xref: /openbmc/linux/drivers/md/raid5.c (revision 79f08d9e)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58 
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63 
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66 
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71 
72 #define NR_STRIPES		256
73 #define STRIPE_SIZE		PAGE_SIZE
74 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
76 #define	IO_THRESHOLD		1
77 #define BYPASS_THRESHOLD	1
78 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK		(NR_HASH - 1)
80 #define MAX_STRIPE_BATCH	8
81 
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 	return &conf->stripe_hashtbl[hash];
86 }
87 
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92 
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 	spin_lock_irq(conf->hash_locks + hash);
96 	spin_lock(&conf->device_lock);
97 }
98 
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101 	spin_unlock(&conf->device_lock);
102 	spin_unlock_irq(conf->hash_locks + hash);
103 }
104 
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107 	int i;
108 	local_irq_disable();
109 	spin_lock(conf->hash_locks);
110 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 	spin_lock(&conf->device_lock);
113 }
114 
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117 	int i;
118 	spin_unlock(&conf->device_lock);
119 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 		spin_unlock(conf->hash_locks + i - 1);
121 	local_irq_enable();
122 }
123 
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135 	int sectors = bio_sectors(bio);
136 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
137 		return bio->bi_next;
138 	else
139 		return NULL;
140 }
141 
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 	return (atomic_read(segments) >> 16) & 0xffff;
150 }
151 
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 	return atomic_sub_return(1, segments) & 0xffff;
156 }
157 
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 	atomic_inc(segments);
162 }
163 
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 	unsigned int cnt)
166 {
167 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 	int old, new;
169 
170 	do {
171 		old = atomic_read(segments);
172 		new = (old & 0xffff) | (cnt << 16);
173 	} while (atomic_cmpxchg(segments, old, new) != old);
174 }
175 
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 	atomic_set(segments, cnt);
180 }
181 
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185 	if (sh->ddf_layout)
186 		/* ddf always start from first device */
187 		return 0;
188 	/* md starts just after Q block */
189 	if (sh->qd_idx == sh->disks - 1)
190 		return 0;
191 	else
192 		return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196 	disk++;
197 	return (disk < raid_disks) ? disk : 0;
198 }
199 
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 			     int *count, int syndrome_disks)
207 {
208 	int slot = *count;
209 
210 	if (sh->ddf_layout)
211 		(*count)++;
212 	if (idx == sh->pd_idx)
213 		return syndrome_disks;
214 	if (idx == sh->qd_idx)
215 		return syndrome_disks + 1;
216 	if (!sh->ddf_layout)
217 		(*count)++;
218 	return slot;
219 }
220 
221 static void return_io(struct bio *return_bi)
222 {
223 	struct bio *bi = return_bi;
224 	while (bi) {
225 
226 		return_bi = bi->bi_next;
227 		bi->bi_next = NULL;
228 		bi->bi_size = 0;
229 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 					 bi, 0);
231 		bio_endio(bi, 0);
232 		bi = return_bi;
233 	}
234 }
235 
236 static void print_raid5_conf (struct r5conf *conf);
237 
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 	return sh->check_state || sh->reconstruct_state ||
241 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244 
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 	struct r5conf *conf = sh->raid_conf;
248 	struct r5worker_group *group;
249 	int thread_cnt;
250 	int i, cpu = sh->cpu;
251 
252 	if (!cpu_online(cpu)) {
253 		cpu = cpumask_any(cpu_online_mask);
254 		sh->cpu = cpu;
255 	}
256 
257 	if (list_empty(&sh->lru)) {
258 		struct r5worker_group *group;
259 		group = conf->worker_groups + cpu_to_group(cpu);
260 		list_add_tail(&sh->lru, &group->handle_list);
261 		group->stripes_cnt++;
262 		sh->group = group;
263 	}
264 
265 	if (conf->worker_cnt_per_group == 0) {
266 		md_wakeup_thread(conf->mddev->thread);
267 		return;
268 	}
269 
270 	group = conf->worker_groups + cpu_to_group(sh->cpu);
271 
272 	group->workers[0].working = true;
273 	/* at least one worker should run to avoid race */
274 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275 
276 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 	/* wakeup more workers */
278 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 		if (group->workers[i].working == false) {
280 			group->workers[i].working = true;
281 			queue_work_on(sh->cpu, raid5_wq,
282 				      &group->workers[i].work);
283 			thread_cnt--;
284 		}
285 	}
286 }
287 
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 			      struct list_head *temp_inactive_list)
290 {
291 	BUG_ON(!list_empty(&sh->lru));
292 	BUG_ON(atomic_read(&conf->active_stripes)==0);
293 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296 			list_add_tail(&sh->lru, &conf->delayed_list);
297 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298 			   sh->bm_seq - conf->seq_write > 0)
299 			list_add_tail(&sh->lru, &conf->bitmap_list);
300 		else {
301 			clear_bit(STRIPE_DELAYED, &sh->state);
302 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
303 			if (conf->worker_cnt_per_group == 0) {
304 				list_add_tail(&sh->lru, &conf->handle_list);
305 			} else {
306 				raid5_wakeup_stripe_thread(sh);
307 				return;
308 			}
309 		}
310 		md_wakeup_thread(conf->mddev->thread);
311 	} else {
312 		BUG_ON(stripe_operations_active(sh));
313 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314 			if (atomic_dec_return(&conf->preread_active_stripes)
315 			    < IO_THRESHOLD)
316 				md_wakeup_thread(conf->mddev->thread);
317 		atomic_dec(&conf->active_stripes);
318 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
319 			list_add_tail(&sh->lru, temp_inactive_list);
320 	}
321 }
322 
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324 			     struct list_head *temp_inactive_list)
325 {
326 	if (atomic_dec_and_test(&sh->count))
327 		do_release_stripe(conf, sh, temp_inactive_list);
328 }
329 
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338 					 struct list_head *temp_inactive_list,
339 					 int hash)
340 {
341 	int size;
342 	bool do_wakeup = false;
343 	unsigned long flags;
344 
345 	if (hash == NR_STRIPE_HASH_LOCKS) {
346 		size = NR_STRIPE_HASH_LOCKS;
347 		hash = NR_STRIPE_HASH_LOCKS - 1;
348 	} else
349 		size = 1;
350 	while (size) {
351 		struct list_head *list = &temp_inactive_list[size - 1];
352 
353 		/*
354 		 * We don't hold any lock here yet, get_active_stripe() might
355 		 * remove stripes from the list
356 		 */
357 		if (!list_empty_careful(list)) {
358 			spin_lock_irqsave(conf->hash_locks + hash, flags);
359 			if (list_empty(conf->inactive_list + hash) &&
360 			    !list_empty(list))
361 				atomic_dec(&conf->empty_inactive_list_nr);
362 			list_splice_tail_init(list, conf->inactive_list + hash);
363 			do_wakeup = true;
364 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365 		}
366 		size--;
367 		hash--;
368 	}
369 
370 	if (do_wakeup) {
371 		wake_up(&conf->wait_for_stripe);
372 		if (conf->retry_read_aligned)
373 			md_wakeup_thread(conf->mddev->thread);
374 	}
375 }
376 
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379 			       struct list_head *temp_inactive_list)
380 {
381 	struct stripe_head *sh;
382 	int count = 0;
383 	struct llist_node *head;
384 
385 	head = llist_del_all(&conf->released_stripes);
386 	head = llist_reverse_order(head);
387 	while (head) {
388 		int hash;
389 
390 		sh = llist_entry(head, struct stripe_head, release_list);
391 		head = llist_next(head);
392 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393 		smp_mb();
394 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395 		/*
396 		 * Don't worry the bit is set here, because if the bit is set
397 		 * again, the count is always > 1. This is true for
398 		 * STRIPE_ON_UNPLUG_LIST bit too.
399 		 */
400 		hash = sh->hash_lock_index;
401 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
402 		count++;
403 	}
404 
405 	return count;
406 }
407 
408 static void release_stripe(struct stripe_head *sh)
409 {
410 	struct r5conf *conf = sh->raid_conf;
411 	unsigned long flags;
412 	struct list_head list;
413 	int hash;
414 	bool wakeup;
415 
416 	if (unlikely(!conf->mddev->thread) ||
417 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418 		goto slow_path;
419 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420 	if (wakeup)
421 		md_wakeup_thread(conf->mddev->thread);
422 	return;
423 slow_path:
424 	local_irq_save(flags);
425 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427 		INIT_LIST_HEAD(&list);
428 		hash = sh->hash_lock_index;
429 		do_release_stripe(conf, sh, &list);
430 		spin_unlock(&conf->device_lock);
431 		release_inactive_stripe_list(conf, &list, hash);
432 	}
433 	local_irq_restore(flags);
434 }
435 
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438 	pr_debug("remove_hash(), stripe %llu\n",
439 		(unsigned long long)sh->sector);
440 
441 	hlist_del_init(&sh->hash);
442 }
443 
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
447 
448 	pr_debug("insert_hash(), stripe %llu\n",
449 		(unsigned long long)sh->sector);
450 
451 	hlist_add_head(&sh->hash, hp);
452 }
453 
454 
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458 	struct stripe_head *sh = NULL;
459 	struct list_head *first;
460 
461 	if (list_empty(conf->inactive_list + hash))
462 		goto out;
463 	first = (conf->inactive_list + hash)->next;
464 	sh = list_entry(first, struct stripe_head, lru);
465 	list_del_init(first);
466 	remove_hash(sh);
467 	atomic_inc(&conf->active_stripes);
468 	BUG_ON(hash != sh->hash_lock_index);
469 	if (list_empty(conf->inactive_list + hash))
470 		atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472 	return sh;
473 }
474 
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477 	struct page *p;
478 	int i;
479 	int num = sh->raid_conf->pool_size;
480 
481 	for (i = 0; i < num ; i++) {
482 		p = sh->dev[i].page;
483 		if (!p)
484 			continue;
485 		sh->dev[i].page = NULL;
486 		put_page(p);
487 	}
488 }
489 
490 static int grow_buffers(struct stripe_head *sh)
491 {
492 	int i;
493 	int num = sh->raid_conf->pool_size;
494 
495 	for (i = 0; i < num; i++) {
496 		struct page *page;
497 
498 		if (!(page = alloc_page(GFP_KERNEL))) {
499 			return 1;
500 		}
501 		sh->dev[i].page = page;
502 	}
503 	return 0;
504 }
505 
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508 			    struct stripe_head *sh);
509 
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512 	struct r5conf *conf = sh->raid_conf;
513 	int i, seq;
514 
515 	BUG_ON(atomic_read(&sh->count) != 0);
516 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517 	BUG_ON(stripe_operations_active(sh));
518 
519 	pr_debug("init_stripe called, stripe %llu\n",
520 		(unsigned long long)sh->sector);
521 
522 	remove_hash(sh);
523 retry:
524 	seq = read_seqcount_begin(&conf->gen_lock);
525 	sh->generation = conf->generation - previous;
526 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527 	sh->sector = sector;
528 	stripe_set_idx(sector, conf, previous, sh);
529 	sh->state = 0;
530 
531 
532 	for (i = sh->disks; i--; ) {
533 		struct r5dev *dev = &sh->dev[i];
534 
535 		if (dev->toread || dev->read || dev->towrite || dev->written ||
536 		    test_bit(R5_LOCKED, &dev->flags)) {
537 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538 			       (unsigned long long)sh->sector, i, dev->toread,
539 			       dev->read, dev->towrite, dev->written,
540 			       test_bit(R5_LOCKED, &dev->flags));
541 			WARN_ON(1);
542 		}
543 		dev->flags = 0;
544 		raid5_build_block(sh, i, previous);
545 	}
546 	if (read_seqcount_retry(&conf->gen_lock, seq))
547 		goto retry;
548 	insert_hash(conf, sh);
549 	sh->cpu = smp_processor_id();
550 }
551 
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553 					 short generation)
554 {
555 	struct stripe_head *sh;
556 
557 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559 		if (sh->sector == sector && sh->generation == generation)
560 			return sh;
561 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562 	return NULL;
563 }
564 
565 /*
566  * Need to check if array has failed when deciding whether to:
567  *  - start an array
568  *  - remove non-faulty devices
569  *  - add a spare
570  *  - allow a reshape
571  * This determination is simple when no reshape is happening.
572  * However if there is a reshape, we need to carefully check
573  * both the before and after sections.
574  * This is because some failed devices may only affect one
575  * of the two sections, and some non-in_sync devices may
576  * be insync in the section most affected by failed devices.
577  */
578 static int calc_degraded(struct r5conf *conf)
579 {
580 	int degraded, degraded2;
581 	int i;
582 
583 	rcu_read_lock();
584 	degraded = 0;
585 	for (i = 0; i < conf->previous_raid_disks; i++) {
586 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587 		if (rdev && test_bit(Faulty, &rdev->flags))
588 			rdev = rcu_dereference(conf->disks[i].replacement);
589 		if (!rdev || test_bit(Faulty, &rdev->flags))
590 			degraded++;
591 		else if (test_bit(In_sync, &rdev->flags))
592 			;
593 		else
594 			/* not in-sync or faulty.
595 			 * If the reshape increases the number of devices,
596 			 * this is being recovered by the reshape, so
597 			 * this 'previous' section is not in_sync.
598 			 * If the number of devices is being reduced however,
599 			 * the device can only be part of the array if
600 			 * we are reverting a reshape, so this section will
601 			 * be in-sync.
602 			 */
603 			if (conf->raid_disks >= conf->previous_raid_disks)
604 				degraded++;
605 	}
606 	rcu_read_unlock();
607 	if (conf->raid_disks == conf->previous_raid_disks)
608 		return degraded;
609 	rcu_read_lock();
610 	degraded2 = 0;
611 	for (i = 0; i < conf->raid_disks; i++) {
612 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613 		if (rdev && test_bit(Faulty, &rdev->flags))
614 			rdev = rcu_dereference(conf->disks[i].replacement);
615 		if (!rdev || test_bit(Faulty, &rdev->flags))
616 			degraded2++;
617 		else if (test_bit(In_sync, &rdev->flags))
618 			;
619 		else
620 			/* not in-sync or faulty.
621 			 * If reshape increases the number of devices, this
622 			 * section has already been recovered, else it
623 			 * almost certainly hasn't.
624 			 */
625 			if (conf->raid_disks <= conf->previous_raid_disks)
626 				degraded2++;
627 	}
628 	rcu_read_unlock();
629 	if (degraded2 > degraded)
630 		return degraded2;
631 	return degraded;
632 }
633 
634 static int has_failed(struct r5conf *conf)
635 {
636 	int degraded;
637 
638 	if (conf->mddev->reshape_position == MaxSector)
639 		return conf->mddev->degraded > conf->max_degraded;
640 
641 	degraded = calc_degraded(conf);
642 	if (degraded > conf->max_degraded)
643 		return 1;
644 	return 0;
645 }
646 
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649 		  int previous, int noblock, int noquiesce)
650 {
651 	struct stripe_head *sh;
652 	int hash = stripe_hash_locks_hash(sector);
653 
654 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655 
656 	spin_lock_irq(conf->hash_locks + hash);
657 
658 	do {
659 		wait_event_lock_irq(conf->wait_for_stripe,
660 				    conf->quiesce == 0 || noquiesce,
661 				    *(conf->hash_locks + hash));
662 		sh = __find_stripe(conf, sector, conf->generation - previous);
663 		if (!sh) {
664 			if (!conf->inactive_blocked)
665 				sh = get_free_stripe(conf, hash);
666 			if (noblock && sh == NULL)
667 				break;
668 			if (!sh) {
669 				conf->inactive_blocked = 1;
670 				wait_event_lock_irq(
671 					conf->wait_for_stripe,
672 					!list_empty(conf->inactive_list + hash) &&
673 					(atomic_read(&conf->active_stripes)
674 					 < (conf->max_nr_stripes * 3 / 4)
675 					 || !conf->inactive_blocked),
676 					*(conf->hash_locks + hash));
677 				conf->inactive_blocked = 0;
678 			} else
679 				init_stripe(sh, sector, previous);
680 		} else {
681 			if (atomic_read(&sh->count)) {
682 				BUG_ON(!list_empty(&sh->lru)
683 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
684 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
685 				    && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
686 			} else {
687 				spin_lock(&conf->device_lock);
688 				if (!test_bit(STRIPE_HANDLE, &sh->state))
689 					atomic_inc(&conf->active_stripes);
690 				if (list_empty(&sh->lru) &&
691 				    !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state) &&
692 				    !test_bit(STRIPE_EXPANDING, &sh->state))
693 					BUG();
694 				list_del_init(&sh->lru);
695 				if (sh->group) {
696 					sh->group->stripes_cnt--;
697 					sh->group = NULL;
698 				}
699 				spin_unlock(&conf->device_lock);
700 			}
701 		}
702 	} while (sh == NULL);
703 
704 	if (sh)
705 		atomic_inc(&sh->count);
706 
707 	spin_unlock_irq(conf->hash_locks + hash);
708 	return sh;
709 }
710 
711 /* Determine if 'data_offset' or 'new_data_offset' should be used
712  * in this stripe_head.
713  */
714 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
715 {
716 	sector_t progress = conf->reshape_progress;
717 	/* Need a memory barrier to make sure we see the value
718 	 * of conf->generation, or ->data_offset that was set before
719 	 * reshape_progress was updated.
720 	 */
721 	smp_rmb();
722 	if (progress == MaxSector)
723 		return 0;
724 	if (sh->generation == conf->generation - 1)
725 		return 0;
726 	/* We are in a reshape, and this is a new-generation stripe,
727 	 * so use new_data_offset.
728 	 */
729 	return 1;
730 }
731 
732 static void
733 raid5_end_read_request(struct bio *bi, int error);
734 static void
735 raid5_end_write_request(struct bio *bi, int error);
736 
737 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
738 {
739 	struct r5conf *conf = sh->raid_conf;
740 	int i, disks = sh->disks;
741 
742 	might_sleep();
743 
744 	for (i = disks; i--; ) {
745 		int rw;
746 		int replace_only = 0;
747 		struct bio *bi, *rbi;
748 		struct md_rdev *rdev, *rrdev = NULL;
749 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
750 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
751 				rw = WRITE_FUA;
752 			else
753 				rw = WRITE;
754 			if (test_bit(R5_Discard, &sh->dev[i].flags))
755 				rw |= REQ_DISCARD;
756 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
757 			rw = READ;
758 		else if (test_and_clear_bit(R5_WantReplace,
759 					    &sh->dev[i].flags)) {
760 			rw = WRITE;
761 			replace_only = 1;
762 		} else
763 			continue;
764 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
765 			rw |= REQ_SYNC;
766 
767 		bi = &sh->dev[i].req;
768 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
769 
770 		rcu_read_lock();
771 		rrdev = rcu_dereference(conf->disks[i].replacement);
772 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
773 		rdev = rcu_dereference(conf->disks[i].rdev);
774 		if (!rdev) {
775 			rdev = rrdev;
776 			rrdev = NULL;
777 		}
778 		if (rw & WRITE) {
779 			if (replace_only)
780 				rdev = NULL;
781 			if (rdev == rrdev)
782 				/* We raced and saw duplicates */
783 				rrdev = NULL;
784 		} else {
785 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
786 				rdev = rrdev;
787 			rrdev = NULL;
788 		}
789 
790 		if (rdev && test_bit(Faulty, &rdev->flags))
791 			rdev = NULL;
792 		if (rdev)
793 			atomic_inc(&rdev->nr_pending);
794 		if (rrdev && test_bit(Faulty, &rrdev->flags))
795 			rrdev = NULL;
796 		if (rrdev)
797 			atomic_inc(&rrdev->nr_pending);
798 		rcu_read_unlock();
799 
800 		/* We have already checked bad blocks for reads.  Now
801 		 * need to check for writes.  We never accept write errors
802 		 * on the replacement, so we don't to check rrdev.
803 		 */
804 		while ((rw & WRITE) && rdev &&
805 		       test_bit(WriteErrorSeen, &rdev->flags)) {
806 			sector_t first_bad;
807 			int bad_sectors;
808 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
809 					      &first_bad, &bad_sectors);
810 			if (!bad)
811 				break;
812 
813 			if (bad < 0) {
814 				set_bit(BlockedBadBlocks, &rdev->flags);
815 				if (!conf->mddev->external &&
816 				    conf->mddev->flags) {
817 					/* It is very unlikely, but we might
818 					 * still need to write out the
819 					 * bad block log - better give it
820 					 * a chance*/
821 					md_check_recovery(conf->mddev);
822 				}
823 				/*
824 				 * Because md_wait_for_blocked_rdev
825 				 * will dec nr_pending, we must
826 				 * increment it first.
827 				 */
828 				atomic_inc(&rdev->nr_pending);
829 				md_wait_for_blocked_rdev(rdev, conf->mddev);
830 			} else {
831 				/* Acknowledged bad block - skip the write */
832 				rdev_dec_pending(rdev, conf->mddev);
833 				rdev = NULL;
834 			}
835 		}
836 
837 		if (rdev) {
838 			if (s->syncing || s->expanding || s->expanded
839 			    || s->replacing)
840 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
841 
842 			set_bit(STRIPE_IO_STARTED, &sh->state);
843 
844 			bio_reset(bi);
845 			bi->bi_bdev = rdev->bdev;
846 			bi->bi_rw = rw;
847 			bi->bi_end_io = (rw & WRITE)
848 				? raid5_end_write_request
849 				: raid5_end_read_request;
850 			bi->bi_private = sh;
851 
852 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
853 				__func__, (unsigned long long)sh->sector,
854 				bi->bi_rw, i);
855 			atomic_inc(&sh->count);
856 			if (use_new_offset(conf, sh))
857 				bi->bi_sector = (sh->sector
858 						 + rdev->new_data_offset);
859 			else
860 				bi->bi_sector = (sh->sector
861 						 + rdev->data_offset);
862 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
863 				bi->bi_rw |= REQ_NOMERGE;
864 
865 			bi->bi_vcnt = 1;
866 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
867 			bi->bi_io_vec[0].bv_offset = 0;
868 			bi->bi_size = STRIPE_SIZE;
869 			/*
870 			 * If this is discard request, set bi_vcnt 0. We don't
871 			 * want to confuse SCSI because SCSI will replace payload
872 			 */
873 			if (rw & REQ_DISCARD)
874 				bi->bi_vcnt = 0;
875 			if (rrdev)
876 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
877 
878 			if (conf->mddev->gendisk)
879 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
880 						      bi, disk_devt(conf->mddev->gendisk),
881 						      sh->dev[i].sector);
882 			generic_make_request(bi);
883 		}
884 		if (rrdev) {
885 			if (s->syncing || s->expanding || s->expanded
886 			    || s->replacing)
887 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
888 
889 			set_bit(STRIPE_IO_STARTED, &sh->state);
890 
891 			bio_reset(rbi);
892 			rbi->bi_bdev = rrdev->bdev;
893 			rbi->bi_rw = rw;
894 			BUG_ON(!(rw & WRITE));
895 			rbi->bi_end_io = raid5_end_write_request;
896 			rbi->bi_private = sh;
897 
898 			pr_debug("%s: for %llu schedule op %ld on "
899 				 "replacement disc %d\n",
900 				__func__, (unsigned long long)sh->sector,
901 				rbi->bi_rw, i);
902 			atomic_inc(&sh->count);
903 			if (use_new_offset(conf, sh))
904 				rbi->bi_sector = (sh->sector
905 						  + rrdev->new_data_offset);
906 			else
907 				rbi->bi_sector = (sh->sector
908 						  + rrdev->data_offset);
909 			rbi->bi_vcnt = 1;
910 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
911 			rbi->bi_io_vec[0].bv_offset = 0;
912 			rbi->bi_size = STRIPE_SIZE;
913 			/*
914 			 * If this is discard request, set bi_vcnt 0. We don't
915 			 * want to confuse SCSI because SCSI will replace payload
916 			 */
917 			if (rw & REQ_DISCARD)
918 				rbi->bi_vcnt = 0;
919 			if (conf->mddev->gendisk)
920 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
921 						      rbi, disk_devt(conf->mddev->gendisk),
922 						      sh->dev[i].sector);
923 			generic_make_request(rbi);
924 		}
925 		if (!rdev && !rrdev) {
926 			if (rw & WRITE)
927 				set_bit(STRIPE_DEGRADED, &sh->state);
928 			pr_debug("skip op %ld on disc %d for sector %llu\n",
929 				bi->bi_rw, i, (unsigned long long)sh->sector);
930 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
931 			set_bit(STRIPE_HANDLE, &sh->state);
932 		}
933 	}
934 }
935 
936 static struct dma_async_tx_descriptor *
937 async_copy_data(int frombio, struct bio *bio, struct page *page,
938 	sector_t sector, struct dma_async_tx_descriptor *tx)
939 {
940 	struct bio_vec *bvl;
941 	struct page *bio_page;
942 	int i;
943 	int page_offset;
944 	struct async_submit_ctl submit;
945 	enum async_tx_flags flags = 0;
946 
947 	if (bio->bi_sector >= sector)
948 		page_offset = (signed)(bio->bi_sector - sector) * 512;
949 	else
950 		page_offset = (signed)(sector - bio->bi_sector) * -512;
951 
952 	if (frombio)
953 		flags |= ASYNC_TX_FENCE;
954 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
955 
956 	bio_for_each_segment(bvl, bio, i) {
957 		int len = bvl->bv_len;
958 		int clen;
959 		int b_offset = 0;
960 
961 		if (page_offset < 0) {
962 			b_offset = -page_offset;
963 			page_offset += b_offset;
964 			len -= b_offset;
965 		}
966 
967 		if (len > 0 && page_offset + len > STRIPE_SIZE)
968 			clen = STRIPE_SIZE - page_offset;
969 		else
970 			clen = len;
971 
972 		if (clen > 0) {
973 			b_offset += bvl->bv_offset;
974 			bio_page = bvl->bv_page;
975 			if (frombio)
976 				tx = async_memcpy(page, bio_page, page_offset,
977 						  b_offset, clen, &submit);
978 			else
979 				tx = async_memcpy(bio_page, page, b_offset,
980 						  page_offset, clen, &submit);
981 		}
982 		/* chain the operations */
983 		submit.depend_tx = tx;
984 
985 		if (clen < len) /* hit end of page */
986 			break;
987 		page_offset +=  len;
988 	}
989 
990 	return tx;
991 }
992 
993 static void ops_complete_biofill(void *stripe_head_ref)
994 {
995 	struct stripe_head *sh = stripe_head_ref;
996 	struct bio *return_bi = NULL;
997 	int i;
998 
999 	pr_debug("%s: stripe %llu\n", __func__,
1000 		(unsigned long long)sh->sector);
1001 
1002 	/* clear completed biofills */
1003 	for (i = sh->disks; i--; ) {
1004 		struct r5dev *dev = &sh->dev[i];
1005 
1006 		/* acknowledge completion of a biofill operation */
1007 		/* and check if we need to reply to a read request,
1008 		 * new R5_Wantfill requests are held off until
1009 		 * !STRIPE_BIOFILL_RUN
1010 		 */
1011 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1012 			struct bio *rbi, *rbi2;
1013 
1014 			BUG_ON(!dev->read);
1015 			rbi = dev->read;
1016 			dev->read = NULL;
1017 			while (rbi && rbi->bi_sector <
1018 				dev->sector + STRIPE_SECTORS) {
1019 				rbi2 = r5_next_bio(rbi, dev->sector);
1020 				if (!raid5_dec_bi_active_stripes(rbi)) {
1021 					rbi->bi_next = return_bi;
1022 					return_bi = rbi;
1023 				}
1024 				rbi = rbi2;
1025 			}
1026 		}
1027 	}
1028 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1029 
1030 	return_io(return_bi);
1031 
1032 	set_bit(STRIPE_HANDLE, &sh->state);
1033 	release_stripe(sh);
1034 }
1035 
1036 static void ops_run_biofill(struct stripe_head *sh)
1037 {
1038 	struct dma_async_tx_descriptor *tx = NULL;
1039 	struct async_submit_ctl submit;
1040 	int i;
1041 
1042 	pr_debug("%s: stripe %llu\n", __func__,
1043 		(unsigned long long)sh->sector);
1044 
1045 	for (i = sh->disks; i--; ) {
1046 		struct r5dev *dev = &sh->dev[i];
1047 		if (test_bit(R5_Wantfill, &dev->flags)) {
1048 			struct bio *rbi;
1049 			spin_lock_irq(&sh->stripe_lock);
1050 			dev->read = rbi = dev->toread;
1051 			dev->toread = NULL;
1052 			spin_unlock_irq(&sh->stripe_lock);
1053 			while (rbi && rbi->bi_sector <
1054 				dev->sector + STRIPE_SECTORS) {
1055 				tx = async_copy_data(0, rbi, dev->page,
1056 					dev->sector, tx);
1057 				rbi = r5_next_bio(rbi, dev->sector);
1058 			}
1059 		}
1060 	}
1061 
1062 	atomic_inc(&sh->count);
1063 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1064 	async_trigger_callback(&submit);
1065 }
1066 
1067 static void mark_target_uptodate(struct stripe_head *sh, int target)
1068 {
1069 	struct r5dev *tgt;
1070 
1071 	if (target < 0)
1072 		return;
1073 
1074 	tgt = &sh->dev[target];
1075 	set_bit(R5_UPTODATE, &tgt->flags);
1076 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1077 	clear_bit(R5_Wantcompute, &tgt->flags);
1078 }
1079 
1080 static void ops_complete_compute(void *stripe_head_ref)
1081 {
1082 	struct stripe_head *sh = stripe_head_ref;
1083 
1084 	pr_debug("%s: stripe %llu\n", __func__,
1085 		(unsigned long long)sh->sector);
1086 
1087 	/* mark the computed target(s) as uptodate */
1088 	mark_target_uptodate(sh, sh->ops.target);
1089 	mark_target_uptodate(sh, sh->ops.target2);
1090 
1091 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1092 	if (sh->check_state == check_state_compute_run)
1093 		sh->check_state = check_state_compute_result;
1094 	set_bit(STRIPE_HANDLE, &sh->state);
1095 	release_stripe(sh);
1096 }
1097 
1098 /* return a pointer to the address conversion region of the scribble buffer */
1099 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1100 				 struct raid5_percpu *percpu)
1101 {
1102 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1103 }
1104 
1105 static struct dma_async_tx_descriptor *
1106 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1107 {
1108 	int disks = sh->disks;
1109 	struct page **xor_srcs = percpu->scribble;
1110 	int target = sh->ops.target;
1111 	struct r5dev *tgt = &sh->dev[target];
1112 	struct page *xor_dest = tgt->page;
1113 	int count = 0;
1114 	struct dma_async_tx_descriptor *tx;
1115 	struct async_submit_ctl submit;
1116 	int i;
1117 
1118 	pr_debug("%s: stripe %llu block: %d\n",
1119 		__func__, (unsigned long long)sh->sector, target);
1120 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1121 
1122 	for (i = disks; i--; )
1123 		if (i != target)
1124 			xor_srcs[count++] = sh->dev[i].page;
1125 
1126 	atomic_inc(&sh->count);
1127 
1128 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1129 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1130 	if (unlikely(count == 1))
1131 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1132 	else
1133 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1134 
1135 	return tx;
1136 }
1137 
1138 /* set_syndrome_sources - populate source buffers for gen_syndrome
1139  * @srcs - (struct page *) array of size sh->disks
1140  * @sh - stripe_head to parse
1141  *
1142  * Populates srcs in proper layout order for the stripe and returns the
1143  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1144  * destination buffer is recorded in srcs[count] and the Q destination
1145  * is recorded in srcs[count+1]].
1146  */
1147 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1148 {
1149 	int disks = sh->disks;
1150 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1151 	int d0_idx = raid6_d0(sh);
1152 	int count;
1153 	int i;
1154 
1155 	for (i = 0; i < disks; i++)
1156 		srcs[i] = NULL;
1157 
1158 	count = 0;
1159 	i = d0_idx;
1160 	do {
1161 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1162 
1163 		srcs[slot] = sh->dev[i].page;
1164 		i = raid6_next_disk(i, disks);
1165 	} while (i != d0_idx);
1166 
1167 	return syndrome_disks;
1168 }
1169 
1170 static struct dma_async_tx_descriptor *
1171 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1172 {
1173 	int disks = sh->disks;
1174 	struct page **blocks = percpu->scribble;
1175 	int target;
1176 	int qd_idx = sh->qd_idx;
1177 	struct dma_async_tx_descriptor *tx;
1178 	struct async_submit_ctl submit;
1179 	struct r5dev *tgt;
1180 	struct page *dest;
1181 	int i;
1182 	int count;
1183 
1184 	if (sh->ops.target < 0)
1185 		target = sh->ops.target2;
1186 	else if (sh->ops.target2 < 0)
1187 		target = sh->ops.target;
1188 	else
1189 		/* we should only have one valid target */
1190 		BUG();
1191 	BUG_ON(target < 0);
1192 	pr_debug("%s: stripe %llu block: %d\n",
1193 		__func__, (unsigned long long)sh->sector, target);
1194 
1195 	tgt = &sh->dev[target];
1196 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1197 	dest = tgt->page;
1198 
1199 	atomic_inc(&sh->count);
1200 
1201 	if (target == qd_idx) {
1202 		count = set_syndrome_sources(blocks, sh);
1203 		blocks[count] = NULL; /* regenerating p is not necessary */
1204 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1205 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1206 				  ops_complete_compute, sh,
1207 				  to_addr_conv(sh, percpu));
1208 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1209 	} else {
1210 		/* Compute any data- or p-drive using XOR */
1211 		count = 0;
1212 		for (i = disks; i-- ; ) {
1213 			if (i == target || i == qd_idx)
1214 				continue;
1215 			blocks[count++] = sh->dev[i].page;
1216 		}
1217 
1218 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1219 				  NULL, ops_complete_compute, sh,
1220 				  to_addr_conv(sh, percpu));
1221 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1222 	}
1223 
1224 	return tx;
1225 }
1226 
1227 static struct dma_async_tx_descriptor *
1228 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1229 {
1230 	int i, count, disks = sh->disks;
1231 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1232 	int d0_idx = raid6_d0(sh);
1233 	int faila = -1, failb = -1;
1234 	int target = sh->ops.target;
1235 	int target2 = sh->ops.target2;
1236 	struct r5dev *tgt = &sh->dev[target];
1237 	struct r5dev *tgt2 = &sh->dev[target2];
1238 	struct dma_async_tx_descriptor *tx;
1239 	struct page **blocks = percpu->scribble;
1240 	struct async_submit_ctl submit;
1241 
1242 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1243 		 __func__, (unsigned long long)sh->sector, target, target2);
1244 	BUG_ON(target < 0 || target2 < 0);
1245 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1246 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1247 
1248 	/* we need to open-code set_syndrome_sources to handle the
1249 	 * slot number conversion for 'faila' and 'failb'
1250 	 */
1251 	for (i = 0; i < disks ; i++)
1252 		blocks[i] = NULL;
1253 	count = 0;
1254 	i = d0_idx;
1255 	do {
1256 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1257 
1258 		blocks[slot] = sh->dev[i].page;
1259 
1260 		if (i == target)
1261 			faila = slot;
1262 		if (i == target2)
1263 			failb = slot;
1264 		i = raid6_next_disk(i, disks);
1265 	} while (i != d0_idx);
1266 
1267 	BUG_ON(faila == failb);
1268 	if (failb < faila)
1269 		swap(faila, failb);
1270 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1271 		 __func__, (unsigned long long)sh->sector, faila, failb);
1272 
1273 	atomic_inc(&sh->count);
1274 
1275 	if (failb == syndrome_disks+1) {
1276 		/* Q disk is one of the missing disks */
1277 		if (faila == syndrome_disks) {
1278 			/* Missing P+Q, just recompute */
1279 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1280 					  ops_complete_compute, sh,
1281 					  to_addr_conv(sh, percpu));
1282 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1283 						  STRIPE_SIZE, &submit);
1284 		} else {
1285 			struct page *dest;
1286 			int data_target;
1287 			int qd_idx = sh->qd_idx;
1288 
1289 			/* Missing D+Q: recompute D from P, then recompute Q */
1290 			if (target == qd_idx)
1291 				data_target = target2;
1292 			else
1293 				data_target = target;
1294 
1295 			count = 0;
1296 			for (i = disks; i-- ; ) {
1297 				if (i == data_target || i == qd_idx)
1298 					continue;
1299 				blocks[count++] = sh->dev[i].page;
1300 			}
1301 			dest = sh->dev[data_target].page;
1302 			init_async_submit(&submit,
1303 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1304 					  NULL, NULL, NULL,
1305 					  to_addr_conv(sh, percpu));
1306 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1307 				       &submit);
1308 
1309 			count = set_syndrome_sources(blocks, sh);
1310 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1311 					  ops_complete_compute, sh,
1312 					  to_addr_conv(sh, percpu));
1313 			return async_gen_syndrome(blocks, 0, count+2,
1314 						  STRIPE_SIZE, &submit);
1315 		}
1316 	} else {
1317 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1318 				  ops_complete_compute, sh,
1319 				  to_addr_conv(sh, percpu));
1320 		if (failb == syndrome_disks) {
1321 			/* We're missing D+P. */
1322 			return async_raid6_datap_recov(syndrome_disks+2,
1323 						       STRIPE_SIZE, faila,
1324 						       blocks, &submit);
1325 		} else {
1326 			/* We're missing D+D. */
1327 			return async_raid6_2data_recov(syndrome_disks+2,
1328 						       STRIPE_SIZE, faila, failb,
1329 						       blocks, &submit);
1330 		}
1331 	}
1332 }
1333 
1334 
1335 static void ops_complete_prexor(void *stripe_head_ref)
1336 {
1337 	struct stripe_head *sh = stripe_head_ref;
1338 
1339 	pr_debug("%s: stripe %llu\n", __func__,
1340 		(unsigned long long)sh->sector);
1341 }
1342 
1343 static struct dma_async_tx_descriptor *
1344 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1345 	       struct dma_async_tx_descriptor *tx)
1346 {
1347 	int disks = sh->disks;
1348 	struct page **xor_srcs = percpu->scribble;
1349 	int count = 0, pd_idx = sh->pd_idx, i;
1350 	struct async_submit_ctl submit;
1351 
1352 	/* existing parity data subtracted */
1353 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1354 
1355 	pr_debug("%s: stripe %llu\n", __func__,
1356 		(unsigned long long)sh->sector);
1357 
1358 	for (i = disks; i--; ) {
1359 		struct r5dev *dev = &sh->dev[i];
1360 		/* Only process blocks that are known to be uptodate */
1361 		if (test_bit(R5_Wantdrain, &dev->flags))
1362 			xor_srcs[count++] = dev->page;
1363 	}
1364 
1365 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1366 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1367 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1368 
1369 	return tx;
1370 }
1371 
1372 static struct dma_async_tx_descriptor *
1373 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1374 {
1375 	int disks = sh->disks;
1376 	int i;
1377 
1378 	pr_debug("%s: stripe %llu\n", __func__,
1379 		(unsigned long long)sh->sector);
1380 
1381 	for (i = disks; i--; ) {
1382 		struct r5dev *dev = &sh->dev[i];
1383 		struct bio *chosen;
1384 
1385 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1386 			struct bio *wbi;
1387 
1388 			spin_lock_irq(&sh->stripe_lock);
1389 			chosen = dev->towrite;
1390 			dev->towrite = NULL;
1391 			BUG_ON(dev->written);
1392 			wbi = dev->written = chosen;
1393 			spin_unlock_irq(&sh->stripe_lock);
1394 
1395 			while (wbi && wbi->bi_sector <
1396 				dev->sector + STRIPE_SECTORS) {
1397 				if (wbi->bi_rw & REQ_FUA)
1398 					set_bit(R5_WantFUA, &dev->flags);
1399 				if (wbi->bi_rw & REQ_SYNC)
1400 					set_bit(R5_SyncIO, &dev->flags);
1401 				if (wbi->bi_rw & REQ_DISCARD)
1402 					set_bit(R5_Discard, &dev->flags);
1403 				else
1404 					tx = async_copy_data(1, wbi, dev->page,
1405 						dev->sector, tx);
1406 				wbi = r5_next_bio(wbi, dev->sector);
1407 			}
1408 		}
1409 	}
1410 
1411 	return tx;
1412 }
1413 
1414 static void ops_complete_reconstruct(void *stripe_head_ref)
1415 {
1416 	struct stripe_head *sh = stripe_head_ref;
1417 	int disks = sh->disks;
1418 	int pd_idx = sh->pd_idx;
1419 	int qd_idx = sh->qd_idx;
1420 	int i;
1421 	bool fua = false, sync = false, discard = false;
1422 
1423 	pr_debug("%s: stripe %llu\n", __func__,
1424 		(unsigned long long)sh->sector);
1425 
1426 	for (i = disks; i--; ) {
1427 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1428 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1429 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1430 	}
1431 
1432 	for (i = disks; i--; ) {
1433 		struct r5dev *dev = &sh->dev[i];
1434 
1435 		if (dev->written || i == pd_idx || i == qd_idx) {
1436 			if (!discard)
1437 				set_bit(R5_UPTODATE, &dev->flags);
1438 			if (fua)
1439 				set_bit(R5_WantFUA, &dev->flags);
1440 			if (sync)
1441 				set_bit(R5_SyncIO, &dev->flags);
1442 		}
1443 	}
1444 
1445 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1446 		sh->reconstruct_state = reconstruct_state_drain_result;
1447 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1448 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1449 	else {
1450 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1451 		sh->reconstruct_state = reconstruct_state_result;
1452 	}
1453 
1454 	set_bit(STRIPE_HANDLE, &sh->state);
1455 	release_stripe(sh);
1456 }
1457 
1458 static void
1459 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1460 		     struct dma_async_tx_descriptor *tx)
1461 {
1462 	int disks = sh->disks;
1463 	struct page **xor_srcs = percpu->scribble;
1464 	struct async_submit_ctl submit;
1465 	int count = 0, pd_idx = sh->pd_idx, i;
1466 	struct page *xor_dest;
1467 	int prexor = 0;
1468 	unsigned long flags;
1469 
1470 	pr_debug("%s: stripe %llu\n", __func__,
1471 		(unsigned long long)sh->sector);
1472 
1473 	for (i = 0; i < sh->disks; i++) {
1474 		if (pd_idx == i)
1475 			continue;
1476 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1477 			break;
1478 	}
1479 	if (i >= sh->disks) {
1480 		atomic_inc(&sh->count);
1481 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1482 		ops_complete_reconstruct(sh);
1483 		return;
1484 	}
1485 	/* check if prexor is active which means only process blocks
1486 	 * that are part of a read-modify-write (written)
1487 	 */
1488 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1489 		prexor = 1;
1490 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1491 		for (i = disks; i--; ) {
1492 			struct r5dev *dev = &sh->dev[i];
1493 			if (dev->written)
1494 				xor_srcs[count++] = dev->page;
1495 		}
1496 	} else {
1497 		xor_dest = sh->dev[pd_idx].page;
1498 		for (i = disks; i--; ) {
1499 			struct r5dev *dev = &sh->dev[i];
1500 			if (i != pd_idx)
1501 				xor_srcs[count++] = dev->page;
1502 		}
1503 	}
1504 
1505 	/* 1/ if we prexor'd then the dest is reused as a source
1506 	 * 2/ if we did not prexor then we are redoing the parity
1507 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1508 	 * for the synchronous xor case
1509 	 */
1510 	flags = ASYNC_TX_ACK |
1511 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1512 
1513 	atomic_inc(&sh->count);
1514 
1515 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1516 			  to_addr_conv(sh, percpu));
1517 	if (unlikely(count == 1))
1518 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1519 	else
1520 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1521 }
1522 
1523 static void
1524 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1525 		     struct dma_async_tx_descriptor *tx)
1526 {
1527 	struct async_submit_ctl submit;
1528 	struct page **blocks = percpu->scribble;
1529 	int count, i;
1530 
1531 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1532 
1533 	for (i = 0; i < sh->disks; i++) {
1534 		if (sh->pd_idx == i || sh->qd_idx == i)
1535 			continue;
1536 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1537 			break;
1538 	}
1539 	if (i >= sh->disks) {
1540 		atomic_inc(&sh->count);
1541 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1542 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1543 		ops_complete_reconstruct(sh);
1544 		return;
1545 	}
1546 
1547 	count = set_syndrome_sources(blocks, sh);
1548 
1549 	atomic_inc(&sh->count);
1550 
1551 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1552 			  sh, to_addr_conv(sh, percpu));
1553 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1554 }
1555 
1556 static void ops_complete_check(void *stripe_head_ref)
1557 {
1558 	struct stripe_head *sh = stripe_head_ref;
1559 
1560 	pr_debug("%s: stripe %llu\n", __func__,
1561 		(unsigned long long)sh->sector);
1562 
1563 	sh->check_state = check_state_check_result;
1564 	set_bit(STRIPE_HANDLE, &sh->state);
1565 	release_stripe(sh);
1566 }
1567 
1568 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1569 {
1570 	int disks = sh->disks;
1571 	int pd_idx = sh->pd_idx;
1572 	int qd_idx = sh->qd_idx;
1573 	struct page *xor_dest;
1574 	struct page **xor_srcs = percpu->scribble;
1575 	struct dma_async_tx_descriptor *tx;
1576 	struct async_submit_ctl submit;
1577 	int count;
1578 	int i;
1579 
1580 	pr_debug("%s: stripe %llu\n", __func__,
1581 		(unsigned long long)sh->sector);
1582 
1583 	count = 0;
1584 	xor_dest = sh->dev[pd_idx].page;
1585 	xor_srcs[count++] = xor_dest;
1586 	for (i = disks; i--; ) {
1587 		if (i == pd_idx || i == qd_idx)
1588 			continue;
1589 		xor_srcs[count++] = sh->dev[i].page;
1590 	}
1591 
1592 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1593 			  to_addr_conv(sh, percpu));
1594 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1595 			   &sh->ops.zero_sum_result, &submit);
1596 
1597 	atomic_inc(&sh->count);
1598 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1599 	tx = async_trigger_callback(&submit);
1600 }
1601 
1602 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1603 {
1604 	struct page **srcs = percpu->scribble;
1605 	struct async_submit_ctl submit;
1606 	int count;
1607 
1608 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1609 		(unsigned long long)sh->sector, checkp);
1610 
1611 	count = set_syndrome_sources(srcs, sh);
1612 	if (!checkp)
1613 		srcs[count] = NULL;
1614 
1615 	atomic_inc(&sh->count);
1616 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1617 			  sh, to_addr_conv(sh, percpu));
1618 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1619 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1620 }
1621 
1622 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1623 {
1624 	int overlap_clear = 0, i, disks = sh->disks;
1625 	struct dma_async_tx_descriptor *tx = NULL;
1626 	struct r5conf *conf = sh->raid_conf;
1627 	int level = conf->level;
1628 	struct raid5_percpu *percpu;
1629 	unsigned long cpu;
1630 
1631 	cpu = get_cpu();
1632 	percpu = per_cpu_ptr(conf->percpu, cpu);
1633 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1634 		ops_run_biofill(sh);
1635 		overlap_clear++;
1636 	}
1637 
1638 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1639 		if (level < 6)
1640 			tx = ops_run_compute5(sh, percpu);
1641 		else {
1642 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1643 				tx = ops_run_compute6_1(sh, percpu);
1644 			else
1645 				tx = ops_run_compute6_2(sh, percpu);
1646 		}
1647 		/* terminate the chain if reconstruct is not set to be run */
1648 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1649 			async_tx_ack(tx);
1650 	}
1651 
1652 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1653 		tx = ops_run_prexor(sh, percpu, tx);
1654 
1655 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1656 		tx = ops_run_biodrain(sh, tx);
1657 		overlap_clear++;
1658 	}
1659 
1660 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1661 		if (level < 6)
1662 			ops_run_reconstruct5(sh, percpu, tx);
1663 		else
1664 			ops_run_reconstruct6(sh, percpu, tx);
1665 	}
1666 
1667 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1668 		if (sh->check_state == check_state_run)
1669 			ops_run_check_p(sh, percpu);
1670 		else if (sh->check_state == check_state_run_q)
1671 			ops_run_check_pq(sh, percpu, 0);
1672 		else if (sh->check_state == check_state_run_pq)
1673 			ops_run_check_pq(sh, percpu, 1);
1674 		else
1675 			BUG();
1676 	}
1677 
1678 	if (overlap_clear)
1679 		for (i = disks; i--; ) {
1680 			struct r5dev *dev = &sh->dev[i];
1681 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1682 				wake_up(&sh->raid_conf->wait_for_overlap);
1683 		}
1684 	put_cpu();
1685 }
1686 
1687 static int grow_one_stripe(struct r5conf *conf, int hash)
1688 {
1689 	struct stripe_head *sh;
1690 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1691 	if (!sh)
1692 		return 0;
1693 
1694 	sh->raid_conf = conf;
1695 
1696 	spin_lock_init(&sh->stripe_lock);
1697 
1698 	if (grow_buffers(sh)) {
1699 		shrink_buffers(sh);
1700 		kmem_cache_free(conf->slab_cache, sh);
1701 		return 0;
1702 	}
1703 	sh->hash_lock_index = hash;
1704 	/* we just created an active stripe so... */
1705 	atomic_set(&sh->count, 1);
1706 	atomic_inc(&conf->active_stripes);
1707 	INIT_LIST_HEAD(&sh->lru);
1708 	release_stripe(sh);
1709 	return 1;
1710 }
1711 
1712 static int grow_stripes(struct r5conf *conf, int num)
1713 {
1714 	struct kmem_cache *sc;
1715 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1716 	int hash;
1717 
1718 	if (conf->mddev->gendisk)
1719 		sprintf(conf->cache_name[0],
1720 			"raid%d-%s", conf->level, mdname(conf->mddev));
1721 	else
1722 		sprintf(conf->cache_name[0],
1723 			"raid%d-%p", conf->level, conf->mddev);
1724 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1725 
1726 	conf->active_name = 0;
1727 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1728 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1729 			       0, 0, NULL);
1730 	if (!sc)
1731 		return 1;
1732 	conf->slab_cache = sc;
1733 	conf->pool_size = devs;
1734 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1735 	while (num--) {
1736 		if (!grow_one_stripe(conf, hash))
1737 			return 1;
1738 		conf->max_nr_stripes++;
1739 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1740 	}
1741 	return 0;
1742 }
1743 
1744 /**
1745  * scribble_len - return the required size of the scribble region
1746  * @num - total number of disks in the array
1747  *
1748  * The size must be enough to contain:
1749  * 1/ a struct page pointer for each device in the array +2
1750  * 2/ room to convert each entry in (1) to its corresponding dma
1751  *    (dma_map_page()) or page (page_address()) address.
1752  *
1753  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1754  * calculate over all devices (not just the data blocks), using zeros in place
1755  * of the P and Q blocks.
1756  */
1757 static size_t scribble_len(int num)
1758 {
1759 	size_t len;
1760 
1761 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1762 
1763 	return len;
1764 }
1765 
1766 static int resize_stripes(struct r5conf *conf, int newsize)
1767 {
1768 	/* Make all the stripes able to hold 'newsize' devices.
1769 	 * New slots in each stripe get 'page' set to a new page.
1770 	 *
1771 	 * This happens in stages:
1772 	 * 1/ create a new kmem_cache and allocate the required number of
1773 	 *    stripe_heads.
1774 	 * 2/ gather all the old stripe_heads and transfer the pages across
1775 	 *    to the new stripe_heads.  This will have the side effect of
1776 	 *    freezing the array as once all stripe_heads have been collected,
1777 	 *    no IO will be possible.  Old stripe heads are freed once their
1778 	 *    pages have been transferred over, and the old kmem_cache is
1779 	 *    freed when all stripes are done.
1780 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1781 	 *    we simple return a failre status - no need to clean anything up.
1782 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1783 	 *    If this fails, we don't bother trying the shrink the
1784 	 *    stripe_heads down again, we just leave them as they are.
1785 	 *    As each stripe_head is processed the new one is released into
1786 	 *    active service.
1787 	 *
1788 	 * Once step2 is started, we cannot afford to wait for a write,
1789 	 * so we use GFP_NOIO allocations.
1790 	 */
1791 	struct stripe_head *osh, *nsh;
1792 	LIST_HEAD(newstripes);
1793 	struct disk_info *ndisks;
1794 	unsigned long cpu;
1795 	int err;
1796 	struct kmem_cache *sc;
1797 	int i;
1798 	int hash, cnt;
1799 
1800 	if (newsize <= conf->pool_size)
1801 		return 0; /* never bother to shrink */
1802 
1803 	err = md_allow_write(conf->mddev);
1804 	if (err)
1805 		return err;
1806 
1807 	/* Step 1 */
1808 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1809 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1810 			       0, 0, NULL);
1811 	if (!sc)
1812 		return -ENOMEM;
1813 
1814 	for (i = conf->max_nr_stripes; i; i--) {
1815 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1816 		if (!nsh)
1817 			break;
1818 
1819 		nsh->raid_conf = conf;
1820 		spin_lock_init(&nsh->stripe_lock);
1821 
1822 		list_add(&nsh->lru, &newstripes);
1823 	}
1824 	if (i) {
1825 		/* didn't get enough, give up */
1826 		while (!list_empty(&newstripes)) {
1827 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1828 			list_del(&nsh->lru);
1829 			kmem_cache_free(sc, nsh);
1830 		}
1831 		kmem_cache_destroy(sc);
1832 		return -ENOMEM;
1833 	}
1834 	/* Step 2 - Must use GFP_NOIO now.
1835 	 * OK, we have enough stripes, start collecting inactive
1836 	 * stripes and copying them over
1837 	 */
1838 	hash = 0;
1839 	cnt = 0;
1840 	list_for_each_entry(nsh, &newstripes, lru) {
1841 		lock_device_hash_lock(conf, hash);
1842 		wait_event_cmd(conf->wait_for_stripe,
1843 				    !list_empty(conf->inactive_list + hash),
1844 				    unlock_device_hash_lock(conf, hash),
1845 				    lock_device_hash_lock(conf, hash));
1846 		osh = get_free_stripe(conf, hash);
1847 		unlock_device_hash_lock(conf, hash);
1848 		atomic_set(&nsh->count, 1);
1849 		for(i=0; i<conf->pool_size; i++)
1850 			nsh->dev[i].page = osh->dev[i].page;
1851 		for( ; i<newsize; i++)
1852 			nsh->dev[i].page = NULL;
1853 		nsh->hash_lock_index = hash;
1854 		kmem_cache_free(conf->slab_cache, osh);
1855 		cnt++;
1856 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1857 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1858 			hash++;
1859 			cnt = 0;
1860 		}
1861 	}
1862 	kmem_cache_destroy(conf->slab_cache);
1863 
1864 	/* Step 3.
1865 	 * At this point, we are holding all the stripes so the array
1866 	 * is completely stalled, so now is a good time to resize
1867 	 * conf->disks and the scribble region
1868 	 */
1869 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1870 	if (ndisks) {
1871 		for (i=0; i<conf->raid_disks; i++)
1872 			ndisks[i] = conf->disks[i];
1873 		kfree(conf->disks);
1874 		conf->disks = ndisks;
1875 	} else
1876 		err = -ENOMEM;
1877 
1878 	get_online_cpus();
1879 	conf->scribble_len = scribble_len(newsize);
1880 	for_each_present_cpu(cpu) {
1881 		struct raid5_percpu *percpu;
1882 		void *scribble;
1883 
1884 		percpu = per_cpu_ptr(conf->percpu, cpu);
1885 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1886 
1887 		if (scribble) {
1888 			kfree(percpu->scribble);
1889 			percpu->scribble = scribble;
1890 		} else {
1891 			err = -ENOMEM;
1892 			break;
1893 		}
1894 	}
1895 	put_online_cpus();
1896 
1897 	/* Step 4, return new stripes to service */
1898 	while(!list_empty(&newstripes)) {
1899 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1900 		list_del_init(&nsh->lru);
1901 
1902 		for (i=conf->raid_disks; i < newsize; i++)
1903 			if (nsh->dev[i].page == NULL) {
1904 				struct page *p = alloc_page(GFP_NOIO);
1905 				nsh->dev[i].page = p;
1906 				if (!p)
1907 					err = -ENOMEM;
1908 			}
1909 		release_stripe(nsh);
1910 	}
1911 	/* critical section pass, GFP_NOIO no longer needed */
1912 
1913 	conf->slab_cache = sc;
1914 	conf->active_name = 1-conf->active_name;
1915 	conf->pool_size = newsize;
1916 	return err;
1917 }
1918 
1919 static int drop_one_stripe(struct r5conf *conf, int hash)
1920 {
1921 	struct stripe_head *sh;
1922 
1923 	spin_lock_irq(conf->hash_locks + hash);
1924 	sh = get_free_stripe(conf, hash);
1925 	spin_unlock_irq(conf->hash_locks + hash);
1926 	if (!sh)
1927 		return 0;
1928 	BUG_ON(atomic_read(&sh->count));
1929 	shrink_buffers(sh);
1930 	kmem_cache_free(conf->slab_cache, sh);
1931 	atomic_dec(&conf->active_stripes);
1932 	return 1;
1933 }
1934 
1935 static void shrink_stripes(struct r5conf *conf)
1936 {
1937 	int hash;
1938 	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1939 		while (drop_one_stripe(conf, hash))
1940 			;
1941 
1942 	if (conf->slab_cache)
1943 		kmem_cache_destroy(conf->slab_cache);
1944 	conf->slab_cache = NULL;
1945 }
1946 
1947 static void raid5_end_read_request(struct bio * bi, int error)
1948 {
1949 	struct stripe_head *sh = bi->bi_private;
1950 	struct r5conf *conf = sh->raid_conf;
1951 	int disks = sh->disks, i;
1952 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1953 	char b[BDEVNAME_SIZE];
1954 	struct md_rdev *rdev = NULL;
1955 	sector_t s;
1956 
1957 	for (i=0 ; i<disks; i++)
1958 		if (bi == &sh->dev[i].req)
1959 			break;
1960 
1961 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1962 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1963 		uptodate);
1964 	if (i == disks) {
1965 		BUG();
1966 		return;
1967 	}
1968 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1969 		/* If replacement finished while this request was outstanding,
1970 		 * 'replacement' might be NULL already.
1971 		 * In that case it moved down to 'rdev'.
1972 		 * rdev is not removed until all requests are finished.
1973 		 */
1974 		rdev = conf->disks[i].replacement;
1975 	if (!rdev)
1976 		rdev = conf->disks[i].rdev;
1977 
1978 	if (use_new_offset(conf, sh))
1979 		s = sh->sector + rdev->new_data_offset;
1980 	else
1981 		s = sh->sector + rdev->data_offset;
1982 	if (uptodate) {
1983 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1984 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1985 			/* Note that this cannot happen on a
1986 			 * replacement device.  We just fail those on
1987 			 * any error
1988 			 */
1989 			printk_ratelimited(
1990 				KERN_INFO
1991 				"md/raid:%s: read error corrected"
1992 				" (%lu sectors at %llu on %s)\n",
1993 				mdname(conf->mddev), STRIPE_SECTORS,
1994 				(unsigned long long)s,
1995 				bdevname(rdev->bdev, b));
1996 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1997 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1998 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1999 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2000 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2001 
2002 		if (atomic_read(&rdev->read_errors))
2003 			atomic_set(&rdev->read_errors, 0);
2004 	} else {
2005 		const char *bdn = bdevname(rdev->bdev, b);
2006 		int retry = 0;
2007 		int set_bad = 0;
2008 
2009 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2010 		atomic_inc(&rdev->read_errors);
2011 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2012 			printk_ratelimited(
2013 				KERN_WARNING
2014 				"md/raid:%s: read error on replacement device "
2015 				"(sector %llu on %s).\n",
2016 				mdname(conf->mddev),
2017 				(unsigned long long)s,
2018 				bdn);
2019 		else if (conf->mddev->degraded >= conf->max_degraded) {
2020 			set_bad = 1;
2021 			printk_ratelimited(
2022 				KERN_WARNING
2023 				"md/raid:%s: read error not correctable "
2024 				"(sector %llu on %s).\n",
2025 				mdname(conf->mddev),
2026 				(unsigned long long)s,
2027 				bdn);
2028 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2029 			/* Oh, no!!! */
2030 			set_bad = 1;
2031 			printk_ratelimited(
2032 				KERN_WARNING
2033 				"md/raid:%s: read error NOT corrected!! "
2034 				"(sector %llu on %s).\n",
2035 				mdname(conf->mddev),
2036 				(unsigned long long)s,
2037 				bdn);
2038 		} else if (atomic_read(&rdev->read_errors)
2039 			 > conf->max_nr_stripes)
2040 			printk(KERN_WARNING
2041 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2042 			       mdname(conf->mddev), bdn);
2043 		else
2044 			retry = 1;
2045 		if (set_bad && test_bit(In_sync, &rdev->flags)
2046 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2047 			retry = 1;
2048 		if (retry)
2049 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2050 				set_bit(R5_ReadError, &sh->dev[i].flags);
2051 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2052 			} else
2053 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2054 		else {
2055 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2056 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2057 			if (!(set_bad
2058 			      && test_bit(In_sync, &rdev->flags)
2059 			      && rdev_set_badblocks(
2060 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2061 				md_error(conf->mddev, rdev);
2062 		}
2063 	}
2064 	rdev_dec_pending(rdev, conf->mddev);
2065 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2066 	set_bit(STRIPE_HANDLE, &sh->state);
2067 	release_stripe(sh);
2068 }
2069 
2070 static void raid5_end_write_request(struct bio *bi, int error)
2071 {
2072 	struct stripe_head *sh = bi->bi_private;
2073 	struct r5conf *conf = sh->raid_conf;
2074 	int disks = sh->disks, i;
2075 	struct md_rdev *uninitialized_var(rdev);
2076 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2077 	sector_t first_bad;
2078 	int bad_sectors;
2079 	int replacement = 0;
2080 
2081 	for (i = 0 ; i < disks; i++) {
2082 		if (bi == &sh->dev[i].req) {
2083 			rdev = conf->disks[i].rdev;
2084 			break;
2085 		}
2086 		if (bi == &sh->dev[i].rreq) {
2087 			rdev = conf->disks[i].replacement;
2088 			if (rdev)
2089 				replacement = 1;
2090 			else
2091 				/* rdev was removed and 'replacement'
2092 				 * replaced it.  rdev is not removed
2093 				 * until all requests are finished.
2094 				 */
2095 				rdev = conf->disks[i].rdev;
2096 			break;
2097 		}
2098 	}
2099 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2100 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2101 		uptodate);
2102 	if (i == disks) {
2103 		BUG();
2104 		return;
2105 	}
2106 
2107 	if (replacement) {
2108 		if (!uptodate)
2109 			md_error(conf->mddev, rdev);
2110 		else if (is_badblock(rdev, sh->sector,
2111 				     STRIPE_SECTORS,
2112 				     &first_bad, &bad_sectors))
2113 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2114 	} else {
2115 		if (!uptodate) {
2116 			set_bit(WriteErrorSeen, &rdev->flags);
2117 			set_bit(R5_WriteError, &sh->dev[i].flags);
2118 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2119 				set_bit(MD_RECOVERY_NEEDED,
2120 					&rdev->mddev->recovery);
2121 		} else if (is_badblock(rdev, sh->sector,
2122 				       STRIPE_SECTORS,
2123 				       &first_bad, &bad_sectors)) {
2124 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2125 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2126 				/* That was a successful write so make
2127 				 * sure it looks like we already did
2128 				 * a re-write.
2129 				 */
2130 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2131 		}
2132 	}
2133 	rdev_dec_pending(rdev, conf->mddev);
2134 
2135 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2136 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2137 	set_bit(STRIPE_HANDLE, &sh->state);
2138 	release_stripe(sh);
2139 }
2140 
2141 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2142 
2143 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2144 {
2145 	struct r5dev *dev = &sh->dev[i];
2146 
2147 	bio_init(&dev->req);
2148 	dev->req.bi_io_vec = &dev->vec;
2149 	dev->req.bi_vcnt++;
2150 	dev->req.bi_max_vecs++;
2151 	dev->req.bi_private = sh;
2152 	dev->vec.bv_page = dev->page;
2153 
2154 	bio_init(&dev->rreq);
2155 	dev->rreq.bi_io_vec = &dev->rvec;
2156 	dev->rreq.bi_vcnt++;
2157 	dev->rreq.bi_max_vecs++;
2158 	dev->rreq.bi_private = sh;
2159 	dev->rvec.bv_page = dev->page;
2160 
2161 	dev->flags = 0;
2162 	dev->sector = compute_blocknr(sh, i, previous);
2163 }
2164 
2165 static void error(struct mddev *mddev, struct md_rdev *rdev)
2166 {
2167 	char b[BDEVNAME_SIZE];
2168 	struct r5conf *conf = mddev->private;
2169 	unsigned long flags;
2170 	pr_debug("raid456: error called\n");
2171 
2172 	spin_lock_irqsave(&conf->device_lock, flags);
2173 	clear_bit(In_sync, &rdev->flags);
2174 	mddev->degraded = calc_degraded(conf);
2175 	spin_unlock_irqrestore(&conf->device_lock, flags);
2176 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2177 
2178 	set_bit(Blocked, &rdev->flags);
2179 	set_bit(Faulty, &rdev->flags);
2180 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2181 	printk(KERN_ALERT
2182 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2183 	       "md/raid:%s: Operation continuing on %d devices.\n",
2184 	       mdname(mddev),
2185 	       bdevname(rdev->bdev, b),
2186 	       mdname(mddev),
2187 	       conf->raid_disks - mddev->degraded);
2188 }
2189 
2190 /*
2191  * Input: a 'big' sector number,
2192  * Output: index of the data and parity disk, and the sector # in them.
2193  */
2194 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2195 				     int previous, int *dd_idx,
2196 				     struct stripe_head *sh)
2197 {
2198 	sector_t stripe, stripe2;
2199 	sector_t chunk_number;
2200 	unsigned int chunk_offset;
2201 	int pd_idx, qd_idx;
2202 	int ddf_layout = 0;
2203 	sector_t new_sector;
2204 	int algorithm = previous ? conf->prev_algo
2205 				 : conf->algorithm;
2206 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2207 					 : conf->chunk_sectors;
2208 	int raid_disks = previous ? conf->previous_raid_disks
2209 				  : conf->raid_disks;
2210 	int data_disks = raid_disks - conf->max_degraded;
2211 
2212 	/* First compute the information on this sector */
2213 
2214 	/*
2215 	 * Compute the chunk number and the sector offset inside the chunk
2216 	 */
2217 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2218 	chunk_number = r_sector;
2219 
2220 	/*
2221 	 * Compute the stripe number
2222 	 */
2223 	stripe = chunk_number;
2224 	*dd_idx = sector_div(stripe, data_disks);
2225 	stripe2 = stripe;
2226 	/*
2227 	 * Select the parity disk based on the user selected algorithm.
2228 	 */
2229 	pd_idx = qd_idx = -1;
2230 	switch(conf->level) {
2231 	case 4:
2232 		pd_idx = data_disks;
2233 		break;
2234 	case 5:
2235 		switch (algorithm) {
2236 		case ALGORITHM_LEFT_ASYMMETRIC:
2237 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2238 			if (*dd_idx >= pd_idx)
2239 				(*dd_idx)++;
2240 			break;
2241 		case ALGORITHM_RIGHT_ASYMMETRIC:
2242 			pd_idx = sector_div(stripe2, raid_disks);
2243 			if (*dd_idx >= pd_idx)
2244 				(*dd_idx)++;
2245 			break;
2246 		case ALGORITHM_LEFT_SYMMETRIC:
2247 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2248 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2249 			break;
2250 		case ALGORITHM_RIGHT_SYMMETRIC:
2251 			pd_idx = sector_div(stripe2, raid_disks);
2252 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2253 			break;
2254 		case ALGORITHM_PARITY_0:
2255 			pd_idx = 0;
2256 			(*dd_idx)++;
2257 			break;
2258 		case ALGORITHM_PARITY_N:
2259 			pd_idx = data_disks;
2260 			break;
2261 		default:
2262 			BUG();
2263 		}
2264 		break;
2265 	case 6:
2266 
2267 		switch (algorithm) {
2268 		case ALGORITHM_LEFT_ASYMMETRIC:
2269 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2270 			qd_idx = pd_idx + 1;
2271 			if (pd_idx == raid_disks-1) {
2272 				(*dd_idx)++;	/* Q D D D P */
2273 				qd_idx = 0;
2274 			} else if (*dd_idx >= pd_idx)
2275 				(*dd_idx) += 2; /* D D P Q D */
2276 			break;
2277 		case ALGORITHM_RIGHT_ASYMMETRIC:
2278 			pd_idx = sector_div(stripe2, raid_disks);
2279 			qd_idx = pd_idx + 1;
2280 			if (pd_idx == raid_disks-1) {
2281 				(*dd_idx)++;	/* Q D D D P */
2282 				qd_idx = 0;
2283 			} else if (*dd_idx >= pd_idx)
2284 				(*dd_idx) += 2; /* D D P Q D */
2285 			break;
2286 		case ALGORITHM_LEFT_SYMMETRIC:
2287 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2288 			qd_idx = (pd_idx + 1) % raid_disks;
2289 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2290 			break;
2291 		case ALGORITHM_RIGHT_SYMMETRIC:
2292 			pd_idx = sector_div(stripe2, raid_disks);
2293 			qd_idx = (pd_idx + 1) % raid_disks;
2294 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2295 			break;
2296 
2297 		case ALGORITHM_PARITY_0:
2298 			pd_idx = 0;
2299 			qd_idx = 1;
2300 			(*dd_idx) += 2;
2301 			break;
2302 		case ALGORITHM_PARITY_N:
2303 			pd_idx = data_disks;
2304 			qd_idx = data_disks + 1;
2305 			break;
2306 
2307 		case ALGORITHM_ROTATING_ZERO_RESTART:
2308 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2309 			 * of blocks for computing Q is different.
2310 			 */
2311 			pd_idx = sector_div(stripe2, raid_disks);
2312 			qd_idx = pd_idx + 1;
2313 			if (pd_idx == raid_disks-1) {
2314 				(*dd_idx)++;	/* Q D D D P */
2315 				qd_idx = 0;
2316 			} else if (*dd_idx >= pd_idx)
2317 				(*dd_idx) += 2; /* D D P Q D */
2318 			ddf_layout = 1;
2319 			break;
2320 
2321 		case ALGORITHM_ROTATING_N_RESTART:
2322 			/* Same a left_asymmetric, by first stripe is
2323 			 * D D D P Q  rather than
2324 			 * Q D D D P
2325 			 */
2326 			stripe2 += 1;
2327 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2328 			qd_idx = pd_idx + 1;
2329 			if (pd_idx == raid_disks-1) {
2330 				(*dd_idx)++;	/* Q D D D P */
2331 				qd_idx = 0;
2332 			} else if (*dd_idx >= pd_idx)
2333 				(*dd_idx) += 2; /* D D P Q D */
2334 			ddf_layout = 1;
2335 			break;
2336 
2337 		case ALGORITHM_ROTATING_N_CONTINUE:
2338 			/* Same as left_symmetric but Q is before P */
2339 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2340 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2341 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2342 			ddf_layout = 1;
2343 			break;
2344 
2345 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2346 			/* RAID5 left_asymmetric, with Q on last device */
2347 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2348 			if (*dd_idx >= pd_idx)
2349 				(*dd_idx)++;
2350 			qd_idx = raid_disks - 1;
2351 			break;
2352 
2353 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2354 			pd_idx = sector_div(stripe2, raid_disks-1);
2355 			if (*dd_idx >= pd_idx)
2356 				(*dd_idx)++;
2357 			qd_idx = raid_disks - 1;
2358 			break;
2359 
2360 		case ALGORITHM_LEFT_SYMMETRIC_6:
2361 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2362 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2363 			qd_idx = raid_disks - 1;
2364 			break;
2365 
2366 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2367 			pd_idx = sector_div(stripe2, raid_disks-1);
2368 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2369 			qd_idx = raid_disks - 1;
2370 			break;
2371 
2372 		case ALGORITHM_PARITY_0_6:
2373 			pd_idx = 0;
2374 			(*dd_idx)++;
2375 			qd_idx = raid_disks - 1;
2376 			break;
2377 
2378 		default:
2379 			BUG();
2380 		}
2381 		break;
2382 	}
2383 
2384 	if (sh) {
2385 		sh->pd_idx = pd_idx;
2386 		sh->qd_idx = qd_idx;
2387 		sh->ddf_layout = ddf_layout;
2388 	}
2389 	/*
2390 	 * Finally, compute the new sector number
2391 	 */
2392 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2393 	return new_sector;
2394 }
2395 
2396 
2397 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2398 {
2399 	struct r5conf *conf = sh->raid_conf;
2400 	int raid_disks = sh->disks;
2401 	int data_disks = raid_disks - conf->max_degraded;
2402 	sector_t new_sector = sh->sector, check;
2403 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2404 					 : conf->chunk_sectors;
2405 	int algorithm = previous ? conf->prev_algo
2406 				 : conf->algorithm;
2407 	sector_t stripe;
2408 	int chunk_offset;
2409 	sector_t chunk_number;
2410 	int dummy1, dd_idx = i;
2411 	sector_t r_sector;
2412 	struct stripe_head sh2;
2413 
2414 
2415 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2416 	stripe = new_sector;
2417 
2418 	if (i == sh->pd_idx)
2419 		return 0;
2420 	switch(conf->level) {
2421 	case 4: break;
2422 	case 5:
2423 		switch (algorithm) {
2424 		case ALGORITHM_LEFT_ASYMMETRIC:
2425 		case ALGORITHM_RIGHT_ASYMMETRIC:
2426 			if (i > sh->pd_idx)
2427 				i--;
2428 			break;
2429 		case ALGORITHM_LEFT_SYMMETRIC:
2430 		case ALGORITHM_RIGHT_SYMMETRIC:
2431 			if (i < sh->pd_idx)
2432 				i += raid_disks;
2433 			i -= (sh->pd_idx + 1);
2434 			break;
2435 		case ALGORITHM_PARITY_0:
2436 			i -= 1;
2437 			break;
2438 		case ALGORITHM_PARITY_N:
2439 			break;
2440 		default:
2441 			BUG();
2442 		}
2443 		break;
2444 	case 6:
2445 		if (i == sh->qd_idx)
2446 			return 0; /* It is the Q disk */
2447 		switch (algorithm) {
2448 		case ALGORITHM_LEFT_ASYMMETRIC:
2449 		case ALGORITHM_RIGHT_ASYMMETRIC:
2450 		case ALGORITHM_ROTATING_ZERO_RESTART:
2451 		case ALGORITHM_ROTATING_N_RESTART:
2452 			if (sh->pd_idx == raid_disks-1)
2453 				i--;	/* Q D D D P */
2454 			else if (i > sh->pd_idx)
2455 				i -= 2; /* D D P Q D */
2456 			break;
2457 		case ALGORITHM_LEFT_SYMMETRIC:
2458 		case ALGORITHM_RIGHT_SYMMETRIC:
2459 			if (sh->pd_idx == raid_disks-1)
2460 				i--; /* Q D D D P */
2461 			else {
2462 				/* D D P Q D */
2463 				if (i < sh->pd_idx)
2464 					i += raid_disks;
2465 				i -= (sh->pd_idx + 2);
2466 			}
2467 			break;
2468 		case ALGORITHM_PARITY_0:
2469 			i -= 2;
2470 			break;
2471 		case ALGORITHM_PARITY_N:
2472 			break;
2473 		case ALGORITHM_ROTATING_N_CONTINUE:
2474 			/* Like left_symmetric, but P is before Q */
2475 			if (sh->pd_idx == 0)
2476 				i--;	/* P D D D Q */
2477 			else {
2478 				/* D D Q P D */
2479 				if (i < sh->pd_idx)
2480 					i += raid_disks;
2481 				i -= (sh->pd_idx + 1);
2482 			}
2483 			break;
2484 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2485 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2486 			if (i > sh->pd_idx)
2487 				i--;
2488 			break;
2489 		case ALGORITHM_LEFT_SYMMETRIC_6:
2490 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2491 			if (i < sh->pd_idx)
2492 				i += data_disks + 1;
2493 			i -= (sh->pd_idx + 1);
2494 			break;
2495 		case ALGORITHM_PARITY_0_6:
2496 			i -= 1;
2497 			break;
2498 		default:
2499 			BUG();
2500 		}
2501 		break;
2502 	}
2503 
2504 	chunk_number = stripe * data_disks + i;
2505 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2506 
2507 	check = raid5_compute_sector(conf, r_sector,
2508 				     previous, &dummy1, &sh2);
2509 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2510 		|| sh2.qd_idx != sh->qd_idx) {
2511 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2512 		       mdname(conf->mddev));
2513 		return 0;
2514 	}
2515 	return r_sector;
2516 }
2517 
2518 
2519 static void
2520 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2521 			 int rcw, int expand)
2522 {
2523 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2524 	struct r5conf *conf = sh->raid_conf;
2525 	int level = conf->level;
2526 
2527 	if (rcw) {
2528 
2529 		for (i = disks; i--; ) {
2530 			struct r5dev *dev = &sh->dev[i];
2531 
2532 			if (dev->towrite) {
2533 				set_bit(R5_LOCKED, &dev->flags);
2534 				set_bit(R5_Wantdrain, &dev->flags);
2535 				if (!expand)
2536 					clear_bit(R5_UPTODATE, &dev->flags);
2537 				s->locked++;
2538 			}
2539 		}
2540 		/* if we are not expanding this is a proper write request, and
2541 		 * there will be bios with new data to be drained into the
2542 		 * stripe cache
2543 		 */
2544 		if (!expand) {
2545 			if (!s->locked)
2546 				/* False alarm, nothing to do */
2547 				return;
2548 			sh->reconstruct_state = reconstruct_state_drain_run;
2549 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2550 		} else
2551 			sh->reconstruct_state = reconstruct_state_run;
2552 
2553 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2554 
2555 		if (s->locked + conf->max_degraded == disks)
2556 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2557 				atomic_inc(&conf->pending_full_writes);
2558 	} else {
2559 		BUG_ON(level == 6);
2560 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2561 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2562 
2563 		for (i = disks; i--; ) {
2564 			struct r5dev *dev = &sh->dev[i];
2565 			if (i == pd_idx)
2566 				continue;
2567 
2568 			if (dev->towrite &&
2569 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2570 			     test_bit(R5_Wantcompute, &dev->flags))) {
2571 				set_bit(R5_Wantdrain, &dev->flags);
2572 				set_bit(R5_LOCKED, &dev->flags);
2573 				clear_bit(R5_UPTODATE, &dev->flags);
2574 				s->locked++;
2575 			}
2576 		}
2577 		if (!s->locked)
2578 			/* False alarm - nothing to do */
2579 			return;
2580 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2581 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2582 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2583 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2584 	}
2585 
2586 	/* keep the parity disk(s) locked while asynchronous operations
2587 	 * are in flight
2588 	 */
2589 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2590 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2591 	s->locked++;
2592 
2593 	if (level == 6) {
2594 		int qd_idx = sh->qd_idx;
2595 		struct r5dev *dev = &sh->dev[qd_idx];
2596 
2597 		set_bit(R5_LOCKED, &dev->flags);
2598 		clear_bit(R5_UPTODATE, &dev->flags);
2599 		s->locked++;
2600 	}
2601 
2602 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2603 		__func__, (unsigned long long)sh->sector,
2604 		s->locked, s->ops_request);
2605 }
2606 
2607 /*
2608  * Each stripe/dev can have one or more bion attached.
2609  * toread/towrite point to the first in a chain.
2610  * The bi_next chain must be in order.
2611  */
2612 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2613 {
2614 	struct bio **bip;
2615 	struct r5conf *conf = sh->raid_conf;
2616 	int firstwrite=0;
2617 
2618 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2619 		(unsigned long long)bi->bi_sector,
2620 		(unsigned long long)sh->sector);
2621 
2622 	/*
2623 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2624 	 * reference count to avoid race. The reference count should already be
2625 	 * increased before this function is called (for example, in
2626 	 * make_request()), so other bio sharing this stripe will not free the
2627 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2628 	 * protect it.
2629 	 */
2630 	spin_lock_irq(&sh->stripe_lock);
2631 	if (forwrite) {
2632 		bip = &sh->dev[dd_idx].towrite;
2633 		if (*bip == NULL)
2634 			firstwrite = 1;
2635 	} else
2636 		bip = &sh->dev[dd_idx].toread;
2637 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2638 		if (bio_end_sector(*bip) > bi->bi_sector)
2639 			goto overlap;
2640 		bip = & (*bip)->bi_next;
2641 	}
2642 	if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2643 		goto overlap;
2644 
2645 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2646 	if (*bip)
2647 		bi->bi_next = *bip;
2648 	*bip = bi;
2649 	raid5_inc_bi_active_stripes(bi);
2650 
2651 	if (forwrite) {
2652 		/* check if page is covered */
2653 		sector_t sector = sh->dev[dd_idx].sector;
2654 		for (bi=sh->dev[dd_idx].towrite;
2655 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2656 			     bi && bi->bi_sector <= sector;
2657 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2658 			if (bio_end_sector(bi) >= sector)
2659 				sector = bio_end_sector(bi);
2660 		}
2661 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2662 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2663 	}
2664 
2665 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2666 		(unsigned long long)(*bip)->bi_sector,
2667 		(unsigned long long)sh->sector, dd_idx);
2668 	spin_unlock_irq(&sh->stripe_lock);
2669 
2670 	if (conf->mddev->bitmap && firstwrite) {
2671 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2672 				  STRIPE_SECTORS, 0);
2673 		sh->bm_seq = conf->seq_flush+1;
2674 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2675 	}
2676 	return 1;
2677 
2678  overlap:
2679 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2680 	spin_unlock_irq(&sh->stripe_lock);
2681 	return 0;
2682 }
2683 
2684 static void end_reshape(struct r5conf *conf);
2685 
2686 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2687 			    struct stripe_head *sh)
2688 {
2689 	int sectors_per_chunk =
2690 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2691 	int dd_idx;
2692 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2693 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2694 
2695 	raid5_compute_sector(conf,
2696 			     stripe * (disks - conf->max_degraded)
2697 			     *sectors_per_chunk + chunk_offset,
2698 			     previous,
2699 			     &dd_idx, sh);
2700 }
2701 
2702 static void
2703 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2704 				struct stripe_head_state *s, int disks,
2705 				struct bio **return_bi)
2706 {
2707 	int i;
2708 	for (i = disks; i--; ) {
2709 		struct bio *bi;
2710 		int bitmap_end = 0;
2711 
2712 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2713 			struct md_rdev *rdev;
2714 			rcu_read_lock();
2715 			rdev = rcu_dereference(conf->disks[i].rdev);
2716 			if (rdev && test_bit(In_sync, &rdev->flags))
2717 				atomic_inc(&rdev->nr_pending);
2718 			else
2719 				rdev = NULL;
2720 			rcu_read_unlock();
2721 			if (rdev) {
2722 				if (!rdev_set_badblocks(
2723 					    rdev,
2724 					    sh->sector,
2725 					    STRIPE_SECTORS, 0))
2726 					md_error(conf->mddev, rdev);
2727 				rdev_dec_pending(rdev, conf->mddev);
2728 			}
2729 		}
2730 		spin_lock_irq(&sh->stripe_lock);
2731 		/* fail all writes first */
2732 		bi = sh->dev[i].towrite;
2733 		sh->dev[i].towrite = NULL;
2734 		spin_unlock_irq(&sh->stripe_lock);
2735 		if (bi)
2736 			bitmap_end = 1;
2737 
2738 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2739 			wake_up(&conf->wait_for_overlap);
2740 
2741 		while (bi && bi->bi_sector <
2742 			sh->dev[i].sector + STRIPE_SECTORS) {
2743 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2744 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2745 			if (!raid5_dec_bi_active_stripes(bi)) {
2746 				md_write_end(conf->mddev);
2747 				bi->bi_next = *return_bi;
2748 				*return_bi = bi;
2749 			}
2750 			bi = nextbi;
2751 		}
2752 		if (bitmap_end)
2753 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2754 				STRIPE_SECTORS, 0, 0);
2755 		bitmap_end = 0;
2756 		/* and fail all 'written' */
2757 		bi = sh->dev[i].written;
2758 		sh->dev[i].written = NULL;
2759 		if (bi) bitmap_end = 1;
2760 		while (bi && bi->bi_sector <
2761 		       sh->dev[i].sector + STRIPE_SECTORS) {
2762 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2763 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2764 			if (!raid5_dec_bi_active_stripes(bi)) {
2765 				md_write_end(conf->mddev);
2766 				bi->bi_next = *return_bi;
2767 				*return_bi = bi;
2768 			}
2769 			bi = bi2;
2770 		}
2771 
2772 		/* fail any reads if this device is non-operational and
2773 		 * the data has not reached the cache yet.
2774 		 */
2775 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2776 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2777 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2778 			spin_lock_irq(&sh->stripe_lock);
2779 			bi = sh->dev[i].toread;
2780 			sh->dev[i].toread = NULL;
2781 			spin_unlock_irq(&sh->stripe_lock);
2782 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2783 				wake_up(&conf->wait_for_overlap);
2784 			while (bi && bi->bi_sector <
2785 			       sh->dev[i].sector + STRIPE_SECTORS) {
2786 				struct bio *nextbi =
2787 					r5_next_bio(bi, sh->dev[i].sector);
2788 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2789 				if (!raid5_dec_bi_active_stripes(bi)) {
2790 					bi->bi_next = *return_bi;
2791 					*return_bi = bi;
2792 				}
2793 				bi = nextbi;
2794 			}
2795 		}
2796 		if (bitmap_end)
2797 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2798 					STRIPE_SECTORS, 0, 0);
2799 		/* If we were in the middle of a write the parity block might
2800 		 * still be locked - so just clear all R5_LOCKED flags
2801 		 */
2802 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2803 	}
2804 
2805 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2806 		if (atomic_dec_and_test(&conf->pending_full_writes))
2807 			md_wakeup_thread(conf->mddev->thread);
2808 }
2809 
2810 static void
2811 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2812 		   struct stripe_head_state *s)
2813 {
2814 	int abort = 0;
2815 	int i;
2816 
2817 	clear_bit(STRIPE_SYNCING, &sh->state);
2818 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2819 		wake_up(&conf->wait_for_overlap);
2820 	s->syncing = 0;
2821 	s->replacing = 0;
2822 	/* There is nothing more to do for sync/check/repair.
2823 	 * Don't even need to abort as that is handled elsewhere
2824 	 * if needed, and not always wanted e.g. if there is a known
2825 	 * bad block here.
2826 	 * For recover/replace we need to record a bad block on all
2827 	 * non-sync devices, or abort the recovery
2828 	 */
2829 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2830 		/* During recovery devices cannot be removed, so
2831 		 * locking and refcounting of rdevs is not needed
2832 		 */
2833 		for (i = 0; i < conf->raid_disks; i++) {
2834 			struct md_rdev *rdev = conf->disks[i].rdev;
2835 			if (rdev
2836 			    && !test_bit(Faulty, &rdev->flags)
2837 			    && !test_bit(In_sync, &rdev->flags)
2838 			    && !rdev_set_badblocks(rdev, sh->sector,
2839 						   STRIPE_SECTORS, 0))
2840 				abort = 1;
2841 			rdev = conf->disks[i].replacement;
2842 			if (rdev
2843 			    && !test_bit(Faulty, &rdev->flags)
2844 			    && !test_bit(In_sync, &rdev->flags)
2845 			    && !rdev_set_badblocks(rdev, sh->sector,
2846 						   STRIPE_SECTORS, 0))
2847 				abort = 1;
2848 		}
2849 		if (abort)
2850 			conf->recovery_disabled =
2851 				conf->mddev->recovery_disabled;
2852 	}
2853 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2854 }
2855 
2856 static int want_replace(struct stripe_head *sh, int disk_idx)
2857 {
2858 	struct md_rdev *rdev;
2859 	int rv = 0;
2860 	/* Doing recovery so rcu locking not required */
2861 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2862 	if (rdev
2863 	    && !test_bit(Faulty, &rdev->flags)
2864 	    && !test_bit(In_sync, &rdev->flags)
2865 	    && (rdev->recovery_offset <= sh->sector
2866 		|| rdev->mddev->recovery_cp <= sh->sector))
2867 		rv = 1;
2868 
2869 	return rv;
2870 }
2871 
2872 /* fetch_block - checks the given member device to see if its data needs
2873  * to be read or computed to satisfy a request.
2874  *
2875  * Returns 1 when no more member devices need to be checked, otherwise returns
2876  * 0 to tell the loop in handle_stripe_fill to continue
2877  */
2878 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2879 		       int disk_idx, int disks)
2880 {
2881 	struct r5dev *dev = &sh->dev[disk_idx];
2882 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2883 				  &sh->dev[s->failed_num[1]] };
2884 
2885 	/* is the data in this block needed, and can we get it? */
2886 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2887 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2888 	    (dev->toread ||
2889 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2890 	     s->syncing || s->expanding ||
2891 	     (s->replacing && want_replace(sh, disk_idx)) ||
2892 	     (s->failed >= 1 && fdev[0]->toread) ||
2893 	     (s->failed >= 2 && fdev[1]->toread) ||
2894 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2895 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2896 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2897 		/* we would like to get this block, possibly by computing it,
2898 		 * otherwise read it if the backing disk is insync
2899 		 */
2900 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2901 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2902 		if ((s->uptodate == disks - 1) &&
2903 		    (s->failed && (disk_idx == s->failed_num[0] ||
2904 				   disk_idx == s->failed_num[1]))) {
2905 			/* have disk failed, and we're requested to fetch it;
2906 			 * do compute it
2907 			 */
2908 			pr_debug("Computing stripe %llu block %d\n",
2909 			       (unsigned long long)sh->sector, disk_idx);
2910 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2911 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2912 			set_bit(R5_Wantcompute, &dev->flags);
2913 			sh->ops.target = disk_idx;
2914 			sh->ops.target2 = -1; /* no 2nd target */
2915 			s->req_compute = 1;
2916 			/* Careful: from this point on 'uptodate' is in the eye
2917 			 * of raid_run_ops which services 'compute' operations
2918 			 * before writes. R5_Wantcompute flags a block that will
2919 			 * be R5_UPTODATE by the time it is needed for a
2920 			 * subsequent operation.
2921 			 */
2922 			s->uptodate++;
2923 			return 1;
2924 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2925 			/* Computing 2-failure is *very* expensive; only
2926 			 * do it if failed >= 2
2927 			 */
2928 			int other;
2929 			for (other = disks; other--; ) {
2930 				if (other == disk_idx)
2931 					continue;
2932 				if (!test_bit(R5_UPTODATE,
2933 				      &sh->dev[other].flags))
2934 					break;
2935 			}
2936 			BUG_ON(other < 0);
2937 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2938 			       (unsigned long long)sh->sector,
2939 			       disk_idx, other);
2940 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2941 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2942 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2943 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2944 			sh->ops.target = disk_idx;
2945 			sh->ops.target2 = other;
2946 			s->uptodate += 2;
2947 			s->req_compute = 1;
2948 			return 1;
2949 		} else if (test_bit(R5_Insync, &dev->flags)) {
2950 			set_bit(R5_LOCKED, &dev->flags);
2951 			set_bit(R5_Wantread, &dev->flags);
2952 			s->locked++;
2953 			pr_debug("Reading block %d (sync=%d)\n",
2954 				disk_idx, s->syncing);
2955 		}
2956 	}
2957 
2958 	return 0;
2959 }
2960 
2961 /**
2962  * handle_stripe_fill - read or compute data to satisfy pending requests.
2963  */
2964 static void handle_stripe_fill(struct stripe_head *sh,
2965 			       struct stripe_head_state *s,
2966 			       int disks)
2967 {
2968 	int i;
2969 
2970 	/* look for blocks to read/compute, skip this if a compute
2971 	 * is already in flight, or if the stripe contents are in the
2972 	 * midst of changing due to a write
2973 	 */
2974 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2975 	    !sh->reconstruct_state)
2976 		for (i = disks; i--; )
2977 			if (fetch_block(sh, s, i, disks))
2978 				break;
2979 	set_bit(STRIPE_HANDLE, &sh->state);
2980 }
2981 
2982 
2983 /* handle_stripe_clean_event
2984  * any written block on an uptodate or failed drive can be returned.
2985  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2986  * never LOCKED, so we don't need to test 'failed' directly.
2987  */
2988 static void handle_stripe_clean_event(struct r5conf *conf,
2989 	struct stripe_head *sh, int disks, struct bio **return_bi)
2990 {
2991 	int i;
2992 	struct r5dev *dev;
2993 	int discard_pending = 0;
2994 
2995 	for (i = disks; i--; )
2996 		if (sh->dev[i].written) {
2997 			dev = &sh->dev[i];
2998 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2999 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3000 			     test_bit(R5_Discard, &dev->flags))) {
3001 				/* We can return any write requests */
3002 				struct bio *wbi, *wbi2;
3003 				pr_debug("Return write for disc %d\n", i);
3004 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3005 					clear_bit(R5_UPTODATE, &dev->flags);
3006 				wbi = dev->written;
3007 				dev->written = NULL;
3008 				while (wbi && wbi->bi_sector <
3009 					dev->sector + STRIPE_SECTORS) {
3010 					wbi2 = r5_next_bio(wbi, dev->sector);
3011 					if (!raid5_dec_bi_active_stripes(wbi)) {
3012 						md_write_end(conf->mddev);
3013 						wbi->bi_next = *return_bi;
3014 						*return_bi = wbi;
3015 					}
3016 					wbi = wbi2;
3017 				}
3018 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3019 						STRIPE_SECTORS,
3020 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3021 						0);
3022 			} else if (test_bit(R5_Discard, &dev->flags))
3023 				discard_pending = 1;
3024 		}
3025 	if (!discard_pending &&
3026 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3027 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3028 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3029 		if (sh->qd_idx >= 0) {
3030 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3031 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3032 		}
3033 		/* now that discard is done we can proceed with any sync */
3034 		clear_bit(STRIPE_DISCARD, &sh->state);
3035 		/*
3036 		 * SCSI discard will change some bio fields and the stripe has
3037 		 * no updated data, so remove it from hash list and the stripe
3038 		 * will be reinitialized
3039 		 */
3040 		spin_lock_irq(&conf->device_lock);
3041 		remove_hash(sh);
3042 		spin_unlock_irq(&conf->device_lock);
3043 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3044 			set_bit(STRIPE_HANDLE, &sh->state);
3045 
3046 	}
3047 
3048 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3049 		if (atomic_dec_and_test(&conf->pending_full_writes))
3050 			md_wakeup_thread(conf->mddev->thread);
3051 }
3052 
3053 static void handle_stripe_dirtying(struct r5conf *conf,
3054 				   struct stripe_head *sh,
3055 				   struct stripe_head_state *s,
3056 				   int disks)
3057 {
3058 	int rmw = 0, rcw = 0, i;
3059 	sector_t recovery_cp = conf->mddev->recovery_cp;
3060 
3061 	/* RAID6 requires 'rcw' in current implementation.
3062 	 * Otherwise, check whether resync is now happening or should start.
3063 	 * If yes, then the array is dirty (after unclean shutdown or
3064 	 * initial creation), so parity in some stripes might be inconsistent.
3065 	 * In this case, we need to always do reconstruct-write, to ensure
3066 	 * that in case of drive failure or read-error correction, we
3067 	 * generate correct data from the parity.
3068 	 */
3069 	if (conf->max_degraded == 2 ||
3070 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3071 		/* Calculate the real rcw later - for now make it
3072 		 * look like rcw is cheaper
3073 		 */
3074 		rcw = 1; rmw = 2;
3075 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3076 			 conf->max_degraded, (unsigned long long)recovery_cp,
3077 			 (unsigned long long)sh->sector);
3078 	} else for (i = disks; i--; ) {
3079 		/* would I have to read this buffer for read_modify_write */
3080 		struct r5dev *dev = &sh->dev[i];
3081 		if ((dev->towrite || i == sh->pd_idx) &&
3082 		    !test_bit(R5_LOCKED, &dev->flags) &&
3083 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3084 		      test_bit(R5_Wantcompute, &dev->flags))) {
3085 			if (test_bit(R5_Insync, &dev->flags))
3086 				rmw++;
3087 			else
3088 				rmw += 2*disks;  /* cannot read it */
3089 		}
3090 		/* Would I have to read this buffer for reconstruct_write */
3091 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3092 		    !test_bit(R5_LOCKED, &dev->flags) &&
3093 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3094 		    test_bit(R5_Wantcompute, &dev->flags))) {
3095 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
3096 			else
3097 				rcw += 2*disks;
3098 		}
3099 	}
3100 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3101 		(unsigned long long)sh->sector, rmw, rcw);
3102 	set_bit(STRIPE_HANDLE, &sh->state);
3103 	if (rmw < rcw && rmw > 0) {
3104 		/* prefer read-modify-write, but need to get some data */
3105 		if (conf->mddev->queue)
3106 			blk_add_trace_msg(conf->mddev->queue,
3107 					  "raid5 rmw %llu %d",
3108 					  (unsigned long long)sh->sector, rmw);
3109 		for (i = disks; i--; ) {
3110 			struct r5dev *dev = &sh->dev[i];
3111 			if ((dev->towrite || i == sh->pd_idx) &&
3112 			    !test_bit(R5_LOCKED, &dev->flags) &&
3113 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3114 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3115 			    test_bit(R5_Insync, &dev->flags)) {
3116 				if (
3117 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3118 					pr_debug("Read_old block "
3119 						 "%d for r-m-w\n", i);
3120 					set_bit(R5_LOCKED, &dev->flags);
3121 					set_bit(R5_Wantread, &dev->flags);
3122 					s->locked++;
3123 				} else {
3124 					set_bit(STRIPE_DELAYED, &sh->state);
3125 					set_bit(STRIPE_HANDLE, &sh->state);
3126 				}
3127 			}
3128 		}
3129 	}
3130 	if (rcw <= rmw && rcw > 0) {
3131 		/* want reconstruct write, but need to get some data */
3132 		int qread =0;
3133 		rcw = 0;
3134 		for (i = disks; i--; ) {
3135 			struct r5dev *dev = &sh->dev[i];
3136 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3137 			    i != sh->pd_idx && i != sh->qd_idx &&
3138 			    !test_bit(R5_LOCKED, &dev->flags) &&
3139 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3140 			      test_bit(R5_Wantcompute, &dev->flags))) {
3141 				rcw++;
3142 				if (!test_bit(R5_Insync, &dev->flags))
3143 					continue; /* it's a failed drive */
3144 				if (
3145 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3146 					pr_debug("Read_old block "
3147 						"%d for Reconstruct\n", i);
3148 					set_bit(R5_LOCKED, &dev->flags);
3149 					set_bit(R5_Wantread, &dev->flags);
3150 					s->locked++;
3151 					qread++;
3152 				} else {
3153 					set_bit(STRIPE_DELAYED, &sh->state);
3154 					set_bit(STRIPE_HANDLE, &sh->state);
3155 				}
3156 			}
3157 		}
3158 		if (rcw && conf->mddev->queue)
3159 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3160 					  (unsigned long long)sh->sector,
3161 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3162 	}
3163 	/* now if nothing is locked, and if we have enough data,
3164 	 * we can start a write request
3165 	 */
3166 	/* since handle_stripe can be called at any time we need to handle the
3167 	 * case where a compute block operation has been submitted and then a
3168 	 * subsequent call wants to start a write request.  raid_run_ops only
3169 	 * handles the case where compute block and reconstruct are requested
3170 	 * simultaneously.  If this is not the case then new writes need to be
3171 	 * held off until the compute completes.
3172 	 */
3173 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3174 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3175 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3176 		schedule_reconstruction(sh, s, rcw == 0, 0);
3177 }
3178 
3179 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3180 				struct stripe_head_state *s, int disks)
3181 {
3182 	struct r5dev *dev = NULL;
3183 
3184 	set_bit(STRIPE_HANDLE, &sh->state);
3185 
3186 	switch (sh->check_state) {
3187 	case check_state_idle:
3188 		/* start a new check operation if there are no failures */
3189 		if (s->failed == 0) {
3190 			BUG_ON(s->uptodate != disks);
3191 			sh->check_state = check_state_run;
3192 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3193 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3194 			s->uptodate--;
3195 			break;
3196 		}
3197 		dev = &sh->dev[s->failed_num[0]];
3198 		/* fall through */
3199 	case check_state_compute_result:
3200 		sh->check_state = check_state_idle;
3201 		if (!dev)
3202 			dev = &sh->dev[sh->pd_idx];
3203 
3204 		/* check that a write has not made the stripe insync */
3205 		if (test_bit(STRIPE_INSYNC, &sh->state))
3206 			break;
3207 
3208 		/* either failed parity check, or recovery is happening */
3209 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3210 		BUG_ON(s->uptodate != disks);
3211 
3212 		set_bit(R5_LOCKED, &dev->flags);
3213 		s->locked++;
3214 		set_bit(R5_Wantwrite, &dev->flags);
3215 
3216 		clear_bit(STRIPE_DEGRADED, &sh->state);
3217 		set_bit(STRIPE_INSYNC, &sh->state);
3218 		break;
3219 	case check_state_run:
3220 		break; /* we will be called again upon completion */
3221 	case check_state_check_result:
3222 		sh->check_state = check_state_idle;
3223 
3224 		/* if a failure occurred during the check operation, leave
3225 		 * STRIPE_INSYNC not set and let the stripe be handled again
3226 		 */
3227 		if (s->failed)
3228 			break;
3229 
3230 		/* handle a successful check operation, if parity is correct
3231 		 * we are done.  Otherwise update the mismatch count and repair
3232 		 * parity if !MD_RECOVERY_CHECK
3233 		 */
3234 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3235 			/* parity is correct (on disc,
3236 			 * not in buffer any more)
3237 			 */
3238 			set_bit(STRIPE_INSYNC, &sh->state);
3239 		else {
3240 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3241 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3242 				/* don't try to repair!! */
3243 				set_bit(STRIPE_INSYNC, &sh->state);
3244 			else {
3245 				sh->check_state = check_state_compute_run;
3246 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3247 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3248 				set_bit(R5_Wantcompute,
3249 					&sh->dev[sh->pd_idx].flags);
3250 				sh->ops.target = sh->pd_idx;
3251 				sh->ops.target2 = -1;
3252 				s->uptodate++;
3253 			}
3254 		}
3255 		break;
3256 	case check_state_compute_run:
3257 		break;
3258 	default:
3259 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3260 		       __func__, sh->check_state,
3261 		       (unsigned long long) sh->sector);
3262 		BUG();
3263 	}
3264 }
3265 
3266 
3267 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3268 				  struct stripe_head_state *s,
3269 				  int disks)
3270 {
3271 	int pd_idx = sh->pd_idx;
3272 	int qd_idx = sh->qd_idx;
3273 	struct r5dev *dev;
3274 
3275 	set_bit(STRIPE_HANDLE, &sh->state);
3276 
3277 	BUG_ON(s->failed > 2);
3278 
3279 	/* Want to check and possibly repair P and Q.
3280 	 * However there could be one 'failed' device, in which
3281 	 * case we can only check one of them, possibly using the
3282 	 * other to generate missing data
3283 	 */
3284 
3285 	switch (sh->check_state) {
3286 	case check_state_idle:
3287 		/* start a new check operation if there are < 2 failures */
3288 		if (s->failed == s->q_failed) {
3289 			/* The only possible failed device holds Q, so it
3290 			 * makes sense to check P (If anything else were failed,
3291 			 * we would have used P to recreate it).
3292 			 */
3293 			sh->check_state = check_state_run;
3294 		}
3295 		if (!s->q_failed && s->failed < 2) {
3296 			/* Q is not failed, and we didn't use it to generate
3297 			 * anything, so it makes sense to check it
3298 			 */
3299 			if (sh->check_state == check_state_run)
3300 				sh->check_state = check_state_run_pq;
3301 			else
3302 				sh->check_state = check_state_run_q;
3303 		}
3304 
3305 		/* discard potentially stale zero_sum_result */
3306 		sh->ops.zero_sum_result = 0;
3307 
3308 		if (sh->check_state == check_state_run) {
3309 			/* async_xor_zero_sum destroys the contents of P */
3310 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3311 			s->uptodate--;
3312 		}
3313 		if (sh->check_state >= check_state_run &&
3314 		    sh->check_state <= check_state_run_pq) {
3315 			/* async_syndrome_zero_sum preserves P and Q, so
3316 			 * no need to mark them !uptodate here
3317 			 */
3318 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3319 			break;
3320 		}
3321 
3322 		/* we have 2-disk failure */
3323 		BUG_ON(s->failed != 2);
3324 		/* fall through */
3325 	case check_state_compute_result:
3326 		sh->check_state = check_state_idle;
3327 
3328 		/* check that a write has not made the stripe insync */
3329 		if (test_bit(STRIPE_INSYNC, &sh->state))
3330 			break;
3331 
3332 		/* now write out any block on a failed drive,
3333 		 * or P or Q if they were recomputed
3334 		 */
3335 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3336 		if (s->failed == 2) {
3337 			dev = &sh->dev[s->failed_num[1]];
3338 			s->locked++;
3339 			set_bit(R5_LOCKED, &dev->flags);
3340 			set_bit(R5_Wantwrite, &dev->flags);
3341 		}
3342 		if (s->failed >= 1) {
3343 			dev = &sh->dev[s->failed_num[0]];
3344 			s->locked++;
3345 			set_bit(R5_LOCKED, &dev->flags);
3346 			set_bit(R5_Wantwrite, &dev->flags);
3347 		}
3348 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3349 			dev = &sh->dev[pd_idx];
3350 			s->locked++;
3351 			set_bit(R5_LOCKED, &dev->flags);
3352 			set_bit(R5_Wantwrite, &dev->flags);
3353 		}
3354 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3355 			dev = &sh->dev[qd_idx];
3356 			s->locked++;
3357 			set_bit(R5_LOCKED, &dev->flags);
3358 			set_bit(R5_Wantwrite, &dev->flags);
3359 		}
3360 		clear_bit(STRIPE_DEGRADED, &sh->state);
3361 
3362 		set_bit(STRIPE_INSYNC, &sh->state);
3363 		break;
3364 	case check_state_run:
3365 	case check_state_run_q:
3366 	case check_state_run_pq:
3367 		break; /* we will be called again upon completion */
3368 	case check_state_check_result:
3369 		sh->check_state = check_state_idle;
3370 
3371 		/* handle a successful check operation, if parity is correct
3372 		 * we are done.  Otherwise update the mismatch count and repair
3373 		 * parity if !MD_RECOVERY_CHECK
3374 		 */
3375 		if (sh->ops.zero_sum_result == 0) {
3376 			/* both parities are correct */
3377 			if (!s->failed)
3378 				set_bit(STRIPE_INSYNC, &sh->state);
3379 			else {
3380 				/* in contrast to the raid5 case we can validate
3381 				 * parity, but still have a failure to write
3382 				 * back
3383 				 */
3384 				sh->check_state = check_state_compute_result;
3385 				/* Returning at this point means that we may go
3386 				 * off and bring p and/or q uptodate again so
3387 				 * we make sure to check zero_sum_result again
3388 				 * to verify if p or q need writeback
3389 				 */
3390 			}
3391 		} else {
3392 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3393 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3394 				/* don't try to repair!! */
3395 				set_bit(STRIPE_INSYNC, &sh->state);
3396 			else {
3397 				int *target = &sh->ops.target;
3398 
3399 				sh->ops.target = -1;
3400 				sh->ops.target2 = -1;
3401 				sh->check_state = check_state_compute_run;
3402 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3403 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3404 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3405 					set_bit(R5_Wantcompute,
3406 						&sh->dev[pd_idx].flags);
3407 					*target = pd_idx;
3408 					target = &sh->ops.target2;
3409 					s->uptodate++;
3410 				}
3411 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3412 					set_bit(R5_Wantcompute,
3413 						&sh->dev[qd_idx].flags);
3414 					*target = qd_idx;
3415 					s->uptodate++;
3416 				}
3417 			}
3418 		}
3419 		break;
3420 	case check_state_compute_run:
3421 		break;
3422 	default:
3423 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3424 		       __func__, sh->check_state,
3425 		       (unsigned long long) sh->sector);
3426 		BUG();
3427 	}
3428 }
3429 
3430 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3431 {
3432 	int i;
3433 
3434 	/* We have read all the blocks in this stripe and now we need to
3435 	 * copy some of them into a target stripe for expand.
3436 	 */
3437 	struct dma_async_tx_descriptor *tx = NULL;
3438 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3439 	for (i = 0; i < sh->disks; i++)
3440 		if (i != sh->pd_idx && i != sh->qd_idx) {
3441 			int dd_idx, j;
3442 			struct stripe_head *sh2;
3443 			struct async_submit_ctl submit;
3444 
3445 			sector_t bn = compute_blocknr(sh, i, 1);
3446 			sector_t s = raid5_compute_sector(conf, bn, 0,
3447 							  &dd_idx, NULL);
3448 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3449 			if (sh2 == NULL)
3450 				/* so far only the early blocks of this stripe
3451 				 * have been requested.  When later blocks
3452 				 * get requested, we will try again
3453 				 */
3454 				continue;
3455 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3456 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3457 				/* must have already done this block */
3458 				release_stripe(sh2);
3459 				continue;
3460 			}
3461 
3462 			/* place all the copies on one channel */
3463 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3464 			tx = async_memcpy(sh2->dev[dd_idx].page,
3465 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3466 					  &submit);
3467 
3468 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3469 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3470 			for (j = 0; j < conf->raid_disks; j++)
3471 				if (j != sh2->pd_idx &&
3472 				    j != sh2->qd_idx &&
3473 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3474 					break;
3475 			if (j == conf->raid_disks) {
3476 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3477 				set_bit(STRIPE_HANDLE, &sh2->state);
3478 			}
3479 			release_stripe(sh2);
3480 
3481 		}
3482 	/* done submitting copies, wait for them to complete */
3483 	async_tx_quiesce(&tx);
3484 }
3485 
3486 /*
3487  * handle_stripe - do things to a stripe.
3488  *
3489  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3490  * state of various bits to see what needs to be done.
3491  * Possible results:
3492  *    return some read requests which now have data
3493  *    return some write requests which are safely on storage
3494  *    schedule a read on some buffers
3495  *    schedule a write of some buffers
3496  *    return confirmation of parity correctness
3497  *
3498  */
3499 
3500 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3501 {
3502 	struct r5conf *conf = sh->raid_conf;
3503 	int disks = sh->disks;
3504 	struct r5dev *dev;
3505 	int i;
3506 	int do_recovery = 0;
3507 
3508 	memset(s, 0, sizeof(*s));
3509 
3510 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3511 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3512 	s->failed_num[0] = -1;
3513 	s->failed_num[1] = -1;
3514 
3515 	/* Now to look around and see what can be done */
3516 	rcu_read_lock();
3517 	for (i=disks; i--; ) {
3518 		struct md_rdev *rdev;
3519 		sector_t first_bad;
3520 		int bad_sectors;
3521 		int is_bad = 0;
3522 
3523 		dev = &sh->dev[i];
3524 
3525 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3526 			 i, dev->flags,
3527 			 dev->toread, dev->towrite, dev->written);
3528 		/* maybe we can reply to a read
3529 		 *
3530 		 * new wantfill requests are only permitted while
3531 		 * ops_complete_biofill is guaranteed to be inactive
3532 		 */
3533 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3534 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3535 			set_bit(R5_Wantfill, &dev->flags);
3536 
3537 		/* now count some things */
3538 		if (test_bit(R5_LOCKED, &dev->flags))
3539 			s->locked++;
3540 		if (test_bit(R5_UPTODATE, &dev->flags))
3541 			s->uptodate++;
3542 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3543 			s->compute++;
3544 			BUG_ON(s->compute > 2);
3545 		}
3546 
3547 		if (test_bit(R5_Wantfill, &dev->flags))
3548 			s->to_fill++;
3549 		else if (dev->toread)
3550 			s->to_read++;
3551 		if (dev->towrite) {
3552 			s->to_write++;
3553 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3554 				s->non_overwrite++;
3555 		}
3556 		if (dev->written)
3557 			s->written++;
3558 		/* Prefer to use the replacement for reads, but only
3559 		 * if it is recovered enough and has no bad blocks.
3560 		 */
3561 		rdev = rcu_dereference(conf->disks[i].replacement);
3562 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3563 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3564 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3565 				 &first_bad, &bad_sectors))
3566 			set_bit(R5_ReadRepl, &dev->flags);
3567 		else {
3568 			if (rdev)
3569 				set_bit(R5_NeedReplace, &dev->flags);
3570 			rdev = rcu_dereference(conf->disks[i].rdev);
3571 			clear_bit(R5_ReadRepl, &dev->flags);
3572 		}
3573 		if (rdev && test_bit(Faulty, &rdev->flags))
3574 			rdev = NULL;
3575 		if (rdev) {
3576 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3577 					     &first_bad, &bad_sectors);
3578 			if (s->blocked_rdev == NULL
3579 			    && (test_bit(Blocked, &rdev->flags)
3580 				|| is_bad < 0)) {
3581 				if (is_bad < 0)
3582 					set_bit(BlockedBadBlocks,
3583 						&rdev->flags);
3584 				s->blocked_rdev = rdev;
3585 				atomic_inc(&rdev->nr_pending);
3586 			}
3587 		}
3588 		clear_bit(R5_Insync, &dev->flags);
3589 		if (!rdev)
3590 			/* Not in-sync */;
3591 		else if (is_bad) {
3592 			/* also not in-sync */
3593 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3594 			    test_bit(R5_UPTODATE, &dev->flags)) {
3595 				/* treat as in-sync, but with a read error
3596 				 * which we can now try to correct
3597 				 */
3598 				set_bit(R5_Insync, &dev->flags);
3599 				set_bit(R5_ReadError, &dev->flags);
3600 			}
3601 		} else if (test_bit(In_sync, &rdev->flags))
3602 			set_bit(R5_Insync, &dev->flags);
3603 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3604 			/* in sync if before recovery_offset */
3605 			set_bit(R5_Insync, &dev->flags);
3606 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3607 			 test_bit(R5_Expanded, &dev->flags))
3608 			/* If we've reshaped into here, we assume it is Insync.
3609 			 * We will shortly update recovery_offset to make
3610 			 * it official.
3611 			 */
3612 			set_bit(R5_Insync, &dev->flags);
3613 
3614 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3615 			/* This flag does not apply to '.replacement'
3616 			 * only to .rdev, so make sure to check that*/
3617 			struct md_rdev *rdev2 = rcu_dereference(
3618 				conf->disks[i].rdev);
3619 			if (rdev2 == rdev)
3620 				clear_bit(R5_Insync, &dev->flags);
3621 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3622 				s->handle_bad_blocks = 1;
3623 				atomic_inc(&rdev2->nr_pending);
3624 			} else
3625 				clear_bit(R5_WriteError, &dev->flags);
3626 		}
3627 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3628 			/* This flag does not apply to '.replacement'
3629 			 * only to .rdev, so make sure to check that*/
3630 			struct md_rdev *rdev2 = rcu_dereference(
3631 				conf->disks[i].rdev);
3632 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3633 				s->handle_bad_blocks = 1;
3634 				atomic_inc(&rdev2->nr_pending);
3635 			} else
3636 				clear_bit(R5_MadeGood, &dev->flags);
3637 		}
3638 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3639 			struct md_rdev *rdev2 = rcu_dereference(
3640 				conf->disks[i].replacement);
3641 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3642 				s->handle_bad_blocks = 1;
3643 				atomic_inc(&rdev2->nr_pending);
3644 			} else
3645 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3646 		}
3647 		if (!test_bit(R5_Insync, &dev->flags)) {
3648 			/* The ReadError flag will just be confusing now */
3649 			clear_bit(R5_ReadError, &dev->flags);
3650 			clear_bit(R5_ReWrite, &dev->flags);
3651 		}
3652 		if (test_bit(R5_ReadError, &dev->flags))
3653 			clear_bit(R5_Insync, &dev->flags);
3654 		if (!test_bit(R5_Insync, &dev->flags)) {
3655 			if (s->failed < 2)
3656 				s->failed_num[s->failed] = i;
3657 			s->failed++;
3658 			if (rdev && !test_bit(Faulty, &rdev->flags))
3659 				do_recovery = 1;
3660 		}
3661 	}
3662 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3663 		/* If there is a failed device being replaced,
3664 		 *     we must be recovering.
3665 		 * else if we are after recovery_cp, we must be syncing
3666 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3667 		 * else we can only be replacing
3668 		 * sync and recovery both need to read all devices, and so
3669 		 * use the same flag.
3670 		 */
3671 		if (do_recovery ||
3672 		    sh->sector >= conf->mddev->recovery_cp ||
3673 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3674 			s->syncing = 1;
3675 		else
3676 			s->replacing = 1;
3677 	}
3678 	rcu_read_unlock();
3679 }
3680 
3681 static void handle_stripe(struct stripe_head *sh)
3682 {
3683 	struct stripe_head_state s;
3684 	struct r5conf *conf = sh->raid_conf;
3685 	int i;
3686 	int prexor;
3687 	int disks = sh->disks;
3688 	struct r5dev *pdev, *qdev;
3689 
3690 	clear_bit(STRIPE_HANDLE, &sh->state);
3691 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3692 		/* already being handled, ensure it gets handled
3693 		 * again when current action finishes */
3694 		set_bit(STRIPE_HANDLE, &sh->state);
3695 		return;
3696 	}
3697 
3698 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3699 		spin_lock(&sh->stripe_lock);
3700 		/* Cannot process 'sync' concurrently with 'discard' */
3701 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3702 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3703 			set_bit(STRIPE_SYNCING, &sh->state);
3704 			clear_bit(STRIPE_INSYNC, &sh->state);
3705 			clear_bit(STRIPE_REPLACED, &sh->state);
3706 		}
3707 		spin_unlock(&sh->stripe_lock);
3708 	}
3709 	clear_bit(STRIPE_DELAYED, &sh->state);
3710 
3711 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3712 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3713 	       (unsigned long long)sh->sector, sh->state,
3714 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3715 	       sh->check_state, sh->reconstruct_state);
3716 
3717 	analyse_stripe(sh, &s);
3718 
3719 	if (s.handle_bad_blocks) {
3720 		set_bit(STRIPE_HANDLE, &sh->state);
3721 		goto finish;
3722 	}
3723 
3724 	if (unlikely(s.blocked_rdev)) {
3725 		if (s.syncing || s.expanding || s.expanded ||
3726 		    s.replacing || s.to_write || s.written) {
3727 			set_bit(STRIPE_HANDLE, &sh->state);
3728 			goto finish;
3729 		}
3730 		/* There is nothing for the blocked_rdev to block */
3731 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3732 		s.blocked_rdev = NULL;
3733 	}
3734 
3735 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3736 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3737 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3738 	}
3739 
3740 	pr_debug("locked=%d uptodate=%d to_read=%d"
3741 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3742 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3743 	       s.failed_num[0], s.failed_num[1]);
3744 	/* check if the array has lost more than max_degraded devices and,
3745 	 * if so, some requests might need to be failed.
3746 	 */
3747 	if (s.failed > conf->max_degraded) {
3748 		sh->check_state = 0;
3749 		sh->reconstruct_state = 0;
3750 		if (s.to_read+s.to_write+s.written)
3751 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3752 		if (s.syncing + s.replacing)
3753 			handle_failed_sync(conf, sh, &s);
3754 	}
3755 
3756 	/* Now we check to see if any write operations have recently
3757 	 * completed
3758 	 */
3759 	prexor = 0;
3760 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3761 		prexor = 1;
3762 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3763 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3764 		sh->reconstruct_state = reconstruct_state_idle;
3765 
3766 		/* All the 'written' buffers and the parity block are ready to
3767 		 * be written back to disk
3768 		 */
3769 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3770 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3771 		BUG_ON(sh->qd_idx >= 0 &&
3772 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3773 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3774 		for (i = disks; i--; ) {
3775 			struct r5dev *dev = &sh->dev[i];
3776 			if (test_bit(R5_LOCKED, &dev->flags) &&
3777 				(i == sh->pd_idx || i == sh->qd_idx ||
3778 				 dev->written)) {
3779 				pr_debug("Writing block %d\n", i);
3780 				set_bit(R5_Wantwrite, &dev->flags);
3781 				if (prexor)
3782 					continue;
3783 				if (!test_bit(R5_Insync, &dev->flags) ||
3784 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3785 				     s.failed == 0))
3786 					set_bit(STRIPE_INSYNC, &sh->state);
3787 			}
3788 		}
3789 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3790 			s.dec_preread_active = 1;
3791 	}
3792 
3793 	/*
3794 	 * might be able to return some write requests if the parity blocks
3795 	 * are safe, or on a failed drive
3796 	 */
3797 	pdev = &sh->dev[sh->pd_idx];
3798 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3799 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3800 	qdev = &sh->dev[sh->qd_idx];
3801 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3802 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3803 		|| conf->level < 6;
3804 
3805 	if (s.written &&
3806 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3807 			     && !test_bit(R5_LOCKED, &pdev->flags)
3808 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3809 				 test_bit(R5_Discard, &pdev->flags))))) &&
3810 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3811 			     && !test_bit(R5_LOCKED, &qdev->flags)
3812 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3813 				 test_bit(R5_Discard, &qdev->flags))))))
3814 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3815 
3816 	/* Now we might consider reading some blocks, either to check/generate
3817 	 * parity, or to satisfy requests
3818 	 * or to load a block that is being partially written.
3819 	 */
3820 	if (s.to_read || s.non_overwrite
3821 	    || (conf->level == 6 && s.to_write && s.failed)
3822 	    || (s.syncing && (s.uptodate + s.compute < disks))
3823 	    || s.replacing
3824 	    || s.expanding)
3825 		handle_stripe_fill(sh, &s, disks);
3826 
3827 	/* Now to consider new write requests and what else, if anything
3828 	 * should be read.  We do not handle new writes when:
3829 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3830 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3831 	 *    block.
3832 	 */
3833 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3834 		handle_stripe_dirtying(conf, sh, &s, disks);
3835 
3836 	/* maybe we need to check and possibly fix the parity for this stripe
3837 	 * Any reads will already have been scheduled, so we just see if enough
3838 	 * data is available.  The parity check is held off while parity
3839 	 * dependent operations are in flight.
3840 	 */
3841 	if (sh->check_state ||
3842 	    (s.syncing && s.locked == 0 &&
3843 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3844 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3845 		if (conf->level == 6)
3846 			handle_parity_checks6(conf, sh, &s, disks);
3847 		else
3848 			handle_parity_checks5(conf, sh, &s, disks);
3849 	}
3850 
3851 	if ((s.replacing || s.syncing) && s.locked == 0
3852 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3853 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3854 		/* Write out to replacement devices where possible */
3855 		for (i = 0; i < conf->raid_disks; i++)
3856 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3857 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3858 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3859 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3860 				s.locked++;
3861 			}
3862 		if (s.replacing)
3863 			set_bit(STRIPE_INSYNC, &sh->state);
3864 		set_bit(STRIPE_REPLACED, &sh->state);
3865 	}
3866 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3867 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3868 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3869 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3870 		clear_bit(STRIPE_SYNCING, &sh->state);
3871 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3872 			wake_up(&conf->wait_for_overlap);
3873 	}
3874 
3875 	/* If the failed drives are just a ReadError, then we might need
3876 	 * to progress the repair/check process
3877 	 */
3878 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3879 		for (i = 0; i < s.failed; i++) {
3880 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3881 			if (test_bit(R5_ReadError, &dev->flags)
3882 			    && !test_bit(R5_LOCKED, &dev->flags)
3883 			    && test_bit(R5_UPTODATE, &dev->flags)
3884 				) {
3885 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3886 					set_bit(R5_Wantwrite, &dev->flags);
3887 					set_bit(R5_ReWrite, &dev->flags);
3888 					set_bit(R5_LOCKED, &dev->flags);
3889 					s.locked++;
3890 				} else {
3891 					/* let's read it back */
3892 					set_bit(R5_Wantread, &dev->flags);
3893 					set_bit(R5_LOCKED, &dev->flags);
3894 					s.locked++;
3895 				}
3896 			}
3897 		}
3898 
3899 
3900 	/* Finish reconstruct operations initiated by the expansion process */
3901 	if (sh->reconstruct_state == reconstruct_state_result) {
3902 		struct stripe_head *sh_src
3903 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3904 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3905 			/* sh cannot be written until sh_src has been read.
3906 			 * so arrange for sh to be delayed a little
3907 			 */
3908 			set_bit(STRIPE_DELAYED, &sh->state);
3909 			set_bit(STRIPE_HANDLE, &sh->state);
3910 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3911 					      &sh_src->state))
3912 				atomic_inc(&conf->preread_active_stripes);
3913 			release_stripe(sh_src);
3914 			goto finish;
3915 		}
3916 		if (sh_src)
3917 			release_stripe(sh_src);
3918 
3919 		sh->reconstruct_state = reconstruct_state_idle;
3920 		clear_bit(STRIPE_EXPANDING, &sh->state);
3921 		for (i = conf->raid_disks; i--; ) {
3922 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3923 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3924 			s.locked++;
3925 		}
3926 	}
3927 
3928 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3929 	    !sh->reconstruct_state) {
3930 		/* Need to write out all blocks after computing parity */
3931 		sh->disks = conf->raid_disks;
3932 		stripe_set_idx(sh->sector, conf, 0, sh);
3933 		schedule_reconstruction(sh, &s, 1, 1);
3934 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3935 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3936 		atomic_dec(&conf->reshape_stripes);
3937 		wake_up(&conf->wait_for_overlap);
3938 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3939 	}
3940 
3941 	if (s.expanding && s.locked == 0 &&
3942 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3943 		handle_stripe_expansion(conf, sh);
3944 
3945 finish:
3946 	/* wait for this device to become unblocked */
3947 	if (unlikely(s.blocked_rdev)) {
3948 		if (conf->mddev->external)
3949 			md_wait_for_blocked_rdev(s.blocked_rdev,
3950 						 conf->mddev);
3951 		else
3952 			/* Internal metadata will immediately
3953 			 * be written by raid5d, so we don't
3954 			 * need to wait here.
3955 			 */
3956 			rdev_dec_pending(s.blocked_rdev,
3957 					 conf->mddev);
3958 	}
3959 
3960 	if (s.handle_bad_blocks)
3961 		for (i = disks; i--; ) {
3962 			struct md_rdev *rdev;
3963 			struct r5dev *dev = &sh->dev[i];
3964 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3965 				/* We own a safe reference to the rdev */
3966 				rdev = conf->disks[i].rdev;
3967 				if (!rdev_set_badblocks(rdev, sh->sector,
3968 							STRIPE_SECTORS, 0))
3969 					md_error(conf->mddev, rdev);
3970 				rdev_dec_pending(rdev, conf->mddev);
3971 			}
3972 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3973 				rdev = conf->disks[i].rdev;
3974 				rdev_clear_badblocks(rdev, sh->sector,
3975 						     STRIPE_SECTORS, 0);
3976 				rdev_dec_pending(rdev, conf->mddev);
3977 			}
3978 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3979 				rdev = conf->disks[i].replacement;
3980 				if (!rdev)
3981 					/* rdev have been moved down */
3982 					rdev = conf->disks[i].rdev;
3983 				rdev_clear_badblocks(rdev, sh->sector,
3984 						     STRIPE_SECTORS, 0);
3985 				rdev_dec_pending(rdev, conf->mddev);
3986 			}
3987 		}
3988 
3989 	if (s.ops_request)
3990 		raid_run_ops(sh, s.ops_request);
3991 
3992 	ops_run_io(sh, &s);
3993 
3994 	if (s.dec_preread_active) {
3995 		/* We delay this until after ops_run_io so that if make_request
3996 		 * is waiting on a flush, it won't continue until the writes
3997 		 * have actually been submitted.
3998 		 */
3999 		atomic_dec(&conf->preread_active_stripes);
4000 		if (atomic_read(&conf->preread_active_stripes) <
4001 		    IO_THRESHOLD)
4002 			md_wakeup_thread(conf->mddev->thread);
4003 	}
4004 
4005 	return_io(s.return_bi);
4006 
4007 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4008 }
4009 
4010 static void raid5_activate_delayed(struct r5conf *conf)
4011 {
4012 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4013 		while (!list_empty(&conf->delayed_list)) {
4014 			struct list_head *l = conf->delayed_list.next;
4015 			struct stripe_head *sh;
4016 			sh = list_entry(l, struct stripe_head, lru);
4017 			list_del_init(l);
4018 			clear_bit(STRIPE_DELAYED, &sh->state);
4019 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4020 				atomic_inc(&conf->preread_active_stripes);
4021 			list_add_tail(&sh->lru, &conf->hold_list);
4022 			raid5_wakeup_stripe_thread(sh);
4023 		}
4024 	}
4025 }
4026 
4027 static void activate_bit_delay(struct r5conf *conf,
4028 	struct list_head *temp_inactive_list)
4029 {
4030 	/* device_lock is held */
4031 	struct list_head head;
4032 	list_add(&head, &conf->bitmap_list);
4033 	list_del_init(&conf->bitmap_list);
4034 	while (!list_empty(&head)) {
4035 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4036 		int hash;
4037 		list_del_init(&sh->lru);
4038 		atomic_inc(&sh->count);
4039 		hash = sh->hash_lock_index;
4040 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4041 	}
4042 }
4043 
4044 int md_raid5_congested(struct mddev *mddev, int bits)
4045 {
4046 	struct r5conf *conf = mddev->private;
4047 
4048 	/* No difference between reads and writes.  Just check
4049 	 * how busy the stripe_cache is
4050 	 */
4051 
4052 	if (conf->inactive_blocked)
4053 		return 1;
4054 	if (conf->quiesce)
4055 		return 1;
4056 	if (atomic_read(&conf->empty_inactive_list_nr))
4057 		return 1;
4058 
4059 	return 0;
4060 }
4061 EXPORT_SYMBOL_GPL(md_raid5_congested);
4062 
4063 static int raid5_congested(void *data, int bits)
4064 {
4065 	struct mddev *mddev = data;
4066 
4067 	return mddev_congested(mddev, bits) ||
4068 		md_raid5_congested(mddev, bits);
4069 }
4070 
4071 /* We want read requests to align with chunks where possible,
4072  * but write requests don't need to.
4073  */
4074 static int raid5_mergeable_bvec(struct request_queue *q,
4075 				struct bvec_merge_data *bvm,
4076 				struct bio_vec *biovec)
4077 {
4078 	struct mddev *mddev = q->queuedata;
4079 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4080 	int max;
4081 	unsigned int chunk_sectors = mddev->chunk_sectors;
4082 	unsigned int bio_sectors = bvm->bi_size >> 9;
4083 
4084 	if ((bvm->bi_rw & 1) == WRITE)
4085 		return biovec->bv_len; /* always allow writes to be mergeable */
4086 
4087 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4088 		chunk_sectors = mddev->new_chunk_sectors;
4089 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4090 	if (max < 0) max = 0;
4091 	if (max <= biovec->bv_len && bio_sectors == 0)
4092 		return biovec->bv_len;
4093 	else
4094 		return max;
4095 }
4096 
4097 
4098 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4099 {
4100 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
4101 	unsigned int chunk_sectors = mddev->chunk_sectors;
4102 	unsigned int bio_sectors = bio_sectors(bio);
4103 
4104 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4105 		chunk_sectors = mddev->new_chunk_sectors;
4106 	return  chunk_sectors >=
4107 		((sector & (chunk_sectors - 1)) + bio_sectors);
4108 }
4109 
4110 /*
4111  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4112  *  later sampled by raid5d.
4113  */
4114 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4115 {
4116 	unsigned long flags;
4117 
4118 	spin_lock_irqsave(&conf->device_lock, flags);
4119 
4120 	bi->bi_next = conf->retry_read_aligned_list;
4121 	conf->retry_read_aligned_list = bi;
4122 
4123 	spin_unlock_irqrestore(&conf->device_lock, flags);
4124 	md_wakeup_thread(conf->mddev->thread);
4125 }
4126 
4127 
4128 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4129 {
4130 	struct bio *bi;
4131 
4132 	bi = conf->retry_read_aligned;
4133 	if (bi) {
4134 		conf->retry_read_aligned = NULL;
4135 		return bi;
4136 	}
4137 	bi = conf->retry_read_aligned_list;
4138 	if(bi) {
4139 		conf->retry_read_aligned_list = bi->bi_next;
4140 		bi->bi_next = NULL;
4141 		/*
4142 		 * this sets the active strip count to 1 and the processed
4143 		 * strip count to zero (upper 8 bits)
4144 		 */
4145 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4146 	}
4147 
4148 	return bi;
4149 }
4150 
4151 
4152 /*
4153  *  The "raid5_align_endio" should check if the read succeeded and if it
4154  *  did, call bio_endio on the original bio (having bio_put the new bio
4155  *  first).
4156  *  If the read failed..
4157  */
4158 static void raid5_align_endio(struct bio *bi, int error)
4159 {
4160 	struct bio* raid_bi  = bi->bi_private;
4161 	struct mddev *mddev;
4162 	struct r5conf *conf;
4163 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4164 	struct md_rdev *rdev;
4165 
4166 	bio_put(bi);
4167 
4168 	rdev = (void*)raid_bi->bi_next;
4169 	raid_bi->bi_next = NULL;
4170 	mddev = rdev->mddev;
4171 	conf = mddev->private;
4172 
4173 	rdev_dec_pending(rdev, conf->mddev);
4174 
4175 	if (!error && uptodate) {
4176 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4177 					 raid_bi, 0);
4178 		bio_endio(raid_bi, 0);
4179 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4180 			wake_up(&conf->wait_for_stripe);
4181 		return;
4182 	}
4183 
4184 
4185 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4186 
4187 	add_bio_to_retry(raid_bi, conf);
4188 }
4189 
4190 static int bio_fits_rdev(struct bio *bi)
4191 {
4192 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4193 
4194 	if (bio_sectors(bi) > queue_max_sectors(q))
4195 		return 0;
4196 	blk_recount_segments(q, bi);
4197 	if (bi->bi_phys_segments > queue_max_segments(q))
4198 		return 0;
4199 
4200 	if (q->merge_bvec_fn)
4201 		/* it's too hard to apply the merge_bvec_fn at this stage,
4202 		 * just just give up
4203 		 */
4204 		return 0;
4205 
4206 	return 1;
4207 }
4208 
4209 
4210 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4211 {
4212 	struct r5conf *conf = mddev->private;
4213 	int dd_idx;
4214 	struct bio* align_bi;
4215 	struct md_rdev *rdev;
4216 	sector_t end_sector;
4217 
4218 	if (!in_chunk_boundary(mddev, raid_bio)) {
4219 		pr_debug("chunk_aligned_read : non aligned\n");
4220 		return 0;
4221 	}
4222 	/*
4223 	 * use bio_clone_mddev to make a copy of the bio
4224 	 */
4225 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4226 	if (!align_bi)
4227 		return 0;
4228 	/*
4229 	 *   set bi_end_io to a new function, and set bi_private to the
4230 	 *     original bio.
4231 	 */
4232 	align_bi->bi_end_io  = raid5_align_endio;
4233 	align_bi->bi_private = raid_bio;
4234 	/*
4235 	 *	compute position
4236 	 */
4237 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4238 						    0,
4239 						    &dd_idx, NULL);
4240 
4241 	end_sector = bio_end_sector(align_bi);
4242 	rcu_read_lock();
4243 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4244 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4245 	    rdev->recovery_offset < end_sector) {
4246 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4247 		if (rdev &&
4248 		    (test_bit(Faulty, &rdev->flags) ||
4249 		    !(test_bit(In_sync, &rdev->flags) ||
4250 		      rdev->recovery_offset >= end_sector)))
4251 			rdev = NULL;
4252 	}
4253 	if (rdev) {
4254 		sector_t first_bad;
4255 		int bad_sectors;
4256 
4257 		atomic_inc(&rdev->nr_pending);
4258 		rcu_read_unlock();
4259 		raid_bio->bi_next = (void*)rdev;
4260 		align_bi->bi_bdev =  rdev->bdev;
4261 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4262 
4263 		if (!bio_fits_rdev(align_bi) ||
4264 		    is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4265 				&first_bad, &bad_sectors)) {
4266 			/* too big in some way, or has a known bad block */
4267 			bio_put(align_bi);
4268 			rdev_dec_pending(rdev, mddev);
4269 			return 0;
4270 		}
4271 
4272 		/* No reshape active, so we can trust rdev->data_offset */
4273 		align_bi->bi_sector += rdev->data_offset;
4274 
4275 		spin_lock_irq(&conf->device_lock);
4276 		wait_event_lock_irq(conf->wait_for_stripe,
4277 				    conf->quiesce == 0,
4278 				    conf->device_lock);
4279 		atomic_inc(&conf->active_aligned_reads);
4280 		spin_unlock_irq(&conf->device_lock);
4281 
4282 		if (mddev->gendisk)
4283 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4284 					      align_bi, disk_devt(mddev->gendisk),
4285 					      raid_bio->bi_sector);
4286 		generic_make_request(align_bi);
4287 		return 1;
4288 	} else {
4289 		rcu_read_unlock();
4290 		bio_put(align_bi);
4291 		return 0;
4292 	}
4293 }
4294 
4295 /* __get_priority_stripe - get the next stripe to process
4296  *
4297  * Full stripe writes are allowed to pass preread active stripes up until
4298  * the bypass_threshold is exceeded.  In general the bypass_count
4299  * increments when the handle_list is handled before the hold_list; however, it
4300  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4301  * stripe with in flight i/o.  The bypass_count will be reset when the
4302  * head of the hold_list has changed, i.e. the head was promoted to the
4303  * handle_list.
4304  */
4305 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4306 {
4307 	struct stripe_head *sh = NULL, *tmp;
4308 	struct list_head *handle_list = NULL;
4309 	struct r5worker_group *wg = NULL;
4310 
4311 	if (conf->worker_cnt_per_group == 0) {
4312 		handle_list = &conf->handle_list;
4313 	} else if (group != ANY_GROUP) {
4314 		handle_list = &conf->worker_groups[group].handle_list;
4315 		wg = &conf->worker_groups[group];
4316 	} else {
4317 		int i;
4318 		for (i = 0; i < conf->group_cnt; i++) {
4319 			handle_list = &conf->worker_groups[i].handle_list;
4320 			wg = &conf->worker_groups[i];
4321 			if (!list_empty(handle_list))
4322 				break;
4323 		}
4324 	}
4325 
4326 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4327 		  __func__,
4328 		  list_empty(handle_list) ? "empty" : "busy",
4329 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4330 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4331 
4332 	if (!list_empty(handle_list)) {
4333 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4334 
4335 		if (list_empty(&conf->hold_list))
4336 			conf->bypass_count = 0;
4337 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4338 			if (conf->hold_list.next == conf->last_hold)
4339 				conf->bypass_count++;
4340 			else {
4341 				conf->last_hold = conf->hold_list.next;
4342 				conf->bypass_count -= conf->bypass_threshold;
4343 				if (conf->bypass_count < 0)
4344 					conf->bypass_count = 0;
4345 			}
4346 		}
4347 	} else if (!list_empty(&conf->hold_list) &&
4348 		   ((conf->bypass_threshold &&
4349 		     conf->bypass_count > conf->bypass_threshold) ||
4350 		    atomic_read(&conf->pending_full_writes) == 0)) {
4351 
4352 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4353 			if (conf->worker_cnt_per_group == 0 ||
4354 			    group == ANY_GROUP ||
4355 			    !cpu_online(tmp->cpu) ||
4356 			    cpu_to_group(tmp->cpu) == group) {
4357 				sh = tmp;
4358 				break;
4359 			}
4360 		}
4361 
4362 		if (sh) {
4363 			conf->bypass_count -= conf->bypass_threshold;
4364 			if (conf->bypass_count < 0)
4365 				conf->bypass_count = 0;
4366 		}
4367 		wg = NULL;
4368 	}
4369 
4370 	if (!sh)
4371 		return NULL;
4372 
4373 	if (wg) {
4374 		wg->stripes_cnt--;
4375 		sh->group = NULL;
4376 	}
4377 	list_del_init(&sh->lru);
4378 	atomic_inc(&sh->count);
4379 	BUG_ON(atomic_read(&sh->count) != 1);
4380 	return sh;
4381 }
4382 
4383 struct raid5_plug_cb {
4384 	struct blk_plug_cb	cb;
4385 	struct list_head	list;
4386 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4387 };
4388 
4389 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4390 {
4391 	struct raid5_plug_cb *cb = container_of(
4392 		blk_cb, struct raid5_plug_cb, cb);
4393 	struct stripe_head *sh;
4394 	struct mddev *mddev = cb->cb.data;
4395 	struct r5conf *conf = mddev->private;
4396 	int cnt = 0;
4397 	int hash;
4398 
4399 	if (cb->list.next && !list_empty(&cb->list)) {
4400 		spin_lock_irq(&conf->device_lock);
4401 		while (!list_empty(&cb->list)) {
4402 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4403 			list_del_init(&sh->lru);
4404 			/*
4405 			 * avoid race release_stripe_plug() sees
4406 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4407 			 * is still in our list
4408 			 */
4409 			smp_mb__before_clear_bit();
4410 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4411 			/*
4412 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4413 			 * case, the count is always > 1 here
4414 			 */
4415 			hash = sh->hash_lock_index;
4416 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4417 			cnt++;
4418 		}
4419 		spin_unlock_irq(&conf->device_lock);
4420 	}
4421 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4422 				     NR_STRIPE_HASH_LOCKS);
4423 	if (mddev->queue)
4424 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4425 	kfree(cb);
4426 }
4427 
4428 static void release_stripe_plug(struct mddev *mddev,
4429 				struct stripe_head *sh)
4430 {
4431 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4432 		raid5_unplug, mddev,
4433 		sizeof(struct raid5_plug_cb));
4434 	struct raid5_plug_cb *cb;
4435 
4436 	if (!blk_cb) {
4437 		release_stripe(sh);
4438 		return;
4439 	}
4440 
4441 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4442 
4443 	if (cb->list.next == NULL) {
4444 		int i;
4445 		INIT_LIST_HEAD(&cb->list);
4446 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4447 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4448 	}
4449 
4450 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4451 		list_add_tail(&sh->lru, &cb->list);
4452 	else
4453 		release_stripe(sh);
4454 }
4455 
4456 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4457 {
4458 	struct r5conf *conf = mddev->private;
4459 	sector_t logical_sector, last_sector;
4460 	struct stripe_head *sh;
4461 	int remaining;
4462 	int stripe_sectors;
4463 
4464 	if (mddev->reshape_position != MaxSector)
4465 		/* Skip discard while reshape is happening */
4466 		return;
4467 
4468 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4469 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4470 
4471 	bi->bi_next = NULL;
4472 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4473 
4474 	stripe_sectors = conf->chunk_sectors *
4475 		(conf->raid_disks - conf->max_degraded);
4476 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4477 					       stripe_sectors);
4478 	sector_div(last_sector, stripe_sectors);
4479 
4480 	logical_sector *= conf->chunk_sectors;
4481 	last_sector *= conf->chunk_sectors;
4482 
4483 	for (; logical_sector < last_sector;
4484 	     logical_sector += STRIPE_SECTORS) {
4485 		DEFINE_WAIT(w);
4486 		int d;
4487 	again:
4488 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4489 		prepare_to_wait(&conf->wait_for_overlap, &w,
4490 				TASK_UNINTERRUPTIBLE);
4491 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4492 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4493 			release_stripe(sh);
4494 			schedule();
4495 			goto again;
4496 		}
4497 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4498 		spin_lock_irq(&sh->stripe_lock);
4499 		for (d = 0; d < conf->raid_disks; d++) {
4500 			if (d == sh->pd_idx || d == sh->qd_idx)
4501 				continue;
4502 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4503 				set_bit(R5_Overlap, &sh->dev[d].flags);
4504 				spin_unlock_irq(&sh->stripe_lock);
4505 				release_stripe(sh);
4506 				schedule();
4507 				goto again;
4508 			}
4509 		}
4510 		set_bit(STRIPE_DISCARD, &sh->state);
4511 		finish_wait(&conf->wait_for_overlap, &w);
4512 		for (d = 0; d < conf->raid_disks; d++) {
4513 			if (d == sh->pd_idx || d == sh->qd_idx)
4514 				continue;
4515 			sh->dev[d].towrite = bi;
4516 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4517 			raid5_inc_bi_active_stripes(bi);
4518 		}
4519 		spin_unlock_irq(&sh->stripe_lock);
4520 		if (conf->mddev->bitmap) {
4521 			for (d = 0;
4522 			     d < conf->raid_disks - conf->max_degraded;
4523 			     d++)
4524 				bitmap_startwrite(mddev->bitmap,
4525 						  sh->sector,
4526 						  STRIPE_SECTORS,
4527 						  0);
4528 			sh->bm_seq = conf->seq_flush + 1;
4529 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4530 		}
4531 
4532 		set_bit(STRIPE_HANDLE, &sh->state);
4533 		clear_bit(STRIPE_DELAYED, &sh->state);
4534 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4535 			atomic_inc(&conf->preread_active_stripes);
4536 		release_stripe_plug(mddev, sh);
4537 	}
4538 
4539 	remaining = raid5_dec_bi_active_stripes(bi);
4540 	if (remaining == 0) {
4541 		md_write_end(mddev);
4542 		bio_endio(bi, 0);
4543 	}
4544 }
4545 
4546 static void make_request(struct mddev *mddev, struct bio * bi)
4547 {
4548 	struct r5conf *conf = mddev->private;
4549 	int dd_idx;
4550 	sector_t new_sector;
4551 	sector_t logical_sector, last_sector;
4552 	struct stripe_head *sh;
4553 	const int rw = bio_data_dir(bi);
4554 	int remaining;
4555 
4556 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4557 		md_flush_request(mddev, bi);
4558 		return;
4559 	}
4560 
4561 	md_write_start(mddev, bi);
4562 
4563 	if (rw == READ &&
4564 	     mddev->reshape_position == MaxSector &&
4565 	     chunk_aligned_read(mddev,bi))
4566 		return;
4567 
4568 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4569 		make_discard_request(mddev, bi);
4570 		return;
4571 	}
4572 
4573 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4574 	last_sector = bio_end_sector(bi);
4575 	bi->bi_next = NULL;
4576 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4577 
4578 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4579 		DEFINE_WAIT(w);
4580 		int previous;
4581 		int seq;
4582 
4583 	retry:
4584 		seq = read_seqcount_begin(&conf->gen_lock);
4585 		previous = 0;
4586 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4587 		if (unlikely(conf->reshape_progress != MaxSector)) {
4588 			/* spinlock is needed as reshape_progress may be
4589 			 * 64bit on a 32bit platform, and so it might be
4590 			 * possible to see a half-updated value
4591 			 * Of course reshape_progress could change after
4592 			 * the lock is dropped, so once we get a reference
4593 			 * to the stripe that we think it is, we will have
4594 			 * to check again.
4595 			 */
4596 			spin_lock_irq(&conf->device_lock);
4597 			if (mddev->reshape_backwards
4598 			    ? logical_sector < conf->reshape_progress
4599 			    : logical_sector >= conf->reshape_progress) {
4600 				previous = 1;
4601 			} else {
4602 				if (mddev->reshape_backwards
4603 				    ? logical_sector < conf->reshape_safe
4604 				    : logical_sector >= conf->reshape_safe) {
4605 					spin_unlock_irq(&conf->device_lock);
4606 					schedule();
4607 					goto retry;
4608 				}
4609 			}
4610 			spin_unlock_irq(&conf->device_lock);
4611 		}
4612 
4613 		new_sector = raid5_compute_sector(conf, logical_sector,
4614 						  previous,
4615 						  &dd_idx, NULL);
4616 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4617 			(unsigned long long)new_sector,
4618 			(unsigned long long)logical_sector);
4619 
4620 		sh = get_active_stripe(conf, new_sector, previous,
4621 				       (bi->bi_rw&RWA_MASK), 0);
4622 		if (sh) {
4623 			if (unlikely(previous)) {
4624 				/* expansion might have moved on while waiting for a
4625 				 * stripe, so we must do the range check again.
4626 				 * Expansion could still move past after this
4627 				 * test, but as we are holding a reference to
4628 				 * 'sh', we know that if that happens,
4629 				 *  STRIPE_EXPANDING will get set and the expansion
4630 				 * won't proceed until we finish with the stripe.
4631 				 */
4632 				int must_retry = 0;
4633 				spin_lock_irq(&conf->device_lock);
4634 				if (mddev->reshape_backwards
4635 				    ? logical_sector >= conf->reshape_progress
4636 				    : logical_sector < conf->reshape_progress)
4637 					/* mismatch, need to try again */
4638 					must_retry = 1;
4639 				spin_unlock_irq(&conf->device_lock);
4640 				if (must_retry) {
4641 					release_stripe(sh);
4642 					schedule();
4643 					goto retry;
4644 				}
4645 			}
4646 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4647 				/* Might have got the wrong stripe_head
4648 				 * by accident
4649 				 */
4650 				release_stripe(sh);
4651 				goto retry;
4652 			}
4653 
4654 			if (rw == WRITE &&
4655 			    logical_sector >= mddev->suspend_lo &&
4656 			    logical_sector < mddev->suspend_hi) {
4657 				release_stripe(sh);
4658 				/* As the suspend_* range is controlled by
4659 				 * userspace, we want an interruptible
4660 				 * wait.
4661 				 */
4662 				flush_signals(current);
4663 				prepare_to_wait(&conf->wait_for_overlap,
4664 						&w, TASK_INTERRUPTIBLE);
4665 				if (logical_sector >= mddev->suspend_lo &&
4666 				    logical_sector < mddev->suspend_hi)
4667 					schedule();
4668 				goto retry;
4669 			}
4670 
4671 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4672 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4673 				/* Stripe is busy expanding or
4674 				 * add failed due to overlap.  Flush everything
4675 				 * and wait a while
4676 				 */
4677 				md_wakeup_thread(mddev->thread);
4678 				release_stripe(sh);
4679 				schedule();
4680 				goto retry;
4681 			}
4682 			finish_wait(&conf->wait_for_overlap, &w);
4683 			set_bit(STRIPE_HANDLE, &sh->state);
4684 			clear_bit(STRIPE_DELAYED, &sh->state);
4685 			if ((bi->bi_rw & REQ_SYNC) &&
4686 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4687 				atomic_inc(&conf->preread_active_stripes);
4688 			release_stripe_plug(mddev, sh);
4689 		} else {
4690 			/* cannot get stripe for read-ahead, just give-up */
4691 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4692 			finish_wait(&conf->wait_for_overlap, &w);
4693 			break;
4694 		}
4695 	}
4696 
4697 	remaining = raid5_dec_bi_active_stripes(bi);
4698 	if (remaining == 0) {
4699 
4700 		if ( rw == WRITE )
4701 			md_write_end(mddev);
4702 
4703 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4704 					 bi, 0);
4705 		bio_endio(bi, 0);
4706 	}
4707 }
4708 
4709 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4710 
4711 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4712 {
4713 	/* reshaping is quite different to recovery/resync so it is
4714 	 * handled quite separately ... here.
4715 	 *
4716 	 * On each call to sync_request, we gather one chunk worth of
4717 	 * destination stripes and flag them as expanding.
4718 	 * Then we find all the source stripes and request reads.
4719 	 * As the reads complete, handle_stripe will copy the data
4720 	 * into the destination stripe and release that stripe.
4721 	 */
4722 	struct r5conf *conf = mddev->private;
4723 	struct stripe_head *sh;
4724 	sector_t first_sector, last_sector;
4725 	int raid_disks = conf->previous_raid_disks;
4726 	int data_disks = raid_disks - conf->max_degraded;
4727 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4728 	int i;
4729 	int dd_idx;
4730 	sector_t writepos, readpos, safepos;
4731 	sector_t stripe_addr;
4732 	int reshape_sectors;
4733 	struct list_head stripes;
4734 
4735 	if (sector_nr == 0) {
4736 		/* If restarting in the middle, skip the initial sectors */
4737 		if (mddev->reshape_backwards &&
4738 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4739 			sector_nr = raid5_size(mddev, 0, 0)
4740 				- conf->reshape_progress;
4741 		} else if (!mddev->reshape_backwards &&
4742 			   conf->reshape_progress > 0)
4743 			sector_nr = conf->reshape_progress;
4744 		sector_div(sector_nr, new_data_disks);
4745 		if (sector_nr) {
4746 			mddev->curr_resync_completed = sector_nr;
4747 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4748 			*skipped = 1;
4749 			return sector_nr;
4750 		}
4751 	}
4752 
4753 	/* We need to process a full chunk at a time.
4754 	 * If old and new chunk sizes differ, we need to process the
4755 	 * largest of these
4756 	 */
4757 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4758 		reshape_sectors = mddev->new_chunk_sectors;
4759 	else
4760 		reshape_sectors = mddev->chunk_sectors;
4761 
4762 	/* We update the metadata at least every 10 seconds, or when
4763 	 * the data about to be copied would over-write the source of
4764 	 * the data at the front of the range.  i.e. one new_stripe
4765 	 * along from reshape_progress new_maps to after where
4766 	 * reshape_safe old_maps to
4767 	 */
4768 	writepos = conf->reshape_progress;
4769 	sector_div(writepos, new_data_disks);
4770 	readpos = conf->reshape_progress;
4771 	sector_div(readpos, data_disks);
4772 	safepos = conf->reshape_safe;
4773 	sector_div(safepos, data_disks);
4774 	if (mddev->reshape_backwards) {
4775 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4776 		readpos += reshape_sectors;
4777 		safepos += reshape_sectors;
4778 	} else {
4779 		writepos += reshape_sectors;
4780 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4781 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4782 	}
4783 
4784 	/* Having calculated the 'writepos' possibly use it
4785 	 * to set 'stripe_addr' which is where we will write to.
4786 	 */
4787 	if (mddev->reshape_backwards) {
4788 		BUG_ON(conf->reshape_progress == 0);
4789 		stripe_addr = writepos;
4790 		BUG_ON((mddev->dev_sectors &
4791 			~((sector_t)reshape_sectors - 1))
4792 		       - reshape_sectors - stripe_addr
4793 		       != sector_nr);
4794 	} else {
4795 		BUG_ON(writepos != sector_nr + reshape_sectors);
4796 		stripe_addr = sector_nr;
4797 	}
4798 
4799 	/* 'writepos' is the most advanced device address we might write.
4800 	 * 'readpos' is the least advanced device address we might read.
4801 	 * 'safepos' is the least address recorded in the metadata as having
4802 	 *     been reshaped.
4803 	 * If there is a min_offset_diff, these are adjusted either by
4804 	 * increasing the safepos/readpos if diff is negative, or
4805 	 * increasing writepos if diff is positive.
4806 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4807 	 * ensure safety in the face of a crash - that must be done by userspace
4808 	 * making a backup of the data.  So in that case there is no particular
4809 	 * rush to update metadata.
4810 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4811 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4812 	 * we can be safe in the event of a crash.
4813 	 * So we insist on updating metadata if safepos is behind writepos and
4814 	 * readpos is beyond writepos.
4815 	 * In any case, update the metadata every 10 seconds.
4816 	 * Maybe that number should be configurable, but I'm not sure it is
4817 	 * worth it.... maybe it could be a multiple of safemode_delay???
4818 	 */
4819 	if (conf->min_offset_diff < 0) {
4820 		safepos += -conf->min_offset_diff;
4821 		readpos += -conf->min_offset_diff;
4822 	} else
4823 		writepos += conf->min_offset_diff;
4824 
4825 	if ((mddev->reshape_backwards
4826 	     ? (safepos > writepos && readpos < writepos)
4827 	     : (safepos < writepos && readpos > writepos)) ||
4828 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4829 		/* Cannot proceed until we've updated the superblock... */
4830 		wait_event(conf->wait_for_overlap,
4831 			   atomic_read(&conf->reshape_stripes)==0
4832 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4833 		if (atomic_read(&conf->reshape_stripes) != 0)
4834 			return 0;
4835 		mddev->reshape_position = conf->reshape_progress;
4836 		mddev->curr_resync_completed = sector_nr;
4837 		conf->reshape_checkpoint = jiffies;
4838 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4839 		md_wakeup_thread(mddev->thread);
4840 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4841 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4842 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4843 			return 0;
4844 		spin_lock_irq(&conf->device_lock);
4845 		conf->reshape_safe = mddev->reshape_position;
4846 		spin_unlock_irq(&conf->device_lock);
4847 		wake_up(&conf->wait_for_overlap);
4848 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4849 	}
4850 
4851 	INIT_LIST_HEAD(&stripes);
4852 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4853 		int j;
4854 		int skipped_disk = 0;
4855 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4856 		set_bit(STRIPE_EXPANDING, &sh->state);
4857 		atomic_inc(&conf->reshape_stripes);
4858 		/* If any of this stripe is beyond the end of the old
4859 		 * array, then we need to zero those blocks
4860 		 */
4861 		for (j=sh->disks; j--;) {
4862 			sector_t s;
4863 			if (j == sh->pd_idx)
4864 				continue;
4865 			if (conf->level == 6 &&
4866 			    j == sh->qd_idx)
4867 				continue;
4868 			s = compute_blocknr(sh, j, 0);
4869 			if (s < raid5_size(mddev, 0, 0)) {
4870 				skipped_disk = 1;
4871 				continue;
4872 			}
4873 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4874 			set_bit(R5_Expanded, &sh->dev[j].flags);
4875 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4876 		}
4877 		if (!skipped_disk) {
4878 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4879 			set_bit(STRIPE_HANDLE, &sh->state);
4880 		}
4881 		list_add(&sh->lru, &stripes);
4882 	}
4883 	spin_lock_irq(&conf->device_lock);
4884 	if (mddev->reshape_backwards)
4885 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4886 	else
4887 		conf->reshape_progress += reshape_sectors * new_data_disks;
4888 	spin_unlock_irq(&conf->device_lock);
4889 	/* Ok, those stripe are ready. We can start scheduling
4890 	 * reads on the source stripes.
4891 	 * The source stripes are determined by mapping the first and last
4892 	 * block on the destination stripes.
4893 	 */
4894 	first_sector =
4895 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4896 				     1, &dd_idx, NULL);
4897 	last_sector =
4898 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4899 					    * new_data_disks - 1),
4900 				     1, &dd_idx, NULL);
4901 	if (last_sector >= mddev->dev_sectors)
4902 		last_sector = mddev->dev_sectors - 1;
4903 	while (first_sector <= last_sector) {
4904 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4905 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4906 		set_bit(STRIPE_HANDLE, &sh->state);
4907 		release_stripe(sh);
4908 		first_sector += STRIPE_SECTORS;
4909 	}
4910 	/* Now that the sources are clearly marked, we can release
4911 	 * the destination stripes
4912 	 */
4913 	while (!list_empty(&stripes)) {
4914 		sh = list_entry(stripes.next, struct stripe_head, lru);
4915 		list_del_init(&sh->lru);
4916 		release_stripe(sh);
4917 	}
4918 	/* If this takes us to the resync_max point where we have to pause,
4919 	 * then we need to write out the superblock.
4920 	 */
4921 	sector_nr += reshape_sectors;
4922 	if ((sector_nr - mddev->curr_resync_completed) * 2
4923 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4924 		/* Cannot proceed until we've updated the superblock... */
4925 		wait_event(conf->wait_for_overlap,
4926 			   atomic_read(&conf->reshape_stripes) == 0
4927 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4928 		if (atomic_read(&conf->reshape_stripes) != 0)
4929 			goto ret;
4930 		mddev->reshape_position = conf->reshape_progress;
4931 		mddev->curr_resync_completed = sector_nr;
4932 		conf->reshape_checkpoint = jiffies;
4933 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4934 		md_wakeup_thread(mddev->thread);
4935 		wait_event(mddev->sb_wait,
4936 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4937 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4938 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4939 			goto ret;
4940 		spin_lock_irq(&conf->device_lock);
4941 		conf->reshape_safe = mddev->reshape_position;
4942 		spin_unlock_irq(&conf->device_lock);
4943 		wake_up(&conf->wait_for_overlap);
4944 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4945 	}
4946 ret:
4947 	return reshape_sectors;
4948 }
4949 
4950 /* FIXME go_faster isn't used */
4951 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4952 {
4953 	struct r5conf *conf = mddev->private;
4954 	struct stripe_head *sh;
4955 	sector_t max_sector = mddev->dev_sectors;
4956 	sector_t sync_blocks;
4957 	int still_degraded = 0;
4958 	int i;
4959 
4960 	if (sector_nr >= max_sector) {
4961 		/* just being told to finish up .. nothing much to do */
4962 
4963 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4964 			end_reshape(conf);
4965 			return 0;
4966 		}
4967 
4968 		if (mddev->curr_resync < max_sector) /* aborted */
4969 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4970 					&sync_blocks, 1);
4971 		else /* completed sync */
4972 			conf->fullsync = 0;
4973 		bitmap_close_sync(mddev->bitmap);
4974 
4975 		return 0;
4976 	}
4977 
4978 	/* Allow raid5_quiesce to complete */
4979 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4980 
4981 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4982 		return reshape_request(mddev, sector_nr, skipped);
4983 
4984 	/* No need to check resync_max as we never do more than one
4985 	 * stripe, and as resync_max will always be on a chunk boundary,
4986 	 * if the check in md_do_sync didn't fire, there is no chance
4987 	 * of overstepping resync_max here
4988 	 */
4989 
4990 	/* if there is too many failed drives and we are trying
4991 	 * to resync, then assert that we are finished, because there is
4992 	 * nothing we can do.
4993 	 */
4994 	if (mddev->degraded >= conf->max_degraded &&
4995 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4996 		sector_t rv = mddev->dev_sectors - sector_nr;
4997 		*skipped = 1;
4998 		return rv;
4999 	}
5000 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5001 	    !conf->fullsync &&
5002 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5003 	    sync_blocks >= STRIPE_SECTORS) {
5004 		/* we can skip this block, and probably more */
5005 		sync_blocks /= STRIPE_SECTORS;
5006 		*skipped = 1;
5007 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5008 	}
5009 
5010 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5011 
5012 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5013 	if (sh == NULL) {
5014 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5015 		/* make sure we don't swamp the stripe cache if someone else
5016 		 * is trying to get access
5017 		 */
5018 		schedule_timeout_uninterruptible(1);
5019 	}
5020 	/* Need to check if array will still be degraded after recovery/resync
5021 	 * We don't need to check the 'failed' flag as when that gets set,
5022 	 * recovery aborts.
5023 	 */
5024 	for (i = 0; i < conf->raid_disks; i++)
5025 		if (conf->disks[i].rdev == NULL)
5026 			still_degraded = 1;
5027 
5028 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5029 
5030 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5031 
5032 	handle_stripe(sh);
5033 	release_stripe(sh);
5034 
5035 	return STRIPE_SECTORS;
5036 }
5037 
5038 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5039 {
5040 	/* We may not be able to submit a whole bio at once as there
5041 	 * may not be enough stripe_heads available.
5042 	 * We cannot pre-allocate enough stripe_heads as we may need
5043 	 * more than exist in the cache (if we allow ever large chunks).
5044 	 * So we do one stripe head at a time and record in
5045 	 * ->bi_hw_segments how many have been done.
5046 	 *
5047 	 * We *know* that this entire raid_bio is in one chunk, so
5048 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5049 	 */
5050 	struct stripe_head *sh;
5051 	int dd_idx;
5052 	sector_t sector, logical_sector, last_sector;
5053 	int scnt = 0;
5054 	int remaining;
5055 	int handled = 0;
5056 
5057 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5058 	sector = raid5_compute_sector(conf, logical_sector,
5059 				      0, &dd_idx, NULL);
5060 	last_sector = bio_end_sector(raid_bio);
5061 
5062 	for (; logical_sector < last_sector;
5063 	     logical_sector += STRIPE_SECTORS,
5064 		     sector += STRIPE_SECTORS,
5065 		     scnt++) {
5066 
5067 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5068 			/* already done this stripe */
5069 			continue;
5070 
5071 		sh = get_active_stripe(conf, sector, 0, 1, 0);
5072 
5073 		if (!sh) {
5074 			/* failed to get a stripe - must wait */
5075 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5076 			conf->retry_read_aligned = raid_bio;
5077 			return handled;
5078 		}
5079 
5080 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5081 			release_stripe(sh);
5082 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5083 			conf->retry_read_aligned = raid_bio;
5084 			return handled;
5085 		}
5086 
5087 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5088 		handle_stripe(sh);
5089 		release_stripe(sh);
5090 		handled++;
5091 	}
5092 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5093 	if (remaining == 0) {
5094 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5095 					 raid_bio, 0);
5096 		bio_endio(raid_bio, 0);
5097 	}
5098 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5099 		wake_up(&conf->wait_for_stripe);
5100 	return handled;
5101 }
5102 
5103 static int handle_active_stripes(struct r5conf *conf, int group,
5104 				 struct r5worker *worker,
5105 				 struct list_head *temp_inactive_list)
5106 {
5107 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5108 	int i, batch_size = 0, hash;
5109 	bool release_inactive = false;
5110 
5111 	while (batch_size < MAX_STRIPE_BATCH &&
5112 			(sh = __get_priority_stripe(conf, group)) != NULL)
5113 		batch[batch_size++] = sh;
5114 
5115 	if (batch_size == 0) {
5116 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5117 			if (!list_empty(temp_inactive_list + i))
5118 				break;
5119 		if (i == NR_STRIPE_HASH_LOCKS)
5120 			return batch_size;
5121 		release_inactive = true;
5122 	}
5123 	spin_unlock_irq(&conf->device_lock);
5124 
5125 	release_inactive_stripe_list(conf, temp_inactive_list,
5126 				     NR_STRIPE_HASH_LOCKS);
5127 
5128 	if (release_inactive) {
5129 		spin_lock_irq(&conf->device_lock);
5130 		return 0;
5131 	}
5132 
5133 	for (i = 0; i < batch_size; i++)
5134 		handle_stripe(batch[i]);
5135 
5136 	cond_resched();
5137 
5138 	spin_lock_irq(&conf->device_lock);
5139 	for (i = 0; i < batch_size; i++) {
5140 		hash = batch[i]->hash_lock_index;
5141 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5142 	}
5143 	return batch_size;
5144 }
5145 
5146 static void raid5_do_work(struct work_struct *work)
5147 {
5148 	struct r5worker *worker = container_of(work, struct r5worker, work);
5149 	struct r5worker_group *group = worker->group;
5150 	struct r5conf *conf = group->conf;
5151 	int group_id = group - conf->worker_groups;
5152 	int handled;
5153 	struct blk_plug plug;
5154 
5155 	pr_debug("+++ raid5worker active\n");
5156 
5157 	blk_start_plug(&plug);
5158 	handled = 0;
5159 	spin_lock_irq(&conf->device_lock);
5160 	while (1) {
5161 		int batch_size, released;
5162 
5163 		released = release_stripe_list(conf, worker->temp_inactive_list);
5164 
5165 		batch_size = handle_active_stripes(conf, group_id, worker,
5166 						   worker->temp_inactive_list);
5167 		worker->working = false;
5168 		if (!batch_size && !released)
5169 			break;
5170 		handled += batch_size;
5171 	}
5172 	pr_debug("%d stripes handled\n", handled);
5173 
5174 	spin_unlock_irq(&conf->device_lock);
5175 	blk_finish_plug(&plug);
5176 
5177 	pr_debug("--- raid5worker inactive\n");
5178 }
5179 
5180 /*
5181  * This is our raid5 kernel thread.
5182  *
5183  * We scan the hash table for stripes which can be handled now.
5184  * During the scan, completed stripes are saved for us by the interrupt
5185  * handler, so that they will not have to wait for our next wakeup.
5186  */
5187 static void raid5d(struct md_thread *thread)
5188 {
5189 	struct mddev *mddev = thread->mddev;
5190 	struct r5conf *conf = mddev->private;
5191 	int handled;
5192 	struct blk_plug plug;
5193 
5194 	pr_debug("+++ raid5d active\n");
5195 
5196 	md_check_recovery(mddev);
5197 
5198 	blk_start_plug(&plug);
5199 	handled = 0;
5200 	spin_lock_irq(&conf->device_lock);
5201 	while (1) {
5202 		struct bio *bio;
5203 		int batch_size, released;
5204 
5205 		released = release_stripe_list(conf, conf->temp_inactive_list);
5206 
5207 		if (
5208 		    !list_empty(&conf->bitmap_list)) {
5209 			/* Now is a good time to flush some bitmap updates */
5210 			conf->seq_flush++;
5211 			spin_unlock_irq(&conf->device_lock);
5212 			bitmap_unplug(mddev->bitmap);
5213 			spin_lock_irq(&conf->device_lock);
5214 			conf->seq_write = conf->seq_flush;
5215 			activate_bit_delay(conf, conf->temp_inactive_list);
5216 		}
5217 		raid5_activate_delayed(conf);
5218 
5219 		while ((bio = remove_bio_from_retry(conf))) {
5220 			int ok;
5221 			spin_unlock_irq(&conf->device_lock);
5222 			ok = retry_aligned_read(conf, bio);
5223 			spin_lock_irq(&conf->device_lock);
5224 			if (!ok)
5225 				break;
5226 			handled++;
5227 		}
5228 
5229 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5230 						   conf->temp_inactive_list);
5231 		if (!batch_size && !released)
5232 			break;
5233 		handled += batch_size;
5234 
5235 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5236 			spin_unlock_irq(&conf->device_lock);
5237 			md_check_recovery(mddev);
5238 			spin_lock_irq(&conf->device_lock);
5239 		}
5240 	}
5241 	pr_debug("%d stripes handled\n", handled);
5242 
5243 	spin_unlock_irq(&conf->device_lock);
5244 
5245 	async_tx_issue_pending_all();
5246 	blk_finish_plug(&plug);
5247 
5248 	pr_debug("--- raid5d inactive\n");
5249 }
5250 
5251 static ssize_t
5252 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5253 {
5254 	struct r5conf *conf = mddev->private;
5255 	if (conf)
5256 		return sprintf(page, "%d\n", conf->max_nr_stripes);
5257 	else
5258 		return 0;
5259 }
5260 
5261 int
5262 raid5_set_cache_size(struct mddev *mddev, int size)
5263 {
5264 	struct r5conf *conf = mddev->private;
5265 	int err;
5266 	int hash;
5267 
5268 	if (size <= 16 || size > 32768)
5269 		return -EINVAL;
5270 	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5271 	while (size < conf->max_nr_stripes) {
5272 		if (drop_one_stripe(conf, hash))
5273 			conf->max_nr_stripes--;
5274 		else
5275 			break;
5276 		hash--;
5277 		if (hash < 0)
5278 			hash = NR_STRIPE_HASH_LOCKS - 1;
5279 	}
5280 	err = md_allow_write(mddev);
5281 	if (err)
5282 		return err;
5283 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5284 	while (size > conf->max_nr_stripes) {
5285 		if (grow_one_stripe(conf, hash))
5286 			conf->max_nr_stripes++;
5287 		else break;
5288 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5289 	}
5290 	return 0;
5291 }
5292 EXPORT_SYMBOL(raid5_set_cache_size);
5293 
5294 static ssize_t
5295 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5296 {
5297 	struct r5conf *conf = mddev->private;
5298 	unsigned long new;
5299 	int err;
5300 
5301 	if (len >= PAGE_SIZE)
5302 		return -EINVAL;
5303 	if (!conf)
5304 		return -ENODEV;
5305 
5306 	if (kstrtoul(page, 10, &new))
5307 		return -EINVAL;
5308 	err = raid5_set_cache_size(mddev, new);
5309 	if (err)
5310 		return err;
5311 	return len;
5312 }
5313 
5314 static struct md_sysfs_entry
5315 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5316 				raid5_show_stripe_cache_size,
5317 				raid5_store_stripe_cache_size);
5318 
5319 static ssize_t
5320 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5321 {
5322 	struct r5conf *conf = mddev->private;
5323 	if (conf)
5324 		return sprintf(page, "%d\n", conf->bypass_threshold);
5325 	else
5326 		return 0;
5327 }
5328 
5329 static ssize_t
5330 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5331 {
5332 	struct r5conf *conf = mddev->private;
5333 	unsigned long new;
5334 	if (len >= PAGE_SIZE)
5335 		return -EINVAL;
5336 	if (!conf)
5337 		return -ENODEV;
5338 
5339 	if (kstrtoul(page, 10, &new))
5340 		return -EINVAL;
5341 	if (new > conf->max_nr_stripes)
5342 		return -EINVAL;
5343 	conf->bypass_threshold = new;
5344 	return len;
5345 }
5346 
5347 static struct md_sysfs_entry
5348 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5349 					S_IRUGO | S_IWUSR,
5350 					raid5_show_preread_threshold,
5351 					raid5_store_preread_threshold);
5352 
5353 static ssize_t
5354 stripe_cache_active_show(struct mddev *mddev, char *page)
5355 {
5356 	struct r5conf *conf = mddev->private;
5357 	if (conf)
5358 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5359 	else
5360 		return 0;
5361 }
5362 
5363 static struct md_sysfs_entry
5364 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5365 
5366 static ssize_t
5367 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5368 {
5369 	struct r5conf *conf = mddev->private;
5370 	if (conf)
5371 		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5372 	else
5373 		return 0;
5374 }
5375 
5376 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5377 			       int *group_cnt,
5378 			       int *worker_cnt_per_group,
5379 			       struct r5worker_group **worker_groups);
5380 static ssize_t
5381 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5382 {
5383 	struct r5conf *conf = mddev->private;
5384 	unsigned long new;
5385 	int err;
5386 	struct r5worker_group *new_groups, *old_groups;
5387 	int group_cnt, worker_cnt_per_group;
5388 
5389 	if (len >= PAGE_SIZE)
5390 		return -EINVAL;
5391 	if (!conf)
5392 		return -ENODEV;
5393 
5394 	if (kstrtoul(page, 10, &new))
5395 		return -EINVAL;
5396 
5397 	if (new == conf->worker_cnt_per_group)
5398 		return len;
5399 
5400 	mddev_suspend(mddev);
5401 
5402 	old_groups = conf->worker_groups;
5403 	if (old_groups)
5404 		flush_workqueue(raid5_wq);
5405 
5406 	err = alloc_thread_groups(conf, new,
5407 				  &group_cnt, &worker_cnt_per_group,
5408 				  &new_groups);
5409 	if (!err) {
5410 		spin_lock_irq(&conf->device_lock);
5411 		conf->group_cnt = group_cnt;
5412 		conf->worker_cnt_per_group = worker_cnt_per_group;
5413 		conf->worker_groups = new_groups;
5414 		spin_unlock_irq(&conf->device_lock);
5415 
5416 		if (old_groups)
5417 			kfree(old_groups[0].workers);
5418 		kfree(old_groups);
5419 	}
5420 
5421 	mddev_resume(mddev);
5422 
5423 	if (err)
5424 		return err;
5425 	return len;
5426 }
5427 
5428 static struct md_sysfs_entry
5429 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5430 				raid5_show_group_thread_cnt,
5431 				raid5_store_group_thread_cnt);
5432 
5433 static struct attribute *raid5_attrs[] =  {
5434 	&raid5_stripecache_size.attr,
5435 	&raid5_stripecache_active.attr,
5436 	&raid5_preread_bypass_threshold.attr,
5437 	&raid5_group_thread_cnt.attr,
5438 	NULL,
5439 };
5440 static struct attribute_group raid5_attrs_group = {
5441 	.name = NULL,
5442 	.attrs = raid5_attrs,
5443 };
5444 
5445 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5446 			       int *group_cnt,
5447 			       int *worker_cnt_per_group,
5448 			       struct r5worker_group **worker_groups)
5449 {
5450 	int i, j, k;
5451 	ssize_t size;
5452 	struct r5worker *workers;
5453 
5454 	*worker_cnt_per_group = cnt;
5455 	if (cnt == 0) {
5456 		*group_cnt = 0;
5457 		*worker_groups = NULL;
5458 		return 0;
5459 	}
5460 	*group_cnt = num_possible_nodes();
5461 	size = sizeof(struct r5worker) * cnt;
5462 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
5463 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
5464 				*group_cnt, GFP_NOIO);
5465 	if (!*worker_groups || !workers) {
5466 		kfree(workers);
5467 		kfree(*worker_groups);
5468 		return -ENOMEM;
5469 	}
5470 
5471 	for (i = 0; i < *group_cnt; i++) {
5472 		struct r5worker_group *group;
5473 
5474 		group = worker_groups[i];
5475 		INIT_LIST_HEAD(&group->handle_list);
5476 		group->conf = conf;
5477 		group->workers = workers + i * cnt;
5478 
5479 		for (j = 0; j < cnt; j++) {
5480 			struct r5worker *worker = group->workers + j;
5481 			worker->group = group;
5482 			INIT_WORK(&worker->work, raid5_do_work);
5483 
5484 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5485 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5486 		}
5487 	}
5488 
5489 	return 0;
5490 }
5491 
5492 static void free_thread_groups(struct r5conf *conf)
5493 {
5494 	if (conf->worker_groups)
5495 		kfree(conf->worker_groups[0].workers);
5496 	kfree(conf->worker_groups);
5497 	conf->worker_groups = NULL;
5498 }
5499 
5500 static sector_t
5501 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5502 {
5503 	struct r5conf *conf = mddev->private;
5504 
5505 	if (!sectors)
5506 		sectors = mddev->dev_sectors;
5507 	if (!raid_disks)
5508 		/* size is defined by the smallest of previous and new size */
5509 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5510 
5511 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5512 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5513 	return sectors * (raid_disks - conf->max_degraded);
5514 }
5515 
5516 static void raid5_free_percpu(struct r5conf *conf)
5517 {
5518 	struct raid5_percpu *percpu;
5519 	unsigned long cpu;
5520 
5521 	if (!conf->percpu)
5522 		return;
5523 
5524 	get_online_cpus();
5525 	for_each_possible_cpu(cpu) {
5526 		percpu = per_cpu_ptr(conf->percpu, cpu);
5527 		safe_put_page(percpu->spare_page);
5528 		kfree(percpu->scribble);
5529 	}
5530 #ifdef CONFIG_HOTPLUG_CPU
5531 	unregister_cpu_notifier(&conf->cpu_notify);
5532 #endif
5533 	put_online_cpus();
5534 
5535 	free_percpu(conf->percpu);
5536 }
5537 
5538 static void free_conf(struct r5conf *conf)
5539 {
5540 	free_thread_groups(conf);
5541 	shrink_stripes(conf);
5542 	raid5_free_percpu(conf);
5543 	kfree(conf->disks);
5544 	kfree(conf->stripe_hashtbl);
5545 	kfree(conf);
5546 }
5547 
5548 #ifdef CONFIG_HOTPLUG_CPU
5549 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5550 			      void *hcpu)
5551 {
5552 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5553 	long cpu = (long)hcpu;
5554 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5555 
5556 	switch (action) {
5557 	case CPU_UP_PREPARE:
5558 	case CPU_UP_PREPARE_FROZEN:
5559 		if (conf->level == 6 && !percpu->spare_page)
5560 			percpu->spare_page = alloc_page(GFP_KERNEL);
5561 		if (!percpu->scribble)
5562 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5563 
5564 		if (!percpu->scribble ||
5565 		    (conf->level == 6 && !percpu->spare_page)) {
5566 			safe_put_page(percpu->spare_page);
5567 			kfree(percpu->scribble);
5568 			pr_err("%s: failed memory allocation for cpu%ld\n",
5569 			       __func__, cpu);
5570 			return notifier_from_errno(-ENOMEM);
5571 		}
5572 		break;
5573 	case CPU_DEAD:
5574 	case CPU_DEAD_FROZEN:
5575 		safe_put_page(percpu->spare_page);
5576 		kfree(percpu->scribble);
5577 		percpu->spare_page = NULL;
5578 		percpu->scribble = NULL;
5579 		break;
5580 	default:
5581 		break;
5582 	}
5583 	return NOTIFY_OK;
5584 }
5585 #endif
5586 
5587 static int raid5_alloc_percpu(struct r5conf *conf)
5588 {
5589 	unsigned long cpu;
5590 	struct page *spare_page;
5591 	struct raid5_percpu __percpu *allcpus;
5592 	void *scribble;
5593 	int err;
5594 
5595 	allcpus = alloc_percpu(struct raid5_percpu);
5596 	if (!allcpus)
5597 		return -ENOMEM;
5598 	conf->percpu = allcpus;
5599 
5600 	get_online_cpus();
5601 	err = 0;
5602 	for_each_present_cpu(cpu) {
5603 		if (conf->level == 6) {
5604 			spare_page = alloc_page(GFP_KERNEL);
5605 			if (!spare_page) {
5606 				err = -ENOMEM;
5607 				break;
5608 			}
5609 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5610 		}
5611 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5612 		if (!scribble) {
5613 			err = -ENOMEM;
5614 			break;
5615 		}
5616 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5617 	}
5618 #ifdef CONFIG_HOTPLUG_CPU
5619 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5620 	conf->cpu_notify.priority = 0;
5621 	if (err == 0)
5622 		err = register_cpu_notifier(&conf->cpu_notify);
5623 #endif
5624 	put_online_cpus();
5625 
5626 	return err;
5627 }
5628 
5629 static struct r5conf *setup_conf(struct mddev *mddev)
5630 {
5631 	struct r5conf *conf;
5632 	int raid_disk, memory, max_disks;
5633 	struct md_rdev *rdev;
5634 	struct disk_info *disk;
5635 	char pers_name[6];
5636 	int i;
5637 	int group_cnt, worker_cnt_per_group;
5638 	struct r5worker_group *new_group;
5639 
5640 	if (mddev->new_level != 5
5641 	    && mddev->new_level != 4
5642 	    && mddev->new_level != 6) {
5643 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5644 		       mdname(mddev), mddev->new_level);
5645 		return ERR_PTR(-EIO);
5646 	}
5647 	if ((mddev->new_level == 5
5648 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5649 	    (mddev->new_level == 6
5650 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5651 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5652 		       mdname(mddev), mddev->new_layout);
5653 		return ERR_PTR(-EIO);
5654 	}
5655 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5656 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5657 		       mdname(mddev), mddev->raid_disks);
5658 		return ERR_PTR(-EINVAL);
5659 	}
5660 
5661 	if (!mddev->new_chunk_sectors ||
5662 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5663 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5664 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5665 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5666 		return ERR_PTR(-EINVAL);
5667 	}
5668 
5669 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5670 	if (conf == NULL)
5671 		goto abort;
5672 	/* Don't enable multi-threading by default*/
5673 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5674 				 &new_group)) {
5675 		conf->group_cnt = group_cnt;
5676 		conf->worker_cnt_per_group = worker_cnt_per_group;
5677 		conf->worker_groups = new_group;
5678 	} else
5679 		goto abort;
5680 	spin_lock_init(&conf->device_lock);
5681 	seqcount_init(&conf->gen_lock);
5682 	init_waitqueue_head(&conf->wait_for_stripe);
5683 	init_waitqueue_head(&conf->wait_for_overlap);
5684 	INIT_LIST_HEAD(&conf->handle_list);
5685 	INIT_LIST_HEAD(&conf->hold_list);
5686 	INIT_LIST_HEAD(&conf->delayed_list);
5687 	INIT_LIST_HEAD(&conf->bitmap_list);
5688 	init_llist_head(&conf->released_stripes);
5689 	atomic_set(&conf->active_stripes, 0);
5690 	atomic_set(&conf->preread_active_stripes, 0);
5691 	atomic_set(&conf->active_aligned_reads, 0);
5692 	conf->bypass_threshold = BYPASS_THRESHOLD;
5693 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5694 
5695 	conf->raid_disks = mddev->raid_disks;
5696 	if (mddev->reshape_position == MaxSector)
5697 		conf->previous_raid_disks = mddev->raid_disks;
5698 	else
5699 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5700 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5701 	conf->scribble_len = scribble_len(max_disks);
5702 
5703 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5704 			      GFP_KERNEL);
5705 	if (!conf->disks)
5706 		goto abort;
5707 
5708 	conf->mddev = mddev;
5709 
5710 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5711 		goto abort;
5712 
5713 	/* We init hash_locks[0] separately to that it can be used
5714 	 * as the reference lock in the spin_lock_nest_lock() call
5715 	 * in lock_all_device_hash_locks_irq in order to convince
5716 	 * lockdep that we know what we are doing.
5717 	 */
5718 	spin_lock_init(conf->hash_locks);
5719 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5720 		spin_lock_init(conf->hash_locks + i);
5721 
5722 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5723 		INIT_LIST_HEAD(conf->inactive_list + i);
5724 
5725 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5726 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
5727 
5728 	conf->level = mddev->new_level;
5729 	if (raid5_alloc_percpu(conf) != 0)
5730 		goto abort;
5731 
5732 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5733 
5734 	rdev_for_each(rdev, mddev) {
5735 		raid_disk = rdev->raid_disk;
5736 		if (raid_disk >= max_disks
5737 		    || raid_disk < 0)
5738 			continue;
5739 		disk = conf->disks + raid_disk;
5740 
5741 		if (test_bit(Replacement, &rdev->flags)) {
5742 			if (disk->replacement)
5743 				goto abort;
5744 			disk->replacement = rdev;
5745 		} else {
5746 			if (disk->rdev)
5747 				goto abort;
5748 			disk->rdev = rdev;
5749 		}
5750 
5751 		if (test_bit(In_sync, &rdev->flags)) {
5752 			char b[BDEVNAME_SIZE];
5753 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5754 			       " disk %d\n",
5755 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5756 		} else if (rdev->saved_raid_disk != raid_disk)
5757 			/* Cannot rely on bitmap to complete recovery */
5758 			conf->fullsync = 1;
5759 	}
5760 
5761 	conf->chunk_sectors = mddev->new_chunk_sectors;
5762 	conf->level = mddev->new_level;
5763 	if (conf->level == 6)
5764 		conf->max_degraded = 2;
5765 	else
5766 		conf->max_degraded = 1;
5767 	conf->algorithm = mddev->new_layout;
5768 	conf->reshape_progress = mddev->reshape_position;
5769 	if (conf->reshape_progress != MaxSector) {
5770 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5771 		conf->prev_algo = mddev->layout;
5772 	}
5773 
5774 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5775 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5776 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5777 	if (grow_stripes(conf, NR_STRIPES)) {
5778 		printk(KERN_ERR
5779 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5780 		       mdname(mddev), memory);
5781 		goto abort;
5782 	} else
5783 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5784 		       mdname(mddev), memory);
5785 
5786 	sprintf(pers_name, "raid%d", mddev->new_level);
5787 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5788 	if (!conf->thread) {
5789 		printk(KERN_ERR
5790 		       "md/raid:%s: couldn't allocate thread.\n",
5791 		       mdname(mddev));
5792 		goto abort;
5793 	}
5794 
5795 	return conf;
5796 
5797  abort:
5798 	if (conf) {
5799 		free_conf(conf);
5800 		return ERR_PTR(-EIO);
5801 	} else
5802 		return ERR_PTR(-ENOMEM);
5803 }
5804 
5805 
5806 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5807 {
5808 	switch (algo) {
5809 	case ALGORITHM_PARITY_0:
5810 		if (raid_disk < max_degraded)
5811 			return 1;
5812 		break;
5813 	case ALGORITHM_PARITY_N:
5814 		if (raid_disk >= raid_disks - max_degraded)
5815 			return 1;
5816 		break;
5817 	case ALGORITHM_PARITY_0_6:
5818 		if (raid_disk == 0 ||
5819 		    raid_disk == raid_disks - 1)
5820 			return 1;
5821 		break;
5822 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5823 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5824 	case ALGORITHM_LEFT_SYMMETRIC_6:
5825 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5826 		if (raid_disk == raid_disks - 1)
5827 			return 1;
5828 	}
5829 	return 0;
5830 }
5831 
5832 static int run(struct mddev *mddev)
5833 {
5834 	struct r5conf *conf;
5835 	int working_disks = 0;
5836 	int dirty_parity_disks = 0;
5837 	struct md_rdev *rdev;
5838 	sector_t reshape_offset = 0;
5839 	int i;
5840 	long long min_offset_diff = 0;
5841 	int first = 1;
5842 
5843 	if (mddev->recovery_cp != MaxSector)
5844 		printk(KERN_NOTICE "md/raid:%s: not clean"
5845 		       " -- starting background reconstruction\n",
5846 		       mdname(mddev));
5847 
5848 	rdev_for_each(rdev, mddev) {
5849 		long long diff;
5850 		if (rdev->raid_disk < 0)
5851 			continue;
5852 		diff = (rdev->new_data_offset - rdev->data_offset);
5853 		if (first) {
5854 			min_offset_diff = diff;
5855 			first = 0;
5856 		} else if (mddev->reshape_backwards &&
5857 			 diff < min_offset_diff)
5858 			min_offset_diff = diff;
5859 		else if (!mddev->reshape_backwards &&
5860 			 diff > min_offset_diff)
5861 			min_offset_diff = diff;
5862 	}
5863 
5864 	if (mddev->reshape_position != MaxSector) {
5865 		/* Check that we can continue the reshape.
5866 		 * Difficulties arise if the stripe we would write to
5867 		 * next is at or after the stripe we would read from next.
5868 		 * For a reshape that changes the number of devices, this
5869 		 * is only possible for a very short time, and mdadm makes
5870 		 * sure that time appears to have past before assembling
5871 		 * the array.  So we fail if that time hasn't passed.
5872 		 * For a reshape that keeps the number of devices the same
5873 		 * mdadm must be monitoring the reshape can keeping the
5874 		 * critical areas read-only and backed up.  It will start
5875 		 * the array in read-only mode, so we check for that.
5876 		 */
5877 		sector_t here_new, here_old;
5878 		int old_disks;
5879 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5880 
5881 		if (mddev->new_level != mddev->level) {
5882 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5883 			       "required - aborting.\n",
5884 			       mdname(mddev));
5885 			return -EINVAL;
5886 		}
5887 		old_disks = mddev->raid_disks - mddev->delta_disks;
5888 		/* reshape_position must be on a new-stripe boundary, and one
5889 		 * further up in new geometry must map after here in old
5890 		 * geometry.
5891 		 */
5892 		here_new = mddev->reshape_position;
5893 		if (sector_div(here_new, mddev->new_chunk_sectors *
5894 			       (mddev->raid_disks - max_degraded))) {
5895 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5896 			       "on a stripe boundary\n", mdname(mddev));
5897 			return -EINVAL;
5898 		}
5899 		reshape_offset = here_new * mddev->new_chunk_sectors;
5900 		/* here_new is the stripe we will write to */
5901 		here_old = mddev->reshape_position;
5902 		sector_div(here_old, mddev->chunk_sectors *
5903 			   (old_disks-max_degraded));
5904 		/* here_old is the first stripe that we might need to read
5905 		 * from */
5906 		if (mddev->delta_disks == 0) {
5907 			if ((here_new * mddev->new_chunk_sectors !=
5908 			     here_old * mddev->chunk_sectors)) {
5909 				printk(KERN_ERR "md/raid:%s: reshape position is"
5910 				       " confused - aborting\n", mdname(mddev));
5911 				return -EINVAL;
5912 			}
5913 			/* We cannot be sure it is safe to start an in-place
5914 			 * reshape.  It is only safe if user-space is monitoring
5915 			 * and taking constant backups.
5916 			 * mdadm always starts a situation like this in
5917 			 * readonly mode so it can take control before
5918 			 * allowing any writes.  So just check for that.
5919 			 */
5920 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5921 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5922 				/* not really in-place - so OK */;
5923 			else if (mddev->ro == 0) {
5924 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5925 				       "must be started in read-only mode "
5926 				       "- aborting\n",
5927 				       mdname(mddev));
5928 				return -EINVAL;
5929 			}
5930 		} else if (mddev->reshape_backwards
5931 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5932 		       here_old * mddev->chunk_sectors)
5933 		    : (here_new * mddev->new_chunk_sectors >=
5934 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5935 			/* Reading from the same stripe as writing to - bad */
5936 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5937 			       "auto-recovery - aborting.\n",
5938 			       mdname(mddev));
5939 			return -EINVAL;
5940 		}
5941 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5942 		       mdname(mddev));
5943 		/* OK, we should be able to continue; */
5944 	} else {
5945 		BUG_ON(mddev->level != mddev->new_level);
5946 		BUG_ON(mddev->layout != mddev->new_layout);
5947 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5948 		BUG_ON(mddev->delta_disks != 0);
5949 	}
5950 
5951 	if (mddev->private == NULL)
5952 		conf = setup_conf(mddev);
5953 	else
5954 		conf = mddev->private;
5955 
5956 	if (IS_ERR(conf))
5957 		return PTR_ERR(conf);
5958 
5959 	conf->min_offset_diff = min_offset_diff;
5960 	mddev->thread = conf->thread;
5961 	conf->thread = NULL;
5962 	mddev->private = conf;
5963 
5964 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5965 	     i++) {
5966 		rdev = conf->disks[i].rdev;
5967 		if (!rdev && conf->disks[i].replacement) {
5968 			/* The replacement is all we have yet */
5969 			rdev = conf->disks[i].replacement;
5970 			conf->disks[i].replacement = NULL;
5971 			clear_bit(Replacement, &rdev->flags);
5972 			conf->disks[i].rdev = rdev;
5973 		}
5974 		if (!rdev)
5975 			continue;
5976 		if (conf->disks[i].replacement &&
5977 		    conf->reshape_progress != MaxSector) {
5978 			/* replacements and reshape simply do not mix. */
5979 			printk(KERN_ERR "md: cannot handle concurrent "
5980 			       "replacement and reshape.\n");
5981 			goto abort;
5982 		}
5983 		if (test_bit(In_sync, &rdev->flags)) {
5984 			working_disks++;
5985 			continue;
5986 		}
5987 		/* This disc is not fully in-sync.  However if it
5988 		 * just stored parity (beyond the recovery_offset),
5989 		 * when we don't need to be concerned about the
5990 		 * array being dirty.
5991 		 * When reshape goes 'backwards', we never have
5992 		 * partially completed devices, so we only need
5993 		 * to worry about reshape going forwards.
5994 		 */
5995 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5996 		if (mddev->major_version == 0 &&
5997 		    mddev->minor_version > 90)
5998 			rdev->recovery_offset = reshape_offset;
5999 
6000 		if (rdev->recovery_offset < reshape_offset) {
6001 			/* We need to check old and new layout */
6002 			if (!only_parity(rdev->raid_disk,
6003 					 conf->algorithm,
6004 					 conf->raid_disks,
6005 					 conf->max_degraded))
6006 				continue;
6007 		}
6008 		if (!only_parity(rdev->raid_disk,
6009 				 conf->prev_algo,
6010 				 conf->previous_raid_disks,
6011 				 conf->max_degraded))
6012 			continue;
6013 		dirty_parity_disks++;
6014 	}
6015 
6016 	/*
6017 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6018 	 */
6019 	mddev->degraded = calc_degraded(conf);
6020 
6021 	if (has_failed(conf)) {
6022 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6023 			" (%d/%d failed)\n",
6024 			mdname(mddev), mddev->degraded, conf->raid_disks);
6025 		goto abort;
6026 	}
6027 
6028 	/* device size must be a multiple of chunk size */
6029 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6030 	mddev->resync_max_sectors = mddev->dev_sectors;
6031 
6032 	if (mddev->degraded > dirty_parity_disks &&
6033 	    mddev->recovery_cp != MaxSector) {
6034 		if (mddev->ok_start_degraded)
6035 			printk(KERN_WARNING
6036 			       "md/raid:%s: starting dirty degraded array"
6037 			       " - data corruption possible.\n",
6038 			       mdname(mddev));
6039 		else {
6040 			printk(KERN_ERR
6041 			       "md/raid:%s: cannot start dirty degraded array.\n",
6042 			       mdname(mddev));
6043 			goto abort;
6044 		}
6045 	}
6046 
6047 	if (mddev->degraded == 0)
6048 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6049 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6050 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6051 		       mddev->new_layout);
6052 	else
6053 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6054 		       " out of %d devices, algorithm %d\n",
6055 		       mdname(mddev), conf->level,
6056 		       mddev->raid_disks - mddev->degraded,
6057 		       mddev->raid_disks, mddev->new_layout);
6058 
6059 	print_raid5_conf(conf);
6060 
6061 	if (conf->reshape_progress != MaxSector) {
6062 		conf->reshape_safe = conf->reshape_progress;
6063 		atomic_set(&conf->reshape_stripes, 0);
6064 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6065 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6066 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6067 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6068 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6069 							"reshape");
6070 	}
6071 
6072 
6073 	/* Ok, everything is just fine now */
6074 	if (mddev->to_remove == &raid5_attrs_group)
6075 		mddev->to_remove = NULL;
6076 	else if (mddev->kobj.sd &&
6077 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6078 		printk(KERN_WARNING
6079 		       "raid5: failed to create sysfs attributes for %s\n",
6080 		       mdname(mddev));
6081 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6082 
6083 	if (mddev->queue) {
6084 		int chunk_size;
6085 		bool discard_supported = true;
6086 		/* read-ahead size must cover two whole stripes, which
6087 		 * is 2 * (datadisks) * chunksize where 'n' is the
6088 		 * number of raid devices
6089 		 */
6090 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6091 		int stripe = data_disks *
6092 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6093 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6094 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6095 
6096 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6097 
6098 		mddev->queue->backing_dev_info.congested_data = mddev;
6099 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6100 
6101 		chunk_size = mddev->chunk_sectors << 9;
6102 		blk_queue_io_min(mddev->queue, chunk_size);
6103 		blk_queue_io_opt(mddev->queue, chunk_size *
6104 				 (conf->raid_disks - conf->max_degraded));
6105 		/*
6106 		 * We can only discard a whole stripe. It doesn't make sense to
6107 		 * discard data disk but write parity disk
6108 		 */
6109 		stripe = stripe * PAGE_SIZE;
6110 		/* Round up to power of 2, as discard handling
6111 		 * currently assumes that */
6112 		while ((stripe-1) & stripe)
6113 			stripe = (stripe | (stripe-1)) + 1;
6114 		mddev->queue->limits.discard_alignment = stripe;
6115 		mddev->queue->limits.discard_granularity = stripe;
6116 		/*
6117 		 * unaligned part of discard request will be ignored, so can't
6118 		 * guarantee discard_zerors_data
6119 		 */
6120 		mddev->queue->limits.discard_zeroes_data = 0;
6121 
6122 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6123 
6124 		rdev_for_each(rdev, mddev) {
6125 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6126 					  rdev->data_offset << 9);
6127 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6128 					  rdev->new_data_offset << 9);
6129 			/*
6130 			 * discard_zeroes_data is required, otherwise data
6131 			 * could be lost. Consider a scenario: discard a stripe
6132 			 * (the stripe could be inconsistent if
6133 			 * discard_zeroes_data is 0); write one disk of the
6134 			 * stripe (the stripe could be inconsistent again
6135 			 * depending on which disks are used to calculate
6136 			 * parity); the disk is broken; The stripe data of this
6137 			 * disk is lost.
6138 			 */
6139 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6140 			    !bdev_get_queue(rdev->bdev)->
6141 						limits.discard_zeroes_data)
6142 				discard_supported = false;
6143 		}
6144 
6145 		if (discard_supported &&
6146 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6147 		   mddev->queue->limits.discard_granularity >= stripe)
6148 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6149 						mddev->queue);
6150 		else
6151 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6152 						mddev->queue);
6153 	}
6154 
6155 	return 0;
6156 abort:
6157 	md_unregister_thread(&mddev->thread);
6158 	print_raid5_conf(conf);
6159 	free_conf(conf);
6160 	mddev->private = NULL;
6161 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6162 	return -EIO;
6163 }
6164 
6165 static int stop(struct mddev *mddev)
6166 {
6167 	struct r5conf *conf = mddev->private;
6168 
6169 	md_unregister_thread(&mddev->thread);
6170 	if (mddev->queue)
6171 		mddev->queue->backing_dev_info.congested_fn = NULL;
6172 	free_conf(conf);
6173 	mddev->private = NULL;
6174 	mddev->to_remove = &raid5_attrs_group;
6175 	return 0;
6176 }
6177 
6178 static void status(struct seq_file *seq, struct mddev *mddev)
6179 {
6180 	struct r5conf *conf = mddev->private;
6181 	int i;
6182 
6183 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6184 		mddev->chunk_sectors / 2, mddev->layout);
6185 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6186 	for (i = 0; i < conf->raid_disks; i++)
6187 		seq_printf (seq, "%s",
6188 			       conf->disks[i].rdev &&
6189 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6190 	seq_printf (seq, "]");
6191 }
6192 
6193 static void print_raid5_conf (struct r5conf *conf)
6194 {
6195 	int i;
6196 	struct disk_info *tmp;
6197 
6198 	printk(KERN_DEBUG "RAID conf printout:\n");
6199 	if (!conf) {
6200 		printk("(conf==NULL)\n");
6201 		return;
6202 	}
6203 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6204 	       conf->raid_disks,
6205 	       conf->raid_disks - conf->mddev->degraded);
6206 
6207 	for (i = 0; i < conf->raid_disks; i++) {
6208 		char b[BDEVNAME_SIZE];
6209 		tmp = conf->disks + i;
6210 		if (tmp->rdev)
6211 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6212 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6213 			       bdevname(tmp->rdev->bdev, b));
6214 	}
6215 }
6216 
6217 static int raid5_spare_active(struct mddev *mddev)
6218 {
6219 	int i;
6220 	struct r5conf *conf = mddev->private;
6221 	struct disk_info *tmp;
6222 	int count = 0;
6223 	unsigned long flags;
6224 
6225 	for (i = 0; i < conf->raid_disks; i++) {
6226 		tmp = conf->disks + i;
6227 		if (tmp->replacement
6228 		    && tmp->replacement->recovery_offset == MaxSector
6229 		    && !test_bit(Faulty, &tmp->replacement->flags)
6230 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6231 			/* Replacement has just become active. */
6232 			if (!tmp->rdev
6233 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6234 				count++;
6235 			if (tmp->rdev) {
6236 				/* Replaced device not technically faulty,
6237 				 * but we need to be sure it gets removed
6238 				 * and never re-added.
6239 				 */
6240 				set_bit(Faulty, &tmp->rdev->flags);
6241 				sysfs_notify_dirent_safe(
6242 					tmp->rdev->sysfs_state);
6243 			}
6244 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6245 		} else if (tmp->rdev
6246 		    && tmp->rdev->recovery_offset == MaxSector
6247 		    && !test_bit(Faulty, &tmp->rdev->flags)
6248 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6249 			count++;
6250 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6251 		}
6252 	}
6253 	spin_lock_irqsave(&conf->device_lock, flags);
6254 	mddev->degraded = calc_degraded(conf);
6255 	spin_unlock_irqrestore(&conf->device_lock, flags);
6256 	print_raid5_conf(conf);
6257 	return count;
6258 }
6259 
6260 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6261 {
6262 	struct r5conf *conf = mddev->private;
6263 	int err = 0;
6264 	int number = rdev->raid_disk;
6265 	struct md_rdev **rdevp;
6266 	struct disk_info *p = conf->disks + number;
6267 
6268 	print_raid5_conf(conf);
6269 	if (rdev == p->rdev)
6270 		rdevp = &p->rdev;
6271 	else if (rdev == p->replacement)
6272 		rdevp = &p->replacement;
6273 	else
6274 		return 0;
6275 
6276 	if (number >= conf->raid_disks &&
6277 	    conf->reshape_progress == MaxSector)
6278 		clear_bit(In_sync, &rdev->flags);
6279 
6280 	if (test_bit(In_sync, &rdev->flags) ||
6281 	    atomic_read(&rdev->nr_pending)) {
6282 		err = -EBUSY;
6283 		goto abort;
6284 	}
6285 	/* Only remove non-faulty devices if recovery
6286 	 * isn't possible.
6287 	 */
6288 	if (!test_bit(Faulty, &rdev->flags) &&
6289 	    mddev->recovery_disabled != conf->recovery_disabled &&
6290 	    !has_failed(conf) &&
6291 	    (!p->replacement || p->replacement == rdev) &&
6292 	    number < conf->raid_disks) {
6293 		err = -EBUSY;
6294 		goto abort;
6295 	}
6296 	*rdevp = NULL;
6297 	synchronize_rcu();
6298 	if (atomic_read(&rdev->nr_pending)) {
6299 		/* lost the race, try later */
6300 		err = -EBUSY;
6301 		*rdevp = rdev;
6302 	} else if (p->replacement) {
6303 		/* We must have just cleared 'rdev' */
6304 		p->rdev = p->replacement;
6305 		clear_bit(Replacement, &p->replacement->flags);
6306 		smp_mb(); /* Make sure other CPUs may see both as identical
6307 			   * but will never see neither - if they are careful
6308 			   */
6309 		p->replacement = NULL;
6310 		clear_bit(WantReplacement, &rdev->flags);
6311 	} else
6312 		/* We might have just removed the Replacement as faulty-
6313 		 * clear the bit just in case
6314 		 */
6315 		clear_bit(WantReplacement, &rdev->flags);
6316 abort:
6317 
6318 	print_raid5_conf(conf);
6319 	return err;
6320 }
6321 
6322 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6323 {
6324 	struct r5conf *conf = mddev->private;
6325 	int err = -EEXIST;
6326 	int disk;
6327 	struct disk_info *p;
6328 	int first = 0;
6329 	int last = conf->raid_disks - 1;
6330 
6331 	if (mddev->recovery_disabled == conf->recovery_disabled)
6332 		return -EBUSY;
6333 
6334 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6335 		/* no point adding a device */
6336 		return -EINVAL;
6337 
6338 	if (rdev->raid_disk >= 0)
6339 		first = last = rdev->raid_disk;
6340 
6341 	/*
6342 	 * find the disk ... but prefer rdev->saved_raid_disk
6343 	 * if possible.
6344 	 */
6345 	if (rdev->saved_raid_disk >= 0 &&
6346 	    rdev->saved_raid_disk >= first &&
6347 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6348 		first = rdev->saved_raid_disk;
6349 
6350 	for (disk = first; disk <= last; disk++) {
6351 		p = conf->disks + disk;
6352 		if (p->rdev == NULL) {
6353 			clear_bit(In_sync, &rdev->flags);
6354 			rdev->raid_disk = disk;
6355 			err = 0;
6356 			if (rdev->saved_raid_disk != disk)
6357 				conf->fullsync = 1;
6358 			rcu_assign_pointer(p->rdev, rdev);
6359 			goto out;
6360 		}
6361 	}
6362 	for (disk = first; disk <= last; disk++) {
6363 		p = conf->disks + disk;
6364 		if (test_bit(WantReplacement, &p->rdev->flags) &&
6365 		    p->replacement == NULL) {
6366 			clear_bit(In_sync, &rdev->flags);
6367 			set_bit(Replacement, &rdev->flags);
6368 			rdev->raid_disk = disk;
6369 			err = 0;
6370 			conf->fullsync = 1;
6371 			rcu_assign_pointer(p->replacement, rdev);
6372 			break;
6373 		}
6374 	}
6375 out:
6376 	print_raid5_conf(conf);
6377 	return err;
6378 }
6379 
6380 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6381 {
6382 	/* no resync is happening, and there is enough space
6383 	 * on all devices, so we can resize.
6384 	 * We need to make sure resync covers any new space.
6385 	 * If the array is shrinking we should possibly wait until
6386 	 * any io in the removed space completes, but it hardly seems
6387 	 * worth it.
6388 	 */
6389 	sector_t newsize;
6390 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6391 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6392 	if (mddev->external_size &&
6393 	    mddev->array_sectors > newsize)
6394 		return -EINVAL;
6395 	if (mddev->bitmap) {
6396 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6397 		if (ret)
6398 			return ret;
6399 	}
6400 	md_set_array_sectors(mddev, newsize);
6401 	set_capacity(mddev->gendisk, mddev->array_sectors);
6402 	revalidate_disk(mddev->gendisk);
6403 	if (sectors > mddev->dev_sectors &&
6404 	    mddev->recovery_cp > mddev->dev_sectors) {
6405 		mddev->recovery_cp = mddev->dev_sectors;
6406 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6407 	}
6408 	mddev->dev_sectors = sectors;
6409 	mddev->resync_max_sectors = sectors;
6410 	return 0;
6411 }
6412 
6413 static int check_stripe_cache(struct mddev *mddev)
6414 {
6415 	/* Can only proceed if there are plenty of stripe_heads.
6416 	 * We need a minimum of one full stripe,, and for sensible progress
6417 	 * it is best to have about 4 times that.
6418 	 * If we require 4 times, then the default 256 4K stripe_heads will
6419 	 * allow for chunk sizes up to 256K, which is probably OK.
6420 	 * If the chunk size is greater, user-space should request more
6421 	 * stripe_heads first.
6422 	 */
6423 	struct r5conf *conf = mddev->private;
6424 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6425 	    > conf->max_nr_stripes ||
6426 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6427 	    > conf->max_nr_stripes) {
6428 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6429 		       mdname(mddev),
6430 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6431 			/ STRIPE_SIZE)*4);
6432 		return 0;
6433 	}
6434 	return 1;
6435 }
6436 
6437 static int check_reshape(struct mddev *mddev)
6438 {
6439 	struct r5conf *conf = mddev->private;
6440 
6441 	if (mddev->delta_disks == 0 &&
6442 	    mddev->new_layout == mddev->layout &&
6443 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6444 		return 0; /* nothing to do */
6445 	if (has_failed(conf))
6446 		return -EINVAL;
6447 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6448 		/* We might be able to shrink, but the devices must
6449 		 * be made bigger first.
6450 		 * For raid6, 4 is the minimum size.
6451 		 * Otherwise 2 is the minimum
6452 		 */
6453 		int min = 2;
6454 		if (mddev->level == 6)
6455 			min = 4;
6456 		if (mddev->raid_disks + mddev->delta_disks < min)
6457 			return -EINVAL;
6458 	}
6459 
6460 	if (!check_stripe_cache(mddev))
6461 		return -ENOSPC;
6462 
6463 	return resize_stripes(conf, (conf->previous_raid_disks
6464 				     + mddev->delta_disks));
6465 }
6466 
6467 static int raid5_start_reshape(struct mddev *mddev)
6468 {
6469 	struct r5conf *conf = mddev->private;
6470 	struct md_rdev *rdev;
6471 	int spares = 0;
6472 	unsigned long flags;
6473 
6474 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6475 		return -EBUSY;
6476 
6477 	if (!check_stripe_cache(mddev))
6478 		return -ENOSPC;
6479 
6480 	if (has_failed(conf))
6481 		return -EINVAL;
6482 
6483 	rdev_for_each(rdev, mddev) {
6484 		if (!test_bit(In_sync, &rdev->flags)
6485 		    && !test_bit(Faulty, &rdev->flags))
6486 			spares++;
6487 	}
6488 
6489 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6490 		/* Not enough devices even to make a degraded array
6491 		 * of that size
6492 		 */
6493 		return -EINVAL;
6494 
6495 	/* Refuse to reduce size of the array.  Any reductions in
6496 	 * array size must be through explicit setting of array_size
6497 	 * attribute.
6498 	 */
6499 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6500 	    < mddev->array_sectors) {
6501 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6502 		       "before number of disks\n", mdname(mddev));
6503 		return -EINVAL;
6504 	}
6505 
6506 	atomic_set(&conf->reshape_stripes, 0);
6507 	spin_lock_irq(&conf->device_lock);
6508 	write_seqcount_begin(&conf->gen_lock);
6509 	conf->previous_raid_disks = conf->raid_disks;
6510 	conf->raid_disks += mddev->delta_disks;
6511 	conf->prev_chunk_sectors = conf->chunk_sectors;
6512 	conf->chunk_sectors = mddev->new_chunk_sectors;
6513 	conf->prev_algo = conf->algorithm;
6514 	conf->algorithm = mddev->new_layout;
6515 	conf->generation++;
6516 	/* Code that selects data_offset needs to see the generation update
6517 	 * if reshape_progress has been set - so a memory barrier needed.
6518 	 */
6519 	smp_mb();
6520 	if (mddev->reshape_backwards)
6521 		conf->reshape_progress = raid5_size(mddev, 0, 0);
6522 	else
6523 		conf->reshape_progress = 0;
6524 	conf->reshape_safe = conf->reshape_progress;
6525 	write_seqcount_end(&conf->gen_lock);
6526 	spin_unlock_irq(&conf->device_lock);
6527 
6528 	/* Now make sure any requests that proceeded on the assumption
6529 	 * the reshape wasn't running - like Discard or Read - have
6530 	 * completed.
6531 	 */
6532 	mddev_suspend(mddev);
6533 	mddev_resume(mddev);
6534 
6535 	/* Add some new drives, as many as will fit.
6536 	 * We know there are enough to make the newly sized array work.
6537 	 * Don't add devices if we are reducing the number of
6538 	 * devices in the array.  This is because it is not possible
6539 	 * to correctly record the "partially reconstructed" state of
6540 	 * such devices during the reshape and confusion could result.
6541 	 */
6542 	if (mddev->delta_disks >= 0) {
6543 		rdev_for_each(rdev, mddev)
6544 			if (rdev->raid_disk < 0 &&
6545 			    !test_bit(Faulty, &rdev->flags)) {
6546 				if (raid5_add_disk(mddev, rdev) == 0) {
6547 					if (rdev->raid_disk
6548 					    >= conf->previous_raid_disks)
6549 						set_bit(In_sync, &rdev->flags);
6550 					else
6551 						rdev->recovery_offset = 0;
6552 
6553 					if (sysfs_link_rdev(mddev, rdev))
6554 						/* Failure here is OK */;
6555 				}
6556 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6557 				   && !test_bit(Faulty, &rdev->flags)) {
6558 				/* This is a spare that was manually added */
6559 				set_bit(In_sync, &rdev->flags);
6560 			}
6561 
6562 		/* When a reshape changes the number of devices,
6563 		 * ->degraded is measured against the larger of the
6564 		 * pre and post number of devices.
6565 		 */
6566 		spin_lock_irqsave(&conf->device_lock, flags);
6567 		mddev->degraded = calc_degraded(conf);
6568 		spin_unlock_irqrestore(&conf->device_lock, flags);
6569 	}
6570 	mddev->raid_disks = conf->raid_disks;
6571 	mddev->reshape_position = conf->reshape_progress;
6572 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6573 
6574 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6575 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6576 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6577 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6578 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6579 						"reshape");
6580 	if (!mddev->sync_thread) {
6581 		mddev->recovery = 0;
6582 		spin_lock_irq(&conf->device_lock);
6583 		write_seqcount_begin(&conf->gen_lock);
6584 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6585 		mddev->new_chunk_sectors =
6586 			conf->chunk_sectors = conf->prev_chunk_sectors;
6587 		mddev->new_layout = conf->algorithm = conf->prev_algo;
6588 		rdev_for_each(rdev, mddev)
6589 			rdev->new_data_offset = rdev->data_offset;
6590 		smp_wmb();
6591 		conf->generation --;
6592 		conf->reshape_progress = MaxSector;
6593 		mddev->reshape_position = MaxSector;
6594 		write_seqcount_end(&conf->gen_lock);
6595 		spin_unlock_irq(&conf->device_lock);
6596 		return -EAGAIN;
6597 	}
6598 	conf->reshape_checkpoint = jiffies;
6599 	md_wakeup_thread(mddev->sync_thread);
6600 	md_new_event(mddev);
6601 	return 0;
6602 }
6603 
6604 /* This is called from the reshape thread and should make any
6605  * changes needed in 'conf'
6606  */
6607 static void end_reshape(struct r5conf *conf)
6608 {
6609 
6610 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6611 		struct md_rdev *rdev;
6612 
6613 		spin_lock_irq(&conf->device_lock);
6614 		conf->previous_raid_disks = conf->raid_disks;
6615 		rdev_for_each(rdev, conf->mddev)
6616 			rdev->data_offset = rdev->new_data_offset;
6617 		smp_wmb();
6618 		conf->reshape_progress = MaxSector;
6619 		spin_unlock_irq(&conf->device_lock);
6620 		wake_up(&conf->wait_for_overlap);
6621 
6622 		/* read-ahead size must cover two whole stripes, which is
6623 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6624 		 */
6625 		if (conf->mddev->queue) {
6626 			int data_disks = conf->raid_disks - conf->max_degraded;
6627 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6628 						   / PAGE_SIZE);
6629 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6630 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6631 		}
6632 	}
6633 }
6634 
6635 /* This is called from the raid5d thread with mddev_lock held.
6636  * It makes config changes to the device.
6637  */
6638 static void raid5_finish_reshape(struct mddev *mddev)
6639 {
6640 	struct r5conf *conf = mddev->private;
6641 
6642 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6643 
6644 		if (mddev->delta_disks > 0) {
6645 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6646 			set_capacity(mddev->gendisk, mddev->array_sectors);
6647 			revalidate_disk(mddev->gendisk);
6648 		} else {
6649 			int d;
6650 			spin_lock_irq(&conf->device_lock);
6651 			mddev->degraded = calc_degraded(conf);
6652 			spin_unlock_irq(&conf->device_lock);
6653 			for (d = conf->raid_disks ;
6654 			     d < conf->raid_disks - mddev->delta_disks;
6655 			     d++) {
6656 				struct md_rdev *rdev = conf->disks[d].rdev;
6657 				if (rdev)
6658 					clear_bit(In_sync, &rdev->flags);
6659 				rdev = conf->disks[d].replacement;
6660 				if (rdev)
6661 					clear_bit(In_sync, &rdev->flags);
6662 			}
6663 		}
6664 		mddev->layout = conf->algorithm;
6665 		mddev->chunk_sectors = conf->chunk_sectors;
6666 		mddev->reshape_position = MaxSector;
6667 		mddev->delta_disks = 0;
6668 		mddev->reshape_backwards = 0;
6669 	}
6670 }
6671 
6672 static void raid5_quiesce(struct mddev *mddev, int state)
6673 {
6674 	struct r5conf *conf = mddev->private;
6675 
6676 	switch(state) {
6677 	case 2: /* resume for a suspend */
6678 		wake_up(&conf->wait_for_overlap);
6679 		break;
6680 
6681 	case 1: /* stop all writes */
6682 		lock_all_device_hash_locks_irq(conf);
6683 		/* '2' tells resync/reshape to pause so that all
6684 		 * active stripes can drain
6685 		 */
6686 		conf->quiesce = 2;
6687 		wait_event_cmd(conf->wait_for_stripe,
6688 				    atomic_read(&conf->active_stripes) == 0 &&
6689 				    atomic_read(&conf->active_aligned_reads) == 0,
6690 				    unlock_all_device_hash_locks_irq(conf),
6691 				    lock_all_device_hash_locks_irq(conf));
6692 		conf->quiesce = 1;
6693 		unlock_all_device_hash_locks_irq(conf);
6694 		/* allow reshape to continue */
6695 		wake_up(&conf->wait_for_overlap);
6696 		break;
6697 
6698 	case 0: /* re-enable writes */
6699 		lock_all_device_hash_locks_irq(conf);
6700 		conf->quiesce = 0;
6701 		wake_up(&conf->wait_for_stripe);
6702 		wake_up(&conf->wait_for_overlap);
6703 		unlock_all_device_hash_locks_irq(conf);
6704 		break;
6705 	}
6706 }
6707 
6708 
6709 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6710 {
6711 	struct r0conf *raid0_conf = mddev->private;
6712 	sector_t sectors;
6713 
6714 	/* for raid0 takeover only one zone is supported */
6715 	if (raid0_conf->nr_strip_zones > 1) {
6716 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6717 		       mdname(mddev));
6718 		return ERR_PTR(-EINVAL);
6719 	}
6720 
6721 	sectors = raid0_conf->strip_zone[0].zone_end;
6722 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6723 	mddev->dev_sectors = sectors;
6724 	mddev->new_level = level;
6725 	mddev->new_layout = ALGORITHM_PARITY_N;
6726 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6727 	mddev->raid_disks += 1;
6728 	mddev->delta_disks = 1;
6729 	/* make sure it will be not marked as dirty */
6730 	mddev->recovery_cp = MaxSector;
6731 
6732 	return setup_conf(mddev);
6733 }
6734 
6735 
6736 static void *raid5_takeover_raid1(struct mddev *mddev)
6737 {
6738 	int chunksect;
6739 
6740 	if (mddev->raid_disks != 2 ||
6741 	    mddev->degraded > 1)
6742 		return ERR_PTR(-EINVAL);
6743 
6744 	/* Should check if there are write-behind devices? */
6745 
6746 	chunksect = 64*2; /* 64K by default */
6747 
6748 	/* The array must be an exact multiple of chunksize */
6749 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6750 		chunksect >>= 1;
6751 
6752 	if ((chunksect<<9) < STRIPE_SIZE)
6753 		/* array size does not allow a suitable chunk size */
6754 		return ERR_PTR(-EINVAL);
6755 
6756 	mddev->new_level = 5;
6757 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6758 	mddev->new_chunk_sectors = chunksect;
6759 
6760 	return setup_conf(mddev);
6761 }
6762 
6763 static void *raid5_takeover_raid6(struct mddev *mddev)
6764 {
6765 	int new_layout;
6766 
6767 	switch (mddev->layout) {
6768 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6769 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6770 		break;
6771 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6772 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6773 		break;
6774 	case ALGORITHM_LEFT_SYMMETRIC_6:
6775 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6776 		break;
6777 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6778 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6779 		break;
6780 	case ALGORITHM_PARITY_0_6:
6781 		new_layout = ALGORITHM_PARITY_0;
6782 		break;
6783 	case ALGORITHM_PARITY_N:
6784 		new_layout = ALGORITHM_PARITY_N;
6785 		break;
6786 	default:
6787 		return ERR_PTR(-EINVAL);
6788 	}
6789 	mddev->new_level = 5;
6790 	mddev->new_layout = new_layout;
6791 	mddev->delta_disks = -1;
6792 	mddev->raid_disks -= 1;
6793 	return setup_conf(mddev);
6794 }
6795 
6796 
6797 static int raid5_check_reshape(struct mddev *mddev)
6798 {
6799 	/* For a 2-drive array, the layout and chunk size can be changed
6800 	 * immediately as not restriping is needed.
6801 	 * For larger arrays we record the new value - after validation
6802 	 * to be used by a reshape pass.
6803 	 */
6804 	struct r5conf *conf = mddev->private;
6805 	int new_chunk = mddev->new_chunk_sectors;
6806 
6807 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6808 		return -EINVAL;
6809 	if (new_chunk > 0) {
6810 		if (!is_power_of_2(new_chunk))
6811 			return -EINVAL;
6812 		if (new_chunk < (PAGE_SIZE>>9))
6813 			return -EINVAL;
6814 		if (mddev->array_sectors & (new_chunk-1))
6815 			/* not factor of array size */
6816 			return -EINVAL;
6817 	}
6818 
6819 	/* They look valid */
6820 
6821 	if (mddev->raid_disks == 2) {
6822 		/* can make the change immediately */
6823 		if (mddev->new_layout >= 0) {
6824 			conf->algorithm = mddev->new_layout;
6825 			mddev->layout = mddev->new_layout;
6826 		}
6827 		if (new_chunk > 0) {
6828 			conf->chunk_sectors = new_chunk ;
6829 			mddev->chunk_sectors = new_chunk;
6830 		}
6831 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6832 		md_wakeup_thread(mddev->thread);
6833 	}
6834 	return check_reshape(mddev);
6835 }
6836 
6837 static int raid6_check_reshape(struct mddev *mddev)
6838 {
6839 	int new_chunk = mddev->new_chunk_sectors;
6840 
6841 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6842 		return -EINVAL;
6843 	if (new_chunk > 0) {
6844 		if (!is_power_of_2(new_chunk))
6845 			return -EINVAL;
6846 		if (new_chunk < (PAGE_SIZE >> 9))
6847 			return -EINVAL;
6848 		if (mddev->array_sectors & (new_chunk-1))
6849 			/* not factor of array size */
6850 			return -EINVAL;
6851 	}
6852 
6853 	/* They look valid */
6854 	return check_reshape(mddev);
6855 }
6856 
6857 static void *raid5_takeover(struct mddev *mddev)
6858 {
6859 	/* raid5 can take over:
6860 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6861 	 *  raid1 - if there are two drives.  We need to know the chunk size
6862 	 *  raid4 - trivial - just use a raid4 layout.
6863 	 *  raid6 - Providing it is a *_6 layout
6864 	 */
6865 	if (mddev->level == 0)
6866 		return raid45_takeover_raid0(mddev, 5);
6867 	if (mddev->level == 1)
6868 		return raid5_takeover_raid1(mddev);
6869 	if (mddev->level == 4) {
6870 		mddev->new_layout = ALGORITHM_PARITY_N;
6871 		mddev->new_level = 5;
6872 		return setup_conf(mddev);
6873 	}
6874 	if (mddev->level == 6)
6875 		return raid5_takeover_raid6(mddev);
6876 
6877 	return ERR_PTR(-EINVAL);
6878 }
6879 
6880 static void *raid4_takeover(struct mddev *mddev)
6881 {
6882 	/* raid4 can take over:
6883 	 *  raid0 - if there is only one strip zone
6884 	 *  raid5 - if layout is right
6885 	 */
6886 	if (mddev->level == 0)
6887 		return raid45_takeover_raid0(mddev, 4);
6888 	if (mddev->level == 5 &&
6889 	    mddev->layout == ALGORITHM_PARITY_N) {
6890 		mddev->new_layout = 0;
6891 		mddev->new_level = 4;
6892 		return setup_conf(mddev);
6893 	}
6894 	return ERR_PTR(-EINVAL);
6895 }
6896 
6897 static struct md_personality raid5_personality;
6898 
6899 static void *raid6_takeover(struct mddev *mddev)
6900 {
6901 	/* Currently can only take over a raid5.  We map the
6902 	 * personality to an equivalent raid6 personality
6903 	 * with the Q block at the end.
6904 	 */
6905 	int new_layout;
6906 
6907 	if (mddev->pers != &raid5_personality)
6908 		return ERR_PTR(-EINVAL);
6909 	if (mddev->degraded > 1)
6910 		return ERR_PTR(-EINVAL);
6911 	if (mddev->raid_disks > 253)
6912 		return ERR_PTR(-EINVAL);
6913 	if (mddev->raid_disks < 3)
6914 		return ERR_PTR(-EINVAL);
6915 
6916 	switch (mddev->layout) {
6917 	case ALGORITHM_LEFT_ASYMMETRIC:
6918 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6919 		break;
6920 	case ALGORITHM_RIGHT_ASYMMETRIC:
6921 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6922 		break;
6923 	case ALGORITHM_LEFT_SYMMETRIC:
6924 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6925 		break;
6926 	case ALGORITHM_RIGHT_SYMMETRIC:
6927 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6928 		break;
6929 	case ALGORITHM_PARITY_0:
6930 		new_layout = ALGORITHM_PARITY_0_6;
6931 		break;
6932 	case ALGORITHM_PARITY_N:
6933 		new_layout = ALGORITHM_PARITY_N;
6934 		break;
6935 	default:
6936 		return ERR_PTR(-EINVAL);
6937 	}
6938 	mddev->new_level = 6;
6939 	mddev->new_layout = new_layout;
6940 	mddev->delta_disks = 1;
6941 	mddev->raid_disks += 1;
6942 	return setup_conf(mddev);
6943 }
6944 
6945 
6946 static struct md_personality raid6_personality =
6947 {
6948 	.name		= "raid6",
6949 	.level		= 6,
6950 	.owner		= THIS_MODULE,
6951 	.make_request	= make_request,
6952 	.run		= run,
6953 	.stop		= stop,
6954 	.status		= status,
6955 	.error_handler	= error,
6956 	.hot_add_disk	= raid5_add_disk,
6957 	.hot_remove_disk= raid5_remove_disk,
6958 	.spare_active	= raid5_spare_active,
6959 	.sync_request	= sync_request,
6960 	.resize		= raid5_resize,
6961 	.size		= raid5_size,
6962 	.check_reshape	= raid6_check_reshape,
6963 	.start_reshape  = raid5_start_reshape,
6964 	.finish_reshape = raid5_finish_reshape,
6965 	.quiesce	= raid5_quiesce,
6966 	.takeover	= raid6_takeover,
6967 };
6968 static struct md_personality raid5_personality =
6969 {
6970 	.name		= "raid5",
6971 	.level		= 5,
6972 	.owner		= THIS_MODULE,
6973 	.make_request	= make_request,
6974 	.run		= run,
6975 	.stop		= stop,
6976 	.status		= status,
6977 	.error_handler	= error,
6978 	.hot_add_disk	= raid5_add_disk,
6979 	.hot_remove_disk= raid5_remove_disk,
6980 	.spare_active	= raid5_spare_active,
6981 	.sync_request	= sync_request,
6982 	.resize		= raid5_resize,
6983 	.size		= raid5_size,
6984 	.check_reshape	= raid5_check_reshape,
6985 	.start_reshape  = raid5_start_reshape,
6986 	.finish_reshape = raid5_finish_reshape,
6987 	.quiesce	= raid5_quiesce,
6988 	.takeover	= raid5_takeover,
6989 };
6990 
6991 static struct md_personality raid4_personality =
6992 {
6993 	.name		= "raid4",
6994 	.level		= 4,
6995 	.owner		= THIS_MODULE,
6996 	.make_request	= make_request,
6997 	.run		= run,
6998 	.stop		= stop,
6999 	.status		= status,
7000 	.error_handler	= error,
7001 	.hot_add_disk	= raid5_add_disk,
7002 	.hot_remove_disk= raid5_remove_disk,
7003 	.spare_active	= raid5_spare_active,
7004 	.sync_request	= sync_request,
7005 	.resize		= raid5_resize,
7006 	.size		= raid5_size,
7007 	.check_reshape	= raid5_check_reshape,
7008 	.start_reshape  = raid5_start_reshape,
7009 	.finish_reshape = raid5_finish_reshape,
7010 	.quiesce	= raid5_quiesce,
7011 	.takeover	= raid4_takeover,
7012 };
7013 
7014 static int __init raid5_init(void)
7015 {
7016 	raid5_wq = alloc_workqueue("raid5wq",
7017 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7018 	if (!raid5_wq)
7019 		return -ENOMEM;
7020 	register_md_personality(&raid6_personality);
7021 	register_md_personality(&raid5_personality);
7022 	register_md_personality(&raid4_personality);
7023 	return 0;
7024 }
7025 
7026 static void raid5_exit(void)
7027 {
7028 	unregister_md_personality(&raid6_personality);
7029 	unregister_md_personality(&raid5_personality);
7030 	unregister_md_personality(&raid4_personality);
7031 	destroy_workqueue(raid5_wq);
7032 }
7033 
7034 module_init(raid5_init);
7035 module_exit(raid5_exit);
7036 MODULE_LICENSE("GPL");
7037 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7038 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7039 MODULE_ALIAS("md-raid5");
7040 MODULE_ALIAS("md-raid4");
7041 MODULE_ALIAS("md-level-5");
7042 MODULE_ALIAS("md-level-4");
7043 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7044 MODULE_ALIAS("md-raid6");
7045 MODULE_ALIAS("md-level-6");
7046 
7047 /* This used to be two separate modules, they were: */
7048 MODULE_ALIAS("raid5");
7049 MODULE_ALIAS("raid6");
7050