xref: /openbmc/linux/drivers/md/raid5.c (revision 7d12e780)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53 
54 #include <linux/raid/bitmap.h>
55 
56 /*
57  * Stripe cache
58  */
59 
60 #define NR_STRIPES		256
61 #define STRIPE_SIZE		PAGE_SIZE
62 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
64 #define	IO_THRESHOLD		1
65 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK		(NR_HASH - 1)
67 
68 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69 
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_DEBUG	0
84 #define RAID5_PARANOIA	1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90 
91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
92 #if RAID5_DEBUG
93 #define inline
94 #define __inline__
95 #endif
96 
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101 
102 static inline int raid6_next_disk(int disk, int raid_disks)
103 {
104 	disk++;
105 	return (disk < raid_disks) ? disk : 0;
106 }
107 static void print_raid5_conf (raid5_conf_t *conf);
108 
109 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
110 {
111 	if (atomic_dec_and_test(&sh->count)) {
112 		BUG_ON(!list_empty(&sh->lru));
113 		BUG_ON(atomic_read(&conf->active_stripes)==0);
114 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
115 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
116 				list_add_tail(&sh->lru, &conf->delayed_list);
117 				blk_plug_device(conf->mddev->queue);
118 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
119 				   sh->bm_seq - conf->seq_write > 0) {
120 				list_add_tail(&sh->lru, &conf->bitmap_list);
121 				blk_plug_device(conf->mddev->queue);
122 			} else {
123 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
124 				list_add_tail(&sh->lru, &conf->handle_list);
125 			}
126 			md_wakeup_thread(conf->mddev->thread);
127 		} else {
128 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
129 				atomic_dec(&conf->preread_active_stripes);
130 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
131 					md_wakeup_thread(conf->mddev->thread);
132 			}
133 			atomic_dec(&conf->active_stripes);
134 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
135 				list_add_tail(&sh->lru, &conf->inactive_list);
136 				wake_up(&conf->wait_for_stripe);
137 			}
138 		}
139 	}
140 }
141 static void release_stripe(struct stripe_head *sh)
142 {
143 	raid5_conf_t *conf = sh->raid_conf;
144 	unsigned long flags;
145 
146 	spin_lock_irqsave(&conf->device_lock, flags);
147 	__release_stripe(conf, sh);
148 	spin_unlock_irqrestore(&conf->device_lock, flags);
149 }
150 
151 static inline void remove_hash(struct stripe_head *sh)
152 {
153 	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
154 
155 	hlist_del_init(&sh->hash);
156 }
157 
158 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
159 {
160 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
161 
162 	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
163 
164 	CHECK_DEVLOCK();
165 	hlist_add_head(&sh->hash, hp);
166 }
167 
168 
169 /* find an idle stripe, make sure it is unhashed, and return it. */
170 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
171 {
172 	struct stripe_head *sh = NULL;
173 	struct list_head *first;
174 
175 	CHECK_DEVLOCK();
176 	if (list_empty(&conf->inactive_list))
177 		goto out;
178 	first = conf->inactive_list.next;
179 	sh = list_entry(first, struct stripe_head, lru);
180 	list_del_init(first);
181 	remove_hash(sh);
182 	atomic_inc(&conf->active_stripes);
183 out:
184 	return sh;
185 }
186 
187 static void shrink_buffers(struct stripe_head *sh, int num)
188 {
189 	struct page *p;
190 	int i;
191 
192 	for (i=0; i<num ; i++) {
193 		p = sh->dev[i].page;
194 		if (!p)
195 			continue;
196 		sh->dev[i].page = NULL;
197 		put_page(p);
198 	}
199 }
200 
201 static int grow_buffers(struct stripe_head *sh, int num)
202 {
203 	int i;
204 
205 	for (i=0; i<num; i++) {
206 		struct page *page;
207 
208 		if (!(page = alloc_page(GFP_KERNEL))) {
209 			return 1;
210 		}
211 		sh->dev[i].page = page;
212 	}
213 	return 0;
214 }
215 
216 static void raid5_build_block (struct stripe_head *sh, int i);
217 
218 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
219 {
220 	raid5_conf_t *conf = sh->raid_conf;
221 	int i;
222 
223 	BUG_ON(atomic_read(&sh->count) != 0);
224 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
225 
226 	CHECK_DEVLOCK();
227 	PRINTK("init_stripe called, stripe %llu\n",
228 		(unsigned long long)sh->sector);
229 
230 	remove_hash(sh);
231 
232 	sh->sector = sector;
233 	sh->pd_idx = pd_idx;
234 	sh->state = 0;
235 
236 	sh->disks = disks;
237 
238 	for (i = sh->disks; i--; ) {
239 		struct r5dev *dev = &sh->dev[i];
240 
241 		if (dev->toread || dev->towrite || dev->written ||
242 		    test_bit(R5_LOCKED, &dev->flags)) {
243 			printk("sector=%llx i=%d %p %p %p %d\n",
244 			       (unsigned long long)sh->sector, i, dev->toread,
245 			       dev->towrite, dev->written,
246 			       test_bit(R5_LOCKED, &dev->flags));
247 			BUG();
248 		}
249 		dev->flags = 0;
250 		raid5_build_block(sh, i);
251 	}
252 	insert_hash(conf, sh);
253 }
254 
255 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
256 {
257 	struct stripe_head *sh;
258 	struct hlist_node *hn;
259 
260 	CHECK_DEVLOCK();
261 	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
262 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
263 		if (sh->sector == sector && sh->disks == disks)
264 			return sh;
265 	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
266 	return NULL;
267 }
268 
269 static void unplug_slaves(mddev_t *mddev);
270 static void raid5_unplug_device(request_queue_t *q);
271 
272 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
273 					     int pd_idx, int noblock)
274 {
275 	struct stripe_head *sh;
276 
277 	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
278 
279 	spin_lock_irq(&conf->device_lock);
280 
281 	do {
282 		wait_event_lock_irq(conf->wait_for_stripe,
283 				    conf->quiesce == 0,
284 				    conf->device_lock, /* nothing */);
285 		sh = __find_stripe(conf, sector, disks);
286 		if (!sh) {
287 			if (!conf->inactive_blocked)
288 				sh = get_free_stripe(conf);
289 			if (noblock && sh == NULL)
290 				break;
291 			if (!sh) {
292 				conf->inactive_blocked = 1;
293 				wait_event_lock_irq(conf->wait_for_stripe,
294 						    !list_empty(&conf->inactive_list) &&
295 						    (atomic_read(&conf->active_stripes)
296 						     < (conf->max_nr_stripes *3/4)
297 						     || !conf->inactive_blocked),
298 						    conf->device_lock,
299 						    raid5_unplug_device(conf->mddev->queue)
300 					);
301 				conf->inactive_blocked = 0;
302 			} else
303 				init_stripe(sh, sector, pd_idx, disks);
304 		} else {
305 			if (atomic_read(&sh->count)) {
306 			  BUG_ON(!list_empty(&sh->lru));
307 			} else {
308 				if (!test_bit(STRIPE_HANDLE, &sh->state))
309 					atomic_inc(&conf->active_stripes);
310 				if (list_empty(&sh->lru) &&
311 				    !test_bit(STRIPE_EXPANDING, &sh->state))
312 					BUG();
313 				list_del_init(&sh->lru);
314 			}
315 		}
316 	} while (sh == NULL);
317 
318 	if (sh)
319 		atomic_inc(&sh->count);
320 
321 	spin_unlock_irq(&conf->device_lock);
322 	return sh;
323 }
324 
325 static int grow_one_stripe(raid5_conf_t *conf)
326 {
327 	struct stripe_head *sh;
328 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
329 	if (!sh)
330 		return 0;
331 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
332 	sh->raid_conf = conf;
333 	spin_lock_init(&sh->lock);
334 
335 	if (grow_buffers(sh, conf->raid_disks)) {
336 		shrink_buffers(sh, conf->raid_disks);
337 		kmem_cache_free(conf->slab_cache, sh);
338 		return 0;
339 	}
340 	sh->disks = conf->raid_disks;
341 	/* we just created an active stripe so... */
342 	atomic_set(&sh->count, 1);
343 	atomic_inc(&conf->active_stripes);
344 	INIT_LIST_HEAD(&sh->lru);
345 	release_stripe(sh);
346 	return 1;
347 }
348 
349 static int grow_stripes(raid5_conf_t *conf, int num)
350 {
351 	kmem_cache_t *sc;
352 	int devs = conf->raid_disks;
353 
354 	sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
355 	sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
356 	conf->active_name = 0;
357 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
358 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
359 			       0, 0, NULL, NULL);
360 	if (!sc)
361 		return 1;
362 	conf->slab_cache = sc;
363 	conf->pool_size = devs;
364 	while (num--)
365 		if (!grow_one_stripe(conf))
366 			return 1;
367 	return 0;
368 }
369 
370 #ifdef CONFIG_MD_RAID5_RESHAPE
371 static int resize_stripes(raid5_conf_t *conf, int newsize)
372 {
373 	/* Make all the stripes able to hold 'newsize' devices.
374 	 * New slots in each stripe get 'page' set to a new page.
375 	 *
376 	 * This happens in stages:
377 	 * 1/ create a new kmem_cache and allocate the required number of
378 	 *    stripe_heads.
379 	 * 2/ gather all the old stripe_heads and tranfer the pages across
380 	 *    to the new stripe_heads.  This will have the side effect of
381 	 *    freezing the array as once all stripe_heads have been collected,
382 	 *    no IO will be possible.  Old stripe heads are freed once their
383 	 *    pages have been transferred over, and the old kmem_cache is
384 	 *    freed when all stripes are done.
385 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
386 	 *    we simple return a failre status - no need to clean anything up.
387 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
388 	 *    If this fails, we don't bother trying the shrink the
389 	 *    stripe_heads down again, we just leave them as they are.
390 	 *    As each stripe_head is processed the new one is released into
391 	 *    active service.
392 	 *
393 	 * Once step2 is started, we cannot afford to wait for a write,
394 	 * so we use GFP_NOIO allocations.
395 	 */
396 	struct stripe_head *osh, *nsh;
397 	LIST_HEAD(newstripes);
398 	struct disk_info *ndisks;
399 	int err = 0;
400 	kmem_cache_t *sc;
401 	int i;
402 
403 	if (newsize <= conf->pool_size)
404 		return 0; /* never bother to shrink */
405 
406 	/* Step 1 */
407 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
408 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
409 			       0, 0, NULL, NULL);
410 	if (!sc)
411 		return -ENOMEM;
412 
413 	for (i = conf->max_nr_stripes; i; i--) {
414 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
415 		if (!nsh)
416 			break;
417 
418 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
419 
420 		nsh->raid_conf = conf;
421 		spin_lock_init(&nsh->lock);
422 
423 		list_add(&nsh->lru, &newstripes);
424 	}
425 	if (i) {
426 		/* didn't get enough, give up */
427 		while (!list_empty(&newstripes)) {
428 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
429 			list_del(&nsh->lru);
430 			kmem_cache_free(sc, nsh);
431 		}
432 		kmem_cache_destroy(sc);
433 		return -ENOMEM;
434 	}
435 	/* Step 2 - Must use GFP_NOIO now.
436 	 * OK, we have enough stripes, start collecting inactive
437 	 * stripes and copying them over
438 	 */
439 	list_for_each_entry(nsh, &newstripes, lru) {
440 		spin_lock_irq(&conf->device_lock);
441 		wait_event_lock_irq(conf->wait_for_stripe,
442 				    !list_empty(&conf->inactive_list),
443 				    conf->device_lock,
444 				    unplug_slaves(conf->mddev)
445 			);
446 		osh = get_free_stripe(conf);
447 		spin_unlock_irq(&conf->device_lock);
448 		atomic_set(&nsh->count, 1);
449 		for(i=0; i<conf->pool_size; i++)
450 			nsh->dev[i].page = osh->dev[i].page;
451 		for( ; i<newsize; i++)
452 			nsh->dev[i].page = NULL;
453 		kmem_cache_free(conf->slab_cache, osh);
454 	}
455 	kmem_cache_destroy(conf->slab_cache);
456 
457 	/* Step 3.
458 	 * At this point, we are holding all the stripes so the array
459 	 * is completely stalled, so now is a good time to resize
460 	 * conf->disks.
461 	 */
462 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
463 	if (ndisks) {
464 		for (i=0; i<conf->raid_disks; i++)
465 			ndisks[i] = conf->disks[i];
466 		kfree(conf->disks);
467 		conf->disks = ndisks;
468 	} else
469 		err = -ENOMEM;
470 
471 	/* Step 4, return new stripes to service */
472 	while(!list_empty(&newstripes)) {
473 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
474 		list_del_init(&nsh->lru);
475 		for (i=conf->raid_disks; i < newsize; i++)
476 			if (nsh->dev[i].page == NULL) {
477 				struct page *p = alloc_page(GFP_NOIO);
478 				nsh->dev[i].page = p;
479 				if (!p)
480 					err = -ENOMEM;
481 			}
482 		release_stripe(nsh);
483 	}
484 	/* critical section pass, GFP_NOIO no longer needed */
485 
486 	conf->slab_cache = sc;
487 	conf->active_name = 1-conf->active_name;
488 	conf->pool_size = newsize;
489 	return err;
490 }
491 #endif
492 
493 static int drop_one_stripe(raid5_conf_t *conf)
494 {
495 	struct stripe_head *sh;
496 
497 	spin_lock_irq(&conf->device_lock);
498 	sh = get_free_stripe(conf);
499 	spin_unlock_irq(&conf->device_lock);
500 	if (!sh)
501 		return 0;
502 	BUG_ON(atomic_read(&sh->count));
503 	shrink_buffers(sh, conf->pool_size);
504 	kmem_cache_free(conf->slab_cache, sh);
505 	atomic_dec(&conf->active_stripes);
506 	return 1;
507 }
508 
509 static void shrink_stripes(raid5_conf_t *conf)
510 {
511 	while (drop_one_stripe(conf))
512 		;
513 
514 	if (conf->slab_cache)
515 		kmem_cache_destroy(conf->slab_cache);
516 	conf->slab_cache = NULL;
517 }
518 
519 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
520 				   int error)
521 {
522  	struct stripe_head *sh = bi->bi_private;
523 	raid5_conf_t *conf = sh->raid_conf;
524 	int disks = sh->disks, i;
525 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
526 	char b[BDEVNAME_SIZE];
527 	mdk_rdev_t *rdev;
528 
529 	if (bi->bi_size)
530 		return 1;
531 
532 	for (i=0 ; i<disks; i++)
533 		if (bi == &sh->dev[i].req)
534 			break;
535 
536 	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
537 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
538 		uptodate);
539 	if (i == disks) {
540 		BUG();
541 		return 0;
542 	}
543 
544 	if (uptodate) {
545 #if 0
546 		struct bio *bio;
547 		unsigned long flags;
548 		spin_lock_irqsave(&conf->device_lock, flags);
549 		/* we can return a buffer if we bypassed the cache or
550 		 * if the top buffer is not in highmem.  If there are
551 		 * multiple buffers, leave the extra work to
552 		 * handle_stripe
553 		 */
554 		buffer = sh->bh_read[i];
555 		if (buffer &&
556 		    (!PageHighMem(buffer->b_page)
557 		     || buffer->b_page == bh->b_page )
558 			) {
559 			sh->bh_read[i] = buffer->b_reqnext;
560 			buffer->b_reqnext = NULL;
561 		} else
562 			buffer = NULL;
563 		spin_unlock_irqrestore(&conf->device_lock, flags);
564 		if (sh->bh_page[i]==bh->b_page)
565 			set_buffer_uptodate(bh);
566 		if (buffer) {
567 			if (buffer->b_page != bh->b_page)
568 				memcpy(buffer->b_data, bh->b_data, bh->b_size);
569 			buffer->b_end_io(buffer, 1);
570 		}
571 #else
572 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
573 #endif
574 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
575 			rdev = conf->disks[i].rdev;
576 			printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
577 			       mdname(conf->mddev), STRIPE_SECTORS,
578 			       (unsigned long long)sh->sector + rdev->data_offset,
579 			       bdevname(rdev->bdev, b));
580 			clear_bit(R5_ReadError, &sh->dev[i].flags);
581 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
582 		}
583 		if (atomic_read(&conf->disks[i].rdev->read_errors))
584 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
585 	} else {
586 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
587 		int retry = 0;
588 		rdev = conf->disks[i].rdev;
589 
590 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
591 		atomic_inc(&rdev->read_errors);
592 		if (conf->mddev->degraded)
593 			printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
594 			       mdname(conf->mddev),
595 			       (unsigned long long)sh->sector + rdev->data_offset,
596 			       bdn);
597 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
598 			/* Oh, no!!! */
599 			printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
600 			       mdname(conf->mddev),
601 			       (unsigned long long)sh->sector + rdev->data_offset,
602 			       bdn);
603 		else if (atomic_read(&rdev->read_errors)
604 			 > conf->max_nr_stripes)
605 			printk(KERN_WARNING
606 			       "raid5:%s: Too many read errors, failing device %s.\n",
607 			       mdname(conf->mddev), bdn);
608 		else
609 			retry = 1;
610 		if (retry)
611 			set_bit(R5_ReadError, &sh->dev[i].flags);
612 		else {
613 			clear_bit(R5_ReadError, &sh->dev[i].flags);
614 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
615 			md_error(conf->mddev, rdev);
616 		}
617 	}
618 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
619 #if 0
620 	/* must restore b_page before unlocking buffer... */
621 	if (sh->bh_page[i] != bh->b_page) {
622 		bh->b_page = sh->bh_page[i];
623 		bh->b_data = page_address(bh->b_page);
624 		clear_buffer_uptodate(bh);
625 	}
626 #endif
627 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
628 	set_bit(STRIPE_HANDLE, &sh->state);
629 	release_stripe(sh);
630 	return 0;
631 }
632 
633 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
634 				    int error)
635 {
636  	struct stripe_head *sh = bi->bi_private;
637 	raid5_conf_t *conf = sh->raid_conf;
638 	int disks = sh->disks, i;
639 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
640 
641 	if (bi->bi_size)
642 		return 1;
643 
644 	for (i=0 ; i<disks; i++)
645 		if (bi == &sh->dev[i].req)
646 			break;
647 
648 	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
649 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
650 		uptodate);
651 	if (i == disks) {
652 		BUG();
653 		return 0;
654 	}
655 
656 	if (!uptodate)
657 		md_error(conf->mddev, conf->disks[i].rdev);
658 
659 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
660 
661 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
662 	set_bit(STRIPE_HANDLE, &sh->state);
663 	release_stripe(sh);
664 	return 0;
665 }
666 
667 
668 static sector_t compute_blocknr(struct stripe_head *sh, int i);
669 
670 static void raid5_build_block (struct stripe_head *sh, int i)
671 {
672 	struct r5dev *dev = &sh->dev[i];
673 
674 	bio_init(&dev->req);
675 	dev->req.bi_io_vec = &dev->vec;
676 	dev->req.bi_vcnt++;
677 	dev->req.bi_max_vecs++;
678 	dev->vec.bv_page = dev->page;
679 	dev->vec.bv_len = STRIPE_SIZE;
680 	dev->vec.bv_offset = 0;
681 
682 	dev->req.bi_sector = sh->sector;
683 	dev->req.bi_private = sh;
684 
685 	dev->flags = 0;
686 	dev->sector = compute_blocknr(sh, i);
687 }
688 
689 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
690 {
691 	char b[BDEVNAME_SIZE];
692 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
693 	PRINTK("raid5: error called\n");
694 
695 	if (!test_bit(Faulty, &rdev->flags)) {
696 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
697 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
698 			unsigned long flags;
699 			spin_lock_irqsave(&conf->device_lock, flags);
700 			mddev->degraded++;
701 			spin_unlock_irqrestore(&conf->device_lock, flags);
702 			/*
703 			 * if recovery was running, make sure it aborts.
704 			 */
705 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
706 		}
707 		set_bit(Faulty, &rdev->flags);
708 		printk (KERN_ALERT
709 			"raid5: Disk failure on %s, disabling device."
710 			" Operation continuing on %d devices\n",
711 			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
712 	}
713 }
714 
715 /*
716  * Input: a 'big' sector number,
717  * Output: index of the data and parity disk, and the sector # in them.
718  */
719 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
720 			unsigned int data_disks, unsigned int * dd_idx,
721 			unsigned int * pd_idx, raid5_conf_t *conf)
722 {
723 	long stripe;
724 	unsigned long chunk_number;
725 	unsigned int chunk_offset;
726 	sector_t new_sector;
727 	int sectors_per_chunk = conf->chunk_size >> 9;
728 
729 	/* First compute the information on this sector */
730 
731 	/*
732 	 * Compute the chunk number and the sector offset inside the chunk
733 	 */
734 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
735 	chunk_number = r_sector;
736 	BUG_ON(r_sector != chunk_number);
737 
738 	/*
739 	 * Compute the stripe number
740 	 */
741 	stripe = chunk_number / data_disks;
742 
743 	/*
744 	 * Compute the data disk and parity disk indexes inside the stripe
745 	 */
746 	*dd_idx = chunk_number % data_disks;
747 
748 	/*
749 	 * Select the parity disk based on the user selected algorithm.
750 	 */
751 	switch(conf->level) {
752 	case 4:
753 		*pd_idx = data_disks;
754 		break;
755 	case 5:
756 		switch (conf->algorithm) {
757 		case ALGORITHM_LEFT_ASYMMETRIC:
758 			*pd_idx = data_disks - stripe % raid_disks;
759 			if (*dd_idx >= *pd_idx)
760 				(*dd_idx)++;
761 			break;
762 		case ALGORITHM_RIGHT_ASYMMETRIC:
763 			*pd_idx = stripe % raid_disks;
764 			if (*dd_idx >= *pd_idx)
765 				(*dd_idx)++;
766 			break;
767 		case ALGORITHM_LEFT_SYMMETRIC:
768 			*pd_idx = data_disks - stripe % raid_disks;
769 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
770 			break;
771 		case ALGORITHM_RIGHT_SYMMETRIC:
772 			*pd_idx = stripe % raid_disks;
773 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
774 			break;
775 		default:
776 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
777 				conf->algorithm);
778 		}
779 		break;
780 	case 6:
781 
782 		/**** FIX THIS ****/
783 		switch (conf->algorithm) {
784 		case ALGORITHM_LEFT_ASYMMETRIC:
785 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
786 			if (*pd_idx == raid_disks-1)
787 				(*dd_idx)++; 	/* Q D D D P */
788 			else if (*dd_idx >= *pd_idx)
789 				(*dd_idx) += 2; /* D D P Q D */
790 			break;
791 		case ALGORITHM_RIGHT_ASYMMETRIC:
792 			*pd_idx = stripe % raid_disks;
793 			if (*pd_idx == raid_disks-1)
794 				(*dd_idx)++; 	/* Q D D D P */
795 			else if (*dd_idx >= *pd_idx)
796 				(*dd_idx) += 2; /* D D P Q D */
797 			break;
798 		case ALGORITHM_LEFT_SYMMETRIC:
799 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
800 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
801 			break;
802 		case ALGORITHM_RIGHT_SYMMETRIC:
803 			*pd_idx = stripe % raid_disks;
804 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
805 			break;
806 		default:
807 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
808 				conf->algorithm);
809 		}
810 		break;
811 	}
812 
813 	/*
814 	 * Finally, compute the new sector number
815 	 */
816 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
817 	return new_sector;
818 }
819 
820 
821 static sector_t compute_blocknr(struct stripe_head *sh, int i)
822 {
823 	raid5_conf_t *conf = sh->raid_conf;
824 	int raid_disks = sh->disks, data_disks = raid_disks - 1;
825 	sector_t new_sector = sh->sector, check;
826 	int sectors_per_chunk = conf->chunk_size >> 9;
827 	sector_t stripe;
828 	int chunk_offset;
829 	int chunk_number, dummy1, dummy2, dd_idx = i;
830 	sector_t r_sector;
831 
832 
833 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
834 	stripe = new_sector;
835 	BUG_ON(new_sector != stripe);
836 
837 	if (i == sh->pd_idx)
838 		return 0;
839 	switch(conf->level) {
840 	case 4: break;
841 	case 5:
842 		switch (conf->algorithm) {
843 		case ALGORITHM_LEFT_ASYMMETRIC:
844 		case ALGORITHM_RIGHT_ASYMMETRIC:
845 			if (i > sh->pd_idx)
846 				i--;
847 			break;
848 		case ALGORITHM_LEFT_SYMMETRIC:
849 		case ALGORITHM_RIGHT_SYMMETRIC:
850 			if (i < sh->pd_idx)
851 				i += raid_disks;
852 			i -= (sh->pd_idx + 1);
853 			break;
854 		default:
855 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
856 			       conf->algorithm);
857 		}
858 		break;
859 	case 6:
860 		data_disks = raid_disks - 2;
861 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
862 			return 0; /* It is the Q disk */
863 		switch (conf->algorithm) {
864 		case ALGORITHM_LEFT_ASYMMETRIC:
865 		case ALGORITHM_RIGHT_ASYMMETRIC:
866 		  	if (sh->pd_idx == raid_disks-1)
867 				i--; 	/* Q D D D P */
868 			else if (i > sh->pd_idx)
869 				i -= 2; /* D D P Q D */
870 			break;
871 		case ALGORITHM_LEFT_SYMMETRIC:
872 		case ALGORITHM_RIGHT_SYMMETRIC:
873 			if (sh->pd_idx == raid_disks-1)
874 				i--; /* Q D D D P */
875 			else {
876 				/* D D P Q D */
877 				if (i < sh->pd_idx)
878 					i += raid_disks;
879 				i -= (sh->pd_idx + 2);
880 			}
881 			break;
882 		default:
883 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
884 				conf->algorithm);
885 		}
886 		break;
887 	}
888 
889 	chunk_number = stripe * data_disks + i;
890 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
891 
892 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
893 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
894 		printk(KERN_ERR "compute_blocknr: map not correct\n");
895 		return 0;
896 	}
897 	return r_sector;
898 }
899 
900 
901 
902 /*
903  * Copy data between a page in the stripe cache, and one or more bion
904  * The page could align with the middle of the bio, or there could be
905  * several bion, each with several bio_vecs, which cover part of the page
906  * Multiple bion are linked together on bi_next.  There may be extras
907  * at the end of this list.  We ignore them.
908  */
909 static void copy_data(int frombio, struct bio *bio,
910 		     struct page *page,
911 		     sector_t sector)
912 {
913 	char *pa = page_address(page);
914 	struct bio_vec *bvl;
915 	int i;
916 	int page_offset;
917 
918 	if (bio->bi_sector >= sector)
919 		page_offset = (signed)(bio->bi_sector - sector) * 512;
920 	else
921 		page_offset = (signed)(sector - bio->bi_sector) * -512;
922 	bio_for_each_segment(bvl, bio, i) {
923 		int len = bio_iovec_idx(bio,i)->bv_len;
924 		int clen;
925 		int b_offset = 0;
926 
927 		if (page_offset < 0) {
928 			b_offset = -page_offset;
929 			page_offset += b_offset;
930 			len -= b_offset;
931 		}
932 
933 		if (len > 0 && page_offset + len > STRIPE_SIZE)
934 			clen = STRIPE_SIZE - page_offset;
935 		else clen = len;
936 
937 		if (clen > 0) {
938 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
939 			if (frombio)
940 				memcpy(pa+page_offset, ba+b_offset, clen);
941 			else
942 				memcpy(ba+b_offset, pa+page_offset, clen);
943 			__bio_kunmap_atomic(ba, KM_USER0);
944 		}
945 		if (clen < len) /* hit end of page */
946 			break;
947 		page_offset +=  len;
948 	}
949 }
950 
951 #define check_xor() 	do { 						\
952 			   if (count == MAX_XOR_BLOCKS) {		\
953 				xor_block(count, STRIPE_SIZE, ptr);	\
954 				count = 1;				\
955 			   }						\
956 			} while(0)
957 
958 
959 static void compute_block(struct stripe_head *sh, int dd_idx)
960 {
961 	int i, count, disks = sh->disks;
962 	void *ptr[MAX_XOR_BLOCKS], *p;
963 
964 	PRINTK("compute_block, stripe %llu, idx %d\n",
965 		(unsigned long long)sh->sector, dd_idx);
966 
967 	ptr[0] = page_address(sh->dev[dd_idx].page);
968 	memset(ptr[0], 0, STRIPE_SIZE);
969 	count = 1;
970 	for (i = disks ; i--; ) {
971 		if (i == dd_idx)
972 			continue;
973 		p = page_address(sh->dev[i].page);
974 		if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
975 			ptr[count++] = p;
976 		else
977 			printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
978 				" not present\n", dd_idx,
979 				(unsigned long long)sh->sector, i);
980 
981 		check_xor();
982 	}
983 	if (count != 1)
984 		xor_block(count, STRIPE_SIZE, ptr);
985 	set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
986 }
987 
988 static void compute_parity5(struct stripe_head *sh, int method)
989 {
990 	raid5_conf_t *conf = sh->raid_conf;
991 	int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
992 	void *ptr[MAX_XOR_BLOCKS];
993 	struct bio *chosen;
994 
995 	PRINTK("compute_parity5, stripe %llu, method %d\n",
996 		(unsigned long long)sh->sector, method);
997 
998 	count = 1;
999 	ptr[0] = page_address(sh->dev[pd_idx].page);
1000 	switch(method) {
1001 	case READ_MODIFY_WRITE:
1002 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1003 		for (i=disks ; i-- ;) {
1004 			if (i==pd_idx)
1005 				continue;
1006 			if (sh->dev[i].towrite &&
1007 			    test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1008 				ptr[count++] = page_address(sh->dev[i].page);
1009 				chosen = sh->dev[i].towrite;
1010 				sh->dev[i].towrite = NULL;
1011 
1012 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1013 					wake_up(&conf->wait_for_overlap);
1014 
1015 				BUG_ON(sh->dev[i].written);
1016 				sh->dev[i].written = chosen;
1017 				check_xor();
1018 			}
1019 		}
1020 		break;
1021 	case RECONSTRUCT_WRITE:
1022 		memset(ptr[0], 0, STRIPE_SIZE);
1023 		for (i= disks; i-- ;)
1024 			if (i!=pd_idx && sh->dev[i].towrite) {
1025 				chosen = sh->dev[i].towrite;
1026 				sh->dev[i].towrite = NULL;
1027 
1028 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1029 					wake_up(&conf->wait_for_overlap);
1030 
1031 				BUG_ON(sh->dev[i].written);
1032 				sh->dev[i].written = chosen;
1033 			}
1034 		break;
1035 	case CHECK_PARITY:
1036 		break;
1037 	}
1038 	if (count>1) {
1039 		xor_block(count, STRIPE_SIZE, ptr);
1040 		count = 1;
1041 	}
1042 
1043 	for (i = disks; i--;)
1044 		if (sh->dev[i].written) {
1045 			sector_t sector = sh->dev[i].sector;
1046 			struct bio *wbi = sh->dev[i].written;
1047 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1048 				copy_data(1, wbi, sh->dev[i].page, sector);
1049 				wbi = r5_next_bio(wbi, sector);
1050 			}
1051 
1052 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1053 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1054 		}
1055 
1056 	switch(method) {
1057 	case RECONSTRUCT_WRITE:
1058 	case CHECK_PARITY:
1059 		for (i=disks; i--;)
1060 			if (i != pd_idx) {
1061 				ptr[count++] = page_address(sh->dev[i].page);
1062 				check_xor();
1063 			}
1064 		break;
1065 	case READ_MODIFY_WRITE:
1066 		for (i = disks; i--;)
1067 			if (sh->dev[i].written) {
1068 				ptr[count++] = page_address(sh->dev[i].page);
1069 				check_xor();
1070 			}
1071 	}
1072 	if (count != 1)
1073 		xor_block(count, STRIPE_SIZE, ptr);
1074 
1075 	if (method != CHECK_PARITY) {
1076 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1077 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1078 	} else
1079 		clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1080 }
1081 
1082 static void compute_parity6(struct stripe_head *sh, int method)
1083 {
1084 	raid6_conf_t *conf = sh->raid_conf;
1085 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1086 	struct bio *chosen;
1087 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1088 	void *ptrs[disks];
1089 
1090 	qd_idx = raid6_next_disk(pd_idx, disks);
1091 	d0_idx = raid6_next_disk(qd_idx, disks);
1092 
1093 	PRINTK("compute_parity, stripe %llu, method %d\n",
1094 		(unsigned long long)sh->sector, method);
1095 
1096 	switch(method) {
1097 	case READ_MODIFY_WRITE:
1098 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1099 	case RECONSTRUCT_WRITE:
1100 		for (i= disks; i-- ;)
1101 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1102 				chosen = sh->dev[i].towrite;
1103 				sh->dev[i].towrite = NULL;
1104 
1105 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1106 					wake_up(&conf->wait_for_overlap);
1107 
1108 				BUG_ON(sh->dev[i].written);
1109 				sh->dev[i].written = chosen;
1110 			}
1111 		break;
1112 	case CHECK_PARITY:
1113 		BUG();		/* Not implemented yet */
1114 	}
1115 
1116 	for (i = disks; i--;)
1117 		if (sh->dev[i].written) {
1118 			sector_t sector = sh->dev[i].sector;
1119 			struct bio *wbi = sh->dev[i].written;
1120 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1121 				copy_data(1, wbi, sh->dev[i].page, sector);
1122 				wbi = r5_next_bio(wbi, sector);
1123 			}
1124 
1125 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1126 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1127 		}
1128 
1129 //	switch(method) {
1130 //	case RECONSTRUCT_WRITE:
1131 //	case CHECK_PARITY:
1132 //	case UPDATE_PARITY:
1133 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1134 		/* FIX: Is this ordering of drives even remotely optimal? */
1135 		count = 0;
1136 		i = d0_idx;
1137 		do {
1138 			ptrs[count++] = page_address(sh->dev[i].page);
1139 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1140 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1141 			i = raid6_next_disk(i, disks);
1142 		} while ( i != d0_idx );
1143 //		break;
1144 //	}
1145 
1146 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1147 
1148 	switch(method) {
1149 	case RECONSTRUCT_WRITE:
1150 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1151 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1152 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1153 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1154 		break;
1155 	case UPDATE_PARITY:
1156 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1157 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1158 		break;
1159 	}
1160 }
1161 
1162 
1163 /* Compute one missing block */
1164 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1165 {
1166 	raid6_conf_t *conf = sh->raid_conf;
1167 	int i, count, disks = conf->raid_disks;
1168 	void *ptr[MAX_XOR_BLOCKS], *p;
1169 	int pd_idx = sh->pd_idx;
1170 	int qd_idx = raid6_next_disk(pd_idx, disks);
1171 
1172 	PRINTK("compute_block_1, stripe %llu, idx %d\n",
1173 		(unsigned long long)sh->sector, dd_idx);
1174 
1175 	if ( dd_idx == qd_idx ) {
1176 		/* We're actually computing the Q drive */
1177 		compute_parity6(sh, UPDATE_PARITY);
1178 	} else {
1179 		ptr[0] = page_address(sh->dev[dd_idx].page);
1180 		if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1181 		count = 1;
1182 		for (i = disks ; i--; ) {
1183 			if (i == dd_idx || i == qd_idx)
1184 				continue;
1185 			p = page_address(sh->dev[i].page);
1186 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1187 				ptr[count++] = p;
1188 			else
1189 				printk("compute_block() %d, stripe %llu, %d"
1190 				       " not present\n", dd_idx,
1191 				       (unsigned long long)sh->sector, i);
1192 
1193 			check_xor();
1194 		}
1195 		if (count != 1)
1196 			xor_block(count, STRIPE_SIZE, ptr);
1197 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1198 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1199 	}
1200 }
1201 
1202 /* Compute two missing blocks */
1203 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1204 {
1205 	raid6_conf_t *conf = sh->raid_conf;
1206 	int i, count, disks = conf->raid_disks;
1207 	int pd_idx = sh->pd_idx;
1208 	int qd_idx = raid6_next_disk(pd_idx, disks);
1209 	int d0_idx = raid6_next_disk(qd_idx, disks);
1210 	int faila, failb;
1211 
1212 	/* faila and failb are disk numbers relative to d0_idx */
1213 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1214 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1215 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1216 
1217 	BUG_ON(faila == failb);
1218 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1219 
1220 	PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1221 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1222 
1223 	if ( failb == disks-1 ) {
1224 		/* Q disk is one of the missing disks */
1225 		if ( faila == disks-2 ) {
1226 			/* Missing P+Q, just recompute */
1227 			compute_parity6(sh, UPDATE_PARITY);
1228 			return;
1229 		} else {
1230 			/* We're missing D+Q; recompute D from P */
1231 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1232 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1233 			return;
1234 		}
1235 	}
1236 
1237 	/* We're missing D+P or D+D; build pointer table */
1238 	{
1239 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1240 		void *ptrs[disks];
1241 
1242 		count = 0;
1243 		i = d0_idx;
1244 		do {
1245 			ptrs[count++] = page_address(sh->dev[i].page);
1246 			i = raid6_next_disk(i, disks);
1247 			if (i != dd_idx1 && i != dd_idx2 &&
1248 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1249 				printk("compute_2 with missing block %d/%d\n", count, i);
1250 		} while ( i != d0_idx );
1251 
1252 		if ( failb == disks-2 ) {
1253 			/* We're missing D+P. */
1254 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1255 		} else {
1256 			/* We're missing D+D. */
1257 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1258 		}
1259 
1260 		/* Both the above update both missing blocks */
1261 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1262 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1263 	}
1264 }
1265 
1266 
1267 
1268 /*
1269  * Each stripe/dev can have one or more bion attached.
1270  * toread/towrite point to the first in a chain.
1271  * The bi_next chain must be in order.
1272  */
1273 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1274 {
1275 	struct bio **bip;
1276 	raid5_conf_t *conf = sh->raid_conf;
1277 	int firstwrite=0;
1278 
1279 	PRINTK("adding bh b#%llu to stripe s#%llu\n",
1280 		(unsigned long long)bi->bi_sector,
1281 		(unsigned long long)sh->sector);
1282 
1283 
1284 	spin_lock(&sh->lock);
1285 	spin_lock_irq(&conf->device_lock);
1286 	if (forwrite) {
1287 		bip = &sh->dev[dd_idx].towrite;
1288 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1289 			firstwrite = 1;
1290 	} else
1291 		bip = &sh->dev[dd_idx].toread;
1292 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1293 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1294 			goto overlap;
1295 		bip = & (*bip)->bi_next;
1296 	}
1297 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1298 		goto overlap;
1299 
1300 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1301 	if (*bip)
1302 		bi->bi_next = *bip;
1303 	*bip = bi;
1304 	bi->bi_phys_segments ++;
1305 	spin_unlock_irq(&conf->device_lock);
1306 	spin_unlock(&sh->lock);
1307 
1308 	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1309 		(unsigned long long)bi->bi_sector,
1310 		(unsigned long long)sh->sector, dd_idx);
1311 
1312 	if (conf->mddev->bitmap && firstwrite) {
1313 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1314 				  STRIPE_SECTORS, 0);
1315 		sh->bm_seq = conf->seq_flush+1;
1316 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1317 	}
1318 
1319 	if (forwrite) {
1320 		/* check if page is covered */
1321 		sector_t sector = sh->dev[dd_idx].sector;
1322 		for (bi=sh->dev[dd_idx].towrite;
1323 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1324 			     bi && bi->bi_sector <= sector;
1325 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1326 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1327 				sector = bi->bi_sector + (bi->bi_size>>9);
1328 		}
1329 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1330 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1331 	}
1332 	return 1;
1333 
1334  overlap:
1335 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1336 	spin_unlock_irq(&conf->device_lock);
1337 	spin_unlock(&sh->lock);
1338 	return 0;
1339 }
1340 
1341 static void end_reshape(raid5_conf_t *conf);
1342 
1343 static int page_is_zero(struct page *p)
1344 {
1345 	char *a = page_address(p);
1346 	return ((*(u32*)a) == 0 &&
1347 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1348 }
1349 
1350 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1351 {
1352 	int sectors_per_chunk = conf->chunk_size >> 9;
1353 	int pd_idx, dd_idx;
1354 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1355 
1356 	raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1357 			     + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1358 	return pd_idx;
1359 }
1360 
1361 
1362 /*
1363  * handle_stripe - do things to a stripe.
1364  *
1365  * We lock the stripe and then examine the state of various bits
1366  * to see what needs to be done.
1367  * Possible results:
1368  *    return some read request which now have data
1369  *    return some write requests which are safely on disc
1370  *    schedule a read on some buffers
1371  *    schedule a write of some buffers
1372  *    return confirmation of parity correctness
1373  *
1374  * Parity calculations are done inside the stripe lock
1375  * buffers are taken off read_list or write_list, and bh_cache buffers
1376  * get BH_Lock set before the stripe lock is released.
1377  *
1378  */
1379 
1380 static void handle_stripe5(struct stripe_head *sh)
1381 {
1382 	raid5_conf_t *conf = sh->raid_conf;
1383 	int disks = sh->disks;
1384 	struct bio *return_bi= NULL;
1385 	struct bio *bi;
1386 	int i;
1387 	int syncing, expanding, expanded;
1388 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1389 	int non_overwrite = 0;
1390 	int failed_num=0;
1391 	struct r5dev *dev;
1392 
1393 	PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1394 		(unsigned long long)sh->sector, atomic_read(&sh->count),
1395 		sh->pd_idx);
1396 
1397 	spin_lock(&sh->lock);
1398 	clear_bit(STRIPE_HANDLE, &sh->state);
1399 	clear_bit(STRIPE_DELAYED, &sh->state);
1400 
1401 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1402 	expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1403 	expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1404 	/* Now to look around and see what can be done */
1405 
1406 	rcu_read_lock();
1407 	for (i=disks; i--; ) {
1408 		mdk_rdev_t *rdev;
1409 		dev = &sh->dev[i];
1410 		clear_bit(R5_Insync, &dev->flags);
1411 
1412 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1413 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1414 		/* maybe we can reply to a read */
1415 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1416 			struct bio *rbi, *rbi2;
1417 			PRINTK("Return read for disc %d\n", i);
1418 			spin_lock_irq(&conf->device_lock);
1419 			rbi = dev->toread;
1420 			dev->toread = NULL;
1421 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1422 				wake_up(&conf->wait_for_overlap);
1423 			spin_unlock_irq(&conf->device_lock);
1424 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1425 				copy_data(0, rbi, dev->page, dev->sector);
1426 				rbi2 = r5_next_bio(rbi, dev->sector);
1427 				spin_lock_irq(&conf->device_lock);
1428 				if (--rbi->bi_phys_segments == 0) {
1429 					rbi->bi_next = return_bi;
1430 					return_bi = rbi;
1431 				}
1432 				spin_unlock_irq(&conf->device_lock);
1433 				rbi = rbi2;
1434 			}
1435 		}
1436 
1437 		/* now count some things */
1438 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1439 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1440 
1441 
1442 		if (dev->toread) to_read++;
1443 		if (dev->towrite) {
1444 			to_write++;
1445 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1446 				non_overwrite++;
1447 		}
1448 		if (dev->written) written++;
1449 		rdev = rcu_dereference(conf->disks[i].rdev);
1450 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1451 			/* The ReadError flag will just be confusing now */
1452 			clear_bit(R5_ReadError, &dev->flags);
1453 			clear_bit(R5_ReWrite, &dev->flags);
1454 		}
1455 		if (!rdev || !test_bit(In_sync, &rdev->flags)
1456 		    || test_bit(R5_ReadError, &dev->flags)) {
1457 			failed++;
1458 			failed_num = i;
1459 		} else
1460 			set_bit(R5_Insync, &dev->flags);
1461 	}
1462 	rcu_read_unlock();
1463 	PRINTK("locked=%d uptodate=%d to_read=%d"
1464 		" to_write=%d failed=%d failed_num=%d\n",
1465 		locked, uptodate, to_read, to_write, failed, failed_num);
1466 	/* check if the array has lost two devices and, if so, some requests might
1467 	 * need to be failed
1468 	 */
1469 	if (failed > 1 && to_read+to_write+written) {
1470 		for (i=disks; i--; ) {
1471 			int bitmap_end = 0;
1472 
1473 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1474 				mdk_rdev_t *rdev;
1475 				rcu_read_lock();
1476 				rdev = rcu_dereference(conf->disks[i].rdev);
1477 				if (rdev && test_bit(In_sync, &rdev->flags))
1478 					/* multiple read failures in one stripe */
1479 					md_error(conf->mddev, rdev);
1480 				rcu_read_unlock();
1481 			}
1482 
1483 			spin_lock_irq(&conf->device_lock);
1484 			/* fail all writes first */
1485 			bi = sh->dev[i].towrite;
1486 			sh->dev[i].towrite = NULL;
1487 			if (bi) { to_write--; bitmap_end = 1; }
1488 
1489 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1490 				wake_up(&conf->wait_for_overlap);
1491 
1492 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1493 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1494 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1495 				if (--bi->bi_phys_segments == 0) {
1496 					md_write_end(conf->mddev);
1497 					bi->bi_next = return_bi;
1498 					return_bi = bi;
1499 				}
1500 				bi = nextbi;
1501 			}
1502 			/* and fail all 'written' */
1503 			bi = sh->dev[i].written;
1504 			sh->dev[i].written = NULL;
1505 			if (bi) bitmap_end = 1;
1506 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1507 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1508 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1509 				if (--bi->bi_phys_segments == 0) {
1510 					md_write_end(conf->mddev);
1511 					bi->bi_next = return_bi;
1512 					return_bi = bi;
1513 				}
1514 				bi = bi2;
1515 			}
1516 
1517 			/* fail any reads if this device is non-operational */
1518 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1519 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
1520 				bi = sh->dev[i].toread;
1521 				sh->dev[i].toread = NULL;
1522 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1523 					wake_up(&conf->wait_for_overlap);
1524 				if (bi) to_read--;
1525 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1526 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1527 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
1528 					if (--bi->bi_phys_segments == 0) {
1529 						bi->bi_next = return_bi;
1530 						return_bi = bi;
1531 					}
1532 					bi = nextbi;
1533 				}
1534 			}
1535 			spin_unlock_irq(&conf->device_lock);
1536 			if (bitmap_end)
1537 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1538 						STRIPE_SECTORS, 0, 0);
1539 		}
1540 	}
1541 	if (failed > 1 && syncing) {
1542 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1543 		clear_bit(STRIPE_SYNCING, &sh->state);
1544 		syncing = 0;
1545 	}
1546 
1547 	/* might be able to return some write requests if the parity block
1548 	 * is safe, or on a failed drive
1549 	 */
1550 	dev = &sh->dev[sh->pd_idx];
1551 	if ( written &&
1552 	     ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1553 		test_bit(R5_UPTODATE, &dev->flags))
1554 	       || (failed == 1 && failed_num == sh->pd_idx))
1555 	    ) {
1556 	    /* any written block on an uptodate or failed drive can be returned.
1557 	     * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1558 	     * never LOCKED, so we don't need to test 'failed' directly.
1559 	     */
1560 	    for (i=disks; i--; )
1561 		if (sh->dev[i].written) {
1562 		    dev = &sh->dev[i];
1563 		    if (!test_bit(R5_LOCKED, &dev->flags) &&
1564 			 test_bit(R5_UPTODATE, &dev->flags) ) {
1565 			/* We can return any write requests */
1566 			    struct bio *wbi, *wbi2;
1567 			    int bitmap_end = 0;
1568 			    PRINTK("Return write for disc %d\n", i);
1569 			    spin_lock_irq(&conf->device_lock);
1570 			    wbi = dev->written;
1571 			    dev->written = NULL;
1572 			    while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1573 				    wbi2 = r5_next_bio(wbi, dev->sector);
1574 				    if (--wbi->bi_phys_segments == 0) {
1575 					    md_write_end(conf->mddev);
1576 					    wbi->bi_next = return_bi;
1577 					    return_bi = wbi;
1578 				    }
1579 				    wbi = wbi2;
1580 			    }
1581 			    if (dev->towrite == NULL)
1582 				    bitmap_end = 1;
1583 			    spin_unlock_irq(&conf->device_lock);
1584 			    if (bitmap_end)
1585 				    bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1586 						    STRIPE_SECTORS,
1587 						    !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1588 		    }
1589 		}
1590 	}
1591 
1592 	/* Now we might consider reading some blocks, either to check/generate
1593 	 * parity, or to satisfy requests
1594 	 * or to load a block that is being partially written.
1595 	 */
1596 	if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1597 		for (i=disks; i--;) {
1598 			dev = &sh->dev[i];
1599 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1600 			    (dev->toread ||
1601 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1602 			     syncing ||
1603 			     expanding ||
1604 			     (failed && (sh->dev[failed_num].toread ||
1605 					 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1606 				    )
1607 				) {
1608 				/* we would like to get this block, possibly
1609 				 * by computing it, but we might not be able to
1610 				 */
1611 				if (uptodate == disks-1) {
1612 					PRINTK("Computing block %d\n", i);
1613 					compute_block(sh, i);
1614 					uptodate++;
1615 				} else if (test_bit(R5_Insync, &dev->flags)) {
1616 					set_bit(R5_LOCKED, &dev->flags);
1617 					set_bit(R5_Wantread, &dev->flags);
1618 #if 0
1619 					/* if I am just reading this block and we don't have
1620 					   a failed drive, or any pending writes then sidestep the cache */
1621 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1622 					    ! syncing && !failed && !to_write) {
1623 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
1624 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
1625 					}
1626 #endif
1627 					locked++;
1628 					PRINTK("Reading block %d (sync=%d)\n",
1629 						i, syncing);
1630 				}
1631 			}
1632 		}
1633 		set_bit(STRIPE_HANDLE, &sh->state);
1634 	}
1635 
1636 	/* now to consider writing and what else, if anything should be read */
1637 	if (to_write) {
1638 		int rmw=0, rcw=0;
1639 		for (i=disks ; i--;) {
1640 			/* would I have to read this buffer for read_modify_write */
1641 			dev = &sh->dev[i];
1642 			if ((dev->towrite || i == sh->pd_idx) &&
1643 			    (!test_bit(R5_LOCKED, &dev->flags)
1644 #if 0
1645 || sh->bh_page[i]!=bh->b_page
1646 #endif
1647 				    ) &&
1648 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1649 				if (test_bit(R5_Insync, &dev->flags)
1650 /*				    && !(!mddev->insync && i == sh->pd_idx) */
1651 					)
1652 					rmw++;
1653 				else rmw += 2*disks;  /* cannot read it */
1654 			}
1655 			/* Would I have to read this buffer for reconstruct_write */
1656 			if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1657 			    (!test_bit(R5_LOCKED, &dev->flags)
1658 #if 0
1659 || sh->bh_page[i] != bh->b_page
1660 #endif
1661 				    ) &&
1662 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1663 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
1664 				else rcw += 2*disks;
1665 			}
1666 		}
1667 		PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1668 			(unsigned long long)sh->sector, rmw, rcw);
1669 		set_bit(STRIPE_HANDLE, &sh->state);
1670 		if (rmw < rcw && rmw > 0)
1671 			/* prefer read-modify-write, but need to get some data */
1672 			for (i=disks; i--;) {
1673 				dev = &sh->dev[i];
1674 				if ((dev->towrite || i == sh->pd_idx) &&
1675 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1676 				    test_bit(R5_Insync, &dev->flags)) {
1677 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1678 					{
1679 						PRINTK("Read_old block %d for r-m-w\n", i);
1680 						set_bit(R5_LOCKED, &dev->flags);
1681 						set_bit(R5_Wantread, &dev->flags);
1682 						locked++;
1683 					} else {
1684 						set_bit(STRIPE_DELAYED, &sh->state);
1685 						set_bit(STRIPE_HANDLE, &sh->state);
1686 					}
1687 				}
1688 			}
1689 		if (rcw <= rmw && rcw > 0)
1690 			/* want reconstruct write, but need to get some data */
1691 			for (i=disks; i--;) {
1692 				dev = &sh->dev[i];
1693 				if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1694 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1695 				    test_bit(R5_Insync, &dev->flags)) {
1696 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1697 					{
1698 						PRINTK("Read_old block %d for Reconstruct\n", i);
1699 						set_bit(R5_LOCKED, &dev->flags);
1700 						set_bit(R5_Wantread, &dev->flags);
1701 						locked++;
1702 					} else {
1703 						set_bit(STRIPE_DELAYED, &sh->state);
1704 						set_bit(STRIPE_HANDLE, &sh->state);
1705 					}
1706 				}
1707 			}
1708 		/* now if nothing is locked, and if we have enough data, we can start a write request */
1709 		if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1710 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1711 			PRINTK("Computing parity...\n");
1712 			compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1713 			/* now every locked buffer is ready to be written */
1714 			for (i=disks; i--;)
1715 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1716 					PRINTK("Writing block %d\n", i);
1717 					locked++;
1718 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
1719 					if (!test_bit(R5_Insync, &sh->dev[i].flags)
1720 					    || (i==sh->pd_idx && failed == 0))
1721 						set_bit(STRIPE_INSYNC, &sh->state);
1722 				}
1723 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1724 				atomic_dec(&conf->preread_active_stripes);
1725 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1726 					md_wakeup_thread(conf->mddev->thread);
1727 			}
1728 		}
1729 	}
1730 
1731 	/* maybe we need to check and possibly fix the parity for this stripe
1732 	 * Any reads will already have been scheduled, so we just see if enough data
1733 	 * is available
1734 	 */
1735 	if (syncing && locked == 0 &&
1736 	    !test_bit(STRIPE_INSYNC, &sh->state)) {
1737 		set_bit(STRIPE_HANDLE, &sh->state);
1738 		if (failed == 0) {
1739 			BUG_ON(uptodate != disks);
1740 			compute_parity5(sh, CHECK_PARITY);
1741 			uptodate--;
1742 			if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1743 				/* parity is correct (on disc, not in buffer any more) */
1744 				set_bit(STRIPE_INSYNC, &sh->state);
1745 			} else {
1746 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
1747 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1748 					/* don't try to repair!! */
1749 					set_bit(STRIPE_INSYNC, &sh->state);
1750 				else {
1751 					compute_block(sh, sh->pd_idx);
1752 					uptodate++;
1753 				}
1754 			}
1755 		}
1756 		if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1757 			/* either failed parity check, or recovery is happening */
1758 			if (failed==0)
1759 				failed_num = sh->pd_idx;
1760 			dev = &sh->dev[failed_num];
1761 			BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1762 			BUG_ON(uptodate != disks);
1763 
1764 			set_bit(R5_LOCKED, &dev->flags);
1765 			set_bit(R5_Wantwrite, &dev->flags);
1766 			clear_bit(STRIPE_DEGRADED, &sh->state);
1767 			locked++;
1768 			set_bit(STRIPE_INSYNC, &sh->state);
1769 		}
1770 	}
1771 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1772 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1773 		clear_bit(STRIPE_SYNCING, &sh->state);
1774 	}
1775 
1776 	/* If the failed drive is just a ReadError, then we might need to progress
1777 	 * the repair/check process
1778 	 */
1779 	if (failed == 1 && ! conf->mddev->ro &&
1780 	    test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1781 	    && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1782 	    && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1783 		) {
1784 		dev = &sh->dev[failed_num];
1785 		if (!test_bit(R5_ReWrite, &dev->flags)) {
1786 			set_bit(R5_Wantwrite, &dev->flags);
1787 			set_bit(R5_ReWrite, &dev->flags);
1788 			set_bit(R5_LOCKED, &dev->flags);
1789 			locked++;
1790 		} else {
1791 			/* let's read it back */
1792 			set_bit(R5_Wantread, &dev->flags);
1793 			set_bit(R5_LOCKED, &dev->flags);
1794 			locked++;
1795 		}
1796 	}
1797 
1798 	if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1799 		/* Need to write out all blocks after computing parity */
1800 		sh->disks = conf->raid_disks;
1801 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1802 		compute_parity5(sh, RECONSTRUCT_WRITE);
1803 		for (i= conf->raid_disks; i--;) {
1804 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1805 			locked++;
1806 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
1807 		}
1808 		clear_bit(STRIPE_EXPANDING, &sh->state);
1809 	} else if (expanded) {
1810 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
1811 		atomic_dec(&conf->reshape_stripes);
1812 		wake_up(&conf->wait_for_overlap);
1813 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1814 	}
1815 
1816 	if (expanding && locked == 0) {
1817 		/* We have read all the blocks in this stripe and now we need to
1818 		 * copy some of them into a target stripe for expand.
1819 		 */
1820 		clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1821 		for (i=0; i< sh->disks; i++)
1822 			if (i != sh->pd_idx) {
1823 				int dd_idx, pd_idx, j;
1824 				struct stripe_head *sh2;
1825 
1826 				sector_t bn = compute_blocknr(sh, i);
1827 				sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1828 								  conf->raid_disks-1,
1829 								  &dd_idx, &pd_idx, conf);
1830 				sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1831 				if (sh2 == NULL)
1832 					/* so far only the early blocks of this stripe
1833 					 * have been requested.  When later blocks
1834 					 * get requested, we will try again
1835 					 */
1836 					continue;
1837 				if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1838 				   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1839 					/* must have already done this block */
1840 					release_stripe(sh2);
1841 					continue;
1842 				}
1843 				memcpy(page_address(sh2->dev[dd_idx].page),
1844 				       page_address(sh->dev[i].page),
1845 				       STRIPE_SIZE);
1846 				set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1847 				set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1848 				for (j=0; j<conf->raid_disks; j++)
1849 					if (j != sh2->pd_idx &&
1850 					    !test_bit(R5_Expanded, &sh2->dev[j].flags))
1851 						break;
1852 				if (j == conf->raid_disks) {
1853 					set_bit(STRIPE_EXPAND_READY, &sh2->state);
1854 					set_bit(STRIPE_HANDLE, &sh2->state);
1855 				}
1856 				release_stripe(sh2);
1857 			}
1858 	}
1859 
1860 	spin_unlock(&sh->lock);
1861 
1862 	while ((bi=return_bi)) {
1863 		int bytes = bi->bi_size;
1864 
1865 		return_bi = bi->bi_next;
1866 		bi->bi_next = NULL;
1867 		bi->bi_size = 0;
1868 		bi->bi_end_io(bi, bytes, 0);
1869 	}
1870 	for (i=disks; i-- ;) {
1871 		int rw;
1872 		struct bio *bi;
1873 		mdk_rdev_t *rdev;
1874 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1875 			rw = 1;
1876 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1877 			rw = 0;
1878 		else
1879 			continue;
1880 
1881 		bi = &sh->dev[i].req;
1882 
1883 		bi->bi_rw = rw;
1884 		if (rw)
1885 			bi->bi_end_io = raid5_end_write_request;
1886 		else
1887 			bi->bi_end_io = raid5_end_read_request;
1888 
1889 		rcu_read_lock();
1890 		rdev = rcu_dereference(conf->disks[i].rdev);
1891 		if (rdev && test_bit(Faulty, &rdev->flags))
1892 			rdev = NULL;
1893 		if (rdev)
1894 			atomic_inc(&rdev->nr_pending);
1895 		rcu_read_unlock();
1896 
1897 		if (rdev) {
1898 			if (syncing || expanding || expanded)
1899 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1900 
1901 			bi->bi_bdev = rdev->bdev;
1902 			PRINTK("for %llu schedule op %ld on disc %d\n",
1903 				(unsigned long long)sh->sector, bi->bi_rw, i);
1904 			atomic_inc(&sh->count);
1905 			bi->bi_sector = sh->sector + rdev->data_offset;
1906 			bi->bi_flags = 1 << BIO_UPTODATE;
1907 			bi->bi_vcnt = 1;
1908 			bi->bi_max_vecs = 1;
1909 			bi->bi_idx = 0;
1910 			bi->bi_io_vec = &sh->dev[i].vec;
1911 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1912 			bi->bi_io_vec[0].bv_offset = 0;
1913 			bi->bi_size = STRIPE_SIZE;
1914 			bi->bi_next = NULL;
1915 			if (rw == WRITE &&
1916 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
1917 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1918 			generic_make_request(bi);
1919 		} else {
1920 			if (rw == 1)
1921 				set_bit(STRIPE_DEGRADED, &sh->state);
1922 			PRINTK("skip op %ld on disc %d for sector %llu\n",
1923 				bi->bi_rw, i, (unsigned long long)sh->sector);
1924 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1925 			set_bit(STRIPE_HANDLE, &sh->state);
1926 		}
1927 	}
1928 }
1929 
1930 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1931 {
1932 	raid6_conf_t *conf = sh->raid_conf;
1933 	int disks = conf->raid_disks;
1934 	struct bio *return_bi= NULL;
1935 	struct bio *bi;
1936 	int i;
1937 	int syncing;
1938 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1939 	int non_overwrite = 0;
1940 	int failed_num[2] = {0, 0};
1941 	struct r5dev *dev, *pdev, *qdev;
1942 	int pd_idx = sh->pd_idx;
1943 	int qd_idx = raid6_next_disk(pd_idx, disks);
1944 	int p_failed, q_failed;
1945 
1946 	PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1947 	       (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1948 	       pd_idx, qd_idx);
1949 
1950 	spin_lock(&sh->lock);
1951 	clear_bit(STRIPE_HANDLE, &sh->state);
1952 	clear_bit(STRIPE_DELAYED, &sh->state);
1953 
1954 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1955 	/* Now to look around and see what can be done */
1956 
1957 	rcu_read_lock();
1958 	for (i=disks; i--; ) {
1959 		mdk_rdev_t *rdev;
1960 		dev = &sh->dev[i];
1961 		clear_bit(R5_Insync, &dev->flags);
1962 
1963 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1964 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1965 		/* maybe we can reply to a read */
1966 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1967 			struct bio *rbi, *rbi2;
1968 			PRINTK("Return read for disc %d\n", i);
1969 			spin_lock_irq(&conf->device_lock);
1970 			rbi = dev->toread;
1971 			dev->toread = NULL;
1972 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1973 				wake_up(&conf->wait_for_overlap);
1974 			spin_unlock_irq(&conf->device_lock);
1975 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1976 				copy_data(0, rbi, dev->page, dev->sector);
1977 				rbi2 = r5_next_bio(rbi, dev->sector);
1978 				spin_lock_irq(&conf->device_lock);
1979 				if (--rbi->bi_phys_segments == 0) {
1980 					rbi->bi_next = return_bi;
1981 					return_bi = rbi;
1982 				}
1983 				spin_unlock_irq(&conf->device_lock);
1984 				rbi = rbi2;
1985 			}
1986 		}
1987 
1988 		/* now count some things */
1989 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1990 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1991 
1992 
1993 		if (dev->toread) to_read++;
1994 		if (dev->towrite) {
1995 			to_write++;
1996 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1997 				non_overwrite++;
1998 		}
1999 		if (dev->written) written++;
2000 		rdev = rcu_dereference(conf->disks[i].rdev);
2001 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2002 			/* The ReadError flag will just be confusing now */
2003 			clear_bit(R5_ReadError, &dev->flags);
2004 			clear_bit(R5_ReWrite, &dev->flags);
2005 		}
2006 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2007 		    || test_bit(R5_ReadError, &dev->flags)) {
2008 			if ( failed < 2 )
2009 				failed_num[failed] = i;
2010 			failed++;
2011 		} else
2012 			set_bit(R5_Insync, &dev->flags);
2013 	}
2014 	rcu_read_unlock();
2015 	PRINTK("locked=%d uptodate=%d to_read=%d"
2016 	       " to_write=%d failed=%d failed_num=%d,%d\n",
2017 	       locked, uptodate, to_read, to_write, failed,
2018 	       failed_num[0], failed_num[1]);
2019 	/* check if the array has lost >2 devices and, if so, some requests might
2020 	 * need to be failed
2021 	 */
2022 	if (failed > 2 && to_read+to_write+written) {
2023 		for (i=disks; i--; ) {
2024 			int bitmap_end = 0;
2025 
2026 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2027 				mdk_rdev_t *rdev;
2028 				rcu_read_lock();
2029 				rdev = rcu_dereference(conf->disks[i].rdev);
2030 				if (rdev && test_bit(In_sync, &rdev->flags))
2031 					/* multiple read failures in one stripe */
2032 					md_error(conf->mddev, rdev);
2033 				rcu_read_unlock();
2034 			}
2035 
2036 			spin_lock_irq(&conf->device_lock);
2037 			/* fail all writes first */
2038 			bi = sh->dev[i].towrite;
2039 			sh->dev[i].towrite = NULL;
2040 			if (bi) { to_write--; bitmap_end = 1; }
2041 
2042 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2043 				wake_up(&conf->wait_for_overlap);
2044 
2045 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2046 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2047 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2048 				if (--bi->bi_phys_segments == 0) {
2049 					md_write_end(conf->mddev);
2050 					bi->bi_next = return_bi;
2051 					return_bi = bi;
2052 				}
2053 				bi = nextbi;
2054 			}
2055 			/* and fail all 'written' */
2056 			bi = sh->dev[i].written;
2057 			sh->dev[i].written = NULL;
2058 			if (bi) bitmap_end = 1;
2059 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2060 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2061 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2062 				if (--bi->bi_phys_segments == 0) {
2063 					md_write_end(conf->mddev);
2064 					bi->bi_next = return_bi;
2065 					return_bi = bi;
2066 				}
2067 				bi = bi2;
2068 			}
2069 
2070 			/* fail any reads if this device is non-operational */
2071 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2072 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
2073 				bi = sh->dev[i].toread;
2074 				sh->dev[i].toread = NULL;
2075 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2076 					wake_up(&conf->wait_for_overlap);
2077 				if (bi) to_read--;
2078 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2079 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2080 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
2081 					if (--bi->bi_phys_segments == 0) {
2082 						bi->bi_next = return_bi;
2083 						return_bi = bi;
2084 					}
2085 					bi = nextbi;
2086 				}
2087 			}
2088 			spin_unlock_irq(&conf->device_lock);
2089 			if (bitmap_end)
2090 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2091 						STRIPE_SECTORS, 0, 0);
2092 		}
2093 	}
2094 	if (failed > 2 && syncing) {
2095 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2096 		clear_bit(STRIPE_SYNCING, &sh->state);
2097 		syncing = 0;
2098 	}
2099 
2100 	/*
2101 	 * might be able to return some write requests if the parity blocks
2102 	 * are safe, or on a failed drive
2103 	 */
2104 	pdev = &sh->dev[pd_idx];
2105 	p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2106 		|| (failed >= 2 && failed_num[1] == pd_idx);
2107 	qdev = &sh->dev[qd_idx];
2108 	q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2109 		|| (failed >= 2 && failed_num[1] == qd_idx);
2110 
2111 	if ( written &&
2112 	     ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2113 			     && !test_bit(R5_LOCKED, &pdev->flags)
2114 			     && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2115 	     ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2116 			     && !test_bit(R5_LOCKED, &qdev->flags)
2117 			     && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2118 		/* any written block on an uptodate or failed drive can be
2119 		 * returned.  Note that if we 'wrote' to a failed drive,
2120 		 * it will be UPTODATE, but never LOCKED, so we don't need
2121 		 * to test 'failed' directly.
2122 		 */
2123 		for (i=disks; i--; )
2124 			if (sh->dev[i].written) {
2125 				dev = &sh->dev[i];
2126 				if (!test_bit(R5_LOCKED, &dev->flags) &&
2127 				    test_bit(R5_UPTODATE, &dev->flags) ) {
2128 					/* We can return any write requests */
2129 					int bitmap_end = 0;
2130 					struct bio *wbi, *wbi2;
2131 					PRINTK("Return write for stripe %llu disc %d\n",
2132 					       (unsigned long long)sh->sector, i);
2133 					spin_lock_irq(&conf->device_lock);
2134 					wbi = dev->written;
2135 					dev->written = NULL;
2136 					while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2137 						wbi2 = r5_next_bio(wbi, dev->sector);
2138 						if (--wbi->bi_phys_segments == 0) {
2139 							md_write_end(conf->mddev);
2140 							wbi->bi_next = return_bi;
2141 							return_bi = wbi;
2142 						}
2143 						wbi = wbi2;
2144 					}
2145 					if (dev->towrite == NULL)
2146 						bitmap_end = 1;
2147 					spin_unlock_irq(&conf->device_lock);
2148 					if (bitmap_end)
2149 						bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2150 								STRIPE_SECTORS,
2151 								!test_bit(STRIPE_DEGRADED, &sh->state), 0);
2152 				}
2153 			}
2154 	}
2155 
2156 	/* Now we might consider reading some blocks, either to check/generate
2157 	 * parity, or to satisfy requests
2158 	 * or to load a block that is being partially written.
2159 	 */
2160 	if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2161 		for (i=disks; i--;) {
2162 			dev = &sh->dev[i];
2163 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2164 			    (dev->toread ||
2165 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2166 			     syncing ||
2167 			     (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2168 			     (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2169 				    )
2170 				) {
2171 				/* we would like to get this block, possibly
2172 				 * by computing it, but we might not be able to
2173 				 */
2174 				if (uptodate == disks-1) {
2175 					PRINTK("Computing stripe %llu block %d\n",
2176 					       (unsigned long long)sh->sector, i);
2177 					compute_block_1(sh, i, 0);
2178 					uptodate++;
2179 				} else if ( uptodate == disks-2 && failed >= 2 ) {
2180 					/* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2181 					int other;
2182 					for (other=disks; other--;) {
2183 						if ( other == i )
2184 							continue;
2185 						if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2186 							break;
2187 					}
2188 					BUG_ON(other < 0);
2189 					PRINTK("Computing stripe %llu blocks %d,%d\n",
2190 					       (unsigned long long)sh->sector, i, other);
2191 					compute_block_2(sh, i, other);
2192 					uptodate += 2;
2193 				} else if (test_bit(R5_Insync, &dev->flags)) {
2194 					set_bit(R5_LOCKED, &dev->flags);
2195 					set_bit(R5_Wantread, &dev->flags);
2196 #if 0
2197 					/* if I am just reading this block and we don't have
2198 					   a failed drive, or any pending writes then sidestep the cache */
2199 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2200 					    ! syncing && !failed && !to_write) {
2201 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
2202 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
2203 					}
2204 #endif
2205 					locked++;
2206 					PRINTK("Reading block %d (sync=%d)\n",
2207 						i, syncing);
2208 				}
2209 			}
2210 		}
2211 		set_bit(STRIPE_HANDLE, &sh->state);
2212 	}
2213 
2214 	/* now to consider writing and what else, if anything should be read */
2215 	if (to_write) {
2216 		int rcw=0, must_compute=0;
2217 		for (i=disks ; i--;) {
2218 			dev = &sh->dev[i];
2219 			/* Would I have to read this buffer for reconstruct_write */
2220 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2221 			    && i != pd_idx && i != qd_idx
2222 			    && (!test_bit(R5_LOCKED, &dev->flags)
2223 #if 0
2224 				|| sh->bh_page[i] != bh->b_page
2225 #endif
2226 				    ) &&
2227 			    !test_bit(R5_UPTODATE, &dev->flags)) {
2228 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
2229 				else {
2230 					PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2231 					must_compute++;
2232 				}
2233 			}
2234 		}
2235 		PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2236 		       (unsigned long long)sh->sector, rcw, must_compute);
2237 		set_bit(STRIPE_HANDLE, &sh->state);
2238 
2239 		if (rcw > 0)
2240 			/* want reconstruct write, but need to get some data */
2241 			for (i=disks; i--;) {
2242 				dev = &sh->dev[i];
2243 				if (!test_bit(R5_OVERWRITE, &dev->flags)
2244 				    && !(failed == 0 && (i == pd_idx || i == qd_idx))
2245 				    && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2246 				    test_bit(R5_Insync, &dev->flags)) {
2247 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2248 					{
2249 						PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2250 						       (unsigned long long)sh->sector, i);
2251 						set_bit(R5_LOCKED, &dev->flags);
2252 						set_bit(R5_Wantread, &dev->flags);
2253 						locked++;
2254 					} else {
2255 						PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2256 						       (unsigned long long)sh->sector, i);
2257 						set_bit(STRIPE_DELAYED, &sh->state);
2258 						set_bit(STRIPE_HANDLE, &sh->state);
2259 					}
2260 				}
2261 			}
2262 		/* now if nothing is locked, and if we have enough data, we can start a write request */
2263 		if (locked == 0 && rcw == 0 &&
2264 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2265 			if ( must_compute > 0 ) {
2266 				/* We have failed blocks and need to compute them */
2267 				switch ( failed ) {
2268 				case 0:	BUG();
2269 				case 1: compute_block_1(sh, failed_num[0], 0); break;
2270 				case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2271 				default: BUG();	/* This request should have been failed? */
2272 				}
2273 			}
2274 
2275 			PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2276 			compute_parity6(sh, RECONSTRUCT_WRITE);
2277 			/* now every locked buffer is ready to be written */
2278 			for (i=disks; i--;)
2279 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2280 					PRINTK("Writing stripe %llu block %d\n",
2281 					       (unsigned long long)sh->sector, i);
2282 					locked++;
2283 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
2284 				}
2285 			/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2286 			set_bit(STRIPE_INSYNC, &sh->state);
2287 
2288 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2289 				atomic_dec(&conf->preread_active_stripes);
2290 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2291 					md_wakeup_thread(conf->mddev->thread);
2292 			}
2293 		}
2294 	}
2295 
2296 	/* maybe we need to check and possibly fix the parity for this stripe
2297 	 * Any reads will already have been scheduled, so we just see if enough data
2298 	 * is available
2299 	 */
2300 	if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2301 		int update_p = 0, update_q = 0;
2302 		struct r5dev *dev;
2303 
2304 		set_bit(STRIPE_HANDLE, &sh->state);
2305 
2306 		BUG_ON(failed>2);
2307 		BUG_ON(uptodate < disks);
2308 		/* Want to check and possibly repair P and Q.
2309 		 * However there could be one 'failed' device, in which
2310 		 * case we can only check one of them, possibly using the
2311 		 * other to generate missing data
2312 		 */
2313 
2314 		/* If !tmp_page, we cannot do the calculations,
2315 		 * but as we have set STRIPE_HANDLE, we will soon be called
2316 		 * by stripe_handle with a tmp_page - just wait until then.
2317 		 */
2318 		if (tmp_page) {
2319 			if (failed == q_failed) {
2320 				/* The only possible failed device holds 'Q', so it makes
2321 				 * sense to check P (If anything else were failed, we would
2322 				 * have used P to recreate it).
2323 				 */
2324 				compute_block_1(sh, pd_idx, 1);
2325 				if (!page_is_zero(sh->dev[pd_idx].page)) {
2326 					compute_block_1(sh,pd_idx,0);
2327 					update_p = 1;
2328 				}
2329 			}
2330 			if (!q_failed && failed < 2) {
2331 				/* q is not failed, and we didn't use it to generate
2332 				 * anything, so it makes sense to check it
2333 				 */
2334 				memcpy(page_address(tmp_page),
2335 				       page_address(sh->dev[qd_idx].page),
2336 				       STRIPE_SIZE);
2337 				compute_parity6(sh, UPDATE_PARITY);
2338 				if (memcmp(page_address(tmp_page),
2339 					   page_address(sh->dev[qd_idx].page),
2340 					   STRIPE_SIZE)!= 0) {
2341 					clear_bit(STRIPE_INSYNC, &sh->state);
2342 					update_q = 1;
2343 				}
2344 			}
2345 			if (update_p || update_q) {
2346 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
2347 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2348 					/* don't try to repair!! */
2349 					update_p = update_q = 0;
2350 			}
2351 
2352 			/* now write out any block on a failed drive,
2353 			 * or P or Q if they need it
2354 			 */
2355 
2356 			if (failed == 2) {
2357 				dev = &sh->dev[failed_num[1]];
2358 				locked++;
2359 				set_bit(R5_LOCKED, &dev->flags);
2360 				set_bit(R5_Wantwrite, &dev->flags);
2361 			}
2362 			if (failed >= 1) {
2363 				dev = &sh->dev[failed_num[0]];
2364 				locked++;
2365 				set_bit(R5_LOCKED, &dev->flags);
2366 				set_bit(R5_Wantwrite, &dev->flags);
2367 			}
2368 
2369 			if (update_p) {
2370 				dev = &sh->dev[pd_idx];
2371 				locked ++;
2372 				set_bit(R5_LOCKED, &dev->flags);
2373 				set_bit(R5_Wantwrite, &dev->flags);
2374 			}
2375 			if (update_q) {
2376 				dev = &sh->dev[qd_idx];
2377 				locked++;
2378 				set_bit(R5_LOCKED, &dev->flags);
2379 				set_bit(R5_Wantwrite, &dev->flags);
2380 			}
2381 			clear_bit(STRIPE_DEGRADED, &sh->state);
2382 
2383 			set_bit(STRIPE_INSYNC, &sh->state);
2384 		}
2385 	}
2386 
2387 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2388 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2389 		clear_bit(STRIPE_SYNCING, &sh->state);
2390 	}
2391 
2392 	/* If the failed drives are just a ReadError, then we might need
2393 	 * to progress the repair/check process
2394 	 */
2395 	if (failed <= 2 && ! conf->mddev->ro)
2396 		for (i=0; i<failed;i++) {
2397 			dev = &sh->dev[failed_num[i]];
2398 			if (test_bit(R5_ReadError, &dev->flags)
2399 			    && !test_bit(R5_LOCKED, &dev->flags)
2400 			    && test_bit(R5_UPTODATE, &dev->flags)
2401 				) {
2402 				if (!test_bit(R5_ReWrite, &dev->flags)) {
2403 					set_bit(R5_Wantwrite, &dev->flags);
2404 					set_bit(R5_ReWrite, &dev->flags);
2405 					set_bit(R5_LOCKED, &dev->flags);
2406 				} else {
2407 					/* let's read it back */
2408 					set_bit(R5_Wantread, &dev->flags);
2409 					set_bit(R5_LOCKED, &dev->flags);
2410 				}
2411 			}
2412 		}
2413 	spin_unlock(&sh->lock);
2414 
2415 	while ((bi=return_bi)) {
2416 		int bytes = bi->bi_size;
2417 
2418 		return_bi = bi->bi_next;
2419 		bi->bi_next = NULL;
2420 		bi->bi_size = 0;
2421 		bi->bi_end_io(bi, bytes, 0);
2422 	}
2423 	for (i=disks; i-- ;) {
2424 		int rw;
2425 		struct bio *bi;
2426 		mdk_rdev_t *rdev;
2427 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2428 			rw = 1;
2429 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2430 			rw = 0;
2431 		else
2432 			continue;
2433 
2434 		bi = &sh->dev[i].req;
2435 
2436 		bi->bi_rw = rw;
2437 		if (rw)
2438 			bi->bi_end_io = raid5_end_write_request;
2439 		else
2440 			bi->bi_end_io = raid5_end_read_request;
2441 
2442 		rcu_read_lock();
2443 		rdev = rcu_dereference(conf->disks[i].rdev);
2444 		if (rdev && test_bit(Faulty, &rdev->flags))
2445 			rdev = NULL;
2446 		if (rdev)
2447 			atomic_inc(&rdev->nr_pending);
2448 		rcu_read_unlock();
2449 
2450 		if (rdev) {
2451 			if (syncing)
2452 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2453 
2454 			bi->bi_bdev = rdev->bdev;
2455 			PRINTK("for %llu schedule op %ld on disc %d\n",
2456 				(unsigned long long)sh->sector, bi->bi_rw, i);
2457 			atomic_inc(&sh->count);
2458 			bi->bi_sector = sh->sector + rdev->data_offset;
2459 			bi->bi_flags = 1 << BIO_UPTODATE;
2460 			bi->bi_vcnt = 1;
2461 			bi->bi_max_vecs = 1;
2462 			bi->bi_idx = 0;
2463 			bi->bi_io_vec = &sh->dev[i].vec;
2464 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2465 			bi->bi_io_vec[0].bv_offset = 0;
2466 			bi->bi_size = STRIPE_SIZE;
2467 			bi->bi_next = NULL;
2468 			if (rw == WRITE &&
2469 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
2470 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2471 			generic_make_request(bi);
2472 		} else {
2473 			if (rw == 1)
2474 				set_bit(STRIPE_DEGRADED, &sh->state);
2475 			PRINTK("skip op %ld on disc %d for sector %llu\n",
2476 				bi->bi_rw, i, (unsigned long long)sh->sector);
2477 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
2478 			set_bit(STRIPE_HANDLE, &sh->state);
2479 		}
2480 	}
2481 }
2482 
2483 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2484 {
2485 	if (sh->raid_conf->level == 6)
2486 		handle_stripe6(sh, tmp_page);
2487 	else
2488 		handle_stripe5(sh);
2489 }
2490 
2491 
2492 
2493 static void raid5_activate_delayed(raid5_conf_t *conf)
2494 {
2495 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2496 		while (!list_empty(&conf->delayed_list)) {
2497 			struct list_head *l = conf->delayed_list.next;
2498 			struct stripe_head *sh;
2499 			sh = list_entry(l, struct stripe_head, lru);
2500 			list_del_init(l);
2501 			clear_bit(STRIPE_DELAYED, &sh->state);
2502 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2503 				atomic_inc(&conf->preread_active_stripes);
2504 			list_add_tail(&sh->lru, &conf->handle_list);
2505 		}
2506 	}
2507 }
2508 
2509 static void activate_bit_delay(raid5_conf_t *conf)
2510 {
2511 	/* device_lock is held */
2512 	struct list_head head;
2513 	list_add(&head, &conf->bitmap_list);
2514 	list_del_init(&conf->bitmap_list);
2515 	while (!list_empty(&head)) {
2516 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2517 		list_del_init(&sh->lru);
2518 		atomic_inc(&sh->count);
2519 		__release_stripe(conf, sh);
2520 	}
2521 }
2522 
2523 static void unplug_slaves(mddev_t *mddev)
2524 {
2525 	raid5_conf_t *conf = mddev_to_conf(mddev);
2526 	int i;
2527 
2528 	rcu_read_lock();
2529 	for (i=0; i<mddev->raid_disks; i++) {
2530 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2531 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2532 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2533 
2534 			atomic_inc(&rdev->nr_pending);
2535 			rcu_read_unlock();
2536 
2537 			if (r_queue->unplug_fn)
2538 				r_queue->unplug_fn(r_queue);
2539 
2540 			rdev_dec_pending(rdev, mddev);
2541 			rcu_read_lock();
2542 		}
2543 	}
2544 	rcu_read_unlock();
2545 }
2546 
2547 static void raid5_unplug_device(request_queue_t *q)
2548 {
2549 	mddev_t *mddev = q->queuedata;
2550 	raid5_conf_t *conf = mddev_to_conf(mddev);
2551 	unsigned long flags;
2552 
2553 	spin_lock_irqsave(&conf->device_lock, flags);
2554 
2555 	if (blk_remove_plug(q)) {
2556 		conf->seq_flush++;
2557 		raid5_activate_delayed(conf);
2558 	}
2559 	md_wakeup_thread(mddev->thread);
2560 
2561 	spin_unlock_irqrestore(&conf->device_lock, flags);
2562 
2563 	unplug_slaves(mddev);
2564 }
2565 
2566 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2567 			     sector_t *error_sector)
2568 {
2569 	mddev_t *mddev = q->queuedata;
2570 	raid5_conf_t *conf = mddev_to_conf(mddev);
2571 	int i, ret = 0;
2572 
2573 	rcu_read_lock();
2574 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2575 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2576 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
2577 			struct block_device *bdev = rdev->bdev;
2578 			request_queue_t *r_queue = bdev_get_queue(bdev);
2579 
2580 			if (!r_queue->issue_flush_fn)
2581 				ret = -EOPNOTSUPP;
2582 			else {
2583 				atomic_inc(&rdev->nr_pending);
2584 				rcu_read_unlock();
2585 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2586 							      error_sector);
2587 				rdev_dec_pending(rdev, mddev);
2588 				rcu_read_lock();
2589 			}
2590 		}
2591 	}
2592 	rcu_read_unlock();
2593 	return ret;
2594 }
2595 
2596 static int raid5_congested(void *data, int bits)
2597 {
2598 	mddev_t *mddev = data;
2599 	raid5_conf_t *conf = mddev_to_conf(mddev);
2600 
2601 	/* No difference between reads and writes.  Just check
2602 	 * how busy the stripe_cache is
2603 	 */
2604 	if (conf->inactive_blocked)
2605 		return 1;
2606 	if (conf->quiesce)
2607 		return 1;
2608 	if (list_empty_careful(&conf->inactive_list))
2609 		return 1;
2610 
2611 	return 0;
2612 }
2613 
2614 static int make_request(request_queue_t *q, struct bio * bi)
2615 {
2616 	mddev_t *mddev = q->queuedata;
2617 	raid5_conf_t *conf = mddev_to_conf(mddev);
2618 	unsigned int dd_idx, pd_idx;
2619 	sector_t new_sector;
2620 	sector_t logical_sector, last_sector;
2621 	struct stripe_head *sh;
2622 	const int rw = bio_data_dir(bi);
2623 	int remaining;
2624 
2625 	if (unlikely(bio_barrier(bi))) {
2626 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2627 		return 0;
2628 	}
2629 
2630 	md_write_start(mddev, bi);
2631 
2632 	disk_stat_inc(mddev->gendisk, ios[rw]);
2633 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2634 
2635 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2636 	last_sector = bi->bi_sector + (bi->bi_size>>9);
2637 	bi->bi_next = NULL;
2638 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
2639 
2640 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2641 		DEFINE_WAIT(w);
2642 		int disks, data_disks;
2643 
2644 	retry:
2645 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2646 		if (likely(conf->expand_progress == MaxSector))
2647 			disks = conf->raid_disks;
2648 		else {
2649 			/* spinlock is needed as expand_progress may be
2650 			 * 64bit on a 32bit platform, and so it might be
2651 			 * possible to see a half-updated value
2652 			 * Ofcourse expand_progress could change after
2653 			 * the lock is dropped, so once we get a reference
2654 			 * to the stripe that we think it is, we will have
2655 			 * to check again.
2656 			 */
2657 			spin_lock_irq(&conf->device_lock);
2658 			disks = conf->raid_disks;
2659 			if (logical_sector >= conf->expand_progress)
2660 				disks = conf->previous_raid_disks;
2661 			else {
2662 				if (logical_sector >= conf->expand_lo) {
2663 					spin_unlock_irq(&conf->device_lock);
2664 					schedule();
2665 					goto retry;
2666 				}
2667 			}
2668 			spin_unlock_irq(&conf->device_lock);
2669 		}
2670 		data_disks = disks - conf->max_degraded;
2671 
2672  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2673 						  &dd_idx, &pd_idx, conf);
2674 		PRINTK("raid5: make_request, sector %llu logical %llu\n",
2675 			(unsigned long long)new_sector,
2676 			(unsigned long long)logical_sector);
2677 
2678 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2679 		if (sh) {
2680 			if (unlikely(conf->expand_progress != MaxSector)) {
2681 				/* expansion might have moved on while waiting for a
2682 				 * stripe, so we must do the range check again.
2683 				 * Expansion could still move past after this
2684 				 * test, but as we are holding a reference to
2685 				 * 'sh', we know that if that happens,
2686 				 *  STRIPE_EXPANDING will get set and the expansion
2687 				 * won't proceed until we finish with the stripe.
2688 				 */
2689 				int must_retry = 0;
2690 				spin_lock_irq(&conf->device_lock);
2691 				if (logical_sector <  conf->expand_progress &&
2692 				    disks == conf->previous_raid_disks)
2693 					/* mismatch, need to try again */
2694 					must_retry = 1;
2695 				spin_unlock_irq(&conf->device_lock);
2696 				if (must_retry) {
2697 					release_stripe(sh);
2698 					goto retry;
2699 				}
2700 			}
2701 			/* FIXME what if we get a false positive because these
2702 			 * are being updated.
2703 			 */
2704 			if (logical_sector >= mddev->suspend_lo &&
2705 			    logical_sector < mddev->suspend_hi) {
2706 				release_stripe(sh);
2707 				schedule();
2708 				goto retry;
2709 			}
2710 
2711 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2712 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2713 				/* Stripe is busy expanding or
2714 				 * add failed due to overlap.  Flush everything
2715 				 * and wait a while
2716 				 */
2717 				raid5_unplug_device(mddev->queue);
2718 				release_stripe(sh);
2719 				schedule();
2720 				goto retry;
2721 			}
2722 			finish_wait(&conf->wait_for_overlap, &w);
2723 			handle_stripe(sh, NULL);
2724 			release_stripe(sh);
2725 		} else {
2726 			/* cannot get stripe for read-ahead, just give-up */
2727 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2728 			finish_wait(&conf->wait_for_overlap, &w);
2729 			break;
2730 		}
2731 
2732 	}
2733 	spin_lock_irq(&conf->device_lock);
2734 	remaining = --bi->bi_phys_segments;
2735 	spin_unlock_irq(&conf->device_lock);
2736 	if (remaining == 0) {
2737 		int bytes = bi->bi_size;
2738 
2739 		if ( rw == WRITE )
2740 			md_write_end(mddev);
2741 		bi->bi_size = 0;
2742 		bi->bi_end_io(bi, bytes, 0);
2743 	}
2744 	return 0;
2745 }
2746 
2747 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2748 {
2749 	/* reshaping is quite different to recovery/resync so it is
2750 	 * handled quite separately ... here.
2751 	 *
2752 	 * On each call to sync_request, we gather one chunk worth of
2753 	 * destination stripes and flag them as expanding.
2754 	 * Then we find all the source stripes and request reads.
2755 	 * As the reads complete, handle_stripe will copy the data
2756 	 * into the destination stripe and release that stripe.
2757 	 */
2758 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2759 	struct stripe_head *sh;
2760 	int pd_idx;
2761 	sector_t first_sector, last_sector;
2762 	int raid_disks;
2763 	int data_disks;
2764 	int i;
2765 	int dd_idx;
2766 	sector_t writepos, safepos, gap;
2767 
2768 	if (sector_nr == 0 &&
2769 	    conf->expand_progress != 0) {
2770 		/* restarting in the middle, skip the initial sectors */
2771 		sector_nr = conf->expand_progress;
2772 		sector_div(sector_nr, conf->raid_disks-1);
2773 		*skipped = 1;
2774 		return sector_nr;
2775 	}
2776 
2777 	/* we update the metadata when there is more than 3Meg
2778 	 * in the block range (that is rather arbitrary, should
2779 	 * probably be time based) or when the data about to be
2780 	 * copied would over-write the source of the data at
2781 	 * the front of the range.
2782 	 * i.e. one new_stripe forward from expand_progress new_maps
2783 	 * to after where expand_lo old_maps to
2784 	 */
2785 	writepos = conf->expand_progress +
2786 		conf->chunk_size/512*(conf->raid_disks-1);
2787 	sector_div(writepos, conf->raid_disks-1);
2788 	safepos = conf->expand_lo;
2789 	sector_div(safepos, conf->previous_raid_disks-1);
2790 	gap = conf->expand_progress - conf->expand_lo;
2791 
2792 	if (writepos >= safepos ||
2793 	    gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2794 		/* Cannot proceed until we've updated the superblock... */
2795 		wait_event(conf->wait_for_overlap,
2796 			   atomic_read(&conf->reshape_stripes)==0);
2797 		mddev->reshape_position = conf->expand_progress;
2798 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2799 		md_wakeup_thread(mddev->thread);
2800 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
2801 			   kthread_should_stop());
2802 		spin_lock_irq(&conf->device_lock);
2803 		conf->expand_lo = mddev->reshape_position;
2804 		spin_unlock_irq(&conf->device_lock);
2805 		wake_up(&conf->wait_for_overlap);
2806 	}
2807 
2808 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2809 		int j;
2810 		int skipped = 0;
2811 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2812 		sh = get_active_stripe(conf, sector_nr+i,
2813 				       conf->raid_disks, pd_idx, 0);
2814 		set_bit(STRIPE_EXPANDING, &sh->state);
2815 		atomic_inc(&conf->reshape_stripes);
2816 		/* If any of this stripe is beyond the end of the old
2817 		 * array, then we need to zero those blocks
2818 		 */
2819 		for (j=sh->disks; j--;) {
2820 			sector_t s;
2821 			if (j == sh->pd_idx)
2822 				continue;
2823 			s = compute_blocknr(sh, j);
2824 			if (s < (mddev->array_size<<1)) {
2825 				skipped = 1;
2826 				continue;
2827 			}
2828 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2829 			set_bit(R5_Expanded, &sh->dev[j].flags);
2830 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
2831 		}
2832 		if (!skipped) {
2833 			set_bit(STRIPE_EXPAND_READY, &sh->state);
2834 			set_bit(STRIPE_HANDLE, &sh->state);
2835 		}
2836 		release_stripe(sh);
2837 	}
2838 	spin_lock_irq(&conf->device_lock);
2839 	conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2840 	spin_unlock_irq(&conf->device_lock);
2841 	/* Ok, those stripe are ready. We can start scheduling
2842 	 * reads on the source stripes.
2843 	 * The source stripes are determined by mapping the first and last
2844 	 * block on the destination stripes.
2845 	 */
2846 	raid_disks = conf->previous_raid_disks;
2847 	data_disks = raid_disks - 1;
2848 	first_sector =
2849 		raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2850 				     raid_disks, data_disks,
2851 				     &dd_idx, &pd_idx, conf);
2852 	last_sector =
2853 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
2854 				     *(conf->raid_disks-1) -1,
2855 				     raid_disks, data_disks,
2856 				     &dd_idx, &pd_idx, conf);
2857 	if (last_sector >= (mddev->size<<1))
2858 		last_sector = (mddev->size<<1)-1;
2859 	while (first_sector <= last_sector) {
2860 		pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2861 		sh = get_active_stripe(conf, first_sector,
2862 				       conf->previous_raid_disks, pd_idx, 0);
2863 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2864 		set_bit(STRIPE_HANDLE, &sh->state);
2865 		release_stripe(sh);
2866 		first_sector += STRIPE_SECTORS;
2867 	}
2868 	return conf->chunk_size>>9;
2869 }
2870 
2871 /* FIXME go_faster isn't used */
2872 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2873 {
2874 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2875 	struct stripe_head *sh;
2876 	int pd_idx;
2877 	int raid_disks = conf->raid_disks;
2878 	sector_t max_sector = mddev->size << 1;
2879 	int sync_blocks;
2880 	int still_degraded = 0;
2881 	int i;
2882 
2883 	if (sector_nr >= max_sector) {
2884 		/* just being told to finish up .. nothing much to do */
2885 		unplug_slaves(mddev);
2886 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2887 			end_reshape(conf);
2888 			return 0;
2889 		}
2890 
2891 		if (mddev->curr_resync < max_sector) /* aborted */
2892 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2893 					&sync_blocks, 1);
2894 		else /* completed sync */
2895 			conf->fullsync = 0;
2896 		bitmap_close_sync(mddev->bitmap);
2897 
2898 		return 0;
2899 	}
2900 
2901 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2902 		return reshape_request(mddev, sector_nr, skipped);
2903 
2904 	/* if there is too many failed drives and we are trying
2905 	 * to resync, then assert that we are finished, because there is
2906 	 * nothing we can do.
2907 	 */
2908 	if (mddev->degraded >= conf->max_degraded &&
2909 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2910 		sector_t rv = (mddev->size << 1) - sector_nr;
2911 		*skipped = 1;
2912 		return rv;
2913 	}
2914 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2915 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2916 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2917 		/* we can skip this block, and probably more */
2918 		sync_blocks /= STRIPE_SECTORS;
2919 		*skipped = 1;
2920 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2921 	}
2922 
2923 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2924 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2925 	if (sh == NULL) {
2926 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2927 		/* make sure we don't swamp the stripe cache if someone else
2928 		 * is trying to get access
2929 		 */
2930 		schedule_timeout_uninterruptible(1);
2931 	}
2932 	/* Need to check if array will still be degraded after recovery/resync
2933 	 * We don't need to check the 'failed' flag as when that gets set,
2934 	 * recovery aborts.
2935 	 */
2936 	for (i=0; i<mddev->raid_disks; i++)
2937 		if (conf->disks[i].rdev == NULL)
2938 			still_degraded = 1;
2939 
2940 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2941 
2942 	spin_lock(&sh->lock);
2943 	set_bit(STRIPE_SYNCING, &sh->state);
2944 	clear_bit(STRIPE_INSYNC, &sh->state);
2945 	spin_unlock(&sh->lock);
2946 
2947 	handle_stripe(sh, NULL);
2948 	release_stripe(sh);
2949 
2950 	return STRIPE_SECTORS;
2951 }
2952 
2953 /*
2954  * This is our raid5 kernel thread.
2955  *
2956  * We scan the hash table for stripes which can be handled now.
2957  * During the scan, completed stripes are saved for us by the interrupt
2958  * handler, so that they will not have to wait for our next wakeup.
2959  */
2960 static void raid5d (mddev_t *mddev)
2961 {
2962 	struct stripe_head *sh;
2963 	raid5_conf_t *conf = mddev_to_conf(mddev);
2964 	int handled;
2965 
2966 	PRINTK("+++ raid5d active\n");
2967 
2968 	md_check_recovery(mddev);
2969 
2970 	handled = 0;
2971 	spin_lock_irq(&conf->device_lock);
2972 	while (1) {
2973 		struct list_head *first;
2974 
2975 		if (conf->seq_flush != conf->seq_write) {
2976 			int seq = conf->seq_flush;
2977 			spin_unlock_irq(&conf->device_lock);
2978 			bitmap_unplug(mddev->bitmap);
2979 			spin_lock_irq(&conf->device_lock);
2980 			conf->seq_write = seq;
2981 			activate_bit_delay(conf);
2982 		}
2983 
2984 		if (list_empty(&conf->handle_list) &&
2985 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2986 		    !blk_queue_plugged(mddev->queue) &&
2987 		    !list_empty(&conf->delayed_list))
2988 			raid5_activate_delayed(conf);
2989 
2990 		if (list_empty(&conf->handle_list))
2991 			break;
2992 
2993 		first = conf->handle_list.next;
2994 		sh = list_entry(first, struct stripe_head, lru);
2995 
2996 		list_del_init(first);
2997 		atomic_inc(&sh->count);
2998 		BUG_ON(atomic_read(&sh->count)!= 1);
2999 		spin_unlock_irq(&conf->device_lock);
3000 
3001 		handled++;
3002 		handle_stripe(sh, conf->spare_page);
3003 		release_stripe(sh);
3004 
3005 		spin_lock_irq(&conf->device_lock);
3006 	}
3007 	PRINTK("%d stripes handled\n", handled);
3008 
3009 	spin_unlock_irq(&conf->device_lock);
3010 
3011 	unplug_slaves(mddev);
3012 
3013 	PRINTK("--- raid5d inactive\n");
3014 }
3015 
3016 static ssize_t
3017 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3018 {
3019 	raid5_conf_t *conf = mddev_to_conf(mddev);
3020 	if (conf)
3021 		return sprintf(page, "%d\n", conf->max_nr_stripes);
3022 	else
3023 		return 0;
3024 }
3025 
3026 static ssize_t
3027 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3028 {
3029 	raid5_conf_t *conf = mddev_to_conf(mddev);
3030 	char *end;
3031 	int new;
3032 	if (len >= PAGE_SIZE)
3033 		return -EINVAL;
3034 	if (!conf)
3035 		return -ENODEV;
3036 
3037 	new = simple_strtoul(page, &end, 10);
3038 	if (!*page || (*end && *end != '\n') )
3039 		return -EINVAL;
3040 	if (new <= 16 || new > 32768)
3041 		return -EINVAL;
3042 	while (new < conf->max_nr_stripes) {
3043 		if (drop_one_stripe(conf))
3044 			conf->max_nr_stripes--;
3045 		else
3046 			break;
3047 	}
3048 	while (new > conf->max_nr_stripes) {
3049 		if (grow_one_stripe(conf))
3050 			conf->max_nr_stripes++;
3051 		else break;
3052 	}
3053 	return len;
3054 }
3055 
3056 static struct md_sysfs_entry
3057 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3058 				raid5_show_stripe_cache_size,
3059 				raid5_store_stripe_cache_size);
3060 
3061 static ssize_t
3062 stripe_cache_active_show(mddev_t *mddev, char *page)
3063 {
3064 	raid5_conf_t *conf = mddev_to_conf(mddev);
3065 	if (conf)
3066 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3067 	else
3068 		return 0;
3069 }
3070 
3071 static struct md_sysfs_entry
3072 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3073 
3074 static struct attribute *raid5_attrs[] =  {
3075 	&raid5_stripecache_size.attr,
3076 	&raid5_stripecache_active.attr,
3077 	NULL,
3078 };
3079 static struct attribute_group raid5_attrs_group = {
3080 	.name = NULL,
3081 	.attrs = raid5_attrs,
3082 };
3083 
3084 static int run(mddev_t *mddev)
3085 {
3086 	raid5_conf_t *conf;
3087 	int raid_disk, memory;
3088 	mdk_rdev_t *rdev;
3089 	struct disk_info *disk;
3090 	struct list_head *tmp;
3091 	int working_disks = 0;
3092 
3093 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3094 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3095 		       mdname(mddev), mddev->level);
3096 		return -EIO;
3097 	}
3098 
3099 	if (mddev->reshape_position != MaxSector) {
3100 		/* Check that we can continue the reshape.
3101 		 * Currently only disks can change, it must
3102 		 * increase, and we must be past the point where
3103 		 * a stripe over-writes itself
3104 		 */
3105 		sector_t here_new, here_old;
3106 		int old_disks;
3107 
3108 		if (mddev->new_level != mddev->level ||
3109 		    mddev->new_layout != mddev->layout ||
3110 		    mddev->new_chunk != mddev->chunk_size) {
3111 			printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3112 			       mdname(mddev));
3113 			return -EINVAL;
3114 		}
3115 		if (mddev->delta_disks <= 0) {
3116 			printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3117 			       mdname(mddev));
3118 			return -EINVAL;
3119 		}
3120 		old_disks = mddev->raid_disks - mddev->delta_disks;
3121 		/* reshape_position must be on a new-stripe boundary, and one
3122 		 * further up in new geometry must map after here in old geometry.
3123 		 */
3124 		here_new = mddev->reshape_position;
3125 		if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3126 			printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3127 			return -EINVAL;
3128 		}
3129 		/* here_new is the stripe we will write to */
3130 		here_old = mddev->reshape_position;
3131 		sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3132 		/* here_old is the first stripe that we might need to read from */
3133 		if (here_new >= here_old) {
3134 			/* Reading from the same stripe as writing to - bad */
3135 			printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3136 			return -EINVAL;
3137 		}
3138 		printk(KERN_INFO "raid5: reshape will continue\n");
3139 		/* OK, we should be able to continue; */
3140 	}
3141 
3142 
3143 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3144 	if ((conf = mddev->private) == NULL)
3145 		goto abort;
3146 	if (mddev->reshape_position == MaxSector) {
3147 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3148 	} else {
3149 		conf->raid_disks = mddev->raid_disks;
3150 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3151 	}
3152 
3153 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3154 			      GFP_KERNEL);
3155 	if (!conf->disks)
3156 		goto abort;
3157 
3158 	conf->mddev = mddev;
3159 
3160 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3161 		goto abort;
3162 
3163 	if (mddev->level == 6) {
3164 		conf->spare_page = alloc_page(GFP_KERNEL);
3165 		if (!conf->spare_page)
3166 			goto abort;
3167 	}
3168 	spin_lock_init(&conf->device_lock);
3169 	init_waitqueue_head(&conf->wait_for_stripe);
3170 	init_waitqueue_head(&conf->wait_for_overlap);
3171 	INIT_LIST_HEAD(&conf->handle_list);
3172 	INIT_LIST_HEAD(&conf->delayed_list);
3173 	INIT_LIST_HEAD(&conf->bitmap_list);
3174 	INIT_LIST_HEAD(&conf->inactive_list);
3175 	atomic_set(&conf->active_stripes, 0);
3176 	atomic_set(&conf->preread_active_stripes, 0);
3177 
3178 	PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3179 
3180 	ITERATE_RDEV(mddev,rdev,tmp) {
3181 		raid_disk = rdev->raid_disk;
3182 		if (raid_disk >= conf->raid_disks
3183 		    || raid_disk < 0)
3184 			continue;
3185 		disk = conf->disks + raid_disk;
3186 
3187 		disk->rdev = rdev;
3188 
3189 		if (test_bit(In_sync, &rdev->flags)) {
3190 			char b[BDEVNAME_SIZE];
3191 			printk(KERN_INFO "raid5: device %s operational as raid"
3192 				" disk %d\n", bdevname(rdev->bdev,b),
3193 				raid_disk);
3194 			working_disks++;
3195 		}
3196 	}
3197 
3198 	/*
3199 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
3200 	 */
3201 	mddev->degraded = conf->raid_disks - working_disks;
3202 	conf->mddev = mddev;
3203 	conf->chunk_size = mddev->chunk_size;
3204 	conf->level = mddev->level;
3205 	if (conf->level == 6)
3206 		conf->max_degraded = 2;
3207 	else
3208 		conf->max_degraded = 1;
3209 	conf->algorithm = mddev->layout;
3210 	conf->max_nr_stripes = NR_STRIPES;
3211 	conf->expand_progress = mddev->reshape_position;
3212 
3213 	/* device size must be a multiple of chunk size */
3214 	mddev->size &= ~(mddev->chunk_size/1024 -1);
3215 	mddev->resync_max_sectors = mddev->size << 1;
3216 
3217 	if (conf->level == 6 && conf->raid_disks < 4) {
3218 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3219 		       mdname(mddev), conf->raid_disks);
3220 		goto abort;
3221 	}
3222 	if (!conf->chunk_size || conf->chunk_size % 4) {
3223 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3224 			conf->chunk_size, mdname(mddev));
3225 		goto abort;
3226 	}
3227 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3228 		printk(KERN_ERR
3229 			"raid5: unsupported parity algorithm %d for %s\n",
3230 			conf->algorithm, mdname(mddev));
3231 		goto abort;
3232 	}
3233 	if (mddev->degraded > conf->max_degraded) {
3234 		printk(KERN_ERR "raid5: not enough operational devices for %s"
3235 			" (%d/%d failed)\n",
3236 			mdname(mddev), mddev->degraded, conf->raid_disks);
3237 		goto abort;
3238 	}
3239 
3240 	if (mddev->degraded > 0 &&
3241 	    mddev->recovery_cp != MaxSector) {
3242 		if (mddev->ok_start_degraded)
3243 			printk(KERN_WARNING
3244 			       "raid5: starting dirty degraded array: %s"
3245 			       "- data corruption possible.\n",
3246 			       mdname(mddev));
3247 		else {
3248 			printk(KERN_ERR
3249 			       "raid5: cannot start dirty degraded array for %s\n",
3250 			       mdname(mddev));
3251 			goto abort;
3252 		}
3253 	}
3254 
3255 	{
3256 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3257 		if (!mddev->thread) {
3258 			printk(KERN_ERR
3259 				"raid5: couldn't allocate thread for %s\n",
3260 				mdname(mddev));
3261 			goto abort;
3262 		}
3263 	}
3264 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3265 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3266 	if (grow_stripes(conf, conf->max_nr_stripes)) {
3267 		printk(KERN_ERR
3268 			"raid5: couldn't allocate %dkB for buffers\n", memory);
3269 		shrink_stripes(conf);
3270 		md_unregister_thread(mddev->thread);
3271 		goto abort;
3272 	} else
3273 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3274 			memory, mdname(mddev));
3275 
3276 	if (mddev->degraded == 0)
3277 		printk("raid5: raid level %d set %s active with %d out of %d"
3278 			" devices, algorithm %d\n", conf->level, mdname(mddev),
3279 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3280 			conf->algorithm);
3281 	else
3282 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3283 			" out of %d devices, algorithm %d\n", conf->level,
3284 			mdname(mddev), mddev->raid_disks - mddev->degraded,
3285 			mddev->raid_disks, conf->algorithm);
3286 
3287 	print_raid5_conf(conf);
3288 
3289 	if (conf->expand_progress != MaxSector) {
3290 		printk("...ok start reshape thread\n");
3291 		conf->expand_lo = conf->expand_progress;
3292 		atomic_set(&conf->reshape_stripes, 0);
3293 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3294 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3295 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3296 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3297 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3298 							"%s_reshape");
3299 	}
3300 
3301 	/* read-ahead size must cover two whole stripes, which is
3302 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3303 	 */
3304 	{
3305 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
3306 		int stripe = data_disks *
3307 			(mddev->chunk_size / PAGE_SIZE);
3308 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3309 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3310 	}
3311 
3312 	/* Ok, everything is just fine now */
3313 	sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
3314 
3315 	mddev->queue->unplug_fn = raid5_unplug_device;
3316 	mddev->queue->issue_flush_fn = raid5_issue_flush;
3317 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
3318 	mddev->queue->backing_dev_info.congested_data = mddev;
3319 
3320 	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
3321 					    conf->max_degraded);
3322 
3323 	return 0;
3324 abort:
3325 	if (conf) {
3326 		print_raid5_conf(conf);
3327 		safe_put_page(conf->spare_page);
3328 		kfree(conf->disks);
3329 		kfree(conf->stripe_hashtbl);
3330 		kfree(conf);
3331 	}
3332 	mddev->private = NULL;
3333 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3334 	return -EIO;
3335 }
3336 
3337 
3338 
3339 static int stop(mddev_t *mddev)
3340 {
3341 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3342 
3343 	md_unregister_thread(mddev->thread);
3344 	mddev->thread = NULL;
3345 	shrink_stripes(conf);
3346 	kfree(conf->stripe_hashtbl);
3347 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3348 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3349 	kfree(conf->disks);
3350 	kfree(conf);
3351 	mddev->private = NULL;
3352 	return 0;
3353 }
3354 
3355 #if RAID5_DEBUG
3356 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3357 {
3358 	int i;
3359 
3360 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3361 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3362 	seq_printf(seq, "sh %llu,  count %d.\n",
3363 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
3364 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3365 	for (i = 0; i < sh->disks; i++) {
3366 		seq_printf(seq, "(cache%d: %p %ld) ",
3367 			   i, sh->dev[i].page, sh->dev[i].flags);
3368 	}
3369 	seq_printf(seq, "\n");
3370 }
3371 
3372 static void printall (struct seq_file *seq, raid5_conf_t *conf)
3373 {
3374 	struct stripe_head *sh;
3375 	struct hlist_node *hn;
3376 	int i;
3377 
3378 	spin_lock_irq(&conf->device_lock);
3379 	for (i = 0; i < NR_HASH; i++) {
3380 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3381 			if (sh->raid_conf != conf)
3382 				continue;
3383 			print_sh(seq, sh);
3384 		}
3385 	}
3386 	spin_unlock_irq(&conf->device_lock);
3387 }
3388 #endif
3389 
3390 static void status (struct seq_file *seq, mddev_t *mddev)
3391 {
3392 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3393 	int i;
3394 
3395 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3396 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
3397 	for (i = 0; i < conf->raid_disks; i++)
3398 		seq_printf (seq, "%s",
3399 			       conf->disks[i].rdev &&
3400 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3401 	seq_printf (seq, "]");
3402 #if RAID5_DEBUG
3403 	seq_printf (seq, "\n");
3404 	printall(seq, conf);
3405 #endif
3406 }
3407 
3408 static void print_raid5_conf (raid5_conf_t *conf)
3409 {
3410 	int i;
3411 	struct disk_info *tmp;
3412 
3413 	printk("RAID5 conf printout:\n");
3414 	if (!conf) {
3415 		printk("(conf==NULL)\n");
3416 		return;
3417 	}
3418 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
3419 		 conf->raid_disks - conf->mddev->degraded);
3420 
3421 	for (i = 0; i < conf->raid_disks; i++) {
3422 		char b[BDEVNAME_SIZE];
3423 		tmp = conf->disks + i;
3424 		if (tmp->rdev)
3425 		printk(" disk %d, o:%d, dev:%s\n",
3426 			i, !test_bit(Faulty, &tmp->rdev->flags),
3427 			bdevname(tmp->rdev->bdev,b));
3428 	}
3429 }
3430 
3431 static int raid5_spare_active(mddev_t *mddev)
3432 {
3433 	int i;
3434 	raid5_conf_t *conf = mddev->private;
3435 	struct disk_info *tmp;
3436 
3437 	for (i = 0; i < conf->raid_disks; i++) {
3438 		tmp = conf->disks + i;
3439 		if (tmp->rdev
3440 		    && !test_bit(Faulty, &tmp->rdev->flags)
3441 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
3442 			unsigned long flags;
3443 			spin_lock_irqsave(&conf->device_lock, flags);
3444 			mddev->degraded--;
3445 			spin_unlock_irqrestore(&conf->device_lock, flags);
3446 		}
3447 	}
3448 	print_raid5_conf(conf);
3449 	return 0;
3450 }
3451 
3452 static int raid5_remove_disk(mddev_t *mddev, int number)
3453 {
3454 	raid5_conf_t *conf = mddev->private;
3455 	int err = 0;
3456 	mdk_rdev_t *rdev;
3457 	struct disk_info *p = conf->disks + number;
3458 
3459 	print_raid5_conf(conf);
3460 	rdev = p->rdev;
3461 	if (rdev) {
3462 		if (test_bit(In_sync, &rdev->flags) ||
3463 		    atomic_read(&rdev->nr_pending)) {
3464 			err = -EBUSY;
3465 			goto abort;
3466 		}
3467 		p->rdev = NULL;
3468 		synchronize_rcu();
3469 		if (atomic_read(&rdev->nr_pending)) {
3470 			/* lost the race, try later */
3471 			err = -EBUSY;
3472 			p->rdev = rdev;
3473 		}
3474 	}
3475 abort:
3476 
3477 	print_raid5_conf(conf);
3478 	return err;
3479 }
3480 
3481 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3482 {
3483 	raid5_conf_t *conf = mddev->private;
3484 	int found = 0;
3485 	int disk;
3486 	struct disk_info *p;
3487 
3488 	if (mddev->degraded > conf->max_degraded)
3489 		/* no point adding a device */
3490 		return 0;
3491 
3492 	/*
3493 	 * find the disk ... but prefer rdev->saved_raid_disk
3494 	 * if possible.
3495 	 */
3496 	if (rdev->saved_raid_disk >= 0 &&
3497 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
3498 		disk = rdev->saved_raid_disk;
3499 	else
3500 		disk = 0;
3501 	for ( ; disk < conf->raid_disks; disk++)
3502 		if ((p=conf->disks + disk)->rdev == NULL) {
3503 			clear_bit(In_sync, &rdev->flags);
3504 			rdev->raid_disk = disk;
3505 			found = 1;
3506 			if (rdev->saved_raid_disk != disk)
3507 				conf->fullsync = 1;
3508 			rcu_assign_pointer(p->rdev, rdev);
3509 			break;
3510 		}
3511 	print_raid5_conf(conf);
3512 	return found;
3513 }
3514 
3515 static int raid5_resize(mddev_t *mddev, sector_t sectors)
3516 {
3517 	/* no resync is happening, and there is enough space
3518 	 * on all devices, so we can resize.
3519 	 * We need to make sure resync covers any new space.
3520 	 * If the array is shrinking we should possibly wait until
3521 	 * any io in the removed space completes, but it hardly seems
3522 	 * worth it.
3523 	 */
3524 	raid5_conf_t *conf = mddev_to_conf(mddev);
3525 
3526 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3527 	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3528 	set_capacity(mddev->gendisk, mddev->array_size << 1);
3529 	mddev->changed = 1;
3530 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
3531 		mddev->recovery_cp = mddev->size << 1;
3532 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3533 	}
3534 	mddev->size = sectors /2;
3535 	mddev->resync_max_sectors = sectors;
3536 	return 0;
3537 }
3538 
3539 #ifdef CONFIG_MD_RAID5_RESHAPE
3540 static int raid5_check_reshape(mddev_t *mddev)
3541 {
3542 	raid5_conf_t *conf = mddev_to_conf(mddev);
3543 	int err;
3544 
3545 	if (mddev->delta_disks < 0 ||
3546 	    mddev->new_level != mddev->level)
3547 		return -EINVAL; /* Cannot shrink array or change level yet */
3548 	if (mddev->delta_disks == 0)
3549 		return 0; /* nothing to do */
3550 
3551 	/* Can only proceed if there are plenty of stripe_heads.
3552 	 * We need a minimum of one full stripe,, and for sensible progress
3553 	 * it is best to have about 4 times that.
3554 	 * If we require 4 times, then the default 256 4K stripe_heads will
3555 	 * allow for chunk sizes up to 256K, which is probably OK.
3556 	 * If the chunk size is greater, user-space should request more
3557 	 * stripe_heads first.
3558 	 */
3559 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3560 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3561 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
3562 		       (mddev->chunk_size / STRIPE_SIZE)*4);
3563 		return -ENOSPC;
3564 	}
3565 
3566 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3567 	if (err)
3568 		return err;
3569 
3570 	/* looks like we might be able to manage this */
3571 	return 0;
3572 }
3573 
3574 static int raid5_start_reshape(mddev_t *mddev)
3575 {
3576 	raid5_conf_t *conf = mddev_to_conf(mddev);
3577 	mdk_rdev_t *rdev;
3578 	struct list_head *rtmp;
3579 	int spares = 0;
3580 	int added_devices = 0;
3581 	unsigned long flags;
3582 
3583 	if (mddev->degraded ||
3584 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3585 		return -EBUSY;
3586 
3587 	ITERATE_RDEV(mddev, rdev, rtmp)
3588 		if (rdev->raid_disk < 0 &&
3589 		    !test_bit(Faulty, &rdev->flags))
3590 			spares++;
3591 
3592 	if (spares < mddev->delta_disks-1)
3593 		/* Not enough devices even to make a degraded array
3594 		 * of that size
3595 		 */
3596 		return -EINVAL;
3597 
3598 	atomic_set(&conf->reshape_stripes, 0);
3599 	spin_lock_irq(&conf->device_lock);
3600 	conf->previous_raid_disks = conf->raid_disks;
3601 	conf->raid_disks += mddev->delta_disks;
3602 	conf->expand_progress = 0;
3603 	conf->expand_lo = 0;
3604 	spin_unlock_irq(&conf->device_lock);
3605 
3606 	/* Add some new drives, as many as will fit.
3607 	 * We know there are enough to make the newly sized array work.
3608 	 */
3609 	ITERATE_RDEV(mddev, rdev, rtmp)
3610 		if (rdev->raid_disk < 0 &&
3611 		    !test_bit(Faulty, &rdev->flags)) {
3612 			if (raid5_add_disk(mddev, rdev)) {
3613 				char nm[20];
3614 				set_bit(In_sync, &rdev->flags);
3615 				added_devices++;
3616 				rdev->recovery_offset = 0;
3617 				sprintf(nm, "rd%d", rdev->raid_disk);
3618 				sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3619 			} else
3620 				break;
3621 		}
3622 
3623 	spin_lock_irqsave(&conf->device_lock, flags);
3624 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3625 	spin_unlock_irqrestore(&conf->device_lock, flags);
3626 	mddev->raid_disks = conf->raid_disks;
3627 	mddev->reshape_position = 0;
3628 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3629 
3630 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3631 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3632 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3633 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3634 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3635 						"%s_reshape");
3636 	if (!mddev->sync_thread) {
3637 		mddev->recovery = 0;
3638 		spin_lock_irq(&conf->device_lock);
3639 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3640 		conf->expand_progress = MaxSector;
3641 		spin_unlock_irq(&conf->device_lock);
3642 		return -EAGAIN;
3643 	}
3644 	md_wakeup_thread(mddev->sync_thread);
3645 	md_new_event(mddev);
3646 	return 0;
3647 }
3648 #endif
3649 
3650 static void end_reshape(raid5_conf_t *conf)
3651 {
3652 	struct block_device *bdev;
3653 
3654 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3655 		conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3656 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3657 		conf->mddev->changed = 1;
3658 
3659 		bdev = bdget_disk(conf->mddev->gendisk, 0);
3660 		if (bdev) {
3661 			mutex_lock(&bdev->bd_inode->i_mutex);
3662 			i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
3663 			mutex_unlock(&bdev->bd_inode->i_mutex);
3664 			bdput(bdev);
3665 		}
3666 		spin_lock_irq(&conf->device_lock);
3667 		conf->expand_progress = MaxSector;
3668 		spin_unlock_irq(&conf->device_lock);
3669 		conf->mddev->reshape_position = MaxSector;
3670 
3671 		/* read-ahead size must cover two whole stripes, which is
3672 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3673 		 */
3674 		{
3675 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
3676 			int stripe = data_disks *
3677 				(conf->mddev->chunk_size / PAGE_SIZE);
3678 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3679 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3680 		}
3681 	}
3682 }
3683 
3684 static void raid5_quiesce(mddev_t *mddev, int state)
3685 {
3686 	raid5_conf_t *conf = mddev_to_conf(mddev);
3687 
3688 	switch(state) {
3689 	case 2: /* resume for a suspend */
3690 		wake_up(&conf->wait_for_overlap);
3691 		break;
3692 
3693 	case 1: /* stop all writes */
3694 		spin_lock_irq(&conf->device_lock);
3695 		conf->quiesce = 1;
3696 		wait_event_lock_irq(conf->wait_for_stripe,
3697 				    atomic_read(&conf->active_stripes) == 0,
3698 				    conf->device_lock, /* nothing */);
3699 		spin_unlock_irq(&conf->device_lock);
3700 		break;
3701 
3702 	case 0: /* re-enable writes */
3703 		spin_lock_irq(&conf->device_lock);
3704 		conf->quiesce = 0;
3705 		wake_up(&conf->wait_for_stripe);
3706 		wake_up(&conf->wait_for_overlap);
3707 		spin_unlock_irq(&conf->device_lock);
3708 		break;
3709 	}
3710 }
3711 
3712 static struct mdk_personality raid6_personality =
3713 {
3714 	.name		= "raid6",
3715 	.level		= 6,
3716 	.owner		= THIS_MODULE,
3717 	.make_request	= make_request,
3718 	.run		= run,
3719 	.stop		= stop,
3720 	.status		= status,
3721 	.error_handler	= error,
3722 	.hot_add_disk	= raid5_add_disk,
3723 	.hot_remove_disk= raid5_remove_disk,
3724 	.spare_active	= raid5_spare_active,
3725 	.sync_request	= sync_request,
3726 	.resize		= raid5_resize,
3727 	.quiesce	= raid5_quiesce,
3728 };
3729 static struct mdk_personality raid5_personality =
3730 {
3731 	.name		= "raid5",
3732 	.level		= 5,
3733 	.owner		= THIS_MODULE,
3734 	.make_request	= make_request,
3735 	.run		= run,
3736 	.stop		= stop,
3737 	.status		= status,
3738 	.error_handler	= error,
3739 	.hot_add_disk	= raid5_add_disk,
3740 	.hot_remove_disk= raid5_remove_disk,
3741 	.spare_active	= raid5_spare_active,
3742 	.sync_request	= sync_request,
3743 	.resize		= raid5_resize,
3744 #ifdef CONFIG_MD_RAID5_RESHAPE
3745 	.check_reshape	= raid5_check_reshape,
3746 	.start_reshape  = raid5_start_reshape,
3747 #endif
3748 	.quiesce	= raid5_quiesce,
3749 };
3750 
3751 static struct mdk_personality raid4_personality =
3752 {
3753 	.name		= "raid4",
3754 	.level		= 4,
3755 	.owner		= THIS_MODULE,
3756 	.make_request	= make_request,
3757 	.run		= run,
3758 	.stop		= stop,
3759 	.status		= status,
3760 	.error_handler	= error,
3761 	.hot_add_disk	= raid5_add_disk,
3762 	.hot_remove_disk= raid5_remove_disk,
3763 	.spare_active	= raid5_spare_active,
3764 	.sync_request	= sync_request,
3765 	.resize		= raid5_resize,
3766 	.quiesce	= raid5_quiesce,
3767 };
3768 
3769 static int __init raid5_init(void)
3770 {
3771 	int e;
3772 
3773 	e = raid6_select_algo();
3774 	if ( e )
3775 		return e;
3776 	register_md_personality(&raid6_personality);
3777 	register_md_personality(&raid5_personality);
3778 	register_md_personality(&raid4_personality);
3779 	return 0;
3780 }
3781 
3782 static void raid5_exit(void)
3783 {
3784 	unregister_md_personality(&raid6_personality);
3785 	unregister_md_personality(&raid5_personality);
3786 	unregister_md_personality(&raid4_personality);
3787 }
3788 
3789 module_init(raid5_init);
3790 module_exit(raid5_exit);
3791 MODULE_LICENSE("GPL");
3792 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3793 MODULE_ALIAS("md-raid5");
3794 MODULE_ALIAS("md-raid4");
3795 MODULE_ALIAS("md-level-5");
3796 MODULE_ALIAS("md-level-4");
3797 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3798 MODULE_ALIAS("md-raid6");
3799 MODULE_ALIAS("md-level-6");
3800 
3801 /* This used to be two separate modules, they were: */
3802 MODULE_ALIAS("raid5");
3803 MODULE_ALIAS("raid6");
3804