do for sync/check/repair. 3202 * Don't even need to abort as that is handled elsewhere 3203 * if needed, and not always wanted e.g. if there is a known 3204 * bad block here. 3205 * For recover/replace we need to record a bad block on all 3206 * non-sync devices, or abort the recovery 3207 */ 3208 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3209 /* During recovery devices cannot be removed, so 3210 * locking and refcounting of rdevs is not needed 3211 */ 3212 for (i = 0; i < conf->raid_disks; i++) { 3213 struct md_rdev *rdev = conf->disks[i].rdev; 3214 if (rdev 3215 && !test_bit(Faulty, &rdev->flags) 3216 && !test_bit(In_sync, &rdev->flags) 3217 && !rdev_set_badblocks(rdev, sh->sector, 3218 STRIPE_SECTORS, 0)) 3219 abort = 1; 3220 rdev = conf->disks[i].replacement; 3221 if (rdev 3222 && !test_bit(Faulty, &rdev->flags) 3223 && !test_bit(In_sync, &rdev->flags) 3224 && !rdev_set_badblocks(rdev, sh->sector, 3225 STRIPE_SECTORS, 0)) 3226 abort = 1; 3227 } 3228 if (abort) 3229 conf->recovery_disabled = 3230 conf->mddev->recovery_disabled; 3231 } 3232 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3233 } 3234 3235 static int want_replace(struct stripe_head *sh, int disk_idx) 3236 { 3237 struct md_rdev *rdev; 3238 int rv = 0; 3239 /* Doing recovery so rcu locking not required */ 3240 rdev = sh->raid_conf->disks[disk_idx].replacement; 3241 if (rdev 3242 && !test_bit(Faulty, &rdev->flags) 3243 && !test_bit(In_sync, &rdev->flags) 3244 && (rdev->recovery_offset <= sh->sector 3245 || rdev->mddev->recovery_cp <= sh->sector)) 3246 rv = 1; 3247 3248 return rv; 3249 } 3250 3251 /* fetch_block - checks the given member device to see if its data needs 3252 * to be read or computed to satisfy a request. 3253 * 3254 * Returns 1 when no more member devices need to be checked, otherwise returns 3255 * 0 to tell the loop in handle_stripe_fill to continue 3256 */ 3257 3258 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3259 int disk_idx, int disks) 3260 { 3261 struct r5dev *dev = &sh->dev[disk_idx]; 3262 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3263 &sh->dev[s->failed_num[1]] }; 3264 int i; 3265 3266 3267 if (test_bit(R5_LOCKED, &dev->flags) || 3268 test_bit(R5_UPTODATE, &dev->flags)) 3269 /* No point reading this as we already have it or have 3270 * decided to get it. 3271 */ 3272 return 0; 3273 3274 if (dev->toread || 3275 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3276 /* We need this block to directly satisfy a request */ 3277 return 1; 3278 3279 if (s->syncing || s->expanding || 3280 (s->replacing && want_replace(sh, disk_idx))) 3281 /* When syncing, or expanding we read everything. 3282 * When replacing, we need the replaced block. 3283 */ 3284 return 1; 3285 3286 if ((s->failed >= 1 && fdev[0]->toread) || 3287 (s->failed >= 2 && fdev[1]->toread)) 3288 /* If we want to read from a failed device, then 3289 * we need to actually read every other device. 3290 */ 3291 return 1; 3292 3293 /* Sometimes neither read-modify-write nor reconstruct-write 3294 * cycles can work. In those cases we read every block we 3295 * can. Then the parity-update is certain to have enough to 3296 * work with. 3297 * This can only be a problem when we need to write something, 3298 * and some device has failed. If either of those tests 3299 * fail we need look no further. 3300 */ 3301 if (!s->failed || !s->to_write) 3302 return 0; 3303 3304 if (test_bit(R5_Insync, &dev->flags) && 3305 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3306 /* Pre-reads at not permitted until after short delay 3307 * to gather multiple requests. However if this 3308 * device is no Insync, the block could only be be computed 3309 * and there is no need to delay that. 3310 */ 3311 return 0; 3312 3313 for (i = 0; i < s->failed && i < 2; i++) { 3314 if (fdev[i]->towrite && 3315 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3316 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3317 /* If we have a partial write to a failed 3318 * device, then we will need to reconstruct 3319 * the content of that device, so all other 3320 * devices must be read. 3321 */ 3322 return 1; 3323 } 3324 3325 /* If we are forced to do a reconstruct-write, either because 3326 * the current RAID6 implementation only supports that, or 3327 * or because parity cannot be trusted and we are currently 3328 * recovering it, there is extra need to be careful. 3329 * If one of the devices that we would need to read, because 3330 * it is not being overwritten (and maybe not written at all) 3331 * is missing/faulty, then we need to read everything we can. 3332 */ 3333 if (sh->raid_conf->level != 6 && 3334 sh->sector < sh->raid_conf->mddev->recovery_cp) 3335 /* reconstruct-write isn't being forced */ 3336 return 0; 3337 for (i = 0; i < s->failed && i < 2; i++) { 3338 if (s->failed_num[i] != sh->pd_idx && 3339 s->failed_num[i] != sh->qd_idx && 3340 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3341 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3342 return 1; 3343 } 3344 3345 return 0; 3346 } 3347 3348 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3349 int disk_idx, int disks) 3350 { 3351 struct r5dev *dev = &sh->dev[disk_idx]; 3352 3353 /* is the data in this block needed, and can we get it? */ 3354 if (need_this_block(sh, s, disk_idx, disks)) { 3355 /* we would like to get this block, possibly by computing it, 3356 * otherwise read it if the backing disk is insync 3357 */ 3358 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3359 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3360 BUG_ON(sh->batch_head); 3361 if ((s->uptodate == disks - 1) && 3362 (s->failed && (disk_idx == s->failed_num[0] || 3363 disk_idx == s->failed_num[1]))) { 3364 /* have disk failed, and we're requested to fetch it; 3365 * do compute it 3366 */ 3367 pr_debug("Computing stripe %llu block %d\n", 3368 (unsigned long long)sh->sector, disk_idx); 3369 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3370 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3371 set_bit(R5_Wantcompute, &dev->flags); 3372 sh->ops.target = disk_idx; 3373 sh->ops.target2 = -1; /* no 2nd target */ 3374 s->req_compute = 1; 3375 /* Careful: from this point on 'uptodate' is in the eye 3376 * of raid_run_ops which services 'compute' operations 3377 * before writes. R5_Wantcompute flags a block that will 3378 * be R5_UPTODATE by the time it is needed for a 3379 * subsequent operation. 3380 */ 3381 s->uptodate++; 3382 return 1; 3383 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3384 /* Computing 2-failure is *very* expensive; only 3385 * do it if failed >= 2 3386 */ 3387 int other; 3388 for (other = disks; other--; ) { 3389 if (other == disk_idx) 3390 continue; 3391 if (!test_bit(R5_UPTODATE, 3392 &sh->dev[other].flags)) 3393 break; 3394 } 3395 BUG_ON(other < 0); 3396 pr_debug("Computing stripe %llu blocks %d,%d\n", 3397 (unsigned long long)sh->sector, 3398 disk_idx, other); 3399 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3400 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3401 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3402 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3403 sh->ops.target = disk_idx; 3404 sh->ops.target2 = other; 3405 s->uptodate += 2; 3406 s->req_compute = 1; 3407 return 1; 3408 } else if (test_bit(R5_Insync, &dev->flags)) { 3409 set_bit(R5_LOCKED, &dev->flags); 3410 set_bit(R5_Wantread, &dev->flags); 3411 s->locked++; 3412 pr_debug("Reading block %d (sync=%d)\n", 3413 disk_idx, s->syncing); 3414 } 3415 } 3416 3417 return 0; 3418 } 3419 3420 /** 3421 * handle_stripe_fill - read or compute data to satisfy pending requests. 3422 */ 3423 static void handle_stripe_fill(struct stripe_head *sh, 3424 struct stripe_head_state *s, 3425 int disks) 3426 { 3427 int i; 3428 3429 /* look for blocks to read/compute, skip this if a compute 3430 * is already in flight, or if the stripe contents are in the 3431 * midst of changing due to a write 3432 */ 3433 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3434 !sh->reconstruct_state) 3435 for (i = disks; i--; ) 3436 if (fetch_block(sh, s, i, disks)) 3437 break; 3438 set_bit(STRIPE_HANDLE, &sh->state); 3439 } 3440 3441 static void break_stripe_batch_list(struct stripe_head *head_sh, 3442 unsigned long handle_flags); 3443 /* handle_stripe_clean_event 3444 * any written block on an uptodate or failed drive can be returned. 3445 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3446 * never LOCKED, so we don't need to test 'failed' directly. 3447 */ 3448 static void handle_stripe_clean_event(struct r5conf *conf, 3449 struct stripe_head *sh, int disks, struct bio_list *return_bi) 3450 { 3451 int i; 3452 struct r5dev *dev; 3453 int discard_pending = 0; 3454 struct stripe_head *head_sh = sh; 3455 bool do_endio = false; 3456 3457 for (i = disks; i--; ) 3458 if (sh->dev[i].written) { 3459 dev = &sh->dev[i]; 3460 if (!test_bit(R5_LOCKED, &dev->flags) && 3461 (test_bit(R5_UPTODATE, &dev->flags) || 3462 test_bit(R5_Discard, &dev->flags) || 3463 test_bit(R5_SkipCopy, &dev->flags))) { 3464 /* We can return any write requests */ 3465 struct bio *wbi, *wbi2; 3466 pr_debug("Return write for disc %d\n", i); 3467 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3468 clear_bit(R5_UPTODATE, &dev->flags); 3469 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3470 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3471 } 3472 do_endio = true; 3473 3474 returnbi: 3475 dev->page = dev->orig_page; 3476 wbi = dev->written; 3477 dev->written = NULL; 3478 while (wbi && wbi->bi_iter.bi_sector < 3479 dev->sector + STRIPE_SECTORS) { 3480 wbi2 = r5_next_bio(wbi, dev->sector); 3481 if (!raid5_dec_bi_active_stripes(wbi)) { 3482 md_write_end(conf->mddev); 3483 bio_list_add(return_bi, wbi); 3484 } 3485 wbi = wbi2; 3486 } 3487 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3488 STRIPE_SECTORS, 3489 !test_bit(STRIPE_DEGRADED, &sh->state), 3490 0); 3491 if (head_sh->batch_head) { 3492 sh = list_first_entry(&sh->batch_list, 3493 struct stripe_head, 3494 batch_list); 3495 if (sh != head_sh) { 3496 dev = &sh->dev[i]; 3497 goto returnbi; 3498 } 3499 } 3500 sh = head_sh; 3501 dev = &sh->dev[i]; 3502 } else if (test_bit(R5_Discard, &dev->flags)) 3503 discard_pending = 1; 3504 WARN_ON(test_bit(R5_SkipCopy, &dev->flags)); 3505 WARN_ON(dev->page != dev->orig_page); 3506 } 3507 3508 r5l_stripe_write_finished(sh); 3509 3510 if (!discard_pending && 3511 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3512 int hash; 3513 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3514 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3515 if (sh->qd_idx >= 0) { 3516 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3517 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3518 } 3519 /* now that discard is done we can proceed with any sync */ 3520 clear_bit(STRIPE_DISCARD, &sh->state); 3521 /* 3522 * SCSI discard will change some bio fields and the stripe has 3523 * no updated data, so remove it from hash list and the stripe 3524 * will be reinitialized 3525 */ 3526 unhash: 3527 hash = sh->hash_lock_index; 3528 spin_lock_irq(conf->hash_locks + hash); 3529 remove_hash(sh); 3530 spin_unlock_irq(conf->hash_locks + hash); 3531 if (head_sh->batch_head) { 3532 sh = list_first_entry(&sh->batch_list, 3533 struct stripe_head, batch_list); 3534 if (sh != head_sh) 3535 goto unhash; 3536 } 3537 sh = head_sh; 3538 3539 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3540 set_bit(STRIPE_HANDLE, &sh->state); 3541 3542 } 3543 3544 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3545 if (atomic_dec_and_test(&conf->pending_full_writes)) 3546 md_wakeup_thread(conf->mddev->thread); 3547 3548 if (head_sh->batch_head && do_endio) 3549 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3550 } 3551 3552 static void handle_stripe_dirtying(struct r5conf *conf, 3553 struct stripe_head *sh, 3554 struct stripe_head_state *s, 3555 int disks) 3556 { 3557 int rmw = 0, rcw = 0, i; 3558 sector_t recovery_cp = conf->mddev->recovery_cp; 3559 3560 /* Check whether resync is now happening or should start. 3561 * If yes, then the array is dirty (after unclean shutdown or 3562 * initial creation), so parity in some stripes might be inconsistent. 3563 * In this case, we need to always do reconstruct-write, to ensure 3564 * that in case of drive failure or read-error correction, we 3565 * generate correct data from the parity. 3566 */ 3567 if (conf->rmw_level == PARITY_DISABLE_RMW || 3568 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3569 s->failed == 0)) { 3570 /* Calculate the real rcw later - for now make it 3571 * look like rcw is cheaper 3572 */ 3573 rcw = 1; rmw = 2; 3574 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3575 conf->rmw_level, (unsigned long long)recovery_cp, 3576 (unsigned long long)sh->sector); 3577 } else for (i = disks; i--; ) { 3578 /* would I have to read this buffer for read_modify_write */ 3579 struct r5dev *dev = &sh->dev[i]; 3580 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3581 !test_bit(R5_LOCKED, &dev->flags) && 3582 !(test_bit(R5_UPTODATE, &dev->flags) || 3583 test_bit(R5_Wantcompute, &dev->flags))) { 3584 if (test_bit(R5_Insync, &dev->flags)) 3585 rmw++; 3586 else 3587 rmw += 2*disks; /* cannot read it */ 3588 } 3589 /* Would I have to read this buffer for reconstruct_write */ 3590 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3591 i != sh->pd_idx && i != sh->qd_idx && 3592 !test_bit(R5_LOCKED, &dev->flags) && 3593 !(test_bit(R5_UPTODATE, &dev->flags) || 3594 test_bit(R5_Wantcompute, &dev->flags))) { 3595 if (test_bit(R5_Insync, &dev->flags)) 3596 rcw++; 3597 else 3598 rcw += 2*disks; 3599 } 3600 } 3601 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3602 (unsigned long long)sh->sector, rmw, rcw); 3603 set_bit(STRIPE_HANDLE, &sh->state); 3604 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) { 3605 /* prefer read-modify-write, but need to get some data */ 3606 if (conf->mddev->queue) 3607 blk_add_trace_msg(conf->mddev->queue, 3608 "raid5 rmw %llu %d", 3609 (unsigned long long)sh->sector, rmw); 3610 for (i = disks; i--; ) { 3611 struct r5dev *dev = &sh->dev[i]; 3612 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3613 !test_bit(R5_LOCKED, &dev->flags) && 3614 !(test_bit(R5_UPTODATE, &dev->flags) || 3615 test_bit(R5_Wantcompute, &dev->flags)) && 3616 test_bit(R5_Insync, &dev->flags)) { 3617 if (test_bit(STRIPE_PREREAD_ACTIVE, 3618 &sh->state)) { 3619 pr_debug("Read_old block %d for r-m-w\n", 3620 i); 3621 set_bit(R5_LOCKED, &dev->flags); 3622 set_bit(R5_Wantread, &dev->flags); 3623 s->locked++; 3624 } else { 3625 set_bit(STRIPE_DELAYED, &sh->state); 3626 set_bit(STRIPE_HANDLE, &sh->state); 3627 } 3628 } 3629 } 3630 } 3631 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) { 3632 /* want reconstruct write, but need to get some data */ 3633 int qread =0; 3634 rcw = 0; 3635 for (i = disks; i--; ) { 3636 struct r5dev *dev = &sh->dev[i]; 3637 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3638 i != sh->pd_idx && i != sh->qd_idx && 3639 !test_bit(R5_LOCKED, &dev->flags) && 3640 !(test_bit(R5_UPTODATE, &dev->flags) || 3641 test_bit(R5_Wantcompute, &dev->flags))) { 3642 rcw++; 3643 if (test_bit(R5_Insync, &dev->flags) && 3644 test_bit(STRIPE_PREREAD_ACTIVE, 3645 &sh->state)) { 3646 pr_debug("Read_old block " 3647 "%d for Reconstruct\n", i); 3648 set_bit(R5_LOCKED, &dev->flags); 3649 set_bit(R5_Wantread, &dev->flags); 3650 s->locked++; 3651 qread++; 3652 } else { 3653 set_bit(STRIPE_DELAYED, &sh->state); 3654 set_bit(STRIPE_HANDLE, &sh->state); 3655 } 3656 } 3657 } 3658 if (rcw && conf->mddev->queue) 3659 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3660 (unsigned long long)sh->sector, 3661 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3662 } 3663 3664 if (rcw > disks && rmw > disks && 3665 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3666 set_bit(STRIPE_DELAYED, &sh->state); 3667 3668 /* now if nothing is locked, and if we have enough data, 3669 * we can start a write request 3670 */ 3671 /* since handle_stripe can be called at any time we need to handle the 3672 * case where a compute block operation has been submitted and then a 3673 * subsequent call wants to start a write request. raid_run_ops only 3674 * handles the case where compute block and reconstruct are requested 3675 * simultaneously. If this is not the case then new writes need to be 3676 * held off until the compute completes. 3677 */ 3678 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3679 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3680 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3681 schedule_reconstruction(sh, s, rcw == 0, 0); 3682 } 3683 3684 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3685 struct stripe_head_state *s, int disks) 3686 { 3687 struct r5dev *dev = NULL; 3688 3689 BUG_ON(sh->batch_head); 3690 set_bit(STRIPE_HANDLE, &sh->state); 3691 3692 switch (sh->check_state) { 3693 case check_state_idle: 3694 /* start a new check operation if there are no failures */ 3695 if (s->failed == 0) { 3696 BUG_ON(s->uptodate != disks); 3697 sh->check_state = check_state_run; 3698 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3699 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3700 s->uptodate--; 3701 break; 3702 } 3703 dev = &sh->dev[s->failed_num[0]]; 3704 /* fall through */ 3705 case check_state_compute_result: 3706 sh->check_state = check_state_idle; 3707 if (!dev) 3708 dev = &sh->dev[sh->pd_idx]; 3709 3710 /* check that a write has not made the stripe insync */ 3711 if (test_bit(STRIPE_INSYNC, &sh->state)) 3712 break; 3713 3714 /* either failed parity check, or recovery is happening */ 3715 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3716 BUG_ON(s->uptodate != disks); 3717 3718 set_bit(R5_LOCKED, &dev->flags); 3719 s->locked++; 3720 set_bit(R5_Wantwrite, &dev->flags); 3721 3722 clear_bit(STRIPE_DEGRADED, &sh->state); 3723 set_bit(STRIPE_INSYNC, &sh->state); 3724 break; 3725 case check_state_run: 3726 break; /* we will be called again upon completion */ 3727 case check_state_check_result: 3728 sh->check_state = check_state_idle; 3729 3730 /* if a failure occurred during the check operation, leave 3731 * STRIPE_INSYNC not set and let the stripe be handled again 3732 */ 3733 if (s->failed) 3734 break; 3735 3736 /* handle a successful check operation, if parity is correct 3737 * we are done. Otherwise update the mismatch count and repair 3738 * parity if !MD_RECOVERY_CHECK 3739 */ 3740 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3741 /* parity is correct (on disc, 3742 * not in buffer any more) 3743 */ 3744 set_bit(STRIPE_INSYNC, &sh->state); 3745 else { 3746 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3747 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3748 /* don't try to repair!! */ 3749 set_bit(STRIPE_INSYNC, &sh->state); 3750 else { 3751 sh->check_state = check_state_compute_run; 3752 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3753 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3754 set_bit(R5_Wantcompute, 3755 &sh->dev[sh->pd_idx].flags); 3756 sh->ops.target = sh->pd_idx; 3757 sh->ops.target2 = -1; 3758 s->uptodate++; 3759 } 3760 } 3761 break; 3762 case check_state_compute_run: 3763 break; 3764 default: 3765 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3766 __func__, sh->check_state, 3767 (unsigned long long) sh->sector); 3768 BUG(); 3769 } 3770 } 3771 3772 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3773 struct stripe_head_state *s, 3774 int disks) 3775 { 3776 int pd_idx = sh->pd_idx; 3777 int qd_idx = sh->qd_idx; 3778 struct r5dev *dev; 3779 3780 BUG_ON(sh->batch_head); 3781 set_bit(STRIPE_HANDLE, &sh->state); 3782 3783 BUG_ON(s->failed > 2); 3784 3785 /* Want to check and possibly repair P and Q. 3786 * However there could be one 'failed' device, in which 3787 * case we can only check one of them, possibly using the 3788 * other to generate missing data 3789 */ 3790 3791 switch (sh->check_state) { 3792 case check_state_idle: 3793 /* start a new check operation if there are < 2 failures */ 3794 if (s->failed == s->q_failed) { 3795 /* The only possible failed device holds Q, so it 3796 * makes sense to check P (If anything else were failed, 3797 * we would have used P to recreate it). 3798 */ 3799 sh->check_state = check_state_run; 3800 } 3801 if (!s->q_failed && s->failed < 2) { 3802 /* Q is not failed, and we didn't use it to generate 3803 * anything, so it makes sense to check it 3804 */ 3805 if (sh->check_state == check_state_run) 3806 sh->check_state = check_state_run_pq; 3807 else 3808 sh->check_state = check_state_run_q; 3809 } 3810 3811 /* discard potentially stale zero_sum_result */ 3812 sh->ops.zero_sum_result = 0; 3813 3814 if (sh->check_state == check_state_run) { 3815 /* async_xor_zero_sum destroys the contents of P */ 3816 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3817 s->uptodate--; 3818 } 3819 if (sh->check_state >= check_state_run && 3820 sh->check_state <= check_state_run_pq) { 3821 /* async_syndrome_zero_sum preserves P and Q, so 3822 * no need to mark them !uptodate here 3823 */ 3824 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3825 break; 3826 } 3827 3828 /* we have 2-disk failure */ 3829 BUG_ON(s->failed != 2); 3830 /* fall through */ 3831 case check_state_compute_result: 3832 sh->check_state = check_state_idle; 3833 3834 /* check that a write has not made the stripe insync */ 3835 if (test_bit(STRIPE_INSYNC, &sh->state)) 3836 break; 3837 3838 /* now write out any block on a failed drive, 3839 * or P or Q if they were recomputed 3840 */ 3841 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3842 if (s->failed == 2) { 3843 dev = &sh->dev[s->failed_num[1]]; 3844 s->locked++; 3845 set_bit(R5_LOCKED, &dev->flags); 3846 set_bit(R5_Wantwrite, &dev->flags); 3847 } 3848 if (s->failed >= 1) { 3849 dev = &sh->dev[s->failed_num[0]]; 3850 s->locked++; 3851 set_bit(R5_LOCKED, &dev->flags); 3852 set_bit(R5_Wantwrite, &dev->flags); 3853 } 3854 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3855 dev = &sh->dev[pd_idx]; 3856 s->locked++; 3857 set_bit(R5_LOCKED, &dev->flags); 3858 set_bit(R5_Wantwrite, &dev->flags); 3859 } 3860 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3861 dev = &sh->dev[qd_idx]; 3862 s->locked++; 3863 set_bit(R5_LOCKED, &dev->flags); 3864 set_bit(R5_Wantwrite, &dev->flags); 3865 } 3866 clear_bit(STRIPE_DEGRADED, &sh->state); 3867 3868 set_bit(STRIPE_INSYNC, &sh->state); 3869 break; 3870 case check_state_run: 3871 case check_state_run_q: 3872 case check_state_run_pq: 3873 break; /* we will be called again upon completion */ 3874 case check_state_check_result: 3875 sh->check_state = check_state_idle; 3876 3877 /* handle a successful check operation, if parity is correct 3878 * we are done. Otherwise update the mismatch count and repair 3879 * parity if !MD_RECOVERY_CHECK 3880 */ 3881 if (sh->ops.zero_sum_result == 0) { 3882 /* both parities are correct */ 3883 if (!s->failed) 3884 set_bit(STRIPE_INSYNC, &sh->state); 3885 else { 3886 /* in contrast to the raid5 case we can validate 3887 * parity, but still have a failure to write 3888 * back 3889 */ 3890 sh->check_state = check_state_compute_result; 3891 /* Returning at this point means that we may go 3892 * off and bring p and/or q uptodate again so 3893 * we make sure to check zero_sum_result again 3894 * to verify if p or q need writeback 3895 */ 3896 } 3897 } else { 3898 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3899 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3900 /* don't try to repair!! */ 3901 set_bit(STRIPE_INSYNC, &sh->state); 3902 else { 3903 int *target = &sh->ops.target; 3904 3905 sh->ops.target = -1; 3906 sh->ops.target2 = -1; 3907 sh->check_state = check_state_compute_run; 3908 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3909 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3910 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3911 set_bit(R5_Wantcompute, 3912 &sh->dev[pd_idx].flags); 3913 *target = pd_idx; 3914 target = &sh->ops.target2; 3915 s->uptodate++; 3916 } 3917 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3918 set_bit(R5_Wantcompute, 3919 &sh->dev[qd_idx].flags); 3920 *target = qd_idx; 3921 s->uptodate++; 3922 } 3923 } 3924 } 3925 break; 3926 case check_state_compute_run: 3927 break; 3928 default: 3929 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3930 __func__, sh->check_state, 3931 (unsigned long long) sh->sector); 3932 BUG(); 3933 } 3934 } 3935 3936 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3937 { 3938 int i; 3939 3940 /* We have read all the blocks in this stripe and now we need to 3941 * copy some of them into a target stripe for expand. 3942 */ 3943 struct dma_async_tx_descriptor *tx = NULL; 3944 BUG_ON(sh->batch_head); 3945 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3946 for (i = 0; i < sh->disks; i++) 3947 if (i != sh->pd_idx && i != sh->qd_idx) { 3948 int dd_idx, j; 3949 struct stripe_head *sh2; 3950 struct async_submit_ctl submit; 3951 3952 sector_t bn = raid5_compute_blocknr(sh, i, 1); 3953 sector_t s = raid5_compute_sector(conf, bn, 0, 3954 &dd_idx, NULL); 3955 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 3956 if (sh2 == NULL) 3957 /* so far only the early blocks of this stripe 3958 * have been requested. When later blocks 3959 * get requested, we will try again 3960 */ 3961 continue; 3962 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3963 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3964 /* must have already done this block */ 3965 raid5_release_stripe(sh2); 3966 continue; 3967 } 3968 3969 /* place all the copies on one channel */ 3970 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3971 tx = async_memcpy(sh2->dev[dd_idx].page, 3972 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3973 &submit); 3974 3975 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3976 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3977 for (j = 0; j < conf->raid_disks; j++) 3978 if (j != sh2->pd_idx && 3979 j != sh2->qd_idx && 3980 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3981 break; 3982 if (j == conf->raid_disks) { 3983 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3984 set_bit(STRIPE_HANDLE, &sh2->state); 3985 } 3986 raid5_release_stripe(sh2); 3987 3988 } 3989 /* done submitting copies, wait for them to complete */ 3990 async_tx_quiesce(&tx); 3991 } 3992 3993 /* 3994 * handle_stripe - do things to a stripe. 3995 * 3996 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3997 * state of various bits to see what needs to be done. 3998 * Possible results: 3999 * return some read requests which now have data 4000 * return some write requests which are safely on storage 4001 * schedule a read on some buffers 4002 * schedule a write of some buffers 4003 * return confirmation of parity correctness 4004 * 4005 */ 4006 4007 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4008 { 4009 struct r5conf *conf = sh->raid_conf; 4010 int disks = sh->disks; 4011 struct r5dev *dev; 4012 int i; 4013 int do_recovery = 0; 4014 4015 memset(s, 0, sizeof(*s)); 4016 4017 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4018 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4019 s->failed_num[0] = -1; 4020 s->failed_num[1] = -1; 4021 s->log_failed = r5l_log_disk_error(conf); 4022 4023 /* Now to look around and see what can be done */ 4024 rcu_read_lock(); 4025 for (i=disks; i--; ) { 4026 struct md_rdev *rdev; 4027 sector_t first_bad; 4028 int bad_sectors; 4029 int is_bad = 0; 4030 4031 dev = &sh->dev[i]; 4032 4033 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4034 i, dev->flags, 4035 dev->toread, dev->towrite, dev->written); 4036 /* maybe we can reply to a read 4037 * 4038 * new wantfill requests are only permitted while 4039 * ops_complete_biofill is guaranteed to be inactive 4040 */ 4041 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4042 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4043 set_bit(R5_Wantfill, &dev->flags); 4044 4045 /* now count some things */ 4046 if (test_bit(R5_LOCKED, &dev->flags)) 4047 s->locked++; 4048 if (test_bit(R5_UPTODATE, &dev->flags)) 4049 s->uptodate++; 4050 if (test_bit(R5_Wantcompute, &dev->flags)) { 4051 s->compute++; 4052 BUG_ON(s->compute > 2); 4053 } 4054 4055 if (test_bit(R5_Wantfill, &dev->flags)) 4056 s->to_fill++; 4057 else if (dev->toread) 4058 s->to_read++; 4059 if (dev->towrite) { 4060 s->to_write++; 4061 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4062 s->non_overwrite++; 4063 } 4064 if (dev->written) 4065 s->written++; 4066 /* Prefer to use the replacement for reads, but only 4067 * if it is recovered enough and has no bad blocks. 4068 */ 4069 rdev = rcu_dereference(conf->disks[i].replacement); 4070 if (rdev && !test_bit(Faulty, &rdev->flags) && 4071 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4072 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4073 &first_bad, &bad_sectors)) 4074 set_bit(R5_ReadRepl, &dev->flags); 4075 else { 4076 if (rdev && !test_bit(Faulty, &rdev->flags)) 4077 set_bit(R5_NeedReplace, &dev->flags); 4078 else 4079 clear_bit(R5_NeedReplace, &dev->flags); 4080 rdev = rcu_dereference(conf->disks[i].rdev); 4081 clear_bit(R5_ReadRepl, &dev->flags); 4082 } 4083 if (rdev && test_bit(Faulty, &rdev->flags)) 4084 rdev = NULL; 4085 if (rdev) { 4086 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4087 &first_bad, &bad_sectors); 4088 if (s->blocked_rdev == NULL 4089 && (test_bit(Blocked, &rdev->flags) 4090 || is_bad < 0)) { 4091 if (is_bad < 0) 4092 set_bit(BlockedBadBlocks, 4093 &rdev->flags); 4094 s->blocked_rdev = rdev; 4095 atomic_inc(&rdev->nr_pending); 4096 } 4097 } 4098 clear_bit(R5_Insync, &dev->flags); 4099 if (!rdev) 4100 /* Not in-sync */; 4101 else if (is_bad) { 4102 /* also not in-sync */ 4103 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4104 test_bit(R5_UPTODATE, &dev->flags)) { 4105 /* treat as in-sync, but with a read error 4106 * which we can now try to correct 4107 */ 4108 set_bit(R5_Insync, &dev->flags); 4109 set_bit(R5_ReadError, &dev->flags); 4110 } 4111 } else if (test_bit(In_sync, &rdev->flags)) 4112 set_bit(R5_Insync, &dev->flags); 4113 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4114 /* in sync if before recovery_offset */ 4115 set_bit(R5_Insync, &dev->flags); 4116 else if (test_bit(R5_UPTODATE, &dev->flags) && 4117 test_bit(R5_Expanded, &dev->flags)) 4118 /* If we've reshaped into here, we assume it is Insync. 4119 * We will shortly update recovery_offset to make 4120 * it official. 4121 */ 4122 set_bit(R5_Insync, &dev->flags); 4123 4124 if (test_bit(R5_WriteError, &dev->flags)) { 4125 /* This flag does not apply to '.replacement' 4126 * only to .rdev, so make sure to check that*/ 4127 struct md_rdev *rdev2 = rcu_dereference( 4128 conf->disks[i].rdev); 4129 if (rdev2 == rdev) 4130 clear_bit(R5_Insync, &dev->flags); 4131 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4132 s->handle_bad_blocks = 1; 4133 atomic_inc(&rdev2->nr_pending); 4134 } else 4135 clear_bit(R5_WriteError, &dev->flags); 4136 } 4137 if (test_bit(R5_MadeGood, &dev->flags)) { 4138 /* This flag does not apply to '.replacement' 4139 * only to .rdev, so make sure to check that*/ 4140 struct md_rdev *rdev2 = rcu_dereference( 4141 conf->disks[i].rdev); 4142 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4143 s->handle_bad_blocks = 1; 4144 atomic_inc(&rdev2->nr_pending); 4145 } else 4146 clear_bit(R5_MadeGood, &dev->flags); 4147 } 4148 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4149 struct md_rdev *rdev2 = rcu_dereference( 4150 conf->disks[i].replacement); 4151 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4152 s->handle_bad_blocks = 1; 4153 atomic_inc(&rdev2->nr_pending); 4154 } else 4155 clear_bit(R5_MadeGoodRepl, &dev->flags); 4156 } 4157 if (!test_bit(R5_Insync, &dev->flags)) { 4158 /* The ReadError flag will just be confusing now */ 4159 clear_bit(R5_ReadError, &dev->flags); 4160 clear_bit(R5_ReWrite, &dev->flags); 4161 } 4162 if (test_bit(R5_ReadError, &dev->flags)) 4163 clear_bit(R5_Insync, &dev->flags); 4164 if (!test_bit(R5_Insync, &dev->flags)) { 4165 if (s->failed < 2) 4166 s->failed_num[s->failed] = i; 4167 s->failed++; 4168 if (rdev && !test_bit(Faulty, &rdev->flags)) 4169 do_recovery = 1; 4170 } 4171 } 4172 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4173 /* If there is a failed device being replaced, 4174 * we must be recovering. 4175 * else if we are after recovery_cp, we must be syncing 4176 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4177 * else we can only be replacing 4178 * sync and recovery both need to read all devices, and so 4179 * use the same flag. 4180 */ 4181 if (do_recovery || 4182 sh->sector >= conf->mddev->recovery_cp || 4183 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4184 s->syncing = 1; 4185 else 4186 s->replacing = 1; 4187 } 4188 rcu_read_unlock(); 4189 } 4190 4191 static int clear_batch_ready(struct stripe_head *sh) 4192 { 4193 /* Return '1' if this is a member of batch, or 4194 * '0' if it is a lone stripe or a head which can now be 4195 * handled. 4196 */ 4197 struct stripe_head *tmp; 4198 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4199 return (sh->batch_head && sh->batch_head != sh); 4200 spin_lock(&sh->stripe_lock); 4201 if (!sh->batch_head) { 4202 spin_unlock(&sh->stripe_lock); 4203 return 0; 4204 } 4205 4206 /* 4207 * this stripe could be added to a batch list before we check 4208 * BATCH_READY, skips it 4209 */ 4210 if (sh->batch_head != sh) { 4211 spin_unlock(&sh->stripe_lock); 4212 return 1; 4213 } 4214 spin_lock(&sh->batch_lock); 4215 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4216 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4217 spin_unlock(&sh->batch_lock); 4218 spin_unlock(&sh->stripe_lock); 4219 4220 /* 4221 * BATCH_READY is cleared, no new stripes can be added. 4222 * batch_list can be accessed without lock 4223 */ 4224 return 0; 4225 } 4226 4227 static void break_stripe_batch_list(struct stripe_head *head_sh, 4228 unsigned long handle_flags) 4229 { 4230 struct stripe_head *sh, *next; 4231 int i; 4232 int do_wakeup = 0; 4233 4234 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4235 4236 list_del_init(&sh->batch_list); 4237 4238 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4239 (1 << STRIPE_SYNCING) | 4240 (1 << STRIPE_REPLACED) | 4241 (1 << STRIPE_PREREAD_ACTIVE) | 4242 (1 << STRIPE_DELAYED) | 4243 (1 << STRIPE_BIT_DELAY) | 4244 (1 << STRIPE_FULL_WRITE) | 4245 (1 << STRIPE_BIOFILL_RUN) | 4246 (1 << STRIPE_COMPUTE_RUN) | 4247 (1 << STRIPE_OPS_REQ_PENDING) | 4248 (1 << STRIPE_DISCARD) | 4249 (1 << STRIPE_BATCH_READY) | 4250 (1 << STRIPE_BATCH_ERR) | 4251 (1 << STRIPE_BITMAP_PENDING))); 4252 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4253 (1 << STRIPE_REPLACED))); 4254 4255 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4256 (1 << STRIPE_DEGRADED)), 4257 head_sh->state & (1 << STRIPE_INSYNC)); 4258 4259 sh->check_state = head_sh->check_state; 4260 sh->reconstruct_state = head_sh->reconstruct_state; 4261 for (i = 0; i < sh->disks; i++) { 4262 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4263 do_wakeup = 1; 4264 sh->dev[i].flags = head_sh->dev[i].flags & 4265 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4266 } 4267 spin_lock_irq(&sh->stripe_lock); 4268 sh->batch_head = NULL; 4269 spin_unlock_irq(&sh->stripe_lock); 4270 if (handle_flags == 0 || 4271 sh->state & handle_flags) 4272 set_bit(STRIPE_HANDLE, &sh->state); 4273 raid5_release_stripe(sh); 4274 } 4275 spin_lock_irq(&head_sh->stripe_lock); 4276 head_sh->batch_head = NULL; 4277 spin_unlock_irq(&head_sh->stripe_lock); 4278 for (i = 0; i < head_sh->disks; i++) 4279 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4280 do_wakeup = 1; 4281 if (head_sh->state & handle_flags) 4282 set_bit(STRIPE_HANDLE, &head_sh->state); 4283 4284 if (do_wakeup) 4285 wake_up(&head_sh->raid_conf->wait_for_overlap); 4286 } 4287 4288 static void handle_stripe(struct stripe_head *sh) 4289 { 4290 struct stripe_head_state s; 4291 struct r5conf *conf = sh->raid_conf; 4292 int i; 4293 int prexor; 4294 int disks = sh->disks; 4295 struct r5dev *pdev, *qdev; 4296 4297 clear_bit(STRIPE_HANDLE, &sh->state); 4298 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4299 /* already being handled, ensure it gets handled 4300 * again when current action finishes */ 4301 set_bit(STRIPE_HANDLE, &sh->state); 4302 return; 4303 } 4304 4305 if (clear_batch_ready(sh) ) { 4306 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4307 return; 4308 } 4309 4310 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4311 break_stripe_batch_list(sh, 0); 4312 4313 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4314 spin_lock(&sh->stripe_lock); 4315 /* Cannot process 'sync' concurrently with 'discard' */ 4316 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4317 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4318 set_bit(STRIPE_SYNCING, &sh->state); 4319 clear_bit(STRIPE_INSYNC, &sh->state); 4320 clear_bit(STRIPE_REPLACED, &sh->state); 4321 } 4322 spin_unlock(&sh->stripe_lock); 4323 } 4324 clear_bit(STRIPE_DELAYED, &sh->state); 4325 4326 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4327 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4328 (unsigned long long)sh->sector, sh->state, 4329 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4330 sh->check_state, sh->reconstruct_state); 4331 4332 analyse_stripe(sh, &s); 4333 4334 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4335 goto finish; 4336 4337 if (s.handle_bad_blocks) { 4338 set_bit(STRIPE_HANDLE, &sh->state); 4339 goto finish; 4340 } 4341 4342 if (unlikely(s.blocked_rdev)) { 4343 if (s.syncing || s.expanding || s.expanded || 4344 s.replacing || s.to_write || s.written) { 4345 set_bit(STRIPE_HANDLE, &sh->state); 4346 goto finish; 4347 } 4348 /* There is nothing for the blocked_rdev to block */ 4349 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4350 s.blocked_rdev = NULL; 4351 } 4352 4353 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4354 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4355 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4356 } 4357 4358 pr_debug("locked=%d uptodate=%d to_read=%d" 4359 " to_write=%d failed=%d failed_num=%d,%d\n", 4360 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4361 s.failed_num[0], s.failed_num[1]); 4362 /* check if the array has lost more than max_degraded devices and, 4363 * if so, some requests might need to be failed. 4364 */ 4365 if (s.failed > conf->max_degraded || s.log_failed) { 4366 sh->check_state = 0; 4367 sh->reconstruct_state = 0; 4368 break_stripe_batch_list(sh, 0); 4369 if (s.to_read+s.to_write+s.written) 4370 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4371 if (s.syncing + s.replacing) 4372 handle_failed_sync(conf, sh, &s); 4373 } 4374 4375 /* Now we check to see if any write operations have recently 4376 * completed 4377 */ 4378 prexor = 0; 4379 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4380 prexor = 1; 4381 if (sh->reconstruct_state == reconstruct_state_drain_result || 4382 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4383 sh->reconstruct_state = reconstruct_state_idle; 4384 4385 /* All the 'written' buffers and the parity block are ready to 4386 * be written back to disk 4387 */ 4388 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4389 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4390 BUG_ON(sh->qd_idx >= 0 && 4391 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4392 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4393 for (i = disks; i--; ) { 4394 struct r5dev *dev = &sh->dev[i]; 4395 if (test_bit(R5_LOCKED, &dev->flags) && 4396 (i == sh->pd_idx || i == sh->qd_idx || 4397 dev->written)) { 4398 pr_debug("Writing block %d\n", i); 4399 set_bit(R5_Wantwrite, &dev->flags); 4400 if (prexor) 4401 continue; 4402 if (s.failed > 1) 4403 continue; 4404 if (!test_bit(R5_Insync, &dev->flags) || 4405 ((i == sh->pd_idx || i == sh->qd_idx) && 4406 s.failed == 0)) 4407 set_bit(STRIPE_INSYNC, &sh->state); 4408 } 4409 } 4410 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4411 s.dec_preread_active = 1; 4412 } 4413 4414 /* 4415 * might be able to return some write requests if the parity blocks 4416 * are safe, or on a failed drive 4417 */ 4418 pdev = &sh->dev[sh->pd_idx]; 4419 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4420 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4421 qdev = &sh->dev[sh->qd_idx]; 4422 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4423 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4424 || conf->level < 6; 4425 4426 if (s.written && 4427 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4428 && !test_bit(R5_LOCKED, &pdev->flags) 4429 && (test_bit(R5_UPTODATE, &pdev->flags) || 4430 test_bit(R5_Discard, &pdev->flags))))) && 4431 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4432 && !test_bit(R5_LOCKED, &qdev->flags) 4433 && (test_bit(R5_UPTODATE, &qdev->flags) || 4434 test_bit(R5_Discard, &qdev->flags)))))) 4435 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4436 4437 /* Now we might consider reading some blocks, either to check/generate 4438 * parity, or to satisfy requests 4439 * or to load a block that is being partially written. 4440 */ 4441 if (s.to_read || s.non_overwrite 4442 || (conf->level == 6 && s.to_write && s.failed) 4443 || (s.syncing && (s.uptodate + s.compute < disks)) 4444 || s.replacing 4445 || s.expanding) 4446 handle_stripe_fill(sh, &s, disks); 4447 4448 /* Now to consider new write requests and what else, if anything 4449 * should be read. We do not handle new writes when: 4450 * 1/ A 'write' operation (copy+xor) is already in flight. 4451 * 2/ A 'check' operation is in flight, as it may clobber the parity 4452 * block. 4453 */ 4454 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 4455 handle_stripe_dirtying(conf, sh, &s, disks); 4456 4457 /* maybe we need to check and possibly fix the parity for this stripe 4458 * Any reads will already have been scheduled, so we just see if enough 4459 * data is available. The parity check is held off while parity 4460 * dependent operations are in flight. 4461 */ 4462 if (sh->check_state || 4463 (s.syncing && s.locked == 0 && 4464 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4465 !test_bit(STRIPE_INSYNC, &sh->state))) { 4466 if (conf->level == 6) 4467 handle_parity_checks6(conf, sh, &s, disks); 4468 else 4469 handle_parity_checks5(conf, sh, &s, disks); 4470 } 4471 4472 if ((s.replacing || s.syncing) && s.locked == 0 4473 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4474 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4475 /* Write out to replacement devices where possible */ 4476 for (i = 0; i < conf->raid_disks; i++) 4477 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4478 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4479 set_bit(R5_WantReplace, &sh->dev[i].flags); 4480 set_bit(R5_LOCKED, &sh->dev[i].flags); 4481 s.locked++; 4482 } 4483 if (s.replacing) 4484 set_bit(STRIPE_INSYNC, &sh->state); 4485 set_bit(STRIPE_REPLACED, &sh->state); 4486 } 4487 if ((s.syncing || s.replacing) && s.locked == 0 && 4488 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4489 test_bit(STRIPE_INSYNC, &sh->state)) { 4490 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4491 clear_bit(STRIPE_SYNCING, &sh->state); 4492 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4493 wake_up(&conf->wait_for_overlap); 4494 } 4495 4496 /* If the failed drives are just a ReadError, then we might need 4497 * to progress the repair/check process 4498 */ 4499 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4500 for (i = 0; i < s.failed; i++) { 4501 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4502 if (test_bit(R5_ReadError, &dev->flags) 4503 && !test_bit(R5_LOCKED, &dev->flags) 4504 && test_bit(R5_UPTODATE, &dev->flags) 4505 ) { 4506 if (!test_bit(R5_ReWrite, &dev->flags)) { 4507 set_bit(R5_Wantwrite, &dev->flags); 4508 set_bit(R5_ReWrite, &dev->flags); 4509 set_bit(R5_LOCKED, &dev->flags); 4510 s.locked++; 4511 } else { 4512 /* let's read it back */ 4513 set_bit(R5_Wantread, &dev->flags); 4514 set_bit(R5_LOCKED, &dev->flags); 4515 s.locked++; 4516 } 4517 } 4518 } 4519 4520 /* Finish reconstruct operations initiated by the expansion process */ 4521 if (sh->reconstruct_state == reconstruct_state_result) { 4522 struct stripe_head *sh_src 4523 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4524 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4525 /* sh cannot be written until sh_src has been read. 4526 * so arrange for sh to be delayed a little 4527 */ 4528 set_bit(STRIPE_DELAYED, &sh->state); 4529 set_bit(STRIPE_HANDLE, &sh->state); 4530 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4531 &sh_src->state)) 4532 atomic_inc(&conf->preread_active_stripes); 4533 raid5_release_stripe(sh_src); 4534 goto finish; 4535 } 4536 if (sh_src) 4537 raid5_release_stripe(sh_src); 4538 4539 sh->reconstruct_state = reconstruct_state_idle; 4540 clear_bit(STRIPE_EXPANDING, &sh->state); 4541 for (i = conf->raid_disks; i--; ) { 4542 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4543 set_bit(R5_LOCKED, &sh->dev[i].flags); 4544 s.locked++; 4545 } 4546 } 4547 4548 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4549 !sh->reconstruct_state) { 4550 /* Need to write out all blocks after computing parity */ 4551 sh->disks = conf->raid_disks; 4552 stripe_set_idx(sh->sector, conf, 0, sh); 4553 schedule_reconstruction(sh, &s, 1, 1); 4554 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4555 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4556 atomic_dec(&conf->reshape_stripes); 4557 wake_up(&conf->wait_for_overlap); 4558 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4559 } 4560 4561 if (s.expanding && s.locked == 0 && 4562 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4563 handle_stripe_expansion(conf, sh); 4564 4565 finish: 4566 /* wait for this device to become unblocked */ 4567 if (unlikely(s.blocked_rdev)) { 4568 if (conf->mddev->external) 4569 md_wait_for_blocked_rdev(s.blocked_rdev, 4570 conf->mddev); 4571 else 4572 /* Internal metadata will immediately 4573 * be written by raid5d, so we don't 4574 * need to wait here. 4575 */ 4576 rdev_dec_pending(s.blocked_rdev, 4577 conf->mddev); 4578 } 4579 4580 if (s.handle_bad_blocks) 4581 for (i = disks; i--; ) { 4582 struct md_rdev *rdev; 4583 struct r5dev *dev = &sh->dev[i]; 4584 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4585 /* We own a safe reference to the rdev */ 4586 rdev = conf->disks[i].rdev; 4587 if (!rdev_set_badblocks(rdev, sh->sector, 4588 STRIPE_SECTORS, 0)) 4589 md_error(conf->mddev, rdev); 4590 rdev_dec_pending(rdev, conf->mddev); 4591 } 4592 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4593 rdev = conf->disks[i].rdev; 4594 rdev_clear_badblocks(rdev, sh->sector, 4595 STRIPE_SECTORS, 0); 4596 rdev_dec_pending(rdev, conf->mddev); 4597 } 4598 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4599 rdev = conf->disks[i].replacement; 4600 if (!rdev) 4601 /* rdev have been moved down */ 4602 rdev = conf->disks[i].rdev; 4603 rdev_clear_badblocks(rdev, sh->sector, 4604 STRIPE_SECTORS, 0); 4605 rdev_dec_pending(rdev, conf->mddev); 4606 } 4607 } 4608 4609 if (s.ops_request) 4610 raid_run_ops(sh, s.ops_request); 4611 4612 ops_run_io(sh, &s); 4613 4614 if (s.dec_preread_active) { 4615 /* We delay this until after ops_run_io so that if make_request 4616 * is waiting on a flush, it won't continue until the writes 4617 * have actually been submitted. 4618 */ 4619 atomic_dec(&conf->preread_active_stripes); 4620 if (atomic_read(&conf->preread_active_stripes) < 4621 IO_THRESHOLD) 4622 md_wakeup_thread(conf->mddev->thread); 4623 } 4624 4625 if (!bio_list_empty(&s.return_bi)) { 4626 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) { 4627 spin_lock_irq(&conf->device_lock); 4628 bio_list_merge(&conf->return_bi, &s.return_bi); 4629 spin_unlock_irq(&conf->device_lock); 4630 md_wakeup_thread(conf->mddev->thread); 4631 } else 4632 return_io(&s.return_bi); 4633 } 4634 4635 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4636 } 4637 4638 static void raid5_activate_delayed(struct r5conf *conf) 4639 { 4640 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4641 while (!list_empty(&conf->delayed_list)) { 4642 struct list_head *l = conf->delayed_list.next; 4643 struct stripe_head *sh; 4644 sh = list_entry(l, struct stripe_head, lru); 4645 list_del_init(l); 4646 clear_bit(STRIPE_DELAYED, &sh->state); 4647 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4648 atomic_inc(&conf->preread_active_stripes); 4649 list_add_tail(&sh->lru, &conf->hold_list); 4650 raid5_wakeup_stripe_thread(sh); 4651 } 4652 } 4653 } 4654 4655 static void activate_bit_delay(struct r5conf *conf, 4656 struct list_head *temp_inactive_list) 4657 { 4658 /* device_lock is held */ 4659 struct list_head head; 4660 list_add(&head, &conf->bitmap_list); 4661 list_del_init(&conf->bitmap_list); 4662 while (!list_empty(&head)) { 4663 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4664 int hash; 4665 list_del_init(&sh->lru); 4666 atomic_inc(&sh->count); 4667 hash = sh->hash_lock_index; 4668 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4669 } 4670 } 4671 4672 static int raid5_congested(struct mddev *mddev, int bits) 4673 { 4674 struct r5conf *conf = mddev->private; 4675 4676 /* No difference between reads and writes. Just check 4677 * how busy the stripe_cache is 4678 */ 4679 4680 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4681 return 1; 4682 if (conf->quiesce) 4683 return 1; 4684 if (atomic_read(&conf->empty_inactive_list_nr)) 4685 return 1; 4686 4687 return 0; 4688 } 4689 4690 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4691 { 4692 struct r5conf *conf = mddev->private; 4693 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4694 unsigned int chunk_sectors; 4695 unsigned int bio_sectors = bio_sectors(bio); 4696 4697 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 4698 return chunk_sectors >= 4699 ((sector & (chunk_sectors - 1)) + bio_sectors); 4700 } 4701 4702 /* 4703 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4704 * later sampled by raid5d. 4705 */ 4706 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4707 { 4708 unsigned long flags; 4709 4710 spin_lock_irqsave(&conf->device_lock, flags); 4711 4712 bi->bi_next = conf->retry_read_aligned_list; 4713 conf->retry_read_aligned_list = bi; 4714 4715 spin_unlock_irqrestore(&conf->device_lock, flags); 4716 md_wakeup_thread(conf->mddev->thread); 4717 } 4718 4719 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4720 { 4721 struct bio *bi; 4722 4723 bi = conf->retry_read_aligned; 4724 if (bi) { 4725 conf->retry_read_aligned = NULL; 4726 return bi; 4727 } 4728 bi = conf->retry_read_aligned_list; 4729 if(bi) { 4730 conf->retry_read_aligned_list = bi->bi_next; 4731 bi->bi_next = NULL; 4732 /* 4733 * this sets the active strip count to 1 and the processed 4734 * strip count to zero (upper 8 bits) 4735 */ 4736 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4737 } 4738 4739 return bi; 4740 } 4741 4742 /* 4743 * The "raid5_align_endio" should check if the read succeeded and if it 4744 * did, call bio_endio on the original bio (having bio_put the new bio 4745 * first). 4746 * If the read failed.. 4747 */ 4748 static void raid5_align_endio(struct bio *bi) 4749 { 4750 struct bio* raid_bi = bi->bi_private; 4751 struct mddev *mddev; 4752 struct r5conf *conf; 4753 struct md_rdev *rdev; 4754 int error = bi->bi_error; 4755 4756 bio_put(bi); 4757 4758 rdev = (void*)raid_bi->bi_next; 4759 raid_bi->bi_next = NULL; 4760 mddev = rdev->mddev; 4761 conf = mddev->private; 4762 4763 rdev_dec_pending(rdev, conf->mddev); 4764 4765 if (!error) { 4766 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4767 raid_bi, 0); 4768 bio_endio(raid_bi); 4769 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4770 wake_up(&conf->wait_for_quiescent); 4771 return; 4772 } 4773 4774 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4775 4776 add_bio_to_retry(raid_bi, conf); 4777 } 4778 4779 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 4780 { 4781 struct r5conf *conf = mddev->private; 4782 int dd_idx; 4783 struct bio* align_bi; 4784 struct md_rdev *rdev; 4785 sector_t end_sector; 4786 4787 if (!in_chunk_boundary(mddev, raid_bio)) { 4788 pr_debug("%s: non aligned\n", __func__); 4789 return 0; 4790 } 4791 /* 4792 * use bio_clone_mddev to make a copy of the bio 4793 */ 4794 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4795 if (!align_bi) 4796 return 0; 4797 /* 4798 * set bi_end_io to a new function, and set bi_private to the 4799 * original bio. 4800 */ 4801 align_bi->bi_end_io = raid5_align_endio; 4802 align_bi->bi_private = raid_bio; 4803 /* 4804 * compute position 4805 */ 4806 align_bi->bi_iter.bi_sector = 4807 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4808 0, &dd_idx, NULL); 4809 4810 end_sector = bio_end_sector(align_bi); 4811 rcu_read_lock(); 4812 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4813 if (!rdev || test_bit(Faulty, &rdev->flags) || 4814 rdev->recovery_offset < end_sector) { 4815 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4816 if (rdev && 4817 (test_bit(Faulty, &rdev->flags) || 4818 !(test_bit(In_sync, &rdev->flags) || 4819 rdev->recovery_offset >= end_sector))) 4820 rdev = NULL; 4821 } 4822 if (rdev) { 4823 sector_t first_bad; 4824 int bad_sectors; 4825 4826 atomic_inc(&rdev->nr_pending); 4827 rcu_read_unlock(); 4828 raid_bio->bi_next = (void*)rdev; 4829 align_bi->bi_bdev = rdev->bdev; 4830 bio_clear_flag(align_bi, BIO_SEG_VALID); 4831 4832 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 4833 bio_sectors(align_bi), 4834 &first_bad, &bad_sectors)) { 4835 bio_put(align_bi); 4836 rdev_dec_pending(rdev, mddev); 4837 return 0; 4838 } 4839 4840 /* No reshape active, so we can trust rdev->data_offset */ 4841 align_bi->bi_iter.bi_sector += rdev->data_offset; 4842 4843 spin_lock_irq(&conf->device_lock); 4844 wait_event_lock_irq(conf->wait_for_quiescent, 4845 conf->quiesce == 0, 4846 conf->device_lock); 4847 atomic_inc(&conf->active_aligned_reads); 4848 spin_unlock_irq(&conf->device_lock); 4849 4850 if (mddev->gendisk) 4851 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4852 align_bi, disk_devt(mddev->gendisk), 4853 raid_bio->bi_iter.bi_sector); 4854 generic_make_request(align_bi); 4855 return 1; 4856 } else { 4857 rcu_read_unlock(); 4858 bio_put(align_bi); 4859 return 0; 4860 } 4861 } 4862 4863 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 4864 { 4865 struct bio *split; 4866 4867 do { 4868 sector_t sector = raid_bio->bi_iter.bi_sector; 4869 unsigned chunk_sects = mddev->chunk_sectors; 4870 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 4871 4872 if (sectors < bio_sectors(raid_bio)) { 4873 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); 4874 bio_chain(split, raid_bio); 4875 } else 4876 split = raid_bio; 4877 4878 if (!raid5_read_one_chunk(mddev, split)) { 4879 if (split != raid_bio) 4880 generic_make_request(raid_bio); 4881 return split; 4882 } 4883 } while (split != raid_bio); 4884 4885 return NULL; 4886 } 4887 4888 /* __get_priority_stripe - get the next stripe to process 4889 * 4890 * Full stripe writes are allowed to pass preread active stripes up until 4891 * the bypass_threshold is exceeded. In general the bypass_count 4892 * increments when the handle_list is handled before the hold_list; however, it 4893 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4894 * stripe with in flight i/o. The bypass_count will be reset when the 4895 * head of the hold_list has changed, i.e. the head was promoted to the 4896 * handle_list. 4897 */ 4898 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4899 { 4900 struct stripe_head *sh = NULL, *tmp; 4901 struct list_head *handle_list = NULL; 4902 struct r5worker_group *wg = NULL; 4903 4904 if (conf->worker_cnt_per_group == 0) { 4905 handle_list = &conf->handle_list; 4906 } else if (group != ANY_GROUP) { 4907 handle_list = &conf->worker_groups[group].handle_list; 4908 wg = &conf->worker_groups[group]; 4909 } else { 4910 int i; 4911 for (i = 0; i < conf->group_cnt; i++) { 4912 handle_list = &conf->worker_groups[i].handle_list; 4913 wg = &conf->worker_groups[i]; 4914 if (!list_empty(handle_list)) 4915 break; 4916 } 4917 } 4918 4919 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4920 __func__, 4921 list_empty(handle_list) ? "empty" : "busy", 4922 list_empty(&conf->hold_list) ? "empty" : "busy", 4923 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4924 4925 if (!list_empty(handle_list)) { 4926 sh = list_entry(handle_list->next, typeof(*sh), lru); 4927 4928 if (list_empty(&conf->hold_list)) 4929 conf->bypass_count = 0; 4930 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4931 if (conf->hold_list.next == conf->last_hold) 4932 conf->bypass_count++; 4933 else { 4934 conf->last_hold = conf->hold_list.next; 4935 conf->bypass_count -= conf->bypass_threshold; 4936 if (conf->bypass_count < 0) 4937 conf->bypass_count = 0; 4938 } 4939 } 4940 } else if (!list_empty(&conf->hold_list) && 4941 ((conf->bypass_threshold && 4942 conf->bypass_count > conf->bypass_threshold) || 4943 atomic_read(&conf->pending_full_writes) == 0)) { 4944 4945 list_for_each_entry(tmp, &conf->hold_list, lru) { 4946 if (conf->worker_cnt_per_group == 0 || 4947 group == ANY_GROUP || 4948 !cpu_online(tmp->cpu) || 4949 cpu_to_group(tmp->cpu) == group) { 4950 sh = tmp; 4951 break; 4952 } 4953 } 4954 4955 if (sh) { 4956 conf->bypass_count -= conf->bypass_threshold; 4957 if (conf->bypass_count < 0) 4958 conf->bypass_count = 0; 4959 } 4960 wg = NULL; 4961 } 4962 4963 if (!sh) 4964 return NULL; 4965 4966 if (wg) { 4967 wg->stripes_cnt--; 4968 sh->group = NULL; 4969 } 4970 list_del_init(&sh->lru); 4971 BUG_ON(atomic_inc_return(&sh->count) != 1); 4972 return sh; 4973 } 4974 4975 struct raid5_plug_cb { 4976 struct blk_plug_cb cb; 4977 struct list_head list; 4978 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4979 }; 4980 4981 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4982 { 4983 struct raid5_plug_cb *cb = container_of( 4984 blk_cb, struct raid5_plug_cb, cb); 4985 struct stripe_head *sh; 4986 struct mddev *mddev = cb->cb.data; 4987 struct r5conf *conf = mddev->private; 4988 int cnt = 0; 4989 int hash; 4990 4991 if (cb->list.next && !list_empty(&cb->list)) { 4992 spin_lock_irq(&conf->device_lock); 4993 while (!list_empty(&cb->list)) { 4994 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4995 list_del_init(&sh->lru); 4996 /* 4997 * avoid race release_stripe_plug() sees 4998 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4999 * is still in our list 5000 */ 5001 smp_mb__before_atomic(); 5002 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5003 /* 5004 * STRIPE_ON_RELEASE_LIST could be set here. In that 5005 * case, the count is always > 1 here 5006 */ 5007 hash = sh->hash_lock_index; 5008 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5009 cnt++; 5010 } 5011 spin_unlock_irq(&conf->device_lock); 5012 } 5013 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5014 NR_STRIPE_HASH_LOCKS); 5015 if (mddev->queue) 5016 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5017 kfree(cb); 5018 } 5019 5020 static void release_stripe_plug(struct mddev *mddev, 5021 struct stripe_head *sh) 5022 { 5023 struct blk_plug_cb *blk_cb = blk_check_plugged( 5024 raid5_unplug, mddev, 5025 sizeof(struct raid5_plug_cb)); 5026 struct raid5_plug_cb *cb; 5027 5028 if (!blk_cb) { 5029 raid5_release_stripe(sh); 5030 return; 5031 } 5032 5033 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5034 5035 if (cb->list.next == NULL) { 5036 int i; 5037 INIT_LIST_HEAD(&cb->list); 5038 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5039 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5040 } 5041 5042 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5043 list_add_tail(&sh->lru, &cb->list); 5044 else 5045 raid5_release_stripe(sh); 5046 } 5047 5048 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5049 { 5050 struct r5conf *conf = mddev->private; 5051 sector_t logical_sector, last_sector; 5052 struct stripe_head *sh; 5053 int remaining; 5054 int stripe_sectors; 5055 5056 if (mddev->reshape_position != MaxSector) 5057 /* Skip discard while reshape is happening */ 5058 return; 5059 5060 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5061 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5062 5063 bi->bi_next = NULL; 5064 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5065 5066 stripe_sectors = conf->chunk_sectors * 5067 (conf->raid_disks - conf->max_degraded); 5068 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5069 stripe_sectors); 5070 sector_div(last_sector, stripe_sectors); 5071 5072 logical_sector *= conf->chunk_sectors; 5073 last_sector *= conf->chunk_sectors; 5074 5075 for (; logical_sector < last_sector; 5076 logical_sector += STRIPE_SECTORS) { 5077 DEFINE_WAIT(w); 5078 int d; 5079 again: 5080 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5081 prepare_to_wait(&conf->wait_for_overlap, &w, 5082 TASK_UNINTERRUPTIBLE); 5083 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5084 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5085 raid5_release_stripe(sh); 5086 schedule(); 5087 goto again; 5088 } 5089 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5090 spin_lock_irq(&sh->stripe_lock); 5091 for (d = 0; d < conf->raid_disks; d++) { 5092 if (d == sh->pd_idx || d == sh->qd_idx) 5093 continue; 5094 if (sh->dev[d].towrite || sh->dev[d].toread) { 5095 set_bit(R5_Overlap, &sh->dev[d].flags); 5096 spin_unlock_irq(&sh->stripe_lock); 5097 raid5_release_stripe(sh); 5098 schedule(); 5099 goto again; 5100 } 5101 } 5102 set_bit(STRIPE_DISCARD, &sh->state); 5103 finish_wait(&conf->wait_for_overlap, &w); 5104 sh->overwrite_disks = 0; 5105 for (d = 0; d < conf->raid_disks; d++) { 5106 if (d == sh->pd_idx || d == sh->qd_idx) 5107 continue; 5108 sh->dev[d].towrite = bi; 5109 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5110 raid5_inc_bi_active_stripes(bi); 5111 sh->overwrite_disks++; 5112 } 5113 spin_unlock_irq(&sh->stripe_lock); 5114 if (conf->mddev->bitmap) { 5115 for (d = 0; 5116 d < conf->raid_disks - conf->max_degraded; 5117 d++) 5118 bitmap_startwrite(mddev->bitmap, 5119 sh->sector, 5120 STRIPE_SECTORS, 5121 0); 5122 sh->bm_seq = conf->seq_flush + 1; 5123 set_bit(STRIPE_BIT_DELAY, &sh->state); 5124 } 5125 5126 set_bit(STRIPE_HANDLE, &sh->state); 5127 clear_bit(STRIPE_DELAYED, &sh->state); 5128 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5129 atomic_inc(&conf->preread_active_stripes); 5130 release_stripe_plug(mddev, sh); 5131 } 5132 5133 remaining = raid5_dec_bi_active_stripes(bi); 5134 if (remaining == 0) { 5135 md_write_end(mddev); 5136 bio_endio(bi); 5137 } 5138 } 5139 5140 static void make_request(struct mddev *mddev, struct bio * bi) 5141 { 5142 struct r5conf *conf = mddev->private; 5143 int dd_idx; 5144 sector_t new_sector; 5145 sector_t logical_sector, last_sector; 5146 struct stripe_head *sh; 5147 const int rw = bio_data_dir(bi); 5148 int remaining; 5149 DEFINE_WAIT(w); 5150 bool do_prepare; 5151 5152 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 5153 int ret = r5l_handle_flush_request(conf->log, bi); 5154 5155 if (ret == 0) 5156 return; 5157 if (ret == -ENODEV) { 5158 md_flush_request(mddev, bi); 5159 return; 5160 } 5161 /* ret == -EAGAIN, fallback */ 5162 } 5163 5164 md_write_start(mddev, bi); 5165 5166 /* 5167 * If array is degraded, better not do chunk aligned read because 5168 * later we might have to read it again in order to reconstruct 5169 * data on failed drives. 5170 */ 5171 if (rw == READ && mddev->degraded == 0 && 5172 mddev->reshape_position == MaxSector) { 5173 bi = chunk_aligned_read(mddev, bi); 5174 if (!bi) 5175 return; 5176 } 5177 5178 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 5179 make_discard_request(mddev, bi); 5180 return; 5181 } 5182 5183 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5184 last_sector = bio_end_sector(bi); 5185 bi->bi_next = NULL; 5186 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5187 5188 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5189 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5190 int previous; 5191 int seq; 5192 5193 do_prepare = false; 5194 retry: 5195 seq = read_seqcount_begin(&conf->gen_lock); 5196 previous = 0; 5197 if (do_prepare) 5198 prepare_to_wait(&conf->wait_for_overlap, &w, 5199 TASK_UNINTERRUPTIBLE); 5200 if (unlikely(conf->reshape_progress != MaxSector)) { 5201 /* spinlock is needed as reshape_progress may be 5202 * 64bit on a 32bit platform, and so it might be 5203 * possible to see a half-updated value 5204 * Of course reshape_progress could change after 5205 * the lock is dropped, so once we get a reference 5206 * to the stripe that we think it is, we will have 5207 * to check again. 5208 */ 5209 spin_lock_irq(&conf->device_lock); 5210 if (mddev->reshape_backwards 5211 ? logical_sector < conf->reshape_progress 5212 : logical_sector >= conf->reshape_progress) { 5213 previous = 1; 5214 } else { 5215 if (mddev->reshape_backwards 5216 ? logical_sector < conf->reshape_safe 5217 : logical_sector >= conf->reshape_safe) { 5218 spin_unlock_irq(&conf->device_lock); 5219 schedule(); 5220 do_prepare = true; 5221 goto retry; 5222 } 5223 } 5224 spin_unlock_irq(&conf->device_lock); 5225 } 5226 5227 new_sector = raid5_compute_sector(conf, logical_sector, 5228 previous, 5229 &dd_idx, NULL); 5230 pr_debug("raid456: make_request, sector %llu logical %llu\n", 5231 (unsigned long long)new_sector, 5232 (unsigned long long)logical_sector); 5233 5234 sh = raid5_get_active_stripe(conf, new_sector, previous, 5235 (bi->bi_rw&RWA_MASK), 0); 5236 if (sh) { 5237 if (unlikely(previous)) { 5238 /* expansion might have moved on while waiting for a 5239 * stripe, so we must do the range check again. 5240 * Expansion could still move past after this 5241 * test, but as we are holding a reference to 5242 * 'sh', we know that if that happens, 5243 * STRIPE_EXPANDING will get set and the expansion 5244 * won't proceed until we finish with the stripe. 5245 */ 5246 int must_retry = 0; 5247 spin_lock_irq(&conf->device_lock); 5248 if (mddev->reshape_backwards 5249 ? logical_sector >= conf->reshape_progress 5250 : logical_sector < conf->reshape_progress) 5251 /* mismatch, need to try again */ 5252 must_retry = 1; 5253 spin_unlock_irq(&conf->device_lock); 5254 if (must_retry) { 5255 raid5_release_stripe(sh); 5256 schedule(); 5257 do_prepare = true; 5258 goto retry; 5259 } 5260 } 5261 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5262 /* Might have got the wrong stripe_head 5263 * by accident 5264 */ 5265 raid5_release_stripe(sh); 5266 goto retry; 5267 } 5268 5269 if (rw == WRITE && 5270 logical_sector >= mddev->suspend_lo && 5271 logical_sector < mddev->suspend_hi) { 5272 raid5_release_stripe(sh); 5273 /* As the suspend_* range is controlled by 5274 * userspace, we want an interruptible 5275 * wait. 5276 */ 5277 flush_signals(current); 5278 prepare_to_wait(&conf->wait_for_overlap, 5279 &w, TASK_INTERRUPTIBLE); 5280 if (logical_sector >= mddev->suspend_lo && 5281 logical_sector < mddev->suspend_hi) { 5282 schedule(); 5283 do_prepare = true; 5284 } 5285 goto retry; 5286 } 5287 5288 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5289 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5290 /* Stripe is busy expanding or 5291 * add failed due to overlap. Flush everything 5292 * and wait a while 5293 */ 5294 md_wakeup_thread(mddev->thread); 5295 raid5_release_stripe(sh); 5296 schedule(); 5297 do_prepare = true; 5298 goto retry; 5299 } 5300 set_bit(STRIPE_HANDLE, &sh->state); 5301 clear_bit(STRIPE_DELAYED, &sh->state); 5302 if ((!sh->batch_head || sh == sh->batch_head) && 5303 (bi->bi_rw & REQ_SYNC) && 5304 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5305 atomic_inc(&conf->preread_active_stripes); 5306 release_stripe_plug(mddev, sh); 5307 } else { 5308 /* cannot get stripe for read-ahead, just give-up */ 5309 bi->bi_error = -EIO; 5310 break; 5311 } 5312 } 5313 finish_wait(&conf->wait_for_overlap, &w); 5314 5315 remaining = raid5_dec_bi_active_stripes(bi); 5316 if (remaining == 0) { 5317 5318 if ( rw == WRITE ) 5319 md_write_end(mddev); 5320 5321 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5322 bi, 0); 5323 bio_endio(bi); 5324 } 5325 } 5326 5327 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5328 5329 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5330 { 5331 /* reshaping is quite different to recovery/resync so it is 5332 * handled quite separately ... here. 5333 * 5334 * On each call to sync_request, we gather one chunk worth of 5335 * destination stripes and flag them as expanding. 5336 * Then we find all the source stripes and request reads. 5337 * As the reads complete, handle_stripe will copy the data 5338 * into the destination stripe and release that stripe. 5339 */ 5340 struct r5conf *conf = mddev->private; 5341 struct stripe_head *sh; 5342 sector_t first_sector, last_sector; 5343 int raid_disks = conf->previous_raid_disks; 5344 int data_disks = raid_disks - conf->max_degraded; 5345 int new_data_disks = conf->raid_disks - conf->max_degraded; 5346 int i; 5347 int dd_idx; 5348 sector_t writepos, readpos, safepos; 5349 sector_t stripe_addr; 5350 int reshape_sectors; 5351 struct list_head stripes; 5352 sector_t retn; 5353 5354 if (sector_nr == 0) { 5355 /* If restarting in the middle, skip the initial sectors */ 5356 if (mddev->reshape_backwards && 5357 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5358 sector_nr = raid5_size(mddev, 0, 0) 5359 - conf->reshape_progress; 5360 } else if (mddev->reshape_backwards && 5361 conf->reshape_progress == MaxSector) { 5362 /* shouldn't happen, but just in case, finish up.*/ 5363 sector_nr = MaxSector; 5364 } else if (!mddev->reshape_backwards && 5365 conf->reshape_progress > 0) 5366 sector_nr = conf->reshape_progress; 5367 sector_div(sector_nr, new_data_disks); 5368 if (sector_nr) { 5369 mddev->curr_resync_completed = sector_nr; 5370 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5371 *skipped = 1; 5372 retn = sector_nr; 5373 goto finish; 5374 } 5375 } 5376 5377 /* We need to process a full chunk at a time. 5378 * If old and new chunk sizes differ, we need to process the 5379 * largest of these 5380 */ 5381 5382 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5383 5384 /* We update the metadata at least every 10 seconds, or when 5385 * the data about to be copied would over-write the source of 5386 * the data at the front of the range. i.e. one new_stripe 5387 * along from reshape_progress new_maps to after where 5388 * reshape_safe old_maps to 5389 */ 5390 writepos = conf->reshape_progress; 5391 sector_div(writepos, new_data_disks); 5392 readpos = conf->reshape_progress; 5393 sector_div(readpos, data_disks); 5394 safepos = conf->reshape_safe; 5395 sector_div(safepos, data_disks); 5396 if (mddev->reshape_backwards) { 5397 BUG_ON(writepos < reshape_sectors); 5398 writepos -= reshape_sectors; 5399 readpos += reshape_sectors; 5400 safepos += reshape_sectors; 5401 } else { 5402 writepos += reshape_sectors; 5403 /* readpos and safepos are worst-case calculations. 5404 * A negative number is overly pessimistic, and causes 5405 * obvious problems for unsigned storage. So clip to 0. 5406 */ 5407 readpos -= min_t(sector_t, reshape_sectors, readpos); 5408 safepos -= min_t(sector_t, reshape_sectors, safepos); 5409 } 5410 5411 /* Having calculated the 'writepos' possibly use it 5412 * to set 'stripe_addr' which is where we will write to. 5413 */ 5414 if (mddev->reshape_backwards) { 5415 BUG_ON(conf->reshape_progress == 0); 5416 stripe_addr = writepos; 5417 BUG_ON((mddev->dev_sectors & 5418 ~((sector_t)reshape_sectors - 1)) 5419 - reshape_sectors - stripe_addr 5420 != sector_nr); 5421 } else { 5422 BUG_ON(writepos != sector_nr + reshape_sectors); 5423 stripe_addr = sector_nr; 5424 } 5425 5426 /* 'writepos' is the most advanced device address we might write. 5427 * 'readpos' is the least advanced device address we might read. 5428 * 'safepos' is the least address recorded in the metadata as having 5429 * been reshaped. 5430 * If there is a min_offset_diff, these are adjusted either by 5431 * increasing the safepos/readpos if diff is negative, or 5432 * increasing writepos if diff is positive. 5433 * If 'readpos' is then behind 'writepos', there is no way that we can 5434 * ensure safety in the face of a crash - that must be done by userspace 5435 * making a backup of the data. So in that case there is no particular 5436 * rush to update metadata. 5437 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5438 * update the metadata to advance 'safepos' to match 'readpos' so that 5439 * we can be safe in the event of a crash. 5440 * So we insist on updating metadata if safepos is behind writepos and 5441 * readpos is beyond writepos. 5442 * In any case, update the metadata every 10 seconds. 5443 * Maybe that number should be configurable, but I'm not sure it is 5444 * worth it.... maybe it could be a multiple of safemode_delay??? 5445 */ 5446 if (conf->min_offset_diff < 0) { 5447 safepos += -conf->min_offset_diff; 5448 readpos += -conf->min_offset_diff; 5449 } else 5450 writepos += conf->min_offset_diff; 5451 5452 if ((mddev->reshape_backwards 5453 ? (safepos > writepos && readpos < writepos) 5454 : (safepos < writepos && readpos > writepos)) || 5455 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5456 /* Cannot proceed until we've updated the superblock... */ 5457 wait_event(conf->wait_for_overlap, 5458 atomic_read(&conf->reshape_stripes)==0 5459 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5460 if (atomic_read(&conf->reshape_stripes) != 0) 5461 return 0; 5462 mddev->reshape_position = conf->reshape_progress; 5463 mddev->curr_resync_completed = sector_nr; 5464 conf->reshape_checkpoint = jiffies; 5465 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5466 md_wakeup_thread(mddev->thread); 5467 wait_event(mddev->sb_wait, mddev->flags == 0 || 5468 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5469 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5470 return 0; 5471 spin_lock_irq(&conf->device_lock); 5472 conf->reshape_safe = mddev->reshape_position; 5473 spin_unlock_irq(&conf->device_lock); 5474 wake_up(&conf->wait_for_overlap); 5475 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5476 } 5477 5478 INIT_LIST_HEAD(&stripes); 5479 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5480 int j; 5481 int skipped_disk = 0; 5482 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5483 set_bit(STRIPE_EXPANDING, &sh->state); 5484 atomic_inc(&conf->reshape_stripes); 5485 /* If any of this stripe is beyond the end of the old 5486 * array, then we need to zero those blocks 5487 */ 5488 for (j=sh->disks; j--;) { 5489 sector_t s; 5490 if (j == sh->pd_idx) 5491 continue; 5492 if (conf->level == 6 && 5493 j == sh->qd_idx) 5494 continue; 5495 s = raid5_compute_blocknr(sh, j, 0); 5496 if (s < raid5_size(mddev, 0, 0)) { 5497 skipped_disk = 1; 5498 continue; 5499 } 5500 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5501 set_bit(R5_Expanded, &sh->dev[j].flags); 5502 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5503 } 5504 if (!skipped_disk) { 5505 set_bit(STRIPE_EXPAND_READY, &sh->state); 5506 set_bit(STRIPE_HANDLE, &sh->state); 5507 } 5508 list_add(&sh->lru, &stripes); 5509 } 5510 spin_lock_irq(&conf->device_lock); 5511 if (mddev->reshape_backwards) 5512 conf->reshape_progress -= reshape_sectors * new_data_disks; 5513 else 5514 conf->reshape_progress += reshape_sectors * new_data_disks; 5515 spin_unlock_irq(&conf->device_lock); 5516 /* Ok, those stripe are ready. We can start scheduling 5517 * reads on the source stripes. 5518 * The source stripes are determined by mapping the first and last 5519 * block on the destination stripes. 5520 */ 5521 first_sector = 5522 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5523 1, &dd_idx, NULL); 5524 last_sector = 5525 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5526 * new_data_disks - 1), 5527 1, &dd_idx, NULL); 5528 if (last_sector >= mddev->dev_sectors) 5529 last_sector = mddev->dev_sectors - 1; 5530 while (first_sector <= last_sector) { 5531 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5532 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5533 set_bit(STRIPE_HANDLE, &sh->state); 5534 raid5_release_stripe(sh); 5535 first_sector += STRIPE_SECTORS; 5536 } 5537 /* Now that the sources are clearly marked, we can release 5538 * the destination stripes 5539 */ 5540 while (!list_empty(&stripes)) { 5541 sh = list_entry(stripes.next, struct stripe_head, lru); 5542 list_del_init(&sh->lru); 5543 raid5_release_stripe(sh); 5544 } 5545 /* If this takes us to the resync_max point where we have to pause, 5546 * then we need to write out the superblock. 5547 */ 5548 sector_nr += reshape_sectors; 5549 retn = reshape_sectors; 5550 finish: 5551 if (mddev->curr_resync_completed > mddev->resync_max || 5552 (sector_nr - mddev->curr_resync_completed) * 2 5553 >= mddev->resync_max - mddev->curr_resync_completed) { 5554 /* Cannot proceed until we've updated the superblock... */ 5555 wait_event(conf->wait_for_overlap, 5556 atomic_read(&conf->reshape_stripes) == 0 5557 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5558 if (atomic_read(&conf->reshape_stripes) != 0) 5559 goto ret; 5560 mddev->reshape_position = conf->reshape_progress; 5561 mddev->curr_resync_completed = sector_nr; 5562 conf->reshape_checkpoint = jiffies; 5563 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5564 md_wakeup_thread(mddev->thread); 5565 wait_event(mddev->sb_wait, 5566 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 5567 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5568 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5569 goto ret; 5570 spin_lock_irq(&conf->device_lock); 5571 conf->reshape_safe = mddev->reshape_position; 5572 spin_unlock_irq(&conf->device_lock); 5573 wake_up(&conf->wait_for_overlap); 5574 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5575 } 5576 ret: 5577 return retn; 5578 } 5579 5580 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5581 { 5582 struct r5conf *conf = mddev->private; 5583 struct stripe_head *sh; 5584 sector_t max_sector = mddev->dev_sectors; 5585 sector_t sync_blocks; 5586 int still_degraded = 0; 5587 int i; 5588 5589 if (sector_nr >= max_sector) { 5590 /* just being told to finish up .. nothing much to do */ 5591 5592 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5593 end_reshape(conf); 5594 return 0; 5595 } 5596 5597 if (mddev->curr_resync < max_sector) /* aborted */ 5598 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5599 &sync_blocks, 1); 5600 else /* completed sync */ 5601 conf->fullsync = 0; 5602 bitmap_close_sync(mddev->bitmap); 5603 5604 return 0; 5605 } 5606 5607 /* Allow raid5_quiesce to complete */ 5608 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5609 5610 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5611 return reshape_request(mddev, sector_nr, skipped); 5612 5613 /* No need to check resync_max as we never do more than one 5614 * stripe, and as resync_max will always be on a chunk boundary, 5615 * if the check in md_do_sync didn't fire, there is no chance 5616 * of overstepping resync_max here 5617 */ 5618 5619 /* if there is too many failed drives and we are trying 5620 * to resync, then assert that we are finished, because there is 5621 * nothing we can do. 5622 */ 5623 if (mddev->degraded >= conf->max_degraded && 5624 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5625 sector_t rv = mddev->dev_sectors - sector_nr; 5626 *skipped = 1; 5627 return rv; 5628 } 5629 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5630 !conf->fullsync && 5631 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5632 sync_blocks >= STRIPE_SECTORS) { 5633 /* we can skip this block, and probably more */ 5634 sync_blocks /= STRIPE_SECTORS; 5635 *skipped = 1; 5636 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5637 } 5638 5639 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 5640 5641 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 5642 if (sh == NULL) { 5643 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 5644 /* make sure we don't swamp the stripe cache if someone else 5645 * is trying to get access 5646 */ 5647 schedule_timeout_uninterruptible(1); 5648 } 5649 /* Need to check if array will still be degraded after recovery/resync 5650 * Note in case of > 1 drive failures it's possible we're rebuilding 5651 * one drive while leaving another faulty drive in array. 5652 */ 5653 rcu_read_lock(); 5654 for (i = 0; i < conf->raid_disks; i++) { 5655 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5656 5657 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5658 still_degraded = 1; 5659 } 5660 rcu_read_unlock(); 5661 5662 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5663 5664 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5665 set_bit(STRIPE_HANDLE, &sh->state); 5666 5667 raid5_release_stripe(sh); 5668 5669 return STRIPE_SECTORS; 5670 } 5671 5672 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5673 { 5674 /* We may not be able to submit a whole bio at once as there 5675 * may not be enough stripe_heads available. 5676 * We cannot pre-allocate enough stripe_heads as we may need 5677 * more than exist in the cache (if we allow ever large chunks). 5678 * So we do one stripe head at a time and record in 5679 * ->bi_hw_segments how many have been done. 5680 * 5681 * We *know* that this entire raid_bio is in one chunk, so 5682 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5683 */ 5684 struct stripe_head *sh; 5685 int dd_idx; 5686 sector_t sector, logical_sector, last_sector; 5687 int scnt = 0; 5688 int remaining; 5689 int handled = 0; 5690 5691 logical_sector = raid_bio->bi_iter.bi_sector & 5692 ~((sector_t)STRIPE_SECTORS-1); 5693 sector = raid5_compute_sector(conf, logical_sector, 5694 0, &dd_idx, NULL); 5695 last_sector = bio_end_sector(raid_bio); 5696 5697 for (; logical_sector < last_sector; 5698 logical_sector += STRIPE_SECTORS, 5699 sector += STRIPE_SECTORS, 5700 scnt++) { 5701 5702 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5703 /* already done this stripe */ 5704 continue; 5705 5706 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 5707 5708 if (!sh) { 5709 /* failed to get a stripe - must wait */ 5710 raid5_set_bi_processed_stripes(raid_bio, scnt); 5711 conf->retry_read_aligned = raid_bio; 5712 return handled; 5713 } 5714 5715 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 5716 raid5_release_stripe(sh); 5717 raid5_set_bi_processed_stripes(raid_bio, scnt); 5718 conf->retry_read_aligned = raid_bio; 5719 return handled; 5720 } 5721 5722 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5723 handle_stripe(sh); 5724 raid5_release_stripe(sh); 5725 handled++; 5726 } 5727 remaining = raid5_dec_bi_active_stripes(raid_bio); 5728 if (remaining == 0) { 5729 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5730 raid_bio, 0); 5731 bio_endio(raid_bio); 5732 } 5733 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5734 wake_up(&conf->wait_for_quiescent); 5735 return handled; 5736 } 5737 5738 static int handle_active_stripes(struct r5conf *conf, int group, 5739 struct r5worker *worker, 5740 struct list_head *temp_inactive_list) 5741 { 5742 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5743 int i, batch_size = 0, hash; 5744 bool release_inactive = false; 5745 5746 while (batch_size < MAX_STRIPE_BATCH && 5747 (sh = __get_priority_stripe(conf, group)) != NULL) 5748 batch[batch_size++] = sh; 5749 5750 if (batch_size == 0) { 5751 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5752 if (!list_empty(temp_inactive_list + i)) 5753 break; 5754 if (i == NR_STRIPE_HASH_LOCKS) { 5755 spin_unlock_irq(&conf->device_lock); 5756 r5l_flush_stripe_to_raid(conf->log); 5757 spin_lock_irq(&conf->device_lock); 5758 return batch_size; 5759 } 5760 release_inactive = true; 5761 } 5762 spin_unlock_irq(&conf->device_lock); 5763 5764 release_inactive_stripe_list(conf, temp_inactive_list, 5765 NR_STRIPE_HASH_LOCKS); 5766 5767 r5l_flush_stripe_to_raid(conf->log); 5768 if (release_inactive) { 5769 spin_lock_irq(&conf->device_lock); 5770 return 0; 5771 } 5772 5773 for (i = 0; i < batch_size; i++) 5774 handle_stripe(batch[i]); 5775 r5l_write_stripe_run(conf->log); 5776 5777 cond_resched(); 5778 5779 spin_lock_irq(&conf->device_lock); 5780 for (i = 0; i < batch_size; i++) { 5781 hash = batch[i]->hash_lock_index; 5782 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5783 } 5784 return batch_size; 5785 } 5786 5787 static void raid5_do_work(struct work_struct *work) 5788 { 5789 struct r5worker *worker = container_of(work, struct r5worker, work); 5790 struct r5worker_group *group = worker->group; 5791 struct r5conf *conf = group->conf; 5792 int group_id = group - conf->worker_groups; 5793 int handled; 5794 struct blk_plug plug; 5795 5796 pr_debug("+++ raid5worker active\n"); 5797 5798 blk_start_plug(&plug); 5799 handled = 0; 5800 spin_lock_irq(&conf->device_lock); 5801 while (1) { 5802 int batch_size, released; 5803 5804 released = release_stripe_list(conf, worker->temp_inactive_list); 5805 5806 batch_size = handle_active_stripes(conf, group_id, worker, 5807 worker->temp_inactive_list); 5808 worker->working = false; 5809 if (!batch_size && !released) 5810 break; 5811 handled += batch_size; 5812 } 5813 pr_debug("%d stripes handled\n", handled); 5814 5815 spin_unlock_irq(&conf->device_lock); 5816 blk_finish_plug(&plug); 5817 5818 pr_debug("--- raid5worker inactive\n"); 5819 } 5820 5821 /* 5822 * This is our raid5 kernel thread. 5823 * 5824 * We scan the hash table for stripes which can be handled now. 5825 * During the scan, completed stripes are saved for us by the interrupt 5826 * handler, so that they will not have to wait for our next wakeup. 5827 */ 5828 static void raid5d(struct md_thread *thread) 5829 { 5830 struct mddev *mddev = thread->mddev; 5831 struct r5conf *conf = mddev->private; 5832 int handled; 5833 struct blk_plug plug; 5834 5835 pr_debug("+++ raid5d active\n"); 5836 5837 md_check_recovery(mddev); 5838 5839 if (!bio_list_empty(&conf->return_bi) && 5840 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5841 struct bio_list tmp = BIO_EMPTY_LIST; 5842 spin_lock_irq(&conf->device_lock); 5843 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5844 bio_list_merge(&tmp, &conf->return_bi); 5845 bio_list_init(&conf->return_bi); 5846 } 5847 spin_unlock_irq(&conf->device_lock); 5848 return_io(&tmp); 5849 } 5850 5851 blk_start_plug(&plug); 5852 handled = 0; 5853 spin_lock_irq(&conf->device_lock); 5854 while (1) { 5855 struct bio *bio; 5856 int batch_size, released; 5857 5858 released = release_stripe_list(conf, conf->temp_inactive_list); 5859 if (released) 5860 clear_bit(R5_DID_ALLOC, &conf->cache_state); 5861 5862 if ( 5863 !list_empty(&conf->bitmap_list)) { 5864 /* Now is a good time to flush some bitmap updates */ 5865 conf->seq_flush++; 5866 spin_unlock_irq(&conf->device_lock); 5867 bitmap_unplug(mddev->bitmap); 5868 spin_lock_irq(&conf->device_lock); 5869 conf->seq_write = conf->seq_flush; 5870 activate_bit_delay(conf, conf->temp_inactive_list); 5871 } 5872 raid5_activate_delayed(conf); 5873 5874 while ((bio = remove_bio_from_retry(conf))) { 5875 int ok; 5876 spin_unlock_irq(&conf->device_lock); 5877 ok = retry_aligned_read(conf, bio); 5878 spin_lock_irq(&conf->device_lock); 5879 if (!ok) 5880 break; 5881 handled++; 5882 } 5883 5884 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5885 conf->temp_inactive_list); 5886 if (!batch_size && !released) 5887 break; 5888 handled += batch_size; 5889 5890 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5891 spin_unlock_irq(&conf->device_lock); 5892 md_check_recovery(mddev); 5893 spin_lock_irq(&conf->device_lock); 5894 } 5895 } 5896 pr_debug("%d stripes handled\n", handled); 5897 5898 spin_unlock_irq(&conf->device_lock); 5899 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 5900 mutex_trylock(&conf->cache_size_mutex)) { 5901 grow_one_stripe(conf, __GFP_NOWARN); 5902 /* Set flag even if allocation failed. This helps 5903 * slow down allocation requests when mem is short 5904 */ 5905 set_bit(R5_DID_ALLOC, &conf->cache_state); 5906 mutex_unlock(&conf->cache_size_mutex); 5907 } 5908 5909 r5l_flush_stripe_to_raid(conf->log); 5910 5911 async_tx_issue_pending_all(); 5912 blk_finish_plug(&plug); 5913 5914 pr_debug("--- raid5d inactive\n"); 5915 } 5916 5917 static ssize_t 5918 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5919 { 5920 struct r5conf *conf; 5921 int ret = 0; 5922 spin_lock(&mddev->lock); 5923 conf = mddev->private; 5924 if (conf) 5925 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 5926 spin_unlock(&mddev->lock); 5927 return ret; 5928 } 5929 5930 int 5931 raid5_set_cache_size(struct mddev *mddev, int size) 5932 { 5933 struct r5conf *conf = mddev->private; 5934 int err; 5935 5936 if (size <= 16 || size > 32768) 5937 return -EINVAL; 5938 5939 conf->min_nr_stripes = size; 5940 mutex_lock(&conf->cache_size_mutex); 5941 while (size < conf->max_nr_stripes && 5942 drop_one_stripe(conf)) 5943 ; 5944 mutex_unlock(&conf->cache_size_mutex); 5945 5946 5947 err = md_allow_write(mddev); 5948 if (err) 5949 return err; 5950 5951 mutex_lock(&conf->cache_size_mutex); 5952 while (size > conf->max_nr_stripes) 5953 if (!grow_one_stripe(conf, GFP_KERNEL)) 5954 break; 5955 mutex_unlock(&conf->cache_size_mutex); 5956 5957 return 0; 5958 } 5959 EXPORT_SYMBOL(raid5_set_cache_size); 5960 5961 static ssize_t 5962 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5963 { 5964 struct r5conf *conf; 5965 unsigned long new; 5966 int err; 5967 5968 if (len >= PAGE_SIZE) 5969 return -EINVAL; 5970 if (kstrtoul(page, 10, &new)) 5971 return -EINVAL; 5972 err = mddev_lock(mddev); 5973 if (err) 5974 return err; 5975 conf = mddev->private; 5976 if (!conf) 5977 err = -ENODEV; 5978 else 5979 err = raid5_set_cache_size(mddev, new); 5980 mddev_unlock(mddev); 5981 5982 return err ?: len; 5983 } 5984 5985 static struct md_sysfs_entry 5986 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5987 raid5_show_stripe_cache_size, 5988 raid5_store_stripe_cache_size); 5989 5990 static ssize_t 5991 raid5_show_rmw_level(struct mddev *mddev, char *page) 5992 { 5993 struct r5conf *conf = mddev->private; 5994 if (conf) 5995 return sprintf(page, "%d\n", conf->rmw_level); 5996 else 5997 return 0; 5998 } 5999 6000 static ssize_t 6001 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6002 { 6003 struct r5conf *conf = mddev->private; 6004 unsigned long new; 6005 6006 if (!conf) 6007 return -ENODEV; 6008 6009 if (len >= PAGE_SIZE) 6010 return -EINVAL; 6011 6012 if (kstrtoul(page, 10, &new)) 6013 return -EINVAL; 6014 6015 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6016 return -EINVAL; 6017 6018 if (new != PARITY_DISABLE_RMW && 6019 new != PARITY_ENABLE_RMW && 6020 new != PARITY_PREFER_RMW) 6021 return -EINVAL; 6022 6023 conf->rmw_level = new; 6024 return len; 6025 } 6026 6027 static struct md_sysfs_entry 6028 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6029 raid5_show_rmw_level, 6030 raid5_store_rmw_level); 6031 6032 6033 static ssize_t 6034 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6035 { 6036 struct r5conf *conf; 6037 int ret = 0; 6038 spin_lock(&mddev->lock); 6039 conf = mddev->private; 6040 if (conf) 6041 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6042 spin_unlock(&mddev->lock); 6043 return ret; 6044 } 6045 6046 static ssize_t 6047 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6048 { 6049 struct r5conf *conf; 6050 unsigned long new; 6051 int err; 6052 6053 if (len >= PAGE_SIZE) 6054 return -EINVAL; 6055 if (kstrtoul(page, 10, &new)) 6056 return -EINVAL; 6057 6058 err = mddev_lock(mddev); 6059 if (err) 6060 return err; 6061 conf = mddev->private; 6062 if (!conf) 6063 err = -ENODEV; 6064 else if (new > conf->min_nr_stripes) 6065 err = -EINVAL; 6066 else 6067 conf->bypass_threshold = new; 6068 mddev_unlock(mddev); 6069 return err ?: len; 6070 } 6071 6072 static struct md_sysfs_entry 6073 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6074 S_IRUGO | S_IWUSR, 6075 raid5_show_preread_threshold, 6076 raid5_store_preread_threshold); 6077 6078 static ssize_t 6079 raid5_show_skip_copy(struct mddev *mddev, char *page) 6080 { 6081 struct r5conf *conf; 6082 int ret = 0; 6083 spin_lock(&mddev->lock); 6084 conf = mddev->private; 6085 if (conf) 6086 ret = sprintf(page, "%d\n", conf->skip_copy); 6087 spin_unlock(&mddev->lock); 6088 return ret; 6089 } 6090 6091 static ssize_t 6092 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6093 { 6094 struct r5conf *conf; 6095 unsigned long new; 6096 int err; 6097 6098 if (len >= PAGE_SIZE) 6099 return -EINVAL; 6100 if (kstrtoul(page, 10, &new)) 6101 return -EINVAL; 6102 new = !!new; 6103 6104 err = mddev_lock(mddev); 6105 if (err) 6106 return err; 6107 conf = mddev->private; 6108 if (!conf) 6109 err = -ENODEV; 6110 else if (new != conf->skip_copy) { 6111 mddev_suspend(mddev); 6112 conf->skip_copy = new; 6113 if (new) 6114 mddev->queue->backing_dev_info.capabilities |= 6115 BDI_CAP_STABLE_WRITES; 6116 else 6117 mddev->queue->backing_dev_info.capabilities &= 6118 ~BDI_CAP_STABLE_WRITES; 6119 mddev_resume(mddev); 6120 } 6121 mddev_unlock(mddev); 6122 return err ?: len; 6123 } 6124 6125 static struct md_sysfs_entry 6126 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6127 raid5_show_skip_copy, 6128 raid5_store_skip_copy); 6129 6130 static ssize_t 6131 stripe_cache_active_show(struct mddev *mddev, char *page) 6132 { 6133 struct r5conf *conf = mddev->private; 6134 if (conf) 6135 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6136 else 6137 return 0; 6138 } 6139 6140 static struct md_sysfs_entry 6141 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6142 6143 static ssize_t 6144 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6145 { 6146 struct r5conf *conf; 6147 int ret = 0; 6148 spin_lock(&mddev->lock); 6149 conf = mddev->private; 6150 if (conf) 6151 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6152 spin_unlock(&mddev->lock); 6153 return ret; 6154 } 6155 6156 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6157 int *group_cnt, 6158 int *worker_cnt_per_group, 6159 struct r5worker_group **worker_groups); 6160 static ssize_t 6161 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6162 { 6163 struct r5conf *conf; 6164 unsigned long new; 6165 int err; 6166 struct r5worker_group *new_groups, *old_groups; 6167 int group_cnt, worker_cnt_per_group; 6168 6169 if (len >= PAGE_SIZE) 6170 return -EINVAL; 6171 if (kstrtoul(page, 10, &new)) 6172 return -EINVAL; 6173 6174 err = mddev_lock(mddev); 6175 if (err) 6176 return err; 6177 conf = mddev->private; 6178 if (!conf) 6179 err = -ENODEV; 6180 else if (new != conf->worker_cnt_per_group) { 6181 mddev_suspend(mddev); 6182 6183 old_groups = conf->worker_groups; 6184 if (old_groups) 6185 flush_workqueue(raid5_wq); 6186 6187 err = alloc_thread_groups(conf, new, 6188 &group_cnt, &worker_cnt_per_group, 6189 &new_groups); 6190 if (!err) { 6191 spin_lock_irq(&conf->device_lock); 6192 conf->group_cnt = group_cnt; 6193 conf->worker_cnt_per_group = worker_cnt_per_group; 6194 conf->worker_groups = new_groups; 6195 spin_unlock_irq(&conf->device_lock); 6196 6197 if (old_groups) 6198 kfree(old_groups[0].workers); 6199 kfree(old_groups); 6200 } 6201 mddev_resume(mddev); 6202 } 6203 mddev_unlock(mddev); 6204 6205 return err ?: len; 6206 } 6207 6208 static struct md_sysfs_entry 6209 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6210 raid5_show_group_thread_cnt, 6211 raid5_store_group_thread_cnt); 6212 6213 static struct attribute *raid5_attrs[] = { 6214 &raid5_stripecache_size.attr, 6215 &raid5_stripecache_active.attr, 6216 &raid5_preread_bypass_threshold.attr, 6217 &raid5_group_thread_cnt.attr, 6218 &raid5_skip_copy.attr, 6219 &raid5_rmw_level.attr, 6220 NULL, 6221 }; 6222 static struct attribute_group raid5_attrs_group = { 6223 .name = NULL, 6224 .attrs = raid5_attrs, 6225 }; 6226 6227 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6228 int *group_cnt, 6229 int *worker_cnt_per_group, 6230 struct r5worker_group **worker_groups) 6231 { 6232 int i, j, k; 6233 ssize_t size; 6234 struct r5worker *workers; 6235 6236 *worker_cnt_per_group = cnt; 6237 if (cnt == 0) { 6238 *group_cnt = 0; 6239 *worker_groups = NULL; 6240 return 0; 6241 } 6242 *group_cnt = num_possible_nodes(); 6243 size = sizeof(struct r5worker) * cnt; 6244 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6245 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6246 *group_cnt, GFP_NOIO); 6247 if (!*worker_groups || !workers) { 6248 kfree(workers); 6249 kfree(*worker_groups); 6250 return -ENOMEM; 6251 } 6252 6253 for (i = 0; i < *group_cnt; i++) { 6254 struct r5worker_group *group; 6255 6256 group = &(*worker_groups)[i]; 6257 INIT_LIST_HEAD(&group->handle_list); 6258 group->conf = conf; 6259 group->workers = workers + i * cnt; 6260 6261 for (j = 0; j < cnt; j++) { 6262 struct r5worker *worker = group->workers + j; 6263 worker->group = group; 6264 INIT_WORK(&worker->work, raid5_do_work); 6265 6266 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6267 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6268 } 6269 } 6270 6271 return 0; 6272 } 6273 6274 static void free_thread_groups(struct r5conf *conf) 6275 { 6276 if (conf->worker_groups) 6277 kfree(conf->worker_groups[0].workers); 6278 kfree(conf->worker_groups); 6279 conf->worker_groups = NULL; 6280 } 6281 6282 static sector_t 6283 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6284 { 6285 struct r5conf *conf = mddev->private; 6286 6287 if (!sectors) 6288 sectors = mddev->dev_sectors; 6289 if (!raid_disks) 6290 /* size is defined by the smallest of previous and new size */ 6291 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6292 6293 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6294 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6295 return sectors * (raid_disks - conf->max_degraded); 6296 } 6297 6298 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6299 { 6300 safe_put_page(percpu->spare_page); 6301 if (percpu->scribble) 6302 flex_array_free(percpu->scribble); 6303 percpu->spare_page = NULL; 6304 percpu->scribble = NULL; 6305 } 6306 6307 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6308 { 6309 if (conf->level == 6 && !percpu->spare_page) 6310 percpu->spare_page = alloc_page(GFP_KERNEL); 6311 if (!percpu->scribble) 6312 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6313 conf->previous_raid_disks), 6314 max(conf->chunk_sectors, 6315 conf->prev_chunk_sectors) 6316 / STRIPE_SECTORS, 6317 GFP_KERNEL); 6318 6319 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6320 free_scratch_buffer(conf, percpu); 6321 return -ENOMEM; 6322 } 6323 6324 return 0; 6325 } 6326 6327 static void raid5_free_percpu(struct r5conf *conf) 6328 { 6329 unsigned long cpu; 6330 6331 if (!conf->percpu) 6332 return; 6333 6334 #ifdef CONFIG_HOTPLUG_CPU 6335 unregister_cpu_notifier(&conf->cpu_notify); 6336 #endif 6337 6338 get_online_cpus(); 6339 for_each_possible_cpu(cpu) 6340 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6341 put_online_cpus(); 6342 6343 free_percpu(conf->percpu); 6344 } 6345 6346 static void free_conf(struct r5conf *conf) 6347 { 6348 if (conf->log) 6349 r5l_exit_log(conf->log); 6350 if (conf->shrinker.seeks) 6351 unregister_shrinker(&conf->shrinker); 6352 6353 free_thread_groups(conf); 6354 shrink_stripes(conf); 6355 raid5_free_percpu(conf); 6356 kfree(conf->disks); 6357 kfree(conf->stripe_hashtbl); 6358 kfree(conf); 6359 } 6360 6361 #ifdef CONFIG_HOTPLUG_CPU 6362 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 6363 void *hcpu) 6364 { 6365 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 6366 long cpu = (long)hcpu; 6367 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6368 6369 switch (action) { 6370 case CPU_UP_PREPARE: 6371 case CPU_UP_PREPARE_FROZEN: 6372 if (alloc_scratch_buffer(conf, percpu)) { 6373 pr_err("%s: failed memory allocation for cpu%ld\n", 6374 __func__, cpu); 6375 return notifier_from_errno(-ENOMEM); 6376 } 6377 break; 6378 case CPU_DEAD: 6379 case CPU_DEAD_FROZEN: 6380 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6381 break; 6382 default: 6383 break; 6384 } 6385 return NOTIFY_OK; 6386 } 6387 #endif 6388 6389 static int raid5_alloc_percpu(struct r5conf *conf) 6390 { 6391 unsigned long cpu; 6392 int err = 0; 6393 6394 conf->percpu = alloc_percpu(struct raid5_percpu); 6395 if (!conf->percpu) 6396 return -ENOMEM; 6397 6398 #ifdef CONFIG_HOTPLUG_CPU 6399 conf->cpu_notify.notifier_call = raid456_cpu_notify; 6400 conf->cpu_notify.priority = 0; 6401 err = register_cpu_notifier(&conf->cpu_notify); 6402 if (err) 6403 return err; 6404 #endif 6405 6406 get_online_cpus(); 6407 for_each_present_cpu(cpu) { 6408 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6409 if (err) { 6410 pr_err("%s: failed memory allocation for cpu%ld\n", 6411 __func__, cpu); 6412 break; 6413 } 6414 } 6415 put_online_cpus(); 6416 6417 return err; 6418 } 6419 6420 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6421 struct shrink_control *sc) 6422 { 6423 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6424 unsigned long ret = SHRINK_STOP; 6425 6426 if (mutex_trylock(&conf->cache_size_mutex)) { 6427 ret= 0; 6428 while (ret < sc->nr_to_scan && 6429 conf->max_nr_stripes > conf->min_nr_stripes) { 6430 if (drop_one_stripe(conf) == 0) { 6431 ret = SHRINK_STOP; 6432 break; 6433 } 6434 ret++; 6435 } 6436 mutex_unlock(&conf->cache_size_mutex); 6437 } 6438 return ret; 6439 } 6440 6441 static unsigned long raid5_cache_count(struct shrinker *shrink, 6442 struct shrink_control *sc) 6443 { 6444 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6445 6446 if (conf->max_nr_stripes < conf->min_nr_stripes) 6447 /* unlikely, but not impossible */ 6448 return 0; 6449 return conf->max_nr_stripes - conf->min_nr_stripes; 6450 } 6451 6452 static struct r5conf *setup_conf(struct mddev *mddev) 6453 { 6454 struct r5conf *conf; 6455 int raid_disk, memory, max_disks; 6456 struct md_rdev *rdev; 6457 struct disk_info *disk; 6458 char pers_name[6]; 6459 int i; 6460 int group_cnt, worker_cnt_per_group; 6461 struct r5worker_group *new_group; 6462 6463 if (mddev->new_level != 5 6464 && mddev->new_level != 4 6465 && mddev->new_level != 6) { 6466 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6467 mdname(mddev), mddev->new_level); 6468 return ERR_PTR(-EIO); 6469 } 6470 if ((mddev->new_level == 5 6471 && !algorithm_valid_raid5(mddev->new_layout)) || 6472 (mddev->new_level == 6 6473 && !algorithm_valid_raid6(mddev->new_layout))) { 6474 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 6475 mdname(mddev), mddev->new_layout); 6476 return ERR_PTR(-EIO); 6477 } 6478 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6479 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6480 mdname(mddev), mddev->raid_disks); 6481 return ERR_PTR(-EINVAL); 6482 } 6483 6484 if (!mddev->new_chunk_sectors || 6485 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6486 !is_power_of_2(mddev->new_chunk_sectors)) { 6487 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 6488 mdname(mddev), mddev->new_chunk_sectors << 9); 6489 return ERR_PTR(-EINVAL); 6490 } 6491 6492 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6493 if (conf == NULL) 6494 goto abort; 6495 /* Don't enable multi-threading by default*/ 6496 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6497 &new_group)) { 6498 conf->group_cnt = group_cnt; 6499 conf->worker_cnt_per_group = worker_cnt_per_group; 6500 conf->worker_groups = new_group; 6501 } else 6502 goto abort; 6503 spin_lock_init(&conf->device_lock); 6504 seqcount_init(&conf->gen_lock); 6505 mutex_init(&conf->cache_size_mutex); 6506 init_waitqueue_head(&conf->wait_for_quiescent); 6507 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) { 6508 init_waitqueue_head(&conf->wait_for_stripe[i]); 6509 } 6510 init_waitqueue_head(&conf->wait_for_overlap); 6511 INIT_LIST_HEAD(&conf->handle_list); 6512 INIT_LIST_HEAD(&conf->hold_list); 6513 INIT_LIST_HEAD(&conf->delayed_list); 6514 INIT_LIST_HEAD(&conf->bitmap_list); 6515 bio_list_init(&conf->return_bi); 6516 init_llist_head(&conf->released_stripes); 6517 atomic_set(&conf->active_stripes, 0); 6518 atomic_set(&conf->preread_active_stripes, 0); 6519 atomic_set(&conf->active_aligned_reads, 0); 6520 conf->bypass_threshold = BYPASS_THRESHOLD; 6521 conf->recovery_disabled = mddev->recovery_disabled - 1; 6522 6523 conf->raid_disks = mddev->raid_disks; 6524 if (mddev->reshape_position == MaxSector) 6525 conf->previous_raid_disks = mddev->raid_disks; 6526 else 6527 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6528 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6529 6530 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6531 GFP_KERNEL); 6532 if (!conf->disks) 6533 goto abort; 6534 6535 conf->mddev = mddev; 6536 6537 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6538 goto abort; 6539 6540 /* We init hash_locks[0] separately to that it can be used 6541 * as the reference lock in the spin_lock_nest_lock() call 6542 * in lock_all_device_hash_locks_irq in order to convince 6543 * lockdep that we know what we are doing. 6544 */ 6545 spin_lock_init(conf->hash_locks); 6546 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6547 spin_lock_init(conf->hash_locks + i); 6548 6549 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6550 INIT_LIST_HEAD(conf->inactive_list + i); 6551 6552 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6553 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6554 6555 conf->level = mddev->new_level; 6556 conf->chunk_sectors = mddev->new_chunk_sectors; 6557 if (raid5_alloc_percpu(conf) != 0) 6558 goto abort; 6559 6560 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6561 6562 rdev_for_each(rdev, mddev) { 6563 raid_disk = rdev->raid_disk; 6564 if (raid_disk >= max_disks 6565 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6566 continue; 6567 disk = conf->disks + raid_disk; 6568 6569 if (test_bit(Replacement, &rdev->flags)) { 6570 if (disk->replacement) 6571 goto abort; 6572 disk->replacement = rdev; 6573 } else { 6574 if (disk->rdev) 6575 goto abort; 6576 disk->rdev = rdev; 6577 } 6578 6579 if (test_bit(In_sync, &rdev->flags)) { 6580 char b[BDEVNAME_SIZE]; 6581 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 6582 " disk %d\n", 6583 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6584 } else if (rdev->saved_raid_disk != raid_disk) 6585 /* Cannot rely on bitmap to complete recovery */ 6586 conf->fullsync = 1; 6587 } 6588 6589 conf->level = mddev->new_level; 6590 if (conf->level == 6) { 6591 conf->max_degraded = 2; 6592 if (raid6_call.xor_syndrome) 6593 conf->rmw_level = PARITY_ENABLE_RMW; 6594 else 6595 conf->rmw_level = PARITY_DISABLE_RMW; 6596 } else { 6597 conf->max_degraded = 1; 6598 conf->rmw_level = PARITY_ENABLE_RMW; 6599 } 6600 conf->algorithm = mddev->new_layout; 6601 conf->reshape_progress = mddev->reshape_position; 6602 if (conf->reshape_progress != MaxSector) { 6603 conf->prev_chunk_sectors = mddev->chunk_sectors; 6604 conf->prev_algo = mddev->layout; 6605 } else { 6606 conf->prev_chunk_sectors = conf->chunk_sectors; 6607 conf->prev_algo = conf->algorithm; 6608 } 6609 6610 conf->min_nr_stripes = NR_STRIPES; 6611 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6612 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6613 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6614 if (grow_stripes(conf, conf->min_nr_stripes)) { 6615 printk(KERN_ERR 6616 "md/raid:%s: couldn't allocate %dkB for buffers\n", 6617 mdname(mddev), memory); 6618 goto abort; 6619 } else 6620 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 6621 mdname(mddev), memory); 6622 /* 6623 * Losing a stripe head costs more than the time to refill it, 6624 * it reduces the queue depth and so can hurt throughput. 6625 * So set it rather large, scaled by number of devices. 6626 */ 6627 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6628 conf->shrinker.scan_objects = raid5_cache_scan; 6629 conf->shrinker.count_objects = raid5_cache_count; 6630 conf->shrinker.batch = 128; 6631 conf->shrinker.flags = 0; 6632 register_shrinker(&conf->shrinker); 6633 6634 sprintf(pers_name, "raid%d", mddev->new_level); 6635 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6636 if (!conf->thread) { 6637 printk(KERN_ERR 6638 "md/raid:%s: couldn't allocate thread.\n", 6639 mdname(mddev)); 6640 goto abort; 6641 } 6642 6643 return conf; 6644 6645 abort: 6646 if (conf) { 6647 free_conf(conf); 6648 return ERR_PTR(-EIO); 6649 } else 6650 return ERR_PTR(-ENOMEM); 6651 } 6652 6653 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6654 { 6655 switch (algo) { 6656 case ALGORITHM_PARITY_0: 6657 if (raid_disk < max_degraded) 6658 return 1; 6659 break; 6660 case ALGORITHM_PARITY_N: 6661 if (raid_disk >= raid_disks - max_degraded) 6662 return 1; 6663 break; 6664 case ALGORITHM_PARITY_0_6: 6665 if (raid_disk == 0 || 6666 raid_disk == raid_disks - 1) 6667 return 1; 6668 break; 6669 case ALGORITHM_LEFT_ASYMMETRIC_6: 6670 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6671 case ALGORITHM_LEFT_SYMMETRIC_6: 6672 case ALGORITHM_RIGHT_SYMMETRIC_6: 6673 if (raid_disk == raid_disks - 1) 6674 return 1; 6675 } 6676 return 0; 6677 } 6678 6679 static int run(struct mddev *mddev) 6680 { 6681 struct r5conf *conf; 6682 int working_disks = 0; 6683 int dirty_parity_disks = 0; 6684 struct md_rdev *rdev; 6685 struct md_rdev *journal_dev = NULL; 6686 sector_t reshape_offset = 0; 6687 int i; 6688 long long min_offset_diff = 0; 6689 int first = 1; 6690 6691 if (mddev->recovery_cp != MaxSector) 6692 printk(KERN_NOTICE "md/raid:%s: not clean" 6693 " -- starting background reconstruction\n", 6694 mdname(mddev)); 6695 6696 rdev_for_each(rdev, mddev) { 6697 long long diff; 6698 6699 if (test_bit(Journal, &rdev->flags)) { 6700 journal_dev = rdev; 6701 continue; 6702 } 6703 if (rdev->raid_disk < 0) 6704 continue; 6705 diff = (rdev->new_data_offset - rdev->data_offset); 6706 if (first) { 6707 min_offset_diff = diff; 6708 first = 0; 6709 } else if (mddev->reshape_backwards && 6710 diff < min_offset_diff) 6711 min_offset_diff = diff; 6712 else if (!mddev->reshape_backwards && 6713 diff > min_offset_diff) 6714 min_offset_diff = diff; 6715 } 6716 6717 if (mddev->reshape_position != MaxSector) { 6718 /* Check that we can continue the reshape. 6719 * Difficulties arise if the stripe we would write to 6720 * next is at or after the stripe we would read from next. 6721 * For a reshape that changes the number of devices, this 6722 * is only possible for a very short time, and mdadm makes 6723 * sure that time appears to have past before assembling 6724 * the array. So we fail if that time hasn't passed. 6725 * For a reshape that keeps the number of devices the same 6726 * mdadm must be monitoring the reshape can keeping the 6727 * critical areas read-only and backed up. It will start 6728 * the array in read-only mode, so we check for that. 6729 */ 6730 sector_t here_new, here_old; 6731 int old_disks; 6732 int max_degraded = (mddev->level == 6 ? 2 : 1); 6733 int chunk_sectors; 6734 int new_data_disks; 6735 6736 if (journal_dev) { 6737 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n", 6738 mdname(mddev)); 6739 return -EINVAL; 6740 } 6741 6742 if (mddev->new_level != mddev->level) { 6743 printk(KERN_ERR "md/raid:%s: unsupported reshape " 6744 "required - aborting.\n", 6745 mdname(mddev)); 6746 return -EINVAL; 6747 } 6748 old_disks = mddev->raid_disks - mddev->delta_disks; 6749 /* reshape_position must be on a new-stripe boundary, and one 6750 * further up in new geometry must map after here in old 6751 * geometry. 6752 * If the chunk sizes are different, then as we perform reshape 6753 * in units of the largest of the two, reshape_position needs 6754 * be a multiple of the largest chunk size times new data disks. 6755 */ 6756 here_new = mddev->reshape_position; 6757 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 6758 new_data_disks = mddev->raid_disks - max_degraded; 6759 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 6760 printk(KERN_ERR "md/raid:%s: reshape_position not " 6761 "on a stripe boundary\n", mdname(mddev)); 6762 return -EINVAL; 6763 } 6764 reshape_offset = here_new * chunk_sectors; 6765 /* here_new is the stripe we will write to */ 6766 here_old = mddev->reshape_position; 6767 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 6768 /* here_old is the first stripe that we might need to read 6769 * from */ 6770 if (mddev->delta_disks == 0) { 6771 /* We cannot be sure it is safe to start an in-place 6772 * reshape. It is only safe if user-space is monitoring 6773 * and taking constant backups. 6774 * mdadm always starts a situation like this in 6775 * readonly mode so it can take control before 6776 * allowing any writes. So just check for that. 6777 */ 6778 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6779 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6780 /* not really in-place - so OK */; 6781 else if (mddev->ro == 0) { 6782 printk(KERN_ERR "md/raid:%s: in-place reshape " 6783 "must be started in read-only mode " 6784 "- aborting\n", 6785 mdname(mddev)); 6786 return -EINVAL; 6787 } 6788 } else if (mddev->reshape_backwards 6789 ? (here_new * chunk_sectors + min_offset_diff <= 6790 here_old * chunk_sectors) 6791 : (here_new * chunk_sectors >= 6792 here_old * chunk_sectors + (-min_offset_diff))) { 6793 /* Reading from the same stripe as writing to - bad */ 6794 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6795 "auto-recovery - aborting.\n", 6796 mdname(mddev)); 6797 return -EINVAL; 6798 } 6799 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6800 mdname(mddev)); 6801 /* OK, we should be able to continue; */ 6802 } else { 6803 BUG_ON(mddev->level != mddev->new_level); 6804 BUG_ON(mddev->layout != mddev->new_layout); 6805 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6806 BUG_ON(mddev->delta_disks != 0); 6807 } 6808 6809 if (mddev->private == NULL) 6810 conf = setup_conf(mddev); 6811 else 6812 conf = mddev->private; 6813 6814 if (IS_ERR(conf)) 6815 return PTR_ERR(conf); 6816 6817 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) { 6818 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n", 6819 mdname(mddev)); 6820 mddev->ro = 1; 6821 set_disk_ro(mddev->gendisk, 1); 6822 } 6823 6824 conf->min_offset_diff = min_offset_diff; 6825 mddev->thread = conf->thread; 6826 conf->thread = NULL; 6827 mddev->private = conf; 6828 6829 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6830 i++) { 6831 rdev = conf->disks[i].rdev; 6832 if (!rdev && conf->disks[i].replacement) { 6833 /* The replacement is all we have yet */ 6834 rdev = conf->disks[i].replacement; 6835 conf->disks[i].replacement = NULL; 6836 clear_bit(Replacement, &rdev->flags); 6837 conf->disks[i].rdev = rdev; 6838 } 6839 if (!rdev) 6840 continue; 6841 if (conf->disks[i].replacement && 6842 conf->reshape_progress != MaxSector) { 6843 /* replacements and reshape simply do not mix. */ 6844 printk(KERN_ERR "md: cannot handle concurrent " 6845 "replacement and reshape.\n"); 6846 goto abort; 6847 } 6848 if (test_bit(In_sync, &rdev->flags)) { 6849 working_disks++; 6850 continue; 6851 } 6852 /* This disc is not fully in-sync. However if it 6853 * just stored parity (beyond the recovery_offset), 6854 * when we don't need to be concerned about the 6855 * array being dirty. 6856 * When reshape goes 'backwards', we never have 6857 * partially completed devices, so we only need 6858 * to worry about reshape going forwards. 6859 */ 6860 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6861 if (mddev->major_version == 0 && 6862 mddev->minor_version > 90) 6863 rdev->recovery_offset = reshape_offset; 6864 6865 if (rdev->recovery_offset < reshape_offset) { 6866 /* We need to check old and new layout */ 6867 if (!only_parity(rdev->raid_disk, 6868 conf->algorithm, 6869 conf->raid_disks, 6870 conf->max_degraded)) 6871 continue; 6872 } 6873 if (!only_parity(rdev->raid_disk, 6874 conf->prev_algo, 6875 conf->previous_raid_disks, 6876 conf->max_degraded)) 6877 continue; 6878 dirty_parity_disks++; 6879 } 6880 6881 /* 6882 * 0 for a fully functional array, 1 or 2 for a degraded array. 6883 */ 6884 mddev->degraded = calc_degraded(conf); 6885 6886 if (has_failed(conf)) { 6887 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6888 " (%d/%d failed)\n", 6889 mdname(mddev), mddev->degraded, conf->raid_disks); 6890 goto abort; 6891 } 6892 6893 /* device size must be a multiple of chunk size */ 6894 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6895 mddev->resync_max_sectors = mddev->dev_sectors; 6896 6897 if (mddev->degraded > dirty_parity_disks && 6898 mddev->recovery_cp != MaxSector) { 6899 if (mddev->ok_start_degraded) 6900 printk(KERN_WARNING 6901 "md/raid:%s: starting dirty degraded array" 6902 " - data corruption possible.\n", 6903 mdname(mddev)); 6904 else { 6905 printk(KERN_ERR 6906 "md/raid:%s: cannot start dirty degraded array.\n", 6907 mdname(mddev)); 6908 goto abort; 6909 } 6910 } 6911 6912 if (mddev->degraded == 0) 6913 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6914 " devices, algorithm %d\n", mdname(mddev), conf->level, 6915 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6916 mddev->new_layout); 6917 else 6918 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6919 " out of %d devices, algorithm %d\n", 6920 mdname(mddev), conf->level, 6921 mddev->raid_disks - mddev->degraded, 6922 mddev->raid_disks, mddev->new_layout); 6923 6924 print_raid5_conf(conf); 6925 6926 if (conf->reshape_progress != MaxSector) { 6927 conf->reshape_safe = conf->reshape_progress; 6928 atomic_set(&conf->reshape_stripes, 0); 6929 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6930 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6931 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6932 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6933 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6934 "reshape"); 6935 } 6936 6937 /* Ok, everything is just fine now */ 6938 if (mddev->to_remove == &raid5_attrs_group) 6939 mddev->to_remove = NULL; 6940 else if (mddev->kobj.sd && 6941 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6942 printk(KERN_WARNING 6943 "raid5: failed to create sysfs attributes for %s\n", 6944 mdname(mddev)); 6945 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6946 6947 if (mddev->queue) { 6948 int chunk_size; 6949 bool discard_supported = true; 6950 /* read-ahead size must cover two whole stripes, which 6951 * is 2 * (datadisks) * chunksize where 'n' is the 6952 * number of raid devices 6953 */ 6954 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6955 int stripe = data_disks * 6956 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6957 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6958 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6959 6960 chunk_size = mddev->chunk_sectors << 9; 6961 blk_queue_io_min(mddev->queue, chunk_size); 6962 blk_queue_io_opt(mddev->queue, chunk_size * 6963 (conf->raid_disks - conf->max_degraded)); 6964 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6965 /* 6966 * We can only discard a whole stripe. It doesn't make sense to 6967 * discard data disk but write parity disk 6968 */ 6969 stripe = stripe * PAGE_SIZE; 6970 /* Round up to power of 2, as discard handling 6971 * currently assumes that */ 6972 while ((stripe-1) & stripe) 6973 stripe = (stripe | (stripe-1)) + 1; 6974 mddev->queue->limits.discard_alignment = stripe; 6975 mddev->queue->limits.discard_granularity = stripe; 6976 /* 6977 * unaligned part of discard request will be ignored, so can't 6978 * guarantee discard_zeroes_data 6979 */ 6980 mddev->queue->limits.discard_zeroes_data = 0; 6981 6982 blk_queue_max_write_same_sectors(mddev->queue, 0); 6983 6984 rdev_for_each(rdev, mddev) { 6985 disk_stack_limits(mddev->gendisk, rdev->bdev, 6986 rdev->data_offset << 9); 6987 disk_stack_limits(mddev->gendisk, rdev->bdev, 6988 rdev->new_data_offset << 9); 6989 /* 6990 * discard_zeroes_data is required, otherwise data 6991 * could be lost. Consider a scenario: discard a stripe 6992 * (the stripe could be inconsistent if 6993 * discard_zeroes_data is 0); write one disk of the 6994 * stripe (the stripe could be inconsistent again 6995 * depending on which disks are used to calculate 6996 * parity); the disk is broken; The stripe data of this 6997 * disk is lost. 6998 */ 6999 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 7000 !bdev_get_queue(rdev->bdev)-> 7001 limits.discard_zeroes_data) 7002 discard_supported = false; 7003 /* Unfortunately, discard_zeroes_data is not currently 7004 * a guarantee - just a hint. So we only allow DISCARD 7005 * if the sysadmin has confirmed that only safe devices 7006 * are in use by setting a module parameter. 7007 */ 7008 if (!devices_handle_discard_safely) { 7009 if (discard_supported) { 7010 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 7011 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 7012 } 7013 discard_supported = false; 7014 } 7015 } 7016 7017 if (discard_supported && 7018 mddev->queue->limits.max_discard_sectors >= stripe && 7019 mddev->queue->limits.discard_granularity >= stripe) 7020 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7021 mddev->queue); 7022 else 7023 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7024 mddev->queue); 7025 } 7026 7027 if (journal_dev) { 7028 char b[BDEVNAME_SIZE]; 7029 7030 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7031 mdname(mddev), bdevname(journal_dev->bdev, b)); 7032 r5l_init_log(conf, journal_dev); 7033 } 7034 7035 return 0; 7036 abort: 7037 md_unregister_thread(&mddev->thread); 7038 print_raid5_conf(conf); 7039 free_conf(conf); 7040 mddev->private = NULL; 7041 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7042 return -EIO; 7043 } 7044 7045 static void raid5_free(struct mddev *mddev, void *priv) 7046 { 7047 struct r5conf *conf = priv; 7048 7049 free_conf(conf); 7050 mddev->to_remove = &raid5_attrs_group; 7051 } 7052 7053 static void status(struct seq_file *seq, struct mddev *mddev) 7054 { 7055 struct r5conf *conf = mddev->private; 7056 int i; 7057 7058 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7059 conf->chunk_sectors / 2, mddev->layout); 7060 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7061 for (i = 0; i < conf->raid_disks; i++) 7062 seq_printf (seq, "%s", 7063 conf->disks[i].rdev && 7064 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 7065 seq_printf (seq, "]"); 7066 } 7067 7068 static void print_raid5_conf (struct r5conf *conf) 7069 { 7070 int i; 7071 struct disk_info *tmp; 7072 7073 printk(KERN_DEBUG "RAID conf printout:\n"); 7074 if (!conf) { 7075 printk("(conf==NULL)\n"); 7076 return; 7077 } 7078 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 7079 conf->raid_disks, 7080 conf->raid_disks - conf->mddev->degraded); 7081 7082 for (i = 0; i < conf->raid_disks; i++) { 7083 char b[BDEVNAME_SIZE]; 7084 tmp = conf->disks + i; 7085 if (tmp->rdev) 7086 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 7087 i, !test_bit(Faulty, &tmp->rdev->flags), 7088 bdevname(tmp->rdev->bdev, b)); 7089 } 7090 } 7091 7092 static int raid5_spare_active(struct mddev *mddev) 7093 { 7094 int i; 7095 struct r5conf *conf = mddev->private; 7096 struct disk_info *tmp; 7097 int count = 0; 7098 unsigned long flags; 7099 7100 for (i = 0; i < conf->raid_disks; i++) { 7101 tmp = conf->disks + i; 7102 if (tmp->replacement 7103 && tmp->replacement->recovery_offset == MaxSector 7104 && !test_bit(Faulty, &tmp->replacement->flags) 7105 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7106 /* Replacement has just become active. */ 7107 if (!tmp->rdev 7108 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7109 count++; 7110 if (tmp->rdev) { 7111 /* Replaced device not technically faulty, 7112 * but we need to be sure it gets removed 7113 * and never re-added. 7114 */ 7115 set_bit(Faulty, &tmp->rdev->flags); 7116 sysfs_notify_dirent_safe( 7117 tmp->rdev->sysfs_state); 7118 } 7119 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7120 } else if (tmp->rdev 7121 && tmp->rdev->recovery_offset == MaxSector 7122 && !test_bit(Faulty, &tmp->rdev->flags) 7123 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7124 count++; 7125 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7126 } 7127 } 7128 spin_lock_irqsave(&conf->device_lock, flags); 7129 mddev->degraded = calc_degraded(conf); 7130 spin_unlock_irqrestore(&conf->device_lock, flags); 7131 print_raid5_conf(conf); 7132 return count; 7133 } 7134 7135 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7136 { 7137 struct r5conf *conf = mddev->private; 7138 int err = 0; 7139 int number = rdev->raid_disk; 7140 struct md_rdev **rdevp; 7141 struct disk_info *p = conf->disks + number; 7142 7143 print_raid5_conf(conf); 7144 if (test_bit(Journal, &rdev->flags)) { 7145 /* 7146 * journal disk is not removable, but we need give a chance to 7147 * update superblock of other disks. Otherwise journal disk 7148 * will be considered as 'fresh' 7149 */ 7150 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7151 return -EINVAL; 7152 } 7153 if (rdev == p->rdev) 7154 rdevp = &p->rdev; 7155 else if (rdev == p->replacement) 7156 rdevp = &p->replacement; 7157 else 7158 return 0; 7159 7160 if (number >= conf->raid_disks && 7161 conf->reshape_progress == MaxSector) 7162 clear_bit(In_sync, &rdev->flags); 7163 7164 if (test_bit(In_sync, &rdev->flags) || 7165 atomic_read(&rdev->nr_pending)) { 7166 err = -EBUSY; 7167 goto abort; 7168 } 7169 /* Only remove non-faulty devices if recovery 7170 * isn't possible. 7171 */ 7172 if (!test_bit(Faulty, &rdev->flags) && 7173 mddev->recovery_disabled != conf->recovery_disabled && 7174 !has_failed(conf) && 7175 (!p->replacement || p->replacement == rdev) && 7176 number < conf->raid_disks) { 7177 err = -EBUSY; 7178 goto abort; 7179 } 7180 *rdevp = NULL; 7181 synchronize_rcu(); 7182 if (atomic_read(&rdev->nr_pending)) { 7183 /* lost the race, try later */ 7184 err = -EBUSY; 7185 *rdevp = rdev; 7186 } else if (p->replacement) { 7187 /* We must have just cleared 'rdev' */ 7188 p->rdev = p->replacement; 7189 clear_bit(Replacement, &p->replacement->flags); 7190 smp_mb(); /* Make sure other CPUs may see both as identical 7191 * but will never see neither - if they are careful 7192 */ 7193 p->replacement = NULL; 7194 clear_bit(WantReplacement, &rdev->flags); 7195 } else 7196 /* We might have just removed the Replacement as faulty- 7197 * clear the bit just in case 7198 */ 7199 clear_bit(WantReplacement, &rdev->flags); 7200 abort: 7201 7202 print_raid5_conf(conf); 7203 return err; 7204 } 7205 7206 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7207 { 7208 struct r5conf *conf = mddev->private; 7209 int err = -EEXIST; 7210 int disk; 7211 struct disk_info *p; 7212 int first = 0; 7213 int last = conf->raid_disks - 1; 7214 7215 if (test_bit(Journal, &rdev->flags)) 7216 return -EINVAL; 7217 if (mddev->recovery_disabled == conf->recovery_disabled) 7218 return -EBUSY; 7219 7220 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7221 /* no point adding a device */ 7222 return -EINVAL; 7223 7224 if (rdev->raid_disk >= 0) 7225 first = last = rdev->raid_disk; 7226 7227 /* 7228 * find the disk ... but prefer rdev->saved_raid_disk 7229 * if possible. 7230 */ 7231 if (rdev->saved_raid_disk >= 0 && 7232 rdev->saved_raid_disk >= first && 7233 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7234 first = rdev->saved_raid_disk; 7235 7236 for (disk = first; disk <= last; disk++) { 7237 p = conf->disks + disk; 7238 if (p->rdev == NULL) { 7239 clear_bit(In_sync, &rdev->flags); 7240 rdev->raid_disk = disk; 7241 err = 0; 7242 if (rdev->saved_raid_disk != disk) 7243 conf->fullsync = 1; 7244 rcu_assign_pointer(p->rdev, rdev); 7245 goto out; 7246 } 7247 } 7248 for (disk = first; disk <= last; disk++) { 7249 p = conf->disks + disk; 7250 if (test_bit(WantReplacement, &p->rdev->flags) && 7251 p->replacement == NULL) { 7252 clear_bit(In_sync, &rdev->flags); 7253 set_bit(Replacement, &rdev->flags); 7254 rdev->raid_disk = disk; 7255 err = 0; 7256 conf->fullsync = 1; 7257 rcu_assign_pointer(p->replacement, rdev); 7258 break; 7259 } 7260 } 7261 out: 7262 print_raid5_conf(conf); 7263 return err; 7264 } 7265 7266 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7267 { 7268 /* no resync is happening, and there is enough space 7269 * on all devices, so we can resize. 7270 * We need to make sure resync covers any new space. 7271 * If the array is shrinking we should possibly wait until 7272 * any io in the removed space completes, but it hardly seems 7273 * worth it. 7274 */ 7275 sector_t newsize; 7276 struct r5conf *conf = mddev->private; 7277 7278 if (conf->log) 7279 return -EINVAL; 7280 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7281 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7282 if (mddev->external_size && 7283 mddev->array_sectors > newsize) 7284 return -EINVAL; 7285 if (mddev->bitmap) { 7286 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7287 if (ret) 7288 return ret; 7289 } 7290 md_set_array_sectors(mddev, newsize); 7291 set_capacity(mddev->gendisk, mddev->array_sectors); 7292 revalidate_disk(mddev->gendisk); 7293 if (sectors > mddev->dev_sectors && 7294 mddev->recovery_cp > mddev->dev_sectors) { 7295 mddev->recovery_cp = mddev->dev_sectors; 7296 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7297 } 7298 mddev->dev_sectors = sectors; 7299 mddev->resync_max_sectors = sectors; 7300 return 0; 7301 } 7302 7303 static int check_stripe_cache(struct mddev *mddev) 7304 { 7305 /* Can only proceed if there are plenty of stripe_heads. 7306 * We need a minimum of one full stripe,, and for sensible progress 7307 * it is best to have about 4 times that. 7308 * If we require 4 times, then the default 256 4K stripe_heads will 7309 * allow for chunk sizes up to 256K, which is probably OK. 7310 * If the chunk size is greater, user-space should request more 7311 * stripe_heads first. 7312 */ 7313 struct r5conf *conf = mddev->private; 7314 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7315 > conf->min_nr_stripes || 7316 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7317 > conf->min_nr_stripes) { 7318 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7319 mdname(mddev), 7320 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7321 / STRIPE_SIZE)*4); 7322 return 0; 7323 } 7324 return 1; 7325 } 7326 7327 static int check_reshape(struct mddev *mddev) 7328 { 7329 struct r5conf *conf = mddev->private; 7330 7331 if (conf->log) 7332 return -EINVAL; 7333 if (mddev->delta_disks == 0 && 7334 mddev->new_layout == mddev->layout && 7335 mddev->new_chunk_sectors == mddev->chunk_sectors) 7336 return 0; /* nothing to do */ 7337 if (has_failed(conf)) 7338 return -EINVAL; 7339 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7340 /* We might be able to shrink, but the devices must 7341 * be made bigger first. 7342 * For raid6, 4 is the minimum size. 7343 * Otherwise 2 is the minimum 7344 */ 7345 int min = 2; 7346 if (mddev->level == 6) 7347 min = 4; 7348 if (mddev->raid_disks + mddev->delta_disks < min) 7349 return -EINVAL; 7350 } 7351 7352 if (!check_stripe_cache(mddev)) 7353 return -ENOSPC; 7354 7355 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7356 mddev->delta_disks > 0) 7357 if (resize_chunks(conf, 7358 conf->previous_raid_disks 7359 + max(0, mddev->delta_disks), 7360 max(mddev->new_chunk_sectors, 7361 mddev->chunk_sectors) 7362 ) < 0) 7363 return -ENOMEM; 7364 return resize_stripes(conf, (conf->previous_raid_disks 7365 + mddev->delta_disks)); 7366 } 7367 7368 static int raid5_start_reshape(struct mddev *mddev) 7369 { 7370 struct r5conf *conf = mddev->private; 7371 struct md_rdev *rdev; 7372 int spares = 0; 7373 unsigned long flags; 7374 7375 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7376 return -EBUSY; 7377 7378 if (!check_stripe_cache(mddev)) 7379 return -ENOSPC; 7380 7381 if (has_failed(conf)) 7382 return -EINVAL; 7383 7384 rdev_for_each(rdev, mddev) { 7385 if (!test_bit(In_sync, &rdev->flags) 7386 && !test_bit(Faulty, &rdev->flags)) 7387 spares++; 7388 } 7389 7390 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7391 /* Not enough devices even to make a degraded array 7392 * of that size 7393 */ 7394 return -EINVAL; 7395 7396 /* Refuse to reduce size of the array. Any reductions in 7397 * array size must be through explicit setting of array_size 7398 * attribute. 7399 */ 7400 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7401 < mddev->array_sectors) { 7402 printk(KERN_ERR "md/raid:%s: array size must be reduced " 7403 "before number of disks\n", mdname(mddev)); 7404 return -EINVAL; 7405 } 7406 7407 atomic_set(&conf->reshape_stripes, 0); 7408 spin_lock_irq(&conf->device_lock); 7409 write_seqcount_begin(&conf->gen_lock); 7410 conf->previous_raid_disks = conf->raid_disks; 7411 conf->raid_disks += mddev->delta_disks; 7412 conf->prev_chunk_sectors = conf->chunk_sectors; 7413 conf->chunk_sectors = mddev->new_chunk_sectors; 7414 conf->prev_algo = conf->algorithm; 7415 conf->algorithm = mddev->new_layout; 7416 conf->generation++; 7417 /* Code that selects data_offset needs to see the generation update 7418 * if reshape_progress has been set - so a memory barrier needed. 7419 */ 7420 smp_mb(); 7421 if (mddev->reshape_backwards) 7422 conf->reshape_progress = raid5_size(mddev, 0, 0); 7423 else 7424 conf->reshape_progress = 0; 7425 conf->reshape_safe = conf->reshape_progress; 7426 write_seqcount_end(&conf->gen_lock); 7427 spin_unlock_irq(&conf->device_lock); 7428 7429 /* Now make sure any requests that proceeded on the assumption 7430 * the reshape wasn't running - like Discard or Read - have 7431 * completed. 7432 */ 7433 mddev_suspend(mddev); 7434 mddev_resume(mddev); 7435 7436 /* Add some new drives, as many as will fit. 7437 * We know there are enough to make the newly sized array work. 7438 * Don't add devices if we are reducing the number of 7439 * devices in the array. This is because it is not possible 7440 * to correctly record the "partially reconstructed" state of 7441 * such devices during the reshape and confusion could result. 7442 */ 7443 if (mddev->delta_disks >= 0) { 7444 rdev_for_each(rdev, mddev) 7445 if (rdev->raid_disk < 0 && 7446 !test_bit(Faulty, &rdev->flags)) { 7447 if (raid5_add_disk(mddev, rdev) == 0) { 7448 if (rdev->raid_disk 7449 >= conf->previous_raid_disks) 7450 set_bit(In_sync, &rdev->flags); 7451 else 7452 rdev->recovery_offset = 0; 7453 7454 if (sysfs_link_rdev(mddev, rdev)) 7455 /* Failure here is OK */; 7456 } 7457 } else if (rdev->raid_disk >= conf->previous_raid_disks 7458 && !test_bit(Faulty, &rdev->flags)) { 7459 /* This is a spare that was manually added */ 7460 set_bit(In_sync, &rdev->flags); 7461 } 7462 7463 /* When a reshape changes the number of devices, 7464 * ->degraded is measured against the larger of the 7465 * pre and post number of devices. 7466 */ 7467 spin_lock_irqsave(&conf->device_lock, flags); 7468 mddev->degraded = calc_degraded(conf); 7469 spin_unlock_irqrestore(&conf->device_lock, flags); 7470 } 7471 mddev->raid_disks = conf->raid_disks; 7472 mddev->reshape_position = conf->reshape_progress; 7473 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7474 7475 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7476 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7477 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7478 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7479 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7480 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7481 "reshape"); 7482 if (!mddev->sync_thread) { 7483 mddev->recovery = 0; 7484 spin_lock_irq(&conf->device_lock); 7485 write_seqcount_begin(&conf->gen_lock); 7486 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7487 mddev->new_chunk_sectors = 7488 conf->chunk_sectors = conf->prev_chunk_sectors; 7489 mddev->new_layout = conf->algorithm = conf->prev_algo; 7490 rdev_for_each(rdev, mddev) 7491 rdev->new_data_offset = rdev->data_offset; 7492 smp_wmb(); 7493 conf->generation --; 7494 conf->reshape_progress = MaxSector; 7495 mddev->reshape_position = MaxSector; 7496 write_seqcount_end(&conf->gen_lock); 7497 spin_unlock_irq(&conf->device_lock); 7498 return -EAGAIN; 7499 } 7500 conf->reshape_checkpoint = jiffies; 7501 md_wakeup_thread(mddev->sync_thread); 7502 md_new_event(mddev); 7503 return 0; 7504 } 7505 7506 /* This is called from the reshape thread and should make any 7507 * changes needed in 'conf' 7508 */ 7509 static void end_reshape(struct r5conf *conf) 7510 { 7511 7512 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7513 struct md_rdev *rdev; 7514 7515 spin_lock_irq(&conf->device_lock); 7516 conf->previous_raid_disks = conf->raid_disks; 7517 rdev_for_each(rdev, conf->mddev) 7518 rdev->data_offset = rdev->new_data_offset; 7519 smp_wmb(); 7520 conf->reshape_progress = MaxSector; 7521 conf->mddev->reshape_position = MaxSector; 7522 spin_unlock_irq(&conf->device_lock); 7523 wake_up(&conf->wait_for_overlap); 7524 7525 /* read-ahead size must cover two whole stripes, which is 7526 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7527 */ 7528 if (conf->mddev->queue) { 7529 int data_disks = conf->raid_disks - conf->max_degraded; 7530 int stripe = data_disks * ((conf->chunk_sectors << 9) 7531 / PAGE_SIZE); 7532 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 7533 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 7534 } 7535 } 7536 } 7537 7538 /* This is called from the raid5d thread with mddev_lock held. 7539 * It makes config changes to the device. 7540 */ 7541 static void raid5_finish_reshape(struct mddev *mddev) 7542 { 7543 struct r5conf *conf = mddev->private; 7544 7545 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7546 7547 if (mddev->delta_disks > 0) { 7548 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7549 set_capacity(mddev->gendisk, mddev->array_sectors); 7550 revalidate_disk(mddev->gendisk); 7551 } else { 7552 int d; 7553 spin_lock_irq(&conf->device_lock); 7554 mddev->degraded = calc_degraded(conf); 7555 spin_unlock_irq(&conf->device_lock); 7556 for (d = conf->raid_disks ; 7557 d < conf->raid_disks - mddev->delta_disks; 7558 d++) { 7559 struct md_rdev *rdev = conf->disks[d].rdev; 7560 if (rdev) 7561 clear_bit(In_sync, &rdev->flags); 7562 rdev = conf->disks[d].replacement; 7563 if (rdev) 7564 clear_bit(In_sync, &rdev->flags); 7565 } 7566 } 7567 mddev->layout = conf->algorithm; 7568 mddev->chunk_sectors = conf->chunk_sectors; 7569 mddev->reshape_position = MaxSector; 7570 mddev->delta_disks = 0; 7571 mddev->reshape_backwards = 0; 7572 } 7573 } 7574 7575 static void raid5_quiesce(struct mddev *mddev, int state) 7576 { 7577 struct r5conf *conf = mddev->private; 7578 7579 switch(state) { 7580 case 2: /* resume for a suspend */ 7581 wake_up(&conf->wait_for_overlap); 7582 break; 7583 7584 case 1: /* stop all writes */ 7585 lock_all_device_hash_locks_irq(conf); 7586 /* '2' tells resync/reshape to pause so that all 7587 * active stripes can drain 7588 */ 7589 conf->quiesce = 2; 7590 wait_event_cmd(conf->wait_for_quiescent, 7591 atomic_read(&conf->active_stripes) == 0 && 7592 atomic_read(&conf->active_aligned_reads) == 0, 7593 unlock_all_device_hash_locks_irq(conf), 7594 lock_all_device_hash_locks_irq(conf)); 7595 conf->quiesce = 1; 7596 unlock_all_device_hash_locks_irq(conf); 7597 /* allow reshape to continue */ 7598 wake_up(&conf->wait_for_overlap); 7599 break; 7600 7601 case 0: /* re-enable writes */ 7602 lock_all_device_hash_locks_irq(conf); 7603 conf->quiesce = 0; 7604 wake_up(&conf->wait_for_quiescent); 7605 wake_up(&conf->wait_for_overlap); 7606 unlock_all_device_hash_locks_irq(conf); 7607 break; 7608 } 7609 r5l_quiesce(conf->log, state); 7610 } 7611 7612 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7613 { 7614 struct r0conf *raid0_conf = mddev->private; 7615 sector_t sectors; 7616 7617 /* for raid0 takeover only one zone is supported */ 7618 if (raid0_conf->nr_strip_zones > 1) { 7619 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7620 mdname(mddev)); 7621 return ERR_PTR(-EINVAL); 7622 } 7623 7624 sectors = raid0_conf->strip_zone[0].zone_end; 7625 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7626 mddev->dev_sectors = sectors; 7627 mddev->new_level = level; 7628 mddev->new_layout = ALGORITHM_PARITY_N; 7629 mddev->new_chunk_sectors = mddev->chunk_sectors; 7630 mddev->raid_disks += 1; 7631 mddev->delta_disks = 1; 7632 /* make sure it will be not marked as dirty */ 7633 mddev->recovery_cp = MaxSector; 7634 7635 return setup_conf(mddev); 7636 } 7637 7638 static void *raid5_takeover_raid1(struct mddev *mddev) 7639 { 7640 int chunksect; 7641 7642 if (mddev->raid_disks != 2 || 7643 mddev->degraded > 1) 7644 return ERR_PTR(-EINVAL); 7645 7646 /* Should check if there are write-behind devices? */ 7647 7648 chunksect = 64*2; /* 64K by default */ 7649 7650 /* The array must be an exact multiple of chunksize */ 7651 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7652 chunksect >>= 1; 7653 7654 if ((chunksect<<9) < STRIPE_SIZE) 7655 /* array size does not allow a suitable chunk size */ 7656 return ERR_PTR(-EINVAL); 7657 7658 mddev->new_level = 5; 7659 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7660 mddev->new_chunk_sectors = chunksect; 7661 7662 return setup_conf(mddev); 7663 } 7664 7665 static void *raid5_takeover_raid6(struct mddev *mddev) 7666 { 7667 int new_layout; 7668 7669 switch (mddev->layout) { 7670 case ALGORITHM_LEFT_ASYMMETRIC_6: 7671 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7672 break; 7673 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7674 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7675 break; 7676 case ALGORITHM_LEFT_SYMMETRIC_6: 7677 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7678 break; 7679 case ALGORITHM_RIGHT_SYMMETRIC_6: 7680 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7681 break; 7682 case ALGORITHM_PARITY_0_6: 7683 new_layout = ALGORITHM_PARITY_0; 7684 break; 7685 case ALGORITHM_PARITY_N: 7686 new_layout = ALGORITHM_PARITY_N; 7687 break; 7688 default: 7689 return ERR_PTR(-EINVAL); 7690 } 7691 mddev->new_level = 5; 7692 mddev->new_layout = new_layout; 7693 mddev->delta_disks = -1; 7694 mddev->raid_disks -= 1; 7695 return setup_conf(mddev); 7696 } 7697 7698 static int raid5_check_reshape(struct mddev *mddev) 7699 { 7700 /* For a 2-drive array, the layout and chunk size can be changed 7701 * immediately as not restriping is needed. 7702 * For larger arrays we record the new value - after validation 7703 * to be used by a reshape pass. 7704 */ 7705 struct r5conf *conf = mddev->private; 7706 int new_chunk = mddev->new_chunk_sectors; 7707 7708 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 7709 return -EINVAL; 7710 if (new_chunk > 0) { 7711 if (!is_power_of_2(new_chunk)) 7712 return -EINVAL; 7713 if (new_chunk < (PAGE_SIZE>>9)) 7714 return -EINVAL; 7715 if (mddev->array_sectors & (new_chunk-1)) 7716 /* not factor of array size */ 7717 return -EINVAL; 7718 } 7719 7720 /* They look valid */ 7721 7722 if (mddev->raid_disks == 2) { 7723 /* can make the change immediately */ 7724 if (mddev->new_layout >= 0) { 7725 conf->algorithm = mddev->new_layout; 7726 mddev->layout = mddev->new_layout; 7727 } 7728 if (new_chunk > 0) { 7729 conf->chunk_sectors = new_chunk ; 7730 mddev->chunk_sectors = new_chunk; 7731 } 7732 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7733 md_wakeup_thread(mddev->thread); 7734 } 7735 return check_reshape(mddev); 7736 } 7737 7738 static int raid6_check_reshape(struct mddev *mddev) 7739 { 7740 int new_chunk = mddev->new_chunk_sectors; 7741 7742 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 7743 return -EINVAL; 7744 if (new_chunk > 0) { 7745 if (!is_power_of_2(new_chunk)) 7746 return -EINVAL; 7747 if (new_chunk < (PAGE_SIZE >> 9)) 7748 return -EINVAL; 7749 if (mddev->array_sectors & (new_chunk-1)) 7750 /* not factor of array size */ 7751 return -EINVAL; 7752 } 7753 7754 /* They look valid */ 7755 return check_reshape(mddev); 7756 } 7757 7758 static void *raid5_takeover(struct mddev *mddev) 7759 { 7760 /* raid5 can take over: 7761 * raid0 - if there is only one strip zone - make it a raid4 layout 7762 * raid1 - if there are two drives. We need to know the chunk size 7763 * raid4 - trivial - just use a raid4 layout. 7764 * raid6 - Providing it is a *_6 layout 7765 */ 7766 if (mddev->level == 0) 7767 return raid45_takeover_raid0(mddev, 5); 7768 if (mddev->level == 1) 7769 return raid5_takeover_raid1(mddev); 7770 if (mddev->level == 4) { 7771 mddev->new_layout = ALGORITHM_PARITY_N; 7772 mddev->new_level = 5; 7773 return setup_conf(mddev); 7774 } 7775 if (mddev->level == 6) 7776 return raid5_takeover_raid6(mddev); 7777 7778 return ERR_PTR(-EINVAL); 7779 } 7780 7781 static void *raid4_takeover(struct mddev *mddev) 7782 { 7783 /* raid4 can take over: 7784 * raid0 - if there is only one strip zone 7785 * raid5 - if layout is right 7786 */ 7787 if (mddev->level == 0) 7788 return raid45_takeover_raid0(mddev, 4); 7789 if (mddev->level == 5 && 7790 mddev->layout == ALGORITHM_PARITY_N) { 7791 mddev->new_layout = 0; 7792 mddev->new_level = 4; 7793 return setup_conf(mddev); 7794 } 7795 return ERR_PTR(-EINVAL); 7796 } 7797 7798 static struct md_personality raid5_personality; 7799 7800 static void *raid6_takeover(struct mddev *mddev) 7801 { 7802 /* Currently can only take over a raid5. We map the 7803 * personality to an equivalent raid6 personality 7804 * with the Q block at the end. 7805 */ 7806 int new_layout; 7807 7808 if (mddev->pers != &raid5_personality) 7809 return ERR_PTR(-EINVAL); 7810 if (mddev->degraded > 1) 7811 return ERR_PTR(-EINVAL); 7812 if (mddev->raid_disks > 253) 7813 return ERR_PTR(-EINVAL); 7814 if (mddev->raid_disks < 3) 7815 return ERR_PTR(-EINVAL); 7816 7817 switch (mddev->layout) { 7818 case ALGORITHM_LEFT_ASYMMETRIC: 7819 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7820 break; 7821 case ALGORITHM_RIGHT_ASYMMETRIC: 7822 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7823 break; 7824 case ALGORITHM_LEFT_SYMMETRIC: 7825 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7826 break; 7827 case ALGORITHM_RIGHT_SYMMETRIC: 7828 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7829 break; 7830 case ALGORITHM_PARITY_0: 7831 new_layout = ALGORITHM_PARITY_0_6; 7832 break; 7833 case ALGORITHM_PARITY_N: 7834 new_layout = ALGORITHM_PARITY_N; 7835 break; 7836 default: 7837 return ERR_PTR(-EINVAL); 7838 } 7839 mddev->new_level = 6; 7840 mddev->new_layout = new_layout; 7841 mddev->delta_disks = 1; 7842 mddev->raid_disks += 1; 7843 return setup_conf(mddev); 7844 } 7845 7846 static struct md_personality raid6_personality = 7847 { 7848 .name = "raid6", 7849 .level = 6, 7850 .owner = THIS_MODULE, 7851 .make_request = make_request, 7852 .run = run, 7853 .free = raid5_free, 7854 .status = status, 7855 .error_handler = error, 7856 .hot_add_disk = raid5_add_disk, 7857 .hot_remove_disk= raid5_remove_disk, 7858 .spare_active = raid5_spare_active, 7859 .sync_request = sync_request, 7860 .resize = raid5_resize, 7861 .size = raid5_size, 7862 .check_reshape = raid6_check_reshape, 7863 .start_reshape = raid5_start_reshape, 7864 .finish_reshape = raid5_finish_reshape, 7865 .quiesce = raid5_quiesce, 7866 .takeover = raid6_takeover, 7867 .congested = raid5_congested, 7868 }; 7869 static struct md_personality raid5_personality = 7870 { 7871 .name = "raid5", 7872 .level = 5, 7873 .owner = THIS_MODULE, 7874 .make_request = make_request, 7875 .run = run, 7876 .free = raid5_free, 7877 .status = status, 7878 .error_handler = error, 7879 .hot_add_disk = raid5_add_disk, 7880 .hot_remove_disk= raid5_remove_disk, 7881 .spare_active = raid5_spare_active, 7882 .sync_request = sync_request, 7883 .resize = raid5_resize, 7884 .size = raid5_size, 7885 .check_reshape = raid5_check_reshape, 7886 .start_reshape = raid5_start_reshape, 7887 .finish_reshape = raid5_finish_reshape, 7888 .quiesce = raid5_quiesce, 7889 .takeover = raid5_takeover, 7890 .congested = raid5_congested, 7891 }; 7892 7893 static struct md_personality raid4_personality = 7894 { 7895 .name = "raid4", 7896 .level = 4, 7897 .owner = THIS_MODULE, 7898 .make_request = make_request, 7899 .run = run, 7900 .free = raid5_free, 7901 .status = status, 7902 .error_handler = error, 7903 .hot_add_disk = raid5_add_disk, 7904 .hot_remove_disk= raid5_remove_disk, 7905 .spare_active = raid5_spare_active, 7906 .sync_request = sync_request, 7907 .resize = raid5_resize, 7908 .size = raid5_size, 7909 .check_reshape = raid5_check_reshape, 7910 .start_reshape = raid5_start_reshape, 7911 .finish_reshape = raid5_finish_reshape, 7912 .quiesce = raid5_quiesce, 7913 .takeover = raid4_takeover, 7914 .congested = raid5_congested, 7915 }; 7916 7917 static int __init raid5_init(void) 7918 { 7919 raid5_wq = alloc_workqueue("raid5wq", 7920 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7921 if (!raid5_wq) 7922 return -ENOMEM; 7923 register_md_personality(&raid6_personality); 7924 register_md_personality(&raid5_personality); 7925 register_md_personality(&raid4_personality); 7926 return 0; 7927 } 7928 7929 static void raid5_exit(void) 7930 { 7931 unregister_md_personality(&raid6_personality); 7932 unregister_md_personality(&raid5_personality); 7933 unregister_md_personality(&raid4_personality); 7934 destroy_workqueue(raid5_wq); 7935 } 7936 7937 module_init(raid5_init); 7938 module_exit(raid5_exit); 7939 MODULE_LICENSE("GPL"); 7940 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7941 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7942 MODULE_ALIAS("md-raid5"); 7943 MODULE_ALIAS("md-raid4"); 7944 MODULE_ALIAS("md-level-5"); 7945 MODULE_ALIAS("md-level-4"); 7946 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7947 MODULE_ALIAS("md-raid6"); 7948 MODULE_ALIAS("md-level-6"); 7949 7950 /* This used to be two separate modules, they were: */ 7951 MODULE_ALIAS("raid5"); 7952 MODULE_ALIAS("raid6"); 7953