xref: /openbmc/linux/drivers/md/raid5.c (revision 981ab3f1)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59 
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
62 
63 #include "md.h"
64 #include "raid5.h"
65 #include "raid0.h"
66 #include "bitmap.h"
67 #include "raid5-log.h"
68 
69 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
70 
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
73 
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
79 
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 	return &conf->stripe_hashtbl[hash];
84 }
85 
86 static inline int stripe_hash_locks_hash(sector_t sect)
87 {
88 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89 }
90 
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93 	spin_lock_irq(conf->hash_locks + hash);
94 	spin_lock(&conf->device_lock);
95 }
96 
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 	spin_unlock(&conf->device_lock);
100 	spin_unlock_irq(conf->hash_locks + hash);
101 }
102 
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105 	int i;
106 	spin_lock_irq(conf->hash_locks);
107 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109 	spin_lock(&conf->device_lock);
110 }
111 
112 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113 {
114 	int i;
115 	spin_unlock(&conf->device_lock);
116 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117 		spin_unlock(conf->hash_locks + i);
118 	spin_unlock_irq(conf->hash_locks);
119 }
120 
121 /* Find first data disk in a raid6 stripe */
122 static inline int raid6_d0(struct stripe_head *sh)
123 {
124 	if (sh->ddf_layout)
125 		/* ddf always start from first device */
126 		return 0;
127 	/* md starts just after Q block */
128 	if (sh->qd_idx == sh->disks - 1)
129 		return 0;
130 	else
131 		return sh->qd_idx + 1;
132 }
133 static inline int raid6_next_disk(int disk, int raid_disks)
134 {
135 	disk++;
136 	return (disk < raid_disks) ? disk : 0;
137 }
138 
139 /* When walking through the disks in a raid5, starting at raid6_d0,
140  * We need to map each disk to a 'slot', where the data disks are slot
141  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142  * is raid_disks-1.  This help does that mapping.
143  */
144 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145 			     int *count, int syndrome_disks)
146 {
147 	int slot = *count;
148 
149 	if (sh->ddf_layout)
150 		(*count)++;
151 	if (idx == sh->pd_idx)
152 		return syndrome_disks;
153 	if (idx == sh->qd_idx)
154 		return syndrome_disks + 1;
155 	if (!sh->ddf_layout)
156 		(*count)++;
157 	return slot;
158 }
159 
160 static void print_raid5_conf (struct r5conf *conf);
161 
162 static int stripe_operations_active(struct stripe_head *sh)
163 {
164 	return sh->check_state || sh->reconstruct_state ||
165 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167 }
168 
169 static bool stripe_is_lowprio(struct stripe_head *sh)
170 {
171 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
174 }
175 
176 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177 {
178 	struct r5conf *conf = sh->raid_conf;
179 	struct r5worker_group *group;
180 	int thread_cnt;
181 	int i, cpu = sh->cpu;
182 
183 	if (!cpu_online(cpu)) {
184 		cpu = cpumask_any(cpu_online_mask);
185 		sh->cpu = cpu;
186 	}
187 
188 	if (list_empty(&sh->lru)) {
189 		struct r5worker_group *group;
190 		group = conf->worker_groups + cpu_to_group(cpu);
191 		if (stripe_is_lowprio(sh))
192 			list_add_tail(&sh->lru, &group->loprio_list);
193 		else
194 			list_add_tail(&sh->lru, &group->handle_list);
195 		group->stripes_cnt++;
196 		sh->group = group;
197 	}
198 
199 	if (conf->worker_cnt_per_group == 0) {
200 		md_wakeup_thread(conf->mddev->thread);
201 		return;
202 	}
203 
204 	group = conf->worker_groups + cpu_to_group(sh->cpu);
205 
206 	group->workers[0].working = true;
207 	/* at least one worker should run to avoid race */
208 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209 
210 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 	/* wakeup more workers */
212 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 		if (group->workers[i].working == false) {
214 			group->workers[i].working = true;
215 			queue_work_on(sh->cpu, raid5_wq,
216 				      &group->workers[i].work);
217 			thread_cnt--;
218 		}
219 	}
220 }
221 
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 			      struct list_head *temp_inactive_list)
224 {
225 	int i;
226 	int injournal = 0;	/* number of date pages with R5_InJournal */
227 
228 	BUG_ON(!list_empty(&sh->lru));
229 	BUG_ON(atomic_read(&conf->active_stripes)==0);
230 
231 	if (r5c_is_writeback(conf->log))
232 		for (i = sh->disks; i--; )
233 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 				injournal++;
235 	/*
236 	 * In the following cases, the stripe cannot be released to cached
237 	 * lists. Therefore, we make the stripe write out and set
238 	 * STRIPE_HANDLE:
239 	 *   1. when quiesce in r5c write back;
240 	 *   2. when resync is requested fot the stripe.
241 	 */
242 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
244 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 			r5c_make_stripe_write_out(sh);
247 		set_bit(STRIPE_HANDLE, &sh->state);
248 	}
249 
250 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 			list_add_tail(&sh->lru, &conf->delayed_list);
254 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 			   sh->bm_seq - conf->seq_write > 0)
256 			list_add_tail(&sh->lru, &conf->bitmap_list);
257 		else {
258 			clear_bit(STRIPE_DELAYED, &sh->state);
259 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 			if (conf->worker_cnt_per_group == 0) {
261 				if (stripe_is_lowprio(sh))
262 					list_add_tail(&sh->lru,
263 							&conf->loprio_list);
264 				else
265 					list_add_tail(&sh->lru,
266 							&conf->handle_list);
267 			} else {
268 				raid5_wakeup_stripe_thread(sh);
269 				return;
270 			}
271 		}
272 		md_wakeup_thread(conf->mddev->thread);
273 	} else {
274 		BUG_ON(stripe_operations_active(sh));
275 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 			if (atomic_dec_return(&conf->preread_active_stripes)
277 			    < IO_THRESHOLD)
278 				md_wakeup_thread(conf->mddev->thread);
279 		atomic_dec(&conf->active_stripes);
280 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 			if (!r5c_is_writeback(conf->log))
282 				list_add_tail(&sh->lru, temp_inactive_list);
283 			else {
284 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 				if (injournal == 0)
286 					list_add_tail(&sh->lru, temp_inactive_list);
287 				else if (injournal == conf->raid_disks - conf->max_degraded) {
288 					/* full stripe */
289 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 						atomic_inc(&conf->r5c_cached_full_stripes);
291 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 						atomic_dec(&conf->r5c_cached_partial_stripes);
293 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 					r5c_check_cached_full_stripe(conf);
295 				} else
296 					/*
297 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 					 * r5c_try_caching_write(). No need to
299 					 * set it again.
300 					 */
301 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 			}
303 		}
304 	}
305 }
306 
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 			     struct list_head *temp_inactive_list)
309 {
310 	if (atomic_dec_and_test(&sh->count))
311 		do_release_stripe(conf, sh, temp_inactive_list);
312 }
313 
314 /*
315  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316  *
317  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318  * given time. Adding stripes only takes device lock, while deleting stripes
319  * only takes hash lock.
320  */
321 static void release_inactive_stripe_list(struct r5conf *conf,
322 					 struct list_head *temp_inactive_list,
323 					 int hash)
324 {
325 	int size;
326 	bool do_wakeup = false;
327 	unsigned long flags;
328 
329 	if (hash == NR_STRIPE_HASH_LOCKS) {
330 		size = NR_STRIPE_HASH_LOCKS;
331 		hash = NR_STRIPE_HASH_LOCKS - 1;
332 	} else
333 		size = 1;
334 	while (size) {
335 		struct list_head *list = &temp_inactive_list[size - 1];
336 
337 		/*
338 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
339 		 * remove stripes from the list
340 		 */
341 		if (!list_empty_careful(list)) {
342 			spin_lock_irqsave(conf->hash_locks + hash, flags);
343 			if (list_empty(conf->inactive_list + hash) &&
344 			    !list_empty(list))
345 				atomic_dec(&conf->empty_inactive_list_nr);
346 			list_splice_tail_init(list, conf->inactive_list + hash);
347 			do_wakeup = true;
348 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349 		}
350 		size--;
351 		hash--;
352 	}
353 
354 	if (do_wakeup) {
355 		wake_up(&conf->wait_for_stripe);
356 		if (atomic_read(&conf->active_stripes) == 0)
357 			wake_up(&conf->wait_for_quiescent);
358 		if (conf->retry_read_aligned)
359 			md_wakeup_thread(conf->mddev->thread);
360 	}
361 }
362 
363 /* should hold conf->device_lock already */
364 static int release_stripe_list(struct r5conf *conf,
365 			       struct list_head *temp_inactive_list)
366 {
367 	struct stripe_head *sh, *t;
368 	int count = 0;
369 	struct llist_node *head;
370 
371 	head = llist_del_all(&conf->released_stripes);
372 	head = llist_reverse_order(head);
373 	llist_for_each_entry_safe(sh, t, head, release_list) {
374 		int hash;
375 
376 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 		smp_mb();
378 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 		/*
380 		 * Don't worry the bit is set here, because if the bit is set
381 		 * again, the count is always > 1. This is true for
382 		 * STRIPE_ON_UNPLUG_LIST bit too.
383 		 */
384 		hash = sh->hash_lock_index;
385 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
386 		count++;
387 	}
388 
389 	return count;
390 }
391 
392 void raid5_release_stripe(struct stripe_head *sh)
393 {
394 	struct r5conf *conf = sh->raid_conf;
395 	unsigned long flags;
396 	struct list_head list;
397 	int hash;
398 	bool wakeup;
399 
400 	/* Avoid release_list until the last reference.
401 	 */
402 	if (atomic_add_unless(&sh->count, -1, 1))
403 		return;
404 
405 	if (unlikely(!conf->mddev->thread) ||
406 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
407 		goto slow_path;
408 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409 	if (wakeup)
410 		md_wakeup_thread(conf->mddev->thread);
411 	return;
412 slow_path:
413 	local_irq_save(flags);
414 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
416 		INIT_LIST_HEAD(&list);
417 		hash = sh->hash_lock_index;
418 		do_release_stripe(conf, sh, &list);
419 		spin_unlock(&conf->device_lock);
420 		release_inactive_stripe_list(conf, &list, hash);
421 	}
422 	local_irq_restore(flags);
423 }
424 
425 static inline void remove_hash(struct stripe_head *sh)
426 {
427 	pr_debug("remove_hash(), stripe %llu\n",
428 		(unsigned long long)sh->sector);
429 
430 	hlist_del_init(&sh->hash);
431 }
432 
433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434 {
435 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
436 
437 	pr_debug("insert_hash(), stripe %llu\n",
438 		(unsigned long long)sh->sector);
439 
440 	hlist_add_head(&sh->hash, hp);
441 }
442 
443 /* find an idle stripe, make sure it is unhashed, and return it. */
444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445 {
446 	struct stripe_head *sh = NULL;
447 	struct list_head *first;
448 
449 	if (list_empty(conf->inactive_list + hash))
450 		goto out;
451 	first = (conf->inactive_list + hash)->next;
452 	sh = list_entry(first, struct stripe_head, lru);
453 	list_del_init(first);
454 	remove_hash(sh);
455 	atomic_inc(&conf->active_stripes);
456 	BUG_ON(hash != sh->hash_lock_index);
457 	if (list_empty(conf->inactive_list + hash))
458 		atomic_inc(&conf->empty_inactive_list_nr);
459 out:
460 	return sh;
461 }
462 
463 static void shrink_buffers(struct stripe_head *sh)
464 {
465 	struct page *p;
466 	int i;
467 	int num = sh->raid_conf->pool_size;
468 
469 	for (i = 0; i < num ; i++) {
470 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
471 		p = sh->dev[i].page;
472 		if (!p)
473 			continue;
474 		sh->dev[i].page = NULL;
475 		put_page(p);
476 	}
477 }
478 
479 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
480 {
481 	int i;
482 	int num = sh->raid_conf->pool_size;
483 
484 	for (i = 0; i < num; i++) {
485 		struct page *page;
486 
487 		if (!(page = alloc_page(gfp))) {
488 			return 1;
489 		}
490 		sh->dev[i].page = page;
491 		sh->dev[i].orig_page = page;
492 	}
493 
494 	return 0;
495 }
496 
497 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
498 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
499 			    struct stripe_head *sh);
500 
501 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
502 {
503 	struct r5conf *conf = sh->raid_conf;
504 	int i, seq;
505 
506 	BUG_ON(atomic_read(&sh->count) != 0);
507 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
508 	BUG_ON(stripe_operations_active(sh));
509 	BUG_ON(sh->batch_head);
510 
511 	pr_debug("init_stripe called, stripe %llu\n",
512 		(unsigned long long)sector);
513 retry:
514 	seq = read_seqcount_begin(&conf->gen_lock);
515 	sh->generation = conf->generation - previous;
516 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
517 	sh->sector = sector;
518 	stripe_set_idx(sector, conf, previous, sh);
519 	sh->state = 0;
520 
521 	for (i = sh->disks; i--; ) {
522 		struct r5dev *dev = &sh->dev[i];
523 
524 		if (dev->toread || dev->read || dev->towrite || dev->written ||
525 		    test_bit(R5_LOCKED, &dev->flags)) {
526 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
527 			       (unsigned long long)sh->sector, i, dev->toread,
528 			       dev->read, dev->towrite, dev->written,
529 			       test_bit(R5_LOCKED, &dev->flags));
530 			WARN_ON(1);
531 		}
532 		dev->flags = 0;
533 		raid5_build_block(sh, i, previous);
534 	}
535 	if (read_seqcount_retry(&conf->gen_lock, seq))
536 		goto retry;
537 	sh->overwrite_disks = 0;
538 	insert_hash(conf, sh);
539 	sh->cpu = smp_processor_id();
540 	set_bit(STRIPE_BATCH_READY, &sh->state);
541 }
542 
543 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
544 					 short generation)
545 {
546 	struct stripe_head *sh;
547 
548 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
549 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
550 		if (sh->sector == sector && sh->generation == generation)
551 			return sh;
552 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
553 	return NULL;
554 }
555 
556 /*
557  * Need to check if array has failed when deciding whether to:
558  *  - start an array
559  *  - remove non-faulty devices
560  *  - add a spare
561  *  - allow a reshape
562  * This determination is simple when no reshape is happening.
563  * However if there is a reshape, we need to carefully check
564  * both the before and after sections.
565  * This is because some failed devices may only affect one
566  * of the two sections, and some non-in_sync devices may
567  * be insync in the section most affected by failed devices.
568  */
569 int raid5_calc_degraded(struct r5conf *conf)
570 {
571 	int degraded, degraded2;
572 	int i;
573 
574 	rcu_read_lock();
575 	degraded = 0;
576 	for (i = 0; i < conf->previous_raid_disks; i++) {
577 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
578 		if (rdev && test_bit(Faulty, &rdev->flags))
579 			rdev = rcu_dereference(conf->disks[i].replacement);
580 		if (!rdev || test_bit(Faulty, &rdev->flags))
581 			degraded++;
582 		else if (test_bit(In_sync, &rdev->flags))
583 			;
584 		else
585 			/* not in-sync or faulty.
586 			 * If the reshape increases the number of devices,
587 			 * this is being recovered by the reshape, so
588 			 * this 'previous' section is not in_sync.
589 			 * If the number of devices is being reduced however,
590 			 * the device can only be part of the array if
591 			 * we are reverting a reshape, so this section will
592 			 * be in-sync.
593 			 */
594 			if (conf->raid_disks >= conf->previous_raid_disks)
595 				degraded++;
596 	}
597 	rcu_read_unlock();
598 	if (conf->raid_disks == conf->previous_raid_disks)
599 		return degraded;
600 	rcu_read_lock();
601 	degraded2 = 0;
602 	for (i = 0; i < conf->raid_disks; i++) {
603 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
604 		if (rdev && test_bit(Faulty, &rdev->flags))
605 			rdev = rcu_dereference(conf->disks[i].replacement);
606 		if (!rdev || test_bit(Faulty, &rdev->flags))
607 			degraded2++;
608 		else if (test_bit(In_sync, &rdev->flags))
609 			;
610 		else
611 			/* not in-sync or faulty.
612 			 * If reshape increases the number of devices, this
613 			 * section has already been recovered, else it
614 			 * almost certainly hasn't.
615 			 */
616 			if (conf->raid_disks <= conf->previous_raid_disks)
617 				degraded2++;
618 	}
619 	rcu_read_unlock();
620 	if (degraded2 > degraded)
621 		return degraded2;
622 	return degraded;
623 }
624 
625 static int has_failed(struct r5conf *conf)
626 {
627 	int degraded;
628 
629 	if (conf->mddev->reshape_position == MaxSector)
630 		return conf->mddev->degraded > conf->max_degraded;
631 
632 	degraded = raid5_calc_degraded(conf);
633 	if (degraded > conf->max_degraded)
634 		return 1;
635 	return 0;
636 }
637 
638 struct stripe_head *
639 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
640 			int previous, int noblock, int noquiesce)
641 {
642 	struct stripe_head *sh;
643 	int hash = stripe_hash_locks_hash(sector);
644 	int inc_empty_inactive_list_flag;
645 
646 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
647 
648 	spin_lock_irq(conf->hash_locks + hash);
649 
650 	do {
651 		wait_event_lock_irq(conf->wait_for_quiescent,
652 				    conf->quiesce == 0 || noquiesce,
653 				    *(conf->hash_locks + hash));
654 		sh = __find_stripe(conf, sector, conf->generation - previous);
655 		if (!sh) {
656 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
657 				sh = get_free_stripe(conf, hash);
658 				if (!sh && !test_bit(R5_DID_ALLOC,
659 						     &conf->cache_state))
660 					set_bit(R5_ALLOC_MORE,
661 						&conf->cache_state);
662 			}
663 			if (noblock && sh == NULL)
664 				break;
665 
666 			r5c_check_stripe_cache_usage(conf);
667 			if (!sh) {
668 				set_bit(R5_INACTIVE_BLOCKED,
669 					&conf->cache_state);
670 				r5l_wake_reclaim(conf->log, 0);
671 				wait_event_lock_irq(
672 					conf->wait_for_stripe,
673 					!list_empty(conf->inactive_list + hash) &&
674 					(atomic_read(&conf->active_stripes)
675 					 < (conf->max_nr_stripes * 3 / 4)
676 					 || !test_bit(R5_INACTIVE_BLOCKED,
677 						      &conf->cache_state)),
678 					*(conf->hash_locks + hash));
679 				clear_bit(R5_INACTIVE_BLOCKED,
680 					  &conf->cache_state);
681 			} else {
682 				init_stripe(sh, sector, previous);
683 				atomic_inc(&sh->count);
684 			}
685 		} else if (!atomic_inc_not_zero(&sh->count)) {
686 			spin_lock(&conf->device_lock);
687 			if (!atomic_read(&sh->count)) {
688 				if (!test_bit(STRIPE_HANDLE, &sh->state))
689 					atomic_inc(&conf->active_stripes);
690 				BUG_ON(list_empty(&sh->lru) &&
691 				       !test_bit(STRIPE_EXPANDING, &sh->state));
692 				inc_empty_inactive_list_flag = 0;
693 				if (!list_empty(conf->inactive_list + hash))
694 					inc_empty_inactive_list_flag = 1;
695 				list_del_init(&sh->lru);
696 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
697 					atomic_inc(&conf->empty_inactive_list_nr);
698 				if (sh->group) {
699 					sh->group->stripes_cnt--;
700 					sh->group = NULL;
701 				}
702 			}
703 			atomic_inc(&sh->count);
704 			spin_unlock(&conf->device_lock);
705 		}
706 	} while (sh == NULL);
707 
708 	spin_unlock_irq(conf->hash_locks + hash);
709 	return sh;
710 }
711 
712 static bool is_full_stripe_write(struct stripe_head *sh)
713 {
714 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
715 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
716 }
717 
718 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 {
720 	if (sh1 > sh2) {
721 		spin_lock_irq(&sh2->stripe_lock);
722 		spin_lock_nested(&sh1->stripe_lock, 1);
723 	} else {
724 		spin_lock_irq(&sh1->stripe_lock);
725 		spin_lock_nested(&sh2->stripe_lock, 1);
726 	}
727 }
728 
729 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731 	spin_unlock(&sh1->stripe_lock);
732 	spin_unlock_irq(&sh2->stripe_lock);
733 }
734 
735 /* Only freshly new full stripe normal write stripe can be added to a batch list */
736 static bool stripe_can_batch(struct stripe_head *sh)
737 {
738 	struct r5conf *conf = sh->raid_conf;
739 
740 	if (conf->log || raid5_has_ppl(conf))
741 		return false;
742 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
743 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
744 		is_full_stripe_write(sh);
745 }
746 
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750 	struct stripe_head *head;
751 	sector_t head_sector, tmp_sec;
752 	int hash;
753 	int dd_idx;
754 	int inc_empty_inactive_list_flag;
755 
756 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
757 	tmp_sec = sh->sector;
758 	if (!sector_div(tmp_sec, conf->chunk_sectors))
759 		return;
760 	head_sector = sh->sector - STRIPE_SECTORS;
761 
762 	hash = stripe_hash_locks_hash(head_sector);
763 	spin_lock_irq(conf->hash_locks + hash);
764 	head = __find_stripe(conf, head_sector, conf->generation);
765 	if (head && !atomic_inc_not_zero(&head->count)) {
766 		spin_lock(&conf->device_lock);
767 		if (!atomic_read(&head->count)) {
768 			if (!test_bit(STRIPE_HANDLE, &head->state))
769 				atomic_inc(&conf->active_stripes);
770 			BUG_ON(list_empty(&head->lru) &&
771 			       !test_bit(STRIPE_EXPANDING, &head->state));
772 			inc_empty_inactive_list_flag = 0;
773 			if (!list_empty(conf->inactive_list + hash))
774 				inc_empty_inactive_list_flag = 1;
775 			list_del_init(&head->lru);
776 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
777 				atomic_inc(&conf->empty_inactive_list_nr);
778 			if (head->group) {
779 				head->group->stripes_cnt--;
780 				head->group = NULL;
781 			}
782 		}
783 		atomic_inc(&head->count);
784 		spin_unlock(&conf->device_lock);
785 	}
786 	spin_unlock_irq(conf->hash_locks + hash);
787 
788 	if (!head)
789 		return;
790 	if (!stripe_can_batch(head))
791 		goto out;
792 
793 	lock_two_stripes(head, sh);
794 	/* clear_batch_ready clear the flag */
795 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
796 		goto unlock_out;
797 
798 	if (sh->batch_head)
799 		goto unlock_out;
800 
801 	dd_idx = 0;
802 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
803 		dd_idx++;
804 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
805 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
806 		goto unlock_out;
807 
808 	if (head->batch_head) {
809 		spin_lock(&head->batch_head->batch_lock);
810 		/* This batch list is already running */
811 		if (!stripe_can_batch(head)) {
812 			spin_unlock(&head->batch_head->batch_lock);
813 			goto unlock_out;
814 		}
815 
816 		/*
817 		 * at this point, head's BATCH_READY could be cleared, but we
818 		 * can still add the stripe to batch list
819 		 */
820 		list_add(&sh->batch_list, &head->batch_list);
821 		spin_unlock(&head->batch_head->batch_lock);
822 
823 		sh->batch_head = head->batch_head;
824 	} else {
825 		head->batch_head = head;
826 		sh->batch_head = head->batch_head;
827 		spin_lock(&head->batch_lock);
828 		list_add_tail(&sh->batch_list, &head->batch_list);
829 		spin_unlock(&head->batch_lock);
830 	}
831 
832 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
833 		if (atomic_dec_return(&conf->preread_active_stripes)
834 		    < IO_THRESHOLD)
835 			md_wakeup_thread(conf->mddev->thread);
836 
837 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
838 		int seq = sh->bm_seq;
839 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
840 		    sh->batch_head->bm_seq > seq)
841 			seq = sh->batch_head->bm_seq;
842 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
843 		sh->batch_head->bm_seq = seq;
844 	}
845 
846 	atomic_inc(&sh->count);
847 unlock_out:
848 	unlock_two_stripes(head, sh);
849 out:
850 	raid5_release_stripe(head);
851 }
852 
853 /* Determine if 'data_offset' or 'new_data_offset' should be used
854  * in this stripe_head.
855  */
856 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
857 {
858 	sector_t progress = conf->reshape_progress;
859 	/* Need a memory barrier to make sure we see the value
860 	 * of conf->generation, or ->data_offset that was set before
861 	 * reshape_progress was updated.
862 	 */
863 	smp_rmb();
864 	if (progress == MaxSector)
865 		return 0;
866 	if (sh->generation == conf->generation - 1)
867 		return 0;
868 	/* We are in a reshape, and this is a new-generation stripe,
869 	 * so use new_data_offset.
870 	 */
871 	return 1;
872 }
873 
874 static void dispatch_bio_list(struct bio_list *tmp)
875 {
876 	struct bio *bio;
877 
878 	while ((bio = bio_list_pop(tmp)))
879 		generic_make_request(bio);
880 }
881 
882 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
883 {
884 	const struct r5pending_data *da = list_entry(a,
885 				struct r5pending_data, sibling);
886 	const struct r5pending_data *db = list_entry(b,
887 				struct r5pending_data, sibling);
888 	if (da->sector > db->sector)
889 		return 1;
890 	if (da->sector < db->sector)
891 		return -1;
892 	return 0;
893 }
894 
895 static void dispatch_defer_bios(struct r5conf *conf, int target,
896 				struct bio_list *list)
897 {
898 	struct r5pending_data *data;
899 	struct list_head *first, *next = NULL;
900 	int cnt = 0;
901 
902 	if (conf->pending_data_cnt == 0)
903 		return;
904 
905 	list_sort(NULL, &conf->pending_list, cmp_stripe);
906 
907 	first = conf->pending_list.next;
908 
909 	/* temporarily move the head */
910 	if (conf->next_pending_data)
911 		list_move_tail(&conf->pending_list,
912 				&conf->next_pending_data->sibling);
913 
914 	while (!list_empty(&conf->pending_list)) {
915 		data = list_first_entry(&conf->pending_list,
916 			struct r5pending_data, sibling);
917 		if (&data->sibling == first)
918 			first = data->sibling.next;
919 		next = data->sibling.next;
920 
921 		bio_list_merge(list, &data->bios);
922 		list_move(&data->sibling, &conf->free_list);
923 		cnt++;
924 		if (cnt >= target)
925 			break;
926 	}
927 	conf->pending_data_cnt -= cnt;
928 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
929 
930 	if (next != &conf->pending_list)
931 		conf->next_pending_data = list_entry(next,
932 				struct r5pending_data, sibling);
933 	else
934 		conf->next_pending_data = NULL;
935 	/* list isn't empty */
936 	if (first != &conf->pending_list)
937 		list_move_tail(&conf->pending_list, first);
938 }
939 
940 static void flush_deferred_bios(struct r5conf *conf)
941 {
942 	struct bio_list tmp = BIO_EMPTY_LIST;
943 
944 	if (conf->pending_data_cnt == 0)
945 		return;
946 
947 	spin_lock(&conf->pending_bios_lock);
948 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
949 	BUG_ON(conf->pending_data_cnt != 0);
950 	spin_unlock(&conf->pending_bios_lock);
951 
952 	dispatch_bio_list(&tmp);
953 }
954 
955 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
956 				struct bio_list *bios)
957 {
958 	struct bio_list tmp = BIO_EMPTY_LIST;
959 	struct r5pending_data *ent;
960 
961 	spin_lock(&conf->pending_bios_lock);
962 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
963 							sibling);
964 	list_move_tail(&ent->sibling, &conf->pending_list);
965 	ent->sector = sector;
966 	bio_list_init(&ent->bios);
967 	bio_list_merge(&ent->bios, bios);
968 	conf->pending_data_cnt++;
969 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
970 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
971 
972 	spin_unlock(&conf->pending_bios_lock);
973 
974 	dispatch_bio_list(&tmp);
975 }
976 
977 static void
978 raid5_end_read_request(struct bio *bi);
979 static void
980 raid5_end_write_request(struct bio *bi);
981 
982 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
983 {
984 	struct r5conf *conf = sh->raid_conf;
985 	int i, disks = sh->disks;
986 	struct stripe_head *head_sh = sh;
987 	struct bio_list pending_bios = BIO_EMPTY_LIST;
988 	bool should_defer;
989 
990 	might_sleep();
991 
992 	if (log_stripe(sh, s) == 0)
993 		return;
994 
995 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
996 
997 	for (i = disks; i--; ) {
998 		int op, op_flags = 0;
999 		int replace_only = 0;
1000 		struct bio *bi, *rbi;
1001 		struct md_rdev *rdev, *rrdev = NULL;
1002 
1003 		sh = head_sh;
1004 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1005 			op = REQ_OP_WRITE;
1006 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1007 				op_flags = REQ_FUA;
1008 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1009 				op = REQ_OP_DISCARD;
1010 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1011 			op = REQ_OP_READ;
1012 		else if (test_and_clear_bit(R5_WantReplace,
1013 					    &sh->dev[i].flags)) {
1014 			op = REQ_OP_WRITE;
1015 			replace_only = 1;
1016 		} else
1017 			continue;
1018 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1019 			op_flags |= REQ_SYNC;
1020 
1021 again:
1022 		bi = &sh->dev[i].req;
1023 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1024 
1025 		rcu_read_lock();
1026 		rrdev = rcu_dereference(conf->disks[i].replacement);
1027 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1028 		rdev = rcu_dereference(conf->disks[i].rdev);
1029 		if (!rdev) {
1030 			rdev = rrdev;
1031 			rrdev = NULL;
1032 		}
1033 		if (op_is_write(op)) {
1034 			if (replace_only)
1035 				rdev = NULL;
1036 			if (rdev == rrdev)
1037 				/* We raced and saw duplicates */
1038 				rrdev = NULL;
1039 		} else {
1040 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1041 				rdev = rrdev;
1042 			rrdev = NULL;
1043 		}
1044 
1045 		if (rdev && test_bit(Faulty, &rdev->flags))
1046 			rdev = NULL;
1047 		if (rdev)
1048 			atomic_inc(&rdev->nr_pending);
1049 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1050 			rrdev = NULL;
1051 		if (rrdev)
1052 			atomic_inc(&rrdev->nr_pending);
1053 		rcu_read_unlock();
1054 
1055 		/* We have already checked bad blocks for reads.  Now
1056 		 * need to check for writes.  We never accept write errors
1057 		 * on the replacement, so we don't to check rrdev.
1058 		 */
1059 		while (op_is_write(op) && rdev &&
1060 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1061 			sector_t first_bad;
1062 			int bad_sectors;
1063 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1064 					      &first_bad, &bad_sectors);
1065 			if (!bad)
1066 				break;
1067 
1068 			if (bad < 0) {
1069 				set_bit(BlockedBadBlocks, &rdev->flags);
1070 				if (!conf->mddev->external &&
1071 				    conf->mddev->sb_flags) {
1072 					/* It is very unlikely, but we might
1073 					 * still need to write out the
1074 					 * bad block log - better give it
1075 					 * a chance*/
1076 					md_check_recovery(conf->mddev);
1077 				}
1078 				/*
1079 				 * Because md_wait_for_blocked_rdev
1080 				 * will dec nr_pending, we must
1081 				 * increment it first.
1082 				 */
1083 				atomic_inc(&rdev->nr_pending);
1084 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1085 			} else {
1086 				/* Acknowledged bad block - skip the write */
1087 				rdev_dec_pending(rdev, conf->mddev);
1088 				rdev = NULL;
1089 			}
1090 		}
1091 
1092 		if (rdev) {
1093 			if (s->syncing || s->expanding || s->expanded
1094 			    || s->replacing)
1095 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1096 
1097 			set_bit(STRIPE_IO_STARTED, &sh->state);
1098 
1099 			bi->bi_bdev = rdev->bdev;
1100 			bio_set_op_attrs(bi, op, op_flags);
1101 			bi->bi_end_io = op_is_write(op)
1102 				? raid5_end_write_request
1103 				: raid5_end_read_request;
1104 			bi->bi_private = sh;
1105 
1106 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1107 				__func__, (unsigned long long)sh->sector,
1108 				bi->bi_opf, i);
1109 			atomic_inc(&sh->count);
1110 			if (sh != head_sh)
1111 				atomic_inc(&head_sh->count);
1112 			if (use_new_offset(conf, sh))
1113 				bi->bi_iter.bi_sector = (sh->sector
1114 						 + rdev->new_data_offset);
1115 			else
1116 				bi->bi_iter.bi_sector = (sh->sector
1117 						 + rdev->data_offset);
1118 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1119 				bi->bi_opf |= REQ_NOMERGE;
1120 
1121 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1122 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1123 
1124 			if (!op_is_write(op) &&
1125 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1126 				/*
1127 				 * issuing read for a page in journal, this
1128 				 * must be preparing for prexor in rmw; read
1129 				 * the data into orig_page
1130 				 */
1131 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1132 			else
1133 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1134 			bi->bi_vcnt = 1;
1135 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1136 			bi->bi_io_vec[0].bv_offset = 0;
1137 			bi->bi_iter.bi_size = STRIPE_SIZE;
1138 			/*
1139 			 * If this is discard request, set bi_vcnt 0. We don't
1140 			 * want to confuse SCSI because SCSI will replace payload
1141 			 */
1142 			if (op == REQ_OP_DISCARD)
1143 				bi->bi_vcnt = 0;
1144 			if (rrdev)
1145 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146 
1147 			if (conf->mddev->gendisk)
1148 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1149 						      bi, disk_devt(conf->mddev->gendisk),
1150 						      sh->dev[i].sector);
1151 			if (should_defer && op_is_write(op))
1152 				bio_list_add(&pending_bios, bi);
1153 			else
1154 				generic_make_request(bi);
1155 		}
1156 		if (rrdev) {
1157 			if (s->syncing || s->expanding || s->expanded
1158 			    || s->replacing)
1159 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160 
1161 			set_bit(STRIPE_IO_STARTED, &sh->state);
1162 
1163 			rbi->bi_bdev = rrdev->bdev;
1164 			bio_set_op_attrs(rbi, op, op_flags);
1165 			BUG_ON(!op_is_write(op));
1166 			rbi->bi_end_io = raid5_end_write_request;
1167 			rbi->bi_private = sh;
1168 
1169 			pr_debug("%s: for %llu schedule op %d on "
1170 				 "replacement disc %d\n",
1171 				__func__, (unsigned long long)sh->sector,
1172 				rbi->bi_opf, i);
1173 			atomic_inc(&sh->count);
1174 			if (sh != head_sh)
1175 				atomic_inc(&head_sh->count);
1176 			if (use_new_offset(conf, sh))
1177 				rbi->bi_iter.bi_sector = (sh->sector
1178 						  + rrdev->new_data_offset);
1179 			else
1180 				rbi->bi_iter.bi_sector = (sh->sector
1181 						  + rrdev->data_offset);
1182 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 			rbi->bi_vcnt = 1;
1186 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 			rbi->bi_io_vec[0].bv_offset = 0;
1188 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 			/*
1190 			 * If this is discard request, set bi_vcnt 0. We don't
1191 			 * want to confuse SCSI because SCSI will replace payload
1192 			 */
1193 			if (op == REQ_OP_DISCARD)
1194 				rbi->bi_vcnt = 0;
1195 			if (conf->mddev->gendisk)
1196 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1197 						      rbi, disk_devt(conf->mddev->gendisk),
1198 						      sh->dev[i].sector);
1199 			if (should_defer && op_is_write(op))
1200 				bio_list_add(&pending_bios, rbi);
1201 			else
1202 				generic_make_request(rbi);
1203 		}
1204 		if (!rdev && !rrdev) {
1205 			if (op_is_write(op))
1206 				set_bit(STRIPE_DEGRADED, &sh->state);
1207 			pr_debug("skip op %d on disc %d for sector %llu\n",
1208 				bi->bi_opf, i, (unsigned long long)sh->sector);
1209 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210 			set_bit(STRIPE_HANDLE, &sh->state);
1211 		}
1212 
1213 		if (!head_sh->batch_head)
1214 			continue;
1215 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1216 				      batch_list);
1217 		if (sh != head_sh)
1218 			goto again;
1219 	}
1220 
1221 	if (should_defer && !bio_list_empty(&pending_bios))
1222 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1223 }
1224 
1225 static struct dma_async_tx_descriptor *
1226 async_copy_data(int frombio, struct bio *bio, struct page **page,
1227 	sector_t sector, struct dma_async_tx_descriptor *tx,
1228 	struct stripe_head *sh, int no_skipcopy)
1229 {
1230 	struct bio_vec bvl;
1231 	struct bvec_iter iter;
1232 	struct page *bio_page;
1233 	int page_offset;
1234 	struct async_submit_ctl submit;
1235 	enum async_tx_flags flags = 0;
1236 
1237 	if (bio->bi_iter.bi_sector >= sector)
1238 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1239 	else
1240 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1241 
1242 	if (frombio)
1243 		flags |= ASYNC_TX_FENCE;
1244 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1245 
1246 	bio_for_each_segment(bvl, bio, iter) {
1247 		int len = bvl.bv_len;
1248 		int clen;
1249 		int b_offset = 0;
1250 
1251 		if (page_offset < 0) {
1252 			b_offset = -page_offset;
1253 			page_offset += b_offset;
1254 			len -= b_offset;
1255 		}
1256 
1257 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1258 			clen = STRIPE_SIZE - page_offset;
1259 		else
1260 			clen = len;
1261 
1262 		if (clen > 0) {
1263 			b_offset += bvl.bv_offset;
1264 			bio_page = bvl.bv_page;
1265 			if (frombio) {
1266 				if (sh->raid_conf->skip_copy &&
1267 				    b_offset == 0 && page_offset == 0 &&
1268 				    clen == STRIPE_SIZE &&
1269 				    !no_skipcopy)
1270 					*page = bio_page;
1271 				else
1272 					tx = async_memcpy(*page, bio_page, page_offset,
1273 						  b_offset, clen, &submit);
1274 			} else
1275 				tx = async_memcpy(bio_page, *page, b_offset,
1276 						  page_offset, clen, &submit);
1277 		}
1278 		/* chain the operations */
1279 		submit.depend_tx = tx;
1280 
1281 		if (clen < len) /* hit end of page */
1282 			break;
1283 		page_offset +=  len;
1284 	}
1285 
1286 	return tx;
1287 }
1288 
1289 static void ops_complete_biofill(void *stripe_head_ref)
1290 {
1291 	struct stripe_head *sh = stripe_head_ref;
1292 	int i;
1293 
1294 	pr_debug("%s: stripe %llu\n", __func__,
1295 		(unsigned long long)sh->sector);
1296 
1297 	/* clear completed biofills */
1298 	for (i = sh->disks; i--; ) {
1299 		struct r5dev *dev = &sh->dev[i];
1300 
1301 		/* acknowledge completion of a biofill operation */
1302 		/* and check if we need to reply to a read request,
1303 		 * new R5_Wantfill requests are held off until
1304 		 * !STRIPE_BIOFILL_RUN
1305 		 */
1306 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1307 			struct bio *rbi, *rbi2;
1308 
1309 			BUG_ON(!dev->read);
1310 			rbi = dev->read;
1311 			dev->read = NULL;
1312 			while (rbi && rbi->bi_iter.bi_sector <
1313 				dev->sector + STRIPE_SECTORS) {
1314 				rbi2 = r5_next_bio(rbi, dev->sector);
1315 				bio_endio(rbi);
1316 				rbi = rbi2;
1317 			}
1318 		}
1319 	}
1320 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1321 
1322 	set_bit(STRIPE_HANDLE, &sh->state);
1323 	raid5_release_stripe(sh);
1324 }
1325 
1326 static void ops_run_biofill(struct stripe_head *sh)
1327 {
1328 	struct dma_async_tx_descriptor *tx = NULL;
1329 	struct async_submit_ctl submit;
1330 	int i;
1331 
1332 	BUG_ON(sh->batch_head);
1333 	pr_debug("%s: stripe %llu\n", __func__,
1334 		(unsigned long long)sh->sector);
1335 
1336 	for (i = sh->disks; i--; ) {
1337 		struct r5dev *dev = &sh->dev[i];
1338 		if (test_bit(R5_Wantfill, &dev->flags)) {
1339 			struct bio *rbi;
1340 			spin_lock_irq(&sh->stripe_lock);
1341 			dev->read = rbi = dev->toread;
1342 			dev->toread = NULL;
1343 			spin_unlock_irq(&sh->stripe_lock);
1344 			while (rbi && rbi->bi_iter.bi_sector <
1345 				dev->sector + STRIPE_SECTORS) {
1346 				tx = async_copy_data(0, rbi, &dev->page,
1347 						     dev->sector, tx, sh, 0);
1348 				rbi = r5_next_bio(rbi, dev->sector);
1349 			}
1350 		}
1351 	}
1352 
1353 	atomic_inc(&sh->count);
1354 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1355 	async_trigger_callback(&submit);
1356 }
1357 
1358 static void mark_target_uptodate(struct stripe_head *sh, int target)
1359 {
1360 	struct r5dev *tgt;
1361 
1362 	if (target < 0)
1363 		return;
1364 
1365 	tgt = &sh->dev[target];
1366 	set_bit(R5_UPTODATE, &tgt->flags);
1367 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1368 	clear_bit(R5_Wantcompute, &tgt->flags);
1369 }
1370 
1371 static void ops_complete_compute(void *stripe_head_ref)
1372 {
1373 	struct stripe_head *sh = stripe_head_ref;
1374 
1375 	pr_debug("%s: stripe %llu\n", __func__,
1376 		(unsigned long long)sh->sector);
1377 
1378 	/* mark the computed target(s) as uptodate */
1379 	mark_target_uptodate(sh, sh->ops.target);
1380 	mark_target_uptodate(sh, sh->ops.target2);
1381 
1382 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1383 	if (sh->check_state == check_state_compute_run)
1384 		sh->check_state = check_state_compute_result;
1385 	set_bit(STRIPE_HANDLE, &sh->state);
1386 	raid5_release_stripe(sh);
1387 }
1388 
1389 /* return a pointer to the address conversion region of the scribble buffer */
1390 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1391 				 struct raid5_percpu *percpu, int i)
1392 {
1393 	void *addr;
1394 
1395 	addr = flex_array_get(percpu->scribble, i);
1396 	return addr + sizeof(struct page *) * (sh->disks + 2);
1397 }
1398 
1399 /* return a pointer to the address conversion region of the scribble buffer */
1400 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1401 {
1402 	void *addr;
1403 
1404 	addr = flex_array_get(percpu->scribble, i);
1405 	return addr;
1406 }
1407 
1408 static struct dma_async_tx_descriptor *
1409 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1410 {
1411 	int disks = sh->disks;
1412 	struct page **xor_srcs = to_addr_page(percpu, 0);
1413 	int target = sh->ops.target;
1414 	struct r5dev *tgt = &sh->dev[target];
1415 	struct page *xor_dest = tgt->page;
1416 	int count = 0;
1417 	struct dma_async_tx_descriptor *tx;
1418 	struct async_submit_ctl submit;
1419 	int i;
1420 
1421 	BUG_ON(sh->batch_head);
1422 
1423 	pr_debug("%s: stripe %llu block: %d\n",
1424 		__func__, (unsigned long long)sh->sector, target);
1425 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1426 
1427 	for (i = disks; i--; )
1428 		if (i != target)
1429 			xor_srcs[count++] = sh->dev[i].page;
1430 
1431 	atomic_inc(&sh->count);
1432 
1433 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1434 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1435 	if (unlikely(count == 1))
1436 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1437 	else
1438 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1439 
1440 	return tx;
1441 }
1442 
1443 /* set_syndrome_sources - populate source buffers for gen_syndrome
1444  * @srcs - (struct page *) array of size sh->disks
1445  * @sh - stripe_head to parse
1446  *
1447  * Populates srcs in proper layout order for the stripe and returns the
1448  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1449  * destination buffer is recorded in srcs[count] and the Q destination
1450  * is recorded in srcs[count+1]].
1451  */
1452 static int set_syndrome_sources(struct page **srcs,
1453 				struct stripe_head *sh,
1454 				int srctype)
1455 {
1456 	int disks = sh->disks;
1457 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1458 	int d0_idx = raid6_d0(sh);
1459 	int count;
1460 	int i;
1461 
1462 	for (i = 0; i < disks; i++)
1463 		srcs[i] = NULL;
1464 
1465 	count = 0;
1466 	i = d0_idx;
1467 	do {
1468 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1469 		struct r5dev *dev = &sh->dev[i];
1470 
1471 		if (i == sh->qd_idx || i == sh->pd_idx ||
1472 		    (srctype == SYNDROME_SRC_ALL) ||
1473 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1474 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1475 		      test_bit(R5_InJournal, &dev->flags))) ||
1476 		    (srctype == SYNDROME_SRC_WRITTEN &&
1477 		     (dev->written ||
1478 		      test_bit(R5_InJournal, &dev->flags)))) {
1479 			if (test_bit(R5_InJournal, &dev->flags))
1480 				srcs[slot] = sh->dev[i].orig_page;
1481 			else
1482 				srcs[slot] = sh->dev[i].page;
1483 		}
1484 		i = raid6_next_disk(i, disks);
1485 	} while (i != d0_idx);
1486 
1487 	return syndrome_disks;
1488 }
1489 
1490 static struct dma_async_tx_descriptor *
1491 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1492 {
1493 	int disks = sh->disks;
1494 	struct page **blocks = to_addr_page(percpu, 0);
1495 	int target;
1496 	int qd_idx = sh->qd_idx;
1497 	struct dma_async_tx_descriptor *tx;
1498 	struct async_submit_ctl submit;
1499 	struct r5dev *tgt;
1500 	struct page *dest;
1501 	int i;
1502 	int count;
1503 
1504 	BUG_ON(sh->batch_head);
1505 	if (sh->ops.target < 0)
1506 		target = sh->ops.target2;
1507 	else if (sh->ops.target2 < 0)
1508 		target = sh->ops.target;
1509 	else
1510 		/* we should only have one valid target */
1511 		BUG();
1512 	BUG_ON(target < 0);
1513 	pr_debug("%s: stripe %llu block: %d\n",
1514 		__func__, (unsigned long long)sh->sector, target);
1515 
1516 	tgt = &sh->dev[target];
1517 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1518 	dest = tgt->page;
1519 
1520 	atomic_inc(&sh->count);
1521 
1522 	if (target == qd_idx) {
1523 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1524 		blocks[count] = NULL; /* regenerating p is not necessary */
1525 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1526 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527 				  ops_complete_compute, sh,
1528 				  to_addr_conv(sh, percpu, 0));
1529 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1530 	} else {
1531 		/* Compute any data- or p-drive using XOR */
1532 		count = 0;
1533 		for (i = disks; i-- ; ) {
1534 			if (i == target || i == qd_idx)
1535 				continue;
1536 			blocks[count++] = sh->dev[i].page;
1537 		}
1538 
1539 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1540 				  NULL, ops_complete_compute, sh,
1541 				  to_addr_conv(sh, percpu, 0));
1542 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1543 	}
1544 
1545 	return tx;
1546 }
1547 
1548 static struct dma_async_tx_descriptor *
1549 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1550 {
1551 	int i, count, disks = sh->disks;
1552 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1553 	int d0_idx = raid6_d0(sh);
1554 	int faila = -1, failb = -1;
1555 	int target = sh->ops.target;
1556 	int target2 = sh->ops.target2;
1557 	struct r5dev *tgt = &sh->dev[target];
1558 	struct r5dev *tgt2 = &sh->dev[target2];
1559 	struct dma_async_tx_descriptor *tx;
1560 	struct page **blocks = to_addr_page(percpu, 0);
1561 	struct async_submit_ctl submit;
1562 
1563 	BUG_ON(sh->batch_head);
1564 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1565 		 __func__, (unsigned long long)sh->sector, target, target2);
1566 	BUG_ON(target < 0 || target2 < 0);
1567 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1569 
1570 	/* we need to open-code set_syndrome_sources to handle the
1571 	 * slot number conversion for 'faila' and 'failb'
1572 	 */
1573 	for (i = 0; i < disks ; i++)
1574 		blocks[i] = NULL;
1575 	count = 0;
1576 	i = d0_idx;
1577 	do {
1578 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1579 
1580 		blocks[slot] = sh->dev[i].page;
1581 
1582 		if (i == target)
1583 			faila = slot;
1584 		if (i == target2)
1585 			failb = slot;
1586 		i = raid6_next_disk(i, disks);
1587 	} while (i != d0_idx);
1588 
1589 	BUG_ON(faila == failb);
1590 	if (failb < faila)
1591 		swap(faila, failb);
1592 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1593 		 __func__, (unsigned long long)sh->sector, faila, failb);
1594 
1595 	atomic_inc(&sh->count);
1596 
1597 	if (failb == syndrome_disks+1) {
1598 		/* Q disk is one of the missing disks */
1599 		if (faila == syndrome_disks) {
1600 			/* Missing P+Q, just recompute */
1601 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1602 					  ops_complete_compute, sh,
1603 					  to_addr_conv(sh, percpu, 0));
1604 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1605 						  STRIPE_SIZE, &submit);
1606 		} else {
1607 			struct page *dest;
1608 			int data_target;
1609 			int qd_idx = sh->qd_idx;
1610 
1611 			/* Missing D+Q: recompute D from P, then recompute Q */
1612 			if (target == qd_idx)
1613 				data_target = target2;
1614 			else
1615 				data_target = target;
1616 
1617 			count = 0;
1618 			for (i = disks; i-- ; ) {
1619 				if (i == data_target || i == qd_idx)
1620 					continue;
1621 				blocks[count++] = sh->dev[i].page;
1622 			}
1623 			dest = sh->dev[data_target].page;
1624 			init_async_submit(&submit,
1625 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1626 					  NULL, NULL, NULL,
1627 					  to_addr_conv(sh, percpu, 0));
1628 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1629 				       &submit);
1630 
1631 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1632 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1633 					  ops_complete_compute, sh,
1634 					  to_addr_conv(sh, percpu, 0));
1635 			return async_gen_syndrome(blocks, 0, count+2,
1636 						  STRIPE_SIZE, &submit);
1637 		}
1638 	} else {
1639 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1640 				  ops_complete_compute, sh,
1641 				  to_addr_conv(sh, percpu, 0));
1642 		if (failb == syndrome_disks) {
1643 			/* We're missing D+P. */
1644 			return async_raid6_datap_recov(syndrome_disks+2,
1645 						       STRIPE_SIZE, faila,
1646 						       blocks, &submit);
1647 		} else {
1648 			/* We're missing D+D. */
1649 			return async_raid6_2data_recov(syndrome_disks+2,
1650 						       STRIPE_SIZE, faila, failb,
1651 						       blocks, &submit);
1652 		}
1653 	}
1654 }
1655 
1656 static void ops_complete_prexor(void *stripe_head_ref)
1657 {
1658 	struct stripe_head *sh = stripe_head_ref;
1659 
1660 	pr_debug("%s: stripe %llu\n", __func__,
1661 		(unsigned long long)sh->sector);
1662 
1663 	if (r5c_is_writeback(sh->raid_conf->log))
1664 		/*
1665 		 * raid5-cache write back uses orig_page during prexor.
1666 		 * After prexor, it is time to free orig_page
1667 		 */
1668 		r5c_release_extra_page(sh);
1669 }
1670 
1671 static struct dma_async_tx_descriptor *
1672 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1673 		struct dma_async_tx_descriptor *tx)
1674 {
1675 	int disks = sh->disks;
1676 	struct page **xor_srcs = to_addr_page(percpu, 0);
1677 	int count = 0, pd_idx = sh->pd_idx, i;
1678 	struct async_submit_ctl submit;
1679 
1680 	/* existing parity data subtracted */
1681 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1682 
1683 	BUG_ON(sh->batch_head);
1684 	pr_debug("%s: stripe %llu\n", __func__,
1685 		(unsigned long long)sh->sector);
1686 
1687 	for (i = disks; i--; ) {
1688 		struct r5dev *dev = &sh->dev[i];
1689 		/* Only process blocks that are known to be uptodate */
1690 		if (test_bit(R5_InJournal, &dev->flags))
1691 			xor_srcs[count++] = dev->orig_page;
1692 		else if (test_bit(R5_Wantdrain, &dev->flags))
1693 			xor_srcs[count++] = dev->page;
1694 	}
1695 
1696 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1697 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1698 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1699 
1700 	return tx;
1701 }
1702 
1703 static struct dma_async_tx_descriptor *
1704 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1705 		struct dma_async_tx_descriptor *tx)
1706 {
1707 	struct page **blocks = to_addr_page(percpu, 0);
1708 	int count;
1709 	struct async_submit_ctl submit;
1710 
1711 	pr_debug("%s: stripe %llu\n", __func__,
1712 		(unsigned long long)sh->sector);
1713 
1714 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1715 
1716 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1717 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1718 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1719 
1720 	return tx;
1721 }
1722 
1723 static struct dma_async_tx_descriptor *
1724 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1725 {
1726 	struct r5conf *conf = sh->raid_conf;
1727 	int disks = sh->disks;
1728 	int i;
1729 	struct stripe_head *head_sh = sh;
1730 
1731 	pr_debug("%s: stripe %llu\n", __func__,
1732 		(unsigned long long)sh->sector);
1733 
1734 	for (i = disks; i--; ) {
1735 		struct r5dev *dev;
1736 		struct bio *chosen;
1737 
1738 		sh = head_sh;
1739 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1740 			struct bio *wbi;
1741 
1742 again:
1743 			dev = &sh->dev[i];
1744 			/*
1745 			 * clear R5_InJournal, so when rewriting a page in
1746 			 * journal, it is not skipped by r5l_log_stripe()
1747 			 */
1748 			clear_bit(R5_InJournal, &dev->flags);
1749 			spin_lock_irq(&sh->stripe_lock);
1750 			chosen = dev->towrite;
1751 			dev->towrite = NULL;
1752 			sh->overwrite_disks = 0;
1753 			BUG_ON(dev->written);
1754 			wbi = dev->written = chosen;
1755 			spin_unlock_irq(&sh->stripe_lock);
1756 			WARN_ON(dev->page != dev->orig_page);
1757 
1758 			while (wbi && wbi->bi_iter.bi_sector <
1759 				dev->sector + STRIPE_SECTORS) {
1760 				if (wbi->bi_opf & REQ_FUA)
1761 					set_bit(R5_WantFUA, &dev->flags);
1762 				if (wbi->bi_opf & REQ_SYNC)
1763 					set_bit(R5_SyncIO, &dev->flags);
1764 				if (bio_op(wbi) == REQ_OP_DISCARD)
1765 					set_bit(R5_Discard, &dev->flags);
1766 				else {
1767 					tx = async_copy_data(1, wbi, &dev->page,
1768 							     dev->sector, tx, sh,
1769 							     r5c_is_writeback(conf->log));
1770 					if (dev->page != dev->orig_page &&
1771 					    !r5c_is_writeback(conf->log)) {
1772 						set_bit(R5_SkipCopy, &dev->flags);
1773 						clear_bit(R5_UPTODATE, &dev->flags);
1774 						clear_bit(R5_OVERWRITE, &dev->flags);
1775 					}
1776 				}
1777 				wbi = r5_next_bio(wbi, dev->sector);
1778 			}
1779 
1780 			if (head_sh->batch_head) {
1781 				sh = list_first_entry(&sh->batch_list,
1782 						      struct stripe_head,
1783 						      batch_list);
1784 				if (sh == head_sh)
1785 					continue;
1786 				goto again;
1787 			}
1788 		}
1789 	}
1790 
1791 	return tx;
1792 }
1793 
1794 static void ops_complete_reconstruct(void *stripe_head_ref)
1795 {
1796 	struct stripe_head *sh = stripe_head_ref;
1797 	int disks = sh->disks;
1798 	int pd_idx = sh->pd_idx;
1799 	int qd_idx = sh->qd_idx;
1800 	int i;
1801 	bool fua = false, sync = false, discard = false;
1802 
1803 	pr_debug("%s: stripe %llu\n", __func__,
1804 		(unsigned long long)sh->sector);
1805 
1806 	for (i = disks; i--; ) {
1807 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1808 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1809 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1810 	}
1811 
1812 	for (i = disks; i--; ) {
1813 		struct r5dev *dev = &sh->dev[i];
1814 
1815 		if (dev->written || i == pd_idx || i == qd_idx) {
1816 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1817 				set_bit(R5_UPTODATE, &dev->flags);
1818 			if (fua)
1819 				set_bit(R5_WantFUA, &dev->flags);
1820 			if (sync)
1821 				set_bit(R5_SyncIO, &dev->flags);
1822 		}
1823 	}
1824 
1825 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1826 		sh->reconstruct_state = reconstruct_state_drain_result;
1827 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1828 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1829 	else {
1830 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1831 		sh->reconstruct_state = reconstruct_state_result;
1832 	}
1833 
1834 	set_bit(STRIPE_HANDLE, &sh->state);
1835 	raid5_release_stripe(sh);
1836 }
1837 
1838 static void
1839 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1840 		     struct dma_async_tx_descriptor *tx)
1841 {
1842 	int disks = sh->disks;
1843 	struct page **xor_srcs;
1844 	struct async_submit_ctl submit;
1845 	int count, pd_idx = sh->pd_idx, i;
1846 	struct page *xor_dest;
1847 	int prexor = 0;
1848 	unsigned long flags;
1849 	int j = 0;
1850 	struct stripe_head *head_sh = sh;
1851 	int last_stripe;
1852 
1853 	pr_debug("%s: stripe %llu\n", __func__,
1854 		(unsigned long long)sh->sector);
1855 
1856 	for (i = 0; i < sh->disks; i++) {
1857 		if (pd_idx == i)
1858 			continue;
1859 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1860 			break;
1861 	}
1862 	if (i >= sh->disks) {
1863 		atomic_inc(&sh->count);
1864 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1865 		ops_complete_reconstruct(sh);
1866 		return;
1867 	}
1868 again:
1869 	count = 0;
1870 	xor_srcs = to_addr_page(percpu, j);
1871 	/* check if prexor is active which means only process blocks
1872 	 * that are part of a read-modify-write (written)
1873 	 */
1874 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1875 		prexor = 1;
1876 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1877 		for (i = disks; i--; ) {
1878 			struct r5dev *dev = &sh->dev[i];
1879 			if (head_sh->dev[i].written ||
1880 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1881 				xor_srcs[count++] = dev->page;
1882 		}
1883 	} else {
1884 		xor_dest = sh->dev[pd_idx].page;
1885 		for (i = disks; i--; ) {
1886 			struct r5dev *dev = &sh->dev[i];
1887 			if (i != pd_idx)
1888 				xor_srcs[count++] = dev->page;
1889 		}
1890 	}
1891 
1892 	/* 1/ if we prexor'd then the dest is reused as a source
1893 	 * 2/ if we did not prexor then we are redoing the parity
1894 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1895 	 * for the synchronous xor case
1896 	 */
1897 	last_stripe = !head_sh->batch_head ||
1898 		list_first_entry(&sh->batch_list,
1899 				 struct stripe_head, batch_list) == head_sh;
1900 	if (last_stripe) {
1901 		flags = ASYNC_TX_ACK |
1902 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1903 
1904 		atomic_inc(&head_sh->count);
1905 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1906 				  to_addr_conv(sh, percpu, j));
1907 	} else {
1908 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1909 		init_async_submit(&submit, flags, tx, NULL, NULL,
1910 				  to_addr_conv(sh, percpu, j));
1911 	}
1912 
1913 	if (unlikely(count == 1))
1914 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1915 	else
1916 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1917 	if (!last_stripe) {
1918 		j++;
1919 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1920 				      batch_list);
1921 		goto again;
1922 	}
1923 }
1924 
1925 static void
1926 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1927 		     struct dma_async_tx_descriptor *tx)
1928 {
1929 	struct async_submit_ctl submit;
1930 	struct page **blocks;
1931 	int count, i, j = 0;
1932 	struct stripe_head *head_sh = sh;
1933 	int last_stripe;
1934 	int synflags;
1935 	unsigned long txflags;
1936 
1937 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1938 
1939 	for (i = 0; i < sh->disks; i++) {
1940 		if (sh->pd_idx == i || sh->qd_idx == i)
1941 			continue;
1942 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1943 			break;
1944 	}
1945 	if (i >= sh->disks) {
1946 		atomic_inc(&sh->count);
1947 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1948 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1949 		ops_complete_reconstruct(sh);
1950 		return;
1951 	}
1952 
1953 again:
1954 	blocks = to_addr_page(percpu, j);
1955 
1956 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1957 		synflags = SYNDROME_SRC_WRITTEN;
1958 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1959 	} else {
1960 		synflags = SYNDROME_SRC_ALL;
1961 		txflags = ASYNC_TX_ACK;
1962 	}
1963 
1964 	count = set_syndrome_sources(blocks, sh, synflags);
1965 	last_stripe = !head_sh->batch_head ||
1966 		list_first_entry(&sh->batch_list,
1967 				 struct stripe_head, batch_list) == head_sh;
1968 
1969 	if (last_stripe) {
1970 		atomic_inc(&head_sh->count);
1971 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1972 				  head_sh, to_addr_conv(sh, percpu, j));
1973 	} else
1974 		init_async_submit(&submit, 0, tx, NULL, NULL,
1975 				  to_addr_conv(sh, percpu, j));
1976 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1977 	if (!last_stripe) {
1978 		j++;
1979 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1980 				      batch_list);
1981 		goto again;
1982 	}
1983 }
1984 
1985 static void ops_complete_check(void *stripe_head_ref)
1986 {
1987 	struct stripe_head *sh = stripe_head_ref;
1988 
1989 	pr_debug("%s: stripe %llu\n", __func__,
1990 		(unsigned long long)sh->sector);
1991 
1992 	sh->check_state = check_state_check_result;
1993 	set_bit(STRIPE_HANDLE, &sh->state);
1994 	raid5_release_stripe(sh);
1995 }
1996 
1997 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1998 {
1999 	int disks = sh->disks;
2000 	int pd_idx = sh->pd_idx;
2001 	int qd_idx = sh->qd_idx;
2002 	struct page *xor_dest;
2003 	struct page **xor_srcs = to_addr_page(percpu, 0);
2004 	struct dma_async_tx_descriptor *tx;
2005 	struct async_submit_ctl submit;
2006 	int count;
2007 	int i;
2008 
2009 	pr_debug("%s: stripe %llu\n", __func__,
2010 		(unsigned long long)sh->sector);
2011 
2012 	BUG_ON(sh->batch_head);
2013 	count = 0;
2014 	xor_dest = sh->dev[pd_idx].page;
2015 	xor_srcs[count++] = xor_dest;
2016 	for (i = disks; i--; ) {
2017 		if (i == pd_idx || i == qd_idx)
2018 			continue;
2019 		xor_srcs[count++] = sh->dev[i].page;
2020 	}
2021 
2022 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2023 			  to_addr_conv(sh, percpu, 0));
2024 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2025 			   &sh->ops.zero_sum_result, &submit);
2026 
2027 	atomic_inc(&sh->count);
2028 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2029 	tx = async_trigger_callback(&submit);
2030 }
2031 
2032 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2033 {
2034 	struct page **srcs = to_addr_page(percpu, 0);
2035 	struct async_submit_ctl submit;
2036 	int count;
2037 
2038 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2039 		(unsigned long long)sh->sector, checkp);
2040 
2041 	BUG_ON(sh->batch_head);
2042 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2043 	if (!checkp)
2044 		srcs[count] = NULL;
2045 
2046 	atomic_inc(&sh->count);
2047 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2048 			  sh, to_addr_conv(sh, percpu, 0));
2049 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2050 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2051 }
2052 
2053 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2054 {
2055 	int overlap_clear = 0, i, disks = sh->disks;
2056 	struct dma_async_tx_descriptor *tx = NULL;
2057 	struct r5conf *conf = sh->raid_conf;
2058 	int level = conf->level;
2059 	struct raid5_percpu *percpu;
2060 	unsigned long cpu;
2061 
2062 	cpu = get_cpu();
2063 	percpu = per_cpu_ptr(conf->percpu, cpu);
2064 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2065 		ops_run_biofill(sh);
2066 		overlap_clear++;
2067 	}
2068 
2069 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2070 		if (level < 6)
2071 			tx = ops_run_compute5(sh, percpu);
2072 		else {
2073 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2074 				tx = ops_run_compute6_1(sh, percpu);
2075 			else
2076 				tx = ops_run_compute6_2(sh, percpu);
2077 		}
2078 		/* terminate the chain if reconstruct is not set to be run */
2079 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2080 			async_tx_ack(tx);
2081 	}
2082 
2083 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2084 		if (level < 6)
2085 			tx = ops_run_prexor5(sh, percpu, tx);
2086 		else
2087 			tx = ops_run_prexor6(sh, percpu, tx);
2088 	}
2089 
2090 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2091 		tx = ops_run_partial_parity(sh, percpu, tx);
2092 
2093 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2094 		tx = ops_run_biodrain(sh, tx);
2095 		overlap_clear++;
2096 	}
2097 
2098 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2099 		if (level < 6)
2100 			ops_run_reconstruct5(sh, percpu, tx);
2101 		else
2102 			ops_run_reconstruct6(sh, percpu, tx);
2103 	}
2104 
2105 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2106 		if (sh->check_state == check_state_run)
2107 			ops_run_check_p(sh, percpu);
2108 		else if (sh->check_state == check_state_run_q)
2109 			ops_run_check_pq(sh, percpu, 0);
2110 		else if (sh->check_state == check_state_run_pq)
2111 			ops_run_check_pq(sh, percpu, 1);
2112 		else
2113 			BUG();
2114 	}
2115 
2116 	if (overlap_clear && !sh->batch_head)
2117 		for (i = disks; i--; ) {
2118 			struct r5dev *dev = &sh->dev[i];
2119 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2120 				wake_up(&sh->raid_conf->wait_for_overlap);
2121 		}
2122 	put_cpu();
2123 }
2124 
2125 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2126 {
2127 	if (sh->ppl_page)
2128 		__free_page(sh->ppl_page);
2129 	kmem_cache_free(sc, sh);
2130 }
2131 
2132 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2133 	int disks, struct r5conf *conf)
2134 {
2135 	struct stripe_head *sh;
2136 	int i;
2137 
2138 	sh = kmem_cache_zalloc(sc, gfp);
2139 	if (sh) {
2140 		spin_lock_init(&sh->stripe_lock);
2141 		spin_lock_init(&sh->batch_lock);
2142 		INIT_LIST_HEAD(&sh->batch_list);
2143 		INIT_LIST_HEAD(&sh->lru);
2144 		INIT_LIST_HEAD(&sh->r5c);
2145 		INIT_LIST_HEAD(&sh->log_list);
2146 		atomic_set(&sh->count, 1);
2147 		sh->raid_conf = conf;
2148 		sh->log_start = MaxSector;
2149 		for (i = 0; i < disks; i++) {
2150 			struct r5dev *dev = &sh->dev[i];
2151 
2152 			bio_init(&dev->req, &dev->vec, 1);
2153 			bio_init(&dev->rreq, &dev->rvec, 1);
2154 		}
2155 
2156 		if (raid5_has_ppl(conf)) {
2157 			sh->ppl_page = alloc_page(gfp);
2158 			if (!sh->ppl_page) {
2159 				free_stripe(sc, sh);
2160 				sh = NULL;
2161 			}
2162 		}
2163 	}
2164 	return sh;
2165 }
2166 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2167 {
2168 	struct stripe_head *sh;
2169 
2170 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2171 	if (!sh)
2172 		return 0;
2173 
2174 	if (grow_buffers(sh, gfp)) {
2175 		shrink_buffers(sh);
2176 		free_stripe(conf->slab_cache, sh);
2177 		return 0;
2178 	}
2179 	sh->hash_lock_index =
2180 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2181 	/* we just created an active stripe so... */
2182 	atomic_inc(&conf->active_stripes);
2183 
2184 	raid5_release_stripe(sh);
2185 	conf->max_nr_stripes++;
2186 	return 1;
2187 }
2188 
2189 static int grow_stripes(struct r5conf *conf, int num)
2190 {
2191 	struct kmem_cache *sc;
2192 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193 
2194 	if (conf->mddev->gendisk)
2195 		sprintf(conf->cache_name[0],
2196 			"raid%d-%s", conf->level, mdname(conf->mddev));
2197 	else
2198 		sprintf(conf->cache_name[0],
2199 			"raid%d-%p", conf->level, conf->mddev);
2200 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2201 
2202 	conf->active_name = 0;
2203 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205 			       0, 0, NULL);
2206 	if (!sc)
2207 		return 1;
2208 	conf->slab_cache = sc;
2209 	conf->pool_size = devs;
2210 	while (num--)
2211 		if (!grow_one_stripe(conf, GFP_KERNEL))
2212 			return 1;
2213 
2214 	return 0;
2215 }
2216 
2217 /**
2218  * scribble_len - return the required size of the scribble region
2219  * @num - total number of disks in the array
2220  *
2221  * The size must be enough to contain:
2222  * 1/ a struct page pointer for each device in the array +2
2223  * 2/ room to convert each entry in (1) to its corresponding dma
2224  *    (dma_map_page()) or page (page_address()) address.
2225  *
2226  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227  * calculate over all devices (not just the data blocks), using zeros in place
2228  * of the P and Q blocks.
2229  */
2230 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2231 {
2232 	struct flex_array *ret;
2233 	size_t len;
2234 
2235 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2236 	ret = flex_array_alloc(len, cnt, flags);
2237 	if (!ret)
2238 		return NULL;
2239 	/* always prealloc all elements, so no locking is required */
2240 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2241 		flex_array_free(ret);
2242 		return NULL;
2243 	}
2244 	return ret;
2245 }
2246 
2247 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2248 {
2249 	unsigned long cpu;
2250 	int err = 0;
2251 
2252 	/*
2253 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2254 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2255 	 * should equal to new_disks and new_sectors
2256 	 */
2257 	if (conf->scribble_disks >= new_disks &&
2258 	    conf->scribble_sectors >= new_sectors)
2259 		return 0;
2260 	mddev_suspend(conf->mddev);
2261 	get_online_cpus();
2262 	for_each_present_cpu(cpu) {
2263 		struct raid5_percpu *percpu;
2264 		struct flex_array *scribble;
2265 
2266 		percpu = per_cpu_ptr(conf->percpu, cpu);
2267 		scribble = scribble_alloc(new_disks,
2268 					  new_sectors / STRIPE_SECTORS,
2269 					  GFP_NOIO);
2270 
2271 		if (scribble) {
2272 			flex_array_free(percpu->scribble);
2273 			percpu->scribble = scribble;
2274 		} else {
2275 			err = -ENOMEM;
2276 			break;
2277 		}
2278 	}
2279 	put_online_cpus();
2280 	mddev_resume(conf->mddev);
2281 	if (!err) {
2282 		conf->scribble_disks = new_disks;
2283 		conf->scribble_sectors = new_sectors;
2284 	}
2285 	return err;
2286 }
2287 
2288 static int resize_stripes(struct r5conf *conf, int newsize)
2289 {
2290 	/* Make all the stripes able to hold 'newsize' devices.
2291 	 * New slots in each stripe get 'page' set to a new page.
2292 	 *
2293 	 * This happens in stages:
2294 	 * 1/ create a new kmem_cache and allocate the required number of
2295 	 *    stripe_heads.
2296 	 * 2/ gather all the old stripe_heads and transfer the pages across
2297 	 *    to the new stripe_heads.  This will have the side effect of
2298 	 *    freezing the array as once all stripe_heads have been collected,
2299 	 *    no IO will be possible.  Old stripe heads are freed once their
2300 	 *    pages have been transferred over, and the old kmem_cache is
2301 	 *    freed when all stripes are done.
2302 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2303 	 *    we simple return a failure status - no need to clean anything up.
2304 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2305 	 *    If this fails, we don't bother trying the shrink the
2306 	 *    stripe_heads down again, we just leave them as they are.
2307 	 *    As each stripe_head is processed the new one is released into
2308 	 *    active service.
2309 	 *
2310 	 * Once step2 is started, we cannot afford to wait for a write,
2311 	 * so we use GFP_NOIO allocations.
2312 	 */
2313 	struct stripe_head *osh, *nsh;
2314 	LIST_HEAD(newstripes);
2315 	struct disk_info *ndisks;
2316 	int err = 0;
2317 	struct kmem_cache *sc;
2318 	int i;
2319 	int hash, cnt;
2320 
2321 	md_allow_write(conf->mddev);
2322 
2323 	/* Step 1 */
2324 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2325 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2326 			       0, 0, NULL);
2327 	if (!sc)
2328 		return -ENOMEM;
2329 
2330 	/* Need to ensure auto-resizing doesn't interfere */
2331 	mutex_lock(&conf->cache_size_mutex);
2332 
2333 	for (i = conf->max_nr_stripes; i; i--) {
2334 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2335 		if (!nsh)
2336 			break;
2337 
2338 		list_add(&nsh->lru, &newstripes);
2339 	}
2340 	if (i) {
2341 		/* didn't get enough, give up */
2342 		while (!list_empty(&newstripes)) {
2343 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2344 			list_del(&nsh->lru);
2345 			free_stripe(sc, nsh);
2346 		}
2347 		kmem_cache_destroy(sc);
2348 		mutex_unlock(&conf->cache_size_mutex);
2349 		return -ENOMEM;
2350 	}
2351 	/* Step 2 - Must use GFP_NOIO now.
2352 	 * OK, we have enough stripes, start collecting inactive
2353 	 * stripes and copying them over
2354 	 */
2355 	hash = 0;
2356 	cnt = 0;
2357 	list_for_each_entry(nsh, &newstripes, lru) {
2358 		lock_device_hash_lock(conf, hash);
2359 		wait_event_cmd(conf->wait_for_stripe,
2360 				    !list_empty(conf->inactive_list + hash),
2361 				    unlock_device_hash_lock(conf, hash),
2362 				    lock_device_hash_lock(conf, hash));
2363 		osh = get_free_stripe(conf, hash);
2364 		unlock_device_hash_lock(conf, hash);
2365 
2366 		for(i=0; i<conf->pool_size; i++) {
2367 			nsh->dev[i].page = osh->dev[i].page;
2368 			nsh->dev[i].orig_page = osh->dev[i].page;
2369 		}
2370 		nsh->hash_lock_index = hash;
2371 		free_stripe(conf->slab_cache, osh);
2372 		cnt++;
2373 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2374 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2375 			hash++;
2376 			cnt = 0;
2377 		}
2378 	}
2379 	kmem_cache_destroy(conf->slab_cache);
2380 
2381 	/* Step 3.
2382 	 * At this point, we are holding all the stripes so the array
2383 	 * is completely stalled, so now is a good time to resize
2384 	 * conf->disks and the scribble region
2385 	 */
2386 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2387 	if (ndisks) {
2388 		for (i = 0; i < conf->pool_size; i++)
2389 			ndisks[i] = conf->disks[i];
2390 
2391 		for (i = conf->pool_size; i < newsize; i++) {
2392 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2393 			if (!ndisks[i].extra_page)
2394 				err = -ENOMEM;
2395 		}
2396 
2397 		if (err) {
2398 			for (i = conf->pool_size; i < newsize; i++)
2399 				if (ndisks[i].extra_page)
2400 					put_page(ndisks[i].extra_page);
2401 			kfree(ndisks);
2402 		} else {
2403 			kfree(conf->disks);
2404 			conf->disks = ndisks;
2405 		}
2406 	} else
2407 		err = -ENOMEM;
2408 
2409 	mutex_unlock(&conf->cache_size_mutex);
2410 
2411 	conf->slab_cache = sc;
2412 	conf->active_name = 1-conf->active_name;
2413 
2414 	/* Step 4, return new stripes to service */
2415 	while(!list_empty(&newstripes)) {
2416 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2417 		list_del_init(&nsh->lru);
2418 
2419 		for (i=conf->raid_disks; i < newsize; i++)
2420 			if (nsh->dev[i].page == NULL) {
2421 				struct page *p = alloc_page(GFP_NOIO);
2422 				nsh->dev[i].page = p;
2423 				nsh->dev[i].orig_page = p;
2424 				if (!p)
2425 					err = -ENOMEM;
2426 			}
2427 		raid5_release_stripe(nsh);
2428 	}
2429 	/* critical section pass, GFP_NOIO no longer needed */
2430 
2431 	if (!err)
2432 		conf->pool_size = newsize;
2433 	return err;
2434 }
2435 
2436 static int drop_one_stripe(struct r5conf *conf)
2437 {
2438 	struct stripe_head *sh;
2439 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2440 
2441 	spin_lock_irq(conf->hash_locks + hash);
2442 	sh = get_free_stripe(conf, hash);
2443 	spin_unlock_irq(conf->hash_locks + hash);
2444 	if (!sh)
2445 		return 0;
2446 	BUG_ON(atomic_read(&sh->count));
2447 	shrink_buffers(sh);
2448 	free_stripe(conf->slab_cache, sh);
2449 	atomic_dec(&conf->active_stripes);
2450 	conf->max_nr_stripes--;
2451 	return 1;
2452 }
2453 
2454 static void shrink_stripes(struct r5conf *conf)
2455 {
2456 	while (conf->max_nr_stripes &&
2457 	       drop_one_stripe(conf))
2458 		;
2459 
2460 	kmem_cache_destroy(conf->slab_cache);
2461 	conf->slab_cache = NULL;
2462 }
2463 
2464 static void raid5_end_read_request(struct bio * bi)
2465 {
2466 	struct stripe_head *sh = bi->bi_private;
2467 	struct r5conf *conf = sh->raid_conf;
2468 	int disks = sh->disks, i;
2469 	char b[BDEVNAME_SIZE];
2470 	struct md_rdev *rdev = NULL;
2471 	sector_t s;
2472 
2473 	for (i=0 ; i<disks; i++)
2474 		if (bi == &sh->dev[i].req)
2475 			break;
2476 
2477 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2478 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2479 		bi->bi_status);
2480 	if (i == disks) {
2481 		bio_reset(bi);
2482 		BUG();
2483 		return;
2484 	}
2485 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2486 		/* If replacement finished while this request was outstanding,
2487 		 * 'replacement' might be NULL already.
2488 		 * In that case it moved down to 'rdev'.
2489 		 * rdev is not removed until all requests are finished.
2490 		 */
2491 		rdev = conf->disks[i].replacement;
2492 	if (!rdev)
2493 		rdev = conf->disks[i].rdev;
2494 
2495 	if (use_new_offset(conf, sh))
2496 		s = sh->sector + rdev->new_data_offset;
2497 	else
2498 		s = sh->sector + rdev->data_offset;
2499 	if (!bi->bi_status) {
2500 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2501 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2502 			/* Note that this cannot happen on a
2503 			 * replacement device.  We just fail those on
2504 			 * any error
2505 			 */
2506 			pr_info_ratelimited(
2507 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2508 				mdname(conf->mddev), STRIPE_SECTORS,
2509 				(unsigned long long)s,
2510 				bdevname(rdev->bdev, b));
2511 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2512 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2513 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2514 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2515 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2516 
2517 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2518 			/*
2519 			 * end read for a page in journal, this
2520 			 * must be preparing for prexor in rmw
2521 			 */
2522 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2523 
2524 		if (atomic_read(&rdev->read_errors))
2525 			atomic_set(&rdev->read_errors, 0);
2526 	} else {
2527 		const char *bdn = bdevname(rdev->bdev, b);
2528 		int retry = 0;
2529 		int set_bad = 0;
2530 
2531 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2532 		atomic_inc(&rdev->read_errors);
2533 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2534 			pr_warn_ratelimited(
2535 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2536 				mdname(conf->mddev),
2537 				(unsigned long long)s,
2538 				bdn);
2539 		else if (conf->mddev->degraded >= conf->max_degraded) {
2540 			set_bad = 1;
2541 			pr_warn_ratelimited(
2542 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2543 				mdname(conf->mddev),
2544 				(unsigned long long)s,
2545 				bdn);
2546 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2547 			/* Oh, no!!! */
2548 			set_bad = 1;
2549 			pr_warn_ratelimited(
2550 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2551 				mdname(conf->mddev),
2552 				(unsigned long long)s,
2553 				bdn);
2554 		} else if (atomic_read(&rdev->read_errors)
2555 			 > conf->max_nr_stripes)
2556 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2557 			       mdname(conf->mddev), bdn);
2558 		else
2559 			retry = 1;
2560 		if (set_bad && test_bit(In_sync, &rdev->flags)
2561 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2562 			retry = 1;
2563 		if (retry)
2564 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2565 				set_bit(R5_ReadError, &sh->dev[i].flags);
2566 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2567 			} else
2568 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2569 		else {
2570 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2571 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2572 			if (!(set_bad
2573 			      && test_bit(In_sync, &rdev->flags)
2574 			      && rdev_set_badblocks(
2575 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2576 				md_error(conf->mddev, rdev);
2577 		}
2578 	}
2579 	rdev_dec_pending(rdev, conf->mddev);
2580 	bio_reset(bi);
2581 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2582 	set_bit(STRIPE_HANDLE, &sh->state);
2583 	raid5_release_stripe(sh);
2584 }
2585 
2586 static void raid5_end_write_request(struct bio *bi)
2587 {
2588 	struct stripe_head *sh = bi->bi_private;
2589 	struct r5conf *conf = sh->raid_conf;
2590 	int disks = sh->disks, i;
2591 	struct md_rdev *uninitialized_var(rdev);
2592 	sector_t first_bad;
2593 	int bad_sectors;
2594 	int replacement = 0;
2595 
2596 	for (i = 0 ; i < disks; i++) {
2597 		if (bi == &sh->dev[i].req) {
2598 			rdev = conf->disks[i].rdev;
2599 			break;
2600 		}
2601 		if (bi == &sh->dev[i].rreq) {
2602 			rdev = conf->disks[i].replacement;
2603 			if (rdev)
2604 				replacement = 1;
2605 			else
2606 				/* rdev was removed and 'replacement'
2607 				 * replaced it.  rdev is not removed
2608 				 * until all requests are finished.
2609 				 */
2610 				rdev = conf->disks[i].rdev;
2611 			break;
2612 		}
2613 	}
2614 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2615 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2616 		bi->bi_status);
2617 	if (i == disks) {
2618 		bio_reset(bi);
2619 		BUG();
2620 		return;
2621 	}
2622 
2623 	if (replacement) {
2624 		if (bi->bi_status)
2625 			md_error(conf->mddev, rdev);
2626 		else if (is_badblock(rdev, sh->sector,
2627 				     STRIPE_SECTORS,
2628 				     &first_bad, &bad_sectors))
2629 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2630 	} else {
2631 		if (bi->bi_status) {
2632 			set_bit(STRIPE_DEGRADED, &sh->state);
2633 			set_bit(WriteErrorSeen, &rdev->flags);
2634 			set_bit(R5_WriteError, &sh->dev[i].flags);
2635 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2636 				set_bit(MD_RECOVERY_NEEDED,
2637 					&rdev->mddev->recovery);
2638 		} else if (is_badblock(rdev, sh->sector,
2639 				       STRIPE_SECTORS,
2640 				       &first_bad, &bad_sectors)) {
2641 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2642 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2643 				/* That was a successful write so make
2644 				 * sure it looks like we already did
2645 				 * a re-write.
2646 				 */
2647 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2648 		}
2649 	}
2650 	rdev_dec_pending(rdev, conf->mddev);
2651 
2652 	if (sh->batch_head && bi->bi_status && !replacement)
2653 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2654 
2655 	bio_reset(bi);
2656 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2657 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2658 	set_bit(STRIPE_HANDLE, &sh->state);
2659 	raid5_release_stripe(sh);
2660 
2661 	if (sh->batch_head && sh != sh->batch_head)
2662 		raid5_release_stripe(sh->batch_head);
2663 }
2664 
2665 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2666 {
2667 	struct r5dev *dev = &sh->dev[i];
2668 
2669 	dev->flags = 0;
2670 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2671 }
2672 
2673 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674 {
2675 	char b[BDEVNAME_SIZE];
2676 	struct r5conf *conf = mddev->private;
2677 	unsigned long flags;
2678 	pr_debug("raid456: error called\n");
2679 
2680 	spin_lock_irqsave(&conf->device_lock, flags);
2681 	clear_bit(In_sync, &rdev->flags);
2682 	mddev->degraded = raid5_calc_degraded(conf);
2683 	spin_unlock_irqrestore(&conf->device_lock, flags);
2684 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685 
2686 	set_bit(Blocked, &rdev->flags);
2687 	set_bit(Faulty, &rdev->flags);
2688 	set_mask_bits(&mddev->sb_flags, 0,
2689 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2690 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691 		"md/raid:%s: Operation continuing on %d devices.\n",
2692 		mdname(mddev),
2693 		bdevname(rdev->bdev, b),
2694 		mdname(mddev),
2695 		conf->raid_disks - mddev->degraded);
2696 	r5c_update_on_rdev_error(mddev, rdev);
2697 }
2698 
2699 /*
2700  * Input: a 'big' sector number,
2701  * Output: index of the data and parity disk, and the sector # in them.
2702  */
2703 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704 			      int previous, int *dd_idx,
2705 			      struct stripe_head *sh)
2706 {
2707 	sector_t stripe, stripe2;
2708 	sector_t chunk_number;
2709 	unsigned int chunk_offset;
2710 	int pd_idx, qd_idx;
2711 	int ddf_layout = 0;
2712 	sector_t new_sector;
2713 	int algorithm = previous ? conf->prev_algo
2714 				 : conf->algorithm;
2715 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716 					 : conf->chunk_sectors;
2717 	int raid_disks = previous ? conf->previous_raid_disks
2718 				  : conf->raid_disks;
2719 	int data_disks = raid_disks - conf->max_degraded;
2720 
2721 	/* First compute the information on this sector */
2722 
2723 	/*
2724 	 * Compute the chunk number and the sector offset inside the chunk
2725 	 */
2726 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727 	chunk_number = r_sector;
2728 
2729 	/*
2730 	 * Compute the stripe number
2731 	 */
2732 	stripe = chunk_number;
2733 	*dd_idx = sector_div(stripe, data_disks);
2734 	stripe2 = stripe;
2735 	/*
2736 	 * Select the parity disk based on the user selected algorithm.
2737 	 */
2738 	pd_idx = qd_idx = -1;
2739 	switch(conf->level) {
2740 	case 4:
2741 		pd_idx = data_disks;
2742 		break;
2743 	case 5:
2744 		switch (algorithm) {
2745 		case ALGORITHM_LEFT_ASYMMETRIC:
2746 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2747 			if (*dd_idx >= pd_idx)
2748 				(*dd_idx)++;
2749 			break;
2750 		case ALGORITHM_RIGHT_ASYMMETRIC:
2751 			pd_idx = sector_div(stripe2, raid_disks);
2752 			if (*dd_idx >= pd_idx)
2753 				(*dd_idx)++;
2754 			break;
2755 		case ALGORITHM_LEFT_SYMMETRIC:
2756 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758 			break;
2759 		case ALGORITHM_RIGHT_SYMMETRIC:
2760 			pd_idx = sector_div(stripe2, raid_disks);
2761 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762 			break;
2763 		case ALGORITHM_PARITY_0:
2764 			pd_idx = 0;
2765 			(*dd_idx)++;
2766 			break;
2767 		case ALGORITHM_PARITY_N:
2768 			pd_idx = data_disks;
2769 			break;
2770 		default:
2771 			BUG();
2772 		}
2773 		break;
2774 	case 6:
2775 
2776 		switch (algorithm) {
2777 		case ALGORITHM_LEFT_ASYMMETRIC:
2778 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2779 			qd_idx = pd_idx + 1;
2780 			if (pd_idx == raid_disks-1) {
2781 				(*dd_idx)++;	/* Q D D D P */
2782 				qd_idx = 0;
2783 			} else if (*dd_idx >= pd_idx)
2784 				(*dd_idx) += 2; /* D D P Q D */
2785 			break;
2786 		case ALGORITHM_RIGHT_ASYMMETRIC:
2787 			pd_idx = sector_div(stripe2, raid_disks);
2788 			qd_idx = pd_idx + 1;
2789 			if (pd_idx == raid_disks-1) {
2790 				(*dd_idx)++;	/* Q D D D P */
2791 				qd_idx = 0;
2792 			} else if (*dd_idx >= pd_idx)
2793 				(*dd_idx) += 2; /* D D P Q D */
2794 			break;
2795 		case ALGORITHM_LEFT_SYMMETRIC:
2796 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2797 			qd_idx = (pd_idx + 1) % raid_disks;
2798 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799 			break;
2800 		case ALGORITHM_RIGHT_SYMMETRIC:
2801 			pd_idx = sector_div(stripe2, raid_disks);
2802 			qd_idx = (pd_idx + 1) % raid_disks;
2803 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804 			break;
2805 
2806 		case ALGORITHM_PARITY_0:
2807 			pd_idx = 0;
2808 			qd_idx = 1;
2809 			(*dd_idx) += 2;
2810 			break;
2811 		case ALGORITHM_PARITY_N:
2812 			pd_idx = data_disks;
2813 			qd_idx = data_disks + 1;
2814 			break;
2815 
2816 		case ALGORITHM_ROTATING_ZERO_RESTART:
2817 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2818 			 * of blocks for computing Q is different.
2819 			 */
2820 			pd_idx = sector_div(stripe2, raid_disks);
2821 			qd_idx = pd_idx + 1;
2822 			if (pd_idx == raid_disks-1) {
2823 				(*dd_idx)++;	/* Q D D D P */
2824 				qd_idx = 0;
2825 			} else if (*dd_idx >= pd_idx)
2826 				(*dd_idx) += 2; /* D D P Q D */
2827 			ddf_layout = 1;
2828 			break;
2829 
2830 		case ALGORITHM_ROTATING_N_RESTART:
2831 			/* Same a left_asymmetric, by first stripe is
2832 			 * D D D P Q  rather than
2833 			 * Q D D D P
2834 			 */
2835 			stripe2 += 1;
2836 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2837 			qd_idx = pd_idx + 1;
2838 			if (pd_idx == raid_disks-1) {
2839 				(*dd_idx)++;	/* Q D D D P */
2840 				qd_idx = 0;
2841 			} else if (*dd_idx >= pd_idx)
2842 				(*dd_idx) += 2; /* D D P Q D */
2843 			ddf_layout = 1;
2844 			break;
2845 
2846 		case ALGORITHM_ROTATING_N_CONTINUE:
2847 			/* Same as left_symmetric but Q is before P */
2848 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2849 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851 			ddf_layout = 1;
2852 			break;
2853 
2854 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2855 			/* RAID5 left_asymmetric, with Q on last device */
2856 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2857 			if (*dd_idx >= pd_idx)
2858 				(*dd_idx)++;
2859 			qd_idx = raid_disks - 1;
2860 			break;
2861 
2862 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2863 			pd_idx = sector_div(stripe2, raid_disks-1);
2864 			if (*dd_idx >= pd_idx)
2865 				(*dd_idx)++;
2866 			qd_idx = raid_disks - 1;
2867 			break;
2868 
2869 		case ALGORITHM_LEFT_SYMMETRIC_6:
2870 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872 			qd_idx = raid_disks - 1;
2873 			break;
2874 
2875 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2876 			pd_idx = sector_div(stripe2, raid_disks-1);
2877 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878 			qd_idx = raid_disks - 1;
2879 			break;
2880 
2881 		case ALGORITHM_PARITY_0_6:
2882 			pd_idx = 0;
2883 			(*dd_idx)++;
2884 			qd_idx = raid_disks - 1;
2885 			break;
2886 
2887 		default:
2888 			BUG();
2889 		}
2890 		break;
2891 	}
2892 
2893 	if (sh) {
2894 		sh->pd_idx = pd_idx;
2895 		sh->qd_idx = qd_idx;
2896 		sh->ddf_layout = ddf_layout;
2897 	}
2898 	/*
2899 	 * Finally, compute the new sector number
2900 	 */
2901 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902 	return new_sector;
2903 }
2904 
2905 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2906 {
2907 	struct r5conf *conf = sh->raid_conf;
2908 	int raid_disks = sh->disks;
2909 	int data_disks = raid_disks - conf->max_degraded;
2910 	sector_t new_sector = sh->sector, check;
2911 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912 					 : conf->chunk_sectors;
2913 	int algorithm = previous ? conf->prev_algo
2914 				 : conf->algorithm;
2915 	sector_t stripe;
2916 	int chunk_offset;
2917 	sector_t chunk_number;
2918 	int dummy1, dd_idx = i;
2919 	sector_t r_sector;
2920 	struct stripe_head sh2;
2921 
2922 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923 	stripe = new_sector;
2924 
2925 	if (i == sh->pd_idx)
2926 		return 0;
2927 	switch(conf->level) {
2928 	case 4: break;
2929 	case 5:
2930 		switch (algorithm) {
2931 		case ALGORITHM_LEFT_ASYMMETRIC:
2932 		case ALGORITHM_RIGHT_ASYMMETRIC:
2933 			if (i > sh->pd_idx)
2934 				i--;
2935 			break;
2936 		case ALGORITHM_LEFT_SYMMETRIC:
2937 		case ALGORITHM_RIGHT_SYMMETRIC:
2938 			if (i < sh->pd_idx)
2939 				i += raid_disks;
2940 			i -= (sh->pd_idx + 1);
2941 			break;
2942 		case ALGORITHM_PARITY_0:
2943 			i -= 1;
2944 			break;
2945 		case ALGORITHM_PARITY_N:
2946 			break;
2947 		default:
2948 			BUG();
2949 		}
2950 		break;
2951 	case 6:
2952 		if (i == sh->qd_idx)
2953 			return 0; /* It is the Q disk */
2954 		switch (algorithm) {
2955 		case ALGORITHM_LEFT_ASYMMETRIC:
2956 		case ALGORITHM_RIGHT_ASYMMETRIC:
2957 		case ALGORITHM_ROTATING_ZERO_RESTART:
2958 		case ALGORITHM_ROTATING_N_RESTART:
2959 			if (sh->pd_idx == raid_disks-1)
2960 				i--;	/* Q D D D P */
2961 			else if (i > sh->pd_idx)
2962 				i -= 2; /* D D P Q D */
2963 			break;
2964 		case ALGORITHM_LEFT_SYMMETRIC:
2965 		case ALGORITHM_RIGHT_SYMMETRIC:
2966 			if (sh->pd_idx == raid_disks-1)
2967 				i--; /* Q D D D P */
2968 			else {
2969 				/* D D P Q D */
2970 				if (i < sh->pd_idx)
2971 					i += raid_disks;
2972 				i -= (sh->pd_idx + 2);
2973 			}
2974 			break;
2975 		case ALGORITHM_PARITY_0:
2976 			i -= 2;
2977 			break;
2978 		case ALGORITHM_PARITY_N:
2979 			break;
2980 		case ALGORITHM_ROTATING_N_CONTINUE:
2981 			/* Like left_symmetric, but P is before Q */
2982 			if (sh->pd_idx == 0)
2983 				i--;	/* P D D D Q */
2984 			else {
2985 				/* D D Q P D */
2986 				if (i < sh->pd_idx)
2987 					i += raid_disks;
2988 				i -= (sh->pd_idx + 1);
2989 			}
2990 			break;
2991 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2992 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993 			if (i > sh->pd_idx)
2994 				i--;
2995 			break;
2996 		case ALGORITHM_LEFT_SYMMETRIC_6:
2997 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2998 			if (i < sh->pd_idx)
2999 				i += data_disks + 1;
3000 			i -= (sh->pd_idx + 1);
3001 			break;
3002 		case ALGORITHM_PARITY_0_6:
3003 			i -= 1;
3004 			break;
3005 		default:
3006 			BUG();
3007 		}
3008 		break;
3009 	}
3010 
3011 	chunk_number = stripe * data_disks + i;
3012 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013 
3014 	check = raid5_compute_sector(conf, r_sector,
3015 				     previous, &dummy1, &sh2);
3016 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017 		|| sh2.qd_idx != sh->qd_idx) {
3018 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019 			mdname(conf->mddev));
3020 		return 0;
3021 	}
3022 	return r_sector;
3023 }
3024 
3025 /*
3026  * There are cases where we want handle_stripe_dirtying() and
3027  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028  *
3029  * This function checks whether we want to delay the towrite. Specifically,
3030  * we delay the towrite when:
3031  *
3032  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3033  *      stripe has data in journal (for other devices).
3034  *
3035  *      In this case, when reading data for the non-overwrite dev, it is
3036  *      necessary to handle complex rmw of write back cache (prexor with
3037  *      orig_page, and xor with page). To keep read path simple, we would
3038  *      like to flush data in journal to RAID disks first, so complex rmw
3039  *      is handled in the write patch (handle_stripe_dirtying).
3040  *
3041  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042  *
3043  *      It is important to be able to flush all stripes in raid5-cache.
3044  *      Therefore, we need reserve some space on the journal device for
3045  *      these flushes. If flush operation includes pending writes to the
3046  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047  *      for the flush out. If we exclude these pending writes from flush
3048  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3049  *      Therefore, excluding pending writes in these cases enables more
3050  *      efficient use of the journal device.
3051  *
3052  *      Note: To make sure the stripe makes progress, we only delay
3053  *      towrite for stripes with data already in journal (injournal > 0).
3054  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055  *      no_space_stripes list.
3056  *
3057  *   3. during journal failure
3058  *      In journal failure, we try to flush all cached data to raid disks
3059  *      based on data in stripe cache. The array is read-only to upper
3060  *      layers, so we would skip all pending writes.
3061  *
3062  */
3063 static inline bool delay_towrite(struct r5conf *conf,
3064 				 struct r5dev *dev,
3065 				 struct stripe_head_state *s)
3066 {
3067 	/* case 1 above */
3068 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070 		return true;
3071 	/* case 2 above */
3072 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073 	    s->injournal > 0)
3074 		return true;
3075 	/* case 3 above */
3076 	if (s->log_failed && s->injournal)
3077 		return true;
3078 	return false;
3079 }
3080 
3081 static void
3082 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3083 			 int rcw, int expand)
3084 {
3085 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3086 	struct r5conf *conf = sh->raid_conf;
3087 	int level = conf->level;
3088 
3089 	if (rcw) {
3090 		/*
3091 		 * In some cases, handle_stripe_dirtying initially decided to
3092 		 * run rmw and allocates extra page for prexor. However, rcw is
3093 		 * cheaper later on. We need to free the extra page now,
3094 		 * because we won't be able to do that in ops_complete_prexor().
3095 		 */
3096 		r5c_release_extra_page(sh);
3097 
3098 		for (i = disks; i--; ) {
3099 			struct r5dev *dev = &sh->dev[i];
3100 
3101 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3102 				set_bit(R5_LOCKED, &dev->flags);
3103 				set_bit(R5_Wantdrain, &dev->flags);
3104 				if (!expand)
3105 					clear_bit(R5_UPTODATE, &dev->flags);
3106 				s->locked++;
3107 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3108 				set_bit(R5_LOCKED, &dev->flags);
3109 				s->locked++;
3110 			}
3111 		}
3112 		/* if we are not expanding this is a proper write request, and
3113 		 * there will be bios with new data to be drained into the
3114 		 * stripe cache
3115 		 */
3116 		if (!expand) {
3117 			if (!s->locked)
3118 				/* False alarm, nothing to do */
3119 				return;
3120 			sh->reconstruct_state = reconstruct_state_drain_run;
3121 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122 		} else
3123 			sh->reconstruct_state = reconstruct_state_run;
3124 
3125 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126 
3127 		if (s->locked + conf->max_degraded == disks)
3128 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3129 				atomic_inc(&conf->pending_full_writes);
3130 	} else {
3131 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3133 		BUG_ON(level == 6 &&
3134 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3136 
3137 		for (i = disks; i--; ) {
3138 			struct r5dev *dev = &sh->dev[i];
3139 			if (i == pd_idx || i == qd_idx)
3140 				continue;
3141 
3142 			if (dev->towrite &&
3143 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3144 			     test_bit(R5_Wantcompute, &dev->flags))) {
3145 				set_bit(R5_Wantdrain, &dev->flags);
3146 				set_bit(R5_LOCKED, &dev->flags);
3147 				clear_bit(R5_UPTODATE, &dev->flags);
3148 				s->locked++;
3149 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3150 				set_bit(R5_LOCKED, &dev->flags);
3151 				s->locked++;
3152 			}
3153 		}
3154 		if (!s->locked)
3155 			/* False alarm - nothing to do */
3156 			return;
3157 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3161 	}
3162 
3163 	/* keep the parity disk(s) locked while asynchronous operations
3164 	 * are in flight
3165 	 */
3166 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168 	s->locked++;
3169 
3170 	if (level == 6) {
3171 		int qd_idx = sh->qd_idx;
3172 		struct r5dev *dev = &sh->dev[qd_idx];
3173 
3174 		set_bit(R5_LOCKED, &dev->flags);
3175 		clear_bit(R5_UPTODATE, &dev->flags);
3176 		s->locked++;
3177 	}
3178 
3179 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3180 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184 
3185 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186 		__func__, (unsigned long long)sh->sector,
3187 		s->locked, s->ops_request);
3188 }
3189 
3190 /*
3191  * Each stripe/dev can have one or more bion attached.
3192  * toread/towrite point to the first in a chain.
3193  * The bi_next chain must be in order.
3194  */
3195 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196 			  int forwrite, int previous)
3197 {
3198 	struct bio **bip;
3199 	struct r5conf *conf = sh->raid_conf;
3200 	int firstwrite=0;
3201 
3202 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203 		(unsigned long long)bi->bi_iter.bi_sector,
3204 		(unsigned long long)sh->sector);
3205 
3206 	spin_lock_irq(&sh->stripe_lock);
3207 	/* Don't allow new IO added to stripes in batch list */
3208 	if (sh->batch_head)
3209 		goto overlap;
3210 	if (forwrite) {
3211 		bip = &sh->dev[dd_idx].towrite;
3212 		if (*bip == NULL)
3213 			firstwrite = 1;
3214 	} else
3215 		bip = &sh->dev[dd_idx].toread;
3216 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218 			goto overlap;
3219 		bip = & (*bip)->bi_next;
3220 	}
3221 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3222 		goto overlap;
3223 
3224 	if (forwrite && raid5_has_ppl(conf)) {
3225 		/*
3226 		 * With PPL only writes to consecutive data chunks within a
3227 		 * stripe are allowed because for a single stripe_head we can
3228 		 * only have one PPL entry at a time, which describes one data
3229 		 * range. Not really an overlap, but wait_for_overlap can be
3230 		 * used to handle this.
3231 		 */
3232 		sector_t sector;
3233 		sector_t first = 0;
3234 		sector_t last = 0;
3235 		int count = 0;
3236 		int i;
3237 
3238 		for (i = 0; i < sh->disks; i++) {
3239 			if (i != sh->pd_idx &&
3240 			    (i == dd_idx || sh->dev[i].towrite)) {
3241 				sector = sh->dev[i].sector;
3242 				if (count == 0 || sector < first)
3243 					first = sector;
3244 				if (sector > last)
3245 					last = sector;
3246 				count++;
3247 			}
3248 		}
3249 
3250 		if (first + conf->chunk_sectors * (count - 1) != last)
3251 			goto overlap;
3252 	}
3253 
3254 	if (!forwrite || previous)
3255 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3256 
3257 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258 	if (*bip)
3259 		bi->bi_next = *bip;
3260 	*bip = bi;
3261 	bio_inc_remaining(bi);
3262 	md_write_inc(conf->mddev, bi);
3263 
3264 	if (forwrite) {
3265 		/* check if page is covered */
3266 		sector_t sector = sh->dev[dd_idx].sector;
3267 		for (bi=sh->dev[dd_idx].towrite;
3268 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3269 			     bi && bi->bi_iter.bi_sector <= sector;
3270 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3271 			if (bio_end_sector(bi) >= sector)
3272 				sector = bio_end_sector(bi);
3273 		}
3274 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3275 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276 				sh->overwrite_disks++;
3277 	}
3278 
3279 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3281 		(unsigned long long)sh->sector, dd_idx);
3282 
3283 	if (conf->mddev->bitmap && firstwrite) {
3284 		/* Cannot hold spinlock over bitmap_startwrite,
3285 		 * but must ensure this isn't added to a batch until
3286 		 * we have added to the bitmap and set bm_seq.
3287 		 * So set STRIPE_BITMAP_PENDING to prevent
3288 		 * batching.
3289 		 * If multiple add_stripe_bio() calls race here they
3290 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3291 		 * to complete "bitmap_startwrite" gets to set
3292 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3293 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294 		 * any more.
3295 		 */
3296 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297 		spin_unlock_irq(&sh->stripe_lock);
3298 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299 				  STRIPE_SECTORS, 0);
3300 		spin_lock_irq(&sh->stripe_lock);
3301 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302 		if (!sh->batch_head) {
3303 			sh->bm_seq = conf->seq_flush+1;
3304 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3305 		}
3306 	}
3307 	spin_unlock_irq(&sh->stripe_lock);
3308 
3309 	if (stripe_can_batch(sh))
3310 		stripe_add_to_batch_list(conf, sh);
3311 	return 1;
3312 
3313  overlap:
3314 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3315 	spin_unlock_irq(&sh->stripe_lock);
3316 	return 0;
3317 }
3318 
3319 static void end_reshape(struct r5conf *conf);
3320 
3321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3322 			    struct stripe_head *sh)
3323 {
3324 	int sectors_per_chunk =
3325 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326 	int dd_idx;
3327 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3328 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329 
3330 	raid5_compute_sector(conf,
3331 			     stripe * (disks - conf->max_degraded)
3332 			     *sectors_per_chunk + chunk_offset,
3333 			     previous,
3334 			     &dd_idx, sh);
3335 }
3336 
3337 static void
3338 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3339 		     struct stripe_head_state *s, int disks)
3340 {
3341 	int i;
3342 	BUG_ON(sh->batch_head);
3343 	for (i = disks; i--; ) {
3344 		struct bio *bi;
3345 		int bitmap_end = 0;
3346 
3347 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3348 			struct md_rdev *rdev;
3349 			rcu_read_lock();
3350 			rdev = rcu_dereference(conf->disks[i].rdev);
3351 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3352 			    !test_bit(Faulty, &rdev->flags))
3353 				atomic_inc(&rdev->nr_pending);
3354 			else
3355 				rdev = NULL;
3356 			rcu_read_unlock();
3357 			if (rdev) {
3358 				if (!rdev_set_badblocks(
3359 					    rdev,
3360 					    sh->sector,
3361 					    STRIPE_SECTORS, 0))
3362 					md_error(conf->mddev, rdev);
3363 				rdev_dec_pending(rdev, conf->mddev);
3364 			}
3365 		}
3366 		spin_lock_irq(&sh->stripe_lock);
3367 		/* fail all writes first */
3368 		bi = sh->dev[i].towrite;
3369 		sh->dev[i].towrite = NULL;
3370 		sh->overwrite_disks = 0;
3371 		spin_unlock_irq(&sh->stripe_lock);
3372 		if (bi)
3373 			bitmap_end = 1;
3374 
3375 		log_stripe_write_finished(sh);
3376 
3377 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378 			wake_up(&conf->wait_for_overlap);
3379 
3380 		while (bi && bi->bi_iter.bi_sector <
3381 			sh->dev[i].sector + STRIPE_SECTORS) {
3382 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383 
3384 			md_write_end(conf->mddev);
3385 			bio_io_error(bi);
3386 			bi = nextbi;
3387 		}
3388 		if (bitmap_end)
3389 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3390 				STRIPE_SECTORS, 0, 0);
3391 		bitmap_end = 0;
3392 		/* and fail all 'written' */
3393 		bi = sh->dev[i].written;
3394 		sh->dev[i].written = NULL;
3395 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3396 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3397 			sh->dev[i].page = sh->dev[i].orig_page;
3398 		}
3399 
3400 		if (bi) bitmap_end = 1;
3401 		while (bi && bi->bi_iter.bi_sector <
3402 		       sh->dev[i].sector + STRIPE_SECTORS) {
3403 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3404 
3405 			md_write_end(conf->mddev);
3406 			bio_io_error(bi);
3407 			bi = bi2;
3408 		}
3409 
3410 		/* fail any reads if this device is non-operational and
3411 		 * the data has not reached the cache yet.
3412 		 */
3413 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3414 		    s->failed > conf->max_degraded &&
3415 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3416 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3417 			spin_lock_irq(&sh->stripe_lock);
3418 			bi = sh->dev[i].toread;
3419 			sh->dev[i].toread = NULL;
3420 			spin_unlock_irq(&sh->stripe_lock);
3421 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3422 				wake_up(&conf->wait_for_overlap);
3423 			if (bi)
3424 				s->to_read--;
3425 			while (bi && bi->bi_iter.bi_sector <
3426 			       sh->dev[i].sector + STRIPE_SECTORS) {
3427 				struct bio *nextbi =
3428 					r5_next_bio(bi, sh->dev[i].sector);
3429 
3430 				bio_io_error(bi);
3431 				bi = nextbi;
3432 			}
3433 		}
3434 		if (bitmap_end)
3435 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3436 					STRIPE_SECTORS, 0, 0);
3437 		/* If we were in the middle of a write the parity block might
3438 		 * still be locked - so just clear all R5_LOCKED flags
3439 		 */
3440 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3441 	}
3442 	s->to_write = 0;
3443 	s->written = 0;
3444 
3445 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3446 		if (atomic_dec_and_test(&conf->pending_full_writes))
3447 			md_wakeup_thread(conf->mddev->thread);
3448 }
3449 
3450 static void
3451 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3452 		   struct stripe_head_state *s)
3453 {
3454 	int abort = 0;
3455 	int i;
3456 
3457 	BUG_ON(sh->batch_head);
3458 	clear_bit(STRIPE_SYNCING, &sh->state);
3459 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3460 		wake_up(&conf->wait_for_overlap);
3461 	s->syncing = 0;
3462 	s->replacing = 0;
3463 	/* There is nothing more to do for sync/check/repair.
3464 	 * Don't even need to abort as that is handled elsewhere
3465 	 * if needed, and not always wanted e.g. if there is a known
3466 	 * bad block here.
3467 	 * For recover/replace we need to record a bad block on all
3468 	 * non-sync devices, or abort the recovery
3469 	 */
3470 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3471 		/* During recovery devices cannot be removed, so
3472 		 * locking and refcounting of rdevs is not needed
3473 		 */
3474 		rcu_read_lock();
3475 		for (i = 0; i < conf->raid_disks; i++) {
3476 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3477 			if (rdev
3478 			    && !test_bit(Faulty, &rdev->flags)
3479 			    && !test_bit(In_sync, &rdev->flags)
3480 			    && !rdev_set_badblocks(rdev, sh->sector,
3481 						   STRIPE_SECTORS, 0))
3482 				abort = 1;
3483 			rdev = rcu_dereference(conf->disks[i].replacement);
3484 			if (rdev
3485 			    && !test_bit(Faulty, &rdev->flags)
3486 			    && !test_bit(In_sync, &rdev->flags)
3487 			    && !rdev_set_badblocks(rdev, sh->sector,
3488 						   STRIPE_SECTORS, 0))
3489 				abort = 1;
3490 		}
3491 		rcu_read_unlock();
3492 		if (abort)
3493 			conf->recovery_disabled =
3494 				conf->mddev->recovery_disabled;
3495 	}
3496 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3497 }
3498 
3499 static int want_replace(struct stripe_head *sh, int disk_idx)
3500 {
3501 	struct md_rdev *rdev;
3502 	int rv = 0;
3503 
3504 	rcu_read_lock();
3505 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3506 	if (rdev
3507 	    && !test_bit(Faulty, &rdev->flags)
3508 	    && !test_bit(In_sync, &rdev->flags)
3509 	    && (rdev->recovery_offset <= sh->sector
3510 		|| rdev->mddev->recovery_cp <= sh->sector))
3511 		rv = 1;
3512 	rcu_read_unlock();
3513 	return rv;
3514 }
3515 
3516 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3517 			   int disk_idx, int disks)
3518 {
3519 	struct r5dev *dev = &sh->dev[disk_idx];
3520 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3521 				  &sh->dev[s->failed_num[1]] };
3522 	int i;
3523 
3524 
3525 	if (test_bit(R5_LOCKED, &dev->flags) ||
3526 	    test_bit(R5_UPTODATE, &dev->flags))
3527 		/* No point reading this as we already have it or have
3528 		 * decided to get it.
3529 		 */
3530 		return 0;
3531 
3532 	if (dev->toread ||
3533 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3534 		/* We need this block to directly satisfy a request */
3535 		return 1;
3536 
3537 	if (s->syncing || s->expanding ||
3538 	    (s->replacing && want_replace(sh, disk_idx)))
3539 		/* When syncing, or expanding we read everything.
3540 		 * When replacing, we need the replaced block.
3541 		 */
3542 		return 1;
3543 
3544 	if ((s->failed >= 1 && fdev[0]->toread) ||
3545 	    (s->failed >= 2 && fdev[1]->toread))
3546 		/* If we want to read from a failed device, then
3547 		 * we need to actually read every other device.
3548 		 */
3549 		return 1;
3550 
3551 	/* Sometimes neither read-modify-write nor reconstruct-write
3552 	 * cycles can work.  In those cases we read every block we
3553 	 * can.  Then the parity-update is certain to have enough to
3554 	 * work with.
3555 	 * This can only be a problem when we need to write something,
3556 	 * and some device has failed.  If either of those tests
3557 	 * fail we need look no further.
3558 	 */
3559 	if (!s->failed || !s->to_write)
3560 		return 0;
3561 
3562 	if (test_bit(R5_Insync, &dev->flags) &&
3563 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3564 		/* Pre-reads at not permitted until after short delay
3565 		 * to gather multiple requests.  However if this
3566 		 * device is no Insync, the block could only be computed
3567 		 * and there is no need to delay that.
3568 		 */
3569 		return 0;
3570 
3571 	for (i = 0; i < s->failed && i < 2; i++) {
3572 		if (fdev[i]->towrite &&
3573 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3574 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3575 			/* If we have a partial write to a failed
3576 			 * device, then we will need to reconstruct
3577 			 * the content of that device, so all other
3578 			 * devices must be read.
3579 			 */
3580 			return 1;
3581 	}
3582 
3583 	/* If we are forced to do a reconstruct-write, either because
3584 	 * the current RAID6 implementation only supports that, or
3585 	 * because parity cannot be trusted and we are currently
3586 	 * recovering it, there is extra need to be careful.
3587 	 * If one of the devices that we would need to read, because
3588 	 * it is not being overwritten (and maybe not written at all)
3589 	 * is missing/faulty, then we need to read everything we can.
3590 	 */
3591 	if (sh->raid_conf->level != 6 &&
3592 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3593 		/* reconstruct-write isn't being forced */
3594 		return 0;
3595 	for (i = 0; i < s->failed && i < 2; i++) {
3596 		if (s->failed_num[i] != sh->pd_idx &&
3597 		    s->failed_num[i] != sh->qd_idx &&
3598 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3599 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3600 			return 1;
3601 	}
3602 
3603 	return 0;
3604 }
3605 
3606 /* fetch_block - checks the given member device to see if its data needs
3607  * to be read or computed to satisfy a request.
3608  *
3609  * Returns 1 when no more member devices need to be checked, otherwise returns
3610  * 0 to tell the loop in handle_stripe_fill to continue
3611  */
3612 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3613 		       int disk_idx, int disks)
3614 {
3615 	struct r5dev *dev = &sh->dev[disk_idx];
3616 
3617 	/* is the data in this block needed, and can we get it? */
3618 	if (need_this_block(sh, s, disk_idx, disks)) {
3619 		/* we would like to get this block, possibly by computing it,
3620 		 * otherwise read it if the backing disk is insync
3621 		 */
3622 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3623 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3624 		BUG_ON(sh->batch_head);
3625 
3626 		/*
3627 		 * In the raid6 case if the only non-uptodate disk is P
3628 		 * then we already trusted P to compute the other failed
3629 		 * drives. It is safe to compute rather than re-read P.
3630 		 * In other cases we only compute blocks from failed
3631 		 * devices, otherwise check/repair might fail to detect
3632 		 * a real inconsistency.
3633 		 */
3634 
3635 		if ((s->uptodate == disks - 1) &&
3636 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3637 		    (s->failed && (disk_idx == s->failed_num[0] ||
3638 				   disk_idx == s->failed_num[1])))) {
3639 			/* have disk failed, and we're requested to fetch it;
3640 			 * do compute it
3641 			 */
3642 			pr_debug("Computing stripe %llu block %d\n",
3643 			       (unsigned long long)sh->sector, disk_idx);
3644 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3645 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3646 			set_bit(R5_Wantcompute, &dev->flags);
3647 			sh->ops.target = disk_idx;
3648 			sh->ops.target2 = -1; /* no 2nd target */
3649 			s->req_compute = 1;
3650 			/* Careful: from this point on 'uptodate' is in the eye
3651 			 * of raid_run_ops which services 'compute' operations
3652 			 * before writes. R5_Wantcompute flags a block that will
3653 			 * be R5_UPTODATE by the time it is needed for a
3654 			 * subsequent operation.
3655 			 */
3656 			s->uptodate++;
3657 			return 1;
3658 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3659 			/* Computing 2-failure is *very* expensive; only
3660 			 * do it if failed >= 2
3661 			 */
3662 			int other;
3663 			for (other = disks; other--; ) {
3664 				if (other == disk_idx)
3665 					continue;
3666 				if (!test_bit(R5_UPTODATE,
3667 				      &sh->dev[other].flags))
3668 					break;
3669 			}
3670 			BUG_ON(other < 0);
3671 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3672 			       (unsigned long long)sh->sector,
3673 			       disk_idx, other);
3674 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3675 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3676 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3677 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3678 			sh->ops.target = disk_idx;
3679 			sh->ops.target2 = other;
3680 			s->uptodate += 2;
3681 			s->req_compute = 1;
3682 			return 1;
3683 		} else if (test_bit(R5_Insync, &dev->flags)) {
3684 			set_bit(R5_LOCKED, &dev->flags);
3685 			set_bit(R5_Wantread, &dev->flags);
3686 			s->locked++;
3687 			pr_debug("Reading block %d (sync=%d)\n",
3688 				disk_idx, s->syncing);
3689 		}
3690 	}
3691 
3692 	return 0;
3693 }
3694 
3695 /**
3696  * handle_stripe_fill - read or compute data to satisfy pending requests.
3697  */
3698 static void handle_stripe_fill(struct stripe_head *sh,
3699 			       struct stripe_head_state *s,
3700 			       int disks)
3701 {
3702 	int i;
3703 
3704 	/* look for blocks to read/compute, skip this if a compute
3705 	 * is already in flight, or if the stripe contents are in the
3706 	 * midst of changing due to a write
3707 	 */
3708 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3709 	    !sh->reconstruct_state) {
3710 
3711 		/*
3712 		 * For degraded stripe with data in journal, do not handle
3713 		 * read requests yet, instead, flush the stripe to raid
3714 		 * disks first, this avoids handling complex rmw of write
3715 		 * back cache (prexor with orig_page, and then xor with
3716 		 * page) in the read path
3717 		 */
3718 		if (s->injournal && s->failed) {
3719 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3720 				r5c_make_stripe_write_out(sh);
3721 			goto out;
3722 		}
3723 
3724 		for (i = disks; i--; )
3725 			if (fetch_block(sh, s, i, disks))
3726 				break;
3727 	}
3728 out:
3729 	set_bit(STRIPE_HANDLE, &sh->state);
3730 }
3731 
3732 static void break_stripe_batch_list(struct stripe_head *head_sh,
3733 				    unsigned long handle_flags);
3734 /* handle_stripe_clean_event
3735  * any written block on an uptodate or failed drive can be returned.
3736  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3737  * never LOCKED, so we don't need to test 'failed' directly.
3738  */
3739 static void handle_stripe_clean_event(struct r5conf *conf,
3740 	struct stripe_head *sh, int disks)
3741 {
3742 	int i;
3743 	struct r5dev *dev;
3744 	int discard_pending = 0;
3745 	struct stripe_head *head_sh = sh;
3746 	bool do_endio = false;
3747 
3748 	for (i = disks; i--; )
3749 		if (sh->dev[i].written) {
3750 			dev = &sh->dev[i];
3751 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3752 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3753 			     test_bit(R5_Discard, &dev->flags) ||
3754 			     test_bit(R5_SkipCopy, &dev->flags))) {
3755 				/* We can return any write requests */
3756 				struct bio *wbi, *wbi2;
3757 				pr_debug("Return write for disc %d\n", i);
3758 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3759 					clear_bit(R5_UPTODATE, &dev->flags);
3760 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3761 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3762 				}
3763 				do_endio = true;
3764 
3765 returnbi:
3766 				dev->page = dev->orig_page;
3767 				wbi = dev->written;
3768 				dev->written = NULL;
3769 				while (wbi && wbi->bi_iter.bi_sector <
3770 					dev->sector + STRIPE_SECTORS) {
3771 					wbi2 = r5_next_bio(wbi, dev->sector);
3772 					md_write_end(conf->mddev);
3773 					bio_endio(wbi);
3774 					wbi = wbi2;
3775 				}
3776 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3777 						STRIPE_SECTORS,
3778 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3779 						0);
3780 				if (head_sh->batch_head) {
3781 					sh = list_first_entry(&sh->batch_list,
3782 							      struct stripe_head,
3783 							      batch_list);
3784 					if (sh != head_sh) {
3785 						dev = &sh->dev[i];
3786 						goto returnbi;
3787 					}
3788 				}
3789 				sh = head_sh;
3790 				dev = &sh->dev[i];
3791 			} else if (test_bit(R5_Discard, &dev->flags))
3792 				discard_pending = 1;
3793 		}
3794 
3795 	log_stripe_write_finished(sh);
3796 
3797 	if (!discard_pending &&
3798 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3799 		int hash;
3800 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3801 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3802 		if (sh->qd_idx >= 0) {
3803 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3804 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3805 		}
3806 		/* now that discard is done we can proceed with any sync */
3807 		clear_bit(STRIPE_DISCARD, &sh->state);
3808 		/*
3809 		 * SCSI discard will change some bio fields and the stripe has
3810 		 * no updated data, so remove it from hash list and the stripe
3811 		 * will be reinitialized
3812 		 */
3813 unhash:
3814 		hash = sh->hash_lock_index;
3815 		spin_lock_irq(conf->hash_locks + hash);
3816 		remove_hash(sh);
3817 		spin_unlock_irq(conf->hash_locks + hash);
3818 		if (head_sh->batch_head) {
3819 			sh = list_first_entry(&sh->batch_list,
3820 					      struct stripe_head, batch_list);
3821 			if (sh != head_sh)
3822 					goto unhash;
3823 		}
3824 		sh = head_sh;
3825 
3826 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3827 			set_bit(STRIPE_HANDLE, &sh->state);
3828 
3829 	}
3830 
3831 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3832 		if (atomic_dec_and_test(&conf->pending_full_writes))
3833 			md_wakeup_thread(conf->mddev->thread);
3834 
3835 	if (head_sh->batch_head && do_endio)
3836 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3837 }
3838 
3839 /*
3840  * For RMW in write back cache, we need extra page in prexor to store the
3841  * old data. This page is stored in dev->orig_page.
3842  *
3843  * This function checks whether we have data for prexor. The exact logic
3844  * is:
3845  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3846  */
3847 static inline bool uptodate_for_rmw(struct r5dev *dev)
3848 {
3849 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3850 		(!test_bit(R5_InJournal, &dev->flags) ||
3851 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3852 }
3853 
3854 static int handle_stripe_dirtying(struct r5conf *conf,
3855 				  struct stripe_head *sh,
3856 				  struct stripe_head_state *s,
3857 				  int disks)
3858 {
3859 	int rmw = 0, rcw = 0, i;
3860 	sector_t recovery_cp = conf->mddev->recovery_cp;
3861 
3862 	/* Check whether resync is now happening or should start.
3863 	 * If yes, then the array is dirty (after unclean shutdown or
3864 	 * initial creation), so parity in some stripes might be inconsistent.
3865 	 * In this case, we need to always do reconstruct-write, to ensure
3866 	 * that in case of drive failure or read-error correction, we
3867 	 * generate correct data from the parity.
3868 	 */
3869 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3870 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3871 	     s->failed == 0)) {
3872 		/* Calculate the real rcw later - for now make it
3873 		 * look like rcw is cheaper
3874 		 */
3875 		rcw = 1; rmw = 2;
3876 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3877 			 conf->rmw_level, (unsigned long long)recovery_cp,
3878 			 (unsigned long long)sh->sector);
3879 	} else for (i = disks; i--; ) {
3880 		/* would I have to read this buffer for read_modify_write */
3881 		struct r5dev *dev = &sh->dev[i];
3882 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3883 		     i == sh->pd_idx || i == sh->qd_idx ||
3884 		     test_bit(R5_InJournal, &dev->flags)) &&
3885 		    !test_bit(R5_LOCKED, &dev->flags) &&
3886 		    !(uptodate_for_rmw(dev) ||
3887 		      test_bit(R5_Wantcompute, &dev->flags))) {
3888 			if (test_bit(R5_Insync, &dev->flags))
3889 				rmw++;
3890 			else
3891 				rmw += 2*disks;  /* cannot read it */
3892 		}
3893 		/* Would I have to read this buffer for reconstruct_write */
3894 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3895 		    i != sh->pd_idx && i != sh->qd_idx &&
3896 		    !test_bit(R5_LOCKED, &dev->flags) &&
3897 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3898 		      test_bit(R5_Wantcompute, &dev->flags))) {
3899 			if (test_bit(R5_Insync, &dev->flags))
3900 				rcw++;
3901 			else
3902 				rcw += 2*disks;
3903 		}
3904 	}
3905 
3906 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3907 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3908 	set_bit(STRIPE_HANDLE, &sh->state);
3909 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3910 		/* prefer read-modify-write, but need to get some data */
3911 		if (conf->mddev->queue)
3912 			blk_add_trace_msg(conf->mddev->queue,
3913 					  "raid5 rmw %llu %d",
3914 					  (unsigned long long)sh->sector, rmw);
3915 		for (i = disks; i--; ) {
3916 			struct r5dev *dev = &sh->dev[i];
3917 			if (test_bit(R5_InJournal, &dev->flags) &&
3918 			    dev->page == dev->orig_page &&
3919 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3920 				/* alloc page for prexor */
3921 				struct page *p = alloc_page(GFP_NOIO);
3922 
3923 				if (p) {
3924 					dev->orig_page = p;
3925 					continue;
3926 				}
3927 
3928 				/*
3929 				 * alloc_page() failed, try use
3930 				 * disk_info->extra_page
3931 				 */
3932 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3933 						      &conf->cache_state)) {
3934 					r5c_use_extra_page(sh);
3935 					break;
3936 				}
3937 
3938 				/* extra_page in use, add to delayed_list */
3939 				set_bit(STRIPE_DELAYED, &sh->state);
3940 				s->waiting_extra_page = 1;
3941 				return -EAGAIN;
3942 			}
3943 		}
3944 
3945 		for (i = disks; i--; ) {
3946 			struct r5dev *dev = &sh->dev[i];
3947 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3948 			     i == sh->pd_idx || i == sh->qd_idx ||
3949 			     test_bit(R5_InJournal, &dev->flags)) &&
3950 			    !test_bit(R5_LOCKED, &dev->flags) &&
3951 			    !(uptodate_for_rmw(dev) ||
3952 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3953 			    test_bit(R5_Insync, &dev->flags)) {
3954 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3955 					     &sh->state)) {
3956 					pr_debug("Read_old block %d for r-m-w\n",
3957 						 i);
3958 					set_bit(R5_LOCKED, &dev->flags);
3959 					set_bit(R5_Wantread, &dev->flags);
3960 					s->locked++;
3961 				} else {
3962 					set_bit(STRIPE_DELAYED, &sh->state);
3963 					set_bit(STRIPE_HANDLE, &sh->state);
3964 				}
3965 			}
3966 		}
3967 	}
3968 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3969 		/* want reconstruct write, but need to get some data */
3970 		int qread =0;
3971 		rcw = 0;
3972 		for (i = disks; i--; ) {
3973 			struct r5dev *dev = &sh->dev[i];
3974 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3975 			    i != sh->pd_idx && i != sh->qd_idx &&
3976 			    !test_bit(R5_LOCKED, &dev->flags) &&
3977 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3978 			      test_bit(R5_Wantcompute, &dev->flags))) {
3979 				rcw++;
3980 				if (test_bit(R5_Insync, &dev->flags) &&
3981 				    test_bit(STRIPE_PREREAD_ACTIVE,
3982 					     &sh->state)) {
3983 					pr_debug("Read_old block "
3984 						"%d for Reconstruct\n", i);
3985 					set_bit(R5_LOCKED, &dev->flags);
3986 					set_bit(R5_Wantread, &dev->flags);
3987 					s->locked++;
3988 					qread++;
3989 				} else {
3990 					set_bit(STRIPE_DELAYED, &sh->state);
3991 					set_bit(STRIPE_HANDLE, &sh->state);
3992 				}
3993 			}
3994 		}
3995 		if (rcw && conf->mddev->queue)
3996 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3997 					  (unsigned long long)sh->sector,
3998 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3999 	}
4000 
4001 	if (rcw > disks && rmw > disks &&
4002 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4003 		set_bit(STRIPE_DELAYED, &sh->state);
4004 
4005 	/* now if nothing is locked, and if we have enough data,
4006 	 * we can start a write request
4007 	 */
4008 	/* since handle_stripe can be called at any time we need to handle the
4009 	 * case where a compute block operation has been submitted and then a
4010 	 * subsequent call wants to start a write request.  raid_run_ops only
4011 	 * handles the case where compute block and reconstruct are requested
4012 	 * simultaneously.  If this is not the case then new writes need to be
4013 	 * held off until the compute completes.
4014 	 */
4015 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4016 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4017 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4018 		schedule_reconstruction(sh, s, rcw == 0, 0);
4019 	return 0;
4020 }
4021 
4022 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4023 				struct stripe_head_state *s, int disks)
4024 {
4025 	struct r5dev *dev = NULL;
4026 
4027 	BUG_ON(sh->batch_head);
4028 	set_bit(STRIPE_HANDLE, &sh->state);
4029 
4030 	switch (sh->check_state) {
4031 	case check_state_idle:
4032 		/* start a new check operation if there are no failures */
4033 		if (s->failed == 0) {
4034 			BUG_ON(s->uptodate != disks);
4035 			sh->check_state = check_state_run;
4036 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4037 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4038 			s->uptodate--;
4039 			break;
4040 		}
4041 		dev = &sh->dev[s->failed_num[0]];
4042 		/* fall through */
4043 	case check_state_compute_result:
4044 		sh->check_state = check_state_idle;
4045 		if (!dev)
4046 			dev = &sh->dev[sh->pd_idx];
4047 
4048 		/* check that a write has not made the stripe insync */
4049 		if (test_bit(STRIPE_INSYNC, &sh->state))
4050 			break;
4051 
4052 		/* either failed parity check, or recovery is happening */
4053 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4054 		BUG_ON(s->uptodate != disks);
4055 
4056 		set_bit(R5_LOCKED, &dev->flags);
4057 		s->locked++;
4058 		set_bit(R5_Wantwrite, &dev->flags);
4059 
4060 		clear_bit(STRIPE_DEGRADED, &sh->state);
4061 		set_bit(STRIPE_INSYNC, &sh->state);
4062 		break;
4063 	case check_state_run:
4064 		break; /* we will be called again upon completion */
4065 	case check_state_check_result:
4066 		sh->check_state = check_state_idle;
4067 
4068 		/* if a failure occurred during the check operation, leave
4069 		 * STRIPE_INSYNC not set and let the stripe be handled again
4070 		 */
4071 		if (s->failed)
4072 			break;
4073 
4074 		/* handle a successful check operation, if parity is correct
4075 		 * we are done.  Otherwise update the mismatch count and repair
4076 		 * parity if !MD_RECOVERY_CHECK
4077 		 */
4078 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4079 			/* parity is correct (on disc,
4080 			 * not in buffer any more)
4081 			 */
4082 			set_bit(STRIPE_INSYNC, &sh->state);
4083 		else {
4084 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4085 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4086 				/* don't try to repair!! */
4087 				set_bit(STRIPE_INSYNC, &sh->state);
4088 				pr_warn_ratelimited("%s: mismatch sector in range "
4089 						    "%llu-%llu\n", mdname(conf->mddev),
4090 						    (unsigned long long) sh->sector,
4091 						    (unsigned long long) sh->sector +
4092 						    STRIPE_SECTORS);
4093 			} else {
4094 				sh->check_state = check_state_compute_run;
4095 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4096 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4097 				set_bit(R5_Wantcompute,
4098 					&sh->dev[sh->pd_idx].flags);
4099 				sh->ops.target = sh->pd_idx;
4100 				sh->ops.target2 = -1;
4101 				s->uptodate++;
4102 			}
4103 		}
4104 		break;
4105 	case check_state_compute_run:
4106 		break;
4107 	default:
4108 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4109 		       __func__, sh->check_state,
4110 		       (unsigned long long) sh->sector);
4111 		BUG();
4112 	}
4113 }
4114 
4115 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4116 				  struct stripe_head_state *s,
4117 				  int disks)
4118 {
4119 	int pd_idx = sh->pd_idx;
4120 	int qd_idx = sh->qd_idx;
4121 	struct r5dev *dev;
4122 
4123 	BUG_ON(sh->batch_head);
4124 	set_bit(STRIPE_HANDLE, &sh->state);
4125 
4126 	BUG_ON(s->failed > 2);
4127 
4128 	/* Want to check and possibly repair P and Q.
4129 	 * However there could be one 'failed' device, in which
4130 	 * case we can only check one of them, possibly using the
4131 	 * other to generate missing data
4132 	 */
4133 
4134 	switch (sh->check_state) {
4135 	case check_state_idle:
4136 		/* start a new check operation if there are < 2 failures */
4137 		if (s->failed == s->q_failed) {
4138 			/* The only possible failed device holds Q, so it
4139 			 * makes sense to check P (If anything else were failed,
4140 			 * we would have used P to recreate it).
4141 			 */
4142 			sh->check_state = check_state_run;
4143 		}
4144 		if (!s->q_failed && s->failed < 2) {
4145 			/* Q is not failed, and we didn't use it to generate
4146 			 * anything, so it makes sense to check it
4147 			 */
4148 			if (sh->check_state == check_state_run)
4149 				sh->check_state = check_state_run_pq;
4150 			else
4151 				sh->check_state = check_state_run_q;
4152 		}
4153 
4154 		/* discard potentially stale zero_sum_result */
4155 		sh->ops.zero_sum_result = 0;
4156 
4157 		if (sh->check_state == check_state_run) {
4158 			/* async_xor_zero_sum destroys the contents of P */
4159 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4160 			s->uptodate--;
4161 		}
4162 		if (sh->check_state >= check_state_run &&
4163 		    sh->check_state <= check_state_run_pq) {
4164 			/* async_syndrome_zero_sum preserves P and Q, so
4165 			 * no need to mark them !uptodate here
4166 			 */
4167 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4168 			break;
4169 		}
4170 
4171 		/* we have 2-disk failure */
4172 		BUG_ON(s->failed != 2);
4173 		/* fall through */
4174 	case check_state_compute_result:
4175 		sh->check_state = check_state_idle;
4176 
4177 		/* check that a write has not made the stripe insync */
4178 		if (test_bit(STRIPE_INSYNC, &sh->state))
4179 			break;
4180 
4181 		/* now write out any block on a failed drive,
4182 		 * or P or Q if they were recomputed
4183 		 */
4184 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4185 		if (s->failed == 2) {
4186 			dev = &sh->dev[s->failed_num[1]];
4187 			s->locked++;
4188 			set_bit(R5_LOCKED, &dev->flags);
4189 			set_bit(R5_Wantwrite, &dev->flags);
4190 		}
4191 		if (s->failed >= 1) {
4192 			dev = &sh->dev[s->failed_num[0]];
4193 			s->locked++;
4194 			set_bit(R5_LOCKED, &dev->flags);
4195 			set_bit(R5_Wantwrite, &dev->flags);
4196 		}
4197 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4198 			dev = &sh->dev[pd_idx];
4199 			s->locked++;
4200 			set_bit(R5_LOCKED, &dev->flags);
4201 			set_bit(R5_Wantwrite, &dev->flags);
4202 		}
4203 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4204 			dev = &sh->dev[qd_idx];
4205 			s->locked++;
4206 			set_bit(R5_LOCKED, &dev->flags);
4207 			set_bit(R5_Wantwrite, &dev->flags);
4208 		}
4209 		clear_bit(STRIPE_DEGRADED, &sh->state);
4210 
4211 		set_bit(STRIPE_INSYNC, &sh->state);
4212 		break;
4213 	case check_state_run:
4214 	case check_state_run_q:
4215 	case check_state_run_pq:
4216 		break; /* we will be called again upon completion */
4217 	case check_state_check_result:
4218 		sh->check_state = check_state_idle;
4219 
4220 		/* handle a successful check operation, if parity is correct
4221 		 * we are done.  Otherwise update the mismatch count and repair
4222 		 * parity if !MD_RECOVERY_CHECK
4223 		 */
4224 		if (sh->ops.zero_sum_result == 0) {
4225 			/* both parities are correct */
4226 			if (!s->failed)
4227 				set_bit(STRIPE_INSYNC, &sh->state);
4228 			else {
4229 				/* in contrast to the raid5 case we can validate
4230 				 * parity, but still have a failure to write
4231 				 * back
4232 				 */
4233 				sh->check_state = check_state_compute_result;
4234 				/* Returning at this point means that we may go
4235 				 * off and bring p and/or q uptodate again so
4236 				 * we make sure to check zero_sum_result again
4237 				 * to verify if p or q need writeback
4238 				 */
4239 			}
4240 		} else {
4241 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4242 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4243 				/* don't try to repair!! */
4244 				set_bit(STRIPE_INSYNC, &sh->state);
4245 				pr_warn_ratelimited("%s: mismatch sector in range "
4246 						    "%llu-%llu\n", mdname(conf->mddev),
4247 						    (unsigned long long) sh->sector,
4248 						    (unsigned long long) sh->sector +
4249 						    STRIPE_SECTORS);
4250 			} else {
4251 				int *target = &sh->ops.target;
4252 
4253 				sh->ops.target = -1;
4254 				sh->ops.target2 = -1;
4255 				sh->check_state = check_state_compute_run;
4256 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4257 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4258 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4259 					set_bit(R5_Wantcompute,
4260 						&sh->dev[pd_idx].flags);
4261 					*target = pd_idx;
4262 					target = &sh->ops.target2;
4263 					s->uptodate++;
4264 				}
4265 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4266 					set_bit(R5_Wantcompute,
4267 						&sh->dev[qd_idx].flags);
4268 					*target = qd_idx;
4269 					s->uptodate++;
4270 				}
4271 			}
4272 		}
4273 		break;
4274 	case check_state_compute_run:
4275 		break;
4276 	default:
4277 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4278 			__func__, sh->check_state,
4279 			(unsigned long long) sh->sector);
4280 		BUG();
4281 	}
4282 }
4283 
4284 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4285 {
4286 	int i;
4287 
4288 	/* We have read all the blocks in this stripe and now we need to
4289 	 * copy some of them into a target stripe for expand.
4290 	 */
4291 	struct dma_async_tx_descriptor *tx = NULL;
4292 	BUG_ON(sh->batch_head);
4293 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4294 	for (i = 0; i < sh->disks; i++)
4295 		if (i != sh->pd_idx && i != sh->qd_idx) {
4296 			int dd_idx, j;
4297 			struct stripe_head *sh2;
4298 			struct async_submit_ctl submit;
4299 
4300 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4301 			sector_t s = raid5_compute_sector(conf, bn, 0,
4302 							  &dd_idx, NULL);
4303 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4304 			if (sh2 == NULL)
4305 				/* so far only the early blocks of this stripe
4306 				 * have been requested.  When later blocks
4307 				 * get requested, we will try again
4308 				 */
4309 				continue;
4310 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4311 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4312 				/* must have already done this block */
4313 				raid5_release_stripe(sh2);
4314 				continue;
4315 			}
4316 
4317 			/* place all the copies on one channel */
4318 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4319 			tx = async_memcpy(sh2->dev[dd_idx].page,
4320 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4321 					  &submit);
4322 
4323 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4324 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4325 			for (j = 0; j < conf->raid_disks; j++)
4326 				if (j != sh2->pd_idx &&
4327 				    j != sh2->qd_idx &&
4328 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4329 					break;
4330 			if (j == conf->raid_disks) {
4331 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4332 				set_bit(STRIPE_HANDLE, &sh2->state);
4333 			}
4334 			raid5_release_stripe(sh2);
4335 
4336 		}
4337 	/* done submitting copies, wait for them to complete */
4338 	async_tx_quiesce(&tx);
4339 }
4340 
4341 /*
4342  * handle_stripe - do things to a stripe.
4343  *
4344  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4345  * state of various bits to see what needs to be done.
4346  * Possible results:
4347  *    return some read requests which now have data
4348  *    return some write requests which are safely on storage
4349  *    schedule a read on some buffers
4350  *    schedule a write of some buffers
4351  *    return confirmation of parity correctness
4352  *
4353  */
4354 
4355 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4356 {
4357 	struct r5conf *conf = sh->raid_conf;
4358 	int disks = sh->disks;
4359 	struct r5dev *dev;
4360 	int i;
4361 	int do_recovery = 0;
4362 
4363 	memset(s, 0, sizeof(*s));
4364 
4365 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4366 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4367 	s->failed_num[0] = -1;
4368 	s->failed_num[1] = -1;
4369 	s->log_failed = r5l_log_disk_error(conf);
4370 
4371 	/* Now to look around and see what can be done */
4372 	rcu_read_lock();
4373 	for (i=disks; i--; ) {
4374 		struct md_rdev *rdev;
4375 		sector_t first_bad;
4376 		int bad_sectors;
4377 		int is_bad = 0;
4378 
4379 		dev = &sh->dev[i];
4380 
4381 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4382 			 i, dev->flags,
4383 			 dev->toread, dev->towrite, dev->written);
4384 		/* maybe we can reply to a read
4385 		 *
4386 		 * new wantfill requests are only permitted while
4387 		 * ops_complete_biofill is guaranteed to be inactive
4388 		 */
4389 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4390 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4391 			set_bit(R5_Wantfill, &dev->flags);
4392 
4393 		/* now count some things */
4394 		if (test_bit(R5_LOCKED, &dev->flags))
4395 			s->locked++;
4396 		if (test_bit(R5_UPTODATE, &dev->flags))
4397 			s->uptodate++;
4398 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4399 			s->compute++;
4400 			BUG_ON(s->compute > 2);
4401 		}
4402 
4403 		if (test_bit(R5_Wantfill, &dev->flags))
4404 			s->to_fill++;
4405 		else if (dev->toread)
4406 			s->to_read++;
4407 		if (dev->towrite) {
4408 			s->to_write++;
4409 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4410 				s->non_overwrite++;
4411 		}
4412 		if (dev->written)
4413 			s->written++;
4414 		/* Prefer to use the replacement for reads, but only
4415 		 * if it is recovered enough and has no bad blocks.
4416 		 */
4417 		rdev = rcu_dereference(conf->disks[i].replacement);
4418 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4419 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4420 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4421 				 &first_bad, &bad_sectors))
4422 			set_bit(R5_ReadRepl, &dev->flags);
4423 		else {
4424 			if (rdev && !test_bit(Faulty, &rdev->flags))
4425 				set_bit(R5_NeedReplace, &dev->flags);
4426 			else
4427 				clear_bit(R5_NeedReplace, &dev->flags);
4428 			rdev = rcu_dereference(conf->disks[i].rdev);
4429 			clear_bit(R5_ReadRepl, &dev->flags);
4430 		}
4431 		if (rdev && test_bit(Faulty, &rdev->flags))
4432 			rdev = NULL;
4433 		if (rdev) {
4434 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4435 					     &first_bad, &bad_sectors);
4436 			if (s->blocked_rdev == NULL
4437 			    && (test_bit(Blocked, &rdev->flags)
4438 				|| is_bad < 0)) {
4439 				if (is_bad < 0)
4440 					set_bit(BlockedBadBlocks,
4441 						&rdev->flags);
4442 				s->blocked_rdev = rdev;
4443 				atomic_inc(&rdev->nr_pending);
4444 			}
4445 		}
4446 		clear_bit(R5_Insync, &dev->flags);
4447 		if (!rdev)
4448 			/* Not in-sync */;
4449 		else if (is_bad) {
4450 			/* also not in-sync */
4451 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4452 			    test_bit(R5_UPTODATE, &dev->flags)) {
4453 				/* treat as in-sync, but with a read error
4454 				 * which we can now try to correct
4455 				 */
4456 				set_bit(R5_Insync, &dev->flags);
4457 				set_bit(R5_ReadError, &dev->flags);
4458 			}
4459 		} else if (test_bit(In_sync, &rdev->flags))
4460 			set_bit(R5_Insync, &dev->flags);
4461 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4462 			/* in sync if before recovery_offset */
4463 			set_bit(R5_Insync, &dev->flags);
4464 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4465 			 test_bit(R5_Expanded, &dev->flags))
4466 			/* If we've reshaped into here, we assume it is Insync.
4467 			 * We will shortly update recovery_offset to make
4468 			 * it official.
4469 			 */
4470 			set_bit(R5_Insync, &dev->flags);
4471 
4472 		if (test_bit(R5_WriteError, &dev->flags)) {
4473 			/* This flag does not apply to '.replacement'
4474 			 * only to .rdev, so make sure to check that*/
4475 			struct md_rdev *rdev2 = rcu_dereference(
4476 				conf->disks[i].rdev);
4477 			if (rdev2 == rdev)
4478 				clear_bit(R5_Insync, &dev->flags);
4479 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4480 				s->handle_bad_blocks = 1;
4481 				atomic_inc(&rdev2->nr_pending);
4482 			} else
4483 				clear_bit(R5_WriteError, &dev->flags);
4484 		}
4485 		if (test_bit(R5_MadeGood, &dev->flags)) {
4486 			/* This flag does not apply to '.replacement'
4487 			 * only to .rdev, so make sure to check that*/
4488 			struct md_rdev *rdev2 = rcu_dereference(
4489 				conf->disks[i].rdev);
4490 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4491 				s->handle_bad_blocks = 1;
4492 				atomic_inc(&rdev2->nr_pending);
4493 			} else
4494 				clear_bit(R5_MadeGood, &dev->flags);
4495 		}
4496 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4497 			struct md_rdev *rdev2 = rcu_dereference(
4498 				conf->disks[i].replacement);
4499 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4500 				s->handle_bad_blocks = 1;
4501 				atomic_inc(&rdev2->nr_pending);
4502 			} else
4503 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4504 		}
4505 		if (!test_bit(R5_Insync, &dev->flags)) {
4506 			/* The ReadError flag will just be confusing now */
4507 			clear_bit(R5_ReadError, &dev->flags);
4508 			clear_bit(R5_ReWrite, &dev->flags);
4509 		}
4510 		if (test_bit(R5_ReadError, &dev->flags))
4511 			clear_bit(R5_Insync, &dev->flags);
4512 		if (!test_bit(R5_Insync, &dev->flags)) {
4513 			if (s->failed < 2)
4514 				s->failed_num[s->failed] = i;
4515 			s->failed++;
4516 			if (rdev && !test_bit(Faulty, &rdev->flags))
4517 				do_recovery = 1;
4518 		}
4519 
4520 		if (test_bit(R5_InJournal, &dev->flags))
4521 			s->injournal++;
4522 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4523 			s->just_cached++;
4524 	}
4525 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4526 		/* If there is a failed device being replaced,
4527 		 *     we must be recovering.
4528 		 * else if we are after recovery_cp, we must be syncing
4529 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4530 		 * else we can only be replacing
4531 		 * sync and recovery both need to read all devices, and so
4532 		 * use the same flag.
4533 		 */
4534 		if (do_recovery ||
4535 		    sh->sector >= conf->mddev->recovery_cp ||
4536 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4537 			s->syncing = 1;
4538 		else
4539 			s->replacing = 1;
4540 	}
4541 	rcu_read_unlock();
4542 }
4543 
4544 static int clear_batch_ready(struct stripe_head *sh)
4545 {
4546 	/* Return '1' if this is a member of batch, or
4547 	 * '0' if it is a lone stripe or a head which can now be
4548 	 * handled.
4549 	 */
4550 	struct stripe_head *tmp;
4551 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4552 		return (sh->batch_head && sh->batch_head != sh);
4553 	spin_lock(&sh->stripe_lock);
4554 	if (!sh->batch_head) {
4555 		spin_unlock(&sh->stripe_lock);
4556 		return 0;
4557 	}
4558 
4559 	/*
4560 	 * this stripe could be added to a batch list before we check
4561 	 * BATCH_READY, skips it
4562 	 */
4563 	if (sh->batch_head != sh) {
4564 		spin_unlock(&sh->stripe_lock);
4565 		return 1;
4566 	}
4567 	spin_lock(&sh->batch_lock);
4568 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4569 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4570 	spin_unlock(&sh->batch_lock);
4571 	spin_unlock(&sh->stripe_lock);
4572 
4573 	/*
4574 	 * BATCH_READY is cleared, no new stripes can be added.
4575 	 * batch_list can be accessed without lock
4576 	 */
4577 	return 0;
4578 }
4579 
4580 static void break_stripe_batch_list(struct stripe_head *head_sh,
4581 				    unsigned long handle_flags)
4582 {
4583 	struct stripe_head *sh, *next;
4584 	int i;
4585 	int do_wakeup = 0;
4586 
4587 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4588 
4589 		list_del_init(&sh->batch_list);
4590 
4591 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4592 					  (1 << STRIPE_SYNCING) |
4593 					  (1 << STRIPE_REPLACED) |
4594 					  (1 << STRIPE_DELAYED) |
4595 					  (1 << STRIPE_BIT_DELAY) |
4596 					  (1 << STRIPE_FULL_WRITE) |
4597 					  (1 << STRIPE_BIOFILL_RUN) |
4598 					  (1 << STRIPE_COMPUTE_RUN)  |
4599 					  (1 << STRIPE_OPS_REQ_PENDING) |
4600 					  (1 << STRIPE_DISCARD) |
4601 					  (1 << STRIPE_BATCH_READY) |
4602 					  (1 << STRIPE_BATCH_ERR) |
4603 					  (1 << STRIPE_BITMAP_PENDING)),
4604 			"stripe state: %lx\n", sh->state);
4605 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4606 					      (1 << STRIPE_REPLACED)),
4607 			"head stripe state: %lx\n", head_sh->state);
4608 
4609 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4610 					    (1 << STRIPE_PREREAD_ACTIVE) |
4611 					    (1 << STRIPE_DEGRADED)),
4612 			      head_sh->state & (1 << STRIPE_INSYNC));
4613 
4614 		sh->check_state = head_sh->check_state;
4615 		sh->reconstruct_state = head_sh->reconstruct_state;
4616 		for (i = 0; i < sh->disks; i++) {
4617 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4618 				do_wakeup = 1;
4619 			sh->dev[i].flags = head_sh->dev[i].flags &
4620 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4621 		}
4622 		spin_lock_irq(&sh->stripe_lock);
4623 		sh->batch_head = NULL;
4624 		spin_unlock_irq(&sh->stripe_lock);
4625 		if (handle_flags == 0 ||
4626 		    sh->state & handle_flags)
4627 			set_bit(STRIPE_HANDLE, &sh->state);
4628 		raid5_release_stripe(sh);
4629 	}
4630 	spin_lock_irq(&head_sh->stripe_lock);
4631 	head_sh->batch_head = NULL;
4632 	spin_unlock_irq(&head_sh->stripe_lock);
4633 	for (i = 0; i < head_sh->disks; i++)
4634 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4635 			do_wakeup = 1;
4636 	if (head_sh->state & handle_flags)
4637 		set_bit(STRIPE_HANDLE, &head_sh->state);
4638 
4639 	if (do_wakeup)
4640 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4641 }
4642 
4643 static void handle_stripe(struct stripe_head *sh)
4644 {
4645 	struct stripe_head_state s;
4646 	struct r5conf *conf = sh->raid_conf;
4647 	int i;
4648 	int prexor;
4649 	int disks = sh->disks;
4650 	struct r5dev *pdev, *qdev;
4651 
4652 	clear_bit(STRIPE_HANDLE, &sh->state);
4653 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4654 		/* already being handled, ensure it gets handled
4655 		 * again when current action finishes */
4656 		set_bit(STRIPE_HANDLE, &sh->state);
4657 		return;
4658 	}
4659 
4660 	if (clear_batch_ready(sh) ) {
4661 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4662 		return;
4663 	}
4664 
4665 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4666 		break_stripe_batch_list(sh, 0);
4667 
4668 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4669 		spin_lock(&sh->stripe_lock);
4670 		/*
4671 		 * Cannot process 'sync' concurrently with 'discard'.
4672 		 * Flush data in r5cache before 'sync'.
4673 		 */
4674 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4675 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4676 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4677 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4678 			set_bit(STRIPE_SYNCING, &sh->state);
4679 			clear_bit(STRIPE_INSYNC, &sh->state);
4680 			clear_bit(STRIPE_REPLACED, &sh->state);
4681 		}
4682 		spin_unlock(&sh->stripe_lock);
4683 	}
4684 	clear_bit(STRIPE_DELAYED, &sh->state);
4685 
4686 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4687 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4688 	       (unsigned long long)sh->sector, sh->state,
4689 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4690 	       sh->check_state, sh->reconstruct_state);
4691 
4692 	analyse_stripe(sh, &s);
4693 
4694 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4695 		goto finish;
4696 
4697 	if (s.handle_bad_blocks ||
4698 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4699 		set_bit(STRIPE_HANDLE, &sh->state);
4700 		goto finish;
4701 	}
4702 
4703 	if (unlikely(s.blocked_rdev)) {
4704 		if (s.syncing || s.expanding || s.expanded ||
4705 		    s.replacing || s.to_write || s.written) {
4706 			set_bit(STRIPE_HANDLE, &sh->state);
4707 			goto finish;
4708 		}
4709 		/* There is nothing for the blocked_rdev to block */
4710 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4711 		s.blocked_rdev = NULL;
4712 	}
4713 
4714 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4715 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4716 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4717 	}
4718 
4719 	pr_debug("locked=%d uptodate=%d to_read=%d"
4720 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4721 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4722 	       s.failed_num[0], s.failed_num[1]);
4723 	/*
4724 	 * check if the array has lost more than max_degraded devices and,
4725 	 * if so, some requests might need to be failed.
4726 	 *
4727 	 * When journal device failed (log_failed), we will only process
4728 	 * the stripe if there is data need write to raid disks
4729 	 */
4730 	if (s.failed > conf->max_degraded ||
4731 	    (s.log_failed && s.injournal == 0)) {
4732 		sh->check_state = 0;
4733 		sh->reconstruct_state = 0;
4734 		break_stripe_batch_list(sh, 0);
4735 		if (s.to_read+s.to_write+s.written)
4736 			handle_failed_stripe(conf, sh, &s, disks);
4737 		if (s.syncing + s.replacing)
4738 			handle_failed_sync(conf, sh, &s);
4739 	}
4740 
4741 	/* Now we check to see if any write operations have recently
4742 	 * completed
4743 	 */
4744 	prexor = 0;
4745 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4746 		prexor = 1;
4747 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4748 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4749 		sh->reconstruct_state = reconstruct_state_idle;
4750 
4751 		/* All the 'written' buffers and the parity block are ready to
4752 		 * be written back to disk
4753 		 */
4754 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4755 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4756 		BUG_ON(sh->qd_idx >= 0 &&
4757 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4758 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4759 		for (i = disks; i--; ) {
4760 			struct r5dev *dev = &sh->dev[i];
4761 			if (test_bit(R5_LOCKED, &dev->flags) &&
4762 				(i == sh->pd_idx || i == sh->qd_idx ||
4763 				 dev->written || test_bit(R5_InJournal,
4764 							  &dev->flags))) {
4765 				pr_debug("Writing block %d\n", i);
4766 				set_bit(R5_Wantwrite, &dev->flags);
4767 				if (prexor)
4768 					continue;
4769 				if (s.failed > 1)
4770 					continue;
4771 				if (!test_bit(R5_Insync, &dev->flags) ||
4772 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4773 				     s.failed == 0))
4774 					set_bit(STRIPE_INSYNC, &sh->state);
4775 			}
4776 		}
4777 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4778 			s.dec_preread_active = 1;
4779 	}
4780 
4781 	/*
4782 	 * might be able to return some write requests if the parity blocks
4783 	 * are safe, or on a failed drive
4784 	 */
4785 	pdev = &sh->dev[sh->pd_idx];
4786 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4787 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4788 	qdev = &sh->dev[sh->qd_idx];
4789 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4790 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4791 		|| conf->level < 6;
4792 
4793 	if (s.written &&
4794 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4795 			     && !test_bit(R5_LOCKED, &pdev->flags)
4796 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4797 				 test_bit(R5_Discard, &pdev->flags))))) &&
4798 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4799 			     && !test_bit(R5_LOCKED, &qdev->flags)
4800 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4801 				 test_bit(R5_Discard, &qdev->flags))))))
4802 		handle_stripe_clean_event(conf, sh, disks);
4803 
4804 	if (s.just_cached)
4805 		r5c_handle_cached_data_endio(conf, sh, disks);
4806 	log_stripe_write_finished(sh);
4807 
4808 	/* Now we might consider reading some blocks, either to check/generate
4809 	 * parity, or to satisfy requests
4810 	 * or to load a block that is being partially written.
4811 	 */
4812 	if (s.to_read || s.non_overwrite
4813 	    || (conf->level == 6 && s.to_write && s.failed)
4814 	    || (s.syncing && (s.uptodate + s.compute < disks))
4815 	    || s.replacing
4816 	    || s.expanding)
4817 		handle_stripe_fill(sh, &s, disks);
4818 
4819 	/*
4820 	 * When the stripe finishes full journal write cycle (write to journal
4821 	 * and raid disk), this is the clean up procedure so it is ready for
4822 	 * next operation.
4823 	 */
4824 	r5c_finish_stripe_write_out(conf, sh, &s);
4825 
4826 	/*
4827 	 * Now to consider new write requests, cache write back and what else,
4828 	 * if anything should be read.  We do not handle new writes when:
4829 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4830 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4831 	 *    block.
4832 	 * 3/ A r5c cache log write is in flight.
4833 	 */
4834 
4835 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4836 		if (!r5c_is_writeback(conf->log)) {
4837 			if (s.to_write)
4838 				handle_stripe_dirtying(conf, sh, &s, disks);
4839 		} else { /* write back cache */
4840 			int ret = 0;
4841 
4842 			/* First, try handle writes in caching phase */
4843 			if (s.to_write)
4844 				ret = r5c_try_caching_write(conf, sh, &s,
4845 							    disks);
4846 			/*
4847 			 * If caching phase failed: ret == -EAGAIN
4848 			 *    OR
4849 			 * stripe under reclaim: !caching && injournal
4850 			 *
4851 			 * fall back to handle_stripe_dirtying()
4852 			 */
4853 			if (ret == -EAGAIN ||
4854 			    /* stripe under reclaim: !caching && injournal */
4855 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4856 			     s.injournal > 0)) {
4857 				ret = handle_stripe_dirtying(conf, sh, &s,
4858 							     disks);
4859 				if (ret == -EAGAIN)
4860 					goto finish;
4861 			}
4862 		}
4863 	}
4864 
4865 	/* maybe we need to check and possibly fix the parity for this stripe
4866 	 * Any reads will already have been scheduled, so we just see if enough
4867 	 * data is available.  The parity check is held off while parity
4868 	 * dependent operations are in flight.
4869 	 */
4870 	if (sh->check_state ||
4871 	    (s.syncing && s.locked == 0 &&
4872 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4873 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4874 		if (conf->level == 6)
4875 			handle_parity_checks6(conf, sh, &s, disks);
4876 		else
4877 			handle_parity_checks5(conf, sh, &s, disks);
4878 	}
4879 
4880 	if ((s.replacing || s.syncing) && s.locked == 0
4881 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4882 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4883 		/* Write out to replacement devices where possible */
4884 		for (i = 0; i < conf->raid_disks; i++)
4885 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4886 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4887 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4888 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4889 				s.locked++;
4890 			}
4891 		if (s.replacing)
4892 			set_bit(STRIPE_INSYNC, &sh->state);
4893 		set_bit(STRIPE_REPLACED, &sh->state);
4894 	}
4895 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4896 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4897 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4898 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4899 		clear_bit(STRIPE_SYNCING, &sh->state);
4900 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4901 			wake_up(&conf->wait_for_overlap);
4902 	}
4903 
4904 	/* If the failed drives are just a ReadError, then we might need
4905 	 * to progress the repair/check process
4906 	 */
4907 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4908 		for (i = 0; i < s.failed; i++) {
4909 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4910 			if (test_bit(R5_ReadError, &dev->flags)
4911 			    && !test_bit(R5_LOCKED, &dev->flags)
4912 			    && test_bit(R5_UPTODATE, &dev->flags)
4913 				) {
4914 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4915 					set_bit(R5_Wantwrite, &dev->flags);
4916 					set_bit(R5_ReWrite, &dev->flags);
4917 					set_bit(R5_LOCKED, &dev->flags);
4918 					s.locked++;
4919 				} else {
4920 					/* let's read it back */
4921 					set_bit(R5_Wantread, &dev->flags);
4922 					set_bit(R5_LOCKED, &dev->flags);
4923 					s.locked++;
4924 				}
4925 			}
4926 		}
4927 
4928 	/* Finish reconstruct operations initiated by the expansion process */
4929 	if (sh->reconstruct_state == reconstruct_state_result) {
4930 		struct stripe_head *sh_src
4931 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4932 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4933 			/* sh cannot be written until sh_src has been read.
4934 			 * so arrange for sh to be delayed a little
4935 			 */
4936 			set_bit(STRIPE_DELAYED, &sh->state);
4937 			set_bit(STRIPE_HANDLE, &sh->state);
4938 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4939 					      &sh_src->state))
4940 				atomic_inc(&conf->preread_active_stripes);
4941 			raid5_release_stripe(sh_src);
4942 			goto finish;
4943 		}
4944 		if (sh_src)
4945 			raid5_release_stripe(sh_src);
4946 
4947 		sh->reconstruct_state = reconstruct_state_idle;
4948 		clear_bit(STRIPE_EXPANDING, &sh->state);
4949 		for (i = conf->raid_disks; i--; ) {
4950 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4951 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4952 			s.locked++;
4953 		}
4954 	}
4955 
4956 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4957 	    !sh->reconstruct_state) {
4958 		/* Need to write out all blocks after computing parity */
4959 		sh->disks = conf->raid_disks;
4960 		stripe_set_idx(sh->sector, conf, 0, sh);
4961 		schedule_reconstruction(sh, &s, 1, 1);
4962 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4963 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4964 		atomic_dec(&conf->reshape_stripes);
4965 		wake_up(&conf->wait_for_overlap);
4966 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4967 	}
4968 
4969 	if (s.expanding && s.locked == 0 &&
4970 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4971 		handle_stripe_expansion(conf, sh);
4972 
4973 finish:
4974 	/* wait for this device to become unblocked */
4975 	if (unlikely(s.blocked_rdev)) {
4976 		if (conf->mddev->external)
4977 			md_wait_for_blocked_rdev(s.blocked_rdev,
4978 						 conf->mddev);
4979 		else
4980 			/* Internal metadata will immediately
4981 			 * be written by raid5d, so we don't
4982 			 * need to wait here.
4983 			 */
4984 			rdev_dec_pending(s.blocked_rdev,
4985 					 conf->mddev);
4986 	}
4987 
4988 	if (s.handle_bad_blocks)
4989 		for (i = disks; i--; ) {
4990 			struct md_rdev *rdev;
4991 			struct r5dev *dev = &sh->dev[i];
4992 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4993 				/* We own a safe reference to the rdev */
4994 				rdev = conf->disks[i].rdev;
4995 				if (!rdev_set_badblocks(rdev, sh->sector,
4996 							STRIPE_SECTORS, 0))
4997 					md_error(conf->mddev, rdev);
4998 				rdev_dec_pending(rdev, conf->mddev);
4999 			}
5000 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5001 				rdev = conf->disks[i].rdev;
5002 				rdev_clear_badblocks(rdev, sh->sector,
5003 						     STRIPE_SECTORS, 0);
5004 				rdev_dec_pending(rdev, conf->mddev);
5005 			}
5006 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5007 				rdev = conf->disks[i].replacement;
5008 				if (!rdev)
5009 					/* rdev have been moved down */
5010 					rdev = conf->disks[i].rdev;
5011 				rdev_clear_badblocks(rdev, sh->sector,
5012 						     STRIPE_SECTORS, 0);
5013 				rdev_dec_pending(rdev, conf->mddev);
5014 			}
5015 		}
5016 
5017 	if (s.ops_request)
5018 		raid_run_ops(sh, s.ops_request);
5019 
5020 	ops_run_io(sh, &s);
5021 
5022 	if (s.dec_preread_active) {
5023 		/* We delay this until after ops_run_io so that if make_request
5024 		 * is waiting on a flush, it won't continue until the writes
5025 		 * have actually been submitted.
5026 		 */
5027 		atomic_dec(&conf->preread_active_stripes);
5028 		if (atomic_read(&conf->preread_active_stripes) <
5029 		    IO_THRESHOLD)
5030 			md_wakeup_thread(conf->mddev->thread);
5031 	}
5032 
5033 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5034 }
5035 
5036 static void raid5_activate_delayed(struct r5conf *conf)
5037 {
5038 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5039 		while (!list_empty(&conf->delayed_list)) {
5040 			struct list_head *l = conf->delayed_list.next;
5041 			struct stripe_head *sh;
5042 			sh = list_entry(l, struct stripe_head, lru);
5043 			list_del_init(l);
5044 			clear_bit(STRIPE_DELAYED, &sh->state);
5045 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5046 				atomic_inc(&conf->preread_active_stripes);
5047 			list_add_tail(&sh->lru, &conf->hold_list);
5048 			raid5_wakeup_stripe_thread(sh);
5049 		}
5050 	}
5051 }
5052 
5053 static void activate_bit_delay(struct r5conf *conf,
5054 	struct list_head *temp_inactive_list)
5055 {
5056 	/* device_lock is held */
5057 	struct list_head head;
5058 	list_add(&head, &conf->bitmap_list);
5059 	list_del_init(&conf->bitmap_list);
5060 	while (!list_empty(&head)) {
5061 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5062 		int hash;
5063 		list_del_init(&sh->lru);
5064 		atomic_inc(&sh->count);
5065 		hash = sh->hash_lock_index;
5066 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5067 	}
5068 }
5069 
5070 static int raid5_congested(struct mddev *mddev, int bits)
5071 {
5072 	struct r5conf *conf = mddev->private;
5073 
5074 	/* No difference between reads and writes.  Just check
5075 	 * how busy the stripe_cache is
5076 	 */
5077 
5078 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5079 		return 1;
5080 
5081 	/* Also checks whether there is pressure on r5cache log space */
5082 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5083 		return 1;
5084 	if (conf->quiesce)
5085 		return 1;
5086 	if (atomic_read(&conf->empty_inactive_list_nr))
5087 		return 1;
5088 
5089 	return 0;
5090 }
5091 
5092 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5093 {
5094 	struct r5conf *conf = mddev->private;
5095 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
5096 	unsigned int chunk_sectors;
5097 	unsigned int bio_sectors = bio_sectors(bio);
5098 
5099 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5100 	return  chunk_sectors >=
5101 		((sector & (chunk_sectors - 1)) + bio_sectors);
5102 }
5103 
5104 /*
5105  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5106  *  later sampled by raid5d.
5107  */
5108 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5109 {
5110 	unsigned long flags;
5111 
5112 	spin_lock_irqsave(&conf->device_lock, flags);
5113 
5114 	bi->bi_next = conf->retry_read_aligned_list;
5115 	conf->retry_read_aligned_list = bi;
5116 
5117 	spin_unlock_irqrestore(&conf->device_lock, flags);
5118 	md_wakeup_thread(conf->mddev->thread);
5119 }
5120 
5121 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5122 					 unsigned int *offset)
5123 {
5124 	struct bio *bi;
5125 
5126 	bi = conf->retry_read_aligned;
5127 	if (bi) {
5128 		*offset = conf->retry_read_offset;
5129 		conf->retry_read_aligned = NULL;
5130 		return bi;
5131 	}
5132 	bi = conf->retry_read_aligned_list;
5133 	if(bi) {
5134 		conf->retry_read_aligned_list = bi->bi_next;
5135 		bi->bi_next = NULL;
5136 		*offset = 0;
5137 	}
5138 
5139 	return bi;
5140 }
5141 
5142 /*
5143  *  The "raid5_align_endio" should check if the read succeeded and if it
5144  *  did, call bio_endio on the original bio (having bio_put the new bio
5145  *  first).
5146  *  If the read failed..
5147  */
5148 static void raid5_align_endio(struct bio *bi)
5149 {
5150 	struct bio* raid_bi  = bi->bi_private;
5151 	struct mddev *mddev;
5152 	struct r5conf *conf;
5153 	struct md_rdev *rdev;
5154 	blk_status_t error = bi->bi_status;
5155 
5156 	bio_put(bi);
5157 
5158 	rdev = (void*)raid_bi->bi_next;
5159 	raid_bi->bi_next = NULL;
5160 	mddev = rdev->mddev;
5161 	conf = mddev->private;
5162 
5163 	rdev_dec_pending(rdev, conf->mddev);
5164 
5165 	if (!error) {
5166 		bio_endio(raid_bi);
5167 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5168 			wake_up(&conf->wait_for_quiescent);
5169 		return;
5170 	}
5171 
5172 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5173 
5174 	add_bio_to_retry(raid_bi, conf);
5175 }
5176 
5177 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5178 {
5179 	struct r5conf *conf = mddev->private;
5180 	int dd_idx;
5181 	struct bio* align_bi;
5182 	struct md_rdev *rdev;
5183 	sector_t end_sector;
5184 
5185 	if (!in_chunk_boundary(mddev, raid_bio)) {
5186 		pr_debug("%s: non aligned\n", __func__);
5187 		return 0;
5188 	}
5189 	/*
5190 	 * use bio_clone_fast to make a copy of the bio
5191 	 */
5192 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5193 	if (!align_bi)
5194 		return 0;
5195 	/*
5196 	 *   set bi_end_io to a new function, and set bi_private to the
5197 	 *     original bio.
5198 	 */
5199 	align_bi->bi_end_io  = raid5_align_endio;
5200 	align_bi->bi_private = raid_bio;
5201 	/*
5202 	 *	compute position
5203 	 */
5204 	align_bi->bi_iter.bi_sector =
5205 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5206 				     0, &dd_idx, NULL);
5207 
5208 	end_sector = bio_end_sector(align_bi);
5209 	rcu_read_lock();
5210 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5211 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5212 	    rdev->recovery_offset < end_sector) {
5213 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5214 		if (rdev &&
5215 		    (test_bit(Faulty, &rdev->flags) ||
5216 		    !(test_bit(In_sync, &rdev->flags) ||
5217 		      rdev->recovery_offset >= end_sector)))
5218 			rdev = NULL;
5219 	}
5220 
5221 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5222 		rcu_read_unlock();
5223 		bio_put(align_bi);
5224 		return 0;
5225 	}
5226 
5227 	if (rdev) {
5228 		sector_t first_bad;
5229 		int bad_sectors;
5230 
5231 		atomic_inc(&rdev->nr_pending);
5232 		rcu_read_unlock();
5233 		raid_bio->bi_next = (void*)rdev;
5234 		align_bi->bi_bdev =  rdev->bdev;
5235 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5236 
5237 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5238 				bio_sectors(align_bi),
5239 				&first_bad, &bad_sectors)) {
5240 			bio_put(align_bi);
5241 			rdev_dec_pending(rdev, mddev);
5242 			return 0;
5243 		}
5244 
5245 		/* No reshape active, so we can trust rdev->data_offset */
5246 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5247 
5248 		spin_lock_irq(&conf->device_lock);
5249 		wait_event_lock_irq(conf->wait_for_quiescent,
5250 				    conf->quiesce == 0,
5251 				    conf->device_lock);
5252 		atomic_inc(&conf->active_aligned_reads);
5253 		spin_unlock_irq(&conf->device_lock);
5254 
5255 		if (mddev->gendisk)
5256 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5257 					      align_bi, disk_devt(mddev->gendisk),
5258 					      raid_bio->bi_iter.bi_sector);
5259 		generic_make_request(align_bi);
5260 		return 1;
5261 	} else {
5262 		rcu_read_unlock();
5263 		bio_put(align_bi);
5264 		return 0;
5265 	}
5266 }
5267 
5268 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5269 {
5270 	struct bio *split;
5271 	sector_t sector = raid_bio->bi_iter.bi_sector;
5272 	unsigned chunk_sects = mddev->chunk_sectors;
5273 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5274 
5275 	if (sectors < bio_sectors(raid_bio)) {
5276 		struct r5conf *conf = mddev->private;
5277 		split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5278 		bio_chain(split, raid_bio);
5279 		generic_make_request(raid_bio);
5280 		raid_bio = split;
5281 	}
5282 
5283 	if (!raid5_read_one_chunk(mddev, raid_bio))
5284 		return raid_bio;
5285 
5286 	return NULL;
5287 }
5288 
5289 /* __get_priority_stripe - get the next stripe to process
5290  *
5291  * Full stripe writes are allowed to pass preread active stripes up until
5292  * the bypass_threshold is exceeded.  In general the bypass_count
5293  * increments when the handle_list is handled before the hold_list; however, it
5294  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5295  * stripe with in flight i/o.  The bypass_count will be reset when the
5296  * head of the hold_list has changed, i.e. the head was promoted to the
5297  * handle_list.
5298  */
5299 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5300 {
5301 	struct stripe_head *sh, *tmp;
5302 	struct list_head *handle_list = NULL;
5303 	struct r5worker_group *wg;
5304 	bool second_try = !r5c_is_writeback(conf->log) &&
5305 		!r5l_log_disk_error(conf);
5306 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5307 		r5l_log_disk_error(conf);
5308 
5309 again:
5310 	wg = NULL;
5311 	sh = NULL;
5312 	if (conf->worker_cnt_per_group == 0) {
5313 		handle_list = try_loprio ? &conf->loprio_list :
5314 					&conf->handle_list;
5315 	} else if (group != ANY_GROUP) {
5316 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5317 				&conf->worker_groups[group].handle_list;
5318 		wg = &conf->worker_groups[group];
5319 	} else {
5320 		int i;
5321 		for (i = 0; i < conf->group_cnt; i++) {
5322 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5323 				&conf->worker_groups[i].handle_list;
5324 			wg = &conf->worker_groups[i];
5325 			if (!list_empty(handle_list))
5326 				break;
5327 		}
5328 	}
5329 
5330 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5331 		  __func__,
5332 		  list_empty(handle_list) ? "empty" : "busy",
5333 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5334 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5335 
5336 	if (!list_empty(handle_list)) {
5337 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5338 
5339 		if (list_empty(&conf->hold_list))
5340 			conf->bypass_count = 0;
5341 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5342 			if (conf->hold_list.next == conf->last_hold)
5343 				conf->bypass_count++;
5344 			else {
5345 				conf->last_hold = conf->hold_list.next;
5346 				conf->bypass_count -= conf->bypass_threshold;
5347 				if (conf->bypass_count < 0)
5348 					conf->bypass_count = 0;
5349 			}
5350 		}
5351 	} else if (!list_empty(&conf->hold_list) &&
5352 		   ((conf->bypass_threshold &&
5353 		     conf->bypass_count > conf->bypass_threshold) ||
5354 		    atomic_read(&conf->pending_full_writes) == 0)) {
5355 
5356 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5357 			if (conf->worker_cnt_per_group == 0 ||
5358 			    group == ANY_GROUP ||
5359 			    !cpu_online(tmp->cpu) ||
5360 			    cpu_to_group(tmp->cpu) == group) {
5361 				sh = tmp;
5362 				break;
5363 			}
5364 		}
5365 
5366 		if (sh) {
5367 			conf->bypass_count -= conf->bypass_threshold;
5368 			if (conf->bypass_count < 0)
5369 				conf->bypass_count = 0;
5370 		}
5371 		wg = NULL;
5372 	}
5373 
5374 	if (!sh) {
5375 		if (second_try)
5376 			return NULL;
5377 		second_try = true;
5378 		try_loprio = !try_loprio;
5379 		goto again;
5380 	}
5381 
5382 	if (wg) {
5383 		wg->stripes_cnt--;
5384 		sh->group = NULL;
5385 	}
5386 	list_del_init(&sh->lru);
5387 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5388 	return sh;
5389 }
5390 
5391 struct raid5_plug_cb {
5392 	struct blk_plug_cb	cb;
5393 	struct list_head	list;
5394 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5395 };
5396 
5397 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5398 {
5399 	struct raid5_plug_cb *cb = container_of(
5400 		blk_cb, struct raid5_plug_cb, cb);
5401 	struct stripe_head *sh;
5402 	struct mddev *mddev = cb->cb.data;
5403 	struct r5conf *conf = mddev->private;
5404 	int cnt = 0;
5405 	int hash;
5406 
5407 	if (cb->list.next && !list_empty(&cb->list)) {
5408 		spin_lock_irq(&conf->device_lock);
5409 		while (!list_empty(&cb->list)) {
5410 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5411 			list_del_init(&sh->lru);
5412 			/*
5413 			 * avoid race release_stripe_plug() sees
5414 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5415 			 * is still in our list
5416 			 */
5417 			smp_mb__before_atomic();
5418 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5419 			/*
5420 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5421 			 * case, the count is always > 1 here
5422 			 */
5423 			hash = sh->hash_lock_index;
5424 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5425 			cnt++;
5426 		}
5427 		spin_unlock_irq(&conf->device_lock);
5428 	}
5429 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5430 				     NR_STRIPE_HASH_LOCKS);
5431 	if (mddev->queue)
5432 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5433 	kfree(cb);
5434 }
5435 
5436 static void release_stripe_plug(struct mddev *mddev,
5437 				struct stripe_head *sh)
5438 {
5439 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5440 		raid5_unplug, mddev,
5441 		sizeof(struct raid5_plug_cb));
5442 	struct raid5_plug_cb *cb;
5443 
5444 	if (!blk_cb) {
5445 		raid5_release_stripe(sh);
5446 		return;
5447 	}
5448 
5449 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5450 
5451 	if (cb->list.next == NULL) {
5452 		int i;
5453 		INIT_LIST_HEAD(&cb->list);
5454 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5455 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5456 	}
5457 
5458 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5459 		list_add_tail(&sh->lru, &cb->list);
5460 	else
5461 		raid5_release_stripe(sh);
5462 }
5463 
5464 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5465 {
5466 	struct r5conf *conf = mddev->private;
5467 	sector_t logical_sector, last_sector;
5468 	struct stripe_head *sh;
5469 	int stripe_sectors;
5470 
5471 	if (mddev->reshape_position != MaxSector)
5472 		/* Skip discard while reshape is happening */
5473 		return;
5474 
5475 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5476 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5477 
5478 	bi->bi_next = NULL;
5479 
5480 	stripe_sectors = conf->chunk_sectors *
5481 		(conf->raid_disks - conf->max_degraded);
5482 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5483 					       stripe_sectors);
5484 	sector_div(last_sector, stripe_sectors);
5485 
5486 	logical_sector *= conf->chunk_sectors;
5487 	last_sector *= conf->chunk_sectors;
5488 
5489 	for (; logical_sector < last_sector;
5490 	     logical_sector += STRIPE_SECTORS) {
5491 		DEFINE_WAIT(w);
5492 		int d;
5493 	again:
5494 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5495 		prepare_to_wait(&conf->wait_for_overlap, &w,
5496 				TASK_UNINTERRUPTIBLE);
5497 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5498 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5499 			raid5_release_stripe(sh);
5500 			schedule();
5501 			goto again;
5502 		}
5503 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5504 		spin_lock_irq(&sh->stripe_lock);
5505 		for (d = 0; d < conf->raid_disks; d++) {
5506 			if (d == sh->pd_idx || d == sh->qd_idx)
5507 				continue;
5508 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5509 				set_bit(R5_Overlap, &sh->dev[d].flags);
5510 				spin_unlock_irq(&sh->stripe_lock);
5511 				raid5_release_stripe(sh);
5512 				schedule();
5513 				goto again;
5514 			}
5515 		}
5516 		set_bit(STRIPE_DISCARD, &sh->state);
5517 		finish_wait(&conf->wait_for_overlap, &w);
5518 		sh->overwrite_disks = 0;
5519 		for (d = 0; d < conf->raid_disks; d++) {
5520 			if (d == sh->pd_idx || d == sh->qd_idx)
5521 				continue;
5522 			sh->dev[d].towrite = bi;
5523 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5524 			bio_inc_remaining(bi);
5525 			md_write_inc(mddev, bi);
5526 			sh->overwrite_disks++;
5527 		}
5528 		spin_unlock_irq(&sh->stripe_lock);
5529 		if (conf->mddev->bitmap) {
5530 			for (d = 0;
5531 			     d < conf->raid_disks - conf->max_degraded;
5532 			     d++)
5533 				bitmap_startwrite(mddev->bitmap,
5534 						  sh->sector,
5535 						  STRIPE_SECTORS,
5536 						  0);
5537 			sh->bm_seq = conf->seq_flush + 1;
5538 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5539 		}
5540 
5541 		set_bit(STRIPE_HANDLE, &sh->state);
5542 		clear_bit(STRIPE_DELAYED, &sh->state);
5543 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5544 			atomic_inc(&conf->preread_active_stripes);
5545 		release_stripe_plug(mddev, sh);
5546 	}
5547 
5548 	bio_endio(bi);
5549 }
5550 
5551 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5552 {
5553 	struct r5conf *conf = mddev->private;
5554 	int dd_idx;
5555 	sector_t new_sector;
5556 	sector_t logical_sector, last_sector;
5557 	struct stripe_head *sh;
5558 	const int rw = bio_data_dir(bi);
5559 	DEFINE_WAIT(w);
5560 	bool do_prepare;
5561 	bool do_flush = false;
5562 
5563 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5564 		int ret = r5l_handle_flush_request(conf->log, bi);
5565 
5566 		if (ret == 0)
5567 			return true;
5568 		if (ret == -ENODEV) {
5569 			md_flush_request(mddev, bi);
5570 			return true;
5571 		}
5572 		/* ret == -EAGAIN, fallback */
5573 		/*
5574 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5575 		 * we need to flush journal device
5576 		 */
5577 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5578 	}
5579 
5580 	if (!md_write_start(mddev, bi))
5581 		return false;
5582 	/*
5583 	 * If array is degraded, better not do chunk aligned read because
5584 	 * later we might have to read it again in order to reconstruct
5585 	 * data on failed drives.
5586 	 */
5587 	if (rw == READ && mddev->degraded == 0 &&
5588 	    mddev->reshape_position == MaxSector) {
5589 		bi = chunk_aligned_read(mddev, bi);
5590 		if (!bi)
5591 			return true;
5592 	}
5593 
5594 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5595 		make_discard_request(mddev, bi);
5596 		md_write_end(mddev);
5597 		return true;
5598 	}
5599 
5600 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5601 	last_sector = bio_end_sector(bi);
5602 	bi->bi_next = NULL;
5603 
5604 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5605 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5606 		int previous;
5607 		int seq;
5608 
5609 		do_prepare = false;
5610 	retry:
5611 		seq = read_seqcount_begin(&conf->gen_lock);
5612 		previous = 0;
5613 		if (do_prepare)
5614 			prepare_to_wait(&conf->wait_for_overlap, &w,
5615 				TASK_UNINTERRUPTIBLE);
5616 		if (unlikely(conf->reshape_progress != MaxSector)) {
5617 			/* spinlock is needed as reshape_progress may be
5618 			 * 64bit on a 32bit platform, and so it might be
5619 			 * possible to see a half-updated value
5620 			 * Of course reshape_progress could change after
5621 			 * the lock is dropped, so once we get a reference
5622 			 * to the stripe that we think it is, we will have
5623 			 * to check again.
5624 			 */
5625 			spin_lock_irq(&conf->device_lock);
5626 			if (mddev->reshape_backwards
5627 			    ? logical_sector < conf->reshape_progress
5628 			    : logical_sector >= conf->reshape_progress) {
5629 				previous = 1;
5630 			} else {
5631 				if (mddev->reshape_backwards
5632 				    ? logical_sector < conf->reshape_safe
5633 				    : logical_sector >= conf->reshape_safe) {
5634 					spin_unlock_irq(&conf->device_lock);
5635 					schedule();
5636 					do_prepare = true;
5637 					goto retry;
5638 				}
5639 			}
5640 			spin_unlock_irq(&conf->device_lock);
5641 		}
5642 
5643 		new_sector = raid5_compute_sector(conf, logical_sector,
5644 						  previous,
5645 						  &dd_idx, NULL);
5646 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5647 			(unsigned long long)new_sector,
5648 			(unsigned long long)logical_sector);
5649 
5650 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5651 				       (bi->bi_opf & REQ_RAHEAD), 0);
5652 		if (sh) {
5653 			if (unlikely(previous)) {
5654 				/* expansion might have moved on while waiting for a
5655 				 * stripe, so we must do the range check again.
5656 				 * Expansion could still move past after this
5657 				 * test, but as we are holding a reference to
5658 				 * 'sh', we know that if that happens,
5659 				 *  STRIPE_EXPANDING will get set and the expansion
5660 				 * won't proceed until we finish with the stripe.
5661 				 */
5662 				int must_retry = 0;
5663 				spin_lock_irq(&conf->device_lock);
5664 				if (mddev->reshape_backwards
5665 				    ? logical_sector >= conf->reshape_progress
5666 				    : logical_sector < conf->reshape_progress)
5667 					/* mismatch, need to try again */
5668 					must_retry = 1;
5669 				spin_unlock_irq(&conf->device_lock);
5670 				if (must_retry) {
5671 					raid5_release_stripe(sh);
5672 					schedule();
5673 					do_prepare = true;
5674 					goto retry;
5675 				}
5676 			}
5677 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5678 				/* Might have got the wrong stripe_head
5679 				 * by accident
5680 				 */
5681 				raid5_release_stripe(sh);
5682 				goto retry;
5683 			}
5684 
5685 			if (rw == WRITE &&
5686 			    logical_sector >= mddev->suspend_lo &&
5687 			    logical_sector < mddev->suspend_hi) {
5688 				raid5_release_stripe(sh);
5689 				/* As the suspend_* range is controlled by
5690 				 * userspace, we want an interruptible
5691 				 * wait.
5692 				 */
5693 				prepare_to_wait(&conf->wait_for_overlap,
5694 						&w, TASK_INTERRUPTIBLE);
5695 				if (logical_sector >= mddev->suspend_lo &&
5696 				    logical_sector < mddev->suspend_hi) {
5697 					sigset_t full, old;
5698 					sigfillset(&full);
5699 					sigprocmask(SIG_BLOCK, &full, &old);
5700 					schedule();
5701 					sigprocmask(SIG_SETMASK, &old, NULL);
5702 					do_prepare = true;
5703 				}
5704 				goto retry;
5705 			}
5706 
5707 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5708 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5709 				/* Stripe is busy expanding or
5710 				 * add failed due to overlap.  Flush everything
5711 				 * and wait a while
5712 				 */
5713 				md_wakeup_thread(mddev->thread);
5714 				raid5_release_stripe(sh);
5715 				schedule();
5716 				do_prepare = true;
5717 				goto retry;
5718 			}
5719 			if (do_flush) {
5720 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5721 				/* we only need flush for one stripe */
5722 				do_flush = false;
5723 			}
5724 
5725 			set_bit(STRIPE_HANDLE, &sh->state);
5726 			clear_bit(STRIPE_DELAYED, &sh->state);
5727 			if ((!sh->batch_head || sh == sh->batch_head) &&
5728 			    (bi->bi_opf & REQ_SYNC) &&
5729 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5730 				atomic_inc(&conf->preread_active_stripes);
5731 			release_stripe_plug(mddev, sh);
5732 		} else {
5733 			/* cannot get stripe for read-ahead, just give-up */
5734 			bi->bi_status = BLK_STS_IOERR;
5735 			break;
5736 		}
5737 	}
5738 	finish_wait(&conf->wait_for_overlap, &w);
5739 
5740 	if (rw == WRITE)
5741 		md_write_end(mddev);
5742 	bio_endio(bi);
5743 	return true;
5744 }
5745 
5746 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5747 
5748 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5749 {
5750 	/* reshaping is quite different to recovery/resync so it is
5751 	 * handled quite separately ... here.
5752 	 *
5753 	 * On each call to sync_request, we gather one chunk worth of
5754 	 * destination stripes and flag them as expanding.
5755 	 * Then we find all the source stripes and request reads.
5756 	 * As the reads complete, handle_stripe will copy the data
5757 	 * into the destination stripe and release that stripe.
5758 	 */
5759 	struct r5conf *conf = mddev->private;
5760 	struct stripe_head *sh;
5761 	sector_t first_sector, last_sector;
5762 	int raid_disks = conf->previous_raid_disks;
5763 	int data_disks = raid_disks - conf->max_degraded;
5764 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5765 	int i;
5766 	int dd_idx;
5767 	sector_t writepos, readpos, safepos;
5768 	sector_t stripe_addr;
5769 	int reshape_sectors;
5770 	struct list_head stripes;
5771 	sector_t retn;
5772 
5773 	if (sector_nr == 0) {
5774 		/* If restarting in the middle, skip the initial sectors */
5775 		if (mddev->reshape_backwards &&
5776 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5777 			sector_nr = raid5_size(mddev, 0, 0)
5778 				- conf->reshape_progress;
5779 		} else if (mddev->reshape_backwards &&
5780 			   conf->reshape_progress == MaxSector) {
5781 			/* shouldn't happen, but just in case, finish up.*/
5782 			sector_nr = MaxSector;
5783 		} else if (!mddev->reshape_backwards &&
5784 			   conf->reshape_progress > 0)
5785 			sector_nr = conf->reshape_progress;
5786 		sector_div(sector_nr, new_data_disks);
5787 		if (sector_nr) {
5788 			mddev->curr_resync_completed = sector_nr;
5789 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5790 			*skipped = 1;
5791 			retn = sector_nr;
5792 			goto finish;
5793 		}
5794 	}
5795 
5796 	/* We need to process a full chunk at a time.
5797 	 * If old and new chunk sizes differ, we need to process the
5798 	 * largest of these
5799 	 */
5800 
5801 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5802 
5803 	/* We update the metadata at least every 10 seconds, or when
5804 	 * the data about to be copied would over-write the source of
5805 	 * the data at the front of the range.  i.e. one new_stripe
5806 	 * along from reshape_progress new_maps to after where
5807 	 * reshape_safe old_maps to
5808 	 */
5809 	writepos = conf->reshape_progress;
5810 	sector_div(writepos, new_data_disks);
5811 	readpos = conf->reshape_progress;
5812 	sector_div(readpos, data_disks);
5813 	safepos = conf->reshape_safe;
5814 	sector_div(safepos, data_disks);
5815 	if (mddev->reshape_backwards) {
5816 		BUG_ON(writepos < reshape_sectors);
5817 		writepos -= reshape_sectors;
5818 		readpos += reshape_sectors;
5819 		safepos += reshape_sectors;
5820 	} else {
5821 		writepos += reshape_sectors;
5822 		/* readpos and safepos are worst-case calculations.
5823 		 * A negative number is overly pessimistic, and causes
5824 		 * obvious problems for unsigned storage.  So clip to 0.
5825 		 */
5826 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5827 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5828 	}
5829 
5830 	/* Having calculated the 'writepos' possibly use it
5831 	 * to set 'stripe_addr' which is where we will write to.
5832 	 */
5833 	if (mddev->reshape_backwards) {
5834 		BUG_ON(conf->reshape_progress == 0);
5835 		stripe_addr = writepos;
5836 		BUG_ON((mddev->dev_sectors &
5837 			~((sector_t)reshape_sectors - 1))
5838 		       - reshape_sectors - stripe_addr
5839 		       != sector_nr);
5840 	} else {
5841 		BUG_ON(writepos != sector_nr + reshape_sectors);
5842 		stripe_addr = sector_nr;
5843 	}
5844 
5845 	/* 'writepos' is the most advanced device address we might write.
5846 	 * 'readpos' is the least advanced device address we might read.
5847 	 * 'safepos' is the least address recorded in the metadata as having
5848 	 *     been reshaped.
5849 	 * If there is a min_offset_diff, these are adjusted either by
5850 	 * increasing the safepos/readpos if diff is negative, or
5851 	 * increasing writepos if diff is positive.
5852 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5853 	 * ensure safety in the face of a crash - that must be done by userspace
5854 	 * making a backup of the data.  So in that case there is no particular
5855 	 * rush to update metadata.
5856 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5857 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5858 	 * we can be safe in the event of a crash.
5859 	 * So we insist on updating metadata if safepos is behind writepos and
5860 	 * readpos is beyond writepos.
5861 	 * In any case, update the metadata every 10 seconds.
5862 	 * Maybe that number should be configurable, but I'm not sure it is
5863 	 * worth it.... maybe it could be a multiple of safemode_delay???
5864 	 */
5865 	if (conf->min_offset_diff < 0) {
5866 		safepos += -conf->min_offset_diff;
5867 		readpos += -conf->min_offset_diff;
5868 	} else
5869 		writepos += conf->min_offset_diff;
5870 
5871 	if ((mddev->reshape_backwards
5872 	     ? (safepos > writepos && readpos < writepos)
5873 	     : (safepos < writepos && readpos > writepos)) ||
5874 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5875 		/* Cannot proceed until we've updated the superblock... */
5876 		wait_event(conf->wait_for_overlap,
5877 			   atomic_read(&conf->reshape_stripes)==0
5878 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5879 		if (atomic_read(&conf->reshape_stripes) != 0)
5880 			return 0;
5881 		mddev->reshape_position = conf->reshape_progress;
5882 		mddev->curr_resync_completed = sector_nr;
5883 		conf->reshape_checkpoint = jiffies;
5884 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5885 		md_wakeup_thread(mddev->thread);
5886 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5887 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5888 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5889 			return 0;
5890 		spin_lock_irq(&conf->device_lock);
5891 		conf->reshape_safe = mddev->reshape_position;
5892 		spin_unlock_irq(&conf->device_lock);
5893 		wake_up(&conf->wait_for_overlap);
5894 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5895 	}
5896 
5897 	INIT_LIST_HEAD(&stripes);
5898 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5899 		int j;
5900 		int skipped_disk = 0;
5901 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5902 		set_bit(STRIPE_EXPANDING, &sh->state);
5903 		atomic_inc(&conf->reshape_stripes);
5904 		/* If any of this stripe is beyond the end of the old
5905 		 * array, then we need to zero those blocks
5906 		 */
5907 		for (j=sh->disks; j--;) {
5908 			sector_t s;
5909 			if (j == sh->pd_idx)
5910 				continue;
5911 			if (conf->level == 6 &&
5912 			    j == sh->qd_idx)
5913 				continue;
5914 			s = raid5_compute_blocknr(sh, j, 0);
5915 			if (s < raid5_size(mddev, 0, 0)) {
5916 				skipped_disk = 1;
5917 				continue;
5918 			}
5919 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5920 			set_bit(R5_Expanded, &sh->dev[j].flags);
5921 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5922 		}
5923 		if (!skipped_disk) {
5924 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5925 			set_bit(STRIPE_HANDLE, &sh->state);
5926 		}
5927 		list_add(&sh->lru, &stripes);
5928 	}
5929 	spin_lock_irq(&conf->device_lock);
5930 	if (mddev->reshape_backwards)
5931 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5932 	else
5933 		conf->reshape_progress += reshape_sectors * new_data_disks;
5934 	spin_unlock_irq(&conf->device_lock);
5935 	/* Ok, those stripe are ready. We can start scheduling
5936 	 * reads on the source stripes.
5937 	 * The source stripes are determined by mapping the first and last
5938 	 * block on the destination stripes.
5939 	 */
5940 	first_sector =
5941 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5942 				     1, &dd_idx, NULL);
5943 	last_sector =
5944 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5945 					    * new_data_disks - 1),
5946 				     1, &dd_idx, NULL);
5947 	if (last_sector >= mddev->dev_sectors)
5948 		last_sector = mddev->dev_sectors - 1;
5949 	while (first_sector <= last_sector) {
5950 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5951 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5952 		set_bit(STRIPE_HANDLE, &sh->state);
5953 		raid5_release_stripe(sh);
5954 		first_sector += STRIPE_SECTORS;
5955 	}
5956 	/* Now that the sources are clearly marked, we can release
5957 	 * the destination stripes
5958 	 */
5959 	while (!list_empty(&stripes)) {
5960 		sh = list_entry(stripes.next, struct stripe_head, lru);
5961 		list_del_init(&sh->lru);
5962 		raid5_release_stripe(sh);
5963 	}
5964 	/* If this takes us to the resync_max point where we have to pause,
5965 	 * then we need to write out the superblock.
5966 	 */
5967 	sector_nr += reshape_sectors;
5968 	retn = reshape_sectors;
5969 finish:
5970 	if (mddev->curr_resync_completed > mddev->resync_max ||
5971 	    (sector_nr - mddev->curr_resync_completed) * 2
5972 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5973 		/* Cannot proceed until we've updated the superblock... */
5974 		wait_event(conf->wait_for_overlap,
5975 			   atomic_read(&conf->reshape_stripes) == 0
5976 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5977 		if (atomic_read(&conf->reshape_stripes) != 0)
5978 			goto ret;
5979 		mddev->reshape_position = conf->reshape_progress;
5980 		mddev->curr_resync_completed = sector_nr;
5981 		conf->reshape_checkpoint = jiffies;
5982 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5983 		md_wakeup_thread(mddev->thread);
5984 		wait_event(mddev->sb_wait,
5985 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5986 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5987 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5988 			goto ret;
5989 		spin_lock_irq(&conf->device_lock);
5990 		conf->reshape_safe = mddev->reshape_position;
5991 		spin_unlock_irq(&conf->device_lock);
5992 		wake_up(&conf->wait_for_overlap);
5993 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5994 	}
5995 ret:
5996 	return retn;
5997 }
5998 
5999 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6000 					  int *skipped)
6001 {
6002 	struct r5conf *conf = mddev->private;
6003 	struct stripe_head *sh;
6004 	sector_t max_sector = mddev->dev_sectors;
6005 	sector_t sync_blocks;
6006 	int still_degraded = 0;
6007 	int i;
6008 
6009 	if (sector_nr >= max_sector) {
6010 		/* just being told to finish up .. nothing much to do */
6011 
6012 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6013 			end_reshape(conf);
6014 			return 0;
6015 		}
6016 
6017 		if (mddev->curr_resync < max_sector) /* aborted */
6018 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6019 					&sync_blocks, 1);
6020 		else /* completed sync */
6021 			conf->fullsync = 0;
6022 		bitmap_close_sync(mddev->bitmap);
6023 
6024 		return 0;
6025 	}
6026 
6027 	/* Allow raid5_quiesce to complete */
6028 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6029 
6030 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6031 		return reshape_request(mddev, sector_nr, skipped);
6032 
6033 	/* No need to check resync_max as we never do more than one
6034 	 * stripe, and as resync_max will always be on a chunk boundary,
6035 	 * if the check in md_do_sync didn't fire, there is no chance
6036 	 * of overstepping resync_max here
6037 	 */
6038 
6039 	/* if there is too many failed drives and we are trying
6040 	 * to resync, then assert that we are finished, because there is
6041 	 * nothing we can do.
6042 	 */
6043 	if (mddev->degraded >= conf->max_degraded &&
6044 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6045 		sector_t rv = mddev->dev_sectors - sector_nr;
6046 		*skipped = 1;
6047 		return rv;
6048 	}
6049 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6050 	    !conf->fullsync &&
6051 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6052 	    sync_blocks >= STRIPE_SECTORS) {
6053 		/* we can skip this block, and probably more */
6054 		sync_blocks /= STRIPE_SECTORS;
6055 		*skipped = 1;
6056 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6057 	}
6058 
6059 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6060 
6061 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6062 	if (sh == NULL) {
6063 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6064 		/* make sure we don't swamp the stripe cache if someone else
6065 		 * is trying to get access
6066 		 */
6067 		schedule_timeout_uninterruptible(1);
6068 	}
6069 	/* Need to check if array will still be degraded after recovery/resync
6070 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6071 	 * one drive while leaving another faulty drive in array.
6072 	 */
6073 	rcu_read_lock();
6074 	for (i = 0; i < conf->raid_disks; i++) {
6075 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6076 
6077 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6078 			still_degraded = 1;
6079 	}
6080 	rcu_read_unlock();
6081 
6082 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6083 
6084 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6085 	set_bit(STRIPE_HANDLE, &sh->state);
6086 
6087 	raid5_release_stripe(sh);
6088 
6089 	return STRIPE_SECTORS;
6090 }
6091 
6092 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6093 			       unsigned int offset)
6094 {
6095 	/* We may not be able to submit a whole bio at once as there
6096 	 * may not be enough stripe_heads available.
6097 	 * We cannot pre-allocate enough stripe_heads as we may need
6098 	 * more than exist in the cache (if we allow ever large chunks).
6099 	 * So we do one stripe head at a time and record in
6100 	 * ->bi_hw_segments how many have been done.
6101 	 *
6102 	 * We *know* that this entire raid_bio is in one chunk, so
6103 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6104 	 */
6105 	struct stripe_head *sh;
6106 	int dd_idx;
6107 	sector_t sector, logical_sector, last_sector;
6108 	int scnt = 0;
6109 	int handled = 0;
6110 
6111 	logical_sector = raid_bio->bi_iter.bi_sector &
6112 		~((sector_t)STRIPE_SECTORS-1);
6113 	sector = raid5_compute_sector(conf, logical_sector,
6114 				      0, &dd_idx, NULL);
6115 	last_sector = bio_end_sector(raid_bio);
6116 
6117 	for (; logical_sector < last_sector;
6118 	     logical_sector += STRIPE_SECTORS,
6119 		     sector += STRIPE_SECTORS,
6120 		     scnt++) {
6121 
6122 		if (scnt < offset)
6123 			/* already done this stripe */
6124 			continue;
6125 
6126 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6127 
6128 		if (!sh) {
6129 			/* failed to get a stripe - must wait */
6130 			conf->retry_read_aligned = raid_bio;
6131 			conf->retry_read_offset = scnt;
6132 			return handled;
6133 		}
6134 
6135 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6136 			raid5_release_stripe(sh);
6137 			conf->retry_read_aligned = raid_bio;
6138 			conf->retry_read_offset = scnt;
6139 			return handled;
6140 		}
6141 
6142 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6143 		handle_stripe(sh);
6144 		raid5_release_stripe(sh);
6145 		handled++;
6146 	}
6147 
6148 	bio_endio(raid_bio);
6149 
6150 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6151 		wake_up(&conf->wait_for_quiescent);
6152 	return handled;
6153 }
6154 
6155 static int handle_active_stripes(struct r5conf *conf, int group,
6156 				 struct r5worker *worker,
6157 				 struct list_head *temp_inactive_list)
6158 {
6159 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6160 	int i, batch_size = 0, hash;
6161 	bool release_inactive = false;
6162 
6163 	while (batch_size < MAX_STRIPE_BATCH &&
6164 			(sh = __get_priority_stripe(conf, group)) != NULL)
6165 		batch[batch_size++] = sh;
6166 
6167 	if (batch_size == 0) {
6168 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6169 			if (!list_empty(temp_inactive_list + i))
6170 				break;
6171 		if (i == NR_STRIPE_HASH_LOCKS) {
6172 			spin_unlock_irq(&conf->device_lock);
6173 			r5l_flush_stripe_to_raid(conf->log);
6174 			spin_lock_irq(&conf->device_lock);
6175 			return batch_size;
6176 		}
6177 		release_inactive = true;
6178 	}
6179 	spin_unlock_irq(&conf->device_lock);
6180 
6181 	release_inactive_stripe_list(conf, temp_inactive_list,
6182 				     NR_STRIPE_HASH_LOCKS);
6183 
6184 	r5l_flush_stripe_to_raid(conf->log);
6185 	if (release_inactive) {
6186 		spin_lock_irq(&conf->device_lock);
6187 		return 0;
6188 	}
6189 
6190 	for (i = 0; i < batch_size; i++)
6191 		handle_stripe(batch[i]);
6192 	log_write_stripe_run(conf);
6193 
6194 	cond_resched();
6195 
6196 	spin_lock_irq(&conf->device_lock);
6197 	for (i = 0; i < batch_size; i++) {
6198 		hash = batch[i]->hash_lock_index;
6199 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6200 	}
6201 	return batch_size;
6202 }
6203 
6204 static void raid5_do_work(struct work_struct *work)
6205 {
6206 	struct r5worker *worker = container_of(work, struct r5worker, work);
6207 	struct r5worker_group *group = worker->group;
6208 	struct r5conf *conf = group->conf;
6209 	struct mddev *mddev = conf->mddev;
6210 	int group_id = group - conf->worker_groups;
6211 	int handled;
6212 	struct blk_plug plug;
6213 
6214 	pr_debug("+++ raid5worker active\n");
6215 
6216 	blk_start_plug(&plug);
6217 	handled = 0;
6218 	spin_lock_irq(&conf->device_lock);
6219 	while (1) {
6220 		int batch_size, released;
6221 
6222 		released = release_stripe_list(conf, worker->temp_inactive_list);
6223 
6224 		batch_size = handle_active_stripes(conf, group_id, worker,
6225 						   worker->temp_inactive_list);
6226 		worker->working = false;
6227 		if (!batch_size && !released)
6228 			break;
6229 		handled += batch_size;
6230 		wait_event_lock_irq(mddev->sb_wait,
6231 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6232 			conf->device_lock);
6233 	}
6234 	pr_debug("%d stripes handled\n", handled);
6235 
6236 	spin_unlock_irq(&conf->device_lock);
6237 
6238 	async_tx_issue_pending_all();
6239 	blk_finish_plug(&plug);
6240 
6241 	pr_debug("--- raid5worker inactive\n");
6242 }
6243 
6244 /*
6245  * This is our raid5 kernel thread.
6246  *
6247  * We scan the hash table for stripes which can be handled now.
6248  * During the scan, completed stripes are saved for us by the interrupt
6249  * handler, so that they will not have to wait for our next wakeup.
6250  */
6251 static void raid5d(struct md_thread *thread)
6252 {
6253 	struct mddev *mddev = thread->mddev;
6254 	struct r5conf *conf = mddev->private;
6255 	int handled;
6256 	struct blk_plug plug;
6257 
6258 	pr_debug("+++ raid5d active\n");
6259 
6260 	md_check_recovery(mddev);
6261 
6262 	blk_start_plug(&plug);
6263 	handled = 0;
6264 	spin_lock_irq(&conf->device_lock);
6265 	while (1) {
6266 		struct bio *bio;
6267 		int batch_size, released;
6268 		unsigned int offset;
6269 
6270 		released = release_stripe_list(conf, conf->temp_inactive_list);
6271 		if (released)
6272 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6273 
6274 		if (
6275 		    !list_empty(&conf->bitmap_list)) {
6276 			/* Now is a good time to flush some bitmap updates */
6277 			conf->seq_flush++;
6278 			spin_unlock_irq(&conf->device_lock);
6279 			bitmap_unplug(mddev->bitmap);
6280 			spin_lock_irq(&conf->device_lock);
6281 			conf->seq_write = conf->seq_flush;
6282 			activate_bit_delay(conf, conf->temp_inactive_list);
6283 		}
6284 		raid5_activate_delayed(conf);
6285 
6286 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6287 			int ok;
6288 			spin_unlock_irq(&conf->device_lock);
6289 			ok = retry_aligned_read(conf, bio, offset);
6290 			spin_lock_irq(&conf->device_lock);
6291 			if (!ok)
6292 				break;
6293 			handled++;
6294 		}
6295 
6296 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6297 						   conf->temp_inactive_list);
6298 		if (!batch_size && !released)
6299 			break;
6300 		handled += batch_size;
6301 
6302 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6303 			spin_unlock_irq(&conf->device_lock);
6304 			md_check_recovery(mddev);
6305 			spin_lock_irq(&conf->device_lock);
6306 		}
6307 	}
6308 	pr_debug("%d stripes handled\n", handled);
6309 
6310 	spin_unlock_irq(&conf->device_lock);
6311 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6312 	    mutex_trylock(&conf->cache_size_mutex)) {
6313 		grow_one_stripe(conf, __GFP_NOWARN);
6314 		/* Set flag even if allocation failed.  This helps
6315 		 * slow down allocation requests when mem is short
6316 		 */
6317 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6318 		mutex_unlock(&conf->cache_size_mutex);
6319 	}
6320 
6321 	flush_deferred_bios(conf);
6322 
6323 	r5l_flush_stripe_to_raid(conf->log);
6324 
6325 	async_tx_issue_pending_all();
6326 	blk_finish_plug(&plug);
6327 
6328 	pr_debug("--- raid5d inactive\n");
6329 }
6330 
6331 static ssize_t
6332 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6333 {
6334 	struct r5conf *conf;
6335 	int ret = 0;
6336 	spin_lock(&mddev->lock);
6337 	conf = mddev->private;
6338 	if (conf)
6339 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6340 	spin_unlock(&mddev->lock);
6341 	return ret;
6342 }
6343 
6344 int
6345 raid5_set_cache_size(struct mddev *mddev, int size)
6346 {
6347 	struct r5conf *conf = mddev->private;
6348 
6349 	if (size <= 16 || size > 32768)
6350 		return -EINVAL;
6351 
6352 	conf->min_nr_stripes = size;
6353 	mutex_lock(&conf->cache_size_mutex);
6354 	while (size < conf->max_nr_stripes &&
6355 	       drop_one_stripe(conf))
6356 		;
6357 	mutex_unlock(&conf->cache_size_mutex);
6358 
6359 	md_allow_write(mddev);
6360 
6361 	mutex_lock(&conf->cache_size_mutex);
6362 	while (size > conf->max_nr_stripes)
6363 		if (!grow_one_stripe(conf, GFP_KERNEL))
6364 			break;
6365 	mutex_unlock(&conf->cache_size_mutex);
6366 
6367 	return 0;
6368 }
6369 EXPORT_SYMBOL(raid5_set_cache_size);
6370 
6371 static ssize_t
6372 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6373 {
6374 	struct r5conf *conf;
6375 	unsigned long new;
6376 	int err;
6377 
6378 	if (len >= PAGE_SIZE)
6379 		return -EINVAL;
6380 	if (kstrtoul(page, 10, &new))
6381 		return -EINVAL;
6382 	err = mddev_lock(mddev);
6383 	if (err)
6384 		return err;
6385 	conf = mddev->private;
6386 	if (!conf)
6387 		err = -ENODEV;
6388 	else
6389 		err = raid5_set_cache_size(mddev, new);
6390 	mddev_unlock(mddev);
6391 
6392 	return err ?: len;
6393 }
6394 
6395 static struct md_sysfs_entry
6396 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6397 				raid5_show_stripe_cache_size,
6398 				raid5_store_stripe_cache_size);
6399 
6400 static ssize_t
6401 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6402 {
6403 	struct r5conf *conf = mddev->private;
6404 	if (conf)
6405 		return sprintf(page, "%d\n", conf->rmw_level);
6406 	else
6407 		return 0;
6408 }
6409 
6410 static ssize_t
6411 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6412 {
6413 	struct r5conf *conf = mddev->private;
6414 	unsigned long new;
6415 
6416 	if (!conf)
6417 		return -ENODEV;
6418 
6419 	if (len >= PAGE_SIZE)
6420 		return -EINVAL;
6421 
6422 	if (kstrtoul(page, 10, &new))
6423 		return -EINVAL;
6424 
6425 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6426 		return -EINVAL;
6427 
6428 	if (new != PARITY_DISABLE_RMW &&
6429 	    new != PARITY_ENABLE_RMW &&
6430 	    new != PARITY_PREFER_RMW)
6431 		return -EINVAL;
6432 
6433 	conf->rmw_level = new;
6434 	return len;
6435 }
6436 
6437 static struct md_sysfs_entry
6438 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6439 			 raid5_show_rmw_level,
6440 			 raid5_store_rmw_level);
6441 
6442 
6443 static ssize_t
6444 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6445 {
6446 	struct r5conf *conf;
6447 	int ret = 0;
6448 	spin_lock(&mddev->lock);
6449 	conf = mddev->private;
6450 	if (conf)
6451 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6452 	spin_unlock(&mddev->lock);
6453 	return ret;
6454 }
6455 
6456 static ssize_t
6457 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6458 {
6459 	struct r5conf *conf;
6460 	unsigned long new;
6461 	int err;
6462 
6463 	if (len >= PAGE_SIZE)
6464 		return -EINVAL;
6465 	if (kstrtoul(page, 10, &new))
6466 		return -EINVAL;
6467 
6468 	err = mddev_lock(mddev);
6469 	if (err)
6470 		return err;
6471 	conf = mddev->private;
6472 	if (!conf)
6473 		err = -ENODEV;
6474 	else if (new > conf->min_nr_stripes)
6475 		err = -EINVAL;
6476 	else
6477 		conf->bypass_threshold = new;
6478 	mddev_unlock(mddev);
6479 	return err ?: len;
6480 }
6481 
6482 static struct md_sysfs_entry
6483 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6484 					S_IRUGO | S_IWUSR,
6485 					raid5_show_preread_threshold,
6486 					raid5_store_preread_threshold);
6487 
6488 static ssize_t
6489 raid5_show_skip_copy(struct mddev *mddev, char *page)
6490 {
6491 	struct r5conf *conf;
6492 	int ret = 0;
6493 	spin_lock(&mddev->lock);
6494 	conf = mddev->private;
6495 	if (conf)
6496 		ret = sprintf(page, "%d\n", conf->skip_copy);
6497 	spin_unlock(&mddev->lock);
6498 	return ret;
6499 }
6500 
6501 static ssize_t
6502 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6503 {
6504 	struct r5conf *conf;
6505 	unsigned long new;
6506 	int err;
6507 
6508 	if (len >= PAGE_SIZE)
6509 		return -EINVAL;
6510 	if (kstrtoul(page, 10, &new))
6511 		return -EINVAL;
6512 	new = !!new;
6513 
6514 	err = mddev_lock(mddev);
6515 	if (err)
6516 		return err;
6517 	conf = mddev->private;
6518 	if (!conf)
6519 		err = -ENODEV;
6520 	else if (new != conf->skip_copy) {
6521 		mddev_suspend(mddev);
6522 		conf->skip_copy = new;
6523 		if (new)
6524 			mddev->queue->backing_dev_info->capabilities |=
6525 				BDI_CAP_STABLE_WRITES;
6526 		else
6527 			mddev->queue->backing_dev_info->capabilities &=
6528 				~BDI_CAP_STABLE_WRITES;
6529 		mddev_resume(mddev);
6530 	}
6531 	mddev_unlock(mddev);
6532 	return err ?: len;
6533 }
6534 
6535 static struct md_sysfs_entry
6536 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6537 					raid5_show_skip_copy,
6538 					raid5_store_skip_copy);
6539 
6540 static ssize_t
6541 stripe_cache_active_show(struct mddev *mddev, char *page)
6542 {
6543 	struct r5conf *conf = mddev->private;
6544 	if (conf)
6545 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6546 	else
6547 		return 0;
6548 }
6549 
6550 static struct md_sysfs_entry
6551 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6552 
6553 static ssize_t
6554 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6555 {
6556 	struct r5conf *conf;
6557 	int ret = 0;
6558 	spin_lock(&mddev->lock);
6559 	conf = mddev->private;
6560 	if (conf)
6561 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6562 	spin_unlock(&mddev->lock);
6563 	return ret;
6564 }
6565 
6566 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6567 			       int *group_cnt,
6568 			       int *worker_cnt_per_group,
6569 			       struct r5worker_group **worker_groups);
6570 static ssize_t
6571 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6572 {
6573 	struct r5conf *conf;
6574 	unsigned long new;
6575 	int err;
6576 	struct r5worker_group *new_groups, *old_groups;
6577 	int group_cnt, worker_cnt_per_group;
6578 
6579 	if (len >= PAGE_SIZE)
6580 		return -EINVAL;
6581 	if (kstrtoul(page, 10, &new))
6582 		return -EINVAL;
6583 
6584 	err = mddev_lock(mddev);
6585 	if (err)
6586 		return err;
6587 	conf = mddev->private;
6588 	if (!conf)
6589 		err = -ENODEV;
6590 	else if (new != conf->worker_cnt_per_group) {
6591 		mddev_suspend(mddev);
6592 
6593 		old_groups = conf->worker_groups;
6594 		if (old_groups)
6595 			flush_workqueue(raid5_wq);
6596 
6597 		err = alloc_thread_groups(conf, new,
6598 					  &group_cnt, &worker_cnt_per_group,
6599 					  &new_groups);
6600 		if (!err) {
6601 			spin_lock_irq(&conf->device_lock);
6602 			conf->group_cnt = group_cnt;
6603 			conf->worker_cnt_per_group = worker_cnt_per_group;
6604 			conf->worker_groups = new_groups;
6605 			spin_unlock_irq(&conf->device_lock);
6606 
6607 			if (old_groups)
6608 				kfree(old_groups[0].workers);
6609 			kfree(old_groups);
6610 		}
6611 		mddev_resume(mddev);
6612 	}
6613 	mddev_unlock(mddev);
6614 
6615 	return err ?: len;
6616 }
6617 
6618 static struct md_sysfs_entry
6619 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6620 				raid5_show_group_thread_cnt,
6621 				raid5_store_group_thread_cnt);
6622 
6623 static struct attribute *raid5_attrs[] =  {
6624 	&raid5_stripecache_size.attr,
6625 	&raid5_stripecache_active.attr,
6626 	&raid5_preread_bypass_threshold.attr,
6627 	&raid5_group_thread_cnt.attr,
6628 	&raid5_skip_copy.attr,
6629 	&raid5_rmw_level.attr,
6630 	&r5c_journal_mode.attr,
6631 	NULL,
6632 };
6633 static struct attribute_group raid5_attrs_group = {
6634 	.name = NULL,
6635 	.attrs = raid5_attrs,
6636 };
6637 
6638 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6639 			       int *group_cnt,
6640 			       int *worker_cnt_per_group,
6641 			       struct r5worker_group **worker_groups)
6642 {
6643 	int i, j, k;
6644 	ssize_t size;
6645 	struct r5worker *workers;
6646 
6647 	*worker_cnt_per_group = cnt;
6648 	if (cnt == 0) {
6649 		*group_cnt = 0;
6650 		*worker_groups = NULL;
6651 		return 0;
6652 	}
6653 	*group_cnt = num_possible_nodes();
6654 	size = sizeof(struct r5worker) * cnt;
6655 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6656 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6657 				*group_cnt, GFP_NOIO);
6658 	if (!*worker_groups || !workers) {
6659 		kfree(workers);
6660 		kfree(*worker_groups);
6661 		return -ENOMEM;
6662 	}
6663 
6664 	for (i = 0; i < *group_cnt; i++) {
6665 		struct r5worker_group *group;
6666 
6667 		group = &(*worker_groups)[i];
6668 		INIT_LIST_HEAD(&group->handle_list);
6669 		INIT_LIST_HEAD(&group->loprio_list);
6670 		group->conf = conf;
6671 		group->workers = workers + i * cnt;
6672 
6673 		for (j = 0; j < cnt; j++) {
6674 			struct r5worker *worker = group->workers + j;
6675 			worker->group = group;
6676 			INIT_WORK(&worker->work, raid5_do_work);
6677 
6678 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6679 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6680 		}
6681 	}
6682 
6683 	return 0;
6684 }
6685 
6686 static void free_thread_groups(struct r5conf *conf)
6687 {
6688 	if (conf->worker_groups)
6689 		kfree(conf->worker_groups[0].workers);
6690 	kfree(conf->worker_groups);
6691 	conf->worker_groups = NULL;
6692 }
6693 
6694 static sector_t
6695 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6696 {
6697 	struct r5conf *conf = mddev->private;
6698 
6699 	if (!sectors)
6700 		sectors = mddev->dev_sectors;
6701 	if (!raid_disks)
6702 		/* size is defined by the smallest of previous and new size */
6703 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6704 
6705 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6706 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6707 	return sectors * (raid_disks - conf->max_degraded);
6708 }
6709 
6710 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6711 {
6712 	safe_put_page(percpu->spare_page);
6713 	if (percpu->scribble)
6714 		flex_array_free(percpu->scribble);
6715 	percpu->spare_page = NULL;
6716 	percpu->scribble = NULL;
6717 }
6718 
6719 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6720 {
6721 	if (conf->level == 6 && !percpu->spare_page)
6722 		percpu->spare_page = alloc_page(GFP_KERNEL);
6723 	if (!percpu->scribble)
6724 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6725 						      conf->previous_raid_disks),
6726 						  max(conf->chunk_sectors,
6727 						      conf->prev_chunk_sectors)
6728 						   / STRIPE_SECTORS,
6729 						  GFP_KERNEL);
6730 
6731 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6732 		free_scratch_buffer(conf, percpu);
6733 		return -ENOMEM;
6734 	}
6735 
6736 	return 0;
6737 }
6738 
6739 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6740 {
6741 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6742 
6743 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6744 	return 0;
6745 }
6746 
6747 static void raid5_free_percpu(struct r5conf *conf)
6748 {
6749 	if (!conf->percpu)
6750 		return;
6751 
6752 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6753 	free_percpu(conf->percpu);
6754 }
6755 
6756 static void free_conf(struct r5conf *conf)
6757 {
6758 	int i;
6759 
6760 	log_exit(conf);
6761 
6762 	if (conf->shrinker.nr_deferred)
6763 		unregister_shrinker(&conf->shrinker);
6764 
6765 	free_thread_groups(conf);
6766 	shrink_stripes(conf);
6767 	raid5_free_percpu(conf);
6768 	for (i = 0; i < conf->pool_size; i++)
6769 		if (conf->disks[i].extra_page)
6770 			put_page(conf->disks[i].extra_page);
6771 	kfree(conf->disks);
6772 	if (conf->bio_split)
6773 		bioset_free(conf->bio_split);
6774 	kfree(conf->stripe_hashtbl);
6775 	kfree(conf->pending_data);
6776 	kfree(conf);
6777 }
6778 
6779 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6780 {
6781 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6782 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6783 
6784 	if (alloc_scratch_buffer(conf, percpu)) {
6785 		pr_warn("%s: failed memory allocation for cpu%u\n",
6786 			__func__, cpu);
6787 		return -ENOMEM;
6788 	}
6789 	return 0;
6790 }
6791 
6792 static int raid5_alloc_percpu(struct r5conf *conf)
6793 {
6794 	int err = 0;
6795 
6796 	conf->percpu = alloc_percpu(struct raid5_percpu);
6797 	if (!conf->percpu)
6798 		return -ENOMEM;
6799 
6800 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6801 	if (!err) {
6802 		conf->scribble_disks = max(conf->raid_disks,
6803 			conf->previous_raid_disks);
6804 		conf->scribble_sectors = max(conf->chunk_sectors,
6805 			conf->prev_chunk_sectors);
6806 	}
6807 	return err;
6808 }
6809 
6810 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6811 				      struct shrink_control *sc)
6812 {
6813 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6814 	unsigned long ret = SHRINK_STOP;
6815 
6816 	if (mutex_trylock(&conf->cache_size_mutex)) {
6817 		ret= 0;
6818 		while (ret < sc->nr_to_scan &&
6819 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6820 			if (drop_one_stripe(conf) == 0) {
6821 				ret = SHRINK_STOP;
6822 				break;
6823 			}
6824 			ret++;
6825 		}
6826 		mutex_unlock(&conf->cache_size_mutex);
6827 	}
6828 	return ret;
6829 }
6830 
6831 static unsigned long raid5_cache_count(struct shrinker *shrink,
6832 				       struct shrink_control *sc)
6833 {
6834 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6835 
6836 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6837 		/* unlikely, but not impossible */
6838 		return 0;
6839 	return conf->max_nr_stripes - conf->min_nr_stripes;
6840 }
6841 
6842 static struct r5conf *setup_conf(struct mddev *mddev)
6843 {
6844 	struct r5conf *conf;
6845 	int raid_disk, memory, max_disks;
6846 	struct md_rdev *rdev;
6847 	struct disk_info *disk;
6848 	char pers_name[6];
6849 	int i;
6850 	int group_cnt, worker_cnt_per_group;
6851 	struct r5worker_group *new_group;
6852 
6853 	if (mddev->new_level != 5
6854 	    && mddev->new_level != 4
6855 	    && mddev->new_level != 6) {
6856 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6857 			mdname(mddev), mddev->new_level);
6858 		return ERR_PTR(-EIO);
6859 	}
6860 	if ((mddev->new_level == 5
6861 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6862 	    (mddev->new_level == 6
6863 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6864 		pr_warn("md/raid:%s: layout %d not supported\n",
6865 			mdname(mddev), mddev->new_layout);
6866 		return ERR_PTR(-EIO);
6867 	}
6868 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6869 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6870 			mdname(mddev), mddev->raid_disks);
6871 		return ERR_PTR(-EINVAL);
6872 	}
6873 
6874 	if (!mddev->new_chunk_sectors ||
6875 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6876 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6877 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6878 			mdname(mddev), mddev->new_chunk_sectors << 9);
6879 		return ERR_PTR(-EINVAL);
6880 	}
6881 
6882 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6883 	if (conf == NULL)
6884 		goto abort;
6885 	INIT_LIST_HEAD(&conf->free_list);
6886 	INIT_LIST_HEAD(&conf->pending_list);
6887 	conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6888 		PENDING_IO_MAX, GFP_KERNEL);
6889 	if (!conf->pending_data)
6890 		goto abort;
6891 	for (i = 0; i < PENDING_IO_MAX; i++)
6892 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6893 	/* Don't enable multi-threading by default*/
6894 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6895 				 &new_group)) {
6896 		conf->group_cnt = group_cnt;
6897 		conf->worker_cnt_per_group = worker_cnt_per_group;
6898 		conf->worker_groups = new_group;
6899 	} else
6900 		goto abort;
6901 	spin_lock_init(&conf->device_lock);
6902 	seqcount_init(&conf->gen_lock);
6903 	mutex_init(&conf->cache_size_mutex);
6904 	init_waitqueue_head(&conf->wait_for_quiescent);
6905 	init_waitqueue_head(&conf->wait_for_stripe);
6906 	init_waitqueue_head(&conf->wait_for_overlap);
6907 	INIT_LIST_HEAD(&conf->handle_list);
6908 	INIT_LIST_HEAD(&conf->loprio_list);
6909 	INIT_LIST_HEAD(&conf->hold_list);
6910 	INIT_LIST_HEAD(&conf->delayed_list);
6911 	INIT_LIST_HEAD(&conf->bitmap_list);
6912 	init_llist_head(&conf->released_stripes);
6913 	atomic_set(&conf->active_stripes, 0);
6914 	atomic_set(&conf->preread_active_stripes, 0);
6915 	atomic_set(&conf->active_aligned_reads, 0);
6916 	spin_lock_init(&conf->pending_bios_lock);
6917 	conf->batch_bio_dispatch = true;
6918 	rdev_for_each(rdev, mddev) {
6919 		if (test_bit(Journal, &rdev->flags))
6920 			continue;
6921 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6922 			conf->batch_bio_dispatch = false;
6923 			break;
6924 		}
6925 	}
6926 
6927 	conf->bypass_threshold = BYPASS_THRESHOLD;
6928 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6929 
6930 	conf->raid_disks = mddev->raid_disks;
6931 	if (mddev->reshape_position == MaxSector)
6932 		conf->previous_raid_disks = mddev->raid_disks;
6933 	else
6934 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6935 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6936 
6937 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6938 			      GFP_KERNEL);
6939 
6940 	if (!conf->disks)
6941 		goto abort;
6942 
6943 	for (i = 0; i < max_disks; i++) {
6944 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6945 		if (!conf->disks[i].extra_page)
6946 			goto abort;
6947 	}
6948 
6949 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6950 	if (!conf->bio_split)
6951 		goto abort;
6952 	conf->mddev = mddev;
6953 
6954 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6955 		goto abort;
6956 
6957 	/* We init hash_locks[0] separately to that it can be used
6958 	 * as the reference lock in the spin_lock_nest_lock() call
6959 	 * in lock_all_device_hash_locks_irq in order to convince
6960 	 * lockdep that we know what we are doing.
6961 	 */
6962 	spin_lock_init(conf->hash_locks);
6963 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6964 		spin_lock_init(conf->hash_locks + i);
6965 
6966 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6967 		INIT_LIST_HEAD(conf->inactive_list + i);
6968 
6969 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6970 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6971 
6972 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6973 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6974 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6975 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6976 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6977 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6978 
6979 	conf->level = mddev->new_level;
6980 	conf->chunk_sectors = mddev->new_chunk_sectors;
6981 	if (raid5_alloc_percpu(conf) != 0)
6982 		goto abort;
6983 
6984 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6985 
6986 	rdev_for_each(rdev, mddev) {
6987 		raid_disk = rdev->raid_disk;
6988 		if (raid_disk >= max_disks
6989 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6990 			continue;
6991 		disk = conf->disks + raid_disk;
6992 
6993 		if (test_bit(Replacement, &rdev->flags)) {
6994 			if (disk->replacement)
6995 				goto abort;
6996 			disk->replacement = rdev;
6997 		} else {
6998 			if (disk->rdev)
6999 				goto abort;
7000 			disk->rdev = rdev;
7001 		}
7002 
7003 		if (test_bit(In_sync, &rdev->flags)) {
7004 			char b[BDEVNAME_SIZE];
7005 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7006 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7007 		} else if (rdev->saved_raid_disk != raid_disk)
7008 			/* Cannot rely on bitmap to complete recovery */
7009 			conf->fullsync = 1;
7010 	}
7011 
7012 	conf->level = mddev->new_level;
7013 	if (conf->level == 6) {
7014 		conf->max_degraded = 2;
7015 		if (raid6_call.xor_syndrome)
7016 			conf->rmw_level = PARITY_ENABLE_RMW;
7017 		else
7018 			conf->rmw_level = PARITY_DISABLE_RMW;
7019 	} else {
7020 		conf->max_degraded = 1;
7021 		conf->rmw_level = PARITY_ENABLE_RMW;
7022 	}
7023 	conf->algorithm = mddev->new_layout;
7024 	conf->reshape_progress = mddev->reshape_position;
7025 	if (conf->reshape_progress != MaxSector) {
7026 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7027 		conf->prev_algo = mddev->layout;
7028 	} else {
7029 		conf->prev_chunk_sectors = conf->chunk_sectors;
7030 		conf->prev_algo = conf->algorithm;
7031 	}
7032 
7033 	conf->min_nr_stripes = NR_STRIPES;
7034 	if (mddev->reshape_position != MaxSector) {
7035 		int stripes = max_t(int,
7036 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7037 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7038 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7039 		if (conf->min_nr_stripes != NR_STRIPES)
7040 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7041 				mdname(mddev), conf->min_nr_stripes);
7042 	}
7043 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7044 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7045 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7046 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7047 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7048 			mdname(mddev), memory);
7049 		goto abort;
7050 	} else
7051 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7052 	/*
7053 	 * Losing a stripe head costs more than the time to refill it,
7054 	 * it reduces the queue depth and so can hurt throughput.
7055 	 * So set it rather large, scaled by number of devices.
7056 	 */
7057 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7058 	conf->shrinker.scan_objects = raid5_cache_scan;
7059 	conf->shrinker.count_objects = raid5_cache_count;
7060 	conf->shrinker.batch = 128;
7061 	conf->shrinker.flags = 0;
7062 	if (register_shrinker(&conf->shrinker)) {
7063 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7064 			mdname(mddev));
7065 		goto abort;
7066 	}
7067 
7068 	sprintf(pers_name, "raid%d", mddev->new_level);
7069 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7070 	if (!conf->thread) {
7071 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7072 			mdname(mddev));
7073 		goto abort;
7074 	}
7075 
7076 	return conf;
7077 
7078  abort:
7079 	if (conf) {
7080 		free_conf(conf);
7081 		return ERR_PTR(-EIO);
7082 	} else
7083 		return ERR_PTR(-ENOMEM);
7084 }
7085 
7086 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7087 {
7088 	switch (algo) {
7089 	case ALGORITHM_PARITY_0:
7090 		if (raid_disk < max_degraded)
7091 			return 1;
7092 		break;
7093 	case ALGORITHM_PARITY_N:
7094 		if (raid_disk >= raid_disks - max_degraded)
7095 			return 1;
7096 		break;
7097 	case ALGORITHM_PARITY_0_6:
7098 		if (raid_disk == 0 ||
7099 		    raid_disk == raid_disks - 1)
7100 			return 1;
7101 		break;
7102 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7103 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7104 	case ALGORITHM_LEFT_SYMMETRIC_6:
7105 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7106 		if (raid_disk == raid_disks - 1)
7107 			return 1;
7108 	}
7109 	return 0;
7110 }
7111 
7112 static int raid5_run(struct mddev *mddev)
7113 {
7114 	struct r5conf *conf;
7115 	int working_disks = 0;
7116 	int dirty_parity_disks = 0;
7117 	struct md_rdev *rdev;
7118 	struct md_rdev *journal_dev = NULL;
7119 	sector_t reshape_offset = 0;
7120 	int i;
7121 	long long min_offset_diff = 0;
7122 	int first = 1;
7123 
7124 	if (mddev_init_writes_pending(mddev) < 0)
7125 		return -ENOMEM;
7126 
7127 	if (mddev->recovery_cp != MaxSector)
7128 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7129 			  mdname(mddev));
7130 
7131 	rdev_for_each(rdev, mddev) {
7132 		long long diff;
7133 
7134 		if (test_bit(Journal, &rdev->flags)) {
7135 			journal_dev = rdev;
7136 			continue;
7137 		}
7138 		if (rdev->raid_disk < 0)
7139 			continue;
7140 		diff = (rdev->new_data_offset - rdev->data_offset);
7141 		if (first) {
7142 			min_offset_diff = diff;
7143 			first = 0;
7144 		} else if (mddev->reshape_backwards &&
7145 			 diff < min_offset_diff)
7146 			min_offset_diff = diff;
7147 		else if (!mddev->reshape_backwards &&
7148 			 diff > min_offset_diff)
7149 			min_offset_diff = diff;
7150 	}
7151 
7152 	if (mddev->reshape_position != MaxSector) {
7153 		/* Check that we can continue the reshape.
7154 		 * Difficulties arise if the stripe we would write to
7155 		 * next is at or after the stripe we would read from next.
7156 		 * For a reshape that changes the number of devices, this
7157 		 * is only possible for a very short time, and mdadm makes
7158 		 * sure that time appears to have past before assembling
7159 		 * the array.  So we fail if that time hasn't passed.
7160 		 * For a reshape that keeps the number of devices the same
7161 		 * mdadm must be monitoring the reshape can keeping the
7162 		 * critical areas read-only and backed up.  It will start
7163 		 * the array in read-only mode, so we check for that.
7164 		 */
7165 		sector_t here_new, here_old;
7166 		int old_disks;
7167 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7168 		int chunk_sectors;
7169 		int new_data_disks;
7170 
7171 		if (journal_dev) {
7172 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7173 				mdname(mddev));
7174 			return -EINVAL;
7175 		}
7176 
7177 		if (mddev->new_level != mddev->level) {
7178 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7179 				mdname(mddev));
7180 			return -EINVAL;
7181 		}
7182 		old_disks = mddev->raid_disks - mddev->delta_disks;
7183 		/* reshape_position must be on a new-stripe boundary, and one
7184 		 * further up in new geometry must map after here in old
7185 		 * geometry.
7186 		 * If the chunk sizes are different, then as we perform reshape
7187 		 * in units of the largest of the two, reshape_position needs
7188 		 * be a multiple of the largest chunk size times new data disks.
7189 		 */
7190 		here_new = mddev->reshape_position;
7191 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7192 		new_data_disks = mddev->raid_disks - max_degraded;
7193 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7194 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7195 				mdname(mddev));
7196 			return -EINVAL;
7197 		}
7198 		reshape_offset = here_new * chunk_sectors;
7199 		/* here_new is the stripe we will write to */
7200 		here_old = mddev->reshape_position;
7201 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7202 		/* here_old is the first stripe that we might need to read
7203 		 * from */
7204 		if (mddev->delta_disks == 0) {
7205 			/* We cannot be sure it is safe to start an in-place
7206 			 * reshape.  It is only safe if user-space is monitoring
7207 			 * and taking constant backups.
7208 			 * mdadm always starts a situation like this in
7209 			 * readonly mode so it can take control before
7210 			 * allowing any writes.  So just check for that.
7211 			 */
7212 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7213 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7214 				/* not really in-place - so OK */;
7215 			else if (mddev->ro == 0) {
7216 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7217 					mdname(mddev));
7218 				return -EINVAL;
7219 			}
7220 		} else if (mddev->reshape_backwards
7221 		    ? (here_new * chunk_sectors + min_offset_diff <=
7222 		       here_old * chunk_sectors)
7223 		    : (here_new * chunk_sectors >=
7224 		       here_old * chunk_sectors + (-min_offset_diff))) {
7225 			/* Reading from the same stripe as writing to - bad */
7226 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7227 				mdname(mddev));
7228 			return -EINVAL;
7229 		}
7230 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7231 		/* OK, we should be able to continue; */
7232 	} else {
7233 		BUG_ON(mddev->level != mddev->new_level);
7234 		BUG_ON(mddev->layout != mddev->new_layout);
7235 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7236 		BUG_ON(mddev->delta_disks != 0);
7237 	}
7238 
7239 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7240 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7241 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7242 			mdname(mddev));
7243 		clear_bit(MD_HAS_PPL, &mddev->flags);
7244 	}
7245 
7246 	if (mddev->private == NULL)
7247 		conf = setup_conf(mddev);
7248 	else
7249 		conf = mddev->private;
7250 
7251 	if (IS_ERR(conf))
7252 		return PTR_ERR(conf);
7253 
7254 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7255 		if (!journal_dev) {
7256 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7257 				mdname(mddev));
7258 			mddev->ro = 1;
7259 			set_disk_ro(mddev->gendisk, 1);
7260 		} else if (mddev->recovery_cp == MaxSector)
7261 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7262 	}
7263 
7264 	conf->min_offset_diff = min_offset_diff;
7265 	mddev->thread = conf->thread;
7266 	conf->thread = NULL;
7267 	mddev->private = conf;
7268 
7269 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7270 	     i++) {
7271 		rdev = conf->disks[i].rdev;
7272 		if (!rdev && conf->disks[i].replacement) {
7273 			/* The replacement is all we have yet */
7274 			rdev = conf->disks[i].replacement;
7275 			conf->disks[i].replacement = NULL;
7276 			clear_bit(Replacement, &rdev->flags);
7277 			conf->disks[i].rdev = rdev;
7278 		}
7279 		if (!rdev)
7280 			continue;
7281 		if (conf->disks[i].replacement &&
7282 		    conf->reshape_progress != MaxSector) {
7283 			/* replacements and reshape simply do not mix. */
7284 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7285 			goto abort;
7286 		}
7287 		if (test_bit(In_sync, &rdev->flags)) {
7288 			working_disks++;
7289 			continue;
7290 		}
7291 		/* This disc is not fully in-sync.  However if it
7292 		 * just stored parity (beyond the recovery_offset),
7293 		 * when we don't need to be concerned about the
7294 		 * array being dirty.
7295 		 * When reshape goes 'backwards', we never have
7296 		 * partially completed devices, so we only need
7297 		 * to worry about reshape going forwards.
7298 		 */
7299 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7300 		if (mddev->major_version == 0 &&
7301 		    mddev->minor_version > 90)
7302 			rdev->recovery_offset = reshape_offset;
7303 
7304 		if (rdev->recovery_offset < reshape_offset) {
7305 			/* We need to check old and new layout */
7306 			if (!only_parity(rdev->raid_disk,
7307 					 conf->algorithm,
7308 					 conf->raid_disks,
7309 					 conf->max_degraded))
7310 				continue;
7311 		}
7312 		if (!only_parity(rdev->raid_disk,
7313 				 conf->prev_algo,
7314 				 conf->previous_raid_disks,
7315 				 conf->max_degraded))
7316 			continue;
7317 		dirty_parity_disks++;
7318 	}
7319 
7320 	/*
7321 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7322 	 */
7323 	mddev->degraded = raid5_calc_degraded(conf);
7324 
7325 	if (has_failed(conf)) {
7326 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7327 			mdname(mddev), mddev->degraded, conf->raid_disks);
7328 		goto abort;
7329 	}
7330 
7331 	/* device size must be a multiple of chunk size */
7332 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7333 	mddev->resync_max_sectors = mddev->dev_sectors;
7334 
7335 	if (mddev->degraded > dirty_parity_disks &&
7336 	    mddev->recovery_cp != MaxSector) {
7337 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7338 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7339 				mdname(mddev));
7340 		else if (mddev->ok_start_degraded)
7341 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7342 				mdname(mddev));
7343 		else {
7344 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7345 				mdname(mddev));
7346 			goto abort;
7347 		}
7348 	}
7349 
7350 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7351 		mdname(mddev), conf->level,
7352 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7353 		mddev->new_layout);
7354 
7355 	print_raid5_conf(conf);
7356 
7357 	if (conf->reshape_progress != MaxSector) {
7358 		conf->reshape_safe = conf->reshape_progress;
7359 		atomic_set(&conf->reshape_stripes, 0);
7360 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7361 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7362 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7363 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7364 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7365 							"reshape");
7366 	}
7367 
7368 	/* Ok, everything is just fine now */
7369 	if (mddev->to_remove == &raid5_attrs_group)
7370 		mddev->to_remove = NULL;
7371 	else if (mddev->kobj.sd &&
7372 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7373 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7374 			mdname(mddev));
7375 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7376 
7377 	if (mddev->queue) {
7378 		int chunk_size;
7379 		/* read-ahead size must cover two whole stripes, which
7380 		 * is 2 * (datadisks) * chunksize where 'n' is the
7381 		 * number of raid devices
7382 		 */
7383 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7384 		int stripe = data_disks *
7385 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7386 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7387 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7388 
7389 		chunk_size = mddev->chunk_sectors << 9;
7390 		blk_queue_io_min(mddev->queue, chunk_size);
7391 		blk_queue_io_opt(mddev->queue, chunk_size *
7392 				 (conf->raid_disks - conf->max_degraded));
7393 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7394 		/*
7395 		 * We can only discard a whole stripe. It doesn't make sense to
7396 		 * discard data disk but write parity disk
7397 		 */
7398 		stripe = stripe * PAGE_SIZE;
7399 		/* Round up to power of 2, as discard handling
7400 		 * currently assumes that */
7401 		while ((stripe-1) & stripe)
7402 			stripe = (stripe | (stripe-1)) + 1;
7403 		mddev->queue->limits.discard_alignment = stripe;
7404 		mddev->queue->limits.discard_granularity = stripe;
7405 
7406 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7407 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7408 
7409 		rdev_for_each(rdev, mddev) {
7410 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7411 					  rdev->data_offset << 9);
7412 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7413 					  rdev->new_data_offset << 9);
7414 		}
7415 
7416 		/*
7417 		 * zeroing is required, otherwise data
7418 		 * could be lost. Consider a scenario: discard a stripe
7419 		 * (the stripe could be inconsistent if
7420 		 * discard_zeroes_data is 0); write one disk of the
7421 		 * stripe (the stripe could be inconsistent again
7422 		 * depending on which disks are used to calculate
7423 		 * parity); the disk is broken; The stripe data of this
7424 		 * disk is lost.
7425 		 *
7426 		 * We only allow DISCARD if the sysadmin has confirmed that
7427 		 * only safe devices are in use by setting a module parameter.
7428 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7429 		 * requests, as that is required to be safe.
7430 		 */
7431 		if (devices_handle_discard_safely &&
7432 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7433 		    mddev->queue->limits.discard_granularity >= stripe)
7434 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7435 						mddev->queue);
7436 		else
7437 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7438 						mddev->queue);
7439 
7440 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7441 	}
7442 
7443 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7444 		goto abort;
7445 
7446 	return 0;
7447 abort:
7448 	md_unregister_thread(&mddev->thread);
7449 	print_raid5_conf(conf);
7450 	free_conf(conf);
7451 	mddev->private = NULL;
7452 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7453 	return -EIO;
7454 }
7455 
7456 static void raid5_free(struct mddev *mddev, void *priv)
7457 {
7458 	struct r5conf *conf = priv;
7459 
7460 	free_conf(conf);
7461 	mddev->to_remove = &raid5_attrs_group;
7462 }
7463 
7464 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7465 {
7466 	struct r5conf *conf = mddev->private;
7467 	int i;
7468 
7469 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7470 		conf->chunk_sectors / 2, mddev->layout);
7471 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7472 	rcu_read_lock();
7473 	for (i = 0; i < conf->raid_disks; i++) {
7474 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7475 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7476 	}
7477 	rcu_read_unlock();
7478 	seq_printf (seq, "]");
7479 }
7480 
7481 static void print_raid5_conf (struct r5conf *conf)
7482 {
7483 	int i;
7484 	struct disk_info *tmp;
7485 
7486 	pr_debug("RAID conf printout:\n");
7487 	if (!conf) {
7488 		pr_debug("(conf==NULL)\n");
7489 		return;
7490 	}
7491 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7492 	       conf->raid_disks,
7493 	       conf->raid_disks - conf->mddev->degraded);
7494 
7495 	for (i = 0; i < conf->raid_disks; i++) {
7496 		char b[BDEVNAME_SIZE];
7497 		tmp = conf->disks + i;
7498 		if (tmp->rdev)
7499 			pr_debug(" disk %d, o:%d, dev:%s\n",
7500 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7501 			       bdevname(tmp->rdev->bdev, b));
7502 	}
7503 }
7504 
7505 static int raid5_spare_active(struct mddev *mddev)
7506 {
7507 	int i;
7508 	struct r5conf *conf = mddev->private;
7509 	struct disk_info *tmp;
7510 	int count = 0;
7511 	unsigned long flags;
7512 
7513 	for (i = 0; i < conf->raid_disks; i++) {
7514 		tmp = conf->disks + i;
7515 		if (tmp->replacement
7516 		    && tmp->replacement->recovery_offset == MaxSector
7517 		    && !test_bit(Faulty, &tmp->replacement->flags)
7518 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7519 			/* Replacement has just become active. */
7520 			if (!tmp->rdev
7521 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7522 				count++;
7523 			if (tmp->rdev) {
7524 				/* Replaced device not technically faulty,
7525 				 * but we need to be sure it gets removed
7526 				 * and never re-added.
7527 				 */
7528 				set_bit(Faulty, &tmp->rdev->flags);
7529 				sysfs_notify_dirent_safe(
7530 					tmp->rdev->sysfs_state);
7531 			}
7532 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7533 		} else if (tmp->rdev
7534 		    && tmp->rdev->recovery_offset == MaxSector
7535 		    && !test_bit(Faulty, &tmp->rdev->flags)
7536 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7537 			count++;
7538 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7539 		}
7540 	}
7541 	spin_lock_irqsave(&conf->device_lock, flags);
7542 	mddev->degraded = raid5_calc_degraded(conf);
7543 	spin_unlock_irqrestore(&conf->device_lock, flags);
7544 	print_raid5_conf(conf);
7545 	return count;
7546 }
7547 
7548 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7549 {
7550 	struct r5conf *conf = mddev->private;
7551 	int err = 0;
7552 	int number = rdev->raid_disk;
7553 	struct md_rdev **rdevp;
7554 	struct disk_info *p = conf->disks + number;
7555 
7556 	print_raid5_conf(conf);
7557 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7558 		/*
7559 		 * we can't wait pending write here, as this is called in
7560 		 * raid5d, wait will deadlock.
7561 		 * neilb: there is no locking about new writes here,
7562 		 * so this cannot be safe.
7563 		 */
7564 		if (atomic_read(&conf->active_stripes) ||
7565 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7566 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7567 			return -EBUSY;
7568 		}
7569 		log_exit(conf);
7570 		return 0;
7571 	}
7572 	if (rdev == p->rdev)
7573 		rdevp = &p->rdev;
7574 	else if (rdev == p->replacement)
7575 		rdevp = &p->replacement;
7576 	else
7577 		return 0;
7578 
7579 	if (number >= conf->raid_disks &&
7580 	    conf->reshape_progress == MaxSector)
7581 		clear_bit(In_sync, &rdev->flags);
7582 
7583 	if (test_bit(In_sync, &rdev->flags) ||
7584 	    atomic_read(&rdev->nr_pending)) {
7585 		err = -EBUSY;
7586 		goto abort;
7587 	}
7588 	/* Only remove non-faulty devices if recovery
7589 	 * isn't possible.
7590 	 */
7591 	if (!test_bit(Faulty, &rdev->flags) &&
7592 	    mddev->recovery_disabled != conf->recovery_disabled &&
7593 	    !has_failed(conf) &&
7594 	    (!p->replacement || p->replacement == rdev) &&
7595 	    number < conf->raid_disks) {
7596 		err = -EBUSY;
7597 		goto abort;
7598 	}
7599 	*rdevp = NULL;
7600 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7601 		synchronize_rcu();
7602 		if (atomic_read(&rdev->nr_pending)) {
7603 			/* lost the race, try later */
7604 			err = -EBUSY;
7605 			*rdevp = rdev;
7606 		}
7607 	}
7608 	if (!err) {
7609 		err = log_modify(conf, rdev, false);
7610 		if (err)
7611 			goto abort;
7612 	}
7613 	if (p->replacement) {
7614 		/* We must have just cleared 'rdev' */
7615 		p->rdev = p->replacement;
7616 		clear_bit(Replacement, &p->replacement->flags);
7617 		smp_mb(); /* Make sure other CPUs may see both as identical
7618 			   * but will never see neither - if they are careful
7619 			   */
7620 		p->replacement = NULL;
7621 
7622 		if (!err)
7623 			err = log_modify(conf, p->rdev, true);
7624 	}
7625 
7626 	clear_bit(WantReplacement, &rdev->flags);
7627 abort:
7628 
7629 	print_raid5_conf(conf);
7630 	return err;
7631 }
7632 
7633 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7634 {
7635 	struct r5conf *conf = mddev->private;
7636 	int err = -EEXIST;
7637 	int disk;
7638 	struct disk_info *p;
7639 	int first = 0;
7640 	int last = conf->raid_disks - 1;
7641 
7642 	if (test_bit(Journal, &rdev->flags)) {
7643 		if (conf->log)
7644 			return -EBUSY;
7645 
7646 		rdev->raid_disk = 0;
7647 		/*
7648 		 * The array is in readonly mode if journal is missing, so no
7649 		 * write requests running. We should be safe
7650 		 */
7651 		log_init(conf, rdev, false);
7652 		return 0;
7653 	}
7654 	if (mddev->recovery_disabled == conf->recovery_disabled)
7655 		return -EBUSY;
7656 
7657 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7658 		/* no point adding a device */
7659 		return -EINVAL;
7660 
7661 	if (rdev->raid_disk >= 0)
7662 		first = last = rdev->raid_disk;
7663 
7664 	/*
7665 	 * find the disk ... but prefer rdev->saved_raid_disk
7666 	 * if possible.
7667 	 */
7668 	if (rdev->saved_raid_disk >= 0 &&
7669 	    rdev->saved_raid_disk >= first &&
7670 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7671 		first = rdev->saved_raid_disk;
7672 
7673 	for (disk = first; disk <= last; disk++) {
7674 		p = conf->disks + disk;
7675 		if (p->rdev == NULL) {
7676 			clear_bit(In_sync, &rdev->flags);
7677 			rdev->raid_disk = disk;
7678 			if (rdev->saved_raid_disk != disk)
7679 				conf->fullsync = 1;
7680 			rcu_assign_pointer(p->rdev, rdev);
7681 
7682 			err = log_modify(conf, rdev, true);
7683 
7684 			goto out;
7685 		}
7686 	}
7687 	for (disk = first; disk <= last; disk++) {
7688 		p = conf->disks + disk;
7689 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7690 		    p->replacement == NULL) {
7691 			clear_bit(In_sync, &rdev->flags);
7692 			set_bit(Replacement, &rdev->flags);
7693 			rdev->raid_disk = disk;
7694 			err = 0;
7695 			conf->fullsync = 1;
7696 			rcu_assign_pointer(p->replacement, rdev);
7697 			break;
7698 		}
7699 	}
7700 out:
7701 	print_raid5_conf(conf);
7702 	return err;
7703 }
7704 
7705 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7706 {
7707 	/* no resync is happening, and there is enough space
7708 	 * on all devices, so we can resize.
7709 	 * We need to make sure resync covers any new space.
7710 	 * If the array is shrinking we should possibly wait until
7711 	 * any io in the removed space completes, but it hardly seems
7712 	 * worth it.
7713 	 */
7714 	sector_t newsize;
7715 	struct r5conf *conf = mddev->private;
7716 
7717 	if (conf->log || raid5_has_ppl(conf))
7718 		return -EINVAL;
7719 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7720 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7721 	if (mddev->external_size &&
7722 	    mddev->array_sectors > newsize)
7723 		return -EINVAL;
7724 	if (mddev->bitmap) {
7725 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7726 		if (ret)
7727 			return ret;
7728 	}
7729 	md_set_array_sectors(mddev, newsize);
7730 	if (sectors > mddev->dev_sectors &&
7731 	    mddev->recovery_cp > mddev->dev_sectors) {
7732 		mddev->recovery_cp = mddev->dev_sectors;
7733 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7734 	}
7735 	mddev->dev_sectors = sectors;
7736 	mddev->resync_max_sectors = sectors;
7737 	return 0;
7738 }
7739 
7740 static int check_stripe_cache(struct mddev *mddev)
7741 {
7742 	/* Can only proceed if there are plenty of stripe_heads.
7743 	 * We need a minimum of one full stripe,, and for sensible progress
7744 	 * it is best to have about 4 times that.
7745 	 * If we require 4 times, then the default 256 4K stripe_heads will
7746 	 * allow for chunk sizes up to 256K, which is probably OK.
7747 	 * If the chunk size is greater, user-space should request more
7748 	 * stripe_heads first.
7749 	 */
7750 	struct r5conf *conf = mddev->private;
7751 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7752 	    > conf->min_nr_stripes ||
7753 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7754 	    > conf->min_nr_stripes) {
7755 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7756 			mdname(mddev),
7757 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7758 			 / STRIPE_SIZE)*4);
7759 		return 0;
7760 	}
7761 	return 1;
7762 }
7763 
7764 static int check_reshape(struct mddev *mddev)
7765 {
7766 	struct r5conf *conf = mddev->private;
7767 
7768 	if (conf->log || raid5_has_ppl(conf))
7769 		return -EINVAL;
7770 	if (mddev->delta_disks == 0 &&
7771 	    mddev->new_layout == mddev->layout &&
7772 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7773 		return 0; /* nothing to do */
7774 	if (has_failed(conf))
7775 		return -EINVAL;
7776 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7777 		/* We might be able to shrink, but the devices must
7778 		 * be made bigger first.
7779 		 * For raid6, 4 is the minimum size.
7780 		 * Otherwise 2 is the minimum
7781 		 */
7782 		int min = 2;
7783 		if (mddev->level == 6)
7784 			min = 4;
7785 		if (mddev->raid_disks + mddev->delta_disks < min)
7786 			return -EINVAL;
7787 	}
7788 
7789 	if (!check_stripe_cache(mddev))
7790 		return -ENOSPC;
7791 
7792 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7793 	    mddev->delta_disks > 0)
7794 		if (resize_chunks(conf,
7795 				  conf->previous_raid_disks
7796 				  + max(0, mddev->delta_disks),
7797 				  max(mddev->new_chunk_sectors,
7798 				      mddev->chunk_sectors)
7799 			    ) < 0)
7800 			return -ENOMEM;
7801 
7802 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7803 		return 0; /* never bother to shrink */
7804 	return resize_stripes(conf, (conf->previous_raid_disks
7805 				     + mddev->delta_disks));
7806 }
7807 
7808 static int raid5_start_reshape(struct mddev *mddev)
7809 {
7810 	struct r5conf *conf = mddev->private;
7811 	struct md_rdev *rdev;
7812 	int spares = 0;
7813 	unsigned long flags;
7814 
7815 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7816 		return -EBUSY;
7817 
7818 	if (!check_stripe_cache(mddev))
7819 		return -ENOSPC;
7820 
7821 	if (has_failed(conf))
7822 		return -EINVAL;
7823 
7824 	rdev_for_each(rdev, mddev) {
7825 		if (!test_bit(In_sync, &rdev->flags)
7826 		    && !test_bit(Faulty, &rdev->flags))
7827 			spares++;
7828 	}
7829 
7830 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7831 		/* Not enough devices even to make a degraded array
7832 		 * of that size
7833 		 */
7834 		return -EINVAL;
7835 
7836 	/* Refuse to reduce size of the array.  Any reductions in
7837 	 * array size must be through explicit setting of array_size
7838 	 * attribute.
7839 	 */
7840 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7841 	    < mddev->array_sectors) {
7842 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7843 			mdname(mddev));
7844 		return -EINVAL;
7845 	}
7846 
7847 	atomic_set(&conf->reshape_stripes, 0);
7848 	spin_lock_irq(&conf->device_lock);
7849 	write_seqcount_begin(&conf->gen_lock);
7850 	conf->previous_raid_disks = conf->raid_disks;
7851 	conf->raid_disks += mddev->delta_disks;
7852 	conf->prev_chunk_sectors = conf->chunk_sectors;
7853 	conf->chunk_sectors = mddev->new_chunk_sectors;
7854 	conf->prev_algo = conf->algorithm;
7855 	conf->algorithm = mddev->new_layout;
7856 	conf->generation++;
7857 	/* Code that selects data_offset needs to see the generation update
7858 	 * if reshape_progress has been set - so a memory barrier needed.
7859 	 */
7860 	smp_mb();
7861 	if (mddev->reshape_backwards)
7862 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7863 	else
7864 		conf->reshape_progress = 0;
7865 	conf->reshape_safe = conf->reshape_progress;
7866 	write_seqcount_end(&conf->gen_lock);
7867 	spin_unlock_irq(&conf->device_lock);
7868 
7869 	/* Now make sure any requests that proceeded on the assumption
7870 	 * the reshape wasn't running - like Discard or Read - have
7871 	 * completed.
7872 	 */
7873 	mddev_suspend(mddev);
7874 	mddev_resume(mddev);
7875 
7876 	/* Add some new drives, as many as will fit.
7877 	 * We know there are enough to make the newly sized array work.
7878 	 * Don't add devices if we are reducing the number of
7879 	 * devices in the array.  This is because it is not possible
7880 	 * to correctly record the "partially reconstructed" state of
7881 	 * such devices during the reshape and confusion could result.
7882 	 */
7883 	if (mddev->delta_disks >= 0) {
7884 		rdev_for_each(rdev, mddev)
7885 			if (rdev->raid_disk < 0 &&
7886 			    !test_bit(Faulty, &rdev->flags)) {
7887 				if (raid5_add_disk(mddev, rdev) == 0) {
7888 					if (rdev->raid_disk
7889 					    >= conf->previous_raid_disks)
7890 						set_bit(In_sync, &rdev->flags);
7891 					else
7892 						rdev->recovery_offset = 0;
7893 
7894 					if (sysfs_link_rdev(mddev, rdev))
7895 						/* Failure here is OK */;
7896 				}
7897 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7898 				   && !test_bit(Faulty, &rdev->flags)) {
7899 				/* This is a spare that was manually added */
7900 				set_bit(In_sync, &rdev->flags);
7901 			}
7902 
7903 		/* When a reshape changes the number of devices,
7904 		 * ->degraded is measured against the larger of the
7905 		 * pre and post number of devices.
7906 		 */
7907 		spin_lock_irqsave(&conf->device_lock, flags);
7908 		mddev->degraded = raid5_calc_degraded(conf);
7909 		spin_unlock_irqrestore(&conf->device_lock, flags);
7910 	}
7911 	mddev->raid_disks = conf->raid_disks;
7912 	mddev->reshape_position = conf->reshape_progress;
7913 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7914 
7915 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7916 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7917 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7918 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7919 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7920 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7921 						"reshape");
7922 	if (!mddev->sync_thread) {
7923 		mddev->recovery = 0;
7924 		spin_lock_irq(&conf->device_lock);
7925 		write_seqcount_begin(&conf->gen_lock);
7926 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7927 		mddev->new_chunk_sectors =
7928 			conf->chunk_sectors = conf->prev_chunk_sectors;
7929 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7930 		rdev_for_each(rdev, mddev)
7931 			rdev->new_data_offset = rdev->data_offset;
7932 		smp_wmb();
7933 		conf->generation --;
7934 		conf->reshape_progress = MaxSector;
7935 		mddev->reshape_position = MaxSector;
7936 		write_seqcount_end(&conf->gen_lock);
7937 		spin_unlock_irq(&conf->device_lock);
7938 		return -EAGAIN;
7939 	}
7940 	conf->reshape_checkpoint = jiffies;
7941 	md_wakeup_thread(mddev->sync_thread);
7942 	md_new_event(mddev);
7943 	return 0;
7944 }
7945 
7946 /* This is called from the reshape thread and should make any
7947  * changes needed in 'conf'
7948  */
7949 static void end_reshape(struct r5conf *conf)
7950 {
7951 
7952 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7953 
7954 		spin_lock_irq(&conf->device_lock);
7955 		conf->previous_raid_disks = conf->raid_disks;
7956 		md_finish_reshape(conf->mddev);
7957 		smp_wmb();
7958 		conf->reshape_progress = MaxSector;
7959 		conf->mddev->reshape_position = MaxSector;
7960 		spin_unlock_irq(&conf->device_lock);
7961 		wake_up(&conf->wait_for_overlap);
7962 
7963 		/* read-ahead size must cover two whole stripes, which is
7964 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7965 		 */
7966 		if (conf->mddev->queue) {
7967 			int data_disks = conf->raid_disks - conf->max_degraded;
7968 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7969 						   / PAGE_SIZE);
7970 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7971 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7972 		}
7973 	}
7974 }
7975 
7976 /* This is called from the raid5d thread with mddev_lock held.
7977  * It makes config changes to the device.
7978  */
7979 static void raid5_finish_reshape(struct mddev *mddev)
7980 {
7981 	struct r5conf *conf = mddev->private;
7982 
7983 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7984 
7985 		if (mddev->delta_disks > 0) {
7986 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7987 			if (mddev->queue) {
7988 				set_capacity(mddev->gendisk, mddev->array_sectors);
7989 				revalidate_disk(mddev->gendisk);
7990 			}
7991 		} else {
7992 			int d;
7993 			spin_lock_irq(&conf->device_lock);
7994 			mddev->degraded = raid5_calc_degraded(conf);
7995 			spin_unlock_irq(&conf->device_lock);
7996 			for (d = conf->raid_disks ;
7997 			     d < conf->raid_disks - mddev->delta_disks;
7998 			     d++) {
7999 				struct md_rdev *rdev = conf->disks[d].rdev;
8000 				if (rdev)
8001 					clear_bit(In_sync, &rdev->flags);
8002 				rdev = conf->disks[d].replacement;
8003 				if (rdev)
8004 					clear_bit(In_sync, &rdev->flags);
8005 			}
8006 		}
8007 		mddev->layout = conf->algorithm;
8008 		mddev->chunk_sectors = conf->chunk_sectors;
8009 		mddev->reshape_position = MaxSector;
8010 		mddev->delta_disks = 0;
8011 		mddev->reshape_backwards = 0;
8012 	}
8013 }
8014 
8015 static void raid5_quiesce(struct mddev *mddev, int state)
8016 {
8017 	struct r5conf *conf = mddev->private;
8018 
8019 	switch(state) {
8020 	case 2: /* resume for a suspend */
8021 		wake_up(&conf->wait_for_overlap);
8022 		break;
8023 
8024 	case 1: /* stop all writes */
8025 		lock_all_device_hash_locks_irq(conf);
8026 		/* '2' tells resync/reshape to pause so that all
8027 		 * active stripes can drain
8028 		 */
8029 		r5c_flush_cache(conf, INT_MAX);
8030 		conf->quiesce = 2;
8031 		wait_event_cmd(conf->wait_for_quiescent,
8032 				    atomic_read(&conf->active_stripes) == 0 &&
8033 				    atomic_read(&conf->active_aligned_reads) == 0,
8034 				    unlock_all_device_hash_locks_irq(conf),
8035 				    lock_all_device_hash_locks_irq(conf));
8036 		conf->quiesce = 1;
8037 		unlock_all_device_hash_locks_irq(conf);
8038 		/* allow reshape to continue */
8039 		wake_up(&conf->wait_for_overlap);
8040 		break;
8041 
8042 	case 0: /* re-enable writes */
8043 		lock_all_device_hash_locks_irq(conf);
8044 		conf->quiesce = 0;
8045 		wake_up(&conf->wait_for_quiescent);
8046 		wake_up(&conf->wait_for_overlap);
8047 		unlock_all_device_hash_locks_irq(conf);
8048 		break;
8049 	}
8050 	r5l_quiesce(conf->log, state);
8051 }
8052 
8053 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8054 {
8055 	struct r0conf *raid0_conf = mddev->private;
8056 	sector_t sectors;
8057 
8058 	/* for raid0 takeover only one zone is supported */
8059 	if (raid0_conf->nr_strip_zones > 1) {
8060 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8061 			mdname(mddev));
8062 		return ERR_PTR(-EINVAL);
8063 	}
8064 
8065 	sectors = raid0_conf->strip_zone[0].zone_end;
8066 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8067 	mddev->dev_sectors = sectors;
8068 	mddev->new_level = level;
8069 	mddev->new_layout = ALGORITHM_PARITY_N;
8070 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8071 	mddev->raid_disks += 1;
8072 	mddev->delta_disks = 1;
8073 	/* make sure it will be not marked as dirty */
8074 	mddev->recovery_cp = MaxSector;
8075 
8076 	return setup_conf(mddev);
8077 }
8078 
8079 static void *raid5_takeover_raid1(struct mddev *mddev)
8080 {
8081 	int chunksect;
8082 	void *ret;
8083 
8084 	if (mddev->raid_disks != 2 ||
8085 	    mddev->degraded > 1)
8086 		return ERR_PTR(-EINVAL);
8087 
8088 	/* Should check if there are write-behind devices? */
8089 
8090 	chunksect = 64*2; /* 64K by default */
8091 
8092 	/* The array must be an exact multiple of chunksize */
8093 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8094 		chunksect >>= 1;
8095 
8096 	if ((chunksect<<9) < STRIPE_SIZE)
8097 		/* array size does not allow a suitable chunk size */
8098 		return ERR_PTR(-EINVAL);
8099 
8100 	mddev->new_level = 5;
8101 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8102 	mddev->new_chunk_sectors = chunksect;
8103 
8104 	ret = setup_conf(mddev);
8105 	if (!IS_ERR(ret))
8106 		mddev_clear_unsupported_flags(mddev,
8107 			UNSUPPORTED_MDDEV_FLAGS);
8108 	return ret;
8109 }
8110 
8111 static void *raid5_takeover_raid6(struct mddev *mddev)
8112 {
8113 	int new_layout;
8114 
8115 	switch (mddev->layout) {
8116 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8117 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8118 		break;
8119 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8120 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8121 		break;
8122 	case ALGORITHM_LEFT_SYMMETRIC_6:
8123 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8124 		break;
8125 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8126 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8127 		break;
8128 	case ALGORITHM_PARITY_0_6:
8129 		new_layout = ALGORITHM_PARITY_0;
8130 		break;
8131 	case ALGORITHM_PARITY_N:
8132 		new_layout = ALGORITHM_PARITY_N;
8133 		break;
8134 	default:
8135 		return ERR_PTR(-EINVAL);
8136 	}
8137 	mddev->new_level = 5;
8138 	mddev->new_layout = new_layout;
8139 	mddev->delta_disks = -1;
8140 	mddev->raid_disks -= 1;
8141 	return setup_conf(mddev);
8142 }
8143 
8144 static int raid5_check_reshape(struct mddev *mddev)
8145 {
8146 	/* For a 2-drive array, the layout and chunk size can be changed
8147 	 * immediately as not restriping is needed.
8148 	 * For larger arrays we record the new value - after validation
8149 	 * to be used by a reshape pass.
8150 	 */
8151 	struct r5conf *conf = mddev->private;
8152 	int new_chunk = mddev->new_chunk_sectors;
8153 
8154 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8155 		return -EINVAL;
8156 	if (new_chunk > 0) {
8157 		if (!is_power_of_2(new_chunk))
8158 			return -EINVAL;
8159 		if (new_chunk < (PAGE_SIZE>>9))
8160 			return -EINVAL;
8161 		if (mddev->array_sectors & (new_chunk-1))
8162 			/* not factor of array size */
8163 			return -EINVAL;
8164 	}
8165 
8166 	/* They look valid */
8167 
8168 	if (mddev->raid_disks == 2) {
8169 		/* can make the change immediately */
8170 		if (mddev->new_layout >= 0) {
8171 			conf->algorithm = mddev->new_layout;
8172 			mddev->layout = mddev->new_layout;
8173 		}
8174 		if (new_chunk > 0) {
8175 			conf->chunk_sectors = new_chunk ;
8176 			mddev->chunk_sectors = new_chunk;
8177 		}
8178 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8179 		md_wakeup_thread(mddev->thread);
8180 	}
8181 	return check_reshape(mddev);
8182 }
8183 
8184 static int raid6_check_reshape(struct mddev *mddev)
8185 {
8186 	int new_chunk = mddev->new_chunk_sectors;
8187 
8188 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8189 		return -EINVAL;
8190 	if (new_chunk > 0) {
8191 		if (!is_power_of_2(new_chunk))
8192 			return -EINVAL;
8193 		if (new_chunk < (PAGE_SIZE >> 9))
8194 			return -EINVAL;
8195 		if (mddev->array_sectors & (new_chunk-1))
8196 			/* not factor of array size */
8197 			return -EINVAL;
8198 	}
8199 
8200 	/* They look valid */
8201 	return check_reshape(mddev);
8202 }
8203 
8204 static void *raid5_takeover(struct mddev *mddev)
8205 {
8206 	/* raid5 can take over:
8207 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8208 	 *  raid1 - if there are two drives.  We need to know the chunk size
8209 	 *  raid4 - trivial - just use a raid4 layout.
8210 	 *  raid6 - Providing it is a *_6 layout
8211 	 */
8212 	if (mddev->level == 0)
8213 		return raid45_takeover_raid0(mddev, 5);
8214 	if (mddev->level == 1)
8215 		return raid5_takeover_raid1(mddev);
8216 	if (mddev->level == 4) {
8217 		mddev->new_layout = ALGORITHM_PARITY_N;
8218 		mddev->new_level = 5;
8219 		return setup_conf(mddev);
8220 	}
8221 	if (mddev->level == 6)
8222 		return raid5_takeover_raid6(mddev);
8223 
8224 	return ERR_PTR(-EINVAL);
8225 }
8226 
8227 static void *raid4_takeover(struct mddev *mddev)
8228 {
8229 	/* raid4 can take over:
8230 	 *  raid0 - if there is only one strip zone
8231 	 *  raid5 - if layout is right
8232 	 */
8233 	if (mddev->level == 0)
8234 		return raid45_takeover_raid0(mddev, 4);
8235 	if (mddev->level == 5 &&
8236 	    mddev->layout == ALGORITHM_PARITY_N) {
8237 		mddev->new_layout = 0;
8238 		mddev->new_level = 4;
8239 		return setup_conf(mddev);
8240 	}
8241 	return ERR_PTR(-EINVAL);
8242 }
8243 
8244 static struct md_personality raid5_personality;
8245 
8246 static void *raid6_takeover(struct mddev *mddev)
8247 {
8248 	/* Currently can only take over a raid5.  We map the
8249 	 * personality to an equivalent raid6 personality
8250 	 * with the Q block at the end.
8251 	 */
8252 	int new_layout;
8253 
8254 	if (mddev->pers != &raid5_personality)
8255 		return ERR_PTR(-EINVAL);
8256 	if (mddev->degraded > 1)
8257 		return ERR_PTR(-EINVAL);
8258 	if (mddev->raid_disks > 253)
8259 		return ERR_PTR(-EINVAL);
8260 	if (mddev->raid_disks < 3)
8261 		return ERR_PTR(-EINVAL);
8262 
8263 	switch (mddev->layout) {
8264 	case ALGORITHM_LEFT_ASYMMETRIC:
8265 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8266 		break;
8267 	case ALGORITHM_RIGHT_ASYMMETRIC:
8268 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8269 		break;
8270 	case ALGORITHM_LEFT_SYMMETRIC:
8271 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8272 		break;
8273 	case ALGORITHM_RIGHT_SYMMETRIC:
8274 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8275 		break;
8276 	case ALGORITHM_PARITY_0:
8277 		new_layout = ALGORITHM_PARITY_0_6;
8278 		break;
8279 	case ALGORITHM_PARITY_N:
8280 		new_layout = ALGORITHM_PARITY_N;
8281 		break;
8282 	default:
8283 		return ERR_PTR(-EINVAL);
8284 	}
8285 	mddev->new_level = 6;
8286 	mddev->new_layout = new_layout;
8287 	mddev->delta_disks = 1;
8288 	mddev->raid_disks += 1;
8289 	return setup_conf(mddev);
8290 }
8291 
8292 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8293 {
8294 	struct r5conf *conf;
8295 	int err;
8296 
8297 	err = mddev_lock(mddev);
8298 	if (err)
8299 		return err;
8300 	conf = mddev->private;
8301 	if (!conf) {
8302 		mddev_unlock(mddev);
8303 		return -ENODEV;
8304 	}
8305 
8306 	if (strncmp(buf, "ppl", 3) == 0) {
8307 		/* ppl only works with RAID 5 */
8308 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8309 			err = log_init(conf, NULL, true);
8310 			if (!err) {
8311 				err = resize_stripes(conf, conf->pool_size);
8312 				if (err)
8313 					log_exit(conf);
8314 			}
8315 		} else
8316 			err = -EINVAL;
8317 	} else if (strncmp(buf, "resync", 6) == 0) {
8318 		if (raid5_has_ppl(conf)) {
8319 			mddev_suspend(mddev);
8320 			log_exit(conf);
8321 			mddev_resume(mddev);
8322 			err = resize_stripes(conf, conf->pool_size);
8323 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8324 			   r5l_log_disk_error(conf)) {
8325 			bool journal_dev_exists = false;
8326 			struct md_rdev *rdev;
8327 
8328 			rdev_for_each(rdev, mddev)
8329 				if (test_bit(Journal, &rdev->flags)) {
8330 					journal_dev_exists = true;
8331 					break;
8332 				}
8333 
8334 			if (!journal_dev_exists) {
8335 				mddev_suspend(mddev);
8336 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8337 				mddev_resume(mddev);
8338 			} else  /* need remove journal device first */
8339 				err = -EBUSY;
8340 		} else
8341 			err = -EINVAL;
8342 	} else {
8343 		err = -EINVAL;
8344 	}
8345 
8346 	if (!err)
8347 		md_update_sb(mddev, 1);
8348 
8349 	mddev_unlock(mddev);
8350 
8351 	return err;
8352 }
8353 
8354 static struct md_personality raid6_personality =
8355 {
8356 	.name		= "raid6",
8357 	.level		= 6,
8358 	.owner		= THIS_MODULE,
8359 	.make_request	= raid5_make_request,
8360 	.run		= raid5_run,
8361 	.free		= raid5_free,
8362 	.status		= raid5_status,
8363 	.error_handler	= raid5_error,
8364 	.hot_add_disk	= raid5_add_disk,
8365 	.hot_remove_disk= raid5_remove_disk,
8366 	.spare_active	= raid5_spare_active,
8367 	.sync_request	= raid5_sync_request,
8368 	.resize		= raid5_resize,
8369 	.size		= raid5_size,
8370 	.check_reshape	= raid6_check_reshape,
8371 	.start_reshape  = raid5_start_reshape,
8372 	.finish_reshape = raid5_finish_reshape,
8373 	.quiesce	= raid5_quiesce,
8374 	.takeover	= raid6_takeover,
8375 	.congested	= raid5_congested,
8376 	.change_consistency_policy = raid5_change_consistency_policy,
8377 };
8378 static struct md_personality raid5_personality =
8379 {
8380 	.name		= "raid5",
8381 	.level		= 5,
8382 	.owner		= THIS_MODULE,
8383 	.make_request	= raid5_make_request,
8384 	.run		= raid5_run,
8385 	.free		= raid5_free,
8386 	.status		= raid5_status,
8387 	.error_handler	= raid5_error,
8388 	.hot_add_disk	= raid5_add_disk,
8389 	.hot_remove_disk= raid5_remove_disk,
8390 	.spare_active	= raid5_spare_active,
8391 	.sync_request	= raid5_sync_request,
8392 	.resize		= raid5_resize,
8393 	.size		= raid5_size,
8394 	.check_reshape	= raid5_check_reshape,
8395 	.start_reshape  = raid5_start_reshape,
8396 	.finish_reshape = raid5_finish_reshape,
8397 	.quiesce	= raid5_quiesce,
8398 	.takeover	= raid5_takeover,
8399 	.congested	= raid5_congested,
8400 	.change_consistency_policy = raid5_change_consistency_policy,
8401 };
8402 
8403 static struct md_personality raid4_personality =
8404 {
8405 	.name		= "raid4",
8406 	.level		= 4,
8407 	.owner		= THIS_MODULE,
8408 	.make_request	= raid5_make_request,
8409 	.run		= raid5_run,
8410 	.free		= raid5_free,
8411 	.status		= raid5_status,
8412 	.error_handler	= raid5_error,
8413 	.hot_add_disk	= raid5_add_disk,
8414 	.hot_remove_disk= raid5_remove_disk,
8415 	.spare_active	= raid5_spare_active,
8416 	.sync_request	= raid5_sync_request,
8417 	.resize		= raid5_resize,
8418 	.size		= raid5_size,
8419 	.check_reshape	= raid5_check_reshape,
8420 	.start_reshape  = raid5_start_reshape,
8421 	.finish_reshape = raid5_finish_reshape,
8422 	.quiesce	= raid5_quiesce,
8423 	.takeover	= raid4_takeover,
8424 	.congested	= raid5_congested,
8425 	.change_consistency_policy = raid5_change_consistency_policy,
8426 };
8427 
8428 static int __init raid5_init(void)
8429 {
8430 	int ret;
8431 
8432 	raid5_wq = alloc_workqueue("raid5wq",
8433 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8434 	if (!raid5_wq)
8435 		return -ENOMEM;
8436 
8437 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8438 				      "md/raid5:prepare",
8439 				      raid456_cpu_up_prepare,
8440 				      raid456_cpu_dead);
8441 	if (ret) {
8442 		destroy_workqueue(raid5_wq);
8443 		return ret;
8444 	}
8445 	register_md_personality(&raid6_personality);
8446 	register_md_personality(&raid5_personality);
8447 	register_md_personality(&raid4_personality);
8448 	return 0;
8449 }
8450 
8451 static void raid5_exit(void)
8452 {
8453 	unregister_md_personality(&raid6_personality);
8454 	unregister_md_personality(&raid5_personality);
8455 	unregister_md_personality(&raid4_personality);
8456 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8457 	destroy_workqueue(raid5_wq);
8458 }
8459 
8460 module_init(raid5_init);
8461 module_exit(raid5_exit);
8462 MODULE_LICENSE("GPL");
8463 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8464 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8465 MODULE_ALIAS("md-raid5");
8466 MODULE_ALIAS("md-raid4");
8467 MODULE_ALIAS("md-level-5");
8468 MODULE_ALIAS("md-level-4");
8469 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8470 MODULE_ALIAS("md-raid6");
8471 MODULE_ALIAS("md-level-6");
8472 
8473 /* This used to be two separate modules, they were: */
8474 MODULE_ALIAS("raid5");
8475 MODULE_ALIAS("raid6");
8476