xref: /openbmc/linux/drivers/md/raid5.c (revision 80ecbd24)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57 
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62 
63 /*
64  * Stripe cache
65  */
66 
67 #define NR_STRIPES		256
68 #define STRIPE_SIZE		PAGE_SIZE
69 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
71 #define	IO_THRESHOLD		1
72 #define BYPASS_THRESHOLD	1
73 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK		(NR_HASH - 1)
75 
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 	return &conf->stripe_hashtbl[hash];
80 }
81 
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83  * order without overlap.  There may be several bio's per stripe+device, and
84  * a bio could span several devices.
85  * When walking this list for a particular stripe+device, we must never proceed
86  * beyond a bio that extends past this device, as the next bio might no longer
87  * be valid.
88  * This function is used to determine the 'next' bio in the list, given the sector
89  * of the current stripe+device
90  */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93 	int sectors = bio_sectors(bio);
94 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 		return bio->bi_next;
96 	else
97 		return NULL;
98 }
99 
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 	return (atomic_read(segments) >> 16) & 0xffff;
108 }
109 
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 	return atomic_sub_return(1, segments) & 0xffff;
114 }
115 
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 	atomic_inc(segments);
120 }
121 
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 	unsigned int cnt)
124 {
125 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 	int old, new;
127 
128 	do {
129 		old = atomic_read(segments);
130 		new = (old & 0xffff) | (cnt << 16);
131 	} while (atomic_cmpxchg(segments, old, new) != old);
132 }
133 
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 	atomic_set(segments, cnt);
138 }
139 
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143 	if (sh->ddf_layout)
144 		/* ddf always start from first device */
145 		return 0;
146 	/* md starts just after Q block */
147 	if (sh->qd_idx == sh->disks - 1)
148 		return 0;
149 	else
150 		return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154 	disk++;
155 	return (disk < raid_disks) ? disk : 0;
156 }
157 
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159  * We need to map each disk to a 'slot', where the data disks are slot
160  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161  * is raid_disks-1.  This help does that mapping.
162  */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 			     int *count, int syndrome_disks)
165 {
166 	int slot = *count;
167 
168 	if (sh->ddf_layout)
169 		(*count)++;
170 	if (idx == sh->pd_idx)
171 		return syndrome_disks;
172 	if (idx == sh->qd_idx)
173 		return syndrome_disks + 1;
174 	if (!sh->ddf_layout)
175 		(*count)++;
176 	return slot;
177 }
178 
179 static void return_io(struct bio *return_bi)
180 {
181 	struct bio *bi = return_bi;
182 	while (bi) {
183 
184 		return_bi = bi->bi_next;
185 		bi->bi_next = NULL;
186 		bi->bi_size = 0;
187 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
188 					 bi, 0);
189 		bio_endio(bi, 0);
190 		bi = return_bi;
191 	}
192 }
193 
194 static void print_raid5_conf (struct r5conf *conf);
195 
196 static int stripe_operations_active(struct stripe_head *sh)
197 {
198 	return sh->check_state || sh->reconstruct_state ||
199 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
200 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201 }
202 
203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
204 {
205 	BUG_ON(!list_empty(&sh->lru));
206 	BUG_ON(atomic_read(&conf->active_stripes)==0);
207 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
208 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
209 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
210 			list_add_tail(&sh->lru, &conf->delayed_list);
211 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
212 			   sh->bm_seq - conf->seq_write > 0)
213 			list_add_tail(&sh->lru, &conf->bitmap_list);
214 		else {
215 			clear_bit(STRIPE_DELAYED, &sh->state);
216 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
217 			list_add_tail(&sh->lru, &conf->handle_list);
218 		}
219 		md_wakeup_thread(conf->mddev->thread);
220 	} else {
221 		BUG_ON(stripe_operations_active(sh));
222 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
223 			if (atomic_dec_return(&conf->preread_active_stripes)
224 			    < IO_THRESHOLD)
225 				md_wakeup_thread(conf->mddev->thread);
226 		atomic_dec(&conf->active_stripes);
227 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
228 			list_add_tail(&sh->lru, &conf->inactive_list);
229 			wake_up(&conf->wait_for_stripe);
230 			if (conf->retry_read_aligned)
231 				md_wakeup_thread(conf->mddev->thread);
232 		}
233 	}
234 }
235 
236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
237 {
238 	if (atomic_dec_and_test(&sh->count))
239 		do_release_stripe(conf, sh);
240 }
241 
242 static void release_stripe(struct stripe_head *sh)
243 {
244 	struct r5conf *conf = sh->raid_conf;
245 	unsigned long flags;
246 
247 	local_irq_save(flags);
248 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
249 		do_release_stripe(conf, sh);
250 		spin_unlock(&conf->device_lock);
251 	}
252 	local_irq_restore(flags);
253 }
254 
255 static inline void remove_hash(struct stripe_head *sh)
256 {
257 	pr_debug("remove_hash(), stripe %llu\n",
258 		(unsigned long long)sh->sector);
259 
260 	hlist_del_init(&sh->hash);
261 }
262 
263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
264 {
265 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
266 
267 	pr_debug("insert_hash(), stripe %llu\n",
268 		(unsigned long long)sh->sector);
269 
270 	hlist_add_head(&sh->hash, hp);
271 }
272 
273 
274 /* find an idle stripe, make sure it is unhashed, and return it. */
275 static struct stripe_head *get_free_stripe(struct r5conf *conf)
276 {
277 	struct stripe_head *sh = NULL;
278 	struct list_head *first;
279 
280 	if (list_empty(&conf->inactive_list))
281 		goto out;
282 	first = conf->inactive_list.next;
283 	sh = list_entry(first, struct stripe_head, lru);
284 	list_del_init(first);
285 	remove_hash(sh);
286 	atomic_inc(&conf->active_stripes);
287 out:
288 	return sh;
289 }
290 
291 static void shrink_buffers(struct stripe_head *sh)
292 {
293 	struct page *p;
294 	int i;
295 	int num = sh->raid_conf->pool_size;
296 
297 	for (i = 0; i < num ; i++) {
298 		p = sh->dev[i].page;
299 		if (!p)
300 			continue;
301 		sh->dev[i].page = NULL;
302 		put_page(p);
303 	}
304 }
305 
306 static int grow_buffers(struct stripe_head *sh)
307 {
308 	int i;
309 	int num = sh->raid_conf->pool_size;
310 
311 	for (i = 0; i < num; i++) {
312 		struct page *page;
313 
314 		if (!(page = alloc_page(GFP_KERNEL))) {
315 			return 1;
316 		}
317 		sh->dev[i].page = page;
318 	}
319 	return 0;
320 }
321 
322 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
324 			    struct stripe_head *sh);
325 
326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
327 {
328 	struct r5conf *conf = sh->raid_conf;
329 	int i;
330 
331 	BUG_ON(atomic_read(&sh->count) != 0);
332 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
333 	BUG_ON(stripe_operations_active(sh));
334 
335 	pr_debug("init_stripe called, stripe %llu\n",
336 		(unsigned long long)sh->sector);
337 
338 	remove_hash(sh);
339 
340 	sh->generation = conf->generation - previous;
341 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
342 	sh->sector = sector;
343 	stripe_set_idx(sector, conf, previous, sh);
344 	sh->state = 0;
345 
346 
347 	for (i = sh->disks; i--; ) {
348 		struct r5dev *dev = &sh->dev[i];
349 
350 		if (dev->toread || dev->read || dev->towrite || dev->written ||
351 		    test_bit(R5_LOCKED, &dev->flags)) {
352 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
353 			       (unsigned long long)sh->sector, i, dev->toread,
354 			       dev->read, dev->towrite, dev->written,
355 			       test_bit(R5_LOCKED, &dev->flags));
356 			WARN_ON(1);
357 		}
358 		dev->flags = 0;
359 		raid5_build_block(sh, i, previous);
360 	}
361 	insert_hash(conf, sh);
362 }
363 
364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
365 					 short generation)
366 {
367 	struct stripe_head *sh;
368 
369 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
370 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
371 		if (sh->sector == sector && sh->generation == generation)
372 			return sh;
373 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
374 	return NULL;
375 }
376 
377 /*
378  * Need to check if array has failed when deciding whether to:
379  *  - start an array
380  *  - remove non-faulty devices
381  *  - add a spare
382  *  - allow a reshape
383  * This determination is simple when no reshape is happening.
384  * However if there is a reshape, we need to carefully check
385  * both the before and after sections.
386  * This is because some failed devices may only affect one
387  * of the two sections, and some non-in_sync devices may
388  * be insync in the section most affected by failed devices.
389  */
390 static int calc_degraded(struct r5conf *conf)
391 {
392 	int degraded, degraded2;
393 	int i;
394 
395 	rcu_read_lock();
396 	degraded = 0;
397 	for (i = 0; i < conf->previous_raid_disks; i++) {
398 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
399 		if (rdev && test_bit(Faulty, &rdev->flags))
400 			rdev = rcu_dereference(conf->disks[i].replacement);
401 		if (!rdev || test_bit(Faulty, &rdev->flags))
402 			degraded++;
403 		else if (test_bit(In_sync, &rdev->flags))
404 			;
405 		else
406 			/* not in-sync or faulty.
407 			 * If the reshape increases the number of devices,
408 			 * this is being recovered by the reshape, so
409 			 * this 'previous' section is not in_sync.
410 			 * If the number of devices is being reduced however,
411 			 * the device can only be part of the array if
412 			 * we are reverting a reshape, so this section will
413 			 * be in-sync.
414 			 */
415 			if (conf->raid_disks >= conf->previous_raid_disks)
416 				degraded++;
417 	}
418 	rcu_read_unlock();
419 	if (conf->raid_disks == conf->previous_raid_disks)
420 		return degraded;
421 	rcu_read_lock();
422 	degraded2 = 0;
423 	for (i = 0; i < conf->raid_disks; i++) {
424 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
425 		if (rdev && test_bit(Faulty, &rdev->flags))
426 			rdev = rcu_dereference(conf->disks[i].replacement);
427 		if (!rdev || test_bit(Faulty, &rdev->flags))
428 			degraded2++;
429 		else if (test_bit(In_sync, &rdev->flags))
430 			;
431 		else
432 			/* not in-sync or faulty.
433 			 * If reshape increases the number of devices, this
434 			 * section has already been recovered, else it
435 			 * almost certainly hasn't.
436 			 */
437 			if (conf->raid_disks <= conf->previous_raid_disks)
438 				degraded2++;
439 	}
440 	rcu_read_unlock();
441 	if (degraded2 > degraded)
442 		return degraded2;
443 	return degraded;
444 }
445 
446 static int has_failed(struct r5conf *conf)
447 {
448 	int degraded;
449 
450 	if (conf->mddev->reshape_position == MaxSector)
451 		return conf->mddev->degraded > conf->max_degraded;
452 
453 	degraded = calc_degraded(conf);
454 	if (degraded > conf->max_degraded)
455 		return 1;
456 	return 0;
457 }
458 
459 static struct stripe_head *
460 get_active_stripe(struct r5conf *conf, sector_t sector,
461 		  int previous, int noblock, int noquiesce)
462 {
463 	struct stripe_head *sh;
464 
465 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
466 
467 	spin_lock_irq(&conf->device_lock);
468 
469 	do {
470 		wait_event_lock_irq(conf->wait_for_stripe,
471 				    conf->quiesce == 0 || noquiesce,
472 				    conf->device_lock);
473 		sh = __find_stripe(conf, sector, conf->generation - previous);
474 		if (!sh) {
475 			if (!conf->inactive_blocked)
476 				sh = get_free_stripe(conf);
477 			if (noblock && sh == NULL)
478 				break;
479 			if (!sh) {
480 				conf->inactive_blocked = 1;
481 				wait_event_lock_irq(conf->wait_for_stripe,
482 						    !list_empty(&conf->inactive_list) &&
483 						    (atomic_read(&conf->active_stripes)
484 						     < (conf->max_nr_stripes *3/4)
485 						     || !conf->inactive_blocked),
486 						    conf->device_lock);
487 				conf->inactive_blocked = 0;
488 			} else
489 				init_stripe(sh, sector, previous);
490 		} else {
491 			if (atomic_read(&sh->count)) {
492 				BUG_ON(!list_empty(&sh->lru)
493 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
494 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
495 			} else {
496 				if (!test_bit(STRIPE_HANDLE, &sh->state))
497 					atomic_inc(&conf->active_stripes);
498 				if (list_empty(&sh->lru) &&
499 				    !test_bit(STRIPE_EXPANDING, &sh->state))
500 					BUG();
501 				list_del_init(&sh->lru);
502 			}
503 		}
504 	} while (sh == NULL);
505 
506 	if (sh)
507 		atomic_inc(&sh->count);
508 
509 	spin_unlock_irq(&conf->device_lock);
510 	return sh;
511 }
512 
513 /* Determine if 'data_offset' or 'new_data_offset' should be used
514  * in this stripe_head.
515  */
516 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
517 {
518 	sector_t progress = conf->reshape_progress;
519 	/* Need a memory barrier to make sure we see the value
520 	 * of conf->generation, or ->data_offset that was set before
521 	 * reshape_progress was updated.
522 	 */
523 	smp_rmb();
524 	if (progress == MaxSector)
525 		return 0;
526 	if (sh->generation == conf->generation - 1)
527 		return 0;
528 	/* We are in a reshape, and this is a new-generation stripe,
529 	 * so use new_data_offset.
530 	 */
531 	return 1;
532 }
533 
534 static void
535 raid5_end_read_request(struct bio *bi, int error);
536 static void
537 raid5_end_write_request(struct bio *bi, int error);
538 
539 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
540 {
541 	struct r5conf *conf = sh->raid_conf;
542 	int i, disks = sh->disks;
543 
544 	might_sleep();
545 
546 	for (i = disks; i--; ) {
547 		int rw;
548 		int replace_only = 0;
549 		struct bio *bi, *rbi;
550 		struct md_rdev *rdev, *rrdev = NULL;
551 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
552 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
553 				rw = WRITE_FUA;
554 			else
555 				rw = WRITE;
556 			if (test_bit(R5_Discard, &sh->dev[i].flags))
557 				rw |= REQ_DISCARD;
558 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
559 			rw = READ;
560 		else if (test_and_clear_bit(R5_WantReplace,
561 					    &sh->dev[i].flags)) {
562 			rw = WRITE;
563 			replace_only = 1;
564 		} else
565 			continue;
566 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
567 			rw |= REQ_SYNC;
568 
569 		bi = &sh->dev[i].req;
570 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
571 
572 		rcu_read_lock();
573 		rrdev = rcu_dereference(conf->disks[i].replacement);
574 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
575 		rdev = rcu_dereference(conf->disks[i].rdev);
576 		if (!rdev) {
577 			rdev = rrdev;
578 			rrdev = NULL;
579 		}
580 		if (rw & WRITE) {
581 			if (replace_only)
582 				rdev = NULL;
583 			if (rdev == rrdev)
584 				/* We raced and saw duplicates */
585 				rrdev = NULL;
586 		} else {
587 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
588 				rdev = rrdev;
589 			rrdev = NULL;
590 		}
591 
592 		if (rdev && test_bit(Faulty, &rdev->flags))
593 			rdev = NULL;
594 		if (rdev)
595 			atomic_inc(&rdev->nr_pending);
596 		if (rrdev && test_bit(Faulty, &rrdev->flags))
597 			rrdev = NULL;
598 		if (rrdev)
599 			atomic_inc(&rrdev->nr_pending);
600 		rcu_read_unlock();
601 
602 		/* We have already checked bad blocks for reads.  Now
603 		 * need to check for writes.  We never accept write errors
604 		 * on the replacement, so we don't to check rrdev.
605 		 */
606 		while ((rw & WRITE) && rdev &&
607 		       test_bit(WriteErrorSeen, &rdev->flags)) {
608 			sector_t first_bad;
609 			int bad_sectors;
610 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
611 					      &first_bad, &bad_sectors);
612 			if (!bad)
613 				break;
614 
615 			if (bad < 0) {
616 				set_bit(BlockedBadBlocks, &rdev->flags);
617 				if (!conf->mddev->external &&
618 				    conf->mddev->flags) {
619 					/* It is very unlikely, but we might
620 					 * still need to write out the
621 					 * bad block log - better give it
622 					 * a chance*/
623 					md_check_recovery(conf->mddev);
624 				}
625 				/*
626 				 * Because md_wait_for_blocked_rdev
627 				 * will dec nr_pending, we must
628 				 * increment it first.
629 				 */
630 				atomic_inc(&rdev->nr_pending);
631 				md_wait_for_blocked_rdev(rdev, conf->mddev);
632 			} else {
633 				/* Acknowledged bad block - skip the write */
634 				rdev_dec_pending(rdev, conf->mddev);
635 				rdev = NULL;
636 			}
637 		}
638 
639 		if (rdev) {
640 			if (s->syncing || s->expanding || s->expanded
641 			    || s->replacing)
642 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
643 
644 			set_bit(STRIPE_IO_STARTED, &sh->state);
645 
646 			bio_reset(bi);
647 			bi->bi_bdev = rdev->bdev;
648 			bi->bi_rw = rw;
649 			bi->bi_end_io = (rw & WRITE)
650 				? raid5_end_write_request
651 				: raid5_end_read_request;
652 			bi->bi_private = sh;
653 
654 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
655 				__func__, (unsigned long long)sh->sector,
656 				bi->bi_rw, i);
657 			atomic_inc(&sh->count);
658 			if (use_new_offset(conf, sh))
659 				bi->bi_sector = (sh->sector
660 						 + rdev->new_data_offset);
661 			else
662 				bi->bi_sector = (sh->sector
663 						 + rdev->data_offset);
664 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
665 				bi->bi_rw |= REQ_FLUSH;
666 
667 			bi->bi_vcnt = 1;
668 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669 			bi->bi_io_vec[0].bv_offset = 0;
670 			bi->bi_size = STRIPE_SIZE;
671 			if (rrdev)
672 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
673 
674 			if (conf->mddev->gendisk)
675 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
676 						      bi, disk_devt(conf->mddev->gendisk),
677 						      sh->dev[i].sector);
678 			generic_make_request(bi);
679 		}
680 		if (rrdev) {
681 			if (s->syncing || s->expanding || s->expanded
682 			    || s->replacing)
683 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
684 
685 			set_bit(STRIPE_IO_STARTED, &sh->state);
686 
687 			bio_reset(rbi);
688 			rbi->bi_bdev = rrdev->bdev;
689 			rbi->bi_rw = rw;
690 			BUG_ON(!(rw & WRITE));
691 			rbi->bi_end_io = raid5_end_write_request;
692 			rbi->bi_private = sh;
693 
694 			pr_debug("%s: for %llu schedule op %ld on "
695 				 "replacement disc %d\n",
696 				__func__, (unsigned long long)sh->sector,
697 				rbi->bi_rw, i);
698 			atomic_inc(&sh->count);
699 			if (use_new_offset(conf, sh))
700 				rbi->bi_sector = (sh->sector
701 						  + rrdev->new_data_offset);
702 			else
703 				rbi->bi_sector = (sh->sector
704 						  + rrdev->data_offset);
705 			rbi->bi_vcnt = 1;
706 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
707 			rbi->bi_io_vec[0].bv_offset = 0;
708 			rbi->bi_size = STRIPE_SIZE;
709 			if (conf->mddev->gendisk)
710 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
711 						      rbi, disk_devt(conf->mddev->gendisk),
712 						      sh->dev[i].sector);
713 			generic_make_request(rbi);
714 		}
715 		if (!rdev && !rrdev) {
716 			if (rw & WRITE)
717 				set_bit(STRIPE_DEGRADED, &sh->state);
718 			pr_debug("skip op %ld on disc %d for sector %llu\n",
719 				bi->bi_rw, i, (unsigned long long)sh->sector);
720 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
721 			set_bit(STRIPE_HANDLE, &sh->state);
722 		}
723 	}
724 }
725 
726 static struct dma_async_tx_descriptor *
727 async_copy_data(int frombio, struct bio *bio, struct page *page,
728 	sector_t sector, struct dma_async_tx_descriptor *tx)
729 {
730 	struct bio_vec *bvl;
731 	struct page *bio_page;
732 	int i;
733 	int page_offset;
734 	struct async_submit_ctl submit;
735 	enum async_tx_flags flags = 0;
736 
737 	if (bio->bi_sector >= sector)
738 		page_offset = (signed)(bio->bi_sector - sector) * 512;
739 	else
740 		page_offset = (signed)(sector - bio->bi_sector) * -512;
741 
742 	if (frombio)
743 		flags |= ASYNC_TX_FENCE;
744 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
745 
746 	bio_for_each_segment(bvl, bio, i) {
747 		int len = bvl->bv_len;
748 		int clen;
749 		int b_offset = 0;
750 
751 		if (page_offset < 0) {
752 			b_offset = -page_offset;
753 			page_offset += b_offset;
754 			len -= b_offset;
755 		}
756 
757 		if (len > 0 && page_offset + len > STRIPE_SIZE)
758 			clen = STRIPE_SIZE - page_offset;
759 		else
760 			clen = len;
761 
762 		if (clen > 0) {
763 			b_offset += bvl->bv_offset;
764 			bio_page = bvl->bv_page;
765 			if (frombio)
766 				tx = async_memcpy(page, bio_page, page_offset,
767 						  b_offset, clen, &submit);
768 			else
769 				tx = async_memcpy(bio_page, page, b_offset,
770 						  page_offset, clen, &submit);
771 		}
772 		/* chain the operations */
773 		submit.depend_tx = tx;
774 
775 		if (clen < len) /* hit end of page */
776 			break;
777 		page_offset +=  len;
778 	}
779 
780 	return tx;
781 }
782 
783 static void ops_complete_biofill(void *stripe_head_ref)
784 {
785 	struct stripe_head *sh = stripe_head_ref;
786 	struct bio *return_bi = NULL;
787 	int i;
788 
789 	pr_debug("%s: stripe %llu\n", __func__,
790 		(unsigned long long)sh->sector);
791 
792 	/* clear completed biofills */
793 	for (i = sh->disks; i--; ) {
794 		struct r5dev *dev = &sh->dev[i];
795 
796 		/* acknowledge completion of a biofill operation */
797 		/* and check if we need to reply to a read request,
798 		 * new R5_Wantfill requests are held off until
799 		 * !STRIPE_BIOFILL_RUN
800 		 */
801 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
802 			struct bio *rbi, *rbi2;
803 
804 			BUG_ON(!dev->read);
805 			rbi = dev->read;
806 			dev->read = NULL;
807 			while (rbi && rbi->bi_sector <
808 				dev->sector + STRIPE_SECTORS) {
809 				rbi2 = r5_next_bio(rbi, dev->sector);
810 				if (!raid5_dec_bi_active_stripes(rbi)) {
811 					rbi->bi_next = return_bi;
812 					return_bi = rbi;
813 				}
814 				rbi = rbi2;
815 			}
816 		}
817 	}
818 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
819 
820 	return_io(return_bi);
821 
822 	set_bit(STRIPE_HANDLE, &sh->state);
823 	release_stripe(sh);
824 }
825 
826 static void ops_run_biofill(struct stripe_head *sh)
827 {
828 	struct dma_async_tx_descriptor *tx = NULL;
829 	struct async_submit_ctl submit;
830 	int i;
831 
832 	pr_debug("%s: stripe %llu\n", __func__,
833 		(unsigned long long)sh->sector);
834 
835 	for (i = sh->disks; i--; ) {
836 		struct r5dev *dev = &sh->dev[i];
837 		if (test_bit(R5_Wantfill, &dev->flags)) {
838 			struct bio *rbi;
839 			spin_lock_irq(&sh->stripe_lock);
840 			dev->read = rbi = dev->toread;
841 			dev->toread = NULL;
842 			spin_unlock_irq(&sh->stripe_lock);
843 			while (rbi && rbi->bi_sector <
844 				dev->sector + STRIPE_SECTORS) {
845 				tx = async_copy_data(0, rbi, dev->page,
846 					dev->sector, tx);
847 				rbi = r5_next_bio(rbi, dev->sector);
848 			}
849 		}
850 	}
851 
852 	atomic_inc(&sh->count);
853 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
854 	async_trigger_callback(&submit);
855 }
856 
857 static void mark_target_uptodate(struct stripe_head *sh, int target)
858 {
859 	struct r5dev *tgt;
860 
861 	if (target < 0)
862 		return;
863 
864 	tgt = &sh->dev[target];
865 	set_bit(R5_UPTODATE, &tgt->flags);
866 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
867 	clear_bit(R5_Wantcompute, &tgt->flags);
868 }
869 
870 static void ops_complete_compute(void *stripe_head_ref)
871 {
872 	struct stripe_head *sh = stripe_head_ref;
873 
874 	pr_debug("%s: stripe %llu\n", __func__,
875 		(unsigned long long)sh->sector);
876 
877 	/* mark the computed target(s) as uptodate */
878 	mark_target_uptodate(sh, sh->ops.target);
879 	mark_target_uptodate(sh, sh->ops.target2);
880 
881 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
882 	if (sh->check_state == check_state_compute_run)
883 		sh->check_state = check_state_compute_result;
884 	set_bit(STRIPE_HANDLE, &sh->state);
885 	release_stripe(sh);
886 }
887 
888 /* return a pointer to the address conversion region of the scribble buffer */
889 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
890 				 struct raid5_percpu *percpu)
891 {
892 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
893 }
894 
895 static struct dma_async_tx_descriptor *
896 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
897 {
898 	int disks = sh->disks;
899 	struct page **xor_srcs = percpu->scribble;
900 	int target = sh->ops.target;
901 	struct r5dev *tgt = &sh->dev[target];
902 	struct page *xor_dest = tgt->page;
903 	int count = 0;
904 	struct dma_async_tx_descriptor *tx;
905 	struct async_submit_ctl submit;
906 	int i;
907 
908 	pr_debug("%s: stripe %llu block: %d\n",
909 		__func__, (unsigned long long)sh->sector, target);
910 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
911 
912 	for (i = disks; i--; )
913 		if (i != target)
914 			xor_srcs[count++] = sh->dev[i].page;
915 
916 	atomic_inc(&sh->count);
917 
918 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
919 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
920 	if (unlikely(count == 1))
921 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
922 	else
923 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
924 
925 	return tx;
926 }
927 
928 /* set_syndrome_sources - populate source buffers for gen_syndrome
929  * @srcs - (struct page *) array of size sh->disks
930  * @sh - stripe_head to parse
931  *
932  * Populates srcs in proper layout order for the stripe and returns the
933  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
934  * destination buffer is recorded in srcs[count] and the Q destination
935  * is recorded in srcs[count+1]].
936  */
937 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
938 {
939 	int disks = sh->disks;
940 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
941 	int d0_idx = raid6_d0(sh);
942 	int count;
943 	int i;
944 
945 	for (i = 0; i < disks; i++)
946 		srcs[i] = NULL;
947 
948 	count = 0;
949 	i = d0_idx;
950 	do {
951 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
952 
953 		srcs[slot] = sh->dev[i].page;
954 		i = raid6_next_disk(i, disks);
955 	} while (i != d0_idx);
956 
957 	return syndrome_disks;
958 }
959 
960 static struct dma_async_tx_descriptor *
961 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
962 {
963 	int disks = sh->disks;
964 	struct page **blocks = percpu->scribble;
965 	int target;
966 	int qd_idx = sh->qd_idx;
967 	struct dma_async_tx_descriptor *tx;
968 	struct async_submit_ctl submit;
969 	struct r5dev *tgt;
970 	struct page *dest;
971 	int i;
972 	int count;
973 
974 	if (sh->ops.target < 0)
975 		target = sh->ops.target2;
976 	else if (sh->ops.target2 < 0)
977 		target = sh->ops.target;
978 	else
979 		/* we should only have one valid target */
980 		BUG();
981 	BUG_ON(target < 0);
982 	pr_debug("%s: stripe %llu block: %d\n",
983 		__func__, (unsigned long long)sh->sector, target);
984 
985 	tgt = &sh->dev[target];
986 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
987 	dest = tgt->page;
988 
989 	atomic_inc(&sh->count);
990 
991 	if (target == qd_idx) {
992 		count = set_syndrome_sources(blocks, sh);
993 		blocks[count] = NULL; /* regenerating p is not necessary */
994 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
995 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
996 				  ops_complete_compute, sh,
997 				  to_addr_conv(sh, percpu));
998 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
999 	} else {
1000 		/* Compute any data- or p-drive using XOR */
1001 		count = 0;
1002 		for (i = disks; i-- ; ) {
1003 			if (i == target || i == qd_idx)
1004 				continue;
1005 			blocks[count++] = sh->dev[i].page;
1006 		}
1007 
1008 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1009 				  NULL, ops_complete_compute, sh,
1010 				  to_addr_conv(sh, percpu));
1011 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1012 	}
1013 
1014 	return tx;
1015 }
1016 
1017 static struct dma_async_tx_descriptor *
1018 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1019 {
1020 	int i, count, disks = sh->disks;
1021 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1022 	int d0_idx = raid6_d0(sh);
1023 	int faila = -1, failb = -1;
1024 	int target = sh->ops.target;
1025 	int target2 = sh->ops.target2;
1026 	struct r5dev *tgt = &sh->dev[target];
1027 	struct r5dev *tgt2 = &sh->dev[target2];
1028 	struct dma_async_tx_descriptor *tx;
1029 	struct page **blocks = percpu->scribble;
1030 	struct async_submit_ctl submit;
1031 
1032 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1033 		 __func__, (unsigned long long)sh->sector, target, target2);
1034 	BUG_ON(target < 0 || target2 < 0);
1035 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1036 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1037 
1038 	/* we need to open-code set_syndrome_sources to handle the
1039 	 * slot number conversion for 'faila' and 'failb'
1040 	 */
1041 	for (i = 0; i < disks ; i++)
1042 		blocks[i] = NULL;
1043 	count = 0;
1044 	i = d0_idx;
1045 	do {
1046 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1047 
1048 		blocks[slot] = sh->dev[i].page;
1049 
1050 		if (i == target)
1051 			faila = slot;
1052 		if (i == target2)
1053 			failb = slot;
1054 		i = raid6_next_disk(i, disks);
1055 	} while (i != d0_idx);
1056 
1057 	BUG_ON(faila == failb);
1058 	if (failb < faila)
1059 		swap(faila, failb);
1060 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1061 		 __func__, (unsigned long long)sh->sector, faila, failb);
1062 
1063 	atomic_inc(&sh->count);
1064 
1065 	if (failb == syndrome_disks+1) {
1066 		/* Q disk is one of the missing disks */
1067 		if (faila == syndrome_disks) {
1068 			/* Missing P+Q, just recompute */
1069 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1070 					  ops_complete_compute, sh,
1071 					  to_addr_conv(sh, percpu));
1072 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1073 						  STRIPE_SIZE, &submit);
1074 		} else {
1075 			struct page *dest;
1076 			int data_target;
1077 			int qd_idx = sh->qd_idx;
1078 
1079 			/* Missing D+Q: recompute D from P, then recompute Q */
1080 			if (target == qd_idx)
1081 				data_target = target2;
1082 			else
1083 				data_target = target;
1084 
1085 			count = 0;
1086 			for (i = disks; i-- ; ) {
1087 				if (i == data_target || i == qd_idx)
1088 					continue;
1089 				blocks[count++] = sh->dev[i].page;
1090 			}
1091 			dest = sh->dev[data_target].page;
1092 			init_async_submit(&submit,
1093 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1094 					  NULL, NULL, NULL,
1095 					  to_addr_conv(sh, percpu));
1096 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1097 				       &submit);
1098 
1099 			count = set_syndrome_sources(blocks, sh);
1100 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1101 					  ops_complete_compute, sh,
1102 					  to_addr_conv(sh, percpu));
1103 			return async_gen_syndrome(blocks, 0, count+2,
1104 						  STRIPE_SIZE, &submit);
1105 		}
1106 	} else {
1107 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1108 				  ops_complete_compute, sh,
1109 				  to_addr_conv(sh, percpu));
1110 		if (failb == syndrome_disks) {
1111 			/* We're missing D+P. */
1112 			return async_raid6_datap_recov(syndrome_disks+2,
1113 						       STRIPE_SIZE, faila,
1114 						       blocks, &submit);
1115 		} else {
1116 			/* We're missing D+D. */
1117 			return async_raid6_2data_recov(syndrome_disks+2,
1118 						       STRIPE_SIZE, faila, failb,
1119 						       blocks, &submit);
1120 		}
1121 	}
1122 }
1123 
1124 
1125 static void ops_complete_prexor(void *stripe_head_ref)
1126 {
1127 	struct stripe_head *sh = stripe_head_ref;
1128 
1129 	pr_debug("%s: stripe %llu\n", __func__,
1130 		(unsigned long long)sh->sector);
1131 }
1132 
1133 static struct dma_async_tx_descriptor *
1134 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1135 	       struct dma_async_tx_descriptor *tx)
1136 {
1137 	int disks = sh->disks;
1138 	struct page **xor_srcs = percpu->scribble;
1139 	int count = 0, pd_idx = sh->pd_idx, i;
1140 	struct async_submit_ctl submit;
1141 
1142 	/* existing parity data subtracted */
1143 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1144 
1145 	pr_debug("%s: stripe %llu\n", __func__,
1146 		(unsigned long long)sh->sector);
1147 
1148 	for (i = disks; i--; ) {
1149 		struct r5dev *dev = &sh->dev[i];
1150 		/* Only process blocks that are known to be uptodate */
1151 		if (test_bit(R5_Wantdrain, &dev->flags))
1152 			xor_srcs[count++] = dev->page;
1153 	}
1154 
1155 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1156 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1157 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1158 
1159 	return tx;
1160 }
1161 
1162 static struct dma_async_tx_descriptor *
1163 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1164 {
1165 	int disks = sh->disks;
1166 	int i;
1167 
1168 	pr_debug("%s: stripe %llu\n", __func__,
1169 		(unsigned long long)sh->sector);
1170 
1171 	for (i = disks; i--; ) {
1172 		struct r5dev *dev = &sh->dev[i];
1173 		struct bio *chosen;
1174 
1175 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1176 			struct bio *wbi;
1177 
1178 			spin_lock_irq(&sh->stripe_lock);
1179 			chosen = dev->towrite;
1180 			dev->towrite = NULL;
1181 			BUG_ON(dev->written);
1182 			wbi = dev->written = chosen;
1183 			spin_unlock_irq(&sh->stripe_lock);
1184 
1185 			while (wbi && wbi->bi_sector <
1186 				dev->sector + STRIPE_SECTORS) {
1187 				if (wbi->bi_rw & REQ_FUA)
1188 					set_bit(R5_WantFUA, &dev->flags);
1189 				if (wbi->bi_rw & REQ_SYNC)
1190 					set_bit(R5_SyncIO, &dev->flags);
1191 				if (wbi->bi_rw & REQ_DISCARD)
1192 					set_bit(R5_Discard, &dev->flags);
1193 				else
1194 					tx = async_copy_data(1, wbi, dev->page,
1195 						dev->sector, tx);
1196 				wbi = r5_next_bio(wbi, dev->sector);
1197 			}
1198 		}
1199 	}
1200 
1201 	return tx;
1202 }
1203 
1204 static void ops_complete_reconstruct(void *stripe_head_ref)
1205 {
1206 	struct stripe_head *sh = stripe_head_ref;
1207 	int disks = sh->disks;
1208 	int pd_idx = sh->pd_idx;
1209 	int qd_idx = sh->qd_idx;
1210 	int i;
1211 	bool fua = false, sync = false, discard = false;
1212 
1213 	pr_debug("%s: stripe %llu\n", __func__,
1214 		(unsigned long long)sh->sector);
1215 
1216 	for (i = disks; i--; ) {
1217 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1218 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1219 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1220 	}
1221 
1222 	for (i = disks; i--; ) {
1223 		struct r5dev *dev = &sh->dev[i];
1224 
1225 		if (dev->written || i == pd_idx || i == qd_idx) {
1226 			if (!discard)
1227 				set_bit(R5_UPTODATE, &dev->flags);
1228 			if (fua)
1229 				set_bit(R5_WantFUA, &dev->flags);
1230 			if (sync)
1231 				set_bit(R5_SyncIO, &dev->flags);
1232 		}
1233 	}
1234 
1235 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1236 		sh->reconstruct_state = reconstruct_state_drain_result;
1237 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1238 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1239 	else {
1240 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1241 		sh->reconstruct_state = reconstruct_state_result;
1242 	}
1243 
1244 	set_bit(STRIPE_HANDLE, &sh->state);
1245 	release_stripe(sh);
1246 }
1247 
1248 static void
1249 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1250 		     struct dma_async_tx_descriptor *tx)
1251 {
1252 	int disks = sh->disks;
1253 	struct page **xor_srcs = percpu->scribble;
1254 	struct async_submit_ctl submit;
1255 	int count = 0, pd_idx = sh->pd_idx, i;
1256 	struct page *xor_dest;
1257 	int prexor = 0;
1258 	unsigned long flags;
1259 
1260 	pr_debug("%s: stripe %llu\n", __func__,
1261 		(unsigned long long)sh->sector);
1262 
1263 	for (i = 0; i < sh->disks; i++) {
1264 		if (pd_idx == i)
1265 			continue;
1266 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1267 			break;
1268 	}
1269 	if (i >= sh->disks) {
1270 		atomic_inc(&sh->count);
1271 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1272 		ops_complete_reconstruct(sh);
1273 		return;
1274 	}
1275 	/* check if prexor is active which means only process blocks
1276 	 * that are part of a read-modify-write (written)
1277 	 */
1278 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1279 		prexor = 1;
1280 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1281 		for (i = disks; i--; ) {
1282 			struct r5dev *dev = &sh->dev[i];
1283 			if (dev->written)
1284 				xor_srcs[count++] = dev->page;
1285 		}
1286 	} else {
1287 		xor_dest = sh->dev[pd_idx].page;
1288 		for (i = disks; i--; ) {
1289 			struct r5dev *dev = &sh->dev[i];
1290 			if (i != pd_idx)
1291 				xor_srcs[count++] = dev->page;
1292 		}
1293 	}
1294 
1295 	/* 1/ if we prexor'd then the dest is reused as a source
1296 	 * 2/ if we did not prexor then we are redoing the parity
1297 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1298 	 * for the synchronous xor case
1299 	 */
1300 	flags = ASYNC_TX_ACK |
1301 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1302 
1303 	atomic_inc(&sh->count);
1304 
1305 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1306 			  to_addr_conv(sh, percpu));
1307 	if (unlikely(count == 1))
1308 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1309 	else
1310 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1311 }
1312 
1313 static void
1314 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1315 		     struct dma_async_tx_descriptor *tx)
1316 {
1317 	struct async_submit_ctl submit;
1318 	struct page **blocks = percpu->scribble;
1319 	int count, i;
1320 
1321 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1322 
1323 	for (i = 0; i < sh->disks; i++) {
1324 		if (sh->pd_idx == i || sh->qd_idx == i)
1325 			continue;
1326 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1327 			break;
1328 	}
1329 	if (i >= sh->disks) {
1330 		atomic_inc(&sh->count);
1331 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1332 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1333 		ops_complete_reconstruct(sh);
1334 		return;
1335 	}
1336 
1337 	count = set_syndrome_sources(blocks, sh);
1338 
1339 	atomic_inc(&sh->count);
1340 
1341 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1342 			  sh, to_addr_conv(sh, percpu));
1343 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1344 }
1345 
1346 static void ops_complete_check(void *stripe_head_ref)
1347 {
1348 	struct stripe_head *sh = stripe_head_ref;
1349 
1350 	pr_debug("%s: stripe %llu\n", __func__,
1351 		(unsigned long long)sh->sector);
1352 
1353 	sh->check_state = check_state_check_result;
1354 	set_bit(STRIPE_HANDLE, &sh->state);
1355 	release_stripe(sh);
1356 }
1357 
1358 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1359 {
1360 	int disks = sh->disks;
1361 	int pd_idx = sh->pd_idx;
1362 	int qd_idx = sh->qd_idx;
1363 	struct page *xor_dest;
1364 	struct page **xor_srcs = percpu->scribble;
1365 	struct dma_async_tx_descriptor *tx;
1366 	struct async_submit_ctl submit;
1367 	int count;
1368 	int i;
1369 
1370 	pr_debug("%s: stripe %llu\n", __func__,
1371 		(unsigned long long)sh->sector);
1372 
1373 	count = 0;
1374 	xor_dest = sh->dev[pd_idx].page;
1375 	xor_srcs[count++] = xor_dest;
1376 	for (i = disks; i--; ) {
1377 		if (i == pd_idx || i == qd_idx)
1378 			continue;
1379 		xor_srcs[count++] = sh->dev[i].page;
1380 	}
1381 
1382 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1383 			  to_addr_conv(sh, percpu));
1384 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1385 			   &sh->ops.zero_sum_result, &submit);
1386 
1387 	atomic_inc(&sh->count);
1388 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1389 	tx = async_trigger_callback(&submit);
1390 }
1391 
1392 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1393 {
1394 	struct page **srcs = percpu->scribble;
1395 	struct async_submit_ctl submit;
1396 	int count;
1397 
1398 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1399 		(unsigned long long)sh->sector, checkp);
1400 
1401 	count = set_syndrome_sources(srcs, sh);
1402 	if (!checkp)
1403 		srcs[count] = NULL;
1404 
1405 	atomic_inc(&sh->count);
1406 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1407 			  sh, to_addr_conv(sh, percpu));
1408 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1409 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1410 }
1411 
1412 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1413 {
1414 	int overlap_clear = 0, i, disks = sh->disks;
1415 	struct dma_async_tx_descriptor *tx = NULL;
1416 	struct r5conf *conf = sh->raid_conf;
1417 	int level = conf->level;
1418 	struct raid5_percpu *percpu;
1419 	unsigned long cpu;
1420 
1421 	cpu = get_cpu();
1422 	percpu = per_cpu_ptr(conf->percpu, cpu);
1423 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1424 		ops_run_biofill(sh);
1425 		overlap_clear++;
1426 	}
1427 
1428 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1429 		if (level < 6)
1430 			tx = ops_run_compute5(sh, percpu);
1431 		else {
1432 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1433 				tx = ops_run_compute6_1(sh, percpu);
1434 			else
1435 				tx = ops_run_compute6_2(sh, percpu);
1436 		}
1437 		/* terminate the chain if reconstruct is not set to be run */
1438 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1439 			async_tx_ack(tx);
1440 	}
1441 
1442 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1443 		tx = ops_run_prexor(sh, percpu, tx);
1444 
1445 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1446 		tx = ops_run_biodrain(sh, tx);
1447 		overlap_clear++;
1448 	}
1449 
1450 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1451 		if (level < 6)
1452 			ops_run_reconstruct5(sh, percpu, tx);
1453 		else
1454 			ops_run_reconstruct6(sh, percpu, tx);
1455 	}
1456 
1457 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1458 		if (sh->check_state == check_state_run)
1459 			ops_run_check_p(sh, percpu);
1460 		else if (sh->check_state == check_state_run_q)
1461 			ops_run_check_pq(sh, percpu, 0);
1462 		else if (sh->check_state == check_state_run_pq)
1463 			ops_run_check_pq(sh, percpu, 1);
1464 		else
1465 			BUG();
1466 	}
1467 
1468 	if (overlap_clear)
1469 		for (i = disks; i--; ) {
1470 			struct r5dev *dev = &sh->dev[i];
1471 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1472 				wake_up(&sh->raid_conf->wait_for_overlap);
1473 		}
1474 	put_cpu();
1475 }
1476 
1477 static int grow_one_stripe(struct r5conf *conf)
1478 {
1479 	struct stripe_head *sh;
1480 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1481 	if (!sh)
1482 		return 0;
1483 
1484 	sh->raid_conf = conf;
1485 
1486 	spin_lock_init(&sh->stripe_lock);
1487 
1488 	if (grow_buffers(sh)) {
1489 		shrink_buffers(sh);
1490 		kmem_cache_free(conf->slab_cache, sh);
1491 		return 0;
1492 	}
1493 	/* we just created an active stripe so... */
1494 	atomic_set(&sh->count, 1);
1495 	atomic_inc(&conf->active_stripes);
1496 	INIT_LIST_HEAD(&sh->lru);
1497 	release_stripe(sh);
1498 	return 1;
1499 }
1500 
1501 static int grow_stripes(struct r5conf *conf, int num)
1502 {
1503 	struct kmem_cache *sc;
1504 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1505 
1506 	if (conf->mddev->gendisk)
1507 		sprintf(conf->cache_name[0],
1508 			"raid%d-%s", conf->level, mdname(conf->mddev));
1509 	else
1510 		sprintf(conf->cache_name[0],
1511 			"raid%d-%p", conf->level, conf->mddev);
1512 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1513 
1514 	conf->active_name = 0;
1515 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1516 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1517 			       0, 0, NULL);
1518 	if (!sc)
1519 		return 1;
1520 	conf->slab_cache = sc;
1521 	conf->pool_size = devs;
1522 	while (num--)
1523 		if (!grow_one_stripe(conf))
1524 			return 1;
1525 	return 0;
1526 }
1527 
1528 /**
1529  * scribble_len - return the required size of the scribble region
1530  * @num - total number of disks in the array
1531  *
1532  * The size must be enough to contain:
1533  * 1/ a struct page pointer for each device in the array +2
1534  * 2/ room to convert each entry in (1) to its corresponding dma
1535  *    (dma_map_page()) or page (page_address()) address.
1536  *
1537  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1538  * calculate over all devices (not just the data blocks), using zeros in place
1539  * of the P and Q blocks.
1540  */
1541 static size_t scribble_len(int num)
1542 {
1543 	size_t len;
1544 
1545 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1546 
1547 	return len;
1548 }
1549 
1550 static int resize_stripes(struct r5conf *conf, int newsize)
1551 {
1552 	/* Make all the stripes able to hold 'newsize' devices.
1553 	 * New slots in each stripe get 'page' set to a new page.
1554 	 *
1555 	 * This happens in stages:
1556 	 * 1/ create a new kmem_cache and allocate the required number of
1557 	 *    stripe_heads.
1558 	 * 2/ gather all the old stripe_heads and transfer the pages across
1559 	 *    to the new stripe_heads.  This will have the side effect of
1560 	 *    freezing the array as once all stripe_heads have been collected,
1561 	 *    no IO will be possible.  Old stripe heads are freed once their
1562 	 *    pages have been transferred over, and the old kmem_cache is
1563 	 *    freed when all stripes are done.
1564 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1565 	 *    we simple return a failre status - no need to clean anything up.
1566 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1567 	 *    If this fails, we don't bother trying the shrink the
1568 	 *    stripe_heads down again, we just leave them as they are.
1569 	 *    As each stripe_head is processed the new one is released into
1570 	 *    active service.
1571 	 *
1572 	 * Once step2 is started, we cannot afford to wait for a write,
1573 	 * so we use GFP_NOIO allocations.
1574 	 */
1575 	struct stripe_head *osh, *nsh;
1576 	LIST_HEAD(newstripes);
1577 	struct disk_info *ndisks;
1578 	unsigned long cpu;
1579 	int err;
1580 	struct kmem_cache *sc;
1581 	int i;
1582 
1583 	if (newsize <= conf->pool_size)
1584 		return 0; /* never bother to shrink */
1585 
1586 	err = md_allow_write(conf->mddev);
1587 	if (err)
1588 		return err;
1589 
1590 	/* Step 1 */
1591 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1592 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1593 			       0, 0, NULL);
1594 	if (!sc)
1595 		return -ENOMEM;
1596 
1597 	for (i = conf->max_nr_stripes; i; i--) {
1598 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1599 		if (!nsh)
1600 			break;
1601 
1602 		nsh->raid_conf = conf;
1603 		spin_lock_init(&nsh->stripe_lock);
1604 
1605 		list_add(&nsh->lru, &newstripes);
1606 	}
1607 	if (i) {
1608 		/* didn't get enough, give up */
1609 		while (!list_empty(&newstripes)) {
1610 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1611 			list_del(&nsh->lru);
1612 			kmem_cache_free(sc, nsh);
1613 		}
1614 		kmem_cache_destroy(sc);
1615 		return -ENOMEM;
1616 	}
1617 	/* Step 2 - Must use GFP_NOIO now.
1618 	 * OK, we have enough stripes, start collecting inactive
1619 	 * stripes and copying them over
1620 	 */
1621 	list_for_each_entry(nsh, &newstripes, lru) {
1622 		spin_lock_irq(&conf->device_lock);
1623 		wait_event_lock_irq(conf->wait_for_stripe,
1624 				    !list_empty(&conf->inactive_list),
1625 				    conf->device_lock);
1626 		osh = get_free_stripe(conf);
1627 		spin_unlock_irq(&conf->device_lock);
1628 		atomic_set(&nsh->count, 1);
1629 		for(i=0; i<conf->pool_size; i++)
1630 			nsh->dev[i].page = osh->dev[i].page;
1631 		for( ; i<newsize; i++)
1632 			nsh->dev[i].page = NULL;
1633 		kmem_cache_free(conf->slab_cache, osh);
1634 	}
1635 	kmem_cache_destroy(conf->slab_cache);
1636 
1637 	/* Step 3.
1638 	 * At this point, we are holding all the stripes so the array
1639 	 * is completely stalled, so now is a good time to resize
1640 	 * conf->disks and the scribble region
1641 	 */
1642 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1643 	if (ndisks) {
1644 		for (i=0; i<conf->raid_disks; i++)
1645 			ndisks[i] = conf->disks[i];
1646 		kfree(conf->disks);
1647 		conf->disks = ndisks;
1648 	} else
1649 		err = -ENOMEM;
1650 
1651 	get_online_cpus();
1652 	conf->scribble_len = scribble_len(newsize);
1653 	for_each_present_cpu(cpu) {
1654 		struct raid5_percpu *percpu;
1655 		void *scribble;
1656 
1657 		percpu = per_cpu_ptr(conf->percpu, cpu);
1658 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1659 
1660 		if (scribble) {
1661 			kfree(percpu->scribble);
1662 			percpu->scribble = scribble;
1663 		} else {
1664 			err = -ENOMEM;
1665 			break;
1666 		}
1667 	}
1668 	put_online_cpus();
1669 
1670 	/* Step 4, return new stripes to service */
1671 	while(!list_empty(&newstripes)) {
1672 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1673 		list_del_init(&nsh->lru);
1674 
1675 		for (i=conf->raid_disks; i < newsize; i++)
1676 			if (nsh->dev[i].page == NULL) {
1677 				struct page *p = alloc_page(GFP_NOIO);
1678 				nsh->dev[i].page = p;
1679 				if (!p)
1680 					err = -ENOMEM;
1681 			}
1682 		release_stripe(nsh);
1683 	}
1684 	/* critical section pass, GFP_NOIO no longer needed */
1685 
1686 	conf->slab_cache = sc;
1687 	conf->active_name = 1-conf->active_name;
1688 	conf->pool_size = newsize;
1689 	return err;
1690 }
1691 
1692 static int drop_one_stripe(struct r5conf *conf)
1693 {
1694 	struct stripe_head *sh;
1695 
1696 	spin_lock_irq(&conf->device_lock);
1697 	sh = get_free_stripe(conf);
1698 	spin_unlock_irq(&conf->device_lock);
1699 	if (!sh)
1700 		return 0;
1701 	BUG_ON(atomic_read(&sh->count));
1702 	shrink_buffers(sh);
1703 	kmem_cache_free(conf->slab_cache, sh);
1704 	atomic_dec(&conf->active_stripes);
1705 	return 1;
1706 }
1707 
1708 static void shrink_stripes(struct r5conf *conf)
1709 {
1710 	while (drop_one_stripe(conf))
1711 		;
1712 
1713 	if (conf->slab_cache)
1714 		kmem_cache_destroy(conf->slab_cache);
1715 	conf->slab_cache = NULL;
1716 }
1717 
1718 static void raid5_end_read_request(struct bio * bi, int error)
1719 {
1720 	struct stripe_head *sh = bi->bi_private;
1721 	struct r5conf *conf = sh->raid_conf;
1722 	int disks = sh->disks, i;
1723 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1724 	char b[BDEVNAME_SIZE];
1725 	struct md_rdev *rdev = NULL;
1726 	sector_t s;
1727 
1728 	for (i=0 ; i<disks; i++)
1729 		if (bi == &sh->dev[i].req)
1730 			break;
1731 
1732 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1733 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1734 		uptodate);
1735 	if (i == disks) {
1736 		BUG();
1737 		return;
1738 	}
1739 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1740 		/* If replacement finished while this request was outstanding,
1741 		 * 'replacement' might be NULL already.
1742 		 * In that case it moved down to 'rdev'.
1743 		 * rdev is not removed until all requests are finished.
1744 		 */
1745 		rdev = conf->disks[i].replacement;
1746 	if (!rdev)
1747 		rdev = conf->disks[i].rdev;
1748 
1749 	if (use_new_offset(conf, sh))
1750 		s = sh->sector + rdev->new_data_offset;
1751 	else
1752 		s = sh->sector + rdev->data_offset;
1753 	if (uptodate) {
1754 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1755 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1756 			/* Note that this cannot happen on a
1757 			 * replacement device.  We just fail those on
1758 			 * any error
1759 			 */
1760 			printk_ratelimited(
1761 				KERN_INFO
1762 				"md/raid:%s: read error corrected"
1763 				" (%lu sectors at %llu on %s)\n",
1764 				mdname(conf->mddev), STRIPE_SECTORS,
1765 				(unsigned long long)s,
1766 				bdevname(rdev->bdev, b));
1767 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1768 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1769 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1770 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1771 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1772 
1773 		if (atomic_read(&rdev->read_errors))
1774 			atomic_set(&rdev->read_errors, 0);
1775 	} else {
1776 		const char *bdn = bdevname(rdev->bdev, b);
1777 		int retry = 0;
1778 		int set_bad = 0;
1779 
1780 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1781 		atomic_inc(&rdev->read_errors);
1782 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1783 			printk_ratelimited(
1784 				KERN_WARNING
1785 				"md/raid:%s: read error on replacement device "
1786 				"(sector %llu on %s).\n",
1787 				mdname(conf->mddev),
1788 				(unsigned long long)s,
1789 				bdn);
1790 		else if (conf->mddev->degraded >= conf->max_degraded) {
1791 			set_bad = 1;
1792 			printk_ratelimited(
1793 				KERN_WARNING
1794 				"md/raid:%s: read error not correctable "
1795 				"(sector %llu on %s).\n",
1796 				mdname(conf->mddev),
1797 				(unsigned long long)s,
1798 				bdn);
1799 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1800 			/* Oh, no!!! */
1801 			set_bad = 1;
1802 			printk_ratelimited(
1803 				KERN_WARNING
1804 				"md/raid:%s: read error NOT corrected!! "
1805 				"(sector %llu on %s).\n",
1806 				mdname(conf->mddev),
1807 				(unsigned long long)s,
1808 				bdn);
1809 		} else if (atomic_read(&rdev->read_errors)
1810 			 > conf->max_nr_stripes)
1811 			printk(KERN_WARNING
1812 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1813 			       mdname(conf->mddev), bdn);
1814 		else
1815 			retry = 1;
1816 		if (retry)
1817 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1818 				set_bit(R5_ReadError, &sh->dev[i].flags);
1819 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1820 			} else
1821 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1822 		else {
1823 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1824 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1825 			if (!(set_bad
1826 			      && test_bit(In_sync, &rdev->flags)
1827 			      && rdev_set_badblocks(
1828 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
1829 				md_error(conf->mddev, rdev);
1830 		}
1831 	}
1832 	rdev_dec_pending(rdev, conf->mddev);
1833 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1834 	set_bit(STRIPE_HANDLE, &sh->state);
1835 	release_stripe(sh);
1836 }
1837 
1838 static void raid5_end_write_request(struct bio *bi, int error)
1839 {
1840 	struct stripe_head *sh = bi->bi_private;
1841 	struct r5conf *conf = sh->raid_conf;
1842 	int disks = sh->disks, i;
1843 	struct md_rdev *uninitialized_var(rdev);
1844 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1845 	sector_t first_bad;
1846 	int bad_sectors;
1847 	int replacement = 0;
1848 
1849 	for (i = 0 ; i < disks; i++) {
1850 		if (bi == &sh->dev[i].req) {
1851 			rdev = conf->disks[i].rdev;
1852 			break;
1853 		}
1854 		if (bi == &sh->dev[i].rreq) {
1855 			rdev = conf->disks[i].replacement;
1856 			if (rdev)
1857 				replacement = 1;
1858 			else
1859 				/* rdev was removed and 'replacement'
1860 				 * replaced it.  rdev is not removed
1861 				 * until all requests are finished.
1862 				 */
1863 				rdev = conf->disks[i].rdev;
1864 			break;
1865 		}
1866 	}
1867 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1868 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1869 		uptodate);
1870 	if (i == disks) {
1871 		BUG();
1872 		return;
1873 	}
1874 
1875 	if (replacement) {
1876 		if (!uptodate)
1877 			md_error(conf->mddev, rdev);
1878 		else if (is_badblock(rdev, sh->sector,
1879 				     STRIPE_SECTORS,
1880 				     &first_bad, &bad_sectors))
1881 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1882 	} else {
1883 		if (!uptodate) {
1884 			set_bit(WriteErrorSeen, &rdev->flags);
1885 			set_bit(R5_WriteError, &sh->dev[i].flags);
1886 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1887 				set_bit(MD_RECOVERY_NEEDED,
1888 					&rdev->mddev->recovery);
1889 		} else if (is_badblock(rdev, sh->sector,
1890 				       STRIPE_SECTORS,
1891 				       &first_bad, &bad_sectors)) {
1892 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1893 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
1894 				/* That was a successful write so make
1895 				 * sure it looks like we already did
1896 				 * a re-write.
1897 				 */
1898 				set_bit(R5_ReWrite, &sh->dev[i].flags);
1899 		}
1900 	}
1901 	rdev_dec_pending(rdev, conf->mddev);
1902 
1903 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1904 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1905 	set_bit(STRIPE_HANDLE, &sh->state);
1906 	release_stripe(sh);
1907 }
1908 
1909 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1910 
1911 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1912 {
1913 	struct r5dev *dev = &sh->dev[i];
1914 
1915 	bio_init(&dev->req);
1916 	dev->req.bi_io_vec = &dev->vec;
1917 	dev->req.bi_vcnt++;
1918 	dev->req.bi_max_vecs++;
1919 	dev->req.bi_private = sh;
1920 	dev->vec.bv_page = dev->page;
1921 
1922 	bio_init(&dev->rreq);
1923 	dev->rreq.bi_io_vec = &dev->rvec;
1924 	dev->rreq.bi_vcnt++;
1925 	dev->rreq.bi_max_vecs++;
1926 	dev->rreq.bi_private = sh;
1927 	dev->rvec.bv_page = dev->page;
1928 
1929 	dev->flags = 0;
1930 	dev->sector = compute_blocknr(sh, i, previous);
1931 }
1932 
1933 static void error(struct mddev *mddev, struct md_rdev *rdev)
1934 {
1935 	char b[BDEVNAME_SIZE];
1936 	struct r5conf *conf = mddev->private;
1937 	unsigned long flags;
1938 	pr_debug("raid456: error called\n");
1939 
1940 	spin_lock_irqsave(&conf->device_lock, flags);
1941 	clear_bit(In_sync, &rdev->flags);
1942 	mddev->degraded = calc_degraded(conf);
1943 	spin_unlock_irqrestore(&conf->device_lock, flags);
1944 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1945 
1946 	set_bit(Blocked, &rdev->flags);
1947 	set_bit(Faulty, &rdev->flags);
1948 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1949 	printk(KERN_ALERT
1950 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1951 	       "md/raid:%s: Operation continuing on %d devices.\n",
1952 	       mdname(mddev),
1953 	       bdevname(rdev->bdev, b),
1954 	       mdname(mddev),
1955 	       conf->raid_disks - mddev->degraded);
1956 }
1957 
1958 /*
1959  * Input: a 'big' sector number,
1960  * Output: index of the data and parity disk, and the sector # in them.
1961  */
1962 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1963 				     int previous, int *dd_idx,
1964 				     struct stripe_head *sh)
1965 {
1966 	sector_t stripe, stripe2;
1967 	sector_t chunk_number;
1968 	unsigned int chunk_offset;
1969 	int pd_idx, qd_idx;
1970 	int ddf_layout = 0;
1971 	sector_t new_sector;
1972 	int algorithm = previous ? conf->prev_algo
1973 				 : conf->algorithm;
1974 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1975 					 : conf->chunk_sectors;
1976 	int raid_disks = previous ? conf->previous_raid_disks
1977 				  : conf->raid_disks;
1978 	int data_disks = raid_disks - conf->max_degraded;
1979 
1980 	/* First compute the information on this sector */
1981 
1982 	/*
1983 	 * Compute the chunk number and the sector offset inside the chunk
1984 	 */
1985 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1986 	chunk_number = r_sector;
1987 
1988 	/*
1989 	 * Compute the stripe number
1990 	 */
1991 	stripe = chunk_number;
1992 	*dd_idx = sector_div(stripe, data_disks);
1993 	stripe2 = stripe;
1994 	/*
1995 	 * Select the parity disk based on the user selected algorithm.
1996 	 */
1997 	pd_idx = qd_idx = -1;
1998 	switch(conf->level) {
1999 	case 4:
2000 		pd_idx = data_disks;
2001 		break;
2002 	case 5:
2003 		switch (algorithm) {
2004 		case ALGORITHM_LEFT_ASYMMETRIC:
2005 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2006 			if (*dd_idx >= pd_idx)
2007 				(*dd_idx)++;
2008 			break;
2009 		case ALGORITHM_RIGHT_ASYMMETRIC:
2010 			pd_idx = sector_div(stripe2, raid_disks);
2011 			if (*dd_idx >= pd_idx)
2012 				(*dd_idx)++;
2013 			break;
2014 		case ALGORITHM_LEFT_SYMMETRIC:
2015 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2016 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2017 			break;
2018 		case ALGORITHM_RIGHT_SYMMETRIC:
2019 			pd_idx = sector_div(stripe2, raid_disks);
2020 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2021 			break;
2022 		case ALGORITHM_PARITY_0:
2023 			pd_idx = 0;
2024 			(*dd_idx)++;
2025 			break;
2026 		case ALGORITHM_PARITY_N:
2027 			pd_idx = data_disks;
2028 			break;
2029 		default:
2030 			BUG();
2031 		}
2032 		break;
2033 	case 6:
2034 
2035 		switch (algorithm) {
2036 		case ALGORITHM_LEFT_ASYMMETRIC:
2037 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2038 			qd_idx = pd_idx + 1;
2039 			if (pd_idx == raid_disks-1) {
2040 				(*dd_idx)++;	/* Q D D D P */
2041 				qd_idx = 0;
2042 			} else if (*dd_idx >= pd_idx)
2043 				(*dd_idx) += 2; /* D D P Q D */
2044 			break;
2045 		case ALGORITHM_RIGHT_ASYMMETRIC:
2046 			pd_idx = sector_div(stripe2, raid_disks);
2047 			qd_idx = pd_idx + 1;
2048 			if (pd_idx == raid_disks-1) {
2049 				(*dd_idx)++;	/* Q D D D P */
2050 				qd_idx = 0;
2051 			} else if (*dd_idx >= pd_idx)
2052 				(*dd_idx) += 2; /* D D P Q D */
2053 			break;
2054 		case ALGORITHM_LEFT_SYMMETRIC:
2055 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2056 			qd_idx = (pd_idx + 1) % raid_disks;
2057 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2058 			break;
2059 		case ALGORITHM_RIGHT_SYMMETRIC:
2060 			pd_idx = sector_div(stripe2, raid_disks);
2061 			qd_idx = (pd_idx + 1) % raid_disks;
2062 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2063 			break;
2064 
2065 		case ALGORITHM_PARITY_0:
2066 			pd_idx = 0;
2067 			qd_idx = 1;
2068 			(*dd_idx) += 2;
2069 			break;
2070 		case ALGORITHM_PARITY_N:
2071 			pd_idx = data_disks;
2072 			qd_idx = data_disks + 1;
2073 			break;
2074 
2075 		case ALGORITHM_ROTATING_ZERO_RESTART:
2076 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2077 			 * of blocks for computing Q is different.
2078 			 */
2079 			pd_idx = sector_div(stripe2, raid_disks);
2080 			qd_idx = pd_idx + 1;
2081 			if (pd_idx == raid_disks-1) {
2082 				(*dd_idx)++;	/* Q D D D P */
2083 				qd_idx = 0;
2084 			} else if (*dd_idx >= pd_idx)
2085 				(*dd_idx) += 2; /* D D P Q D */
2086 			ddf_layout = 1;
2087 			break;
2088 
2089 		case ALGORITHM_ROTATING_N_RESTART:
2090 			/* Same a left_asymmetric, by first stripe is
2091 			 * D D D P Q  rather than
2092 			 * Q D D D P
2093 			 */
2094 			stripe2 += 1;
2095 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2096 			qd_idx = pd_idx + 1;
2097 			if (pd_idx == raid_disks-1) {
2098 				(*dd_idx)++;	/* Q D D D P */
2099 				qd_idx = 0;
2100 			} else if (*dd_idx >= pd_idx)
2101 				(*dd_idx) += 2; /* D D P Q D */
2102 			ddf_layout = 1;
2103 			break;
2104 
2105 		case ALGORITHM_ROTATING_N_CONTINUE:
2106 			/* Same as left_symmetric but Q is before P */
2107 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2108 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2109 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2110 			ddf_layout = 1;
2111 			break;
2112 
2113 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2114 			/* RAID5 left_asymmetric, with Q on last device */
2115 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2116 			if (*dd_idx >= pd_idx)
2117 				(*dd_idx)++;
2118 			qd_idx = raid_disks - 1;
2119 			break;
2120 
2121 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2122 			pd_idx = sector_div(stripe2, raid_disks-1);
2123 			if (*dd_idx >= pd_idx)
2124 				(*dd_idx)++;
2125 			qd_idx = raid_disks - 1;
2126 			break;
2127 
2128 		case ALGORITHM_LEFT_SYMMETRIC_6:
2129 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2130 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2131 			qd_idx = raid_disks - 1;
2132 			break;
2133 
2134 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2135 			pd_idx = sector_div(stripe2, raid_disks-1);
2136 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2137 			qd_idx = raid_disks - 1;
2138 			break;
2139 
2140 		case ALGORITHM_PARITY_0_6:
2141 			pd_idx = 0;
2142 			(*dd_idx)++;
2143 			qd_idx = raid_disks - 1;
2144 			break;
2145 
2146 		default:
2147 			BUG();
2148 		}
2149 		break;
2150 	}
2151 
2152 	if (sh) {
2153 		sh->pd_idx = pd_idx;
2154 		sh->qd_idx = qd_idx;
2155 		sh->ddf_layout = ddf_layout;
2156 	}
2157 	/*
2158 	 * Finally, compute the new sector number
2159 	 */
2160 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2161 	return new_sector;
2162 }
2163 
2164 
2165 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2166 {
2167 	struct r5conf *conf = sh->raid_conf;
2168 	int raid_disks = sh->disks;
2169 	int data_disks = raid_disks - conf->max_degraded;
2170 	sector_t new_sector = sh->sector, check;
2171 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2172 					 : conf->chunk_sectors;
2173 	int algorithm = previous ? conf->prev_algo
2174 				 : conf->algorithm;
2175 	sector_t stripe;
2176 	int chunk_offset;
2177 	sector_t chunk_number;
2178 	int dummy1, dd_idx = i;
2179 	sector_t r_sector;
2180 	struct stripe_head sh2;
2181 
2182 
2183 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2184 	stripe = new_sector;
2185 
2186 	if (i == sh->pd_idx)
2187 		return 0;
2188 	switch(conf->level) {
2189 	case 4: break;
2190 	case 5:
2191 		switch (algorithm) {
2192 		case ALGORITHM_LEFT_ASYMMETRIC:
2193 		case ALGORITHM_RIGHT_ASYMMETRIC:
2194 			if (i > sh->pd_idx)
2195 				i--;
2196 			break;
2197 		case ALGORITHM_LEFT_SYMMETRIC:
2198 		case ALGORITHM_RIGHT_SYMMETRIC:
2199 			if (i < sh->pd_idx)
2200 				i += raid_disks;
2201 			i -= (sh->pd_idx + 1);
2202 			break;
2203 		case ALGORITHM_PARITY_0:
2204 			i -= 1;
2205 			break;
2206 		case ALGORITHM_PARITY_N:
2207 			break;
2208 		default:
2209 			BUG();
2210 		}
2211 		break;
2212 	case 6:
2213 		if (i == sh->qd_idx)
2214 			return 0; /* It is the Q disk */
2215 		switch (algorithm) {
2216 		case ALGORITHM_LEFT_ASYMMETRIC:
2217 		case ALGORITHM_RIGHT_ASYMMETRIC:
2218 		case ALGORITHM_ROTATING_ZERO_RESTART:
2219 		case ALGORITHM_ROTATING_N_RESTART:
2220 			if (sh->pd_idx == raid_disks-1)
2221 				i--;	/* Q D D D P */
2222 			else if (i > sh->pd_idx)
2223 				i -= 2; /* D D P Q D */
2224 			break;
2225 		case ALGORITHM_LEFT_SYMMETRIC:
2226 		case ALGORITHM_RIGHT_SYMMETRIC:
2227 			if (sh->pd_idx == raid_disks-1)
2228 				i--; /* Q D D D P */
2229 			else {
2230 				/* D D P Q D */
2231 				if (i < sh->pd_idx)
2232 					i += raid_disks;
2233 				i -= (sh->pd_idx + 2);
2234 			}
2235 			break;
2236 		case ALGORITHM_PARITY_0:
2237 			i -= 2;
2238 			break;
2239 		case ALGORITHM_PARITY_N:
2240 			break;
2241 		case ALGORITHM_ROTATING_N_CONTINUE:
2242 			/* Like left_symmetric, but P is before Q */
2243 			if (sh->pd_idx == 0)
2244 				i--;	/* P D D D Q */
2245 			else {
2246 				/* D D Q P D */
2247 				if (i < sh->pd_idx)
2248 					i += raid_disks;
2249 				i -= (sh->pd_idx + 1);
2250 			}
2251 			break;
2252 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2253 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2254 			if (i > sh->pd_idx)
2255 				i--;
2256 			break;
2257 		case ALGORITHM_LEFT_SYMMETRIC_6:
2258 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2259 			if (i < sh->pd_idx)
2260 				i += data_disks + 1;
2261 			i -= (sh->pd_idx + 1);
2262 			break;
2263 		case ALGORITHM_PARITY_0_6:
2264 			i -= 1;
2265 			break;
2266 		default:
2267 			BUG();
2268 		}
2269 		break;
2270 	}
2271 
2272 	chunk_number = stripe * data_disks + i;
2273 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2274 
2275 	check = raid5_compute_sector(conf, r_sector,
2276 				     previous, &dummy1, &sh2);
2277 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2278 		|| sh2.qd_idx != sh->qd_idx) {
2279 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2280 		       mdname(conf->mddev));
2281 		return 0;
2282 	}
2283 	return r_sector;
2284 }
2285 
2286 
2287 static void
2288 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2289 			 int rcw, int expand)
2290 {
2291 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2292 	struct r5conf *conf = sh->raid_conf;
2293 	int level = conf->level;
2294 
2295 	if (rcw) {
2296 
2297 		for (i = disks; i--; ) {
2298 			struct r5dev *dev = &sh->dev[i];
2299 
2300 			if (dev->towrite) {
2301 				set_bit(R5_LOCKED, &dev->flags);
2302 				set_bit(R5_Wantdrain, &dev->flags);
2303 				if (!expand)
2304 					clear_bit(R5_UPTODATE, &dev->flags);
2305 				s->locked++;
2306 			}
2307 		}
2308 		/* if we are not expanding this is a proper write request, and
2309 		 * there will be bios with new data to be drained into the
2310 		 * stripe cache
2311 		 */
2312 		if (!expand) {
2313 			if (!s->locked)
2314 				/* False alarm, nothing to do */
2315 				return;
2316 			sh->reconstruct_state = reconstruct_state_drain_run;
2317 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2318 		} else
2319 			sh->reconstruct_state = reconstruct_state_run;
2320 
2321 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2322 
2323 		if (s->locked + conf->max_degraded == disks)
2324 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2325 				atomic_inc(&conf->pending_full_writes);
2326 	} else {
2327 		BUG_ON(level == 6);
2328 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2329 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2330 
2331 		for (i = disks; i--; ) {
2332 			struct r5dev *dev = &sh->dev[i];
2333 			if (i == pd_idx)
2334 				continue;
2335 
2336 			if (dev->towrite &&
2337 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2338 			     test_bit(R5_Wantcompute, &dev->flags))) {
2339 				set_bit(R5_Wantdrain, &dev->flags);
2340 				set_bit(R5_LOCKED, &dev->flags);
2341 				clear_bit(R5_UPTODATE, &dev->flags);
2342 				s->locked++;
2343 			}
2344 		}
2345 		if (!s->locked)
2346 			/* False alarm - nothing to do */
2347 			return;
2348 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2349 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2350 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2351 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2352 	}
2353 
2354 	/* keep the parity disk(s) locked while asynchronous operations
2355 	 * are in flight
2356 	 */
2357 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2358 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2359 	s->locked++;
2360 
2361 	if (level == 6) {
2362 		int qd_idx = sh->qd_idx;
2363 		struct r5dev *dev = &sh->dev[qd_idx];
2364 
2365 		set_bit(R5_LOCKED, &dev->flags);
2366 		clear_bit(R5_UPTODATE, &dev->flags);
2367 		s->locked++;
2368 	}
2369 
2370 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2371 		__func__, (unsigned long long)sh->sector,
2372 		s->locked, s->ops_request);
2373 }
2374 
2375 /*
2376  * Each stripe/dev can have one or more bion attached.
2377  * toread/towrite point to the first in a chain.
2378  * The bi_next chain must be in order.
2379  */
2380 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2381 {
2382 	struct bio **bip;
2383 	struct r5conf *conf = sh->raid_conf;
2384 	int firstwrite=0;
2385 
2386 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2387 		(unsigned long long)bi->bi_sector,
2388 		(unsigned long long)sh->sector);
2389 
2390 	/*
2391 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2392 	 * reference count to avoid race. The reference count should already be
2393 	 * increased before this function is called (for example, in
2394 	 * make_request()), so other bio sharing this stripe will not free the
2395 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2396 	 * protect it.
2397 	 */
2398 	spin_lock_irq(&sh->stripe_lock);
2399 	if (forwrite) {
2400 		bip = &sh->dev[dd_idx].towrite;
2401 		if (*bip == NULL)
2402 			firstwrite = 1;
2403 	} else
2404 		bip = &sh->dev[dd_idx].toread;
2405 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2406 		if (bio_end_sector(*bip) > bi->bi_sector)
2407 			goto overlap;
2408 		bip = & (*bip)->bi_next;
2409 	}
2410 	if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2411 		goto overlap;
2412 
2413 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2414 	if (*bip)
2415 		bi->bi_next = *bip;
2416 	*bip = bi;
2417 	raid5_inc_bi_active_stripes(bi);
2418 
2419 	if (forwrite) {
2420 		/* check if page is covered */
2421 		sector_t sector = sh->dev[dd_idx].sector;
2422 		for (bi=sh->dev[dd_idx].towrite;
2423 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2424 			     bi && bi->bi_sector <= sector;
2425 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2426 			if (bio_end_sector(bi) >= sector)
2427 				sector = bio_end_sector(bi);
2428 		}
2429 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2430 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2431 	}
2432 
2433 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2434 		(unsigned long long)(*bip)->bi_sector,
2435 		(unsigned long long)sh->sector, dd_idx);
2436 	spin_unlock_irq(&sh->stripe_lock);
2437 
2438 	if (conf->mddev->bitmap && firstwrite) {
2439 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2440 				  STRIPE_SECTORS, 0);
2441 		sh->bm_seq = conf->seq_flush+1;
2442 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2443 	}
2444 	return 1;
2445 
2446  overlap:
2447 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2448 	spin_unlock_irq(&sh->stripe_lock);
2449 	return 0;
2450 }
2451 
2452 static void end_reshape(struct r5conf *conf);
2453 
2454 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2455 			    struct stripe_head *sh)
2456 {
2457 	int sectors_per_chunk =
2458 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2459 	int dd_idx;
2460 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2461 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2462 
2463 	raid5_compute_sector(conf,
2464 			     stripe * (disks - conf->max_degraded)
2465 			     *sectors_per_chunk + chunk_offset,
2466 			     previous,
2467 			     &dd_idx, sh);
2468 }
2469 
2470 static void
2471 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2472 				struct stripe_head_state *s, int disks,
2473 				struct bio **return_bi)
2474 {
2475 	int i;
2476 	for (i = disks; i--; ) {
2477 		struct bio *bi;
2478 		int bitmap_end = 0;
2479 
2480 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2481 			struct md_rdev *rdev;
2482 			rcu_read_lock();
2483 			rdev = rcu_dereference(conf->disks[i].rdev);
2484 			if (rdev && test_bit(In_sync, &rdev->flags))
2485 				atomic_inc(&rdev->nr_pending);
2486 			else
2487 				rdev = NULL;
2488 			rcu_read_unlock();
2489 			if (rdev) {
2490 				if (!rdev_set_badblocks(
2491 					    rdev,
2492 					    sh->sector,
2493 					    STRIPE_SECTORS, 0))
2494 					md_error(conf->mddev, rdev);
2495 				rdev_dec_pending(rdev, conf->mddev);
2496 			}
2497 		}
2498 		spin_lock_irq(&sh->stripe_lock);
2499 		/* fail all writes first */
2500 		bi = sh->dev[i].towrite;
2501 		sh->dev[i].towrite = NULL;
2502 		spin_unlock_irq(&sh->stripe_lock);
2503 		if (bi)
2504 			bitmap_end = 1;
2505 
2506 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2507 			wake_up(&conf->wait_for_overlap);
2508 
2509 		while (bi && bi->bi_sector <
2510 			sh->dev[i].sector + STRIPE_SECTORS) {
2511 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2512 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2513 			if (!raid5_dec_bi_active_stripes(bi)) {
2514 				md_write_end(conf->mddev);
2515 				bi->bi_next = *return_bi;
2516 				*return_bi = bi;
2517 			}
2518 			bi = nextbi;
2519 		}
2520 		if (bitmap_end)
2521 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2522 				STRIPE_SECTORS, 0, 0);
2523 		bitmap_end = 0;
2524 		/* and fail all 'written' */
2525 		bi = sh->dev[i].written;
2526 		sh->dev[i].written = NULL;
2527 		if (bi) bitmap_end = 1;
2528 		while (bi && bi->bi_sector <
2529 		       sh->dev[i].sector + STRIPE_SECTORS) {
2530 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2531 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2532 			if (!raid5_dec_bi_active_stripes(bi)) {
2533 				md_write_end(conf->mddev);
2534 				bi->bi_next = *return_bi;
2535 				*return_bi = bi;
2536 			}
2537 			bi = bi2;
2538 		}
2539 
2540 		/* fail any reads if this device is non-operational and
2541 		 * the data has not reached the cache yet.
2542 		 */
2543 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2544 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2545 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2546 			spin_lock_irq(&sh->stripe_lock);
2547 			bi = sh->dev[i].toread;
2548 			sh->dev[i].toread = NULL;
2549 			spin_unlock_irq(&sh->stripe_lock);
2550 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2551 				wake_up(&conf->wait_for_overlap);
2552 			while (bi && bi->bi_sector <
2553 			       sh->dev[i].sector + STRIPE_SECTORS) {
2554 				struct bio *nextbi =
2555 					r5_next_bio(bi, sh->dev[i].sector);
2556 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2557 				if (!raid5_dec_bi_active_stripes(bi)) {
2558 					bi->bi_next = *return_bi;
2559 					*return_bi = bi;
2560 				}
2561 				bi = nextbi;
2562 			}
2563 		}
2564 		if (bitmap_end)
2565 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2566 					STRIPE_SECTORS, 0, 0);
2567 		/* If we were in the middle of a write the parity block might
2568 		 * still be locked - so just clear all R5_LOCKED flags
2569 		 */
2570 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2571 	}
2572 
2573 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2574 		if (atomic_dec_and_test(&conf->pending_full_writes))
2575 			md_wakeup_thread(conf->mddev->thread);
2576 }
2577 
2578 static void
2579 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2580 		   struct stripe_head_state *s)
2581 {
2582 	int abort = 0;
2583 	int i;
2584 
2585 	clear_bit(STRIPE_SYNCING, &sh->state);
2586 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2587 		wake_up(&conf->wait_for_overlap);
2588 	s->syncing = 0;
2589 	s->replacing = 0;
2590 	/* There is nothing more to do for sync/check/repair.
2591 	 * Don't even need to abort as that is handled elsewhere
2592 	 * if needed, and not always wanted e.g. if there is a known
2593 	 * bad block here.
2594 	 * For recover/replace we need to record a bad block on all
2595 	 * non-sync devices, or abort the recovery
2596 	 */
2597 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2598 		/* During recovery devices cannot be removed, so
2599 		 * locking and refcounting of rdevs is not needed
2600 		 */
2601 		for (i = 0; i < conf->raid_disks; i++) {
2602 			struct md_rdev *rdev = conf->disks[i].rdev;
2603 			if (rdev
2604 			    && !test_bit(Faulty, &rdev->flags)
2605 			    && !test_bit(In_sync, &rdev->flags)
2606 			    && !rdev_set_badblocks(rdev, sh->sector,
2607 						   STRIPE_SECTORS, 0))
2608 				abort = 1;
2609 			rdev = conf->disks[i].replacement;
2610 			if (rdev
2611 			    && !test_bit(Faulty, &rdev->flags)
2612 			    && !test_bit(In_sync, &rdev->flags)
2613 			    && !rdev_set_badblocks(rdev, sh->sector,
2614 						   STRIPE_SECTORS, 0))
2615 				abort = 1;
2616 		}
2617 		if (abort)
2618 			conf->recovery_disabled =
2619 				conf->mddev->recovery_disabled;
2620 	}
2621 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2622 }
2623 
2624 static int want_replace(struct stripe_head *sh, int disk_idx)
2625 {
2626 	struct md_rdev *rdev;
2627 	int rv = 0;
2628 	/* Doing recovery so rcu locking not required */
2629 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2630 	if (rdev
2631 	    && !test_bit(Faulty, &rdev->flags)
2632 	    && !test_bit(In_sync, &rdev->flags)
2633 	    && (rdev->recovery_offset <= sh->sector
2634 		|| rdev->mddev->recovery_cp <= sh->sector))
2635 		rv = 1;
2636 
2637 	return rv;
2638 }
2639 
2640 /* fetch_block - checks the given member device to see if its data needs
2641  * to be read or computed to satisfy a request.
2642  *
2643  * Returns 1 when no more member devices need to be checked, otherwise returns
2644  * 0 to tell the loop in handle_stripe_fill to continue
2645  */
2646 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2647 		       int disk_idx, int disks)
2648 {
2649 	struct r5dev *dev = &sh->dev[disk_idx];
2650 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2651 				  &sh->dev[s->failed_num[1]] };
2652 
2653 	/* is the data in this block needed, and can we get it? */
2654 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2655 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2656 	    (dev->toread ||
2657 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2658 	     s->syncing || s->expanding ||
2659 	     (s->replacing && want_replace(sh, disk_idx)) ||
2660 	     (s->failed >= 1 && fdev[0]->toread) ||
2661 	     (s->failed >= 2 && fdev[1]->toread) ||
2662 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2663 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2664 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2665 		/* we would like to get this block, possibly by computing it,
2666 		 * otherwise read it if the backing disk is insync
2667 		 */
2668 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2669 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2670 		if ((s->uptodate == disks - 1) &&
2671 		    (s->failed && (disk_idx == s->failed_num[0] ||
2672 				   disk_idx == s->failed_num[1]))) {
2673 			/* have disk failed, and we're requested to fetch it;
2674 			 * do compute it
2675 			 */
2676 			pr_debug("Computing stripe %llu block %d\n",
2677 			       (unsigned long long)sh->sector, disk_idx);
2678 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2679 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2680 			set_bit(R5_Wantcompute, &dev->flags);
2681 			sh->ops.target = disk_idx;
2682 			sh->ops.target2 = -1; /* no 2nd target */
2683 			s->req_compute = 1;
2684 			/* Careful: from this point on 'uptodate' is in the eye
2685 			 * of raid_run_ops which services 'compute' operations
2686 			 * before writes. R5_Wantcompute flags a block that will
2687 			 * be R5_UPTODATE by the time it is needed for a
2688 			 * subsequent operation.
2689 			 */
2690 			s->uptodate++;
2691 			return 1;
2692 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2693 			/* Computing 2-failure is *very* expensive; only
2694 			 * do it if failed >= 2
2695 			 */
2696 			int other;
2697 			for (other = disks; other--; ) {
2698 				if (other == disk_idx)
2699 					continue;
2700 				if (!test_bit(R5_UPTODATE,
2701 				      &sh->dev[other].flags))
2702 					break;
2703 			}
2704 			BUG_ON(other < 0);
2705 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2706 			       (unsigned long long)sh->sector,
2707 			       disk_idx, other);
2708 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2709 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2710 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2711 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2712 			sh->ops.target = disk_idx;
2713 			sh->ops.target2 = other;
2714 			s->uptodate += 2;
2715 			s->req_compute = 1;
2716 			return 1;
2717 		} else if (test_bit(R5_Insync, &dev->flags)) {
2718 			set_bit(R5_LOCKED, &dev->flags);
2719 			set_bit(R5_Wantread, &dev->flags);
2720 			s->locked++;
2721 			pr_debug("Reading block %d (sync=%d)\n",
2722 				disk_idx, s->syncing);
2723 		}
2724 	}
2725 
2726 	return 0;
2727 }
2728 
2729 /**
2730  * handle_stripe_fill - read or compute data to satisfy pending requests.
2731  */
2732 static void handle_stripe_fill(struct stripe_head *sh,
2733 			       struct stripe_head_state *s,
2734 			       int disks)
2735 {
2736 	int i;
2737 
2738 	/* look for blocks to read/compute, skip this if a compute
2739 	 * is already in flight, or if the stripe contents are in the
2740 	 * midst of changing due to a write
2741 	 */
2742 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2743 	    !sh->reconstruct_state)
2744 		for (i = disks; i--; )
2745 			if (fetch_block(sh, s, i, disks))
2746 				break;
2747 	set_bit(STRIPE_HANDLE, &sh->state);
2748 }
2749 
2750 
2751 /* handle_stripe_clean_event
2752  * any written block on an uptodate or failed drive can be returned.
2753  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2754  * never LOCKED, so we don't need to test 'failed' directly.
2755  */
2756 static void handle_stripe_clean_event(struct r5conf *conf,
2757 	struct stripe_head *sh, int disks, struct bio **return_bi)
2758 {
2759 	int i;
2760 	struct r5dev *dev;
2761 	int discard_pending = 0;
2762 
2763 	for (i = disks; i--; )
2764 		if (sh->dev[i].written) {
2765 			dev = &sh->dev[i];
2766 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2767 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2768 			     test_bit(R5_Discard, &dev->flags))) {
2769 				/* We can return any write requests */
2770 				struct bio *wbi, *wbi2;
2771 				pr_debug("Return write for disc %d\n", i);
2772 				if (test_and_clear_bit(R5_Discard, &dev->flags))
2773 					clear_bit(R5_UPTODATE, &dev->flags);
2774 				wbi = dev->written;
2775 				dev->written = NULL;
2776 				while (wbi && wbi->bi_sector <
2777 					dev->sector + STRIPE_SECTORS) {
2778 					wbi2 = r5_next_bio(wbi, dev->sector);
2779 					if (!raid5_dec_bi_active_stripes(wbi)) {
2780 						md_write_end(conf->mddev);
2781 						wbi->bi_next = *return_bi;
2782 						*return_bi = wbi;
2783 					}
2784 					wbi = wbi2;
2785 				}
2786 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2787 						STRIPE_SECTORS,
2788 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2789 						0);
2790 			} else if (test_bit(R5_Discard, &dev->flags))
2791 				discard_pending = 1;
2792 		}
2793 	if (!discard_pending &&
2794 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2795 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2796 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2797 		if (sh->qd_idx >= 0) {
2798 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2799 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2800 		}
2801 		/* now that discard is done we can proceed with any sync */
2802 		clear_bit(STRIPE_DISCARD, &sh->state);
2803 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2804 			set_bit(STRIPE_HANDLE, &sh->state);
2805 
2806 	}
2807 
2808 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2809 		if (atomic_dec_and_test(&conf->pending_full_writes))
2810 			md_wakeup_thread(conf->mddev->thread);
2811 }
2812 
2813 static void handle_stripe_dirtying(struct r5conf *conf,
2814 				   struct stripe_head *sh,
2815 				   struct stripe_head_state *s,
2816 				   int disks)
2817 {
2818 	int rmw = 0, rcw = 0, i;
2819 	sector_t recovery_cp = conf->mddev->recovery_cp;
2820 
2821 	/* RAID6 requires 'rcw' in current implementation.
2822 	 * Otherwise, check whether resync is now happening or should start.
2823 	 * If yes, then the array is dirty (after unclean shutdown or
2824 	 * initial creation), so parity in some stripes might be inconsistent.
2825 	 * In this case, we need to always do reconstruct-write, to ensure
2826 	 * that in case of drive failure or read-error correction, we
2827 	 * generate correct data from the parity.
2828 	 */
2829 	if (conf->max_degraded == 2 ||
2830 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2831 		/* Calculate the real rcw later - for now make it
2832 		 * look like rcw is cheaper
2833 		 */
2834 		rcw = 1; rmw = 2;
2835 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2836 			 conf->max_degraded, (unsigned long long)recovery_cp,
2837 			 (unsigned long long)sh->sector);
2838 	} else for (i = disks; i--; ) {
2839 		/* would I have to read this buffer for read_modify_write */
2840 		struct r5dev *dev = &sh->dev[i];
2841 		if ((dev->towrite || i == sh->pd_idx) &&
2842 		    !test_bit(R5_LOCKED, &dev->flags) &&
2843 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2844 		      test_bit(R5_Wantcompute, &dev->flags))) {
2845 			if (test_bit(R5_Insync, &dev->flags))
2846 				rmw++;
2847 			else
2848 				rmw += 2*disks;  /* cannot read it */
2849 		}
2850 		/* Would I have to read this buffer for reconstruct_write */
2851 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2852 		    !test_bit(R5_LOCKED, &dev->flags) &&
2853 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2854 		    test_bit(R5_Wantcompute, &dev->flags))) {
2855 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2856 			else
2857 				rcw += 2*disks;
2858 		}
2859 	}
2860 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2861 		(unsigned long long)sh->sector, rmw, rcw);
2862 	set_bit(STRIPE_HANDLE, &sh->state);
2863 	if (rmw < rcw && rmw > 0) {
2864 		/* prefer read-modify-write, but need to get some data */
2865 		if (conf->mddev->queue)
2866 			blk_add_trace_msg(conf->mddev->queue,
2867 					  "raid5 rmw %llu %d",
2868 					  (unsigned long long)sh->sector, rmw);
2869 		for (i = disks; i--; ) {
2870 			struct r5dev *dev = &sh->dev[i];
2871 			if ((dev->towrite || i == sh->pd_idx) &&
2872 			    !test_bit(R5_LOCKED, &dev->flags) &&
2873 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2874 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2875 			    test_bit(R5_Insync, &dev->flags)) {
2876 				if (
2877 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2878 					pr_debug("Read_old block "
2879 						 "%d for r-m-w\n", i);
2880 					set_bit(R5_LOCKED, &dev->flags);
2881 					set_bit(R5_Wantread, &dev->flags);
2882 					s->locked++;
2883 				} else {
2884 					set_bit(STRIPE_DELAYED, &sh->state);
2885 					set_bit(STRIPE_HANDLE, &sh->state);
2886 				}
2887 			}
2888 		}
2889 	}
2890 	if (rcw <= rmw && rcw > 0) {
2891 		/* want reconstruct write, but need to get some data */
2892 		int qread =0;
2893 		rcw = 0;
2894 		for (i = disks; i--; ) {
2895 			struct r5dev *dev = &sh->dev[i];
2896 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2897 			    i != sh->pd_idx && i != sh->qd_idx &&
2898 			    !test_bit(R5_LOCKED, &dev->flags) &&
2899 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2900 			      test_bit(R5_Wantcompute, &dev->flags))) {
2901 				rcw++;
2902 				if (!test_bit(R5_Insync, &dev->flags))
2903 					continue; /* it's a failed drive */
2904 				if (
2905 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2906 					pr_debug("Read_old block "
2907 						"%d for Reconstruct\n", i);
2908 					set_bit(R5_LOCKED, &dev->flags);
2909 					set_bit(R5_Wantread, &dev->flags);
2910 					s->locked++;
2911 					qread++;
2912 				} else {
2913 					set_bit(STRIPE_DELAYED, &sh->state);
2914 					set_bit(STRIPE_HANDLE, &sh->state);
2915 				}
2916 			}
2917 		}
2918 		if (rcw && conf->mddev->queue)
2919 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2920 					  (unsigned long long)sh->sector,
2921 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2922 	}
2923 	/* now if nothing is locked, and if we have enough data,
2924 	 * we can start a write request
2925 	 */
2926 	/* since handle_stripe can be called at any time we need to handle the
2927 	 * case where a compute block operation has been submitted and then a
2928 	 * subsequent call wants to start a write request.  raid_run_ops only
2929 	 * handles the case where compute block and reconstruct are requested
2930 	 * simultaneously.  If this is not the case then new writes need to be
2931 	 * held off until the compute completes.
2932 	 */
2933 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2934 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2935 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2936 		schedule_reconstruction(sh, s, rcw == 0, 0);
2937 }
2938 
2939 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2940 				struct stripe_head_state *s, int disks)
2941 {
2942 	struct r5dev *dev = NULL;
2943 
2944 	set_bit(STRIPE_HANDLE, &sh->state);
2945 
2946 	switch (sh->check_state) {
2947 	case check_state_idle:
2948 		/* start a new check operation if there are no failures */
2949 		if (s->failed == 0) {
2950 			BUG_ON(s->uptodate != disks);
2951 			sh->check_state = check_state_run;
2952 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2953 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2954 			s->uptodate--;
2955 			break;
2956 		}
2957 		dev = &sh->dev[s->failed_num[0]];
2958 		/* fall through */
2959 	case check_state_compute_result:
2960 		sh->check_state = check_state_idle;
2961 		if (!dev)
2962 			dev = &sh->dev[sh->pd_idx];
2963 
2964 		/* check that a write has not made the stripe insync */
2965 		if (test_bit(STRIPE_INSYNC, &sh->state))
2966 			break;
2967 
2968 		/* either failed parity check, or recovery is happening */
2969 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2970 		BUG_ON(s->uptodate != disks);
2971 
2972 		set_bit(R5_LOCKED, &dev->flags);
2973 		s->locked++;
2974 		set_bit(R5_Wantwrite, &dev->flags);
2975 
2976 		clear_bit(STRIPE_DEGRADED, &sh->state);
2977 		set_bit(STRIPE_INSYNC, &sh->state);
2978 		break;
2979 	case check_state_run:
2980 		break; /* we will be called again upon completion */
2981 	case check_state_check_result:
2982 		sh->check_state = check_state_idle;
2983 
2984 		/* if a failure occurred during the check operation, leave
2985 		 * STRIPE_INSYNC not set and let the stripe be handled again
2986 		 */
2987 		if (s->failed)
2988 			break;
2989 
2990 		/* handle a successful check operation, if parity is correct
2991 		 * we are done.  Otherwise update the mismatch count and repair
2992 		 * parity if !MD_RECOVERY_CHECK
2993 		 */
2994 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2995 			/* parity is correct (on disc,
2996 			 * not in buffer any more)
2997 			 */
2998 			set_bit(STRIPE_INSYNC, &sh->state);
2999 		else {
3000 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3001 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3002 				/* don't try to repair!! */
3003 				set_bit(STRIPE_INSYNC, &sh->state);
3004 			else {
3005 				sh->check_state = check_state_compute_run;
3006 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3007 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3008 				set_bit(R5_Wantcompute,
3009 					&sh->dev[sh->pd_idx].flags);
3010 				sh->ops.target = sh->pd_idx;
3011 				sh->ops.target2 = -1;
3012 				s->uptodate++;
3013 			}
3014 		}
3015 		break;
3016 	case check_state_compute_run:
3017 		break;
3018 	default:
3019 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3020 		       __func__, sh->check_state,
3021 		       (unsigned long long) sh->sector);
3022 		BUG();
3023 	}
3024 }
3025 
3026 
3027 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3028 				  struct stripe_head_state *s,
3029 				  int disks)
3030 {
3031 	int pd_idx = sh->pd_idx;
3032 	int qd_idx = sh->qd_idx;
3033 	struct r5dev *dev;
3034 
3035 	set_bit(STRIPE_HANDLE, &sh->state);
3036 
3037 	BUG_ON(s->failed > 2);
3038 
3039 	/* Want to check and possibly repair P and Q.
3040 	 * However there could be one 'failed' device, in which
3041 	 * case we can only check one of them, possibly using the
3042 	 * other to generate missing data
3043 	 */
3044 
3045 	switch (sh->check_state) {
3046 	case check_state_idle:
3047 		/* start a new check operation if there are < 2 failures */
3048 		if (s->failed == s->q_failed) {
3049 			/* The only possible failed device holds Q, so it
3050 			 * makes sense to check P (If anything else were failed,
3051 			 * we would have used P to recreate it).
3052 			 */
3053 			sh->check_state = check_state_run;
3054 		}
3055 		if (!s->q_failed && s->failed < 2) {
3056 			/* Q is not failed, and we didn't use it to generate
3057 			 * anything, so it makes sense to check it
3058 			 */
3059 			if (sh->check_state == check_state_run)
3060 				sh->check_state = check_state_run_pq;
3061 			else
3062 				sh->check_state = check_state_run_q;
3063 		}
3064 
3065 		/* discard potentially stale zero_sum_result */
3066 		sh->ops.zero_sum_result = 0;
3067 
3068 		if (sh->check_state == check_state_run) {
3069 			/* async_xor_zero_sum destroys the contents of P */
3070 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3071 			s->uptodate--;
3072 		}
3073 		if (sh->check_state >= check_state_run &&
3074 		    sh->check_state <= check_state_run_pq) {
3075 			/* async_syndrome_zero_sum preserves P and Q, so
3076 			 * no need to mark them !uptodate here
3077 			 */
3078 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3079 			break;
3080 		}
3081 
3082 		/* we have 2-disk failure */
3083 		BUG_ON(s->failed != 2);
3084 		/* fall through */
3085 	case check_state_compute_result:
3086 		sh->check_state = check_state_idle;
3087 
3088 		/* check that a write has not made the stripe insync */
3089 		if (test_bit(STRIPE_INSYNC, &sh->state))
3090 			break;
3091 
3092 		/* now write out any block on a failed drive,
3093 		 * or P or Q if they were recomputed
3094 		 */
3095 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3096 		if (s->failed == 2) {
3097 			dev = &sh->dev[s->failed_num[1]];
3098 			s->locked++;
3099 			set_bit(R5_LOCKED, &dev->flags);
3100 			set_bit(R5_Wantwrite, &dev->flags);
3101 		}
3102 		if (s->failed >= 1) {
3103 			dev = &sh->dev[s->failed_num[0]];
3104 			s->locked++;
3105 			set_bit(R5_LOCKED, &dev->flags);
3106 			set_bit(R5_Wantwrite, &dev->flags);
3107 		}
3108 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3109 			dev = &sh->dev[pd_idx];
3110 			s->locked++;
3111 			set_bit(R5_LOCKED, &dev->flags);
3112 			set_bit(R5_Wantwrite, &dev->flags);
3113 		}
3114 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3115 			dev = &sh->dev[qd_idx];
3116 			s->locked++;
3117 			set_bit(R5_LOCKED, &dev->flags);
3118 			set_bit(R5_Wantwrite, &dev->flags);
3119 		}
3120 		clear_bit(STRIPE_DEGRADED, &sh->state);
3121 
3122 		set_bit(STRIPE_INSYNC, &sh->state);
3123 		break;
3124 	case check_state_run:
3125 	case check_state_run_q:
3126 	case check_state_run_pq:
3127 		break; /* we will be called again upon completion */
3128 	case check_state_check_result:
3129 		sh->check_state = check_state_idle;
3130 
3131 		/* handle a successful check operation, if parity is correct
3132 		 * we are done.  Otherwise update the mismatch count and repair
3133 		 * parity if !MD_RECOVERY_CHECK
3134 		 */
3135 		if (sh->ops.zero_sum_result == 0) {
3136 			/* both parities are correct */
3137 			if (!s->failed)
3138 				set_bit(STRIPE_INSYNC, &sh->state);
3139 			else {
3140 				/* in contrast to the raid5 case we can validate
3141 				 * parity, but still have a failure to write
3142 				 * back
3143 				 */
3144 				sh->check_state = check_state_compute_result;
3145 				/* Returning at this point means that we may go
3146 				 * off and bring p and/or q uptodate again so
3147 				 * we make sure to check zero_sum_result again
3148 				 * to verify if p or q need writeback
3149 				 */
3150 			}
3151 		} else {
3152 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3153 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3154 				/* don't try to repair!! */
3155 				set_bit(STRIPE_INSYNC, &sh->state);
3156 			else {
3157 				int *target = &sh->ops.target;
3158 
3159 				sh->ops.target = -1;
3160 				sh->ops.target2 = -1;
3161 				sh->check_state = check_state_compute_run;
3162 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3163 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3164 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3165 					set_bit(R5_Wantcompute,
3166 						&sh->dev[pd_idx].flags);
3167 					*target = pd_idx;
3168 					target = &sh->ops.target2;
3169 					s->uptodate++;
3170 				}
3171 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3172 					set_bit(R5_Wantcompute,
3173 						&sh->dev[qd_idx].flags);
3174 					*target = qd_idx;
3175 					s->uptodate++;
3176 				}
3177 			}
3178 		}
3179 		break;
3180 	case check_state_compute_run:
3181 		break;
3182 	default:
3183 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3184 		       __func__, sh->check_state,
3185 		       (unsigned long long) sh->sector);
3186 		BUG();
3187 	}
3188 }
3189 
3190 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3191 {
3192 	int i;
3193 
3194 	/* We have read all the blocks in this stripe and now we need to
3195 	 * copy some of them into a target stripe for expand.
3196 	 */
3197 	struct dma_async_tx_descriptor *tx = NULL;
3198 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3199 	for (i = 0; i < sh->disks; i++)
3200 		if (i != sh->pd_idx && i != sh->qd_idx) {
3201 			int dd_idx, j;
3202 			struct stripe_head *sh2;
3203 			struct async_submit_ctl submit;
3204 
3205 			sector_t bn = compute_blocknr(sh, i, 1);
3206 			sector_t s = raid5_compute_sector(conf, bn, 0,
3207 							  &dd_idx, NULL);
3208 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3209 			if (sh2 == NULL)
3210 				/* so far only the early blocks of this stripe
3211 				 * have been requested.  When later blocks
3212 				 * get requested, we will try again
3213 				 */
3214 				continue;
3215 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3216 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3217 				/* must have already done this block */
3218 				release_stripe(sh2);
3219 				continue;
3220 			}
3221 
3222 			/* place all the copies on one channel */
3223 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3224 			tx = async_memcpy(sh2->dev[dd_idx].page,
3225 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3226 					  &submit);
3227 
3228 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3229 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3230 			for (j = 0; j < conf->raid_disks; j++)
3231 				if (j != sh2->pd_idx &&
3232 				    j != sh2->qd_idx &&
3233 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3234 					break;
3235 			if (j == conf->raid_disks) {
3236 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3237 				set_bit(STRIPE_HANDLE, &sh2->state);
3238 			}
3239 			release_stripe(sh2);
3240 
3241 		}
3242 	/* done submitting copies, wait for them to complete */
3243 	async_tx_quiesce(&tx);
3244 }
3245 
3246 /*
3247  * handle_stripe - do things to a stripe.
3248  *
3249  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3250  * state of various bits to see what needs to be done.
3251  * Possible results:
3252  *    return some read requests which now have data
3253  *    return some write requests which are safely on storage
3254  *    schedule a read on some buffers
3255  *    schedule a write of some buffers
3256  *    return confirmation of parity correctness
3257  *
3258  */
3259 
3260 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3261 {
3262 	struct r5conf *conf = sh->raid_conf;
3263 	int disks = sh->disks;
3264 	struct r5dev *dev;
3265 	int i;
3266 	int do_recovery = 0;
3267 
3268 	memset(s, 0, sizeof(*s));
3269 
3270 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3271 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3272 	s->failed_num[0] = -1;
3273 	s->failed_num[1] = -1;
3274 
3275 	/* Now to look around and see what can be done */
3276 	rcu_read_lock();
3277 	for (i=disks; i--; ) {
3278 		struct md_rdev *rdev;
3279 		sector_t first_bad;
3280 		int bad_sectors;
3281 		int is_bad = 0;
3282 
3283 		dev = &sh->dev[i];
3284 
3285 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3286 			 i, dev->flags,
3287 			 dev->toread, dev->towrite, dev->written);
3288 		/* maybe we can reply to a read
3289 		 *
3290 		 * new wantfill requests are only permitted while
3291 		 * ops_complete_biofill is guaranteed to be inactive
3292 		 */
3293 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3294 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3295 			set_bit(R5_Wantfill, &dev->flags);
3296 
3297 		/* now count some things */
3298 		if (test_bit(R5_LOCKED, &dev->flags))
3299 			s->locked++;
3300 		if (test_bit(R5_UPTODATE, &dev->flags))
3301 			s->uptodate++;
3302 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3303 			s->compute++;
3304 			BUG_ON(s->compute > 2);
3305 		}
3306 
3307 		if (test_bit(R5_Wantfill, &dev->flags))
3308 			s->to_fill++;
3309 		else if (dev->toread)
3310 			s->to_read++;
3311 		if (dev->towrite) {
3312 			s->to_write++;
3313 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3314 				s->non_overwrite++;
3315 		}
3316 		if (dev->written)
3317 			s->written++;
3318 		/* Prefer to use the replacement for reads, but only
3319 		 * if it is recovered enough and has no bad blocks.
3320 		 */
3321 		rdev = rcu_dereference(conf->disks[i].replacement);
3322 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3323 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3324 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3325 				 &first_bad, &bad_sectors))
3326 			set_bit(R5_ReadRepl, &dev->flags);
3327 		else {
3328 			if (rdev)
3329 				set_bit(R5_NeedReplace, &dev->flags);
3330 			rdev = rcu_dereference(conf->disks[i].rdev);
3331 			clear_bit(R5_ReadRepl, &dev->flags);
3332 		}
3333 		if (rdev && test_bit(Faulty, &rdev->flags))
3334 			rdev = NULL;
3335 		if (rdev) {
3336 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3337 					     &first_bad, &bad_sectors);
3338 			if (s->blocked_rdev == NULL
3339 			    && (test_bit(Blocked, &rdev->flags)
3340 				|| is_bad < 0)) {
3341 				if (is_bad < 0)
3342 					set_bit(BlockedBadBlocks,
3343 						&rdev->flags);
3344 				s->blocked_rdev = rdev;
3345 				atomic_inc(&rdev->nr_pending);
3346 			}
3347 		}
3348 		clear_bit(R5_Insync, &dev->flags);
3349 		if (!rdev)
3350 			/* Not in-sync */;
3351 		else if (is_bad) {
3352 			/* also not in-sync */
3353 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3354 			    test_bit(R5_UPTODATE, &dev->flags)) {
3355 				/* treat as in-sync, but with a read error
3356 				 * which we can now try to correct
3357 				 */
3358 				set_bit(R5_Insync, &dev->flags);
3359 				set_bit(R5_ReadError, &dev->flags);
3360 			}
3361 		} else if (test_bit(In_sync, &rdev->flags))
3362 			set_bit(R5_Insync, &dev->flags);
3363 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3364 			/* in sync if before recovery_offset */
3365 			set_bit(R5_Insync, &dev->flags);
3366 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3367 			 test_bit(R5_Expanded, &dev->flags))
3368 			/* If we've reshaped into here, we assume it is Insync.
3369 			 * We will shortly update recovery_offset to make
3370 			 * it official.
3371 			 */
3372 			set_bit(R5_Insync, &dev->flags);
3373 
3374 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3375 			/* This flag does not apply to '.replacement'
3376 			 * only to .rdev, so make sure to check that*/
3377 			struct md_rdev *rdev2 = rcu_dereference(
3378 				conf->disks[i].rdev);
3379 			if (rdev2 == rdev)
3380 				clear_bit(R5_Insync, &dev->flags);
3381 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3382 				s->handle_bad_blocks = 1;
3383 				atomic_inc(&rdev2->nr_pending);
3384 			} else
3385 				clear_bit(R5_WriteError, &dev->flags);
3386 		}
3387 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3388 			/* This flag does not apply to '.replacement'
3389 			 * only to .rdev, so make sure to check that*/
3390 			struct md_rdev *rdev2 = rcu_dereference(
3391 				conf->disks[i].rdev);
3392 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3393 				s->handle_bad_blocks = 1;
3394 				atomic_inc(&rdev2->nr_pending);
3395 			} else
3396 				clear_bit(R5_MadeGood, &dev->flags);
3397 		}
3398 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3399 			struct md_rdev *rdev2 = rcu_dereference(
3400 				conf->disks[i].replacement);
3401 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3402 				s->handle_bad_blocks = 1;
3403 				atomic_inc(&rdev2->nr_pending);
3404 			} else
3405 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3406 		}
3407 		if (!test_bit(R5_Insync, &dev->flags)) {
3408 			/* The ReadError flag will just be confusing now */
3409 			clear_bit(R5_ReadError, &dev->flags);
3410 			clear_bit(R5_ReWrite, &dev->flags);
3411 		}
3412 		if (test_bit(R5_ReadError, &dev->flags))
3413 			clear_bit(R5_Insync, &dev->flags);
3414 		if (!test_bit(R5_Insync, &dev->flags)) {
3415 			if (s->failed < 2)
3416 				s->failed_num[s->failed] = i;
3417 			s->failed++;
3418 			if (rdev && !test_bit(Faulty, &rdev->flags))
3419 				do_recovery = 1;
3420 		}
3421 	}
3422 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3423 		/* If there is a failed device being replaced,
3424 		 *     we must be recovering.
3425 		 * else if we are after recovery_cp, we must be syncing
3426 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3427 		 * else we can only be replacing
3428 		 * sync and recovery both need to read all devices, and so
3429 		 * use the same flag.
3430 		 */
3431 		if (do_recovery ||
3432 		    sh->sector >= conf->mddev->recovery_cp ||
3433 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3434 			s->syncing = 1;
3435 		else
3436 			s->replacing = 1;
3437 	}
3438 	rcu_read_unlock();
3439 }
3440 
3441 static void handle_stripe(struct stripe_head *sh)
3442 {
3443 	struct stripe_head_state s;
3444 	struct r5conf *conf = sh->raid_conf;
3445 	int i;
3446 	int prexor;
3447 	int disks = sh->disks;
3448 	struct r5dev *pdev, *qdev;
3449 
3450 	clear_bit(STRIPE_HANDLE, &sh->state);
3451 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3452 		/* already being handled, ensure it gets handled
3453 		 * again when current action finishes */
3454 		set_bit(STRIPE_HANDLE, &sh->state);
3455 		return;
3456 	}
3457 
3458 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3459 		spin_lock(&sh->stripe_lock);
3460 		/* Cannot process 'sync' concurrently with 'discard' */
3461 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3462 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3463 			set_bit(STRIPE_SYNCING, &sh->state);
3464 			clear_bit(STRIPE_INSYNC, &sh->state);
3465 			clear_bit(STRIPE_REPLACED, &sh->state);
3466 		}
3467 		spin_unlock(&sh->stripe_lock);
3468 	}
3469 	clear_bit(STRIPE_DELAYED, &sh->state);
3470 
3471 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3472 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3473 	       (unsigned long long)sh->sector, sh->state,
3474 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3475 	       sh->check_state, sh->reconstruct_state);
3476 
3477 	analyse_stripe(sh, &s);
3478 
3479 	if (s.handle_bad_blocks) {
3480 		set_bit(STRIPE_HANDLE, &sh->state);
3481 		goto finish;
3482 	}
3483 
3484 	if (unlikely(s.blocked_rdev)) {
3485 		if (s.syncing || s.expanding || s.expanded ||
3486 		    s.replacing || s.to_write || s.written) {
3487 			set_bit(STRIPE_HANDLE, &sh->state);
3488 			goto finish;
3489 		}
3490 		/* There is nothing for the blocked_rdev to block */
3491 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3492 		s.blocked_rdev = NULL;
3493 	}
3494 
3495 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3496 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3497 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3498 	}
3499 
3500 	pr_debug("locked=%d uptodate=%d to_read=%d"
3501 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3502 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3503 	       s.failed_num[0], s.failed_num[1]);
3504 	/* check if the array has lost more than max_degraded devices and,
3505 	 * if so, some requests might need to be failed.
3506 	 */
3507 	if (s.failed > conf->max_degraded) {
3508 		sh->check_state = 0;
3509 		sh->reconstruct_state = 0;
3510 		if (s.to_read+s.to_write+s.written)
3511 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3512 		if (s.syncing + s.replacing)
3513 			handle_failed_sync(conf, sh, &s);
3514 	}
3515 
3516 	/* Now we check to see if any write operations have recently
3517 	 * completed
3518 	 */
3519 	prexor = 0;
3520 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3521 		prexor = 1;
3522 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3523 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3524 		sh->reconstruct_state = reconstruct_state_idle;
3525 
3526 		/* All the 'written' buffers and the parity block are ready to
3527 		 * be written back to disk
3528 		 */
3529 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3530 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3531 		BUG_ON(sh->qd_idx >= 0 &&
3532 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3533 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3534 		for (i = disks; i--; ) {
3535 			struct r5dev *dev = &sh->dev[i];
3536 			if (test_bit(R5_LOCKED, &dev->flags) &&
3537 				(i == sh->pd_idx || i == sh->qd_idx ||
3538 				 dev->written)) {
3539 				pr_debug("Writing block %d\n", i);
3540 				set_bit(R5_Wantwrite, &dev->flags);
3541 				if (prexor)
3542 					continue;
3543 				if (!test_bit(R5_Insync, &dev->flags) ||
3544 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3545 				     s.failed == 0))
3546 					set_bit(STRIPE_INSYNC, &sh->state);
3547 			}
3548 		}
3549 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3550 			s.dec_preread_active = 1;
3551 	}
3552 
3553 	/*
3554 	 * might be able to return some write requests if the parity blocks
3555 	 * are safe, or on a failed drive
3556 	 */
3557 	pdev = &sh->dev[sh->pd_idx];
3558 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3559 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3560 	qdev = &sh->dev[sh->qd_idx];
3561 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3562 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3563 		|| conf->level < 6;
3564 
3565 	if (s.written &&
3566 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3567 			     && !test_bit(R5_LOCKED, &pdev->flags)
3568 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3569 				 test_bit(R5_Discard, &pdev->flags))))) &&
3570 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3571 			     && !test_bit(R5_LOCKED, &qdev->flags)
3572 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3573 				 test_bit(R5_Discard, &qdev->flags))))))
3574 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3575 
3576 	/* Now we might consider reading some blocks, either to check/generate
3577 	 * parity, or to satisfy requests
3578 	 * or to load a block that is being partially written.
3579 	 */
3580 	if (s.to_read || s.non_overwrite
3581 	    || (conf->level == 6 && s.to_write && s.failed)
3582 	    || (s.syncing && (s.uptodate + s.compute < disks))
3583 	    || s.replacing
3584 	    || s.expanding)
3585 		handle_stripe_fill(sh, &s, disks);
3586 
3587 	/* Now to consider new write requests and what else, if anything
3588 	 * should be read.  We do not handle new writes when:
3589 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3590 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3591 	 *    block.
3592 	 */
3593 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3594 		handle_stripe_dirtying(conf, sh, &s, disks);
3595 
3596 	/* maybe we need to check and possibly fix the parity for this stripe
3597 	 * Any reads will already have been scheduled, so we just see if enough
3598 	 * data is available.  The parity check is held off while parity
3599 	 * dependent operations are in flight.
3600 	 */
3601 	if (sh->check_state ||
3602 	    (s.syncing && s.locked == 0 &&
3603 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3604 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3605 		if (conf->level == 6)
3606 			handle_parity_checks6(conf, sh, &s, disks);
3607 		else
3608 			handle_parity_checks5(conf, sh, &s, disks);
3609 	}
3610 
3611 	if ((s.replacing || s.syncing) && s.locked == 0
3612 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3613 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3614 		/* Write out to replacement devices where possible */
3615 		for (i = 0; i < conf->raid_disks; i++)
3616 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3617 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3618 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3619 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3620 				s.locked++;
3621 			}
3622 		if (s.replacing)
3623 			set_bit(STRIPE_INSYNC, &sh->state);
3624 		set_bit(STRIPE_REPLACED, &sh->state);
3625 	}
3626 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3627 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3628 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3629 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3630 		clear_bit(STRIPE_SYNCING, &sh->state);
3631 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3632 			wake_up(&conf->wait_for_overlap);
3633 	}
3634 
3635 	/* If the failed drives are just a ReadError, then we might need
3636 	 * to progress the repair/check process
3637 	 */
3638 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3639 		for (i = 0; i < s.failed; i++) {
3640 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3641 			if (test_bit(R5_ReadError, &dev->flags)
3642 			    && !test_bit(R5_LOCKED, &dev->flags)
3643 			    && test_bit(R5_UPTODATE, &dev->flags)
3644 				) {
3645 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3646 					set_bit(R5_Wantwrite, &dev->flags);
3647 					set_bit(R5_ReWrite, &dev->flags);
3648 					set_bit(R5_LOCKED, &dev->flags);
3649 					s.locked++;
3650 				} else {
3651 					/* let's read it back */
3652 					set_bit(R5_Wantread, &dev->flags);
3653 					set_bit(R5_LOCKED, &dev->flags);
3654 					s.locked++;
3655 				}
3656 			}
3657 		}
3658 
3659 
3660 	/* Finish reconstruct operations initiated by the expansion process */
3661 	if (sh->reconstruct_state == reconstruct_state_result) {
3662 		struct stripe_head *sh_src
3663 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3664 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3665 			/* sh cannot be written until sh_src has been read.
3666 			 * so arrange for sh to be delayed a little
3667 			 */
3668 			set_bit(STRIPE_DELAYED, &sh->state);
3669 			set_bit(STRIPE_HANDLE, &sh->state);
3670 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3671 					      &sh_src->state))
3672 				atomic_inc(&conf->preread_active_stripes);
3673 			release_stripe(sh_src);
3674 			goto finish;
3675 		}
3676 		if (sh_src)
3677 			release_stripe(sh_src);
3678 
3679 		sh->reconstruct_state = reconstruct_state_idle;
3680 		clear_bit(STRIPE_EXPANDING, &sh->state);
3681 		for (i = conf->raid_disks; i--; ) {
3682 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3683 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3684 			s.locked++;
3685 		}
3686 	}
3687 
3688 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3689 	    !sh->reconstruct_state) {
3690 		/* Need to write out all blocks after computing parity */
3691 		sh->disks = conf->raid_disks;
3692 		stripe_set_idx(sh->sector, conf, 0, sh);
3693 		schedule_reconstruction(sh, &s, 1, 1);
3694 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3695 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3696 		atomic_dec(&conf->reshape_stripes);
3697 		wake_up(&conf->wait_for_overlap);
3698 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3699 	}
3700 
3701 	if (s.expanding && s.locked == 0 &&
3702 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3703 		handle_stripe_expansion(conf, sh);
3704 
3705 finish:
3706 	/* wait for this device to become unblocked */
3707 	if (unlikely(s.blocked_rdev)) {
3708 		if (conf->mddev->external)
3709 			md_wait_for_blocked_rdev(s.blocked_rdev,
3710 						 conf->mddev);
3711 		else
3712 			/* Internal metadata will immediately
3713 			 * be written by raid5d, so we don't
3714 			 * need to wait here.
3715 			 */
3716 			rdev_dec_pending(s.blocked_rdev,
3717 					 conf->mddev);
3718 	}
3719 
3720 	if (s.handle_bad_blocks)
3721 		for (i = disks; i--; ) {
3722 			struct md_rdev *rdev;
3723 			struct r5dev *dev = &sh->dev[i];
3724 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3725 				/* We own a safe reference to the rdev */
3726 				rdev = conf->disks[i].rdev;
3727 				if (!rdev_set_badblocks(rdev, sh->sector,
3728 							STRIPE_SECTORS, 0))
3729 					md_error(conf->mddev, rdev);
3730 				rdev_dec_pending(rdev, conf->mddev);
3731 			}
3732 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3733 				rdev = conf->disks[i].rdev;
3734 				rdev_clear_badblocks(rdev, sh->sector,
3735 						     STRIPE_SECTORS, 0);
3736 				rdev_dec_pending(rdev, conf->mddev);
3737 			}
3738 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3739 				rdev = conf->disks[i].replacement;
3740 				if (!rdev)
3741 					/* rdev have been moved down */
3742 					rdev = conf->disks[i].rdev;
3743 				rdev_clear_badblocks(rdev, sh->sector,
3744 						     STRIPE_SECTORS, 0);
3745 				rdev_dec_pending(rdev, conf->mddev);
3746 			}
3747 		}
3748 
3749 	if (s.ops_request)
3750 		raid_run_ops(sh, s.ops_request);
3751 
3752 	ops_run_io(sh, &s);
3753 
3754 	if (s.dec_preread_active) {
3755 		/* We delay this until after ops_run_io so that if make_request
3756 		 * is waiting on a flush, it won't continue until the writes
3757 		 * have actually been submitted.
3758 		 */
3759 		atomic_dec(&conf->preread_active_stripes);
3760 		if (atomic_read(&conf->preread_active_stripes) <
3761 		    IO_THRESHOLD)
3762 			md_wakeup_thread(conf->mddev->thread);
3763 	}
3764 
3765 	return_io(s.return_bi);
3766 
3767 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3768 }
3769 
3770 static void raid5_activate_delayed(struct r5conf *conf)
3771 {
3772 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3773 		while (!list_empty(&conf->delayed_list)) {
3774 			struct list_head *l = conf->delayed_list.next;
3775 			struct stripe_head *sh;
3776 			sh = list_entry(l, struct stripe_head, lru);
3777 			list_del_init(l);
3778 			clear_bit(STRIPE_DELAYED, &sh->state);
3779 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3780 				atomic_inc(&conf->preread_active_stripes);
3781 			list_add_tail(&sh->lru, &conf->hold_list);
3782 		}
3783 	}
3784 }
3785 
3786 static void activate_bit_delay(struct r5conf *conf)
3787 {
3788 	/* device_lock is held */
3789 	struct list_head head;
3790 	list_add(&head, &conf->bitmap_list);
3791 	list_del_init(&conf->bitmap_list);
3792 	while (!list_empty(&head)) {
3793 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3794 		list_del_init(&sh->lru);
3795 		atomic_inc(&sh->count);
3796 		__release_stripe(conf, sh);
3797 	}
3798 }
3799 
3800 int md_raid5_congested(struct mddev *mddev, int bits)
3801 {
3802 	struct r5conf *conf = mddev->private;
3803 
3804 	/* No difference between reads and writes.  Just check
3805 	 * how busy the stripe_cache is
3806 	 */
3807 
3808 	if (conf->inactive_blocked)
3809 		return 1;
3810 	if (conf->quiesce)
3811 		return 1;
3812 	if (list_empty_careful(&conf->inactive_list))
3813 		return 1;
3814 
3815 	return 0;
3816 }
3817 EXPORT_SYMBOL_GPL(md_raid5_congested);
3818 
3819 static int raid5_congested(void *data, int bits)
3820 {
3821 	struct mddev *mddev = data;
3822 
3823 	return mddev_congested(mddev, bits) ||
3824 		md_raid5_congested(mddev, bits);
3825 }
3826 
3827 /* We want read requests to align with chunks where possible,
3828  * but write requests don't need to.
3829  */
3830 static int raid5_mergeable_bvec(struct request_queue *q,
3831 				struct bvec_merge_data *bvm,
3832 				struct bio_vec *biovec)
3833 {
3834 	struct mddev *mddev = q->queuedata;
3835 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3836 	int max;
3837 	unsigned int chunk_sectors = mddev->chunk_sectors;
3838 	unsigned int bio_sectors = bvm->bi_size >> 9;
3839 
3840 	if ((bvm->bi_rw & 1) == WRITE)
3841 		return biovec->bv_len; /* always allow writes to be mergeable */
3842 
3843 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3844 		chunk_sectors = mddev->new_chunk_sectors;
3845 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3846 	if (max < 0) max = 0;
3847 	if (max <= biovec->bv_len && bio_sectors == 0)
3848 		return biovec->bv_len;
3849 	else
3850 		return max;
3851 }
3852 
3853 
3854 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3855 {
3856 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3857 	unsigned int chunk_sectors = mddev->chunk_sectors;
3858 	unsigned int bio_sectors = bio_sectors(bio);
3859 
3860 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3861 		chunk_sectors = mddev->new_chunk_sectors;
3862 	return  chunk_sectors >=
3863 		((sector & (chunk_sectors - 1)) + bio_sectors);
3864 }
3865 
3866 /*
3867  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3868  *  later sampled by raid5d.
3869  */
3870 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3871 {
3872 	unsigned long flags;
3873 
3874 	spin_lock_irqsave(&conf->device_lock, flags);
3875 
3876 	bi->bi_next = conf->retry_read_aligned_list;
3877 	conf->retry_read_aligned_list = bi;
3878 
3879 	spin_unlock_irqrestore(&conf->device_lock, flags);
3880 	md_wakeup_thread(conf->mddev->thread);
3881 }
3882 
3883 
3884 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3885 {
3886 	struct bio *bi;
3887 
3888 	bi = conf->retry_read_aligned;
3889 	if (bi) {
3890 		conf->retry_read_aligned = NULL;
3891 		return bi;
3892 	}
3893 	bi = conf->retry_read_aligned_list;
3894 	if(bi) {
3895 		conf->retry_read_aligned_list = bi->bi_next;
3896 		bi->bi_next = NULL;
3897 		/*
3898 		 * this sets the active strip count to 1 and the processed
3899 		 * strip count to zero (upper 8 bits)
3900 		 */
3901 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3902 	}
3903 
3904 	return bi;
3905 }
3906 
3907 
3908 /*
3909  *  The "raid5_align_endio" should check if the read succeeded and if it
3910  *  did, call bio_endio on the original bio (having bio_put the new bio
3911  *  first).
3912  *  If the read failed..
3913  */
3914 static void raid5_align_endio(struct bio *bi, int error)
3915 {
3916 	struct bio* raid_bi  = bi->bi_private;
3917 	struct mddev *mddev;
3918 	struct r5conf *conf;
3919 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3920 	struct md_rdev *rdev;
3921 
3922 	bio_put(bi);
3923 
3924 	rdev = (void*)raid_bi->bi_next;
3925 	raid_bi->bi_next = NULL;
3926 	mddev = rdev->mddev;
3927 	conf = mddev->private;
3928 
3929 	rdev_dec_pending(rdev, conf->mddev);
3930 
3931 	if (!error && uptodate) {
3932 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3933 					 raid_bi, 0);
3934 		bio_endio(raid_bi, 0);
3935 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3936 			wake_up(&conf->wait_for_stripe);
3937 		return;
3938 	}
3939 
3940 
3941 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3942 
3943 	add_bio_to_retry(raid_bi, conf);
3944 }
3945 
3946 static int bio_fits_rdev(struct bio *bi)
3947 {
3948 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3949 
3950 	if (bio_sectors(bi) > queue_max_sectors(q))
3951 		return 0;
3952 	blk_recount_segments(q, bi);
3953 	if (bi->bi_phys_segments > queue_max_segments(q))
3954 		return 0;
3955 
3956 	if (q->merge_bvec_fn)
3957 		/* it's too hard to apply the merge_bvec_fn at this stage,
3958 		 * just just give up
3959 		 */
3960 		return 0;
3961 
3962 	return 1;
3963 }
3964 
3965 
3966 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3967 {
3968 	struct r5conf *conf = mddev->private;
3969 	int dd_idx;
3970 	struct bio* align_bi;
3971 	struct md_rdev *rdev;
3972 	sector_t end_sector;
3973 
3974 	if (!in_chunk_boundary(mddev, raid_bio)) {
3975 		pr_debug("chunk_aligned_read : non aligned\n");
3976 		return 0;
3977 	}
3978 	/*
3979 	 * use bio_clone_mddev to make a copy of the bio
3980 	 */
3981 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3982 	if (!align_bi)
3983 		return 0;
3984 	/*
3985 	 *   set bi_end_io to a new function, and set bi_private to the
3986 	 *     original bio.
3987 	 */
3988 	align_bi->bi_end_io  = raid5_align_endio;
3989 	align_bi->bi_private = raid_bio;
3990 	/*
3991 	 *	compute position
3992 	 */
3993 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3994 						    0,
3995 						    &dd_idx, NULL);
3996 
3997 	end_sector = bio_end_sector(align_bi);
3998 	rcu_read_lock();
3999 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4000 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4001 	    rdev->recovery_offset < end_sector) {
4002 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4003 		if (rdev &&
4004 		    (test_bit(Faulty, &rdev->flags) ||
4005 		    !(test_bit(In_sync, &rdev->flags) ||
4006 		      rdev->recovery_offset >= end_sector)))
4007 			rdev = NULL;
4008 	}
4009 	if (rdev) {
4010 		sector_t first_bad;
4011 		int bad_sectors;
4012 
4013 		atomic_inc(&rdev->nr_pending);
4014 		rcu_read_unlock();
4015 		raid_bio->bi_next = (void*)rdev;
4016 		align_bi->bi_bdev =  rdev->bdev;
4017 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4018 
4019 		if (!bio_fits_rdev(align_bi) ||
4020 		    is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4021 				&first_bad, &bad_sectors)) {
4022 			/* too big in some way, or has a known bad block */
4023 			bio_put(align_bi);
4024 			rdev_dec_pending(rdev, mddev);
4025 			return 0;
4026 		}
4027 
4028 		/* No reshape active, so we can trust rdev->data_offset */
4029 		align_bi->bi_sector += rdev->data_offset;
4030 
4031 		spin_lock_irq(&conf->device_lock);
4032 		wait_event_lock_irq(conf->wait_for_stripe,
4033 				    conf->quiesce == 0,
4034 				    conf->device_lock);
4035 		atomic_inc(&conf->active_aligned_reads);
4036 		spin_unlock_irq(&conf->device_lock);
4037 
4038 		if (mddev->gendisk)
4039 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4040 					      align_bi, disk_devt(mddev->gendisk),
4041 					      raid_bio->bi_sector);
4042 		generic_make_request(align_bi);
4043 		return 1;
4044 	} else {
4045 		rcu_read_unlock();
4046 		bio_put(align_bi);
4047 		return 0;
4048 	}
4049 }
4050 
4051 /* __get_priority_stripe - get the next stripe to process
4052  *
4053  * Full stripe writes are allowed to pass preread active stripes up until
4054  * the bypass_threshold is exceeded.  In general the bypass_count
4055  * increments when the handle_list is handled before the hold_list; however, it
4056  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4057  * stripe with in flight i/o.  The bypass_count will be reset when the
4058  * head of the hold_list has changed, i.e. the head was promoted to the
4059  * handle_list.
4060  */
4061 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4062 {
4063 	struct stripe_head *sh;
4064 
4065 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4066 		  __func__,
4067 		  list_empty(&conf->handle_list) ? "empty" : "busy",
4068 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4069 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4070 
4071 	if (!list_empty(&conf->handle_list)) {
4072 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4073 
4074 		if (list_empty(&conf->hold_list))
4075 			conf->bypass_count = 0;
4076 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4077 			if (conf->hold_list.next == conf->last_hold)
4078 				conf->bypass_count++;
4079 			else {
4080 				conf->last_hold = conf->hold_list.next;
4081 				conf->bypass_count -= conf->bypass_threshold;
4082 				if (conf->bypass_count < 0)
4083 					conf->bypass_count = 0;
4084 			}
4085 		}
4086 	} else if (!list_empty(&conf->hold_list) &&
4087 		   ((conf->bypass_threshold &&
4088 		     conf->bypass_count > conf->bypass_threshold) ||
4089 		    atomic_read(&conf->pending_full_writes) == 0)) {
4090 		sh = list_entry(conf->hold_list.next,
4091 				typeof(*sh), lru);
4092 		conf->bypass_count -= conf->bypass_threshold;
4093 		if (conf->bypass_count < 0)
4094 			conf->bypass_count = 0;
4095 	} else
4096 		return NULL;
4097 
4098 	list_del_init(&sh->lru);
4099 	atomic_inc(&sh->count);
4100 	BUG_ON(atomic_read(&sh->count) != 1);
4101 	return sh;
4102 }
4103 
4104 struct raid5_plug_cb {
4105 	struct blk_plug_cb	cb;
4106 	struct list_head	list;
4107 };
4108 
4109 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4110 {
4111 	struct raid5_plug_cb *cb = container_of(
4112 		blk_cb, struct raid5_plug_cb, cb);
4113 	struct stripe_head *sh;
4114 	struct mddev *mddev = cb->cb.data;
4115 	struct r5conf *conf = mddev->private;
4116 	int cnt = 0;
4117 
4118 	if (cb->list.next && !list_empty(&cb->list)) {
4119 		spin_lock_irq(&conf->device_lock);
4120 		while (!list_empty(&cb->list)) {
4121 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4122 			list_del_init(&sh->lru);
4123 			/*
4124 			 * avoid race release_stripe_plug() sees
4125 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4126 			 * is still in our list
4127 			 */
4128 			smp_mb__before_clear_bit();
4129 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4130 			__release_stripe(conf, sh);
4131 			cnt++;
4132 		}
4133 		spin_unlock_irq(&conf->device_lock);
4134 	}
4135 	if (mddev->queue)
4136 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4137 	kfree(cb);
4138 }
4139 
4140 static void release_stripe_plug(struct mddev *mddev,
4141 				struct stripe_head *sh)
4142 {
4143 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4144 		raid5_unplug, mddev,
4145 		sizeof(struct raid5_plug_cb));
4146 	struct raid5_plug_cb *cb;
4147 
4148 	if (!blk_cb) {
4149 		release_stripe(sh);
4150 		return;
4151 	}
4152 
4153 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4154 
4155 	if (cb->list.next == NULL)
4156 		INIT_LIST_HEAD(&cb->list);
4157 
4158 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4159 		list_add_tail(&sh->lru, &cb->list);
4160 	else
4161 		release_stripe(sh);
4162 }
4163 
4164 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4165 {
4166 	struct r5conf *conf = mddev->private;
4167 	sector_t logical_sector, last_sector;
4168 	struct stripe_head *sh;
4169 	int remaining;
4170 	int stripe_sectors;
4171 
4172 	if (mddev->reshape_position != MaxSector)
4173 		/* Skip discard while reshape is happening */
4174 		return;
4175 
4176 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4177 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4178 
4179 	bi->bi_next = NULL;
4180 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4181 
4182 	stripe_sectors = conf->chunk_sectors *
4183 		(conf->raid_disks - conf->max_degraded);
4184 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4185 					       stripe_sectors);
4186 	sector_div(last_sector, stripe_sectors);
4187 
4188 	logical_sector *= conf->chunk_sectors;
4189 	last_sector *= conf->chunk_sectors;
4190 
4191 	for (; logical_sector < last_sector;
4192 	     logical_sector += STRIPE_SECTORS) {
4193 		DEFINE_WAIT(w);
4194 		int d;
4195 	again:
4196 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4197 		prepare_to_wait(&conf->wait_for_overlap, &w,
4198 				TASK_UNINTERRUPTIBLE);
4199 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4200 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4201 			release_stripe(sh);
4202 			schedule();
4203 			goto again;
4204 		}
4205 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4206 		spin_lock_irq(&sh->stripe_lock);
4207 		for (d = 0; d < conf->raid_disks; d++) {
4208 			if (d == sh->pd_idx || d == sh->qd_idx)
4209 				continue;
4210 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4211 				set_bit(R5_Overlap, &sh->dev[d].flags);
4212 				spin_unlock_irq(&sh->stripe_lock);
4213 				release_stripe(sh);
4214 				schedule();
4215 				goto again;
4216 			}
4217 		}
4218 		set_bit(STRIPE_DISCARD, &sh->state);
4219 		finish_wait(&conf->wait_for_overlap, &w);
4220 		for (d = 0; d < conf->raid_disks; d++) {
4221 			if (d == sh->pd_idx || d == sh->qd_idx)
4222 				continue;
4223 			sh->dev[d].towrite = bi;
4224 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4225 			raid5_inc_bi_active_stripes(bi);
4226 		}
4227 		spin_unlock_irq(&sh->stripe_lock);
4228 		if (conf->mddev->bitmap) {
4229 			for (d = 0;
4230 			     d < conf->raid_disks - conf->max_degraded;
4231 			     d++)
4232 				bitmap_startwrite(mddev->bitmap,
4233 						  sh->sector,
4234 						  STRIPE_SECTORS,
4235 						  0);
4236 			sh->bm_seq = conf->seq_flush + 1;
4237 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4238 		}
4239 
4240 		set_bit(STRIPE_HANDLE, &sh->state);
4241 		clear_bit(STRIPE_DELAYED, &sh->state);
4242 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4243 			atomic_inc(&conf->preread_active_stripes);
4244 		release_stripe_plug(mddev, sh);
4245 	}
4246 
4247 	remaining = raid5_dec_bi_active_stripes(bi);
4248 	if (remaining == 0) {
4249 		md_write_end(mddev);
4250 		bio_endio(bi, 0);
4251 	}
4252 }
4253 
4254 static void make_request(struct mddev *mddev, struct bio * bi)
4255 {
4256 	struct r5conf *conf = mddev->private;
4257 	int dd_idx;
4258 	sector_t new_sector;
4259 	sector_t logical_sector, last_sector;
4260 	struct stripe_head *sh;
4261 	const int rw = bio_data_dir(bi);
4262 	int remaining;
4263 
4264 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4265 		md_flush_request(mddev, bi);
4266 		return;
4267 	}
4268 
4269 	md_write_start(mddev, bi);
4270 
4271 	if (rw == READ &&
4272 	     mddev->reshape_position == MaxSector &&
4273 	     chunk_aligned_read(mddev,bi))
4274 		return;
4275 
4276 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4277 		make_discard_request(mddev, bi);
4278 		return;
4279 	}
4280 
4281 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4282 	last_sector = bio_end_sector(bi);
4283 	bi->bi_next = NULL;
4284 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4285 
4286 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4287 		DEFINE_WAIT(w);
4288 		int previous;
4289 
4290 	retry:
4291 		previous = 0;
4292 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4293 		if (unlikely(conf->reshape_progress != MaxSector)) {
4294 			/* spinlock is needed as reshape_progress may be
4295 			 * 64bit on a 32bit platform, and so it might be
4296 			 * possible to see a half-updated value
4297 			 * Of course reshape_progress could change after
4298 			 * the lock is dropped, so once we get a reference
4299 			 * to the stripe that we think it is, we will have
4300 			 * to check again.
4301 			 */
4302 			spin_lock_irq(&conf->device_lock);
4303 			if (mddev->reshape_backwards
4304 			    ? logical_sector < conf->reshape_progress
4305 			    : logical_sector >= conf->reshape_progress) {
4306 				previous = 1;
4307 			} else {
4308 				if (mddev->reshape_backwards
4309 				    ? logical_sector < conf->reshape_safe
4310 				    : logical_sector >= conf->reshape_safe) {
4311 					spin_unlock_irq(&conf->device_lock);
4312 					schedule();
4313 					goto retry;
4314 				}
4315 			}
4316 			spin_unlock_irq(&conf->device_lock);
4317 		}
4318 
4319 		new_sector = raid5_compute_sector(conf, logical_sector,
4320 						  previous,
4321 						  &dd_idx, NULL);
4322 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4323 			(unsigned long long)new_sector,
4324 			(unsigned long long)logical_sector);
4325 
4326 		sh = get_active_stripe(conf, new_sector, previous,
4327 				       (bi->bi_rw&RWA_MASK), 0);
4328 		if (sh) {
4329 			if (unlikely(previous)) {
4330 				/* expansion might have moved on while waiting for a
4331 				 * stripe, so we must do the range check again.
4332 				 * Expansion could still move past after this
4333 				 * test, but as we are holding a reference to
4334 				 * 'sh', we know that if that happens,
4335 				 *  STRIPE_EXPANDING will get set and the expansion
4336 				 * won't proceed until we finish with the stripe.
4337 				 */
4338 				int must_retry = 0;
4339 				spin_lock_irq(&conf->device_lock);
4340 				if (mddev->reshape_backwards
4341 				    ? logical_sector >= conf->reshape_progress
4342 				    : logical_sector < conf->reshape_progress)
4343 					/* mismatch, need to try again */
4344 					must_retry = 1;
4345 				spin_unlock_irq(&conf->device_lock);
4346 				if (must_retry) {
4347 					release_stripe(sh);
4348 					schedule();
4349 					goto retry;
4350 				}
4351 			}
4352 
4353 			if (rw == WRITE &&
4354 			    logical_sector >= mddev->suspend_lo &&
4355 			    logical_sector < mddev->suspend_hi) {
4356 				release_stripe(sh);
4357 				/* As the suspend_* range is controlled by
4358 				 * userspace, we want an interruptible
4359 				 * wait.
4360 				 */
4361 				flush_signals(current);
4362 				prepare_to_wait(&conf->wait_for_overlap,
4363 						&w, TASK_INTERRUPTIBLE);
4364 				if (logical_sector >= mddev->suspend_lo &&
4365 				    logical_sector < mddev->suspend_hi)
4366 					schedule();
4367 				goto retry;
4368 			}
4369 
4370 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4371 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4372 				/* Stripe is busy expanding or
4373 				 * add failed due to overlap.  Flush everything
4374 				 * and wait a while
4375 				 */
4376 				md_wakeup_thread(mddev->thread);
4377 				release_stripe(sh);
4378 				schedule();
4379 				goto retry;
4380 			}
4381 			finish_wait(&conf->wait_for_overlap, &w);
4382 			set_bit(STRIPE_HANDLE, &sh->state);
4383 			clear_bit(STRIPE_DELAYED, &sh->state);
4384 			if ((bi->bi_rw & REQ_SYNC) &&
4385 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4386 				atomic_inc(&conf->preread_active_stripes);
4387 			release_stripe_plug(mddev, sh);
4388 		} else {
4389 			/* cannot get stripe for read-ahead, just give-up */
4390 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4391 			finish_wait(&conf->wait_for_overlap, &w);
4392 			break;
4393 		}
4394 	}
4395 
4396 	remaining = raid5_dec_bi_active_stripes(bi);
4397 	if (remaining == 0) {
4398 
4399 		if ( rw == WRITE )
4400 			md_write_end(mddev);
4401 
4402 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4403 					 bi, 0);
4404 		bio_endio(bi, 0);
4405 	}
4406 }
4407 
4408 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4409 
4410 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4411 {
4412 	/* reshaping is quite different to recovery/resync so it is
4413 	 * handled quite separately ... here.
4414 	 *
4415 	 * On each call to sync_request, we gather one chunk worth of
4416 	 * destination stripes and flag them as expanding.
4417 	 * Then we find all the source stripes and request reads.
4418 	 * As the reads complete, handle_stripe will copy the data
4419 	 * into the destination stripe and release that stripe.
4420 	 */
4421 	struct r5conf *conf = mddev->private;
4422 	struct stripe_head *sh;
4423 	sector_t first_sector, last_sector;
4424 	int raid_disks = conf->previous_raid_disks;
4425 	int data_disks = raid_disks - conf->max_degraded;
4426 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4427 	int i;
4428 	int dd_idx;
4429 	sector_t writepos, readpos, safepos;
4430 	sector_t stripe_addr;
4431 	int reshape_sectors;
4432 	struct list_head stripes;
4433 
4434 	if (sector_nr == 0) {
4435 		/* If restarting in the middle, skip the initial sectors */
4436 		if (mddev->reshape_backwards &&
4437 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4438 			sector_nr = raid5_size(mddev, 0, 0)
4439 				- conf->reshape_progress;
4440 		} else if (!mddev->reshape_backwards &&
4441 			   conf->reshape_progress > 0)
4442 			sector_nr = conf->reshape_progress;
4443 		sector_div(sector_nr, new_data_disks);
4444 		if (sector_nr) {
4445 			mddev->curr_resync_completed = sector_nr;
4446 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4447 			*skipped = 1;
4448 			return sector_nr;
4449 		}
4450 	}
4451 
4452 	/* We need to process a full chunk at a time.
4453 	 * If old and new chunk sizes differ, we need to process the
4454 	 * largest of these
4455 	 */
4456 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4457 		reshape_sectors = mddev->new_chunk_sectors;
4458 	else
4459 		reshape_sectors = mddev->chunk_sectors;
4460 
4461 	/* We update the metadata at least every 10 seconds, or when
4462 	 * the data about to be copied would over-write the source of
4463 	 * the data at the front of the range.  i.e. one new_stripe
4464 	 * along from reshape_progress new_maps to after where
4465 	 * reshape_safe old_maps to
4466 	 */
4467 	writepos = conf->reshape_progress;
4468 	sector_div(writepos, new_data_disks);
4469 	readpos = conf->reshape_progress;
4470 	sector_div(readpos, data_disks);
4471 	safepos = conf->reshape_safe;
4472 	sector_div(safepos, data_disks);
4473 	if (mddev->reshape_backwards) {
4474 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4475 		readpos += reshape_sectors;
4476 		safepos += reshape_sectors;
4477 	} else {
4478 		writepos += reshape_sectors;
4479 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4480 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4481 	}
4482 
4483 	/* Having calculated the 'writepos' possibly use it
4484 	 * to set 'stripe_addr' which is where we will write to.
4485 	 */
4486 	if (mddev->reshape_backwards) {
4487 		BUG_ON(conf->reshape_progress == 0);
4488 		stripe_addr = writepos;
4489 		BUG_ON((mddev->dev_sectors &
4490 			~((sector_t)reshape_sectors - 1))
4491 		       - reshape_sectors - stripe_addr
4492 		       != sector_nr);
4493 	} else {
4494 		BUG_ON(writepos != sector_nr + reshape_sectors);
4495 		stripe_addr = sector_nr;
4496 	}
4497 
4498 	/* 'writepos' is the most advanced device address we might write.
4499 	 * 'readpos' is the least advanced device address we might read.
4500 	 * 'safepos' is the least address recorded in the metadata as having
4501 	 *     been reshaped.
4502 	 * If there is a min_offset_diff, these are adjusted either by
4503 	 * increasing the safepos/readpos if diff is negative, or
4504 	 * increasing writepos if diff is positive.
4505 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4506 	 * ensure safety in the face of a crash - that must be done by userspace
4507 	 * making a backup of the data.  So in that case there is no particular
4508 	 * rush to update metadata.
4509 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4510 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4511 	 * we can be safe in the event of a crash.
4512 	 * So we insist on updating metadata if safepos is behind writepos and
4513 	 * readpos is beyond writepos.
4514 	 * In any case, update the metadata every 10 seconds.
4515 	 * Maybe that number should be configurable, but I'm not sure it is
4516 	 * worth it.... maybe it could be a multiple of safemode_delay???
4517 	 */
4518 	if (conf->min_offset_diff < 0) {
4519 		safepos += -conf->min_offset_diff;
4520 		readpos += -conf->min_offset_diff;
4521 	} else
4522 		writepos += conf->min_offset_diff;
4523 
4524 	if ((mddev->reshape_backwards
4525 	     ? (safepos > writepos && readpos < writepos)
4526 	     : (safepos < writepos && readpos > writepos)) ||
4527 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4528 		/* Cannot proceed until we've updated the superblock... */
4529 		wait_event(conf->wait_for_overlap,
4530 			   atomic_read(&conf->reshape_stripes)==0);
4531 		mddev->reshape_position = conf->reshape_progress;
4532 		mddev->curr_resync_completed = sector_nr;
4533 		conf->reshape_checkpoint = jiffies;
4534 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4535 		md_wakeup_thread(mddev->thread);
4536 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4537 			   kthread_should_stop());
4538 		spin_lock_irq(&conf->device_lock);
4539 		conf->reshape_safe = mddev->reshape_position;
4540 		spin_unlock_irq(&conf->device_lock);
4541 		wake_up(&conf->wait_for_overlap);
4542 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4543 	}
4544 
4545 	INIT_LIST_HEAD(&stripes);
4546 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4547 		int j;
4548 		int skipped_disk = 0;
4549 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4550 		set_bit(STRIPE_EXPANDING, &sh->state);
4551 		atomic_inc(&conf->reshape_stripes);
4552 		/* If any of this stripe is beyond the end of the old
4553 		 * array, then we need to zero those blocks
4554 		 */
4555 		for (j=sh->disks; j--;) {
4556 			sector_t s;
4557 			if (j == sh->pd_idx)
4558 				continue;
4559 			if (conf->level == 6 &&
4560 			    j == sh->qd_idx)
4561 				continue;
4562 			s = compute_blocknr(sh, j, 0);
4563 			if (s < raid5_size(mddev, 0, 0)) {
4564 				skipped_disk = 1;
4565 				continue;
4566 			}
4567 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4568 			set_bit(R5_Expanded, &sh->dev[j].flags);
4569 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4570 		}
4571 		if (!skipped_disk) {
4572 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4573 			set_bit(STRIPE_HANDLE, &sh->state);
4574 		}
4575 		list_add(&sh->lru, &stripes);
4576 	}
4577 	spin_lock_irq(&conf->device_lock);
4578 	if (mddev->reshape_backwards)
4579 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4580 	else
4581 		conf->reshape_progress += reshape_sectors * new_data_disks;
4582 	spin_unlock_irq(&conf->device_lock);
4583 	/* Ok, those stripe are ready. We can start scheduling
4584 	 * reads on the source stripes.
4585 	 * The source stripes are determined by mapping the first and last
4586 	 * block on the destination stripes.
4587 	 */
4588 	first_sector =
4589 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4590 				     1, &dd_idx, NULL);
4591 	last_sector =
4592 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4593 					    * new_data_disks - 1),
4594 				     1, &dd_idx, NULL);
4595 	if (last_sector >= mddev->dev_sectors)
4596 		last_sector = mddev->dev_sectors - 1;
4597 	while (first_sector <= last_sector) {
4598 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4599 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4600 		set_bit(STRIPE_HANDLE, &sh->state);
4601 		release_stripe(sh);
4602 		first_sector += STRIPE_SECTORS;
4603 	}
4604 	/* Now that the sources are clearly marked, we can release
4605 	 * the destination stripes
4606 	 */
4607 	while (!list_empty(&stripes)) {
4608 		sh = list_entry(stripes.next, struct stripe_head, lru);
4609 		list_del_init(&sh->lru);
4610 		release_stripe(sh);
4611 	}
4612 	/* If this takes us to the resync_max point where we have to pause,
4613 	 * then we need to write out the superblock.
4614 	 */
4615 	sector_nr += reshape_sectors;
4616 	if ((sector_nr - mddev->curr_resync_completed) * 2
4617 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4618 		/* Cannot proceed until we've updated the superblock... */
4619 		wait_event(conf->wait_for_overlap,
4620 			   atomic_read(&conf->reshape_stripes) == 0);
4621 		mddev->reshape_position = conf->reshape_progress;
4622 		mddev->curr_resync_completed = sector_nr;
4623 		conf->reshape_checkpoint = jiffies;
4624 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4625 		md_wakeup_thread(mddev->thread);
4626 		wait_event(mddev->sb_wait,
4627 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4628 			   || kthread_should_stop());
4629 		spin_lock_irq(&conf->device_lock);
4630 		conf->reshape_safe = mddev->reshape_position;
4631 		spin_unlock_irq(&conf->device_lock);
4632 		wake_up(&conf->wait_for_overlap);
4633 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4634 	}
4635 	return reshape_sectors;
4636 }
4637 
4638 /* FIXME go_faster isn't used */
4639 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4640 {
4641 	struct r5conf *conf = mddev->private;
4642 	struct stripe_head *sh;
4643 	sector_t max_sector = mddev->dev_sectors;
4644 	sector_t sync_blocks;
4645 	int still_degraded = 0;
4646 	int i;
4647 
4648 	if (sector_nr >= max_sector) {
4649 		/* just being told to finish up .. nothing much to do */
4650 
4651 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4652 			end_reshape(conf);
4653 			return 0;
4654 		}
4655 
4656 		if (mddev->curr_resync < max_sector) /* aborted */
4657 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4658 					&sync_blocks, 1);
4659 		else /* completed sync */
4660 			conf->fullsync = 0;
4661 		bitmap_close_sync(mddev->bitmap);
4662 
4663 		return 0;
4664 	}
4665 
4666 	/* Allow raid5_quiesce to complete */
4667 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4668 
4669 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4670 		return reshape_request(mddev, sector_nr, skipped);
4671 
4672 	/* No need to check resync_max as we never do more than one
4673 	 * stripe, and as resync_max will always be on a chunk boundary,
4674 	 * if the check in md_do_sync didn't fire, there is no chance
4675 	 * of overstepping resync_max here
4676 	 */
4677 
4678 	/* if there is too many failed drives and we are trying
4679 	 * to resync, then assert that we are finished, because there is
4680 	 * nothing we can do.
4681 	 */
4682 	if (mddev->degraded >= conf->max_degraded &&
4683 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4684 		sector_t rv = mddev->dev_sectors - sector_nr;
4685 		*skipped = 1;
4686 		return rv;
4687 	}
4688 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4689 	    !conf->fullsync &&
4690 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4691 	    sync_blocks >= STRIPE_SECTORS) {
4692 		/* we can skip this block, and probably more */
4693 		sync_blocks /= STRIPE_SECTORS;
4694 		*skipped = 1;
4695 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4696 	}
4697 
4698 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4699 
4700 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4701 	if (sh == NULL) {
4702 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4703 		/* make sure we don't swamp the stripe cache if someone else
4704 		 * is trying to get access
4705 		 */
4706 		schedule_timeout_uninterruptible(1);
4707 	}
4708 	/* Need to check if array will still be degraded after recovery/resync
4709 	 * We don't need to check the 'failed' flag as when that gets set,
4710 	 * recovery aborts.
4711 	 */
4712 	for (i = 0; i < conf->raid_disks; i++)
4713 		if (conf->disks[i].rdev == NULL)
4714 			still_degraded = 1;
4715 
4716 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4717 
4718 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4719 
4720 	handle_stripe(sh);
4721 	release_stripe(sh);
4722 
4723 	return STRIPE_SECTORS;
4724 }
4725 
4726 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4727 {
4728 	/* We may not be able to submit a whole bio at once as there
4729 	 * may not be enough stripe_heads available.
4730 	 * We cannot pre-allocate enough stripe_heads as we may need
4731 	 * more than exist in the cache (if we allow ever large chunks).
4732 	 * So we do one stripe head at a time and record in
4733 	 * ->bi_hw_segments how many have been done.
4734 	 *
4735 	 * We *know* that this entire raid_bio is in one chunk, so
4736 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4737 	 */
4738 	struct stripe_head *sh;
4739 	int dd_idx;
4740 	sector_t sector, logical_sector, last_sector;
4741 	int scnt = 0;
4742 	int remaining;
4743 	int handled = 0;
4744 
4745 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4746 	sector = raid5_compute_sector(conf, logical_sector,
4747 				      0, &dd_idx, NULL);
4748 	last_sector = bio_end_sector(raid_bio);
4749 
4750 	for (; logical_sector < last_sector;
4751 	     logical_sector += STRIPE_SECTORS,
4752 		     sector += STRIPE_SECTORS,
4753 		     scnt++) {
4754 
4755 		if (scnt < raid5_bi_processed_stripes(raid_bio))
4756 			/* already done this stripe */
4757 			continue;
4758 
4759 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4760 
4761 		if (!sh) {
4762 			/* failed to get a stripe - must wait */
4763 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4764 			conf->retry_read_aligned = raid_bio;
4765 			return handled;
4766 		}
4767 
4768 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4769 			release_stripe(sh);
4770 			raid5_set_bi_processed_stripes(raid_bio, scnt);
4771 			conf->retry_read_aligned = raid_bio;
4772 			return handled;
4773 		}
4774 
4775 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4776 		handle_stripe(sh);
4777 		release_stripe(sh);
4778 		handled++;
4779 	}
4780 	remaining = raid5_dec_bi_active_stripes(raid_bio);
4781 	if (remaining == 0) {
4782 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4783 					 raid_bio, 0);
4784 		bio_endio(raid_bio, 0);
4785 	}
4786 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4787 		wake_up(&conf->wait_for_stripe);
4788 	return handled;
4789 }
4790 
4791 #define MAX_STRIPE_BATCH 8
4792 static int handle_active_stripes(struct r5conf *conf)
4793 {
4794 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4795 	int i, batch_size = 0;
4796 
4797 	while (batch_size < MAX_STRIPE_BATCH &&
4798 			(sh = __get_priority_stripe(conf)) != NULL)
4799 		batch[batch_size++] = sh;
4800 
4801 	if (batch_size == 0)
4802 		return batch_size;
4803 	spin_unlock_irq(&conf->device_lock);
4804 
4805 	for (i = 0; i < batch_size; i++)
4806 		handle_stripe(batch[i]);
4807 
4808 	cond_resched();
4809 
4810 	spin_lock_irq(&conf->device_lock);
4811 	for (i = 0; i < batch_size; i++)
4812 		__release_stripe(conf, batch[i]);
4813 	return batch_size;
4814 }
4815 
4816 /*
4817  * This is our raid5 kernel thread.
4818  *
4819  * We scan the hash table for stripes which can be handled now.
4820  * During the scan, completed stripes are saved for us by the interrupt
4821  * handler, so that they will not have to wait for our next wakeup.
4822  */
4823 static void raid5d(struct md_thread *thread)
4824 {
4825 	struct mddev *mddev = thread->mddev;
4826 	struct r5conf *conf = mddev->private;
4827 	int handled;
4828 	struct blk_plug plug;
4829 
4830 	pr_debug("+++ raid5d active\n");
4831 
4832 	md_check_recovery(mddev);
4833 
4834 	blk_start_plug(&plug);
4835 	handled = 0;
4836 	spin_lock_irq(&conf->device_lock);
4837 	while (1) {
4838 		struct bio *bio;
4839 		int batch_size;
4840 
4841 		if (
4842 		    !list_empty(&conf->bitmap_list)) {
4843 			/* Now is a good time to flush some bitmap updates */
4844 			conf->seq_flush++;
4845 			spin_unlock_irq(&conf->device_lock);
4846 			bitmap_unplug(mddev->bitmap);
4847 			spin_lock_irq(&conf->device_lock);
4848 			conf->seq_write = conf->seq_flush;
4849 			activate_bit_delay(conf);
4850 		}
4851 		raid5_activate_delayed(conf);
4852 
4853 		while ((bio = remove_bio_from_retry(conf))) {
4854 			int ok;
4855 			spin_unlock_irq(&conf->device_lock);
4856 			ok = retry_aligned_read(conf, bio);
4857 			spin_lock_irq(&conf->device_lock);
4858 			if (!ok)
4859 				break;
4860 			handled++;
4861 		}
4862 
4863 		batch_size = handle_active_stripes(conf);
4864 		if (!batch_size)
4865 			break;
4866 		handled += batch_size;
4867 
4868 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4869 			spin_unlock_irq(&conf->device_lock);
4870 			md_check_recovery(mddev);
4871 			spin_lock_irq(&conf->device_lock);
4872 		}
4873 	}
4874 	pr_debug("%d stripes handled\n", handled);
4875 
4876 	spin_unlock_irq(&conf->device_lock);
4877 
4878 	async_tx_issue_pending_all();
4879 	blk_finish_plug(&plug);
4880 
4881 	pr_debug("--- raid5d inactive\n");
4882 }
4883 
4884 static ssize_t
4885 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4886 {
4887 	struct r5conf *conf = mddev->private;
4888 	if (conf)
4889 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4890 	else
4891 		return 0;
4892 }
4893 
4894 int
4895 raid5_set_cache_size(struct mddev *mddev, int size)
4896 {
4897 	struct r5conf *conf = mddev->private;
4898 	int err;
4899 
4900 	if (size <= 16 || size > 32768)
4901 		return -EINVAL;
4902 	while (size < conf->max_nr_stripes) {
4903 		if (drop_one_stripe(conf))
4904 			conf->max_nr_stripes--;
4905 		else
4906 			break;
4907 	}
4908 	err = md_allow_write(mddev);
4909 	if (err)
4910 		return err;
4911 	while (size > conf->max_nr_stripes) {
4912 		if (grow_one_stripe(conf))
4913 			conf->max_nr_stripes++;
4914 		else break;
4915 	}
4916 	return 0;
4917 }
4918 EXPORT_SYMBOL(raid5_set_cache_size);
4919 
4920 static ssize_t
4921 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4922 {
4923 	struct r5conf *conf = mddev->private;
4924 	unsigned long new;
4925 	int err;
4926 
4927 	if (len >= PAGE_SIZE)
4928 		return -EINVAL;
4929 	if (!conf)
4930 		return -ENODEV;
4931 
4932 	if (kstrtoul(page, 10, &new))
4933 		return -EINVAL;
4934 	err = raid5_set_cache_size(mddev, new);
4935 	if (err)
4936 		return err;
4937 	return len;
4938 }
4939 
4940 static struct md_sysfs_entry
4941 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4942 				raid5_show_stripe_cache_size,
4943 				raid5_store_stripe_cache_size);
4944 
4945 static ssize_t
4946 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4947 {
4948 	struct r5conf *conf = mddev->private;
4949 	if (conf)
4950 		return sprintf(page, "%d\n", conf->bypass_threshold);
4951 	else
4952 		return 0;
4953 }
4954 
4955 static ssize_t
4956 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4957 {
4958 	struct r5conf *conf = mddev->private;
4959 	unsigned long new;
4960 	if (len >= PAGE_SIZE)
4961 		return -EINVAL;
4962 	if (!conf)
4963 		return -ENODEV;
4964 
4965 	if (kstrtoul(page, 10, &new))
4966 		return -EINVAL;
4967 	if (new > conf->max_nr_stripes)
4968 		return -EINVAL;
4969 	conf->bypass_threshold = new;
4970 	return len;
4971 }
4972 
4973 static struct md_sysfs_entry
4974 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4975 					S_IRUGO | S_IWUSR,
4976 					raid5_show_preread_threshold,
4977 					raid5_store_preread_threshold);
4978 
4979 static ssize_t
4980 stripe_cache_active_show(struct mddev *mddev, char *page)
4981 {
4982 	struct r5conf *conf = mddev->private;
4983 	if (conf)
4984 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4985 	else
4986 		return 0;
4987 }
4988 
4989 static struct md_sysfs_entry
4990 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4991 
4992 static struct attribute *raid5_attrs[] =  {
4993 	&raid5_stripecache_size.attr,
4994 	&raid5_stripecache_active.attr,
4995 	&raid5_preread_bypass_threshold.attr,
4996 	NULL,
4997 };
4998 static struct attribute_group raid5_attrs_group = {
4999 	.name = NULL,
5000 	.attrs = raid5_attrs,
5001 };
5002 
5003 static sector_t
5004 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5005 {
5006 	struct r5conf *conf = mddev->private;
5007 
5008 	if (!sectors)
5009 		sectors = mddev->dev_sectors;
5010 	if (!raid_disks)
5011 		/* size is defined by the smallest of previous and new size */
5012 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5013 
5014 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5015 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5016 	return sectors * (raid_disks - conf->max_degraded);
5017 }
5018 
5019 static void raid5_free_percpu(struct r5conf *conf)
5020 {
5021 	struct raid5_percpu *percpu;
5022 	unsigned long cpu;
5023 
5024 	if (!conf->percpu)
5025 		return;
5026 
5027 	get_online_cpus();
5028 	for_each_possible_cpu(cpu) {
5029 		percpu = per_cpu_ptr(conf->percpu, cpu);
5030 		safe_put_page(percpu->spare_page);
5031 		kfree(percpu->scribble);
5032 	}
5033 #ifdef CONFIG_HOTPLUG_CPU
5034 	unregister_cpu_notifier(&conf->cpu_notify);
5035 #endif
5036 	put_online_cpus();
5037 
5038 	free_percpu(conf->percpu);
5039 }
5040 
5041 static void free_conf(struct r5conf *conf)
5042 {
5043 	shrink_stripes(conf);
5044 	raid5_free_percpu(conf);
5045 	kfree(conf->disks);
5046 	kfree(conf->stripe_hashtbl);
5047 	kfree(conf);
5048 }
5049 
5050 #ifdef CONFIG_HOTPLUG_CPU
5051 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5052 			      void *hcpu)
5053 {
5054 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5055 	long cpu = (long)hcpu;
5056 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5057 
5058 	switch (action) {
5059 	case CPU_UP_PREPARE:
5060 	case CPU_UP_PREPARE_FROZEN:
5061 		if (conf->level == 6 && !percpu->spare_page)
5062 			percpu->spare_page = alloc_page(GFP_KERNEL);
5063 		if (!percpu->scribble)
5064 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5065 
5066 		if (!percpu->scribble ||
5067 		    (conf->level == 6 && !percpu->spare_page)) {
5068 			safe_put_page(percpu->spare_page);
5069 			kfree(percpu->scribble);
5070 			pr_err("%s: failed memory allocation for cpu%ld\n",
5071 			       __func__, cpu);
5072 			return notifier_from_errno(-ENOMEM);
5073 		}
5074 		break;
5075 	case CPU_DEAD:
5076 	case CPU_DEAD_FROZEN:
5077 		safe_put_page(percpu->spare_page);
5078 		kfree(percpu->scribble);
5079 		percpu->spare_page = NULL;
5080 		percpu->scribble = NULL;
5081 		break;
5082 	default:
5083 		break;
5084 	}
5085 	return NOTIFY_OK;
5086 }
5087 #endif
5088 
5089 static int raid5_alloc_percpu(struct r5conf *conf)
5090 {
5091 	unsigned long cpu;
5092 	struct page *spare_page;
5093 	struct raid5_percpu __percpu *allcpus;
5094 	void *scribble;
5095 	int err;
5096 
5097 	allcpus = alloc_percpu(struct raid5_percpu);
5098 	if (!allcpus)
5099 		return -ENOMEM;
5100 	conf->percpu = allcpus;
5101 
5102 	get_online_cpus();
5103 	err = 0;
5104 	for_each_present_cpu(cpu) {
5105 		if (conf->level == 6) {
5106 			spare_page = alloc_page(GFP_KERNEL);
5107 			if (!spare_page) {
5108 				err = -ENOMEM;
5109 				break;
5110 			}
5111 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5112 		}
5113 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5114 		if (!scribble) {
5115 			err = -ENOMEM;
5116 			break;
5117 		}
5118 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5119 	}
5120 #ifdef CONFIG_HOTPLUG_CPU
5121 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5122 	conf->cpu_notify.priority = 0;
5123 	if (err == 0)
5124 		err = register_cpu_notifier(&conf->cpu_notify);
5125 #endif
5126 	put_online_cpus();
5127 
5128 	return err;
5129 }
5130 
5131 static struct r5conf *setup_conf(struct mddev *mddev)
5132 {
5133 	struct r5conf *conf;
5134 	int raid_disk, memory, max_disks;
5135 	struct md_rdev *rdev;
5136 	struct disk_info *disk;
5137 	char pers_name[6];
5138 
5139 	if (mddev->new_level != 5
5140 	    && mddev->new_level != 4
5141 	    && mddev->new_level != 6) {
5142 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5143 		       mdname(mddev), mddev->new_level);
5144 		return ERR_PTR(-EIO);
5145 	}
5146 	if ((mddev->new_level == 5
5147 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5148 	    (mddev->new_level == 6
5149 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5150 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5151 		       mdname(mddev), mddev->new_layout);
5152 		return ERR_PTR(-EIO);
5153 	}
5154 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5155 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5156 		       mdname(mddev), mddev->raid_disks);
5157 		return ERR_PTR(-EINVAL);
5158 	}
5159 
5160 	if (!mddev->new_chunk_sectors ||
5161 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5162 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5163 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5164 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5165 		return ERR_PTR(-EINVAL);
5166 	}
5167 
5168 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5169 	if (conf == NULL)
5170 		goto abort;
5171 	spin_lock_init(&conf->device_lock);
5172 	init_waitqueue_head(&conf->wait_for_stripe);
5173 	init_waitqueue_head(&conf->wait_for_overlap);
5174 	INIT_LIST_HEAD(&conf->handle_list);
5175 	INIT_LIST_HEAD(&conf->hold_list);
5176 	INIT_LIST_HEAD(&conf->delayed_list);
5177 	INIT_LIST_HEAD(&conf->bitmap_list);
5178 	INIT_LIST_HEAD(&conf->inactive_list);
5179 	atomic_set(&conf->active_stripes, 0);
5180 	atomic_set(&conf->preread_active_stripes, 0);
5181 	atomic_set(&conf->active_aligned_reads, 0);
5182 	conf->bypass_threshold = BYPASS_THRESHOLD;
5183 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5184 
5185 	conf->raid_disks = mddev->raid_disks;
5186 	if (mddev->reshape_position == MaxSector)
5187 		conf->previous_raid_disks = mddev->raid_disks;
5188 	else
5189 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5190 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5191 	conf->scribble_len = scribble_len(max_disks);
5192 
5193 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5194 			      GFP_KERNEL);
5195 	if (!conf->disks)
5196 		goto abort;
5197 
5198 	conf->mddev = mddev;
5199 
5200 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5201 		goto abort;
5202 
5203 	conf->level = mddev->new_level;
5204 	if (raid5_alloc_percpu(conf) != 0)
5205 		goto abort;
5206 
5207 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5208 
5209 	rdev_for_each(rdev, mddev) {
5210 		raid_disk = rdev->raid_disk;
5211 		if (raid_disk >= max_disks
5212 		    || raid_disk < 0)
5213 			continue;
5214 		disk = conf->disks + raid_disk;
5215 
5216 		if (test_bit(Replacement, &rdev->flags)) {
5217 			if (disk->replacement)
5218 				goto abort;
5219 			disk->replacement = rdev;
5220 		} else {
5221 			if (disk->rdev)
5222 				goto abort;
5223 			disk->rdev = rdev;
5224 		}
5225 
5226 		if (test_bit(In_sync, &rdev->flags)) {
5227 			char b[BDEVNAME_SIZE];
5228 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5229 			       " disk %d\n",
5230 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5231 		} else if (rdev->saved_raid_disk != raid_disk)
5232 			/* Cannot rely on bitmap to complete recovery */
5233 			conf->fullsync = 1;
5234 	}
5235 
5236 	conf->chunk_sectors = mddev->new_chunk_sectors;
5237 	conf->level = mddev->new_level;
5238 	if (conf->level == 6)
5239 		conf->max_degraded = 2;
5240 	else
5241 		conf->max_degraded = 1;
5242 	conf->algorithm = mddev->new_layout;
5243 	conf->max_nr_stripes = NR_STRIPES;
5244 	conf->reshape_progress = mddev->reshape_position;
5245 	if (conf->reshape_progress != MaxSector) {
5246 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5247 		conf->prev_algo = mddev->layout;
5248 	}
5249 
5250 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5251 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5252 	if (grow_stripes(conf, conf->max_nr_stripes)) {
5253 		printk(KERN_ERR
5254 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5255 		       mdname(mddev), memory);
5256 		goto abort;
5257 	} else
5258 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5259 		       mdname(mddev), memory);
5260 
5261 	sprintf(pers_name, "raid%d", mddev->new_level);
5262 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5263 	if (!conf->thread) {
5264 		printk(KERN_ERR
5265 		       "md/raid:%s: couldn't allocate thread.\n",
5266 		       mdname(mddev));
5267 		goto abort;
5268 	}
5269 
5270 	return conf;
5271 
5272  abort:
5273 	if (conf) {
5274 		free_conf(conf);
5275 		return ERR_PTR(-EIO);
5276 	} else
5277 		return ERR_PTR(-ENOMEM);
5278 }
5279 
5280 
5281 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5282 {
5283 	switch (algo) {
5284 	case ALGORITHM_PARITY_0:
5285 		if (raid_disk < max_degraded)
5286 			return 1;
5287 		break;
5288 	case ALGORITHM_PARITY_N:
5289 		if (raid_disk >= raid_disks - max_degraded)
5290 			return 1;
5291 		break;
5292 	case ALGORITHM_PARITY_0_6:
5293 		if (raid_disk == 0 ||
5294 		    raid_disk == raid_disks - 1)
5295 			return 1;
5296 		break;
5297 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5298 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5299 	case ALGORITHM_LEFT_SYMMETRIC_6:
5300 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5301 		if (raid_disk == raid_disks - 1)
5302 			return 1;
5303 	}
5304 	return 0;
5305 }
5306 
5307 static int run(struct mddev *mddev)
5308 {
5309 	struct r5conf *conf;
5310 	int working_disks = 0;
5311 	int dirty_parity_disks = 0;
5312 	struct md_rdev *rdev;
5313 	sector_t reshape_offset = 0;
5314 	int i;
5315 	long long min_offset_diff = 0;
5316 	int first = 1;
5317 
5318 	if (mddev->recovery_cp != MaxSector)
5319 		printk(KERN_NOTICE "md/raid:%s: not clean"
5320 		       " -- starting background reconstruction\n",
5321 		       mdname(mddev));
5322 
5323 	rdev_for_each(rdev, mddev) {
5324 		long long diff;
5325 		if (rdev->raid_disk < 0)
5326 			continue;
5327 		diff = (rdev->new_data_offset - rdev->data_offset);
5328 		if (first) {
5329 			min_offset_diff = diff;
5330 			first = 0;
5331 		} else if (mddev->reshape_backwards &&
5332 			 diff < min_offset_diff)
5333 			min_offset_diff = diff;
5334 		else if (!mddev->reshape_backwards &&
5335 			 diff > min_offset_diff)
5336 			min_offset_diff = diff;
5337 	}
5338 
5339 	if (mddev->reshape_position != MaxSector) {
5340 		/* Check that we can continue the reshape.
5341 		 * Difficulties arise if the stripe we would write to
5342 		 * next is at or after the stripe we would read from next.
5343 		 * For a reshape that changes the number of devices, this
5344 		 * is only possible for a very short time, and mdadm makes
5345 		 * sure that time appears to have past before assembling
5346 		 * the array.  So we fail if that time hasn't passed.
5347 		 * For a reshape that keeps the number of devices the same
5348 		 * mdadm must be monitoring the reshape can keeping the
5349 		 * critical areas read-only and backed up.  It will start
5350 		 * the array in read-only mode, so we check for that.
5351 		 */
5352 		sector_t here_new, here_old;
5353 		int old_disks;
5354 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5355 
5356 		if (mddev->new_level != mddev->level) {
5357 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5358 			       "required - aborting.\n",
5359 			       mdname(mddev));
5360 			return -EINVAL;
5361 		}
5362 		old_disks = mddev->raid_disks - mddev->delta_disks;
5363 		/* reshape_position must be on a new-stripe boundary, and one
5364 		 * further up in new geometry must map after here in old
5365 		 * geometry.
5366 		 */
5367 		here_new = mddev->reshape_position;
5368 		if (sector_div(here_new, mddev->new_chunk_sectors *
5369 			       (mddev->raid_disks - max_degraded))) {
5370 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5371 			       "on a stripe boundary\n", mdname(mddev));
5372 			return -EINVAL;
5373 		}
5374 		reshape_offset = here_new * mddev->new_chunk_sectors;
5375 		/* here_new is the stripe we will write to */
5376 		here_old = mddev->reshape_position;
5377 		sector_div(here_old, mddev->chunk_sectors *
5378 			   (old_disks-max_degraded));
5379 		/* here_old is the first stripe that we might need to read
5380 		 * from */
5381 		if (mddev->delta_disks == 0) {
5382 			if ((here_new * mddev->new_chunk_sectors !=
5383 			     here_old * mddev->chunk_sectors)) {
5384 				printk(KERN_ERR "md/raid:%s: reshape position is"
5385 				       " confused - aborting\n", mdname(mddev));
5386 				return -EINVAL;
5387 			}
5388 			/* We cannot be sure it is safe to start an in-place
5389 			 * reshape.  It is only safe if user-space is monitoring
5390 			 * and taking constant backups.
5391 			 * mdadm always starts a situation like this in
5392 			 * readonly mode so it can take control before
5393 			 * allowing any writes.  So just check for that.
5394 			 */
5395 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5396 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5397 				/* not really in-place - so OK */;
5398 			else if (mddev->ro == 0) {
5399 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5400 				       "must be started in read-only mode "
5401 				       "- aborting\n",
5402 				       mdname(mddev));
5403 				return -EINVAL;
5404 			}
5405 		} else if (mddev->reshape_backwards
5406 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5407 		       here_old * mddev->chunk_sectors)
5408 		    : (here_new * mddev->new_chunk_sectors >=
5409 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5410 			/* Reading from the same stripe as writing to - bad */
5411 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5412 			       "auto-recovery - aborting.\n",
5413 			       mdname(mddev));
5414 			return -EINVAL;
5415 		}
5416 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5417 		       mdname(mddev));
5418 		/* OK, we should be able to continue; */
5419 	} else {
5420 		BUG_ON(mddev->level != mddev->new_level);
5421 		BUG_ON(mddev->layout != mddev->new_layout);
5422 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5423 		BUG_ON(mddev->delta_disks != 0);
5424 	}
5425 
5426 	if (mddev->private == NULL)
5427 		conf = setup_conf(mddev);
5428 	else
5429 		conf = mddev->private;
5430 
5431 	if (IS_ERR(conf))
5432 		return PTR_ERR(conf);
5433 
5434 	conf->min_offset_diff = min_offset_diff;
5435 	mddev->thread = conf->thread;
5436 	conf->thread = NULL;
5437 	mddev->private = conf;
5438 
5439 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5440 	     i++) {
5441 		rdev = conf->disks[i].rdev;
5442 		if (!rdev && conf->disks[i].replacement) {
5443 			/* The replacement is all we have yet */
5444 			rdev = conf->disks[i].replacement;
5445 			conf->disks[i].replacement = NULL;
5446 			clear_bit(Replacement, &rdev->flags);
5447 			conf->disks[i].rdev = rdev;
5448 		}
5449 		if (!rdev)
5450 			continue;
5451 		if (conf->disks[i].replacement &&
5452 		    conf->reshape_progress != MaxSector) {
5453 			/* replacements and reshape simply do not mix. */
5454 			printk(KERN_ERR "md: cannot handle concurrent "
5455 			       "replacement and reshape.\n");
5456 			goto abort;
5457 		}
5458 		if (test_bit(In_sync, &rdev->flags)) {
5459 			working_disks++;
5460 			continue;
5461 		}
5462 		/* This disc is not fully in-sync.  However if it
5463 		 * just stored parity (beyond the recovery_offset),
5464 		 * when we don't need to be concerned about the
5465 		 * array being dirty.
5466 		 * When reshape goes 'backwards', we never have
5467 		 * partially completed devices, so we only need
5468 		 * to worry about reshape going forwards.
5469 		 */
5470 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5471 		if (mddev->major_version == 0 &&
5472 		    mddev->minor_version > 90)
5473 			rdev->recovery_offset = reshape_offset;
5474 
5475 		if (rdev->recovery_offset < reshape_offset) {
5476 			/* We need to check old and new layout */
5477 			if (!only_parity(rdev->raid_disk,
5478 					 conf->algorithm,
5479 					 conf->raid_disks,
5480 					 conf->max_degraded))
5481 				continue;
5482 		}
5483 		if (!only_parity(rdev->raid_disk,
5484 				 conf->prev_algo,
5485 				 conf->previous_raid_disks,
5486 				 conf->max_degraded))
5487 			continue;
5488 		dirty_parity_disks++;
5489 	}
5490 
5491 	/*
5492 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5493 	 */
5494 	mddev->degraded = calc_degraded(conf);
5495 
5496 	if (has_failed(conf)) {
5497 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5498 			" (%d/%d failed)\n",
5499 			mdname(mddev), mddev->degraded, conf->raid_disks);
5500 		goto abort;
5501 	}
5502 
5503 	/* device size must be a multiple of chunk size */
5504 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5505 	mddev->resync_max_sectors = mddev->dev_sectors;
5506 
5507 	if (mddev->degraded > dirty_parity_disks &&
5508 	    mddev->recovery_cp != MaxSector) {
5509 		if (mddev->ok_start_degraded)
5510 			printk(KERN_WARNING
5511 			       "md/raid:%s: starting dirty degraded array"
5512 			       " - data corruption possible.\n",
5513 			       mdname(mddev));
5514 		else {
5515 			printk(KERN_ERR
5516 			       "md/raid:%s: cannot start dirty degraded array.\n",
5517 			       mdname(mddev));
5518 			goto abort;
5519 		}
5520 	}
5521 
5522 	if (mddev->degraded == 0)
5523 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5524 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5525 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5526 		       mddev->new_layout);
5527 	else
5528 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5529 		       " out of %d devices, algorithm %d\n",
5530 		       mdname(mddev), conf->level,
5531 		       mddev->raid_disks - mddev->degraded,
5532 		       mddev->raid_disks, mddev->new_layout);
5533 
5534 	print_raid5_conf(conf);
5535 
5536 	if (conf->reshape_progress != MaxSector) {
5537 		conf->reshape_safe = conf->reshape_progress;
5538 		atomic_set(&conf->reshape_stripes, 0);
5539 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5540 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5541 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5542 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5543 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5544 							"reshape");
5545 	}
5546 
5547 
5548 	/* Ok, everything is just fine now */
5549 	if (mddev->to_remove == &raid5_attrs_group)
5550 		mddev->to_remove = NULL;
5551 	else if (mddev->kobj.sd &&
5552 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5553 		printk(KERN_WARNING
5554 		       "raid5: failed to create sysfs attributes for %s\n",
5555 		       mdname(mddev));
5556 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5557 
5558 	if (mddev->queue) {
5559 		int chunk_size;
5560 		bool discard_supported = true;
5561 		/* read-ahead size must cover two whole stripes, which
5562 		 * is 2 * (datadisks) * chunksize where 'n' is the
5563 		 * number of raid devices
5564 		 */
5565 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5566 		int stripe = data_disks *
5567 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5568 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5569 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5570 
5571 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5572 
5573 		mddev->queue->backing_dev_info.congested_data = mddev;
5574 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5575 
5576 		chunk_size = mddev->chunk_sectors << 9;
5577 		blk_queue_io_min(mddev->queue, chunk_size);
5578 		blk_queue_io_opt(mddev->queue, chunk_size *
5579 				 (conf->raid_disks - conf->max_degraded));
5580 		/*
5581 		 * We can only discard a whole stripe. It doesn't make sense to
5582 		 * discard data disk but write parity disk
5583 		 */
5584 		stripe = stripe * PAGE_SIZE;
5585 		/* Round up to power of 2, as discard handling
5586 		 * currently assumes that */
5587 		while ((stripe-1) & stripe)
5588 			stripe = (stripe | (stripe-1)) + 1;
5589 		mddev->queue->limits.discard_alignment = stripe;
5590 		mddev->queue->limits.discard_granularity = stripe;
5591 		/*
5592 		 * unaligned part of discard request will be ignored, so can't
5593 		 * guarantee discard_zerors_data
5594 		 */
5595 		mddev->queue->limits.discard_zeroes_data = 0;
5596 
5597 		blk_queue_max_write_same_sectors(mddev->queue, 0);
5598 
5599 		rdev_for_each(rdev, mddev) {
5600 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5601 					  rdev->data_offset << 9);
5602 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5603 					  rdev->new_data_offset << 9);
5604 			/*
5605 			 * discard_zeroes_data is required, otherwise data
5606 			 * could be lost. Consider a scenario: discard a stripe
5607 			 * (the stripe could be inconsistent if
5608 			 * discard_zeroes_data is 0); write one disk of the
5609 			 * stripe (the stripe could be inconsistent again
5610 			 * depending on which disks are used to calculate
5611 			 * parity); the disk is broken; The stripe data of this
5612 			 * disk is lost.
5613 			 */
5614 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5615 			    !bdev_get_queue(rdev->bdev)->
5616 						limits.discard_zeroes_data)
5617 				discard_supported = false;
5618 		}
5619 
5620 		if (discard_supported &&
5621 		   mddev->queue->limits.max_discard_sectors >= stripe &&
5622 		   mddev->queue->limits.discard_granularity >= stripe)
5623 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5624 						mddev->queue);
5625 		else
5626 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5627 						mddev->queue);
5628 	}
5629 
5630 	return 0;
5631 abort:
5632 	md_unregister_thread(&mddev->thread);
5633 	print_raid5_conf(conf);
5634 	free_conf(conf);
5635 	mddev->private = NULL;
5636 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5637 	return -EIO;
5638 }
5639 
5640 static int stop(struct mddev *mddev)
5641 {
5642 	struct r5conf *conf = mddev->private;
5643 
5644 	md_unregister_thread(&mddev->thread);
5645 	if (mddev->queue)
5646 		mddev->queue->backing_dev_info.congested_fn = NULL;
5647 	free_conf(conf);
5648 	mddev->private = NULL;
5649 	mddev->to_remove = &raid5_attrs_group;
5650 	return 0;
5651 }
5652 
5653 static void status(struct seq_file *seq, struct mddev *mddev)
5654 {
5655 	struct r5conf *conf = mddev->private;
5656 	int i;
5657 
5658 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5659 		mddev->chunk_sectors / 2, mddev->layout);
5660 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5661 	for (i = 0; i < conf->raid_disks; i++)
5662 		seq_printf (seq, "%s",
5663 			       conf->disks[i].rdev &&
5664 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5665 	seq_printf (seq, "]");
5666 }
5667 
5668 static void print_raid5_conf (struct r5conf *conf)
5669 {
5670 	int i;
5671 	struct disk_info *tmp;
5672 
5673 	printk(KERN_DEBUG "RAID conf printout:\n");
5674 	if (!conf) {
5675 		printk("(conf==NULL)\n");
5676 		return;
5677 	}
5678 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5679 	       conf->raid_disks,
5680 	       conf->raid_disks - conf->mddev->degraded);
5681 
5682 	for (i = 0; i < conf->raid_disks; i++) {
5683 		char b[BDEVNAME_SIZE];
5684 		tmp = conf->disks + i;
5685 		if (tmp->rdev)
5686 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5687 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5688 			       bdevname(tmp->rdev->bdev, b));
5689 	}
5690 }
5691 
5692 static int raid5_spare_active(struct mddev *mddev)
5693 {
5694 	int i;
5695 	struct r5conf *conf = mddev->private;
5696 	struct disk_info *tmp;
5697 	int count = 0;
5698 	unsigned long flags;
5699 
5700 	for (i = 0; i < conf->raid_disks; i++) {
5701 		tmp = conf->disks + i;
5702 		if (tmp->replacement
5703 		    && tmp->replacement->recovery_offset == MaxSector
5704 		    && !test_bit(Faulty, &tmp->replacement->flags)
5705 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5706 			/* Replacement has just become active. */
5707 			if (!tmp->rdev
5708 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5709 				count++;
5710 			if (tmp->rdev) {
5711 				/* Replaced device not technically faulty,
5712 				 * but we need to be sure it gets removed
5713 				 * and never re-added.
5714 				 */
5715 				set_bit(Faulty, &tmp->rdev->flags);
5716 				sysfs_notify_dirent_safe(
5717 					tmp->rdev->sysfs_state);
5718 			}
5719 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5720 		} else if (tmp->rdev
5721 		    && tmp->rdev->recovery_offset == MaxSector
5722 		    && !test_bit(Faulty, &tmp->rdev->flags)
5723 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5724 			count++;
5725 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5726 		}
5727 	}
5728 	spin_lock_irqsave(&conf->device_lock, flags);
5729 	mddev->degraded = calc_degraded(conf);
5730 	spin_unlock_irqrestore(&conf->device_lock, flags);
5731 	print_raid5_conf(conf);
5732 	return count;
5733 }
5734 
5735 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5736 {
5737 	struct r5conf *conf = mddev->private;
5738 	int err = 0;
5739 	int number = rdev->raid_disk;
5740 	struct md_rdev **rdevp;
5741 	struct disk_info *p = conf->disks + number;
5742 
5743 	print_raid5_conf(conf);
5744 	if (rdev == p->rdev)
5745 		rdevp = &p->rdev;
5746 	else if (rdev == p->replacement)
5747 		rdevp = &p->replacement;
5748 	else
5749 		return 0;
5750 
5751 	if (number >= conf->raid_disks &&
5752 	    conf->reshape_progress == MaxSector)
5753 		clear_bit(In_sync, &rdev->flags);
5754 
5755 	if (test_bit(In_sync, &rdev->flags) ||
5756 	    atomic_read(&rdev->nr_pending)) {
5757 		err = -EBUSY;
5758 		goto abort;
5759 	}
5760 	/* Only remove non-faulty devices if recovery
5761 	 * isn't possible.
5762 	 */
5763 	if (!test_bit(Faulty, &rdev->flags) &&
5764 	    mddev->recovery_disabled != conf->recovery_disabled &&
5765 	    !has_failed(conf) &&
5766 	    (!p->replacement || p->replacement == rdev) &&
5767 	    number < conf->raid_disks) {
5768 		err = -EBUSY;
5769 		goto abort;
5770 	}
5771 	*rdevp = NULL;
5772 	synchronize_rcu();
5773 	if (atomic_read(&rdev->nr_pending)) {
5774 		/* lost the race, try later */
5775 		err = -EBUSY;
5776 		*rdevp = rdev;
5777 	} else if (p->replacement) {
5778 		/* We must have just cleared 'rdev' */
5779 		p->rdev = p->replacement;
5780 		clear_bit(Replacement, &p->replacement->flags);
5781 		smp_mb(); /* Make sure other CPUs may see both as identical
5782 			   * but will never see neither - if they are careful
5783 			   */
5784 		p->replacement = NULL;
5785 		clear_bit(WantReplacement, &rdev->flags);
5786 	} else
5787 		/* We might have just removed the Replacement as faulty-
5788 		 * clear the bit just in case
5789 		 */
5790 		clear_bit(WantReplacement, &rdev->flags);
5791 abort:
5792 
5793 	print_raid5_conf(conf);
5794 	return err;
5795 }
5796 
5797 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5798 {
5799 	struct r5conf *conf = mddev->private;
5800 	int err = -EEXIST;
5801 	int disk;
5802 	struct disk_info *p;
5803 	int first = 0;
5804 	int last = conf->raid_disks - 1;
5805 
5806 	if (mddev->recovery_disabled == conf->recovery_disabled)
5807 		return -EBUSY;
5808 
5809 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5810 		/* no point adding a device */
5811 		return -EINVAL;
5812 
5813 	if (rdev->raid_disk >= 0)
5814 		first = last = rdev->raid_disk;
5815 
5816 	/*
5817 	 * find the disk ... but prefer rdev->saved_raid_disk
5818 	 * if possible.
5819 	 */
5820 	if (rdev->saved_raid_disk >= 0 &&
5821 	    rdev->saved_raid_disk >= first &&
5822 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5823 		first = rdev->saved_raid_disk;
5824 
5825 	for (disk = first; disk <= last; disk++) {
5826 		p = conf->disks + disk;
5827 		if (p->rdev == NULL) {
5828 			clear_bit(In_sync, &rdev->flags);
5829 			rdev->raid_disk = disk;
5830 			err = 0;
5831 			if (rdev->saved_raid_disk != disk)
5832 				conf->fullsync = 1;
5833 			rcu_assign_pointer(p->rdev, rdev);
5834 			goto out;
5835 		}
5836 	}
5837 	for (disk = first; disk <= last; disk++) {
5838 		p = conf->disks + disk;
5839 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5840 		    p->replacement == NULL) {
5841 			clear_bit(In_sync, &rdev->flags);
5842 			set_bit(Replacement, &rdev->flags);
5843 			rdev->raid_disk = disk;
5844 			err = 0;
5845 			conf->fullsync = 1;
5846 			rcu_assign_pointer(p->replacement, rdev);
5847 			break;
5848 		}
5849 	}
5850 out:
5851 	print_raid5_conf(conf);
5852 	return err;
5853 }
5854 
5855 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5856 {
5857 	/* no resync is happening, and there is enough space
5858 	 * on all devices, so we can resize.
5859 	 * We need to make sure resync covers any new space.
5860 	 * If the array is shrinking we should possibly wait until
5861 	 * any io in the removed space completes, but it hardly seems
5862 	 * worth it.
5863 	 */
5864 	sector_t newsize;
5865 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5866 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5867 	if (mddev->external_size &&
5868 	    mddev->array_sectors > newsize)
5869 		return -EINVAL;
5870 	if (mddev->bitmap) {
5871 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5872 		if (ret)
5873 			return ret;
5874 	}
5875 	md_set_array_sectors(mddev, newsize);
5876 	set_capacity(mddev->gendisk, mddev->array_sectors);
5877 	revalidate_disk(mddev->gendisk);
5878 	if (sectors > mddev->dev_sectors &&
5879 	    mddev->recovery_cp > mddev->dev_sectors) {
5880 		mddev->recovery_cp = mddev->dev_sectors;
5881 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5882 	}
5883 	mddev->dev_sectors = sectors;
5884 	mddev->resync_max_sectors = sectors;
5885 	return 0;
5886 }
5887 
5888 static int check_stripe_cache(struct mddev *mddev)
5889 {
5890 	/* Can only proceed if there are plenty of stripe_heads.
5891 	 * We need a minimum of one full stripe,, and for sensible progress
5892 	 * it is best to have about 4 times that.
5893 	 * If we require 4 times, then the default 256 4K stripe_heads will
5894 	 * allow for chunk sizes up to 256K, which is probably OK.
5895 	 * If the chunk size is greater, user-space should request more
5896 	 * stripe_heads first.
5897 	 */
5898 	struct r5conf *conf = mddev->private;
5899 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5900 	    > conf->max_nr_stripes ||
5901 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5902 	    > conf->max_nr_stripes) {
5903 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5904 		       mdname(mddev),
5905 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5906 			/ STRIPE_SIZE)*4);
5907 		return 0;
5908 	}
5909 	return 1;
5910 }
5911 
5912 static int check_reshape(struct mddev *mddev)
5913 {
5914 	struct r5conf *conf = mddev->private;
5915 
5916 	if (mddev->delta_disks == 0 &&
5917 	    mddev->new_layout == mddev->layout &&
5918 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5919 		return 0; /* nothing to do */
5920 	if (has_failed(conf))
5921 		return -EINVAL;
5922 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
5923 		/* We might be able to shrink, but the devices must
5924 		 * be made bigger first.
5925 		 * For raid6, 4 is the minimum size.
5926 		 * Otherwise 2 is the minimum
5927 		 */
5928 		int min = 2;
5929 		if (mddev->level == 6)
5930 			min = 4;
5931 		if (mddev->raid_disks + mddev->delta_disks < min)
5932 			return -EINVAL;
5933 	}
5934 
5935 	if (!check_stripe_cache(mddev))
5936 		return -ENOSPC;
5937 
5938 	return resize_stripes(conf, (conf->previous_raid_disks
5939 				     + mddev->delta_disks));
5940 }
5941 
5942 static int raid5_start_reshape(struct mddev *mddev)
5943 {
5944 	struct r5conf *conf = mddev->private;
5945 	struct md_rdev *rdev;
5946 	int spares = 0;
5947 	unsigned long flags;
5948 
5949 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5950 		return -EBUSY;
5951 
5952 	if (!check_stripe_cache(mddev))
5953 		return -ENOSPC;
5954 
5955 	if (has_failed(conf))
5956 		return -EINVAL;
5957 
5958 	rdev_for_each(rdev, mddev) {
5959 		if (!test_bit(In_sync, &rdev->flags)
5960 		    && !test_bit(Faulty, &rdev->flags))
5961 			spares++;
5962 	}
5963 
5964 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5965 		/* Not enough devices even to make a degraded array
5966 		 * of that size
5967 		 */
5968 		return -EINVAL;
5969 
5970 	/* Refuse to reduce size of the array.  Any reductions in
5971 	 * array size must be through explicit setting of array_size
5972 	 * attribute.
5973 	 */
5974 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5975 	    < mddev->array_sectors) {
5976 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5977 		       "before number of disks\n", mdname(mddev));
5978 		return -EINVAL;
5979 	}
5980 
5981 	atomic_set(&conf->reshape_stripes, 0);
5982 	spin_lock_irq(&conf->device_lock);
5983 	conf->previous_raid_disks = conf->raid_disks;
5984 	conf->raid_disks += mddev->delta_disks;
5985 	conf->prev_chunk_sectors = conf->chunk_sectors;
5986 	conf->chunk_sectors = mddev->new_chunk_sectors;
5987 	conf->prev_algo = conf->algorithm;
5988 	conf->algorithm = mddev->new_layout;
5989 	conf->generation++;
5990 	/* Code that selects data_offset needs to see the generation update
5991 	 * if reshape_progress has been set - so a memory barrier needed.
5992 	 */
5993 	smp_mb();
5994 	if (mddev->reshape_backwards)
5995 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5996 	else
5997 		conf->reshape_progress = 0;
5998 	conf->reshape_safe = conf->reshape_progress;
5999 	spin_unlock_irq(&conf->device_lock);
6000 
6001 	/* Add some new drives, as many as will fit.
6002 	 * We know there are enough to make the newly sized array work.
6003 	 * Don't add devices if we are reducing the number of
6004 	 * devices in the array.  This is because it is not possible
6005 	 * to correctly record the "partially reconstructed" state of
6006 	 * such devices during the reshape and confusion could result.
6007 	 */
6008 	if (mddev->delta_disks >= 0) {
6009 		rdev_for_each(rdev, mddev)
6010 			if (rdev->raid_disk < 0 &&
6011 			    !test_bit(Faulty, &rdev->flags)) {
6012 				if (raid5_add_disk(mddev, rdev) == 0) {
6013 					if (rdev->raid_disk
6014 					    >= conf->previous_raid_disks)
6015 						set_bit(In_sync, &rdev->flags);
6016 					else
6017 						rdev->recovery_offset = 0;
6018 
6019 					if (sysfs_link_rdev(mddev, rdev))
6020 						/* Failure here is OK */;
6021 				}
6022 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6023 				   && !test_bit(Faulty, &rdev->flags)) {
6024 				/* This is a spare that was manually added */
6025 				set_bit(In_sync, &rdev->flags);
6026 			}
6027 
6028 		/* When a reshape changes the number of devices,
6029 		 * ->degraded is measured against the larger of the
6030 		 * pre and post number of devices.
6031 		 */
6032 		spin_lock_irqsave(&conf->device_lock, flags);
6033 		mddev->degraded = calc_degraded(conf);
6034 		spin_unlock_irqrestore(&conf->device_lock, flags);
6035 	}
6036 	mddev->raid_disks = conf->raid_disks;
6037 	mddev->reshape_position = conf->reshape_progress;
6038 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6039 
6040 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6041 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6042 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6043 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6044 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6045 						"reshape");
6046 	if (!mddev->sync_thread) {
6047 		mddev->recovery = 0;
6048 		spin_lock_irq(&conf->device_lock);
6049 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6050 		rdev_for_each(rdev, mddev)
6051 			rdev->new_data_offset = rdev->data_offset;
6052 		smp_wmb();
6053 		conf->reshape_progress = MaxSector;
6054 		mddev->reshape_position = MaxSector;
6055 		spin_unlock_irq(&conf->device_lock);
6056 		return -EAGAIN;
6057 	}
6058 	conf->reshape_checkpoint = jiffies;
6059 	md_wakeup_thread(mddev->sync_thread);
6060 	md_new_event(mddev);
6061 	return 0;
6062 }
6063 
6064 /* This is called from the reshape thread and should make any
6065  * changes needed in 'conf'
6066  */
6067 static void end_reshape(struct r5conf *conf)
6068 {
6069 
6070 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6071 		struct md_rdev *rdev;
6072 
6073 		spin_lock_irq(&conf->device_lock);
6074 		conf->previous_raid_disks = conf->raid_disks;
6075 		rdev_for_each(rdev, conf->mddev)
6076 			rdev->data_offset = rdev->new_data_offset;
6077 		smp_wmb();
6078 		conf->reshape_progress = MaxSector;
6079 		spin_unlock_irq(&conf->device_lock);
6080 		wake_up(&conf->wait_for_overlap);
6081 
6082 		/* read-ahead size must cover two whole stripes, which is
6083 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6084 		 */
6085 		if (conf->mddev->queue) {
6086 			int data_disks = conf->raid_disks - conf->max_degraded;
6087 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6088 						   / PAGE_SIZE);
6089 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6090 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6091 		}
6092 	}
6093 }
6094 
6095 /* This is called from the raid5d thread with mddev_lock held.
6096  * It makes config changes to the device.
6097  */
6098 static void raid5_finish_reshape(struct mddev *mddev)
6099 {
6100 	struct r5conf *conf = mddev->private;
6101 
6102 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6103 
6104 		if (mddev->delta_disks > 0) {
6105 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6106 			set_capacity(mddev->gendisk, mddev->array_sectors);
6107 			revalidate_disk(mddev->gendisk);
6108 		} else {
6109 			int d;
6110 			spin_lock_irq(&conf->device_lock);
6111 			mddev->degraded = calc_degraded(conf);
6112 			spin_unlock_irq(&conf->device_lock);
6113 			for (d = conf->raid_disks ;
6114 			     d < conf->raid_disks - mddev->delta_disks;
6115 			     d++) {
6116 				struct md_rdev *rdev = conf->disks[d].rdev;
6117 				if (rdev)
6118 					clear_bit(In_sync, &rdev->flags);
6119 				rdev = conf->disks[d].replacement;
6120 				if (rdev)
6121 					clear_bit(In_sync, &rdev->flags);
6122 			}
6123 		}
6124 		mddev->layout = conf->algorithm;
6125 		mddev->chunk_sectors = conf->chunk_sectors;
6126 		mddev->reshape_position = MaxSector;
6127 		mddev->delta_disks = 0;
6128 		mddev->reshape_backwards = 0;
6129 	}
6130 }
6131 
6132 static void raid5_quiesce(struct mddev *mddev, int state)
6133 {
6134 	struct r5conf *conf = mddev->private;
6135 
6136 	switch(state) {
6137 	case 2: /* resume for a suspend */
6138 		wake_up(&conf->wait_for_overlap);
6139 		break;
6140 
6141 	case 1: /* stop all writes */
6142 		spin_lock_irq(&conf->device_lock);
6143 		/* '2' tells resync/reshape to pause so that all
6144 		 * active stripes can drain
6145 		 */
6146 		conf->quiesce = 2;
6147 		wait_event_lock_irq(conf->wait_for_stripe,
6148 				    atomic_read(&conf->active_stripes) == 0 &&
6149 				    atomic_read(&conf->active_aligned_reads) == 0,
6150 				    conf->device_lock);
6151 		conf->quiesce = 1;
6152 		spin_unlock_irq(&conf->device_lock);
6153 		/* allow reshape to continue */
6154 		wake_up(&conf->wait_for_overlap);
6155 		break;
6156 
6157 	case 0: /* re-enable writes */
6158 		spin_lock_irq(&conf->device_lock);
6159 		conf->quiesce = 0;
6160 		wake_up(&conf->wait_for_stripe);
6161 		wake_up(&conf->wait_for_overlap);
6162 		spin_unlock_irq(&conf->device_lock);
6163 		break;
6164 	}
6165 }
6166 
6167 
6168 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6169 {
6170 	struct r0conf *raid0_conf = mddev->private;
6171 	sector_t sectors;
6172 
6173 	/* for raid0 takeover only one zone is supported */
6174 	if (raid0_conf->nr_strip_zones > 1) {
6175 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6176 		       mdname(mddev));
6177 		return ERR_PTR(-EINVAL);
6178 	}
6179 
6180 	sectors = raid0_conf->strip_zone[0].zone_end;
6181 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6182 	mddev->dev_sectors = sectors;
6183 	mddev->new_level = level;
6184 	mddev->new_layout = ALGORITHM_PARITY_N;
6185 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6186 	mddev->raid_disks += 1;
6187 	mddev->delta_disks = 1;
6188 	/* make sure it will be not marked as dirty */
6189 	mddev->recovery_cp = MaxSector;
6190 
6191 	return setup_conf(mddev);
6192 }
6193 
6194 
6195 static void *raid5_takeover_raid1(struct mddev *mddev)
6196 {
6197 	int chunksect;
6198 
6199 	if (mddev->raid_disks != 2 ||
6200 	    mddev->degraded > 1)
6201 		return ERR_PTR(-EINVAL);
6202 
6203 	/* Should check if there are write-behind devices? */
6204 
6205 	chunksect = 64*2; /* 64K by default */
6206 
6207 	/* The array must be an exact multiple of chunksize */
6208 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6209 		chunksect >>= 1;
6210 
6211 	if ((chunksect<<9) < STRIPE_SIZE)
6212 		/* array size does not allow a suitable chunk size */
6213 		return ERR_PTR(-EINVAL);
6214 
6215 	mddev->new_level = 5;
6216 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6217 	mddev->new_chunk_sectors = chunksect;
6218 
6219 	return setup_conf(mddev);
6220 }
6221 
6222 static void *raid5_takeover_raid6(struct mddev *mddev)
6223 {
6224 	int new_layout;
6225 
6226 	switch (mddev->layout) {
6227 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6228 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6229 		break;
6230 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6231 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6232 		break;
6233 	case ALGORITHM_LEFT_SYMMETRIC_6:
6234 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6235 		break;
6236 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6237 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6238 		break;
6239 	case ALGORITHM_PARITY_0_6:
6240 		new_layout = ALGORITHM_PARITY_0;
6241 		break;
6242 	case ALGORITHM_PARITY_N:
6243 		new_layout = ALGORITHM_PARITY_N;
6244 		break;
6245 	default:
6246 		return ERR_PTR(-EINVAL);
6247 	}
6248 	mddev->new_level = 5;
6249 	mddev->new_layout = new_layout;
6250 	mddev->delta_disks = -1;
6251 	mddev->raid_disks -= 1;
6252 	return setup_conf(mddev);
6253 }
6254 
6255 
6256 static int raid5_check_reshape(struct mddev *mddev)
6257 {
6258 	/* For a 2-drive array, the layout and chunk size can be changed
6259 	 * immediately as not restriping is needed.
6260 	 * For larger arrays we record the new value - after validation
6261 	 * to be used by a reshape pass.
6262 	 */
6263 	struct r5conf *conf = mddev->private;
6264 	int new_chunk = mddev->new_chunk_sectors;
6265 
6266 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6267 		return -EINVAL;
6268 	if (new_chunk > 0) {
6269 		if (!is_power_of_2(new_chunk))
6270 			return -EINVAL;
6271 		if (new_chunk < (PAGE_SIZE>>9))
6272 			return -EINVAL;
6273 		if (mddev->array_sectors & (new_chunk-1))
6274 			/* not factor of array size */
6275 			return -EINVAL;
6276 	}
6277 
6278 	/* They look valid */
6279 
6280 	if (mddev->raid_disks == 2) {
6281 		/* can make the change immediately */
6282 		if (mddev->new_layout >= 0) {
6283 			conf->algorithm = mddev->new_layout;
6284 			mddev->layout = mddev->new_layout;
6285 		}
6286 		if (new_chunk > 0) {
6287 			conf->chunk_sectors = new_chunk ;
6288 			mddev->chunk_sectors = new_chunk;
6289 		}
6290 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6291 		md_wakeup_thread(mddev->thread);
6292 	}
6293 	return check_reshape(mddev);
6294 }
6295 
6296 static int raid6_check_reshape(struct mddev *mddev)
6297 {
6298 	int new_chunk = mddev->new_chunk_sectors;
6299 
6300 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6301 		return -EINVAL;
6302 	if (new_chunk > 0) {
6303 		if (!is_power_of_2(new_chunk))
6304 			return -EINVAL;
6305 		if (new_chunk < (PAGE_SIZE >> 9))
6306 			return -EINVAL;
6307 		if (mddev->array_sectors & (new_chunk-1))
6308 			/* not factor of array size */
6309 			return -EINVAL;
6310 	}
6311 
6312 	/* They look valid */
6313 	return check_reshape(mddev);
6314 }
6315 
6316 static void *raid5_takeover(struct mddev *mddev)
6317 {
6318 	/* raid5 can take over:
6319 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6320 	 *  raid1 - if there are two drives.  We need to know the chunk size
6321 	 *  raid4 - trivial - just use a raid4 layout.
6322 	 *  raid6 - Providing it is a *_6 layout
6323 	 */
6324 	if (mddev->level == 0)
6325 		return raid45_takeover_raid0(mddev, 5);
6326 	if (mddev->level == 1)
6327 		return raid5_takeover_raid1(mddev);
6328 	if (mddev->level == 4) {
6329 		mddev->new_layout = ALGORITHM_PARITY_N;
6330 		mddev->new_level = 5;
6331 		return setup_conf(mddev);
6332 	}
6333 	if (mddev->level == 6)
6334 		return raid5_takeover_raid6(mddev);
6335 
6336 	return ERR_PTR(-EINVAL);
6337 }
6338 
6339 static void *raid4_takeover(struct mddev *mddev)
6340 {
6341 	/* raid4 can take over:
6342 	 *  raid0 - if there is only one strip zone
6343 	 *  raid5 - if layout is right
6344 	 */
6345 	if (mddev->level == 0)
6346 		return raid45_takeover_raid0(mddev, 4);
6347 	if (mddev->level == 5 &&
6348 	    mddev->layout == ALGORITHM_PARITY_N) {
6349 		mddev->new_layout = 0;
6350 		mddev->new_level = 4;
6351 		return setup_conf(mddev);
6352 	}
6353 	return ERR_PTR(-EINVAL);
6354 }
6355 
6356 static struct md_personality raid5_personality;
6357 
6358 static void *raid6_takeover(struct mddev *mddev)
6359 {
6360 	/* Currently can only take over a raid5.  We map the
6361 	 * personality to an equivalent raid6 personality
6362 	 * with the Q block at the end.
6363 	 */
6364 	int new_layout;
6365 
6366 	if (mddev->pers != &raid5_personality)
6367 		return ERR_PTR(-EINVAL);
6368 	if (mddev->degraded > 1)
6369 		return ERR_PTR(-EINVAL);
6370 	if (mddev->raid_disks > 253)
6371 		return ERR_PTR(-EINVAL);
6372 	if (mddev->raid_disks < 3)
6373 		return ERR_PTR(-EINVAL);
6374 
6375 	switch (mddev->layout) {
6376 	case ALGORITHM_LEFT_ASYMMETRIC:
6377 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6378 		break;
6379 	case ALGORITHM_RIGHT_ASYMMETRIC:
6380 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6381 		break;
6382 	case ALGORITHM_LEFT_SYMMETRIC:
6383 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6384 		break;
6385 	case ALGORITHM_RIGHT_SYMMETRIC:
6386 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6387 		break;
6388 	case ALGORITHM_PARITY_0:
6389 		new_layout = ALGORITHM_PARITY_0_6;
6390 		break;
6391 	case ALGORITHM_PARITY_N:
6392 		new_layout = ALGORITHM_PARITY_N;
6393 		break;
6394 	default:
6395 		return ERR_PTR(-EINVAL);
6396 	}
6397 	mddev->new_level = 6;
6398 	mddev->new_layout = new_layout;
6399 	mddev->delta_disks = 1;
6400 	mddev->raid_disks += 1;
6401 	return setup_conf(mddev);
6402 }
6403 
6404 
6405 static struct md_personality raid6_personality =
6406 {
6407 	.name		= "raid6",
6408 	.level		= 6,
6409 	.owner		= THIS_MODULE,
6410 	.make_request	= make_request,
6411 	.run		= run,
6412 	.stop		= stop,
6413 	.status		= status,
6414 	.error_handler	= error,
6415 	.hot_add_disk	= raid5_add_disk,
6416 	.hot_remove_disk= raid5_remove_disk,
6417 	.spare_active	= raid5_spare_active,
6418 	.sync_request	= sync_request,
6419 	.resize		= raid5_resize,
6420 	.size		= raid5_size,
6421 	.check_reshape	= raid6_check_reshape,
6422 	.start_reshape  = raid5_start_reshape,
6423 	.finish_reshape = raid5_finish_reshape,
6424 	.quiesce	= raid5_quiesce,
6425 	.takeover	= raid6_takeover,
6426 };
6427 static struct md_personality raid5_personality =
6428 {
6429 	.name		= "raid5",
6430 	.level		= 5,
6431 	.owner		= THIS_MODULE,
6432 	.make_request	= make_request,
6433 	.run		= run,
6434 	.stop		= stop,
6435 	.status		= status,
6436 	.error_handler	= error,
6437 	.hot_add_disk	= raid5_add_disk,
6438 	.hot_remove_disk= raid5_remove_disk,
6439 	.spare_active	= raid5_spare_active,
6440 	.sync_request	= sync_request,
6441 	.resize		= raid5_resize,
6442 	.size		= raid5_size,
6443 	.check_reshape	= raid5_check_reshape,
6444 	.start_reshape  = raid5_start_reshape,
6445 	.finish_reshape = raid5_finish_reshape,
6446 	.quiesce	= raid5_quiesce,
6447 	.takeover	= raid5_takeover,
6448 };
6449 
6450 static struct md_personality raid4_personality =
6451 {
6452 	.name		= "raid4",
6453 	.level		= 4,
6454 	.owner		= THIS_MODULE,
6455 	.make_request	= make_request,
6456 	.run		= run,
6457 	.stop		= stop,
6458 	.status		= status,
6459 	.error_handler	= error,
6460 	.hot_add_disk	= raid5_add_disk,
6461 	.hot_remove_disk= raid5_remove_disk,
6462 	.spare_active	= raid5_spare_active,
6463 	.sync_request	= sync_request,
6464 	.resize		= raid5_resize,
6465 	.size		= raid5_size,
6466 	.check_reshape	= raid5_check_reshape,
6467 	.start_reshape  = raid5_start_reshape,
6468 	.finish_reshape = raid5_finish_reshape,
6469 	.quiesce	= raid5_quiesce,
6470 	.takeover	= raid4_takeover,
6471 };
6472 
6473 static int __init raid5_init(void)
6474 {
6475 	register_md_personality(&raid6_personality);
6476 	register_md_personality(&raid5_personality);
6477 	register_md_personality(&raid4_personality);
6478 	return 0;
6479 }
6480 
6481 static void raid5_exit(void)
6482 {
6483 	unregister_md_personality(&raid6_personality);
6484 	unregister_md_personality(&raid5_personality);
6485 	unregister_md_personality(&raid4_personality);
6486 }
6487 
6488 module_init(raid5_init);
6489 module_exit(raid5_exit);
6490 MODULE_LICENSE("GPL");
6491 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6492 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6493 MODULE_ALIAS("md-raid5");
6494 MODULE_ALIAS("md-raid4");
6495 MODULE_ALIAS("md-level-5");
6496 MODULE_ALIAS("md-level-4");
6497 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6498 MODULE_ALIAS("md-raid6");
6499 MODULE_ALIAS("md-level-6");
6500 
6501 /* This used to be two separate modules, they were: */
6502 MODULE_ALIAS("raid5");
6503 MODULE_ALIAS("raid6");
6504