1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 59 #include <trace/events/block.h> 60 #include <linux/list_sort.h> 61 62 #include "md.h" 63 #include "raid5.h" 64 #include "raid0.h" 65 #include "md-bitmap.h" 66 #include "raid5-log.h" 67 68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 69 70 #define cpu_to_group(cpu) cpu_to_node(cpu) 71 #define ANY_GROUP NUMA_NO_NODE 72 73 static bool devices_handle_discard_safely = false; 74 module_param(devices_handle_discard_safely, bool, 0644); 75 MODULE_PARM_DESC(devices_handle_discard_safely, 76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 77 static struct workqueue_struct *raid5_wq; 78 79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 80 { 81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 82 return &conf->stripe_hashtbl[hash]; 83 } 84 85 static inline int stripe_hash_locks_hash(sector_t sect) 86 { 87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 88 } 89 90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 91 { 92 spin_lock_irq(conf->hash_locks + hash); 93 spin_lock(&conf->device_lock); 94 } 95 96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 97 { 98 spin_unlock(&conf->device_lock); 99 spin_unlock_irq(conf->hash_locks + hash); 100 } 101 102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 103 { 104 int i; 105 spin_lock_irq(conf->hash_locks); 106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 108 spin_lock(&conf->device_lock); 109 } 110 111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 112 { 113 int i; 114 spin_unlock(&conf->device_lock); 115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 116 spin_unlock(conf->hash_locks + i); 117 spin_unlock_irq(conf->hash_locks); 118 } 119 120 /* Find first data disk in a raid6 stripe */ 121 static inline int raid6_d0(struct stripe_head *sh) 122 { 123 if (sh->ddf_layout) 124 /* ddf always start from first device */ 125 return 0; 126 /* md starts just after Q block */ 127 if (sh->qd_idx == sh->disks - 1) 128 return 0; 129 else 130 return sh->qd_idx + 1; 131 } 132 static inline int raid6_next_disk(int disk, int raid_disks) 133 { 134 disk++; 135 return (disk < raid_disks) ? disk : 0; 136 } 137 138 /* When walking through the disks in a raid5, starting at raid6_d0, 139 * We need to map each disk to a 'slot', where the data disks are slot 140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 141 * is raid_disks-1. This help does that mapping. 142 */ 143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 144 int *count, int syndrome_disks) 145 { 146 int slot = *count; 147 148 if (sh->ddf_layout) 149 (*count)++; 150 if (idx == sh->pd_idx) 151 return syndrome_disks; 152 if (idx == sh->qd_idx) 153 return syndrome_disks + 1; 154 if (!sh->ddf_layout) 155 (*count)++; 156 return slot; 157 } 158 159 static void print_raid5_conf (struct r5conf *conf); 160 161 static int stripe_operations_active(struct stripe_head *sh) 162 { 163 return sh->check_state || sh->reconstruct_state || 164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 165 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 166 } 167 168 static bool stripe_is_lowprio(struct stripe_head *sh) 169 { 170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 172 !test_bit(STRIPE_R5C_CACHING, &sh->state); 173 } 174 175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 176 { 177 struct r5conf *conf = sh->raid_conf; 178 struct r5worker_group *group; 179 int thread_cnt; 180 int i, cpu = sh->cpu; 181 182 if (!cpu_online(cpu)) { 183 cpu = cpumask_any(cpu_online_mask); 184 sh->cpu = cpu; 185 } 186 187 if (list_empty(&sh->lru)) { 188 struct r5worker_group *group; 189 group = conf->worker_groups + cpu_to_group(cpu); 190 if (stripe_is_lowprio(sh)) 191 list_add_tail(&sh->lru, &group->loprio_list); 192 else 193 list_add_tail(&sh->lru, &group->handle_list); 194 group->stripes_cnt++; 195 sh->group = group; 196 } 197 198 if (conf->worker_cnt_per_group == 0) { 199 md_wakeup_thread(conf->mddev->thread); 200 return; 201 } 202 203 group = conf->worker_groups + cpu_to_group(sh->cpu); 204 205 group->workers[0].working = true; 206 /* at least one worker should run to avoid race */ 207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 208 209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 210 /* wakeup more workers */ 211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 212 if (group->workers[i].working == false) { 213 group->workers[i].working = true; 214 queue_work_on(sh->cpu, raid5_wq, 215 &group->workers[i].work); 216 thread_cnt--; 217 } 218 } 219 } 220 221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 222 struct list_head *temp_inactive_list) 223 { 224 int i; 225 int injournal = 0; /* number of date pages with R5_InJournal */ 226 227 BUG_ON(!list_empty(&sh->lru)); 228 BUG_ON(atomic_read(&conf->active_stripes)==0); 229 230 if (r5c_is_writeback(conf->log)) 231 for (i = sh->disks; i--; ) 232 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 233 injournal++; 234 /* 235 * In the following cases, the stripe cannot be released to cached 236 * lists. Therefore, we make the stripe write out and set 237 * STRIPE_HANDLE: 238 * 1. when quiesce in r5c write back; 239 * 2. when resync is requested fot the stripe. 240 */ 241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 242 (conf->quiesce && r5c_is_writeback(conf->log) && 243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 244 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 245 r5c_make_stripe_write_out(sh); 246 set_bit(STRIPE_HANDLE, &sh->state); 247 } 248 249 if (test_bit(STRIPE_HANDLE, &sh->state)) { 250 if (test_bit(STRIPE_DELAYED, &sh->state) && 251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 252 list_add_tail(&sh->lru, &conf->delayed_list); 253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 254 sh->bm_seq - conf->seq_write > 0) 255 list_add_tail(&sh->lru, &conf->bitmap_list); 256 else { 257 clear_bit(STRIPE_DELAYED, &sh->state); 258 clear_bit(STRIPE_BIT_DELAY, &sh->state); 259 if (conf->worker_cnt_per_group == 0) { 260 if (stripe_is_lowprio(sh)) 261 list_add_tail(&sh->lru, 262 &conf->loprio_list); 263 else 264 list_add_tail(&sh->lru, 265 &conf->handle_list); 266 } else { 267 raid5_wakeup_stripe_thread(sh); 268 return; 269 } 270 } 271 md_wakeup_thread(conf->mddev->thread); 272 } else { 273 BUG_ON(stripe_operations_active(sh)); 274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 275 if (atomic_dec_return(&conf->preread_active_stripes) 276 < IO_THRESHOLD) 277 md_wakeup_thread(conf->mddev->thread); 278 atomic_dec(&conf->active_stripes); 279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 280 if (!r5c_is_writeback(conf->log)) 281 list_add_tail(&sh->lru, temp_inactive_list); 282 else { 283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 284 if (injournal == 0) 285 list_add_tail(&sh->lru, temp_inactive_list); 286 else if (injournal == conf->raid_disks - conf->max_degraded) { 287 /* full stripe */ 288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 289 atomic_inc(&conf->r5c_cached_full_stripes); 290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 291 atomic_dec(&conf->r5c_cached_partial_stripes); 292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 293 r5c_check_cached_full_stripe(conf); 294 } else 295 /* 296 * STRIPE_R5C_PARTIAL_STRIPE is set in 297 * r5c_try_caching_write(). No need to 298 * set it again. 299 */ 300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 301 } 302 } 303 } 304 } 305 306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 307 struct list_head *temp_inactive_list) 308 { 309 if (atomic_dec_and_test(&sh->count)) 310 do_release_stripe(conf, sh, temp_inactive_list); 311 } 312 313 /* 314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 315 * 316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 317 * given time. Adding stripes only takes device lock, while deleting stripes 318 * only takes hash lock. 319 */ 320 static void release_inactive_stripe_list(struct r5conf *conf, 321 struct list_head *temp_inactive_list, 322 int hash) 323 { 324 int size; 325 bool do_wakeup = false; 326 unsigned long flags; 327 328 if (hash == NR_STRIPE_HASH_LOCKS) { 329 size = NR_STRIPE_HASH_LOCKS; 330 hash = NR_STRIPE_HASH_LOCKS - 1; 331 } else 332 size = 1; 333 while (size) { 334 struct list_head *list = &temp_inactive_list[size - 1]; 335 336 /* 337 * We don't hold any lock here yet, raid5_get_active_stripe() might 338 * remove stripes from the list 339 */ 340 if (!list_empty_careful(list)) { 341 spin_lock_irqsave(conf->hash_locks + hash, flags); 342 if (list_empty(conf->inactive_list + hash) && 343 !list_empty(list)) 344 atomic_dec(&conf->empty_inactive_list_nr); 345 list_splice_tail_init(list, conf->inactive_list + hash); 346 do_wakeup = true; 347 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 348 } 349 size--; 350 hash--; 351 } 352 353 if (do_wakeup) { 354 wake_up(&conf->wait_for_stripe); 355 if (atomic_read(&conf->active_stripes) == 0) 356 wake_up(&conf->wait_for_quiescent); 357 if (conf->retry_read_aligned) 358 md_wakeup_thread(conf->mddev->thread); 359 } 360 } 361 362 /* should hold conf->device_lock already */ 363 static int release_stripe_list(struct r5conf *conf, 364 struct list_head *temp_inactive_list) 365 { 366 struct stripe_head *sh, *t; 367 int count = 0; 368 struct llist_node *head; 369 370 head = llist_del_all(&conf->released_stripes); 371 head = llist_reverse_order(head); 372 llist_for_each_entry_safe(sh, t, head, release_list) { 373 int hash; 374 375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 376 smp_mb(); 377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 378 /* 379 * Don't worry the bit is set here, because if the bit is set 380 * again, the count is always > 1. This is true for 381 * STRIPE_ON_UNPLUG_LIST bit too. 382 */ 383 hash = sh->hash_lock_index; 384 __release_stripe(conf, sh, &temp_inactive_list[hash]); 385 count++; 386 } 387 388 return count; 389 } 390 391 void raid5_release_stripe(struct stripe_head *sh) 392 { 393 struct r5conf *conf = sh->raid_conf; 394 unsigned long flags; 395 struct list_head list; 396 int hash; 397 bool wakeup; 398 399 /* Avoid release_list until the last reference. 400 */ 401 if (atomic_add_unless(&sh->count, -1, 1)) 402 return; 403 404 if (unlikely(!conf->mddev->thread) || 405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 406 goto slow_path; 407 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 408 if (wakeup) 409 md_wakeup_thread(conf->mddev->thread); 410 return; 411 slow_path: 412 local_irq_save(flags); 413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 414 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 415 INIT_LIST_HEAD(&list); 416 hash = sh->hash_lock_index; 417 do_release_stripe(conf, sh, &list); 418 spin_unlock(&conf->device_lock); 419 release_inactive_stripe_list(conf, &list, hash); 420 } 421 local_irq_restore(flags); 422 } 423 424 static inline void remove_hash(struct stripe_head *sh) 425 { 426 pr_debug("remove_hash(), stripe %llu\n", 427 (unsigned long long)sh->sector); 428 429 hlist_del_init(&sh->hash); 430 } 431 432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 433 { 434 struct hlist_head *hp = stripe_hash(conf, sh->sector); 435 436 pr_debug("insert_hash(), stripe %llu\n", 437 (unsigned long long)sh->sector); 438 439 hlist_add_head(&sh->hash, hp); 440 } 441 442 /* find an idle stripe, make sure it is unhashed, and return it. */ 443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 444 { 445 struct stripe_head *sh = NULL; 446 struct list_head *first; 447 448 if (list_empty(conf->inactive_list + hash)) 449 goto out; 450 first = (conf->inactive_list + hash)->next; 451 sh = list_entry(first, struct stripe_head, lru); 452 list_del_init(first); 453 remove_hash(sh); 454 atomic_inc(&conf->active_stripes); 455 BUG_ON(hash != sh->hash_lock_index); 456 if (list_empty(conf->inactive_list + hash)) 457 atomic_inc(&conf->empty_inactive_list_nr); 458 out: 459 return sh; 460 } 461 462 static void shrink_buffers(struct stripe_head *sh) 463 { 464 struct page *p; 465 int i; 466 int num = sh->raid_conf->pool_size; 467 468 for (i = 0; i < num ; i++) { 469 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 470 p = sh->dev[i].page; 471 if (!p) 472 continue; 473 sh->dev[i].page = NULL; 474 put_page(p); 475 } 476 } 477 478 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 479 { 480 int i; 481 int num = sh->raid_conf->pool_size; 482 483 for (i = 0; i < num; i++) { 484 struct page *page; 485 486 if (!(page = alloc_page(gfp))) { 487 return 1; 488 } 489 sh->dev[i].page = page; 490 sh->dev[i].orig_page = page; 491 } 492 493 return 0; 494 } 495 496 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 497 struct stripe_head *sh); 498 499 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 500 { 501 struct r5conf *conf = sh->raid_conf; 502 int i, seq; 503 504 BUG_ON(atomic_read(&sh->count) != 0); 505 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 506 BUG_ON(stripe_operations_active(sh)); 507 BUG_ON(sh->batch_head); 508 509 pr_debug("init_stripe called, stripe %llu\n", 510 (unsigned long long)sector); 511 retry: 512 seq = read_seqcount_begin(&conf->gen_lock); 513 sh->generation = conf->generation - previous; 514 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 515 sh->sector = sector; 516 stripe_set_idx(sector, conf, previous, sh); 517 sh->state = 0; 518 519 for (i = sh->disks; i--; ) { 520 struct r5dev *dev = &sh->dev[i]; 521 522 if (dev->toread || dev->read || dev->towrite || dev->written || 523 test_bit(R5_LOCKED, &dev->flags)) { 524 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 525 (unsigned long long)sh->sector, i, dev->toread, 526 dev->read, dev->towrite, dev->written, 527 test_bit(R5_LOCKED, &dev->flags)); 528 WARN_ON(1); 529 } 530 dev->flags = 0; 531 dev->sector = raid5_compute_blocknr(sh, i, previous); 532 } 533 if (read_seqcount_retry(&conf->gen_lock, seq)) 534 goto retry; 535 sh->overwrite_disks = 0; 536 insert_hash(conf, sh); 537 sh->cpu = smp_processor_id(); 538 set_bit(STRIPE_BATCH_READY, &sh->state); 539 } 540 541 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 542 short generation) 543 { 544 struct stripe_head *sh; 545 546 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 547 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 548 if (sh->sector == sector && sh->generation == generation) 549 return sh; 550 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 551 return NULL; 552 } 553 554 /* 555 * Need to check if array has failed when deciding whether to: 556 * - start an array 557 * - remove non-faulty devices 558 * - add a spare 559 * - allow a reshape 560 * This determination is simple when no reshape is happening. 561 * However if there is a reshape, we need to carefully check 562 * both the before and after sections. 563 * This is because some failed devices may only affect one 564 * of the two sections, and some non-in_sync devices may 565 * be insync in the section most affected by failed devices. 566 */ 567 int raid5_calc_degraded(struct r5conf *conf) 568 { 569 int degraded, degraded2; 570 int i; 571 572 rcu_read_lock(); 573 degraded = 0; 574 for (i = 0; i < conf->previous_raid_disks; i++) { 575 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 576 if (rdev && test_bit(Faulty, &rdev->flags)) 577 rdev = rcu_dereference(conf->disks[i].replacement); 578 if (!rdev || test_bit(Faulty, &rdev->flags)) 579 degraded++; 580 else if (test_bit(In_sync, &rdev->flags)) 581 ; 582 else 583 /* not in-sync or faulty. 584 * If the reshape increases the number of devices, 585 * this is being recovered by the reshape, so 586 * this 'previous' section is not in_sync. 587 * If the number of devices is being reduced however, 588 * the device can only be part of the array if 589 * we are reverting a reshape, so this section will 590 * be in-sync. 591 */ 592 if (conf->raid_disks >= conf->previous_raid_disks) 593 degraded++; 594 } 595 rcu_read_unlock(); 596 if (conf->raid_disks == conf->previous_raid_disks) 597 return degraded; 598 rcu_read_lock(); 599 degraded2 = 0; 600 for (i = 0; i < conf->raid_disks; i++) { 601 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 602 if (rdev && test_bit(Faulty, &rdev->flags)) 603 rdev = rcu_dereference(conf->disks[i].replacement); 604 if (!rdev || test_bit(Faulty, &rdev->flags)) 605 degraded2++; 606 else if (test_bit(In_sync, &rdev->flags)) 607 ; 608 else 609 /* not in-sync or faulty. 610 * If reshape increases the number of devices, this 611 * section has already been recovered, else it 612 * almost certainly hasn't. 613 */ 614 if (conf->raid_disks <= conf->previous_raid_disks) 615 degraded2++; 616 } 617 rcu_read_unlock(); 618 if (degraded2 > degraded) 619 return degraded2; 620 return degraded; 621 } 622 623 static int has_failed(struct r5conf *conf) 624 { 625 int degraded; 626 627 if (conf->mddev->reshape_position == MaxSector) 628 return conf->mddev->degraded > conf->max_degraded; 629 630 degraded = raid5_calc_degraded(conf); 631 if (degraded > conf->max_degraded) 632 return 1; 633 return 0; 634 } 635 636 struct stripe_head * 637 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 638 int previous, int noblock, int noquiesce) 639 { 640 struct stripe_head *sh; 641 int hash = stripe_hash_locks_hash(sector); 642 int inc_empty_inactive_list_flag; 643 644 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 645 646 spin_lock_irq(conf->hash_locks + hash); 647 648 do { 649 wait_event_lock_irq(conf->wait_for_quiescent, 650 conf->quiesce == 0 || noquiesce, 651 *(conf->hash_locks + hash)); 652 sh = __find_stripe(conf, sector, conf->generation - previous); 653 if (!sh) { 654 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 655 sh = get_free_stripe(conf, hash); 656 if (!sh && !test_bit(R5_DID_ALLOC, 657 &conf->cache_state)) 658 set_bit(R5_ALLOC_MORE, 659 &conf->cache_state); 660 } 661 if (noblock && sh == NULL) 662 break; 663 664 r5c_check_stripe_cache_usage(conf); 665 if (!sh) { 666 set_bit(R5_INACTIVE_BLOCKED, 667 &conf->cache_state); 668 r5l_wake_reclaim(conf->log, 0); 669 wait_event_lock_irq( 670 conf->wait_for_stripe, 671 !list_empty(conf->inactive_list + hash) && 672 (atomic_read(&conf->active_stripes) 673 < (conf->max_nr_stripes * 3 / 4) 674 || !test_bit(R5_INACTIVE_BLOCKED, 675 &conf->cache_state)), 676 *(conf->hash_locks + hash)); 677 clear_bit(R5_INACTIVE_BLOCKED, 678 &conf->cache_state); 679 } else { 680 init_stripe(sh, sector, previous); 681 atomic_inc(&sh->count); 682 } 683 } else if (!atomic_inc_not_zero(&sh->count)) { 684 spin_lock(&conf->device_lock); 685 if (!atomic_read(&sh->count)) { 686 if (!test_bit(STRIPE_HANDLE, &sh->state)) 687 atomic_inc(&conf->active_stripes); 688 BUG_ON(list_empty(&sh->lru) && 689 !test_bit(STRIPE_EXPANDING, &sh->state)); 690 inc_empty_inactive_list_flag = 0; 691 if (!list_empty(conf->inactive_list + hash)) 692 inc_empty_inactive_list_flag = 1; 693 list_del_init(&sh->lru); 694 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 695 atomic_inc(&conf->empty_inactive_list_nr); 696 if (sh->group) { 697 sh->group->stripes_cnt--; 698 sh->group = NULL; 699 } 700 } 701 atomic_inc(&sh->count); 702 spin_unlock(&conf->device_lock); 703 } 704 } while (sh == NULL); 705 706 spin_unlock_irq(conf->hash_locks + hash); 707 return sh; 708 } 709 710 static bool is_full_stripe_write(struct stripe_head *sh) 711 { 712 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 713 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 714 } 715 716 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 717 { 718 if (sh1 > sh2) { 719 spin_lock_irq(&sh2->stripe_lock); 720 spin_lock_nested(&sh1->stripe_lock, 1); 721 } else { 722 spin_lock_irq(&sh1->stripe_lock); 723 spin_lock_nested(&sh2->stripe_lock, 1); 724 } 725 } 726 727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 728 { 729 spin_unlock(&sh1->stripe_lock); 730 spin_unlock_irq(&sh2->stripe_lock); 731 } 732 733 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 734 static bool stripe_can_batch(struct stripe_head *sh) 735 { 736 struct r5conf *conf = sh->raid_conf; 737 738 if (conf->log || raid5_has_ppl(conf)) 739 return false; 740 return test_bit(STRIPE_BATCH_READY, &sh->state) && 741 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 742 is_full_stripe_write(sh); 743 } 744 745 /* we only do back search */ 746 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 747 { 748 struct stripe_head *head; 749 sector_t head_sector, tmp_sec; 750 int hash; 751 int dd_idx; 752 int inc_empty_inactive_list_flag; 753 754 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 755 tmp_sec = sh->sector; 756 if (!sector_div(tmp_sec, conf->chunk_sectors)) 757 return; 758 head_sector = sh->sector - STRIPE_SECTORS; 759 760 hash = stripe_hash_locks_hash(head_sector); 761 spin_lock_irq(conf->hash_locks + hash); 762 head = __find_stripe(conf, head_sector, conf->generation); 763 if (head && !atomic_inc_not_zero(&head->count)) { 764 spin_lock(&conf->device_lock); 765 if (!atomic_read(&head->count)) { 766 if (!test_bit(STRIPE_HANDLE, &head->state)) 767 atomic_inc(&conf->active_stripes); 768 BUG_ON(list_empty(&head->lru) && 769 !test_bit(STRIPE_EXPANDING, &head->state)); 770 inc_empty_inactive_list_flag = 0; 771 if (!list_empty(conf->inactive_list + hash)) 772 inc_empty_inactive_list_flag = 1; 773 list_del_init(&head->lru); 774 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 775 atomic_inc(&conf->empty_inactive_list_nr); 776 if (head->group) { 777 head->group->stripes_cnt--; 778 head->group = NULL; 779 } 780 } 781 atomic_inc(&head->count); 782 spin_unlock(&conf->device_lock); 783 } 784 spin_unlock_irq(conf->hash_locks + hash); 785 786 if (!head) 787 return; 788 if (!stripe_can_batch(head)) 789 goto out; 790 791 lock_two_stripes(head, sh); 792 /* clear_batch_ready clear the flag */ 793 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 794 goto unlock_out; 795 796 if (sh->batch_head) 797 goto unlock_out; 798 799 dd_idx = 0; 800 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 801 dd_idx++; 802 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 803 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 804 goto unlock_out; 805 806 if (head->batch_head) { 807 spin_lock(&head->batch_head->batch_lock); 808 /* This batch list is already running */ 809 if (!stripe_can_batch(head)) { 810 spin_unlock(&head->batch_head->batch_lock); 811 goto unlock_out; 812 } 813 /* 814 * We must assign batch_head of this stripe within the 815 * batch_lock, otherwise clear_batch_ready of batch head 816 * stripe could clear BATCH_READY bit of this stripe and 817 * this stripe->batch_head doesn't get assigned, which 818 * could confuse clear_batch_ready for this stripe 819 */ 820 sh->batch_head = head->batch_head; 821 822 /* 823 * at this point, head's BATCH_READY could be cleared, but we 824 * can still add the stripe to batch list 825 */ 826 list_add(&sh->batch_list, &head->batch_list); 827 spin_unlock(&head->batch_head->batch_lock); 828 } else { 829 head->batch_head = head; 830 sh->batch_head = head->batch_head; 831 spin_lock(&head->batch_lock); 832 list_add_tail(&sh->batch_list, &head->batch_list); 833 spin_unlock(&head->batch_lock); 834 } 835 836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 837 if (atomic_dec_return(&conf->preread_active_stripes) 838 < IO_THRESHOLD) 839 md_wakeup_thread(conf->mddev->thread); 840 841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 842 int seq = sh->bm_seq; 843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 844 sh->batch_head->bm_seq > seq) 845 seq = sh->batch_head->bm_seq; 846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 847 sh->batch_head->bm_seq = seq; 848 } 849 850 atomic_inc(&sh->count); 851 unlock_out: 852 unlock_two_stripes(head, sh); 853 out: 854 raid5_release_stripe(head); 855 } 856 857 /* Determine if 'data_offset' or 'new_data_offset' should be used 858 * in this stripe_head. 859 */ 860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 861 { 862 sector_t progress = conf->reshape_progress; 863 /* Need a memory barrier to make sure we see the value 864 * of conf->generation, or ->data_offset that was set before 865 * reshape_progress was updated. 866 */ 867 smp_rmb(); 868 if (progress == MaxSector) 869 return 0; 870 if (sh->generation == conf->generation - 1) 871 return 0; 872 /* We are in a reshape, and this is a new-generation stripe, 873 * so use new_data_offset. 874 */ 875 return 1; 876 } 877 878 static void dispatch_bio_list(struct bio_list *tmp) 879 { 880 struct bio *bio; 881 882 while ((bio = bio_list_pop(tmp))) 883 generic_make_request(bio); 884 } 885 886 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b) 887 { 888 const struct r5pending_data *da = list_entry(a, 889 struct r5pending_data, sibling); 890 const struct r5pending_data *db = list_entry(b, 891 struct r5pending_data, sibling); 892 if (da->sector > db->sector) 893 return 1; 894 if (da->sector < db->sector) 895 return -1; 896 return 0; 897 } 898 899 static void dispatch_defer_bios(struct r5conf *conf, int target, 900 struct bio_list *list) 901 { 902 struct r5pending_data *data; 903 struct list_head *first, *next = NULL; 904 int cnt = 0; 905 906 if (conf->pending_data_cnt == 0) 907 return; 908 909 list_sort(NULL, &conf->pending_list, cmp_stripe); 910 911 first = conf->pending_list.next; 912 913 /* temporarily move the head */ 914 if (conf->next_pending_data) 915 list_move_tail(&conf->pending_list, 916 &conf->next_pending_data->sibling); 917 918 while (!list_empty(&conf->pending_list)) { 919 data = list_first_entry(&conf->pending_list, 920 struct r5pending_data, sibling); 921 if (&data->sibling == first) 922 first = data->sibling.next; 923 next = data->sibling.next; 924 925 bio_list_merge(list, &data->bios); 926 list_move(&data->sibling, &conf->free_list); 927 cnt++; 928 if (cnt >= target) 929 break; 930 } 931 conf->pending_data_cnt -= cnt; 932 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 933 934 if (next != &conf->pending_list) 935 conf->next_pending_data = list_entry(next, 936 struct r5pending_data, sibling); 937 else 938 conf->next_pending_data = NULL; 939 /* list isn't empty */ 940 if (first != &conf->pending_list) 941 list_move_tail(&conf->pending_list, first); 942 } 943 944 static void flush_deferred_bios(struct r5conf *conf) 945 { 946 struct bio_list tmp = BIO_EMPTY_LIST; 947 948 if (conf->pending_data_cnt == 0) 949 return; 950 951 spin_lock(&conf->pending_bios_lock); 952 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 953 BUG_ON(conf->pending_data_cnt != 0); 954 spin_unlock(&conf->pending_bios_lock); 955 956 dispatch_bio_list(&tmp); 957 } 958 959 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 960 struct bio_list *bios) 961 { 962 struct bio_list tmp = BIO_EMPTY_LIST; 963 struct r5pending_data *ent; 964 965 spin_lock(&conf->pending_bios_lock); 966 ent = list_first_entry(&conf->free_list, struct r5pending_data, 967 sibling); 968 list_move_tail(&ent->sibling, &conf->pending_list); 969 ent->sector = sector; 970 bio_list_init(&ent->bios); 971 bio_list_merge(&ent->bios, bios); 972 conf->pending_data_cnt++; 973 if (conf->pending_data_cnt >= PENDING_IO_MAX) 974 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 975 976 spin_unlock(&conf->pending_bios_lock); 977 978 dispatch_bio_list(&tmp); 979 } 980 981 static void 982 raid5_end_read_request(struct bio *bi); 983 static void 984 raid5_end_write_request(struct bio *bi); 985 986 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 987 { 988 struct r5conf *conf = sh->raid_conf; 989 int i, disks = sh->disks; 990 struct stripe_head *head_sh = sh; 991 struct bio_list pending_bios = BIO_EMPTY_LIST; 992 bool should_defer; 993 994 might_sleep(); 995 996 if (log_stripe(sh, s) == 0) 997 return; 998 999 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1000 1001 for (i = disks; i--; ) { 1002 int op, op_flags = 0; 1003 int replace_only = 0; 1004 struct bio *bi, *rbi; 1005 struct md_rdev *rdev, *rrdev = NULL; 1006 1007 sh = head_sh; 1008 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1009 op = REQ_OP_WRITE; 1010 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1011 op_flags = REQ_FUA; 1012 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1013 op = REQ_OP_DISCARD; 1014 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1015 op = REQ_OP_READ; 1016 else if (test_and_clear_bit(R5_WantReplace, 1017 &sh->dev[i].flags)) { 1018 op = REQ_OP_WRITE; 1019 replace_only = 1; 1020 } else 1021 continue; 1022 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1023 op_flags |= REQ_SYNC; 1024 1025 again: 1026 bi = &sh->dev[i].req; 1027 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1028 1029 rcu_read_lock(); 1030 rrdev = rcu_dereference(conf->disks[i].replacement); 1031 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1032 rdev = rcu_dereference(conf->disks[i].rdev); 1033 if (!rdev) { 1034 rdev = rrdev; 1035 rrdev = NULL; 1036 } 1037 if (op_is_write(op)) { 1038 if (replace_only) 1039 rdev = NULL; 1040 if (rdev == rrdev) 1041 /* We raced and saw duplicates */ 1042 rrdev = NULL; 1043 } else { 1044 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1045 rdev = rrdev; 1046 rrdev = NULL; 1047 } 1048 1049 if (rdev && test_bit(Faulty, &rdev->flags)) 1050 rdev = NULL; 1051 if (rdev) 1052 atomic_inc(&rdev->nr_pending); 1053 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1054 rrdev = NULL; 1055 if (rrdev) 1056 atomic_inc(&rrdev->nr_pending); 1057 rcu_read_unlock(); 1058 1059 /* We have already checked bad blocks for reads. Now 1060 * need to check for writes. We never accept write errors 1061 * on the replacement, so we don't to check rrdev. 1062 */ 1063 while (op_is_write(op) && rdev && 1064 test_bit(WriteErrorSeen, &rdev->flags)) { 1065 sector_t first_bad; 1066 int bad_sectors; 1067 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 1068 &first_bad, &bad_sectors); 1069 if (!bad) 1070 break; 1071 1072 if (bad < 0) { 1073 set_bit(BlockedBadBlocks, &rdev->flags); 1074 if (!conf->mddev->external && 1075 conf->mddev->sb_flags) { 1076 /* It is very unlikely, but we might 1077 * still need to write out the 1078 * bad block log - better give it 1079 * a chance*/ 1080 md_check_recovery(conf->mddev); 1081 } 1082 /* 1083 * Because md_wait_for_blocked_rdev 1084 * will dec nr_pending, we must 1085 * increment it first. 1086 */ 1087 atomic_inc(&rdev->nr_pending); 1088 md_wait_for_blocked_rdev(rdev, conf->mddev); 1089 } else { 1090 /* Acknowledged bad block - skip the write */ 1091 rdev_dec_pending(rdev, conf->mddev); 1092 rdev = NULL; 1093 } 1094 } 1095 1096 if (rdev) { 1097 if (s->syncing || s->expanding || s->expanded 1098 || s->replacing) 1099 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1100 1101 set_bit(STRIPE_IO_STARTED, &sh->state); 1102 1103 bio_set_dev(bi, rdev->bdev); 1104 bio_set_op_attrs(bi, op, op_flags); 1105 bi->bi_end_io = op_is_write(op) 1106 ? raid5_end_write_request 1107 : raid5_end_read_request; 1108 bi->bi_private = sh; 1109 1110 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1111 __func__, (unsigned long long)sh->sector, 1112 bi->bi_opf, i); 1113 atomic_inc(&sh->count); 1114 if (sh != head_sh) 1115 atomic_inc(&head_sh->count); 1116 if (use_new_offset(conf, sh)) 1117 bi->bi_iter.bi_sector = (sh->sector 1118 + rdev->new_data_offset); 1119 else 1120 bi->bi_iter.bi_sector = (sh->sector 1121 + rdev->data_offset); 1122 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1123 bi->bi_opf |= REQ_NOMERGE; 1124 1125 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1126 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1127 1128 if (!op_is_write(op) && 1129 test_bit(R5_InJournal, &sh->dev[i].flags)) 1130 /* 1131 * issuing read for a page in journal, this 1132 * must be preparing for prexor in rmw; read 1133 * the data into orig_page 1134 */ 1135 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1136 else 1137 sh->dev[i].vec.bv_page = sh->dev[i].page; 1138 bi->bi_vcnt = 1; 1139 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1140 bi->bi_io_vec[0].bv_offset = 0; 1141 bi->bi_iter.bi_size = STRIPE_SIZE; 1142 /* 1143 * If this is discard request, set bi_vcnt 0. We don't 1144 * want to confuse SCSI because SCSI will replace payload 1145 */ 1146 if (op == REQ_OP_DISCARD) 1147 bi->bi_vcnt = 0; 1148 if (rrdev) 1149 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1150 1151 if (conf->mddev->gendisk) 1152 trace_block_bio_remap(bi->bi_disk->queue, 1153 bi, disk_devt(conf->mddev->gendisk), 1154 sh->dev[i].sector); 1155 if (should_defer && op_is_write(op)) 1156 bio_list_add(&pending_bios, bi); 1157 else 1158 generic_make_request(bi); 1159 } 1160 if (rrdev) { 1161 if (s->syncing || s->expanding || s->expanded 1162 || s->replacing) 1163 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1164 1165 set_bit(STRIPE_IO_STARTED, &sh->state); 1166 1167 bio_set_dev(rbi, rrdev->bdev); 1168 bio_set_op_attrs(rbi, op, op_flags); 1169 BUG_ON(!op_is_write(op)); 1170 rbi->bi_end_io = raid5_end_write_request; 1171 rbi->bi_private = sh; 1172 1173 pr_debug("%s: for %llu schedule op %d on " 1174 "replacement disc %d\n", 1175 __func__, (unsigned long long)sh->sector, 1176 rbi->bi_opf, i); 1177 atomic_inc(&sh->count); 1178 if (sh != head_sh) 1179 atomic_inc(&head_sh->count); 1180 if (use_new_offset(conf, sh)) 1181 rbi->bi_iter.bi_sector = (sh->sector 1182 + rrdev->new_data_offset); 1183 else 1184 rbi->bi_iter.bi_sector = (sh->sector 1185 + rrdev->data_offset); 1186 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1187 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1188 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1189 rbi->bi_vcnt = 1; 1190 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1191 rbi->bi_io_vec[0].bv_offset = 0; 1192 rbi->bi_iter.bi_size = STRIPE_SIZE; 1193 /* 1194 * If this is discard request, set bi_vcnt 0. We don't 1195 * want to confuse SCSI because SCSI will replace payload 1196 */ 1197 if (op == REQ_OP_DISCARD) 1198 rbi->bi_vcnt = 0; 1199 if (conf->mddev->gendisk) 1200 trace_block_bio_remap(rbi->bi_disk->queue, 1201 rbi, disk_devt(conf->mddev->gendisk), 1202 sh->dev[i].sector); 1203 if (should_defer && op_is_write(op)) 1204 bio_list_add(&pending_bios, rbi); 1205 else 1206 generic_make_request(rbi); 1207 } 1208 if (!rdev && !rrdev) { 1209 if (op_is_write(op)) 1210 set_bit(STRIPE_DEGRADED, &sh->state); 1211 pr_debug("skip op %d on disc %d for sector %llu\n", 1212 bi->bi_opf, i, (unsigned long long)sh->sector); 1213 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1214 set_bit(STRIPE_HANDLE, &sh->state); 1215 } 1216 1217 if (!head_sh->batch_head) 1218 continue; 1219 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1220 batch_list); 1221 if (sh != head_sh) 1222 goto again; 1223 } 1224 1225 if (should_defer && !bio_list_empty(&pending_bios)) 1226 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1227 } 1228 1229 static struct dma_async_tx_descriptor * 1230 async_copy_data(int frombio, struct bio *bio, struct page **page, 1231 sector_t sector, struct dma_async_tx_descriptor *tx, 1232 struct stripe_head *sh, int no_skipcopy) 1233 { 1234 struct bio_vec bvl; 1235 struct bvec_iter iter; 1236 struct page *bio_page; 1237 int page_offset; 1238 struct async_submit_ctl submit; 1239 enum async_tx_flags flags = 0; 1240 1241 if (bio->bi_iter.bi_sector >= sector) 1242 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1243 else 1244 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1245 1246 if (frombio) 1247 flags |= ASYNC_TX_FENCE; 1248 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1249 1250 bio_for_each_segment(bvl, bio, iter) { 1251 int len = bvl.bv_len; 1252 int clen; 1253 int b_offset = 0; 1254 1255 if (page_offset < 0) { 1256 b_offset = -page_offset; 1257 page_offset += b_offset; 1258 len -= b_offset; 1259 } 1260 1261 if (len > 0 && page_offset + len > STRIPE_SIZE) 1262 clen = STRIPE_SIZE - page_offset; 1263 else 1264 clen = len; 1265 1266 if (clen > 0) { 1267 b_offset += bvl.bv_offset; 1268 bio_page = bvl.bv_page; 1269 if (frombio) { 1270 if (sh->raid_conf->skip_copy && 1271 b_offset == 0 && page_offset == 0 && 1272 clen == STRIPE_SIZE && 1273 !no_skipcopy) 1274 *page = bio_page; 1275 else 1276 tx = async_memcpy(*page, bio_page, page_offset, 1277 b_offset, clen, &submit); 1278 } else 1279 tx = async_memcpy(bio_page, *page, b_offset, 1280 page_offset, clen, &submit); 1281 } 1282 /* chain the operations */ 1283 submit.depend_tx = tx; 1284 1285 if (clen < len) /* hit end of page */ 1286 break; 1287 page_offset += len; 1288 } 1289 1290 return tx; 1291 } 1292 1293 static void ops_complete_biofill(void *stripe_head_ref) 1294 { 1295 struct stripe_head *sh = stripe_head_ref; 1296 int i; 1297 1298 pr_debug("%s: stripe %llu\n", __func__, 1299 (unsigned long long)sh->sector); 1300 1301 /* clear completed biofills */ 1302 for (i = sh->disks; i--; ) { 1303 struct r5dev *dev = &sh->dev[i]; 1304 1305 /* acknowledge completion of a biofill operation */ 1306 /* and check if we need to reply to a read request, 1307 * new R5_Wantfill requests are held off until 1308 * !STRIPE_BIOFILL_RUN 1309 */ 1310 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1311 struct bio *rbi, *rbi2; 1312 1313 BUG_ON(!dev->read); 1314 rbi = dev->read; 1315 dev->read = NULL; 1316 while (rbi && rbi->bi_iter.bi_sector < 1317 dev->sector + STRIPE_SECTORS) { 1318 rbi2 = r5_next_bio(rbi, dev->sector); 1319 bio_endio(rbi); 1320 rbi = rbi2; 1321 } 1322 } 1323 } 1324 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1325 1326 set_bit(STRIPE_HANDLE, &sh->state); 1327 raid5_release_stripe(sh); 1328 } 1329 1330 static void ops_run_biofill(struct stripe_head *sh) 1331 { 1332 struct dma_async_tx_descriptor *tx = NULL; 1333 struct async_submit_ctl submit; 1334 int i; 1335 1336 BUG_ON(sh->batch_head); 1337 pr_debug("%s: stripe %llu\n", __func__, 1338 (unsigned long long)sh->sector); 1339 1340 for (i = sh->disks; i--; ) { 1341 struct r5dev *dev = &sh->dev[i]; 1342 if (test_bit(R5_Wantfill, &dev->flags)) { 1343 struct bio *rbi; 1344 spin_lock_irq(&sh->stripe_lock); 1345 dev->read = rbi = dev->toread; 1346 dev->toread = NULL; 1347 spin_unlock_irq(&sh->stripe_lock); 1348 while (rbi && rbi->bi_iter.bi_sector < 1349 dev->sector + STRIPE_SECTORS) { 1350 tx = async_copy_data(0, rbi, &dev->page, 1351 dev->sector, tx, sh, 0); 1352 rbi = r5_next_bio(rbi, dev->sector); 1353 } 1354 } 1355 } 1356 1357 atomic_inc(&sh->count); 1358 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1359 async_trigger_callback(&submit); 1360 } 1361 1362 static void mark_target_uptodate(struct stripe_head *sh, int target) 1363 { 1364 struct r5dev *tgt; 1365 1366 if (target < 0) 1367 return; 1368 1369 tgt = &sh->dev[target]; 1370 set_bit(R5_UPTODATE, &tgt->flags); 1371 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1372 clear_bit(R5_Wantcompute, &tgt->flags); 1373 } 1374 1375 static void ops_complete_compute(void *stripe_head_ref) 1376 { 1377 struct stripe_head *sh = stripe_head_ref; 1378 1379 pr_debug("%s: stripe %llu\n", __func__, 1380 (unsigned long long)sh->sector); 1381 1382 /* mark the computed target(s) as uptodate */ 1383 mark_target_uptodate(sh, sh->ops.target); 1384 mark_target_uptodate(sh, sh->ops.target2); 1385 1386 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1387 if (sh->check_state == check_state_compute_run) 1388 sh->check_state = check_state_compute_result; 1389 set_bit(STRIPE_HANDLE, &sh->state); 1390 raid5_release_stripe(sh); 1391 } 1392 1393 /* return a pointer to the address conversion region of the scribble buffer */ 1394 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1395 struct raid5_percpu *percpu, int i) 1396 { 1397 void *addr; 1398 1399 addr = flex_array_get(percpu->scribble, i); 1400 return addr + sizeof(struct page *) * (sh->disks + 2); 1401 } 1402 1403 /* return a pointer to the address conversion region of the scribble buffer */ 1404 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1405 { 1406 void *addr; 1407 1408 addr = flex_array_get(percpu->scribble, i); 1409 return addr; 1410 } 1411 1412 static struct dma_async_tx_descriptor * 1413 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1414 { 1415 int disks = sh->disks; 1416 struct page **xor_srcs = to_addr_page(percpu, 0); 1417 int target = sh->ops.target; 1418 struct r5dev *tgt = &sh->dev[target]; 1419 struct page *xor_dest = tgt->page; 1420 int count = 0; 1421 struct dma_async_tx_descriptor *tx; 1422 struct async_submit_ctl submit; 1423 int i; 1424 1425 BUG_ON(sh->batch_head); 1426 1427 pr_debug("%s: stripe %llu block: %d\n", 1428 __func__, (unsigned long long)sh->sector, target); 1429 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1430 1431 for (i = disks; i--; ) 1432 if (i != target) 1433 xor_srcs[count++] = sh->dev[i].page; 1434 1435 atomic_inc(&sh->count); 1436 1437 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1438 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1439 if (unlikely(count == 1)) 1440 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1441 else 1442 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1443 1444 return tx; 1445 } 1446 1447 /* set_syndrome_sources - populate source buffers for gen_syndrome 1448 * @srcs - (struct page *) array of size sh->disks 1449 * @sh - stripe_head to parse 1450 * 1451 * Populates srcs in proper layout order for the stripe and returns the 1452 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1453 * destination buffer is recorded in srcs[count] and the Q destination 1454 * is recorded in srcs[count+1]]. 1455 */ 1456 static int set_syndrome_sources(struct page **srcs, 1457 struct stripe_head *sh, 1458 int srctype) 1459 { 1460 int disks = sh->disks; 1461 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1462 int d0_idx = raid6_d0(sh); 1463 int count; 1464 int i; 1465 1466 for (i = 0; i < disks; i++) 1467 srcs[i] = NULL; 1468 1469 count = 0; 1470 i = d0_idx; 1471 do { 1472 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1473 struct r5dev *dev = &sh->dev[i]; 1474 1475 if (i == sh->qd_idx || i == sh->pd_idx || 1476 (srctype == SYNDROME_SRC_ALL) || 1477 (srctype == SYNDROME_SRC_WANT_DRAIN && 1478 (test_bit(R5_Wantdrain, &dev->flags) || 1479 test_bit(R5_InJournal, &dev->flags))) || 1480 (srctype == SYNDROME_SRC_WRITTEN && 1481 (dev->written || 1482 test_bit(R5_InJournal, &dev->flags)))) { 1483 if (test_bit(R5_InJournal, &dev->flags)) 1484 srcs[slot] = sh->dev[i].orig_page; 1485 else 1486 srcs[slot] = sh->dev[i].page; 1487 } 1488 i = raid6_next_disk(i, disks); 1489 } while (i != d0_idx); 1490 1491 return syndrome_disks; 1492 } 1493 1494 static struct dma_async_tx_descriptor * 1495 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1496 { 1497 int disks = sh->disks; 1498 struct page **blocks = to_addr_page(percpu, 0); 1499 int target; 1500 int qd_idx = sh->qd_idx; 1501 struct dma_async_tx_descriptor *tx; 1502 struct async_submit_ctl submit; 1503 struct r5dev *tgt; 1504 struct page *dest; 1505 int i; 1506 int count; 1507 1508 BUG_ON(sh->batch_head); 1509 if (sh->ops.target < 0) 1510 target = sh->ops.target2; 1511 else if (sh->ops.target2 < 0) 1512 target = sh->ops.target; 1513 else 1514 /* we should only have one valid target */ 1515 BUG(); 1516 BUG_ON(target < 0); 1517 pr_debug("%s: stripe %llu block: %d\n", 1518 __func__, (unsigned long long)sh->sector, target); 1519 1520 tgt = &sh->dev[target]; 1521 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1522 dest = tgt->page; 1523 1524 atomic_inc(&sh->count); 1525 1526 if (target == qd_idx) { 1527 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1528 blocks[count] = NULL; /* regenerating p is not necessary */ 1529 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1530 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1531 ops_complete_compute, sh, 1532 to_addr_conv(sh, percpu, 0)); 1533 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1534 } else { 1535 /* Compute any data- or p-drive using XOR */ 1536 count = 0; 1537 for (i = disks; i-- ; ) { 1538 if (i == target || i == qd_idx) 1539 continue; 1540 blocks[count++] = sh->dev[i].page; 1541 } 1542 1543 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1544 NULL, ops_complete_compute, sh, 1545 to_addr_conv(sh, percpu, 0)); 1546 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1547 } 1548 1549 return tx; 1550 } 1551 1552 static struct dma_async_tx_descriptor * 1553 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1554 { 1555 int i, count, disks = sh->disks; 1556 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1557 int d0_idx = raid6_d0(sh); 1558 int faila = -1, failb = -1; 1559 int target = sh->ops.target; 1560 int target2 = sh->ops.target2; 1561 struct r5dev *tgt = &sh->dev[target]; 1562 struct r5dev *tgt2 = &sh->dev[target2]; 1563 struct dma_async_tx_descriptor *tx; 1564 struct page **blocks = to_addr_page(percpu, 0); 1565 struct async_submit_ctl submit; 1566 1567 BUG_ON(sh->batch_head); 1568 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1569 __func__, (unsigned long long)sh->sector, target, target2); 1570 BUG_ON(target < 0 || target2 < 0); 1571 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1572 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1573 1574 /* we need to open-code set_syndrome_sources to handle the 1575 * slot number conversion for 'faila' and 'failb' 1576 */ 1577 for (i = 0; i < disks ; i++) 1578 blocks[i] = NULL; 1579 count = 0; 1580 i = d0_idx; 1581 do { 1582 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1583 1584 blocks[slot] = sh->dev[i].page; 1585 1586 if (i == target) 1587 faila = slot; 1588 if (i == target2) 1589 failb = slot; 1590 i = raid6_next_disk(i, disks); 1591 } while (i != d0_idx); 1592 1593 BUG_ON(faila == failb); 1594 if (failb < faila) 1595 swap(faila, failb); 1596 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1597 __func__, (unsigned long long)sh->sector, faila, failb); 1598 1599 atomic_inc(&sh->count); 1600 1601 if (failb == syndrome_disks+1) { 1602 /* Q disk is one of the missing disks */ 1603 if (faila == syndrome_disks) { 1604 /* Missing P+Q, just recompute */ 1605 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1606 ops_complete_compute, sh, 1607 to_addr_conv(sh, percpu, 0)); 1608 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1609 STRIPE_SIZE, &submit); 1610 } else { 1611 struct page *dest; 1612 int data_target; 1613 int qd_idx = sh->qd_idx; 1614 1615 /* Missing D+Q: recompute D from P, then recompute Q */ 1616 if (target == qd_idx) 1617 data_target = target2; 1618 else 1619 data_target = target; 1620 1621 count = 0; 1622 for (i = disks; i-- ; ) { 1623 if (i == data_target || i == qd_idx) 1624 continue; 1625 blocks[count++] = sh->dev[i].page; 1626 } 1627 dest = sh->dev[data_target].page; 1628 init_async_submit(&submit, 1629 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1630 NULL, NULL, NULL, 1631 to_addr_conv(sh, percpu, 0)); 1632 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1633 &submit); 1634 1635 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1636 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1637 ops_complete_compute, sh, 1638 to_addr_conv(sh, percpu, 0)); 1639 return async_gen_syndrome(blocks, 0, count+2, 1640 STRIPE_SIZE, &submit); 1641 } 1642 } else { 1643 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1644 ops_complete_compute, sh, 1645 to_addr_conv(sh, percpu, 0)); 1646 if (failb == syndrome_disks) { 1647 /* We're missing D+P. */ 1648 return async_raid6_datap_recov(syndrome_disks+2, 1649 STRIPE_SIZE, faila, 1650 blocks, &submit); 1651 } else { 1652 /* We're missing D+D. */ 1653 return async_raid6_2data_recov(syndrome_disks+2, 1654 STRIPE_SIZE, faila, failb, 1655 blocks, &submit); 1656 } 1657 } 1658 } 1659 1660 static void ops_complete_prexor(void *stripe_head_ref) 1661 { 1662 struct stripe_head *sh = stripe_head_ref; 1663 1664 pr_debug("%s: stripe %llu\n", __func__, 1665 (unsigned long long)sh->sector); 1666 1667 if (r5c_is_writeback(sh->raid_conf->log)) 1668 /* 1669 * raid5-cache write back uses orig_page during prexor. 1670 * After prexor, it is time to free orig_page 1671 */ 1672 r5c_release_extra_page(sh); 1673 } 1674 1675 static struct dma_async_tx_descriptor * 1676 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1677 struct dma_async_tx_descriptor *tx) 1678 { 1679 int disks = sh->disks; 1680 struct page **xor_srcs = to_addr_page(percpu, 0); 1681 int count = 0, pd_idx = sh->pd_idx, i; 1682 struct async_submit_ctl submit; 1683 1684 /* existing parity data subtracted */ 1685 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1686 1687 BUG_ON(sh->batch_head); 1688 pr_debug("%s: stripe %llu\n", __func__, 1689 (unsigned long long)sh->sector); 1690 1691 for (i = disks; i--; ) { 1692 struct r5dev *dev = &sh->dev[i]; 1693 /* Only process blocks that are known to be uptodate */ 1694 if (test_bit(R5_InJournal, &dev->flags)) 1695 xor_srcs[count++] = dev->orig_page; 1696 else if (test_bit(R5_Wantdrain, &dev->flags)) 1697 xor_srcs[count++] = dev->page; 1698 } 1699 1700 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1701 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1702 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1703 1704 return tx; 1705 } 1706 1707 static struct dma_async_tx_descriptor * 1708 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1709 struct dma_async_tx_descriptor *tx) 1710 { 1711 struct page **blocks = to_addr_page(percpu, 0); 1712 int count; 1713 struct async_submit_ctl submit; 1714 1715 pr_debug("%s: stripe %llu\n", __func__, 1716 (unsigned long long)sh->sector); 1717 1718 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1719 1720 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1721 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1722 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1723 1724 return tx; 1725 } 1726 1727 static struct dma_async_tx_descriptor * 1728 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1729 { 1730 struct r5conf *conf = sh->raid_conf; 1731 int disks = sh->disks; 1732 int i; 1733 struct stripe_head *head_sh = sh; 1734 1735 pr_debug("%s: stripe %llu\n", __func__, 1736 (unsigned long long)sh->sector); 1737 1738 for (i = disks; i--; ) { 1739 struct r5dev *dev; 1740 struct bio *chosen; 1741 1742 sh = head_sh; 1743 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1744 struct bio *wbi; 1745 1746 again: 1747 dev = &sh->dev[i]; 1748 /* 1749 * clear R5_InJournal, so when rewriting a page in 1750 * journal, it is not skipped by r5l_log_stripe() 1751 */ 1752 clear_bit(R5_InJournal, &dev->flags); 1753 spin_lock_irq(&sh->stripe_lock); 1754 chosen = dev->towrite; 1755 dev->towrite = NULL; 1756 sh->overwrite_disks = 0; 1757 BUG_ON(dev->written); 1758 wbi = dev->written = chosen; 1759 spin_unlock_irq(&sh->stripe_lock); 1760 WARN_ON(dev->page != dev->orig_page); 1761 1762 while (wbi && wbi->bi_iter.bi_sector < 1763 dev->sector + STRIPE_SECTORS) { 1764 if (wbi->bi_opf & REQ_FUA) 1765 set_bit(R5_WantFUA, &dev->flags); 1766 if (wbi->bi_opf & REQ_SYNC) 1767 set_bit(R5_SyncIO, &dev->flags); 1768 if (bio_op(wbi) == REQ_OP_DISCARD) 1769 set_bit(R5_Discard, &dev->flags); 1770 else { 1771 tx = async_copy_data(1, wbi, &dev->page, 1772 dev->sector, tx, sh, 1773 r5c_is_writeback(conf->log)); 1774 if (dev->page != dev->orig_page && 1775 !r5c_is_writeback(conf->log)) { 1776 set_bit(R5_SkipCopy, &dev->flags); 1777 clear_bit(R5_UPTODATE, &dev->flags); 1778 clear_bit(R5_OVERWRITE, &dev->flags); 1779 } 1780 } 1781 wbi = r5_next_bio(wbi, dev->sector); 1782 } 1783 1784 if (head_sh->batch_head) { 1785 sh = list_first_entry(&sh->batch_list, 1786 struct stripe_head, 1787 batch_list); 1788 if (sh == head_sh) 1789 continue; 1790 goto again; 1791 } 1792 } 1793 } 1794 1795 return tx; 1796 } 1797 1798 static void ops_complete_reconstruct(void *stripe_head_ref) 1799 { 1800 struct stripe_head *sh = stripe_head_ref; 1801 int disks = sh->disks; 1802 int pd_idx = sh->pd_idx; 1803 int qd_idx = sh->qd_idx; 1804 int i; 1805 bool fua = false, sync = false, discard = false; 1806 1807 pr_debug("%s: stripe %llu\n", __func__, 1808 (unsigned long long)sh->sector); 1809 1810 for (i = disks; i--; ) { 1811 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1812 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1813 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1814 } 1815 1816 for (i = disks; i--; ) { 1817 struct r5dev *dev = &sh->dev[i]; 1818 1819 if (dev->written || i == pd_idx || i == qd_idx) { 1820 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1821 set_bit(R5_UPTODATE, &dev->flags); 1822 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1823 set_bit(R5_Expanded, &dev->flags); 1824 } 1825 if (fua) 1826 set_bit(R5_WantFUA, &dev->flags); 1827 if (sync) 1828 set_bit(R5_SyncIO, &dev->flags); 1829 } 1830 } 1831 1832 if (sh->reconstruct_state == reconstruct_state_drain_run) 1833 sh->reconstruct_state = reconstruct_state_drain_result; 1834 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1835 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1836 else { 1837 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1838 sh->reconstruct_state = reconstruct_state_result; 1839 } 1840 1841 set_bit(STRIPE_HANDLE, &sh->state); 1842 raid5_release_stripe(sh); 1843 } 1844 1845 static void 1846 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1847 struct dma_async_tx_descriptor *tx) 1848 { 1849 int disks = sh->disks; 1850 struct page **xor_srcs; 1851 struct async_submit_ctl submit; 1852 int count, pd_idx = sh->pd_idx, i; 1853 struct page *xor_dest; 1854 int prexor = 0; 1855 unsigned long flags; 1856 int j = 0; 1857 struct stripe_head *head_sh = sh; 1858 int last_stripe; 1859 1860 pr_debug("%s: stripe %llu\n", __func__, 1861 (unsigned long long)sh->sector); 1862 1863 for (i = 0; i < sh->disks; i++) { 1864 if (pd_idx == i) 1865 continue; 1866 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1867 break; 1868 } 1869 if (i >= sh->disks) { 1870 atomic_inc(&sh->count); 1871 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1872 ops_complete_reconstruct(sh); 1873 return; 1874 } 1875 again: 1876 count = 0; 1877 xor_srcs = to_addr_page(percpu, j); 1878 /* check if prexor is active which means only process blocks 1879 * that are part of a read-modify-write (written) 1880 */ 1881 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1882 prexor = 1; 1883 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1884 for (i = disks; i--; ) { 1885 struct r5dev *dev = &sh->dev[i]; 1886 if (head_sh->dev[i].written || 1887 test_bit(R5_InJournal, &head_sh->dev[i].flags)) 1888 xor_srcs[count++] = dev->page; 1889 } 1890 } else { 1891 xor_dest = sh->dev[pd_idx].page; 1892 for (i = disks; i--; ) { 1893 struct r5dev *dev = &sh->dev[i]; 1894 if (i != pd_idx) 1895 xor_srcs[count++] = dev->page; 1896 } 1897 } 1898 1899 /* 1/ if we prexor'd then the dest is reused as a source 1900 * 2/ if we did not prexor then we are redoing the parity 1901 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1902 * for the synchronous xor case 1903 */ 1904 last_stripe = !head_sh->batch_head || 1905 list_first_entry(&sh->batch_list, 1906 struct stripe_head, batch_list) == head_sh; 1907 if (last_stripe) { 1908 flags = ASYNC_TX_ACK | 1909 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1910 1911 atomic_inc(&head_sh->count); 1912 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1913 to_addr_conv(sh, percpu, j)); 1914 } else { 1915 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1916 init_async_submit(&submit, flags, tx, NULL, NULL, 1917 to_addr_conv(sh, percpu, j)); 1918 } 1919 1920 if (unlikely(count == 1)) 1921 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1922 else 1923 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1924 if (!last_stripe) { 1925 j++; 1926 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1927 batch_list); 1928 goto again; 1929 } 1930 } 1931 1932 static void 1933 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1934 struct dma_async_tx_descriptor *tx) 1935 { 1936 struct async_submit_ctl submit; 1937 struct page **blocks; 1938 int count, i, j = 0; 1939 struct stripe_head *head_sh = sh; 1940 int last_stripe; 1941 int synflags; 1942 unsigned long txflags; 1943 1944 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1945 1946 for (i = 0; i < sh->disks; i++) { 1947 if (sh->pd_idx == i || sh->qd_idx == i) 1948 continue; 1949 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1950 break; 1951 } 1952 if (i >= sh->disks) { 1953 atomic_inc(&sh->count); 1954 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1955 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1956 ops_complete_reconstruct(sh); 1957 return; 1958 } 1959 1960 again: 1961 blocks = to_addr_page(percpu, j); 1962 1963 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1964 synflags = SYNDROME_SRC_WRITTEN; 1965 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1966 } else { 1967 synflags = SYNDROME_SRC_ALL; 1968 txflags = ASYNC_TX_ACK; 1969 } 1970 1971 count = set_syndrome_sources(blocks, sh, synflags); 1972 last_stripe = !head_sh->batch_head || 1973 list_first_entry(&sh->batch_list, 1974 struct stripe_head, batch_list) == head_sh; 1975 1976 if (last_stripe) { 1977 atomic_inc(&head_sh->count); 1978 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1979 head_sh, to_addr_conv(sh, percpu, j)); 1980 } else 1981 init_async_submit(&submit, 0, tx, NULL, NULL, 1982 to_addr_conv(sh, percpu, j)); 1983 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1984 if (!last_stripe) { 1985 j++; 1986 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1987 batch_list); 1988 goto again; 1989 } 1990 } 1991 1992 static void ops_complete_check(void *stripe_head_ref) 1993 { 1994 struct stripe_head *sh = stripe_head_ref; 1995 1996 pr_debug("%s: stripe %llu\n", __func__, 1997 (unsigned long long)sh->sector); 1998 1999 sh->check_state = check_state_check_result; 2000 set_bit(STRIPE_HANDLE, &sh->state); 2001 raid5_release_stripe(sh); 2002 } 2003 2004 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2005 { 2006 int disks = sh->disks; 2007 int pd_idx = sh->pd_idx; 2008 int qd_idx = sh->qd_idx; 2009 struct page *xor_dest; 2010 struct page **xor_srcs = to_addr_page(percpu, 0); 2011 struct dma_async_tx_descriptor *tx; 2012 struct async_submit_ctl submit; 2013 int count; 2014 int i; 2015 2016 pr_debug("%s: stripe %llu\n", __func__, 2017 (unsigned long long)sh->sector); 2018 2019 BUG_ON(sh->batch_head); 2020 count = 0; 2021 xor_dest = sh->dev[pd_idx].page; 2022 xor_srcs[count++] = xor_dest; 2023 for (i = disks; i--; ) { 2024 if (i == pd_idx || i == qd_idx) 2025 continue; 2026 xor_srcs[count++] = sh->dev[i].page; 2027 } 2028 2029 init_async_submit(&submit, 0, NULL, NULL, NULL, 2030 to_addr_conv(sh, percpu, 0)); 2031 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 2032 &sh->ops.zero_sum_result, &submit); 2033 2034 atomic_inc(&sh->count); 2035 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2036 tx = async_trigger_callback(&submit); 2037 } 2038 2039 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2040 { 2041 struct page **srcs = to_addr_page(percpu, 0); 2042 struct async_submit_ctl submit; 2043 int count; 2044 2045 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2046 (unsigned long long)sh->sector, checkp); 2047 2048 BUG_ON(sh->batch_head); 2049 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 2050 if (!checkp) 2051 srcs[count] = NULL; 2052 2053 atomic_inc(&sh->count); 2054 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2055 sh, to_addr_conv(sh, percpu, 0)); 2056 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 2057 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 2058 } 2059 2060 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2061 { 2062 int overlap_clear = 0, i, disks = sh->disks; 2063 struct dma_async_tx_descriptor *tx = NULL; 2064 struct r5conf *conf = sh->raid_conf; 2065 int level = conf->level; 2066 struct raid5_percpu *percpu; 2067 unsigned long cpu; 2068 2069 cpu = get_cpu(); 2070 percpu = per_cpu_ptr(conf->percpu, cpu); 2071 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2072 ops_run_biofill(sh); 2073 overlap_clear++; 2074 } 2075 2076 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2077 if (level < 6) 2078 tx = ops_run_compute5(sh, percpu); 2079 else { 2080 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2081 tx = ops_run_compute6_1(sh, percpu); 2082 else 2083 tx = ops_run_compute6_2(sh, percpu); 2084 } 2085 /* terminate the chain if reconstruct is not set to be run */ 2086 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2087 async_tx_ack(tx); 2088 } 2089 2090 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2091 if (level < 6) 2092 tx = ops_run_prexor5(sh, percpu, tx); 2093 else 2094 tx = ops_run_prexor6(sh, percpu, tx); 2095 } 2096 2097 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2098 tx = ops_run_partial_parity(sh, percpu, tx); 2099 2100 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2101 tx = ops_run_biodrain(sh, tx); 2102 overlap_clear++; 2103 } 2104 2105 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2106 if (level < 6) 2107 ops_run_reconstruct5(sh, percpu, tx); 2108 else 2109 ops_run_reconstruct6(sh, percpu, tx); 2110 } 2111 2112 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2113 if (sh->check_state == check_state_run) 2114 ops_run_check_p(sh, percpu); 2115 else if (sh->check_state == check_state_run_q) 2116 ops_run_check_pq(sh, percpu, 0); 2117 else if (sh->check_state == check_state_run_pq) 2118 ops_run_check_pq(sh, percpu, 1); 2119 else 2120 BUG(); 2121 } 2122 2123 if (overlap_clear && !sh->batch_head) 2124 for (i = disks; i--; ) { 2125 struct r5dev *dev = &sh->dev[i]; 2126 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2127 wake_up(&sh->raid_conf->wait_for_overlap); 2128 } 2129 put_cpu(); 2130 } 2131 2132 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2133 { 2134 if (sh->ppl_page) 2135 __free_page(sh->ppl_page); 2136 kmem_cache_free(sc, sh); 2137 } 2138 2139 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2140 int disks, struct r5conf *conf) 2141 { 2142 struct stripe_head *sh; 2143 int i; 2144 2145 sh = kmem_cache_zalloc(sc, gfp); 2146 if (sh) { 2147 spin_lock_init(&sh->stripe_lock); 2148 spin_lock_init(&sh->batch_lock); 2149 INIT_LIST_HEAD(&sh->batch_list); 2150 INIT_LIST_HEAD(&sh->lru); 2151 INIT_LIST_HEAD(&sh->r5c); 2152 INIT_LIST_HEAD(&sh->log_list); 2153 atomic_set(&sh->count, 1); 2154 sh->raid_conf = conf; 2155 sh->log_start = MaxSector; 2156 for (i = 0; i < disks; i++) { 2157 struct r5dev *dev = &sh->dev[i]; 2158 2159 bio_init(&dev->req, &dev->vec, 1); 2160 bio_init(&dev->rreq, &dev->rvec, 1); 2161 } 2162 2163 if (raid5_has_ppl(conf)) { 2164 sh->ppl_page = alloc_page(gfp); 2165 if (!sh->ppl_page) { 2166 free_stripe(sc, sh); 2167 sh = NULL; 2168 } 2169 } 2170 } 2171 return sh; 2172 } 2173 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2174 { 2175 struct stripe_head *sh; 2176 2177 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2178 if (!sh) 2179 return 0; 2180 2181 if (grow_buffers(sh, gfp)) { 2182 shrink_buffers(sh); 2183 free_stripe(conf->slab_cache, sh); 2184 return 0; 2185 } 2186 sh->hash_lock_index = 2187 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2188 /* we just created an active stripe so... */ 2189 atomic_inc(&conf->active_stripes); 2190 2191 raid5_release_stripe(sh); 2192 conf->max_nr_stripes++; 2193 return 1; 2194 } 2195 2196 static int grow_stripes(struct r5conf *conf, int num) 2197 { 2198 struct kmem_cache *sc; 2199 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2200 2201 if (conf->mddev->gendisk) 2202 sprintf(conf->cache_name[0], 2203 "raid%d-%s", conf->level, mdname(conf->mddev)); 2204 else 2205 sprintf(conf->cache_name[0], 2206 "raid%d-%p", conf->level, conf->mddev); 2207 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2208 2209 conf->active_name = 0; 2210 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2211 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2212 0, 0, NULL); 2213 if (!sc) 2214 return 1; 2215 conf->slab_cache = sc; 2216 conf->pool_size = devs; 2217 while (num--) 2218 if (!grow_one_stripe(conf, GFP_KERNEL)) 2219 return 1; 2220 2221 return 0; 2222 } 2223 2224 /** 2225 * scribble_len - return the required size of the scribble region 2226 * @num - total number of disks in the array 2227 * 2228 * The size must be enough to contain: 2229 * 1/ a struct page pointer for each device in the array +2 2230 * 2/ room to convert each entry in (1) to its corresponding dma 2231 * (dma_map_page()) or page (page_address()) address. 2232 * 2233 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2234 * calculate over all devices (not just the data blocks), using zeros in place 2235 * of the P and Q blocks. 2236 */ 2237 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2238 { 2239 struct flex_array *ret; 2240 size_t len; 2241 2242 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2243 ret = flex_array_alloc(len, cnt, flags); 2244 if (!ret) 2245 return NULL; 2246 /* always prealloc all elements, so no locking is required */ 2247 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2248 flex_array_free(ret); 2249 return NULL; 2250 } 2251 return ret; 2252 } 2253 2254 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2255 { 2256 unsigned long cpu; 2257 int err = 0; 2258 2259 /* 2260 * Never shrink. And mddev_suspend() could deadlock if this is called 2261 * from raid5d. In that case, scribble_disks and scribble_sectors 2262 * should equal to new_disks and new_sectors 2263 */ 2264 if (conf->scribble_disks >= new_disks && 2265 conf->scribble_sectors >= new_sectors) 2266 return 0; 2267 mddev_suspend(conf->mddev); 2268 get_online_cpus(); 2269 for_each_present_cpu(cpu) { 2270 struct raid5_percpu *percpu; 2271 struct flex_array *scribble; 2272 2273 percpu = per_cpu_ptr(conf->percpu, cpu); 2274 scribble = scribble_alloc(new_disks, 2275 new_sectors / STRIPE_SECTORS, 2276 GFP_NOIO); 2277 2278 if (scribble) { 2279 flex_array_free(percpu->scribble); 2280 percpu->scribble = scribble; 2281 } else { 2282 err = -ENOMEM; 2283 break; 2284 } 2285 } 2286 put_online_cpus(); 2287 mddev_resume(conf->mddev); 2288 if (!err) { 2289 conf->scribble_disks = new_disks; 2290 conf->scribble_sectors = new_sectors; 2291 } 2292 return err; 2293 } 2294 2295 static int resize_stripes(struct r5conf *conf, int newsize) 2296 { 2297 /* Make all the stripes able to hold 'newsize' devices. 2298 * New slots in each stripe get 'page' set to a new page. 2299 * 2300 * This happens in stages: 2301 * 1/ create a new kmem_cache and allocate the required number of 2302 * stripe_heads. 2303 * 2/ gather all the old stripe_heads and transfer the pages across 2304 * to the new stripe_heads. This will have the side effect of 2305 * freezing the array as once all stripe_heads have been collected, 2306 * no IO will be possible. Old stripe heads are freed once their 2307 * pages have been transferred over, and the old kmem_cache is 2308 * freed when all stripes are done. 2309 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2310 * we simple return a failure status - no need to clean anything up. 2311 * 4/ allocate new pages for the new slots in the new stripe_heads. 2312 * If this fails, we don't bother trying the shrink the 2313 * stripe_heads down again, we just leave them as they are. 2314 * As each stripe_head is processed the new one is released into 2315 * active service. 2316 * 2317 * Once step2 is started, we cannot afford to wait for a write, 2318 * so we use GFP_NOIO allocations. 2319 */ 2320 struct stripe_head *osh, *nsh; 2321 LIST_HEAD(newstripes); 2322 struct disk_info *ndisks; 2323 int err = 0; 2324 struct kmem_cache *sc; 2325 int i; 2326 int hash, cnt; 2327 2328 md_allow_write(conf->mddev); 2329 2330 /* Step 1 */ 2331 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2332 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2333 0, 0, NULL); 2334 if (!sc) 2335 return -ENOMEM; 2336 2337 /* Need to ensure auto-resizing doesn't interfere */ 2338 mutex_lock(&conf->cache_size_mutex); 2339 2340 for (i = conf->max_nr_stripes; i; i--) { 2341 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2342 if (!nsh) 2343 break; 2344 2345 list_add(&nsh->lru, &newstripes); 2346 } 2347 if (i) { 2348 /* didn't get enough, give up */ 2349 while (!list_empty(&newstripes)) { 2350 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2351 list_del(&nsh->lru); 2352 free_stripe(sc, nsh); 2353 } 2354 kmem_cache_destroy(sc); 2355 mutex_unlock(&conf->cache_size_mutex); 2356 return -ENOMEM; 2357 } 2358 /* Step 2 - Must use GFP_NOIO now. 2359 * OK, we have enough stripes, start collecting inactive 2360 * stripes and copying them over 2361 */ 2362 hash = 0; 2363 cnt = 0; 2364 list_for_each_entry(nsh, &newstripes, lru) { 2365 lock_device_hash_lock(conf, hash); 2366 wait_event_cmd(conf->wait_for_stripe, 2367 !list_empty(conf->inactive_list + hash), 2368 unlock_device_hash_lock(conf, hash), 2369 lock_device_hash_lock(conf, hash)); 2370 osh = get_free_stripe(conf, hash); 2371 unlock_device_hash_lock(conf, hash); 2372 2373 for(i=0; i<conf->pool_size; i++) { 2374 nsh->dev[i].page = osh->dev[i].page; 2375 nsh->dev[i].orig_page = osh->dev[i].page; 2376 } 2377 nsh->hash_lock_index = hash; 2378 free_stripe(conf->slab_cache, osh); 2379 cnt++; 2380 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2381 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2382 hash++; 2383 cnt = 0; 2384 } 2385 } 2386 kmem_cache_destroy(conf->slab_cache); 2387 2388 /* Step 3. 2389 * At this point, we are holding all the stripes so the array 2390 * is completely stalled, so now is a good time to resize 2391 * conf->disks and the scribble region 2392 */ 2393 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2394 if (ndisks) { 2395 for (i = 0; i < conf->pool_size; i++) 2396 ndisks[i] = conf->disks[i]; 2397 2398 for (i = conf->pool_size; i < newsize; i++) { 2399 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2400 if (!ndisks[i].extra_page) 2401 err = -ENOMEM; 2402 } 2403 2404 if (err) { 2405 for (i = conf->pool_size; i < newsize; i++) 2406 if (ndisks[i].extra_page) 2407 put_page(ndisks[i].extra_page); 2408 kfree(ndisks); 2409 } else { 2410 kfree(conf->disks); 2411 conf->disks = ndisks; 2412 } 2413 } else 2414 err = -ENOMEM; 2415 2416 mutex_unlock(&conf->cache_size_mutex); 2417 2418 conf->slab_cache = sc; 2419 conf->active_name = 1-conf->active_name; 2420 2421 /* Step 4, return new stripes to service */ 2422 while(!list_empty(&newstripes)) { 2423 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2424 list_del_init(&nsh->lru); 2425 2426 for (i=conf->raid_disks; i < newsize; i++) 2427 if (nsh->dev[i].page == NULL) { 2428 struct page *p = alloc_page(GFP_NOIO); 2429 nsh->dev[i].page = p; 2430 nsh->dev[i].orig_page = p; 2431 if (!p) 2432 err = -ENOMEM; 2433 } 2434 raid5_release_stripe(nsh); 2435 } 2436 /* critical section pass, GFP_NOIO no longer needed */ 2437 2438 if (!err) 2439 conf->pool_size = newsize; 2440 return err; 2441 } 2442 2443 static int drop_one_stripe(struct r5conf *conf) 2444 { 2445 struct stripe_head *sh; 2446 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2447 2448 spin_lock_irq(conf->hash_locks + hash); 2449 sh = get_free_stripe(conf, hash); 2450 spin_unlock_irq(conf->hash_locks + hash); 2451 if (!sh) 2452 return 0; 2453 BUG_ON(atomic_read(&sh->count)); 2454 shrink_buffers(sh); 2455 free_stripe(conf->slab_cache, sh); 2456 atomic_dec(&conf->active_stripes); 2457 conf->max_nr_stripes--; 2458 return 1; 2459 } 2460 2461 static void shrink_stripes(struct r5conf *conf) 2462 { 2463 while (conf->max_nr_stripes && 2464 drop_one_stripe(conf)) 2465 ; 2466 2467 kmem_cache_destroy(conf->slab_cache); 2468 conf->slab_cache = NULL; 2469 } 2470 2471 static void raid5_end_read_request(struct bio * bi) 2472 { 2473 struct stripe_head *sh = bi->bi_private; 2474 struct r5conf *conf = sh->raid_conf; 2475 int disks = sh->disks, i; 2476 char b[BDEVNAME_SIZE]; 2477 struct md_rdev *rdev = NULL; 2478 sector_t s; 2479 2480 for (i=0 ; i<disks; i++) 2481 if (bi == &sh->dev[i].req) 2482 break; 2483 2484 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2485 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2486 bi->bi_status); 2487 if (i == disks) { 2488 bio_reset(bi); 2489 BUG(); 2490 return; 2491 } 2492 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2493 /* If replacement finished while this request was outstanding, 2494 * 'replacement' might be NULL already. 2495 * In that case it moved down to 'rdev'. 2496 * rdev is not removed until all requests are finished. 2497 */ 2498 rdev = conf->disks[i].replacement; 2499 if (!rdev) 2500 rdev = conf->disks[i].rdev; 2501 2502 if (use_new_offset(conf, sh)) 2503 s = sh->sector + rdev->new_data_offset; 2504 else 2505 s = sh->sector + rdev->data_offset; 2506 if (!bi->bi_status) { 2507 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2508 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2509 /* Note that this cannot happen on a 2510 * replacement device. We just fail those on 2511 * any error 2512 */ 2513 pr_info_ratelimited( 2514 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2515 mdname(conf->mddev), STRIPE_SECTORS, 2516 (unsigned long long)s, 2517 bdevname(rdev->bdev, b)); 2518 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2519 clear_bit(R5_ReadError, &sh->dev[i].flags); 2520 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2521 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2522 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2523 2524 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2525 /* 2526 * end read for a page in journal, this 2527 * must be preparing for prexor in rmw 2528 */ 2529 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2530 2531 if (atomic_read(&rdev->read_errors)) 2532 atomic_set(&rdev->read_errors, 0); 2533 } else { 2534 const char *bdn = bdevname(rdev->bdev, b); 2535 int retry = 0; 2536 int set_bad = 0; 2537 2538 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2539 atomic_inc(&rdev->read_errors); 2540 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2541 pr_warn_ratelimited( 2542 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2543 mdname(conf->mddev), 2544 (unsigned long long)s, 2545 bdn); 2546 else if (conf->mddev->degraded >= conf->max_degraded) { 2547 set_bad = 1; 2548 pr_warn_ratelimited( 2549 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2550 mdname(conf->mddev), 2551 (unsigned long long)s, 2552 bdn); 2553 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2554 /* Oh, no!!! */ 2555 set_bad = 1; 2556 pr_warn_ratelimited( 2557 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2558 mdname(conf->mddev), 2559 (unsigned long long)s, 2560 bdn); 2561 } else if (atomic_read(&rdev->read_errors) 2562 > conf->max_nr_stripes) 2563 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2564 mdname(conf->mddev), bdn); 2565 else 2566 retry = 1; 2567 if (set_bad && test_bit(In_sync, &rdev->flags) 2568 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2569 retry = 1; 2570 if (retry) 2571 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2572 set_bit(R5_ReadError, &sh->dev[i].flags); 2573 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2574 } else 2575 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2576 else { 2577 clear_bit(R5_ReadError, &sh->dev[i].flags); 2578 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2579 if (!(set_bad 2580 && test_bit(In_sync, &rdev->flags) 2581 && rdev_set_badblocks( 2582 rdev, sh->sector, STRIPE_SECTORS, 0))) 2583 md_error(conf->mddev, rdev); 2584 } 2585 } 2586 rdev_dec_pending(rdev, conf->mddev); 2587 bio_reset(bi); 2588 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2589 set_bit(STRIPE_HANDLE, &sh->state); 2590 raid5_release_stripe(sh); 2591 } 2592 2593 static void raid5_end_write_request(struct bio *bi) 2594 { 2595 struct stripe_head *sh = bi->bi_private; 2596 struct r5conf *conf = sh->raid_conf; 2597 int disks = sh->disks, i; 2598 struct md_rdev *uninitialized_var(rdev); 2599 sector_t first_bad; 2600 int bad_sectors; 2601 int replacement = 0; 2602 2603 for (i = 0 ; i < disks; i++) { 2604 if (bi == &sh->dev[i].req) { 2605 rdev = conf->disks[i].rdev; 2606 break; 2607 } 2608 if (bi == &sh->dev[i].rreq) { 2609 rdev = conf->disks[i].replacement; 2610 if (rdev) 2611 replacement = 1; 2612 else 2613 /* rdev was removed and 'replacement' 2614 * replaced it. rdev is not removed 2615 * until all requests are finished. 2616 */ 2617 rdev = conf->disks[i].rdev; 2618 break; 2619 } 2620 } 2621 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2622 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2623 bi->bi_status); 2624 if (i == disks) { 2625 bio_reset(bi); 2626 BUG(); 2627 return; 2628 } 2629 2630 if (replacement) { 2631 if (bi->bi_status) 2632 md_error(conf->mddev, rdev); 2633 else if (is_badblock(rdev, sh->sector, 2634 STRIPE_SECTORS, 2635 &first_bad, &bad_sectors)) 2636 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2637 } else { 2638 if (bi->bi_status) { 2639 set_bit(STRIPE_DEGRADED, &sh->state); 2640 set_bit(WriteErrorSeen, &rdev->flags); 2641 set_bit(R5_WriteError, &sh->dev[i].flags); 2642 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2643 set_bit(MD_RECOVERY_NEEDED, 2644 &rdev->mddev->recovery); 2645 } else if (is_badblock(rdev, sh->sector, 2646 STRIPE_SECTORS, 2647 &first_bad, &bad_sectors)) { 2648 set_bit(R5_MadeGood, &sh->dev[i].flags); 2649 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2650 /* That was a successful write so make 2651 * sure it looks like we already did 2652 * a re-write. 2653 */ 2654 set_bit(R5_ReWrite, &sh->dev[i].flags); 2655 } 2656 } 2657 rdev_dec_pending(rdev, conf->mddev); 2658 2659 if (sh->batch_head && bi->bi_status && !replacement) 2660 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2661 2662 bio_reset(bi); 2663 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2664 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2665 set_bit(STRIPE_HANDLE, &sh->state); 2666 raid5_release_stripe(sh); 2667 2668 if (sh->batch_head && sh != sh->batch_head) 2669 raid5_release_stripe(sh->batch_head); 2670 } 2671 2672 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2673 { 2674 char b[BDEVNAME_SIZE]; 2675 struct r5conf *conf = mddev->private; 2676 unsigned long flags; 2677 pr_debug("raid456: error called\n"); 2678 2679 spin_lock_irqsave(&conf->device_lock, flags); 2680 set_bit(Faulty, &rdev->flags); 2681 clear_bit(In_sync, &rdev->flags); 2682 mddev->degraded = raid5_calc_degraded(conf); 2683 spin_unlock_irqrestore(&conf->device_lock, flags); 2684 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2685 2686 set_bit(Blocked, &rdev->flags); 2687 set_mask_bits(&mddev->sb_flags, 0, 2688 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2689 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2690 "md/raid:%s: Operation continuing on %d devices.\n", 2691 mdname(mddev), 2692 bdevname(rdev->bdev, b), 2693 mdname(mddev), 2694 conf->raid_disks - mddev->degraded); 2695 r5c_update_on_rdev_error(mddev, rdev); 2696 } 2697 2698 /* 2699 * Input: a 'big' sector number, 2700 * Output: index of the data and parity disk, and the sector # in them. 2701 */ 2702 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2703 int previous, int *dd_idx, 2704 struct stripe_head *sh) 2705 { 2706 sector_t stripe, stripe2; 2707 sector_t chunk_number; 2708 unsigned int chunk_offset; 2709 int pd_idx, qd_idx; 2710 int ddf_layout = 0; 2711 sector_t new_sector; 2712 int algorithm = previous ? conf->prev_algo 2713 : conf->algorithm; 2714 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2715 : conf->chunk_sectors; 2716 int raid_disks = previous ? conf->previous_raid_disks 2717 : conf->raid_disks; 2718 int data_disks = raid_disks - conf->max_degraded; 2719 2720 /* First compute the information on this sector */ 2721 2722 /* 2723 * Compute the chunk number and the sector offset inside the chunk 2724 */ 2725 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2726 chunk_number = r_sector; 2727 2728 /* 2729 * Compute the stripe number 2730 */ 2731 stripe = chunk_number; 2732 *dd_idx = sector_div(stripe, data_disks); 2733 stripe2 = stripe; 2734 /* 2735 * Select the parity disk based on the user selected algorithm. 2736 */ 2737 pd_idx = qd_idx = -1; 2738 switch(conf->level) { 2739 case 4: 2740 pd_idx = data_disks; 2741 break; 2742 case 5: 2743 switch (algorithm) { 2744 case ALGORITHM_LEFT_ASYMMETRIC: 2745 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2746 if (*dd_idx >= pd_idx) 2747 (*dd_idx)++; 2748 break; 2749 case ALGORITHM_RIGHT_ASYMMETRIC: 2750 pd_idx = sector_div(stripe2, raid_disks); 2751 if (*dd_idx >= pd_idx) 2752 (*dd_idx)++; 2753 break; 2754 case ALGORITHM_LEFT_SYMMETRIC: 2755 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2756 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2757 break; 2758 case ALGORITHM_RIGHT_SYMMETRIC: 2759 pd_idx = sector_div(stripe2, raid_disks); 2760 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2761 break; 2762 case ALGORITHM_PARITY_0: 2763 pd_idx = 0; 2764 (*dd_idx)++; 2765 break; 2766 case ALGORITHM_PARITY_N: 2767 pd_idx = data_disks; 2768 break; 2769 default: 2770 BUG(); 2771 } 2772 break; 2773 case 6: 2774 2775 switch (algorithm) { 2776 case ALGORITHM_LEFT_ASYMMETRIC: 2777 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2778 qd_idx = pd_idx + 1; 2779 if (pd_idx == raid_disks-1) { 2780 (*dd_idx)++; /* Q D D D P */ 2781 qd_idx = 0; 2782 } else if (*dd_idx >= pd_idx) 2783 (*dd_idx) += 2; /* D D P Q D */ 2784 break; 2785 case ALGORITHM_RIGHT_ASYMMETRIC: 2786 pd_idx = sector_div(stripe2, raid_disks); 2787 qd_idx = pd_idx + 1; 2788 if (pd_idx == raid_disks-1) { 2789 (*dd_idx)++; /* Q D D D P */ 2790 qd_idx = 0; 2791 } else if (*dd_idx >= pd_idx) 2792 (*dd_idx) += 2; /* D D P Q D */ 2793 break; 2794 case ALGORITHM_LEFT_SYMMETRIC: 2795 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2796 qd_idx = (pd_idx + 1) % raid_disks; 2797 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2798 break; 2799 case ALGORITHM_RIGHT_SYMMETRIC: 2800 pd_idx = sector_div(stripe2, raid_disks); 2801 qd_idx = (pd_idx + 1) % raid_disks; 2802 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2803 break; 2804 2805 case ALGORITHM_PARITY_0: 2806 pd_idx = 0; 2807 qd_idx = 1; 2808 (*dd_idx) += 2; 2809 break; 2810 case ALGORITHM_PARITY_N: 2811 pd_idx = data_disks; 2812 qd_idx = data_disks + 1; 2813 break; 2814 2815 case ALGORITHM_ROTATING_ZERO_RESTART: 2816 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2817 * of blocks for computing Q is different. 2818 */ 2819 pd_idx = sector_div(stripe2, raid_disks); 2820 qd_idx = pd_idx + 1; 2821 if (pd_idx == raid_disks-1) { 2822 (*dd_idx)++; /* Q D D D P */ 2823 qd_idx = 0; 2824 } else if (*dd_idx >= pd_idx) 2825 (*dd_idx) += 2; /* D D P Q D */ 2826 ddf_layout = 1; 2827 break; 2828 2829 case ALGORITHM_ROTATING_N_RESTART: 2830 /* Same a left_asymmetric, by first stripe is 2831 * D D D P Q rather than 2832 * Q D D D P 2833 */ 2834 stripe2 += 1; 2835 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2836 qd_idx = pd_idx + 1; 2837 if (pd_idx == raid_disks-1) { 2838 (*dd_idx)++; /* Q D D D P */ 2839 qd_idx = 0; 2840 } else if (*dd_idx >= pd_idx) 2841 (*dd_idx) += 2; /* D D P Q D */ 2842 ddf_layout = 1; 2843 break; 2844 2845 case ALGORITHM_ROTATING_N_CONTINUE: 2846 /* Same as left_symmetric but Q is before P */ 2847 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2848 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2849 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2850 ddf_layout = 1; 2851 break; 2852 2853 case ALGORITHM_LEFT_ASYMMETRIC_6: 2854 /* RAID5 left_asymmetric, with Q on last device */ 2855 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2856 if (*dd_idx >= pd_idx) 2857 (*dd_idx)++; 2858 qd_idx = raid_disks - 1; 2859 break; 2860 2861 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2862 pd_idx = sector_div(stripe2, raid_disks-1); 2863 if (*dd_idx >= pd_idx) 2864 (*dd_idx)++; 2865 qd_idx = raid_disks - 1; 2866 break; 2867 2868 case ALGORITHM_LEFT_SYMMETRIC_6: 2869 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2870 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2871 qd_idx = raid_disks - 1; 2872 break; 2873 2874 case ALGORITHM_RIGHT_SYMMETRIC_6: 2875 pd_idx = sector_div(stripe2, raid_disks-1); 2876 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2877 qd_idx = raid_disks - 1; 2878 break; 2879 2880 case ALGORITHM_PARITY_0_6: 2881 pd_idx = 0; 2882 (*dd_idx)++; 2883 qd_idx = raid_disks - 1; 2884 break; 2885 2886 default: 2887 BUG(); 2888 } 2889 break; 2890 } 2891 2892 if (sh) { 2893 sh->pd_idx = pd_idx; 2894 sh->qd_idx = qd_idx; 2895 sh->ddf_layout = ddf_layout; 2896 } 2897 /* 2898 * Finally, compute the new sector number 2899 */ 2900 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2901 return new_sector; 2902 } 2903 2904 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2905 { 2906 struct r5conf *conf = sh->raid_conf; 2907 int raid_disks = sh->disks; 2908 int data_disks = raid_disks - conf->max_degraded; 2909 sector_t new_sector = sh->sector, check; 2910 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2911 : conf->chunk_sectors; 2912 int algorithm = previous ? conf->prev_algo 2913 : conf->algorithm; 2914 sector_t stripe; 2915 int chunk_offset; 2916 sector_t chunk_number; 2917 int dummy1, dd_idx = i; 2918 sector_t r_sector; 2919 struct stripe_head sh2; 2920 2921 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2922 stripe = new_sector; 2923 2924 if (i == sh->pd_idx) 2925 return 0; 2926 switch(conf->level) { 2927 case 4: break; 2928 case 5: 2929 switch (algorithm) { 2930 case ALGORITHM_LEFT_ASYMMETRIC: 2931 case ALGORITHM_RIGHT_ASYMMETRIC: 2932 if (i > sh->pd_idx) 2933 i--; 2934 break; 2935 case ALGORITHM_LEFT_SYMMETRIC: 2936 case ALGORITHM_RIGHT_SYMMETRIC: 2937 if (i < sh->pd_idx) 2938 i += raid_disks; 2939 i -= (sh->pd_idx + 1); 2940 break; 2941 case ALGORITHM_PARITY_0: 2942 i -= 1; 2943 break; 2944 case ALGORITHM_PARITY_N: 2945 break; 2946 default: 2947 BUG(); 2948 } 2949 break; 2950 case 6: 2951 if (i == sh->qd_idx) 2952 return 0; /* It is the Q disk */ 2953 switch (algorithm) { 2954 case ALGORITHM_LEFT_ASYMMETRIC: 2955 case ALGORITHM_RIGHT_ASYMMETRIC: 2956 case ALGORITHM_ROTATING_ZERO_RESTART: 2957 case ALGORITHM_ROTATING_N_RESTART: 2958 if (sh->pd_idx == raid_disks-1) 2959 i--; /* Q D D D P */ 2960 else if (i > sh->pd_idx) 2961 i -= 2; /* D D P Q D */ 2962 break; 2963 case ALGORITHM_LEFT_SYMMETRIC: 2964 case ALGORITHM_RIGHT_SYMMETRIC: 2965 if (sh->pd_idx == raid_disks-1) 2966 i--; /* Q D D D P */ 2967 else { 2968 /* D D P Q D */ 2969 if (i < sh->pd_idx) 2970 i += raid_disks; 2971 i -= (sh->pd_idx + 2); 2972 } 2973 break; 2974 case ALGORITHM_PARITY_0: 2975 i -= 2; 2976 break; 2977 case ALGORITHM_PARITY_N: 2978 break; 2979 case ALGORITHM_ROTATING_N_CONTINUE: 2980 /* Like left_symmetric, but P is before Q */ 2981 if (sh->pd_idx == 0) 2982 i--; /* P D D D Q */ 2983 else { 2984 /* D D Q P D */ 2985 if (i < sh->pd_idx) 2986 i += raid_disks; 2987 i -= (sh->pd_idx + 1); 2988 } 2989 break; 2990 case ALGORITHM_LEFT_ASYMMETRIC_6: 2991 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2992 if (i > sh->pd_idx) 2993 i--; 2994 break; 2995 case ALGORITHM_LEFT_SYMMETRIC_6: 2996 case ALGORITHM_RIGHT_SYMMETRIC_6: 2997 if (i < sh->pd_idx) 2998 i += data_disks + 1; 2999 i -= (sh->pd_idx + 1); 3000 break; 3001 case ALGORITHM_PARITY_0_6: 3002 i -= 1; 3003 break; 3004 default: 3005 BUG(); 3006 } 3007 break; 3008 } 3009 3010 chunk_number = stripe * data_disks + i; 3011 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3012 3013 check = raid5_compute_sector(conf, r_sector, 3014 previous, &dummy1, &sh2); 3015 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3016 || sh2.qd_idx != sh->qd_idx) { 3017 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3018 mdname(conf->mddev)); 3019 return 0; 3020 } 3021 return r_sector; 3022 } 3023 3024 /* 3025 * There are cases where we want handle_stripe_dirtying() and 3026 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3027 * 3028 * This function checks whether we want to delay the towrite. Specifically, 3029 * we delay the towrite when: 3030 * 3031 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3032 * stripe has data in journal (for other devices). 3033 * 3034 * In this case, when reading data for the non-overwrite dev, it is 3035 * necessary to handle complex rmw of write back cache (prexor with 3036 * orig_page, and xor with page). To keep read path simple, we would 3037 * like to flush data in journal to RAID disks first, so complex rmw 3038 * is handled in the write patch (handle_stripe_dirtying). 3039 * 3040 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3041 * 3042 * It is important to be able to flush all stripes in raid5-cache. 3043 * Therefore, we need reserve some space on the journal device for 3044 * these flushes. If flush operation includes pending writes to the 3045 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3046 * for the flush out. If we exclude these pending writes from flush 3047 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3048 * Therefore, excluding pending writes in these cases enables more 3049 * efficient use of the journal device. 3050 * 3051 * Note: To make sure the stripe makes progress, we only delay 3052 * towrite for stripes with data already in journal (injournal > 0). 3053 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3054 * no_space_stripes list. 3055 * 3056 * 3. during journal failure 3057 * In journal failure, we try to flush all cached data to raid disks 3058 * based on data in stripe cache. The array is read-only to upper 3059 * layers, so we would skip all pending writes. 3060 * 3061 */ 3062 static inline bool delay_towrite(struct r5conf *conf, 3063 struct r5dev *dev, 3064 struct stripe_head_state *s) 3065 { 3066 /* case 1 above */ 3067 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3068 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3069 return true; 3070 /* case 2 above */ 3071 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3072 s->injournal > 0) 3073 return true; 3074 /* case 3 above */ 3075 if (s->log_failed && s->injournal) 3076 return true; 3077 return false; 3078 } 3079 3080 static void 3081 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3082 int rcw, int expand) 3083 { 3084 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3085 struct r5conf *conf = sh->raid_conf; 3086 int level = conf->level; 3087 3088 if (rcw) { 3089 /* 3090 * In some cases, handle_stripe_dirtying initially decided to 3091 * run rmw and allocates extra page for prexor. However, rcw is 3092 * cheaper later on. We need to free the extra page now, 3093 * because we won't be able to do that in ops_complete_prexor(). 3094 */ 3095 r5c_release_extra_page(sh); 3096 3097 for (i = disks; i--; ) { 3098 struct r5dev *dev = &sh->dev[i]; 3099 3100 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3101 set_bit(R5_LOCKED, &dev->flags); 3102 set_bit(R5_Wantdrain, &dev->flags); 3103 if (!expand) 3104 clear_bit(R5_UPTODATE, &dev->flags); 3105 s->locked++; 3106 } else if (test_bit(R5_InJournal, &dev->flags)) { 3107 set_bit(R5_LOCKED, &dev->flags); 3108 s->locked++; 3109 } 3110 } 3111 /* if we are not expanding this is a proper write request, and 3112 * there will be bios with new data to be drained into the 3113 * stripe cache 3114 */ 3115 if (!expand) { 3116 if (!s->locked) 3117 /* False alarm, nothing to do */ 3118 return; 3119 sh->reconstruct_state = reconstruct_state_drain_run; 3120 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3121 } else 3122 sh->reconstruct_state = reconstruct_state_run; 3123 3124 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3125 3126 if (s->locked + conf->max_degraded == disks) 3127 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3128 atomic_inc(&conf->pending_full_writes); 3129 } else { 3130 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3131 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3132 BUG_ON(level == 6 && 3133 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3134 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3135 3136 for (i = disks; i--; ) { 3137 struct r5dev *dev = &sh->dev[i]; 3138 if (i == pd_idx || i == qd_idx) 3139 continue; 3140 3141 if (dev->towrite && 3142 (test_bit(R5_UPTODATE, &dev->flags) || 3143 test_bit(R5_Wantcompute, &dev->flags))) { 3144 set_bit(R5_Wantdrain, &dev->flags); 3145 set_bit(R5_LOCKED, &dev->flags); 3146 clear_bit(R5_UPTODATE, &dev->flags); 3147 s->locked++; 3148 } else if (test_bit(R5_InJournal, &dev->flags)) { 3149 set_bit(R5_LOCKED, &dev->flags); 3150 s->locked++; 3151 } 3152 } 3153 if (!s->locked) 3154 /* False alarm - nothing to do */ 3155 return; 3156 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3157 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3158 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3159 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3160 } 3161 3162 /* keep the parity disk(s) locked while asynchronous operations 3163 * are in flight 3164 */ 3165 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3166 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3167 s->locked++; 3168 3169 if (level == 6) { 3170 int qd_idx = sh->qd_idx; 3171 struct r5dev *dev = &sh->dev[qd_idx]; 3172 3173 set_bit(R5_LOCKED, &dev->flags); 3174 clear_bit(R5_UPTODATE, &dev->flags); 3175 s->locked++; 3176 } 3177 3178 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3179 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3180 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3181 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3182 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3183 3184 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3185 __func__, (unsigned long long)sh->sector, 3186 s->locked, s->ops_request); 3187 } 3188 3189 /* 3190 * Each stripe/dev can have one or more bion attached. 3191 * toread/towrite point to the first in a chain. 3192 * The bi_next chain must be in order. 3193 */ 3194 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3195 int forwrite, int previous) 3196 { 3197 struct bio **bip; 3198 struct r5conf *conf = sh->raid_conf; 3199 int firstwrite=0; 3200 3201 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3202 (unsigned long long)bi->bi_iter.bi_sector, 3203 (unsigned long long)sh->sector); 3204 3205 spin_lock_irq(&sh->stripe_lock); 3206 /* Don't allow new IO added to stripes in batch list */ 3207 if (sh->batch_head) 3208 goto overlap; 3209 if (forwrite) { 3210 bip = &sh->dev[dd_idx].towrite; 3211 if (*bip == NULL) 3212 firstwrite = 1; 3213 } else 3214 bip = &sh->dev[dd_idx].toread; 3215 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3216 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3217 goto overlap; 3218 bip = & (*bip)->bi_next; 3219 } 3220 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3221 goto overlap; 3222 3223 if (forwrite && raid5_has_ppl(conf)) { 3224 /* 3225 * With PPL only writes to consecutive data chunks within a 3226 * stripe are allowed because for a single stripe_head we can 3227 * only have one PPL entry at a time, which describes one data 3228 * range. Not really an overlap, but wait_for_overlap can be 3229 * used to handle this. 3230 */ 3231 sector_t sector; 3232 sector_t first = 0; 3233 sector_t last = 0; 3234 int count = 0; 3235 int i; 3236 3237 for (i = 0; i < sh->disks; i++) { 3238 if (i != sh->pd_idx && 3239 (i == dd_idx || sh->dev[i].towrite)) { 3240 sector = sh->dev[i].sector; 3241 if (count == 0 || sector < first) 3242 first = sector; 3243 if (sector > last) 3244 last = sector; 3245 count++; 3246 } 3247 } 3248 3249 if (first + conf->chunk_sectors * (count - 1) != last) 3250 goto overlap; 3251 } 3252 3253 if (!forwrite || previous) 3254 clear_bit(STRIPE_BATCH_READY, &sh->state); 3255 3256 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3257 if (*bip) 3258 bi->bi_next = *bip; 3259 *bip = bi; 3260 bio_inc_remaining(bi); 3261 md_write_inc(conf->mddev, bi); 3262 3263 if (forwrite) { 3264 /* check if page is covered */ 3265 sector_t sector = sh->dev[dd_idx].sector; 3266 for (bi=sh->dev[dd_idx].towrite; 3267 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3268 bi && bi->bi_iter.bi_sector <= sector; 3269 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3270 if (bio_end_sector(bi) >= sector) 3271 sector = bio_end_sector(bi); 3272 } 3273 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3274 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3275 sh->overwrite_disks++; 3276 } 3277 3278 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3279 (unsigned long long)(*bip)->bi_iter.bi_sector, 3280 (unsigned long long)sh->sector, dd_idx); 3281 3282 if (conf->mddev->bitmap && firstwrite) { 3283 /* Cannot hold spinlock over bitmap_startwrite, 3284 * but must ensure this isn't added to a batch until 3285 * we have added to the bitmap and set bm_seq. 3286 * So set STRIPE_BITMAP_PENDING to prevent 3287 * batching. 3288 * If multiple add_stripe_bio() calls race here they 3289 * much all set STRIPE_BITMAP_PENDING. So only the first one 3290 * to complete "bitmap_startwrite" gets to set 3291 * STRIPE_BIT_DELAY. This is important as once a stripe 3292 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3293 * any more. 3294 */ 3295 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3296 spin_unlock_irq(&sh->stripe_lock); 3297 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3298 STRIPE_SECTORS, 0); 3299 spin_lock_irq(&sh->stripe_lock); 3300 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3301 if (!sh->batch_head) { 3302 sh->bm_seq = conf->seq_flush+1; 3303 set_bit(STRIPE_BIT_DELAY, &sh->state); 3304 } 3305 } 3306 spin_unlock_irq(&sh->stripe_lock); 3307 3308 if (stripe_can_batch(sh)) 3309 stripe_add_to_batch_list(conf, sh); 3310 return 1; 3311 3312 overlap: 3313 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3314 spin_unlock_irq(&sh->stripe_lock); 3315 return 0; 3316 } 3317 3318 static void end_reshape(struct r5conf *conf); 3319 3320 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3321 struct stripe_head *sh) 3322 { 3323 int sectors_per_chunk = 3324 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3325 int dd_idx; 3326 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3327 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3328 3329 raid5_compute_sector(conf, 3330 stripe * (disks - conf->max_degraded) 3331 *sectors_per_chunk + chunk_offset, 3332 previous, 3333 &dd_idx, sh); 3334 } 3335 3336 static void 3337 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3338 struct stripe_head_state *s, int disks) 3339 { 3340 int i; 3341 BUG_ON(sh->batch_head); 3342 for (i = disks; i--; ) { 3343 struct bio *bi; 3344 int bitmap_end = 0; 3345 3346 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3347 struct md_rdev *rdev; 3348 rcu_read_lock(); 3349 rdev = rcu_dereference(conf->disks[i].rdev); 3350 if (rdev && test_bit(In_sync, &rdev->flags) && 3351 !test_bit(Faulty, &rdev->flags)) 3352 atomic_inc(&rdev->nr_pending); 3353 else 3354 rdev = NULL; 3355 rcu_read_unlock(); 3356 if (rdev) { 3357 if (!rdev_set_badblocks( 3358 rdev, 3359 sh->sector, 3360 STRIPE_SECTORS, 0)) 3361 md_error(conf->mddev, rdev); 3362 rdev_dec_pending(rdev, conf->mddev); 3363 } 3364 } 3365 spin_lock_irq(&sh->stripe_lock); 3366 /* fail all writes first */ 3367 bi = sh->dev[i].towrite; 3368 sh->dev[i].towrite = NULL; 3369 sh->overwrite_disks = 0; 3370 spin_unlock_irq(&sh->stripe_lock); 3371 if (bi) 3372 bitmap_end = 1; 3373 3374 log_stripe_write_finished(sh); 3375 3376 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3377 wake_up(&conf->wait_for_overlap); 3378 3379 while (bi && bi->bi_iter.bi_sector < 3380 sh->dev[i].sector + STRIPE_SECTORS) { 3381 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3382 3383 md_write_end(conf->mddev); 3384 bio_io_error(bi); 3385 bi = nextbi; 3386 } 3387 if (bitmap_end) 3388 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3389 STRIPE_SECTORS, 0, 0); 3390 bitmap_end = 0; 3391 /* and fail all 'written' */ 3392 bi = sh->dev[i].written; 3393 sh->dev[i].written = NULL; 3394 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3395 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3396 sh->dev[i].page = sh->dev[i].orig_page; 3397 } 3398 3399 if (bi) bitmap_end = 1; 3400 while (bi && bi->bi_iter.bi_sector < 3401 sh->dev[i].sector + STRIPE_SECTORS) { 3402 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3403 3404 md_write_end(conf->mddev); 3405 bio_io_error(bi); 3406 bi = bi2; 3407 } 3408 3409 /* fail any reads if this device is non-operational and 3410 * the data has not reached the cache yet. 3411 */ 3412 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3413 s->failed > conf->max_degraded && 3414 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3415 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3416 spin_lock_irq(&sh->stripe_lock); 3417 bi = sh->dev[i].toread; 3418 sh->dev[i].toread = NULL; 3419 spin_unlock_irq(&sh->stripe_lock); 3420 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3421 wake_up(&conf->wait_for_overlap); 3422 if (bi) 3423 s->to_read--; 3424 while (bi && bi->bi_iter.bi_sector < 3425 sh->dev[i].sector + STRIPE_SECTORS) { 3426 struct bio *nextbi = 3427 r5_next_bio(bi, sh->dev[i].sector); 3428 3429 bio_io_error(bi); 3430 bi = nextbi; 3431 } 3432 } 3433 if (bitmap_end) 3434 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3435 STRIPE_SECTORS, 0, 0); 3436 /* If we were in the middle of a write the parity block might 3437 * still be locked - so just clear all R5_LOCKED flags 3438 */ 3439 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3440 } 3441 s->to_write = 0; 3442 s->written = 0; 3443 3444 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3445 if (atomic_dec_and_test(&conf->pending_full_writes)) 3446 md_wakeup_thread(conf->mddev->thread); 3447 } 3448 3449 static void 3450 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3451 struct stripe_head_state *s) 3452 { 3453 int abort = 0; 3454 int i; 3455 3456 BUG_ON(sh->batch_head); 3457 clear_bit(STRIPE_SYNCING, &sh->state); 3458 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3459 wake_up(&conf->wait_for_overlap); 3460 s->syncing = 0; 3461 s->replacing = 0; 3462 /* There is nothing more to do for sync/check/repair. 3463 * Don't even need to abort as that is handled elsewhere 3464 * if needed, and not always wanted e.g. if there is a known 3465 * bad block here. 3466 * For recover/replace we need to record a bad block on all 3467 * non-sync devices, or abort the recovery 3468 */ 3469 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3470 /* During recovery devices cannot be removed, so 3471 * locking and refcounting of rdevs is not needed 3472 */ 3473 rcu_read_lock(); 3474 for (i = 0; i < conf->raid_disks; i++) { 3475 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3476 if (rdev 3477 && !test_bit(Faulty, &rdev->flags) 3478 && !test_bit(In_sync, &rdev->flags) 3479 && !rdev_set_badblocks(rdev, sh->sector, 3480 STRIPE_SECTORS, 0)) 3481 abort = 1; 3482 rdev = rcu_dereference(conf->disks[i].replacement); 3483 if (rdev 3484 && !test_bit(Faulty, &rdev->flags) 3485 && !test_bit(In_sync, &rdev->flags) 3486 && !rdev_set_badblocks(rdev, sh->sector, 3487 STRIPE_SECTORS, 0)) 3488 abort = 1; 3489 } 3490 rcu_read_unlock(); 3491 if (abort) 3492 conf->recovery_disabled = 3493 conf->mddev->recovery_disabled; 3494 } 3495 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3496 } 3497 3498 static int want_replace(struct stripe_head *sh, int disk_idx) 3499 { 3500 struct md_rdev *rdev; 3501 int rv = 0; 3502 3503 rcu_read_lock(); 3504 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3505 if (rdev 3506 && !test_bit(Faulty, &rdev->flags) 3507 && !test_bit(In_sync, &rdev->flags) 3508 && (rdev->recovery_offset <= sh->sector 3509 || rdev->mddev->recovery_cp <= sh->sector)) 3510 rv = 1; 3511 rcu_read_unlock(); 3512 return rv; 3513 } 3514 3515 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3516 int disk_idx, int disks) 3517 { 3518 struct r5dev *dev = &sh->dev[disk_idx]; 3519 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3520 &sh->dev[s->failed_num[1]] }; 3521 int i; 3522 3523 3524 if (test_bit(R5_LOCKED, &dev->flags) || 3525 test_bit(R5_UPTODATE, &dev->flags)) 3526 /* No point reading this as we already have it or have 3527 * decided to get it. 3528 */ 3529 return 0; 3530 3531 if (dev->toread || 3532 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3533 /* We need this block to directly satisfy a request */ 3534 return 1; 3535 3536 if (s->syncing || s->expanding || 3537 (s->replacing && want_replace(sh, disk_idx))) 3538 /* When syncing, or expanding we read everything. 3539 * When replacing, we need the replaced block. 3540 */ 3541 return 1; 3542 3543 if ((s->failed >= 1 && fdev[0]->toread) || 3544 (s->failed >= 2 && fdev[1]->toread)) 3545 /* If we want to read from a failed device, then 3546 * we need to actually read every other device. 3547 */ 3548 return 1; 3549 3550 /* Sometimes neither read-modify-write nor reconstruct-write 3551 * cycles can work. In those cases we read every block we 3552 * can. Then the parity-update is certain to have enough to 3553 * work with. 3554 * This can only be a problem when we need to write something, 3555 * and some device has failed. If either of those tests 3556 * fail we need look no further. 3557 */ 3558 if (!s->failed || !s->to_write) 3559 return 0; 3560 3561 if (test_bit(R5_Insync, &dev->flags) && 3562 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3563 /* Pre-reads at not permitted until after short delay 3564 * to gather multiple requests. However if this 3565 * device is no Insync, the block could only be computed 3566 * and there is no need to delay that. 3567 */ 3568 return 0; 3569 3570 for (i = 0; i < s->failed && i < 2; i++) { 3571 if (fdev[i]->towrite && 3572 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3573 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3574 /* If we have a partial write to a failed 3575 * device, then we will need to reconstruct 3576 * the content of that device, so all other 3577 * devices must be read. 3578 */ 3579 return 1; 3580 } 3581 3582 /* If we are forced to do a reconstruct-write, either because 3583 * the current RAID6 implementation only supports that, or 3584 * because parity cannot be trusted and we are currently 3585 * recovering it, there is extra need to be careful. 3586 * If one of the devices that we would need to read, because 3587 * it is not being overwritten (and maybe not written at all) 3588 * is missing/faulty, then we need to read everything we can. 3589 */ 3590 if (sh->raid_conf->level != 6 && 3591 sh->sector < sh->raid_conf->mddev->recovery_cp) 3592 /* reconstruct-write isn't being forced */ 3593 return 0; 3594 for (i = 0; i < s->failed && i < 2; i++) { 3595 if (s->failed_num[i] != sh->pd_idx && 3596 s->failed_num[i] != sh->qd_idx && 3597 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3598 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3599 return 1; 3600 } 3601 3602 return 0; 3603 } 3604 3605 /* fetch_block - checks the given member device to see if its data needs 3606 * to be read or computed to satisfy a request. 3607 * 3608 * Returns 1 when no more member devices need to be checked, otherwise returns 3609 * 0 to tell the loop in handle_stripe_fill to continue 3610 */ 3611 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3612 int disk_idx, int disks) 3613 { 3614 struct r5dev *dev = &sh->dev[disk_idx]; 3615 3616 /* is the data in this block needed, and can we get it? */ 3617 if (need_this_block(sh, s, disk_idx, disks)) { 3618 /* we would like to get this block, possibly by computing it, 3619 * otherwise read it if the backing disk is insync 3620 */ 3621 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3622 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3623 BUG_ON(sh->batch_head); 3624 3625 /* 3626 * In the raid6 case if the only non-uptodate disk is P 3627 * then we already trusted P to compute the other failed 3628 * drives. It is safe to compute rather than re-read P. 3629 * In other cases we only compute blocks from failed 3630 * devices, otherwise check/repair might fail to detect 3631 * a real inconsistency. 3632 */ 3633 3634 if ((s->uptodate == disks - 1) && 3635 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3636 (s->failed && (disk_idx == s->failed_num[0] || 3637 disk_idx == s->failed_num[1])))) { 3638 /* have disk failed, and we're requested to fetch it; 3639 * do compute it 3640 */ 3641 pr_debug("Computing stripe %llu block %d\n", 3642 (unsigned long long)sh->sector, disk_idx); 3643 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3644 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3645 set_bit(R5_Wantcompute, &dev->flags); 3646 sh->ops.target = disk_idx; 3647 sh->ops.target2 = -1; /* no 2nd target */ 3648 s->req_compute = 1; 3649 /* Careful: from this point on 'uptodate' is in the eye 3650 * of raid_run_ops which services 'compute' operations 3651 * before writes. R5_Wantcompute flags a block that will 3652 * be R5_UPTODATE by the time it is needed for a 3653 * subsequent operation. 3654 */ 3655 s->uptodate++; 3656 return 1; 3657 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3658 /* Computing 2-failure is *very* expensive; only 3659 * do it if failed >= 2 3660 */ 3661 int other; 3662 for (other = disks; other--; ) { 3663 if (other == disk_idx) 3664 continue; 3665 if (!test_bit(R5_UPTODATE, 3666 &sh->dev[other].flags)) 3667 break; 3668 } 3669 BUG_ON(other < 0); 3670 pr_debug("Computing stripe %llu blocks %d,%d\n", 3671 (unsigned long long)sh->sector, 3672 disk_idx, other); 3673 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3674 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3675 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3676 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3677 sh->ops.target = disk_idx; 3678 sh->ops.target2 = other; 3679 s->uptodate += 2; 3680 s->req_compute = 1; 3681 return 1; 3682 } else if (test_bit(R5_Insync, &dev->flags)) { 3683 set_bit(R5_LOCKED, &dev->flags); 3684 set_bit(R5_Wantread, &dev->flags); 3685 s->locked++; 3686 pr_debug("Reading block %d (sync=%d)\n", 3687 disk_idx, s->syncing); 3688 } 3689 } 3690 3691 return 0; 3692 } 3693 3694 /** 3695 * handle_stripe_fill - read or compute data to satisfy pending requests. 3696 */ 3697 static void handle_stripe_fill(struct stripe_head *sh, 3698 struct stripe_head_state *s, 3699 int disks) 3700 { 3701 int i; 3702 3703 /* look for blocks to read/compute, skip this if a compute 3704 * is already in flight, or if the stripe contents are in the 3705 * midst of changing due to a write 3706 */ 3707 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3708 !sh->reconstruct_state) { 3709 3710 /* 3711 * For degraded stripe with data in journal, do not handle 3712 * read requests yet, instead, flush the stripe to raid 3713 * disks first, this avoids handling complex rmw of write 3714 * back cache (prexor with orig_page, and then xor with 3715 * page) in the read path 3716 */ 3717 if (s->injournal && s->failed) { 3718 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3719 r5c_make_stripe_write_out(sh); 3720 goto out; 3721 } 3722 3723 for (i = disks; i--; ) 3724 if (fetch_block(sh, s, i, disks)) 3725 break; 3726 } 3727 out: 3728 set_bit(STRIPE_HANDLE, &sh->state); 3729 } 3730 3731 static void break_stripe_batch_list(struct stripe_head *head_sh, 3732 unsigned long handle_flags); 3733 /* handle_stripe_clean_event 3734 * any written block on an uptodate or failed drive can be returned. 3735 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3736 * never LOCKED, so we don't need to test 'failed' directly. 3737 */ 3738 static void handle_stripe_clean_event(struct r5conf *conf, 3739 struct stripe_head *sh, int disks) 3740 { 3741 int i; 3742 struct r5dev *dev; 3743 int discard_pending = 0; 3744 struct stripe_head *head_sh = sh; 3745 bool do_endio = false; 3746 3747 for (i = disks; i--; ) 3748 if (sh->dev[i].written) { 3749 dev = &sh->dev[i]; 3750 if (!test_bit(R5_LOCKED, &dev->flags) && 3751 (test_bit(R5_UPTODATE, &dev->flags) || 3752 test_bit(R5_Discard, &dev->flags) || 3753 test_bit(R5_SkipCopy, &dev->flags))) { 3754 /* We can return any write requests */ 3755 struct bio *wbi, *wbi2; 3756 pr_debug("Return write for disc %d\n", i); 3757 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3758 clear_bit(R5_UPTODATE, &dev->flags); 3759 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3760 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3761 } 3762 do_endio = true; 3763 3764 returnbi: 3765 dev->page = dev->orig_page; 3766 wbi = dev->written; 3767 dev->written = NULL; 3768 while (wbi && wbi->bi_iter.bi_sector < 3769 dev->sector + STRIPE_SECTORS) { 3770 wbi2 = r5_next_bio(wbi, dev->sector); 3771 md_write_end(conf->mddev); 3772 bio_endio(wbi); 3773 wbi = wbi2; 3774 } 3775 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3776 STRIPE_SECTORS, 3777 !test_bit(STRIPE_DEGRADED, &sh->state), 3778 0); 3779 if (head_sh->batch_head) { 3780 sh = list_first_entry(&sh->batch_list, 3781 struct stripe_head, 3782 batch_list); 3783 if (sh != head_sh) { 3784 dev = &sh->dev[i]; 3785 goto returnbi; 3786 } 3787 } 3788 sh = head_sh; 3789 dev = &sh->dev[i]; 3790 } else if (test_bit(R5_Discard, &dev->flags)) 3791 discard_pending = 1; 3792 } 3793 3794 log_stripe_write_finished(sh); 3795 3796 if (!discard_pending && 3797 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3798 int hash; 3799 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3800 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3801 if (sh->qd_idx >= 0) { 3802 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3803 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3804 } 3805 /* now that discard is done we can proceed with any sync */ 3806 clear_bit(STRIPE_DISCARD, &sh->state); 3807 /* 3808 * SCSI discard will change some bio fields and the stripe has 3809 * no updated data, so remove it from hash list and the stripe 3810 * will be reinitialized 3811 */ 3812 unhash: 3813 hash = sh->hash_lock_index; 3814 spin_lock_irq(conf->hash_locks + hash); 3815 remove_hash(sh); 3816 spin_unlock_irq(conf->hash_locks + hash); 3817 if (head_sh->batch_head) { 3818 sh = list_first_entry(&sh->batch_list, 3819 struct stripe_head, batch_list); 3820 if (sh != head_sh) 3821 goto unhash; 3822 } 3823 sh = head_sh; 3824 3825 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3826 set_bit(STRIPE_HANDLE, &sh->state); 3827 3828 } 3829 3830 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3831 if (atomic_dec_and_test(&conf->pending_full_writes)) 3832 md_wakeup_thread(conf->mddev->thread); 3833 3834 if (head_sh->batch_head && do_endio) 3835 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3836 } 3837 3838 /* 3839 * For RMW in write back cache, we need extra page in prexor to store the 3840 * old data. This page is stored in dev->orig_page. 3841 * 3842 * This function checks whether we have data for prexor. The exact logic 3843 * is: 3844 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 3845 */ 3846 static inline bool uptodate_for_rmw(struct r5dev *dev) 3847 { 3848 return (test_bit(R5_UPTODATE, &dev->flags)) && 3849 (!test_bit(R5_InJournal, &dev->flags) || 3850 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 3851 } 3852 3853 static int handle_stripe_dirtying(struct r5conf *conf, 3854 struct stripe_head *sh, 3855 struct stripe_head_state *s, 3856 int disks) 3857 { 3858 int rmw = 0, rcw = 0, i; 3859 sector_t recovery_cp = conf->mddev->recovery_cp; 3860 3861 /* Check whether resync is now happening or should start. 3862 * If yes, then the array is dirty (after unclean shutdown or 3863 * initial creation), so parity in some stripes might be inconsistent. 3864 * In this case, we need to always do reconstruct-write, to ensure 3865 * that in case of drive failure or read-error correction, we 3866 * generate correct data from the parity. 3867 */ 3868 if (conf->rmw_level == PARITY_DISABLE_RMW || 3869 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3870 s->failed == 0)) { 3871 /* Calculate the real rcw later - for now make it 3872 * look like rcw is cheaper 3873 */ 3874 rcw = 1; rmw = 2; 3875 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3876 conf->rmw_level, (unsigned long long)recovery_cp, 3877 (unsigned long long)sh->sector); 3878 } else for (i = disks; i--; ) { 3879 /* would I have to read this buffer for read_modify_write */ 3880 struct r5dev *dev = &sh->dev[i]; 3881 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3882 i == sh->pd_idx || i == sh->qd_idx || 3883 test_bit(R5_InJournal, &dev->flags)) && 3884 !test_bit(R5_LOCKED, &dev->flags) && 3885 !(uptodate_for_rmw(dev) || 3886 test_bit(R5_Wantcompute, &dev->flags))) { 3887 if (test_bit(R5_Insync, &dev->flags)) 3888 rmw++; 3889 else 3890 rmw += 2*disks; /* cannot read it */ 3891 } 3892 /* Would I have to read this buffer for reconstruct_write */ 3893 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3894 i != sh->pd_idx && i != sh->qd_idx && 3895 !test_bit(R5_LOCKED, &dev->flags) && 3896 !(test_bit(R5_UPTODATE, &dev->flags) || 3897 test_bit(R5_Wantcompute, &dev->flags))) { 3898 if (test_bit(R5_Insync, &dev->flags)) 3899 rcw++; 3900 else 3901 rcw += 2*disks; 3902 } 3903 } 3904 3905 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 3906 (unsigned long long)sh->sector, sh->state, rmw, rcw); 3907 set_bit(STRIPE_HANDLE, &sh->state); 3908 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3909 /* prefer read-modify-write, but need to get some data */ 3910 if (conf->mddev->queue) 3911 blk_add_trace_msg(conf->mddev->queue, 3912 "raid5 rmw %llu %d", 3913 (unsigned long long)sh->sector, rmw); 3914 for (i = disks; i--; ) { 3915 struct r5dev *dev = &sh->dev[i]; 3916 if (test_bit(R5_InJournal, &dev->flags) && 3917 dev->page == dev->orig_page && 3918 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 3919 /* alloc page for prexor */ 3920 struct page *p = alloc_page(GFP_NOIO); 3921 3922 if (p) { 3923 dev->orig_page = p; 3924 continue; 3925 } 3926 3927 /* 3928 * alloc_page() failed, try use 3929 * disk_info->extra_page 3930 */ 3931 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 3932 &conf->cache_state)) { 3933 r5c_use_extra_page(sh); 3934 break; 3935 } 3936 3937 /* extra_page in use, add to delayed_list */ 3938 set_bit(STRIPE_DELAYED, &sh->state); 3939 s->waiting_extra_page = 1; 3940 return -EAGAIN; 3941 } 3942 } 3943 3944 for (i = disks; i--; ) { 3945 struct r5dev *dev = &sh->dev[i]; 3946 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3947 i == sh->pd_idx || i == sh->qd_idx || 3948 test_bit(R5_InJournal, &dev->flags)) && 3949 !test_bit(R5_LOCKED, &dev->flags) && 3950 !(uptodate_for_rmw(dev) || 3951 test_bit(R5_Wantcompute, &dev->flags)) && 3952 test_bit(R5_Insync, &dev->flags)) { 3953 if (test_bit(STRIPE_PREREAD_ACTIVE, 3954 &sh->state)) { 3955 pr_debug("Read_old block %d for r-m-w\n", 3956 i); 3957 set_bit(R5_LOCKED, &dev->flags); 3958 set_bit(R5_Wantread, &dev->flags); 3959 s->locked++; 3960 } else { 3961 set_bit(STRIPE_DELAYED, &sh->state); 3962 set_bit(STRIPE_HANDLE, &sh->state); 3963 } 3964 } 3965 } 3966 } 3967 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3968 /* want reconstruct write, but need to get some data */ 3969 int qread =0; 3970 rcw = 0; 3971 for (i = disks; i--; ) { 3972 struct r5dev *dev = &sh->dev[i]; 3973 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3974 i != sh->pd_idx && i != sh->qd_idx && 3975 !test_bit(R5_LOCKED, &dev->flags) && 3976 !(test_bit(R5_UPTODATE, &dev->flags) || 3977 test_bit(R5_Wantcompute, &dev->flags))) { 3978 rcw++; 3979 if (test_bit(R5_Insync, &dev->flags) && 3980 test_bit(STRIPE_PREREAD_ACTIVE, 3981 &sh->state)) { 3982 pr_debug("Read_old block " 3983 "%d for Reconstruct\n", i); 3984 set_bit(R5_LOCKED, &dev->flags); 3985 set_bit(R5_Wantread, &dev->flags); 3986 s->locked++; 3987 qread++; 3988 } else { 3989 set_bit(STRIPE_DELAYED, &sh->state); 3990 set_bit(STRIPE_HANDLE, &sh->state); 3991 } 3992 } 3993 } 3994 if (rcw && conf->mddev->queue) 3995 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3996 (unsigned long long)sh->sector, 3997 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3998 } 3999 4000 if (rcw > disks && rmw > disks && 4001 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4002 set_bit(STRIPE_DELAYED, &sh->state); 4003 4004 /* now if nothing is locked, and if we have enough data, 4005 * we can start a write request 4006 */ 4007 /* since handle_stripe can be called at any time we need to handle the 4008 * case where a compute block operation has been submitted and then a 4009 * subsequent call wants to start a write request. raid_run_ops only 4010 * handles the case where compute block and reconstruct are requested 4011 * simultaneously. If this is not the case then new writes need to be 4012 * held off until the compute completes. 4013 */ 4014 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4015 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4016 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4017 schedule_reconstruction(sh, s, rcw == 0, 0); 4018 return 0; 4019 } 4020 4021 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4022 struct stripe_head_state *s, int disks) 4023 { 4024 struct r5dev *dev = NULL; 4025 4026 BUG_ON(sh->batch_head); 4027 set_bit(STRIPE_HANDLE, &sh->state); 4028 4029 switch (sh->check_state) { 4030 case check_state_idle: 4031 /* start a new check operation if there are no failures */ 4032 if (s->failed == 0) { 4033 BUG_ON(s->uptodate != disks); 4034 sh->check_state = check_state_run; 4035 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4036 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4037 s->uptodate--; 4038 break; 4039 } 4040 dev = &sh->dev[s->failed_num[0]]; 4041 /* fall through */ 4042 case check_state_compute_result: 4043 sh->check_state = check_state_idle; 4044 if (!dev) 4045 dev = &sh->dev[sh->pd_idx]; 4046 4047 /* check that a write has not made the stripe insync */ 4048 if (test_bit(STRIPE_INSYNC, &sh->state)) 4049 break; 4050 4051 /* either failed parity check, or recovery is happening */ 4052 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4053 BUG_ON(s->uptodate != disks); 4054 4055 set_bit(R5_LOCKED, &dev->flags); 4056 s->locked++; 4057 set_bit(R5_Wantwrite, &dev->flags); 4058 4059 clear_bit(STRIPE_DEGRADED, &sh->state); 4060 set_bit(STRIPE_INSYNC, &sh->state); 4061 break; 4062 case check_state_run: 4063 break; /* we will be called again upon completion */ 4064 case check_state_check_result: 4065 sh->check_state = check_state_idle; 4066 4067 /* if a failure occurred during the check operation, leave 4068 * STRIPE_INSYNC not set and let the stripe be handled again 4069 */ 4070 if (s->failed) 4071 break; 4072 4073 /* handle a successful check operation, if parity is correct 4074 * we are done. Otherwise update the mismatch count and repair 4075 * parity if !MD_RECOVERY_CHECK 4076 */ 4077 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4078 /* parity is correct (on disc, 4079 * not in buffer any more) 4080 */ 4081 set_bit(STRIPE_INSYNC, &sh->state); 4082 else { 4083 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4084 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4085 /* don't try to repair!! */ 4086 set_bit(STRIPE_INSYNC, &sh->state); 4087 pr_warn_ratelimited("%s: mismatch sector in range " 4088 "%llu-%llu\n", mdname(conf->mddev), 4089 (unsigned long long) sh->sector, 4090 (unsigned long long) sh->sector + 4091 STRIPE_SECTORS); 4092 } else { 4093 sh->check_state = check_state_compute_run; 4094 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4095 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4096 set_bit(R5_Wantcompute, 4097 &sh->dev[sh->pd_idx].flags); 4098 sh->ops.target = sh->pd_idx; 4099 sh->ops.target2 = -1; 4100 s->uptodate++; 4101 } 4102 } 4103 break; 4104 case check_state_compute_run: 4105 break; 4106 default: 4107 pr_err("%s: unknown check_state: %d sector: %llu\n", 4108 __func__, sh->check_state, 4109 (unsigned long long) sh->sector); 4110 BUG(); 4111 } 4112 } 4113 4114 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4115 struct stripe_head_state *s, 4116 int disks) 4117 { 4118 int pd_idx = sh->pd_idx; 4119 int qd_idx = sh->qd_idx; 4120 struct r5dev *dev; 4121 4122 BUG_ON(sh->batch_head); 4123 set_bit(STRIPE_HANDLE, &sh->state); 4124 4125 BUG_ON(s->failed > 2); 4126 4127 /* Want to check and possibly repair P and Q. 4128 * However there could be one 'failed' device, in which 4129 * case we can only check one of them, possibly using the 4130 * other to generate missing data 4131 */ 4132 4133 switch (sh->check_state) { 4134 case check_state_idle: 4135 /* start a new check operation if there are < 2 failures */ 4136 if (s->failed == s->q_failed) { 4137 /* The only possible failed device holds Q, so it 4138 * makes sense to check P (If anything else were failed, 4139 * we would have used P to recreate it). 4140 */ 4141 sh->check_state = check_state_run; 4142 } 4143 if (!s->q_failed && s->failed < 2) { 4144 /* Q is not failed, and we didn't use it to generate 4145 * anything, so it makes sense to check it 4146 */ 4147 if (sh->check_state == check_state_run) 4148 sh->check_state = check_state_run_pq; 4149 else 4150 sh->check_state = check_state_run_q; 4151 } 4152 4153 /* discard potentially stale zero_sum_result */ 4154 sh->ops.zero_sum_result = 0; 4155 4156 if (sh->check_state == check_state_run) { 4157 /* async_xor_zero_sum destroys the contents of P */ 4158 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4159 s->uptodate--; 4160 } 4161 if (sh->check_state >= check_state_run && 4162 sh->check_state <= check_state_run_pq) { 4163 /* async_syndrome_zero_sum preserves P and Q, so 4164 * no need to mark them !uptodate here 4165 */ 4166 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4167 break; 4168 } 4169 4170 /* we have 2-disk failure */ 4171 BUG_ON(s->failed != 2); 4172 /* fall through */ 4173 case check_state_compute_result: 4174 sh->check_state = check_state_idle; 4175 4176 /* check that a write has not made the stripe insync */ 4177 if (test_bit(STRIPE_INSYNC, &sh->state)) 4178 break; 4179 4180 /* now write out any block on a failed drive, 4181 * or P or Q if they were recomputed 4182 */ 4183 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 4184 if (s->failed == 2) { 4185 dev = &sh->dev[s->failed_num[1]]; 4186 s->locked++; 4187 set_bit(R5_LOCKED, &dev->flags); 4188 set_bit(R5_Wantwrite, &dev->flags); 4189 } 4190 if (s->failed >= 1) { 4191 dev = &sh->dev[s->failed_num[0]]; 4192 s->locked++; 4193 set_bit(R5_LOCKED, &dev->flags); 4194 set_bit(R5_Wantwrite, &dev->flags); 4195 } 4196 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4197 dev = &sh->dev[pd_idx]; 4198 s->locked++; 4199 set_bit(R5_LOCKED, &dev->flags); 4200 set_bit(R5_Wantwrite, &dev->flags); 4201 } 4202 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4203 dev = &sh->dev[qd_idx]; 4204 s->locked++; 4205 set_bit(R5_LOCKED, &dev->flags); 4206 set_bit(R5_Wantwrite, &dev->flags); 4207 } 4208 clear_bit(STRIPE_DEGRADED, &sh->state); 4209 4210 set_bit(STRIPE_INSYNC, &sh->state); 4211 break; 4212 case check_state_run: 4213 case check_state_run_q: 4214 case check_state_run_pq: 4215 break; /* we will be called again upon completion */ 4216 case check_state_check_result: 4217 sh->check_state = check_state_idle; 4218 4219 /* handle a successful check operation, if parity is correct 4220 * we are done. Otherwise update the mismatch count and repair 4221 * parity if !MD_RECOVERY_CHECK 4222 */ 4223 if (sh->ops.zero_sum_result == 0) { 4224 /* both parities are correct */ 4225 if (!s->failed) 4226 set_bit(STRIPE_INSYNC, &sh->state); 4227 else { 4228 /* in contrast to the raid5 case we can validate 4229 * parity, but still have a failure to write 4230 * back 4231 */ 4232 sh->check_state = check_state_compute_result; 4233 /* Returning at this point means that we may go 4234 * off and bring p and/or q uptodate again so 4235 * we make sure to check zero_sum_result again 4236 * to verify if p or q need writeback 4237 */ 4238 } 4239 } else { 4240 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4241 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4242 /* don't try to repair!! */ 4243 set_bit(STRIPE_INSYNC, &sh->state); 4244 pr_warn_ratelimited("%s: mismatch sector in range " 4245 "%llu-%llu\n", mdname(conf->mddev), 4246 (unsigned long long) sh->sector, 4247 (unsigned long long) sh->sector + 4248 STRIPE_SECTORS); 4249 } else { 4250 int *target = &sh->ops.target; 4251 4252 sh->ops.target = -1; 4253 sh->ops.target2 = -1; 4254 sh->check_state = check_state_compute_run; 4255 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4256 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4257 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4258 set_bit(R5_Wantcompute, 4259 &sh->dev[pd_idx].flags); 4260 *target = pd_idx; 4261 target = &sh->ops.target2; 4262 s->uptodate++; 4263 } 4264 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4265 set_bit(R5_Wantcompute, 4266 &sh->dev[qd_idx].flags); 4267 *target = qd_idx; 4268 s->uptodate++; 4269 } 4270 } 4271 } 4272 break; 4273 case check_state_compute_run: 4274 break; 4275 default: 4276 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4277 __func__, sh->check_state, 4278 (unsigned long long) sh->sector); 4279 BUG(); 4280 } 4281 } 4282 4283 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4284 { 4285 int i; 4286 4287 /* We have read all the blocks in this stripe and now we need to 4288 * copy some of them into a target stripe for expand. 4289 */ 4290 struct dma_async_tx_descriptor *tx = NULL; 4291 BUG_ON(sh->batch_head); 4292 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4293 for (i = 0; i < sh->disks; i++) 4294 if (i != sh->pd_idx && i != sh->qd_idx) { 4295 int dd_idx, j; 4296 struct stripe_head *sh2; 4297 struct async_submit_ctl submit; 4298 4299 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4300 sector_t s = raid5_compute_sector(conf, bn, 0, 4301 &dd_idx, NULL); 4302 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4303 if (sh2 == NULL) 4304 /* so far only the early blocks of this stripe 4305 * have been requested. When later blocks 4306 * get requested, we will try again 4307 */ 4308 continue; 4309 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4310 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4311 /* must have already done this block */ 4312 raid5_release_stripe(sh2); 4313 continue; 4314 } 4315 4316 /* place all the copies on one channel */ 4317 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4318 tx = async_memcpy(sh2->dev[dd_idx].page, 4319 sh->dev[i].page, 0, 0, STRIPE_SIZE, 4320 &submit); 4321 4322 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4323 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4324 for (j = 0; j < conf->raid_disks; j++) 4325 if (j != sh2->pd_idx && 4326 j != sh2->qd_idx && 4327 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4328 break; 4329 if (j == conf->raid_disks) { 4330 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4331 set_bit(STRIPE_HANDLE, &sh2->state); 4332 } 4333 raid5_release_stripe(sh2); 4334 4335 } 4336 /* done submitting copies, wait for them to complete */ 4337 async_tx_quiesce(&tx); 4338 } 4339 4340 /* 4341 * handle_stripe - do things to a stripe. 4342 * 4343 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4344 * state of various bits to see what needs to be done. 4345 * Possible results: 4346 * return some read requests which now have data 4347 * return some write requests which are safely on storage 4348 * schedule a read on some buffers 4349 * schedule a write of some buffers 4350 * return confirmation of parity correctness 4351 * 4352 */ 4353 4354 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4355 { 4356 struct r5conf *conf = sh->raid_conf; 4357 int disks = sh->disks; 4358 struct r5dev *dev; 4359 int i; 4360 int do_recovery = 0; 4361 4362 memset(s, 0, sizeof(*s)); 4363 4364 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4365 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4366 s->failed_num[0] = -1; 4367 s->failed_num[1] = -1; 4368 s->log_failed = r5l_log_disk_error(conf); 4369 4370 /* Now to look around and see what can be done */ 4371 rcu_read_lock(); 4372 for (i=disks; i--; ) { 4373 struct md_rdev *rdev; 4374 sector_t first_bad; 4375 int bad_sectors; 4376 int is_bad = 0; 4377 4378 dev = &sh->dev[i]; 4379 4380 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4381 i, dev->flags, 4382 dev->toread, dev->towrite, dev->written); 4383 /* maybe we can reply to a read 4384 * 4385 * new wantfill requests are only permitted while 4386 * ops_complete_biofill is guaranteed to be inactive 4387 */ 4388 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4389 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4390 set_bit(R5_Wantfill, &dev->flags); 4391 4392 /* now count some things */ 4393 if (test_bit(R5_LOCKED, &dev->flags)) 4394 s->locked++; 4395 if (test_bit(R5_UPTODATE, &dev->flags)) 4396 s->uptodate++; 4397 if (test_bit(R5_Wantcompute, &dev->flags)) { 4398 s->compute++; 4399 BUG_ON(s->compute > 2); 4400 } 4401 4402 if (test_bit(R5_Wantfill, &dev->flags)) 4403 s->to_fill++; 4404 else if (dev->toread) 4405 s->to_read++; 4406 if (dev->towrite) { 4407 s->to_write++; 4408 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4409 s->non_overwrite++; 4410 } 4411 if (dev->written) 4412 s->written++; 4413 /* Prefer to use the replacement for reads, but only 4414 * if it is recovered enough and has no bad blocks. 4415 */ 4416 rdev = rcu_dereference(conf->disks[i].replacement); 4417 if (rdev && !test_bit(Faulty, &rdev->flags) && 4418 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4419 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4420 &first_bad, &bad_sectors)) 4421 set_bit(R5_ReadRepl, &dev->flags); 4422 else { 4423 if (rdev && !test_bit(Faulty, &rdev->flags)) 4424 set_bit(R5_NeedReplace, &dev->flags); 4425 else 4426 clear_bit(R5_NeedReplace, &dev->flags); 4427 rdev = rcu_dereference(conf->disks[i].rdev); 4428 clear_bit(R5_ReadRepl, &dev->flags); 4429 } 4430 if (rdev && test_bit(Faulty, &rdev->flags)) 4431 rdev = NULL; 4432 if (rdev) { 4433 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4434 &first_bad, &bad_sectors); 4435 if (s->blocked_rdev == NULL 4436 && (test_bit(Blocked, &rdev->flags) 4437 || is_bad < 0)) { 4438 if (is_bad < 0) 4439 set_bit(BlockedBadBlocks, 4440 &rdev->flags); 4441 s->blocked_rdev = rdev; 4442 atomic_inc(&rdev->nr_pending); 4443 } 4444 } 4445 clear_bit(R5_Insync, &dev->flags); 4446 if (!rdev) 4447 /* Not in-sync */; 4448 else if (is_bad) { 4449 /* also not in-sync */ 4450 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4451 test_bit(R5_UPTODATE, &dev->flags)) { 4452 /* treat as in-sync, but with a read error 4453 * which we can now try to correct 4454 */ 4455 set_bit(R5_Insync, &dev->flags); 4456 set_bit(R5_ReadError, &dev->flags); 4457 } 4458 } else if (test_bit(In_sync, &rdev->flags)) 4459 set_bit(R5_Insync, &dev->flags); 4460 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4461 /* in sync if before recovery_offset */ 4462 set_bit(R5_Insync, &dev->flags); 4463 else if (test_bit(R5_UPTODATE, &dev->flags) && 4464 test_bit(R5_Expanded, &dev->flags)) 4465 /* If we've reshaped into here, we assume it is Insync. 4466 * We will shortly update recovery_offset to make 4467 * it official. 4468 */ 4469 set_bit(R5_Insync, &dev->flags); 4470 4471 if (test_bit(R5_WriteError, &dev->flags)) { 4472 /* This flag does not apply to '.replacement' 4473 * only to .rdev, so make sure to check that*/ 4474 struct md_rdev *rdev2 = rcu_dereference( 4475 conf->disks[i].rdev); 4476 if (rdev2 == rdev) 4477 clear_bit(R5_Insync, &dev->flags); 4478 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4479 s->handle_bad_blocks = 1; 4480 atomic_inc(&rdev2->nr_pending); 4481 } else 4482 clear_bit(R5_WriteError, &dev->flags); 4483 } 4484 if (test_bit(R5_MadeGood, &dev->flags)) { 4485 /* This flag does not apply to '.replacement' 4486 * only to .rdev, so make sure to check that*/ 4487 struct md_rdev *rdev2 = rcu_dereference( 4488 conf->disks[i].rdev); 4489 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4490 s->handle_bad_blocks = 1; 4491 atomic_inc(&rdev2->nr_pending); 4492 } else 4493 clear_bit(R5_MadeGood, &dev->flags); 4494 } 4495 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4496 struct md_rdev *rdev2 = rcu_dereference( 4497 conf->disks[i].replacement); 4498 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4499 s->handle_bad_blocks = 1; 4500 atomic_inc(&rdev2->nr_pending); 4501 } else 4502 clear_bit(R5_MadeGoodRepl, &dev->flags); 4503 } 4504 if (!test_bit(R5_Insync, &dev->flags)) { 4505 /* The ReadError flag will just be confusing now */ 4506 clear_bit(R5_ReadError, &dev->flags); 4507 clear_bit(R5_ReWrite, &dev->flags); 4508 } 4509 if (test_bit(R5_ReadError, &dev->flags)) 4510 clear_bit(R5_Insync, &dev->flags); 4511 if (!test_bit(R5_Insync, &dev->flags)) { 4512 if (s->failed < 2) 4513 s->failed_num[s->failed] = i; 4514 s->failed++; 4515 if (rdev && !test_bit(Faulty, &rdev->flags)) 4516 do_recovery = 1; 4517 } 4518 4519 if (test_bit(R5_InJournal, &dev->flags)) 4520 s->injournal++; 4521 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4522 s->just_cached++; 4523 } 4524 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4525 /* If there is a failed device being replaced, 4526 * we must be recovering. 4527 * else if we are after recovery_cp, we must be syncing 4528 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4529 * else we can only be replacing 4530 * sync and recovery both need to read all devices, and so 4531 * use the same flag. 4532 */ 4533 if (do_recovery || 4534 sh->sector >= conf->mddev->recovery_cp || 4535 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4536 s->syncing = 1; 4537 else 4538 s->replacing = 1; 4539 } 4540 rcu_read_unlock(); 4541 } 4542 4543 static int clear_batch_ready(struct stripe_head *sh) 4544 { 4545 /* Return '1' if this is a member of batch, or 4546 * '0' if it is a lone stripe or a head which can now be 4547 * handled. 4548 */ 4549 struct stripe_head *tmp; 4550 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4551 return (sh->batch_head && sh->batch_head != sh); 4552 spin_lock(&sh->stripe_lock); 4553 if (!sh->batch_head) { 4554 spin_unlock(&sh->stripe_lock); 4555 return 0; 4556 } 4557 4558 /* 4559 * this stripe could be added to a batch list before we check 4560 * BATCH_READY, skips it 4561 */ 4562 if (sh->batch_head != sh) { 4563 spin_unlock(&sh->stripe_lock); 4564 return 1; 4565 } 4566 spin_lock(&sh->batch_lock); 4567 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4568 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4569 spin_unlock(&sh->batch_lock); 4570 spin_unlock(&sh->stripe_lock); 4571 4572 /* 4573 * BATCH_READY is cleared, no new stripes can be added. 4574 * batch_list can be accessed without lock 4575 */ 4576 return 0; 4577 } 4578 4579 static void break_stripe_batch_list(struct stripe_head *head_sh, 4580 unsigned long handle_flags) 4581 { 4582 struct stripe_head *sh, *next; 4583 int i; 4584 int do_wakeup = 0; 4585 4586 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4587 4588 list_del_init(&sh->batch_list); 4589 4590 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4591 (1 << STRIPE_SYNCING) | 4592 (1 << STRIPE_REPLACED) | 4593 (1 << STRIPE_DELAYED) | 4594 (1 << STRIPE_BIT_DELAY) | 4595 (1 << STRIPE_FULL_WRITE) | 4596 (1 << STRIPE_BIOFILL_RUN) | 4597 (1 << STRIPE_COMPUTE_RUN) | 4598 (1 << STRIPE_OPS_REQ_PENDING) | 4599 (1 << STRIPE_DISCARD) | 4600 (1 << STRIPE_BATCH_READY) | 4601 (1 << STRIPE_BATCH_ERR) | 4602 (1 << STRIPE_BITMAP_PENDING)), 4603 "stripe state: %lx\n", sh->state); 4604 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4605 (1 << STRIPE_REPLACED)), 4606 "head stripe state: %lx\n", head_sh->state); 4607 4608 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4609 (1 << STRIPE_PREREAD_ACTIVE) | 4610 (1 << STRIPE_DEGRADED) | 4611 (1 << STRIPE_ON_UNPLUG_LIST)), 4612 head_sh->state & (1 << STRIPE_INSYNC)); 4613 4614 sh->check_state = head_sh->check_state; 4615 sh->reconstruct_state = head_sh->reconstruct_state; 4616 for (i = 0; i < sh->disks; i++) { 4617 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4618 do_wakeup = 1; 4619 sh->dev[i].flags = head_sh->dev[i].flags & 4620 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4621 } 4622 spin_lock_irq(&sh->stripe_lock); 4623 sh->batch_head = NULL; 4624 spin_unlock_irq(&sh->stripe_lock); 4625 if (handle_flags == 0 || 4626 sh->state & handle_flags) 4627 set_bit(STRIPE_HANDLE, &sh->state); 4628 raid5_release_stripe(sh); 4629 } 4630 spin_lock_irq(&head_sh->stripe_lock); 4631 head_sh->batch_head = NULL; 4632 spin_unlock_irq(&head_sh->stripe_lock); 4633 for (i = 0; i < head_sh->disks; i++) 4634 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4635 do_wakeup = 1; 4636 if (head_sh->state & handle_flags) 4637 set_bit(STRIPE_HANDLE, &head_sh->state); 4638 4639 if (do_wakeup) 4640 wake_up(&head_sh->raid_conf->wait_for_overlap); 4641 } 4642 4643 static void handle_stripe(struct stripe_head *sh) 4644 { 4645 struct stripe_head_state s; 4646 struct r5conf *conf = sh->raid_conf; 4647 int i; 4648 int prexor; 4649 int disks = sh->disks; 4650 struct r5dev *pdev, *qdev; 4651 4652 clear_bit(STRIPE_HANDLE, &sh->state); 4653 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4654 /* already being handled, ensure it gets handled 4655 * again when current action finishes */ 4656 set_bit(STRIPE_HANDLE, &sh->state); 4657 return; 4658 } 4659 4660 if (clear_batch_ready(sh) ) { 4661 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4662 return; 4663 } 4664 4665 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4666 break_stripe_batch_list(sh, 0); 4667 4668 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4669 spin_lock(&sh->stripe_lock); 4670 /* 4671 * Cannot process 'sync' concurrently with 'discard'. 4672 * Flush data in r5cache before 'sync'. 4673 */ 4674 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4675 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4676 !test_bit(STRIPE_DISCARD, &sh->state) && 4677 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4678 set_bit(STRIPE_SYNCING, &sh->state); 4679 clear_bit(STRIPE_INSYNC, &sh->state); 4680 clear_bit(STRIPE_REPLACED, &sh->state); 4681 } 4682 spin_unlock(&sh->stripe_lock); 4683 } 4684 clear_bit(STRIPE_DELAYED, &sh->state); 4685 4686 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4687 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4688 (unsigned long long)sh->sector, sh->state, 4689 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4690 sh->check_state, sh->reconstruct_state); 4691 4692 analyse_stripe(sh, &s); 4693 4694 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4695 goto finish; 4696 4697 if (s.handle_bad_blocks || 4698 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4699 set_bit(STRIPE_HANDLE, &sh->state); 4700 goto finish; 4701 } 4702 4703 if (unlikely(s.blocked_rdev)) { 4704 if (s.syncing || s.expanding || s.expanded || 4705 s.replacing || s.to_write || s.written) { 4706 set_bit(STRIPE_HANDLE, &sh->state); 4707 goto finish; 4708 } 4709 /* There is nothing for the blocked_rdev to block */ 4710 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4711 s.blocked_rdev = NULL; 4712 } 4713 4714 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4715 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4716 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4717 } 4718 4719 pr_debug("locked=%d uptodate=%d to_read=%d" 4720 " to_write=%d failed=%d failed_num=%d,%d\n", 4721 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4722 s.failed_num[0], s.failed_num[1]); 4723 /* 4724 * check if the array has lost more than max_degraded devices and, 4725 * if so, some requests might need to be failed. 4726 * 4727 * When journal device failed (log_failed), we will only process 4728 * the stripe if there is data need write to raid disks 4729 */ 4730 if (s.failed > conf->max_degraded || 4731 (s.log_failed && s.injournal == 0)) { 4732 sh->check_state = 0; 4733 sh->reconstruct_state = 0; 4734 break_stripe_batch_list(sh, 0); 4735 if (s.to_read+s.to_write+s.written) 4736 handle_failed_stripe(conf, sh, &s, disks); 4737 if (s.syncing + s.replacing) 4738 handle_failed_sync(conf, sh, &s); 4739 } 4740 4741 /* Now we check to see if any write operations have recently 4742 * completed 4743 */ 4744 prexor = 0; 4745 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4746 prexor = 1; 4747 if (sh->reconstruct_state == reconstruct_state_drain_result || 4748 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4749 sh->reconstruct_state = reconstruct_state_idle; 4750 4751 /* All the 'written' buffers and the parity block are ready to 4752 * be written back to disk 4753 */ 4754 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4755 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4756 BUG_ON(sh->qd_idx >= 0 && 4757 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4758 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4759 for (i = disks; i--; ) { 4760 struct r5dev *dev = &sh->dev[i]; 4761 if (test_bit(R5_LOCKED, &dev->flags) && 4762 (i == sh->pd_idx || i == sh->qd_idx || 4763 dev->written || test_bit(R5_InJournal, 4764 &dev->flags))) { 4765 pr_debug("Writing block %d\n", i); 4766 set_bit(R5_Wantwrite, &dev->flags); 4767 if (prexor) 4768 continue; 4769 if (s.failed > 1) 4770 continue; 4771 if (!test_bit(R5_Insync, &dev->flags) || 4772 ((i == sh->pd_idx || i == sh->qd_idx) && 4773 s.failed == 0)) 4774 set_bit(STRIPE_INSYNC, &sh->state); 4775 } 4776 } 4777 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4778 s.dec_preread_active = 1; 4779 } 4780 4781 /* 4782 * might be able to return some write requests if the parity blocks 4783 * are safe, or on a failed drive 4784 */ 4785 pdev = &sh->dev[sh->pd_idx]; 4786 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4787 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4788 qdev = &sh->dev[sh->qd_idx]; 4789 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4790 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4791 || conf->level < 6; 4792 4793 if (s.written && 4794 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4795 && !test_bit(R5_LOCKED, &pdev->flags) 4796 && (test_bit(R5_UPTODATE, &pdev->flags) || 4797 test_bit(R5_Discard, &pdev->flags))))) && 4798 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4799 && !test_bit(R5_LOCKED, &qdev->flags) 4800 && (test_bit(R5_UPTODATE, &qdev->flags) || 4801 test_bit(R5_Discard, &qdev->flags)))))) 4802 handle_stripe_clean_event(conf, sh, disks); 4803 4804 if (s.just_cached) 4805 r5c_handle_cached_data_endio(conf, sh, disks); 4806 log_stripe_write_finished(sh); 4807 4808 /* Now we might consider reading some blocks, either to check/generate 4809 * parity, or to satisfy requests 4810 * or to load a block that is being partially written. 4811 */ 4812 if (s.to_read || s.non_overwrite 4813 || (conf->level == 6 && s.to_write && s.failed) 4814 || (s.syncing && (s.uptodate + s.compute < disks)) 4815 || s.replacing 4816 || s.expanding) 4817 handle_stripe_fill(sh, &s, disks); 4818 4819 /* 4820 * When the stripe finishes full journal write cycle (write to journal 4821 * and raid disk), this is the clean up procedure so it is ready for 4822 * next operation. 4823 */ 4824 r5c_finish_stripe_write_out(conf, sh, &s); 4825 4826 /* 4827 * Now to consider new write requests, cache write back and what else, 4828 * if anything should be read. We do not handle new writes when: 4829 * 1/ A 'write' operation (copy+xor) is already in flight. 4830 * 2/ A 'check' operation is in flight, as it may clobber the parity 4831 * block. 4832 * 3/ A r5c cache log write is in flight. 4833 */ 4834 4835 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 4836 if (!r5c_is_writeback(conf->log)) { 4837 if (s.to_write) 4838 handle_stripe_dirtying(conf, sh, &s, disks); 4839 } else { /* write back cache */ 4840 int ret = 0; 4841 4842 /* First, try handle writes in caching phase */ 4843 if (s.to_write) 4844 ret = r5c_try_caching_write(conf, sh, &s, 4845 disks); 4846 /* 4847 * If caching phase failed: ret == -EAGAIN 4848 * OR 4849 * stripe under reclaim: !caching && injournal 4850 * 4851 * fall back to handle_stripe_dirtying() 4852 */ 4853 if (ret == -EAGAIN || 4854 /* stripe under reclaim: !caching && injournal */ 4855 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 4856 s.injournal > 0)) { 4857 ret = handle_stripe_dirtying(conf, sh, &s, 4858 disks); 4859 if (ret == -EAGAIN) 4860 goto finish; 4861 } 4862 } 4863 } 4864 4865 /* maybe we need to check and possibly fix the parity for this stripe 4866 * Any reads will already have been scheduled, so we just see if enough 4867 * data is available. The parity check is held off while parity 4868 * dependent operations are in flight. 4869 */ 4870 if (sh->check_state || 4871 (s.syncing && s.locked == 0 && 4872 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4873 !test_bit(STRIPE_INSYNC, &sh->state))) { 4874 if (conf->level == 6) 4875 handle_parity_checks6(conf, sh, &s, disks); 4876 else 4877 handle_parity_checks5(conf, sh, &s, disks); 4878 } 4879 4880 if ((s.replacing || s.syncing) && s.locked == 0 4881 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4882 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4883 /* Write out to replacement devices where possible */ 4884 for (i = 0; i < conf->raid_disks; i++) 4885 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4886 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4887 set_bit(R5_WantReplace, &sh->dev[i].flags); 4888 set_bit(R5_LOCKED, &sh->dev[i].flags); 4889 s.locked++; 4890 } 4891 if (s.replacing) 4892 set_bit(STRIPE_INSYNC, &sh->state); 4893 set_bit(STRIPE_REPLACED, &sh->state); 4894 } 4895 if ((s.syncing || s.replacing) && s.locked == 0 && 4896 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4897 test_bit(STRIPE_INSYNC, &sh->state)) { 4898 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4899 clear_bit(STRIPE_SYNCING, &sh->state); 4900 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4901 wake_up(&conf->wait_for_overlap); 4902 } 4903 4904 /* If the failed drives are just a ReadError, then we might need 4905 * to progress the repair/check process 4906 */ 4907 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4908 for (i = 0; i < s.failed; i++) { 4909 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4910 if (test_bit(R5_ReadError, &dev->flags) 4911 && !test_bit(R5_LOCKED, &dev->flags) 4912 && test_bit(R5_UPTODATE, &dev->flags) 4913 ) { 4914 if (!test_bit(R5_ReWrite, &dev->flags)) { 4915 set_bit(R5_Wantwrite, &dev->flags); 4916 set_bit(R5_ReWrite, &dev->flags); 4917 set_bit(R5_LOCKED, &dev->flags); 4918 s.locked++; 4919 } else { 4920 /* let's read it back */ 4921 set_bit(R5_Wantread, &dev->flags); 4922 set_bit(R5_LOCKED, &dev->flags); 4923 s.locked++; 4924 } 4925 } 4926 } 4927 4928 /* Finish reconstruct operations initiated by the expansion process */ 4929 if (sh->reconstruct_state == reconstruct_state_result) { 4930 struct stripe_head *sh_src 4931 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4932 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4933 /* sh cannot be written until sh_src has been read. 4934 * so arrange for sh to be delayed a little 4935 */ 4936 set_bit(STRIPE_DELAYED, &sh->state); 4937 set_bit(STRIPE_HANDLE, &sh->state); 4938 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4939 &sh_src->state)) 4940 atomic_inc(&conf->preread_active_stripes); 4941 raid5_release_stripe(sh_src); 4942 goto finish; 4943 } 4944 if (sh_src) 4945 raid5_release_stripe(sh_src); 4946 4947 sh->reconstruct_state = reconstruct_state_idle; 4948 clear_bit(STRIPE_EXPANDING, &sh->state); 4949 for (i = conf->raid_disks; i--; ) { 4950 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4951 set_bit(R5_LOCKED, &sh->dev[i].flags); 4952 s.locked++; 4953 } 4954 } 4955 4956 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4957 !sh->reconstruct_state) { 4958 /* Need to write out all blocks after computing parity */ 4959 sh->disks = conf->raid_disks; 4960 stripe_set_idx(sh->sector, conf, 0, sh); 4961 schedule_reconstruction(sh, &s, 1, 1); 4962 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4963 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4964 atomic_dec(&conf->reshape_stripes); 4965 wake_up(&conf->wait_for_overlap); 4966 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4967 } 4968 4969 if (s.expanding && s.locked == 0 && 4970 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4971 handle_stripe_expansion(conf, sh); 4972 4973 finish: 4974 /* wait for this device to become unblocked */ 4975 if (unlikely(s.blocked_rdev)) { 4976 if (conf->mddev->external) 4977 md_wait_for_blocked_rdev(s.blocked_rdev, 4978 conf->mddev); 4979 else 4980 /* Internal metadata will immediately 4981 * be written by raid5d, so we don't 4982 * need to wait here. 4983 */ 4984 rdev_dec_pending(s.blocked_rdev, 4985 conf->mddev); 4986 } 4987 4988 if (s.handle_bad_blocks) 4989 for (i = disks; i--; ) { 4990 struct md_rdev *rdev; 4991 struct r5dev *dev = &sh->dev[i]; 4992 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4993 /* We own a safe reference to the rdev */ 4994 rdev = conf->disks[i].rdev; 4995 if (!rdev_set_badblocks(rdev, sh->sector, 4996 STRIPE_SECTORS, 0)) 4997 md_error(conf->mddev, rdev); 4998 rdev_dec_pending(rdev, conf->mddev); 4999 } 5000 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5001 rdev = conf->disks[i].rdev; 5002 rdev_clear_badblocks(rdev, sh->sector, 5003 STRIPE_SECTORS, 0); 5004 rdev_dec_pending(rdev, conf->mddev); 5005 } 5006 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5007 rdev = conf->disks[i].replacement; 5008 if (!rdev) 5009 /* rdev have been moved down */ 5010 rdev = conf->disks[i].rdev; 5011 rdev_clear_badblocks(rdev, sh->sector, 5012 STRIPE_SECTORS, 0); 5013 rdev_dec_pending(rdev, conf->mddev); 5014 } 5015 } 5016 5017 if (s.ops_request) 5018 raid_run_ops(sh, s.ops_request); 5019 5020 ops_run_io(sh, &s); 5021 5022 if (s.dec_preread_active) { 5023 /* We delay this until after ops_run_io so that if make_request 5024 * is waiting on a flush, it won't continue until the writes 5025 * have actually been submitted. 5026 */ 5027 atomic_dec(&conf->preread_active_stripes); 5028 if (atomic_read(&conf->preread_active_stripes) < 5029 IO_THRESHOLD) 5030 md_wakeup_thread(conf->mddev->thread); 5031 } 5032 5033 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5034 } 5035 5036 static void raid5_activate_delayed(struct r5conf *conf) 5037 { 5038 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5039 while (!list_empty(&conf->delayed_list)) { 5040 struct list_head *l = conf->delayed_list.next; 5041 struct stripe_head *sh; 5042 sh = list_entry(l, struct stripe_head, lru); 5043 list_del_init(l); 5044 clear_bit(STRIPE_DELAYED, &sh->state); 5045 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5046 atomic_inc(&conf->preread_active_stripes); 5047 list_add_tail(&sh->lru, &conf->hold_list); 5048 raid5_wakeup_stripe_thread(sh); 5049 } 5050 } 5051 } 5052 5053 static void activate_bit_delay(struct r5conf *conf, 5054 struct list_head *temp_inactive_list) 5055 { 5056 /* device_lock is held */ 5057 struct list_head head; 5058 list_add(&head, &conf->bitmap_list); 5059 list_del_init(&conf->bitmap_list); 5060 while (!list_empty(&head)) { 5061 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5062 int hash; 5063 list_del_init(&sh->lru); 5064 atomic_inc(&sh->count); 5065 hash = sh->hash_lock_index; 5066 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5067 } 5068 } 5069 5070 static int raid5_congested(struct mddev *mddev, int bits) 5071 { 5072 struct r5conf *conf = mddev->private; 5073 5074 /* No difference between reads and writes. Just check 5075 * how busy the stripe_cache is 5076 */ 5077 5078 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 5079 return 1; 5080 5081 /* Also checks whether there is pressure on r5cache log space */ 5082 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 5083 return 1; 5084 if (conf->quiesce) 5085 return 1; 5086 if (atomic_read(&conf->empty_inactive_list_nr)) 5087 return 1; 5088 5089 return 0; 5090 } 5091 5092 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5093 { 5094 struct r5conf *conf = mddev->private; 5095 sector_t sector = bio->bi_iter.bi_sector; 5096 unsigned int chunk_sectors; 5097 unsigned int bio_sectors = bio_sectors(bio); 5098 5099 WARN_ON_ONCE(bio->bi_partno); 5100 5101 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5102 return chunk_sectors >= 5103 ((sector & (chunk_sectors - 1)) + bio_sectors); 5104 } 5105 5106 /* 5107 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5108 * later sampled by raid5d. 5109 */ 5110 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5111 { 5112 unsigned long flags; 5113 5114 spin_lock_irqsave(&conf->device_lock, flags); 5115 5116 bi->bi_next = conf->retry_read_aligned_list; 5117 conf->retry_read_aligned_list = bi; 5118 5119 spin_unlock_irqrestore(&conf->device_lock, flags); 5120 md_wakeup_thread(conf->mddev->thread); 5121 } 5122 5123 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5124 unsigned int *offset) 5125 { 5126 struct bio *bi; 5127 5128 bi = conf->retry_read_aligned; 5129 if (bi) { 5130 *offset = conf->retry_read_offset; 5131 conf->retry_read_aligned = NULL; 5132 return bi; 5133 } 5134 bi = conf->retry_read_aligned_list; 5135 if(bi) { 5136 conf->retry_read_aligned_list = bi->bi_next; 5137 bi->bi_next = NULL; 5138 *offset = 0; 5139 } 5140 5141 return bi; 5142 } 5143 5144 /* 5145 * The "raid5_align_endio" should check if the read succeeded and if it 5146 * did, call bio_endio on the original bio (having bio_put the new bio 5147 * first). 5148 * If the read failed.. 5149 */ 5150 static void raid5_align_endio(struct bio *bi) 5151 { 5152 struct bio* raid_bi = bi->bi_private; 5153 struct mddev *mddev; 5154 struct r5conf *conf; 5155 struct md_rdev *rdev; 5156 blk_status_t error = bi->bi_status; 5157 5158 bio_put(bi); 5159 5160 rdev = (void*)raid_bi->bi_next; 5161 raid_bi->bi_next = NULL; 5162 mddev = rdev->mddev; 5163 conf = mddev->private; 5164 5165 rdev_dec_pending(rdev, conf->mddev); 5166 5167 if (!error) { 5168 bio_endio(raid_bi); 5169 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5170 wake_up(&conf->wait_for_quiescent); 5171 return; 5172 } 5173 5174 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5175 5176 add_bio_to_retry(raid_bi, conf); 5177 } 5178 5179 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5180 { 5181 struct r5conf *conf = mddev->private; 5182 int dd_idx; 5183 struct bio* align_bi; 5184 struct md_rdev *rdev; 5185 sector_t end_sector; 5186 5187 if (!in_chunk_boundary(mddev, raid_bio)) { 5188 pr_debug("%s: non aligned\n", __func__); 5189 return 0; 5190 } 5191 /* 5192 * use bio_clone_fast to make a copy of the bio 5193 */ 5194 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set); 5195 if (!align_bi) 5196 return 0; 5197 /* 5198 * set bi_end_io to a new function, and set bi_private to the 5199 * original bio. 5200 */ 5201 align_bi->bi_end_io = raid5_align_endio; 5202 align_bi->bi_private = raid_bio; 5203 /* 5204 * compute position 5205 */ 5206 align_bi->bi_iter.bi_sector = 5207 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5208 0, &dd_idx, NULL); 5209 5210 end_sector = bio_end_sector(align_bi); 5211 rcu_read_lock(); 5212 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5213 if (!rdev || test_bit(Faulty, &rdev->flags) || 5214 rdev->recovery_offset < end_sector) { 5215 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5216 if (rdev && 5217 (test_bit(Faulty, &rdev->flags) || 5218 !(test_bit(In_sync, &rdev->flags) || 5219 rdev->recovery_offset >= end_sector))) 5220 rdev = NULL; 5221 } 5222 5223 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5224 rcu_read_unlock(); 5225 bio_put(align_bi); 5226 return 0; 5227 } 5228 5229 if (rdev) { 5230 sector_t first_bad; 5231 int bad_sectors; 5232 5233 atomic_inc(&rdev->nr_pending); 5234 rcu_read_unlock(); 5235 raid_bio->bi_next = (void*)rdev; 5236 bio_set_dev(align_bi, rdev->bdev); 5237 bio_clear_flag(align_bi, BIO_SEG_VALID); 5238 5239 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5240 bio_sectors(align_bi), 5241 &first_bad, &bad_sectors)) { 5242 bio_put(align_bi); 5243 rdev_dec_pending(rdev, mddev); 5244 return 0; 5245 } 5246 5247 /* No reshape active, so we can trust rdev->data_offset */ 5248 align_bi->bi_iter.bi_sector += rdev->data_offset; 5249 5250 spin_lock_irq(&conf->device_lock); 5251 wait_event_lock_irq(conf->wait_for_quiescent, 5252 conf->quiesce == 0, 5253 conf->device_lock); 5254 atomic_inc(&conf->active_aligned_reads); 5255 spin_unlock_irq(&conf->device_lock); 5256 5257 if (mddev->gendisk) 5258 trace_block_bio_remap(align_bi->bi_disk->queue, 5259 align_bi, disk_devt(mddev->gendisk), 5260 raid_bio->bi_iter.bi_sector); 5261 generic_make_request(align_bi); 5262 return 1; 5263 } else { 5264 rcu_read_unlock(); 5265 bio_put(align_bi); 5266 return 0; 5267 } 5268 } 5269 5270 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5271 { 5272 struct bio *split; 5273 sector_t sector = raid_bio->bi_iter.bi_sector; 5274 unsigned chunk_sects = mddev->chunk_sectors; 5275 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5276 5277 if (sectors < bio_sectors(raid_bio)) { 5278 struct r5conf *conf = mddev->private; 5279 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split); 5280 bio_chain(split, raid_bio); 5281 generic_make_request(raid_bio); 5282 raid_bio = split; 5283 } 5284 5285 if (!raid5_read_one_chunk(mddev, raid_bio)) 5286 return raid_bio; 5287 5288 return NULL; 5289 } 5290 5291 /* __get_priority_stripe - get the next stripe to process 5292 * 5293 * Full stripe writes are allowed to pass preread active stripes up until 5294 * the bypass_threshold is exceeded. In general the bypass_count 5295 * increments when the handle_list is handled before the hold_list; however, it 5296 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5297 * stripe with in flight i/o. The bypass_count will be reset when the 5298 * head of the hold_list has changed, i.e. the head was promoted to the 5299 * handle_list. 5300 */ 5301 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5302 { 5303 struct stripe_head *sh, *tmp; 5304 struct list_head *handle_list = NULL; 5305 struct r5worker_group *wg; 5306 bool second_try = !r5c_is_writeback(conf->log) && 5307 !r5l_log_disk_error(conf); 5308 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5309 r5l_log_disk_error(conf); 5310 5311 again: 5312 wg = NULL; 5313 sh = NULL; 5314 if (conf->worker_cnt_per_group == 0) { 5315 handle_list = try_loprio ? &conf->loprio_list : 5316 &conf->handle_list; 5317 } else if (group != ANY_GROUP) { 5318 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5319 &conf->worker_groups[group].handle_list; 5320 wg = &conf->worker_groups[group]; 5321 } else { 5322 int i; 5323 for (i = 0; i < conf->group_cnt; i++) { 5324 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5325 &conf->worker_groups[i].handle_list; 5326 wg = &conf->worker_groups[i]; 5327 if (!list_empty(handle_list)) 5328 break; 5329 } 5330 } 5331 5332 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5333 __func__, 5334 list_empty(handle_list) ? "empty" : "busy", 5335 list_empty(&conf->hold_list) ? "empty" : "busy", 5336 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5337 5338 if (!list_empty(handle_list)) { 5339 sh = list_entry(handle_list->next, typeof(*sh), lru); 5340 5341 if (list_empty(&conf->hold_list)) 5342 conf->bypass_count = 0; 5343 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5344 if (conf->hold_list.next == conf->last_hold) 5345 conf->bypass_count++; 5346 else { 5347 conf->last_hold = conf->hold_list.next; 5348 conf->bypass_count -= conf->bypass_threshold; 5349 if (conf->bypass_count < 0) 5350 conf->bypass_count = 0; 5351 } 5352 } 5353 } else if (!list_empty(&conf->hold_list) && 5354 ((conf->bypass_threshold && 5355 conf->bypass_count > conf->bypass_threshold) || 5356 atomic_read(&conf->pending_full_writes) == 0)) { 5357 5358 list_for_each_entry(tmp, &conf->hold_list, lru) { 5359 if (conf->worker_cnt_per_group == 0 || 5360 group == ANY_GROUP || 5361 !cpu_online(tmp->cpu) || 5362 cpu_to_group(tmp->cpu) == group) { 5363 sh = tmp; 5364 break; 5365 } 5366 } 5367 5368 if (sh) { 5369 conf->bypass_count -= conf->bypass_threshold; 5370 if (conf->bypass_count < 0) 5371 conf->bypass_count = 0; 5372 } 5373 wg = NULL; 5374 } 5375 5376 if (!sh) { 5377 if (second_try) 5378 return NULL; 5379 second_try = true; 5380 try_loprio = !try_loprio; 5381 goto again; 5382 } 5383 5384 if (wg) { 5385 wg->stripes_cnt--; 5386 sh->group = NULL; 5387 } 5388 list_del_init(&sh->lru); 5389 BUG_ON(atomic_inc_return(&sh->count) != 1); 5390 return sh; 5391 } 5392 5393 struct raid5_plug_cb { 5394 struct blk_plug_cb cb; 5395 struct list_head list; 5396 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5397 }; 5398 5399 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5400 { 5401 struct raid5_plug_cb *cb = container_of( 5402 blk_cb, struct raid5_plug_cb, cb); 5403 struct stripe_head *sh; 5404 struct mddev *mddev = cb->cb.data; 5405 struct r5conf *conf = mddev->private; 5406 int cnt = 0; 5407 int hash; 5408 5409 if (cb->list.next && !list_empty(&cb->list)) { 5410 spin_lock_irq(&conf->device_lock); 5411 while (!list_empty(&cb->list)) { 5412 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5413 list_del_init(&sh->lru); 5414 /* 5415 * avoid race release_stripe_plug() sees 5416 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5417 * is still in our list 5418 */ 5419 smp_mb__before_atomic(); 5420 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5421 /* 5422 * STRIPE_ON_RELEASE_LIST could be set here. In that 5423 * case, the count is always > 1 here 5424 */ 5425 hash = sh->hash_lock_index; 5426 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5427 cnt++; 5428 } 5429 spin_unlock_irq(&conf->device_lock); 5430 } 5431 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5432 NR_STRIPE_HASH_LOCKS); 5433 if (mddev->queue) 5434 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5435 kfree(cb); 5436 } 5437 5438 static void release_stripe_plug(struct mddev *mddev, 5439 struct stripe_head *sh) 5440 { 5441 struct blk_plug_cb *blk_cb = blk_check_plugged( 5442 raid5_unplug, mddev, 5443 sizeof(struct raid5_plug_cb)); 5444 struct raid5_plug_cb *cb; 5445 5446 if (!blk_cb) { 5447 raid5_release_stripe(sh); 5448 return; 5449 } 5450 5451 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5452 5453 if (cb->list.next == NULL) { 5454 int i; 5455 INIT_LIST_HEAD(&cb->list); 5456 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5457 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5458 } 5459 5460 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5461 list_add_tail(&sh->lru, &cb->list); 5462 else 5463 raid5_release_stripe(sh); 5464 } 5465 5466 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5467 { 5468 struct r5conf *conf = mddev->private; 5469 sector_t logical_sector, last_sector; 5470 struct stripe_head *sh; 5471 int stripe_sectors; 5472 5473 if (mddev->reshape_position != MaxSector) 5474 /* Skip discard while reshape is happening */ 5475 return; 5476 5477 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5478 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5479 5480 bi->bi_next = NULL; 5481 5482 stripe_sectors = conf->chunk_sectors * 5483 (conf->raid_disks - conf->max_degraded); 5484 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5485 stripe_sectors); 5486 sector_div(last_sector, stripe_sectors); 5487 5488 logical_sector *= conf->chunk_sectors; 5489 last_sector *= conf->chunk_sectors; 5490 5491 for (; logical_sector < last_sector; 5492 logical_sector += STRIPE_SECTORS) { 5493 DEFINE_WAIT(w); 5494 int d; 5495 again: 5496 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5497 prepare_to_wait(&conf->wait_for_overlap, &w, 5498 TASK_UNINTERRUPTIBLE); 5499 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5500 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5501 raid5_release_stripe(sh); 5502 schedule(); 5503 goto again; 5504 } 5505 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5506 spin_lock_irq(&sh->stripe_lock); 5507 for (d = 0; d < conf->raid_disks; d++) { 5508 if (d == sh->pd_idx || d == sh->qd_idx) 5509 continue; 5510 if (sh->dev[d].towrite || sh->dev[d].toread) { 5511 set_bit(R5_Overlap, &sh->dev[d].flags); 5512 spin_unlock_irq(&sh->stripe_lock); 5513 raid5_release_stripe(sh); 5514 schedule(); 5515 goto again; 5516 } 5517 } 5518 set_bit(STRIPE_DISCARD, &sh->state); 5519 finish_wait(&conf->wait_for_overlap, &w); 5520 sh->overwrite_disks = 0; 5521 for (d = 0; d < conf->raid_disks; d++) { 5522 if (d == sh->pd_idx || d == sh->qd_idx) 5523 continue; 5524 sh->dev[d].towrite = bi; 5525 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5526 bio_inc_remaining(bi); 5527 md_write_inc(mddev, bi); 5528 sh->overwrite_disks++; 5529 } 5530 spin_unlock_irq(&sh->stripe_lock); 5531 if (conf->mddev->bitmap) { 5532 for (d = 0; 5533 d < conf->raid_disks - conf->max_degraded; 5534 d++) 5535 bitmap_startwrite(mddev->bitmap, 5536 sh->sector, 5537 STRIPE_SECTORS, 5538 0); 5539 sh->bm_seq = conf->seq_flush + 1; 5540 set_bit(STRIPE_BIT_DELAY, &sh->state); 5541 } 5542 5543 set_bit(STRIPE_HANDLE, &sh->state); 5544 clear_bit(STRIPE_DELAYED, &sh->state); 5545 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5546 atomic_inc(&conf->preread_active_stripes); 5547 release_stripe_plug(mddev, sh); 5548 } 5549 5550 bio_endio(bi); 5551 } 5552 5553 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5554 { 5555 struct r5conf *conf = mddev->private; 5556 int dd_idx; 5557 sector_t new_sector; 5558 sector_t logical_sector, last_sector; 5559 struct stripe_head *sh; 5560 const int rw = bio_data_dir(bi); 5561 DEFINE_WAIT(w); 5562 bool do_prepare; 5563 bool do_flush = false; 5564 5565 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5566 int ret = log_handle_flush_request(conf, bi); 5567 5568 if (ret == 0) 5569 return true; 5570 if (ret == -ENODEV) { 5571 md_flush_request(mddev, bi); 5572 return true; 5573 } 5574 /* ret == -EAGAIN, fallback */ 5575 /* 5576 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5577 * we need to flush journal device 5578 */ 5579 do_flush = bi->bi_opf & REQ_PREFLUSH; 5580 } 5581 5582 if (!md_write_start(mddev, bi)) 5583 return false; 5584 /* 5585 * If array is degraded, better not do chunk aligned read because 5586 * later we might have to read it again in order to reconstruct 5587 * data on failed drives. 5588 */ 5589 if (rw == READ && mddev->degraded == 0 && 5590 mddev->reshape_position == MaxSector) { 5591 bi = chunk_aligned_read(mddev, bi); 5592 if (!bi) 5593 return true; 5594 } 5595 5596 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5597 make_discard_request(mddev, bi); 5598 md_write_end(mddev); 5599 return true; 5600 } 5601 5602 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5603 last_sector = bio_end_sector(bi); 5604 bi->bi_next = NULL; 5605 5606 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5607 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5608 int previous; 5609 int seq; 5610 5611 do_prepare = false; 5612 retry: 5613 seq = read_seqcount_begin(&conf->gen_lock); 5614 previous = 0; 5615 if (do_prepare) 5616 prepare_to_wait(&conf->wait_for_overlap, &w, 5617 TASK_UNINTERRUPTIBLE); 5618 if (unlikely(conf->reshape_progress != MaxSector)) { 5619 /* spinlock is needed as reshape_progress may be 5620 * 64bit on a 32bit platform, and so it might be 5621 * possible to see a half-updated value 5622 * Of course reshape_progress could change after 5623 * the lock is dropped, so once we get a reference 5624 * to the stripe that we think it is, we will have 5625 * to check again. 5626 */ 5627 spin_lock_irq(&conf->device_lock); 5628 if (mddev->reshape_backwards 5629 ? logical_sector < conf->reshape_progress 5630 : logical_sector >= conf->reshape_progress) { 5631 previous = 1; 5632 } else { 5633 if (mddev->reshape_backwards 5634 ? logical_sector < conf->reshape_safe 5635 : logical_sector >= conf->reshape_safe) { 5636 spin_unlock_irq(&conf->device_lock); 5637 schedule(); 5638 do_prepare = true; 5639 goto retry; 5640 } 5641 } 5642 spin_unlock_irq(&conf->device_lock); 5643 } 5644 5645 new_sector = raid5_compute_sector(conf, logical_sector, 5646 previous, 5647 &dd_idx, NULL); 5648 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5649 (unsigned long long)new_sector, 5650 (unsigned long long)logical_sector); 5651 5652 sh = raid5_get_active_stripe(conf, new_sector, previous, 5653 (bi->bi_opf & REQ_RAHEAD), 0); 5654 if (sh) { 5655 if (unlikely(previous)) { 5656 /* expansion might have moved on while waiting for a 5657 * stripe, so we must do the range check again. 5658 * Expansion could still move past after this 5659 * test, but as we are holding a reference to 5660 * 'sh', we know that if that happens, 5661 * STRIPE_EXPANDING will get set and the expansion 5662 * won't proceed until we finish with the stripe. 5663 */ 5664 int must_retry = 0; 5665 spin_lock_irq(&conf->device_lock); 5666 if (mddev->reshape_backwards 5667 ? logical_sector >= conf->reshape_progress 5668 : logical_sector < conf->reshape_progress) 5669 /* mismatch, need to try again */ 5670 must_retry = 1; 5671 spin_unlock_irq(&conf->device_lock); 5672 if (must_retry) { 5673 raid5_release_stripe(sh); 5674 schedule(); 5675 do_prepare = true; 5676 goto retry; 5677 } 5678 } 5679 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5680 /* Might have got the wrong stripe_head 5681 * by accident 5682 */ 5683 raid5_release_stripe(sh); 5684 goto retry; 5685 } 5686 5687 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5688 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5689 /* Stripe is busy expanding or 5690 * add failed due to overlap. Flush everything 5691 * and wait a while 5692 */ 5693 md_wakeup_thread(mddev->thread); 5694 raid5_release_stripe(sh); 5695 schedule(); 5696 do_prepare = true; 5697 goto retry; 5698 } 5699 if (do_flush) { 5700 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5701 /* we only need flush for one stripe */ 5702 do_flush = false; 5703 } 5704 5705 set_bit(STRIPE_HANDLE, &sh->state); 5706 clear_bit(STRIPE_DELAYED, &sh->state); 5707 if ((!sh->batch_head || sh == sh->batch_head) && 5708 (bi->bi_opf & REQ_SYNC) && 5709 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5710 atomic_inc(&conf->preread_active_stripes); 5711 release_stripe_plug(mddev, sh); 5712 } else { 5713 /* cannot get stripe for read-ahead, just give-up */ 5714 bi->bi_status = BLK_STS_IOERR; 5715 break; 5716 } 5717 } 5718 finish_wait(&conf->wait_for_overlap, &w); 5719 5720 if (rw == WRITE) 5721 md_write_end(mddev); 5722 bio_endio(bi); 5723 return true; 5724 } 5725 5726 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5727 5728 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5729 { 5730 /* reshaping is quite different to recovery/resync so it is 5731 * handled quite separately ... here. 5732 * 5733 * On each call to sync_request, we gather one chunk worth of 5734 * destination stripes and flag them as expanding. 5735 * Then we find all the source stripes and request reads. 5736 * As the reads complete, handle_stripe will copy the data 5737 * into the destination stripe and release that stripe. 5738 */ 5739 struct r5conf *conf = mddev->private; 5740 struct stripe_head *sh; 5741 struct md_rdev *rdev; 5742 sector_t first_sector, last_sector; 5743 int raid_disks = conf->previous_raid_disks; 5744 int data_disks = raid_disks - conf->max_degraded; 5745 int new_data_disks = conf->raid_disks - conf->max_degraded; 5746 int i; 5747 int dd_idx; 5748 sector_t writepos, readpos, safepos; 5749 sector_t stripe_addr; 5750 int reshape_sectors; 5751 struct list_head stripes; 5752 sector_t retn; 5753 5754 if (sector_nr == 0) { 5755 /* If restarting in the middle, skip the initial sectors */ 5756 if (mddev->reshape_backwards && 5757 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5758 sector_nr = raid5_size(mddev, 0, 0) 5759 - conf->reshape_progress; 5760 } else if (mddev->reshape_backwards && 5761 conf->reshape_progress == MaxSector) { 5762 /* shouldn't happen, but just in case, finish up.*/ 5763 sector_nr = MaxSector; 5764 } else if (!mddev->reshape_backwards && 5765 conf->reshape_progress > 0) 5766 sector_nr = conf->reshape_progress; 5767 sector_div(sector_nr, new_data_disks); 5768 if (sector_nr) { 5769 mddev->curr_resync_completed = sector_nr; 5770 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5771 *skipped = 1; 5772 retn = sector_nr; 5773 goto finish; 5774 } 5775 } 5776 5777 /* We need to process a full chunk at a time. 5778 * If old and new chunk sizes differ, we need to process the 5779 * largest of these 5780 */ 5781 5782 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5783 5784 /* We update the metadata at least every 10 seconds, or when 5785 * the data about to be copied would over-write the source of 5786 * the data at the front of the range. i.e. one new_stripe 5787 * along from reshape_progress new_maps to after where 5788 * reshape_safe old_maps to 5789 */ 5790 writepos = conf->reshape_progress; 5791 sector_div(writepos, new_data_disks); 5792 readpos = conf->reshape_progress; 5793 sector_div(readpos, data_disks); 5794 safepos = conf->reshape_safe; 5795 sector_div(safepos, data_disks); 5796 if (mddev->reshape_backwards) { 5797 BUG_ON(writepos < reshape_sectors); 5798 writepos -= reshape_sectors; 5799 readpos += reshape_sectors; 5800 safepos += reshape_sectors; 5801 } else { 5802 writepos += reshape_sectors; 5803 /* readpos and safepos are worst-case calculations. 5804 * A negative number is overly pessimistic, and causes 5805 * obvious problems for unsigned storage. So clip to 0. 5806 */ 5807 readpos -= min_t(sector_t, reshape_sectors, readpos); 5808 safepos -= min_t(sector_t, reshape_sectors, safepos); 5809 } 5810 5811 /* Having calculated the 'writepos' possibly use it 5812 * to set 'stripe_addr' which is where we will write to. 5813 */ 5814 if (mddev->reshape_backwards) { 5815 BUG_ON(conf->reshape_progress == 0); 5816 stripe_addr = writepos; 5817 BUG_ON((mddev->dev_sectors & 5818 ~((sector_t)reshape_sectors - 1)) 5819 - reshape_sectors - stripe_addr 5820 != sector_nr); 5821 } else { 5822 BUG_ON(writepos != sector_nr + reshape_sectors); 5823 stripe_addr = sector_nr; 5824 } 5825 5826 /* 'writepos' is the most advanced device address we might write. 5827 * 'readpos' is the least advanced device address we might read. 5828 * 'safepos' is the least address recorded in the metadata as having 5829 * been reshaped. 5830 * If there is a min_offset_diff, these are adjusted either by 5831 * increasing the safepos/readpos if diff is negative, or 5832 * increasing writepos if diff is positive. 5833 * If 'readpos' is then behind 'writepos', there is no way that we can 5834 * ensure safety in the face of a crash - that must be done by userspace 5835 * making a backup of the data. So in that case there is no particular 5836 * rush to update metadata. 5837 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5838 * update the metadata to advance 'safepos' to match 'readpos' so that 5839 * we can be safe in the event of a crash. 5840 * So we insist on updating metadata if safepos is behind writepos and 5841 * readpos is beyond writepos. 5842 * In any case, update the metadata every 10 seconds. 5843 * Maybe that number should be configurable, but I'm not sure it is 5844 * worth it.... maybe it could be a multiple of safemode_delay??? 5845 */ 5846 if (conf->min_offset_diff < 0) { 5847 safepos += -conf->min_offset_diff; 5848 readpos += -conf->min_offset_diff; 5849 } else 5850 writepos += conf->min_offset_diff; 5851 5852 if ((mddev->reshape_backwards 5853 ? (safepos > writepos && readpos < writepos) 5854 : (safepos < writepos && readpos > writepos)) || 5855 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5856 /* Cannot proceed until we've updated the superblock... */ 5857 wait_event(conf->wait_for_overlap, 5858 atomic_read(&conf->reshape_stripes)==0 5859 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5860 if (atomic_read(&conf->reshape_stripes) != 0) 5861 return 0; 5862 mddev->reshape_position = conf->reshape_progress; 5863 mddev->curr_resync_completed = sector_nr; 5864 if (!mddev->reshape_backwards) 5865 /* Can update recovery_offset */ 5866 rdev_for_each(rdev, mddev) 5867 if (rdev->raid_disk >= 0 && 5868 !test_bit(Journal, &rdev->flags) && 5869 !test_bit(In_sync, &rdev->flags) && 5870 rdev->recovery_offset < sector_nr) 5871 rdev->recovery_offset = sector_nr; 5872 5873 conf->reshape_checkpoint = jiffies; 5874 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5875 md_wakeup_thread(mddev->thread); 5876 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 5877 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5878 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5879 return 0; 5880 spin_lock_irq(&conf->device_lock); 5881 conf->reshape_safe = mddev->reshape_position; 5882 spin_unlock_irq(&conf->device_lock); 5883 wake_up(&conf->wait_for_overlap); 5884 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5885 } 5886 5887 INIT_LIST_HEAD(&stripes); 5888 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5889 int j; 5890 int skipped_disk = 0; 5891 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5892 set_bit(STRIPE_EXPANDING, &sh->state); 5893 atomic_inc(&conf->reshape_stripes); 5894 /* If any of this stripe is beyond the end of the old 5895 * array, then we need to zero those blocks 5896 */ 5897 for (j=sh->disks; j--;) { 5898 sector_t s; 5899 if (j == sh->pd_idx) 5900 continue; 5901 if (conf->level == 6 && 5902 j == sh->qd_idx) 5903 continue; 5904 s = raid5_compute_blocknr(sh, j, 0); 5905 if (s < raid5_size(mddev, 0, 0)) { 5906 skipped_disk = 1; 5907 continue; 5908 } 5909 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5910 set_bit(R5_Expanded, &sh->dev[j].flags); 5911 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5912 } 5913 if (!skipped_disk) { 5914 set_bit(STRIPE_EXPAND_READY, &sh->state); 5915 set_bit(STRIPE_HANDLE, &sh->state); 5916 } 5917 list_add(&sh->lru, &stripes); 5918 } 5919 spin_lock_irq(&conf->device_lock); 5920 if (mddev->reshape_backwards) 5921 conf->reshape_progress -= reshape_sectors * new_data_disks; 5922 else 5923 conf->reshape_progress += reshape_sectors * new_data_disks; 5924 spin_unlock_irq(&conf->device_lock); 5925 /* Ok, those stripe are ready. We can start scheduling 5926 * reads on the source stripes. 5927 * The source stripes are determined by mapping the first and last 5928 * block on the destination stripes. 5929 */ 5930 first_sector = 5931 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5932 1, &dd_idx, NULL); 5933 last_sector = 5934 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5935 * new_data_disks - 1), 5936 1, &dd_idx, NULL); 5937 if (last_sector >= mddev->dev_sectors) 5938 last_sector = mddev->dev_sectors - 1; 5939 while (first_sector <= last_sector) { 5940 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5941 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5942 set_bit(STRIPE_HANDLE, &sh->state); 5943 raid5_release_stripe(sh); 5944 first_sector += STRIPE_SECTORS; 5945 } 5946 /* Now that the sources are clearly marked, we can release 5947 * the destination stripes 5948 */ 5949 while (!list_empty(&stripes)) { 5950 sh = list_entry(stripes.next, struct stripe_head, lru); 5951 list_del_init(&sh->lru); 5952 raid5_release_stripe(sh); 5953 } 5954 /* If this takes us to the resync_max point where we have to pause, 5955 * then we need to write out the superblock. 5956 */ 5957 sector_nr += reshape_sectors; 5958 retn = reshape_sectors; 5959 finish: 5960 if (mddev->curr_resync_completed > mddev->resync_max || 5961 (sector_nr - mddev->curr_resync_completed) * 2 5962 >= mddev->resync_max - mddev->curr_resync_completed) { 5963 /* Cannot proceed until we've updated the superblock... */ 5964 wait_event(conf->wait_for_overlap, 5965 atomic_read(&conf->reshape_stripes) == 0 5966 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5967 if (atomic_read(&conf->reshape_stripes) != 0) 5968 goto ret; 5969 mddev->reshape_position = conf->reshape_progress; 5970 mddev->curr_resync_completed = sector_nr; 5971 if (!mddev->reshape_backwards) 5972 /* Can update recovery_offset */ 5973 rdev_for_each(rdev, mddev) 5974 if (rdev->raid_disk >= 0 && 5975 !test_bit(Journal, &rdev->flags) && 5976 !test_bit(In_sync, &rdev->flags) && 5977 rdev->recovery_offset < sector_nr) 5978 rdev->recovery_offset = sector_nr; 5979 conf->reshape_checkpoint = jiffies; 5980 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5981 md_wakeup_thread(mddev->thread); 5982 wait_event(mddev->sb_wait, 5983 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 5984 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5985 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5986 goto ret; 5987 spin_lock_irq(&conf->device_lock); 5988 conf->reshape_safe = mddev->reshape_position; 5989 spin_unlock_irq(&conf->device_lock); 5990 wake_up(&conf->wait_for_overlap); 5991 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5992 } 5993 ret: 5994 return retn; 5995 } 5996 5997 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 5998 int *skipped) 5999 { 6000 struct r5conf *conf = mddev->private; 6001 struct stripe_head *sh; 6002 sector_t max_sector = mddev->dev_sectors; 6003 sector_t sync_blocks; 6004 int still_degraded = 0; 6005 int i; 6006 6007 if (sector_nr >= max_sector) { 6008 /* just being told to finish up .. nothing much to do */ 6009 6010 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6011 end_reshape(conf); 6012 return 0; 6013 } 6014 6015 if (mddev->curr_resync < max_sector) /* aborted */ 6016 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6017 &sync_blocks, 1); 6018 else /* completed sync */ 6019 conf->fullsync = 0; 6020 bitmap_close_sync(mddev->bitmap); 6021 6022 return 0; 6023 } 6024 6025 /* Allow raid5_quiesce to complete */ 6026 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6027 6028 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6029 return reshape_request(mddev, sector_nr, skipped); 6030 6031 /* No need to check resync_max as we never do more than one 6032 * stripe, and as resync_max will always be on a chunk boundary, 6033 * if the check in md_do_sync didn't fire, there is no chance 6034 * of overstepping resync_max here 6035 */ 6036 6037 /* if there is too many failed drives and we are trying 6038 * to resync, then assert that we are finished, because there is 6039 * nothing we can do. 6040 */ 6041 if (mddev->degraded >= conf->max_degraded && 6042 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6043 sector_t rv = mddev->dev_sectors - sector_nr; 6044 *skipped = 1; 6045 return rv; 6046 } 6047 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6048 !conf->fullsync && 6049 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6050 sync_blocks >= STRIPE_SECTORS) { 6051 /* we can skip this block, and probably more */ 6052 sync_blocks /= STRIPE_SECTORS; 6053 *skipped = 1; 6054 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 6055 } 6056 6057 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6058 6059 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6060 if (sh == NULL) { 6061 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6062 /* make sure we don't swamp the stripe cache if someone else 6063 * is trying to get access 6064 */ 6065 schedule_timeout_uninterruptible(1); 6066 } 6067 /* Need to check if array will still be degraded after recovery/resync 6068 * Note in case of > 1 drive failures it's possible we're rebuilding 6069 * one drive while leaving another faulty drive in array. 6070 */ 6071 rcu_read_lock(); 6072 for (i = 0; i < conf->raid_disks; i++) { 6073 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6074 6075 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6076 still_degraded = 1; 6077 } 6078 rcu_read_unlock(); 6079 6080 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6081 6082 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6083 set_bit(STRIPE_HANDLE, &sh->state); 6084 6085 raid5_release_stripe(sh); 6086 6087 return STRIPE_SECTORS; 6088 } 6089 6090 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6091 unsigned int offset) 6092 { 6093 /* We may not be able to submit a whole bio at once as there 6094 * may not be enough stripe_heads available. 6095 * We cannot pre-allocate enough stripe_heads as we may need 6096 * more than exist in the cache (if we allow ever large chunks). 6097 * So we do one stripe head at a time and record in 6098 * ->bi_hw_segments how many have been done. 6099 * 6100 * We *know* that this entire raid_bio is in one chunk, so 6101 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6102 */ 6103 struct stripe_head *sh; 6104 int dd_idx; 6105 sector_t sector, logical_sector, last_sector; 6106 int scnt = 0; 6107 int handled = 0; 6108 6109 logical_sector = raid_bio->bi_iter.bi_sector & 6110 ~((sector_t)STRIPE_SECTORS-1); 6111 sector = raid5_compute_sector(conf, logical_sector, 6112 0, &dd_idx, NULL); 6113 last_sector = bio_end_sector(raid_bio); 6114 6115 for (; logical_sector < last_sector; 6116 logical_sector += STRIPE_SECTORS, 6117 sector += STRIPE_SECTORS, 6118 scnt++) { 6119 6120 if (scnt < offset) 6121 /* already done this stripe */ 6122 continue; 6123 6124 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6125 6126 if (!sh) { 6127 /* failed to get a stripe - must wait */ 6128 conf->retry_read_aligned = raid_bio; 6129 conf->retry_read_offset = scnt; 6130 return handled; 6131 } 6132 6133 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6134 raid5_release_stripe(sh); 6135 conf->retry_read_aligned = raid_bio; 6136 conf->retry_read_offset = scnt; 6137 return handled; 6138 } 6139 6140 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6141 handle_stripe(sh); 6142 raid5_release_stripe(sh); 6143 handled++; 6144 } 6145 6146 bio_endio(raid_bio); 6147 6148 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6149 wake_up(&conf->wait_for_quiescent); 6150 return handled; 6151 } 6152 6153 static int handle_active_stripes(struct r5conf *conf, int group, 6154 struct r5worker *worker, 6155 struct list_head *temp_inactive_list) 6156 { 6157 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6158 int i, batch_size = 0, hash; 6159 bool release_inactive = false; 6160 6161 while (batch_size < MAX_STRIPE_BATCH && 6162 (sh = __get_priority_stripe(conf, group)) != NULL) 6163 batch[batch_size++] = sh; 6164 6165 if (batch_size == 0) { 6166 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6167 if (!list_empty(temp_inactive_list + i)) 6168 break; 6169 if (i == NR_STRIPE_HASH_LOCKS) { 6170 spin_unlock_irq(&conf->device_lock); 6171 log_flush_stripe_to_raid(conf); 6172 spin_lock_irq(&conf->device_lock); 6173 return batch_size; 6174 } 6175 release_inactive = true; 6176 } 6177 spin_unlock_irq(&conf->device_lock); 6178 6179 release_inactive_stripe_list(conf, temp_inactive_list, 6180 NR_STRIPE_HASH_LOCKS); 6181 6182 r5l_flush_stripe_to_raid(conf->log); 6183 if (release_inactive) { 6184 spin_lock_irq(&conf->device_lock); 6185 return 0; 6186 } 6187 6188 for (i = 0; i < batch_size; i++) 6189 handle_stripe(batch[i]); 6190 log_write_stripe_run(conf); 6191 6192 cond_resched(); 6193 6194 spin_lock_irq(&conf->device_lock); 6195 for (i = 0; i < batch_size; i++) { 6196 hash = batch[i]->hash_lock_index; 6197 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6198 } 6199 return batch_size; 6200 } 6201 6202 static void raid5_do_work(struct work_struct *work) 6203 { 6204 struct r5worker *worker = container_of(work, struct r5worker, work); 6205 struct r5worker_group *group = worker->group; 6206 struct r5conf *conf = group->conf; 6207 struct mddev *mddev = conf->mddev; 6208 int group_id = group - conf->worker_groups; 6209 int handled; 6210 struct blk_plug plug; 6211 6212 pr_debug("+++ raid5worker active\n"); 6213 6214 blk_start_plug(&plug); 6215 handled = 0; 6216 spin_lock_irq(&conf->device_lock); 6217 while (1) { 6218 int batch_size, released; 6219 6220 released = release_stripe_list(conf, worker->temp_inactive_list); 6221 6222 batch_size = handle_active_stripes(conf, group_id, worker, 6223 worker->temp_inactive_list); 6224 worker->working = false; 6225 if (!batch_size && !released) 6226 break; 6227 handled += batch_size; 6228 wait_event_lock_irq(mddev->sb_wait, 6229 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6230 conf->device_lock); 6231 } 6232 pr_debug("%d stripes handled\n", handled); 6233 6234 spin_unlock_irq(&conf->device_lock); 6235 6236 flush_deferred_bios(conf); 6237 6238 r5l_flush_stripe_to_raid(conf->log); 6239 6240 async_tx_issue_pending_all(); 6241 blk_finish_plug(&plug); 6242 6243 pr_debug("--- raid5worker inactive\n"); 6244 } 6245 6246 /* 6247 * This is our raid5 kernel thread. 6248 * 6249 * We scan the hash table for stripes which can be handled now. 6250 * During the scan, completed stripes are saved for us by the interrupt 6251 * handler, so that they will not have to wait for our next wakeup. 6252 */ 6253 static void raid5d(struct md_thread *thread) 6254 { 6255 struct mddev *mddev = thread->mddev; 6256 struct r5conf *conf = mddev->private; 6257 int handled; 6258 struct blk_plug plug; 6259 6260 pr_debug("+++ raid5d active\n"); 6261 6262 md_check_recovery(mddev); 6263 6264 blk_start_plug(&plug); 6265 handled = 0; 6266 spin_lock_irq(&conf->device_lock); 6267 while (1) { 6268 struct bio *bio; 6269 int batch_size, released; 6270 unsigned int offset; 6271 6272 released = release_stripe_list(conf, conf->temp_inactive_list); 6273 if (released) 6274 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6275 6276 if ( 6277 !list_empty(&conf->bitmap_list)) { 6278 /* Now is a good time to flush some bitmap updates */ 6279 conf->seq_flush++; 6280 spin_unlock_irq(&conf->device_lock); 6281 bitmap_unplug(mddev->bitmap); 6282 spin_lock_irq(&conf->device_lock); 6283 conf->seq_write = conf->seq_flush; 6284 activate_bit_delay(conf, conf->temp_inactive_list); 6285 } 6286 raid5_activate_delayed(conf); 6287 6288 while ((bio = remove_bio_from_retry(conf, &offset))) { 6289 int ok; 6290 spin_unlock_irq(&conf->device_lock); 6291 ok = retry_aligned_read(conf, bio, offset); 6292 spin_lock_irq(&conf->device_lock); 6293 if (!ok) 6294 break; 6295 handled++; 6296 } 6297 6298 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6299 conf->temp_inactive_list); 6300 if (!batch_size && !released) 6301 break; 6302 handled += batch_size; 6303 6304 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6305 spin_unlock_irq(&conf->device_lock); 6306 md_check_recovery(mddev); 6307 spin_lock_irq(&conf->device_lock); 6308 } 6309 } 6310 pr_debug("%d stripes handled\n", handled); 6311 6312 spin_unlock_irq(&conf->device_lock); 6313 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6314 mutex_trylock(&conf->cache_size_mutex)) { 6315 grow_one_stripe(conf, __GFP_NOWARN); 6316 /* Set flag even if allocation failed. This helps 6317 * slow down allocation requests when mem is short 6318 */ 6319 set_bit(R5_DID_ALLOC, &conf->cache_state); 6320 mutex_unlock(&conf->cache_size_mutex); 6321 } 6322 6323 flush_deferred_bios(conf); 6324 6325 r5l_flush_stripe_to_raid(conf->log); 6326 6327 async_tx_issue_pending_all(); 6328 blk_finish_plug(&plug); 6329 6330 pr_debug("--- raid5d inactive\n"); 6331 } 6332 6333 static ssize_t 6334 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6335 { 6336 struct r5conf *conf; 6337 int ret = 0; 6338 spin_lock(&mddev->lock); 6339 conf = mddev->private; 6340 if (conf) 6341 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6342 spin_unlock(&mddev->lock); 6343 return ret; 6344 } 6345 6346 int 6347 raid5_set_cache_size(struct mddev *mddev, int size) 6348 { 6349 struct r5conf *conf = mddev->private; 6350 6351 if (size <= 16 || size > 32768) 6352 return -EINVAL; 6353 6354 conf->min_nr_stripes = size; 6355 mutex_lock(&conf->cache_size_mutex); 6356 while (size < conf->max_nr_stripes && 6357 drop_one_stripe(conf)) 6358 ; 6359 mutex_unlock(&conf->cache_size_mutex); 6360 6361 md_allow_write(mddev); 6362 6363 mutex_lock(&conf->cache_size_mutex); 6364 while (size > conf->max_nr_stripes) 6365 if (!grow_one_stripe(conf, GFP_KERNEL)) 6366 break; 6367 mutex_unlock(&conf->cache_size_mutex); 6368 6369 return 0; 6370 } 6371 EXPORT_SYMBOL(raid5_set_cache_size); 6372 6373 static ssize_t 6374 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6375 { 6376 struct r5conf *conf; 6377 unsigned long new; 6378 int err; 6379 6380 if (len >= PAGE_SIZE) 6381 return -EINVAL; 6382 if (kstrtoul(page, 10, &new)) 6383 return -EINVAL; 6384 err = mddev_lock(mddev); 6385 if (err) 6386 return err; 6387 conf = mddev->private; 6388 if (!conf) 6389 err = -ENODEV; 6390 else 6391 err = raid5_set_cache_size(mddev, new); 6392 mddev_unlock(mddev); 6393 6394 return err ?: len; 6395 } 6396 6397 static struct md_sysfs_entry 6398 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6399 raid5_show_stripe_cache_size, 6400 raid5_store_stripe_cache_size); 6401 6402 static ssize_t 6403 raid5_show_rmw_level(struct mddev *mddev, char *page) 6404 { 6405 struct r5conf *conf = mddev->private; 6406 if (conf) 6407 return sprintf(page, "%d\n", conf->rmw_level); 6408 else 6409 return 0; 6410 } 6411 6412 static ssize_t 6413 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6414 { 6415 struct r5conf *conf = mddev->private; 6416 unsigned long new; 6417 6418 if (!conf) 6419 return -ENODEV; 6420 6421 if (len >= PAGE_SIZE) 6422 return -EINVAL; 6423 6424 if (kstrtoul(page, 10, &new)) 6425 return -EINVAL; 6426 6427 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6428 return -EINVAL; 6429 6430 if (new != PARITY_DISABLE_RMW && 6431 new != PARITY_ENABLE_RMW && 6432 new != PARITY_PREFER_RMW) 6433 return -EINVAL; 6434 6435 conf->rmw_level = new; 6436 return len; 6437 } 6438 6439 static struct md_sysfs_entry 6440 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6441 raid5_show_rmw_level, 6442 raid5_store_rmw_level); 6443 6444 6445 static ssize_t 6446 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6447 { 6448 struct r5conf *conf; 6449 int ret = 0; 6450 spin_lock(&mddev->lock); 6451 conf = mddev->private; 6452 if (conf) 6453 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6454 spin_unlock(&mddev->lock); 6455 return ret; 6456 } 6457 6458 static ssize_t 6459 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6460 { 6461 struct r5conf *conf; 6462 unsigned long new; 6463 int err; 6464 6465 if (len >= PAGE_SIZE) 6466 return -EINVAL; 6467 if (kstrtoul(page, 10, &new)) 6468 return -EINVAL; 6469 6470 err = mddev_lock(mddev); 6471 if (err) 6472 return err; 6473 conf = mddev->private; 6474 if (!conf) 6475 err = -ENODEV; 6476 else if (new > conf->min_nr_stripes) 6477 err = -EINVAL; 6478 else 6479 conf->bypass_threshold = new; 6480 mddev_unlock(mddev); 6481 return err ?: len; 6482 } 6483 6484 static struct md_sysfs_entry 6485 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6486 S_IRUGO | S_IWUSR, 6487 raid5_show_preread_threshold, 6488 raid5_store_preread_threshold); 6489 6490 static ssize_t 6491 raid5_show_skip_copy(struct mddev *mddev, char *page) 6492 { 6493 struct r5conf *conf; 6494 int ret = 0; 6495 spin_lock(&mddev->lock); 6496 conf = mddev->private; 6497 if (conf) 6498 ret = sprintf(page, "%d\n", conf->skip_copy); 6499 spin_unlock(&mddev->lock); 6500 return ret; 6501 } 6502 6503 static ssize_t 6504 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6505 { 6506 struct r5conf *conf; 6507 unsigned long new; 6508 int err; 6509 6510 if (len >= PAGE_SIZE) 6511 return -EINVAL; 6512 if (kstrtoul(page, 10, &new)) 6513 return -EINVAL; 6514 new = !!new; 6515 6516 err = mddev_lock(mddev); 6517 if (err) 6518 return err; 6519 conf = mddev->private; 6520 if (!conf) 6521 err = -ENODEV; 6522 else if (new != conf->skip_copy) { 6523 mddev_suspend(mddev); 6524 conf->skip_copy = new; 6525 if (new) 6526 mddev->queue->backing_dev_info->capabilities |= 6527 BDI_CAP_STABLE_WRITES; 6528 else 6529 mddev->queue->backing_dev_info->capabilities &= 6530 ~BDI_CAP_STABLE_WRITES; 6531 mddev_resume(mddev); 6532 } 6533 mddev_unlock(mddev); 6534 return err ?: len; 6535 } 6536 6537 static struct md_sysfs_entry 6538 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6539 raid5_show_skip_copy, 6540 raid5_store_skip_copy); 6541 6542 static ssize_t 6543 stripe_cache_active_show(struct mddev *mddev, char *page) 6544 { 6545 struct r5conf *conf = mddev->private; 6546 if (conf) 6547 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6548 else 6549 return 0; 6550 } 6551 6552 static struct md_sysfs_entry 6553 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6554 6555 static ssize_t 6556 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6557 { 6558 struct r5conf *conf; 6559 int ret = 0; 6560 spin_lock(&mddev->lock); 6561 conf = mddev->private; 6562 if (conf) 6563 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6564 spin_unlock(&mddev->lock); 6565 return ret; 6566 } 6567 6568 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6569 int *group_cnt, 6570 int *worker_cnt_per_group, 6571 struct r5worker_group **worker_groups); 6572 static ssize_t 6573 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6574 { 6575 struct r5conf *conf; 6576 unsigned int new; 6577 int err; 6578 struct r5worker_group *new_groups, *old_groups; 6579 int group_cnt, worker_cnt_per_group; 6580 6581 if (len >= PAGE_SIZE) 6582 return -EINVAL; 6583 if (kstrtouint(page, 10, &new)) 6584 return -EINVAL; 6585 /* 8192 should be big enough */ 6586 if (new > 8192) 6587 return -EINVAL; 6588 6589 err = mddev_lock(mddev); 6590 if (err) 6591 return err; 6592 conf = mddev->private; 6593 if (!conf) 6594 err = -ENODEV; 6595 else if (new != conf->worker_cnt_per_group) { 6596 mddev_suspend(mddev); 6597 6598 old_groups = conf->worker_groups; 6599 if (old_groups) 6600 flush_workqueue(raid5_wq); 6601 6602 err = alloc_thread_groups(conf, new, 6603 &group_cnt, &worker_cnt_per_group, 6604 &new_groups); 6605 if (!err) { 6606 spin_lock_irq(&conf->device_lock); 6607 conf->group_cnt = group_cnt; 6608 conf->worker_cnt_per_group = worker_cnt_per_group; 6609 conf->worker_groups = new_groups; 6610 spin_unlock_irq(&conf->device_lock); 6611 6612 if (old_groups) 6613 kfree(old_groups[0].workers); 6614 kfree(old_groups); 6615 } 6616 mddev_resume(mddev); 6617 } 6618 mddev_unlock(mddev); 6619 6620 return err ?: len; 6621 } 6622 6623 static struct md_sysfs_entry 6624 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6625 raid5_show_group_thread_cnt, 6626 raid5_store_group_thread_cnt); 6627 6628 static struct attribute *raid5_attrs[] = { 6629 &raid5_stripecache_size.attr, 6630 &raid5_stripecache_active.attr, 6631 &raid5_preread_bypass_threshold.attr, 6632 &raid5_group_thread_cnt.attr, 6633 &raid5_skip_copy.attr, 6634 &raid5_rmw_level.attr, 6635 &r5c_journal_mode.attr, 6636 NULL, 6637 }; 6638 static struct attribute_group raid5_attrs_group = { 6639 .name = NULL, 6640 .attrs = raid5_attrs, 6641 }; 6642 6643 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6644 int *group_cnt, 6645 int *worker_cnt_per_group, 6646 struct r5worker_group **worker_groups) 6647 { 6648 int i, j, k; 6649 ssize_t size; 6650 struct r5worker *workers; 6651 6652 *worker_cnt_per_group = cnt; 6653 if (cnt == 0) { 6654 *group_cnt = 0; 6655 *worker_groups = NULL; 6656 return 0; 6657 } 6658 *group_cnt = num_possible_nodes(); 6659 size = sizeof(struct r5worker) * cnt; 6660 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6661 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6662 *group_cnt, GFP_NOIO); 6663 if (!*worker_groups || !workers) { 6664 kfree(workers); 6665 kfree(*worker_groups); 6666 return -ENOMEM; 6667 } 6668 6669 for (i = 0; i < *group_cnt; i++) { 6670 struct r5worker_group *group; 6671 6672 group = &(*worker_groups)[i]; 6673 INIT_LIST_HEAD(&group->handle_list); 6674 INIT_LIST_HEAD(&group->loprio_list); 6675 group->conf = conf; 6676 group->workers = workers + i * cnt; 6677 6678 for (j = 0; j < cnt; j++) { 6679 struct r5worker *worker = group->workers + j; 6680 worker->group = group; 6681 INIT_WORK(&worker->work, raid5_do_work); 6682 6683 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6684 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6685 } 6686 } 6687 6688 return 0; 6689 } 6690 6691 static void free_thread_groups(struct r5conf *conf) 6692 { 6693 if (conf->worker_groups) 6694 kfree(conf->worker_groups[0].workers); 6695 kfree(conf->worker_groups); 6696 conf->worker_groups = NULL; 6697 } 6698 6699 static sector_t 6700 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6701 { 6702 struct r5conf *conf = mddev->private; 6703 6704 if (!sectors) 6705 sectors = mddev->dev_sectors; 6706 if (!raid_disks) 6707 /* size is defined by the smallest of previous and new size */ 6708 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6709 6710 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6711 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6712 return sectors * (raid_disks - conf->max_degraded); 6713 } 6714 6715 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6716 { 6717 safe_put_page(percpu->spare_page); 6718 if (percpu->scribble) 6719 flex_array_free(percpu->scribble); 6720 percpu->spare_page = NULL; 6721 percpu->scribble = NULL; 6722 } 6723 6724 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6725 { 6726 if (conf->level == 6 && !percpu->spare_page) 6727 percpu->spare_page = alloc_page(GFP_KERNEL); 6728 if (!percpu->scribble) 6729 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6730 conf->previous_raid_disks), 6731 max(conf->chunk_sectors, 6732 conf->prev_chunk_sectors) 6733 / STRIPE_SECTORS, 6734 GFP_KERNEL); 6735 6736 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6737 free_scratch_buffer(conf, percpu); 6738 return -ENOMEM; 6739 } 6740 6741 return 0; 6742 } 6743 6744 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 6745 { 6746 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6747 6748 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6749 return 0; 6750 } 6751 6752 static void raid5_free_percpu(struct r5conf *conf) 6753 { 6754 if (!conf->percpu) 6755 return; 6756 6757 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6758 free_percpu(conf->percpu); 6759 } 6760 6761 static void free_conf(struct r5conf *conf) 6762 { 6763 int i; 6764 6765 log_exit(conf); 6766 6767 if (conf->shrinker.nr_deferred) 6768 unregister_shrinker(&conf->shrinker); 6769 6770 free_thread_groups(conf); 6771 shrink_stripes(conf); 6772 raid5_free_percpu(conf); 6773 for (i = 0; i < conf->pool_size; i++) 6774 if (conf->disks[i].extra_page) 6775 put_page(conf->disks[i].extra_page); 6776 kfree(conf->disks); 6777 if (conf->bio_split) 6778 bioset_free(conf->bio_split); 6779 kfree(conf->stripe_hashtbl); 6780 kfree(conf->pending_data); 6781 kfree(conf); 6782 } 6783 6784 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 6785 { 6786 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6787 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6788 6789 if (alloc_scratch_buffer(conf, percpu)) { 6790 pr_warn("%s: failed memory allocation for cpu%u\n", 6791 __func__, cpu); 6792 return -ENOMEM; 6793 } 6794 return 0; 6795 } 6796 6797 static int raid5_alloc_percpu(struct r5conf *conf) 6798 { 6799 int err = 0; 6800 6801 conf->percpu = alloc_percpu(struct raid5_percpu); 6802 if (!conf->percpu) 6803 return -ENOMEM; 6804 6805 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6806 if (!err) { 6807 conf->scribble_disks = max(conf->raid_disks, 6808 conf->previous_raid_disks); 6809 conf->scribble_sectors = max(conf->chunk_sectors, 6810 conf->prev_chunk_sectors); 6811 } 6812 return err; 6813 } 6814 6815 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6816 struct shrink_control *sc) 6817 { 6818 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6819 unsigned long ret = SHRINK_STOP; 6820 6821 if (mutex_trylock(&conf->cache_size_mutex)) { 6822 ret= 0; 6823 while (ret < sc->nr_to_scan && 6824 conf->max_nr_stripes > conf->min_nr_stripes) { 6825 if (drop_one_stripe(conf) == 0) { 6826 ret = SHRINK_STOP; 6827 break; 6828 } 6829 ret++; 6830 } 6831 mutex_unlock(&conf->cache_size_mutex); 6832 } 6833 return ret; 6834 } 6835 6836 static unsigned long raid5_cache_count(struct shrinker *shrink, 6837 struct shrink_control *sc) 6838 { 6839 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6840 6841 if (conf->max_nr_stripes < conf->min_nr_stripes) 6842 /* unlikely, but not impossible */ 6843 return 0; 6844 return conf->max_nr_stripes - conf->min_nr_stripes; 6845 } 6846 6847 static struct r5conf *setup_conf(struct mddev *mddev) 6848 { 6849 struct r5conf *conf; 6850 int raid_disk, memory, max_disks; 6851 struct md_rdev *rdev; 6852 struct disk_info *disk; 6853 char pers_name[6]; 6854 int i; 6855 int group_cnt, worker_cnt_per_group; 6856 struct r5worker_group *new_group; 6857 6858 if (mddev->new_level != 5 6859 && mddev->new_level != 4 6860 && mddev->new_level != 6) { 6861 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6862 mdname(mddev), mddev->new_level); 6863 return ERR_PTR(-EIO); 6864 } 6865 if ((mddev->new_level == 5 6866 && !algorithm_valid_raid5(mddev->new_layout)) || 6867 (mddev->new_level == 6 6868 && !algorithm_valid_raid6(mddev->new_layout))) { 6869 pr_warn("md/raid:%s: layout %d not supported\n", 6870 mdname(mddev), mddev->new_layout); 6871 return ERR_PTR(-EIO); 6872 } 6873 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6874 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6875 mdname(mddev), mddev->raid_disks); 6876 return ERR_PTR(-EINVAL); 6877 } 6878 6879 if (!mddev->new_chunk_sectors || 6880 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6881 !is_power_of_2(mddev->new_chunk_sectors)) { 6882 pr_warn("md/raid:%s: invalid chunk size %d\n", 6883 mdname(mddev), mddev->new_chunk_sectors << 9); 6884 return ERR_PTR(-EINVAL); 6885 } 6886 6887 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6888 if (conf == NULL) 6889 goto abort; 6890 INIT_LIST_HEAD(&conf->free_list); 6891 INIT_LIST_HEAD(&conf->pending_list); 6892 conf->pending_data = kzalloc(sizeof(struct r5pending_data) * 6893 PENDING_IO_MAX, GFP_KERNEL); 6894 if (!conf->pending_data) 6895 goto abort; 6896 for (i = 0; i < PENDING_IO_MAX; i++) 6897 list_add(&conf->pending_data[i].sibling, &conf->free_list); 6898 /* Don't enable multi-threading by default*/ 6899 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6900 &new_group)) { 6901 conf->group_cnt = group_cnt; 6902 conf->worker_cnt_per_group = worker_cnt_per_group; 6903 conf->worker_groups = new_group; 6904 } else 6905 goto abort; 6906 spin_lock_init(&conf->device_lock); 6907 seqcount_init(&conf->gen_lock); 6908 mutex_init(&conf->cache_size_mutex); 6909 init_waitqueue_head(&conf->wait_for_quiescent); 6910 init_waitqueue_head(&conf->wait_for_stripe); 6911 init_waitqueue_head(&conf->wait_for_overlap); 6912 INIT_LIST_HEAD(&conf->handle_list); 6913 INIT_LIST_HEAD(&conf->loprio_list); 6914 INIT_LIST_HEAD(&conf->hold_list); 6915 INIT_LIST_HEAD(&conf->delayed_list); 6916 INIT_LIST_HEAD(&conf->bitmap_list); 6917 init_llist_head(&conf->released_stripes); 6918 atomic_set(&conf->active_stripes, 0); 6919 atomic_set(&conf->preread_active_stripes, 0); 6920 atomic_set(&conf->active_aligned_reads, 0); 6921 spin_lock_init(&conf->pending_bios_lock); 6922 conf->batch_bio_dispatch = true; 6923 rdev_for_each(rdev, mddev) { 6924 if (test_bit(Journal, &rdev->flags)) 6925 continue; 6926 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6927 conf->batch_bio_dispatch = false; 6928 break; 6929 } 6930 } 6931 6932 conf->bypass_threshold = BYPASS_THRESHOLD; 6933 conf->recovery_disabled = mddev->recovery_disabled - 1; 6934 6935 conf->raid_disks = mddev->raid_disks; 6936 if (mddev->reshape_position == MaxSector) 6937 conf->previous_raid_disks = mddev->raid_disks; 6938 else 6939 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6940 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6941 6942 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6943 GFP_KERNEL); 6944 6945 if (!conf->disks) 6946 goto abort; 6947 6948 for (i = 0; i < max_disks; i++) { 6949 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 6950 if (!conf->disks[i].extra_page) 6951 goto abort; 6952 } 6953 6954 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 6955 if (!conf->bio_split) 6956 goto abort; 6957 conf->mddev = mddev; 6958 6959 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6960 goto abort; 6961 6962 /* We init hash_locks[0] separately to that it can be used 6963 * as the reference lock in the spin_lock_nest_lock() call 6964 * in lock_all_device_hash_locks_irq in order to convince 6965 * lockdep that we know what we are doing. 6966 */ 6967 spin_lock_init(conf->hash_locks); 6968 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6969 spin_lock_init(conf->hash_locks + i); 6970 6971 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6972 INIT_LIST_HEAD(conf->inactive_list + i); 6973 6974 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6975 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6976 6977 atomic_set(&conf->r5c_cached_full_stripes, 0); 6978 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 6979 atomic_set(&conf->r5c_cached_partial_stripes, 0); 6980 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 6981 atomic_set(&conf->r5c_flushing_full_stripes, 0); 6982 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 6983 6984 conf->level = mddev->new_level; 6985 conf->chunk_sectors = mddev->new_chunk_sectors; 6986 if (raid5_alloc_percpu(conf) != 0) 6987 goto abort; 6988 6989 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6990 6991 rdev_for_each(rdev, mddev) { 6992 raid_disk = rdev->raid_disk; 6993 if (raid_disk >= max_disks 6994 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6995 continue; 6996 disk = conf->disks + raid_disk; 6997 6998 if (test_bit(Replacement, &rdev->flags)) { 6999 if (disk->replacement) 7000 goto abort; 7001 disk->replacement = rdev; 7002 } else { 7003 if (disk->rdev) 7004 goto abort; 7005 disk->rdev = rdev; 7006 } 7007 7008 if (test_bit(In_sync, &rdev->flags)) { 7009 char b[BDEVNAME_SIZE]; 7010 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7011 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7012 } else if (rdev->saved_raid_disk != raid_disk) 7013 /* Cannot rely on bitmap to complete recovery */ 7014 conf->fullsync = 1; 7015 } 7016 7017 conf->level = mddev->new_level; 7018 if (conf->level == 6) { 7019 conf->max_degraded = 2; 7020 if (raid6_call.xor_syndrome) 7021 conf->rmw_level = PARITY_ENABLE_RMW; 7022 else 7023 conf->rmw_level = PARITY_DISABLE_RMW; 7024 } else { 7025 conf->max_degraded = 1; 7026 conf->rmw_level = PARITY_ENABLE_RMW; 7027 } 7028 conf->algorithm = mddev->new_layout; 7029 conf->reshape_progress = mddev->reshape_position; 7030 if (conf->reshape_progress != MaxSector) { 7031 conf->prev_chunk_sectors = mddev->chunk_sectors; 7032 conf->prev_algo = mddev->layout; 7033 } else { 7034 conf->prev_chunk_sectors = conf->chunk_sectors; 7035 conf->prev_algo = conf->algorithm; 7036 } 7037 7038 conf->min_nr_stripes = NR_STRIPES; 7039 if (mddev->reshape_position != MaxSector) { 7040 int stripes = max_t(int, 7041 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, 7042 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); 7043 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7044 if (conf->min_nr_stripes != NR_STRIPES) 7045 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7046 mdname(mddev), conf->min_nr_stripes); 7047 } 7048 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7049 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7050 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7051 if (grow_stripes(conf, conf->min_nr_stripes)) { 7052 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7053 mdname(mddev), memory); 7054 goto abort; 7055 } else 7056 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7057 /* 7058 * Losing a stripe head costs more than the time to refill it, 7059 * it reduces the queue depth and so can hurt throughput. 7060 * So set it rather large, scaled by number of devices. 7061 */ 7062 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7063 conf->shrinker.scan_objects = raid5_cache_scan; 7064 conf->shrinker.count_objects = raid5_cache_count; 7065 conf->shrinker.batch = 128; 7066 conf->shrinker.flags = 0; 7067 if (register_shrinker(&conf->shrinker)) { 7068 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7069 mdname(mddev)); 7070 goto abort; 7071 } 7072 7073 sprintf(pers_name, "raid%d", mddev->new_level); 7074 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7075 if (!conf->thread) { 7076 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7077 mdname(mddev)); 7078 goto abort; 7079 } 7080 7081 return conf; 7082 7083 abort: 7084 if (conf) { 7085 free_conf(conf); 7086 return ERR_PTR(-EIO); 7087 } else 7088 return ERR_PTR(-ENOMEM); 7089 } 7090 7091 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7092 { 7093 switch (algo) { 7094 case ALGORITHM_PARITY_0: 7095 if (raid_disk < max_degraded) 7096 return 1; 7097 break; 7098 case ALGORITHM_PARITY_N: 7099 if (raid_disk >= raid_disks - max_degraded) 7100 return 1; 7101 break; 7102 case ALGORITHM_PARITY_0_6: 7103 if (raid_disk == 0 || 7104 raid_disk == raid_disks - 1) 7105 return 1; 7106 break; 7107 case ALGORITHM_LEFT_ASYMMETRIC_6: 7108 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7109 case ALGORITHM_LEFT_SYMMETRIC_6: 7110 case ALGORITHM_RIGHT_SYMMETRIC_6: 7111 if (raid_disk == raid_disks - 1) 7112 return 1; 7113 } 7114 return 0; 7115 } 7116 7117 static int raid5_run(struct mddev *mddev) 7118 { 7119 struct r5conf *conf; 7120 int working_disks = 0; 7121 int dirty_parity_disks = 0; 7122 struct md_rdev *rdev; 7123 struct md_rdev *journal_dev = NULL; 7124 sector_t reshape_offset = 0; 7125 int i; 7126 long long min_offset_diff = 0; 7127 int first = 1; 7128 7129 if (mddev_init_writes_pending(mddev) < 0) 7130 return -ENOMEM; 7131 7132 if (mddev->recovery_cp != MaxSector) 7133 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7134 mdname(mddev)); 7135 7136 rdev_for_each(rdev, mddev) { 7137 long long diff; 7138 7139 if (test_bit(Journal, &rdev->flags)) { 7140 journal_dev = rdev; 7141 continue; 7142 } 7143 if (rdev->raid_disk < 0) 7144 continue; 7145 diff = (rdev->new_data_offset - rdev->data_offset); 7146 if (first) { 7147 min_offset_diff = diff; 7148 first = 0; 7149 } else if (mddev->reshape_backwards && 7150 diff < min_offset_diff) 7151 min_offset_diff = diff; 7152 else if (!mddev->reshape_backwards && 7153 diff > min_offset_diff) 7154 min_offset_diff = diff; 7155 } 7156 7157 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7158 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7159 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7160 mdname(mddev)); 7161 return -EINVAL; 7162 } 7163 7164 if (mddev->reshape_position != MaxSector) { 7165 /* Check that we can continue the reshape. 7166 * Difficulties arise if the stripe we would write to 7167 * next is at or after the stripe we would read from next. 7168 * For a reshape that changes the number of devices, this 7169 * is only possible for a very short time, and mdadm makes 7170 * sure that time appears to have past before assembling 7171 * the array. So we fail if that time hasn't passed. 7172 * For a reshape that keeps the number of devices the same 7173 * mdadm must be monitoring the reshape can keeping the 7174 * critical areas read-only and backed up. It will start 7175 * the array in read-only mode, so we check for that. 7176 */ 7177 sector_t here_new, here_old; 7178 int old_disks; 7179 int max_degraded = (mddev->level == 6 ? 2 : 1); 7180 int chunk_sectors; 7181 int new_data_disks; 7182 7183 if (journal_dev) { 7184 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7185 mdname(mddev)); 7186 return -EINVAL; 7187 } 7188 7189 if (mddev->new_level != mddev->level) { 7190 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7191 mdname(mddev)); 7192 return -EINVAL; 7193 } 7194 old_disks = mddev->raid_disks - mddev->delta_disks; 7195 /* reshape_position must be on a new-stripe boundary, and one 7196 * further up in new geometry must map after here in old 7197 * geometry. 7198 * If the chunk sizes are different, then as we perform reshape 7199 * in units of the largest of the two, reshape_position needs 7200 * be a multiple of the largest chunk size times new data disks. 7201 */ 7202 here_new = mddev->reshape_position; 7203 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7204 new_data_disks = mddev->raid_disks - max_degraded; 7205 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7206 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7207 mdname(mddev)); 7208 return -EINVAL; 7209 } 7210 reshape_offset = here_new * chunk_sectors; 7211 /* here_new is the stripe we will write to */ 7212 here_old = mddev->reshape_position; 7213 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7214 /* here_old is the first stripe that we might need to read 7215 * from */ 7216 if (mddev->delta_disks == 0) { 7217 /* We cannot be sure it is safe to start an in-place 7218 * reshape. It is only safe if user-space is monitoring 7219 * and taking constant backups. 7220 * mdadm always starts a situation like this in 7221 * readonly mode so it can take control before 7222 * allowing any writes. So just check for that. 7223 */ 7224 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7225 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7226 /* not really in-place - so OK */; 7227 else if (mddev->ro == 0) { 7228 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7229 mdname(mddev)); 7230 return -EINVAL; 7231 } 7232 } else if (mddev->reshape_backwards 7233 ? (here_new * chunk_sectors + min_offset_diff <= 7234 here_old * chunk_sectors) 7235 : (here_new * chunk_sectors >= 7236 here_old * chunk_sectors + (-min_offset_diff))) { 7237 /* Reading from the same stripe as writing to - bad */ 7238 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7239 mdname(mddev)); 7240 return -EINVAL; 7241 } 7242 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7243 /* OK, we should be able to continue; */ 7244 } else { 7245 BUG_ON(mddev->level != mddev->new_level); 7246 BUG_ON(mddev->layout != mddev->new_layout); 7247 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7248 BUG_ON(mddev->delta_disks != 0); 7249 } 7250 7251 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7252 test_bit(MD_HAS_PPL, &mddev->flags)) { 7253 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7254 mdname(mddev)); 7255 clear_bit(MD_HAS_PPL, &mddev->flags); 7256 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7257 } 7258 7259 if (mddev->private == NULL) 7260 conf = setup_conf(mddev); 7261 else 7262 conf = mddev->private; 7263 7264 if (IS_ERR(conf)) 7265 return PTR_ERR(conf); 7266 7267 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7268 if (!journal_dev) { 7269 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7270 mdname(mddev)); 7271 mddev->ro = 1; 7272 set_disk_ro(mddev->gendisk, 1); 7273 } else if (mddev->recovery_cp == MaxSector) 7274 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7275 } 7276 7277 conf->min_offset_diff = min_offset_diff; 7278 mddev->thread = conf->thread; 7279 conf->thread = NULL; 7280 mddev->private = conf; 7281 7282 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7283 i++) { 7284 rdev = conf->disks[i].rdev; 7285 if (!rdev && conf->disks[i].replacement) { 7286 /* The replacement is all we have yet */ 7287 rdev = conf->disks[i].replacement; 7288 conf->disks[i].replacement = NULL; 7289 clear_bit(Replacement, &rdev->flags); 7290 conf->disks[i].rdev = rdev; 7291 } 7292 if (!rdev) 7293 continue; 7294 if (conf->disks[i].replacement && 7295 conf->reshape_progress != MaxSector) { 7296 /* replacements and reshape simply do not mix. */ 7297 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7298 goto abort; 7299 } 7300 if (test_bit(In_sync, &rdev->flags)) { 7301 working_disks++; 7302 continue; 7303 } 7304 /* This disc is not fully in-sync. However if it 7305 * just stored parity (beyond the recovery_offset), 7306 * when we don't need to be concerned about the 7307 * array being dirty. 7308 * When reshape goes 'backwards', we never have 7309 * partially completed devices, so we only need 7310 * to worry about reshape going forwards. 7311 */ 7312 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7313 if (mddev->major_version == 0 && 7314 mddev->minor_version > 90) 7315 rdev->recovery_offset = reshape_offset; 7316 7317 if (rdev->recovery_offset < reshape_offset) { 7318 /* We need to check old and new layout */ 7319 if (!only_parity(rdev->raid_disk, 7320 conf->algorithm, 7321 conf->raid_disks, 7322 conf->max_degraded)) 7323 continue; 7324 } 7325 if (!only_parity(rdev->raid_disk, 7326 conf->prev_algo, 7327 conf->previous_raid_disks, 7328 conf->max_degraded)) 7329 continue; 7330 dirty_parity_disks++; 7331 } 7332 7333 /* 7334 * 0 for a fully functional array, 1 or 2 for a degraded array. 7335 */ 7336 mddev->degraded = raid5_calc_degraded(conf); 7337 7338 if (has_failed(conf)) { 7339 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7340 mdname(mddev), mddev->degraded, conf->raid_disks); 7341 goto abort; 7342 } 7343 7344 /* device size must be a multiple of chunk size */ 7345 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7346 mddev->resync_max_sectors = mddev->dev_sectors; 7347 7348 if (mddev->degraded > dirty_parity_disks && 7349 mddev->recovery_cp != MaxSector) { 7350 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7351 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7352 mdname(mddev)); 7353 else if (mddev->ok_start_degraded) 7354 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7355 mdname(mddev)); 7356 else { 7357 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7358 mdname(mddev)); 7359 goto abort; 7360 } 7361 } 7362 7363 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7364 mdname(mddev), conf->level, 7365 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7366 mddev->new_layout); 7367 7368 print_raid5_conf(conf); 7369 7370 if (conf->reshape_progress != MaxSector) { 7371 conf->reshape_safe = conf->reshape_progress; 7372 atomic_set(&conf->reshape_stripes, 0); 7373 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7374 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7375 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7376 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7377 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7378 "reshape"); 7379 } 7380 7381 /* Ok, everything is just fine now */ 7382 if (mddev->to_remove == &raid5_attrs_group) 7383 mddev->to_remove = NULL; 7384 else if (mddev->kobj.sd && 7385 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7386 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7387 mdname(mddev)); 7388 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7389 7390 if (mddev->queue) { 7391 int chunk_size; 7392 /* read-ahead size must cover two whole stripes, which 7393 * is 2 * (datadisks) * chunksize where 'n' is the 7394 * number of raid devices 7395 */ 7396 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7397 int stripe = data_disks * 7398 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7399 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7400 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7401 7402 chunk_size = mddev->chunk_sectors << 9; 7403 blk_queue_io_min(mddev->queue, chunk_size); 7404 blk_queue_io_opt(mddev->queue, chunk_size * 7405 (conf->raid_disks - conf->max_degraded)); 7406 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7407 /* 7408 * We can only discard a whole stripe. It doesn't make sense to 7409 * discard data disk but write parity disk 7410 */ 7411 stripe = stripe * PAGE_SIZE; 7412 /* Round up to power of 2, as discard handling 7413 * currently assumes that */ 7414 while ((stripe-1) & stripe) 7415 stripe = (stripe | (stripe-1)) + 1; 7416 mddev->queue->limits.discard_alignment = stripe; 7417 mddev->queue->limits.discard_granularity = stripe; 7418 7419 blk_queue_max_write_same_sectors(mddev->queue, 0); 7420 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7421 7422 rdev_for_each(rdev, mddev) { 7423 disk_stack_limits(mddev->gendisk, rdev->bdev, 7424 rdev->data_offset << 9); 7425 disk_stack_limits(mddev->gendisk, rdev->bdev, 7426 rdev->new_data_offset << 9); 7427 } 7428 7429 /* 7430 * zeroing is required, otherwise data 7431 * could be lost. Consider a scenario: discard a stripe 7432 * (the stripe could be inconsistent if 7433 * discard_zeroes_data is 0); write one disk of the 7434 * stripe (the stripe could be inconsistent again 7435 * depending on which disks are used to calculate 7436 * parity); the disk is broken; The stripe data of this 7437 * disk is lost. 7438 * 7439 * We only allow DISCARD if the sysadmin has confirmed that 7440 * only safe devices are in use by setting a module parameter. 7441 * A better idea might be to turn DISCARD into WRITE_ZEROES 7442 * requests, as that is required to be safe. 7443 */ 7444 if (devices_handle_discard_safely && 7445 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7446 mddev->queue->limits.discard_granularity >= stripe) 7447 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7448 mddev->queue); 7449 else 7450 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7451 mddev->queue); 7452 7453 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7454 } 7455 7456 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7457 goto abort; 7458 7459 return 0; 7460 abort: 7461 md_unregister_thread(&mddev->thread); 7462 print_raid5_conf(conf); 7463 free_conf(conf); 7464 mddev->private = NULL; 7465 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7466 return -EIO; 7467 } 7468 7469 static void raid5_free(struct mddev *mddev, void *priv) 7470 { 7471 struct r5conf *conf = priv; 7472 7473 free_conf(conf); 7474 mddev->to_remove = &raid5_attrs_group; 7475 } 7476 7477 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7478 { 7479 struct r5conf *conf = mddev->private; 7480 int i; 7481 7482 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7483 conf->chunk_sectors / 2, mddev->layout); 7484 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7485 rcu_read_lock(); 7486 for (i = 0; i < conf->raid_disks; i++) { 7487 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7488 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7489 } 7490 rcu_read_unlock(); 7491 seq_printf (seq, "]"); 7492 } 7493 7494 static void print_raid5_conf (struct r5conf *conf) 7495 { 7496 int i; 7497 struct disk_info *tmp; 7498 7499 pr_debug("RAID conf printout:\n"); 7500 if (!conf) { 7501 pr_debug("(conf==NULL)\n"); 7502 return; 7503 } 7504 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7505 conf->raid_disks, 7506 conf->raid_disks - conf->mddev->degraded); 7507 7508 for (i = 0; i < conf->raid_disks; i++) { 7509 char b[BDEVNAME_SIZE]; 7510 tmp = conf->disks + i; 7511 if (tmp->rdev) 7512 pr_debug(" disk %d, o:%d, dev:%s\n", 7513 i, !test_bit(Faulty, &tmp->rdev->flags), 7514 bdevname(tmp->rdev->bdev, b)); 7515 } 7516 } 7517 7518 static int raid5_spare_active(struct mddev *mddev) 7519 { 7520 int i; 7521 struct r5conf *conf = mddev->private; 7522 struct disk_info *tmp; 7523 int count = 0; 7524 unsigned long flags; 7525 7526 for (i = 0; i < conf->raid_disks; i++) { 7527 tmp = conf->disks + i; 7528 if (tmp->replacement 7529 && tmp->replacement->recovery_offset == MaxSector 7530 && !test_bit(Faulty, &tmp->replacement->flags) 7531 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7532 /* Replacement has just become active. */ 7533 if (!tmp->rdev 7534 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7535 count++; 7536 if (tmp->rdev) { 7537 /* Replaced device not technically faulty, 7538 * but we need to be sure it gets removed 7539 * and never re-added. 7540 */ 7541 set_bit(Faulty, &tmp->rdev->flags); 7542 sysfs_notify_dirent_safe( 7543 tmp->rdev->sysfs_state); 7544 } 7545 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7546 } else if (tmp->rdev 7547 && tmp->rdev->recovery_offset == MaxSector 7548 && !test_bit(Faulty, &tmp->rdev->flags) 7549 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7550 count++; 7551 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7552 } 7553 } 7554 spin_lock_irqsave(&conf->device_lock, flags); 7555 mddev->degraded = raid5_calc_degraded(conf); 7556 spin_unlock_irqrestore(&conf->device_lock, flags); 7557 print_raid5_conf(conf); 7558 return count; 7559 } 7560 7561 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7562 { 7563 struct r5conf *conf = mddev->private; 7564 int err = 0; 7565 int number = rdev->raid_disk; 7566 struct md_rdev **rdevp; 7567 struct disk_info *p = conf->disks + number; 7568 7569 print_raid5_conf(conf); 7570 if (test_bit(Journal, &rdev->flags) && conf->log) { 7571 /* 7572 * we can't wait pending write here, as this is called in 7573 * raid5d, wait will deadlock. 7574 * neilb: there is no locking about new writes here, 7575 * so this cannot be safe. 7576 */ 7577 if (atomic_read(&conf->active_stripes) || 7578 atomic_read(&conf->r5c_cached_full_stripes) || 7579 atomic_read(&conf->r5c_cached_partial_stripes)) { 7580 return -EBUSY; 7581 } 7582 log_exit(conf); 7583 return 0; 7584 } 7585 if (rdev == p->rdev) 7586 rdevp = &p->rdev; 7587 else if (rdev == p->replacement) 7588 rdevp = &p->replacement; 7589 else 7590 return 0; 7591 7592 if (number >= conf->raid_disks && 7593 conf->reshape_progress == MaxSector) 7594 clear_bit(In_sync, &rdev->flags); 7595 7596 if (test_bit(In_sync, &rdev->flags) || 7597 atomic_read(&rdev->nr_pending)) { 7598 err = -EBUSY; 7599 goto abort; 7600 } 7601 /* Only remove non-faulty devices if recovery 7602 * isn't possible. 7603 */ 7604 if (!test_bit(Faulty, &rdev->flags) && 7605 mddev->recovery_disabled != conf->recovery_disabled && 7606 !has_failed(conf) && 7607 (!p->replacement || p->replacement == rdev) && 7608 number < conf->raid_disks) { 7609 err = -EBUSY; 7610 goto abort; 7611 } 7612 *rdevp = NULL; 7613 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7614 synchronize_rcu(); 7615 if (atomic_read(&rdev->nr_pending)) { 7616 /* lost the race, try later */ 7617 err = -EBUSY; 7618 *rdevp = rdev; 7619 } 7620 } 7621 if (!err) { 7622 err = log_modify(conf, rdev, false); 7623 if (err) 7624 goto abort; 7625 } 7626 if (p->replacement) { 7627 /* We must have just cleared 'rdev' */ 7628 p->rdev = p->replacement; 7629 clear_bit(Replacement, &p->replacement->flags); 7630 smp_mb(); /* Make sure other CPUs may see both as identical 7631 * but will never see neither - if they are careful 7632 */ 7633 p->replacement = NULL; 7634 7635 if (!err) 7636 err = log_modify(conf, p->rdev, true); 7637 } 7638 7639 clear_bit(WantReplacement, &rdev->flags); 7640 abort: 7641 7642 print_raid5_conf(conf); 7643 return err; 7644 } 7645 7646 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7647 { 7648 struct r5conf *conf = mddev->private; 7649 int err = -EEXIST; 7650 int disk; 7651 struct disk_info *p; 7652 int first = 0; 7653 int last = conf->raid_disks - 1; 7654 7655 if (test_bit(Journal, &rdev->flags)) { 7656 if (conf->log) 7657 return -EBUSY; 7658 7659 rdev->raid_disk = 0; 7660 /* 7661 * The array is in readonly mode if journal is missing, so no 7662 * write requests running. We should be safe 7663 */ 7664 log_init(conf, rdev, false); 7665 return 0; 7666 } 7667 if (mddev->recovery_disabled == conf->recovery_disabled) 7668 return -EBUSY; 7669 7670 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7671 /* no point adding a device */ 7672 return -EINVAL; 7673 7674 if (rdev->raid_disk >= 0) 7675 first = last = rdev->raid_disk; 7676 7677 /* 7678 * find the disk ... but prefer rdev->saved_raid_disk 7679 * if possible. 7680 */ 7681 if (rdev->saved_raid_disk >= 0 && 7682 rdev->saved_raid_disk >= first && 7683 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7684 first = rdev->saved_raid_disk; 7685 7686 for (disk = first; disk <= last; disk++) { 7687 p = conf->disks + disk; 7688 if (p->rdev == NULL) { 7689 clear_bit(In_sync, &rdev->flags); 7690 rdev->raid_disk = disk; 7691 if (rdev->saved_raid_disk != disk) 7692 conf->fullsync = 1; 7693 rcu_assign_pointer(p->rdev, rdev); 7694 7695 err = log_modify(conf, rdev, true); 7696 7697 goto out; 7698 } 7699 } 7700 for (disk = first; disk <= last; disk++) { 7701 p = conf->disks + disk; 7702 if (test_bit(WantReplacement, &p->rdev->flags) && 7703 p->replacement == NULL) { 7704 clear_bit(In_sync, &rdev->flags); 7705 set_bit(Replacement, &rdev->flags); 7706 rdev->raid_disk = disk; 7707 err = 0; 7708 conf->fullsync = 1; 7709 rcu_assign_pointer(p->replacement, rdev); 7710 break; 7711 } 7712 } 7713 out: 7714 print_raid5_conf(conf); 7715 return err; 7716 } 7717 7718 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7719 { 7720 /* no resync is happening, and there is enough space 7721 * on all devices, so we can resize. 7722 * We need to make sure resync covers any new space. 7723 * If the array is shrinking we should possibly wait until 7724 * any io in the removed space completes, but it hardly seems 7725 * worth it. 7726 */ 7727 sector_t newsize; 7728 struct r5conf *conf = mddev->private; 7729 7730 if (conf->log || raid5_has_ppl(conf)) 7731 return -EINVAL; 7732 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7733 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7734 if (mddev->external_size && 7735 mddev->array_sectors > newsize) 7736 return -EINVAL; 7737 if (mddev->bitmap) { 7738 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7739 if (ret) 7740 return ret; 7741 } 7742 md_set_array_sectors(mddev, newsize); 7743 if (sectors > mddev->dev_sectors && 7744 mddev->recovery_cp > mddev->dev_sectors) { 7745 mddev->recovery_cp = mddev->dev_sectors; 7746 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7747 } 7748 mddev->dev_sectors = sectors; 7749 mddev->resync_max_sectors = sectors; 7750 return 0; 7751 } 7752 7753 static int check_stripe_cache(struct mddev *mddev) 7754 { 7755 /* Can only proceed if there are plenty of stripe_heads. 7756 * We need a minimum of one full stripe,, and for sensible progress 7757 * it is best to have about 4 times that. 7758 * If we require 4 times, then the default 256 4K stripe_heads will 7759 * allow for chunk sizes up to 256K, which is probably OK. 7760 * If the chunk size is greater, user-space should request more 7761 * stripe_heads first. 7762 */ 7763 struct r5conf *conf = mddev->private; 7764 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7765 > conf->min_nr_stripes || 7766 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7767 > conf->min_nr_stripes) { 7768 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7769 mdname(mddev), 7770 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7771 / STRIPE_SIZE)*4); 7772 return 0; 7773 } 7774 return 1; 7775 } 7776 7777 static int check_reshape(struct mddev *mddev) 7778 { 7779 struct r5conf *conf = mddev->private; 7780 7781 if (conf->log || raid5_has_ppl(conf)) 7782 return -EINVAL; 7783 if (mddev->delta_disks == 0 && 7784 mddev->new_layout == mddev->layout && 7785 mddev->new_chunk_sectors == mddev->chunk_sectors) 7786 return 0; /* nothing to do */ 7787 if (has_failed(conf)) 7788 return -EINVAL; 7789 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7790 /* We might be able to shrink, but the devices must 7791 * be made bigger first. 7792 * For raid6, 4 is the minimum size. 7793 * Otherwise 2 is the minimum 7794 */ 7795 int min = 2; 7796 if (mddev->level == 6) 7797 min = 4; 7798 if (mddev->raid_disks + mddev->delta_disks < min) 7799 return -EINVAL; 7800 } 7801 7802 if (!check_stripe_cache(mddev)) 7803 return -ENOSPC; 7804 7805 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7806 mddev->delta_disks > 0) 7807 if (resize_chunks(conf, 7808 conf->previous_raid_disks 7809 + max(0, mddev->delta_disks), 7810 max(mddev->new_chunk_sectors, 7811 mddev->chunk_sectors) 7812 ) < 0) 7813 return -ENOMEM; 7814 7815 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 7816 return 0; /* never bother to shrink */ 7817 return resize_stripes(conf, (conf->previous_raid_disks 7818 + mddev->delta_disks)); 7819 } 7820 7821 static int raid5_start_reshape(struct mddev *mddev) 7822 { 7823 struct r5conf *conf = mddev->private; 7824 struct md_rdev *rdev; 7825 int spares = 0; 7826 unsigned long flags; 7827 7828 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7829 return -EBUSY; 7830 7831 if (!check_stripe_cache(mddev)) 7832 return -ENOSPC; 7833 7834 if (has_failed(conf)) 7835 return -EINVAL; 7836 7837 rdev_for_each(rdev, mddev) { 7838 if (!test_bit(In_sync, &rdev->flags) 7839 && !test_bit(Faulty, &rdev->flags)) 7840 spares++; 7841 } 7842 7843 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7844 /* Not enough devices even to make a degraded array 7845 * of that size 7846 */ 7847 return -EINVAL; 7848 7849 /* Refuse to reduce size of the array. Any reductions in 7850 * array size must be through explicit setting of array_size 7851 * attribute. 7852 */ 7853 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7854 < mddev->array_sectors) { 7855 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 7856 mdname(mddev)); 7857 return -EINVAL; 7858 } 7859 7860 atomic_set(&conf->reshape_stripes, 0); 7861 spin_lock_irq(&conf->device_lock); 7862 write_seqcount_begin(&conf->gen_lock); 7863 conf->previous_raid_disks = conf->raid_disks; 7864 conf->raid_disks += mddev->delta_disks; 7865 conf->prev_chunk_sectors = conf->chunk_sectors; 7866 conf->chunk_sectors = mddev->new_chunk_sectors; 7867 conf->prev_algo = conf->algorithm; 7868 conf->algorithm = mddev->new_layout; 7869 conf->generation++; 7870 /* Code that selects data_offset needs to see the generation update 7871 * if reshape_progress has been set - so a memory barrier needed. 7872 */ 7873 smp_mb(); 7874 if (mddev->reshape_backwards) 7875 conf->reshape_progress = raid5_size(mddev, 0, 0); 7876 else 7877 conf->reshape_progress = 0; 7878 conf->reshape_safe = conf->reshape_progress; 7879 write_seqcount_end(&conf->gen_lock); 7880 spin_unlock_irq(&conf->device_lock); 7881 7882 /* Now make sure any requests that proceeded on the assumption 7883 * the reshape wasn't running - like Discard or Read - have 7884 * completed. 7885 */ 7886 mddev_suspend(mddev); 7887 mddev_resume(mddev); 7888 7889 /* Add some new drives, as many as will fit. 7890 * We know there are enough to make the newly sized array work. 7891 * Don't add devices if we are reducing the number of 7892 * devices in the array. This is because it is not possible 7893 * to correctly record the "partially reconstructed" state of 7894 * such devices during the reshape and confusion could result. 7895 */ 7896 if (mddev->delta_disks >= 0) { 7897 rdev_for_each(rdev, mddev) 7898 if (rdev->raid_disk < 0 && 7899 !test_bit(Faulty, &rdev->flags)) { 7900 if (raid5_add_disk(mddev, rdev) == 0) { 7901 if (rdev->raid_disk 7902 >= conf->previous_raid_disks) 7903 set_bit(In_sync, &rdev->flags); 7904 else 7905 rdev->recovery_offset = 0; 7906 7907 if (sysfs_link_rdev(mddev, rdev)) 7908 /* Failure here is OK */; 7909 } 7910 } else if (rdev->raid_disk >= conf->previous_raid_disks 7911 && !test_bit(Faulty, &rdev->flags)) { 7912 /* This is a spare that was manually added */ 7913 set_bit(In_sync, &rdev->flags); 7914 } 7915 7916 /* When a reshape changes the number of devices, 7917 * ->degraded is measured against the larger of the 7918 * pre and post number of devices. 7919 */ 7920 spin_lock_irqsave(&conf->device_lock, flags); 7921 mddev->degraded = raid5_calc_degraded(conf); 7922 spin_unlock_irqrestore(&conf->device_lock, flags); 7923 } 7924 mddev->raid_disks = conf->raid_disks; 7925 mddev->reshape_position = conf->reshape_progress; 7926 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7927 7928 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7929 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7930 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7931 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7932 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7933 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7934 "reshape"); 7935 if (!mddev->sync_thread) { 7936 mddev->recovery = 0; 7937 spin_lock_irq(&conf->device_lock); 7938 write_seqcount_begin(&conf->gen_lock); 7939 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7940 mddev->new_chunk_sectors = 7941 conf->chunk_sectors = conf->prev_chunk_sectors; 7942 mddev->new_layout = conf->algorithm = conf->prev_algo; 7943 rdev_for_each(rdev, mddev) 7944 rdev->new_data_offset = rdev->data_offset; 7945 smp_wmb(); 7946 conf->generation --; 7947 conf->reshape_progress = MaxSector; 7948 mddev->reshape_position = MaxSector; 7949 write_seqcount_end(&conf->gen_lock); 7950 spin_unlock_irq(&conf->device_lock); 7951 return -EAGAIN; 7952 } 7953 conf->reshape_checkpoint = jiffies; 7954 md_wakeup_thread(mddev->sync_thread); 7955 md_new_event(mddev); 7956 return 0; 7957 } 7958 7959 /* This is called from the reshape thread and should make any 7960 * changes needed in 'conf' 7961 */ 7962 static void end_reshape(struct r5conf *conf) 7963 { 7964 7965 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7966 struct md_rdev *rdev; 7967 7968 spin_lock_irq(&conf->device_lock); 7969 conf->previous_raid_disks = conf->raid_disks; 7970 md_finish_reshape(conf->mddev); 7971 smp_wmb(); 7972 conf->reshape_progress = MaxSector; 7973 conf->mddev->reshape_position = MaxSector; 7974 rdev_for_each(rdev, conf->mddev) 7975 if (rdev->raid_disk >= 0 && 7976 !test_bit(Journal, &rdev->flags) && 7977 !test_bit(In_sync, &rdev->flags)) 7978 rdev->recovery_offset = MaxSector; 7979 spin_unlock_irq(&conf->device_lock); 7980 wake_up(&conf->wait_for_overlap); 7981 7982 /* read-ahead size must cover two whole stripes, which is 7983 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7984 */ 7985 if (conf->mddev->queue) { 7986 int data_disks = conf->raid_disks - conf->max_degraded; 7987 int stripe = data_disks * ((conf->chunk_sectors << 9) 7988 / PAGE_SIZE); 7989 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7990 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7991 } 7992 } 7993 } 7994 7995 /* This is called from the raid5d thread with mddev_lock held. 7996 * It makes config changes to the device. 7997 */ 7998 static void raid5_finish_reshape(struct mddev *mddev) 7999 { 8000 struct r5conf *conf = mddev->private; 8001 8002 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8003 8004 if (mddev->delta_disks > 0) { 8005 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8006 if (mddev->queue) { 8007 set_capacity(mddev->gendisk, mddev->array_sectors); 8008 revalidate_disk(mddev->gendisk); 8009 } 8010 } else { 8011 int d; 8012 spin_lock_irq(&conf->device_lock); 8013 mddev->degraded = raid5_calc_degraded(conf); 8014 spin_unlock_irq(&conf->device_lock); 8015 for (d = conf->raid_disks ; 8016 d < conf->raid_disks - mddev->delta_disks; 8017 d++) { 8018 struct md_rdev *rdev = conf->disks[d].rdev; 8019 if (rdev) 8020 clear_bit(In_sync, &rdev->flags); 8021 rdev = conf->disks[d].replacement; 8022 if (rdev) 8023 clear_bit(In_sync, &rdev->flags); 8024 } 8025 } 8026 mddev->layout = conf->algorithm; 8027 mddev->chunk_sectors = conf->chunk_sectors; 8028 mddev->reshape_position = MaxSector; 8029 mddev->delta_disks = 0; 8030 mddev->reshape_backwards = 0; 8031 } 8032 } 8033 8034 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8035 { 8036 struct r5conf *conf = mddev->private; 8037 8038 if (quiesce) { 8039 /* stop all writes */ 8040 lock_all_device_hash_locks_irq(conf); 8041 /* '2' tells resync/reshape to pause so that all 8042 * active stripes can drain 8043 */ 8044 r5c_flush_cache(conf, INT_MAX); 8045 conf->quiesce = 2; 8046 wait_event_cmd(conf->wait_for_quiescent, 8047 atomic_read(&conf->active_stripes) == 0 && 8048 atomic_read(&conf->active_aligned_reads) == 0, 8049 unlock_all_device_hash_locks_irq(conf), 8050 lock_all_device_hash_locks_irq(conf)); 8051 conf->quiesce = 1; 8052 unlock_all_device_hash_locks_irq(conf); 8053 /* allow reshape to continue */ 8054 wake_up(&conf->wait_for_overlap); 8055 } else { 8056 /* re-enable writes */ 8057 lock_all_device_hash_locks_irq(conf); 8058 conf->quiesce = 0; 8059 wake_up(&conf->wait_for_quiescent); 8060 wake_up(&conf->wait_for_overlap); 8061 unlock_all_device_hash_locks_irq(conf); 8062 } 8063 log_quiesce(conf, quiesce); 8064 } 8065 8066 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8067 { 8068 struct r0conf *raid0_conf = mddev->private; 8069 sector_t sectors; 8070 8071 /* for raid0 takeover only one zone is supported */ 8072 if (raid0_conf->nr_strip_zones > 1) { 8073 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8074 mdname(mddev)); 8075 return ERR_PTR(-EINVAL); 8076 } 8077 8078 sectors = raid0_conf->strip_zone[0].zone_end; 8079 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8080 mddev->dev_sectors = sectors; 8081 mddev->new_level = level; 8082 mddev->new_layout = ALGORITHM_PARITY_N; 8083 mddev->new_chunk_sectors = mddev->chunk_sectors; 8084 mddev->raid_disks += 1; 8085 mddev->delta_disks = 1; 8086 /* make sure it will be not marked as dirty */ 8087 mddev->recovery_cp = MaxSector; 8088 8089 return setup_conf(mddev); 8090 } 8091 8092 static void *raid5_takeover_raid1(struct mddev *mddev) 8093 { 8094 int chunksect; 8095 void *ret; 8096 8097 if (mddev->raid_disks != 2 || 8098 mddev->degraded > 1) 8099 return ERR_PTR(-EINVAL); 8100 8101 /* Should check if there are write-behind devices? */ 8102 8103 chunksect = 64*2; /* 64K by default */ 8104 8105 /* The array must be an exact multiple of chunksize */ 8106 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8107 chunksect >>= 1; 8108 8109 if ((chunksect<<9) < STRIPE_SIZE) 8110 /* array size does not allow a suitable chunk size */ 8111 return ERR_PTR(-EINVAL); 8112 8113 mddev->new_level = 5; 8114 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8115 mddev->new_chunk_sectors = chunksect; 8116 8117 ret = setup_conf(mddev); 8118 if (!IS_ERR(ret)) 8119 mddev_clear_unsupported_flags(mddev, 8120 UNSUPPORTED_MDDEV_FLAGS); 8121 return ret; 8122 } 8123 8124 static void *raid5_takeover_raid6(struct mddev *mddev) 8125 { 8126 int new_layout; 8127 8128 switch (mddev->layout) { 8129 case ALGORITHM_LEFT_ASYMMETRIC_6: 8130 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8131 break; 8132 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8133 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8134 break; 8135 case ALGORITHM_LEFT_SYMMETRIC_6: 8136 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8137 break; 8138 case ALGORITHM_RIGHT_SYMMETRIC_6: 8139 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8140 break; 8141 case ALGORITHM_PARITY_0_6: 8142 new_layout = ALGORITHM_PARITY_0; 8143 break; 8144 case ALGORITHM_PARITY_N: 8145 new_layout = ALGORITHM_PARITY_N; 8146 break; 8147 default: 8148 return ERR_PTR(-EINVAL); 8149 } 8150 mddev->new_level = 5; 8151 mddev->new_layout = new_layout; 8152 mddev->delta_disks = -1; 8153 mddev->raid_disks -= 1; 8154 return setup_conf(mddev); 8155 } 8156 8157 static int raid5_check_reshape(struct mddev *mddev) 8158 { 8159 /* For a 2-drive array, the layout and chunk size can be changed 8160 * immediately as not restriping is needed. 8161 * For larger arrays we record the new value - after validation 8162 * to be used by a reshape pass. 8163 */ 8164 struct r5conf *conf = mddev->private; 8165 int new_chunk = mddev->new_chunk_sectors; 8166 8167 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8168 return -EINVAL; 8169 if (new_chunk > 0) { 8170 if (!is_power_of_2(new_chunk)) 8171 return -EINVAL; 8172 if (new_chunk < (PAGE_SIZE>>9)) 8173 return -EINVAL; 8174 if (mddev->array_sectors & (new_chunk-1)) 8175 /* not factor of array size */ 8176 return -EINVAL; 8177 } 8178 8179 /* They look valid */ 8180 8181 if (mddev->raid_disks == 2) { 8182 /* can make the change immediately */ 8183 if (mddev->new_layout >= 0) { 8184 conf->algorithm = mddev->new_layout; 8185 mddev->layout = mddev->new_layout; 8186 } 8187 if (new_chunk > 0) { 8188 conf->chunk_sectors = new_chunk ; 8189 mddev->chunk_sectors = new_chunk; 8190 } 8191 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8192 md_wakeup_thread(mddev->thread); 8193 } 8194 return check_reshape(mddev); 8195 } 8196 8197 static int raid6_check_reshape(struct mddev *mddev) 8198 { 8199 int new_chunk = mddev->new_chunk_sectors; 8200 8201 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8202 return -EINVAL; 8203 if (new_chunk > 0) { 8204 if (!is_power_of_2(new_chunk)) 8205 return -EINVAL; 8206 if (new_chunk < (PAGE_SIZE >> 9)) 8207 return -EINVAL; 8208 if (mddev->array_sectors & (new_chunk-1)) 8209 /* not factor of array size */ 8210 return -EINVAL; 8211 } 8212 8213 /* They look valid */ 8214 return check_reshape(mddev); 8215 } 8216 8217 static void *raid5_takeover(struct mddev *mddev) 8218 { 8219 /* raid5 can take over: 8220 * raid0 - if there is only one strip zone - make it a raid4 layout 8221 * raid1 - if there are two drives. We need to know the chunk size 8222 * raid4 - trivial - just use a raid4 layout. 8223 * raid6 - Providing it is a *_6 layout 8224 */ 8225 if (mddev->level == 0) 8226 return raid45_takeover_raid0(mddev, 5); 8227 if (mddev->level == 1) 8228 return raid5_takeover_raid1(mddev); 8229 if (mddev->level == 4) { 8230 mddev->new_layout = ALGORITHM_PARITY_N; 8231 mddev->new_level = 5; 8232 return setup_conf(mddev); 8233 } 8234 if (mddev->level == 6) 8235 return raid5_takeover_raid6(mddev); 8236 8237 return ERR_PTR(-EINVAL); 8238 } 8239 8240 static void *raid4_takeover(struct mddev *mddev) 8241 { 8242 /* raid4 can take over: 8243 * raid0 - if there is only one strip zone 8244 * raid5 - if layout is right 8245 */ 8246 if (mddev->level == 0) 8247 return raid45_takeover_raid0(mddev, 4); 8248 if (mddev->level == 5 && 8249 mddev->layout == ALGORITHM_PARITY_N) { 8250 mddev->new_layout = 0; 8251 mddev->new_level = 4; 8252 return setup_conf(mddev); 8253 } 8254 return ERR_PTR(-EINVAL); 8255 } 8256 8257 static struct md_personality raid5_personality; 8258 8259 static void *raid6_takeover(struct mddev *mddev) 8260 { 8261 /* Currently can only take over a raid5. We map the 8262 * personality to an equivalent raid6 personality 8263 * with the Q block at the end. 8264 */ 8265 int new_layout; 8266 8267 if (mddev->pers != &raid5_personality) 8268 return ERR_PTR(-EINVAL); 8269 if (mddev->degraded > 1) 8270 return ERR_PTR(-EINVAL); 8271 if (mddev->raid_disks > 253) 8272 return ERR_PTR(-EINVAL); 8273 if (mddev->raid_disks < 3) 8274 return ERR_PTR(-EINVAL); 8275 8276 switch (mddev->layout) { 8277 case ALGORITHM_LEFT_ASYMMETRIC: 8278 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8279 break; 8280 case ALGORITHM_RIGHT_ASYMMETRIC: 8281 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8282 break; 8283 case ALGORITHM_LEFT_SYMMETRIC: 8284 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8285 break; 8286 case ALGORITHM_RIGHT_SYMMETRIC: 8287 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8288 break; 8289 case ALGORITHM_PARITY_0: 8290 new_layout = ALGORITHM_PARITY_0_6; 8291 break; 8292 case ALGORITHM_PARITY_N: 8293 new_layout = ALGORITHM_PARITY_N; 8294 break; 8295 default: 8296 return ERR_PTR(-EINVAL); 8297 } 8298 mddev->new_level = 6; 8299 mddev->new_layout = new_layout; 8300 mddev->delta_disks = 1; 8301 mddev->raid_disks += 1; 8302 return setup_conf(mddev); 8303 } 8304 8305 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8306 { 8307 struct r5conf *conf; 8308 int err; 8309 8310 err = mddev_lock(mddev); 8311 if (err) 8312 return err; 8313 conf = mddev->private; 8314 if (!conf) { 8315 mddev_unlock(mddev); 8316 return -ENODEV; 8317 } 8318 8319 if (strncmp(buf, "ppl", 3) == 0) { 8320 /* ppl only works with RAID 5 */ 8321 if (!raid5_has_ppl(conf) && conf->level == 5) { 8322 err = log_init(conf, NULL, true); 8323 if (!err) { 8324 err = resize_stripes(conf, conf->pool_size); 8325 if (err) 8326 log_exit(conf); 8327 } 8328 } else 8329 err = -EINVAL; 8330 } else if (strncmp(buf, "resync", 6) == 0) { 8331 if (raid5_has_ppl(conf)) { 8332 mddev_suspend(mddev); 8333 log_exit(conf); 8334 mddev_resume(mddev); 8335 err = resize_stripes(conf, conf->pool_size); 8336 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8337 r5l_log_disk_error(conf)) { 8338 bool journal_dev_exists = false; 8339 struct md_rdev *rdev; 8340 8341 rdev_for_each(rdev, mddev) 8342 if (test_bit(Journal, &rdev->flags)) { 8343 journal_dev_exists = true; 8344 break; 8345 } 8346 8347 if (!journal_dev_exists) { 8348 mddev_suspend(mddev); 8349 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8350 mddev_resume(mddev); 8351 } else /* need remove journal device first */ 8352 err = -EBUSY; 8353 } else 8354 err = -EINVAL; 8355 } else { 8356 err = -EINVAL; 8357 } 8358 8359 if (!err) 8360 md_update_sb(mddev, 1); 8361 8362 mddev_unlock(mddev); 8363 8364 return err; 8365 } 8366 8367 static int raid5_start(struct mddev *mddev) 8368 { 8369 struct r5conf *conf = mddev->private; 8370 8371 return r5l_start(conf->log); 8372 } 8373 8374 static struct md_personality raid6_personality = 8375 { 8376 .name = "raid6", 8377 .level = 6, 8378 .owner = THIS_MODULE, 8379 .make_request = raid5_make_request, 8380 .run = raid5_run, 8381 .start = raid5_start, 8382 .free = raid5_free, 8383 .status = raid5_status, 8384 .error_handler = raid5_error, 8385 .hot_add_disk = raid5_add_disk, 8386 .hot_remove_disk= raid5_remove_disk, 8387 .spare_active = raid5_spare_active, 8388 .sync_request = raid5_sync_request, 8389 .resize = raid5_resize, 8390 .size = raid5_size, 8391 .check_reshape = raid6_check_reshape, 8392 .start_reshape = raid5_start_reshape, 8393 .finish_reshape = raid5_finish_reshape, 8394 .quiesce = raid5_quiesce, 8395 .takeover = raid6_takeover, 8396 .congested = raid5_congested, 8397 .change_consistency_policy = raid5_change_consistency_policy, 8398 }; 8399 static struct md_personality raid5_personality = 8400 { 8401 .name = "raid5", 8402 .level = 5, 8403 .owner = THIS_MODULE, 8404 .make_request = raid5_make_request, 8405 .run = raid5_run, 8406 .start = raid5_start, 8407 .free = raid5_free, 8408 .status = raid5_status, 8409 .error_handler = raid5_error, 8410 .hot_add_disk = raid5_add_disk, 8411 .hot_remove_disk= raid5_remove_disk, 8412 .spare_active = raid5_spare_active, 8413 .sync_request = raid5_sync_request, 8414 .resize = raid5_resize, 8415 .size = raid5_size, 8416 .check_reshape = raid5_check_reshape, 8417 .start_reshape = raid5_start_reshape, 8418 .finish_reshape = raid5_finish_reshape, 8419 .quiesce = raid5_quiesce, 8420 .takeover = raid5_takeover, 8421 .congested = raid5_congested, 8422 .change_consistency_policy = raid5_change_consistency_policy, 8423 }; 8424 8425 static struct md_personality raid4_personality = 8426 { 8427 .name = "raid4", 8428 .level = 4, 8429 .owner = THIS_MODULE, 8430 .make_request = raid5_make_request, 8431 .run = raid5_run, 8432 .start = raid5_start, 8433 .free = raid5_free, 8434 .status = raid5_status, 8435 .error_handler = raid5_error, 8436 .hot_add_disk = raid5_add_disk, 8437 .hot_remove_disk= raid5_remove_disk, 8438 .spare_active = raid5_spare_active, 8439 .sync_request = raid5_sync_request, 8440 .resize = raid5_resize, 8441 .size = raid5_size, 8442 .check_reshape = raid5_check_reshape, 8443 .start_reshape = raid5_start_reshape, 8444 .finish_reshape = raid5_finish_reshape, 8445 .quiesce = raid5_quiesce, 8446 .takeover = raid4_takeover, 8447 .congested = raid5_congested, 8448 .change_consistency_policy = raid5_change_consistency_policy, 8449 }; 8450 8451 static int __init raid5_init(void) 8452 { 8453 int ret; 8454 8455 raid5_wq = alloc_workqueue("raid5wq", 8456 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8457 if (!raid5_wq) 8458 return -ENOMEM; 8459 8460 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8461 "md/raid5:prepare", 8462 raid456_cpu_up_prepare, 8463 raid456_cpu_dead); 8464 if (ret) { 8465 destroy_workqueue(raid5_wq); 8466 return ret; 8467 } 8468 register_md_personality(&raid6_personality); 8469 register_md_personality(&raid5_personality); 8470 register_md_personality(&raid4_personality); 8471 return 0; 8472 } 8473 8474 static void raid5_exit(void) 8475 { 8476 unregister_md_personality(&raid6_personality); 8477 unregister_md_personality(&raid5_personality); 8478 unregister_md_personality(&raid4_personality); 8479 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8480 destroy_workqueue(raid5_wq); 8481 } 8482 8483 module_init(raid5_init); 8484 module_exit(raid5_exit); 8485 MODULE_LICENSE("GPL"); 8486 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8487 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8488 MODULE_ALIAS("md-raid5"); 8489 MODULE_ALIAS("md-raid4"); 8490 MODULE_ALIAS("md-level-5"); 8491 MODULE_ALIAS("md-level-4"); 8492 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8493 MODULE_ALIAS("md-raid6"); 8494 MODULE_ALIAS("md-level-6"); 8495 8496 /* This used to be two separate modules, they were: */ 8497 MODULE_ALIAS("raid5"); 8498 MODULE_ALIAS("raid6"); 8499