xref: /openbmc/linux/drivers/md/raid5.c (revision 8b235f2f)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio_list *return_bi)
227 {
228 	struct bio *bi;
229 	while ((bi = bio_list_pop(return_bi)) != NULL) {
230 		bi->bi_iter.bi_size = 0;
231 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 					 bi, 0);
233 		bio_endio(bi);
234 	}
235 }
236 
237 static void print_raid5_conf (struct r5conf *conf);
238 
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 	return sh->check_state || sh->reconstruct_state ||
242 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245 
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 	struct r5conf *conf = sh->raid_conf;
249 	struct r5worker_group *group;
250 	int thread_cnt;
251 	int i, cpu = sh->cpu;
252 
253 	if (!cpu_online(cpu)) {
254 		cpu = cpumask_any(cpu_online_mask);
255 		sh->cpu = cpu;
256 	}
257 
258 	if (list_empty(&sh->lru)) {
259 		struct r5worker_group *group;
260 		group = conf->worker_groups + cpu_to_group(cpu);
261 		list_add_tail(&sh->lru, &group->handle_list);
262 		group->stripes_cnt++;
263 		sh->group = group;
264 	}
265 
266 	if (conf->worker_cnt_per_group == 0) {
267 		md_wakeup_thread(conf->mddev->thread);
268 		return;
269 	}
270 
271 	group = conf->worker_groups + cpu_to_group(sh->cpu);
272 
273 	group->workers[0].working = true;
274 	/* at least one worker should run to avoid race */
275 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276 
277 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 	/* wakeup more workers */
279 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 		if (group->workers[i].working == false) {
281 			group->workers[i].working = true;
282 			queue_work_on(sh->cpu, raid5_wq,
283 				      &group->workers[i].work);
284 			thread_cnt--;
285 		}
286 	}
287 }
288 
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 			      struct list_head *temp_inactive_list)
291 {
292 	BUG_ON(!list_empty(&sh->lru));
293 	BUG_ON(atomic_read(&conf->active_stripes)==0);
294 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 			list_add_tail(&sh->lru, &conf->delayed_list);
298 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 			   sh->bm_seq - conf->seq_write > 0)
300 			list_add_tail(&sh->lru, &conf->bitmap_list);
301 		else {
302 			clear_bit(STRIPE_DELAYED, &sh->state);
303 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 			if (conf->worker_cnt_per_group == 0) {
305 				list_add_tail(&sh->lru, &conf->handle_list);
306 			} else {
307 				raid5_wakeup_stripe_thread(sh);
308 				return;
309 			}
310 		}
311 		md_wakeup_thread(conf->mddev->thread);
312 	} else {
313 		BUG_ON(stripe_operations_active(sh));
314 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 			if (atomic_dec_return(&conf->preread_active_stripes)
316 			    < IO_THRESHOLD)
317 				md_wakeup_thread(conf->mddev->thread);
318 		atomic_dec(&conf->active_stripes);
319 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 			list_add_tail(&sh->lru, temp_inactive_list);
321 	}
322 }
323 
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 			     struct list_head *temp_inactive_list)
326 {
327 	if (atomic_dec_and_test(&sh->count))
328 		do_release_stripe(conf, sh, temp_inactive_list);
329 }
330 
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 					 struct list_head *temp_inactive_list,
340 					 int hash)
341 {
342 	int size;
343 	unsigned long do_wakeup = 0;
344 	int i = 0;
345 	unsigned long flags;
346 
347 	if (hash == NR_STRIPE_HASH_LOCKS) {
348 		size = NR_STRIPE_HASH_LOCKS;
349 		hash = NR_STRIPE_HASH_LOCKS - 1;
350 	} else
351 		size = 1;
352 	while (size) {
353 		struct list_head *list = &temp_inactive_list[size - 1];
354 
355 		/*
356 		 * We don't hold any lock here yet, get_active_stripe() might
357 		 * remove stripes from the list
358 		 */
359 		if (!list_empty_careful(list)) {
360 			spin_lock_irqsave(conf->hash_locks + hash, flags);
361 			if (list_empty(conf->inactive_list + hash) &&
362 			    !list_empty(list))
363 				atomic_dec(&conf->empty_inactive_list_nr);
364 			list_splice_tail_init(list, conf->inactive_list + hash);
365 			do_wakeup |= 1 << hash;
366 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 		}
368 		size--;
369 		hash--;
370 	}
371 
372 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 		if (do_wakeup & (1 << i))
374 			wake_up(&conf->wait_for_stripe[i]);
375 	}
376 
377 	if (do_wakeup) {
378 		if (atomic_read(&conf->active_stripes) == 0)
379 			wake_up(&conf->wait_for_quiescent);
380 		if (conf->retry_read_aligned)
381 			md_wakeup_thread(conf->mddev->thread);
382 	}
383 }
384 
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387 			       struct list_head *temp_inactive_list)
388 {
389 	struct stripe_head *sh;
390 	int count = 0;
391 	struct llist_node *head;
392 
393 	head = llist_del_all(&conf->released_stripes);
394 	head = llist_reverse_order(head);
395 	while (head) {
396 		int hash;
397 
398 		sh = llist_entry(head, struct stripe_head, release_list);
399 		head = llist_next(head);
400 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 		smp_mb();
402 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 		/*
404 		 * Don't worry the bit is set here, because if the bit is set
405 		 * again, the count is always > 1. This is true for
406 		 * STRIPE_ON_UNPLUG_LIST bit too.
407 		 */
408 		hash = sh->hash_lock_index;
409 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
410 		count++;
411 	}
412 
413 	return count;
414 }
415 
416 static void release_stripe(struct stripe_head *sh)
417 {
418 	struct r5conf *conf = sh->raid_conf;
419 	unsigned long flags;
420 	struct list_head list;
421 	int hash;
422 	bool wakeup;
423 
424 	/* Avoid release_list until the last reference.
425 	 */
426 	if (atomic_add_unless(&sh->count, -1, 1))
427 		return;
428 
429 	if (unlikely(!conf->mddev->thread) ||
430 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431 		goto slow_path;
432 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 	if (wakeup)
434 		md_wakeup_thread(conf->mddev->thread);
435 	return;
436 slow_path:
437 	local_irq_save(flags);
438 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440 		INIT_LIST_HEAD(&list);
441 		hash = sh->hash_lock_index;
442 		do_release_stripe(conf, sh, &list);
443 		spin_unlock(&conf->device_lock);
444 		release_inactive_stripe_list(conf, &list, hash);
445 	}
446 	local_irq_restore(flags);
447 }
448 
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451 	pr_debug("remove_hash(), stripe %llu\n",
452 		(unsigned long long)sh->sector);
453 
454 	hlist_del_init(&sh->hash);
455 }
456 
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
460 
461 	pr_debug("insert_hash(), stripe %llu\n",
462 		(unsigned long long)sh->sector);
463 
464 	hlist_add_head(&sh->hash, hp);
465 }
466 
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470 	struct stripe_head *sh = NULL;
471 	struct list_head *first;
472 
473 	if (list_empty(conf->inactive_list + hash))
474 		goto out;
475 	first = (conf->inactive_list + hash)->next;
476 	sh = list_entry(first, struct stripe_head, lru);
477 	list_del_init(first);
478 	remove_hash(sh);
479 	atomic_inc(&conf->active_stripes);
480 	BUG_ON(hash != sh->hash_lock_index);
481 	if (list_empty(conf->inactive_list + hash))
482 		atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484 	return sh;
485 }
486 
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489 	struct page *p;
490 	int i;
491 	int num = sh->raid_conf->pool_size;
492 
493 	for (i = 0; i < num ; i++) {
494 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495 		p = sh->dev[i].page;
496 		if (!p)
497 			continue;
498 		sh->dev[i].page = NULL;
499 		put_page(p);
500 	}
501 }
502 
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505 	int i;
506 	int num = sh->raid_conf->pool_size;
507 
508 	for (i = 0; i < num; i++) {
509 		struct page *page;
510 
511 		if (!(page = alloc_page(gfp))) {
512 			return 1;
513 		}
514 		sh->dev[i].page = page;
515 		sh->dev[i].orig_page = page;
516 	}
517 	return 0;
518 }
519 
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522 			    struct stripe_head *sh);
523 
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526 	struct r5conf *conf = sh->raid_conf;
527 	int i, seq;
528 
529 	BUG_ON(atomic_read(&sh->count) != 0);
530 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531 	BUG_ON(stripe_operations_active(sh));
532 	BUG_ON(sh->batch_head);
533 
534 	pr_debug("init_stripe called, stripe %llu\n",
535 		(unsigned long long)sector);
536 retry:
537 	seq = read_seqcount_begin(&conf->gen_lock);
538 	sh->generation = conf->generation - previous;
539 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540 	sh->sector = sector;
541 	stripe_set_idx(sector, conf, previous, sh);
542 	sh->state = 0;
543 
544 	for (i = sh->disks; i--; ) {
545 		struct r5dev *dev = &sh->dev[i];
546 
547 		if (dev->toread || dev->read || dev->towrite || dev->written ||
548 		    test_bit(R5_LOCKED, &dev->flags)) {
549 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550 			       (unsigned long long)sh->sector, i, dev->toread,
551 			       dev->read, dev->towrite, dev->written,
552 			       test_bit(R5_LOCKED, &dev->flags));
553 			WARN_ON(1);
554 		}
555 		dev->flags = 0;
556 		raid5_build_block(sh, i, previous);
557 	}
558 	if (read_seqcount_retry(&conf->gen_lock, seq))
559 		goto retry;
560 	sh->overwrite_disks = 0;
561 	insert_hash(conf, sh);
562 	sh->cpu = smp_processor_id();
563 	set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565 
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567 					 short generation)
568 {
569 	struct stripe_head *sh;
570 
571 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573 		if (sh->sector == sector && sh->generation == generation)
574 			return sh;
575 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576 	return NULL;
577 }
578 
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594 	int degraded, degraded2;
595 	int i;
596 
597 	rcu_read_lock();
598 	degraded = 0;
599 	for (i = 0; i < conf->previous_raid_disks; i++) {
600 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 		if (rdev && test_bit(Faulty, &rdev->flags))
602 			rdev = rcu_dereference(conf->disks[i].replacement);
603 		if (!rdev || test_bit(Faulty, &rdev->flags))
604 			degraded++;
605 		else if (test_bit(In_sync, &rdev->flags))
606 			;
607 		else
608 			/* not in-sync or faulty.
609 			 * If the reshape increases the number of devices,
610 			 * this is being recovered by the reshape, so
611 			 * this 'previous' section is not in_sync.
612 			 * If the number of devices is being reduced however,
613 			 * the device can only be part of the array if
614 			 * we are reverting a reshape, so this section will
615 			 * be in-sync.
616 			 */
617 			if (conf->raid_disks >= conf->previous_raid_disks)
618 				degraded++;
619 	}
620 	rcu_read_unlock();
621 	if (conf->raid_disks == conf->previous_raid_disks)
622 		return degraded;
623 	rcu_read_lock();
624 	degraded2 = 0;
625 	for (i = 0; i < conf->raid_disks; i++) {
626 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627 		if (rdev && test_bit(Faulty, &rdev->flags))
628 			rdev = rcu_dereference(conf->disks[i].replacement);
629 		if (!rdev || test_bit(Faulty, &rdev->flags))
630 			degraded2++;
631 		else if (test_bit(In_sync, &rdev->flags))
632 			;
633 		else
634 			/* not in-sync or faulty.
635 			 * If reshape increases the number of devices, this
636 			 * section has already been recovered, else it
637 			 * almost certainly hasn't.
638 			 */
639 			if (conf->raid_disks <= conf->previous_raid_disks)
640 				degraded2++;
641 	}
642 	rcu_read_unlock();
643 	if (degraded2 > degraded)
644 		return degraded2;
645 	return degraded;
646 }
647 
648 static int has_failed(struct r5conf *conf)
649 {
650 	int degraded;
651 
652 	if (conf->mddev->reshape_position == MaxSector)
653 		return conf->mddev->degraded > conf->max_degraded;
654 
655 	degraded = calc_degraded(conf);
656 	if (degraded > conf->max_degraded)
657 		return 1;
658 	return 0;
659 }
660 
661 static struct stripe_head *
662 get_active_stripe(struct r5conf *conf, sector_t sector,
663 		  int previous, int noblock, int noquiesce)
664 {
665 	struct stripe_head *sh;
666 	int hash = stripe_hash_locks_hash(sector);
667 
668 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669 
670 	spin_lock_irq(conf->hash_locks + hash);
671 
672 	do {
673 		wait_event_lock_irq(conf->wait_for_quiescent,
674 				    conf->quiesce == 0 || noquiesce,
675 				    *(conf->hash_locks + hash));
676 		sh = __find_stripe(conf, sector, conf->generation - previous);
677 		if (!sh) {
678 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679 				sh = get_free_stripe(conf, hash);
680 				if (!sh && !test_bit(R5_DID_ALLOC,
681 						     &conf->cache_state))
682 					set_bit(R5_ALLOC_MORE,
683 						&conf->cache_state);
684 			}
685 			if (noblock && sh == NULL)
686 				break;
687 			if (!sh) {
688 				set_bit(R5_INACTIVE_BLOCKED,
689 					&conf->cache_state);
690 				wait_event_exclusive_cmd(
691 					conf->wait_for_stripe[hash],
692 					!list_empty(conf->inactive_list + hash) &&
693 					(atomic_read(&conf->active_stripes)
694 					 < (conf->max_nr_stripes * 3 / 4)
695 					 || !test_bit(R5_INACTIVE_BLOCKED,
696 						      &conf->cache_state)),
697 					spin_unlock_irq(conf->hash_locks + hash),
698 					spin_lock_irq(conf->hash_locks + hash));
699 				clear_bit(R5_INACTIVE_BLOCKED,
700 					  &conf->cache_state);
701 			} else {
702 				init_stripe(sh, sector, previous);
703 				atomic_inc(&sh->count);
704 			}
705 		} else if (!atomic_inc_not_zero(&sh->count)) {
706 			spin_lock(&conf->device_lock);
707 			if (!atomic_read(&sh->count)) {
708 				if (!test_bit(STRIPE_HANDLE, &sh->state))
709 					atomic_inc(&conf->active_stripes);
710 				BUG_ON(list_empty(&sh->lru) &&
711 				       !test_bit(STRIPE_EXPANDING, &sh->state));
712 				list_del_init(&sh->lru);
713 				if (sh->group) {
714 					sh->group->stripes_cnt--;
715 					sh->group = NULL;
716 				}
717 			}
718 			atomic_inc(&sh->count);
719 			spin_unlock(&conf->device_lock);
720 		}
721 	} while (sh == NULL);
722 
723 	if (!list_empty(conf->inactive_list + hash))
724 		wake_up(&conf->wait_for_stripe[hash]);
725 
726 	spin_unlock_irq(conf->hash_locks + hash);
727 	return sh;
728 }
729 
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735 
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738 	local_irq_disable();
739 	if (sh1 > sh2) {
740 		spin_lock(&sh2->stripe_lock);
741 		spin_lock_nested(&sh1->stripe_lock, 1);
742 	} else {
743 		spin_lock(&sh1->stripe_lock);
744 		spin_lock_nested(&sh2->stripe_lock, 1);
745 	}
746 }
747 
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750 	spin_unlock(&sh1->stripe_lock);
751 	spin_unlock(&sh2->stripe_lock);
752 	local_irq_enable();
753 }
754 
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
759 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
760 		is_full_stripe_write(sh);
761 }
762 
763 /* we only do back search */
764 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
765 {
766 	struct stripe_head *head;
767 	sector_t head_sector, tmp_sec;
768 	int hash;
769 	int dd_idx;
770 
771 	if (!stripe_can_batch(sh))
772 		return;
773 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774 	tmp_sec = sh->sector;
775 	if (!sector_div(tmp_sec, conf->chunk_sectors))
776 		return;
777 	head_sector = sh->sector - STRIPE_SECTORS;
778 
779 	hash = stripe_hash_locks_hash(head_sector);
780 	spin_lock_irq(conf->hash_locks + hash);
781 	head = __find_stripe(conf, head_sector, conf->generation);
782 	if (head && !atomic_inc_not_zero(&head->count)) {
783 		spin_lock(&conf->device_lock);
784 		if (!atomic_read(&head->count)) {
785 			if (!test_bit(STRIPE_HANDLE, &head->state))
786 				atomic_inc(&conf->active_stripes);
787 			BUG_ON(list_empty(&head->lru) &&
788 			       !test_bit(STRIPE_EXPANDING, &head->state));
789 			list_del_init(&head->lru);
790 			if (head->group) {
791 				head->group->stripes_cnt--;
792 				head->group = NULL;
793 			}
794 		}
795 		atomic_inc(&head->count);
796 		spin_unlock(&conf->device_lock);
797 	}
798 	spin_unlock_irq(conf->hash_locks + hash);
799 
800 	if (!head)
801 		return;
802 	if (!stripe_can_batch(head))
803 		goto out;
804 
805 	lock_two_stripes(head, sh);
806 	/* clear_batch_ready clear the flag */
807 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
808 		goto unlock_out;
809 
810 	if (sh->batch_head)
811 		goto unlock_out;
812 
813 	dd_idx = 0;
814 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
815 		dd_idx++;
816 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
817 		goto unlock_out;
818 
819 	if (head->batch_head) {
820 		spin_lock(&head->batch_head->batch_lock);
821 		/* This batch list is already running */
822 		if (!stripe_can_batch(head)) {
823 			spin_unlock(&head->batch_head->batch_lock);
824 			goto unlock_out;
825 		}
826 
827 		/*
828 		 * at this point, head's BATCH_READY could be cleared, but we
829 		 * can still add the stripe to batch list
830 		 */
831 		list_add(&sh->batch_list, &head->batch_list);
832 		spin_unlock(&head->batch_head->batch_lock);
833 
834 		sh->batch_head = head->batch_head;
835 	} else {
836 		head->batch_head = head;
837 		sh->batch_head = head->batch_head;
838 		spin_lock(&head->batch_lock);
839 		list_add_tail(&sh->batch_list, &head->batch_list);
840 		spin_unlock(&head->batch_lock);
841 	}
842 
843 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
844 		if (atomic_dec_return(&conf->preread_active_stripes)
845 		    < IO_THRESHOLD)
846 			md_wakeup_thread(conf->mddev->thread);
847 
848 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
849 		int seq = sh->bm_seq;
850 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
851 		    sh->batch_head->bm_seq > seq)
852 			seq = sh->batch_head->bm_seq;
853 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
854 		sh->batch_head->bm_seq = seq;
855 	}
856 
857 	atomic_inc(&sh->count);
858 unlock_out:
859 	unlock_two_stripes(head, sh);
860 out:
861 	release_stripe(head);
862 }
863 
864 /* Determine if 'data_offset' or 'new_data_offset' should be used
865  * in this stripe_head.
866  */
867 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
868 {
869 	sector_t progress = conf->reshape_progress;
870 	/* Need a memory barrier to make sure we see the value
871 	 * of conf->generation, or ->data_offset that was set before
872 	 * reshape_progress was updated.
873 	 */
874 	smp_rmb();
875 	if (progress == MaxSector)
876 		return 0;
877 	if (sh->generation == conf->generation - 1)
878 		return 0;
879 	/* We are in a reshape, and this is a new-generation stripe,
880 	 * so use new_data_offset.
881 	 */
882 	return 1;
883 }
884 
885 static void
886 raid5_end_read_request(struct bio *bi);
887 static void
888 raid5_end_write_request(struct bio *bi);
889 
890 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
891 {
892 	struct r5conf *conf = sh->raid_conf;
893 	int i, disks = sh->disks;
894 	struct stripe_head *head_sh = sh;
895 
896 	might_sleep();
897 
898 	for (i = disks; i--; ) {
899 		int rw;
900 		int replace_only = 0;
901 		struct bio *bi, *rbi;
902 		struct md_rdev *rdev, *rrdev = NULL;
903 
904 		sh = head_sh;
905 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
906 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
907 				rw = WRITE_FUA;
908 			else
909 				rw = WRITE;
910 			if (test_bit(R5_Discard, &sh->dev[i].flags))
911 				rw |= REQ_DISCARD;
912 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
913 			rw = READ;
914 		else if (test_and_clear_bit(R5_WantReplace,
915 					    &sh->dev[i].flags)) {
916 			rw = WRITE;
917 			replace_only = 1;
918 		} else
919 			continue;
920 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
921 			rw |= REQ_SYNC;
922 
923 again:
924 		bi = &sh->dev[i].req;
925 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
926 
927 		rcu_read_lock();
928 		rrdev = rcu_dereference(conf->disks[i].replacement);
929 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
930 		rdev = rcu_dereference(conf->disks[i].rdev);
931 		if (!rdev) {
932 			rdev = rrdev;
933 			rrdev = NULL;
934 		}
935 		if (rw & WRITE) {
936 			if (replace_only)
937 				rdev = NULL;
938 			if (rdev == rrdev)
939 				/* We raced and saw duplicates */
940 				rrdev = NULL;
941 		} else {
942 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
943 				rdev = rrdev;
944 			rrdev = NULL;
945 		}
946 
947 		if (rdev && test_bit(Faulty, &rdev->flags))
948 			rdev = NULL;
949 		if (rdev)
950 			atomic_inc(&rdev->nr_pending);
951 		if (rrdev && test_bit(Faulty, &rrdev->flags))
952 			rrdev = NULL;
953 		if (rrdev)
954 			atomic_inc(&rrdev->nr_pending);
955 		rcu_read_unlock();
956 
957 		/* We have already checked bad blocks for reads.  Now
958 		 * need to check for writes.  We never accept write errors
959 		 * on the replacement, so we don't to check rrdev.
960 		 */
961 		while ((rw & WRITE) && rdev &&
962 		       test_bit(WriteErrorSeen, &rdev->flags)) {
963 			sector_t first_bad;
964 			int bad_sectors;
965 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
966 					      &first_bad, &bad_sectors);
967 			if (!bad)
968 				break;
969 
970 			if (bad < 0) {
971 				set_bit(BlockedBadBlocks, &rdev->flags);
972 				if (!conf->mddev->external &&
973 				    conf->mddev->flags) {
974 					/* It is very unlikely, but we might
975 					 * still need to write out the
976 					 * bad block log - better give it
977 					 * a chance*/
978 					md_check_recovery(conf->mddev);
979 				}
980 				/*
981 				 * Because md_wait_for_blocked_rdev
982 				 * will dec nr_pending, we must
983 				 * increment it first.
984 				 */
985 				atomic_inc(&rdev->nr_pending);
986 				md_wait_for_blocked_rdev(rdev, conf->mddev);
987 			} else {
988 				/* Acknowledged bad block - skip the write */
989 				rdev_dec_pending(rdev, conf->mddev);
990 				rdev = NULL;
991 			}
992 		}
993 
994 		if (rdev) {
995 			if (s->syncing || s->expanding || s->expanded
996 			    || s->replacing)
997 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
998 
999 			set_bit(STRIPE_IO_STARTED, &sh->state);
1000 
1001 			bio_reset(bi);
1002 			bi->bi_bdev = rdev->bdev;
1003 			bi->bi_rw = rw;
1004 			bi->bi_end_io = (rw & WRITE)
1005 				? raid5_end_write_request
1006 				: raid5_end_read_request;
1007 			bi->bi_private = sh;
1008 
1009 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1010 				__func__, (unsigned long long)sh->sector,
1011 				bi->bi_rw, i);
1012 			atomic_inc(&sh->count);
1013 			if (sh != head_sh)
1014 				atomic_inc(&head_sh->count);
1015 			if (use_new_offset(conf, sh))
1016 				bi->bi_iter.bi_sector = (sh->sector
1017 						 + rdev->new_data_offset);
1018 			else
1019 				bi->bi_iter.bi_sector = (sh->sector
1020 						 + rdev->data_offset);
1021 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1022 				bi->bi_rw |= REQ_NOMERGE;
1023 
1024 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1025 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1026 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1027 			bi->bi_vcnt = 1;
1028 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1029 			bi->bi_io_vec[0].bv_offset = 0;
1030 			bi->bi_iter.bi_size = STRIPE_SIZE;
1031 			/*
1032 			 * If this is discard request, set bi_vcnt 0. We don't
1033 			 * want to confuse SCSI because SCSI will replace payload
1034 			 */
1035 			if (rw & REQ_DISCARD)
1036 				bi->bi_vcnt = 0;
1037 			if (rrdev)
1038 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1039 
1040 			if (conf->mddev->gendisk)
1041 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1042 						      bi, disk_devt(conf->mddev->gendisk),
1043 						      sh->dev[i].sector);
1044 			generic_make_request(bi);
1045 		}
1046 		if (rrdev) {
1047 			if (s->syncing || s->expanding || s->expanded
1048 			    || s->replacing)
1049 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1050 
1051 			set_bit(STRIPE_IO_STARTED, &sh->state);
1052 
1053 			bio_reset(rbi);
1054 			rbi->bi_bdev = rrdev->bdev;
1055 			rbi->bi_rw = rw;
1056 			BUG_ON(!(rw & WRITE));
1057 			rbi->bi_end_io = raid5_end_write_request;
1058 			rbi->bi_private = sh;
1059 
1060 			pr_debug("%s: for %llu schedule op %ld on "
1061 				 "replacement disc %d\n",
1062 				__func__, (unsigned long long)sh->sector,
1063 				rbi->bi_rw, i);
1064 			atomic_inc(&sh->count);
1065 			if (sh != head_sh)
1066 				atomic_inc(&head_sh->count);
1067 			if (use_new_offset(conf, sh))
1068 				rbi->bi_iter.bi_sector = (sh->sector
1069 						  + rrdev->new_data_offset);
1070 			else
1071 				rbi->bi_iter.bi_sector = (sh->sector
1072 						  + rrdev->data_offset);
1073 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1074 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1075 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1076 			rbi->bi_vcnt = 1;
1077 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1078 			rbi->bi_io_vec[0].bv_offset = 0;
1079 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1080 			/*
1081 			 * If this is discard request, set bi_vcnt 0. We don't
1082 			 * want to confuse SCSI because SCSI will replace payload
1083 			 */
1084 			if (rw & REQ_DISCARD)
1085 				rbi->bi_vcnt = 0;
1086 			if (conf->mddev->gendisk)
1087 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1088 						      rbi, disk_devt(conf->mddev->gendisk),
1089 						      sh->dev[i].sector);
1090 			generic_make_request(rbi);
1091 		}
1092 		if (!rdev && !rrdev) {
1093 			if (rw & WRITE)
1094 				set_bit(STRIPE_DEGRADED, &sh->state);
1095 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1096 				bi->bi_rw, i, (unsigned long long)sh->sector);
1097 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1098 			set_bit(STRIPE_HANDLE, &sh->state);
1099 		}
1100 
1101 		if (!head_sh->batch_head)
1102 			continue;
1103 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1104 				      batch_list);
1105 		if (sh != head_sh)
1106 			goto again;
1107 	}
1108 }
1109 
1110 static struct dma_async_tx_descriptor *
1111 async_copy_data(int frombio, struct bio *bio, struct page **page,
1112 	sector_t sector, struct dma_async_tx_descriptor *tx,
1113 	struct stripe_head *sh)
1114 {
1115 	struct bio_vec bvl;
1116 	struct bvec_iter iter;
1117 	struct page *bio_page;
1118 	int page_offset;
1119 	struct async_submit_ctl submit;
1120 	enum async_tx_flags flags = 0;
1121 
1122 	if (bio->bi_iter.bi_sector >= sector)
1123 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1124 	else
1125 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1126 
1127 	if (frombio)
1128 		flags |= ASYNC_TX_FENCE;
1129 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1130 
1131 	bio_for_each_segment(bvl, bio, iter) {
1132 		int len = bvl.bv_len;
1133 		int clen;
1134 		int b_offset = 0;
1135 
1136 		if (page_offset < 0) {
1137 			b_offset = -page_offset;
1138 			page_offset += b_offset;
1139 			len -= b_offset;
1140 		}
1141 
1142 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1143 			clen = STRIPE_SIZE - page_offset;
1144 		else
1145 			clen = len;
1146 
1147 		if (clen > 0) {
1148 			b_offset += bvl.bv_offset;
1149 			bio_page = bvl.bv_page;
1150 			if (frombio) {
1151 				if (sh->raid_conf->skip_copy &&
1152 				    b_offset == 0 && page_offset == 0 &&
1153 				    clen == STRIPE_SIZE)
1154 					*page = bio_page;
1155 				else
1156 					tx = async_memcpy(*page, bio_page, page_offset,
1157 						  b_offset, clen, &submit);
1158 			} else
1159 				tx = async_memcpy(bio_page, *page, b_offset,
1160 						  page_offset, clen, &submit);
1161 		}
1162 		/* chain the operations */
1163 		submit.depend_tx = tx;
1164 
1165 		if (clen < len) /* hit end of page */
1166 			break;
1167 		page_offset +=  len;
1168 	}
1169 
1170 	return tx;
1171 }
1172 
1173 static void ops_complete_biofill(void *stripe_head_ref)
1174 {
1175 	struct stripe_head *sh = stripe_head_ref;
1176 	struct bio_list return_bi = BIO_EMPTY_LIST;
1177 	int i;
1178 
1179 	pr_debug("%s: stripe %llu\n", __func__,
1180 		(unsigned long long)sh->sector);
1181 
1182 	/* clear completed biofills */
1183 	for (i = sh->disks; i--; ) {
1184 		struct r5dev *dev = &sh->dev[i];
1185 
1186 		/* acknowledge completion of a biofill operation */
1187 		/* and check if we need to reply to a read request,
1188 		 * new R5_Wantfill requests are held off until
1189 		 * !STRIPE_BIOFILL_RUN
1190 		 */
1191 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1192 			struct bio *rbi, *rbi2;
1193 
1194 			BUG_ON(!dev->read);
1195 			rbi = dev->read;
1196 			dev->read = NULL;
1197 			while (rbi && rbi->bi_iter.bi_sector <
1198 				dev->sector + STRIPE_SECTORS) {
1199 				rbi2 = r5_next_bio(rbi, dev->sector);
1200 				if (!raid5_dec_bi_active_stripes(rbi))
1201 					bio_list_add(&return_bi, rbi);
1202 				rbi = rbi2;
1203 			}
1204 		}
1205 	}
1206 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1207 
1208 	return_io(&return_bi);
1209 
1210 	set_bit(STRIPE_HANDLE, &sh->state);
1211 	release_stripe(sh);
1212 }
1213 
1214 static void ops_run_biofill(struct stripe_head *sh)
1215 {
1216 	struct dma_async_tx_descriptor *tx = NULL;
1217 	struct async_submit_ctl submit;
1218 	int i;
1219 
1220 	BUG_ON(sh->batch_head);
1221 	pr_debug("%s: stripe %llu\n", __func__,
1222 		(unsigned long long)sh->sector);
1223 
1224 	for (i = sh->disks; i--; ) {
1225 		struct r5dev *dev = &sh->dev[i];
1226 		if (test_bit(R5_Wantfill, &dev->flags)) {
1227 			struct bio *rbi;
1228 			spin_lock_irq(&sh->stripe_lock);
1229 			dev->read = rbi = dev->toread;
1230 			dev->toread = NULL;
1231 			spin_unlock_irq(&sh->stripe_lock);
1232 			while (rbi && rbi->bi_iter.bi_sector <
1233 				dev->sector + STRIPE_SECTORS) {
1234 				tx = async_copy_data(0, rbi, &dev->page,
1235 					dev->sector, tx, sh);
1236 				rbi = r5_next_bio(rbi, dev->sector);
1237 			}
1238 		}
1239 	}
1240 
1241 	atomic_inc(&sh->count);
1242 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1243 	async_trigger_callback(&submit);
1244 }
1245 
1246 static void mark_target_uptodate(struct stripe_head *sh, int target)
1247 {
1248 	struct r5dev *tgt;
1249 
1250 	if (target < 0)
1251 		return;
1252 
1253 	tgt = &sh->dev[target];
1254 	set_bit(R5_UPTODATE, &tgt->flags);
1255 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1256 	clear_bit(R5_Wantcompute, &tgt->flags);
1257 }
1258 
1259 static void ops_complete_compute(void *stripe_head_ref)
1260 {
1261 	struct stripe_head *sh = stripe_head_ref;
1262 
1263 	pr_debug("%s: stripe %llu\n", __func__,
1264 		(unsigned long long)sh->sector);
1265 
1266 	/* mark the computed target(s) as uptodate */
1267 	mark_target_uptodate(sh, sh->ops.target);
1268 	mark_target_uptodate(sh, sh->ops.target2);
1269 
1270 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1271 	if (sh->check_state == check_state_compute_run)
1272 		sh->check_state = check_state_compute_result;
1273 	set_bit(STRIPE_HANDLE, &sh->state);
1274 	release_stripe(sh);
1275 }
1276 
1277 /* return a pointer to the address conversion region of the scribble buffer */
1278 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1279 				 struct raid5_percpu *percpu, int i)
1280 {
1281 	void *addr;
1282 
1283 	addr = flex_array_get(percpu->scribble, i);
1284 	return addr + sizeof(struct page *) * (sh->disks + 2);
1285 }
1286 
1287 /* return a pointer to the address conversion region of the scribble buffer */
1288 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1289 {
1290 	void *addr;
1291 
1292 	addr = flex_array_get(percpu->scribble, i);
1293 	return addr;
1294 }
1295 
1296 static struct dma_async_tx_descriptor *
1297 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1298 {
1299 	int disks = sh->disks;
1300 	struct page **xor_srcs = to_addr_page(percpu, 0);
1301 	int target = sh->ops.target;
1302 	struct r5dev *tgt = &sh->dev[target];
1303 	struct page *xor_dest = tgt->page;
1304 	int count = 0;
1305 	struct dma_async_tx_descriptor *tx;
1306 	struct async_submit_ctl submit;
1307 	int i;
1308 
1309 	BUG_ON(sh->batch_head);
1310 
1311 	pr_debug("%s: stripe %llu block: %d\n",
1312 		__func__, (unsigned long long)sh->sector, target);
1313 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1314 
1315 	for (i = disks; i--; )
1316 		if (i != target)
1317 			xor_srcs[count++] = sh->dev[i].page;
1318 
1319 	atomic_inc(&sh->count);
1320 
1321 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1322 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1323 	if (unlikely(count == 1))
1324 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1325 	else
1326 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1327 
1328 	return tx;
1329 }
1330 
1331 /* set_syndrome_sources - populate source buffers for gen_syndrome
1332  * @srcs - (struct page *) array of size sh->disks
1333  * @sh - stripe_head to parse
1334  *
1335  * Populates srcs in proper layout order for the stripe and returns the
1336  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1337  * destination buffer is recorded in srcs[count] and the Q destination
1338  * is recorded in srcs[count+1]].
1339  */
1340 static int set_syndrome_sources(struct page **srcs,
1341 				struct stripe_head *sh,
1342 				int srctype)
1343 {
1344 	int disks = sh->disks;
1345 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1346 	int d0_idx = raid6_d0(sh);
1347 	int count;
1348 	int i;
1349 
1350 	for (i = 0; i < disks; i++)
1351 		srcs[i] = NULL;
1352 
1353 	count = 0;
1354 	i = d0_idx;
1355 	do {
1356 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1357 		struct r5dev *dev = &sh->dev[i];
1358 
1359 		if (i == sh->qd_idx || i == sh->pd_idx ||
1360 		    (srctype == SYNDROME_SRC_ALL) ||
1361 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1362 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1363 		    (srctype == SYNDROME_SRC_WRITTEN &&
1364 		     dev->written))
1365 			srcs[slot] = sh->dev[i].page;
1366 		i = raid6_next_disk(i, disks);
1367 	} while (i != d0_idx);
1368 
1369 	return syndrome_disks;
1370 }
1371 
1372 static struct dma_async_tx_descriptor *
1373 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1374 {
1375 	int disks = sh->disks;
1376 	struct page **blocks = to_addr_page(percpu, 0);
1377 	int target;
1378 	int qd_idx = sh->qd_idx;
1379 	struct dma_async_tx_descriptor *tx;
1380 	struct async_submit_ctl submit;
1381 	struct r5dev *tgt;
1382 	struct page *dest;
1383 	int i;
1384 	int count;
1385 
1386 	BUG_ON(sh->batch_head);
1387 	if (sh->ops.target < 0)
1388 		target = sh->ops.target2;
1389 	else if (sh->ops.target2 < 0)
1390 		target = sh->ops.target;
1391 	else
1392 		/* we should only have one valid target */
1393 		BUG();
1394 	BUG_ON(target < 0);
1395 	pr_debug("%s: stripe %llu block: %d\n",
1396 		__func__, (unsigned long long)sh->sector, target);
1397 
1398 	tgt = &sh->dev[target];
1399 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1400 	dest = tgt->page;
1401 
1402 	atomic_inc(&sh->count);
1403 
1404 	if (target == qd_idx) {
1405 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1406 		blocks[count] = NULL; /* regenerating p is not necessary */
1407 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1408 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1409 				  ops_complete_compute, sh,
1410 				  to_addr_conv(sh, percpu, 0));
1411 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1412 	} else {
1413 		/* Compute any data- or p-drive using XOR */
1414 		count = 0;
1415 		for (i = disks; i-- ; ) {
1416 			if (i == target || i == qd_idx)
1417 				continue;
1418 			blocks[count++] = sh->dev[i].page;
1419 		}
1420 
1421 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1422 				  NULL, ops_complete_compute, sh,
1423 				  to_addr_conv(sh, percpu, 0));
1424 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1425 	}
1426 
1427 	return tx;
1428 }
1429 
1430 static struct dma_async_tx_descriptor *
1431 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1432 {
1433 	int i, count, disks = sh->disks;
1434 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1435 	int d0_idx = raid6_d0(sh);
1436 	int faila = -1, failb = -1;
1437 	int target = sh->ops.target;
1438 	int target2 = sh->ops.target2;
1439 	struct r5dev *tgt = &sh->dev[target];
1440 	struct r5dev *tgt2 = &sh->dev[target2];
1441 	struct dma_async_tx_descriptor *tx;
1442 	struct page **blocks = to_addr_page(percpu, 0);
1443 	struct async_submit_ctl submit;
1444 
1445 	BUG_ON(sh->batch_head);
1446 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1447 		 __func__, (unsigned long long)sh->sector, target, target2);
1448 	BUG_ON(target < 0 || target2 < 0);
1449 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1450 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1451 
1452 	/* we need to open-code set_syndrome_sources to handle the
1453 	 * slot number conversion for 'faila' and 'failb'
1454 	 */
1455 	for (i = 0; i < disks ; i++)
1456 		blocks[i] = NULL;
1457 	count = 0;
1458 	i = d0_idx;
1459 	do {
1460 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1461 
1462 		blocks[slot] = sh->dev[i].page;
1463 
1464 		if (i == target)
1465 			faila = slot;
1466 		if (i == target2)
1467 			failb = slot;
1468 		i = raid6_next_disk(i, disks);
1469 	} while (i != d0_idx);
1470 
1471 	BUG_ON(faila == failb);
1472 	if (failb < faila)
1473 		swap(faila, failb);
1474 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1475 		 __func__, (unsigned long long)sh->sector, faila, failb);
1476 
1477 	atomic_inc(&sh->count);
1478 
1479 	if (failb == syndrome_disks+1) {
1480 		/* Q disk is one of the missing disks */
1481 		if (faila == syndrome_disks) {
1482 			/* Missing P+Q, just recompute */
1483 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1484 					  ops_complete_compute, sh,
1485 					  to_addr_conv(sh, percpu, 0));
1486 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1487 						  STRIPE_SIZE, &submit);
1488 		} else {
1489 			struct page *dest;
1490 			int data_target;
1491 			int qd_idx = sh->qd_idx;
1492 
1493 			/* Missing D+Q: recompute D from P, then recompute Q */
1494 			if (target == qd_idx)
1495 				data_target = target2;
1496 			else
1497 				data_target = target;
1498 
1499 			count = 0;
1500 			for (i = disks; i-- ; ) {
1501 				if (i == data_target || i == qd_idx)
1502 					continue;
1503 				blocks[count++] = sh->dev[i].page;
1504 			}
1505 			dest = sh->dev[data_target].page;
1506 			init_async_submit(&submit,
1507 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1508 					  NULL, NULL, NULL,
1509 					  to_addr_conv(sh, percpu, 0));
1510 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1511 				       &submit);
1512 
1513 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1514 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1515 					  ops_complete_compute, sh,
1516 					  to_addr_conv(sh, percpu, 0));
1517 			return async_gen_syndrome(blocks, 0, count+2,
1518 						  STRIPE_SIZE, &submit);
1519 		}
1520 	} else {
1521 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1522 				  ops_complete_compute, sh,
1523 				  to_addr_conv(sh, percpu, 0));
1524 		if (failb == syndrome_disks) {
1525 			/* We're missing D+P. */
1526 			return async_raid6_datap_recov(syndrome_disks+2,
1527 						       STRIPE_SIZE, faila,
1528 						       blocks, &submit);
1529 		} else {
1530 			/* We're missing D+D. */
1531 			return async_raid6_2data_recov(syndrome_disks+2,
1532 						       STRIPE_SIZE, faila, failb,
1533 						       blocks, &submit);
1534 		}
1535 	}
1536 }
1537 
1538 static void ops_complete_prexor(void *stripe_head_ref)
1539 {
1540 	struct stripe_head *sh = stripe_head_ref;
1541 
1542 	pr_debug("%s: stripe %llu\n", __func__,
1543 		(unsigned long long)sh->sector);
1544 }
1545 
1546 static struct dma_async_tx_descriptor *
1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1548 		struct dma_async_tx_descriptor *tx)
1549 {
1550 	int disks = sh->disks;
1551 	struct page **xor_srcs = to_addr_page(percpu, 0);
1552 	int count = 0, pd_idx = sh->pd_idx, i;
1553 	struct async_submit_ctl submit;
1554 
1555 	/* existing parity data subtracted */
1556 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1557 
1558 	BUG_ON(sh->batch_head);
1559 	pr_debug("%s: stripe %llu\n", __func__,
1560 		(unsigned long long)sh->sector);
1561 
1562 	for (i = disks; i--; ) {
1563 		struct r5dev *dev = &sh->dev[i];
1564 		/* Only process blocks that are known to be uptodate */
1565 		if (test_bit(R5_Wantdrain, &dev->flags))
1566 			xor_srcs[count++] = dev->page;
1567 	}
1568 
1569 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1570 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1572 
1573 	return tx;
1574 }
1575 
1576 static struct dma_async_tx_descriptor *
1577 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1578 		struct dma_async_tx_descriptor *tx)
1579 {
1580 	struct page **blocks = to_addr_page(percpu, 0);
1581 	int count;
1582 	struct async_submit_ctl submit;
1583 
1584 	pr_debug("%s: stripe %llu\n", __func__,
1585 		(unsigned long long)sh->sector);
1586 
1587 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1588 
1589 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1590 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1591 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1592 
1593 	return tx;
1594 }
1595 
1596 static struct dma_async_tx_descriptor *
1597 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1598 {
1599 	int disks = sh->disks;
1600 	int i;
1601 	struct stripe_head *head_sh = sh;
1602 
1603 	pr_debug("%s: stripe %llu\n", __func__,
1604 		(unsigned long long)sh->sector);
1605 
1606 	for (i = disks; i--; ) {
1607 		struct r5dev *dev;
1608 		struct bio *chosen;
1609 
1610 		sh = head_sh;
1611 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1612 			struct bio *wbi;
1613 
1614 again:
1615 			dev = &sh->dev[i];
1616 			spin_lock_irq(&sh->stripe_lock);
1617 			chosen = dev->towrite;
1618 			dev->towrite = NULL;
1619 			sh->overwrite_disks = 0;
1620 			BUG_ON(dev->written);
1621 			wbi = dev->written = chosen;
1622 			spin_unlock_irq(&sh->stripe_lock);
1623 			WARN_ON(dev->page != dev->orig_page);
1624 
1625 			while (wbi && wbi->bi_iter.bi_sector <
1626 				dev->sector + STRIPE_SECTORS) {
1627 				if (wbi->bi_rw & REQ_FUA)
1628 					set_bit(R5_WantFUA, &dev->flags);
1629 				if (wbi->bi_rw & REQ_SYNC)
1630 					set_bit(R5_SyncIO, &dev->flags);
1631 				if (wbi->bi_rw & REQ_DISCARD)
1632 					set_bit(R5_Discard, &dev->flags);
1633 				else {
1634 					tx = async_copy_data(1, wbi, &dev->page,
1635 						dev->sector, tx, sh);
1636 					if (dev->page != dev->orig_page) {
1637 						set_bit(R5_SkipCopy, &dev->flags);
1638 						clear_bit(R5_UPTODATE, &dev->flags);
1639 						clear_bit(R5_OVERWRITE, &dev->flags);
1640 					}
1641 				}
1642 				wbi = r5_next_bio(wbi, dev->sector);
1643 			}
1644 
1645 			if (head_sh->batch_head) {
1646 				sh = list_first_entry(&sh->batch_list,
1647 						      struct stripe_head,
1648 						      batch_list);
1649 				if (sh == head_sh)
1650 					continue;
1651 				goto again;
1652 			}
1653 		}
1654 	}
1655 
1656 	return tx;
1657 }
1658 
1659 static void ops_complete_reconstruct(void *stripe_head_ref)
1660 {
1661 	struct stripe_head *sh = stripe_head_ref;
1662 	int disks = sh->disks;
1663 	int pd_idx = sh->pd_idx;
1664 	int qd_idx = sh->qd_idx;
1665 	int i;
1666 	bool fua = false, sync = false, discard = false;
1667 
1668 	pr_debug("%s: stripe %llu\n", __func__,
1669 		(unsigned long long)sh->sector);
1670 
1671 	for (i = disks; i--; ) {
1672 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1673 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1674 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1675 	}
1676 
1677 	for (i = disks; i--; ) {
1678 		struct r5dev *dev = &sh->dev[i];
1679 
1680 		if (dev->written || i == pd_idx || i == qd_idx) {
1681 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1682 				set_bit(R5_UPTODATE, &dev->flags);
1683 			if (fua)
1684 				set_bit(R5_WantFUA, &dev->flags);
1685 			if (sync)
1686 				set_bit(R5_SyncIO, &dev->flags);
1687 		}
1688 	}
1689 
1690 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1691 		sh->reconstruct_state = reconstruct_state_drain_result;
1692 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1693 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1694 	else {
1695 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1696 		sh->reconstruct_state = reconstruct_state_result;
1697 	}
1698 
1699 	set_bit(STRIPE_HANDLE, &sh->state);
1700 	release_stripe(sh);
1701 }
1702 
1703 static void
1704 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1705 		     struct dma_async_tx_descriptor *tx)
1706 {
1707 	int disks = sh->disks;
1708 	struct page **xor_srcs;
1709 	struct async_submit_ctl submit;
1710 	int count, pd_idx = sh->pd_idx, i;
1711 	struct page *xor_dest;
1712 	int prexor = 0;
1713 	unsigned long flags;
1714 	int j = 0;
1715 	struct stripe_head *head_sh = sh;
1716 	int last_stripe;
1717 
1718 	pr_debug("%s: stripe %llu\n", __func__,
1719 		(unsigned long long)sh->sector);
1720 
1721 	for (i = 0; i < sh->disks; i++) {
1722 		if (pd_idx == i)
1723 			continue;
1724 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1725 			break;
1726 	}
1727 	if (i >= sh->disks) {
1728 		atomic_inc(&sh->count);
1729 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1730 		ops_complete_reconstruct(sh);
1731 		return;
1732 	}
1733 again:
1734 	count = 0;
1735 	xor_srcs = to_addr_page(percpu, j);
1736 	/* check if prexor is active which means only process blocks
1737 	 * that are part of a read-modify-write (written)
1738 	 */
1739 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1740 		prexor = 1;
1741 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1742 		for (i = disks; i--; ) {
1743 			struct r5dev *dev = &sh->dev[i];
1744 			if (head_sh->dev[i].written)
1745 				xor_srcs[count++] = dev->page;
1746 		}
1747 	} else {
1748 		xor_dest = sh->dev[pd_idx].page;
1749 		for (i = disks; i--; ) {
1750 			struct r5dev *dev = &sh->dev[i];
1751 			if (i != pd_idx)
1752 				xor_srcs[count++] = dev->page;
1753 		}
1754 	}
1755 
1756 	/* 1/ if we prexor'd then the dest is reused as a source
1757 	 * 2/ if we did not prexor then we are redoing the parity
1758 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1759 	 * for the synchronous xor case
1760 	 */
1761 	last_stripe = !head_sh->batch_head ||
1762 		list_first_entry(&sh->batch_list,
1763 				 struct stripe_head, batch_list) == head_sh;
1764 	if (last_stripe) {
1765 		flags = ASYNC_TX_ACK |
1766 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1767 
1768 		atomic_inc(&head_sh->count);
1769 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1770 				  to_addr_conv(sh, percpu, j));
1771 	} else {
1772 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1773 		init_async_submit(&submit, flags, tx, NULL, NULL,
1774 				  to_addr_conv(sh, percpu, j));
1775 	}
1776 
1777 	if (unlikely(count == 1))
1778 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1779 	else
1780 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1781 	if (!last_stripe) {
1782 		j++;
1783 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784 				      batch_list);
1785 		goto again;
1786 	}
1787 }
1788 
1789 static void
1790 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1791 		     struct dma_async_tx_descriptor *tx)
1792 {
1793 	struct async_submit_ctl submit;
1794 	struct page **blocks;
1795 	int count, i, j = 0;
1796 	struct stripe_head *head_sh = sh;
1797 	int last_stripe;
1798 	int synflags;
1799 	unsigned long txflags;
1800 
1801 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1802 
1803 	for (i = 0; i < sh->disks; i++) {
1804 		if (sh->pd_idx == i || sh->qd_idx == i)
1805 			continue;
1806 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1807 			break;
1808 	}
1809 	if (i >= sh->disks) {
1810 		atomic_inc(&sh->count);
1811 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1812 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1813 		ops_complete_reconstruct(sh);
1814 		return;
1815 	}
1816 
1817 again:
1818 	blocks = to_addr_page(percpu, j);
1819 
1820 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1821 		synflags = SYNDROME_SRC_WRITTEN;
1822 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1823 	} else {
1824 		synflags = SYNDROME_SRC_ALL;
1825 		txflags = ASYNC_TX_ACK;
1826 	}
1827 
1828 	count = set_syndrome_sources(blocks, sh, synflags);
1829 	last_stripe = !head_sh->batch_head ||
1830 		list_first_entry(&sh->batch_list,
1831 				 struct stripe_head, batch_list) == head_sh;
1832 
1833 	if (last_stripe) {
1834 		atomic_inc(&head_sh->count);
1835 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1836 				  head_sh, to_addr_conv(sh, percpu, j));
1837 	} else
1838 		init_async_submit(&submit, 0, tx, NULL, NULL,
1839 				  to_addr_conv(sh, percpu, j));
1840 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1841 	if (!last_stripe) {
1842 		j++;
1843 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1844 				      batch_list);
1845 		goto again;
1846 	}
1847 }
1848 
1849 static void ops_complete_check(void *stripe_head_ref)
1850 {
1851 	struct stripe_head *sh = stripe_head_ref;
1852 
1853 	pr_debug("%s: stripe %llu\n", __func__,
1854 		(unsigned long long)sh->sector);
1855 
1856 	sh->check_state = check_state_check_result;
1857 	set_bit(STRIPE_HANDLE, &sh->state);
1858 	release_stripe(sh);
1859 }
1860 
1861 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1862 {
1863 	int disks = sh->disks;
1864 	int pd_idx = sh->pd_idx;
1865 	int qd_idx = sh->qd_idx;
1866 	struct page *xor_dest;
1867 	struct page **xor_srcs = to_addr_page(percpu, 0);
1868 	struct dma_async_tx_descriptor *tx;
1869 	struct async_submit_ctl submit;
1870 	int count;
1871 	int i;
1872 
1873 	pr_debug("%s: stripe %llu\n", __func__,
1874 		(unsigned long long)sh->sector);
1875 
1876 	BUG_ON(sh->batch_head);
1877 	count = 0;
1878 	xor_dest = sh->dev[pd_idx].page;
1879 	xor_srcs[count++] = xor_dest;
1880 	for (i = disks; i--; ) {
1881 		if (i == pd_idx || i == qd_idx)
1882 			continue;
1883 		xor_srcs[count++] = sh->dev[i].page;
1884 	}
1885 
1886 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1887 			  to_addr_conv(sh, percpu, 0));
1888 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1889 			   &sh->ops.zero_sum_result, &submit);
1890 
1891 	atomic_inc(&sh->count);
1892 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1893 	tx = async_trigger_callback(&submit);
1894 }
1895 
1896 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1897 {
1898 	struct page **srcs = to_addr_page(percpu, 0);
1899 	struct async_submit_ctl submit;
1900 	int count;
1901 
1902 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1903 		(unsigned long long)sh->sector, checkp);
1904 
1905 	BUG_ON(sh->batch_head);
1906 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1907 	if (!checkp)
1908 		srcs[count] = NULL;
1909 
1910 	atomic_inc(&sh->count);
1911 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1912 			  sh, to_addr_conv(sh, percpu, 0));
1913 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1914 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1915 }
1916 
1917 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1918 {
1919 	int overlap_clear = 0, i, disks = sh->disks;
1920 	struct dma_async_tx_descriptor *tx = NULL;
1921 	struct r5conf *conf = sh->raid_conf;
1922 	int level = conf->level;
1923 	struct raid5_percpu *percpu;
1924 	unsigned long cpu;
1925 
1926 	cpu = get_cpu();
1927 	percpu = per_cpu_ptr(conf->percpu, cpu);
1928 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1929 		ops_run_biofill(sh);
1930 		overlap_clear++;
1931 	}
1932 
1933 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1934 		if (level < 6)
1935 			tx = ops_run_compute5(sh, percpu);
1936 		else {
1937 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1938 				tx = ops_run_compute6_1(sh, percpu);
1939 			else
1940 				tx = ops_run_compute6_2(sh, percpu);
1941 		}
1942 		/* terminate the chain if reconstruct is not set to be run */
1943 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1944 			async_tx_ack(tx);
1945 	}
1946 
1947 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1948 		if (level < 6)
1949 			tx = ops_run_prexor5(sh, percpu, tx);
1950 		else
1951 			tx = ops_run_prexor6(sh, percpu, tx);
1952 	}
1953 
1954 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1955 		tx = ops_run_biodrain(sh, tx);
1956 		overlap_clear++;
1957 	}
1958 
1959 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1960 		if (level < 6)
1961 			ops_run_reconstruct5(sh, percpu, tx);
1962 		else
1963 			ops_run_reconstruct6(sh, percpu, tx);
1964 	}
1965 
1966 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1967 		if (sh->check_state == check_state_run)
1968 			ops_run_check_p(sh, percpu);
1969 		else if (sh->check_state == check_state_run_q)
1970 			ops_run_check_pq(sh, percpu, 0);
1971 		else if (sh->check_state == check_state_run_pq)
1972 			ops_run_check_pq(sh, percpu, 1);
1973 		else
1974 			BUG();
1975 	}
1976 
1977 	if (overlap_clear && !sh->batch_head)
1978 		for (i = disks; i--; ) {
1979 			struct r5dev *dev = &sh->dev[i];
1980 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1981 				wake_up(&sh->raid_conf->wait_for_overlap);
1982 		}
1983 	put_cpu();
1984 }
1985 
1986 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1987 {
1988 	struct stripe_head *sh;
1989 
1990 	sh = kmem_cache_zalloc(sc, gfp);
1991 	if (sh) {
1992 		spin_lock_init(&sh->stripe_lock);
1993 		spin_lock_init(&sh->batch_lock);
1994 		INIT_LIST_HEAD(&sh->batch_list);
1995 		INIT_LIST_HEAD(&sh->lru);
1996 		atomic_set(&sh->count, 1);
1997 	}
1998 	return sh;
1999 }
2000 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2001 {
2002 	struct stripe_head *sh;
2003 
2004 	sh = alloc_stripe(conf->slab_cache, gfp);
2005 	if (!sh)
2006 		return 0;
2007 
2008 	sh->raid_conf = conf;
2009 
2010 	if (grow_buffers(sh, gfp)) {
2011 		shrink_buffers(sh);
2012 		kmem_cache_free(conf->slab_cache, sh);
2013 		return 0;
2014 	}
2015 	sh->hash_lock_index =
2016 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2017 	/* we just created an active stripe so... */
2018 	atomic_inc(&conf->active_stripes);
2019 
2020 	release_stripe(sh);
2021 	conf->max_nr_stripes++;
2022 	return 1;
2023 }
2024 
2025 static int grow_stripes(struct r5conf *conf, int num)
2026 {
2027 	struct kmem_cache *sc;
2028 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2029 
2030 	if (conf->mddev->gendisk)
2031 		sprintf(conf->cache_name[0],
2032 			"raid%d-%s", conf->level, mdname(conf->mddev));
2033 	else
2034 		sprintf(conf->cache_name[0],
2035 			"raid%d-%p", conf->level, conf->mddev);
2036 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2037 
2038 	conf->active_name = 0;
2039 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2040 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2041 			       0, 0, NULL);
2042 	if (!sc)
2043 		return 1;
2044 	conf->slab_cache = sc;
2045 	conf->pool_size = devs;
2046 	while (num--)
2047 		if (!grow_one_stripe(conf, GFP_KERNEL))
2048 			return 1;
2049 
2050 	return 0;
2051 }
2052 
2053 /**
2054  * scribble_len - return the required size of the scribble region
2055  * @num - total number of disks in the array
2056  *
2057  * The size must be enough to contain:
2058  * 1/ a struct page pointer for each device in the array +2
2059  * 2/ room to convert each entry in (1) to its corresponding dma
2060  *    (dma_map_page()) or page (page_address()) address.
2061  *
2062  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2063  * calculate over all devices (not just the data blocks), using zeros in place
2064  * of the P and Q blocks.
2065  */
2066 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2067 {
2068 	struct flex_array *ret;
2069 	size_t len;
2070 
2071 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2072 	ret = flex_array_alloc(len, cnt, flags);
2073 	if (!ret)
2074 		return NULL;
2075 	/* always prealloc all elements, so no locking is required */
2076 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2077 		flex_array_free(ret);
2078 		return NULL;
2079 	}
2080 	return ret;
2081 }
2082 
2083 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2084 {
2085 	unsigned long cpu;
2086 	int err = 0;
2087 
2088 	mddev_suspend(conf->mddev);
2089 	get_online_cpus();
2090 	for_each_present_cpu(cpu) {
2091 		struct raid5_percpu *percpu;
2092 		struct flex_array *scribble;
2093 
2094 		percpu = per_cpu_ptr(conf->percpu, cpu);
2095 		scribble = scribble_alloc(new_disks,
2096 					  new_sectors / STRIPE_SECTORS,
2097 					  GFP_NOIO);
2098 
2099 		if (scribble) {
2100 			flex_array_free(percpu->scribble);
2101 			percpu->scribble = scribble;
2102 		} else {
2103 			err = -ENOMEM;
2104 			break;
2105 		}
2106 	}
2107 	put_online_cpus();
2108 	mddev_resume(conf->mddev);
2109 	return err;
2110 }
2111 
2112 static int resize_stripes(struct r5conf *conf, int newsize)
2113 {
2114 	/* Make all the stripes able to hold 'newsize' devices.
2115 	 * New slots in each stripe get 'page' set to a new page.
2116 	 *
2117 	 * This happens in stages:
2118 	 * 1/ create a new kmem_cache and allocate the required number of
2119 	 *    stripe_heads.
2120 	 * 2/ gather all the old stripe_heads and transfer the pages across
2121 	 *    to the new stripe_heads.  This will have the side effect of
2122 	 *    freezing the array as once all stripe_heads have been collected,
2123 	 *    no IO will be possible.  Old stripe heads are freed once their
2124 	 *    pages have been transferred over, and the old kmem_cache is
2125 	 *    freed when all stripes are done.
2126 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2127 	 *    we simple return a failre status - no need to clean anything up.
2128 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2129 	 *    If this fails, we don't bother trying the shrink the
2130 	 *    stripe_heads down again, we just leave them as they are.
2131 	 *    As each stripe_head is processed the new one is released into
2132 	 *    active service.
2133 	 *
2134 	 * Once step2 is started, we cannot afford to wait for a write,
2135 	 * so we use GFP_NOIO allocations.
2136 	 */
2137 	struct stripe_head *osh, *nsh;
2138 	LIST_HEAD(newstripes);
2139 	struct disk_info *ndisks;
2140 	int err;
2141 	struct kmem_cache *sc;
2142 	int i;
2143 	int hash, cnt;
2144 
2145 	if (newsize <= conf->pool_size)
2146 		return 0; /* never bother to shrink */
2147 
2148 	err = md_allow_write(conf->mddev);
2149 	if (err)
2150 		return err;
2151 
2152 	/* Step 1 */
2153 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2154 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2155 			       0, 0, NULL);
2156 	if (!sc)
2157 		return -ENOMEM;
2158 
2159 	/* Need to ensure auto-resizing doesn't interfere */
2160 	mutex_lock(&conf->cache_size_mutex);
2161 
2162 	for (i = conf->max_nr_stripes; i; i--) {
2163 		nsh = alloc_stripe(sc, GFP_KERNEL);
2164 		if (!nsh)
2165 			break;
2166 
2167 		nsh->raid_conf = conf;
2168 		list_add(&nsh->lru, &newstripes);
2169 	}
2170 	if (i) {
2171 		/* didn't get enough, give up */
2172 		while (!list_empty(&newstripes)) {
2173 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2174 			list_del(&nsh->lru);
2175 			kmem_cache_free(sc, nsh);
2176 		}
2177 		kmem_cache_destroy(sc);
2178 		mutex_unlock(&conf->cache_size_mutex);
2179 		return -ENOMEM;
2180 	}
2181 	/* Step 2 - Must use GFP_NOIO now.
2182 	 * OK, we have enough stripes, start collecting inactive
2183 	 * stripes and copying them over
2184 	 */
2185 	hash = 0;
2186 	cnt = 0;
2187 	list_for_each_entry(nsh, &newstripes, lru) {
2188 		lock_device_hash_lock(conf, hash);
2189 		wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2190 				    !list_empty(conf->inactive_list + hash),
2191 				    unlock_device_hash_lock(conf, hash),
2192 				    lock_device_hash_lock(conf, hash));
2193 		osh = get_free_stripe(conf, hash);
2194 		unlock_device_hash_lock(conf, hash);
2195 
2196 		for(i=0; i<conf->pool_size; i++) {
2197 			nsh->dev[i].page = osh->dev[i].page;
2198 			nsh->dev[i].orig_page = osh->dev[i].page;
2199 		}
2200 		nsh->hash_lock_index = hash;
2201 		kmem_cache_free(conf->slab_cache, osh);
2202 		cnt++;
2203 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2204 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2205 			hash++;
2206 			cnt = 0;
2207 		}
2208 	}
2209 	kmem_cache_destroy(conf->slab_cache);
2210 
2211 	/* Step 3.
2212 	 * At this point, we are holding all the stripes so the array
2213 	 * is completely stalled, so now is a good time to resize
2214 	 * conf->disks and the scribble region
2215 	 */
2216 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2217 	if (ndisks) {
2218 		for (i=0; i<conf->raid_disks; i++)
2219 			ndisks[i] = conf->disks[i];
2220 		kfree(conf->disks);
2221 		conf->disks = ndisks;
2222 	} else
2223 		err = -ENOMEM;
2224 
2225 	mutex_unlock(&conf->cache_size_mutex);
2226 	/* Step 4, return new stripes to service */
2227 	while(!list_empty(&newstripes)) {
2228 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2229 		list_del_init(&nsh->lru);
2230 
2231 		for (i=conf->raid_disks; i < newsize; i++)
2232 			if (nsh->dev[i].page == NULL) {
2233 				struct page *p = alloc_page(GFP_NOIO);
2234 				nsh->dev[i].page = p;
2235 				nsh->dev[i].orig_page = p;
2236 				if (!p)
2237 					err = -ENOMEM;
2238 			}
2239 		release_stripe(nsh);
2240 	}
2241 	/* critical section pass, GFP_NOIO no longer needed */
2242 
2243 	conf->slab_cache = sc;
2244 	conf->active_name = 1-conf->active_name;
2245 	if (!err)
2246 		conf->pool_size = newsize;
2247 	return err;
2248 }
2249 
2250 static int drop_one_stripe(struct r5conf *conf)
2251 {
2252 	struct stripe_head *sh;
2253 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2254 
2255 	spin_lock_irq(conf->hash_locks + hash);
2256 	sh = get_free_stripe(conf, hash);
2257 	spin_unlock_irq(conf->hash_locks + hash);
2258 	if (!sh)
2259 		return 0;
2260 	BUG_ON(atomic_read(&sh->count));
2261 	shrink_buffers(sh);
2262 	kmem_cache_free(conf->slab_cache, sh);
2263 	atomic_dec(&conf->active_stripes);
2264 	conf->max_nr_stripes--;
2265 	return 1;
2266 }
2267 
2268 static void shrink_stripes(struct r5conf *conf)
2269 {
2270 	while (conf->max_nr_stripes &&
2271 	       drop_one_stripe(conf))
2272 		;
2273 
2274 	if (conf->slab_cache)
2275 		kmem_cache_destroy(conf->slab_cache);
2276 	conf->slab_cache = NULL;
2277 }
2278 
2279 static void raid5_end_read_request(struct bio * bi)
2280 {
2281 	struct stripe_head *sh = bi->bi_private;
2282 	struct r5conf *conf = sh->raid_conf;
2283 	int disks = sh->disks, i;
2284 	char b[BDEVNAME_SIZE];
2285 	struct md_rdev *rdev = NULL;
2286 	sector_t s;
2287 
2288 	for (i=0 ; i<disks; i++)
2289 		if (bi == &sh->dev[i].req)
2290 			break;
2291 
2292 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2293 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2294 		bi->bi_error);
2295 	if (i == disks) {
2296 		BUG();
2297 		return;
2298 	}
2299 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2300 		/* If replacement finished while this request was outstanding,
2301 		 * 'replacement' might be NULL already.
2302 		 * In that case it moved down to 'rdev'.
2303 		 * rdev is not removed until all requests are finished.
2304 		 */
2305 		rdev = conf->disks[i].replacement;
2306 	if (!rdev)
2307 		rdev = conf->disks[i].rdev;
2308 
2309 	if (use_new_offset(conf, sh))
2310 		s = sh->sector + rdev->new_data_offset;
2311 	else
2312 		s = sh->sector + rdev->data_offset;
2313 	if (!bi->bi_error) {
2314 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2315 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2316 			/* Note that this cannot happen on a
2317 			 * replacement device.  We just fail those on
2318 			 * any error
2319 			 */
2320 			printk_ratelimited(
2321 				KERN_INFO
2322 				"md/raid:%s: read error corrected"
2323 				" (%lu sectors at %llu on %s)\n",
2324 				mdname(conf->mddev), STRIPE_SECTORS,
2325 				(unsigned long long)s,
2326 				bdevname(rdev->bdev, b));
2327 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2328 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2329 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2330 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2331 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2332 
2333 		if (atomic_read(&rdev->read_errors))
2334 			atomic_set(&rdev->read_errors, 0);
2335 	} else {
2336 		const char *bdn = bdevname(rdev->bdev, b);
2337 		int retry = 0;
2338 		int set_bad = 0;
2339 
2340 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2341 		atomic_inc(&rdev->read_errors);
2342 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2343 			printk_ratelimited(
2344 				KERN_WARNING
2345 				"md/raid:%s: read error on replacement device "
2346 				"(sector %llu on %s).\n",
2347 				mdname(conf->mddev),
2348 				(unsigned long long)s,
2349 				bdn);
2350 		else if (conf->mddev->degraded >= conf->max_degraded) {
2351 			set_bad = 1;
2352 			printk_ratelimited(
2353 				KERN_WARNING
2354 				"md/raid:%s: read error not correctable "
2355 				"(sector %llu on %s).\n",
2356 				mdname(conf->mddev),
2357 				(unsigned long long)s,
2358 				bdn);
2359 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2360 			/* Oh, no!!! */
2361 			set_bad = 1;
2362 			printk_ratelimited(
2363 				KERN_WARNING
2364 				"md/raid:%s: read error NOT corrected!! "
2365 				"(sector %llu on %s).\n",
2366 				mdname(conf->mddev),
2367 				(unsigned long long)s,
2368 				bdn);
2369 		} else if (atomic_read(&rdev->read_errors)
2370 			 > conf->max_nr_stripes)
2371 			printk(KERN_WARNING
2372 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2373 			       mdname(conf->mddev), bdn);
2374 		else
2375 			retry = 1;
2376 		if (set_bad && test_bit(In_sync, &rdev->flags)
2377 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2378 			retry = 1;
2379 		if (retry)
2380 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2381 				set_bit(R5_ReadError, &sh->dev[i].flags);
2382 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2383 			} else
2384 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2385 		else {
2386 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2387 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2388 			if (!(set_bad
2389 			      && test_bit(In_sync, &rdev->flags)
2390 			      && rdev_set_badblocks(
2391 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2392 				md_error(conf->mddev, rdev);
2393 		}
2394 	}
2395 	rdev_dec_pending(rdev, conf->mddev);
2396 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2397 	set_bit(STRIPE_HANDLE, &sh->state);
2398 	release_stripe(sh);
2399 }
2400 
2401 static void raid5_end_write_request(struct bio *bi)
2402 {
2403 	struct stripe_head *sh = bi->bi_private;
2404 	struct r5conf *conf = sh->raid_conf;
2405 	int disks = sh->disks, i;
2406 	struct md_rdev *uninitialized_var(rdev);
2407 	sector_t first_bad;
2408 	int bad_sectors;
2409 	int replacement = 0;
2410 
2411 	for (i = 0 ; i < disks; i++) {
2412 		if (bi == &sh->dev[i].req) {
2413 			rdev = conf->disks[i].rdev;
2414 			break;
2415 		}
2416 		if (bi == &sh->dev[i].rreq) {
2417 			rdev = conf->disks[i].replacement;
2418 			if (rdev)
2419 				replacement = 1;
2420 			else
2421 				/* rdev was removed and 'replacement'
2422 				 * replaced it.  rdev is not removed
2423 				 * until all requests are finished.
2424 				 */
2425 				rdev = conf->disks[i].rdev;
2426 			break;
2427 		}
2428 	}
2429 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2430 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2431 		bi->bi_error);
2432 	if (i == disks) {
2433 		BUG();
2434 		return;
2435 	}
2436 
2437 	if (replacement) {
2438 		if (bi->bi_error)
2439 			md_error(conf->mddev, rdev);
2440 		else if (is_badblock(rdev, sh->sector,
2441 				     STRIPE_SECTORS,
2442 				     &first_bad, &bad_sectors))
2443 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2444 	} else {
2445 		if (bi->bi_error) {
2446 			set_bit(STRIPE_DEGRADED, &sh->state);
2447 			set_bit(WriteErrorSeen, &rdev->flags);
2448 			set_bit(R5_WriteError, &sh->dev[i].flags);
2449 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2450 				set_bit(MD_RECOVERY_NEEDED,
2451 					&rdev->mddev->recovery);
2452 		} else if (is_badblock(rdev, sh->sector,
2453 				       STRIPE_SECTORS,
2454 				       &first_bad, &bad_sectors)) {
2455 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2456 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2457 				/* That was a successful write so make
2458 				 * sure it looks like we already did
2459 				 * a re-write.
2460 				 */
2461 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2462 		}
2463 	}
2464 	rdev_dec_pending(rdev, conf->mddev);
2465 
2466 	if (sh->batch_head && bi->bi_error && !replacement)
2467 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2468 
2469 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2470 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2471 	set_bit(STRIPE_HANDLE, &sh->state);
2472 	release_stripe(sh);
2473 
2474 	if (sh->batch_head && sh != sh->batch_head)
2475 		release_stripe(sh->batch_head);
2476 }
2477 
2478 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2479 
2480 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2481 {
2482 	struct r5dev *dev = &sh->dev[i];
2483 
2484 	bio_init(&dev->req);
2485 	dev->req.bi_io_vec = &dev->vec;
2486 	dev->req.bi_max_vecs = 1;
2487 	dev->req.bi_private = sh;
2488 
2489 	bio_init(&dev->rreq);
2490 	dev->rreq.bi_io_vec = &dev->rvec;
2491 	dev->rreq.bi_max_vecs = 1;
2492 	dev->rreq.bi_private = sh;
2493 
2494 	dev->flags = 0;
2495 	dev->sector = compute_blocknr(sh, i, previous);
2496 }
2497 
2498 static void error(struct mddev *mddev, struct md_rdev *rdev)
2499 {
2500 	char b[BDEVNAME_SIZE];
2501 	struct r5conf *conf = mddev->private;
2502 	unsigned long flags;
2503 	pr_debug("raid456: error called\n");
2504 
2505 	spin_lock_irqsave(&conf->device_lock, flags);
2506 	clear_bit(In_sync, &rdev->flags);
2507 	mddev->degraded = calc_degraded(conf);
2508 	spin_unlock_irqrestore(&conf->device_lock, flags);
2509 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2510 
2511 	set_bit(Blocked, &rdev->flags);
2512 	set_bit(Faulty, &rdev->flags);
2513 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2514 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2515 	printk(KERN_ALERT
2516 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2517 	       "md/raid:%s: Operation continuing on %d devices.\n",
2518 	       mdname(mddev),
2519 	       bdevname(rdev->bdev, b),
2520 	       mdname(mddev),
2521 	       conf->raid_disks - mddev->degraded);
2522 }
2523 
2524 /*
2525  * Input: a 'big' sector number,
2526  * Output: index of the data and parity disk, and the sector # in them.
2527  */
2528 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2529 				     int previous, int *dd_idx,
2530 				     struct stripe_head *sh)
2531 {
2532 	sector_t stripe, stripe2;
2533 	sector_t chunk_number;
2534 	unsigned int chunk_offset;
2535 	int pd_idx, qd_idx;
2536 	int ddf_layout = 0;
2537 	sector_t new_sector;
2538 	int algorithm = previous ? conf->prev_algo
2539 				 : conf->algorithm;
2540 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2541 					 : conf->chunk_sectors;
2542 	int raid_disks = previous ? conf->previous_raid_disks
2543 				  : conf->raid_disks;
2544 	int data_disks = raid_disks - conf->max_degraded;
2545 
2546 	/* First compute the information on this sector */
2547 
2548 	/*
2549 	 * Compute the chunk number and the sector offset inside the chunk
2550 	 */
2551 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2552 	chunk_number = r_sector;
2553 
2554 	/*
2555 	 * Compute the stripe number
2556 	 */
2557 	stripe = chunk_number;
2558 	*dd_idx = sector_div(stripe, data_disks);
2559 	stripe2 = stripe;
2560 	/*
2561 	 * Select the parity disk based on the user selected algorithm.
2562 	 */
2563 	pd_idx = qd_idx = -1;
2564 	switch(conf->level) {
2565 	case 4:
2566 		pd_idx = data_disks;
2567 		break;
2568 	case 5:
2569 		switch (algorithm) {
2570 		case ALGORITHM_LEFT_ASYMMETRIC:
2571 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2572 			if (*dd_idx >= pd_idx)
2573 				(*dd_idx)++;
2574 			break;
2575 		case ALGORITHM_RIGHT_ASYMMETRIC:
2576 			pd_idx = sector_div(stripe2, raid_disks);
2577 			if (*dd_idx >= pd_idx)
2578 				(*dd_idx)++;
2579 			break;
2580 		case ALGORITHM_LEFT_SYMMETRIC:
2581 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2582 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2583 			break;
2584 		case ALGORITHM_RIGHT_SYMMETRIC:
2585 			pd_idx = sector_div(stripe2, raid_disks);
2586 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2587 			break;
2588 		case ALGORITHM_PARITY_0:
2589 			pd_idx = 0;
2590 			(*dd_idx)++;
2591 			break;
2592 		case ALGORITHM_PARITY_N:
2593 			pd_idx = data_disks;
2594 			break;
2595 		default:
2596 			BUG();
2597 		}
2598 		break;
2599 	case 6:
2600 
2601 		switch (algorithm) {
2602 		case ALGORITHM_LEFT_ASYMMETRIC:
2603 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2604 			qd_idx = pd_idx + 1;
2605 			if (pd_idx == raid_disks-1) {
2606 				(*dd_idx)++;	/* Q D D D P */
2607 				qd_idx = 0;
2608 			} else if (*dd_idx >= pd_idx)
2609 				(*dd_idx) += 2; /* D D P Q D */
2610 			break;
2611 		case ALGORITHM_RIGHT_ASYMMETRIC:
2612 			pd_idx = sector_div(stripe2, raid_disks);
2613 			qd_idx = pd_idx + 1;
2614 			if (pd_idx == raid_disks-1) {
2615 				(*dd_idx)++;	/* Q D D D P */
2616 				qd_idx = 0;
2617 			} else if (*dd_idx >= pd_idx)
2618 				(*dd_idx) += 2; /* D D P Q D */
2619 			break;
2620 		case ALGORITHM_LEFT_SYMMETRIC:
2621 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2622 			qd_idx = (pd_idx + 1) % raid_disks;
2623 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2624 			break;
2625 		case ALGORITHM_RIGHT_SYMMETRIC:
2626 			pd_idx = sector_div(stripe2, raid_disks);
2627 			qd_idx = (pd_idx + 1) % raid_disks;
2628 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2629 			break;
2630 
2631 		case ALGORITHM_PARITY_0:
2632 			pd_idx = 0;
2633 			qd_idx = 1;
2634 			(*dd_idx) += 2;
2635 			break;
2636 		case ALGORITHM_PARITY_N:
2637 			pd_idx = data_disks;
2638 			qd_idx = data_disks + 1;
2639 			break;
2640 
2641 		case ALGORITHM_ROTATING_ZERO_RESTART:
2642 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2643 			 * of blocks for computing Q is different.
2644 			 */
2645 			pd_idx = sector_div(stripe2, raid_disks);
2646 			qd_idx = pd_idx + 1;
2647 			if (pd_idx == raid_disks-1) {
2648 				(*dd_idx)++;	/* Q D D D P */
2649 				qd_idx = 0;
2650 			} else if (*dd_idx >= pd_idx)
2651 				(*dd_idx) += 2; /* D D P Q D */
2652 			ddf_layout = 1;
2653 			break;
2654 
2655 		case ALGORITHM_ROTATING_N_RESTART:
2656 			/* Same a left_asymmetric, by first stripe is
2657 			 * D D D P Q  rather than
2658 			 * Q D D D P
2659 			 */
2660 			stripe2 += 1;
2661 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2662 			qd_idx = pd_idx + 1;
2663 			if (pd_idx == raid_disks-1) {
2664 				(*dd_idx)++;	/* Q D D D P */
2665 				qd_idx = 0;
2666 			} else if (*dd_idx >= pd_idx)
2667 				(*dd_idx) += 2; /* D D P Q D */
2668 			ddf_layout = 1;
2669 			break;
2670 
2671 		case ALGORITHM_ROTATING_N_CONTINUE:
2672 			/* Same as left_symmetric but Q is before P */
2673 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2674 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2675 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2676 			ddf_layout = 1;
2677 			break;
2678 
2679 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2680 			/* RAID5 left_asymmetric, with Q on last device */
2681 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2682 			if (*dd_idx >= pd_idx)
2683 				(*dd_idx)++;
2684 			qd_idx = raid_disks - 1;
2685 			break;
2686 
2687 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2688 			pd_idx = sector_div(stripe2, raid_disks-1);
2689 			if (*dd_idx >= pd_idx)
2690 				(*dd_idx)++;
2691 			qd_idx = raid_disks - 1;
2692 			break;
2693 
2694 		case ALGORITHM_LEFT_SYMMETRIC_6:
2695 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2696 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2697 			qd_idx = raid_disks - 1;
2698 			break;
2699 
2700 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2701 			pd_idx = sector_div(stripe2, raid_disks-1);
2702 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2703 			qd_idx = raid_disks - 1;
2704 			break;
2705 
2706 		case ALGORITHM_PARITY_0_6:
2707 			pd_idx = 0;
2708 			(*dd_idx)++;
2709 			qd_idx = raid_disks - 1;
2710 			break;
2711 
2712 		default:
2713 			BUG();
2714 		}
2715 		break;
2716 	}
2717 
2718 	if (sh) {
2719 		sh->pd_idx = pd_idx;
2720 		sh->qd_idx = qd_idx;
2721 		sh->ddf_layout = ddf_layout;
2722 	}
2723 	/*
2724 	 * Finally, compute the new sector number
2725 	 */
2726 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2727 	return new_sector;
2728 }
2729 
2730 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2731 {
2732 	struct r5conf *conf = sh->raid_conf;
2733 	int raid_disks = sh->disks;
2734 	int data_disks = raid_disks - conf->max_degraded;
2735 	sector_t new_sector = sh->sector, check;
2736 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2737 					 : conf->chunk_sectors;
2738 	int algorithm = previous ? conf->prev_algo
2739 				 : conf->algorithm;
2740 	sector_t stripe;
2741 	int chunk_offset;
2742 	sector_t chunk_number;
2743 	int dummy1, dd_idx = i;
2744 	sector_t r_sector;
2745 	struct stripe_head sh2;
2746 
2747 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2748 	stripe = new_sector;
2749 
2750 	if (i == sh->pd_idx)
2751 		return 0;
2752 	switch(conf->level) {
2753 	case 4: break;
2754 	case 5:
2755 		switch (algorithm) {
2756 		case ALGORITHM_LEFT_ASYMMETRIC:
2757 		case ALGORITHM_RIGHT_ASYMMETRIC:
2758 			if (i > sh->pd_idx)
2759 				i--;
2760 			break;
2761 		case ALGORITHM_LEFT_SYMMETRIC:
2762 		case ALGORITHM_RIGHT_SYMMETRIC:
2763 			if (i < sh->pd_idx)
2764 				i += raid_disks;
2765 			i -= (sh->pd_idx + 1);
2766 			break;
2767 		case ALGORITHM_PARITY_0:
2768 			i -= 1;
2769 			break;
2770 		case ALGORITHM_PARITY_N:
2771 			break;
2772 		default:
2773 			BUG();
2774 		}
2775 		break;
2776 	case 6:
2777 		if (i == sh->qd_idx)
2778 			return 0; /* It is the Q disk */
2779 		switch (algorithm) {
2780 		case ALGORITHM_LEFT_ASYMMETRIC:
2781 		case ALGORITHM_RIGHT_ASYMMETRIC:
2782 		case ALGORITHM_ROTATING_ZERO_RESTART:
2783 		case ALGORITHM_ROTATING_N_RESTART:
2784 			if (sh->pd_idx == raid_disks-1)
2785 				i--;	/* Q D D D P */
2786 			else if (i > sh->pd_idx)
2787 				i -= 2; /* D D P Q D */
2788 			break;
2789 		case ALGORITHM_LEFT_SYMMETRIC:
2790 		case ALGORITHM_RIGHT_SYMMETRIC:
2791 			if (sh->pd_idx == raid_disks-1)
2792 				i--; /* Q D D D P */
2793 			else {
2794 				/* D D P Q D */
2795 				if (i < sh->pd_idx)
2796 					i += raid_disks;
2797 				i -= (sh->pd_idx + 2);
2798 			}
2799 			break;
2800 		case ALGORITHM_PARITY_0:
2801 			i -= 2;
2802 			break;
2803 		case ALGORITHM_PARITY_N:
2804 			break;
2805 		case ALGORITHM_ROTATING_N_CONTINUE:
2806 			/* Like left_symmetric, but P is before Q */
2807 			if (sh->pd_idx == 0)
2808 				i--;	/* P D D D Q */
2809 			else {
2810 				/* D D Q P D */
2811 				if (i < sh->pd_idx)
2812 					i += raid_disks;
2813 				i -= (sh->pd_idx + 1);
2814 			}
2815 			break;
2816 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2817 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2818 			if (i > sh->pd_idx)
2819 				i--;
2820 			break;
2821 		case ALGORITHM_LEFT_SYMMETRIC_6:
2822 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2823 			if (i < sh->pd_idx)
2824 				i += data_disks + 1;
2825 			i -= (sh->pd_idx + 1);
2826 			break;
2827 		case ALGORITHM_PARITY_0_6:
2828 			i -= 1;
2829 			break;
2830 		default:
2831 			BUG();
2832 		}
2833 		break;
2834 	}
2835 
2836 	chunk_number = stripe * data_disks + i;
2837 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2838 
2839 	check = raid5_compute_sector(conf, r_sector,
2840 				     previous, &dummy1, &sh2);
2841 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2842 		|| sh2.qd_idx != sh->qd_idx) {
2843 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2844 		       mdname(conf->mddev));
2845 		return 0;
2846 	}
2847 	return r_sector;
2848 }
2849 
2850 static void
2851 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2852 			 int rcw, int expand)
2853 {
2854 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2855 	struct r5conf *conf = sh->raid_conf;
2856 	int level = conf->level;
2857 
2858 	if (rcw) {
2859 
2860 		for (i = disks; i--; ) {
2861 			struct r5dev *dev = &sh->dev[i];
2862 
2863 			if (dev->towrite) {
2864 				set_bit(R5_LOCKED, &dev->flags);
2865 				set_bit(R5_Wantdrain, &dev->flags);
2866 				if (!expand)
2867 					clear_bit(R5_UPTODATE, &dev->flags);
2868 				s->locked++;
2869 			}
2870 		}
2871 		/* if we are not expanding this is a proper write request, and
2872 		 * there will be bios with new data to be drained into the
2873 		 * stripe cache
2874 		 */
2875 		if (!expand) {
2876 			if (!s->locked)
2877 				/* False alarm, nothing to do */
2878 				return;
2879 			sh->reconstruct_state = reconstruct_state_drain_run;
2880 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2881 		} else
2882 			sh->reconstruct_state = reconstruct_state_run;
2883 
2884 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2885 
2886 		if (s->locked + conf->max_degraded == disks)
2887 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2888 				atomic_inc(&conf->pending_full_writes);
2889 	} else {
2890 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2891 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2892 		BUG_ON(level == 6 &&
2893 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2894 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2895 
2896 		for (i = disks; i--; ) {
2897 			struct r5dev *dev = &sh->dev[i];
2898 			if (i == pd_idx || i == qd_idx)
2899 				continue;
2900 
2901 			if (dev->towrite &&
2902 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2903 			     test_bit(R5_Wantcompute, &dev->flags))) {
2904 				set_bit(R5_Wantdrain, &dev->flags);
2905 				set_bit(R5_LOCKED, &dev->flags);
2906 				clear_bit(R5_UPTODATE, &dev->flags);
2907 				s->locked++;
2908 			}
2909 		}
2910 		if (!s->locked)
2911 			/* False alarm - nothing to do */
2912 			return;
2913 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2914 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2915 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2916 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2917 	}
2918 
2919 	/* keep the parity disk(s) locked while asynchronous operations
2920 	 * are in flight
2921 	 */
2922 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2923 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2924 	s->locked++;
2925 
2926 	if (level == 6) {
2927 		int qd_idx = sh->qd_idx;
2928 		struct r5dev *dev = &sh->dev[qd_idx];
2929 
2930 		set_bit(R5_LOCKED, &dev->flags);
2931 		clear_bit(R5_UPTODATE, &dev->flags);
2932 		s->locked++;
2933 	}
2934 
2935 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2936 		__func__, (unsigned long long)sh->sector,
2937 		s->locked, s->ops_request);
2938 }
2939 
2940 /*
2941  * Each stripe/dev can have one or more bion attached.
2942  * toread/towrite point to the first in a chain.
2943  * The bi_next chain must be in order.
2944  */
2945 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2946 			  int forwrite, int previous)
2947 {
2948 	struct bio **bip;
2949 	struct r5conf *conf = sh->raid_conf;
2950 	int firstwrite=0;
2951 
2952 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2953 		(unsigned long long)bi->bi_iter.bi_sector,
2954 		(unsigned long long)sh->sector);
2955 
2956 	/*
2957 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2958 	 * reference count to avoid race. The reference count should already be
2959 	 * increased before this function is called (for example, in
2960 	 * make_request()), so other bio sharing this stripe will not free the
2961 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2962 	 * protect it.
2963 	 */
2964 	spin_lock_irq(&sh->stripe_lock);
2965 	/* Don't allow new IO added to stripes in batch list */
2966 	if (sh->batch_head)
2967 		goto overlap;
2968 	if (forwrite) {
2969 		bip = &sh->dev[dd_idx].towrite;
2970 		if (*bip == NULL)
2971 			firstwrite = 1;
2972 	} else
2973 		bip = &sh->dev[dd_idx].toread;
2974 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2975 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2976 			goto overlap;
2977 		bip = & (*bip)->bi_next;
2978 	}
2979 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2980 		goto overlap;
2981 
2982 	if (!forwrite || previous)
2983 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2984 
2985 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2986 	if (*bip)
2987 		bi->bi_next = *bip;
2988 	*bip = bi;
2989 	raid5_inc_bi_active_stripes(bi);
2990 
2991 	if (forwrite) {
2992 		/* check if page is covered */
2993 		sector_t sector = sh->dev[dd_idx].sector;
2994 		for (bi=sh->dev[dd_idx].towrite;
2995 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2996 			     bi && bi->bi_iter.bi_sector <= sector;
2997 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2998 			if (bio_end_sector(bi) >= sector)
2999 				sector = bio_end_sector(bi);
3000 		}
3001 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3002 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3003 				sh->overwrite_disks++;
3004 	}
3005 
3006 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3007 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3008 		(unsigned long long)sh->sector, dd_idx);
3009 
3010 	if (conf->mddev->bitmap && firstwrite) {
3011 		/* Cannot hold spinlock over bitmap_startwrite,
3012 		 * but must ensure this isn't added to a batch until
3013 		 * we have added to the bitmap and set bm_seq.
3014 		 * So set STRIPE_BITMAP_PENDING to prevent
3015 		 * batching.
3016 		 * If multiple add_stripe_bio() calls race here they
3017 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3018 		 * to complete "bitmap_startwrite" gets to set
3019 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3020 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3021 		 * any more.
3022 		 */
3023 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3024 		spin_unlock_irq(&sh->stripe_lock);
3025 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3026 				  STRIPE_SECTORS, 0);
3027 		spin_lock_irq(&sh->stripe_lock);
3028 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3029 		if (!sh->batch_head) {
3030 			sh->bm_seq = conf->seq_flush+1;
3031 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3032 		}
3033 	}
3034 	spin_unlock_irq(&sh->stripe_lock);
3035 
3036 	if (stripe_can_batch(sh))
3037 		stripe_add_to_batch_list(conf, sh);
3038 	return 1;
3039 
3040  overlap:
3041 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3042 	spin_unlock_irq(&sh->stripe_lock);
3043 	return 0;
3044 }
3045 
3046 static void end_reshape(struct r5conf *conf);
3047 
3048 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3049 			    struct stripe_head *sh)
3050 {
3051 	int sectors_per_chunk =
3052 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3053 	int dd_idx;
3054 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3055 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3056 
3057 	raid5_compute_sector(conf,
3058 			     stripe * (disks - conf->max_degraded)
3059 			     *sectors_per_chunk + chunk_offset,
3060 			     previous,
3061 			     &dd_idx, sh);
3062 }
3063 
3064 static void
3065 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3066 				struct stripe_head_state *s, int disks,
3067 				struct bio_list *return_bi)
3068 {
3069 	int i;
3070 	BUG_ON(sh->batch_head);
3071 	for (i = disks; i--; ) {
3072 		struct bio *bi;
3073 		int bitmap_end = 0;
3074 
3075 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3076 			struct md_rdev *rdev;
3077 			rcu_read_lock();
3078 			rdev = rcu_dereference(conf->disks[i].rdev);
3079 			if (rdev && test_bit(In_sync, &rdev->flags))
3080 				atomic_inc(&rdev->nr_pending);
3081 			else
3082 				rdev = NULL;
3083 			rcu_read_unlock();
3084 			if (rdev) {
3085 				if (!rdev_set_badblocks(
3086 					    rdev,
3087 					    sh->sector,
3088 					    STRIPE_SECTORS, 0))
3089 					md_error(conf->mddev, rdev);
3090 				rdev_dec_pending(rdev, conf->mddev);
3091 			}
3092 		}
3093 		spin_lock_irq(&sh->stripe_lock);
3094 		/* fail all writes first */
3095 		bi = sh->dev[i].towrite;
3096 		sh->dev[i].towrite = NULL;
3097 		sh->overwrite_disks = 0;
3098 		spin_unlock_irq(&sh->stripe_lock);
3099 		if (bi)
3100 			bitmap_end = 1;
3101 
3102 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3103 			wake_up(&conf->wait_for_overlap);
3104 
3105 		while (bi && bi->bi_iter.bi_sector <
3106 			sh->dev[i].sector + STRIPE_SECTORS) {
3107 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3108 
3109 			bi->bi_error = -EIO;
3110 			if (!raid5_dec_bi_active_stripes(bi)) {
3111 				md_write_end(conf->mddev);
3112 				bio_list_add(return_bi, bi);
3113 			}
3114 			bi = nextbi;
3115 		}
3116 		if (bitmap_end)
3117 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3118 				STRIPE_SECTORS, 0, 0);
3119 		bitmap_end = 0;
3120 		/* and fail all 'written' */
3121 		bi = sh->dev[i].written;
3122 		sh->dev[i].written = NULL;
3123 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3124 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3125 			sh->dev[i].page = sh->dev[i].orig_page;
3126 		}
3127 
3128 		if (bi) bitmap_end = 1;
3129 		while (bi && bi->bi_iter.bi_sector <
3130 		       sh->dev[i].sector + STRIPE_SECTORS) {
3131 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3132 
3133 			bi->bi_error = -EIO;
3134 			if (!raid5_dec_bi_active_stripes(bi)) {
3135 				md_write_end(conf->mddev);
3136 				bio_list_add(return_bi, bi);
3137 			}
3138 			bi = bi2;
3139 		}
3140 
3141 		/* fail any reads if this device is non-operational and
3142 		 * the data has not reached the cache yet.
3143 		 */
3144 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3145 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3146 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3147 			spin_lock_irq(&sh->stripe_lock);
3148 			bi = sh->dev[i].toread;
3149 			sh->dev[i].toread = NULL;
3150 			spin_unlock_irq(&sh->stripe_lock);
3151 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3152 				wake_up(&conf->wait_for_overlap);
3153 			while (bi && bi->bi_iter.bi_sector <
3154 			       sh->dev[i].sector + STRIPE_SECTORS) {
3155 				struct bio *nextbi =
3156 					r5_next_bio(bi, sh->dev[i].sector);
3157 
3158 				bi->bi_error = -EIO;
3159 				if (!raid5_dec_bi_active_stripes(bi))
3160 					bio_list_add(return_bi, bi);
3161 				bi = nextbi;
3162 			}
3163 		}
3164 		if (bitmap_end)
3165 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3166 					STRIPE_SECTORS, 0, 0);
3167 		/* If we were in the middle of a write the parity block might
3168 		 * still be locked - so just clear all R5_LOCKED flags
3169 		 */
3170 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3171 	}
3172 
3173 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3174 		if (atomic_dec_and_test(&conf->pending_full_writes))
3175 			md_wakeup_thread(conf->mddev->thread);
3176 }
3177 
3178 static void
3179 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3180 		   struct stripe_head_state *s)
3181 {
3182 	int abort = 0;
3183 	int i;
3184 
3185 	BUG_ON(sh->batch_head);
3186 	clear_bit(STRIPE_SYNCING, &sh->state);
3187 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3188 		wake_up(&conf->wait_for_overlap);
3189 	s->syncing = 0;
3190 	s->replacing = 0;
3191 	/* There is nothing more to do for sync/check/repair.
3192 	 * Don't even need to abort as that is handled elsewhere
3193 	 * if needed, and not always wanted e.g. if there is a known
3194 	 * bad block here.
3195 	 * For recover/replace we need to record a bad block on all
3196 	 * non-sync devices, or abort the recovery
3197 	 */
3198 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3199 		/* During recovery devices cannot be removed, so
3200 		 * locking and refcounting of rdevs is not needed
3201 		 */
3202 		for (i = 0; i < conf->raid_disks; i++) {
3203 			struct md_rdev *rdev = conf->disks[i].rdev;
3204 			if (rdev
3205 			    && !test_bit(Faulty, &rdev->flags)
3206 			    && !test_bit(In_sync, &rdev->flags)
3207 			    && !rdev_set_badblocks(rdev, sh->sector,
3208 						   STRIPE_SECTORS, 0))
3209 				abort = 1;
3210 			rdev = conf->disks[i].replacement;
3211 			if (rdev
3212 			    && !test_bit(Faulty, &rdev->flags)
3213 			    && !test_bit(In_sync, &rdev->flags)
3214 			    && !rdev_set_badblocks(rdev, sh->sector,
3215 						   STRIPE_SECTORS, 0))
3216 				abort = 1;
3217 		}
3218 		if (abort)
3219 			conf->recovery_disabled =
3220 				conf->mddev->recovery_disabled;
3221 	}
3222 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3223 }
3224 
3225 static int want_replace(struct stripe_head *sh, int disk_idx)
3226 {
3227 	struct md_rdev *rdev;
3228 	int rv = 0;
3229 	/* Doing recovery so rcu locking not required */
3230 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3231 	if (rdev
3232 	    && !test_bit(Faulty, &rdev->flags)
3233 	    && !test_bit(In_sync, &rdev->flags)
3234 	    && (rdev->recovery_offset <= sh->sector
3235 		|| rdev->mddev->recovery_cp <= sh->sector))
3236 		rv = 1;
3237 
3238 	return rv;
3239 }
3240 
3241 /* fetch_block - checks the given member device to see if its data needs
3242  * to be read or computed to satisfy a request.
3243  *
3244  * Returns 1 when no more member devices need to be checked, otherwise returns
3245  * 0 to tell the loop in handle_stripe_fill to continue
3246  */
3247 
3248 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3249 			   int disk_idx, int disks)
3250 {
3251 	struct r5dev *dev = &sh->dev[disk_idx];
3252 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3253 				  &sh->dev[s->failed_num[1]] };
3254 	int i;
3255 
3256 
3257 	if (test_bit(R5_LOCKED, &dev->flags) ||
3258 	    test_bit(R5_UPTODATE, &dev->flags))
3259 		/* No point reading this as we already have it or have
3260 		 * decided to get it.
3261 		 */
3262 		return 0;
3263 
3264 	if (dev->toread ||
3265 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3266 		/* We need this block to directly satisfy a request */
3267 		return 1;
3268 
3269 	if (s->syncing || s->expanding ||
3270 	    (s->replacing && want_replace(sh, disk_idx)))
3271 		/* When syncing, or expanding we read everything.
3272 		 * When replacing, we need the replaced block.
3273 		 */
3274 		return 1;
3275 
3276 	if ((s->failed >= 1 && fdev[0]->toread) ||
3277 	    (s->failed >= 2 && fdev[1]->toread))
3278 		/* If we want to read from a failed device, then
3279 		 * we need to actually read every other device.
3280 		 */
3281 		return 1;
3282 
3283 	/* Sometimes neither read-modify-write nor reconstruct-write
3284 	 * cycles can work.  In those cases we read every block we
3285 	 * can.  Then the parity-update is certain to have enough to
3286 	 * work with.
3287 	 * This can only be a problem when we need to write something,
3288 	 * and some device has failed.  If either of those tests
3289 	 * fail we need look no further.
3290 	 */
3291 	if (!s->failed || !s->to_write)
3292 		return 0;
3293 
3294 	if (test_bit(R5_Insync, &dev->flags) &&
3295 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3296 		/* Pre-reads at not permitted until after short delay
3297 		 * to gather multiple requests.  However if this
3298 		 * device is no Insync, the block could only be be computed
3299 		 * and there is no need to delay that.
3300 		 */
3301 		return 0;
3302 
3303 	for (i = 0; i < s->failed; i++) {
3304 		if (fdev[i]->towrite &&
3305 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3306 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3307 			/* If we have a partial write to a failed
3308 			 * device, then we will need to reconstruct
3309 			 * the content of that device, so all other
3310 			 * devices must be read.
3311 			 */
3312 			return 1;
3313 	}
3314 
3315 	/* If we are forced to do a reconstruct-write, either because
3316 	 * the current RAID6 implementation only supports that, or
3317 	 * or because parity cannot be trusted and we are currently
3318 	 * recovering it, there is extra need to be careful.
3319 	 * If one of the devices that we would need to read, because
3320 	 * it is not being overwritten (and maybe not written at all)
3321 	 * is missing/faulty, then we need to read everything we can.
3322 	 */
3323 	if (sh->raid_conf->level != 6 &&
3324 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3325 		/* reconstruct-write isn't being forced */
3326 		return 0;
3327 	for (i = 0; i < s->failed; i++) {
3328 		if (s->failed_num[i] != sh->pd_idx &&
3329 		    s->failed_num[i] != sh->qd_idx &&
3330 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3331 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3332 			return 1;
3333 	}
3334 
3335 	return 0;
3336 }
3337 
3338 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3339 		       int disk_idx, int disks)
3340 {
3341 	struct r5dev *dev = &sh->dev[disk_idx];
3342 
3343 	/* is the data in this block needed, and can we get it? */
3344 	if (need_this_block(sh, s, disk_idx, disks)) {
3345 		/* we would like to get this block, possibly by computing it,
3346 		 * otherwise read it if the backing disk is insync
3347 		 */
3348 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3349 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3350 		BUG_ON(sh->batch_head);
3351 		if ((s->uptodate == disks - 1) &&
3352 		    (s->failed && (disk_idx == s->failed_num[0] ||
3353 				   disk_idx == s->failed_num[1]))) {
3354 			/* have disk failed, and we're requested to fetch it;
3355 			 * do compute it
3356 			 */
3357 			pr_debug("Computing stripe %llu block %d\n",
3358 			       (unsigned long long)sh->sector, disk_idx);
3359 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3360 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3361 			set_bit(R5_Wantcompute, &dev->flags);
3362 			sh->ops.target = disk_idx;
3363 			sh->ops.target2 = -1; /* no 2nd target */
3364 			s->req_compute = 1;
3365 			/* Careful: from this point on 'uptodate' is in the eye
3366 			 * of raid_run_ops which services 'compute' operations
3367 			 * before writes. R5_Wantcompute flags a block that will
3368 			 * be R5_UPTODATE by the time it is needed for a
3369 			 * subsequent operation.
3370 			 */
3371 			s->uptodate++;
3372 			return 1;
3373 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3374 			/* Computing 2-failure is *very* expensive; only
3375 			 * do it if failed >= 2
3376 			 */
3377 			int other;
3378 			for (other = disks; other--; ) {
3379 				if (other == disk_idx)
3380 					continue;
3381 				if (!test_bit(R5_UPTODATE,
3382 				      &sh->dev[other].flags))
3383 					break;
3384 			}
3385 			BUG_ON(other < 0);
3386 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3387 			       (unsigned long long)sh->sector,
3388 			       disk_idx, other);
3389 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3390 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3391 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3392 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3393 			sh->ops.target = disk_idx;
3394 			sh->ops.target2 = other;
3395 			s->uptodate += 2;
3396 			s->req_compute = 1;
3397 			return 1;
3398 		} else if (test_bit(R5_Insync, &dev->flags)) {
3399 			set_bit(R5_LOCKED, &dev->flags);
3400 			set_bit(R5_Wantread, &dev->flags);
3401 			s->locked++;
3402 			pr_debug("Reading block %d (sync=%d)\n",
3403 				disk_idx, s->syncing);
3404 		}
3405 	}
3406 
3407 	return 0;
3408 }
3409 
3410 /**
3411  * handle_stripe_fill - read or compute data to satisfy pending requests.
3412  */
3413 static void handle_stripe_fill(struct stripe_head *sh,
3414 			       struct stripe_head_state *s,
3415 			       int disks)
3416 {
3417 	int i;
3418 
3419 	/* look for blocks to read/compute, skip this if a compute
3420 	 * is already in flight, or if the stripe contents are in the
3421 	 * midst of changing due to a write
3422 	 */
3423 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3424 	    !sh->reconstruct_state)
3425 		for (i = disks; i--; )
3426 			if (fetch_block(sh, s, i, disks))
3427 				break;
3428 	set_bit(STRIPE_HANDLE, &sh->state);
3429 }
3430 
3431 static void break_stripe_batch_list(struct stripe_head *head_sh,
3432 				    unsigned long handle_flags);
3433 /* handle_stripe_clean_event
3434  * any written block on an uptodate or failed drive can be returned.
3435  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3436  * never LOCKED, so we don't need to test 'failed' directly.
3437  */
3438 static void handle_stripe_clean_event(struct r5conf *conf,
3439 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3440 {
3441 	int i;
3442 	struct r5dev *dev;
3443 	int discard_pending = 0;
3444 	struct stripe_head *head_sh = sh;
3445 	bool do_endio = false;
3446 
3447 	for (i = disks; i--; )
3448 		if (sh->dev[i].written) {
3449 			dev = &sh->dev[i];
3450 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3451 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3452 			     test_bit(R5_Discard, &dev->flags) ||
3453 			     test_bit(R5_SkipCopy, &dev->flags))) {
3454 				/* We can return any write requests */
3455 				struct bio *wbi, *wbi2;
3456 				pr_debug("Return write for disc %d\n", i);
3457 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3458 					clear_bit(R5_UPTODATE, &dev->flags);
3459 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3460 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3461 				}
3462 				do_endio = true;
3463 
3464 returnbi:
3465 				dev->page = dev->orig_page;
3466 				wbi = dev->written;
3467 				dev->written = NULL;
3468 				while (wbi && wbi->bi_iter.bi_sector <
3469 					dev->sector + STRIPE_SECTORS) {
3470 					wbi2 = r5_next_bio(wbi, dev->sector);
3471 					if (!raid5_dec_bi_active_stripes(wbi)) {
3472 						md_write_end(conf->mddev);
3473 						bio_list_add(return_bi, wbi);
3474 					}
3475 					wbi = wbi2;
3476 				}
3477 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3478 						STRIPE_SECTORS,
3479 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3480 						0);
3481 				if (head_sh->batch_head) {
3482 					sh = list_first_entry(&sh->batch_list,
3483 							      struct stripe_head,
3484 							      batch_list);
3485 					if (sh != head_sh) {
3486 						dev = &sh->dev[i];
3487 						goto returnbi;
3488 					}
3489 				}
3490 				sh = head_sh;
3491 				dev = &sh->dev[i];
3492 			} else if (test_bit(R5_Discard, &dev->flags))
3493 				discard_pending = 1;
3494 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3495 			WARN_ON(dev->page != dev->orig_page);
3496 		}
3497 	if (!discard_pending &&
3498 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3499 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3500 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3501 		if (sh->qd_idx >= 0) {
3502 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3503 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3504 		}
3505 		/* now that discard is done we can proceed with any sync */
3506 		clear_bit(STRIPE_DISCARD, &sh->state);
3507 		/*
3508 		 * SCSI discard will change some bio fields and the stripe has
3509 		 * no updated data, so remove it from hash list and the stripe
3510 		 * will be reinitialized
3511 		 */
3512 		spin_lock_irq(&conf->device_lock);
3513 unhash:
3514 		remove_hash(sh);
3515 		if (head_sh->batch_head) {
3516 			sh = list_first_entry(&sh->batch_list,
3517 					      struct stripe_head, batch_list);
3518 			if (sh != head_sh)
3519 					goto unhash;
3520 		}
3521 		spin_unlock_irq(&conf->device_lock);
3522 		sh = head_sh;
3523 
3524 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3525 			set_bit(STRIPE_HANDLE, &sh->state);
3526 
3527 	}
3528 
3529 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3530 		if (atomic_dec_and_test(&conf->pending_full_writes))
3531 			md_wakeup_thread(conf->mddev->thread);
3532 
3533 	if (head_sh->batch_head && do_endio)
3534 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3535 }
3536 
3537 static void handle_stripe_dirtying(struct r5conf *conf,
3538 				   struct stripe_head *sh,
3539 				   struct stripe_head_state *s,
3540 				   int disks)
3541 {
3542 	int rmw = 0, rcw = 0, i;
3543 	sector_t recovery_cp = conf->mddev->recovery_cp;
3544 
3545 	/* Check whether resync is now happening or should start.
3546 	 * If yes, then the array is dirty (after unclean shutdown or
3547 	 * initial creation), so parity in some stripes might be inconsistent.
3548 	 * In this case, we need to always do reconstruct-write, to ensure
3549 	 * that in case of drive failure or read-error correction, we
3550 	 * generate correct data from the parity.
3551 	 */
3552 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3553 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3554 	     s->failed == 0)) {
3555 		/* Calculate the real rcw later - for now make it
3556 		 * look like rcw is cheaper
3557 		 */
3558 		rcw = 1; rmw = 2;
3559 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3560 			 conf->rmw_level, (unsigned long long)recovery_cp,
3561 			 (unsigned long long)sh->sector);
3562 	} else for (i = disks; i--; ) {
3563 		/* would I have to read this buffer for read_modify_write */
3564 		struct r5dev *dev = &sh->dev[i];
3565 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3566 		    !test_bit(R5_LOCKED, &dev->flags) &&
3567 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3568 		      test_bit(R5_Wantcompute, &dev->flags))) {
3569 			if (test_bit(R5_Insync, &dev->flags))
3570 				rmw++;
3571 			else
3572 				rmw += 2*disks;  /* cannot read it */
3573 		}
3574 		/* Would I have to read this buffer for reconstruct_write */
3575 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3576 		    i != sh->pd_idx && i != sh->qd_idx &&
3577 		    !test_bit(R5_LOCKED, &dev->flags) &&
3578 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3579 		    test_bit(R5_Wantcompute, &dev->flags))) {
3580 			if (test_bit(R5_Insync, &dev->flags))
3581 				rcw++;
3582 			else
3583 				rcw += 2*disks;
3584 		}
3585 	}
3586 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3587 		(unsigned long long)sh->sector, rmw, rcw);
3588 	set_bit(STRIPE_HANDLE, &sh->state);
3589 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3590 		/* prefer read-modify-write, but need to get some data */
3591 		if (conf->mddev->queue)
3592 			blk_add_trace_msg(conf->mddev->queue,
3593 					  "raid5 rmw %llu %d",
3594 					  (unsigned long long)sh->sector, rmw);
3595 		for (i = disks; i--; ) {
3596 			struct r5dev *dev = &sh->dev[i];
3597 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3598 			    !test_bit(R5_LOCKED, &dev->flags) &&
3599 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3600 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3601 			    test_bit(R5_Insync, &dev->flags)) {
3602 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3603 					     &sh->state)) {
3604 					pr_debug("Read_old block %d for r-m-w\n",
3605 						 i);
3606 					set_bit(R5_LOCKED, &dev->flags);
3607 					set_bit(R5_Wantread, &dev->flags);
3608 					s->locked++;
3609 				} else {
3610 					set_bit(STRIPE_DELAYED, &sh->state);
3611 					set_bit(STRIPE_HANDLE, &sh->state);
3612 				}
3613 			}
3614 		}
3615 	}
3616 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3617 		/* want reconstruct write, but need to get some data */
3618 		int qread =0;
3619 		rcw = 0;
3620 		for (i = disks; i--; ) {
3621 			struct r5dev *dev = &sh->dev[i];
3622 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3623 			    i != sh->pd_idx && i != sh->qd_idx &&
3624 			    !test_bit(R5_LOCKED, &dev->flags) &&
3625 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3626 			      test_bit(R5_Wantcompute, &dev->flags))) {
3627 				rcw++;
3628 				if (test_bit(R5_Insync, &dev->flags) &&
3629 				    test_bit(STRIPE_PREREAD_ACTIVE,
3630 					     &sh->state)) {
3631 					pr_debug("Read_old block "
3632 						"%d for Reconstruct\n", i);
3633 					set_bit(R5_LOCKED, &dev->flags);
3634 					set_bit(R5_Wantread, &dev->flags);
3635 					s->locked++;
3636 					qread++;
3637 				} else {
3638 					set_bit(STRIPE_DELAYED, &sh->state);
3639 					set_bit(STRIPE_HANDLE, &sh->state);
3640 				}
3641 			}
3642 		}
3643 		if (rcw && conf->mddev->queue)
3644 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3645 					  (unsigned long long)sh->sector,
3646 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3647 	}
3648 
3649 	if (rcw > disks && rmw > disks &&
3650 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3651 		set_bit(STRIPE_DELAYED, &sh->state);
3652 
3653 	/* now if nothing is locked, and if we have enough data,
3654 	 * we can start a write request
3655 	 */
3656 	/* since handle_stripe can be called at any time we need to handle the
3657 	 * case where a compute block operation has been submitted and then a
3658 	 * subsequent call wants to start a write request.  raid_run_ops only
3659 	 * handles the case where compute block and reconstruct are requested
3660 	 * simultaneously.  If this is not the case then new writes need to be
3661 	 * held off until the compute completes.
3662 	 */
3663 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3664 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3665 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3666 		schedule_reconstruction(sh, s, rcw == 0, 0);
3667 }
3668 
3669 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3670 				struct stripe_head_state *s, int disks)
3671 {
3672 	struct r5dev *dev = NULL;
3673 
3674 	BUG_ON(sh->batch_head);
3675 	set_bit(STRIPE_HANDLE, &sh->state);
3676 
3677 	switch (sh->check_state) {
3678 	case check_state_idle:
3679 		/* start a new check operation if there are no failures */
3680 		if (s->failed == 0) {
3681 			BUG_ON(s->uptodate != disks);
3682 			sh->check_state = check_state_run;
3683 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3684 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3685 			s->uptodate--;
3686 			break;
3687 		}
3688 		dev = &sh->dev[s->failed_num[0]];
3689 		/* fall through */
3690 	case check_state_compute_result:
3691 		sh->check_state = check_state_idle;
3692 		if (!dev)
3693 			dev = &sh->dev[sh->pd_idx];
3694 
3695 		/* check that a write has not made the stripe insync */
3696 		if (test_bit(STRIPE_INSYNC, &sh->state))
3697 			break;
3698 
3699 		/* either failed parity check, or recovery is happening */
3700 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3701 		BUG_ON(s->uptodate != disks);
3702 
3703 		set_bit(R5_LOCKED, &dev->flags);
3704 		s->locked++;
3705 		set_bit(R5_Wantwrite, &dev->flags);
3706 
3707 		clear_bit(STRIPE_DEGRADED, &sh->state);
3708 		set_bit(STRIPE_INSYNC, &sh->state);
3709 		break;
3710 	case check_state_run:
3711 		break; /* we will be called again upon completion */
3712 	case check_state_check_result:
3713 		sh->check_state = check_state_idle;
3714 
3715 		/* if a failure occurred during the check operation, leave
3716 		 * STRIPE_INSYNC not set and let the stripe be handled again
3717 		 */
3718 		if (s->failed)
3719 			break;
3720 
3721 		/* handle a successful check operation, if parity is correct
3722 		 * we are done.  Otherwise update the mismatch count and repair
3723 		 * parity if !MD_RECOVERY_CHECK
3724 		 */
3725 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3726 			/* parity is correct (on disc,
3727 			 * not in buffer any more)
3728 			 */
3729 			set_bit(STRIPE_INSYNC, &sh->state);
3730 		else {
3731 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3732 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3733 				/* don't try to repair!! */
3734 				set_bit(STRIPE_INSYNC, &sh->state);
3735 			else {
3736 				sh->check_state = check_state_compute_run;
3737 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3738 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3739 				set_bit(R5_Wantcompute,
3740 					&sh->dev[sh->pd_idx].flags);
3741 				sh->ops.target = sh->pd_idx;
3742 				sh->ops.target2 = -1;
3743 				s->uptodate++;
3744 			}
3745 		}
3746 		break;
3747 	case check_state_compute_run:
3748 		break;
3749 	default:
3750 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3751 		       __func__, sh->check_state,
3752 		       (unsigned long long) sh->sector);
3753 		BUG();
3754 	}
3755 }
3756 
3757 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3758 				  struct stripe_head_state *s,
3759 				  int disks)
3760 {
3761 	int pd_idx = sh->pd_idx;
3762 	int qd_idx = sh->qd_idx;
3763 	struct r5dev *dev;
3764 
3765 	BUG_ON(sh->batch_head);
3766 	set_bit(STRIPE_HANDLE, &sh->state);
3767 
3768 	BUG_ON(s->failed > 2);
3769 
3770 	/* Want to check and possibly repair P and Q.
3771 	 * However there could be one 'failed' device, in which
3772 	 * case we can only check one of them, possibly using the
3773 	 * other to generate missing data
3774 	 */
3775 
3776 	switch (sh->check_state) {
3777 	case check_state_idle:
3778 		/* start a new check operation if there are < 2 failures */
3779 		if (s->failed == s->q_failed) {
3780 			/* The only possible failed device holds Q, so it
3781 			 * makes sense to check P (If anything else were failed,
3782 			 * we would have used P to recreate it).
3783 			 */
3784 			sh->check_state = check_state_run;
3785 		}
3786 		if (!s->q_failed && s->failed < 2) {
3787 			/* Q is not failed, and we didn't use it to generate
3788 			 * anything, so it makes sense to check it
3789 			 */
3790 			if (sh->check_state == check_state_run)
3791 				sh->check_state = check_state_run_pq;
3792 			else
3793 				sh->check_state = check_state_run_q;
3794 		}
3795 
3796 		/* discard potentially stale zero_sum_result */
3797 		sh->ops.zero_sum_result = 0;
3798 
3799 		if (sh->check_state == check_state_run) {
3800 			/* async_xor_zero_sum destroys the contents of P */
3801 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3802 			s->uptodate--;
3803 		}
3804 		if (sh->check_state >= check_state_run &&
3805 		    sh->check_state <= check_state_run_pq) {
3806 			/* async_syndrome_zero_sum preserves P and Q, so
3807 			 * no need to mark them !uptodate here
3808 			 */
3809 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3810 			break;
3811 		}
3812 
3813 		/* we have 2-disk failure */
3814 		BUG_ON(s->failed != 2);
3815 		/* fall through */
3816 	case check_state_compute_result:
3817 		sh->check_state = check_state_idle;
3818 
3819 		/* check that a write has not made the stripe insync */
3820 		if (test_bit(STRIPE_INSYNC, &sh->state))
3821 			break;
3822 
3823 		/* now write out any block on a failed drive,
3824 		 * or P or Q if they were recomputed
3825 		 */
3826 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3827 		if (s->failed == 2) {
3828 			dev = &sh->dev[s->failed_num[1]];
3829 			s->locked++;
3830 			set_bit(R5_LOCKED, &dev->flags);
3831 			set_bit(R5_Wantwrite, &dev->flags);
3832 		}
3833 		if (s->failed >= 1) {
3834 			dev = &sh->dev[s->failed_num[0]];
3835 			s->locked++;
3836 			set_bit(R5_LOCKED, &dev->flags);
3837 			set_bit(R5_Wantwrite, &dev->flags);
3838 		}
3839 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3840 			dev = &sh->dev[pd_idx];
3841 			s->locked++;
3842 			set_bit(R5_LOCKED, &dev->flags);
3843 			set_bit(R5_Wantwrite, &dev->flags);
3844 		}
3845 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3846 			dev = &sh->dev[qd_idx];
3847 			s->locked++;
3848 			set_bit(R5_LOCKED, &dev->flags);
3849 			set_bit(R5_Wantwrite, &dev->flags);
3850 		}
3851 		clear_bit(STRIPE_DEGRADED, &sh->state);
3852 
3853 		set_bit(STRIPE_INSYNC, &sh->state);
3854 		break;
3855 	case check_state_run:
3856 	case check_state_run_q:
3857 	case check_state_run_pq:
3858 		break; /* we will be called again upon completion */
3859 	case check_state_check_result:
3860 		sh->check_state = check_state_idle;
3861 
3862 		/* handle a successful check operation, if parity is correct
3863 		 * we are done.  Otherwise update the mismatch count and repair
3864 		 * parity if !MD_RECOVERY_CHECK
3865 		 */
3866 		if (sh->ops.zero_sum_result == 0) {
3867 			/* both parities are correct */
3868 			if (!s->failed)
3869 				set_bit(STRIPE_INSYNC, &sh->state);
3870 			else {
3871 				/* in contrast to the raid5 case we can validate
3872 				 * parity, but still have a failure to write
3873 				 * back
3874 				 */
3875 				sh->check_state = check_state_compute_result;
3876 				/* Returning at this point means that we may go
3877 				 * off and bring p and/or q uptodate again so
3878 				 * we make sure to check zero_sum_result again
3879 				 * to verify if p or q need writeback
3880 				 */
3881 			}
3882 		} else {
3883 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3884 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3885 				/* don't try to repair!! */
3886 				set_bit(STRIPE_INSYNC, &sh->state);
3887 			else {
3888 				int *target = &sh->ops.target;
3889 
3890 				sh->ops.target = -1;
3891 				sh->ops.target2 = -1;
3892 				sh->check_state = check_state_compute_run;
3893 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3894 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3895 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3896 					set_bit(R5_Wantcompute,
3897 						&sh->dev[pd_idx].flags);
3898 					*target = pd_idx;
3899 					target = &sh->ops.target2;
3900 					s->uptodate++;
3901 				}
3902 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3903 					set_bit(R5_Wantcompute,
3904 						&sh->dev[qd_idx].flags);
3905 					*target = qd_idx;
3906 					s->uptodate++;
3907 				}
3908 			}
3909 		}
3910 		break;
3911 	case check_state_compute_run:
3912 		break;
3913 	default:
3914 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3915 		       __func__, sh->check_state,
3916 		       (unsigned long long) sh->sector);
3917 		BUG();
3918 	}
3919 }
3920 
3921 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3922 {
3923 	int i;
3924 
3925 	/* We have read all the blocks in this stripe and now we need to
3926 	 * copy some of them into a target stripe for expand.
3927 	 */
3928 	struct dma_async_tx_descriptor *tx = NULL;
3929 	BUG_ON(sh->batch_head);
3930 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3931 	for (i = 0; i < sh->disks; i++)
3932 		if (i != sh->pd_idx && i != sh->qd_idx) {
3933 			int dd_idx, j;
3934 			struct stripe_head *sh2;
3935 			struct async_submit_ctl submit;
3936 
3937 			sector_t bn = compute_blocknr(sh, i, 1);
3938 			sector_t s = raid5_compute_sector(conf, bn, 0,
3939 							  &dd_idx, NULL);
3940 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3941 			if (sh2 == NULL)
3942 				/* so far only the early blocks of this stripe
3943 				 * have been requested.  When later blocks
3944 				 * get requested, we will try again
3945 				 */
3946 				continue;
3947 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3948 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3949 				/* must have already done this block */
3950 				release_stripe(sh2);
3951 				continue;
3952 			}
3953 
3954 			/* place all the copies on one channel */
3955 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3956 			tx = async_memcpy(sh2->dev[dd_idx].page,
3957 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3958 					  &submit);
3959 
3960 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3961 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3962 			for (j = 0; j < conf->raid_disks; j++)
3963 				if (j != sh2->pd_idx &&
3964 				    j != sh2->qd_idx &&
3965 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3966 					break;
3967 			if (j == conf->raid_disks) {
3968 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3969 				set_bit(STRIPE_HANDLE, &sh2->state);
3970 			}
3971 			release_stripe(sh2);
3972 
3973 		}
3974 	/* done submitting copies, wait for them to complete */
3975 	async_tx_quiesce(&tx);
3976 }
3977 
3978 /*
3979  * handle_stripe - do things to a stripe.
3980  *
3981  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3982  * state of various bits to see what needs to be done.
3983  * Possible results:
3984  *    return some read requests which now have data
3985  *    return some write requests which are safely on storage
3986  *    schedule a read on some buffers
3987  *    schedule a write of some buffers
3988  *    return confirmation of parity correctness
3989  *
3990  */
3991 
3992 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3993 {
3994 	struct r5conf *conf = sh->raid_conf;
3995 	int disks = sh->disks;
3996 	struct r5dev *dev;
3997 	int i;
3998 	int do_recovery = 0;
3999 
4000 	memset(s, 0, sizeof(*s));
4001 
4002 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4003 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4004 	s->failed_num[0] = -1;
4005 	s->failed_num[1] = -1;
4006 
4007 	/* Now to look around and see what can be done */
4008 	rcu_read_lock();
4009 	for (i=disks; i--; ) {
4010 		struct md_rdev *rdev;
4011 		sector_t first_bad;
4012 		int bad_sectors;
4013 		int is_bad = 0;
4014 
4015 		dev = &sh->dev[i];
4016 
4017 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4018 			 i, dev->flags,
4019 			 dev->toread, dev->towrite, dev->written);
4020 		/* maybe we can reply to a read
4021 		 *
4022 		 * new wantfill requests are only permitted while
4023 		 * ops_complete_biofill is guaranteed to be inactive
4024 		 */
4025 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4026 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4027 			set_bit(R5_Wantfill, &dev->flags);
4028 
4029 		/* now count some things */
4030 		if (test_bit(R5_LOCKED, &dev->flags))
4031 			s->locked++;
4032 		if (test_bit(R5_UPTODATE, &dev->flags))
4033 			s->uptodate++;
4034 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4035 			s->compute++;
4036 			BUG_ON(s->compute > 2);
4037 		}
4038 
4039 		if (test_bit(R5_Wantfill, &dev->flags))
4040 			s->to_fill++;
4041 		else if (dev->toread)
4042 			s->to_read++;
4043 		if (dev->towrite) {
4044 			s->to_write++;
4045 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4046 				s->non_overwrite++;
4047 		}
4048 		if (dev->written)
4049 			s->written++;
4050 		/* Prefer to use the replacement for reads, but only
4051 		 * if it is recovered enough and has no bad blocks.
4052 		 */
4053 		rdev = rcu_dereference(conf->disks[i].replacement);
4054 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4055 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4056 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4057 				 &first_bad, &bad_sectors))
4058 			set_bit(R5_ReadRepl, &dev->flags);
4059 		else {
4060 			if (rdev && !test_bit(Faulty, &rdev->flags))
4061 				set_bit(R5_NeedReplace, &dev->flags);
4062 			else
4063 				clear_bit(R5_NeedReplace, &dev->flags);
4064 			rdev = rcu_dereference(conf->disks[i].rdev);
4065 			clear_bit(R5_ReadRepl, &dev->flags);
4066 		}
4067 		if (rdev && test_bit(Faulty, &rdev->flags))
4068 			rdev = NULL;
4069 		if (rdev) {
4070 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4071 					     &first_bad, &bad_sectors);
4072 			if (s->blocked_rdev == NULL
4073 			    && (test_bit(Blocked, &rdev->flags)
4074 				|| is_bad < 0)) {
4075 				if (is_bad < 0)
4076 					set_bit(BlockedBadBlocks,
4077 						&rdev->flags);
4078 				s->blocked_rdev = rdev;
4079 				atomic_inc(&rdev->nr_pending);
4080 			}
4081 		}
4082 		clear_bit(R5_Insync, &dev->flags);
4083 		if (!rdev)
4084 			/* Not in-sync */;
4085 		else if (is_bad) {
4086 			/* also not in-sync */
4087 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4088 			    test_bit(R5_UPTODATE, &dev->flags)) {
4089 				/* treat as in-sync, but with a read error
4090 				 * which we can now try to correct
4091 				 */
4092 				set_bit(R5_Insync, &dev->flags);
4093 				set_bit(R5_ReadError, &dev->flags);
4094 			}
4095 		} else if (test_bit(In_sync, &rdev->flags))
4096 			set_bit(R5_Insync, &dev->flags);
4097 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4098 			/* in sync if before recovery_offset */
4099 			set_bit(R5_Insync, &dev->flags);
4100 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4101 			 test_bit(R5_Expanded, &dev->flags))
4102 			/* If we've reshaped into here, we assume it is Insync.
4103 			 * We will shortly update recovery_offset to make
4104 			 * it official.
4105 			 */
4106 			set_bit(R5_Insync, &dev->flags);
4107 
4108 		if (test_bit(R5_WriteError, &dev->flags)) {
4109 			/* This flag does not apply to '.replacement'
4110 			 * only to .rdev, so make sure to check that*/
4111 			struct md_rdev *rdev2 = rcu_dereference(
4112 				conf->disks[i].rdev);
4113 			if (rdev2 == rdev)
4114 				clear_bit(R5_Insync, &dev->flags);
4115 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4116 				s->handle_bad_blocks = 1;
4117 				atomic_inc(&rdev2->nr_pending);
4118 			} else
4119 				clear_bit(R5_WriteError, &dev->flags);
4120 		}
4121 		if (test_bit(R5_MadeGood, &dev->flags)) {
4122 			/* This flag does not apply to '.replacement'
4123 			 * only to .rdev, so make sure to check that*/
4124 			struct md_rdev *rdev2 = rcu_dereference(
4125 				conf->disks[i].rdev);
4126 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4127 				s->handle_bad_blocks = 1;
4128 				atomic_inc(&rdev2->nr_pending);
4129 			} else
4130 				clear_bit(R5_MadeGood, &dev->flags);
4131 		}
4132 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4133 			struct md_rdev *rdev2 = rcu_dereference(
4134 				conf->disks[i].replacement);
4135 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4136 				s->handle_bad_blocks = 1;
4137 				atomic_inc(&rdev2->nr_pending);
4138 			} else
4139 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4140 		}
4141 		if (!test_bit(R5_Insync, &dev->flags)) {
4142 			/* The ReadError flag will just be confusing now */
4143 			clear_bit(R5_ReadError, &dev->flags);
4144 			clear_bit(R5_ReWrite, &dev->flags);
4145 		}
4146 		if (test_bit(R5_ReadError, &dev->flags))
4147 			clear_bit(R5_Insync, &dev->flags);
4148 		if (!test_bit(R5_Insync, &dev->flags)) {
4149 			if (s->failed < 2)
4150 				s->failed_num[s->failed] = i;
4151 			s->failed++;
4152 			if (rdev && !test_bit(Faulty, &rdev->flags))
4153 				do_recovery = 1;
4154 		}
4155 	}
4156 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4157 		/* If there is a failed device being replaced,
4158 		 *     we must be recovering.
4159 		 * else if we are after recovery_cp, we must be syncing
4160 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4161 		 * else we can only be replacing
4162 		 * sync and recovery both need to read all devices, and so
4163 		 * use the same flag.
4164 		 */
4165 		if (do_recovery ||
4166 		    sh->sector >= conf->mddev->recovery_cp ||
4167 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4168 			s->syncing = 1;
4169 		else
4170 			s->replacing = 1;
4171 	}
4172 	rcu_read_unlock();
4173 }
4174 
4175 static int clear_batch_ready(struct stripe_head *sh)
4176 {
4177 	/* Return '1' if this is a member of batch, or
4178 	 * '0' if it is a lone stripe or a head which can now be
4179 	 * handled.
4180 	 */
4181 	struct stripe_head *tmp;
4182 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4183 		return (sh->batch_head && sh->batch_head != sh);
4184 	spin_lock(&sh->stripe_lock);
4185 	if (!sh->batch_head) {
4186 		spin_unlock(&sh->stripe_lock);
4187 		return 0;
4188 	}
4189 
4190 	/*
4191 	 * this stripe could be added to a batch list before we check
4192 	 * BATCH_READY, skips it
4193 	 */
4194 	if (sh->batch_head != sh) {
4195 		spin_unlock(&sh->stripe_lock);
4196 		return 1;
4197 	}
4198 	spin_lock(&sh->batch_lock);
4199 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4200 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4201 	spin_unlock(&sh->batch_lock);
4202 	spin_unlock(&sh->stripe_lock);
4203 
4204 	/*
4205 	 * BATCH_READY is cleared, no new stripes can be added.
4206 	 * batch_list can be accessed without lock
4207 	 */
4208 	return 0;
4209 }
4210 
4211 static void break_stripe_batch_list(struct stripe_head *head_sh,
4212 				    unsigned long handle_flags)
4213 {
4214 	struct stripe_head *sh, *next;
4215 	int i;
4216 	int do_wakeup = 0;
4217 
4218 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4219 
4220 		list_del_init(&sh->batch_list);
4221 
4222 		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4223 					  (1 << STRIPE_SYNCING) |
4224 					  (1 << STRIPE_REPLACED) |
4225 					  (1 << STRIPE_PREREAD_ACTIVE) |
4226 					  (1 << STRIPE_DELAYED) |
4227 					  (1 << STRIPE_BIT_DELAY) |
4228 					  (1 << STRIPE_FULL_WRITE) |
4229 					  (1 << STRIPE_BIOFILL_RUN) |
4230 					  (1 << STRIPE_COMPUTE_RUN)  |
4231 					  (1 << STRIPE_OPS_REQ_PENDING) |
4232 					  (1 << STRIPE_DISCARD) |
4233 					  (1 << STRIPE_BATCH_READY) |
4234 					  (1 << STRIPE_BATCH_ERR) |
4235 					  (1 << STRIPE_BITMAP_PENDING)));
4236 		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4237 					      (1 << STRIPE_REPLACED)));
4238 
4239 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4240 					    (1 << STRIPE_DEGRADED)),
4241 			      head_sh->state & (1 << STRIPE_INSYNC));
4242 
4243 		sh->check_state = head_sh->check_state;
4244 		sh->reconstruct_state = head_sh->reconstruct_state;
4245 		for (i = 0; i < sh->disks; i++) {
4246 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4247 				do_wakeup = 1;
4248 			sh->dev[i].flags = head_sh->dev[i].flags &
4249 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4250 		}
4251 		spin_lock_irq(&sh->stripe_lock);
4252 		sh->batch_head = NULL;
4253 		spin_unlock_irq(&sh->stripe_lock);
4254 		if (handle_flags == 0 ||
4255 		    sh->state & handle_flags)
4256 			set_bit(STRIPE_HANDLE, &sh->state);
4257 		release_stripe(sh);
4258 	}
4259 	spin_lock_irq(&head_sh->stripe_lock);
4260 	head_sh->batch_head = NULL;
4261 	spin_unlock_irq(&head_sh->stripe_lock);
4262 	for (i = 0; i < head_sh->disks; i++)
4263 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4264 			do_wakeup = 1;
4265 	if (head_sh->state & handle_flags)
4266 		set_bit(STRIPE_HANDLE, &head_sh->state);
4267 
4268 	if (do_wakeup)
4269 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4270 }
4271 
4272 static void handle_stripe(struct stripe_head *sh)
4273 {
4274 	struct stripe_head_state s;
4275 	struct r5conf *conf = sh->raid_conf;
4276 	int i;
4277 	int prexor;
4278 	int disks = sh->disks;
4279 	struct r5dev *pdev, *qdev;
4280 
4281 	clear_bit(STRIPE_HANDLE, &sh->state);
4282 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4283 		/* already being handled, ensure it gets handled
4284 		 * again when current action finishes */
4285 		set_bit(STRIPE_HANDLE, &sh->state);
4286 		return;
4287 	}
4288 
4289 	if (clear_batch_ready(sh) ) {
4290 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4291 		return;
4292 	}
4293 
4294 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4295 		break_stripe_batch_list(sh, 0);
4296 
4297 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4298 		spin_lock(&sh->stripe_lock);
4299 		/* Cannot process 'sync' concurrently with 'discard' */
4300 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4301 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4302 			set_bit(STRIPE_SYNCING, &sh->state);
4303 			clear_bit(STRIPE_INSYNC, &sh->state);
4304 			clear_bit(STRIPE_REPLACED, &sh->state);
4305 		}
4306 		spin_unlock(&sh->stripe_lock);
4307 	}
4308 	clear_bit(STRIPE_DELAYED, &sh->state);
4309 
4310 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4311 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4312 	       (unsigned long long)sh->sector, sh->state,
4313 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4314 	       sh->check_state, sh->reconstruct_state);
4315 
4316 	analyse_stripe(sh, &s);
4317 
4318 	if (s.handle_bad_blocks) {
4319 		set_bit(STRIPE_HANDLE, &sh->state);
4320 		goto finish;
4321 	}
4322 
4323 	if (unlikely(s.blocked_rdev)) {
4324 		if (s.syncing || s.expanding || s.expanded ||
4325 		    s.replacing || s.to_write || s.written) {
4326 			set_bit(STRIPE_HANDLE, &sh->state);
4327 			goto finish;
4328 		}
4329 		/* There is nothing for the blocked_rdev to block */
4330 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4331 		s.blocked_rdev = NULL;
4332 	}
4333 
4334 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4335 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4336 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4337 	}
4338 
4339 	pr_debug("locked=%d uptodate=%d to_read=%d"
4340 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4341 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4342 	       s.failed_num[0], s.failed_num[1]);
4343 	/* check if the array has lost more than max_degraded devices and,
4344 	 * if so, some requests might need to be failed.
4345 	 */
4346 	if (s.failed > conf->max_degraded) {
4347 		sh->check_state = 0;
4348 		sh->reconstruct_state = 0;
4349 		break_stripe_batch_list(sh, 0);
4350 		if (s.to_read+s.to_write+s.written)
4351 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4352 		if (s.syncing + s.replacing)
4353 			handle_failed_sync(conf, sh, &s);
4354 	}
4355 
4356 	/* Now we check to see if any write operations have recently
4357 	 * completed
4358 	 */
4359 	prexor = 0;
4360 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4361 		prexor = 1;
4362 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4363 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4364 		sh->reconstruct_state = reconstruct_state_idle;
4365 
4366 		/* All the 'written' buffers and the parity block are ready to
4367 		 * be written back to disk
4368 		 */
4369 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4370 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4371 		BUG_ON(sh->qd_idx >= 0 &&
4372 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4373 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4374 		for (i = disks; i--; ) {
4375 			struct r5dev *dev = &sh->dev[i];
4376 			if (test_bit(R5_LOCKED, &dev->flags) &&
4377 				(i == sh->pd_idx || i == sh->qd_idx ||
4378 				 dev->written)) {
4379 				pr_debug("Writing block %d\n", i);
4380 				set_bit(R5_Wantwrite, &dev->flags);
4381 				if (prexor)
4382 					continue;
4383 				if (s.failed > 1)
4384 					continue;
4385 				if (!test_bit(R5_Insync, &dev->flags) ||
4386 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4387 				     s.failed == 0))
4388 					set_bit(STRIPE_INSYNC, &sh->state);
4389 			}
4390 		}
4391 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4392 			s.dec_preread_active = 1;
4393 	}
4394 
4395 	/*
4396 	 * might be able to return some write requests if the parity blocks
4397 	 * are safe, or on a failed drive
4398 	 */
4399 	pdev = &sh->dev[sh->pd_idx];
4400 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4401 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4402 	qdev = &sh->dev[sh->qd_idx];
4403 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4404 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4405 		|| conf->level < 6;
4406 
4407 	if (s.written &&
4408 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4409 			     && !test_bit(R5_LOCKED, &pdev->flags)
4410 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4411 				 test_bit(R5_Discard, &pdev->flags))))) &&
4412 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4413 			     && !test_bit(R5_LOCKED, &qdev->flags)
4414 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4415 				 test_bit(R5_Discard, &qdev->flags))))))
4416 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4417 
4418 	/* Now we might consider reading some blocks, either to check/generate
4419 	 * parity, or to satisfy requests
4420 	 * or to load a block that is being partially written.
4421 	 */
4422 	if (s.to_read || s.non_overwrite
4423 	    || (conf->level == 6 && s.to_write && s.failed)
4424 	    || (s.syncing && (s.uptodate + s.compute < disks))
4425 	    || s.replacing
4426 	    || s.expanding)
4427 		handle_stripe_fill(sh, &s, disks);
4428 
4429 	/* Now to consider new write requests and what else, if anything
4430 	 * should be read.  We do not handle new writes when:
4431 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4432 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4433 	 *    block.
4434 	 */
4435 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4436 		handle_stripe_dirtying(conf, sh, &s, disks);
4437 
4438 	/* maybe we need to check and possibly fix the parity for this stripe
4439 	 * Any reads will already have been scheduled, so we just see if enough
4440 	 * data is available.  The parity check is held off while parity
4441 	 * dependent operations are in flight.
4442 	 */
4443 	if (sh->check_state ||
4444 	    (s.syncing && s.locked == 0 &&
4445 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4446 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4447 		if (conf->level == 6)
4448 			handle_parity_checks6(conf, sh, &s, disks);
4449 		else
4450 			handle_parity_checks5(conf, sh, &s, disks);
4451 	}
4452 
4453 	if ((s.replacing || s.syncing) && s.locked == 0
4454 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4455 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4456 		/* Write out to replacement devices where possible */
4457 		for (i = 0; i < conf->raid_disks; i++)
4458 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4459 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4460 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4461 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4462 				s.locked++;
4463 			}
4464 		if (s.replacing)
4465 			set_bit(STRIPE_INSYNC, &sh->state);
4466 		set_bit(STRIPE_REPLACED, &sh->state);
4467 	}
4468 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4469 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4470 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4471 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4472 		clear_bit(STRIPE_SYNCING, &sh->state);
4473 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4474 			wake_up(&conf->wait_for_overlap);
4475 	}
4476 
4477 	/* If the failed drives are just a ReadError, then we might need
4478 	 * to progress the repair/check process
4479 	 */
4480 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4481 		for (i = 0; i < s.failed; i++) {
4482 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4483 			if (test_bit(R5_ReadError, &dev->flags)
4484 			    && !test_bit(R5_LOCKED, &dev->flags)
4485 			    && test_bit(R5_UPTODATE, &dev->flags)
4486 				) {
4487 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4488 					set_bit(R5_Wantwrite, &dev->flags);
4489 					set_bit(R5_ReWrite, &dev->flags);
4490 					set_bit(R5_LOCKED, &dev->flags);
4491 					s.locked++;
4492 				} else {
4493 					/* let's read it back */
4494 					set_bit(R5_Wantread, &dev->flags);
4495 					set_bit(R5_LOCKED, &dev->flags);
4496 					s.locked++;
4497 				}
4498 			}
4499 		}
4500 
4501 	/* Finish reconstruct operations initiated by the expansion process */
4502 	if (sh->reconstruct_state == reconstruct_state_result) {
4503 		struct stripe_head *sh_src
4504 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
4505 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4506 			/* sh cannot be written until sh_src has been read.
4507 			 * so arrange for sh to be delayed a little
4508 			 */
4509 			set_bit(STRIPE_DELAYED, &sh->state);
4510 			set_bit(STRIPE_HANDLE, &sh->state);
4511 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4512 					      &sh_src->state))
4513 				atomic_inc(&conf->preread_active_stripes);
4514 			release_stripe(sh_src);
4515 			goto finish;
4516 		}
4517 		if (sh_src)
4518 			release_stripe(sh_src);
4519 
4520 		sh->reconstruct_state = reconstruct_state_idle;
4521 		clear_bit(STRIPE_EXPANDING, &sh->state);
4522 		for (i = conf->raid_disks; i--; ) {
4523 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4524 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4525 			s.locked++;
4526 		}
4527 	}
4528 
4529 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4530 	    !sh->reconstruct_state) {
4531 		/* Need to write out all blocks after computing parity */
4532 		sh->disks = conf->raid_disks;
4533 		stripe_set_idx(sh->sector, conf, 0, sh);
4534 		schedule_reconstruction(sh, &s, 1, 1);
4535 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4536 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4537 		atomic_dec(&conf->reshape_stripes);
4538 		wake_up(&conf->wait_for_overlap);
4539 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4540 	}
4541 
4542 	if (s.expanding && s.locked == 0 &&
4543 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4544 		handle_stripe_expansion(conf, sh);
4545 
4546 finish:
4547 	/* wait for this device to become unblocked */
4548 	if (unlikely(s.blocked_rdev)) {
4549 		if (conf->mddev->external)
4550 			md_wait_for_blocked_rdev(s.blocked_rdev,
4551 						 conf->mddev);
4552 		else
4553 			/* Internal metadata will immediately
4554 			 * be written by raid5d, so we don't
4555 			 * need to wait here.
4556 			 */
4557 			rdev_dec_pending(s.blocked_rdev,
4558 					 conf->mddev);
4559 	}
4560 
4561 	if (s.handle_bad_blocks)
4562 		for (i = disks; i--; ) {
4563 			struct md_rdev *rdev;
4564 			struct r5dev *dev = &sh->dev[i];
4565 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4566 				/* We own a safe reference to the rdev */
4567 				rdev = conf->disks[i].rdev;
4568 				if (!rdev_set_badblocks(rdev, sh->sector,
4569 							STRIPE_SECTORS, 0))
4570 					md_error(conf->mddev, rdev);
4571 				rdev_dec_pending(rdev, conf->mddev);
4572 			}
4573 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4574 				rdev = conf->disks[i].rdev;
4575 				rdev_clear_badblocks(rdev, sh->sector,
4576 						     STRIPE_SECTORS, 0);
4577 				rdev_dec_pending(rdev, conf->mddev);
4578 			}
4579 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4580 				rdev = conf->disks[i].replacement;
4581 				if (!rdev)
4582 					/* rdev have been moved down */
4583 					rdev = conf->disks[i].rdev;
4584 				rdev_clear_badblocks(rdev, sh->sector,
4585 						     STRIPE_SECTORS, 0);
4586 				rdev_dec_pending(rdev, conf->mddev);
4587 			}
4588 		}
4589 
4590 	if (s.ops_request)
4591 		raid_run_ops(sh, s.ops_request);
4592 
4593 	ops_run_io(sh, &s);
4594 
4595 	if (s.dec_preread_active) {
4596 		/* We delay this until after ops_run_io so that if make_request
4597 		 * is waiting on a flush, it won't continue until the writes
4598 		 * have actually been submitted.
4599 		 */
4600 		atomic_dec(&conf->preread_active_stripes);
4601 		if (atomic_read(&conf->preread_active_stripes) <
4602 		    IO_THRESHOLD)
4603 			md_wakeup_thread(conf->mddev->thread);
4604 	}
4605 
4606 	if (!bio_list_empty(&s.return_bi)) {
4607 		if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4608 			spin_lock_irq(&conf->device_lock);
4609 			bio_list_merge(&conf->return_bi, &s.return_bi);
4610 			spin_unlock_irq(&conf->device_lock);
4611 			md_wakeup_thread(conf->mddev->thread);
4612 		} else
4613 			return_io(&s.return_bi);
4614 	}
4615 
4616 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4617 }
4618 
4619 static void raid5_activate_delayed(struct r5conf *conf)
4620 {
4621 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4622 		while (!list_empty(&conf->delayed_list)) {
4623 			struct list_head *l = conf->delayed_list.next;
4624 			struct stripe_head *sh;
4625 			sh = list_entry(l, struct stripe_head, lru);
4626 			list_del_init(l);
4627 			clear_bit(STRIPE_DELAYED, &sh->state);
4628 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4629 				atomic_inc(&conf->preread_active_stripes);
4630 			list_add_tail(&sh->lru, &conf->hold_list);
4631 			raid5_wakeup_stripe_thread(sh);
4632 		}
4633 	}
4634 }
4635 
4636 static void activate_bit_delay(struct r5conf *conf,
4637 	struct list_head *temp_inactive_list)
4638 {
4639 	/* device_lock is held */
4640 	struct list_head head;
4641 	list_add(&head, &conf->bitmap_list);
4642 	list_del_init(&conf->bitmap_list);
4643 	while (!list_empty(&head)) {
4644 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4645 		int hash;
4646 		list_del_init(&sh->lru);
4647 		atomic_inc(&sh->count);
4648 		hash = sh->hash_lock_index;
4649 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4650 	}
4651 }
4652 
4653 static int raid5_congested(struct mddev *mddev, int bits)
4654 {
4655 	struct r5conf *conf = mddev->private;
4656 
4657 	/* No difference between reads and writes.  Just check
4658 	 * how busy the stripe_cache is
4659 	 */
4660 
4661 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4662 		return 1;
4663 	if (conf->quiesce)
4664 		return 1;
4665 	if (atomic_read(&conf->empty_inactive_list_nr))
4666 		return 1;
4667 
4668 	return 0;
4669 }
4670 
4671 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4672 {
4673 	struct r5conf *conf = mddev->private;
4674 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4675 	unsigned int chunk_sectors;
4676 	unsigned int bio_sectors = bio_sectors(bio);
4677 
4678 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4679 	return  chunk_sectors >=
4680 		((sector & (chunk_sectors - 1)) + bio_sectors);
4681 }
4682 
4683 /*
4684  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4685  *  later sampled by raid5d.
4686  */
4687 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4688 {
4689 	unsigned long flags;
4690 
4691 	spin_lock_irqsave(&conf->device_lock, flags);
4692 
4693 	bi->bi_next = conf->retry_read_aligned_list;
4694 	conf->retry_read_aligned_list = bi;
4695 
4696 	spin_unlock_irqrestore(&conf->device_lock, flags);
4697 	md_wakeup_thread(conf->mddev->thread);
4698 }
4699 
4700 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4701 {
4702 	struct bio *bi;
4703 
4704 	bi = conf->retry_read_aligned;
4705 	if (bi) {
4706 		conf->retry_read_aligned = NULL;
4707 		return bi;
4708 	}
4709 	bi = conf->retry_read_aligned_list;
4710 	if(bi) {
4711 		conf->retry_read_aligned_list = bi->bi_next;
4712 		bi->bi_next = NULL;
4713 		/*
4714 		 * this sets the active strip count to 1 and the processed
4715 		 * strip count to zero (upper 8 bits)
4716 		 */
4717 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4718 	}
4719 
4720 	return bi;
4721 }
4722 
4723 /*
4724  *  The "raid5_align_endio" should check if the read succeeded and if it
4725  *  did, call bio_endio on the original bio (having bio_put the new bio
4726  *  first).
4727  *  If the read failed..
4728  */
4729 static void raid5_align_endio(struct bio *bi)
4730 {
4731 	struct bio* raid_bi  = bi->bi_private;
4732 	struct mddev *mddev;
4733 	struct r5conf *conf;
4734 	struct md_rdev *rdev;
4735 	int error = bi->bi_error;
4736 
4737 	bio_put(bi);
4738 
4739 	rdev = (void*)raid_bi->bi_next;
4740 	raid_bi->bi_next = NULL;
4741 	mddev = rdev->mddev;
4742 	conf = mddev->private;
4743 
4744 	rdev_dec_pending(rdev, conf->mddev);
4745 
4746 	if (!error) {
4747 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4748 					 raid_bi, 0);
4749 		bio_endio(raid_bi);
4750 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4751 			wake_up(&conf->wait_for_quiescent);
4752 		return;
4753 	}
4754 
4755 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4756 
4757 	add_bio_to_retry(raid_bi, conf);
4758 }
4759 
4760 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4761 {
4762 	struct r5conf *conf = mddev->private;
4763 	int dd_idx;
4764 	struct bio* align_bi;
4765 	struct md_rdev *rdev;
4766 	sector_t end_sector;
4767 
4768 	if (!in_chunk_boundary(mddev, raid_bio)) {
4769 		pr_debug("%s: non aligned\n", __func__);
4770 		return 0;
4771 	}
4772 	/*
4773 	 * use bio_clone_mddev to make a copy of the bio
4774 	 */
4775 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4776 	if (!align_bi)
4777 		return 0;
4778 	/*
4779 	 *   set bi_end_io to a new function, and set bi_private to the
4780 	 *     original bio.
4781 	 */
4782 	align_bi->bi_end_io  = raid5_align_endio;
4783 	align_bi->bi_private = raid_bio;
4784 	/*
4785 	 *	compute position
4786 	 */
4787 	align_bi->bi_iter.bi_sector =
4788 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4789 				     0, &dd_idx, NULL);
4790 
4791 	end_sector = bio_end_sector(align_bi);
4792 	rcu_read_lock();
4793 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4794 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4795 	    rdev->recovery_offset < end_sector) {
4796 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4797 		if (rdev &&
4798 		    (test_bit(Faulty, &rdev->flags) ||
4799 		    !(test_bit(In_sync, &rdev->flags) ||
4800 		      rdev->recovery_offset >= end_sector)))
4801 			rdev = NULL;
4802 	}
4803 	if (rdev) {
4804 		sector_t first_bad;
4805 		int bad_sectors;
4806 
4807 		atomic_inc(&rdev->nr_pending);
4808 		rcu_read_unlock();
4809 		raid_bio->bi_next = (void*)rdev;
4810 		align_bi->bi_bdev =  rdev->bdev;
4811 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4812 
4813 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4814 				bio_sectors(align_bi),
4815 				&first_bad, &bad_sectors)) {
4816 			bio_put(align_bi);
4817 			rdev_dec_pending(rdev, mddev);
4818 			return 0;
4819 		}
4820 
4821 		/* No reshape active, so we can trust rdev->data_offset */
4822 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4823 
4824 		spin_lock_irq(&conf->device_lock);
4825 		wait_event_lock_irq(conf->wait_for_quiescent,
4826 				    conf->quiesce == 0,
4827 				    conf->device_lock);
4828 		atomic_inc(&conf->active_aligned_reads);
4829 		spin_unlock_irq(&conf->device_lock);
4830 
4831 		if (mddev->gendisk)
4832 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4833 					      align_bi, disk_devt(mddev->gendisk),
4834 					      raid_bio->bi_iter.bi_sector);
4835 		generic_make_request(align_bi);
4836 		return 1;
4837 	} else {
4838 		rcu_read_unlock();
4839 		bio_put(align_bi);
4840 		return 0;
4841 	}
4842 }
4843 
4844 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4845 {
4846 	struct bio *split;
4847 
4848 	do {
4849 		sector_t sector = raid_bio->bi_iter.bi_sector;
4850 		unsigned chunk_sects = mddev->chunk_sectors;
4851 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4852 
4853 		if (sectors < bio_sectors(raid_bio)) {
4854 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4855 			bio_chain(split, raid_bio);
4856 		} else
4857 			split = raid_bio;
4858 
4859 		if (!raid5_read_one_chunk(mddev, split)) {
4860 			if (split != raid_bio)
4861 				generic_make_request(raid_bio);
4862 			return split;
4863 		}
4864 	} while (split != raid_bio);
4865 
4866 	return NULL;
4867 }
4868 
4869 /* __get_priority_stripe - get the next stripe to process
4870  *
4871  * Full stripe writes are allowed to pass preread active stripes up until
4872  * the bypass_threshold is exceeded.  In general the bypass_count
4873  * increments when the handle_list is handled before the hold_list; however, it
4874  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4875  * stripe with in flight i/o.  The bypass_count will be reset when the
4876  * head of the hold_list has changed, i.e. the head was promoted to the
4877  * handle_list.
4878  */
4879 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4880 {
4881 	struct stripe_head *sh = NULL, *tmp;
4882 	struct list_head *handle_list = NULL;
4883 	struct r5worker_group *wg = NULL;
4884 
4885 	if (conf->worker_cnt_per_group == 0) {
4886 		handle_list = &conf->handle_list;
4887 	} else if (group != ANY_GROUP) {
4888 		handle_list = &conf->worker_groups[group].handle_list;
4889 		wg = &conf->worker_groups[group];
4890 	} else {
4891 		int i;
4892 		for (i = 0; i < conf->group_cnt; i++) {
4893 			handle_list = &conf->worker_groups[i].handle_list;
4894 			wg = &conf->worker_groups[i];
4895 			if (!list_empty(handle_list))
4896 				break;
4897 		}
4898 	}
4899 
4900 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4901 		  __func__,
4902 		  list_empty(handle_list) ? "empty" : "busy",
4903 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4904 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4905 
4906 	if (!list_empty(handle_list)) {
4907 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4908 
4909 		if (list_empty(&conf->hold_list))
4910 			conf->bypass_count = 0;
4911 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4912 			if (conf->hold_list.next == conf->last_hold)
4913 				conf->bypass_count++;
4914 			else {
4915 				conf->last_hold = conf->hold_list.next;
4916 				conf->bypass_count -= conf->bypass_threshold;
4917 				if (conf->bypass_count < 0)
4918 					conf->bypass_count = 0;
4919 			}
4920 		}
4921 	} else if (!list_empty(&conf->hold_list) &&
4922 		   ((conf->bypass_threshold &&
4923 		     conf->bypass_count > conf->bypass_threshold) ||
4924 		    atomic_read(&conf->pending_full_writes) == 0)) {
4925 
4926 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4927 			if (conf->worker_cnt_per_group == 0 ||
4928 			    group == ANY_GROUP ||
4929 			    !cpu_online(tmp->cpu) ||
4930 			    cpu_to_group(tmp->cpu) == group) {
4931 				sh = tmp;
4932 				break;
4933 			}
4934 		}
4935 
4936 		if (sh) {
4937 			conf->bypass_count -= conf->bypass_threshold;
4938 			if (conf->bypass_count < 0)
4939 				conf->bypass_count = 0;
4940 		}
4941 		wg = NULL;
4942 	}
4943 
4944 	if (!sh)
4945 		return NULL;
4946 
4947 	if (wg) {
4948 		wg->stripes_cnt--;
4949 		sh->group = NULL;
4950 	}
4951 	list_del_init(&sh->lru);
4952 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4953 	return sh;
4954 }
4955 
4956 struct raid5_plug_cb {
4957 	struct blk_plug_cb	cb;
4958 	struct list_head	list;
4959 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4960 };
4961 
4962 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4963 {
4964 	struct raid5_plug_cb *cb = container_of(
4965 		blk_cb, struct raid5_plug_cb, cb);
4966 	struct stripe_head *sh;
4967 	struct mddev *mddev = cb->cb.data;
4968 	struct r5conf *conf = mddev->private;
4969 	int cnt = 0;
4970 	int hash;
4971 
4972 	if (cb->list.next && !list_empty(&cb->list)) {
4973 		spin_lock_irq(&conf->device_lock);
4974 		while (!list_empty(&cb->list)) {
4975 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4976 			list_del_init(&sh->lru);
4977 			/*
4978 			 * avoid race release_stripe_plug() sees
4979 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4980 			 * is still in our list
4981 			 */
4982 			smp_mb__before_atomic();
4983 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4984 			/*
4985 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4986 			 * case, the count is always > 1 here
4987 			 */
4988 			hash = sh->hash_lock_index;
4989 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4990 			cnt++;
4991 		}
4992 		spin_unlock_irq(&conf->device_lock);
4993 	}
4994 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4995 				     NR_STRIPE_HASH_LOCKS);
4996 	if (mddev->queue)
4997 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4998 	kfree(cb);
4999 }
5000 
5001 static void release_stripe_plug(struct mddev *mddev,
5002 				struct stripe_head *sh)
5003 {
5004 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5005 		raid5_unplug, mddev,
5006 		sizeof(struct raid5_plug_cb));
5007 	struct raid5_plug_cb *cb;
5008 
5009 	if (!blk_cb) {
5010 		release_stripe(sh);
5011 		return;
5012 	}
5013 
5014 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5015 
5016 	if (cb->list.next == NULL) {
5017 		int i;
5018 		INIT_LIST_HEAD(&cb->list);
5019 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5020 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5021 	}
5022 
5023 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5024 		list_add_tail(&sh->lru, &cb->list);
5025 	else
5026 		release_stripe(sh);
5027 }
5028 
5029 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5030 {
5031 	struct r5conf *conf = mddev->private;
5032 	sector_t logical_sector, last_sector;
5033 	struct stripe_head *sh;
5034 	int remaining;
5035 	int stripe_sectors;
5036 
5037 	if (mddev->reshape_position != MaxSector)
5038 		/* Skip discard while reshape is happening */
5039 		return;
5040 
5041 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5042 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5043 
5044 	bi->bi_next = NULL;
5045 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5046 
5047 	stripe_sectors = conf->chunk_sectors *
5048 		(conf->raid_disks - conf->max_degraded);
5049 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5050 					       stripe_sectors);
5051 	sector_div(last_sector, stripe_sectors);
5052 
5053 	logical_sector *= conf->chunk_sectors;
5054 	last_sector *= conf->chunk_sectors;
5055 
5056 	for (; logical_sector < last_sector;
5057 	     logical_sector += STRIPE_SECTORS) {
5058 		DEFINE_WAIT(w);
5059 		int d;
5060 	again:
5061 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5062 		prepare_to_wait(&conf->wait_for_overlap, &w,
5063 				TASK_UNINTERRUPTIBLE);
5064 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5065 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5066 			release_stripe(sh);
5067 			schedule();
5068 			goto again;
5069 		}
5070 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5071 		spin_lock_irq(&sh->stripe_lock);
5072 		for (d = 0; d < conf->raid_disks; d++) {
5073 			if (d == sh->pd_idx || d == sh->qd_idx)
5074 				continue;
5075 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5076 				set_bit(R5_Overlap, &sh->dev[d].flags);
5077 				spin_unlock_irq(&sh->stripe_lock);
5078 				release_stripe(sh);
5079 				schedule();
5080 				goto again;
5081 			}
5082 		}
5083 		set_bit(STRIPE_DISCARD, &sh->state);
5084 		finish_wait(&conf->wait_for_overlap, &w);
5085 		sh->overwrite_disks = 0;
5086 		for (d = 0; d < conf->raid_disks; d++) {
5087 			if (d == sh->pd_idx || d == sh->qd_idx)
5088 				continue;
5089 			sh->dev[d].towrite = bi;
5090 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5091 			raid5_inc_bi_active_stripes(bi);
5092 			sh->overwrite_disks++;
5093 		}
5094 		spin_unlock_irq(&sh->stripe_lock);
5095 		if (conf->mddev->bitmap) {
5096 			for (d = 0;
5097 			     d < conf->raid_disks - conf->max_degraded;
5098 			     d++)
5099 				bitmap_startwrite(mddev->bitmap,
5100 						  sh->sector,
5101 						  STRIPE_SECTORS,
5102 						  0);
5103 			sh->bm_seq = conf->seq_flush + 1;
5104 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5105 		}
5106 
5107 		set_bit(STRIPE_HANDLE, &sh->state);
5108 		clear_bit(STRIPE_DELAYED, &sh->state);
5109 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5110 			atomic_inc(&conf->preread_active_stripes);
5111 		release_stripe_plug(mddev, sh);
5112 	}
5113 
5114 	remaining = raid5_dec_bi_active_stripes(bi);
5115 	if (remaining == 0) {
5116 		md_write_end(mddev);
5117 		bio_endio(bi);
5118 	}
5119 }
5120 
5121 static void make_request(struct mddev *mddev, struct bio * bi)
5122 {
5123 	struct r5conf *conf = mddev->private;
5124 	int dd_idx;
5125 	sector_t new_sector;
5126 	sector_t logical_sector, last_sector;
5127 	struct stripe_head *sh;
5128 	const int rw = bio_data_dir(bi);
5129 	int remaining;
5130 	DEFINE_WAIT(w);
5131 	bool do_prepare;
5132 
5133 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5134 		md_flush_request(mddev, bi);
5135 		return;
5136 	}
5137 
5138 	md_write_start(mddev, bi);
5139 
5140 	/*
5141 	 * If array is degraded, better not do chunk aligned read because
5142 	 * later we might have to read it again in order to reconstruct
5143 	 * data on failed drives.
5144 	 */
5145 	if (rw == READ && mddev->degraded == 0 &&
5146 	    mddev->reshape_position == MaxSector) {
5147 		bi = chunk_aligned_read(mddev, bi);
5148 		if (!bi)
5149 			return;
5150 	}
5151 
5152 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5153 		make_discard_request(mddev, bi);
5154 		return;
5155 	}
5156 
5157 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5158 	last_sector = bio_end_sector(bi);
5159 	bi->bi_next = NULL;
5160 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5161 
5162 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5163 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5164 		int previous;
5165 		int seq;
5166 
5167 		do_prepare = false;
5168 	retry:
5169 		seq = read_seqcount_begin(&conf->gen_lock);
5170 		previous = 0;
5171 		if (do_prepare)
5172 			prepare_to_wait(&conf->wait_for_overlap, &w,
5173 				TASK_UNINTERRUPTIBLE);
5174 		if (unlikely(conf->reshape_progress != MaxSector)) {
5175 			/* spinlock is needed as reshape_progress may be
5176 			 * 64bit on a 32bit platform, and so it might be
5177 			 * possible to see a half-updated value
5178 			 * Of course reshape_progress could change after
5179 			 * the lock is dropped, so once we get a reference
5180 			 * to the stripe that we think it is, we will have
5181 			 * to check again.
5182 			 */
5183 			spin_lock_irq(&conf->device_lock);
5184 			if (mddev->reshape_backwards
5185 			    ? logical_sector < conf->reshape_progress
5186 			    : logical_sector >= conf->reshape_progress) {
5187 				previous = 1;
5188 			} else {
5189 				if (mddev->reshape_backwards
5190 				    ? logical_sector < conf->reshape_safe
5191 				    : logical_sector >= conf->reshape_safe) {
5192 					spin_unlock_irq(&conf->device_lock);
5193 					schedule();
5194 					do_prepare = true;
5195 					goto retry;
5196 				}
5197 			}
5198 			spin_unlock_irq(&conf->device_lock);
5199 		}
5200 
5201 		new_sector = raid5_compute_sector(conf, logical_sector,
5202 						  previous,
5203 						  &dd_idx, NULL);
5204 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5205 			(unsigned long long)new_sector,
5206 			(unsigned long long)logical_sector);
5207 
5208 		sh = get_active_stripe(conf, new_sector, previous,
5209 				       (bi->bi_rw&RWA_MASK), 0);
5210 		if (sh) {
5211 			if (unlikely(previous)) {
5212 				/* expansion might have moved on while waiting for a
5213 				 * stripe, so we must do the range check again.
5214 				 * Expansion could still move past after this
5215 				 * test, but as we are holding a reference to
5216 				 * 'sh', we know that if that happens,
5217 				 *  STRIPE_EXPANDING will get set and the expansion
5218 				 * won't proceed until we finish with the stripe.
5219 				 */
5220 				int must_retry = 0;
5221 				spin_lock_irq(&conf->device_lock);
5222 				if (mddev->reshape_backwards
5223 				    ? logical_sector >= conf->reshape_progress
5224 				    : logical_sector < conf->reshape_progress)
5225 					/* mismatch, need to try again */
5226 					must_retry = 1;
5227 				spin_unlock_irq(&conf->device_lock);
5228 				if (must_retry) {
5229 					release_stripe(sh);
5230 					schedule();
5231 					do_prepare = true;
5232 					goto retry;
5233 				}
5234 			}
5235 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5236 				/* Might have got the wrong stripe_head
5237 				 * by accident
5238 				 */
5239 				release_stripe(sh);
5240 				goto retry;
5241 			}
5242 
5243 			if (rw == WRITE &&
5244 			    logical_sector >= mddev->suspend_lo &&
5245 			    logical_sector < mddev->suspend_hi) {
5246 				release_stripe(sh);
5247 				/* As the suspend_* range is controlled by
5248 				 * userspace, we want an interruptible
5249 				 * wait.
5250 				 */
5251 				flush_signals(current);
5252 				prepare_to_wait(&conf->wait_for_overlap,
5253 						&w, TASK_INTERRUPTIBLE);
5254 				if (logical_sector >= mddev->suspend_lo &&
5255 				    logical_sector < mddev->suspend_hi) {
5256 					schedule();
5257 					do_prepare = true;
5258 				}
5259 				goto retry;
5260 			}
5261 
5262 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5263 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5264 				/* Stripe is busy expanding or
5265 				 * add failed due to overlap.  Flush everything
5266 				 * and wait a while
5267 				 */
5268 				md_wakeup_thread(mddev->thread);
5269 				release_stripe(sh);
5270 				schedule();
5271 				do_prepare = true;
5272 				goto retry;
5273 			}
5274 			set_bit(STRIPE_HANDLE, &sh->state);
5275 			clear_bit(STRIPE_DELAYED, &sh->state);
5276 			if ((!sh->batch_head || sh == sh->batch_head) &&
5277 			    (bi->bi_rw & REQ_SYNC) &&
5278 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5279 				atomic_inc(&conf->preread_active_stripes);
5280 			release_stripe_plug(mddev, sh);
5281 		} else {
5282 			/* cannot get stripe for read-ahead, just give-up */
5283 			bi->bi_error = -EIO;
5284 			break;
5285 		}
5286 	}
5287 	finish_wait(&conf->wait_for_overlap, &w);
5288 
5289 	remaining = raid5_dec_bi_active_stripes(bi);
5290 	if (remaining == 0) {
5291 
5292 		if ( rw == WRITE )
5293 			md_write_end(mddev);
5294 
5295 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5296 					 bi, 0);
5297 		bio_endio(bi);
5298 	}
5299 }
5300 
5301 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5302 
5303 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5304 {
5305 	/* reshaping is quite different to recovery/resync so it is
5306 	 * handled quite separately ... here.
5307 	 *
5308 	 * On each call to sync_request, we gather one chunk worth of
5309 	 * destination stripes and flag them as expanding.
5310 	 * Then we find all the source stripes and request reads.
5311 	 * As the reads complete, handle_stripe will copy the data
5312 	 * into the destination stripe and release that stripe.
5313 	 */
5314 	struct r5conf *conf = mddev->private;
5315 	struct stripe_head *sh;
5316 	sector_t first_sector, last_sector;
5317 	int raid_disks = conf->previous_raid_disks;
5318 	int data_disks = raid_disks - conf->max_degraded;
5319 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5320 	int i;
5321 	int dd_idx;
5322 	sector_t writepos, readpos, safepos;
5323 	sector_t stripe_addr;
5324 	int reshape_sectors;
5325 	struct list_head stripes;
5326 	sector_t retn;
5327 
5328 	if (sector_nr == 0) {
5329 		/* If restarting in the middle, skip the initial sectors */
5330 		if (mddev->reshape_backwards &&
5331 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5332 			sector_nr = raid5_size(mddev, 0, 0)
5333 				- conf->reshape_progress;
5334 		} else if (mddev->reshape_backwards &&
5335 			   conf->reshape_progress == MaxSector) {
5336 			/* shouldn't happen, but just in case, finish up.*/
5337 			sector_nr = MaxSector;
5338 		} else if (!mddev->reshape_backwards &&
5339 			   conf->reshape_progress > 0)
5340 			sector_nr = conf->reshape_progress;
5341 		sector_div(sector_nr, new_data_disks);
5342 		if (sector_nr) {
5343 			mddev->curr_resync_completed = sector_nr;
5344 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5345 			*skipped = 1;
5346 			retn = sector_nr;
5347 			goto finish;
5348 		}
5349 	}
5350 
5351 	/* We need to process a full chunk at a time.
5352 	 * If old and new chunk sizes differ, we need to process the
5353 	 * largest of these
5354 	 */
5355 
5356 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5357 
5358 	/* We update the metadata at least every 10 seconds, or when
5359 	 * the data about to be copied would over-write the source of
5360 	 * the data at the front of the range.  i.e. one new_stripe
5361 	 * along from reshape_progress new_maps to after where
5362 	 * reshape_safe old_maps to
5363 	 */
5364 	writepos = conf->reshape_progress;
5365 	sector_div(writepos, new_data_disks);
5366 	readpos = conf->reshape_progress;
5367 	sector_div(readpos, data_disks);
5368 	safepos = conf->reshape_safe;
5369 	sector_div(safepos, data_disks);
5370 	if (mddev->reshape_backwards) {
5371 		BUG_ON(writepos < reshape_sectors);
5372 		writepos -= reshape_sectors;
5373 		readpos += reshape_sectors;
5374 		safepos += reshape_sectors;
5375 	} else {
5376 		writepos += reshape_sectors;
5377 		/* readpos and safepos are worst-case calculations.
5378 		 * A negative number is overly pessimistic, and causes
5379 		 * obvious problems for unsigned storage.  So clip to 0.
5380 		 */
5381 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5382 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5383 	}
5384 
5385 	/* Having calculated the 'writepos' possibly use it
5386 	 * to set 'stripe_addr' which is where we will write to.
5387 	 */
5388 	if (mddev->reshape_backwards) {
5389 		BUG_ON(conf->reshape_progress == 0);
5390 		stripe_addr = writepos;
5391 		BUG_ON((mddev->dev_sectors &
5392 			~((sector_t)reshape_sectors - 1))
5393 		       - reshape_sectors - stripe_addr
5394 		       != sector_nr);
5395 	} else {
5396 		BUG_ON(writepos != sector_nr + reshape_sectors);
5397 		stripe_addr = sector_nr;
5398 	}
5399 
5400 	/* 'writepos' is the most advanced device address we might write.
5401 	 * 'readpos' is the least advanced device address we might read.
5402 	 * 'safepos' is the least address recorded in the metadata as having
5403 	 *     been reshaped.
5404 	 * If there is a min_offset_diff, these are adjusted either by
5405 	 * increasing the safepos/readpos if diff is negative, or
5406 	 * increasing writepos if diff is positive.
5407 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5408 	 * ensure safety in the face of a crash - that must be done by userspace
5409 	 * making a backup of the data.  So in that case there is no particular
5410 	 * rush to update metadata.
5411 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5412 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5413 	 * we can be safe in the event of a crash.
5414 	 * So we insist on updating metadata if safepos is behind writepos and
5415 	 * readpos is beyond writepos.
5416 	 * In any case, update the metadata every 10 seconds.
5417 	 * Maybe that number should be configurable, but I'm not sure it is
5418 	 * worth it.... maybe it could be a multiple of safemode_delay???
5419 	 */
5420 	if (conf->min_offset_diff < 0) {
5421 		safepos += -conf->min_offset_diff;
5422 		readpos += -conf->min_offset_diff;
5423 	} else
5424 		writepos += conf->min_offset_diff;
5425 
5426 	if ((mddev->reshape_backwards
5427 	     ? (safepos > writepos && readpos < writepos)
5428 	     : (safepos < writepos && readpos > writepos)) ||
5429 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5430 		/* Cannot proceed until we've updated the superblock... */
5431 		wait_event(conf->wait_for_overlap,
5432 			   atomic_read(&conf->reshape_stripes)==0
5433 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5434 		if (atomic_read(&conf->reshape_stripes) != 0)
5435 			return 0;
5436 		mddev->reshape_position = conf->reshape_progress;
5437 		mddev->curr_resync_completed = sector_nr;
5438 		conf->reshape_checkpoint = jiffies;
5439 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5440 		md_wakeup_thread(mddev->thread);
5441 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5442 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5443 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5444 			return 0;
5445 		spin_lock_irq(&conf->device_lock);
5446 		conf->reshape_safe = mddev->reshape_position;
5447 		spin_unlock_irq(&conf->device_lock);
5448 		wake_up(&conf->wait_for_overlap);
5449 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5450 	}
5451 
5452 	INIT_LIST_HEAD(&stripes);
5453 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5454 		int j;
5455 		int skipped_disk = 0;
5456 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5457 		set_bit(STRIPE_EXPANDING, &sh->state);
5458 		atomic_inc(&conf->reshape_stripes);
5459 		/* If any of this stripe is beyond the end of the old
5460 		 * array, then we need to zero those blocks
5461 		 */
5462 		for (j=sh->disks; j--;) {
5463 			sector_t s;
5464 			if (j == sh->pd_idx)
5465 				continue;
5466 			if (conf->level == 6 &&
5467 			    j == sh->qd_idx)
5468 				continue;
5469 			s = compute_blocknr(sh, j, 0);
5470 			if (s < raid5_size(mddev, 0, 0)) {
5471 				skipped_disk = 1;
5472 				continue;
5473 			}
5474 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5475 			set_bit(R5_Expanded, &sh->dev[j].flags);
5476 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5477 		}
5478 		if (!skipped_disk) {
5479 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5480 			set_bit(STRIPE_HANDLE, &sh->state);
5481 		}
5482 		list_add(&sh->lru, &stripes);
5483 	}
5484 	spin_lock_irq(&conf->device_lock);
5485 	if (mddev->reshape_backwards)
5486 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5487 	else
5488 		conf->reshape_progress += reshape_sectors * new_data_disks;
5489 	spin_unlock_irq(&conf->device_lock);
5490 	/* Ok, those stripe are ready. We can start scheduling
5491 	 * reads on the source stripes.
5492 	 * The source stripes are determined by mapping the first and last
5493 	 * block on the destination stripes.
5494 	 */
5495 	first_sector =
5496 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5497 				     1, &dd_idx, NULL);
5498 	last_sector =
5499 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5500 					    * new_data_disks - 1),
5501 				     1, &dd_idx, NULL);
5502 	if (last_sector >= mddev->dev_sectors)
5503 		last_sector = mddev->dev_sectors - 1;
5504 	while (first_sector <= last_sector) {
5505 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5506 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5507 		set_bit(STRIPE_HANDLE, &sh->state);
5508 		release_stripe(sh);
5509 		first_sector += STRIPE_SECTORS;
5510 	}
5511 	/* Now that the sources are clearly marked, we can release
5512 	 * the destination stripes
5513 	 */
5514 	while (!list_empty(&stripes)) {
5515 		sh = list_entry(stripes.next, struct stripe_head, lru);
5516 		list_del_init(&sh->lru);
5517 		release_stripe(sh);
5518 	}
5519 	/* If this takes us to the resync_max point where we have to pause,
5520 	 * then we need to write out the superblock.
5521 	 */
5522 	sector_nr += reshape_sectors;
5523 	retn = reshape_sectors;
5524 finish:
5525 	if (mddev->curr_resync_completed > mddev->resync_max ||
5526 	    (sector_nr - mddev->curr_resync_completed) * 2
5527 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5528 		/* Cannot proceed until we've updated the superblock... */
5529 		wait_event(conf->wait_for_overlap,
5530 			   atomic_read(&conf->reshape_stripes) == 0
5531 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5532 		if (atomic_read(&conf->reshape_stripes) != 0)
5533 			goto ret;
5534 		mddev->reshape_position = conf->reshape_progress;
5535 		mddev->curr_resync_completed = sector_nr;
5536 		conf->reshape_checkpoint = jiffies;
5537 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5538 		md_wakeup_thread(mddev->thread);
5539 		wait_event(mddev->sb_wait,
5540 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5541 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5542 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5543 			goto ret;
5544 		spin_lock_irq(&conf->device_lock);
5545 		conf->reshape_safe = mddev->reshape_position;
5546 		spin_unlock_irq(&conf->device_lock);
5547 		wake_up(&conf->wait_for_overlap);
5548 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5549 	}
5550 ret:
5551 	return retn;
5552 }
5553 
5554 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5555 {
5556 	struct r5conf *conf = mddev->private;
5557 	struct stripe_head *sh;
5558 	sector_t max_sector = mddev->dev_sectors;
5559 	sector_t sync_blocks;
5560 	int still_degraded = 0;
5561 	int i;
5562 
5563 	if (sector_nr >= max_sector) {
5564 		/* just being told to finish up .. nothing much to do */
5565 
5566 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5567 			end_reshape(conf);
5568 			return 0;
5569 		}
5570 
5571 		if (mddev->curr_resync < max_sector) /* aborted */
5572 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5573 					&sync_blocks, 1);
5574 		else /* completed sync */
5575 			conf->fullsync = 0;
5576 		bitmap_close_sync(mddev->bitmap);
5577 
5578 		return 0;
5579 	}
5580 
5581 	/* Allow raid5_quiesce to complete */
5582 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5583 
5584 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5585 		return reshape_request(mddev, sector_nr, skipped);
5586 
5587 	/* No need to check resync_max as we never do more than one
5588 	 * stripe, and as resync_max will always be on a chunk boundary,
5589 	 * if the check in md_do_sync didn't fire, there is no chance
5590 	 * of overstepping resync_max here
5591 	 */
5592 
5593 	/* if there is too many failed drives and we are trying
5594 	 * to resync, then assert that we are finished, because there is
5595 	 * nothing we can do.
5596 	 */
5597 	if (mddev->degraded >= conf->max_degraded &&
5598 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5599 		sector_t rv = mddev->dev_sectors - sector_nr;
5600 		*skipped = 1;
5601 		return rv;
5602 	}
5603 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5604 	    !conf->fullsync &&
5605 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5606 	    sync_blocks >= STRIPE_SECTORS) {
5607 		/* we can skip this block, and probably more */
5608 		sync_blocks /= STRIPE_SECTORS;
5609 		*skipped = 1;
5610 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5611 	}
5612 
5613 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5614 
5615 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5616 	if (sh == NULL) {
5617 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5618 		/* make sure we don't swamp the stripe cache if someone else
5619 		 * is trying to get access
5620 		 */
5621 		schedule_timeout_uninterruptible(1);
5622 	}
5623 	/* Need to check if array will still be degraded after recovery/resync
5624 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5625 	 * one drive while leaving another faulty drive in array.
5626 	 */
5627 	rcu_read_lock();
5628 	for (i = 0; i < conf->raid_disks; i++) {
5629 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5630 
5631 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5632 			still_degraded = 1;
5633 	}
5634 	rcu_read_unlock();
5635 
5636 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5637 
5638 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5639 	set_bit(STRIPE_HANDLE, &sh->state);
5640 
5641 	release_stripe(sh);
5642 
5643 	return STRIPE_SECTORS;
5644 }
5645 
5646 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5647 {
5648 	/* We may not be able to submit a whole bio at once as there
5649 	 * may not be enough stripe_heads available.
5650 	 * We cannot pre-allocate enough stripe_heads as we may need
5651 	 * more than exist in the cache (if we allow ever large chunks).
5652 	 * So we do one stripe head at a time and record in
5653 	 * ->bi_hw_segments how many have been done.
5654 	 *
5655 	 * We *know* that this entire raid_bio is in one chunk, so
5656 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5657 	 */
5658 	struct stripe_head *sh;
5659 	int dd_idx;
5660 	sector_t sector, logical_sector, last_sector;
5661 	int scnt = 0;
5662 	int remaining;
5663 	int handled = 0;
5664 
5665 	logical_sector = raid_bio->bi_iter.bi_sector &
5666 		~((sector_t)STRIPE_SECTORS-1);
5667 	sector = raid5_compute_sector(conf, logical_sector,
5668 				      0, &dd_idx, NULL);
5669 	last_sector = bio_end_sector(raid_bio);
5670 
5671 	for (; logical_sector < last_sector;
5672 	     logical_sector += STRIPE_SECTORS,
5673 		     sector += STRIPE_SECTORS,
5674 		     scnt++) {
5675 
5676 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5677 			/* already done this stripe */
5678 			continue;
5679 
5680 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5681 
5682 		if (!sh) {
5683 			/* failed to get a stripe - must wait */
5684 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5685 			conf->retry_read_aligned = raid_bio;
5686 			return handled;
5687 		}
5688 
5689 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5690 			release_stripe(sh);
5691 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5692 			conf->retry_read_aligned = raid_bio;
5693 			return handled;
5694 		}
5695 
5696 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5697 		handle_stripe(sh);
5698 		release_stripe(sh);
5699 		handled++;
5700 	}
5701 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5702 	if (remaining == 0) {
5703 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5704 					 raid_bio, 0);
5705 		bio_endio(raid_bio);
5706 	}
5707 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5708 		wake_up(&conf->wait_for_quiescent);
5709 	return handled;
5710 }
5711 
5712 static int handle_active_stripes(struct r5conf *conf, int group,
5713 				 struct r5worker *worker,
5714 				 struct list_head *temp_inactive_list)
5715 {
5716 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5717 	int i, batch_size = 0, hash;
5718 	bool release_inactive = false;
5719 
5720 	while (batch_size < MAX_STRIPE_BATCH &&
5721 			(sh = __get_priority_stripe(conf, group)) != NULL)
5722 		batch[batch_size++] = sh;
5723 
5724 	if (batch_size == 0) {
5725 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5726 			if (!list_empty(temp_inactive_list + i))
5727 				break;
5728 		if (i == NR_STRIPE_HASH_LOCKS)
5729 			return batch_size;
5730 		release_inactive = true;
5731 	}
5732 	spin_unlock_irq(&conf->device_lock);
5733 
5734 	release_inactive_stripe_list(conf, temp_inactive_list,
5735 				     NR_STRIPE_HASH_LOCKS);
5736 
5737 	if (release_inactive) {
5738 		spin_lock_irq(&conf->device_lock);
5739 		return 0;
5740 	}
5741 
5742 	for (i = 0; i < batch_size; i++)
5743 		handle_stripe(batch[i]);
5744 
5745 	cond_resched();
5746 
5747 	spin_lock_irq(&conf->device_lock);
5748 	for (i = 0; i < batch_size; i++) {
5749 		hash = batch[i]->hash_lock_index;
5750 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5751 	}
5752 	return batch_size;
5753 }
5754 
5755 static void raid5_do_work(struct work_struct *work)
5756 {
5757 	struct r5worker *worker = container_of(work, struct r5worker, work);
5758 	struct r5worker_group *group = worker->group;
5759 	struct r5conf *conf = group->conf;
5760 	int group_id = group - conf->worker_groups;
5761 	int handled;
5762 	struct blk_plug plug;
5763 
5764 	pr_debug("+++ raid5worker active\n");
5765 
5766 	blk_start_plug(&plug);
5767 	handled = 0;
5768 	spin_lock_irq(&conf->device_lock);
5769 	while (1) {
5770 		int batch_size, released;
5771 
5772 		released = release_stripe_list(conf, worker->temp_inactive_list);
5773 
5774 		batch_size = handle_active_stripes(conf, group_id, worker,
5775 						   worker->temp_inactive_list);
5776 		worker->working = false;
5777 		if (!batch_size && !released)
5778 			break;
5779 		handled += batch_size;
5780 	}
5781 	pr_debug("%d stripes handled\n", handled);
5782 
5783 	spin_unlock_irq(&conf->device_lock);
5784 	blk_finish_plug(&plug);
5785 
5786 	pr_debug("--- raid5worker inactive\n");
5787 }
5788 
5789 /*
5790  * This is our raid5 kernel thread.
5791  *
5792  * We scan the hash table for stripes which can be handled now.
5793  * During the scan, completed stripes are saved for us by the interrupt
5794  * handler, so that they will not have to wait for our next wakeup.
5795  */
5796 static void raid5d(struct md_thread *thread)
5797 {
5798 	struct mddev *mddev = thread->mddev;
5799 	struct r5conf *conf = mddev->private;
5800 	int handled;
5801 	struct blk_plug plug;
5802 
5803 	pr_debug("+++ raid5d active\n");
5804 
5805 	md_check_recovery(mddev);
5806 
5807 	if (!bio_list_empty(&conf->return_bi) &&
5808 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5809 		struct bio_list tmp = BIO_EMPTY_LIST;
5810 		spin_lock_irq(&conf->device_lock);
5811 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5812 			bio_list_merge(&tmp, &conf->return_bi);
5813 			bio_list_init(&conf->return_bi);
5814 		}
5815 		spin_unlock_irq(&conf->device_lock);
5816 		return_io(&tmp);
5817 	}
5818 
5819 	blk_start_plug(&plug);
5820 	handled = 0;
5821 	spin_lock_irq(&conf->device_lock);
5822 	while (1) {
5823 		struct bio *bio;
5824 		int batch_size, released;
5825 
5826 		released = release_stripe_list(conf, conf->temp_inactive_list);
5827 		if (released)
5828 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5829 
5830 		if (
5831 		    !list_empty(&conf->bitmap_list)) {
5832 			/* Now is a good time to flush some bitmap updates */
5833 			conf->seq_flush++;
5834 			spin_unlock_irq(&conf->device_lock);
5835 			bitmap_unplug(mddev->bitmap);
5836 			spin_lock_irq(&conf->device_lock);
5837 			conf->seq_write = conf->seq_flush;
5838 			activate_bit_delay(conf, conf->temp_inactive_list);
5839 		}
5840 		raid5_activate_delayed(conf);
5841 
5842 		while ((bio = remove_bio_from_retry(conf))) {
5843 			int ok;
5844 			spin_unlock_irq(&conf->device_lock);
5845 			ok = retry_aligned_read(conf, bio);
5846 			spin_lock_irq(&conf->device_lock);
5847 			if (!ok)
5848 				break;
5849 			handled++;
5850 		}
5851 
5852 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5853 						   conf->temp_inactive_list);
5854 		if (!batch_size && !released)
5855 			break;
5856 		handled += batch_size;
5857 
5858 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5859 			spin_unlock_irq(&conf->device_lock);
5860 			md_check_recovery(mddev);
5861 			spin_lock_irq(&conf->device_lock);
5862 		}
5863 	}
5864 	pr_debug("%d stripes handled\n", handled);
5865 
5866 	spin_unlock_irq(&conf->device_lock);
5867 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5868 	    mutex_trylock(&conf->cache_size_mutex)) {
5869 		grow_one_stripe(conf, __GFP_NOWARN);
5870 		/* Set flag even if allocation failed.  This helps
5871 		 * slow down allocation requests when mem is short
5872 		 */
5873 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5874 		mutex_unlock(&conf->cache_size_mutex);
5875 	}
5876 
5877 	async_tx_issue_pending_all();
5878 	blk_finish_plug(&plug);
5879 
5880 	pr_debug("--- raid5d inactive\n");
5881 }
5882 
5883 static ssize_t
5884 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5885 {
5886 	struct r5conf *conf;
5887 	int ret = 0;
5888 	spin_lock(&mddev->lock);
5889 	conf = mddev->private;
5890 	if (conf)
5891 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5892 	spin_unlock(&mddev->lock);
5893 	return ret;
5894 }
5895 
5896 int
5897 raid5_set_cache_size(struct mddev *mddev, int size)
5898 {
5899 	struct r5conf *conf = mddev->private;
5900 	int err;
5901 
5902 	if (size <= 16 || size > 32768)
5903 		return -EINVAL;
5904 
5905 	conf->min_nr_stripes = size;
5906 	mutex_lock(&conf->cache_size_mutex);
5907 	while (size < conf->max_nr_stripes &&
5908 	       drop_one_stripe(conf))
5909 		;
5910 	mutex_unlock(&conf->cache_size_mutex);
5911 
5912 
5913 	err = md_allow_write(mddev);
5914 	if (err)
5915 		return err;
5916 
5917 	mutex_lock(&conf->cache_size_mutex);
5918 	while (size > conf->max_nr_stripes)
5919 		if (!grow_one_stripe(conf, GFP_KERNEL))
5920 			break;
5921 	mutex_unlock(&conf->cache_size_mutex);
5922 
5923 	return 0;
5924 }
5925 EXPORT_SYMBOL(raid5_set_cache_size);
5926 
5927 static ssize_t
5928 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5929 {
5930 	struct r5conf *conf;
5931 	unsigned long new;
5932 	int err;
5933 
5934 	if (len >= PAGE_SIZE)
5935 		return -EINVAL;
5936 	if (kstrtoul(page, 10, &new))
5937 		return -EINVAL;
5938 	err = mddev_lock(mddev);
5939 	if (err)
5940 		return err;
5941 	conf = mddev->private;
5942 	if (!conf)
5943 		err = -ENODEV;
5944 	else
5945 		err = raid5_set_cache_size(mddev, new);
5946 	mddev_unlock(mddev);
5947 
5948 	return err ?: len;
5949 }
5950 
5951 static struct md_sysfs_entry
5952 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5953 				raid5_show_stripe_cache_size,
5954 				raid5_store_stripe_cache_size);
5955 
5956 static ssize_t
5957 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5958 {
5959 	struct r5conf *conf = mddev->private;
5960 	if (conf)
5961 		return sprintf(page, "%d\n", conf->rmw_level);
5962 	else
5963 		return 0;
5964 }
5965 
5966 static ssize_t
5967 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5968 {
5969 	struct r5conf *conf = mddev->private;
5970 	unsigned long new;
5971 
5972 	if (!conf)
5973 		return -ENODEV;
5974 
5975 	if (len >= PAGE_SIZE)
5976 		return -EINVAL;
5977 
5978 	if (kstrtoul(page, 10, &new))
5979 		return -EINVAL;
5980 
5981 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5982 		return -EINVAL;
5983 
5984 	if (new != PARITY_DISABLE_RMW &&
5985 	    new != PARITY_ENABLE_RMW &&
5986 	    new != PARITY_PREFER_RMW)
5987 		return -EINVAL;
5988 
5989 	conf->rmw_level = new;
5990 	return len;
5991 }
5992 
5993 static struct md_sysfs_entry
5994 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5995 			 raid5_show_rmw_level,
5996 			 raid5_store_rmw_level);
5997 
5998 
5999 static ssize_t
6000 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6001 {
6002 	struct r5conf *conf;
6003 	int ret = 0;
6004 	spin_lock(&mddev->lock);
6005 	conf = mddev->private;
6006 	if (conf)
6007 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6008 	spin_unlock(&mddev->lock);
6009 	return ret;
6010 }
6011 
6012 static ssize_t
6013 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6014 {
6015 	struct r5conf *conf;
6016 	unsigned long new;
6017 	int err;
6018 
6019 	if (len >= PAGE_SIZE)
6020 		return -EINVAL;
6021 	if (kstrtoul(page, 10, &new))
6022 		return -EINVAL;
6023 
6024 	err = mddev_lock(mddev);
6025 	if (err)
6026 		return err;
6027 	conf = mddev->private;
6028 	if (!conf)
6029 		err = -ENODEV;
6030 	else if (new > conf->min_nr_stripes)
6031 		err = -EINVAL;
6032 	else
6033 		conf->bypass_threshold = new;
6034 	mddev_unlock(mddev);
6035 	return err ?: len;
6036 }
6037 
6038 static struct md_sysfs_entry
6039 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6040 					S_IRUGO | S_IWUSR,
6041 					raid5_show_preread_threshold,
6042 					raid5_store_preread_threshold);
6043 
6044 static ssize_t
6045 raid5_show_skip_copy(struct mddev *mddev, char *page)
6046 {
6047 	struct r5conf *conf;
6048 	int ret = 0;
6049 	spin_lock(&mddev->lock);
6050 	conf = mddev->private;
6051 	if (conf)
6052 		ret = sprintf(page, "%d\n", conf->skip_copy);
6053 	spin_unlock(&mddev->lock);
6054 	return ret;
6055 }
6056 
6057 static ssize_t
6058 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6059 {
6060 	struct r5conf *conf;
6061 	unsigned long new;
6062 	int err;
6063 
6064 	if (len >= PAGE_SIZE)
6065 		return -EINVAL;
6066 	if (kstrtoul(page, 10, &new))
6067 		return -EINVAL;
6068 	new = !!new;
6069 
6070 	err = mddev_lock(mddev);
6071 	if (err)
6072 		return err;
6073 	conf = mddev->private;
6074 	if (!conf)
6075 		err = -ENODEV;
6076 	else if (new != conf->skip_copy) {
6077 		mddev_suspend(mddev);
6078 		conf->skip_copy = new;
6079 		if (new)
6080 			mddev->queue->backing_dev_info.capabilities |=
6081 				BDI_CAP_STABLE_WRITES;
6082 		else
6083 			mddev->queue->backing_dev_info.capabilities &=
6084 				~BDI_CAP_STABLE_WRITES;
6085 		mddev_resume(mddev);
6086 	}
6087 	mddev_unlock(mddev);
6088 	return err ?: len;
6089 }
6090 
6091 static struct md_sysfs_entry
6092 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6093 					raid5_show_skip_copy,
6094 					raid5_store_skip_copy);
6095 
6096 static ssize_t
6097 stripe_cache_active_show(struct mddev *mddev, char *page)
6098 {
6099 	struct r5conf *conf = mddev->private;
6100 	if (conf)
6101 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6102 	else
6103 		return 0;
6104 }
6105 
6106 static struct md_sysfs_entry
6107 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6108 
6109 static ssize_t
6110 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6111 {
6112 	struct r5conf *conf;
6113 	int ret = 0;
6114 	spin_lock(&mddev->lock);
6115 	conf = mddev->private;
6116 	if (conf)
6117 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6118 	spin_unlock(&mddev->lock);
6119 	return ret;
6120 }
6121 
6122 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6123 			       int *group_cnt,
6124 			       int *worker_cnt_per_group,
6125 			       struct r5worker_group **worker_groups);
6126 static ssize_t
6127 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6128 {
6129 	struct r5conf *conf;
6130 	unsigned long new;
6131 	int err;
6132 	struct r5worker_group *new_groups, *old_groups;
6133 	int group_cnt, worker_cnt_per_group;
6134 
6135 	if (len >= PAGE_SIZE)
6136 		return -EINVAL;
6137 	if (kstrtoul(page, 10, &new))
6138 		return -EINVAL;
6139 
6140 	err = mddev_lock(mddev);
6141 	if (err)
6142 		return err;
6143 	conf = mddev->private;
6144 	if (!conf)
6145 		err = -ENODEV;
6146 	else if (new != conf->worker_cnt_per_group) {
6147 		mddev_suspend(mddev);
6148 
6149 		old_groups = conf->worker_groups;
6150 		if (old_groups)
6151 			flush_workqueue(raid5_wq);
6152 
6153 		err = alloc_thread_groups(conf, new,
6154 					  &group_cnt, &worker_cnt_per_group,
6155 					  &new_groups);
6156 		if (!err) {
6157 			spin_lock_irq(&conf->device_lock);
6158 			conf->group_cnt = group_cnt;
6159 			conf->worker_cnt_per_group = worker_cnt_per_group;
6160 			conf->worker_groups = new_groups;
6161 			spin_unlock_irq(&conf->device_lock);
6162 
6163 			if (old_groups)
6164 				kfree(old_groups[0].workers);
6165 			kfree(old_groups);
6166 		}
6167 		mddev_resume(mddev);
6168 	}
6169 	mddev_unlock(mddev);
6170 
6171 	return err ?: len;
6172 }
6173 
6174 static struct md_sysfs_entry
6175 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6176 				raid5_show_group_thread_cnt,
6177 				raid5_store_group_thread_cnt);
6178 
6179 static struct attribute *raid5_attrs[] =  {
6180 	&raid5_stripecache_size.attr,
6181 	&raid5_stripecache_active.attr,
6182 	&raid5_preread_bypass_threshold.attr,
6183 	&raid5_group_thread_cnt.attr,
6184 	&raid5_skip_copy.attr,
6185 	&raid5_rmw_level.attr,
6186 	NULL,
6187 };
6188 static struct attribute_group raid5_attrs_group = {
6189 	.name = NULL,
6190 	.attrs = raid5_attrs,
6191 };
6192 
6193 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6194 			       int *group_cnt,
6195 			       int *worker_cnt_per_group,
6196 			       struct r5worker_group **worker_groups)
6197 {
6198 	int i, j, k;
6199 	ssize_t size;
6200 	struct r5worker *workers;
6201 
6202 	*worker_cnt_per_group = cnt;
6203 	if (cnt == 0) {
6204 		*group_cnt = 0;
6205 		*worker_groups = NULL;
6206 		return 0;
6207 	}
6208 	*group_cnt = num_possible_nodes();
6209 	size = sizeof(struct r5worker) * cnt;
6210 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6211 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6212 				*group_cnt, GFP_NOIO);
6213 	if (!*worker_groups || !workers) {
6214 		kfree(workers);
6215 		kfree(*worker_groups);
6216 		return -ENOMEM;
6217 	}
6218 
6219 	for (i = 0; i < *group_cnt; i++) {
6220 		struct r5worker_group *group;
6221 
6222 		group = &(*worker_groups)[i];
6223 		INIT_LIST_HEAD(&group->handle_list);
6224 		group->conf = conf;
6225 		group->workers = workers + i * cnt;
6226 
6227 		for (j = 0; j < cnt; j++) {
6228 			struct r5worker *worker = group->workers + j;
6229 			worker->group = group;
6230 			INIT_WORK(&worker->work, raid5_do_work);
6231 
6232 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6233 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6234 		}
6235 	}
6236 
6237 	return 0;
6238 }
6239 
6240 static void free_thread_groups(struct r5conf *conf)
6241 {
6242 	if (conf->worker_groups)
6243 		kfree(conf->worker_groups[0].workers);
6244 	kfree(conf->worker_groups);
6245 	conf->worker_groups = NULL;
6246 }
6247 
6248 static sector_t
6249 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6250 {
6251 	struct r5conf *conf = mddev->private;
6252 
6253 	if (!sectors)
6254 		sectors = mddev->dev_sectors;
6255 	if (!raid_disks)
6256 		/* size is defined by the smallest of previous and new size */
6257 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6258 
6259 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6260 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6261 	return sectors * (raid_disks - conf->max_degraded);
6262 }
6263 
6264 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6265 {
6266 	safe_put_page(percpu->spare_page);
6267 	if (percpu->scribble)
6268 		flex_array_free(percpu->scribble);
6269 	percpu->spare_page = NULL;
6270 	percpu->scribble = NULL;
6271 }
6272 
6273 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6274 {
6275 	if (conf->level == 6 && !percpu->spare_page)
6276 		percpu->spare_page = alloc_page(GFP_KERNEL);
6277 	if (!percpu->scribble)
6278 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6279 						      conf->previous_raid_disks),
6280 						  max(conf->chunk_sectors,
6281 						      conf->prev_chunk_sectors)
6282 						   / STRIPE_SECTORS,
6283 						  GFP_KERNEL);
6284 
6285 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6286 		free_scratch_buffer(conf, percpu);
6287 		return -ENOMEM;
6288 	}
6289 
6290 	return 0;
6291 }
6292 
6293 static void raid5_free_percpu(struct r5conf *conf)
6294 {
6295 	unsigned long cpu;
6296 
6297 	if (!conf->percpu)
6298 		return;
6299 
6300 #ifdef CONFIG_HOTPLUG_CPU
6301 	unregister_cpu_notifier(&conf->cpu_notify);
6302 #endif
6303 
6304 	get_online_cpus();
6305 	for_each_possible_cpu(cpu)
6306 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6307 	put_online_cpus();
6308 
6309 	free_percpu(conf->percpu);
6310 }
6311 
6312 static void free_conf(struct r5conf *conf)
6313 {
6314 	if (conf->shrinker.seeks)
6315 		unregister_shrinker(&conf->shrinker);
6316 	free_thread_groups(conf);
6317 	shrink_stripes(conf);
6318 	raid5_free_percpu(conf);
6319 	kfree(conf->disks);
6320 	kfree(conf->stripe_hashtbl);
6321 	kfree(conf);
6322 }
6323 
6324 #ifdef CONFIG_HOTPLUG_CPU
6325 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6326 			      void *hcpu)
6327 {
6328 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6329 	long cpu = (long)hcpu;
6330 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6331 
6332 	switch (action) {
6333 	case CPU_UP_PREPARE:
6334 	case CPU_UP_PREPARE_FROZEN:
6335 		if (alloc_scratch_buffer(conf, percpu)) {
6336 			pr_err("%s: failed memory allocation for cpu%ld\n",
6337 			       __func__, cpu);
6338 			return notifier_from_errno(-ENOMEM);
6339 		}
6340 		break;
6341 	case CPU_DEAD:
6342 	case CPU_DEAD_FROZEN:
6343 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6344 		break;
6345 	default:
6346 		break;
6347 	}
6348 	return NOTIFY_OK;
6349 }
6350 #endif
6351 
6352 static int raid5_alloc_percpu(struct r5conf *conf)
6353 {
6354 	unsigned long cpu;
6355 	int err = 0;
6356 
6357 	conf->percpu = alloc_percpu(struct raid5_percpu);
6358 	if (!conf->percpu)
6359 		return -ENOMEM;
6360 
6361 #ifdef CONFIG_HOTPLUG_CPU
6362 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6363 	conf->cpu_notify.priority = 0;
6364 	err = register_cpu_notifier(&conf->cpu_notify);
6365 	if (err)
6366 		return err;
6367 #endif
6368 
6369 	get_online_cpus();
6370 	for_each_present_cpu(cpu) {
6371 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6372 		if (err) {
6373 			pr_err("%s: failed memory allocation for cpu%ld\n",
6374 			       __func__, cpu);
6375 			break;
6376 		}
6377 	}
6378 	put_online_cpus();
6379 
6380 	return err;
6381 }
6382 
6383 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6384 				      struct shrink_control *sc)
6385 {
6386 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6387 	unsigned long ret = SHRINK_STOP;
6388 
6389 	if (mutex_trylock(&conf->cache_size_mutex)) {
6390 		ret= 0;
6391 		while (ret < sc->nr_to_scan &&
6392 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6393 			if (drop_one_stripe(conf) == 0) {
6394 				ret = SHRINK_STOP;
6395 				break;
6396 			}
6397 			ret++;
6398 		}
6399 		mutex_unlock(&conf->cache_size_mutex);
6400 	}
6401 	return ret;
6402 }
6403 
6404 static unsigned long raid5_cache_count(struct shrinker *shrink,
6405 				       struct shrink_control *sc)
6406 {
6407 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6408 
6409 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6410 		/* unlikely, but not impossible */
6411 		return 0;
6412 	return conf->max_nr_stripes - conf->min_nr_stripes;
6413 }
6414 
6415 static struct r5conf *setup_conf(struct mddev *mddev)
6416 {
6417 	struct r5conf *conf;
6418 	int raid_disk, memory, max_disks;
6419 	struct md_rdev *rdev;
6420 	struct disk_info *disk;
6421 	char pers_name[6];
6422 	int i;
6423 	int group_cnt, worker_cnt_per_group;
6424 	struct r5worker_group *new_group;
6425 
6426 	if (mddev->new_level != 5
6427 	    && mddev->new_level != 4
6428 	    && mddev->new_level != 6) {
6429 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6430 		       mdname(mddev), mddev->new_level);
6431 		return ERR_PTR(-EIO);
6432 	}
6433 	if ((mddev->new_level == 5
6434 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6435 	    (mddev->new_level == 6
6436 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6437 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6438 		       mdname(mddev), mddev->new_layout);
6439 		return ERR_PTR(-EIO);
6440 	}
6441 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6442 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6443 		       mdname(mddev), mddev->raid_disks);
6444 		return ERR_PTR(-EINVAL);
6445 	}
6446 
6447 	if (!mddev->new_chunk_sectors ||
6448 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6449 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6450 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6451 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6452 		return ERR_PTR(-EINVAL);
6453 	}
6454 
6455 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6456 	if (conf == NULL)
6457 		goto abort;
6458 	/* Don't enable multi-threading by default*/
6459 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6460 				 &new_group)) {
6461 		conf->group_cnt = group_cnt;
6462 		conf->worker_cnt_per_group = worker_cnt_per_group;
6463 		conf->worker_groups = new_group;
6464 	} else
6465 		goto abort;
6466 	spin_lock_init(&conf->device_lock);
6467 	seqcount_init(&conf->gen_lock);
6468 	mutex_init(&conf->cache_size_mutex);
6469 	init_waitqueue_head(&conf->wait_for_quiescent);
6470 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6471 		init_waitqueue_head(&conf->wait_for_stripe[i]);
6472 	}
6473 	init_waitqueue_head(&conf->wait_for_overlap);
6474 	INIT_LIST_HEAD(&conf->handle_list);
6475 	INIT_LIST_HEAD(&conf->hold_list);
6476 	INIT_LIST_HEAD(&conf->delayed_list);
6477 	INIT_LIST_HEAD(&conf->bitmap_list);
6478 	bio_list_init(&conf->return_bi);
6479 	init_llist_head(&conf->released_stripes);
6480 	atomic_set(&conf->active_stripes, 0);
6481 	atomic_set(&conf->preread_active_stripes, 0);
6482 	atomic_set(&conf->active_aligned_reads, 0);
6483 	conf->bypass_threshold = BYPASS_THRESHOLD;
6484 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6485 
6486 	conf->raid_disks = mddev->raid_disks;
6487 	if (mddev->reshape_position == MaxSector)
6488 		conf->previous_raid_disks = mddev->raid_disks;
6489 	else
6490 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6491 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6492 
6493 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6494 			      GFP_KERNEL);
6495 	if (!conf->disks)
6496 		goto abort;
6497 
6498 	conf->mddev = mddev;
6499 
6500 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6501 		goto abort;
6502 
6503 	/* We init hash_locks[0] separately to that it can be used
6504 	 * as the reference lock in the spin_lock_nest_lock() call
6505 	 * in lock_all_device_hash_locks_irq in order to convince
6506 	 * lockdep that we know what we are doing.
6507 	 */
6508 	spin_lock_init(conf->hash_locks);
6509 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6510 		spin_lock_init(conf->hash_locks + i);
6511 
6512 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6513 		INIT_LIST_HEAD(conf->inactive_list + i);
6514 
6515 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6516 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6517 
6518 	conf->level = mddev->new_level;
6519 	conf->chunk_sectors = mddev->new_chunk_sectors;
6520 	if (raid5_alloc_percpu(conf) != 0)
6521 		goto abort;
6522 
6523 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6524 
6525 	rdev_for_each(rdev, mddev) {
6526 		raid_disk = rdev->raid_disk;
6527 		if (raid_disk >= max_disks
6528 		    || raid_disk < 0)
6529 			continue;
6530 		disk = conf->disks + raid_disk;
6531 
6532 		if (test_bit(Replacement, &rdev->flags)) {
6533 			if (disk->replacement)
6534 				goto abort;
6535 			disk->replacement = rdev;
6536 		} else {
6537 			if (disk->rdev)
6538 				goto abort;
6539 			disk->rdev = rdev;
6540 		}
6541 
6542 		if (test_bit(In_sync, &rdev->flags)) {
6543 			char b[BDEVNAME_SIZE];
6544 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6545 			       " disk %d\n",
6546 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6547 		} else if (rdev->saved_raid_disk != raid_disk)
6548 			/* Cannot rely on bitmap to complete recovery */
6549 			conf->fullsync = 1;
6550 	}
6551 
6552 	conf->level = mddev->new_level;
6553 	if (conf->level == 6) {
6554 		conf->max_degraded = 2;
6555 		if (raid6_call.xor_syndrome)
6556 			conf->rmw_level = PARITY_ENABLE_RMW;
6557 		else
6558 			conf->rmw_level = PARITY_DISABLE_RMW;
6559 	} else {
6560 		conf->max_degraded = 1;
6561 		conf->rmw_level = PARITY_ENABLE_RMW;
6562 	}
6563 	conf->algorithm = mddev->new_layout;
6564 	conf->reshape_progress = mddev->reshape_position;
6565 	if (conf->reshape_progress != MaxSector) {
6566 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6567 		conf->prev_algo = mddev->layout;
6568 	} else {
6569 		conf->prev_chunk_sectors = conf->chunk_sectors;
6570 		conf->prev_algo = conf->algorithm;
6571 	}
6572 
6573 	conf->min_nr_stripes = NR_STRIPES;
6574 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6575 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6576 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6577 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6578 		printk(KERN_ERR
6579 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6580 		       mdname(mddev), memory);
6581 		goto abort;
6582 	} else
6583 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6584 		       mdname(mddev), memory);
6585 	/*
6586 	 * Losing a stripe head costs more than the time to refill it,
6587 	 * it reduces the queue depth and so can hurt throughput.
6588 	 * So set it rather large, scaled by number of devices.
6589 	 */
6590 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6591 	conf->shrinker.scan_objects = raid5_cache_scan;
6592 	conf->shrinker.count_objects = raid5_cache_count;
6593 	conf->shrinker.batch = 128;
6594 	conf->shrinker.flags = 0;
6595 	register_shrinker(&conf->shrinker);
6596 
6597 	sprintf(pers_name, "raid%d", mddev->new_level);
6598 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6599 	if (!conf->thread) {
6600 		printk(KERN_ERR
6601 		       "md/raid:%s: couldn't allocate thread.\n",
6602 		       mdname(mddev));
6603 		goto abort;
6604 	}
6605 
6606 	return conf;
6607 
6608  abort:
6609 	if (conf) {
6610 		free_conf(conf);
6611 		return ERR_PTR(-EIO);
6612 	} else
6613 		return ERR_PTR(-ENOMEM);
6614 }
6615 
6616 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6617 {
6618 	switch (algo) {
6619 	case ALGORITHM_PARITY_0:
6620 		if (raid_disk < max_degraded)
6621 			return 1;
6622 		break;
6623 	case ALGORITHM_PARITY_N:
6624 		if (raid_disk >= raid_disks - max_degraded)
6625 			return 1;
6626 		break;
6627 	case ALGORITHM_PARITY_0_6:
6628 		if (raid_disk == 0 ||
6629 		    raid_disk == raid_disks - 1)
6630 			return 1;
6631 		break;
6632 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6633 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6634 	case ALGORITHM_LEFT_SYMMETRIC_6:
6635 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6636 		if (raid_disk == raid_disks - 1)
6637 			return 1;
6638 	}
6639 	return 0;
6640 }
6641 
6642 static int run(struct mddev *mddev)
6643 {
6644 	struct r5conf *conf;
6645 	int working_disks = 0;
6646 	int dirty_parity_disks = 0;
6647 	struct md_rdev *rdev;
6648 	sector_t reshape_offset = 0;
6649 	int i;
6650 	long long min_offset_diff = 0;
6651 	int first = 1;
6652 
6653 	if (mddev->recovery_cp != MaxSector)
6654 		printk(KERN_NOTICE "md/raid:%s: not clean"
6655 		       " -- starting background reconstruction\n",
6656 		       mdname(mddev));
6657 
6658 	rdev_for_each(rdev, mddev) {
6659 		long long diff;
6660 		if (rdev->raid_disk < 0)
6661 			continue;
6662 		diff = (rdev->new_data_offset - rdev->data_offset);
6663 		if (first) {
6664 			min_offset_diff = diff;
6665 			first = 0;
6666 		} else if (mddev->reshape_backwards &&
6667 			 diff < min_offset_diff)
6668 			min_offset_diff = diff;
6669 		else if (!mddev->reshape_backwards &&
6670 			 diff > min_offset_diff)
6671 			min_offset_diff = diff;
6672 	}
6673 
6674 	if (mddev->reshape_position != MaxSector) {
6675 		/* Check that we can continue the reshape.
6676 		 * Difficulties arise if the stripe we would write to
6677 		 * next is at or after the stripe we would read from next.
6678 		 * For a reshape that changes the number of devices, this
6679 		 * is only possible for a very short time, and mdadm makes
6680 		 * sure that time appears to have past before assembling
6681 		 * the array.  So we fail if that time hasn't passed.
6682 		 * For a reshape that keeps the number of devices the same
6683 		 * mdadm must be monitoring the reshape can keeping the
6684 		 * critical areas read-only and backed up.  It will start
6685 		 * the array in read-only mode, so we check for that.
6686 		 */
6687 		sector_t here_new, here_old;
6688 		int old_disks;
6689 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6690 		int chunk_sectors;
6691 		int new_data_disks;
6692 
6693 		if (mddev->new_level != mddev->level) {
6694 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6695 			       "required - aborting.\n",
6696 			       mdname(mddev));
6697 			return -EINVAL;
6698 		}
6699 		old_disks = mddev->raid_disks - mddev->delta_disks;
6700 		/* reshape_position must be on a new-stripe boundary, and one
6701 		 * further up in new geometry must map after here in old
6702 		 * geometry.
6703 		 * If the chunk sizes are different, then as we perform reshape
6704 		 * in units of the largest of the two, reshape_position needs
6705 		 * be a multiple of the largest chunk size times new data disks.
6706 		 */
6707 		here_new = mddev->reshape_position;
6708 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6709 		new_data_disks = mddev->raid_disks - max_degraded;
6710 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6711 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6712 			       "on a stripe boundary\n", mdname(mddev));
6713 			return -EINVAL;
6714 		}
6715 		reshape_offset = here_new * chunk_sectors;
6716 		/* here_new is the stripe we will write to */
6717 		here_old = mddev->reshape_position;
6718 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6719 		/* here_old is the first stripe that we might need to read
6720 		 * from */
6721 		if (mddev->delta_disks == 0) {
6722 			/* We cannot be sure it is safe to start an in-place
6723 			 * reshape.  It is only safe if user-space is monitoring
6724 			 * and taking constant backups.
6725 			 * mdadm always starts a situation like this in
6726 			 * readonly mode so it can take control before
6727 			 * allowing any writes.  So just check for that.
6728 			 */
6729 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6730 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6731 				/* not really in-place - so OK */;
6732 			else if (mddev->ro == 0) {
6733 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6734 				       "must be started in read-only mode "
6735 				       "- aborting\n",
6736 				       mdname(mddev));
6737 				return -EINVAL;
6738 			}
6739 		} else if (mddev->reshape_backwards
6740 		    ? (here_new * chunk_sectors + min_offset_diff <=
6741 		       here_old * chunk_sectors)
6742 		    : (here_new * chunk_sectors >=
6743 		       here_old * chunk_sectors + (-min_offset_diff))) {
6744 			/* Reading from the same stripe as writing to - bad */
6745 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6746 			       "auto-recovery - aborting.\n",
6747 			       mdname(mddev));
6748 			return -EINVAL;
6749 		}
6750 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6751 		       mdname(mddev));
6752 		/* OK, we should be able to continue; */
6753 	} else {
6754 		BUG_ON(mddev->level != mddev->new_level);
6755 		BUG_ON(mddev->layout != mddev->new_layout);
6756 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6757 		BUG_ON(mddev->delta_disks != 0);
6758 	}
6759 
6760 	if (mddev->private == NULL)
6761 		conf = setup_conf(mddev);
6762 	else
6763 		conf = mddev->private;
6764 
6765 	if (IS_ERR(conf))
6766 		return PTR_ERR(conf);
6767 
6768 	conf->min_offset_diff = min_offset_diff;
6769 	mddev->thread = conf->thread;
6770 	conf->thread = NULL;
6771 	mddev->private = conf;
6772 
6773 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6774 	     i++) {
6775 		rdev = conf->disks[i].rdev;
6776 		if (!rdev && conf->disks[i].replacement) {
6777 			/* The replacement is all we have yet */
6778 			rdev = conf->disks[i].replacement;
6779 			conf->disks[i].replacement = NULL;
6780 			clear_bit(Replacement, &rdev->flags);
6781 			conf->disks[i].rdev = rdev;
6782 		}
6783 		if (!rdev)
6784 			continue;
6785 		if (conf->disks[i].replacement &&
6786 		    conf->reshape_progress != MaxSector) {
6787 			/* replacements and reshape simply do not mix. */
6788 			printk(KERN_ERR "md: cannot handle concurrent "
6789 			       "replacement and reshape.\n");
6790 			goto abort;
6791 		}
6792 		if (test_bit(In_sync, &rdev->flags)) {
6793 			working_disks++;
6794 			continue;
6795 		}
6796 		/* This disc is not fully in-sync.  However if it
6797 		 * just stored parity (beyond the recovery_offset),
6798 		 * when we don't need to be concerned about the
6799 		 * array being dirty.
6800 		 * When reshape goes 'backwards', we never have
6801 		 * partially completed devices, so we only need
6802 		 * to worry about reshape going forwards.
6803 		 */
6804 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6805 		if (mddev->major_version == 0 &&
6806 		    mddev->minor_version > 90)
6807 			rdev->recovery_offset = reshape_offset;
6808 
6809 		if (rdev->recovery_offset < reshape_offset) {
6810 			/* We need to check old and new layout */
6811 			if (!only_parity(rdev->raid_disk,
6812 					 conf->algorithm,
6813 					 conf->raid_disks,
6814 					 conf->max_degraded))
6815 				continue;
6816 		}
6817 		if (!only_parity(rdev->raid_disk,
6818 				 conf->prev_algo,
6819 				 conf->previous_raid_disks,
6820 				 conf->max_degraded))
6821 			continue;
6822 		dirty_parity_disks++;
6823 	}
6824 
6825 	/*
6826 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6827 	 */
6828 	mddev->degraded = calc_degraded(conf);
6829 
6830 	if (has_failed(conf)) {
6831 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6832 			" (%d/%d failed)\n",
6833 			mdname(mddev), mddev->degraded, conf->raid_disks);
6834 		goto abort;
6835 	}
6836 
6837 	/* device size must be a multiple of chunk size */
6838 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6839 	mddev->resync_max_sectors = mddev->dev_sectors;
6840 
6841 	if (mddev->degraded > dirty_parity_disks &&
6842 	    mddev->recovery_cp != MaxSector) {
6843 		if (mddev->ok_start_degraded)
6844 			printk(KERN_WARNING
6845 			       "md/raid:%s: starting dirty degraded array"
6846 			       " - data corruption possible.\n",
6847 			       mdname(mddev));
6848 		else {
6849 			printk(KERN_ERR
6850 			       "md/raid:%s: cannot start dirty degraded array.\n",
6851 			       mdname(mddev));
6852 			goto abort;
6853 		}
6854 	}
6855 
6856 	if (mddev->degraded == 0)
6857 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6858 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6859 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6860 		       mddev->new_layout);
6861 	else
6862 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6863 		       " out of %d devices, algorithm %d\n",
6864 		       mdname(mddev), conf->level,
6865 		       mddev->raid_disks - mddev->degraded,
6866 		       mddev->raid_disks, mddev->new_layout);
6867 
6868 	print_raid5_conf(conf);
6869 
6870 	if (conf->reshape_progress != MaxSector) {
6871 		conf->reshape_safe = conf->reshape_progress;
6872 		atomic_set(&conf->reshape_stripes, 0);
6873 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6874 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6875 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6876 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6877 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6878 							"reshape");
6879 	}
6880 
6881 	/* Ok, everything is just fine now */
6882 	if (mddev->to_remove == &raid5_attrs_group)
6883 		mddev->to_remove = NULL;
6884 	else if (mddev->kobj.sd &&
6885 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6886 		printk(KERN_WARNING
6887 		       "raid5: failed to create sysfs attributes for %s\n",
6888 		       mdname(mddev));
6889 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6890 
6891 	if (mddev->queue) {
6892 		int chunk_size;
6893 		bool discard_supported = true;
6894 		/* read-ahead size must cover two whole stripes, which
6895 		 * is 2 * (datadisks) * chunksize where 'n' is the
6896 		 * number of raid devices
6897 		 */
6898 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6899 		int stripe = data_disks *
6900 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6901 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6902 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6903 
6904 		chunk_size = mddev->chunk_sectors << 9;
6905 		blk_queue_io_min(mddev->queue, chunk_size);
6906 		blk_queue_io_opt(mddev->queue, chunk_size *
6907 				 (conf->raid_disks - conf->max_degraded));
6908 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6909 		/*
6910 		 * We can only discard a whole stripe. It doesn't make sense to
6911 		 * discard data disk but write parity disk
6912 		 */
6913 		stripe = stripe * PAGE_SIZE;
6914 		/* Round up to power of 2, as discard handling
6915 		 * currently assumes that */
6916 		while ((stripe-1) & stripe)
6917 			stripe = (stripe | (stripe-1)) + 1;
6918 		mddev->queue->limits.discard_alignment = stripe;
6919 		mddev->queue->limits.discard_granularity = stripe;
6920 		/*
6921 		 * unaligned part of discard request will be ignored, so can't
6922 		 * guarantee discard_zeroes_data
6923 		 */
6924 		mddev->queue->limits.discard_zeroes_data = 0;
6925 
6926 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6927 
6928 		rdev_for_each(rdev, mddev) {
6929 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6930 					  rdev->data_offset << 9);
6931 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6932 					  rdev->new_data_offset << 9);
6933 			/*
6934 			 * discard_zeroes_data is required, otherwise data
6935 			 * could be lost. Consider a scenario: discard a stripe
6936 			 * (the stripe could be inconsistent if
6937 			 * discard_zeroes_data is 0); write one disk of the
6938 			 * stripe (the stripe could be inconsistent again
6939 			 * depending on which disks are used to calculate
6940 			 * parity); the disk is broken; The stripe data of this
6941 			 * disk is lost.
6942 			 */
6943 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6944 			    !bdev_get_queue(rdev->bdev)->
6945 						limits.discard_zeroes_data)
6946 				discard_supported = false;
6947 			/* Unfortunately, discard_zeroes_data is not currently
6948 			 * a guarantee - just a hint.  So we only allow DISCARD
6949 			 * if the sysadmin has confirmed that only safe devices
6950 			 * are in use by setting a module parameter.
6951 			 */
6952 			if (!devices_handle_discard_safely) {
6953 				if (discard_supported) {
6954 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6955 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6956 				}
6957 				discard_supported = false;
6958 			}
6959 		}
6960 
6961 		if (discard_supported &&
6962 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6963 		   mddev->queue->limits.discard_granularity >= stripe)
6964 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6965 						mddev->queue);
6966 		else
6967 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6968 						mddev->queue);
6969 	}
6970 
6971 	return 0;
6972 abort:
6973 	md_unregister_thread(&mddev->thread);
6974 	print_raid5_conf(conf);
6975 	free_conf(conf);
6976 	mddev->private = NULL;
6977 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6978 	return -EIO;
6979 }
6980 
6981 static void raid5_free(struct mddev *mddev, void *priv)
6982 {
6983 	struct r5conf *conf = priv;
6984 
6985 	free_conf(conf);
6986 	mddev->to_remove = &raid5_attrs_group;
6987 }
6988 
6989 static void status(struct seq_file *seq, struct mddev *mddev)
6990 {
6991 	struct r5conf *conf = mddev->private;
6992 	int i;
6993 
6994 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6995 		conf->chunk_sectors / 2, mddev->layout);
6996 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6997 	for (i = 0; i < conf->raid_disks; i++)
6998 		seq_printf (seq, "%s",
6999 			       conf->disks[i].rdev &&
7000 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7001 	seq_printf (seq, "]");
7002 }
7003 
7004 static void print_raid5_conf (struct r5conf *conf)
7005 {
7006 	int i;
7007 	struct disk_info *tmp;
7008 
7009 	printk(KERN_DEBUG "RAID conf printout:\n");
7010 	if (!conf) {
7011 		printk("(conf==NULL)\n");
7012 		return;
7013 	}
7014 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7015 	       conf->raid_disks,
7016 	       conf->raid_disks - conf->mddev->degraded);
7017 
7018 	for (i = 0; i < conf->raid_disks; i++) {
7019 		char b[BDEVNAME_SIZE];
7020 		tmp = conf->disks + i;
7021 		if (tmp->rdev)
7022 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7023 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7024 			       bdevname(tmp->rdev->bdev, b));
7025 	}
7026 }
7027 
7028 static int raid5_spare_active(struct mddev *mddev)
7029 {
7030 	int i;
7031 	struct r5conf *conf = mddev->private;
7032 	struct disk_info *tmp;
7033 	int count = 0;
7034 	unsigned long flags;
7035 
7036 	for (i = 0; i < conf->raid_disks; i++) {
7037 		tmp = conf->disks + i;
7038 		if (tmp->replacement
7039 		    && tmp->replacement->recovery_offset == MaxSector
7040 		    && !test_bit(Faulty, &tmp->replacement->flags)
7041 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7042 			/* Replacement has just become active. */
7043 			if (!tmp->rdev
7044 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7045 				count++;
7046 			if (tmp->rdev) {
7047 				/* Replaced device not technically faulty,
7048 				 * but we need to be sure it gets removed
7049 				 * and never re-added.
7050 				 */
7051 				set_bit(Faulty, &tmp->rdev->flags);
7052 				sysfs_notify_dirent_safe(
7053 					tmp->rdev->sysfs_state);
7054 			}
7055 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7056 		} else if (tmp->rdev
7057 		    && tmp->rdev->recovery_offset == MaxSector
7058 		    && !test_bit(Faulty, &tmp->rdev->flags)
7059 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7060 			count++;
7061 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7062 		}
7063 	}
7064 	spin_lock_irqsave(&conf->device_lock, flags);
7065 	mddev->degraded = calc_degraded(conf);
7066 	spin_unlock_irqrestore(&conf->device_lock, flags);
7067 	print_raid5_conf(conf);
7068 	return count;
7069 }
7070 
7071 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7072 {
7073 	struct r5conf *conf = mddev->private;
7074 	int err = 0;
7075 	int number = rdev->raid_disk;
7076 	struct md_rdev **rdevp;
7077 	struct disk_info *p = conf->disks + number;
7078 
7079 	print_raid5_conf(conf);
7080 	if (rdev == p->rdev)
7081 		rdevp = &p->rdev;
7082 	else if (rdev == p->replacement)
7083 		rdevp = &p->replacement;
7084 	else
7085 		return 0;
7086 
7087 	if (number >= conf->raid_disks &&
7088 	    conf->reshape_progress == MaxSector)
7089 		clear_bit(In_sync, &rdev->flags);
7090 
7091 	if (test_bit(In_sync, &rdev->flags) ||
7092 	    atomic_read(&rdev->nr_pending)) {
7093 		err = -EBUSY;
7094 		goto abort;
7095 	}
7096 	/* Only remove non-faulty devices if recovery
7097 	 * isn't possible.
7098 	 */
7099 	if (!test_bit(Faulty, &rdev->flags) &&
7100 	    mddev->recovery_disabled != conf->recovery_disabled &&
7101 	    !has_failed(conf) &&
7102 	    (!p->replacement || p->replacement == rdev) &&
7103 	    number < conf->raid_disks) {
7104 		err = -EBUSY;
7105 		goto abort;
7106 	}
7107 	*rdevp = NULL;
7108 	synchronize_rcu();
7109 	if (atomic_read(&rdev->nr_pending)) {
7110 		/* lost the race, try later */
7111 		err = -EBUSY;
7112 		*rdevp = rdev;
7113 	} else if (p->replacement) {
7114 		/* We must have just cleared 'rdev' */
7115 		p->rdev = p->replacement;
7116 		clear_bit(Replacement, &p->replacement->flags);
7117 		smp_mb(); /* Make sure other CPUs may see both as identical
7118 			   * but will never see neither - if they are careful
7119 			   */
7120 		p->replacement = NULL;
7121 		clear_bit(WantReplacement, &rdev->flags);
7122 	} else
7123 		/* We might have just removed the Replacement as faulty-
7124 		 * clear the bit just in case
7125 		 */
7126 		clear_bit(WantReplacement, &rdev->flags);
7127 abort:
7128 
7129 	print_raid5_conf(conf);
7130 	return err;
7131 }
7132 
7133 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7134 {
7135 	struct r5conf *conf = mddev->private;
7136 	int err = -EEXIST;
7137 	int disk;
7138 	struct disk_info *p;
7139 	int first = 0;
7140 	int last = conf->raid_disks - 1;
7141 
7142 	if (mddev->recovery_disabled == conf->recovery_disabled)
7143 		return -EBUSY;
7144 
7145 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7146 		/* no point adding a device */
7147 		return -EINVAL;
7148 
7149 	if (rdev->raid_disk >= 0)
7150 		first = last = rdev->raid_disk;
7151 
7152 	/*
7153 	 * find the disk ... but prefer rdev->saved_raid_disk
7154 	 * if possible.
7155 	 */
7156 	if (rdev->saved_raid_disk >= 0 &&
7157 	    rdev->saved_raid_disk >= first &&
7158 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7159 		first = rdev->saved_raid_disk;
7160 
7161 	for (disk = first; disk <= last; disk++) {
7162 		p = conf->disks + disk;
7163 		if (p->rdev == NULL) {
7164 			clear_bit(In_sync, &rdev->flags);
7165 			rdev->raid_disk = disk;
7166 			err = 0;
7167 			if (rdev->saved_raid_disk != disk)
7168 				conf->fullsync = 1;
7169 			rcu_assign_pointer(p->rdev, rdev);
7170 			goto out;
7171 		}
7172 	}
7173 	for (disk = first; disk <= last; disk++) {
7174 		p = conf->disks + disk;
7175 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7176 		    p->replacement == NULL) {
7177 			clear_bit(In_sync, &rdev->flags);
7178 			set_bit(Replacement, &rdev->flags);
7179 			rdev->raid_disk = disk;
7180 			err = 0;
7181 			conf->fullsync = 1;
7182 			rcu_assign_pointer(p->replacement, rdev);
7183 			break;
7184 		}
7185 	}
7186 out:
7187 	print_raid5_conf(conf);
7188 	return err;
7189 }
7190 
7191 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7192 {
7193 	/* no resync is happening, and there is enough space
7194 	 * on all devices, so we can resize.
7195 	 * We need to make sure resync covers any new space.
7196 	 * If the array is shrinking we should possibly wait until
7197 	 * any io in the removed space completes, but it hardly seems
7198 	 * worth it.
7199 	 */
7200 	sector_t newsize;
7201 	struct r5conf *conf = mddev->private;
7202 
7203 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7204 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7205 	if (mddev->external_size &&
7206 	    mddev->array_sectors > newsize)
7207 		return -EINVAL;
7208 	if (mddev->bitmap) {
7209 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7210 		if (ret)
7211 			return ret;
7212 	}
7213 	md_set_array_sectors(mddev, newsize);
7214 	set_capacity(mddev->gendisk, mddev->array_sectors);
7215 	revalidate_disk(mddev->gendisk);
7216 	if (sectors > mddev->dev_sectors &&
7217 	    mddev->recovery_cp > mddev->dev_sectors) {
7218 		mddev->recovery_cp = mddev->dev_sectors;
7219 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7220 	}
7221 	mddev->dev_sectors = sectors;
7222 	mddev->resync_max_sectors = sectors;
7223 	return 0;
7224 }
7225 
7226 static int check_stripe_cache(struct mddev *mddev)
7227 {
7228 	/* Can only proceed if there are plenty of stripe_heads.
7229 	 * We need a minimum of one full stripe,, and for sensible progress
7230 	 * it is best to have about 4 times that.
7231 	 * If we require 4 times, then the default 256 4K stripe_heads will
7232 	 * allow for chunk sizes up to 256K, which is probably OK.
7233 	 * If the chunk size is greater, user-space should request more
7234 	 * stripe_heads first.
7235 	 */
7236 	struct r5conf *conf = mddev->private;
7237 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7238 	    > conf->min_nr_stripes ||
7239 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7240 	    > conf->min_nr_stripes) {
7241 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7242 		       mdname(mddev),
7243 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7244 			/ STRIPE_SIZE)*4);
7245 		return 0;
7246 	}
7247 	return 1;
7248 }
7249 
7250 static int check_reshape(struct mddev *mddev)
7251 {
7252 	struct r5conf *conf = mddev->private;
7253 
7254 	if (mddev->delta_disks == 0 &&
7255 	    mddev->new_layout == mddev->layout &&
7256 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7257 		return 0; /* nothing to do */
7258 	if (has_failed(conf))
7259 		return -EINVAL;
7260 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7261 		/* We might be able to shrink, but the devices must
7262 		 * be made bigger first.
7263 		 * For raid6, 4 is the minimum size.
7264 		 * Otherwise 2 is the minimum
7265 		 */
7266 		int min = 2;
7267 		if (mddev->level == 6)
7268 			min = 4;
7269 		if (mddev->raid_disks + mddev->delta_disks < min)
7270 			return -EINVAL;
7271 	}
7272 
7273 	if (!check_stripe_cache(mddev))
7274 		return -ENOSPC;
7275 
7276 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7277 	    mddev->delta_disks > 0)
7278 		if (resize_chunks(conf,
7279 				  conf->previous_raid_disks
7280 				  + max(0, mddev->delta_disks),
7281 				  max(mddev->new_chunk_sectors,
7282 				      mddev->chunk_sectors)
7283 			    ) < 0)
7284 			return -ENOMEM;
7285 	return resize_stripes(conf, (conf->previous_raid_disks
7286 				     + mddev->delta_disks));
7287 }
7288 
7289 static int raid5_start_reshape(struct mddev *mddev)
7290 {
7291 	struct r5conf *conf = mddev->private;
7292 	struct md_rdev *rdev;
7293 	int spares = 0;
7294 	unsigned long flags;
7295 
7296 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7297 		return -EBUSY;
7298 
7299 	if (!check_stripe_cache(mddev))
7300 		return -ENOSPC;
7301 
7302 	if (has_failed(conf))
7303 		return -EINVAL;
7304 
7305 	rdev_for_each(rdev, mddev) {
7306 		if (!test_bit(In_sync, &rdev->flags)
7307 		    && !test_bit(Faulty, &rdev->flags))
7308 			spares++;
7309 	}
7310 
7311 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7312 		/* Not enough devices even to make a degraded array
7313 		 * of that size
7314 		 */
7315 		return -EINVAL;
7316 
7317 	/* Refuse to reduce size of the array.  Any reductions in
7318 	 * array size must be through explicit setting of array_size
7319 	 * attribute.
7320 	 */
7321 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7322 	    < mddev->array_sectors) {
7323 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7324 		       "before number of disks\n", mdname(mddev));
7325 		return -EINVAL;
7326 	}
7327 
7328 	atomic_set(&conf->reshape_stripes, 0);
7329 	spin_lock_irq(&conf->device_lock);
7330 	write_seqcount_begin(&conf->gen_lock);
7331 	conf->previous_raid_disks = conf->raid_disks;
7332 	conf->raid_disks += mddev->delta_disks;
7333 	conf->prev_chunk_sectors = conf->chunk_sectors;
7334 	conf->chunk_sectors = mddev->new_chunk_sectors;
7335 	conf->prev_algo = conf->algorithm;
7336 	conf->algorithm = mddev->new_layout;
7337 	conf->generation++;
7338 	/* Code that selects data_offset needs to see the generation update
7339 	 * if reshape_progress has been set - so a memory barrier needed.
7340 	 */
7341 	smp_mb();
7342 	if (mddev->reshape_backwards)
7343 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7344 	else
7345 		conf->reshape_progress = 0;
7346 	conf->reshape_safe = conf->reshape_progress;
7347 	write_seqcount_end(&conf->gen_lock);
7348 	spin_unlock_irq(&conf->device_lock);
7349 
7350 	/* Now make sure any requests that proceeded on the assumption
7351 	 * the reshape wasn't running - like Discard or Read - have
7352 	 * completed.
7353 	 */
7354 	mddev_suspend(mddev);
7355 	mddev_resume(mddev);
7356 
7357 	/* Add some new drives, as many as will fit.
7358 	 * We know there are enough to make the newly sized array work.
7359 	 * Don't add devices if we are reducing the number of
7360 	 * devices in the array.  This is because it is not possible
7361 	 * to correctly record the "partially reconstructed" state of
7362 	 * such devices during the reshape and confusion could result.
7363 	 */
7364 	if (mddev->delta_disks >= 0) {
7365 		rdev_for_each(rdev, mddev)
7366 			if (rdev->raid_disk < 0 &&
7367 			    !test_bit(Faulty, &rdev->flags)) {
7368 				if (raid5_add_disk(mddev, rdev) == 0) {
7369 					if (rdev->raid_disk
7370 					    >= conf->previous_raid_disks)
7371 						set_bit(In_sync, &rdev->flags);
7372 					else
7373 						rdev->recovery_offset = 0;
7374 
7375 					if (sysfs_link_rdev(mddev, rdev))
7376 						/* Failure here is OK */;
7377 				}
7378 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7379 				   && !test_bit(Faulty, &rdev->flags)) {
7380 				/* This is a spare that was manually added */
7381 				set_bit(In_sync, &rdev->flags);
7382 			}
7383 
7384 		/* When a reshape changes the number of devices,
7385 		 * ->degraded is measured against the larger of the
7386 		 * pre and post number of devices.
7387 		 */
7388 		spin_lock_irqsave(&conf->device_lock, flags);
7389 		mddev->degraded = calc_degraded(conf);
7390 		spin_unlock_irqrestore(&conf->device_lock, flags);
7391 	}
7392 	mddev->raid_disks = conf->raid_disks;
7393 	mddev->reshape_position = conf->reshape_progress;
7394 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7395 
7396 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7397 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7398 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7399 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7400 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7401 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7402 						"reshape");
7403 	if (!mddev->sync_thread) {
7404 		mddev->recovery = 0;
7405 		spin_lock_irq(&conf->device_lock);
7406 		write_seqcount_begin(&conf->gen_lock);
7407 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7408 		mddev->new_chunk_sectors =
7409 			conf->chunk_sectors = conf->prev_chunk_sectors;
7410 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7411 		rdev_for_each(rdev, mddev)
7412 			rdev->new_data_offset = rdev->data_offset;
7413 		smp_wmb();
7414 		conf->generation --;
7415 		conf->reshape_progress = MaxSector;
7416 		mddev->reshape_position = MaxSector;
7417 		write_seqcount_end(&conf->gen_lock);
7418 		spin_unlock_irq(&conf->device_lock);
7419 		return -EAGAIN;
7420 	}
7421 	conf->reshape_checkpoint = jiffies;
7422 	md_wakeup_thread(mddev->sync_thread);
7423 	md_new_event(mddev);
7424 	return 0;
7425 }
7426 
7427 /* This is called from the reshape thread and should make any
7428  * changes needed in 'conf'
7429  */
7430 static void end_reshape(struct r5conf *conf)
7431 {
7432 
7433 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7434 		struct md_rdev *rdev;
7435 
7436 		spin_lock_irq(&conf->device_lock);
7437 		conf->previous_raid_disks = conf->raid_disks;
7438 		rdev_for_each(rdev, conf->mddev)
7439 			rdev->data_offset = rdev->new_data_offset;
7440 		smp_wmb();
7441 		conf->reshape_progress = MaxSector;
7442 		conf->mddev->reshape_position = MaxSector;
7443 		spin_unlock_irq(&conf->device_lock);
7444 		wake_up(&conf->wait_for_overlap);
7445 
7446 		/* read-ahead size must cover two whole stripes, which is
7447 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7448 		 */
7449 		if (conf->mddev->queue) {
7450 			int data_disks = conf->raid_disks - conf->max_degraded;
7451 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7452 						   / PAGE_SIZE);
7453 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7454 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7455 		}
7456 	}
7457 }
7458 
7459 /* This is called from the raid5d thread with mddev_lock held.
7460  * It makes config changes to the device.
7461  */
7462 static void raid5_finish_reshape(struct mddev *mddev)
7463 {
7464 	struct r5conf *conf = mddev->private;
7465 
7466 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7467 
7468 		if (mddev->delta_disks > 0) {
7469 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7470 			set_capacity(mddev->gendisk, mddev->array_sectors);
7471 			revalidate_disk(mddev->gendisk);
7472 		} else {
7473 			int d;
7474 			spin_lock_irq(&conf->device_lock);
7475 			mddev->degraded = calc_degraded(conf);
7476 			spin_unlock_irq(&conf->device_lock);
7477 			for (d = conf->raid_disks ;
7478 			     d < conf->raid_disks - mddev->delta_disks;
7479 			     d++) {
7480 				struct md_rdev *rdev = conf->disks[d].rdev;
7481 				if (rdev)
7482 					clear_bit(In_sync, &rdev->flags);
7483 				rdev = conf->disks[d].replacement;
7484 				if (rdev)
7485 					clear_bit(In_sync, &rdev->flags);
7486 			}
7487 		}
7488 		mddev->layout = conf->algorithm;
7489 		mddev->chunk_sectors = conf->chunk_sectors;
7490 		mddev->reshape_position = MaxSector;
7491 		mddev->delta_disks = 0;
7492 		mddev->reshape_backwards = 0;
7493 	}
7494 }
7495 
7496 static void raid5_quiesce(struct mddev *mddev, int state)
7497 {
7498 	struct r5conf *conf = mddev->private;
7499 
7500 	switch(state) {
7501 	case 2: /* resume for a suspend */
7502 		wake_up(&conf->wait_for_overlap);
7503 		break;
7504 
7505 	case 1: /* stop all writes */
7506 		lock_all_device_hash_locks_irq(conf);
7507 		/* '2' tells resync/reshape to pause so that all
7508 		 * active stripes can drain
7509 		 */
7510 		conf->quiesce = 2;
7511 		wait_event_cmd(conf->wait_for_quiescent,
7512 				    atomic_read(&conf->active_stripes) == 0 &&
7513 				    atomic_read(&conf->active_aligned_reads) == 0,
7514 				    unlock_all_device_hash_locks_irq(conf),
7515 				    lock_all_device_hash_locks_irq(conf));
7516 		conf->quiesce = 1;
7517 		unlock_all_device_hash_locks_irq(conf);
7518 		/* allow reshape to continue */
7519 		wake_up(&conf->wait_for_overlap);
7520 		break;
7521 
7522 	case 0: /* re-enable writes */
7523 		lock_all_device_hash_locks_irq(conf);
7524 		conf->quiesce = 0;
7525 		wake_up(&conf->wait_for_quiescent);
7526 		wake_up(&conf->wait_for_overlap);
7527 		unlock_all_device_hash_locks_irq(conf);
7528 		break;
7529 	}
7530 }
7531 
7532 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7533 {
7534 	struct r0conf *raid0_conf = mddev->private;
7535 	sector_t sectors;
7536 
7537 	/* for raid0 takeover only one zone is supported */
7538 	if (raid0_conf->nr_strip_zones > 1) {
7539 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7540 		       mdname(mddev));
7541 		return ERR_PTR(-EINVAL);
7542 	}
7543 
7544 	sectors = raid0_conf->strip_zone[0].zone_end;
7545 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7546 	mddev->dev_sectors = sectors;
7547 	mddev->new_level = level;
7548 	mddev->new_layout = ALGORITHM_PARITY_N;
7549 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7550 	mddev->raid_disks += 1;
7551 	mddev->delta_disks = 1;
7552 	/* make sure it will be not marked as dirty */
7553 	mddev->recovery_cp = MaxSector;
7554 
7555 	return setup_conf(mddev);
7556 }
7557 
7558 static void *raid5_takeover_raid1(struct mddev *mddev)
7559 {
7560 	int chunksect;
7561 
7562 	if (mddev->raid_disks != 2 ||
7563 	    mddev->degraded > 1)
7564 		return ERR_PTR(-EINVAL);
7565 
7566 	/* Should check if there are write-behind devices? */
7567 
7568 	chunksect = 64*2; /* 64K by default */
7569 
7570 	/* The array must be an exact multiple of chunksize */
7571 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7572 		chunksect >>= 1;
7573 
7574 	if ((chunksect<<9) < STRIPE_SIZE)
7575 		/* array size does not allow a suitable chunk size */
7576 		return ERR_PTR(-EINVAL);
7577 
7578 	mddev->new_level = 5;
7579 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7580 	mddev->new_chunk_sectors = chunksect;
7581 
7582 	return setup_conf(mddev);
7583 }
7584 
7585 static void *raid5_takeover_raid6(struct mddev *mddev)
7586 {
7587 	int new_layout;
7588 
7589 	switch (mddev->layout) {
7590 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7591 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7592 		break;
7593 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7594 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7595 		break;
7596 	case ALGORITHM_LEFT_SYMMETRIC_6:
7597 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7598 		break;
7599 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7600 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7601 		break;
7602 	case ALGORITHM_PARITY_0_6:
7603 		new_layout = ALGORITHM_PARITY_0;
7604 		break;
7605 	case ALGORITHM_PARITY_N:
7606 		new_layout = ALGORITHM_PARITY_N;
7607 		break;
7608 	default:
7609 		return ERR_PTR(-EINVAL);
7610 	}
7611 	mddev->new_level = 5;
7612 	mddev->new_layout = new_layout;
7613 	mddev->delta_disks = -1;
7614 	mddev->raid_disks -= 1;
7615 	return setup_conf(mddev);
7616 }
7617 
7618 static int raid5_check_reshape(struct mddev *mddev)
7619 {
7620 	/* For a 2-drive array, the layout and chunk size can be changed
7621 	 * immediately as not restriping is needed.
7622 	 * For larger arrays we record the new value - after validation
7623 	 * to be used by a reshape pass.
7624 	 */
7625 	struct r5conf *conf = mddev->private;
7626 	int new_chunk = mddev->new_chunk_sectors;
7627 
7628 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7629 		return -EINVAL;
7630 	if (new_chunk > 0) {
7631 		if (!is_power_of_2(new_chunk))
7632 			return -EINVAL;
7633 		if (new_chunk < (PAGE_SIZE>>9))
7634 			return -EINVAL;
7635 		if (mddev->array_sectors & (new_chunk-1))
7636 			/* not factor of array size */
7637 			return -EINVAL;
7638 	}
7639 
7640 	/* They look valid */
7641 
7642 	if (mddev->raid_disks == 2) {
7643 		/* can make the change immediately */
7644 		if (mddev->new_layout >= 0) {
7645 			conf->algorithm = mddev->new_layout;
7646 			mddev->layout = mddev->new_layout;
7647 		}
7648 		if (new_chunk > 0) {
7649 			conf->chunk_sectors = new_chunk ;
7650 			mddev->chunk_sectors = new_chunk;
7651 		}
7652 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7653 		md_wakeup_thread(mddev->thread);
7654 	}
7655 	return check_reshape(mddev);
7656 }
7657 
7658 static int raid6_check_reshape(struct mddev *mddev)
7659 {
7660 	int new_chunk = mddev->new_chunk_sectors;
7661 
7662 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7663 		return -EINVAL;
7664 	if (new_chunk > 0) {
7665 		if (!is_power_of_2(new_chunk))
7666 			return -EINVAL;
7667 		if (new_chunk < (PAGE_SIZE >> 9))
7668 			return -EINVAL;
7669 		if (mddev->array_sectors & (new_chunk-1))
7670 			/* not factor of array size */
7671 			return -EINVAL;
7672 	}
7673 
7674 	/* They look valid */
7675 	return check_reshape(mddev);
7676 }
7677 
7678 static void *raid5_takeover(struct mddev *mddev)
7679 {
7680 	/* raid5 can take over:
7681 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7682 	 *  raid1 - if there are two drives.  We need to know the chunk size
7683 	 *  raid4 - trivial - just use a raid4 layout.
7684 	 *  raid6 - Providing it is a *_6 layout
7685 	 */
7686 	if (mddev->level == 0)
7687 		return raid45_takeover_raid0(mddev, 5);
7688 	if (mddev->level == 1)
7689 		return raid5_takeover_raid1(mddev);
7690 	if (mddev->level == 4) {
7691 		mddev->new_layout = ALGORITHM_PARITY_N;
7692 		mddev->new_level = 5;
7693 		return setup_conf(mddev);
7694 	}
7695 	if (mddev->level == 6)
7696 		return raid5_takeover_raid6(mddev);
7697 
7698 	return ERR_PTR(-EINVAL);
7699 }
7700 
7701 static void *raid4_takeover(struct mddev *mddev)
7702 {
7703 	/* raid4 can take over:
7704 	 *  raid0 - if there is only one strip zone
7705 	 *  raid5 - if layout is right
7706 	 */
7707 	if (mddev->level == 0)
7708 		return raid45_takeover_raid0(mddev, 4);
7709 	if (mddev->level == 5 &&
7710 	    mddev->layout == ALGORITHM_PARITY_N) {
7711 		mddev->new_layout = 0;
7712 		mddev->new_level = 4;
7713 		return setup_conf(mddev);
7714 	}
7715 	return ERR_PTR(-EINVAL);
7716 }
7717 
7718 static struct md_personality raid5_personality;
7719 
7720 static void *raid6_takeover(struct mddev *mddev)
7721 {
7722 	/* Currently can only take over a raid5.  We map the
7723 	 * personality to an equivalent raid6 personality
7724 	 * with the Q block at the end.
7725 	 */
7726 	int new_layout;
7727 
7728 	if (mddev->pers != &raid5_personality)
7729 		return ERR_PTR(-EINVAL);
7730 	if (mddev->degraded > 1)
7731 		return ERR_PTR(-EINVAL);
7732 	if (mddev->raid_disks > 253)
7733 		return ERR_PTR(-EINVAL);
7734 	if (mddev->raid_disks < 3)
7735 		return ERR_PTR(-EINVAL);
7736 
7737 	switch (mddev->layout) {
7738 	case ALGORITHM_LEFT_ASYMMETRIC:
7739 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7740 		break;
7741 	case ALGORITHM_RIGHT_ASYMMETRIC:
7742 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7743 		break;
7744 	case ALGORITHM_LEFT_SYMMETRIC:
7745 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7746 		break;
7747 	case ALGORITHM_RIGHT_SYMMETRIC:
7748 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7749 		break;
7750 	case ALGORITHM_PARITY_0:
7751 		new_layout = ALGORITHM_PARITY_0_6;
7752 		break;
7753 	case ALGORITHM_PARITY_N:
7754 		new_layout = ALGORITHM_PARITY_N;
7755 		break;
7756 	default:
7757 		return ERR_PTR(-EINVAL);
7758 	}
7759 	mddev->new_level = 6;
7760 	mddev->new_layout = new_layout;
7761 	mddev->delta_disks = 1;
7762 	mddev->raid_disks += 1;
7763 	return setup_conf(mddev);
7764 }
7765 
7766 static struct md_personality raid6_personality =
7767 {
7768 	.name		= "raid6",
7769 	.level		= 6,
7770 	.owner		= THIS_MODULE,
7771 	.make_request	= make_request,
7772 	.run		= run,
7773 	.free		= raid5_free,
7774 	.status		= status,
7775 	.error_handler	= error,
7776 	.hot_add_disk	= raid5_add_disk,
7777 	.hot_remove_disk= raid5_remove_disk,
7778 	.spare_active	= raid5_spare_active,
7779 	.sync_request	= sync_request,
7780 	.resize		= raid5_resize,
7781 	.size		= raid5_size,
7782 	.check_reshape	= raid6_check_reshape,
7783 	.start_reshape  = raid5_start_reshape,
7784 	.finish_reshape = raid5_finish_reshape,
7785 	.quiesce	= raid5_quiesce,
7786 	.takeover	= raid6_takeover,
7787 	.congested	= raid5_congested,
7788 };
7789 static struct md_personality raid5_personality =
7790 {
7791 	.name		= "raid5",
7792 	.level		= 5,
7793 	.owner		= THIS_MODULE,
7794 	.make_request	= make_request,
7795 	.run		= run,
7796 	.free		= raid5_free,
7797 	.status		= status,
7798 	.error_handler	= error,
7799 	.hot_add_disk	= raid5_add_disk,
7800 	.hot_remove_disk= raid5_remove_disk,
7801 	.spare_active	= raid5_spare_active,
7802 	.sync_request	= sync_request,
7803 	.resize		= raid5_resize,
7804 	.size		= raid5_size,
7805 	.check_reshape	= raid5_check_reshape,
7806 	.start_reshape  = raid5_start_reshape,
7807 	.finish_reshape = raid5_finish_reshape,
7808 	.quiesce	= raid5_quiesce,
7809 	.takeover	= raid5_takeover,
7810 	.congested	= raid5_congested,
7811 };
7812 
7813 static struct md_personality raid4_personality =
7814 {
7815 	.name		= "raid4",
7816 	.level		= 4,
7817 	.owner		= THIS_MODULE,
7818 	.make_request	= make_request,
7819 	.run		= run,
7820 	.free		= raid5_free,
7821 	.status		= status,
7822 	.error_handler	= error,
7823 	.hot_add_disk	= raid5_add_disk,
7824 	.hot_remove_disk= raid5_remove_disk,
7825 	.spare_active	= raid5_spare_active,
7826 	.sync_request	= sync_request,
7827 	.resize		= raid5_resize,
7828 	.size		= raid5_size,
7829 	.check_reshape	= raid5_check_reshape,
7830 	.start_reshape  = raid5_start_reshape,
7831 	.finish_reshape = raid5_finish_reshape,
7832 	.quiesce	= raid5_quiesce,
7833 	.takeover	= raid4_takeover,
7834 	.congested	= raid5_congested,
7835 };
7836 
7837 static int __init raid5_init(void)
7838 {
7839 	raid5_wq = alloc_workqueue("raid5wq",
7840 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7841 	if (!raid5_wq)
7842 		return -ENOMEM;
7843 	register_md_personality(&raid6_personality);
7844 	register_md_personality(&raid5_personality);
7845 	register_md_personality(&raid4_personality);
7846 	return 0;
7847 }
7848 
7849 static void raid5_exit(void)
7850 {
7851 	unregister_md_personality(&raid6_personality);
7852 	unregister_md_personality(&raid5_personality);
7853 	unregister_md_personality(&raid4_personality);
7854 	destroy_workqueue(raid5_wq);
7855 }
7856 
7857 module_init(raid5_init);
7858 module_exit(raid5_exit);
7859 MODULE_LICENSE("GPL");
7860 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7861 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7862 MODULE_ALIAS("md-raid5");
7863 MODULE_ALIAS("md-raid4");
7864 MODULE_ALIAS("md-level-5");
7865 MODULE_ALIAS("md-level-4");
7866 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7867 MODULE_ALIAS("md-raid6");
7868 MODULE_ALIAS("md-level-6");
7869 
7870 /* This used to be two separate modules, they were: */
7871 MODULE_ALIAS("raid5");
7872 MODULE_ALIAS("raid6");
7873