1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <trace/events/block.h> 59 60 #include "md.h" 61 #include "raid5.h" 62 #include "raid0.h" 63 #include "bitmap.h" 64 65 #define cpu_to_group(cpu) cpu_to_node(cpu) 66 #define ANY_GROUP NUMA_NO_NODE 67 68 static bool devices_handle_discard_safely = false; 69 module_param(devices_handle_discard_safely, bool, 0644); 70 MODULE_PARM_DESC(devices_handle_discard_safely, 71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 72 static struct workqueue_struct *raid5_wq; 73 /* 74 * Stripe cache 75 */ 76 77 #define NR_STRIPES 256 78 #define STRIPE_SIZE PAGE_SIZE 79 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 80 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 81 #define IO_THRESHOLD 1 82 #define BYPASS_THRESHOLD 1 83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 84 #define HASH_MASK (NR_HASH - 1) 85 #define MAX_STRIPE_BATCH 8 86 87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 88 { 89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 90 return &conf->stripe_hashtbl[hash]; 91 } 92 93 static inline int stripe_hash_locks_hash(sector_t sect) 94 { 95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 96 } 97 98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 99 { 100 spin_lock_irq(conf->hash_locks + hash); 101 spin_lock(&conf->device_lock); 102 } 103 104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 105 { 106 spin_unlock(&conf->device_lock); 107 spin_unlock_irq(conf->hash_locks + hash); 108 } 109 110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 111 { 112 int i; 113 local_irq_disable(); 114 spin_lock(conf->hash_locks); 115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 117 spin_lock(&conf->device_lock); 118 } 119 120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 121 { 122 int i; 123 spin_unlock(&conf->device_lock); 124 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 125 spin_unlock(conf->hash_locks + i - 1); 126 local_irq_enable(); 127 } 128 129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 130 * order without overlap. There may be several bio's per stripe+device, and 131 * a bio could span several devices. 132 * When walking this list for a particular stripe+device, we must never proceed 133 * beyond a bio that extends past this device, as the next bio might no longer 134 * be valid. 135 * This function is used to determine the 'next' bio in the list, given the sector 136 * of the current stripe+device 137 */ 138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 139 { 140 int sectors = bio_sectors(bio); 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 142 return bio->bi_next; 143 else 144 return NULL; 145 } 146 147 /* 148 * We maintain a biased count of active stripes in the bottom 16 bits of 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 150 */ 151 static inline int raid5_bi_processed_stripes(struct bio *bio) 152 { 153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 154 return (atomic_read(segments) >> 16) & 0xffff; 155 } 156 157 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 158 { 159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 160 return atomic_sub_return(1, segments) & 0xffff; 161 } 162 163 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 164 { 165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 166 atomic_inc(segments); 167 } 168 169 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 170 unsigned int cnt) 171 { 172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 173 int old, new; 174 175 do { 176 old = atomic_read(segments); 177 new = (old & 0xffff) | (cnt << 16); 178 } while (atomic_cmpxchg(segments, old, new) != old); 179 } 180 181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 182 { 183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 184 atomic_set(segments, cnt); 185 } 186 187 /* Find first data disk in a raid6 stripe */ 188 static inline int raid6_d0(struct stripe_head *sh) 189 { 190 if (sh->ddf_layout) 191 /* ddf always start from first device */ 192 return 0; 193 /* md starts just after Q block */ 194 if (sh->qd_idx == sh->disks - 1) 195 return 0; 196 else 197 return sh->qd_idx + 1; 198 } 199 static inline int raid6_next_disk(int disk, int raid_disks) 200 { 201 disk++; 202 return (disk < raid_disks) ? disk : 0; 203 } 204 205 /* When walking through the disks in a raid5, starting at raid6_d0, 206 * We need to map each disk to a 'slot', where the data disks are slot 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 208 * is raid_disks-1. This help does that mapping. 209 */ 210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 211 int *count, int syndrome_disks) 212 { 213 int slot = *count; 214 215 if (sh->ddf_layout) 216 (*count)++; 217 if (idx == sh->pd_idx) 218 return syndrome_disks; 219 if (idx == sh->qd_idx) 220 return syndrome_disks + 1; 221 if (!sh->ddf_layout) 222 (*count)++; 223 return slot; 224 } 225 226 static void return_io(struct bio_list *return_bi) 227 { 228 struct bio *bi; 229 while ((bi = bio_list_pop(return_bi)) != NULL) { 230 bi->bi_iter.bi_size = 0; 231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 232 bi, 0); 233 bio_endio(bi); 234 } 235 } 236 237 static void print_raid5_conf (struct r5conf *conf); 238 239 static int stripe_operations_active(struct stripe_head *sh) 240 { 241 return sh->check_state || sh->reconstruct_state || 242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 243 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 244 } 245 246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 247 { 248 struct r5conf *conf = sh->raid_conf; 249 struct r5worker_group *group; 250 int thread_cnt; 251 int i, cpu = sh->cpu; 252 253 if (!cpu_online(cpu)) { 254 cpu = cpumask_any(cpu_online_mask); 255 sh->cpu = cpu; 256 } 257 258 if (list_empty(&sh->lru)) { 259 struct r5worker_group *group; 260 group = conf->worker_groups + cpu_to_group(cpu); 261 list_add_tail(&sh->lru, &group->handle_list); 262 group->stripes_cnt++; 263 sh->group = group; 264 } 265 266 if (conf->worker_cnt_per_group == 0) { 267 md_wakeup_thread(conf->mddev->thread); 268 return; 269 } 270 271 group = conf->worker_groups + cpu_to_group(sh->cpu); 272 273 group->workers[0].working = true; 274 /* at least one worker should run to avoid race */ 275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 276 277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 278 /* wakeup more workers */ 279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 280 if (group->workers[i].working == false) { 281 group->workers[i].working = true; 282 queue_work_on(sh->cpu, raid5_wq, 283 &group->workers[i].work); 284 thread_cnt--; 285 } 286 } 287 } 288 289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 290 struct list_head *temp_inactive_list) 291 { 292 BUG_ON(!list_empty(&sh->lru)); 293 BUG_ON(atomic_read(&conf->active_stripes)==0); 294 if (test_bit(STRIPE_HANDLE, &sh->state)) { 295 if (test_bit(STRIPE_DELAYED, &sh->state) && 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 297 list_add_tail(&sh->lru, &conf->delayed_list); 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 299 sh->bm_seq - conf->seq_write > 0) 300 list_add_tail(&sh->lru, &conf->bitmap_list); 301 else { 302 clear_bit(STRIPE_DELAYED, &sh->state); 303 clear_bit(STRIPE_BIT_DELAY, &sh->state); 304 if (conf->worker_cnt_per_group == 0) { 305 list_add_tail(&sh->lru, &conf->handle_list); 306 } else { 307 raid5_wakeup_stripe_thread(sh); 308 return; 309 } 310 } 311 md_wakeup_thread(conf->mddev->thread); 312 } else { 313 BUG_ON(stripe_operations_active(sh)); 314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 315 if (atomic_dec_return(&conf->preread_active_stripes) 316 < IO_THRESHOLD) 317 md_wakeup_thread(conf->mddev->thread); 318 atomic_dec(&conf->active_stripes); 319 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 320 list_add_tail(&sh->lru, temp_inactive_list); 321 } 322 } 323 324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 325 struct list_head *temp_inactive_list) 326 { 327 if (atomic_dec_and_test(&sh->count)) 328 do_release_stripe(conf, sh, temp_inactive_list); 329 } 330 331 /* 332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 333 * 334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 335 * given time. Adding stripes only takes device lock, while deleting stripes 336 * only takes hash lock. 337 */ 338 static void release_inactive_stripe_list(struct r5conf *conf, 339 struct list_head *temp_inactive_list, 340 int hash) 341 { 342 int size; 343 unsigned long do_wakeup = 0; 344 int i = 0; 345 unsigned long flags; 346 347 if (hash == NR_STRIPE_HASH_LOCKS) { 348 size = NR_STRIPE_HASH_LOCKS; 349 hash = NR_STRIPE_HASH_LOCKS - 1; 350 } else 351 size = 1; 352 while (size) { 353 struct list_head *list = &temp_inactive_list[size - 1]; 354 355 /* 356 * We don't hold any lock here yet, get_active_stripe() might 357 * remove stripes from the list 358 */ 359 if (!list_empty_careful(list)) { 360 spin_lock_irqsave(conf->hash_locks + hash, flags); 361 if (list_empty(conf->inactive_list + hash) && 362 !list_empty(list)) 363 atomic_dec(&conf->empty_inactive_list_nr); 364 list_splice_tail_init(list, conf->inactive_list + hash); 365 do_wakeup |= 1 << hash; 366 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 367 } 368 size--; 369 hash--; 370 } 371 372 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) { 373 if (do_wakeup & (1 << i)) 374 wake_up(&conf->wait_for_stripe[i]); 375 } 376 377 if (do_wakeup) { 378 if (atomic_read(&conf->active_stripes) == 0) 379 wake_up(&conf->wait_for_quiescent); 380 if (conf->retry_read_aligned) 381 md_wakeup_thread(conf->mddev->thread); 382 } 383 } 384 385 /* should hold conf->device_lock already */ 386 static int release_stripe_list(struct r5conf *conf, 387 struct list_head *temp_inactive_list) 388 { 389 struct stripe_head *sh; 390 int count = 0; 391 struct llist_node *head; 392 393 head = llist_del_all(&conf->released_stripes); 394 head = llist_reverse_order(head); 395 while (head) { 396 int hash; 397 398 sh = llist_entry(head, struct stripe_head, release_list); 399 head = llist_next(head); 400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 401 smp_mb(); 402 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 403 /* 404 * Don't worry the bit is set here, because if the bit is set 405 * again, the count is always > 1. This is true for 406 * STRIPE_ON_UNPLUG_LIST bit too. 407 */ 408 hash = sh->hash_lock_index; 409 __release_stripe(conf, sh, &temp_inactive_list[hash]); 410 count++; 411 } 412 413 return count; 414 } 415 416 static void release_stripe(struct stripe_head *sh) 417 { 418 struct r5conf *conf = sh->raid_conf; 419 unsigned long flags; 420 struct list_head list; 421 int hash; 422 bool wakeup; 423 424 /* Avoid release_list until the last reference. 425 */ 426 if (atomic_add_unless(&sh->count, -1, 1)) 427 return; 428 429 if (unlikely(!conf->mddev->thread) || 430 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 431 goto slow_path; 432 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 433 if (wakeup) 434 md_wakeup_thread(conf->mddev->thread); 435 return; 436 slow_path: 437 local_irq_save(flags); 438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 439 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 440 INIT_LIST_HEAD(&list); 441 hash = sh->hash_lock_index; 442 do_release_stripe(conf, sh, &list); 443 spin_unlock(&conf->device_lock); 444 release_inactive_stripe_list(conf, &list, hash); 445 } 446 local_irq_restore(flags); 447 } 448 449 static inline void remove_hash(struct stripe_head *sh) 450 { 451 pr_debug("remove_hash(), stripe %llu\n", 452 (unsigned long long)sh->sector); 453 454 hlist_del_init(&sh->hash); 455 } 456 457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 458 { 459 struct hlist_head *hp = stripe_hash(conf, sh->sector); 460 461 pr_debug("insert_hash(), stripe %llu\n", 462 (unsigned long long)sh->sector); 463 464 hlist_add_head(&sh->hash, hp); 465 } 466 467 /* find an idle stripe, make sure it is unhashed, and return it. */ 468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 469 { 470 struct stripe_head *sh = NULL; 471 struct list_head *first; 472 473 if (list_empty(conf->inactive_list + hash)) 474 goto out; 475 first = (conf->inactive_list + hash)->next; 476 sh = list_entry(first, struct stripe_head, lru); 477 list_del_init(first); 478 remove_hash(sh); 479 atomic_inc(&conf->active_stripes); 480 BUG_ON(hash != sh->hash_lock_index); 481 if (list_empty(conf->inactive_list + hash)) 482 atomic_inc(&conf->empty_inactive_list_nr); 483 out: 484 return sh; 485 } 486 487 static void shrink_buffers(struct stripe_head *sh) 488 { 489 struct page *p; 490 int i; 491 int num = sh->raid_conf->pool_size; 492 493 for (i = 0; i < num ; i++) { 494 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 495 p = sh->dev[i].page; 496 if (!p) 497 continue; 498 sh->dev[i].page = NULL; 499 put_page(p); 500 } 501 } 502 503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 504 { 505 int i; 506 int num = sh->raid_conf->pool_size; 507 508 for (i = 0; i < num; i++) { 509 struct page *page; 510 511 if (!(page = alloc_page(gfp))) { 512 return 1; 513 } 514 sh->dev[i].page = page; 515 sh->dev[i].orig_page = page; 516 } 517 return 0; 518 } 519 520 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 522 struct stripe_head *sh); 523 524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 525 { 526 struct r5conf *conf = sh->raid_conf; 527 int i, seq; 528 529 BUG_ON(atomic_read(&sh->count) != 0); 530 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 531 BUG_ON(stripe_operations_active(sh)); 532 BUG_ON(sh->batch_head); 533 534 pr_debug("init_stripe called, stripe %llu\n", 535 (unsigned long long)sector); 536 retry: 537 seq = read_seqcount_begin(&conf->gen_lock); 538 sh->generation = conf->generation - previous; 539 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 540 sh->sector = sector; 541 stripe_set_idx(sector, conf, previous, sh); 542 sh->state = 0; 543 544 for (i = sh->disks; i--; ) { 545 struct r5dev *dev = &sh->dev[i]; 546 547 if (dev->toread || dev->read || dev->towrite || dev->written || 548 test_bit(R5_LOCKED, &dev->flags)) { 549 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 550 (unsigned long long)sh->sector, i, dev->toread, 551 dev->read, dev->towrite, dev->written, 552 test_bit(R5_LOCKED, &dev->flags)); 553 WARN_ON(1); 554 } 555 dev->flags = 0; 556 raid5_build_block(sh, i, previous); 557 } 558 if (read_seqcount_retry(&conf->gen_lock, seq)) 559 goto retry; 560 sh->overwrite_disks = 0; 561 insert_hash(conf, sh); 562 sh->cpu = smp_processor_id(); 563 set_bit(STRIPE_BATCH_READY, &sh->state); 564 } 565 566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 567 short generation) 568 { 569 struct stripe_head *sh; 570 571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 572 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 573 if (sh->sector == sector && sh->generation == generation) 574 return sh; 575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 576 return NULL; 577 } 578 579 /* 580 * Need to check if array has failed when deciding whether to: 581 * - start an array 582 * - remove non-faulty devices 583 * - add a spare 584 * - allow a reshape 585 * This determination is simple when no reshape is happening. 586 * However if there is a reshape, we need to carefully check 587 * both the before and after sections. 588 * This is because some failed devices may only affect one 589 * of the two sections, and some non-in_sync devices may 590 * be insync in the section most affected by failed devices. 591 */ 592 static int calc_degraded(struct r5conf *conf) 593 { 594 int degraded, degraded2; 595 int i; 596 597 rcu_read_lock(); 598 degraded = 0; 599 for (i = 0; i < conf->previous_raid_disks; i++) { 600 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 601 if (rdev && test_bit(Faulty, &rdev->flags)) 602 rdev = rcu_dereference(conf->disks[i].replacement); 603 if (!rdev || test_bit(Faulty, &rdev->flags)) 604 degraded++; 605 else if (test_bit(In_sync, &rdev->flags)) 606 ; 607 else 608 /* not in-sync or faulty. 609 * If the reshape increases the number of devices, 610 * this is being recovered by the reshape, so 611 * this 'previous' section is not in_sync. 612 * If the number of devices is being reduced however, 613 * the device can only be part of the array if 614 * we are reverting a reshape, so this section will 615 * be in-sync. 616 */ 617 if (conf->raid_disks >= conf->previous_raid_disks) 618 degraded++; 619 } 620 rcu_read_unlock(); 621 if (conf->raid_disks == conf->previous_raid_disks) 622 return degraded; 623 rcu_read_lock(); 624 degraded2 = 0; 625 for (i = 0; i < conf->raid_disks; i++) { 626 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 627 if (rdev && test_bit(Faulty, &rdev->flags)) 628 rdev = rcu_dereference(conf->disks[i].replacement); 629 if (!rdev || test_bit(Faulty, &rdev->flags)) 630 degraded2++; 631 else if (test_bit(In_sync, &rdev->flags)) 632 ; 633 else 634 /* not in-sync or faulty. 635 * If reshape increases the number of devices, this 636 * section has already been recovered, else it 637 * almost certainly hasn't. 638 */ 639 if (conf->raid_disks <= conf->previous_raid_disks) 640 degraded2++; 641 } 642 rcu_read_unlock(); 643 if (degraded2 > degraded) 644 return degraded2; 645 return degraded; 646 } 647 648 static int has_failed(struct r5conf *conf) 649 { 650 int degraded; 651 652 if (conf->mddev->reshape_position == MaxSector) 653 return conf->mddev->degraded > conf->max_degraded; 654 655 degraded = calc_degraded(conf); 656 if (degraded > conf->max_degraded) 657 return 1; 658 return 0; 659 } 660 661 static struct stripe_head * 662 get_active_stripe(struct r5conf *conf, sector_t sector, 663 int previous, int noblock, int noquiesce) 664 { 665 struct stripe_head *sh; 666 int hash = stripe_hash_locks_hash(sector); 667 668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 669 670 spin_lock_irq(conf->hash_locks + hash); 671 672 do { 673 wait_event_lock_irq(conf->wait_for_quiescent, 674 conf->quiesce == 0 || noquiesce, 675 *(conf->hash_locks + hash)); 676 sh = __find_stripe(conf, sector, conf->generation - previous); 677 if (!sh) { 678 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 679 sh = get_free_stripe(conf, hash); 680 if (!sh && !test_bit(R5_DID_ALLOC, 681 &conf->cache_state)) 682 set_bit(R5_ALLOC_MORE, 683 &conf->cache_state); 684 } 685 if (noblock && sh == NULL) 686 break; 687 if (!sh) { 688 set_bit(R5_INACTIVE_BLOCKED, 689 &conf->cache_state); 690 wait_event_exclusive_cmd( 691 conf->wait_for_stripe[hash], 692 !list_empty(conf->inactive_list + hash) && 693 (atomic_read(&conf->active_stripes) 694 < (conf->max_nr_stripes * 3 / 4) 695 || !test_bit(R5_INACTIVE_BLOCKED, 696 &conf->cache_state)), 697 spin_unlock_irq(conf->hash_locks + hash), 698 spin_lock_irq(conf->hash_locks + hash)); 699 clear_bit(R5_INACTIVE_BLOCKED, 700 &conf->cache_state); 701 } else { 702 init_stripe(sh, sector, previous); 703 atomic_inc(&sh->count); 704 } 705 } else if (!atomic_inc_not_zero(&sh->count)) { 706 spin_lock(&conf->device_lock); 707 if (!atomic_read(&sh->count)) { 708 if (!test_bit(STRIPE_HANDLE, &sh->state)) 709 atomic_inc(&conf->active_stripes); 710 BUG_ON(list_empty(&sh->lru) && 711 !test_bit(STRIPE_EXPANDING, &sh->state)); 712 list_del_init(&sh->lru); 713 if (sh->group) { 714 sh->group->stripes_cnt--; 715 sh->group = NULL; 716 } 717 } 718 atomic_inc(&sh->count); 719 spin_unlock(&conf->device_lock); 720 } 721 } while (sh == NULL); 722 723 if (!list_empty(conf->inactive_list + hash)) 724 wake_up(&conf->wait_for_stripe[hash]); 725 726 spin_unlock_irq(conf->hash_locks + hash); 727 return sh; 728 } 729 730 static bool is_full_stripe_write(struct stripe_head *sh) 731 { 732 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 733 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 734 } 735 736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 737 { 738 local_irq_disable(); 739 if (sh1 > sh2) { 740 spin_lock(&sh2->stripe_lock); 741 spin_lock_nested(&sh1->stripe_lock, 1); 742 } else { 743 spin_lock(&sh1->stripe_lock); 744 spin_lock_nested(&sh2->stripe_lock, 1); 745 } 746 } 747 748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 749 { 750 spin_unlock(&sh1->stripe_lock); 751 spin_unlock(&sh2->stripe_lock); 752 local_irq_enable(); 753 } 754 755 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 756 static bool stripe_can_batch(struct stripe_head *sh) 757 { 758 return test_bit(STRIPE_BATCH_READY, &sh->state) && 759 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 760 is_full_stripe_write(sh); 761 } 762 763 /* we only do back search */ 764 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 765 { 766 struct stripe_head *head; 767 sector_t head_sector, tmp_sec; 768 int hash; 769 int dd_idx; 770 771 if (!stripe_can_batch(sh)) 772 return; 773 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 774 tmp_sec = sh->sector; 775 if (!sector_div(tmp_sec, conf->chunk_sectors)) 776 return; 777 head_sector = sh->sector - STRIPE_SECTORS; 778 779 hash = stripe_hash_locks_hash(head_sector); 780 spin_lock_irq(conf->hash_locks + hash); 781 head = __find_stripe(conf, head_sector, conf->generation); 782 if (head && !atomic_inc_not_zero(&head->count)) { 783 spin_lock(&conf->device_lock); 784 if (!atomic_read(&head->count)) { 785 if (!test_bit(STRIPE_HANDLE, &head->state)) 786 atomic_inc(&conf->active_stripes); 787 BUG_ON(list_empty(&head->lru) && 788 !test_bit(STRIPE_EXPANDING, &head->state)); 789 list_del_init(&head->lru); 790 if (head->group) { 791 head->group->stripes_cnt--; 792 head->group = NULL; 793 } 794 } 795 atomic_inc(&head->count); 796 spin_unlock(&conf->device_lock); 797 } 798 spin_unlock_irq(conf->hash_locks + hash); 799 800 if (!head) 801 return; 802 if (!stripe_can_batch(head)) 803 goto out; 804 805 lock_two_stripes(head, sh); 806 /* clear_batch_ready clear the flag */ 807 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 808 goto unlock_out; 809 810 if (sh->batch_head) 811 goto unlock_out; 812 813 dd_idx = 0; 814 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 815 dd_idx++; 816 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw) 817 goto unlock_out; 818 819 if (head->batch_head) { 820 spin_lock(&head->batch_head->batch_lock); 821 /* This batch list is already running */ 822 if (!stripe_can_batch(head)) { 823 spin_unlock(&head->batch_head->batch_lock); 824 goto unlock_out; 825 } 826 827 /* 828 * at this point, head's BATCH_READY could be cleared, but we 829 * can still add the stripe to batch list 830 */ 831 list_add(&sh->batch_list, &head->batch_list); 832 spin_unlock(&head->batch_head->batch_lock); 833 834 sh->batch_head = head->batch_head; 835 } else { 836 head->batch_head = head; 837 sh->batch_head = head->batch_head; 838 spin_lock(&head->batch_lock); 839 list_add_tail(&sh->batch_list, &head->batch_list); 840 spin_unlock(&head->batch_lock); 841 } 842 843 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 844 if (atomic_dec_return(&conf->preread_active_stripes) 845 < IO_THRESHOLD) 846 md_wakeup_thread(conf->mddev->thread); 847 848 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 849 int seq = sh->bm_seq; 850 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 851 sh->batch_head->bm_seq > seq) 852 seq = sh->batch_head->bm_seq; 853 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 854 sh->batch_head->bm_seq = seq; 855 } 856 857 atomic_inc(&sh->count); 858 unlock_out: 859 unlock_two_stripes(head, sh); 860 out: 861 release_stripe(head); 862 } 863 864 /* Determine if 'data_offset' or 'new_data_offset' should be used 865 * in this stripe_head. 866 */ 867 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 868 { 869 sector_t progress = conf->reshape_progress; 870 /* Need a memory barrier to make sure we see the value 871 * of conf->generation, or ->data_offset that was set before 872 * reshape_progress was updated. 873 */ 874 smp_rmb(); 875 if (progress == MaxSector) 876 return 0; 877 if (sh->generation == conf->generation - 1) 878 return 0; 879 /* We are in a reshape, and this is a new-generation stripe, 880 * so use new_data_offset. 881 */ 882 return 1; 883 } 884 885 static void 886 raid5_end_read_request(struct bio *bi); 887 static void 888 raid5_end_write_request(struct bio *bi); 889 890 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 891 { 892 struct r5conf *conf = sh->raid_conf; 893 int i, disks = sh->disks; 894 struct stripe_head *head_sh = sh; 895 896 might_sleep(); 897 898 for (i = disks; i--; ) { 899 int rw; 900 int replace_only = 0; 901 struct bio *bi, *rbi; 902 struct md_rdev *rdev, *rrdev = NULL; 903 904 sh = head_sh; 905 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 906 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 907 rw = WRITE_FUA; 908 else 909 rw = WRITE; 910 if (test_bit(R5_Discard, &sh->dev[i].flags)) 911 rw |= REQ_DISCARD; 912 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 913 rw = READ; 914 else if (test_and_clear_bit(R5_WantReplace, 915 &sh->dev[i].flags)) { 916 rw = WRITE; 917 replace_only = 1; 918 } else 919 continue; 920 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 921 rw |= REQ_SYNC; 922 923 again: 924 bi = &sh->dev[i].req; 925 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 926 927 rcu_read_lock(); 928 rrdev = rcu_dereference(conf->disks[i].replacement); 929 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 930 rdev = rcu_dereference(conf->disks[i].rdev); 931 if (!rdev) { 932 rdev = rrdev; 933 rrdev = NULL; 934 } 935 if (rw & WRITE) { 936 if (replace_only) 937 rdev = NULL; 938 if (rdev == rrdev) 939 /* We raced and saw duplicates */ 940 rrdev = NULL; 941 } else { 942 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 943 rdev = rrdev; 944 rrdev = NULL; 945 } 946 947 if (rdev && test_bit(Faulty, &rdev->flags)) 948 rdev = NULL; 949 if (rdev) 950 atomic_inc(&rdev->nr_pending); 951 if (rrdev && test_bit(Faulty, &rrdev->flags)) 952 rrdev = NULL; 953 if (rrdev) 954 atomic_inc(&rrdev->nr_pending); 955 rcu_read_unlock(); 956 957 /* We have already checked bad blocks for reads. Now 958 * need to check for writes. We never accept write errors 959 * on the replacement, so we don't to check rrdev. 960 */ 961 while ((rw & WRITE) && rdev && 962 test_bit(WriteErrorSeen, &rdev->flags)) { 963 sector_t first_bad; 964 int bad_sectors; 965 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 966 &first_bad, &bad_sectors); 967 if (!bad) 968 break; 969 970 if (bad < 0) { 971 set_bit(BlockedBadBlocks, &rdev->flags); 972 if (!conf->mddev->external && 973 conf->mddev->flags) { 974 /* It is very unlikely, but we might 975 * still need to write out the 976 * bad block log - better give it 977 * a chance*/ 978 md_check_recovery(conf->mddev); 979 } 980 /* 981 * Because md_wait_for_blocked_rdev 982 * will dec nr_pending, we must 983 * increment it first. 984 */ 985 atomic_inc(&rdev->nr_pending); 986 md_wait_for_blocked_rdev(rdev, conf->mddev); 987 } else { 988 /* Acknowledged bad block - skip the write */ 989 rdev_dec_pending(rdev, conf->mddev); 990 rdev = NULL; 991 } 992 } 993 994 if (rdev) { 995 if (s->syncing || s->expanding || s->expanded 996 || s->replacing) 997 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 998 999 set_bit(STRIPE_IO_STARTED, &sh->state); 1000 1001 bio_reset(bi); 1002 bi->bi_bdev = rdev->bdev; 1003 bi->bi_rw = rw; 1004 bi->bi_end_io = (rw & WRITE) 1005 ? raid5_end_write_request 1006 : raid5_end_read_request; 1007 bi->bi_private = sh; 1008 1009 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 1010 __func__, (unsigned long long)sh->sector, 1011 bi->bi_rw, i); 1012 atomic_inc(&sh->count); 1013 if (sh != head_sh) 1014 atomic_inc(&head_sh->count); 1015 if (use_new_offset(conf, sh)) 1016 bi->bi_iter.bi_sector = (sh->sector 1017 + rdev->new_data_offset); 1018 else 1019 bi->bi_iter.bi_sector = (sh->sector 1020 + rdev->data_offset); 1021 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1022 bi->bi_rw |= REQ_NOMERGE; 1023 1024 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1025 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1026 sh->dev[i].vec.bv_page = sh->dev[i].page; 1027 bi->bi_vcnt = 1; 1028 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1029 bi->bi_io_vec[0].bv_offset = 0; 1030 bi->bi_iter.bi_size = STRIPE_SIZE; 1031 /* 1032 * If this is discard request, set bi_vcnt 0. We don't 1033 * want to confuse SCSI because SCSI will replace payload 1034 */ 1035 if (rw & REQ_DISCARD) 1036 bi->bi_vcnt = 0; 1037 if (rrdev) 1038 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1039 1040 if (conf->mddev->gendisk) 1041 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1042 bi, disk_devt(conf->mddev->gendisk), 1043 sh->dev[i].sector); 1044 generic_make_request(bi); 1045 } 1046 if (rrdev) { 1047 if (s->syncing || s->expanding || s->expanded 1048 || s->replacing) 1049 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1050 1051 set_bit(STRIPE_IO_STARTED, &sh->state); 1052 1053 bio_reset(rbi); 1054 rbi->bi_bdev = rrdev->bdev; 1055 rbi->bi_rw = rw; 1056 BUG_ON(!(rw & WRITE)); 1057 rbi->bi_end_io = raid5_end_write_request; 1058 rbi->bi_private = sh; 1059 1060 pr_debug("%s: for %llu schedule op %ld on " 1061 "replacement disc %d\n", 1062 __func__, (unsigned long long)sh->sector, 1063 rbi->bi_rw, i); 1064 atomic_inc(&sh->count); 1065 if (sh != head_sh) 1066 atomic_inc(&head_sh->count); 1067 if (use_new_offset(conf, sh)) 1068 rbi->bi_iter.bi_sector = (sh->sector 1069 + rrdev->new_data_offset); 1070 else 1071 rbi->bi_iter.bi_sector = (sh->sector 1072 + rrdev->data_offset); 1073 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1074 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1075 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1076 rbi->bi_vcnt = 1; 1077 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1078 rbi->bi_io_vec[0].bv_offset = 0; 1079 rbi->bi_iter.bi_size = STRIPE_SIZE; 1080 /* 1081 * If this is discard request, set bi_vcnt 0. We don't 1082 * want to confuse SCSI because SCSI will replace payload 1083 */ 1084 if (rw & REQ_DISCARD) 1085 rbi->bi_vcnt = 0; 1086 if (conf->mddev->gendisk) 1087 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1088 rbi, disk_devt(conf->mddev->gendisk), 1089 sh->dev[i].sector); 1090 generic_make_request(rbi); 1091 } 1092 if (!rdev && !rrdev) { 1093 if (rw & WRITE) 1094 set_bit(STRIPE_DEGRADED, &sh->state); 1095 pr_debug("skip op %ld on disc %d for sector %llu\n", 1096 bi->bi_rw, i, (unsigned long long)sh->sector); 1097 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1098 set_bit(STRIPE_HANDLE, &sh->state); 1099 } 1100 1101 if (!head_sh->batch_head) 1102 continue; 1103 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1104 batch_list); 1105 if (sh != head_sh) 1106 goto again; 1107 } 1108 } 1109 1110 static struct dma_async_tx_descriptor * 1111 async_copy_data(int frombio, struct bio *bio, struct page **page, 1112 sector_t sector, struct dma_async_tx_descriptor *tx, 1113 struct stripe_head *sh) 1114 { 1115 struct bio_vec bvl; 1116 struct bvec_iter iter; 1117 struct page *bio_page; 1118 int page_offset; 1119 struct async_submit_ctl submit; 1120 enum async_tx_flags flags = 0; 1121 1122 if (bio->bi_iter.bi_sector >= sector) 1123 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1124 else 1125 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1126 1127 if (frombio) 1128 flags |= ASYNC_TX_FENCE; 1129 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1130 1131 bio_for_each_segment(bvl, bio, iter) { 1132 int len = bvl.bv_len; 1133 int clen; 1134 int b_offset = 0; 1135 1136 if (page_offset < 0) { 1137 b_offset = -page_offset; 1138 page_offset += b_offset; 1139 len -= b_offset; 1140 } 1141 1142 if (len > 0 && page_offset + len > STRIPE_SIZE) 1143 clen = STRIPE_SIZE - page_offset; 1144 else 1145 clen = len; 1146 1147 if (clen > 0) { 1148 b_offset += bvl.bv_offset; 1149 bio_page = bvl.bv_page; 1150 if (frombio) { 1151 if (sh->raid_conf->skip_copy && 1152 b_offset == 0 && page_offset == 0 && 1153 clen == STRIPE_SIZE) 1154 *page = bio_page; 1155 else 1156 tx = async_memcpy(*page, bio_page, page_offset, 1157 b_offset, clen, &submit); 1158 } else 1159 tx = async_memcpy(bio_page, *page, b_offset, 1160 page_offset, clen, &submit); 1161 } 1162 /* chain the operations */ 1163 submit.depend_tx = tx; 1164 1165 if (clen < len) /* hit end of page */ 1166 break; 1167 page_offset += len; 1168 } 1169 1170 return tx; 1171 } 1172 1173 static void ops_complete_biofill(void *stripe_head_ref) 1174 { 1175 struct stripe_head *sh = stripe_head_ref; 1176 struct bio_list return_bi = BIO_EMPTY_LIST; 1177 int i; 1178 1179 pr_debug("%s: stripe %llu\n", __func__, 1180 (unsigned long long)sh->sector); 1181 1182 /* clear completed biofills */ 1183 for (i = sh->disks; i--; ) { 1184 struct r5dev *dev = &sh->dev[i]; 1185 1186 /* acknowledge completion of a biofill operation */ 1187 /* and check if we need to reply to a read request, 1188 * new R5_Wantfill requests are held off until 1189 * !STRIPE_BIOFILL_RUN 1190 */ 1191 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1192 struct bio *rbi, *rbi2; 1193 1194 BUG_ON(!dev->read); 1195 rbi = dev->read; 1196 dev->read = NULL; 1197 while (rbi && rbi->bi_iter.bi_sector < 1198 dev->sector + STRIPE_SECTORS) { 1199 rbi2 = r5_next_bio(rbi, dev->sector); 1200 if (!raid5_dec_bi_active_stripes(rbi)) 1201 bio_list_add(&return_bi, rbi); 1202 rbi = rbi2; 1203 } 1204 } 1205 } 1206 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1207 1208 return_io(&return_bi); 1209 1210 set_bit(STRIPE_HANDLE, &sh->state); 1211 release_stripe(sh); 1212 } 1213 1214 static void ops_run_biofill(struct stripe_head *sh) 1215 { 1216 struct dma_async_tx_descriptor *tx = NULL; 1217 struct async_submit_ctl submit; 1218 int i; 1219 1220 BUG_ON(sh->batch_head); 1221 pr_debug("%s: stripe %llu\n", __func__, 1222 (unsigned long long)sh->sector); 1223 1224 for (i = sh->disks; i--; ) { 1225 struct r5dev *dev = &sh->dev[i]; 1226 if (test_bit(R5_Wantfill, &dev->flags)) { 1227 struct bio *rbi; 1228 spin_lock_irq(&sh->stripe_lock); 1229 dev->read = rbi = dev->toread; 1230 dev->toread = NULL; 1231 spin_unlock_irq(&sh->stripe_lock); 1232 while (rbi && rbi->bi_iter.bi_sector < 1233 dev->sector + STRIPE_SECTORS) { 1234 tx = async_copy_data(0, rbi, &dev->page, 1235 dev->sector, tx, sh); 1236 rbi = r5_next_bio(rbi, dev->sector); 1237 } 1238 } 1239 } 1240 1241 atomic_inc(&sh->count); 1242 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1243 async_trigger_callback(&submit); 1244 } 1245 1246 static void mark_target_uptodate(struct stripe_head *sh, int target) 1247 { 1248 struct r5dev *tgt; 1249 1250 if (target < 0) 1251 return; 1252 1253 tgt = &sh->dev[target]; 1254 set_bit(R5_UPTODATE, &tgt->flags); 1255 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1256 clear_bit(R5_Wantcompute, &tgt->flags); 1257 } 1258 1259 static void ops_complete_compute(void *stripe_head_ref) 1260 { 1261 struct stripe_head *sh = stripe_head_ref; 1262 1263 pr_debug("%s: stripe %llu\n", __func__, 1264 (unsigned long long)sh->sector); 1265 1266 /* mark the computed target(s) as uptodate */ 1267 mark_target_uptodate(sh, sh->ops.target); 1268 mark_target_uptodate(sh, sh->ops.target2); 1269 1270 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1271 if (sh->check_state == check_state_compute_run) 1272 sh->check_state = check_state_compute_result; 1273 set_bit(STRIPE_HANDLE, &sh->state); 1274 release_stripe(sh); 1275 } 1276 1277 /* return a pointer to the address conversion region of the scribble buffer */ 1278 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1279 struct raid5_percpu *percpu, int i) 1280 { 1281 void *addr; 1282 1283 addr = flex_array_get(percpu->scribble, i); 1284 return addr + sizeof(struct page *) * (sh->disks + 2); 1285 } 1286 1287 /* return a pointer to the address conversion region of the scribble buffer */ 1288 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1289 { 1290 void *addr; 1291 1292 addr = flex_array_get(percpu->scribble, i); 1293 return addr; 1294 } 1295 1296 static struct dma_async_tx_descriptor * 1297 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1298 { 1299 int disks = sh->disks; 1300 struct page **xor_srcs = to_addr_page(percpu, 0); 1301 int target = sh->ops.target; 1302 struct r5dev *tgt = &sh->dev[target]; 1303 struct page *xor_dest = tgt->page; 1304 int count = 0; 1305 struct dma_async_tx_descriptor *tx; 1306 struct async_submit_ctl submit; 1307 int i; 1308 1309 BUG_ON(sh->batch_head); 1310 1311 pr_debug("%s: stripe %llu block: %d\n", 1312 __func__, (unsigned long long)sh->sector, target); 1313 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1314 1315 for (i = disks; i--; ) 1316 if (i != target) 1317 xor_srcs[count++] = sh->dev[i].page; 1318 1319 atomic_inc(&sh->count); 1320 1321 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1322 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1323 if (unlikely(count == 1)) 1324 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1325 else 1326 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1327 1328 return tx; 1329 } 1330 1331 /* set_syndrome_sources - populate source buffers for gen_syndrome 1332 * @srcs - (struct page *) array of size sh->disks 1333 * @sh - stripe_head to parse 1334 * 1335 * Populates srcs in proper layout order for the stripe and returns the 1336 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1337 * destination buffer is recorded in srcs[count] and the Q destination 1338 * is recorded in srcs[count+1]]. 1339 */ 1340 static int set_syndrome_sources(struct page **srcs, 1341 struct stripe_head *sh, 1342 int srctype) 1343 { 1344 int disks = sh->disks; 1345 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1346 int d0_idx = raid6_d0(sh); 1347 int count; 1348 int i; 1349 1350 for (i = 0; i < disks; i++) 1351 srcs[i] = NULL; 1352 1353 count = 0; 1354 i = d0_idx; 1355 do { 1356 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1357 struct r5dev *dev = &sh->dev[i]; 1358 1359 if (i == sh->qd_idx || i == sh->pd_idx || 1360 (srctype == SYNDROME_SRC_ALL) || 1361 (srctype == SYNDROME_SRC_WANT_DRAIN && 1362 test_bit(R5_Wantdrain, &dev->flags)) || 1363 (srctype == SYNDROME_SRC_WRITTEN && 1364 dev->written)) 1365 srcs[slot] = sh->dev[i].page; 1366 i = raid6_next_disk(i, disks); 1367 } while (i != d0_idx); 1368 1369 return syndrome_disks; 1370 } 1371 1372 static struct dma_async_tx_descriptor * 1373 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1374 { 1375 int disks = sh->disks; 1376 struct page **blocks = to_addr_page(percpu, 0); 1377 int target; 1378 int qd_idx = sh->qd_idx; 1379 struct dma_async_tx_descriptor *tx; 1380 struct async_submit_ctl submit; 1381 struct r5dev *tgt; 1382 struct page *dest; 1383 int i; 1384 int count; 1385 1386 BUG_ON(sh->batch_head); 1387 if (sh->ops.target < 0) 1388 target = sh->ops.target2; 1389 else if (sh->ops.target2 < 0) 1390 target = sh->ops.target; 1391 else 1392 /* we should only have one valid target */ 1393 BUG(); 1394 BUG_ON(target < 0); 1395 pr_debug("%s: stripe %llu block: %d\n", 1396 __func__, (unsigned long long)sh->sector, target); 1397 1398 tgt = &sh->dev[target]; 1399 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1400 dest = tgt->page; 1401 1402 atomic_inc(&sh->count); 1403 1404 if (target == qd_idx) { 1405 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1406 blocks[count] = NULL; /* regenerating p is not necessary */ 1407 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1408 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1409 ops_complete_compute, sh, 1410 to_addr_conv(sh, percpu, 0)); 1411 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1412 } else { 1413 /* Compute any data- or p-drive using XOR */ 1414 count = 0; 1415 for (i = disks; i-- ; ) { 1416 if (i == target || i == qd_idx) 1417 continue; 1418 blocks[count++] = sh->dev[i].page; 1419 } 1420 1421 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1422 NULL, ops_complete_compute, sh, 1423 to_addr_conv(sh, percpu, 0)); 1424 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1425 } 1426 1427 return tx; 1428 } 1429 1430 static struct dma_async_tx_descriptor * 1431 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1432 { 1433 int i, count, disks = sh->disks; 1434 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1435 int d0_idx = raid6_d0(sh); 1436 int faila = -1, failb = -1; 1437 int target = sh->ops.target; 1438 int target2 = sh->ops.target2; 1439 struct r5dev *tgt = &sh->dev[target]; 1440 struct r5dev *tgt2 = &sh->dev[target2]; 1441 struct dma_async_tx_descriptor *tx; 1442 struct page **blocks = to_addr_page(percpu, 0); 1443 struct async_submit_ctl submit; 1444 1445 BUG_ON(sh->batch_head); 1446 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1447 __func__, (unsigned long long)sh->sector, target, target2); 1448 BUG_ON(target < 0 || target2 < 0); 1449 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1450 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1451 1452 /* we need to open-code set_syndrome_sources to handle the 1453 * slot number conversion for 'faila' and 'failb' 1454 */ 1455 for (i = 0; i < disks ; i++) 1456 blocks[i] = NULL; 1457 count = 0; 1458 i = d0_idx; 1459 do { 1460 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1461 1462 blocks[slot] = sh->dev[i].page; 1463 1464 if (i == target) 1465 faila = slot; 1466 if (i == target2) 1467 failb = slot; 1468 i = raid6_next_disk(i, disks); 1469 } while (i != d0_idx); 1470 1471 BUG_ON(faila == failb); 1472 if (failb < faila) 1473 swap(faila, failb); 1474 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1475 __func__, (unsigned long long)sh->sector, faila, failb); 1476 1477 atomic_inc(&sh->count); 1478 1479 if (failb == syndrome_disks+1) { 1480 /* Q disk is one of the missing disks */ 1481 if (faila == syndrome_disks) { 1482 /* Missing P+Q, just recompute */ 1483 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1484 ops_complete_compute, sh, 1485 to_addr_conv(sh, percpu, 0)); 1486 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1487 STRIPE_SIZE, &submit); 1488 } else { 1489 struct page *dest; 1490 int data_target; 1491 int qd_idx = sh->qd_idx; 1492 1493 /* Missing D+Q: recompute D from P, then recompute Q */ 1494 if (target == qd_idx) 1495 data_target = target2; 1496 else 1497 data_target = target; 1498 1499 count = 0; 1500 for (i = disks; i-- ; ) { 1501 if (i == data_target || i == qd_idx) 1502 continue; 1503 blocks[count++] = sh->dev[i].page; 1504 } 1505 dest = sh->dev[data_target].page; 1506 init_async_submit(&submit, 1507 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1508 NULL, NULL, NULL, 1509 to_addr_conv(sh, percpu, 0)); 1510 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1511 &submit); 1512 1513 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1514 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1515 ops_complete_compute, sh, 1516 to_addr_conv(sh, percpu, 0)); 1517 return async_gen_syndrome(blocks, 0, count+2, 1518 STRIPE_SIZE, &submit); 1519 } 1520 } else { 1521 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1522 ops_complete_compute, sh, 1523 to_addr_conv(sh, percpu, 0)); 1524 if (failb == syndrome_disks) { 1525 /* We're missing D+P. */ 1526 return async_raid6_datap_recov(syndrome_disks+2, 1527 STRIPE_SIZE, faila, 1528 blocks, &submit); 1529 } else { 1530 /* We're missing D+D. */ 1531 return async_raid6_2data_recov(syndrome_disks+2, 1532 STRIPE_SIZE, faila, failb, 1533 blocks, &submit); 1534 } 1535 } 1536 } 1537 1538 static void ops_complete_prexor(void *stripe_head_ref) 1539 { 1540 struct stripe_head *sh = stripe_head_ref; 1541 1542 pr_debug("%s: stripe %llu\n", __func__, 1543 (unsigned long long)sh->sector); 1544 } 1545 1546 static struct dma_async_tx_descriptor * 1547 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1548 struct dma_async_tx_descriptor *tx) 1549 { 1550 int disks = sh->disks; 1551 struct page **xor_srcs = to_addr_page(percpu, 0); 1552 int count = 0, pd_idx = sh->pd_idx, i; 1553 struct async_submit_ctl submit; 1554 1555 /* existing parity data subtracted */ 1556 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1557 1558 BUG_ON(sh->batch_head); 1559 pr_debug("%s: stripe %llu\n", __func__, 1560 (unsigned long long)sh->sector); 1561 1562 for (i = disks; i--; ) { 1563 struct r5dev *dev = &sh->dev[i]; 1564 /* Only process blocks that are known to be uptodate */ 1565 if (test_bit(R5_Wantdrain, &dev->flags)) 1566 xor_srcs[count++] = dev->page; 1567 } 1568 1569 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1570 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1571 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1572 1573 return tx; 1574 } 1575 1576 static struct dma_async_tx_descriptor * 1577 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1578 struct dma_async_tx_descriptor *tx) 1579 { 1580 struct page **blocks = to_addr_page(percpu, 0); 1581 int count; 1582 struct async_submit_ctl submit; 1583 1584 pr_debug("%s: stripe %llu\n", __func__, 1585 (unsigned long long)sh->sector); 1586 1587 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1588 1589 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1590 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1591 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1592 1593 return tx; 1594 } 1595 1596 static struct dma_async_tx_descriptor * 1597 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1598 { 1599 int disks = sh->disks; 1600 int i; 1601 struct stripe_head *head_sh = sh; 1602 1603 pr_debug("%s: stripe %llu\n", __func__, 1604 (unsigned long long)sh->sector); 1605 1606 for (i = disks; i--; ) { 1607 struct r5dev *dev; 1608 struct bio *chosen; 1609 1610 sh = head_sh; 1611 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1612 struct bio *wbi; 1613 1614 again: 1615 dev = &sh->dev[i]; 1616 spin_lock_irq(&sh->stripe_lock); 1617 chosen = dev->towrite; 1618 dev->towrite = NULL; 1619 sh->overwrite_disks = 0; 1620 BUG_ON(dev->written); 1621 wbi = dev->written = chosen; 1622 spin_unlock_irq(&sh->stripe_lock); 1623 WARN_ON(dev->page != dev->orig_page); 1624 1625 while (wbi && wbi->bi_iter.bi_sector < 1626 dev->sector + STRIPE_SECTORS) { 1627 if (wbi->bi_rw & REQ_FUA) 1628 set_bit(R5_WantFUA, &dev->flags); 1629 if (wbi->bi_rw & REQ_SYNC) 1630 set_bit(R5_SyncIO, &dev->flags); 1631 if (wbi->bi_rw & REQ_DISCARD) 1632 set_bit(R5_Discard, &dev->flags); 1633 else { 1634 tx = async_copy_data(1, wbi, &dev->page, 1635 dev->sector, tx, sh); 1636 if (dev->page != dev->orig_page) { 1637 set_bit(R5_SkipCopy, &dev->flags); 1638 clear_bit(R5_UPTODATE, &dev->flags); 1639 clear_bit(R5_OVERWRITE, &dev->flags); 1640 } 1641 } 1642 wbi = r5_next_bio(wbi, dev->sector); 1643 } 1644 1645 if (head_sh->batch_head) { 1646 sh = list_first_entry(&sh->batch_list, 1647 struct stripe_head, 1648 batch_list); 1649 if (sh == head_sh) 1650 continue; 1651 goto again; 1652 } 1653 } 1654 } 1655 1656 return tx; 1657 } 1658 1659 static void ops_complete_reconstruct(void *stripe_head_ref) 1660 { 1661 struct stripe_head *sh = stripe_head_ref; 1662 int disks = sh->disks; 1663 int pd_idx = sh->pd_idx; 1664 int qd_idx = sh->qd_idx; 1665 int i; 1666 bool fua = false, sync = false, discard = false; 1667 1668 pr_debug("%s: stripe %llu\n", __func__, 1669 (unsigned long long)sh->sector); 1670 1671 for (i = disks; i--; ) { 1672 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1673 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1674 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1675 } 1676 1677 for (i = disks; i--; ) { 1678 struct r5dev *dev = &sh->dev[i]; 1679 1680 if (dev->written || i == pd_idx || i == qd_idx) { 1681 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1682 set_bit(R5_UPTODATE, &dev->flags); 1683 if (fua) 1684 set_bit(R5_WantFUA, &dev->flags); 1685 if (sync) 1686 set_bit(R5_SyncIO, &dev->flags); 1687 } 1688 } 1689 1690 if (sh->reconstruct_state == reconstruct_state_drain_run) 1691 sh->reconstruct_state = reconstruct_state_drain_result; 1692 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1693 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1694 else { 1695 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1696 sh->reconstruct_state = reconstruct_state_result; 1697 } 1698 1699 set_bit(STRIPE_HANDLE, &sh->state); 1700 release_stripe(sh); 1701 } 1702 1703 static void 1704 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1705 struct dma_async_tx_descriptor *tx) 1706 { 1707 int disks = sh->disks; 1708 struct page **xor_srcs; 1709 struct async_submit_ctl submit; 1710 int count, pd_idx = sh->pd_idx, i; 1711 struct page *xor_dest; 1712 int prexor = 0; 1713 unsigned long flags; 1714 int j = 0; 1715 struct stripe_head *head_sh = sh; 1716 int last_stripe; 1717 1718 pr_debug("%s: stripe %llu\n", __func__, 1719 (unsigned long long)sh->sector); 1720 1721 for (i = 0; i < sh->disks; i++) { 1722 if (pd_idx == i) 1723 continue; 1724 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1725 break; 1726 } 1727 if (i >= sh->disks) { 1728 atomic_inc(&sh->count); 1729 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1730 ops_complete_reconstruct(sh); 1731 return; 1732 } 1733 again: 1734 count = 0; 1735 xor_srcs = to_addr_page(percpu, j); 1736 /* check if prexor is active which means only process blocks 1737 * that are part of a read-modify-write (written) 1738 */ 1739 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1740 prexor = 1; 1741 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1742 for (i = disks; i--; ) { 1743 struct r5dev *dev = &sh->dev[i]; 1744 if (head_sh->dev[i].written) 1745 xor_srcs[count++] = dev->page; 1746 } 1747 } else { 1748 xor_dest = sh->dev[pd_idx].page; 1749 for (i = disks; i--; ) { 1750 struct r5dev *dev = &sh->dev[i]; 1751 if (i != pd_idx) 1752 xor_srcs[count++] = dev->page; 1753 } 1754 } 1755 1756 /* 1/ if we prexor'd then the dest is reused as a source 1757 * 2/ if we did not prexor then we are redoing the parity 1758 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1759 * for the synchronous xor case 1760 */ 1761 last_stripe = !head_sh->batch_head || 1762 list_first_entry(&sh->batch_list, 1763 struct stripe_head, batch_list) == head_sh; 1764 if (last_stripe) { 1765 flags = ASYNC_TX_ACK | 1766 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1767 1768 atomic_inc(&head_sh->count); 1769 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1770 to_addr_conv(sh, percpu, j)); 1771 } else { 1772 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1773 init_async_submit(&submit, flags, tx, NULL, NULL, 1774 to_addr_conv(sh, percpu, j)); 1775 } 1776 1777 if (unlikely(count == 1)) 1778 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1779 else 1780 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1781 if (!last_stripe) { 1782 j++; 1783 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1784 batch_list); 1785 goto again; 1786 } 1787 } 1788 1789 static void 1790 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1791 struct dma_async_tx_descriptor *tx) 1792 { 1793 struct async_submit_ctl submit; 1794 struct page **blocks; 1795 int count, i, j = 0; 1796 struct stripe_head *head_sh = sh; 1797 int last_stripe; 1798 int synflags; 1799 unsigned long txflags; 1800 1801 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1802 1803 for (i = 0; i < sh->disks; i++) { 1804 if (sh->pd_idx == i || sh->qd_idx == i) 1805 continue; 1806 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1807 break; 1808 } 1809 if (i >= sh->disks) { 1810 atomic_inc(&sh->count); 1811 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1812 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1813 ops_complete_reconstruct(sh); 1814 return; 1815 } 1816 1817 again: 1818 blocks = to_addr_page(percpu, j); 1819 1820 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1821 synflags = SYNDROME_SRC_WRITTEN; 1822 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1823 } else { 1824 synflags = SYNDROME_SRC_ALL; 1825 txflags = ASYNC_TX_ACK; 1826 } 1827 1828 count = set_syndrome_sources(blocks, sh, synflags); 1829 last_stripe = !head_sh->batch_head || 1830 list_first_entry(&sh->batch_list, 1831 struct stripe_head, batch_list) == head_sh; 1832 1833 if (last_stripe) { 1834 atomic_inc(&head_sh->count); 1835 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1836 head_sh, to_addr_conv(sh, percpu, j)); 1837 } else 1838 init_async_submit(&submit, 0, tx, NULL, NULL, 1839 to_addr_conv(sh, percpu, j)); 1840 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1841 if (!last_stripe) { 1842 j++; 1843 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1844 batch_list); 1845 goto again; 1846 } 1847 } 1848 1849 static void ops_complete_check(void *stripe_head_ref) 1850 { 1851 struct stripe_head *sh = stripe_head_ref; 1852 1853 pr_debug("%s: stripe %llu\n", __func__, 1854 (unsigned long long)sh->sector); 1855 1856 sh->check_state = check_state_check_result; 1857 set_bit(STRIPE_HANDLE, &sh->state); 1858 release_stripe(sh); 1859 } 1860 1861 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1862 { 1863 int disks = sh->disks; 1864 int pd_idx = sh->pd_idx; 1865 int qd_idx = sh->qd_idx; 1866 struct page *xor_dest; 1867 struct page **xor_srcs = to_addr_page(percpu, 0); 1868 struct dma_async_tx_descriptor *tx; 1869 struct async_submit_ctl submit; 1870 int count; 1871 int i; 1872 1873 pr_debug("%s: stripe %llu\n", __func__, 1874 (unsigned long long)sh->sector); 1875 1876 BUG_ON(sh->batch_head); 1877 count = 0; 1878 xor_dest = sh->dev[pd_idx].page; 1879 xor_srcs[count++] = xor_dest; 1880 for (i = disks; i--; ) { 1881 if (i == pd_idx || i == qd_idx) 1882 continue; 1883 xor_srcs[count++] = sh->dev[i].page; 1884 } 1885 1886 init_async_submit(&submit, 0, NULL, NULL, NULL, 1887 to_addr_conv(sh, percpu, 0)); 1888 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1889 &sh->ops.zero_sum_result, &submit); 1890 1891 atomic_inc(&sh->count); 1892 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1893 tx = async_trigger_callback(&submit); 1894 } 1895 1896 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1897 { 1898 struct page **srcs = to_addr_page(percpu, 0); 1899 struct async_submit_ctl submit; 1900 int count; 1901 1902 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1903 (unsigned long long)sh->sector, checkp); 1904 1905 BUG_ON(sh->batch_head); 1906 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1907 if (!checkp) 1908 srcs[count] = NULL; 1909 1910 atomic_inc(&sh->count); 1911 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1912 sh, to_addr_conv(sh, percpu, 0)); 1913 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1914 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1915 } 1916 1917 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1918 { 1919 int overlap_clear = 0, i, disks = sh->disks; 1920 struct dma_async_tx_descriptor *tx = NULL; 1921 struct r5conf *conf = sh->raid_conf; 1922 int level = conf->level; 1923 struct raid5_percpu *percpu; 1924 unsigned long cpu; 1925 1926 cpu = get_cpu(); 1927 percpu = per_cpu_ptr(conf->percpu, cpu); 1928 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1929 ops_run_biofill(sh); 1930 overlap_clear++; 1931 } 1932 1933 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1934 if (level < 6) 1935 tx = ops_run_compute5(sh, percpu); 1936 else { 1937 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1938 tx = ops_run_compute6_1(sh, percpu); 1939 else 1940 tx = ops_run_compute6_2(sh, percpu); 1941 } 1942 /* terminate the chain if reconstruct is not set to be run */ 1943 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1944 async_tx_ack(tx); 1945 } 1946 1947 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 1948 if (level < 6) 1949 tx = ops_run_prexor5(sh, percpu, tx); 1950 else 1951 tx = ops_run_prexor6(sh, percpu, tx); 1952 } 1953 1954 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1955 tx = ops_run_biodrain(sh, tx); 1956 overlap_clear++; 1957 } 1958 1959 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1960 if (level < 6) 1961 ops_run_reconstruct5(sh, percpu, tx); 1962 else 1963 ops_run_reconstruct6(sh, percpu, tx); 1964 } 1965 1966 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1967 if (sh->check_state == check_state_run) 1968 ops_run_check_p(sh, percpu); 1969 else if (sh->check_state == check_state_run_q) 1970 ops_run_check_pq(sh, percpu, 0); 1971 else if (sh->check_state == check_state_run_pq) 1972 ops_run_check_pq(sh, percpu, 1); 1973 else 1974 BUG(); 1975 } 1976 1977 if (overlap_clear && !sh->batch_head) 1978 for (i = disks; i--; ) { 1979 struct r5dev *dev = &sh->dev[i]; 1980 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1981 wake_up(&sh->raid_conf->wait_for_overlap); 1982 } 1983 put_cpu(); 1984 } 1985 1986 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp) 1987 { 1988 struct stripe_head *sh; 1989 1990 sh = kmem_cache_zalloc(sc, gfp); 1991 if (sh) { 1992 spin_lock_init(&sh->stripe_lock); 1993 spin_lock_init(&sh->batch_lock); 1994 INIT_LIST_HEAD(&sh->batch_list); 1995 INIT_LIST_HEAD(&sh->lru); 1996 atomic_set(&sh->count, 1); 1997 } 1998 return sh; 1999 } 2000 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2001 { 2002 struct stripe_head *sh; 2003 2004 sh = alloc_stripe(conf->slab_cache, gfp); 2005 if (!sh) 2006 return 0; 2007 2008 sh->raid_conf = conf; 2009 2010 if (grow_buffers(sh, gfp)) { 2011 shrink_buffers(sh); 2012 kmem_cache_free(conf->slab_cache, sh); 2013 return 0; 2014 } 2015 sh->hash_lock_index = 2016 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2017 /* we just created an active stripe so... */ 2018 atomic_inc(&conf->active_stripes); 2019 2020 release_stripe(sh); 2021 conf->max_nr_stripes++; 2022 return 1; 2023 } 2024 2025 static int grow_stripes(struct r5conf *conf, int num) 2026 { 2027 struct kmem_cache *sc; 2028 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2029 2030 if (conf->mddev->gendisk) 2031 sprintf(conf->cache_name[0], 2032 "raid%d-%s", conf->level, mdname(conf->mddev)); 2033 else 2034 sprintf(conf->cache_name[0], 2035 "raid%d-%p", conf->level, conf->mddev); 2036 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2037 2038 conf->active_name = 0; 2039 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2040 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2041 0, 0, NULL); 2042 if (!sc) 2043 return 1; 2044 conf->slab_cache = sc; 2045 conf->pool_size = devs; 2046 while (num--) 2047 if (!grow_one_stripe(conf, GFP_KERNEL)) 2048 return 1; 2049 2050 return 0; 2051 } 2052 2053 /** 2054 * scribble_len - return the required size of the scribble region 2055 * @num - total number of disks in the array 2056 * 2057 * The size must be enough to contain: 2058 * 1/ a struct page pointer for each device in the array +2 2059 * 2/ room to convert each entry in (1) to its corresponding dma 2060 * (dma_map_page()) or page (page_address()) address. 2061 * 2062 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2063 * calculate over all devices (not just the data blocks), using zeros in place 2064 * of the P and Q blocks. 2065 */ 2066 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2067 { 2068 struct flex_array *ret; 2069 size_t len; 2070 2071 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2072 ret = flex_array_alloc(len, cnt, flags); 2073 if (!ret) 2074 return NULL; 2075 /* always prealloc all elements, so no locking is required */ 2076 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2077 flex_array_free(ret); 2078 return NULL; 2079 } 2080 return ret; 2081 } 2082 2083 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2084 { 2085 unsigned long cpu; 2086 int err = 0; 2087 2088 mddev_suspend(conf->mddev); 2089 get_online_cpus(); 2090 for_each_present_cpu(cpu) { 2091 struct raid5_percpu *percpu; 2092 struct flex_array *scribble; 2093 2094 percpu = per_cpu_ptr(conf->percpu, cpu); 2095 scribble = scribble_alloc(new_disks, 2096 new_sectors / STRIPE_SECTORS, 2097 GFP_NOIO); 2098 2099 if (scribble) { 2100 flex_array_free(percpu->scribble); 2101 percpu->scribble = scribble; 2102 } else { 2103 err = -ENOMEM; 2104 break; 2105 } 2106 } 2107 put_online_cpus(); 2108 mddev_resume(conf->mddev); 2109 return err; 2110 } 2111 2112 static int resize_stripes(struct r5conf *conf, int newsize) 2113 { 2114 /* Make all the stripes able to hold 'newsize' devices. 2115 * New slots in each stripe get 'page' set to a new page. 2116 * 2117 * This happens in stages: 2118 * 1/ create a new kmem_cache and allocate the required number of 2119 * stripe_heads. 2120 * 2/ gather all the old stripe_heads and transfer the pages across 2121 * to the new stripe_heads. This will have the side effect of 2122 * freezing the array as once all stripe_heads have been collected, 2123 * no IO will be possible. Old stripe heads are freed once their 2124 * pages have been transferred over, and the old kmem_cache is 2125 * freed when all stripes are done. 2126 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2127 * we simple return a failre status - no need to clean anything up. 2128 * 4/ allocate new pages for the new slots in the new stripe_heads. 2129 * If this fails, we don't bother trying the shrink the 2130 * stripe_heads down again, we just leave them as they are. 2131 * As each stripe_head is processed the new one is released into 2132 * active service. 2133 * 2134 * Once step2 is started, we cannot afford to wait for a write, 2135 * so we use GFP_NOIO allocations. 2136 */ 2137 struct stripe_head *osh, *nsh; 2138 LIST_HEAD(newstripes); 2139 struct disk_info *ndisks; 2140 int err; 2141 struct kmem_cache *sc; 2142 int i; 2143 int hash, cnt; 2144 2145 if (newsize <= conf->pool_size) 2146 return 0; /* never bother to shrink */ 2147 2148 err = md_allow_write(conf->mddev); 2149 if (err) 2150 return err; 2151 2152 /* Step 1 */ 2153 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2154 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2155 0, 0, NULL); 2156 if (!sc) 2157 return -ENOMEM; 2158 2159 /* Need to ensure auto-resizing doesn't interfere */ 2160 mutex_lock(&conf->cache_size_mutex); 2161 2162 for (i = conf->max_nr_stripes; i; i--) { 2163 nsh = alloc_stripe(sc, GFP_KERNEL); 2164 if (!nsh) 2165 break; 2166 2167 nsh->raid_conf = conf; 2168 list_add(&nsh->lru, &newstripes); 2169 } 2170 if (i) { 2171 /* didn't get enough, give up */ 2172 while (!list_empty(&newstripes)) { 2173 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2174 list_del(&nsh->lru); 2175 kmem_cache_free(sc, nsh); 2176 } 2177 kmem_cache_destroy(sc); 2178 mutex_unlock(&conf->cache_size_mutex); 2179 return -ENOMEM; 2180 } 2181 /* Step 2 - Must use GFP_NOIO now. 2182 * OK, we have enough stripes, start collecting inactive 2183 * stripes and copying them over 2184 */ 2185 hash = 0; 2186 cnt = 0; 2187 list_for_each_entry(nsh, &newstripes, lru) { 2188 lock_device_hash_lock(conf, hash); 2189 wait_event_exclusive_cmd(conf->wait_for_stripe[hash], 2190 !list_empty(conf->inactive_list + hash), 2191 unlock_device_hash_lock(conf, hash), 2192 lock_device_hash_lock(conf, hash)); 2193 osh = get_free_stripe(conf, hash); 2194 unlock_device_hash_lock(conf, hash); 2195 2196 for(i=0; i<conf->pool_size; i++) { 2197 nsh->dev[i].page = osh->dev[i].page; 2198 nsh->dev[i].orig_page = osh->dev[i].page; 2199 } 2200 nsh->hash_lock_index = hash; 2201 kmem_cache_free(conf->slab_cache, osh); 2202 cnt++; 2203 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2204 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2205 hash++; 2206 cnt = 0; 2207 } 2208 } 2209 kmem_cache_destroy(conf->slab_cache); 2210 2211 /* Step 3. 2212 * At this point, we are holding all the stripes so the array 2213 * is completely stalled, so now is a good time to resize 2214 * conf->disks and the scribble region 2215 */ 2216 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2217 if (ndisks) { 2218 for (i=0; i<conf->raid_disks; i++) 2219 ndisks[i] = conf->disks[i]; 2220 kfree(conf->disks); 2221 conf->disks = ndisks; 2222 } else 2223 err = -ENOMEM; 2224 2225 mutex_unlock(&conf->cache_size_mutex); 2226 /* Step 4, return new stripes to service */ 2227 while(!list_empty(&newstripes)) { 2228 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2229 list_del_init(&nsh->lru); 2230 2231 for (i=conf->raid_disks; i < newsize; i++) 2232 if (nsh->dev[i].page == NULL) { 2233 struct page *p = alloc_page(GFP_NOIO); 2234 nsh->dev[i].page = p; 2235 nsh->dev[i].orig_page = p; 2236 if (!p) 2237 err = -ENOMEM; 2238 } 2239 release_stripe(nsh); 2240 } 2241 /* critical section pass, GFP_NOIO no longer needed */ 2242 2243 conf->slab_cache = sc; 2244 conf->active_name = 1-conf->active_name; 2245 if (!err) 2246 conf->pool_size = newsize; 2247 return err; 2248 } 2249 2250 static int drop_one_stripe(struct r5conf *conf) 2251 { 2252 struct stripe_head *sh; 2253 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2254 2255 spin_lock_irq(conf->hash_locks + hash); 2256 sh = get_free_stripe(conf, hash); 2257 spin_unlock_irq(conf->hash_locks + hash); 2258 if (!sh) 2259 return 0; 2260 BUG_ON(atomic_read(&sh->count)); 2261 shrink_buffers(sh); 2262 kmem_cache_free(conf->slab_cache, sh); 2263 atomic_dec(&conf->active_stripes); 2264 conf->max_nr_stripes--; 2265 return 1; 2266 } 2267 2268 static void shrink_stripes(struct r5conf *conf) 2269 { 2270 while (conf->max_nr_stripes && 2271 drop_one_stripe(conf)) 2272 ; 2273 2274 if (conf->slab_cache) 2275 kmem_cache_destroy(conf->slab_cache); 2276 conf->slab_cache = NULL; 2277 } 2278 2279 static void raid5_end_read_request(struct bio * bi) 2280 { 2281 struct stripe_head *sh = bi->bi_private; 2282 struct r5conf *conf = sh->raid_conf; 2283 int disks = sh->disks, i; 2284 char b[BDEVNAME_SIZE]; 2285 struct md_rdev *rdev = NULL; 2286 sector_t s; 2287 2288 for (i=0 ; i<disks; i++) 2289 if (bi == &sh->dev[i].req) 2290 break; 2291 2292 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2293 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2294 bi->bi_error); 2295 if (i == disks) { 2296 BUG(); 2297 return; 2298 } 2299 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2300 /* If replacement finished while this request was outstanding, 2301 * 'replacement' might be NULL already. 2302 * In that case it moved down to 'rdev'. 2303 * rdev is not removed until all requests are finished. 2304 */ 2305 rdev = conf->disks[i].replacement; 2306 if (!rdev) 2307 rdev = conf->disks[i].rdev; 2308 2309 if (use_new_offset(conf, sh)) 2310 s = sh->sector + rdev->new_data_offset; 2311 else 2312 s = sh->sector + rdev->data_offset; 2313 if (!bi->bi_error) { 2314 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2315 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2316 /* Note that this cannot happen on a 2317 * replacement device. We just fail those on 2318 * any error 2319 */ 2320 printk_ratelimited( 2321 KERN_INFO 2322 "md/raid:%s: read error corrected" 2323 " (%lu sectors at %llu on %s)\n", 2324 mdname(conf->mddev), STRIPE_SECTORS, 2325 (unsigned long long)s, 2326 bdevname(rdev->bdev, b)); 2327 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2328 clear_bit(R5_ReadError, &sh->dev[i].flags); 2329 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2330 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2331 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2332 2333 if (atomic_read(&rdev->read_errors)) 2334 atomic_set(&rdev->read_errors, 0); 2335 } else { 2336 const char *bdn = bdevname(rdev->bdev, b); 2337 int retry = 0; 2338 int set_bad = 0; 2339 2340 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2341 atomic_inc(&rdev->read_errors); 2342 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2343 printk_ratelimited( 2344 KERN_WARNING 2345 "md/raid:%s: read error on replacement device " 2346 "(sector %llu on %s).\n", 2347 mdname(conf->mddev), 2348 (unsigned long long)s, 2349 bdn); 2350 else if (conf->mddev->degraded >= conf->max_degraded) { 2351 set_bad = 1; 2352 printk_ratelimited( 2353 KERN_WARNING 2354 "md/raid:%s: read error not correctable " 2355 "(sector %llu on %s).\n", 2356 mdname(conf->mddev), 2357 (unsigned long long)s, 2358 bdn); 2359 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2360 /* Oh, no!!! */ 2361 set_bad = 1; 2362 printk_ratelimited( 2363 KERN_WARNING 2364 "md/raid:%s: read error NOT corrected!! " 2365 "(sector %llu on %s).\n", 2366 mdname(conf->mddev), 2367 (unsigned long long)s, 2368 bdn); 2369 } else if (atomic_read(&rdev->read_errors) 2370 > conf->max_nr_stripes) 2371 printk(KERN_WARNING 2372 "md/raid:%s: Too many read errors, failing device %s.\n", 2373 mdname(conf->mddev), bdn); 2374 else 2375 retry = 1; 2376 if (set_bad && test_bit(In_sync, &rdev->flags) 2377 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2378 retry = 1; 2379 if (retry) 2380 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2381 set_bit(R5_ReadError, &sh->dev[i].flags); 2382 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2383 } else 2384 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2385 else { 2386 clear_bit(R5_ReadError, &sh->dev[i].flags); 2387 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2388 if (!(set_bad 2389 && test_bit(In_sync, &rdev->flags) 2390 && rdev_set_badblocks( 2391 rdev, sh->sector, STRIPE_SECTORS, 0))) 2392 md_error(conf->mddev, rdev); 2393 } 2394 } 2395 rdev_dec_pending(rdev, conf->mddev); 2396 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2397 set_bit(STRIPE_HANDLE, &sh->state); 2398 release_stripe(sh); 2399 } 2400 2401 static void raid5_end_write_request(struct bio *bi) 2402 { 2403 struct stripe_head *sh = bi->bi_private; 2404 struct r5conf *conf = sh->raid_conf; 2405 int disks = sh->disks, i; 2406 struct md_rdev *uninitialized_var(rdev); 2407 sector_t first_bad; 2408 int bad_sectors; 2409 int replacement = 0; 2410 2411 for (i = 0 ; i < disks; i++) { 2412 if (bi == &sh->dev[i].req) { 2413 rdev = conf->disks[i].rdev; 2414 break; 2415 } 2416 if (bi == &sh->dev[i].rreq) { 2417 rdev = conf->disks[i].replacement; 2418 if (rdev) 2419 replacement = 1; 2420 else 2421 /* rdev was removed and 'replacement' 2422 * replaced it. rdev is not removed 2423 * until all requests are finished. 2424 */ 2425 rdev = conf->disks[i].rdev; 2426 break; 2427 } 2428 } 2429 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2430 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2431 bi->bi_error); 2432 if (i == disks) { 2433 BUG(); 2434 return; 2435 } 2436 2437 if (replacement) { 2438 if (bi->bi_error) 2439 md_error(conf->mddev, rdev); 2440 else if (is_badblock(rdev, sh->sector, 2441 STRIPE_SECTORS, 2442 &first_bad, &bad_sectors)) 2443 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2444 } else { 2445 if (bi->bi_error) { 2446 set_bit(STRIPE_DEGRADED, &sh->state); 2447 set_bit(WriteErrorSeen, &rdev->flags); 2448 set_bit(R5_WriteError, &sh->dev[i].flags); 2449 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2450 set_bit(MD_RECOVERY_NEEDED, 2451 &rdev->mddev->recovery); 2452 } else if (is_badblock(rdev, sh->sector, 2453 STRIPE_SECTORS, 2454 &first_bad, &bad_sectors)) { 2455 set_bit(R5_MadeGood, &sh->dev[i].flags); 2456 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2457 /* That was a successful write so make 2458 * sure it looks like we already did 2459 * a re-write. 2460 */ 2461 set_bit(R5_ReWrite, &sh->dev[i].flags); 2462 } 2463 } 2464 rdev_dec_pending(rdev, conf->mddev); 2465 2466 if (sh->batch_head && bi->bi_error && !replacement) 2467 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2468 2469 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2470 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2471 set_bit(STRIPE_HANDLE, &sh->state); 2472 release_stripe(sh); 2473 2474 if (sh->batch_head && sh != sh->batch_head) 2475 release_stripe(sh->batch_head); 2476 } 2477 2478 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 2479 2480 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2481 { 2482 struct r5dev *dev = &sh->dev[i]; 2483 2484 bio_init(&dev->req); 2485 dev->req.bi_io_vec = &dev->vec; 2486 dev->req.bi_max_vecs = 1; 2487 dev->req.bi_private = sh; 2488 2489 bio_init(&dev->rreq); 2490 dev->rreq.bi_io_vec = &dev->rvec; 2491 dev->rreq.bi_max_vecs = 1; 2492 dev->rreq.bi_private = sh; 2493 2494 dev->flags = 0; 2495 dev->sector = compute_blocknr(sh, i, previous); 2496 } 2497 2498 static void error(struct mddev *mddev, struct md_rdev *rdev) 2499 { 2500 char b[BDEVNAME_SIZE]; 2501 struct r5conf *conf = mddev->private; 2502 unsigned long flags; 2503 pr_debug("raid456: error called\n"); 2504 2505 spin_lock_irqsave(&conf->device_lock, flags); 2506 clear_bit(In_sync, &rdev->flags); 2507 mddev->degraded = calc_degraded(conf); 2508 spin_unlock_irqrestore(&conf->device_lock, flags); 2509 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2510 2511 set_bit(Blocked, &rdev->flags); 2512 set_bit(Faulty, &rdev->flags); 2513 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2514 set_bit(MD_CHANGE_PENDING, &mddev->flags); 2515 printk(KERN_ALERT 2516 "md/raid:%s: Disk failure on %s, disabling device.\n" 2517 "md/raid:%s: Operation continuing on %d devices.\n", 2518 mdname(mddev), 2519 bdevname(rdev->bdev, b), 2520 mdname(mddev), 2521 conf->raid_disks - mddev->degraded); 2522 } 2523 2524 /* 2525 * Input: a 'big' sector number, 2526 * Output: index of the data and parity disk, and the sector # in them. 2527 */ 2528 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2529 int previous, int *dd_idx, 2530 struct stripe_head *sh) 2531 { 2532 sector_t stripe, stripe2; 2533 sector_t chunk_number; 2534 unsigned int chunk_offset; 2535 int pd_idx, qd_idx; 2536 int ddf_layout = 0; 2537 sector_t new_sector; 2538 int algorithm = previous ? conf->prev_algo 2539 : conf->algorithm; 2540 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2541 : conf->chunk_sectors; 2542 int raid_disks = previous ? conf->previous_raid_disks 2543 : conf->raid_disks; 2544 int data_disks = raid_disks - conf->max_degraded; 2545 2546 /* First compute the information on this sector */ 2547 2548 /* 2549 * Compute the chunk number and the sector offset inside the chunk 2550 */ 2551 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2552 chunk_number = r_sector; 2553 2554 /* 2555 * Compute the stripe number 2556 */ 2557 stripe = chunk_number; 2558 *dd_idx = sector_div(stripe, data_disks); 2559 stripe2 = stripe; 2560 /* 2561 * Select the parity disk based on the user selected algorithm. 2562 */ 2563 pd_idx = qd_idx = -1; 2564 switch(conf->level) { 2565 case 4: 2566 pd_idx = data_disks; 2567 break; 2568 case 5: 2569 switch (algorithm) { 2570 case ALGORITHM_LEFT_ASYMMETRIC: 2571 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2572 if (*dd_idx >= pd_idx) 2573 (*dd_idx)++; 2574 break; 2575 case ALGORITHM_RIGHT_ASYMMETRIC: 2576 pd_idx = sector_div(stripe2, raid_disks); 2577 if (*dd_idx >= pd_idx) 2578 (*dd_idx)++; 2579 break; 2580 case ALGORITHM_LEFT_SYMMETRIC: 2581 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2582 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2583 break; 2584 case ALGORITHM_RIGHT_SYMMETRIC: 2585 pd_idx = sector_div(stripe2, raid_disks); 2586 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2587 break; 2588 case ALGORITHM_PARITY_0: 2589 pd_idx = 0; 2590 (*dd_idx)++; 2591 break; 2592 case ALGORITHM_PARITY_N: 2593 pd_idx = data_disks; 2594 break; 2595 default: 2596 BUG(); 2597 } 2598 break; 2599 case 6: 2600 2601 switch (algorithm) { 2602 case ALGORITHM_LEFT_ASYMMETRIC: 2603 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2604 qd_idx = pd_idx + 1; 2605 if (pd_idx == raid_disks-1) { 2606 (*dd_idx)++; /* Q D D D P */ 2607 qd_idx = 0; 2608 } else if (*dd_idx >= pd_idx) 2609 (*dd_idx) += 2; /* D D P Q D */ 2610 break; 2611 case ALGORITHM_RIGHT_ASYMMETRIC: 2612 pd_idx = sector_div(stripe2, raid_disks); 2613 qd_idx = pd_idx + 1; 2614 if (pd_idx == raid_disks-1) { 2615 (*dd_idx)++; /* Q D D D P */ 2616 qd_idx = 0; 2617 } else if (*dd_idx >= pd_idx) 2618 (*dd_idx) += 2; /* D D P Q D */ 2619 break; 2620 case ALGORITHM_LEFT_SYMMETRIC: 2621 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2622 qd_idx = (pd_idx + 1) % raid_disks; 2623 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2624 break; 2625 case ALGORITHM_RIGHT_SYMMETRIC: 2626 pd_idx = sector_div(stripe2, raid_disks); 2627 qd_idx = (pd_idx + 1) % raid_disks; 2628 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2629 break; 2630 2631 case ALGORITHM_PARITY_0: 2632 pd_idx = 0; 2633 qd_idx = 1; 2634 (*dd_idx) += 2; 2635 break; 2636 case ALGORITHM_PARITY_N: 2637 pd_idx = data_disks; 2638 qd_idx = data_disks + 1; 2639 break; 2640 2641 case ALGORITHM_ROTATING_ZERO_RESTART: 2642 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2643 * of blocks for computing Q is different. 2644 */ 2645 pd_idx = sector_div(stripe2, raid_disks); 2646 qd_idx = pd_idx + 1; 2647 if (pd_idx == raid_disks-1) { 2648 (*dd_idx)++; /* Q D D D P */ 2649 qd_idx = 0; 2650 } else if (*dd_idx >= pd_idx) 2651 (*dd_idx) += 2; /* D D P Q D */ 2652 ddf_layout = 1; 2653 break; 2654 2655 case ALGORITHM_ROTATING_N_RESTART: 2656 /* Same a left_asymmetric, by first stripe is 2657 * D D D P Q rather than 2658 * Q D D D P 2659 */ 2660 stripe2 += 1; 2661 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2662 qd_idx = pd_idx + 1; 2663 if (pd_idx == raid_disks-1) { 2664 (*dd_idx)++; /* Q D D D P */ 2665 qd_idx = 0; 2666 } else if (*dd_idx >= pd_idx) 2667 (*dd_idx) += 2; /* D D P Q D */ 2668 ddf_layout = 1; 2669 break; 2670 2671 case ALGORITHM_ROTATING_N_CONTINUE: 2672 /* Same as left_symmetric but Q is before P */ 2673 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2674 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2675 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2676 ddf_layout = 1; 2677 break; 2678 2679 case ALGORITHM_LEFT_ASYMMETRIC_6: 2680 /* RAID5 left_asymmetric, with Q on last device */ 2681 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2682 if (*dd_idx >= pd_idx) 2683 (*dd_idx)++; 2684 qd_idx = raid_disks - 1; 2685 break; 2686 2687 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2688 pd_idx = sector_div(stripe2, raid_disks-1); 2689 if (*dd_idx >= pd_idx) 2690 (*dd_idx)++; 2691 qd_idx = raid_disks - 1; 2692 break; 2693 2694 case ALGORITHM_LEFT_SYMMETRIC_6: 2695 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2696 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2697 qd_idx = raid_disks - 1; 2698 break; 2699 2700 case ALGORITHM_RIGHT_SYMMETRIC_6: 2701 pd_idx = sector_div(stripe2, raid_disks-1); 2702 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2703 qd_idx = raid_disks - 1; 2704 break; 2705 2706 case ALGORITHM_PARITY_0_6: 2707 pd_idx = 0; 2708 (*dd_idx)++; 2709 qd_idx = raid_disks - 1; 2710 break; 2711 2712 default: 2713 BUG(); 2714 } 2715 break; 2716 } 2717 2718 if (sh) { 2719 sh->pd_idx = pd_idx; 2720 sh->qd_idx = qd_idx; 2721 sh->ddf_layout = ddf_layout; 2722 } 2723 /* 2724 * Finally, compute the new sector number 2725 */ 2726 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2727 return new_sector; 2728 } 2729 2730 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2731 { 2732 struct r5conf *conf = sh->raid_conf; 2733 int raid_disks = sh->disks; 2734 int data_disks = raid_disks - conf->max_degraded; 2735 sector_t new_sector = sh->sector, check; 2736 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2737 : conf->chunk_sectors; 2738 int algorithm = previous ? conf->prev_algo 2739 : conf->algorithm; 2740 sector_t stripe; 2741 int chunk_offset; 2742 sector_t chunk_number; 2743 int dummy1, dd_idx = i; 2744 sector_t r_sector; 2745 struct stripe_head sh2; 2746 2747 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2748 stripe = new_sector; 2749 2750 if (i == sh->pd_idx) 2751 return 0; 2752 switch(conf->level) { 2753 case 4: break; 2754 case 5: 2755 switch (algorithm) { 2756 case ALGORITHM_LEFT_ASYMMETRIC: 2757 case ALGORITHM_RIGHT_ASYMMETRIC: 2758 if (i > sh->pd_idx) 2759 i--; 2760 break; 2761 case ALGORITHM_LEFT_SYMMETRIC: 2762 case ALGORITHM_RIGHT_SYMMETRIC: 2763 if (i < sh->pd_idx) 2764 i += raid_disks; 2765 i -= (sh->pd_idx + 1); 2766 break; 2767 case ALGORITHM_PARITY_0: 2768 i -= 1; 2769 break; 2770 case ALGORITHM_PARITY_N: 2771 break; 2772 default: 2773 BUG(); 2774 } 2775 break; 2776 case 6: 2777 if (i == sh->qd_idx) 2778 return 0; /* It is the Q disk */ 2779 switch (algorithm) { 2780 case ALGORITHM_LEFT_ASYMMETRIC: 2781 case ALGORITHM_RIGHT_ASYMMETRIC: 2782 case ALGORITHM_ROTATING_ZERO_RESTART: 2783 case ALGORITHM_ROTATING_N_RESTART: 2784 if (sh->pd_idx == raid_disks-1) 2785 i--; /* Q D D D P */ 2786 else if (i > sh->pd_idx) 2787 i -= 2; /* D D P Q D */ 2788 break; 2789 case ALGORITHM_LEFT_SYMMETRIC: 2790 case ALGORITHM_RIGHT_SYMMETRIC: 2791 if (sh->pd_idx == raid_disks-1) 2792 i--; /* Q D D D P */ 2793 else { 2794 /* D D P Q D */ 2795 if (i < sh->pd_idx) 2796 i += raid_disks; 2797 i -= (sh->pd_idx + 2); 2798 } 2799 break; 2800 case ALGORITHM_PARITY_0: 2801 i -= 2; 2802 break; 2803 case ALGORITHM_PARITY_N: 2804 break; 2805 case ALGORITHM_ROTATING_N_CONTINUE: 2806 /* Like left_symmetric, but P is before Q */ 2807 if (sh->pd_idx == 0) 2808 i--; /* P D D D Q */ 2809 else { 2810 /* D D Q P D */ 2811 if (i < sh->pd_idx) 2812 i += raid_disks; 2813 i -= (sh->pd_idx + 1); 2814 } 2815 break; 2816 case ALGORITHM_LEFT_ASYMMETRIC_6: 2817 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2818 if (i > sh->pd_idx) 2819 i--; 2820 break; 2821 case ALGORITHM_LEFT_SYMMETRIC_6: 2822 case ALGORITHM_RIGHT_SYMMETRIC_6: 2823 if (i < sh->pd_idx) 2824 i += data_disks + 1; 2825 i -= (sh->pd_idx + 1); 2826 break; 2827 case ALGORITHM_PARITY_0_6: 2828 i -= 1; 2829 break; 2830 default: 2831 BUG(); 2832 } 2833 break; 2834 } 2835 2836 chunk_number = stripe * data_disks + i; 2837 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2838 2839 check = raid5_compute_sector(conf, r_sector, 2840 previous, &dummy1, &sh2); 2841 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2842 || sh2.qd_idx != sh->qd_idx) { 2843 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2844 mdname(conf->mddev)); 2845 return 0; 2846 } 2847 return r_sector; 2848 } 2849 2850 static void 2851 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2852 int rcw, int expand) 2853 { 2854 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2855 struct r5conf *conf = sh->raid_conf; 2856 int level = conf->level; 2857 2858 if (rcw) { 2859 2860 for (i = disks; i--; ) { 2861 struct r5dev *dev = &sh->dev[i]; 2862 2863 if (dev->towrite) { 2864 set_bit(R5_LOCKED, &dev->flags); 2865 set_bit(R5_Wantdrain, &dev->flags); 2866 if (!expand) 2867 clear_bit(R5_UPTODATE, &dev->flags); 2868 s->locked++; 2869 } 2870 } 2871 /* if we are not expanding this is a proper write request, and 2872 * there will be bios with new data to be drained into the 2873 * stripe cache 2874 */ 2875 if (!expand) { 2876 if (!s->locked) 2877 /* False alarm, nothing to do */ 2878 return; 2879 sh->reconstruct_state = reconstruct_state_drain_run; 2880 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2881 } else 2882 sh->reconstruct_state = reconstruct_state_run; 2883 2884 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2885 2886 if (s->locked + conf->max_degraded == disks) 2887 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2888 atomic_inc(&conf->pending_full_writes); 2889 } else { 2890 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2891 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2892 BUG_ON(level == 6 && 2893 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 2894 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 2895 2896 for (i = disks; i--; ) { 2897 struct r5dev *dev = &sh->dev[i]; 2898 if (i == pd_idx || i == qd_idx) 2899 continue; 2900 2901 if (dev->towrite && 2902 (test_bit(R5_UPTODATE, &dev->flags) || 2903 test_bit(R5_Wantcompute, &dev->flags))) { 2904 set_bit(R5_Wantdrain, &dev->flags); 2905 set_bit(R5_LOCKED, &dev->flags); 2906 clear_bit(R5_UPTODATE, &dev->flags); 2907 s->locked++; 2908 } 2909 } 2910 if (!s->locked) 2911 /* False alarm - nothing to do */ 2912 return; 2913 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2914 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2915 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2916 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2917 } 2918 2919 /* keep the parity disk(s) locked while asynchronous operations 2920 * are in flight 2921 */ 2922 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2923 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2924 s->locked++; 2925 2926 if (level == 6) { 2927 int qd_idx = sh->qd_idx; 2928 struct r5dev *dev = &sh->dev[qd_idx]; 2929 2930 set_bit(R5_LOCKED, &dev->flags); 2931 clear_bit(R5_UPTODATE, &dev->flags); 2932 s->locked++; 2933 } 2934 2935 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2936 __func__, (unsigned long long)sh->sector, 2937 s->locked, s->ops_request); 2938 } 2939 2940 /* 2941 * Each stripe/dev can have one or more bion attached. 2942 * toread/towrite point to the first in a chain. 2943 * The bi_next chain must be in order. 2944 */ 2945 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 2946 int forwrite, int previous) 2947 { 2948 struct bio **bip; 2949 struct r5conf *conf = sh->raid_conf; 2950 int firstwrite=0; 2951 2952 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2953 (unsigned long long)bi->bi_iter.bi_sector, 2954 (unsigned long long)sh->sector); 2955 2956 /* 2957 * If several bio share a stripe. The bio bi_phys_segments acts as a 2958 * reference count to avoid race. The reference count should already be 2959 * increased before this function is called (for example, in 2960 * make_request()), so other bio sharing this stripe will not free the 2961 * stripe. If a stripe is owned by one stripe, the stripe lock will 2962 * protect it. 2963 */ 2964 spin_lock_irq(&sh->stripe_lock); 2965 /* Don't allow new IO added to stripes in batch list */ 2966 if (sh->batch_head) 2967 goto overlap; 2968 if (forwrite) { 2969 bip = &sh->dev[dd_idx].towrite; 2970 if (*bip == NULL) 2971 firstwrite = 1; 2972 } else 2973 bip = &sh->dev[dd_idx].toread; 2974 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2975 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2976 goto overlap; 2977 bip = & (*bip)->bi_next; 2978 } 2979 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2980 goto overlap; 2981 2982 if (!forwrite || previous) 2983 clear_bit(STRIPE_BATCH_READY, &sh->state); 2984 2985 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2986 if (*bip) 2987 bi->bi_next = *bip; 2988 *bip = bi; 2989 raid5_inc_bi_active_stripes(bi); 2990 2991 if (forwrite) { 2992 /* check if page is covered */ 2993 sector_t sector = sh->dev[dd_idx].sector; 2994 for (bi=sh->dev[dd_idx].towrite; 2995 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2996 bi && bi->bi_iter.bi_sector <= sector; 2997 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2998 if (bio_end_sector(bi) >= sector) 2999 sector = bio_end_sector(bi); 3000 } 3001 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3002 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3003 sh->overwrite_disks++; 3004 } 3005 3006 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3007 (unsigned long long)(*bip)->bi_iter.bi_sector, 3008 (unsigned long long)sh->sector, dd_idx); 3009 3010 if (conf->mddev->bitmap && firstwrite) { 3011 /* Cannot hold spinlock over bitmap_startwrite, 3012 * but must ensure this isn't added to a batch until 3013 * we have added to the bitmap and set bm_seq. 3014 * So set STRIPE_BITMAP_PENDING to prevent 3015 * batching. 3016 * If multiple add_stripe_bio() calls race here they 3017 * much all set STRIPE_BITMAP_PENDING. So only the first one 3018 * to complete "bitmap_startwrite" gets to set 3019 * STRIPE_BIT_DELAY. This is important as once a stripe 3020 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3021 * any more. 3022 */ 3023 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3024 spin_unlock_irq(&sh->stripe_lock); 3025 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3026 STRIPE_SECTORS, 0); 3027 spin_lock_irq(&sh->stripe_lock); 3028 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3029 if (!sh->batch_head) { 3030 sh->bm_seq = conf->seq_flush+1; 3031 set_bit(STRIPE_BIT_DELAY, &sh->state); 3032 } 3033 } 3034 spin_unlock_irq(&sh->stripe_lock); 3035 3036 if (stripe_can_batch(sh)) 3037 stripe_add_to_batch_list(conf, sh); 3038 return 1; 3039 3040 overlap: 3041 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3042 spin_unlock_irq(&sh->stripe_lock); 3043 return 0; 3044 } 3045 3046 static void end_reshape(struct r5conf *conf); 3047 3048 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3049 struct stripe_head *sh) 3050 { 3051 int sectors_per_chunk = 3052 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3053 int dd_idx; 3054 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3055 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3056 3057 raid5_compute_sector(conf, 3058 stripe * (disks - conf->max_degraded) 3059 *sectors_per_chunk + chunk_offset, 3060 previous, 3061 &dd_idx, sh); 3062 } 3063 3064 static void 3065 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3066 struct stripe_head_state *s, int disks, 3067 struct bio_list *return_bi) 3068 { 3069 int i; 3070 BUG_ON(sh->batch_head); 3071 for (i = disks; i--; ) { 3072 struct bio *bi; 3073 int bitmap_end = 0; 3074 3075 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3076 struct md_rdev *rdev; 3077 rcu_read_lock(); 3078 rdev = rcu_dereference(conf->disks[i].rdev); 3079 if (rdev && test_bit(In_sync, &rdev->flags)) 3080 atomic_inc(&rdev->nr_pending); 3081 else 3082 rdev = NULL; 3083 rcu_read_unlock(); 3084 if (rdev) { 3085 if (!rdev_set_badblocks( 3086 rdev, 3087 sh->sector, 3088 STRIPE_SECTORS, 0)) 3089 md_error(conf->mddev, rdev); 3090 rdev_dec_pending(rdev, conf->mddev); 3091 } 3092 } 3093 spin_lock_irq(&sh->stripe_lock); 3094 /* fail all writes first */ 3095 bi = sh->dev[i].towrite; 3096 sh->dev[i].towrite = NULL; 3097 sh->overwrite_disks = 0; 3098 spin_unlock_irq(&sh->stripe_lock); 3099 if (bi) 3100 bitmap_end = 1; 3101 3102 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3103 wake_up(&conf->wait_for_overlap); 3104 3105 while (bi && bi->bi_iter.bi_sector < 3106 sh->dev[i].sector + STRIPE_SECTORS) { 3107 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3108 3109 bi->bi_error = -EIO; 3110 if (!raid5_dec_bi_active_stripes(bi)) { 3111 md_write_end(conf->mddev); 3112 bio_list_add(return_bi, bi); 3113 } 3114 bi = nextbi; 3115 } 3116 if (bitmap_end) 3117 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3118 STRIPE_SECTORS, 0, 0); 3119 bitmap_end = 0; 3120 /* and fail all 'written' */ 3121 bi = sh->dev[i].written; 3122 sh->dev[i].written = NULL; 3123 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3124 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3125 sh->dev[i].page = sh->dev[i].orig_page; 3126 } 3127 3128 if (bi) bitmap_end = 1; 3129 while (bi && bi->bi_iter.bi_sector < 3130 sh->dev[i].sector + STRIPE_SECTORS) { 3131 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3132 3133 bi->bi_error = -EIO; 3134 if (!raid5_dec_bi_active_stripes(bi)) { 3135 md_write_end(conf->mddev); 3136 bio_list_add(return_bi, bi); 3137 } 3138 bi = bi2; 3139 } 3140 3141 /* fail any reads if this device is non-operational and 3142 * the data has not reached the cache yet. 3143 */ 3144 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3145 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3146 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3147 spin_lock_irq(&sh->stripe_lock); 3148 bi = sh->dev[i].toread; 3149 sh->dev[i].toread = NULL; 3150 spin_unlock_irq(&sh->stripe_lock); 3151 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3152 wake_up(&conf->wait_for_overlap); 3153 while (bi && bi->bi_iter.bi_sector < 3154 sh->dev[i].sector + STRIPE_SECTORS) { 3155 struct bio *nextbi = 3156 r5_next_bio(bi, sh->dev[i].sector); 3157 3158 bi->bi_error = -EIO; 3159 if (!raid5_dec_bi_active_stripes(bi)) 3160 bio_list_add(return_bi, bi); 3161 bi = nextbi; 3162 } 3163 } 3164 if (bitmap_end) 3165 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3166 STRIPE_SECTORS, 0, 0); 3167 /* If we were in the middle of a write the parity block might 3168 * still be locked - so just clear all R5_LOCKED flags 3169 */ 3170 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3171 } 3172 3173 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3174 if (atomic_dec_and_test(&conf->pending_full_writes)) 3175 md_wakeup_thread(conf->mddev->thread); 3176 } 3177 3178 static void 3179 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3180 struct stripe_head_state *s) 3181 { 3182 int abort = 0; 3183 int i; 3184 3185 BUG_ON(sh->batch_head); 3186 clear_bit(STRIPE_SYNCING, &sh->state); 3187 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3188 wake_up(&conf->wait_for_overlap); 3189 s->syncing = 0; 3190 s->replacing = 0; 3191 /* There is nothing more to do for sync/check/repair. 3192 * Don't even need to abort as that is handled elsewhere 3193 * if needed, and not always wanted e.g. if there is a known 3194 * bad block here. 3195 * For recover/replace we need to record a bad block on all 3196 * non-sync devices, or abort the recovery 3197 */ 3198 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3199 /* During recovery devices cannot be removed, so 3200 * locking and refcounting of rdevs is not needed 3201 */ 3202 for (i = 0; i < conf->raid_disks; i++) { 3203 struct md_rdev *rdev = conf->disks[i].rdev; 3204 if (rdev 3205 && !test_bit(Faulty, &rdev->flags) 3206 && !test_bit(In_sync, &rdev->flags) 3207 && !rdev_set_badblocks(rdev, sh->sector, 3208 STRIPE_SECTORS, 0)) 3209 abort = 1; 3210 rdev = conf->disks[i].replacement; 3211 if (rdev 3212 && !test_bit(Faulty, &rdev->flags) 3213 && !test_bit(In_sync, &rdev->flags) 3214 && !rdev_set_badblocks(rdev, sh->sector, 3215 STRIPE_SECTORS, 0)) 3216 abort = 1; 3217 } 3218 if (abort) 3219 conf->recovery_disabled = 3220 conf->mddev->recovery_disabled; 3221 } 3222 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3223 } 3224 3225 static int want_replace(struct stripe_head *sh, int disk_idx) 3226 { 3227 struct md_rdev *rdev; 3228 int rv = 0; 3229 /* Doing recovery so rcu locking not required */ 3230 rdev = sh->raid_conf->disks[disk_idx].replacement; 3231 if (rdev 3232 && !test_bit(Faulty, &rdev->flags) 3233 && !test_bit(In_sync, &rdev->flags) 3234 && (rdev->recovery_offset <= sh->sector 3235 || rdev->mddev->recovery_cp <= sh->sector)) 3236 rv = 1; 3237 3238 return rv; 3239 } 3240 3241 /* fetch_block - checks the given member device to see if its data needs 3242 * to be read or computed to satisfy a request. 3243 * 3244 * Returns 1 when no more member devices need to be checked, otherwise returns 3245 * 0 to tell the loop in handle_stripe_fill to continue 3246 */ 3247 3248 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3249 int disk_idx, int disks) 3250 { 3251 struct r5dev *dev = &sh->dev[disk_idx]; 3252 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3253 &sh->dev[s->failed_num[1]] }; 3254 int i; 3255 3256 3257 if (test_bit(R5_LOCKED, &dev->flags) || 3258 test_bit(R5_UPTODATE, &dev->flags)) 3259 /* No point reading this as we already have it or have 3260 * decided to get it. 3261 */ 3262 return 0; 3263 3264 if (dev->toread || 3265 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3266 /* We need this block to directly satisfy a request */ 3267 return 1; 3268 3269 if (s->syncing || s->expanding || 3270 (s->replacing && want_replace(sh, disk_idx))) 3271 /* When syncing, or expanding we read everything. 3272 * When replacing, we need the replaced block. 3273 */ 3274 return 1; 3275 3276 if ((s->failed >= 1 && fdev[0]->toread) || 3277 (s->failed >= 2 && fdev[1]->toread)) 3278 /* If we want to read from a failed device, then 3279 * we need to actually read every other device. 3280 */ 3281 return 1; 3282 3283 /* Sometimes neither read-modify-write nor reconstruct-write 3284 * cycles can work. In those cases we read every block we 3285 * can. Then the parity-update is certain to have enough to 3286 * work with. 3287 * This can only be a problem when we need to write something, 3288 * and some device has failed. If either of those tests 3289 * fail we need look no further. 3290 */ 3291 if (!s->failed || !s->to_write) 3292 return 0; 3293 3294 if (test_bit(R5_Insync, &dev->flags) && 3295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3296 /* Pre-reads at not permitted until after short delay 3297 * to gather multiple requests. However if this 3298 * device is no Insync, the block could only be be computed 3299 * and there is no need to delay that. 3300 */ 3301 return 0; 3302 3303 for (i = 0; i < s->failed; i++) { 3304 if (fdev[i]->towrite && 3305 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3306 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3307 /* If we have a partial write to a failed 3308 * device, then we will need to reconstruct 3309 * the content of that device, so all other 3310 * devices must be read. 3311 */ 3312 return 1; 3313 } 3314 3315 /* If we are forced to do a reconstruct-write, either because 3316 * the current RAID6 implementation only supports that, or 3317 * or because parity cannot be trusted and we are currently 3318 * recovering it, there is extra need to be careful. 3319 * If one of the devices that we would need to read, because 3320 * it is not being overwritten (and maybe not written at all) 3321 * is missing/faulty, then we need to read everything we can. 3322 */ 3323 if (sh->raid_conf->level != 6 && 3324 sh->sector < sh->raid_conf->mddev->recovery_cp) 3325 /* reconstruct-write isn't being forced */ 3326 return 0; 3327 for (i = 0; i < s->failed; i++) { 3328 if (s->failed_num[i] != sh->pd_idx && 3329 s->failed_num[i] != sh->qd_idx && 3330 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3331 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3332 return 1; 3333 } 3334 3335 return 0; 3336 } 3337 3338 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3339 int disk_idx, int disks) 3340 { 3341 struct r5dev *dev = &sh->dev[disk_idx]; 3342 3343 /* is the data in this block needed, and can we get it? */ 3344 if (need_this_block(sh, s, disk_idx, disks)) { 3345 /* we would like to get this block, possibly by computing it, 3346 * otherwise read it if the backing disk is insync 3347 */ 3348 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3349 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3350 BUG_ON(sh->batch_head); 3351 if ((s->uptodate == disks - 1) && 3352 (s->failed && (disk_idx == s->failed_num[0] || 3353 disk_idx == s->failed_num[1]))) { 3354 /* have disk failed, and we're requested to fetch it; 3355 * do compute it 3356 */ 3357 pr_debug("Computing stripe %llu block %d\n", 3358 (unsigned long long)sh->sector, disk_idx); 3359 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3360 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3361 set_bit(R5_Wantcompute, &dev->flags); 3362 sh->ops.target = disk_idx; 3363 sh->ops.target2 = -1; /* no 2nd target */ 3364 s->req_compute = 1; 3365 /* Careful: from this point on 'uptodate' is in the eye 3366 * of raid_run_ops which services 'compute' operations 3367 * before writes. R5_Wantcompute flags a block that will 3368 * be R5_UPTODATE by the time it is needed for a 3369 * subsequent operation. 3370 */ 3371 s->uptodate++; 3372 return 1; 3373 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3374 /* Computing 2-failure is *very* expensive; only 3375 * do it if failed >= 2 3376 */ 3377 int other; 3378 for (other = disks; other--; ) { 3379 if (other == disk_idx) 3380 continue; 3381 if (!test_bit(R5_UPTODATE, 3382 &sh->dev[other].flags)) 3383 break; 3384 } 3385 BUG_ON(other < 0); 3386 pr_debug("Computing stripe %llu blocks %d,%d\n", 3387 (unsigned long long)sh->sector, 3388 disk_idx, other); 3389 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3390 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3391 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3392 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3393 sh->ops.target = disk_idx; 3394 sh->ops.target2 = other; 3395 s->uptodate += 2; 3396 s->req_compute = 1; 3397 return 1; 3398 } else if (test_bit(R5_Insync, &dev->flags)) { 3399 set_bit(R5_LOCKED, &dev->flags); 3400 set_bit(R5_Wantread, &dev->flags); 3401 s->locked++; 3402 pr_debug("Reading block %d (sync=%d)\n", 3403 disk_idx, s->syncing); 3404 } 3405 } 3406 3407 return 0; 3408 } 3409 3410 /** 3411 * handle_stripe_fill - read or compute data to satisfy pending requests. 3412 */ 3413 static void handle_stripe_fill(struct stripe_head *sh, 3414 struct stripe_head_state *s, 3415 int disks) 3416 { 3417 int i; 3418 3419 /* look for blocks to read/compute, skip this if a compute 3420 * is already in flight, or if the stripe contents are in the 3421 * midst of changing due to a write 3422 */ 3423 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3424 !sh->reconstruct_state) 3425 for (i = disks; i--; ) 3426 if (fetch_block(sh, s, i, disks)) 3427 break; 3428 set_bit(STRIPE_HANDLE, &sh->state); 3429 } 3430 3431 static void break_stripe_batch_list(struct stripe_head *head_sh, 3432 unsigned long handle_flags); 3433 /* handle_stripe_clean_event 3434 * any written block on an uptodate or failed drive can be returned. 3435 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3436 * never LOCKED, so we don't need to test 'failed' directly. 3437 */ 3438 static void handle_stripe_clean_event(struct r5conf *conf, 3439 struct stripe_head *sh, int disks, struct bio_list *return_bi) 3440 { 3441 int i; 3442 struct r5dev *dev; 3443 int discard_pending = 0; 3444 struct stripe_head *head_sh = sh; 3445 bool do_endio = false; 3446 3447 for (i = disks; i--; ) 3448 if (sh->dev[i].written) { 3449 dev = &sh->dev[i]; 3450 if (!test_bit(R5_LOCKED, &dev->flags) && 3451 (test_bit(R5_UPTODATE, &dev->flags) || 3452 test_bit(R5_Discard, &dev->flags) || 3453 test_bit(R5_SkipCopy, &dev->flags))) { 3454 /* We can return any write requests */ 3455 struct bio *wbi, *wbi2; 3456 pr_debug("Return write for disc %d\n", i); 3457 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3458 clear_bit(R5_UPTODATE, &dev->flags); 3459 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3460 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3461 } 3462 do_endio = true; 3463 3464 returnbi: 3465 dev->page = dev->orig_page; 3466 wbi = dev->written; 3467 dev->written = NULL; 3468 while (wbi && wbi->bi_iter.bi_sector < 3469 dev->sector + STRIPE_SECTORS) { 3470 wbi2 = r5_next_bio(wbi, dev->sector); 3471 if (!raid5_dec_bi_active_stripes(wbi)) { 3472 md_write_end(conf->mddev); 3473 bio_list_add(return_bi, wbi); 3474 } 3475 wbi = wbi2; 3476 } 3477 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3478 STRIPE_SECTORS, 3479 !test_bit(STRIPE_DEGRADED, &sh->state), 3480 0); 3481 if (head_sh->batch_head) { 3482 sh = list_first_entry(&sh->batch_list, 3483 struct stripe_head, 3484 batch_list); 3485 if (sh != head_sh) { 3486 dev = &sh->dev[i]; 3487 goto returnbi; 3488 } 3489 } 3490 sh = head_sh; 3491 dev = &sh->dev[i]; 3492 } else if (test_bit(R5_Discard, &dev->flags)) 3493 discard_pending = 1; 3494 WARN_ON(test_bit(R5_SkipCopy, &dev->flags)); 3495 WARN_ON(dev->page != dev->orig_page); 3496 } 3497 if (!discard_pending && 3498 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3499 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3500 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3501 if (sh->qd_idx >= 0) { 3502 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3503 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3504 } 3505 /* now that discard is done we can proceed with any sync */ 3506 clear_bit(STRIPE_DISCARD, &sh->state); 3507 /* 3508 * SCSI discard will change some bio fields and the stripe has 3509 * no updated data, so remove it from hash list and the stripe 3510 * will be reinitialized 3511 */ 3512 spin_lock_irq(&conf->device_lock); 3513 unhash: 3514 remove_hash(sh); 3515 if (head_sh->batch_head) { 3516 sh = list_first_entry(&sh->batch_list, 3517 struct stripe_head, batch_list); 3518 if (sh != head_sh) 3519 goto unhash; 3520 } 3521 spin_unlock_irq(&conf->device_lock); 3522 sh = head_sh; 3523 3524 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3525 set_bit(STRIPE_HANDLE, &sh->state); 3526 3527 } 3528 3529 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3530 if (atomic_dec_and_test(&conf->pending_full_writes)) 3531 md_wakeup_thread(conf->mddev->thread); 3532 3533 if (head_sh->batch_head && do_endio) 3534 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3535 } 3536 3537 static void handle_stripe_dirtying(struct r5conf *conf, 3538 struct stripe_head *sh, 3539 struct stripe_head_state *s, 3540 int disks) 3541 { 3542 int rmw = 0, rcw = 0, i; 3543 sector_t recovery_cp = conf->mddev->recovery_cp; 3544 3545 /* Check whether resync is now happening or should start. 3546 * If yes, then the array is dirty (after unclean shutdown or 3547 * initial creation), so parity in some stripes might be inconsistent. 3548 * In this case, we need to always do reconstruct-write, to ensure 3549 * that in case of drive failure or read-error correction, we 3550 * generate correct data from the parity. 3551 */ 3552 if (conf->rmw_level == PARITY_DISABLE_RMW || 3553 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3554 s->failed == 0)) { 3555 /* Calculate the real rcw later - for now make it 3556 * look like rcw is cheaper 3557 */ 3558 rcw = 1; rmw = 2; 3559 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3560 conf->rmw_level, (unsigned long long)recovery_cp, 3561 (unsigned long long)sh->sector); 3562 } else for (i = disks; i--; ) { 3563 /* would I have to read this buffer for read_modify_write */ 3564 struct r5dev *dev = &sh->dev[i]; 3565 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3566 !test_bit(R5_LOCKED, &dev->flags) && 3567 !(test_bit(R5_UPTODATE, &dev->flags) || 3568 test_bit(R5_Wantcompute, &dev->flags))) { 3569 if (test_bit(R5_Insync, &dev->flags)) 3570 rmw++; 3571 else 3572 rmw += 2*disks; /* cannot read it */ 3573 } 3574 /* Would I have to read this buffer for reconstruct_write */ 3575 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3576 i != sh->pd_idx && i != sh->qd_idx && 3577 !test_bit(R5_LOCKED, &dev->flags) && 3578 !(test_bit(R5_UPTODATE, &dev->flags) || 3579 test_bit(R5_Wantcompute, &dev->flags))) { 3580 if (test_bit(R5_Insync, &dev->flags)) 3581 rcw++; 3582 else 3583 rcw += 2*disks; 3584 } 3585 } 3586 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3587 (unsigned long long)sh->sector, rmw, rcw); 3588 set_bit(STRIPE_HANDLE, &sh->state); 3589 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) { 3590 /* prefer read-modify-write, but need to get some data */ 3591 if (conf->mddev->queue) 3592 blk_add_trace_msg(conf->mddev->queue, 3593 "raid5 rmw %llu %d", 3594 (unsigned long long)sh->sector, rmw); 3595 for (i = disks; i--; ) { 3596 struct r5dev *dev = &sh->dev[i]; 3597 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3598 !test_bit(R5_LOCKED, &dev->flags) && 3599 !(test_bit(R5_UPTODATE, &dev->flags) || 3600 test_bit(R5_Wantcompute, &dev->flags)) && 3601 test_bit(R5_Insync, &dev->flags)) { 3602 if (test_bit(STRIPE_PREREAD_ACTIVE, 3603 &sh->state)) { 3604 pr_debug("Read_old block %d for r-m-w\n", 3605 i); 3606 set_bit(R5_LOCKED, &dev->flags); 3607 set_bit(R5_Wantread, &dev->flags); 3608 s->locked++; 3609 } else { 3610 set_bit(STRIPE_DELAYED, &sh->state); 3611 set_bit(STRIPE_HANDLE, &sh->state); 3612 } 3613 } 3614 } 3615 } 3616 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) { 3617 /* want reconstruct write, but need to get some data */ 3618 int qread =0; 3619 rcw = 0; 3620 for (i = disks; i--; ) { 3621 struct r5dev *dev = &sh->dev[i]; 3622 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3623 i != sh->pd_idx && i != sh->qd_idx && 3624 !test_bit(R5_LOCKED, &dev->flags) && 3625 !(test_bit(R5_UPTODATE, &dev->flags) || 3626 test_bit(R5_Wantcompute, &dev->flags))) { 3627 rcw++; 3628 if (test_bit(R5_Insync, &dev->flags) && 3629 test_bit(STRIPE_PREREAD_ACTIVE, 3630 &sh->state)) { 3631 pr_debug("Read_old block " 3632 "%d for Reconstruct\n", i); 3633 set_bit(R5_LOCKED, &dev->flags); 3634 set_bit(R5_Wantread, &dev->flags); 3635 s->locked++; 3636 qread++; 3637 } else { 3638 set_bit(STRIPE_DELAYED, &sh->state); 3639 set_bit(STRIPE_HANDLE, &sh->state); 3640 } 3641 } 3642 } 3643 if (rcw && conf->mddev->queue) 3644 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3645 (unsigned long long)sh->sector, 3646 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3647 } 3648 3649 if (rcw > disks && rmw > disks && 3650 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3651 set_bit(STRIPE_DELAYED, &sh->state); 3652 3653 /* now if nothing is locked, and if we have enough data, 3654 * we can start a write request 3655 */ 3656 /* since handle_stripe can be called at any time we need to handle the 3657 * case where a compute block operation has been submitted and then a 3658 * subsequent call wants to start a write request. raid_run_ops only 3659 * handles the case where compute block and reconstruct are requested 3660 * simultaneously. If this is not the case then new writes need to be 3661 * held off until the compute completes. 3662 */ 3663 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3664 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3665 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3666 schedule_reconstruction(sh, s, rcw == 0, 0); 3667 } 3668 3669 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3670 struct stripe_head_state *s, int disks) 3671 { 3672 struct r5dev *dev = NULL; 3673 3674 BUG_ON(sh->batch_head); 3675 set_bit(STRIPE_HANDLE, &sh->state); 3676 3677 switch (sh->check_state) { 3678 case check_state_idle: 3679 /* start a new check operation if there are no failures */ 3680 if (s->failed == 0) { 3681 BUG_ON(s->uptodate != disks); 3682 sh->check_state = check_state_run; 3683 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3684 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3685 s->uptodate--; 3686 break; 3687 } 3688 dev = &sh->dev[s->failed_num[0]]; 3689 /* fall through */ 3690 case check_state_compute_result: 3691 sh->check_state = check_state_idle; 3692 if (!dev) 3693 dev = &sh->dev[sh->pd_idx]; 3694 3695 /* check that a write has not made the stripe insync */ 3696 if (test_bit(STRIPE_INSYNC, &sh->state)) 3697 break; 3698 3699 /* either failed parity check, or recovery is happening */ 3700 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3701 BUG_ON(s->uptodate != disks); 3702 3703 set_bit(R5_LOCKED, &dev->flags); 3704 s->locked++; 3705 set_bit(R5_Wantwrite, &dev->flags); 3706 3707 clear_bit(STRIPE_DEGRADED, &sh->state); 3708 set_bit(STRIPE_INSYNC, &sh->state); 3709 break; 3710 case check_state_run: 3711 break; /* we will be called again upon completion */ 3712 case check_state_check_result: 3713 sh->check_state = check_state_idle; 3714 3715 /* if a failure occurred during the check operation, leave 3716 * STRIPE_INSYNC not set and let the stripe be handled again 3717 */ 3718 if (s->failed) 3719 break; 3720 3721 /* handle a successful check operation, if parity is correct 3722 * we are done. Otherwise update the mismatch count and repair 3723 * parity if !MD_RECOVERY_CHECK 3724 */ 3725 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3726 /* parity is correct (on disc, 3727 * not in buffer any more) 3728 */ 3729 set_bit(STRIPE_INSYNC, &sh->state); 3730 else { 3731 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3732 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3733 /* don't try to repair!! */ 3734 set_bit(STRIPE_INSYNC, &sh->state); 3735 else { 3736 sh->check_state = check_state_compute_run; 3737 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3738 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3739 set_bit(R5_Wantcompute, 3740 &sh->dev[sh->pd_idx].flags); 3741 sh->ops.target = sh->pd_idx; 3742 sh->ops.target2 = -1; 3743 s->uptodate++; 3744 } 3745 } 3746 break; 3747 case check_state_compute_run: 3748 break; 3749 default: 3750 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3751 __func__, sh->check_state, 3752 (unsigned long long) sh->sector); 3753 BUG(); 3754 } 3755 } 3756 3757 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3758 struct stripe_head_state *s, 3759 int disks) 3760 { 3761 int pd_idx = sh->pd_idx; 3762 int qd_idx = sh->qd_idx; 3763 struct r5dev *dev; 3764 3765 BUG_ON(sh->batch_head); 3766 set_bit(STRIPE_HANDLE, &sh->state); 3767 3768 BUG_ON(s->failed > 2); 3769 3770 /* Want to check and possibly repair P and Q. 3771 * However there could be one 'failed' device, in which 3772 * case we can only check one of them, possibly using the 3773 * other to generate missing data 3774 */ 3775 3776 switch (sh->check_state) { 3777 case check_state_idle: 3778 /* start a new check operation if there are < 2 failures */ 3779 if (s->failed == s->q_failed) { 3780 /* The only possible failed device holds Q, so it 3781 * makes sense to check P (If anything else were failed, 3782 * we would have used P to recreate it). 3783 */ 3784 sh->check_state = check_state_run; 3785 } 3786 if (!s->q_failed && s->failed < 2) { 3787 /* Q is not failed, and we didn't use it to generate 3788 * anything, so it makes sense to check it 3789 */ 3790 if (sh->check_state == check_state_run) 3791 sh->check_state = check_state_run_pq; 3792 else 3793 sh->check_state = check_state_run_q; 3794 } 3795 3796 /* discard potentially stale zero_sum_result */ 3797 sh->ops.zero_sum_result = 0; 3798 3799 if (sh->check_state == check_state_run) { 3800 /* async_xor_zero_sum destroys the contents of P */ 3801 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3802 s->uptodate--; 3803 } 3804 if (sh->check_state >= check_state_run && 3805 sh->check_state <= check_state_run_pq) { 3806 /* async_syndrome_zero_sum preserves P and Q, so 3807 * no need to mark them !uptodate here 3808 */ 3809 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3810 break; 3811 } 3812 3813 /* we have 2-disk failure */ 3814 BUG_ON(s->failed != 2); 3815 /* fall through */ 3816 case check_state_compute_result: 3817 sh->check_state = check_state_idle; 3818 3819 /* check that a write has not made the stripe insync */ 3820 if (test_bit(STRIPE_INSYNC, &sh->state)) 3821 break; 3822 3823 /* now write out any block on a failed drive, 3824 * or P or Q if they were recomputed 3825 */ 3826 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3827 if (s->failed == 2) { 3828 dev = &sh->dev[s->failed_num[1]]; 3829 s->locked++; 3830 set_bit(R5_LOCKED, &dev->flags); 3831 set_bit(R5_Wantwrite, &dev->flags); 3832 } 3833 if (s->failed >= 1) { 3834 dev = &sh->dev[s->failed_num[0]]; 3835 s->locked++; 3836 set_bit(R5_LOCKED, &dev->flags); 3837 set_bit(R5_Wantwrite, &dev->flags); 3838 } 3839 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3840 dev = &sh->dev[pd_idx]; 3841 s->locked++; 3842 set_bit(R5_LOCKED, &dev->flags); 3843 set_bit(R5_Wantwrite, &dev->flags); 3844 } 3845 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3846 dev = &sh->dev[qd_idx]; 3847 s->locked++; 3848 set_bit(R5_LOCKED, &dev->flags); 3849 set_bit(R5_Wantwrite, &dev->flags); 3850 } 3851 clear_bit(STRIPE_DEGRADED, &sh->state); 3852 3853 set_bit(STRIPE_INSYNC, &sh->state); 3854 break; 3855 case check_state_run: 3856 case check_state_run_q: 3857 case check_state_run_pq: 3858 break; /* we will be called again upon completion */ 3859 case check_state_check_result: 3860 sh->check_state = check_state_idle; 3861 3862 /* handle a successful check operation, if parity is correct 3863 * we are done. Otherwise update the mismatch count and repair 3864 * parity if !MD_RECOVERY_CHECK 3865 */ 3866 if (sh->ops.zero_sum_result == 0) { 3867 /* both parities are correct */ 3868 if (!s->failed) 3869 set_bit(STRIPE_INSYNC, &sh->state); 3870 else { 3871 /* in contrast to the raid5 case we can validate 3872 * parity, but still have a failure to write 3873 * back 3874 */ 3875 sh->check_state = check_state_compute_result; 3876 /* Returning at this point means that we may go 3877 * off and bring p and/or q uptodate again so 3878 * we make sure to check zero_sum_result again 3879 * to verify if p or q need writeback 3880 */ 3881 } 3882 } else { 3883 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3884 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3885 /* don't try to repair!! */ 3886 set_bit(STRIPE_INSYNC, &sh->state); 3887 else { 3888 int *target = &sh->ops.target; 3889 3890 sh->ops.target = -1; 3891 sh->ops.target2 = -1; 3892 sh->check_state = check_state_compute_run; 3893 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3894 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3895 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3896 set_bit(R5_Wantcompute, 3897 &sh->dev[pd_idx].flags); 3898 *target = pd_idx; 3899 target = &sh->ops.target2; 3900 s->uptodate++; 3901 } 3902 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3903 set_bit(R5_Wantcompute, 3904 &sh->dev[qd_idx].flags); 3905 *target = qd_idx; 3906 s->uptodate++; 3907 } 3908 } 3909 } 3910 break; 3911 case check_state_compute_run: 3912 break; 3913 default: 3914 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3915 __func__, sh->check_state, 3916 (unsigned long long) sh->sector); 3917 BUG(); 3918 } 3919 } 3920 3921 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3922 { 3923 int i; 3924 3925 /* We have read all the blocks in this stripe and now we need to 3926 * copy some of them into a target stripe for expand. 3927 */ 3928 struct dma_async_tx_descriptor *tx = NULL; 3929 BUG_ON(sh->batch_head); 3930 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3931 for (i = 0; i < sh->disks; i++) 3932 if (i != sh->pd_idx && i != sh->qd_idx) { 3933 int dd_idx, j; 3934 struct stripe_head *sh2; 3935 struct async_submit_ctl submit; 3936 3937 sector_t bn = compute_blocknr(sh, i, 1); 3938 sector_t s = raid5_compute_sector(conf, bn, 0, 3939 &dd_idx, NULL); 3940 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3941 if (sh2 == NULL) 3942 /* so far only the early blocks of this stripe 3943 * have been requested. When later blocks 3944 * get requested, we will try again 3945 */ 3946 continue; 3947 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3948 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3949 /* must have already done this block */ 3950 release_stripe(sh2); 3951 continue; 3952 } 3953 3954 /* place all the copies on one channel */ 3955 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3956 tx = async_memcpy(sh2->dev[dd_idx].page, 3957 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3958 &submit); 3959 3960 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3961 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3962 for (j = 0; j < conf->raid_disks; j++) 3963 if (j != sh2->pd_idx && 3964 j != sh2->qd_idx && 3965 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3966 break; 3967 if (j == conf->raid_disks) { 3968 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3969 set_bit(STRIPE_HANDLE, &sh2->state); 3970 } 3971 release_stripe(sh2); 3972 3973 } 3974 /* done submitting copies, wait for them to complete */ 3975 async_tx_quiesce(&tx); 3976 } 3977 3978 /* 3979 * handle_stripe - do things to a stripe. 3980 * 3981 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3982 * state of various bits to see what needs to be done. 3983 * Possible results: 3984 * return some read requests which now have data 3985 * return some write requests which are safely on storage 3986 * schedule a read on some buffers 3987 * schedule a write of some buffers 3988 * return confirmation of parity correctness 3989 * 3990 */ 3991 3992 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3993 { 3994 struct r5conf *conf = sh->raid_conf; 3995 int disks = sh->disks; 3996 struct r5dev *dev; 3997 int i; 3998 int do_recovery = 0; 3999 4000 memset(s, 0, sizeof(*s)); 4001 4002 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4003 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4004 s->failed_num[0] = -1; 4005 s->failed_num[1] = -1; 4006 4007 /* Now to look around and see what can be done */ 4008 rcu_read_lock(); 4009 for (i=disks; i--; ) { 4010 struct md_rdev *rdev; 4011 sector_t first_bad; 4012 int bad_sectors; 4013 int is_bad = 0; 4014 4015 dev = &sh->dev[i]; 4016 4017 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4018 i, dev->flags, 4019 dev->toread, dev->towrite, dev->written); 4020 /* maybe we can reply to a read 4021 * 4022 * new wantfill requests are only permitted while 4023 * ops_complete_biofill is guaranteed to be inactive 4024 */ 4025 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4026 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4027 set_bit(R5_Wantfill, &dev->flags); 4028 4029 /* now count some things */ 4030 if (test_bit(R5_LOCKED, &dev->flags)) 4031 s->locked++; 4032 if (test_bit(R5_UPTODATE, &dev->flags)) 4033 s->uptodate++; 4034 if (test_bit(R5_Wantcompute, &dev->flags)) { 4035 s->compute++; 4036 BUG_ON(s->compute > 2); 4037 } 4038 4039 if (test_bit(R5_Wantfill, &dev->flags)) 4040 s->to_fill++; 4041 else if (dev->toread) 4042 s->to_read++; 4043 if (dev->towrite) { 4044 s->to_write++; 4045 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4046 s->non_overwrite++; 4047 } 4048 if (dev->written) 4049 s->written++; 4050 /* Prefer to use the replacement for reads, but only 4051 * if it is recovered enough and has no bad blocks. 4052 */ 4053 rdev = rcu_dereference(conf->disks[i].replacement); 4054 if (rdev && !test_bit(Faulty, &rdev->flags) && 4055 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4056 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4057 &first_bad, &bad_sectors)) 4058 set_bit(R5_ReadRepl, &dev->flags); 4059 else { 4060 if (rdev && !test_bit(Faulty, &rdev->flags)) 4061 set_bit(R5_NeedReplace, &dev->flags); 4062 else 4063 clear_bit(R5_NeedReplace, &dev->flags); 4064 rdev = rcu_dereference(conf->disks[i].rdev); 4065 clear_bit(R5_ReadRepl, &dev->flags); 4066 } 4067 if (rdev && test_bit(Faulty, &rdev->flags)) 4068 rdev = NULL; 4069 if (rdev) { 4070 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4071 &first_bad, &bad_sectors); 4072 if (s->blocked_rdev == NULL 4073 && (test_bit(Blocked, &rdev->flags) 4074 || is_bad < 0)) { 4075 if (is_bad < 0) 4076 set_bit(BlockedBadBlocks, 4077 &rdev->flags); 4078 s->blocked_rdev = rdev; 4079 atomic_inc(&rdev->nr_pending); 4080 } 4081 } 4082 clear_bit(R5_Insync, &dev->flags); 4083 if (!rdev) 4084 /* Not in-sync */; 4085 else if (is_bad) { 4086 /* also not in-sync */ 4087 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4088 test_bit(R5_UPTODATE, &dev->flags)) { 4089 /* treat as in-sync, but with a read error 4090 * which we can now try to correct 4091 */ 4092 set_bit(R5_Insync, &dev->flags); 4093 set_bit(R5_ReadError, &dev->flags); 4094 } 4095 } else if (test_bit(In_sync, &rdev->flags)) 4096 set_bit(R5_Insync, &dev->flags); 4097 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4098 /* in sync if before recovery_offset */ 4099 set_bit(R5_Insync, &dev->flags); 4100 else if (test_bit(R5_UPTODATE, &dev->flags) && 4101 test_bit(R5_Expanded, &dev->flags)) 4102 /* If we've reshaped into here, we assume it is Insync. 4103 * We will shortly update recovery_offset to make 4104 * it official. 4105 */ 4106 set_bit(R5_Insync, &dev->flags); 4107 4108 if (test_bit(R5_WriteError, &dev->flags)) { 4109 /* This flag does not apply to '.replacement' 4110 * only to .rdev, so make sure to check that*/ 4111 struct md_rdev *rdev2 = rcu_dereference( 4112 conf->disks[i].rdev); 4113 if (rdev2 == rdev) 4114 clear_bit(R5_Insync, &dev->flags); 4115 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4116 s->handle_bad_blocks = 1; 4117 atomic_inc(&rdev2->nr_pending); 4118 } else 4119 clear_bit(R5_WriteError, &dev->flags); 4120 } 4121 if (test_bit(R5_MadeGood, &dev->flags)) { 4122 /* This flag does not apply to '.replacement' 4123 * only to .rdev, so make sure to check that*/ 4124 struct md_rdev *rdev2 = rcu_dereference( 4125 conf->disks[i].rdev); 4126 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4127 s->handle_bad_blocks = 1; 4128 atomic_inc(&rdev2->nr_pending); 4129 } else 4130 clear_bit(R5_MadeGood, &dev->flags); 4131 } 4132 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4133 struct md_rdev *rdev2 = rcu_dereference( 4134 conf->disks[i].replacement); 4135 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4136 s->handle_bad_blocks = 1; 4137 atomic_inc(&rdev2->nr_pending); 4138 } else 4139 clear_bit(R5_MadeGoodRepl, &dev->flags); 4140 } 4141 if (!test_bit(R5_Insync, &dev->flags)) { 4142 /* The ReadError flag will just be confusing now */ 4143 clear_bit(R5_ReadError, &dev->flags); 4144 clear_bit(R5_ReWrite, &dev->flags); 4145 } 4146 if (test_bit(R5_ReadError, &dev->flags)) 4147 clear_bit(R5_Insync, &dev->flags); 4148 if (!test_bit(R5_Insync, &dev->flags)) { 4149 if (s->failed < 2) 4150 s->failed_num[s->failed] = i; 4151 s->failed++; 4152 if (rdev && !test_bit(Faulty, &rdev->flags)) 4153 do_recovery = 1; 4154 } 4155 } 4156 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4157 /* If there is a failed device being replaced, 4158 * we must be recovering. 4159 * else if we are after recovery_cp, we must be syncing 4160 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4161 * else we can only be replacing 4162 * sync and recovery both need to read all devices, and so 4163 * use the same flag. 4164 */ 4165 if (do_recovery || 4166 sh->sector >= conf->mddev->recovery_cp || 4167 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4168 s->syncing = 1; 4169 else 4170 s->replacing = 1; 4171 } 4172 rcu_read_unlock(); 4173 } 4174 4175 static int clear_batch_ready(struct stripe_head *sh) 4176 { 4177 /* Return '1' if this is a member of batch, or 4178 * '0' if it is a lone stripe or a head which can now be 4179 * handled. 4180 */ 4181 struct stripe_head *tmp; 4182 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4183 return (sh->batch_head && sh->batch_head != sh); 4184 spin_lock(&sh->stripe_lock); 4185 if (!sh->batch_head) { 4186 spin_unlock(&sh->stripe_lock); 4187 return 0; 4188 } 4189 4190 /* 4191 * this stripe could be added to a batch list before we check 4192 * BATCH_READY, skips it 4193 */ 4194 if (sh->batch_head != sh) { 4195 spin_unlock(&sh->stripe_lock); 4196 return 1; 4197 } 4198 spin_lock(&sh->batch_lock); 4199 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4200 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4201 spin_unlock(&sh->batch_lock); 4202 spin_unlock(&sh->stripe_lock); 4203 4204 /* 4205 * BATCH_READY is cleared, no new stripes can be added. 4206 * batch_list can be accessed without lock 4207 */ 4208 return 0; 4209 } 4210 4211 static void break_stripe_batch_list(struct stripe_head *head_sh, 4212 unsigned long handle_flags) 4213 { 4214 struct stripe_head *sh, *next; 4215 int i; 4216 int do_wakeup = 0; 4217 4218 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4219 4220 list_del_init(&sh->batch_list); 4221 4222 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4223 (1 << STRIPE_SYNCING) | 4224 (1 << STRIPE_REPLACED) | 4225 (1 << STRIPE_PREREAD_ACTIVE) | 4226 (1 << STRIPE_DELAYED) | 4227 (1 << STRIPE_BIT_DELAY) | 4228 (1 << STRIPE_FULL_WRITE) | 4229 (1 << STRIPE_BIOFILL_RUN) | 4230 (1 << STRIPE_COMPUTE_RUN) | 4231 (1 << STRIPE_OPS_REQ_PENDING) | 4232 (1 << STRIPE_DISCARD) | 4233 (1 << STRIPE_BATCH_READY) | 4234 (1 << STRIPE_BATCH_ERR) | 4235 (1 << STRIPE_BITMAP_PENDING))); 4236 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4237 (1 << STRIPE_REPLACED))); 4238 4239 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4240 (1 << STRIPE_DEGRADED)), 4241 head_sh->state & (1 << STRIPE_INSYNC)); 4242 4243 sh->check_state = head_sh->check_state; 4244 sh->reconstruct_state = head_sh->reconstruct_state; 4245 for (i = 0; i < sh->disks; i++) { 4246 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4247 do_wakeup = 1; 4248 sh->dev[i].flags = head_sh->dev[i].flags & 4249 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4250 } 4251 spin_lock_irq(&sh->stripe_lock); 4252 sh->batch_head = NULL; 4253 spin_unlock_irq(&sh->stripe_lock); 4254 if (handle_flags == 0 || 4255 sh->state & handle_flags) 4256 set_bit(STRIPE_HANDLE, &sh->state); 4257 release_stripe(sh); 4258 } 4259 spin_lock_irq(&head_sh->stripe_lock); 4260 head_sh->batch_head = NULL; 4261 spin_unlock_irq(&head_sh->stripe_lock); 4262 for (i = 0; i < head_sh->disks; i++) 4263 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4264 do_wakeup = 1; 4265 if (head_sh->state & handle_flags) 4266 set_bit(STRIPE_HANDLE, &head_sh->state); 4267 4268 if (do_wakeup) 4269 wake_up(&head_sh->raid_conf->wait_for_overlap); 4270 } 4271 4272 static void handle_stripe(struct stripe_head *sh) 4273 { 4274 struct stripe_head_state s; 4275 struct r5conf *conf = sh->raid_conf; 4276 int i; 4277 int prexor; 4278 int disks = sh->disks; 4279 struct r5dev *pdev, *qdev; 4280 4281 clear_bit(STRIPE_HANDLE, &sh->state); 4282 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4283 /* already being handled, ensure it gets handled 4284 * again when current action finishes */ 4285 set_bit(STRIPE_HANDLE, &sh->state); 4286 return; 4287 } 4288 4289 if (clear_batch_ready(sh) ) { 4290 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4291 return; 4292 } 4293 4294 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4295 break_stripe_batch_list(sh, 0); 4296 4297 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4298 spin_lock(&sh->stripe_lock); 4299 /* Cannot process 'sync' concurrently with 'discard' */ 4300 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4301 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4302 set_bit(STRIPE_SYNCING, &sh->state); 4303 clear_bit(STRIPE_INSYNC, &sh->state); 4304 clear_bit(STRIPE_REPLACED, &sh->state); 4305 } 4306 spin_unlock(&sh->stripe_lock); 4307 } 4308 clear_bit(STRIPE_DELAYED, &sh->state); 4309 4310 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4311 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4312 (unsigned long long)sh->sector, sh->state, 4313 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4314 sh->check_state, sh->reconstruct_state); 4315 4316 analyse_stripe(sh, &s); 4317 4318 if (s.handle_bad_blocks) { 4319 set_bit(STRIPE_HANDLE, &sh->state); 4320 goto finish; 4321 } 4322 4323 if (unlikely(s.blocked_rdev)) { 4324 if (s.syncing || s.expanding || s.expanded || 4325 s.replacing || s.to_write || s.written) { 4326 set_bit(STRIPE_HANDLE, &sh->state); 4327 goto finish; 4328 } 4329 /* There is nothing for the blocked_rdev to block */ 4330 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4331 s.blocked_rdev = NULL; 4332 } 4333 4334 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4335 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4336 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4337 } 4338 4339 pr_debug("locked=%d uptodate=%d to_read=%d" 4340 " to_write=%d failed=%d failed_num=%d,%d\n", 4341 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4342 s.failed_num[0], s.failed_num[1]); 4343 /* check if the array has lost more than max_degraded devices and, 4344 * if so, some requests might need to be failed. 4345 */ 4346 if (s.failed > conf->max_degraded) { 4347 sh->check_state = 0; 4348 sh->reconstruct_state = 0; 4349 break_stripe_batch_list(sh, 0); 4350 if (s.to_read+s.to_write+s.written) 4351 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4352 if (s.syncing + s.replacing) 4353 handle_failed_sync(conf, sh, &s); 4354 } 4355 4356 /* Now we check to see if any write operations have recently 4357 * completed 4358 */ 4359 prexor = 0; 4360 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4361 prexor = 1; 4362 if (sh->reconstruct_state == reconstruct_state_drain_result || 4363 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4364 sh->reconstruct_state = reconstruct_state_idle; 4365 4366 /* All the 'written' buffers and the parity block are ready to 4367 * be written back to disk 4368 */ 4369 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4370 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4371 BUG_ON(sh->qd_idx >= 0 && 4372 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4373 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4374 for (i = disks; i--; ) { 4375 struct r5dev *dev = &sh->dev[i]; 4376 if (test_bit(R5_LOCKED, &dev->flags) && 4377 (i == sh->pd_idx || i == sh->qd_idx || 4378 dev->written)) { 4379 pr_debug("Writing block %d\n", i); 4380 set_bit(R5_Wantwrite, &dev->flags); 4381 if (prexor) 4382 continue; 4383 if (s.failed > 1) 4384 continue; 4385 if (!test_bit(R5_Insync, &dev->flags) || 4386 ((i == sh->pd_idx || i == sh->qd_idx) && 4387 s.failed == 0)) 4388 set_bit(STRIPE_INSYNC, &sh->state); 4389 } 4390 } 4391 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4392 s.dec_preread_active = 1; 4393 } 4394 4395 /* 4396 * might be able to return some write requests if the parity blocks 4397 * are safe, or on a failed drive 4398 */ 4399 pdev = &sh->dev[sh->pd_idx]; 4400 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4401 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4402 qdev = &sh->dev[sh->qd_idx]; 4403 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4404 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4405 || conf->level < 6; 4406 4407 if (s.written && 4408 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4409 && !test_bit(R5_LOCKED, &pdev->flags) 4410 && (test_bit(R5_UPTODATE, &pdev->flags) || 4411 test_bit(R5_Discard, &pdev->flags))))) && 4412 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4413 && !test_bit(R5_LOCKED, &qdev->flags) 4414 && (test_bit(R5_UPTODATE, &qdev->flags) || 4415 test_bit(R5_Discard, &qdev->flags)))))) 4416 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4417 4418 /* Now we might consider reading some blocks, either to check/generate 4419 * parity, or to satisfy requests 4420 * or to load a block that is being partially written. 4421 */ 4422 if (s.to_read || s.non_overwrite 4423 || (conf->level == 6 && s.to_write && s.failed) 4424 || (s.syncing && (s.uptodate + s.compute < disks)) 4425 || s.replacing 4426 || s.expanding) 4427 handle_stripe_fill(sh, &s, disks); 4428 4429 /* Now to consider new write requests and what else, if anything 4430 * should be read. We do not handle new writes when: 4431 * 1/ A 'write' operation (copy+xor) is already in flight. 4432 * 2/ A 'check' operation is in flight, as it may clobber the parity 4433 * block. 4434 */ 4435 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 4436 handle_stripe_dirtying(conf, sh, &s, disks); 4437 4438 /* maybe we need to check and possibly fix the parity for this stripe 4439 * Any reads will already have been scheduled, so we just see if enough 4440 * data is available. The parity check is held off while parity 4441 * dependent operations are in flight. 4442 */ 4443 if (sh->check_state || 4444 (s.syncing && s.locked == 0 && 4445 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4446 !test_bit(STRIPE_INSYNC, &sh->state))) { 4447 if (conf->level == 6) 4448 handle_parity_checks6(conf, sh, &s, disks); 4449 else 4450 handle_parity_checks5(conf, sh, &s, disks); 4451 } 4452 4453 if ((s.replacing || s.syncing) && s.locked == 0 4454 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4455 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4456 /* Write out to replacement devices where possible */ 4457 for (i = 0; i < conf->raid_disks; i++) 4458 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4459 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4460 set_bit(R5_WantReplace, &sh->dev[i].flags); 4461 set_bit(R5_LOCKED, &sh->dev[i].flags); 4462 s.locked++; 4463 } 4464 if (s.replacing) 4465 set_bit(STRIPE_INSYNC, &sh->state); 4466 set_bit(STRIPE_REPLACED, &sh->state); 4467 } 4468 if ((s.syncing || s.replacing) && s.locked == 0 && 4469 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4470 test_bit(STRIPE_INSYNC, &sh->state)) { 4471 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4472 clear_bit(STRIPE_SYNCING, &sh->state); 4473 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4474 wake_up(&conf->wait_for_overlap); 4475 } 4476 4477 /* If the failed drives are just a ReadError, then we might need 4478 * to progress the repair/check process 4479 */ 4480 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4481 for (i = 0; i < s.failed; i++) { 4482 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4483 if (test_bit(R5_ReadError, &dev->flags) 4484 && !test_bit(R5_LOCKED, &dev->flags) 4485 && test_bit(R5_UPTODATE, &dev->flags) 4486 ) { 4487 if (!test_bit(R5_ReWrite, &dev->flags)) { 4488 set_bit(R5_Wantwrite, &dev->flags); 4489 set_bit(R5_ReWrite, &dev->flags); 4490 set_bit(R5_LOCKED, &dev->flags); 4491 s.locked++; 4492 } else { 4493 /* let's read it back */ 4494 set_bit(R5_Wantread, &dev->flags); 4495 set_bit(R5_LOCKED, &dev->flags); 4496 s.locked++; 4497 } 4498 } 4499 } 4500 4501 /* Finish reconstruct operations initiated by the expansion process */ 4502 if (sh->reconstruct_state == reconstruct_state_result) { 4503 struct stripe_head *sh_src 4504 = get_active_stripe(conf, sh->sector, 1, 1, 1); 4505 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4506 /* sh cannot be written until sh_src has been read. 4507 * so arrange for sh to be delayed a little 4508 */ 4509 set_bit(STRIPE_DELAYED, &sh->state); 4510 set_bit(STRIPE_HANDLE, &sh->state); 4511 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4512 &sh_src->state)) 4513 atomic_inc(&conf->preread_active_stripes); 4514 release_stripe(sh_src); 4515 goto finish; 4516 } 4517 if (sh_src) 4518 release_stripe(sh_src); 4519 4520 sh->reconstruct_state = reconstruct_state_idle; 4521 clear_bit(STRIPE_EXPANDING, &sh->state); 4522 for (i = conf->raid_disks; i--; ) { 4523 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4524 set_bit(R5_LOCKED, &sh->dev[i].flags); 4525 s.locked++; 4526 } 4527 } 4528 4529 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4530 !sh->reconstruct_state) { 4531 /* Need to write out all blocks after computing parity */ 4532 sh->disks = conf->raid_disks; 4533 stripe_set_idx(sh->sector, conf, 0, sh); 4534 schedule_reconstruction(sh, &s, 1, 1); 4535 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4536 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4537 atomic_dec(&conf->reshape_stripes); 4538 wake_up(&conf->wait_for_overlap); 4539 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4540 } 4541 4542 if (s.expanding && s.locked == 0 && 4543 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4544 handle_stripe_expansion(conf, sh); 4545 4546 finish: 4547 /* wait for this device to become unblocked */ 4548 if (unlikely(s.blocked_rdev)) { 4549 if (conf->mddev->external) 4550 md_wait_for_blocked_rdev(s.blocked_rdev, 4551 conf->mddev); 4552 else 4553 /* Internal metadata will immediately 4554 * be written by raid5d, so we don't 4555 * need to wait here. 4556 */ 4557 rdev_dec_pending(s.blocked_rdev, 4558 conf->mddev); 4559 } 4560 4561 if (s.handle_bad_blocks) 4562 for (i = disks; i--; ) { 4563 struct md_rdev *rdev; 4564 struct r5dev *dev = &sh->dev[i]; 4565 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4566 /* We own a safe reference to the rdev */ 4567 rdev = conf->disks[i].rdev; 4568 if (!rdev_set_badblocks(rdev, sh->sector, 4569 STRIPE_SECTORS, 0)) 4570 md_error(conf->mddev, rdev); 4571 rdev_dec_pending(rdev, conf->mddev); 4572 } 4573 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4574 rdev = conf->disks[i].rdev; 4575 rdev_clear_badblocks(rdev, sh->sector, 4576 STRIPE_SECTORS, 0); 4577 rdev_dec_pending(rdev, conf->mddev); 4578 } 4579 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4580 rdev = conf->disks[i].replacement; 4581 if (!rdev) 4582 /* rdev have been moved down */ 4583 rdev = conf->disks[i].rdev; 4584 rdev_clear_badblocks(rdev, sh->sector, 4585 STRIPE_SECTORS, 0); 4586 rdev_dec_pending(rdev, conf->mddev); 4587 } 4588 } 4589 4590 if (s.ops_request) 4591 raid_run_ops(sh, s.ops_request); 4592 4593 ops_run_io(sh, &s); 4594 4595 if (s.dec_preread_active) { 4596 /* We delay this until after ops_run_io so that if make_request 4597 * is waiting on a flush, it won't continue until the writes 4598 * have actually been submitted. 4599 */ 4600 atomic_dec(&conf->preread_active_stripes); 4601 if (atomic_read(&conf->preread_active_stripes) < 4602 IO_THRESHOLD) 4603 md_wakeup_thread(conf->mddev->thread); 4604 } 4605 4606 if (!bio_list_empty(&s.return_bi)) { 4607 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) { 4608 spin_lock_irq(&conf->device_lock); 4609 bio_list_merge(&conf->return_bi, &s.return_bi); 4610 spin_unlock_irq(&conf->device_lock); 4611 md_wakeup_thread(conf->mddev->thread); 4612 } else 4613 return_io(&s.return_bi); 4614 } 4615 4616 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4617 } 4618 4619 static void raid5_activate_delayed(struct r5conf *conf) 4620 { 4621 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4622 while (!list_empty(&conf->delayed_list)) { 4623 struct list_head *l = conf->delayed_list.next; 4624 struct stripe_head *sh; 4625 sh = list_entry(l, struct stripe_head, lru); 4626 list_del_init(l); 4627 clear_bit(STRIPE_DELAYED, &sh->state); 4628 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4629 atomic_inc(&conf->preread_active_stripes); 4630 list_add_tail(&sh->lru, &conf->hold_list); 4631 raid5_wakeup_stripe_thread(sh); 4632 } 4633 } 4634 } 4635 4636 static void activate_bit_delay(struct r5conf *conf, 4637 struct list_head *temp_inactive_list) 4638 { 4639 /* device_lock is held */ 4640 struct list_head head; 4641 list_add(&head, &conf->bitmap_list); 4642 list_del_init(&conf->bitmap_list); 4643 while (!list_empty(&head)) { 4644 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4645 int hash; 4646 list_del_init(&sh->lru); 4647 atomic_inc(&sh->count); 4648 hash = sh->hash_lock_index; 4649 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4650 } 4651 } 4652 4653 static int raid5_congested(struct mddev *mddev, int bits) 4654 { 4655 struct r5conf *conf = mddev->private; 4656 4657 /* No difference between reads and writes. Just check 4658 * how busy the stripe_cache is 4659 */ 4660 4661 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4662 return 1; 4663 if (conf->quiesce) 4664 return 1; 4665 if (atomic_read(&conf->empty_inactive_list_nr)) 4666 return 1; 4667 4668 return 0; 4669 } 4670 4671 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4672 { 4673 struct r5conf *conf = mddev->private; 4674 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4675 unsigned int chunk_sectors; 4676 unsigned int bio_sectors = bio_sectors(bio); 4677 4678 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 4679 return chunk_sectors >= 4680 ((sector & (chunk_sectors - 1)) + bio_sectors); 4681 } 4682 4683 /* 4684 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4685 * later sampled by raid5d. 4686 */ 4687 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4688 { 4689 unsigned long flags; 4690 4691 spin_lock_irqsave(&conf->device_lock, flags); 4692 4693 bi->bi_next = conf->retry_read_aligned_list; 4694 conf->retry_read_aligned_list = bi; 4695 4696 spin_unlock_irqrestore(&conf->device_lock, flags); 4697 md_wakeup_thread(conf->mddev->thread); 4698 } 4699 4700 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4701 { 4702 struct bio *bi; 4703 4704 bi = conf->retry_read_aligned; 4705 if (bi) { 4706 conf->retry_read_aligned = NULL; 4707 return bi; 4708 } 4709 bi = conf->retry_read_aligned_list; 4710 if(bi) { 4711 conf->retry_read_aligned_list = bi->bi_next; 4712 bi->bi_next = NULL; 4713 /* 4714 * this sets the active strip count to 1 and the processed 4715 * strip count to zero (upper 8 bits) 4716 */ 4717 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4718 } 4719 4720 return bi; 4721 } 4722 4723 /* 4724 * The "raid5_align_endio" should check if the read succeeded and if it 4725 * did, call bio_endio on the original bio (having bio_put the new bio 4726 * first). 4727 * If the read failed.. 4728 */ 4729 static void raid5_align_endio(struct bio *bi) 4730 { 4731 struct bio* raid_bi = bi->bi_private; 4732 struct mddev *mddev; 4733 struct r5conf *conf; 4734 struct md_rdev *rdev; 4735 int error = bi->bi_error; 4736 4737 bio_put(bi); 4738 4739 rdev = (void*)raid_bi->bi_next; 4740 raid_bi->bi_next = NULL; 4741 mddev = rdev->mddev; 4742 conf = mddev->private; 4743 4744 rdev_dec_pending(rdev, conf->mddev); 4745 4746 if (!error) { 4747 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4748 raid_bi, 0); 4749 bio_endio(raid_bi); 4750 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4751 wake_up(&conf->wait_for_quiescent); 4752 return; 4753 } 4754 4755 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4756 4757 add_bio_to_retry(raid_bi, conf); 4758 } 4759 4760 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 4761 { 4762 struct r5conf *conf = mddev->private; 4763 int dd_idx; 4764 struct bio* align_bi; 4765 struct md_rdev *rdev; 4766 sector_t end_sector; 4767 4768 if (!in_chunk_boundary(mddev, raid_bio)) { 4769 pr_debug("%s: non aligned\n", __func__); 4770 return 0; 4771 } 4772 /* 4773 * use bio_clone_mddev to make a copy of the bio 4774 */ 4775 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4776 if (!align_bi) 4777 return 0; 4778 /* 4779 * set bi_end_io to a new function, and set bi_private to the 4780 * original bio. 4781 */ 4782 align_bi->bi_end_io = raid5_align_endio; 4783 align_bi->bi_private = raid_bio; 4784 /* 4785 * compute position 4786 */ 4787 align_bi->bi_iter.bi_sector = 4788 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4789 0, &dd_idx, NULL); 4790 4791 end_sector = bio_end_sector(align_bi); 4792 rcu_read_lock(); 4793 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4794 if (!rdev || test_bit(Faulty, &rdev->flags) || 4795 rdev->recovery_offset < end_sector) { 4796 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4797 if (rdev && 4798 (test_bit(Faulty, &rdev->flags) || 4799 !(test_bit(In_sync, &rdev->flags) || 4800 rdev->recovery_offset >= end_sector))) 4801 rdev = NULL; 4802 } 4803 if (rdev) { 4804 sector_t first_bad; 4805 int bad_sectors; 4806 4807 atomic_inc(&rdev->nr_pending); 4808 rcu_read_unlock(); 4809 raid_bio->bi_next = (void*)rdev; 4810 align_bi->bi_bdev = rdev->bdev; 4811 bio_clear_flag(align_bi, BIO_SEG_VALID); 4812 4813 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 4814 bio_sectors(align_bi), 4815 &first_bad, &bad_sectors)) { 4816 bio_put(align_bi); 4817 rdev_dec_pending(rdev, mddev); 4818 return 0; 4819 } 4820 4821 /* No reshape active, so we can trust rdev->data_offset */ 4822 align_bi->bi_iter.bi_sector += rdev->data_offset; 4823 4824 spin_lock_irq(&conf->device_lock); 4825 wait_event_lock_irq(conf->wait_for_quiescent, 4826 conf->quiesce == 0, 4827 conf->device_lock); 4828 atomic_inc(&conf->active_aligned_reads); 4829 spin_unlock_irq(&conf->device_lock); 4830 4831 if (mddev->gendisk) 4832 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4833 align_bi, disk_devt(mddev->gendisk), 4834 raid_bio->bi_iter.bi_sector); 4835 generic_make_request(align_bi); 4836 return 1; 4837 } else { 4838 rcu_read_unlock(); 4839 bio_put(align_bi); 4840 return 0; 4841 } 4842 } 4843 4844 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 4845 { 4846 struct bio *split; 4847 4848 do { 4849 sector_t sector = raid_bio->bi_iter.bi_sector; 4850 unsigned chunk_sects = mddev->chunk_sectors; 4851 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 4852 4853 if (sectors < bio_sectors(raid_bio)) { 4854 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); 4855 bio_chain(split, raid_bio); 4856 } else 4857 split = raid_bio; 4858 4859 if (!raid5_read_one_chunk(mddev, split)) { 4860 if (split != raid_bio) 4861 generic_make_request(raid_bio); 4862 return split; 4863 } 4864 } while (split != raid_bio); 4865 4866 return NULL; 4867 } 4868 4869 /* __get_priority_stripe - get the next stripe to process 4870 * 4871 * Full stripe writes are allowed to pass preread active stripes up until 4872 * the bypass_threshold is exceeded. In general the bypass_count 4873 * increments when the handle_list is handled before the hold_list; however, it 4874 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4875 * stripe with in flight i/o. The bypass_count will be reset when the 4876 * head of the hold_list has changed, i.e. the head was promoted to the 4877 * handle_list. 4878 */ 4879 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4880 { 4881 struct stripe_head *sh = NULL, *tmp; 4882 struct list_head *handle_list = NULL; 4883 struct r5worker_group *wg = NULL; 4884 4885 if (conf->worker_cnt_per_group == 0) { 4886 handle_list = &conf->handle_list; 4887 } else if (group != ANY_GROUP) { 4888 handle_list = &conf->worker_groups[group].handle_list; 4889 wg = &conf->worker_groups[group]; 4890 } else { 4891 int i; 4892 for (i = 0; i < conf->group_cnt; i++) { 4893 handle_list = &conf->worker_groups[i].handle_list; 4894 wg = &conf->worker_groups[i]; 4895 if (!list_empty(handle_list)) 4896 break; 4897 } 4898 } 4899 4900 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4901 __func__, 4902 list_empty(handle_list) ? "empty" : "busy", 4903 list_empty(&conf->hold_list) ? "empty" : "busy", 4904 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4905 4906 if (!list_empty(handle_list)) { 4907 sh = list_entry(handle_list->next, typeof(*sh), lru); 4908 4909 if (list_empty(&conf->hold_list)) 4910 conf->bypass_count = 0; 4911 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4912 if (conf->hold_list.next == conf->last_hold) 4913 conf->bypass_count++; 4914 else { 4915 conf->last_hold = conf->hold_list.next; 4916 conf->bypass_count -= conf->bypass_threshold; 4917 if (conf->bypass_count < 0) 4918 conf->bypass_count = 0; 4919 } 4920 } 4921 } else if (!list_empty(&conf->hold_list) && 4922 ((conf->bypass_threshold && 4923 conf->bypass_count > conf->bypass_threshold) || 4924 atomic_read(&conf->pending_full_writes) == 0)) { 4925 4926 list_for_each_entry(tmp, &conf->hold_list, lru) { 4927 if (conf->worker_cnt_per_group == 0 || 4928 group == ANY_GROUP || 4929 !cpu_online(tmp->cpu) || 4930 cpu_to_group(tmp->cpu) == group) { 4931 sh = tmp; 4932 break; 4933 } 4934 } 4935 4936 if (sh) { 4937 conf->bypass_count -= conf->bypass_threshold; 4938 if (conf->bypass_count < 0) 4939 conf->bypass_count = 0; 4940 } 4941 wg = NULL; 4942 } 4943 4944 if (!sh) 4945 return NULL; 4946 4947 if (wg) { 4948 wg->stripes_cnt--; 4949 sh->group = NULL; 4950 } 4951 list_del_init(&sh->lru); 4952 BUG_ON(atomic_inc_return(&sh->count) != 1); 4953 return sh; 4954 } 4955 4956 struct raid5_plug_cb { 4957 struct blk_plug_cb cb; 4958 struct list_head list; 4959 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4960 }; 4961 4962 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4963 { 4964 struct raid5_plug_cb *cb = container_of( 4965 blk_cb, struct raid5_plug_cb, cb); 4966 struct stripe_head *sh; 4967 struct mddev *mddev = cb->cb.data; 4968 struct r5conf *conf = mddev->private; 4969 int cnt = 0; 4970 int hash; 4971 4972 if (cb->list.next && !list_empty(&cb->list)) { 4973 spin_lock_irq(&conf->device_lock); 4974 while (!list_empty(&cb->list)) { 4975 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4976 list_del_init(&sh->lru); 4977 /* 4978 * avoid race release_stripe_plug() sees 4979 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4980 * is still in our list 4981 */ 4982 smp_mb__before_atomic(); 4983 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4984 /* 4985 * STRIPE_ON_RELEASE_LIST could be set here. In that 4986 * case, the count is always > 1 here 4987 */ 4988 hash = sh->hash_lock_index; 4989 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 4990 cnt++; 4991 } 4992 spin_unlock_irq(&conf->device_lock); 4993 } 4994 release_inactive_stripe_list(conf, cb->temp_inactive_list, 4995 NR_STRIPE_HASH_LOCKS); 4996 if (mddev->queue) 4997 trace_block_unplug(mddev->queue, cnt, !from_schedule); 4998 kfree(cb); 4999 } 5000 5001 static void release_stripe_plug(struct mddev *mddev, 5002 struct stripe_head *sh) 5003 { 5004 struct blk_plug_cb *blk_cb = blk_check_plugged( 5005 raid5_unplug, mddev, 5006 sizeof(struct raid5_plug_cb)); 5007 struct raid5_plug_cb *cb; 5008 5009 if (!blk_cb) { 5010 release_stripe(sh); 5011 return; 5012 } 5013 5014 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5015 5016 if (cb->list.next == NULL) { 5017 int i; 5018 INIT_LIST_HEAD(&cb->list); 5019 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5020 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5021 } 5022 5023 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5024 list_add_tail(&sh->lru, &cb->list); 5025 else 5026 release_stripe(sh); 5027 } 5028 5029 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5030 { 5031 struct r5conf *conf = mddev->private; 5032 sector_t logical_sector, last_sector; 5033 struct stripe_head *sh; 5034 int remaining; 5035 int stripe_sectors; 5036 5037 if (mddev->reshape_position != MaxSector) 5038 /* Skip discard while reshape is happening */ 5039 return; 5040 5041 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5042 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5043 5044 bi->bi_next = NULL; 5045 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5046 5047 stripe_sectors = conf->chunk_sectors * 5048 (conf->raid_disks - conf->max_degraded); 5049 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5050 stripe_sectors); 5051 sector_div(last_sector, stripe_sectors); 5052 5053 logical_sector *= conf->chunk_sectors; 5054 last_sector *= conf->chunk_sectors; 5055 5056 for (; logical_sector < last_sector; 5057 logical_sector += STRIPE_SECTORS) { 5058 DEFINE_WAIT(w); 5059 int d; 5060 again: 5061 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 5062 prepare_to_wait(&conf->wait_for_overlap, &w, 5063 TASK_UNINTERRUPTIBLE); 5064 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5065 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5066 release_stripe(sh); 5067 schedule(); 5068 goto again; 5069 } 5070 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5071 spin_lock_irq(&sh->stripe_lock); 5072 for (d = 0; d < conf->raid_disks; d++) { 5073 if (d == sh->pd_idx || d == sh->qd_idx) 5074 continue; 5075 if (sh->dev[d].towrite || sh->dev[d].toread) { 5076 set_bit(R5_Overlap, &sh->dev[d].flags); 5077 spin_unlock_irq(&sh->stripe_lock); 5078 release_stripe(sh); 5079 schedule(); 5080 goto again; 5081 } 5082 } 5083 set_bit(STRIPE_DISCARD, &sh->state); 5084 finish_wait(&conf->wait_for_overlap, &w); 5085 sh->overwrite_disks = 0; 5086 for (d = 0; d < conf->raid_disks; d++) { 5087 if (d == sh->pd_idx || d == sh->qd_idx) 5088 continue; 5089 sh->dev[d].towrite = bi; 5090 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5091 raid5_inc_bi_active_stripes(bi); 5092 sh->overwrite_disks++; 5093 } 5094 spin_unlock_irq(&sh->stripe_lock); 5095 if (conf->mddev->bitmap) { 5096 for (d = 0; 5097 d < conf->raid_disks - conf->max_degraded; 5098 d++) 5099 bitmap_startwrite(mddev->bitmap, 5100 sh->sector, 5101 STRIPE_SECTORS, 5102 0); 5103 sh->bm_seq = conf->seq_flush + 1; 5104 set_bit(STRIPE_BIT_DELAY, &sh->state); 5105 } 5106 5107 set_bit(STRIPE_HANDLE, &sh->state); 5108 clear_bit(STRIPE_DELAYED, &sh->state); 5109 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5110 atomic_inc(&conf->preread_active_stripes); 5111 release_stripe_plug(mddev, sh); 5112 } 5113 5114 remaining = raid5_dec_bi_active_stripes(bi); 5115 if (remaining == 0) { 5116 md_write_end(mddev); 5117 bio_endio(bi); 5118 } 5119 } 5120 5121 static void make_request(struct mddev *mddev, struct bio * bi) 5122 { 5123 struct r5conf *conf = mddev->private; 5124 int dd_idx; 5125 sector_t new_sector; 5126 sector_t logical_sector, last_sector; 5127 struct stripe_head *sh; 5128 const int rw = bio_data_dir(bi); 5129 int remaining; 5130 DEFINE_WAIT(w); 5131 bool do_prepare; 5132 5133 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 5134 md_flush_request(mddev, bi); 5135 return; 5136 } 5137 5138 md_write_start(mddev, bi); 5139 5140 /* 5141 * If array is degraded, better not do chunk aligned read because 5142 * later we might have to read it again in order to reconstruct 5143 * data on failed drives. 5144 */ 5145 if (rw == READ && mddev->degraded == 0 && 5146 mddev->reshape_position == MaxSector) { 5147 bi = chunk_aligned_read(mddev, bi); 5148 if (!bi) 5149 return; 5150 } 5151 5152 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 5153 make_discard_request(mddev, bi); 5154 return; 5155 } 5156 5157 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5158 last_sector = bio_end_sector(bi); 5159 bi->bi_next = NULL; 5160 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5161 5162 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5163 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5164 int previous; 5165 int seq; 5166 5167 do_prepare = false; 5168 retry: 5169 seq = read_seqcount_begin(&conf->gen_lock); 5170 previous = 0; 5171 if (do_prepare) 5172 prepare_to_wait(&conf->wait_for_overlap, &w, 5173 TASK_UNINTERRUPTIBLE); 5174 if (unlikely(conf->reshape_progress != MaxSector)) { 5175 /* spinlock is needed as reshape_progress may be 5176 * 64bit on a 32bit platform, and so it might be 5177 * possible to see a half-updated value 5178 * Of course reshape_progress could change after 5179 * the lock is dropped, so once we get a reference 5180 * to the stripe that we think it is, we will have 5181 * to check again. 5182 */ 5183 spin_lock_irq(&conf->device_lock); 5184 if (mddev->reshape_backwards 5185 ? logical_sector < conf->reshape_progress 5186 : logical_sector >= conf->reshape_progress) { 5187 previous = 1; 5188 } else { 5189 if (mddev->reshape_backwards 5190 ? logical_sector < conf->reshape_safe 5191 : logical_sector >= conf->reshape_safe) { 5192 spin_unlock_irq(&conf->device_lock); 5193 schedule(); 5194 do_prepare = true; 5195 goto retry; 5196 } 5197 } 5198 spin_unlock_irq(&conf->device_lock); 5199 } 5200 5201 new_sector = raid5_compute_sector(conf, logical_sector, 5202 previous, 5203 &dd_idx, NULL); 5204 pr_debug("raid456: make_request, sector %llu logical %llu\n", 5205 (unsigned long long)new_sector, 5206 (unsigned long long)logical_sector); 5207 5208 sh = get_active_stripe(conf, new_sector, previous, 5209 (bi->bi_rw&RWA_MASK), 0); 5210 if (sh) { 5211 if (unlikely(previous)) { 5212 /* expansion might have moved on while waiting for a 5213 * stripe, so we must do the range check again. 5214 * Expansion could still move past after this 5215 * test, but as we are holding a reference to 5216 * 'sh', we know that if that happens, 5217 * STRIPE_EXPANDING will get set and the expansion 5218 * won't proceed until we finish with the stripe. 5219 */ 5220 int must_retry = 0; 5221 spin_lock_irq(&conf->device_lock); 5222 if (mddev->reshape_backwards 5223 ? logical_sector >= conf->reshape_progress 5224 : logical_sector < conf->reshape_progress) 5225 /* mismatch, need to try again */ 5226 must_retry = 1; 5227 spin_unlock_irq(&conf->device_lock); 5228 if (must_retry) { 5229 release_stripe(sh); 5230 schedule(); 5231 do_prepare = true; 5232 goto retry; 5233 } 5234 } 5235 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5236 /* Might have got the wrong stripe_head 5237 * by accident 5238 */ 5239 release_stripe(sh); 5240 goto retry; 5241 } 5242 5243 if (rw == WRITE && 5244 logical_sector >= mddev->suspend_lo && 5245 logical_sector < mddev->suspend_hi) { 5246 release_stripe(sh); 5247 /* As the suspend_* range is controlled by 5248 * userspace, we want an interruptible 5249 * wait. 5250 */ 5251 flush_signals(current); 5252 prepare_to_wait(&conf->wait_for_overlap, 5253 &w, TASK_INTERRUPTIBLE); 5254 if (logical_sector >= mddev->suspend_lo && 5255 logical_sector < mddev->suspend_hi) { 5256 schedule(); 5257 do_prepare = true; 5258 } 5259 goto retry; 5260 } 5261 5262 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5263 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5264 /* Stripe is busy expanding or 5265 * add failed due to overlap. Flush everything 5266 * and wait a while 5267 */ 5268 md_wakeup_thread(mddev->thread); 5269 release_stripe(sh); 5270 schedule(); 5271 do_prepare = true; 5272 goto retry; 5273 } 5274 set_bit(STRIPE_HANDLE, &sh->state); 5275 clear_bit(STRIPE_DELAYED, &sh->state); 5276 if ((!sh->batch_head || sh == sh->batch_head) && 5277 (bi->bi_rw & REQ_SYNC) && 5278 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5279 atomic_inc(&conf->preread_active_stripes); 5280 release_stripe_plug(mddev, sh); 5281 } else { 5282 /* cannot get stripe for read-ahead, just give-up */ 5283 bi->bi_error = -EIO; 5284 break; 5285 } 5286 } 5287 finish_wait(&conf->wait_for_overlap, &w); 5288 5289 remaining = raid5_dec_bi_active_stripes(bi); 5290 if (remaining == 0) { 5291 5292 if ( rw == WRITE ) 5293 md_write_end(mddev); 5294 5295 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5296 bi, 0); 5297 bio_endio(bi); 5298 } 5299 } 5300 5301 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5302 5303 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5304 { 5305 /* reshaping is quite different to recovery/resync so it is 5306 * handled quite separately ... here. 5307 * 5308 * On each call to sync_request, we gather one chunk worth of 5309 * destination stripes and flag them as expanding. 5310 * Then we find all the source stripes and request reads. 5311 * As the reads complete, handle_stripe will copy the data 5312 * into the destination stripe and release that stripe. 5313 */ 5314 struct r5conf *conf = mddev->private; 5315 struct stripe_head *sh; 5316 sector_t first_sector, last_sector; 5317 int raid_disks = conf->previous_raid_disks; 5318 int data_disks = raid_disks - conf->max_degraded; 5319 int new_data_disks = conf->raid_disks - conf->max_degraded; 5320 int i; 5321 int dd_idx; 5322 sector_t writepos, readpos, safepos; 5323 sector_t stripe_addr; 5324 int reshape_sectors; 5325 struct list_head stripes; 5326 sector_t retn; 5327 5328 if (sector_nr == 0) { 5329 /* If restarting in the middle, skip the initial sectors */ 5330 if (mddev->reshape_backwards && 5331 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5332 sector_nr = raid5_size(mddev, 0, 0) 5333 - conf->reshape_progress; 5334 } else if (mddev->reshape_backwards && 5335 conf->reshape_progress == MaxSector) { 5336 /* shouldn't happen, but just in case, finish up.*/ 5337 sector_nr = MaxSector; 5338 } else if (!mddev->reshape_backwards && 5339 conf->reshape_progress > 0) 5340 sector_nr = conf->reshape_progress; 5341 sector_div(sector_nr, new_data_disks); 5342 if (sector_nr) { 5343 mddev->curr_resync_completed = sector_nr; 5344 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5345 *skipped = 1; 5346 retn = sector_nr; 5347 goto finish; 5348 } 5349 } 5350 5351 /* We need to process a full chunk at a time. 5352 * If old and new chunk sizes differ, we need to process the 5353 * largest of these 5354 */ 5355 5356 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5357 5358 /* We update the metadata at least every 10 seconds, or when 5359 * the data about to be copied would over-write the source of 5360 * the data at the front of the range. i.e. one new_stripe 5361 * along from reshape_progress new_maps to after where 5362 * reshape_safe old_maps to 5363 */ 5364 writepos = conf->reshape_progress; 5365 sector_div(writepos, new_data_disks); 5366 readpos = conf->reshape_progress; 5367 sector_div(readpos, data_disks); 5368 safepos = conf->reshape_safe; 5369 sector_div(safepos, data_disks); 5370 if (mddev->reshape_backwards) { 5371 BUG_ON(writepos < reshape_sectors); 5372 writepos -= reshape_sectors; 5373 readpos += reshape_sectors; 5374 safepos += reshape_sectors; 5375 } else { 5376 writepos += reshape_sectors; 5377 /* readpos and safepos are worst-case calculations. 5378 * A negative number is overly pessimistic, and causes 5379 * obvious problems for unsigned storage. So clip to 0. 5380 */ 5381 readpos -= min_t(sector_t, reshape_sectors, readpos); 5382 safepos -= min_t(sector_t, reshape_sectors, safepos); 5383 } 5384 5385 /* Having calculated the 'writepos' possibly use it 5386 * to set 'stripe_addr' which is where we will write to. 5387 */ 5388 if (mddev->reshape_backwards) { 5389 BUG_ON(conf->reshape_progress == 0); 5390 stripe_addr = writepos; 5391 BUG_ON((mddev->dev_sectors & 5392 ~((sector_t)reshape_sectors - 1)) 5393 - reshape_sectors - stripe_addr 5394 != sector_nr); 5395 } else { 5396 BUG_ON(writepos != sector_nr + reshape_sectors); 5397 stripe_addr = sector_nr; 5398 } 5399 5400 /* 'writepos' is the most advanced device address we might write. 5401 * 'readpos' is the least advanced device address we might read. 5402 * 'safepos' is the least address recorded in the metadata as having 5403 * been reshaped. 5404 * If there is a min_offset_diff, these are adjusted either by 5405 * increasing the safepos/readpos if diff is negative, or 5406 * increasing writepos if diff is positive. 5407 * If 'readpos' is then behind 'writepos', there is no way that we can 5408 * ensure safety in the face of a crash - that must be done by userspace 5409 * making a backup of the data. So in that case there is no particular 5410 * rush to update metadata. 5411 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5412 * update the metadata to advance 'safepos' to match 'readpos' so that 5413 * we can be safe in the event of a crash. 5414 * So we insist on updating metadata if safepos is behind writepos and 5415 * readpos is beyond writepos. 5416 * In any case, update the metadata every 10 seconds. 5417 * Maybe that number should be configurable, but I'm not sure it is 5418 * worth it.... maybe it could be a multiple of safemode_delay??? 5419 */ 5420 if (conf->min_offset_diff < 0) { 5421 safepos += -conf->min_offset_diff; 5422 readpos += -conf->min_offset_diff; 5423 } else 5424 writepos += conf->min_offset_diff; 5425 5426 if ((mddev->reshape_backwards 5427 ? (safepos > writepos && readpos < writepos) 5428 : (safepos < writepos && readpos > writepos)) || 5429 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5430 /* Cannot proceed until we've updated the superblock... */ 5431 wait_event(conf->wait_for_overlap, 5432 atomic_read(&conf->reshape_stripes)==0 5433 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5434 if (atomic_read(&conf->reshape_stripes) != 0) 5435 return 0; 5436 mddev->reshape_position = conf->reshape_progress; 5437 mddev->curr_resync_completed = sector_nr; 5438 conf->reshape_checkpoint = jiffies; 5439 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5440 md_wakeup_thread(mddev->thread); 5441 wait_event(mddev->sb_wait, mddev->flags == 0 || 5442 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5443 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5444 return 0; 5445 spin_lock_irq(&conf->device_lock); 5446 conf->reshape_safe = mddev->reshape_position; 5447 spin_unlock_irq(&conf->device_lock); 5448 wake_up(&conf->wait_for_overlap); 5449 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5450 } 5451 5452 INIT_LIST_HEAD(&stripes); 5453 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5454 int j; 5455 int skipped_disk = 0; 5456 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5457 set_bit(STRIPE_EXPANDING, &sh->state); 5458 atomic_inc(&conf->reshape_stripes); 5459 /* If any of this stripe is beyond the end of the old 5460 * array, then we need to zero those blocks 5461 */ 5462 for (j=sh->disks; j--;) { 5463 sector_t s; 5464 if (j == sh->pd_idx) 5465 continue; 5466 if (conf->level == 6 && 5467 j == sh->qd_idx) 5468 continue; 5469 s = compute_blocknr(sh, j, 0); 5470 if (s < raid5_size(mddev, 0, 0)) { 5471 skipped_disk = 1; 5472 continue; 5473 } 5474 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5475 set_bit(R5_Expanded, &sh->dev[j].flags); 5476 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5477 } 5478 if (!skipped_disk) { 5479 set_bit(STRIPE_EXPAND_READY, &sh->state); 5480 set_bit(STRIPE_HANDLE, &sh->state); 5481 } 5482 list_add(&sh->lru, &stripes); 5483 } 5484 spin_lock_irq(&conf->device_lock); 5485 if (mddev->reshape_backwards) 5486 conf->reshape_progress -= reshape_sectors * new_data_disks; 5487 else 5488 conf->reshape_progress += reshape_sectors * new_data_disks; 5489 spin_unlock_irq(&conf->device_lock); 5490 /* Ok, those stripe are ready. We can start scheduling 5491 * reads on the source stripes. 5492 * The source stripes are determined by mapping the first and last 5493 * block on the destination stripes. 5494 */ 5495 first_sector = 5496 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5497 1, &dd_idx, NULL); 5498 last_sector = 5499 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5500 * new_data_disks - 1), 5501 1, &dd_idx, NULL); 5502 if (last_sector >= mddev->dev_sectors) 5503 last_sector = mddev->dev_sectors - 1; 5504 while (first_sector <= last_sector) { 5505 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 5506 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5507 set_bit(STRIPE_HANDLE, &sh->state); 5508 release_stripe(sh); 5509 first_sector += STRIPE_SECTORS; 5510 } 5511 /* Now that the sources are clearly marked, we can release 5512 * the destination stripes 5513 */ 5514 while (!list_empty(&stripes)) { 5515 sh = list_entry(stripes.next, struct stripe_head, lru); 5516 list_del_init(&sh->lru); 5517 release_stripe(sh); 5518 } 5519 /* If this takes us to the resync_max point where we have to pause, 5520 * then we need to write out the superblock. 5521 */ 5522 sector_nr += reshape_sectors; 5523 retn = reshape_sectors; 5524 finish: 5525 if (mddev->curr_resync_completed > mddev->resync_max || 5526 (sector_nr - mddev->curr_resync_completed) * 2 5527 >= mddev->resync_max - mddev->curr_resync_completed) { 5528 /* Cannot proceed until we've updated the superblock... */ 5529 wait_event(conf->wait_for_overlap, 5530 atomic_read(&conf->reshape_stripes) == 0 5531 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5532 if (atomic_read(&conf->reshape_stripes) != 0) 5533 goto ret; 5534 mddev->reshape_position = conf->reshape_progress; 5535 mddev->curr_resync_completed = sector_nr; 5536 conf->reshape_checkpoint = jiffies; 5537 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5538 md_wakeup_thread(mddev->thread); 5539 wait_event(mddev->sb_wait, 5540 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 5541 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5542 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5543 goto ret; 5544 spin_lock_irq(&conf->device_lock); 5545 conf->reshape_safe = mddev->reshape_position; 5546 spin_unlock_irq(&conf->device_lock); 5547 wake_up(&conf->wait_for_overlap); 5548 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5549 } 5550 ret: 5551 return retn; 5552 } 5553 5554 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5555 { 5556 struct r5conf *conf = mddev->private; 5557 struct stripe_head *sh; 5558 sector_t max_sector = mddev->dev_sectors; 5559 sector_t sync_blocks; 5560 int still_degraded = 0; 5561 int i; 5562 5563 if (sector_nr >= max_sector) { 5564 /* just being told to finish up .. nothing much to do */ 5565 5566 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5567 end_reshape(conf); 5568 return 0; 5569 } 5570 5571 if (mddev->curr_resync < max_sector) /* aborted */ 5572 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5573 &sync_blocks, 1); 5574 else /* completed sync */ 5575 conf->fullsync = 0; 5576 bitmap_close_sync(mddev->bitmap); 5577 5578 return 0; 5579 } 5580 5581 /* Allow raid5_quiesce to complete */ 5582 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5583 5584 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5585 return reshape_request(mddev, sector_nr, skipped); 5586 5587 /* No need to check resync_max as we never do more than one 5588 * stripe, and as resync_max will always be on a chunk boundary, 5589 * if the check in md_do_sync didn't fire, there is no chance 5590 * of overstepping resync_max here 5591 */ 5592 5593 /* if there is too many failed drives and we are trying 5594 * to resync, then assert that we are finished, because there is 5595 * nothing we can do. 5596 */ 5597 if (mddev->degraded >= conf->max_degraded && 5598 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5599 sector_t rv = mddev->dev_sectors - sector_nr; 5600 *skipped = 1; 5601 return rv; 5602 } 5603 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5604 !conf->fullsync && 5605 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5606 sync_blocks >= STRIPE_SECTORS) { 5607 /* we can skip this block, and probably more */ 5608 sync_blocks /= STRIPE_SECTORS; 5609 *skipped = 1; 5610 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5611 } 5612 5613 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 5614 5615 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 5616 if (sh == NULL) { 5617 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 5618 /* make sure we don't swamp the stripe cache if someone else 5619 * is trying to get access 5620 */ 5621 schedule_timeout_uninterruptible(1); 5622 } 5623 /* Need to check if array will still be degraded after recovery/resync 5624 * Note in case of > 1 drive failures it's possible we're rebuilding 5625 * one drive while leaving another faulty drive in array. 5626 */ 5627 rcu_read_lock(); 5628 for (i = 0; i < conf->raid_disks; i++) { 5629 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5630 5631 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5632 still_degraded = 1; 5633 } 5634 rcu_read_unlock(); 5635 5636 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5637 5638 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5639 set_bit(STRIPE_HANDLE, &sh->state); 5640 5641 release_stripe(sh); 5642 5643 return STRIPE_SECTORS; 5644 } 5645 5646 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5647 { 5648 /* We may not be able to submit a whole bio at once as there 5649 * may not be enough stripe_heads available. 5650 * We cannot pre-allocate enough stripe_heads as we may need 5651 * more than exist in the cache (if we allow ever large chunks). 5652 * So we do one stripe head at a time and record in 5653 * ->bi_hw_segments how many have been done. 5654 * 5655 * We *know* that this entire raid_bio is in one chunk, so 5656 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5657 */ 5658 struct stripe_head *sh; 5659 int dd_idx; 5660 sector_t sector, logical_sector, last_sector; 5661 int scnt = 0; 5662 int remaining; 5663 int handled = 0; 5664 5665 logical_sector = raid_bio->bi_iter.bi_sector & 5666 ~((sector_t)STRIPE_SECTORS-1); 5667 sector = raid5_compute_sector(conf, logical_sector, 5668 0, &dd_idx, NULL); 5669 last_sector = bio_end_sector(raid_bio); 5670 5671 for (; logical_sector < last_sector; 5672 logical_sector += STRIPE_SECTORS, 5673 sector += STRIPE_SECTORS, 5674 scnt++) { 5675 5676 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5677 /* already done this stripe */ 5678 continue; 5679 5680 sh = get_active_stripe(conf, sector, 0, 1, 1); 5681 5682 if (!sh) { 5683 /* failed to get a stripe - must wait */ 5684 raid5_set_bi_processed_stripes(raid_bio, scnt); 5685 conf->retry_read_aligned = raid_bio; 5686 return handled; 5687 } 5688 5689 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 5690 release_stripe(sh); 5691 raid5_set_bi_processed_stripes(raid_bio, scnt); 5692 conf->retry_read_aligned = raid_bio; 5693 return handled; 5694 } 5695 5696 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5697 handle_stripe(sh); 5698 release_stripe(sh); 5699 handled++; 5700 } 5701 remaining = raid5_dec_bi_active_stripes(raid_bio); 5702 if (remaining == 0) { 5703 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5704 raid_bio, 0); 5705 bio_endio(raid_bio); 5706 } 5707 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5708 wake_up(&conf->wait_for_quiescent); 5709 return handled; 5710 } 5711 5712 static int handle_active_stripes(struct r5conf *conf, int group, 5713 struct r5worker *worker, 5714 struct list_head *temp_inactive_list) 5715 { 5716 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5717 int i, batch_size = 0, hash; 5718 bool release_inactive = false; 5719 5720 while (batch_size < MAX_STRIPE_BATCH && 5721 (sh = __get_priority_stripe(conf, group)) != NULL) 5722 batch[batch_size++] = sh; 5723 5724 if (batch_size == 0) { 5725 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5726 if (!list_empty(temp_inactive_list + i)) 5727 break; 5728 if (i == NR_STRIPE_HASH_LOCKS) 5729 return batch_size; 5730 release_inactive = true; 5731 } 5732 spin_unlock_irq(&conf->device_lock); 5733 5734 release_inactive_stripe_list(conf, temp_inactive_list, 5735 NR_STRIPE_HASH_LOCKS); 5736 5737 if (release_inactive) { 5738 spin_lock_irq(&conf->device_lock); 5739 return 0; 5740 } 5741 5742 for (i = 0; i < batch_size; i++) 5743 handle_stripe(batch[i]); 5744 5745 cond_resched(); 5746 5747 spin_lock_irq(&conf->device_lock); 5748 for (i = 0; i < batch_size; i++) { 5749 hash = batch[i]->hash_lock_index; 5750 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5751 } 5752 return batch_size; 5753 } 5754 5755 static void raid5_do_work(struct work_struct *work) 5756 { 5757 struct r5worker *worker = container_of(work, struct r5worker, work); 5758 struct r5worker_group *group = worker->group; 5759 struct r5conf *conf = group->conf; 5760 int group_id = group - conf->worker_groups; 5761 int handled; 5762 struct blk_plug plug; 5763 5764 pr_debug("+++ raid5worker active\n"); 5765 5766 blk_start_plug(&plug); 5767 handled = 0; 5768 spin_lock_irq(&conf->device_lock); 5769 while (1) { 5770 int batch_size, released; 5771 5772 released = release_stripe_list(conf, worker->temp_inactive_list); 5773 5774 batch_size = handle_active_stripes(conf, group_id, worker, 5775 worker->temp_inactive_list); 5776 worker->working = false; 5777 if (!batch_size && !released) 5778 break; 5779 handled += batch_size; 5780 } 5781 pr_debug("%d stripes handled\n", handled); 5782 5783 spin_unlock_irq(&conf->device_lock); 5784 blk_finish_plug(&plug); 5785 5786 pr_debug("--- raid5worker inactive\n"); 5787 } 5788 5789 /* 5790 * This is our raid5 kernel thread. 5791 * 5792 * We scan the hash table for stripes which can be handled now. 5793 * During the scan, completed stripes are saved for us by the interrupt 5794 * handler, so that they will not have to wait for our next wakeup. 5795 */ 5796 static void raid5d(struct md_thread *thread) 5797 { 5798 struct mddev *mddev = thread->mddev; 5799 struct r5conf *conf = mddev->private; 5800 int handled; 5801 struct blk_plug plug; 5802 5803 pr_debug("+++ raid5d active\n"); 5804 5805 md_check_recovery(mddev); 5806 5807 if (!bio_list_empty(&conf->return_bi) && 5808 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5809 struct bio_list tmp = BIO_EMPTY_LIST; 5810 spin_lock_irq(&conf->device_lock); 5811 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5812 bio_list_merge(&tmp, &conf->return_bi); 5813 bio_list_init(&conf->return_bi); 5814 } 5815 spin_unlock_irq(&conf->device_lock); 5816 return_io(&tmp); 5817 } 5818 5819 blk_start_plug(&plug); 5820 handled = 0; 5821 spin_lock_irq(&conf->device_lock); 5822 while (1) { 5823 struct bio *bio; 5824 int batch_size, released; 5825 5826 released = release_stripe_list(conf, conf->temp_inactive_list); 5827 if (released) 5828 clear_bit(R5_DID_ALLOC, &conf->cache_state); 5829 5830 if ( 5831 !list_empty(&conf->bitmap_list)) { 5832 /* Now is a good time to flush some bitmap updates */ 5833 conf->seq_flush++; 5834 spin_unlock_irq(&conf->device_lock); 5835 bitmap_unplug(mddev->bitmap); 5836 spin_lock_irq(&conf->device_lock); 5837 conf->seq_write = conf->seq_flush; 5838 activate_bit_delay(conf, conf->temp_inactive_list); 5839 } 5840 raid5_activate_delayed(conf); 5841 5842 while ((bio = remove_bio_from_retry(conf))) { 5843 int ok; 5844 spin_unlock_irq(&conf->device_lock); 5845 ok = retry_aligned_read(conf, bio); 5846 spin_lock_irq(&conf->device_lock); 5847 if (!ok) 5848 break; 5849 handled++; 5850 } 5851 5852 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5853 conf->temp_inactive_list); 5854 if (!batch_size && !released) 5855 break; 5856 handled += batch_size; 5857 5858 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5859 spin_unlock_irq(&conf->device_lock); 5860 md_check_recovery(mddev); 5861 spin_lock_irq(&conf->device_lock); 5862 } 5863 } 5864 pr_debug("%d stripes handled\n", handled); 5865 5866 spin_unlock_irq(&conf->device_lock); 5867 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 5868 mutex_trylock(&conf->cache_size_mutex)) { 5869 grow_one_stripe(conf, __GFP_NOWARN); 5870 /* Set flag even if allocation failed. This helps 5871 * slow down allocation requests when mem is short 5872 */ 5873 set_bit(R5_DID_ALLOC, &conf->cache_state); 5874 mutex_unlock(&conf->cache_size_mutex); 5875 } 5876 5877 async_tx_issue_pending_all(); 5878 blk_finish_plug(&plug); 5879 5880 pr_debug("--- raid5d inactive\n"); 5881 } 5882 5883 static ssize_t 5884 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5885 { 5886 struct r5conf *conf; 5887 int ret = 0; 5888 spin_lock(&mddev->lock); 5889 conf = mddev->private; 5890 if (conf) 5891 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 5892 spin_unlock(&mddev->lock); 5893 return ret; 5894 } 5895 5896 int 5897 raid5_set_cache_size(struct mddev *mddev, int size) 5898 { 5899 struct r5conf *conf = mddev->private; 5900 int err; 5901 5902 if (size <= 16 || size > 32768) 5903 return -EINVAL; 5904 5905 conf->min_nr_stripes = size; 5906 mutex_lock(&conf->cache_size_mutex); 5907 while (size < conf->max_nr_stripes && 5908 drop_one_stripe(conf)) 5909 ; 5910 mutex_unlock(&conf->cache_size_mutex); 5911 5912 5913 err = md_allow_write(mddev); 5914 if (err) 5915 return err; 5916 5917 mutex_lock(&conf->cache_size_mutex); 5918 while (size > conf->max_nr_stripes) 5919 if (!grow_one_stripe(conf, GFP_KERNEL)) 5920 break; 5921 mutex_unlock(&conf->cache_size_mutex); 5922 5923 return 0; 5924 } 5925 EXPORT_SYMBOL(raid5_set_cache_size); 5926 5927 static ssize_t 5928 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5929 { 5930 struct r5conf *conf; 5931 unsigned long new; 5932 int err; 5933 5934 if (len >= PAGE_SIZE) 5935 return -EINVAL; 5936 if (kstrtoul(page, 10, &new)) 5937 return -EINVAL; 5938 err = mddev_lock(mddev); 5939 if (err) 5940 return err; 5941 conf = mddev->private; 5942 if (!conf) 5943 err = -ENODEV; 5944 else 5945 err = raid5_set_cache_size(mddev, new); 5946 mddev_unlock(mddev); 5947 5948 return err ?: len; 5949 } 5950 5951 static struct md_sysfs_entry 5952 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5953 raid5_show_stripe_cache_size, 5954 raid5_store_stripe_cache_size); 5955 5956 static ssize_t 5957 raid5_show_rmw_level(struct mddev *mddev, char *page) 5958 { 5959 struct r5conf *conf = mddev->private; 5960 if (conf) 5961 return sprintf(page, "%d\n", conf->rmw_level); 5962 else 5963 return 0; 5964 } 5965 5966 static ssize_t 5967 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 5968 { 5969 struct r5conf *conf = mddev->private; 5970 unsigned long new; 5971 5972 if (!conf) 5973 return -ENODEV; 5974 5975 if (len >= PAGE_SIZE) 5976 return -EINVAL; 5977 5978 if (kstrtoul(page, 10, &new)) 5979 return -EINVAL; 5980 5981 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 5982 return -EINVAL; 5983 5984 if (new != PARITY_DISABLE_RMW && 5985 new != PARITY_ENABLE_RMW && 5986 new != PARITY_PREFER_RMW) 5987 return -EINVAL; 5988 5989 conf->rmw_level = new; 5990 return len; 5991 } 5992 5993 static struct md_sysfs_entry 5994 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 5995 raid5_show_rmw_level, 5996 raid5_store_rmw_level); 5997 5998 5999 static ssize_t 6000 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6001 { 6002 struct r5conf *conf; 6003 int ret = 0; 6004 spin_lock(&mddev->lock); 6005 conf = mddev->private; 6006 if (conf) 6007 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6008 spin_unlock(&mddev->lock); 6009 return ret; 6010 } 6011 6012 static ssize_t 6013 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6014 { 6015 struct r5conf *conf; 6016 unsigned long new; 6017 int err; 6018 6019 if (len >= PAGE_SIZE) 6020 return -EINVAL; 6021 if (kstrtoul(page, 10, &new)) 6022 return -EINVAL; 6023 6024 err = mddev_lock(mddev); 6025 if (err) 6026 return err; 6027 conf = mddev->private; 6028 if (!conf) 6029 err = -ENODEV; 6030 else if (new > conf->min_nr_stripes) 6031 err = -EINVAL; 6032 else 6033 conf->bypass_threshold = new; 6034 mddev_unlock(mddev); 6035 return err ?: len; 6036 } 6037 6038 static struct md_sysfs_entry 6039 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6040 S_IRUGO | S_IWUSR, 6041 raid5_show_preread_threshold, 6042 raid5_store_preread_threshold); 6043 6044 static ssize_t 6045 raid5_show_skip_copy(struct mddev *mddev, char *page) 6046 { 6047 struct r5conf *conf; 6048 int ret = 0; 6049 spin_lock(&mddev->lock); 6050 conf = mddev->private; 6051 if (conf) 6052 ret = sprintf(page, "%d\n", conf->skip_copy); 6053 spin_unlock(&mddev->lock); 6054 return ret; 6055 } 6056 6057 static ssize_t 6058 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6059 { 6060 struct r5conf *conf; 6061 unsigned long new; 6062 int err; 6063 6064 if (len >= PAGE_SIZE) 6065 return -EINVAL; 6066 if (kstrtoul(page, 10, &new)) 6067 return -EINVAL; 6068 new = !!new; 6069 6070 err = mddev_lock(mddev); 6071 if (err) 6072 return err; 6073 conf = mddev->private; 6074 if (!conf) 6075 err = -ENODEV; 6076 else if (new != conf->skip_copy) { 6077 mddev_suspend(mddev); 6078 conf->skip_copy = new; 6079 if (new) 6080 mddev->queue->backing_dev_info.capabilities |= 6081 BDI_CAP_STABLE_WRITES; 6082 else 6083 mddev->queue->backing_dev_info.capabilities &= 6084 ~BDI_CAP_STABLE_WRITES; 6085 mddev_resume(mddev); 6086 } 6087 mddev_unlock(mddev); 6088 return err ?: len; 6089 } 6090 6091 static struct md_sysfs_entry 6092 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6093 raid5_show_skip_copy, 6094 raid5_store_skip_copy); 6095 6096 static ssize_t 6097 stripe_cache_active_show(struct mddev *mddev, char *page) 6098 { 6099 struct r5conf *conf = mddev->private; 6100 if (conf) 6101 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6102 else 6103 return 0; 6104 } 6105 6106 static struct md_sysfs_entry 6107 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6108 6109 static ssize_t 6110 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6111 { 6112 struct r5conf *conf; 6113 int ret = 0; 6114 spin_lock(&mddev->lock); 6115 conf = mddev->private; 6116 if (conf) 6117 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6118 spin_unlock(&mddev->lock); 6119 return ret; 6120 } 6121 6122 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6123 int *group_cnt, 6124 int *worker_cnt_per_group, 6125 struct r5worker_group **worker_groups); 6126 static ssize_t 6127 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6128 { 6129 struct r5conf *conf; 6130 unsigned long new; 6131 int err; 6132 struct r5worker_group *new_groups, *old_groups; 6133 int group_cnt, worker_cnt_per_group; 6134 6135 if (len >= PAGE_SIZE) 6136 return -EINVAL; 6137 if (kstrtoul(page, 10, &new)) 6138 return -EINVAL; 6139 6140 err = mddev_lock(mddev); 6141 if (err) 6142 return err; 6143 conf = mddev->private; 6144 if (!conf) 6145 err = -ENODEV; 6146 else if (new != conf->worker_cnt_per_group) { 6147 mddev_suspend(mddev); 6148 6149 old_groups = conf->worker_groups; 6150 if (old_groups) 6151 flush_workqueue(raid5_wq); 6152 6153 err = alloc_thread_groups(conf, new, 6154 &group_cnt, &worker_cnt_per_group, 6155 &new_groups); 6156 if (!err) { 6157 spin_lock_irq(&conf->device_lock); 6158 conf->group_cnt = group_cnt; 6159 conf->worker_cnt_per_group = worker_cnt_per_group; 6160 conf->worker_groups = new_groups; 6161 spin_unlock_irq(&conf->device_lock); 6162 6163 if (old_groups) 6164 kfree(old_groups[0].workers); 6165 kfree(old_groups); 6166 } 6167 mddev_resume(mddev); 6168 } 6169 mddev_unlock(mddev); 6170 6171 return err ?: len; 6172 } 6173 6174 static struct md_sysfs_entry 6175 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6176 raid5_show_group_thread_cnt, 6177 raid5_store_group_thread_cnt); 6178 6179 static struct attribute *raid5_attrs[] = { 6180 &raid5_stripecache_size.attr, 6181 &raid5_stripecache_active.attr, 6182 &raid5_preread_bypass_threshold.attr, 6183 &raid5_group_thread_cnt.attr, 6184 &raid5_skip_copy.attr, 6185 &raid5_rmw_level.attr, 6186 NULL, 6187 }; 6188 static struct attribute_group raid5_attrs_group = { 6189 .name = NULL, 6190 .attrs = raid5_attrs, 6191 }; 6192 6193 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6194 int *group_cnt, 6195 int *worker_cnt_per_group, 6196 struct r5worker_group **worker_groups) 6197 { 6198 int i, j, k; 6199 ssize_t size; 6200 struct r5worker *workers; 6201 6202 *worker_cnt_per_group = cnt; 6203 if (cnt == 0) { 6204 *group_cnt = 0; 6205 *worker_groups = NULL; 6206 return 0; 6207 } 6208 *group_cnt = num_possible_nodes(); 6209 size = sizeof(struct r5worker) * cnt; 6210 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6211 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6212 *group_cnt, GFP_NOIO); 6213 if (!*worker_groups || !workers) { 6214 kfree(workers); 6215 kfree(*worker_groups); 6216 return -ENOMEM; 6217 } 6218 6219 for (i = 0; i < *group_cnt; i++) { 6220 struct r5worker_group *group; 6221 6222 group = &(*worker_groups)[i]; 6223 INIT_LIST_HEAD(&group->handle_list); 6224 group->conf = conf; 6225 group->workers = workers + i * cnt; 6226 6227 for (j = 0; j < cnt; j++) { 6228 struct r5worker *worker = group->workers + j; 6229 worker->group = group; 6230 INIT_WORK(&worker->work, raid5_do_work); 6231 6232 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6233 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6234 } 6235 } 6236 6237 return 0; 6238 } 6239 6240 static void free_thread_groups(struct r5conf *conf) 6241 { 6242 if (conf->worker_groups) 6243 kfree(conf->worker_groups[0].workers); 6244 kfree(conf->worker_groups); 6245 conf->worker_groups = NULL; 6246 } 6247 6248 static sector_t 6249 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6250 { 6251 struct r5conf *conf = mddev->private; 6252 6253 if (!sectors) 6254 sectors = mddev->dev_sectors; 6255 if (!raid_disks) 6256 /* size is defined by the smallest of previous and new size */ 6257 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6258 6259 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6260 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6261 return sectors * (raid_disks - conf->max_degraded); 6262 } 6263 6264 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6265 { 6266 safe_put_page(percpu->spare_page); 6267 if (percpu->scribble) 6268 flex_array_free(percpu->scribble); 6269 percpu->spare_page = NULL; 6270 percpu->scribble = NULL; 6271 } 6272 6273 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6274 { 6275 if (conf->level == 6 && !percpu->spare_page) 6276 percpu->spare_page = alloc_page(GFP_KERNEL); 6277 if (!percpu->scribble) 6278 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6279 conf->previous_raid_disks), 6280 max(conf->chunk_sectors, 6281 conf->prev_chunk_sectors) 6282 / STRIPE_SECTORS, 6283 GFP_KERNEL); 6284 6285 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6286 free_scratch_buffer(conf, percpu); 6287 return -ENOMEM; 6288 } 6289 6290 return 0; 6291 } 6292 6293 static void raid5_free_percpu(struct r5conf *conf) 6294 { 6295 unsigned long cpu; 6296 6297 if (!conf->percpu) 6298 return; 6299 6300 #ifdef CONFIG_HOTPLUG_CPU 6301 unregister_cpu_notifier(&conf->cpu_notify); 6302 #endif 6303 6304 get_online_cpus(); 6305 for_each_possible_cpu(cpu) 6306 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6307 put_online_cpus(); 6308 6309 free_percpu(conf->percpu); 6310 } 6311 6312 static void free_conf(struct r5conf *conf) 6313 { 6314 if (conf->shrinker.seeks) 6315 unregister_shrinker(&conf->shrinker); 6316 free_thread_groups(conf); 6317 shrink_stripes(conf); 6318 raid5_free_percpu(conf); 6319 kfree(conf->disks); 6320 kfree(conf->stripe_hashtbl); 6321 kfree(conf); 6322 } 6323 6324 #ifdef CONFIG_HOTPLUG_CPU 6325 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 6326 void *hcpu) 6327 { 6328 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 6329 long cpu = (long)hcpu; 6330 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6331 6332 switch (action) { 6333 case CPU_UP_PREPARE: 6334 case CPU_UP_PREPARE_FROZEN: 6335 if (alloc_scratch_buffer(conf, percpu)) { 6336 pr_err("%s: failed memory allocation for cpu%ld\n", 6337 __func__, cpu); 6338 return notifier_from_errno(-ENOMEM); 6339 } 6340 break; 6341 case CPU_DEAD: 6342 case CPU_DEAD_FROZEN: 6343 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6344 break; 6345 default: 6346 break; 6347 } 6348 return NOTIFY_OK; 6349 } 6350 #endif 6351 6352 static int raid5_alloc_percpu(struct r5conf *conf) 6353 { 6354 unsigned long cpu; 6355 int err = 0; 6356 6357 conf->percpu = alloc_percpu(struct raid5_percpu); 6358 if (!conf->percpu) 6359 return -ENOMEM; 6360 6361 #ifdef CONFIG_HOTPLUG_CPU 6362 conf->cpu_notify.notifier_call = raid456_cpu_notify; 6363 conf->cpu_notify.priority = 0; 6364 err = register_cpu_notifier(&conf->cpu_notify); 6365 if (err) 6366 return err; 6367 #endif 6368 6369 get_online_cpus(); 6370 for_each_present_cpu(cpu) { 6371 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6372 if (err) { 6373 pr_err("%s: failed memory allocation for cpu%ld\n", 6374 __func__, cpu); 6375 break; 6376 } 6377 } 6378 put_online_cpus(); 6379 6380 return err; 6381 } 6382 6383 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6384 struct shrink_control *sc) 6385 { 6386 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6387 unsigned long ret = SHRINK_STOP; 6388 6389 if (mutex_trylock(&conf->cache_size_mutex)) { 6390 ret= 0; 6391 while (ret < sc->nr_to_scan && 6392 conf->max_nr_stripes > conf->min_nr_stripes) { 6393 if (drop_one_stripe(conf) == 0) { 6394 ret = SHRINK_STOP; 6395 break; 6396 } 6397 ret++; 6398 } 6399 mutex_unlock(&conf->cache_size_mutex); 6400 } 6401 return ret; 6402 } 6403 6404 static unsigned long raid5_cache_count(struct shrinker *shrink, 6405 struct shrink_control *sc) 6406 { 6407 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6408 6409 if (conf->max_nr_stripes < conf->min_nr_stripes) 6410 /* unlikely, but not impossible */ 6411 return 0; 6412 return conf->max_nr_stripes - conf->min_nr_stripes; 6413 } 6414 6415 static struct r5conf *setup_conf(struct mddev *mddev) 6416 { 6417 struct r5conf *conf; 6418 int raid_disk, memory, max_disks; 6419 struct md_rdev *rdev; 6420 struct disk_info *disk; 6421 char pers_name[6]; 6422 int i; 6423 int group_cnt, worker_cnt_per_group; 6424 struct r5worker_group *new_group; 6425 6426 if (mddev->new_level != 5 6427 && mddev->new_level != 4 6428 && mddev->new_level != 6) { 6429 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6430 mdname(mddev), mddev->new_level); 6431 return ERR_PTR(-EIO); 6432 } 6433 if ((mddev->new_level == 5 6434 && !algorithm_valid_raid5(mddev->new_layout)) || 6435 (mddev->new_level == 6 6436 && !algorithm_valid_raid6(mddev->new_layout))) { 6437 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 6438 mdname(mddev), mddev->new_layout); 6439 return ERR_PTR(-EIO); 6440 } 6441 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6442 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6443 mdname(mddev), mddev->raid_disks); 6444 return ERR_PTR(-EINVAL); 6445 } 6446 6447 if (!mddev->new_chunk_sectors || 6448 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6449 !is_power_of_2(mddev->new_chunk_sectors)) { 6450 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 6451 mdname(mddev), mddev->new_chunk_sectors << 9); 6452 return ERR_PTR(-EINVAL); 6453 } 6454 6455 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6456 if (conf == NULL) 6457 goto abort; 6458 /* Don't enable multi-threading by default*/ 6459 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6460 &new_group)) { 6461 conf->group_cnt = group_cnt; 6462 conf->worker_cnt_per_group = worker_cnt_per_group; 6463 conf->worker_groups = new_group; 6464 } else 6465 goto abort; 6466 spin_lock_init(&conf->device_lock); 6467 seqcount_init(&conf->gen_lock); 6468 mutex_init(&conf->cache_size_mutex); 6469 init_waitqueue_head(&conf->wait_for_quiescent); 6470 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) { 6471 init_waitqueue_head(&conf->wait_for_stripe[i]); 6472 } 6473 init_waitqueue_head(&conf->wait_for_overlap); 6474 INIT_LIST_HEAD(&conf->handle_list); 6475 INIT_LIST_HEAD(&conf->hold_list); 6476 INIT_LIST_HEAD(&conf->delayed_list); 6477 INIT_LIST_HEAD(&conf->bitmap_list); 6478 bio_list_init(&conf->return_bi); 6479 init_llist_head(&conf->released_stripes); 6480 atomic_set(&conf->active_stripes, 0); 6481 atomic_set(&conf->preread_active_stripes, 0); 6482 atomic_set(&conf->active_aligned_reads, 0); 6483 conf->bypass_threshold = BYPASS_THRESHOLD; 6484 conf->recovery_disabled = mddev->recovery_disabled - 1; 6485 6486 conf->raid_disks = mddev->raid_disks; 6487 if (mddev->reshape_position == MaxSector) 6488 conf->previous_raid_disks = mddev->raid_disks; 6489 else 6490 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6491 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6492 6493 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6494 GFP_KERNEL); 6495 if (!conf->disks) 6496 goto abort; 6497 6498 conf->mddev = mddev; 6499 6500 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6501 goto abort; 6502 6503 /* We init hash_locks[0] separately to that it can be used 6504 * as the reference lock in the spin_lock_nest_lock() call 6505 * in lock_all_device_hash_locks_irq in order to convince 6506 * lockdep that we know what we are doing. 6507 */ 6508 spin_lock_init(conf->hash_locks); 6509 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6510 spin_lock_init(conf->hash_locks + i); 6511 6512 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6513 INIT_LIST_HEAD(conf->inactive_list + i); 6514 6515 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6516 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6517 6518 conf->level = mddev->new_level; 6519 conf->chunk_sectors = mddev->new_chunk_sectors; 6520 if (raid5_alloc_percpu(conf) != 0) 6521 goto abort; 6522 6523 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6524 6525 rdev_for_each(rdev, mddev) { 6526 raid_disk = rdev->raid_disk; 6527 if (raid_disk >= max_disks 6528 || raid_disk < 0) 6529 continue; 6530 disk = conf->disks + raid_disk; 6531 6532 if (test_bit(Replacement, &rdev->flags)) { 6533 if (disk->replacement) 6534 goto abort; 6535 disk->replacement = rdev; 6536 } else { 6537 if (disk->rdev) 6538 goto abort; 6539 disk->rdev = rdev; 6540 } 6541 6542 if (test_bit(In_sync, &rdev->flags)) { 6543 char b[BDEVNAME_SIZE]; 6544 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 6545 " disk %d\n", 6546 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6547 } else if (rdev->saved_raid_disk != raid_disk) 6548 /* Cannot rely on bitmap to complete recovery */ 6549 conf->fullsync = 1; 6550 } 6551 6552 conf->level = mddev->new_level; 6553 if (conf->level == 6) { 6554 conf->max_degraded = 2; 6555 if (raid6_call.xor_syndrome) 6556 conf->rmw_level = PARITY_ENABLE_RMW; 6557 else 6558 conf->rmw_level = PARITY_DISABLE_RMW; 6559 } else { 6560 conf->max_degraded = 1; 6561 conf->rmw_level = PARITY_ENABLE_RMW; 6562 } 6563 conf->algorithm = mddev->new_layout; 6564 conf->reshape_progress = mddev->reshape_position; 6565 if (conf->reshape_progress != MaxSector) { 6566 conf->prev_chunk_sectors = mddev->chunk_sectors; 6567 conf->prev_algo = mddev->layout; 6568 } else { 6569 conf->prev_chunk_sectors = conf->chunk_sectors; 6570 conf->prev_algo = conf->algorithm; 6571 } 6572 6573 conf->min_nr_stripes = NR_STRIPES; 6574 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6575 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6576 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6577 if (grow_stripes(conf, conf->min_nr_stripes)) { 6578 printk(KERN_ERR 6579 "md/raid:%s: couldn't allocate %dkB for buffers\n", 6580 mdname(mddev), memory); 6581 goto abort; 6582 } else 6583 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 6584 mdname(mddev), memory); 6585 /* 6586 * Losing a stripe head costs more than the time to refill it, 6587 * it reduces the queue depth and so can hurt throughput. 6588 * So set it rather large, scaled by number of devices. 6589 */ 6590 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6591 conf->shrinker.scan_objects = raid5_cache_scan; 6592 conf->shrinker.count_objects = raid5_cache_count; 6593 conf->shrinker.batch = 128; 6594 conf->shrinker.flags = 0; 6595 register_shrinker(&conf->shrinker); 6596 6597 sprintf(pers_name, "raid%d", mddev->new_level); 6598 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6599 if (!conf->thread) { 6600 printk(KERN_ERR 6601 "md/raid:%s: couldn't allocate thread.\n", 6602 mdname(mddev)); 6603 goto abort; 6604 } 6605 6606 return conf; 6607 6608 abort: 6609 if (conf) { 6610 free_conf(conf); 6611 return ERR_PTR(-EIO); 6612 } else 6613 return ERR_PTR(-ENOMEM); 6614 } 6615 6616 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6617 { 6618 switch (algo) { 6619 case ALGORITHM_PARITY_0: 6620 if (raid_disk < max_degraded) 6621 return 1; 6622 break; 6623 case ALGORITHM_PARITY_N: 6624 if (raid_disk >= raid_disks - max_degraded) 6625 return 1; 6626 break; 6627 case ALGORITHM_PARITY_0_6: 6628 if (raid_disk == 0 || 6629 raid_disk == raid_disks - 1) 6630 return 1; 6631 break; 6632 case ALGORITHM_LEFT_ASYMMETRIC_6: 6633 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6634 case ALGORITHM_LEFT_SYMMETRIC_6: 6635 case ALGORITHM_RIGHT_SYMMETRIC_6: 6636 if (raid_disk == raid_disks - 1) 6637 return 1; 6638 } 6639 return 0; 6640 } 6641 6642 static int run(struct mddev *mddev) 6643 { 6644 struct r5conf *conf; 6645 int working_disks = 0; 6646 int dirty_parity_disks = 0; 6647 struct md_rdev *rdev; 6648 sector_t reshape_offset = 0; 6649 int i; 6650 long long min_offset_diff = 0; 6651 int first = 1; 6652 6653 if (mddev->recovery_cp != MaxSector) 6654 printk(KERN_NOTICE "md/raid:%s: not clean" 6655 " -- starting background reconstruction\n", 6656 mdname(mddev)); 6657 6658 rdev_for_each(rdev, mddev) { 6659 long long diff; 6660 if (rdev->raid_disk < 0) 6661 continue; 6662 diff = (rdev->new_data_offset - rdev->data_offset); 6663 if (first) { 6664 min_offset_diff = diff; 6665 first = 0; 6666 } else if (mddev->reshape_backwards && 6667 diff < min_offset_diff) 6668 min_offset_diff = diff; 6669 else if (!mddev->reshape_backwards && 6670 diff > min_offset_diff) 6671 min_offset_diff = diff; 6672 } 6673 6674 if (mddev->reshape_position != MaxSector) { 6675 /* Check that we can continue the reshape. 6676 * Difficulties arise if the stripe we would write to 6677 * next is at or after the stripe we would read from next. 6678 * For a reshape that changes the number of devices, this 6679 * is only possible for a very short time, and mdadm makes 6680 * sure that time appears to have past before assembling 6681 * the array. So we fail if that time hasn't passed. 6682 * For a reshape that keeps the number of devices the same 6683 * mdadm must be monitoring the reshape can keeping the 6684 * critical areas read-only and backed up. It will start 6685 * the array in read-only mode, so we check for that. 6686 */ 6687 sector_t here_new, here_old; 6688 int old_disks; 6689 int max_degraded = (mddev->level == 6 ? 2 : 1); 6690 int chunk_sectors; 6691 int new_data_disks; 6692 6693 if (mddev->new_level != mddev->level) { 6694 printk(KERN_ERR "md/raid:%s: unsupported reshape " 6695 "required - aborting.\n", 6696 mdname(mddev)); 6697 return -EINVAL; 6698 } 6699 old_disks = mddev->raid_disks - mddev->delta_disks; 6700 /* reshape_position must be on a new-stripe boundary, and one 6701 * further up in new geometry must map after here in old 6702 * geometry. 6703 * If the chunk sizes are different, then as we perform reshape 6704 * in units of the largest of the two, reshape_position needs 6705 * be a multiple of the largest chunk size times new data disks. 6706 */ 6707 here_new = mddev->reshape_position; 6708 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 6709 new_data_disks = mddev->raid_disks - max_degraded; 6710 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 6711 printk(KERN_ERR "md/raid:%s: reshape_position not " 6712 "on a stripe boundary\n", mdname(mddev)); 6713 return -EINVAL; 6714 } 6715 reshape_offset = here_new * chunk_sectors; 6716 /* here_new is the stripe we will write to */ 6717 here_old = mddev->reshape_position; 6718 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 6719 /* here_old is the first stripe that we might need to read 6720 * from */ 6721 if (mddev->delta_disks == 0) { 6722 /* We cannot be sure it is safe to start an in-place 6723 * reshape. It is only safe if user-space is monitoring 6724 * and taking constant backups. 6725 * mdadm always starts a situation like this in 6726 * readonly mode so it can take control before 6727 * allowing any writes. So just check for that. 6728 */ 6729 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6730 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6731 /* not really in-place - so OK */; 6732 else if (mddev->ro == 0) { 6733 printk(KERN_ERR "md/raid:%s: in-place reshape " 6734 "must be started in read-only mode " 6735 "- aborting\n", 6736 mdname(mddev)); 6737 return -EINVAL; 6738 } 6739 } else if (mddev->reshape_backwards 6740 ? (here_new * chunk_sectors + min_offset_diff <= 6741 here_old * chunk_sectors) 6742 : (here_new * chunk_sectors >= 6743 here_old * chunk_sectors + (-min_offset_diff))) { 6744 /* Reading from the same stripe as writing to - bad */ 6745 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6746 "auto-recovery - aborting.\n", 6747 mdname(mddev)); 6748 return -EINVAL; 6749 } 6750 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6751 mdname(mddev)); 6752 /* OK, we should be able to continue; */ 6753 } else { 6754 BUG_ON(mddev->level != mddev->new_level); 6755 BUG_ON(mddev->layout != mddev->new_layout); 6756 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6757 BUG_ON(mddev->delta_disks != 0); 6758 } 6759 6760 if (mddev->private == NULL) 6761 conf = setup_conf(mddev); 6762 else 6763 conf = mddev->private; 6764 6765 if (IS_ERR(conf)) 6766 return PTR_ERR(conf); 6767 6768 conf->min_offset_diff = min_offset_diff; 6769 mddev->thread = conf->thread; 6770 conf->thread = NULL; 6771 mddev->private = conf; 6772 6773 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6774 i++) { 6775 rdev = conf->disks[i].rdev; 6776 if (!rdev && conf->disks[i].replacement) { 6777 /* The replacement is all we have yet */ 6778 rdev = conf->disks[i].replacement; 6779 conf->disks[i].replacement = NULL; 6780 clear_bit(Replacement, &rdev->flags); 6781 conf->disks[i].rdev = rdev; 6782 } 6783 if (!rdev) 6784 continue; 6785 if (conf->disks[i].replacement && 6786 conf->reshape_progress != MaxSector) { 6787 /* replacements and reshape simply do not mix. */ 6788 printk(KERN_ERR "md: cannot handle concurrent " 6789 "replacement and reshape.\n"); 6790 goto abort; 6791 } 6792 if (test_bit(In_sync, &rdev->flags)) { 6793 working_disks++; 6794 continue; 6795 } 6796 /* This disc is not fully in-sync. However if it 6797 * just stored parity (beyond the recovery_offset), 6798 * when we don't need to be concerned about the 6799 * array being dirty. 6800 * When reshape goes 'backwards', we never have 6801 * partially completed devices, so we only need 6802 * to worry about reshape going forwards. 6803 */ 6804 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6805 if (mddev->major_version == 0 && 6806 mddev->minor_version > 90) 6807 rdev->recovery_offset = reshape_offset; 6808 6809 if (rdev->recovery_offset < reshape_offset) { 6810 /* We need to check old and new layout */ 6811 if (!only_parity(rdev->raid_disk, 6812 conf->algorithm, 6813 conf->raid_disks, 6814 conf->max_degraded)) 6815 continue; 6816 } 6817 if (!only_parity(rdev->raid_disk, 6818 conf->prev_algo, 6819 conf->previous_raid_disks, 6820 conf->max_degraded)) 6821 continue; 6822 dirty_parity_disks++; 6823 } 6824 6825 /* 6826 * 0 for a fully functional array, 1 or 2 for a degraded array. 6827 */ 6828 mddev->degraded = calc_degraded(conf); 6829 6830 if (has_failed(conf)) { 6831 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6832 " (%d/%d failed)\n", 6833 mdname(mddev), mddev->degraded, conf->raid_disks); 6834 goto abort; 6835 } 6836 6837 /* device size must be a multiple of chunk size */ 6838 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6839 mddev->resync_max_sectors = mddev->dev_sectors; 6840 6841 if (mddev->degraded > dirty_parity_disks && 6842 mddev->recovery_cp != MaxSector) { 6843 if (mddev->ok_start_degraded) 6844 printk(KERN_WARNING 6845 "md/raid:%s: starting dirty degraded array" 6846 " - data corruption possible.\n", 6847 mdname(mddev)); 6848 else { 6849 printk(KERN_ERR 6850 "md/raid:%s: cannot start dirty degraded array.\n", 6851 mdname(mddev)); 6852 goto abort; 6853 } 6854 } 6855 6856 if (mddev->degraded == 0) 6857 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6858 " devices, algorithm %d\n", mdname(mddev), conf->level, 6859 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6860 mddev->new_layout); 6861 else 6862 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6863 " out of %d devices, algorithm %d\n", 6864 mdname(mddev), conf->level, 6865 mddev->raid_disks - mddev->degraded, 6866 mddev->raid_disks, mddev->new_layout); 6867 6868 print_raid5_conf(conf); 6869 6870 if (conf->reshape_progress != MaxSector) { 6871 conf->reshape_safe = conf->reshape_progress; 6872 atomic_set(&conf->reshape_stripes, 0); 6873 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6874 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6875 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6876 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6877 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6878 "reshape"); 6879 } 6880 6881 /* Ok, everything is just fine now */ 6882 if (mddev->to_remove == &raid5_attrs_group) 6883 mddev->to_remove = NULL; 6884 else if (mddev->kobj.sd && 6885 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6886 printk(KERN_WARNING 6887 "raid5: failed to create sysfs attributes for %s\n", 6888 mdname(mddev)); 6889 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6890 6891 if (mddev->queue) { 6892 int chunk_size; 6893 bool discard_supported = true; 6894 /* read-ahead size must cover two whole stripes, which 6895 * is 2 * (datadisks) * chunksize where 'n' is the 6896 * number of raid devices 6897 */ 6898 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6899 int stripe = data_disks * 6900 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6901 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6902 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6903 6904 chunk_size = mddev->chunk_sectors << 9; 6905 blk_queue_io_min(mddev->queue, chunk_size); 6906 blk_queue_io_opt(mddev->queue, chunk_size * 6907 (conf->raid_disks - conf->max_degraded)); 6908 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6909 /* 6910 * We can only discard a whole stripe. It doesn't make sense to 6911 * discard data disk but write parity disk 6912 */ 6913 stripe = stripe * PAGE_SIZE; 6914 /* Round up to power of 2, as discard handling 6915 * currently assumes that */ 6916 while ((stripe-1) & stripe) 6917 stripe = (stripe | (stripe-1)) + 1; 6918 mddev->queue->limits.discard_alignment = stripe; 6919 mddev->queue->limits.discard_granularity = stripe; 6920 /* 6921 * unaligned part of discard request will be ignored, so can't 6922 * guarantee discard_zeroes_data 6923 */ 6924 mddev->queue->limits.discard_zeroes_data = 0; 6925 6926 blk_queue_max_write_same_sectors(mddev->queue, 0); 6927 6928 rdev_for_each(rdev, mddev) { 6929 disk_stack_limits(mddev->gendisk, rdev->bdev, 6930 rdev->data_offset << 9); 6931 disk_stack_limits(mddev->gendisk, rdev->bdev, 6932 rdev->new_data_offset << 9); 6933 /* 6934 * discard_zeroes_data is required, otherwise data 6935 * could be lost. Consider a scenario: discard a stripe 6936 * (the stripe could be inconsistent if 6937 * discard_zeroes_data is 0); write one disk of the 6938 * stripe (the stripe could be inconsistent again 6939 * depending on which disks are used to calculate 6940 * parity); the disk is broken; The stripe data of this 6941 * disk is lost. 6942 */ 6943 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 6944 !bdev_get_queue(rdev->bdev)-> 6945 limits.discard_zeroes_data) 6946 discard_supported = false; 6947 /* Unfortunately, discard_zeroes_data is not currently 6948 * a guarantee - just a hint. So we only allow DISCARD 6949 * if the sysadmin has confirmed that only safe devices 6950 * are in use by setting a module parameter. 6951 */ 6952 if (!devices_handle_discard_safely) { 6953 if (discard_supported) { 6954 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 6955 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 6956 } 6957 discard_supported = false; 6958 } 6959 } 6960 6961 if (discard_supported && 6962 mddev->queue->limits.max_discard_sectors >= stripe && 6963 mddev->queue->limits.discard_granularity >= stripe) 6964 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 6965 mddev->queue); 6966 else 6967 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 6968 mddev->queue); 6969 } 6970 6971 return 0; 6972 abort: 6973 md_unregister_thread(&mddev->thread); 6974 print_raid5_conf(conf); 6975 free_conf(conf); 6976 mddev->private = NULL; 6977 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 6978 return -EIO; 6979 } 6980 6981 static void raid5_free(struct mddev *mddev, void *priv) 6982 { 6983 struct r5conf *conf = priv; 6984 6985 free_conf(conf); 6986 mddev->to_remove = &raid5_attrs_group; 6987 } 6988 6989 static void status(struct seq_file *seq, struct mddev *mddev) 6990 { 6991 struct r5conf *conf = mddev->private; 6992 int i; 6993 6994 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 6995 conf->chunk_sectors / 2, mddev->layout); 6996 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 6997 for (i = 0; i < conf->raid_disks; i++) 6998 seq_printf (seq, "%s", 6999 conf->disks[i].rdev && 7000 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 7001 seq_printf (seq, "]"); 7002 } 7003 7004 static void print_raid5_conf (struct r5conf *conf) 7005 { 7006 int i; 7007 struct disk_info *tmp; 7008 7009 printk(KERN_DEBUG "RAID conf printout:\n"); 7010 if (!conf) { 7011 printk("(conf==NULL)\n"); 7012 return; 7013 } 7014 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 7015 conf->raid_disks, 7016 conf->raid_disks - conf->mddev->degraded); 7017 7018 for (i = 0; i < conf->raid_disks; i++) { 7019 char b[BDEVNAME_SIZE]; 7020 tmp = conf->disks + i; 7021 if (tmp->rdev) 7022 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 7023 i, !test_bit(Faulty, &tmp->rdev->flags), 7024 bdevname(tmp->rdev->bdev, b)); 7025 } 7026 } 7027 7028 static int raid5_spare_active(struct mddev *mddev) 7029 { 7030 int i; 7031 struct r5conf *conf = mddev->private; 7032 struct disk_info *tmp; 7033 int count = 0; 7034 unsigned long flags; 7035 7036 for (i = 0; i < conf->raid_disks; i++) { 7037 tmp = conf->disks + i; 7038 if (tmp->replacement 7039 && tmp->replacement->recovery_offset == MaxSector 7040 && !test_bit(Faulty, &tmp->replacement->flags) 7041 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7042 /* Replacement has just become active. */ 7043 if (!tmp->rdev 7044 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7045 count++; 7046 if (tmp->rdev) { 7047 /* Replaced device not technically faulty, 7048 * but we need to be sure it gets removed 7049 * and never re-added. 7050 */ 7051 set_bit(Faulty, &tmp->rdev->flags); 7052 sysfs_notify_dirent_safe( 7053 tmp->rdev->sysfs_state); 7054 } 7055 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7056 } else if (tmp->rdev 7057 && tmp->rdev->recovery_offset == MaxSector 7058 && !test_bit(Faulty, &tmp->rdev->flags) 7059 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7060 count++; 7061 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7062 } 7063 } 7064 spin_lock_irqsave(&conf->device_lock, flags); 7065 mddev->degraded = calc_degraded(conf); 7066 spin_unlock_irqrestore(&conf->device_lock, flags); 7067 print_raid5_conf(conf); 7068 return count; 7069 } 7070 7071 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7072 { 7073 struct r5conf *conf = mddev->private; 7074 int err = 0; 7075 int number = rdev->raid_disk; 7076 struct md_rdev **rdevp; 7077 struct disk_info *p = conf->disks + number; 7078 7079 print_raid5_conf(conf); 7080 if (rdev == p->rdev) 7081 rdevp = &p->rdev; 7082 else if (rdev == p->replacement) 7083 rdevp = &p->replacement; 7084 else 7085 return 0; 7086 7087 if (number >= conf->raid_disks && 7088 conf->reshape_progress == MaxSector) 7089 clear_bit(In_sync, &rdev->flags); 7090 7091 if (test_bit(In_sync, &rdev->flags) || 7092 atomic_read(&rdev->nr_pending)) { 7093 err = -EBUSY; 7094 goto abort; 7095 } 7096 /* Only remove non-faulty devices if recovery 7097 * isn't possible. 7098 */ 7099 if (!test_bit(Faulty, &rdev->flags) && 7100 mddev->recovery_disabled != conf->recovery_disabled && 7101 !has_failed(conf) && 7102 (!p->replacement || p->replacement == rdev) && 7103 number < conf->raid_disks) { 7104 err = -EBUSY; 7105 goto abort; 7106 } 7107 *rdevp = NULL; 7108 synchronize_rcu(); 7109 if (atomic_read(&rdev->nr_pending)) { 7110 /* lost the race, try later */ 7111 err = -EBUSY; 7112 *rdevp = rdev; 7113 } else if (p->replacement) { 7114 /* We must have just cleared 'rdev' */ 7115 p->rdev = p->replacement; 7116 clear_bit(Replacement, &p->replacement->flags); 7117 smp_mb(); /* Make sure other CPUs may see both as identical 7118 * but will never see neither - if they are careful 7119 */ 7120 p->replacement = NULL; 7121 clear_bit(WantReplacement, &rdev->flags); 7122 } else 7123 /* We might have just removed the Replacement as faulty- 7124 * clear the bit just in case 7125 */ 7126 clear_bit(WantReplacement, &rdev->flags); 7127 abort: 7128 7129 print_raid5_conf(conf); 7130 return err; 7131 } 7132 7133 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7134 { 7135 struct r5conf *conf = mddev->private; 7136 int err = -EEXIST; 7137 int disk; 7138 struct disk_info *p; 7139 int first = 0; 7140 int last = conf->raid_disks - 1; 7141 7142 if (mddev->recovery_disabled == conf->recovery_disabled) 7143 return -EBUSY; 7144 7145 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7146 /* no point adding a device */ 7147 return -EINVAL; 7148 7149 if (rdev->raid_disk >= 0) 7150 first = last = rdev->raid_disk; 7151 7152 /* 7153 * find the disk ... but prefer rdev->saved_raid_disk 7154 * if possible. 7155 */ 7156 if (rdev->saved_raid_disk >= 0 && 7157 rdev->saved_raid_disk >= first && 7158 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7159 first = rdev->saved_raid_disk; 7160 7161 for (disk = first; disk <= last; disk++) { 7162 p = conf->disks + disk; 7163 if (p->rdev == NULL) { 7164 clear_bit(In_sync, &rdev->flags); 7165 rdev->raid_disk = disk; 7166 err = 0; 7167 if (rdev->saved_raid_disk != disk) 7168 conf->fullsync = 1; 7169 rcu_assign_pointer(p->rdev, rdev); 7170 goto out; 7171 } 7172 } 7173 for (disk = first; disk <= last; disk++) { 7174 p = conf->disks + disk; 7175 if (test_bit(WantReplacement, &p->rdev->flags) && 7176 p->replacement == NULL) { 7177 clear_bit(In_sync, &rdev->flags); 7178 set_bit(Replacement, &rdev->flags); 7179 rdev->raid_disk = disk; 7180 err = 0; 7181 conf->fullsync = 1; 7182 rcu_assign_pointer(p->replacement, rdev); 7183 break; 7184 } 7185 } 7186 out: 7187 print_raid5_conf(conf); 7188 return err; 7189 } 7190 7191 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7192 { 7193 /* no resync is happening, and there is enough space 7194 * on all devices, so we can resize. 7195 * We need to make sure resync covers any new space. 7196 * If the array is shrinking we should possibly wait until 7197 * any io in the removed space completes, but it hardly seems 7198 * worth it. 7199 */ 7200 sector_t newsize; 7201 struct r5conf *conf = mddev->private; 7202 7203 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7204 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7205 if (mddev->external_size && 7206 mddev->array_sectors > newsize) 7207 return -EINVAL; 7208 if (mddev->bitmap) { 7209 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7210 if (ret) 7211 return ret; 7212 } 7213 md_set_array_sectors(mddev, newsize); 7214 set_capacity(mddev->gendisk, mddev->array_sectors); 7215 revalidate_disk(mddev->gendisk); 7216 if (sectors > mddev->dev_sectors && 7217 mddev->recovery_cp > mddev->dev_sectors) { 7218 mddev->recovery_cp = mddev->dev_sectors; 7219 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7220 } 7221 mddev->dev_sectors = sectors; 7222 mddev->resync_max_sectors = sectors; 7223 return 0; 7224 } 7225 7226 static int check_stripe_cache(struct mddev *mddev) 7227 { 7228 /* Can only proceed if there are plenty of stripe_heads. 7229 * We need a minimum of one full stripe,, and for sensible progress 7230 * it is best to have about 4 times that. 7231 * If we require 4 times, then the default 256 4K stripe_heads will 7232 * allow for chunk sizes up to 256K, which is probably OK. 7233 * If the chunk size is greater, user-space should request more 7234 * stripe_heads first. 7235 */ 7236 struct r5conf *conf = mddev->private; 7237 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7238 > conf->min_nr_stripes || 7239 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7240 > conf->min_nr_stripes) { 7241 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7242 mdname(mddev), 7243 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7244 / STRIPE_SIZE)*4); 7245 return 0; 7246 } 7247 return 1; 7248 } 7249 7250 static int check_reshape(struct mddev *mddev) 7251 { 7252 struct r5conf *conf = mddev->private; 7253 7254 if (mddev->delta_disks == 0 && 7255 mddev->new_layout == mddev->layout && 7256 mddev->new_chunk_sectors == mddev->chunk_sectors) 7257 return 0; /* nothing to do */ 7258 if (has_failed(conf)) 7259 return -EINVAL; 7260 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7261 /* We might be able to shrink, but the devices must 7262 * be made bigger first. 7263 * For raid6, 4 is the minimum size. 7264 * Otherwise 2 is the minimum 7265 */ 7266 int min = 2; 7267 if (mddev->level == 6) 7268 min = 4; 7269 if (mddev->raid_disks + mddev->delta_disks < min) 7270 return -EINVAL; 7271 } 7272 7273 if (!check_stripe_cache(mddev)) 7274 return -ENOSPC; 7275 7276 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7277 mddev->delta_disks > 0) 7278 if (resize_chunks(conf, 7279 conf->previous_raid_disks 7280 + max(0, mddev->delta_disks), 7281 max(mddev->new_chunk_sectors, 7282 mddev->chunk_sectors) 7283 ) < 0) 7284 return -ENOMEM; 7285 return resize_stripes(conf, (conf->previous_raid_disks 7286 + mddev->delta_disks)); 7287 } 7288 7289 static int raid5_start_reshape(struct mddev *mddev) 7290 { 7291 struct r5conf *conf = mddev->private; 7292 struct md_rdev *rdev; 7293 int spares = 0; 7294 unsigned long flags; 7295 7296 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7297 return -EBUSY; 7298 7299 if (!check_stripe_cache(mddev)) 7300 return -ENOSPC; 7301 7302 if (has_failed(conf)) 7303 return -EINVAL; 7304 7305 rdev_for_each(rdev, mddev) { 7306 if (!test_bit(In_sync, &rdev->flags) 7307 && !test_bit(Faulty, &rdev->flags)) 7308 spares++; 7309 } 7310 7311 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7312 /* Not enough devices even to make a degraded array 7313 * of that size 7314 */ 7315 return -EINVAL; 7316 7317 /* Refuse to reduce size of the array. Any reductions in 7318 * array size must be through explicit setting of array_size 7319 * attribute. 7320 */ 7321 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7322 < mddev->array_sectors) { 7323 printk(KERN_ERR "md/raid:%s: array size must be reduced " 7324 "before number of disks\n", mdname(mddev)); 7325 return -EINVAL; 7326 } 7327 7328 atomic_set(&conf->reshape_stripes, 0); 7329 spin_lock_irq(&conf->device_lock); 7330 write_seqcount_begin(&conf->gen_lock); 7331 conf->previous_raid_disks = conf->raid_disks; 7332 conf->raid_disks += mddev->delta_disks; 7333 conf->prev_chunk_sectors = conf->chunk_sectors; 7334 conf->chunk_sectors = mddev->new_chunk_sectors; 7335 conf->prev_algo = conf->algorithm; 7336 conf->algorithm = mddev->new_layout; 7337 conf->generation++; 7338 /* Code that selects data_offset needs to see the generation update 7339 * if reshape_progress has been set - so a memory barrier needed. 7340 */ 7341 smp_mb(); 7342 if (mddev->reshape_backwards) 7343 conf->reshape_progress = raid5_size(mddev, 0, 0); 7344 else 7345 conf->reshape_progress = 0; 7346 conf->reshape_safe = conf->reshape_progress; 7347 write_seqcount_end(&conf->gen_lock); 7348 spin_unlock_irq(&conf->device_lock); 7349 7350 /* Now make sure any requests that proceeded on the assumption 7351 * the reshape wasn't running - like Discard or Read - have 7352 * completed. 7353 */ 7354 mddev_suspend(mddev); 7355 mddev_resume(mddev); 7356 7357 /* Add some new drives, as many as will fit. 7358 * We know there are enough to make the newly sized array work. 7359 * Don't add devices if we are reducing the number of 7360 * devices in the array. This is because it is not possible 7361 * to correctly record the "partially reconstructed" state of 7362 * such devices during the reshape and confusion could result. 7363 */ 7364 if (mddev->delta_disks >= 0) { 7365 rdev_for_each(rdev, mddev) 7366 if (rdev->raid_disk < 0 && 7367 !test_bit(Faulty, &rdev->flags)) { 7368 if (raid5_add_disk(mddev, rdev) == 0) { 7369 if (rdev->raid_disk 7370 >= conf->previous_raid_disks) 7371 set_bit(In_sync, &rdev->flags); 7372 else 7373 rdev->recovery_offset = 0; 7374 7375 if (sysfs_link_rdev(mddev, rdev)) 7376 /* Failure here is OK */; 7377 } 7378 } else if (rdev->raid_disk >= conf->previous_raid_disks 7379 && !test_bit(Faulty, &rdev->flags)) { 7380 /* This is a spare that was manually added */ 7381 set_bit(In_sync, &rdev->flags); 7382 } 7383 7384 /* When a reshape changes the number of devices, 7385 * ->degraded is measured against the larger of the 7386 * pre and post number of devices. 7387 */ 7388 spin_lock_irqsave(&conf->device_lock, flags); 7389 mddev->degraded = calc_degraded(conf); 7390 spin_unlock_irqrestore(&conf->device_lock, flags); 7391 } 7392 mddev->raid_disks = conf->raid_disks; 7393 mddev->reshape_position = conf->reshape_progress; 7394 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7395 7396 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7397 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7398 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7399 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7400 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7401 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7402 "reshape"); 7403 if (!mddev->sync_thread) { 7404 mddev->recovery = 0; 7405 spin_lock_irq(&conf->device_lock); 7406 write_seqcount_begin(&conf->gen_lock); 7407 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7408 mddev->new_chunk_sectors = 7409 conf->chunk_sectors = conf->prev_chunk_sectors; 7410 mddev->new_layout = conf->algorithm = conf->prev_algo; 7411 rdev_for_each(rdev, mddev) 7412 rdev->new_data_offset = rdev->data_offset; 7413 smp_wmb(); 7414 conf->generation --; 7415 conf->reshape_progress = MaxSector; 7416 mddev->reshape_position = MaxSector; 7417 write_seqcount_end(&conf->gen_lock); 7418 spin_unlock_irq(&conf->device_lock); 7419 return -EAGAIN; 7420 } 7421 conf->reshape_checkpoint = jiffies; 7422 md_wakeup_thread(mddev->sync_thread); 7423 md_new_event(mddev); 7424 return 0; 7425 } 7426 7427 /* This is called from the reshape thread and should make any 7428 * changes needed in 'conf' 7429 */ 7430 static void end_reshape(struct r5conf *conf) 7431 { 7432 7433 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7434 struct md_rdev *rdev; 7435 7436 spin_lock_irq(&conf->device_lock); 7437 conf->previous_raid_disks = conf->raid_disks; 7438 rdev_for_each(rdev, conf->mddev) 7439 rdev->data_offset = rdev->new_data_offset; 7440 smp_wmb(); 7441 conf->reshape_progress = MaxSector; 7442 conf->mddev->reshape_position = MaxSector; 7443 spin_unlock_irq(&conf->device_lock); 7444 wake_up(&conf->wait_for_overlap); 7445 7446 /* read-ahead size must cover two whole stripes, which is 7447 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7448 */ 7449 if (conf->mddev->queue) { 7450 int data_disks = conf->raid_disks - conf->max_degraded; 7451 int stripe = data_disks * ((conf->chunk_sectors << 9) 7452 / PAGE_SIZE); 7453 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 7454 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 7455 } 7456 } 7457 } 7458 7459 /* This is called from the raid5d thread with mddev_lock held. 7460 * It makes config changes to the device. 7461 */ 7462 static void raid5_finish_reshape(struct mddev *mddev) 7463 { 7464 struct r5conf *conf = mddev->private; 7465 7466 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7467 7468 if (mddev->delta_disks > 0) { 7469 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7470 set_capacity(mddev->gendisk, mddev->array_sectors); 7471 revalidate_disk(mddev->gendisk); 7472 } else { 7473 int d; 7474 spin_lock_irq(&conf->device_lock); 7475 mddev->degraded = calc_degraded(conf); 7476 spin_unlock_irq(&conf->device_lock); 7477 for (d = conf->raid_disks ; 7478 d < conf->raid_disks - mddev->delta_disks; 7479 d++) { 7480 struct md_rdev *rdev = conf->disks[d].rdev; 7481 if (rdev) 7482 clear_bit(In_sync, &rdev->flags); 7483 rdev = conf->disks[d].replacement; 7484 if (rdev) 7485 clear_bit(In_sync, &rdev->flags); 7486 } 7487 } 7488 mddev->layout = conf->algorithm; 7489 mddev->chunk_sectors = conf->chunk_sectors; 7490 mddev->reshape_position = MaxSector; 7491 mddev->delta_disks = 0; 7492 mddev->reshape_backwards = 0; 7493 } 7494 } 7495 7496 static void raid5_quiesce(struct mddev *mddev, int state) 7497 { 7498 struct r5conf *conf = mddev->private; 7499 7500 switch(state) { 7501 case 2: /* resume for a suspend */ 7502 wake_up(&conf->wait_for_overlap); 7503 break; 7504 7505 case 1: /* stop all writes */ 7506 lock_all_device_hash_locks_irq(conf); 7507 /* '2' tells resync/reshape to pause so that all 7508 * active stripes can drain 7509 */ 7510 conf->quiesce = 2; 7511 wait_event_cmd(conf->wait_for_quiescent, 7512 atomic_read(&conf->active_stripes) == 0 && 7513 atomic_read(&conf->active_aligned_reads) == 0, 7514 unlock_all_device_hash_locks_irq(conf), 7515 lock_all_device_hash_locks_irq(conf)); 7516 conf->quiesce = 1; 7517 unlock_all_device_hash_locks_irq(conf); 7518 /* allow reshape to continue */ 7519 wake_up(&conf->wait_for_overlap); 7520 break; 7521 7522 case 0: /* re-enable writes */ 7523 lock_all_device_hash_locks_irq(conf); 7524 conf->quiesce = 0; 7525 wake_up(&conf->wait_for_quiescent); 7526 wake_up(&conf->wait_for_overlap); 7527 unlock_all_device_hash_locks_irq(conf); 7528 break; 7529 } 7530 } 7531 7532 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7533 { 7534 struct r0conf *raid0_conf = mddev->private; 7535 sector_t sectors; 7536 7537 /* for raid0 takeover only one zone is supported */ 7538 if (raid0_conf->nr_strip_zones > 1) { 7539 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7540 mdname(mddev)); 7541 return ERR_PTR(-EINVAL); 7542 } 7543 7544 sectors = raid0_conf->strip_zone[0].zone_end; 7545 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7546 mddev->dev_sectors = sectors; 7547 mddev->new_level = level; 7548 mddev->new_layout = ALGORITHM_PARITY_N; 7549 mddev->new_chunk_sectors = mddev->chunk_sectors; 7550 mddev->raid_disks += 1; 7551 mddev->delta_disks = 1; 7552 /* make sure it will be not marked as dirty */ 7553 mddev->recovery_cp = MaxSector; 7554 7555 return setup_conf(mddev); 7556 } 7557 7558 static void *raid5_takeover_raid1(struct mddev *mddev) 7559 { 7560 int chunksect; 7561 7562 if (mddev->raid_disks != 2 || 7563 mddev->degraded > 1) 7564 return ERR_PTR(-EINVAL); 7565 7566 /* Should check if there are write-behind devices? */ 7567 7568 chunksect = 64*2; /* 64K by default */ 7569 7570 /* The array must be an exact multiple of chunksize */ 7571 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7572 chunksect >>= 1; 7573 7574 if ((chunksect<<9) < STRIPE_SIZE) 7575 /* array size does not allow a suitable chunk size */ 7576 return ERR_PTR(-EINVAL); 7577 7578 mddev->new_level = 5; 7579 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7580 mddev->new_chunk_sectors = chunksect; 7581 7582 return setup_conf(mddev); 7583 } 7584 7585 static void *raid5_takeover_raid6(struct mddev *mddev) 7586 { 7587 int new_layout; 7588 7589 switch (mddev->layout) { 7590 case ALGORITHM_LEFT_ASYMMETRIC_6: 7591 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7592 break; 7593 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7594 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7595 break; 7596 case ALGORITHM_LEFT_SYMMETRIC_6: 7597 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7598 break; 7599 case ALGORITHM_RIGHT_SYMMETRIC_6: 7600 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7601 break; 7602 case ALGORITHM_PARITY_0_6: 7603 new_layout = ALGORITHM_PARITY_0; 7604 break; 7605 case ALGORITHM_PARITY_N: 7606 new_layout = ALGORITHM_PARITY_N; 7607 break; 7608 default: 7609 return ERR_PTR(-EINVAL); 7610 } 7611 mddev->new_level = 5; 7612 mddev->new_layout = new_layout; 7613 mddev->delta_disks = -1; 7614 mddev->raid_disks -= 1; 7615 return setup_conf(mddev); 7616 } 7617 7618 static int raid5_check_reshape(struct mddev *mddev) 7619 { 7620 /* For a 2-drive array, the layout and chunk size can be changed 7621 * immediately as not restriping is needed. 7622 * For larger arrays we record the new value - after validation 7623 * to be used by a reshape pass. 7624 */ 7625 struct r5conf *conf = mddev->private; 7626 int new_chunk = mddev->new_chunk_sectors; 7627 7628 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 7629 return -EINVAL; 7630 if (new_chunk > 0) { 7631 if (!is_power_of_2(new_chunk)) 7632 return -EINVAL; 7633 if (new_chunk < (PAGE_SIZE>>9)) 7634 return -EINVAL; 7635 if (mddev->array_sectors & (new_chunk-1)) 7636 /* not factor of array size */ 7637 return -EINVAL; 7638 } 7639 7640 /* They look valid */ 7641 7642 if (mddev->raid_disks == 2) { 7643 /* can make the change immediately */ 7644 if (mddev->new_layout >= 0) { 7645 conf->algorithm = mddev->new_layout; 7646 mddev->layout = mddev->new_layout; 7647 } 7648 if (new_chunk > 0) { 7649 conf->chunk_sectors = new_chunk ; 7650 mddev->chunk_sectors = new_chunk; 7651 } 7652 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7653 md_wakeup_thread(mddev->thread); 7654 } 7655 return check_reshape(mddev); 7656 } 7657 7658 static int raid6_check_reshape(struct mddev *mddev) 7659 { 7660 int new_chunk = mddev->new_chunk_sectors; 7661 7662 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 7663 return -EINVAL; 7664 if (new_chunk > 0) { 7665 if (!is_power_of_2(new_chunk)) 7666 return -EINVAL; 7667 if (new_chunk < (PAGE_SIZE >> 9)) 7668 return -EINVAL; 7669 if (mddev->array_sectors & (new_chunk-1)) 7670 /* not factor of array size */ 7671 return -EINVAL; 7672 } 7673 7674 /* They look valid */ 7675 return check_reshape(mddev); 7676 } 7677 7678 static void *raid5_takeover(struct mddev *mddev) 7679 { 7680 /* raid5 can take over: 7681 * raid0 - if there is only one strip zone - make it a raid4 layout 7682 * raid1 - if there are two drives. We need to know the chunk size 7683 * raid4 - trivial - just use a raid4 layout. 7684 * raid6 - Providing it is a *_6 layout 7685 */ 7686 if (mddev->level == 0) 7687 return raid45_takeover_raid0(mddev, 5); 7688 if (mddev->level == 1) 7689 return raid5_takeover_raid1(mddev); 7690 if (mddev->level == 4) { 7691 mddev->new_layout = ALGORITHM_PARITY_N; 7692 mddev->new_level = 5; 7693 return setup_conf(mddev); 7694 } 7695 if (mddev->level == 6) 7696 return raid5_takeover_raid6(mddev); 7697 7698 return ERR_PTR(-EINVAL); 7699 } 7700 7701 static void *raid4_takeover(struct mddev *mddev) 7702 { 7703 /* raid4 can take over: 7704 * raid0 - if there is only one strip zone 7705 * raid5 - if layout is right 7706 */ 7707 if (mddev->level == 0) 7708 return raid45_takeover_raid0(mddev, 4); 7709 if (mddev->level == 5 && 7710 mddev->layout == ALGORITHM_PARITY_N) { 7711 mddev->new_layout = 0; 7712 mddev->new_level = 4; 7713 return setup_conf(mddev); 7714 } 7715 return ERR_PTR(-EINVAL); 7716 } 7717 7718 static struct md_personality raid5_personality; 7719 7720 static void *raid6_takeover(struct mddev *mddev) 7721 { 7722 /* Currently can only take over a raid5. We map the 7723 * personality to an equivalent raid6 personality 7724 * with the Q block at the end. 7725 */ 7726 int new_layout; 7727 7728 if (mddev->pers != &raid5_personality) 7729 return ERR_PTR(-EINVAL); 7730 if (mddev->degraded > 1) 7731 return ERR_PTR(-EINVAL); 7732 if (mddev->raid_disks > 253) 7733 return ERR_PTR(-EINVAL); 7734 if (mddev->raid_disks < 3) 7735 return ERR_PTR(-EINVAL); 7736 7737 switch (mddev->layout) { 7738 case ALGORITHM_LEFT_ASYMMETRIC: 7739 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7740 break; 7741 case ALGORITHM_RIGHT_ASYMMETRIC: 7742 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7743 break; 7744 case ALGORITHM_LEFT_SYMMETRIC: 7745 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7746 break; 7747 case ALGORITHM_RIGHT_SYMMETRIC: 7748 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7749 break; 7750 case ALGORITHM_PARITY_0: 7751 new_layout = ALGORITHM_PARITY_0_6; 7752 break; 7753 case ALGORITHM_PARITY_N: 7754 new_layout = ALGORITHM_PARITY_N; 7755 break; 7756 default: 7757 return ERR_PTR(-EINVAL); 7758 } 7759 mddev->new_level = 6; 7760 mddev->new_layout = new_layout; 7761 mddev->delta_disks = 1; 7762 mddev->raid_disks += 1; 7763 return setup_conf(mddev); 7764 } 7765 7766 static struct md_personality raid6_personality = 7767 { 7768 .name = "raid6", 7769 .level = 6, 7770 .owner = THIS_MODULE, 7771 .make_request = make_request, 7772 .run = run, 7773 .free = raid5_free, 7774 .status = status, 7775 .error_handler = error, 7776 .hot_add_disk = raid5_add_disk, 7777 .hot_remove_disk= raid5_remove_disk, 7778 .spare_active = raid5_spare_active, 7779 .sync_request = sync_request, 7780 .resize = raid5_resize, 7781 .size = raid5_size, 7782 .check_reshape = raid6_check_reshape, 7783 .start_reshape = raid5_start_reshape, 7784 .finish_reshape = raid5_finish_reshape, 7785 .quiesce = raid5_quiesce, 7786 .takeover = raid6_takeover, 7787 .congested = raid5_congested, 7788 }; 7789 static struct md_personality raid5_personality = 7790 { 7791 .name = "raid5", 7792 .level = 5, 7793 .owner = THIS_MODULE, 7794 .make_request = make_request, 7795 .run = run, 7796 .free = raid5_free, 7797 .status = status, 7798 .error_handler = error, 7799 .hot_add_disk = raid5_add_disk, 7800 .hot_remove_disk= raid5_remove_disk, 7801 .spare_active = raid5_spare_active, 7802 .sync_request = sync_request, 7803 .resize = raid5_resize, 7804 .size = raid5_size, 7805 .check_reshape = raid5_check_reshape, 7806 .start_reshape = raid5_start_reshape, 7807 .finish_reshape = raid5_finish_reshape, 7808 .quiesce = raid5_quiesce, 7809 .takeover = raid5_takeover, 7810 .congested = raid5_congested, 7811 }; 7812 7813 static struct md_personality raid4_personality = 7814 { 7815 .name = "raid4", 7816 .level = 4, 7817 .owner = THIS_MODULE, 7818 .make_request = make_request, 7819 .run = run, 7820 .free = raid5_free, 7821 .status = status, 7822 .error_handler = error, 7823 .hot_add_disk = raid5_add_disk, 7824 .hot_remove_disk= raid5_remove_disk, 7825 .spare_active = raid5_spare_active, 7826 .sync_request = sync_request, 7827 .resize = raid5_resize, 7828 .size = raid5_size, 7829 .check_reshape = raid5_check_reshape, 7830 .start_reshape = raid5_start_reshape, 7831 .finish_reshape = raid5_finish_reshape, 7832 .quiesce = raid5_quiesce, 7833 .takeover = raid4_takeover, 7834 .congested = raid5_congested, 7835 }; 7836 7837 static int __init raid5_init(void) 7838 { 7839 raid5_wq = alloc_workqueue("raid5wq", 7840 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7841 if (!raid5_wq) 7842 return -ENOMEM; 7843 register_md_personality(&raid6_personality); 7844 register_md_personality(&raid5_personality); 7845 register_md_personality(&raid4_personality); 7846 return 0; 7847 } 7848 7849 static void raid5_exit(void) 7850 { 7851 unregister_md_personality(&raid6_personality); 7852 unregister_md_personality(&raid5_personality); 7853 unregister_md_personality(&raid4_personality); 7854 destroy_workqueue(raid5_wq); 7855 } 7856 7857 module_init(raid5_init); 7858 module_exit(raid5_exit); 7859 MODULE_LICENSE("GPL"); 7860 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7861 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7862 MODULE_ALIAS("md-raid5"); 7863 MODULE_ALIAS("md-raid4"); 7864 MODULE_ALIAS("md-level-5"); 7865 MODULE_ALIAS("md-level-4"); 7866 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7867 MODULE_ALIAS("md-raid6"); 7868 MODULE_ALIAS("md-level-6"); 7869 7870 /* This used to be two separate modules, they were: */ 7871 MODULE_ALIAS("raid5"); 7872 MODULE_ALIAS("raid6"); 7873