xref: /openbmc/linux/drivers/md/raid5.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57 
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62 
63 /*
64  * Stripe cache
65  */
66 
67 #define NR_STRIPES		256
68 #define STRIPE_SIZE		PAGE_SIZE
69 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
71 #define	IO_THRESHOLD		1
72 #define BYPASS_THRESHOLD	1
73 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK		(NR_HASH - 1)
75 
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 	return &conf->stripe_hashtbl[hash];
80 }
81 
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83  * order without overlap.  There may be several bio's per stripe+device, and
84  * a bio could span several devices.
85  * When walking this list for a particular stripe+device, we must never proceed
86  * beyond a bio that extends past this device, as the next bio might no longer
87  * be valid.
88  * This function is used to determine the 'next' bio in the list, given the sector
89  * of the current stripe+device
90  */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93 	int sectors = bio->bi_size >> 9;
94 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 		return bio->bi_next;
96 	else
97 		return NULL;
98 }
99 
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 	return (atomic_read(segments) >> 16) & 0xffff;
108 }
109 
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 	return atomic_sub_return(1, segments) & 0xffff;
114 }
115 
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 	atomic_inc(segments);
120 }
121 
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 	unsigned int cnt)
124 {
125 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 	int old, new;
127 
128 	do {
129 		old = atomic_read(segments);
130 		new = (old & 0xffff) | (cnt << 16);
131 	} while (atomic_cmpxchg(segments, old, new) != old);
132 }
133 
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 	atomic_set(segments, cnt);
138 }
139 
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143 	if (sh->ddf_layout)
144 		/* ddf always start from first device */
145 		return 0;
146 	/* md starts just after Q block */
147 	if (sh->qd_idx == sh->disks - 1)
148 		return 0;
149 	else
150 		return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154 	disk++;
155 	return (disk < raid_disks) ? disk : 0;
156 }
157 
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159  * We need to map each disk to a 'slot', where the data disks are slot
160  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161  * is raid_disks-1.  This help does that mapping.
162  */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 			     int *count, int syndrome_disks)
165 {
166 	int slot = *count;
167 
168 	if (sh->ddf_layout)
169 		(*count)++;
170 	if (idx == sh->pd_idx)
171 		return syndrome_disks;
172 	if (idx == sh->qd_idx)
173 		return syndrome_disks + 1;
174 	if (!sh->ddf_layout)
175 		(*count)++;
176 	return slot;
177 }
178 
179 static void return_io(struct bio *return_bi)
180 {
181 	struct bio *bi = return_bi;
182 	while (bi) {
183 
184 		return_bi = bi->bi_next;
185 		bi->bi_next = NULL;
186 		bi->bi_size = 0;
187 		bio_endio(bi, 0);
188 		bi = return_bi;
189 	}
190 }
191 
192 static void print_raid5_conf (struct r5conf *conf);
193 
194 static int stripe_operations_active(struct stripe_head *sh)
195 {
196 	return sh->check_state || sh->reconstruct_state ||
197 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
198 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
199 }
200 
201 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
202 {
203 	BUG_ON(!list_empty(&sh->lru));
204 	BUG_ON(atomic_read(&conf->active_stripes)==0);
205 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
206 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
207 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
208 			list_add_tail(&sh->lru, &conf->delayed_list);
209 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
210 			   sh->bm_seq - conf->seq_write > 0)
211 			list_add_tail(&sh->lru, &conf->bitmap_list);
212 		else {
213 			clear_bit(STRIPE_DELAYED, &sh->state);
214 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
215 			list_add_tail(&sh->lru, &conf->handle_list);
216 		}
217 		md_wakeup_thread(conf->mddev->thread);
218 	} else {
219 		BUG_ON(stripe_operations_active(sh));
220 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
221 			if (atomic_dec_return(&conf->preread_active_stripes)
222 			    < IO_THRESHOLD)
223 				md_wakeup_thread(conf->mddev->thread);
224 		atomic_dec(&conf->active_stripes);
225 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
226 			list_add_tail(&sh->lru, &conf->inactive_list);
227 			wake_up(&conf->wait_for_stripe);
228 			if (conf->retry_read_aligned)
229 				md_wakeup_thread(conf->mddev->thread);
230 		}
231 	}
232 }
233 
234 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
235 {
236 	if (atomic_dec_and_test(&sh->count))
237 		do_release_stripe(conf, sh);
238 }
239 
240 static void release_stripe(struct stripe_head *sh)
241 {
242 	struct r5conf *conf = sh->raid_conf;
243 	unsigned long flags;
244 
245 	local_irq_save(flags);
246 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
247 		do_release_stripe(conf, sh);
248 		spin_unlock(&conf->device_lock);
249 	}
250 	local_irq_restore(flags);
251 }
252 
253 static inline void remove_hash(struct stripe_head *sh)
254 {
255 	pr_debug("remove_hash(), stripe %llu\n",
256 		(unsigned long long)sh->sector);
257 
258 	hlist_del_init(&sh->hash);
259 }
260 
261 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
262 {
263 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
264 
265 	pr_debug("insert_hash(), stripe %llu\n",
266 		(unsigned long long)sh->sector);
267 
268 	hlist_add_head(&sh->hash, hp);
269 }
270 
271 
272 /* find an idle stripe, make sure it is unhashed, and return it. */
273 static struct stripe_head *get_free_stripe(struct r5conf *conf)
274 {
275 	struct stripe_head *sh = NULL;
276 	struct list_head *first;
277 
278 	if (list_empty(&conf->inactive_list))
279 		goto out;
280 	first = conf->inactive_list.next;
281 	sh = list_entry(first, struct stripe_head, lru);
282 	list_del_init(first);
283 	remove_hash(sh);
284 	atomic_inc(&conf->active_stripes);
285 out:
286 	return sh;
287 }
288 
289 static void shrink_buffers(struct stripe_head *sh)
290 {
291 	struct page *p;
292 	int i;
293 	int num = sh->raid_conf->pool_size;
294 
295 	for (i = 0; i < num ; i++) {
296 		p = sh->dev[i].page;
297 		if (!p)
298 			continue;
299 		sh->dev[i].page = NULL;
300 		put_page(p);
301 	}
302 }
303 
304 static int grow_buffers(struct stripe_head *sh)
305 {
306 	int i;
307 	int num = sh->raid_conf->pool_size;
308 
309 	for (i = 0; i < num; i++) {
310 		struct page *page;
311 
312 		if (!(page = alloc_page(GFP_KERNEL))) {
313 			return 1;
314 		}
315 		sh->dev[i].page = page;
316 	}
317 	return 0;
318 }
319 
320 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
322 			    struct stripe_head *sh);
323 
324 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
325 {
326 	struct r5conf *conf = sh->raid_conf;
327 	int i;
328 
329 	BUG_ON(atomic_read(&sh->count) != 0);
330 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
331 	BUG_ON(stripe_operations_active(sh));
332 
333 	pr_debug("init_stripe called, stripe %llu\n",
334 		(unsigned long long)sh->sector);
335 
336 	remove_hash(sh);
337 
338 	sh->generation = conf->generation - previous;
339 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
340 	sh->sector = sector;
341 	stripe_set_idx(sector, conf, previous, sh);
342 	sh->state = 0;
343 
344 
345 	for (i = sh->disks; i--; ) {
346 		struct r5dev *dev = &sh->dev[i];
347 
348 		if (dev->toread || dev->read || dev->towrite || dev->written ||
349 		    test_bit(R5_LOCKED, &dev->flags)) {
350 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
351 			       (unsigned long long)sh->sector, i, dev->toread,
352 			       dev->read, dev->towrite, dev->written,
353 			       test_bit(R5_LOCKED, &dev->flags));
354 			WARN_ON(1);
355 		}
356 		dev->flags = 0;
357 		raid5_build_block(sh, i, previous);
358 	}
359 	insert_hash(conf, sh);
360 }
361 
362 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
363 					 short generation)
364 {
365 	struct stripe_head *sh;
366 
367 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
368 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
369 		if (sh->sector == sector && sh->generation == generation)
370 			return sh;
371 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
372 	return NULL;
373 }
374 
375 /*
376  * Need to check if array has failed when deciding whether to:
377  *  - start an array
378  *  - remove non-faulty devices
379  *  - add a spare
380  *  - allow a reshape
381  * This determination is simple when no reshape is happening.
382  * However if there is a reshape, we need to carefully check
383  * both the before and after sections.
384  * This is because some failed devices may only affect one
385  * of the two sections, and some non-in_sync devices may
386  * be insync in the section most affected by failed devices.
387  */
388 static int calc_degraded(struct r5conf *conf)
389 {
390 	int degraded, degraded2;
391 	int i;
392 
393 	rcu_read_lock();
394 	degraded = 0;
395 	for (i = 0; i < conf->previous_raid_disks; i++) {
396 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
397 		if (rdev && test_bit(Faulty, &rdev->flags))
398 			rdev = rcu_dereference(conf->disks[i].replacement);
399 		if (!rdev || test_bit(Faulty, &rdev->flags))
400 			degraded++;
401 		else if (test_bit(In_sync, &rdev->flags))
402 			;
403 		else
404 			/* not in-sync or faulty.
405 			 * If the reshape increases the number of devices,
406 			 * this is being recovered by the reshape, so
407 			 * this 'previous' section is not in_sync.
408 			 * If the number of devices is being reduced however,
409 			 * the device can only be part of the array if
410 			 * we are reverting a reshape, so this section will
411 			 * be in-sync.
412 			 */
413 			if (conf->raid_disks >= conf->previous_raid_disks)
414 				degraded++;
415 	}
416 	rcu_read_unlock();
417 	if (conf->raid_disks == conf->previous_raid_disks)
418 		return degraded;
419 	rcu_read_lock();
420 	degraded2 = 0;
421 	for (i = 0; i < conf->raid_disks; i++) {
422 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
423 		if (rdev && test_bit(Faulty, &rdev->flags))
424 			rdev = rcu_dereference(conf->disks[i].replacement);
425 		if (!rdev || test_bit(Faulty, &rdev->flags))
426 			degraded2++;
427 		else if (test_bit(In_sync, &rdev->flags))
428 			;
429 		else
430 			/* not in-sync or faulty.
431 			 * If reshape increases the number of devices, this
432 			 * section has already been recovered, else it
433 			 * almost certainly hasn't.
434 			 */
435 			if (conf->raid_disks <= conf->previous_raid_disks)
436 				degraded2++;
437 	}
438 	rcu_read_unlock();
439 	if (degraded2 > degraded)
440 		return degraded2;
441 	return degraded;
442 }
443 
444 static int has_failed(struct r5conf *conf)
445 {
446 	int degraded;
447 
448 	if (conf->mddev->reshape_position == MaxSector)
449 		return conf->mddev->degraded > conf->max_degraded;
450 
451 	degraded = calc_degraded(conf);
452 	if (degraded > conf->max_degraded)
453 		return 1;
454 	return 0;
455 }
456 
457 static struct stripe_head *
458 get_active_stripe(struct r5conf *conf, sector_t sector,
459 		  int previous, int noblock, int noquiesce)
460 {
461 	struct stripe_head *sh;
462 
463 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
464 
465 	spin_lock_irq(&conf->device_lock);
466 
467 	do {
468 		wait_event_lock_irq(conf->wait_for_stripe,
469 				    conf->quiesce == 0 || noquiesce,
470 				    conf->device_lock);
471 		sh = __find_stripe(conf, sector, conf->generation - previous);
472 		if (!sh) {
473 			if (!conf->inactive_blocked)
474 				sh = get_free_stripe(conf);
475 			if (noblock && sh == NULL)
476 				break;
477 			if (!sh) {
478 				conf->inactive_blocked = 1;
479 				wait_event_lock_irq(conf->wait_for_stripe,
480 						    !list_empty(&conf->inactive_list) &&
481 						    (atomic_read(&conf->active_stripes)
482 						     < (conf->max_nr_stripes *3/4)
483 						     || !conf->inactive_blocked),
484 						    conf->device_lock);
485 				conf->inactive_blocked = 0;
486 			} else
487 				init_stripe(sh, sector, previous);
488 		} else {
489 			if (atomic_read(&sh->count)) {
490 				BUG_ON(!list_empty(&sh->lru)
491 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
492 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493 			} else {
494 				if (!test_bit(STRIPE_HANDLE, &sh->state))
495 					atomic_inc(&conf->active_stripes);
496 				if (list_empty(&sh->lru) &&
497 				    !test_bit(STRIPE_EXPANDING, &sh->state))
498 					BUG();
499 				list_del_init(&sh->lru);
500 			}
501 		}
502 	} while (sh == NULL);
503 
504 	if (sh)
505 		atomic_inc(&sh->count);
506 
507 	spin_unlock_irq(&conf->device_lock);
508 	return sh;
509 }
510 
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
516 	sector_t progress = conf->reshape_progress;
517 	/* Need a memory barrier to make sure we see the value
518 	 * of conf->generation, or ->data_offset that was set before
519 	 * reshape_progress was updated.
520 	 */
521 	smp_rmb();
522 	if (progress == MaxSector)
523 		return 0;
524 	if (sh->generation == conf->generation - 1)
525 		return 0;
526 	/* We are in a reshape, and this is a new-generation stripe,
527 	 * so use new_data_offset.
528 	 */
529 	return 1;
530 }
531 
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536 
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539 	struct r5conf *conf = sh->raid_conf;
540 	int i, disks = sh->disks;
541 
542 	might_sleep();
543 
544 	for (i = disks; i--; ) {
545 		int rw;
546 		int replace_only = 0;
547 		struct bio *bi, *rbi;
548 		struct md_rdev *rdev, *rrdev = NULL;
549 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551 				rw = WRITE_FUA;
552 			else
553 				rw = WRITE;
554 			if (test_bit(R5_Discard, &sh->dev[i].flags))
555 				rw |= REQ_DISCARD;
556 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557 			rw = READ;
558 		else if (test_and_clear_bit(R5_WantReplace,
559 					    &sh->dev[i].flags)) {
560 			rw = WRITE;
561 			replace_only = 1;
562 		} else
563 			continue;
564 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565 			rw |= REQ_SYNC;
566 
567 		bi = &sh->dev[i].req;
568 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
569 
570 		bi->bi_rw = rw;
571 		rbi->bi_rw = rw;
572 		if (rw & WRITE) {
573 			bi->bi_end_io = raid5_end_write_request;
574 			rbi->bi_end_io = raid5_end_write_request;
575 		} else
576 			bi->bi_end_io = raid5_end_read_request;
577 
578 		rcu_read_lock();
579 		rrdev = rcu_dereference(conf->disks[i].replacement);
580 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581 		rdev = rcu_dereference(conf->disks[i].rdev);
582 		if (!rdev) {
583 			rdev = rrdev;
584 			rrdev = NULL;
585 		}
586 		if (rw & WRITE) {
587 			if (replace_only)
588 				rdev = NULL;
589 			if (rdev == rrdev)
590 				/* We raced and saw duplicates */
591 				rrdev = NULL;
592 		} else {
593 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594 				rdev = rrdev;
595 			rrdev = NULL;
596 		}
597 
598 		if (rdev && test_bit(Faulty, &rdev->flags))
599 			rdev = NULL;
600 		if (rdev)
601 			atomic_inc(&rdev->nr_pending);
602 		if (rrdev && test_bit(Faulty, &rrdev->flags))
603 			rrdev = NULL;
604 		if (rrdev)
605 			atomic_inc(&rrdev->nr_pending);
606 		rcu_read_unlock();
607 
608 		/* We have already checked bad blocks for reads.  Now
609 		 * need to check for writes.  We never accept write errors
610 		 * on the replacement, so we don't to check rrdev.
611 		 */
612 		while ((rw & WRITE) && rdev &&
613 		       test_bit(WriteErrorSeen, &rdev->flags)) {
614 			sector_t first_bad;
615 			int bad_sectors;
616 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617 					      &first_bad, &bad_sectors);
618 			if (!bad)
619 				break;
620 
621 			if (bad < 0) {
622 				set_bit(BlockedBadBlocks, &rdev->flags);
623 				if (!conf->mddev->external &&
624 				    conf->mddev->flags) {
625 					/* It is very unlikely, but we might
626 					 * still need to write out the
627 					 * bad block log - better give it
628 					 * a chance*/
629 					md_check_recovery(conf->mddev);
630 				}
631 				/*
632 				 * Because md_wait_for_blocked_rdev
633 				 * will dec nr_pending, we must
634 				 * increment it first.
635 				 */
636 				atomic_inc(&rdev->nr_pending);
637 				md_wait_for_blocked_rdev(rdev, conf->mddev);
638 			} else {
639 				/* Acknowledged bad block - skip the write */
640 				rdev_dec_pending(rdev, conf->mddev);
641 				rdev = NULL;
642 			}
643 		}
644 
645 		if (rdev) {
646 			if (s->syncing || s->expanding || s->expanded
647 			    || s->replacing)
648 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
649 
650 			set_bit(STRIPE_IO_STARTED, &sh->state);
651 
652 			bi->bi_bdev = rdev->bdev;
653 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654 				__func__, (unsigned long long)sh->sector,
655 				bi->bi_rw, i);
656 			atomic_inc(&sh->count);
657 			if (use_new_offset(conf, sh))
658 				bi->bi_sector = (sh->sector
659 						 + rdev->new_data_offset);
660 			else
661 				bi->bi_sector = (sh->sector
662 						 + rdev->data_offset);
663 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664 				bi->bi_rw |= REQ_FLUSH;
665 
666 			bi->bi_flags = 1 << BIO_UPTODATE;
667 			bi->bi_idx = 0;
668 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669 			bi->bi_io_vec[0].bv_offset = 0;
670 			bi->bi_size = STRIPE_SIZE;
671 			bi->bi_next = NULL;
672 			if (rrdev)
673 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
674 			trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
675 					      bi, disk_devt(conf->mddev->gendisk),
676 					      sh->dev[i].sector);
677 			generic_make_request(bi);
678 		}
679 		if (rrdev) {
680 			if (s->syncing || s->expanding || s->expanded
681 			    || s->replacing)
682 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
683 
684 			set_bit(STRIPE_IO_STARTED, &sh->state);
685 
686 			rbi->bi_bdev = rrdev->bdev;
687 			pr_debug("%s: for %llu schedule op %ld on "
688 				 "replacement disc %d\n",
689 				__func__, (unsigned long long)sh->sector,
690 				rbi->bi_rw, i);
691 			atomic_inc(&sh->count);
692 			if (use_new_offset(conf, sh))
693 				rbi->bi_sector = (sh->sector
694 						  + rrdev->new_data_offset);
695 			else
696 				rbi->bi_sector = (sh->sector
697 						  + rrdev->data_offset);
698 			rbi->bi_flags = 1 << BIO_UPTODATE;
699 			rbi->bi_idx = 0;
700 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
701 			rbi->bi_io_vec[0].bv_offset = 0;
702 			rbi->bi_size = STRIPE_SIZE;
703 			rbi->bi_next = NULL;
704 			trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
705 					      rbi, disk_devt(conf->mddev->gendisk),
706 					      sh->dev[i].sector);
707 			generic_make_request(rbi);
708 		}
709 		if (!rdev && !rrdev) {
710 			if (rw & WRITE)
711 				set_bit(STRIPE_DEGRADED, &sh->state);
712 			pr_debug("skip op %ld on disc %d for sector %llu\n",
713 				bi->bi_rw, i, (unsigned long long)sh->sector);
714 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
715 			set_bit(STRIPE_HANDLE, &sh->state);
716 		}
717 	}
718 }
719 
720 static struct dma_async_tx_descriptor *
721 async_copy_data(int frombio, struct bio *bio, struct page *page,
722 	sector_t sector, struct dma_async_tx_descriptor *tx)
723 {
724 	struct bio_vec *bvl;
725 	struct page *bio_page;
726 	int i;
727 	int page_offset;
728 	struct async_submit_ctl submit;
729 	enum async_tx_flags flags = 0;
730 
731 	if (bio->bi_sector >= sector)
732 		page_offset = (signed)(bio->bi_sector - sector) * 512;
733 	else
734 		page_offset = (signed)(sector - bio->bi_sector) * -512;
735 
736 	if (frombio)
737 		flags |= ASYNC_TX_FENCE;
738 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
739 
740 	bio_for_each_segment(bvl, bio, i) {
741 		int len = bvl->bv_len;
742 		int clen;
743 		int b_offset = 0;
744 
745 		if (page_offset < 0) {
746 			b_offset = -page_offset;
747 			page_offset += b_offset;
748 			len -= b_offset;
749 		}
750 
751 		if (len > 0 && page_offset + len > STRIPE_SIZE)
752 			clen = STRIPE_SIZE - page_offset;
753 		else
754 			clen = len;
755 
756 		if (clen > 0) {
757 			b_offset += bvl->bv_offset;
758 			bio_page = bvl->bv_page;
759 			if (frombio)
760 				tx = async_memcpy(page, bio_page, page_offset,
761 						  b_offset, clen, &submit);
762 			else
763 				tx = async_memcpy(bio_page, page, b_offset,
764 						  page_offset, clen, &submit);
765 		}
766 		/* chain the operations */
767 		submit.depend_tx = tx;
768 
769 		if (clen < len) /* hit end of page */
770 			break;
771 		page_offset +=  len;
772 	}
773 
774 	return tx;
775 }
776 
777 static void ops_complete_biofill(void *stripe_head_ref)
778 {
779 	struct stripe_head *sh = stripe_head_ref;
780 	struct bio *return_bi = NULL;
781 	int i;
782 
783 	pr_debug("%s: stripe %llu\n", __func__,
784 		(unsigned long long)sh->sector);
785 
786 	/* clear completed biofills */
787 	for (i = sh->disks; i--; ) {
788 		struct r5dev *dev = &sh->dev[i];
789 
790 		/* acknowledge completion of a biofill operation */
791 		/* and check if we need to reply to a read request,
792 		 * new R5_Wantfill requests are held off until
793 		 * !STRIPE_BIOFILL_RUN
794 		 */
795 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
796 			struct bio *rbi, *rbi2;
797 
798 			BUG_ON(!dev->read);
799 			rbi = dev->read;
800 			dev->read = NULL;
801 			while (rbi && rbi->bi_sector <
802 				dev->sector + STRIPE_SECTORS) {
803 				rbi2 = r5_next_bio(rbi, dev->sector);
804 				if (!raid5_dec_bi_active_stripes(rbi)) {
805 					rbi->bi_next = return_bi;
806 					return_bi = rbi;
807 				}
808 				rbi = rbi2;
809 			}
810 		}
811 	}
812 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
813 
814 	return_io(return_bi);
815 
816 	set_bit(STRIPE_HANDLE, &sh->state);
817 	release_stripe(sh);
818 }
819 
820 static void ops_run_biofill(struct stripe_head *sh)
821 {
822 	struct dma_async_tx_descriptor *tx = NULL;
823 	struct async_submit_ctl submit;
824 	int i;
825 
826 	pr_debug("%s: stripe %llu\n", __func__,
827 		(unsigned long long)sh->sector);
828 
829 	for (i = sh->disks; i--; ) {
830 		struct r5dev *dev = &sh->dev[i];
831 		if (test_bit(R5_Wantfill, &dev->flags)) {
832 			struct bio *rbi;
833 			spin_lock_irq(&sh->stripe_lock);
834 			dev->read = rbi = dev->toread;
835 			dev->toread = NULL;
836 			spin_unlock_irq(&sh->stripe_lock);
837 			while (rbi && rbi->bi_sector <
838 				dev->sector + STRIPE_SECTORS) {
839 				tx = async_copy_data(0, rbi, dev->page,
840 					dev->sector, tx);
841 				rbi = r5_next_bio(rbi, dev->sector);
842 			}
843 		}
844 	}
845 
846 	atomic_inc(&sh->count);
847 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
848 	async_trigger_callback(&submit);
849 }
850 
851 static void mark_target_uptodate(struct stripe_head *sh, int target)
852 {
853 	struct r5dev *tgt;
854 
855 	if (target < 0)
856 		return;
857 
858 	tgt = &sh->dev[target];
859 	set_bit(R5_UPTODATE, &tgt->flags);
860 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
861 	clear_bit(R5_Wantcompute, &tgt->flags);
862 }
863 
864 static void ops_complete_compute(void *stripe_head_ref)
865 {
866 	struct stripe_head *sh = stripe_head_ref;
867 
868 	pr_debug("%s: stripe %llu\n", __func__,
869 		(unsigned long long)sh->sector);
870 
871 	/* mark the computed target(s) as uptodate */
872 	mark_target_uptodate(sh, sh->ops.target);
873 	mark_target_uptodate(sh, sh->ops.target2);
874 
875 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
876 	if (sh->check_state == check_state_compute_run)
877 		sh->check_state = check_state_compute_result;
878 	set_bit(STRIPE_HANDLE, &sh->state);
879 	release_stripe(sh);
880 }
881 
882 /* return a pointer to the address conversion region of the scribble buffer */
883 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
884 				 struct raid5_percpu *percpu)
885 {
886 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
887 }
888 
889 static struct dma_async_tx_descriptor *
890 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
891 {
892 	int disks = sh->disks;
893 	struct page **xor_srcs = percpu->scribble;
894 	int target = sh->ops.target;
895 	struct r5dev *tgt = &sh->dev[target];
896 	struct page *xor_dest = tgt->page;
897 	int count = 0;
898 	struct dma_async_tx_descriptor *tx;
899 	struct async_submit_ctl submit;
900 	int i;
901 
902 	pr_debug("%s: stripe %llu block: %d\n",
903 		__func__, (unsigned long long)sh->sector, target);
904 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
905 
906 	for (i = disks; i--; )
907 		if (i != target)
908 			xor_srcs[count++] = sh->dev[i].page;
909 
910 	atomic_inc(&sh->count);
911 
912 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
913 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
914 	if (unlikely(count == 1))
915 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
916 	else
917 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
918 
919 	return tx;
920 }
921 
922 /* set_syndrome_sources - populate source buffers for gen_syndrome
923  * @srcs - (struct page *) array of size sh->disks
924  * @sh - stripe_head to parse
925  *
926  * Populates srcs in proper layout order for the stripe and returns the
927  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
928  * destination buffer is recorded in srcs[count] and the Q destination
929  * is recorded in srcs[count+1]].
930  */
931 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
932 {
933 	int disks = sh->disks;
934 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
935 	int d0_idx = raid6_d0(sh);
936 	int count;
937 	int i;
938 
939 	for (i = 0; i < disks; i++)
940 		srcs[i] = NULL;
941 
942 	count = 0;
943 	i = d0_idx;
944 	do {
945 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
946 
947 		srcs[slot] = sh->dev[i].page;
948 		i = raid6_next_disk(i, disks);
949 	} while (i != d0_idx);
950 
951 	return syndrome_disks;
952 }
953 
954 static struct dma_async_tx_descriptor *
955 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
956 {
957 	int disks = sh->disks;
958 	struct page **blocks = percpu->scribble;
959 	int target;
960 	int qd_idx = sh->qd_idx;
961 	struct dma_async_tx_descriptor *tx;
962 	struct async_submit_ctl submit;
963 	struct r5dev *tgt;
964 	struct page *dest;
965 	int i;
966 	int count;
967 
968 	if (sh->ops.target < 0)
969 		target = sh->ops.target2;
970 	else if (sh->ops.target2 < 0)
971 		target = sh->ops.target;
972 	else
973 		/* we should only have one valid target */
974 		BUG();
975 	BUG_ON(target < 0);
976 	pr_debug("%s: stripe %llu block: %d\n",
977 		__func__, (unsigned long long)sh->sector, target);
978 
979 	tgt = &sh->dev[target];
980 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
981 	dest = tgt->page;
982 
983 	atomic_inc(&sh->count);
984 
985 	if (target == qd_idx) {
986 		count = set_syndrome_sources(blocks, sh);
987 		blocks[count] = NULL; /* regenerating p is not necessary */
988 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
989 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
990 				  ops_complete_compute, sh,
991 				  to_addr_conv(sh, percpu));
992 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
993 	} else {
994 		/* Compute any data- or p-drive using XOR */
995 		count = 0;
996 		for (i = disks; i-- ; ) {
997 			if (i == target || i == qd_idx)
998 				continue;
999 			blocks[count++] = sh->dev[i].page;
1000 		}
1001 
1002 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1003 				  NULL, ops_complete_compute, sh,
1004 				  to_addr_conv(sh, percpu));
1005 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1006 	}
1007 
1008 	return tx;
1009 }
1010 
1011 static struct dma_async_tx_descriptor *
1012 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1013 {
1014 	int i, count, disks = sh->disks;
1015 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1016 	int d0_idx = raid6_d0(sh);
1017 	int faila = -1, failb = -1;
1018 	int target = sh->ops.target;
1019 	int target2 = sh->ops.target2;
1020 	struct r5dev *tgt = &sh->dev[target];
1021 	struct r5dev *tgt2 = &sh->dev[target2];
1022 	struct dma_async_tx_descriptor *tx;
1023 	struct page **blocks = percpu->scribble;
1024 	struct async_submit_ctl submit;
1025 
1026 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1027 		 __func__, (unsigned long long)sh->sector, target, target2);
1028 	BUG_ON(target < 0 || target2 < 0);
1029 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1030 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1031 
1032 	/* we need to open-code set_syndrome_sources to handle the
1033 	 * slot number conversion for 'faila' and 'failb'
1034 	 */
1035 	for (i = 0; i < disks ; i++)
1036 		blocks[i] = NULL;
1037 	count = 0;
1038 	i = d0_idx;
1039 	do {
1040 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1041 
1042 		blocks[slot] = sh->dev[i].page;
1043 
1044 		if (i == target)
1045 			faila = slot;
1046 		if (i == target2)
1047 			failb = slot;
1048 		i = raid6_next_disk(i, disks);
1049 	} while (i != d0_idx);
1050 
1051 	BUG_ON(faila == failb);
1052 	if (failb < faila)
1053 		swap(faila, failb);
1054 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1055 		 __func__, (unsigned long long)sh->sector, faila, failb);
1056 
1057 	atomic_inc(&sh->count);
1058 
1059 	if (failb == syndrome_disks+1) {
1060 		/* Q disk is one of the missing disks */
1061 		if (faila == syndrome_disks) {
1062 			/* Missing P+Q, just recompute */
1063 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1064 					  ops_complete_compute, sh,
1065 					  to_addr_conv(sh, percpu));
1066 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1067 						  STRIPE_SIZE, &submit);
1068 		} else {
1069 			struct page *dest;
1070 			int data_target;
1071 			int qd_idx = sh->qd_idx;
1072 
1073 			/* Missing D+Q: recompute D from P, then recompute Q */
1074 			if (target == qd_idx)
1075 				data_target = target2;
1076 			else
1077 				data_target = target;
1078 
1079 			count = 0;
1080 			for (i = disks; i-- ; ) {
1081 				if (i == data_target || i == qd_idx)
1082 					continue;
1083 				blocks[count++] = sh->dev[i].page;
1084 			}
1085 			dest = sh->dev[data_target].page;
1086 			init_async_submit(&submit,
1087 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1088 					  NULL, NULL, NULL,
1089 					  to_addr_conv(sh, percpu));
1090 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1091 				       &submit);
1092 
1093 			count = set_syndrome_sources(blocks, sh);
1094 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1095 					  ops_complete_compute, sh,
1096 					  to_addr_conv(sh, percpu));
1097 			return async_gen_syndrome(blocks, 0, count+2,
1098 						  STRIPE_SIZE, &submit);
1099 		}
1100 	} else {
1101 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1102 				  ops_complete_compute, sh,
1103 				  to_addr_conv(sh, percpu));
1104 		if (failb == syndrome_disks) {
1105 			/* We're missing D+P. */
1106 			return async_raid6_datap_recov(syndrome_disks+2,
1107 						       STRIPE_SIZE, faila,
1108 						       blocks, &submit);
1109 		} else {
1110 			/* We're missing D+D. */
1111 			return async_raid6_2data_recov(syndrome_disks+2,
1112 						       STRIPE_SIZE, faila, failb,
1113 						       blocks, &submit);
1114 		}
1115 	}
1116 }
1117 
1118 
1119 static void ops_complete_prexor(void *stripe_head_ref)
1120 {
1121 	struct stripe_head *sh = stripe_head_ref;
1122 
1123 	pr_debug("%s: stripe %llu\n", __func__,
1124 		(unsigned long long)sh->sector);
1125 }
1126 
1127 static struct dma_async_tx_descriptor *
1128 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1129 	       struct dma_async_tx_descriptor *tx)
1130 {
1131 	int disks = sh->disks;
1132 	struct page **xor_srcs = percpu->scribble;
1133 	int count = 0, pd_idx = sh->pd_idx, i;
1134 	struct async_submit_ctl submit;
1135 
1136 	/* existing parity data subtracted */
1137 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1138 
1139 	pr_debug("%s: stripe %llu\n", __func__,
1140 		(unsigned long long)sh->sector);
1141 
1142 	for (i = disks; i--; ) {
1143 		struct r5dev *dev = &sh->dev[i];
1144 		/* Only process blocks that are known to be uptodate */
1145 		if (test_bit(R5_Wantdrain, &dev->flags))
1146 			xor_srcs[count++] = dev->page;
1147 	}
1148 
1149 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1150 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1151 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1152 
1153 	return tx;
1154 }
1155 
1156 static struct dma_async_tx_descriptor *
1157 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1158 {
1159 	int disks = sh->disks;
1160 	int i;
1161 
1162 	pr_debug("%s: stripe %llu\n", __func__,
1163 		(unsigned long long)sh->sector);
1164 
1165 	for (i = disks; i--; ) {
1166 		struct r5dev *dev = &sh->dev[i];
1167 		struct bio *chosen;
1168 
1169 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1170 			struct bio *wbi;
1171 
1172 			spin_lock_irq(&sh->stripe_lock);
1173 			chosen = dev->towrite;
1174 			dev->towrite = NULL;
1175 			BUG_ON(dev->written);
1176 			wbi = dev->written = chosen;
1177 			spin_unlock_irq(&sh->stripe_lock);
1178 
1179 			while (wbi && wbi->bi_sector <
1180 				dev->sector + STRIPE_SECTORS) {
1181 				if (wbi->bi_rw & REQ_FUA)
1182 					set_bit(R5_WantFUA, &dev->flags);
1183 				if (wbi->bi_rw & REQ_SYNC)
1184 					set_bit(R5_SyncIO, &dev->flags);
1185 				if (wbi->bi_rw & REQ_DISCARD)
1186 					set_bit(R5_Discard, &dev->flags);
1187 				else
1188 					tx = async_copy_data(1, wbi, dev->page,
1189 						dev->sector, tx);
1190 				wbi = r5_next_bio(wbi, dev->sector);
1191 			}
1192 		}
1193 	}
1194 
1195 	return tx;
1196 }
1197 
1198 static void ops_complete_reconstruct(void *stripe_head_ref)
1199 {
1200 	struct stripe_head *sh = stripe_head_ref;
1201 	int disks = sh->disks;
1202 	int pd_idx = sh->pd_idx;
1203 	int qd_idx = sh->qd_idx;
1204 	int i;
1205 	bool fua = false, sync = false, discard = false;
1206 
1207 	pr_debug("%s: stripe %llu\n", __func__,
1208 		(unsigned long long)sh->sector);
1209 
1210 	for (i = disks; i--; ) {
1211 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1212 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1213 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1214 	}
1215 
1216 	for (i = disks; i--; ) {
1217 		struct r5dev *dev = &sh->dev[i];
1218 
1219 		if (dev->written || i == pd_idx || i == qd_idx) {
1220 			if (!discard)
1221 				set_bit(R5_UPTODATE, &dev->flags);
1222 			if (fua)
1223 				set_bit(R5_WantFUA, &dev->flags);
1224 			if (sync)
1225 				set_bit(R5_SyncIO, &dev->flags);
1226 		}
1227 	}
1228 
1229 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1230 		sh->reconstruct_state = reconstruct_state_drain_result;
1231 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1232 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1233 	else {
1234 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1235 		sh->reconstruct_state = reconstruct_state_result;
1236 	}
1237 
1238 	set_bit(STRIPE_HANDLE, &sh->state);
1239 	release_stripe(sh);
1240 }
1241 
1242 static void
1243 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1244 		     struct dma_async_tx_descriptor *tx)
1245 {
1246 	int disks = sh->disks;
1247 	struct page **xor_srcs = percpu->scribble;
1248 	struct async_submit_ctl submit;
1249 	int count = 0, pd_idx = sh->pd_idx, i;
1250 	struct page *xor_dest;
1251 	int prexor = 0;
1252 	unsigned long flags;
1253 
1254 	pr_debug("%s: stripe %llu\n", __func__,
1255 		(unsigned long long)sh->sector);
1256 
1257 	for (i = 0; i < sh->disks; i++) {
1258 		if (pd_idx == i)
1259 			continue;
1260 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1261 			break;
1262 	}
1263 	if (i >= sh->disks) {
1264 		atomic_inc(&sh->count);
1265 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1266 		ops_complete_reconstruct(sh);
1267 		return;
1268 	}
1269 	/* check if prexor is active which means only process blocks
1270 	 * that are part of a read-modify-write (written)
1271 	 */
1272 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1273 		prexor = 1;
1274 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1275 		for (i = disks; i--; ) {
1276 			struct r5dev *dev = &sh->dev[i];
1277 			if (dev->written)
1278 				xor_srcs[count++] = dev->page;
1279 		}
1280 	} else {
1281 		xor_dest = sh->dev[pd_idx].page;
1282 		for (i = disks; i--; ) {
1283 			struct r5dev *dev = &sh->dev[i];
1284 			if (i != pd_idx)
1285 				xor_srcs[count++] = dev->page;
1286 		}
1287 	}
1288 
1289 	/* 1/ if we prexor'd then the dest is reused as a source
1290 	 * 2/ if we did not prexor then we are redoing the parity
1291 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1292 	 * for the synchronous xor case
1293 	 */
1294 	flags = ASYNC_TX_ACK |
1295 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1296 
1297 	atomic_inc(&sh->count);
1298 
1299 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1300 			  to_addr_conv(sh, percpu));
1301 	if (unlikely(count == 1))
1302 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1303 	else
1304 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1305 }
1306 
1307 static void
1308 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1309 		     struct dma_async_tx_descriptor *tx)
1310 {
1311 	struct async_submit_ctl submit;
1312 	struct page **blocks = percpu->scribble;
1313 	int count, i;
1314 
1315 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1316 
1317 	for (i = 0; i < sh->disks; i++) {
1318 		if (sh->pd_idx == i || sh->qd_idx == i)
1319 			continue;
1320 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1321 			break;
1322 	}
1323 	if (i >= sh->disks) {
1324 		atomic_inc(&sh->count);
1325 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1326 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1327 		ops_complete_reconstruct(sh);
1328 		return;
1329 	}
1330 
1331 	count = set_syndrome_sources(blocks, sh);
1332 
1333 	atomic_inc(&sh->count);
1334 
1335 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1336 			  sh, to_addr_conv(sh, percpu));
1337 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1338 }
1339 
1340 static void ops_complete_check(void *stripe_head_ref)
1341 {
1342 	struct stripe_head *sh = stripe_head_ref;
1343 
1344 	pr_debug("%s: stripe %llu\n", __func__,
1345 		(unsigned long long)sh->sector);
1346 
1347 	sh->check_state = check_state_check_result;
1348 	set_bit(STRIPE_HANDLE, &sh->state);
1349 	release_stripe(sh);
1350 }
1351 
1352 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1353 {
1354 	int disks = sh->disks;
1355 	int pd_idx = sh->pd_idx;
1356 	int qd_idx = sh->qd_idx;
1357 	struct page *xor_dest;
1358 	struct page **xor_srcs = percpu->scribble;
1359 	struct dma_async_tx_descriptor *tx;
1360 	struct async_submit_ctl submit;
1361 	int count;
1362 	int i;
1363 
1364 	pr_debug("%s: stripe %llu\n", __func__,
1365 		(unsigned long long)sh->sector);
1366 
1367 	count = 0;
1368 	xor_dest = sh->dev[pd_idx].page;
1369 	xor_srcs[count++] = xor_dest;
1370 	for (i = disks; i--; ) {
1371 		if (i == pd_idx || i == qd_idx)
1372 			continue;
1373 		xor_srcs[count++] = sh->dev[i].page;
1374 	}
1375 
1376 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1377 			  to_addr_conv(sh, percpu));
1378 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1379 			   &sh->ops.zero_sum_result, &submit);
1380 
1381 	atomic_inc(&sh->count);
1382 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1383 	tx = async_trigger_callback(&submit);
1384 }
1385 
1386 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1387 {
1388 	struct page **srcs = percpu->scribble;
1389 	struct async_submit_ctl submit;
1390 	int count;
1391 
1392 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1393 		(unsigned long long)sh->sector, checkp);
1394 
1395 	count = set_syndrome_sources(srcs, sh);
1396 	if (!checkp)
1397 		srcs[count] = NULL;
1398 
1399 	atomic_inc(&sh->count);
1400 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1401 			  sh, to_addr_conv(sh, percpu));
1402 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1403 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1404 }
1405 
1406 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1407 {
1408 	int overlap_clear = 0, i, disks = sh->disks;
1409 	struct dma_async_tx_descriptor *tx = NULL;
1410 	struct r5conf *conf = sh->raid_conf;
1411 	int level = conf->level;
1412 	struct raid5_percpu *percpu;
1413 	unsigned long cpu;
1414 
1415 	cpu = get_cpu();
1416 	percpu = per_cpu_ptr(conf->percpu, cpu);
1417 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1418 		ops_run_biofill(sh);
1419 		overlap_clear++;
1420 	}
1421 
1422 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1423 		if (level < 6)
1424 			tx = ops_run_compute5(sh, percpu);
1425 		else {
1426 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1427 				tx = ops_run_compute6_1(sh, percpu);
1428 			else
1429 				tx = ops_run_compute6_2(sh, percpu);
1430 		}
1431 		/* terminate the chain if reconstruct is not set to be run */
1432 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1433 			async_tx_ack(tx);
1434 	}
1435 
1436 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1437 		tx = ops_run_prexor(sh, percpu, tx);
1438 
1439 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1440 		tx = ops_run_biodrain(sh, tx);
1441 		overlap_clear++;
1442 	}
1443 
1444 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1445 		if (level < 6)
1446 			ops_run_reconstruct5(sh, percpu, tx);
1447 		else
1448 			ops_run_reconstruct6(sh, percpu, tx);
1449 	}
1450 
1451 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1452 		if (sh->check_state == check_state_run)
1453 			ops_run_check_p(sh, percpu);
1454 		else if (sh->check_state == check_state_run_q)
1455 			ops_run_check_pq(sh, percpu, 0);
1456 		else if (sh->check_state == check_state_run_pq)
1457 			ops_run_check_pq(sh, percpu, 1);
1458 		else
1459 			BUG();
1460 	}
1461 
1462 	if (overlap_clear)
1463 		for (i = disks; i--; ) {
1464 			struct r5dev *dev = &sh->dev[i];
1465 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1466 				wake_up(&sh->raid_conf->wait_for_overlap);
1467 		}
1468 	put_cpu();
1469 }
1470 
1471 #ifdef CONFIG_MULTICORE_RAID456
1472 static void async_run_ops(void *param, async_cookie_t cookie)
1473 {
1474 	struct stripe_head *sh = param;
1475 	unsigned long ops_request = sh->ops.request;
1476 
1477 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1478 	wake_up(&sh->ops.wait_for_ops);
1479 
1480 	__raid_run_ops(sh, ops_request);
1481 	release_stripe(sh);
1482 }
1483 
1484 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1485 {
1486 	/* since handle_stripe can be called outside of raid5d context
1487 	 * we need to ensure sh->ops.request is de-staged before another
1488 	 * request arrives
1489 	 */
1490 	wait_event(sh->ops.wait_for_ops,
1491 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1492 	sh->ops.request = ops_request;
1493 
1494 	atomic_inc(&sh->count);
1495 	async_schedule(async_run_ops, sh);
1496 }
1497 #else
1498 #define raid_run_ops __raid_run_ops
1499 #endif
1500 
1501 static int grow_one_stripe(struct r5conf *conf)
1502 {
1503 	struct stripe_head *sh;
1504 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1505 	if (!sh)
1506 		return 0;
1507 
1508 	sh->raid_conf = conf;
1509 	#ifdef CONFIG_MULTICORE_RAID456
1510 	init_waitqueue_head(&sh->ops.wait_for_ops);
1511 	#endif
1512 
1513 	spin_lock_init(&sh->stripe_lock);
1514 
1515 	if (grow_buffers(sh)) {
1516 		shrink_buffers(sh);
1517 		kmem_cache_free(conf->slab_cache, sh);
1518 		return 0;
1519 	}
1520 	/* we just created an active stripe so... */
1521 	atomic_set(&sh->count, 1);
1522 	atomic_inc(&conf->active_stripes);
1523 	INIT_LIST_HEAD(&sh->lru);
1524 	release_stripe(sh);
1525 	return 1;
1526 }
1527 
1528 static int grow_stripes(struct r5conf *conf, int num)
1529 {
1530 	struct kmem_cache *sc;
1531 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1532 
1533 	if (conf->mddev->gendisk)
1534 		sprintf(conf->cache_name[0],
1535 			"raid%d-%s", conf->level, mdname(conf->mddev));
1536 	else
1537 		sprintf(conf->cache_name[0],
1538 			"raid%d-%p", conf->level, conf->mddev);
1539 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1540 
1541 	conf->active_name = 0;
1542 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1543 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1544 			       0, 0, NULL);
1545 	if (!sc)
1546 		return 1;
1547 	conf->slab_cache = sc;
1548 	conf->pool_size = devs;
1549 	while (num--)
1550 		if (!grow_one_stripe(conf))
1551 			return 1;
1552 	return 0;
1553 }
1554 
1555 /**
1556  * scribble_len - return the required size of the scribble region
1557  * @num - total number of disks in the array
1558  *
1559  * The size must be enough to contain:
1560  * 1/ a struct page pointer for each device in the array +2
1561  * 2/ room to convert each entry in (1) to its corresponding dma
1562  *    (dma_map_page()) or page (page_address()) address.
1563  *
1564  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1565  * calculate over all devices (not just the data blocks), using zeros in place
1566  * of the P and Q blocks.
1567  */
1568 static size_t scribble_len(int num)
1569 {
1570 	size_t len;
1571 
1572 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1573 
1574 	return len;
1575 }
1576 
1577 static int resize_stripes(struct r5conf *conf, int newsize)
1578 {
1579 	/* Make all the stripes able to hold 'newsize' devices.
1580 	 * New slots in each stripe get 'page' set to a new page.
1581 	 *
1582 	 * This happens in stages:
1583 	 * 1/ create a new kmem_cache and allocate the required number of
1584 	 *    stripe_heads.
1585 	 * 2/ gather all the old stripe_heads and transfer the pages across
1586 	 *    to the new stripe_heads.  This will have the side effect of
1587 	 *    freezing the array as once all stripe_heads have been collected,
1588 	 *    no IO will be possible.  Old stripe heads are freed once their
1589 	 *    pages have been transferred over, and the old kmem_cache is
1590 	 *    freed when all stripes are done.
1591 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1592 	 *    we simple return a failre status - no need to clean anything up.
1593 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1594 	 *    If this fails, we don't bother trying the shrink the
1595 	 *    stripe_heads down again, we just leave them as they are.
1596 	 *    As each stripe_head is processed the new one is released into
1597 	 *    active service.
1598 	 *
1599 	 * Once step2 is started, we cannot afford to wait for a write,
1600 	 * so we use GFP_NOIO allocations.
1601 	 */
1602 	struct stripe_head *osh, *nsh;
1603 	LIST_HEAD(newstripes);
1604 	struct disk_info *ndisks;
1605 	unsigned long cpu;
1606 	int err;
1607 	struct kmem_cache *sc;
1608 	int i;
1609 
1610 	if (newsize <= conf->pool_size)
1611 		return 0; /* never bother to shrink */
1612 
1613 	err = md_allow_write(conf->mddev);
1614 	if (err)
1615 		return err;
1616 
1617 	/* Step 1 */
1618 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1619 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1620 			       0, 0, NULL);
1621 	if (!sc)
1622 		return -ENOMEM;
1623 
1624 	for (i = conf->max_nr_stripes; i; i--) {
1625 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1626 		if (!nsh)
1627 			break;
1628 
1629 		nsh->raid_conf = conf;
1630 		#ifdef CONFIG_MULTICORE_RAID456
1631 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1632 		#endif
1633 		spin_lock_init(&nsh->stripe_lock);
1634 
1635 		list_add(&nsh->lru, &newstripes);
1636 	}
1637 	if (i) {
1638 		/* didn't get enough, give up */
1639 		while (!list_empty(&newstripes)) {
1640 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1641 			list_del(&nsh->lru);
1642 			kmem_cache_free(sc, nsh);
1643 		}
1644 		kmem_cache_destroy(sc);
1645 		return -ENOMEM;
1646 	}
1647 	/* Step 2 - Must use GFP_NOIO now.
1648 	 * OK, we have enough stripes, start collecting inactive
1649 	 * stripes and copying them over
1650 	 */
1651 	list_for_each_entry(nsh, &newstripes, lru) {
1652 		spin_lock_irq(&conf->device_lock);
1653 		wait_event_lock_irq(conf->wait_for_stripe,
1654 				    !list_empty(&conf->inactive_list),
1655 				    conf->device_lock);
1656 		osh = get_free_stripe(conf);
1657 		spin_unlock_irq(&conf->device_lock);
1658 		atomic_set(&nsh->count, 1);
1659 		for(i=0; i<conf->pool_size; i++)
1660 			nsh->dev[i].page = osh->dev[i].page;
1661 		for( ; i<newsize; i++)
1662 			nsh->dev[i].page = NULL;
1663 		kmem_cache_free(conf->slab_cache, osh);
1664 	}
1665 	kmem_cache_destroy(conf->slab_cache);
1666 
1667 	/* Step 3.
1668 	 * At this point, we are holding all the stripes so the array
1669 	 * is completely stalled, so now is a good time to resize
1670 	 * conf->disks and the scribble region
1671 	 */
1672 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1673 	if (ndisks) {
1674 		for (i=0; i<conf->raid_disks; i++)
1675 			ndisks[i] = conf->disks[i];
1676 		kfree(conf->disks);
1677 		conf->disks = ndisks;
1678 	} else
1679 		err = -ENOMEM;
1680 
1681 	get_online_cpus();
1682 	conf->scribble_len = scribble_len(newsize);
1683 	for_each_present_cpu(cpu) {
1684 		struct raid5_percpu *percpu;
1685 		void *scribble;
1686 
1687 		percpu = per_cpu_ptr(conf->percpu, cpu);
1688 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1689 
1690 		if (scribble) {
1691 			kfree(percpu->scribble);
1692 			percpu->scribble = scribble;
1693 		} else {
1694 			err = -ENOMEM;
1695 			break;
1696 		}
1697 	}
1698 	put_online_cpus();
1699 
1700 	/* Step 4, return new stripes to service */
1701 	while(!list_empty(&newstripes)) {
1702 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1703 		list_del_init(&nsh->lru);
1704 
1705 		for (i=conf->raid_disks; i < newsize; i++)
1706 			if (nsh->dev[i].page == NULL) {
1707 				struct page *p = alloc_page(GFP_NOIO);
1708 				nsh->dev[i].page = p;
1709 				if (!p)
1710 					err = -ENOMEM;
1711 			}
1712 		release_stripe(nsh);
1713 	}
1714 	/* critical section pass, GFP_NOIO no longer needed */
1715 
1716 	conf->slab_cache = sc;
1717 	conf->active_name = 1-conf->active_name;
1718 	conf->pool_size = newsize;
1719 	return err;
1720 }
1721 
1722 static int drop_one_stripe(struct r5conf *conf)
1723 {
1724 	struct stripe_head *sh;
1725 
1726 	spin_lock_irq(&conf->device_lock);
1727 	sh = get_free_stripe(conf);
1728 	spin_unlock_irq(&conf->device_lock);
1729 	if (!sh)
1730 		return 0;
1731 	BUG_ON(atomic_read(&sh->count));
1732 	shrink_buffers(sh);
1733 	kmem_cache_free(conf->slab_cache, sh);
1734 	atomic_dec(&conf->active_stripes);
1735 	return 1;
1736 }
1737 
1738 static void shrink_stripes(struct r5conf *conf)
1739 {
1740 	while (drop_one_stripe(conf))
1741 		;
1742 
1743 	if (conf->slab_cache)
1744 		kmem_cache_destroy(conf->slab_cache);
1745 	conf->slab_cache = NULL;
1746 }
1747 
1748 static void raid5_end_read_request(struct bio * bi, int error)
1749 {
1750 	struct stripe_head *sh = bi->bi_private;
1751 	struct r5conf *conf = sh->raid_conf;
1752 	int disks = sh->disks, i;
1753 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1754 	char b[BDEVNAME_SIZE];
1755 	struct md_rdev *rdev = NULL;
1756 	sector_t s;
1757 
1758 	for (i=0 ; i<disks; i++)
1759 		if (bi == &sh->dev[i].req)
1760 			break;
1761 
1762 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1763 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1764 		uptodate);
1765 	if (i == disks) {
1766 		BUG();
1767 		return;
1768 	}
1769 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1770 		/* If replacement finished while this request was outstanding,
1771 		 * 'replacement' might be NULL already.
1772 		 * In that case it moved down to 'rdev'.
1773 		 * rdev is not removed until all requests are finished.
1774 		 */
1775 		rdev = conf->disks[i].replacement;
1776 	if (!rdev)
1777 		rdev = conf->disks[i].rdev;
1778 
1779 	if (use_new_offset(conf, sh))
1780 		s = sh->sector + rdev->new_data_offset;
1781 	else
1782 		s = sh->sector + rdev->data_offset;
1783 	if (uptodate) {
1784 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1785 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1786 			/* Note that this cannot happen on a
1787 			 * replacement device.  We just fail those on
1788 			 * any error
1789 			 */
1790 			printk_ratelimited(
1791 				KERN_INFO
1792 				"md/raid:%s: read error corrected"
1793 				" (%lu sectors at %llu on %s)\n",
1794 				mdname(conf->mddev), STRIPE_SECTORS,
1795 				(unsigned long long)s,
1796 				bdevname(rdev->bdev, b));
1797 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1798 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1799 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1800 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1801 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1802 
1803 		if (atomic_read(&rdev->read_errors))
1804 			atomic_set(&rdev->read_errors, 0);
1805 	} else {
1806 		const char *bdn = bdevname(rdev->bdev, b);
1807 		int retry = 0;
1808 		int set_bad = 0;
1809 
1810 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1811 		atomic_inc(&rdev->read_errors);
1812 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1813 			printk_ratelimited(
1814 				KERN_WARNING
1815 				"md/raid:%s: read error on replacement device "
1816 				"(sector %llu on %s).\n",
1817 				mdname(conf->mddev),
1818 				(unsigned long long)s,
1819 				bdn);
1820 		else if (conf->mddev->degraded >= conf->max_degraded) {
1821 			set_bad = 1;
1822 			printk_ratelimited(
1823 				KERN_WARNING
1824 				"md/raid:%s: read error not correctable "
1825 				"(sector %llu on %s).\n",
1826 				mdname(conf->mddev),
1827 				(unsigned long long)s,
1828 				bdn);
1829 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1830 			/* Oh, no!!! */
1831 			set_bad = 1;
1832 			printk_ratelimited(
1833 				KERN_WARNING
1834 				"md/raid:%s: read error NOT corrected!! "
1835 				"(sector %llu on %s).\n",
1836 				mdname(conf->mddev),
1837 				(unsigned long long)s,
1838 				bdn);
1839 		} else if (atomic_read(&rdev->read_errors)
1840 			 > conf->max_nr_stripes)
1841 			printk(KERN_WARNING
1842 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1843 			       mdname(conf->mddev), bdn);
1844 		else
1845 			retry = 1;
1846 		if (retry)
1847 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1848 				set_bit(R5_ReadError, &sh->dev[i].flags);
1849 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1850 			} else
1851 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1852 		else {
1853 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1854 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1855 			if (!(set_bad
1856 			      && test_bit(In_sync, &rdev->flags)
1857 			      && rdev_set_badblocks(
1858 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1859 				md_error(conf->mddev, rdev);
1860 		}
1861 	}
1862 	rdev_dec_pending(rdev, conf->mddev);
1863 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1864 	set_bit(STRIPE_HANDLE, &sh->state);
1865 	release_stripe(sh);
1866 }
1867 
1868 static void raid5_end_write_request(struct bio *bi, int error)
1869 {
1870 	struct stripe_head *sh = bi->bi_private;
1871 	struct r5conf *conf = sh->raid_conf;
1872 	int disks = sh->disks, i;
1873 	struct md_rdev *uninitialized_var(rdev);
1874 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1875 	sector_t first_bad;
1876 	int bad_sectors;
1877 	int replacement = 0;
1878 
1879 	for (i = 0 ; i < disks; i++) {
1880 		if (bi == &sh->dev[i].req) {
1881 			rdev = conf->disks[i].rdev;
1882 			break;
1883 		}
1884 		if (bi == &sh->dev[i].rreq) {
1885 			rdev = conf->disks[i].replacement;
1886 			if (rdev)
1887 				replacement = 1;
1888 			else
1889 				/* rdev was removed and 'replacement'
1890 				 * replaced it.  rdev is not removed
1891 				 * until all requests are finished.
1892 				 */
1893 				rdev = conf->disks[i].rdev;
1894 			break;
1895 		}
1896 	}
1897 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1898 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1899 		uptodate);
1900 	if (i == disks) {
1901 		BUG();
1902 		return;
1903 	}
1904 
1905 	if (replacement) {
1906 		if (!uptodate)
1907 			md_error(conf->mddev, rdev);
1908 		else if (is_badblock(rdev, sh->sector,
1909 				     STRIPE_SECTORS,
1910 				     &first_bad, &bad_sectors))
1911 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1912 	} else {
1913 		if (!uptodate) {
1914 			set_bit(WriteErrorSeen, &rdev->flags);
1915 			set_bit(R5_WriteError, &sh->dev[i].flags);
1916 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1917 				set_bit(MD_RECOVERY_NEEDED,
1918 					&rdev->mddev->recovery);
1919 		} else if (is_badblock(rdev, sh->sector,
1920 				       STRIPE_SECTORS,
1921 				       &first_bad, &bad_sectors))
1922 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1923 	}
1924 	rdev_dec_pending(rdev, conf->mddev);
1925 
1926 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1927 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1928 	set_bit(STRIPE_HANDLE, &sh->state);
1929 	release_stripe(sh);
1930 }
1931 
1932 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1933 
1934 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1935 {
1936 	struct r5dev *dev = &sh->dev[i];
1937 
1938 	bio_init(&dev->req);
1939 	dev->req.bi_io_vec = &dev->vec;
1940 	dev->req.bi_vcnt++;
1941 	dev->req.bi_max_vecs++;
1942 	dev->req.bi_private = sh;
1943 	dev->vec.bv_page = dev->page;
1944 
1945 	bio_init(&dev->rreq);
1946 	dev->rreq.bi_io_vec = &dev->rvec;
1947 	dev->rreq.bi_vcnt++;
1948 	dev->rreq.bi_max_vecs++;
1949 	dev->rreq.bi_private = sh;
1950 	dev->rvec.bv_page = dev->page;
1951 
1952 	dev->flags = 0;
1953 	dev->sector = compute_blocknr(sh, i, previous);
1954 }
1955 
1956 static void error(struct mddev *mddev, struct md_rdev *rdev)
1957 {
1958 	char b[BDEVNAME_SIZE];
1959 	struct r5conf *conf = mddev->private;
1960 	unsigned long flags;
1961 	pr_debug("raid456: error called\n");
1962 
1963 	spin_lock_irqsave(&conf->device_lock, flags);
1964 	clear_bit(In_sync, &rdev->flags);
1965 	mddev->degraded = calc_degraded(conf);
1966 	spin_unlock_irqrestore(&conf->device_lock, flags);
1967 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1968 
1969 	set_bit(Blocked, &rdev->flags);
1970 	set_bit(Faulty, &rdev->flags);
1971 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1972 	printk(KERN_ALERT
1973 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1974 	       "md/raid:%s: Operation continuing on %d devices.\n",
1975 	       mdname(mddev),
1976 	       bdevname(rdev->bdev, b),
1977 	       mdname(mddev),
1978 	       conf->raid_disks - mddev->degraded);
1979 }
1980 
1981 /*
1982  * Input: a 'big' sector number,
1983  * Output: index of the data and parity disk, and the sector # in them.
1984  */
1985 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1986 				     int previous, int *dd_idx,
1987 				     struct stripe_head *sh)
1988 {
1989 	sector_t stripe, stripe2;
1990 	sector_t chunk_number;
1991 	unsigned int chunk_offset;
1992 	int pd_idx, qd_idx;
1993 	int ddf_layout = 0;
1994 	sector_t new_sector;
1995 	int algorithm = previous ? conf->prev_algo
1996 				 : conf->algorithm;
1997 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1998 					 : conf->chunk_sectors;
1999 	int raid_disks = previous ? conf->previous_raid_disks
2000 				  : conf->raid_disks;
2001 	int data_disks = raid_disks - conf->max_degraded;
2002 
2003 	/* First compute the information on this sector */
2004 
2005 	/*
2006 	 * Compute the chunk number and the sector offset inside the chunk
2007 	 */
2008 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2009 	chunk_number = r_sector;
2010 
2011 	/*
2012 	 * Compute the stripe number
2013 	 */
2014 	stripe = chunk_number;
2015 	*dd_idx = sector_div(stripe, data_disks);
2016 	stripe2 = stripe;
2017 	/*
2018 	 * Select the parity disk based on the user selected algorithm.
2019 	 */
2020 	pd_idx = qd_idx = -1;
2021 	switch(conf->level) {
2022 	case 4:
2023 		pd_idx = data_disks;
2024 		break;
2025 	case 5:
2026 		switch (algorithm) {
2027 		case ALGORITHM_LEFT_ASYMMETRIC:
2028 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2029 			if (*dd_idx >= pd_idx)
2030 				(*dd_idx)++;
2031 			break;
2032 		case ALGORITHM_RIGHT_ASYMMETRIC:
2033 			pd_idx = sector_div(stripe2, raid_disks);
2034 			if (*dd_idx >= pd_idx)
2035 				(*dd_idx)++;
2036 			break;
2037 		case ALGORITHM_LEFT_SYMMETRIC:
2038 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2039 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2040 			break;
2041 		case ALGORITHM_RIGHT_SYMMETRIC:
2042 			pd_idx = sector_div(stripe2, raid_disks);
2043 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2044 			break;
2045 		case ALGORITHM_PARITY_0:
2046 			pd_idx = 0;
2047 			(*dd_idx)++;
2048 			break;
2049 		case ALGORITHM_PARITY_N:
2050 			pd_idx = data_disks;
2051 			break;
2052 		default:
2053 			BUG();
2054 		}
2055 		break;
2056 	case 6:
2057 
2058 		switch (algorithm) {
2059 		case ALGORITHM_LEFT_ASYMMETRIC:
2060 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2061 			qd_idx = pd_idx + 1;
2062 			if (pd_idx == raid_disks-1) {
2063 				(*dd_idx)++;	/* Q D D D P */
2064 				qd_idx = 0;
2065 			} else if (*dd_idx >= pd_idx)
2066 				(*dd_idx) += 2; /* D D P Q D */
2067 			break;
2068 		case ALGORITHM_RIGHT_ASYMMETRIC:
2069 			pd_idx = sector_div(stripe2, raid_disks);
2070 			qd_idx = pd_idx + 1;
2071 			if (pd_idx == raid_disks-1) {
2072 				(*dd_idx)++;	/* Q D D D P */
2073 				qd_idx = 0;
2074 			} else if (*dd_idx >= pd_idx)
2075 				(*dd_idx) += 2; /* D D P Q D */
2076 			break;
2077 		case ALGORITHM_LEFT_SYMMETRIC:
2078 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2079 			qd_idx = (pd_idx + 1) % raid_disks;
2080 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2081 			break;
2082 		case ALGORITHM_RIGHT_SYMMETRIC:
2083 			pd_idx = sector_div(stripe2, raid_disks);
2084 			qd_idx = (pd_idx + 1) % raid_disks;
2085 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2086 			break;
2087 
2088 		case ALGORITHM_PARITY_0:
2089 			pd_idx = 0;
2090 			qd_idx = 1;
2091 			(*dd_idx) += 2;
2092 			break;
2093 		case ALGORITHM_PARITY_N:
2094 			pd_idx = data_disks;
2095 			qd_idx = data_disks + 1;
2096 			break;
2097 
2098 		case ALGORITHM_ROTATING_ZERO_RESTART:
2099 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2100 			 * of blocks for computing Q is different.
2101 			 */
2102 			pd_idx = sector_div(stripe2, raid_disks);
2103 			qd_idx = pd_idx + 1;
2104 			if (pd_idx == raid_disks-1) {
2105 				(*dd_idx)++;	/* Q D D D P */
2106 				qd_idx = 0;
2107 			} else if (*dd_idx >= pd_idx)
2108 				(*dd_idx) += 2; /* D D P Q D */
2109 			ddf_layout = 1;
2110 			break;
2111 
2112 		case ALGORITHM_ROTATING_N_RESTART:
2113 			/* Same a left_asymmetric, by first stripe is
2114 			 * D D D P Q  rather than
2115 			 * Q D D D P
2116 			 */
2117 			stripe2 += 1;
2118 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2119 			qd_idx = pd_idx + 1;
2120 			if (pd_idx == raid_disks-1) {
2121 				(*dd_idx)++;	/* Q D D D P */
2122 				qd_idx = 0;
2123 			} else if (*dd_idx >= pd_idx)
2124 				(*dd_idx) += 2; /* D D P Q D */
2125 			ddf_layout = 1;
2126 			break;
2127 
2128 		case ALGORITHM_ROTATING_N_CONTINUE:
2129 			/* Same as left_symmetric but Q is before P */
2130 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2131 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2132 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2133 			ddf_layout = 1;
2134 			break;
2135 
2136 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2137 			/* RAID5 left_asymmetric, with Q on last device */
2138 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2139 			if (*dd_idx >= pd_idx)
2140 				(*dd_idx)++;
2141 			qd_idx = raid_disks - 1;
2142 			break;
2143 
2144 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2145 			pd_idx = sector_div(stripe2, raid_disks-1);
2146 			if (*dd_idx >= pd_idx)
2147 				(*dd_idx)++;
2148 			qd_idx = raid_disks - 1;
2149 			break;
2150 
2151 		case ALGORITHM_LEFT_SYMMETRIC_6:
2152 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2153 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2154 			qd_idx = raid_disks - 1;
2155 			break;
2156 
2157 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2158 			pd_idx = sector_div(stripe2, raid_disks-1);
2159 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2160 			qd_idx = raid_disks - 1;
2161 			break;
2162 
2163 		case ALGORITHM_PARITY_0_6:
2164 			pd_idx = 0;
2165 			(*dd_idx)++;
2166 			qd_idx = raid_disks - 1;
2167 			break;
2168 
2169 		default:
2170 			BUG();
2171 		}
2172 		break;
2173 	}
2174 
2175 	if (sh) {
2176 		sh->pd_idx = pd_idx;
2177 		sh->qd_idx = qd_idx;
2178 		sh->ddf_layout = ddf_layout;
2179 	}
2180 	/*
2181 	 * Finally, compute the new sector number
2182 	 */
2183 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2184 	return new_sector;
2185 }
2186 
2187 
2188 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2189 {
2190 	struct r5conf *conf = sh->raid_conf;
2191 	int raid_disks = sh->disks;
2192 	int data_disks = raid_disks - conf->max_degraded;
2193 	sector_t new_sector = sh->sector, check;
2194 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2195 					 : conf->chunk_sectors;
2196 	int algorithm = previous ? conf->prev_algo
2197 				 : conf->algorithm;
2198 	sector_t stripe;
2199 	int chunk_offset;
2200 	sector_t chunk_number;
2201 	int dummy1, dd_idx = i;
2202 	sector_t r_sector;
2203 	struct stripe_head sh2;
2204 
2205 
2206 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2207 	stripe = new_sector;
2208 
2209 	if (i == sh->pd_idx)
2210 		return 0;
2211 	switch(conf->level) {
2212 	case 4: break;
2213 	case 5:
2214 		switch (algorithm) {
2215 		case ALGORITHM_LEFT_ASYMMETRIC:
2216 		case ALGORITHM_RIGHT_ASYMMETRIC:
2217 			if (i > sh->pd_idx)
2218 				i--;
2219 			break;
2220 		case ALGORITHM_LEFT_SYMMETRIC:
2221 		case ALGORITHM_RIGHT_SYMMETRIC:
2222 			if (i < sh->pd_idx)
2223 				i += raid_disks;
2224 			i -= (sh->pd_idx + 1);
2225 			break;
2226 		case ALGORITHM_PARITY_0:
2227 			i -= 1;
2228 			break;
2229 		case ALGORITHM_PARITY_N:
2230 			break;
2231 		default:
2232 			BUG();
2233 		}
2234 		break;
2235 	case 6:
2236 		if (i == sh->qd_idx)
2237 			return 0; /* It is the Q disk */
2238 		switch (algorithm) {
2239 		case ALGORITHM_LEFT_ASYMMETRIC:
2240 		case ALGORITHM_RIGHT_ASYMMETRIC:
2241 		case ALGORITHM_ROTATING_ZERO_RESTART:
2242 		case ALGORITHM_ROTATING_N_RESTART:
2243 			if (sh->pd_idx == raid_disks-1)
2244 				i--;	/* Q D D D P */
2245 			else if (i > sh->pd_idx)
2246 				i -= 2; /* D D P Q D */
2247 			break;
2248 		case ALGORITHM_LEFT_SYMMETRIC:
2249 		case ALGORITHM_RIGHT_SYMMETRIC:
2250 			if (sh->pd_idx == raid_disks-1)
2251 				i--; /* Q D D D P */
2252 			else {
2253 				/* D D P Q D */
2254 				if (i < sh->pd_idx)
2255 					i += raid_disks;
2256 				i -= (sh->pd_idx + 2);
2257 			}
2258 			break;
2259 		case ALGORITHM_PARITY_0:
2260 			i -= 2;
2261 			break;
2262 		case ALGORITHM_PARITY_N:
2263 			break;
2264 		case ALGORITHM_ROTATING_N_CONTINUE:
2265 			/* Like left_symmetric, but P is before Q */
2266 			if (sh->pd_idx == 0)
2267 				i--;	/* P D D D Q */
2268 			else {
2269 				/* D D Q P D */
2270 				if (i < sh->pd_idx)
2271 					i += raid_disks;
2272 				i -= (sh->pd_idx + 1);
2273 			}
2274 			break;
2275 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2276 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2277 			if (i > sh->pd_idx)
2278 				i--;
2279 			break;
2280 		case ALGORITHM_LEFT_SYMMETRIC_6:
2281 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2282 			if (i < sh->pd_idx)
2283 				i += data_disks + 1;
2284 			i -= (sh->pd_idx + 1);
2285 			break;
2286 		case ALGORITHM_PARITY_0_6:
2287 			i -= 1;
2288 			break;
2289 		default:
2290 			BUG();
2291 		}
2292 		break;
2293 	}
2294 
2295 	chunk_number = stripe * data_disks + i;
2296 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2297 
2298 	check = raid5_compute_sector(conf, r_sector,
2299 				     previous, &dummy1, &sh2);
2300 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2301 		|| sh2.qd_idx != sh->qd_idx) {
2302 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2303 		       mdname(conf->mddev));
2304 		return 0;
2305 	}
2306 	return r_sector;
2307 }
2308 
2309 
2310 static void
2311 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2312 			 int rcw, int expand)
2313 {
2314 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2315 	struct r5conf *conf = sh->raid_conf;
2316 	int level = conf->level;
2317 
2318 	if (rcw) {
2319 		/* if we are not expanding this is a proper write request, and
2320 		 * there will be bios with new data to be drained into the
2321 		 * stripe cache
2322 		 */
2323 		if (!expand) {
2324 			sh->reconstruct_state = reconstruct_state_drain_run;
2325 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2326 		} else
2327 			sh->reconstruct_state = reconstruct_state_run;
2328 
2329 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2330 
2331 		for (i = disks; i--; ) {
2332 			struct r5dev *dev = &sh->dev[i];
2333 
2334 			if (dev->towrite) {
2335 				set_bit(R5_LOCKED, &dev->flags);
2336 				set_bit(R5_Wantdrain, &dev->flags);
2337 				if (!expand)
2338 					clear_bit(R5_UPTODATE, &dev->flags);
2339 				s->locked++;
2340 			}
2341 		}
2342 		if (s->locked + conf->max_degraded == disks)
2343 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2344 				atomic_inc(&conf->pending_full_writes);
2345 	} else {
2346 		BUG_ON(level == 6);
2347 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2348 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2349 
2350 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2351 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2352 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2353 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2354 
2355 		for (i = disks; i--; ) {
2356 			struct r5dev *dev = &sh->dev[i];
2357 			if (i == pd_idx)
2358 				continue;
2359 
2360 			if (dev->towrite &&
2361 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2362 			     test_bit(R5_Wantcompute, &dev->flags))) {
2363 				set_bit(R5_Wantdrain, &dev->flags);
2364 				set_bit(R5_LOCKED, &dev->flags);
2365 				clear_bit(R5_UPTODATE, &dev->flags);
2366 				s->locked++;
2367 			}
2368 		}
2369 	}
2370 
2371 	/* keep the parity disk(s) locked while asynchronous operations
2372 	 * are in flight
2373 	 */
2374 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2375 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2376 	s->locked++;
2377 
2378 	if (level == 6) {
2379 		int qd_idx = sh->qd_idx;
2380 		struct r5dev *dev = &sh->dev[qd_idx];
2381 
2382 		set_bit(R5_LOCKED, &dev->flags);
2383 		clear_bit(R5_UPTODATE, &dev->flags);
2384 		s->locked++;
2385 	}
2386 
2387 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2388 		__func__, (unsigned long long)sh->sector,
2389 		s->locked, s->ops_request);
2390 }
2391 
2392 /*
2393  * Each stripe/dev can have one or more bion attached.
2394  * toread/towrite point to the first in a chain.
2395  * The bi_next chain must be in order.
2396  */
2397 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2398 {
2399 	struct bio **bip;
2400 	struct r5conf *conf = sh->raid_conf;
2401 	int firstwrite=0;
2402 
2403 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2404 		(unsigned long long)bi->bi_sector,
2405 		(unsigned long long)sh->sector);
2406 
2407 	/*
2408 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2409 	 * reference count to avoid race. The reference count should already be
2410 	 * increased before this function is called (for example, in
2411 	 * make_request()), so other bio sharing this stripe will not free the
2412 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2413 	 * protect it.
2414 	 */
2415 	spin_lock_irq(&sh->stripe_lock);
2416 	if (forwrite) {
2417 		bip = &sh->dev[dd_idx].towrite;
2418 		if (*bip == NULL)
2419 			firstwrite = 1;
2420 	} else
2421 		bip = &sh->dev[dd_idx].toread;
2422 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2423 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2424 			goto overlap;
2425 		bip = & (*bip)->bi_next;
2426 	}
2427 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2428 		goto overlap;
2429 
2430 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2431 	if (*bip)
2432 		bi->bi_next = *bip;
2433 	*bip = bi;
2434 	raid5_inc_bi_active_stripes(bi);
2435 
2436 	if (forwrite) {
2437 		/* check if page is covered */
2438 		sector_t sector = sh->dev[dd_idx].sector;
2439 		for (bi=sh->dev[dd_idx].towrite;
2440 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2441 			     bi && bi->bi_sector <= sector;
2442 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2443 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2444 				sector = bi->bi_sector + (bi->bi_size>>9);
2445 		}
2446 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2447 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2448 	}
2449 
2450 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2451 		(unsigned long long)(*bip)->bi_sector,
2452 		(unsigned long long)sh->sector, dd_idx);
2453 	spin_unlock_irq(&sh->stripe_lock);
2454 
2455 	if (conf->mddev->bitmap && firstwrite) {
2456 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2457 				  STRIPE_SECTORS, 0);
2458 		sh->bm_seq = conf->seq_flush+1;
2459 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2460 	}
2461 	return 1;
2462 
2463  overlap:
2464 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2465 	spin_unlock_irq(&sh->stripe_lock);
2466 	return 0;
2467 }
2468 
2469 static void end_reshape(struct r5conf *conf);
2470 
2471 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2472 			    struct stripe_head *sh)
2473 {
2474 	int sectors_per_chunk =
2475 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2476 	int dd_idx;
2477 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2478 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2479 
2480 	raid5_compute_sector(conf,
2481 			     stripe * (disks - conf->max_degraded)
2482 			     *sectors_per_chunk + chunk_offset,
2483 			     previous,
2484 			     &dd_idx, sh);
2485 }
2486 
2487 static void
2488 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2489 				struct stripe_head_state *s, int disks,
2490 				struct bio **return_bi)
2491 {
2492 	int i;
2493 	for (i = disks; i--; ) {
2494 		struct bio *bi;
2495 		int bitmap_end = 0;
2496 
2497 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2498 			struct md_rdev *rdev;
2499 			rcu_read_lock();
2500 			rdev = rcu_dereference(conf->disks[i].rdev);
2501 			if (rdev && test_bit(In_sync, &rdev->flags))
2502 				atomic_inc(&rdev->nr_pending);
2503 			else
2504 				rdev = NULL;
2505 			rcu_read_unlock();
2506 			if (rdev) {
2507 				if (!rdev_set_badblocks(
2508 					    rdev,
2509 					    sh->sector,
2510 					    STRIPE_SECTORS, 0))
2511 					md_error(conf->mddev, rdev);
2512 				rdev_dec_pending(rdev, conf->mddev);
2513 			}
2514 		}
2515 		spin_lock_irq(&sh->stripe_lock);
2516 		/* fail all writes first */
2517 		bi = sh->dev[i].towrite;
2518 		sh->dev[i].towrite = NULL;
2519 		spin_unlock_irq(&sh->stripe_lock);
2520 		if (bi)
2521 			bitmap_end = 1;
2522 
2523 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2524 			wake_up(&conf->wait_for_overlap);
2525 
2526 		while (bi && bi->bi_sector <
2527 			sh->dev[i].sector + STRIPE_SECTORS) {
2528 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2529 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2530 			if (!raid5_dec_bi_active_stripes(bi)) {
2531 				md_write_end(conf->mddev);
2532 				bi->bi_next = *return_bi;
2533 				*return_bi = bi;
2534 			}
2535 			bi = nextbi;
2536 		}
2537 		if (bitmap_end)
2538 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2539 				STRIPE_SECTORS, 0, 0);
2540 		bitmap_end = 0;
2541 		/* and fail all 'written' */
2542 		bi = sh->dev[i].written;
2543 		sh->dev[i].written = NULL;
2544 		if (bi) bitmap_end = 1;
2545 		while (bi && bi->bi_sector <
2546 		       sh->dev[i].sector + STRIPE_SECTORS) {
2547 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2548 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2549 			if (!raid5_dec_bi_active_stripes(bi)) {
2550 				md_write_end(conf->mddev);
2551 				bi->bi_next = *return_bi;
2552 				*return_bi = bi;
2553 			}
2554 			bi = bi2;
2555 		}
2556 
2557 		/* fail any reads if this device is non-operational and
2558 		 * the data has not reached the cache yet.
2559 		 */
2560 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2561 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2562 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2563 			spin_lock_irq(&sh->stripe_lock);
2564 			bi = sh->dev[i].toread;
2565 			sh->dev[i].toread = NULL;
2566 			spin_unlock_irq(&sh->stripe_lock);
2567 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2568 				wake_up(&conf->wait_for_overlap);
2569 			while (bi && bi->bi_sector <
2570 			       sh->dev[i].sector + STRIPE_SECTORS) {
2571 				struct bio *nextbi =
2572 					r5_next_bio(bi, sh->dev[i].sector);
2573 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2574 				if (!raid5_dec_bi_active_stripes(bi)) {
2575 					bi->bi_next = *return_bi;
2576 					*return_bi = bi;
2577 				}
2578 				bi = nextbi;
2579 			}
2580 		}
2581 		if (bitmap_end)
2582 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2583 					STRIPE_SECTORS, 0, 0);
2584 		/* If we were in the middle of a write the parity block might
2585 		 * still be locked - so just clear all R5_LOCKED flags
2586 		 */
2587 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2588 	}
2589 
2590 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2591 		if (atomic_dec_and_test(&conf->pending_full_writes))
2592 			md_wakeup_thread(conf->mddev->thread);
2593 }
2594 
2595 static void
2596 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2597 		   struct stripe_head_state *s)
2598 {
2599 	int abort = 0;
2600 	int i;
2601 
2602 	clear_bit(STRIPE_SYNCING, &sh->state);
2603 	s->syncing = 0;
2604 	s->replacing = 0;
2605 	/* There is nothing more to do for sync/check/repair.
2606 	 * Don't even need to abort as that is handled elsewhere
2607 	 * if needed, and not always wanted e.g. if there is a known
2608 	 * bad block here.
2609 	 * For recover/replace we need to record a bad block on all
2610 	 * non-sync devices, or abort the recovery
2611 	 */
2612 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2613 		/* During recovery devices cannot be removed, so
2614 		 * locking and refcounting of rdevs is not needed
2615 		 */
2616 		for (i = 0; i < conf->raid_disks; i++) {
2617 			struct md_rdev *rdev = conf->disks[i].rdev;
2618 			if (rdev
2619 			    && !test_bit(Faulty, &rdev->flags)
2620 			    && !test_bit(In_sync, &rdev->flags)
2621 			    && !rdev_set_badblocks(rdev, sh->sector,
2622 						   STRIPE_SECTORS, 0))
2623 				abort = 1;
2624 			rdev = conf->disks[i].replacement;
2625 			if (rdev
2626 			    && !test_bit(Faulty, &rdev->flags)
2627 			    && !test_bit(In_sync, &rdev->flags)
2628 			    && !rdev_set_badblocks(rdev, sh->sector,
2629 						   STRIPE_SECTORS, 0))
2630 				abort = 1;
2631 		}
2632 		if (abort)
2633 			conf->recovery_disabled =
2634 				conf->mddev->recovery_disabled;
2635 	}
2636 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2637 }
2638 
2639 static int want_replace(struct stripe_head *sh, int disk_idx)
2640 {
2641 	struct md_rdev *rdev;
2642 	int rv = 0;
2643 	/* Doing recovery so rcu locking not required */
2644 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2645 	if (rdev
2646 	    && !test_bit(Faulty, &rdev->flags)
2647 	    && !test_bit(In_sync, &rdev->flags)
2648 	    && (rdev->recovery_offset <= sh->sector
2649 		|| rdev->mddev->recovery_cp <= sh->sector))
2650 		rv = 1;
2651 
2652 	return rv;
2653 }
2654 
2655 /* fetch_block - checks the given member device to see if its data needs
2656  * to be read or computed to satisfy a request.
2657  *
2658  * Returns 1 when no more member devices need to be checked, otherwise returns
2659  * 0 to tell the loop in handle_stripe_fill to continue
2660  */
2661 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2662 		       int disk_idx, int disks)
2663 {
2664 	struct r5dev *dev = &sh->dev[disk_idx];
2665 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2666 				  &sh->dev[s->failed_num[1]] };
2667 
2668 	/* is the data in this block needed, and can we get it? */
2669 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2670 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2671 	    (dev->toread ||
2672 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2673 	     s->syncing || s->expanding ||
2674 	     (s->replacing && want_replace(sh, disk_idx)) ||
2675 	     (s->failed >= 1 && fdev[0]->toread) ||
2676 	     (s->failed >= 2 && fdev[1]->toread) ||
2677 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2678 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2679 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2680 		/* we would like to get this block, possibly by computing it,
2681 		 * otherwise read it if the backing disk is insync
2682 		 */
2683 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2684 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2685 		if ((s->uptodate == disks - 1) &&
2686 		    (s->failed && (disk_idx == s->failed_num[0] ||
2687 				   disk_idx == s->failed_num[1]))) {
2688 			/* have disk failed, and we're requested to fetch it;
2689 			 * do compute it
2690 			 */
2691 			pr_debug("Computing stripe %llu block %d\n",
2692 			       (unsigned long long)sh->sector, disk_idx);
2693 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2694 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2695 			set_bit(R5_Wantcompute, &dev->flags);
2696 			sh->ops.target = disk_idx;
2697 			sh->ops.target2 = -1; /* no 2nd target */
2698 			s->req_compute = 1;
2699 			/* Careful: from this point on 'uptodate' is in the eye
2700 			 * of raid_run_ops which services 'compute' operations
2701 			 * before writes. R5_Wantcompute flags a block that will
2702 			 * be R5_UPTODATE by the time it is needed for a
2703 			 * subsequent operation.
2704 			 */
2705 			s->uptodate++;
2706 			return 1;
2707 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2708 			/* Computing 2-failure is *very* expensive; only
2709 			 * do it if failed >= 2
2710 			 */
2711 			int other;
2712 			for (other = disks; other--; ) {
2713 				if (other == disk_idx)
2714 					continue;
2715 				if (!test_bit(R5_UPTODATE,
2716 				      &sh->dev[other].flags))
2717 					break;
2718 			}
2719 			BUG_ON(other < 0);
2720 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2721 			       (unsigned long long)sh->sector,
2722 			       disk_idx, other);
2723 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2724 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2725 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2726 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2727 			sh->ops.target = disk_idx;
2728 			sh->ops.target2 = other;
2729 			s->uptodate += 2;
2730 			s->req_compute = 1;
2731 			return 1;
2732 		} else if (test_bit(R5_Insync, &dev->flags)) {
2733 			set_bit(R5_LOCKED, &dev->flags);
2734 			set_bit(R5_Wantread, &dev->flags);
2735 			s->locked++;
2736 			pr_debug("Reading block %d (sync=%d)\n",
2737 				disk_idx, s->syncing);
2738 		}
2739 	}
2740 
2741 	return 0;
2742 }
2743 
2744 /**
2745  * handle_stripe_fill - read or compute data to satisfy pending requests.
2746  */
2747 static void handle_stripe_fill(struct stripe_head *sh,
2748 			       struct stripe_head_state *s,
2749 			       int disks)
2750 {
2751 	int i;
2752 
2753 	/* look for blocks to read/compute, skip this if a compute
2754 	 * is already in flight, or if the stripe contents are in the
2755 	 * midst of changing due to a write
2756 	 */
2757 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2758 	    !sh->reconstruct_state)
2759 		for (i = disks; i--; )
2760 			if (fetch_block(sh, s, i, disks))
2761 				break;
2762 	set_bit(STRIPE_HANDLE, &sh->state);
2763 }
2764 
2765 
2766 /* handle_stripe_clean_event
2767  * any written block on an uptodate or failed drive can be returned.
2768  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2769  * never LOCKED, so we don't need to test 'failed' directly.
2770  */
2771 static void handle_stripe_clean_event(struct r5conf *conf,
2772 	struct stripe_head *sh, int disks, struct bio **return_bi)
2773 {
2774 	int i;
2775 	struct r5dev *dev;
2776 
2777 	for (i = disks; i--; )
2778 		if (sh->dev[i].written) {
2779 			dev = &sh->dev[i];
2780 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2781 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2782 			     test_bit(R5_Discard, &dev->flags))) {
2783 				/* We can return any write requests */
2784 				struct bio *wbi, *wbi2;
2785 				pr_debug("Return write for disc %d\n", i);
2786 				if (test_and_clear_bit(R5_Discard, &dev->flags))
2787 					clear_bit(R5_UPTODATE, &dev->flags);
2788 				wbi = dev->written;
2789 				dev->written = NULL;
2790 				while (wbi && wbi->bi_sector <
2791 					dev->sector + STRIPE_SECTORS) {
2792 					wbi2 = r5_next_bio(wbi, dev->sector);
2793 					if (!raid5_dec_bi_active_stripes(wbi)) {
2794 						md_write_end(conf->mddev);
2795 						wbi->bi_next = *return_bi;
2796 						*return_bi = wbi;
2797 					}
2798 					wbi = wbi2;
2799 				}
2800 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2801 						STRIPE_SECTORS,
2802 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2803 						0);
2804 			}
2805 		} else if (test_bit(R5_Discard, &sh->dev[i].flags))
2806 			clear_bit(R5_Discard, &sh->dev[i].flags);
2807 
2808 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2809 		if (atomic_dec_and_test(&conf->pending_full_writes))
2810 			md_wakeup_thread(conf->mddev->thread);
2811 }
2812 
2813 static void handle_stripe_dirtying(struct r5conf *conf,
2814 				   struct stripe_head *sh,
2815 				   struct stripe_head_state *s,
2816 				   int disks)
2817 {
2818 	int rmw = 0, rcw = 0, i;
2819 	sector_t recovery_cp = conf->mddev->recovery_cp;
2820 
2821 	/* RAID6 requires 'rcw' in current implementation.
2822 	 * Otherwise, check whether resync is now happening or should start.
2823 	 * If yes, then the array is dirty (after unclean shutdown or
2824 	 * initial creation), so parity in some stripes might be inconsistent.
2825 	 * In this case, we need to always do reconstruct-write, to ensure
2826 	 * that in case of drive failure or read-error correction, we
2827 	 * generate correct data from the parity.
2828 	 */
2829 	if (conf->max_degraded == 2 ||
2830 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2831 		/* Calculate the real rcw later - for now make it
2832 		 * look like rcw is cheaper
2833 		 */
2834 		rcw = 1; rmw = 2;
2835 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2836 			 conf->max_degraded, (unsigned long long)recovery_cp,
2837 			 (unsigned long long)sh->sector);
2838 	} else for (i = disks; i--; ) {
2839 		/* would I have to read this buffer for read_modify_write */
2840 		struct r5dev *dev = &sh->dev[i];
2841 		if ((dev->towrite || i == sh->pd_idx) &&
2842 		    !test_bit(R5_LOCKED, &dev->flags) &&
2843 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2844 		      test_bit(R5_Wantcompute, &dev->flags))) {
2845 			if (test_bit(R5_Insync, &dev->flags))
2846 				rmw++;
2847 			else
2848 				rmw += 2*disks;  /* cannot read it */
2849 		}
2850 		/* Would I have to read this buffer for reconstruct_write */
2851 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2852 		    !test_bit(R5_LOCKED, &dev->flags) &&
2853 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2854 		    test_bit(R5_Wantcompute, &dev->flags))) {
2855 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2856 			else
2857 				rcw += 2*disks;
2858 		}
2859 	}
2860 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2861 		(unsigned long long)sh->sector, rmw, rcw);
2862 	set_bit(STRIPE_HANDLE, &sh->state);
2863 	if (rmw < rcw && rmw > 0) {
2864 		/* prefer read-modify-write, but need to get some data */
2865 		blk_add_trace_msg(conf->mddev->queue, "raid5 rmw %llu %d",
2866 				  (unsigned long long)sh->sector, rmw);
2867 		for (i = disks; i--; ) {
2868 			struct r5dev *dev = &sh->dev[i];
2869 			if ((dev->towrite || i == sh->pd_idx) &&
2870 			    !test_bit(R5_LOCKED, &dev->flags) &&
2871 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2872 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2873 			    test_bit(R5_Insync, &dev->flags)) {
2874 				if (
2875 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2876 					pr_debug("Read_old block "
2877 						 "%d for r-m-w\n", i);
2878 					set_bit(R5_LOCKED, &dev->flags);
2879 					set_bit(R5_Wantread, &dev->flags);
2880 					s->locked++;
2881 				} else {
2882 					set_bit(STRIPE_DELAYED, &sh->state);
2883 					set_bit(STRIPE_HANDLE, &sh->state);
2884 				}
2885 			}
2886 		}
2887 	}
2888 	if (rcw <= rmw && rcw > 0) {
2889 		/* want reconstruct write, but need to get some data */
2890 		int qread =0;
2891 		rcw = 0;
2892 		for (i = disks; i--; ) {
2893 			struct r5dev *dev = &sh->dev[i];
2894 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2895 			    i != sh->pd_idx && i != sh->qd_idx &&
2896 			    !test_bit(R5_LOCKED, &dev->flags) &&
2897 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2898 			      test_bit(R5_Wantcompute, &dev->flags))) {
2899 				rcw++;
2900 				if (!test_bit(R5_Insync, &dev->flags))
2901 					continue; /* it's a failed drive */
2902 				if (
2903 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2904 					pr_debug("Read_old block "
2905 						"%d for Reconstruct\n", i);
2906 					set_bit(R5_LOCKED, &dev->flags);
2907 					set_bit(R5_Wantread, &dev->flags);
2908 					s->locked++;
2909 					qread++;
2910 				} else {
2911 					set_bit(STRIPE_DELAYED, &sh->state);
2912 					set_bit(STRIPE_HANDLE, &sh->state);
2913 				}
2914 			}
2915 		}
2916 		if (rcw)
2917 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2918 					  (unsigned long long)sh->sector,
2919 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2920 	}
2921 	/* now if nothing is locked, and if we have enough data,
2922 	 * we can start a write request
2923 	 */
2924 	/* since handle_stripe can be called at any time we need to handle the
2925 	 * case where a compute block operation has been submitted and then a
2926 	 * subsequent call wants to start a write request.  raid_run_ops only
2927 	 * handles the case where compute block and reconstruct are requested
2928 	 * simultaneously.  If this is not the case then new writes need to be
2929 	 * held off until the compute completes.
2930 	 */
2931 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2932 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2933 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2934 		schedule_reconstruction(sh, s, rcw == 0, 0);
2935 }
2936 
2937 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2938 				struct stripe_head_state *s, int disks)
2939 {
2940 	struct r5dev *dev = NULL;
2941 
2942 	set_bit(STRIPE_HANDLE, &sh->state);
2943 
2944 	switch (sh->check_state) {
2945 	case check_state_idle:
2946 		/* start a new check operation if there are no failures */
2947 		if (s->failed == 0) {
2948 			BUG_ON(s->uptodate != disks);
2949 			sh->check_state = check_state_run;
2950 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2951 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2952 			s->uptodate--;
2953 			break;
2954 		}
2955 		dev = &sh->dev[s->failed_num[0]];
2956 		/* fall through */
2957 	case check_state_compute_result:
2958 		sh->check_state = check_state_idle;
2959 		if (!dev)
2960 			dev = &sh->dev[sh->pd_idx];
2961 
2962 		/* check that a write has not made the stripe insync */
2963 		if (test_bit(STRIPE_INSYNC, &sh->state))
2964 			break;
2965 
2966 		/* either failed parity check, or recovery is happening */
2967 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2968 		BUG_ON(s->uptodate != disks);
2969 
2970 		set_bit(R5_LOCKED, &dev->flags);
2971 		s->locked++;
2972 		set_bit(R5_Wantwrite, &dev->flags);
2973 
2974 		clear_bit(STRIPE_DEGRADED, &sh->state);
2975 		set_bit(STRIPE_INSYNC, &sh->state);
2976 		break;
2977 	case check_state_run:
2978 		break; /* we will be called again upon completion */
2979 	case check_state_check_result:
2980 		sh->check_state = check_state_idle;
2981 
2982 		/* if a failure occurred during the check operation, leave
2983 		 * STRIPE_INSYNC not set and let the stripe be handled again
2984 		 */
2985 		if (s->failed)
2986 			break;
2987 
2988 		/* handle a successful check operation, if parity is correct
2989 		 * we are done.  Otherwise update the mismatch count and repair
2990 		 * parity if !MD_RECOVERY_CHECK
2991 		 */
2992 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2993 			/* parity is correct (on disc,
2994 			 * not in buffer any more)
2995 			 */
2996 			set_bit(STRIPE_INSYNC, &sh->state);
2997 		else {
2998 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2999 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3000 				/* don't try to repair!! */
3001 				set_bit(STRIPE_INSYNC, &sh->state);
3002 			else {
3003 				sh->check_state = check_state_compute_run;
3004 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3005 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3006 				set_bit(R5_Wantcompute,
3007 					&sh->dev[sh->pd_idx].flags);
3008 				sh->ops.target = sh->pd_idx;
3009 				sh->ops.target2 = -1;
3010 				s->uptodate++;
3011 			}
3012 		}
3013 		break;
3014 	case check_state_compute_run:
3015 		break;
3016 	default:
3017 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3018 		       __func__, sh->check_state,
3019 		       (unsigned long long) sh->sector);
3020 		BUG();
3021 	}
3022 }
3023 
3024 
3025 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3026 				  struct stripe_head_state *s,
3027 				  int disks)
3028 {
3029 	int pd_idx = sh->pd_idx;
3030 	int qd_idx = sh->qd_idx;
3031 	struct r5dev *dev;
3032 
3033 	set_bit(STRIPE_HANDLE, &sh->state);
3034 
3035 	BUG_ON(s->failed > 2);
3036 
3037 	/* Want to check and possibly repair P and Q.
3038 	 * However there could be one 'failed' device, in which
3039 	 * case we can only check one of them, possibly using the
3040 	 * other to generate missing data
3041 	 */
3042 
3043 	switch (sh->check_state) {
3044 	case check_state_idle:
3045 		/* start a new check operation if there are < 2 failures */
3046 		if (s->failed == s->q_failed) {
3047 			/* The only possible failed device holds Q, so it
3048 			 * makes sense to check P (If anything else were failed,
3049 			 * we would have used P to recreate it).
3050 			 */
3051 			sh->check_state = check_state_run;
3052 		}
3053 		if (!s->q_failed && s->failed < 2) {
3054 			/* Q is not failed, and we didn't use it to generate
3055 			 * anything, so it makes sense to check it
3056 			 */
3057 			if (sh->check_state == check_state_run)
3058 				sh->check_state = check_state_run_pq;
3059 			else
3060 				sh->check_state = check_state_run_q;
3061 		}
3062 
3063 		/* discard potentially stale zero_sum_result */
3064 		sh->ops.zero_sum_result = 0;
3065 
3066 		if (sh->check_state == check_state_run) {
3067 			/* async_xor_zero_sum destroys the contents of P */
3068 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3069 			s->uptodate--;
3070 		}
3071 		if (sh->check_state >= check_state_run &&
3072 		    sh->check_state <= check_state_run_pq) {
3073 			/* async_syndrome_zero_sum preserves P and Q, so
3074 			 * no need to mark them !uptodate here
3075 			 */
3076 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3077 			break;
3078 		}
3079 
3080 		/* we have 2-disk failure */
3081 		BUG_ON(s->failed != 2);
3082 		/* fall through */
3083 	case check_state_compute_result:
3084 		sh->check_state = check_state_idle;
3085 
3086 		/* check that a write has not made the stripe insync */
3087 		if (test_bit(STRIPE_INSYNC, &sh->state))
3088 			break;
3089 
3090 		/* now write out any block on a failed drive,
3091 		 * or P or Q if they were recomputed
3092 		 */
3093 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3094 		if (s->failed == 2) {
3095 			dev = &sh->dev[s->failed_num[1]];
3096 			s->locked++;
3097 			set_bit(R5_LOCKED, &dev->flags);
3098 			set_bit(R5_Wantwrite, &dev->flags);
3099 		}
3100 		if (s->failed >= 1) {
3101 			dev = &sh->dev[s->failed_num[0]];
3102 			s->locked++;
3103 			set_bit(R5_LOCKED, &dev->flags);
3104 			set_bit(R5_Wantwrite, &dev->flags);
3105 		}
3106 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3107 			dev = &sh->dev[pd_idx];
3108 			s->locked++;
3109 			set_bit(R5_LOCKED, &dev->flags);
3110 			set_bit(R5_Wantwrite, &dev->flags);
3111 		}
3112 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3113 			dev = &sh->dev[qd_idx];
3114 			s->locked++;
3115 			set_bit(R5_LOCKED, &dev->flags);
3116 			set_bit(R5_Wantwrite, &dev->flags);
3117 		}
3118 		clear_bit(STRIPE_DEGRADED, &sh->state);
3119 
3120 		set_bit(STRIPE_INSYNC, &sh->state);
3121 		break;
3122 	case check_state_run:
3123 	case check_state_run_q:
3124 	case check_state_run_pq:
3125 		break; /* we will be called again upon completion */
3126 	case check_state_check_result:
3127 		sh->check_state = check_state_idle;
3128 
3129 		/* handle a successful check operation, if parity is correct
3130 		 * we are done.  Otherwise update the mismatch count and repair
3131 		 * parity if !MD_RECOVERY_CHECK
3132 		 */
3133 		if (sh->ops.zero_sum_result == 0) {
3134 			/* both parities are correct */
3135 			if (!s->failed)
3136 				set_bit(STRIPE_INSYNC, &sh->state);
3137 			else {
3138 				/* in contrast to the raid5 case we can validate
3139 				 * parity, but still have a failure to write
3140 				 * back
3141 				 */
3142 				sh->check_state = check_state_compute_result;
3143 				/* Returning at this point means that we may go
3144 				 * off and bring p and/or q uptodate again so
3145 				 * we make sure to check zero_sum_result again
3146 				 * to verify if p or q need writeback
3147 				 */
3148 			}
3149 		} else {
3150 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3151 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3152 				/* don't try to repair!! */
3153 				set_bit(STRIPE_INSYNC, &sh->state);
3154 			else {
3155 				int *target = &sh->ops.target;
3156 
3157 				sh->ops.target = -1;
3158 				sh->ops.target2 = -1;
3159 				sh->check_state = check_state_compute_run;
3160 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3161 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3162 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3163 					set_bit(R5_Wantcompute,
3164 						&sh->dev[pd_idx].flags);
3165 					*target = pd_idx;
3166 					target = &sh->ops.target2;
3167 					s->uptodate++;
3168 				}
3169 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3170 					set_bit(R5_Wantcompute,
3171 						&sh->dev[qd_idx].flags);
3172 					*target = qd_idx;
3173 					s->uptodate++;
3174 				}
3175 			}
3176 		}
3177 		break;
3178 	case check_state_compute_run:
3179 		break;
3180 	default:
3181 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3182 		       __func__, sh->check_state,
3183 		       (unsigned long long) sh->sector);
3184 		BUG();
3185 	}
3186 }
3187 
3188 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3189 {
3190 	int i;
3191 
3192 	/* We have read all the blocks in this stripe and now we need to
3193 	 * copy some of them into a target stripe for expand.
3194 	 */
3195 	struct dma_async_tx_descriptor *tx = NULL;
3196 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3197 	for (i = 0; i < sh->disks; i++)
3198 		if (i != sh->pd_idx && i != sh->qd_idx) {
3199 			int dd_idx, j;
3200 			struct stripe_head *sh2;
3201 			struct async_submit_ctl submit;
3202 
3203 			sector_t bn = compute_blocknr(sh, i, 1);
3204 			sector_t s = raid5_compute_sector(conf, bn, 0,
3205 							  &dd_idx, NULL);
3206 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3207 			if (sh2 == NULL)
3208 				/* so far only the early blocks of this stripe
3209 				 * have been requested.  When later blocks
3210 				 * get requested, we will try again
3211 				 */
3212 				continue;
3213 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3214 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3215 				/* must have already done this block */
3216 				release_stripe(sh2);
3217 				continue;
3218 			}
3219 
3220 			/* place all the copies on one channel */
3221 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3222 			tx = async_memcpy(sh2->dev[dd_idx].page,
3223 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3224 					  &submit);
3225 
3226 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3227 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3228 			for (j = 0; j < conf->raid_disks; j++)
3229 				if (j != sh2->pd_idx &&
3230 				    j != sh2->qd_idx &&
3231 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3232 					break;
3233 			if (j == conf->raid_disks) {
3234 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3235 				set_bit(STRIPE_HANDLE, &sh2->state);
3236 			}
3237 			release_stripe(sh2);
3238 
3239 		}
3240 	/* done submitting copies, wait for them to complete */
3241 	async_tx_quiesce(&tx);
3242 }
3243 
3244 /*
3245  * handle_stripe - do things to a stripe.
3246  *
3247  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3248  * state of various bits to see what needs to be done.
3249  * Possible results:
3250  *    return some read requests which now have data
3251  *    return some write requests which are safely on storage
3252  *    schedule a read on some buffers
3253  *    schedule a write of some buffers
3254  *    return confirmation of parity correctness
3255  *
3256  */
3257 
3258 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3259 {
3260 	struct r5conf *conf = sh->raid_conf;
3261 	int disks = sh->disks;
3262 	struct r5dev *dev;
3263 	int i;
3264 	int do_recovery = 0;
3265 
3266 	memset(s, 0, sizeof(*s));
3267 
3268 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3269 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3270 	s->failed_num[0] = -1;
3271 	s->failed_num[1] = -1;
3272 
3273 	/* Now to look around and see what can be done */
3274 	rcu_read_lock();
3275 	for (i=disks; i--; ) {
3276 		struct md_rdev *rdev;
3277 		sector_t first_bad;
3278 		int bad_sectors;
3279 		int is_bad = 0;
3280 
3281 		dev = &sh->dev[i];
3282 
3283 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3284 			 i, dev->flags,
3285 			 dev->toread, dev->towrite, dev->written);
3286 		/* maybe we can reply to a read
3287 		 *
3288 		 * new wantfill requests are only permitted while
3289 		 * ops_complete_biofill is guaranteed to be inactive
3290 		 */
3291 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3292 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3293 			set_bit(R5_Wantfill, &dev->flags);
3294 
3295 		/* now count some things */
3296 		if (test_bit(R5_LOCKED, &dev->flags))
3297 			s->locked++;
3298 		if (test_bit(R5_UPTODATE, &dev->flags))
3299 			s->uptodate++;
3300 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3301 			s->compute++;
3302 			BUG_ON(s->compute > 2);
3303 		}
3304 
3305 		if (test_bit(R5_Wantfill, &dev->flags))
3306 			s->to_fill++;
3307 		else if (dev->toread)
3308 			s->to_read++;
3309 		if (dev->towrite) {
3310 			s->to_write++;
3311 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3312 				s->non_overwrite++;
3313 		}
3314 		if (dev->written)
3315 			s->written++;
3316 		/* Prefer to use the replacement for reads, but only
3317 		 * if it is recovered enough and has no bad blocks.
3318 		 */
3319 		rdev = rcu_dereference(conf->disks[i].replacement);
3320 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3321 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3322 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3323 				 &first_bad, &bad_sectors))
3324 			set_bit(R5_ReadRepl, &dev->flags);
3325 		else {
3326 			if (rdev)
3327 				set_bit(R5_NeedReplace, &dev->flags);
3328 			rdev = rcu_dereference(conf->disks[i].rdev);
3329 			clear_bit(R5_ReadRepl, &dev->flags);
3330 		}
3331 		if (rdev && test_bit(Faulty, &rdev->flags))
3332 			rdev = NULL;
3333 		if (rdev) {
3334 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3335 					     &first_bad, &bad_sectors);
3336 			if (s->blocked_rdev == NULL
3337 			    && (test_bit(Blocked, &rdev->flags)
3338 				|| is_bad < 0)) {
3339 				if (is_bad < 0)
3340 					set_bit(BlockedBadBlocks,
3341 						&rdev->flags);
3342 				s->blocked_rdev = rdev;
3343 				atomic_inc(&rdev->nr_pending);
3344 			}
3345 		}
3346 		clear_bit(R5_Insync, &dev->flags);
3347 		if (!rdev)
3348 			/* Not in-sync */;
3349 		else if (is_bad) {
3350 			/* also not in-sync */
3351 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3352 			    test_bit(R5_UPTODATE, &dev->flags)) {
3353 				/* treat as in-sync, but with a read error
3354 				 * which we can now try to correct
3355 				 */
3356 				set_bit(R5_Insync, &dev->flags);
3357 				set_bit(R5_ReadError, &dev->flags);
3358 			}
3359 		} else if (test_bit(In_sync, &rdev->flags))
3360 			set_bit(R5_Insync, &dev->flags);
3361 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3362 			/* in sync if before recovery_offset */
3363 			set_bit(R5_Insync, &dev->flags);
3364 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3365 			 test_bit(R5_Expanded, &dev->flags))
3366 			/* If we've reshaped into here, we assume it is Insync.
3367 			 * We will shortly update recovery_offset to make
3368 			 * it official.
3369 			 */
3370 			set_bit(R5_Insync, &dev->flags);
3371 
3372 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3373 			/* This flag does not apply to '.replacement'
3374 			 * only to .rdev, so make sure to check that*/
3375 			struct md_rdev *rdev2 = rcu_dereference(
3376 				conf->disks[i].rdev);
3377 			if (rdev2 == rdev)
3378 				clear_bit(R5_Insync, &dev->flags);
3379 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3380 				s->handle_bad_blocks = 1;
3381 				atomic_inc(&rdev2->nr_pending);
3382 			} else
3383 				clear_bit(R5_WriteError, &dev->flags);
3384 		}
3385 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3386 			/* This flag does not apply to '.replacement'
3387 			 * only to .rdev, so make sure to check that*/
3388 			struct md_rdev *rdev2 = rcu_dereference(
3389 				conf->disks[i].rdev);
3390 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3391 				s->handle_bad_blocks = 1;
3392 				atomic_inc(&rdev2->nr_pending);
3393 			} else
3394 				clear_bit(R5_MadeGood, &dev->flags);
3395 		}
3396 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3397 			struct md_rdev *rdev2 = rcu_dereference(
3398 				conf->disks[i].replacement);
3399 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3400 				s->handle_bad_blocks = 1;
3401 				atomic_inc(&rdev2->nr_pending);
3402 			} else
3403 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3404 		}
3405 		if (!test_bit(R5_Insync, &dev->flags)) {
3406 			/* The ReadError flag will just be confusing now */
3407 			clear_bit(R5_ReadError, &dev->flags);
3408 			clear_bit(R5_ReWrite, &dev->flags);
3409 		}
3410 		if (test_bit(R5_ReadError, &dev->flags))
3411 			clear_bit(R5_Insync, &dev->flags);
3412 		if (!test_bit(R5_Insync, &dev->flags)) {
3413 			if (s->failed < 2)
3414 				s->failed_num[s->failed] = i;
3415 			s->failed++;
3416 			if (rdev && !test_bit(Faulty, &rdev->flags))
3417 				do_recovery = 1;
3418 		}
3419 	}
3420 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3421 		/* If there is a failed device being replaced,
3422 		 *     we must be recovering.
3423 		 * else if we are after recovery_cp, we must be syncing
3424 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3425 		 * else we can only be replacing
3426 		 * sync and recovery both need to read all devices, and so
3427 		 * use the same flag.
3428 		 */
3429 		if (do_recovery ||
3430 		    sh->sector >= conf->mddev->recovery_cp ||
3431 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3432 			s->syncing = 1;
3433 		else
3434 			s->replacing = 1;
3435 	}
3436 	rcu_read_unlock();
3437 }
3438 
3439 static void handle_stripe(struct stripe_head *sh)
3440 {
3441 	struct stripe_head_state s;
3442 	struct r5conf *conf = sh->raid_conf;
3443 	int i;
3444 	int prexor;
3445 	int disks = sh->disks;
3446 	struct r5dev *pdev, *qdev;
3447 
3448 	clear_bit(STRIPE_HANDLE, &sh->state);
3449 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3450 		/* already being handled, ensure it gets handled
3451 		 * again when current action finishes */
3452 		set_bit(STRIPE_HANDLE, &sh->state);
3453 		return;
3454 	}
3455 
3456 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3457 		set_bit(STRIPE_SYNCING, &sh->state);
3458 		clear_bit(STRIPE_INSYNC, &sh->state);
3459 	}
3460 	clear_bit(STRIPE_DELAYED, &sh->state);
3461 
3462 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3463 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3464 	       (unsigned long long)sh->sector, sh->state,
3465 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3466 	       sh->check_state, sh->reconstruct_state);
3467 
3468 	analyse_stripe(sh, &s);
3469 
3470 	if (s.handle_bad_blocks) {
3471 		set_bit(STRIPE_HANDLE, &sh->state);
3472 		goto finish;
3473 	}
3474 
3475 	if (unlikely(s.blocked_rdev)) {
3476 		if (s.syncing || s.expanding || s.expanded ||
3477 		    s.replacing || s.to_write || s.written) {
3478 			set_bit(STRIPE_HANDLE, &sh->state);
3479 			goto finish;
3480 		}
3481 		/* There is nothing for the blocked_rdev to block */
3482 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3483 		s.blocked_rdev = NULL;
3484 	}
3485 
3486 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3487 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3488 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3489 	}
3490 
3491 	pr_debug("locked=%d uptodate=%d to_read=%d"
3492 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3493 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3494 	       s.failed_num[0], s.failed_num[1]);
3495 	/* check if the array has lost more than max_degraded devices and,
3496 	 * if so, some requests might need to be failed.
3497 	 */
3498 	if (s.failed > conf->max_degraded) {
3499 		sh->check_state = 0;
3500 		sh->reconstruct_state = 0;
3501 		if (s.to_read+s.to_write+s.written)
3502 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3503 		if (s.syncing + s.replacing)
3504 			handle_failed_sync(conf, sh, &s);
3505 	}
3506 
3507 	/* Now we check to see if any write operations have recently
3508 	 * completed
3509 	 */
3510 	prexor = 0;
3511 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3512 		prexor = 1;
3513 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3514 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3515 		sh->reconstruct_state = reconstruct_state_idle;
3516 
3517 		/* All the 'written' buffers and the parity block are ready to
3518 		 * be written back to disk
3519 		 */
3520 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3521 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3522 		BUG_ON(sh->qd_idx >= 0 &&
3523 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3524 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3525 		for (i = disks; i--; ) {
3526 			struct r5dev *dev = &sh->dev[i];
3527 			if (test_bit(R5_LOCKED, &dev->flags) &&
3528 				(i == sh->pd_idx || i == sh->qd_idx ||
3529 				 dev->written)) {
3530 				pr_debug("Writing block %d\n", i);
3531 				set_bit(R5_Wantwrite, &dev->flags);
3532 				if (prexor)
3533 					continue;
3534 				if (!test_bit(R5_Insync, &dev->flags) ||
3535 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3536 				     s.failed == 0))
3537 					set_bit(STRIPE_INSYNC, &sh->state);
3538 			}
3539 		}
3540 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3541 			s.dec_preread_active = 1;
3542 	}
3543 
3544 	/*
3545 	 * might be able to return some write requests if the parity blocks
3546 	 * are safe, or on a failed drive
3547 	 */
3548 	pdev = &sh->dev[sh->pd_idx];
3549 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3550 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3551 	qdev = &sh->dev[sh->qd_idx];
3552 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3553 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3554 		|| conf->level < 6;
3555 
3556 	if (s.written &&
3557 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3558 			     && !test_bit(R5_LOCKED, &pdev->flags)
3559 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3560 				 test_bit(R5_Discard, &pdev->flags))))) &&
3561 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3562 			     && !test_bit(R5_LOCKED, &qdev->flags)
3563 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3564 				 test_bit(R5_Discard, &qdev->flags))))))
3565 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3566 
3567 	/* Now we might consider reading some blocks, either to check/generate
3568 	 * parity, or to satisfy requests
3569 	 * or to load a block that is being partially written.
3570 	 */
3571 	if (s.to_read || s.non_overwrite
3572 	    || (conf->level == 6 && s.to_write && s.failed)
3573 	    || (s.syncing && (s.uptodate + s.compute < disks))
3574 	    || s.replacing
3575 	    || s.expanding)
3576 		handle_stripe_fill(sh, &s, disks);
3577 
3578 	/* Now to consider new write requests and what else, if anything
3579 	 * should be read.  We do not handle new writes when:
3580 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3581 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3582 	 *    block.
3583 	 */
3584 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3585 		handle_stripe_dirtying(conf, sh, &s, disks);
3586 
3587 	/* maybe we need to check and possibly fix the parity for this stripe
3588 	 * Any reads will already have been scheduled, so we just see if enough
3589 	 * data is available.  The parity check is held off while parity
3590 	 * dependent operations are in flight.
3591 	 */
3592 	if (sh->check_state ||
3593 	    (s.syncing && s.locked == 0 &&
3594 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3595 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3596 		if (conf->level == 6)
3597 			handle_parity_checks6(conf, sh, &s, disks);
3598 		else
3599 			handle_parity_checks5(conf, sh, &s, disks);
3600 	}
3601 
3602 	if (s.replacing && s.locked == 0
3603 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3604 		/* Write out to replacement devices where possible */
3605 		for (i = 0; i < conf->raid_disks; i++)
3606 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3607 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3608 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3609 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3610 				s.locked++;
3611 			}
3612 		set_bit(STRIPE_INSYNC, &sh->state);
3613 	}
3614 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3615 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3616 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3617 		clear_bit(STRIPE_SYNCING, &sh->state);
3618 	}
3619 
3620 	/* If the failed drives are just a ReadError, then we might need
3621 	 * to progress the repair/check process
3622 	 */
3623 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3624 		for (i = 0; i < s.failed; i++) {
3625 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3626 			if (test_bit(R5_ReadError, &dev->flags)
3627 			    && !test_bit(R5_LOCKED, &dev->flags)
3628 			    && test_bit(R5_UPTODATE, &dev->flags)
3629 				) {
3630 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3631 					set_bit(R5_Wantwrite, &dev->flags);
3632 					set_bit(R5_ReWrite, &dev->flags);
3633 					set_bit(R5_LOCKED, &dev->flags);
3634 					s.locked++;
3635 				} else {
3636 					/* let's read it back */
3637 					set_bit(R5_Wantread, &dev->flags);
3638 					set_bit(R5_LOCKED, &dev->flags);
3639 					s.locked++;
3640 				}
3641 			}
3642 		}
3643 
3644 
3645 	/* Finish reconstruct operations initiated by the expansion process */
3646 	if (sh->reconstruct_state == reconstruct_state_result) {
3647 		struct stripe_head *sh_src
3648 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3649 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3650 			/* sh cannot be written until sh_src has been read.
3651 			 * so arrange for sh to be delayed a little
3652 			 */
3653 			set_bit(STRIPE_DELAYED, &sh->state);
3654 			set_bit(STRIPE_HANDLE, &sh->state);
3655 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3656 					      &sh_src->state))
3657 				atomic_inc(&conf->preread_active_stripes);
3658 			release_stripe(sh_src);
3659 			goto finish;
3660 		}
3661 		if (sh_src)
3662 			release_stripe(sh_src);
3663 
3664 		sh->reconstruct_state = reconstruct_state_idle;
3665 		clear_bit(STRIPE_EXPANDING, &sh->state);
3666 		for (i = conf->raid_disks; i--; ) {
3667 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3668 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3669 			s.locked++;
3670 		}
3671 	}
3672 
3673 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3674 	    !sh->reconstruct_state) {
3675 		/* Need to write out all blocks after computing parity */
3676 		sh->disks = conf->raid_disks;
3677 		stripe_set_idx(sh->sector, conf, 0, sh);
3678 		schedule_reconstruction(sh, &s, 1, 1);
3679 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3680 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3681 		atomic_dec(&conf->reshape_stripes);
3682 		wake_up(&conf->wait_for_overlap);
3683 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3684 	}
3685 
3686 	if (s.expanding && s.locked == 0 &&
3687 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3688 		handle_stripe_expansion(conf, sh);
3689 
3690 finish:
3691 	/* wait for this device to become unblocked */
3692 	if (unlikely(s.blocked_rdev)) {
3693 		if (conf->mddev->external)
3694 			md_wait_for_blocked_rdev(s.blocked_rdev,
3695 						 conf->mddev);
3696 		else
3697 			/* Internal metadata will immediately
3698 			 * be written by raid5d, so we don't
3699 			 * need to wait here.
3700 			 */
3701 			rdev_dec_pending(s.blocked_rdev,
3702 					 conf->mddev);
3703 	}
3704 
3705 	if (s.handle_bad_blocks)
3706 		for (i = disks; i--; ) {
3707 			struct md_rdev *rdev;
3708 			struct r5dev *dev = &sh->dev[i];
3709 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3710 				/* We own a safe reference to the rdev */
3711 				rdev = conf->disks[i].rdev;
3712 				if (!rdev_set_badblocks(rdev, sh->sector,
3713 							STRIPE_SECTORS, 0))
3714 					md_error(conf->mddev, rdev);
3715 				rdev_dec_pending(rdev, conf->mddev);
3716 			}
3717 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3718 				rdev = conf->disks[i].rdev;
3719 				rdev_clear_badblocks(rdev, sh->sector,
3720 						     STRIPE_SECTORS, 0);
3721 				rdev_dec_pending(rdev, conf->mddev);
3722 			}
3723 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3724 				rdev = conf->disks[i].replacement;
3725 				if (!rdev)
3726 					/* rdev have been moved down */
3727 					rdev = conf->disks[i].rdev;
3728 				rdev_clear_badblocks(rdev, sh->sector,
3729 						     STRIPE_SECTORS, 0);
3730 				rdev_dec_pending(rdev, conf->mddev);
3731 			}
3732 		}
3733 
3734 	if (s.ops_request)
3735 		raid_run_ops(sh, s.ops_request);
3736 
3737 	ops_run_io(sh, &s);
3738 
3739 	if (s.dec_preread_active) {
3740 		/* We delay this until after ops_run_io so that if make_request
3741 		 * is waiting on a flush, it won't continue until the writes
3742 		 * have actually been submitted.
3743 		 */
3744 		atomic_dec(&conf->preread_active_stripes);
3745 		if (atomic_read(&conf->preread_active_stripes) <
3746 		    IO_THRESHOLD)
3747 			md_wakeup_thread(conf->mddev->thread);
3748 	}
3749 
3750 	return_io(s.return_bi);
3751 
3752 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3753 }
3754 
3755 static void raid5_activate_delayed(struct r5conf *conf)
3756 {
3757 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3758 		while (!list_empty(&conf->delayed_list)) {
3759 			struct list_head *l = conf->delayed_list.next;
3760 			struct stripe_head *sh;
3761 			sh = list_entry(l, struct stripe_head, lru);
3762 			list_del_init(l);
3763 			clear_bit(STRIPE_DELAYED, &sh->state);
3764 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3765 				atomic_inc(&conf->preread_active_stripes);
3766 			list_add_tail(&sh->lru, &conf->hold_list);
3767 		}
3768 	}
3769 }
3770 
3771 static void activate_bit_delay(struct r5conf *conf)
3772 {
3773 	/* device_lock is held */
3774 	struct list_head head;
3775 	list_add(&head, &conf->bitmap_list);
3776 	list_del_init(&conf->bitmap_list);
3777 	while (!list_empty(&head)) {
3778 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3779 		list_del_init(&sh->lru);
3780 		atomic_inc(&sh->count);
3781 		__release_stripe(conf, sh);
3782 	}
3783 }
3784 
3785 int md_raid5_congested(struct mddev *mddev, int bits)
3786 {
3787 	struct r5conf *conf = mddev->private;
3788 
3789 	/* No difference between reads and writes.  Just check
3790 	 * how busy the stripe_cache is
3791 	 */
3792 
3793 	if (conf->inactive_blocked)
3794 		return 1;
3795 	if (conf->quiesce)
3796 		return 1;
3797 	if (list_empty_careful(&conf->inactive_list))
3798 		return 1;
3799 
3800 	return 0;
3801 }
3802 EXPORT_SYMBOL_GPL(md_raid5_congested);
3803 
3804 static int raid5_congested(void *data, int bits)
3805 {
3806 	struct mddev *mddev = data;
3807 
3808 	return mddev_congested(mddev, bits) ||
3809 		md_raid5_congested(mddev, bits);
3810 }
3811 
3812 /* We want read requests to align with chunks where possible,
3813  * but write requests don't need to.
3814  */
3815 static int raid5_mergeable_bvec(struct request_queue *q,
3816 				struct bvec_merge_data *bvm,
3817 				struct bio_vec *biovec)
3818 {
3819 	struct mddev *mddev = q->queuedata;
3820 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3821 	int max;
3822 	unsigned int chunk_sectors = mddev->chunk_sectors;
3823 	unsigned int bio_sectors = bvm->bi_size >> 9;
3824 
3825 	if ((bvm->bi_rw & 1) == WRITE)
3826 		return biovec->bv_len; /* always allow writes to be mergeable */
3827 
3828 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3829 		chunk_sectors = mddev->new_chunk_sectors;
3830 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3831 	if (max < 0) max = 0;
3832 	if (max <= biovec->bv_len && bio_sectors == 0)
3833 		return biovec->bv_len;
3834 	else
3835 		return max;
3836 }
3837 
3838 
3839 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3840 {
3841 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3842 	unsigned int chunk_sectors = mddev->chunk_sectors;
3843 	unsigned int bio_sectors = bio->bi_size >> 9;
3844 
3845 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3846 		chunk_sectors = mddev->new_chunk_sectors;
3847 	return  chunk_sectors >=
3848 		((sector & (chunk_sectors - 1)) + bio_sectors);
3849 }
3850 
3851 /*
3852  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3853  *  later sampled by raid5d.
3854  */
3855 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3856 {
3857 	unsigned long flags;
3858 
3859 	spin_lock_irqsave(&conf->device_lock, flags);
3860 
3861 	bi->bi_next = conf->retry_read_aligned_list;
3862 	conf->retry_read_aligned_list = bi;
3863 
3864 	spin_unlock_irqrestore(&conf->device_lock, flags);
3865 	md_wakeup_thread(conf->mddev->thread);
3866 }
3867 
3868 
3869 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3870 {
3871 	struct bio *bi;
3872 
3873 	bi = conf->retry_read_aligned;
3874 	if (bi) {
3875 		conf->retry_read_aligned = NULL;
3876 		return bi;
3877 	}
3878 	bi = conf->retry_read_aligned_list;
3879 	if(bi) {
3880 		conf->retry_read_aligned_list = bi->bi_next;
3881 		bi->bi_next = NULL;
3882 		/*
3883 		 * this sets the active strip count to 1 and the processed
3884 		 * strip count to zero (upper 8 bits)
3885 		 */
3886 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3887 	}
3888 
3889 	return bi;
3890 }
3891 
3892 
3893 /*
3894  *  The "raid5_align_endio" should check if the read succeeded and if it
3895  *  did, call bio_endio on the original bio (having bio_put the new bio
3896  *  first).
3897  *  If the read failed..
3898  */
3899 static void raid5_align_endio(struct bio *bi, int error)
3900 {
3901 	struct bio* raid_bi  = bi->bi_private;
3902 	struct mddev *mddev;
3903 	struct r5conf *conf;
3904 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3905 	struct md_rdev *rdev;
3906 
3907 	bio_put(bi);
3908 
3909 	rdev = (void*)raid_bi->bi_next;
3910 	raid_bi->bi_next = NULL;
3911 	mddev = rdev->mddev;
3912 	conf = mddev->private;
3913 
3914 	rdev_dec_pending(rdev, conf->mddev);
3915 
3916 	if (!error && uptodate) {
3917 		bio_endio(raid_bi, 0);
3918 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3919 			wake_up(&conf->wait_for_stripe);
3920 		return;
3921 	}
3922 
3923 
3924 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3925 
3926 	add_bio_to_retry(raid_bi, conf);
3927 }
3928 
3929 static int bio_fits_rdev(struct bio *bi)
3930 {
3931 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3932 
3933 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3934 		return 0;
3935 	blk_recount_segments(q, bi);
3936 	if (bi->bi_phys_segments > queue_max_segments(q))
3937 		return 0;
3938 
3939 	if (q->merge_bvec_fn)
3940 		/* it's too hard to apply the merge_bvec_fn at this stage,
3941 		 * just just give up
3942 		 */
3943 		return 0;
3944 
3945 	return 1;
3946 }
3947 
3948 
3949 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3950 {
3951 	struct r5conf *conf = mddev->private;
3952 	int dd_idx;
3953 	struct bio* align_bi;
3954 	struct md_rdev *rdev;
3955 	sector_t end_sector;
3956 
3957 	if (!in_chunk_boundary(mddev, raid_bio)) {
3958 		pr_debug("chunk_aligned_read : non aligned\n");
3959 		return 0;
3960 	}
3961 	/*
3962 	 * use bio_clone_mddev to make a copy of the bio
3963 	 */
3964 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3965 	if (!align_bi)
3966 		return 0;
3967 	/*
3968 	 *   set bi_end_io to a new function, and set bi_private to the
3969 	 *     original bio.
3970 	 */
3971 	align_bi->bi_end_io  = raid5_align_endio;
3972 	align_bi->bi_private = raid_bio;
3973 	/*
3974 	 *	compute position
3975 	 */
3976 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3977 						    0,
3978 						    &dd_idx, NULL);
3979 
3980 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3981 	rcu_read_lock();
3982 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3983 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3984 	    rdev->recovery_offset < end_sector) {
3985 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3986 		if (rdev &&
3987 		    (test_bit(Faulty, &rdev->flags) ||
3988 		    !(test_bit(In_sync, &rdev->flags) ||
3989 		      rdev->recovery_offset >= end_sector)))
3990 			rdev = NULL;
3991 	}
3992 	if (rdev) {
3993 		sector_t first_bad;
3994 		int bad_sectors;
3995 
3996 		atomic_inc(&rdev->nr_pending);
3997 		rcu_read_unlock();
3998 		raid_bio->bi_next = (void*)rdev;
3999 		align_bi->bi_bdev =  rdev->bdev;
4000 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4001 
4002 		if (!bio_fits_rdev(align_bi) ||
4003 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4004 				&first_bad, &bad_sectors)) {
4005 			/* too big in some way, or has a known bad block */
4006 			bio_put(align_bi);
4007 			rdev_dec_pending(rdev, mddev);
4008 			return 0;
4009 		}
4010 
4011 		/* No reshape active, so we can trust rdev->data_offset */
4012 		align_bi->bi_sector += rdev->data_offset;
4013 
4014 		spin_lock_irq(&conf->device_lock);
4015 		wait_event_lock_irq(conf->wait_for_stripe,
4016 				    conf->quiesce == 0,
4017 				    conf->device_lock);
4018 		atomic_inc(&conf->active_aligned_reads);
4019 		spin_unlock_irq(&conf->device_lock);
4020 
4021 		trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4022 				      align_bi, disk_devt(mddev->gendisk),
4023 				      raid_bio->bi_sector);
4024 		generic_make_request(align_bi);
4025 		return 1;
4026 	} else {
4027 		rcu_read_unlock();
4028 		bio_put(align_bi);
4029 		return 0;
4030 	}
4031 }
4032 
4033 /* __get_priority_stripe - get the next stripe to process
4034  *
4035  * Full stripe writes are allowed to pass preread active stripes up until
4036  * the bypass_threshold is exceeded.  In general the bypass_count
4037  * increments when the handle_list is handled before the hold_list; however, it
4038  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4039  * stripe with in flight i/o.  The bypass_count will be reset when the
4040  * head of the hold_list has changed, i.e. the head was promoted to the
4041  * handle_list.
4042  */
4043 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4044 {
4045 	struct stripe_head *sh;
4046 
4047 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4048 		  __func__,
4049 		  list_empty(&conf->handle_list) ? "empty" : "busy",
4050 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4051 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4052 
4053 	if (!list_empty(&conf->handle_list)) {
4054 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4055 
4056 		if (list_empty(&conf->hold_list))
4057 			conf->bypass_count = 0;
4058 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4059 			if (conf->hold_list.next == conf->last_hold)
4060 				conf->bypass_count++;
4061 			else {
4062 				conf->last_hold = conf->hold_list.next;
4063 				conf->bypass_count -= conf->bypass_threshold;
4064 				if (conf->bypass_count < 0)
4065 					conf->bypass_count = 0;
4066 			}
4067 		}
4068 	} else if (!list_empty(&conf->hold_list) &&
4069 		   ((conf->bypass_threshold &&
4070 		     conf->bypass_count > conf->bypass_threshold) ||
4071 		    atomic_read(&conf->pending_full_writes) == 0)) {
4072 		sh = list_entry(conf->hold_list.next,
4073 				typeof(*sh), lru);
4074 		conf->bypass_count -= conf->bypass_threshold;
4075 		if (conf->bypass_count < 0)
4076 			conf->bypass_count = 0;
4077 	} else
4078 		return NULL;
4079 
4080 	list_del_init(&sh->lru);
4081 	atomic_inc(&sh->count);
4082 	BUG_ON(atomic_read(&sh->count) != 1);
4083 	return sh;
4084 }
4085 
4086 struct raid5_plug_cb {
4087 	struct blk_plug_cb	cb;
4088 	struct list_head	list;
4089 };
4090 
4091 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4092 {
4093 	struct raid5_plug_cb *cb = container_of(
4094 		blk_cb, struct raid5_plug_cb, cb);
4095 	struct stripe_head *sh;
4096 	struct mddev *mddev = cb->cb.data;
4097 	struct r5conf *conf = mddev->private;
4098 	int cnt = 0;
4099 
4100 	if (cb->list.next && !list_empty(&cb->list)) {
4101 		spin_lock_irq(&conf->device_lock);
4102 		while (!list_empty(&cb->list)) {
4103 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4104 			list_del_init(&sh->lru);
4105 			/*
4106 			 * avoid race release_stripe_plug() sees
4107 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4108 			 * is still in our list
4109 			 */
4110 			smp_mb__before_clear_bit();
4111 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4112 			__release_stripe(conf, sh);
4113 			cnt++;
4114 		}
4115 		spin_unlock_irq(&conf->device_lock);
4116 	}
4117 	trace_block_unplug(mddev->queue, cnt, !from_schedule);
4118 	kfree(cb);
4119 }
4120 
4121 static void release_stripe_plug(struct mddev *mddev,
4122 				struct stripe_head *sh)
4123 {
4124 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4125 		raid5_unplug, mddev,
4126 		sizeof(struct raid5_plug_cb));
4127 	struct raid5_plug_cb *cb;
4128 
4129 	if (!blk_cb) {
4130 		release_stripe(sh);
4131 		return;
4132 	}
4133 
4134 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4135 
4136 	if (cb->list.next == NULL)
4137 		INIT_LIST_HEAD(&cb->list);
4138 
4139 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4140 		list_add_tail(&sh->lru, &cb->list);
4141 	else
4142 		release_stripe(sh);
4143 }
4144 
4145 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4146 {
4147 	struct r5conf *conf = mddev->private;
4148 	sector_t logical_sector, last_sector;
4149 	struct stripe_head *sh;
4150 	int remaining;
4151 	int stripe_sectors;
4152 
4153 	if (mddev->reshape_position != MaxSector)
4154 		/* Skip discard while reshape is happening */
4155 		return;
4156 
4157 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4158 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4159 
4160 	bi->bi_next = NULL;
4161 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4162 
4163 	stripe_sectors = conf->chunk_sectors *
4164 		(conf->raid_disks - conf->max_degraded);
4165 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4166 					       stripe_sectors);
4167 	sector_div(last_sector, stripe_sectors);
4168 
4169 	logical_sector *= conf->chunk_sectors;
4170 	last_sector *= conf->chunk_sectors;
4171 
4172 	for (; logical_sector < last_sector;
4173 	     logical_sector += STRIPE_SECTORS) {
4174 		DEFINE_WAIT(w);
4175 		int d;
4176 	again:
4177 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4178 		prepare_to_wait(&conf->wait_for_overlap, &w,
4179 				TASK_UNINTERRUPTIBLE);
4180 		spin_lock_irq(&sh->stripe_lock);
4181 		for (d = 0; d < conf->raid_disks; d++) {
4182 			if (d == sh->pd_idx || d == sh->qd_idx)
4183 				continue;
4184 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4185 				set_bit(R5_Overlap, &sh->dev[d].flags);
4186 				spin_unlock_irq(&sh->stripe_lock);
4187 				release_stripe(sh);
4188 				schedule();
4189 				goto again;
4190 			}
4191 		}
4192 		finish_wait(&conf->wait_for_overlap, &w);
4193 		for (d = 0; d < conf->raid_disks; d++) {
4194 			if (d == sh->pd_idx || d == sh->qd_idx)
4195 				continue;
4196 			sh->dev[d].towrite = bi;
4197 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4198 			raid5_inc_bi_active_stripes(bi);
4199 		}
4200 		spin_unlock_irq(&sh->stripe_lock);
4201 		if (conf->mddev->bitmap) {
4202 			for (d = 0;
4203 			     d < conf->raid_disks - conf->max_degraded;
4204 			     d++)
4205 				bitmap_startwrite(mddev->bitmap,
4206 						  sh->sector,
4207 						  STRIPE_SECTORS,
4208 						  0);
4209 			sh->bm_seq = conf->seq_flush + 1;
4210 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4211 		}
4212 
4213 		set_bit(STRIPE_HANDLE, &sh->state);
4214 		clear_bit(STRIPE_DELAYED, &sh->state);
4215 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4216 			atomic_inc(&conf->preread_active_stripes);
4217 		release_stripe_plug(mddev, sh);
4218 	}
4219 
4220 	remaining = raid5_dec_bi_active_stripes(bi);
4221 	if (remaining == 0) {
4222 		md_write_end(mddev);
4223 		bio_endio(bi, 0);
4224 	}
4225 }
4226 
4227 static void make_request(struct mddev *mddev, struct bio * bi)
4228 {
4229 	struct r5conf *conf = mddev->private;
4230 	int dd_idx;
4231 	sector_t new_sector;
4232 	sector_t logical_sector, last_sector;
4233 	struct stripe_head *sh;
4234 	const int rw = bio_data_dir(bi);
4235 	int remaining;
4236 
4237 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4238 		md_flush_request(mddev, bi);
4239 		return;
4240 	}
4241 
4242 	md_write_start(mddev, bi);
4243 
4244 	if (rw == READ &&
4245 	     mddev->reshape_position == MaxSector &&
4246 	     chunk_aligned_read(mddev,bi))
4247 		return;
4248 
4249 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4250 		make_discard_request(mddev, bi);
4251 		return;
4252 	}
4253 
4254 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4255 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4256 	bi->bi_next = NULL;
4257 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4258 
4259 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4260 		DEFINE_WAIT(w);
4261 		int previous;
4262 
4263 	retry:
4264 		previous = 0;
4265 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4266 		if (unlikely(conf->reshape_progress != MaxSector)) {
4267 			/* spinlock is needed as reshape_progress may be
4268 			 * 64bit on a 32bit platform, and so it might be
4269 			 * possible to see a half-updated value
4270 			 * Of course reshape_progress could change after
4271 			 * the lock is dropped, so once we get a reference
4272 			 * to the stripe that we think it is, we will have
4273 			 * to check again.
4274 			 */
4275 			spin_lock_irq(&conf->device_lock);
4276 			if (mddev->reshape_backwards
4277 			    ? logical_sector < conf->reshape_progress
4278 			    : logical_sector >= conf->reshape_progress) {
4279 				previous = 1;
4280 			} else {
4281 				if (mddev->reshape_backwards
4282 				    ? logical_sector < conf->reshape_safe
4283 				    : logical_sector >= conf->reshape_safe) {
4284 					spin_unlock_irq(&conf->device_lock);
4285 					schedule();
4286 					goto retry;
4287 				}
4288 			}
4289 			spin_unlock_irq(&conf->device_lock);
4290 		}
4291 
4292 		new_sector = raid5_compute_sector(conf, logical_sector,
4293 						  previous,
4294 						  &dd_idx, NULL);
4295 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4296 			(unsigned long long)new_sector,
4297 			(unsigned long long)logical_sector);
4298 
4299 		sh = get_active_stripe(conf, new_sector, previous,
4300 				       (bi->bi_rw&RWA_MASK), 0);
4301 		if (sh) {
4302 			if (unlikely(previous)) {
4303 				/* expansion might have moved on while waiting for a
4304 				 * stripe, so we must do the range check again.
4305 				 * Expansion could still move past after this
4306 				 * test, but as we are holding a reference to
4307 				 * 'sh', we know that if that happens,
4308 				 *  STRIPE_EXPANDING will get set and the expansion
4309 				 * won't proceed until we finish with the stripe.
4310 				 */
4311 				int must_retry = 0;
4312 				spin_lock_irq(&conf->device_lock);
4313 				if (mddev->reshape_backwards
4314 				    ? logical_sector >= conf->reshape_progress
4315 				    : logical_sector < conf->reshape_progress)
4316 					/* mismatch, need to try again */
4317 					must_retry = 1;
4318 				spin_unlock_irq(&conf->device_lock);
4319 				if (must_retry) {
4320 					release_stripe(sh);
4321 					schedule();
4322 					goto retry;
4323 				}
4324 			}
4325 
4326 			if (rw == WRITE &&
4327 			    logical_sector >= mddev->suspend_lo &&
4328 			    logical_sector < mddev->suspend_hi) {
4329 				release_stripe(sh);
4330 				/* As the suspend_* range is controlled by
4331 				 * userspace, we want an interruptible
4332 				 * wait.
4333 				 */
4334 				flush_signals(current);
4335 				prepare_to_wait(&conf->wait_for_overlap,
4336 						&w, TASK_INTERRUPTIBLE);
4337 				if (logical_sector >= mddev->suspend_lo &&
4338 				    logical_sector < mddev->suspend_hi)
4339 					schedule();
4340 				goto retry;
4341 			}
4342 
4343 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4344 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4345 				/* Stripe is busy expanding or
4346 				 * add failed due to overlap.  Flush everything
4347 				 * and wait a while
4348 				 */
4349 				md_wakeup_thread(mddev->thread);
4350 				release_stripe(sh);
4351 				schedule();
4352 				goto retry;
4353 			}
4354 			finish_wait(&conf->wait_for_overlap, &w);
4355 			set_bit(STRIPE_HANDLE, &sh->state);
4356 			clear_bit(STRIPE_DELAYED, &sh->state);
4357 			if ((bi->bi_rw & REQ_SYNC) &&
4358 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4359 				atomic_inc(&conf->preread_active_stripes);
4360 			release_stripe_plug(mddev, sh);
4361 		} else {
4362 			/* cannot get stripe for read-ahead, just give-up */
4363 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4364 			finish_wait(&conf->wait_for_overlap, &w);
4365 			break;
4366 		}
4367 	}
4368 
4369 	remaining = raid5_dec_bi_active_stripes(bi);
4370 	if (remaining == 0) {
4371 
4372 		if ( rw == WRITE )
4373 			md_write_end(mddev);
4374 
4375 		bio_endio(bi, 0);
4376 	}
4377 }
4378 
4379 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4380 
4381 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4382 {
4383 	/* reshaping is quite different to recovery/resync so it is
4384 	 * handled quite separately ... here.
4385 	 *
4386 	 * On each call to sync_request, we gather one chunk worth of
4387 	 * destination stripes and flag them as expanding.
4388 	 * Then we find all the source stripes and request reads.
4389 	 * As the reads complete, handle_stripe will copy the data
4390 	 * into the destination stripe and release that stripe.
4391 	 */
4392 	struct r5conf *conf = mddev->private;
4393 	struct stripe_head *sh;
4394 	sector_t first_sector, last_sector;
4395 	int raid_disks = conf->previous_raid_disks;
4396 	int data_disks = raid_disks - conf->max_degraded;
4397 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4398 	int i;
4399 	int dd_idx;
4400 	sector_t writepos, readpos, safepos;
4401 	sector_t stripe_addr;
4402 	int reshape_sectors;
4403 	struct list_head stripes;
4404 
4405 	if (sector_nr == 0) {
4406 		/* If restarting in the middle, skip the initial sectors */
4407 		if (mddev->reshape_backwards &&
4408 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4409 			sector_nr = raid5_size(mddev, 0, 0)
4410 				- conf->reshape_progress;
4411 		} else if (!mddev->reshape_backwards &&
4412 			   conf->reshape_progress > 0)
4413 			sector_nr = conf->reshape_progress;
4414 		sector_div(sector_nr, new_data_disks);
4415 		if (sector_nr) {
4416 			mddev->curr_resync_completed = sector_nr;
4417 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4418 			*skipped = 1;
4419 			return sector_nr;
4420 		}
4421 	}
4422 
4423 	/* We need to process a full chunk at a time.
4424 	 * If old and new chunk sizes differ, we need to process the
4425 	 * largest of these
4426 	 */
4427 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4428 		reshape_sectors = mddev->new_chunk_sectors;
4429 	else
4430 		reshape_sectors = mddev->chunk_sectors;
4431 
4432 	/* We update the metadata at least every 10 seconds, or when
4433 	 * the data about to be copied would over-write the source of
4434 	 * the data at the front of the range.  i.e. one new_stripe
4435 	 * along from reshape_progress new_maps to after where
4436 	 * reshape_safe old_maps to
4437 	 */
4438 	writepos = conf->reshape_progress;
4439 	sector_div(writepos, new_data_disks);
4440 	readpos = conf->reshape_progress;
4441 	sector_div(readpos, data_disks);
4442 	safepos = conf->reshape_safe;
4443 	sector_div(safepos, data_disks);
4444 	if (mddev->reshape_backwards) {
4445 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4446 		readpos += reshape_sectors;
4447 		safepos += reshape_sectors;
4448 	} else {
4449 		writepos += reshape_sectors;
4450 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4451 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4452 	}
4453 
4454 	/* Having calculated the 'writepos' possibly use it
4455 	 * to set 'stripe_addr' which is where we will write to.
4456 	 */
4457 	if (mddev->reshape_backwards) {
4458 		BUG_ON(conf->reshape_progress == 0);
4459 		stripe_addr = writepos;
4460 		BUG_ON((mddev->dev_sectors &
4461 			~((sector_t)reshape_sectors - 1))
4462 		       - reshape_sectors - stripe_addr
4463 		       != sector_nr);
4464 	} else {
4465 		BUG_ON(writepos != sector_nr + reshape_sectors);
4466 		stripe_addr = sector_nr;
4467 	}
4468 
4469 	/* 'writepos' is the most advanced device address we might write.
4470 	 * 'readpos' is the least advanced device address we might read.
4471 	 * 'safepos' is the least address recorded in the metadata as having
4472 	 *     been reshaped.
4473 	 * If there is a min_offset_diff, these are adjusted either by
4474 	 * increasing the safepos/readpos if diff is negative, or
4475 	 * increasing writepos if diff is positive.
4476 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4477 	 * ensure safety in the face of a crash - that must be done by userspace
4478 	 * making a backup of the data.  So in that case there is no particular
4479 	 * rush to update metadata.
4480 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4481 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4482 	 * we can be safe in the event of a crash.
4483 	 * So we insist on updating metadata if safepos is behind writepos and
4484 	 * readpos is beyond writepos.
4485 	 * In any case, update the metadata every 10 seconds.
4486 	 * Maybe that number should be configurable, but I'm not sure it is
4487 	 * worth it.... maybe it could be a multiple of safemode_delay???
4488 	 */
4489 	if (conf->min_offset_diff < 0) {
4490 		safepos += -conf->min_offset_diff;
4491 		readpos += -conf->min_offset_diff;
4492 	} else
4493 		writepos += conf->min_offset_diff;
4494 
4495 	if ((mddev->reshape_backwards
4496 	     ? (safepos > writepos && readpos < writepos)
4497 	     : (safepos < writepos && readpos > writepos)) ||
4498 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4499 		/* Cannot proceed until we've updated the superblock... */
4500 		wait_event(conf->wait_for_overlap,
4501 			   atomic_read(&conf->reshape_stripes)==0);
4502 		mddev->reshape_position = conf->reshape_progress;
4503 		mddev->curr_resync_completed = sector_nr;
4504 		conf->reshape_checkpoint = jiffies;
4505 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4506 		md_wakeup_thread(mddev->thread);
4507 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4508 			   kthread_should_stop());
4509 		spin_lock_irq(&conf->device_lock);
4510 		conf->reshape_safe = mddev->reshape_position;
4511 		spin_unlock_irq(&conf->device_lock);
4512 		wake_up(&conf->wait_for_overlap);
4513 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4514 	}
4515 
4516 	INIT_LIST_HEAD(&stripes);
4517 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4518 		int j;
4519 		int skipped_disk = 0;
4520 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4521 		set_bit(STRIPE_EXPANDING, &sh->state);
4522 		atomic_inc(&conf->reshape_stripes);
4523 		/* If any of this stripe is beyond the end of the old
4524 		 * array, then we need to zero those blocks
4525 		 */
4526 		for (j=sh->disks; j--;) {
4527 			sector_t s;
4528 			if (j == sh->pd_idx)
4529 				continue;
4530 			if (conf->level == 6 &&
4531 			    j == sh->qd_idx)
4532 				continue;
4533 			s = compute_blocknr(sh, j, 0);
4534 			if (s < raid5_size(mddev, 0, 0)) {
4535 				skipped_disk = 1;
4536 				continue;
4537 			}
4538 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4539 			set_bit(R5_Expanded, &sh->dev[j].flags);
4540 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4541 		}
4542 		if (!skipped_disk) {
4543 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4544 			set_bit(STRIPE_HANDLE, &sh->state);
4545 		}
4546 		list_add(&sh->lru, &stripes);
4547 	}
4548 	spin_lock_irq(&conf->device_lock);
4549 	if (mddev->reshape_backwards)
4550 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4551 	else
4552 		conf->reshape_progress += reshape_sectors * new_data_disks;
4553 	spin_unlock_irq(&conf->device_lock);
4554 	/* Ok, those stripe are ready. We can start scheduling
4555 	 * reads on the source stripes.
4556 	 * The source stripes are determined by mapping the first and last
4557 	 * block on the destination stripes.
4558 	 */
4559 	first_sector =
4560 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4561 				     1, &dd_idx, NULL);
4562 	last_sector =
4563 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4564 					    * new_data_disks - 1),
4565 				     1, &dd_idx, NULL);
4566 	if (last_sector >= mddev->dev_sectors)
4567 		last_sector = mddev->dev_sectors - 1;
4568 	while (first_sector <= last_sector) {
4569 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4570 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4571 		set_bit(STRIPE_HANDLE, &sh->state);
4572 		release_stripe(sh);
4573 		first_sector += STRIPE_SECTORS;
4574 	}
4575 	/* Now that the sources are clearly marked, we can release
4576 	 * the destination stripes
4577 	 */
4578 	while (!list_empty(&stripes)) {
4579 		sh = list_entry(stripes.next, struct stripe_head, lru);
4580 		list_del_init(&sh->lru);
4581 		release_stripe(sh);
4582 	}
4583 	/* If this takes us to the resync_max point where we have to pause,
4584 	 * then we need to write out the superblock.
4585 	 */
4586 	sector_nr += reshape_sectors;
4587 	if ((sector_nr - mddev->curr_resync_completed) * 2
4588 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4589 		/* Cannot proceed until we've updated the superblock... */
4590 		wait_event(conf->wait_for_overlap,
4591 			   atomic_read(&conf->reshape_stripes) == 0);
4592 		mddev->reshape_position = conf->reshape_progress;
4593 		mddev->curr_resync_completed = sector_nr;
4594 		conf->reshape_checkpoint = jiffies;
4595 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4596 		md_wakeup_thread(mddev->thread);
4597 		wait_event(mddev->sb_wait,
4598 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4599 			   || kthread_should_stop());
4600 		spin_lock_irq(&conf->device_lock);
4601 		conf->reshape_safe = mddev->reshape_position;
4602 		spin_unlock_irq(&conf->device_lock);
4603 		wake_up(&conf->wait_for_overlap);
4604 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4605 	}
4606 	return reshape_sectors;
4607 }
4608 
4609 /* FIXME go_faster isn't used */
4610 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4611 {
4612 	struct r5conf *conf = mddev->private;
4613 	struct stripe_head *sh;
4614 	sector_t max_sector = mddev->dev_sectors;
4615 	sector_t sync_blocks;
4616 	int still_degraded = 0;
4617 	int i;
4618 
4619 	if (sector_nr >= max_sector) {
4620 		/* just being told to finish up .. nothing much to do */
4621 
4622 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4623 			end_reshape(conf);
4624 			return 0;
4625 		}
4626 
4627 		if (mddev->curr_resync < max_sector) /* aborted */
4628 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4629 					&sync_blocks, 1);
4630 		else /* completed sync */
4631 			conf->fullsync = 0;
4632 		bitmap_close_sync(mddev->bitmap);
4633 
4634 		return 0;
4635 	}
4636 
4637 	/* Allow raid5_quiesce to complete */
4638 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4639 
4640 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4641 		return reshape_request(mddev, sector_nr, skipped);
4642 
4643 	/* No need to check resync_max as we never do more than one
4644 	 * stripe, and as resync_max will always be on a chunk boundary,
4645 	 * if the check in md_do_sync didn't fire, there is no chance
4646 	 * of overstepping resync_max here
4647 	 */
4648 
4649 	/* if there is too many failed drives and we are trying
4650 	 * to resync, then assert that we are finished, because there is
4651 	 * nothing we can do.
4652 	 */
4653 	if (mddev->degraded >= conf->max_degraded &&
4654 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4655 		sector_t rv = mddev->dev_sectors - sector_nr;
4656 		*skipped = 1;
4657 		return rv;
4658 	}
4659 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4660 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4661 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4662 		/* we can skip this block, and probably more */
4663 		sync_blocks /= STRIPE_SECTORS;
4664 		*skipped = 1;
4665 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4666 	}
4667 
4668 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4669 
4670 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4671 	if (sh == NULL) {
4672 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4673 		/* make sure we don't swamp the stripe cache if someone else
4674 		 * is trying to get access
4675 		 */
4676 		schedule_timeout_uninterruptible(1);
4677 	}
4678 	/* Need to check if array will still be degraded after recovery/resync
4679 	 * We don't need to check the 'failed' flag as when that gets set,
4680 	 * recovery aborts.
4681 	 */
4682 	for (i = 0; i < conf->raid_disks; i++)
4683 		if (conf->disks[i].rdev == NULL)
4684 			still_degraded = 1;
4685 
4686 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4687 
4688 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4689 
4690 	handle_stripe(sh);
4691 	release_stripe(sh);
4692 
4693 	return STRIPE_SECTORS;
4694 }
4695 
4696 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4697 {
4698 	/* We may not be able to submit a whole bio at once as there
4699 	 * may not be enough stripe_heads available.
4700 	 * We cannot pre-allocate enough stripe_heads as we may need
4701 	 * more than exist in the cache (if we allow ever large chunks).
4702 	 * So we do one stripe head at a time and record in
4703 	 * ->bi_hw_segments how many have been done.
4704 	 *
4705 	 * We *know* that this entire raid_bio is in one chunk, so
4706 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4707 	 */
4708 	struct stripe_head *sh;
4709 	int dd_idx;
4710 	sector_t sector, logical_sector, last_sector;
4711 	int scnt = 0;
4712 	int remaining;
4713 	int handled = 0;
4714 
4715 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4716 	sector = raid5_compute_sector(conf, logical_sector,
4717 				      0, &dd_idx, NULL);
4718 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4719 
4720 	for (; logical_sector < last_sector;
4721 	     logical_sector += STRIPE_SECTORS,
4722 		     sector += STRIPE_SECTORS,
4723 		     scnt++) {
4724 
4725 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4726 			/* already done this stripe */
4727 			continue;
4728 
4729 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4730 
4731 		if (!sh) {
4732 			/* failed to get a stripe - must wait */
4733 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4734 			conf->retry_read_aligned = raid_bio;
4735 			return handled;
4736 		}
4737 
4738 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4739 			release_stripe(sh);
4740 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4741 			conf->retry_read_aligned = raid_bio;
4742 			return handled;
4743 		}
4744 
4745 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4746 		handle_stripe(sh);
4747 		release_stripe(sh);
4748 		handled++;
4749 	}
4750 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4751 	if (remaining == 0)
4752 		bio_endio(raid_bio, 0);
4753 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4754 		wake_up(&conf->wait_for_stripe);
4755 	return handled;
4756 }
4757 
4758 #define MAX_STRIPE_BATCH 8
4759 static int handle_active_stripes(struct r5conf *conf)
4760 {
4761 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4762 	int i, batch_size = 0;
4763 
4764 	while (batch_size < MAX_STRIPE_BATCH &&
4765 			(sh = __get_priority_stripe(conf)) != NULL)
4766 		batch[batch_size++] = sh;
4767 
4768 	if (batch_size == 0)
4769 		return batch_size;
4770 	spin_unlock_irq(&conf->device_lock);
4771 
4772 	for (i = 0; i < batch_size; i++)
4773 		handle_stripe(batch[i]);
4774 
4775 	cond_resched();
4776 
4777 	spin_lock_irq(&conf->device_lock);
4778 	for (i = 0; i < batch_size; i++)
4779 		__release_stripe(conf, batch[i]);
4780 	return batch_size;
4781 }
4782 
4783 /*
4784  * This is our raid5 kernel thread.
4785  *
4786  * We scan the hash table for stripes which can be handled now.
4787  * During the scan, completed stripes are saved for us by the interrupt
4788  * handler, so that they will not have to wait for our next wakeup.
4789  */
4790 static void raid5d(struct md_thread *thread)
4791 {
4792 	struct mddev *mddev = thread->mddev;
4793 	struct r5conf *conf = mddev->private;
4794 	int handled;
4795 	struct blk_plug plug;
4796 
4797 	pr_debug("+++ raid5d active\n");
4798 
4799 	md_check_recovery(mddev);
4800 
4801 	blk_start_plug(&plug);
4802 	handled = 0;
4803 	spin_lock_irq(&conf->device_lock);
4804 	while (1) {
4805 		struct bio *bio;
4806 		int batch_size;
4807 
4808 		if (
4809 		    !list_empty(&conf->bitmap_list)) {
4810 			/* Now is a good time to flush some bitmap updates */
4811 			conf->seq_flush++;
4812 			spin_unlock_irq(&conf->device_lock);
4813 			bitmap_unplug(mddev->bitmap);
4814 			spin_lock_irq(&conf->device_lock);
4815 			conf->seq_write = conf->seq_flush;
4816 			activate_bit_delay(conf);
4817 		}
4818 		raid5_activate_delayed(conf);
4819 
4820 		while ((bio = remove_bio_from_retry(conf))) {
4821 			int ok;
4822 			spin_unlock_irq(&conf->device_lock);
4823 			ok = retry_aligned_read(conf, bio);
4824 			spin_lock_irq(&conf->device_lock);
4825 			if (!ok)
4826 				break;
4827 			handled++;
4828 		}
4829 
4830 		batch_size = handle_active_stripes(conf);
4831 		if (!batch_size)
4832 			break;
4833 		handled += batch_size;
4834 
4835 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4836 			spin_unlock_irq(&conf->device_lock);
4837 			md_check_recovery(mddev);
4838 			spin_lock_irq(&conf->device_lock);
4839 		}
4840 	}
4841 	pr_debug("%d stripes handled\n", handled);
4842 
4843 	spin_unlock_irq(&conf->device_lock);
4844 
4845 	async_tx_issue_pending_all();
4846 	blk_finish_plug(&plug);
4847 
4848 	pr_debug("--- raid5d inactive\n");
4849 }
4850 
4851 static ssize_t
4852 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4853 {
4854 	struct r5conf *conf = mddev->private;
4855 	if (conf)
4856 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4857 	else
4858 		return 0;
4859 }
4860 
4861 int
4862 raid5_set_cache_size(struct mddev *mddev, int size)
4863 {
4864 	struct r5conf *conf = mddev->private;
4865 	int err;
4866 
4867 	if (size <= 16 || size > 32768)
4868 		return -EINVAL;
4869 	while (size < conf->max_nr_stripes) {
4870 		if (drop_one_stripe(conf))
4871 			conf->max_nr_stripes--;
4872 		else
4873 			break;
4874 	}
4875 	err = md_allow_write(mddev);
4876 	if (err)
4877 		return err;
4878 	while (size > conf->max_nr_stripes) {
4879 		if (grow_one_stripe(conf))
4880 			conf->max_nr_stripes++;
4881 		else break;
4882 	}
4883 	return 0;
4884 }
4885 EXPORT_SYMBOL(raid5_set_cache_size);
4886 
4887 static ssize_t
4888 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4889 {
4890 	struct r5conf *conf = mddev->private;
4891 	unsigned long new;
4892 	int err;
4893 
4894 	if (len >= PAGE_SIZE)
4895 		return -EINVAL;
4896 	if (!conf)
4897 		return -ENODEV;
4898 
4899 	if (strict_strtoul(page, 10, &new))
4900 		return -EINVAL;
4901 	err = raid5_set_cache_size(mddev, new);
4902 	if (err)
4903 		return err;
4904 	return len;
4905 }
4906 
4907 static struct md_sysfs_entry
4908 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4909 				raid5_show_stripe_cache_size,
4910 				raid5_store_stripe_cache_size);
4911 
4912 static ssize_t
4913 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4914 {
4915 	struct r5conf *conf = mddev->private;
4916 	if (conf)
4917 		return sprintf(page, "%d\n", conf->bypass_threshold);
4918 	else
4919 		return 0;
4920 }
4921 
4922 static ssize_t
4923 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4924 {
4925 	struct r5conf *conf = mddev->private;
4926 	unsigned long new;
4927 	if (len >= PAGE_SIZE)
4928 		return -EINVAL;
4929 	if (!conf)
4930 		return -ENODEV;
4931 
4932 	if (strict_strtoul(page, 10, &new))
4933 		return -EINVAL;
4934 	if (new > conf->max_nr_stripes)
4935 		return -EINVAL;
4936 	conf->bypass_threshold = new;
4937 	return len;
4938 }
4939 
4940 static struct md_sysfs_entry
4941 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4942 					S_IRUGO | S_IWUSR,
4943 					raid5_show_preread_threshold,
4944 					raid5_store_preread_threshold);
4945 
4946 static ssize_t
4947 stripe_cache_active_show(struct mddev *mddev, char *page)
4948 {
4949 	struct r5conf *conf = mddev->private;
4950 	if (conf)
4951 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4952 	else
4953 		return 0;
4954 }
4955 
4956 static struct md_sysfs_entry
4957 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4958 
4959 static struct attribute *raid5_attrs[] =  {
4960 	&raid5_stripecache_size.attr,
4961 	&raid5_stripecache_active.attr,
4962 	&raid5_preread_bypass_threshold.attr,
4963 	NULL,
4964 };
4965 static struct attribute_group raid5_attrs_group = {
4966 	.name = NULL,
4967 	.attrs = raid5_attrs,
4968 };
4969 
4970 static sector_t
4971 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4972 {
4973 	struct r5conf *conf = mddev->private;
4974 
4975 	if (!sectors)
4976 		sectors = mddev->dev_sectors;
4977 	if (!raid_disks)
4978 		/* size is defined by the smallest of previous and new size */
4979 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4980 
4981 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4982 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4983 	return sectors * (raid_disks - conf->max_degraded);
4984 }
4985 
4986 static void raid5_free_percpu(struct r5conf *conf)
4987 {
4988 	struct raid5_percpu *percpu;
4989 	unsigned long cpu;
4990 
4991 	if (!conf->percpu)
4992 		return;
4993 
4994 	get_online_cpus();
4995 	for_each_possible_cpu(cpu) {
4996 		percpu = per_cpu_ptr(conf->percpu, cpu);
4997 		safe_put_page(percpu->spare_page);
4998 		kfree(percpu->scribble);
4999 	}
5000 #ifdef CONFIG_HOTPLUG_CPU
5001 	unregister_cpu_notifier(&conf->cpu_notify);
5002 #endif
5003 	put_online_cpus();
5004 
5005 	free_percpu(conf->percpu);
5006 }
5007 
5008 static void free_conf(struct r5conf *conf)
5009 {
5010 	shrink_stripes(conf);
5011 	raid5_free_percpu(conf);
5012 	kfree(conf->disks);
5013 	kfree(conf->stripe_hashtbl);
5014 	kfree(conf);
5015 }
5016 
5017 #ifdef CONFIG_HOTPLUG_CPU
5018 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5019 			      void *hcpu)
5020 {
5021 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5022 	long cpu = (long)hcpu;
5023 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5024 
5025 	switch (action) {
5026 	case CPU_UP_PREPARE:
5027 	case CPU_UP_PREPARE_FROZEN:
5028 		if (conf->level == 6 && !percpu->spare_page)
5029 			percpu->spare_page = alloc_page(GFP_KERNEL);
5030 		if (!percpu->scribble)
5031 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5032 
5033 		if (!percpu->scribble ||
5034 		    (conf->level == 6 && !percpu->spare_page)) {
5035 			safe_put_page(percpu->spare_page);
5036 			kfree(percpu->scribble);
5037 			pr_err("%s: failed memory allocation for cpu%ld\n",
5038 			       __func__, cpu);
5039 			return notifier_from_errno(-ENOMEM);
5040 		}
5041 		break;
5042 	case CPU_DEAD:
5043 	case CPU_DEAD_FROZEN:
5044 		safe_put_page(percpu->spare_page);
5045 		kfree(percpu->scribble);
5046 		percpu->spare_page = NULL;
5047 		percpu->scribble = NULL;
5048 		break;
5049 	default:
5050 		break;
5051 	}
5052 	return NOTIFY_OK;
5053 }
5054 #endif
5055 
5056 static int raid5_alloc_percpu(struct r5conf *conf)
5057 {
5058 	unsigned long cpu;
5059 	struct page *spare_page;
5060 	struct raid5_percpu __percpu *allcpus;
5061 	void *scribble;
5062 	int err;
5063 
5064 	allcpus = alloc_percpu(struct raid5_percpu);
5065 	if (!allcpus)
5066 		return -ENOMEM;
5067 	conf->percpu = allcpus;
5068 
5069 	get_online_cpus();
5070 	err = 0;
5071 	for_each_present_cpu(cpu) {
5072 		if (conf->level == 6) {
5073 			spare_page = alloc_page(GFP_KERNEL);
5074 			if (!spare_page) {
5075 				err = -ENOMEM;
5076 				break;
5077 			}
5078 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5079 		}
5080 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5081 		if (!scribble) {
5082 			err = -ENOMEM;
5083 			break;
5084 		}
5085 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5086 	}
5087 #ifdef CONFIG_HOTPLUG_CPU
5088 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5089 	conf->cpu_notify.priority = 0;
5090 	if (err == 0)
5091 		err = register_cpu_notifier(&conf->cpu_notify);
5092 #endif
5093 	put_online_cpus();
5094 
5095 	return err;
5096 }
5097 
5098 static struct r5conf *setup_conf(struct mddev *mddev)
5099 {
5100 	struct r5conf *conf;
5101 	int raid_disk, memory, max_disks;
5102 	struct md_rdev *rdev;
5103 	struct disk_info *disk;
5104 	char pers_name[6];
5105 
5106 	if (mddev->new_level != 5
5107 	    && mddev->new_level != 4
5108 	    && mddev->new_level != 6) {
5109 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5110 		       mdname(mddev), mddev->new_level);
5111 		return ERR_PTR(-EIO);
5112 	}
5113 	if ((mddev->new_level == 5
5114 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5115 	    (mddev->new_level == 6
5116 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5117 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5118 		       mdname(mddev), mddev->new_layout);
5119 		return ERR_PTR(-EIO);
5120 	}
5121 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5122 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5123 		       mdname(mddev), mddev->raid_disks);
5124 		return ERR_PTR(-EINVAL);
5125 	}
5126 
5127 	if (!mddev->new_chunk_sectors ||
5128 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5129 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5130 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5131 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5132 		return ERR_PTR(-EINVAL);
5133 	}
5134 
5135 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5136 	if (conf == NULL)
5137 		goto abort;
5138 	spin_lock_init(&conf->device_lock);
5139 	init_waitqueue_head(&conf->wait_for_stripe);
5140 	init_waitqueue_head(&conf->wait_for_overlap);
5141 	INIT_LIST_HEAD(&conf->handle_list);
5142 	INIT_LIST_HEAD(&conf->hold_list);
5143 	INIT_LIST_HEAD(&conf->delayed_list);
5144 	INIT_LIST_HEAD(&conf->bitmap_list);
5145 	INIT_LIST_HEAD(&conf->inactive_list);
5146 	atomic_set(&conf->active_stripes, 0);
5147 	atomic_set(&conf->preread_active_stripes, 0);
5148 	atomic_set(&conf->active_aligned_reads, 0);
5149 	conf->bypass_threshold = BYPASS_THRESHOLD;
5150 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5151 
5152 	conf->raid_disks = mddev->raid_disks;
5153 	if (mddev->reshape_position == MaxSector)
5154 		conf->previous_raid_disks = mddev->raid_disks;
5155 	else
5156 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5157 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5158 	conf->scribble_len = scribble_len(max_disks);
5159 
5160 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5161 			      GFP_KERNEL);
5162 	if (!conf->disks)
5163 		goto abort;
5164 
5165 	conf->mddev = mddev;
5166 
5167 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5168 		goto abort;
5169 
5170 	conf->level = mddev->new_level;
5171 	if (raid5_alloc_percpu(conf) != 0)
5172 		goto abort;
5173 
5174 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5175 
5176 	rdev_for_each(rdev, mddev) {
5177 		raid_disk = rdev->raid_disk;
5178 		if (raid_disk >= max_disks
5179 		    || raid_disk < 0)
5180 			continue;
5181 		disk = conf->disks + raid_disk;
5182 
5183 		if (test_bit(Replacement, &rdev->flags)) {
5184 			if (disk->replacement)
5185 				goto abort;
5186 			disk->replacement = rdev;
5187 		} else {
5188 			if (disk->rdev)
5189 				goto abort;
5190 			disk->rdev = rdev;
5191 		}
5192 
5193 		if (test_bit(In_sync, &rdev->flags)) {
5194 			char b[BDEVNAME_SIZE];
5195 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5196 			       " disk %d\n",
5197 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5198 		} else if (rdev->saved_raid_disk != raid_disk)
5199 			/* Cannot rely on bitmap to complete recovery */
5200 			conf->fullsync = 1;
5201 	}
5202 
5203 	conf->chunk_sectors = mddev->new_chunk_sectors;
5204 	conf->level = mddev->new_level;
5205 	if (conf->level == 6)
5206 		conf->max_degraded = 2;
5207 	else
5208 		conf->max_degraded = 1;
5209 	conf->algorithm = mddev->new_layout;
5210 	conf->max_nr_stripes = NR_STRIPES;
5211 	conf->reshape_progress = mddev->reshape_position;
5212 	if (conf->reshape_progress != MaxSector) {
5213 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5214 		conf->prev_algo = mddev->layout;
5215 	}
5216 
5217 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5218 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5219 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5220 		printk(KERN_ERR
5221 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5222 		       mdname(mddev), memory);
5223 		goto abort;
5224 	} else
5225 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5226 		       mdname(mddev), memory);
5227 
5228 	sprintf(pers_name, "raid%d", mddev->new_level);
5229 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5230 	if (!conf->thread) {
5231 		printk(KERN_ERR
5232 		       "md/raid:%s: couldn't allocate thread.\n",
5233 		       mdname(mddev));
5234 		goto abort;
5235 	}
5236 
5237 	return conf;
5238 
5239  abort:
5240 	if (conf) {
5241 		free_conf(conf);
5242 		return ERR_PTR(-EIO);
5243 	} else
5244 		return ERR_PTR(-ENOMEM);
5245 }
5246 
5247 
5248 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5249 {
5250 	switch (algo) {
5251 	case ALGORITHM_PARITY_0:
5252 		if (raid_disk < max_degraded)
5253 			return 1;
5254 		break;
5255 	case ALGORITHM_PARITY_N:
5256 		if (raid_disk >= raid_disks - max_degraded)
5257 			return 1;
5258 		break;
5259 	case ALGORITHM_PARITY_0_6:
5260 		if (raid_disk == 0 ||
5261 		    raid_disk == raid_disks - 1)
5262 			return 1;
5263 		break;
5264 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5265 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5266 	case ALGORITHM_LEFT_SYMMETRIC_6:
5267 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5268 		if (raid_disk == raid_disks - 1)
5269 			return 1;
5270 	}
5271 	return 0;
5272 }
5273 
5274 static int run(struct mddev *mddev)
5275 {
5276 	struct r5conf *conf;
5277 	int working_disks = 0;
5278 	int dirty_parity_disks = 0;
5279 	struct md_rdev *rdev;
5280 	sector_t reshape_offset = 0;
5281 	int i;
5282 	long long min_offset_diff = 0;
5283 	int first = 1;
5284 
5285 	if (mddev->recovery_cp != MaxSector)
5286 		printk(KERN_NOTICE "md/raid:%s: not clean"
5287 		       " -- starting background reconstruction\n",
5288 		       mdname(mddev));
5289 
5290 	rdev_for_each(rdev, mddev) {
5291 		long long diff;
5292 		if (rdev->raid_disk < 0)
5293 			continue;
5294 		diff = (rdev->new_data_offset - rdev->data_offset);
5295 		if (first) {
5296 			min_offset_diff = diff;
5297 			first = 0;
5298 		} else if (mddev->reshape_backwards &&
5299 			 diff < min_offset_diff)
5300 			min_offset_diff = diff;
5301 		else if (!mddev->reshape_backwards &&
5302 			 diff > min_offset_diff)
5303 			min_offset_diff = diff;
5304 	}
5305 
5306 	if (mddev->reshape_position != MaxSector) {
5307 		/* Check that we can continue the reshape.
5308 		 * Difficulties arise if the stripe we would write to
5309 		 * next is at or after the stripe we would read from next.
5310 		 * For a reshape that changes the number of devices, this
5311 		 * is only possible for a very short time, and mdadm makes
5312 		 * sure that time appears to have past before assembling
5313 		 * the array.  So we fail if that time hasn't passed.
5314 		 * For a reshape that keeps the number of devices the same
5315 		 * mdadm must be monitoring the reshape can keeping the
5316 		 * critical areas read-only and backed up.  It will start
5317 		 * the array in read-only mode, so we check for that.
5318 		 */
5319 		sector_t here_new, here_old;
5320 		int old_disks;
5321 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5322 
5323 		if (mddev->new_level != mddev->level) {
5324 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5325 			       "required - aborting.\n",
5326 			       mdname(mddev));
5327 			return -EINVAL;
5328 		}
5329 		old_disks = mddev->raid_disks - mddev->delta_disks;
5330 		/* reshape_position must be on a new-stripe boundary, and one
5331 		 * further up in new geometry must map after here in old
5332 		 * geometry.
5333 		 */
5334 		here_new = mddev->reshape_position;
5335 		if (sector_div(here_new, mddev->new_chunk_sectors *
5336 			       (mddev->raid_disks - max_degraded))) {
5337 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5338 			       "on a stripe boundary\n", mdname(mddev));
5339 			return -EINVAL;
5340 		}
5341 		reshape_offset = here_new * mddev->new_chunk_sectors;
5342 		/* here_new is the stripe we will write to */
5343 		here_old = mddev->reshape_position;
5344 		sector_div(here_old, mddev->chunk_sectors *
5345 			   (old_disks-max_degraded));
5346 		/* here_old is the first stripe that we might need to read
5347 		 * from */
5348 		if (mddev->delta_disks == 0) {
5349 			if ((here_new * mddev->new_chunk_sectors !=
5350 			     here_old * mddev->chunk_sectors)) {
5351 				printk(KERN_ERR "md/raid:%s: reshape position is"
5352 				       " confused - aborting\n", mdname(mddev));
5353 				return -EINVAL;
5354 			}
5355 			/* We cannot be sure it is safe to start an in-place
5356 			 * reshape.  It is only safe if user-space is monitoring
5357 			 * and taking constant backups.
5358 			 * mdadm always starts a situation like this in
5359 			 * readonly mode so it can take control before
5360 			 * allowing any writes.  So just check for that.
5361 			 */
5362 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5363 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5364 				/* not really in-place - so OK */;
5365 			else if (mddev->ro == 0) {
5366 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5367 				       "must be started in read-only mode "
5368 				       "- aborting\n",
5369 				       mdname(mddev));
5370 				return -EINVAL;
5371 			}
5372 		} else if (mddev->reshape_backwards
5373 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5374 		       here_old * mddev->chunk_sectors)
5375 		    : (here_new * mddev->new_chunk_sectors >=
5376 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5377 			/* Reading from the same stripe as writing to - bad */
5378 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5379 			       "auto-recovery - aborting.\n",
5380 			       mdname(mddev));
5381 			return -EINVAL;
5382 		}
5383 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5384 		       mdname(mddev));
5385 		/* OK, we should be able to continue; */
5386 	} else {
5387 		BUG_ON(mddev->level != mddev->new_level);
5388 		BUG_ON(mddev->layout != mddev->new_layout);
5389 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5390 		BUG_ON(mddev->delta_disks != 0);
5391 	}
5392 
5393 	if (mddev->private == NULL)
5394 		conf = setup_conf(mddev);
5395 	else
5396 		conf = mddev->private;
5397 
5398 	if (IS_ERR(conf))
5399 		return PTR_ERR(conf);
5400 
5401 	conf->min_offset_diff = min_offset_diff;
5402 	mddev->thread = conf->thread;
5403 	conf->thread = NULL;
5404 	mddev->private = conf;
5405 
5406 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5407 	     i++) {
5408 		rdev = conf->disks[i].rdev;
5409 		if (!rdev && conf->disks[i].replacement) {
5410 			/* The replacement is all we have yet */
5411 			rdev = conf->disks[i].replacement;
5412 			conf->disks[i].replacement = NULL;
5413 			clear_bit(Replacement, &rdev->flags);
5414 			conf->disks[i].rdev = rdev;
5415 		}
5416 		if (!rdev)
5417 			continue;
5418 		if (conf->disks[i].replacement &&
5419 		    conf->reshape_progress != MaxSector) {
5420 			/* replacements and reshape simply do not mix. */
5421 			printk(KERN_ERR "md: cannot handle concurrent "
5422 			       "replacement and reshape.\n");
5423 			goto abort;
5424 		}
5425 		if (test_bit(In_sync, &rdev->flags)) {
5426 			working_disks++;
5427 			continue;
5428 		}
5429 		/* This disc is not fully in-sync.  However if it
5430 		 * just stored parity (beyond the recovery_offset),
5431 		 * when we don't need to be concerned about the
5432 		 * array being dirty.
5433 		 * When reshape goes 'backwards', we never have
5434 		 * partially completed devices, so we only need
5435 		 * to worry about reshape going forwards.
5436 		 */
5437 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5438 		if (mddev->major_version == 0 &&
5439 		    mddev->minor_version > 90)
5440 			rdev->recovery_offset = reshape_offset;
5441 
5442 		if (rdev->recovery_offset < reshape_offset) {
5443 			/* We need to check old and new layout */
5444 			if (!only_parity(rdev->raid_disk,
5445 					 conf->algorithm,
5446 					 conf->raid_disks,
5447 					 conf->max_degraded))
5448 				continue;
5449 		}
5450 		if (!only_parity(rdev->raid_disk,
5451 				 conf->prev_algo,
5452 				 conf->previous_raid_disks,
5453 				 conf->max_degraded))
5454 			continue;
5455 		dirty_parity_disks++;
5456 	}
5457 
5458 	/*
5459 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5460 	 */
5461 	mddev->degraded = calc_degraded(conf);
5462 
5463 	if (has_failed(conf)) {
5464 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5465 			" (%d/%d failed)\n",
5466 			mdname(mddev), mddev->degraded, conf->raid_disks);
5467 		goto abort;
5468 	}
5469 
5470 	/* device size must be a multiple of chunk size */
5471 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5472 	mddev->resync_max_sectors = mddev->dev_sectors;
5473 
5474 	if (mddev->degraded > dirty_parity_disks &&
5475 	    mddev->recovery_cp != MaxSector) {
5476 		if (mddev->ok_start_degraded)
5477 			printk(KERN_WARNING
5478 			       "md/raid:%s: starting dirty degraded array"
5479 			       " - data corruption possible.\n",
5480 			       mdname(mddev));
5481 		else {
5482 			printk(KERN_ERR
5483 			       "md/raid:%s: cannot start dirty degraded array.\n",
5484 			       mdname(mddev));
5485 			goto abort;
5486 		}
5487 	}
5488 
5489 	if (mddev->degraded == 0)
5490 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5491 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5492 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5493 		       mddev->new_layout);
5494 	else
5495 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5496 		       " out of %d devices, algorithm %d\n",
5497 		       mdname(mddev), conf->level,
5498 		       mddev->raid_disks - mddev->degraded,
5499 		       mddev->raid_disks, mddev->new_layout);
5500 
5501 	print_raid5_conf(conf);
5502 
5503 	if (conf->reshape_progress != MaxSector) {
5504 		conf->reshape_safe = conf->reshape_progress;
5505 		atomic_set(&conf->reshape_stripes, 0);
5506 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5507 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5508 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5509 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5510 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5511 							"reshape");
5512 	}
5513 
5514 
5515 	/* Ok, everything is just fine now */
5516 	if (mddev->to_remove == &raid5_attrs_group)
5517 		mddev->to_remove = NULL;
5518 	else if (mddev->kobj.sd &&
5519 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5520 		printk(KERN_WARNING
5521 		       "raid5: failed to create sysfs attributes for %s\n",
5522 		       mdname(mddev));
5523 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5524 
5525 	if (mddev->queue) {
5526 		int chunk_size;
5527 		bool discard_supported = true;
5528 		/* read-ahead size must cover two whole stripes, which
5529 		 * is 2 * (datadisks) * chunksize where 'n' is the
5530 		 * number of raid devices
5531 		 */
5532 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5533 		int stripe = data_disks *
5534 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5535 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5536 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5537 
5538 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5539 
5540 		mddev->queue->backing_dev_info.congested_data = mddev;
5541 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5542 
5543 		chunk_size = mddev->chunk_sectors << 9;
5544 		blk_queue_io_min(mddev->queue, chunk_size);
5545 		blk_queue_io_opt(mddev->queue, chunk_size *
5546 				 (conf->raid_disks - conf->max_degraded));
5547 		/*
5548 		 * We can only discard a whole stripe. It doesn't make sense to
5549 		 * discard data disk but write parity disk
5550 		 */
5551 		stripe = stripe * PAGE_SIZE;
5552 		/* Round up to power of 2, as discard handling
5553 		 * currently assumes that */
5554 		while ((stripe-1) & stripe)
5555 			stripe = (stripe | (stripe-1)) + 1;
5556 		mddev->queue->limits.discard_alignment = stripe;
5557 		mddev->queue->limits.discard_granularity = stripe;
5558 		/*
5559 		 * unaligned part of discard request will be ignored, so can't
5560 		 * guarantee discard_zerors_data
5561 		 */
5562 		mddev->queue->limits.discard_zeroes_data = 0;
5563 
5564 		rdev_for_each(rdev, mddev) {
5565 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5566 					  rdev->data_offset << 9);
5567 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5568 					  rdev->new_data_offset << 9);
5569 			/*
5570 			 * discard_zeroes_data is required, otherwise data
5571 			 * could be lost. Consider a scenario: discard a stripe
5572 			 * (the stripe could be inconsistent if
5573 			 * discard_zeroes_data is 0); write one disk of the
5574 			 * stripe (the stripe could be inconsistent again
5575 			 * depending on which disks are used to calculate
5576 			 * parity); the disk is broken; The stripe data of this
5577 			 * disk is lost.
5578 			 */
5579 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5580 			    !bdev_get_queue(rdev->bdev)->
5581 						limits.discard_zeroes_data)
5582 				discard_supported = false;
5583 		}
5584 
5585 		if (discard_supported &&
5586 		   mddev->queue->limits.max_discard_sectors >= stripe &&
5587 		   mddev->queue->limits.discard_granularity >= stripe)
5588 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5589 						mddev->queue);
5590 		else
5591 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5592 						mddev->queue);
5593 	}
5594 
5595 	return 0;
5596 abort:
5597 	md_unregister_thread(&mddev->thread);
5598 	print_raid5_conf(conf);
5599 	free_conf(conf);
5600 	mddev->private = NULL;
5601 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5602 	return -EIO;
5603 }
5604 
5605 static int stop(struct mddev *mddev)
5606 {
5607 	struct r5conf *conf = mddev->private;
5608 
5609 	md_unregister_thread(&mddev->thread);
5610 	if (mddev->queue)
5611 		mddev->queue->backing_dev_info.congested_fn = NULL;
5612 	free_conf(conf);
5613 	mddev->private = NULL;
5614 	mddev->to_remove = &raid5_attrs_group;
5615 	return 0;
5616 }
5617 
5618 static void status(struct seq_file *seq, struct mddev *mddev)
5619 {
5620 	struct r5conf *conf = mddev->private;
5621 	int i;
5622 
5623 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5624 		mddev->chunk_sectors / 2, mddev->layout);
5625 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5626 	for (i = 0; i < conf->raid_disks; i++)
5627 		seq_printf (seq, "%s",
5628 			       conf->disks[i].rdev &&
5629 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5630 	seq_printf (seq, "]");
5631 }
5632 
5633 static void print_raid5_conf (struct r5conf *conf)
5634 {
5635 	int i;
5636 	struct disk_info *tmp;
5637 
5638 	printk(KERN_DEBUG "RAID conf printout:\n");
5639 	if (!conf) {
5640 		printk("(conf==NULL)\n");
5641 		return;
5642 	}
5643 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5644 	       conf->raid_disks,
5645 	       conf->raid_disks - conf->mddev->degraded);
5646 
5647 	for (i = 0; i < conf->raid_disks; i++) {
5648 		char b[BDEVNAME_SIZE];
5649 		tmp = conf->disks + i;
5650 		if (tmp->rdev)
5651 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5652 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5653 			       bdevname(tmp->rdev->bdev, b));
5654 	}
5655 }
5656 
5657 static int raid5_spare_active(struct mddev *mddev)
5658 {
5659 	int i;
5660 	struct r5conf *conf = mddev->private;
5661 	struct disk_info *tmp;
5662 	int count = 0;
5663 	unsigned long flags;
5664 
5665 	for (i = 0; i < conf->raid_disks; i++) {
5666 		tmp = conf->disks + i;
5667 		if (tmp->replacement
5668 		    && tmp->replacement->recovery_offset == MaxSector
5669 		    && !test_bit(Faulty, &tmp->replacement->flags)
5670 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5671 			/* Replacement has just become active. */
5672 			if (!tmp->rdev
5673 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5674 				count++;
5675 			if (tmp->rdev) {
5676 				/* Replaced device not technically faulty,
5677 				 * but we need to be sure it gets removed
5678 				 * and never re-added.
5679 				 */
5680 				set_bit(Faulty, &tmp->rdev->flags);
5681 				sysfs_notify_dirent_safe(
5682 					tmp->rdev->sysfs_state);
5683 			}
5684 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5685 		} else if (tmp->rdev
5686 		    && tmp->rdev->recovery_offset == MaxSector
5687 		    && !test_bit(Faulty, &tmp->rdev->flags)
5688 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5689 			count++;
5690 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5691 		}
5692 	}
5693 	spin_lock_irqsave(&conf->device_lock, flags);
5694 	mddev->degraded = calc_degraded(conf);
5695 	spin_unlock_irqrestore(&conf->device_lock, flags);
5696 	print_raid5_conf(conf);
5697 	return count;
5698 }
5699 
5700 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5701 {
5702 	struct r5conf *conf = mddev->private;
5703 	int err = 0;
5704 	int number = rdev->raid_disk;
5705 	struct md_rdev **rdevp;
5706 	struct disk_info *p = conf->disks + number;
5707 
5708 	print_raid5_conf(conf);
5709 	if (rdev == p->rdev)
5710 		rdevp = &p->rdev;
5711 	else if (rdev == p->replacement)
5712 		rdevp = &p->replacement;
5713 	else
5714 		return 0;
5715 
5716 	if (number >= conf->raid_disks &&
5717 	    conf->reshape_progress == MaxSector)
5718 		clear_bit(In_sync, &rdev->flags);
5719 
5720 	if (test_bit(In_sync, &rdev->flags) ||
5721 	    atomic_read(&rdev->nr_pending)) {
5722 		err = -EBUSY;
5723 		goto abort;
5724 	}
5725 	/* Only remove non-faulty devices if recovery
5726 	 * isn't possible.
5727 	 */
5728 	if (!test_bit(Faulty, &rdev->flags) &&
5729 	    mddev->recovery_disabled != conf->recovery_disabled &&
5730 	    !has_failed(conf) &&
5731 	    (!p->replacement || p->replacement == rdev) &&
5732 	    number < conf->raid_disks) {
5733 		err = -EBUSY;
5734 		goto abort;
5735 	}
5736 	*rdevp = NULL;
5737 	synchronize_rcu();
5738 	if (atomic_read(&rdev->nr_pending)) {
5739 		/* lost the race, try later */
5740 		err = -EBUSY;
5741 		*rdevp = rdev;
5742 	} else if (p->replacement) {
5743 		/* We must have just cleared 'rdev' */
5744 		p->rdev = p->replacement;
5745 		clear_bit(Replacement, &p->replacement->flags);
5746 		smp_mb(); /* Make sure other CPUs may see both as identical
5747 			   * but will never see neither - if they are careful
5748 			   */
5749 		p->replacement = NULL;
5750 		clear_bit(WantReplacement, &rdev->flags);
5751 	} else
5752 		/* We might have just removed the Replacement as faulty-
5753 		 * clear the bit just in case
5754 		 */
5755 		clear_bit(WantReplacement, &rdev->flags);
5756 abort:
5757 
5758 	print_raid5_conf(conf);
5759 	return err;
5760 }
5761 
5762 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5763 {
5764 	struct r5conf *conf = mddev->private;
5765 	int err = -EEXIST;
5766 	int disk;
5767 	struct disk_info *p;
5768 	int first = 0;
5769 	int last = conf->raid_disks - 1;
5770 
5771 	if (mddev->recovery_disabled == conf->recovery_disabled)
5772 		return -EBUSY;
5773 
5774 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5775 		/* no point adding a device */
5776 		return -EINVAL;
5777 
5778 	if (rdev->raid_disk >= 0)
5779 		first = last = rdev->raid_disk;
5780 
5781 	/*
5782 	 * find the disk ... but prefer rdev->saved_raid_disk
5783 	 * if possible.
5784 	 */
5785 	if (rdev->saved_raid_disk >= 0 &&
5786 	    rdev->saved_raid_disk >= first &&
5787 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5788 		first = rdev->saved_raid_disk;
5789 
5790 	for (disk = first; disk <= last; disk++) {
5791 		p = conf->disks + disk;
5792 		if (p->rdev == NULL) {
5793 			clear_bit(In_sync, &rdev->flags);
5794 			rdev->raid_disk = disk;
5795 			err = 0;
5796 			if (rdev->saved_raid_disk != disk)
5797 				conf->fullsync = 1;
5798 			rcu_assign_pointer(p->rdev, rdev);
5799 			goto out;
5800 		}
5801 	}
5802 	for (disk = first; disk <= last; disk++) {
5803 		p = conf->disks + disk;
5804 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5805 		    p->replacement == NULL) {
5806 			clear_bit(In_sync, &rdev->flags);
5807 			set_bit(Replacement, &rdev->flags);
5808 			rdev->raid_disk = disk;
5809 			err = 0;
5810 			conf->fullsync = 1;
5811 			rcu_assign_pointer(p->replacement, rdev);
5812 			break;
5813 		}
5814 	}
5815 out:
5816 	print_raid5_conf(conf);
5817 	return err;
5818 }
5819 
5820 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5821 {
5822 	/* no resync is happening, and there is enough space
5823 	 * on all devices, so we can resize.
5824 	 * We need to make sure resync covers any new space.
5825 	 * If the array is shrinking we should possibly wait until
5826 	 * any io in the removed space completes, but it hardly seems
5827 	 * worth it.
5828 	 */
5829 	sector_t newsize;
5830 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5831 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5832 	if (mddev->external_size &&
5833 	    mddev->array_sectors > newsize)
5834 		return -EINVAL;
5835 	if (mddev->bitmap) {
5836 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5837 		if (ret)
5838 			return ret;
5839 	}
5840 	md_set_array_sectors(mddev, newsize);
5841 	set_capacity(mddev->gendisk, mddev->array_sectors);
5842 	revalidate_disk(mddev->gendisk);
5843 	if (sectors > mddev->dev_sectors &&
5844 	    mddev->recovery_cp > mddev->dev_sectors) {
5845 		mddev->recovery_cp = mddev->dev_sectors;
5846 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5847 	}
5848 	mddev->dev_sectors = sectors;
5849 	mddev->resync_max_sectors = sectors;
5850 	return 0;
5851 }
5852 
5853 static int check_stripe_cache(struct mddev *mddev)
5854 {
5855 	/* Can only proceed if there are plenty of stripe_heads.
5856 	 * We need a minimum of one full stripe,, and for sensible progress
5857 	 * it is best to have about 4 times that.
5858 	 * If we require 4 times, then the default 256 4K stripe_heads will
5859 	 * allow for chunk sizes up to 256K, which is probably OK.
5860 	 * If the chunk size is greater, user-space should request more
5861 	 * stripe_heads first.
5862 	 */
5863 	struct r5conf *conf = mddev->private;
5864 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5865 	    > conf->max_nr_stripes ||
5866 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5867 	    > conf->max_nr_stripes) {
5868 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5869 		       mdname(mddev),
5870 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5871 			/ STRIPE_SIZE)*4);
5872 		return 0;
5873 	}
5874 	return 1;
5875 }
5876 
5877 static int check_reshape(struct mddev *mddev)
5878 {
5879 	struct r5conf *conf = mddev->private;
5880 
5881 	if (mddev->delta_disks == 0 &&
5882 	    mddev->new_layout == mddev->layout &&
5883 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5884 		return 0; /* nothing to do */
5885 	if (has_failed(conf))
5886 		return -EINVAL;
5887 	if (mddev->delta_disks < 0) {
5888 		/* We might be able to shrink, but the devices must
5889 		 * be made bigger first.
5890 		 * For raid6, 4 is the minimum size.
5891 		 * Otherwise 2 is the minimum
5892 		 */
5893 		int min = 2;
5894 		if (mddev->level == 6)
5895 			min = 4;
5896 		if (mddev->raid_disks + mddev->delta_disks < min)
5897 			return -EINVAL;
5898 	}
5899 
5900 	if (!check_stripe_cache(mddev))
5901 		return -ENOSPC;
5902 
5903 	return resize_stripes(conf, (conf->previous_raid_disks
5904 				     + mddev->delta_disks));
5905 }
5906 
5907 static int raid5_start_reshape(struct mddev *mddev)
5908 {
5909 	struct r5conf *conf = mddev->private;
5910 	struct md_rdev *rdev;
5911 	int spares = 0;
5912 	unsigned long flags;
5913 
5914 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5915 		return -EBUSY;
5916 
5917 	if (!check_stripe_cache(mddev))
5918 		return -ENOSPC;
5919 
5920 	if (has_failed(conf))
5921 		return -EINVAL;
5922 
5923 	rdev_for_each(rdev, mddev) {
5924 		if (!test_bit(In_sync, &rdev->flags)
5925 		    && !test_bit(Faulty, &rdev->flags))
5926 			spares++;
5927 	}
5928 
5929 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5930 		/* Not enough devices even to make a degraded array
5931 		 * of that size
5932 		 */
5933 		return -EINVAL;
5934 
5935 	/* Refuse to reduce size of the array.  Any reductions in
5936 	 * array size must be through explicit setting of array_size
5937 	 * attribute.
5938 	 */
5939 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5940 	    < mddev->array_sectors) {
5941 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5942 		       "before number of disks\n", mdname(mddev));
5943 		return -EINVAL;
5944 	}
5945 
5946 	atomic_set(&conf->reshape_stripes, 0);
5947 	spin_lock_irq(&conf->device_lock);
5948 	conf->previous_raid_disks = conf->raid_disks;
5949 	conf->raid_disks += mddev->delta_disks;
5950 	conf->prev_chunk_sectors = conf->chunk_sectors;
5951 	conf->chunk_sectors = mddev->new_chunk_sectors;
5952 	conf->prev_algo = conf->algorithm;
5953 	conf->algorithm = mddev->new_layout;
5954 	conf->generation++;
5955 	/* Code that selects data_offset needs to see the generation update
5956 	 * if reshape_progress has been set - so a memory barrier needed.
5957 	 */
5958 	smp_mb();
5959 	if (mddev->reshape_backwards)
5960 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5961 	else
5962 		conf->reshape_progress = 0;
5963 	conf->reshape_safe = conf->reshape_progress;
5964 	spin_unlock_irq(&conf->device_lock);
5965 
5966 	/* Add some new drives, as many as will fit.
5967 	 * We know there are enough to make the newly sized array work.
5968 	 * Don't add devices if we are reducing the number of
5969 	 * devices in the array.  This is because it is not possible
5970 	 * to correctly record the "partially reconstructed" state of
5971 	 * such devices during the reshape and confusion could result.
5972 	 */
5973 	if (mddev->delta_disks >= 0) {
5974 		rdev_for_each(rdev, mddev)
5975 			if (rdev->raid_disk < 0 &&
5976 			    !test_bit(Faulty, &rdev->flags)) {
5977 				if (raid5_add_disk(mddev, rdev) == 0) {
5978 					if (rdev->raid_disk
5979 					    >= conf->previous_raid_disks)
5980 						set_bit(In_sync, &rdev->flags);
5981 					else
5982 						rdev->recovery_offset = 0;
5983 
5984 					if (sysfs_link_rdev(mddev, rdev))
5985 						/* Failure here is OK */;
5986 				}
5987 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5988 				   && !test_bit(Faulty, &rdev->flags)) {
5989 				/* This is a spare that was manually added */
5990 				set_bit(In_sync, &rdev->flags);
5991 			}
5992 
5993 		/* When a reshape changes the number of devices,
5994 		 * ->degraded is measured against the larger of the
5995 		 * pre and post number of devices.
5996 		 */
5997 		spin_lock_irqsave(&conf->device_lock, flags);
5998 		mddev->degraded = calc_degraded(conf);
5999 		spin_unlock_irqrestore(&conf->device_lock, flags);
6000 	}
6001 	mddev->raid_disks = conf->raid_disks;
6002 	mddev->reshape_position = conf->reshape_progress;
6003 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6004 
6005 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6006 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6007 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6008 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6009 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6010 						"reshape");
6011 	if (!mddev->sync_thread) {
6012 		mddev->recovery = 0;
6013 		spin_lock_irq(&conf->device_lock);
6014 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6015 		rdev_for_each(rdev, mddev)
6016 			rdev->new_data_offset = rdev->data_offset;
6017 		smp_wmb();
6018 		conf->reshape_progress = MaxSector;
6019 		mddev->reshape_position = MaxSector;
6020 		spin_unlock_irq(&conf->device_lock);
6021 		return -EAGAIN;
6022 	}
6023 	conf->reshape_checkpoint = jiffies;
6024 	md_wakeup_thread(mddev->sync_thread);
6025 	md_new_event(mddev);
6026 	return 0;
6027 }
6028 
6029 /* This is called from the reshape thread and should make any
6030  * changes needed in 'conf'
6031  */
6032 static void end_reshape(struct r5conf *conf)
6033 {
6034 
6035 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6036 		struct md_rdev *rdev;
6037 
6038 		spin_lock_irq(&conf->device_lock);
6039 		conf->previous_raid_disks = conf->raid_disks;
6040 		rdev_for_each(rdev, conf->mddev)
6041 			rdev->data_offset = rdev->new_data_offset;
6042 		smp_wmb();
6043 		conf->reshape_progress = MaxSector;
6044 		spin_unlock_irq(&conf->device_lock);
6045 		wake_up(&conf->wait_for_overlap);
6046 
6047 		/* read-ahead size must cover two whole stripes, which is
6048 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6049 		 */
6050 		if (conf->mddev->queue) {
6051 			int data_disks = conf->raid_disks - conf->max_degraded;
6052 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6053 						   / PAGE_SIZE);
6054 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6055 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6056 		}
6057 	}
6058 }
6059 
6060 /* This is called from the raid5d thread with mddev_lock held.
6061  * It makes config changes to the device.
6062  */
6063 static void raid5_finish_reshape(struct mddev *mddev)
6064 {
6065 	struct r5conf *conf = mddev->private;
6066 
6067 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6068 
6069 		if (mddev->delta_disks > 0) {
6070 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6071 			set_capacity(mddev->gendisk, mddev->array_sectors);
6072 			revalidate_disk(mddev->gendisk);
6073 		} else {
6074 			int d;
6075 			spin_lock_irq(&conf->device_lock);
6076 			mddev->degraded = calc_degraded(conf);
6077 			spin_unlock_irq(&conf->device_lock);
6078 			for (d = conf->raid_disks ;
6079 			     d < conf->raid_disks - mddev->delta_disks;
6080 			     d++) {
6081 				struct md_rdev *rdev = conf->disks[d].rdev;
6082 				if (rdev)
6083 					clear_bit(In_sync, &rdev->flags);
6084 				rdev = conf->disks[d].replacement;
6085 				if (rdev)
6086 					clear_bit(In_sync, &rdev->flags);
6087 			}
6088 		}
6089 		mddev->layout = conf->algorithm;
6090 		mddev->chunk_sectors = conf->chunk_sectors;
6091 		mddev->reshape_position = MaxSector;
6092 		mddev->delta_disks = 0;
6093 		mddev->reshape_backwards = 0;
6094 	}
6095 }
6096 
6097 static void raid5_quiesce(struct mddev *mddev, int state)
6098 {
6099 	struct r5conf *conf = mddev->private;
6100 
6101 	switch(state) {
6102 	case 2: /* resume for a suspend */
6103 		wake_up(&conf->wait_for_overlap);
6104 		break;
6105 
6106 	case 1: /* stop all writes */
6107 		spin_lock_irq(&conf->device_lock);
6108 		/* '2' tells resync/reshape to pause so that all
6109 		 * active stripes can drain
6110 		 */
6111 		conf->quiesce = 2;
6112 		wait_event_lock_irq(conf->wait_for_stripe,
6113 				    atomic_read(&conf->active_stripes) == 0 &&
6114 				    atomic_read(&conf->active_aligned_reads) == 0,
6115 				    conf->device_lock);
6116 		conf->quiesce = 1;
6117 		spin_unlock_irq(&conf->device_lock);
6118 		/* allow reshape to continue */
6119 		wake_up(&conf->wait_for_overlap);
6120 		break;
6121 
6122 	case 0: /* re-enable writes */
6123 		spin_lock_irq(&conf->device_lock);
6124 		conf->quiesce = 0;
6125 		wake_up(&conf->wait_for_stripe);
6126 		wake_up(&conf->wait_for_overlap);
6127 		spin_unlock_irq(&conf->device_lock);
6128 		break;
6129 	}
6130 }
6131 
6132 
6133 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6134 {
6135 	struct r0conf *raid0_conf = mddev->private;
6136 	sector_t sectors;
6137 
6138 	/* for raid0 takeover only one zone is supported */
6139 	if (raid0_conf->nr_strip_zones > 1) {
6140 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6141 		       mdname(mddev));
6142 		return ERR_PTR(-EINVAL);
6143 	}
6144 
6145 	sectors = raid0_conf->strip_zone[0].zone_end;
6146 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6147 	mddev->dev_sectors = sectors;
6148 	mddev->new_level = level;
6149 	mddev->new_layout = ALGORITHM_PARITY_N;
6150 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6151 	mddev->raid_disks += 1;
6152 	mddev->delta_disks = 1;
6153 	/* make sure it will be not marked as dirty */
6154 	mddev->recovery_cp = MaxSector;
6155 
6156 	return setup_conf(mddev);
6157 }
6158 
6159 
6160 static void *raid5_takeover_raid1(struct mddev *mddev)
6161 {
6162 	int chunksect;
6163 
6164 	if (mddev->raid_disks != 2 ||
6165 	    mddev->degraded > 1)
6166 		return ERR_PTR(-EINVAL);
6167 
6168 	/* Should check if there are write-behind devices? */
6169 
6170 	chunksect = 64*2; /* 64K by default */
6171 
6172 	/* The array must be an exact multiple of chunksize */
6173 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6174 		chunksect >>= 1;
6175 
6176 	if ((chunksect<<9) < STRIPE_SIZE)
6177 		/* array size does not allow a suitable chunk size */
6178 		return ERR_PTR(-EINVAL);
6179 
6180 	mddev->new_level = 5;
6181 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6182 	mddev->new_chunk_sectors = chunksect;
6183 
6184 	return setup_conf(mddev);
6185 }
6186 
6187 static void *raid5_takeover_raid6(struct mddev *mddev)
6188 {
6189 	int new_layout;
6190 
6191 	switch (mddev->layout) {
6192 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6193 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6194 		break;
6195 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6196 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6197 		break;
6198 	case ALGORITHM_LEFT_SYMMETRIC_6:
6199 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6200 		break;
6201 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6202 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6203 		break;
6204 	case ALGORITHM_PARITY_0_6:
6205 		new_layout = ALGORITHM_PARITY_0;
6206 		break;
6207 	case ALGORITHM_PARITY_N:
6208 		new_layout = ALGORITHM_PARITY_N;
6209 		break;
6210 	default:
6211 		return ERR_PTR(-EINVAL);
6212 	}
6213 	mddev->new_level = 5;
6214 	mddev->new_layout = new_layout;
6215 	mddev->delta_disks = -1;
6216 	mddev->raid_disks -= 1;
6217 	return setup_conf(mddev);
6218 }
6219 
6220 
6221 static int raid5_check_reshape(struct mddev *mddev)
6222 {
6223 	/* For a 2-drive array, the layout and chunk size can be changed
6224 	 * immediately as not restriping is needed.
6225 	 * For larger arrays we record the new value - after validation
6226 	 * to be used by a reshape pass.
6227 	 */
6228 	struct r5conf *conf = mddev->private;
6229 	int new_chunk = mddev->new_chunk_sectors;
6230 
6231 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6232 		return -EINVAL;
6233 	if (new_chunk > 0) {
6234 		if (!is_power_of_2(new_chunk))
6235 			return -EINVAL;
6236 		if (new_chunk < (PAGE_SIZE>>9))
6237 			return -EINVAL;
6238 		if (mddev->array_sectors & (new_chunk-1))
6239 			/* not factor of array size */
6240 			return -EINVAL;
6241 	}
6242 
6243 	/* They look valid */
6244 
6245 	if (mddev->raid_disks == 2) {
6246 		/* can make the change immediately */
6247 		if (mddev->new_layout >= 0) {
6248 			conf->algorithm = mddev->new_layout;
6249 			mddev->layout = mddev->new_layout;
6250 		}
6251 		if (new_chunk > 0) {
6252 			conf->chunk_sectors = new_chunk ;
6253 			mddev->chunk_sectors = new_chunk;
6254 		}
6255 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6256 		md_wakeup_thread(mddev->thread);
6257 	}
6258 	return check_reshape(mddev);
6259 }
6260 
6261 static int raid6_check_reshape(struct mddev *mddev)
6262 {
6263 	int new_chunk = mddev->new_chunk_sectors;
6264 
6265 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6266 		return -EINVAL;
6267 	if (new_chunk > 0) {
6268 		if (!is_power_of_2(new_chunk))
6269 			return -EINVAL;
6270 		if (new_chunk < (PAGE_SIZE >> 9))
6271 			return -EINVAL;
6272 		if (mddev->array_sectors & (new_chunk-1))
6273 			/* not factor of array size */
6274 			return -EINVAL;
6275 	}
6276 
6277 	/* They look valid */
6278 	return check_reshape(mddev);
6279 }
6280 
6281 static void *raid5_takeover(struct mddev *mddev)
6282 {
6283 	/* raid5 can take over:
6284 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6285 	 *  raid1 - if there are two drives.  We need to know the chunk size
6286 	 *  raid4 - trivial - just use a raid4 layout.
6287 	 *  raid6 - Providing it is a *_6 layout
6288 	 */
6289 	if (mddev->level == 0)
6290 		return raid45_takeover_raid0(mddev, 5);
6291 	if (mddev->level == 1)
6292 		return raid5_takeover_raid1(mddev);
6293 	if (mddev->level == 4) {
6294 		mddev->new_layout = ALGORITHM_PARITY_N;
6295 		mddev->new_level = 5;
6296 		return setup_conf(mddev);
6297 	}
6298 	if (mddev->level == 6)
6299 		return raid5_takeover_raid6(mddev);
6300 
6301 	return ERR_PTR(-EINVAL);
6302 }
6303 
6304 static void *raid4_takeover(struct mddev *mddev)
6305 {
6306 	/* raid4 can take over:
6307 	 *  raid0 - if there is only one strip zone
6308 	 *  raid5 - if layout is right
6309 	 */
6310 	if (mddev->level == 0)
6311 		return raid45_takeover_raid0(mddev, 4);
6312 	if (mddev->level == 5 &&
6313 	    mddev->layout == ALGORITHM_PARITY_N) {
6314 		mddev->new_layout = 0;
6315 		mddev->new_level = 4;
6316 		return setup_conf(mddev);
6317 	}
6318 	return ERR_PTR(-EINVAL);
6319 }
6320 
6321 static struct md_personality raid5_personality;
6322 
6323 static void *raid6_takeover(struct mddev *mddev)
6324 {
6325 	/* Currently can only take over a raid5.  We map the
6326 	 * personality to an equivalent raid6 personality
6327 	 * with the Q block at the end.
6328 	 */
6329 	int new_layout;
6330 
6331 	if (mddev->pers != &raid5_personality)
6332 		return ERR_PTR(-EINVAL);
6333 	if (mddev->degraded > 1)
6334 		return ERR_PTR(-EINVAL);
6335 	if (mddev->raid_disks > 253)
6336 		return ERR_PTR(-EINVAL);
6337 	if (mddev->raid_disks < 3)
6338 		return ERR_PTR(-EINVAL);
6339 
6340 	switch (mddev->layout) {
6341 	case ALGORITHM_LEFT_ASYMMETRIC:
6342 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6343 		break;
6344 	case ALGORITHM_RIGHT_ASYMMETRIC:
6345 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6346 		break;
6347 	case ALGORITHM_LEFT_SYMMETRIC:
6348 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6349 		break;
6350 	case ALGORITHM_RIGHT_SYMMETRIC:
6351 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6352 		break;
6353 	case ALGORITHM_PARITY_0:
6354 		new_layout = ALGORITHM_PARITY_0_6;
6355 		break;
6356 	case ALGORITHM_PARITY_N:
6357 		new_layout = ALGORITHM_PARITY_N;
6358 		break;
6359 	default:
6360 		return ERR_PTR(-EINVAL);
6361 	}
6362 	mddev->new_level = 6;
6363 	mddev->new_layout = new_layout;
6364 	mddev->delta_disks = 1;
6365 	mddev->raid_disks += 1;
6366 	return setup_conf(mddev);
6367 }
6368 
6369 
6370 static struct md_personality raid6_personality =
6371 {
6372 	.name		= "raid6",
6373 	.level		= 6,
6374 	.owner		= THIS_MODULE,
6375 	.make_request	= make_request,
6376 	.run		= run,
6377 	.stop		= stop,
6378 	.status		= status,
6379 	.error_handler	= error,
6380 	.hot_add_disk	= raid5_add_disk,
6381 	.hot_remove_disk= raid5_remove_disk,
6382 	.spare_active	= raid5_spare_active,
6383 	.sync_request	= sync_request,
6384 	.resize		= raid5_resize,
6385 	.size		= raid5_size,
6386 	.check_reshape	= raid6_check_reshape,
6387 	.start_reshape  = raid5_start_reshape,
6388 	.finish_reshape = raid5_finish_reshape,
6389 	.quiesce	= raid5_quiesce,
6390 	.takeover	= raid6_takeover,
6391 };
6392 static struct md_personality raid5_personality =
6393 {
6394 	.name		= "raid5",
6395 	.level		= 5,
6396 	.owner		= THIS_MODULE,
6397 	.make_request	= make_request,
6398 	.run		= run,
6399 	.stop		= stop,
6400 	.status		= status,
6401 	.error_handler	= error,
6402 	.hot_add_disk	= raid5_add_disk,
6403 	.hot_remove_disk= raid5_remove_disk,
6404 	.spare_active	= raid5_spare_active,
6405 	.sync_request	= sync_request,
6406 	.resize		= raid5_resize,
6407 	.size		= raid5_size,
6408 	.check_reshape	= raid5_check_reshape,
6409 	.start_reshape  = raid5_start_reshape,
6410 	.finish_reshape = raid5_finish_reshape,
6411 	.quiesce	= raid5_quiesce,
6412 	.takeover	= raid5_takeover,
6413 };
6414 
6415 static struct md_personality raid4_personality =
6416 {
6417 	.name		= "raid4",
6418 	.level		= 4,
6419 	.owner		= THIS_MODULE,
6420 	.make_request	= make_request,
6421 	.run		= run,
6422 	.stop		= stop,
6423 	.status		= status,
6424 	.error_handler	= error,
6425 	.hot_add_disk	= raid5_add_disk,
6426 	.hot_remove_disk= raid5_remove_disk,
6427 	.spare_active	= raid5_spare_active,
6428 	.sync_request	= sync_request,
6429 	.resize		= raid5_resize,
6430 	.size		= raid5_size,
6431 	.check_reshape	= raid5_check_reshape,
6432 	.start_reshape  = raid5_start_reshape,
6433 	.finish_reshape = raid5_finish_reshape,
6434 	.quiesce	= raid5_quiesce,
6435 	.takeover	= raid4_takeover,
6436 };
6437 
6438 static int __init raid5_init(void)
6439 {
6440 	register_md_personality(&raid6_personality);
6441 	register_md_personality(&raid5_personality);
6442 	register_md_personality(&raid4_personality);
6443 	return 0;
6444 }
6445 
6446 static void raid5_exit(void)
6447 {
6448 	unregister_md_personality(&raid6_personality);
6449 	unregister_md_personality(&raid5_personality);
6450 	unregister_md_personality(&raid4_personality);
6451 }
6452 
6453 module_init(raid5_init);
6454 module_exit(raid5_exit);
6455 MODULE_LICENSE("GPL");
6456 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6457 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6458 MODULE_ALIAS("md-raid5");
6459 MODULE_ALIAS("md-raid4");
6460 MODULE_ALIAS("md-level-5");
6461 MODULE_ALIAS("md-level-4");
6462 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6463 MODULE_ALIAS("md-raid6");
6464 MODULE_ALIAS("md-level-6");
6465 
6466 /* This used to be two separate modules, they were: */
6467 MODULE_ALIAS("raid5");
6468 MODULE_ALIAS("raid6");
6469