1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <trace/events/block.h> 58 59 #include "md.h" 60 #include "raid5.h" 61 #include "raid0.h" 62 #include "bitmap.h" 63 64 #define cpu_to_group(cpu) cpu_to_node(cpu) 65 #define ANY_GROUP NUMA_NO_NODE 66 67 static struct workqueue_struct *raid5_wq; 68 /* 69 * Stripe cache 70 */ 71 72 #define NR_STRIPES 256 73 #define STRIPE_SIZE PAGE_SIZE 74 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 75 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 76 #define IO_THRESHOLD 1 77 #define BYPASS_THRESHOLD 1 78 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 79 #define HASH_MASK (NR_HASH - 1) 80 #define MAX_STRIPE_BATCH 8 81 82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 83 { 84 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 85 return &conf->stripe_hashtbl[hash]; 86 } 87 88 static inline int stripe_hash_locks_hash(sector_t sect) 89 { 90 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 91 } 92 93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 94 { 95 spin_lock_irq(conf->hash_locks + hash); 96 spin_lock(&conf->device_lock); 97 } 98 99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 100 { 101 spin_unlock(&conf->device_lock); 102 spin_unlock_irq(conf->hash_locks + hash); 103 } 104 105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 106 { 107 int i; 108 local_irq_disable(); 109 spin_lock(conf->hash_locks); 110 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 111 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 112 spin_lock(&conf->device_lock); 113 } 114 115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 116 { 117 int i; 118 spin_unlock(&conf->device_lock); 119 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 120 spin_unlock(conf->hash_locks + i - 1); 121 local_irq_enable(); 122 } 123 124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 125 * order without overlap. There may be several bio's per stripe+device, and 126 * a bio could span several devices. 127 * When walking this list for a particular stripe+device, we must never proceed 128 * beyond a bio that extends past this device, as the next bio might no longer 129 * be valid. 130 * This function is used to determine the 'next' bio in the list, given the sector 131 * of the current stripe+device 132 */ 133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 134 { 135 int sectors = bio_sectors(bio); 136 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) 137 return bio->bi_next; 138 else 139 return NULL; 140 } 141 142 /* 143 * We maintain a biased count of active stripes in the bottom 16 bits of 144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 145 */ 146 static inline int raid5_bi_processed_stripes(struct bio *bio) 147 { 148 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 149 return (atomic_read(segments) >> 16) & 0xffff; 150 } 151 152 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 153 { 154 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 155 return atomic_sub_return(1, segments) & 0xffff; 156 } 157 158 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 159 { 160 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 161 atomic_inc(segments); 162 } 163 164 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 165 unsigned int cnt) 166 { 167 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 168 int old, new; 169 170 do { 171 old = atomic_read(segments); 172 new = (old & 0xffff) | (cnt << 16); 173 } while (atomic_cmpxchg(segments, old, new) != old); 174 } 175 176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 177 { 178 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 179 atomic_set(segments, cnt); 180 } 181 182 /* Find first data disk in a raid6 stripe */ 183 static inline int raid6_d0(struct stripe_head *sh) 184 { 185 if (sh->ddf_layout) 186 /* ddf always start from first device */ 187 return 0; 188 /* md starts just after Q block */ 189 if (sh->qd_idx == sh->disks - 1) 190 return 0; 191 else 192 return sh->qd_idx + 1; 193 } 194 static inline int raid6_next_disk(int disk, int raid_disks) 195 { 196 disk++; 197 return (disk < raid_disks) ? disk : 0; 198 } 199 200 /* When walking through the disks in a raid5, starting at raid6_d0, 201 * We need to map each disk to a 'slot', where the data disks are slot 202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 203 * is raid_disks-1. This help does that mapping. 204 */ 205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 206 int *count, int syndrome_disks) 207 { 208 int slot = *count; 209 210 if (sh->ddf_layout) 211 (*count)++; 212 if (idx == sh->pd_idx) 213 return syndrome_disks; 214 if (idx == sh->qd_idx) 215 return syndrome_disks + 1; 216 if (!sh->ddf_layout) 217 (*count)++; 218 return slot; 219 } 220 221 static void return_io(struct bio *return_bi) 222 { 223 struct bio *bi = return_bi; 224 while (bi) { 225 226 return_bi = bi->bi_next; 227 bi->bi_next = NULL; 228 bi->bi_size = 0; 229 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 230 bi, 0); 231 bio_endio(bi, 0); 232 bi = return_bi; 233 } 234 } 235 236 static void print_raid5_conf (struct r5conf *conf); 237 238 static int stripe_operations_active(struct stripe_head *sh) 239 { 240 return sh->check_state || sh->reconstruct_state || 241 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 242 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 243 } 244 245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 246 { 247 struct r5conf *conf = sh->raid_conf; 248 struct r5worker_group *group; 249 int thread_cnt; 250 int i, cpu = sh->cpu; 251 252 if (!cpu_online(cpu)) { 253 cpu = cpumask_any(cpu_online_mask); 254 sh->cpu = cpu; 255 } 256 257 if (list_empty(&sh->lru)) { 258 struct r5worker_group *group; 259 group = conf->worker_groups + cpu_to_group(cpu); 260 list_add_tail(&sh->lru, &group->handle_list); 261 group->stripes_cnt++; 262 sh->group = group; 263 } 264 265 if (conf->worker_cnt_per_group == 0) { 266 md_wakeup_thread(conf->mddev->thread); 267 return; 268 } 269 270 group = conf->worker_groups + cpu_to_group(sh->cpu); 271 272 group->workers[0].working = true; 273 /* at least one worker should run to avoid race */ 274 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 275 276 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 277 /* wakeup more workers */ 278 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 279 if (group->workers[i].working == false) { 280 group->workers[i].working = true; 281 queue_work_on(sh->cpu, raid5_wq, 282 &group->workers[i].work); 283 thread_cnt--; 284 } 285 } 286 } 287 288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 289 struct list_head *temp_inactive_list) 290 { 291 BUG_ON(!list_empty(&sh->lru)); 292 BUG_ON(atomic_read(&conf->active_stripes)==0); 293 if (test_bit(STRIPE_HANDLE, &sh->state)) { 294 if (test_bit(STRIPE_DELAYED, &sh->state) && 295 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 296 list_add_tail(&sh->lru, &conf->delayed_list); 297 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 298 sh->bm_seq - conf->seq_write > 0) 299 list_add_tail(&sh->lru, &conf->bitmap_list); 300 else { 301 clear_bit(STRIPE_DELAYED, &sh->state); 302 clear_bit(STRIPE_BIT_DELAY, &sh->state); 303 if (conf->worker_cnt_per_group == 0) { 304 list_add_tail(&sh->lru, &conf->handle_list); 305 } else { 306 raid5_wakeup_stripe_thread(sh); 307 return; 308 } 309 } 310 md_wakeup_thread(conf->mddev->thread); 311 } else { 312 BUG_ON(stripe_operations_active(sh)); 313 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 314 if (atomic_dec_return(&conf->preread_active_stripes) 315 < IO_THRESHOLD) 316 md_wakeup_thread(conf->mddev->thread); 317 atomic_dec(&conf->active_stripes); 318 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 319 list_add_tail(&sh->lru, temp_inactive_list); 320 } 321 } 322 323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 324 struct list_head *temp_inactive_list) 325 { 326 if (atomic_dec_and_test(&sh->count)) 327 do_release_stripe(conf, sh, temp_inactive_list); 328 } 329 330 /* 331 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 332 * 333 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 334 * given time. Adding stripes only takes device lock, while deleting stripes 335 * only takes hash lock. 336 */ 337 static void release_inactive_stripe_list(struct r5conf *conf, 338 struct list_head *temp_inactive_list, 339 int hash) 340 { 341 int size; 342 bool do_wakeup = false; 343 unsigned long flags; 344 345 if (hash == NR_STRIPE_HASH_LOCKS) { 346 size = NR_STRIPE_HASH_LOCKS; 347 hash = NR_STRIPE_HASH_LOCKS - 1; 348 } else 349 size = 1; 350 while (size) { 351 struct list_head *list = &temp_inactive_list[size - 1]; 352 353 /* 354 * We don't hold any lock here yet, get_active_stripe() might 355 * remove stripes from the list 356 */ 357 if (!list_empty_careful(list)) { 358 spin_lock_irqsave(conf->hash_locks + hash, flags); 359 if (list_empty(conf->inactive_list + hash) && 360 !list_empty(list)) 361 atomic_dec(&conf->empty_inactive_list_nr); 362 list_splice_tail_init(list, conf->inactive_list + hash); 363 do_wakeup = true; 364 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 365 } 366 size--; 367 hash--; 368 } 369 370 if (do_wakeup) { 371 wake_up(&conf->wait_for_stripe); 372 if (conf->retry_read_aligned) 373 md_wakeup_thread(conf->mddev->thread); 374 } 375 } 376 377 /* should hold conf->device_lock already */ 378 static int release_stripe_list(struct r5conf *conf, 379 struct list_head *temp_inactive_list) 380 { 381 struct stripe_head *sh; 382 int count = 0; 383 struct llist_node *head; 384 385 head = llist_del_all(&conf->released_stripes); 386 head = llist_reverse_order(head); 387 while (head) { 388 int hash; 389 390 sh = llist_entry(head, struct stripe_head, release_list); 391 head = llist_next(head); 392 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 393 smp_mb(); 394 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 395 /* 396 * Don't worry the bit is set here, because if the bit is set 397 * again, the count is always > 1. This is true for 398 * STRIPE_ON_UNPLUG_LIST bit too. 399 */ 400 hash = sh->hash_lock_index; 401 __release_stripe(conf, sh, &temp_inactive_list[hash]); 402 count++; 403 } 404 405 return count; 406 } 407 408 static void release_stripe(struct stripe_head *sh) 409 { 410 struct r5conf *conf = sh->raid_conf; 411 unsigned long flags; 412 struct list_head list; 413 int hash; 414 bool wakeup; 415 416 if (unlikely(!conf->mddev->thread) || 417 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 418 goto slow_path; 419 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 420 if (wakeup) 421 md_wakeup_thread(conf->mddev->thread); 422 return; 423 slow_path: 424 local_irq_save(flags); 425 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 426 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 427 INIT_LIST_HEAD(&list); 428 hash = sh->hash_lock_index; 429 do_release_stripe(conf, sh, &list); 430 spin_unlock(&conf->device_lock); 431 release_inactive_stripe_list(conf, &list, hash); 432 } 433 local_irq_restore(flags); 434 } 435 436 static inline void remove_hash(struct stripe_head *sh) 437 { 438 pr_debug("remove_hash(), stripe %llu\n", 439 (unsigned long long)sh->sector); 440 441 hlist_del_init(&sh->hash); 442 } 443 444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 445 { 446 struct hlist_head *hp = stripe_hash(conf, sh->sector); 447 448 pr_debug("insert_hash(), stripe %llu\n", 449 (unsigned long long)sh->sector); 450 451 hlist_add_head(&sh->hash, hp); 452 } 453 454 455 /* find an idle stripe, make sure it is unhashed, and return it. */ 456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 457 { 458 struct stripe_head *sh = NULL; 459 struct list_head *first; 460 461 if (list_empty(conf->inactive_list + hash)) 462 goto out; 463 first = (conf->inactive_list + hash)->next; 464 sh = list_entry(first, struct stripe_head, lru); 465 list_del_init(first); 466 remove_hash(sh); 467 atomic_inc(&conf->active_stripes); 468 BUG_ON(hash != sh->hash_lock_index); 469 if (list_empty(conf->inactive_list + hash)) 470 atomic_inc(&conf->empty_inactive_list_nr); 471 out: 472 return sh; 473 } 474 475 static void shrink_buffers(struct stripe_head *sh) 476 { 477 struct page *p; 478 int i; 479 int num = sh->raid_conf->pool_size; 480 481 for (i = 0; i < num ; i++) { 482 p = sh->dev[i].page; 483 if (!p) 484 continue; 485 sh->dev[i].page = NULL; 486 put_page(p); 487 } 488 } 489 490 static int grow_buffers(struct stripe_head *sh) 491 { 492 int i; 493 int num = sh->raid_conf->pool_size; 494 495 for (i = 0; i < num; i++) { 496 struct page *page; 497 498 if (!(page = alloc_page(GFP_KERNEL))) { 499 return 1; 500 } 501 sh->dev[i].page = page; 502 } 503 return 0; 504 } 505 506 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 508 struct stripe_head *sh); 509 510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 511 { 512 struct r5conf *conf = sh->raid_conf; 513 int i, seq; 514 515 BUG_ON(atomic_read(&sh->count) != 0); 516 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 517 BUG_ON(stripe_operations_active(sh)); 518 519 pr_debug("init_stripe called, stripe %llu\n", 520 (unsigned long long)sh->sector); 521 522 remove_hash(sh); 523 retry: 524 seq = read_seqcount_begin(&conf->gen_lock); 525 sh->generation = conf->generation - previous; 526 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 527 sh->sector = sector; 528 stripe_set_idx(sector, conf, previous, sh); 529 sh->state = 0; 530 531 532 for (i = sh->disks; i--; ) { 533 struct r5dev *dev = &sh->dev[i]; 534 535 if (dev->toread || dev->read || dev->towrite || dev->written || 536 test_bit(R5_LOCKED, &dev->flags)) { 537 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 538 (unsigned long long)sh->sector, i, dev->toread, 539 dev->read, dev->towrite, dev->written, 540 test_bit(R5_LOCKED, &dev->flags)); 541 WARN_ON(1); 542 } 543 dev->flags = 0; 544 raid5_build_block(sh, i, previous); 545 } 546 if (read_seqcount_retry(&conf->gen_lock, seq)) 547 goto retry; 548 insert_hash(conf, sh); 549 sh->cpu = smp_processor_id(); 550 } 551 552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 553 short generation) 554 { 555 struct stripe_head *sh; 556 557 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 558 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 559 if (sh->sector == sector && sh->generation == generation) 560 return sh; 561 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 562 return NULL; 563 } 564 565 /* 566 * Need to check if array has failed when deciding whether to: 567 * - start an array 568 * - remove non-faulty devices 569 * - add a spare 570 * - allow a reshape 571 * This determination is simple when no reshape is happening. 572 * However if there is a reshape, we need to carefully check 573 * both the before and after sections. 574 * This is because some failed devices may only affect one 575 * of the two sections, and some non-in_sync devices may 576 * be insync in the section most affected by failed devices. 577 */ 578 static int calc_degraded(struct r5conf *conf) 579 { 580 int degraded, degraded2; 581 int i; 582 583 rcu_read_lock(); 584 degraded = 0; 585 for (i = 0; i < conf->previous_raid_disks; i++) { 586 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 587 if (rdev && test_bit(Faulty, &rdev->flags)) 588 rdev = rcu_dereference(conf->disks[i].replacement); 589 if (!rdev || test_bit(Faulty, &rdev->flags)) 590 degraded++; 591 else if (test_bit(In_sync, &rdev->flags)) 592 ; 593 else 594 /* not in-sync or faulty. 595 * If the reshape increases the number of devices, 596 * this is being recovered by the reshape, so 597 * this 'previous' section is not in_sync. 598 * If the number of devices is being reduced however, 599 * the device can only be part of the array if 600 * we are reverting a reshape, so this section will 601 * be in-sync. 602 */ 603 if (conf->raid_disks >= conf->previous_raid_disks) 604 degraded++; 605 } 606 rcu_read_unlock(); 607 if (conf->raid_disks == conf->previous_raid_disks) 608 return degraded; 609 rcu_read_lock(); 610 degraded2 = 0; 611 for (i = 0; i < conf->raid_disks; i++) { 612 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 613 if (rdev && test_bit(Faulty, &rdev->flags)) 614 rdev = rcu_dereference(conf->disks[i].replacement); 615 if (!rdev || test_bit(Faulty, &rdev->flags)) 616 degraded2++; 617 else if (test_bit(In_sync, &rdev->flags)) 618 ; 619 else 620 /* not in-sync or faulty. 621 * If reshape increases the number of devices, this 622 * section has already been recovered, else it 623 * almost certainly hasn't. 624 */ 625 if (conf->raid_disks <= conf->previous_raid_disks) 626 degraded2++; 627 } 628 rcu_read_unlock(); 629 if (degraded2 > degraded) 630 return degraded2; 631 return degraded; 632 } 633 634 static int has_failed(struct r5conf *conf) 635 { 636 int degraded; 637 638 if (conf->mddev->reshape_position == MaxSector) 639 return conf->mddev->degraded > conf->max_degraded; 640 641 degraded = calc_degraded(conf); 642 if (degraded > conf->max_degraded) 643 return 1; 644 return 0; 645 } 646 647 static struct stripe_head * 648 get_active_stripe(struct r5conf *conf, sector_t sector, 649 int previous, int noblock, int noquiesce) 650 { 651 struct stripe_head *sh; 652 int hash = stripe_hash_locks_hash(sector); 653 654 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 655 656 spin_lock_irq(conf->hash_locks + hash); 657 658 do { 659 wait_event_lock_irq(conf->wait_for_stripe, 660 conf->quiesce == 0 || noquiesce, 661 *(conf->hash_locks + hash)); 662 sh = __find_stripe(conf, sector, conf->generation - previous); 663 if (!sh) { 664 if (!conf->inactive_blocked) 665 sh = get_free_stripe(conf, hash); 666 if (noblock && sh == NULL) 667 break; 668 if (!sh) { 669 conf->inactive_blocked = 1; 670 wait_event_lock_irq( 671 conf->wait_for_stripe, 672 !list_empty(conf->inactive_list + hash) && 673 (atomic_read(&conf->active_stripes) 674 < (conf->max_nr_stripes * 3 / 4) 675 || !conf->inactive_blocked), 676 *(conf->hash_locks + hash)); 677 conf->inactive_blocked = 0; 678 } else 679 init_stripe(sh, sector, previous); 680 } else { 681 if (atomic_read(&sh->count)) { 682 BUG_ON(!list_empty(&sh->lru) 683 && !test_bit(STRIPE_EXPANDING, &sh->state) 684 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state) 685 && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state)); 686 } else { 687 spin_lock(&conf->device_lock); 688 if (!test_bit(STRIPE_HANDLE, &sh->state)) 689 atomic_inc(&conf->active_stripes); 690 if (list_empty(&sh->lru) && 691 !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state) && 692 !test_bit(STRIPE_EXPANDING, &sh->state)) 693 BUG(); 694 list_del_init(&sh->lru); 695 if (sh->group) { 696 sh->group->stripes_cnt--; 697 sh->group = NULL; 698 } 699 spin_unlock(&conf->device_lock); 700 } 701 } 702 } while (sh == NULL); 703 704 if (sh) 705 atomic_inc(&sh->count); 706 707 spin_unlock_irq(conf->hash_locks + hash); 708 return sh; 709 } 710 711 /* Determine if 'data_offset' or 'new_data_offset' should be used 712 * in this stripe_head. 713 */ 714 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 715 { 716 sector_t progress = conf->reshape_progress; 717 /* Need a memory barrier to make sure we see the value 718 * of conf->generation, or ->data_offset that was set before 719 * reshape_progress was updated. 720 */ 721 smp_rmb(); 722 if (progress == MaxSector) 723 return 0; 724 if (sh->generation == conf->generation - 1) 725 return 0; 726 /* We are in a reshape, and this is a new-generation stripe, 727 * so use new_data_offset. 728 */ 729 return 1; 730 } 731 732 static void 733 raid5_end_read_request(struct bio *bi, int error); 734 static void 735 raid5_end_write_request(struct bio *bi, int error); 736 737 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 738 { 739 struct r5conf *conf = sh->raid_conf; 740 int i, disks = sh->disks; 741 742 might_sleep(); 743 744 for (i = disks; i--; ) { 745 int rw; 746 int replace_only = 0; 747 struct bio *bi, *rbi; 748 struct md_rdev *rdev, *rrdev = NULL; 749 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 750 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 751 rw = WRITE_FUA; 752 else 753 rw = WRITE; 754 if (test_bit(R5_Discard, &sh->dev[i].flags)) 755 rw |= REQ_DISCARD; 756 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 757 rw = READ; 758 else if (test_and_clear_bit(R5_WantReplace, 759 &sh->dev[i].flags)) { 760 rw = WRITE; 761 replace_only = 1; 762 } else 763 continue; 764 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 765 rw |= REQ_SYNC; 766 767 bi = &sh->dev[i].req; 768 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 769 770 rcu_read_lock(); 771 rrdev = rcu_dereference(conf->disks[i].replacement); 772 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 773 rdev = rcu_dereference(conf->disks[i].rdev); 774 if (!rdev) { 775 rdev = rrdev; 776 rrdev = NULL; 777 } 778 if (rw & WRITE) { 779 if (replace_only) 780 rdev = NULL; 781 if (rdev == rrdev) 782 /* We raced and saw duplicates */ 783 rrdev = NULL; 784 } else { 785 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 786 rdev = rrdev; 787 rrdev = NULL; 788 } 789 790 if (rdev && test_bit(Faulty, &rdev->flags)) 791 rdev = NULL; 792 if (rdev) 793 atomic_inc(&rdev->nr_pending); 794 if (rrdev && test_bit(Faulty, &rrdev->flags)) 795 rrdev = NULL; 796 if (rrdev) 797 atomic_inc(&rrdev->nr_pending); 798 rcu_read_unlock(); 799 800 /* We have already checked bad blocks for reads. Now 801 * need to check for writes. We never accept write errors 802 * on the replacement, so we don't to check rrdev. 803 */ 804 while ((rw & WRITE) && rdev && 805 test_bit(WriteErrorSeen, &rdev->flags)) { 806 sector_t first_bad; 807 int bad_sectors; 808 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 809 &first_bad, &bad_sectors); 810 if (!bad) 811 break; 812 813 if (bad < 0) { 814 set_bit(BlockedBadBlocks, &rdev->flags); 815 if (!conf->mddev->external && 816 conf->mddev->flags) { 817 /* It is very unlikely, but we might 818 * still need to write out the 819 * bad block log - better give it 820 * a chance*/ 821 md_check_recovery(conf->mddev); 822 } 823 /* 824 * Because md_wait_for_blocked_rdev 825 * will dec nr_pending, we must 826 * increment it first. 827 */ 828 atomic_inc(&rdev->nr_pending); 829 md_wait_for_blocked_rdev(rdev, conf->mddev); 830 } else { 831 /* Acknowledged bad block - skip the write */ 832 rdev_dec_pending(rdev, conf->mddev); 833 rdev = NULL; 834 } 835 } 836 837 if (rdev) { 838 if (s->syncing || s->expanding || s->expanded 839 || s->replacing) 840 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 841 842 set_bit(STRIPE_IO_STARTED, &sh->state); 843 844 bio_reset(bi); 845 bi->bi_bdev = rdev->bdev; 846 bi->bi_rw = rw; 847 bi->bi_end_io = (rw & WRITE) 848 ? raid5_end_write_request 849 : raid5_end_read_request; 850 bi->bi_private = sh; 851 852 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 853 __func__, (unsigned long long)sh->sector, 854 bi->bi_rw, i); 855 atomic_inc(&sh->count); 856 if (use_new_offset(conf, sh)) 857 bi->bi_sector = (sh->sector 858 + rdev->new_data_offset); 859 else 860 bi->bi_sector = (sh->sector 861 + rdev->data_offset); 862 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 863 bi->bi_rw |= REQ_NOMERGE; 864 865 bi->bi_vcnt = 1; 866 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 867 bi->bi_io_vec[0].bv_offset = 0; 868 bi->bi_size = STRIPE_SIZE; 869 /* 870 * If this is discard request, set bi_vcnt 0. We don't 871 * want to confuse SCSI because SCSI will replace payload 872 */ 873 if (rw & REQ_DISCARD) 874 bi->bi_vcnt = 0; 875 if (rrdev) 876 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 877 878 if (conf->mddev->gendisk) 879 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 880 bi, disk_devt(conf->mddev->gendisk), 881 sh->dev[i].sector); 882 generic_make_request(bi); 883 } 884 if (rrdev) { 885 if (s->syncing || s->expanding || s->expanded 886 || s->replacing) 887 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 888 889 set_bit(STRIPE_IO_STARTED, &sh->state); 890 891 bio_reset(rbi); 892 rbi->bi_bdev = rrdev->bdev; 893 rbi->bi_rw = rw; 894 BUG_ON(!(rw & WRITE)); 895 rbi->bi_end_io = raid5_end_write_request; 896 rbi->bi_private = sh; 897 898 pr_debug("%s: for %llu schedule op %ld on " 899 "replacement disc %d\n", 900 __func__, (unsigned long long)sh->sector, 901 rbi->bi_rw, i); 902 atomic_inc(&sh->count); 903 if (use_new_offset(conf, sh)) 904 rbi->bi_sector = (sh->sector 905 + rrdev->new_data_offset); 906 else 907 rbi->bi_sector = (sh->sector 908 + rrdev->data_offset); 909 rbi->bi_vcnt = 1; 910 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 911 rbi->bi_io_vec[0].bv_offset = 0; 912 rbi->bi_size = STRIPE_SIZE; 913 /* 914 * If this is discard request, set bi_vcnt 0. We don't 915 * want to confuse SCSI because SCSI will replace payload 916 */ 917 if (rw & REQ_DISCARD) 918 rbi->bi_vcnt = 0; 919 if (conf->mddev->gendisk) 920 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 921 rbi, disk_devt(conf->mddev->gendisk), 922 sh->dev[i].sector); 923 generic_make_request(rbi); 924 } 925 if (!rdev && !rrdev) { 926 if (rw & WRITE) 927 set_bit(STRIPE_DEGRADED, &sh->state); 928 pr_debug("skip op %ld on disc %d for sector %llu\n", 929 bi->bi_rw, i, (unsigned long long)sh->sector); 930 clear_bit(R5_LOCKED, &sh->dev[i].flags); 931 set_bit(STRIPE_HANDLE, &sh->state); 932 } 933 } 934 } 935 936 static struct dma_async_tx_descriptor * 937 async_copy_data(int frombio, struct bio *bio, struct page *page, 938 sector_t sector, struct dma_async_tx_descriptor *tx) 939 { 940 struct bio_vec *bvl; 941 struct page *bio_page; 942 int i; 943 int page_offset; 944 struct async_submit_ctl submit; 945 enum async_tx_flags flags = 0; 946 947 if (bio->bi_sector >= sector) 948 page_offset = (signed)(bio->bi_sector - sector) * 512; 949 else 950 page_offset = (signed)(sector - bio->bi_sector) * -512; 951 952 if (frombio) 953 flags |= ASYNC_TX_FENCE; 954 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 955 956 bio_for_each_segment(bvl, bio, i) { 957 int len = bvl->bv_len; 958 int clen; 959 int b_offset = 0; 960 961 if (page_offset < 0) { 962 b_offset = -page_offset; 963 page_offset += b_offset; 964 len -= b_offset; 965 } 966 967 if (len > 0 && page_offset + len > STRIPE_SIZE) 968 clen = STRIPE_SIZE - page_offset; 969 else 970 clen = len; 971 972 if (clen > 0) { 973 b_offset += bvl->bv_offset; 974 bio_page = bvl->bv_page; 975 if (frombio) 976 tx = async_memcpy(page, bio_page, page_offset, 977 b_offset, clen, &submit); 978 else 979 tx = async_memcpy(bio_page, page, b_offset, 980 page_offset, clen, &submit); 981 } 982 /* chain the operations */ 983 submit.depend_tx = tx; 984 985 if (clen < len) /* hit end of page */ 986 break; 987 page_offset += len; 988 } 989 990 return tx; 991 } 992 993 static void ops_complete_biofill(void *stripe_head_ref) 994 { 995 struct stripe_head *sh = stripe_head_ref; 996 struct bio *return_bi = NULL; 997 int i; 998 999 pr_debug("%s: stripe %llu\n", __func__, 1000 (unsigned long long)sh->sector); 1001 1002 /* clear completed biofills */ 1003 for (i = sh->disks; i--; ) { 1004 struct r5dev *dev = &sh->dev[i]; 1005 1006 /* acknowledge completion of a biofill operation */ 1007 /* and check if we need to reply to a read request, 1008 * new R5_Wantfill requests are held off until 1009 * !STRIPE_BIOFILL_RUN 1010 */ 1011 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1012 struct bio *rbi, *rbi2; 1013 1014 BUG_ON(!dev->read); 1015 rbi = dev->read; 1016 dev->read = NULL; 1017 while (rbi && rbi->bi_sector < 1018 dev->sector + STRIPE_SECTORS) { 1019 rbi2 = r5_next_bio(rbi, dev->sector); 1020 if (!raid5_dec_bi_active_stripes(rbi)) { 1021 rbi->bi_next = return_bi; 1022 return_bi = rbi; 1023 } 1024 rbi = rbi2; 1025 } 1026 } 1027 } 1028 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1029 1030 return_io(return_bi); 1031 1032 set_bit(STRIPE_HANDLE, &sh->state); 1033 release_stripe(sh); 1034 } 1035 1036 static void ops_run_biofill(struct stripe_head *sh) 1037 { 1038 struct dma_async_tx_descriptor *tx = NULL; 1039 struct async_submit_ctl submit; 1040 int i; 1041 1042 pr_debug("%s: stripe %llu\n", __func__, 1043 (unsigned long long)sh->sector); 1044 1045 for (i = sh->disks; i--; ) { 1046 struct r5dev *dev = &sh->dev[i]; 1047 if (test_bit(R5_Wantfill, &dev->flags)) { 1048 struct bio *rbi; 1049 spin_lock_irq(&sh->stripe_lock); 1050 dev->read = rbi = dev->toread; 1051 dev->toread = NULL; 1052 spin_unlock_irq(&sh->stripe_lock); 1053 while (rbi && rbi->bi_sector < 1054 dev->sector + STRIPE_SECTORS) { 1055 tx = async_copy_data(0, rbi, dev->page, 1056 dev->sector, tx); 1057 rbi = r5_next_bio(rbi, dev->sector); 1058 } 1059 } 1060 } 1061 1062 atomic_inc(&sh->count); 1063 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1064 async_trigger_callback(&submit); 1065 } 1066 1067 static void mark_target_uptodate(struct stripe_head *sh, int target) 1068 { 1069 struct r5dev *tgt; 1070 1071 if (target < 0) 1072 return; 1073 1074 tgt = &sh->dev[target]; 1075 set_bit(R5_UPTODATE, &tgt->flags); 1076 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1077 clear_bit(R5_Wantcompute, &tgt->flags); 1078 } 1079 1080 static void ops_complete_compute(void *stripe_head_ref) 1081 { 1082 struct stripe_head *sh = stripe_head_ref; 1083 1084 pr_debug("%s: stripe %llu\n", __func__, 1085 (unsigned long long)sh->sector); 1086 1087 /* mark the computed target(s) as uptodate */ 1088 mark_target_uptodate(sh, sh->ops.target); 1089 mark_target_uptodate(sh, sh->ops.target2); 1090 1091 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1092 if (sh->check_state == check_state_compute_run) 1093 sh->check_state = check_state_compute_result; 1094 set_bit(STRIPE_HANDLE, &sh->state); 1095 release_stripe(sh); 1096 } 1097 1098 /* return a pointer to the address conversion region of the scribble buffer */ 1099 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1100 struct raid5_percpu *percpu) 1101 { 1102 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 1103 } 1104 1105 static struct dma_async_tx_descriptor * 1106 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1107 { 1108 int disks = sh->disks; 1109 struct page **xor_srcs = percpu->scribble; 1110 int target = sh->ops.target; 1111 struct r5dev *tgt = &sh->dev[target]; 1112 struct page *xor_dest = tgt->page; 1113 int count = 0; 1114 struct dma_async_tx_descriptor *tx; 1115 struct async_submit_ctl submit; 1116 int i; 1117 1118 pr_debug("%s: stripe %llu block: %d\n", 1119 __func__, (unsigned long long)sh->sector, target); 1120 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1121 1122 for (i = disks; i--; ) 1123 if (i != target) 1124 xor_srcs[count++] = sh->dev[i].page; 1125 1126 atomic_inc(&sh->count); 1127 1128 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1129 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 1130 if (unlikely(count == 1)) 1131 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1132 else 1133 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1134 1135 return tx; 1136 } 1137 1138 /* set_syndrome_sources - populate source buffers for gen_syndrome 1139 * @srcs - (struct page *) array of size sh->disks 1140 * @sh - stripe_head to parse 1141 * 1142 * Populates srcs in proper layout order for the stripe and returns the 1143 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1144 * destination buffer is recorded in srcs[count] and the Q destination 1145 * is recorded in srcs[count+1]]. 1146 */ 1147 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 1148 { 1149 int disks = sh->disks; 1150 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1151 int d0_idx = raid6_d0(sh); 1152 int count; 1153 int i; 1154 1155 for (i = 0; i < disks; i++) 1156 srcs[i] = NULL; 1157 1158 count = 0; 1159 i = d0_idx; 1160 do { 1161 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1162 1163 srcs[slot] = sh->dev[i].page; 1164 i = raid6_next_disk(i, disks); 1165 } while (i != d0_idx); 1166 1167 return syndrome_disks; 1168 } 1169 1170 static struct dma_async_tx_descriptor * 1171 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1172 { 1173 int disks = sh->disks; 1174 struct page **blocks = percpu->scribble; 1175 int target; 1176 int qd_idx = sh->qd_idx; 1177 struct dma_async_tx_descriptor *tx; 1178 struct async_submit_ctl submit; 1179 struct r5dev *tgt; 1180 struct page *dest; 1181 int i; 1182 int count; 1183 1184 if (sh->ops.target < 0) 1185 target = sh->ops.target2; 1186 else if (sh->ops.target2 < 0) 1187 target = sh->ops.target; 1188 else 1189 /* we should only have one valid target */ 1190 BUG(); 1191 BUG_ON(target < 0); 1192 pr_debug("%s: stripe %llu block: %d\n", 1193 __func__, (unsigned long long)sh->sector, target); 1194 1195 tgt = &sh->dev[target]; 1196 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1197 dest = tgt->page; 1198 1199 atomic_inc(&sh->count); 1200 1201 if (target == qd_idx) { 1202 count = set_syndrome_sources(blocks, sh); 1203 blocks[count] = NULL; /* regenerating p is not necessary */ 1204 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1205 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1206 ops_complete_compute, sh, 1207 to_addr_conv(sh, percpu)); 1208 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1209 } else { 1210 /* Compute any data- or p-drive using XOR */ 1211 count = 0; 1212 for (i = disks; i-- ; ) { 1213 if (i == target || i == qd_idx) 1214 continue; 1215 blocks[count++] = sh->dev[i].page; 1216 } 1217 1218 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1219 NULL, ops_complete_compute, sh, 1220 to_addr_conv(sh, percpu)); 1221 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1222 } 1223 1224 return tx; 1225 } 1226 1227 static struct dma_async_tx_descriptor * 1228 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1229 { 1230 int i, count, disks = sh->disks; 1231 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1232 int d0_idx = raid6_d0(sh); 1233 int faila = -1, failb = -1; 1234 int target = sh->ops.target; 1235 int target2 = sh->ops.target2; 1236 struct r5dev *tgt = &sh->dev[target]; 1237 struct r5dev *tgt2 = &sh->dev[target2]; 1238 struct dma_async_tx_descriptor *tx; 1239 struct page **blocks = percpu->scribble; 1240 struct async_submit_ctl submit; 1241 1242 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1243 __func__, (unsigned long long)sh->sector, target, target2); 1244 BUG_ON(target < 0 || target2 < 0); 1245 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1246 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1247 1248 /* we need to open-code set_syndrome_sources to handle the 1249 * slot number conversion for 'faila' and 'failb' 1250 */ 1251 for (i = 0; i < disks ; i++) 1252 blocks[i] = NULL; 1253 count = 0; 1254 i = d0_idx; 1255 do { 1256 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1257 1258 blocks[slot] = sh->dev[i].page; 1259 1260 if (i == target) 1261 faila = slot; 1262 if (i == target2) 1263 failb = slot; 1264 i = raid6_next_disk(i, disks); 1265 } while (i != d0_idx); 1266 1267 BUG_ON(faila == failb); 1268 if (failb < faila) 1269 swap(faila, failb); 1270 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1271 __func__, (unsigned long long)sh->sector, faila, failb); 1272 1273 atomic_inc(&sh->count); 1274 1275 if (failb == syndrome_disks+1) { 1276 /* Q disk is one of the missing disks */ 1277 if (faila == syndrome_disks) { 1278 /* Missing P+Q, just recompute */ 1279 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1280 ops_complete_compute, sh, 1281 to_addr_conv(sh, percpu)); 1282 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1283 STRIPE_SIZE, &submit); 1284 } else { 1285 struct page *dest; 1286 int data_target; 1287 int qd_idx = sh->qd_idx; 1288 1289 /* Missing D+Q: recompute D from P, then recompute Q */ 1290 if (target == qd_idx) 1291 data_target = target2; 1292 else 1293 data_target = target; 1294 1295 count = 0; 1296 for (i = disks; i-- ; ) { 1297 if (i == data_target || i == qd_idx) 1298 continue; 1299 blocks[count++] = sh->dev[i].page; 1300 } 1301 dest = sh->dev[data_target].page; 1302 init_async_submit(&submit, 1303 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1304 NULL, NULL, NULL, 1305 to_addr_conv(sh, percpu)); 1306 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1307 &submit); 1308 1309 count = set_syndrome_sources(blocks, sh); 1310 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1311 ops_complete_compute, sh, 1312 to_addr_conv(sh, percpu)); 1313 return async_gen_syndrome(blocks, 0, count+2, 1314 STRIPE_SIZE, &submit); 1315 } 1316 } else { 1317 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1318 ops_complete_compute, sh, 1319 to_addr_conv(sh, percpu)); 1320 if (failb == syndrome_disks) { 1321 /* We're missing D+P. */ 1322 return async_raid6_datap_recov(syndrome_disks+2, 1323 STRIPE_SIZE, faila, 1324 blocks, &submit); 1325 } else { 1326 /* We're missing D+D. */ 1327 return async_raid6_2data_recov(syndrome_disks+2, 1328 STRIPE_SIZE, faila, failb, 1329 blocks, &submit); 1330 } 1331 } 1332 } 1333 1334 1335 static void ops_complete_prexor(void *stripe_head_ref) 1336 { 1337 struct stripe_head *sh = stripe_head_ref; 1338 1339 pr_debug("%s: stripe %llu\n", __func__, 1340 (unsigned long long)sh->sector); 1341 } 1342 1343 static struct dma_async_tx_descriptor * 1344 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1345 struct dma_async_tx_descriptor *tx) 1346 { 1347 int disks = sh->disks; 1348 struct page **xor_srcs = percpu->scribble; 1349 int count = 0, pd_idx = sh->pd_idx, i; 1350 struct async_submit_ctl submit; 1351 1352 /* existing parity data subtracted */ 1353 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1354 1355 pr_debug("%s: stripe %llu\n", __func__, 1356 (unsigned long long)sh->sector); 1357 1358 for (i = disks; i--; ) { 1359 struct r5dev *dev = &sh->dev[i]; 1360 /* Only process blocks that are known to be uptodate */ 1361 if (test_bit(R5_Wantdrain, &dev->flags)) 1362 xor_srcs[count++] = dev->page; 1363 } 1364 1365 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1366 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1367 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1368 1369 return tx; 1370 } 1371 1372 static struct dma_async_tx_descriptor * 1373 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1374 { 1375 int disks = sh->disks; 1376 int i; 1377 1378 pr_debug("%s: stripe %llu\n", __func__, 1379 (unsigned long long)sh->sector); 1380 1381 for (i = disks; i--; ) { 1382 struct r5dev *dev = &sh->dev[i]; 1383 struct bio *chosen; 1384 1385 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1386 struct bio *wbi; 1387 1388 spin_lock_irq(&sh->stripe_lock); 1389 chosen = dev->towrite; 1390 dev->towrite = NULL; 1391 BUG_ON(dev->written); 1392 wbi = dev->written = chosen; 1393 spin_unlock_irq(&sh->stripe_lock); 1394 1395 while (wbi && wbi->bi_sector < 1396 dev->sector + STRIPE_SECTORS) { 1397 if (wbi->bi_rw & REQ_FUA) 1398 set_bit(R5_WantFUA, &dev->flags); 1399 if (wbi->bi_rw & REQ_SYNC) 1400 set_bit(R5_SyncIO, &dev->flags); 1401 if (wbi->bi_rw & REQ_DISCARD) 1402 set_bit(R5_Discard, &dev->flags); 1403 else 1404 tx = async_copy_data(1, wbi, dev->page, 1405 dev->sector, tx); 1406 wbi = r5_next_bio(wbi, dev->sector); 1407 } 1408 } 1409 } 1410 1411 return tx; 1412 } 1413 1414 static void ops_complete_reconstruct(void *stripe_head_ref) 1415 { 1416 struct stripe_head *sh = stripe_head_ref; 1417 int disks = sh->disks; 1418 int pd_idx = sh->pd_idx; 1419 int qd_idx = sh->qd_idx; 1420 int i; 1421 bool fua = false, sync = false, discard = false; 1422 1423 pr_debug("%s: stripe %llu\n", __func__, 1424 (unsigned long long)sh->sector); 1425 1426 for (i = disks; i--; ) { 1427 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1428 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1429 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1430 } 1431 1432 for (i = disks; i--; ) { 1433 struct r5dev *dev = &sh->dev[i]; 1434 1435 if (dev->written || i == pd_idx || i == qd_idx) { 1436 if (!discard) 1437 set_bit(R5_UPTODATE, &dev->flags); 1438 if (fua) 1439 set_bit(R5_WantFUA, &dev->flags); 1440 if (sync) 1441 set_bit(R5_SyncIO, &dev->flags); 1442 } 1443 } 1444 1445 if (sh->reconstruct_state == reconstruct_state_drain_run) 1446 sh->reconstruct_state = reconstruct_state_drain_result; 1447 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1448 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1449 else { 1450 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1451 sh->reconstruct_state = reconstruct_state_result; 1452 } 1453 1454 set_bit(STRIPE_HANDLE, &sh->state); 1455 release_stripe(sh); 1456 } 1457 1458 static void 1459 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1460 struct dma_async_tx_descriptor *tx) 1461 { 1462 int disks = sh->disks; 1463 struct page **xor_srcs = percpu->scribble; 1464 struct async_submit_ctl submit; 1465 int count = 0, pd_idx = sh->pd_idx, i; 1466 struct page *xor_dest; 1467 int prexor = 0; 1468 unsigned long flags; 1469 1470 pr_debug("%s: stripe %llu\n", __func__, 1471 (unsigned long long)sh->sector); 1472 1473 for (i = 0; i < sh->disks; i++) { 1474 if (pd_idx == i) 1475 continue; 1476 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1477 break; 1478 } 1479 if (i >= sh->disks) { 1480 atomic_inc(&sh->count); 1481 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1482 ops_complete_reconstruct(sh); 1483 return; 1484 } 1485 /* check if prexor is active which means only process blocks 1486 * that are part of a read-modify-write (written) 1487 */ 1488 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1489 prexor = 1; 1490 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1491 for (i = disks; i--; ) { 1492 struct r5dev *dev = &sh->dev[i]; 1493 if (dev->written) 1494 xor_srcs[count++] = dev->page; 1495 } 1496 } else { 1497 xor_dest = sh->dev[pd_idx].page; 1498 for (i = disks; i--; ) { 1499 struct r5dev *dev = &sh->dev[i]; 1500 if (i != pd_idx) 1501 xor_srcs[count++] = dev->page; 1502 } 1503 } 1504 1505 /* 1/ if we prexor'd then the dest is reused as a source 1506 * 2/ if we did not prexor then we are redoing the parity 1507 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1508 * for the synchronous xor case 1509 */ 1510 flags = ASYNC_TX_ACK | 1511 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1512 1513 atomic_inc(&sh->count); 1514 1515 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1516 to_addr_conv(sh, percpu)); 1517 if (unlikely(count == 1)) 1518 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1519 else 1520 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1521 } 1522 1523 static void 1524 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1525 struct dma_async_tx_descriptor *tx) 1526 { 1527 struct async_submit_ctl submit; 1528 struct page **blocks = percpu->scribble; 1529 int count, i; 1530 1531 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1532 1533 for (i = 0; i < sh->disks; i++) { 1534 if (sh->pd_idx == i || sh->qd_idx == i) 1535 continue; 1536 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1537 break; 1538 } 1539 if (i >= sh->disks) { 1540 atomic_inc(&sh->count); 1541 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1542 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1543 ops_complete_reconstruct(sh); 1544 return; 1545 } 1546 1547 count = set_syndrome_sources(blocks, sh); 1548 1549 atomic_inc(&sh->count); 1550 1551 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1552 sh, to_addr_conv(sh, percpu)); 1553 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1554 } 1555 1556 static void ops_complete_check(void *stripe_head_ref) 1557 { 1558 struct stripe_head *sh = stripe_head_ref; 1559 1560 pr_debug("%s: stripe %llu\n", __func__, 1561 (unsigned long long)sh->sector); 1562 1563 sh->check_state = check_state_check_result; 1564 set_bit(STRIPE_HANDLE, &sh->state); 1565 release_stripe(sh); 1566 } 1567 1568 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1569 { 1570 int disks = sh->disks; 1571 int pd_idx = sh->pd_idx; 1572 int qd_idx = sh->qd_idx; 1573 struct page *xor_dest; 1574 struct page **xor_srcs = percpu->scribble; 1575 struct dma_async_tx_descriptor *tx; 1576 struct async_submit_ctl submit; 1577 int count; 1578 int i; 1579 1580 pr_debug("%s: stripe %llu\n", __func__, 1581 (unsigned long long)sh->sector); 1582 1583 count = 0; 1584 xor_dest = sh->dev[pd_idx].page; 1585 xor_srcs[count++] = xor_dest; 1586 for (i = disks; i--; ) { 1587 if (i == pd_idx || i == qd_idx) 1588 continue; 1589 xor_srcs[count++] = sh->dev[i].page; 1590 } 1591 1592 init_async_submit(&submit, 0, NULL, NULL, NULL, 1593 to_addr_conv(sh, percpu)); 1594 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1595 &sh->ops.zero_sum_result, &submit); 1596 1597 atomic_inc(&sh->count); 1598 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1599 tx = async_trigger_callback(&submit); 1600 } 1601 1602 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1603 { 1604 struct page **srcs = percpu->scribble; 1605 struct async_submit_ctl submit; 1606 int count; 1607 1608 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1609 (unsigned long long)sh->sector, checkp); 1610 1611 count = set_syndrome_sources(srcs, sh); 1612 if (!checkp) 1613 srcs[count] = NULL; 1614 1615 atomic_inc(&sh->count); 1616 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1617 sh, to_addr_conv(sh, percpu)); 1618 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1619 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1620 } 1621 1622 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1623 { 1624 int overlap_clear = 0, i, disks = sh->disks; 1625 struct dma_async_tx_descriptor *tx = NULL; 1626 struct r5conf *conf = sh->raid_conf; 1627 int level = conf->level; 1628 struct raid5_percpu *percpu; 1629 unsigned long cpu; 1630 1631 cpu = get_cpu(); 1632 percpu = per_cpu_ptr(conf->percpu, cpu); 1633 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1634 ops_run_biofill(sh); 1635 overlap_clear++; 1636 } 1637 1638 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1639 if (level < 6) 1640 tx = ops_run_compute5(sh, percpu); 1641 else { 1642 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1643 tx = ops_run_compute6_1(sh, percpu); 1644 else 1645 tx = ops_run_compute6_2(sh, percpu); 1646 } 1647 /* terminate the chain if reconstruct is not set to be run */ 1648 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1649 async_tx_ack(tx); 1650 } 1651 1652 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1653 tx = ops_run_prexor(sh, percpu, tx); 1654 1655 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1656 tx = ops_run_biodrain(sh, tx); 1657 overlap_clear++; 1658 } 1659 1660 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1661 if (level < 6) 1662 ops_run_reconstruct5(sh, percpu, tx); 1663 else 1664 ops_run_reconstruct6(sh, percpu, tx); 1665 } 1666 1667 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1668 if (sh->check_state == check_state_run) 1669 ops_run_check_p(sh, percpu); 1670 else if (sh->check_state == check_state_run_q) 1671 ops_run_check_pq(sh, percpu, 0); 1672 else if (sh->check_state == check_state_run_pq) 1673 ops_run_check_pq(sh, percpu, 1); 1674 else 1675 BUG(); 1676 } 1677 1678 if (overlap_clear) 1679 for (i = disks; i--; ) { 1680 struct r5dev *dev = &sh->dev[i]; 1681 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1682 wake_up(&sh->raid_conf->wait_for_overlap); 1683 } 1684 put_cpu(); 1685 } 1686 1687 static int grow_one_stripe(struct r5conf *conf, int hash) 1688 { 1689 struct stripe_head *sh; 1690 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1691 if (!sh) 1692 return 0; 1693 1694 sh->raid_conf = conf; 1695 1696 spin_lock_init(&sh->stripe_lock); 1697 1698 if (grow_buffers(sh)) { 1699 shrink_buffers(sh); 1700 kmem_cache_free(conf->slab_cache, sh); 1701 return 0; 1702 } 1703 sh->hash_lock_index = hash; 1704 /* we just created an active stripe so... */ 1705 atomic_set(&sh->count, 1); 1706 atomic_inc(&conf->active_stripes); 1707 INIT_LIST_HEAD(&sh->lru); 1708 release_stripe(sh); 1709 return 1; 1710 } 1711 1712 static int grow_stripes(struct r5conf *conf, int num) 1713 { 1714 struct kmem_cache *sc; 1715 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1716 int hash; 1717 1718 if (conf->mddev->gendisk) 1719 sprintf(conf->cache_name[0], 1720 "raid%d-%s", conf->level, mdname(conf->mddev)); 1721 else 1722 sprintf(conf->cache_name[0], 1723 "raid%d-%p", conf->level, conf->mddev); 1724 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1725 1726 conf->active_name = 0; 1727 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1728 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1729 0, 0, NULL); 1730 if (!sc) 1731 return 1; 1732 conf->slab_cache = sc; 1733 conf->pool_size = devs; 1734 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 1735 while (num--) { 1736 if (!grow_one_stripe(conf, hash)) 1737 return 1; 1738 conf->max_nr_stripes++; 1739 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; 1740 } 1741 return 0; 1742 } 1743 1744 /** 1745 * scribble_len - return the required size of the scribble region 1746 * @num - total number of disks in the array 1747 * 1748 * The size must be enough to contain: 1749 * 1/ a struct page pointer for each device in the array +2 1750 * 2/ room to convert each entry in (1) to its corresponding dma 1751 * (dma_map_page()) or page (page_address()) address. 1752 * 1753 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1754 * calculate over all devices (not just the data blocks), using zeros in place 1755 * of the P and Q blocks. 1756 */ 1757 static size_t scribble_len(int num) 1758 { 1759 size_t len; 1760 1761 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1762 1763 return len; 1764 } 1765 1766 static int resize_stripes(struct r5conf *conf, int newsize) 1767 { 1768 /* Make all the stripes able to hold 'newsize' devices. 1769 * New slots in each stripe get 'page' set to a new page. 1770 * 1771 * This happens in stages: 1772 * 1/ create a new kmem_cache and allocate the required number of 1773 * stripe_heads. 1774 * 2/ gather all the old stripe_heads and transfer the pages across 1775 * to the new stripe_heads. This will have the side effect of 1776 * freezing the array as once all stripe_heads have been collected, 1777 * no IO will be possible. Old stripe heads are freed once their 1778 * pages have been transferred over, and the old kmem_cache is 1779 * freed when all stripes are done. 1780 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1781 * we simple return a failre status - no need to clean anything up. 1782 * 4/ allocate new pages for the new slots in the new stripe_heads. 1783 * If this fails, we don't bother trying the shrink the 1784 * stripe_heads down again, we just leave them as they are. 1785 * As each stripe_head is processed the new one is released into 1786 * active service. 1787 * 1788 * Once step2 is started, we cannot afford to wait for a write, 1789 * so we use GFP_NOIO allocations. 1790 */ 1791 struct stripe_head *osh, *nsh; 1792 LIST_HEAD(newstripes); 1793 struct disk_info *ndisks; 1794 unsigned long cpu; 1795 int err; 1796 struct kmem_cache *sc; 1797 int i; 1798 int hash, cnt; 1799 1800 if (newsize <= conf->pool_size) 1801 return 0; /* never bother to shrink */ 1802 1803 err = md_allow_write(conf->mddev); 1804 if (err) 1805 return err; 1806 1807 /* Step 1 */ 1808 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1809 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1810 0, 0, NULL); 1811 if (!sc) 1812 return -ENOMEM; 1813 1814 for (i = conf->max_nr_stripes; i; i--) { 1815 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1816 if (!nsh) 1817 break; 1818 1819 nsh->raid_conf = conf; 1820 spin_lock_init(&nsh->stripe_lock); 1821 1822 list_add(&nsh->lru, &newstripes); 1823 } 1824 if (i) { 1825 /* didn't get enough, give up */ 1826 while (!list_empty(&newstripes)) { 1827 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1828 list_del(&nsh->lru); 1829 kmem_cache_free(sc, nsh); 1830 } 1831 kmem_cache_destroy(sc); 1832 return -ENOMEM; 1833 } 1834 /* Step 2 - Must use GFP_NOIO now. 1835 * OK, we have enough stripes, start collecting inactive 1836 * stripes and copying them over 1837 */ 1838 hash = 0; 1839 cnt = 0; 1840 list_for_each_entry(nsh, &newstripes, lru) { 1841 lock_device_hash_lock(conf, hash); 1842 wait_event_cmd(conf->wait_for_stripe, 1843 !list_empty(conf->inactive_list + hash), 1844 unlock_device_hash_lock(conf, hash), 1845 lock_device_hash_lock(conf, hash)); 1846 osh = get_free_stripe(conf, hash); 1847 unlock_device_hash_lock(conf, hash); 1848 atomic_set(&nsh->count, 1); 1849 for(i=0; i<conf->pool_size; i++) 1850 nsh->dev[i].page = osh->dev[i].page; 1851 for( ; i<newsize; i++) 1852 nsh->dev[i].page = NULL; 1853 nsh->hash_lock_index = hash; 1854 kmem_cache_free(conf->slab_cache, osh); 1855 cnt++; 1856 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 1857 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 1858 hash++; 1859 cnt = 0; 1860 } 1861 } 1862 kmem_cache_destroy(conf->slab_cache); 1863 1864 /* Step 3. 1865 * At this point, we are holding all the stripes so the array 1866 * is completely stalled, so now is a good time to resize 1867 * conf->disks and the scribble region 1868 */ 1869 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1870 if (ndisks) { 1871 for (i=0; i<conf->raid_disks; i++) 1872 ndisks[i] = conf->disks[i]; 1873 kfree(conf->disks); 1874 conf->disks = ndisks; 1875 } else 1876 err = -ENOMEM; 1877 1878 get_online_cpus(); 1879 conf->scribble_len = scribble_len(newsize); 1880 for_each_present_cpu(cpu) { 1881 struct raid5_percpu *percpu; 1882 void *scribble; 1883 1884 percpu = per_cpu_ptr(conf->percpu, cpu); 1885 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1886 1887 if (scribble) { 1888 kfree(percpu->scribble); 1889 percpu->scribble = scribble; 1890 } else { 1891 err = -ENOMEM; 1892 break; 1893 } 1894 } 1895 put_online_cpus(); 1896 1897 /* Step 4, return new stripes to service */ 1898 while(!list_empty(&newstripes)) { 1899 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1900 list_del_init(&nsh->lru); 1901 1902 for (i=conf->raid_disks; i < newsize; i++) 1903 if (nsh->dev[i].page == NULL) { 1904 struct page *p = alloc_page(GFP_NOIO); 1905 nsh->dev[i].page = p; 1906 if (!p) 1907 err = -ENOMEM; 1908 } 1909 release_stripe(nsh); 1910 } 1911 /* critical section pass, GFP_NOIO no longer needed */ 1912 1913 conf->slab_cache = sc; 1914 conf->active_name = 1-conf->active_name; 1915 conf->pool_size = newsize; 1916 return err; 1917 } 1918 1919 static int drop_one_stripe(struct r5conf *conf, int hash) 1920 { 1921 struct stripe_head *sh; 1922 1923 spin_lock_irq(conf->hash_locks + hash); 1924 sh = get_free_stripe(conf, hash); 1925 spin_unlock_irq(conf->hash_locks + hash); 1926 if (!sh) 1927 return 0; 1928 BUG_ON(atomic_read(&sh->count)); 1929 shrink_buffers(sh); 1930 kmem_cache_free(conf->slab_cache, sh); 1931 atomic_dec(&conf->active_stripes); 1932 return 1; 1933 } 1934 1935 static void shrink_stripes(struct r5conf *conf) 1936 { 1937 int hash; 1938 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++) 1939 while (drop_one_stripe(conf, hash)) 1940 ; 1941 1942 if (conf->slab_cache) 1943 kmem_cache_destroy(conf->slab_cache); 1944 conf->slab_cache = NULL; 1945 } 1946 1947 static void raid5_end_read_request(struct bio * bi, int error) 1948 { 1949 struct stripe_head *sh = bi->bi_private; 1950 struct r5conf *conf = sh->raid_conf; 1951 int disks = sh->disks, i; 1952 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1953 char b[BDEVNAME_SIZE]; 1954 struct md_rdev *rdev = NULL; 1955 sector_t s; 1956 1957 for (i=0 ; i<disks; i++) 1958 if (bi == &sh->dev[i].req) 1959 break; 1960 1961 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1962 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1963 uptodate); 1964 if (i == disks) { 1965 BUG(); 1966 return; 1967 } 1968 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1969 /* If replacement finished while this request was outstanding, 1970 * 'replacement' might be NULL already. 1971 * In that case it moved down to 'rdev'. 1972 * rdev is not removed until all requests are finished. 1973 */ 1974 rdev = conf->disks[i].replacement; 1975 if (!rdev) 1976 rdev = conf->disks[i].rdev; 1977 1978 if (use_new_offset(conf, sh)) 1979 s = sh->sector + rdev->new_data_offset; 1980 else 1981 s = sh->sector + rdev->data_offset; 1982 if (uptodate) { 1983 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1984 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1985 /* Note that this cannot happen on a 1986 * replacement device. We just fail those on 1987 * any error 1988 */ 1989 printk_ratelimited( 1990 KERN_INFO 1991 "md/raid:%s: read error corrected" 1992 " (%lu sectors at %llu on %s)\n", 1993 mdname(conf->mddev), STRIPE_SECTORS, 1994 (unsigned long long)s, 1995 bdevname(rdev->bdev, b)); 1996 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 1997 clear_bit(R5_ReadError, &sh->dev[i].flags); 1998 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1999 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2000 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2001 2002 if (atomic_read(&rdev->read_errors)) 2003 atomic_set(&rdev->read_errors, 0); 2004 } else { 2005 const char *bdn = bdevname(rdev->bdev, b); 2006 int retry = 0; 2007 int set_bad = 0; 2008 2009 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2010 atomic_inc(&rdev->read_errors); 2011 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2012 printk_ratelimited( 2013 KERN_WARNING 2014 "md/raid:%s: read error on replacement device " 2015 "(sector %llu on %s).\n", 2016 mdname(conf->mddev), 2017 (unsigned long long)s, 2018 bdn); 2019 else if (conf->mddev->degraded >= conf->max_degraded) { 2020 set_bad = 1; 2021 printk_ratelimited( 2022 KERN_WARNING 2023 "md/raid:%s: read error not correctable " 2024 "(sector %llu on %s).\n", 2025 mdname(conf->mddev), 2026 (unsigned long long)s, 2027 bdn); 2028 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2029 /* Oh, no!!! */ 2030 set_bad = 1; 2031 printk_ratelimited( 2032 KERN_WARNING 2033 "md/raid:%s: read error NOT corrected!! " 2034 "(sector %llu on %s).\n", 2035 mdname(conf->mddev), 2036 (unsigned long long)s, 2037 bdn); 2038 } else if (atomic_read(&rdev->read_errors) 2039 > conf->max_nr_stripes) 2040 printk(KERN_WARNING 2041 "md/raid:%s: Too many read errors, failing device %s.\n", 2042 mdname(conf->mddev), bdn); 2043 else 2044 retry = 1; 2045 if (set_bad && test_bit(In_sync, &rdev->flags) 2046 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2047 retry = 1; 2048 if (retry) 2049 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2050 set_bit(R5_ReadError, &sh->dev[i].flags); 2051 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2052 } else 2053 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2054 else { 2055 clear_bit(R5_ReadError, &sh->dev[i].flags); 2056 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2057 if (!(set_bad 2058 && test_bit(In_sync, &rdev->flags) 2059 && rdev_set_badblocks( 2060 rdev, sh->sector, STRIPE_SECTORS, 0))) 2061 md_error(conf->mddev, rdev); 2062 } 2063 } 2064 rdev_dec_pending(rdev, conf->mddev); 2065 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2066 set_bit(STRIPE_HANDLE, &sh->state); 2067 release_stripe(sh); 2068 } 2069 2070 static void raid5_end_write_request(struct bio *bi, int error) 2071 { 2072 struct stripe_head *sh = bi->bi_private; 2073 struct r5conf *conf = sh->raid_conf; 2074 int disks = sh->disks, i; 2075 struct md_rdev *uninitialized_var(rdev); 2076 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 2077 sector_t first_bad; 2078 int bad_sectors; 2079 int replacement = 0; 2080 2081 for (i = 0 ; i < disks; i++) { 2082 if (bi == &sh->dev[i].req) { 2083 rdev = conf->disks[i].rdev; 2084 break; 2085 } 2086 if (bi == &sh->dev[i].rreq) { 2087 rdev = conf->disks[i].replacement; 2088 if (rdev) 2089 replacement = 1; 2090 else 2091 /* rdev was removed and 'replacement' 2092 * replaced it. rdev is not removed 2093 * until all requests are finished. 2094 */ 2095 rdev = conf->disks[i].rdev; 2096 break; 2097 } 2098 } 2099 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 2100 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2101 uptodate); 2102 if (i == disks) { 2103 BUG(); 2104 return; 2105 } 2106 2107 if (replacement) { 2108 if (!uptodate) 2109 md_error(conf->mddev, rdev); 2110 else if (is_badblock(rdev, sh->sector, 2111 STRIPE_SECTORS, 2112 &first_bad, &bad_sectors)) 2113 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2114 } else { 2115 if (!uptodate) { 2116 set_bit(WriteErrorSeen, &rdev->flags); 2117 set_bit(R5_WriteError, &sh->dev[i].flags); 2118 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2119 set_bit(MD_RECOVERY_NEEDED, 2120 &rdev->mddev->recovery); 2121 } else if (is_badblock(rdev, sh->sector, 2122 STRIPE_SECTORS, 2123 &first_bad, &bad_sectors)) { 2124 set_bit(R5_MadeGood, &sh->dev[i].flags); 2125 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2126 /* That was a successful write so make 2127 * sure it looks like we already did 2128 * a re-write. 2129 */ 2130 set_bit(R5_ReWrite, &sh->dev[i].flags); 2131 } 2132 } 2133 rdev_dec_pending(rdev, conf->mddev); 2134 2135 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2136 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2137 set_bit(STRIPE_HANDLE, &sh->state); 2138 release_stripe(sh); 2139 } 2140 2141 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 2142 2143 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2144 { 2145 struct r5dev *dev = &sh->dev[i]; 2146 2147 bio_init(&dev->req); 2148 dev->req.bi_io_vec = &dev->vec; 2149 dev->req.bi_vcnt++; 2150 dev->req.bi_max_vecs++; 2151 dev->req.bi_private = sh; 2152 dev->vec.bv_page = dev->page; 2153 2154 bio_init(&dev->rreq); 2155 dev->rreq.bi_io_vec = &dev->rvec; 2156 dev->rreq.bi_vcnt++; 2157 dev->rreq.bi_max_vecs++; 2158 dev->rreq.bi_private = sh; 2159 dev->rvec.bv_page = dev->page; 2160 2161 dev->flags = 0; 2162 dev->sector = compute_blocknr(sh, i, previous); 2163 } 2164 2165 static void error(struct mddev *mddev, struct md_rdev *rdev) 2166 { 2167 char b[BDEVNAME_SIZE]; 2168 struct r5conf *conf = mddev->private; 2169 unsigned long flags; 2170 pr_debug("raid456: error called\n"); 2171 2172 spin_lock_irqsave(&conf->device_lock, flags); 2173 clear_bit(In_sync, &rdev->flags); 2174 mddev->degraded = calc_degraded(conf); 2175 spin_unlock_irqrestore(&conf->device_lock, flags); 2176 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2177 2178 set_bit(Blocked, &rdev->flags); 2179 set_bit(Faulty, &rdev->flags); 2180 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2181 printk(KERN_ALERT 2182 "md/raid:%s: Disk failure on %s, disabling device.\n" 2183 "md/raid:%s: Operation continuing on %d devices.\n", 2184 mdname(mddev), 2185 bdevname(rdev->bdev, b), 2186 mdname(mddev), 2187 conf->raid_disks - mddev->degraded); 2188 } 2189 2190 /* 2191 * Input: a 'big' sector number, 2192 * Output: index of the data and parity disk, and the sector # in them. 2193 */ 2194 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2195 int previous, int *dd_idx, 2196 struct stripe_head *sh) 2197 { 2198 sector_t stripe, stripe2; 2199 sector_t chunk_number; 2200 unsigned int chunk_offset; 2201 int pd_idx, qd_idx; 2202 int ddf_layout = 0; 2203 sector_t new_sector; 2204 int algorithm = previous ? conf->prev_algo 2205 : conf->algorithm; 2206 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2207 : conf->chunk_sectors; 2208 int raid_disks = previous ? conf->previous_raid_disks 2209 : conf->raid_disks; 2210 int data_disks = raid_disks - conf->max_degraded; 2211 2212 /* First compute the information on this sector */ 2213 2214 /* 2215 * Compute the chunk number and the sector offset inside the chunk 2216 */ 2217 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2218 chunk_number = r_sector; 2219 2220 /* 2221 * Compute the stripe number 2222 */ 2223 stripe = chunk_number; 2224 *dd_idx = sector_div(stripe, data_disks); 2225 stripe2 = stripe; 2226 /* 2227 * Select the parity disk based on the user selected algorithm. 2228 */ 2229 pd_idx = qd_idx = -1; 2230 switch(conf->level) { 2231 case 4: 2232 pd_idx = data_disks; 2233 break; 2234 case 5: 2235 switch (algorithm) { 2236 case ALGORITHM_LEFT_ASYMMETRIC: 2237 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2238 if (*dd_idx >= pd_idx) 2239 (*dd_idx)++; 2240 break; 2241 case ALGORITHM_RIGHT_ASYMMETRIC: 2242 pd_idx = sector_div(stripe2, raid_disks); 2243 if (*dd_idx >= pd_idx) 2244 (*dd_idx)++; 2245 break; 2246 case ALGORITHM_LEFT_SYMMETRIC: 2247 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2248 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2249 break; 2250 case ALGORITHM_RIGHT_SYMMETRIC: 2251 pd_idx = sector_div(stripe2, raid_disks); 2252 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2253 break; 2254 case ALGORITHM_PARITY_0: 2255 pd_idx = 0; 2256 (*dd_idx)++; 2257 break; 2258 case ALGORITHM_PARITY_N: 2259 pd_idx = data_disks; 2260 break; 2261 default: 2262 BUG(); 2263 } 2264 break; 2265 case 6: 2266 2267 switch (algorithm) { 2268 case ALGORITHM_LEFT_ASYMMETRIC: 2269 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2270 qd_idx = pd_idx + 1; 2271 if (pd_idx == raid_disks-1) { 2272 (*dd_idx)++; /* Q D D D P */ 2273 qd_idx = 0; 2274 } else if (*dd_idx >= pd_idx) 2275 (*dd_idx) += 2; /* D D P Q D */ 2276 break; 2277 case ALGORITHM_RIGHT_ASYMMETRIC: 2278 pd_idx = sector_div(stripe2, raid_disks); 2279 qd_idx = pd_idx + 1; 2280 if (pd_idx == raid_disks-1) { 2281 (*dd_idx)++; /* Q D D D P */ 2282 qd_idx = 0; 2283 } else if (*dd_idx >= pd_idx) 2284 (*dd_idx) += 2; /* D D P Q D */ 2285 break; 2286 case ALGORITHM_LEFT_SYMMETRIC: 2287 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2288 qd_idx = (pd_idx + 1) % raid_disks; 2289 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2290 break; 2291 case ALGORITHM_RIGHT_SYMMETRIC: 2292 pd_idx = sector_div(stripe2, raid_disks); 2293 qd_idx = (pd_idx + 1) % raid_disks; 2294 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2295 break; 2296 2297 case ALGORITHM_PARITY_0: 2298 pd_idx = 0; 2299 qd_idx = 1; 2300 (*dd_idx) += 2; 2301 break; 2302 case ALGORITHM_PARITY_N: 2303 pd_idx = data_disks; 2304 qd_idx = data_disks + 1; 2305 break; 2306 2307 case ALGORITHM_ROTATING_ZERO_RESTART: 2308 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2309 * of blocks for computing Q is different. 2310 */ 2311 pd_idx = sector_div(stripe2, raid_disks); 2312 qd_idx = pd_idx + 1; 2313 if (pd_idx == raid_disks-1) { 2314 (*dd_idx)++; /* Q D D D P */ 2315 qd_idx = 0; 2316 } else if (*dd_idx >= pd_idx) 2317 (*dd_idx) += 2; /* D D P Q D */ 2318 ddf_layout = 1; 2319 break; 2320 2321 case ALGORITHM_ROTATING_N_RESTART: 2322 /* Same a left_asymmetric, by first stripe is 2323 * D D D P Q rather than 2324 * Q D D D P 2325 */ 2326 stripe2 += 1; 2327 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2328 qd_idx = pd_idx + 1; 2329 if (pd_idx == raid_disks-1) { 2330 (*dd_idx)++; /* Q D D D P */ 2331 qd_idx = 0; 2332 } else if (*dd_idx >= pd_idx) 2333 (*dd_idx) += 2; /* D D P Q D */ 2334 ddf_layout = 1; 2335 break; 2336 2337 case ALGORITHM_ROTATING_N_CONTINUE: 2338 /* Same as left_symmetric but Q is before P */ 2339 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2340 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2341 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2342 ddf_layout = 1; 2343 break; 2344 2345 case ALGORITHM_LEFT_ASYMMETRIC_6: 2346 /* RAID5 left_asymmetric, with Q on last device */ 2347 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2348 if (*dd_idx >= pd_idx) 2349 (*dd_idx)++; 2350 qd_idx = raid_disks - 1; 2351 break; 2352 2353 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2354 pd_idx = sector_div(stripe2, raid_disks-1); 2355 if (*dd_idx >= pd_idx) 2356 (*dd_idx)++; 2357 qd_idx = raid_disks - 1; 2358 break; 2359 2360 case ALGORITHM_LEFT_SYMMETRIC_6: 2361 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2362 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2363 qd_idx = raid_disks - 1; 2364 break; 2365 2366 case ALGORITHM_RIGHT_SYMMETRIC_6: 2367 pd_idx = sector_div(stripe2, raid_disks-1); 2368 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2369 qd_idx = raid_disks - 1; 2370 break; 2371 2372 case ALGORITHM_PARITY_0_6: 2373 pd_idx = 0; 2374 (*dd_idx)++; 2375 qd_idx = raid_disks - 1; 2376 break; 2377 2378 default: 2379 BUG(); 2380 } 2381 break; 2382 } 2383 2384 if (sh) { 2385 sh->pd_idx = pd_idx; 2386 sh->qd_idx = qd_idx; 2387 sh->ddf_layout = ddf_layout; 2388 } 2389 /* 2390 * Finally, compute the new sector number 2391 */ 2392 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2393 return new_sector; 2394 } 2395 2396 2397 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2398 { 2399 struct r5conf *conf = sh->raid_conf; 2400 int raid_disks = sh->disks; 2401 int data_disks = raid_disks - conf->max_degraded; 2402 sector_t new_sector = sh->sector, check; 2403 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2404 : conf->chunk_sectors; 2405 int algorithm = previous ? conf->prev_algo 2406 : conf->algorithm; 2407 sector_t stripe; 2408 int chunk_offset; 2409 sector_t chunk_number; 2410 int dummy1, dd_idx = i; 2411 sector_t r_sector; 2412 struct stripe_head sh2; 2413 2414 2415 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2416 stripe = new_sector; 2417 2418 if (i == sh->pd_idx) 2419 return 0; 2420 switch(conf->level) { 2421 case 4: break; 2422 case 5: 2423 switch (algorithm) { 2424 case ALGORITHM_LEFT_ASYMMETRIC: 2425 case ALGORITHM_RIGHT_ASYMMETRIC: 2426 if (i > sh->pd_idx) 2427 i--; 2428 break; 2429 case ALGORITHM_LEFT_SYMMETRIC: 2430 case ALGORITHM_RIGHT_SYMMETRIC: 2431 if (i < sh->pd_idx) 2432 i += raid_disks; 2433 i -= (sh->pd_idx + 1); 2434 break; 2435 case ALGORITHM_PARITY_0: 2436 i -= 1; 2437 break; 2438 case ALGORITHM_PARITY_N: 2439 break; 2440 default: 2441 BUG(); 2442 } 2443 break; 2444 case 6: 2445 if (i == sh->qd_idx) 2446 return 0; /* It is the Q disk */ 2447 switch (algorithm) { 2448 case ALGORITHM_LEFT_ASYMMETRIC: 2449 case ALGORITHM_RIGHT_ASYMMETRIC: 2450 case ALGORITHM_ROTATING_ZERO_RESTART: 2451 case ALGORITHM_ROTATING_N_RESTART: 2452 if (sh->pd_idx == raid_disks-1) 2453 i--; /* Q D D D P */ 2454 else if (i > sh->pd_idx) 2455 i -= 2; /* D D P Q D */ 2456 break; 2457 case ALGORITHM_LEFT_SYMMETRIC: 2458 case ALGORITHM_RIGHT_SYMMETRIC: 2459 if (sh->pd_idx == raid_disks-1) 2460 i--; /* Q D D D P */ 2461 else { 2462 /* D D P Q D */ 2463 if (i < sh->pd_idx) 2464 i += raid_disks; 2465 i -= (sh->pd_idx + 2); 2466 } 2467 break; 2468 case ALGORITHM_PARITY_0: 2469 i -= 2; 2470 break; 2471 case ALGORITHM_PARITY_N: 2472 break; 2473 case ALGORITHM_ROTATING_N_CONTINUE: 2474 /* Like left_symmetric, but P is before Q */ 2475 if (sh->pd_idx == 0) 2476 i--; /* P D D D Q */ 2477 else { 2478 /* D D Q P D */ 2479 if (i < sh->pd_idx) 2480 i += raid_disks; 2481 i -= (sh->pd_idx + 1); 2482 } 2483 break; 2484 case ALGORITHM_LEFT_ASYMMETRIC_6: 2485 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2486 if (i > sh->pd_idx) 2487 i--; 2488 break; 2489 case ALGORITHM_LEFT_SYMMETRIC_6: 2490 case ALGORITHM_RIGHT_SYMMETRIC_6: 2491 if (i < sh->pd_idx) 2492 i += data_disks + 1; 2493 i -= (sh->pd_idx + 1); 2494 break; 2495 case ALGORITHM_PARITY_0_6: 2496 i -= 1; 2497 break; 2498 default: 2499 BUG(); 2500 } 2501 break; 2502 } 2503 2504 chunk_number = stripe * data_disks + i; 2505 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2506 2507 check = raid5_compute_sector(conf, r_sector, 2508 previous, &dummy1, &sh2); 2509 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2510 || sh2.qd_idx != sh->qd_idx) { 2511 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2512 mdname(conf->mddev)); 2513 return 0; 2514 } 2515 return r_sector; 2516 } 2517 2518 2519 static void 2520 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2521 int rcw, int expand) 2522 { 2523 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2524 struct r5conf *conf = sh->raid_conf; 2525 int level = conf->level; 2526 2527 if (rcw) { 2528 2529 for (i = disks; i--; ) { 2530 struct r5dev *dev = &sh->dev[i]; 2531 2532 if (dev->towrite) { 2533 set_bit(R5_LOCKED, &dev->flags); 2534 set_bit(R5_Wantdrain, &dev->flags); 2535 if (!expand) 2536 clear_bit(R5_UPTODATE, &dev->flags); 2537 s->locked++; 2538 } 2539 } 2540 /* if we are not expanding this is a proper write request, and 2541 * there will be bios with new data to be drained into the 2542 * stripe cache 2543 */ 2544 if (!expand) { 2545 if (!s->locked) 2546 /* False alarm, nothing to do */ 2547 return; 2548 sh->reconstruct_state = reconstruct_state_drain_run; 2549 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2550 } else 2551 sh->reconstruct_state = reconstruct_state_run; 2552 2553 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2554 2555 if (s->locked + conf->max_degraded == disks) 2556 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2557 atomic_inc(&conf->pending_full_writes); 2558 } else { 2559 BUG_ON(level == 6); 2560 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2561 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2562 2563 for (i = disks; i--; ) { 2564 struct r5dev *dev = &sh->dev[i]; 2565 if (i == pd_idx) 2566 continue; 2567 2568 if (dev->towrite && 2569 (test_bit(R5_UPTODATE, &dev->flags) || 2570 test_bit(R5_Wantcompute, &dev->flags))) { 2571 set_bit(R5_Wantdrain, &dev->flags); 2572 set_bit(R5_LOCKED, &dev->flags); 2573 clear_bit(R5_UPTODATE, &dev->flags); 2574 s->locked++; 2575 } 2576 } 2577 if (!s->locked) 2578 /* False alarm - nothing to do */ 2579 return; 2580 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2581 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2582 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2583 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2584 } 2585 2586 /* keep the parity disk(s) locked while asynchronous operations 2587 * are in flight 2588 */ 2589 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2590 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2591 s->locked++; 2592 2593 if (level == 6) { 2594 int qd_idx = sh->qd_idx; 2595 struct r5dev *dev = &sh->dev[qd_idx]; 2596 2597 set_bit(R5_LOCKED, &dev->flags); 2598 clear_bit(R5_UPTODATE, &dev->flags); 2599 s->locked++; 2600 } 2601 2602 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2603 __func__, (unsigned long long)sh->sector, 2604 s->locked, s->ops_request); 2605 } 2606 2607 /* 2608 * Each stripe/dev can have one or more bion attached. 2609 * toread/towrite point to the first in a chain. 2610 * The bi_next chain must be in order. 2611 */ 2612 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2613 { 2614 struct bio **bip; 2615 struct r5conf *conf = sh->raid_conf; 2616 int firstwrite=0; 2617 2618 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2619 (unsigned long long)bi->bi_sector, 2620 (unsigned long long)sh->sector); 2621 2622 /* 2623 * If several bio share a stripe. The bio bi_phys_segments acts as a 2624 * reference count to avoid race. The reference count should already be 2625 * increased before this function is called (for example, in 2626 * make_request()), so other bio sharing this stripe will not free the 2627 * stripe. If a stripe is owned by one stripe, the stripe lock will 2628 * protect it. 2629 */ 2630 spin_lock_irq(&sh->stripe_lock); 2631 if (forwrite) { 2632 bip = &sh->dev[dd_idx].towrite; 2633 if (*bip == NULL) 2634 firstwrite = 1; 2635 } else 2636 bip = &sh->dev[dd_idx].toread; 2637 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2638 if (bio_end_sector(*bip) > bi->bi_sector) 2639 goto overlap; 2640 bip = & (*bip)->bi_next; 2641 } 2642 if (*bip && (*bip)->bi_sector < bio_end_sector(bi)) 2643 goto overlap; 2644 2645 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2646 if (*bip) 2647 bi->bi_next = *bip; 2648 *bip = bi; 2649 raid5_inc_bi_active_stripes(bi); 2650 2651 if (forwrite) { 2652 /* check if page is covered */ 2653 sector_t sector = sh->dev[dd_idx].sector; 2654 for (bi=sh->dev[dd_idx].towrite; 2655 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2656 bi && bi->bi_sector <= sector; 2657 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2658 if (bio_end_sector(bi) >= sector) 2659 sector = bio_end_sector(bi); 2660 } 2661 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2662 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2663 } 2664 2665 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2666 (unsigned long long)(*bip)->bi_sector, 2667 (unsigned long long)sh->sector, dd_idx); 2668 spin_unlock_irq(&sh->stripe_lock); 2669 2670 if (conf->mddev->bitmap && firstwrite) { 2671 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2672 STRIPE_SECTORS, 0); 2673 sh->bm_seq = conf->seq_flush+1; 2674 set_bit(STRIPE_BIT_DELAY, &sh->state); 2675 } 2676 return 1; 2677 2678 overlap: 2679 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2680 spin_unlock_irq(&sh->stripe_lock); 2681 return 0; 2682 } 2683 2684 static void end_reshape(struct r5conf *conf); 2685 2686 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2687 struct stripe_head *sh) 2688 { 2689 int sectors_per_chunk = 2690 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2691 int dd_idx; 2692 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2693 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2694 2695 raid5_compute_sector(conf, 2696 stripe * (disks - conf->max_degraded) 2697 *sectors_per_chunk + chunk_offset, 2698 previous, 2699 &dd_idx, sh); 2700 } 2701 2702 static void 2703 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2704 struct stripe_head_state *s, int disks, 2705 struct bio **return_bi) 2706 { 2707 int i; 2708 for (i = disks; i--; ) { 2709 struct bio *bi; 2710 int bitmap_end = 0; 2711 2712 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2713 struct md_rdev *rdev; 2714 rcu_read_lock(); 2715 rdev = rcu_dereference(conf->disks[i].rdev); 2716 if (rdev && test_bit(In_sync, &rdev->flags)) 2717 atomic_inc(&rdev->nr_pending); 2718 else 2719 rdev = NULL; 2720 rcu_read_unlock(); 2721 if (rdev) { 2722 if (!rdev_set_badblocks( 2723 rdev, 2724 sh->sector, 2725 STRIPE_SECTORS, 0)) 2726 md_error(conf->mddev, rdev); 2727 rdev_dec_pending(rdev, conf->mddev); 2728 } 2729 } 2730 spin_lock_irq(&sh->stripe_lock); 2731 /* fail all writes first */ 2732 bi = sh->dev[i].towrite; 2733 sh->dev[i].towrite = NULL; 2734 spin_unlock_irq(&sh->stripe_lock); 2735 if (bi) 2736 bitmap_end = 1; 2737 2738 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2739 wake_up(&conf->wait_for_overlap); 2740 2741 while (bi && bi->bi_sector < 2742 sh->dev[i].sector + STRIPE_SECTORS) { 2743 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2744 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2745 if (!raid5_dec_bi_active_stripes(bi)) { 2746 md_write_end(conf->mddev); 2747 bi->bi_next = *return_bi; 2748 *return_bi = bi; 2749 } 2750 bi = nextbi; 2751 } 2752 if (bitmap_end) 2753 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2754 STRIPE_SECTORS, 0, 0); 2755 bitmap_end = 0; 2756 /* and fail all 'written' */ 2757 bi = sh->dev[i].written; 2758 sh->dev[i].written = NULL; 2759 if (bi) bitmap_end = 1; 2760 while (bi && bi->bi_sector < 2761 sh->dev[i].sector + STRIPE_SECTORS) { 2762 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2763 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2764 if (!raid5_dec_bi_active_stripes(bi)) { 2765 md_write_end(conf->mddev); 2766 bi->bi_next = *return_bi; 2767 *return_bi = bi; 2768 } 2769 bi = bi2; 2770 } 2771 2772 /* fail any reads if this device is non-operational and 2773 * the data has not reached the cache yet. 2774 */ 2775 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2776 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2777 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2778 spin_lock_irq(&sh->stripe_lock); 2779 bi = sh->dev[i].toread; 2780 sh->dev[i].toread = NULL; 2781 spin_unlock_irq(&sh->stripe_lock); 2782 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2783 wake_up(&conf->wait_for_overlap); 2784 while (bi && bi->bi_sector < 2785 sh->dev[i].sector + STRIPE_SECTORS) { 2786 struct bio *nextbi = 2787 r5_next_bio(bi, sh->dev[i].sector); 2788 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2789 if (!raid5_dec_bi_active_stripes(bi)) { 2790 bi->bi_next = *return_bi; 2791 *return_bi = bi; 2792 } 2793 bi = nextbi; 2794 } 2795 } 2796 if (bitmap_end) 2797 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2798 STRIPE_SECTORS, 0, 0); 2799 /* If we were in the middle of a write the parity block might 2800 * still be locked - so just clear all R5_LOCKED flags 2801 */ 2802 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2803 } 2804 2805 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2806 if (atomic_dec_and_test(&conf->pending_full_writes)) 2807 md_wakeup_thread(conf->mddev->thread); 2808 } 2809 2810 static void 2811 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2812 struct stripe_head_state *s) 2813 { 2814 int abort = 0; 2815 int i; 2816 2817 clear_bit(STRIPE_SYNCING, &sh->state); 2818 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 2819 wake_up(&conf->wait_for_overlap); 2820 s->syncing = 0; 2821 s->replacing = 0; 2822 /* There is nothing more to do for sync/check/repair. 2823 * Don't even need to abort as that is handled elsewhere 2824 * if needed, and not always wanted e.g. if there is a known 2825 * bad block here. 2826 * For recover/replace we need to record a bad block on all 2827 * non-sync devices, or abort the recovery 2828 */ 2829 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2830 /* During recovery devices cannot be removed, so 2831 * locking and refcounting of rdevs is not needed 2832 */ 2833 for (i = 0; i < conf->raid_disks; i++) { 2834 struct md_rdev *rdev = conf->disks[i].rdev; 2835 if (rdev 2836 && !test_bit(Faulty, &rdev->flags) 2837 && !test_bit(In_sync, &rdev->flags) 2838 && !rdev_set_badblocks(rdev, sh->sector, 2839 STRIPE_SECTORS, 0)) 2840 abort = 1; 2841 rdev = conf->disks[i].replacement; 2842 if (rdev 2843 && !test_bit(Faulty, &rdev->flags) 2844 && !test_bit(In_sync, &rdev->flags) 2845 && !rdev_set_badblocks(rdev, sh->sector, 2846 STRIPE_SECTORS, 0)) 2847 abort = 1; 2848 } 2849 if (abort) 2850 conf->recovery_disabled = 2851 conf->mddev->recovery_disabled; 2852 } 2853 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2854 } 2855 2856 static int want_replace(struct stripe_head *sh, int disk_idx) 2857 { 2858 struct md_rdev *rdev; 2859 int rv = 0; 2860 /* Doing recovery so rcu locking not required */ 2861 rdev = sh->raid_conf->disks[disk_idx].replacement; 2862 if (rdev 2863 && !test_bit(Faulty, &rdev->flags) 2864 && !test_bit(In_sync, &rdev->flags) 2865 && (rdev->recovery_offset <= sh->sector 2866 || rdev->mddev->recovery_cp <= sh->sector)) 2867 rv = 1; 2868 2869 return rv; 2870 } 2871 2872 /* fetch_block - checks the given member device to see if its data needs 2873 * to be read or computed to satisfy a request. 2874 * 2875 * Returns 1 when no more member devices need to be checked, otherwise returns 2876 * 0 to tell the loop in handle_stripe_fill to continue 2877 */ 2878 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2879 int disk_idx, int disks) 2880 { 2881 struct r5dev *dev = &sh->dev[disk_idx]; 2882 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2883 &sh->dev[s->failed_num[1]] }; 2884 2885 /* is the data in this block needed, and can we get it? */ 2886 if (!test_bit(R5_LOCKED, &dev->flags) && 2887 !test_bit(R5_UPTODATE, &dev->flags) && 2888 (dev->toread || 2889 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2890 s->syncing || s->expanding || 2891 (s->replacing && want_replace(sh, disk_idx)) || 2892 (s->failed >= 1 && fdev[0]->toread) || 2893 (s->failed >= 2 && fdev[1]->toread) || 2894 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2895 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2896 (sh->raid_conf->level == 6 && s->failed && s->to_write))) { 2897 /* we would like to get this block, possibly by computing it, 2898 * otherwise read it if the backing disk is insync 2899 */ 2900 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2901 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2902 if ((s->uptodate == disks - 1) && 2903 (s->failed && (disk_idx == s->failed_num[0] || 2904 disk_idx == s->failed_num[1]))) { 2905 /* have disk failed, and we're requested to fetch it; 2906 * do compute it 2907 */ 2908 pr_debug("Computing stripe %llu block %d\n", 2909 (unsigned long long)sh->sector, disk_idx); 2910 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2911 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2912 set_bit(R5_Wantcompute, &dev->flags); 2913 sh->ops.target = disk_idx; 2914 sh->ops.target2 = -1; /* no 2nd target */ 2915 s->req_compute = 1; 2916 /* Careful: from this point on 'uptodate' is in the eye 2917 * of raid_run_ops which services 'compute' operations 2918 * before writes. R5_Wantcompute flags a block that will 2919 * be R5_UPTODATE by the time it is needed for a 2920 * subsequent operation. 2921 */ 2922 s->uptodate++; 2923 return 1; 2924 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2925 /* Computing 2-failure is *very* expensive; only 2926 * do it if failed >= 2 2927 */ 2928 int other; 2929 for (other = disks; other--; ) { 2930 if (other == disk_idx) 2931 continue; 2932 if (!test_bit(R5_UPTODATE, 2933 &sh->dev[other].flags)) 2934 break; 2935 } 2936 BUG_ON(other < 0); 2937 pr_debug("Computing stripe %llu blocks %d,%d\n", 2938 (unsigned long long)sh->sector, 2939 disk_idx, other); 2940 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2941 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2942 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2943 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2944 sh->ops.target = disk_idx; 2945 sh->ops.target2 = other; 2946 s->uptodate += 2; 2947 s->req_compute = 1; 2948 return 1; 2949 } else if (test_bit(R5_Insync, &dev->flags)) { 2950 set_bit(R5_LOCKED, &dev->flags); 2951 set_bit(R5_Wantread, &dev->flags); 2952 s->locked++; 2953 pr_debug("Reading block %d (sync=%d)\n", 2954 disk_idx, s->syncing); 2955 } 2956 } 2957 2958 return 0; 2959 } 2960 2961 /** 2962 * handle_stripe_fill - read or compute data to satisfy pending requests. 2963 */ 2964 static void handle_stripe_fill(struct stripe_head *sh, 2965 struct stripe_head_state *s, 2966 int disks) 2967 { 2968 int i; 2969 2970 /* look for blocks to read/compute, skip this if a compute 2971 * is already in flight, or if the stripe contents are in the 2972 * midst of changing due to a write 2973 */ 2974 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2975 !sh->reconstruct_state) 2976 for (i = disks; i--; ) 2977 if (fetch_block(sh, s, i, disks)) 2978 break; 2979 set_bit(STRIPE_HANDLE, &sh->state); 2980 } 2981 2982 2983 /* handle_stripe_clean_event 2984 * any written block on an uptodate or failed drive can be returned. 2985 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2986 * never LOCKED, so we don't need to test 'failed' directly. 2987 */ 2988 static void handle_stripe_clean_event(struct r5conf *conf, 2989 struct stripe_head *sh, int disks, struct bio **return_bi) 2990 { 2991 int i; 2992 struct r5dev *dev; 2993 int discard_pending = 0; 2994 2995 for (i = disks; i--; ) 2996 if (sh->dev[i].written) { 2997 dev = &sh->dev[i]; 2998 if (!test_bit(R5_LOCKED, &dev->flags) && 2999 (test_bit(R5_UPTODATE, &dev->flags) || 3000 test_bit(R5_Discard, &dev->flags))) { 3001 /* We can return any write requests */ 3002 struct bio *wbi, *wbi2; 3003 pr_debug("Return write for disc %d\n", i); 3004 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3005 clear_bit(R5_UPTODATE, &dev->flags); 3006 wbi = dev->written; 3007 dev->written = NULL; 3008 while (wbi && wbi->bi_sector < 3009 dev->sector + STRIPE_SECTORS) { 3010 wbi2 = r5_next_bio(wbi, dev->sector); 3011 if (!raid5_dec_bi_active_stripes(wbi)) { 3012 md_write_end(conf->mddev); 3013 wbi->bi_next = *return_bi; 3014 *return_bi = wbi; 3015 } 3016 wbi = wbi2; 3017 } 3018 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3019 STRIPE_SECTORS, 3020 !test_bit(STRIPE_DEGRADED, &sh->state), 3021 0); 3022 } else if (test_bit(R5_Discard, &dev->flags)) 3023 discard_pending = 1; 3024 } 3025 if (!discard_pending && 3026 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3027 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3028 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3029 if (sh->qd_idx >= 0) { 3030 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3031 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3032 } 3033 /* now that discard is done we can proceed with any sync */ 3034 clear_bit(STRIPE_DISCARD, &sh->state); 3035 /* 3036 * SCSI discard will change some bio fields and the stripe has 3037 * no updated data, so remove it from hash list and the stripe 3038 * will be reinitialized 3039 */ 3040 spin_lock_irq(&conf->device_lock); 3041 remove_hash(sh); 3042 spin_unlock_irq(&conf->device_lock); 3043 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3044 set_bit(STRIPE_HANDLE, &sh->state); 3045 3046 } 3047 3048 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3049 if (atomic_dec_and_test(&conf->pending_full_writes)) 3050 md_wakeup_thread(conf->mddev->thread); 3051 } 3052 3053 static void handle_stripe_dirtying(struct r5conf *conf, 3054 struct stripe_head *sh, 3055 struct stripe_head_state *s, 3056 int disks) 3057 { 3058 int rmw = 0, rcw = 0, i; 3059 sector_t recovery_cp = conf->mddev->recovery_cp; 3060 3061 /* RAID6 requires 'rcw' in current implementation. 3062 * Otherwise, check whether resync is now happening or should start. 3063 * If yes, then the array is dirty (after unclean shutdown or 3064 * initial creation), so parity in some stripes might be inconsistent. 3065 * In this case, we need to always do reconstruct-write, to ensure 3066 * that in case of drive failure or read-error correction, we 3067 * generate correct data from the parity. 3068 */ 3069 if (conf->max_degraded == 2 || 3070 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { 3071 /* Calculate the real rcw later - for now make it 3072 * look like rcw is cheaper 3073 */ 3074 rcw = 1; rmw = 2; 3075 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", 3076 conf->max_degraded, (unsigned long long)recovery_cp, 3077 (unsigned long long)sh->sector); 3078 } else for (i = disks; i--; ) { 3079 /* would I have to read this buffer for read_modify_write */ 3080 struct r5dev *dev = &sh->dev[i]; 3081 if ((dev->towrite || i == sh->pd_idx) && 3082 !test_bit(R5_LOCKED, &dev->flags) && 3083 !(test_bit(R5_UPTODATE, &dev->flags) || 3084 test_bit(R5_Wantcompute, &dev->flags))) { 3085 if (test_bit(R5_Insync, &dev->flags)) 3086 rmw++; 3087 else 3088 rmw += 2*disks; /* cannot read it */ 3089 } 3090 /* Would I have to read this buffer for reconstruct_write */ 3091 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 3092 !test_bit(R5_LOCKED, &dev->flags) && 3093 !(test_bit(R5_UPTODATE, &dev->flags) || 3094 test_bit(R5_Wantcompute, &dev->flags))) { 3095 if (test_bit(R5_Insync, &dev->flags)) rcw++; 3096 else 3097 rcw += 2*disks; 3098 } 3099 } 3100 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3101 (unsigned long long)sh->sector, rmw, rcw); 3102 set_bit(STRIPE_HANDLE, &sh->state); 3103 if (rmw < rcw && rmw > 0) { 3104 /* prefer read-modify-write, but need to get some data */ 3105 if (conf->mddev->queue) 3106 blk_add_trace_msg(conf->mddev->queue, 3107 "raid5 rmw %llu %d", 3108 (unsigned long long)sh->sector, rmw); 3109 for (i = disks; i--; ) { 3110 struct r5dev *dev = &sh->dev[i]; 3111 if ((dev->towrite || i == sh->pd_idx) && 3112 !test_bit(R5_LOCKED, &dev->flags) && 3113 !(test_bit(R5_UPTODATE, &dev->flags) || 3114 test_bit(R5_Wantcompute, &dev->flags)) && 3115 test_bit(R5_Insync, &dev->flags)) { 3116 if ( 3117 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 3118 pr_debug("Read_old block " 3119 "%d for r-m-w\n", i); 3120 set_bit(R5_LOCKED, &dev->flags); 3121 set_bit(R5_Wantread, &dev->flags); 3122 s->locked++; 3123 } else { 3124 set_bit(STRIPE_DELAYED, &sh->state); 3125 set_bit(STRIPE_HANDLE, &sh->state); 3126 } 3127 } 3128 } 3129 } 3130 if (rcw <= rmw && rcw > 0) { 3131 /* want reconstruct write, but need to get some data */ 3132 int qread =0; 3133 rcw = 0; 3134 for (i = disks; i--; ) { 3135 struct r5dev *dev = &sh->dev[i]; 3136 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3137 i != sh->pd_idx && i != sh->qd_idx && 3138 !test_bit(R5_LOCKED, &dev->flags) && 3139 !(test_bit(R5_UPTODATE, &dev->flags) || 3140 test_bit(R5_Wantcompute, &dev->flags))) { 3141 rcw++; 3142 if (!test_bit(R5_Insync, &dev->flags)) 3143 continue; /* it's a failed drive */ 3144 if ( 3145 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 3146 pr_debug("Read_old block " 3147 "%d for Reconstruct\n", i); 3148 set_bit(R5_LOCKED, &dev->flags); 3149 set_bit(R5_Wantread, &dev->flags); 3150 s->locked++; 3151 qread++; 3152 } else { 3153 set_bit(STRIPE_DELAYED, &sh->state); 3154 set_bit(STRIPE_HANDLE, &sh->state); 3155 } 3156 } 3157 } 3158 if (rcw && conf->mddev->queue) 3159 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3160 (unsigned long long)sh->sector, 3161 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3162 } 3163 /* now if nothing is locked, and if we have enough data, 3164 * we can start a write request 3165 */ 3166 /* since handle_stripe can be called at any time we need to handle the 3167 * case where a compute block operation has been submitted and then a 3168 * subsequent call wants to start a write request. raid_run_ops only 3169 * handles the case where compute block and reconstruct are requested 3170 * simultaneously. If this is not the case then new writes need to be 3171 * held off until the compute completes. 3172 */ 3173 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3174 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3175 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3176 schedule_reconstruction(sh, s, rcw == 0, 0); 3177 } 3178 3179 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3180 struct stripe_head_state *s, int disks) 3181 { 3182 struct r5dev *dev = NULL; 3183 3184 set_bit(STRIPE_HANDLE, &sh->state); 3185 3186 switch (sh->check_state) { 3187 case check_state_idle: 3188 /* start a new check operation if there are no failures */ 3189 if (s->failed == 0) { 3190 BUG_ON(s->uptodate != disks); 3191 sh->check_state = check_state_run; 3192 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3193 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3194 s->uptodate--; 3195 break; 3196 } 3197 dev = &sh->dev[s->failed_num[0]]; 3198 /* fall through */ 3199 case check_state_compute_result: 3200 sh->check_state = check_state_idle; 3201 if (!dev) 3202 dev = &sh->dev[sh->pd_idx]; 3203 3204 /* check that a write has not made the stripe insync */ 3205 if (test_bit(STRIPE_INSYNC, &sh->state)) 3206 break; 3207 3208 /* either failed parity check, or recovery is happening */ 3209 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3210 BUG_ON(s->uptodate != disks); 3211 3212 set_bit(R5_LOCKED, &dev->flags); 3213 s->locked++; 3214 set_bit(R5_Wantwrite, &dev->flags); 3215 3216 clear_bit(STRIPE_DEGRADED, &sh->state); 3217 set_bit(STRIPE_INSYNC, &sh->state); 3218 break; 3219 case check_state_run: 3220 break; /* we will be called again upon completion */ 3221 case check_state_check_result: 3222 sh->check_state = check_state_idle; 3223 3224 /* if a failure occurred during the check operation, leave 3225 * STRIPE_INSYNC not set and let the stripe be handled again 3226 */ 3227 if (s->failed) 3228 break; 3229 3230 /* handle a successful check operation, if parity is correct 3231 * we are done. Otherwise update the mismatch count and repair 3232 * parity if !MD_RECOVERY_CHECK 3233 */ 3234 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3235 /* parity is correct (on disc, 3236 * not in buffer any more) 3237 */ 3238 set_bit(STRIPE_INSYNC, &sh->state); 3239 else { 3240 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3241 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3242 /* don't try to repair!! */ 3243 set_bit(STRIPE_INSYNC, &sh->state); 3244 else { 3245 sh->check_state = check_state_compute_run; 3246 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3247 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3248 set_bit(R5_Wantcompute, 3249 &sh->dev[sh->pd_idx].flags); 3250 sh->ops.target = sh->pd_idx; 3251 sh->ops.target2 = -1; 3252 s->uptodate++; 3253 } 3254 } 3255 break; 3256 case check_state_compute_run: 3257 break; 3258 default: 3259 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3260 __func__, sh->check_state, 3261 (unsigned long long) sh->sector); 3262 BUG(); 3263 } 3264 } 3265 3266 3267 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3268 struct stripe_head_state *s, 3269 int disks) 3270 { 3271 int pd_idx = sh->pd_idx; 3272 int qd_idx = sh->qd_idx; 3273 struct r5dev *dev; 3274 3275 set_bit(STRIPE_HANDLE, &sh->state); 3276 3277 BUG_ON(s->failed > 2); 3278 3279 /* Want to check and possibly repair P and Q. 3280 * However there could be one 'failed' device, in which 3281 * case we can only check one of them, possibly using the 3282 * other to generate missing data 3283 */ 3284 3285 switch (sh->check_state) { 3286 case check_state_idle: 3287 /* start a new check operation if there are < 2 failures */ 3288 if (s->failed == s->q_failed) { 3289 /* The only possible failed device holds Q, so it 3290 * makes sense to check P (If anything else were failed, 3291 * we would have used P to recreate it). 3292 */ 3293 sh->check_state = check_state_run; 3294 } 3295 if (!s->q_failed && s->failed < 2) { 3296 /* Q is not failed, and we didn't use it to generate 3297 * anything, so it makes sense to check it 3298 */ 3299 if (sh->check_state == check_state_run) 3300 sh->check_state = check_state_run_pq; 3301 else 3302 sh->check_state = check_state_run_q; 3303 } 3304 3305 /* discard potentially stale zero_sum_result */ 3306 sh->ops.zero_sum_result = 0; 3307 3308 if (sh->check_state == check_state_run) { 3309 /* async_xor_zero_sum destroys the contents of P */ 3310 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3311 s->uptodate--; 3312 } 3313 if (sh->check_state >= check_state_run && 3314 sh->check_state <= check_state_run_pq) { 3315 /* async_syndrome_zero_sum preserves P and Q, so 3316 * no need to mark them !uptodate here 3317 */ 3318 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3319 break; 3320 } 3321 3322 /* we have 2-disk failure */ 3323 BUG_ON(s->failed != 2); 3324 /* fall through */ 3325 case check_state_compute_result: 3326 sh->check_state = check_state_idle; 3327 3328 /* check that a write has not made the stripe insync */ 3329 if (test_bit(STRIPE_INSYNC, &sh->state)) 3330 break; 3331 3332 /* now write out any block on a failed drive, 3333 * or P or Q if they were recomputed 3334 */ 3335 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3336 if (s->failed == 2) { 3337 dev = &sh->dev[s->failed_num[1]]; 3338 s->locked++; 3339 set_bit(R5_LOCKED, &dev->flags); 3340 set_bit(R5_Wantwrite, &dev->flags); 3341 } 3342 if (s->failed >= 1) { 3343 dev = &sh->dev[s->failed_num[0]]; 3344 s->locked++; 3345 set_bit(R5_LOCKED, &dev->flags); 3346 set_bit(R5_Wantwrite, &dev->flags); 3347 } 3348 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3349 dev = &sh->dev[pd_idx]; 3350 s->locked++; 3351 set_bit(R5_LOCKED, &dev->flags); 3352 set_bit(R5_Wantwrite, &dev->flags); 3353 } 3354 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3355 dev = &sh->dev[qd_idx]; 3356 s->locked++; 3357 set_bit(R5_LOCKED, &dev->flags); 3358 set_bit(R5_Wantwrite, &dev->flags); 3359 } 3360 clear_bit(STRIPE_DEGRADED, &sh->state); 3361 3362 set_bit(STRIPE_INSYNC, &sh->state); 3363 break; 3364 case check_state_run: 3365 case check_state_run_q: 3366 case check_state_run_pq: 3367 break; /* we will be called again upon completion */ 3368 case check_state_check_result: 3369 sh->check_state = check_state_idle; 3370 3371 /* handle a successful check operation, if parity is correct 3372 * we are done. Otherwise update the mismatch count and repair 3373 * parity if !MD_RECOVERY_CHECK 3374 */ 3375 if (sh->ops.zero_sum_result == 0) { 3376 /* both parities are correct */ 3377 if (!s->failed) 3378 set_bit(STRIPE_INSYNC, &sh->state); 3379 else { 3380 /* in contrast to the raid5 case we can validate 3381 * parity, but still have a failure to write 3382 * back 3383 */ 3384 sh->check_state = check_state_compute_result; 3385 /* Returning at this point means that we may go 3386 * off and bring p and/or q uptodate again so 3387 * we make sure to check zero_sum_result again 3388 * to verify if p or q need writeback 3389 */ 3390 } 3391 } else { 3392 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3393 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3394 /* don't try to repair!! */ 3395 set_bit(STRIPE_INSYNC, &sh->state); 3396 else { 3397 int *target = &sh->ops.target; 3398 3399 sh->ops.target = -1; 3400 sh->ops.target2 = -1; 3401 sh->check_state = check_state_compute_run; 3402 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3403 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3404 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3405 set_bit(R5_Wantcompute, 3406 &sh->dev[pd_idx].flags); 3407 *target = pd_idx; 3408 target = &sh->ops.target2; 3409 s->uptodate++; 3410 } 3411 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3412 set_bit(R5_Wantcompute, 3413 &sh->dev[qd_idx].flags); 3414 *target = qd_idx; 3415 s->uptodate++; 3416 } 3417 } 3418 } 3419 break; 3420 case check_state_compute_run: 3421 break; 3422 default: 3423 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3424 __func__, sh->check_state, 3425 (unsigned long long) sh->sector); 3426 BUG(); 3427 } 3428 } 3429 3430 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3431 { 3432 int i; 3433 3434 /* We have read all the blocks in this stripe and now we need to 3435 * copy some of them into a target stripe for expand. 3436 */ 3437 struct dma_async_tx_descriptor *tx = NULL; 3438 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3439 for (i = 0; i < sh->disks; i++) 3440 if (i != sh->pd_idx && i != sh->qd_idx) { 3441 int dd_idx, j; 3442 struct stripe_head *sh2; 3443 struct async_submit_ctl submit; 3444 3445 sector_t bn = compute_blocknr(sh, i, 1); 3446 sector_t s = raid5_compute_sector(conf, bn, 0, 3447 &dd_idx, NULL); 3448 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3449 if (sh2 == NULL) 3450 /* so far only the early blocks of this stripe 3451 * have been requested. When later blocks 3452 * get requested, we will try again 3453 */ 3454 continue; 3455 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3456 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3457 /* must have already done this block */ 3458 release_stripe(sh2); 3459 continue; 3460 } 3461 3462 /* place all the copies on one channel */ 3463 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3464 tx = async_memcpy(sh2->dev[dd_idx].page, 3465 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3466 &submit); 3467 3468 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3469 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3470 for (j = 0; j < conf->raid_disks; j++) 3471 if (j != sh2->pd_idx && 3472 j != sh2->qd_idx && 3473 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3474 break; 3475 if (j == conf->raid_disks) { 3476 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3477 set_bit(STRIPE_HANDLE, &sh2->state); 3478 } 3479 release_stripe(sh2); 3480 3481 } 3482 /* done submitting copies, wait for them to complete */ 3483 async_tx_quiesce(&tx); 3484 } 3485 3486 /* 3487 * handle_stripe - do things to a stripe. 3488 * 3489 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3490 * state of various bits to see what needs to be done. 3491 * Possible results: 3492 * return some read requests which now have data 3493 * return some write requests which are safely on storage 3494 * schedule a read on some buffers 3495 * schedule a write of some buffers 3496 * return confirmation of parity correctness 3497 * 3498 */ 3499 3500 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3501 { 3502 struct r5conf *conf = sh->raid_conf; 3503 int disks = sh->disks; 3504 struct r5dev *dev; 3505 int i; 3506 int do_recovery = 0; 3507 3508 memset(s, 0, sizeof(*s)); 3509 3510 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3511 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3512 s->failed_num[0] = -1; 3513 s->failed_num[1] = -1; 3514 3515 /* Now to look around and see what can be done */ 3516 rcu_read_lock(); 3517 for (i=disks; i--; ) { 3518 struct md_rdev *rdev; 3519 sector_t first_bad; 3520 int bad_sectors; 3521 int is_bad = 0; 3522 3523 dev = &sh->dev[i]; 3524 3525 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3526 i, dev->flags, 3527 dev->toread, dev->towrite, dev->written); 3528 /* maybe we can reply to a read 3529 * 3530 * new wantfill requests are only permitted while 3531 * ops_complete_biofill is guaranteed to be inactive 3532 */ 3533 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3534 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3535 set_bit(R5_Wantfill, &dev->flags); 3536 3537 /* now count some things */ 3538 if (test_bit(R5_LOCKED, &dev->flags)) 3539 s->locked++; 3540 if (test_bit(R5_UPTODATE, &dev->flags)) 3541 s->uptodate++; 3542 if (test_bit(R5_Wantcompute, &dev->flags)) { 3543 s->compute++; 3544 BUG_ON(s->compute > 2); 3545 } 3546 3547 if (test_bit(R5_Wantfill, &dev->flags)) 3548 s->to_fill++; 3549 else if (dev->toread) 3550 s->to_read++; 3551 if (dev->towrite) { 3552 s->to_write++; 3553 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3554 s->non_overwrite++; 3555 } 3556 if (dev->written) 3557 s->written++; 3558 /* Prefer to use the replacement for reads, but only 3559 * if it is recovered enough and has no bad blocks. 3560 */ 3561 rdev = rcu_dereference(conf->disks[i].replacement); 3562 if (rdev && !test_bit(Faulty, &rdev->flags) && 3563 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3564 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3565 &first_bad, &bad_sectors)) 3566 set_bit(R5_ReadRepl, &dev->flags); 3567 else { 3568 if (rdev) 3569 set_bit(R5_NeedReplace, &dev->flags); 3570 rdev = rcu_dereference(conf->disks[i].rdev); 3571 clear_bit(R5_ReadRepl, &dev->flags); 3572 } 3573 if (rdev && test_bit(Faulty, &rdev->flags)) 3574 rdev = NULL; 3575 if (rdev) { 3576 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3577 &first_bad, &bad_sectors); 3578 if (s->blocked_rdev == NULL 3579 && (test_bit(Blocked, &rdev->flags) 3580 || is_bad < 0)) { 3581 if (is_bad < 0) 3582 set_bit(BlockedBadBlocks, 3583 &rdev->flags); 3584 s->blocked_rdev = rdev; 3585 atomic_inc(&rdev->nr_pending); 3586 } 3587 } 3588 clear_bit(R5_Insync, &dev->flags); 3589 if (!rdev) 3590 /* Not in-sync */; 3591 else if (is_bad) { 3592 /* also not in-sync */ 3593 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3594 test_bit(R5_UPTODATE, &dev->flags)) { 3595 /* treat as in-sync, but with a read error 3596 * which we can now try to correct 3597 */ 3598 set_bit(R5_Insync, &dev->flags); 3599 set_bit(R5_ReadError, &dev->flags); 3600 } 3601 } else if (test_bit(In_sync, &rdev->flags)) 3602 set_bit(R5_Insync, &dev->flags); 3603 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3604 /* in sync if before recovery_offset */ 3605 set_bit(R5_Insync, &dev->flags); 3606 else if (test_bit(R5_UPTODATE, &dev->flags) && 3607 test_bit(R5_Expanded, &dev->flags)) 3608 /* If we've reshaped into here, we assume it is Insync. 3609 * We will shortly update recovery_offset to make 3610 * it official. 3611 */ 3612 set_bit(R5_Insync, &dev->flags); 3613 3614 if (rdev && test_bit(R5_WriteError, &dev->flags)) { 3615 /* This flag does not apply to '.replacement' 3616 * only to .rdev, so make sure to check that*/ 3617 struct md_rdev *rdev2 = rcu_dereference( 3618 conf->disks[i].rdev); 3619 if (rdev2 == rdev) 3620 clear_bit(R5_Insync, &dev->flags); 3621 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3622 s->handle_bad_blocks = 1; 3623 atomic_inc(&rdev2->nr_pending); 3624 } else 3625 clear_bit(R5_WriteError, &dev->flags); 3626 } 3627 if (rdev && test_bit(R5_MadeGood, &dev->flags)) { 3628 /* This flag does not apply to '.replacement' 3629 * only to .rdev, so make sure to check that*/ 3630 struct md_rdev *rdev2 = rcu_dereference( 3631 conf->disks[i].rdev); 3632 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3633 s->handle_bad_blocks = 1; 3634 atomic_inc(&rdev2->nr_pending); 3635 } else 3636 clear_bit(R5_MadeGood, &dev->flags); 3637 } 3638 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3639 struct md_rdev *rdev2 = rcu_dereference( 3640 conf->disks[i].replacement); 3641 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3642 s->handle_bad_blocks = 1; 3643 atomic_inc(&rdev2->nr_pending); 3644 } else 3645 clear_bit(R5_MadeGoodRepl, &dev->flags); 3646 } 3647 if (!test_bit(R5_Insync, &dev->flags)) { 3648 /* The ReadError flag will just be confusing now */ 3649 clear_bit(R5_ReadError, &dev->flags); 3650 clear_bit(R5_ReWrite, &dev->flags); 3651 } 3652 if (test_bit(R5_ReadError, &dev->flags)) 3653 clear_bit(R5_Insync, &dev->flags); 3654 if (!test_bit(R5_Insync, &dev->flags)) { 3655 if (s->failed < 2) 3656 s->failed_num[s->failed] = i; 3657 s->failed++; 3658 if (rdev && !test_bit(Faulty, &rdev->flags)) 3659 do_recovery = 1; 3660 } 3661 } 3662 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3663 /* If there is a failed device being replaced, 3664 * we must be recovering. 3665 * else if we are after recovery_cp, we must be syncing 3666 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3667 * else we can only be replacing 3668 * sync and recovery both need to read all devices, and so 3669 * use the same flag. 3670 */ 3671 if (do_recovery || 3672 sh->sector >= conf->mddev->recovery_cp || 3673 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3674 s->syncing = 1; 3675 else 3676 s->replacing = 1; 3677 } 3678 rcu_read_unlock(); 3679 } 3680 3681 static void handle_stripe(struct stripe_head *sh) 3682 { 3683 struct stripe_head_state s; 3684 struct r5conf *conf = sh->raid_conf; 3685 int i; 3686 int prexor; 3687 int disks = sh->disks; 3688 struct r5dev *pdev, *qdev; 3689 3690 clear_bit(STRIPE_HANDLE, &sh->state); 3691 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3692 /* already being handled, ensure it gets handled 3693 * again when current action finishes */ 3694 set_bit(STRIPE_HANDLE, &sh->state); 3695 return; 3696 } 3697 3698 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3699 spin_lock(&sh->stripe_lock); 3700 /* Cannot process 'sync' concurrently with 'discard' */ 3701 if (!test_bit(STRIPE_DISCARD, &sh->state) && 3702 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3703 set_bit(STRIPE_SYNCING, &sh->state); 3704 clear_bit(STRIPE_INSYNC, &sh->state); 3705 clear_bit(STRIPE_REPLACED, &sh->state); 3706 } 3707 spin_unlock(&sh->stripe_lock); 3708 } 3709 clear_bit(STRIPE_DELAYED, &sh->state); 3710 3711 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3712 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3713 (unsigned long long)sh->sector, sh->state, 3714 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3715 sh->check_state, sh->reconstruct_state); 3716 3717 analyse_stripe(sh, &s); 3718 3719 if (s.handle_bad_blocks) { 3720 set_bit(STRIPE_HANDLE, &sh->state); 3721 goto finish; 3722 } 3723 3724 if (unlikely(s.blocked_rdev)) { 3725 if (s.syncing || s.expanding || s.expanded || 3726 s.replacing || s.to_write || s.written) { 3727 set_bit(STRIPE_HANDLE, &sh->state); 3728 goto finish; 3729 } 3730 /* There is nothing for the blocked_rdev to block */ 3731 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3732 s.blocked_rdev = NULL; 3733 } 3734 3735 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3736 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3737 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3738 } 3739 3740 pr_debug("locked=%d uptodate=%d to_read=%d" 3741 " to_write=%d failed=%d failed_num=%d,%d\n", 3742 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3743 s.failed_num[0], s.failed_num[1]); 3744 /* check if the array has lost more than max_degraded devices and, 3745 * if so, some requests might need to be failed. 3746 */ 3747 if (s.failed > conf->max_degraded) { 3748 sh->check_state = 0; 3749 sh->reconstruct_state = 0; 3750 if (s.to_read+s.to_write+s.written) 3751 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3752 if (s.syncing + s.replacing) 3753 handle_failed_sync(conf, sh, &s); 3754 } 3755 3756 /* Now we check to see if any write operations have recently 3757 * completed 3758 */ 3759 prexor = 0; 3760 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3761 prexor = 1; 3762 if (sh->reconstruct_state == reconstruct_state_drain_result || 3763 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3764 sh->reconstruct_state = reconstruct_state_idle; 3765 3766 /* All the 'written' buffers and the parity block are ready to 3767 * be written back to disk 3768 */ 3769 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 3770 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 3771 BUG_ON(sh->qd_idx >= 0 && 3772 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 3773 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 3774 for (i = disks; i--; ) { 3775 struct r5dev *dev = &sh->dev[i]; 3776 if (test_bit(R5_LOCKED, &dev->flags) && 3777 (i == sh->pd_idx || i == sh->qd_idx || 3778 dev->written)) { 3779 pr_debug("Writing block %d\n", i); 3780 set_bit(R5_Wantwrite, &dev->flags); 3781 if (prexor) 3782 continue; 3783 if (!test_bit(R5_Insync, &dev->flags) || 3784 ((i == sh->pd_idx || i == sh->qd_idx) && 3785 s.failed == 0)) 3786 set_bit(STRIPE_INSYNC, &sh->state); 3787 } 3788 } 3789 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3790 s.dec_preread_active = 1; 3791 } 3792 3793 /* 3794 * might be able to return some write requests if the parity blocks 3795 * are safe, or on a failed drive 3796 */ 3797 pdev = &sh->dev[sh->pd_idx]; 3798 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3799 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3800 qdev = &sh->dev[sh->qd_idx]; 3801 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3802 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3803 || conf->level < 6; 3804 3805 if (s.written && 3806 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3807 && !test_bit(R5_LOCKED, &pdev->flags) 3808 && (test_bit(R5_UPTODATE, &pdev->flags) || 3809 test_bit(R5_Discard, &pdev->flags))))) && 3810 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3811 && !test_bit(R5_LOCKED, &qdev->flags) 3812 && (test_bit(R5_UPTODATE, &qdev->flags) || 3813 test_bit(R5_Discard, &qdev->flags)))))) 3814 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3815 3816 /* Now we might consider reading some blocks, either to check/generate 3817 * parity, or to satisfy requests 3818 * or to load a block that is being partially written. 3819 */ 3820 if (s.to_read || s.non_overwrite 3821 || (conf->level == 6 && s.to_write && s.failed) 3822 || (s.syncing && (s.uptodate + s.compute < disks)) 3823 || s.replacing 3824 || s.expanding) 3825 handle_stripe_fill(sh, &s, disks); 3826 3827 /* Now to consider new write requests and what else, if anything 3828 * should be read. We do not handle new writes when: 3829 * 1/ A 'write' operation (copy+xor) is already in flight. 3830 * 2/ A 'check' operation is in flight, as it may clobber the parity 3831 * block. 3832 */ 3833 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3834 handle_stripe_dirtying(conf, sh, &s, disks); 3835 3836 /* maybe we need to check and possibly fix the parity for this stripe 3837 * Any reads will already have been scheduled, so we just see if enough 3838 * data is available. The parity check is held off while parity 3839 * dependent operations are in flight. 3840 */ 3841 if (sh->check_state || 3842 (s.syncing && s.locked == 0 && 3843 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3844 !test_bit(STRIPE_INSYNC, &sh->state))) { 3845 if (conf->level == 6) 3846 handle_parity_checks6(conf, sh, &s, disks); 3847 else 3848 handle_parity_checks5(conf, sh, &s, disks); 3849 } 3850 3851 if ((s.replacing || s.syncing) && s.locked == 0 3852 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 3853 && !test_bit(STRIPE_REPLACED, &sh->state)) { 3854 /* Write out to replacement devices where possible */ 3855 for (i = 0; i < conf->raid_disks; i++) 3856 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3857 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3858 set_bit(R5_WantReplace, &sh->dev[i].flags); 3859 set_bit(R5_LOCKED, &sh->dev[i].flags); 3860 s.locked++; 3861 } 3862 if (s.replacing) 3863 set_bit(STRIPE_INSYNC, &sh->state); 3864 set_bit(STRIPE_REPLACED, &sh->state); 3865 } 3866 if ((s.syncing || s.replacing) && s.locked == 0 && 3867 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3868 test_bit(STRIPE_INSYNC, &sh->state)) { 3869 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3870 clear_bit(STRIPE_SYNCING, &sh->state); 3871 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3872 wake_up(&conf->wait_for_overlap); 3873 } 3874 3875 /* If the failed drives are just a ReadError, then we might need 3876 * to progress the repair/check process 3877 */ 3878 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3879 for (i = 0; i < s.failed; i++) { 3880 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3881 if (test_bit(R5_ReadError, &dev->flags) 3882 && !test_bit(R5_LOCKED, &dev->flags) 3883 && test_bit(R5_UPTODATE, &dev->flags) 3884 ) { 3885 if (!test_bit(R5_ReWrite, &dev->flags)) { 3886 set_bit(R5_Wantwrite, &dev->flags); 3887 set_bit(R5_ReWrite, &dev->flags); 3888 set_bit(R5_LOCKED, &dev->flags); 3889 s.locked++; 3890 } else { 3891 /* let's read it back */ 3892 set_bit(R5_Wantread, &dev->flags); 3893 set_bit(R5_LOCKED, &dev->flags); 3894 s.locked++; 3895 } 3896 } 3897 } 3898 3899 3900 /* Finish reconstruct operations initiated by the expansion process */ 3901 if (sh->reconstruct_state == reconstruct_state_result) { 3902 struct stripe_head *sh_src 3903 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3904 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3905 /* sh cannot be written until sh_src has been read. 3906 * so arrange for sh to be delayed a little 3907 */ 3908 set_bit(STRIPE_DELAYED, &sh->state); 3909 set_bit(STRIPE_HANDLE, &sh->state); 3910 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3911 &sh_src->state)) 3912 atomic_inc(&conf->preread_active_stripes); 3913 release_stripe(sh_src); 3914 goto finish; 3915 } 3916 if (sh_src) 3917 release_stripe(sh_src); 3918 3919 sh->reconstruct_state = reconstruct_state_idle; 3920 clear_bit(STRIPE_EXPANDING, &sh->state); 3921 for (i = conf->raid_disks; i--; ) { 3922 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3923 set_bit(R5_LOCKED, &sh->dev[i].flags); 3924 s.locked++; 3925 } 3926 } 3927 3928 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3929 !sh->reconstruct_state) { 3930 /* Need to write out all blocks after computing parity */ 3931 sh->disks = conf->raid_disks; 3932 stripe_set_idx(sh->sector, conf, 0, sh); 3933 schedule_reconstruction(sh, &s, 1, 1); 3934 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3935 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3936 atomic_dec(&conf->reshape_stripes); 3937 wake_up(&conf->wait_for_overlap); 3938 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3939 } 3940 3941 if (s.expanding && s.locked == 0 && 3942 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3943 handle_stripe_expansion(conf, sh); 3944 3945 finish: 3946 /* wait for this device to become unblocked */ 3947 if (unlikely(s.blocked_rdev)) { 3948 if (conf->mddev->external) 3949 md_wait_for_blocked_rdev(s.blocked_rdev, 3950 conf->mddev); 3951 else 3952 /* Internal metadata will immediately 3953 * be written by raid5d, so we don't 3954 * need to wait here. 3955 */ 3956 rdev_dec_pending(s.blocked_rdev, 3957 conf->mddev); 3958 } 3959 3960 if (s.handle_bad_blocks) 3961 for (i = disks; i--; ) { 3962 struct md_rdev *rdev; 3963 struct r5dev *dev = &sh->dev[i]; 3964 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 3965 /* We own a safe reference to the rdev */ 3966 rdev = conf->disks[i].rdev; 3967 if (!rdev_set_badblocks(rdev, sh->sector, 3968 STRIPE_SECTORS, 0)) 3969 md_error(conf->mddev, rdev); 3970 rdev_dec_pending(rdev, conf->mddev); 3971 } 3972 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 3973 rdev = conf->disks[i].rdev; 3974 rdev_clear_badblocks(rdev, sh->sector, 3975 STRIPE_SECTORS, 0); 3976 rdev_dec_pending(rdev, conf->mddev); 3977 } 3978 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 3979 rdev = conf->disks[i].replacement; 3980 if (!rdev) 3981 /* rdev have been moved down */ 3982 rdev = conf->disks[i].rdev; 3983 rdev_clear_badblocks(rdev, sh->sector, 3984 STRIPE_SECTORS, 0); 3985 rdev_dec_pending(rdev, conf->mddev); 3986 } 3987 } 3988 3989 if (s.ops_request) 3990 raid_run_ops(sh, s.ops_request); 3991 3992 ops_run_io(sh, &s); 3993 3994 if (s.dec_preread_active) { 3995 /* We delay this until after ops_run_io so that if make_request 3996 * is waiting on a flush, it won't continue until the writes 3997 * have actually been submitted. 3998 */ 3999 atomic_dec(&conf->preread_active_stripes); 4000 if (atomic_read(&conf->preread_active_stripes) < 4001 IO_THRESHOLD) 4002 md_wakeup_thread(conf->mddev->thread); 4003 } 4004 4005 return_io(s.return_bi); 4006 4007 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4008 } 4009 4010 static void raid5_activate_delayed(struct r5conf *conf) 4011 { 4012 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4013 while (!list_empty(&conf->delayed_list)) { 4014 struct list_head *l = conf->delayed_list.next; 4015 struct stripe_head *sh; 4016 sh = list_entry(l, struct stripe_head, lru); 4017 list_del_init(l); 4018 clear_bit(STRIPE_DELAYED, &sh->state); 4019 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4020 atomic_inc(&conf->preread_active_stripes); 4021 list_add_tail(&sh->lru, &conf->hold_list); 4022 raid5_wakeup_stripe_thread(sh); 4023 } 4024 } 4025 } 4026 4027 static void activate_bit_delay(struct r5conf *conf, 4028 struct list_head *temp_inactive_list) 4029 { 4030 /* device_lock is held */ 4031 struct list_head head; 4032 list_add(&head, &conf->bitmap_list); 4033 list_del_init(&conf->bitmap_list); 4034 while (!list_empty(&head)) { 4035 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4036 int hash; 4037 list_del_init(&sh->lru); 4038 atomic_inc(&sh->count); 4039 hash = sh->hash_lock_index; 4040 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4041 } 4042 } 4043 4044 int md_raid5_congested(struct mddev *mddev, int bits) 4045 { 4046 struct r5conf *conf = mddev->private; 4047 4048 /* No difference between reads and writes. Just check 4049 * how busy the stripe_cache is 4050 */ 4051 4052 if (conf->inactive_blocked) 4053 return 1; 4054 if (conf->quiesce) 4055 return 1; 4056 if (atomic_read(&conf->empty_inactive_list_nr)) 4057 return 1; 4058 4059 return 0; 4060 } 4061 EXPORT_SYMBOL_GPL(md_raid5_congested); 4062 4063 static int raid5_congested(void *data, int bits) 4064 { 4065 struct mddev *mddev = data; 4066 4067 return mddev_congested(mddev, bits) || 4068 md_raid5_congested(mddev, bits); 4069 } 4070 4071 /* We want read requests to align with chunks where possible, 4072 * but write requests don't need to. 4073 */ 4074 static int raid5_mergeable_bvec(struct request_queue *q, 4075 struct bvec_merge_data *bvm, 4076 struct bio_vec *biovec) 4077 { 4078 struct mddev *mddev = q->queuedata; 4079 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 4080 int max; 4081 unsigned int chunk_sectors = mddev->chunk_sectors; 4082 unsigned int bio_sectors = bvm->bi_size >> 9; 4083 4084 if ((bvm->bi_rw & 1) == WRITE) 4085 return biovec->bv_len; /* always allow writes to be mergeable */ 4086 4087 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4088 chunk_sectors = mddev->new_chunk_sectors; 4089 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 4090 if (max < 0) max = 0; 4091 if (max <= biovec->bv_len && bio_sectors == 0) 4092 return biovec->bv_len; 4093 else 4094 return max; 4095 } 4096 4097 4098 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4099 { 4100 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 4101 unsigned int chunk_sectors = mddev->chunk_sectors; 4102 unsigned int bio_sectors = bio_sectors(bio); 4103 4104 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4105 chunk_sectors = mddev->new_chunk_sectors; 4106 return chunk_sectors >= 4107 ((sector & (chunk_sectors - 1)) + bio_sectors); 4108 } 4109 4110 /* 4111 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4112 * later sampled by raid5d. 4113 */ 4114 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4115 { 4116 unsigned long flags; 4117 4118 spin_lock_irqsave(&conf->device_lock, flags); 4119 4120 bi->bi_next = conf->retry_read_aligned_list; 4121 conf->retry_read_aligned_list = bi; 4122 4123 spin_unlock_irqrestore(&conf->device_lock, flags); 4124 md_wakeup_thread(conf->mddev->thread); 4125 } 4126 4127 4128 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4129 { 4130 struct bio *bi; 4131 4132 bi = conf->retry_read_aligned; 4133 if (bi) { 4134 conf->retry_read_aligned = NULL; 4135 return bi; 4136 } 4137 bi = conf->retry_read_aligned_list; 4138 if(bi) { 4139 conf->retry_read_aligned_list = bi->bi_next; 4140 bi->bi_next = NULL; 4141 /* 4142 * this sets the active strip count to 1 and the processed 4143 * strip count to zero (upper 8 bits) 4144 */ 4145 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4146 } 4147 4148 return bi; 4149 } 4150 4151 4152 /* 4153 * The "raid5_align_endio" should check if the read succeeded and if it 4154 * did, call bio_endio on the original bio (having bio_put the new bio 4155 * first). 4156 * If the read failed.. 4157 */ 4158 static void raid5_align_endio(struct bio *bi, int error) 4159 { 4160 struct bio* raid_bi = bi->bi_private; 4161 struct mddev *mddev; 4162 struct r5conf *conf; 4163 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 4164 struct md_rdev *rdev; 4165 4166 bio_put(bi); 4167 4168 rdev = (void*)raid_bi->bi_next; 4169 raid_bi->bi_next = NULL; 4170 mddev = rdev->mddev; 4171 conf = mddev->private; 4172 4173 rdev_dec_pending(rdev, conf->mddev); 4174 4175 if (!error && uptodate) { 4176 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4177 raid_bi, 0); 4178 bio_endio(raid_bi, 0); 4179 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4180 wake_up(&conf->wait_for_stripe); 4181 return; 4182 } 4183 4184 4185 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4186 4187 add_bio_to_retry(raid_bi, conf); 4188 } 4189 4190 static int bio_fits_rdev(struct bio *bi) 4191 { 4192 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 4193 4194 if (bio_sectors(bi) > queue_max_sectors(q)) 4195 return 0; 4196 blk_recount_segments(q, bi); 4197 if (bi->bi_phys_segments > queue_max_segments(q)) 4198 return 0; 4199 4200 if (q->merge_bvec_fn) 4201 /* it's too hard to apply the merge_bvec_fn at this stage, 4202 * just just give up 4203 */ 4204 return 0; 4205 4206 return 1; 4207 } 4208 4209 4210 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 4211 { 4212 struct r5conf *conf = mddev->private; 4213 int dd_idx; 4214 struct bio* align_bi; 4215 struct md_rdev *rdev; 4216 sector_t end_sector; 4217 4218 if (!in_chunk_boundary(mddev, raid_bio)) { 4219 pr_debug("chunk_aligned_read : non aligned\n"); 4220 return 0; 4221 } 4222 /* 4223 * use bio_clone_mddev to make a copy of the bio 4224 */ 4225 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4226 if (!align_bi) 4227 return 0; 4228 /* 4229 * set bi_end_io to a new function, and set bi_private to the 4230 * original bio. 4231 */ 4232 align_bi->bi_end_io = raid5_align_endio; 4233 align_bi->bi_private = raid_bio; 4234 /* 4235 * compute position 4236 */ 4237 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 4238 0, 4239 &dd_idx, NULL); 4240 4241 end_sector = bio_end_sector(align_bi); 4242 rcu_read_lock(); 4243 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4244 if (!rdev || test_bit(Faulty, &rdev->flags) || 4245 rdev->recovery_offset < end_sector) { 4246 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4247 if (rdev && 4248 (test_bit(Faulty, &rdev->flags) || 4249 !(test_bit(In_sync, &rdev->flags) || 4250 rdev->recovery_offset >= end_sector))) 4251 rdev = NULL; 4252 } 4253 if (rdev) { 4254 sector_t first_bad; 4255 int bad_sectors; 4256 4257 atomic_inc(&rdev->nr_pending); 4258 rcu_read_unlock(); 4259 raid_bio->bi_next = (void*)rdev; 4260 align_bi->bi_bdev = rdev->bdev; 4261 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 4262 4263 if (!bio_fits_rdev(align_bi) || 4264 is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi), 4265 &first_bad, &bad_sectors)) { 4266 /* too big in some way, or has a known bad block */ 4267 bio_put(align_bi); 4268 rdev_dec_pending(rdev, mddev); 4269 return 0; 4270 } 4271 4272 /* No reshape active, so we can trust rdev->data_offset */ 4273 align_bi->bi_sector += rdev->data_offset; 4274 4275 spin_lock_irq(&conf->device_lock); 4276 wait_event_lock_irq(conf->wait_for_stripe, 4277 conf->quiesce == 0, 4278 conf->device_lock); 4279 atomic_inc(&conf->active_aligned_reads); 4280 spin_unlock_irq(&conf->device_lock); 4281 4282 if (mddev->gendisk) 4283 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4284 align_bi, disk_devt(mddev->gendisk), 4285 raid_bio->bi_sector); 4286 generic_make_request(align_bi); 4287 return 1; 4288 } else { 4289 rcu_read_unlock(); 4290 bio_put(align_bi); 4291 return 0; 4292 } 4293 } 4294 4295 /* __get_priority_stripe - get the next stripe to process 4296 * 4297 * Full stripe writes are allowed to pass preread active stripes up until 4298 * the bypass_threshold is exceeded. In general the bypass_count 4299 * increments when the handle_list is handled before the hold_list; however, it 4300 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4301 * stripe with in flight i/o. The bypass_count will be reset when the 4302 * head of the hold_list has changed, i.e. the head was promoted to the 4303 * handle_list. 4304 */ 4305 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4306 { 4307 struct stripe_head *sh = NULL, *tmp; 4308 struct list_head *handle_list = NULL; 4309 struct r5worker_group *wg = NULL; 4310 4311 if (conf->worker_cnt_per_group == 0) { 4312 handle_list = &conf->handle_list; 4313 } else if (group != ANY_GROUP) { 4314 handle_list = &conf->worker_groups[group].handle_list; 4315 wg = &conf->worker_groups[group]; 4316 } else { 4317 int i; 4318 for (i = 0; i < conf->group_cnt; i++) { 4319 handle_list = &conf->worker_groups[i].handle_list; 4320 wg = &conf->worker_groups[i]; 4321 if (!list_empty(handle_list)) 4322 break; 4323 } 4324 } 4325 4326 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4327 __func__, 4328 list_empty(handle_list) ? "empty" : "busy", 4329 list_empty(&conf->hold_list) ? "empty" : "busy", 4330 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4331 4332 if (!list_empty(handle_list)) { 4333 sh = list_entry(handle_list->next, typeof(*sh), lru); 4334 4335 if (list_empty(&conf->hold_list)) 4336 conf->bypass_count = 0; 4337 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4338 if (conf->hold_list.next == conf->last_hold) 4339 conf->bypass_count++; 4340 else { 4341 conf->last_hold = conf->hold_list.next; 4342 conf->bypass_count -= conf->bypass_threshold; 4343 if (conf->bypass_count < 0) 4344 conf->bypass_count = 0; 4345 } 4346 } 4347 } else if (!list_empty(&conf->hold_list) && 4348 ((conf->bypass_threshold && 4349 conf->bypass_count > conf->bypass_threshold) || 4350 atomic_read(&conf->pending_full_writes) == 0)) { 4351 4352 list_for_each_entry(tmp, &conf->hold_list, lru) { 4353 if (conf->worker_cnt_per_group == 0 || 4354 group == ANY_GROUP || 4355 !cpu_online(tmp->cpu) || 4356 cpu_to_group(tmp->cpu) == group) { 4357 sh = tmp; 4358 break; 4359 } 4360 } 4361 4362 if (sh) { 4363 conf->bypass_count -= conf->bypass_threshold; 4364 if (conf->bypass_count < 0) 4365 conf->bypass_count = 0; 4366 } 4367 wg = NULL; 4368 } 4369 4370 if (!sh) 4371 return NULL; 4372 4373 if (wg) { 4374 wg->stripes_cnt--; 4375 sh->group = NULL; 4376 } 4377 list_del_init(&sh->lru); 4378 atomic_inc(&sh->count); 4379 BUG_ON(atomic_read(&sh->count) != 1); 4380 return sh; 4381 } 4382 4383 struct raid5_plug_cb { 4384 struct blk_plug_cb cb; 4385 struct list_head list; 4386 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4387 }; 4388 4389 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4390 { 4391 struct raid5_plug_cb *cb = container_of( 4392 blk_cb, struct raid5_plug_cb, cb); 4393 struct stripe_head *sh; 4394 struct mddev *mddev = cb->cb.data; 4395 struct r5conf *conf = mddev->private; 4396 int cnt = 0; 4397 int hash; 4398 4399 if (cb->list.next && !list_empty(&cb->list)) { 4400 spin_lock_irq(&conf->device_lock); 4401 while (!list_empty(&cb->list)) { 4402 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4403 list_del_init(&sh->lru); 4404 /* 4405 * avoid race release_stripe_plug() sees 4406 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4407 * is still in our list 4408 */ 4409 smp_mb__before_clear_bit(); 4410 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4411 /* 4412 * STRIPE_ON_RELEASE_LIST could be set here. In that 4413 * case, the count is always > 1 here 4414 */ 4415 hash = sh->hash_lock_index; 4416 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 4417 cnt++; 4418 } 4419 spin_unlock_irq(&conf->device_lock); 4420 } 4421 release_inactive_stripe_list(conf, cb->temp_inactive_list, 4422 NR_STRIPE_HASH_LOCKS); 4423 if (mddev->queue) 4424 trace_block_unplug(mddev->queue, cnt, !from_schedule); 4425 kfree(cb); 4426 } 4427 4428 static void release_stripe_plug(struct mddev *mddev, 4429 struct stripe_head *sh) 4430 { 4431 struct blk_plug_cb *blk_cb = blk_check_plugged( 4432 raid5_unplug, mddev, 4433 sizeof(struct raid5_plug_cb)); 4434 struct raid5_plug_cb *cb; 4435 4436 if (!blk_cb) { 4437 release_stripe(sh); 4438 return; 4439 } 4440 4441 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4442 4443 if (cb->list.next == NULL) { 4444 int i; 4445 INIT_LIST_HEAD(&cb->list); 4446 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 4447 INIT_LIST_HEAD(cb->temp_inactive_list + i); 4448 } 4449 4450 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4451 list_add_tail(&sh->lru, &cb->list); 4452 else 4453 release_stripe(sh); 4454 } 4455 4456 static void make_discard_request(struct mddev *mddev, struct bio *bi) 4457 { 4458 struct r5conf *conf = mddev->private; 4459 sector_t logical_sector, last_sector; 4460 struct stripe_head *sh; 4461 int remaining; 4462 int stripe_sectors; 4463 4464 if (mddev->reshape_position != MaxSector) 4465 /* Skip discard while reshape is happening */ 4466 return; 4467 4468 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4469 last_sector = bi->bi_sector + (bi->bi_size>>9); 4470 4471 bi->bi_next = NULL; 4472 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4473 4474 stripe_sectors = conf->chunk_sectors * 4475 (conf->raid_disks - conf->max_degraded); 4476 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 4477 stripe_sectors); 4478 sector_div(last_sector, stripe_sectors); 4479 4480 logical_sector *= conf->chunk_sectors; 4481 last_sector *= conf->chunk_sectors; 4482 4483 for (; logical_sector < last_sector; 4484 logical_sector += STRIPE_SECTORS) { 4485 DEFINE_WAIT(w); 4486 int d; 4487 again: 4488 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 4489 prepare_to_wait(&conf->wait_for_overlap, &w, 4490 TASK_UNINTERRUPTIBLE); 4491 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4492 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4493 release_stripe(sh); 4494 schedule(); 4495 goto again; 4496 } 4497 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4498 spin_lock_irq(&sh->stripe_lock); 4499 for (d = 0; d < conf->raid_disks; d++) { 4500 if (d == sh->pd_idx || d == sh->qd_idx) 4501 continue; 4502 if (sh->dev[d].towrite || sh->dev[d].toread) { 4503 set_bit(R5_Overlap, &sh->dev[d].flags); 4504 spin_unlock_irq(&sh->stripe_lock); 4505 release_stripe(sh); 4506 schedule(); 4507 goto again; 4508 } 4509 } 4510 set_bit(STRIPE_DISCARD, &sh->state); 4511 finish_wait(&conf->wait_for_overlap, &w); 4512 for (d = 0; d < conf->raid_disks; d++) { 4513 if (d == sh->pd_idx || d == sh->qd_idx) 4514 continue; 4515 sh->dev[d].towrite = bi; 4516 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 4517 raid5_inc_bi_active_stripes(bi); 4518 } 4519 spin_unlock_irq(&sh->stripe_lock); 4520 if (conf->mddev->bitmap) { 4521 for (d = 0; 4522 d < conf->raid_disks - conf->max_degraded; 4523 d++) 4524 bitmap_startwrite(mddev->bitmap, 4525 sh->sector, 4526 STRIPE_SECTORS, 4527 0); 4528 sh->bm_seq = conf->seq_flush + 1; 4529 set_bit(STRIPE_BIT_DELAY, &sh->state); 4530 } 4531 4532 set_bit(STRIPE_HANDLE, &sh->state); 4533 clear_bit(STRIPE_DELAYED, &sh->state); 4534 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4535 atomic_inc(&conf->preread_active_stripes); 4536 release_stripe_plug(mddev, sh); 4537 } 4538 4539 remaining = raid5_dec_bi_active_stripes(bi); 4540 if (remaining == 0) { 4541 md_write_end(mddev); 4542 bio_endio(bi, 0); 4543 } 4544 } 4545 4546 static void make_request(struct mddev *mddev, struct bio * bi) 4547 { 4548 struct r5conf *conf = mddev->private; 4549 int dd_idx; 4550 sector_t new_sector; 4551 sector_t logical_sector, last_sector; 4552 struct stripe_head *sh; 4553 const int rw = bio_data_dir(bi); 4554 int remaining; 4555 4556 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4557 md_flush_request(mddev, bi); 4558 return; 4559 } 4560 4561 md_write_start(mddev, bi); 4562 4563 if (rw == READ && 4564 mddev->reshape_position == MaxSector && 4565 chunk_aligned_read(mddev,bi)) 4566 return; 4567 4568 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 4569 make_discard_request(mddev, bi); 4570 return; 4571 } 4572 4573 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4574 last_sector = bio_end_sector(bi); 4575 bi->bi_next = NULL; 4576 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4577 4578 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4579 DEFINE_WAIT(w); 4580 int previous; 4581 int seq; 4582 4583 retry: 4584 seq = read_seqcount_begin(&conf->gen_lock); 4585 previous = 0; 4586 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4587 if (unlikely(conf->reshape_progress != MaxSector)) { 4588 /* spinlock is needed as reshape_progress may be 4589 * 64bit on a 32bit platform, and so it might be 4590 * possible to see a half-updated value 4591 * Of course reshape_progress could change after 4592 * the lock is dropped, so once we get a reference 4593 * to the stripe that we think it is, we will have 4594 * to check again. 4595 */ 4596 spin_lock_irq(&conf->device_lock); 4597 if (mddev->reshape_backwards 4598 ? logical_sector < conf->reshape_progress 4599 : logical_sector >= conf->reshape_progress) { 4600 previous = 1; 4601 } else { 4602 if (mddev->reshape_backwards 4603 ? logical_sector < conf->reshape_safe 4604 : logical_sector >= conf->reshape_safe) { 4605 spin_unlock_irq(&conf->device_lock); 4606 schedule(); 4607 goto retry; 4608 } 4609 } 4610 spin_unlock_irq(&conf->device_lock); 4611 } 4612 4613 new_sector = raid5_compute_sector(conf, logical_sector, 4614 previous, 4615 &dd_idx, NULL); 4616 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4617 (unsigned long long)new_sector, 4618 (unsigned long long)logical_sector); 4619 4620 sh = get_active_stripe(conf, new_sector, previous, 4621 (bi->bi_rw&RWA_MASK), 0); 4622 if (sh) { 4623 if (unlikely(previous)) { 4624 /* expansion might have moved on while waiting for a 4625 * stripe, so we must do the range check again. 4626 * Expansion could still move past after this 4627 * test, but as we are holding a reference to 4628 * 'sh', we know that if that happens, 4629 * STRIPE_EXPANDING will get set and the expansion 4630 * won't proceed until we finish with the stripe. 4631 */ 4632 int must_retry = 0; 4633 spin_lock_irq(&conf->device_lock); 4634 if (mddev->reshape_backwards 4635 ? logical_sector >= conf->reshape_progress 4636 : logical_sector < conf->reshape_progress) 4637 /* mismatch, need to try again */ 4638 must_retry = 1; 4639 spin_unlock_irq(&conf->device_lock); 4640 if (must_retry) { 4641 release_stripe(sh); 4642 schedule(); 4643 goto retry; 4644 } 4645 } 4646 if (read_seqcount_retry(&conf->gen_lock, seq)) { 4647 /* Might have got the wrong stripe_head 4648 * by accident 4649 */ 4650 release_stripe(sh); 4651 goto retry; 4652 } 4653 4654 if (rw == WRITE && 4655 logical_sector >= mddev->suspend_lo && 4656 logical_sector < mddev->suspend_hi) { 4657 release_stripe(sh); 4658 /* As the suspend_* range is controlled by 4659 * userspace, we want an interruptible 4660 * wait. 4661 */ 4662 flush_signals(current); 4663 prepare_to_wait(&conf->wait_for_overlap, 4664 &w, TASK_INTERRUPTIBLE); 4665 if (logical_sector >= mddev->suspend_lo && 4666 logical_sector < mddev->suspend_hi) 4667 schedule(); 4668 goto retry; 4669 } 4670 4671 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4672 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4673 /* Stripe is busy expanding or 4674 * add failed due to overlap. Flush everything 4675 * and wait a while 4676 */ 4677 md_wakeup_thread(mddev->thread); 4678 release_stripe(sh); 4679 schedule(); 4680 goto retry; 4681 } 4682 finish_wait(&conf->wait_for_overlap, &w); 4683 set_bit(STRIPE_HANDLE, &sh->state); 4684 clear_bit(STRIPE_DELAYED, &sh->state); 4685 if ((bi->bi_rw & REQ_SYNC) && 4686 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4687 atomic_inc(&conf->preread_active_stripes); 4688 release_stripe_plug(mddev, sh); 4689 } else { 4690 /* cannot get stripe for read-ahead, just give-up */ 4691 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4692 finish_wait(&conf->wait_for_overlap, &w); 4693 break; 4694 } 4695 } 4696 4697 remaining = raid5_dec_bi_active_stripes(bi); 4698 if (remaining == 0) { 4699 4700 if ( rw == WRITE ) 4701 md_write_end(mddev); 4702 4703 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 4704 bi, 0); 4705 bio_endio(bi, 0); 4706 } 4707 } 4708 4709 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4710 4711 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4712 { 4713 /* reshaping is quite different to recovery/resync so it is 4714 * handled quite separately ... here. 4715 * 4716 * On each call to sync_request, we gather one chunk worth of 4717 * destination stripes and flag them as expanding. 4718 * Then we find all the source stripes and request reads. 4719 * As the reads complete, handle_stripe will copy the data 4720 * into the destination stripe and release that stripe. 4721 */ 4722 struct r5conf *conf = mddev->private; 4723 struct stripe_head *sh; 4724 sector_t first_sector, last_sector; 4725 int raid_disks = conf->previous_raid_disks; 4726 int data_disks = raid_disks - conf->max_degraded; 4727 int new_data_disks = conf->raid_disks - conf->max_degraded; 4728 int i; 4729 int dd_idx; 4730 sector_t writepos, readpos, safepos; 4731 sector_t stripe_addr; 4732 int reshape_sectors; 4733 struct list_head stripes; 4734 4735 if (sector_nr == 0) { 4736 /* If restarting in the middle, skip the initial sectors */ 4737 if (mddev->reshape_backwards && 4738 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4739 sector_nr = raid5_size(mddev, 0, 0) 4740 - conf->reshape_progress; 4741 } else if (!mddev->reshape_backwards && 4742 conf->reshape_progress > 0) 4743 sector_nr = conf->reshape_progress; 4744 sector_div(sector_nr, new_data_disks); 4745 if (sector_nr) { 4746 mddev->curr_resync_completed = sector_nr; 4747 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4748 *skipped = 1; 4749 return sector_nr; 4750 } 4751 } 4752 4753 /* We need to process a full chunk at a time. 4754 * If old and new chunk sizes differ, we need to process the 4755 * largest of these 4756 */ 4757 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4758 reshape_sectors = mddev->new_chunk_sectors; 4759 else 4760 reshape_sectors = mddev->chunk_sectors; 4761 4762 /* We update the metadata at least every 10 seconds, or when 4763 * the data about to be copied would over-write the source of 4764 * the data at the front of the range. i.e. one new_stripe 4765 * along from reshape_progress new_maps to after where 4766 * reshape_safe old_maps to 4767 */ 4768 writepos = conf->reshape_progress; 4769 sector_div(writepos, new_data_disks); 4770 readpos = conf->reshape_progress; 4771 sector_div(readpos, data_disks); 4772 safepos = conf->reshape_safe; 4773 sector_div(safepos, data_disks); 4774 if (mddev->reshape_backwards) { 4775 writepos -= min_t(sector_t, reshape_sectors, writepos); 4776 readpos += reshape_sectors; 4777 safepos += reshape_sectors; 4778 } else { 4779 writepos += reshape_sectors; 4780 readpos -= min_t(sector_t, reshape_sectors, readpos); 4781 safepos -= min_t(sector_t, reshape_sectors, safepos); 4782 } 4783 4784 /* Having calculated the 'writepos' possibly use it 4785 * to set 'stripe_addr' which is where we will write to. 4786 */ 4787 if (mddev->reshape_backwards) { 4788 BUG_ON(conf->reshape_progress == 0); 4789 stripe_addr = writepos; 4790 BUG_ON((mddev->dev_sectors & 4791 ~((sector_t)reshape_sectors - 1)) 4792 - reshape_sectors - stripe_addr 4793 != sector_nr); 4794 } else { 4795 BUG_ON(writepos != sector_nr + reshape_sectors); 4796 stripe_addr = sector_nr; 4797 } 4798 4799 /* 'writepos' is the most advanced device address we might write. 4800 * 'readpos' is the least advanced device address we might read. 4801 * 'safepos' is the least address recorded in the metadata as having 4802 * been reshaped. 4803 * If there is a min_offset_diff, these are adjusted either by 4804 * increasing the safepos/readpos if diff is negative, or 4805 * increasing writepos if diff is positive. 4806 * If 'readpos' is then behind 'writepos', there is no way that we can 4807 * ensure safety in the face of a crash - that must be done by userspace 4808 * making a backup of the data. So in that case there is no particular 4809 * rush to update metadata. 4810 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4811 * update the metadata to advance 'safepos' to match 'readpos' so that 4812 * we can be safe in the event of a crash. 4813 * So we insist on updating metadata if safepos is behind writepos and 4814 * readpos is beyond writepos. 4815 * In any case, update the metadata every 10 seconds. 4816 * Maybe that number should be configurable, but I'm not sure it is 4817 * worth it.... maybe it could be a multiple of safemode_delay??? 4818 */ 4819 if (conf->min_offset_diff < 0) { 4820 safepos += -conf->min_offset_diff; 4821 readpos += -conf->min_offset_diff; 4822 } else 4823 writepos += conf->min_offset_diff; 4824 4825 if ((mddev->reshape_backwards 4826 ? (safepos > writepos && readpos < writepos) 4827 : (safepos < writepos && readpos > writepos)) || 4828 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4829 /* Cannot proceed until we've updated the superblock... */ 4830 wait_event(conf->wait_for_overlap, 4831 atomic_read(&conf->reshape_stripes)==0 4832 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4833 if (atomic_read(&conf->reshape_stripes) != 0) 4834 return 0; 4835 mddev->reshape_position = conf->reshape_progress; 4836 mddev->curr_resync_completed = sector_nr; 4837 conf->reshape_checkpoint = jiffies; 4838 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4839 md_wakeup_thread(mddev->thread); 4840 wait_event(mddev->sb_wait, mddev->flags == 0 || 4841 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4842 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4843 return 0; 4844 spin_lock_irq(&conf->device_lock); 4845 conf->reshape_safe = mddev->reshape_position; 4846 spin_unlock_irq(&conf->device_lock); 4847 wake_up(&conf->wait_for_overlap); 4848 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4849 } 4850 4851 INIT_LIST_HEAD(&stripes); 4852 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4853 int j; 4854 int skipped_disk = 0; 4855 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4856 set_bit(STRIPE_EXPANDING, &sh->state); 4857 atomic_inc(&conf->reshape_stripes); 4858 /* If any of this stripe is beyond the end of the old 4859 * array, then we need to zero those blocks 4860 */ 4861 for (j=sh->disks; j--;) { 4862 sector_t s; 4863 if (j == sh->pd_idx) 4864 continue; 4865 if (conf->level == 6 && 4866 j == sh->qd_idx) 4867 continue; 4868 s = compute_blocknr(sh, j, 0); 4869 if (s < raid5_size(mddev, 0, 0)) { 4870 skipped_disk = 1; 4871 continue; 4872 } 4873 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4874 set_bit(R5_Expanded, &sh->dev[j].flags); 4875 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4876 } 4877 if (!skipped_disk) { 4878 set_bit(STRIPE_EXPAND_READY, &sh->state); 4879 set_bit(STRIPE_HANDLE, &sh->state); 4880 } 4881 list_add(&sh->lru, &stripes); 4882 } 4883 spin_lock_irq(&conf->device_lock); 4884 if (mddev->reshape_backwards) 4885 conf->reshape_progress -= reshape_sectors * new_data_disks; 4886 else 4887 conf->reshape_progress += reshape_sectors * new_data_disks; 4888 spin_unlock_irq(&conf->device_lock); 4889 /* Ok, those stripe are ready. We can start scheduling 4890 * reads on the source stripes. 4891 * The source stripes are determined by mapping the first and last 4892 * block on the destination stripes. 4893 */ 4894 first_sector = 4895 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4896 1, &dd_idx, NULL); 4897 last_sector = 4898 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4899 * new_data_disks - 1), 4900 1, &dd_idx, NULL); 4901 if (last_sector >= mddev->dev_sectors) 4902 last_sector = mddev->dev_sectors - 1; 4903 while (first_sector <= last_sector) { 4904 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4905 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4906 set_bit(STRIPE_HANDLE, &sh->state); 4907 release_stripe(sh); 4908 first_sector += STRIPE_SECTORS; 4909 } 4910 /* Now that the sources are clearly marked, we can release 4911 * the destination stripes 4912 */ 4913 while (!list_empty(&stripes)) { 4914 sh = list_entry(stripes.next, struct stripe_head, lru); 4915 list_del_init(&sh->lru); 4916 release_stripe(sh); 4917 } 4918 /* If this takes us to the resync_max point where we have to pause, 4919 * then we need to write out the superblock. 4920 */ 4921 sector_nr += reshape_sectors; 4922 if ((sector_nr - mddev->curr_resync_completed) * 2 4923 >= mddev->resync_max - mddev->curr_resync_completed) { 4924 /* Cannot proceed until we've updated the superblock... */ 4925 wait_event(conf->wait_for_overlap, 4926 atomic_read(&conf->reshape_stripes) == 0 4927 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4928 if (atomic_read(&conf->reshape_stripes) != 0) 4929 goto ret; 4930 mddev->reshape_position = conf->reshape_progress; 4931 mddev->curr_resync_completed = sector_nr; 4932 conf->reshape_checkpoint = jiffies; 4933 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4934 md_wakeup_thread(mddev->thread); 4935 wait_event(mddev->sb_wait, 4936 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4937 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4938 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4939 goto ret; 4940 spin_lock_irq(&conf->device_lock); 4941 conf->reshape_safe = mddev->reshape_position; 4942 spin_unlock_irq(&conf->device_lock); 4943 wake_up(&conf->wait_for_overlap); 4944 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4945 } 4946 ret: 4947 return reshape_sectors; 4948 } 4949 4950 /* FIXME go_faster isn't used */ 4951 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4952 { 4953 struct r5conf *conf = mddev->private; 4954 struct stripe_head *sh; 4955 sector_t max_sector = mddev->dev_sectors; 4956 sector_t sync_blocks; 4957 int still_degraded = 0; 4958 int i; 4959 4960 if (sector_nr >= max_sector) { 4961 /* just being told to finish up .. nothing much to do */ 4962 4963 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4964 end_reshape(conf); 4965 return 0; 4966 } 4967 4968 if (mddev->curr_resync < max_sector) /* aborted */ 4969 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4970 &sync_blocks, 1); 4971 else /* completed sync */ 4972 conf->fullsync = 0; 4973 bitmap_close_sync(mddev->bitmap); 4974 4975 return 0; 4976 } 4977 4978 /* Allow raid5_quiesce to complete */ 4979 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4980 4981 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4982 return reshape_request(mddev, sector_nr, skipped); 4983 4984 /* No need to check resync_max as we never do more than one 4985 * stripe, and as resync_max will always be on a chunk boundary, 4986 * if the check in md_do_sync didn't fire, there is no chance 4987 * of overstepping resync_max here 4988 */ 4989 4990 /* if there is too many failed drives and we are trying 4991 * to resync, then assert that we are finished, because there is 4992 * nothing we can do. 4993 */ 4994 if (mddev->degraded >= conf->max_degraded && 4995 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4996 sector_t rv = mddev->dev_sectors - sector_nr; 4997 *skipped = 1; 4998 return rv; 4999 } 5000 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5001 !conf->fullsync && 5002 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5003 sync_blocks >= STRIPE_SECTORS) { 5004 /* we can skip this block, and probably more */ 5005 sync_blocks /= STRIPE_SECTORS; 5006 *skipped = 1; 5007 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5008 } 5009 5010 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 5011 5012 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 5013 if (sh == NULL) { 5014 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 5015 /* make sure we don't swamp the stripe cache if someone else 5016 * is trying to get access 5017 */ 5018 schedule_timeout_uninterruptible(1); 5019 } 5020 /* Need to check if array will still be degraded after recovery/resync 5021 * We don't need to check the 'failed' flag as when that gets set, 5022 * recovery aborts. 5023 */ 5024 for (i = 0; i < conf->raid_disks; i++) 5025 if (conf->disks[i].rdev == NULL) 5026 still_degraded = 1; 5027 5028 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5029 5030 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5031 5032 handle_stripe(sh); 5033 release_stripe(sh); 5034 5035 return STRIPE_SECTORS; 5036 } 5037 5038 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5039 { 5040 /* We may not be able to submit a whole bio at once as there 5041 * may not be enough stripe_heads available. 5042 * We cannot pre-allocate enough stripe_heads as we may need 5043 * more than exist in the cache (if we allow ever large chunks). 5044 * So we do one stripe head at a time and record in 5045 * ->bi_hw_segments how many have been done. 5046 * 5047 * We *know* that this entire raid_bio is in one chunk, so 5048 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5049 */ 5050 struct stripe_head *sh; 5051 int dd_idx; 5052 sector_t sector, logical_sector, last_sector; 5053 int scnt = 0; 5054 int remaining; 5055 int handled = 0; 5056 5057 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5058 sector = raid5_compute_sector(conf, logical_sector, 5059 0, &dd_idx, NULL); 5060 last_sector = bio_end_sector(raid_bio); 5061 5062 for (; logical_sector < last_sector; 5063 logical_sector += STRIPE_SECTORS, 5064 sector += STRIPE_SECTORS, 5065 scnt++) { 5066 5067 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5068 /* already done this stripe */ 5069 continue; 5070 5071 sh = get_active_stripe(conf, sector, 0, 1, 0); 5072 5073 if (!sh) { 5074 /* failed to get a stripe - must wait */ 5075 raid5_set_bi_processed_stripes(raid_bio, scnt); 5076 conf->retry_read_aligned = raid_bio; 5077 return handled; 5078 } 5079 5080 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 5081 release_stripe(sh); 5082 raid5_set_bi_processed_stripes(raid_bio, scnt); 5083 conf->retry_read_aligned = raid_bio; 5084 return handled; 5085 } 5086 5087 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5088 handle_stripe(sh); 5089 release_stripe(sh); 5090 handled++; 5091 } 5092 remaining = raid5_dec_bi_active_stripes(raid_bio); 5093 if (remaining == 0) { 5094 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5095 raid_bio, 0); 5096 bio_endio(raid_bio, 0); 5097 } 5098 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5099 wake_up(&conf->wait_for_stripe); 5100 return handled; 5101 } 5102 5103 static int handle_active_stripes(struct r5conf *conf, int group, 5104 struct r5worker *worker, 5105 struct list_head *temp_inactive_list) 5106 { 5107 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5108 int i, batch_size = 0, hash; 5109 bool release_inactive = false; 5110 5111 while (batch_size < MAX_STRIPE_BATCH && 5112 (sh = __get_priority_stripe(conf, group)) != NULL) 5113 batch[batch_size++] = sh; 5114 5115 if (batch_size == 0) { 5116 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5117 if (!list_empty(temp_inactive_list + i)) 5118 break; 5119 if (i == NR_STRIPE_HASH_LOCKS) 5120 return batch_size; 5121 release_inactive = true; 5122 } 5123 spin_unlock_irq(&conf->device_lock); 5124 5125 release_inactive_stripe_list(conf, temp_inactive_list, 5126 NR_STRIPE_HASH_LOCKS); 5127 5128 if (release_inactive) { 5129 spin_lock_irq(&conf->device_lock); 5130 return 0; 5131 } 5132 5133 for (i = 0; i < batch_size; i++) 5134 handle_stripe(batch[i]); 5135 5136 cond_resched(); 5137 5138 spin_lock_irq(&conf->device_lock); 5139 for (i = 0; i < batch_size; i++) { 5140 hash = batch[i]->hash_lock_index; 5141 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5142 } 5143 return batch_size; 5144 } 5145 5146 static void raid5_do_work(struct work_struct *work) 5147 { 5148 struct r5worker *worker = container_of(work, struct r5worker, work); 5149 struct r5worker_group *group = worker->group; 5150 struct r5conf *conf = group->conf; 5151 int group_id = group - conf->worker_groups; 5152 int handled; 5153 struct blk_plug plug; 5154 5155 pr_debug("+++ raid5worker active\n"); 5156 5157 blk_start_plug(&plug); 5158 handled = 0; 5159 spin_lock_irq(&conf->device_lock); 5160 while (1) { 5161 int batch_size, released; 5162 5163 released = release_stripe_list(conf, worker->temp_inactive_list); 5164 5165 batch_size = handle_active_stripes(conf, group_id, worker, 5166 worker->temp_inactive_list); 5167 worker->working = false; 5168 if (!batch_size && !released) 5169 break; 5170 handled += batch_size; 5171 } 5172 pr_debug("%d stripes handled\n", handled); 5173 5174 spin_unlock_irq(&conf->device_lock); 5175 blk_finish_plug(&plug); 5176 5177 pr_debug("--- raid5worker inactive\n"); 5178 } 5179 5180 /* 5181 * This is our raid5 kernel thread. 5182 * 5183 * We scan the hash table for stripes which can be handled now. 5184 * During the scan, completed stripes are saved for us by the interrupt 5185 * handler, so that they will not have to wait for our next wakeup. 5186 */ 5187 static void raid5d(struct md_thread *thread) 5188 { 5189 struct mddev *mddev = thread->mddev; 5190 struct r5conf *conf = mddev->private; 5191 int handled; 5192 struct blk_plug plug; 5193 5194 pr_debug("+++ raid5d active\n"); 5195 5196 md_check_recovery(mddev); 5197 5198 blk_start_plug(&plug); 5199 handled = 0; 5200 spin_lock_irq(&conf->device_lock); 5201 while (1) { 5202 struct bio *bio; 5203 int batch_size, released; 5204 5205 released = release_stripe_list(conf, conf->temp_inactive_list); 5206 5207 if ( 5208 !list_empty(&conf->bitmap_list)) { 5209 /* Now is a good time to flush some bitmap updates */ 5210 conf->seq_flush++; 5211 spin_unlock_irq(&conf->device_lock); 5212 bitmap_unplug(mddev->bitmap); 5213 spin_lock_irq(&conf->device_lock); 5214 conf->seq_write = conf->seq_flush; 5215 activate_bit_delay(conf, conf->temp_inactive_list); 5216 } 5217 raid5_activate_delayed(conf); 5218 5219 while ((bio = remove_bio_from_retry(conf))) { 5220 int ok; 5221 spin_unlock_irq(&conf->device_lock); 5222 ok = retry_aligned_read(conf, bio); 5223 spin_lock_irq(&conf->device_lock); 5224 if (!ok) 5225 break; 5226 handled++; 5227 } 5228 5229 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5230 conf->temp_inactive_list); 5231 if (!batch_size && !released) 5232 break; 5233 handled += batch_size; 5234 5235 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5236 spin_unlock_irq(&conf->device_lock); 5237 md_check_recovery(mddev); 5238 spin_lock_irq(&conf->device_lock); 5239 } 5240 } 5241 pr_debug("%d stripes handled\n", handled); 5242 5243 spin_unlock_irq(&conf->device_lock); 5244 5245 async_tx_issue_pending_all(); 5246 blk_finish_plug(&plug); 5247 5248 pr_debug("--- raid5d inactive\n"); 5249 } 5250 5251 static ssize_t 5252 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5253 { 5254 struct r5conf *conf = mddev->private; 5255 if (conf) 5256 return sprintf(page, "%d\n", conf->max_nr_stripes); 5257 else 5258 return 0; 5259 } 5260 5261 int 5262 raid5_set_cache_size(struct mddev *mddev, int size) 5263 { 5264 struct r5conf *conf = mddev->private; 5265 int err; 5266 int hash; 5267 5268 if (size <= 16 || size > 32768) 5269 return -EINVAL; 5270 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS; 5271 while (size < conf->max_nr_stripes) { 5272 if (drop_one_stripe(conf, hash)) 5273 conf->max_nr_stripes--; 5274 else 5275 break; 5276 hash--; 5277 if (hash < 0) 5278 hash = NR_STRIPE_HASH_LOCKS - 1; 5279 } 5280 err = md_allow_write(mddev); 5281 if (err) 5282 return err; 5283 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 5284 while (size > conf->max_nr_stripes) { 5285 if (grow_one_stripe(conf, hash)) 5286 conf->max_nr_stripes++; 5287 else break; 5288 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; 5289 } 5290 return 0; 5291 } 5292 EXPORT_SYMBOL(raid5_set_cache_size); 5293 5294 static ssize_t 5295 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5296 { 5297 struct r5conf *conf = mddev->private; 5298 unsigned long new; 5299 int err; 5300 5301 if (len >= PAGE_SIZE) 5302 return -EINVAL; 5303 if (!conf) 5304 return -ENODEV; 5305 5306 if (kstrtoul(page, 10, &new)) 5307 return -EINVAL; 5308 err = raid5_set_cache_size(mddev, new); 5309 if (err) 5310 return err; 5311 return len; 5312 } 5313 5314 static struct md_sysfs_entry 5315 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5316 raid5_show_stripe_cache_size, 5317 raid5_store_stripe_cache_size); 5318 5319 static ssize_t 5320 raid5_show_preread_threshold(struct mddev *mddev, char *page) 5321 { 5322 struct r5conf *conf = mddev->private; 5323 if (conf) 5324 return sprintf(page, "%d\n", conf->bypass_threshold); 5325 else 5326 return 0; 5327 } 5328 5329 static ssize_t 5330 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 5331 { 5332 struct r5conf *conf = mddev->private; 5333 unsigned long new; 5334 if (len >= PAGE_SIZE) 5335 return -EINVAL; 5336 if (!conf) 5337 return -ENODEV; 5338 5339 if (kstrtoul(page, 10, &new)) 5340 return -EINVAL; 5341 if (new > conf->max_nr_stripes) 5342 return -EINVAL; 5343 conf->bypass_threshold = new; 5344 return len; 5345 } 5346 5347 static struct md_sysfs_entry 5348 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 5349 S_IRUGO | S_IWUSR, 5350 raid5_show_preread_threshold, 5351 raid5_store_preread_threshold); 5352 5353 static ssize_t 5354 stripe_cache_active_show(struct mddev *mddev, char *page) 5355 { 5356 struct r5conf *conf = mddev->private; 5357 if (conf) 5358 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 5359 else 5360 return 0; 5361 } 5362 5363 static struct md_sysfs_entry 5364 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 5365 5366 static ssize_t 5367 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 5368 { 5369 struct r5conf *conf = mddev->private; 5370 if (conf) 5371 return sprintf(page, "%d\n", conf->worker_cnt_per_group); 5372 else 5373 return 0; 5374 } 5375 5376 static int alloc_thread_groups(struct r5conf *conf, int cnt, 5377 int *group_cnt, 5378 int *worker_cnt_per_group, 5379 struct r5worker_group **worker_groups); 5380 static ssize_t 5381 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 5382 { 5383 struct r5conf *conf = mddev->private; 5384 unsigned long new; 5385 int err; 5386 struct r5worker_group *new_groups, *old_groups; 5387 int group_cnt, worker_cnt_per_group; 5388 5389 if (len >= PAGE_SIZE) 5390 return -EINVAL; 5391 if (!conf) 5392 return -ENODEV; 5393 5394 if (kstrtoul(page, 10, &new)) 5395 return -EINVAL; 5396 5397 if (new == conf->worker_cnt_per_group) 5398 return len; 5399 5400 mddev_suspend(mddev); 5401 5402 old_groups = conf->worker_groups; 5403 if (old_groups) 5404 flush_workqueue(raid5_wq); 5405 5406 err = alloc_thread_groups(conf, new, 5407 &group_cnt, &worker_cnt_per_group, 5408 &new_groups); 5409 if (!err) { 5410 spin_lock_irq(&conf->device_lock); 5411 conf->group_cnt = group_cnt; 5412 conf->worker_cnt_per_group = worker_cnt_per_group; 5413 conf->worker_groups = new_groups; 5414 spin_unlock_irq(&conf->device_lock); 5415 5416 if (old_groups) 5417 kfree(old_groups[0].workers); 5418 kfree(old_groups); 5419 } 5420 5421 mddev_resume(mddev); 5422 5423 if (err) 5424 return err; 5425 return len; 5426 } 5427 5428 static struct md_sysfs_entry 5429 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 5430 raid5_show_group_thread_cnt, 5431 raid5_store_group_thread_cnt); 5432 5433 static struct attribute *raid5_attrs[] = { 5434 &raid5_stripecache_size.attr, 5435 &raid5_stripecache_active.attr, 5436 &raid5_preread_bypass_threshold.attr, 5437 &raid5_group_thread_cnt.attr, 5438 NULL, 5439 }; 5440 static struct attribute_group raid5_attrs_group = { 5441 .name = NULL, 5442 .attrs = raid5_attrs, 5443 }; 5444 5445 static int alloc_thread_groups(struct r5conf *conf, int cnt, 5446 int *group_cnt, 5447 int *worker_cnt_per_group, 5448 struct r5worker_group **worker_groups) 5449 { 5450 int i, j, k; 5451 ssize_t size; 5452 struct r5worker *workers; 5453 5454 *worker_cnt_per_group = cnt; 5455 if (cnt == 0) { 5456 *group_cnt = 0; 5457 *worker_groups = NULL; 5458 return 0; 5459 } 5460 *group_cnt = num_possible_nodes(); 5461 size = sizeof(struct r5worker) * cnt; 5462 workers = kzalloc(size * *group_cnt, GFP_NOIO); 5463 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 5464 *group_cnt, GFP_NOIO); 5465 if (!*worker_groups || !workers) { 5466 kfree(workers); 5467 kfree(*worker_groups); 5468 return -ENOMEM; 5469 } 5470 5471 for (i = 0; i < *group_cnt; i++) { 5472 struct r5worker_group *group; 5473 5474 group = worker_groups[i]; 5475 INIT_LIST_HEAD(&group->handle_list); 5476 group->conf = conf; 5477 group->workers = workers + i * cnt; 5478 5479 for (j = 0; j < cnt; j++) { 5480 struct r5worker *worker = group->workers + j; 5481 worker->group = group; 5482 INIT_WORK(&worker->work, raid5_do_work); 5483 5484 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 5485 INIT_LIST_HEAD(worker->temp_inactive_list + k); 5486 } 5487 } 5488 5489 return 0; 5490 } 5491 5492 static void free_thread_groups(struct r5conf *conf) 5493 { 5494 if (conf->worker_groups) 5495 kfree(conf->worker_groups[0].workers); 5496 kfree(conf->worker_groups); 5497 conf->worker_groups = NULL; 5498 } 5499 5500 static sector_t 5501 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 5502 { 5503 struct r5conf *conf = mddev->private; 5504 5505 if (!sectors) 5506 sectors = mddev->dev_sectors; 5507 if (!raid_disks) 5508 /* size is defined by the smallest of previous and new size */ 5509 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 5510 5511 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5512 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 5513 return sectors * (raid_disks - conf->max_degraded); 5514 } 5515 5516 static void raid5_free_percpu(struct r5conf *conf) 5517 { 5518 struct raid5_percpu *percpu; 5519 unsigned long cpu; 5520 5521 if (!conf->percpu) 5522 return; 5523 5524 get_online_cpus(); 5525 for_each_possible_cpu(cpu) { 5526 percpu = per_cpu_ptr(conf->percpu, cpu); 5527 safe_put_page(percpu->spare_page); 5528 kfree(percpu->scribble); 5529 } 5530 #ifdef CONFIG_HOTPLUG_CPU 5531 unregister_cpu_notifier(&conf->cpu_notify); 5532 #endif 5533 put_online_cpus(); 5534 5535 free_percpu(conf->percpu); 5536 } 5537 5538 static void free_conf(struct r5conf *conf) 5539 { 5540 free_thread_groups(conf); 5541 shrink_stripes(conf); 5542 raid5_free_percpu(conf); 5543 kfree(conf->disks); 5544 kfree(conf->stripe_hashtbl); 5545 kfree(conf); 5546 } 5547 5548 #ifdef CONFIG_HOTPLUG_CPU 5549 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 5550 void *hcpu) 5551 { 5552 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 5553 long cpu = (long)hcpu; 5554 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 5555 5556 switch (action) { 5557 case CPU_UP_PREPARE: 5558 case CPU_UP_PREPARE_FROZEN: 5559 if (conf->level == 6 && !percpu->spare_page) 5560 percpu->spare_page = alloc_page(GFP_KERNEL); 5561 if (!percpu->scribble) 5562 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5563 5564 if (!percpu->scribble || 5565 (conf->level == 6 && !percpu->spare_page)) { 5566 safe_put_page(percpu->spare_page); 5567 kfree(percpu->scribble); 5568 pr_err("%s: failed memory allocation for cpu%ld\n", 5569 __func__, cpu); 5570 return notifier_from_errno(-ENOMEM); 5571 } 5572 break; 5573 case CPU_DEAD: 5574 case CPU_DEAD_FROZEN: 5575 safe_put_page(percpu->spare_page); 5576 kfree(percpu->scribble); 5577 percpu->spare_page = NULL; 5578 percpu->scribble = NULL; 5579 break; 5580 default: 5581 break; 5582 } 5583 return NOTIFY_OK; 5584 } 5585 #endif 5586 5587 static int raid5_alloc_percpu(struct r5conf *conf) 5588 { 5589 unsigned long cpu; 5590 struct page *spare_page; 5591 struct raid5_percpu __percpu *allcpus; 5592 void *scribble; 5593 int err; 5594 5595 allcpus = alloc_percpu(struct raid5_percpu); 5596 if (!allcpus) 5597 return -ENOMEM; 5598 conf->percpu = allcpus; 5599 5600 get_online_cpus(); 5601 err = 0; 5602 for_each_present_cpu(cpu) { 5603 if (conf->level == 6) { 5604 spare_page = alloc_page(GFP_KERNEL); 5605 if (!spare_page) { 5606 err = -ENOMEM; 5607 break; 5608 } 5609 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 5610 } 5611 scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5612 if (!scribble) { 5613 err = -ENOMEM; 5614 break; 5615 } 5616 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 5617 } 5618 #ifdef CONFIG_HOTPLUG_CPU 5619 conf->cpu_notify.notifier_call = raid456_cpu_notify; 5620 conf->cpu_notify.priority = 0; 5621 if (err == 0) 5622 err = register_cpu_notifier(&conf->cpu_notify); 5623 #endif 5624 put_online_cpus(); 5625 5626 return err; 5627 } 5628 5629 static struct r5conf *setup_conf(struct mddev *mddev) 5630 { 5631 struct r5conf *conf; 5632 int raid_disk, memory, max_disks; 5633 struct md_rdev *rdev; 5634 struct disk_info *disk; 5635 char pers_name[6]; 5636 int i; 5637 int group_cnt, worker_cnt_per_group; 5638 struct r5worker_group *new_group; 5639 5640 if (mddev->new_level != 5 5641 && mddev->new_level != 4 5642 && mddev->new_level != 6) { 5643 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 5644 mdname(mddev), mddev->new_level); 5645 return ERR_PTR(-EIO); 5646 } 5647 if ((mddev->new_level == 5 5648 && !algorithm_valid_raid5(mddev->new_layout)) || 5649 (mddev->new_level == 6 5650 && !algorithm_valid_raid6(mddev->new_layout))) { 5651 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 5652 mdname(mddev), mddev->new_layout); 5653 return ERR_PTR(-EIO); 5654 } 5655 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 5656 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 5657 mdname(mddev), mddev->raid_disks); 5658 return ERR_PTR(-EINVAL); 5659 } 5660 5661 if (!mddev->new_chunk_sectors || 5662 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 5663 !is_power_of_2(mddev->new_chunk_sectors)) { 5664 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 5665 mdname(mddev), mddev->new_chunk_sectors << 9); 5666 return ERR_PTR(-EINVAL); 5667 } 5668 5669 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 5670 if (conf == NULL) 5671 goto abort; 5672 /* Don't enable multi-threading by default*/ 5673 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 5674 &new_group)) { 5675 conf->group_cnt = group_cnt; 5676 conf->worker_cnt_per_group = worker_cnt_per_group; 5677 conf->worker_groups = new_group; 5678 } else 5679 goto abort; 5680 spin_lock_init(&conf->device_lock); 5681 seqcount_init(&conf->gen_lock); 5682 init_waitqueue_head(&conf->wait_for_stripe); 5683 init_waitqueue_head(&conf->wait_for_overlap); 5684 INIT_LIST_HEAD(&conf->handle_list); 5685 INIT_LIST_HEAD(&conf->hold_list); 5686 INIT_LIST_HEAD(&conf->delayed_list); 5687 INIT_LIST_HEAD(&conf->bitmap_list); 5688 init_llist_head(&conf->released_stripes); 5689 atomic_set(&conf->active_stripes, 0); 5690 atomic_set(&conf->preread_active_stripes, 0); 5691 atomic_set(&conf->active_aligned_reads, 0); 5692 conf->bypass_threshold = BYPASS_THRESHOLD; 5693 conf->recovery_disabled = mddev->recovery_disabled - 1; 5694 5695 conf->raid_disks = mddev->raid_disks; 5696 if (mddev->reshape_position == MaxSector) 5697 conf->previous_raid_disks = mddev->raid_disks; 5698 else 5699 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 5700 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 5701 conf->scribble_len = scribble_len(max_disks); 5702 5703 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5704 GFP_KERNEL); 5705 if (!conf->disks) 5706 goto abort; 5707 5708 conf->mddev = mddev; 5709 5710 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5711 goto abort; 5712 5713 /* We init hash_locks[0] separately to that it can be used 5714 * as the reference lock in the spin_lock_nest_lock() call 5715 * in lock_all_device_hash_locks_irq in order to convince 5716 * lockdep that we know what we are doing. 5717 */ 5718 spin_lock_init(conf->hash_locks); 5719 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 5720 spin_lock_init(conf->hash_locks + i); 5721 5722 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5723 INIT_LIST_HEAD(conf->inactive_list + i); 5724 5725 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5726 INIT_LIST_HEAD(conf->temp_inactive_list + i); 5727 5728 conf->level = mddev->new_level; 5729 if (raid5_alloc_percpu(conf) != 0) 5730 goto abort; 5731 5732 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5733 5734 rdev_for_each(rdev, mddev) { 5735 raid_disk = rdev->raid_disk; 5736 if (raid_disk >= max_disks 5737 || raid_disk < 0) 5738 continue; 5739 disk = conf->disks + raid_disk; 5740 5741 if (test_bit(Replacement, &rdev->flags)) { 5742 if (disk->replacement) 5743 goto abort; 5744 disk->replacement = rdev; 5745 } else { 5746 if (disk->rdev) 5747 goto abort; 5748 disk->rdev = rdev; 5749 } 5750 5751 if (test_bit(In_sync, &rdev->flags)) { 5752 char b[BDEVNAME_SIZE]; 5753 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5754 " disk %d\n", 5755 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5756 } else if (rdev->saved_raid_disk != raid_disk) 5757 /* Cannot rely on bitmap to complete recovery */ 5758 conf->fullsync = 1; 5759 } 5760 5761 conf->chunk_sectors = mddev->new_chunk_sectors; 5762 conf->level = mddev->new_level; 5763 if (conf->level == 6) 5764 conf->max_degraded = 2; 5765 else 5766 conf->max_degraded = 1; 5767 conf->algorithm = mddev->new_layout; 5768 conf->reshape_progress = mddev->reshape_position; 5769 if (conf->reshape_progress != MaxSector) { 5770 conf->prev_chunk_sectors = mddev->chunk_sectors; 5771 conf->prev_algo = mddev->layout; 5772 } 5773 5774 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5775 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5776 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 5777 if (grow_stripes(conf, NR_STRIPES)) { 5778 printk(KERN_ERR 5779 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5780 mdname(mddev), memory); 5781 goto abort; 5782 } else 5783 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5784 mdname(mddev), memory); 5785 5786 sprintf(pers_name, "raid%d", mddev->new_level); 5787 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5788 if (!conf->thread) { 5789 printk(KERN_ERR 5790 "md/raid:%s: couldn't allocate thread.\n", 5791 mdname(mddev)); 5792 goto abort; 5793 } 5794 5795 return conf; 5796 5797 abort: 5798 if (conf) { 5799 free_conf(conf); 5800 return ERR_PTR(-EIO); 5801 } else 5802 return ERR_PTR(-ENOMEM); 5803 } 5804 5805 5806 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5807 { 5808 switch (algo) { 5809 case ALGORITHM_PARITY_0: 5810 if (raid_disk < max_degraded) 5811 return 1; 5812 break; 5813 case ALGORITHM_PARITY_N: 5814 if (raid_disk >= raid_disks - max_degraded) 5815 return 1; 5816 break; 5817 case ALGORITHM_PARITY_0_6: 5818 if (raid_disk == 0 || 5819 raid_disk == raid_disks - 1) 5820 return 1; 5821 break; 5822 case ALGORITHM_LEFT_ASYMMETRIC_6: 5823 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5824 case ALGORITHM_LEFT_SYMMETRIC_6: 5825 case ALGORITHM_RIGHT_SYMMETRIC_6: 5826 if (raid_disk == raid_disks - 1) 5827 return 1; 5828 } 5829 return 0; 5830 } 5831 5832 static int run(struct mddev *mddev) 5833 { 5834 struct r5conf *conf; 5835 int working_disks = 0; 5836 int dirty_parity_disks = 0; 5837 struct md_rdev *rdev; 5838 sector_t reshape_offset = 0; 5839 int i; 5840 long long min_offset_diff = 0; 5841 int first = 1; 5842 5843 if (mddev->recovery_cp != MaxSector) 5844 printk(KERN_NOTICE "md/raid:%s: not clean" 5845 " -- starting background reconstruction\n", 5846 mdname(mddev)); 5847 5848 rdev_for_each(rdev, mddev) { 5849 long long diff; 5850 if (rdev->raid_disk < 0) 5851 continue; 5852 diff = (rdev->new_data_offset - rdev->data_offset); 5853 if (first) { 5854 min_offset_diff = diff; 5855 first = 0; 5856 } else if (mddev->reshape_backwards && 5857 diff < min_offset_diff) 5858 min_offset_diff = diff; 5859 else if (!mddev->reshape_backwards && 5860 diff > min_offset_diff) 5861 min_offset_diff = diff; 5862 } 5863 5864 if (mddev->reshape_position != MaxSector) { 5865 /* Check that we can continue the reshape. 5866 * Difficulties arise if the stripe we would write to 5867 * next is at or after the stripe we would read from next. 5868 * For a reshape that changes the number of devices, this 5869 * is only possible for a very short time, and mdadm makes 5870 * sure that time appears to have past before assembling 5871 * the array. So we fail if that time hasn't passed. 5872 * For a reshape that keeps the number of devices the same 5873 * mdadm must be monitoring the reshape can keeping the 5874 * critical areas read-only and backed up. It will start 5875 * the array in read-only mode, so we check for that. 5876 */ 5877 sector_t here_new, here_old; 5878 int old_disks; 5879 int max_degraded = (mddev->level == 6 ? 2 : 1); 5880 5881 if (mddev->new_level != mddev->level) { 5882 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5883 "required - aborting.\n", 5884 mdname(mddev)); 5885 return -EINVAL; 5886 } 5887 old_disks = mddev->raid_disks - mddev->delta_disks; 5888 /* reshape_position must be on a new-stripe boundary, and one 5889 * further up in new geometry must map after here in old 5890 * geometry. 5891 */ 5892 here_new = mddev->reshape_position; 5893 if (sector_div(here_new, mddev->new_chunk_sectors * 5894 (mddev->raid_disks - max_degraded))) { 5895 printk(KERN_ERR "md/raid:%s: reshape_position not " 5896 "on a stripe boundary\n", mdname(mddev)); 5897 return -EINVAL; 5898 } 5899 reshape_offset = here_new * mddev->new_chunk_sectors; 5900 /* here_new is the stripe we will write to */ 5901 here_old = mddev->reshape_position; 5902 sector_div(here_old, mddev->chunk_sectors * 5903 (old_disks-max_degraded)); 5904 /* here_old is the first stripe that we might need to read 5905 * from */ 5906 if (mddev->delta_disks == 0) { 5907 if ((here_new * mddev->new_chunk_sectors != 5908 here_old * mddev->chunk_sectors)) { 5909 printk(KERN_ERR "md/raid:%s: reshape position is" 5910 " confused - aborting\n", mdname(mddev)); 5911 return -EINVAL; 5912 } 5913 /* We cannot be sure it is safe to start an in-place 5914 * reshape. It is only safe if user-space is monitoring 5915 * and taking constant backups. 5916 * mdadm always starts a situation like this in 5917 * readonly mode so it can take control before 5918 * allowing any writes. So just check for that. 5919 */ 5920 if (abs(min_offset_diff) >= mddev->chunk_sectors && 5921 abs(min_offset_diff) >= mddev->new_chunk_sectors) 5922 /* not really in-place - so OK */; 5923 else if (mddev->ro == 0) { 5924 printk(KERN_ERR "md/raid:%s: in-place reshape " 5925 "must be started in read-only mode " 5926 "- aborting\n", 5927 mdname(mddev)); 5928 return -EINVAL; 5929 } 5930 } else if (mddev->reshape_backwards 5931 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 5932 here_old * mddev->chunk_sectors) 5933 : (here_new * mddev->new_chunk_sectors >= 5934 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 5935 /* Reading from the same stripe as writing to - bad */ 5936 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 5937 "auto-recovery - aborting.\n", 5938 mdname(mddev)); 5939 return -EINVAL; 5940 } 5941 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 5942 mdname(mddev)); 5943 /* OK, we should be able to continue; */ 5944 } else { 5945 BUG_ON(mddev->level != mddev->new_level); 5946 BUG_ON(mddev->layout != mddev->new_layout); 5947 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 5948 BUG_ON(mddev->delta_disks != 0); 5949 } 5950 5951 if (mddev->private == NULL) 5952 conf = setup_conf(mddev); 5953 else 5954 conf = mddev->private; 5955 5956 if (IS_ERR(conf)) 5957 return PTR_ERR(conf); 5958 5959 conf->min_offset_diff = min_offset_diff; 5960 mddev->thread = conf->thread; 5961 conf->thread = NULL; 5962 mddev->private = conf; 5963 5964 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 5965 i++) { 5966 rdev = conf->disks[i].rdev; 5967 if (!rdev && conf->disks[i].replacement) { 5968 /* The replacement is all we have yet */ 5969 rdev = conf->disks[i].replacement; 5970 conf->disks[i].replacement = NULL; 5971 clear_bit(Replacement, &rdev->flags); 5972 conf->disks[i].rdev = rdev; 5973 } 5974 if (!rdev) 5975 continue; 5976 if (conf->disks[i].replacement && 5977 conf->reshape_progress != MaxSector) { 5978 /* replacements and reshape simply do not mix. */ 5979 printk(KERN_ERR "md: cannot handle concurrent " 5980 "replacement and reshape.\n"); 5981 goto abort; 5982 } 5983 if (test_bit(In_sync, &rdev->flags)) { 5984 working_disks++; 5985 continue; 5986 } 5987 /* This disc is not fully in-sync. However if it 5988 * just stored parity (beyond the recovery_offset), 5989 * when we don't need to be concerned about the 5990 * array being dirty. 5991 * When reshape goes 'backwards', we never have 5992 * partially completed devices, so we only need 5993 * to worry about reshape going forwards. 5994 */ 5995 /* Hack because v0.91 doesn't store recovery_offset properly. */ 5996 if (mddev->major_version == 0 && 5997 mddev->minor_version > 90) 5998 rdev->recovery_offset = reshape_offset; 5999 6000 if (rdev->recovery_offset < reshape_offset) { 6001 /* We need to check old and new layout */ 6002 if (!only_parity(rdev->raid_disk, 6003 conf->algorithm, 6004 conf->raid_disks, 6005 conf->max_degraded)) 6006 continue; 6007 } 6008 if (!only_parity(rdev->raid_disk, 6009 conf->prev_algo, 6010 conf->previous_raid_disks, 6011 conf->max_degraded)) 6012 continue; 6013 dirty_parity_disks++; 6014 } 6015 6016 /* 6017 * 0 for a fully functional array, 1 or 2 for a degraded array. 6018 */ 6019 mddev->degraded = calc_degraded(conf); 6020 6021 if (has_failed(conf)) { 6022 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6023 " (%d/%d failed)\n", 6024 mdname(mddev), mddev->degraded, conf->raid_disks); 6025 goto abort; 6026 } 6027 6028 /* device size must be a multiple of chunk size */ 6029 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6030 mddev->resync_max_sectors = mddev->dev_sectors; 6031 6032 if (mddev->degraded > dirty_parity_disks && 6033 mddev->recovery_cp != MaxSector) { 6034 if (mddev->ok_start_degraded) 6035 printk(KERN_WARNING 6036 "md/raid:%s: starting dirty degraded array" 6037 " - data corruption possible.\n", 6038 mdname(mddev)); 6039 else { 6040 printk(KERN_ERR 6041 "md/raid:%s: cannot start dirty degraded array.\n", 6042 mdname(mddev)); 6043 goto abort; 6044 } 6045 } 6046 6047 if (mddev->degraded == 0) 6048 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6049 " devices, algorithm %d\n", mdname(mddev), conf->level, 6050 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6051 mddev->new_layout); 6052 else 6053 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6054 " out of %d devices, algorithm %d\n", 6055 mdname(mddev), conf->level, 6056 mddev->raid_disks - mddev->degraded, 6057 mddev->raid_disks, mddev->new_layout); 6058 6059 print_raid5_conf(conf); 6060 6061 if (conf->reshape_progress != MaxSector) { 6062 conf->reshape_safe = conf->reshape_progress; 6063 atomic_set(&conf->reshape_stripes, 0); 6064 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6065 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6066 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6067 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6068 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6069 "reshape"); 6070 } 6071 6072 6073 /* Ok, everything is just fine now */ 6074 if (mddev->to_remove == &raid5_attrs_group) 6075 mddev->to_remove = NULL; 6076 else if (mddev->kobj.sd && 6077 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6078 printk(KERN_WARNING 6079 "raid5: failed to create sysfs attributes for %s\n", 6080 mdname(mddev)); 6081 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6082 6083 if (mddev->queue) { 6084 int chunk_size; 6085 bool discard_supported = true; 6086 /* read-ahead size must cover two whole stripes, which 6087 * is 2 * (datadisks) * chunksize where 'n' is the 6088 * number of raid devices 6089 */ 6090 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6091 int stripe = data_disks * 6092 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6093 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6094 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6095 6096 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 6097 6098 mddev->queue->backing_dev_info.congested_data = mddev; 6099 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 6100 6101 chunk_size = mddev->chunk_sectors << 9; 6102 blk_queue_io_min(mddev->queue, chunk_size); 6103 blk_queue_io_opt(mddev->queue, chunk_size * 6104 (conf->raid_disks - conf->max_degraded)); 6105 /* 6106 * We can only discard a whole stripe. It doesn't make sense to 6107 * discard data disk but write parity disk 6108 */ 6109 stripe = stripe * PAGE_SIZE; 6110 /* Round up to power of 2, as discard handling 6111 * currently assumes that */ 6112 while ((stripe-1) & stripe) 6113 stripe = (stripe | (stripe-1)) + 1; 6114 mddev->queue->limits.discard_alignment = stripe; 6115 mddev->queue->limits.discard_granularity = stripe; 6116 /* 6117 * unaligned part of discard request will be ignored, so can't 6118 * guarantee discard_zerors_data 6119 */ 6120 mddev->queue->limits.discard_zeroes_data = 0; 6121 6122 blk_queue_max_write_same_sectors(mddev->queue, 0); 6123 6124 rdev_for_each(rdev, mddev) { 6125 disk_stack_limits(mddev->gendisk, rdev->bdev, 6126 rdev->data_offset << 9); 6127 disk_stack_limits(mddev->gendisk, rdev->bdev, 6128 rdev->new_data_offset << 9); 6129 /* 6130 * discard_zeroes_data is required, otherwise data 6131 * could be lost. Consider a scenario: discard a stripe 6132 * (the stripe could be inconsistent if 6133 * discard_zeroes_data is 0); write one disk of the 6134 * stripe (the stripe could be inconsistent again 6135 * depending on which disks are used to calculate 6136 * parity); the disk is broken; The stripe data of this 6137 * disk is lost. 6138 */ 6139 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 6140 !bdev_get_queue(rdev->bdev)-> 6141 limits.discard_zeroes_data) 6142 discard_supported = false; 6143 } 6144 6145 if (discard_supported && 6146 mddev->queue->limits.max_discard_sectors >= stripe && 6147 mddev->queue->limits.discard_granularity >= stripe) 6148 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 6149 mddev->queue); 6150 else 6151 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 6152 mddev->queue); 6153 } 6154 6155 return 0; 6156 abort: 6157 md_unregister_thread(&mddev->thread); 6158 print_raid5_conf(conf); 6159 free_conf(conf); 6160 mddev->private = NULL; 6161 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 6162 return -EIO; 6163 } 6164 6165 static int stop(struct mddev *mddev) 6166 { 6167 struct r5conf *conf = mddev->private; 6168 6169 md_unregister_thread(&mddev->thread); 6170 if (mddev->queue) 6171 mddev->queue->backing_dev_info.congested_fn = NULL; 6172 free_conf(conf); 6173 mddev->private = NULL; 6174 mddev->to_remove = &raid5_attrs_group; 6175 return 0; 6176 } 6177 6178 static void status(struct seq_file *seq, struct mddev *mddev) 6179 { 6180 struct r5conf *conf = mddev->private; 6181 int i; 6182 6183 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 6184 mddev->chunk_sectors / 2, mddev->layout); 6185 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 6186 for (i = 0; i < conf->raid_disks; i++) 6187 seq_printf (seq, "%s", 6188 conf->disks[i].rdev && 6189 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 6190 seq_printf (seq, "]"); 6191 } 6192 6193 static void print_raid5_conf (struct r5conf *conf) 6194 { 6195 int i; 6196 struct disk_info *tmp; 6197 6198 printk(KERN_DEBUG "RAID conf printout:\n"); 6199 if (!conf) { 6200 printk("(conf==NULL)\n"); 6201 return; 6202 } 6203 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 6204 conf->raid_disks, 6205 conf->raid_disks - conf->mddev->degraded); 6206 6207 for (i = 0; i < conf->raid_disks; i++) { 6208 char b[BDEVNAME_SIZE]; 6209 tmp = conf->disks + i; 6210 if (tmp->rdev) 6211 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 6212 i, !test_bit(Faulty, &tmp->rdev->flags), 6213 bdevname(tmp->rdev->bdev, b)); 6214 } 6215 } 6216 6217 static int raid5_spare_active(struct mddev *mddev) 6218 { 6219 int i; 6220 struct r5conf *conf = mddev->private; 6221 struct disk_info *tmp; 6222 int count = 0; 6223 unsigned long flags; 6224 6225 for (i = 0; i < conf->raid_disks; i++) { 6226 tmp = conf->disks + i; 6227 if (tmp->replacement 6228 && tmp->replacement->recovery_offset == MaxSector 6229 && !test_bit(Faulty, &tmp->replacement->flags) 6230 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 6231 /* Replacement has just become active. */ 6232 if (!tmp->rdev 6233 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 6234 count++; 6235 if (tmp->rdev) { 6236 /* Replaced device not technically faulty, 6237 * but we need to be sure it gets removed 6238 * and never re-added. 6239 */ 6240 set_bit(Faulty, &tmp->rdev->flags); 6241 sysfs_notify_dirent_safe( 6242 tmp->rdev->sysfs_state); 6243 } 6244 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 6245 } else if (tmp->rdev 6246 && tmp->rdev->recovery_offset == MaxSector 6247 && !test_bit(Faulty, &tmp->rdev->flags) 6248 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 6249 count++; 6250 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 6251 } 6252 } 6253 spin_lock_irqsave(&conf->device_lock, flags); 6254 mddev->degraded = calc_degraded(conf); 6255 spin_unlock_irqrestore(&conf->device_lock, flags); 6256 print_raid5_conf(conf); 6257 return count; 6258 } 6259 6260 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 6261 { 6262 struct r5conf *conf = mddev->private; 6263 int err = 0; 6264 int number = rdev->raid_disk; 6265 struct md_rdev **rdevp; 6266 struct disk_info *p = conf->disks + number; 6267 6268 print_raid5_conf(conf); 6269 if (rdev == p->rdev) 6270 rdevp = &p->rdev; 6271 else if (rdev == p->replacement) 6272 rdevp = &p->replacement; 6273 else 6274 return 0; 6275 6276 if (number >= conf->raid_disks && 6277 conf->reshape_progress == MaxSector) 6278 clear_bit(In_sync, &rdev->flags); 6279 6280 if (test_bit(In_sync, &rdev->flags) || 6281 atomic_read(&rdev->nr_pending)) { 6282 err = -EBUSY; 6283 goto abort; 6284 } 6285 /* Only remove non-faulty devices if recovery 6286 * isn't possible. 6287 */ 6288 if (!test_bit(Faulty, &rdev->flags) && 6289 mddev->recovery_disabled != conf->recovery_disabled && 6290 !has_failed(conf) && 6291 (!p->replacement || p->replacement == rdev) && 6292 number < conf->raid_disks) { 6293 err = -EBUSY; 6294 goto abort; 6295 } 6296 *rdevp = NULL; 6297 synchronize_rcu(); 6298 if (atomic_read(&rdev->nr_pending)) { 6299 /* lost the race, try later */ 6300 err = -EBUSY; 6301 *rdevp = rdev; 6302 } else if (p->replacement) { 6303 /* We must have just cleared 'rdev' */ 6304 p->rdev = p->replacement; 6305 clear_bit(Replacement, &p->replacement->flags); 6306 smp_mb(); /* Make sure other CPUs may see both as identical 6307 * but will never see neither - if they are careful 6308 */ 6309 p->replacement = NULL; 6310 clear_bit(WantReplacement, &rdev->flags); 6311 } else 6312 /* We might have just removed the Replacement as faulty- 6313 * clear the bit just in case 6314 */ 6315 clear_bit(WantReplacement, &rdev->flags); 6316 abort: 6317 6318 print_raid5_conf(conf); 6319 return err; 6320 } 6321 6322 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 6323 { 6324 struct r5conf *conf = mddev->private; 6325 int err = -EEXIST; 6326 int disk; 6327 struct disk_info *p; 6328 int first = 0; 6329 int last = conf->raid_disks - 1; 6330 6331 if (mddev->recovery_disabled == conf->recovery_disabled) 6332 return -EBUSY; 6333 6334 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 6335 /* no point adding a device */ 6336 return -EINVAL; 6337 6338 if (rdev->raid_disk >= 0) 6339 first = last = rdev->raid_disk; 6340 6341 /* 6342 * find the disk ... but prefer rdev->saved_raid_disk 6343 * if possible. 6344 */ 6345 if (rdev->saved_raid_disk >= 0 && 6346 rdev->saved_raid_disk >= first && 6347 conf->disks[rdev->saved_raid_disk].rdev == NULL) 6348 first = rdev->saved_raid_disk; 6349 6350 for (disk = first; disk <= last; disk++) { 6351 p = conf->disks + disk; 6352 if (p->rdev == NULL) { 6353 clear_bit(In_sync, &rdev->flags); 6354 rdev->raid_disk = disk; 6355 err = 0; 6356 if (rdev->saved_raid_disk != disk) 6357 conf->fullsync = 1; 6358 rcu_assign_pointer(p->rdev, rdev); 6359 goto out; 6360 } 6361 } 6362 for (disk = first; disk <= last; disk++) { 6363 p = conf->disks + disk; 6364 if (test_bit(WantReplacement, &p->rdev->flags) && 6365 p->replacement == NULL) { 6366 clear_bit(In_sync, &rdev->flags); 6367 set_bit(Replacement, &rdev->flags); 6368 rdev->raid_disk = disk; 6369 err = 0; 6370 conf->fullsync = 1; 6371 rcu_assign_pointer(p->replacement, rdev); 6372 break; 6373 } 6374 } 6375 out: 6376 print_raid5_conf(conf); 6377 return err; 6378 } 6379 6380 static int raid5_resize(struct mddev *mddev, sector_t sectors) 6381 { 6382 /* no resync is happening, and there is enough space 6383 * on all devices, so we can resize. 6384 * We need to make sure resync covers any new space. 6385 * If the array is shrinking we should possibly wait until 6386 * any io in the removed space completes, but it hardly seems 6387 * worth it. 6388 */ 6389 sector_t newsize; 6390 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 6391 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 6392 if (mddev->external_size && 6393 mddev->array_sectors > newsize) 6394 return -EINVAL; 6395 if (mddev->bitmap) { 6396 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 6397 if (ret) 6398 return ret; 6399 } 6400 md_set_array_sectors(mddev, newsize); 6401 set_capacity(mddev->gendisk, mddev->array_sectors); 6402 revalidate_disk(mddev->gendisk); 6403 if (sectors > mddev->dev_sectors && 6404 mddev->recovery_cp > mddev->dev_sectors) { 6405 mddev->recovery_cp = mddev->dev_sectors; 6406 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6407 } 6408 mddev->dev_sectors = sectors; 6409 mddev->resync_max_sectors = sectors; 6410 return 0; 6411 } 6412 6413 static int check_stripe_cache(struct mddev *mddev) 6414 { 6415 /* Can only proceed if there are plenty of stripe_heads. 6416 * We need a minimum of one full stripe,, and for sensible progress 6417 * it is best to have about 4 times that. 6418 * If we require 4 times, then the default 256 4K stripe_heads will 6419 * allow for chunk sizes up to 256K, which is probably OK. 6420 * If the chunk size is greater, user-space should request more 6421 * stripe_heads first. 6422 */ 6423 struct r5conf *conf = mddev->private; 6424 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 6425 > conf->max_nr_stripes || 6426 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 6427 > conf->max_nr_stripes) { 6428 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 6429 mdname(mddev), 6430 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 6431 / STRIPE_SIZE)*4); 6432 return 0; 6433 } 6434 return 1; 6435 } 6436 6437 static int check_reshape(struct mddev *mddev) 6438 { 6439 struct r5conf *conf = mddev->private; 6440 6441 if (mddev->delta_disks == 0 && 6442 mddev->new_layout == mddev->layout && 6443 mddev->new_chunk_sectors == mddev->chunk_sectors) 6444 return 0; /* nothing to do */ 6445 if (has_failed(conf)) 6446 return -EINVAL; 6447 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 6448 /* We might be able to shrink, but the devices must 6449 * be made bigger first. 6450 * For raid6, 4 is the minimum size. 6451 * Otherwise 2 is the minimum 6452 */ 6453 int min = 2; 6454 if (mddev->level == 6) 6455 min = 4; 6456 if (mddev->raid_disks + mddev->delta_disks < min) 6457 return -EINVAL; 6458 } 6459 6460 if (!check_stripe_cache(mddev)) 6461 return -ENOSPC; 6462 6463 return resize_stripes(conf, (conf->previous_raid_disks 6464 + mddev->delta_disks)); 6465 } 6466 6467 static int raid5_start_reshape(struct mddev *mddev) 6468 { 6469 struct r5conf *conf = mddev->private; 6470 struct md_rdev *rdev; 6471 int spares = 0; 6472 unsigned long flags; 6473 6474 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6475 return -EBUSY; 6476 6477 if (!check_stripe_cache(mddev)) 6478 return -ENOSPC; 6479 6480 if (has_failed(conf)) 6481 return -EINVAL; 6482 6483 rdev_for_each(rdev, mddev) { 6484 if (!test_bit(In_sync, &rdev->flags) 6485 && !test_bit(Faulty, &rdev->flags)) 6486 spares++; 6487 } 6488 6489 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 6490 /* Not enough devices even to make a degraded array 6491 * of that size 6492 */ 6493 return -EINVAL; 6494 6495 /* Refuse to reduce size of the array. Any reductions in 6496 * array size must be through explicit setting of array_size 6497 * attribute. 6498 */ 6499 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 6500 < mddev->array_sectors) { 6501 printk(KERN_ERR "md/raid:%s: array size must be reduced " 6502 "before number of disks\n", mdname(mddev)); 6503 return -EINVAL; 6504 } 6505 6506 atomic_set(&conf->reshape_stripes, 0); 6507 spin_lock_irq(&conf->device_lock); 6508 write_seqcount_begin(&conf->gen_lock); 6509 conf->previous_raid_disks = conf->raid_disks; 6510 conf->raid_disks += mddev->delta_disks; 6511 conf->prev_chunk_sectors = conf->chunk_sectors; 6512 conf->chunk_sectors = mddev->new_chunk_sectors; 6513 conf->prev_algo = conf->algorithm; 6514 conf->algorithm = mddev->new_layout; 6515 conf->generation++; 6516 /* Code that selects data_offset needs to see the generation update 6517 * if reshape_progress has been set - so a memory barrier needed. 6518 */ 6519 smp_mb(); 6520 if (mddev->reshape_backwards) 6521 conf->reshape_progress = raid5_size(mddev, 0, 0); 6522 else 6523 conf->reshape_progress = 0; 6524 conf->reshape_safe = conf->reshape_progress; 6525 write_seqcount_end(&conf->gen_lock); 6526 spin_unlock_irq(&conf->device_lock); 6527 6528 /* Now make sure any requests that proceeded on the assumption 6529 * the reshape wasn't running - like Discard or Read - have 6530 * completed. 6531 */ 6532 mddev_suspend(mddev); 6533 mddev_resume(mddev); 6534 6535 /* Add some new drives, as many as will fit. 6536 * We know there are enough to make the newly sized array work. 6537 * Don't add devices if we are reducing the number of 6538 * devices in the array. This is because it is not possible 6539 * to correctly record the "partially reconstructed" state of 6540 * such devices during the reshape and confusion could result. 6541 */ 6542 if (mddev->delta_disks >= 0) { 6543 rdev_for_each(rdev, mddev) 6544 if (rdev->raid_disk < 0 && 6545 !test_bit(Faulty, &rdev->flags)) { 6546 if (raid5_add_disk(mddev, rdev) == 0) { 6547 if (rdev->raid_disk 6548 >= conf->previous_raid_disks) 6549 set_bit(In_sync, &rdev->flags); 6550 else 6551 rdev->recovery_offset = 0; 6552 6553 if (sysfs_link_rdev(mddev, rdev)) 6554 /* Failure here is OK */; 6555 } 6556 } else if (rdev->raid_disk >= conf->previous_raid_disks 6557 && !test_bit(Faulty, &rdev->flags)) { 6558 /* This is a spare that was manually added */ 6559 set_bit(In_sync, &rdev->flags); 6560 } 6561 6562 /* When a reshape changes the number of devices, 6563 * ->degraded is measured against the larger of the 6564 * pre and post number of devices. 6565 */ 6566 spin_lock_irqsave(&conf->device_lock, flags); 6567 mddev->degraded = calc_degraded(conf); 6568 spin_unlock_irqrestore(&conf->device_lock, flags); 6569 } 6570 mddev->raid_disks = conf->raid_disks; 6571 mddev->reshape_position = conf->reshape_progress; 6572 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6573 6574 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6575 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6576 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6577 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6578 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6579 "reshape"); 6580 if (!mddev->sync_thread) { 6581 mddev->recovery = 0; 6582 spin_lock_irq(&conf->device_lock); 6583 write_seqcount_begin(&conf->gen_lock); 6584 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 6585 mddev->new_chunk_sectors = 6586 conf->chunk_sectors = conf->prev_chunk_sectors; 6587 mddev->new_layout = conf->algorithm = conf->prev_algo; 6588 rdev_for_each(rdev, mddev) 6589 rdev->new_data_offset = rdev->data_offset; 6590 smp_wmb(); 6591 conf->generation --; 6592 conf->reshape_progress = MaxSector; 6593 mddev->reshape_position = MaxSector; 6594 write_seqcount_end(&conf->gen_lock); 6595 spin_unlock_irq(&conf->device_lock); 6596 return -EAGAIN; 6597 } 6598 conf->reshape_checkpoint = jiffies; 6599 md_wakeup_thread(mddev->sync_thread); 6600 md_new_event(mddev); 6601 return 0; 6602 } 6603 6604 /* This is called from the reshape thread and should make any 6605 * changes needed in 'conf' 6606 */ 6607 static void end_reshape(struct r5conf *conf) 6608 { 6609 6610 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 6611 struct md_rdev *rdev; 6612 6613 spin_lock_irq(&conf->device_lock); 6614 conf->previous_raid_disks = conf->raid_disks; 6615 rdev_for_each(rdev, conf->mddev) 6616 rdev->data_offset = rdev->new_data_offset; 6617 smp_wmb(); 6618 conf->reshape_progress = MaxSector; 6619 spin_unlock_irq(&conf->device_lock); 6620 wake_up(&conf->wait_for_overlap); 6621 6622 /* read-ahead size must cover two whole stripes, which is 6623 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 6624 */ 6625 if (conf->mddev->queue) { 6626 int data_disks = conf->raid_disks - conf->max_degraded; 6627 int stripe = data_disks * ((conf->chunk_sectors << 9) 6628 / PAGE_SIZE); 6629 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6630 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6631 } 6632 } 6633 } 6634 6635 /* This is called from the raid5d thread with mddev_lock held. 6636 * It makes config changes to the device. 6637 */ 6638 static void raid5_finish_reshape(struct mddev *mddev) 6639 { 6640 struct r5conf *conf = mddev->private; 6641 6642 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6643 6644 if (mddev->delta_disks > 0) { 6645 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6646 set_capacity(mddev->gendisk, mddev->array_sectors); 6647 revalidate_disk(mddev->gendisk); 6648 } else { 6649 int d; 6650 spin_lock_irq(&conf->device_lock); 6651 mddev->degraded = calc_degraded(conf); 6652 spin_unlock_irq(&conf->device_lock); 6653 for (d = conf->raid_disks ; 6654 d < conf->raid_disks - mddev->delta_disks; 6655 d++) { 6656 struct md_rdev *rdev = conf->disks[d].rdev; 6657 if (rdev) 6658 clear_bit(In_sync, &rdev->flags); 6659 rdev = conf->disks[d].replacement; 6660 if (rdev) 6661 clear_bit(In_sync, &rdev->flags); 6662 } 6663 } 6664 mddev->layout = conf->algorithm; 6665 mddev->chunk_sectors = conf->chunk_sectors; 6666 mddev->reshape_position = MaxSector; 6667 mddev->delta_disks = 0; 6668 mddev->reshape_backwards = 0; 6669 } 6670 } 6671 6672 static void raid5_quiesce(struct mddev *mddev, int state) 6673 { 6674 struct r5conf *conf = mddev->private; 6675 6676 switch(state) { 6677 case 2: /* resume for a suspend */ 6678 wake_up(&conf->wait_for_overlap); 6679 break; 6680 6681 case 1: /* stop all writes */ 6682 lock_all_device_hash_locks_irq(conf); 6683 /* '2' tells resync/reshape to pause so that all 6684 * active stripes can drain 6685 */ 6686 conf->quiesce = 2; 6687 wait_event_cmd(conf->wait_for_stripe, 6688 atomic_read(&conf->active_stripes) == 0 && 6689 atomic_read(&conf->active_aligned_reads) == 0, 6690 unlock_all_device_hash_locks_irq(conf), 6691 lock_all_device_hash_locks_irq(conf)); 6692 conf->quiesce = 1; 6693 unlock_all_device_hash_locks_irq(conf); 6694 /* allow reshape to continue */ 6695 wake_up(&conf->wait_for_overlap); 6696 break; 6697 6698 case 0: /* re-enable writes */ 6699 lock_all_device_hash_locks_irq(conf); 6700 conf->quiesce = 0; 6701 wake_up(&conf->wait_for_stripe); 6702 wake_up(&conf->wait_for_overlap); 6703 unlock_all_device_hash_locks_irq(conf); 6704 break; 6705 } 6706 } 6707 6708 6709 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 6710 { 6711 struct r0conf *raid0_conf = mddev->private; 6712 sector_t sectors; 6713 6714 /* for raid0 takeover only one zone is supported */ 6715 if (raid0_conf->nr_strip_zones > 1) { 6716 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 6717 mdname(mddev)); 6718 return ERR_PTR(-EINVAL); 6719 } 6720 6721 sectors = raid0_conf->strip_zone[0].zone_end; 6722 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 6723 mddev->dev_sectors = sectors; 6724 mddev->new_level = level; 6725 mddev->new_layout = ALGORITHM_PARITY_N; 6726 mddev->new_chunk_sectors = mddev->chunk_sectors; 6727 mddev->raid_disks += 1; 6728 mddev->delta_disks = 1; 6729 /* make sure it will be not marked as dirty */ 6730 mddev->recovery_cp = MaxSector; 6731 6732 return setup_conf(mddev); 6733 } 6734 6735 6736 static void *raid5_takeover_raid1(struct mddev *mddev) 6737 { 6738 int chunksect; 6739 6740 if (mddev->raid_disks != 2 || 6741 mddev->degraded > 1) 6742 return ERR_PTR(-EINVAL); 6743 6744 /* Should check if there are write-behind devices? */ 6745 6746 chunksect = 64*2; /* 64K by default */ 6747 6748 /* The array must be an exact multiple of chunksize */ 6749 while (chunksect && (mddev->array_sectors & (chunksect-1))) 6750 chunksect >>= 1; 6751 6752 if ((chunksect<<9) < STRIPE_SIZE) 6753 /* array size does not allow a suitable chunk size */ 6754 return ERR_PTR(-EINVAL); 6755 6756 mddev->new_level = 5; 6757 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 6758 mddev->new_chunk_sectors = chunksect; 6759 6760 return setup_conf(mddev); 6761 } 6762 6763 static void *raid5_takeover_raid6(struct mddev *mddev) 6764 { 6765 int new_layout; 6766 6767 switch (mddev->layout) { 6768 case ALGORITHM_LEFT_ASYMMETRIC_6: 6769 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 6770 break; 6771 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6772 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 6773 break; 6774 case ALGORITHM_LEFT_SYMMETRIC_6: 6775 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6776 break; 6777 case ALGORITHM_RIGHT_SYMMETRIC_6: 6778 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6779 break; 6780 case ALGORITHM_PARITY_0_6: 6781 new_layout = ALGORITHM_PARITY_0; 6782 break; 6783 case ALGORITHM_PARITY_N: 6784 new_layout = ALGORITHM_PARITY_N; 6785 break; 6786 default: 6787 return ERR_PTR(-EINVAL); 6788 } 6789 mddev->new_level = 5; 6790 mddev->new_layout = new_layout; 6791 mddev->delta_disks = -1; 6792 mddev->raid_disks -= 1; 6793 return setup_conf(mddev); 6794 } 6795 6796 6797 static int raid5_check_reshape(struct mddev *mddev) 6798 { 6799 /* For a 2-drive array, the layout and chunk size can be changed 6800 * immediately as not restriping is needed. 6801 * For larger arrays we record the new value - after validation 6802 * to be used by a reshape pass. 6803 */ 6804 struct r5conf *conf = mddev->private; 6805 int new_chunk = mddev->new_chunk_sectors; 6806 6807 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6808 return -EINVAL; 6809 if (new_chunk > 0) { 6810 if (!is_power_of_2(new_chunk)) 6811 return -EINVAL; 6812 if (new_chunk < (PAGE_SIZE>>9)) 6813 return -EINVAL; 6814 if (mddev->array_sectors & (new_chunk-1)) 6815 /* not factor of array size */ 6816 return -EINVAL; 6817 } 6818 6819 /* They look valid */ 6820 6821 if (mddev->raid_disks == 2) { 6822 /* can make the change immediately */ 6823 if (mddev->new_layout >= 0) { 6824 conf->algorithm = mddev->new_layout; 6825 mddev->layout = mddev->new_layout; 6826 } 6827 if (new_chunk > 0) { 6828 conf->chunk_sectors = new_chunk ; 6829 mddev->chunk_sectors = new_chunk; 6830 } 6831 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6832 md_wakeup_thread(mddev->thread); 6833 } 6834 return check_reshape(mddev); 6835 } 6836 6837 static int raid6_check_reshape(struct mddev *mddev) 6838 { 6839 int new_chunk = mddev->new_chunk_sectors; 6840 6841 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6842 return -EINVAL; 6843 if (new_chunk > 0) { 6844 if (!is_power_of_2(new_chunk)) 6845 return -EINVAL; 6846 if (new_chunk < (PAGE_SIZE >> 9)) 6847 return -EINVAL; 6848 if (mddev->array_sectors & (new_chunk-1)) 6849 /* not factor of array size */ 6850 return -EINVAL; 6851 } 6852 6853 /* They look valid */ 6854 return check_reshape(mddev); 6855 } 6856 6857 static void *raid5_takeover(struct mddev *mddev) 6858 { 6859 /* raid5 can take over: 6860 * raid0 - if there is only one strip zone - make it a raid4 layout 6861 * raid1 - if there are two drives. We need to know the chunk size 6862 * raid4 - trivial - just use a raid4 layout. 6863 * raid6 - Providing it is a *_6 layout 6864 */ 6865 if (mddev->level == 0) 6866 return raid45_takeover_raid0(mddev, 5); 6867 if (mddev->level == 1) 6868 return raid5_takeover_raid1(mddev); 6869 if (mddev->level == 4) { 6870 mddev->new_layout = ALGORITHM_PARITY_N; 6871 mddev->new_level = 5; 6872 return setup_conf(mddev); 6873 } 6874 if (mddev->level == 6) 6875 return raid5_takeover_raid6(mddev); 6876 6877 return ERR_PTR(-EINVAL); 6878 } 6879 6880 static void *raid4_takeover(struct mddev *mddev) 6881 { 6882 /* raid4 can take over: 6883 * raid0 - if there is only one strip zone 6884 * raid5 - if layout is right 6885 */ 6886 if (mddev->level == 0) 6887 return raid45_takeover_raid0(mddev, 4); 6888 if (mddev->level == 5 && 6889 mddev->layout == ALGORITHM_PARITY_N) { 6890 mddev->new_layout = 0; 6891 mddev->new_level = 4; 6892 return setup_conf(mddev); 6893 } 6894 return ERR_PTR(-EINVAL); 6895 } 6896 6897 static struct md_personality raid5_personality; 6898 6899 static void *raid6_takeover(struct mddev *mddev) 6900 { 6901 /* Currently can only take over a raid5. We map the 6902 * personality to an equivalent raid6 personality 6903 * with the Q block at the end. 6904 */ 6905 int new_layout; 6906 6907 if (mddev->pers != &raid5_personality) 6908 return ERR_PTR(-EINVAL); 6909 if (mddev->degraded > 1) 6910 return ERR_PTR(-EINVAL); 6911 if (mddev->raid_disks > 253) 6912 return ERR_PTR(-EINVAL); 6913 if (mddev->raid_disks < 3) 6914 return ERR_PTR(-EINVAL); 6915 6916 switch (mddev->layout) { 6917 case ALGORITHM_LEFT_ASYMMETRIC: 6918 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 6919 break; 6920 case ALGORITHM_RIGHT_ASYMMETRIC: 6921 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 6922 break; 6923 case ALGORITHM_LEFT_SYMMETRIC: 6924 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 6925 break; 6926 case ALGORITHM_RIGHT_SYMMETRIC: 6927 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 6928 break; 6929 case ALGORITHM_PARITY_0: 6930 new_layout = ALGORITHM_PARITY_0_6; 6931 break; 6932 case ALGORITHM_PARITY_N: 6933 new_layout = ALGORITHM_PARITY_N; 6934 break; 6935 default: 6936 return ERR_PTR(-EINVAL); 6937 } 6938 mddev->new_level = 6; 6939 mddev->new_layout = new_layout; 6940 mddev->delta_disks = 1; 6941 mddev->raid_disks += 1; 6942 return setup_conf(mddev); 6943 } 6944 6945 6946 static struct md_personality raid6_personality = 6947 { 6948 .name = "raid6", 6949 .level = 6, 6950 .owner = THIS_MODULE, 6951 .make_request = make_request, 6952 .run = run, 6953 .stop = stop, 6954 .status = status, 6955 .error_handler = error, 6956 .hot_add_disk = raid5_add_disk, 6957 .hot_remove_disk= raid5_remove_disk, 6958 .spare_active = raid5_spare_active, 6959 .sync_request = sync_request, 6960 .resize = raid5_resize, 6961 .size = raid5_size, 6962 .check_reshape = raid6_check_reshape, 6963 .start_reshape = raid5_start_reshape, 6964 .finish_reshape = raid5_finish_reshape, 6965 .quiesce = raid5_quiesce, 6966 .takeover = raid6_takeover, 6967 }; 6968 static struct md_personality raid5_personality = 6969 { 6970 .name = "raid5", 6971 .level = 5, 6972 .owner = THIS_MODULE, 6973 .make_request = make_request, 6974 .run = run, 6975 .stop = stop, 6976 .status = status, 6977 .error_handler = error, 6978 .hot_add_disk = raid5_add_disk, 6979 .hot_remove_disk= raid5_remove_disk, 6980 .spare_active = raid5_spare_active, 6981 .sync_request = sync_request, 6982 .resize = raid5_resize, 6983 .size = raid5_size, 6984 .check_reshape = raid5_check_reshape, 6985 .start_reshape = raid5_start_reshape, 6986 .finish_reshape = raid5_finish_reshape, 6987 .quiesce = raid5_quiesce, 6988 .takeover = raid5_takeover, 6989 }; 6990 6991 static struct md_personality raid4_personality = 6992 { 6993 .name = "raid4", 6994 .level = 4, 6995 .owner = THIS_MODULE, 6996 .make_request = make_request, 6997 .run = run, 6998 .stop = stop, 6999 .status = status, 7000 .error_handler = error, 7001 .hot_add_disk = raid5_add_disk, 7002 .hot_remove_disk= raid5_remove_disk, 7003 .spare_active = raid5_spare_active, 7004 .sync_request = sync_request, 7005 .resize = raid5_resize, 7006 .size = raid5_size, 7007 .check_reshape = raid5_check_reshape, 7008 .start_reshape = raid5_start_reshape, 7009 .finish_reshape = raid5_finish_reshape, 7010 .quiesce = raid5_quiesce, 7011 .takeover = raid4_takeover, 7012 }; 7013 7014 static int __init raid5_init(void) 7015 { 7016 raid5_wq = alloc_workqueue("raid5wq", 7017 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7018 if (!raid5_wq) 7019 return -ENOMEM; 7020 register_md_personality(&raid6_personality); 7021 register_md_personality(&raid5_personality); 7022 register_md_personality(&raid4_personality); 7023 return 0; 7024 } 7025 7026 static void raid5_exit(void) 7027 { 7028 unregister_md_personality(&raid6_personality); 7029 unregister_md_personality(&raid5_personality); 7030 unregister_md_personality(&raid4_personality); 7031 destroy_workqueue(raid5_wq); 7032 } 7033 7034 module_init(raid5_init); 7035 module_exit(raid5_exit); 7036 MODULE_LICENSE("GPL"); 7037 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7038 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7039 MODULE_ALIAS("md-raid5"); 7040 MODULE_ALIAS("md-raid4"); 7041 MODULE_ALIAS("md-level-5"); 7042 MODULE_ALIAS("md-level-4"); 7043 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7044 MODULE_ALIAS("md-raid6"); 7045 MODULE_ALIAS("md-level-6"); 7046 7047 /* This used to be two separate modules, they were: */ 7048 MODULE_ALIAS("raid5"); 7049 MODULE_ALIAS("raid6"); 7050