xref: /openbmc/linux/drivers/md/raid5.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
61 
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
67 
68 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
69 
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
72 
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
78 
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
80 {
81 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 	return &conf->stripe_hashtbl[hash];
83 }
84 
85 static inline int stripe_hash_locks_hash(sector_t sect)
86 {
87 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88 }
89 
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91 {
92 	spin_lock_irq(conf->hash_locks + hash);
93 	spin_lock(&conf->device_lock);
94 }
95 
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 {
98 	spin_unlock(&conf->device_lock);
99 	spin_unlock_irq(conf->hash_locks + hash);
100 }
101 
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_lock_irq(conf->hash_locks);
106 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 	spin_lock(&conf->device_lock);
109 }
110 
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 	int i;
114 	spin_unlock(&conf->device_lock);
115 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 		spin_unlock(conf->hash_locks + i);
117 	spin_unlock_irq(conf->hash_locks);
118 }
119 
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 	if (sh->ddf_layout)
124 		/* ddf always start from first device */
125 		return 0;
126 	/* md starts just after Q block */
127 	if (sh->qd_idx == sh->disks - 1)
128 		return 0;
129 	else
130 		return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 	disk++;
135 	return (disk < raid_disks) ? disk : 0;
136 }
137 
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139  * We need to map each disk to a 'slot', where the data disks are slot
140  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141  * is raid_disks-1.  This help does that mapping.
142  */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 			     int *count, int syndrome_disks)
145 {
146 	int slot = *count;
147 
148 	if (sh->ddf_layout)
149 		(*count)++;
150 	if (idx == sh->pd_idx)
151 		return syndrome_disks;
152 	if (idx == sh->qd_idx)
153 		return syndrome_disks + 1;
154 	if (!sh->ddf_layout)
155 		(*count)++;
156 	return slot;
157 }
158 
159 static void print_raid5_conf (struct r5conf *conf);
160 
161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163 	return sh->check_state || sh->reconstruct_state ||
164 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167 
168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174 
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177 	struct r5conf *conf = sh->raid_conf;
178 	struct r5worker_group *group;
179 	int thread_cnt;
180 	int i, cpu = sh->cpu;
181 
182 	if (!cpu_online(cpu)) {
183 		cpu = cpumask_any(cpu_online_mask);
184 		sh->cpu = cpu;
185 	}
186 
187 	if (list_empty(&sh->lru)) {
188 		struct r5worker_group *group;
189 		group = conf->worker_groups + cpu_to_group(cpu);
190 		if (stripe_is_lowprio(sh))
191 			list_add_tail(&sh->lru, &group->loprio_list);
192 		else
193 			list_add_tail(&sh->lru, &group->handle_list);
194 		group->stripes_cnt++;
195 		sh->group = group;
196 	}
197 
198 	if (conf->worker_cnt_per_group == 0) {
199 		md_wakeup_thread(conf->mddev->thread);
200 		return;
201 	}
202 
203 	group = conf->worker_groups + cpu_to_group(sh->cpu);
204 
205 	group->workers[0].working = true;
206 	/* at least one worker should run to avoid race */
207 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208 
209 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 	/* wakeup more workers */
211 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 		if (group->workers[i].working == false) {
213 			group->workers[i].working = true;
214 			queue_work_on(sh->cpu, raid5_wq,
215 				      &group->workers[i].work);
216 			thread_cnt--;
217 		}
218 	}
219 }
220 
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 			      struct list_head *temp_inactive_list)
223 {
224 	int i;
225 	int injournal = 0;	/* number of date pages with R5_InJournal */
226 
227 	BUG_ON(!list_empty(&sh->lru));
228 	BUG_ON(atomic_read(&conf->active_stripes)==0);
229 
230 	if (r5c_is_writeback(conf->log))
231 		for (i = sh->disks; i--; )
232 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 				injournal++;
234 	/*
235 	 * In the following cases, the stripe cannot be released to cached
236 	 * lists. Therefore, we make the stripe write out and set
237 	 * STRIPE_HANDLE:
238 	 *   1. when quiesce in r5c write back;
239 	 *   2. when resync is requested fot the stripe.
240 	 */
241 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
243 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 			r5c_make_stripe_write_out(sh);
246 		set_bit(STRIPE_HANDLE, &sh->state);
247 	}
248 
249 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 			list_add_tail(&sh->lru, &conf->delayed_list);
253 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 			   sh->bm_seq - conf->seq_write > 0)
255 			list_add_tail(&sh->lru, &conf->bitmap_list);
256 		else {
257 			clear_bit(STRIPE_DELAYED, &sh->state);
258 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 			if (conf->worker_cnt_per_group == 0) {
260 				if (stripe_is_lowprio(sh))
261 					list_add_tail(&sh->lru,
262 							&conf->loprio_list);
263 				else
264 					list_add_tail(&sh->lru,
265 							&conf->handle_list);
266 			} else {
267 				raid5_wakeup_stripe_thread(sh);
268 				return;
269 			}
270 		}
271 		md_wakeup_thread(conf->mddev->thread);
272 	} else {
273 		BUG_ON(stripe_operations_active(sh));
274 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 			if (atomic_dec_return(&conf->preread_active_stripes)
276 			    < IO_THRESHOLD)
277 				md_wakeup_thread(conf->mddev->thread);
278 		atomic_dec(&conf->active_stripes);
279 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 			if (!r5c_is_writeback(conf->log))
281 				list_add_tail(&sh->lru, temp_inactive_list);
282 			else {
283 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 				if (injournal == 0)
285 					list_add_tail(&sh->lru, temp_inactive_list);
286 				else if (injournal == conf->raid_disks - conf->max_degraded) {
287 					/* full stripe */
288 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 						atomic_inc(&conf->r5c_cached_full_stripes);
290 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 						atomic_dec(&conf->r5c_cached_partial_stripes);
292 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 					r5c_check_cached_full_stripe(conf);
294 				} else
295 					/*
296 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 					 * r5c_try_caching_write(). No need to
298 					 * set it again.
299 					 */
300 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301 			}
302 		}
303 	}
304 }
305 
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 			     struct list_head *temp_inactive_list)
308 {
309 	if (atomic_dec_and_test(&sh->count))
310 		do_release_stripe(conf, sh, temp_inactive_list);
311 }
312 
313 /*
314  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315  *
316  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317  * given time. Adding stripes only takes device lock, while deleting stripes
318  * only takes hash lock.
319  */
320 static void release_inactive_stripe_list(struct r5conf *conf,
321 					 struct list_head *temp_inactive_list,
322 					 int hash)
323 {
324 	int size;
325 	bool do_wakeup = false;
326 	unsigned long flags;
327 
328 	if (hash == NR_STRIPE_HASH_LOCKS) {
329 		size = NR_STRIPE_HASH_LOCKS;
330 		hash = NR_STRIPE_HASH_LOCKS - 1;
331 	} else
332 		size = 1;
333 	while (size) {
334 		struct list_head *list = &temp_inactive_list[size - 1];
335 
336 		/*
337 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 		 * remove stripes from the list
339 		 */
340 		if (!list_empty_careful(list)) {
341 			spin_lock_irqsave(conf->hash_locks + hash, flags);
342 			if (list_empty(conf->inactive_list + hash) &&
343 			    !list_empty(list))
344 				atomic_dec(&conf->empty_inactive_list_nr);
345 			list_splice_tail_init(list, conf->inactive_list + hash);
346 			do_wakeup = true;
347 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 		}
349 		size--;
350 		hash--;
351 	}
352 
353 	if (do_wakeup) {
354 		wake_up(&conf->wait_for_stripe);
355 		if (atomic_read(&conf->active_stripes) == 0)
356 			wake_up(&conf->wait_for_quiescent);
357 		if (conf->retry_read_aligned)
358 			md_wakeup_thread(conf->mddev->thread);
359 	}
360 }
361 
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364 			       struct list_head *temp_inactive_list)
365 {
366 	struct stripe_head *sh, *t;
367 	int count = 0;
368 	struct llist_node *head;
369 
370 	head = llist_del_all(&conf->released_stripes);
371 	head = llist_reverse_order(head);
372 	llist_for_each_entry_safe(sh, t, head, release_list) {
373 		int hash;
374 
375 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 		smp_mb();
377 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 		/*
379 		 * Don't worry the bit is set here, because if the bit is set
380 		 * again, the count is always > 1. This is true for
381 		 * STRIPE_ON_UNPLUG_LIST bit too.
382 		 */
383 		hash = sh->hash_lock_index;
384 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
385 		count++;
386 	}
387 
388 	return count;
389 }
390 
391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 	struct r5conf *conf = sh->raid_conf;
394 	unsigned long flags;
395 	struct list_head list;
396 	int hash;
397 	bool wakeup;
398 
399 	/* Avoid release_list until the last reference.
400 	 */
401 	if (atomic_add_unless(&sh->count, -1, 1))
402 		return;
403 
404 	if (unlikely(!conf->mddev->thread) ||
405 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 		goto slow_path;
407 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 	if (wakeup)
409 		md_wakeup_thread(conf->mddev->thread);
410 	return;
411 slow_path:
412 	local_irq_save(flags);
413 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
414 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
415 		INIT_LIST_HEAD(&list);
416 		hash = sh->hash_lock_index;
417 		do_release_stripe(conf, sh, &list);
418 		spin_unlock(&conf->device_lock);
419 		release_inactive_stripe_list(conf, &list, hash);
420 	}
421 	local_irq_restore(flags);
422 }
423 
424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 	pr_debug("remove_hash(), stripe %llu\n",
427 		(unsigned long long)sh->sector);
428 
429 	hlist_del_init(&sh->hash);
430 }
431 
432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
435 
436 	pr_debug("insert_hash(), stripe %llu\n",
437 		(unsigned long long)sh->sector);
438 
439 	hlist_add_head(&sh->hash, hp);
440 }
441 
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 	struct stripe_head *sh = NULL;
446 	struct list_head *first;
447 
448 	if (list_empty(conf->inactive_list + hash))
449 		goto out;
450 	first = (conf->inactive_list + hash)->next;
451 	sh = list_entry(first, struct stripe_head, lru);
452 	list_del_init(first);
453 	remove_hash(sh);
454 	atomic_inc(&conf->active_stripes);
455 	BUG_ON(hash != sh->hash_lock_index);
456 	if (list_empty(conf->inactive_list + hash))
457 		atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 	return sh;
460 }
461 
462 static void shrink_buffers(struct stripe_head *sh)
463 {
464 	struct page *p;
465 	int i;
466 	int num = sh->raid_conf->pool_size;
467 
468 	for (i = 0; i < num ; i++) {
469 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
470 		p = sh->dev[i].page;
471 		if (!p)
472 			continue;
473 		sh->dev[i].page = NULL;
474 		put_page(p);
475 	}
476 }
477 
478 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
479 {
480 	int i;
481 	int num = sh->raid_conf->pool_size;
482 
483 	for (i = 0; i < num; i++) {
484 		struct page *page;
485 
486 		if (!(page = alloc_page(gfp))) {
487 			return 1;
488 		}
489 		sh->dev[i].page = page;
490 		sh->dev[i].orig_page = page;
491 	}
492 
493 	return 0;
494 }
495 
496 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
497 			    struct stripe_head *sh);
498 
499 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
500 {
501 	struct r5conf *conf = sh->raid_conf;
502 	int i, seq;
503 
504 	BUG_ON(atomic_read(&sh->count) != 0);
505 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
506 	BUG_ON(stripe_operations_active(sh));
507 	BUG_ON(sh->batch_head);
508 
509 	pr_debug("init_stripe called, stripe %llu\n",
510 		(unsigned long long)sector);
511 retry:
512 	seq = read_seqcount_begin(&conf->gen_lock);
513 	sh->generation = conf->generation - previous;
514 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
515 	sh->sector = sector;
516 	stripe_set_idx(sector, conf, previous, sh);
517 	sh->state = 0;
518 
519 	for (i = sh->disks; i--; ) {
520 		struct r5dev *dev = &sh->dev[i];
521 
522 		if (dev->toread || dev->read || dev->towrite || dev->written ||
523 		    test_bit(R5_LOCKED, &dev->flags)) {
524 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
525 			       (unsigned long long)sh->sector, i, dev->toread,
526 			       dev->read, dev->towrite, dev->written,
527 			       test_bit(R5_LOCKED, &dev->flags));
528 			WARN_ON(1);
529 		}
530 		dev->flags = 0;
531 		dev->sector = raid5_compute_blocknr(sh, i, previous);
532 	}
533 	if (read_seqcount_retry(&conf->gen_lock, seq))
534 		goto retry;
535 	sh->overwrite_disks = 0;
536 	insert_hash(conf, sh);
537 	sh->cpu = smp_processor_id();
538 	set_bit(STRIPE_BATCH_READY, &sh->state);
539 }
540 
541 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
542 					 short generation)
543 {
544 	struct stripe_head *sh;
545 
546 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
547 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
548 		if (sh->sector == sector && sh->generation == generation)
549 			return sh;
550 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
551 	return NULL;
552 }
553 
554 /*
555  * Need to check if array has failed when deciding whether to:
556  *  - start an array
557  *  - remove non-faulty devices
558  *  - add a spare
559  *  - allow a reshape
560  * This determination is simple when no reshape is happening.
561  * However if there is a reshape, we need to carefully check
562  * both the before and after sections.
563  * This is because some failed devices may only affect one
564  * of the two sections, and some non-in_sync devices may
565  * be insync in the section most affected by failed devices.
566  */
567 int raid5_calc_degraded(struct r5conf *conf)
568 {
569 	int degraded, degraded2;
570 	int i;
571 
572 	rcu_read_lock();
573 	degraded = 0;
574 	for (i = 0; i < conf->previous_raid_disks; i++) {
575 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
576 		if (rdev && test_bit(Faulty, &rdev->flags))
577 			rdev = rcu_dereference(conf->disks[i].replacement);
578 		if (!rdev || test_bit(Faulty, &rdev->flags))
579 			degraded++;
580 		else if (test_bit(In_sync, &rdev->flags))
581 			;
582 		else
583 			/* not in-sync or faulty.
584 			 * If the reshape increases the number of devices,
585 			 * this is being recovered by the reshape, so
586 			 * this 'previous' section is not in_sync.
587 			 * If the number of devices is being reduced however,
588 			 * the device can only be part of the array if
589 			 * we are reverting a reshape, so this section will
590 			 * be in-sync.
591 			 */
592 			if (conf->raid_disks >= conf->previous_raid_disks)
593 				degraded++;
594 	}
595 	rcu_read_unlock();
596 	if (conf->raid_disks == conf->previous_raid_disks)
597 		return degraded;
598 	rcu_read_lock();
599 	degraded2 = 0;
600 	for (i = 0; i < conf->raid_disks; i++) {
601 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
602 		if (rdev && test_bit(Faulty, &rdev->flags))
603 			rdev = rcu_dereference(conf->disks[i].replacement);
604 		if (!rdev || test_bit(Faulty, &rdev->flags))
605 			degraded2++;
606 		else if (test_bit(In_sync, &rdev->flags))
607 			;
608 		else
609 			/* not in-sync or faulty.
610 			 * If reshape increases the number of devices, this
611 			 * section has already been recovered, else it
612 			 * almost certainly hasn't.
613 			 */
614 			if (conf->raid_disks <= conf->previous_raid_disks)
615 				degraded2++;
616 	}
617 	rcu_read_unlock();
618 	if (degraded2 > degraded)
619 		return degraded2;
620 	return degraded;
621 }
622 
623 static int has_failed(struct r5conf *conf)
624 {
625 	int degraded;
626 
627 	if (conf->mddev->reshape_position == MaxSector)
628 		return conf->mddev->degraded > conf->max_degraded;
629 
630 	degraded = raid5_calc_degraded(conf);
631 	if (degraded > conf->max_degraded)
632 		return 1;
633 	return 0;
634 }
635 
636 struct stripe_head *
637 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
638 			int previous, int noblock, int noquiesce)
639 {
640 	struct stripe_head *sh;
641 	int hash = stripe_hash_locks_hash(sector);
642 	int inc_empty_inactive_list_flag;
643 
644 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
645 
646 	spin_lock_irq(conf->hash_locks + hash);
647 
648 	do {
649 		wait_event_lock_irq(conf->wait_for_quiescent,
650 				    conf->quiesce == 0 || noquiesce,
651 				    *(conf->hash_locks + hash));
652 		sh = __find_stripe(conf, sector, conf->generation - previous);
653 		if (!sh) {
654 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
655 				sh = get_free_stripe(conf, hash);
656 				if (!sh && !test_bit(R5_DID_ALLOC,
657 						     &conf->cache_state))
658 					set_bit(R5_ALLOC_MORE,
659 						&conf->cache_state);
660 			}
661 			if (noblock && sh == NULL)
662 				break;
663 
664 			r5c_check_stripe_cache_usage(conf);
665 			if (!sh) {
666 				set_bit(R5_INACTIVE_BLOCKED,
667 					&conf->cache_state);
668 				r5l_wake_reclaim(conf->log, 0);
669 				wait_event_lock_irq(
670 					conf->wait_for_stripe,
671 					!list_empty(conf->inactive_list + hash) &&
672 					(atomic_read(&conf->active_stripes)
673 					 < (conf->max_nr_stripes * 3 / 4)
674 					 || !test_bit(R5_INACTIVE_BLOCKED,
675 						      &conf->cache_state)),
676 					*(conf->hash_locks + hash));
677 				clear_bit(R5_INACTIVE_BLOCKED,
678 					  &conf->cache_state);
679 			} else {
680 				init_stripe(sh, sector, previous);
681 				atomic_inc(&sh->count);
682 			}
683 		} else if (!atomic_inc_not_zero(&sh->count)) {
684 			spin_lock(&conf->device_lock);
685 			if (!atomic_read(&sh->count)) {
686 				if (!test_bit(STRIPE_HANDLE, &sh->state))
687 					atomic_inc(&conf->active_stripes);
688 				BUG_ON(list_empty(&sh->lru) &&
689 				       !test_bit(STRIPE_EXPANDING, &sh->state));
690 				inc_empty_inactive_list_flag = 0;
691 				if (!list_empty(conf->inactive_list + hash))
692 					inc_empty_inactive_list_flag = 1;
693 				list_del_init(&sh->lru);
694 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
695 					atomic_inc(&conf->empty_inactive_list_nr);
696 				if (sh->group) {
697 					sh->group->stripes_cnt--;
698 					sh->group = NULL;
699 				}
700 			}
701 			atomic_inc(&sh->count);
702 			spin_unlock(&conf->device_lock);
703 		}
704 	} while (sh == NULL);
705 
706 	spin_unlock_irq(conf->hash_locks + hash);
707 	return sh;
708 }
709 
710 static bool is_full_stripe_write(struct stripe_head *sh)
711 {
712 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
713 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
714 }
715 
716 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
717 {
718 	if (sh1 > sh2) {
719 		spin_lock_irq(&sh2->stripe_lock);
720 		spin_lock_nested(&sh1->stripe_lock, 1);
721 	} else {
722 		spin_lock_irq(&sh1->stripe_lock);
723 		spin_lock_nested(&sh2->stripe_lock, 1);
724 	}
725 }
726 
727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 	spin_unlock(&sh1->stripe_lock);
730 	spin_unlock_irq(&sh2->stripe_lock);
731 }
732 
733 /* Only freshly new full stripe normal write stripe can be added to a batch list */
734 static bool stripe_can_batch(struct stripe_head *sh)
735 {
736 	struct r5conf *conf = sh->raid_conf;
737 
738 	if (conf->log || raid5_has_ppl(conf))
739 		return false;
740 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
741 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
742 		is_full_stripe_write(sh);
743 }
744 
745 /* we only do back search */
746 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
747 {
748 	struct stripe_head *head;
749 	sector_t head_sector, tmp_sec;
750 	int hash;
751 	int dd_idx;
752 	int inc_empty_inactive_list_flag;
753 
754 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
755 	tmp_sec = sh->sector;
756 	if (!sector_div(tmp_sec, conf->chunk_sectors))
757 		return;
758 	head_sector = sh->sector - STRIPE_SECTORS;
759 
760 	hash = stripe_hash_locks_hash(head_sector);
761 	spin_lock_irq(conf->hash_locks + hash);
762 	head = __find_stripe(conf, head_sector, conf->generation);
763 	if (head && !atomic_inc_not_zero(&head->count)) {
764 		spin_lock(&conf->device_lock);
765 		if (!atomic_read(&head->count)) {
766 			if (!test_bit(STRIPE_HANDLE, &head->state))
767 				atomic_inc(&conf->active_stripes);
768 			BUG_ON(list_empty(&head->lru) &&
769 			       !test_bit(STRIPE_EXPANDING, &head->state));
770 			inc_empty_inactive_list_flag = 0;
771 			if (!list_empty(conf->inactive_list + hash))
772 				inc_empty_inactive_list_flag = 1;
773 			list_del_init(&head->lru);
774 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
775 				atomic_inc(&conf->empty_inactive_list_nr);
776 			if (head->group) {
777 				head->group->stripes_cnt--;
778 				head->group = NULL;
779 			}
780 		}
781 		atomic_inc(&head->count);
782 		spin_unlock(&conf->device_lock);
783 	}
784 	spin_unlock_irq(conf->hash_locks + hash);
785 
786 	if (!head)
787 		return;
788 	if (!stripe_can_batch(head))
789 		goto out;
790 
791 	lock_two_stripes(head, sh);
792 	/* clear_batch_ready clear the flag */
793 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
794 		goto unlock_out;
795 
796 	if (sh->batch_head)
797 		goto unlock_out;
798 
799 	dd_idx = 0;
800 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
801 		dd_idx++;
802 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
803 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
804 		goto unlock_out;
805 
806 	if (head->batch_head) {
807 		spin_lock(&head->batch_head->batch_lock);
808 		/* This batch list is already running */
809 		if (!stripe_can_batch(head)) {
810 			spin_unlock(&head->batch_head->batch_lock);
811 			goto unlock_out;
812 		}
813 		/*
814 		 * We must assign batch_head of this stripe within the
815 		 * batch_lock, otherwise clear_batch_ready of batch head
816 		 * stripe could clear BATCH_READY bit of this stripe and
817 		 * this stripe->batch_head doesn't get assigned, which
818 		 * could confuse clear_batch_ready for this stripe
819 		 */
820 		sh->batch_head = head->batch_head;
821 
822 		/*
823 		 * at this point, head's BATCH_READY could be cleared, but we
824 		 * can still add the stripe to batch list
825 		 */
826 		list_add(&sh->batch_list, &head->batch_list);
827 		spin_unlock(&head->batch_head->batch_lock);
828 	} else {
829 		head->batch_head = head;
830 		sh->batch_head = head->batch_head;
831 		spin_lock(&head->batch_lock);
832 		list_add_tail(&sh->batch_list, &head->batch_list);
833 		spin_unlock(&head->batch_lock);
834 	}
835 
836 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 		if (atomic_dec_return(&conf->preread_active_stripes)
838 		    < IO_THRESHOLD)
839 			md_wakeup_thread(conf->mddev->thread);
840 
841 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 		int seq = sh->bm_seq;
843 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 		    sh->batch_head->bm_seq > seq)
845 			seq = sh->batch_head->bm_seq;
846 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 		sh->batch_head->bm_seq = seq;
848 	}
849 
850 	atomic_inc(&sh->count);
851 unlock_out:
852 	unlock_two_stripes(head, sh);
853 out:
854 	raid5_release_stripe(head);
855 }
856 
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858  * in this stripe_head.
859  */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862 	sector_t progress = conf->reshape_progress;
863 	/* Need a memory barrier to make sure we see the value
864 	 * of conf->generation, or ->data_offset that was set before
865 	 * reshape_progress was updated.
866 	 */
867 	smp_rmb();
868 	if (progress == MaxSector)
869 		return 0;
870 	if (sh->generation == conf->generation - 1)
871 		return 0;
872 	/* We are in a reshape, and this is a new-generation stripe,
873 	 * so use new_data_offset.
874 	 */
875 	return 1;
876 }
877 
878 static void dispatch_bio_list(struct bio_list *tmp)
879 {
880 	struct bio *bio;
881 
882 	while ((bio = bio_list_pop(tmp)))
883 		generic_make_request(bio);
884 }
885 
886 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
887 {
888 	const struct r5pending_data *da = list_entry(a,
889 				struct r5pending_data, sibling);
890 	const struct r5pending_data *db = list_entry(b,
891 				struct r5pending_data, sibling);
892 	if (da->sector > db->sector)
893 		return 1;
894 	if (da->sector < db->sector)
895 		return -1;
896 	return 0;
897 }
898 
899 static void dispatch_defer_bios(struct r5conf *conf, int target,
900 				struct bio_list *list)
901 {
902 	struct r5pending_data *data;
903 	struct list_head *first, *next = NULL;
904 	int cnt = 0;
905 
906 	if (conf->pending_data_cnt == 0)
907 		return;
908 
909 	list_sort(NULL, &conf->pending_list, cmp_stripe);
910 
911 	first = conf->pending_list.next;
912 
913 	/* temporarily move the head */
914 	if (conf->next_pending_data)
915 		list_move_tail(&conf->pending_list,
916 				&conf->next_pending_data->sibling);
917 
918 	while (!list_empty(&conf->pending_list)) {
919 		data = list_first_entry(&conf->pending_list,
920 			struct r5pending_data, sibling);
921 		if (&data->sibling == first)
922 			first = data->sibling.next;
923 		next = data->sibling.next;
924 
925 		bio_list_merge(list, &data->bios);
926 		list_move(&data->sibling, &conf->free_list);
927 		cnt++;
928 		if (cnt >= target)
929 			break;
930 	}
931 	conf->pending_data_cnt -= cnt;
932 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
933 
934 	if (next != &conf->pending_list)
935 		conf->next_pending_data = list_entry(next,
936 				struct r5pending_data, sibling);
937 	else
938 		conf->next_pending_data = NULL;
939 	/* list isn't empty */
940 	if (first != &conf->pending_list)
941 		list_move_tail(&conf->pending_list, first);
942 }
943 
944 static void flush_deferred_bios(struct r5conf *conf)
945 {
946 	struct bio_list tmp = BIO_EMPTY_LIST;
947 
948 	if (conf->pending_data_cnt == 0)
949 		return;
950 
951 	spin_lock(&conf->pending_bios_lock);
952 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
953 	BUG_ON(conf->pending_data_cnt != 0);
954 	spin_unlock(&conf->pending_bios_lock);
955 
956 	dispatch_bio_list(&tmp);
957 }
958 
959 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
960 				struct bio_list *bios)
961 {
962 	struct bio_list tmp = BIO_EMPTY_LIST;
963 	struct r5pending_data *ent;
964 
965 	spin_lock(&conf->pending_bios_lock);
966 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
967 							sibling);
968 	list_move_tail(&ent->sibling, &conf->pending_list);
969 	ent->sector = sector;
970 	bio_list_init(&ent->bios);
971 	bio_list_merge(&ent->bios, bios);
972 	conf->pending_data_cnt++;
973 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
974 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
975 
976 	spin_unlock(&conf->pending_bios_lock);
977 
978 	dispatch_bio_list(&tmp);
979 }
980 
981 static void
982 raid5_end_read_request(struct bio *bi);
983 static void
984 raid5_end_write_request(struct bio *bi);
985 
986 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
987 {
988 	struct r5conf *conf = sh->raid_conf;
989 	int i, disks = sh->disks;
990 	struct stripe_head *head_sh = sh;
991 	struct bio_list pending_bios = BIO_EMPTY_LIST;
992 	bool should_defer;
993 
994 	might_sleep();
995 
996 	if (log_stripe(sh, s) == 0)
997 		return;
998 
999 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1000 
1001 	for (i = disks; i--; ) {
1002 		int op, op_flags = 0;
1003 		int replace_only = 0;
1004 		struct bio *bi, *rbi;
1005 		struct md_rdev *rdev, *rrdev = NULL;
1006 
1007 		sh = head_sh;
1008 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1009 			op = REQ_OP_WRITE;
1010 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1011 				op_flags = REQ_FUA;
1012 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1013 				op = REQ_OP_DISCARD;
1014 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1015 			op = REQ_OP_READ;
1016 		else if (test_and_clear_bit(R5_WantReplace,
1017 					    &sh->dev[i].flags)) {
1018 			op = REQ_OP_WRITE;
1019 			replace_only = 1;
1020 		} else
1021 			continue;
1022 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1023 			op_flags |= REQ_SYNC;
1024 
1025 again:
1026 		bi = &sh->dev[i].req;
1027 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1028 
1029 		rcu_read_lock();
1030 		rrdev = rcu_dereference(conf->disks[i].replacement);
1031 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1032 		rdev = rcu_dereference(conf->disks[i].rdev);
1033 		if (!rdev) {
1034 			rdev = rrdev;
1035 			rrdev = NULL;
1036 		}
1037 		if (op_is_write(op)) {
1038 			if (replace_only)
1039 				rdev = NULL;
1040 			if (rdev == rrdev)
1041 				/* We raced and saw duplicates */
1042 				rrdev = NULL;
1043 		} else {
1044 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1045 				rdev = rrdev;
1046 			rrdev = NULL;
1047 		}
1048 
1049 		if (rdev && test_bit(Faulty, &rdev->flags))
1050 			rdev = NULL;
1051 		if (rdev)
1052 			atomic_inc(&rdev->nr_pending);
1053 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1054 			rrdev = NULL;
1055 		if (rrdev)
1056 			atomic_inc(&rrdev->nr_pending);
1057 		rcu_read_unlock();
1058 
1059 		/* We have already checked bad blocks for reads.  Now
1060 		 * need to check for writes.  We never accept write errors
1061 		 * on the replacement, so we don't to check rrdev.
1062 		 */
1063 		while (op_is_write(op) && rdev &&
1064 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1065 			sector_t first_bad;
1066 			int bad_sectors;
1067 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1068 					      &first_bad, &bad_sectors);
1069 			if (!bad)
1070 				break;
1071 
1072 			if (bad < 0) {
1073 				set_bit(BlockedBadBlocks, &rdev->flags);
1074 				if (!conf->mddev->external &&
1075 				    conf->mddev->sb_flags) {
1076 					/* It is very unlikely, but we might
1077 					 * still need to write out the
1078 					 * bad block log - better give it
1079 					 * a chance*/
1080 					md_check_recovery(conf->mddev);
1081 				}
1082 				/*
1083 				 * Because md_wait_for_blocked_rdev
1084 				 * will dec nr_pending, we must
1085 				 * increment it first.
1086 				 */
1087 				atomic_inc(&rdev->nr_pending);
1088 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1089 			} else {
1090 				/* Acknowledged bad block - skip the write */
1091 				rdev_dec_pending(rdev, conf->mddev);
1092 				rdev = NULL;
1093 			}
1094 		}
1095 
1096 		if (rdev) {
1097 			if (s->syncing || s->expanding || s->expanded
1098 			    || s->replacing)
1099 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1100 
1101 			set_bit(STRIPE_IO_STARTED, &sh->state);
1102 
1103 			bio_set_dev(bi, rdev->bdev);
1104 			bio_set_op_attrs(bi, op, op_flags);
1105 			bi->bi_end_io = op_is_write(op)
1106 				? raid5_end_write_request
1107 				: raid5_end_read_request;
1108 			bi->bi_private = sh;
1109 
1110 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1111 				__func__, (unsigned long long)sh->sector,
1112 				bi->bi_opf, i);
1113 			atomic_inc(&sh->count);
1114 			if (sh != head_sh)
1115 				atomic_inc(&head_sh->count);
1116 			if (use_new_offset(conf, sh))
1117 				bi->bi_iter.bi_sector = (sh->sector
1118 						 + rdev->new_data_offset);
1119 			else
1120 				bi->bi_iter.bi_sector = (sh->sector
1121 						 + rdev->data_offset);
1122 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1123 				bi->bi_opf |= REQ_NOMERGE;
1124 
1125 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1126 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1127 
1128 			if (!op_is_write(op) &&
1129 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1130 				/*
1131 				 * issuing read for a page in journal, this
1132 				 * must be preparing for prexor in rmw; read
1133 				 * the data into orig_page
1134 				 */
1135 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1136 			else
1137 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1138 			bi->bi_vcnt = 1;
1139 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1140 			bi->bi_io_vec[0].bv_offset = 0;
1141 			bi->bi_iter.bi_size = STRIPE_SIZE;
1142 			/*
1143 			 * If this is discard request, set bi_vcnt 0. We don't
1144 			 * want to confuse SCSI because SCSI will replace payload
1145 			 */
1146 			if (op == REQ_OP_DISCARD)
1147 				bi->bi_vcnt = 0;
1148 			if (rrdev)
1149 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1150 
1151 			if (conf->mddev->gendisk)
1152 				trace_block_bio_remap(bi->bi_disk->queue,
1153 						      bi, disk_devt(conf->mddev->gendisk),
1154 						      sh->dev[i].sector);
1155 			if (should_defer && op_is_write(op))
1156 				bio_list_add(&pending_bios, bi);
1157 			else
1158 				generic_make_request(bi);
1159 		}
1160 		if (rrdev) {
1161 			if (s->syncing || s->expanding || s->expanded
1162 			    || s->replacing)
1163 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1164 
1165 			set_bit(STRIPE_IO_STARTED, &sh->state);
1166 
1167 			bio_set_dev(rbi, rrdev->bdev);
1168 			bio_set_op_attrs(rbi, op, op_flags);
1169 			BUG_ON(!op_is_write(op));
1170 			rbi->bi_end_io = raid5_end_write_request;
1171 			rbi->bi_private = sh;
1172 
1173 			pr_debug("%s: for %llu schedule op %d on "
1174 				 "replacement disc %d\n",
1175 				__func__, (unsigned long long)sh->sector,
1176 				rbi->bi_opf, i);
1177 			atomic_inc(&sh->count);
1178 			if (sh != head_sh)
1179 				atomic_inc(&head_sh->count);
1180 			if (use_new_offset(conf, sh))
1181 				rbi->bi_iter.bi_sector = (sh->sector
1182 						  + rrdev->new_data_offset);
1183 			else
1184 				rbi->bi_iter.bi_sector = (sh->sector
1185 						  + rrdev->data_offset);
1186 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1187 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1188 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1189 			rbi->bi_vcnt = 1;
1190 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1191 			rbi->bi_io_vec[0].bv_offset = 0;
1192 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1193 			/*
1194 			 * If this is discard request, set bi_vcnt 0. We don't
1195 			 * want to confuse SCSI because SCSI will replace payload
1196 			 */
1197 			if (op == REQ_OP_DISCARD)
1198 				rbi->bi_vcnt = 0;
1199 			if (conf->mddev->gendisk)
1200 				trace_block_bio_remap(rbi->bi_disk->queue,
1201 						      rbi, disk_devt(conf->mddev->gendisk),
1202 						      sh->dev[i].sector);
1203 			if (should_defer && op_is_write(op))
1204 				bio_list_add(&pending_bios, rbi);
1205 			else
1206 				generic_make_request(rbi);
1207 		}
1208 		if (!rdev && !rrdev) {
1209 			if (op_is_write(op))
1210 				set_bit(STRIPE_DEGRADED, &sh->state);
1211 			pr_debug("skip op %d on disc %d for sector %llu\n",
1212 				bi->bi_opf, i, (unsigned long long)sh->sector);
1213 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1214 			set_bit(STRIPE_HANDLE, &sh->state);
1215 		}
1216 
1217 		if (!head_sh->batch_head)
1218 			continue;
1219 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1220 				      batch_list);
1221 		if (sh != head_sh)
1222 			goto again;
1223 	}
1224 
1225 	if (should_defer && !bio_list_empty(&pending_bios))
1226 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1227 }
1228 
1229 static struct dma_async_tx_descriptor *
1230 async_copy_data(int frombio, struct bio *bio, struct page **page,
1231 	sector_t sector, struct dma_async_tx_descriptor *tx,
1232 	struct stripe_head *sh, int no_skipcopy)
1233 {
1234 	struct bio_vec bvl;
1235 	struct bvec_iter iter;
1236 	struct page *bio_page;
1237 	int page_offset;
1238 	struct async_submit_ctl submit;
1239 	enum async_tx_flags flags = 0;
1240 
1241 	if (bio->bi_iter.bi_sector >= sector)
1242 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1243 	else
1244 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1245 
1246 	if (frombio)
1247 		flags |= ASYNC_TX_FENCE;
1248 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1249 
1250 	bio_for_each_segment(bvl, bio, iter) {
1251 		int len = bvl.bv_len;
1252 		int clen;
1253 		int b_offset = 0;
1254 
1255 		if (page_offset < 0) {
1256 			b_offset = -page_offset;
1257 			page_offset += b_offset;
1258 			len -= b_offset;
1259 		}
1260 
1261 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1262 			clen = STRIPE_SIZE - page_offset;
1263 		else
1264 			clen = len;
1265 
1266 		if (clen > 0) {
1267 			b_offset += bvl.bv_offset;
1268 			bio_page = bvl.bv_page;
1269 			if (frombio) {
1270 				if (sh->raid_conf->skip_copy &&
1271 				    b_offset == 0 && page_offset == 0 &&
1272 				    clen == STRIPE_SIZE &&
1273 				    !no_skipcopy)
1274 					*page = bio_page;
1275 				else
1276 					tx = async_memcpy(*page, bio_page, page_offset,
1277 						  b_offset, clen, &submit);
1278 			} else
1279 				tx = async_memcpy(bio_page, *page, b_offset,
1280 						  page_offset, clen, &submit);
1281 		}
1282 		/* chain the operations */
1283 		submit.depend_tx = tx;
1284 
1285 		if (clen < len) /* hit end of page */
1286 			break;
1287 		page_offset +=  len;
1288 	}
1289 
1290 	return tx;
1291 }
1292 
1293 static void ops_complete_biofill(void *stripe_head_ref)
1294 {
1295 	struct stripe_head *sh = stripe_head_ref;
1296 	int i;
1297 
1298 	pr_debug("%s: stripe %llu\n", __func__,
1299 		(unsigned long long)sh->sector);
1300 
1301 	/* clear completed biofills */
1302 	for (i = sh->disks; i--; ) {
1303 		struct r5dev *dev = &sh->dev[i];
1304 
1305 		/* acknowledge completion of a biofill operation */
1306 		/* and check if we need to reply to a read request,
1307 		 * new R5_Wantfill requests are held off until
1308 		 * !STRIPE_BIOFILL_RUN
1309 		 */
1310 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1311 			struct bio *rbi, *rbi2;
1312 
1313 			BUG_ON(!dev->read);
1314 			rbi = dev->read;
1315 			dev->read = NULL;
1316 			while (rbi && rbi->bi_iter.bi_sector <
1317 				dev->sector + STRIPE_SECTORS) {
1318 				rbi2 = r5_next_bio(rbi, dev->sector);
1319 				bio_endio(rbi);
1320 				rbi = rbi2;
1321 			}
1322 		}
1323 	}
1324 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1325 
1326 	set_bit(STRIPE_HANDLE, &sh->state);
1327 	raid5_release_stripe(sh);
1328 }
1329 
1330 static void ops_run_biofill(struct stripe_head *sh)
1331 {
1332 	struct dma_async_tx_descriptor *tx = NULL;
1333 	struct async_submit_ctl submit;
1334 	int i;
1335 
1336 	BUG_ON(sh->batch_head);
1337 	pr_debug("%s: stripe %llu\n", __func__,
1338 		(unsigned long long)sh->sector);
1339 
1340 	for (i = sh->disks; i--; ) {
1341 		struct r5dev *dev = &sh->dev[i];
1342 		if (test_bit(R5_Wantfill, &dev->flags)) {
1343 			struct bio *rbi;
1344 			spin_lock_irq(&sh->stripe_lock);
1345 			dev->read = rbi = dev->toread;
1346 			dev->toread = NULL;
1347 			spin_unlock_irq(&sh->stripe_lock);
1348 			while (rbi && rbi->bi_iter.bi_sector <
1349 				dev->sector + STRIPE_SECTORS) {
1350 				tx = async_copy_data(0, rbi, &dev->page,
1351 						     dev->sector, tx, sh, 0);
1352 				rbi = r5_next_bio(rbi, dev->sector);
1353 			}
1354 		}
1355 	}
1356 
1357 	atomic_inc(&sh->count);
1358 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1359 	async_trigger_callback(&submit);
1360 }
1361 
1362 static void mark_target_uptodate(struct stripe_head *sh, int target)
1363 {
1364 	struct r5dev *tgt;
1365 
1366 	if (target < 0)
1367 		return;
1368 
1369 	tgt = &sh->dev[target];
1370 	set_bit(R5_UPTODATE, &tgt->flags);
1371 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1372 	clear_bit(R5_Wantcompute, &tgt->flags);
1373 }
1374 
1375 static void ops_complete_compute(void *stripe_head_ref)
1376 {
1377 	struct stripe_head *sh = stripe_head_ref;
1378 
1379 	pr_debug("%s: stripe %llu\n", __func__,
1380 		(unsigned long long)sh->sector);
1381 
1382 	/* mark the computed target(s) as uptodate */
1383 	mark_target_uptodate(sh, sh->ops.target);
1384 	mark_target_uptodate(sh, sh->ops.target2);
1385 
1386 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1387 	if (sh->check_state == check_state_compute_run)
1388 		sh->check_state = check_state_compute_result;
1389 	set_bit(STRIPE_HANDLE, &sh->state);
1390 	raid5_release_stripe(sh);
1391 }
1392 
1393 /* return a pointer to the address conversion region of the scribble buffer */
1394 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1395 				 struct raid5_percpu *percpu, int i)
1396 {
1397 	void *addr;
1398 
1399 	addr = flex_array_get(percpu->scribble, i);
1400 	return addr + sizeof(struct page *) * (sh->disks + 2);
1401 }
1402 
1403 /* return a pointer to the address conversion region of the scribble buffer */
1404 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1405 {
1406 	void *addr;
1407 
1408 	addr = flex_array_get(percpu->scribble, i);
1409 	return addr;
1410 }
1411 
1412 static struct dma_async_tx_descriptor *
1413 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1414 {
1415 	int disks = sh->disks;
1416 	struct page **xor_srcs = to_addr_page(percpu, 0);
1417 	int target = sh->ops.target;
1418 	struct r5dev *tgt = &sh->dev[target];
1419 	struct page *xor_dest = tgt->page;
1420 	int count = 0;
1421 	struct dma_async_tx_descriptor *tx;
1422 	struct async_submit_ctl submit;
1423 	int i;
1424 
1425 	BUG_ON(sh->batch_head);
1426 
1427 	pr_debug("%s: stripe %llu block: %d\n",
1428 		__func__, (unsigned long long)sh->sector, target);
1429 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1430 
1431 	for (i = disks; i--; )
1432 		if (i != target)
1433 			xor_srcs[count++] = sh->dev[i].page;
1434 
1435 	atomic_inc(&sh->count);
1436 
1437 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1438 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1439 	if (unlikely(count == 1))
1440 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1441 	else
1442 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1443 
1444 	return tx;
1445 }
1446 
1447 /* set_syndrome_sources - populate source buffers for gen_syndrome
1448  * @srcs - (struct page *) array of size sh->disks
1449  * @sh - stripe_head to parse
1450  *
1451  * Populates srcs in proper layout order for the stripe and returns the
1452  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1453  * destination buffer is recorded in srcs[count] and the Q destination
1454  * is recorded in srcs[count+1]].
1455  */
1456 static int set_syndrome_sources(struct page **srcs,
1457 				struct stripe_head *sh,
1458 				int srctype)
1459 {
1460 	int disks = sh->disks;
1461 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1462 	int d0_idx = raid6_d0(sh);
1463 	int count;
1464 	int i;
1465 
1466 	for (i = 0; i < disks; i++)
1467 		srcs[i] = NULL;
1468 
1469 	count = 0;
1470 	i = d0_idx;
1471 	do {
1472 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1473 		struct r5dev *dev = &sh->dev[i];
1474 
1475 		if (i == sh->qd_idx || i == sh->pd_idx ||
1476 		    (srctype == SYNDROME_SRC_ALL) ||
1477 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1478 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1479 		      test_bit(R5_InJournal, &dev->flags))) ||
1480 		    (srctype == SYNDROME_SRC_WRITTEN &&
1481 		     (dev->written ||
1482 		      test_bit(R5_InJournal, &dev->flags)))) {
1483 			if (test_bit(R5_InJournal, &dev->flags))
1484 				srcs[slot] = sh->dev[i].orig_page;
1485 			else
1486 				srcs[slot] = sh->dev[i].page;
1487 		}
1488 		i = raid6_next_disk(i, disks);
1489 	} while (i != d0_idx);
1490 
1491 	return syndrome_disks;
1492 }
1493 
1494 static struct dma_async_tx_descriptor *
1495 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1496 {
1497 	int disks = sh->disks;
1498 	struct page **blocks = to_addr_page(percpu, 0);
1499 	int target;
1500 	int qd_idx = sh->qd_idx;
1501 	struct dma_async_tx_descriptor *tx;
1502 	struct async_submit_ctl submit;
1503 	struct r5dev *tgt;
1504 	struct page *dest;
1505 	int i;
1506 	int count;
1507 
1508 	BUG_ON(sh->batch_head);
1509 	if (sh->ops.target < 0)
1510 		target = sh->ops.target2;
1511 	else if (sh->ops.target2 < 0)
1512 		target = sh->ops.target;
1513 	else
1514 		/* we should only have one valid target */
1515 		BUG();
1516 	BUG_ON(target < 0);
1517 	pr_debug("%s: stripe %llu block: %d\n",
1518 		__func__, (unsigned long long)sh->sector, target);
1519 
1520 	tgt = &sh->dev[target];
1521 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1522 	dest = tgt->page;
1523 
1524 	atomic_inc(&sh->count);
1525 
1526 	if (target == qd_idx) {
1527 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1528 		blocks[count] = NULL; /* regenerating p is not necessary */
1529 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1530 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1531 				  ops_complete_compute, sh,
1532 				  to_addr_conv(sh, percpu, 0));
1533 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1534 	} else {
1535 		/* Compute any data- or p-drive using XOR */
1536 		count = 0;
1537 		for (i = disks; i-- ; ) {
1538 			if (i == target || i == qd_idx)
1539 				continue;
1540 			blocks[count++] = sh->dev[i].page;
1541 		}
1542 
1543 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1544 				  NULL, ops_complete_compute, sh,
1545 				  to_addr_conv(sh, percpu, 0));
1546 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1547 	}
1548 
1549 	return tx;
1550 }
1551 
1552 static struct dma_async_tx_descriptor *
1553 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1554 {
1555 	int i, count, disks = sh->disks;
1556 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1557 	int d0_idx = raid6_d0(sh);
1558 	int faila = -1, failb = -1;
1559 	int target = sh->ops.target;
1560 	int target2 = sh->ops.target2;
1561 	struct r5dev *tgt = &sh->dev[target];
1562 	struct r5dev *tgt2 = &sh->dev[target2];
1563 	struct dma_async_tx_descriptor *tx;
1564 	struct page **blocks = to_addr_page(percpu, 0);
1565 	struct async_submit_ctl submit;
1566 
1567 	BUG_ON(sh->batch_head);
1568 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1569 		 __func__, (unsigned long long)sh->sector, target, target2);
1570 	BUG_ON(target < 0 || target2 < 0);
1571 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1572 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1573 
1574 	/* we need to open-code set_syndrome_sources to handle the
1575 	 * slot number conversion for 'faila' and 'failb'
1576 	 */
1577 	for (i = 0; i < disks ; i++)
1578 		blocks[i] = NULL;
1579 	count = 0;
1580 	i = d0_idx;
1581 	do {
1582 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1583 
1584 		blocks[slot] = sh->dev[i].page;
1585 
1586 		if (i == target)
1587 			faila = slot;
1588 		if (i == target2)
1589 			failb = slot;
1590 		i = raid6_next_disk(i, disks);
1591 	} while (i != d0_idx);
1592 
1593 	BUG_ON(faila == failb);
1594 	if (failb < faila)
1595 		swap(faila, failb);
1596 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1597 		 __func__, (unsigned long long)sh->sector, faila, failb);
1598 
1599 	atomic_inc(&sh->count);
1600 
1601 	if (failb == syndrome_disks+1) {
1602 		/* Q disk is one of the missing disks */
1603 		if (faila == syndrome_disks) {
1604 			/* Missing P+Q, just recompute */
1605 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1606 					  ops_complete_compute, sh,
1607 					  to_addr_conv(sh, percpu, 0));
1608 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1609 						  STRIPE_SIZE, &submit);
1610 		} else {
1611 			struct page *dest;
1612 			int data_target;
1613 			int qd_idx = sh->qd_idx;
1614 
1615 			/* Missing D+Q: recompute D from P, then recompute Q */
1616 			if (target == qd_idx)
1617 				data_target = target2;
1618 			else
1619 				data_target = target;
1620 
1621 			count = 0;
1622 			for (i = disks; i-- ; ) {
1623 				if (i == data_target || i == qd_idx)
1624 					continue;
1625 				blocks[count++] = sh->dev[i].page;
1626 			}
1627 			dest = sh->dev[data_target].page;
1628 			init_async_submit(&submit,
1629 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1630 					  NULL, NULL, NULL,
1631 					  to_addr_conv(sh, percpu, 0));
1632 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1633 				       &submit);
1634 
1635 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1636 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1637 					  ops_complete_compute, sh,
1638 					  to_addr_conv(sh, percpu, 0));
1639 			return async_gen_syndrome(blocks, 0, count+2,
1640 						  STRIPE_SIZE, &submit);
1641 		}
1642 	} else {
1643 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1644 				  ops_complete_compute, sh,
1645 				  to_addr_conv(sh, percpu, 0));
1646 		if (failb == syndrome_disks) {
1647 			/* We're missing D+P. */
1648 			return async_raid6_datap_recov(syndrome_disks+2,
1649 						       STRIPE_SIZE, faila,
1650 						       blocks, &submit);
1651 		} else {
1652 			/* We're missing D+D. */
1653 			return async_raid6_2data_recov(syndrome_disks+2,
1654 						       STRIPE_SIZE, faila, failb,
1655 						       blocks, &submit);
1656 		}
1657 	}
1658 }
1659 
1660 static void ops_complete_prexor(void *stripe_head_ref)
1661 {
1662 	struct stripe_head *sh = stripe_head_ref;
1663 
1664 	pr_debug("%s: stripe %llu\n", __func__,
1665 		(unsigned long long)sh->sector);
1666 
1667 	if (r5c_is_writeback(sh->raid_conf->log))
1668 		/*
1669 		 * raid5-cache write back uses orig_page during prexor.
1670 		 * After prexor, it is time to free orig_page
1671 		 */
1672 		r5c_release_extra_page(sh);
1673 }
1674 
1675 static struct dma_async_tx_descriptor *
1676 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1677 		struct dma_async_tx_descriptor *tx)
1678 {
1679 	int disks = sh->disks;
1680 	struct page **xor_srcs = to_addr_page(percpu, 0);
1681 	int count = 0, pd_idx = sh->pd_idx, i;
1682 	struct async_submit_ctl submit;
1683 
1684 	/* existing parity data subtracted */
1685 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1686 
1687 	BUG_ON(sh->batch_head);
1688 	pr_debug("%s: stripe %llu\n", __func__,
1689 		(unsigned long long)sh->sector);
1690 
1691 	for (i = disks; i--; ) {
1692 		struct r5dev *dev = &sh->dev[i];
1693 		/* Only process blocks that are known to be uptodate */
1694 		if (test_bit(R5_InJournal, &dev->flags))
1695 			xor_srcs[count++] = dev->orig_page;
1696 		else if (test_bit(R5_Wantdrain, &dev->flags))
1697 			xor_srcs[count++] = dev->page;
1698 	}
1699 
1700 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1701 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1702 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1703 
1704 	return tx;
1705 }
1706 
1707 static struct dma_async_tx_descriptor *
1708 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1709 		struct dma_async_tx_descriptor *tx)
1710 {
1711 	struct page **blocks = to_addr_page(percpu, 0);
1712 	int count;
1713 	struct async_submit_ctl submit;
1714 
1715 	pr_debug("%s: stripe %llu\n", __func__,
1716 		(unsigned long long)sh->sector);
1717 
1718 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1719 
1720 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1721 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1722 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1723 
1724 	return tx;
1725 }
1726 
1727 static struct dma_async_tx_descriptor *
1728 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1729 {
1730 	struct r5conf *conf = sh->raid_conf;
1731 	int disks = sh->disks;
1732 	int i;
1733 	struct stripe_head *head_sh = sh;
1734 
1735 	pr_debug("%s: stripe %llu\n", __func__,
1736 		(unsigned long long)sh->sector);
1737 
1738 	for (i = disks; i--; ) {
1739 		struct r5dev *dev;
1740 		struct bio *chosen;
1741 
1742 		sh = head_sh;
1743 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1744 			struct bio *wbi;
1745 
1746 again:
1747 			dev = &sh->dev[i];
1748 			/*
1749 			 * clear R5_InJournal, so when rewriting a page in
1750 			 * journal, it is not skipped by r5l_log_stripe()
1751 			 */
1752 			clear_bit(R5_InJournal, &dev->flags);
1753 			spin_lock_irq(&sh->stripe_lock);
1754 			chosen = dev->towrite;
1755 			dev->towrite = NULL;
1756 			sh->overwrite_disks = 0;
1757 			BUG_ON(dev->written);
1758 			wbi = dev->written = chosen;
1759 			spin_unlock_irq(&sh->stripe_lock);
1760 			WARN_ON(dev->page != dev->orig_page);
1761 
1762 			while (wbi && wbi->bi_iter.bi_sector <
1763 				dev->sector + STRIPE_SECTORS) {
1764 				if (wbi->bi_opf & REQ_FUA)
1765 					set_bit(R5_WantFUA, &dev->flags);
1766 				if (wbi->bi_opf & REQ_SYNC)
1767 					set_bit(R5_SyncIO, &dev->flags);
1768 				if (bio_op(wbi) == REQ_OP_DISCARD)
1769 					set_bit(R5_Discard, &dev->flags);
1770 				else {
1771 					tx = async_copy_data(1, wbi, &dev->page,
1772 							     dev->sector, tx, sh,
1773 							     r5c_is_writeback(conf->log));
1774 					if (dev->page != dev->orig_page &&
1775 					    !r5c_is_writeback(conf->log)) {
1776 						set_bit(R5_SkipCopy, &dev->flags);
1777 						clear_bit(R5_UPTODATE, &dev->flags);
1778 						clear_bit(R5_OVERWRITE, &dev->flags);
1779 					}
1780 				}
1781 				wbi = r5_next_bio(wbi, dev->sector);
1782 			}
1783 
1784 			if (head_sh->batch_head) {
1785 				sh = list_first_entry(&sh->batch_list,
1786 						      struct stripe_head,
1787 						      batch_list);
1788 				if (sh == head_sh)
1789 					continue;
1790 				goto again;
1791 			}
1792 		}
1793 	}
1794 
1795 	return tx;
1796 }
1797 
1798 static void ops_complete_reconstruct(void *stripe_head_ref)
1799 {
1800 	struct stripe_head *sh = stripe_head_ref;
1801 	int disks = sh->disks;
1802 	int pd_idx = sh->pd_idx;
1803 	int qd_idx = sh->qd_idx;
1804 	int i;
1805 	bool fua = false, sync = false, discard = false;
1806 
1807 	pr_debug("%s: stripe %llu\n", __func__,
1808 		(unsigned long long)sh->sector);
1809 
1810 	for (i = disks; i--; ) {
1811 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1812 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1813 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1814 	}
1815 
1816 	for (i = disks; i--; ) {
1817 		struct r5dev *dev = &sh->dev[i];
1818 
1819 		if (dev->written || i == pd_idx || i == qd_idx) {
1820 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1821 				set_bit(R5_UPTODATE, &dev->flags);
1822 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1823 					set_bit(R5_Expanded, &dev->flags);
1824 			}
1825 			if (fua)
1826 				set_bit(R5_WantFUA, &dev->flags);
1827 			if (sync)
1828 				set_bit(R5_SyncIO, &dev->flags);
1829 		}
1830 	}
1831 
1832 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1833 		sh->reconstruct_state = reconstruct_state_drain_result;
1834 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1835 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1836 	else {
1837 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1838 		sh->reconstruct_state = reconstruct_state_result;
1839 	}
1840 
1841 	set_bit(STRIPE_HANDLE, &sh->state);
1842 	raid5_release_stripe(sh);
1843 }
1844 
1845 static void
1846 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1847 		     struct dma_async_tx_descriptor *tx)
1848 {
1849 	int disks = sh->disks;
1850 	struct page **xor_srcs;
1851 	struct async_submit_ctl submit;
1852 	int count, pd_idx = sh->pd_idx, i;
1853 	struct page *xor_dest;
1854 	int prexor = 0;
1855 	unsigned long flags;
1856 	int j = 0;
1857 	struct stripe_head *head_sh = sh;
1858 	int last_stripe;
1859 
1860 	pr_debug("%s: stripe %llu\n", __func__,
1861 		(unsigned long long)sh->sector);
1862 
1863 	for (i = 0; i < sh->disks; i++) {
1864 		if (pd_idx == i)
1865 			continue;
1866 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1867 			break;
1868 	}
1869 	if (i >= sh->disks) {
1870 		atomic_inc(&sh->count);
1871 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1872 		ops_complete_reconstruct(sh);
1873 		return;
1874 	}
1875 again:
1876 	count = 0;
1877 	xor_srcs = to_addr_page(percpu, j);
1878 	/* check if prexor is active which means only process blocks
1879 	 * that are part of a read-modify-write (written)
1880 	 */
1881 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1882 		prexor = 1;
1883 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1884 		for (i = disks; i--; ) {
1885 			struct r5dev *dev = &sh->dev[i];
1886 			if (head_sh->dev[i].written ||
1887 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1888 				xor_srcs[count++] = dev->page;
1889 		}
1890 	} else {
1891 		xor_dest = sh->dev[pd_idx].page;
1892 		for (i = disks; i--; ) {
1893 			struct r5dev *dev = &sh->dev[i];
1894 			if (i != pd_idx)
1895 				xor_srcs[count++] = dev->page;
1896 		}
1897 	}
1898 
1899 	/* 1/ if we prexor'd then the dest is reused as a source
1900 	 * 2/ if we did not prexor then we are redoing the parity
1901 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1902 	 * for the synchronous xor case
1903 	 */
1904 	last_stripe = !head_sh->batch_head ||
1905 		list_first_entry(&sh->batch_list,
1906 				 struct stripe_head, batch_list) == head_sh;
1907 	if (last_stripe) {
1908 		flags = ASYNC_TX_ACK |
1909 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1910 
1911 		atomic_inc(&head_sh->count);
1912 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1913 				  to_addr_conv(sh, percpu, j));
1914 	} else {
1915 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1916 		init_async_submit(&submit, flags, tx, NULL, NULL,
1917 				  to_addr_conv(sh, percpu, j));
1918 	}
1919 
1920 	if (unlikely(count == 1))
1921 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1922 	else
1923 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1924 	if (!last_stripe) {
1925 		j++;
1926 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1927 				      batch_list);
1928 		goto again;
1929 	}
1930 }
1931 
1932 static void
1933 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1934 		     struct dma_async_tx_descriptor *tx)
1935 {
1936 	struct async_submit_ctl submit;
1937 	struct page **blocks;
1938 	int count, i, j = 0;
1939 	struct stripe_head *head_sh = sh;
1940 	int last_stripe;
1941 	int synflags;
1942 	unsigned long txflags;
1943 
1944 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1945 
1946 	for (i = 0; i < sh->disks; i++) {
1947 		if (sh->pd_idx == i || sh->qd_idx == i)
1948 			continue;
1949 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1950 			break;
1951 	}
1952 	if (i >= sh->disks) {
1953 		atomic_inc(&sh->count);
1954 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1955 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1956 		ops_complete_reconstruct(sh);
1957 		return;
1958 	}
1959 
1960 again:
1961 	blocks = to_addr_page(percpu, j);
1962 
1963 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1964 		synflags = SYNDROME_SRC_WRITTEN;
1965 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1966 	} else {
1967 		synflags = SYNDROME_SRC_ALL;
1968 		txflags = ASYNC_TX_ACK;
1969 	}
1970 
1971 	count = set_syndrome_sources(blocks, sh, synflags);
1972 	last_stripe = !head_sh->batch_head ||
1973 		list_first_entry(&sh->batch_list,
1974 				 struct stripe_head, batch_list) == head_sh;
1975 
1976 	if (last_stripe) {
1977 		atomic_inc(&head_sh->count);
1978 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1979 				  head_sh, to_addr_conv(sh, percpu, j));
1980 	} else
1981 		init_async_submit(&submit, 0, tx, NULL, NULL,
1982 				  to_addr_conv(sh, percpu, j));
1983 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1984 	if (!last_stripe) {
1985 		j++;
1986 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1987 				      batch_list);
1988 		goto again;
1989 	}
1990 }
1991 
1992 static void ops_complete_check(void *stripe_head_ref)
1993 {
1994 	struct stripe_head *sh = stripe_head_ref;
1995 
1996 	pr_debug("%s: stripe %llu\n", __func__,
1997 		(unsigned long long)sh->sector);
1998 
1999 	sh->check_state = check_state_check_result;
2000 	set_bit(STRIPE_HANDLE, &sh->state);
2001 	raid5_release_stripe(sh);
2002 }
2003 
2004 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2005 {
2006 	int disks = sh->disks;
2007 	int pd_idx = sh->pd_idx;
2008 	int qd_idx = sh->qd_idx;
2009 	struct page *xor_dest;
2010 	struct page **xor_srcs = to_addr_page(percpu, 0);
2011 	struct dma_async_tx_descriptor *tx;
2012 	struct async_submit_ctl submit;
2013 	int count;
2014 	int i;
2015 
2016 	pr_debug("%s: stripe %llu\n", __func__,
2017 		(unsigned long long)sh->sector);
2018 
2019 	BUG_ON(sh->batch_head);
2020 	count = 0;
2021 	xor_dest = sh->dev[pd_idx].page;
2022 	xor_srcs[count++] = xor_dest;
2023 	for (i = disks; i--; ) {
2024 		if (i == pd_idx || i == qd_idx)
2025 			continue;
2026 		xor_srcs[count++] = sh->dev[i].page;
2027 	}
2028 
2029 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2030 			  to_addr_conv(sh, percpu, 0));
2031 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2032 			   &sh->ops.zero_sum_result, &submit);
2033 
2034 	atomic_inc(&sh->count);
2035 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2036 	tx = async_trigger_callback(&submit);
2037 }
2038 
2039 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2040 {
2041 	struct page **srcs = to_addr_page(percpu, 0);
2042 	struct async_submit_ctl submit;
2043 	int count;
2044 
2045 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2046 		(unsigned long long)sh->sector, checkp);
2047 
2048 	BUG_ON(sh->batch_head);
2049 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2050 	if (!checkp)
2051 		srcs[count] = NULL;
2052 
2053 	atomic_inc(&sh->count);
2054 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2055 			  sh, to_addr_conv(sh, percpu, 0));
2056 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2057 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2058 }
2059 
2060 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2061 {
2062 	int overlap_clear = 0, i, disks = sh->disks;
2063 	struct dma_async_tx_descriptor *tx = NULL;
2064 	struct r5conf *conf = sh->raid_conf;
2065 	int level = conf->level;
2066 	struct raid5_percpu *percpu;
2067 	unsigned long cpu;
2068 
2069 	cpu = get_cpu();
2070 	percpu = per_cpu_ptr(conf->percpu, cpu);
2071 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2072 		ops_run_biofill(sh);
2073 		overlap_clear++;
2074 	}
2075 
2076 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2077 		if (level < 6)
2078 			tx = ops_run_compute5(sh, percpu);
2079 		else {
2080 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2081 				tx = ops_run_compute6_1(sh, percpu);
2082 			else
2083 				tx = ops_run_compute6_2(sh, percpu);
2084 		}
2085 		/* terminate the chain if reconstruct is not set to be run */
2086 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2087 			async_tx_ack(tx);
2088 	}
2089 
2090 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2091 		if (level < 6)
2092 			tx = ops_run_prexor5(sh, percpu, tx);
2093 		else
2094 			tx = ops_run_prexor6(sh, percpu, tx);
2095 	}
2096 
2097 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2098 		tx = ops_run_partial_parity(sh, percpu, tx);
2099 
2100 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2101 		tx = ops_run_biodrain(sh, tx);
2102 		overlap_clear++;
2103 	}
2104 
2105 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2106 		if (level < 6)
2107 			ops_run_reconstruct5(sh, percpu, tx);
2108 		else
2109 			ops_run_reconstruct6(sh, percpu, tx);
2110 	}
2111 
2112 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2113 		if (sh->check_state == check_state_run)
2114 			ops_run_check_p(sh, percpu);
2115 		else if (sh->check_state == check_state_run_q)
2116 			ops_run_check_pq(sh, percpu, 0);
2117 		else if (sh->check_state == check_state_run_pq)
2118 			ops_run_check_pq(sh, percpu, 1);
2119 		else
2120 			BUG();
2121 	}
2122 
2123 	if (overlap_clear && !sh->batch_head)
2124 		for (i = disks; i--; ) {
2125 			struct r5dev *dev = &sh->dev[i];
2126 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2127 				wake_up(&sh->raid_conf->wait_for_overlap);
2128 		}
2129 	put_cpu();
2130 }
2131 
2132 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2133 {
2134 	if (sh->ppl_page)
2135 		__free_page(sh->ppl_page);
2136 	kmem_cache_free(sc, sh);
2137 }
2138 
2139 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2140 	int disks, struct r5conf *conf)
2141 {
2142 	struct stripe_head *sh;
2143 	int i;
2144 
2145 	sh = kmem_cache_zalloc(sc, gfp);
2146 	if (sh) {
2147 		spin_lock_init(&sh->stripe_lock);
2148 		spin_lock_init(&sh->batch_lock);
2149 		INIT_LIST_HEAD(&sh->batch_list);
2150 		INIT_LIST_HEAD(&sh->lru);
2151 		INIT_LIST_HEAD(&sh->r5c);
2152 		INIT_LIST_HEAD(&sh->log_list);
2153 		atomic_set(&sh->count, 1);
2154 		sh->raid_conf = conf;
2155 		sh->log_start = MaxSector;
2156 		for (i = 0; i < disks; i++) {
2157 			struct r5dev *dev = &sh->dev[i];
2158 
2159 			bio_init(&dev->req, &dev->vec, 1);
2160 			bio_init(&dev->rreq, &dev->rvec, 1);
2161 		}
2162 
2163 		if (raid5_has_ppl(conf)) {
2164 			sh->ppl_page = alloc_page(gfp);
2165 			if (!sh->ppl_page) {
2166 				free_stripe(sc, sh);
2167 				sh = NULL;
2168 			}
2169 		}
2170 	}
2171 	return sh;
2172 }
2173 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2174 {
2175 	struct stripe_head *sh;
2176 
2177 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2178 	if (!sh)
2179 		return 0;
2180 
2181 	if (grow_buffers(sh, gfp)) {
2182 		shrink_buffers(sh);
2183 		free_stripe(conf->slab_cache, sh);
2184 		return 0;
2185 	}
2186 	sh->hash_lock_index =
2187 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2188 	/* we just created an active stripe so... */
2189 	atomic_inc(&conf->active_stripes);
2190 
2191 	raid5_release_stripe(sh);
2192 	conf->max_nr_stripes++;
2193 	return 1;
2194 }
2195 
2196 static int grow_stripes(struct r5conf *conf, int num)
2197 {
2198 	struct kmem_cache *sc;
2199 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2200 
2201 	if (conf->mddev->gendisk)
2202 		sprintf(conf->cache_name[0],
2203 			"raid%d-%s", conf->level, mdname(conf->mddev));
2204 	else
2205 		sprintf(conf->cache_name[0],
2206 			"raid%d-%p", conf->level, conf->mddev);
2207 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2208 
2209 	conf->active_name = 0;
2210 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2211 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2212 			       0, 0, NULL);
2213 	if (!sc)
2214 		return 1;
2215 	conf->slab_cache = sc;
2216 	conf->pool_size = devs;
2217 	while (num--)
2218 		if (!grow_one_stripe(conf, GFP_KERNEL))
2219 			return 1;
2220 
2221 	return 0;
2222 }
2223 
2224 /**
2225  * scribble_len - return the required size of the scribble region
2226  * @num - total number of disks in the array
2227  *
2228  * The size must be enough to contain:
2229  * 1/ a struct page pointer for each device in the array +2
2230  * 2/ room to convert each entry in (1) to its corresponding dma
2231  *    (dma_map_page()) or page (page_address()) address.
2232  *
2233  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2234  * calculate over all devices (not just the data blocks), using zeros in place
2235  * of the P and Q blocks.
2236  */
2237 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2238 {
2239 	struct flex_array *ret;
2240 	size_t len;
2241 
2242 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2243 	ret = flex_array_alloc(len, cnt, flags);
2244 	if (!ret)
2245 		return NULL;
2246 	/* always prealloc all elements, so no locking is required */
2247 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2248 		flex_array_free(ret);
2249 		return NULL;
2250 	}
2251 	return ret;
2252 }
2253 
2254 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2255 {
2256 	unsigned long cpu;
2257 	int err = 0;
2258 
2259 	/*
2260 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2261 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2262 	 * should equal to new_disks and new_sectors
2263 	 */
2264 	if (conf->scribble_disks >= new_disks &&
2265 	    conf->scribble_sectors >= new_sectors)
2266 		return 0;
2267 	mddev_suspend(conf->mddev);
2268 	get_online_cpus();
2269 	for_each_present_cpu(cpu) {
2270 		struct raid5_percpu *percpu;
2271 		struct flex_array *scribble;
2272 
2273 		percpu = per_cpu_ptr(conf->percpu, cpu);
2274 		scribble = scribble_alloc(new_disks,
2275 					  new_sectors / STRIPE_SECTORS,
2276 					  GFP_NOIO);
2277 
2278 		if (scribble) {
2279 			flex_array_free(percpu->scribble);
2280 			percpu->scribble = scribble;
2281 		} else {
2282 			err = -ENOMEM;
2283 			break;
2284 		}
2285 	}
2286 	put_online_cpus();
2287 	mddev_resume(conf->mddev);
2288 	if (!err) {
2289 		conf->scribble_disks = new_disks;
2290 		conf->scribble_sectors = new_sectors;
2291 	}
2292 	return err;
2293 }
2294 
2295 static int resize_stripes(struct r5conf *conf, int newsize)
2296 {
2297 	/* Make all the stripes able to hold 'newsize' devices.
2298 	 * New slots in each stripe get 'page' set to a new page.
2299 	 *
2300 	 * This happens in stages:
2301 	 * 1/ create a new kmem_cache and allocate the required number of
2302 	 *    stripe_heads.
2303 	 * 2/ gather all the old stripe_heads and transfer the pages across
2304 	 *    to the new stripe_heads.  This will have the side effect of
2305 	 *    freezing the array as once all stripe_heads have been collected,
2306 	 *    no IO will be possible.  Old stripe heads are freed once their
2307 	 *    pages have been transferred over, and the old kmem_cache is
2308 	 *    freed when all stripes are done.
2309 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2310 	 *    we simple return a failure status - no need to clean anything up.
2311 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2312 	 *    If this fails, we don't bother trying the shrink the
2313 	 *    stripe_heads down again, we just leave them as they are.
2314 	 *    As each stripe_head is processed the new one is released into
2315 	 *    active service.
2316 	 *
2317 	 * Once step2 is started, we cannot afford to wait for a write,
2318 	 * so we use GFP_NOIO allocations.
2319 	 */
2320 	struct stripe_head *osh, *nsh;
2321 	LIST_HEAD(newstripes);
2322 	struct disk_info *ndisks;
2323 	int err = 0;
2324 	struct kmem_cache *sc;
2325 	int i;
2326 	int hash, cnt;
2327 
2328 	md_allow_write(conf->mddev);
2329 
2330 	/* Step 1 */
2331 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2332 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2333 			       0, 0, NULL);
2334 	if (!sc)
2335 		return -ENOMEM;
2336 
2337 	/* Need to ensure auto-resizing doesn't interfere */
2338 	mutex_lock(&conf->cache_size_mutex);
2339 
2340 	for (i = conf->max_nr_stripes; i; i--) {
2341 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2342 		if (!nsh)
2343 			break;
2344 
2345 		list_add(&nsh->lru, &newstripes);
2346 	}
2347 	if (i) {
2348 		/* didn't get enough, give up */
2349 		while (!list_empty(&newstripes)) {
2350 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2351 			list_del(&nsh->lru);
2352 			free_stripe(sc, nsh);
2353 		}
2354 		kmem_cache_destroy(sc);
2355 		mutex_unlock(&conf->cache_size_mutex);
2356 		return -ENOMEM;
2357 	}
2358 	/* Step 2 - Must use GFP_NOIO now.
2359 	 * OK, we have enough stripes, start collecting inactive
2360 	 * stripes and copying them over
2361 	 */
2362 	hash = 0;
2363 	cnt = 0;
2364 	list_for_each_entry(nsh, &newstripes, lru) {
2365 		lock_device_hash_lock(conf, hash);
2366 		wait_event_cmd(conf->wait_for_stripe,
2367 				    !list_empty(conf->inactive_list + hash),
2368 				    unlock_device_hash_lock(conf, hash),
2369 				    lock_device_hash_lock(conf, hash));
2370 		osh = get_free_stripe(conf, hash);
2371 		unlock_device_hash_lock(conf, hash);
2372 
2373 		for(i=0; i<conf->pool_size; i++) {
2374 			nsh->dev[i].page = osh->dev[i].page;
2375 			nsh->dev[i].orig_page = osh->dev[i].page;
2376 		}
2377 		nsh->hash_lock_index = hash;
2378 		free_stripe(conf->slab_cache, osh);
2379 		cnt++;
2380 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2381 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2382 			hash++;
2383 			cnt = 0;
2384 		}
2385 	}
2386 	kmem_cache_destroy(conf->slab_cache);
2387 
2388 	/* Step 3.
2389 	 * At this point, we are holding all the stripes so the array
2390 	 * is completely stalled, so now is a good time to resize
2391 	 * conf->disks and the scribble region
2392 	 */
2393 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2394 	if (ndisks) {
2395 		for (i = 0; i < conf->pool_size; i++)
2396 			ndisks[i] = conf->disks[i];
2397 
2398 		for (i = conf->pool_size; i < newsize; i++) {
2399 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2400 			if (!ndisks[i].extra_page)
2401 				err = -ENOMEM;
2402 		}
2403 
2404 		if (err) {
2405 			for (i = conf->pool_size; i < newsize; i++)
2406 				if (ndisks[i].extra_page)
2407 					put_page(ndisks[i].extra_page);
2408 			kfree(ndisks);
2409 		} else {
2410 			kfree(conf->disks);
2411 			conf->disks = ndisks;
2412 		}
2413 	} else
2414 		err = -ENOMEM;
2415 
2416 	mutex_unlock(&conf->cache_size_mutex);
2417 
2418 	conf->slab_cache = sc;
2419 	conf->active_name = 1-conf->active_name;
2420 
2421 	/* Step 4, return new stripes to service */
2422 	while(!list_empty(&newstripes)) {
2423 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2424 		list_del_init(&nsh->lru);
2425 
2426 		for (i=conf->raid_disks; i < newsize; i++)
2427 			if (nsh->dev[i].page == NULL) {
2428 				struct page *p = alloc_page(GFP_NOIO);
2429 				nsh->dev[i].page = p;
2430 				nsh->dev[i].orig_page = p;
2431 				if (!p)
2432 					err = -ENOMEM;
2433 			}
2434 		raid5_release_stripe(nsh);
2435 	}
2436 	/* critical section pass, GFP_NOIO no longer needed */
2437 
2438 	if (!err)
2439 		conf->pool_size = newsize;
2440 	return err;
2441 }
2442 
2443 static int drop_one_stripe(struct r5conf *conf)
2444 {
2445 	struct stripe_head *sh;
2446 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2447 
2448 	spin_lock_irq(conf->hash_locks + hash);
2449 	sh = get_free_stripe(conf, hash);
2450 	spin_unlock_irq(conf->hash_locks + hash);
2451 	if (!sh)
2452 		return 0;
2453 	BUG_ON(atomic_read(&sh->count));
2454 	shrink_buffers(sh);
2455 	free_stripe(conf->slab_cache, sh);
2456 	atomic_dec(&conf->active_stripes);
2457 	conf->max_nr_stripes--;
2458 	return 1;
2459 }
2460 
2461 static void shrink_stripes(struct r5conf *conf)
2462 {
2463 	while (conf->max_nr_stripes &&
2464 	       drop_one_stripe(conf))
2465 		;
2466 
2467 	kmem_cache_destroy(conf->slab_cache);
2468 	conf->slab_cache = NULL;
2469 }
2470 
2471 static void raid5_end_read_request(struct bio * bi)
2472 {
2473 	struct stripe_head *sh = bi->bi_private;
2474 	struct r5conf *conf = sh->raid_conf;
2475 	int disks = sh->disks, i;
2476 	char b[BDEVNAME_SIZE];
2477 	struct md_rdev *rdev = NULL;
2478 	sector_t s;
2479 
2480 	for (i=0 ; i<disks; i++)
2481 		if (bi == &sh->dev[i].req)
2482 			break;
2483 
2484 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2485 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2486 		bi->bi_status);
2487 	if (i == disks) {
2488 		bio_reset(bi);
2489 		BUG();
2490 		return;
2491 	}
2492 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2493 		/* If replacement finished while this request was outstanding,
2494 		 * 'replacement' might be NULL already.
2495 		 * In that case it moved down to 'rdev'.
2496 		 * rdev is not removed until all requests are finished.
2497 		 */
2498 		rdev = conf->disks[i].replacement;
2499 	if (!rdev)
2500 		rdev = conf->disks[i].rdev;
2501 
2502 	if (use_new_offset(conf, sh))
2503 		s = sh->sector + rdev->new_data_offset;
2504 	else
2505 		s = sh->sector + rdev->data_offset;
2506 	if (!bi->bi_status) {
2507 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2508 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2509 			/* Note that this cannot happen on a
2510 			 * replacement device.  We just fail those on
2511 			 * any error
2512 			 */
2513 			pr_info_ratelimited(
2514 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2515 				mdname(conf->mddev), STRIPE_SECTORS,
2516 				(unsigned long long)s,
2517 				bdevname(rdev->bdev, b));
2518 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2519 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2520 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2521 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2522 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2523 
2524 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2525 			/*
2526 			 * end read for a page in journal, this
2527 			 * must be preparing for prexor in rmw
2528 			 */
2529 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2530 
2531 		if (atomic_read(&rdev->read_errors))
2532 			atomic_set(&rdev->read_errors, 0);
2533 	} else {
2534 		const char *bdn = bdevname(rdev->bdev, b);
2535 		int retry = 0;
2536 		int set_bad = 0;
2537 
2538 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2539 		atomic_inc(&rdev->read_errors);
2540 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2541 			pr_warn_ratelimited(
2542 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2543 				mdname(conf->mddev),
2544 				(unsigned long long)s,
2545 				bdn);
2546 		else if (conf->mddev->degraded >= conf->max_degraded) {
2547 			set_bad = 1;
2548 			pr_warn_ratelimited(
2549 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2550 				mdname(conf->mddev),
2551 				(unsigned long long)s,
2552 				bdn);
2553 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2554 			/* Oh, no!!! */
2555 			set_bad = 1;
2556 			pr_warn_ratelimited(
2557 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2558 				mdname(conf->mddev),
2559 				(unsigned long long)s,
2560 				bdn);
2561 		} else if (atomic_read(&rdev->read_errors)
2562 			 > conf->max_nr_stripes)
2563 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2564 			       mdname(conf->mddev), bdn);
2565 		else
2566 			retry = 1;
2567 		if (set_bad && test_bit(In_sync, &rdev->flags)
2568 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2569 			retry = 1;
2570 		if (retry)
2571 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2572 				set_bit(R5_ReadError, &sh->dev[i].flags);
2573 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2574 			} else
2575 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2576 		else {
2577 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2578 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2579 			if (!(set_bad
2580 			      && test_bit(In_sync, &rdev->flags)
2581 			      && rdev_set_badblocks(
2582 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2583 				md_error(conf->mddev, rdev);
2584 		}
2585 	}
2586 	rdev_dec_pending(rdev, conf->mddev);
2587 	bio_reset(bi);
2588 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2589 	set_bit(STRIPE_HANDLE, &sh->state);
2590 	raid5_release_stripe(sh);
2591 }
2592 
2593 static void raid5_end_write_request(struct bio *bi)
2594 {
2595 	struct stripe_head *sh = bi->bi_private;
2596 	struct r5conf *conf = sh->raid_conf;
2597 	int disks = sh->disks, i;
2598 	struct md_rdev *uninitialized_var(rdev);
2599 	sector_t first_bad;
2600 	int bad_sectors;
2601 	int replacement = 0;
2602 
2603 	for (i = 0 ; i < disks; i++) {
2604 		if (bi == &sh->dev[i].req) {
2605 			rdev = conf->disks[i].rdev;
2606 			break;
2607 		}
2608 		if (bi == &sh->dev[i].rreq) {
2609 			rdev = conf->disks[i].replacement;
2610 			if (rdev)
2611 				replacement = 1;
2612 			else
2613 				/* rdev was removed and 'replacement'
2614 				 * replaced it.  rdev is not removed
2615 				 * until all requests are finished.
2616 				 */
2617 				rdev = conf->disks[i].rdev;
2618 			break;
2619 		}
2620 	}
2621 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2622 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2623 		bi->bi_status);
2624 	if (i == disks) {
2625 		bio_reset(bi);
2626 		BUG();
2627 		return;
2628 	}
2629 
2630 	if (replacement) {
2631 		if (bi->bi_status)
2632 			md_error(conf->mddev, rdev);
2633 		else if (is_badblock(rdev, sh->sector,
2634 				     STRIPE_SECTORS,
2635 				     &first_bad, &bad_sectors))
2636 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2637 	} else {
2638 		if (bi->bi_status) {
2639 			set_bit(STRIPE_DEGRADED, &sh->state);
2640 			set_bit(WriteErrorSeen, &rdev->flags);
2641 			set_bit(R5_WriteError, &sh->dev[i].flags);
2642 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2643 				set_bit(MD_RECOVERY_NEEDED,
2644 					&rdev->mddev->recovery);
2645 		} else if (is_badblock(rdev, sh->sector,
2646 				       STRIPE_SECTORS,
2647 				       &first_bad, &bad_sectors)) {
2648 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2649 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2650 				/* That was a successful write so make
2651 				 * sure it looks like we already did
2652 				 * a re-write.
2653 				 */
2654 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2655 		}
2656 	}
2657 	rdev_dec_pending(rdev, conf->mddev);
2658 
2659 	if (sh->batch_head && bi->bi_status && !replacement)
2660 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2661 
2662 	bio_reset(bi);
2663 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2664 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2665 	set_bit(STRIPE_HANDLE, &sh->state);
2666 	raid5_release_stripe(sh);
2667 
2668 	if (sh->batch_head && sh != sh->batch_head)
2669 		raid5_release_stripe(sh->batch_head);
2670 }
2671 
2672 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2673 {
2674 	char b[BDEVNAME_SIZE];
2675 	struct r5conf *conf = mddev->private;
2676 	unsigned long flags;
2677 	pr_debug("raid456: error called\n");
2678 
2679 	spin_lock_irqsave(&conf->device_lock, flags);
2680 	set_bit(Faulty, &rdev->flags);
2681 	clear_bit(In_sync, &rdev->flags);
2682 	mddev->degraded = raid5_calc_degraded(conf);
2683 	spin_unlock_irqrestore(&conf->device_lock, flags);
2684 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685 
2686 	set_bit(Blocked, &rdev->flags);
2687 	set_mask_bits(&mddev->sb_flags, 0,
2688 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2689 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2690 		"md/raid:%s: Operation continuing on %d devices.\n",
2691 		mdname(mddev),
2692 		bdevname(rdev->bdev, b),
2693 		mdname(mddev),
2694 		conf->raid_disks - mddev->degraded);
2695 	r5c_update_on_rdev_error(mddev, rdev);
2696 }
2697 
2698 /*
2699  * Input: a 'big' sector number,
2700  * Output: index of the data and parity disk, and the sector # in them.
2701  */
2702 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2703 			      int previous, int *dd_idx,
2704 			      struct stripe_head *sh)
2705 {
2706 	sector_t stripe, stripe2;
2707 	sector_t chunk_number;
2708 	unsigned int chunk_offset;
2709 	int pd_idx, qd_idx;
2710 	int ddf_layout = 0;
2711 	sector_t new_sector;
2712 	int algorithm = previous ? conf->prev_algo
2713 				 : conf->algorithm;
2714 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2715 					 : conf->chunk_sectors;
2716 	int raid_disks = previous ? conf->previous_raid_disks
2717 				  : conf->raid_disks;
2718 	int data_disks = raid_disks - conf->max_degraded;
2719 
2720 	/* First compute the information on this sector */
2721 
2722 	/*
2723 	 * Compute the chunk number and the sector offset inside the chunk
2724 	 */
2725 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2726 	chunk_number = r_sector;
2727 
2728 	/*
2729 	 * Compute the stripe number
2730 	 */
2731 	stripe = chunk_number;
2732 	*dd_idx = sector_div(stripe, data_disks);
2733 	stripe2 = stripe;
2734 	/*
2735 	 * Select the parity disk based on the user selected algorithm.
2736 	 */
2737 	pd_idx = qd_idx = -1;
2738 	switch(conf->level) {
2739 	case 4:
2740 		pd_idx = data_disks;
2741 		break;
2742 	case 5:
2743 		switch (algorithm) {
2744 		case ALGORITHM_LEFT_ASYMMETRIC:
2745 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2746 			if (*dd_idx >= pd_idx)
2747 				(*dd_idx)++;
2748 			break;
2749 		case ALGORITHM_RIGHT_ASYMMETRIC:
2750 			pd_idx = sector_div(stripe2, raid_disks);
2751 			if (*dd_idx >= pd_idx)
2752 				(*dd_idx)++;
2753 			break;
2754 		case ALGORITHM_LEFT_SYMMETRIC:
2755 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2756 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2757 			break;
2758 		case ALGORITHM_RIGHT_SYMMETRIC:
2759 			pd_idx = sector_div(stripe2, raid_disks);
2760 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2761 			break;
2762 		case ALGORITHM_PARITY_0:
2763 			pd_idx = 0;
2764 			(*dd_idx)++;
2765 			break;
2766 		case ALGORITHM_PARITY_N:
2767 			pd_idx = data_disks;
2768 			break;
2769 		default:
2770 			BUG();
2771 		}
2772 		break;
2773 	case 6:
2774 
2775 		switch (algorithm) {
2776 		case ALGORITHM_LEFT_ASYMMETRIC:
2777 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2778 			qd_idx = pd_idx + 1;
2779 			if (pd_idx == raid_disks-1) {
2780 				(*dd_idx)++;	/* Q D D D P */
2781 				qd_idx = 0;
2782 			} else if (*dd_idx >= pd_idx)
2783 				(*dd_idx) += 2; /* D D P Q D */
2784 			break;
2785 		case ALGORITHM_RIGHT_ASYMMETRIC:
2786 			pd_idx = sector_div(stripe2, raid_disks);
2787 			qd_idx = pd_idx + 1;
2788 			if (pd_idx == raid_disks-1) {
2789 				(*dd_idx)++;	/* Q D D D P */
2790 				qd_idx = 0;
2791 			} else if (*dd_idx >= pd_idx)
2792 				(*dd_idx) += 2; /* D D P Q D */
2793 			break;
2794 		case ALGORITHM_LEFT_SYMMETRIC:
2795 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2796 			qd_idx = (pd_idx + 1) % raid_disks;
2797 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2798 			break;
2799 		case ALGORITHM_RIGHT_SYMMETRIC:
2800 			pd_idx = sector_div(stripe2, raid_disks);
2801 			qd_idx = (pd_idx + 1) % raid_disks;
2802 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2803 			break;
2804 
2805 		case ALGORITHM_PARITY_0:
2806 			pd_idx = 0;
2807 			qd_idx = 1;
2808 			(*dd_idx) += 2;
2809 			break;
2810 		case ALGORITHM_PARITY_N:
2811 			pd_idx = data_disks;
2812 			qd_idx = data_disks + 1;
2813 			break;
2814 
2815 		case ALGORITHM_ROTATING_ZERO_RESTART:
2816 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2817 			 * of blocks for computing Q is different.
2818 			 */
2819 			pd_idx = sector_div(stripe2, raid_disks);
2820 			qd_idx = pd_idx + 1;
2821 			if (pd_idx == raid_disks-1) {
2822 				(*dd_idx)++;	/* Q D D D P */
2823 				qd_idx = 0;
2824 			} else if (*dd_idx >= pd_idx)
2825 				(*dd_idx) += 2; /* D D P Q D */
2826 			ddf_layout = 1;
2827 			break;
2828 
2829 		case ALGORITHM_ROTATING_N_RESTART:
2830 			/* Same a left_asymmetric, by first stripe is
2831 			 * D D D P Q  rather than
2832 			 * Q D D D P
2833 			 */
2834 			stripe2 += 1;
2835 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2836 			qd_idx = pd_idx + 1;
2837 			if (pd_idx == raid_disks-1) {
2838 				(*dd_idx)++;	/* Q D D D P */
2839 				qd_idx = 0;
2840 			} else if (*dd_idx >= pd_idx)
2841 				(*dd_idx) += 2; /* D D P Q D */
2842 			ddf_layout = 1;
2843 			break;
2844 
2845 		case ALGORITHM_ROTATING_N_CONTINUE:
2846 			/* Same as left_symmetric but Q is before P */
2847 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2848 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2849 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2850 			ddf_layout = 1;
2851 			break;
2852 
2853 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2854 			/* RAID5 left_asymmetric, with Q on last device */
2855 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2856 			if (*dd_idx >= pd_idx)
2857 				(*dd_idx)++;
2858 			qd_idx = raid_disks - 1;
2859 			break;
2860 
2861 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2862 			pd_idx = sector_div(stripe2, raid_disks-1);
2863 			if (*dd_idx >= pd_idx)
2864 				(*dd_idx)++;
2865 			qd_idx = raid_disks - 1;
2866 			break;
2867 
2868 		case ALGORITHM_LEFT_SYMMETRIC_6:
2869 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2870 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2871 			qd_idx = raid_disks - 1;
2872 			break;
2873 
2874 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2875 			pd_idx = sector_div(stripe2, raid_disks-1);
2876 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2877 			qd_idx = raid_disks - 1;
2878 			break;
2879 
2880 		case ALGORITHM_PARITY_0_6:
2881 			pd_idx = 0;
2882 			(*dd_idx)++;
2883 			qd_idx = raid_disks - 1;
2884 			break;
2885 
2886 		default:
2887 			BUG();
2888 		}
2889 		break;
2890 	}
2891 
2892 	if (sh) {
2893 		sh->pd_idx = pd_idx;
2894 		sh->qd_idx = qd_idx;
2895 		sh->ddf_layout = ddf_layout;
2896 	}
2897 	/*
2898 	 * Finally, compute the new sector number
2899 	 */
2900 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2901 	return new_sector;
2902 }
2903 
2904 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2905 {
2906 	struct r5conf *conf = sh->raid_conf;
2907 	int raid_disks = sh->disks;
2908 	int data_disks = raid_disks - conf->max_degraded;
2909 	sector_t new_sector = sh->sector, check;
2910 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2911 					 : conf->chunk_sectors;
2912 	int algorithm = previous ? conf->prev_algo
2913 				 : conf->algorithm;
2914 	sector_t stripe;
2915 	int chunk_offset;
2916 	sector_t chunk_number;
2917 	int dummy1, dd_idx = i;
2918 	sector_t r_sector;
2919 	struct stripe_head sh2;
2920 
2921 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2922 	stripe = new_sector;
2923 
2924 	if (i == sh->pd_idx)
2925 		return 0;
2926 	switch(conf->level) {
2927 	case 4: break;
2928 	case 5:
2929 		switch (algorithm) {
2930 		case ALGORITHM_LEFT_ASYMMETRIC:
2931 		case ALGORITHM_RIGHT_ASYMMETRIC:
2932 			if (i > sh->pd_idx)
2933 				i--;
2934 			break;
2935 		case ALGORITHM_LEFT_SYMMETRIC:
2936 		case ALGORITHM_RIGHT_SYMMETRIC:
2937 			if (i < sh->pd_idx)
2938 				i += raid_disks;
2939 			i -= (sh->pd_idx + 1);
2940 			break;
2941 		case ALGORITHM_PARITY_0:
2942 			i -= 1;
2943 			break;
2944 		case ALGORITHM_PARITY_N:
2945 			break;
2946 		default:
2947 			BUG();
2948 		}
2949 		break;
2950 	case 6:
2951 		if (i == sh->qd_idx)
2952 			return 0; /* It is the Q disk */
2953 		switch (algorithm) {
2954 		case ALGORITHM_LEFT_ASYMMETRIC:
2955 		case ALGORITHM_RIGHT_ASYMMETRIC:
2956 		case ALGORITHM_ROTATING_ZERO_RESTART:
2957 		case ALGORITHM_ROTATING_N_RESTART:
2958 			if (sh->pd_idx == raid_disks-1)
2959 				i--;	/* Q D D D P */
2960 			else if (i > sh->pd_idx)
2961 				i -= 2; /* D D P Q D */
2962 			break;
2963 		case ALGORITHM_LEFT_SYMMETRIC:
2964 		case ALGORITHM_RIGHT_SYMMETRIC:
2965 			if (sh->pd_idx == raid_disks-1)
2966 				i--; /* Q D D D P */
2967 			else {
2968 				/* D D P Q D */
2969 				if (i < sh->pd_idx)
2970 					i += raid_disks;
2971 				i -= (sh->pd_idx + 2);
2972 			}
2973 			break;
2974 		case ALGORITHM_PARITY_0:
2975 			i -= 2;
2976 			break;
2977 		case ALGORITHM_PARITY_N:
2978 			break;
2979 		case ALGORITHM_ROTATING_N_CONTINUE:
2980 			/* Like left_symmetric, but P is before Q */
2981 			if (sh->pd_idx == 0)
2982 				i--;	/* P D D D Q */
2983 			else {
2984 				/* D D Q P D */
2985 				if (i < sh->pd_idx)
2986 					i += raid_disks;
2987 				i -= (sh->pd_idx + 1);
2988 			}
2989 			break;
2990 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2991 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2992 			if (i > sh->pd_idx)
2993 				i--;
2994 			break;
2995 		case ALGORITHM_LEFT_SYMMETRIC_6:
2996 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2997 			if (i < sh->pd_idx)
2998 				i += data_disks + 1;
2999 			i -= (sh->pd_idx + 1);
3000 			break;
3001 		case ALGORITHM_PARITY_0_6:
3002 			i -= 1;
3003 			break;
3004 		default:
3005 			BUG();
3006 		}
3007 		break;
3008 	}
3009 
3010 	chunk_number = stripe * data_disks + i;
3011 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3012 
3013 	check = raid5_compute_sector(conf, r_sector,
3014 				     previous, &dummy1, &sh2);
3015 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3016 		|| sh2.qd_idx != sh->qd_idx) {
3017 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3018 			mdname(conf->mddev));
3019 		return 0;
3020 	}
3021 	return r_sector;
3022 }
3023 
3024 /*
3025  * There are cases where we want handle_stripe_dirtying() and
3026  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3027  *
3028  * This function checks whether we want to delay the towrite. Specifically,
3029  * we delay the towrite when:
3030  *
3031  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3032  *      stripe has data in journal (for other devices).
3033  *
3034  *      In this case, when reading data for the non-overwrite dev, it is
3035  *      necessary to handle complex rmw of write back cache (prexor with
3036  *      orig_page, and xor with page). To keep read path simple, we would
3037  *      like to flush data in journal to RAID disks first, so complex rmw
3038  *      is handled in the write patch (handle_stripe_dirtying).
3039  *
3040  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3041  *
3042  *      It is important to be able to flush all stripes in raid5-cache.
3043  *      Therefore, we need reserve some space on the journal device for
3044  *      these flushes. If flush operation includes pending writes to the
3045  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3046  *      for the flush out. If we exclude these pending writes from flush
3047  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3048  *      Therefore, excluding pending writes in these cases enables more
3049  *      efficient use of the journal device.
3050  *
3051  *      Note: To make sure the stripe makes progress, we only delay
3052  *      towrite for stripes with data already in journal (injournal > 0).
3053  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3054  *      no_space_stripes list.
3055  *
3056  *   3. during journal failure
3057  *      In journal failure, we try to flush all cached data to raid disks
3058  *      based on data in stripe cache. The array is read-only to upper
3059  *      layers, so we would skip all pending writes.
3060  *
3061  */
3062 static inline bool delay_towrite(struct r5conf *conf,
3063 				 struct r5dev *dev,
3064 				 struct stripe_head_state *s)
3065 {
3066 	/* case 1 above */
3067 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3068 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3069 		return true;
3070 	/* case 2 above */
3071 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3072 	    s->injournal > 0)
3073 		return true;
3074 	/* case 3 above */
3075 	if (s->log_failed && s->injournal)
3076 		return true;
3077 	return false;
3078 }
3079 
3080 static void
3081 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3082 			 int rcw, int expand)
3083 {
3084 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3085 	struct r5conf *conf = sh->raid_conf;
3086 	int level = conf->level;
3087 
3088 	if (rcw) {
3089 		/*
3090 		 * In some cases, handle_stripe_dirtying initially decided to
3091 		 * run rmw and allocates extra page for prexor. However, rcw is
3092 		 * cheaper later on. We need to free the extra page now,
3093 		 * because we won't be able to do that in ops_complete_prexor().
3094 		 */
3095 		r5c_release_extra_page(sh);
3096 
3097 		for (i = disks; i--; ) {
3098 			struct r5dev *dev = &sh->dev[i];
3099 
3100 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3101 				set_bit(R5_LOCKED, &dev->flags);
3102 				set_bit(R5_Wantdrain, &dev->flags);
3103 				if (!expand)
3104 					clear_bit(R5_UPTODATE, &dev->flags);
3105 				s->locked++;
3106 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3107 				set_bit(R5_LOCKED, &dev->flags);
3108 				s->locked++;
3109 			}
3110 		}
3111 		/* if we are not expanding this is a proper write request, and
3112 		 * there will be bios with new data to be drained into the
3113 		 * stripe cache
3114 		 */
3115 		if (!expand) {
3116 			if (!s->locked)
3117 				/* False alarm, nothing to do */
3118 				return;
3119 			sh->reconstruct_state = reconstruct_state_drain_run;
3120 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3121 		} else
3122 			sh->reconstruct_state = reconstruct_state_run;
3123 
3124 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3125 
3126 		if (s->locked + conf->max_degraded == disks)
3127 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3128 				atomic_inc(&conf->pending_full_writes);
3129 	} else {
3130 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3131 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3132 		BUG_ON(level == 6 &&
3133 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3134 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3135 
3136 		for (i = disks; i--; ) {
3137 			struct r5dev *dev = &sh->dev[i];
3138 			if (i == pd_idx || i == qd_idx)
3139 				continue;
3140 
3141 			if (dev->towrite &&
3142 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3143 			     test_bit(R5_Wantcompute, &dev->flags))) {
3144 				set_bit(R5_Wantdrain, &dev->flags);
3145 				set_bit(R5_LOCKED, &dev->flags);
3146 				clear_bit(R5_UPTODATE, &dev->flags);
3147 				s->locked++;
3148 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3149 				set_bit(R5_LOCKED, &dev->flags);
3150 				s->locked++;
3151 			}
3152 		}
3153 		if (!s->locked)
3154 			/* False alarm - nothing to do */
3155 			return;
3156 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3157 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3158 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3159 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3160 	}
3161 
3162 	/* keep the parity disk(s) locked while asynchronous operations
3163 	 * are in flight
3164 	 */
3165 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3166 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3167 	s->locked++;
3168 
3169 	if (level == 6) {
3170 		int qd_idx = sh->qd_idx;
3171 		struct r5dev *dev = &sh->dev[qd_idx];
3172 
3173 		set_bit(R5_LOCKED, &dev->flags);
3174 		clear_bit(R5_UPTODATE, &dev->flags);
3175 		s->locked++;
3176 	}
3177 
3178 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3179 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3180 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3181 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3182 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3183 
3184 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3185 		__func__, (unsigned long long)sh->sector,
3186 		s->locked, s->ops_request);
3187 }
3188 
3189 /*
3190  * Each stripe/dev can have one or more bion attached.
3191  * toread/towrite point to the first in a chain.
3192  * The bi_next chain must be in order.
3193  */
3194 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3195 			  int forwrite, int previous)
3196 {
3197 	struct bio **bip;
3198 	struct r5conf *conf = sh->raid_conf;
3199 	int firstwrite=0;
3200 
3201 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3202 		(unsigned long long)bi->bi_iter.bi_sector,
3203 		(unsigned long long)sh->sector);
3204 
3205 	spin_lock_irq(&sh->stripe_lock);
3206 	/* Don't allow new IO added to stripes in batch list */
3207 	if (sh->batch_head)
3208 		goto overlap;
3209 	if (forwrite) {
3210 		bip = &sh->dev[dd_idx].towrite;
3211 		if (*bip == NULL)
3212 			firstwrite = 1;
3213 	} else
3214 		bip = &sh->dev[dd_idx].toread;
3215 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3216 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3217 			goto overlap;
3218 		bip = & (*bip)->bi_next;
3219 	}
3220 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3221 		goto overlap;
3222 
3223 	if (forwrite && raid5_has_ppl(conf)) {
3224 		/*
3225 		 * With PPL only writes to consecutive data chunks within a
3226 		 * stripe are allowed because for a single stripe_head we can
3227 		 * only have one PPL entry at a time, which describes one data
3228 		 * range. Not really an overlap, but wait_for_overlap can be
3229 		 * used to handle this.
3230 		 */
3231 		sector_t sector;
3232 		sector_t first = 0;
3233 		sector_t last = 0;
3234 		int count = 0;
3235 		int i;
3236 
3237 		for (i = 0; i < sh->disks; i++) {
3238 			if (i != sh->pd_idx &&
3239 			    (i == dd_idx || sh->dev[i].towrite)) {
3240 				sector = sh->dev[i].sector;
3241 				if (count == 0 || sector < first)
3242 					first = sector;
3243 				if (sector > last)
3244 					last = sector;
3245 				count++;
3246 			}
3247 		}
3248 
3249 		if (first + conf->chunk_sectors * (count - 1) != last)
3250 			goto overlap;
3251 	}
3252 
3253 	if (!forwrite || previous)
3254 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3255 
3256 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3257 	if (*bip)
3258 		bi->bi_next = *bip;
3259 	*bip = bi;
3260 	bio_inc_remaining(bi);
3261 	md_write_inc(conf->mddev, bi);
3262 
3263 	if (forwrite) {
3264 		/* check if page is covered */
3265 		sector_t sector = sh->dev[dd_idx].sector;
3266 		for (bi=sh->dev[dd_idx].towrite;
3267 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3268 			     bi && bi->bi_iter.bi_sector <= sector;
3269 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3270 			if (bio_end_sector(bi) >= sector)
3271 				sector = bio_end_sector(bi);
3272 		}
3273 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3274 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3275 				sh->overwrite_disks++;
3276 	}
3277 
3278 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3279 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3280 		(unsigned long long)sh->sector, dd_idx);
3281 
3282 	if (conf->mddev->bitmap && firstwrite) {
3283 		/* Cannot hold spinlock over bitmap_startwrite,
3284 		 * but must ensure this isn't added to a batch until
3285 		 * we have added to the bitmap and set bm_seq.
3286 		 * So set STRIPE_BITMAP_PENDING to prevent
3287 		 * batching.
3288 		 * If multiple add_stripe_bio() calls race here they
3289 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3290 		 * to complete "bitmap_startwrite" gets to set
3291 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3292 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3293 		 * any more.
3294 		 */
3295 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3296 		spin_unlock_irq(&sh->stripe_lock);
3297 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3298 				  STRIPE_SECTORS, 0);
3299 		spin_lock_irq(&sh->stripe_lock);
3300 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3301 		if (!sh->batch_head) {
3302 			sh->bm_seq = conf->seq_flush+1;
3303 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3304 		}
3305 	}
3306 	spin_unlock_irq(&sh->stripe_lock);
3307 
3308 	if (stripe_can_batch(sh))
3309 		stripe_add_to_batch_list(conf, sh);
3310 	return 1;
3311 
3312  overlap:
3313 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3314 	spin_unlock_irq(&sh->stripe_lock);
3315 	return 0;
3316 }
3317 
3318 static void end_reshape(struct r5conf *conf);
3319 
3320 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3321 			    struct stripe_head *sh)
3322 {
3323 	int sectors_per_chunk =
3324 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3325 	int dd_idx;
3326 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3327 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3328 
3329 	raid5_compute_sector(conf,
3330 			     stripe * (disks - conf->max_degraded)
3331 			     *sectors_per_chunk + chunk_offset,
3332 			     previous,
3333 			     &dd_idx, sh);
3334 }
3335 
3336 static void
3337 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3338 		     struct stripe_head_state *s, int disks)
3339 {
3340 	int i;
3341 	BUG_ON(sh->batch_head);
3342 	for (i = disks; i--; ) {
3343 		struct bio *bi;
3344 		int bitmap_end = 0;
3345 
3346 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3347 			struct md_rdev *rdev;
3348 			rcu_read_lock();
3349 			rdev = rcu_dereference(conf->disks[i].rdev);
3350 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3351 			    !test_bit(Faulty, &rdev->flags))
3352 				atomic_inc(&rdev->nr_pending);
3353 			else
3354 				rdev = NULL;
3355 			rcu_read_unlock();
3356 			if (rdev) {
3357 				if (!rdev_set_badblocks(
3358 					    rdev,
3359 					    sh->sector,
3360 					    STRIPE_SECTORS, 0))
3361 					md_error(conf->mddev, rdev);
3362 				rdev_dec_pending(rdev, conf->mddev);
3363 			}
3364 		}
3365 		spin_lock_irq(&sh->stripe_lock);
3366 		/* fail all writes first */
3367 		bi = sh->dev[i].towrite;
3368 		sh->dev[i].towrite = NULL;
3369 		sh->overwrite_disks = 0;
3370 		spin_unlock_irq(&sh->stripe_lock);
3371 		if (bi)
3372 			bitmap_end = 1;
3373 
3374 		log_stripe_write_finished(sh);
3375 
3376 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3377 			wake_up(&conf->wait_for_overlap);
3378 
3379 		while (bi && bi->bi_iter.bi_sector <
3380 			sh->dev[i].sector + STRIPE_SECTORS) {
3381 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3382 
3383 			md_write_end(conf->mddev);
3384 			bio_io_error(bi);
3385 			bi = nextbi;
3386 		}
3387 		if (bitmap_end)
3388 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3389 				STRIPE_SECTORS, 0, 0);
3390 		bitmap_end = 0;
3391 		/* and fail all 'written' */
3392 		bi = sh->dev[i].written;
3393 		sh->dev[i].written = NULL;
3394 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3395 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3396 			sh->dev[i].page = sh->dev[i].orig_page;
3397 		}
3398 
3399 		if (bi) bitmap_end = 1;
3400 		while (bi && bi->bi_iter.bi_sector <
3401 		       sh->dev[i].sector + STRIPE_SECTORS) {
3402 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3403 
3404 			md_write_end(conf->mddev);
3405 			bio_io_error(bi);
3406 			bi = bi2;
3407 		}
3408 
3409 		/* fail any reads if this device is non-operational and
3410 		 * the data has not reached the cache yet.
3411 		 */
3412 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3413 		    s->failed > conf->max_degraded &&
3414 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3415 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3416 			spin_lock_irq(&sh->stripe_lock);
3417 			bi = sh->dev[i].toread;
3418 			sh->dev[i].toread = NULL;
3419 			spin_unlock_irq(&sh->stripe_lock);
3420 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3421 				wake_up(&conf->wait_for_overlap);
3422 			if (bi)
3423 				s->to_read--;
3424 			while (bi && bi->bi_iter.bi_sector <
3425 			       sh->dev[i].sector + STRIPE_SECTORS) {
3426 				struct bio *nextbi =
3427 					r5_next_bio(bi, sh->dev[i].sector);
3428 
3429 				bio_io_error(bi);
3430 				bi = nextbi;
3431 			}
3432 		}
3433 		if (bitmap_end)
3434 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3435 					STRIPE_SECTORS, 0, 0);
3436 		/* If we were in the middle of a write the parity block might
3437 		 * still be locked - so just clear all R5_LOCKED flags
3438 		 */
3439 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3440 	}
3441 	s->to_write = 0;
3442 	s->written = 0;
3443 
3444 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3445 		if (atomic_dec_and_test(&conf->pending_full_writes))
3446 			md_wakeup_thread(conf->mddev->thread);
3447 }
3448 
3449 static void
3450 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3451 		   struct stripe_head_state *s)
3452 {
3453 	int abort = 0;
3454 	int i;
3455 
3456 	BUG_ON(sh->batch_head);
3457 	clear_bit(STRIPE_SYNCING, &sh->state);
3458 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3459 		wake_up(&conf->wait_for_overlap);
3460 	s->syncing = 0;
3461 	s->replacing = 0;
3462 	/* There is nothing more to do for sync/check/repair.
3463 	 * Don't even need to abort as that is handled elsewhere
3464 	 * if needed, and not always wanted e.g. if there is a known
3465 	 * bad block here.
3466 	 * For recover/replace we need to record a bad block on all
3467 	 * non-sync devices, or abort the recovery
3468 	 */
3469 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3470 		/* During recovery devices cannot be removed, so
3471 		 * locking and refcounting of rdevs is not needed
3472 		 */
3473 		rcu_read_lock();
3474 		for (i = 0; i < conf->raid_disks; i++) {
3475 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3476 			if (rdev
3477 			    && !test_bit(Faulty, &rdev->flags)
3478 			    && !test_bit(In_sync, &rdev->flags)
3479 			    && !rdev_set_badblocks(rdev, sh->sector,
3480 						   STRIPE_SECTORS, 0))
3481 				abort = 1;
3482 			rdev = rcu_dereference(conf->disks[i].replacement);
3483 			if (rdev
3484 			    && !test_bit(Faulty, &rdev->flags)
3485 			    && !test_bit(In_sync, &rdev->flags)
3486 			    && !rdev_set_badblocks(rdev, sh->sector,
3487 						   STRIPE_SECTORS, 0))
3488 				abort = 1;
3489 		}
3490 		rcu_read_unlock();
3491 		if (abort)
3492 			conf->recovery_disabled =
3493 				conf->mddev->recovery_disabled;
3494 	}
3495 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3496 }
3497 
3498 static int want_replace(struct stripe_head *sh, int disk_idx)
3499 {
3500 	struct md_rdev *rdev;
3501 	int rv = 0;
3502 
3503 	rcu_read_lock();
3504 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3505 	if (rdev
3506 	    && !test_bit(Faulty, &rdev->flags)
3507 	    && !test_bit(In_sync, &rdev->flags)
3508 	    && (rdev->recovery_offset <= sh->sector
3509 		|| rdev->mddev->recovery_cp <= sh->sector))
3510 		rv = 1;
3511 	rcu_read_unlock();
3512 	return rv;
3513 }
3514 
3515 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3516 			   int disk_idx, int disks)
3517 {
3518 	struct r5dev *dev = &sh->dev[disk_idx];
3519 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3520 				  &sh->dev[s->failed_num[1]] };
3521 	int i;
3522 
3523 
3524 	if (test_bit(R5_LOCKED, &dev->flags) ||
3525 	    test_bit(R5_UPTODATE, &dev->flags))
3526 		/* No point reading this as we already have it or have
3527 		 * decided to get it.
3528 		 */
3529 		return 0;
3530 
3531 	if (dev->toread ||
3532 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3533 		/* We need this block to directly satisfy a request */
3534 		return 1;
3535 
3536 	if (s->syncing || s->expanding ||
3537 	    (s->replacing && want_replace(sh, disk_idx)))
3538 		/* When syncing, or expanding we read everything.
3539 		 * When replacing, we need the replaced block.
3540 		 */
3541 		return 1;
3542 
3543 	if ((s->failed >= 1 && fdev[0]->toread) ||
3544 	    (s->failed >= 2 && fdev[1]->toread))
3545 		/* If we want to read from a failed device, then
3546 		 * we need to actually read every other device.
3547 		 */
3548 		return 1;
3549 
3550 	/* Sometimes neither read-modify-write nor reconstruct-write
3551 	 * cycles can work.  In those cases we read every block we
3552 	 * can.  Then the parity-update is certain to have enough to
3553 	 * work with.
3554 	 * This can only be a problem when we need to write something,
3555 	 * and some device has failed.  If either of those tests
3556 	 * fail we need look no further.
3557 	 */
3558 	if (!s->failed || !s->to_write)
3559 		return 0;
3560 
3561 	if (test_bit(R5_Insync, &dev->flags) &&
3562 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3563 		/* Pre-reads at not permitted until after short delay
3564 		 * to gather multiple requests.  However if this
3565 		 * device is no Insync, the block could only be computed
3566 		 * and there is no need to delay that.
3567 		 */
3568 		return 0;
3569 
3570 	for (i = 0; i < s->failed && i < 2; i++) {
3571 		if (fdev[i]->towrite &&
3572 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3573 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3574 			/* If we have a partial write to a failed
3575 			 * device, then we will need to reconstruct
3576 			 * the content of that device, so all other
3577 			 * devices must be read.
3578 			 */
3579 			return 1;
3580 	}
3581 
3582 	/* If we are forced to do a reconstruct-write, either because
3583 	 * the current RAID6 implementation only supports that, or
3584 	 * because parity cannot be trusted and we are currently
3585 	 * recovering it, there is extra need to be careful.
3586 	 * If one of the devices that we would need to read, because
3587 	 * it is not being overwritten (and maybe not written at all)
3588 	 * is missing/faulty, then we need to read everything we can.
3589 	 */
3590 	if (sh->raid_conf->level != 6 &&
3591 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3592 		/* reconstruct-write isn't being forced */
3593 		return 0;
3594 	for (i = 0; i < s->failed && i < 2; i++) {
3595 		if (s->failed_num[i] != sh->pd_idx &&
3596 		    s->failed_num[i] != sh->qd_idx &&
3597 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3598 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3599 			return 1;
3600 	}
3601 
3602 	return 0;
3603 }
3604 
3605 /* fetch_block - checks the given member device to see if its data needs
3606  * to be read or computed to satisfy a request.
3607  *
3608  * Returns 1 when no more member devices need to be checked, otherwise returns
3609  * 0 to tell the loop in handle_stripe_fill to continue
3610  */
3611 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3612 		       int disk_idx, int disks)
3613 {
3614 	struct r5dev *dev = &sh->dev[disk_idx];
3615 
3616 	/* is the data in this block needed, and can we get it? */
3617 	if (need_this_block(sh, s, disk_idx, disks)) {
3618 		/* we would like to get this block, possibly by computing it,
3619 		 * otherwise read it if the backing disk is insync
3620 		 */
3621 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3622 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3623 		BUG_ON(sh->batch_head);
3624 
3625 		/*
3626 		 * In the raid6 case if the only non-uptodate disk is P
3627 		 * then we already trusted P to compute the other failed
3628 		 * drives. It is safe to compute rather than re-read P.
3629 		 * In other cases we only compute blocks from failed
3630 		 * devices, otherwise check/repair might fail to detect
3631 		 * a real inconsistency.
3632 		 */
3633 
3634 		if ((s->uptodate == disks - 1) &&
3635 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3636 		    (s->failed && (disk_idx == s->failed_num[0] ||
3637 				   disk_idx == s->failed_num[1])))) {
3638 			/* have disk failed, and we're requested to fetch it;
3639 			 * do compute it
3640 			 */
3641 			pr_debug("Computing stripe %llu block %d\n",
3642 			       (unsigned long long)sh->sector, disk_idx);
3643 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3644 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3645 			set_bit(R5_Wantcompute, &dev->flags);
3646 			sh->ops.target = disk_idx;
3647 			sh->ops.target2 = -1; /* no 2nd target */
3648 			s->req_compute = 1;
3649 			/* Careful: from this point on 'uptodate' is in the eye
3650 			 * of raid_run_ops which services 'compute' operations
3651 			 * before writes. R5_Wantcompute flags a block that will
3652 			 * be R5_UPTODATE by the time it is needed for a
3653 			 * subsequent operation.
3654 			 */
3655 			s->uptodate++;
3656 			return 1;
3657 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3658 			/* Computing 2-failure is *very* expensive; only
3659 			 * do it if failed >= 2
3660 			 */
3661 			int other;
3662 			for (other = disks; other--; ) {
3663 				if (other == disk_idx)
3664 					continue;
3665 				if (!test_bit(R5_UPTODATE,
3666 				      &sh->dev[other].flags))
3667 					break;
3668 			}
3669 			BUG_ON(other < 0);
3670 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3671 			       (unsigned long long)sh->sector,
3672 			       disk_idx, other);
3673 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3674 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3675 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3676 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3677 			sh->ops.target = disk_idx;
3678 			sh->ops.target2 = other;
3679 			s->uptodate += 2;
3680 			s->req_compute = 1;
3681 			return 1;
3682 		} else if (test_bit(R5_Insync, &dev->flags)) {
3683 			set_bit(R5_LOCKED, &dev->flags);
3684 			set_bit(R5_Wantread, &dev->flags);
3685 			s->locked++;
3686 			pr_debug("Reading block %d (sync=%d)\n",
3687 				disk_idx, s->syncing);
3688 		}
3689 	}
3690 
3691 	return 0;
3692 }
3693 
3694 /**
3695  * handle_stripe_fill - read or compute data to satisfy pending requests.
3696  */
3697 static void handle_stripe_fill(struct stripe_head *sh,
3698 			       struct stripe_head_state *s,
3699 			       int disks)
3700 {
3701 	int i;
3702 
3703 	/* look for blocks to read/compute, skip this if a compute
3704 	 * is already in flight, or if the stripe contents are in the
3705 	 * midst of changing due to a write
3706 	 */
3707 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3708 	    !sh->reconstruct_state) {
3709 
3710 		/*
3711 		 * For degraded stripe with data in journal, do not handle
3712 		 * read requests yet, instead, flush the stripe to raid
3713 		 * disks first, this avoids handling complex rmw of write
3714 		 * back cache (prexor with orig_page, and then xor with
3715 		 * page) in the read path
3716 		 */
3717 		if (s->injournal && s->failed) {
3718 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3719 				r5c_make_stripe_write_out(sh);
3720 			goto out;
3721 		}
3722 
3723 		for (i = disks; i--; )
3724 			if (fetch_block(sh, s, i, disks))
3725 				break;
3726 	}
3727 out:
3728 	set_bit(STRIPE_HANDLE, &sh->state);
3729 }
3730 
3731 static void break_stripe_batch_list(struct stripe_head *head_sh,
3732 				    unsigned long handle_flags);
3733 /* handle_stripe_clean_event
3734  * any written block on an uptodate or failed drive can be returned.
3735  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3736  * never LOCKED, so we don't need to test 'failed' directly.
3737  */
3738 static void handle_stripe_clean_event(struct r5conf *conf,
3739 	struct stripe_head *sh, int disks)
3740 {
3741 	int i;
3742 	struct r5dev *dev;
3743 	int discard_pending = 0;
3744 	struct stripe_head *head_sh = sh;
3745 	bool do_endio = false;
3746 
3747 	for (i = disks; i--; )
3748 		if (sh->dev[i].written) {
3749 			dev = &sh->dev[i];
3750 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3751 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3752 			     test_bit(R5_Discard, &dev->flags) ||
3753 			     test_bit(R5_SkipCopy, &dev->flags))) {
3754 				/* We can return any write requests */
3755 				struct bio *wbi, *wbi2;
3756 				pr_debug("Return write for disc %d\n", i);
3757 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3758 					clear_bit(R5_UPTODATE, &dev->flags);
3759 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3760 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3761 				}
3762 				do_endio = true;
3763 
3764 returnbi:
3765 				dev->page = dev->orig_page;
3766 				wbi = dev->written;
3767 				dev->written = NULL;
3768 				while (wbi && wbi->bi_iter.bi_sector <
3769 					dev->sector + STRIPE_SECTORS) {
3770 					wbi2 = r5_next_bio(wbi, dev->sector);
3771 					md_write_end(conf->mddev);
3772 					bio_endio(wbi);
3773 					wbi = wbi2;
3774 				}
3775 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3776 						STRIPE_SECTORS,
3777 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3778 						0);
3779 				if (head_sh->batch_head) {
3780 					sh = list_first_entry(&sh->batch_list,
3781 							      struct stripe_head,
3782 							      batch_list);
3783 					if (sh != head_sh) {
3784 						dev = &sh->dev[i];
3785 						goto returnbi;
3786 					}
3787 				}
3788 				sh = head_sh;
3789 				dev = &sh->dev[i];
3790 			} else if (test_bit(R5_Discard, &dev->flags))
3791 				discard_pending = 1;
3792 		}
3793 
3794 	log_stripe_write_finished(sh);
3795 
3796 	if (!discard_pending &&
3797 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3798 		int hash;
3799 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3800 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3801 		if (sh->qd_idx >= 0) {
3802 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3803 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3804 		}
3805 		/* now that discard is done we can proceed with any sync */
3806 		clear_bit(STRIPE_DISCARD, &sh->state);
3807 		/*
3808 		 * SCSI discard will change some bio fields and the stripe has
3809 		 * no updated data, so remove it from hash list and the stripe
3810 		 * will be reinitialized
3811 		 */
3812 unhash:
3813 		hash = sh->hash_lock_index;
3814 		spin_lock_irq(conf->hash_locks + hash);
3815 		remove_hash(sh);
3816 		spin_unlock_irq(conf->hash_locks + hash);
3817 		if (head_sh->batch_head) {
3818 			sh = list_first_entry(&sh->batch_list,
3819 					      struct stripe_head, batch_list);
3820 			if (sh != head_sh)
3821 					goto unhash;
3822 		}
3823 		sh = head_sh;
3824 
3825 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3826 			set_bit(STRIPE_HANDLE, &sh->state);
3827 
3828 	}
3829 
3830 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3831 		if (atomic_dec_and_test(&conf->pending_full_writes))
3832 			md_wakeup_thread(conf->mddev->thread);
3833 
3834 	if (head_sh->batch_head && do_endio)
3835 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3836 }
3837 
3838 /*
3839  * For RMW in write back cache, we need extra page in prexor to store the
3840  * old data. This page is stored in dev->orig_page.
3841  *
3842  * This function checks whether we have data for prexor. The exact logic
3843  * is:
3844  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3845  */
3846 static inline bool uptodate_for_rmw(struct r5dev *dev)
3847 {
3848 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3849 		(!test_bit(R5_InJournal, &dev->flags) ||
3850 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3851 }
3852 
3853 static int handle_stripe_dirtying(struct r5conf *conf,
3854 				  struct stripe_head *sh,
3855 				  struct stripe_head_state *s,
3856 				  int disks)
3857 {
3858 	int rmw = 0, rcw = 0, i;
3859 	sector_t recovery_cp = conf->mddev->recovery_cp;
3860 
3861 	/* Check whether resync is now happening or should start.
3862 	 * If yes, then the array is dirty (after unclean shutdown or
3863 	 * initial creation), so parity in some stripes might be inconsistent.
3864 	 * In this case, we need to always do reconstruct-write, to ensure
3865 	 * that in case of drive failure or read-error correction, we
3866 	 * generate correct data from the parity.
3867 	 */
3868 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3869 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3870 	     s->failed == 0)) {
3871 		/* Calculate the real rcw later - for now make it
3872 		 * look like rcw is cheaper
3873 		 */
3874 		rcw = 1; rmw = 2;
3875 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3876 			 conf->rmw_level, (unsigned long long)recovery_cp,
3877 			 (unsigned long long)sh->sector);
3878 	} else for (i = disks; i--; ) {
3879 		/* would I have to read this buffer for read_modify_write */
3880 		struct r5dev *dev = &sh->dev[i];
3881 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3882 		     i == sh->pd_idx || i == sh->qd_idx ||
3883 		     test_bit(R5_InJournal, &dev->flags)) &&
3884 		    !test_bit(R5_LOCKED, &dev->flags) &&
3885 		    !(uptodate_for_rmw(dev) ||
3886 		      test_bit(R5_Wantcompute, &dev->flags))) {
3887 			if (test_bit(R5_Insync, &dev->flags))
3888 				rmw++;
3889 			else
3890 				rmw += 2*disks;  /* cannot read it */
3891 		}
3892 		/* Would I have to read this buffer for reconstruct_write */
3893 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3894 		    i != sh->pd_idx && i != sh->qd_idx &&
3895 		    !test_bit(R5_LOCKED, &dev->flags) &&
3896 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3897 		      test_bit(R5_Wantcompute, &dev->flags))) {
3898 			if (test_bit(R5_Insync, &dev->flags))
3899 				rcw++;
3900 			else
3901 				rcw += 2*disks;
3902 		}
3903 	}
3904 
3905 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3906 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3907 	set_bit(STRIPE_HANDLE, &sh->state);
3908 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3909 		/* prefer read-modify-write, but need to get some data */
3910 		if (conf->mddev->queue)
3911 			blk_add_trace_msg(conf->mddev->queue,
3912 					  "raid5 rmw %llu %d",
3913 					  (unsigned long long)sh->sector, rmw);
3914 		for (i = disks; i--; ) {
3915 			struct r5dev *dev = &sh->dev[i];
3916 			if (test_bit(R5_InJournal, &dev->flags) &&
3917 			    dev->page == dev->orig_page &&
3918 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3919 				/* alloc page for prexor */
3920 				struct page *p = alloc_page(GFP_NOIO);
3921 
3922 				if (p) {
3923 					dev->orig_page = p;
3924 					continue;
3925 				}
3926 
3927 				/*
3928 				 * alloc_page() failed, try use
3929 				 * disk_info->extra_page
3930 				 */
3931 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3932 						      &conf->cache_state)) {
3933 					r5c_use_extra_page(sh);
3934 					break;
3935 				}
3936 
3937 				/* extra_page in use, add to delayed_list */
3938 				set_bit(STRIPE_DELAYED, &sh->state);
3939 				s->waiting_extra_page = 1;
3940 				return -EAGAIN;
3941 			}
3942 		}
3943 
3944 		for (i = disks; i--; ) {
3945 			struct r5dev *dev = &sh->dev[i];
3946 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3947 			     i == sh->pd_idx || i == sh->qd_idx ||
3948 			     test_bit(R5_InJournal, &dev->flags)) &&
3949 			    !test_bit(R5_LOCKED, &dev->flags) &&
3950 			    !(uptodate_for_rmw(dev) ||
3951 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3952 			    test_bit(R5_Insync, &dev->flags)) {
3953 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3954 					     &sh->state)) {
3955 					pr_debug("Read_old block %d for r-m-w\n",
3956 						 i);
3957 					set_bit(R5_LOCKED, &dev->flags);
3958 					set_bit(R5_Wantread, &dev->flags);
3959 					s->locked++;
3960 				} else {
3961 					set_bit(STRIPE_DELAYED, &sh->state);
3962 					set_bit(STRIPE_HANDLE, &sh->state);
3963 				}
3964 			}
3965 		}
3966 	}
3967 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3968 		/* want reconstruct write, but need to get some data */
3969 		int qread =0;
3970 		rcw = 0;
3971 		for (i = disks; i--; ) {
3972 			struct r5dev *dev = &sh->dev[i];
3973 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3974 			    i != sh->pd_idx && i != sh->qd_idx &&
3975 			    !test_bit(R5_LOCKED, &dev->flags) &&
3976 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3977 			      test_bit(R5_Wantcompute, &dev->flags))) {
3978 				rcw++;
3979 				if (test_bit(R5_Insync, &dev->flags) &&
3980 				    test_bit(STRIPE_PREREAD_ACTIVE,
3981 					     &sh->state)) {
3982 					pr_debug("Read_old block "
3983 						"%d for Reconstruct\n", i);
3984 					set_bit(R5_LOCKED, &dev->flags);
3985 					set_bit(R5_Wantread, &dev->flags);
3986 					s->locked++;
3987 					qread++;
3988 				} else {
3989 					set_bit(STRIPE_DELAYED, &sh->state);
3990 					set_bit(STRIPE_HANDLE, &sh->state);
3991 				}
3992 			}
3993 		}
3994 		if (rcw && conf->mddev->queue)
3995 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3996 					  (unsigned long long)sh->sector,
3997 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3998 	}
3999 
4000 	if (rcw > disks && rmw > disks &&
4001 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4002 		set_bit(STRIPE_DELAYED, &sh->state);
4003 
4004 	/* now if nothing is locked, and if we have enough data,
4005 	 * we can start a write request
4006 	 */
4007 	/* since handle_stripe can be called at any time we need to handle the
4008 	 * case where a compute block operation has been submitted and then a
4009 	 * subsequent call wants to start a write request.  raid_run_ops only
4010 	 * handles the case where compute block and reconstruct are requested
4011 	 * simultaneously.  If this is not the case then new writes need to be
4012 	 * held off until the compute completes.
4013 	 */
4014 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4015 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4016 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4017 		schedule_reconstruction(sh, s, rcw == 0, 0);
4018 	return 0;
4019 }
4020 
4021 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4022 				struct stripe_head_state *s, int disks)
4023 {
4024 	struct r5dev *dev = NULL;
4025 
4026 	BUG_ON(sh->batch_head);
4027 	set_bit(STRIPE_HANDLE, &sh->state);
4028 
4029 	switch (sh->check_state) {
4030 	case check_state_idle:
4031 		/* start a new check operation if there are no failures */
4032 		if (s->failed == 0) {
4033 			BUG_ON(s->uptodate != disks);
4034 			sh->check_state = check_state_run;
4035 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4036 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4037 			s->uptodate--;
4038 			break;
4039 		}
4040 		dev = &sh->dev[s->failed_num[0]];
4041 		/* fall through */
4042 	case check_state_compute_result:
4043 		sh->check_state = check_state_idle;
4044 		if (!dev)
4045 			dev = &sh->dev[sh->pd_idx];
4046 
4047 		/* check that a write has not made the stripe insync */
4048 		if (test_bit(STRIPE_INSYNC, &sh->state))
4049 			break;
4050 
4051 		/* either failed parity check, or recovery is happening */
4052 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4053 		BUG_ON(s->uptodate != disks);
4054 
4055 		set_bit(R5_LOCKED, &dev->flags);
4056 		s->locked++;
4057 		set_bit(R5_Wantwrite, &dev->flags);
4058 
4059 		clear_bit(STRIPE_DEGRADED, &sh->state);
4060 		set_bit(STRIPE_INSYNC, &sh->state);
4061 		break;
4062 	case check_state_run:
4063 		break; /* we will be called again upon completion */
4064 	case check_state_check_result:
4065 		sh->check_state = check_state_idle;
4066 
4067 		/* if a failure occurred during the check operation, leave
4068 		 * STRIPE_INSYNC not set and let the stripe be handled again
4069 		 */
4070 		if (s->failed)
4071 			break;
4072 
4073 		/* handle a successful check operation, if parity is correct
4074 		 * we are done.  Otherwise update the mismatch count and repair
4075 		 * parity if !MD_RECOVERY_CHECK
4076 		 */
4077 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4078 			/* parity is correct (on disc,
4079 			 * not in buffer any more)
4080 			 */
4081 			set_bit(STRIPE_INSYNC, &sh->state);
4082 		else {
4083 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4084 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4085 				/* don't try to repair!! */
4086 				set_bit(STRIPE_INSYNC, &sh->state);
4087 				pr_warn_ratelimited("%s: mismatch sector in range "
4088 						    "%llu-%llu\n", mdname(conf->mddev),
4089 						    (unsigned long long) sh->sector,
4090 						    (unsigned long long) sh->sector +
4091 						    STRIPE_SECTORS);
4092 			} else {
4093 				sh->check_state = check_state_compute_run;
4094 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4095 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4096 				set_bit(R5_Wantcompute,
4097 					&sh->dev[sh->pd_idx].flags);
4098 				sh->ops.target = sh->pd_idx;
4099 				sh->ops.target2 = -1;
4100 				s->uptodate++;
4101 			}
4102 		}
4103 		break;
4104 	case check_state_compute_run:
4105 		break;
4106 	default:
4107 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4108 		       __func__, sh->check_state,
4109 		       (unsigned long long) sh->sector);
4110 		BUG();
4111 	}
4112 }
4113 
4114 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4115 				  struct stripe_head_state *s,
4116 				  int disks)
4117 {
4118 	int pd_idx = sh->pd_idx;
4119 	int qd_idx = sh->qd_idx;
4120 	struct r5dev *dev;
4121 
4122 	BUG_ON(sh->batch_head);
4123 	set_bit(STRIPE_HANDLE, &sh->state);
4124 
4125 	BUG_ON(s->failed > 2);
4126 
4127 	/* Want to check and possibly repair P and Q.
4128 	 * However there could be one 'failed' device, in which
4129 	 * case we can only check one of them, possibly using the
4130 	 * other to generate missing data
4131 	 */
4132 
4133 	switch (sh->check_state) {
4134 	case check_state_idle:
4135 		/* start a new check operation if there are < 2 failures */
4136 		if (s->failed == s->q_failed) {
4137 			/* The only possible failed device holds Q, so it
4138 			 * makes sense to check P (If anything else were failed,
4139 			 * we would have used P to recreate it).
4140 			 */
4141 			sh->check_state = check_state_run;
4142 		}
4143 		if (!s->q_failed && s->failed < 2) {
4144 			/* Q is not failed, and we didn't use it to generate
4145 			 * anything, so it makes sense to check it
4146 			 */
4147 			if (sh->check_state == check_state_run)
4148 				sh->check_state = check_state_run_pq;
4149 			else
4150 				sh->check_state = check_state_run_q;
4151 		}
4152 
4153 		/* discard potentially stale zero_sum_result */
4154 		sh->ops.zero_sum_result = 0;
4155 
4156 		if (sh->check_state == check_state_run) {
4157 			/* async_xor_zero_sum destroys the contents of P */
4158 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4159 			s->uptodate--;
4160 		}
4161 		if (sh->check_state >= check_state_run &&
4162 		    sh->check_state <= check_state_run_pq) {
4163 			/* async_syndrome_zero_sum preserves P and Q, so
4164 			 * no need to mark them !uptodate here
4165 			 */
4166 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4167 			break;
4168 		}
4169 
4170 		/* we have 2-disk failure */
4171 		BUG_ON(s->failed != 2);
4172 		/* fall through */
4173 	case check_state_compute_result:
4174 		sh->check_state = check_state_idle;
4175 
4176 		/* check that a write has not made the stripe insync */
4177 		if (test_bit(STRIPE_INSYNC, &sh->state))
4178 			break;
4179 
4180 		/* now write out any block on a failed drive,
4181 		 * or P or Q if they were recomputed
4182 		 */
4183 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4184 		if (s->failed == 2) {
4185 			dev = &sh->dev[s->failed_num[1]];
4186 			s->locked++;
4187 			set_bit(R5_LOCKED, &dev->flags);
4188 			set_bit(R5_Wantwrite, &dev->flags);
4189 		}
4190 		if (s->failed >= 1) {
4191 			dev = &sh->dev[s->failed_num[0]];
4192 			s->locked++;
4193 			set_bit(R5_LOCKED, &dev->flags);
4194 			set_bit(R5_Wantwrite, &dev->flags);
4195 		}
4196 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4197 			dev = &sh->dev[pd_idx];
4198 			s->locked++;
4199 			set_bit(R5_LOCKED, &dev->flags);
4200 			set_bit(R5_Wantwrite, &dev->flags);
4201 		}
4202 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4203 			dev = &sh->dev[qd_idx];
4204 			s->locked++;
4205 			set_bit(R5_LOCKED, &dev->flags);
4206 			set_bit(R5_Wantwrite, &dev->flags);
4207 		}
4208 		clear_bit(STRIPE_DEGRADED, &sh->state);
4209 
4210 		set_bit(STRIPE_INSYNC, &sh->state);
4211 		break;
4212 	case check_state_run:
4213 	case check_state_run_q:
4214 	case check_state_run_pq:
4215 		break; /* we will be called again upon completion */
4216 	case check_state_check_result:
4217 		sh->check_state = check_state_idle;
4218 
4219 		/* handle a successful check operation, if parity is correct
4220 		 * we are done.  Otherwise update the mismatch count and repair
4221 		 * parity if !MD_RECOVERY_CHECK
4222 		 */
4223 		if (sh->ops.zero_sum_result == 0) {
4224 			/* both parities are correct */
4225 			if (!s->failed)
4226 				set_bit(STRIPE_INSYNC, &sh->state);
4227 			else {
4228 				/* in contrast to the raid5 case we can validate
4229 				 * parity, but still have a failure to write
4230 				 * back
4231 				 */
4232 				sh->check_state = check_state_compute_result;
4233 				/* Returning at this point means that we may go
4234 				 * off and bring p and/or q uptodate again so
4235 				 * we make sure to check zero_sum_result again
4236 				 * to verify if p or q need writeback
4237 				 */
4238 			}
4239 		} else {
4240 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4241 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4242 				/* don't try to repair!! */
4243 				set_bit(STRIPE_INSYNC, &sh->state);
4244 				pr_warn_ratelimited("%s: mismatch sector in range "
4245 						    "%llu-%llu\n", mdname(conf->mddev),
4246 						    (unsigned long long) sh->sector,
4247 						    (unsigned long long) sh->sector +
4248 						    STRIPE_SECTORS);
4249 			} else {
4250 				int *target = &sh->ops.target;
4251 
4252 				sh->ops.target = -1;
4253 				sh->ops.target2 = -1;
4254 				sh->check_state = check_state_compute_run;
4255 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4256 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4257 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4258 					set_bit(R5_Wantcompute,
4259 						&sh->dev[pd_idx].flags);
4260 					*target = pd_idx;
4261 					target = &sh->ops.target2;
4262 					s->uptodate++;
4263 				}
4264 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4265 					set_bit(R5_Wantcompute,
4266 						&sh->dev[qd_idx].flags);
4267 					*target = qd_idx;
4268 					s->uptodate++;
4269 				}
4270 			}
4271 		}
4272 		break;
4273 	case check_state_compute_run:
4274 		break;
4275 	default:
4276 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4277 			__func__, sh->check_state,
4278 			(unsigned long long) sh->sector);
4279 		BUG();
4280 	}
4281 }
4282 
4283 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4284 {
4285 	int i;
4286 
4287 	/* We have read all the blocks in this stripe and now we need to
4288 	 * copy some of them into a target stripe for expand.
4289 	 */
4290 	struct dma_async_tx_descriptor *tx = NULL;
4291 	BUG_ON(sh->batch_head);
4292 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4293 	for (i = 0; i < sh->disks; i++)
4294 		if (i != sh->pd_idx && i != sh->qd_idx) {
4295 			int dd_idx, j;
4296 			struct stripe_head *sh2;
4297 			struct async_submit_ctl submit;
4298 
4299 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4300 			sector_t s = raid5_compute_sector(conf, bn, 0,
4301 							  &dd_idx, NULL);
4302 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4303 			if (sh2 == NULL)
4304 				/* so far only the early blocks of this stripe
4305 				 * have been requested.  When later blocks
4306 				 * get requested, we will try again
4307 				 */
4308 				continue;
4309 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4310 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4311 				/* must have already done this block */
4312 				raid5_release_stripe(sh2);
4313 				continue;
4314 			}
4315 
4316 			/* place all the copies on one channel */
4317 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4318 			tx = async_memcpy(sh2->dev[dd_idx].page,
4319 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4320 					  &submit);
4321 
4322 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4323 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4324 			for (j = 0; j < conf->raid_disks; j++)
4325 				if (j != sh2->pd_idx &&
4326 				    j != sh2->qd_idx &&
4327 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4328 					break;
4329 			if (j == conf->raid_disks) {
4330 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4331 				set_bit(STRIPE_HANDLE, &sh2->state);
4332 			}
4333 			raid5_release_stripe(sh2);
4334 
4335 		}
4336 	/* done submitting copies, wait for them to complete */
4337 	async_tx_quiesce(&tx);
4338 }
4339 
4340 /*
4341  * handle_stripe - do things to a stripe.
4342  *
4343  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4344  * state of various bits to see what needs to be done.
4345  * Possible results:
4346  *    return some read requests which now have data
4347  *    return some write requests which are safely on storage
4348  *    schedule a read on some buffers
4349  *    schedule a write of some buffers
4350  *    return confirmation of parity correctness
4351  *
4352  */
4353 
4354 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4355 {
4356 	struct r5conf *conf = sh->raid_conf;
4357 	int disks = sh->disks;
4358 	struct r5dev *dev;
4359 	int i;
4360 	int do_recovery = 0;
4361 
4362 	memset(s, 0, sizeof(*s));
4363 
4364 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4365 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4366 	s->failed_num[0] = -1;
4367 	s->failed_num[1] = -1;
4368 	s->log_failed = r5l_log_disk_error(conf);
4369 
4370 	/* Now to look around and see what can be done */
4371 	rcu_read_lock();
4372 	for (i=disks; i--; ) {
4373 		struct md_rdev *rdev;
4374 		sector_t first_bad;
4375 		int bad_sectors;
4376 		int is_bad = 0;
4377 
4378 		dev = &sh->dev[i];
4379 
4380 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4381 			 i, dev->flags,
4382 			 dev->toread, dev->towrite, dev->written);
4383 		/* maybe we can reply to a read
4384 		 *
4385 		 * new wantfill requests are only permitted while
4386 		 * ops_complete_biofill is guaranteed to be inactive
4387 		 */
4388 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4389 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4390 			set_bit(R5_Wantfill, &dev->flags);
4391 
4392 		/* now count some things */
4393 		if (test_bit(R5_LOCKED, &dev->flags))
4394 			s->locked++;
4395 		if (test_bit(R5_UPTODATE, &dev->flags))
4396 			s->uptodate++;
4397 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4398 			s->compute++;
4399 			BUG_ON(s->compute > 2);
4400 		}
4401 
4402 		if (test_bit(R5_Wantfill, &dev->flags))
4403 			s->to_fill++;
4404 		else if (dev->toread)
4405 			s->to_read++;
4406 		if (dev->towrite) {
4407 			s->to_write++;
4408 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4409 				s->non_overwrite++;
4410 		}
4411 		if (dev->written)
4412 			s->written++;
4413 		/* Prefer to use the replacement for reads, but only
4414 		 * if it is recovered enough and has no bad blocks.
4415 		 */
4416 		rdev = rcu_dereference(conf->disks[i].replacement);
4417 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4418 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4419 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4420 				 &first_bad, &bad_sectors))
4421 			set_bit(R5_ReadRepl, &dev->flags);
4422 		else {
4423 			if (rdev && !test_bit(Faulty, &rdev->flags))
4424 				set_bit(R5_NeedReplace, &dev->flags);
4425 			else
4426 				clear_bit(R5_NeedReplace, &dev->flags);
4427 			rdev = rcu_dereference(conf->disks[i].rdev);
4428 			clear_bit(R5_ReadRepl, &dev->flags);
4429 		}
4430 		if (rdev && test_bit(Faulty, &rdev->flags))
4431 			rdev = NULL;
4432 		if (rdev) {
4433 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4434 					     &first_bad, &bad_sectors);
4435 			if (s->blocked_rdev == NULL
4436 			    && (test_bit(Blocked, &rdev->flags)
4437 				|| is_bad < 0)) {
4438 				if (is_bad < 0)
4439 					set_bit(BlockedBadBlocks,
4440 						&rdev->flags);
4441 				s->blocked_rdev = rdev;
4442 				atomic_inc(&rdev->nr_pending);
4443 			}
4444 		}
4445 		clear_bit(R5_Insync, &dev->flags);
4446 		if (!rdev)
4447 			/* Not in-sync */;
4448 		else if (is_bad) {
4449 			/* also not in-sync */
4450 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4451 			    test_bit(R5_UPTODATE, &dev->flags)) {
4452 				/* treat as in-sync, but with a read error
4453 				 * which we can now try to correct
4454 				 */
4455 				set_bit(R5_Insync, &dev->flags);
4456 				set_bit(R5_ReadError, &dev->flags);
4457 			}
4458 		} else if (test_bit(In_sync, &rdev->flags))
4459 			set_bit(R5_Insync, &dev->flags);
4460 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4461 			/* in sync if before recovery_offset */
4462 			set_bit(R5_Insync, &dev->flags);
4463 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4464 			 test_bit(R5_Expanded, &dev->flags))
4465 			/* If we've reshaped into here, we assume it is Insync.
4466 			 * We will shortly update recovery_offset to make
4467 			 * it official.
4468 			 */
4469 			set_bit(R5_Insync, &dev->flags);
4470 
4471 		if (test_bit(R5_WriteError, &dev->flags)) {
4472 			/* This flag does not apply to '.replacement'
4473 			 * only to .rdev, so make sure to check that*/
4474 			struct md_rdev *rdev2 = rcu_dereference(
4475 				conf->disks[i].rdev);
4476 			if (rdev2 == rdev)
4477 				clear_bit(R5_Insync, &dev->flags);
4478 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4479 				s->handle_bad_blocks = 1;
4480 				atomic_inc(&rdev2->nr_pending);
4481 			} else
4482 				clear_bit(R5_WriteError, &dev->flags);
4483 		}
4484 		if (test_bit(R5_MadeGood, &dev->flags)) {
4485 			/* This flag does not apply to '.replacement'
4486 			 * only to .rdev, so make sure to check that*/
4487 			struct md_rdev *rdev2 = rcu_dereference(
4488 				conf->disks[i].rdev);
4489 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4490 				s->handle_bad_blocks = 1;
4491 				atomic_inc(&rdev2->nr_pending);
4492 			} else
4493 				clear_bit(R5_MadeGood, &dev->flags);
4494 		}
4495 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4496 			struct md_rdev *rdev2 = rcu_dereference(
4497 				conf->disks[i].replacement);
4498 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4499 				s->handle_bad_blocks = 1;
4500 				atomic_inc(&rdev2->nr_pending);
4501 			} else
4502 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4503 		}
4504 		if (!test_bit(R5_Insync, &dev->flags)) {
4505 			/* The ReadError flag will just be confusing now */
4506 			clear_bit(R5_ReadError, &dev->flags);
4507 			clear_bit(R5_ReWrite, &dev->flags);
4508 		}
4509 		if (test_bit(R5_ReadError, &dev->flags))
4510 			clear_bit(R5_Insync, &dev->flags);
4511 		if (!test_bit(R5_Insync, &dev->flags)) {
4512 			if (s->failed < 2)
4513 				s->failed_num[s->failed] = i;
4514 			s->failed++;
4515 			if (rdev && !test_bit(Faulty, &rdev->flags))
4516 				do_recovery = 1;
4517 		}
4518 
4519 		if (test_bit(R5_InJournal, &dev->flags))
4520 			s->injournal++;
4521 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4522 			s->just_cached++;
4523 	}
4524 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4525 		/* If there is a failed device being replaced,
4526 		 *     we must be recovering.
4527 		 * else if we are after recovery_cp, we must be syncing
4528 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4529 		 * else we can only be replacing
4530 		 * sync and recovery both need to read all devices, and so
4531 		 * use the same flag.
4532 		 */
4533 		if (do_recovery ||
4534 		    sh->sector >= conf->mddev->recovery_cp ||
4535 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4536 			s->syncing = 1;
4537 		else
4538 			s->replacing = 1;
4539 	}
4540 	rcu_read_unlock();
4541 }
4542 
4543 static int clear_batch_ready(struct stripe_head *sh)
4544 {
4545 	/* Return '1' if this is a member of batch, or
4546 	 * '0' if it is a lone stripe or a head which can now be
4547 	 * handled.
4548 	 */
4549 	struct stripe_head *tmp;
4550 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4551 		return (sh->batch_head && sh->batch_head != sh);
4552 	spin_lock(&sh->stripe_lock);
4553 	if (!sh->batch_head) {
4554 		spin_unlock(&sh->stripe_lock);
4555 		return 0;
4556 	}
4557 
4558 	/*
4559 	 * this stripe could be added to a batch list before we check
4560 	 * BATCH_READY, skips it
4561 	 */
4562 	if (sh->batch_head != sh) {
4563 		spin_unlock(&sh->stripe_lock);
4564 		return 1;
4565 	}
4566 	spin_lock(&sh->batch_lock);
4567 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4568 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4569 	spin_unlock(&sh->batch_lock);
4570 	spin_unlock(&sh->stripe_lock);
4571 
4572 	/*
4573 	 * BATCH_READY is cleared, no new stripes can be added.
4574 	 * batch_list can be accessed without lock
4575 	 */
4576 	return 0;
4577 }
4578 
4579 static void break_stripe_batch_list(struct stripe_head *head_sh,
4580 				    unsigned long handle_flags)
4581 {
4582 	struct stripe_head *sh, *next;
4583 	int i;
4584 	int do_wakeup = 0;
4585 
4586 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4587 
4588 		list_del_init(&sh->batch_list);
4589 
4590 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4591 					  (1 << STRIPE_SYNCING) |
4592 					  (1 << STRIPE_REPLACED) |
4593 					  (1 << STRIPE_DELAYED) |
4594 					  (1 << STRIPE_BIT_DELAY) |
4595 					  (1 << STRIPE_FULL_WRITE) |
4596 					  (1 << STRIPE_BIOFILL_RUN) |
4597 					  (1 << STRIPE_COMPUTE_RUN)  |
4598 					  (1 << STRIPE_OPS_REQ_PENDING) |
4599 					  (1 << STRIPE_DISCARD) |
4600 					  (1 << STRIPE_BATCH_READY) |
4601 					  (1 << STRIPE_BATCH_ERR) |
4602 					  (1 << STRIPE_BITMAP_PENDING)),
4603 			"stripe state: %lx\n", sh->state);
4604 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4605 					      (1 << STRIPE_REPLACED)),
4606 			"head stripe state: %lx\n", head_sh->state);
4607 
4608 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4609 					    (1 << STRIPE_PREREAD_ACTIVE) |
4610 					    (1 << STRIPE_DEGRADED) |
4611 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4612 			      head_sh->state & (1 << STRIPE_INSYNC));
4613 
4614 		sh->check_state = head_sh->check_state;
4615 		sh->reconstruct_state = head_sh->reconstruct_state;
4616 		for (i = 0; i < sh->disks; i++) {
4617 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4618 				do_wakeup = 1;
4619 			sh->dev[i].flags = head_sh->dev[i].flags &
4620 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4621 		}
4622 		spin_lock_irq(&sh->stripe_lock);
4623 		sh->batch_head = NULL;
4624 		spin_unlock_irq(&sh->stripe_lock);
4625 		if (handle_flags == 0 ||
4626 		    sh->state & handle_flags)
4627 			set_bit(STRIPE_HANDLE, &sh->state);
4628 		raid5_release_stripe(sh);
4629 	}
4630 	spin_lock_irq(&head_sh->stripe_lock);
4631 	head_sh->batch_head = NULL;
4632 	spin_unlock_irq(&head_sh->stripe_lock);
4633 	for (i = 0; i < head_sh->disks; i++)
4634 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4635 			do_wakeup = 1;
4636 	if (head_sh->state & handle_flags)
4637 		set_bit(STRIPE_HANDLE, &head_sh->state);
4638 
4639 	if (do_wakeup)
4640 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4641 }
4642 
4643 static void handle_stripe(struct stripe_head *sh)
4644 {
4645 	struct stripe_head_state s;
4646 	struct r5conf *conf = sh->raid_conf;
4647 	int i;
4648 	int prexor;
4649 	int disks = sh->disks;
4650 	struct r5dev *pdev, *qdev;
4651 
4652 	clear_bit(STRIPE_HANDLE, &sh->state);
4653 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4654 		/* already being handled, ensure it gets handled
4655 		 * again when current action finishes */
4656 		set_bit(STRIPE_HANDLE, &sh->state);
4657 		return;
4658 	}
4659 
4660 	if (clear_batch_ready(sh) ) {
4661 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4662 		return;
4663 	}
4664 
4665 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4666 		break_stripe_batch_list(sh, 0);
4667 
4668 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4669 		spin_lock(&sh->stripe_lock);
4670 		/*
4671 		 * Cannot process 'sync' concurrently with 'discard'.
4672 		 * Flush data in r5cache before 'sync'.
4673 		 */
4674 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4675 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4676 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4677 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4678 			set_bit(STRIPE_SYNCING, &sh->state);
4679 			clear_bit(STRIPE_INSYNC, &sh->state);
4680 			clear_bit(STRIPE_REPLACED, &sh->state);
4681 		}
4682 		spin_unlock(&sh->stripe_lock);
4683 	}
4684 	clear_bit(STRIPE_DELAYED, &sh->state);
4685 
4686 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4687 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4688 	       (unsigned long long)sh->sector, sh->state,
4689 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4690 	       sh->check_state, sh->reconstruct_state);
4691 
4692 	analyse_stripe(sh, &s);
4693 
4694 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4695 		goto finish;
4696 
4697 	if (s.handle_bad_blocks ||
4698 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4699 		set_bit(STRIPE_HANDLE, &sh->state);
4700 		goto finish;
4701 	}
4702 
4703 	if (unlikely(s.blocked_rdev)) {
4704 		if (s.syncing || s.expanding || s.expanded ||
4705 		    s.replacing || s.to_write || s.written) {
4706 			set_bit(STRIPE_HANDLE, &sh->state);
4707 			goto finish;
4708 		}
4709 		/* There is nothing for the blocked_rdev to block */
4710 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4711 		s.blocked_rdev = NULL;
4712 	}
4713 
4714 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4715 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4716 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4717 	}
4718 
4719 	pr_debug("locked=%d uptodate=%d to_read=%d"
4720 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4721 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4722 	       s.failed_num[0], s.failed_num[1]);
4723 	/*
4724 	 * check if the array has lost more than max_degraded devices and,
4725 	 * if so, some requests might need to be failed.
4726 	 *
4727 	 * When journal device failed (log_failed), we will only process
4728 	 * the stripe if there is data need write to raid disks
4729 	 */
4730 	if (s.failed > conf->max_degraded ||
4731 	    (s.log_failed && s.injournal == 0)) {
4732 		sh->check_state = 0;
4733 		sh->reconstruct_state = 0;
4734 		break_stripe_batch_list(sh, 0);
4735 		if (s.to_read+s.to_write+s.written)
4736 			handle_failed_stripe(conf, sh, &s, disks);
4737 		if (s.syncing + s.replacing)
4738 			handle_failed_sync(conf, sh, &s);
4739 	}
4740 
4741 	/* Now we check to see if any write operations have recently
4742 	 * completed
4743 	 */
4744 	prexor = 0;
4745 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4746 		prexor = 1;
4747 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4748 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4749 		sh->reconstruct_state = reconstruct_state_idle;
4750 
4751 		/* All the 'written' buffers and the parity block are ready to
4752 		 * be written back to disk
4753 		 */
4754 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4755 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4756 		BUG_ON(sh->qd_idx >= 0 &&
4757 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4758 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4759 		for (i = disks; i--; ) {
4760 			struct r5dev *dev = &sh->dev[i];
4761 			if (test_bit(R5_LOCKED, &dev->flags) &&
4762 				(i == sh->pd_idx || i == sh->qd_idx ||
4763 				 dev->written || test_bit(R5_InJournal,
4764 							  &dev->flags))) {
4765 				pr_debug("Writing block %d\n", i);
4766 				set_bit(R5_Wantwrite, &dev->flags);
4767 				if (prexor)
4768 					continue;
4769 				if (s.failed > 1)
4770 					continue;
4771 				if (!test_bit(R5_Insync, &dev->flags) ||
4772 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4773 				     s.failed == 0))
4774 					set_bit(STRIPE_INSYNC, &sh->state);
4775 			}
4776 		}
4777 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4778 			s.dec_preread_active = 1;
4779 	}
4780 
4781 	/*
4782 	 * might be able to return some write requests if the parity blocks
4783 	 * are safe, or on a failed drive
4784 	 */
4785 	pdev = &sh->dev[sh->pd_idx];
4786 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4787 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4788 	qdev = &sh->dev[sh->qd_idx];
4789 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4790 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4791 		|| conf->level < 6;
4792 
4793 	if (s.written &&
4794 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4795 			     && !test_bit(R5_LOCKED, &pdev->flags)
4796 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4797 				 test_bit(R5_Discard, &pdev->flags))))) &&
4798 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4799 			     && !test_bit(R5_LOCKED, &qdev->flags)
4800 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4801 				 test_bit(R5_Discard, &qdev->flags))))))
4802 		handle_stripe_clean_event(conf, sh, disks);
4803 
4804 	if (s.just_cached)
4805 		r5c_handle_cached_data_endio(conf, sh, disks);
4806 	log_stripe_write_finished(sh);
4807 
4808 	/* Now we might consider reading some blocks, either to check/generate
4809 	 * parity, or to satisfy requests
4810 	 * or to load a block that is being partially written.
4811 	 */
4812 	if (s.to_read || s.non_overwrite
4813 	    || (conf->level == 6 && s.to_write && s.failed)
4814 	    || (s.syncing && (s.uptodate + s.compute < disks))
4815 	    || s.replacing
4816 	    || s.expanding)
4817 		handle_stripe_fill(sh, &s, disks);
4818 
4819 	/*
4820 	 * When the stripe finishes full journal write cycle (write to journal
4821 	 * and raid disk), this is the clean up procedure so it is ready for
4822 	 * next operation.
4823 	 */
4824 	r5c_finish_stripe_write_out(conf, sh, &s);
4825 
4826 	/*
4827 	 * Now to consider new write requests, cache write back and what else,
4828 	 * if anything should be read.  We do not handle new writes when:
4829 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4830 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4831 	 *    block.
4832 	 * 3/ A r5c cache log write is in flight.
4833 	 */
4834 
4835 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4836 		if (!r5c_is_writeback(conf->log)) {
4837 			if (s.to_write)
4838 				handle_stripe_dirtying(conf, sh, &s, disks);
4839 		} else { /* write back cache */
4840 			int ret = 0;
4841 
4842 			/* First, try handle writes in caching phase */
4843 			if (s.to_write)
4844 				ret = r5c_try_caching_write(conf, sh, &s,
4845 							    disks);
4846 			/*
4847 			 * If caching phase failed: ret == -EAGAIN
4848 			 *    OR
4849 			 * stripe under reclaim: !caching && injournal
4850 			 *
4851 			 * fall back to handle_stripe_dirtying()
4852 			 */
4853 			if (ret == -EAGAIN ||
4854 			    /* stripe under reclaim: !caching && injournal */
4855 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4856 			     s.injournal > 0)) {
4857 				ret = handle_stripe_dirtying(conf, sh, &s,
4858 							     disks);
4859 				if (ret == -EAGAIN)
4860 					goto finish;
4861 			}
4862 		}
4863 	}
4864 
4865 	/* maybe we need to check and possibly fix the parity for this stripe
4866 	 * Any reads will already have been scheduled, so we just see if enough
4867 	 * data is available.  The parity check is held off while parity
4868 	 * dependent operations are in flight.
4869 	 */
4870 	if (sh->check_state ||
4871 	    (s.syncing && s.locked == 0 &&
4872 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4873 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4874 		if (conf->level == 6)
4875 			handle_parity_checks6(conf, sh, &s, disks);
4876 		else
4877 			handle_parity_checks5(conf, sh, &s, disks);
4878 	}
4879 
4880 	if ((s.replacing || s.syncing) && s.locked == 0
4881 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4882 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4883 		/* Write out to replacement devices where possible */
4884 		for (i = 0; i < conf->raid_disks; i++)
4885 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4886 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4887 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4888 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4889 				s.locked++;
4890 			}
4891 		if (s.replacing)
4892 			set_bit(STRIPE_INSYNC, &sh->state);
4893 		set_bit(STRIPE_REPLACED, &sh->state);
4894 	}
4895 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4896 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4897 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4898 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4899 		clear_bit(STRIPE_SYNCING, &sh->state);
4900 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4901 			wake_up(&conf->wait_for_overlap);
4902 	}
4903 
4904 	/* If the failed drives are just a ReadError, then we might need
4905 	 * to progress the repair/check process
4906 	 */
4907 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4908 		for (i = 0; i < s.failed; i++) {
4909 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4910 			if (test_bit(R5_ReadError, &dev->flags)
4911 			    && !test_bit(R5_LOCKED, &dev->flags)
4912 			    && test_bit(R5_UPTODATE, &dev->flags)
4913 				) {
4914 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4915 					set_bit(R5_Wantwrite, &dev->flags);
4916 					set_bit(R5_ReWrite, &dev->flags);
4917 					set_bit(R5_LOCKED, &dev->flags);
4918 					s.locked++;
4919 				} else {
4920 					/* let's read it back */
4921 					set_bit(R5_Wantread, &dev->flags);
4922 					set_bit(R5_LOCKED, &dev->flags);
4923 					s.locked++;
4924 				}
4925 			}
4926 		}
4927 
4928 	/* Finish reconstruct operations initiated by the expansion process */
4929 	if (sh->reconstruct_state == reconstruct_state_result) {
4930 		struct stripe_head *sh_src
4931 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4932 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4933 			/* sh cannot be written until sh_src has been read.
4934 			 * so arrange for sh to be delayed a little
4935 			 */
4936 			set_bit(STRIPE_DELAYED, &sh->state);
4937 			set_bit(STRIPE_HANDLE, &sh->state);
4938 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4939 					      &sh_src->state))
4940 				atomic_inc(&conf->preread_active_stripes);
4941 			raid5_release_stripe(sh_src);
4942 			goto finish;
4943 		}
4944 		if (sh_src)
4945 			raid5_release_stripe(sh_src);
4946 
4947 		sh->reconstruct_state = reconstruct_state_idle;
4948 		clear_bit(STRIPE_EXPANDING, &sh->state);
4949 		for (i = conf->raid_disks; i--; ) {
4950 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4951 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4952 			s.locked++;
4953 		}
4954 	}
4955 
4956 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4957 	    !sh->reconstruct_state) {
4958 		/* Need to write out all blocks after computing parity */
4959 		sh->disks = conf->raid_disks;
4960 		stripe_set_idx(sh->sector, conf, 0, sh);
4961 		schedule_reconstruction(sh, &s, 1, 1);
4962 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4963 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4964 		atomic_dec(&conf->reshape_stripes);
4965 		wake_up(&conf->wait_for_overlap);
4966 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4967 	}
4968 
4969 	if (s.expanding && s.locked == 0 &&
4970 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4971 		handle_stripe_expansion(conf, sh);
4972 
4973 finish:
4974 	/* wait for this device to become unblocked */
4975 	if (unlikely(s.blocked_rdev)) {
4976 		if (conf->mddev->external)
4977 			md_wait_for_blocked_rdev(s.blocked_rdev,
4978 						 conf->mddev);
4979 		else
4980 			/* Internal metadata will immediately
4981 			 * be written by raid5d, so we don't
4982 			 * need to wait here.
4983 			 */
4984 			rdev_dec_pending(s.blocked_rdev,
4985 					 conf->mddev);
4986 	}
4987 
4988 	if (s.handle_bad_blocks)
4989 		for (i = disks; i--; ) {
4990 			struct md_rdev *rdev;
4991 			struct r5dev *dev = &sh->dev[i];
4992 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4993 				/* We own a safe reference to the rdev */
4994 				rdev = conf->disks[i].rdev;
4995 				if (!rdev_set_badblocks(rdev, sh->sector,
4996 							STRIPE_SECTORS, 0))
4997 					md_error(conf->mddev, rdev);
4998 				rdev_dec_pending(rdev, conf->mddev);
4999 			}
5000 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5001 				rdev = conf->disks[i].rdev;
5002 				rdev_clear_badblocks(rdev, sh->sector,
5003 						     STRIPE_SECTORS, 0);
5004 				rdev_dec_pending(rdev, conf->mddev);
5005 			}
5006 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5007 				rdev = conf->disks[i].replacement;
5008 				if (!rdev)
5009 					/* rdev have been moved down */
5010 					rdev = conf->disks[i].rdev;
5011 				rdev_clear_badblocks(rdev, sh->sector,
5012 						     STRIPE_SECTORS, 0);
5013 				rdev_dec_pending(rdev, conf->mddev);
5014 			}
5015 		}
5016 
5017 	if (s.ops_request)
5018 		raid_run_ops(sh, s.ops_request);
5019 
5020 	ops_run_io(sh, &s);
5021 
5022 	if (s.dec_preread_active) {
5023 		/* We delay this until after ops_run_io so that if make_request
5024 		 * is waiting on a flush, it won't continue until the writes
5025 		 * have actually been submitted.
5026 		 */
5027 		atomic_dec(&conf->preread_active_stripes);
5028 		if (atomic_read(&conf->preread_active_stripes) <
5029 		    IO_THRESHOLD)
5030 			md_wakeup_thread(conf->mddev->thread);
5031 	}
5032 
5033 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5034 }
5035 
5036 static void raid5_activate_delayed(struct r5conf *conf)
5037 {
5038 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5039 		while (!list_empty(&conf->delayed_list)) {
5040 			struct list_head *l = conf->delayed_list.next;
5041 			struct stripe_head *sh;
5042 			sh = list_entry(l, struct stripe_head, lru);
5043 			list_del_init(l);
5044 			clear_bit(STRIPE_DELAYED, &sh->state);
5045 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5046 				atomic_inc(&conf->preread_active_stripes);
5047 			list_add_tail(&sh->lru, &conf->hold_list);
5048 			raid5_wakeup_stripe_thread(sh);
5049 		}
5050 	}
5051 }
5052 
5053 static void activate_bit_delay(struct r5conf *conf,
5054 	struct list_head *temp_inactive_list)
5055 {
5056 	/* device_lock is held */
5057 	struct list_head head;
5058 	list_add(&head, &conf->bitmap_list);
5059 	list_del_init(&conf->bitmap_list);
5060 	while (!list_empty(&head)) {
5061 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5062 		int hash;
5063 		list_del_init(&sh->lru);
5064 		atomic_inc(&sh->count);
5065 		hash = sh->hash_lock_index;
5066 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5067 	}
5068 }
5069 
5070 static int raid5_congested(struct mddev *mddev, int bits)
5071 {
5072 	struct r5conf *conf = mddev->private;
5073 
5074 	/* No difference between reads and writes.  Just check
5075 	 * how busy the stripe_cache is
5076 	 */
5077 
5078 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5079 		return 1;
5080 
5081 	/* Also checks whether there is pressure on r5cache log space */
5082 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5083 		return 1;
5084 	if (conf->quiesce)
5085 		return 1;
5086 	if (atomic_read(&conf->empty_inactive_list_nr))
5087 		return 1;
5088 
5089 	return 0;
5090 }
5091 
5092 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5093 {
5094 	struct r5conf *conf = mddev->private;
5095 	sector_t sector = bio->bi_iter.bi_sector;
5096 	unsigned int chunk_sectors;
5097 	unsigned int bio_sectors = bio_sectors(bio);
5098 
5099 	WARN_ON_ONCE(bio->bi_partno);
5100 
5101 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5102 	return  chunk_sectors >=
5103 		((sector & (chunk_sectors - 1)) + bio_sectors);
5104 }
5105 
5106 /*
5107  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5108  *  later sampled by raid5d.
5109  */
5110 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5111 {
5112 	unsigned long flags;
5113 
5114 	spin_lock_irqsave(&conf->device_lock, flags);
5115 
5116 	bi->bi_next = conf->retry_read_aligned_list;
5117 	conf->retry_read_aligned_list = bi;
5118 
5119 	spin_unlock_irqrestore(&conf->device_lock, flags);
5120 	md_wakeup_thread(conf->mddev->thread);
5121 }
5122 
5123 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5124 					 unsigned int *offset)
5125 {
5126 	struct bio *bi;
5127 
5128 	bi = conf->retry_read_aligned;
5129 	if (bi) {
5130 		*offset = conf->retry_read_offset;
5131 		conf->retry_read_aligned = NULL;
5132 		return bi;
5133 	}
5134 	bi = conf->retry_read_aligned_list;
5135 	if(bi) {
5136 		conf->retry_read_aligned_list = bi->bi_next;
5137 		bi->bi_next = NULL;
5138 		*offset = 0;
5139 	}
5140 
5141 	return bi;
5142 }
5143 
5144 /*
5145  *  The "raid5_align_endio" should check if the read succeeded and if it
5146  *  did, call bio_endio on the original bio (having bio_put the new bio
5147  *  first).
5148  *  If the read failed..
5149  */
5150 static void raid5_align_endio(struct bio *bi)
5151 {
5152 	struct bio* raid_bi  = bi->bi_private;
5153 	struct mddev *mddev;
5154 	struct r5conf *conf;
5155 	struct md_rdev *rdev;
5156 	blk_status_t error = bi->bi_status;
5157 
5158 	bio_put(bi);
5159 
5160 	rdev = (void*)raid_bi->bi_next;
5161 	raid_bi->bi_next = NULL;
5162 	mddev = rdev->mddev;
5163 	conf = mddev->private;
5164 
5165 	rdev_dec_pending(rdev, conf->mddev);
5166 
5167 	if (!error) {
5168 		bio_endio(raid_bi);
5169 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5170 			wake_up(&conf->wait_for_quiescent);
5171 		return;
5172 	}
5173 
5174 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5175 
5176 	add_bio_to_retry(raid_bi, conf);
5177 }
5178 
5179 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5180 {
5181 	struct r5conf *conf = mddev->private;
5182 	int dd_idx;
5183 	struct bio* align_bi;
5184 	struct md_rdev *rdev;
5185 	sector_t end_sector;
5186 
5187 	if (!in_chunk_boundary(mddev, raid_bio)) {
5188 		pr_debug("%s: non aligned\n", __func__);
5189 		return 0;
5190 	}
5191 	/*
5192 	 * use bio_clone_fast to make a copy of the bio
5193 	 */
5194 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5195 	if (!align_bi)
5196 		return 0;
5197 	/*
5198 	 *   set bi_end_io to a new function, and set bi_private to the
5199 	 *     original bio.
5200 	 */
5201 	align_bi->bi_end_io  = raid5_align_endio;
5202 	align_bi->bi_private = raid_bio;
5203 	/*
5204 	 *	compute position
5205 	 */
5206 	align_bi->bi_iter.bi_sector =
5207 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5208 				     0, &dd_idx, NULL);
5209 
5210 	end_sector = bio_end_sector(align_bi);
5211 	rcu_read_lock();
5212 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5213 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5214 	    rdev->recovery_offset < end_sector) {
5215 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5216 		if (rdev &&
5217 		    (test_bit(Faulty, &rdev->flags) ||
5218 		    !(test_bit(In_sync, &rdev->flags) ||
5219 		      rdev->recovery_offset >= end_sector)))
5220 			rdev = NULL;
5221 	}
5222 
5223 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5224 		rcu_read_unlock();
5225 		bio_put(align_bi);
5226 		return 0;
5227 	}
5228 
5229 	if (rdev) {
5230 		sector_t first_bad;
5231 		int bad_sectors;
5232 
5233 		atomic_inc(&rdev->nr_pending);
5234 		rcu_read_unlock();
5235 		raid_bio->bi_next = (void*)rdev;
5236 		bio_set_dev(align_bi, rdev->bdev);
5237 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5238 
5239 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5240 				bio_sectors(align_bi),
5241 				&first_bad, &bad_sectors)) {
5242 			bio_put(align_bi);
5243 			rdev_dec_pending(rdev, mddev);
5244 			return 0;
5245 		}
5246 
5247 		/* No reshape active, so we can trust rdev->data_offset */
5248 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5249 
5250 		spin_lock_irq(&conf->device_lock);
5251 		wait_event_lock_irq(conf->wait_for_quiescent,
5252 				    conf->quiesce == 0,
5253 				    conf->device_lock);
5254 		atomic_inc(&conf->active_aligned_reads);
5255 		spin_unlock_irq(&conf->device_lock);
5256 
5257 		if (mddev->gendisk)
5258 			trace_block_bio_remap(align_bi->bi_disk->queue,
5259 					      align_bi, disk_devt(mddev->gendisk),
5260 					      raid_bio->bi_iter.bi_sector);
5261 		generic_make_request(align_bi);
5262 		return 1;
5263 	} else {
5264 		rcu_read_unlock();
5265 		bio_put(align_bi);
5266 		return 0;
5267 	}
5268 }
5269 
5270 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5271 {
5272 	struct bio *split;
5273 	sector_t sector = raid_bio->bi_iter.bi_sector;
5274 	unsigned chunk_sects = mddev->chunk_sectors;
5275 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5276 
5277 	if (sectors < bio_sectors(raid_bio)) {
5278 		struct r5conf *conf = mddev->private;
5279 		split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5280 		bio_chain(split, raid_bio);
5281 		generic_make_request(raid_bio);
5282 		raid_bio = split;
5283 	}
5284 
5285 	if (!raid5_read_one_chunk(mddev, raid_bio))
5286 		return raid_bio;
5287 
5288 	return NULL;
5289 }
5290 
5291 /* __get_priority_stripe - get the next stripe to process
5292  *
5293  * Full stripe writes are allowed to pass preread active stripes up until
5294  * the bypass_threshold is exceeded.  In general the bypass_count
5295  * increments when the handle_list is handled before the hold_list; however, it
5296  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5297  * stripe with in flight i/o.  The bypass_count will be reset when the
5298  * head of the hold_list has changed, i.e. the head was promoted to the
5299  * handle_list.
5300  */
5301 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5302 {
5303 	struct stripe_head *sh, *tmp;
5304 	struct list_head *handle_list = NULL;
5305 	struct r5worker_group *wg;
5306 	bool second_try = !r5c_is_writeback(conf->log) &&
5307 		!r5l_log_disk_error(conf);
5308 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5309 		r5l_log_disk_error(conf);
5310 
5311 again:
5312 	wg = NULL;
5313 	sh = NULL;
5314 	if (conf->worker_cnt_per_group == 0) {
5315 		handle_list = try_loprio ? &conf->loprio_list :
5316 					&conf->handle_list;
5317 	} else if (group != ANY_GROUP) {
5318 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5319 				&conf->worker_groups[group].handle_list;
5320 		wg = &conf->worker_groups[group];
5321 	} else {
5322 		int i;
5323 		for (i = 0; i < conf->group_cnt; i++) {
5324 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5325 				&conf->worker_groups[i].handle_list;
5326 			wg = &conf->worker_groups[i];
5327 			if (!list_empty(handle_list))
5328 				break;
5329 		}
5330 	}
5331 
5332 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5333 		  __func__,
5334 		  list_empty(handle_list) ? "empty" : "busy",
5335 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5336 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5337 
5338 	if (!list_empty(handle_list)) {
5339 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5340 
5341 		if (list_empty(&conf->hold_list))
5342 			conf->bypass_count = 0;
5343 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5344 			if (conf->hold_list.next == conf->last_hold)
5345 				conf->bypass_count++;
5346 			else {
5347 				conf->last_hold = conf->hold_list.next;
5348 				conf->bypass_count -= conf->bypass_threshold;
5349 				if (conf->bypass_count < 0)
5350 					conf->bypass_count = 0;
5351 			}
5352 		}
5353 	} else if (!list_empty(&conf->hold_list) &&
5354 		   ((conf->bypass_threshold &&
5355 		     conf->bypass_count > conf->bypass_threshold) ||
5356 		    atomic_read(&conf->pending_full_writes) == 0)) {
5357 
5358 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5359 			if (conf->worker_cnt_per_group == 0 ||
5360 			    group == ANY_GROUP ||
5361 			    !cpu_online(tmp->cpu) ||
5362 			    cpu_to_group(tmp->cpu) == group) {
5363 				sh = tmp;
5364 				break;
5365 			}
5366 		}
5367 
5368 		if (sh) {
5369 			conf->bypass_count -= conf->bypass_threshold;
5370 			if (conf->bypass_count < 0)
5371 				conf->bypass_count = 0;
5372 		}
5373 		wg = NULL;
5374 	}
5375 
5376 	if (!sh) {
5377 		if (second_try)
5378 			return NULL;
5379 		second_try = true;
5380 		try_loprio = !try_loprio;
5381 		goto again;
5382 	}
5383 
5384 	if (wg) {
5385 		wg->stripes_cnt--;
5386 		sh->group = NULL;
5387 	}
5388 	list_del_init(&sh->lru);
5389 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5390 	return sh;
5391 }
5392 
5393 struct raid5_plug_cb {
5394 	struct blk_plug_cb	cb;
5395 	struct list_head	list;
5396 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5397 };
5398 
5399 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5400 {
5401 	struct raid5_plug_cb *cb = container_of(
5402 		blk_cb, struct raid5_plug_cb, cb);
5403 	struct stripe_head *sh;
5404 	struct mddev *mddev = cb->cb.data;
5405 	struct r5conf *conf = mddev->private;
5406 	int cnt = 0;
5407 	int hash;
5408 
5409 	if (cb->list.next && !list_empty(&cb->list)) {
5410 		spin_lock_irq(&conf->device_lock);
5411 		while (!list_empty(&cb->list)) {
5412 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5413 			list_del_init(&sh->lru);
5414 			/*
5415 			 * avoid race release_stripe_plug() sees
5416 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5417 			 * is still in our list
5418 			 */
5419 			smp_mb__before_atomic();
5420 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5421 			/*
5422 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5423 			 * case, the count is always > 1 here
5424 			 */
5425 			hash = sh->hash_lock_index;
5426 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5427 			cnt++;
5428 		}
5429 		spin_unlock_irq(&conf->device_lock);
5430 	}
5431 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5432 				     NR_STRIPE_HASH_LOCKS);
5433 	if (mddev->queue)
5434 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5435 	kfree(cb);
5436 }
5437 
5438 static void release_stripe_plug(struct mddev *mddev,
5439 				struct stripe_head *sh)
5440 {
5441 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5442 		raid5_unplug, mddev,
5443 		sizeof(struct raid5_plug_cb));
5444 	struct raid5_plug_cb *cb;
5445 
5446 	if (!blk_cb) {
5447 		raid5_release_stripe(sh);
5448 		return;
5449 	}
5450 
5451 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5452 
5453 	if (cb->list.next == NULL) {
5454 		int i;
5455 		INIT_LIST_HEAD(&cb->list);
5456 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5457 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5458 	}
5459 
5460 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5461 		list_add_tail(&sh->lru, &cb->list);
5462 	else
5463 		raid5_release_stripe(sh);
5464 }
5465 
5466 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5467 {
5468 	struct r5conf *conf = mddev->private;
5469 	sector_t logical_sector, last_sector;
5470 	struct stripe_head *sh;
5471 	int stripe_sectors;
5472 
5473 	if (mddev->reshape_position != MaxSector)
5474 		/* Skip discard while reshape is happening */
5475 		return;
5476 
5477 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5478 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5479 
5480 	bi->bi_next = NULL;
5481 
5482 	stripe_sectors = conf->chunk_sectors *
5483 		(conf->raid_disks - conf->max_degraded);
5484 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5485 					       stripe_sectors);
5486 	sector_div(last_sector, stripe_sectors);
5487 
5488 	logical_sector *= conf->chunk_sectors;
5489 	last_sector *= conf->chunk_sectors;
5490 
5491 	for (; logical_sector < last_sector;
5492 	     logical_sector += STRIPE_SECTORS) {
5493 		DEFINE_WAIT(w);
5494 		int d;
5495 	again:
5496 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5497 		prepare_to_wait(&conf->wait_for_overlap, &w,
5498 				TASK_UNINTERRUPTIBLE);
5499 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5500 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5501 			raid5_release_stripe(sh);
5502 			schedule();
5503 			goto again;
5504 		}
5505 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5506 		spin_lock_irq(&sh->stripe_lock);
5507 		for (d = 0; d < conf->raid_disks; d++) {
5508 			if (d == sh->pd_idx || d == sh->qd_idx)
5509 				continue;
5510 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5511 				set_bit(R5_Overlap, &sh->dev[d].flags);
5512 				spin_unlock_irq(&sh->stripe_lock);
5513 				raid5_release_stripe(sh);
5514 				schedule();
5515 				goto again;
5516 			}
5517 		}
5518 		set_bit(STRIPE_DISCARD, &sh->state);
5519 		finish_wait(&conf->wait_for_overlap, &w);
5520 		sh->overwrite_disks = 0;
5521 		for (d = 0; d < conf->raid_disks; d++) {
5522 			if (d == sh->pd_idx || d == sh->qd_idx)
5523 				continue;
5524 			sh->dev[d].towrite = bi;
5525 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5526 			bio_inc_remaining(bi);
5527 			md_write_inc(mddev, bi);
5528 			sh->overwrite_disks++;
5529 		}
5530 		spin_unlock_irq(&sh->stripe_lock);
5531 		if (conf->mddev->bitmap) {
5532 			for (d = 0;
5533 			     d < conf->raid_disks - conf->max_degraded;
5534 			     d++)
5535 				bitmap_startwrite(mddev->bitmap,
5536 						  sh->sector,
5537 						  STRIPE_SECTORS,
5538 						  0);
5539 			sh->bm_seq = conf->seq_flush + 1;
5540 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5541 		}
5542 
5543 		set_bit(STRIPE_HANDLE, &sh->state);
5544 		clear_bit(STRIPE_DELAYED, &sh->state);
5545 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5546 			atomic_inc(&conf->preread_active_stripes);
5547 		release_stripe_plug(mddev, sh);
5548 	}
5549 
5550 	bio_endio(bi);
5551 }
5552 
5553 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5554 {
5555 	struct r5conf *conf = mddev->private;
5556 	int dd_idx;
5557 	sector_t new_sector;
5558 	sector_t logical_sector, last_sector;
5559 	struct stripe_head *sh;
5560 	const int rw = bio_data_dir(bi);
5561 	DEFINE_WAIT(w);
5562 	bool do_prepare;
5563 	bool do_flush = false;
5564 
5565 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5566 		int ret = log_handle_flush_request(conf, bi);
5567 
5568 		if (ret == 0)
5569 			return true;
5570 		if (ret == -ENODEV) {
5571 			md_flush_request(mddev, bi);
5572 			return true;
5573 		}
5574 		/* ret == -EAGAIN, fallback */
5575 		/*
5576 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5577 		 * we need to flush journal device
5578 		 */
5579 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5580 	}
5581 
5582 	if (!md_write_start(mddev, bi))
5583 		return false;
5584 	/*
5585 	 * If array is degraded, better not do chunk aligned read because
5586 	 * later we might have to read it again in order to reconstruct
5587 	 * data on failed drives.
5588 	 */
5589 	if (rw == READ && mddev->degraded == 0 &&
5590 	    mddev->reshape_position == MaxSector) {
5591 		bi = chunk_aligned_read(mddev, bi);
5592 		if (!bi)
5593 			return true;
5594 	}
5595 
5596 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5597 		make_discard_request(mddev, bi);
5598 		md_write_end(mddev);
5599 		return true;
5600 	}
5601 
5602 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5603 	last_sector = bio_end_sector(bi);
5604 	bi->bi_next = NULL;
5605 
5606 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5607 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5608 		int previous;
5609 		int seq;
5610 
5611 		do_prepare = false;
5612 	retry:
5613 		seq = read_seqcount_begin(&conf->gen_lock);
5614 		previous = 0;
5615 		if (do_prepare)
5616 			prepare_to_wait(&conf->wait_for_overlap, &w,
5617 				TASK_UNINTERRUPTIBLE);
5618 		if (unlikely(conf->reshape_progress != MaxSector)) {
5619 			/* spinlock is needed as reshape_progress may be
5620 			 * 64bit on a 32bit platform, and so it might be
5621 			 * possible to see a half-updated value
5622 			 * Of course reshape_progress could change after
5623 			 * the lock is dropped, so once we get a reference
5624 			 * to the stripe that we think it is, we will have
5625 			 * to check again.
5626 			 */
5627 			spin_lock_irq(&conf->device_lock);
5628 			if (mddev->reshape_backwards
5629 			    ? logical_sector < conf->reshape_progress
5630 			    : logical_sector >= conf->reshape_progress) {
5631 				previous = 1;
5632 			} else {
5633 				if (mddev->reshape_backwards
5634 				    ? logical_sector < conf->reshape_safe
5635 				    : logical_sector >= conf->reshape_safe) {
5636 					spin_unlock_irq(&conf->device_lock);
5637 					schedule();
5638 					do_prepare = true;
5639 					goto retry;
5640 				}
5641 			}
5642 			spin_unlock_irq(&conf->device_lock);
5643 		}
5644 
5645 		new_sector = raid5_compute_sector(conf, logical_sector,
5646 						  previous,
5647 						  &dd_idx, NULL);
5648 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5649 			(unsigned long long)new_sector,
5650 			(unsigned long long)logical_sector);
5651 
5652 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5653 				       (bi->bi_opf & REQ_RAHEAD), 0);
5654 		if (sh) {
5655 			if (unlikely(previous)) {
5656 				/* expansion might have moved on while waiting for a
5657 				 * stripe, so we must do the range check again.
5658 				 * Expansion could still move past after this
5659 				 * test, but as we are holding a reference to
5660 				 * 'sh', we know that if that happens,
5661 				 *  STRIPE_EXPANDING will get set and the expansion
5662 				 * won't proceed until we finish with the stripe.
5663 				 */
5664 				int must_retry = 0;
5665 				spin_lock_irq(&conf->device_lock);
5666 				if (mddev->reshape_backwards
5667 				    ? logical_sector >= conf->reshape_progress
5668 				    : logical_sector < conf->reshape_progress)
5669 					/* mismatch, need to try again */
5670 					must_retry = 1;
5671 				spin_unlock_irq(&conf->device_lock);
5672 				if (must_retry) {
5673 					raid5_release_stripe(sh);
5674 					schedule();
5675 					do_prepare = true;
5676 					goto retry;
5677 				}
5678 			}
5679 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5680 				/* Might have got the wrong stripe_head
5681 				 * by accident
5682 				 */
5683 				raid5_release_stripe(sh);
5684 				goto retry;
5685 			}
5686 
5687 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5688 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5689 				/* Stripe is busy expanding or
5690 				 * add failed due to overlap.  Flush everything
5691 				 * and wait a while
5692 				 */
5693 				md_wakeup_thread(mddev->thread);
5694 				raid5_release_stripe(sh);
5695 				schedule();
5696 				do_prepare = true;
5697 				goto retry;
5698 			}
5699 			if (do_flush) {
5700 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5701 				/* we only need flush for one stripe */
5702 				do_flush = false;
5703 			}
5704 
5705 			set_bit(STRIPE_HANDLE, &sh->state);
5706 			clear_bit(STRIPE_DELAYED, &sh->state);
5707 			if ((!sh->batch_head || sh == sh->batch_head) &&
5708 			    (bi->bi_opf & REQ_SYNC) &&
5709 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5710 				atomic_inc(&conf->preread_active_stripes);
5711 			release_stripe_plug(mddev, sh);
5712 		} else {
5713 			/* cannot get stripe for read-ahead, just give-up */
5714 			bi->bi_status = BLK_STS_IOERR;
5715 			break;
5716 		}
5717 	}
5718 	finish_wait(&conf->wait_for_overlap, &w);
5719 
5720 	if (rw == WRITE)
5721 		md_write_end(mddev);
5722 	bio_endio(bi);
5723 	return true;
5724 }
5725 
5726 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5727 
5728 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5729 {
5730 	/* reshaping is quite different to recovery/resync so it is
5731 	 * handled quite separately ... here.
5732 	 *
5733 	 * On each call to sync_request, we gather one chunk worth of
5734 	 * destination stripes and flag them as expanding.
5735 	 * Then we find all the source stripes and request reads.
5736 	 * As the reads complete, handle_stripe will copy the data
5737 	 * into the destination stripe and release that stripe.
5738 	 */
5739 	struct r5conf *conf = mddev->private;
5740 	struct stripe_head *sh;
5741 	struct md_rdev *rdev;
5742 	sector_t first_sector, last_sector;
5743 	int raid_disks = conf->previous_raid_disks;
5744 	int data_disks = raid_disks - conf->max_degraded;
5745 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5746 	int i;
5747 	int dd_idx;
5748 	sector_t writepos, readpos, safepos;
5749 	sector_t stripe_addr;
5750 	int reshape_sectors;
5751 	struct list_head stripes;
5752 	sector_t retn;
5753 
5754 	if (sector_nr == 0) {
5755 		/* If restarting in the middle, skip the initial sectors */
5756 		if (mddev->reshape_backwards &&
5757 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5758 			sector_nr = raid5_size(mddev, 0, 0)
5759 				- conf->reshape_progress;
5760 		} else if (mddev->reshape_backwards &&
5761 			   conf->reshape_progress == MaxSector) {
5762 			/* shouldn't happen, but just in case, finish up.*/
5763 			sector_nr = MaxSector;
5764 		} else if (!mddev->reshape_backwards &&
5765 			   conf->reshape_progress > 0)
5766 			sector_nr = conf->reshape_progress;
5767 		sector_div(sector_nr, new_data_disks);
5768 		if (sector_nr) {
5769 			mddev->curr_resync_completed = sector_nr;
5770 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5771 			*skipped = 1;
5772 			retn = sector_nr;
5773 			goto finish;
5774 		}
5775 	}
5776 
5777 	/* We need to process a full chunk at a time.
5778 	 * If old and new chunk sizes differ, we need to process the
5779 	 * largest of these
5780 	 */
5781 
5782 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5783 
5784 	/* We update the metadata at least every 10 seconds, or when
5785 	 * the data about to be copied would over-write the source of
5786 	 * the data at the front of the range.  i.e. one new_stripe
5787 	 * along from reshape_progress new_maps to after where
5788 	 * reshape_safe old_maps to
5789 	 */
5790 	writepos = conf->reshape_progress;
5791 	sector_div(writepos, new_data_disks);
5792 	readpos = conf->reshape_progress;
5793 	sector_div(readpos, data_disks);
5794 	safepos = conf->reshape_safe;
5795 	sector_div(safepos, data_disks);
5796 	if (mddev->reshape_backwards) {
5797 		BUG_ON(writepos < reshape_sectors);
5798 		writepos -= reshape_sectors;
5799 		readpos += reshape_sectors;
5800 		safepos += reshape_sectors;
5801 	} else {
5802 		writepos += reshape_sectors;
5803 		/* readpos and safepos are worst-case calculations.
5804 		 * A negative number is overly pessimistic, and causes
5805 		 * obvious problems for unsigned storage.  So clip to 0.
5806 		 */
5807 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5808 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5809 	}
5810 
5811 	/* Having calculated the 'writepos' possibly use it
5812 	 * to set 'stripe_addr' which is where we will write to.
5813 	 */
5814 	if (mddev->reshape_backwards) {
5815 		BUG_ON(conf->reshape_progress == 0);
5816 		stripe_addr = writepos;
5817 		BUG_ON((mddev->dev_sectors &
5818 			~((sector_t)reshape_sectors - 1))
5819 		       - reshape_sectors - stripe_addr
5820 		       != sector_nr);
5821 	} else {
5822 		BUG_ON(writepos != sector_nr + reshape_sectors);
5823 		stripe_addr = sector_nr;
5824 	}
5825 
5826 	/* 'writepos' is the most advanced device address we might write.
5827 	 * 'readpos' is the least advanced device address we might read.
5828 	 * 'safepos' is the least address recorded in the metadata as having
5829 	 *     been reshaped.
5830 	 * If there is a min_offset_diff, these are adjusted either by
5831 	 * increasing the safepos/readpos if diff is negative, or
5832 	 * increasing writepos if diff is positive.
5833 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5834 	 * ensure safety in the face of a crash - that must be done by userspace
5835 	 * making a backup of the data.  So in that case there is no particular
5836 	 * rush to update metadata.
5837 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5838 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5839 	 * we can be safe in the event of a crash.
5840 	 * So we insist on updating metadata if safepos is behind writepos and
5841 	 * readpos is beyond writepos.
5842 	 * In any case, update the metadata every 10 seconds.
5843 	 * Maybe that number should be configurable, but I'm not sure it is
5844 	 * worth it.... maybe it could be a multiple of safemode_delay???
5845 	 */
5846 	if (conf->min_offset_diff < 0) {
5847 		safepos += -conf->min_offset_diff;
5848 		readpos += -conf->min_offset_diff;
5849 	} else
5850 		writepos += conf->min_offset_diff;
5851 
5852 	if ((mddev->reshape_backwards
5853 	     ? (safepos > writepos && readpos < writepos)
5854 	     : (safepos < writepos && readpos > writepos)) ||
5855 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5856 		/* Cannot proceed until we've updated the superblock... */
5857 		wait_event(conf->wait_for_overlap,
5858 			   atomic_read(&conf->reshape_stripes)==0
5859 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5860 		if (atomic_read(&conf->reshape_stripes) != 0)
5861 			return 0;
5862 		mddev->reshape_position = conf->reshape_progress;
5863 		mddev->curr_resync_completed = sector_nr;
5864 		if (!mddev->reshape_backwards)
5865 			/* Can update recovery_offset */
5866 			rdev_for_each(rdev, mddev)
5867 				if (rdev->raid_disk >= 0 &&
5868 				    !test_bit(Journal, &rdev->flags) &&
5869 				    !test_bit(In_sync, &rdev->flags) &&
5870 				    rdev->recovery_offset < sector_nr)
5871 					rdev->recovery_offset = sector_nr;
5872 
5873 		conf->reshape_checkpoint = jiffies;
5874 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5875 		md_wakeup_thread(mddev->thread);
5876 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5877 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5878 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5879 			return 0;
5880 		spin_lock_irq(&conf->device_lock);
5881 		conf->reshape_safe = mddev->reshape_position;
5882 		spin_unlock_irq(&conf->device_lock);
5883 		wake_up(&conf->wait_for_overlap);
5884 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5885 	}
5886 
5887 	INIT_LIST_HEAD(&stripes);
5888 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5889 		int j;
5890 		int skipped_disk = 0;
5891 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5892 		set_bit(STRIPE_EXPANDING, &sh->state);
5893 		atomic_inc(&conf->reshape_stripes);
5894 		/* If any of this stripe is beyond the end of the old
5895 		 * array, then we need to zero those blocks
5896 		 */
5897 		for (j=sh->disks; j--;) {
5898 			sector_t s;
5899 			if (j == sh->pd_idx)
5900 				continue;
5901 			if (conf->level == 6 &&
5902 			    j == sh->qd_idx)
5903 				continue;
5904 			s = raid5_compute_blocknr(sh, j, 0);
5905 			if (s < raid5_size(mddev, 0, 0)) {
5906 				skipped_disk = 1;
5907 				continue;
5908 			}
5909 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5910 			set_bit(R5_Expanded, &sh->dev[j].flags);
5911 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5912 		}
5913 		if (!skipped_disk) {
5914 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5915 			set_bit(STRIPE_HANDLE, &sh->state);
5916 		}
5917 		list_add(&sh->lru, &stripes);
5918 	}
5919 	spin_lock_irq(&conf->device_lock);
5920 	if (mddev->reshape_backwards)
5921 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5922 	else
5923 		conf->reshape_progress += reshape_sectors * new_data_disks;
5924 	spin_unlock_irq(&conf->device_lock);
5925 	/* Ok, those stripe are ready. We can start scheduling
5926 	 * reads on the source stripes.
5927 	 * The source stripes are determined by mapping the first and last
5928 	 * block on the destination stripes.
5929 	 */
5930 	first_sector =
5931 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5932 				     1, &dd_idx, NULL);
5933 	last_sector =
5934 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5935 					    * new_data_disks - 1),
5936 				     1, &dd_idx, NULL);
5937 	if (last_sector >= mddev->dev_sectors)
5938 		last_sector = mddev->dev_sectors - 1;
5939 	while (first_sector <= last_sector) {
5940 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5941 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5942 		set_bit(STRIPE_HANDLE, &sh->state);
5943 		raid5_release_stripe(sh);
5944 		first_sector += STRIPE_SECTORS;
5945 	}
5946 	/* Now that the sources are clearly marked, we can release
5947 	 * the destination stripes
5948 	 */
5949 	while (!list_empty(&stripes)) {
5950 		sh = list_entry(stripes.next, struct stripe_head, lru);
5951 		list_del_init(&sh->lru);
5952 		raid5_release_stripe(sh);
5953 	}
5954 	/* If this takes us to the resync_max point where we have to pause,
5955 	 * then we need to write out the superblock.
5956 	 */
5957 	sector_nr += reshape_sectors;
5958 	retn = reshape_sectors;
5959 finish:
5960 	if (mddev->curr_resync_completed > mddev->resync_max ||
5961 	    (sector_nr - mddev->curr_resync_completed) * 2
5962 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5963 		/* Cannot proceed until we've updated the superblock... */
5964 		wait_event(conf->wait_for_overlap,
5965 			   atomic_read(&conf->reshape_stripes) == 0
5966 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5967 		if (atomic_read(&conf->reshape_stripes) != 0)
5968 			goto ret;
5969 		mddev->reshape_position = conf->reshape_progress;
5970 		mddev->curr_resync_completed = sector_nr;
5971 		if (!mddev->reshape_backwards)
5972 			/* Can update recovery_offset */
5973 			rdev_for_each(rdev, mddev)
5974 				if (rdev->raid_disk >= 0 &&
5975 				    !test_bit(Journal, &rdev->flags) &&
5976 				    !test_bit(In_sync, &rdev->flags) &&
5977 				    rdev->recovery_offset < sector_nr)
5978 					rdev->recovery_offset = sector_nr;
5979 		conf->reshape_checkpoint = jiffies;
5980 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5981 		md_wakeup_thread(mddev->thread);
5982 		wait_event(mddev->sb_wait,
5983 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5984 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5985 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5986 			goto ret;
5987 		spin_lock_irq(&conf->device_lock);
5988 		conf->reshape_safe = mddev->reshape_position;
5989 		spin_unlock_irq(&conf->device_lock);
5990 		wake_up(&conf->wait_for_overlap);
5991 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5992 	}
5993 ret:
5994 	return retn;
5995 }
5996 
5997 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5998 					  int *skipped)
5999 {
6000 	struct r5conf *conf = mddev->private;
6001 	struct stripe_head *sh;
6002 	sector_t max_sector = mddev->dev_sectors;
6003 	sector_t sync_blocks;
6004 	int still_degraded = 0;
6005 	int i;
6006 
6007 	if (sector_nr >= max_sector) {
6008 		/* just being told to finish up .. nothing much to do */
6009 
6010 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6011 			end_reshape(conf);
6012 			return 0;
6013 		}
6014 
6015 		if (mddev->curr_resync < max_sector) /* aborted */
6016 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6017 					&sync_blocks, 1);
6018 		else /* completed sync */
6019 			conf->fullsync = 0;
6020 		bitmap_close_sync(mddev->bitmap);
6021 
6022 		return 0;
6023 	}
6024 
6025 	/* Allow raid5_quiesce to complete */
6026 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6027 
6028 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6029 		return reshape_request(mddev, sector_nr, skipped);
6030 
6031 	/* No need to check resync_max as we never do more than one
6032 	 * stripe, and as resync_max will always be on a chunk boundary,
6033 	 * if the check in md_do_sync didn't fire, there is no chance
6034 	 * of overstepping resync_max here
6035 	 */
6036 
6037 	/* if there is too many failed drives and we are trying
6038 	 * to resync, then assert that we are finished, because there is
6039 	 * nothing we can do.
6040 	 */
6041 	if (mddev->degraded >= conf->max_degraded &&
6042 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6043 		sector_t rv = mddev->dev_sectors - sector_nr;
6044 		*skipped = 1;
6045 		return rv;
6046 	}
6047 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6048 	    !conf->fullsync &&
6049 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6050 	    sync_blocks >= STRIPE_SECTORS) {
6051 		/* we can skip this block, and probably more */
6052 		sync_blocks /= STRIPE_SECTORS;
6053 		*skipped = 1;
6054 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6055 	}
6056 
6057 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6058 
6059 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6060 	if (sh == NULL) {
6061 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6062 		/* make sure we don't swamp the stripe cache if someone else
6063 		 * is trying to get access
6064 		 */
6065 		schedule_timeout_uninterruptible(1);
6066 	}
6067 	/* Need to check if array will still be degraded after recovery/resync
6068 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6069 	 * one drive while leaving another faulty drive in array.
6070 	 */
6071 	rcu_read_lock();
6072 	for (i = 0; i < conf->raid_disks; i++) {
6073 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6074 
6075 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6076 			still_degraded = 1;
6077 	}
6078 	rcu_read_unlock();
6079 
6080 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6081 
6082 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6083 	set_bit(STRIPE_HANDLE, &sh->state);
6084 
6085 	raid5_release_stripe(sh);
6086 
6087 	return STRIPE_SECTORS;
6088 }
6089 
6090 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6091 			       unsigned int offset)
6092 {
6093 	/* We may not be able to submit a whole bio at once as there
6094 	 * may not be enough stripe_heads available.
6095 	 * We cannot pre-allocate enough stripe_heads as we may need
6096 	 * more than exist in the cache (if we allow ever large chunks).
6097 	 * So we do one stripe head at a time and record in
6098 	 * ->bi_hw_segments how many have been done.
6099 	 *
6100 	 * We *know* that this entire raid_bio is in one chunk, so
6101 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6102 	 */
6103 	struct stripe_head *sh;
6104 	int dd_idx;
6105 	sector_t sector, logical_sector, last_sector;
6106 	int scnt = 0;
6107 	int handled = 0;
6108 
6109 	logical_sector = raid_bio->bi_iter.bi_sector &
6110 		~((sector_t)STRIPE_SECTORS-1);
6111 	sector = raid5_compute_sector(conf, logical_sector,
6112 				      0, &dd_idx, NULL);
6113 	last_sector = bio_end_sector(raid_bio);
6114 
6115 	for (; logical_sector < last_sector;
6116 	     logical_sector += STRIPE_SECTORS,
6117 		     sector += STRIPE_SECTORS,
6118 		     scnt++) {
6119 
6120 		if (scnt < offset)
6121 			/* already done this stripe */
6122 			continue;
6123 
6124 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6125 
6126 		if (!sh) {
6127 			/* failed to get a stripe - must wait */
6128 			conf->retry_read_aligned = raid_bio;
6129 			conf->retry_read_offset = scnt;
6130 			return handled;
6131 		}
6132 
6133 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6134 			raid5_release_stripe(sh);
6135 			conf->retry_read_aligned = raid_bio;
6136 			conf->retry_read_offset = scnt;
6137 			return handled;
6138 		}
6139 
6140 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6141 		handle_stripe(sh);
6142 		raid5_release_stripe(sh);
6143 		handled++;
6144 	}
6145 
6146 	bio_endio(raid_bio);
6147 
6148 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6149 		wake_up(&conf->wait_for_quiescent);
6150 	return handled;
6151 }
6152 
6153 static int handle_active_stripes(struct r5conf *conf, int group,
6154 				 struct r5worker *worker,
6155 				 struct list_head *temp_inactive_list)
6156 {
6157 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6158 	int i, batch_size = 0, hash;
6159 	bool release_inactive = false;
6160 
6161 	while (batch_size < MAX_STRIPE_BATCH &&
6162 			(sh = __get_priority_stripe(conf, group)) != NULL)
6163 		batch[batch_size++] = sh;
6164 
6165 	if (batch_size == 0) {
6166 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6167 			if (!list_empty(temp_inactive_list + i))
6168 				break;
6169 		if (i == NR_STRIPE_HASH_LOCKS) {
6170 			spin_unlock_irq(&conf->device_lock);
6171 			log_flush_stripe_to_raid(conf);
6172 			spin_lock_irq(&conf->device_lock);
6173 			return batch_size;
6174 		}
6175 		release_inactive = true;
6176 	}
6177 	spin_unlock_irq(&conf->device_lock);
6178 
6179 	release_inactive_stripe_list(conf, temp_inactive_list,
6180 				     NR_STRIPE_HASH_LOCKS);
6181 
6182 	r5l_flush_stripe_to_raid(conf->log);
6183 	if (release_inactive) {
6184 		spin_lock_irq(&conf->device_lock);
6185 		return 0;
6186 	}
6187 
6188 	for (i = 0; i < batch_size; i++)
6189 		handle_stripe(batch[i]);
6190 	log_write_stripe_run(conf);
6191 
6192 	cond_resched();
6193 
6194 	spin_lock_irq(&conf->device_lock);
6195 	for (i = 0; i < batch_size; i++) {
6196 		hash = batch[i]->hash_lock_index;
6197 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6198 	}
6199 	return batch_size;
6200 }
6201 
6202 static void raid5_do_work(struct work_struct *work)
6203 {
6204 	struct r5worker *worker = container_of(work, struct r5worker, work);
6205 	struct r5worker_group *group = worker->group;
6206 	struct r5conf *conf = group->conf;
6207 	struct mddev *mddev = conf->mddev;
6208 	int group_id = group - conf->worker_groups;
6209 	int handled;
6210 	struct blk_plug plug;
6211 
6212 	pr_debug("+++ raid5worker active\n");
6213 
6214 	blk_start_plug(&plug);
6215 	handled = 0;
6216 	spin_lock_irq(&conf->device_lock);
6217 	while (1) {
6218 		int batch_size, released;
6219 
6220 		released = release_stripe_list(conf, worker->temp_inactive_list);
6221 
6222 		batch_size = handle_active_stripes(conf, group_id, worker,
6223 						   worker->temp_inactive_list);
6224 		worker->working = false;
6225 		if (!batch_size && !released)
6226 			break;
6227 		handled += batch_size;
6228 		wait_event_lock_irq(mddev->sb_wait,
6229 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6230 			conf->device_lock);
6231 	}
6232 	pr_debug("%d stripes handled\n", handled);
6233 
6234 	spin_unlock_irq(&conf->device_lock);
6235 
6236 	flush_deferred_bios(conf);
6237 
6238 	r5l_flush_stripe_to_raid(conf->log);
6239 
6240 	async_tx_issue_pending_all();
6241 	blk_finish_plug(&plug);
6242 
6243 	pr_debug("--- raid5worker inactive\n");
6244 }
6245 
6246 /*
6247  * This is our raid5 kernel thread.
6248  *
6249  * We scan the hash table for stripes which can be handled now.
6250  * During the scan, completed stripes are saved for us by the interrupt
6251  * handler, so that they will not have to wait for our next wakeup.
6252  */
6253 static void raid5d(struct md_thread *thread)
6254 {
6255 	struct mddev *mddev = thread->mddev;
6256 	struct r5conf *conf = mddev->private;
6257 	int handled;
6258 	struct blk_plug plug;
6259 
6260 	pr_debug("+++ raid5d active\n");
6261 
6262 	md_check_recovery(mddev);
6263 
6264 	blk_start_plug(&plug);
6265 	handled = 0;
6266 	spin_lock_irq(&conf->device_lock);
6267 	while (1) {
6268 		struct bio *bio;
6269 		int batch_size, released;
6270 		unsigned int offset;
6271 
6272 		released = release_stripe_list(conf, conf->temp_inactive_list);
6273 		if (released)
6274 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6275 
6276 		if (
6277 		    !list_empty(&conf->bitmap_list)) {
6278 			/* Now is a good time to flush some bitmap updates */
6279 			conf->seq_flush++;
6280 			spin_unlock_irq(&conf->device_lock);
6281 			bitmap_unplug(mddev->bitmap);
6282 			spin_lock_irq(&conf->device_lock);
6283 			conf->seq_write = conf->seq_flush;
6284 			activate_bit_delay(conf, conf->temp_inactive_list);
6285 		}
6286 		raid5_activate_delayed(conf);
6287 
6288 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6289 			int ok;
6290 			spin_unlock_irq(&conf->device_lock);
6291 			ok = retry_aligned_read(conf, bio, offset);
6292 			spin_lock_irq(&conf->device_lock);
6293 			if (!ok)
6294 				break;
6295 			handled++;
6296 		}
6297 
6298 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6299 						   conf->temp_inactive_list);
6300 		if (!batch_size && !released)
6301 			break;
6302 		handled += batch_size;
6303 
6304 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6305 			spin_unlock_irq(&conf->device_lock);
6306 			md_check_recovery(mddev);
6307 			spin_lock_irq(&conf->device_lock);
6308 		}
6309 	}
6310 	pr_debug("%d stripes handled\n", handled);
6311 
6312 	spin_unlock_irq(&conf->device_lock);
6313 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6314 	    mutex_trylock(&conf->cache_size_mutex)) {
6315 		grow_one_stripe(conf, __GFP_NOWARN);
6316 		/* Set flag even if allocation failed.  This helps
6317 		 * slow down allocation requests when mem is short
6318 		 */
6319 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6320 		mutex_unlock(&conf->cache_size_mutex);
6321 	}
6322 
6323 	flush_deferred_bios(conf);
6324 
6325 	r5l_flush_stripe_to_raid(conf->log);
6326 
6327 	async_tx_issue_pending_all();
6328 	blk_finish_plug(&plug);
6329 
6330 	pr_debug("--- raid5d inactive\n");
6331 }
6332 
6333 static ssize_t
6334 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6335 {
6336 	struct r5conf *conf;
6337 	int ret = 0;
6338 	spin_lock(&mddev->lock);
6339 	conf = mddev->private;
6340 	if (conf)
6341 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6342 	spin_unlock(&mddev->lock);
6343 	return ret;
6344 }
6345 
6346 int
6347 raid5_set_cache_size(struct mddev *mddev, int size)
6348 {
6349 	struct r5conf *conf = mddev->private;
6350 
6351 	if (size <= 16 || size > 32768)
6352 		return -EINVAL;
6353 
6354 	conf->min_nr_stripes = size;
6355 	mutex_lock(&conf->cache_size_mutex);
6356 	while (size < conf->max_nr_stripes &&
6357 	       drop_one_stripe(conf))
6358 		;
6359 	mutex_unlock(&conf->cache_size_mutex);
6360 
6361 	md_allow_write(mddev);
6362 
6363 	mutex_lock(&conf->cache_size_mutex);
6364 	while (size > conf->max_nr_stripes)
6365 		if (!grow_one_stripe(conf, GFP_KERNEL))
6366 			break;
6367 	mutex_unlock(&conf->cache_size_mutex);
6368 
6369 	return 0;
6370 }
6371 EXPORT_SYMBOL(raid5_set_cache_size);
6372 
6373 static ssize_t
6374 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6375 {
6376 	struct r5conf *conf;
6377 	unsigned long new;
6378 	int err;
6379 
6380 	if (len >= PAGE_SIZE)
6381 		return -EINVAL;
6382 	if (kstrtoul(page, 10, &new))
6383 		return -EINVAL;
6384 	err = mddev_lock(mddev);
6385 	if (err)
6386 		return err;
6387 	conf = mddev->private;
6388 	if (!conf)
6389 		err = -ENODEV;
6390 	else
6391 		err = raid5_set_cache_size(mddev, new);
6392 	mddev_unlock(mddev);
6393 
6394 	return err ?: len;
6395 }
6396 
6397 static struct md_sysfs_entry
6398 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6399 				raid5_show_stripe_cache_size,
6400 				raid5_store_stripe_cache_size);
6401 
6402 static ssize_t
6403 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6404 {
6405 	struct r5conf *conf = mddev->private;
6406 	if (conf)
6407 		return sprintf(page, "%d\n", conf->rmw_level);
6408 	else
6409 		return 0;
6410 }
6411 
6412 static ssize_t
6413 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6414 {
6415 	struct r5conf *conf = mddev->private;
6416 	unsigned long new;
6417 
6418 	if (!conf)
6419 		return -ENODEV;
6420 
6421 	if (len >= PAGE_SIZE)
6422 		return -EINVAL;
6423 
6424 	if (kstrtoul(page, 10, &new))
6425 		return -EINVAL;
6426 
6427 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6428 		return -EINVAL;
6429 
6430 	if (new != PARITY_DISABLE_RMW &&
6431 	    new != PARITY_ENABLE_RMW &&
6432 	    new != PARITY_PREFER_RMW)
6433 		return -EINVAL;
6434 
6435 	conf->rmw_level = new;
6436 	return len;
6437 }
6438 
6439 static struct md_sysfs_entry
6440 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6441 			 raid5_show_rmw_level,
6442 			 raid5_store_rmw_level);
6443 
6444 
6445 static ssize_t
6446 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6447 {
6448 	struct r5conf *conf;
6449 	int ret = 0;
6450 	spin_lock(&mddev->lock);
6451 	conf = mddev->private;
6452 	if (conf)
6453 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6454 	spin_unlock(&mddev->lock);
6455 	return ret;
6456 }
6457 
6458 static ssize_t
6459 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6460 {
6461 	struct r5conf *conf;
6462 	unsigned long new;
6463 	int err;
6464 
6465 	if (len >= PAGE_SIZE)
6466 		return -EINVAL;
6467 	if (kstrtoul(page, 10, &new))
6468 		return -EINVAL;
6469 
6470 	err = mddev_lock(mddev);
6471 	if (err)
6472 		return err;
6473 	conf = mddev->private;
6474 	if (!conf)
6475 		err = -ENODEV;
6476 	else if (new > conf->min_nr_stripes)
6477 		err = -EINVAL;
6478 	else
6479 		conf->bypass_threshold = new;
6480 	mddev_unlock(mddev);
6481 	return err ?: len;
6482 }
6483 
6484 static struct md_sysfs_entry
6485 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6486 					S_IRUGO | S_IWUSR,
6487 					raid5_show_preread_threshold,
6488 					raid5_store_preread_threshold);
6489 
6490 static ssize_t
6491 raid5_show_skip_copy(struct mddev *mddev, char *page)
6492 {
6493 	struct r5conf *conf;
6494 	int ret = 0;
6495 	spin_lock(&mddev->lock);
6496 	conf = mddev->private;
6497 	if (conf)
6498 		ret = sprintf(page, "%d\n", conf->skip_copy);
6499 	spin_unlock(&mddev->lock);
6500 	return ret;
6501 }
6502 
6503 static ssize_t
6504 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6505 {
6506 	struct r5conf *conf;
6507 	unsigned long new;
6508 	int err;
6509 
6510 	if (len >= PAGE_SIZE)
6511 		return -EINVAL;
6512 	if (kstrtoul(page, 10, &new))
6513 		return -EINVAL;
6514 	new = !!new;
6515 
6516 	err = mddev_lock(mddev);
6517 	if (err)
6518 		return err;
6519 	conf = mddev->private;
6520 	if (!conf)
6521 		err = -ENODEV;
6522 	else if (new != conf->skip_copy) {
6523 		mddev_suspend(mddev);
6524 		conf->skip_copy = new;
6525 		if (new)
6526 			mddev->queue->backing_dev_info->capabilities |=
6527 				BDI_CAP_STABLE_WRITES;
6528 		else
6529 			mddev->queue->backing_dev_info->capabilities &=
6530 				~BDI_CAP_STABLE_WRITES;
6531 		mddev_resume(mddev);
6532 	}
6533 	mddev_unlock(mddev);
6534 	return err ?: len;
6535 }
6536 
6537 static struct md_sysfs_entry
6538 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6539 					raid5_show_skip_copy,
6540 					raid5_store_skip_copy);
6541 
6542 static ssize_t
6543 stripe_cache_active_show(struct mddev *mddev, char *page)
6544 {
6545 	struct r5conf *conf = mddev->private;
6546 	if (conf)
6547 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6548 	else
6549 		return 0;
6550 }
6551 
6552 static struct md_sysfs_entry
6553 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6554 
6555 static ssize_t
6556 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6557 {
6558 	struct r5conf *conf;
6559 	int ret = 0;
6560 	spin_lock(&mddev->lock);
6561 	conf = mddev->private;
6562 	if (conf)
6563 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6564 	spin_unlock(&mddev->lock);
6565 	return ret;
6566 }
6567 
6568 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6569 			       int *group_cnt,
6570 			       int *worker_cnt_per_group,
6571 			       struct r5worker_group **worker_groups);
6572 static ssize_t
6573 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6574 {
6575 	struct r5conf *conf;
6576 	unsigned int new;
6577 	int err;
6578 	struct r5worker_group *new_groups, *old_groups;
6579 	int group_cnt, worker_cnt_per_group;
6580 
6581 	if (len >= PAGE_SIZE)
6582 		return -EINVAL;
6583 	if (kstrtouint(page, 10, &new))
6584 		return -EINVAL;
6585 	/* 8192 should be big enough */
6586 	if (new > 8192)
6587 		return -EINVAL;
6588 
6589 	err = mddev_lock(mddev);
6590 	if (err)
6591 		return err;
6592 	conf = mddev->private;
6593 	if (!conf)
6594 		err = -ENODEV;
6595 	else if (new != conf->worker_cnt_per_group) {
6596 		mddev_suspend(mddev);
6597 
6598 		old_groups = conf->worker_groups;
6599 		if (old_groups)
6600 			flush_workqueue(raid5_wq);
6601 
6602 		err = alloc_thread_groups(conf, new,
6603 					  &group_cnt, &worker_cnt_per_group,
6604 					  &new_groups);
6605 		if (!err) {
6606 			spin_lock_irq(&conf->device_lock);
6607 			conf->group_cnt = group_cnt;
6608 			conf->worker_cnt_per_group = worker_cnt_per_group;
6609 			conf->worker_groups = new_groups;
6610 			spin_unlock_irq(&conf->device_lock);
6611 
6612 			if (old_groups)
6613 				kfree(old_groups[0].workers);
6614 			kfree(old_groups);
6615 		}
6616 		mddev_resume(mddev);
6617 	}
6618 	mddev_unlock(mddev);
6619 
6620 	return err ?: len;
6621 }
6622 
6623 static struct md_sysfs_entry
6624 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6625 				raid5_show_group_thread_cnt,
6626 				raid5_store_group_thread_cnt);
6627 
6628 static struct attribute *raid5_attrs[] =  {
6629 	&raid5_stripecache_size.attr,
6630 	&raid5_stripecache_active.attr,
6631 	&raid5_preread_bypass_threshold.attr,
6632 	&raid5_group_thread_cnt.attr,
6633 	&raid5_skip_copy.attr,
6634 	&raid5_rmw_level.attr,
6635 	&r5c_journal_mode.attr,
6636 	NULL,
6637 };
6638 static struct attribute_group raid5_attrs_group = {
6639 	.name = NULL,
6640 	.attrs = raid5_attrs,
6641 };
6642 
6643 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6644 			       int *group_cnt,
6645 			       int *worker_cnt_per_group,
6646 			       struct r5worker_group **worker_groups)
6647 {
6648 	int i, j, k;
6649 	ssize_t size;
6650 	struct r5worker *workers;
6651 
6652 	*worker_cnt_per_group = cnt;
6653 	if (cnt == 0) {
6654 		*group_cnt = 0;
6655 		*worker_groups = NULL;
6656 		return 0;
6657 	}
6658 	*group_cnt = num_possible_nodes();
6659 	size = sizeof(struct r5worker) * cnt;
6660 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6661 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6662 				*group_cnt, GFP_NOIO);
6663 	if (!*worker_groups || !workers) {
6664 		kfree(workers);
6665 		kfree(*worker_groups);
6666 		return -ENOMEM;
6667 	}
6668 
6669 	for (i = 0; i < *group_cnt; i++) {
6670 		struct r5worker_group *group;
6671 
6672 		group = &(*worker_groups)[i];
6673 		INIT_LIST_HEAD(&group->handle_list);
6674 		INIT_LIST_HEAD(&group->loprio_list);
6675 		group->conf = conf;
6676 		group->workers = workers + i * cnt;
6677 
6678 		for (j = 0; j < cnt; j++) {
6679 			struct r5worker *worker = group->workers + j;
6680 			worker->group = group;
6681 			INIT_WORK(&worker->work, raid5_do_work);
6682 
6683 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6684 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6685 		}
6686 	}
6687 
6688 	return 0;
6689 }
6690 
6691 static void free_thread_groups(struct r5conf *conf)
6692 {
6693 	if (conf->worker_groups)
6694 		kfree(conf->worker_groups[0].workers);
6695 	kfree(conf->worker_groups);
6696 	conf->worker_groups = NULL;
6697 }
6698 
6699 static sector_t
6700 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6701 {
6702 	struct r5conf *conf = mddev->private;
6703 
6704 	if (!sectors)
6705 		sectors = mddev->dev_sectors;
6706 	if (!raid_disks)
6707 		/* size is defined by the smallest of previous and new size */
6708 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6709 
6710 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6711 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6712 	return sectors * (raid_disks - conf->max_degraded);
6713 }
6714 
6715 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6716 {
6717 	safe_put_page(percpu->spare_page);
6718 	if (percpu->scribble)
6719 		flex_array_free(percpu->scribble);
6720 	percpu->spare_page = NULL;
6721 	percpu->scribble = NULL;
6722 }
6723 
6724 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6725 {
6726 	if (conf->level == 6 && !percpu->spare_page)
6727 		percpu->spare_page = alloc_page(GFP_KERNEL);
6728 	if (!percpu->scribble)
6729 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6730 						      conf->previous_raid_disks),
6731 						  max(conf->chunk_sectors,
6732 						      conf->prev_chunk_sectors)
6733 						   / STRIPE_SECTORS,
6734 						  GFP_KERNEL);
6735 
6736 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6737 		free_scratch_buffer(conf, percpu);
6738 		return -ENOMEM;
6739 	}
6740 
6741 	return 0;
6742 }
6743 
6744 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6745 {
6746 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6747 
6748 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6749 	return 0;
6750 }
6751 
6752 static void raid5_free_percpu(struct r5conf *conf)
6753 {
6754 	if (!conf->percpu)
6755 		return;
6756 
6757 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6758 	free_percpu(conf->percpu);
6759 }
6760 
6761 static void free_conf(struct r5conf *conf)
6762 {
6763 	int i;
6764 
6765 	log_exit(conf);
6766 
6767 	if (conf->shrinker.nr_deferred)
6768 		unregister_shrinker(&conf->shrinker);
6769 
6770 	free_thread_groups(conf);
6771 	shrink_stripes(conf);
6772 	raid5_free_percpu(conf);
6773 	for (i = 0; i < conf->pool_size; i++)
6774 		if (conf->disks[i].extra_page)
6775 			put_page(conf->disks[i].extra_page);
6776 	kfree(conf->disks);
6777 	if (conf->bio_split)
6778 		bioset_free(conf->bio_split);
6779 	kfree(conf->stripe_hashtbl);
6780 	kfree(conf->pending_data);
6781 	kfree(conf);
6782 }
6783 
6784 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6785 {
6786 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6787 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6788 
6789 	if (alloc_scratch_buffer(conf, percpu)) {
6790 		pr_warn("%s: failed memory allocation for cpu%u\n",
6791 			__func__, cpu);
6792 		return -ENOMEM;
6793 	}
6794 	return 0;
6795 }
6796 
6797 static int raid5_alloc_percpu(struct r5conf *conf)
6798 {
6799 	int err = 0;
6800 
6801 	conf->percpu = alloc_percpu(struct raid5_percpu);
6802 	if (!conf->percpu)
6803 		return -ENOMEM;
6804 
6805 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6806 	if (!err) {
6807 		conf->scribble_disks = max(conf->raid_disks,
6808 			conf->previous_raid_disks);
6809 		conf->scribble_sectors = max(conf->chunk_sectors,
6810 			conf->prev_chunk_sectors);
6811 	}
6812 	return err;
6813 }
6814 
6815 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6816 				      struct shrink_control *sc)
6817 {
6818 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6819 	unsigned long ret = SHRINK_STOP;
6820 
6821 	if (mutex_trylock(&conf->cache_size_mutex)) {
6822 		ret= 0;
6823 		while (ret < sc->nr_to_scan &&
6824 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6825 			if (drop_one_stripe(conf) == 0) {
6826 				ret = SHRINK_STOP;
6827 				break;
6828 			}
6829 			ret++;
6830 		}
6831 		mutex_unlock(&conf->cache_size_mutex);
6832 	}
6833 	return ret;
6834 }
6835 
6836 static unsigned long raid5_cache_count(struct shrinker *shrink,
6837 				       struct shrink_control *sc)
6838 {
6839 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6840 
6841 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6842 		/* unlikely, but not impossible */
6843 		return 0;
6844 	return conf->max_nr_stripes - conf->min_nr_stripes;
6845 }
6846 
6847 static struct r5conf *setup_conf(struct mddev *mddev)
6848 {
6849 	struct r5conf *conf;
6850 	int raid_disk, memory, max_disks;
6851 	struct md_rdev *rdev;
6852 	struct disk_info *disk;
6853 	char pers_name[6];
6854 	int i;
6855 	int group_cnt, worker_cnt_per_group;
6856 	struct r5worker_group *new_group;
6857 
6858 	if (mddev->new_level != 5
6859 	    && mddev->new_level != 4
6860 	    && mddev->new_level != 6) {
6861 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6862 			mdname(mddev), mddev->new_level);
6863 		return ERR_PTR(-EIO);
6864 	}
6865 	if ((mddev->new_level == 5
6866 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6867 	    (mddev->new_level == 6
6868 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6869 		pr_warn("md/raid:%s: layout %d not supported\n",
6870 			mdname(mddev), mddev->new_layout);
6871 		return ERR_PTR(-EIO);
6872 	}
6873 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6874 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6875 			mdname(mddev), mddev->raid_disks);
6876 		return ERR_PTR(-EINVAL);
6877 	}
6878 
6879 	if (!mddev->new_chunk_sectors ||
6880 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6881 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6882 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6883 			mdname(mddev), mddev->new_chunk_sectors << 9);
6884 		return ERR_PTR(-EINVAL);
6885 	}
6886 
6887 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6888 	if (conf == NULL)
6889 		goto abort;
6890 	INIT_LIST_HEAD(&conf->free_list);
6891 	INIT_LIST_HEAD(&conf->pending_list);
6892 	conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6893 		PENDING_IO_MAX, GFP_KERNEL);
6894 	if (!conf->pending_data)
6895 		goto abort;
6896 	for (i = 0; i < PENDING_IO_MAX; i++)
6897 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6898 	/* Don't enable multi-threading by default*/
6899 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6900 				 &new_group)) {
6901 		conf->group_cnt = group_cnt;
6902 		conf->worker_cnt_per_group = worker_cnt_per_group;
6903 		conf->worker_groups = new_group;
6904 	} else
6905 		goto abort;
6906 	spin_lock_init(&conf->device_lock);
6907 	seqcount_init(&conf->gen_lock);
6908 	mutex_init(&conf->cache_size_mutex);
6909 	init_waitqueue_head(&conf->wait_for_quiescent);
6910 	init_waitqueue_head(&conf->wait_for_stripe);
6911 	init_waitqueue_head(&conf->wait_for_overlap);
6912 	INIT_LIST_HEAD(&conf->handle_list);
6913 	INIT_LIST_HEAD(&conf->loprio_list);
6914 	INIT_LIST_HEAD(&conf->hold_list);
6915 	INIT_LIST_HEAD(&conf->delayed_list);
6916 	INIT_LIST_HEAD(&conf->bitmap_list);
6917 	init_llist_head(&conf->released_stripes);
6918 	atomic_set(&conf->active_stripes, 0);
6919 	atomic_set(&conf->preread_active_stripes, 0);
6920 	atomic_set(&conf->active_aligned_reads, 0);
6921 	spin_lock_init(&conf->pending_bios_lock);
6922 	conf->batch_bio_dispatch = true;
6923 	rdev_for_each(rdev, mddev) {
6924 		if (test_bit(Journal, &rdev->flags))
6925 			continue;
6926 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6927 			conf->batch_bio_dispatch = false;
6928 			break;
6929 		}
6930 	}
6931 
6932 	conf->bypass_threshold = BYPASS_THRESHOLD;
6933 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6934 
6935 	conf->raid_disks = mddev->raid_disks;
6936 	if (mddev->reshape_position == MaxSector)
6937 		conf->previous_raid_disks = mddev->raid_disks;
6938 	else
6939 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6940 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6941 
6942 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6943 			      GFP_KERNEL);
6944 
6945 	if (!conf->disks)
6946 		goto abort;
6947 
6948 	for (i = 0; i < max_disks; i++) {
6949 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6950 		if (!conf->disks[i].extra_page)
6951 			goto abort;
6952 	}
6953 
6954 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6955 	if (!conf->bio_split)
6956 		goto abort;
6957 	conf->mddev = mddev;
6958 
6959 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6960 		goto abort;
6961 
6962 	/* We init hash_locks[0] separately to that it can be used
6963 	 * as the reference lock in the spin_lock_nest_lock() call
6964 	 * in lock_all_device_hash_locks_irq in order to convince
6965 	 * lockdep that we know what we are doing.
6966 	 */
6967 	spin_lock_init(conf->hash_locks);
6968 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6969 		spin_lock_init(conf->hash_locks + i);
6970 
6971 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6972 		INIT_LIST_HEAD(conf->inactive_list + i);
6973 
6974 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6975 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6976 
6977 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6978 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6979 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6980 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6981 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6982 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6983 
6984 	conf->level = mddev->new_level;
6985 	conf->chunk_sectors = mddev->new_chunk_sectors;
6986 	if (raid5_alloc_percpu(conf) != 0)
6987 		goto abort;
6988 
6989 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6990 
6991 	rdev_for_each(rdev, mddev) {
6992 		raid_disk = rdev->raid_disk;
6993 		if (raid_disk >= max_disks
6994 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6995 			continue;
6996 		disk = conf->disks + raid_disk;
6997 
6998 		if (test_bit(Replacement, &rdev->flags)) {
6999 			if (disk->replacement)
7000 				goto abort;
7001 			disk->replacement = rdev;
7002 		} else {
7003 			if (disk->rdev)
7004 				goto abort;
7005 			disk->rdev = rdev;
7006 		}
7007 
7008 		if (test_bit(In_sync, &rdev->flags)) {
7009 			char b[BDEVNAME_SIZE];
7010 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7011 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7012 		} else if (rdev->saved_raid_disk != raid_disk)
7013 			/* Cannot rely on bitmap to complete recovery */
7014 			conf->fullsync = 1;
7015 	}
7016 
7017 	conf->level = mddev->new_level;
7018 	if (conf->level == 6) {
7019 		conf->max_degraded = 2;
7020 		if (raid6_call.xor_syndrome)
7021 			conf->rmw_level = PARITY_ENABLE_RMW;
7022 		else
7023 			conf->rmw_level = PARITY_DISABLE_RMW;
7024 	} else {
7025 		conf->max_degraded = 1;
7026 		conf->rmw_level = PARITY_ENABLE_RMW;
7027 	}
7028 	conf->algorithm = mddev->new_layout;
7029 	conf->reshape_progress = mddev->reshape_position;
7030 	if (conf->reshape_progress != MaxSector) {
7031 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7032 		conf->prev_algo = mddev->layout;
7033 	} else {
7034 		conf->prev_chunk_sectors = conf->chunk_sectors;
7035 		conf->prev_algo = conf->algorithm;
7036 	}
7037 
7038 	conf->min_nr_stripes = NR_STRIPES;
7039 	if (mddev->reshape_position != MaxSector) {
7040 		int stripes = max_t(int,
7041 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7042 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7043 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7044 		if (conf->min_nr_stripes != NR_STRIPES)
7045 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7046 				mdname(mddev), conf->min_nr_stripes);
7047 	}
7048 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7049 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7050 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7051 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7052 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7053 			mdname(mddev), memory);
7054 		goto abort;
7055 	} else
7056 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7057 	/*
7058 	 * Losing a stripe head costs more than the time to refill it,
7059 	 * it reduces the queue depth and so can hurt throughput.
7060 	 * So set it rather large, scaled by number of devices.
7061 	 */
7062 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7063 	conf->shrinker.scan_objects = raid5_cache_scan;
7064 	conf->shrinker.count_objects = raid5_cache_count;
7065 	conf->shrinker.batch = 128;
7066 	conf->shrinker.flags = 0;
7067 	if (register_shrinker(&conf->shrinker)) {
7068 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7069 			mdname(mddev));
7070 		goto abort;
7071 	}
7072 
7073 	sprintf(pers_name, "raid%d", mddev->new_level);
7074 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7075 	if (!conf->thread) {
7076 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7077 			mdname(mddev));
7078 		goto abort;
7079 	}
7080 
7081 	return conf;
7082 
7083  abort:
7084 	if (conf) {
7085 		free_conf(conf);
7086 		return ERR_PTR(-EIO);
7087 	} else
7088 		return ERR_PTR(-ENOMEM);
7089 }
7090 
7091 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7092 {
7093 	switch (algo) {
7094 	case ALGORITHM_PARITY_0:
7095 		if (raid_disk < max_degraded)
7096 			return 1;
7097 		break;
7098 	case ALGORITHM_PARITY_N:
7099 		if (raid_disk >= raid_disks - max_degraded)
7100 			return 1;
7101 		break;
7102 	case ALGORITHM_PARITY_0_6:
7103 		if (raid_disk == 0 ||
7104 		    raid_disk == raid_disks - 1)
7105 			return 1;
7106 		break;
7107 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7108 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7109 	case ALGORITHM_LEFT_SYMMETRIC_6:
7110 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7111 		if (raid_disk == raid_disks - 1)
7112 			return 1;
7113 	}
7114 	return 0;
7115 }
7116 
7117 static int raid5_run(struct mddev *mddev)
7118 {
7119 	struct r5conf *conf;
7120 	int working_disks = 0;
7121 	int dirty_parity_disks = 0;
7122 	struct md_rdev *rdev;
7123 	struct md_rdev *journal_dev = NULL;
7124 	sector_t reshape_offset = 0;
7125 	int i;
7126 	long long min_offset_diff = 0;
7127 	int first = 1;
7128 
7129 	if (mddev_init_writes_pending(mddev) < 0)
7130 		return -ENOMEM;
7131 
7132 	if (mddev->recovery_cp != MaxSector)
7133 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7134 			  mdname(mddev));
7135 
7136 	rdev_for_each(rdev, mddev) {
7137 		long long diff;
7138 
7139 		if (test_bit(Journal, &rdev->flags)) {
7140 			journal_dev = rdev;
7141 			continue;
7142 		}
7143 		if (rdev->raid_disk < 0)
7144 			continue;
7145 		diff = (rdev->new_data_offset - rdev->data_offset);
7146 		if (first) {
7147 			min_offset_diff = diff;
7148 			first = 0;
7149 		} else if (mddev->reshape_backwards &&
7150 			 diff < min_offset_diff)
7151 			min_offset_diff = diff;
7152 		else if (!mddev->reshape_backwards &&
7153 			 diff > min_offset_diff)
7154 			min_offset_diff = diff;
7155 	}
7156 
7157 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7158 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7159 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7160 			  mdname(mddev));
7161 		return -EINVAL;
7162 	}
7163 
7164 	if (mddev->reshape_position != MaxSector) {
7165 		/* Check that we can continue the reshape.
7166 		 * Difficulties arise if the stripe we would write to
7167 		 * next is at or after the stripe we would read from next.
7168 		 * For a reshape that changes the number of devices, this
7169 		 * is only possible for a very short time, and mdadm makes
7170 		 * sure that time appears to have past before assembling
7171 		 * the array.  So we fail if that time hasn't passed.
7172 		 * For a reshape that keeps the number of devices the same
7173 		 * mdadm must be monitoring the reshape can keeping the
7174 		 * critical areas read-only and backed up.  It will start
7175 		 * the array in read-only mode, so we check for that.
7176 		 */
7177 		sector_t here_new, here_old;
7178 		int old_disks;
7179 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7180 		int chunk_sectors;
7181 		int new_data_disks;
7182 
7183 		if (journal_dev) {
7184 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7185 				mdname(mddev));
7186 			return -EINVAL;
7187 		}
7188 
7189 		if (mddev->new_level != mddev->level) {
7190 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7191 				mdname(mddev));
7192 			return -EINVAL;
7193 		}
7194 		old_disks = mddev->raid_disks - mddev->delta_disks;
7195 		/* reshape_position must be on a new-stripe boundary, and one
7196 		 * further up in new geometry must map after here in old
7197 		 * geometry.
7198 		 * If the chunk sizes are different, then as we perform reshape
7199 		 * in units of the largest of the two, reshape_position needs
7200 		 * be a multiple of the largest chunk size times new data disks.
7201 		 */
7202 		here_new = mddev->reshape_position;
7203 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7204 		new_data_disks = mddev->raid_disks - max_degraded;
7205 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7206 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7207 				mdname(mddev));
7208 			return -EINVAL;
7209 		}
7210 		reshape_offset = here_new * chunk_sectors;
7211 		/* here_new is the stripe we will write to */
7212 		here_old = mddev->reshape_position;
7213 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7214 		/* here_old is the first stripe that we might need to read
7215 		 * from */
7216 		if (mddev->delta_disks == 0) {
7217 			/* We cannot be sure it is safe to start an in-place
7218 			 * reshape.  It is only safe if user-space is monitoring
7219 			 * and taking constant backups.
7220 			 * mdadm always starts a situation like this in
7221 			 * readonly mode so it can take control before
7222 			 * allowing any writes.  So just check for that.
7223 			 */
7224 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7225 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7226 				/* not really in-place - so OK */;
7227 			else if (mddev->ro == 0) {
7228 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7229 					mdname(mddev));
7230 				return -EINVAL;
7231 			}
7232 		} else if (mddev->reshape_backwards
7233 		    ? (here_new * chunk_sectors + min_offset_diff <=
7234 		       here_old * chunk_sectors)
7235 		    : (here_new * chunk_sectors >=
7236 		       here_old * chunk_sectors + (-min_offset_diff))) {
7237 			/* Reading from the same stripe as writing to - bad */
7238 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7239 				mdname(mddev));
7240 			return -EINVAL;
7241 		}
7242 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7243 		/* OK, we should be able to continue; */
7244 	} else {
7245 		BUG_ON(mddev->level != mddev->new_level);
7246 		BUG_ON(mddev->layout != mddev->new_layout);
7247 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7248 		BUG_ON(mddev->delta_disks != 0);
7249 	}
7250 
7251 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7252 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7253 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7254 			mdname(mddev));
7255 		clear_bit(MD_HAS_PPL, &mddev->flags);
7256 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7257 	}
7258 
7259 	if (mddev->private == NULL)
7260 		conf = setup_conf(mddev);
7261 	else
7262 		conf = mddev->private;
7263 
7264 	if (IS_ERR(conf))
7265 		return PTR_ERR(conf);
7266 
7267 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7268 		if (!journal_dev) {
7269 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7270 				mdname(mddev));
7271 			mddev->ro = 1;
7272 			set_disk_ro(mddev->gendisk, 1);
7273 		} else if (mddev->recovery_cp == MaxSector)
7274 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7275 	}
7276 
7277 	conf->min_offset_diff = min_offset_diff;
7278 	mddev->thread = conf->thread;
7279 	conf->thread = NULL;
7280 	mddev->private = conf;
7281 
7282 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7283 	     i++) {
7284 		rdev = conf->disks[i].rdev;
7285 		if (!rdev && conf->disks[i].replacement) {
7286 			/* The replacement is all we have yet */
7287 			rdev = conf->disks[i].replacement;
7288 			conf->disks[i].replacement = NULL;
7289 			clear_bit(Replacement, &rdev->flags);
7290 			conf->disks[i].rdev = rdev;
7291 		}
7292 		if (!rdev)
7293 			continue;
7294 		if (conf->disks[i].replacement &&
7295 		    conf->reshape_progress != MaxSector) {
7296 			/* replacements and reshape simply do not mix. */
7297 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7298 			goto abort;
7299 		}
7300 		if (test_bit(In_sync, &rdev->flags)) {
7301 			working_disks++;
7302 			continue;
7303 		}
7304 		/* This disc is not fully in-sync.  However if it
7305 		 * just stored parity (beyond the recovery_offset),
7306 		 * when we don't need to be concerned about the
7307 		 * array being dirty.
7308 		 * When reshape goes 'backwards', we never have
7309 		 * partially completed devices, so we only need
7310 		 * to worry about reshape going forwards.
7311 		 */
7312 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7313 		if (mddev->major_version == 0 &&
7314 		    mddev->minor_version > 90)
7315 			rdev->recovery_offset = reshape_offset;
7316 
7317 		if (rdev->recovery_offset < reshape_offset) {
7318 			/* We need to check old and new layout */
7319 			if (!only_parity(rdev->raid_disk,
7320 					 conf->algorithm,
7321 					 conf->raid_disks,
7322 					 conf->max_degraded))
7323 				continue;
7324 		}
7325 		if (!only_parity(rdev->raid_disk,
7326 				 conf->prev_algo,
7327 				 conf->previous_raid_disks,
7328 				 conf->max_degraded))
7329 			continue;
7330 		dirty_parity_disks++;
7331 	}
7332 
7333 	/*
7334 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7335 	 */
7336 	mddev->degraded = raid5_calc_degraded(conf);
7337 
7338 	if (has_failed(conf)) {
7339 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7340 			mdname(mddev), mddev->degraded, conf->raid_disks);
7341 		goto abort;
7342 	}
7343 
7344 	/* device size must be a multiple of chunk size */
7345 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7346 	mddev->resync_max_sectors = mddev->dev_sectors;
7347 
7348 	if (mddev->degraded > dirty_parity_disks &&
7349 	    mddev->recovery_cp != MaxSector) {
7350 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7351 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7352 				mdname(mddev));
7353 		else if (mddev->ok_start_degraded)
7354 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7355 				mdname(mddev));
7356 		else {
7357 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7358 				mdname(mddev));
7359 			goto abort;
7360 		}
7361 	}
7362 
7363 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7364 		mdname(mddev), conf->level,
7365 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7366 		mddev->new_layout);
7367 
7368 	print_raid5_conf(conf);
7369 
7370 	if (conf->reshape_progress != MaxSector) {
7371 		conf->reshape_safe = conf->reshape_progress;
7372 		atomic_set(&conf->reshape_stripes, 0);
7373 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7374 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7375 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7376 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7377 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7378 							"reshape");
7379 	}
7380 
7381 	/* Ok, everything is just fine now */
7382 	if (mddev->to_remove == &raid5_attrs_group)
7383 		mddev->to_remove = NULL;
7384 	else if (mddev->kobj.sd &&
7385 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7386 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7387 			mdname(mddev));
7388 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7389 
7390 	if (mddev->queue) {
7391 		int chunk_size;
7392 		/* read-ahead size must cover two whole stripes, which
7393 		 * is 2 * (datadisks) * chunksize where 'n' is the
7394 		 * number of raid devices
7395 		 */
7396 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7397 		int stripe = data_disks *
7398 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7399 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7400 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7401 
7402 		chunk_size = mddev->chunk_sectors << 9;
7403 		blk_queue_io_min(mddev->queue, chunk_size);
7404 		blk_queue_io_opt(mddev->queue, chunk_size *
7405 				 (conf->raid_disks - conf->max_degraded));
7406 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7407 		/*
7408 		 * We can only discard a whole stripe. It doesn't make sense to
7409 		 * discard data disk but write parity disk
7410 		 */
7411 		stripe = stripe * PAGE_SIZE;
7412 		/* Round up to power of 2, as discard handling
7413 		 * currently assumes that */
7414 		while ((stripe-1) & stripe)
7415 			stripe = (stripe | (stripe-1)) + 1;
7416 		mddev->queue->limits.discard_alignment = stripe;
7417 		mddev->queue->limits.discard_granularity = stripe;
7418 
7419 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7420 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7421 
7422 		rdev_for_each(rdev, mddev) {
7423 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7424 					  rdev->data_offset << 9);
7425 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7426 					  rdev->new_data_offset << 9);
7427 		}
7428 
7429 		/*
7430 		 * zeroing is required, otherwise data
7431 		 * could be lost. Consider a scenario: discard a stripe
7432 		 * (the stripe could be inconsistent if
7433 		 * discard_zeroes_data is 0); write one disk of the
7434 		 * stripe (the stripe could be inconsistent again
7435 		 * depending on which disks are used to calculate
7436 		 * parity); the disk is broken; The stripe data of this
7437 		 * disk is lost.
7438 		 *
7439 		 * We only allow DISCARD if the sysadmin has confirmed that
7440 		 * only safe devices are in use by setting a module parameter.
7441 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7442 		 * requests, as that is required to be safe.
7443 		 */
7444 		if (devices_handle_discard_safely &&
7445 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7446 		    mddev->queue->limits.discard_granularity >= stripe)
7447 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7448 						mddev->queue);
7449 		else
7450 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7451 						mddev->queue);
7452 
7453 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7454 	}
7455 
7456 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7457 		goto abort;
7458 
7459 	return 0;
7460 abort:
7461 	md_unregister_thread(&mddev->thread);
7462 	print_raid5_conf(conf);
7463 	free_conf(conf);
7464 	mddev->private = NULL;
7465 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7466 	return -EIO;
7467 }
7468 
7469 static void raid5_free(struct mddev *mddev, void *priv)
7470 {
7471 	struct r5conf *conf = priv;
7472 
7473 	free_conf(conf);
7474 	mddev->to_remove = &raid5_attrs_group;
7475 }
7476 
7477 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7478 {
7479 	struct r5conf *conf = mddev->private;
7480 	int i;
7481 
7482 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7483 		conf->chunk_sectors / 2, mddev->layout);
7484 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7485 	rcu_read_lock();
7486 	for (i = 0; i < conf->raid_disks; i++) {
7487 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7488 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7489 	}
7490 	rcu_read_unlock();
7491 	seq_printf (seq, "]");
7492 }
7493 
7494 static void print_raid5_conf (struct r5conf *conf)
7495 {
7496 	int i;
7497 	struct disk_info *tmp;
7498 
7499 	pr_debug("RAID conf printout:\n");
7500 	if (!conf) {
7501 		pr_debug("(conf==NULL)\n");
7502 		return;
7503 	}
7504 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7505 	       conf->raid_disks,
7506 	       conf->raid_disks - conf->mddev->degraded);
7507 
7508 	for (i = 0; i < conf->raid_disks; i++) {
7509 		char b[BDEVNAME_SIZE];
7510 		tmp = conf->disks + i;
7511 		if (tmp->rdev)
7512 			pr_debug(" disk %d, o:%d, dev:%s\n",
7513 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7514 			       bdevname(tmp->rdev->bdev, b));
7515 	}
7516 }
7517 
7518 static int raid5_spare_active(struct mddev *mddev)
7519 {
7520 	int i;
7521 	struct r5conf *conf = mddev->private;
7522 	struct disk_info *tmp;
7523 	int count = 0;
7524 	unsigned long flags;
7525 
7526 	for (i = 0; i < conf->raid_disks; i++) {
7527 		tmp = conf->disks + i;
7528 		if (tmp->replacement
7529 		    && tmp->replacement->recovery_offset == MaxSector
7530 		    && !test_bit(Faulty, &tmp->replacement->flags)
7531 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7532 			/* Replacement has just become active. */
7533 			if (!tmp->rdev
7534 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7535 				count++;
7536 			if (tmp->rdev) {
7537 				/* Replaced device not technically faulty,
7538 				 * but we need to be sure it gets removed
7539 				 * and never re-added.
7540 				 */
7541 				set_bit(Faulty, &tmp->rdev->flags);
7542 				sysfs_notify_dirent_safe(
7543 					tmp->rdev->sysfs_state);
7544 			}
7545 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7546 		} else if (tmp->rdev
7547 		    && tmp->rdev->recovery_offset == MaxSector
7548 		    && !test_bit(Faulty, &tmp->rdev->flags)
7549 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7550 			count++;
7551 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7552 		}
7553 	}
7554 	spin_lock_irqsave(&conf->device_lock, flags);
7555 	mddev->degraded = raid5_calc_degraded(conf);
7556 	spin_unlock_irqrestore(&conf->device_lock, flags);
7557 	print_raid5_conf(conf);
7558 	return count;
7559 }
7560 
7561 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7562 {
7563 	struct r5conf *conf = mddev->private;
7564 	int err = 0;
7565 	int number = rdev->raid_disk;
7566 	struct md_rdev **rdevp;
7567 	struct disk_info *p = conf->disks + number;
7568 
7569 	print_raid5_conf(conf);
7570 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7571 		/*
7572 		 * we can't wait pending write here, as this is called in
7573 		 * raid5d, wait will deadlock.
7574 		 * neilb: there is no locking about new writes here,
7575 		 * so this cannot be safe.
7576 		 */
7577 		if (atomic_read(&conf->active_stripes) ||
7578 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7579 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7580 			return -EBUSY;
7581 		}
7582 		log_exit(conf);
7583 		return 0;
7584 	}
7585 	if (rdev == p->rdev)
7586 		rdevp = &p->rdev;
7587 	else if (rdev == p->replacement)
7588 		rdevp = &p->replacement;
7589 	else
7590 		return 0;
7591 
7592 	if (number >= conf->raid_disks &&
7593 	    conf->reshape_progress == MaxSector)
7594 		clear_bit(In_sync, &rdev->flags);
7595 
7596 	if (test_bit(In_sync, &rdev->flags) ||
7597 	    atomic_read(&rdev->nr_pending)) {
7598 		err = -EBUSY;
7599 		goto abort;
7600 	}
7601 	/* Only remove non-faulty devices if recovery
7602 	 * isn't possible.
7603 	 */
7604 	if (!test_bit(Faulty, &rdev->flags) &&
7605 	    mddev->recovery_disabled != conf->recovery_disabled &&
7606 	    !has_failed(conf) &&
7607 	    (!p->replacement || p->replacement == rdev) &&
7608 	    number < conf->raid_disks) {
7609 		err = -EBUSY;
7610 		goto abort;
7611 	}
7612 	*rdevp = NULL;
7613 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7614 		synchronize_rcu();
7615 		if (atomic_read(&rdev->nr_pending)) {
7616 			/* lost the race, try later */
7617 			err = -EBUSY;
7618 			*rdevp = rdev;
7619 		}
7620 	}
7621 	if (!err) {
7622 		err = log_modify(conf, rdev, false);
7623 		if (err)
7624 			goto abort;
7625 	}
7626 	if (p->replacement) {
7627 		/* We must have just cleared 'rdev' */
7628 		p->rdev = p->replacement;
7629 		clear_bit(Replacement, &p->replacement->flags);
7630 		smp_mb(); /* Make sure other CPUs may see both as identical
7631 			   * but will never see neither - if they are careful
7632 			   */
7633 		p->replacement = NULL;
7634 
7635 		if (!err)
7636 			err = log_modify(conf, p->rdev, true);
7637 	}
7638 
7639 	clear_bit(WantReplacement, &rdev->flags);
7640 abort:
7641 
7642 	print_raid5_conf(conf);
7643 	return err;
7644 }
7645 
7646 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7647 {
7648 	struct r5conf *conf = mddev->private;
7649 	int err = -EEXIST;
7650 	int disk;
7651 	struct disk_info *p;
7652 	int first = 0;
7653 	int last = conf->raid_disks - 1;
7654 
7655 	if (test_bit(Journal, &rdev->flags)) {
7656 		if (conf->log)
7657 			return -EBUSY;
7658 
7659 		rdev->raid_disk = 0;
7660 		/*
7661 		 * The array is in readonly mode if journal is missing, so no
7662 		 * write requests running. We should be safe
7663 		 */
7664 		log_init(conf, rdev, false);
7665 		return 0;
7666 	}
7667 	if (mddev->recovery_disabled == conf->recovery_disabled)
7668 		return -EBUSY;
7669 
7670 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7671 		/* no point adding a device */
7672 		return -EINVAL;
7673 
7674 	if (rdev->raid_disk >= 0)
7675 		first = last = rdev->raid_disk;
7676 
7677 	/*
7678 	 * find the disk ... but prefer rdev->saved_raid_disk
7679 	 * if possible.
7680 	 */
7681 	if (rdev->saved_raid_disk >= 0 &&
7682 	    rdev->saved_raid_disk >= first &&
7683 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7684 		first = rdev->saved_raid_disk;
7685 
7686 	for (disk = first; disk <= last; disk++) {
7687 		p = conf->disks + disk;
7688 		if (p->rdev == NULL) {
7689 			clear_bit(In_sync, &rdev->flags);
7690 			rdev->raid_disk = disk;
7691 			if (rdev->saved_raid_disk != disk)
7692 				conf->fullsync = 1;
7693 			rcu_assign_pointer(p->rdev, rdev);
7694 
7695 			err = log_modify(conf, rdev, true);
7696 
7697 			goto out;
7698 		}
7699 	}
7700 	for (disk = first; disk <= last; disk++) {
7701 		p = conf->disks + disk;
7702 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7703 		    p->replacement == NULL) {
7704 			clear_bit(In_sync, &rdev->flags);
7705 			set_bit(Replacement, &rdev->flags);
7706 			rdev->raid_disk = disk;
7707 			err = 0;
7708 			conf->fullsync = 1;
7709 			rcu_assign_pointer(p->replacement, rdev);
7710 			break;
7711 		}
7712 	}
7713 out:
7714 	print_raid5_conf(conf);
7715 	return err;
7716 }
7717 
7718 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7719 {
7720 	/* no resync is happening, and there is enough space
7721 	 * on all devices, so we can resize.
7722 	 * We need to make sure resync covers any new space.
7723 	 * If the array is shrinking we should possibly wait until
7724 	 * any io in the removed space completes, but it hardly seems
7725 	 * worth it.
7726 	 */
7727 	sector_t newsize;
7728 	struct r5conf *conf = mddev->private;
7729 
7730 	if (conf->log || raid5_has_ppl(conf))
7731 		return -EINVAL;
7732 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7733 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7734 	if (mddev->external_size &&
7735 	    mddev->array_sectors > newsize)
7736 		return -EINVAL;
7737 	if (mddev->bitmap) {
7738 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7739 		if (ret)
7740 			return ret;
7741 	}
7742 	md_set_array_sectors(mddev, newsize);
7743 	if (sectors > mddev->dev_sectors &&
7744 	    mddev->recovery_cp > mddev->dev_sectors) {
7745 		mddev->recovery_cp = mddev->dev_sectors;
7746 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7747 	}
7748 	mddev->dev_sectors = sectors;
7749 	mddev->resync_max_sectors = sectors;
7750 	return 0;
7751 }
7752 
7753 static int check_stripe_cache(struct mddev *mddev)
7754 {
7755 	/* Can only proceed if there are plenty of stripe_heads.
7756 	 * We need a minimum of one full stripe,, and for sensible progress
7757 	 * it is best to have about 4 times that.
7758 	 * If we require 4 times, then the default 256 4K stripe_heads will
7759 	 * allow for chunk sizes up to 256K, which is probably OK.
7760 	 * If the chunk size is greater, user-space should request more
7761 	 * stripe_heads first.
7762 	 */
7763 	struct r5conf *conf = mddev->private;
7764 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7765 	    > conf->min_nr_stripes ||
7766 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7767 	    > conf->min_nr_stripes) {
7768 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7769 			mdname(mddev),
7770 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7771 			 / STRIPE_SIZE)*4);
7772 		return 0;
7773 	}
7774 	return 1;
7775 }
7776 
7777 static int check_reshape(struct mddev *mddev)
7778 {
7779 	struct r5conf *conf = mddev->private;
7780 
7781 	if (conf->log || raid5_has_ppl(conf))
7782 		return -EINVAL;
7783 	if (mddev->delta_disks == 0 &&
7784 	    mddev->new_layout == mddev->layout &&
7785 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7786 		return 0; /* nothing to do */
7787 	if (has_failed(conf))
7788 		return -EINVAL;
7789 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7790 		/* We might be able to shrink, but the devices must
7791 		 * be made bigger first.
7792 		 * For raid6, 4 is the minimum size.
7793 		 * Otherwise 2 is the minimum
7794 		 */
7795 		int min = 2;
7796 		if (mddev->level == 6)
7797 			min = 4;
7798 		if (mddev->raid_disks + mddev->delta_disks < min)
7799 			return -EINVAL;
7800 	}
7801 
7802 	if (!check_stripe_cache(mddev))
7803 		return -ENOSPC;
7804 
7805 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7806 	    mddev->delta_disks > 0)
7807 		if (resize_chunks(conf,
7808 				  conf->previous_raid_disks
7809 				  + max(0, mddev->delta_disks),
7810 				  max(mddev->new_chunk_sectors,
7811 				      mddev->chunk_sectors)
7812 			    ) < 0)
7813 			return -ENOMEM;
7814 
7815 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7816 		return 0; /* never bother to shrink */
7817 	return resize_stripes(conf, (conf->previous_raid_disks
7818 				     + mddev->delta_disks));
7819 }
7820 
7821 static int raid5_start_reshape(struct mddev *mddev)
7822 {
7823 	struct r5conf *conf = mddev->private;
7824 	struct md_rdev *rdev;
7825 	int spares = 0;
7826 	unsigned long flags;
7827 
7828 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7829 		return -EBUSY;
7830 
7831 	if (!check_stripe_cache(mddev))
7832 		return -ENOSPC;
7833 
7834 	if (has_failed(conf))
7835 		return -EINVAL;
7836 
7837 	rdev_for_each(rdev, mddev) {
7838 		if (!test_bit(In_sync, &rdev->flags)
7839 		    && !test_bit(Faulty, &rdev->flags))
7840 			spares++;
7841 	}
7842 
7843 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7844 		/* Not enough devices even to make a degraded array
7845 		 * of that size
7846 		 */
7847 		return -EINVAL;
7848 
7849 	/* Refuse to reduce size of the array.  Any reductions in
7850 	 * array size must be through explicit setting of array_size
7851 	 * attribute.
7852 	 */
7853 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7854 	    < mddev->array_sectors) {
7855 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7856 			mdname(mddev));
7857 		return -EINVAL;
7858 	}
7859 
7860 	atomic_set(&conf->reshape_stripes, 0);
7861 	spin_lock_irq(&conf->device_lock);
7862 	write_seqcount_begin(&conf->gen_lock);
7863 	conf->previous_raid_disks = conf->raid_disks;
7864 	conf->raid_disks += mddev->delta_disks;
7865 	conf->prev_chunk_sectors = conf->chunk_sectors;
7866 	conf->chunk_sectors = mddev->new_chunk_sectors;
7867 	conf->prev_algo = conf->algorithm;
7868 	conf->algorithm = mddev->new_layout;
7869 	conf->generation++;
7870 	/* Code that selects data_offset needs to see the generation update
7871 	 * if reshape_progress has been set - so a memory barrier needed.
7872 	 */
7873 	smp_mb();
7874 	if (mddev->reshape_backwards)
7875 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7876 	else
7877 		conf->reshape_progress = 0;
7878 	conf->reshape_safe = conf->reshape_progress;
7879 	write_seqcount_end(&conf->gen_lock);
7880 	spin_unlock_irq(&conf->device_lock);
7881 
7882 	/* Now make sure any requests that proceeded on the assumption
7883 	 * the reshape wasn't running - like Discard or Read - have
7884 	 * completed.
7885 	 */
7886 	mddev_suspend(mddev);
7887 	mddev_resume(mddev);
7888 
7889 	/* Add some new drives, as many as will fit.
7890 	 * We know there are enough to make the newly sized array work.
7891 	 * Don't add devices if we are reducing the number of
7892 	 * devices in the array.  This is because it is not possible
7893 	 * to correctly record the "partially reconstructed" state of
7894 	 * such devices during the reshape and confusion could result.
7895 	 */
7896 	if (mddev->delta_disks >= 0) {
7897 		rdev_for_each(rdev, mddev)
7898 			if (rdev->raid_disk < 0 &&
7899 			    !test_bit(Faulty, &rdev->flags)) {
7900 				if (raid5_add_disk(mddev, rdev) == 0) {
7901 					if (rdev->raid_disk
7902 					    >= conf->previous_raid_disks)
7903 						set_bit(In_sync, &rdev->flags);
7904 					else
7905 						rdev->recovery_offset = 0;
7906 
7907 					if (sysfs_link_rdev(mddev, rdev))
7908 						/* Failure here is OK */;
7909 				}
7910 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7911 				   && !test_bit(Faulty, &rdev->flags)) {
7912 				/* This is a spare that was manually added */
7913 				set_bit(In_sync, &rdev->flags);
7914 			}
7915 
7916 		/* When a reshape changes the number of devices,
7917 		 * ->degraded is measured against the larger of the
7918 		 * pre and post number of devices.
7919 		 */
7920 		spin_lock_irqsave(&conf->device_lock, flags);
7921 		mddev->degraded = raid5_calc_degraded(conf);
7922 		spin_unlock_irqrestore(&conf->device_lock, flags);
7923 	}
7924 	mddev->raid_disks = conf->raid_disks;
7925 	mddev->reshape_position = conf->reshape_progress;
7926 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7927 
7928 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7929 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7930 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7931 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7932 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7933 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7934 						"reshape");
7935 	if (!mddev->sync_thread) {
7936 		mddev->recovery = 0;
7937 		spin_lock_irq(&conf->device_lock);
7938 		write_seqcount_begin(&conf->gen_lock);
7939 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7940 		mddev->new_chunk_sectors =
7941 			conf->chunk_sectors = conf->prev_chunk_sectors;
7942 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7943 		rdev_for_each(rdev, mddev)
7944 			rdev->new_data_offset = rdev->data_offset;
7945 		smp_wmb();
7946 		conf->generation --;
7947 		conf->reshape_progress = MaxSector;
7948 		mddev->reshape_position = MaxSector;
7949 		write_seqcount_end(&conf->gen_lock);
7950 		spin_unlock_irq(&conf->device_lock);
7951 		return -EAGAIN;
7952 	}
7953 	conf->reshape_checkpoint = jiffies;
7954 	md_wakeup_thread(mddev->sync_thread);
7955 	md_new_event(mddev);
7956 	return 0;
7957 }
7958 
7959 /* This is called from the reshape thread and should make any
7960  * changes needed in 'conf'
7961  */
7962 static void end_reshape(struct r5conf *conf)
7963 {
7964 
7965 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7966 		struct md_rdev *rdev;
7967 
7968 		spin_lock_irq(&conf->device_lock);
7969 		conf->previous_raid_disks = conf->raid_disks;
7970 		md_finish_reshape(conf->mddev);
7971 		smp_wmb();
7972 		conf->reshape_progress = MaxSector;
7973 		conf->mddev->reshape_position = MaxSector;
7974 		rdev_for_each(rdev, conf->mddev)
7975 			if (rdev->raid_disk >= 0 &&
7976 			    !test_bit(Journal, &rdev->flags) &&
7977 			    !test_bit(In_sync, &rdev->flags))
7978 				rdev->recovery_offset = MaxSector;
7979 		spin_unlock_irq(&conf->device_lock);
7980 		wake_up(&conf->wait_for_overlap);
7981 
7982 		/* read-ahead size must cover two whole stripes, which is
7983 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7984 		 */
7985 		if (conf->mddev->queue) {
7986 			int data_disks = conf->raid_disks - conf->max_degraded;
7987 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7988 						   / PAGE_SIZE);
7989 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7990 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7991 		}
7992 	}
7993 }
7994 
7995 /* This is called from the raid5d thread with mddev_lock held.
7996  * It makes config changes to the device.
7997  */
7998 static void raid5_finish_reshape(struct mddev *mddev)
7999 {
8000 	struct r5conf *conf = mddev->private;
8001 
8002 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8003 
8004 		if (mddev->delta_disks > 0) {
8005 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8006 			if (mddev->queue) {
8007 				set_capacity(mddev->gendisk, mddev->array_sectors);
8008 				revalidate_disk(mddev->gendisk);
8009 			}
8010 		} else {
8011 			int d;
8012 			spin_lock_irq(&conf->device_lock);
8013 			mddev->degraded = raid5_calc_degraded(conf);
8014 			spin_unlock_irq(&conf->device_lock);
8015 			for (d = conf->raid_disks ;
8016 			     d < conf->raid_disks - mddev->delta_disks;
8017 			     d++) {
8018 				struct md_rdev *rdev = conf->disks[d].rdev;
8019 				if (rdev)
8020 					clear_bit(In_sync, &rdev->flags);
8021 				rdev = conf->disks[d].replacement;
8022 				if (rdev)
8023 					clear_bit(In_sync, &rdev->flags);
8024 			}
8025 		}
8026 		mddev->layout = conf->algorithm;
8027 		mddev->chunk_sectors = conf->chunk_sectors;
8028 		mddev->reshape_position = MaxSector;
8029 		mddev->delta_disks = 0;
8030 		mddev->reshape_backwards = 0;
8031 	}
8032 }
8033 
8034 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8035 {
8036 	struct r5conf *conf = mddev->private;
8037 
8038 	if (quiesce) {
8039 		/* stop all writes */
8040 		lock_all_device_hash_locks_irq(conf);
8041 		/* '2' tells resync/reshape to pause so that all
8042 		 * active stripes can drain
8043 		 */
8044 		r5c_flush_cache(conf, INT_MAX);
8045 		conf->quiesce = 2;
8046 		wait_event_cmd(conf->wait_for_quiescent,
8047 				    atomic_read(&conf->active_stripes) == 0 &&
8048 				    atomic_read(&conf->active_aligned_reads) == 0,
8049 				    unlock_all_device_hash_locks_irq(conf),
8050 				    lock_all_device_hash_locks_irq(conf));
8051 		conf->quiesce = 1;
8052 		unlock_all_device_hash_locks_irq(conf);
8053 		/* allow reshape to continue */
8054 		wake_up(&conf->wait_for_overlap);
8055 	} else {
8056 		/* re-enable writes */
8057 		lock_all_device_hash_locks_irq(conf);
8058 		conf->quiesce = 0;
8059 		wake_up(&conf->wait_for_quiescent);
8060 		wake_up(&conf->wait_for_overlap);
8061 		unlock_all_device_hash_locks_irq(conf);
8062 	}
8063 	log_quiesce(conf, quiesce);
8064 }
8065 
8066 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8067 {
8068 	struct r0conf *raid0_conf = mddev->private;
8069 	sector_t sectors;
8070 
8071 	/* for raid0 takeover only one zone is supported */
8072 	if (raid0_conf->nr_strip_zones > 1) {
8073 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8074 			mdname(mddev));
8075 		return ERR_PTR(-EINVAL);
8076 	}
8077 
8078 	sectors = raid0_conf->strip_zone[0].zone_end;
8079 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8080 	mddev->dev_sectors = sectors;
8081 	mddev->new_level = level;
8082 	mddev->new_layout = ALGORITHM_PARITY_N;
8083 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8084 	mddev->raid_disks += 1;
8085 	mddev->delta_disks = 1;
8086 	/* make sure it will be not marked as dirty */
8087 	mddev->recovery_cp = MaxSector;
8088 
8089 	return setup_conf(mddev);
8090 }
8091 
8092 static void *raid5_takeover_raid1(struct mddev *mddev)
8093 {
8094 	int chunksect;
8095 	void *ret;
8096 
8097 	if (mddev->raid_disks != 2 ||
8098 	    mddev->degraded > 1)
8099 		return ERR_PTR(-EINVAL);
8100 
8101 	/* Should check if there are write-behind devices? */
8102 
8103 	chunksect = 64*2; /* 64K by default */
8104 
8105 	/* The array must be an exact multiple of chunksize */
8106 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8107 		chunksect >>= 1;
8108 
8109 	if ((chunksect<<9) < STRIPE_SIZE)
8110 		/* array size does not allow a suitable chunk size */
8111 		return ERR_PTR(-EINVAL);
8112 
8113 	mddev->new_level = 5;
8114 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8115 	mddev->new_chunk_sectors = chunksect;
8116 
8117 	ret = setup_conf(mddev);
8118 	if (!IS_ERR(ret))
8119 		mddev_clear_unsupported_flags(mddev,
8120 			UNSUPPORTED_MDDEV_FLAGS);
8121 	return ret;
8122 }
8123 
8124 static void *raid5_takeover_raid6(struct mddev *mddev)
8125 {
8126 	int new_layout;
8127 
8128 	switch (mddev->layout) {
8129 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8130 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8131 		break;
8132 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8133 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8134 		break;
8135 	case ALGORITHM_LEFT_SYMMETRIC_6:
8136 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8137 		break;
8138 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8139 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8140 		break;
8141 	case ALGORITHM_PARITY_0_6:
8142 		new_layout = ALGORITHM_PARITY_0;
8143 		break;
8144 	case ALGORITHM_PARITY_N:
8145 		new_layout = ALGORITHM_PARITY_N;
8146 		break;
8147 	default:
8148 		return ERR_PTR(-EINVAL);
8149 	}
8150 	mddev->new_level = 5;
8151 	mddev->new_layout = new_layout;
8152 	mddev->delta_disks = -1;
8153 	mddev->raid_disks -= 1;
8154 	return setup_conf(mddev);
8155 }
8156 
8157 static int raid5_check_reshape(struct mddev *mddev)
8158 {
8159 	/* For a 2-drive array, the layout and chunk size can be changed
8160 	 * immediately as not restriping is needed.
8161 	 * For larger arrays we record the new value - after validation
8162 	 * to be used by a reshape pass.
8163 	 */
8164 	struct r5conf *conf = mddev->private;
8165 	int new_chunk = mddev->new_chunk_sectors;
8166 
8167 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8168 		return -EINVAL;
8169 	if (new_chunk > 0) {
8170 		if (!is_power_of_2(new_chunk))
8171 			return -EINVAL;
8172 		if (new_chunk < (PAGE_SIZE>>9))
8173 			return -EINVAL;
8174 		if (mddev->array_sectors & (new_chunk-1))
8175 			/* not factor of array size */
8176 			return -EINVAL;
8177 	}
8178 
8179 	/* They look valid */
8180 
8181 	if (mddev->raid_disks == 2) {
8182 		/* can make the change immediately */
8183 		if (mddev->new_layout >= 0) {
8184 			conf->algorithm = mddev->new_layout;
8185 			mddev->layout = mddev->new_layout;
8186 		}
8187 		if (new_chunk > 0) {
8188 			conf->chunk_sectors = new_chunk ;
8189 			mddev->chunk_sectors = new_chunk;
8190 		}
8191 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8192 		md_wakeup_thread(mddev->thread);
8193 	}
8194 	return check_reshape(mddev);
8195 }
8196 
8197 static int raid6_check_reshape(struct mddev *mddev)
8198 {
8199 	int new_chunk = mddev->new_chunk_sectors;
8200 
8201 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8202 		return -EINVAL;
8203 	if (new_chunk > 0) {
8204 		if (!is_power_of_2(new_chunk))
8205 			return -EINVAL;
8206 		if (new_chunk < (PAGE_SIZE >> 9))
8207 			return -EINVAL;
8208 		if (mddev->array_sectors & (new_chunk-1))
8209 			/* not factor of array size */
8210 			return -EINVAL;
8211 	}
8212 
8213 	/* They look valid */
8214 	return check_reshape(mddev);
8215 }
8216 
8217 static void *raid5_takeover(struct mddev *mddev)
8218 {
8219 	/* raid5 can take over:
8220 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8221 	 *  raid1 - if there are two drives.  We need to know the chunk size
8222 	 *  raid4 - trivial - just use a raid4 layout.
8223 	 *  raid6 - Providing it is a *_6 layout
8224 	 */
8225 	if (mddev->level == 0)
8226 		return raid45_takeover_raid0(mddev, 5);
8227 	if (mddev->level == 1)
8228 		return raid5_takeover_raid1(mddev);
8229 	if (mddev->level == 4) {
8230 		mddev->new_layout = ALGORITHM_PARITY_N;
8231 		mddev->new_level = 5;
8232 		return setup_conf(mddev);
8233 	}
8234 	if (mddev->level == 6)
8235 		return raid5_takeover_raid6(mddev);
8236 
8237 	return ERR_PTR(-EINVAL);
8238 }
8239 
8240 static void *raid4_takeover(struct mddev *mddev)
8241 {
8242 	/* raid4 can take over:
8243 	 *  raid0 - if there is only one strip zone
8244 	 *  raid5 - if layout is right
8245 	 */
8246 	if (mddev->level == 0)
8247 		return raid45_takeover_raid0(mddev, 4);
8248 	if (mddev->level == 5 &&
8249 	    mddev->layout == ALGORITHM_PARITY_N) {
8250 		mddev->new_layout = 0;
8251 		mddev->new_level = 4;
8252 		return setup_conf(mddev);
8253 	}
8254 	return ERR_PTR(-EINVAL);
8255 }
8256 
8257 static struct md_personality raid5_personality;
8258 
8259 static void *raid6_takeover(struct mddev *mddev)
8260 {
8261 	/* Currently can only take over a raid5.  We map the
8262 	 * personality to an equivalent raid6 personality
8263 	 * with the Q block at the end.
8264 	 */
8265 	int new_layout;
8266 
8267 	if (mddev->pers != &raid5_personality)
8268 		return ERR_PTR(-EINVAL);
8269 	if (mddev->degraded > 1)
8270 		return ERR_PTR(-EINVAL);
8271 	if (mddev->raid_disks > 253)
8272 		return ERR_PTR(-EINVAL);
8273 	if (mddev->raid_disks < 3)
8274 		return ERR_PTR(-EINVAL);
8275 
8276 	switch (mddev->layout) {
8277 	case ALGORITHM_LEFT_ASYMMETRIC:
8278 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8279 		break;
8280 	case ALGORITHM_RIGHT_ASYMMETRIC:
8281 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8282 		break;
8283 	case ALGORITHM_LEFT_SYMMETRIC:
8284 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8285 		break;
8286 	case ALGORITHM_RIGHT_SYMMETRIC:
8287 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8288 		break;
8289 	case ALGORITHM_PARITY_0:
8290 		new_layout = ALGORITHM_PARITY_0_6;
8291 		break;
8292 	case ALGORITHM_PARITY_N:
8293 		new_layout = ALGORITHM_PARITY_N;
8294 		break;
8295 	default:
8296 		return ERR_PTR(-EINVAL);
8297 	}
8298 	mddev->new_level = 6;
8299 	mddev->new_layout = new_layout;
8300 	mddev->delta_disks = 1;
8301 	mddev->raid_disks += 1;
8302 	return setup_conf(mddev);
8303 }
8304 
8305 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8306 {
8307 	struct r5conf *conf;
8308 	int err;
8309 
8310 	err = mddev_lock(mddev);
8311 	if (err)
8312 		return err;
8313 	conf = mddev->private;
8314 	if (!conf) {
8315 		mddev_unlock(mddev);
8316 		return -ENODEV;
8317 	}
8318 
8319 	if (strncmp(buf, "ppl", 3) == 0) {
8320 		/* ppl only works with RAID 5 */
8321 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8322 			err = log_init(conf, NULL, true);
8323 			if (!err) {
8324 				err = resize_stripes(conf, conf->pool_size);
8325 				if (err)
8326 					log_exit(conf);
8327 			}
8328 		} else
8329 			err = -EINVAL;
8330 	} else if (strncmp(buf, "resync", 6) == 0) {
8331 		if (raid5_has_ppl(conf)) {
8332 			mddev_suspend(mddev);
8333 			log_exit(conf);
8334 			mddev_resume(mddev);
8335 			err = resize_stripes(conf, conf->pool_size);
8336 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8337 			   r5l_log_disk_error(conf)) {
8338 			bool journal_dev_exists = false;
8339 			struct md_rdev *rdev;
8340 
8341 			rdev_for_each(rdev, mddev)
8342 				if (test_bit(Journal, &rdev->flags)) {
8343 					journal_dev_exists = true;
8344 					break;
8345 				}
8346 
8347 			if (!journal_dev_exists) {
8348 				mddev_suspend(mddev);
8349 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8350 				mddev_resume(mddev);
8351 			} else  /* need remove journal device first */
8352 				err = -EBUSY;
8353 		} else
8354 			err = -EINVAL;
8355 	} else {
8356 		err = -EINVAL;
8357 	}
8358 
8359 	if (!err)
8360 		md_update_sb(mddev, 1);
8361 
8362 	mddev_unlock(mddev);
8363 
8364 	return err;
8365 }
8366 
8367 static int raid5_start(struct mddev *mddev)
8368 {
8369 	struct r5conf *conf = mddev->private;
8370 
8371 	return r5l_start(conf->log);
8372 }
8373 
8374 static struct md_personality raid6_personality =
8375 {
8376 	.name		= "raid6",
8377 	.level		= 6,
8378 	.owner		= THIS_MODULE,
8379 	.make_request	= raid5_make_request,
8380 	.run		= raid5_run,
8381 	.start		= raid5_start,
8382 	.free		= raid5_free,
8383 	.status		= raid5_status,
8384 	.error_handler	= raid5_error,
8385 	.hot_add_disk	= raid5_add_disk,
8386 	.hot_remove_disk= raid5_remove_disk,
8387 	.spare_active	= raid5_spare_active,
8388 	.sync_request	= raid5_sync_request,
8389 	.resize		= raid5_resize,
8390 	.size		= raid5_size,
8391 	.check_reshape	= raid6_check_reshape,
8392 	.start_reshape  = raid5_start_reshape,
8393 	.finish_reshape = raid5_finish_reshape,
8394 	.quiesce	= raid5_quiesce,
8395 	.takeover	= raid6_takeover,
8396 	.congested	= raid5_congested,
8397 	.change_consistency_policy = raid5_change_consistency_policy,
8398 };
8399 static struct md_personality raid5_personality =
8400 {
8401 	.name		= "raid5",
8402 	.level		= 5,
8403 	.owner		= THIS_MODULE,
8404 	.make_request	= raid5_make_request,
8405 	.run		= raid5_run,
8406 	.start		= raid5_start,
8407 	.free		= raid5_free,
8408 	.status		= raid5_status,
8409 	.error_handler	= raid5_error,
8410 	.hot_add_disk	= raid5_add_disk,
8411 	.hot_remove_disk= raid5_remove_disk,
8412 	.spare_active	= raid5_spare_active,
8413 	.sync_request	= raid5_sync_request,
8414 	.resize		= raid5_resize,
8415 	.size		= raid5_size,
8416 	.check_reshape	= raid5_check_reshape,
8417 	.start_reshape  = raid5_start_reshape,
8418 	.finish_reshape = raid5_finish_reshape,
8419 	.quiesce	= raid5_quiesce,
8420 	.takeover	= raid5_takeover,
8421 	.congested	= raid5_congested,
8422 	.change_consistency_policy = raid5_change_consistency_policy,
8423 };
8424 
8425 static struct md_personality raid4_personality =
8426 {
8427 	.name		= "raid4",
8428 	.level		= 4,
8429 	.owner		= THIS_MODULE,
8430 	.make_request	= raid5_make_request,
8431 	.run		= raid5_run,
8432 	.start		= raid5_start,
8433 	.free		= raid5_free,
8434 	.status		= raid5_status,
8435 	.error_handler	= raid5_error,
8436 	.hot_add_disk	= raid5_add_disk,
8437 	.hot_remove_disk= raid5_remove_disk,
8438 	.spare_active	= raid5_spare_active,
8439 	.sync_request	= raid5_sync_request,
8440 	.resize		= raid5_resize,
8441 	.size		= raid5_size,
8442 	.check_reshape	= raid5_check_reshape,
8443 	.start_reshape  = raid5_start_reshape,
8444 	.finish_reshape = raid5_finish_reshape,
8445 	.quiesce	= raid5_quiesce,
8446 	.takeover	= raid4_takeover,
8447 	.congested	= raid5_congested,
8448 	.change_consistency_policy = raid5_change_consistency_policy,
8449 };
8450 
8451 static int __init raid5_init(void)
8452 {
8453 	int ret;
8454 
8455 	raid5_wq = alloc_workqueue("raid5wq",
8456 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8457 	if (!raid5_wq)
8458 		return -ENOMEM;
8459 
8460 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8461 				      "md/raid5:prepare",
8462 				      raid456_cpu_up_prepare,
8463 				      raid456_cpu_dead);
8464 	if (ret) {
8465 		destroy_workqueue(raid5_wq);
8466 		return ret;
8467 	}
8468 	register_md_personality(&raid6_personality);
8469 	register_md_personality(&raid5_personality);
8470 	register_md_personality(&raid4_personality);
8471 	return 0;
8472 }
8473 
8474 static void raid5_exit(void)
8475 {
8476 	unregister_md_personality(&raid6_personality);
8477 	unregister_md_personality(&raid5_personality);
8478 	unregister_md_personality(&raid4_personality);
8479 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8480 	destroy_workqueue(raid5_wq);
8481 }
8482 
8483 module_init(raid5_init);
8484 module_exit(raid5_exit);
8485 MODULE_LICENSE("GPL");
8486 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8487 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8488 MODULE_ALIAS("md-raid5");
8489 MODULE_ALIAS("md-raid4");
8490 MODULE_ALIAS("md-level-5");
8491 MODULE_ALIAS("md-level-4");
8492 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8493 MODULE_ALIAS("md-raid6");
8494 MODULE_ALIAS("md-level-6");
8495 
8496 /* This used to be two separate modules, they were: */
8497 MODULE_ALIAS("raid5");
8498 MODULE_ALIAS("raid6");
8499