1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <trace/events/block.h> 57 58 #include "md.h" 59 #include "raid5.h" 60 #include "raid0.h" 61 #include "bitmap.h" 62 63 /* 64 * Stripe cache 65 */ 66 67 #define NR_STRIPES 256 68 #define STRIPE_SIZE PAGE_SIZE 69 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 70 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 71 #define IO_THRESHOLD 1 72 #define BYPASS_THRESHOLD 1 73 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 74 #define HASH_MASK (NR_HASH - 1) 75 76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 77 { 78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 79 return &conf->stripe_hashtbl[hash]; 80 } 81 82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 83 * order without overlap. There may be several bio's per stripe+device, and 84 * a bio could span several devices. 85 * When walking this list for a particular stripe+device, we must never proceed 86 * beyond a bio that extends past this device, as the next bio might no longer 87 * be valid. 88 * This function is used to determine the 'next' bio in the list, given the sector 89 * of the current stripe+device 90 */ 91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 92 { 93 int sectors = bio_sectors(bio); 94 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) 95 return bio->bi_next; 96 else 97 return NULL; 98 } 99 100 /* 101 * We maintain a biased count of active stripes in the bottom 16 bits of 102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 103 */ 104 static inline int raid5_bi_processed_stripes(struct bio *bio) 105 { 106 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 107 return (atomic_read(segments) >> 16) & 0xffff; 108 } 109 110 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 111 { 112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 113 return atomic_sub_return(1, segments) & 0xffff; 114 } 115 116 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 117 { 118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 119 atomic_inc(segments); 120 } 121 122 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 123 unsigned int cnt) 124 { 125 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 126 int old, new; 127 128 do { 129 old = atomic_read(segments); 130 new = (old & 0xffff) | (cnt << 16); 131 } while (atomic_cmpxchg(segments, old, new) != old); 132 } 133 134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 135 { 136 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 137 atomic_set(segments, cnt); 138 } 139 140 /* Find first data disk in a raid6 stripe */ 141 static inline int raid6_d0(struct stripe_head *sh) 142 { 143 if (sh->ddf_layout) 144 /* ddf always start from first device */ 145 return 0; 146 /* md starts just after Q block */ 147 if (sh->qd_idx == sh->disks - 1) 148 return 0; 149 else 150 return sh->qd_idx + 1; 151 } 152 static inline int raid6_next_disk(int disk, int raid_disks) 153 { 154 disk++; 155 return (disk < raid_disks) ? disk : 0; 156 } 157 158 /* When walking through the disks in a raid5, starting at raid6_d0, 159 * We need to map each disk to a 'slot', where the data disks are slot 160 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 161 * is raid_disks-1. This help does that mapping. 162 */ 163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 164 int *count, int syndrome_disks) 165 { 166 int slot = *count; 167 168 if (sh->ddf_layout) 169 (*count)++; 170 if (idx == sh->pd_idx) 171 return syndrome_disks; 172 if (idx == sh->qd_idx) 173 return syndrome_disks + 1; 174 if (!sh->ddf_layout) 175 (*count)++; 176 return slot; 177 } 178 179 static void return_io(struct bio *return_bi) 180 { 181 struct bio *bi = return_bi; 182 while (bi) { 183 184 return_bi = bi->bi_next; 185 bi->bi_next = NULL; 186 bi->bi_size = 0; 187 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 188 bi, 0); 189 bio_endio(bi, 0); 190 bi = return_bi; 191 } 192 } 193 194 static void print_raid5_conf (struct r5conf *conf); 195 196 static int stripe_operations_active(struct stripe_head *sh) 197 { 198 return sh->check_state || sh->reconstruct_state || 199 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 200 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 201 } 202 203 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh) 204 { 205 BUG_ON(!list_empty(&sh->lru)); 206 BUG_ON(atomic_read(&conf->active_stripes)==0); 207 if (test_bit(STRIPE_HANDLE, &sh->state)) { 208 if (test_bit(STRIPE_DELAYED, &sh->state) && 209 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 210 list_add_tail(&sh->lru, &conf->delayed_list); 211 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 212 sh->bm_seq - conf->seq_write > 0) 213 list_add_tail(&sh->lru, &conf->bitmap_list); 214 else { 215 clear_bit(STRIPE_DELAYED, &sh->state); 216 clear_bit(STRIPE_BIT_DELAY, &sh->state); 217 list_add_tail(&sh->lru, &conf->handle_list); 218 } 219 md_wakeup_thread(conf->mddev->thread); 220 } else { 221 BUG_ON(stripe_operations_active(sh)); 222 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 223 if (atomic_dec_return(&conf->preread_active_stripes) 224 < IO_THRESHOLD) 225 md_wakeup_thread(conf->mddev->thread); 226 atomic_dec(&conf->active_stripes); 227 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 228 list_add_tail(&sh->lru, &conf->inactive_list); 229 wake_up(&conf->wait_for_stripe); 230 if (conf->retry_read_aligned) 231 md_wakeup_thread(conf->mddev->thread); 232 } 233 } 234 } 235 236 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh) 237 { 238 if (atomic_dec_and_test(&sh->count)) 239 do_release_stripe(conf, sh); 240 } 241 242 static void release_stripe(struct stripe_head *sh) 243 { 244 struct r5conf *conf = sh->raid_conf; 245 unsigned long flags; 246 247 local_irq_save(flags); 248 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 249 do_release_stripe(conf, sh); 250 spin_unlock(&conf->device_lock); 251 } 252 local_irq_restore(flags); 253 } 254 255 static inline void remove_hash(struct stripe_head *sh) 256 { 257 pr_debug("remove_hash(), stripe %llu\n", 258 (unsigned long long)sh->sector); 259 260 hlist_del_init(&sh->hash); 261 } 262 263 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 264 { 265 struct hlist_head *hp = stripe_hash(conf, sh->sector); 266 267 pr_debug("insert_hash(), stripe %llu\n", 268 (unsigned long long)sh->sector); 269 270 hlist_add_head(&sh->hash, hp); 271 } 272 273 274 /* find an idle stripe, make sure it is unhashed, and return it. */ 275 static struct stripe_head *get_free_stripe(struct r5conf *conf) 276 { 277 struct stripe_head *sh = NULL; 278 struct list_head *first; 279 280 if (list_empty(&conf->inactive_list)) 281 goto out; 282 first = conf->inactive_list.next; 283 sh = list_entry(first, struct stripe_head, lru); 284 list_del_init(first); 285 remove_hash(sh); 286 atomic_inc(&conf->active_stripes); 287 out: 288 return sh; 289 } 290 291 static void shrink_buffers(struct stripe_head *sh) 292 { 293 struct page *p; 294 int i; 295 int num = sh->raid_conf->pool_size; 296 297 for (i = 0; i < num ; i++) { 298 p = sh->dev[i].page; 299 if (!p) 300 continue; 301 sh->dev[i].page = NULL; 302 put_page(p); 303 } 304 } 305 306 static int grow_buffers(struct stripe_head *sh) 307 { 308 int i; 309 int num = sh->raid_conf->pool_size; 310 311 for (i = 0; i < num; i++) { 312 struct page *page; 313 314 if (!(page = alloc_page(GFP_KERNEL))) { 315 return 1; 316 } 317 sh->dev[i].page = page; 318 } 319 return 0; 320 } 321 322 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 324 struct stripe_head *sh); 325 326 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 327 { 328 struct r5conf *conf = sh->raid_conf; 329 int i; 330 331 BUG_ON(atomic_read(&sh->count) != 0); 332 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 333 BUG_ON(stripe_operations_active(sh)); 334 335 pr_debug("init_stripe called, stripe %llu\n", 336 (unsigned long long)sh->sector); 337 338 remove_hash(sh); 339 340 sh->generation = conf->generation - previous; 341 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 342 sh->sector = sector; 343 stripe_set_idx(sector, conf, previous, sh); 344 sh->state = 0; 345 346 347 for (i = sh->disks; i--; ) { 348 struct r5dev *dev = &sh->dev[i]; 349 350 if (dev->toread || dev->read || dev->towrite || dev->written || 351 test_bit(R5_LOCKED, &dev->flags)) { 352 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 353 (unsigned long long)sh->sector, i, dev->toread, 354 dev->read, dev->towrite, dev->written, 355 test_bit(R5_LOCKED, &dev->flags)); 356 WARN_ON(1); 357 } 358 dev->flags = 0; 359 raid5_build_block(sh, i, previous); 360 } 361 insert_hash(conf, sh); 362 } 363 364 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 365 short generation) 366 { 367 struct stripe_head *sh; 368 369 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 370 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 371 if (sh->sector == sector && sh->generation == generation) 372 return sh; 373 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 374 return NULL; 375 } 376 377 /* 378 * Need to check if array has failed when deciding whether to: 379 * - start an array 380 * - remove non-faulty devices 381 * - add a spare 382 * - allow a reshape 383 * This determination is simple when no reshape is happening. 384 * However if there is a reshape, we need to carefully check 385 * both the before and after sections. 386 * This is because some failed devices may only affect one 387 * of the two sections, and some non-in_sync devices may 388 * be insync in the section most affected by failed devices. 389 */ 390 static int calc_degraded(struct r5conf *conf) 391 { 392 int degraded, degraded2; 393 int i; 394 395 rcu_read_lock(); 396 degraded = 0; 397 for (i = 0; i < conf->previous_raid_disks; i++) { 398 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 399 if (rdev && test_bit(Faulty, &rdev->flags)) 400 rdev = rcu_dereference(conf->disks[i].replacement); 401 if (!rdev || test_bit(Faulty, &rdev->flags)) 402 degraded++; 403 else if (test_bit(In_sync, &rdev->flags)) 404 ; 405 else 406 /* not in-sync or faulty. 407 * If the reshape increases the number of devices, 408 * this is being recovered by the reshape, so 409 * this 'previous' section is not in_sync. 410 * If the number of devices is being reduced however, 411 * the device can only be part of the array if 412 * we are reverting a reshape, so this section will 413 * be in-sync. 414 */ 415 if (conf->raid_disks >= conf->previous_raid_disks) 416 degraded++; 417 } 418 rcu_read_unlock(); 419 if (conf->raid_disks == conf->previous_raid_disks) 420 return degraded; 421 rcu_read_lock(); 422 degraded2 = 0; 423 for (i = 0; i < conf->raid_disks; i++) { 424 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 425 if (rdev && test_bit(Faulty, &rdev->flags)) 426 rdev = rcu_dereference(conf->disks[i].replacement); 427 if (!rdev || test_bit(Faulty, &rdev->flags)) 428 degraded2++; 429 else if (test_bit(In_sync, &rdev->flags)) 430 ; 431 else 432 /* not in-sync or faulty. 433 * If reshape increases the number of devices, this 434 * section has already been recovered, else it 435 * almost certainly hasn't. 436 */ 437 if (conf->raid_disks <= conf->previous_raid_disks) 438 degraded2++; 439 } 440 rcu_read_unlock(); 441 if (degraded2 > degraded) 442 return degraded2; 443 return degraded; 444 } 445 446 static int has_failed(struct r5conf *conf) 447 { 448 int degraded; 449 450 if (conf->mddev->reshape_position == MaxSector) 451 return conf->mddev->degraded > conf->max_degraded; 452 453 degraded = calc_degraded(conf); 454 if (degraded > conf->max_degraded) 455 return 1; 456 return 0; 457 } 458 459 static struct stripe_head * 460 get_active_stripe(struct r5conf *conf, sector_t sector, 461 int previous, int noblock, int noquiesce) 462 { 463 struct stripe_head *sh; 464 465 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 466 467 spin_lock_irq(&conf->device_lock); 468 469 do { 470 wait_event_lock_irq(conf->wait_for_stripe, 471 conf->quiesce == 0 || noquiesce, 472 conf->device_lock); 473 sh = __find_stripe(conf, sector, conf->generation - previous); 474 if (!sh) { 475 if (!conf->inactive_blocked) 476 sh = get_free_stripe(conf); 477 if (noblock && sh == NULL) 478 break; 479 if (!sh) { 480 conf->inactive_blocked = 1; 481 wait_event_lock_irq(conf->wait_for_stripe, 482 !list_empty(&conf->inactive_list) && 483 (atomic_read(&conf->active_stripes) 484 < (conf->max_nr_stripes *3/4) 485 || !conf->inactive_blocked), 486 conf->device_lock); 487 conf->inactive_blocked = 0; 488 } else 489 init_stripe(sh, sector, previous); 490 } else { 491 if (atomic_read(&sh->count)) { 492 BUG_ON(!list_empty(&sh->lru) 493 && !test_bit(STRIPE_EXPANDING, &sh->state) 494 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)); 495 } else { 496 if (!test_bit(STRIPE_HANDLE, &sh->state)) 497 atomic_inc(&conf->active_stripes); 498 if (list_empty(&sh->lru) && 499 !test_bit(STRIPE_EXPANDING, &sh->state)) 500 BUG(); 501 list_del_init(&sh->lru); 502 } 503 } 504 } while (sh == NULL); 505 506 if (sh) 507 atomic_inc(&sh->count); 508 509 spin_unlock_irq(&conf->device_lock); 510 return sh; 511 } 512 513 /* Determine if 'data_offset' or 'new_data_offset' should be used 514 * in this stripe_head. 515 */ 516 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 517 { 518 sector_t progress = conf->reshape_progress; 519 /* Need a memory barrier to make sure we see the value 520 * of conf->generation, or ->data_offset that was set before 521 * reshape_progress was updated. 522 */ 523 smp_rmb(); 524 if (progress == MaxSector) 525 return 0; 526 if (sh->generation == conf->generation - 1) 527 return 0; 528 /* We are in a reshape, and this is a new-generation stripe, 529 * so use new_data_offset. 530 */ 531 return 1; 532 } 533 534 static void 535 raid5_end_read_request(struct bio *bi, int error); 536 static void 537 raid5_end_write_request(struct bio *bi, int error); 538 539 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 540 { 541 struct r5conf *conf = sh->raid_conf; 542 int i, disks = sh->disks; 543 544 might_sleep(); 545 546 for (i = disks; i--; ) { 547 int rw; 548 int replace_only = 0; 549 struct bio *bi, *rbi; 550 struct md_rdev *rdev, *rrdev = NULL; 551 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 552 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 553 rw = WRITE_FUA; 554 else 555 rw = WRITE; 556 if (test_bit(R5_Discard, &sh->dev[i].flags)) 557 rw |= REQ_DISCARD; 558 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 559 rw = READ; 560 else if (test_and_clear_bit(R5_WantReplace, 561 &sh->dev[i].flags)) { 562 rw = WRITE; 563 replace_only = 1; 564 } else 565 continue; 566 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 567 rw |= REQ_SYNC; 568 569 bi = &sh->dev[i].req; 570 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 571 572 rcu_read_lock(); 573 rrdev = rcu_dereference(conf->disks[i].replacement); 574 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 575 rdev = rcu_dereference(conf->disks[i].rdev); 576 if (!rdev) { 577 rdev = rrdev; 578 rrdev = NULL; 579 } 580 if (rw & WRITE) { 581 if (replace_only) 582 rdev = NULL; 583 if (rdev == rrdev) 584 /* We raced and saw duplicates */ 585 rrdev = NULL; 586 } else { 587 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 588 rdev = rrdev; 589 rrdev = NULL; 590 } 591 592 if (rdev && test_bit(Faulty, &rdev->flags)) 593 rdev = NULL; 594 if (rdev) 595 atomic_inc(&rdev->nr_pending); 596 if (rrdev && test_bit(Faulty, &rrdev->flags)) 597 rrdev = NULL; 598 if (rrdev) 599 atomic_inc(&rrdev->nr_pending); 600 rcu_read_unlock(); 601 602 /* We have already checked bad blocks for reads. Now 603 * need to check for writes. We never accept write errors 604 * on the replacement, so we don't to check rrdev. 605 */ 606 while ((rw & WRITE) && rdev && 607 test_bit(WriteErrorSeen, &rdev->flags)) { 608 sector_t first_bad; 609 int bad_sectors; 610 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 611 &first_bad, &bad_sectors); 612 if (!bad) 613 break; 614 615 if (bad < 0) { 616 set_bit(BlockedBadBlocks, &rdev->flags); 617 if (!conf->mddev->external && 618 conf->mddev->flags) { 619 /* It is very unlikely, but we might 620 * still need to write out the 621 * bad block log - better give it 622 * a chance*/ 623 md_check_recovery(conf->mddev); 624 } 625 /* 626 * Because md_wait_for_blocked_rdev 627 * will dec nr_pending, we must 628 * increment it first. 629 */ 630 atomic_inc(&rdev->nr_pending); 631 md_wait_for_blocked_rdev(rdev, conf->mddev); 632 } else { 633 /* Acknowledged bad block - skip the write */ 634 rdev_dec_pending(rdev, conf->mddev); 635 rdev = NULL; 636 } 637 } 638 639 if (rdev) { 640 if (s->syncing || s->expanding || s->expanded 641 || s->replacing) 642 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 643 644 set_bit(STRIPE_IO_STARTED, &sh->state); 645 646 bio_reset(bi); 647 bi->bi_bdev = rdev->bdev; 648 bi->bi_rw = rw; 649 bi->bi_end_io = (rw & WRITE) 650 ? raid5_end_write_request 651 : raid5_end_read_request; 652 bi->bi_private = sh; 653 654 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 655 __func__, (unsigned long long)sh->sector, 656 bi->bi_rw, i); 657 atomic_inc(&sh->count); 658 if (use_new_offset(conf, sh)) 659 bi->bi_sector = (sh->sector 660 + rdev->new_data_offset); 661 else 662 bi->bi_sector = (sh->sector 663 + rdev->data_offset); 664 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 665 bi->bi_rw |= REQ_FLUSH; 666 667 bi->bi_vcnt = 1; 668 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 669 bi->bi_io_vec[0].bv_offset = 0; 670 bi->bi_size = STRIPE_SIZE; 671 if (rrdev) 672 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 673 674 if (conf->mddev->gendisk) 675 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 676 bi, disk_devt(conf->mddev->gendisk), 677 sh->dev[i].sector); 678 generic_make_request(bi); 679 } 680 if (rrdev) { 681 if (s->syncing || s->expanding || s->expanded 682 || s->replacing) 683 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 684 685 set_bit(STRIPE_IO_STARTED, &sh->state); 686 687 bio_reset(rbi); 688 rbi->bi_bdev = rrdev->bdev; 689 rbi->bi_rw = rw; 690 BUG_ON(!(rw & WRITE)); 691 rbi->bi_end_io = raid5_end_write_request; 692 rbi->bi_private = sh; 693 694 pr_debug("%s: for %llu schedule op %ld on " 695 "replacement disc %d\n", 696 __func__, (unsigned long long)sh->sector, 697 rbi->bi_rw, i); 698 atomic_inc(&sh->count); 699 if (use_new_offset(conf, sh)) 700 rbi->bi_sector = (sh->sector 701 + rrdev->new_data_offset); 702 else 703 rbi->bi_sector = (sh->sector 704 + rrdev->data_offset); 705 rbi->bi_vcnt = 1; 706 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 707 rbi->bi_io_vec[0].bv_offset = 0; 708 rbi->bi_size = STRIPE_SIZE; 709 if (conf->mddev->gendisk) 710 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 711 rbi, disk_devt(conf->mddev->gendisk), 712 sh->dev[i].sector); 713 generic_make_request(rbi); 714 } 715 if (!rdev && !rrdev) { 716 if (rw & WRITE) 717 set_bit(STRIPE_DEGRADED, &sh->state); 718 pr_debug("skip op %ld on disc %d for sector %llu\n", 719 bi->bi_rw, i, (unsigned long long)sh->sector); 720 clear_bit(R5_LOCKED, &sh->dev[i].flags); 721 set_bit(STRIPE_HANDLE, &sh->state); 722 } 723 } 724 } 725 726 static struct dma_async_tx_descriptor * 727 async_copy_data(int frombio, struct bio *bio, struct page *page, 728 sector_t sector, struct dma_async_tx_descriptor *tx) 729 { 730 struct bio_vec *bvl; 731 struct page *bio_page; 732 int i; 733 int page_offset; 734 struct async_submit_ctl submit; 735 enum async_tx_flags flags = 0; 736 737 if (bio->bi_sector >= sector) 738 page_offset = (signed)(bio->bi_sector - sector) * 512; 739 else 740 page_offset = (signed)(sector - bio->bi_sector) * -512; 741 742 if (frombio) 743 flags |= ASYNC_TX_FENCE; 744 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 745 746 bio_for_each_segment(bvl, bio, i) { 747 int len = bvl->bv_len; 748 int clen; 749 int b_offset = 0; 750 751 if (page_offset < 0) { 752 b_offset = -page_offset; 753 page_offset += b_offset; 754 len -= b_offset; 755 } 756 757 if (len > 0 && page_offset + len > STRIPE_SIZE) 758 clen = STRIPE_SIZE - page_offset; 759 else 760 clen = len; 761 762 if (clen > 0) { 763 b_offset += bvl->bv_offset; 764 bio_page = bvl->bv_page; 765 if (frombio) 766 tx = async_memcpy(page, bio_page, page_offset, 767 b_offset, clen, &submit); 768 else 769 tx = async_memcpy(bio_page, page, b_offset, 770 page_offset, clen, &submit); 771 } 772 /* chain the operations */ 773 submit.depend_tx = tx; 774 775 if (clen < len) /* hit end of page */ 776 break; 777 page_offset += len; 778 } 779 780 return tx; 781 } 782 783 static void ops_complete_biofill(void *stripe_head_ref) 784 { 785 struct stripe_head *sh = stripe_head_ref; 786 struct bio *return_bi = NULL; 787 int i; 788 789 pr_debug("%s: stripe %llu\n", __func__, 790 (unsigned long long)sh->sector); 791 792 /* clear completed biofills */ 793 for (i = sh->disks; i--; ) { 794 struct r5dev *dev = &sh->dev[i]; 795 796 /* acknowledge completion of a biofill operation */ 797 /* and check if we need to reply to a read request, 798 * new R5_Wantfill requests are held off until 799 * !STRIPE_BIOFILL_RUN 800 */ 801 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 802 struct bio *rbi, *rbi2; 803 804 BUG_ON(!dev->read); 805 rbi = dev->read; 806 dev->read = NULL; 807 while (rbi && rbi->bi_sector < 808 dev->sector + STRIPE_SECTORS) { 809 rbi2 = r5_next_bio(rbi, dev->sector); 810 if (!raid5_dec_bi_active_stripes(rbi)) { 811 rbi->bi_next = return_bi; 812 return_bi = rbi; 813 } 814 rbi = rbi2; 815 } 816 } 817 } 818 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 819 820 return_io(return_bi); 821 822 set_bit(STRIPE_HANDLE, &sh->state); 823 release_stripe(sh); 824 } 825 826 static void ops_run_biofill(struct stripe_head *sh) 827 { 828 struct dma_async_tx_descriptor *tx = NULL; 829 struct async_submit_ctl submit; 830 int i; 831 832 pr_debug("%s: stripe %llu\n", __func__, 833 (unsigned long long)sh->sector); 834 835 for (i = sh->disks; i--; ) { 836 struct r5dev *dev = &sh->dev[i]; 837 if (test_bit(R5_Wantfill, &dev->flags)) { 838 struct bio *rbi; 839 spin_lock_irq(&sh->stripe_lock); 840 dev->read = rbi = dev->toread; 841 dev->toread = NULL; 842 spin_unlock_irq(&sh->stripe_lock); 843 while (rbi && rbi->bi_sector < 844 dev->sector + STRIPE_SECTORS) { 845 tx = async_copy_data(0, rbi, dev->page, 846 dev->sector, tx); 847 rbi = r5_next_bio(rbi, dev->sector); 848 } 849 } 850 } 851 852 atomic_inc(&sh->count); 853 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 854 async_trigger_callback(&submit); 855 } 856 857 static void mark_target_uptodate(struct stripe_head *sh, int target) 858 { 859 struct r5dev *tgt; 860 861 if (target < 0) 862 return; 863 864 tgt = &sh->dev[target]; 865 set_bit(R5_UPTODATE, &tgt->flags); 866 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 867 clear_bit(R5_Wantcompute, &tgt->flags); 868 } 869 870 static void ops_complete_compute(void *stripe_head_ref) 871 { 872 struct stripe_head *sh = stripe_head_ref; 873 874 pr_debug("%s: stripe %llu\n", __func__, 875 (unsigned long long)sh->sector); 876 877 /* mark the computed target(s) as uptodate */ 878 mark_target_uptodate(sh, sh->ops.target); 879 mark_target_uptodate(sh, sh->ops.target2); 880 881 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 882 if (sh->check_state == check_state_compute_run) 883 sh->check_state = check_state_compute_result; 884 set_bit(STRIPE_HANDLE, &sh->state); 885 release_stripe(sh); 886 } 887 888 /* return a pointer to the address conversion region of the scribble buffer */ 889 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 890 struct raid5_percpu *percpu) 891 { 892 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 893 } 894 895 static struct dma_async_tx_descriptor * 896 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 897 { 898 int disks = sh->disks; 899 struct page **xor_srcs = percpu->scribble; 900 int target = sh->ops.target; 901 struct r5dev *tgt = &sh->dev[target]; 902 struct page *xor_dest = tgt->page; 903 int count = 0; 904 struct dma_async_tx_descriptor *tx; 905 struct async_submit_ctl submit; 906 int i; 907 908 pr_debug("%s: stripe %llu block: %d\n", 909 __func__, (unsigned long long)sh->sector, target); 910 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 911 912 for (i = disks; i--; ) 913 if (i != target) 914 xor_srcs[count++] = sh->dev[i].page; 915 916 atomic_inc(&sh->count); 917 918 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 919 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 920 if (unlikely(count == 1)) 921 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 922 else 923 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 924 925 return tx; 926 } 927 928 /* set_syndrome_sources - populate source buffers for gen_syndrome 929 * @srcs - (struct page *) array of size sh->disks 930 * @sh - stripe_head to parse 931 * 932 * Populates srcs in proper layout order for the stripe and returns the 933 * 'count' of sources to be used in a call to async_gen_syndrome. The P 934 * destination buffer is recorded in srcs[count] and the Q destination 935 * is recorded in srcs[count+1]]. 936 */ 937 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 938 { 939 int disks = sh->disks; 940 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 941 int d0_idx = raid6_d0(sh); 942 int count; 943 int i; 944 945 for (i = 0; i < disks; i++) 946 srcs[i] = NULL; 947 948 count = 0; 949 i = d0_idx; 950 do { 951 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 952 953 srcs[slot] = sh->dev[i].page; 954 i = raid6_next_disk(i, disks); 955 } while (i != d0_idx); 956 957 return syndrome_disks; 958 } 959 960 static struct dma_async_tx_descriptor * 961 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 962 { 963 int disks = sh->disks; 964 struct page **blocks = percpu->scribble; 965 int target; 966 int qd_idx = sh->qd_idx; 967 struct dma_async_tx_descriptor *tx; 968 struct async_submit_ctl submit; 969 struct r5dev *tgt; 970 struct page *dest; 971 int i; 972 int count; 973 974 if (sh->ops.target < 0) 975 target = sh->ops.target2; 976 else if (sh->ops.target2 < 0) 977 target = sh->ops.target; 978 else 979 /* we should only have one valid target */ 980 BUG(); 981 BUG_ON(target < 0); 982 pr_debug("%s: stripe %llu block: %d\n", 983 __func__, (unsigned long long)sh->sector, target); 984 985 tgt = &sh->dev[target]; 986 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 987 dest = tgt->page; 988 989 atomic_inc(&sh->count); 990 991 if (target == qd_idx) { 992 count = set_syndrome_sources(blocks, sh); 993 blocks[count] = NULL; /* regenerating p is not necessary */ 994 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 995 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 996 ops_complete_compute, sh, 997 to_addr_conv(sh, percpu)); 998 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 999 } else { 1000 /* Compute any data- or p-drive using XOR */ 1001 count = 0; 1002 for (i = disks; i-- ; ) { 1003 if (i == target || i == qd_idx) 1004 continue; 1005 blocks[count++] = sh->dev[i].page; 1006 } 1007 1008 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1009 NULL, ops_complete_compute, sh, 1010 to_addr_conv(sh, percpu)); 1011 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1012 } 1013 1014 return tx; 1015 } 1016 1017 static struct dma_async_tx_descriptor * 1018 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1019 { 1020 int i, count, disks = sh->disks; 1021 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1022 int d0_idx = raid6_d0(sh); 1023 int faila = -1, failb = -1; 1024 int target = sh->ops.target; 1025 int target2 = sh->ops.target2; 1026 struct r5dev *tgt = &sh->dev[target]; 1027 struct r5dev *tgt2 = &sh->dev[target2]; 1028 struct dma_async_tx_descriptor *tx; 1029 struct page **blocks = percpu->scribble; 1030 struct async_submit_ctl submit; 1031 1032 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1033 __func__, (unsigned long long)sh->sector, target, target2); 1034 BUG_ON(target < 0 || target2 < 0); 1035 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1036 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1037 1038 /* we need to open-code set_syndrome_sources to handle the 1039 * slot number conversion for 'faila' and 'failb' 1040 */ 1041 for (i = 0; i < disks ; i++) 1042 blocks[i] = NULL; 1043 count = 0; 1044 i = d0_idx; 1045 do { 1046 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1047 1048 blocks[slot] = sh->dev[i].page; 1049 1050 if (i == target) 1051 faila = slot; 1052 if (i == target2) 1053 failb = slot; 1054 i = raid6_next_disk(i, disks); 1055 } while (i != d0_idx); 1056 1057 BUG_ON(faila == failb); 1058 if (failb < faila) 1059 swap(faila, failb); 1060 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1061 __func__, (unsigned long long)sh->sector, faila, failb); 1062 1063 atomic_inc(&sh->count); 1064 1065 if (failb == syndrome_disks+1) { 1066 /* Q disk is one of the missing disks */ 1067 if (faila == syndrome_disks) { 1068 /* Missing P+Q, just recompute */ 1069 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1070 ops_complete_compute, sh, 1071 to_addr_conv(sh, percpu)); 1072 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1073 STRIPE_SIZE, &submit); 1074 } else { 1075 struct page *dest; 1076 int data_target; 1077 int qd_idx = sh->qd_idx; 1078 1079 /* Missing D+Q: recompute D from P, then recompute Q */ 1080 if (target == qd_idx) 1081 data_target = target2; 1082 else 1083 data_target = target; 1084 1085 count = 0; 1086 for (i = disks; i-- ; ) { 1087 if (i == data_target || i == qd_idx) 1088 continue; 1089 blocks[count++] = sh->dev[i].page; 1090 } 1091 dest = sh->dev[data_target].page; 1092 init_async_submit(&submit, 1093 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1094 NULL, NULL, NULL, 1095 to_addr_conv(sh, percpu)); 1096 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1097 &submit); 1098 1099 count = set_syndrome_sources(blocks, sh); 1100 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1101 ops_complete_compute, sh, 1102 to_addr_conv(sh, percpu)); 1103 return async_gen_syndrome(blocks, 0, count+2, 1104 STRIPE_SIZE, &submit); 1105 } 1106 } else { 1107 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1108 ops_complete_compute, sh, 1109 to_addr_conv(sh, percpu)); 1110 if (failb == syndrome_disks) { 1111 /* We're missing D+P. */ 1112 return async_raid6_datap_recov(syndrome_disks+2, 1113 STRIPE_SIZE, faila, 1114 blocks, &submit); 1115 } else { 1116 /* We're missing D+D. */ 1117 return async_raid6_2data_recov(syndrome_disks+2, 1118 STRIPE_SIZE, faila, failb, 1119 blocks, &submit); 1120 } 1121 } 1122 } 1123 1124 1125 static void ops_complete_prexor(void *stripe_head_ref) 1126 { 1127 struct stripe_head *sh = stripe_head_ref; 1128 1129 pr_debug("%s: stripe %llu\n", __func__, 1130 (unsigned long long)sh->sector); 1131 } 1132 1133 static struct dma_async_tx_descriptor * 1134 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1135 struct dma_async_tx_descriptor *tx) 1136 { 1137 int disks = sh->disks; 1138 struct page **xor_srcs = percpu->scribble; 1139 int count = 0, pd_idx = sh->pd_idx, i; 1140 struct async_submit_ctl submit; 1141 1142 /* existing parity data subtracted */ 1143 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1144 1145 pr_debug("%s: stripe %llu\n", __func__, 1146 (unsigned long long)sh->sector); 1147 1148 for (i = disks; i--; ) { 1149 struct r5dev *dev = &sh->dev[i]; 1150 /* Only process blocks that are known to be uptodate */ 1151 if (test_bit(R5_Wantdrain, &dev->flags)) 1152 xor_srcs[count++] = dev->page; 1153 } 1154 1155 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1156 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1158 1159 return tx; 1160 } 1161 1162 static struct dma_async_tx_descriptor * 1163 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1164 { 1165 int disks = sh->disks; 1166 int i; 1167 1168 pr_debug("%s: stripe %llu\n", __func__, 1169 (unsigned long long)sh->sector); 1170 1171 for (i = disks; i--; ) { 1172 struct r5dev *dev = &sh->dev[i]; 1173 struct bio *chosen; 1174 1175 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1176 struct bio *wbi; 1177 1178 spin_lock_irq(&sh->stripe_lock); 1179 chosen = dev->towrite; 1180 dev->towrite = NULL; 1181 BUG_ON(dev->written); 1182 wbi = dev->written = chosen; 1183 spin_unlock_irq(&sh->stripe_lock); 1184 1185 while (wbi && wbi->bi_sector < 1186 dev->sector + STRIPE_SECTORS) { 1187 if (wbi->bi_rw & REQ_FUA) 1188 set_bit(R5_WantFUA, &dev->flags); 1189 if (wbi->bi_rw & REQ_SYNC) 1190 set_bit(R5_SyncIO, &dev->flags); 1191 if (wbi->bi_rw & REQ_DISCARD) 1192 set_bit(R5_Discard, &dev->flags); 1193 else 1194 tx = async_copy_data(1, wbi, dev->page, 1195 dev->sector, tx); 1196 wbi = r5_next_bio(wbi, dev->sector); 1197 } 1198 } 1199 } 1200 1201 return tx; 1202 } 1203 1204 static void ops_complete_reconstruct(void *stripe_head_ref) 1205 { 1206 struct stripe_head *sh = stripe_head_ref; 1207 int disks = sh->disks; 1208 int pd_idx = sh->pd_idx; 1209 int qd_idx = sh->qd_idx; 1210 int i; 1211 bool fua = false, sync = false, discard = false; 1212 1213 pr_debug("%s: stripe %llu\n", __func__, 1214 (unsigned long long)sh->sector); 1215 1216 for (i = disks; i--; ) { 1217 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1218 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1219 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1220 } 1221 1222 for (i = disks; i--; ) { 1223 struct r5dev *dev = &sh->dev[i]; 1224 1225 if (dev->written || i == pd_idx || i == qd_idx) { 1226 if (!discard) 1227 set_bit(R5_UPTODATE, &dev->flags); 1228 if (fua) 1229 set_bit(R5_WantFUA, &dev->flags); 1230 if (sync) 1231 set_bit(R5_SyncIO, &dev->flags); 1232 } 1233 } 1234 1235 if (sh->reconstruct_state == reconstruct_state_drain_run) 1236 sh->reconstruct_state = reconstruct_state_drain_result; 1237 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1238 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1239 else { 1240 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1241 sh->reconstruct_state = reconstruct_state_result; 1242 } 1243 1244 set_bit(STRIPE_HANDLE, &sh->state); 1245 release_stripe(sh); 1246 } 1247 1248 static void 1249 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1250 struct dma_async_tx_descriptor *tx) 1251 { 1252 int disks = sh->disks; 1253 struct page **xor_srcs = percpu->scribble; 1254 struct async_submit_ctl submit; 1255 int count = 0, pd_idx = sh->pd_idx, i; 1256 struct page *xor_dest; 1257 int prexor = 0; 1258 unsigned long flags; 1259 1260 pr_debug("%s: stripe %llu\n", __func__, 1261 (unsigned long long)sh->sector); 1262 1263 for (i = 0; i < sh->disks; i++) { 1264 if (pd_idx == i) 1265 continue; 1266 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1267 break; 1268 } 1269 if (i >= sh->disks) { 1270 atomic_inc(&sh->count); 1271 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1272 ops_complete_reconstruct(sh); 1273 return; 1274 } 1275 /* check if prexor is active which means only process blocks 1276 * that are part of a read-modify-write (written) 1277 */ 1278 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1279 prexor = 1; 1280 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1281 for (i = disks; i--; ) { 1282 struct r5dev *dev = &sh->dev[i]; 1283 if (dev->written) 1284 xor_srcs[count++] = dev->page; 1285 } 1286 } else { 1287 xor_dest = sh->dev[pd_idx].page; 1288 for (i = disks; i--; ) { 1289 struct r5dev *dev = &sh->dev[i]; 1290 if (i != pd_idx) 1291 xor_srcs[count++] = dev->page; 1292 } 1293 } 1294 1295 /* 1/ if we prexor'd then the dest is reused as a source 1296 * 2/ if we did not prexor then we are redoing the parity 1297 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1298 * for the synchronous xor case 1299 */ 1300 flags = ASYNC_TX_ACK | 1301 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1302 1303 atomic_inc(&sh->count); 1304 1305 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1306 to_addr_conv(sh, percpu)); 1307 if (unlikely(count == 1)) 1308 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1309 else 1310 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1311 } 1312 1313 static void 1314 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1315 struct dma_async_tx_descriptor *tx) 1316 { 1317 struct async_submit_ctl submit; 1318 struct page **blocks = percpu->scribble; 1319 int count, i; 1320 1321 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1322 1323 for (i = 0; i < sh->disks; i++) { 1324 if (sh->pd_idx == i || sh->qd_idx == i) 1325 continue; 1326 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1327 break; 1328 } 1329 if (i >= sh->disks) { 1330 atomic_inc(&sh->count); 1331 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1332 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1333 ops_complete_reconstruct(sh); 1334 return; 1335 } 1336 1337 count = set_syndrome_sources(blocks, sh); 1338 1339 atomic_inc(&sh->count); 1340 1341 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1342 sh, to_addr_conv(sh, percpu)); 1343 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1344 } 1345 1346 static void ops_complete_check(void *stripe_head_ref) 1347 { 1348 struct stripe_head *sh = stripe_head_ref; 1349 1350 pr_debug("%s: stripe %llu\n", __func__, 1351 (unsigned long long)sh->sector); 1352 1353 sh->check_state = check_state_check_result; 1354 set_bit(STRIPE_HANDLE, &sh->state); 1355 release_stripe(sh); 1356 } 1357 1358 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1359 { 1360 int disks = sh->disks; 1361 int pd_idx = sh->pd_idx; 1362 int qd_idx = sh->qd_idx; 1363 struct page *xor_dest; 1364 struct page **xor_srcs = percpu->scribble; 1365 struct dma_async_tx_descriptor *tx; 1366 struct async_submit_ctl submit; 1367 int count; 1368 int i; 1369 1370 pr_debug("%s: stripe %llu\n", __func__, 1371 (unsigned long long)sh->sector); 1372 1373 count = 0; 1374 xor_dest = sh->dev[pd_idx].page; 1375 xor_srcs[count++] = xor_dest; 1376 for (i = disks; i--; ) { 1377 if (i == pd_idx || i == qd_idx) 1378 continue; 1379 xor_srcs[count++] = sh->dev[i].page; 1380 } 1381 1382 init_async_submit(&submit, 0, NULL, NULL, NULL, 1383 to_addr_conv(sh, percpu)); 1384 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1385 &sh->ops.zero_sum_result, &submit); 1386 1387 atomic_inc(&sh->count); 1388 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1389 tx = async_trigger_callback(&submit); 1390 } 1391 1392 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1393 { 1394 struct page **srcs = percpu->scribble; 1395 struct async_submit_ctl submit; 1396 int count; 1397 1398 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1399 (unsigned long long)sh->sector, checkp); 1400 1401 count = set_syndrome_sources(srcs, sh); 1402 if (!checkp) 1403 srcs[count] = NULL; 1404 1405 atomic_inc(&sh->count); 1406 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1407 sh, to_addr_conv(sh, percpu)); 1408 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1409 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1410 } 1411 1412 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1413 { 1414 int overlap_clear = 0, i, disks = sh->disks; 1415 struct dma_async_tx_descriptor *tx = NULL; 1416 struct r5conf *conf = sh->raid_conf; 1417 int level = conf->level; 1418 struct raid5_percpu *percpu; 1419 unsigned long cpu; 1420 1421 cpu = get_cpu(); 1422 percpu = per_cpu_ptr(conf->percpu, cpu); 1423 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1424 ops_run_biofill(sh); 1425 overlap_clear++; 1426 } 1427 1428 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1429 if (level < 6) 1430 tx = ops_run_compute5(sh, percpu); 1431 else { 1432 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1433 tx = ops_run_compute6_1(sh, percpu); 1434 else 1435 tx = ops_run_compute6_2(sh, percpu); 1436 } 1437 /* terminate the chain if reconstruct is not set to be run */ 1438 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1439 async_tx_ack(tx); 1440 } 1441 1442 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1443 tx = ops_run_prexor(sh, percpu, tx); 1444 1445 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1446 tx = ops_run_biodrain(sh, tx); 1447 overlap_clear++; 1448 } 1449 1450 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1451 if (level < 6) 1452 ops_run_reconstruct5(sh, percpu, tx); 1453 else 1454 ops_run_reconstruct6(sh, percpu, tx); 1455 } 1456 1457 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1458 if (sh->check_state == check_state_run) 1459 ops_run_check_p(sh, percpu); 1460 else if (sh->check_state == check_state_run_q) 1461 ops_run_check_pq(sh, percpu, 0); 1462 else if (sh->check_state == check_state_run_pq) 1463 ops_run_check_pq(sh, percpu, 1); 1464 else 1465 BUG(); 1466 } 1467 1468 if (overlap_clear) 1469 for (i = disks; i--; ) { 1470 struct r5dev *dev = &sh->dev[i]; 1471 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1472 wake_up(&sh->raid_conf->wait_for_overlap); 1473 } 1474 put_cpu(); 1475 } 1476 1477 static int grow_one_stripe(struct r5conf *conf) 1478 { 1479 struct stripe_head *sh; 1480 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1481 if (!sh) 1482 return 0; 1483 1484 sh->raid_conf = conf; 1485 1486 spin_lock_init(&sh->stripe_lock); 1487 1488 if (grow_buffers(sh)) { 1489 shrink_buffers(sh); 1490 kmem_cache_free(conf->slab_cache, sh); 1491 return 0; 1492 } 1493 /* we just created an active stripe so... */ 1494 atomic_set(&sh->count, 1); 1495 atomic_inc(&conf->active_stripes); 1496 INIT_LIST_HEAD(&sh->lru); 1497 release_stripe(sh); 1498 return 1; 1499 } 1500 1501 static int grow_stripes(struct r5conf *conf, int num) 1502 { 1503 struct kmem_cache *sc; 1504 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1505 1506 if (conf->mddev->gendisk) 1507 sprintf(conf->cache_name[0], 1508 "raid%d-%s", conf->level, mdname(conf->mddev)); 1509 else 1510 sprintf(conf->cache_name[0], 1511 "raid%d-%p", conf->level, conf->mddev); 1512 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1513 1514 conf->active_name = 0; 1515 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1516 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1517 0, 0, NULL); 1518 if (!sc) 1519 return 1; 1520 conf->slab_cache = sc; 1521 conf->pool_size = devs; 1522 while (num--) 1523 if (!grow_one_stripe(conf)) 1524 return 1; 1525 return 0; 1526 } 1527 1528 /** 1529 * scribble_len - return the required size of the scribble region 1530 * @num - total number of disks in the array 1531 * 1532 * The size must be enough to contain: 1533 * 1/ a struct page pointer for each device in the array +2 1534 * 2/ room to convert each entry in (1) to its corresponding dma 1535 * (dma_map_page()) or page (page_address()) address. 1536 * 1537 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1538 * calculate over all devices (not just the data blocks), using zeros in place 1539 * of the P and Q blocks. 1540 */ 1541 static size_t scribble_len(int num) 1542 { 1543 size_t len; 1544 1545 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1546 1547 return len; 1548 } 1549 1550 static int resize_stripes(struct r5conf *conf, int newsize) 1551 { 1552 /* Make all the stripes able to hold 'newsize' devices. 1553 * New slots in each stripe get 'page' set to a new page. 1554 * 1555 * This happens in stages: 1556 * 1/ create a new kmem_cache and allocate the required number of 1557 * stripe_heads. 1558 * 2/ gather all the old stripe_heads and transfer the pages across 1559 * to the new stripe_heads. This will have the side effect of 1560 * freezing the array as once all stripe_heads have been collected, 1561 * no IO will be possible. Old stripe heads are freed once their 1562 * pages have been transferred over, and the old kmem_cache is 1563 * freed when all stripes are done. 1564 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1565 * we simple return a failre status - no need to clean anything up. 1566 * 4/ allocate new pages for the new slots in the new stripe_heads. 1567 * If this fails, we don't bother trying the shrink the 1568 * stripe_heads down again, we just leave them as they are. 1569 * As each stripe_head is processed the new one is released into 1570 * active service. 1571 * 1572 * Once step2 is started, we cannot afford to wait for a write, 1573 * so we use GFP_NOIO allocations. 1574 */ 1575 struct stripe_head *osh, *nsh; 1576 LIST_HEAD(newstripes); 1577 struct disk_info *ndisks; 1578 unsigned long cpu; 1579 int err; 1580 struct kmem_cache *sc; 1581 int i; 1582 1583 if (newsize <= conf->pool_size) 1584 return 0; /* never bother to shrink */ 1585 1586 err = md_allow_write(conf->mddev); 1587 if (err) 1588 return err; 1589 1590 /* Step 1 */ 1591 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1592 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1593 0, 0, NULL); 1594 if (!sc) 1595 return -ENOMEM; 1596 1597 for (i = conf->max_nr_stripes; i; i--) { 1598 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1599 if (!nsh) 1600 break; 1601 1602 nsh->raid_conf = conf; 1603 spin_lock_init(&nsh->stripe_lock); 1604 1605 list_add(&nsh->lru, &newstripes); 1606 } 1607 if (i) { 1608 /* didn't get enough, give up */ 1609 while (!list_empty(&newstripes)) { 1610 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1611 list_del(&nsh->lru); 1612 kmem_cache_free(sc, nsh); 1613 } 1614 kmem_cache_destroy(sc); 1615 return -ENOMEM; 1616 } 1617 /* Step 2 - Must use GFP_NOIO now. 1618 * OK, we have enough stripes, start collecting inactive 1619 * stripes and copying them over 1620 */ 1621 list_for_each_entry(nsh, &newstripes, lru) { 1622 spin_lock_irq(&conf->device_lock); 1623 wait_event_lock_irq(conf->wait_for_stripe, 1624 !list_empty(&conf->inactive_list), 1625 conf->device_lock); 1626 osh = get_free_stripe(conf); 1627 spin_unlock_irq(&conf->device_lock); 1628 atomic_set(&nsh->count, 1); 1629 for(i=0; i<conf->pool_size; i++) 1630 nsh->dev[i].page = osh->dev[i].page; 1631 for( ; i<newsize; i++) 1632 nsh->dev[i].page = NULL; 1633 kmem_cache_free(conf->slab_cache, osh); 1634 } 1635 kmem_cache_destroy(conf->slab_cache); 1636 1637 /* Step 3. 1638 * At this point, we are holding all the stripes so the array 1639 * is completely stalled, so now is a good time to resize 1640 * conf->disks and the scribble region 1641 */ 1642 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1643 if (ndisks) { 1644 for (i=0; i<conf->raid_disks; i++) 1645 ndisks[i] = conf->disks[i]; 1646 kfree(conf->disks); 1647 conf->disks = ndisks; 1648 } else 1649 err = -ENOMEM; 1650 1651 get_online_cpus(); 1652 conf->scribble_len = scribble_len(newsize); 1653 for_each_present_cpu(cpu) { 1654 struct raid5_percpu *percpu; 1655 void *scribble; 1656 1657 percpu = per_cpu_ptr(conf->percpu, cpu); 1658 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1659 1660 if (scribble) { 1661 kfree(percpu->scribble); 1662 percpu->scribble = scribble; 1663 } else { 1664 err = -ENOMEM; 1665 break; 1666 } 1667 } 1668 put_online_cpus(); 1669 1670 /* Step 4, return new stripes to service */ 1671 while(!list_empty(&newstripes)) { 1672 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1673 list_del_init(&nsh->lru); 1674 1675 for (i=conf->raid_disks; i < newsize; i++) 1676 if (nsh->dev[i].page == NULL) { 1677 struct page *p = alloc_page(GFP_NOIO); 1678 nsh->dev[i].page = p; 1679 if (!p) 1680 err = -ENOMEM; 1681 } 1682 release_stripe(nsh); 1683 } 1684 /* critical section pass, GFP_NOIO no longer needed */ 1685 1686 conf->slab_cache = sc; 1687 conf->active_name = 1-conf->active_name; 1688 conf->pool_size = newsize; 1689 return err; 1690 } 1691 1692 static int drop_one_stripe(struct r5conf *conf) 1693 { 1694 struct stripe_head *sh; 1695 1696 spin_lock_irq(&conf->device_lock); 1697 sh = get_free_stripe(conf); 1698 spin_unlock_irq(&conf->device_lock); 1699 if (!sh) 1700 return 0; 1701 BUG_ON(atomic_read(&sh->count)); 1702 shrink_buffers(sh); 1703 kmem_cache_free(conf->slab_cache, sh); 1704 atomic_dec(&conf->active_stripes); 1705 return 1; 1706 } 1707 1708 static void shrink_stripes(struct r5conf *conf) 1709 { 1710 while (drop_one_stripe(conf)) 1711 ; 1712 1713 if (conf->slab_cache) 1714 kmem_cache_destroy(conf->slab_cache); 1715 conf->slab_cache = NULL; 1716 } 1717 1718 static void raid5_end_read_request(struct bio * bi, int error) 1719 { 1720 struct stripe_head *sh = bi->bi_private; 1721 struct r5conf *conf = sh->raid_conf; 1722 int disks = sh->disks, i; 1723 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1724 char b[BDEVNAME_SIZE]; 1725 struct md_rdev *rdev = NULL; 1726 sector_t s; 1727 1728 for (i=0 ; i<disks; i++) 1729 if (bi == &sh->dev[i].req) 1730 break; 1731 1732 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1733 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1734 uptodate); 1735 if (i == disks) { 1736 BUG(); 1737 return; 1738 } 1739 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1740 /* If replacement finished while this request was outstanding, 1741 * 'replacement' might be NULL already. 1742 * In that case it moved down to 'rdev'. 1743 * rdev is not removed until all requests are finished. 1744 */ 1745 rdev = conf->disks[i].replacement; 1746 if (!rdev) 1747 rdev = conf->disks[i].rdev; 1748 1749 if (use_new_offset(conf, sh)) 1750 s = sh->sector + rdev->new_data_offset; 1751 else 1752 s = sh->sector + rdev->data_offset; 1753 if (uptodate) { 1754 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1755 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1756 /* Note that this cannot happen on a 1757 * replacement device. We just fail those on 1758 * any error 1759 */ 1760 printk_ratelimited( 1761 KERN_INFO 1762 "md/raid:%s: read error corrected" 1763 " (%lu sectors at %llu on %s)\n", 1764 mdname(conf->mddev), STRIPE_SECTORS, 1765 (unsigned long long)s, 1766 bdevname(rdev->bdev, b)); 1767 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1768 clear_bit(R5_ReadError, &sh->dev[i].flags); 1769 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1770 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 1771 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1772 1773 if (atomic_read(&rdev->read_errors)) 1774 atomic_set(&rdev->read_errors, 0); 1775 } else { 1776 const char *bdn = bdevname(rdev->bdev, b); 1777 int retry = 0; 1778 int set_bad = 0; 1779 1780 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1781 atomic_inc(&rdev->read_errors); 1782 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1783 printk_ratelimited( 1784 KERN_WARNING 1785 "md/raid:%s: read error on replacement device " 1786 "(sector %llu on %s).\n", 1787 mdname(conf->mddev), 1788 (unsigned long long)s, 1789 bdn); 1790 else if (conf->mddev->degraded >= conf->max_degraded) { 1791 set_bad = 1; 1792 printk_ratelimited( 1793 KERN_WARNING 1794 "md/raid:%s: read error not correctable " 1795 "(sector %llu on %s).\n", 1796 mdname(conf->mddev), 1797 (unsigned long long)s, 1798 bdn); 1799 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 1800 /* Oh, no!!! */ 1801 set_bad = 1; 1802 printk_ratelimited( 1803 KERN_WARNING 1804 "md/raid:%s: read error NOT corrected!! " 1805 "(sector %llu on %s).\n", 1806 mdname(conf->mddev), 1807 (unsigned long long)s, 1808 bdn); 1809 } else if (atomic_read(&rdev->read_errors) 1810 > conf->max_nr_stripes) 1811 printk(KERN_WARNING 1812 "md/raid:%s: Too many read errors, failing device %s.\n", 1813 mdname(conf->mddev), bdn); 1814 else 1815 retry = 1; 1816 if (retry) 1817 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 1818 set_bit(R5_ReadError, &sh->dev[i].flags); 1819 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1820 } else 1821 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 1822 else { 1823 clear_bit(R5_ReadError, &sh->dev[i].flags); 1824 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1825 if (!(set_bad 1826 && test_bit(In_sync, &rdev->flags) 1827 && rdev_set_badblocks( 1828 rdev, sh->sector, STRIPE_SECTORS, 0))) 1829 md_error(conf->mddev, rdev); 1830 } 1831 } 1832 rdev_dec_pending(rdev, conf->mddev); 1833 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1834 set_bit(STRIPE_HANDLE, &sh->state); 1835 release_stripe(sh); 1836 } 1837 1838 static void raid5_end_write_request(struct bio *bi, int error) 1839 { 1840 struct stripe_head *sh = bi->bi_private; 1841 struct r5conf *conf = sh->raid_conf; 1842 int disks = sh->disks, i; 1843 struct md_rdev *uninitialized_var(rdev); 1844 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1845 sector_t first_bad; 1846 int bad_sectors; 1847 int replacement = 0; 1848 1849 for (i = 0 ; i < disks; i++) { 1850 if (bi == &sh->dev[i].req) { 1851 rdev = conf->disks[i].rdev; 1852 break; 1853 } 1854 if (bi == &sh->dev[i].rreq) { 1855 rdev = conf->disks[i].replacement; 1856 if (rdev) 1857 replacement = 1; 1858 else 1859 /* rdev was removed and 'replacement' 1860 * replaced it. rdev is not removed 1861 * until all requests are finished. 1862 */ 1863 rdev = conf->disks[i].rdev; 1864 break; 1865 } 1866 } 1867 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1868 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1869 uptodate); 1870 if (i == disks) { 1871 BUG(); 1872 return; 1873 } 1874 1875 if (replacement) { 1876 if (!uptodate) 1877 md_error(conf->mddev, rdev); 1878 else if (is_badblock(rdev, sh->sector, 1879 STRIPE_SECTORS, 1880 &first_bad, &bad_sectors)) 1881 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 1882 } else { 1883 if (!uptodate) { 1884 set_bit(WriteErrorSeen, &rdev->flags); 1885 set_bit(R5_WriteError, &sh->dev[i].flags); 1886 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1887 set_bit(MD_RECOVERY_NEEDED, 1888 &rdev->mddev->recovery); 1889 } else if (is_badblock(rdev, sh->sector, 1890 STRIPE_SECTORS, 1891 &first_bad, &bad_sectors)) { 1892 set_bit(R5_MadeGood, &sh->dev[i].flags); 1893 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 1894 /* That was a successful write so make 1895 * sure it looks like we already did 1896 * a re-write. 1897 */ 1898 set_bit(R5_ReWrite, &sh->dev[i].flags); 1899 } 1900 } 1901 rdev_dec_pending(rdev, conf->mddev); 1902 1903 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 1904 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1905 set_bit(STRIPE_HANDLE, &sh->state); 1906 release_stripe(sh); 1907 } 1908 1909 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 1910 1911 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 1912 { 1913 struct r5dev *dev = &sh->dev[i]; 1914 1915 bio_init(&dev->req); 1916 dev->req.bi_io_vec = &dev->vec; 1917 dev->req.bi_vcnt++; 1918 dev->req.bi_max_vecs++; 1919 dev->req.bi_private = sh; 1920 dev->vec.bv_page = dev->page; 1921 1922 bio_init(&dev->rreq); 1923 dev->rreq.bi_io_vec = &dev->rvec; 1924 dev->rreq.bi_vcnt++; 1925 dev->rreq.bi_max_vecs++; 1926 dev->rreq.bi_private = sh; 1927 dev->rvec.bv_page = dev->page; 1928 1929 dev->flags = 0; 1930 dev->sector = compute_blocknr(sh, i, previous); 1931 } 1932 1933 static void error(struct mddev *mddev, struct md_rdev *rdev) 1934 { 1935 char b[BDEVNAME_SIZE]; 1936 struct r5conf *conf = mddev->private; 1937 unsigned long flags; 1938 pr_debug("raid456: error called\n"); 1939 1940 spin_lock_irqsave(&conf->device_lock, flags); 1941 clear_bit(In_sync, &rdev->flags); 1942 mddev->degraded = calc_degraded(conf); 1943 spin_unlock_irqrestore(&conf->device_lock, flags); 1944 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1945 1946 set_bit(Blocked, &rdev->flags); 1947 set_bit(Faulty, &rdev->flags); 1948 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1949 printk(KERN_ALERT 1950 "md/raid:%s: Disk failure on %s, disabling device.\n" 1951 "md/raid:%s: Operation continuing on %d devices.\n", 1952 mdname(mddev), 1953 bdevname(rdev->bdev, b), 1954 mdname(mddev), 1955 conf->raid_disks - mddev->degraded); 1956 } 1957 1958 /* 1959 * Input: a 'big' sector number, 1960 * Output: index of the data and parity disk, and the sector # in them. 1961 */ 1962 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 1963 int previous, int *dd_idx, 1964 struct stripe_head *sh) 1965 { 1966 sector_t stripe, stripe2; 1967 sector_t chunk_number; 1968 unsigned int chunk_offset; 1969 int pd_idx, qd_idx; 1970 int ddf_layout = 0; 1971 sector_t new_sector; 1972 int algorithm = previous ? conf->prev_algo 1973 : conf->algorithm; 1974 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1975 : conf->chunk_sectors; 1976 int raid_disks = previous ? conf->previous_raid_disks 1977 : conf->raid_disks; 1978 int data_disks = raid_disks - conf->max_degraded; 1979 1980 /* First compute the information on this sector */ 1981 1982 /* 1983 * Compute the chunk number and the sector offset inside the chunk 1984 */ 1985 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1986 chunk_number = r_sector; 1987 1988 /* 1989 * Compute the stripe number 1990 */ 1991 stripe = chunk_number; 1992 *dd_idx = sector_div(stripe, data_disks); 1993 stripe2 = stripe; 1994 /* 1995 * Select the parity disk based on the user selected algorithm. 1996 */ 1997 pd_idx = qd_idx = -1; 1998 switch(conf->level) { 1999 case 4: 2000 pd_idx = data_disks; 2001 break; 2002 case 5: 2003 switch (algorithm) { 2004 case ALGORITHM_LEFT_ASYMMETRIC: 2005 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2006 if (*dd_idx >= pd_idx) 2007 (*dd_idx)++; 2008 break; 2009 case ALGORITHM_RIGHT_ASYMMETRIC: 2010 pd_idx = sector_div(stripe2, raid_disks); 2011 if (*dd_idx >= pd_idx) 2012 (*dd_idx)++; 2013 break; 2014 case ALGORITHM_LEFT_SYMMETRIC: 2015 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2016 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2017 break; 2018 case ALGORITHM_RIGHT_SYMMETRIC: 2019 pd_idx = sector_div(stripe2, raid_disks); 2020 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2021 break; 2022 case ALGORITHM_PARITY_0: 2023 pd_idx = 0; 2024 (*dd_idx)++; 2025 break; 2026 case ALGORITHM_PARITY_N: 2027 pd_idx = data_disks; 2028 break; 2029 default: 2030 BUG(); 2031 } 2032 break; 2033 case 6: 2034 2035 switch (algorithm) { 2036 case ALGORITHM_LEFT_ASYMMETRIC: 2037 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2038 qd_idx = pd_idx + 1; 2039 if (pd_idx == raid_disks-1) { 2040 (*dd_idx)++; /* Q D D D P */ 2041 qd_idx = 0; 2042 } else if (*dd_idx >= pd_idx) 2043 (*dd_idx) += 2; /* D D P Q D */ 2044 break; 2045 case ALGORITHM_RIGHT_ASYMMETRIC: 2046 pd_idx = sector_div(stripe2, raid_disks); 2047 qd_idx = pd_idx + 1; 2048 if (pd_idx == raid_disks-1) { 2049 (*dd_idx)++; /* Q D D D P */ 2050 qd_idx = 0; 2051 } else if (*dd_idx >= pd_idx) 2052 (*dd_idx) += 2; /* D D P Q D */ 2053 break; 2054 case ALGORITHM_LEFT_SYMMETRIC: 2055 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2056 qd_idx = (pd_idx + 1) % raid_disks; 2057 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2058 break; 2059 case ALGORITHM_RIGHT_SYMMETRIC: 2060 pd_idx = sector_div(stripe2, raid_disks); 2061 qd_idx = (pd_idx + 1) % raid_disks; 2062 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2063 break; 2064 2065 case ALGORITHM_PARITY_0: 2066 pd_idx = 0; 2067 qd_idx = 1; 2068 (*dd_idx) += 2; 2069 break; 2070 case ALGORITHM_PARITY_N: 2071 pd_idx = data_disks; 2072 qd_idx = data_disks + 1; 2073 break; 2074 2075 case ALGORITHM_ROTATING_ZERO_RESTART: 2076 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2077 * of blocks for computing Q is different. 2078 */ 2079 pd_idx = sector_div(stripe2, raid_disks); 2080 qd_idx = pd_idx + 1; 2081 if (pd_idx == raid_disks-1) { 2082 (*dd_idx)++; /* Q D D D P */ 2083 qd_idx = 0; 2084 } else if (*dd_idx >= pd_idx) 2085 (*dd_idx) += 2; /* D D P Q D */ 2086 ddf_layout = 1; 2087 break; 2088 2089 case ALGORITHM_ROTATING_N_RESTART: 2090 /* Same a left_asymmetric, by first stripe is 2091 * D D D P Q rather than 2092 * Q D D D P 2093 */ 2094 stripe2 += 1; 2095 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2096 qd_idx = pd_idx + 1; 2097 if (pd_idx == raid_disks-1) { 2098 (*dd_idx)++; /* Q D D D P */ 2099 qd_idx = 0; 2100 } else if (*dd_idx >= pd_idx) 2101 (*dd_idx) += 2; /* D D P Q D */ 2102 ddf_layout = 1; 2103 break; 2104 2105 case ALGORITHM_ROTATING_N_CONTINUE: 2106 /* Same as left_symmetric but Q is before P */ 2107 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2108 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2109 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2110 ddf_layout = 1; 2111 break; 2112 2113 case ALGORITHM_LEFT_ASYMMETRIC_6: 2114 /* RAID5 left_asymmetric, with Q on last device */ 2115 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2116 if (*dd_idx >= pd_idx) 2117 (*dd_idx)++; 2118 qd_idx = raid_disks - 1; 2119 break; 2120 2121 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2122 pd_idx = sector_div(stripe2, raid_disks-1); 2123 if (*dd_idx >= pd_idx) 2124 (*dd_idx)++; 2125 qd_idx = raid_disks - 1; 2126 break; 2127 2128 case ALGORITHM_LEFT_SYMMETRIC_6: 2129 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2130 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2131 qd_idx = raid_disks - 1; 2132 break; 2133 2134 case ALGORITHM_RIGHT_SYMMETRIC_6: 2135 pd_idx = sector_div(stripe2, raid_disks-1); 2136 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2137 qd_idx = raid_disks - 1; 2138 break; 2139 2140 case ALGORITHM_PARITY_0_6: 2141 pd_idx = 0; 2142 (*dd_idx)++; 2143 qd_idx = raid_disks - 1; 2144 break; 2145 2146 default: 2147 BUG(); 2148 } 2149 break; 2150 } 2151 2152 if (sh) { 2153 sh->pd_idx = pd_idx; 2154 sh->qd_idx = qd_idx; 2155 sh->ddf_layout = ddf_layout; 2156 } 2157 /* 2158 * Finally, compute the new sector number 2159 */ 2160 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2161 return new_sector; 2162 } 2163 2164 2165 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2166 { 2167 struct r5conf *conf = sh->raid_conf; 2168 int raid_disks = sh->disks; 2169 int data_disks = raid_disks - conf->max_degraded; 2170 sector_t new_sector = sh->sector, check; 2171 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2172 : conf->chunk_sectors; 2173 int algorithm = previous ? conf->prev_algo 2174 : conf->algorithm; 2175 sector_t stripe; 2176 int chunk_offset; 2177 sector_t chunk_number; 2178 int dummy1, dd_idx = i; 2179 sector_t r_sector; 2180 struct stripe_head sh2; 2181 2182 2183 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2184 stripe = new_sector; 2185 2186 if (i == sh->pd_idx) 2187 return 0; 2188 switch(conf->level) { 2189 case 4: break; 2190 case 5: 2191 switch (algorithm) { 2192 case ALGORITHM_LEFT_ASYMMETRIC: 2193 case ALGORITHM_RIGHT_ASYMMETRIC: 2194 if (i > sh->pd_idx) 2195 i--; 2196 break; 2197 case ALGORITHM_LEFT_SYMMETRIC: 2198 case ALGORITHM_RIGHT_SYMMETRIC: 2199 if (i < sh->pd_idx) 2200 i += raid_disks; 2201 i -= (sh->pd_idx + 1); 2202 break; 2203 case ALGORITHM_PARITY_0: 2204 i -= 1; 2205 break; 2206 case ALGORITHM_PARITY_N: 2207 break; 2208 default: 2209 BUG(); 2210 } 2211 break; 2212 case 6: 2213 if (i == sh->qd_idx) 2214 return 0; /* It is the Q disk */ 2215 switch (algorithm) { 2216 case ALGORITHM_LEFT_ASYMMETRIC: 2217 case ALGORITHM_RIGHT_ASYMMETRIC: 2218 case ALGORITHM_ROTATING_ZERO_RESTART: 2219 case ALGORITHM_ROTATING_N_RESTART: 2220 if (sh->pd_idx == raid_disks-1) 2221 i--; /* Q D D D P */ 2222 else if (i > sh->pd_idx) 2223 i -= 2; /* D D P Q D */ 2224 break; 2225 case ALGORITHM_LEFT_SYMMETRIC: 2226 case ALGORITHM_RIGHT_SYMMETRIC: 2227 if (sh->pd_idx == raid_disks-1) 2228 i--; /* Q D D D P */ 2229 else { 2230 /* D D P Q D */ 2231 if (i < sh->pd_idx) 2232 i += raid_disks; 2233 i -= (sh->pd_idx + 2); 2234 } 2235 break; 2236 case ALGORITHM_PARITY_0: 2237 i -= 2; 2238 break; 2239 case ALGORITHM_PARITY_N: 2240 break; 2241 case ALGORITHM_ROTATING_N_CONTINUE: 2242 /* Like left_symmetric, but P is before Q */ 2243 if (sh->pd_idx == 0) 2244 i--; /* P D D D Q */ 2245 else { 2246 /* D D Q P D */ 2247 if (i < sh->pd_idx) 2248 i += raid_disks; 2249 i -= (sh->pd_idx + 1); 2250 } 2251 break; 2252 case ALGORITHM_LEFT_ASYMMETRIC_6: 2253 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2254 if (i > sh->pd_idx) 2255 i--; 2256 break; 2257 case ALGORITHM_LEFT_SYMMETRIC_6: 2258 case ALGORITHM_RIGHT_SYMMETRIC_6: 2259 if (i < sh->pd_idx) 2260 i += data_disks + 1; 2261 i -= (sh->pd_idx + 1); 2262 break; 2263 case ALGORITHM_PARITY_0_6: 2264 i -= 1; 2265 break; 2266 default: 2267 BUG(); 2268 } 2269 break; 2270 } 2271 2272 chunk_number = stripe * data_disks + i; 2273 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2274 2275 check = raid5_compute_sector(conf, r_sector, 2276 previous, &dummy1, &sh2); 2277 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2278 || sh2.qd_idx != sh->qd_idx) { 2279 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2280 mdname(conf->mddev)); 2281 return 0; 2282 } 2283 return r_sector; 2284 } 2285 2286 2287 static void 2288 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2289 int rcw, int expand) 2290 { 2291 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2292 struct r5conf *conf = sh->raid_conf; 2293 int level = conf->level; 2294 2295 if (rcw) { 2296 2297 for (i = disks; i--; ) { 2298 struct r5dev *dev = &sh->dev[i]; 2299 2300 if (dev->towrite) { 2301 set_bit(R5_LOCKED, &dev->flags); 2302 set_bit(R5_Wantdrain, &dev->flags); 2303 if (!expand) 2304 clear_bit(R5_UPTODATE, &dev->flags); 2305 s->locked++; 2306 } 2307 } 2308 /* if we are not expanding this is a proper write request, and 2309 * there will be bios with new data to be drained into the 2310 * stripe cache 2311 */ 2312 if (!expand) { 2313 if (!s->locked) 2314 /* False alarm, nothing to do */ 2315 return; 2316 sh->reconstruct_state = reconstruct_state_drain_run; 2317 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2318 } else 2319 sh->reconstruct_state = reconstruct_state_run; 2320 2321 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2322 2323 if (s->locked + conf->max_degraded == disks) 2324 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2325 atomic_inc(&conf->pending_full_writes); 2326 } else { 2327 BUG_ON(level == 6); 2328 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2329 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2330 2331 for (i = disks; i--; ) { 2332 struct r5dev *dev = &sh->dev[i]; 2333 if (i == pd_idx) 2334 continue; 2335 2336 if (dev->towrite && 2337 (test_bit(R5_UPTODATE, &dev->flags) || 2338 test_bit(R5_Wantcompute, &dev->flags))) { 2339 set_bit(R5_Wantdrain, &dev->flags); 2340 set_bit(R5_LOCKED, &dev->flags); 2341 clear_bit(R5_UPTODATE, &dev->flags); 2342 s->locked++; 2343 } 2344 } 2345 if (!s->locked) 2346 /* False alarm - nothing to do */ 2347 return; 2348 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2349 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2350 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2351 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2352 } 2353 2354 /* keep the parity disk(s) locked while asynchronous operations 2355 * are in flight 2356 */ 2357 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2358 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2359 s->locked++; 2360 2361 if (level == 6) { 2362 int qd_idx = sh->qd_idx; 2363 struct r5dev *dev = &sh->dev[qd_idx]; 2364 2365 set_bit(R5_LOCKED, &dev->flags); 2366 clear_bit(R5_UPTODATE, &dev->flags); 2367 s->locked++; 2368 } 2369 2370 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2371 __func__, (unsigned long long)sh->sector, 2372 s->locked, s->ops_request); 2373 } 2374 2375 /* 2376 * Each stripe/dev can have one or more bion attached. 2377 * toread/towrite point to the first in a chain. 2378 * The bi_next chain must be in order. 2379 */ 2380 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2381 { 2382 struct bio **bip; 2383 struct r5conf *conf = sh->raid_conf; 2384 int firstwrite=0; 2385 2386 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2387 (unsigned long long)bi->bi_sector, 2388 (unsigned long long)sh->sector); 2389 2390 /* 2391 * If several bio share a stripe. The bio bi_phys_segments acts as a 2392 * reference count to avoid race. The reference count should already be 2393 * increased before this function is called (for example, in 2394 * make_request()), so other bio sharing this stripe will not free the 2395 * stripe. If a stripe is owned by one stripe, the stripe lock will 2396 * protect it. 2397 */ 2398 spin_lock_irq(&sh->stripe_lock); 2399 if (forwrite) { 2400 bip = &sh->dev[dd_idx].towrite; 2401 if (*bip == NULL) 2402 firstwrite = 1; 2403 } else 2404 bip = &sh->dev[dd_idx].toread; 2405 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2406 if (bio_end_sector(*bip) > bi->bi_sector) 2407 goto overlap; 2408 bip = & (*bip)->bi_next; 2409 } 2410 if (*bip && (*bip)->bi_sector < bio_end_sector(bi)) 2411 goto overlap; 2412 2413 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2414 if (*bip) 2415 bi->bi_next = *bip; 2416 *bip = bi; 2417 raid5_inc_bi_active_stripes(bi); 2418 2419 if (forwrite) { 2420 /* check if page is covered */ 2421 sector_t sector = sh->dev[dd_idx].sector; 2422 for (bi=sh->dev[dd_idx].towrite; 2423 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2424 bi && bi->bi_sector <= sector; 2425 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2426 if (bio_end_sector(bi) >= sector) 2427 sector = bio_end_sector(bi); 2428 } 2429 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2430 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2431 } 2432 2433 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2434 (unsigned long long)(*bip)->bi_sector, 2435 (unsigned long long)sh->sector, dd_idx); 2436 spin_unlock_irq(&sh->stripe_lock); 2437 2438 if (conf->mddev->bitmap && firstwrite) { 2439 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2440 STRIPE_SECTORS, 0); 2441 sh->bm_seq = conf->seq_flush+1; 2442 set_bit(STRIPE_BIT_DELAY, &sh->state); 2443 } 2444 return 1; 2445 2446 overlap: 2447 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2448 spin_unlock_irq(&sh->stripe_lock); 2449 return 0; 2450 } 2451 2452 static void end_reshape(struct r5conf *conf); 2453 2454 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2455 struct stripe_head *sh) 2456 { 2457 int sectors_per_chunk = 2458 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2459 int dd_idx; 2460 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2461 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2462 2463 raid5_compute_sector(conf, 2464 stripe * (disks - conf->max_degraded) 2465 *sectors_per_chunk + chunk_offset, 2466 previous, 2467 &dd_idx, sh); 2468 } 2469 2470 static void 2471 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2472 struct stripe_head_state *s, int disks, 2473 struct bio **return_bi) 2474 { 2475 int i; 2476 for (i = disks; i--; ) { 2477 struct bio *bi; 2478 int bitmap_end = 0; 2479 2480 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2481 struct md_rdev *rdev; 2482 rcu_read_lock(); 2483 rdev = rcu_dereference(conf->disks[i].rdev); 2484 if (rdev && test_bit(In_sync, &rdev->flags)) 2485 atomic_inc(&rdev->nr_pending); 2486 else 2487 rdev = NULL; 2488 rcu_read_unlock(); 2489 if (rdev) { 2490 if (!rdev_set_badblocks( 2491 rdev, 2492 sh->sector, 2493 STRIPE_SECTORS, 0)) 2494 md_error(conf->mddev, rdev); 2495 rdev_dec_pending(rdev, conf->mddev); 2496 } 2497 } 2498 spin_lock_irq(&sh->stripe_lock); 2499 /* fail all writes first */ 2500 bi = sh->dev[i].towrite; 2501 sh->dev[i].towrite = NULL; 2502 spin_unlock_irq(&sh->stripe_lock); 2503 if (bi) 2504 bitmap_end = 1; 2505 2506 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2507 wake_up(&conf->wait_for_overlap); 2508 2509 while (bi && bi->bi_sector < 2510 sh->dev[i].sector + STRIPE_SECTORS) { 2511 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2512 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2513 if (!raid5_dec_bi_active_stripes(bi)) { 2514 md_write_end(conf->mddev); 2515 bi->bi_next = *return_bi; 2516 *return_bi = bi; 2517 } 2518 bi = nextbi; 2519 } 2520 if (bitmap_end) 2521 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2522 STRIPE_SECTORS, 0, 0); 2523 bitmap_end = 0; 2524 /* and fail all 'written' */ 2525 bi = sh->dev[i].written; 2526 sh->dev[i].written = NULL; 2527 if (bi) bitmap_end = 1; 2528 while (bi && bi->bi_sector < 2529 sh->dev[i].sector + STRIPE_SECTORS) { 2530 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2531 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2532 if (!raid5_dec_bi_active_stripes(bi)) { 2533 md_write_end(conf->mddev); 2534 bi->bi_next = *return_bi; 2535 *return_bi = bi; 2536 } 2537 bi = bi2; 2538 } 2539 2540 /* fail any reads if this device is non-operational and 2541 * the data has not reached the cache yet. 2542 */ 2543 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2544 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2545 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2546 spin_lock_irq(&sh->stripe_lock); 2547 bi = sh->dev[i].toread; 2548 sh->dev[i].toread = NULL; 2549 spin_unlock_irq(&sh->stripe_lock); 2550 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2551 wake_up(&conf->wait_for_overlap); 2552 while (bi && bi->bi_sector < 2553 sh->dev[i].sector + STRIPE_SECTORS) { 2554 struct bio *nextbi = 2555 r5_next_bio(bi, sh->dev[i].sector); 2556 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2557 if (!raid5_dec_bi_active_stripes(bi)) { 2558 bi->bi_next = *return_bi; 2559 *return_bi = bi; 2560 } 2561 bi = nextbi; 2562 } 2563 } 2564 if (bitmap_end) 2565 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2566 STRIPE_SECTORS, 0, 0); 2567 /* If we were in the middle of a write the parity block might 2568 * still be locked - so just clear all R5_LOCKED flags 2569 */ 2570 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2571 } 2572 2573 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2574 if (atomic_dec_and_test(&conf->pending_full_writes)) 2575 md_wakeup_thread(conf->mddev->thread); 2576 } 2577 2578 static void 2579 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2580 struct stripe_head_state *s) 2581 { 2582 int abort = 0; 2583 int i; 2584 2585 clear_bit(STRIPE_SYNCING, &sh->state); 2586 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 2587 wake_up(&conf->wait_for_overlap); 2588 s->syncing = 0; 2589 s->replacing = 0; 2590 /* There is nothing more to do for sync/check/repair. 2591 * Don't even need to abort as that is handled elsewhere 2592 * if needed, and not always wanted e.g. if there is a known 2593 * bad block here. 2594 * For recover/replace we need to record a bad block on all 2595 * non-sync devices, or abort the recovery 2596 */ 2597 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2598 /* During recovery devices cannot be removed, so 2599 * locking and refcounting of rdevs is not needed 2600 */ 2601 for (i = 0; i < conf->raid_disks; i++) { 2602 struct md_rdev *rdev = conf->disks[i].rdev; 2603 if (rdev 2604 && !test_bit(Faulty, &rdev->flags) 2605 && !test_bit(In_sync, &rdev->flags) 2606 && !rdev_set_badblocks(rdev, sh->sector, 2607 STRIPE_SECTORS, 0)) 2608 abort = 1; 2609 rdev = conf->disks[i].replacement; 2610 if (rdev 2611 && !test_bit(Faulty, &rdev->flags) 2612 && !test_bit(In_sync, &rdev->flags) 2613 && !rdev_set_badblocks(rdev, sh->sector, 2614 STRIPE_SECTORS, 0)) 2615 abort = 1; 2616 } 2617 if (abort) 2618 conf->recovery_disabled = 2619 conf->mddev->recovery_disabled; 2620 } 2621 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2622 } 2623 2624 static int want_replace(struct stripe_head *sh, int disk_idx) 2625 { 2626 struct md_rdev *rdev; 2627 int rv = 0; 2628 /* Doing recovery so rcu locking not required */ 2629 rdev = sh->raid_conf->disks[disk_idx].replacement; 2630 if (rdev 2631 && !test_bit(Faulty, &rdev->flags) 2632 && !test_bit(In_sync, &rdev->flags) 2633 && (rdev->recovery_offset <= sh->sector 2634 || rdev->mddev->recovery_cp <= sh->sector)) 2635 rv = 1; 2636 2637 return rv; 2638 } 2639 2640 /* fetch_block - checks the given member device to see if its data needs 2641 * to be read or computed to satisfy a request. 2642 * 2643 * Returns 1 when no more member devices need to be checked, otherwise returns 2644 * 0 to tell the loop in handle_stripe_fill to continue 2645 */ 2646 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2647 int disk_idx, int disks) 2648 { 2649 struct r5dev *dev = &sh->dev[disk_idx]; 2650 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2651 &sh->dev[s->failed_num[1]] }; 2652 2653 /* is the data in this block needed, and can we get it? */ 2654 if (!test_bit(R5_LOCKED, &dev->flags) && 2655 !test_bit(R5_UPTODATE, &dev->flags) && 2656 (dev->toread || 2657 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2658 s->syncing || s->expanding || 2659 (s->replacing && want_replace(sh, disk_idx)) || 2660 (s->failed >= 1 && fdev[0]->toread) || 2661 (s->failed >= 2 && fdev[1]->toread) || 2662 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2663 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2664 (sh->raid_conf->level == 6 && s->failed && s->to_write))) { 2665 /* we would like to get this block, possibly by computing it, 2666 * otherwise read it if the backing disk is insync 2667 */ 2668 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2669 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2670 if ((s->uptodate == disks - 1) && 2671 (s->failed && (disk_idx == s->failed_num[0] || 2672 disk_idx == s->failed_num[1]))) { 2673 /* have disk failed, and we're requested to fetch it; 2674 * do compute it 2675 */ 2676 pr_debug("Computing stripe %llu block %d\n", 2677 (unsigned long long)sh->sector, disk_idx); 2678 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2679 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2680 set_bit(R5_Wantcompute, &dev->flags); 2681 sh->ops.target = disk_idx; 2682 sh->ops.target2 = -1; /* no 2nd target */ 2683 s->req_compute = 1; 2684 /* Careful: from this point on 'uptodate' is in the eye 2685 * of raid_run_ops which services 'compute' operations 2686 * before writes. R5_Wantcompute flags a block that will 2687 * be R5_UPTODATE by the time it is needed for a 2688 * subsequent operation. 2689 */ 2690 s->uptodate++; 2691 return 1; 2692 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2693 /* Computing 2-failure is *very* expensive; only 2694 * do it if failed >= 2 2695 */ 2696 int other; 2697 for (other = disks; other--; ) { 2698 if (other == disk_idx) 2699 continue; 2700 if (!test_bit(R5_UPTODATE, 2701 &sh->dev[other].flags)) 2702 break; 2703 } 2704 BUG_ON(other < 0); 2705 pr_debug("Computing stripe %llu blocks %d,%d\n", 2706 (unsigned long long)sh->sector, 2707 disk_idx, other); 2708 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2709 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2710 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2711 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2712 sh->ops.target = disk_idx; 2713 sh->ops.target2 = other; 2714 s->uptodate += 2; 2715 s->req_compute = 1; 2716 return 1; 2717 } else if (test_bit(R5_Insync, &dev->flags)) { 2718 set_bit(R5_LOCKED, &dev->flags); 2719 set_bit(R5_Wantread, &dev->flags); 2720 s->locked++; 2721 pr_debug("Reading block %d (sync=%d)\n", 2722 disk_idx, s->syncing); 2723 } 2724 } 2725 2726 return 0; 2727 } 2728 2729 /** 2730 * handle_stripe_fill - read or compute data to satisfy pending requests. 2731 */ 2732 static void handle_stripe_fill(struct stripe_head *sh, 2733 struct stripe_head_state *s, 2734 int disks) 2735 { 2736 int i; 2737 2738 /* look for blocks to read/compute, skip this if a compute 2739 * is already in flight, or if the stripe contents are in the 2740 * midst of changing due to a write 2741 */ 2742 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2743 !sh->reconstruct_state) 2744 for (i = disks; i--; ) 2745 if (fetch_block(sh, s, i, disks)) 2746 break; 2747 set_bit(STRIPE_HANDLE, &sh->state); 2748 } 2749 2750 2751 /* handle_stripe_clean_event 2752 * any written block on an uptodate or failed drive can be returned. 2753 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2754 * never LOCKED, so we don't need to test 'failed' directly. 2755 */ 2756 static void handle_stripe_clean_event(struct r5conf *conf, 2757 struct stripe_head *sh, int disks, struct bio **return_bi) 2758 { 2759 int i; 2760 struct r5dev *dev; 2761 int discard_pending = 0; 2762 2763 for (i = disks; i--; ) 2764 if (sh->dev[i].written) { 2765 dev = &sh->dev[i]; 2766 if (!test_bit(R5_LOCKED, &dev->flags) && 2767 (test_bit(R5_UPTODATE, &dev->flags) || 2768 test_bit(R5_Discard, &dev->flags))) { 2769 /* We can return any write requests */ 2770 struct bio *wbi, *wbi2; 2771 pr_debug("Return write for disc %d\n", i); 2772 if (test_and_clear_bit(R5_Discard, &dev->flags)) 2773 clear_bit(R5_UPTODATE, &dev->flags); 2774 wbi = dev->written; 2775 dev->written = NULL; 2776 while (wbi && wbi->bi_sector < 2777 dev->sector + STRIPE_SECTORS) { 2778 wbi2 = r5_next_bio(wbi, dev->sector); 2779 if (!raid5_dec_bi_active_stripes(wbi)) { 2780 md_write_end(conf->mddev); 2781 wbi->bi_next = *return_bi; 2782 *return_bi = wbi; 2783 } 2784 wbi = wbi2; 2785 } 2786 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2787 STRIPE_SECTORS, 2788 !test_bit(STRIPE_DEGRADED, &sh->state), 2789 0); 2790 } else if (test_bit(R5_Discard, &dev->flags)) 2791 discard_pending = 1; 2792 } 2793 if (!discard_pending && 2794 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 2795 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2796 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2797 if (sh->qd_idx >= 0) { 2798 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2799 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 2800 } 2801 /* now that discard is done we can proceed with any sync */ 2802 clear_bit(STRIPE_DISCARD, &sh->state); 2803 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 2804 set_bit(STRIPE_HANDLE, &sh->state); 2805 2806 } 2807 2808 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2809 if (atomic_dec_and_test(&conf->pending_full_writes)) 2810 md_wakeup_thread(conf->mddev->thread); 2811 } 2812 2813 static void handle_stripe_dirtying(struct r5conf *conf, 2814 struct stripe_head *sh, 2815 struct stripe_head_state *s, 2816 int disks) 2817 { 2818 int rmw = 0, rcw = 0, i; 2819 sector_t recovery_cp = conf->mddev->recovery_cp; 2820 2821 /* RAID6 requires 'rcw' in current implementation. 2822 * Otherwise, check whether resync is now happening or should start. 2823 * If yes, then the array is dirty (after unclean shutdown or 2824 * initial creation), so parity in some stripes might be inconsistent. 2825 * In this case, we need to always do reconstruct-write, to ensure 2826 * that in case of drive failure or read-error correction, we 2827 * generate correct data from the parity. 2828 */ 2829 if (conf->max_degraded == 2 || 2830 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { 2831 /* Calculate the real rcw later - for now make it 2832 * look like rcw is cheaper 2833 */ 2834 rcw = 1; rmw = 2; 2835 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", 2836 conf->max_degraded, (unsigned long long)recovery_cp, 2837 (unsigned long long)sh->sector); 2838 } else for (i = disks; i--; ) { 2839 /* would I have to read this buffer for read_modify_write */ 2840 struct r5dev *dev = &sh->dev[i]; 2841 if ((dev->towrite || i == sh->pd_idx) && 2842 !test_bit(R5_LOCKED, &dev->flags) && 2843 !(test_bit(R5_UPTODATE, &dev->flags) || 2844 test_bit(R5_Wantcompute, &dev->flags))) { 2845 if (test_bit(R5_Insync, &dev->flags)) 2846 rmw++; 2847 else 2848 rmw += 2*disks; /* cannot read it */ 2849 } 2850 /* Would I have to read this buffer for reconstruct_write */ 2851 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2852 !test_bit(R5_LOCKED, &dev->flags) && 2853 !(test_bit(R5_UPTODATE, &dev->flags) || 2854 test_bit(R5_Wantcompute, &dev->flags))) { 2855 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2856 else 2857 rcw += 2*disks; 2858 } 2859 } 2860 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2861 (unsigned long long)sh->sector, rmw, rcw); 2862 set_bit(STRIPE_HANDLE, &sh->state); 2863 if (rmw < rcw && rmw > 0) { 2864 /* prefer read-modify-write, but need to get some data */ 2865 if (conf->mddev->queue) 2866 blk_add_trace_msg(conf->mddev->queue, 2867 "raid5 rmw %llu %d", 2868 (unsigned long long)sh->sector, rmw); 2869 for (i = disks; i--; ) { 2870 struct r5dev *dev = &sh->dev[i]; 2871 if ((dev->towrite || i == sh->pd_idx) && 2872 !test_bit(R5_LOCKED, &dev->flags) && 2873 !(test_bit(R5_UPTODATE, &dev->flags) || 2874 test_bit(R5_Wantcompute, &dev->flags)) && 2875 test_bit(R5_Insync, &dev->flags)) { 2876 if ( 2877 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2878 pr_debug("Read_old block " 2879 "%d for r-m-w\n", i); 2880 set_bit(R5_LOCKED, &dev->flags); 2881 set_bit(R5_Wantread, &dev->flags); 2882 s->locked++; 2883 } else { 2884 set_bit(STRIPE_DELAYED, &sh->state); 2885 set_bit(STRIPE_HANDLE, &sh->state); 2886 } 2887 } 2888 } 2889 } 2890 if (rcw <= rmw && rcw > 0) { 2891 /* want reconstruct write, but need to get some data */ 2892 int qread =0; 2893 rcw = 0; 2894 for (i = disks; i--; ) { 2895 struct r5dev *dev = &sh->dev[i]; 2896 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2897 i != sh->pd_idx && i != sh->qd_idx && 2898 !test_bit(R5_LOCKED, &dev->flags) && 2899 !(test_bit(R5_UPTODATE, &dev->flags) || 2900 test_bit(R5_Wantcompute, &dev->flags))) { 2901 rcw++; 2902 if (!test_bit(R5_Insync, &dev->flags)) 2903 continue; /* it's a failed drive */ 2904 if ( 2905 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2906 pr_debug("Read_old block " 2907 "%d for Reconstruct\n", i); 2908 set_bit(R5_LOCKED, &dev->flags); 2909 set_bit(R5_Wantread, &dev->flags); 2910 s->locked++; 2911 qread++; 2912 } else { 2913 set_bit(STRIPE_DELAYED, &sh->state); 2914 set_bit(STRIPE_HANDLE, &sh->state); 2915 } 2916 } 2917 } 2918 if (rcw && conf->mddev->queue) 2919 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 2920 (unsigned long long)sh->sector, 2921 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 2922 } 2923 /* now if nothing is locked, and if we have enough data, 2924 * we can start a write request 2925 */ 2926 /* since handle_stripe can be called at any time we need to handle the 2927 * case where a compute block operation has been submitted and then a 2928 * subsequent call wants to start a write request. raid_run_ops only 2929 * handles the case where compute block and reconstruct are requested 2930 * simultaneously. If this is not the case then new writes need to be 2931 * held off until the compute completes. 2932 */ 2933 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2934 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2935 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2936 schedule_reconstruction(sh, s, rcw == 0, 0); 2937 } 2938 2939 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 2940 struct stripe_head_state *s, int disks) 2941 { 2942 struct r5dev *dev = NULL; 2943 2944 set_bit(STRIPE_HANDLE, &sh->state); 2945 2946 switch (sh->check_state) { 2947 case check_state_idle: 2948 /* start a new check operation if there are no failures */ 2949 if (s->failed == 0) { 2950 BUG_ON(s->uptodate != disks); 2951 sh->check_state = check_state_run; 2952 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2953 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2954 s->uptodate--; 2955 break; 2956 } 2957 dev = &sh->dev[s->failed_num[0]]; 2958 /* fall through */ 2959 case check_state_compute_result: 2960 sh->check_state = check_state_idle; 2961 if (!dev) 2962 dev = &sh->dev[sh->pd_idx]; 2963 2964 /* check that a write has not made the stripe insync */ 2965 if (test_bit(STRIPE_INSYNC, &sh->state)) 2966 break; 2967 2968 /* either failed parity check, or recovery is happening */ 2969 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2970 BUG_ON(s->uptodate != disks); 2971 2972 set_bit(R5_LOCKED, &dev->flags); 2973 s->locked++; 2974 set_bit(R5_Wantwrite, &dev->flags); 2975 2976 clear_bit(STRIPE_DEGRADED, &sh->state); 2977 set_bit(STRIPE_INSYNC, &sh->state); 2978 break; 2979 case check_state_run: 2980 break; /* we will be called again upon completion */ 2981 case check_state_check_result: 2982 sh->check_state = check_state_idle; 2983 2984 /* if a failure occurred during the check operation, leave 2985 * STRIPE_INSYNC not set and let the stripe be handled again 2986 */ 2987 if (s->failed) 2988 break; 2989 2990 /* handle a successful check operation, if parity is correct 2991 * we are done. Otherwise update the mismatch count and repair 2992 * parity if !MD_RECOVERY_CHECK 2993 */ 2994 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 2995 /* parity is correct (on disc, 2996 * not in buffer any more) 2997 */ 2998 set_bit(STRIPE_INSYNC, &sh->state); 2999 else { 3000 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3001 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3002 /* don't try to repair!! */ 3003 set_bit(STRIPE_INSYNC, &sh->state); 3004 else { 3005 sh->check_state = check_state_compute_run; 3006 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3007 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3008 set_bit(R5_Wantcompute, 3009 &sh->dev[sh->pd_idx].flags); 3010 sh->ops.target = sh->pd_idx; 3011 sh->ops.target2 = -1; 3012 s->uptodate++; 3013 } 3014 } 3015 break; 3016 case check_state_compute_run: 3017 break; 3018 default: 3019 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3020 __func__, sh->check_state, 3021 (unsigned long long) sh->sector); 3022 BUG(); 3023 } 3024 } 3025 3026 3027 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3028 struct stripe_head_state *s, 3029 int disks) 3030 { 3031 int pd_idx = sh->pd_idx; 3032 int qd_idx = sh->qd_idx; 3033 struct r5dev *dev; 3034 3035 set_bit(STRIPE_HANDLE, &sh->state); 3036 3037 BUG_ON(s->failed > 2); 3038 3039 /* Want to check and possibly repair P and Q. 3040 * However there could be one 'failed' device, in which 3041 * case we can only check one of them, possibly using the 3042 * other to generate missing data 3043 */ 3044 3045 switch (sh->check_state) { 3046 case check_state_idle: 3047 /* start a new check operation if there are < 2 failures */ 3048 if (s->failed == s->q_failed) { 3049 /* The only possible failed device holds Q, so it 3050 * makes sense to check P (If anything else were failed, 3051 * we would have used P to recreate it). 3052 */ 3053 sh->check_state = check_state_run; 3054 } 3055 if (!s->q_failed && s->failed < 2) { 3056 /* Q is not failed, and we didn't use it to generate 3057 * anything, so it makes sense to check it 3058 */ 3059 if (sh->check_state == check_state_run) 3060 sh->check_state = check_state_run_pq; 3061 else 3062 sh->check_state = check_state_run_q; 3063 } 3064 3065 /* discard potentially stale zero_sum_result */ 3066 sh->ops.zero_sum_result = 0; 3067 3068 if (sh->check_state == check_state_run) { 3069 /* async_xor_zero_sum destroys the contents of P */ 3070 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3071 s->uptodate--; 3072 } 3073 if (sh->check_state >= check_state_run && 3074 sh->check_state <= check_state_run_pq) { 3075 /* async_syndrome_zero_sum preserves P and Q, so 3076 * no need to mark them !uptodate here 3077 */ 3078 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3079 break; 3080 } 3081 3082 /* we have 2-disk failure */ 3083 BUG_ON(s->failed != 2); 3084 /* fall through */ 3085 case check_state_compute_result: 3086 sh->check_state = check_state_idle; 3087 3088 /* check that a write has not made the stripe insync */ 3089 if (test_bit(STRIPE_INSYNC, &sh->state)) 3090 break; 3091 3092 /* now write out any block on a failed drive, 3093 * or P or Q if they were recomputed 3094 */ 3095 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3096 if (s->failed == 2) { 3097 dev = &sh->dev[s->failed_num[1]]; 3098 s->locked++; 3099 set_bit(R5_LOCKED, &dev->flags); 3100 set_bit(R5_Wantwrite, &dev->flags); 3101 } 3102 if (s->failed >= 1) { 3103 dev = &sh->dev[s->failed_num[0]]; 3104 s->locked++; 3105 set_bit(R5_LOCKED, &dev->flags); 3106 set_bit(R5_Wantwrite, &dev->flags); 3107 } 3108 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3109 dev = &sh->dev[pd_idx]; 3110 s->locked++; 3111 set_bit(R5_LOCKED, &dev->flags); 3112 set_bit(R5_Wantwrite, &dev->flags); 3113 } 3114 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3115 dev = &sh->dev[qd_idx]; 3116 s->locked++; 3117 set_bit(R5_LOCKED, &dev->flags); 3118 set_bit(R5_Wantwrite, &dev->flags); 3119 } 3120 clear_bit(STRIPE_DEGRADED, &sh->state); 3121 3122 set_bit(STRIPE_INSYNC, &sh->state); 3123 break; 3124 case check_state_run: 3125 case check_state_run_q: 3126 case check_state_run_pq: 3127 break; /* we will be called again upon completion */ 3128 case check_state_check_result: 3129 sh->check_state = check_state_idle; 3130 3131 /* handle a successful check operation, if parity is correct 3132 * we are done. Otherwise update the mismatch count and repair 3133 * parity if !MD_RECOVERY_CHECK 3134 */ 3135 if (sh->ops.zero_sum_result == 0) { 3136 /* both parities are correct */ 3137 if (!s->failed) 3138 set_bit(STRIPE_INSYNC, &sh->state); 3139 else { 3140 /* in contrast to the raid5 case we can validate 3141 * parity, but still have a failure to write 3142 * back 3143 */ 3144 sh->check_state = check_state_compute_result; 3145 /* Returning at this point means that we may go 3146 * off and bring p and/or q uptodate again so 3147 * we make sure to check zero_sum_result again 3148 * to verify if p or q need writeback 3149 */ 3150 } 3151 } else { 3152 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3153 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3154 /* don't try to repair!! */ 3155 set_bit(STRIPE_INSYNC, &sh->state); 3156 else { 3157 int *target = &sh->ops.target; 3158 3159 sh->ops.target = -1; 3160 sh->ops.target2 = -1; 3161 sh->check_state = check_state_compute_run; 3162 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3163 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3164 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3165 set_bit(R5_Wantcompute, 3166 &sh->dev[pd_idx].flags); 3167 *target = pd_idx; 3168 target = &sh->ops.target2; 3169 s->uptodate++; 3170 } 3171 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3172 set_bit(R5_Wantcompute, 3173 &sh->dev[qd_idx].flags); 3174 *target = qd_idx; 3175 s->uptodate++; 3176 } 3177 } 3178 } 3179 break; 3180 case check_state_compute_run: 3181 break; 3182 default: 3183 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3184 __func__, sh->check_state, 3185 (unsigned long long) sh->sector); 3186 BUG(); 3187 } 3188 } 3189 3190 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3191 { 3192 int i; 3193 3194 /* We have read all the blocks in this stripe and now we need to 3195 * copy some of them into a target stripe for expand. 3196 */ 3197 struct dma_async_tx_descriptor *tx = NULL; 3198 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3199 for (i = 0; i < sh->disks; i++) 3200 if (i != sh->pd_idx && i != sh->qd_idx) { 3201 int dd_idx, j; 3202 struct stripe_head *sh2; 3203 struct async_submit_ctl submit; 3204 3205 sector_t bn = compute_blocknr(sh, i, 1); 3206 sector_t s = raid5_compute_sector(conf, bn, 0, 3207 &dd_idx, NULL); 3208 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3209 if (sh2 == NULL) 3210 /* so far only the early blocks of this stripe 3211 * have been requested. When later blocks 3212 * get requested, we will try again 3213 */ 3214 continue; 3215 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3216 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3217 /* must have already done this block */ 3218 release_stripe(sh2); 3219 continue; 3220 } 3221 3222 /* place all the copies on one channel */ 3223 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3224 tx = async_memcpy(sh2->dev[dd_idx].page, 3225 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3226 &submit); 3227 3228 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3229 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3230 for (j = 0; j < conf->raid_disks; j++) 3231 if (j != sh2->pd_idx && 3232 j != sh2->qd_idx && 3233 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3234 break; 3235 if (j == conf->raid_disks) { 3236 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3237 set_bit(STRIPE_HANDLE, &sh2->state); 3238 } 3239 release_stripe(sh2); 3240 3241 } 3242 /* done submitting copies, wait for them to complete */ 3243 async_tx_quiesce(&tx); 3244 } 3245 3246 /* 3247 * handle_stripe - do things to a stripe. 3248 * 3249 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3250 * state of various bits to see what needs to be done. 3251 * Possible results: 3252 * return some read requests which now have data 3253 * return some write requests which are safely on storage 3254 * schedule a read on some buffers 3255 * schedule a write of some buffers 3256 * return confirmation of parity correctness 3257 * 3258 */ 3259 3260 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3261 { 3262 struct r5conf *conf = sh->raid_conf; 3263 int disks = sh->disks; 3264 struct r5dev *dev; 3265 int i; 3266 int do_recovery = 0; 3267 3268 memset(s, 0, sizeof(*s)); 3269 3270 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3271 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3272 s->failed_num[0] = -1; 3273 s->failed_num[1] = -1; 3274 3275 /* Now to look around and see what can be done */ 3276 rcu_read_lock(); 3277 for (i=disks; i--; ) { 3278 struct md_rdev *rdev; 3279 sector_t first_bad; 3280 int bad_sectors; 3281 int is_bad = 0; 3282 3283 dev = &sh->dev[i]; 3284 3285 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3286 i, dev->flags, 3287 dev->toread, dev->towrite, dev->written); 3288 /* maybe we can reply to a read 3289 * 3290 * new wantfill requests are only permitted while 3291 * ops_complete_biofill is guaranteed to be inactive 3292 */ 3293 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3294 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3295 set_bit(R5_Wantfill, &dev->flags); 3296 3297 /* now count some things */ 3298 if (test_bit(R5_LOCKED, &dev->flags)) 3299 s->locked++; 3300 if (test_bit(R5_UPTODATE, &dev->flags)) 3301 s->uptodate++; 3302 if (test_bit(R5_Wantcompute, &dev->flags)) { 3303 s->compute++; 3304 BUG_ON(s->compute > 2); 3305 } 3306 3307 if (test_bit(R5_Wantfill, &dev->flags)) 3308 s->to_fill++; 3309 else if (dev->toread) 3310 s->to_read++; 3311 if (dev->towrite) { 3312 s->to_write++; 3313 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3314 s->non_overwrite++; 3315 } 3316 if (dev->written) 3317 s->written++; 3318 /* Prefer to use the replacement for reads, but only 3319 * if it is recovered enough and has no bad blocks. 3320 */ 3321 rdev = rcu_dereference(conf->disks[i].replacement); 3322 if (rdev && !test_bit(Faulty, &rdev->flags) && 3323 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3324 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3325 &first_bad, &bad_sectors)) 3326 set_bit(R5_ReadRepl, &dev->flags); 3327 else { 3328 if (rdev) 3329 set_bit(R5_NeedReplace, &dev->flags); 3330 rdev = rcu_dereference(conf->disks[i].rdev); 3331 clear_bit(R5_ReadRepl, &dev->flags); 3332 } 3333 if (rdev && test_bit(Faulty, &rdev->flags)) 3334 rdev = NULL; 3335 if (rdev) { 3336 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3337 &first_bad, &bad_sectors); 3338 if (s->blocked_rdev == NULL 3339 && (test_bit(Blocked, &rdev->flags) 3340 || is_bad < 0)) { 3341 if (is_bad < 0) 3342 set_bit(BlockedBadBlocks, 3343 &rdev->flags); 3344 s->blocked_rdev = rdev; 3345 atomic_inc(&rdev->nr_pending); 3346 } 3347 } 3348 clear_bit(R5_Insync, &dev->flags); 3349 if (!rdev) 3350 /* Not in-sync */; 3351 else if (is_bad) { 3352 /* also not in-sync */ 3353 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3354 test_bit(R5_UPTODATE, &dev->flags)) { 3355 /* treat as in-sync, but with a read error 3356 * which we can now try to correct 3357 */ 3358 set_bit(R5_Insync, &dev->flags); 3359 set_bit(R5_ReadError, &dev->flags); 3360 } 3361 } else if (test_bit(In_sync, &rdev->flags)) 3362 set_bit(R5_Insync, &dev->flags); 3363 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3364 /* in sync if before recovery_offset */ 3365 set_bit(R5_Insync, &dev->flags); 3366 else if (test_bit(R5_UPTODATE, &dev->flags) && 3367 test_bit(R5_Expanded, &dev->flags)) 3368 /* If we've reshaped into here, we assume it is Insync. 3369 * We will shortly update recovery_offset to make 3370 * it official. 3371 */ 3372 set_bit(R5_Insync, &dev->flags); 3373 3374 if (rdev && test_bit(R5_WriteError, &dev->flags)) { 3375 /* This flag does not apply to '.replacement' 3376 * only to .rdev, so make sure to check that*/ 3377 struct md_rdev *rdev2 = rcu_dereference( 3378 conf->disks[i].rdev); 3379 if (rdev2 == rdev) 3380 clear_bit(R5_Insync, &dev->flags); 3381 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3382 s->handle_bad_blocks = 1; 3383 atomic_inc(&rdev2->nr_pending); 3384 } else 3385 clear_bit(R5_WriteError, &dev->flags); 3386 } 3387 if (rdev && test_bit(R5_MadeGood, &dev->flags)) { 3388 /* This flag does not apply to '.replacement' 3389 * only to .rdev, so make sure to check that*/ 3390 struct md_rdev *rdev2 = rcu_dereference( 3391 conf->disks[i].rdev); 3392 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3393 s->handle_bad_blocks = 1; 3394 atomic_inc(&rdev2->nr_pending); 3395 } else 3396 clear_bit(R5_MadeGood, &dev->flags); 3397 } 3398 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3399 struct md_rdev *rdev2 = rcu_dereference( 3400 conf->disks[i].replacement); 3401 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3402 s->handle_bad_blocks = 1; 3403 atomic_inc(&rdev2->nr_pending); 3404 } else 3405 clear_bit(R5_MadeGoodRepl, &dev->flags); 3406 } 3407 if (!test_bit(R5_Insync, &dev->flags)) { 3408 /* The ReadError flag will just be confusing now */ 3409 clear_bit(R5_ReadError, &dev->flags); 3410 clear_bit(R5_ReWrite, &dev->flags); 3411 } 3412 if (test_bit(R5_ReadError, &dev->flags)) 3413 clear_bit(R5_Insync, &dev->flags); 3414 if (!test_bit(R5_Insync, &dev->flags)) { 3415 if (s->failed < 2) 3416 s->failed_num[s->failed] = i; 3417 s->failed++; 3418 if (rdev && !test_bit(Faulty, &rdev->flags)) 3419 do_recovery = 1; 3420 } 3421 } 3422 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3423 /* If there is a failed device being replaced, 3424 * we must be recovering. 3425 * else if we are after recovery_cp, we must be syncing 3426 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3427 * else we can only be replacing 3428 * sync and recovery both need to read all devices, and so 3429 * use the same flag. 3430 */ 3431 if (do_recovery || 3432 sh->sector >= conf->mddev->recovery_cp || 3433 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3434 s->syncing = 1; 3435 else 3436 s->replacing = 1; 3437 } 3438 rcu_read_unlock(); 3439 } 3440 3441 static void handle_stripe(struct stripe_head *sh) 3442 { 3443 struct stripe_head_state s; 3444 struct r5conf *conf = sh->raid_conf; 3445 int i; 3446 int prexor; 3447 int disks = sh->disks; 3448 struct r5dev *pdev, *qdev; 3449 3450 clear_bit(STRIPE_HANDLE, &sh->state); 3451 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3452 /* already being handled, ensure it gets handled 3453 * again when current action finishes */ 3454 set_bit(STRIPE_HANDLE, &sh->state); 3455 return; 3456 } 3457 3458 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3459 spin_lock(&sh->stripe_lock); 3460 /* Cannot process 'sync' concurrently with 'discard' */ 3461 if (!test_bit(STRIPE_DISCARD, &sh->state) && 3462 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3463 set_bit(STRIPE_SYNCING, &sh->state); 3464 clear_bit(STRIPE_INSYNC, &sh->state); 3465 clear_bit(STRIPE_REPLACED, &sh->state); 3466 } 3467 spin_unlock(&sh->stripe_lock); 3468 } 3469 clear_bit(STRIPE_DELAYED, &sh->state); 3470 3471 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3472 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3473 (unsigned long long)sh->sector, sh->state, 3474 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3475 sh->check_state, sh->reconstruct_state); 3476 3477 analyse_stripe(sh, &s); 3478 3479 if (s.handle_bad_blocks) { 3480 set_bit(STRIPE_HANDLE, &sh->state); 3481 goto finish; 3482 } 3483 3484 if (unlikely(s.blocked_rdev)) { 3485 if (s.syncing || s.expanding || s.expanded || 3486 s.replacing || s.to_write || s.written) { 3487 set_bit(STRIPE_HANDLE, &sh->state); 3488 goto finish; 3489 } 3490 /* There is nothing for the blocked_rdev to block */ 3491 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3492 s.blocked_rdev = NULL; 3493 } 3494 3495 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3496 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3497 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3498 } 3499 3500 pr_debug("locked=%d uptodate=%d to_read=%d" 3501 " to_write=%d failed=%d failed_num=%d,%d\n", 3502 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3503 s.failed_num[0], s.failed_num[1]); 3504 /* check if the array has lost more than max_degraded devices and, 3505 * if so, some requests might need to be failed. 3506 */ 3507 if (s.failed > conf->max_degraded) { 3508 sh->check_state = 0; 3509 sh->reconstruct_state = 0; 3510 if (s.to_read+s.to_write+s.written) 3511 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3512 if (s.syncing + s.replacing) 3513 handle_failed_sync(conf, sh, &s); 3514 } 3515 3516 /* Now we check to see if any write operations have recently 3517 * completed 3518 */ 3519 prexor = 0; 3520 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3521 prexor = 1; 3522 if (sh->reconstruct_state == reconstruct_state_drain_result || 3523 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3524 sh->reconstruct_state = reconstruct_state_idle; 3525 3526 /* All the 'written' buffers and the parity block are ready to 3527 * be written back to disk 3528 */ 3529 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 3530 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 3531 BUG_ON(sh->qd_idx >= 0 && 3532 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 3533 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 3534 for (i = disks; i--; ) { 3535 struct r5dev *dev = &sh->dev[i]; 3536 if (test_bit(R5_LOCKED, &dev->flags) && 3537 (i == sh->pd_idx || i == sh->qd_idx || 3538 dev->written)) { 3539 pr_debug("Writing block %d\n", i); 3540 set_bit(R5_Wantwrite, &dev->flags); 3541 if (prexor) 3542 continue; 3543 if (!test_bit(R5_Insync, &dev->flags) || 3544 ((i == sh->pd_idx || i == sh->qd_idx) && 3545 s.failed == 0)) 3546 set_bit(STRIPE_INSYNC, &sh->state); 3547 } 3548 } 3549 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3550 s.dec_preread_active = 1; 3551 } 3552 3553 /* 3554 * might be able to return some write requests if the parity blocks 3555 * are safe, or on a failed drive 3556 */ 3557 pdev = &sh->dev[sh->pd_idx]; 3558 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3559 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3560 qdev = &sh->dev[sh->qd_idx]; 3561 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3562 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3563 || conf->level < 6; 3564 3565 if (s.written && 3566 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3567 && !test_bit(R5_LOCKED, &pdev->flags) 3568 && (test_bit(R5_UPTODATE, &pdev->flags) || 3569 test_bit(R5_Discard, &pdev->flags))))) && 3570 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3571 && !test_bit(R5_LOCKED, &qdev->flags) 3572 && (test_bit(R5_UPTODATE, &qdev->flags) || 3573 test_bit(R5_Discard, &qdev->flags)))))) 3574 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3575 3576 /* Now we might consider reading some blocks, either to check/generate 3577 * parity, or to satisfy requests 3578 * or to load a block that is being partially written. 3579 */ 3580 if (s.to_read || s.non_overwrite 3581 || (conf->level == 6 && s.to_write && s.failed) 3582 || (s.syncing && (s.uptodate + s.compute < disks)) 3583 || s.replacing 3584 || s.expanding) 3585 handle_stripe_fill(sh, &s, disks); 3586 3587 /* Now to consider new write requests and what else, if anything 3588 * should be read. We do not handle new writes when: 3589 * 1/ A 'write' operation (copy+xor) is already in flight. 3590 * 2/ A 'check' operation is in flight, as it may clobber the parity 3591 * block. 3592 */ 3593 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3594 handle_stripe_dirtying(conf, sh, &s, disks); 3595 3596 /* maybe we need to check and possibly fix the parity for this stripe 3597 * Any reads will already have been scheduled, so we just see if enough 3598 * data is available. The parity check is held off while parity 3599 * dependent operations are in flight. 3600 */ 3601 if (sh->check_state || 3602 (s.syncing && s.locked == 0 && 3603 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3604 !test_bit(STRIPE_INSYNC, &sh->state))) { 3605 if (conf->level == 6) 3606 handle_parity_checks6(conf, sh, &s, disks); 3607 else 3608 handle_parity_checks5(conf, sh, &s, disks); 3609 } 3610 3611 if ((s.replacing || s.syncing) && s.locked == 0 3612 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 3613 && !test_bit(STRIPE_REPLACED, &sh->state)) { 3614 /* Write out to replacement devices where possible */ 3615 for (i = 0; i < conf->raid_disks; i++) 3616 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3617 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3618 set_bit(R5_WantReplace, &sh->dev[i].flags); 3619 set_bit(R5_LOCKED, &sh->dev[i].flags); 3620 s.locked++; 3621 } 3622 if (s.replacing) 3623 set_bit(STRIPE_INSYNC, &sh->state); 3624 set_bit(STRIPE_REPLACED, &sh->state); 3625 } 3626 if ((s.syncing || s.replacing) && s.locked == 0 && 3627 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3628 test_bit(STRIPE_INSYNC, &sh->state)) { 3629 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3630 clear_bit(STRIPE_SYNCING, &sh->state); 3631 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3632 wake_up(&conf->wait_for_overlap); 3633 } 3634 3635 /* If the failed drives are just a ReadError, then we might need 3636 * to progress the repair/check process 3637 */ 3638 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3639 for (i = 0; i < s.failed; i++) { 3640 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3641 if (test_bit(R5_ReadError, &dev->flags) 3642 && !test_bit(R5_LOCKED, &dev->flags) 3643 && test_bit(R5_UPTODATE, &dev->flags) 3644 ) { 3645 if (!test_bit(R5_ReWrite, &dev->flags)) { 3646 set_bit(R5_Wantwrite, &dev->flags); 3647 set_bit(R5_ReWrite, &dev->flags); 3648 set_bit(R5_LOCKED, &dev->flags); 3649 s.locked++; 3650 } else { 3651 /* let's read it back */ 3652 set_bit(R5_Wantread, &dev->flags); 3653 set_bit(R5_LOCKED, &dev->flags); 3654 s.locked++; 3655 } 3656 } 3657 } 3658 3659 3660 /* Finish reconstruct operations initiated by the expansion process */ 3661 if (sh->reconstruct_state == reconstruct_state_result) { 3662 struct stripe_head *sh_src 3663 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3664 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3665 /* sh cannot be written until sh_src has been read. 3666 * so arrange for sh to be delayed a little 3667 */ 3668 set_bit(STRIPE_DELAYED, &sh->state); 3669 set_bit(STRIPE_HANDLE, &sh->state); 3670 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3671 &sh_src->state)) 3672 atomic_inc(&conf->preread_active_stripes); 3673 release_stripe(sh_src); 3674 goto finish; 3675 } 3676 if (sh_src) 3677 release_stripe(sh_src); 3678 3679 sh->reconstruct_state = reconstruct_state_idle; 3680 clear_bit(STRIPE_EXPANDING, &sh->state); 3681 for (i = conf->raid_disks; i--; ) { 3682 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3683 set_bit(R5_LOCKED, &sh->dev[i].flags); 3684 s.locked++; 3685 } 3686 } 3687 3688 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3689 !sh->reconstruct_state) { 3690 /* Need to write out all blocks after computing parity */ 3691 sh->disks = conf->raid_disks; 3692 stripe_set_idx(sh->sector, conf, 0, sh); 3693 schedule_reconstruction(sh, &s, 1, 1); 3694 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3695 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3696 atomic_dec(&conf->reshape_stripes); 3697 wake_up(&conf->wait_for_overlap); 3698 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3699 } 3700 3701 if (s.expanding && s.locked == 0 && 3702 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3703 handle_stripe_expansion(conf, sh); 3704 3705 finish: 3706 /* wait for this device to become unblocked */ 3707 if (unlikely(s.blocked_rdev)) { 3708 if (conf->mddev->external) 3709 md_wait_for_blocked_rdev(s.blocked_rdev, 3710 conf->mddev); 3711 else 3712 /* Internal metadata will immediately 3713 * be written by raid5d, so we don't 3714 * need to wait here. 3715 */ 3716 rdev_dec_pending(s.blocked_rdev, 3717 conf->mddev); 3718 } 3719 3720 if (s.handle_bad_blocks) 3721 for (i = disks; i--; ) { 3722 struct md_rdev *rdev; 3723 struct r5dev *dev = &sh->dev[i]; 3724 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 3725 /* We own a safe reference to the rdev */ 3726 rdev = conf->disks[i].rdev; 3727 if (!rdev_set_badblocks(rdev, sh->sector, 3728 STRIPE_SECTORS, 0)) 3729 md_error(conf->mddev, rdev); 3730 rdev_dec_pending(rdev, conf->mddev); 3731 } 3732 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 3733 rdev = conf->disks[i].rdev; 3734 rdev_clear_badblocks(rdev, sh->sector, 3735 STRIPE_SECTORS, 0); 3736 rdev_dec_pending(rdev, conf->mddev); 3737 } 3738 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 3739 rdev = conf->disks[i].replacement; 3740 if (!rdev) 3741 /* rdev have been moved down */ 3742 rdev = conf->disks[i].rdev; 3743 rdev_clear_badblocks(rdev, sh->sector, 3744 STRIPE_SECTORS, 0); 3745 rdev_dec_pending(rdev, conf->mddev); 3746 } 3747 } 3748 3749 if (s.ops_request) 3750 raid_run_ops(sh, s.ops_request); 3751 3752 ops_run_io(sh, &s); 3753 3754 if (s.dec_preread_active) { 3755 /* We delay this until after ops_run_io so that if make_request 3756 * is waiting on a flush, it won't continue until the writes 3757 * have actually been submitted. 3758 */ 3759 atomic_dec(&conf->preread_active_stripes); 3760 if (atomic_read(&conf->preread_active_stripes) < 3761 IO_THRESHOLD) 3762 md_wakeup_thread(conf->mddev->thread); 3763 } 3764 3765 return_io(s.return_bi); 3766 3767 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 3768 } 3769 3770 static void raid5_activate_delayed(struct r5conf *conf) 3771 { 3772 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3773 while (!list_empty(&conf->delayed_list)) { 3774 struct list_head *l = conf->delayed_list.next; 3775 struct stripe_head *sh; 3776 sh = list_entry(l, struct stripe_head, lru); 3777 list_del_init(l); 3778 clear_bit(STRIPE_DELAYED, &sh->state); 3779 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3780 atomic_inc(&conf->preread_active_stripes); 3781 list_add_tail(&sh->lru, &conf->hold_list); 3782 } 3783 } 3784 } 3785 3786 static void activate_bit_delay(struct r5conf *conf) 3787 { 3788 /* device_lock is held */ 3789 struct list_head head; 3790 list_add(&head, &conf->bitmap_list); 3791 list_del_init(&conf->bitmap_list); 3792 while (!list_empty(&head)) { 3793 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3794 list_del_init(&sh->lru); 3795 atomic_inc(&sh->count); 3796 __release_stripe(conf, sh); 3797 } 3798 } 3799 3800 int md_raid5_congested(struct mddev *mddev, int bits) 3801 { 3802 struct r5conf *conf = mddev->private; 3803 3804 /* No difference between reads and writes. Just check 3805 * how busy the stripe_cache is 3806 */ 3807 3808 if (conf->inactive_blocked) 3809 return 1; 3810 if (conf->quiesce) 3811 return 1; 3812 if (list_empty_careful(&conf->inactive_list)) 3813 return 1; 3814 3815 return 0; 3816 } 3817 EXPORT_SYMBOL_GPL(md_raid5_congested); 3818 3819 static int raid5_congested(void *data, int bits) 3820 { 3821 struct mddev *mddev = data; 3822 3823 return mddev_congested(mddev, bits) || 3824 md_raid5_congested(mddev, bits); 3825 } 3826 3827 /* We want read requests to align with chunks where possible, 3828 * but write requests don't need to. 3829 */ 3830 static int raid5_mergeable_bvec(struct request_queue *q, 3831 struct bvec_merge_data *bvm, 3832 struct bio_vec *biovec) 3833 { 3834 struct mddev *mddev = q->queuedata; 3835 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 3836 int max; 3837 unsigned int chunk_sectors = mddev->chunk_sectors; 3838 unsigned int bio_sectors = bvm->bi_size >> 9; 3839 3840 if ((bvm->bi_rw & 1) == WRITE) 3841 return biovec->bv_len; /* always allow writes to be mergeable */ 3842 3843 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3844 chunk_sectors = mddev->new_chunk_sectors; 3845 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3846 if (max < 0) max = 0; 3847 if (max <= biovec->bv_len && bio_sectors == 0) 3848 return biovec->bv_len; 3849 else 3850 return max; 3851 } 3852 3853 3854 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 3855 { 3856 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3857 unsigned int chunk_sectors = mddev->chunk_sectors; 3858 unsigned int bio_sectors = bio_sectors(bio); 3859 3860 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3861 chunk_sectors = mddev->new_chunk_sectors; 3862 return chunk_sectors >= 3863 ((sector & (chunk_sectors - 1)) + bio_sectors); 3864 } 3865 3866 /* 3867 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3868 * later sampled by raid5d. 3869 */ 3870 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 3871 { 3872 unsigned long flags; 3873 3874 spin_lock_irqsave(&conf->device_lock, flags); 3875 3876 bi->bi_next = conf->retry_read_aligned_list; 3877 conf->retry_read_aligned_list = bi; 3878 3879 spin_unlock_irqrestore(&conf->device_lock, flags); 3880 md_wakeup_thread(conf->mddev->thread); 3881 } 3882 3883 3884 static struct bio *remove_bio_from_retry(struct r5conf *conf) 3885 { 3886 struct bio *bi; 3887 3888 bi = conf->retry_read_aligned; 3889 if (bi) { 3890 conf->retry_read_aligned = NULL; 3891 return bi; 3892 } 3893 bi = conf->retry_read_aligned_list; 3894 if(bi) { 3895 conf->retry_read_aligned_list = bi->bi_next; 3896 bi->bi_next = NULL; 3897 /* 3898 * this sets the active strip count to 1 and the processed 3899 * strip count to zero (upper 8 bits) 3900 */ 3901 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 3902 } 3903 3904 return bi; 3905 } 3906 3907 3908 /* 3909 * The "raid5_align_endio" should check if the read succeeded and if it 3910 * did, call bio_endio on the original bio (having bio_put the new bio 3911 * first). 3912 * If the read failed.. 3913 */ 3914 static void raid5_align_endio(struct bio *bi, int error) 3915 { 3916 struct bio* raid_bi = bi->bi_private; 3917 struct mddev *mddev; 3918 struct r5conf *conf; 3919 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3920 struct md_rdev *rdev; 3921 3922 bio_put(bi); 3923 3924 rdev = (void*)raid_bi->bi_next; 3925 raid_bi->bi_next = NULL; 3926 mddev = rdev->mddev; 3927 conf = mddev->private; 3928 3929 rdev_dec_pending(rdev, conf->mddev); 3930 3931 if (!error && uptodate) { 3932 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 3933 raid_bi, 0); 3934 bio_endio(raid_bi, 0); 3935 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3936 wake_up(&conf->wait_for_stripe); 3937 return; 3938 } 3939 3940 3941 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3942 3943 add_bio_to_retry(raid_bi, conf); 3944 } 3945 3946 static int bio_fits_rdev(struct bio *bi) 3947 { 3948 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3949 3950 if (bio_sectors(bi) > queue_max_sectors(q)) 3951 return 0; 3952 blk_recount_segments(q, bi); 3953 if (bi->bi_phys_segments > queue_max_segments(q)) 3954 return 0; 3955 3956 if (q->merge_bvec_fn) 3957 /* it's too hard to apply the merge_bvec_fn at this stage, 3958 * just just give up 3959 */ 3960 return 0; 3961 3962 return 1; 3963 } 3964 3965 3966 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 3967 { 3968 struct r5conf *conf = mddev->private; 3969 int dd_idx; 3970 struct bio* align_bi; 3971 struct md_rdev *rdev; 3972 sector_t end_sector; 3973 3974 if (!in_chunk_boundary(mddev, raid_bio)) { 3975 pr_debug("chunk_aligned_read : non aligned\n"); 3976 return 0; 3977 } 3978 /* 3979 * use bio_clone_mddev to make a copy of the bio 3980 */ 3981 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 3982 if (!align_bi) 3983 return 0; 3984 /* 3985 * set bi_end_io to a new function, and set bi_private to the 3986 * original bio. 3987 */ 3988 align_bi->bi_end_io = raid5_align_endio; 3989 align_bi->bi_private = raid_bio; 3990 /* 3991 * compute position 3992 */ 3993 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 3994 0, 3995 &dd_idx, NULL); 3996 3997 end_sector = bio_end_sector(align_bi); 3998 rcu_read_lock(); 3999 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4000 if (!rdev || test_bit(Faulty, &rdev->flags) || 4001 rdev->recovery_offset < end_sector) { 4002 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4003 if (rdev && 4004 (test_bit(Faulty, &rdev->flags) || 4005 !(test_bit(In_sync, &rdev->flags) || 4006 rdev->recovery_offset >= end_sector))) 4007 rdev = NULL; 4008 } 4009 if (rdev) { 4010 sector_t first_bad; 4011 int bad_sectors; 4012 4013 atomic_inc(&rdev->nr_pending); 4014 rcu_read_unlock(); 4015 raid_bio->bi_next = (void*)rdev; 4016 align_bi->bi_bdev = rdev->bdev; 4017 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 4018 4019 if (!bio_fits_rdev(align_bi) || 4020 is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi), 4021 &first_bad, &bad_sectors)) { 4022 /* too big in some way, or has a known bad block */ 4023 bio_put(align_bi); 4024 rdev_dec_pending(rdev, mddev); 4025 return 0; 4026 } 4027 4028 /* No reshape active, so we can trust rdev->data_offset */ 4029 align_bi->bi_sector += rdev->data_offset; 4030 4031 spin_lock_irq(&conf->device_lock); 4032 wait_event_lock_irq(conf->wait_for_stripe, 4033 conf->quiesce == 0, 4034 conf->device_lock); 4035 atomic_inc(&conf->active_aligned_reads); 4036 spin_unlock_irq(&conf->device_lock); 4037 4038 if (mddev->gendisk) 4039 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4040 align_bi, disk_devt(mddev->gendisk), 4041 raid_bio->bi_sector); 4042 generic_make_request(align_bi); 4043 return 1; 4044 } else { 4045 rcu_read_unlock(); 4046 bio_put(align_bi); 4047 return 0; 4048 } 4049 } 4050 4051 /* __get_priority_stripe - get the next stripe to process 4052 * 4053 * Full stripe writes are allowed to pass preread active stripes up until 4054 * the bypass_threshold is exceeded. In general the bypass_count 4055 * increments when the handle_list is handled before the hold_list; however, it 4056 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4057 * stripe with in flight i/o. The bypass_count will be reset when the 4058 * head of the hold_list has changed, i.e. the head was promoted to the 4059 * handle_list. 4060 */ 4061 static struct stripe_head *__get_priority_stripe(struct r5conf *conf) 4062 { 4063 struct stripe_head *sh; 4064 4065 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4066 __func__, 4067 list_empty(&conf->handle_list) ? "empty" : "busy", 4068 list_empty(&conf->hold_list) ? "empty" : "busy", 4069 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4070 4071 if (!list_empty(&conf->handle_list)) { 4072 sh = list_entry(conf->handle_list.next, typeof(*sh), lru); 4073 4074 if (list_empty(&conf->hold_list)) 4075 conf->bypass_count = 0; 4076 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4077 if (conf->hold_list.next == conf->last_hold) 4078 conf->bypass_count++; 4079 else { 4080 conf->last_hold = conf->hold_list.next; 4081 conf->bypass_count -= conf->bypass_threshold; 4082 if (conf->bypass_count < 0) 4083 conf->bypass_count = 0; 4084 } 4085 } 4086 } else if (!list_empty(&conf->hold_list) && 4087 ((conf->bypass_threshold && 4088 conf->bypass_count > conf->bypass_threshold) || 4089 atomic_read(&conf->pending_full_writes) == 0)) { 4090 sh = list_entry(conf->hold_list.next, 4091 typeof(*sh), lru); 4092 conf->bypass_count -= conf->bypass_threshold; 4093 if (conf->bypass_count < 0) 4094 conf->bypass_count = 0; 4095 } else 4096 return NULL; 4097 4098 list_del_init(&sh->lru); 4099 atomic_inc(&sh->count); 4100 BUG_ON(atomic_read(&sh->count) != 1); 4101 return sh; 4102 } 4103 4104 struct raid5_plug_cb { 4105 struct blk_plug_cb cb; 4106 struct list_head list; 4107 }; 4108 4109 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4110 { 4111 struct raid5_plug_cb *cb = container_of( 4112 blk_cb, struct raid5_plug_cb, cb); 4113 struct stripe_head *sh; 4114 struct mddev *mddev = cb->cb.data; 4115 struct r5conf *conf = mddev->private; 4116 int cnt = 0; 4117 4118 if (cb->list.next && !list_empty(&cb->list)) { 4119 spin_lock_irq(&conf->device_lock); 4120 while (!list_empty(&cb->list)) { 4121 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4122 list_del_init(&sh->lru); 4123 /* 4124 * avoid race release_stripe_plug() sees 4125 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4126 * is still in our list 4127 */ 4128 smp_mb__before_clear_bit(); 4129 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4130 __release_stripe(conf, sh); 4131 cnt++; 4132 } 4133 spin_unlock_irq(&conf->device_lock); 4134 } 4135 if (mddev->queue) 4136 trace_block_unplug(mddev->queue, cnt, !from_schedule); 4137 kfree(cb); 4138 } 4139 4140 static void release_stripe_plug(struct mddev *mddev, 4141 struct stripe_head *sh) 4142 { 4143 struct blk_plug_cb *blk_cb = blk_check_plugged( 4144 raid5_unplug, mddev, 4145 sizeof(struct raid5_plug_cb)); 4146 struct raid5_plug_cb *cb; 4147 4148 if (!blk_cb) { 4149 release_stripe(sh); 4150 return; 4151 } 4152 4153 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4154 4155 if (cb->list.next == NULL) 4156 INIT_LIST_HEAD(&cb->list); 4157 4158 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4159 list_add_tail(&sh->lru, &cb->list); 4160 else 4161 release_stripe(sh); 4162 } 4163 4164 static void make_discard_request(struct mddev *mddev, struct bio *bi) 4165 { 4166 struct r5conf *conf = mddev->private; 4167 sector_t logical_sector, last_sector; 4168 struct stripe_head *sh; 4169 int remaining; 4170 int stripe_sectors; 4171 4172 if (mddev->reshape_position != MaxSector) 4173 /* Skip discard while reshape is happening */ 4174 return; 4175 4176 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4177 last_sector = bi->bi_sector + (bi->bi_size>>9); 4178 4179 bi->bi_next = NULL; 4180 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4181 4182 stripe_sectors = conf->chunk_sectors * 4183 (conf->raid_disks - conf->max_degraded); 4184 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 4185 stripe_sectors); 4186 sector_div(last_sector, stripe_sectors); 4187 4188 logical_sector *= conf->chunk_sectors; 4189 last_sector *= conf->chunk_sectors; 4190 4191 for (; logical_sector < last_sector; 4192 logical_sector += STRIPE_SECTORS) { 4193 DEFINE_WAIT(w); 4194 int d; 4195 again: 4196 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 4197 prepare_to_wait(&conf->wait_for_overlap, &w, 4198 TASK_UNINTERRUPTIBLE); 4199 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4200 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4201 release_stripe(sh); 4202 schedule(); 4203 goto again; 4204 } 4205 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4206 spin_lock_irq(&sh->stripe_lock); 4207 for (d = 0; d < conf->raid_disks; d++) { 4208 if (d == sh->pd_idx || d == sh->qd_idx) 4209 continue; 4210 if (sh->dev[d].towrite || sh->dev[d].toread) { 4211 set_bit(R5_Overlap, &sh->dev[d].flags); 4212 spin_unlock_irq(&sh->stripe_lock); 4213 release_stripe(sh); 4214 schedule(); 4215 goto again; 4216 } 4217 } 4218 set_bit(STRIPE_DISCARD, &sh->state); 4219 finish_wait(&conf->wait_for_overlap, &w); 4220 for (d = 0; d < conf->raid_disks; d++) { 4221 if (d == sh->pd_idx || d == sh->qd_idx) 4222 continue; 4223 sh->dev[d].towrite = bi; 4224 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 4225 raid5_inc_bi_active_stripes(bi); 4226 } 4227 spin_unlock_irq(&sh->stripe_lock); 4228 if (conf->mddev->bitmap) { 4229 for (d = 0; 4230 d < conf->raid_disks - conf->max_degraded; 4231 d++) 4232 bitmap_startwrite(mddev->bitmap, 4233 sh->sector, 4234 STRIPE_SECTORS, 4235 0); 4236 sh->bm_seq = conf->seq_flush + 1; 4237 set_bit(STRIPE_BIT_DELAY, &sh->state); 4238 } 4239 4240 set_bit(STRIPE_HANDLE, &sh->state); 4241 clear_bit(STRIPE_DELAYED, &sh->state); 4242 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4243 atomic_inc(&conf->preread_active_stripes); 4244 release_stripe_plug(mddev, sh); 4245 } 4246 4247 remaining = raid5_dec_bi_active_stripes(bi); 4248 if (remaining == 0) { 4249 md_write_end(mddev); 4250 bio_endio(bi, 0); 4251 } 4252 } 4253 4254 static void make_request(struct mddev *mddev, struct bio * bi) 4255 { 4256 struct r5conf *conf = mddev->private; 4257 int dd_idx; 4258 sector_t new_sector; 4259 sector_t logical_sector, last_sector; 4260 struct stripe_head *sh; 4261 const int rw = bio_data_dir(bi); 4262 int remaining; 4263 4264 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4265 md_flush_request(mddev, bi); 4266 return; 4267 } 4268 4269 md_write_start(mddev, bi); 4270 4271 if (rw == READ && 4272 mddev->reshape_position == MaxSector && 4273 chunk_aligned_read(mddev,bi)) 4274 return; 4275 4276 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 4277 make_discard_request(mddev, bi); 4278 return; 4279 } 4280 4281 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4282 last_sector = bio_end_sector(bi); 4283 bi->bi_next = NULL; 4284 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4285 4286 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4287 DEFINE_WAIT(w); 4288 int previous; 4289 4290 retry: 4291 previous = 0; 4292 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4293 if (unlikely(conf->reshape_progress != MaxSector)) { 4294 /* spinlock is needed as reshape_progress may be 4295 * 64bit on a 32bit platform, and so it might be 4296 * possible to see a half-updated value 4297 * Of course reshape_progress could change after 4298 * the lock is dropped, so once we get a reference 4299 * to the stripe that we think it is, we will have 4300 * to check again. 4301 */ 4302 spin_lock_irq(&conf->device_lock); 4303 if (mddev->reshape_backwards 4304 ? logical_sector < conf->reshape_progress 4305 : logical_sector >= conf->reshape_progress) { 4306 previous = 1; 4307 } else { 4308 if (mddev->reshape_backwards 4309 ? logical_sector < conf->reshape_safe 4310 : logical_sector >= conf->reshape_safe) { 4311 spin_unlock_irq(&conf->device_lock); 4312 schedule(); 4313 goto retry; 4314 } 4315 } 4316 spin_unlock_irq(&conf->device_lock); 4317 } 4318 4319 new_sector = raid5_compute_sector(conf, logical_sector, 4320 previous, 4321 &dd_idx, NULL); 4322 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4323 (unsigned long long)new_sector, 4324 (unsigned long long)logical_sector); 4325 4326 sh = get_active_stripe(conf, new_sector, previous, 4327 (bi->bi_rw&RWA_MASK), 0); 4328 if (sh) { 4329 if (unlikely(previous)) { 4330 /* expansion might have moved on while waiting for a 4331 * stripe, so we must do the range check again. 4332 * Expansion could still move past after this 4333 * test, but as we are holding a reference to 4334 * 'sh', we know that if that happens, 4335 * STRIPE_EXPANDING will get set and the expansion 4336 * won't proceed until we finish with the stripe. 4337 */ 4338 int must_retry = 0; 4339 spin_lock_irq(&conf->device_lock); 4340 if (mddev->reshape_backwards 4341 ? logical_sector >= conf->reshape_progress 4342 : logical_sector < conf->reshape_progress) 4343 /* mismatch, need to try again */ 4344 must_retry = 1; 4345 spin_unlock_irq(&conf->device_lock); 4346 if (must_retry) { 4347 release_stripe(sh); 4348 schedule(); 4349 goto retry; 4350 } 4351 } 4352 4353 if (rw == WRITE && 4354 logical_sector >= mddev->suspend_lo && 4355 logical_sector < mddev->suspend_hi) { 4356 release_stripe(sh); 4357 /* As the suspend_* range is controlled by 4358 * userspace, we want an interruptible 4359 * wait. 4360 */ 4361 flush_signals(current); 4362 prepare_to_wait(&conf->wait_for_overlap, 4363 &w, TASK_INTERRUPTIBLE); 4364 if (logical_sector >= mddev->suspend_lo && 4365 logical_sector < mddev->suspend_hi) 4366 schedule(); 4367 goto retry; 4368 } 4369 4370 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4371 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4372 /* Stripe is busy expanding or 4373 * add failed due to overlap. Flush everything 4374 * and wait a while 4375 */ 4376 md_wakeup_thread(mddev->thread); 4377 release_stripe(sh); 4378 schedule(); 4379 goto retry; 4380 } 4381 finish_wait(&conf->wait_for_overlap, &w); 4382 set_bit(STRIPE_HANDLE, &sh->state); 4383 clear_bit(STRIPE_DELAYED, &sh->state); 4384 if ((bi->bi_rw & REQ_SYNC) && 4385 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4386 atomic_inc(&conf->preread_active_stripes); 4387 release_stripe_plug(mddev, sh); 4388 } else { 4389 /* cannot get stripe for read-ahead, just give-up */ 4390 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4391 finish_wait(&conf->wait_for_overlap, &w); 4392 break; 4393 } 4394 } 4395 4396 remaining = raid5_dec_bi_active_stripes(bi); 4397 if (remaining == 0) { 4398 4399 if ( rw == WRITE ) 4400 md_write_end(mddev); 4401 4402 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 4403 bi, 0); 4404 bio_endio(bi, 0); 4405 } 4406 } 4407 4408 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4409 4410 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4411 { 4412 /* reshaping is quite different to recovery/resync so it is 4413 * handled quite separately ... here. 4414 * 4415 * On each call to sync_request, we gather one chunk worth of 4416 * destination stripes and flag them as expanding. 4417 * Then we find all the source stripes and request reads. 4418 * As the reads complete, handle_stripe will copy the data 4419 * into the destination stripe and release that stripe. 4420 */ 4421 struct r5conf *conf = mddev->private; 4422 struct stripe_head *sh; 4423 sector_t first_sector, last_sector; 4424 int raid_disks = conf->previous_raid_disks; 4425 int data_disks = raid_disks - conf->max_degraded; 4426 int new_data_disks = conf->raid_disks - conf->max_degraded; 4427 int i; 4428 int dd_idx; 4429 sector_t writepos, readpos, safepos; 4430 sector_t stripe_addr; 4431 int reshape_sectors; 4432 struct list_head stripes; 4433 4434 if (sector_nr == 0) { 4435 /* If restarting in the middle, skip the initial sectors */ 4436 if (mddev->reshape_backwards && 4437 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4438 sector_nr = raid5_size(mddev, 0, 0) 4439 - conf->reshape_progress; 4440 } else if (!mddev->reshape_backwards && 4441 conf->reshape_progress > 0) 4442 sector_nr = conf->reshape_progress; 4443 sector_div(sector_nr, new_data_disks); 4444 if (sector_nr) { 4445 mddev->curr_resync_completed = sector_nr; 4446 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4447 *skipped = 1; 4448 return sector_nr; 4449 } 4450 } 4451 4452 /* We need to process a full chunk at a time. 4453 * If old and new chunk sizes differ, we need to process the 4454 * largest of these 4455 */ 4456 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4457 reshape_sectors = mddev->new_chunk_sectors; 4458 else 4459 reshape_sectors = mddev->chunk_sectors; 4460 4461 /* We update the metadata at least every 10 seconds, or when 4462 * the data about to be copied would over-write the source of 4463 * the data at the front of the range. i.e. one new_stripe 4464 * along from reshape_progress new_maps to after where 4465 * reshape_safe old_maps to 4466 */ 4467 writepos = conf->reshape_progress; 4468 sector_div(writepos, new_data_disks); 4469 readpos = conf->reshape_progress; 4470 sector_div(readpos, data_disks); 4471 safepos = conf->reshape_safe; 4472 sector_div(safepos, data_disks); 4473 if (mddev->reshape_backwards) { 4474 writepos -= min_t(sector_t, reshape_sectors, writepos); 4475 readpos += reshape_sectors; 4476 safepos += reshape_sectors; 4477 } else { 4478 writepos += reshape_sectors; 4479 readpos -= min_t(sector_t, reshape_sectors, readpos); 4480 safepos -= min_t(sector_t, reshape_sectors, safepos); 4481 } 4482 4483 /* Having calculated the 'writepos' possibly use it 4484 * to set 'stripe_addr' which is where we will write to. 4485 */ 4486 if (mddev->reshape_backwards) { 4487 BUG_ON(conf->reshape_progress == 0); 4488 stripe_addr = writepos; 4489 BUG_ON((mddev->dev_sectors & 4490 ~((sector_t)reshape_sectors - 1)) 4491 - reshape_sectors - stripe_addr 4492 != sector_nr); 4493 } else { 4494 BUG_ON(writepos != sector_nr + reshape_sectors); 4495 stripe_addr = sector_nr; 4496 } 4497 4498 /* 'writepos' is the most advanced device address we might write. 4499 * 'readpos' is the least advanced device address we might read. 4500 * 'safepos' is the least address recorded in the metadata as having 4501 * been reshaped. 4502 * If there is a min_offset_diff, these are adjusted either by 4503 * increasing the safepos/readpos if diff is negative, or 4504 * increasing writepos if diff is positive. 4505 * If 'readpos' is then behind 'writepos', there is no way that we can 4506 * ensure safety in the face of a crash - that must be done by userspace 4507 * making a backup of the data. So in that case there is no particular 4508 * rush to update metadata. 4509 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4510 * update the metadata to advance 'safepos' to match 'readpos' so that 4511 * we can be safe in the event of a crash. 4512 * So we insist on updating metadata if safepos is behind writepos and 4513 * readpos is beyond writepos. 4514 * In any case, update the metadata every 10 seconds. 4515 * Maybe that number should be configurable, but I'm not sure it is 4516 * worth it.... maybe it could be a multiple of safemode_delay??? 4517 */ 4518 if (conf->min_offset_diff < 0) { 4519 safepos += -conf->min_offset_diff; 4520 readpos += -conf->min_offset_diff; 4521 } else 4522 writepos += conf->min_offset_diff; 4523 4524 if ((mddev->reshape_backwards 4525 ? (safepos > writepos && readpos < writepos) 4526 : (safepos < writepos && readpos > writepos)) || 4527 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4528 /* Cannot proceed until we've updated the superblock... */ 4529 wait_event(conf->wait_for_overlap, 4530 atomic_read(&conf->reshape_stripes)==0); 4531 mddev->reshape_position = conf->reshape_progress; 4532 mddev->curr_resync_completed = sector_nr; 4533 conf->reshape_checkpoint = jiffies; 4534 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4535 md_wakeup_thread(mddev->thread); 4536 wait_event(mddev->sb_wait, mddev->flags == 0 || 4537 kthread_should_stop()); 4538 spin_lock_irq(&conf->device_lock); 4539 conf->reshape_safe = mddev->reshape_position; 4540 spin_unlock_irq(&conf->device_lock); 4541 wake_up(&conf->wait_for_overlap); 4542 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4543 } 4544 4545 INIT_LIST_HEAD(&stripes); 4546 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4547 int j; 4548 int skipped_disk = 0; 4549 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4550 set_bit(STRIPE_EXPANDING, &sh->state); 4551 atomic_inc(&conf->reshape_stripes); 4552 /* If any of this stripe is beyond the end of the old 4553 * array, then we need to zero those blocks 4554 */ 4555 for (j=sh->disks; j--;) { 4556 sector_t s; 4557 if (j == sh->pd_idx) 4558 continue; 4559 if (conf->level == 6 && 4560 j == sh->qd_idx) 4561 continue; 4562 s = compute_blocknr(sh, j, 0); 4563 if (s < raid5_size(mddev, 0, 0)) { 4564 skipped_disk = 1; 4565 continue; 4566 } 4567 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4568 set_bit(R5_Expanded, &sh->dev[j].flags); 4569 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4570 } 4571 if (!skipped_disk) { 4572 set_bit(STRIPE_EXPAND_READY, &sh->state); 4573 set_bit(STRIPE_HANDLE, &sh->state); 4574 } 4575 list_add(&sh->lru, &stripes); 4576 } 4577 spin_lock_irq(&conf->device_lock); 4578 if (mddev->reshape_backwards) 4579 conf->reshape_progress -= reshape_sectors * new_data_disks; 4580 else 4581 conf->reshape_progress += reshape_sectors * new_data_disks; 4582 spin_unlock_irq(&conf->device_lock); 4583 /* Ok, those stripe are ready. We can start scheduling 4584 * reads on the source stripes. 4585 * The source stripes are determined by mapping the first and last 4586 * block on the destination stripes. 4587 */ 4588 first_sector = 4589 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4590 1, &dd_idx, NULL); 4591 last_sector = 4592 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4593 * new_data_disks - 1), 4594 1, &dd_idx, NULL); 4595 if (last_sector >= mddev->dev_sectors) 4596 last_sector = mddev->dev_sectors - 1; 4597 while (first_sector <= last_sector) { 4598 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4599 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4600 set_bit(STRIPE_HANDLE, &sh->state); 4601 release_stripe(sh); 4602 first_sector += STRIPE_SECTORS; 4603 } 4604 /* Now that the sources are clearly marked, we can release 4605 * the destination stripes 4606 */ 4607 while (!list_empty(&stripes)) { 4608 sh = list_entry(stripes.next, struct stripe_head, lru); 4609 list_del_init(&sh->lru); 4610 release_stripe(sh); 4611 } 4612 /* If this takes us to the resync_max point where we have to pause, 4613 * then we need to write out the superblock. 4614 */ 4615 sector_nr += reshape_sectors; 4616 if ((sector_nr - mddev->curr_resync_completed) * 2 4617 >= mddev->resync_max - mddev->curr_resync_completed) { 4618 /* Cannot proceed until we've updated the superblock... */ 4619 wait_event(conf->wait_for_overlap, 4620 atomic_read(&conf->reshape_stripes) == 0); 4621 mddev->reshape_position = conf->reshape_progress; 4622 mddev->curr_resync_completed = sector_nr; 4623 conf->reshape_checkpoint = jiffies; 4624 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4625 md_wakeup_thread(mddev->thread); 4626 wait_event(mddev->sb_wait, 4627 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4628 || kthread_should_stop()); 4629 spin_lock_irq(&conf->device_lock); 4630 conf->reshape_safe = mddev->reshape_position; 4631 spin_unlock_irq(&conf->device_lock); 4632 wake_up(&conf->wait_for_overlap); 4633 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4634 } 4635 return reshape_sectors; 4636 } 4637 4638 /* FIXME go_faster isn't used */ 4639 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4640 { 4641 struct r5conf *conf = mddev->private; 4642 struct stripe_head *sh; 4643 sector_t max_sector = mddev->dev_sectors; 4644 sector_t sync_blocks; 4645 int still_degraded = 0; 4646 int i; 4647 4648 if (sector_nr >= max_sector) { 4649 /* just being told to finish up .. nothing much to do */ 4650 4651 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4652 end_reshape(conf); 4653 return 0; 4654 } 4655 4656 if (mddev->curr_resync < max_sector) /* aborted */ 4657 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4658 &sync_blocks, 1); 4659 else /* completed sync */ 4660 conf->fullsync = 0; 4661 bitmap_close_sync(mddev->bitmap); 4662 4663 return 0; 4664 } 4665 4666 /* Allow raid5_quiesce to complete */ 4667 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4668 4669 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4670 return reshape_request(mddev, sector_nr, skipped); 4671 4672 /* No need to check resync_max as we never do more than one 4673 * stripe, and as resync_max will always be on a chunk boundary, 4674 * if the check in md_do_sync didn't fire, there is no chance 4675 * of overstepping resync_max here 4676 */ 4677 4678 /* if there is too many failed drives and we are trying 4679 * to resync, then assert that we are finished, because there is 4680 * nothing we can do. 4681 */ 4682 if (mddev->degraded >= conf->max_degraded && 4683 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4684 sector_t rv = mddev->dev_sectors - sector_nr; 4685 *skipped = 1; 4686 return rv; 4687 } 4688 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 4689 !conf->fullsync && 4690 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 4691 sync_blocks >= STRIPE_SECTORS) { 4692 /* we can skip this block, and probably more */ 4693 sync_blocks /= STRIPE_SECTORS; 4694 *skipped = 1; 4695 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 4696 } 4697 4698 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 4699 4700 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 4701 if (sh == NULL) { 4702 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 4703 /* make sure we don't swamp the stripe cache if someone else 4704 * is trying to get access 4705 */ 4706 schedule_timeout_uninterruptible(1); 4707 } 4708 /* Need to check if array will still be degraded after recovery/resync 4709 * We don't need to check the 'failed' flag as when that gets set, 4710 * recovery aborts. 4711 */ 4712 for (i = 0; i < conf->raid_disks; i++) 4713 if (conf->disks[i].rdev == NULL) 4714 still_degraded = 1; 4715 4716 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 4717 4718 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 4719 4720 handle_stripe(sh); 4721 release_stripe(sh); 4722 4723 return STRIPE_SECTORS; 4724 } 4725 4726 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 4727 { 4728 /* We may not be able to submit a whole bio at once as there 4729 * may not be enough stripe_heads available. 4730 * We cannot pre-allocate enough stripe_heads as we may need 4731 * more than exist in the cache (if we allow ever large chunks). 4732 * So we do one stripe head at a time and record in 4733 * ->bi_hw_segments how many have been done. 4734 * 4735 * We *know* that this entire raid_bio is in one chunk, so 4736 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 4737 */ 4738 struct stripe_head *sh; 4739 int dd_idx; 4740 sector_t sector, logical_sector, last_sector; 4741 int scnt = 0; 4742 int remaining; 4743 int handled = 0; 4744 4745 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4746 sector = raid5_compute_sector(conf, logical_sector, 4747 0, &dd_idx, NULL); 4748 last_sector = bio_end_sector(raid_bio); 4749 4750 for (; logical_sector < last_sector; 4751 logical_sector += STRIPE_SECTORS, 4752 sector += STRIPE_SECTORS, 4753 scnt++) { 4754 4755 if (scnt < raid5_bi_processed_stripes(raid_bio)) 4756 /* already done this stripe */ 4757 continue; 4758 4759 sh = get_active_stripe(conf, sector, 0, 1, 0); 4760 4761 if (!sh) { 4762 /* failed to get a stripe - must wait */ 4763 raid5_set_bi_processed_stripes(raid_bio, scnt); 4764 conf->retry_read_aligned = raid_bio; 4765 return handled; 4766 } 4767 4768 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 4769 release_stripe(sh); 4770 raid5_set_bi_processed_stripes(raid_bio, scnt); 4771 conf->retry_read_aligned = raid_bio; 4772 return handled; 4773 } 4774 4775 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 4776 handle_stripe(sh); 4777 release_stripe(sh); 4778 handled++; 4779 } 4780 remaining = raid5_dec_bi_active_stripes(raid_bio); 4781 if (remaining == 0) { 4782 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 4783 raid_bio, 0); 4784 bio_endio(raid_bio, 0); 4785 } 4786 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4787 wake_up(&conf->wait_for_stripe); 4788 return handled; 4789 } 4790 4791 #define MAX_STRIPE_BATCH 8 4792 static int handle_active_stripes(struct r5conf *conf) 4793 { 4794 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 4795 int i, batch_size = 0; 4796 4797 while (batch_size < MAX_STRIPE_BATCH && 4798 (sh = __get_priority_stripe(conf)) != NULL) 4799 batch[batch_size++] = sh; 4800 4801 if (batch_size == 0) 4802 return batch_size; 4803 spin_unlock_irq(&conf->device_lock); 4804 4805 for (i = 0; i < batch_size; i++) 4806 handle_stripe(batch[i]); 4807 4808 cond_resched(); 4809 4810 spin_lock_irq(&conf->device_lock); 4811 for (i = 0; i < batch_size; i++) 4812 __release_stripe(conf, batch[i]); 4813 return batch_size; 4814 } 4815 4816 /* 4817 * This is our raid5 kernel thread. 4818 * 4819 * We scan the hash table for stripes which can be handled now. 4820 * During the scan, completed stripes are saved for us by the interrupt 4821 * handler, so that they will not have to wait for our next wakeup. 4822 */ 4823 static void raid5d(struct md_thread *thread) 4824 { 4825 struct mddev *mddev = thread->mddev; 4826 struct r5conf *conf = mddev->private; 4827 int handled; 4828 struct blk_plug plug; 4829 4830 pr_debug("+++ raid5d active\n"); 4831 4832 md_check_recovery(mddev); 4833 4834 blk_start_plug(&plug); 4835 handled = 0; 4836 spin_lock_irq(&conf->device_lock); 4837 while (1) { 4838 struct bio *bio; 4839 int batch_size; 4840 4841 if ( 4842 !list_empty(&conf->bitmap_list)) { 4843 /* Now is a good time to flush some bitmap updates */ 4844 conf->seq_flush++; 4845 spin_unlock_irq(&conf->device_lock); 4846 bitmap_unplug(mddev->bitmap); 4847 spin_lock_irq(&conf->device_lock); 4848 conf->seq_write = conf->seq_flush; 4849 activate_bit_delay(conf); 4850 } 4851 raid5_activate_delayed(conf); 4852 4853 while ((bio = remove_bio_from_retry(conf))) { 4854 int ok; 4855 spin_unlock_irq(&conf->device_lock); 4856 ok = retry_aligned_read(conf, bio); 4857 spin_lock_irq(&conf->device_lock); 4858 if (!ok) 4859 break; 4860 handled++; 4861 } 4862 4863 batch_size = handle_active_stripes(conf); 4864 if (!batch_size) 4865 break; 4866 handled += batch_size; 4867 4868 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 4869 spin_unlock_irq(&conf->device_lock); 4870 md_check_recovery(mddev); 4871 spin_lock_irq(&conf->device_lock); 4872 } 4873 } 4874 pr_debug("%d stripes handled\n", handled); 4875 4876 spin_unlock_irq(&conf->device_lock); 4877 4878 async_tx_issue_pending_all(); 4879 blk_finish_plug(&plug); 4880 4881 pr_debug("--- raid5d inactive\n"); 4882 } 4883 4884 static ssize_t 4885 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 4886 { 4887 struct r5conf *conf = mddev->private; 4888 if (conf) 4889 return sprintf(page, "%d\n", conf->max_nr_stripes); 4890 else 4891 return 0; 4892 } 4893 4894 int 4895 raid5_set_cache_size(struct mddev *mddev, int size) 4896 { 4897 struct r5conf *conf = mddev->private; 4898 int err; 4899 4900 if (size <= 16 || size > 32768) 4901 return -EINVAL; 4902 while (size < conf->max_nr_stripes) { 4903 if (drop_one_stripe(conf)) 4904 conf->max_nr_stripes--; 4905 else 4906 break; 4907 } 4908 err = md_allow_write(mddev); 4909 if (err) 4910 return err; 4911 while (size > conf->max_nr_stripes) { 4912 if (grow_one_stripe(conf)) 4913 conf->max_nr_stripes++; 4914 else break; 4915 } 4916 return 0; 4917 } 4918 EXPORT_SYMBOL(raid5_set_cache_size); 4919 4920 static ssize_t 4921 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 4922 { 4923 struct r5conf *conf = mddev->private; 4924 unsigned long new; 4925 int err; 4926 4927 if (len >= PAGE_SIZE) 4928 return -EINVAL; 4929 if (!conf) 4930 return -ENODEV; 4931 4932 if (kstrtoul(page, 10, &new)) 4933 return -EINVAL; 4934 err = raid5_set_cache_size(mddev, new); 4935 if (err) 4936 return err; 4937 return len; 4938 } 4939 4940 static struct md_sysfs_entry 4941 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 4942 raid5_show_stripe_cache_size, 4943 raid5_store_stripe_cache_size); 4944 4945 static ssize_t 4946 raid5_show_preread_threshold(struct mddev *mddev, char *page) 4947 { 4948 struct r5conf *conf = mddev->private; 4949 if (conf) 4950 return sprintf(page, "%d\n", conf->bypass_threshold); 4951 else 4952 return 0; 4953 } 4954 4955 static ssize_t 4956 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 4957 { 4958 struct r5conf *conf = mddev->private; 4959 unsigned long new; 4960 if (len >= PAGE_SIZE) 4961 return -EINVAL; 4962 if (!conf) 4963 return -ENODEV; 4964 4965 if (kstrtoul(page, 10, &new)) 4966 return -EINVAL; 4967 if (new > conf->max_nr_stripes) 4968 return -EINVAL; 4969 conf->bypass_threshold = new; 4970 return len; 4971 } 4972 4973 static struct md_sysfs_entry 4974 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 4975 S_IRUGO | S_IWUSR, 4976 raid5_show_preread_threshold, 4977 raid5_store_preread_threshold); 4978 4979 static ssize_t 4980 stripe_cache_active_show(struct mddev *mddev, char *page) 4981 { 4982 struct r5conf *conf = mddev->private; 4983 if (conf) 4984 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 4985 else 4986 return 0; 4987 } 4988 4989 static struct md_sysfs_entry 4990 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 4991 4992 static struct attribute *raid5_attrs[] = { 4993 &raid5_stripecache_size.attr, 4994 &raid5_stripecache_active.attr, 4995 &raid5_preread_bypass_threshold.attr, 4996 NULL, 4997 }; 4998 static struct attribute_group raid5_attrs_group = { 4999 .name = NULL, 5000 .attrs = raid5_attrs, 5001 }; 5002 5003 static sector_t 5004 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 5005 { 5006 struct r5conf *conf = mddev->private; 5007 5008 if (!sectors) 5009 sectors = mddev->dev_sectors; 5010 if (!raid_disks) 5011 /* size is defined by the smallest of previous and new size */ 5012 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 5013 5014 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5015 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 5016 return sectors * (raid_disks - conf->max_degraded); 5017 } 5018 5019 static void raid5_free_percpu(struct r5conf *conf) 5020 { 5021 struct raid5_percpu *percpu; 5022 unsigned long cpu; 5023 5024 if (!conf->percpu) 5025 return; 5026 5027 get_online_cpus(); 5028 for_each_possible_cpu(cpu) { 5029 percpu = per_cpu_ptr(conf->percpu, cpu); 5030 safe_put_page(percpu->spare_page); 5031 kfree(percpu->scribble); 5032 } 5033 #ifdef CONFIG_HOTPLUG_CPU 5034 unregister_cpu_notifier(&conf->cpu_notify); 5035 #endif 5036 put_online_cpus(); 5037 5038 free_percpu(conf->percpu); 5039 } 5040 5041 static void free_conf(struct r5conf *conf) 5042 { 5043 shrink_stripes(conf); 5044 raid5_free_percpu(conf); 5045 kfree(conf->disks); 5046 kfree(conf->stripe_hashtbl); 5047 kfree(conf); 5048 } 5049 5050 #ifdef CONFIG_HOTPLUG_CPU 5051 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 5052 void *hcpu) 5053 { 5054 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 5055 long cpu = (long)hcpu; 5056 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 5057 5058 switch (action) { 5059 case CPU_UP_PREPARE: 5060 case CPU_UP_PREPARE_FROZEN: 5061 if (conf->level == 6 && !percpu->spare_page) 5062 percpu->spare_page = alloc_page(GFP_KERNEL); 5063 if (!percpu->scribble) 5064 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5065 5066 if (!percpu->scribble || 5067 (conf->level == 6 && !percpu->spare_page)) { 5068 safe_put_page(percpu->spare_page); 5069 kfree(percpu->scribble); 5070 pr_err("%s: failed memory allocation for cpu%ld\n", 5071 __func__, cpu); 5072 return notifier_from_errno(-ENOMEM); 5073 } 5074 break; 5075 case CPU_DEAD: 5076 case CPU_DEAD_FROZEN: 5077 safe_put_page(percpu->spare_page); 5078 kfree(percpu->scribble); 5079 percpu->spare_page = NULL; 5080 percpu->scribble = NULL; 5081 break; 5082 default: 5083 break; 5084 } 5085 return NOTIFY_OK; 5086 } 5087 #endif 5088 5089 static int raid5_alloc_percpu(struct r5conf *conf) 5090 { 5091 unsigned long cpu; 5092 struct page *spare_page; 5093 struct raid5_percpu __percpu *allcpus; 5094 void *scribble; 5095 int err; 5096 5097 allcpus = alloc_percpu(struct raid5_percpu); 5098 if (!allcpus) 5099 return -ENOMEM; 5100 conf->percpu = allcpus; 5101 5102 get_online_cpus(); 5103 err = 0; 5104 for_each_present_cpu(cpu) { 5105 if (conf->level == 6) { 5106 spare_page = alloc_page(GFP_KERNEL); 5107 if (!spare_page) { 5108 err = -ENOMEM; 5109 break; 5110 } 5111 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 5112 } 5113 scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5114 if (!scribble) { 5115 err = -ENOMEM; 5116 break; 5117 } 5118 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 5119 } 5120 #ifdef CONFIG_HOTPLUG_CPU 5121 conf->cpu_notify.notifier_call = raid456_cpu_notify; 5122 conf->cpu_notify.priority = 0; 5123 if (err == 0) 5124 err = register_cpu_notifier(&conf->cpu_notify); 5125 #endif 5126 put_online_cpus(); 5127 5128 return err; 5129 } 5130 5131 static struct r5conf *setup_conf(struct mddev *mddev) 5132 { 5133 struct r5conf *conf; 5134 int raid_disk, memory, max_disks; 5135 struct md_rdev *rdev; 5136 struct disk_info *disk; 5137 char pers_name[6]; 5138 5139 if (mddev->new_level != 5 5140 && mddev->new_level != 4 5141 && mddev->new_level != 6) { 5142 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 5143 mdname(mddev), mddev->new_level); 5144 return ERR_PTR(-EIO); 5145 } 5146 if ((mddev->new_level == 5 5147 && !algorithm_valid_raid5(mddev->new_layout)) || 5148 (mddev->new_level == 6 5149 && !algorithm_valid_raid6(mddev->new_layout))) { 5150 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 5151 mdname(mddev), mddev->new_layout); 5152 return ERR_PTR(-EIO); 5153 } 5154 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 5155 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 5156 mdname(mddev), mddev->raid_disks); 5157 return ERR_PTR(-EINVAL); 5158 } 5159 5160 if (!mddev->new_chunk_sectors || 5161 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 5162 !is_power_of_2(mddev->new_chunk_sectors)) { 5163 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 5164 mdname(mddev), mddev->new_chunk_sectors << 9); 5165 return ERR_PTR(-EINVAL); 5166 } 5167 5168 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 5169 if (conf == NULL) 5170 goto abort; 5171 spin_lock_init(&conf->device_lock); 5172 init_waitqueue_head(&conf->wait_for_stripe); 5173 init_waitqueue_head(&conf->wait_for_overlap); 5174 INIT_LIST_HEAD(&conf->handle_list); 5175 INIT_LIST_HEAD(&conf->hold_list); 5176 INIT_LIST_HEAD(&conf->delayed_list); 5177 INIT_LIST_HEAD(&conf->bitmap_list); 5178 INIT_LIST_HEAD(&conf->inactive_list); 5179 atomic_set(&conf->active_stripes, 0); 5180 atomic_set(&conf->preread_active_stripes, 0); 5181 atomic_set(&conf->active_aligned_reads, 0); 5182 conf->bypass_threshold = BYPASS_THRESHOLD; 5183 conf->recovery_disabled = mddev->recovery_disabled - 1; 5184 5185 conf->raid_disks = mddev->raid_disks; 5186 if (mddev->reshape_position == MaxSector) 5187 conf->previous_raid_disks = mddev->raid_disks; 5188 else 5189 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 5190 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 5191 conf->scribble_len = scribble_len(max_disks); 5192 5193 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5194 GFP_KERNEL); 5195 if (!conf->disks) 5196 goto abort; 5197 5198 conf->mddev = mddev; 5199 5200 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5201 goto abort; 5202 5203 conf->level = mddev->new_level; 5204 if (raid5_alloc_percpu(conf) != 0) 5205 goto abort; 5206 5207 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5208 5209 rdev_for_each(rdev, mddev) { 5210 raid_disk = rdev->raid_disk; 5211 if (raid_disk >= max_disks 5212 || raid_disk < 0) 5213 continue; 5214 disk = conf->disks + raid_disk; 5215 5216 if (test_bit(Replacement, &rdev->flags)) { 5217 if (disk->replacement) 5218 goto abort; 5219 disk->replacement = rdev; 5220 } else { 5221 if (disk->rdev) 5222 goto abort; 5223 disk->rdev = rdev; 5224 } 5225 5226 if (test_bit(In_sync, &rdev->flags)) { 5227 char b[BDEVNAME_SIZE]; 5228 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5229 " disk %d\n", 5230 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5231 } else if (rdev->saved_raid_disk != raid_disk) 5232 /* Cannot rely on bitmap to complete recovery */ 5233 conf->fullsync = 1; 5234 } 5235 5236 conf->chunk_sectors = mddev->new_chunk_sectors; 5237 conf->level = mddev->new_level; 5238 if (conf->level == 6) 5239 conf->max_degraded = 2; 5240 else 5241 conf->max_degraded = 1; 5242 conf->algorithm = mddev->new_layout; 5243 conf->max_nr_stripes = NR_STRIPES; 5244 conf->reshape_progress = mddev->reshape_position; 5245 if (conf->reshape_progress != MaxSector) { 5246 conf->prev_chunk_sectors = mddev->chunk_sectors; 5247 conf->prev_algo = mddev->layout; 5248 } 5249 5250 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5251 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5252 if (grow_stripes(conf, conf->max_nr_stripes)) { 5253 printk(KERN_ERR 5254 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5255 mdname(mddev), memory); 5256 goto abort; 5257 } else 5258 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5259 mdname(mddev), memory); 5260 5261 sprintf(pers_name, "raid%d", mddev->new_level); 5262 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5263 if (!conf->thread) { 5264 printk(KERN_ERR 5265 "md/raid:%s: couldn't allocate thread.\n", 5266 mdname(mddev)); 5267 goto abort; 5268 } 5269 5270 return conf; 5271 5272 abort: 5273 if (conf) { 5274 free_conf(conf); 5275 return ERR_PTR(-EIO); 5276 } else 5277 return ERR_PTR(-ENOMEM); 5278 } 5279 5280 5281 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5282 { 5283 switch (algo) { 5284 case ALGORITHM_PARITY_0: 5285 if (raid_disk < max_degraded) 5286 return 1; 5287 break; 5288 case ALGORITHM_PARITY_N: 5289 if (raid_disk >= raid_disks - max_degraded) 5290 return 1; 5291 break; 5292 case ALGORITHM_PARITY_0_6: 5293 if (raid_disk == 0 || 5294 raid_disk == raid_disks - 1) 5295 return 1; 5296 break; 5297 case ALGORITHM_LEFT_ASYMMETRIC_6: 5298 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5299 case ALGORITHM_LEFT_SYMMETRIC_6: 5300 case ALGORITHM_RIGHT_SYMMETRIC_6: 5301 if (raid_disk == raid_disks - 1) 5302 return 1; 5303 } 5304 return 0; 5305 } 5306 5307 static int run(struct mddev *mddev) 5308 { 5309 struct r5conf *conf; 5310 int working_disks = 0; 5311 int dirty_parity_disks = 0; 5312 struct md_rdev *rdev; 5313 sector_t reshape_offset = 0; 5314 int i; 5315 long long min_offset_diff = 0; 5316 int first = 1; 5317 5318 if (mddev->recovery_cp != MaxSector) 5319 printk(KERN_NOTICE "md/raid:%s: not clean" 5320 " -- starting background reconstruction\n", 5321 mdname(mddev)); 5322 5323 rdev_for_each(rdev, mddev) { 5324 long long diff; 5325 if (rdev->raid_disk < 0) 5326 continue; 5327 diff = (rdev->new_data_offset - rdev->data_offset); 5328 if (first) { 5329 min_offset_diff = diff; 5330 first = 0; 5331 } else if (mddev->reshape_backwards && 5332 diff < min_offset_diff) 5333 min_offset_diff = diff; 5334 else if (!mddev->reshape_backwards && 5335 diff > min_offset_diff) 5336 min_offset_diff = diff; 5337 } 5338 5339 if (mddev->reshape_position != MaxSector) { 5340 /* Check that we can continue the reshape. 5341 * Difficulties arise if the stripe we would write to 5342 * next is at or after the stripe we would read from next. 5343 * For a reshape that changes the number of devices, this 5344 * is only possible for a very short time, and mdadm makes 5345 * sure that time appears to have past before assembling 5346 * the array. So we fail if that time hasn't passed. 5347 * For a reshape that keeps the number of devices the same 5348 * mdadm must be monitoring the reshape can keeping the 5349 * critical areas read-only and backed up. It will start 5350 * the array in read-only mode, so we check for that. 5351 */ 5352 sector_t here_new, here_old; 5353 int old_disks; 5354 int max_degraded = (mddev->level == 6 ? 2 : 1); 5355 5356 if (mddev->new_level != mddev->level) { 5357 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5358 "required - aborting.\n", 5359 mdname(mddev)); 5360 return -EINVAL; 5361 } 5362 old_disks = mddev->raid_disks - mddev->delta_disks; 5363 /* reshape_position must be on a new-stripe boundary, and one 5364 * further up in new geometry must map after here in old 5365 * geometry. 5366 */ 5367 here_new = mddev->reshape_position; 5368 if (sector_div(here_new, mddev->new_chunk_sectors * 5369 (mddev->raid_disks - max_degraded))) { 5370 printk(KERN_ERR "md/raid:%s: reshape_position not " 5371 "on a stripe boundary\n", mdname(mddev)); 5372 return -EINVAL; 5373 } 5374 reshape_offset = here_new * mddev->new_chunk_sectors; 5375 /* here_new is the stripe we will write to */ 5376 here_old = mddev->reshape_position; 5377 sector_div(here_old, mddev->chunk_sectors * 5378 (old_disks-max_degraded)); 5379 /* here_old is the first stripe that we might need to read 5380 * from */ 5381 if (mddev->delta_disks == 0) { 5382 if ((here_new * mddev->new_chunk_sectors != 5383 here_old * mddev->chunk_sectors)) { 5384 printk(KERN_ERR "md/raid:%s: reshape position is" 5385 " confused - aborting\n", mdname(mddev)); 5386 return -EINVAL; 5387 } 5388 /* We cannot be sure it is safe to start an in-place 5389 * reshape. It is only safe if user-space is monitoring 5390 * and taking constant backups. 5391 * mdadm always starts a situation like this in 5392 * readonly mode so it can take control before 5393 * allowing any writes. So just check for that. 5394 */ 5395 if (abs(min_offset_diff) >= mddev->chunk_sectors && 5396 abs(min_offset_diff) >= mddev->new_chunk_sectors) 5397 /* not really in-place - so OK */; 5398 else if (mddev->ro == 0) { 5399 printk(KERN_ERR "md/raid:%s: in-place reshape " 5400 "must be started in read-only mode " 5401 "- aborting\n", 5402 mdname(mddev)); 5403 return -EINVAL; 5404 } 5405 } else if (mddev->reshape_backwards 5406 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 5407 here_old * mddev->chunk_sectors) 5408 : (here_new * mddev->new_chunk_sectors >= 5409 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 5410 /* Reading from the same stripe as writing to - bad */ 5411 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 5412 "auto-recovery - aborting.\n", 5413 mdname(mddev)); 5414 return -EINVAL; 5415 } 5416 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 5417 mdname(mddev)); 5418 /* OK, we should be able to continue; */ 5419 } else { 5420 BUG_ON(mddev->level != mddev->new_level); 5421 BUG_ON(mddev->layout != mddev->new_layout); 5422 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 5423 BUG_ON(mddev->delta_disks != 0); 5424 } 5425 5426 if (mddev->private == NULL) 5427 conf = setup_conf(mddev); 5428 else 5429 conf = mddev->private; 5430 5431 if (IS_ERR(conf)) 5432 return PTR_ERR(conf); 5433 5434 conf->min_offset_diff = min_offset_diff; 5435 mddev->thread = conf->thread; 5436 conf->thread = NULL; 5437 mddev->private = conf; 5438 5439 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 5440 i++) { 5441 rdev = conf->disks[i].rdev; 5442 if (!rdev && conf->disks[i].replacement) { 5443 /* The replacement is all we have yet */ 5444 rdev = conf->disks[i].replacement; 5445 conf->disks[i].replacement = NULL; 5446 clear_bit(Replacement, &rdev->flags); 5447 conf->disks[i].rdev = rdev; 5448 } 5449 if (!rdev) 5450 continue; 5451 if (conf->disks[i].replacement && 5452 conf->reshape_progress != MaxSector) { 5453 /* replacements and reshape simply do not mix. */ 5454 printk(KERN_ERR "md: cannot handle concurrent " 5455 "replacement and reshape.\n"); 5456 goto abort; 5457 } 5458 if (test_bit(In_sync, &rdev->flags)) { 5459 working_disks++; 5460 continue; 5461 } 5462 /* This disc is not fully in-sync. However if it 5463 * just stored parity (beyond the recovery_offset), 5464 * when we don't need to be concerned about the 5465 * array being dirty. 5466 * When reshape goes 'backwards', we never have 5467 * partially completed devices, so we only need 5468 * to worry about reshape going forwards. 5469 */ 5470 /* Hack because v0.91 doesn't store recovery_offset properly. */ 5471 if (mddev->major_version == 0 && 5472 mddev->minor_version > 90) 5473 rdev->recovery_offset = reshape_offset; 5474 5475 if (rdev->recovery_offset < reshape_offset) { 5476 /* We need to check old and new layout */ 5477 if (!only_parity(rdev->raid_disk, 5478 conf->algorithm, 5479 conf->raid_disks, 5480 conf->max_degraded)) 5481 continue; 5482 } 5483 if (!only_parity(rdev->raid_disk, 5484 conf->prev_algo, 5485 conf->previous_raid_disks, 5486 conf->max_degraded)) 5487 continue; 5488 dirty_parity_disks++; 5489 } 5490 5491 /* 5492 * 0 for a fully functional array, 1 or 2 for a degraded array. 5493 */ 5494 mddev->degraded = calc_degraded(conf); 5495 5496 if (has_failed(conf)) { 5497 printk(KERN_ERR "md/raid:%s: not enough operational devices" 5498 " (%d/%d failed)\n", 5499 mdname(mddev), mddev->degraded, conf->raid_disks); 5500 goto abort; 5501 } 5502 5503 /* device size must be a multiple of chunk size */ 5504 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 5505 mddev->resync_max_sectors = mddev->dev_sectors; 5506 5507 if (mddev->degraded > dirty_parity_disks && 5508 mddev->recovery_cp != MaxSector) { 5509 if (mddev->ok_start_degraded) 5510 printk(KERN_WARNING 5511 "md/raid:%s: starting dirty degraded array" 5512 " - data corruption possible.\n", 5513 mdname(mddev)); 5514 else { 5515 printk(KERN_ERR 5516 "md/raid:%s: cannot start dirty degraded array.\n", 5517 mdname(mddev)); 5518 goto abort; 5519 } 5520 } 5521 5522 if (mddev->degraded == 0) 5523 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 5524 " devices, algorithm %d\n", mdname(mddev), conf->level, 5525 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 5526 mddev->new_layout); 5527 else 5528 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 5529 " out of %d devices, algorithm %d\n", 5530 mdname(mddev), conf->level, 5531 mddev->raid_disks - mddev->degraded, 5532 mddev->raid_disks, mddev->new_layout); 5533 5534 print_raid5_conf(conf); 5535 5536 if (conf->reshape_progress != MaxSector) { 5537 conf->reshape_safe = conf->reshape_progress; 5538 atomic_set(&conf->reshape_stripes, 0); 5539 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5540 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5541 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5542 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5543 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5544 "reshape"); 5545 } 5546 5547 5548 /* Ok, everything is just fine now */ 5549 if (mddev->to_remove == &raid5_attrs_group) 5550 mddev->to_remove = NULL; 5551 else if (mddev->kobj.sd && 5552 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 5553 printk(KERN_WARNING 5554 "raid5: failed to create sysfs attributes for %s\n", 5555 mdname(mddev)); 5556 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5557 5558 if (mddev->queue) { 5559 int chunk_size; 5560 bool discard_supported = true; 5561 /* read-ahead size must cover two whole stripes, which 5562 * is 2 * (datadisks) * chunksize where 'n' is the 5563 * number of raid devices 5564 */ 5565 int data_disks = conf->previous_raid_disks - conf->max_degraded; 5566 int stripe = data_disks * 5567 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 5568 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5569 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5570 5571 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 5572 5573 mddev->queue->backing_dev_info.congested_data = mddev; 5574 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 5575 5576 chunk_size = mddev->chunk_sectors << 9; 5577 blk_queue_io_min(mddev->queue, chunk_size); 5578 blk_queue_io_opt(mddev->queue, chunk_size * 5579 (conf->raid_disks - conf->max_degraded)); 5580 /* 5581 * We can only discard a whole stripe. It doesn't make sense to 5582 * discard data disk but write parity disk 5583 */ 5584 stripe = stripe * PAGE_SIZE; 5585 /* Round up to power of 2, as discard handling 5586 * currently assumes that */ 5587 while ((stripe-1) & stripe) 5588 stripe = (stripe | (stripe-1)) + 1; 5589 mddev->queue->limits.discard_alignment = stripe; 5590 mddev->queue->limits.discard_granularity = stripe; 5591 /* 5592 * unaligned part of discard request will be ignored, so can't 5593 * guarantee discard_zerors_data 5594 */ 5595 mddev->queue->limits.discard_zeroes_data = 0; 5596 5597 blk_queue_max_write_same_sectors(mddev->queue, 0); 5598 5599 rdev_for_each(rdev, mddev) { 5600 disk_stack_limits(mddev->gendisk, rdev->bdev, 5601 rdev->data_offset << 9); 5602 disk_stack_limits(mddev->gendisk, rdev->bdev, 5603 rdev->new_data_offset << 9); 5604 /* 5605 * discard_zeroes_data is required, otherwise data 5606 * could be lost. Consider a scenario: discard a stripe 5607 * (the stripe could be inconsistent if 5608 * discard_zeroes_data is 0); write one disk of the 5609 * stripe (the stripe could be inconsistent again 5610 * depending on which disks are used to calculate 5611 * parity); the disk is broken; The stripe data of this 5612 * disk is lost. 5613 */ 5614 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 5615 !bdev_get_queue(rdev->bdev)-> 5616 limits.discard_zeroes_data) 5617 discard_supported = false; 5618 } 5619 5620 if (discard_supported && 5621 mddev->queue->limits.max_discard_sectors >= stripe && 5622 mddev->queue->limits.discard_granularity >= stripe) 5623 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 5624 mddev->queue); 5625 else 5626 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 5627 mddev->queue); 5628 } 5629 5630 return 0; 5631 abort: 5632 md_unregister_thread(&mddev->thread); 5633 print_raid5_conf(conf); 5634 free_conf(conf); 5635 mddev->private = NULL; 5636 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 5637 return -EIO; 5638 } 5639 5640 static int stop(struct mddev *mddev) 5641 { 5642 struct r5conf *conf = mddev->private; 5643 5644 md_unregister_thread(&mddev->thread); 5645 if (mddev->queue) 5646 mddev->queue->backing_dev_info.congested_fn = NULL; 5647 free_conf(conf); 5648 mddev->private = NULL; 5649 mddev->to_remove = &raid5_attrs_group; 5650 return 0; 5651 } 5652 5653 static void status(struct seq_file *seq, struct mddev *mddev) 5654 { 5655 struct r5conf *conf = mddev->private; 5656 int i; 5657 5658 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 5659 mddev->chunk_sectors / 2, mddev->layout); 5660 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 5661 for (i = 0; i < conf->raid_disks; i++) 5662 seq_printf (seq, "%s", 5663 conf->disks[i].rdev && 5664 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 5665 seq_printf (seq, "]"); 5666 } 5667 5668 static void print_raid5_conf (struct r5conf *conf) 5669 { 5670 int i; 5671 struct disk_info *tmp; 5672 5673 printk(KERN_DEBUG "RAID conf printout:\n"); 5674 if (!conf) { 5675 printk("(conf==NULL)\n"); 5676 return; 5677 } 5678 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 5679 conf->raid_disks, 5680 conf->raid_disks - conf->mddev->degraded); 5681 5682 for (i = 0; i < conf->raid_disks; i++) { 5683 char b[BDEVNAME_SIZE]; 5684 tmp = conf->disks + i; 5685 if (tmp->rdev) 5686 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 5687 i, !test_bit(Faulty, &tmp->rdev->flags), 5688 bdevname(tmp->rdev->bdev, b)); 5689 } 5690 } 5691 5692 static int raid5_spare_active(struct mddev *mddev) 5693 { 5694 int i; 5695 struct r5conf *conf = mddev->private; 5696 struct disk_info *tmp; 5697 int count = 0; 5698 unsigned long flags; 5699 5700 for (i = 0; i < conf->raid_disks; i++) { 5701 tmp = conf->disks + i; 5702 if (tmp->replacement 5703 && tmp->replacement->recovery_offset == MaxSector 5704 && !test_bit(Faulty, &tmp->replacement->flags) 5705 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 5706 /* Replacement has just become active. */ 5707 if (!tmp->rdev 5708 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 5709 count++; 5710 if (tmp->rdev) { 5711 /* Replaced device not technically faulty, 5712 * but we need to be sure it gets removed 5713 * and never re-added. 5714 */ 5715 set_bit(Faulty, &tmp->rdev->flags); 5716 sysfs_notify_dirent_safe( 5717 tmp->rdev->sysfs_state); 5718 } 5719 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 5720 } else if (tmp->rdev 5721 && tmp->rdev->recovery_offset == MaxSector 5722 && !test_bit(Faulty, &tmp->rdev->flags) 5723 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 5724 count++; 5725 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 5726 } 5727 } 5728 spin_lock_irqsave(&conf->device_lock, flags); 5729 mddev->degraded = calc_degraded(conf); 5730 spin_unlock_irqrestore(&conf->device_lock, flags); 5731 print_raid5_conf(conf); 5732 return count; 5733 } 5734 5735 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 5736 { 5737 struct r5conf *conf = mddev->private; 5738 int err = 0; 5739 int number = rdev->raid_disk; 5740 struct md_rdev **rdevp; 5741 struct disk_info *p = conf->disks + number; 5742 5743 print_raid5_conf(conf); 5744 if (rdev == p->rdev) 5745 rdevp = &p->rdev; 5746 else if (rdev == p->replacement) 5747 rdevp = &p->replacement; 5748 else 5749 return 0; 5750 5751 if (number >= conf->raid_disks && 5752 conf->reshape_progress == MaxSector) 5753 clear_bit(In_sync, &rdev->flags); 5754 5755 if (test_bit(In_sync, &rdev->flags) || 5756 atomic_read(&rdev->nr_pending)) { 5757 err = -EBUSY; 5758 goto abort; 5759 } 5760 /* Only remove non-faulty devices if recovery 5761 * isn't possible. 5762 */ 5763 if (!test_bit(Faulty, &rdev->flags) && 5764 mddev->recovery_disabled != conf->recovery_disabled && 5765 !has_failed(conf) && 5766 (!p->replacement || p->replacement == rdev) && 5767 number < conf->raid_disks) { 5768 err = -EBUSY; 5769 goto abort; 5770 } 5771 *rdevp = NULL; 5772 synchronize_rcu(); 5773 if (atomic_read(&rdev->nr_pending)) { 5774 /* lost the race, try later */ 5775 err = -EBUSY; 5776 *rdevp = rdev; 5777 } else if (p->replacement) { 5778 /* We must have just cleared 'rdev' */ 5779 p->rdev = p->replacement; 5780 clear_bit(Replacement, &p->replacement->flags); 5781 smp_mb(); /* Make sure other CPUs may see both as identical 5782 * but will never see neither - if they are careful 5783 */ 5784 p->replacement = NULL; 5785 clear_bit(WantReplacement, &rdev->flags); 5786 } else 5787 /* We might have just removed the Replacement as faulty- 5788 * clear the bit just in case 5789 */ 5790 clear_bit(WantReplacement, &rdev->flags); 5791 abort: 5792 5793 print_raid5_conf(conf); 5794 return err; 5795 } 5796 5797 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 5798 { 5799 struct r5conf *conf = mddev->private; 5800 int err = -EEXIST; 5801 int disk; 5802 struct disk_info *p; 5803 int first = 0; 5804 int last = conf->raid_disks - 1; 5805 5806 if (mddev->recovery_disabled == conf->recovery_disabled) 5807 return -EBUSY; 5808 5809 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 5810 /* no point adding a device */ 5811 return -EINVAL; 5812 5813 if (rdev->raid_disk >= 0) 5814 first = last = rdev->raid_disk; 5815 5816 /* 5817 * find the disk ... but prefer rdev->saved_raid_disk 5818 * if possible. 5819 */ 5820 if (rdev->saved_raid_disk >= 0 && 5821 rdev->saved_raid_disk >= first && 5822 conf->disks[rdev->saved_raid_disk].rdev == NULL) 5823 first = rdev->saved_raid_disk; 5824 5825 for (disk = first; disk <= last; disk++) { 5826 p = conf->disks + disk; 5827 if (p->rdev == NULL) { 5828 clear_bit(In_sync, &rdev->flags); 5829 rdev->raid_disk = disk; 5830 err = 0; 5831 if (rdev->saved_raid_disk != disk) 5832 conf->fullsync = 1; 5833 rcu_assign_pointer(p->rdev, rdev); 5834 goto out; 5835 } 5836 } 5837 for (disk = first; disk <= last; disk++) { 5838 p = conf->disks + disk; 5839 if (test_bit(WantReplacement, &p->rdev->flags) && 5840 p->replacement == NULL) { 5841 clear_bit(In_sync, &rdev->flags); 5842 set_bit(Replacement, &rdev->flags); 5843 rdev->raid_disk = disk; 5844 err = 0; 5845 conf->fullsync = 1; 5846 rcu_assign_pointer(p->replacement, rdev); 5847 break; 5848 } 5849 } 5850 out: 5851 print_raid5_conf(conf); 5852 return err; 5853 } 5854 5855 static int raid5_resize(struct mddev *mddev, sector_t sectors) 5856 { 5857 /* no resync is happening, and there is enough space 5858 * on all devices, so we can resize. 5859 * We need to make sure resync covers any new space. 5860 * If the array is shrinking we should possibly wait until 5861 * any io in the removed space completes, but it hardly seems 5862 * worth it. 5863 */ 5864 sector_t newsize; 5865 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5866 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 5867 if (mddev->external_size && 5868 mddev->array_sectors > newsize) 5869 return -EINVAL; 5870 if (mddev->bitmap) { 5871 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 5872 if (ret) 5873 return ret; 5874 } 5875 md_set_array_sectors(mddev, newsize); 5876 set_capacity(mddev->gendisk, mddev->array_sectors); 5877 revalidate_disk(mddev->gendisk); 5878 if (sectors > mddev->dev_sectors && 5879 mddev->recovery_cp > mddev->dev_sectors) { 5880 mddev->recovery_cp = mddev->dev_sectors; 5881 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5882 } 5883 mddev->dev_sectors = sectors; 5884 mddev->resync_max_sectors = sectors; 5885 return 0; 5886 } 5887 5888 static int check_stripe_cache(struct mddev *mddev) 5889 { 5890 /* Can only proceed if there are plenty of stripe_heads. 5891 * We need a minimum of one full stripe,, and for sensible progress 5892 * it is best to have about 4 times that. 5893 * If we require 4 times, then the default 256 4K stripe_heads will 5894 * allow for chunk sizes up to 256K, which is probably OK. 5895 * If the chunk size is greater, user-space should request more 5896 * stripe_heads first. 5897 */ 5898 struct r5conf *conf = mddev->private; 5899 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 5900 > conf->max_nr_stripes || 5901 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 5902 > conf->max_nr_stripes) { 5903 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 5904 mdname(mddev), 5905 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 5906 / STRIPE_SIZE)*4); 5907 return 0; 5908 } 5909 return 1; 5910 } 5911 5912 static int check_reshape(struct mddev *mddev) 5913 { 5914 struct r5conf *conf = mddev->private; 5915 5916 if (mddev->delta_disks == 0 && 5917 mddev->new_layout == mddev->layout && 5918 mddev->new_chunk_sectors == mddev->chunk_sectors) 5919 return 0; /* nothing to do */ 5920 if (has_failed(conf)) 5921 return -EINVAL; 5922 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 5923 /* We might be able to shrink, but the devices must 5924 * be made bigger first. 5925 * For raid6, 4 is the minimum size. 5926 * Otherwise 2 is the minimum 5927 */ 5928 int min = 2; 5929 if (mddev->level == 6) 5930 min = 4; 5931 if (mddev->raid_disks + mddev->delta_disks < min) 5932 return -EINVAL; 5933 } 5934 5935 if (!check_stripe_cache(mddev)) 5936 return -ENOSPC; 5937 5938 return resize_stripes(conf, (conf->previous_raid_disks 5939 + mddev->delta_disks)); 5940 } 5941 5942 static int raid5_start_reshape(struct mddev *mddev) 5943 { 5944 struct r5conf *conf = mddev->private; 5945 struct md_rdev *rdev; 5946 int spares = 0; 5947 unsigned long flags; 5948 5949 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5950 return -EBUSY; 5951 5952 if (!check_stripe_cache(mddev)) 5953 return -ENOSPC; 5954 5955 if (has_failed(conf)) 5956 return -EINVAL; 5957 5958 rdev_for_each(rdev, mddev) { 5959 if (!test_bit(In_sync, &rdev->flags) 5960 && !test_bit(Faulty, &rdev->flags)) 5961 spares++; 5962 } 5963 5964 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 5965 /* Not enough devices even to make a degraded array 5966 * of that size 5967 */ 5968 return -EINVAL; 5969 5970 /* Refuse to reduce size of the array. Any reductions in 5971 * array size must be through explicit setting of array_size 5972 * attribute. 5973 */ 5974 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 5975 < mddev->array_sectors) { 5976 printk(KERN_ERR "md/raid:%s: array size must be reduced " 5977 "before number of disks\n", mdname(mddev)); 5978 return -EINVAL; 5979 } 5980 5981 atomic_set(&conf->reshape_stripes, 0); 5982 spin_lock_irq(&conf->device_lock); 5983 conf->previous_raid_disks = conf->raid_disks; 5984 conf->raid_disks += mddev->delta_disks; 5985 conf->prev_chunk_sectors = conf->chunk_sectors; 5986 conf->chunk_sectors = mddev->new_chunk_sectors; 5987 conf->prev_algo = conf->algorithm; 5988 conf->algorithm = mddev->new_layout; 5989 conf->generation++; 5990 /* Code that selects data_offset needs to see the generation update 5991 * if reshape_progress has been set - so a memory barrier needed. 5992 */ 5993 smp_mb(); 5994 if (mddev->reshape_backwards) 5995 conf->reshape_progress = raid5_size(mddev, 0, 0); 5996 else 5997 conf->reshape_progress = 0; 5998 conf->reshape_safe = conf->reshape_progress; 5999 spin_unlock_irq(&conf->device_lock); 6000 6001 /* Add some new drives, as many as will fit. 6002 * We know there are enough to make the newly sized array work. 6003 * Don't add devices if we are reducing the number of 6004 * devices in the array. This is because it is not possible 6005 * to correctly record the "partially reconstructed" state of 6006 * such devices during the reshape and confusion could result. 6007 */ 6008 if (mddev->delta_disks >= 0) { 6009 rdev_for_each(rdev, mddev) 6010 if (rdev->raid_disk < 0 && 6011 !test_bit(Faulty, &rdev->flags)) { 6012 if (raid5_add_disk(mddev, rdev) == 0) { 6013 if (rdev->raid_disk 6014 >= conf->previous_raid_disks) 6015 set_bit(In_sync, &rdev->flags); 6016 else 6017 rdev->recovery_offset = 0; 6018 6019 if (sysfs_link_rdev(mddev, rdev)) 6020 /* Failure here is OK */; 6021 } 6022 } else if (rdev->raid_disk >= conf->previous_raid_disks 6023 && !test_bit(Faulty, &rdev->flags)) { 6024 /* This is a spare that was manually added */ 6025 set_bit(In_sync, &rdev->flags); 6026 } 6027 6028 /* When a reshape changes the number of devices, 6029 * ->degraded is measured against the larger of the 6030 * pre and post number of devices. 6031 */ 6032 spin_lock_irqsave(&conf->device_lock, flags); 6033 mddev->degraded = calc_degraded(conf); 6034 spin_unlock_irqrestore(&conf->device_lock, flags); 6035 } 6036 mddev->raid_disks = conf->raid_disks; 6037 mddev->reshape_position = conf->reshape_progress; 6038 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6039 6040 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6041 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6042 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6043 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6044 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6045 "reshape"); 6046 if (!mddev->sync_thread) { 6047 mddev->recovery = 0; 6048 spin_lock_irq(&conf->device_lock); 6049 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 6050 rdev_for_each(rdev, mddev) 6051 rdev->new_data_offset = rdev->data_offset; 6052 smp_wmb(); 6053 conf->reshape_progress = MaxSector; 6054 mddev->reshape_position = MaxSector; 6055 spin_unlock_irq(&conf->device_lock); 6056 return -EAGAIN; 6057 } 6058 conf->reshape_checkpoint = jiffies; 6059 md_wakeup_thread(mddev->sync_thread); 6060 md_new_event(mddev); 6061 return 0; 6062 } 6063 6064 /* This is called from the reshape thread and should make any 6065 * changes needed in 'conf' 6066 */ 6067 static void end_reshape(struct r5conf *conf) 6068 { 6069 6070 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 6071 struct md_rdev *rdev; 6072 6073 spin_lock_irq(&conf->device_lock); 6074 conf->previous_raid_disks = conf->raid_disks; 6075 rdev_for_each(rdev, conf->mddev) 6076 rdev->data_offset = rdev->new_data_offset; 6077 smp_wmb(); 6078 conf->reshape_progress = MaxSector; 6079 spin_unlock_irq(&conf->device_lock); 6080 wake_up(&conf->wait_for_overlap); 6081 6082 /* read-ahead size must cover two whole stripes, which is 6083 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 6084 */ 6085 if (conf->mddev->queue) { 6086 int data_disks = conf->raid_disks - conf->max_degraded; 6087 int stripe = data_disks * ((conf->chunk_sectors << 9) 6088 / PAGE_SIZE); 6089 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6090 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6091 } 6092 } 6093 } 6094 6095 /* This is called from the raid5d thread with mddev_lock held. 6096 * It makes config changes to the device. 6097 */ 6098 static void raid5_finish_reshape(struct mddev *mddev) 6099 { 6100 struct r5conf *conf = mddev->private; 6101 6102 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6103 6104 if (mddev->delta_disks > 0) { 6105 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6106 set_capacity(mddev->gendisk, mddev->array_sectors); 6107 revalidate_disk(mddev->gendisk); 6108 } else { 6109 int d; 6110 spin_lock_irq(&conf->device_lock); 6111 mddev->degraded = calc_degraded(conf); 6112 spin_unlock_irq(&conf->device_lock); 6113 for (d = conf->raid_disks ; 6114 d < conf->raid_disks - mddev->delta_disks; 6115 d++) { 6116 struct md_rdev *rdev = conf->disks[d].rdev; 6117 if (rdev) 6118 clear_bit(In_sync, &rdev->flags); 6119 rdev = conf->disks[d].replacement; 6120 if (rdev) 6121 clear_bit(In_sync, &rdev->flags); 6122 } 6123 } 6124 mddev->layout = conf->algorithm; 6125 mddev->chunk_sectors = conf->chunk_sectors; 6126 mddev->reshape_position = MaxSector; 6127 mddev->delta_disks = 0; 6128 mddev->reshape_backwards = 0; 6129 } 6130 } 6131 6132 static void raid5_quiesce(struct mddev *mddev, int state) 6133 { 6134 struct r5conf *conf = mddev->private; 6135 6136 switch(state) { 6137 case 2: /* resume for a suspend */ 6138 wake_up(&conf->wait_for_overlap); 6139 break; 6140 6141 case 1: /* stop all writes */ 6142 spin_lock_irq(&conf->device_lock); 6143 /* '2' tells resync/reshape to pause so that all 6144 * active stripes can drain 6145 */ 6146 conf->quiesce = 2; 6147 wait_event_lock_irq(conf->wait_for_stripe, 6148 atomic_read(&conf->active_stripes) == 0 && 6149 atomic_read(&conf->active_aligned_reads) == 0, 6150 conf->device_lock); 6151 conf->quiesce = 1; 6152 spin_unlock_irq(&conf->device_lock); 6153 /* allow reshape to continue */ 6154 wake_up(&conf->wait_for_overlap); 6155 break; 6156 6157 case 0: /* re-enable writes */ 6158 spin_lock_irq(&conf->device_lock); 6159 conf->quiesce = 0; 6160 wake_up(&conf->wait_for_stripe); 6161 wake_up(&conf->wait_for_overlap); 6162 spin_unlock_irq(&conf->device_lock); 6163 break; 6164 } 6165 } 6166 6167 6168 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 6169 { 6170 struct r0conf *raid0_conf = mddev->private; 6171 sector_t sectors; 6172 6173 /* for raid0 takeover only one zone is supported */ 6174 if (raid0_conf->nr_strip_zones > 1) { 6175 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 6176 mdname(mddev)); 6177 return ERR_PTR(-EINVAL); 6178 } 6179 6180 sectors = raid0_conf->strip_zone[0].zone_end; 6181 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 6182 mddev->dev_sectors = sectors; 6183 mddev->new_level = level; 6184 mddev->new_layout = ALGORITHM_PARITY_N; 6185 mddev->new_chunk_sectors = mddev->chunk_sectors; 6186 mddev->raid_disks += 1; 6187 mddev->delta_disks = 1; 6188 /* make sure it will be not marked as dirty */ 6189 mddev->recovery_cp = MaxSector; 6190 6191 return setup_conf(mddev); 6192 } 6193 6194 6195 static void *raid5_takeover_raid1(struct mddev *mddev) 6196 { 6197 int chunksect; 6198 6199 if (mddev->raid_disks != 2 || 6200 mddev->degraded > 1) 6201 return ERR_PTR(-EINVAL); 6202 6203 /* Should check if there are write-behind devices? */ 6204 6205 chunksect = 64*2; /* 64K by default */ 6206 6207 /* The array must be an exact multiple of chunksize */ 6208 while (chunksect && (mddev->array_sectors & (chunksect-1))) 6209 chunksect >>= 1; 6210 6211 if ((chunksect<<9) < STRIPE_SIZE) 6212 /* array size does not allow a suitable chunk size */ 6213 return ERR_PTR(-EINVAL); 6214 6215 mddev->new_level = 5; 6216 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 6217 mddev->new_chunk_sectors = chunksect; 6218 6219 return setup_conf(mddev); 6220 } 6221 6222 static void *raid5_takeover_raid6(struct mddev *mddev) 6223 { 6224 int new_layout; 6225 6226 switch (mddev->layout) { 6227 case ALGORITHM_LEFT_ASYMMETRIC_6: 6228 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 6229 break; 6230 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6231 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 6232 break; 6233 case ALGORITHM_LEFT_SYMMETRIC_6: 6234 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6235 break; 6236 case ALGORITHM_RIGHT_SYMMETRIC_6: 6237 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6238 break; 6239 case ALGORITHM_PARITY_0_6: 6240 new_layout = ALGORITHM_PARITY_0; 6241 break; 6242 case ALGORITHM_PARITY_N: 6243 new_layout = ALGORITHM_PARITY_N; 6244 break; 6245 default: 6246 return ERR_PTR(-EINVAL); 6247 } 6248 mddev->new_level = 5; 6249 mddev->new_layout = new_layout; 6250 mddev->delta_disks = -1; 6251 mddev->raid_disks -= 1; 6252 return setup_conf(mddev); 6253 } 6254 6255 6256 static int raid5_check_reshape(struct mddev *mddev) 6257 { 6258 /* For a 2-drive array, the layout and chunk size can be changed 6259 * immediately as not restriping is needed. 6260 * For larger arrays we record the new value - after validation 6261 * to be used by a reshape pass. 6262 */ 6263 struct r5conf *conf = mddev->private; 6264 int new_chunk = mddev->new_chunk_sectors; 6265 6266 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6267 return -EINVAL; 6268 if (new_chunk > 0) { 6269 if (!is_power_of_2(new_chunk)) 6270 return -EINVAL; 6271 if (new_chunk < (PAGE_SIZE>>9)) 6272 return -EINVAL; 6273 if (mddev->array_sectors & (new_chunk-1)) 6274 /* not factor of array size */ 6275 return -EINVAL; 6276 } 6277 6278 /* They look valid */ 6279 6280 if (mddev->raid_disks == 2) { 6281 /* can make the change immediately */ 6282 if (mddev->new_layout >= 0) { 6283 conf->algorithm = mddev->new_layout; 6284 mddev->layout = mddev->new_layout; 6285 } 6286 if (new_chunk > 0) { 6287 conf->chunk_sectors = new_chunk ; 6288 mddev->chunk_sectors = new_chunk; 6289 } 6290 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6291 md_wakeup_thread(mddev->thread); 6292 } 6293 return check_reshape(mddev); 6294 } 6295 6296 static int raid6_check_reshape(struct mddev *mddev) 6297 { 6298 int new_chunk = mddev->new_chunk_sectors; 6299 6300 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6301 return -EINVAL; 6302 if (new_chunk > 0) { 6303 if (!is_power_of_2(new_chunk)) 6304 return -EINVAL; 6305 if (new_chunk < (PAGE_SIZE >> 9)) 6306 return -EINVAL; 6307 if (mddev->array_sectors & (new_chunk-1)) 6308 /* not factor of array size */ 6309 return -EINVAL; 6310 } 6311 6312 /* They look valid */ 6313 return check_reshape(mddev); 6314 } 6315 6316 static void *raid5_takeover(struct mddev *mddev) 6317 { 6318 /* raid5 can take over: 6319 * raid0 - if there is only one strip zone - make it a raid4 layout 6320 * raid1 - if there are two drives. We need to know the chunk size 6321 * raid4 - trivial - just use a raid4 layout. 6322 * raid6 - Providing it is a *_6 layout 6323 */ 6324 if (mddev->level == 0) 6325 return raid45_takeover_raid0(mddev, 5); 6326 if (mddev->level == 1) 6327 return raid5_takeover_raid1(mddev); 6328 if (mddev->level == 4) { 6329 mddev->new_layout = ALGORITHM_PARITY_N; 6330 mddev->new_level = 5; 6331 return setup_conf(mddev); 6332 } 6333 if (mddev->level == 6) 6334 return raid5_takeover_raid6(mddev); 6335 6336 return ERR_PTR(-EINVAL); 6337 } 6338 6339 static void *raid4_takeover(struct mddev *mddev) 6340 { 6341 /* raid4 can take over: 6342 * raid0 - if there is only one strip zone 6343 * raid5 - if layout is right 6344 */ 6345 if (mddev->level == 0) 6346 return raid45_takeover_raid0(mddev, 4); 6347 if (mddev->level == 5 && 6348 mddev->layout == ALGORITHM_PARITY_N) { 6349 mddev->new_layout = 0; 6350 mddev->new_level = 4; 6351 return setup_conf(mddev); 6352 } 6353 return ERR_PTR(-EINVAL); 6354 } 6355 6356 static struct md_personality raid5_personality; 6357 6358 static void *raid6_takeover(struct mddev *mddev) 6359 { 6360 /* Currently can only take over a raid5. We map the 6361 * personality to an equivalent raid6 personality 6362 * with the Q block at the end. 6363 */ 6364 int new_layout; 6365 6366 if (mddev->pers != &raid5_personality) 6367 return ERR_PTR(-EINVAL); 6368 if (mddev->degraded > 1) 6369 return ERR_PTR(-EINVAL); 6370 if (mddev->raid_disks > 253) 6371 return ERR_PTR(-EINVAL); 6372 if (mddev->raid_disks < 3) 6373 return ERR_PTR(-EINVAL); 6374 6375 switch (mddev->layout) { 6376 case ALGORITHM_LEFT_ASYMMETRIC: 6377 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 6378 break; 6379 case ALGORITHM_RIGHT_ASYMMETRIC: 6380 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 6381 break; 6382 case ALGORITHM_LEFT_SYMMETRIC: 6383 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 6384 break; 6385 case ALGORITHM_RIGHT_SYMMETRIC: 6386 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 6387 break; 6388 case ALGORITHM_PARITY_0: 6389 new_layout = ALGORITHM_PARITY_0_6; 6390 break; 6391 case ALGORITHM_PARITY_N: 6392 new_layout = ALGORITHM_PARITY_N; 6393 break; 6394 default: 6395 return ERR_PTR(-EINVAL); 6396 } 6397 mddev->new_level = 6; 6398 mddev->new_layout = new_layout; 6399 mddev->delta_disks = 1; 6400 mddev->raid_disks += 1; 6401 return setup_conf(mddev); 6402 } 6403 6404 6405 static struct md_personality raid6_personality = 6406 { 6407 .name = "raid6", 6408 .level = 6, 6409 .owner = THIS_MODULE, 6410 .make_request = make_request, 6411 .run = run, 6412 .stop = stop, 6413 .status = status, 6414 .error_handler = error, 6415 .hot_add_disk = raid5_add_disk, 6416 .hot_remove_disk= raid5_remove_disk, 6417 .spare_active = raid5_spare_active, 6418 .sync_request = sync_request, 6419 .resize = raid5_resize, 6420 .size = raid5_size, 6421 .check_reshape = raid6_check_reshape, 6422 .start_reshape = raid5_start_reshape, 6423 .finish_reshape = raid5_finish_reshape, 6424 .quiesce = raid5_quiesce, 6425 .takeover = raid6_takeover, 6426 }; 6427 static struct md_personality raid5_personality = 6428 { 6429 .name = "raid5", 6430 .level = 5, 6431 .owner = THIS_MODULE, 6432 .make_request = make_request, 6433 .run = run, 6434 .stop = stop, 6435 .status = status, 6436 .error_handler = error, 6437 .hot_add_disk = raid5_add_disk, 6438 .hot_remove_disk= raid5_remove_disk, 6439 .spare_active = raid5_spare_active, 6440 .sync_request = sync_request, 6441 .resize = raid5_resize, 6442 .size = raid5_size, 6443 .check_reshape = raid5_check_reshape, 6444 .start_reshape = raid5_start_reshape, 6445 .finish_reshape = raid5_finish_reshape, 6446 .quiesce = raid5_quiesce, 6447 .takeover = raid5_takeover, 6448 }; 6449 6450 static struct md_personality raid4_personality = 6451 { 6452 .name = "raid4", 6453 .level = 4, 6454 .owner = THIS_MODULE, 6455 .make_request = make_request, 6456 .run = run, 6457 .stop = stop, 6458 .status = status, 6459 .error_handler = error, 6460 .hot_add_disk = raid5_add_disk, 6461 .hot_remove_disk= raid5_remove_disk, 6462 .spare_active = raid5_spare_active, 6463 .sync_request = sync_request, 6464 .resize = raid5_resize, 6465 .size = raid5_size, 6466 .check_reshape = raid5_check_reshape, 6467 .start_reshape = raid5_start_reshape, 6468 .finish_reshape = raid5_finish_reshape, 6469 .quiesce = raid5_quiesce, 6470 .takeover = raid4_takeover, 6471 }; 6472 6473 static int __init raid5_init(void) 6474 { 6475 register_md_personality(&raid6_personality); 6476 register_md_personality(&raid5_personality); 6477 register_md_personality(&raid4_personality); 6478 return 0; 6479 } 6480 6481 static void raid5_exit(void) 6482 { 6483 unregister_md_personality(&raid6_personality); 6484 unregister_md_personality(&raid5_personality); 6485 unregister_md_personality(&raid4_personality); 6486 } 6487 6488 module_init(raid5_init); 6489 module_exit(raid5_exit); 6490 MODULE_LICENSE("GPL"); 6491 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 6492 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 6493 MODULE_ALIAS("md-raid5"); 6494 MODULE_ALIAS("md-raid4"); 6495 MODULE_ALIAS("md-level-5"); 6496 MODULE_ALIAS("md-level-4"); 6497 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 6498 MODULE_ALIAS("md-raid6"); 6499 MODULE_ALIAS("md-level-6"); 6500 6501 /* This used to be two separate modules, they were: */ 6502 MODULE_ALIAS("raid5"); 6503 MODULE_ALIAS("raid6"); 6504