1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 static bool devices_handle_discard_safely = false; 65 module_param(devices_handle_discard_safely, bool, 0644); 66 MODULE_PARM_DESC(devices_handle_discard_safely, 67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 68 static struct workqueue_struct *raid5_wq; 69 70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 71 { 72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 73 return &conf->stripe_hashtbl[hash]; 74 } 75 76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 77 { 78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 79 } 80 81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 82 { 83 spin_lock_irq(conf->hash_locks + hash); 84 spin_lock(&conf->device_lock); 85 } 86 87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 88 { 89 spin_unlock(&conf->device_lock); 90 spin_unlock_irq(conf->hash_locks + hash); 91 } 92 93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 94 { 95 int i; 96 spin_lock_irq(conf->hash_locks); 97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 99 spin_lock(&conf->device_lock); 100 } 101 102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 103 { 104 int i; 105 spin_unlock(&conf->device_lock); 106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 107 spin_unlock(conf->hash_locks + i); 108 spin_unlock_irq(conf->hash_locks); 109 } 110 111 /* Find first data disk in a raid6 stripe */ 112 static inline int raid6_d0(struct stripe_head *sh) 113 { 114 if (sh->ddf_layout) 115 /* ddf always start from first device */ 116 return 0; 117 /* md starts just after Q block */ 118 if (sh->qd_idx == sh->disks - 1) 119 return 0; 120 else 121 return sh->qd_idx + 1; 122 } 123 static inline int raid6_next_disk(int disk, int raid_disks) 124 { 125 disk++; 126 return (disk < raid_disks) ? disk : 0; 127 } 128 129 /* When walking through the disks in a raid5, starting at raid6_d0, 130 * We need to map each disk to a 'slot', where the data disks are slot 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 132 * is raid_disks-1. This help does that mapping. 133 */ 134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 135 int *count, int syndrome_disks) 136 { 137 int slot = *count; 138 139 if (sh->ddf_layout) 140 (*count)++; 141 if (idx == sh->pd_idx) 142 return syndrome_disks; 143 if (idx == sh->qd_idx) 144 return syndrome_disks + 1; 145 if (!sh->ddf_layout) 146 (*count)++; 147 return slot; 148 } 149 150 static void print_raid5_conf (struct r5conf *conf); 151 152 static int stripe_operations_active(struct stripe_head *sh) 153 { 154 return sh->check_state || sh->reconstruct_state || 155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 156 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 157 } 158 159 static bool stripe_is_lowprio(struct stripe_head *sh) 160 { 161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 163 !test_bit(STRIPE_R5C_CACHING, &sh->state); 164 } 165 166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 167 { 168 struct r5conf *conf = sh->raid_conf; 169 struct r5worker_group *group; 170 int thread_cnt; 171 int i, cpu = sh->cpu; 172 173 if (!cpu_online(cpu)) { 174 cpu = cpumask_any(cpu_online_mask); 175 sh->cpu = cpu; 176 } 177 178 if (list_empty(&sh->lru)) { 179 struct r5worker_group *group; 180 group = conf->worker_groups + cpu_to_group(cpu); 181 if (stripe_is_lowprio(sh)) 182 list_add_tail(&sh->lru, &group->loprio_list); 183 else 184 list_add_tail(&sh->lru, &group->handle_list); 185 group->stripes_cnt++; 186 sh->group = group; 187 } 188 189 if (conf->worker_cnt_per_group == 0) { 190 md_wakeup_thread(conf->mddev->thread); 191 return; 192 } 193 194 group = conf->worker_groups + cpu_to_group(sh->cpu); 195 196 group->workers[0].working = true; 197 /* at least one worker should run to avoid race */ 198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 199 200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 201 /* wakeup more workers */ 202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 203 if (group->workers[i].working == false) { 204 group->workers[i].working = true; 205 queue_work_on(sh->cpu, raid5_wq, 206 &group->workers[i].work); 207 thread_cnt--; 208 } 209 } 210 } 211 212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 213 struct list_head *temp_inactive_list) 214 { 215 int i; 216 int injournal = 0; /* number of date pages with R5_InJournal */ 217 218 BUG_ON(!list_empty(&sh->lru)); 219 BUG_ON(atomic_read(&conf->active_stripes)==0); 220 221 if (r5c_is_writeback(conf->log)) 222 for (i = sh->disks; i--; ) 223 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 224 injournal++; 225 /* 226 * In the following cases, the stripe cannot be released to cached 227 * lists. Therefore, we make the stripe write out and set 228 * STRIPE_HANDLE: 229 * 1. when quiesce in r5c write back; 230 * 2. when resync is requested fot the stripe. 231 */ 232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 233 (conf->quiesce && r5c_is_writeback(conf->log) && 234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 235 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 236 r5c_make_stripe_write_out(sh); 237 set_bit(STRIPE_HANDLE, &sh->state); 238 } 239 240 if (test_bit(STRIPE_HANDLE, &sh->state)) { 241 if (test_bit(STRIPE_DELAYED, &sh->state) && 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 243 list_add_tail(&sh->lru, &conf->delayed_list); 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 245 sh->bm_seq - conf->seq_write > 0) 246 list_add_tail(&sh->lru, &conf->bitmap_list); 247 else { 248 clear_bit(STRIPE_DELAYED, &sh->state); 249 clear_bit(STRIPE_BIT_DELAY, &sh->state); 250 if (conf->worker_cnt_per_group == 0) { 251 if (stripe_is_lowprio(sh)) 252 list_add_tail(&sh->lru, 253 &conf->loprio_list); 254 else 255 list_add_tail(&sh->lru, 256 &conf->handle_list); 257 } else { 258 raid5_wakeup_stripe_thread(sh); 259 return; 260 } 261 } 262 md_wakeup_thread(conf->mddev->thread); 263 } else { 264 BUG_ON(stripe_operations_active(sh)); 265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 266 if (atomic_dec_return(&conf->preread_active_stripes) 267 < IO_THRESHOLD) 268 md_wakeup_thread(conf->mddev->thread); 269 atomic_dec(&conf->active_stripes); 270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 271 if (!r5c_is_writeback(conf->log)) 272 list_add_tail(&sh->lru, temp_inactive_list); 273 else { 274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 275 if (injournal == 0) 276 list_add_tail(&sh->lru, temp_inactive_list); 277 else if (injournal == conf->raid_disks - conf->max_degraded) { 278 /* full stripe */ 279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 280 atomic_inc(&conf->r5c_cached_full_stripes); 281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 282 atomic_dec(&conf->r5c_cached_partial_stripes); 283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 284 r5c_check_cached_full_stripe(conf); 285 } else 286 /* 287 * STRIPE_R5C_PARTIAL_STRIPE is set in 288 * r5c_try_caching_write(). No need to 289 * set it again. 290 */ 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 292 } 293 } 294 } 295 } 296 297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 298 struct list_head *temp_inactive_list) 299 { 300 if (atomic_dec_and_test(&sh->count)) 301 do_release_stripe(conf, sh, temp_inactive_list); 302 } 303 304 /* 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 306 * 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 308 * given time. Adding stripes only takes device lock, while deleting stripes 309 * only takes hash lock. 310 */ 311 static void release_inactive_stripe_list(struct r5conf *conf, 312 struct list_head *temp_inactive_list, 313 int hash) 314 { 315 int size; 316 bool do_wakeup = false; 317 unsigned long flags; 318 319 if (hash == NR_STRIPE_HASH_LOCKS) { 320 size = NR_STRIPE_HASH_LOCKS; 321 hash = NR_STRIPE_HASH_LOCKS - 1; 322 } else 323 size = 1; 324 while (size) { 325 struct list_head *list = &temp_inactive_list[size - 1]; 326 327 /* 328 * We don't hold any lock here yet, raid5_get_active_stripe() might 329 * remove stripes from the list 330 */ 331 if (!list_empty_careful(list)) { 332 spin_lock_irqsave(conf->hash_locks + hash, flags); 333 if (list_empty(conf->inactive_list + hash) && 334 !list_empty(list)) 335 atomic_dec(&conf->empty_inactive_list_nr); 336 list_splice_tail_init(list, conf->inactive_list + hash); 337 do_wakeup = true; 338 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 339 } 340 size--; 341 hash--; 342 } 343 344 if (do_wakeup) { 345 wake_up(&conf->wait_for_stripe); 346 if (atomic_read(&conf->active_stripes) == 0) 347 wake_up(&conf->wait_for_quiescent); 348 if (conf->retry_read_aligned) 349 md_wakeup_thread(conf->mddev->thread); 350 } 351 } 352 353 /* should hold conf->device_lock already */ 354 static int release_stripe_list(struct r5conf *conf, 355 struct list_head *temp_inactive_list) 356 { 357 struct stripe_head *sh, *t; 358 int count = 0; 359 struct llist_node *head; 360 361 head = llist_del_all(&conf->released_stripes); 362 head = llist_reverse_order(head); 363 llist_for_each_entry_safe(sh, t, head, release_list) { 364 int hash; 365 366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 367 smp_mb(); 368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 369 /* 370 * Don't worry the bit is set here, because if the bit is set 371 * again, the count is always > 1. This is true for 372 * STRIPE_ON_UNPLUG_LIST bit too. 373 */ 374 hash = sh->hash_lock_index; 375 __release_stripe(conf, sh, &temp_inactive_list[hash]); 376 count++; 377 } 378 379 return count; 380 } 381 382 void raid5_release_stripe(struct stripe_head *sh) 383 { 384 struct r5conf *conf = sh->raid_conf; 385 unsigned long flags; 386 struct list_head list; 387 int hash; 388 bool wakeup; 389 390 /* Avoid release_list until the last reference. 391 */ 392 if (atomic_add_unless(&sh->count, -1, 1)) 393 return; 394 395 if (unlikely(!conf->mddev->thread) || 396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 397 goto slow_path; 398 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 399 if (wakeup) 400 md_wakeup_thread(conf->mddev->thread); 401 return; 402 slow_path: 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 405 INIT_LIST_HEAD(&list); 406 hash = sh->hash_lock_index; 407 do_release_stripe(conf, sh, &list); 408 spin_unlock_irqrestore(&conf->device_lock, flags); 409 release_inactive_stripe_list(conf, &list, hash); 410 } 411 } 412 413 static inline void remove_hash(struct stripe_head *sh) 414 { 415 pr_debug("remove_hash(), stripe %llu\n", 416 (unsigned long long)sh->sector); 417 418 hlist_del_init(&sh->hash); 419 } 420 421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 422 { 423 struct hlist_head *hp = stripe_hash(conf, sh->sector); 424 425 pr_debug("insert_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_add_head(&sh->hash, hp); 429 } 430 431 /* find an idle stripe, make sure it is unhashed, and return it. */ 432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 433 { 434 struct stripe_head *sh = NULL; 435 struct list_head *first; 436 437 if (list_empty(conf->inactive_list + hash)) 438 goto out; 439 first = (conf->inactive_list + hash)->next; 440 sh = list_entry(first, struct stripe_head, lru); 441 list_del_init(first); 442 remove_hash(sh); 443 atomic_inc(&conf->active_stripes); 444 BUG_ON(hash != sh->hash_lock_index); 445 if (list_empty(conf->inactive_list + hash)) 446 atomic_inc(&conf->empty_inactive_list_nr); 447 out: 448 return sh; 449 } 450 451 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 452 static void free_stripe_pages(struct stripe_head *sh) 453 { 454 int i; 455 struct page *p; 456 457 /* Have not allocate page pool */ 458 if (!sh->pages) 459 return; 460 461 for (i = 0; i < sh->nr_pages; i++) { 462 p = sh->pages[i]; 463 if (p) 464 put_page(p); 465 sh->pages[i] = NULL; 466 } 467 } 468 469 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 470 { 471 int i; 472 struct page *p; 473 474 for (i = 0; i < sh->nr_pages; i++) { 475 /* The page have allocated. */ 476 if (sh->pages[i]) 477 continue; 478 479 p = alloc_page(gfp); 480 if (!p) { 481 free_stripe_pages(sh); 482 return -ENOMEM; 483 } 484 sh->pages[i] = p; 485 } 486 return 0; 487 } 488 489 static int 490 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 491 { 492 int nr_pages, cnt; 493 494 if (sh->pages) 495 return 0; 496 497 /* Each of the sh->dev[i] need one conf->stripe_size */ 498 cnt = PAGE_SIZE / conf->stripe_size; 499 nr_pages = (disks + cnt - 1) / cnt; 500 501 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 502 if (!sh->pages) 503 return -ENOMEM; 504 sh->nr_pages = nr_pages; 505 sh->stripes_per_page = cnt; 506 return 0; 507 } 508 #endif 509 510 static void shrink_buffers(struct stripe_head *sh) 511 { 512 int i; 513 int num = sh->raid_conf->pool_size; 514 515 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 516 for (i = 0; i < num ; i++) { 517 struct page *p; 518 519 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 520 p = sh->dev[i].page; 521 if (!p) 522 continue; 523 sh->dev[i].page = NULL; 524 put_page(p); 525 } 526 #else 527 for (i = 0; i < num; i++) 528 sh->dev[i].page = NULL; 529 free_stripe_pages(sh); /* Free pages */ 530 #endif 531 } 532 533 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 534 { 535 int i; 536 int num = sh->raid_conf->pool_size; 537 538 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 539 for (i = 0; i < num; i++) { 540 struct page *page; 541 542 if (!(page = alloc_page(gfp))) { 543 return 1; 544 } 545 sh->dev[i].page = page; 546 sh->dev[i].orig_page = page; 547 sh->dev[i].offset = 0; 548 } 549 #else 550 if (alloc_stripe_pages(sh, gfp)) 551 return -ENOMEM; 552 553 for (i = 0; i < num; i++) { 554 sh->dev[i].page = raid5_get_dev_page(sh, i); 555 sh->dev[i].orig_page = sh->dev[i].page; 556 sh->dev[i].offset = raid5_get_page_offset(sh, i); 557 } 558 #endif 559 return 0; 560 } 561 562 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 563 struct stripe_head *sh); 564 565 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 566 { 567 struct r5conf *conf = sh->raid_conf; 568 int i, seq; 569 570 BUG_ON(atomic_read(&sh->count) != 0); 571 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 572 BUG_ON(stripe_operations_active(sh)); 573 BUG_ON(sh->batch_head); 574 575 pr_debug("init_stripe called, stripe %llu\n", 576 (unsigned long long)sector); 577 retry: 578 seq = read_seqcount_begin(&conf->gen_lock); 579 sh->generation = conf->generation - previous; 580 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 581 sh->sector = sector; 582 stripe_set_idx(sector, conf, previous, sh); 583 sh->state = 0; 584 585 for (i = sh->disks; i--; ) { 586 struct r5dev *dev = &sh->dev[i]; 587 588 if (dev->toread || dev->read || dev->towrite || dev->written || 589 test_bit(R5_LOCKED, &dev->flags)) { 590 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 591 (unsigned long long)sh->sector, i, dev->toread, 592 dev->read, dev->towrite, dev->written, 593 test_bit(R5_LOCKED, &dev->flags)); 594 WARN_ON(1); 595 } 596 dev->flags = 0; 597 dev->sector = raid5_compute_blocknr(sh, i, previous); 598 } 599 if (read_seqcount_retry(&conf->gen_lock, seq)) 600 goto retry; 601 sh->overwrite_disks = 0; 602 insert_hash(conf, sh); 603 sh->cpu = smp_processor_id(); 604 set_bit(STRIPE_BATCH_READY, &sh->state); 605 } 606 607 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 608 short generation) 609 { 610 struct stripe_head *sh; 611 612 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 613 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 614 if (sh->sector == sector && sh->generation == generation) 615 return sh; 616 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 617 return NULL; 618 } 619 620 /* 621 * Need to check if array has failed when deciding whether to: 622 * - start an array 623 * - remove non-faulty devices 624 * - add a spare 625 * - allow a reshape 626 * This determination is simple when no reshape is happening. 627 * However if there is a reshape, we need to carefully check 628 * both the before and after sections. 629 * This is because some failed devices may only affect one 630 * of the two sections, and some non-in_sync devices may 631 * be insync in the section most affected by failed devices. 632 */ 633 int raid5_calc_degraded(struct r5conf *conf) 634 { 635 int degraded, degraded2; 636 int i; 637 638 rcu_read_lock(); 639 degraded = 0; 640 for (i = 0; i < conf->previous_raid_disks; i++) { 641 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 642 if (rdev && test_bit(Faulty, &rdev->flags)) 643 rdev = rcu_dereference(conf->disks[i].replacement); 644 if (!rdev || test_bit(Faulty, &rdev->flags)) 645 degraded++; 646 else if (test_bit(In_sync, &rdev->flags)) 647 ; 648 else 649 /* not in-sync or faulty. 650 * If the reshape increases the number of devices, 651 * this is being recovered by the reshape, so 652 * this 'previous' section is not in_sync. 653 * If the number of devices is being reduced however, 654 * the device can only be part of the array if 655 * we are reverting a reshape, so this section will 656 * be in-sync. 657 */ 658 if (conf->raid_disks >= conf->previous_raid_disks) 659 degraded++; 660 } 661 rcu_read_unlock(); 662 if (conf->raid_disks == conf->previous_raid_disks) 663 return degraded; 664 rcu_read_lock(); 665 degraded2 = 0; 666 for (i = 0; i < conf->raid_disks; i++) { 667 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 668 if (rdev && test_bit(Faulty, &rdev->flags)) 669 rdev = rcu_dereference(conf->disks[i].replacement); 670 if (!rdev || test_bit(Faulty, &rdev->flags)) 671 degraded2++; 672 else if (test_bit(In_sync, &rdev->flags)) 673 ; 674 else 675 /* not in-sync or faulty. 676 * If reshape increases the number of devices, this 677 * section has already been recovered, else it 678 * almost certainly hasn't. 679 */ 680 if (conf->raid_disks <= conf->previous_raid_disks) 681 degraded2++; 682 } 683 rcu_read_unlock(); 684 if (degraded2 > degraded) 685 return degraded2; 686 return degraded; 687 } 688 689 static int has_failed(struct r5conf *conf) 690 { 691 int degraded; 692 693 if (conf->mddev->reshape_position == MaxSector) 694 return conf->mddev->degraded > conf->max_degraded; 695 696 degraded = raid5_calc_degraded(conf); 697 if (degraded > conf->max_degraded) 698 return 1; 699 return 0; 700 } 701 702 struct stripe_head * 703 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 704 int previous, int noblock, int noquiesce) 705 { 706 struct stripe_head *sh; 707 int hash = stripe_hash_locks_hash(conf, sector); 708 int inc_empty_inactive_list_flag; 709 710 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 711 712 spin_lock_irq(conf->hash_locks + hash); 713 714 do { 715 wait_event_lock_irq(conf->wait_for_quiescent, 716 conf->quiesce == 0 || noquiesce, 717 *(conf->hash_locks + hash)); 718 sh = __find_stripe(conf, sector, conf->generation - previous); 719 if (!sh) { 720 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 721 sh = get_free_stripe(conf, hash); 722 if (!sh && !test_bit(R5_DID_ALLOC, 723 &conf->cache_state)) 724 set_bit(R5_ALLOC_MORE, 725 &conf->cache_state); 726 } 727 if (noblock && sh == NULL) 728 break; 729 730 r5c_check_stripe_cache_usage(conf); 731 if (!sh) { 732 set_bit(R5_INACTIVE_BLOCKED, 733 &conf->cache_state); 734 r5l_wake_reclaim(conf->log, 0); 735 wait_event_lock_irq( 736 conf->wait_for_stripe, 737 !list_empty(conf->inactive_list + hash) && 738 (atomic_read(&conf->active_stripes) 739 < (conf->max_nr_stripes * 3 / 4) 740 || !test_bit(R5_INACTIVE_BLOCKED, 741 &conf->cache_state)), 742 *(conf->hash_locks + hash)); 743 clear_bit(R5_INACTIVE_BLOCKED, 744 &conf->cache_state); 745 } else { 746 init_stripe(sh, sector, previous); 747 atomic_inc(&sh->count); 748 } 749 } else if (!atomic_inc_not_zero(&sh->count)) { 750 spin_lock(&conf->device_lock); 751 if (!atomic_read(&sh->count)) { 752 if (!test_bit(STRIPE_HANDLE, &sh->state)) 753 atomic_inc(&conf->active_stripes); 754 BUG_ON(list_empty(&sh->lru) && 755 !test_bit(STRIPE_EXPANDING, &sh->state)); 756 inc_empty_inactive_list_flag = 0; 757 if (!list_empty(conf->inactive_list + hash)) 758 inc_empty_inactive_list_flag = 1; 759 list_del_init(&sh->lru); 760 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 761 atomic_inc(&conf->empty_inactive_list_nr); 762 if (sh->group) { 763 sh->group->stripes_cnt--; 764 sh->group = NULL; 765 } 766 } 767 atomic_inc(&sh->count); 768 spin_unlock(&conf->device_lock); 769 } 770 } while (sh == NULL); 771 772 spin_unlock_irq(conf->hash_locks + hash); 773 return sh; 774 } 775 776 static bool is_full_stripe_write(struct stripe_head *sh) 777 { 778 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 779 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 780 } 781 782 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 783 __acquires(&sh1->stripe_lock) 784 __acquires(&sh2->stripe_lock) 785 { 786 if (sh1 > sh2) { 787 spin_lock_irq(&sh2->stripe_lock); 788 spin_lock_nested(&sh1->stripe_lock, 1); 789 } else { 790 spin_lock_irq(&sh1->stripe_lock); 791 spin_lock_nested(&sh2->stripe_lock, 1); 792 } 793 } 794 795 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 796 __releases(&sh1->stripe_lock) 797 __releases(&sh2->stripe_lock) 798 { 799 spin_unlock(&sh1->stripe_lock); 800 spin_unlock_irq(&sh2->stripe_lock); 801 } 802 803 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 804 static bool stripe_can_batch(struct stripe_head *sh) 805 { 806 struct r5conf *conf = sh->raid_conf; 807 808 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 809 return false; 810 return test_bit(STRIPE_BATCH_READY, &sh->state) && 811 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 812 is_full_stripe_write(sh); 813 } 814 815 /* we only do back search */ 816 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 817 { 818 struct stripe_head *head; 819 sector_t head_sector, tmp_sec; 820 int hash; 821 int dd_idx; 822 int inc_empty_inactive_list_flag; 823 824 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 825 tmp_sec = sh->sector; 826 if (!sector_div(tmp_sec, conf->chunk_sectors)) 827 return; 828 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 829 830 hash = stripe_hash_locks_hash(conf, head_sector); 831 spin_lock_irq(conf->hash_locks + hash); 832 head = __find_stripe(conf, head_sector, conf->generation); 833 if (head && !atomic_inc_not_zero(&head->count)) { 834 spin_lock(&conf->device_lock); 835 if (!atomic_read(&head->count)) { 836 if (!test_bit(STRIPE_HANDLE, &head->state)) 837 atomic_inc(&conf->active_stripes); 838 BUG_ON(list_empty(&head->lru) && 839 !test_bit(STRIPE_EXPANDING, &head->state)); 840 inc_empty_inactive_list_flag = 0; 841 if (!list_empty(conf->inactive_list + hash)) 842 inc_empty_inactive_list_flag = 1; 843 list_del_init(&head->lru); 844 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 845 atomic_inc(&conf->empty_inactive_list_nr); 846 if (head->group) { 847 head->group->stripes_cnt--; 848 head->group = NULL; 849 } 850 } 851 atomic_inc(&head->count); 852 spin_unlock(&conf->device_lock); 853 } 854 spin_unlock_irq(conf->hash_locks + hash); 855 856 if (!head) 857 return; 858 if (!stripe_can_batch(head)) 859 goto out; 860 861 lock_two_stripes(head, sh); 862 /* clear_batch_ready clear the flag */ 863 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 864 goto unlock_out; 865 866 if (sh->batch_head) 867 goto unlock_out; 868 869 dd_idx = 0; 870 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 871 dd_idx++; 872 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 873 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 874 goto unlock_out; 875 876 if (head->batch_head) { 877 spin_lock(&head->batch_head->batch_lock); 878 /* This batch list is already running */ 879 if (!stripe_can_batch(head)) { 880 spin_unlock(&head->batch_head->batch_lock); 881 goto unlock_out; 882 } 883 /* 884 * We must assign batch_head of this stripe within the 885 * batch_lock, otherwise clear_batch_ready of batch head 886 * stripe could clear BATCH_READY bit of this stripe and 887 * this stripe->batch_head doesn't get assigned, which 888 * could confuse clear_batch_ready for this stripe 889 */ 890 sh->batch_head = head->batch_head; 891 892 /* 893 * at this point, head's BATCH_READY could be cleared, but we 894 * can still add the stripe to batch list 895 */ 896 list_add(&sh->batch_list, &head->batch_list); 897 spin_unlock(&head->batch_head->batch_lock); 898 } else { 899 head->batch_head = head; 900 sh->batch_head = head->batch_head; 901 spin_lock(&head->batch_lock); 902 list_add_tail(&sh->batch_list, &head->batch_list); 903 spin_unlock(&head->batch_lock); 904 } 905 906 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 907 if (atomic_dec_return(&conf->preread_active_stripes) 908 < IO_THRESHOLD) 909 md_wakeup_thread(conf->mddev->thread); 910 911 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 912 int seq = sh->bm_seq; 913 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 914 sh->batch_head->bm_seq > seq) 915 seq = sh->batch_head->bm_seq; 916 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 917 sh->batch_head->bm_seq = seq; 918 } 919 920 atomic_inc(&sh->count); 921 unlock_out: 922 unlock_two_stripes(head, sh); 923 out: 924 raid5_release_stripe(head); 925 } 926 927 /* Determine if 'data_offset' or 'new_data_offset' should be used 928 * in this stripe_head. 929 */ 930 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 931 { 932 sector_t progress = conf->reshape_progress; 933 /* Need a memory barrier to make sure we see the value 934 * of conf->generation, or ->data_offset that was set before 935 * reshape_progress was updated. 936 */ 937 smp_rmb(); 938 if (progress == MaxSector) 939 return 0; 940 if (sh->generation == conf->generation - 1) 941 return 0; 942 /* We are in a reshape, and this is a new-generation stripe, 943 * so use new_data_offset. 944 */ 945 return 1; 946 } 947 948 static void dispatch_bio_list(struct bio_list *tmp) 949 { 950 struct bio *bio; 951 952 while ((bio = bio_list_pop(tmp))) 953 submit_bio_noacct(bio); 954 } 955 956 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b) 957 { 958 const struct r5pending_data *da = list_entry(a, 959 struct r5pending_data, sibling); 960 const struct r5pending_data *db = list_entry(b, 961 struct r5pending_data, sibling); 962 if (da->sector > db->sector) 963 return 1; 964 if (da->sector < db->sector) 965 return -1; 966 return 0; 967 } 968 969 static void dispatch_defer_bios(struct r5conf *conf, int target, 970 struct bio_list *list) 971 { 972 struct r5pending_data *data; 973 struct list_head *first, *next = NULL; 974 int cnt = 0; 975 976 if (conf->pending_data_cnt == 0) 977 return; 978 979 list_sort(NULL, &conf->pending_list, cmp_stripe); 980 981 first = conf->pending_list.next; 982 983 /* temporarily move the head */ 984 if (conf->next_pending_data) 985 list_move_tail(&conf->pending_list, 986 &conf->next_pending_data->sibling); 987 988 while (!list_empty(&conf->pending_list)) { 989 data = list_first_entry(&conf->pending_list, 990 struct r5pending_data, sibling); 991 if (&data->sibling == first) 992 first = data->sibling.next; 993 next = data->sibling.next; 994 995 bio_list_merge(list, &data->bios); 996 list_move(&data->sibling, &conf->free_list); 997 cnt++; 998 if (cnt >= target) 999 break; 1000 } 1001 conf->pending_data_cnt -= cnt; 1002 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1003 1004 if (next != &conf->pending_list) 1005 conf->next_pending_data = list_entry(next, 1006 struct r5pending_data, sibling); 1007 else 1008 conf->next_pending_data = NULL; 1009 /* list isn't empty */ 1010 if (first != &conf->pending_list) 1011 list_move_tail(&conf->pending_list, first); 1012 } 1013 1014 static void flush_deferred_bios(struct r5conf *conf) 1015 { 1016 struct bio_list tmp = BIO_EMPTY_LIST; 1017 1018 if (conf->pending_data_cnt == 0) 1019 return; 1020 1021 spin_lock(&conf->pending_bios_lock); 1022 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1023 BUG_ON(conf->pending_data_cnt != 0); 1024 spin_unlock(&conf->pending_bios_lock); 1025 1026 dispatch_bio_list(&tmp); 1027 } 1028 1029 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1030 struct bio_list *bios) 1031 { 1032 struct bio_list tmp = BIO_EMPTY_LIST; 1033 struct r5pending_data *ent; 1034 1035 spin_lock(&conf->pending_bios_lock); 1036 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1037 sibling); 1038 list_move_tail(&ent->sibling, &conf->pending_list); 1039 ent->sector = sector; 1040 bio_list_init(&ent->bios); 1041 bio_list_merge(&ent->bios, bios); 1042 conf->pending_data_cnt++; 1043 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1044 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1045 1046 spin_unlock(&conf->pending_bios_lock); 1047 1048 dispatch_bio_list(&tmp); 1049 } 1050 1051 static void 1052 raid5_end_read_request(struct bio *bi); 1053 static void 1054 raid5_end_write_request(struct bio *bi); 1055 1056 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1057 { 1058 struct r5conf *conf = sh->raid_conf; 1059 int i, disks = sh->disks; 1060 struct stripe_head *head_sh = sh; 1061 struct bio_list pending_bios = BIO_EMPTY_LIST; 1062 bool should_defer; 1063 1064 might_sleep(); 1065 1066 if (log_stripe(sh, s) == 0) 1067 return; 1068 1069 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1070 1071 for (i = disks; i--; ) { 1072 int op, op_flags = 0; 1073 int replace_only = 0; 1074 struct bio *bi, *rbi; 1075 struct md_rdev *rdev, *rrdev = NULL; 1076 1077 sh = head_sh; 1078 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1079 op = REQ_OP_WRITE; 1080 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1081 op_flags = REQ_FUA; 1082 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1083 op = REQ_OP_DISCARD; 1084 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1085 op = REQ_OP_READ; 1086 else if (test_and_clear_bit(R5_WantReplace, 1087 &sh->dev[i].flags)) { 1088 op = REQ_OP_WRITE; 1089 replace_only = 1; 1090 } else 1091 continue; 1092 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1093 op_flags |= REQ_SYNC; 1094 1095 again: 1096 bi = &sh->dev[i].req; 1097 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1098 1099 rcu_read_lock(); 1100 rrdev = rcu_dereference(conf->disks[i].replacement); 1101 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1102 rdev = rcu_dereference(conf->disks[i].rdev); 1103 if (!rdev) { 1104 rdev = rrdev; 1105 rrdev = NULL; 1106 } 1107 if (op_is_write(op)) { 1108 if (replace_only) 1109 rdev = NULL; 1110 if (rdev == rrdev) 1111 /* We raced and saw duplicates */ 1112 rrdev = NULL; 1113 } else { 1114 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1115 rdev = rrdev; 1116 rrdev = NULL; 1117 } 1118 1119 if (rdev && test_bit(Faulty, &rdev->flags)) 1120 rdev = NULL; 1121 if (rdev) 1122 atomic_inc(&rdev->nr_pending); 1123 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1124 rrdev = NULL; 1125 if (rrdev) 1126 atomic_inc(&rrdev->nr_pending); 1127 rcu_read_unlock(); 1128 1129 /* We have already checked bad blocks for reads. Now 1130 * need to check for writes. We never accept write errors 1131 * on the replacement, so we don't to check rrdev. 1132 */ 1133 while (op_is_write(op) && rdev && 1134 test_bit(WriteErrorSeen, &rdev->flags)) { 1135 sector_t first_bad; 1136 int bad_sectors; 1137 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1138 &first_bad, &bad_sectors); 1139 if (!bad) 1140 break; 1141 1142 if (bad < 0) { 1143 set_bit(BlockedBadBlocks, &rdev->flags); 1144 if (!conf->mddev->external && 1145 conf->mddev->sb_flags) { 1146 /* It is very unlikely, but we might 1147 * still need to write out the 1148 * bad block log - better give it 1149 * a chance*/ 1150 md_check_recovery(conf->mddev); 1151 } 1152 /* 1153 * Because md_wait_for_blocked_rdev 1154 * will dec nr_pending, we must 1155 * increment it first. 1156 */ 1157 atomic_inc(&rdev->nr_pending); 1158 md_wait_for_blocked_rdev(rdev, conf->mddev); 1159 } else { 1160 /* Acknowledged bad block - skip the write */ 1161 rdev_dec_pending(rdev, conf->mddev); 1162 rdev = NULL; 1163 } 1164 } 1165 1166 if (rdev) { 1167 if (s->syncing || s->expanding || s->expanded 1168 || s->replacing) 1169 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1170 1171 set_bit(STRIPE_IO_STARTED, &sh->state); 1172 1173 bio_set_dev(bi, rdev->bdev); 1174 bio_set_op_attrs(bi, op, op_flags); 1175 bi->bi_end_io = op_is_write(op) 1176 ? raid5_end_write_request 1177 : raid5_end_read_request; 1178 bi->bi_private = sh; 1179 1180 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1181 __func__, (unsigned long long)sh->sector, 1182 bi->bi_opf, i); 1183 atomic_inc(&sh->count); 1184 if (sh != head_sh) 1185 atomic_inc(&head_sh->count); 1186 if (use_new_offset(conf, sh)) 1187 bi->bi_iter.bi_sector = (sh->sector 1188 + rdev->new_data_offset); 1189 else 1190 bi->bi_iter.bi_sector = (sh->sector 1191 + rdev->data_offset); 1192 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1193 bi->bi_opf |= REQ_NOMERGE; 1194 1195 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1196 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1197 1198 if (!op_is_write(op) && 1199 test_bit(R5_InJournal, &sh->dev[i].flags)) 1200 /* 1201 * issuing read for a page in journal, this 1202 * must be preparing for prexor in rmw; read 1203 * the data into orig_page 1204 */ 1205 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1206 else 1207 sh->dev[i].vec.bv_page = sh->dev[i].page; 1208 bi->bi_vcnt = 1; 1209 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1210 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1211 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1212 bi->bi_write_hint = sh->dev[i].write_hint; 1213 if (!rrdev) 1214 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1215 /* 1216 * If this is discard request, set bi_vcnt 0. We don't 1217 * want to confuse SCSI because SCSI will replace payload 1218 */ 1219 if (op == REQ_OP_DISCARD) 1220 bi->bi_vcnt = 0; 1221 if (rrdev) 1222 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1223 1224 if (conf->mddev->gendisk) 1225 trace_block_bio_remap(bi, 1226 disk_devt(conf->mddev->gendisk), 1227 sh->dev[i].sector); 1228 if (should_defer && op_is_write(op)) 1229 bio_list_add(&pending_bios, bi); 1230 else 1231 submit_bio_noacct(bi); 1232 } 1233 if (rrdev) { 1234 if (s->syncing || s->expanding || s->expanded 1235 || s->replacing) 1236 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1237 1238 set_bit(STRIPE_IO_STARTED, &sh->state); 1239 1240 bio_set_dev(rbi, rrdev->bdev); 1241 bio_set_op_attrs(rbi, op, op_flags); 1242 BUG_ON(!op_is_write(op)); 1243 rbi->bi_end_io = raid5_end_write_request; 1244 rbi->bi_private = sh; 1245 1246 pr_debug("%s: for %llu schedule op %d on " 1247 "replacement disc %d\n", 1248 __func__, (unsigned long long)sh->sector, 1249 rbi->bi_opf, i); 1250 atomic_inc(&sh->count); 1251 if (sh != head_sh) 1252 atomic_inc(&head_sh->count); 1253 if (use_new_offset(conf, sh)) 1254 rbi->bi_iter.bi_sector = (sh->sector 1255 + rrdev->new_data_offset); 1256 else 1257 rbi->bi_iter.bi_sector = (sh->sector 1258 + rrdev->data_offset); 1259 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1260 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1261 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1262 rbi->bi_vcnt = 1; 1263 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1264 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1265 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1266 rbi->bi_write_hint = sh->dev[i].write_hint; 1267 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1268 /* 1269 * If this is discard request, set bi_vcnt 0. We don't 1270 * want to confuse SCSI because SCSI will replace payload 1271 */ 1272 if (op == REQ_OP_DISCARD) 1273 rbi->bi_vcnt = 0; 1274 if (conf->mddev->gendisk) 1275 trace_block_bio_remap(rbi, 1276 disk_devt(conf->mddev->gendisk), 1277 sh->dev[i].sector); 1278 if (should_defer && op_is_write(op)) 1279 bio_list_add(&pending_bios, rbi); 1280 else 1281 submit_bio_noacct(rbi); 1282 } 1283 if (!rdev && !rrdev) { 1284 if (op_is_write(op)) 1285 set_bit(STRIPE_DEGRADED, &sh->state); 1286 pr_debug("skip op %d on disc %d for sector %llu\n", 1287 bi->bi_opf, i, (unsigned long long)sh->sector); 1288 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1289 set_bit(STRIPE_HANDLE, &sh->state); 1290 } 1291 1292 if (!head_sh->batch_head) 1293 continue; 1294 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1295 batch_list); 1296 if (sh != head_sh) 1297 goto again; 1298 } 1299 1300 if (should_defer && !bio_list_empty(&pending_bios)) 1301 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1302 } 1303 1304 static struct dma_async_tx_descriptor * 1305 async_copy_data(int frombio, struct bio *bio, struct page **page, 1306 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1307 struct stripe_head *sh, int no_skipcopy) 1308 { 1309 struct bio_vec bvl; 1310 struct bvec_iter iter; 1311 struct page *bio_page; 1312 int page_offset; 1313 struct async_submit_ctl submit; 1314 enum async_tx_flags flags = 0; 1315 struct r5conf *conf = sh->raid_conf; 1316 1317 if (bio->bi_iter.bi_sector >= sector) 1318 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1319 else 1320 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1321 1322 if (frombio) 1323 flags |= ASYNC_TX_FENCE; 1324 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1325 1326 bio_for_each_segment(bvl, bio, iter) { 1327 int len = bvl.bv_len; 1328 int clen; 1329 int b_offset = 0; 1330 1331 if (page_offset < 0) { 1332 b_offset = -page_offset; 1333 page_offset += b_offset; 1334 len -= b_offset; 1335 } 1336 1337 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1338 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1339 else 1340 clen = len; 1341 1342 if (clen > 0) { 1343 b_offset += bvl.bv_offset; 1344 bio_page = bvl.bv_page; 1345 if (frombio) { 1346 if (conf->skip_copy && 1347 b_offset == 0 && page_offset == 0 && 1348 clen == RAID5_STRIPE_SIZE(conf) && 1349 !no_skipcopy) 1350 *page = bio_page; 1351 else 1352 tx = async_memcpy(*page, bio_page, page_offset + poff, 1353 b_offset, clen, &submit); 1354 } else 1355 tx = async_memcpy(bio_page, *page, b_offset, 1356 page_offset + poff, clen, &submit); 1357 } 1358 /* chain the operations */ 1359 submit.depend_tx = tx; 1360 1361 if (clen < len) /* hit end of page */ 1362 break; 1363 page_offset += len; 1364 } 1365 1366 return tx; 1367 } 1368 1369 static void ops_complete_biofill(void *stripe_head_ref) 1370 { 1371 struct stripe_head *sh = stripe_head_ref; 1372 int i; 1373 struct r5conf *conf = sh->raid_conf; 1374 1375 pr_debug("%s: stripe %llu\n", __func__, 1376 (unsigned long long)sh->sector); 1377 1378 /* clear completed biofills */ 1379 for (i = sh->disks; i--; ) { 1380 struct r5dev *dev = &sh->dev[i]; 1381 1382 /* acknowledge completion of a biofill operation */ 1383 /* and check if we need to reply to a read request, 1384 * new R5_Wantfill requests are held off until 1385 * !STRIPE_BIOFILL_RUN 1386 */ 1387 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1388 struct bio *rbi, *rbi2; 1389 1390 BUG_ON(!dev->read); 1391 rbi = dev->read; 1392 dev->read = NULL; 1393 while (rbi && rbi->bi_iter.bi_sector < 1394 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1395 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1396 bio_endio(rbi); 1397 rbi = rbi2; 1398 } 1399 } 1400 } 1401 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1402 1403 set_bit(STRIPE_HANDLE, &sh->state); 1404 raid5_release_stripe(sh); 1405 } 1406 1407 static void ops_run_biofill(struct stripe_head *sh) 1408 { 1409 struct dma_async_tx_descriptor *tx = NULL; 1410 struct async_submit_ctl submit; 1411 int i; 1412 struct r5conf *conf = sh->raid_conf; 1413 1414 BUG_ON(sh->batch_head); 1415 pr_debug("%s: stripe %llu\n", __func__, 1416 (unsigned long long)sh->sector); 1417 1418 for (i = sh->disks; i--; ) { 1419 struct r5dev *dev = &sh->dev[i]; 1420 if (test_bit(R5_Wantfill, &dev->flags)) { 1421 struct bio *rbi; 1422 spin_lock_irq(&sh->stripe_lock); 1423 dev->read = rbi = dev->toread; 1424 dev->toread = NULL; 1425 spin_unlock_irq(&sh->stripe_lock); 1426 while (rbi && rbi->bi_iter.bi_sector < 1427 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1428 tx = async_copy_data(0, rbi, &dev->page, 1429 dev->offset, 1430 dev->sector, tx, sh, 0); 1431 rbi = r5_next_bio(conf, rbi, dev->sector); 1432 } 1433 } 1434 } 1435 1436 atomic_inc(&sh->count); 1437 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1438 async_trigger_callback(&submit); 1439 } 1440 1441 static void mark_target_uptodate(struct stripe_head *sh, int target) 1442 { 1443 struct r5dev *tgt; 1444 1445 if (target < 0) 1446 return; 1447 1448 tgt = &sh->dev[target]; 1449 set_bit(R5_UPTODATE, &tgt->flags); 1450 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1451 clear_bit(R5_Wantcompute, &tgt->flags); 1452 } 1453 1454 static void ops_complete_compute(void *stripe_head_ref) 1455 { 1456 struct stripe_head *sh = stripe_head_ref; 1457 1458 pr_debug("%s: stripe %llu\n", __func__, 1459 (unsigned long long)sh->sector); 1460 1461 /* mark the computed target(s) as uptodate */ 1462 mark_target_uptodate(sh, sh->ops.target); 1463 mark_target_uptodate(sh, sh->ops.target2); 1464 1465 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1466 if (sh->check_state == check_state_compute_run) 1467 sh->check_state = check_state_compute_result; 1468 set_bit(STRIPE_HANDLE, &sh->state); 1469 raid5_release_stripe(sh); 1470 } 1471 1472 /* return a pointer to the address conversion region of the scribble buffer */ 1473 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1474 { 1475 return percpu->scribble + i * percpu->scribble_obj_size; 1476 } 1477 1478 /* return a pointer to the address conversion region of the scribble buffer */ 1479 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1480 struct raid5_percpu *percpu, int i) 1481 { 1482 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1483 } 1484 1485 /* 1486 * Return a pointer to record offset address. 1487 */ 1488 static unsigned int * 1489 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1490 { 1491 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1492 } 1493 1494 static struct dma_async_tx_descriptor * 1495 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1496 { 1497 int disks = sh->disks; 1498 struct page **xor_srcs = to_addr_page(percpu, 0); 1499 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1500 int target = sh->ops.target; 1501 struct r5dev *tgt = &sh->dev[target]; 1502 struct page *xor_dest = tgt->page; 1503 unsigned int off_dest = tgt->offset; 1504 int count = 0; 1505 struct dma_async_tx_descriptor *tx; 1506 struct async_submit_ctl submit; 1507 int i; 1508 1509 BUG_ON(sh->batch_head); 1510 1511 pr_debug("%s: stripe %llu block: %d\n", 1512 __func__, (unsigned long long)sh->sector, target); 1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1514 1515 for (i = disks; i--; ) { 1516 if (i != target) { 1517 off_srcs[count] = sh->dev[i].offset; 1518 xor_srcs[count++] = sh->dev[i].page; 1519 } 1520 } 1521 1522 atomic_inc(&sh->count); 1523 1524 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1525 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1526 if (unlikely(count == 1)) 1527 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1528 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1529 else 1530 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1531 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1532 1533 return tx; 1534 } 1535 1536 /* set_syndrome_sources - populate source buffers for gen_syndrome 1537 * @srcs - (struct page *) array of size sh->disks 1538 * @offs - (unsigned int) array of offset for each page 1539 * @sh - stripe_head to parse 1540 * 1541 * Populates srcs in proper layout order for the stripe and returns the 1542 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1543 * destination buffer is recorded in srcs[count] and the Q destination 1544 * is recorded in srcs[count+1]]. 1545 */ 1546 static int set_syndrome_sources(struct page **srcs, 1547 unsigned int *offs, 1548 struct stripe_head *sh, 1549 int srctype) 1550 { 1551 int disks = sh->disks; 1552 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1553 int d0_idx = raid6_d0(sh); 1554 int count; 1555 int i; 1556 1557 for (i = 0; i < disks; i++) 1558 srcs[i] = NULL; 1559 1560 count = 0; 1561 i = d0_idx; 1562 do { 1563 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1564 struct r5dev *dev = &sh->dev[i]; 1565 1566 if (i == sh->qd_idx || i == sh->pd_idx || 1567 (srctype == SYNDROME_SRC_ALL) || 1568 (srctype == SYNDROME_SRC_WANT_DRAIN && 1569 (test_bit(R5_Wantdrain, &dev->flags) || 1570 test_bit(R5_InJournal, &dev->flags))) || 1571 (srctype == SYNDROME_SRC_WRITTEN && 1572 (dev->written || 1573 test_bit(R5_InJournal, &dev->flags)))) { 1574 if (test_bit(R5_InJournal, &dev->flags)) 1575 srcs[slot] = sh->dev[i].orig_page; 1576 else 1577 srcs[slot] = sh->dev[i].page; 1578 /* 1579 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1580 * not shared page. In that case, dev[i].offset 1581 * is 0. 1582 */ 1583 offs[slot] = sh->dev[i].offset; 1584 } 1585 i = raid6_next_disk(i, disks); 1586 } while (i != d0_idx); 1587 1588 return syndrome_disks; 1589 } 1590 1591 static struct dma_async_tx_descriptor * 1592 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1593 { 1594 int disks = sh->disks; 1595 struct page **blocks = to_addr_page(percpu, 0); 1596 unsigned int *offs = to_addr_offs(sh, percpu); 1597 int target; 1598 int qd_idx = sh->qd_idx; 1599 struct dma_async_tx_descriptor *tx; 1600 struct async_submit_ctl submit; 1601 struct r5dev *tgt; 1602 struct page *dest; 1603 unsigned int dest_off; 1604 int i; 1605 int count; 1606 1607 BUG_ON(sh->batch_head); 1608 if (sh->ops.target < 0) 1609 target = sh->ops.target2; 1610 else if (sh->ops.target2 < 0) 1611 target = sh->ops.target; 1612 else 1613 /* we should only have one valid target */ 1614 BUG(); 1615 BUG_ON(target < 0); 1616 pr_debug("%s: stripe %llu block: %d\n", 1617 __func__, (unsigned long long)sh->sector, target); 1618 1619 tgt = &sh->dev[target]; 1620 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1621 dest = tgt->page; 1622 dest_off = tgt->offset; 1623 1624 atomic_inc(&sh->count); 1625 1626 if (target == qd_idx) { 1627 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1628 blocks[count] = NULL; /* regenerating p is not necessary */ 1629 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1630 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1631 ops_complete_compute, sh, 1632 to_addr_conv(sh, percpu, 0)); 1633 tx = async_gen_syndrome(blocks, offs, count+2, 1634 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1635 } else { 1636 /* Compute any data- or p-drive using XOR */ 1637 count = 0; 1638 for (i = disks; i-- ; ) { 1639 if (i == target || i == qd_idx) 1640 continue; 1641 offs[count] = sh->dev[i].offset; 1642 blocks[count++] = sh->dev[i].page; 1643 } 1644 1645 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1646 NULL, ops_complete_compute, sh, 1647 to_addr_conv(sh, percpu, 0)); 1648 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1649 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1650 } 1651 1652 return tx; 1653 } 1654 1655 static struct dma_async_tx_descriptor * 1656 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1657 { 1658 int i, count, disks = sh->disks; 1659 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1660 int d0_idx = raid6_d0(sh); 1661 int faila = -1, failb = -1; 1662 int target = sh->ops.target; 1663 int target2 = sh->ops.target2; 1664 struct r5dev *tgt = &sh->dev[target]; 1665 struct r5dev *tgt2 = &sh->dev[target2]; 1666 struct dma_async_tx_descriptor *tx; 1667 struct page **blocks = to_addr_page(percpu, 0); 1668 unsigned int *offs = to_addr_offs(sh, percpu); 1669 struct async_submit_ctl submit; 1670 1671 BUG_ON(sh->batch_head); 1672 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1673 __func__, (unsigned long long)sh->sector, target, target2); 1674 BUG_ON(target < 0 || target2 < 0); 1675 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1676 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1677 1678 /* we need to open-code set_syndrome_sources to handle the 1679 * slot number conversion for 'faila' and 'failb' 1680 */ 1681 for (i = 0; i < disks ; i++) { 1682 offs[i] = 0; 1683 blocks[i] = NULL; 1684 } 1685 count = 0; 1686 i = d0_idx; 1687 do { 1688 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1689 1690 offs[slot] = sh->dev[i].offset; 1691 blocks[slot] = sh->dev[i].page; 1692 1693 if (i == target) 1694 faila = slot; 1695 if (i == target2) 1696 failb = slot; 1697 i = raid6_next_disk(i, disks); 1698 } while (i != d0_idx); 1699 1700 BUG_ON(faila == failb); 1701 if (failb < faila) 1702 swap(faila, failb); 1703 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1704 __func__, (unsigned long long)sh->sector, faila, failb); 1705 1706 atomic_inc(&sh->count); 1707 1708 if (failb == syndrome_disks+1) { 1709 /* Q disk is one of the missing disks */ 1710 if (faila == syndrome_disks) { 1711 /* Missing P+Q, just recompute */ 1712 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1713 ops_complete_compute, sh, 1714 to_addr_conv(sh, percpu, 0)); 1715 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1716 RAID5_STRIPE_SIZE(sh->raid_conf), 1717 &submit); 1718 } else { 1719 struct page *dest; 1720 unsigned int dest_off; 1721 int data_target; 1722 int qd_idx = sh->qd_idx; 1723 1724 /* Missing D+Q: recompute D from P, then recompute Q */ 1725 if (target == qd_idx) 1726 data_target = target2; 1727 else 1728 data_target = target; 1729 1730 count = 0; 1731 for (i = disks; i-- ; ) { 1732 if (i == data_target || i == qd_idx) 1733 continue; 1734 offs[count] = sh->dev[i].offset; 1735 blocks[count++] = sh->dev[i].page; 1736 } 1737 dest = sh->dev[data_target].page; 1738 dest_off = sh->dev[data_target].offset; 1739 init_async_submit(&submit, 1740 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1741 NULL, NULL, NULL, 1742 to_addr_conv(sh, percpu, 0)); 1743 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1744 RAID5_STRIPE_SIZE(sh->raid_conf), 1745 &submit); 1746 1747 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1748 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1749 ops_complete_compute, sh, 1750 to_addr_conv(sh, percpu, 0)); 1751 return async_gen_syndrome(blocks, offs, count+2, 1752 RAID5_STRIPE_SIZE(sh->raid_conf), 1753 &submit); 1754 } 1755 } else { 1756 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1757 ops_complete_compute, sh, 1758 to_addr_conv(sh, percpu, 0)); 1759 if (failb == syndrome_disks) { 1760 /* We're missing D+P. */ 1761 return async_raid6_datap_recov(syndrome_disks+2, 1762 RAID5_STRIPE_SIZE(sh->raid_conf), 1763 faila, 1764 blocks, offs, &submit); 1765 } else { 1766 /* We're missing D+D. */ 1767 return async_raid6_2data_recov(syndrome_disks+2, 1768 RAID5_STRIPE_SIZE(sh->raid_conf), 1769 faila, failb, 1770 blocks, offs, &submit); 1771 } 1772 } 1773 } 1774 1775 static void ops_complete_prexor(void *stripe_head_ref) 1776 { 1777 struct stripe_head *sh = stripe_head_ref; 1778 1779 pr_debug("%s: stripe %llu\n", __func__, 1780 (unsigned long long)sh->sector); 1781 1782 if (r5c_is_writeback(sh->raid_conf->log)) 1783 /* 1784 * raid5-cache write back uses orig_page during prexor. 1785 * After prexor, it is time to free orig_page 1786 */ 1787 r5c_release_extra_page(sh); 1788 } 1789 1790 static struct dma_async_tx_descriptor * 1791 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1792 struct dma_async_tx_descriptor *tx) 1793 { 1794 int disks = sh->disks; 1795 struct page **xor_srcs = to_addr_page(percpu, 0); 1796 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1797 int count = 0, pd_idx = sh->pd_idx, i; 1798 struct async_submit_ctl submit; 1799 1800 /* existing parity data subtracted */ 1801 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1802 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1803 1804 BUG_ON(sh->batch_head); 1805 pr_debug("%s: stripe %llu\n", __func__, 1806 (unsigned long long)sh->sector); 1807 1808 for (i = disks; i--; ) { 1809 struct r5dev *dev = &sh->dev[i]; 1810 /* Only process blocks that are known to be uptodate */ 1811 if (test_bit(R5_InJournal, &dev->flags)) { 1812 /* 1813 * For this case, PAGE_SIZE must be equal to 4KB and 1814 * page offset is zero. 1815 */ 1816 off_srcs[count] = dev->offset; 1817 xor_srcs[count++] = dev->orig_page; 1818 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1819 off_srcs[count] = dev->offset; 1820 xor_srcs[count++] = dev->page; 1821 } 1822 } 1823 1824 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1825 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1826 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1827 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1828 1829 return tx; 1830 } 1831 1832 static struct dma_async_tx_descriptor * 1833 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1834 struct dma_async_tx_descriptor *tx) 1835 { 1836 struct page **blocks = to_addr_page(percpu, 0); 1837 unsigned int *offs = to_addr_offs(sh, percpu); 1838 int count; 1839 struct async_submit_ctl submit; 1840 1841 pr_debug("%s: stripe %llu\n", __func__, 1842 (unsigned long long)sh->sector); 1843 1844 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1845 1846 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1847 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1848 tx = async_gen_syndrome(blocks, offs, count+2, 1849 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1850 1851 return tx; 1852 } 1853 1854 static struct dma_async_tx_descriptor * 1855 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1856 { 1857 struct r5conf *conf = sh->raid_conf; 1858 int disks = sh->disks; 1859 int i; 1860 struct stripe_head *head_sh = sh; 1861 1862 pr_debug("%s: stripe %llu\n", __func__, 1863 (unsigned long long)sh->sector); 1864 1865 for (i = disks; i--; ) { 1866 struct r5dev *dev; 1867 struct bio *chosen; 1868 1869 sh = head_sh; 1870 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1871 struct bio *wbi; 1872 1873 again: 1874 dev = &sh->dev[i]; 1875 /* 1876 * clear R5_InJournal, so when rewriting a page in 1877 * journal, it is not skipped by r5l_log_stripe() 1878 */ 1879 clear_bit(R5_InJournal, &dev->flags); 1880 spin_lock_irq(&sh->stripe_lock); 1881 chosen = dev->towrite; 1882 dev->towrite = NULL; 1883 sh->overwrite_disks = 0; 1884 BUG_ON(dev->written); 1885 wbi = dev->written = chosen; 1886 spin_unlock_irq(&sh->stripe_lock); 1887 WARN_ON(dev->page != dev->orig_page); 1888 1889 while (wbi && wbi->bi_iter.bi_sector < 1890 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1891 if (wbi->bi_opf & REQ_FUA) 1892 set_bit(R5_WantFUA, &dev->flags); 1893 if (wbi->bi_opf & REQ_SYNC) 1894 set_bit(R5_SyncIO, &dev->flags); 1895 if (bio_op(wbi) == REQ_OP_DISCARD) 1896 set_bit(R5_Discard, &dev->flags); 1897 else { 1898 tx = async_copy_data(1, wbi, &dev->page, 1899 dev->offset, 1900 dev->sector, tx, sh, 1901 r5c_is_writeback(conf->log)); 1902 if (dev->page != dev->orig_page && 1903 !r5c_is_writeback(conf->log)) { 1904 set_bit(R5_SkipCopy, &dev->flags); 1905 clear_bit(R5_UPTODATE, &dev->flags); 1906 clear_bit(R5_OVERWRITE, &dev->flags); 1907 } 1908 } 1909 wbi = r5_next_bio(conf, wbi, dev->sector); 1910 } 1911 1912 if (head_sh->batch_head) { 1913 sh = list_first_entry(&sh->batch_list, 1914 struct stripe_head, 1915 batch_list); 1916 if (sh == head_sh) 1917 continue; 1918 goto again; 1919 } 1920 } 1921 } 1922 1923 return tx; 1924 } 1925 1926 static void ops_complete_reconstruct(void *stripe_head_ref) 1927 { 1928 struct stripe_head *sh = stripe_head_ref; 1929 int disks = sh->disks; 1930 int pd_idx = sh->pd_idx; 1931 int qd_idx = sh->qd_idx; 1932 int i; 1933 bool fua = false, sync = false, discard = false; 1934 1935 pr_debug("%s: stripe %llu\n", __func__, 1936 (unsigned long long)sh->sector); 1937 1938 for (i = disks; i--; ) { 1939 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1940 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1941 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1942 } 1943 1944 for (i = disks; i--; ) { 1945 struct r5dev *dev = &sh->dev[i]; 1946 1947 if (dev->written || i == pd_idx || i == qd_idx) { 1948 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1949 set_bit(R5_UPTODATE, &dev->flags); 1950 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1951 set_bit(R5_Expanded, &dev->flags); 1952 } 1953 if (fua) 1954 set_bit(R5_WantFUA, &dev->flags); 1955 if (sync) 1956 set_bit(R5_SyncIO, &dev->flags); 1957 } 1958 } 1959 1960 if (sh->reconstruct_state == reconstruct_state_drain_run) 1961 sh->reconstruct_state = reconstruct_state_drain_result; 1962 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1963 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1964 else { 1965 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1966 sh->reconstruct_state = reconstruct_state_result; 1967 } 1968 1969 set_bit(STRIPE_HANDLE, &sh->state); 1970 raid5_release_stripe(sh); 1971 } 1972 1973 static void 1974 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1975 struct dma_async_tx_descriptor *tx) 1976 { 1977 int disks = sh->disks; 1978 struct page **xor_srcs; 1979 unsigned int *off_srcs; 1980 struct async_submit_ctl submit; 1981 int count, pd_idx = sh->pd_idx, i; 1982 struct page *xor_dest; 1983 unsigned int off_dest; 1984 int prexor = 0; 1985 unsigned long flags; 1986 int j = 0; 1987 struct stripe_head *head_sh = sh; 1988 int last_stripe; 1989 1990 pr_debug("%s: stripe %llu\n", __func__, 1991 (unsigned long long)sh->sector); 1992 1993 for (i = 0; i < sh->disks; i++) { 1994 if (pd_idx == i) 1995 continue; 1996 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1997 break; 1998 } 1999 if (i >= sh->disks) { 2000 atomic_inc(&sh->count); 2001 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2002 ops_complete_reconstruct(sh); 2003 return; 2004 } 2005 again: 2006 count = 0; 2007 xor_srcs = to_addr_page(percpu, j); 2008 off_srcs = to_addr_offs(sh, percpu); 2009 /* check if prexor is active which means only process blocks 2010 * that are part of a read-modify-write (written) 2011 */ 2012 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2013 prexor = 1; 2014 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2015 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2016 for (i = disks; i--; ) { 2017 struct r5dev *dev = &sh->dev[i]; 2018 if (head_sh->dev[i].written || 2019 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2020 off_srcs[count] = dev->offset; 2021 xor_srcs[count++] = dev->page; 2022 } 2023 } 2024 } else { 2025 xor_dest = sh->dev[pd_idx].page; 2026 off_dest = sh->dev[pd_idx].offset; 2027 for (i = disks; i--; ) { 2028 struct r5dev *dev = &sh->dev[i]; 2029 if (i != pd_idx) { 2030 off_srcs[count] = dev->offset; 2031 xor_srcs[count++] = dev->page; 2032 } 2033 } 2034 } 2035 2036 /* 1/ if we prexor'd then the dest is reused as a source 2037 * 2/ if we did not prexor then we are redoing the parity 2038 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2039 * for the synchronous xor case 2040 */ 2041 last_stripe = !head_sh->batch_head || 2042 list_first_entry(&sh->batch_list, 2043 struct stripe_head, batch_list) == head_sh; 2044 if (last_stripe) { 2045 flags = ASYNC_TX_ACK | 2046 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2047 2048 atomic_inc(&head_sh->count); 2049 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2050 to_addr_conv(sh, percpu, j)); 2051 } else { 2052 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2053 init_async_submit(&submit, flags, tx, NULL, NULL, 2054 to_addr_conv(sh, percpu, j)); 2055 } 2056 2057 if (unlikely(count == 1)) 2058 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2059 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2060 else 2061 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2062 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2063 if (!last_stripe) { 2064 j++; 2065 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2066 batch_list); 2067 goto again; 2068 } 2069 } 2070 2071 static void 2072 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2073 struct dma_async_tx_descriptor *tx) 2074 { 2075 struct async_submit_ctl submit; 2076 struct page **blocks; 2077 unsigned int *offs; 2078 int count, i, j = 0; 2079 struct stripe_head *head_sh = sh; 2080 int last_stripe; 2081 int synflags; 2082 unsigned long txflags; 2083 2084 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2085 2086 for (i = 0; i < sh->disks; i++) { 2087 if (sh->pd_idx == i || sh->qd_idx == i) 2088 continue; 2089 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2090 break; 2091 } 2092 if (i >= sh->disks) { 2093 atomic_inc(&sh->count); 2094 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2095 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2096 ops_complete_reconstruct(sh); 2097 return; 2098 } 2099 2100 again: 2101 blocks = to_addr_page(percpu, j); 2102 offs = to_addr_offs(sh, percpu); 2103 2104 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2105 synflags = SYNDROME_SRC_WRITTEN; 2106 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2107 } else { 2108 synflags = SYNDROME_SRC_ALL; 2109 txflags = ASYNC_TX_ACK; 2110 } 2111 2112 count = set_syndrome_sources(blocks, offs, sh, synflags); 2113 last_stripe = !head_sh->batch_head || 2114 list_first_entry(&sh->batch_list, 2115 struct stripe_head, batch_list) == head_sh; 2116 2117 if (last_stripe) { 2118 atomic_inc(&head_sh->count); 2119 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2120 head_sh, to_addr_conv(sh, percpu, j)); 2121 } else 2122 init_async_submit(&submit, 0, tx, NULL, NULL, 2123 to_addr_conv(sh, percpu, j)); 2124 tx = async_gen_syndrome(blocks, offs, count+2, 2125 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2126 if (!last_stripe) { 2127 j++; 2128 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2129 batch_list); 2130 goto again; 2131 } 2132 } 2133 2134 static void ops_complete_check(void *stripe_head_ref) 2135 { 2136 struct stripe_head *sh = stripe_head_ref; 2137 2138 pr_debug("%s: stripe %llu\n", __func__, 2139 (unsigned long long)sh->sector); 2140 2141 sh->check_state = check_state_check_result; 2142 set_bit(STRIPE_HANDLE, &sh->state); 2143 raid5_release_stripe(sh); 2144 } 2145 2146 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2147 { 2148 int disks = sh->disks; 2149 int pd_idx = sh->pd_idx; 2150 int qd_idx = sh->qd_idx; 2151 struct page *xor_dest; 2152 unsigned int off_dest; 2153 struct page **xor_srcs = to_addr_page(percpu, 0); 2154 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2155 struct dma_async_tx_descriptor *tx; 2156 struct async_submit_ctl submit; 2157 int count; 2158 int i; 2159 2160 pr_debug("%s: stripe %llu\n", __func__, 2161 (unsigned long long)sh->sector); 2162 2163 BUG_ON(sh->batch_head); 2164 count = 0; 2165 xor_dest = sh->dev[pd_idx].page; 2166 off_dest = sh->dev[pd_idx].offset; 2167 off_srcs[count] = off_dest; 2168 xor_srcs[count++] = xor_dest; 2169 for (i = disks; i--; ) { 2170 if (i == pd_idx || i == qd_idx) 2171 continue; 2172 off_srcs[count] = sh->dev[i].offset; 2173 xor_srcs[count++] = sh->dev[i].page; 2174 } 2175 2176 init_async_submit(&submit, 0, NULL, NULL, NULL, 2177 to_addr_conv(sh, percpu, 0)); 2178 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2179 RAID5_STRIPE_SIZE(sh->raid_conf), 2180 &sh->ops.zero_sum_result, &submit); 2181 2182 atomic_inc(&sh->count); 2183 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2184 tx = async_trigger_callback(&submit); 2185 } 2186 2187 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2188 { 2189 struct page **srcs = to_addr_page(percpu, 0); 2190 unsigned int *offs = to_addr_offs(sh, percpu); 2191 struct async_submit_ctl submit; 2192 int count; 2193 2194 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2195 (unsigned long long)sh->sector, checkp); 2196 2197 BUG_ON(sh->batch_head); 2198 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2199 if (!checkp) 2200 srcs[count] = NULL; 2201 2202 atomic_inc(&sh->count); 2203 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2204 sh, to_addr_conv(sh, percpu, 0)); 2205 async_syndrome_val(srcs, offs, count+2, 2206 RAID5_STRIPE_SIZE(sh->raid_conf), 2207 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2208 } 2209 2210 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2211 { 2212 int overlap_clear = 0, i, disks = sh->disks; 2213 struct dma_async_tx_descriptor *tx = NULL; 2214 struct r5conf *conf = sh->raid_conf; 2215 int level = conf->level; 2216 struct raid5_percpu *percpu; 2217 unsigned long cpu; 2218 2219 cpu = get_cpu(); 2220 percpu = per_cpu_ptr(conf->percpu, cpu); 2221 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2222 ops_run_biofill(sh); 2223 overlap_clear++; 2224 } 2225 2226 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2227 if (level < 6) 2228 tx = ops_run_compute5(sh, percpu); 2229 else { 2230 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2231 tx = ops_run_compute6_1(sh, percpu); 2232 else 2233 tx = ops_run_compute6_2(sh, percpu); 2234 } 2235 /* terminate the chain if reconstruct is not set to be run */ 2236 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2237 async_tx_ack(tx); 2238 } 2239 2240 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2241 if (level < 6) 2242 tx = ops_run_prexor5(sh, percpu, tx); 2243 else 2244 tx = ops_run_prexor6(sh, percpu, tx); 2245 } 2246 2247 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2248 tx = ops_run_partial_parity(sh, percpu, tx); 2249 2250 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2251 tx = ops_run_biodrain(sh, tx); 2252 overlap_clear++; 2253 } 2254 2255 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2256 if (level < 6) 2257 ops_run_reconstruct5(sh, percpu, tx); 2258 else 2259 ops_run_reconstruct6(sh, percpu, tx); 2260 } 2261 2262 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2263 if (sh->check_state == check_state_run) 2264 ops_run_check_p(sh, percpu); 2265 else if (sh->check_state == check_state_run_q) 2266 ops_run_check_pq(sh, percpu, 0); 2267 else if (sh->check_state == check_state_run_pq) 2268 ops_run_check_pq(sh, percpu, 1); 2269 else 2270 BUG(); 2271 } 2272 2273 if (overlap_clear && !sh->batch_head) 2274 for (i = disks; i--; ) { 2275 struct r5dev *dev = &sh->dev[i]; 2276 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2277 wake_up(&sh->raid_conf->wait_for_overlap); 2278 } 2279 put_cpu(); 2280 } 2281 2282 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2283 { 2284 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2285 kfree(sh->pages); 2286 #endif 2287 if (sh->ppl_page) 2288 __free_page(sh->ppl_page); 2289 kmem_cache_free(sc, sh); 2290 } 2291 2292 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2293 int disks, struct r5conf *conf) 2294 { 2295 struct stripe_head *sh; 2296 int i; 2297 2298 sh = kmem_cache_zalloc(sc, gfp); 2299 if (sh) { 2300 spin_lock_init(&sh->stripe_lock); 2301 spin_lock_init(&sh->batch_lock); 2302 INIT_LIST_HEAD(&sh->batch_list); 2303 INIT_LIST_HEAD(&sh->lru); 2304 INIT_LIST_HEAD(&sh->r5c); 2305 INIT_LIST_HEAD(&sh->log_list); 2306 atomic_set(&sh->count, 1); 2307 sh->raid_conf = conf; 2308 sh->log_start = MaxSector; 2309 for (i = 0; i < disks; i++) { 2310 struct r5dev *dev = &sh->dev[i]; 2311 2312 bio_init(&dev->req, &dev->vec, 1); 2313 bio_init(&dev->rreq, &dev->rvec, 1); 2314 } 2315 2316 if (raid5_has_ppl(conf)) { 2317 sh->ppl_page = alloc_page(gfp); 2318 if (!sh->ppl_page) { 2319 free_stripe(sc, sh); 2320 return NULL; 2321 } 2322 } 2323 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2324 if (init_stripe_shared_pages(sh, conf, disks)) { 2325 free_stripe(sc, sh); 2326 return NULL; 2327 } 2328 #endif 2329 } 2330 return sh; 2331 } 2332 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2333 { 2334 struct stripe_head *sh; 2335 2336 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2337 if (!sh) 2338 return 0; 2339 2340 if (grow_buffers(sh, gfp)) { 2341 shrink_buffers(sh); 2342 free_stripe(conf->slab_cache, sh); 2343 return 0; 2344 } 2345 sh->hash_lock_index = 2346 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2347 /* we just created an active stripe so... */ 2348 atomic_inc(&conf->active_stripes); 2349 2350 raid5_release_stripe(sh); 2351 conf->max_nr_stripes++; 2352 return 1; 2353 } 2354 2355 static int grow_stripes(struct r5conf *conf, int num) 2356 { 2357 struct kmem_cache *sc; 2358 size_t namelen = sizeof(conf->cache_name[0]); 2359 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2360 2361 if (conf->mddev->gendisk) 2362 snprintf(conf->cache_name[0], namelen, 2363 "raid%d-%s", conf->level, mdname(conf->mddev)); 2364 else 2365 snprintf(conf->cache_name[0], namelen, 2366 "raid%d-%p", conf->level, conf->mddev); 2367 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2368 2369 conf->active_name = 0; 2370 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2371 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2372 0, 0, NULL); 2373 if (!sc) 2374 return 1; 2375 conf->slab_cache = sc; 2376 conf->pool_size = devs; 2377 while (num--) 2378 if (!grow_one_stripe(conf, GFP_KERNEL)) 2379 return 1; 2380 2381 return 0; 2382 } 2383 2384 /** 2385 * scribble_alloc - allocate percpu scribble buffer for required size 2386 * of the scribble region 2387 * @percpu: from for_each_present_cpu() of the caller 2388 * @num: total number of disks in the array 2389 * @cnt: scribble objs count for required size of the scribble region 2390 * 2391 * The scribble buffer size must be enough to contain: 2392 * 1/ a struct page pointer for each device in the array +2 2393 * 2/ room to convert each entry in (1) to its corresponding dma 2394 * (dma_map_page()) or page (page_address()) address. 2395 * 2396 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2397 * calculate over all devices (not just the data blocks), using zeros in place 2398 * of the P and Q blocks. 2399 */ 2400 static int scribble_alloc(struct raid5_percpu *percpu, 2401 int num, int cnt) 2402 { 2403 size_t obj_size = 2404 sizeof(struct page *) * (num + 2) + 2405 sizeof(addr_conv_t) * (num + 2) + 2406 sizeof(unsigned int) * (num + 2); 2407 void *scribble; 2408 2409 /* 2410 * If here is in raid array suspend context, it is in memalloc noio 2411 * context as well, there is no potential recursive memory reclaim 2412 * I/Os with the GFP_KERNEL flag. 2413 */ 2414 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2415 if (!scribble) 2416 return -ENOMEM; 2417 2418 kvfree(percpu->scribble); 2419 2420 percpu->scribble = scribble; 2421 percpu->scribble_obj_size = obj_size; 2422 return 0; 2423 } 2424 2425 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2426 { 2427 unsigned long cpu; 2428 int err = 0; 2429 2430 /* 2431 * Never shrink. And mddev_suspend() could deadlock if this is called 2432 * from raid5d. In that case, scribble_disks and scribble_sectors 2433 * should equal to new_disks and new_sectors 2434 */ 2435 if (conf->scribble_disks >= new_disks && 2436 conf->scribble_sectors >= new_sectors) 2437 return 0; 2438 mddev_suspend(conf->mddev); 2439 get_online_cpus(); 2440 2441 for_each_present_cpu(cpu) { 2442 struct raid5_percpu *percpu; 2443 2444 percpu = per_cpu_ptr(conf->percpu, cpu); 2445 err = scribble_alloc(percpu, new_disks, 2446 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2447 if (err) 2448 break; 2449 } 2450 2451 put_online_cpus(); 2452 mddev_resume(conf->mddev); 2453 if (!err) { 2454 conf->scribble_disks = new_disks; 2455 conf->scribble_sectors = new_sectors; 2456 } 2457 return err; 2458 } 2459 2460 static int resize_stripes(struct r5conf *conf, int newsize) 2461 { 2462 /* Make all the stripes able to hold 'newsize' devices. 2463 * New slots in each stripe get 'page' set to a new page. 2464 * 2465 * This happens in stages: 2466 * 1/ create a new kmem_cache and allocate the required number of 2467 * stripe_heads. 2468 * 2/ gather all the old stripe_heads and transfer the pages across 2469 * to the new stripe_heads. This will have the side effect of 2470 * freezing the array as once all stripe_heads have been collected, 2471 * no IO will be possible. Old stripe heads are freed once their 2472 * pages have been transferred over, and the old kmem_cache is 2473 * freed when all stripes are done. 2474 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2475 * we simple return a failure status - no need to clean anything up. 2476 * 4/ allocate new pages for the new slots in the new stripe_heads. 2477 * If this fails, we don't bother trying the shrink the 2478 * stripe_heads down again, we just leave them as they are. 2479 * As each stripe_head is processed the new one is released into 2480 * active service. 2481 * 2482 * Once step2 is started, we cannot afford to wait for a write, 2483 * so we use GFP_NOIO allocations. 2484 */ 2485 struct stripe_head *osh, *nsh; 2486 LIST_HEAD(newstripes); 2487 struct disk_info *ndisks; 2488 int err = 0; 2489 struct kmem_cache *sc; 2490 int i; 2491 int hash, cnt; 2492 2493 md_allow_write(conf->mddev); 2494 2495 /* Step 1 */ 2496 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2497 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2498 0, 0, NULL); 2499 if (!sc) 2500 return -ENOMEM; 2501 2502 /* Need to ensure auto-resizing doesn't interfere */ 2503 mutex_lock(&conf->cache_size_mutex); 2504 2505 for (i = conf->max_nr_stripes; i; i--) { 2506 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2507 if (!nsh) 2508 break; 2509 2510 list_add(&nsh->lru, &newstripes); 2511 } 2512 if (i) { 2513 /* didn't get enough, give up */ 2514 while (!list_empty(&newstripes)) { 2515 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2516 list_del(&nsh->lru); 2517 free_stripe(sc, nsh); 2518 } 2519 kmem_cache_destroy(sc); 2520 mutex_unlock(&conf->cache_size_mutex); 2521 return -ENOMEM; 2522 } 2523 /* Step 2 - Must use GFP_NOIO now. 2524 * OK, we have enough stripes, start collecting inactive 2525 * stripes and copying them over 2526 */ 2527 hash = 0; 2528 cnt = 0; 2529 list_for_each_entry(nsh, &newstripes, lru) { 2530 lock_device_hash_lock(conf, hash); 2531 wait_event_cmd(conf->wait_for_stripe, 2532 !list_empty(conf->inactive_list + hash), 2533 unlock_device_hash_lock(conf, hash), 2534 lock_device_hash_lock(conf, hash)); 2535 osh = get_free_stripe(conf, hash); 2536 unlock_device_hash_lock(conf, hash); 2537 2538 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2539 for (i = 0; i < osh->nr_pages; i++) { 2540 nsh->pages[i] = osh->pages[i]; 2541 osh->pages[i] = NULL; 2542 } 2543 #endif 2544 for(i=0; i<conf->pool_size; i++) { 2545 nsh->dev[i].page = osh->dev[i].page; 2546 nsh->dev[i].orig_page = osh->dev[i].page; 2547 nsh->dev[i].offset = osh->dev[i].offset; 2548 } 2549 nsh->hash_lock_index = hash; 2550 free_stripe(conf->slab_cache, osh); 2551 cnt++; 2552 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2553 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2554 hash++; 2555 cnt = 0; 2556 } 2557 } 2558 kmem_cache_destroy(conf->slab_cache); 2559 2560 /* Step 3. 2561 * At this point, we are holding all the stripes so the array 2562 * is completely stalled, so now is a good time to resize 2563 * conf->disks and the scribble region 2564 */ 2565 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2566 if (ndisks) { 2567 for (i = 0; i < conf->pool_size; i++) 2568 ndisks[i] = conf->disks[i]; 2569 2570 for (i = conf->pool_size; i < newsize; i++) { 2571 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2572 if (!ndisks[i].extra_page) 2573 err = -ENOMEM; 2574 } 2575 2576 if (err) { 2577 for (i = conf->pool_size; i < newsize; i++) 2578 if (ndisks[i].extra_page) 2579 put_page(ndisks[i].extra_page); 2580 kfree(ndisks); 2581 } else { 2582 kfree(conf->disks); 2583 conf->disks = ndisks; 2584 } 2585 } else 2586 err = -ENOMEM; 2587 2588 conf->slab_cache = sc; 2589 conf->active_name = 1-conf->active_name; 2590 2591 /* Step 4, return new stripes to service */ 2592 while(!list_empty(&newstripes)) { 2593 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2594 list_del_init(&nsh->lru); 2595 2596 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2597 for (i = 0; i < nsh->nr_pages; i++) { 2598 if (nsh->pages[i]) 2599 continue; 2600 nsh->pages[i] = alloc_page(GFP_NOIO); 2601 if (!nsh->pages[i]) 2602 err = -ENOMEM; 2603 } 2604 2605 for (i = conf->raid_disks; i < newsize; i++) { 2606 if (nsh->dev[i].page) 2607 continue; 2608 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2609 nsh->dev[i].orig_page = nsh->dev[i].page; 2610 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2611 } 2612 #else 2613 for (i=conf->raid_disks; i < newsize; i++) 2614 if (nsh->dev[i].page == NULL) { 2615 struct page *p = alloc_page(GFP_NOIO); 2616 nsh->dev[i].page = p; 2617 nsh->dev[i].orig_page = p; 2618 nsh->dev[i].offset = 0; 2619 if (!p) 2620 err = -ENOMEM; 2621 } 2622 #endif 2623 raid5_release_stripe(nsh); 2624 } 2625 /* critical section pass, GFP_NOIO no longer needed */ 2626 2627 if (!err) 2628 conf->pool_size = newsize; 2629 mutex_unlock(&conf->cache_size_mutex); 2630 2631 return err; 2632 } 2633 2634 static int drop_one_stripe(struct r5conf *conf) 2635 { 2636 struct stripe_head *sh; 2637 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2638 2639 spin_lock_irq(conf->hash_locks + hash); 2640 sh = get_free_stripe(conf, hash); 2641 spin_unlock_irq(conf->hash_locks + hash); 2642 if (!sh) 2643 return 0; 2644 BUG_ON(atomic_read(&sh->count)); 2645 shrink_buffers(sh); 2646 free_stripe(conf->slab_cache, sh); 2647 atomic_dec(&conf->active_stripes); 2648 conf->max_nr_stripes--; 2649 return 1; 2650 } 2651 2652 static void shrink_stripes(struct r5conf *conf) 2653 { 2654 while (conf->max_nr_stripes && 2655 drop_one_stripe(conf)) 2656 ; 2657 2658 kmem_cache_destroy(conf->slab_cache); 2659 conf->slab_cache = NULL; 2660 } 2661 2662 static void raid5_end_read_request(struct bio * bi) 2663 { 2664 struct stripe_head *sh = bi->bi_private; 2665 struct r5conf *conf = sh->raid_conf; 2666 int disks = sh->disks, i; 2667 char b[BDEVNAME_SIZE]; 2668 struct md_rdev *rdev = NULL; 2669 sector_t s; 2670 2671 for (i=0 ; i<disks; i++) 2672 if (bi == &sh->dev[i].req) 2673 break; 2674 2675 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2676 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2677 bi->bi_status); 2678 if (i == disks) { 2679 bio_reset(bi); 2680 BUG(); 2681 return; 2682 } 2683 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2684 /* If replacement finished while this request was outstanding, 2685 * 'replacement' might be NULL already. 2686 * In that case it moved down to 'rdev'. 2687 * rdev is not removed until all requests are finished. 2688 */ 2689 rdev = conf->disks[i].replacement; 2690 if (!rdev) 2691 rdev = conf->disks[i].rdev; 2692 2693 if (use_new_offset(conf, sh)) 2694 s = sh->sector + rdev->new_data_offset; 2695 else 2696 s = sh->sector + rdev->data_offset; 2697 if (!bi->bi_status) { 2698 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2699 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2700 /* Note that this cannot happen on a 2701 * replacement device. We just fail those on 2702 * any error 2703 */ 2704 pr_info_ratelimited( 2705 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2706 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2707 (unsigned long long)s, 2708 bdevname(rdev->bdev, b)); 2709 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2710 clear_bit(R5_ReadError, &sh->dev[i].flags); 2711 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2712 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2713 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2714 2715 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2716 /* 2717 * end read for a page in journal, this 2718 * must be preparing for prexor in rmw 2719 */ 2720 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2721 2722 if (atomic_read(&rdev->read_errors)) 2723 atomic_set(&rdev->read_errors, 0); 2724 } else { 2725 const char *bdn = bdevname(rdev->bdev, b); 2726 int retry = 0; 2727 int set_bad = 0; 2728 2729 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2730 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2731 atomic_inc(&rdev->read_errors); 2732 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2733 pr_warn_ratelimited( 2734 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2735 mdname(conf->mddev), 2736 (unsigned long long)s, 2737 bdn); 2738 else if (conf->mddev->degraded >= conf->max_degraded) { 2739 set_bad = 1; 2740 pr_warn_ratelimited( 2741 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2742 mdname(conf->mddev), 2743 (unsigned long long)s, 2744 bdn); 2745 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2746 /* Oh, no!!! */ 2747 set_bad = 1; 2748 pr_warn_ratelimited( 2749 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2750 mdname(conf->mddev), 2751 (unsigned long long)s, 2752 bdn); 2753 } else if (atomic_read(&rdev->read_errors) 2754 > conf->max_nr_stripes) { 2755 if (!test_bit(Faulty, &rdev->flags)) { 2756 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2757 mdname(conf->mddev), 2758 atomic_read(&rdev->read_errors), 2759 conf->max_nr_stripes); 2760 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2761 mdname(conf->mddev), bdn); 2762 } 2763 } else 2764 retry = 1; 2765 if (set_bad && test_bit(In_sync, &rdev->flags) 2766 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2767 retry = 1; 2768 if (retry) 2769 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2770 set_bit(R5_ReadError, &sh->dev[i].flags); 2771 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2772 set_bit(R5_ReadError, &sh->dev[i].flags); 2773 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2774 } else 2775 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2776 else { 2777 clear_bit(R5_ReadError, &sh->dev[i].flags); 2778 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2779 if (!(set_bad 2780 && test_bit(In_sync, &rdev->flags) 2781 && rdev_set_badblocks( 2782 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2783 md_error(conf->mddev, rdev); 2784 } 2785 } 2786 rdev_dec_pending(rdev, conf->mddev); 2787 bio_reset(bi); 2788 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2789 set_bit(STRIPE_HANDLE, &sh->state); 2790 raid5_release_stripe(sh); 2791 } 2792 2793 static void raid5_end_write_request(struct bio *bi) 2794 { 2795 struct stripe_head *sh = bi->bi_private; 2796 struct r5conf *conf = sh->raid_conf; 2797 int disks = sh->disks, i; 2798 struct md_rdev *rdev; 2799 sector_t first_bad; 2800 int bad_sectors; 2801 int replacement = 0; 2802 2803 for (i = 0 ; i < disks; i++) { 2804 if (bi == &sh->dev[i].req) { 2805 rdev = conf->disks[i].rdev; 2806 break; 2807 } 2808 if (bi == &sh->dev[i].rreq) { 2809 rdev = conf->disks[i].replacement; 2810 if (rdev) 2811 replacement = 1; 2812 else 2813 /* rdev was removed and 'replacement' 2814 * replaced it. rdev is not removed 2815 * until all requests are finished. 2816 */ 2817 rdev = conf->disks[i].rdev; 2818 break; 2819 } 2820 } 2821 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2822 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2823 bi->bi_status); 2824 if (i == disks) { 2825 bio_reset(bi); 2826 BUG(); 2827 return; 2828 } 2829 2830 if (replacement) { 2831 if (bi->bi_status) 2832 md_error(conf->mddev, rdev); 2833 else if (is_badblock(rdev, sh->sector, 2834 RAID5_STRIPE_SECTORS(conf), 2835 &first_bad, &bad_sectors)) 2836 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2837 } else { 2838 if (bi->bi_status) { 2839 set_bit(STRIPE_DEGRADED, &sh->state); 2840 set_bit(WriteErrorSeen, &rdev->flags); 2841 set_bit(R5_WriteError, &sh->dev[i].flags); 2842 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2843 set_bit(MD_RECOVERY_NEEDED, 2844 &rdev->mddev->recovery); 2845 } else if (is_badblock(rdev, sh->sector, 2846 RAID5_STRIPE_SECTORS(conf), 2847 &first_bad, &bad_sectors)) { 2848 set_bit(R5_MadeGood, &sh->dev[i].flags); 2849 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2850 /* That was a successful write so make 2851 * sure it looks like we already did 2852 * a re-write. 2853 */ 2854 set_bit(R5_ReWrite, &sh->dev[i].flags); 2855 } 2856 } 2857 rdev_dec_pending(rdev, conf->mddev); 2858 2859 if (sh->batch_head && bi->bi_status && !replacement) 2860 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2861 2862 bio_reset(bi); 2863 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2864 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2865 set_bit(STRIPE_HANDLE, &sh->state); 2866 raid5_release_stripe(sh); 2867 2868 if (sh->batch_head && sh != sh->batch_head) 2869 raid5_release_stripe(sh->batch_head); 2870 } 2871 2872 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2873 { 2874 char b[BDEVNAME_SIZE]; 2875 struct r5conf *conf = mddev->private; 2876 unsigned long flags; 2877 pr_debug("raid456: error called\n"); 2878 2879 spin_lock_irqsave(&conf->device_lock, flags); 2880 2881 if (test_bit(In_sync, &rdev->flags) && 2882 mddev->degraded == conf->max_degraded) { 2883 /* 2884 * Don't allow to achieve failed state 2885 * Don't try to recover this device 2886 */ 2887 conf->recovery_disabled = mddev->recovery_disabled; 2888 spin_unlock_irqrestore(&conf->device_lock, flags); 2889 return; 2890 } 2891 2892 set_bit(Faulty, &rdev->flags); 2893 clear_bit(In_sync, &rdev->flags); 2894 mddev->degraded = raid5_calc_degraded(conf); 2895 spin_unlock_irqrestore(&conf->device_lock, flags); 2896 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2897 2898 set_bit(Blocked, &rdev->flags); 2899 set_mask_bits(&mddev->sb_flags, 0, 2900 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2901 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2902 "md/raid:%s: Operation continuing on %d devices.\n", 2903 mdname(mddev), 2904 bdevname(rdev->bdev, b), 2905 mdname(mddev), 2906 conf->raid_disks - mddev->degraded); 2907 r5c_update_on_rdev_error(mddev, rdev); 2908 } 2909 2910 /* 2911 * Input: a 'big' sector number, 2912 * Output: index of the data and parity disk, and the sector # in them. 2913 */ 2914 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2915 int previous, int *dd_idx, 2916 struct stripe_head *sh) 2917 { 2918 sector_t stripe, stripe2; 2919 sector_t chunk_number; 2920 unsigned int chunk_offset; 2921 int pd_idx, qd_idx; 2922 int ddf_layout = 0; 2923 sector_t new_sector; 2924 int algorithm = previous ? conf->prev_algo 2925 : conf->algorithm; 2926 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2927 : conf->chunk_sectors; 2928 int raid_disks = previous ? conf->previous_raid_disks 2929 : conf->raid_disks; 2930 int data_disks = raid_disks - conf->max_degraded; 2931 2932 /* First compute the information on this sector */ 2933 2934 /* 2935 * Compute the chunk number and the sector offset inside the chunk 2936 */ 2937 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2938 chunk_number = r_sector; 2939 2940 /* 2941 * Compute the stripe number 2942 */ 2943 stripe = chunk_number; 2944 *dd_idx = sector_div(stripe, data_disks); 2945 stripe2 = stripe; 2946 /* 2947 * Select the parity disk based on the user selected algorithm. 2948 */ 2949 pd_idx = qd_idx = -1; 2950 switch(conf->level) { 2951 case 4: 2952 pd_idx = data_disks; 2953 break; 2954 case 5: 2955 switch (algorithm) { 2956 case ALGORITHM_LEFT_ASYMMETRIC: 2957 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2958 if (*dd_idx >= pd_idx) 2959 (*dd_idx)++; 2960 break; 2961 case ALGORITHM_RIGHT_ASYMMETRIC: 2962 pd_idx = sector_div(stripe2, raid_disks); 2963 if (*dd_idx >= pd_idx) 2964 (*dd_idx)++; 2965 break; 2966 case ALGORITHM_LEFT_SYMMETRIC: 2967 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2968 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2969 break; 2970 case ALGORITHM_RIGHT_SYMMETRIC: 2971 pd_idx = sector_div(stripe2, raid_disks); 2972 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2973 break; 2974 case ALGORITHM_PARITY_0: 2975 pd_idx = 0; 2976 (*dd_idx)++; 2977 break; 2978 case ALGORITHM_PARITY_N: 2979 pd_idx = data_disks; 2980 break; 2981 default: 2982 BUG(); 2983 } 2984 break; 2985 case 6: 2986 2987 switch (algorithm) { 2988 case ALGORITHM_LEFT_ASYMMETRIC: 2989 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2990 qd_idx = pd_idx + 1; 2991 if (pd_idx == raid_disks-1) { 2992 (*dd_idx)++; /* Q D D D P */ 2993 qd_idx = 0; 2994 } else if (*dd_idx >= pd_idx) 2995 (*dd_idx) += 2; /* D D P Q D */ 2996 break; 2997 case ALGORITHM_RIGHT_ASYMMETRIC: 2998 pd_idx = sector_div(stripe2, raid_disks); 2999 qd_idx = pd_idx + 1; 3000 if (pd_idx == raid_disks-1) { 3001 (*dd_idx)++; /* Q D D D P */ 3002 qd_idx = 0; 3003 } else if (*dd_idx >= pd_idx) 3004 (*dd_idx) += 2; /* D D P Q D */ 3005 break; 3006 case ALGORITHM_LEFT_SYMMETRIC: 3007 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3008 qd_idx = (pd_idx + 1) % raid_disks; 3009 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3010 break; 3011 case ALGORITHM_RIGHT_SYMMETRIC: 3012 pd_idx = sector_div(stripe2, raid_disks); 3013 qd_idx = (pd_idx + 1) % raid_disks; 3014 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3015 break; 3016 3017 case ALGORITHM_PARITY_0: 3018 pd_idx = 0; 3019 qd_idx = 1; 3020 (*dd_idx) += 2; 3021 break; 3022 case ALGORITHM_PARITY_N: 3023 pd_idx = data_disks; 3024 qd_idx = data_disks + 1; 3025 break; 3026 3027 case ALGORITHM_ROTATING_ZERO_RESTART: 3028 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3029 * of blocks for computing Q is different. 3030 */ 3031 pd_idx = sector_div(stripe2, raid_disks); 3032 qd_idx = pd_idx + 1; 3033 if (pd_idx == raid_disks-1) { 3034 (*dd_idx)++; /* Q D D D P */ 3035 qd_idx = 0; 3036 } else if (*dd_idx >= pd_idx) 3037 (*dd_idx) += 2; /* D D P Q D */ 3038 ddf_layout = 1; 3039 break; 3040 3041 case ALGORITHM_ROTATING_N_RESTART: 3042 /* Same a left_asymmetric, by first stripe is 3043 * D D D P Q rather than 3044 * Q D D D P 3045 */ 3046 stripe2 += 1; 3047 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3048 qd_idx = pd_idx + 1; 3049 if (pd_idx == raid_disks-1) { 3050 (*dd_idx)++; /* Q D D D P */ 3051 qd_idx = 0; 3052 } else if (*dd_idx >= pd_idx) 3053 (*dd_idx) += 2; /* D D P Q D */ 3054 ddf_layout = 1; 3055 break; 3056 3057 case ALGORITHM_ROTATING_N_CONTINUE: 3058 /* Same as left_symmetric but Q is before P */ 3059 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3060 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3061 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3062 ddf_layout = 1; 3063 break; 3064 3065 case ALGORITHM_LEFT_ASYMMETRIC_6: 3066 /* RAID5 left_asymmetric, with Q on last device */ 3067 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3068 if (*dd_idx >= pd_idx) 3069 (*dd_idx)++; 3070 qd_idx = raid_disks - 1; 3071 break; 3072 3073 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3074 pd_idx = sector_div(stripe2, raid_disks-1); 3075 if (*dd_idx >= pd_idx) 3076 (*dd_idx)++; 3077 qd_idx = raid_disks - 1; 3078 break; 3079 3080 case ALGORITHM_LEFT_SYMMETRIC_6: 3081 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3082 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3083 qd_idx = raid_disks - 1; 3084 break; 3085 3086 case ALGORITHM_RIGHT_SYMMETRIC_6: 3087 pd_idx = sector_div(stripe2, raid_disks-1); 3088 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3089 qd_idx = raid_disks - 1; 3090 break; 3091 3092 case ALGORITHM_PARITY_0_6: 3093 pd_idx = 0; 3094 (*dd_idx)++; 3095 qd_idx = raid_disks - 1; 3096 break; 3097 3098 default: 3099 BUG(); 3100 } 3101 break; 3102 } 3103 3104 if (sh) { 3105 sh->pd_idx = pd_idx; 3106 sh->qd_idx = qd_idx; 3107 sh->ddf_layout = ddf_layout; 3108 } 3109 /* 3110 * Finally, compute the new sector number 3111 */ 3112 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3113 return new_sector; 3114 } 3115 3116 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3117 { 3118 struct r5conf *conf = sh->raid_conf; 3119 int raid_disks = sh->disks; 3120 int data_disks = raid_disks - conf->max_degraded; 3121 sector_t new_sector = sh->sector, check; 3122 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3123 : conf->chunk_sectors; 3124 int algorithm = previous ? conf->prev_algo 3125 : conf->algorithm; 3126 sector_t stripe; 3127 int chunk_offset; 3128 sector_t chunk_number; 3129 int dummy1, dd_idx = i; 3130 sector_t r_sector; 3131 struct stripe_head sh2; 3132 3133 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3134 stripe = new_sector; 3135 3136 if (i == sh->pd_idx) 3137 return 0; 3138 switch(conf->level) { 3139 case 4: break; 3140 case 5: 3141 switch (algorithm) { 3142 case ALGORITHM_LEFT_ASYMMETRIC: 3143 case ALGORITHM_RIGHT_ASYMMETRIC: 3144 if (i > sh->pd_idx) 3145 i--; 3146 break; 3147 case ALGORITHM_LEFT_SYMMETRIC: 3148 case ALGORITHM_RIGHT_SYMMETRIC: 3149 if (i < sh->pd_idx) 3150 i += raid_disks; 3151 i -= (sh->pd_idx + 1); 3152 break; 3153 case ALGORITHM_PARITY_0: 3154 i -= 1; 3155 break; 3156 case ALGORITHM_PARITY_N: 3157 break; 3158 default: 3159 BUG(); 3160 } 3161 break; 3162 case 6: 3163 if (i == sh->qd_idx) 3164 return 0; /* It is the Q disk */ 3165 switch (algorithm) { 3166 case ALGORITHM_LEFT_ASYMMETRIC: 3167 case ALGORITHM_RIGHT_ASYMMETRIC: 3168 case ALGORITHM_ROTATING_ZERO_RESTART: 3169 case ALGORITHM_ROTATING_N_RESTART: 3170 if (sh->pd_idx == raid_disks-1) 3171 i--; /* Q D D D P */ 3172 else if (i > sh->pd_idx) 3173 i -= 2; /* D D P Q D */ 3174 break; 3175 case ALGORITHM_LEFT_SYMMETRIC: 3176 case ALGORITHM_RIGHT_SYMMETRIC: 3177 if (sh->pd_idx == raid_disks-1) 3178 i--; /* Q D D D P */ 3179 else { 3180 /* D D P Q D */ 3181 if (i < sh->pd_idx) 3182 i += raid_disks; 3183 i -= (sh->pd_idx + 2); 3184 } 3185 break; 3186 case ALGORITHM_PARITY_0: 3187 i -= 2; 3188 break; 3189 case ALGORITHM_PARITY_N: 3190 break; 3191 case ALGORITHM_ROTATING_N_CONTINUE: 3192 /* Like left_symmetric, but P is before Q */ 3193 if (sh->pd_idx == 0) 3194 i--; /* P D D D Q */ 3195 else { 3196 /* D D Q P D */ 3197 if (i < sh->pd_idx) 3198 i += raid_disks; 3199 i -= (sh->pd_idx + 1); 3200 } 3201 break; 3202 case ALGORITHM_LEFT_ASYMMETRIC_6: 3203 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3204 if (i > sh->pd_idx) 3205 i--; 3206 break; 3207 case ALGORITHM_LEFT_SYMMETRIC_6: 3208 case ALGORITHM_RIGHT_SYMMETRIC_6: 3209 if (i < sh->pd_idx) 3210 i += data_disks + 1; 3211 i -= (sh->pd_idx + 1); 3212 break; 3213 case ALGORITHM_PARITY_0_6: 3214 i -= 1; 3215 break; 3216 default: 3217 BUG(); 3218 } 3219 break; 3220 } 3221 3222 chunk_number = stripe * data_disks + i; 3223 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3224 3225 check = raid5_compute_sector(conf, r_sector, 3226 previous, &dummy1, &sh2); 3227 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3228 || sh2.qd_idx != sh->qd_idx) { 3229 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3230 mdname(conf->mddev)); 3231 return 0; 3232 } 3233 return r_sector; 3234 } 3235 3236 /* 3237 * There are cases where we want handle_stripe_dirtying() and 3238 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3239 * 3240 * This function checks whether we want to delay the towrite. Specifically, 3241 * we delay the towrite when: 3242 * 3243 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3244 * stripe has data in journal (for other devices). 3245 * 3246 * In this case, when reading data for the non-overwrite dev, it is 3247 * necessary to handle complex rmw of write back cache (prexor with 3248 * orig_page, and xor with page). To keep read path simple, we would 3249 * like to flush data in journal to RAID disks first, so complex rmw 3250 * is handled in the write patch (handle_stripe_dirtying). 3251 * 3252 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3253 * 3254 * It is important to be able to flush all stripes in raid5-cache. 3255 * Therefore, we need reserve some space on the journal device for 3256 * these flushes. If flush operation includes pending writes to the 3257 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3258 * for the flush out. If we exclude these pending writes from flush 3259 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3260 * Therefore, excluding pending writes in these cases enables more 3261 * efficient use of the journal device. 3262 * 3263 * Note: To make sure the stripe makes progress, we only delay 3264 * towrite for stripes with data already in journal (injournal > 0). 3265 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3266 * no_space_stripes list. 3267 * 3268 * 3. during journal failure 3269 * In journal failure, we try to flush all cached data to raid disks 3270 * based on data in stripe cache. The array is read-only to upper 3271 * layers, so we would skip all pending writes. 3272 * 3273 */ 3274 static inline bool delay_towrite(struct r5conf *conf, 3275 struct r5dev *dev, 3276 struct stripe_head_state *s) 3277 { 3278 /* case 1 above */ 3279 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3280 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3281 return true; 3282 /* case 2 above */ 3283 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3284 s->injournal > 0) 3285 return true; 3286 /* case 3 above */ 3287 if (s->log_failed && s->injournal) 3288 return true; 3289 return false; 3290 } 3291 3292 static void 3293 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3294 int rcw, int expand) 3295 { 3296 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3297 struct r5conf *conf = sh->raid_conf; 3298 int level = conf->level; 3299 3300 if (rcw) { 3301 /* 3302 * In some cases, handle_stripe_dirtying initially decided to 3303 * run rmw and allocates extra page for prexor. However, rcw is 3304 * cheaper later on. We need to free the extra page now, 3305 * because we won't be able to do that in ops_complete_prexor(). 3306 */ 3307 r5c_release_extra_page(sh); 3308 3309 for (i = disks; i--; ) { 3310 struct r5dev *dev = &sh->dev[i]; 3311 3312 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3313 set_bit(R5_LOCKED, &dev->flags); 3314 set_bit(R5_Wantdrain, &dev->flags); 3315 if (!expand) 3316 clear_bit(R5_UPTODATE, &dev->flags); 3317 s->locked++; 3318 } else if (test_bit(R5_InJournal, &dev->flags)) { 3319 set_bit(R5_LOCKED, &dev->flags); 3320 s->locked++; 3321 } 3322 } 3323 /* if we are not expanding this is a proper write request, and 3324 * there will be bios with new data to be drained into the 3325 * stripe cache 3326 */ 3327 if (!expand) { 3328 if (!s->locked) 3329 /* False alarm, nothing to do */ 3330 return; 3331 sh->reconstruct_state = reconstruct_state_drain_run; 3332 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3333 } else 3334 sh->reconstruct_state = reconstruct_state_run; 3335 3336 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3337 3338 if (s->locked + conf->max_degraded == disks) 3339 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3340 atomic_inc(&conf->pending_full_writes); 3341 } else { 3342 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3343 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3344 BUG_ON(level == 6 && 3345 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3346 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3347 3348 for (i = disks; i--; ) { 3349 struct r5dev *dev = &sh->dev[i]; 3350 if (i == pd_idx || i == qd_idx) 3351 continue; 3352 3353 if (dev->towrite && 3354 (test_bit(R5_UPTODATE, &dev->flags) || 3355 test_bit(R5_Wantcompute, &dev->flags))) { 3356 set_bit(R5_Wantdrain, &dev->flags); 3357 set_bit(R5_LOCKED, &dev->flags); 3358 clear_bit(R5_UPTODATE, &dev->flags); 3359 s->locked++; 3360 } else if (test_bit(R5_InJournal, &dev->flags)) { 3361 set_bit(R5_LOCKED, &dev->flags); 3362 s->locked++; 3363 } 3364 } 3365 if (!s->locked) 3366 /* False alarm - nothing to do */ 3367 return; 3368 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3369 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3370 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3371 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3372 } 3373 3374 /* keep the parity disk(s) locked while asynchronous operations 3375 * are in flight 3376 */ 3377 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3378 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3379 s->locked++; 3380 3381 if (level == 6) { 3382 int qd_idx = sh->qd_idx; 3383 struct r5dev *dev = &sh->dev[qd_idx]; 3384 3385 set_bit(R5_LOCKED, &dev->flags); 3386 clear_bit(R5_UPTODATE, &dev->flags); 3387 s->locked++; 3388 } 3389 3390 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3391 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3392 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3393 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3394 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3395 3396 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3397 __func__, (unsigned long long)sh->sector, 3398 s->locked, s->ops_request); 3399 } 3400 3401 /* 3402 * Each stripe/dev can have one or more bion attached. 3403 * toread/towrite point to the first in a chain. 3404 * The bi_next chain must be in order. 3405 */ 3406 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3407 int forwrite, int previous) 3408 { 3409 struct bio **bip; 3410 struct r5conf *conf = sh->raid_conf; 3411 int firstwrite=0; 3412 3413 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3414 (unsigned long long)bi->bi_iter.bi_sector, 3415 (unsigned long long)sh->sector); 3416 3417 spin_lock_irq(&sh->stripe_lock); 3418 sh->dev[dd_idx].write_hint = bi->bi_write_hint; 3419 /* Don't allow new IO added to stripes in batch list */ 3420 if (sh->batch_head) 3421 goto overlap; 3422 if (forwrite) { 3423 bip = &sh->dev[dd_idx].towrite; 3424 if (*bip == NULL) 3425 firstwrite = 1; 3426 } else 3427 bip = &sh->dev[dd_idx].toread; 3428 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3429 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3430 goto overlap; 3431 bip = & (*bip)->bi_next; 3432 } 3433 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3434 goto overlap; 3435 3436 if (forwrite && raid5_has_ppl(conf)) { 3437 /* 3438 * With PPL only writes to consecutive data chunks within a 3439 * stripe are allowed because for a single stripe_head we can 3440 * only have one PPL entry at a time, which describes one data 3441 * range. Not really an overlap, but wait_for_overlap can be 3442 * used to handle this. 3443 */ 3444 sector_t sector; 3445 sector_t first = 0; 3446 sector_t last = 0; 3447 int count = 0; 3448 int i; 3449 3450 for (i = 0; i < sh->disks; i++) { 3451 if (i != sh->pd_idx && 3452 (i == dd_idx || sh->dev[i].towrite)) { 3453 sector = sh->dev[i].sector; 3454 if (count == 0 || sector < first) 3455 first = sector; 3456 if (sector > last) 3457 last = sector; 3458 count++; 3459 } 3460 } 3461 3462 if (first + conf->chunk_sectors * (count - 1) != last) 3463 goto overlap; 3464 } 3465 3466 if (!forwrite || previous) 3467 clear_bit(STRIPE_BATCH_READY, &sh->state); 3468 3469 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3470 if (*bip) 3471 bi->bi_next = *bip; 3472 *bip = bi; 3473 bio_inc_remaining(bi); 3474 md_write_inc(conf->mddev, bi); 3475 3476 if (forwrite) { 3477 /* check if page is covered */ 3478 sector_t sector = sh->dev[dd_idx].sector; 3479 for (bi=sh->dev[dd_idx].towrite; 3480 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3481 bi && bi->bi_iter.bi_sector <= sector; 3482 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3483 if (bio_end_sector(bi) >= sector) 3484 sector = bio_end_sector(bi); 3485 } 3486 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3487 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3488 sh->overwrite_disks++; 3489 } 3490 3491 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3492 (unsigned long long)(*bip)->bi_iter.bi_sector, 3493 (unsigned long long)sh->sector, dd_idx); 3494 3495 if (conf->mddev->bitmap && firstwrite) { 3496 /* Cannot hold spinlock over bitmap_startwrite, 3497 * but must ensure this isn't added to a batch until 3498 * we have added to the bitmap and set bm_seq. 3499 * So set STRIPE_BITMAP_PENDING to prevent 3500 * batching. 3501 * If multiple add_stripe_bio() calls race here they 3502 * much all set STRIPE_BITMAP_PENDING. So only the first one 3503 * to complete "bitmap_startwrite" gets to set 3504 * STRIPE_BIT_DELAY. This is important as once a stripe 3505 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3506 * any more. 3507 */ 3508 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3509 spin_unlock_irq(&sh->stripe_lock); 3510 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3511 RAID5_STRIPE_SECTORS(conf), 0); 3512 spin_lock_irq(&sh->stripe_lock); 3513 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3514 if (!sh->batch_head) { 3515 sh->bm_seq = conf->seq_flush+1; 3516 set_bit(STRIPE_BIT_DELAY, &sh->state); 3517 } 3518 } 3519 spin_unlock_irq(&sh->stripe_lock); 3520 3521 if (stripe_can_batch(sh)) 3522 stripe_add_to_batch_list(conf, sh); 3523 return 1; 3524 3525 overlap: 3526 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3527 spin_unlock_irq(&sh->stripe_lock); 3528 return 0; 3529 } 3530 3531 static void end_reshape(struct r5conf *conf); 3532 3533 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3534 struct stripe_head *sh) 3535 { 3536 int sectors_per_chunk = 3537 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3538 int dd_idx; 3539 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3540 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3541 3542 raid5_compute_sector(conf, 3543 stripe * (disks - conf->max_degraded) 3544 *sectors_per_chunk + chunk_offset, 3545 previous, 3546 &dd_idx, sh); 3547 } 3548 3549 static void 3550 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3551 struct stripe_head_state *s, int disks) 3552 { 3553 int i; 3554 BUG_ON(sh->batch_head); 3555 for (i = disks; i--; ) { 3556 struct bio *bi; 3557 int bitmap_end = 0; 3558 3559 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3560 struct md_rdev *rdev; 3561 rcu_read_lock(); 3562 rdev = rcu_dereference(conf->disks[i].rdev); 3563 if (rdev && test_bit(In_sync, &rdev->flags) && 3564 !test_bit(Faulty, &rdev->flags)) 3565 atomic_inc(&rdev->nr_pending); 3566 else 3567 rdev = NULL; 3568 rcu_read_unlock(); 3569 if (rdev) { 3570 if (!rdev_set_badblocks( 3571 rdev, 3572 sh->sector, 3573 RAID5_STRIPE_SECTORS(conf), 0)) 3574 md_error(conf->mddev, rdev); 3575 rdev_dec_pending(rdev, conf->mddev); 3576 } 3577 } 3578 spin_lock_irq(&sh->stripe_lock); 3579 /* fail all writes first */ 3580 bi = sh->dev[i].towrite; 3581 sh->dev[i].towrite = NULL; 3582 sh->overwrite_disks = 0; 3583 spin_unlock_irq(&sh->stripe_lock); 3584 if (bi) 3585 bitmap_end = 1; 3586 3587 log_stripe_write_finished(sh); 3588 3589 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3590 wake_up(&conf->wait_for_overlap); 3591 3592 while (bi && bi->bi_iter.bi_sector < 3593 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3594 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3595 3596 md_write_end(conf->mddev); 3597 bio_io_error(bi); 3598 bi = nextbi; 3599 } 3600 if (bitmap_end) 3601 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3602 RAID5_STRIPE_SECTORS(conf), 0, 0); 3603 bitmap_end = 0; 3604 /* and fail all 'written' */ 3605 bi = sh->dev[i].written; 3606 sh->dev[i].written = NULL; 3607 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3608 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3609 sh->dev[i].page = sh->dev[i].orig_page; 3610 } 3611 3612 if (bi) bitmap_end = 1; 3613 while (bi && bi->bi_iter.bi_sector < 3614 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3615 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3616 3617 md_write_end(conf->mddev); 3618 bio_io_error(bi); 3619 bi = bi2; 3620 } 3621 3622 /* fail any reads if this device is non-operational and 3623 * the data has not reached the cache yet. 3624 */ 3625 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3626 s->failed > conf->max_degraded && 3627 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3628 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3629 spin_lock_irq(&sh->stripe_lock); 3630 bi = sh->dev[i].toread; 3631 sh->dev[i].toread = NULL; 3632 spin_unlock_irq(&sh->stripe_lock); 3633 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3634 wake_up(&conf->wait_for_overlap); 3635 if (bi) 3636 s->to_read--; 3637 while (bi && bi->bi_iter.bi_sector < 3638 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3639 struct bio *nextbi = 3640 r5_next_bio(conf, bi, sh->dev[i].sector); 3641 3642 bio_io_error(bi); 3643 bi = nextbi; 3644 } 3645 } 3646 if (bitmap_end) 3647 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3648 RAID5_STRIPE_SECTORS(conf), 0, 0); 3649 /* If we were in the middle of a write the parity block might 3650 * still be locked - so just clear all R5_LOCKED flags 3651 */ 3652 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3653 } 3654 s->to_write = 0; 3655 s->written = 0; 3656 3657 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3658 if (atomic_dec_and_test(&conf->pending_full_writes)) 3659 md_wakeup_thread(conf->mddev->thread); 3660 } 3661 3662 static void 3663 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3664 struct stripe_head_state *s) 3665 { 3666 int abort = 0; 3667 int i; 3668 3669 BUG_ON(sh->batch_head); 3670 clear_bit(STRIPE_SYNCING, &sh->state); 3671 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3672 wake_up(&conf->wait_for_overlap); 3673 s->syncing = 0; 3674 s->replacing = 0; 3675 /* There is nothing more to do for sync/check/repair. 3676 * Don't even need to abort as that is handled elsewhere 3677 * if needed, and not always wanted e.g. if there is a known 3678 * bad block here. 3679 * For recover/replace we need to record a bad block on all 3680 * non-sync devices, or abort the recovery 3681 */ 3682 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3683 /* During recovery devices cannot be removed, so 3684 * locking and refcounting of rdevs is not needed 3685 */ 3686 rcu_read_lock(); 3687 for (i = 0; i < conf->raid_disks; i++) { 3688 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3689 if (rdev 3690 && !test_bit(Faulty, &rdev->flags) 3691 && !test_bit(In_sync, &rdev->flags) 3692 && !rdev_set_badblocks(rdev, sh->sector, 3693 RAID5_STRIPE_SECTORS(conf), 0)) 3694 abort = 1; 3695 rdev = rcu_dereference(conf->disks[i].replacement); 3696 if (rdev 3697 && !test_bit(Faulty, &rdev->flags) 3698 && !test_bit(In_sync, &rdev->flags) 3699 && !rdev_set_badblocks(rdev, sh->sector, 3700 RAID5_STRIPE_SECTORS(conf), 0)) 3701 abort = 1; 3702 } 3703 rcu_read_unlock(); 3704 if (abort) 3705 conf->recovery_disabled = 3706 conf->mddev->recovery_disabled; 3707 } 3708 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3709 } 3710 3711 static int want_replace(struct stripe_head *sh, int disk_idx) 3712 { 3713 struct md_rdev *rdev; 3714 int rv = 0; 3715 3716 rcu_read_lock(); 3717 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3718 if (rdev 3719 && !test_bit(Faulty, &rdev->flags) 3720 && !test_bit(In_sync, &rdev->flags) 3721 && (rdev->recovery_offset <= sh->sector 3722 || rdev->mddev->recovery_cp <= sh->sector)) 3723 rv = 1; 3724 rcu_read_unlock(); 3725 return rv; 3726 } 3727 3728 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3729 int disk_idx, int disks) 3730 { 3731 struct r5dev *dev = &sh->dev[disk_idx]; 3732 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3733 &sh->dev[s->failed_num[1]] }; 3734 int i; 3735 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3736 3737 3738 if (test_bit(R5_LOCKED, &dev->flags) || 3739 test_bit(R5_UPTODATE, &dev->flags)) 3740 /* No point reading this as we already have it or have 3741 * decided to get it. 3742 */ 3743 return 0; 3744 3745 if (dev->toread || 3746 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3747 /* We need this block to directly satisfy a request */ 3748 return 1; 3749 3750 if (s->syncing || s->expanding || 3751 (s->replacing && want_replace(sh, disk_idx))) 3752 /* When syncing, or expanding we read everything. 3753 * When replacing, we need the replaced block. 3754 */ 3755 return 1; 3756 3757 if ((s->failed >= 1 && fdev[0]->toread) || 3758 (s->failed >= 2 && fdev[1]->toread)) 3759 /* If we want to read from a failed device, then 3760 * we need to actually read every other device. 3761 */ 3762 return 1; 3763 3764 /* Sometimes neither read-modify-write nor reconstruct-write 3765 * cycles can work. In those cases we read every block we 3766 * can. Then the parity-update is certain to have enough to 3767 * work with. 3768 * This can only be a problem when we need to write something, 3769 * and some device has failed. If either of those tests 3770 * fail we need look no further. 3771 */ 3772 if (!s->failed || !s->to_write) 3773 return 0; 3774 3775 if (test_bit(R5_Insync, &dev->flags) && 3776 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3777 /* Pre-reads at not permitted until after short delay 3778 * to gather multiple requests. However if this 3779 * device is no Insync, the block could only be computed 3780 * and there is no need to delay that. 3781 */ 3782 return 0; 3783 3784 for (i = 0; i < s->failed && i < 2; i++) { 3785 if (fdev[i]->towrite && 3786 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3787 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3788 /* If we have a partial write to a failed 3789 * device, then we will need to reconstruct 3790 * the content of that device, so all other 3791 * devices must be read. 3792 */ 3793 return 1; 3794 3795 if (s->failed >= 2 && 3796 (fdev[i]->towrite || 3797 s->failed_num[i] == sh->pd_idx || 3798 s->failed_num[i] == sh->qd_idx) && 3799 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3800 /* In max degraded raid6, If the failed disk is P, Q, 3801 * or we want to read the failed disk, we need to do 3802 * reconstruct-write. 3803 */ 3804 force_rcw = true; 3805 } 3806 3807 /* If we are forced to do a reconstruct-write, because parity 3808 * cannot be trusted and we are currently recovering it, there 3809 * is extra need to be careful. 3810 * If one of the devices that we would need to read, because 3811 * it is not being overwritten (and maybe not written at all) 3812 * is missing/faulty, then we need to read everything we can. 3813 */ 3814 if (!force_rcw && 3815 sh->sector < sh->raid_conf->mddev->recovery_cp) 3816 /* reconstruct-write isn't being forced */ 3817 return 0; 3818 for (i = 0; i < s->failed && i < 2; i++) { 3819 if (s->failed_num[i] != sh->pd_idx && 3820 s->failed_num[i] != sh->qd_idx && 3821 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3822 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3823 return 1; 3824 } 3825 3826 return 0; 3827 } 3828 3829 /* fetch_block - checks the given member device to see if its data needs 3830 * to be read or computed to satisfy a request. 3831 * 3832 * Returns 1 when no more member devices need to be checked, otherwise returns 3833 * 0 to tell the loop in handle_stripe_fill to continue 3834 */ 3835 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3836 int disk_idx, int disks) 3837 { 3838 struct r5dev *dev = &sh->dev[disk_idx]; 3839 3840 /* is the data in this block needed, and can we get it? */ 3841 if (need_this_block(sh, s, disk_idx, disks)) { 3842 /* we would like to get this block, possibly by computing it, 3843 * otherwise read it if the backing disk is insync 3844 */ 3845 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3846 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3847 BUG_ON(sh->batch_head); 3848 3849 /* 3850 * In the raid6 case if the only non-uptodate disk is P 3851 * then we already trusted P to compute the other failed 3852 * drives. It is safe to compute rather than re-read P. 3853 * In other cases we only compute blocks from failed 3854 * devices, otherwise check/repair might fail to detect 3855 * a real inconsistency. 3856 */ 3857 3858 if ((s->uptodate == disks - 1) && 3859 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3860 (s->failed && (disk_idx == s->failed_num[0] || 3861 disk_idx == s->failed_num[1])))) { 3862 /* have disk failed, and we're requested to fetch it; 3863 * do compute it 3864 */ 3865 pr_debug("Computing stripe %llu block %d\n", 3866 (unsigned long long)sh->sector, disk_idx); 3867 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3868 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3869 set_bit(R5_Wantcompute, &dev->flags); 3870 sh->ops.target = disk_idx; 3871 sh->ops.target2 = -1; /* no 2nd target */ 3872 s->req_compute = 1; 3873 /* Careful: from this point on 'uptodate' is in the eye 3874 * of raid_run_ops which services 'compute' operations 3875 * before writes. R5_Wantcompute flags a block that will 3876 * be R5_UPTODATE by the time it is needed for a 3877 * subsequent operation. 3878 */ 3879 s->uptodate++; 3880 return 1; 3881 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3882 /* Computing 2-failure is *very* expensive; only 3883 * do it if failed >= 2 3884 */ 3885 int other; 3886 for (other = disks; other--; ) { 3887 if (other == disk_idx) 3888 continue; 3889 if (!test_bit(R5_UPTODATE, 3890 &sh->dev[other].flags)) 3891 break; 3892 } 3893 BUG_ON(other < 0); 3894 pr_debug("Computing stripe %llu blocks %d,%d\n", 3895 (unsigned long long)sh->sector, 3896 disk_idx, other); 3897 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3898 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3899 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3900 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3901 sh->ops.target = disk_idx; 3902 sh->ops.target2 = other; 3903 s->uptodate += 2; 3904 s->req_compute = 1; 3905 return 1; 3906 } else if (test_bit(R5_Insync, &dev->flags)) { 3907 set_bit(R5_LOCKED, &dev->flags); 3908 set_bit(R5_Wantread, &dev->flags); 3909 s->locked++; 3910 pr_debug("Reading block %d (sync=%d)\n", 3911 disk_idx, s->syncing); 3912 } 3913 } 3914 3915 return 0; 3916 } 3917 3918 /* 3919 * handle_stripe_fill - read or compute data to satisfy pending requests. 3920 */ 3921 static void handle_stripe_fill(struct stripe_head *sh, 3922 struct stripe_head_state *s, 3923 int disks) 3924 { 3925 int i; 3926 3927 /* look for blocks to read/compute, skip this if a compute 3928 * is already in flight, or if the stripe contents are in the 3929 * midst of changing due to a write 3930 */ 3931 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3932 !sh->reconstruct_state) { 3933 3934 /* 3935 * For degraded stripe with data in journal, do not handle 3936 * read requests yet, instead, flush the stripe to raid 3937 * disks first, this avoids handling complex rmw of write 3938 * back cache (prexor with orig_page, and then xor with 3939 * page) in the read path 3940 */ 3941 if (s->injournal && s->failed) { 3942 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3943 r5c_make_stripe_write_out(sh); 3944 goto out; 3945 } 3946 3947 for (i = disks; i--; ) 3948 if (fetch_block(sh, s, i, disks)) 3949 break; 3950 } 3951 out: 3952 set_bit(STRIPE_HANDLE, &sh->state); 3953 } 3954 3955 static void break_stripe_batch_list(struct stripe_head *head_sh, 3956 unsigned long handle_flags); 3957 /* handle_stripe_clean_event 3958 * any written block on an uptodate or failed drive can be returned. 3959 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3960 * never LOCKED, so we don't need to test 'failed' directly. 3961 */ 3962 static void handle_stripe_clean_event(struct r5conf *conf, 3963 struct stripe_head *sh, int disks) 3964 { 3965 int i; 3966 struct r5dev *dev; 3967 int discard_pending = 0; 3968 struct stripe_head *head_sh = sh; 3969 bool do_endio = false; 3970 3971 for (i = disks; i--; ) 3972 if (sh->dev[i].written) { 3973 dev = &sh->dev[i]; 3974 if (!test_bit(R5_LOCKED, &dev->flags) && 3975 (test_bit(R5_UPTODATE, &dev->flags) || 3976 test_bit(R5_Discard, &dev->flags) || 3977 test_bit(R5_SkipCopy, &dev->flags))) { 3978 /* We can return any write requests */ 3979 struct bio *wbi, *wbi2; 3980 pr_debug("Return write for disc %d\n", i); 3981 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3982 clear_bit(R5_UPTODATE, &dev->flags); 3983 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3984 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3985 } 3986 do_endio = true; 3987 3988 returnbi: 3989 dev->page = dev->orig_page; 3990 wbi = dev->written; 3991 dev->written = NULL; 3992 while (wbi && wbi->bi_iter.bi_sector < 3993 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 3994 wbi2 = r5_next_bio(conf, wbi, dev->sector); 3995 md_write_end(conf->mddev); 3996 bio_endio(wbi); 3997 wbi = wbi2; 3998 } 3999 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4000 RAID5_STRIPE_SECTORS(conf), 4001 !test_bit(STRIPE_DEGRADED, &sh->state), 4002 0); 4003 if (head_sh->batch_head) { 4004 sh = list_first_entry(&sh->batch_list, 4005 struct stripe_head, 4006 batch_list); 4007 if (sh != head_sh) { 4008 dev = &sh->dev[i]; 4009 goto returnbi; 4010 } 4011 } 4012 sh = head_sh; 4013 dev = &sh->dev[i]; 4014 } else if (test_bit(R5_Discard, &dev->flags)) 4015 discard_pending = 1; 4016 } 4017 4018 log_stripe_write_finished(sh); 4019 4020 if (!discard_pending && 4021 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4022 int hash; 4023 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4024 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4025 if (sh->qd_idx >= 0) { 4026 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4027 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4028 } 4029 /* now that discard is done we can proceed with any sync */ 4030 clear_bit(STRIPE_DISCARD, &sh->state); 4031 /* 4032 * SCSI discard will change some bio fields and the stripe has 4033 * no updated data, so remove it from hash list and the stripe 4034 * will be reinitialized 4035 */ 4036 unhash: 4037 hash = sh->hash_lock_index; 4038 spin_lock_irq(conf->hash_locks + hash); 4039 remove_hash(sh); 4040 spin_unlock_irq(conf->hash_locks + hash); 4041 if (head_sh->batch_head) { 4042 sh = list_first_entry(&sh->batch_list, 4043 struct stripe_head, batch_list); 4044 if (sh != head_sh) 4045 goto unhash; 4046 } 4047 sh = head_sh; 4048 4049 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4050 set_bit(STRIPE_HANDLE, &sh->state); 4051 4052 } 4053 4054 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4055 if (atomic_dec_and_test(&conf->pending_full_writes)) 4056 md_wakeup_thread(conf->mddev->thread); 4057 4058 if (head_sh->batch_head && do_endio) 4059 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4060 } 4061 4062 /* 4063 * For RMW in write back cache, we need extra page in prexor to store the 4064 * old data. This page is stored in dev->orig_page. 4065 * 4066 * This function checks whether we have data for prexor. The exact logic 4067 * is: 4068 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4069 */ 4070 static inline bool uptodate_for_rmw(struct r5dev *dev) 4071 { 4072 return (test_bit(R5_UPTODATE, &dev->flags)) && 4073 (!test_bit(R5_InJournal, &dev->flags) || 4074 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4075 } 4076 4077 static int handle_stripe_dirtying(struct r5conf *conf, 4078 struct stripe_head *sh, 4079 struct stripe_head_state *s, 4080 int disks) 4081 { 4082 int rmw = 0, rcw = 0, i; 4083 sector_t recovery_cp = conf->mddev->recovery_cp; 4084 4085 /* Check whether resync is now happening or should start. 4086 * If yes, then the array is dirty (after unclean shutdown or 4087 * initial creation), so parity in some stripes might be inconsistent. 4088 * In this case, we need to always do reconstruct-write, to ensure 4089 * that in case of drive failure or read-error correction, we 4090 * generate correct data from the parity. 4091 */ 4092 if (conf->rmw_level == PARITY_DISABLE_RMW || 4093 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4094 s->failed == 0)) { 4095 /* Calculate the real rcw later - for now make it 4096 * look like rcw is cheaper 4097 */ 4098 rcw = 1; rmw = 2; 4099 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4100 conf->rmw_level, (unsigned long long)recovery_cp, 4101 (unsigned long long)sh->sector); 4102 } else for (i = disks; i--; ) { 4103 /* would I have to read this buffer for read_modify_write */ 4104 struct r5dev *dev = &sh->dev[i]; 4105 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4106 i == sh->pd_idx || i == sh->qd_idx || 4107 test_bit(R5_InJournal, &dev->flags)) && 4108 !test_bit(R5_LOCKED, &dev->flags) && 4109 !(uptodate_for_rmw(dev) || 4110 test_bit(R5_Wantcompute, &dev->flags))) { 4111 if (test_bit(R5_Insync, &dev->flags)) 4112 rmw++; 4113 else 4114 rmw += 2*disks; /* cannot read it */ 4115 } 4116 /* Would I have to read this buffer for reconstruct_write */ 4117 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4118 i != sh->pd_idx && i != sh->qd_idx && 4119 !test_bit(R5_LOCKED, &dev->flags) && 4120 !(test_bit(R5_UPTODATE, &dev->flags) || 4121 test_bit(R5_Wantcompute, &dev->flags))) { 4122 if (test_bit(R5_Insync, &dev->flags)) 4123 rcw++; 4124 else 4125 rcw += 2*disks; 4126 } 4127 } 4128 4129 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4130 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4131 set_bit(STRIPE_HANDLE, &sh->state); 4132 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4133 /* prefer read-modify-write, but need to get some data */ 4134 if (conf->mddev->queue) 4135 blk_add_trace_msg(conf->mddev->queue, 4136 "raid5 rmw %llu %d", 4137 (unsigned long long)sh->sector, rmw); 4138 for (i = disks; i--; ) { 4139 struct r5dev *dev = &sh->dev[i]; 4140 if (test_bit(R5_InJournal, &dev->flags) && 4141 dev->page == dev->orig_page && 4142 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4143 /* alloc page for prexor */ 4144 struct page *p = alloc_page(GFP_NOIO); 4145 4146 if (p) { 4147 dev->orig_page = p; 4148 continue; 4149 } 4150 4151 /* 4152 * alloc_page() failed, try use 4153 * disk_info->extra_page 4154 */ 4155 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4156 &conf->cache_state)) { 4157 r5c_use_extra_page(sh); 4158 break; 4159 } 4160 4161 /* extra_page in use, add to delayed_list */ 4162 set_bit(STRIPE_DELAYED, &sh->state); 4163 s->waiting_extra_page = 1; 4164 return -EAGAIN; 4165 } 4166 } 4167 4168 for (i = disks; i--; ) { 4169 struct r5dev *dev = &sh->dev[i]; 4170 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4171 i == sh->pd_idx || i == sh->qd_idx || 4172 test_bit(R5_InJournal, &dev->flags)) && 4173 !test_bit(R5_LOCKED, &dev->flags) && 4174 !(uptodate_for_rmw(dev) || 4175 test_bit(R5_Wantcompute, &dev->flags)) && 4176 test_bit(R5_Insync, &dev->flags)) { 4177 if (test_bit(STRIPE_PREREAD_ACTIVE, 4178 &sh->state)) { 4179 pr_debug("Read_old block %d for r-m-w\n", 4180 i); 4181 set_bit(R5_LOCKED, &dev->flags); 4182 set_bit(R5_Wantread, &dev->flags); 4183 s->locked++; 4184 } else 4185 set_bit(STRIPE_DELAYED, &sh->state); 4186 } 4187 } 4188 } 4189 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4190 /* want reconstruct write, but need to get some data */ 4191 int qread =0; 4192 rcw = 0; 4193 for (i = disks; i--; ) { 4194 struct r5dev *dev = &sh->dev[i]; 4195 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4196 i != sh->pd_idx && i != sh->qd_idx && 4197 !test_bit(R5_LOCKED, &dev->flags) && 4198 !(test_bit(R5_UPTODATE, &dev->flags) || 4199 test_bit(R5_Wantcompute, &dev->flags))) { 4200 rcw++; 4201 if (test_bit(R5_Insync, &dev->flags) && 4202 test_bit(STRIPE_PREREAD_ACTIVE, 4203 &sh->state)) { 4204 pr_debug("Read_old block " 4205 "%d for Reconstruct\n", i); 4206 set_bit(R5_LOCKED, &dev->flags); 4207 set_bit(R5_Wantread, &dev->flags); 4208 s->locked++; 4209 qread++; 4210 } else 4211 set_bit(STRIPE_DELAYED, &sh->state); 4212 } 4213 } 4214 if (rcw && conf->mddev->queue) 4215 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4216 (unsigned long long)sh->sector, 4217 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4218 } 4219 4220 if (rcw > disks && rmw > disks && 4221 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4222 set_bit(STRIPE_DELAYED, &sh->state); 4223 4224 /* now if nothing is locked, and if we have enough data, 4225 * we can start a write request 4226 */ 4227 /* since handle_stripe can be called at any time we need to handle the 4228 * case where a compute block operation has been submitted and then a 4229 * subsequent call wants to start a write request. raid_run_ops only 4230 * handles the case where compute block and reconstruct are requested 4231 * simultaneously. If this is not the case then new writes need to be 4232 * held off until the compute completes. 4233 */ 4234 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4235 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4236 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4237 schedule_reconstruction(sh, s, rcw == 0, 0); 4238 return 0; 4239 } 4240 4241 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4242 struct stripe_head_state *s, int disks) 4243 { 4244 struct r5dev *dev = NULL; 4245 4246 BUG_ON(sh->batch_head); 4247 set_bit(STRIPE_HANDLE, &sh->state); 4248 4249 switch (sh->check_state) { 4250 case check_state_idle: 4251 /* start a new check operation if there are no failures */ 4252 if (s->failed == 0) { 4253 BUG_ON(s->uptodate != disks); 4254 sh->check_state = check_state_run; 4255 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4256 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4257 s->uptodate--; 4258 break; 4259 } 4260 dev = &sh->dev[s->failed_num[0]]; 4261 fallthrough; 4262 case check_state_compute_result: 4263 sh->check_state = check_state_idle; 4264 if (!dev) 4265 dev = &sh->dev[sh->pd_idx]; 4266 4267 /* check that a write has not made the stripe insync */ 4268 if (test_bit(STRIPE_INSYNC, &sh->state)) 4269 break; 4270 4271 /* either failed parity check, or recovery is happening */ 4272 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4273 BUG_ON(s->uptodate != disks); 4274 4275 set_bit(R5_LOCKED, &dev->flags); 4276 s->locked++; 4277 set_bit(R5_Wantwrite, &dev->flags); 4278 4279 clear_bit(STRIPE_DEGRADED, &sh->state); 4280 set_bit(STRIPE_INSYNC, &sh->state); 4281 break; 4282 case check_state_run: 4283 break; /* we will be called again upon completion */ 4284 case check_state_check_result: 4285 sh->check_state = check_state_idle; 4286 4287 /* if a failure occurred during the check operation, leave 4288 * STRIPE_INSYNC not set and let the stripe be handled again 4289 */ 4290 if (s->failed) 4291 break; 4292 4293 /* handle a successful check operation, if parity is correct 4294 * we are done. Otherwise update the mismatch count and repair 4295 * parity if !MD_RECOVERY_CHECK 4296 */ 4297 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4298 /* parity is correct (on disc, 4299 * not in buffer any more) 4300 */ 4301 set_bit(STRIPE_INSYNC, &sh->state); 4302 else { 4303 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4304 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4305 /* don't try to repair!! */ 4306 set_bit(STRIPE_INSYNC, &sh->state); 4307 pr_warn_ratelimited("%s: mismatch sector in range " 4308 "%llu-%llu\n", mdname(conf->mddev), 4309 (unsigned long long) sh->sector, 4310 (unsigned long long) sh->sector + 4311 RAID5_STRIPE_SECTORS(conf)); 4312 } else { 4313 sh->check_state = check_state_compute_run; 4314 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4315 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4316 set_bit(R5_Wantcompute, 4317 &sh->dev[sh->pd_idx].flags); 4318 sh->ops.target = sh->pd_idx; 4319 sh->ops.target2 = -1; 4320 s->uptodate++; 4321 } 4322 } 4323 break; 4324 case check_state_compute_run: 4325 break; 4326 default: 4327 pr_err("%s: unknown check_state: %d sector: %llu\n", 4328 __func__, sh->check_state, 4329 (unsigned long long) sh->sector); 4330 BUG(); 4331 } 4332 } 4333 4334 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4335 struct stripe_head_state *s, 4336 int disks) 4337 { 4338 int pd_idx = sh->pd_idx; 4339 int qd_idx = sh->qd_idx; 4340 struct r5dev *dev; 4341 4342 BUG_ON(sh->batch_head); 4343 set_bit(STRIPE_HANDLE, &sh->state); 4344 4345 BUG_ON(s->failed > 2); 4346 4347 /* Want to check and possibly repair P and Q. 4348 * However there could be one 'failed' device, in which 4349 * case we can only check one of them, possibly using the 4350 * other to generate missing data 4351 */ 4352 4353 switch (sh->check_state) { 4354 case check_state_idle: 4355 /* start a new check operation if there are < 2 failures */ 4356 if (s->failed == s->q_failed) { 4357 /* The only possible failed device holds Q, so it 4358 * makes sense to check P (If anything else were failed, 4359 * we would have used P to recreate it). 4360 */ 4361 sh->check_state = check_state_run; 4362 } 4363 if (!s->q_failed && s->failed < 2) { 4364 /* Q is not failed, and we didn't use it to generate 4365 * anything, so it makes sense to check it 4366 */ 4367 if (sh->check_state == check_state_run) 4368 sh->check_state = check_state_run_pq; 4369 else 4370 sh->check_state = check_state_run_q; 4371 } 4372 4373 /* discard potentially stale zero_sum_result */ 4374 sh->ops.zero_sum_result = 0; 4375 4376 if (sh->check_state == check_state_run) { 4377 /* async_xor_zero_sum destroys the contents of P */ 4378 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4379 s->uptodate--; 4380 } 4381 if (sh->check_state >= check_state_run && 4382 sh->check_state <= check_state_run_pq) { 4383 /* async_syndrome_zero_sum preserves P and Q, so 4384 * no need to mark them !uptodate here 4385 */ 4386 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4387 break; 4388 } 4389 4390 /* we have 2-disk failure */ 4391 BUG_ON(s->failed != 2); 4392 fallthrough; 4393 case check_state_compute_result: 4394 sh->check_state = check_state_idle; 4395 4396 /* check that a write has not made the stripe insync */ 4397 if (test_bit(STRIPE_INSYNC, &sh->state)) 4398 break; 4399 4400 /* now write out any block on a failed drive, 4401 * or P or Q if they were recomputed 4402 */ 4403 dev = NULL; 4404 if (s->failed == 2) { 4405 dev = &sh->dev[s->failed_num[1]]; 4406 s->locked++; 4407 set_bit(R5_LOCKED, &dev->flags); 4408 set_bit(R5_Wantwrite, &dev->flags); 4409 } 4410 if (s->failed >= 1) { 4411 dev = &sh->dev[s->failed_num[0]]; 4412 s->locked++; 4413 set_bit(R5_LOCKED, &dev->flags); 4414 set_bit(R5_Wantwrite, &dev->flags); 4415 } 4416 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4417 dev = &sh->dev[pd_idx]; 4418 s->locked++; 4419 set_bit(R5_LOCKED, &dev->flags); 4420 set_bit(R5_Wantwrite, &dev->flags); 4421 } 4422 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4423 dev = &sh->dev[qd_idx]; 4424 s->locked++; 4425 set_bit(R5_LOCKED, &dev->flags); 4426 set_bit(R5_Wantwrite, &dev->flags); 4427 } 4428 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4429 "%s: disk%td not up to date\n", 4430 mdname(conf->mddev), 4431 dev - (struct r5dev *) &sh->dev)) { 4432 clear_bit(R5_LOCKED, &dev->flags); 4433 clear_bit(R5_Wantwrite, &dev->flags); 4434 s->locked--; 4435 } 4436 clear_bit(STRIPE_DEGRADED, &sh->state); 4437 4438 set_bit(STRIPE_INSYNC, &sh->state); 4439 break; 4440 case check_state_run: 4441 case check_state_run_q: 4442 case check_state_run_pq: 4443 break; /* we will be called again upon completion */ 4444 case check_state_check_result: 4445 sh->check_state = check_state_idle; 4446 4447 /* handle a successful check operation, if parity is correct 4448 * we are done. Otherwise update the mismatch count and repair 4449 * parity if !MD_RECOVERY_CHECK 4450 */ 4451 if (sh->ops.zero_sum_result == 0) { 4452 /* both parities are correct */ 4453 if (!s->failed) 4454 set_bit(STRIPE_INSYNC, &sh->state); 4455 else { 4456 /* in contrast to the raid5 case we can validate 4457 * parity, but still have a failure to write 4458 * back 4459 */ 4460 sh->check_state = check_state_compute_result; 4461 /* Returning at this point means that we may go 4462 * off and bring p and/or q uptodate again so 4463 * we make sure to check zero_sum_result again 4464 * to verify if p or q need writeback 4465 */ 4466 } 4467 } else { 4468 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4469 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4470 /* don't try to repair!! */ 4471 set_bit(STRIPE_INSYNC, &sh->state); 4472 pr_warn_ratelimited("%s: mismatch sector in range " 4473 "%llu-%llu\n", mdname(conf->mddev), 4474 (unsigned long long) sh->sector, 4475 (unsigned long long) sh->sector + 4476 RAID5_STRIPE_SECTORS(conf)); 4477 } else { 4478 int *target = &sh->ops.target; 4479 4480 sh->ops.target = -1; 4481 sh->ops.target2 = -1; 4482 sh->check_state = check_state_compute_run; 4483 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4484 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4485 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4486 set_bit(R5_Wantcompute, 4487 &sh->dev[pd_idx].flags); 4488 *target = pd_idx; 4489 target = &sh->ops.target2; 4490 s->uptodate++; 4491 } 4492 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4493 set_bit(R5_Wantcompute, 4494 &sh->dev[qd_idx].flags); 4495 *target = qd_idx; 4496 s->uptodate++; 4497 } 4498 } 4499 } 4500 break; 4501 case check_state_compute_run: 4502 break; 4503 default: 4504 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4505 __func__, sh->check_state, 4506 (unsigned long long) sh->sector); 4507 BUG(); 4508 } 4509 } 4510 4511 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4512 { 4513 int i; 4514 4515 /* We have read all the blocks in this stripe and now we need to 4516 * copy some of them into a target stripe for expand. 4517 */ 4518 struct dma_async_tx_descriptor *tx = NULL; 4519 BUG_ON(sh->batch_head); 4520 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4521 for (i = 0; i < sh->disks; i++) 4522 if (i != sh->pd_idx && i != sh->qd_idx) { 4523 int dd_idx, j; 4524 struct stripe_head *sh2; 4525 struct async_submit_ctl submit; 4526 4527 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4528 sector_t s = raid5_compute_sector(conf, bn, 0, 4529 &dd_idx, NULL); 4530 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4531 if (sh2 == NULL) 4532 /* so far only the early blocks of this stripe 4533 * have been requested. When later blocks 4534 * get requested, we will try again 4535 */ 4536 continue; 4537 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4538 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4539 /* must have already done this block */ 4540 raid5_release_stripe(sh2); 4541 continue; 4542 } 4543 4544 /* place all the copies on one channel */ 4545 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4546 tx = async_memcpy(sh2->dev[dd_idx].page, 4547 sh->dev[i].page, sh2->dev[dd_idx].offset, 4548 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4549 &submit); 4550 4551 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4552 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4553 for (j = 0; j < conf->raid_disks; j++) 4554 if (j != sh2->pd_idx && 4555 j != sh2->qd_idx && 4556 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4557 break; 4558 if (j == conf->raid_disks) { 4559 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4560 set_bit(STRIPE_HANDLE, &sh2->state); 4561 } 4562 raid5_release_stripe(sh2); 4563 4564 } 4565 /* done submitting copies, wait for them to complete */ 4566 async_tx_quiesce(&tx); 4567 } 4568 4569 /* 4570 * handle_stripe - do things to a stripe. 4571 * 4572 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4573 * state of various bits to see what needs to be done. 4574 * Possible results: 4575 * return some read requests which now have data 4576 * return some write requests which are safely on storage 4577 * schedule a read on some buffers 4578 * schedule a write of some buffers 4579 * return confirmation of parity correctness 4580 * 4581 */ 4582 4583 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4584 { 4585 struct r5conf *conf = sh->raid_conf; 4586 int disks = sh->disks; 4587 struct r5dev *dev; 4588 int i; 4589 int do_recovery = 0; 4590 4591 memset(s, 0, sizeof(*s)); 4592 4593 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4594 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4595 s->failed_num[0] = -1; 4596 s->failed_num[1] = -1; 4597 s->log_failed = r5l_log_disk_error(conf); 4598 4599 /* Now to look around and see what can be done */ 4600 rcu_read_lock(); 4601 for (i=disks; i--; ) { 4602 struct md_rdev *rdev; 4603 sector_t first_bad; 4604 int bad_sectors; 4605 int is_bad = 0; 4606 4607 dev = &sh->dev[i]; 4608 4609 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4610 i, dev->flags, 4611 dev->toread, dev->towrite, dev->written); 4612 /* maybe we can reply to a read 4613 * 4614 * new wantfill requests are only permitted while 4615 * ops_complete_biofill is guaranteed to be inactive 4616 */ 4617 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4618 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4619 set_bit(R5_Wantfill, &dev->flags); 4620 4621 /* now count some things */ 4622 if (test_bit(R5_LOCKED, &dev->flags)) 4623 s->locked++; 4624 if (test_bit(R5_UPTODATE, &dev->flags)) 4625 s->uptodate++; 4626 if (test_bit(R5_Wantcompute, &dev->flags)) { 4627 s->compute++; 4628 BUG_ON(s->compute > 2); 4629 } 4630 4631 if (test_bit(R5_Wantfill, &dev->flags)) 4632 s->to_fill++; 4633 else if (dev->toread) 4634 s->to_read++; 4635 if (dev->towrite) { 4636 s->to_write++; 4637 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4638 s->non_overwrite++; 4639 } 4640 if (dev->written) 4641 s->written++; 4642 /* Prefer to use the replacement for reads, but only 4643 * if it is recovered enough and has no bad blocks. 4644 */ 4645 rdev = rcu_dereference(conf->disks[i].replacement); 4646 if (rdev && !test_bit(Faulty, &rdev->flags) && 4647 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4648 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4649 &first_bad, &bad_sectors)) 4650 set_bit(R5_ReadRepl, &dev->flags); 4651 else { 4652 if (rdev && !test_bit(Faulty, &rdev->flags)) 4653 set_bit(R5_NeedReplace, &dev->flags); 4654 else 4655 clear_bit(R5_NeedReplace, &dev->flags); 4656 rdev = rcu_dereference(conf->disks[i].rdev); 4657 clear_bit(R5_ReadRepl, &dev->flags); 4658 } 4659 if (rdev && test_bit(Faulty, &rdev->flags)) 4660 rdev = NULL; 4661 if (rdev) { 4662 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4663 &first_bad, &bad_sectors); 4664 if (s->blocked_rdev == NULL 4665 && (test_bit(Blocked, &rdev->flags) 4666 || is_bad < 0)) { 4667 if (is_bad < 0) 4668 set_bit(BlockedBadBlocks, 4669 &rdev->flags); 4670 s->blocked_rdev = rdev; 4671 atomic_inc(&rdev->nr_pending); 4672 } 4673 } 4674 clear_bit(R5_Insync, &dev->flags); 4675 if (!rdev) 4676 /* Not in-sync */; 4677 else if (is_bad) { 4678 /* also not in-sync */ 4679 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4680 test_bit(R5_UPTODATE, &dev->flags)) { 4681 /* treat as in-sync, but with a read error 4682 * which we can now try to correct 4683 */ 4684 set_bit(R5_Insync, &dev->flags); 4685 set_bit(R5_ReadError, &dev->flags); 4686 } 4687 } else if (test_bit(In_sync, &rdev->flags)) 4688 set_bit(R5_Insync, &dev->flags); 4689 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4690 /* in sync if before recovery_offset */ 4691 set_bit(R5_Insync, &dev->flags); 4692 else if (test_bit(R5_UPTODATE, &dev->flags) && 4693 test_bit(R5_Expanded, &dev->flags)) 4694 /* If we've reshaped into here, we assume it is Insync. 4695 * We will shortly update recovery_offset to make 4696 * it official. 4697 */ 4698 set_bit(R5_Insync, &dev->flags); 4699 4700 if (test_bit(R5_WriteError, &dev->flags)) { 4701 /* This flag does not apply to '.replacement' 4702 * only to .rdev, so make sure to check that*/ 4703 struct md_rdev *rdev2 = rcu_dereference( 4704 conf->disks[i].rdev); 4705 if (rdev2 == rdev) 4706 clear_bit(R5_Insync, &dev->flags); 4707 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4708 s->handle_bad_blocks = 1; 4709 atomic_inc(&rdev2->nr_pending); 4710 } else 4711 clear_bit(R5_WriteError, &dev->flags); 4712 } 4713 if (test_bit(R5_MadeGood, &dev->flags)) { 4714 /* This flag does not apply to '.replacement' 4715 * only to .rdev, so make sure to check that*/ 4716 struct md_rdev *rdev2 = rcu_dereference( 4717 conf->disks[i].rdev); 4718 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4719 s->handle_bad_blocks = 1; 4720 atomic_inc(&rdev2->nr_pending); 4721 } else 4722 clear_bit(R5_MadeGood, &dev->flags); 4723 } 4724 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4725 struct md_rdev *rdev2 = rcu_dereference( 4726 conf->disks[i].replacement); 4727 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4728 s->handle_bad_blocks = 1; 4729 atomic_inc(&rdev2->nr_pending); 4730 } else 4731 clear_bit(R5_MadeGoodRepl, &dev->flags); 4732 } 4733 if (!test_bit(R5_Insync, &dev->flags)) { 4734 /* The ReadError flag will just be confusing now */ 4735 clear_bit(R5_ReadError, &dev->flags); 4736 clear_bit(R5_ReWrite, &dev->flags); 4737 } 4738 if (test_bit(R5_ReadError, &dev->flags)) 4739 clear_bit(R5_Insync, &dev->flags); 4740 if (!test_bit(R5_Insync, &dev->flags)) { 4741 if (s->failed < 2) 4742 s->failed_num[s->failed] = i; 4743 s->failed++; 4744 if (rdev && !test_bit(Faulty, &rdev->flags)) 4745 do_recovery = 1; 4746 else if (!rdev) { 4747 rdev = rcu_dereference( 4748 conf->disks[i].replacement); 4749 if (rdev && !test_bit(Faulty, &rdev->flags)) 4750 do_recovery = 1; 4751 } 4752 } 4753 4754 if (test_bit(R5_InJournal, &dev->flags)) 4755 s->injournal++; 4756 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4757 s->just_cached++; 4758 } 4759 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4760 /* If there is a failed device being replaced, 4761 * we must be recovering. 4762 * else if we are after recovery_cp, we must be syncing 4763 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4764 * else we can only be replacing 4765 * sync and recovery both need to read all devices, and so 4766 * use the same flag. 4767 */ 4768 if (do_recovery || 4769 sh->sector >= conf->mddev->recovery_cp || 4770 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4771 s->syncing = 1; 4772 else 4773 s->replacing = 1; 4774 } 4775 rcu_read_unlock(); 4776 } 4777 4778 /* 4779 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4780 * a head which can now be handled. 4781 */ 4782 static int clear_batch_ready(struct stripe_head *sh) 4783 { 4784 struct stripe_head *tmp; 4785 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4786 return (sh->batch_head && sh->batch_head != sh); 4787 spin_lock(&sh->stripe_lock); 4788 if (!sh->batch_head) { 4789 spin_unlock(&sh->stripe_lock); 4790 return 0; 4791 } 4792 4793 /* 4794 * this stripe could be added to a batch list before we check 4795 * BATCH_READY, skips it 4796 */ 4797 if (sh->batch_head != sh) { 4798 spin_unlock(&sh->stripe_lock); 4799 return 1; 4800 } 4801 spin_lock(&sh->batch_lock); 4802 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4803 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4804 spin_unlock(&sh->batch_lock); 4805 spin_unlock(&sh->stripe_lock); 4806 4807 /* 4808 * BATCH_READY is cleared, no new stripes can be added. 4809 * batch_list can be accessed without lock 4810 */ 4811 return 0; 4812 } 4813 4814 static void break_stripe_batch_list(struct stripe_head *head_sh, 4815 unsigned long handle_flags) 4816 { 4817 struct stripe_head *sh, *next; 4818 int i; 4819 int do_wakeup = 0; 4820 4821 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4822 4823 list_del_init(&sh->batch_list); 4824 4825 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4826 (1 << STRIPE_SYNCING) | 4827 (1 << STRIPE_REPLACED) | 4828 (1 << STRIPE_DELAYED) | 4829 (1 << STRIPE_BIT_DELAY) | 4830 (1 << STRIPE_FULL_WRITE) | 4831 (1 << STRIPE_BIOFILL_RUN) | 4832 (1 << STRIPE_COMPUTE_RUN) | 4833 (1 << STRIPE_DISCARD) | 4834 (1 << STRIPE_BATCH_READY) | 4835 (1 << STRIPE_BATCH_ERR) | 4836 (1 << STRIPE_BITMAP_PENDING)), 4837 "stripe state: %lx\n", sh->state); 4838 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4839 (1 << STRIPE_REPLACED)), 4840 "head stripe state: %lx\n", head_sh->state); 4841 4842 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4843 (1 << STRIPE_PREREAD_ACTIVE) | 4844 (1 << STRIPE_DEGRADED) | 4845 (1 << STRIPE_ON_UNPLUG_LIST)), 4846 head_sh->state & (1 << STRIPE_INSYNC)); 4847 4848 sh->check_state = head_sh->check_state; 4849 sh->reconstruct_state = head_sh->reconstruct_state; 4850 spin_lock_irq(&sh->stripe_lock); 4851 sh->batch_head = NULL; 4852 spin_unlock_irq(&sh->stripe_lock); 4853 for (i = 0; i < sh->disks; i++) { 4854 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4855 do_wakeup = 1; 4856 sh->dev[i].flags = head_sh->dev[i].flags & 4857 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4858 } 4859 if (handle_flags == 0 || 4860 sh->state & handle_flags) 4861 set_bit(STRIPE_HANDLE, &sh->state); 4862 raid5_release_stripe(sh); 4863 } 4864 spin_lock_irq(&head_sh->stripe_lock); 4865 head_sh->batch_head = NULL; 4866 spin_unlock_irq(&head_sh->stripe_lock); 4867 for (i = 0; i < head_sh->disks; i++) 4868 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4869 do_wakeup = 1; 4870 if (head_sh->state & handle_flags) 4871 set_bit(STRIPE_HANDLE, &head_sh->state); 4872 4873 if (do_wakeup) 4874 wake_up(&head_sh->raid_conf->wait_for_overlap); 4875 } 4876 4877 static void handle_stripe(struct stripe_head *sh) 4878 { 4879 struct stripe_head_state s; 4880 struct r5conf *conf = sh->raid_conf; 4881 int i; 4882 int prexor; 4883 int disks = sh->disks; 4884 struct r5dev *pdev, *qdev; 4885 4886 clear_bit(STRIPE_HANDLE, &sh->state); 4887 4888 /* 4889 * handle_stripe should not continue handle the batched stripe, only 4890 * the head of batch list or lone stripe can continue. Otherwise we 4891 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4892 * is set for the batched stripe. 4893 */ 4894 if (clear_batch_ready(sh)) 4895 return; 4896 4897 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4898 /* already being handled, ensure it gets handled 4899 * again when current action finishes */ 4900 set_bit(STRIPE_HANDLE, &sh->state); 4901 return; 4902 } 4903 4904 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4905 break_stripe_batch_list(sh, 0); 4906 4907 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4908 spin_lock(&sh->stripe_lock); 4909 /* 4910 * Cannot process 'sync' concurrently with 'discard'. 4911 * Flush data in r5cache before 'sync'. 4912 */ 4913 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4914 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4915 !test_bit(STRIPE_DISCARD, &sh->state) && 4916 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4917 set_bit(STRIPE_SYNCING, &sh->state); 4918 clear_bit(STRIPE_INSYNC, &sh->state); 4919 clear_bit(STRIPE_REPLACED, &sh->state); 4920 } 4921 spin_unlock(&sh->stripe_lock); 4922 } 4923 clear_bit(STRIPE_DELAYED, &sh->state); 4924 4925 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4926 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4927 (unsigned long long)sh->sector, sh->state, 4928 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4929 sh->check_state, sh->reconstruct_state); 4930 4931 analyse_stripe(sh, &s); 4932 4933 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4934 goto finish; 4935 4936 if (s.handle_bad_blocks || 4937 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4938 set_bit(STRIPE_HANDLE, &sh->state); 4939 goto finish; 4940 } 4941 4942 if (unlikely(s.blocked_rdev)) { 4943 if (s.syncing || s.expanding || s.expanded || 4944 s.replacing || s.to_write || s.written) { 4945 set_bit(STRIPE_HANDLE, &sh->state); 4946 goto finish; 4947 } 4948 /* There is nothing for the blocked_rdev to block */ 4949 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4950 s.blocked_rdev = NULL; 4951 } 4952 4953 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4954 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4955 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4956 } 4957 4958 pr_debug("locked=%d uptodate=%d to_read=%d" 4959 " to_write=%d failed=%d failed_num=%d,%d\n", 4960 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4961 s.failed_num[0], s.failed_num[1]); 4962 /* 4963 * check if the array has lost more than max_degraded devices and, 4964 * if so, some requests might need to be failed. 4965 * 4966 * When journal device failed (log_failed), we will only process 4967 * the stripe if there is data need write to raid disks 4968 */ 4969 if (s.failed > conf->max_degraded || 4970 (s.log_failed && s.injournal == 0)) { 4971 sh->check_state = 0; 4972 sh->reconstruct_state = 0; 4973 break_stripe_batch_list(sh, 0); 4974 if (s.to_read+s.to_write+s.written) 4975 handle_failed_stripe(conf, sh, &s, disks); 4976 if (s.syncing + s.replacing) 4977 handle_failed_sync(conf, sh, &s); 4978 } 4979 4980 /* Now we check to see if any write operations have recently 4981 * completed 4982 */ 4983 prexor = 0; 4984 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4985 prexor = 1; 4986 if (sh->reconstruct_state == reconstruct_state_drain_result || 4987 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4988 sh->reconstruct_state = reconstruct_state_idle; 4989 4990 /* All the 'written' buffers and the parity block are ready to 4991 * be written back to disk 4992 */ 4993 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4994 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4995 BUG_ON(sh->qd_idx >= 0 && 4996 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4997 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4998 for (i = disks; i--; ) { 4999 struct r5dev *dev = &sh->dev[i]; 5000 if (test_bit(R5_LOCKED, &dev->flags) && 5001 (i == sh->pd_idx || i == sh->qd_idx || 5002 dev->written || test_bit(R5_InJournal, 5003 &dev->flags))) { 5004 pr_debug("Writing block %d\n", i); 5005 set_bit(R5_Wantwrite, &dev->flags); 5006 if (prexor) 5007 continue; 5008 if (s.failed > 1) 5009 continue; 5010 if (!test_bit(R5_Insync, &dev->flags) || 5011 ((i == sh->pd_idx || i == sh->qd_idx) && 5012 s.failed == 0)) 5013 set_bit(STRIPE_INSYNC, &sh->state); 5014 } 5015 } 5016 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5017 s.dec_preread_active = 1; 5018 } 5019 5020 /* 5021 * might be able to return some write requests if the parity blocks 5022 * are safe, or on a failed drive 5023 */ 5024 pdev = &sh->dev[sh->pd_idx]; 5025 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5026 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5027 qdev = &sh->dev[sh->qd_idx]; 5028 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5029 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5030 || conf->level < 6; 5031 5032 if (s.written && 5033 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5034 && !test_bit(R5_LOCKED, &pdev->flags) 5035 && (test_bit(R5_UPTODATE, &pdev->flags) || 5036 test_bit(R5_Discard, &pdev->flags))))) && 5037 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5038 && !test_bit(R5_LOCKED, &qdev->flags) 5039 && (test_bit(R5_UPTODATE, &qdev->flags) || 5040 test_bit(R5_Discard, &qdev->flags)))))) 5041 handle_stripe_clean_event(conf, sh, disks); 5042 5043 if (s.just_cached) 5044 r5c_handle_cached_data_endio(conf, sh, disks); 5045 log_stripe_write_finished(sh); 5046 5047 /* Now we might consider reading some blocks, either to check/generate 5048 * parity, or to satisfy requests 5049 * or to load a block that is being partially written. 5050 */ 5051 if (s.to_read || s.non_overwrite 5052 || (s.to_write && s.failed) 5053 || (s.syncing && (s.uptodate + s.compute < disks)) 5054 || s.replacing 5055 || s.expanding) 5056 handle_stripe_fill(sh, &s, disks); 5057 5058 /* 5059 * When the stripe finishes full journal write cycle (write to journal 5060 * and raid disk), this is the clean up procedure so it is ready for 5061 * next operation. 5062 */ 5063 r5c_finish_stripe_write_out(conf, sh, &s); 5064 5065 /* 5066 * Now to consider new write requests, cache write back and what else, 5067 * if anything should be read. We do not handle new writes when: 5068 * 1/ A 'write' operation (copy+xor) is already in flight. 5069 * 2/ A 'check' operation is in flight, as it may clobber the parity 5070 * block. 5071 * 3/ A r5c cache log write is in flight. 5072 */ 5073 5074 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5075 if (!r5c_is_writeback(conf->log)) { 5076 if (s.to_write) 5077 handle_stripe_dirtying(conf, sh, &s, disks); 5078 } else { /* write back cache */ 5079 int ret = 0; 5080 5081 /* First, try handle writes in caching phase */ 5082 if (s.to_write) 5083 ret = r5c_try_caching_write(conf, sh, &s, 5084 disks); 5085 /* 5086 * If caching phase failed: ret == -EAGAIN 5087 * OR 5088 * stripe under reclaim: !caching && injournal 5089 * 5090 * fall back to handle_stripe_dirtying() 5091 */ 5092 if (ret == -EAGAIN || 5093 /* stripe under reclaim: !caching && injournal */ 5094 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5095 s.injournal > 0)) { 5096 ret = handle_stripe_dirtying(conf, sh, &s, 5097 disks); 5098 if (ret == -EAGAIN) 5099 goto finish; 5100 } 5101 } 5102 } 5103 5104 /* maybe we need to check and possibly fix the parity for this stripe 5105 * Any reads will already have been scheduled, so we just see if enough 5106 * data is available. The parity check is held off while parity 5107 * dependent operations are in flight. 5108 */ 5109 if (sh->check_state || 5110 (s.syncing && s.locked == 0 && 5111 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5112 !test_bit(STRIPE_INSYNC, &sh->state))) { 5113 if (conf->level == 6) 5114 handle_parity_checks6(conf, sh, &s, disks); 5115 else 5116 handle_parity_checks5(conf, sh, &s, disks); 5117 } 5118 5119 if ((s.replacing || s.syncing) && s.locked == 0 5120 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5121 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5122 /* Write out to replacement devices where possible */ 5123 for (i = 0; i < conf->raid_disks; i++) 5124 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5125 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5126 set_bit(R5_WantReplace, &sh->dev[i].flags); 5127 set_bit(R5_LOCKED, &sh->dev[i].flags); 5128 s.locked++; 5129 } 5130 if (s.replacing) 5131 set_bit(STRIPE_INSYNC, &sh->state); 5132 set_bit(STRIPE_REPLACED, &sh->state); 5133 } 5134 if ((s.syncing || s.replacing) && s.locked == 0 && 5135 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5136 test_bit(STRIPE_INSYNC, &sh->state)) { 5137 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5138 clear_bit(STRIPE_SYNCING, &sh->state); 5139 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5140 wake_up(&conf->wait_for_overlap); 5141 } 5142 5143 /* If the failed drives are just a ReadError, then we might need 5144 * to progress the repair/check process 5145 */ 5146 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5147 for (i = 0; i < s.failed; i++) { 5148 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5149 if (test_bit(R5_ReadError, &dev->flags) 5150 && !test_bit(R5_LOCKED, &dev->flags) 5151 && test_bit(R5_UPTODATE, &dev->flags) 5152 ) { 5153 if (!test_bit(R5_ReWrite, &dev->flags)) { 5154 set_bit(R5_Wantwrite, &dev->flags); 5155 set_bit(R5_ReWrite, &dev->flags); 5156 } else 5157 /* let's read it back */ 5158 set_bit(R5_Wantread, &dev->flags); 5159 set_bit(R5_LOCKED, &dev->flags); 5160 s.locked++; 5161 } 5162 } 5163 5164 /* Finish reconstruct operations initiated by the expansion process */ 5165 if (sh->reconstruct_state == reconstruct_state_result) { 5166 struct stripe_head *sh_src 5167 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 5168 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5169 /* sh cannot be written until sh_src has been read. 5170 * so arrange for sh to be delayed a little 5171 */ 5172 set_bit(STRIPE_DELAYED, &sh->state); 5173 set_bit(STRIPE_HANDLE, &sh->state); 5174 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5175 &sh_src->state)) 5176 atomic_inc(&conf->preread_active_stripes); 5177 raid5_release_stripe(sh_src); 5178 goto finish; 5179 } 5180 if (sh_src) 5181 raid5_release_stripe(sh_src); 5182 5183 sh->reconstruct_state = reconstruct_state_idle; 5184 clear_bit(STRIPE_EXPANDING, &sh->state); 5185 for (i = conf->raid_disks; i--; ) { 5186 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5187 set_bit(R5_LOCKED, &sh->dev[i].flags); 5188 s.locked++; 5189 } 5190 } 5191 5192 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5193 !sh->reconstruct_state) { 5194 /* Need to write out all blocks after computing parity */ 5195 sh->disks = conf->raid_disks; 5196 stripe_set_idx(sh->sector, conf, 0, sh); 5197 schedule_reconstruction(sh, &s, 1, 1); 5198 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5199 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5200 atomic_dec(&conf->reshape_stripes); 5201 wake_up(&conf->wait_for_overlap); 5202 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5203 } 5204 5205 if (s.expanding && s.locked == 0 && 5206 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5207 handle_stripe_expansion(conf, sh); 5208 5209 finish: 5210 /* wait for this device to become unblocked */ 5211 if (unlikely(s.blocked_rdev)) { 5212 if (conf->mddev->external) 5213 md_wait_for_blocked_rdev(s.blocked_rdev, 5214 conf->mddev); 5215 else 5216 /* Internal metadata will immediately 5217 * be written by raid5d, so we don't 5218 * need to wait here. 5219 */ 5220 rdev_dec_pending(s.blocked_rdev, 5221 conf->mddev); 5222 } 5223 5224 if (s.handle_bad_blocks) 5225 for (i = disks; i--; ) { 5226 struct md_rdev *rdev; 5227 struct r5dev *dev = &sh->dev[i]; 5228 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5229 /* We own a safe reference to the rdev */ 5230 rdev = conf->disks[i].rdev; 5231 if (!rdev_set_badblocks(rdev, sh->sector, 5232 RAID5_STRIPE_SECTORS(conf), 0)) 5233 md_error(conf->mddev, rdev); 5234 rdev_dec_pending(rdev, conf->mddev); 5235 } 5236 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5237 rdev = conf->disks[i].rdev; 5238 rdev_clear_badblocks(rdev, sh->sector, 5239 RAID5_STRIPE_SECTORS(conf), 0); 5240 rdev_dec_pending(rdev, conf->mddev); 5241 } 5242 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5243 rdev = conf->disks[i].replacement; 5244 if (!rdev) 5245 /* rdev have been moved down */ 5246 rdev = conf->disks[i].rdev; 5247 rdev_clear_badblocks(rdev, sh->sector, 5248 RAID5_STRIPE_SECTORS(conf), 0); 5249 rdev_dec_pending(rdev, conf->mddev); 5250 } 5251 } 5252 5253 if (s.ops_request) 5254 raid_run_ops(sh, s.ops_request); 5255 5256 ops_run_io(sh, &s); 5257 5258 if (s.dec_preread_active) { 5259 /* We delay this until after ops_run_io so that if make_request 5260 * is waiting on a flush, it won't continue until the writes 5261 * have actually been submitted. 5262 */ 5263 atomic_dec(&conf->preread_active_stripes); 5264 if (atomic_read(&conf->preread_active_stripes) < 5265 IO_THRESHOLD) 5266 md_wakeup_thread(conf->mddev->thread); 5267 } 5268 5269 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5270 } 5271 5272 static void raid5_activate_delayed(struct r5conf *conf) 5273 { 5274 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5275 while (!list_empty(&conf->delayed_list)) { 5276 struct list_head *l = conf->delayed_list.next; 5277 struct stripe_head *sh; 5278 sh = list_entry(l, struct stripe_head, lru); 5279 list_del_init(l); 5280 clear_bit(STRIPE_DELAYED, &sh->state); 5281 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5282 atomic_inc(&conf->preread_active_stripes); 5283 list_add_tail(&sh->lru, &conf->hold_list); 5284 raid5_wakeup_stripe_thread(sh); 5285 } 5286 } 5287 } 5288 5289 static void activate_bit_delay(struct r5conf *conf, 5290 struct list_head *temp_inactive_list) 5291 { 5292 /* device_lock is held */ 5293 struct list_head head; 5294 list_add(&head, &conf->bitmap_list); 5295 list_del_init(&conf->bitmap_list); 5296 while (!list_empty(&head)) { 5297 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5298 int hash; 5299 list_del_init(&sh->lru); 5300 atomic_inc(&sh->count); 5301 hash = sh->hash_lock_index; 5302 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5303 } 5304 } 5305 5306 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5307 { 5308 struct r5conf *conf = mddev->private; 5309 sector_t sector = bio->bi_iter.bi_sector; 5310 unsigned int chunk_sectors; 5311 unsigned int bio_sectors = bio_sectors(bio); 5312 5313 WARN_ON_ONCE(bio->bi_partno); 5314 5315 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5316 return chunk_sectors >= 5317 ((sector & (chunk_sectors - 1)) + bio_sectors); 5318 } 5319 5320 /* 5321 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5322 * later sampled by raid5d. 5323 */ 5324 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5325 { 5326 unsigned long flags; 5327 5328 spin_lock_irqsave(&conf->device_lock, flags); 5329 5330 bi->bi_next = conf->retry_read_aligned_list; 5331 conf->retry_read_aligned_list = bi; 5332 5333 spin_unlock_irqrestore(&conf->device_lock, flags); 5334 md_wakeup_thread(conf->mddev->thread); 5335 } 5336 5337 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5338 unsigned int *offset) 5339 { 5340 struct bio *bi; 5341 5342 bi = conf->retry_read_aligned; 5343 if (bi) { 5344 *offset = conf->retry_read_offset; 5345 conf->retry_read_aligned = NULL; 5346 return bi; 5347 } 5348 bi = conf->retry_read_aligned_list; 5349 if(bi) { 5350 conf->retry_read_aligned_list = bi->bi_next; 5351 bi->bi_next = NULL; 5352 *offset = 0; 5353 } 5354 5355 return bi; 5356 } 5357 5358 /* 5359 * The "raid5_align_endio" should check if the read succeeded and if it 5360 * did, call bio_endio on the original bio (having bio_put the new bio 5361 * first). 5362 * If the read failed.. 5363 */ 5364 static void raid5_align_endio(struct bio *bi) 5365 { 5366 struct bio* raid_bi = bi->bi_private; 5367 struct mddev *mddev; 5368 struct r5conf *conf; 5369 struct md_rdev *rdev; 5370 blk_status_t error = bi->bi_status; 5371 5372 bio_put(bi); 5373 5374 rdev = (void*)raid_bi->bi_next; 5375 raid_bi->bi_next = NULL; 5376 mddev = rdev->mddev; 5377 conf = mddev->private; 5378 5379 rdev_dec_pending(rdev, conf->mddev); 5380 5381 if (!error) { 5382 bio_endio(raid_bi); 5383 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5384 wake_up(&conf->wait_for_quiescent); 5385 return; 5386 } 5387 5388 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5389 5390 add_bio_to_retry(raid_bi, conf); 5391 } 5392 5393 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5394 { 5395 struct r5conf *conf = mddev->private; 5396 int dd_idx; 5397 struct bio* align_bi; 5398 struct md_rdev *rdev; 5399 sector_t end_sector; 5400 5401 if (!in_chunk_boundary(mddev, raid_bio)) { 5402 pr_debug("%s: non aligned\n", __func__); 5403 return 0; 5404 } 5405 /* 5406 * use bio_clone_fast to make a copy of the bio 5407 */ 5408 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set); 5409 if (!align_bi) 5410 return 0; 5411 /* 5412 * set bi_end_io to a new function, and set bi_private to the 5413 * original bio. 5414 */ 5415 align_bi->bi_end_io = raid5_align_endio; 5416 align_bi->bi_private = raid_bio; 5417 /* 5418 * compute position 5419 */ 5420 align_bi->bi_iter.bi_sector = 5421 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5422 0, &dd_idx, NULL); 5423 5424 end_sector = bio_end_sector(align_bi); 5425 rcu_read_lock(); 5426 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5427 if (!rdev || test_bit(Faulty, &rdev->flags) || 5428 rdev->recovery_offset < end_sector) { 5429 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5430 if (rdev && 5431 (test_bit(Faulty, &rdev->flags) || 5432 !(test_bit(In_sync, &rdev->flags) || 5433 rdev->recovery_offset >= end_sector))) 5434 rdev = NULL; 5435 } 5436 5437 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5438 rcu_read_unlock(); 5439 bio_put(align_bi); 5440 return 0; 5441 } 5442 5443 if (rdev) { 5444 sector_t first_bad; 5445 int bad_sectors; 5446 5447 atomic_inc(&rdev->nr_pending); 5448 rcu_read_unlock(); 5449 raid_bio->bi_next = (void*)rdev; 5450 bio_set_dev(align_bi, rdev->bdev); 5451 5452 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5453 bio_sectors(align_bi), 5454 &first_bad, &bad_sectors)) { 5455 bio_put(align_bi); 5456 rdev_dec_pending(rdev, mddev); 5457 return 0; 5458 } 5459 5460 /* No reshape active, so we can trust rdev->data_offset */ 5461 align_bi->bi_iter.bi_sector += rdev->data_offset; 5462 5463 spin_lock_irq(&conf->device_lock); 5464 wait_event_lock_irq(conf->wait_for_quiescent, 5465 conf->quiesce == 0, 5466 conf->device_lock); 5467 atomic_inc(&conf->active_aligned_reads); 5468 spin_unlock_irq(&conf->device_lock); 5469 5470 if (mddev->gendisk) 5471 trace_block_bio_remap(align_bi, disk_devt(mddev->gendisk), 5472 raid_bio->bi_iter.bi_sector); 5473 submit_bio_noacct(align_bi); 5474 return 1; 5475 } else { 5476 rcu_read_unlock(); 5477 bio_put(align_bi); 5478 return 0; 5479 } 5480 } 5481 5482 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5483 { 5484 struct bio *split; 5485 sector_t sector = raid_bio->bi_iter.bi_sector; 5486 unsigned chunk_sects = mddev->chunk_sectors; 5487 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5488 5489 if (sectors < bio_sectors(raid_bio)) { 5490 struct r5conf *conf = mddev->private; 5491 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5492 bio_chain(split, raid_bio); 5493 submit_bio_noacct(raid_bio); 5494 raid_bio = split; 5495 } 5496 5497 if (!raid5_read_one_chunk(mddev, raid_bio)) 5498 return raid_bio; 5499 5500 return NULL; 5501 } 5502 5503 /* __get_priority_stripe - get the next stripe to process 5504 * 5505 * Full stripe writes are allowed to pass preread active stripes up until 5506 * the bypass_threshold is exceeded. In general the bypass_count 5507 * increments when the handle_list is handled before the hold_list; however, it 5508 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5509 * stripe with in flight i/o. The bypass_count will be reset when the 5510 * head of the hold_list has changed, i.e. the head was promoted to the 5511 * handle_list. 5512 */ 5513 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5514 { 5515 struct stripe_head *sh, *tmp; 5516 struct list_head *handle_list = NULL; 5517 struct r5worker_group *wg; 5518 bool second_try = !r5c_is_writeback(conf->log) && 5519 !r5l_log_disk_error(conf); 5520 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5521 r5l_log_disk_error(conf); 5522 5523 again: 5524 wg = NULL; 5525 sh = NULL; 5526 if (conf->worker_cnt_per_group == 0) { 5527 handle_list = try_loprio ? &conf->loprio_list : 5528 &conf->handle_list; 5529 } else if (group != ANY_GROUP) { 5530 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5531 &conf->worker_groups[group].handle_list; 5532 wg = &conf->worker_groups[group]; 5533 } else { 5534 int i; 5535 for (i = 0; i < conf->group_cnt; i++) { 5536 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5537 &conf->worker_groups[i].handle_list; 5538 wg = &conf->worker_groups[i]; 5539 if (!list_empty(handle_list)) 5540 break; 5541 } 5542 } 5543 5544 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5545 __func__, 5546 list_empty(handle_list) ? "empty" : "busy", 5547 list_empty(&conf->hold_list) ? "empty" : "busy", 5548 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5549 5550 if (!list_empty(handle_list)) { 5551 sh = list_entry(handle_list->next, typeof(*sh), lru); 5552 5553 if (list_empty(&conf->hold_list)) 5554 conf->bypass_count = 0; 5555 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5556 if (conf->hold_list.next == conf->last_hold) 5557 conf->bypass_count++; 5558 else { 5559 conf->last_hold = conf->hold_list.next; 5560 conf->bypass_count -= conf->bypass_threshold; 5561 if (conf->bypass_count < 0) 5562 conf->bypass_count = 0; 5563 } 5564 } 5565 } else if (!list_empty(&conf->hold_list) && 5566 ((conf->bypass_threshold && 5567 conf->bypass_count > conf->bypass_threshold) || 5568 atomic_read(&conf->pending_full_writes) == 0)) { 5569 5570 list_for_each_entry(tmp, &conf->hold_list, lru) { 5571 if (conf->worker_cnt_per_group == 0 || 5572 group == ANY_GROUP || 5573 !cpu_online(tmp->cpu) || 5574 cpu_to_group(tmp->cpu) == group) { 5575 sh = tmp; 5576 break; 5577 } 5578 } 5579 5580 if (sh) { 5581 conf->bypass_count -= conf->bypass_threshold; 5582 if (conf->bypass_count < 0) 5583 conf->bypass_count = 0; 5584 } 5585 wg = NULL; 5586 } 5587 5588 if (!sh) { 5589 if (second_try) 5590 return NULL; 5591 second_try = true; 5592 try_loprio = !try_loprio; 5593 goto again; 5594 } 5595 5596 if (wg) { 5597 wg->stripes_cnt--; 5598 sh->group = NULL; 5599 } 5600 list_del_init(&sh->lru); 5601 BUG_ON(atomic_inc_return(&sh->count) != 1); 5602 return sh; 5603 } 5604 5605 struct raid5_plug_cb { 5606 struct blk_plug_cb cb; 5607 struct list_head list; 5608 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5609 }; 5610 5611 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5612 { 5613 struct raid5_plug_cb *cb = container_of( 5614 blk_cb, struct raid5_plug_cb, cb); 5615 struct stripe_head *sh; 5616 struct mddev *mddev = cb->cb.data; 5617 struct r5conf *conf = mddev->private; 5618 int cnt = 0; 5619 int hash; 5620 5621 if (cb->list.next && !list_empty(&cb->list)) { 5622 spin_lock_irq(&conf->device_lock); 5623 while (!list_empty(&cb->list)) { 5624 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5625 list_del_init(&sh->lru); 5626 /* 5627 * avoid race release_stripe_plug() sees 5628 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5629 * is still in our list 5630 */ 5631 smp_mb__before_atomic(); 5632 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5633 /* 5634 * STRIPE_ON_RELEASE_LIST could be set here. In that 5635 * case, the count is always > 1 here 5636 */ 5637 hash = sh->hash_lock_index; 5638 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5639 cnt++; 5640 } 5641 spin_unlock_irq(&conf->device_lock); 5642 } 5643 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5644 NR_STRIPE_HASH_LOCKS); 5645 if (mddev->queue) 5646 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5647 kfree(cb); 5648 } 5649 5650 static void release_stripe_plug(struct mddev *mddev, 5651 struct stripe_head *sh) 5652 { 5653 struct blk_plug_cb *blk_cb = blk_check_plugged( 5654 raid5_unplug, mddev, 5655 sizeof(struct raid5_plug_cb)); 5656 struct raid5_plug_cb *cb; 5657 5658 if (!blk_cb) { 5659 raid5_release_stripe(sh); 5660 return; 5661 } 5662 5663 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5664 5665 if (cb->list.next == NULL) { 5666 int i; 5667 INIT_LIST_HEAD(&cb->list); 5668 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5669 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5670 } 5671 5672 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5673 list_add_tail(&sh->lru, &cb->list); 5674 else 5675 raid5_release_stripe(sh); 5676 } 5677 5678 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5679 { 5680 struct r5conf *conf = mddev->private; 5681 sector_t logical_sector, last_sector; 5682 struct stripe_head *sh; 5683 int stripe_sectors; 5684 5685 if (mddev->reshape_position != MaxSector) 5686 /* Skip discard while reshape is happening */ 5687 return; 5688 5689 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5690 last_sector = bio_end_sector(bi); 5691 5692 bi->bi_next = NULL; 5693 5694 stripe_sectors = conf->chunk_sectors * 5695 (conf->raid_disks - conf->max_degraded); 5696 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5697 stripe_sectors); 5698 sector_div(last_sector, stripe_sectors); 5699 5700 logical_sector *= conf->chunk_sectors; 5701 last_sector *= conf->chunk_sectors; 5702 5703 for (; logical_sector < last_sector; 5704 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5705 DEFINE_WAIT(w); 5706 int d; 5707 again: 5708 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5709 prepare_to_wait(&conf->wait_for_overlap, &w, 5710 TASK_UNINTERRUPTIBLE); 5711 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5712 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5713 raid5_release_stripe(sh); 5714 schedule(); 5715 goto again; 5716 } 5717 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5718 spin_lock_irq(&sh->stripe_lock); 5719 for (d = 0; d < conf->raid_disks; d++) { 5720 if (d == sh->pd_idx || d == sh->qd_idx) 5721 continue; 5722 if (sh->dev[d].towrite || sh->dev[d].toread) { 5723 set_bit(R5_Overlap, &sh->dev[d].flags); 5724 spin_unlock_irq(&sh->stripe_lock); 5725 raid5_release_stripe(sh); 5726 schedule(); 5727 goto again; 5728 } 5729 } 5730 set_bit(STRIPE_DISCARD, &sh->state); 5731 finish_wait(&conf->wait_for_overlap, &w); 5732 sh->overwrite_disks = 0; 5733 for (d = 0; d < conf->raid_disks; d++) { 5734 if (d == sh->pd_idx || d == sh->qd_idx) 5735 continue; 5736 sh->dev[d].towrite = bi; 5737 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5738 bio_inc_remaining(bi); 5739 md_write_inc(mddev, bi); 5740 sh->overwrite_disks++; 5741 } 5742 spin_unlock_irq(&sh->stripe_lock); 5743 if (conf->mddev->bitmap) { 5744 for (d = 0; 5745 d < conf->raid_disks - conf->max_degraded; 5746 d++) 5747 md_bitmap_startwrite(mddev->bitmap, 5748 sh->sector, 5749 RAID5_STRIPE_SECTORS(conf), 5750 0); 5751 sh->bm_seq = conf->seq_flush + 1; 5752 set_bit(STRIPE_BIT_DELAY, &sh->state); 5753 } 5754 5755 set_bit(STRIPE_HANDLE, &sh->state); 5756 clear_bit(STRIPE_DELAYED, &sh->state); 5757 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5758 atomic_inc(&conf->preread_active_stripes); 5759 release_stripe_plug(mddev, sh); 5760 } 5761 5762 bio_endio(bi); 5763 } 5764 5765 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5766 { 5767 struct r5conf *conf = mddev->private; 5768 int dd_idx; 5769 sector_t new_sector; 5770 sector_t logical_sector, last_sector; 5771 struct stripe_head *sh; 5772 const int rw = bio_data_dir(bi); 5773 DEFINE_WAIT(w); 5774 bool do_prepare; 5775 bool do_flush = false; 5776 5777 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5778 int ret = log_handle_flush_request(conf, bi); 5779 5780 if (ret == 0) 5781 return true; 5782 if (ret == -ENODEV) { 5783 if (md_flush_request(mddev, bi)) 5784 return true; 5785 } 5786 /* ret == -EAGAIN, fallback */ 5787 /* 5788 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5789 * we need to flush journal device 5790 */ 5791 do_flush = bi->bi_opf & REQ_PREFLUSH; 5792 } 5793 5794 if (!md_write_start(mddev, bi)) 5795 return false; 5796 /* 5797 * If array is degraded, better not do chunk aligned read because 5798 * later we might have to read it again in order to reconstruct 5799 * data on failed drives. 5800 */ 5801 if (rw == READ && mddev->degraded == 0 && 5802 mddev->reshape_position == MaxSector) { 5803 bi = chunk_aligned_read(mddev, bi); 5804 if (!bi) 5805 return true; 5806 } 5807 5808 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5809 make_discard_request(mddev, bi); 5810 md_write_end(mddev); 5811 return true; 5812 } 5813 5814 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5815 last_sector = bio_end_sector(bi); 5816 bi->bi_next = NULL; 5817 5818 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5819 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5820 int previous; 5821 int seq; 5822 5823 do_prepare = false; 5824 retry: 5825 seq = read_seqcount_begin(&conf->gen_lock); 5826 previous = 0; 5827 if (do_prepare) 5828 prepare_to_wait(&conf->wait_for_overlap, &w, 5829 TASK_UNINTERRUPTIBLE); 5830 if (unlikely(conf->reshape_progress != MaxSector)) { 5831 /* spinlock is needed as reshape_progress may be 5832 * 64bit on a 32bit platform, and so it might be 5833 * possible to see a half-updated value 5834 * Of course reshape_progress could change after 5835 * the lock is dropped, so once we get a reference 5836 * to the stripe that we think it is, we will have 5837 * to check again. 5838 */ 5839 spin_lock_irq(&conf->device_lock); 5840 if (mddev->reshape_backwards 5841 ? logical_sector < conf->reshape_progress 5842 : logical_sector >= conf->reshape_progress) { 5843 previous = 1; 5844 } else { 5845 if (mddev->reshape_backwards 5846 ? logical_sector < conf->reshape_safe 5847 : logical_sector >= conf->reshape_safe) { 5848 spin_unlock_irq(&conf->device_lock); 5849 schedule(); 5850 do_prepare = true; 5851 goto retry; 5852 } 5853 } 5854 spin_unlock_irq(&conf->device_lock); 5855 } 5856 5857 new_sector = raid5_compute_sector(conf, logical_sector, 5858 previous, 5859 &dd_idx, NULL); 5860 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5861 (unsigned long long)new_sector, 5862 (unsigned long long)logical_sector); 5863 5864 sh = raid5_get_active_stripe(conf, new_sector, previous, 5865 (bi->bi_opf & REQ_RAHEAD), 0); 5866 if (sh) { 5867 if (unlikely(previous)) { 5868 /* expansion might have moved on while waiting for a 5869 * stripe, so we must do the range check again. 5870 * Expansion could still move past after this 5871 * test, but as we are holding a reference to 5872 * 'sh', we know that if that happens, 5873 * STRIPE_EXPANDING will get set and the expansion 5874 * won't proceed until we finish with the stripe. 5875 */ 5876 int must_retry = 0; 5877 spin_lock_irq(&conf->device_lock); 5878 if (mddev->reshape_backwards 5879 ? logical_sector >= conf->reshape_progress 5880 : logical_sector < conf->reshape_progress) 5881 /* mismatch, need to try again */ 5882 must_retry = 1; 5883 spin_unlock_irq(&conf->device_lock); 5884 if (must_retry) { 5885 raid5_release_stripe(sh); 5886 schedule(); 5887 do_prepare = true; 5888 goto retry; 5889 } 5890 } 5891 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5892 /* Might have got the wrong stripe_head 5893 * by accident 5894 */ 5895 raid5_release_stripe(sh); 5896 goto retry; 5897 } 5898 5899 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5900 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5901 /* Stripe is busy expanding or 5902 * add failed due to overlap. Flush everything 5903 * and wait a while 5904 */ 5905 md_wakeup_thread(mddev->thread); 5906 raid5_release_stripe(sh); 5907 schedule(); 5908 do_prepare = true; 5909 goto retry; 5910 } 5911 if (do_flush) { 5912 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5913 /* we only need flush for one stripe */ 5914 do_flush = false; 5915 } 5916 5917 set_bit(STRIPE_HANDLE, &sh->state); 5918 clear_bit(STRIPE_DELAYED, &sh->state); 5919 if ((!sh->batch_head || sh == sh->batch_head) && 5920 (bi->bi_opf & REQ_SYNC) && 5921 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5922 atomic_inc(&conf->preread_active_stripes); 5923 release_stripe_plug(mddev, sh); 5924 } else { 5925 /* cannot get stripe for read-ahead, just give-up */ 5926 bi->bi_status = BLK_STS_IOERR; 5927 break; 5928 } 5929 } 5930 finish_wait(&conf->wait_for_overlap, &w); 5931 5932 if (rw == WRITE) 5933 md_write_end(mddev); 5934 bio_endio(bi); 5935 return true; 5936 } 5937 5938 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5939 5940 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5941 { 5942 /* reshaping is quite different to recovery/resync so it is 5943 * handled quite separately ... here. 5944 * 5945 * On each call to sync_request, we gather one chunk worth of 5946 * destination stripes and flag them as expanding. 5947 * Then we find all the source stripes and request reads. 5948 * As the reads complete, handle_stripe will copy the data 5949 * into the destination stripe and release that stripe. 5950 */ 5951 struct r5conf *conf = mddev->private; 5952 struct stripe_head *sh; 5953 struct md_rdev *rdev; 5954 sector_t first_sector, last_sector; 5955 int raid_disks = conf->previous_raid_disks; 5956 int data_disks = raid_disks - conf->max_degraded; 5957 int new_data_disks = conf->raid_disks - conf->max_degraded; 5958 int i; 5959 int dd_idx; 5960 sector_t writepos, readpos, safepos; 5961 sector_t stripe_addr; 5962 int reshape_sectors; 5963 struct list_head stripes; 5964 sector_t retn; 5965 5966 if (sector_nr == 0) { 5967 /* If restarting in the middle, skip the initial sectors */ 5968 if (mddev->reshape_backwards && 5969 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5970 sector_nr = raid5_size(mddev, 0, 0) 5971 - conf->reshape_progress; 5972 } else if (mddev->reshape_backwards && 5973 conf->reshape_progress == MaxSector) { 5974 /* shouldn't happen, but just in case, finish up.*/ 5975 sector_nr = MaxSector; 5976 } else if (!mddev->reshape_backwards && 5977 conf->reshape_progress > 0) 5978 sector_nr = conf->reshape_progress; 5979 sector_div(sector_nr, new_data_disks); 5980 if (sector_nr) { 5981 mddev->curr_resync_completed = sector_nr; 5982 sysfs_notify_dirent_safe(mddev->sysfs_completed); 5983 *skipped = 1; 5984 retn = sector_nr; 5985 goto finish; 5986 } 5987 } 5988 5989 /* We need to process a full chunk at a time. 5990 * If old and new chunk sizes differ, we need to process the 5991 * largest of these 5992 */ 5993 5994 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5995 5996 /* We update the metadata at least every 10 seconds, or when 5997 * the data about to be copied would over-write the source of 5998 * the data at the front of the range. i.e. one new_stripe 5999 * along from reshape_progress new_maps to after where 6000 * reshape_safe old_maps to 6001 */ 6002 writepos = conf->reshape_progress; 6003 sector_div(writepos, new_data_disks); 6004 readpos = conf->reshape_progress; 6005 sector_div(readpos, data_disks); 6006 safepos = conf->reshape_safe; 6007 sector_div(safepos, data_disks); 6008 if (mddev->reshape_backwards) { 6009 BUG_ON(writepos < reshape_sectors); 6010 writepos -= reshape_sectors; 6011 readpos += reshape_sectors; 6012 safepos += reshape_sectors; 6013 } else { 6014 writepos += reshape_sectors; 6015 /* readpos and safepos are worst-case calculations. 6016 * A negative number is overly pessimistic, and causes 6017 * obvious problems for unsigned storage. So clip to 0. 6018 */ 6019 readpos -= min_t(sector_t, reshape_sectors, readpos); 6020 safepos -= min_t(sector_t, reshape_sectors, safepos); 6021 } 6022 6023 /* Having calculated the 'writepos' possibly use it 6024 * to set 'stripe_addr' which is where we will write to. 6025 */ 6026 if (mddev->reshape_backwards) { 6027 BUG_ON(conf->reshape_progress == 0); 6028 stripe_addr = writepos; 6029 BUG_ON((mddev->dev_sectors & 6030 ~((sector_t)reshape_sectors - 1)) 6031 - reshape_sectors - stripe_addr 6032 != sector_nr); 6033 } else { 6034 BUG_ON(writepos != sector_nr + reshape_sectors); 6035 stripe_addr = sector_nr; 6036 } 6037 6038 /* 'writepos' is the most advanced device address we might write. 6039 * 'readpos' is the least advanced device address we might read. 6040 * 'safepos' is the least address recorded in the metadata as having 6041 * been reshaped. 6042 * If there is a min_offset_diff, these are adjusted either by 6043 * increasing the safepos/readpos if diff is negative, or 6044 * increasing writepos if diff is positive. 6045 * If 'readpos' is then behind 'writepos', there is no way that we can 6046 * ensure safety in the face of a crash - that must be done by userspace 6047 * making a backup of the data. So in that case there is no particular 6048 * rush to update metadata. 6049 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6050 * update the metadata to advance 'safepos' to match 'readpos' so that 6051 * we can be safe in the event of a crash. 6052 * So we insist on updating metadata if safepos is behind writepos and 6053 * readpos is beyond writepos. 6054 * In any case, update the metadata every 10 seconds. 6055 * Maybe that number should be configurable, but I'm not sure it is 6056 * worth it.... maybe it could be a multiple of safemode_delay??? 6057 */ 6058 if (conf->min_offset_diff < 0) { 6059 safepos += -conf->min_offset_diff; 6060 readpos += -conf->min_offset_diff; 6061 } else 6062 writepos += conf->min_offset_diff; 6063 6064 if ((mddev->reshape_backwards 6065 ? (safepos > writepos && readpos < writepos) 6066 : (safepos < writepos && readpos > writepos)) || 6067 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6068 /* Cannot proceed until we've updated the superblock... */ 6069 wait_event(conf->wait_for_overlap, 6070 atomic_read(&conf->reshape_stripes)==0 6071 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6072 if (atomic_read(&conf->reshape_stripes) != 0) 6073 return 0; 6074 mddev->reshape_position = conf->reshape_progress; 6075 mddev->curr_resync_completed = sector_nr; 6076 if (!mddev->reshape_backwards) 6077 /* Can update recovery_offset */ 6078 rdev_for_each(rdev, mddev) 6079 if (rdev->raid_disk >= 0 && 6080 !test_bit(Journal, &rdev->flags) && 6081 !test_bit(In_sync, &rdev->flags) && 6082 rdev->recovery_offset < sector_nr) 6083 rdev->recovery_offset = sector_nr; 6084 6085 conf->reshape_checkpoint = jiffies; 6086 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6087 md_wakeup_thread(mddev->thread); 6088 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6089 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6090 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6091 return 0; 6092 spin_lock_irq(&conf->device_lock); 6093 conf->reshape_safe = mddev->reshape_position; 6094 spin_unlock_irq(&conf->device_lock); 6095 wake_up(&conf->wait_for_overlap); 6096 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6097 } 6098 6099 INIT_LIST_HEAD(&stripes); 6100 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6101 int j; 6102 int skipped_disk = 0; 6103 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 6104 set_bit(STRIPE_EXPANDING, &sh->state); 6105 atomic_inc(&conf->reshape_stripes); 6106 /* If any of this stripe is beyond the end of the old 6107 * array, then we need to zero those blocks 6108 */ 6109 for (j=sh->disks; j--;) { 6110 sector_t s; 6111 if (j == sh->pd_idx) 6112 continue; 6113 if (conf->level == 6 && 6114 j == sh->qd_idx) 6115 continue; 6116 s = raid5_compute_blocknr(sh, j, 0); 6117 if (s < raid5_size(mddev, 0, 0)) { 6118 skipped_disk = 1; 6119 continue; 6120 } 6121 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6122 set_bit(R5_Expanded, &sh->dev[j].flags); 6123 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6124 } 6125 if (!skipped_disk) { 6126 set_bit(STRIPE_EXPAND_READY, &sh->state); 6127 set_bit(STRIPE_HANDLE, &sh->state); 6128 } 6129 list_add(&sh->lru, &stripes); 6130 } 6131 spin_lock_irq(&conf->device_lock); 6132 if (mddev->reshape_backwards) 6133 conf->reshape_progress -= reshape_sectors * new_data_disks; 6134 else 6135 conf->reshape_progress += reshape_sectors * new_data_disks; 6136 spin_unlock_irq(&conf->device_lock); 6137 /* Ok, those stripe are ready. We can start scheduling 6138 * reads on the source stripes. 6139 * The source stripes are determined by mapping the first and last 6140 * block on the destination stripes. 6141 */ 6142 first_sector = 6143 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6144 1, &dd_idx, NULL); 6145 last_sector = 6146 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6147 * new_data_disks - 1), 6148 1, &dd_idx, NULL); 6149 if (last_sector >= mddev->dev_sectors) 6150 last_sector = mddev->dev_sectors - 1; 6151 while (first_sector <= last_sector) { 6152 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 6153 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6154 set_bit(STRIPE_HANDLE, &sh->state); 6155 raid5_release_stripe(sh); 6156 first_sector += RAID5_STRIPE_SECTORS(conf); 6157 } 6158 /* Now that the sources are clearly marked, we can release 6159 * the destination stripes 6160 */ 6161 while (!list_empty(&stripes)) { 6162 sh = list_entry(stripes.next, struct stripe_head, lru); 6163 list_del_init(&sh->lru); 6164 raid5_release_stripe(sh); 6165 } 6166 /* If this takes us to the resync_max point where we have to pause, 6167 * then we need to write out the superblock. 6168 */ 6169 sector_nr += reshape_sectors; 6170 retn = reshape_sectors; 6171 finish: 6172 if (mddev->curr_resync_completed > mddev->resync_max || 6173 (sector_nr - mddev->curr_resync_completed) * 2 6174 >= mddev->resync_max - mddev->curr_resync_completed) { 6175 /* Cannot proceed until we've updated the superblock... */ 6176 wait_event(conf->wait_for_overlap, 6177 atomic_read(&conf->reshape_stripes) == 0 6178 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6179 if (atomic_read(&conf->reshape_stripes) != 0) 6180 goto ret; 6181 mddev->reshape_position = conf->reshape_progress; 6182 mddev->curr_resync_completed = sector_nr; 6183 if (!mddev->reshape_backwards) 6184 /* Can update recovery_offset */ 6185 rdev_for_each(rdev, mddev) 6186 if (rdev->raid_disk >= 0 && 6187 !test_bit(Journal, &rdev->flags) && 6188 !test_bit(In_sync, &rdev->flags) && 6189 rdev->recovery_offset < sector_nr) 6190 rdev->recovery_offset = sector_nr; 6191 conf->reshape_checkpoint = jiffies; 6192 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6193 md_wakeup_thread(mddev->thread); 6194 wait_event(mddev->sb_wait, 6195 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6196 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6197 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6198 goto ret; 6199 spin_lock_irq(&conf->device_lock); 6200 conf->reshape_safe = mddev->reshape_position; 6201 spin_unlock_irq(&conf->device_lock); 6202 wake_up(&conf->wait_for_overlap); 6203 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6204 } 6205 ret: 6206 return retn; 6207 } 6208 6209 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6210 int *skipped) 6211 { 6212 struct r5conf *conf = mddev->private; 6213 struct stripe_head *sh; 6214 sector_t max_sector = mddev->dev_sectors; 6215 sector_t sync_blocks; 6216 int still_degraded = 0; 6217 int i; 6218 6219 if (sector_nr >= max_sector) { 6220 /* just being told to finish up .. nothing much to do */ 6221 6222 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6223 end_reshape(conf); 6224 return 0; 6225 } 6226 6227 if (mddev->curr_resync < max_sector) /* aborted */ 6228 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6229 &sync_blocks, 1); 6230 else /* completed sync */ 6231 conf->fullsync = 0; 6232 md_bitmap_close_sync(mddev->bitmap); 6233 6234 return 0; 6235 } 6236 6237 /* Allow raid5_quiesce to complete */ 6238 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6239 6240 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6241 return reshape_request(mddev, sector_nr, skipped); 6242 6243 /* No need to check resync_max as we never do more than one 6244 * stripe, and as resync_max will always be on a chunk boundary, 6245 * if the check in md_do_sync didn't fire, there is no chance 6246 * of overstepping resync_max here 6247 */ 6248 6249 /* if there is too many failed drives and we are trying 6250 * to resync, then assert that we are finished, because there is 6251 * nothing we can do. 6252 */ 6253 if (mddev->degraded >= conf->max_degraded && 6254 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6255 sector_t rv = mddev->dev_sectors - sector_nr; 6256 *skipped = 1; 6257 return rv; 6258 } 6259 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6260 !conf->fullsync && 6261 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6262 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6263 /* we can skip this block, and probably more */ 6264 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6265 *skipped = 1; 6266 /* keep things rounded to whole stripes */ 6267 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6268 } 6269 6270 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6271 6272 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6273 if (sh == NULL) { 6274 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6275 /* make sure we don't swamp the stripe cache if someone else 6276 * is trying to get access 6277 */ 6278 schedule_timeout_uninterruptible(1); 6279 } 6280 /* Need to check if array will still be degraded after recovery/resync 6281 * Note in case of > 1 drive failures it's possible we're rebuilding 6282 * one drive while leaving another faulty drive in array. 6283 */ 6284 rcu_read_lock(); 6285 for (i = 0; i < conf->raid_disks; i++) { 6286 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6287 6288 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6289 still_degraded = 1; 6290 } 6291 rcu_read_unlock(); 6292 6293 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6294 6295 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6296 set_bit(STRIPE_HANDLE, &sh->state); 6297 6298 raid5_release_stripe(sh); 6299 6300 return RAID5_STRIPE_SECTORS(conf); 6301 } 6302 6303 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6304 unsigned int offset) 6305 { 6306 /* We may not be able to submit a whole bio at once as there 6307 * may not be enough stripe_heads available. 6308 * We cannot pre-allocate enough stripe_heads as we may need 6309 * more than exist in the cache (if we allow ever large chunks). 6310 * So we do one stripe head at a time and record in 6311 * ->bi_hw_segments how many have been done. 6312 * 6313 * We *know* that this entire raid_bio is in one chunk, so 6314 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6315 */ 6316 struct stripe_head *sh; 6317 int dd_idx; 6318 sector_t sector, logical_sector, last_sector; 6319 int scnt = 0; 6320 int handled = 0; 6321 6322 logical_sector = raid_bio->bi_iter.bi_sector & 6323 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6324 sector = raid5_compute_sector(conf, logical_sector, 6325 0, &dd_idx, NULL); 6326 last_sector = bio_end_sector(raid_bio); 6327 6328 for (; logical_sector < last_sector; 6329 logical_sector += RAID5_STRIPE_SECTORS(conf), 6330 sector += RAID5_STRIPE_SECTORS(conf), 6331 scnt++) { 6332 6333 if (scnt < offset) 6334 /* already done this stripe */ 6335 continue; 6336 6337 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6338 6339 if (!sh) { 6340 /* failed to get a stripe - must wait */ 6341 conf->retry_read_aligned = raid_bio; 6342 conf->retry_read_offset = scnt; 6343 return handled; 6344 } 6345 6346 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6347 raid5_release_stripe(sh); 6348 conf->retry_read_aligned = raid_bio; 6349 conf->retry_read_offset = scnt; 6350 return handled; 6351 } 6352 6353 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6354 handle_stripe(sh); 6355 raid5_release_stripe(sh); 6356 handled++; 6357 } 6358 6359 bio_endio(raid_bio); 6360 6361 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6362 wake_up(&conf->wait_for_quiescent); 6363 return handled; 6364 } 6365 6366 static int handle_active_stripes(struct r5conf *conf, int group, 6367 struct r5worker *worker, 6368 struct list_head *temp_inactive_list) 6369 __releases(&conf->device_lock) 6370 __acquires(&conf->device_lock) 6371 { 6372 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6373 int i, batch_size = 0, hash; 6374 bool release_inactive = false; 6375 6376 while (batch_size < MAX_STRIPE_BATCH && 6377 (sh = __get_priority_stripe(conf, group)) != NULL) 6378 batch[batch_size++] = sh; 6379 6380 if (batch_size == 0) { 6381 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6382 if (!list_empty(temp_inactive_list + i)) 6383 break; 6384 if (i == NR_STRIPE_HASH_LOCKS) { 6385 spin_unlock_irq(&conf->device_lock); 6386 log_flush_stripe_to_raid(conf); 6387 spin_lock_irq(&conf->device_lock); 6388 return batch_size; 6389 } 6390 release_inactive = true; 6391 } 6392 spin_unlock_irq(&conf->device_lock); 6393 6394 release_inactive_stripe_list(conf, temp_inactive_list, 6395 NR_STRIPE_HASH_LOCKS); 6396 6397 r5l_flush_stripe_to_raid(conf->log); 6398 if (release_inactive) { 6399 spin_lock_irq(&conf->device_lock); 6400 return 0; 6401 } 6402 6403 for (i = 0; i < batch_size; i++) 6404 handle_stripe(batch[i]); 6405 log_write_stripe_run(conf); 6406 6407 cond_resched(); 6408 6409 spin_lock_irq(&conf->device_lock); 6410 for (i = 0; i < batch_size; i++) { 6411 hash = batch[i]->hash_lock_index; 6412 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6413 } 6414 return batch_size; 6415 } 6416 6417 static void raid5_do_work(struct work_struct *work) 6418 { 6419 struct r5worker *worker = container_of(work, struct r5worker, work); 6420 struct r5worker_group *group = worker->group; 6421 struct r5conf *conf = group->conf; 6422 struct mddev *mddev = conf->mddev; 6423 int group_id = group - conf->worker_groups; 6424 int handled; 6425 struct blk_plug plug; 6426 6427 pr_debug("+++ raid5worker active\n"); 6428 6429 blk_start_plug(&plug); 6430 handled = 0; 6431 spin_lock_irq(&conf->device_lock); 6432 while (1) { 6433 int batch_size, released; 6434 6435 released = release_stripe_list(conf, worker->temp_inactive_list); 6436 6437 batch_size = handle_active_stripes(conf, group_id, worker, 6438 worker->temp_inactive_list); 6439 worker->working = false; 6440 if (!batch_size && !released) 6441 break; 6442 handled += batch_size; 6443 wait_event_lock_irq(mddev->sb_wait, 6444 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6445 conf->device_lock); 6446 } 6447 pr_debug("%d stripes handled\n", handled); 6448 6449 spin_unlock_irq(&conf->device_lock); 6450 6451 flush_deferred_bios(conf); 6452 6453 r5l_flush_stripe_to_raid(conf->log); 6454 6455 async_tx_issue_pending_all(); 6456 blk_finish_plug(&plug); 6457 6458 pr_debug("--- raid5worker inactive\n"); 6459 } 6460 6461 /* 6462 * This is our raid5 kernel thread. 6463 * 6464 * We scan the hash table for stripes which can be handled now. 6465 * During the scan, completed stripes are saved for us by the interrupt 6466 * handler, so that they will not have to wait for our next wakeup. 6467 */ 6468 static void raid5d(struct md_thread *thread) 6469 { 6470 struct mddev *mddev = thread->mddev; 6471 struct r5conf *conf = mddev->private; 6472 int handled; 6473 struct blk_plug plug; 6474 6475 pr_debug("+++ raid5d active\n"); 6476 6477 md_check_recovery(mddev); 6478 6479 blk_start_plug(&plug); 6480 handled = 0; 6481 spin_lock_irq(&conf->device_lock); 6482 while (1) { 6483 struct bio *bio; 6484 int batch_size, released; 6485 unsigned int offset; 6486 6487 released = release_stripe_list(conf, conf->temp_inactive_list); 6488 if (released) 6489 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6490 6491 if ( 6492 !list_empty(&conf->bitmap_list)) { 6493 /* Now is a good time to flush some bitmap updates */ 6494 conf->seq_flush++; 6495 spin_unlock_irq(&conf->device_lock); 6496 md_bitmap_unplug(mddev->bitmap); 6497 spin_lock_irq(&conf->device_lock); 6498 conf->seq_write = conf->seq_flush; 6499 activate_bit_delay(conf, conf->temp_inactive_list); 6500 } 6501 raid5_activate_delayed(conf); 6502 6503 while ((bio = remove_bio_from_retry(conf, &offset))) { 6504 int ok; 6505 spin_unlock_irq(&conf->device_lock); 6506 ok = retry_aligned_read(conf, bio, offset); 6507 spin_lock_irq(&conf->device_lock); 6508 if (!ok) 6509 break; 6510 handled++; 6511 } 6512 6513 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6514 conf->temp_inactive_list); 6515 if (!batch_size && !released) 6516 break; 6517 handled += batch_size; 6518 6519 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6520 spin_unlock_irq(&conf->device_lock); 6521 md_check_recovery(mddev); 6522 spin_lock_irq(&conf->device_lock); 6523 } 6524 } 6525 pr_debug("%d stripes handled\n", handled); 6526 6527 spin_unlock_irq(&conf->device_lock); 6528 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6529 mutex_trylock(&conf->cache_size_mutex)) { 6530 grow_one_stripe(conf, __GFP_NOWARN); 6531 /* Set flag even if allocation failed. This helps 6532 * slow down allocation requests when mem is short 6533 */ 6534 set_bit(R5_DID_ALLOC, &conf->cache_state); 6535 mutex_unlock(&conf->cache_size_mutex); 6536 } 6537 6538 flush_deferred_bios(conf); 6539 6540 r5l_flush_stripe_to_raid(conf->log); 6541 6542 async_tx_issue_pending_all(); 6543 blk_finish_plug(&plug); 6544 6545 pr_debug("--- raid5d inactive\n"); 6546 } 6547 6548 static ssize_t 6549 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6550 { 6551 struct r5conf *conf; 6552 int ret = 0; 6553 spin_lock(&mddev->lock); 6554 conf = mddev->private; 6555 if (conf) 6556 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6557 spin_unlock(&mddev->lock); 6558 return ret; 6559 } 6560 6561 int 6562 raid5_set_cache_size(struct mddev *mddev, int size) 6563 { 6564 int result = 0; 6565 struct r5conf *conf = mddev->private; 6566 6567 if (size <= 16 || size > 32768) 6568 return -EINVAL; 6569 6570 conf->min_nr_stripes = size; 6571 mutex_lock(&conf->cache_size_mutex); 6572 while (size < conf->max_nr_stripes && 6573 drop_one_stripe(conf)) 6574 ; 6575 mutex_unlock(&conf->cache_size_mutex); 6576 6577 md_allow_write(mddev); 6578 6579 mutex_lock(&conf->cache_size_mutex); 6580 while (size > conf->max_nr_stripes) 6581 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6582 conf->min_nr_stripes = conf->max_nr_stripes; 6583 result = -ENOMEM; 6584 break; 6585 } 6586 mutex_unlock(&conf->cache_size_mutex); 6587 6588 return result; 6589 } 6590 EXPORT_SYMBOL(raid5_set_cache_size); 6591 6592 static ssize_t 6593 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6594 { 6595 struct r5conf *conf; 6596 unsigned long new; 6597 int err; 6598 6599 if (len >= PAGE_SIZE) 6600 return -EINVAL; 6601 if (kstrtoul(page, 10, &new)) 6602 return -EINVAL; 6603 err = mddev_lock(mddev); 6604 if (err) 6605 return err; 6606 conf = mddev->private; 6607 if (!conf) 6608 err = -ENODEV; 6609 else 6610 err = raid5_set_cache_size(mddev, new); 6611 mddev_unlock(mddev); 6612 6613 return err ?: len; 6614 } 6615 6616 static struct md_sysfs_entry 6617 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6618 raid5_show_stripe_cache_size, 6619 raid5_store_stripe_cache_size); 6620 6621 static ssize_t 6622 raid5_show_rmw_level(struct mddev *mddev, char *page) 6623 { 6624 struct r5conf *conf = mddev->private; 6625 if (conf) 6626 return sprintf(page, "%d\n", conf->rmw_level); 6627 else 6628 return 0; 6629 } 6630 6631 static ssize_t 6632 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6633 { 6634 struct r5conf *conf = mddev->private; 6635 unsigned long new; 6636 6637 if (!conf) 6638 return -ENODEV; 6639 6640 if (len >= PAGE_SIZE) 6641 return -EINVAL; 6642 6643 if (kstrtoul(page, 10, &new)) 6644 return -EINVAL; 6645 6646 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6647 return -EINVAL; 6648 6649 if (new != PARITY_DISABLE_RMW && 6650 new != PARITY_ENABLE_RMW && 6651 new != PARITY_PREFER_RMW) 6652 return -EINVAL; 6653 6654 conf->rmw_level = new; 6655 return len; 6656 } 6657 6658 static struct md_sysfs_entry 6659 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6660 raid5_show_rmw_level, 6661 raid5_store_rmw_level); 6662 6663 static ssize_t 6664 raid5_show_stripe_size(struct mddev *mddev, char *page) 6665 { 6666 struct r5conf *conf; 6667 int ret = 0; 6668 6669 spin_lock(&mddev->lock); 6670 conf = mddev->private; 6671 if (conf) 6672 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6673 spin_unlock(&mddev->lock); 6674 return ret; 6675 } 6676 6677 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6678 static ssize_t 6679 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6680 { 6681 struct r5conf *conf; 6682 unsigned long new; 6683 int err; 6684 int size; 6685 6686 if (len >= PAGE_SIZE) 6687 return -EINVAL; 6688 if (kstrtoul(page, 10, &new)) 6689 return -EINVAL; 6690 6691 /* 6692 * The value should not be bigger than PAGE_SIZE. It requires to 6693 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 6694 * of two. 6695 */ 6696 if (new % DEFAULT_STRIPE_SIZE != 0 || 6697 new > PAGE_SIZE || new == 0 || 6698 new != roundup_pow_of_two(new)) 6699 return -EINVAL; 6700 6701 err = mddev_lock(mddev); 6702 if (err) 6703 return err; 6704 6705 conf = mddev->private; 6706 if (!conf) { 6707 err = -ENODEV; 6708 goto out_unlock; 6709 } 6710 6711 if (new == conf->stripe_size) 6712 goto out_unlock; 6713 6714 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 6715 conf->stripe_size, new); 6716 6717 if (mddev->sync_thread || 6718 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6719 mddev->reshape_position != MaxSector || 6720 mddev->sysfs_active) { 6721 err = -EBUSY; 6722 goto out_unlock; 6723 } 6724 6725 mddev_suspend(mddev); 6726 mutex_lock(&conf->cache_size_mutex); 6727 size = conf->max_nr_stripes; 6728 6729 shrink_stripes(conf); 6730 6731 conf->stripe_size = new; 6732 conf->stripe_shift = ilog2(new) - 9; 6733 conf->stripe_sectors = new >> 9; 6734 if (grow_stripes(conf, size)) { 6735 pr_warn("md/raid:%s: couldn't allocate buffers\n", 6736 mdname(mddev)); 6737 err = -ENOMEM; 6738 } 6739 mutex_unlock(&conf->cache_size_mutex); 6740 mddev_resume(mddev); 6741 6742 out_unlock: 6743 mddev_unlock(mddev); 6744 return err ?: len; 6745 } 6746 6747 static struct md_sysfs_entry 6748 raid5_stripe_size = __ATTR(stripe_size, 0644, 6749 raid5_show_stripe_size, 6750 raid5_store_stripe_size); 6751 #else 6752 static struct md_sysfs_entry 6753 raid5_stripe_size = __ATTR(stripe_size, 0444, 6754 raid5_show_stripe_size, 6755 NULL); 6756 #endif 6757 6758 static ssize_t 6759 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6760 { 6761 struct r5conf *conf; 6762 int ret = 0; 6763 spin_lock(&mddev->lock); 6764 conf = mddev->private; 6765 if (conf) 6766 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6767 spin_unlock(&mddev->lock); 6768 return ret; 6769 } 6770 6771 static ssize_t 6772 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6773 { 6774 struct r5conf *conf; 6775 unsigned long new; 6776 int err; 6777 6778 if (len >= PAGE_SIZE) 6779 return -EINVAL; 6780 if (kstrtoul(page, 10, &new)) 6781 return -EINVAL; 6782 6783 err = mddev_lock(mddev); 6784 if (err) 6785 return err; 6786 conf = mddev->private; 6787 if (!conf) 6788 err = -ENODEV; 6789 else if (new > conf->min_nr_stripes) 6790 err = -EINVAL; 6791 else 6792 conf->bypass_threshold = new; 6793 mddev_unlock(mddev); 6794 return err ?: len; 6795 } 6796 6797 static struct md_sysfs_entry 6798 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6799 S_IRUGO | S_IWUSR, 6800 raid5_show_preread_threshold, 6801 raid5_store_preread_threshold); 6802 6803 static ssize_t 6804 raid5_show_skip_copy(struct mddev *mddev, char *page) 6805 { 6806 struct r5conf *conf; 6807 int ret = 0; 6808 spin_lock(&mddev->lock); 6809 conf = mddev->private; 6810 if (conf) 6811 ret = sprintf(page, "%d\n", conf->skip_copy); 6812 spin_unlock(&mddev->lock); 6813 return ret; 6814 } 6815 6816 static ssize_t 6817 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6818 { 6819 struct r5conf *conf; 6820 unsigned long new; 6821 int err; 6822 6823 if (len >= PAGE_SIZE) 6824 return -EINVAL; 6825 if (kstrtoul(page, 10, &new)) 6826 return -EINVAL; 6827 new = !!new; 6828 6829 err = mddev_lock(mddev); 6830 if (err) 6831 return err; 6832 conf = mddev->private; 6833 if (!conf) 6834 err = -ENODEV; 6835 else if (new != conf->skip_copy) { 6836 struct request_queue *q = mddev->queue; 6837 6838 mddev_suspend(mddev); 6839 conf->skip_copy = new; 6840 if (new) 6841 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 6842 else 6843 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 6844 mddev_resume(mddev); 6845 } 6846 mddev_unlock(mddev); 6847 return err ?: len; 6848 } 6849 6850 static struct md_sysfs_entry 6851 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6852 raid5_show_skip_copy, 6853 raid5_store_skip_copy); 6854 6855 static ssize_t 6856 stripe_cache_active_show(struct mddev *mddev, char *page) 6857 { 6858 struct r5conf *conf = mddev->private; 6859 if (conf) 6860 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6861 else 6862 return 0; 6863 } 6864 6865 static struct md_sysfs_entry 6866 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6867 6868 static ssize_t 6869 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6870 { 6871 struct r5conf *conf; 6872 int ret = 0; 6873 spin_lock(&mddev->lock); 6874 conf = mddev->private; 6875 if (conf) 6876 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6877 spin_unlock(&mddev->lock); 6878 return ret; 6879 } 6880 6881 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6882 int *group_cnt, 6883 struct r5worker_group **worker_groups); 6884 static ssize_t 6885 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6886 { 6887 struct r5conf *conf; 6888 unsigned int new; 6889 int err; 6890 struct r5worker_group *new_groups, *old_groups; 6891 int group_cnt; 6892 6893 if (len >= PAGE_SIZE) 6894 return -EINVAL; 6895 if (kstrtouint(page, 10, &new)) 6896 return -EINVAL; 6897 /* 8192 should be big enough */ 6898 if (new > 8192) 6899 return -EINVAL; 6900 6901 err = mddev_lock(mddev); 6902 if (err) 6903 return err; 6904 conf = mddev->private; 6905 if (!conf) 6906 err = -ENODEV; 6907 else if (new != conf->worker_cnt_per_group) { 6908 mddev_suspend(mddev); 6909 6910 old_groups = conf->worker_groups; 6911 if (old_groups) 6912 flush_workqueue(raid5_wq); 6913 6914 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 6915 if (!err) { 6916 spin_lock_irq(&conf->device_lock); 6917 conf->group_cnt = group_cnt; 6918 conf->worker_cnt_per_group = new; 6919 conf->worker_groups = new_groups; 6920 spin_unlock_irq(&conf->device_lock); 6921 6922 if (old_groups) 6923 kfree(old_groups[0].workers); 6924 kfree(old_groups); 6925 } 6926 mddev_resume(mddev); 6927 } 6928 mddev_unlock(mddev); 6929 6930 return err ?: len; 6931 } 6932 6933 static struct md_sysfs_entry 6934 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6935 raid5_show_group_thread_cnt, 6936 raid5_store_group_thread_cnt); 6937 6938 static struct attribute *raid5_attrs[] = { 6939 &raid5_stripecache_size.attr, 6940 &raid5_stripecache_active.attr, 6941 &raid5_preread_bypass_threshold.attr, 6942 &raid5_group_thread_cnt.attr, 6943 &raid5_skip_copy.attr, 6944 &raid5_rmw_level.attr, 6945 &raid5_stripe_size.attr, 6946 &r5c_journal_mode.attr, 6947 &ppl_write_hint.attr, 6948 NULL, 6949 }; 6950 static struct attribute_group raid5_attrs_group = { 6951 .name = NULL, 6952 .attrs = raid5_attrs, 6953 }; 6954 6955 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 6956 struct r5worker_group **worker_groups) 6957 { 6958 int i, j, k; 6959 ssize_t size; 6960 struct r5worker *workers; 6961 6962 if (cnt == 0) { 6963 *group_cnt = 0; 6964 *worker_groups = NULL; 6965 return 0; 6966 } 6967 *group_cnt = num_possible_nodes(); 6968 size = sizeof(struct r5worker) * cnt; 6969 workers = kcalloc(size, *group_cnt, GFP_NOIO); 6970 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 6971 GFP_NOIO); 6972 if (!*worker_groups || !workers) { 6973 kfree(workers); 6974 kfree(*worker_groups); 6975 return -ENOMEM; 6976 } 6977 6978 for (i = 0; i < *group_cnt; i++) { 6979 struct r5worker_group *group; 6980 6981 group = &(*worker_groups)[i]; 6982 INIT_LIST_HEAD(&group->handle_list); 6983 INIT_LIST_HEAD(&group->loprio_list); 6984 group->conf = conf; 6985 group->workers = workers + i * cnt; 6986 6987 for (j = 0; j < cnt; j++) { 6988 struct r5worker *worker = group->workers + j; 6989 worker->group = group; 6990 INIT_WORK(&worker->work, raid5_do_work); 6991 6992 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6993 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6994 } 6995 } 6996 6997 return 0; 6998 } 6999 7000 static void free_thread_groups(struct r5conf *conf) 7001 { 7002 if (conf->worker_groups) 7003 kfree(conf->worker_groups[0].workers); 7004 kfree(conf->worker_groups); 7005 conf->worker_groups = NULL; 7006 } 7007 7008 static sector_t 7009 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7010 { 7011 struct r5conf *conf = mddev->private; 7012 7013 if (!sectors) 7014 sectors = mddev->dev_sectors; 7015 if (!raid_disks) 7016 /* size is defined by the smallest of previous and new size */ 7017 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7018 7019 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7020 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7021 return sectors * (raid_disks - conf->max_degraded); 7022 } 7023 7024 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7025 { 7026 safe_put_page(percpu->spare_page); 7027 percpu->spare_page = NULL; 7028 kvfree(percpu->scribble); 7029 percpu->scribble = NULL; 7030 } 7031 7032 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7033 { 7034 if (conf->level == 6 && !percpu->spare_page) { 7035 percpu->spare_page = alloc_page(GFP_KERNEL); 7036 if (!percpu->spare_page) 7037 return -ENOMEM; 7038 } 7039 7040 if (scribble_alloc(percpu, 7041 max(conf->raid_disks, 7042 conf->previous_raid_disks), 7043 max(conf->chunk_sectors, 7044 conf->prev_chunk_sectors) 7045 / RAID5_STRIPE_SECTORS(conf))) { 7046 free_scratch_buffer(conf, percpu); 7047 return -ENOMEM; 7048 } 7049 7050 return 0; 7051 } 7052 7053 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7054 { 7055 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7056 7057 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7058 return 0; 7059 } 7060 7061 static void raid5_free_percpu(struct r5conf *conf) 7062 { 7063 if (!conf->percpu) 7064 return; 7065 7066 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7067 free_percpu(conf->percpu); 7068 } 7069 7070 static void free_conf(struct r5conf *conf) 7071 { 7072 int i; 7073 7074 log_exit(conf); 7075 7076 unregister_shrinker(&conf->shrinker); 7077 free_thread_groups(conf); 7078 shrink_stripes(conf); 7079 raid5_free_percpu(conf); 7080 for (i = 0; i < conf->pool_size; i++) 7081 if (conf->disks[i].extra_page) 7082 put_page(conf->disks[i].extra_page); 7083 kfree(conf->disks); 7084 bioset_exit(&conf->bio_split); 7085 kfree(conf->stripe_hashtbl); 7086 kfree(conf->pending_data); 7087 kfree(conf); 7088 } 7089 7090 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7091 { 7092 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7093 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7094 7095 if (alloc_scratch_buffer(conf, percpu)) { 7096 pr_warn("%s: failed memory allocation for cpu%u\n", 7097 __func__, cpu); 7098 return -ENOMEM; 7099 } 7100 return 0; 7101 } 7102 7103 static int raid5_alloc_percpu(struct r5conf *conf) 7104 { 7105 int err = 0; 7106 7107 conf->percpu = alloc_percpu(struct raid5_percpu); 7108 if (!conf->percpu) 7109 return -ENOMEM; 7110 7111 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7112 if (!err) { 7113 conf->scribble_disks = max(conf->raid_disks, 7114 conf->previous_raid_disks); 7115 conf->scribble_sectors = max(conf->chunk_sectors, 7116 conf->prev_chunk_sectors); 7117 } 7118 return err; 7119 } 7120 7121 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7122 struct shrink_control *sc) 7123 { 7124 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7125 unsigned long ret = SHRINK_STOP; 7126 7127 if (mutex_trylock(&conf->cache_size_mutex)) { 7128 ret= 0; 7129 while (ret < sc->nr_to_scan && 7130 conf->max_nr_stripes > conf->min_nr_stripes) { 7131 if (drop_one_stripe(conf) == 0) { 7132 ret = SHRINK_STOP; 7133 break; 7134 } 7135 ret++; 7136 } 7137 mutex_unlock(&conf->cache_size_mutex); 7138 } 7139 return ret; 7140 } 7141 7142 static unsigned long raid5_cache_count(struct shrinker *shrink, 7143 struct shrink_control *sc) 7144 { 7145 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7146 7147 if (conf->max_nr_stripes < conf->min_nr_stripes) 7148 /* unlikely, but not impossible */ 7149 return 0; 7150 return conf->max_nr_stripes - conf->min_nr_stripes; 7151 } 7152 7153 static struct r5conf *setup_conf(struct mddev *mddev) 7154 { 7155 struct r5conf *conf; 7156 int raid_disk, memory, max_disks; 7157 struct md_rdev *rdev; 7158 struct disk_info *disk; 7159 char pers_name[6]; 7160 int i; 7161 int group_cnt; 7162 struct r5worker_group *new_group; 7163 int ret; 7164 7165 if (mddev->new_level != 5 7166 && mddev->new_level != 4 7167 && mddev->new_level != 6) { 7168 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7169 mdname(mddev), mddev->new_level); 7170 return ERR_PTR(-EIO); 7171 } 7172 if ((mddev->new_level == 5 7173 && !algorithm_valid_raid5(mddev->new_layout)) || 7174 (mddev->new_level == 6 7175 && !algorithm_valid_raid6(mddev->new_layout))) { 7176 pr_warn("md/raid:%s: layout %d not supported\n", 7177 mdname(mddev), mddev->new_layout); 7178 return ERR_PTR(-EIO); 7179 } 7180 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7181 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7182 mdname(mddev), mddev->raid_disks); 7183 return ERR_PTR(-EINVAL); 7184 } 7185 7186 if (!mddev->new_chunk_sectors || 7187 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7188 !is_power_of_2(mddev->new_chunk_sectors)) { 7189 pr_warn("md/raid:%s: invalid chunk size %d\n", 7190 mdname(mddev), mddev->new_chunk_sectors << 9); 7191 return ERR_PTR(-EINVAL); 7192 } 7193 7194 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7195 if (conf == NULL) 7196 goto abort; 7197 7198 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7199 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7200 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7201 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7202 #endif 7203 INIT_LIST_HEAD(&conf->free_list); 7204 INIT_LIST_HEAD(&conf->pending_list); 7205 conf->pending_data = kcalloc(PENDING_IO_MAX, 7206 sizeof(struct r5pending_data), 7207 GFP_KERNEL); 7208 if (!conf->pending_data) 7209 goto abort; 7210 for (i = 0; i < PENDING_IO_MAX; i++) 7211 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7212 /* Don't enable multi-threading by default*/ 7213 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7214 conf->group_cnt = group_cnt; 7215 conf->worker_cnt_per_group = 0; 7216 conf->worker_groups = new_group; 7217 } else 7218 goto abort; 7219 spin_lock_init(&conf->device_lock); 7220 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7221 mutex_init(&conf->cache_size_mutex); 7222 init_waitqueue_head(&conf->wait_for_quiescent); 7223 init_waitqueue_head(&conf->wait_for_stripe); 7224 init_waitqueue_head(&conf->wait_for_overlap); 7225 INIT_LIST_HEAD(&conf->handle_list); 7226 INIT_LIST_HEAD(&conf->loprio_list); 7227 INIT_LIST_HEAD(&conf->hold_list); 7228 INIT_LIST_HEAD(&conf->delayed_list); 7229 INIT_LIST_HEAD(&conf->bitmap_list); 7230 init_llist_head(&conf->released_stripes); 7231 atomic_set(&conf->active_stripes, 0); 7232 atomic_set(&conf->preread_active_stripes, 0); 7233 atomic_set(&conf->active_aligned_reads, 0); 7234 spin_lock_init(&conf->pending_bios_lock); 7235 conf->batch_bio_dispatch = true; 7236 rdev_for_each(rdev, mddev) { 7237 if (test_bit(Journal, &rdev->flags)) 7238 continue; 7239 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 7240 conf->batch_bio_dispatch = false; 7241 break; 7242 } 7243 } 7244 7245 conf->bypass_threshold = BYPASS_THRESHOLD; 7246 conf->recovery_disabled = mddev->recovery_disabled - 1; 7247 7248 conf->raid_disks = mddev->raid_disks; 7249 if (mddev->reshape_position == MaxSector) 7250 conf->previous_raid_disks = mddev->raid_disks; 7251 else 7252 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7253 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7254 7255 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7256 GFP_KERNEL); 7257 7258 if (!conf->disks) 7259 goto abort; 7260 7261 for (i = 0; i < max_disks; i++) { 7262 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7263 if (!conf->disks[i].extra_page) 7264 goto abort; 7265 } 7266 7267 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7268 if (ret) 7269 goto abort; 7270 conf->mddev = mddev; 7271 7272 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 7273 goto abort; 7274 7275 /* We init hash_locks[0] separately to that it can be used 7276 * as the reference lock in the spin_lock_nest_lock() call 7277 * in lock_all_device_hash_locks_irq in order to convince 7278 * lockdep that we know what we are doing. 7279 */ 7280 spin_lock_init(conf->hash_locks); 7281 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7282 spin_lock_init(conf->hash_locks + i); 7283 7284 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7285 INIT_LIST_HEAD(conf->inactive_list + i); 7286 7287 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7288 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7289 7290 atomic_set(&conf->r5c_cached_full_stripes, 0); 7291 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7292 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7293 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7294 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7295 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7296 7297 conf->level = mddev->new_level; 7298 conf->chunk_sectors = mddev->new_chunk_sectors; 7299 if (raid5_alloc_percpu(conf) != 0) 7300 goto abort; 7301 7302 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7303 7304 rdev_for_each(rdev, mddev) { 7305 raid_disk = rdev->raid_disk; 7306 if (raid_disk >= max_disks 7307 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7308 continue; 7309 disk = conf->disks + raid_disk; 7310 7311 if (test_bit(Replacement, &rdev->flags)) { 7312 if (disk->replacement) 7313 goto abort; 7314 disk->replacement = rdev; 7315 } else { 7316 if (disk->rdev) 7317 goto abort; 7318 disk->rdev = rdev; 7319 } 7320 7321 if (test_bit(In_sync, &rdev->flags)) { 7322 char b[BDEVNAME_SIZE]; 7323 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7324 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7325 } else if (rdev->saved_raid_disk != raid_disk) 7326 /* Cannot rely on bitmap to complete recovery */ 7327 conf->fullsync = 1; 7328 } 7329 7330 conf->level = mddev->new_level; 7331 if (conf->level == 6) { 7332 conf->max_degraded = 2; 7333 if (raid6_call.xor_syndrome) 7334 conf->rmw_level = PARITY_ENABLE_RMW; 7335 else 7336 conf->rmw_level = PARITY_DISABLE_RMW; 7337 } else { 7338 conf->max_degraded = 1; 7339 conf->rmw_level = PARITY_ENABLE_RMW; 7340 } 7341 conf->algorithm = mddev->new_layout; 7342 conf->reshape_progress = mddev->reshape_position; 7343 if (conf->reshape_progress != MaxSector) { 7344 conf->prev_chunk_sectors = mddev->chunk_sectors; 7345 conf->prev_algo = mddev->layout; 7346 } else { 7347 conf->prev_chunk_sectors = conf->chunk_sectors; 7348 conf->prev_algo = conf->algorithm; 7349 } 7350 7351 conf->min_nr_stripes = NR_STRIPES; 7352 if (mddev->reshape_position != MaxSector) { 7353 int stripes = max_t(int, 7354 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7355 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7356 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7357 if (conf->min_nr_stripes != NR_STRIPES) 7358 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7359 mdname(mddev), conf->min_nr_stripes); 7360 } 7361 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7362 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7363 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7364 if (grow_stripes(conf, conf->min_nr_stripes)) { 7365 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7366 mdname(mddev), memory); 7367 goto abort; 7368 } else 7369 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7370 /* 7371 * Losing a stripe head costs more than the time to refill it, 7372 * it reduces the queue depth and so can hurt throughput. 7373 * So set it rather large, scaled by number of devices. 7374 */ 7375 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7376 conf->shrinker.scan_objects = raid5_cache_scan; 7377 conf->shrinker.count_objects = raid5_cache_count; 7378 conf->shrinker.batch = 128; 7379 conf->shrinker.flags = 0; 7380 if (register_shrinker(&conf->shrinker)) { 7381 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7382 mdname(mddev)); 7383 goto abort; 7384 } 7385 7386 sprintf(pers_name, "raid%d", mddev->new_level); 7387 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7388 if (!conf->thread) { 7389 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7390 mdname(mddev)); 7391 goto abort; 7392 } 7393 7394 return conf; 7395 7396 abort: 7397 if (conf) { 7398 free_conf(conf); 7399 return ERR_PTR(-EIO); 7400 } else 7401 return ERR_PTR(-ENOMEM); 7402 } 7403 7404 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7405 { 7406 switch (algo) { 7407 case ALGORITHM_PARITY_0: 7408 if (raid_disk < max_degraded) 7409 return 1; 7410 break; 7411 case ALGORITHM_PARITY_N: 7412 if (raid_disk >= raid_disks - max_degraded) 7413 return 1; 7414 break; 7415 case ALGORITHM_PARITY_0_6: 7416 if (raid_disk == 0 || 7417 raid_disk == raid_disks - 1) 7418 return 1; 7419 break; 7420 case ALGORITHM_LEFT_ASYMMETRIC_6: 7421 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7422 case ALGORITHM_LEFT_SYMMETRIC_6: 7423 case ALGORITHM_RIGHT_SYMMETRIC_6: 7424 if (raid_disk == raid_disks - 1) 7425 return 1; 7426 } 7427 return 0; 7428 } 7429 7430 static void raid5_set_io_opt(struct r5conf *conf) 7431 { 7432 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7433 (conf->raid_disks - conf->max_degraded)); 7434 } 7435 7436 static int raid5_run(struct mddev *mddev) 7437 { 7438 struct r5conf *conf; 7439 int working_disks = 0; 7440 int dirty_parity_disks = 0; 7441 struct md_rdev *rdev; 7442 struct md_rdev *journal_dev = NULL; 7443 sector_t reshape_offset = 0; 7444 int i; 7445 long long min_offset_diff = 0; 7446 int first = 1; 7447 7448 if (mddev_init_writes_pending(mddev) < 0) 7449 return -ENOMEM; 7450 7451 if (mddev->recovery_cp != MaxSector) 7452 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7453 mdname(mddev)); 7454 7455 rdev_for_each(rdev, mddev) { 7456 long long diff; 7457 7458 if (test_bit(Journal, &rdev->flags)) { 7459 journal_dev = rdev; 7460 continue; 7461 } 7462 if (rdev->raid_disk < 0) 7463 continue; 7464 diff = (rdev->new_data_offset - rdev->data_offset); 7465 if (first) { 7466 min_offset_diff = diff; 7467 first = 0; 7468 } else if (mddev->reshape_backwards && 7469 diff < min_offset_diff) 7470 min_offset_diff = diff; 7471 else if (!mddev->reshape_backwards && 7472 diff > min_offset_diff) 7473 min_offset_diff = diff; 7474 } 7475 7476 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7477 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7478 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7479 mdname(mddev)); 7480 return -EINVAL; 7481 } 7482 7483 if (mddev->reshape_position != MaxSector) { 7484 /* Check that we can continue the reshape. 7485 * Difficulties arise if the stripe we would write to 7486 * next is at or after the stripe we would read from next. 7487 * For a reshape that changes the number of devices, this 7488 * is only possible for a very short time, and mdadm makes 7489 * sure that time appears to have past before assembling 7490 * the array. So we fail if that time hasn't passed. 7491 * For a reshape that keeps the number of devices the same 7492 * mdadm must be monitoring the reshape can keeping the 7493 * critical areas read-only and backed up. It will start 7494 * the array in read-only mode, so we check for that. 7495 */ 7496 sector_t here_new, here_old; 7497 int old_disks; 7498 int max_degraded = (mddev->level == 6 ? 2 : 1); 7499 int chunk_sectors; 7500 int new_data_disks; 7501 7502 if (journal_dev) { 7503 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7504 mdname(mddev)); 7505 return -EINVAL; 7506 } 7507 7508 if (mddev->new_level != mddev->level) { 7509 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7510 mdname(mddev)); 7511 return -EINVAL; 7512 } 7513 old_disks = mddev->raid_disks - mddev->delta_disks; 7514 /* reshape_position must be on a new-stripe boundary, and one 7515 * further up in new geometry must map after here in old 7516 * geometry. 7517 * If the chunk sizes are different, then as we perform reshape 7518 * in units of the largest of the two, reshape_position needs 7519 * be a multiple of the largest chunk size times new data disks. 7520 */ 7521 here_new = mddev->reshape_position; 7522 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7523 new_data_disks = mddev->raid_disks - max_degraded; 7524 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7525 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7526 mdname(mddev)); 7527 return -EINVAL; 7528 } 7529 reshape_offset = here_new * chunk_sectors; 7530 /* here_new is the stripe we will write to */ 7531 here_old = mddev->reshape_position; 7532 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7533 /* here_old is the first stripe that we might need to read 7534 * from */ 7535 if (mddev->delta_disks == 0) { 7536 /* We cannot be sure it is safe to start an in-place 7537 * reshape. It is only safe if user-space is monitoring 7538 * and taking constant backups. 7539 * mdadm always starts a situation like this in 7540 * readonly mode so it can take control before 7541 * allowing any writes. So just check for that. 7542 */ 7543 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7544 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7545 /* not really in-place - so OK */; 7546 else if (mddev->ro == 0) { 7547 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7548 mdname(mddev)); 7549 return -EINVAL; 7550 } 7551 } else if (mddev->reshape_backwards 7552 ? (here_new * chunk_sectors + min_offset_diff <= 7553 here_old * chunk_sectors) 7554 : (here_new * chunk_sectors >= 7555 here_old * chunk_sectors + (-min_offset_diff))) { 7556 /* Reading from the same stripe as writing to - bad */ 7557 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7558 mdname(mddev)); 7559 return -EINVAL; 7560 } 7561 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7562 /* OK, we should be able to continue; */ 7563 } else { 7564 BUG_ON(mddev->level != mddev->new_level); 7565 BUG_ON(mddev->layout != mddev->new_layout); 7566 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7567 BUG_ON(mddev->delta_disks != 0); 7568 } 7569 7570 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7571 test_bit(MD_HAS_PPL, &mddev->flags)) { 7572 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7573 mdname(mddev)); 7574 clear_bit(MD_HAS_PPL, &mddev->flags); 7575 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7576 } 7577 7578 if (mddev->private == NULL) 7579 conf = setup_conf(mddev); 7580 else 7581 conf = mddev->private; 7582 7583 if (IS_ERR(conf)) 7584 return PTR_ERR(conf); 7585 7586 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7587 if (!journal_dev) { 7588 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7589 mdname(mddev)); 7590 mddev->ro = 1; 7591 set_disk_ro(mddev->gendisk, 1); 7592 } else if (mddev->recovery_cp == MaxSector) 7593 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7594 } 7595 7596 conf->min_offset_diff = min_offset_diff; 7597 mddev->thread = conf->thread; 7598 conf->thread = NULL; 7599 mddev->private = conf; 7600 7601 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7602 i++) { 7603 rdev = conf->disks[i].rdev; 7604 if (!rdev && conf->disks[i].replacement) { 7605 /* The replacement is all we have yet */ 7606 rdev = conf->disks[i].replacement; 7607 conf->disks[i].replacement = NULL; 7608 clear_bit(Replacement, &rdev->flags); 7609 conf->disks[i].rdev = rdev; 7610 } 7611 if (!rdev) 7612 continue; 7613 if (conf->disks[i].replacement && 7614 conf->reshape_progress != MaxSector) { 7615 /* replacements and reshape simply do not mix. */ 7616 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7617 goto abort; 7618 } 7619 if (test_bit(In_sync, &rdev->flags)) { 7620 working_disks++; 7621 continue; 7622 } 7623 /* This disc is not fully in-sync. However if it 7624 * just stored parity (beyond the recovery_offset), 7625 * when we don't need to be concerned about the 7626 * array being dirty. 7627 * When reshape goes 'backwards', we never have 7628 * partially completed devices, so we only need 7629 * to worry about reshape going forwards. 7630 */ 7631 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7632 if (mddev->major_version == 0 && 7633 mddev->minor_version > 90) 7634 rdev->recovery_offset = reshape_offset; 7635 7636 if (rdev->recovery_offset < reshape_offset) { 7637 /* We need to check old and new layout */ 7638 if (!only_parity(rdev->raid_disk, 7639 conf->algorithm, 7640 conf->raid_disks, 7641 conf->max_degraded)) 7642 continue; 7643 } 7644 if (!only_parity(rdev->raid_disk, 7645 conf->prev_algo, 7646 conf->previous_raid_disks, 7647 conf->max_degraded)) 7648 continue; 7649 dirty_parity_disks++; 7650 } 7651 7652 /* 7653 * 0 for a fully functional array, 1 or 2 for a degraded array. 7654 */ 7655 mddev->degraded = raid5_calc_degraded(conf); 7656 7657 if (has_failed(conf)) { 7658 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7659 mdname(mddev), mddev->degraded, conf->raid_disks); 7660 goto abort; 7661 } 7662 7663 /* device size must be a multiple of chunk size */ 7664 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7665 mddev->resync_max_sectors = mddev->dev_sectors; 7666 7667 if (mddev->degraded > dirty_parity_disks && 7668 mddev->recovery_cp != MaxSector) { 7669 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7670 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7671 mdname(mddev)); 7672 else if (mddev->ok_start_degraded) 7673 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7674 mdname(mddev)); 7675 else { 7676 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7677 mdname(mddev)); 7678 goto abort; 7679 } 7680 } 7681 7682 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7683 mdname(mddev), conf->level, 7684 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7685 mddev->new_layout); 7686 7687 print_raid5_conf(conf); 7688 7689 if (conf->reshape_progress != MaxSector) { 7690 conf->reshape_safe = conf->reshape_progress; 7691 atomic_set(&conf->reshape_stripes, 0); 7692 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7693 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7694 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7695 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7696 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7697 "reshape"); 7698 if (!mddev->sync_thread) 7699 goto abort; 7700 } 7701 7702 /* Ok, everything is just fine now */ 7703 if (mddev->to_remove == &raid5_attrs_group) 7704 mddev->to_remove = NULL; 7705 else if (mddev->kobj.sd && 7706 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7707 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7708 mdname(mddev)); 7709 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7710 7711 if (mddev->queue) { 7712 int chunk_size; 7713 /* read-ahead size must cover two whole stripes, which 7714 * is 2 * (datadisks) * chunksize where 'n' is the 7715 * number of raid devices 7716 */ 7717 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7718 int stripe = data_disks * 7719 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7720 7721 chunk_size = mddev->chunk_sectors << 9; 7722 blk_queue_io_min(mddev->queue, chunk_size); 7723 raid5_set_io_opt(conf); 7724 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7725 /* 7726 * We can only discard a whole stripe. It doesn't make sense to 7727 * discard data disk but write parity disk 7728 */ 7729 stripe = stripe * PAGE_SIZE; 7730 /* Round up to power of 2, as discard handling 7731 * currently assumes that */ 7732 while ((stripe-1) & stripe) 7733 stripe = (stripe | (stripe-1)) + 1; 7734 mddev->queue->limits.discard_alignment = stripe; 7735 mddev->queue->limits.discard_granularity = stripe; 7736 7737 blk_queue_max_write_same_sectors(mddev->queue, 0); 7738 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7739 7740 rdev_for_each(rdev, mddev) { 7741 disk_stack_limits(mddev->gendisk, rdev->bdev, 7742 rdev->data_offset << 9); 7743 disk_stack_limits(mddev->gendisk, rdev->bdev, 7744 rdev->new_data_offset << 9); 7745 } 7746 7747 /* 7748 * zeroing is required, otherwise data 7749 * could be lost. Consider a scenario: discard a stripe 7750 * (the stripe could be inconsistent if 7751 * discard_zeroes_data is 0); write one disk of the 7752 * stripe (the stripe could be inconsistent again 7753 * depending on which disks are used to calculate 7754 * parity); the disk is broken; The stripe data of this 7755 * disk is lost. 7756 * 7757 * We only allow DISCARD if the sysadmin has confirmed that 7758 * only safe devices are in use by setting a module parameter. 7759 * A better idea might be to turn DISCARD into WRITE_ZEROES 7760 * requests, as that is required to be safe. 7761 */ 7762 if (devices_handle_discard_safely && 7763 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7764 mddev->queue->limits.discard_granularity >= stripe) 7765 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 7766 mddev->queue); 7767 else 7768 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 7769 mddev->queue); 7770 7771 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7772 } 7773 7774 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7775 goto abort; 7776 7777 return 0; 7778 abort: 7779 md_unregister_thread(&mddev->thread); 7780 print_raid5_conf(conf); 7781 free_conf(conf); 7782 mddev->private = NULL; 7783 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7784 return -EIO; 7785 } 7786 7787 static void raid5_free(struct mddev *mddev, void *priv) 7788 { 7789 struct r5conf *conf = priv; 7790 7791 free_conf(conf); 7792 mddev->to_remove = &raid5_attrs_group; 7793 } 7794 7795 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7796 { 7797 struct r5conf *conf = mddev->private; 7798 int i; 7799 7800 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7801 conf->chunk_sectors / 2, mddev->layout); 7802 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7803 rcu_read_lock(); 7804 for (i = 0; i < conf->raid_disks; i++) { 7805 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7806 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7807 } 7808 rcu_read_unlock(); 7809 seq_printf (seq, "]"); 7810 } 7811 7812 static void print_raid5_conf (struct r5conf *conf) 7813 { 7814 int i; 7815 struct disk_info *tmp; 7816 7817 pr_debug("RAID conf printout:\n"); 7818 if (!conf) { 7819 pr_debug("(conf==NULL)\n"); 7820 return; 7821 } 7822 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7823 conf->raid_disks, 7824 conf->raid_disks - conf->mddev->degraded); 7825 7826 for (i = 0; i < conf->raid_disks; i++) { 7827 char b[BDEVNAME_SIZE]; 7828 tmp = conf->disks + i; 7829 if (tmp->rdev) 7830 pr_debug(" disk %d, o:%d, dev:%s\n", 7831 i, !test_bit(Faulty, &tmp->rdev->flags), 7832 bdevname(tmp->rdev->bdev, b)); 7833 } 7834 } 7835 7836 static int raid5_spare_active(struct mddev *mddev) 7837 { 7838 int i; 7839 struct r5conf *conf = mddev->private; 7840 struct disk_info *tmp; 7841 int count = 0; 7842 unsigned long flags; 7843 7844 for (i = 0; i < conf->raid_disks; i++) { 7845 tmp = conf->disks + i; 7846 if (tmp->replacement 7847 && tmp->replacement->recovery_offset == MaxSector 7848 && !test_bit(Faulty, &tmp->replacement->flags) 7849 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7850 /* Replacement has just become active. */ 7851 if (!tmp->rdev 7852 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7853 count++; 7854 if (tmp->rdev) { 7855 /* Replaced device not technically faulty, 7856 * but we need to be sure it gets removed 7857 * and never re-added. 7858 */ 7859 set_bit(Faulty, &tmp->rdev->flags); 7860 sysfs_notify_dirent_safe( 7861 tmp->rdev->sysfs_state); 7862 } 7863 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7864 } else if (tmp->rdev 7865 && tmp->rdev->recovery_offset == MaxSector 7866 && !test_bit(Faulty, &tmp->rdev->flags) 7867 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7868 count++; 7869 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7870 } 7871 } 7872 spin_lock_irqsave(&conf->device_lock, flags); 7873 mddev->degraded = raid5_calc_degraded(conf); 7874 spin_unlock_irqrestore(&conf->device_lock, flags); 7875 print_raid5_conf(conf); 7876 return count; 7877 } 7878 7879 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7880 { 7881 struct r5conf *conf = mddev->private; 7882 int err = 0; 7883 int number = rdev->raid_disk; 7884 struct md_rdev **rdevp; 7885 struct disk_info *p = conf->disks + number; 7886 7887 print_raid5_conf(conf); 7888 if (test_bit(Journal, &rdev->flags) && conf->log) { 7889 /* 7890 * we can't wait pending write here, as this is called in 7891 * raid5d, wait will deadlock. 7892 * neilb: there is no locking about new writes here, 7893 * so this cannot be safe. 7894 */ 7895 if (atomic_read(&conf->active_stripes) || 7896 atomic_read(&conf->r5c_cached_full_stripes) || 7897 atomic_read(&conf->r5c_cached_partial_stripes)) { 7898 return -EBUSY; 7899 } 7900 log_exit(conf); 7901 return 0; 7902 } 7903 if (rdev == p->rdev) 7904 rdevp = &p->rdev; 7905 else if (rdev == p->replacement) 7906 rdevp = &p->replacement; 7907 else 7908 return 0; 7909 7910 if (number >= conf->raid_disks && 7911 conf->reshape_progress == MaxSector) 7912 clear_bit(In_sync, &rdev->flags); 7913 7914 if (test_bit(In_sync, &rdev->flags) || 7915 atomic_read(&rdev->nr_pending)) { 7916 err = -EBUSY; 7917 goto abort; 7918 } 7919 /* Only remove non-faulty devices if recovery 7920 * isn't possible. 7921 */ 7922 if (!test_bit(Faulty, &rdev->flags) && 7923 mddev->recovery_disabled != conf->recovery_disabled && 7924 !has_failed(conf) && 7925 (!p->replacement || p->replacement == rdev) && 7926 number < conf->raid_disks) { 7927 err = -EBUSY; 7928 goto abort; 7929 } 7930 *rdevp = NULL; 7931 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7932 synchronize_rcu(); 7933 if (atomic_read(&rdev->nr_pending)) { 7934 /* lost the race, try later */ 7935 err = -EBUSY; 7936 *rdevp = rdev; 7937 } 7938 } 7939 if (!err) { 7940 err = log_modify(conf, rdev, false); 7941 if (err) 7942 goto abort; 7943 } 7944 if (p->replacement) { 7945 /* We must have just cleared 'rdev' */ 7946 p->rdev = p->replacement; 7947 clear_bit(Replacement, &p->replacement->flags); 7948 smp_mb(); /* Make sure other CPUs may see both as identical 7949 * but will never see neither - if they are careful 7950 */ 7951 p->replacement = NULL; 7952 7953 if (!err) 7954 err = log_modify(conf, p->rdev, true); 7955 } 7956 7957 clear_bit(WantReplacement, &rdev->flags); 7958 abort: 7959 7960 print_raid5_conf(conf); 7961 return err; 7962 } 7963 7964 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7965 { 7966 struct r5conf *conf = mddev->private; 7967 int ret, err = -EEXIST; 7968 int disk; 7969 struct disk_info *p; 7970 int first = 0; 7971 int last = conf->raid_disks - 1; 7972 7973 if (test_bit(Journal, &rdev->flags)) { 7974 if (conf->log) 7975 return -EBUSY; 7976 7977 rdev->raid_disk = 0; 7978 /* 7979 * The array is in readonly mode if journal is missing, so no 7980 * write requests running. We should be safe 7981 */ 7982 ret = log_init(conf, rdev, false); 7983 if (ret) 7984 return ret; 7985 7986 ret = r5l_start(conf->log); 7987 if (ret) 7988 return ret; 7989 7990 return 0; 7991 } 7992 if (mddev->recovery_disabled == conf->recovery_disabled) 7993 return -EBUSY; 7994 7995 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7996 /* no point adding a device */ 7997 return -EINVAL; 7998 7999 if (rdev->raid_disk >= 0) 8000 first = last = rdev->raid_disk; 8001 8002 /* 8003 * find the disk ... but prefer rdev->saved_raid_disk 8004 * if possible. 8005 */ 8006 if (rdev->saved_raid_disk >= 0 && 8007 rdev->saved_raid_disk >= first && 8008 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8009 first = rdev->saved_raid_disk; 8010 8011 for (disk = first; disk <= last; disk++) { 8012 p = conf->disks + disk; 8013 if (p->rdev == NULL) { 8014 clear_bit(In_sync, &rdev->flags); 8015 rdev->raid_disk = disk; 8016 if (rdev->saved_raid_disk != disk) 8017 conf->fullsync = 1; 8018 rcu_assign_pointer(p->rdev, rdev); 8019 8020 err = log_modify(conf, rdev, true); 8021 8022 goto out; 8023 } 8024 } 8025 for (disk = first; disk <= last; disk++) { 8026 p = conf->disks + disk; 8027 if (test_bit(WantReplacement, &p->rdev->flags) && 8028 p->replacement == NULL) { 8029 clear_bit(In_sync, &rdev->flags); 8030 set_bit(Replacement, &rdev->flags); 8031 rdev->raid_disk = disk; 8032 err = 0; 8033 conf->fullsync = 1; 8034 rcu_assign_pointer(p->replacement, rdev); 8035 break; 8036 } 8037 } 8038 out: 8039 print_raid5_conf(conf); 8040 return err; 8041 } 8042 8043 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8044 { 8045 /* no resync is happening, and there is enough space 8046 * on all devices, so we can resize. 8047 * We need to make sure resync covers any new space. 8048 * If the array is shrinking we should possibly wait until 8049 * any io in the removed space completes, but it hardly seems 8050 * worth it. 8051 */ 8052 sector_t newsize; 8053 struct r5conf *conf = mddev->private; 8054 8055 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8056 return -EINVAL; 8057 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8058 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8059 if (mddev->external_size && 8060 mddev->array_sectors > newsize) 8061 return -EINVAL; 8062 if (mddev->bitmap) { 8063 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8064 if (ret) 8065 return ret; 8066 } 8067 md_set_array_sectors(mddev, newsize); 8068 if (sectors > mddev->dev_sectors && 8069 mddev->recovery_cp > mddev->dev_sectors) { 8070 mddev->recovery_cp = mddev->dev_sectors; 8071 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8072 } 8073 mddev->dev_sectors = sectors; 8074 mddev->resync_max_sectors = sectors; 8075 return 0; 8076 } 8077 8078 static int check_stripe_cache(struct mddev *mddev) 8079 { 8080 /* Can only proceed if there are plenty of stripe_heads. 8081 * We need a minimum of one full stripe,, and for sensible progress 8082 * it is best to have about 4 times that. 8083 * If we require 4 times, then the default 256 4K stripe_heads will 8084 * allow for chunk sizes up to 256K, which is probably OK. 8085 * If the chunk size is greater, user-space should request more 8086 * stripe_heads first. 8087 */ 8088 struct r5conf *conf = mddev->private; 8089 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8090 > conf->min_nr_stripes || 8091 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8092 > conf->min_nr_stripes) { 8093 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8094 mdname(mddev), 8095 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8096 / RAID5_STRIPE_SIZE(conf))*4); 8097 return 0; 8098 } 8099 return 1; 8100 } 8101 8102 static int check_reshape(struct mddev *mddev) 8103 { 8104 struct r5conf *conf = mddev->private; 8105 8106 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8107 return -EINVAL; 8108 if (mddev->delta_disks == 0 && 8109 mddev->new_layout == mddev->layout && 8110 mddev->new_chunk_sectors == mddev->chunk_sectors) 8111 return 0; /* nothing to do */ 8112 if (has_failed(conf)) 8113 return -EINVAL; 8114 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8115 /* We might be able to shrink, but the devices must 8116 * be made bigger first. 8117 * For raid6, 4 is the minimum size. 8118 * Otherwise 2 is the minimum 8119 */ 8120 int min = 2; 8121 if (mddev->level == 6) 8122 min = 4; 8123 if (mddev->raid_disks + mddev->delta_disks < min) 8124 return -EINVAL; 8125 } 8126 8127 if (!check_stripe_cache(mddev)) 8128 return -ENOSPC; 8129 8130 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8131 mddev->delta_disks > 0) 8132 if (resize_chunks(conf, 8133 conf->previous_raid_disks 8134 + max(0, mddev->delta_disks), 8135 max(mddev->new_chunk_sectors, 8136 mddev->chunk_sectors) 8137 ) < 0) 8138 return -ENOMEM; 8139 8140 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8141 return 0; /* never bother to shrink */ 8142 return resize_stripes(conf, (conf->previous_raid_disks 8143 + mddev->delta_disks)); 8144 } 8145 8146 static int raid5_start_reshape(struct mddev *mddev) 8147 { 8148 struct r5conf *conf = mddev->private; 8149 struct md_rdev *rdev; 8150 int spares = 0; 8151 unsigned long flags; 8152 8153 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8154 return -EBUSY; 8155 8156 if (!check_stripe_cache(mddev)) 8157 return -ENOSPC; 8158 8159 if (has_failed(conf)) 8160 return -EINVAL; 8161 8162 rdev_for_each(rdev, mddev) { 8163 if (!test_bit(In_sync, &rdev->flags) 8164 && !test_bit(Faulty, &rdev->flags)) 8165 spares++; 8166 } 8167 8168 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8169 /* Not enough devices even to make a degraded array 8170 * of that size 8171 */ 8172 return -EINVAL; 8173 8174 /* Refuse to reduce size of the array. Any reductions in 8175 * array size must be through explicit setting of array_size 8176 * attribute. 8177 */ 8178 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8179 < mddev->array_sectors) { 8180 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8181 mdname(mddev)); 8182 return -EINVAL; 8183 } 8184 8185 atomic_set(&conf->reshape_stripes, 0); 8186 spin_lock_irq(&conf->device_lock); 8187 write_seqcount_begin(&conf->gen_lock); 8188 conf->previous_raid_disks = conf->raid_disks; 8189 conf->raid_disks += mddev->delta_disks; 8190 conf->prev_chunk_sectors = conf->chunk_sectors; 8191 conf->chunk_sectors = mddev->new_chunk_sectors; 8192 conf->prev_algo = conf->algorithm; 8193 conf->algorithm = mddev->new_layout; 8194 conf->generation++; 8195 /* Code that selects data_offset needs to see the generation update 8196 * if reshape_progress has been set - so a memory barrier needed. 8197 */ 8198 smp_mb(); 8199 if (mddev->reshape_backwards) 8200 conf->reshape_progress = raid5_size(mddev, 0, 0); 8201 else 8202 conf->reshape_progress = 0; 8203 conf->reshape_safe = conf->reshape_progress; 8204 write_seqcount_end(&conf->gen_lock); 8205 spin_unlock_irq(&conf->device_lock); 8206 8207 /* Now make sure any requests that proceeded on the assumption 8208 * the reshape wasn't running - like Discard or Read - have 8209 * completed. 8210 */ 8211 mddev_suspend(mddev); 8212 mddev_resume(mddev); 8213 8214 /* Add some new drives, as many as will fit. 8215 * We know there are enough to make the newly sized array work. 8216 * Don't add devices if we are reducing the number of 8217 * devices in the array. This is because it is not possible 8218 * to correctly record the "partially reconstructed" state of 8219 * such devices during the reshape and confusion could result. 8220 */ 8221 if (mddev->delta_disks >= 0) { 8222 rdev_for_each(rdev, mddev) 8223 if (rdev->raid_disk < 0 && 8224 !test_bit(Faulty, &rdev->flags)) { 8225 if (raid5_add_disk(mddev, rdev) == 0) { 8226 if (rdev->raid_disk 8227 >= conf->previous_raid_disks) 8228 set_bit(In_sync, &rdev->flags); 8229 else 8230 rdev->recovery_offset = 0; 8231 8232 /* Failure here is OK */ 8233 sysfs_link_rdev(mddev, rdev); 8234 } 8235 } else if (rdev->raid_disk >= conf->previous_raid_disks 8236 && !test_bit(Faulty, &rdev->flags)) { 8237 /* This is a spare that was manually added */ 8238 set_bit(In_sync, &rdev->flags); 8239 } 8240 8241 /* When a reshape changes the number of devices, 8242 * ->degraded is measured against the larger of the 8243 * pre and post number of devices. 8244 */ 8245 spin_lock_irqsave(&conf->device_lock, flags); 8246 mddev->degraded = raid5_calc_degraded(conf); 8247 spin_unlock_irqrestore(&conf->device_lock, flags); 8248 } 8249 mddev->raid_disks = conf->raid_disks; 8250 mddev->reshape_position = conf->reshape_progress; 8251 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8252 8253 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8254 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8255 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8256 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8257 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8258 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 8259 "reshape"); 8260 if (!mddev->sync_thread) { 8261 mddev->recovery = 0; 8262 spin_lock_irq(&conf->device_lock); 8263 write_seqcount_begin(&conf->gen_lock); 8264 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8265 mddev->new_chunk_sectors = 8266 conf->chunk_sectors = conf->prev_chunk_sectors; 8267 mddev->new_layout = conf->algorithm = conf->prev_algo; 8268 rdev_for_each(rdev, mddev) 8269 rdev->new_data_offset = rdev->data_offset; 8270 smp_wmb(); 8271 conf->generation --; 8272 conf->reshape_progress = MaxSector; 8273 mddev->reshape_position = MaxSector; 8274 write_seqcount_end(&conf->gen_lock); 8275 spin_unlock_irq(&conf->device_lock); 8276 return -EAGAIN; 8277 } 8278 conf->reshape_checkpoint = jiffies; 8279 md_wakeup_thread(mddev->sync_thread); 8280 md_new_event(mddev); 8281 return 0; 8282 } 8283 8284 /* This is called from the reshape thread and should make any 8285 * changes needed in 'conf' 8286 */ 8287 static void end_reshape(struct r5conf *conf) 8288 { 8289 8290 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8291 struct md_rdev *rdev; 8292 8293 spin_lock_irq(&conf->device_lock); 8294 conf->previous_raid_disks = conf->raid_disks; 8295 md_finish_reshape(conf->mddev); 8296 smp_wmb(); 8297 conf->reshape_progress = MaxSector; 8298 conf->mddev->reshape_position = MaxSector; 8299 rdev_for_each(rdev, conf->mddev) 8300 if (rdev->raid_disk >= 0 && 8301 !test_bit(Journal, &rdev->flags) && 8302 !test_bit(In_sync, &rdev->flags)) 8303 rdev->recovery_offset = MaxSector; 8304 spin_unlock_irq(&conf->device_lock); 8305 wake_up(&conf->wait_for_overlap); 8306 8307 if (conf->mddev->queue) 8308 raid5_set_io_opt(conf); 8309 } 8310 } 8311 8312 /* This is called from the raid5d thread with mddev_lock held. 8313 * It makes config changes to the device. 8314 */ 8315 static void raid5_finish_reshape(struct mddev *mddev) 8316 { 8317 struct r5conf *conf = mddev->private; 8318 8319 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8320 8321 if (mddev->delta_disks <= 0) { 8322 int d; 8323 spin_lock_irq(&conf->device_lock); 8324 mddev->degraded = raid5_calc_degraded(conf); 8325 spin_unlock_irq(&conf->device_lock); 8326 for (d = conf->raid_disks ; 8327 d < conf->raid_disks - mddev->delta_disks; 8328 d++) { 8329 struct md_rdev *rdev = conf->disks[d].rdev; 8330 if (rdev) 8331 clear_bit(In_sync, &rdev->flags); 8332 rdev = conf->disks[d].replacement; 8333 if (rdev) 8334 clear_bit(In_sync, &rdev->flags); 8335 } 8336 } 8337 mddev->layout = conf->algorithm; 8338 mddev->chunk_sectors = conf->chunk_sectors; 8339 mddev->reshape_position = MaxSector; 8340 mddev->delta_disks = 0; 8341 mddev->reshape_backwards = 0; 8342 } 8343 } 8344 8345 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8346 { 8347 struct r5conf *conf = mddev->private; 8348 8349 if (quiesce) { 8350 /* stop all writes */ 8351 lock_all_device_hash_locks_irq(conf); 8352 /* '2' tells resync/reshape to pause so that all 8353 * active stripes can drain 8354 */ 8355 r5c_flush_cache(conf, INT_MAX); 8356 conf->quiesce = 2; 8357 wait_event_cmd(conf->wait_for_quiescent, 8358 atomic_read(&conf->active_stripes) == 0 && 8359 atomic_read(&conf->active_aligned_reads) == 0, 8360 unlock_all_device_hash_locks_irq(conf), 8361 lock_all_device_hash_locks_irq(conf)); 8362 conf->quiesce = 1; 8363 unlock_all_device_hash_locks_irq(conf); 8364 /* allow reshape to continue */ 8365 wake_up(&conf->wait_for_overlap); 8366 } else { 8367 /* re-enable writes */ 8368 lock_all_device_hash_locks_irq(conf); 8369 conf->quiesce = 0; 8370 wake_up(&conf->wait_for_quiescent); 8371 wake_up(&conf->wait_for_overlap); 8372 unlock_all_device_hash_locks_irq(conf); 8373 } 8374 log_quiesce(conf, quiesce); 8375 } 8376 8377 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8378 { 8379 struct r0conf *raid0_conf = mddev->private; 8380 sector_t sectors; 8381 8382 /* for raid0 takeover only one zone is supported */ 8383 if (raid0_conf->nr_strip_zones > 1) { 8384 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8385 mdname(mddev)); 8386 return ERR_PTR(-EINVAL); 8387 } 8388 8389 sectors = raid0_conf->strip_zone[0].zone_end; 8390 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8391 mddev->dev_sectors = sectors; 8392 mddev->new_level = level; 8393 mddev->new_layout = ALGORITHM_PARITY_N; 8394 mddev->new_chunk_sectors = mddev->chunk_sectors; 8395 mddev->raid_disks += 1; 8396 mddev->delta_disks = 1; 8397 /* make sure it will be not marked as dirty */ 8398 mddev->recovery_cp = MaxSector; 8399 8400 return setup_conf(mddev); 8401 } 8402 8403 static void *raid5_takeover_raid1(struct mddev *mddev) 8404 { 8405 int chunksect; 8406 void *ret; 8407 8408 if (mddev->raid_disks != 2 || 8409 mddev->degraded > 1) 8410 return ERR_PTR(-EINVAL); 8411 8412 /* Should check if there are write-behind devices? */ 8413 8414 chunksect = 64*2; /* 64K by default */ 8415 8416 /* The array must be an exact multiple of chunksize */ 8417 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8418 chunksect >>= 1; 8419 8420 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8421 /* array size does not allow a suitable chunk size */ 8422 return ERR_PTR(-EINVAL); 8423 8424 mddev->new_level = 5; 8425 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8426 mddev->new_chunk_sectors = chunksect; 8427 8428 ret = setup_conf(mddev); 8429 if (!IS_ERR(ret)) 8430 mddev_clear_unsupported_flags(mddev, 8431 UNSUPPORTED_MDDEV_FLAGS); 8432 return ret; 8433 } 8434 8435 static void *raid5_takeover_raid6(struct mddev *mddev) 8436 { 8437 int new_layout; 8438 8439 switch (mddev->layout) { 8440 case ALGORITHM_LEFT_ASYMMETRIC_6: 8441 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8442 break; 8443 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8444 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8445 break; 8446 case ALGORITHM_LEFT_SYMMETRIC_6: 8447 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8448 break; 8449 case ALGORITHM_RIGHT_SYMMETRIC_6: 8450 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8451 break; 8452 case ALGORITHM_PARITY_0_6: 8453 new_layout = ALGORITHM_PARITY_0; 8454 break; 8455 case ALGORITHM_PARITY_N: 8456 new_layout = ALGORITHM_PARITY_N; 8457 break; 8458 default: 8459 return ERR_PTR(-EINVAL); 8460 } 8461 mddev->new_level = 5; 8462 mddev->new_layout = new_layout; 8463 mddev->delta_disks = -1; 8464 mddev->raid_disks -= 1; 8465 return setup_conf(mddev); 8466 } 8467 8468 static int raid5_check_reshape(struct mddev *mddev) 8469 { 8470 /* For a 2-drive array, the layout and chunk size can be changed 8471 * immediately as not restriping is needed. 8472 * For larger arrays we record the new value - after validation 8473 * to be used by a reshape pass. 8474 */ 8475 struct r5conf *conf = mddev->private; 8476 int new_chunk = mddev->new_chunk_sectors; 8477 8478 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8479 return -EINVAL; 8480 if (new_chunk > 0) { 8481 if (!is_power_of_2(new_chunk)) 8482 return -EINVAL; 8483 if (new_chunk < (PAGE_SIZE>>9)) 8484 return -EINVAL; 8485 if (mddev->array_sectors & (new_chunk-1)) 8486 /* not factor of array size */ 8487 return -EINVAL; 8488 } 8489 8490 /* They look valid */ 8491 8492 if (mddev->raid_disks == 2) { 8493 /* can make the change immediately */ 8494 if (mddev->new_layout >= 0) { 8495 conf->algorithm = mddev->new_layout; 8496 mddev->layout = mddev->new_layout; 8497 } 8498 if (new_chunk > 0) { 8499 conf->chunk_sectors = new_chunk ; 8500 mddev->chunk_sectors = new_chunk; 8501 } 8502 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8503 md_wakeup_thread(mddev->thread); 8504 } 8505 return check_reshape(mddev); 8506 } 8507 8508 static int raid6_check_reshape(struct mddev *mddev) 8509 { 8510 int new_chunk = mddev->new_chunk_sectors; 8511 8512 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8513 return -EINVAL; 8514 if (new_chunk > 0) { 8515 if (!is_power_of_2(new_chunk)) 8516 return -EINVAL; 8517 if (new_chunk < (PAGE_SIZE >> 9)) 8518 return -EINVAL; 8519 if (mddev->array_sectors & (new_chunk-1)) 8520 /* not factor of array size */ 8521 return -EINVAL; 8522 } 8523 8524 /* They look valid */ 8525 return check_reshape(mddev); 8526 } 8527 8528 static void *raid5_takeover(struct mddev *mddev) 8529 { 8530 /* raid5 can take over: 8531 * raid0 - if there is only one strip zone - make it a raid4 layout 8532 * raid1 - if there are two drives. We need to know the chunk size 8533 * raid4 - trivial - just use a raid4 layout. 8534 * raid6 - Providing it is a *_6 layout 8535 */ 8536 if (mddev->level == 0) 8537 return raid45_takeover_raid0(mddev, 5); 8538 if (mddev->level == 1) 8539 return raid5_takeover_raid1(mddev); 8540 if (mddev->level == 4) { 8541 mddev->new_layout = ALGORITHM_PARITY_N; 8542 mddev->new_level = 5; 8543 return setup_conf(mddev); 8544 } 8545 if (mddev->level == 6) 8546 return raid5_takeover_raid6(mddev); 8547 8548 return ERR_PTR(-EINVAL); 8549 } 8550 8551 static void *raid4_takeover(struct mddev *mddev) 8552 { 8553 /* raid4 can take over: 8554 * raid0 - if there is only one strip zone 8555 * raid5 - if layout is right 8556 */ 8557 if (mddev->level == 0) 8558 return raid45_takeover_raid0(mddev, 4); 8559 if (mddev->level == 5 && 8560 mddev->layout == ALGORITHM_PARITY_N) { 8561 mddev->new_layout = 0; 8562 mddev->new_level = 4; 8563 return setup_conf(mddev); 8564 } 8565 return ERR_PTR(-EINVAL); 8566 } 8567 8568 static struct md_personality raid5_personality; 8569 8570 static void *raid6_takeover(struct mddev *mddev) 8571 { 8572 /* Currently can only take over a raid5. We map the 8573 * personality to an equivalent raid6 personality 8574 * with the Q block at the end. 8575 */ 8576 int new_layout; 8577 8578 if (mddev->pers != &raid5_personality) 8579 return ERR_PTR(-EINVAL); 8580 if (mddev->degraded > 1) 8581 return ERR_PTR(-EINVAL); 8582 if (mddev->raid_disks > 253) 8583 return ERR_PTR(-EINVAL); 8584 if (mddev->raid_disks < 3) 8585 return ERR_PTR(-EINVAL); 8586 8587 switch (mddev->layout) { 8588 case ALGORITHM_LEFT_ASYMMETRIC: 8589 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8590 break; 8591 case ALGORITHM_RIGHT_ASYMMETRIC: 8592 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8593 break; 8594 case ALGORITHM_LEFT_SYMMETRIC: 8595 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8596 break; 8597 case ALGORITHM_RIGHT_SYMMETRIC: 8598 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8599 break; 8600 case ALGORITHM_PARITY_0: 8601 new_layout = ALGORITHM_PARITY_0_6; 8602 break; 8603 case ALGORITHM_PARITY_N: 8604 new_layout = ALGORITHM_PARITY_N; 8605 break; 8606 default: 8607 return ERR_PTR(-EINVAL); 8608 } 8609 mddev->new_level = 6; 8610 mddev->new_layout = new_layout; 8611 mddev->delta_disks = 1; 8612 mddev->raid_disks += 1; 8613 return setup_conf(mddev); 8614 } 8615 8616 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8617 { 8618 struct r5conf *conf; 8619 int err; 8620 8621 err = mddev_lock(mddev); 8622 if (err) 8623 return err; 8624 conf = mddev->private; 8625 if (!conf) { 8626 mddev_unlock(mddev); 8627 return -ENODEV; 8628 } 8629 8630 if (strncmp(buf, "ppl", 3) == 0) { 8631 /* ppl only works with RAID 5 */ 8632 if (!raid5_has_ppl(conf) && conf->level == 5) { 8633 err = log_init(conf, NULL, true); 8634 if (!err) { 8635 err = resize_stripes(conf, conf->pool_size); 8636 if (err) 8637 log_exit(conf); 8638 } 8639 } else 8640 err = -EINVAL; 8641 } else if (strncmp(buf, "resync", 6) == 0) { 8642 if (raid5_has_ppl(conf)) { 8643 mddev_suspend(mddev); 8644 log_exit(conf); 8645 mddev_resume(mddev); 8646 err = resize_stripes(conf, conf->pool_size); 8647 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8648 r5l_log_disk_error(conf)) { 8649 bool journal_dev_exists = false; 8650 struct md_rdev *rdev; 8651 8652 rdev_for_each(rdev, mddev) 8653 if (test_bit(Journal, &rdev->flags)) { 8654 journal_dev_exists = true; 8655 break; 8656 } 8657 8658 if (!journal_dev_exists) { 8659 mddev_suspend(mddev); 8660 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8661 mddev_resume(mddev); 8662 } else /* need remove journal device first */ 8663 err = -EBUSY; 8664 } else 8665 err = -EINVAL; 8666 } else { 8667 err = -EINVAL; 8668 } 8669 8670 if (!err) 8671 md_update_sb(mddev, 1); 8672 8673 mddev_unlock(mddev); 8674 8675 return err; 8676 } 8677 8678 static int raid5_start(struct mddev *mddev) 8679 { 8680 struct r5conf *conf = mddev->private; 8681 8682 return r5l_start(conf->log); 8683 } 8684 8685 static struct md_personality raid6_personality = 8686 { 8687 .name = "raid6", 8688 .level = 6, 8689 .owner = THIS_MODULE, 8690 .make_request = raid5_make_request, 8691 .run = raid5_run, 8692 .start = raid5_start, 8693 .free = raid5_free, 8694 .status = raid5_status, 8695 .error_handler = raid5_error, 8696 .hot_add_disk = raid5_add_disk, 8697 .hot_remove_disk= raid5_remove_disk, 8698 .spare_active = raid5_spare_active, 8699 .sync_request = raid5_sync_request, 8700 .resize = raid5_resize, 8701 .size = raid5_size, 8702 .check_reshape = raid6_check_reshape, 8703 .start_reshape = raid5_start_reshape, 8704 .finish_reshape = raid5_finish_reshape, 8705 .quiesce = raid5_quiesce, 8706 .takeover = raid6_takeover, 8707 .change_consistency_policy = raid5_change_consistency_policy, 8708 }; 8709 static struct md_personality raid5_personality = 8710 { 8711 .name = "raid5", 8712 .level = 5, 8713 .owner = THIS_MODULE, 8714 .make_request = raid5_make_request, 8715 .run = raid5_run, 8716 .start = raid5_start, 8717 .free = raid5_free, 8718 .status = raid5_status, 8719 .error_handler = raid5_error, 8720 .hot_add_disk = raid5_add_disk, 8721 .hot_remove_disk= raid5_remove_disk, 8722 .spare_active = raid5_spare_active, 8723 .sync_request = raid5_sync_request, 8724 .resize = raid5_resize, 8725 .size = raid5_size, 8726 .check_reshape = raid5_check_reshape, 8727 .start_reshape = raid5_start_reshape, 8728 .finish_reshape = raid5_finish_reshape, 8729 .quiesce = raid5_quiesce, 8730 .takeover = raid5_takeover, 8731 .change_consistency_policy = raid5_change_consistency_policy, 8732 }; 8733 8734 static struct md_personality raid4_personality = 8735 { 8736 .name = "raid4", 8737 .level = 4, 8738 .owner = THIS_MODULE, 8739 .make_request = raid5_make_request, 8740 .run = raid5_run, 8741 .start = raid5_start, 8742 .free = raid5_free, 8743 .status = raid5_status, 8744 .error_handler = raid5_error, 8745 .hot_add_disk = raid5_add_disk, 8746 .hot_remove_disk= raid5_remove_disk, 8747 .spare_active = raid5_spare_active, 8748 .sync_request = raid5_sync_request, 8749 .resize = raid5_resize, 8750 .size = raid5_size, 8751 .check_reshape = raid5_check_reshape, 8752 .start_reshape = raid5_start_reshape, 8753 .finish_reshape = raid5_finish_reshape, 8754 .quiesce = raid5_quiesce, 8755 .takeover = raid4_takeover, 8756 .change_consistency_policy = raid5_change_consistency_policy, 8757 }; 8758 8759 static int __init raid5_init(void) 8760 { 8761 int ret; 8762 8763 raid5_wq = alloc_workqueue("raid5wq", 8764 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8765 if (!raid5_wq) 8766 return -ENOMEM; 8767 8768 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8769 "md/raid5:prepare", 8770 raid456_cpu_up_prepare, 8771 raid456_cpu_dead); 8772 if (ret) { 8773 destroy_workqueue(raid5_wq); 8774 return ret; 8775 } 8776 register_md_personality(&raid6_personality); 8777 register_md_personality(&raid5_personality); 8778 register_md_personality(&raid4_personality); 8779 return 0; 8780 } 8781 8782 static void raid5_exit(void) 8783 { 8784 unregister_md_personality(&raid6_personality); 8785 unregister_md_personality(&raid5_personality); 8786 unregister_md_personality(&raid4_personality); 8787 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8788 destroy_workqueue(raid5_wq); 8789 } 8790 8791 module_init(raid5_init); 8792 module_exit(raid5_exit); 8793 MODULE_LICENSE("GPL"); 8794 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8795 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8796 MODULE_ALIAS("md-raid5"); 8797 MODULE_ALIAS("md-raid4"); 8798 MODULE_ALIAS("md-level-5"); 8799 MODULE_ALIAS("md-level-4"); 8800 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8801 MODULE_ALIAS("md-raid6"); 8802 MODULE_ALIAS("md-level-6"); 8803 8804 /* This used to be two separate modules, they were: */ 8805 MODULE_ALIAS("raid5"); 8806 MODULE_ALIAS("raid6"); 8807