1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <trace/events/block.h> 59 60 #include "md.h" 61 #include "raid5.h" 62 #include "raid0.h" 63 #include "bitmap.h" 64 65 #define cpu_to_group(cpu) cpu_to_node(cpu) 66 #define ANY_GROUP NUMA_NO_NODE 67 68 static bool devices_handle_discard_safely = false; 69 module_param(devices_handle_discard_safely, bool, 0644); 70 MODULE_PARM_DESC(devices_handle_discard_safely, 71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 72 static struct workqueue_struct *raid5_wq; 73 /* 74 * Stripe cache 75 */ 76 77 #define NR_STRIPES 256 78 #define STRIPE_SIZE PAGE_SIZE 79 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 80 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 81 #define IO_THRESHOLD 1 82 #define BYPASS_THRESHOLD 1 83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 84 #define HASH_MASK (NR_HASH - 1) 85 #define MAX_STRIPE_BATCH 8 86 87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 88 { 89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 90 return &conf->stripe_hashtbl[hash]; 91 } 92 93 static inline int stripe_hash_locks_hash(sector_t sect) 94 { 95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 96 } 97 98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 99 { 100 spin_lock_irq(conf->hash_locks + hash); 101 spin_lock(&conf->device_lock); 102 } 103 104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 105 { 106 spin_unlock(&conf->device_lock); 107 spin_unlock_irq(conf->hash_locks + hash); 108 } 109 110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 111 { 112 int i; 113 local_irq_disable(); 114 spin_lock(conf->hash_locks); 115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 117 spin_lock(&conf->device_lock); 118 } 119 120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 121 { 122 int i; 123 spin_unlock(&conf->device_lock); 124 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 125 spin_unlock(conf->hash_locks + i - 1); 126 local_irq_enable(); 127 } 128 129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 130 * order without overlap. There may be several bio's per stripe+device, and 131 * a bio could span several devices. 132 * When walking this list for a particular stripe+device, we must never proceed 133 * beyond a bio that extends past this device, as the next bio might no longer 134 * be valid. 135 * This function is used to determine the 'next' bio in the list, given the sector 136 * of the current stripe+device 137 */ 138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 139 { 140 int sectors = bio_sectors(bio); 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 142 return bio->bi_next; 143 else 144 return NULL; 145 } 146 147 /* 148 * We maintain a biased count of active stripes in the bottom 16 bits of 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 150 */ 151 static inline int raid5_bi_processed_stripes(struct bio *bio) 152 { 153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 154 return (atomic_read(segments) >> 16) & 0xffff; 155 } 156 157 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 158 { 159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 160 return atomic_sub_return(1, segments) & 0xffff; 161 } 162 163 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 164 { 165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 166 atomic_inc(segments); 167 } 168 169 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 170 unsigned int cnt) 171 { 172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 173 int old, new; 174 175 do { 176 old = atomic_read(segments); 177 new = (old & 0xffff) | (cnt << 16); 178 } while (atomic_cmpxchg(segments, old, new) != old); 179 } 180 181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 182 { 183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 184 atomic_set(segments, cnt); 185 } 186 187 /* Find first data disk in a raid6 stripe */ 188 static inline int raid6_d0(struct stripe_head *sh) 189 { 190 if (sh->ddf_layout) 191 /* ddf always start from first device */ 192 return 0; 193 /* md starts just after Q block */ 194 if (sh->qd_idx == sh->disks - 1) 195 return 0; 196 else 197 return sh->qd_idx + 1; 198 } 199 static inline int raid6_next_disk(int disk, int raid_disks) 200 { 201 disk++; 202 return (disk < raid_disks) ? disk : 0; 203 } 204 205 /* When walking through the disks in a raid5, starting at raid6_d0, 206 * We need to map each disk to a 'slot', where the data disks are slot 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 208 * is raid_disks-1. This help does that mapping. 209 */ 210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 211 int *count, int syndrome_disks) 212 { 213 int slot = *count; 214 215 if (sh->ddf_layout) 216 (*count)++; 217 if (idx == sh->pd_idx) 218 return syndrome_disks; 219 if (idx == sh->qd_idx) 220 return syndrome_disks + 1; 221 if (!sh->ddf_layout) 222 (*count)++; 223 return slot; 224 } 225 226 static void return_io(struct bio_list *return_bi) 227 { 228 struct bio *bi; 229 while ((bi = bio_list_pop(return_bi)) != NULL) { 230 bi->bi_iter.bi_size = 0; 231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 232 bi, 0); 233 bio_endio(bi); 234 } 235 } 236 237 static void print_raid5_conf (struct r5conf *conf); 238 239 static int stripe_operations_active(struct stripe_head *sh) 240 { 241 return sh->check_state || sh->reconstruct_state || 242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 243 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 244 } 245 246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 247 { 248 struct r5conf *conf = sh->raid_conf; 249 struct r5worker_group *group; 250 int thread_cnt; 251 int i, cpu = sh->cpu; 252 253 if (!cpu_online(cpu)) { 254 cpu = cpumask_any(cpu_online_mask); 255 sh->cpu = cpu; 256 } 257 258 if (list_empty(&sh->lru)) { 259 struct r5worker_group *group; 260 group = conf->worker_groups + cpu_to_group(cpu); 261 list_add_tail(&sh->lru, &group->handle_list); 262 group->stripes_cnt++; 263 sh->group = group; 264 } 265 266 if (conf->worker_cnt_per_group == 0) { 267 md_wakeup_thread(conf->mddev->thread); 268 return; 269 } 270 271 group = conf->worker_groups + cpu_to_group(sh->cpu); 272 273 group->workers[0].working = true; 274 /* at least one worker should run to avoid race */ 275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 276 277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 278 /* wakeup more workers */ 279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 280 if (group->workers[i].working == false) { 281 group->workers[i].working = true; 282 queue_work_on(sh->cpu, raid5_wq, 283 &group->workers[i].work); 284 thread_cnt--; 285 } 286 } 287 } 288 289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 290 struct list_head *temp_inactive_list) 291 { 292 BUG_ON(!list_empty(&sh->lru)); 293 BUG_ON(atomic_read(&conf->active_stripes)==0); 294 if (test_bit(STRIPE_HANDLE, &sh->state)) { 295 if (test_bit(STRIPE_DELAYED, &sh->state) && 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 297 list_add_tail(&sh->lru, &conf->delayed_list); 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 299 sh->bm_seq - conf->seq_write > 0) 300 list_add_tail(&sh->lru, &conf->bitmap_list); 301 else { 302 clear_bit(STRIPE_DELAYED, &sh->state); 303 clear_bit(STRIPE_BIT_DELAY, &sh->state); 304 if (conf->worker_cnt_per_group == 0) { 305 list_add_tail(&sh->lru, &conf->handle_list); 306 } else { 307 raid5_wakeup_stripe_thread(sh); 308 return; 309 } 310 } 311 md_wakeup_thread(conf->mddev->thread); 312 } else { 313 BUG_ON(stripe_operations_active(sh)); 314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 315 if (atomic_dec_return(&conf->preread_active_stripes) 316 < IO_THRESHOLD) 317 md_wakeup_thread(conf->mddev->thread); 318 atomic_dec(&conf->active_stripes); 319 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 320 list_add_tail(&sh->lru, temp_inactive_list); 321 } 322 } 323 324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 325 struct list_head *temp_inactive_list) 326 { 327 if (atomic_dec_and_test(&sh->count)) 328 do_release_stripe(conf, sh, temp_inactive_list); 329 } 330 331 /* 332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 333 * 334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 335 * given time. Adding stripes only takes device lock, while deleting stripes 336 * only takes hash lock. 337 */ 338 static void release_inactive_stripe_list(struct r5conf *conf, 339 struct list_head *temp_inactive_list, 340 int hash) 341 { 342 int size; 343 bool do_wakeup = false; 344 unsigned long flags; 345 346 if (hash == NR_STRIPE_HASH_LOCKS) { 347 size = NR_STRIPE_HASH_LOCKS; 348 hash = NR_STRIPE_HASH_LOCKS - 1; 349 } else 350 size = 1; 351 while (size) { 352 struct list_head *list = &temp_inactive_list[size - 1]; 353 354 /* 355 * We don't hold any lock here yet, raid5_get_active_stripe() might 356 * remove stripes from the list 357 */ 358 if (!list_empty_careful(list)) { 359 spin_lock_irqsave(conf->hash_locks + hash, flags); 360 if (list_empty(conf->inactive_list + hash) && 361 !list_empty(list)) 362 atomic_dec(&conf->empty_inactive_list_nr); 363 list_splice_tail_init(list, conf->inactive_list + hash); 364 do_wakeup = true; 365 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 366 } 367 size--; 368 hash--; 369 } 370 371 if (do_wakeup) { 372 wake_up(&conf->wait_for_stripe); 373 if (atomic_read(&conf->active_stripes) == 0) 374 wake_up(&conf->wait_for_quiescent); 375 if (conf->retry_read_aligned) 376 md_wakeup_thread(conf->mddev->thread); 377 } 378 } 379 380 /* should hold conf->device_lock already */ 381 static int release_stripe_list(struct r5conf *conf, 382 struct list_head *temp_inactive_list) 383 { 384 struct stripe_head *sh; 385 int count = 0; 386 struct llist_node *head; 387 388 head = llist_del_all(&conf->released_stripes); 389 head = llist_reverse_order(head); 390 while (head) { 391 int hash; 392 393 sh = llist_entry(head, struct stripe_head, release_list); 394 head = llist_next(head); 395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 396 smp_mb(); 397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 398 /* 399 * Don't worry the bit is set here, because if the bit is set 400 * again, the count is always > 1. This is true for 401 * STRIPE_ON_UNPLUG_LIST bit too. 402 */ 403 hash = sh->hash_lock_index; 404 __release_stripe(conf, sh, &temp_inactive_list[hash]); 405 count++; 406 } 407 408 return count; 409 } 410 411 void raid5_release_stripe(struct stripe_head *sh) 412 { 413 struct r5conf *conf = sh->raid_conf; 414 unsigned long flags; 415 struct list_head list; 416 int hash; 417 bool wakeup; 418 419 /* Avoid release_list until the last reference. 420 */ 421 if (atomic_add_unless(&sh->count, -1, 1)) 422 return; 423 424 if (unlikely(!conf->mddev->thread) || 425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 426 goto slow_path; 427 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 428 if (wakeup) 429 md_wakeup_thread(conf->mddev->thread); 430 return; 431 slow_path: 432 local_irq_save(flags); 433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 435 INIT_LIST_HEAD(&list); 436 hash = sh->hash_lock_index; 437 do_release_stripe(conf, sh, &list); 438 spin_unlock(&conf->device_lock); 439 release_inactive_stripe_list(conf, &list, hash); 440 } 441 local_irq_restore(flags); 442 } 443 444 static inline void remove_hash(struct stripe_head *sh) 445 { 446 pr_debug("remove_hash(), stripe %llu\n", 447 (unsigned long long)sh->sector); 448 449 hlist_del_init(&sh->hash); 450 } 451 452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 453 { 454 struct hlist_head *hp = stripe_hash(conf, sh->sector); 455 456 pr_debug("insert_hash(), stripe %llu\n", 457 (unsigned long long)sh->sector); 458 459 hlist_add_head(&sh->hash, hp); 460 } 461 462 /* find an idle stripe, make sure it is unhashed, and return it. */ 463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 464 { 465 struct stripe_head *sh = NULL; 466 struct list_head *first; 467 468 if (list_empty(conf->inactive_list + hash)) 469 goto out; 470 first = (conf->inactive_list + hash)->next; 471 sh = list_entry(first, struct stripe_head, lru); 472 list_del_init(first); 473 remove_hash(sh); 474 atomic_inc(&conf->active_stripes); 475 BUG_ON(hash != sh->hash_lock_index); 476 if (list_empty(conf->inactive_list + hash)) 477 atomic_inc(&conf->empty_inactive_list_nr); 478 out: 479 return sh; 480 } 481 482 static void shrink_buffers(struct stripe_head *sh) 483 { 484 struct page *p; 485 int i; 486 int num = sh->raid_conf->pool_size; 487 488 for (i = 0; i < num ; i++) { 489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 490 p = sh->dev[i].page; 491 if (!p) 492 continue; 493 sh->dev[i].page = NULL; 494 put_page(p); 495 } 496 } 497 498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 499 { 500 int i; 501 int num = sh->raid_conf->pool_size; 502 503 for (i = 0; i < num; i++) { 504 struct page *page; 505 506 if (!(page = alloc_page(gfp))) { 507 return 1; 508 } 509 sh->dev[i].page = page; 510 sh->dev[i].orig_page = page; 511 } 512 return 0; 513 } 514 515 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 517 struct stripe_head *sh); 518 519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 520 { 521 struct r5conf *conf = sh->raid_conf; 522 int i, seq; 523 524 BUG_ON(atomic_read(&sh->count) != 0); 525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 526 BUG_ON(stripe_operations_active(sh)); 527 BUG_ON(sh->batch_head); 528 529 pr_debug("init_stripe called, stripe %llu\n", 530 (unsigned long long)sector); 531 retry: 532 seq = read_seqcount_begin(&conf->gen_lock); 533 sh->generation = conf->generation - previous; 534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 535 sh->sector = sector; 536 stripe_set_idx(sector, conf, previous, sh); 537 sh->state = 0; 538 539 for (i = sh->disks; i--; ) { 540 struct r5dev *dev = &sh->dev[i]; 541 542 if (dev->toread || dev->read || dev->towrite || dev->written || 543 test_bit(R5_LOCKED, &dev->flags)) { 544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 545 (unsigned long long)sh->sector, i, dev->toread, 546 dev->read, dev->towrite, dev->written, 547 test_bit(R5_LOCKED, &dev->flags)); 548 WARN_ON(1); 549 } 550 dev->flags = 0; 551 raid5_build_block(sh, i, previous); 552 } 553 if (read_seqcount_retry(&conf->gen_lock, seq)) 554 goto retry; 555 sh->overwrite_disks = 0; 556 insert_hash(conf, sh); 557 sh->cpu = smp_processor_id(); 558 set_bit(STRIPE_BATCH_READY, &sh->state); 559 } 560 561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 562 short generation) 563 { 564 struct stripe_head *sh; 565 566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 568 if (sh->sector == sector && sh->generation == generation) 569 return sh; 570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 571 return NULL; 572 } 573 574 /* 575 * Need to check if array has failed when deciding whether to: 576 * - start an array 577 * - remove non-faulty devices 578 * - add a spare 579 * - allow a reshape 580 * This determination is simple when no reshape is happening. 581 * However if there is a reshape, we need to carefully check 582 * both the before and after sections. 583 * This is because some failed devices may only affect one 584 * of the two sections, and some non-in_sync devices may 585 * be insync in the section most affected by failed devices. 586 */ 587 static int calc_degraded(struct r5conf *conf) 588 { 589 int degraded, degraded2; 590 int i; 591 592 rcu_read_lock(); 593 degraded = 0; 594 for (i = 0; i < conf->previous_raid_disks; i++) { 595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 596 if (rdev && test_bit(Faulty, &rdev->flags)) 597 rdev = rcu_dereference(conf->disks[i].replacement); 598 if (!rdev || test_bit(Faulty, &rdev->flags)) 599 degraded++; 600 else if (test_bit(In_sync, &rdev->flags)) 601 ; 602 else 603 /* not in-sync or faulty. 604 * If the reshape increases the number of devices, 605 * this is being recovered by the reshape, so 606 * this 'previous' section is not in_sync. 607 * If the number of devices is being reduced however, 608 * the device can only be part of the array if 609 * we are reverting a reshape, so this section will 610 * be in-sync. 611 */ 612 if (conf->raid_disks >= conf->previous_raid_disks) 613 degraded++; 614 } 615 rcu_read_unlock(); 616 if (conf->raid_disks == conf->previous_raid_disks) 617 return degraded; 618 rcu_read_lock(); 619 degraded2 = 0; 620 for (i = 0; i < conf->raid_disks; i++) { 621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 622 if (rdev && test_bit(Faulty, &rdev->flags)) 623 rdev = rcu_dereference(conf->disks[i].replacement); 624 if (!rdev || test_bit(Faulty, &rdev->flags)) 625 degraded2++; 626 else if (test_bit(In_sync, &rdev->flags)) 627 ; 628 else 629 /* not in-sync or faulty. 630 * If reshape increases the number of devices, this 631 * section has already been recovered, else it 632 * almost certainly hasn't. 633 */ 634 if (conf->raid_disks <= conf->previous_raid_disks) 635 degraded2++; 636 } 637 rcu_read_unlock(); 638 if (degraded2 > degraded) 639 return degraded2; 640 return degraded; 641 } 642 643 static int has_failed(struct r5conf *conf) 644 { 645 int degraded; 646 647 if (conf->mddev->reshape_position == MaxSector) 648 return conf->mddev->degraded > conf->max_degraded; 649 650 degraded = calc_degraded(conf); 651 if (degraded > conf->max_degraded) 652 return 1; 653 return 0; 654 } 655 656 struct stripe_head * 657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 658 int previous, int noblock, int noquiesce) 659 { 660 struct stripe_head *sh; 661 int hash = stripe_hash_locks_hash(sector); 662 663 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 664 665 spin_lock_irq(conf->hash_locks + hash); 666 667 do { 668 wait_event_lock_irq(conf->wait_for_quiescent, 669 conf->quiesce == 0 || noquiesce, 670 *(conf->hash_locks + hash)); 671 sh = __find_stripe(conf, sector, conf->generation - previous); 672 if (!sh) { 673 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 674 sh = get_free_stripe(conf, hash); 675 if (!sh && !test_bit(R5_DID_ALLOC, 676 &conf->cache_state)) 677 set_bit(R5_ALLOC_MORE, 678 &conf->cache_state); 679 } 680 if (noblock && sh == NULL) 681 break; 682 if (!sh) { 683 set_bit(R5_INACTIVE_BLOCKED, 684 &conf->cache_state); 685 wait_event_lock_irq( 686 conf->wait_for_stripe, 687 !list_empty(conf->inactive_list + hash) && 688 (atomic_read(&conf->active_stripes) 689 < (conf->max_nr_stripes * 3 / 4) 690 || !test_bit(R5_INACTIVE_BLOCKED, 691 &conf->cache_state)), 692 *(conf->hash_locks + hash)); 693 clear_bit(R5_INACTIVE_BLOCKED, 694 &conf->cache_state); 695 } else { 696 init_stripe(sh, sector, previous); 697 atomic_inc(&sh->count); 698 } 699 } else if (!atomic_inc_not_zero(&sh->count)) { 700 spin_lock(&conf->device_lock); 701 if (!atomic_read(&sh->count)) { 702 if (!test_bit(STRIPE_HANDLE, &sh->state)) 703 atomic_inc(&conf->active_stripes); 704 BUG_ON(list_empty(&sh->lru) && 705 !test_bit(STRIPE_EXPANDING, &sh->state)); 706 list_del_init(&sh->lru); 707 if (sh->group) { 708 sh->group->stripes_cnt--; 709 sh->group = NULL; 710 } 711 } 712 atomic_inc(&sh->count); 713 spin_unlock(&conf->device_lock); 714 } 715 } while (sh == NULL); 716 717 spin_unlock_irq(conf->hash_locks + hash); 718 return sh; 719 } 720 721 static bool is_full_stripe_write(struct stripe_head *sh) 722 { 723 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 724 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 725 } 726 727 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 728 { 729 local_irq_disable(); 730 if (sh1 > sh2) { 731 spin_lock(&sh2->stripe_lock); 732 spin_lock_nested(&sh1->stripe_lock, 1); 733 } else { 734 spin_lock(&sh1->stripe_lock); 735 spin_lock_nested(&sh2->stripe_lock, 1); 736 } 737 } 738 739 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 740 { 741 spin_unlock(&sh1->stripe_lock); 742 spin_unlock(&sh2->stripe_lock); 743 local_irq_enable(); 744 } 745 746 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 747 static bool stripe_can_batch(struct stripe_head *sh) 748 { 749 struct r5conf *conf = sh->raid_conf; 750 751 if (conf->log) 752 return false; 753 return test_bit(STRIPE_BATCH_READY, &sh->state) && 754 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 755 is_full_stripe_write(sh); 756 } 757 758 /* we only do back search */ 759 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 760 { 761 struct stripe_head *head; 762 sector_t head_sector, tmp_sec; 763 int hash; 764 int dd_idx; 765 766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 767 tmp_sec = sh->sector; 768 if (!sector_div(tmp_sec, conf->chunk_sectors)) 769 return; 770 head_sector = sh->sector - STRIPE_SECTORS; 771 772 hash = stripe_hash_locks_hash(head_sector); 773 spin_lock_irq(conf->hash_locks + hash); 774 head = __find_stripe(conf, head_sector, conf->generation); 775 if (head && !atomic_inc_not_zero(&head->count)) { 776 spin_lock(&conf->device_lock); 777 if (!atomic_read(&head->count)) { 778 if (!test_bit(STRIPE_HANDLE, &head->state)) 779 atomic_inc(&conf->active_stripes); 780 BUG_ON(list_empty(&head->lru) && 781 !test_bit(STRIPE_EXPANDING, &head->state)); 782 list_del_init(&head->lru); 783 if (head->group) { 784 head->group->stripes_cnt--; 785 head->group = NULL; 786 } 787 } 788 atomic_inc(&head->count); 789 spin_unlock(&conf->device_lock); 790 } 791 spin_unlock_irq(conf->hash_locks + hash); 792 793 if (!head) 794 return; 795 if (!stripe_can_batch(head)) 796 goto out; 797 798 lock_two_stripes(head, sh); 799 /* clear_batch_ready clear the flag */ 800 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 801 goto unlock_out; 802 803 if (sh->batch_head) 804 goto unlock_out; 805 806 dd_idx = 0; 807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 808 dd_idx++; 809 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw) 810 goto unlock_out; 811 812 if (head->batch_head) { 813 spin_lock(&head->batch_head->batch_lock); 814 /* This batch list is already running */ 815 if (!stripe_can_batch(head)) { 816 spin_unlock(&head->batch_head->batch_lock); 817 goto unlock_out; 818 } 819 820 /* 821 * at this point, head's BATCH_READY could be cleared, but we 822 * can still add the stripe to batch list 823 */ 824 list_add(&sh->batch_list, &head->batch_list); 825 spin_unlock(&head->batch_head->batch_lock); 826 827 sh->batch_head = head->batch_head; 828 } else { 829 head->batch_head = head; 830 sh->batch_head = head->batch_head; 831 spin_lock(&head->batch_lock); 832 list_add_tail(&sh->batch_list, &head->batch_list); 833 spin_unlock(&head->batch_lock); 834 } 835 836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 837 if (atomic_dec_return(&conf->preread_active_stripes) 838 < IO_THRESHOLD) 839 md_wakeup_thread(conf->mddev->thread); 840 841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 842 int seq = sh->bm_seq; 843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 844 sh->batch_head->bm_seq > seq) 845 seq = sh->batch_head->bm_seq; 846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 847 sh->batch_head->bm_seq = seq; 848 } 849 850 atomic_inc(&sh->count); 851 unlock_out: 852 unlock_two_stripes(head, sh); 853 out: 854 raid5_release_stripe(head); 855 } 856 857 /* Determine if 'data_offset' or 'new_data_offset' should be used 858 * in this stripe_head. 859 */ 860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 861 { 862 sector_t progress = conf->reshape_progress; 863 /* Need a memory barrier to make sure we see the value 864 * of conf->generation, or ->data_offset that was set before 865 * reshape_progress was updated. 866 */ 867 smp_rmb(); 868 if (progress == MaxSector) 869 return 0; 870 if (sh->generation == conf->generation - 1) 871 return 0; 872 /* We are in a reshape, and this is a new-generation stripe, 873 * so use new_data_offset. 874 */ 875 return 1; 876 } 877 878 static void 879 raid5_end_read_request(struct bio *bi); 880 static void 881 raid5_end_write_request(struct bio *bi); 882 883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 884 { 885 struct r5conf *conf = sh->raid_conf; 886 int i, disks = sh->disks; 887 struct stripe_head *head_sh = sh; 888 889 might_sleep(); 890 891 if (r5l_write_stripe(conf->log, sh) == 0) 892 return; 893 for (i = disks; i--; ) { 894 int rw; 895 int replace_only = 0; 896 struct bio *bi, *rbi; 897 struct md_rdev *rdev, *rrdev = NULL; 898 899 sh = head_sh; 900 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 901 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 902 rw = WRITE_FUA; 903 else 904 rw = WRITE; 905 if (test_bit(R5_Discard, &sh->dev[i].flags)) 906 rw |= REQ_DISCARD; 907 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 908 rw = READ; 909 else if (test_and_clear_bit(R5_WantReplace, 910 &sh->dev[i].flags)) { 911 rw = WRITE; 912 replace_only = 1; 913 } else 914 continue; 915 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 916 rw |= REQ_SYNC; 917 918 again: 919 bi = &sh->dev[i].req; 920 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 921 922 rcu_read_lock(); 923 rrdev = rcu_dereference(conf->disks[i].replacement); 924 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 925 rdev = rcu_dereference(conf->disks[i].rdev); 926 if (!rdev) { 927 rdev = rrdev; 928 rrdev = NULL; 929 } 930 if (rw & WRITE) { 931 if (replace_only) 932 rdev = NULL; 933 if (rdev == rrdev) 934 /* We raced and saw duplicates */ 935 rrdev = NULL; 936 } else { 937 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 938 rdev = rrdev; 939 rrdev = NULL; 940 } 941 942 if (rdev && test_bit(Faulty, &rdev->flags)) 943 rdev = NULL; 944 if (rdev) 945 atomic_inc(&rdev->nr_pending); 946 if (rrdev && test_bit(Faulty, &rrdev->flags)) 947 rrdev = NULL; 948 if (rrdev) 949 atomic_inc(&rrdev->nr_pending); 950 rcu_read_unlock(); 951 952 /* We have already checked bad blocks for reads. Now 953 * need to check for writes. We never accept write errors 954 * on the replacement, so we don't to check rrdev. 955 */ 956 while ((rw & WRITE) && rdev && 957 test_bit(WriteErrorSeen, &rdev->flags)) { 958 sector_t first_bad; 959 int bad_sectors; 960 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 961 &first_bad, &bad_sectors); 962 if (!bad) 963 break; 964 965 if (bad < 0) { 966 set_bit(BlockedBadBlocks, &rdev->flags); 967 if (!conf->mddev->external && 968 conf->mddev->flags) { 969 /* It is very unlikely, but we might 970 * still need to write out the 971 * bad block log - better give it 972 * a chance*/ 973 md_check_recovery(conf->mddev); 974 } 975 /* 976 * Because md_wait_for_blocked_rdev 977 * will dec nr_pending, we must 978 * increment it first. 979 */ 980 atomic_inc(&rdev->nr_pending); 981 md_wait_for_blocked_rdev(rdev, conf->mddev); 982 } else { 983 /* Acknowledged bad block - skip the write */ 984 rdev_dec_pending(rdev, conf->mddev); 985 rdev = NULL; 986 } 987 } 988 989 if (rdev) { 990 if (s->syncing || s->expanding || s->expanded 991 || s->replacing) 992 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 993 994 set_bit(STRIPE_IO_STARTED, &sh->state); 995 996 bio_reset(bi); 997 bi->bi_bdev = rdev->bdev; 998 bi->bi_rw = rw; 999 bi->bi_end_io = (rw & WRITE) 1000 ? raid5_end_write_request 1001 : raid5_end_read_request; 1002 bi->bi_private = sh; 1003 1004 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 1005 __func__, (unsigned long long)sh->sector, 1006 bi->bi_rw, i); 1007 atomic_inc(&sh->count); 1008 if (sh != head_sh) 1009 atomic_inc(&head_sh->count); 1010 if (use_new_offset(conf, sh)) 1011 bi->bi_iter.bi_sector = (sh->sector 1012 + rdev->new_data_offset); 1013 else 1014 bi->bi_iter.bi_sector = (sh->sector 1015 + rdev->data_offset); 1016 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1017 bi->bi_rw |= REQ_NOMERGE; 1018 1019 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1020 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1021 sh->dev[i].vec.bv_page = sh->dev[i].page; 1022 bi->bi_vcnt = 1; 1023 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1024 bi->bi_io_vec[0].bv_offset = 0; 1025 bi->bi_iter.bi_size = STRIPE_SIZE; 1026 /* 1027 * If this is discard request, set bi_vcnt 0. We don't 1028 * want to confuse SCSI because SCSI will replace payload 1029 */ 1030 if (rw & REQ_DISCARD) 1031 bi->bi_vcnt = 0; 1032 if (rrdev) 1033 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1034 1035 if (conf->mddev->gendisk) 1036 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1037 bi, disk_devt(conf->mddev->gendisk), 1038 sh->dev[i].sector); 1039 generic_make_request(bi); 1040 } 1041 if (rrdev) { 1042 if (s->syncing || s->expanding || s->expanded 1043 || s->replacing) 1044 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1045 1046 set_bit(STRIPE_IO_STARTED, &sh->state); 1047 1048 bio_reset(rbi); 1049 rbi->bi_bdev = rrdev->bdev; 1050 rbi->bi_rw = rw; 1051 BUG_ON(!(rw & WRITE)); 1052 rbi->bi_end_io = raid5_end_write_request; 1053 rbi->bi_private = sh; 1054 1055 pr_debug("%s: for %llu schedule op %ld on " 1056 "replacement disc %d\n", 1057 __func__, (unsigned long long)sh->sector, 1058 rbi->bi_rw, i); 1059 atomic_inc(&sh->count); 1060 if (sh != head_sh) 1061 atomic_inc(&head_sh->count); 1062 if (use_new_offset(conf, sh)) 1063 rbi->bi_iter.bi_sector = (sh->sector 1064 + rrdev->new_data_offset); 1065 else 1066 rbi->bi_iter.bi_sector = (sh->sector 1067 + rrdev->data_offset); 1068 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1069 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1070 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1071 rbi->bi_vcnt = 1; 1072 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1073 rbi->bi_io_vec[0].bv_offset = 0; 1074 rbi->bi_iter.bi_size = STRIPE_SIZE; 1075 /* 1076 * If this is discard request, set bi_vcnt 0. We don't 1077 * want to confuse SCSI because SCSI will replace payload 1078 */ 1079 if (rw & REQ_DISCARD) 1080 rbi->bi_vcnt = 0; 1081 if (conf->mddev->gendisk) 1082 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1083 rbi, disk_devt(conf->mddev->gendisk), 1084 sh->dev[i].sector); 1085 generic_make_request(rbi); 1086 } 1087 if (!rdev && !rrdev) { 1088 if (rw & WRITE) 1089 set_bit(STRIPE_DEGRADED, &sh->state); 1090 pr_debug("skip op %ld on disc %d for sector %llu\n", 1091 bi->bi_rw, i, (unsigned long long)sh->sector); 1092 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1093 set_bit(STRIPE_HANDLE, &sh->state); 1094 } 1095 1096 if (!head_sh->batch_head) 1097 continue; 1098 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1099 batch_list); 1100 if (sh != head_sh) 1101 goto again; 1102 } 1103 } 1104 1105 static struct dma_async_tx_descriptor * 1106 async_copy_data(int frombio, struct bio *bio, struct page **page, 1107 sector_t sector, struct dma_async_tx_descriptor *tx, 1108 struct stripe_head *sh) 1109 { 1110 struct bio_vec bvl; 1111 struct bvec_iter iter; 1112 struct page *bio_page; 1113 int page_offset; 1114 struct async_submit_ctl submit; 1115 enum async_tx_flags flags = 0; 1116 1117 if (bio->bi_iter.bi_sector >= sector) 1118 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1119 else 1120 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1121 1122 if (frombio) 1123 flags |= ASYNC_TX_FENCE; 1124 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1125 1126 bio_for_each_segment(bvl, bio, iter) { 1127 int len = bvl.bv_len; 1128 int clen; 1129 int b_offset = 0; 1130 1131 if (page_offset < 0) { 1132 b_offset = -page_offset; 1133 page_offset += b_offset; 1134 len -= b_offset; 1135 } 1136 1137 if (len > 0 && page_offset + len > STRIPE_SIZE) 1138 clen = STRIPE_SIZE - page_offset; 1139 else 1140 clen = len; 1141 1142 if (clen > 0) { 1143 b_offset += bvl.bv_offset; 1144 bio_page = bvl.bv_page; 1145 if (frombio) { 1146 if (sh->raid_conf->skip_copy && 1147 b_offset == 0 && page_offset == 0 && 1148 clen == STRIPE_SIZE) 1149 *page = bio_page; 1150 else 1151 tx = async_memcpy(*page, bio_page, page_offset, 1152 b_offset, clen, &submit); 1153 } else 1154 tx = async_memcpy(bio_page, *page, b_offset, 1155 page_offset, clen, &submit); 1156 } 1157 /* chain the operations */ 1158 submit.depend_tx = tx; 1159 1160 if (clen < len) /* hit end of page */ 1161 break; 1162 page_offset += len; 1163 } 1164 1165 return tx; 1166 } 1167 1168 static void ops_complete_biofill(void *stripe_head_ref) 1169 { 1170 struct stripe_head *sh = stripe_head_ref; 1171 struct bio_list return_bi = BIO_EMPTY_LIST; 1172 int i; 1173 1174 pr_debug("%s: stripe %llu\n", __func__, 1175 (unsigned long long)sh->sector); 1176 1177 /* clear completed biofills */ 1178 for (i = sh->disks; i--; ) { 1179 struct r5dev *dev = &sh->dev[i]; 1180 1181 /* acknowledge completion of a biofill operation */ 1182 /* and check if we need to reply to a read request, 1183 * new R5_Wantfill requests are held off until 1184 * !STRIPE_BIOFILL_RUN 1185 */ 1186 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1187 struct bio *rbi, *rbi2; 1188 1189 BUG_ON(!dev->read); 1190 rbi = dev->read; 1191 dev->read = NULL; 1192 while (rbi && rbi->bi_iter.bi_sector < 1193 dev->sector + STRIPE_SECTORS) { 1194 rbi2 = r5_next_bio(rbi, dev->sector); 1195 if (!raid5_dec_bi_active_stripes(rbi)) 1196 bio_list_add(&return_bi, rbi); 1197 rbi = rbi2; 1198 } 1199 } 1200 } 1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1202 1203 return_io(&return_bi); 1204 1205 set_bit(STRIPE_HANDLE, &sh->state); 1206 raid5_release_stripe(sh); 1207 } 1208 1209 static void ops_run_biofill(struct stripe_head *sh) 1210 { 1211 struct dma_async_tx_descriptor *tx = NULL; 1212 struct async_submit_ctl submit; 1213 int i; 1214 1215 BUG_ON(sh->batch_head); 1216 pr_debug("%s: stripe %llu\n", __func__, 1217 (unsigned long long)sh->sector); 1218 1219 for (i = sh->disks; i--; ) { 1220 struct r5dev *dev = &sh->dev[i]; 1221 if (test_bit(R5_Wantfill, &dev->flags)) { 1222 struct bio *rbi; 1223 spin_lock_irq(&sh->stripe_lock); 1224 dev->read = rbi = dev->toread; 1225 dev->toread = NULL; 1226 spin_unlock_irq(&sh->stripe_lock); 1227 while (rbi && rbi->bi_iter.bi_sector < 1228 dev->sector + STRIPE_SECTORS) { 1229 tx = async_copy_data(0, rbi, &dev->page, 1230 dev->sector, tx, sh); 1231 rbi = r5_next_bio(rbi, dev->sector); 1232 } 1233 } 1234 } 1235 1236 atomic_inc(&sh->count); 1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1238 async_trigger_callback(&submit); 1239 } 1240 1241 static void mark_target_uptodate(struct stripe_head *sh, int target) 1242 { 1243 struct r5dev *tgt; 1244 1245 if (target < 0) 1246 return; 1247 1248 tgt = &sh->dev[target]; 1249 set_bit(R5_UPTODATE, &tgt->flags); 1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1251 clear_bit(R5_Wantcompute, &tgt->flags); 1252 } 1253 1254 static void ops_complete_compute(void *stripe_head_ref) 1255 { 1256 struct stripe_head *sh = stripe_head_ref; 1257 1258 pr_debug("%s: stripe %llu\n", __func__, 1259 (unsigned long long)sh->sector); 1260 1261 /* mark the computed target(s) as uptodate */ 1262 mark_target_uptodate(sh, sh->ops.target); 1263 mark_target_uptodate(sh, sh->ops.target2); 1264 1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1266 if (sh->check_state == check_state_compute_run) 1267 sh->check_state = check_state_compute_result; 1268 set_bit(STRIPE_HANDLE, &sh->state); 1269 raid5_release_stripe(sh); 1270 } 1271 1272 /* return a pointer to the address conversion region of the scribble buffer */ 1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1274 struct raid5_percpu *percpu, int i) 1275 { 1276 void *addr; 1277 1278 addr = flex_array_get(percpu->scribble, i); 1279 return addr + sizeof(struct page *) * (sh->disks + 2); 1280 } 1281 1282 /* return a pointer to the address conversion region of the scribble buffer */ 1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1284 { 1285 void *addr; 1286 1287 addr = flex_array_get(percpu->scribble, i); 1288 return addr; 1289 } 1290 1291 static struct dma_async_tx_descriptor * 1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1293 { 1294 int disks = sh->disks; 1295 struct page **xor_srcs = to_addr_page(percpu, 0); 1296 int target = sh->ops.target; 1297 struct r5dev *tgt = &sh->dev[target]; 1298 struct page *xor_dest = tgt->page; 1299 int count = 0; 1300 struct dma_async_tx_descriptor *tx; 1301 struct async_submit_ctl submit; 1302 int i; 1303 1304 BUG_ON(sh->batch_head); 1305 1306 pr_debug("%s: stripe %llu block: %d\n", 1307 __func__, (unsigned long long)sh->sector, target); 1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1309 1310 for (i = disks; i--; ) 1311 if (i != target) 1312 xor_srcs[count++] = sh->dev[i].page; 1313 1314 atomic_inc(&sh->count); 1315 1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1318 if (unlikely(count == 1)) 1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1320 else 1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1322 1323 return tx; 1324 } 1325 1326 /* set_syndrome_sources - populate source buffers for gen_syndrome 1327 * @srcs - (struct page *) array of size sh->disks 1328 * @sh - stripe_head to parse 1329 * 1330 * Populates srcs in proper layout order for the stripe and returns the 1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1332 * destination buffer is recorded in srcs[count] and the Q destination 1333 * is recorded in srcs[count+1]]. 1334 */ 1335 static int set_syndrome_sources(struct page **srcs, 1336 struct stripe_head *sh, 1337 int srctype) 1338 { 1339 int disks = sh->disks; 1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1341 int d0_idx = raid6_d0(sh); 1342 int count; 1343 int i; 1344 1345 for (i = 0; i < disks; i++) 1346 srcs[i] = NULL; 1347 1348 count = 0; 1349 i = d0_idx; 1350 do { 1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1352 struct r5dev *dev = &sh->dev[i]; 1353 1354 if (i == sh->qd_idx || i == sh->pd_idx || 1355 (srctype == SYNDROME_SRC_ALL) || 1356 (srctype == SYNDROME_SRC_WANT_DRAIN && 1357 test_bit(R5_Wantdrain, &dev->flags)) || 1358 (srctype == SYNDROME_SRC_WRITTEN && 1359 dev->written)) 1360 srcs[slot] = sh->dev[i].page; 1361 i = raid6_next_disk(i, disks); 1362 } while (i != d0_idx); 1363 1364 return syndrome_disks; 1365 } 1366 1367 static struct dma_async_tx_descriptor * 1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1369 { 1370 int disks = sh->disks; 1371 struct page **blocks = to_addr_page(percpu, 0); 1372 int target; 1373 int qd_idx = sh->qd_idx; 1374 struct dma_async_tx_descriptor *tx; 1375 struct async_submit_ctl submit; 1376 struct r5dev *tgt; 1377 struct page *dest; 1378 int i; 1379 int count; 1380 1381 BUG_ON(sh->batch_head); 1382 if (sh->ops.target < 0) 1383 target = sh->ops.target2; 1384 else if (sh->ops.target2 < 0) 1385 target = sh->ops.target; 1386 else 1387 /* we should only have one valid target */ 1388 BUG(); 1389 BUG_ON(target < 0); 1390 pr_debug("%s: stripe %llu block: %d\n", 1391 __func__, (unsigned long long)sh->sector, target); 1392 1393 tgt = &sh->dev[target]; 1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1395 dest = tgt->page; 1396 1397 atomic_inc(&sh->count); 1398 1399 if (target == qd_idx) { 1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1401 blocks[count] = NULL; /* regenerating p is not necessary */ 1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1404 ops_complete_compute, sh, 1405 to_addr_conv(sh, percpu, 0)); 1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1407 } else { 1408 /* Compute any data- or p-drive using XOR */ 1409 count = 0; 1410 for (i = disks; i-- ; ) { 1411 if (i == target || i == qd_idx) 1412 continue; 1413 blocks[count++] = sh->dev[i].page; 1414 } 1415 1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1417 NULL, ops_complete_compute, sh, 1418 to_addr_conv(sh, percpu, 0)); 1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1420 } 1421 1422 return tx; 1423 } 1424 1425 static struct dma_async_tx_descriptor * 1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1427 { 1428 int i, count, disks = sh->disks; 1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1430 int d0_idx = raid6_d0(sh); 1431 int faila = -1, failb = -1; 1432 int target = sh->ops.target; 1433 int target2 = sh->ops.target2; 1434 struct r5dev *tgt = &sh->dev[target]; 1435 struct r5dev *tgt2 = &sh->dev[target2]; 1436 struct dma_async_tx_descriptor *tx; 1437 struct page **blocks = to_addr_page(percpu, 0); 1438 struct async_submit_ctl submit; 1439 1440 BUG_ON(sh->batch_head); 1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1442 __func__, (unsigned long long)sh->sector, target, target2); 1443 BUG_ON(target < 0 || target2 < 0); 1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1446 1447 /* we need to open-code set_syndrome_sources to handle the 1448 * slot number conversion for 'faila' and 'failb' 1449 */ 1450 for (i = 0; i < disks ; i++) 1451 blocks[i] = NULL; 1452 count = 0; 1453 i = d0_idx; 1454 do { 1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1456 1457 blocks[slot] = sh->dev[i].page; 1458 1459 if (i == target) 1460 faila = slot; 1461 if (i == target2) 1462 failb = slot; 1463 i = raid6_next_disk(i, disks); 1464 } while (i != d0_idx); 1465 1466 BUG_ON(faila == failb); 1467 if (failb < faila) 1468 swap(faila, failb); 1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1470 __func__, (unsigned long long)sh->sector, faila, failb); 1471 1472 atomic_inc(&sh->count); 1473 1474 if (failb == syndrome_disks+1) { 1475 /* Q disk is one of the missing disks */ 1476 if (faila == syndrome_disks) { 1477 /* Missing P+Q, just recompute */ 1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1479 ops_complete_compute, sh, 1480 to_addr_conv(sh, percpu, 0)); 1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1482 STRIPE_SIZE, &submit); 1483 } else { 1484 struct page *dest; 1485 int data_target; 1486 int qd_idx = sh->qd_idx; 1487 1488 /* Missing D+Q: recompute D from P, then recompute Q */ 1489 if (target == qd_idx) 1490 data_target = target2; 1491 else 1492 data_target = target; 1493 1494 count = 0; 1495 for (i = disks; i-- ; ) { 1496 if (i == data_target || i == qd_idx) 1497 continue; 1498 blocks[count++] = sh->dev[i].page; 1499 } 1500 dest = sh->dev[data_target].page; 1501 init_async_submit(&submit, 1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1503 NULL, NULL, NULL, 1504 to_addr_conv(sh, percpu, 0)); 1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1506 &submit); 1507 1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1510 ops_complete_compute, sh, 1511 to_addr_conv(sh, percpu, 0)); 1512 return async_gen_syndrome(blocks, 0, count+2, 1513 STRIPE_SIZE, &submit); 1514 } 1515 } else { 1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1517 ops_complete_compute, sh, 1518 to_addr_conv(sh, percpu, 0)); 1519 if (failb == syndrome_disks) { 1520 /* We're missing D+P. */ 1521 return async_raid6_datap_recov(syndrome_disks+2, 1522 STRIPE_SIZE, faila, 1523 blocks, &submit); 1524 } else { 1525 /* We're missing D+D. */ 1526 return async_raid6_2data_recov(syndrome_disks+2, 1527 STRIPE_SIZE, faila, failb, 1528 blocks, &submit); 1529 } 1530 } 1531 } 1532 1533 static void ops_complete_prexor(void *stripe_head_ref) 1534 { 1535 struct stripe_head *sh = stripe_head_ref; 1536 1537 pr_debug("%s: stripe %llu\n", __func__, 1538 (unsigned long long)sh->sector); 1539 } 1540 1541 static struct dma_async_tx_descriptor * 1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1543 struct dma_async_tx_descriptor *tx) 1544 { 1545 int disks = sh->disks; 1546 struct page **xor_srcs = to_addr_page(percpu, 0); 1547 int count = 0, pd_idx = sh->pd_idx, i; 1548 struct async_submit_ctl submit; 1549 1550 /* existing parity data subtracted */ 1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1552 1553 BUG_ON(sh->batch_head); 1554 pr_debug("%s: stripe %llu\n", __func__, 1555 (unsigned long long)sh->sector); 1556 1557 for (i = disks; i--; ) { 1558 struct r5dev *dev = &sh->dev[i]; 1559 /* Only process blocks that are known to be uptodate */ 1560 if (test_bit(R5_Wantdrain, &dev->flags)) 1561 xor_srcs[count++] = dev->page; 1562 } 1563 1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1567 1568 return tx; 1569 } 1570 1571 static struct dma_async_tx_descriptor * 1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1573 struct dma_async_tx_descriptor *tx) 1574 { 1575 struct page **blocks = to_addr_page(percpu, 0); 1576 int count; 1577 struct async_submit_ctl submit; 1578 1579 pr_debug("%s: stripe %llu\n", __func__, 1580 (unsigned long long)sh->sector); 1581 1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1583 1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1587 1588 return tx; 1589 } 1590 1591 static struct dma_async_tx_descriptor * 1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1593 { 1594 int disks = sh->disks; 1595 int i; 1596 struct stripe_head *head_sh = sh; 1597 1598 pr_debug("%s: stripe %llu\n", __func__, 1599 (unsigned long long)sh->sector); 1600 1601 for (i = disks; i--; ) { 1602 struct r5dev *dev; 1603 struct bio *chosen; 1604 1605 sh = head_sh; 1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1607 struct bio *wbi; 1608 1609 again: 1610 dev = &sh->dev[i]; 1611 spin_lock_irq(&sh->stripe_lock); 1612 chosen = dev->towrite; 1613 dev->towrite = NULL; 1614 sh->overwrite_disks = 0; 1615 BUG_ON(dev->written); 1616 wbi = dev->written = chosen; 1617 spin_unlock_irq(&sh->stripe_lock); 1618 WARN_ON(dev->page != dev->orig_page); 1619 1620 while (wbi && wbi->bi_iter.bi_sector < 1621 dev->sector + STRIPE_SECTORS) { 1622 if (wbi->bi_rw & REQ_FUA) 1623 set_bit(R5_WantFUA, &dev->flags); 1624 if (wbi->bi_rw & REQ_SYNC) 1625 set_bit(R5_SyncIO, &dev->flags); 1626 if (wbi->bi_rw & REQ_DISCARD) 1627 set_bit(R5_Discard, &dev->flags); 1628 else { 1629 tx = async_copy_data(1, wbi, &dev->page, 1630 dev->sector, tx, sh); 1631 if (dev->page != dev->orig_page) { 1632 set_bit(R5_SkipCopy, &dev->flags); 1633 clear_bit(R5_UPTODATE, &dev->flags); 1634 clear_bit(R5_OVERWRITE, &dev->flags); 1635 } 1636 } 1637 wbi = r5_next_bio(wbi, dev->sector); 1638 } 1639 1640 if (head_sh->batch_head) { 1641 sh = list_first_entry(&sh->batch_list, 1642 struct stripe_head, 1643 batch_list); 1644 if (sh == head_sh) 1645 continue; 1646 goto again; 1647 } 1648 } 1649 } 1650 1651 return tx; 1652 } 1653 1654 static void ops_complete_reconstruct(void *stripe_head_ref) 1655 { 1656 struct stripe_head *sh = stripe_head_ref; 1657 int disks = sh->disks; 1658 int pd_idx = sh->pd_idx; 1659 int qd_idx = sh->qd_idx; 1660 int i; 1661 bool fua = false, sync = false, discard = false; 1662 1663 pr_debug("%s: stripe %llu\n", __func__, 1664 (unsigned long long)sh->sector); 1665 1666 for (i = disks; i--; ) { 1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1670 } 1671 1672 for (i = disks; i--; ) { 1673 struct r5dev *dev = &sh->dev[i]; 1674 1675 if (dev->written || i == pd_idx || i == qd_idx) { 1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1677 set_bit(R5_UPTODATE, &dev->flags); 1678 if (fua) 1679 set_bit(R5_WantFUA, &dev->flags); 1680 if (sync) 1681 set_bit(R5_SyncIO, &dev->flags); 1682 } 1683 } 1684 1685 if (sh->reconstruct_state == reconstruct_state_drain_run) 1686 sh->reconstruct_state = reconstruct_state_drain_result; 1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1689 else { 1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1691 sh->reconstruct_state = reconstruct_state_result; 1692 } 1693 1694 set_bit(STRIPE_HANDLE, &sh->state); 1695 raid5_release_stripe(sh); 1696 } 1697 1698 static void 1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1700 struct dma_async_tx_descriptor *tx) 1701 { 1702 int disks = sh->disks; 1703 struct page **xor_srcs; 1704 struct async_submit_ctl submit; 1705 int count, pd_idx = sh->pd_idx, i; 1706 struct page *xor_dest; 1707 int prexor = 0; 1708 unsigned long flags; 1709 int j = 0; 1710 struct stripe_head *head_sh = sh; 1711 int last_stripe; 1712 1713 pr_debug("%s: stripe %llu\n", __func__, 1714 (unsigned long long)sh->sector); 1715 1716 for (i = 0; i < sh->disks; i++) { 1717 if (pd_idx == i) 1718 continue; 1719 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1720 break; 1721 } 1722 if (i >= sh->disks) { 1723 atomic_inc(&sh->count); 1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1725 ops_complete_reconstruct(sh); 1726 return; 1727 } 1728 again: 1729 count = 0; 1730 xor_srcs = to_addr_page(percpu, j); 1731 /* check if prexor is active which means only process blocks 1732 * that are part of a read-modify-write (written) 1733 */ 1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1735 prexor = 1; 1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1737 for (i = disks; i--; ) { 1738 struct r5dev *dev = &sh->dev[i]; 1739 if (head_sh->dev[i].written) 1740 xor_srcs[count++] = dev->page; 1741 } 1742 } else { 1743 xor_dest = sh->dev[pd_idx].page; 1744 for (i = disks; i--; ) { 1745 struct r5dev *dev = &sh->dev[i]; 1746 if (i != pd_idx) 1747 xor_srcs[count++] = dev->page; 1748 } 1749 } 1750 1751 /* 1/ if we prexor'd then the dest is reused as a source 1752 * 2/ if we did not prexor then we are redoing the parity 1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1754 * for the synchronous xor case 1755 */ 1756 last_stripe = !head_sh->batch_head || 1757 list_first_entry(&sh->batch_list, 1758 struct stripe_head, batch_list) == head_sh; 1759 if (last_stripe) { 1760 flags = ASYNC_TX_ACK | 1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1762 1763 atomic_inc(&head_sh->count); 1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1765 to_addr_conv(sh, percpu, j)); 1766 } else { 1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1768 init_async_submit(&submit, flags, tx, NULL, NULL, 1769 to_addr_conv(sh, percpu, j)); 1770 } 1771 1772 if (unlikely(count == 1)) 1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1774 else 1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1776 if (!last_stripe) { 1777 j++; 1778 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1779 batch_list); 1780 goto again; 1781 } 1782 } 1783 1784 static void 1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1786 struct dma_async_tx_descriptor *tx) 1787 { 1788 struct async_submit_ctl submit; 1789 struct page **blocks; 1790 int count, i, j = 0; 1791 struct stripe_head *head_sh = sh; 1792 int last_stripe; 1793 int synflags; 1794 unsigned long txflags; 1795 1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1797 1798 for (i = 0; i < sh->disks; i++) { 1799 if (sh->pd_idx == i || sh->qd_idx == i) 1800 continue; 1801 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1802 break; 1803 } 1804 if (i >= sh->disks) { 1805 atomic_inc(&sh->count); 1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1808 ops_complete_reconstruct(sh); 1809 return; 1810 } 1811 1812 again: 1813 blocks = to_addr_page(percpu, j); 1814 1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1816 synflags = SYNDROME_SRC_WRITTEN; 1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1818 } else { 1819 synflags = SYNDROME_SRC_ALL; 1820 txflags = ASYNC_TX_ACK; 1821 } 1822 1823 count = set_syndrome_sources(blocks, sh, synflags); 1824 last_stripe = !head_sh->batch_head || 1825 list_first_entry(&sh->batch_list, 1826 struct stripe_head, batch_list) == head_sh; 1827 1828 if (last_stripe) { 1829 atomic_inc(&head_sh->count); 1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1831 head_sh, to_addr_conv(sh, percpu, j)); 1832 } else 1833 init_async_submit(&submit, 0, tx, NULL, NULL, 1834 to_addr_conv(sh, percpu, j)); 1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1836 if (!last_stripe) { 1837 j++; 1838 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1839 batch_list); 1840 goto again; 1841 } 1842 } 1843 1844 static void ops_complete_check(void *stripe_head_ref) 1845 { 1846 struct stripe_head *sh = stripe_head_ref; 1847 1848 pr_debug("%s: stripe %llu\n", __func__, 1849 (unsigned long long)sh->sector); 1850 1851 sh->check_state = check_state_check_result; 1852 set_bit(STRIPE_HANDLE, &sh->state); 1853 raid5_release_stripe(sh); 1854 } 1855 1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1857 { 1858 int disks = sh->disks; 1859 int pd_idx = sh->pd_idx; 1860 int qd_idx = sh->qd_idx; 1861 struct page *xor_dest; 1862 struct page **xor_srcs = to_addr_page(percpu, 0); 1863 struct dma_async_tx_descriptor *tx; 1864 struct async_submit_ctl submit; 1865 int count; 1866 int i; 1867 1868 pr_debug("%s: stripe %llu\n", __func__, 1869 (unsigned long long)sh->sector); 1870 1871 BUG_ON(sh->batch_head); 1872 count = 0; 1873 xor_dest = sh->dev[pd_idx].page; 1874 xor_srcs[count++] = xor_dest; 1875 for (i = disks; i--; ) { 1876 if (i == pd_idx || i == qd_idx) 1877 continue; 1878 xor_srcs[count++] = sh->dev[i].page; 1879 } 1880 1881 init_async_submit(&submit, 0, NULL, NULL, NULL, 1882 to_addr_conv(sh, percpu, 0)); 1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1884 &sh->ops.zero_sum_result, &submit); 1885 1886 atomic_inc(&sh->count); 1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1888 tx = async_trigger_callback(&submit); 1889 } 1890 1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1892 { 1893 struct page **srcs = to_addr_page(percpu, 0); 1894 struct async_submit_ctl submit; 1895 int count; 1896 1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1898 (unsigned long long)sh->sector, checkp); 1899 1900 BUG_ON(sh->batch_head); 1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1902 if (!checkp) 1903 srcs[count] = NULL; 1904 1905 atomic_inc(&sh->count); 1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1907 sh, to_addr_conv(sh, percpu, 0)); 1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1910 } 1911 1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1913 { 1914 int overlap_clear = 0, i, disks = sh->disks; 1915 struct dma_async_tx_descriptor *tx = NULL; 1916 struct r5conf *conf = sh->raid_conf; 1917 int level = conf->level; 1918 struct raid5_percpu *percpu; 1919 unsigned long cpu; 1920 1921 cpu = get_cpu(); 1922 percpu = per_cpu_ptr(conf->percpu, cpu); 1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1924 ops_run_biofill(sh); 1925 overlap_clear++; 1926 } 1927 1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1929 if (level < 6) 1930 tx = ops_run_compute5(sh, percpu); 1931 else { 1932 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1933 tx = ops_run_compute6_1(sh, percpu); 1934 else 1935 tx = ops_run_compute6_2(sh, percpu); 1936 } 1937 /* terminate the chain if reconstruct is not set to be run */ 1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1939 async_tx_ack(tx); 1940 } 1941 1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 1943 if (level < 6) 1944 tx = ops_run_prexor5(sh, percpu, tx); 1945 else 1946 tx = ops_run_prexor6(sh, percpu, tx); 1947 } 1948 1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1950 tx = ops_run_biodrain(sh, tx); 1951 overlap_clear++; 1952 } 1953 1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1955 if (level < 6) 1956 ops_run_reconstruct5(sh, percpu, tx); 1957 else 1958 ops_run_reconstruct6(sh, percpu, tx); 1959 } 1960 1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1962 if (sh->check_state == check_state_run) 1963 ops_run_check_p(sh, percpu); 1964 else if (sh->check_state == check_state_run_q) 1965 ops_run_check_pq(sh, percpu, 0); 1966 else if (sh->check_state == check_state_run_pq) 1967 ops_run_check_pq(sh, percpu, 1); 1968 else 1969 BUG(); 1970 } 1971 1972 if (overlap_clear && !sh->batch_head) 1973 for (i = disks; i--; ) { 1974 struct r5dev *dev = &sh->dev[i]; 1975 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1976 wake_up(&sh->raid_conf->wait_for_overlap); 1977 } 1978 put_cpu(); 1979 } 1980 1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp) 1982 { 1983 struct stripe_head *sh; 1984 1985 sh = kmem_cache_zalloc(sc, gfp); 1986 if (sh) { 1987 spin_lock_init(&sh->stripe_lock); 1988 spin_lock_init(&sh->batch_lock); 1989 INIT_LIST_HEAD(&sh->batch_list); 1990 INIT_LIST_HEAD(&sh->lru); 1991 atomic_set(&sh->count, 1); 1992 } 1993 return sh; 1994 } 1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 1996 { 1997 struct stripe_head *sh; 1998 1999 sh = alloc_stripe(conf->slab_cache, gfp); 2000 if (!sh) 2001 return 0; 2002 2003 sh->raid_conf = conf; 2004 2005 if (grow_buffers(sh, gfp)) { 2006 shrink_buffers(sh); 2007 kmem_cache_free(conf->slab_cache, sh); 2008 return 0; 2009 } 2010 sh->hash_lock_index = 2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2012 /* we just created an active stripe so... */ 2013 atomic_inc(&conf->active_stripes); 2014 2015 raid5_release_stripe(sh); 2016 conf->max_nr_stripes++; 2017 return 1; 2018 } 2019 2020 static int grow_stripes(struct r5conf *conf, int num) 2021 { 2022 struct kmem_cache *sc; 2023 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2024 2025 if (conf->mddev->gendisk) 2026 sprintf(conf->cache_name[0], 2027 "raid%d-%s", conf->level, mdname(conf->mddev)); 2028 else 2029 sprintf(conf->cache_name[0], 2030 "raid%d-%p", conf->level, conf->mddev); 2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2032 2033 conf->active_name = 0; 2034 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2036 0, 0, NULL); 2037 if (!sc) 2038 return 1; 2039 conf->slab_cache = sc; 2040 conf->pool_size = devs; 2041 while (num--) 2042 if (!grow_one_stripe(conf, GFP_KERNEL)) 2043 return 1; 2044 2045 return 0; 2046 } 2047 2048 /** 2049 * scribble_len - return the required size of the scribble region 2050 * @num - total number of disks in the array 2051 * 2052 * The size must be enough to contain: 2053 * 1/ a struct page pointer for each device in the array +2 2054 * 2/ room to convert each entry in (1) to its corresponding dma 2055 * (dma_map_page()) or page (page_address()) address. 2056 * 2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2058 * calculate over all devices (not just the data blocks), using zeros in place 2059 * of the P and Q blocks. 2060 */ 2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2062 { 2063 struct flex_array *ret; 2064 size_t len; 2065 2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2067 ret = flex_array_alloc(len, cnt, flags); 2068 if (!ret) 2069 return NULL; 2070 /* always prealloc all elements, so no locking is required */ 2071 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2072 flex_array_free(ret); 2073 return NULL; 2074 } 2075 return ret; 2076 } 2077 2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2079 { 2080 unsigned long cpu; 2081 int err = 0; 2082 2083 /* 2084 * Never shrink. And mddev_suspend() could deadlock if this is called 2085 * from raid5d. In that case, scribble_disks and scribble_sectors 2086 * should equal to new_disks and new_sectors 2087 */ 2088 if (conf->scribble_disks >= new_disks && 2089 conf->scribble_sectors >= new_sectors) 2090 return 0; 2091 mddev_suspend(conf->mddev); 2092 get_online_cpus(); 2093 for_each_present_cpu(cpu) { 2094 struct raid5_percpu *percpu; 2095 struct flex_array *scribble; 2096 2097 percpu = per_cpu_ptr(conf->percpu, cpu); 2098 scribble = scribble_alloc(new_disks, 2099 new_sectors / STRIPE_SECTORS, 2100 GFP_NOIO); 2101 2102 if (scribble) { 2103 flex_array_free(percpu->scribble); 2104 percpu->scribble = scribble; 2105 } else { 2106 err = -ENOMEM; 2107 break; 2108 } 2109 } 2110 put_online_cpus(); 2111 mddev_resume(conf->mddev); 2112 if (!err) { 2113 conf->scribble_disks = new_disks; 2114 conf->scribble_sectors = new_sectors; 2115 } 2116 return err; 2117 } 2118 2119 static int resize_stripes(struct r5conf *conf, int newsize) 2120 { 2121 /* Make all the stripes able to hold 'newsize' devices. 2122 * New slots in each stripe get 'page' set to a new page. 2123 * 2124 * This happens in stages: 2125 * 1/ create a new kmem_cache and allocate the required number of 2126 * stripe_heads. 2127 * 2/ gather all the old stripe_heads and transfer the pages across 2128 * to the new stripe_heads. This will have the side effect of 2129 * freezing the array as once all stripe_heads have been collected, 2130 * no IO will be possible. Old stripe heads are freed once their 2131 * pages have been transferred over, and the old kmem_cache is 2132 * freed when all stripes are done. 2133 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2134 * we simple return a failre status - no need to clean anything up. 2135 * 4/ allocate new pages for the new slots in the new stripe_heads. 2136 * If this fails, we don't bother trying the shrink the 2137 * stripe_heads down again, we just leave them as they are. 2138 * As each stripe_head is processed the new one is released into 2139 * active service. 2140 * 2141 * Once step2 is started, we cannot afford to wait for a write, 2142 * so we use GFP_NOIO allocations. 2143 */ 2144 struct stripe_head *osh, *nsh; 2145 LIST_HEAD(newstripes); 2146 struct disk_info *ndisks; 2147 int err; 2148 struct kmem_cache *sc; 2149 int i; 2150 int hash, cnt; 2151 2152 if (newsize <= conf->pool_size) 2153 return 0; /* never bother to shrink */ 2154 2155 err = md_allow_write(conf->mddev); 2156 if (err) 2157 return err; 2158 2159 /* Step 1 */ 2160 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2161 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2162 0, 0, NULL); 2163 if (!sc) 2164 return -ENOMEM; 2165 2166 /* Need to ensure auto-resizing doesn't interfere */ 2167 mutex_lock(&conf->cache_size_mutex); 2168 2169 for (i = conf->max_nr_stripes; i; i--) { 2170 nsh = alloc_stripe(sc, GFP_KERNEL); 2171 if (!nsh) 2172 break; 2173 2174 nsh->raid_conf = conf; 2175 list_add(&nsh->lru, &newstripes); 2176 } 2177 if (i) { 2178 /* didn't get enough, give up */ 2179 while (!list_empty(&newstripes)) { 2180 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2181 list_del(&nsh->lru); 2182 kmem_cache_free(sc, nsh); 2183 } 2184 kmem_cache_destroy(sc); 2185 mutex_unlock(&conf->cache_size_mutex); 2186 return -ENOMEM; 2187 } 2188 /* Step 2 - Must use GFP_NOIO now. 2189 * OK, we have enough stripes, start collecting inactive 2190 * stripes and copying them over 2191 */ 2192 hash = 0; 2193 cnt = 0; 2194 list_for_each_entry(nsh, &newstripes, lru) { 2195 lock_device_hash_lock(conf, hash); 2196 wait_event_cmd(conf->wait_for_stripe, 2197 !list_empty(conf->inactive_list + hash), 2198 unlock_device_hash_lock(conf, hash), 2199 lock_device_hash_lock(conf, hash)); 2200 osh = get_free_stripe(conf, hash); 2201 unlock_device_hash_lock(conf, hash); 2202 2203 for(i=0; i<conf->pool_size; i++) { 2204 nsh->dev[i].page = osh->dev[i].page; 2205 nsh->dev[i].orig_page = osh->dev[i].page; 2206 } 2207 nsh->hash_lock_index = hash; 2208 kmem_cache_free(conf->slab_cache, osh); 2209 cnt++; 2210 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2211 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2212 hash++; 2213 cnt = 0; 2214 } 2215 } 2216 kmem_cache_destroy(conf->slab_cache); 2217 2218 /* Step 3. 2219 * At this point, we are holding all the stripes so the array 2220 * is completely stalled, so now is a good time to resize 2221 * conf->disks and the scribble region 2222 */ 2223 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2224 if (ndisks) { 2225 for (i=0; i<conf->raid_disks; i++) 2226 ndisks[i] = conf->disks[i]; 2227 kfree(conf->disks); 2228 conf->disks = ndisks; 2229 } else 2230 err = -ENOMEM; 2231 2232 mutex_unlock(&conf->cache_size_mutex); 2233 /* Step 4, return new stripes to service */ 2234 while(!list_empty(&newstripes)) { 2235 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2236 list_del_init(&nsh->lru); 2237 2238 for (i=conf->raid_disks; i < newsize; i++) 2239 if (nsh->dev[i].page == NULL) { 2240 struct page *p = alloc_page(GFP_NOIO); 2241 nsh->dev[i].page = p; 2242 nsh->dev[i].orig_page = p; 2243 if (!p) 2244 err = -ENOMEM; 2245 } 2246 raid5_release_stripe(nsh); 2247 } 2248 /* critical section pass, GFP_NOIO no longer needed */ 2249 2250 conf->slab_cache = sc; 2251 conf->active_name = 1-conf->active_name; 2252 if (!err) 2253 conf->pool_size = newsize; 2254 return err; 2255 } 2256 2257 static int drop_one_stripe(struct r5conf *conf) 2258 { 2259 struct stripe_head *sh; 2260 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2261 2262 spin_lock_irq(conf->hash_locks + hash); 2263 sh = get_free_stripe(conf, hash); 2264 spin_unlock_irq(conf->hash_locks + hash); 2265 if (!sh) 2266 return 0; 2267 BUG_ON(atomic_read(&sh->count)); 2268 shrink_buffers(sh); 2269 kmem_cache_free(conf->slab_cache, sh); 2270 atomic_dec(&conf->active_stripes); 2271 conf->max_nr_stripes--; 2272 return 1; 2273 } 2274 2275 static void shrink_stripes(struct r5conf *conf) 2276 { 2277 while (conf->max_nr_stripes && 2278 drop_one_stripe(conf)) 2279 ; 2280 2281 kmem_cache_destroy(conf->slab_cache); 2282 conf->slab_cache = NULL; 2283 } 2284 2285 static void raid5_end_read_request(struct bio * bi) 2286 { 2287 struct stripe_head *sh = bi->bi_private; 2288 struct r5conf *conf = sh->raid_conf; 2289 int disks = sh->disks, i; 2290 char b[BDEVNAME_SIZE]; 2291 struct md_rdev *rdev = NULL; 2292 sector_t s; 2293 2294 for (i=0 ; i<disks; i++) 2295 if (bi == &sh->dev[i].req) 2296 break; 2297 2298 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2299 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2300 bi->bi_error); 2301 if (i == disks) { 2302 BUG(); 2303 return; 2304 } 2305 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2306 /* If replacement finished while this request was outstanding, 2307 * 'replacement' might be NULL already. 2308 * In that case it moved down to 'rdev'. 2309 * rdev is not removed until all requests are finished. 2310 */ 2311 rdev = conf->disks[i].replacement; 2312 if (!rdev) 2313 rdev = conf->disks[i].rdev; 2314 2315 if (use_new_offset(conf, sh)) 2316 s = sh->sector + rdev->new_data_offset; 2317 else 2318 s = sh->sector + rdev->data_offset; 2319 if (!bi->bi_error) { 2320 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2321 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2322 /* Note that this cannot happen on a 2323 * replacement device. We just fail those on 2324 * any error 2325 */ 2326 printk_ratelimited( 2327 KERN_INFO 2328 "md/raid:%s: read error corrected" 2329 " (%lu sectors at %llu on %s)\n", 2330 mdname(conf->mddev), STRIPE_SECTORS, 2331 (unsigned long long)s, 2332 bdevname(rdev->bdev, b)); 2333 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2334 clear_bit(R5_ReadError, &sh->dev[i].flags); 2335 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2336 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2337 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2338 2339 if (atomic_read(&rdev->read_errors)) 2340 atomic_set(&rdev->read_errors, 0); 2341 } else { 2342 const char *bdn = bdevname(rdev->bdev, b); 2343 int retry = 0; 2344 int set_bad = 0; 2345 2346 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2347 atomic_inc(&rdev->read_errors); 2348 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2349 printk_ratelimited( 2350 KERN_WARNING 2351 "md/raid:%s: read error on replacement device " 2352 "(sector %llu on %s).\n", 2353 mdname(conf->mddev), 2354 (unsigned long long)s, 2355 bdn); 2356 else if (conf->mddev->degraded >= conf->max_degraded) { 2357 set_bad = 1; 2358 printk_ratelimited( 2359 KERN_WARNING 2360 "md/raid:%s: read error not correctable " 2361 "(sector %llu on %s).\n", 2362 mdname(conf->mddev), 2363 (unsigned long long)s, 2364 bdn); 2365 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2366 /* Oh, no!!! */ 2367 set_bad = 1; 2368 printk_ratelimited( 2369 KERN_WARNING 2370 "md/raid:%s: read error NOT corrected!! " 2371 "(sector %llu on %s).\n", 2372 mdname(conf->mddev), 2373 (unsigned long long)s, 2374 bdn); 2375 } else if (atomic_read(&rdev->read_errors) 2376 > conf->max_nr_stripes) 2377 printk(KERN_WARNING 2378 "md/raid:%s: Too many read errors, failing device %s.\n", 2379 mdname(conf->mddev), bdn); 2380 else 2381 retry = 1; 2382 if (set_bad && test_bit(In_sync, &rdev->flags) 2383 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2384 retry = 1; 2385 if (retry) 2386 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2387 set_bit(R5_ReadError, &sh->dev[i].flags); 2388 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2389 } else 2390 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2391 else { 2392 clear_bit(R5_ReadError, &sh->dev[i].flags); 2393 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2394 if (!(set_bad 2395 && test_bit(In_sync, &rdev->flags) 2396 && rdev_set_badblocks( 2397 rdev, sh->sector, STRIPE_SECTORS, 0))) 2398 md_error(conf->mddev, rdev); 2399 } 2400 } 2401 rdev_dec_pending(rdev, conf->mddev); 2402 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2403 set_bit(STRIPE_HANDLE, &sh->state); 2404 raid5_release_stripe(sh); 2405 } 2406 2407 static void raid5_end_write_request(struct bio *bi) 2408 { 2409 struct stripe_head *sh = bi->bi_private; 2410 struct r5conf *conf = sh->raid_conf; 2411 int disks = sh->disks, i; 2412 struct md_rdev *uninitialized_var(rdev); 2413 sector_t first_bad; 2414 int bad_sectors; 2415 int replacement = 0; 2416 2417 for (i = 0 ; i < disks; i++) { 2418 if (bi == &sh->dev[i].req) { 2419 rdev = conf->disks[i].rdev; 2420 break; 2421 } 2422 if (bi == &sh->dev[i].rreq) { 2423 rdev = conf->disks[i].replacement; 2424 if (rdev) 2425 replacement = 1; 2426 else 2427 /* rdev was removed and 'replacement' 2428 * replaced it. rdev is not removed 2429 * until all requests are finished. 2430 */ 2431 rdev = conf->disks[i].rdev; 2432 break; 2433 } 2434 } 2435 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2436 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2437 bi->bi_error); 2438 if (i == disks) { 2439 BUG(); 2440 return; 2441 } 2442 2443 if (replacement) { 2444 if (bi->bi_error) 2445 md_error(conf->mddev, rdev); 2446 else if (is_badblock(rdev, sh->sector, 2447 STRIPE_SECTORS, 2448 &first_bad, &bad_sectors)) 2449 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2450 } else { 2451 if (bi->bi_error) { 2452 set_bit(STRIPE_DEGRADED, &sh->state); 2453 set_bit(WriteErrorSeen, &rdev->flags); 2454 set_bit(R5_WriteError, &sh->dev[i].flags); 2455 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2456 set_bit(MD_RECOVERY_NEEDED, 2457 &rdev->mddev->recovery); 2458 } else if (is_badblock(rdev, sh->sector, 2459 STRIPE_SECTORS, 2460 &first_bad, &bad_sectors)) { 2461 set_bit(R5_MadeGood, &sh->dev[i].flags); 2462 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2463 /* That was a successful write so make 2464 * sure it looks like we already did 2465 * a re-write. 2466 */ 2467 set_bit(R5_ReWrite, &sh->dev[i].flags); 2468 } 2469 } 2470 rdev_dec_pending(rdev, conf->mddev); 2471 2472 if (sh->batch_head && bi->bi_error && !replacement) 2473 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2474 2475 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2476 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2477 set_bit(STRIPE_HANDLE, &sh->state); 2478 raid5_release_stripe(sh); 2479 2480 if (sh->batch_head && sh != sh->batch_head) 2481 raid5_release_stripe(sh->batch_head); 2482 } 2483 2484 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2485 { 2486 struct r5dev *dev = &sh->dev[i]; 2487 2488 bio_init(&dev->req); 2489 dev->req.bi_io_vec = &dev->vec; 2490 dev->req.bi_max_vecs = 1; 2491 dev->req.bi_private = sh; 2492 2493 bio_init(&dev->rreq); 2494 dev->rreq.bi_io_vec = &dev->rvec; 2495 dev->rreq.bi_max_vecs = 1; 2496 dev->rreq.bi_private = sh; 2497 2498 dev->flags = 0; 2499 dev->sector = raid5_compute_blocknr(sh, i, previous); 2500 } 2501 2502 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2503 { 2504 char b[BDEVNAME_SIZE]; 2505 struct r5conf *conf = mddev->private; 2506 unsigned long flags; 2507 pr_debug("raid456: error called\n"); 2508 2509 spin_lock_irqsave(&conf->device_lock, flags); 2510 clear_bit(In_sync, &rdev->flags); 2511 mddev->degraded = calc_degraded(conf); 2512 spin_unlock_irqrestore(&conf->device_lock, flags); 2513 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2514 2515 set_bit(Blocked, &rdev->flags); 2516 set_bit(Faulty, &rdev->flags); 2517 set_mask_bits(&mddev->flags, 0, 2518 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 2519 printk(KERN_ALERT 2520 "md/raid:%s: Disk failure on %s, disabling device.\n" 2521 "md/raid:%s: Operation continuing on %d devices.\n", 2522 mdname(mddev), 2523 bdevname(rdev->bdev, b), 2524 mdname(mddev), 2525 conf->raid_disks - mddev->degraded); 2526 } 2527 2528 /* 2529 * Input: a 'big' sector number, 2530 * Output: index of the data and parity disk, and the sector # in them. 2531 */ 2532 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2533 int previous, int *dd_idx, 2534 struct stripe_head *sh) 2535 { 2536 sector_t stripe, stripe2; 2537 sector_t chunk_number; 2538 unsigned int chunk_offset; 2539 int pd_idx, qd_idx; 2540 int ddf_layout = 0; 2541 sector_t new_sector; 2542 int algorithm = previous ? conf->prev_algo 2543 : conf->algorithm; 2544 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2545 : conf->chunk_sectors; 2546 int raid_disks = previous ? conf->previous_raid_disks 2547 : conf->raid_disks; 2548 int data_disks = raid_disks - conf->max_degraded; 2549 2550 /* First compute the information on this sector */ 2551 2552 /* 2553 * Compute the chunk number and the sector offset inside the chunk 2554 */ 2555 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2556 chunk_number = r_sector; 2557 2558 /* 2559 * Compute the stripe number 2560 */ 2561 stripe = chunk_number; 2562 *dd_idx = sector_div(stripe, data_disks); 2563 stripe2 = stripe; 2564 /* 2565 * Select the parity disk based on the user selected algorithm. 2566 */ 2567 pd_idx = qd_idx = -1; 2568 switch(conf->level) { 2569 case 4: 2570 pd_idx = data_disks; 2571 break; 2572 case 5: 2573 switch (algorithm) { 2574 case ALGORITHM_LEFT_ASYMMETRIC: 2575 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2576 if (*dd_idx >= pd_idx) 2577 (*dd_idx)++; 2578 break; 2579 case ALGORITHM_RIGHT_ASYMMETRIC: 2580 pd_idx = sector_div(stripe2, raid_disks); 2581 if (*dd_idx >= pd_idx) 2582 (*dd_idx)++; 2583 break; 2584 case ALGORITHM_LEFT_SYMMETRIC: 2585 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2586 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2587 break; 2588 case ALGORITHM_RIGHT_SYMMETRIC: 2589 pd_idx = sector_div(stripe2, raid_disks); 2590 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2591 break; 2592 case ALGORITHM_PARITY_0: 2593 pd_idx = 0; 2594 (*dd_idx)++; 2595 break; 2596 case ALGORITHM_PARITY_N: 2597 pd_idx = data_disks; 2598 break; 2599 default: 2600 BUG(); 2601 } 2602 break; 2603 case 6: 2604 2605 switch (algorithm) { 2606 case ALGORITHM_LEFT_ASYMMETRIC: 2607 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2608 qd_idx = pd_idx + 1; 2609 if (pd_idx == raid_disks-1) { 2610 (*dd_idx)++; /* Q D D D P */ 2611 qd_idx = 0; 2612 } else if (*dd_idx >= pd_idx) 2613 (*dd_idx) += 2; /* D D P Q D */ 2614 break; 2615 case ALGORITHM_RIGHT_ASYMMETRIC: 2616 pd_idx = sector_div(stripe2, raid_disks); 2617 qd_idx = pd_idx + 1; 2618 if (pd_idx == raid_disks-1) { 2619 (*dd_idx)++; /* Q D D D P */ 2620 qd_idx = 0; 2621 } else if (*dd_idx >= pd_idx) 2622 (*dd_idx) += 2; /* D D P Q D */ 2623 break; 2624 case ALGORITHM_LEFT_SYMMETRIC: 2625 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2626 qd_idx = (pd_idx + 1) % raid_disks; 2627 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2628 break; 2629 case ALGORITHM_RIGHT_SYMMETRIC: 2630 pd_idx = sector_div(stripe2, raid_disks); 2631 qd_idx = (pd_idx + 1) % raid_disks; 2632 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2633 break; 2634 2635 case ALGORITHM_PARITY_0: 2636 pd_idx = 0; 2637 qd_idx = 1; 2638 (*dd_idx) += 2; 2639 break; 2640 case ALGORITHM_PARITY_N: 2641 pd_idx = data_disks; 2642 qd_idx = data_disks + 1; 2643 break; 2644 2645 case ALGORITHM_ROTATING_ZERO_RESTART: 2646 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2647 * of blocks for computing Q is different. 2648 */ 2649 pd_idx = sector_div(stripe2, raid_disks); 2650 qd_idx = pd_idx + 1; 2651 if (pd_idx == raid_disks-1) { 2652 (*dd_idx)++; /* Q D D D P */ 2653 qd_idx = 0; 2654 } else if (*dd_idx >= pd_idx) 2655 (*dd_idx) += 2; /* D D P Q D */ 2656 ddf_layout = 1; 2657 break; 2658 2659 case ALGORITHM_ROTATING_N_RESTART: 2660 /* Same a left_asymmetric, by first stripe is 2661 * D D D P Q rather than 2662 * Q D D D P 2663 */ 2664 stripe2 += 1; 2665 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2666 qd_idx = pd_idx + 1; 2667 if (pd_idx == raid_disks-1) { 2668 (*dd_idx)++; /* Q D D D P */ 2669 qd_idx = 0; 2670 } else if (*dd_idx >= pd_idx) 2671 (*dd_idx) += 2; /* D D P Q D */ 2672 ddf_layout = 1; 2673 break; 2674 2675 case ALGORITHM_ROTATING_N_CONTINUE: 2676 /* Same as left_symmetric but Q is before P */ 2677 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2678 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2679 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2680 ddf_layout = 1; 2681 break; 2682 2683 case ALGORITHM_LEFT_ASYMMETRIC_6: 2684 /* RAID5 left_asymmetric, with Q on last device */ 2685 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2686 if (*dd_idx >= pd_idx) 2687 (*dd_idx)++; 2688 qd_idx = raid_disks - 1; 2689 break; 2690 2691 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2692 pd_idx = sector_div(stripe2, raid_disks-1); 2693 if (*dd_idx >= pd_idx) 2694 (*dd_idx)++; 2695 qd_idx = raid_disks - 1; 2696 break; 2697 2698 case ALGORITHM_LEFT_SYMMETRIC_6: 2699 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2700 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2701 qd_idx = raid_disks - 1; 2702 break; 2703 2704 case ALGORITHM_RIGHT_SYMMETRIC_6: 2705 pd_idx = sector_div(stripe2, raid_disks-1); 2706 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2707 qd_idx = raid_disks - 1; 2708 break; 2709 2710 case ALGORITHM_PARITY_0_6: 2711 pd_idx = 0; 2712 (*dd_idx)++; 2713 qd_idx = raid_disks - 1; 2714 break; 2715 2716 default: 2717 BUG(); 2718 } 2719 break; 2720 } 2721 2722 if (sh) { 2723 sh->pd_idx = pd_idx; 2724 sh->qd_idx = qd_idx; 2725 sh->ddf_layout = ddf_layout; 2726 } 2727 /* 2728 * Finally, compute the new sector number 2729 */ 2730 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2731 return new_sector; 2732 } 2733 2734 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2735 { 2736 struct r5conf *conf = sh->raid_conf; 2737 int raid_disks = sh->disks; 2738 int data_disks = raid_disks - conf->max_degraded; 2739 sector_t new_sector = sh->sector, check; 2740 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2741 : conf->chunk_sectors; 2742 int algorithm = previous ? conf->prev_algo 2743 : conf->algorithm; 2744 sector_t stripe; 2745 int chunk_offset; 2746 sector_t chunk_number; 2747 int dummy1, dd_idx = i; 2748 sector_t r_sector; 2749 struct stripe_head sh2; 2750 2751 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2752 stripe = new_sector; 2753 2754 if (i == sh->pd_idx) 2755 return 0; 2756 switch(conf->level) { 2757 case 4: break; 2758 case 5: 2759 switch (algorithm) { 2760 case ALGORITHM_LEFT_ASYMMETRIC: 2761 case ALGORITHM_RIGHT_ASYMMETRIC: 2762 if (i > sh->pd_idx) 2763 i--; 2764 break; 2765 case ALGORITHM_LEFT_SYMMETRIC: 2766 case ALGORITHM_RIGHT_SYMMETRIC: 2767 if (i < sh->pd_idx) 2768 i += raid_disks; 2769 i -= (sh->pd_idx + 1); 2770 break; 2771 case ALGORITHM_PARITY_0: 2772 i -= 1; 2773 break; 2774 case ALGORITHM_PARITY_N: 2775 break; 2776 default: 2777 BUG(); 2778 } 2779 break; 2780 case 6: 2781 if (i == sh->qd_idx) 2782 return 0; /* It is the Q disk */ 2783 switch (algorithm) { 2784 case ALGORITHM_LEFT_ASYMMETRIC: 2785 case ALGORITHM_RIGHT_ASYMMETRIC: 2786 case ALGORITHM_ROTATING_ZERO_RESTART: 2787 case ALGORITHM_ROTATING_N_RESTART: 2788 if (sh->pd_idx == raid_disks-1) 2789 i--; /* Q D D D P */ 2790 else if (i > sh->pd_idx) 2791 i -= 2; /* D D P Q D */ 2792 break; 2793 case ALGORITHM_LEFT_SYMMETRIC: 2794 case ALGORITHM_RIGHT_SYMMETRIC: 2795 if (sh->pd_idx == raid_disks-1) 2796 i--; /* Q D D D P */ 2797 else { 2798 /* D D P Q D */ 2799 if (i < sh->pd_idx) 2800 i += raid_disks; 2801 i -= (sh->pd_idx + 2); 2802 } 2803 break; 2804 case ALGORITHM_PARITY_0: 2805 i -= 2; 2806 break; 2807 case ALGORITHM_PARITY_N: 2808 break; 2809 case ALGORITHM_ROTATING_N_CONTINUE: 2810 /* Like left_symmetric, but P is before Q */ 2811 if (sh->pd_idx == 0) 2812 i--; /* P D D D Q */ 2813 else { 2814 /* D D Q P D */ 2815 if (i < sh->pd_idx) 2816 i += raid_disks; 2817 i -= (sh->pd_idx + 1); 2818 } 2819 break; 2820 case ALGORITHM_LEFT_ASYMMETRIC_6: 2821 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2822 if (i > sh->pd_idx) 2823 i--; 2824 break; 2825 case ALGORITHM_LEFT_SYMMETRIC_6: 2826 case ALGORITHM_RIGHT_SYMMETRIC_6: 2827 if (i < sh->pd_idx) 2828 i += data_disks + 1; 2829 i -= (sh->pd_idx + 1); 2830 break; 2831 case ALGORITHM_PARITY_0_6: 2832 i -= 1; 2833 break; 2834 default: 2835 BUG(); 2836 } 2837 break; 2838 } 2839 2840 chunk_number = stripe * data_disks + i; 2841 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2842 2843 check = raid5_compute_sector(conf, r_sector, 2844 previous, &dummy1, &sh2); 2845 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2846 || sh2.qd_idx != sh->qd_idx) { 2847 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2848 mdname(conf->mddev)); 2849 return 0; 2850 } 2851 return r_sector; 2852 } 2853 2854 static void 2855 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2856 int rcw, int expand) 2857 { 2858 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2859 struct r5conf *conf = sh->raid_conf; 2860 int level = conf->level; 2861 2862 if (rcw) { 2863 2864 for (i = disks; i--; ) { 2865 struct r5dev *dev = &sh->dev[i]; 2866 2867 if (dev->towrite) { 2868 set_bit(R5_LOCKED, &dev->flags); 2869 set_bit(R5_Wantdrain, &dev->flags); 2870 if (!expand) 2871 clear_bit(R5_UPTODATE, &dev->flags); 2872 s->locked++; 2873 } 2874 } 2875 /* if we are not expanding this is a proper write request, and 2876 * there will be bios with new data to be drained into the 2877 * stripe cache 2878 */ 2879 if (!expand) { 2880 if (!s->locked) 2881 /* False alarm, nothing to do */ 2882 return; 2883 sh->reconstruct_state = reconstruct_state_drain_run; 2884 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2885 } else 2886 sh->reconstruct_state = reconstruct_state_run; 2887 2888 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2889 2890 if (s->locked + conf->max_degraded == disks) 2891 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2892 atomic_inc(&conf->pending_full_writes); 2893 } else { 2894 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2895 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2896 BUG_ON(level == 6 && 2897 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 2898 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 2899 2900 for (i = disks; i--; ) { 2901 struct r5dev *dev = &sh->dev[i]; 2902 if (i == pd_idx || i == qd_idx) 2903 continue; 2904 2905 if (dev->towrite && 2906 (test_bit(R5_UPTODATE, &dev->flags) || 2907 test_bit(R5_Wantcompute, &dev->flags))) { 2908 set_bit(R5_Wantdrain, &dev->flags); 2909 set_bit(R5_LOCKED, &dev->flags); 2910 clear_bit(R5_UPTODATE, &dev->flags); 2911 s->locked++; 2912 } 2913 } 2914 if (!s->locked) 2915 /* False alarm - nothing to do */ 2916 return; 2917 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2918 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2919 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2920 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2921 } 2922 2923 /* keep the parity disk(s) locked while asynchronous operations 2924 * are in flight 2925 */ 2926 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2927 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2928 s->locked++; 2929 2930 if (level == 6) { 2931 int qd_idx = sh->qd_idx; 2932 struct r5dev *dev = &sh->dev[qd_idx]; 2933 2934 set_bit(R5_LOCKED, &dev->flags); 2935 clear_bit(R5_UPTODATE, &dev->flags); 2936 s->locked++; 2937 } 2938 2939 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2940 __func__, (unsigned long long)sh->sector, 2941 s->locked, s->ops_request); 2942 } 2943 2944 /* 2945 * Each stripe/dev can have one or more bion attached. 2946 * toread/towrite point to the first in a chain. 2947 * The bi_next chain must be in order. 2948 */ 2949 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 2950 int forwrite, int previous) 2951 { 2952 struct bio **bip; 2953 struct r5conf *conf = sh->raid_conf; 2954 int firstwrite=0; 2955 2956 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2957 (unsigned long long)bi->bi_iter.bi_sector, 2958 (unsigned long long)sh->sector); 2959 2960 /* 2961 * If several bio share a stripe. The bio bi_phys_segments acts as a 2962 * reference count to avoid race. The reference count should already be 2963 * increased before this function is called (for example, in 2964 * raid5_make_request()), so other bio sharing this stripe will not free the 2965 * stripe. If a stripe is owned by one stripe, the stripe lock will 2966 * protect it. 2967 */ 2968 spin_lock_irq(&sh->stripe_lock); 2969 /* Don't allow new IO added to stripes in batch list */ 2970 if (sh->batch_head) 2971 goto overlap; 2972 if (forwrite) { 2973 bip = &sh->dev[dd_idx].towrite; 2974 if (*bip == NULL) 2975 firstwrite = 1; 2976 } else 2977 bip = &sh->dev[dd_idx].toread; 2978 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2979 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2980 goto overlap; 2981 bip = & (*bip)->bi_next; 2982 } 2983 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2984 goto overlap; 2985 2986 if (!forwrite || previous) 2987 clear_bit(STRIPE_BATCH_READY, &sh->state); 2988 2989 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2990 if (*bip) 2991 bi->bi_next = *bip; 2992 *bip = bi; 2993 raid5_inc_bi_active_stripes(bi); 2994 2995 if (forwrite) { 2996 /* check if page is covered */ 2997 sector_t sector = sh->dev[dd_idx].sector; 2998 for (bi=sh->dev[dd_idx].towrite; 2999 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3000 bi && bi->bi_iter.bi_sector <= sector; 3001 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3002 if (bio_end_sector(bi) >= sector) 3003 sector = bio_end_sector(bi); 3004 } 3005 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3006 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3007 sh->overwrite_disks++; 3008 } 3009 3010 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3011 (unsigned long long)(*bip)->bi_iter.bi_sector, 3012 (unsigned long long)sh->sector, dd_idx); 3013 3014 if (conf->mddev->bitmap && firstwrite) { 3015 /* Cannot hold spinlock over bitmap_startwrite, 3016 * but must ensure this isn't added to a batch until 3017 * we have added to the bitmap and set bm_seq. 3018 * So set STRIPE_BITMAP_PENDING to prevent 3019 * batching. 3020 * If multiple add_stripe_bio() calls race here they 3021 * much all set STRIPE_BITMAP_PENDING. So only the first one 3022 * to complete "bitmap_startwrite" gets to set 3023 * STRIPE_BIT_DELAY. This is important as once a stripe 3024 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3025 * any more. 3026 */ 3027 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3028 spin_unlock_irq(&sh->stripe_lock); 3029 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3030 STRIPE_SECTORS, 0); 3031 spin_lock_irq(&sh->stripe_lock); 3032 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3033 if (!sh->batch_head) { 3034 sh->bm_seq = conf->seq_flush+1; 3035 set_bit(STRIPE_BIT_DELAY, &sh->state); 3036 } 3037 } 3038 spin_unlock_irq(&sh->stripe_lock); 3039 3040 if (stripe_can_batch(sh)) 3041 stripe_add_to_batch_list(conf, sh); 3042 return 1; 3043 3044 overlap: 3045 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3046 spin_unlock_irq(&sh->stripe_lock); 3047 return 0; 3048 } 3049 3050 static void end_reshape(struct r5conf *conf); 3051 3052 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3053 struct stripe_head *sh) 3054 { 3055 int sectors_per_chunk = 3056 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3057 int dd_idx; 3058 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3059 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3060 3061 raid5_compute_sector(conf, 3062 stripe * (disks - conf->max_degraded) 3063 *sectors_per_chunk + chunk_offset, 3064 previous, 3065 &dd_idx, sh); 3066 } 3067 3068 static void 3069 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3070 struct stripe_head_state *s, int disks, 3071 struct bio_list *return_bi) 3072 { 3073 int i; 3074 BUG_ON(sh->batch_head); 3075 for (i = disks; i--; ) { 3076 struct bio *bi; 3077 int bitmap_end = 0; 3078 3079 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3080 struct md_rdev *rdev; 3081 rcu_read_lock(); 3082 rdev = rcu_dereference(conf->disks[i].rdev); 3083 if (rdev && test_bit(In_sync, &rdev->flags)) 3084 atomic_inc(&rdev->nr_pending); 3085 else 3086 rdev = NULL; 3087 rcu_read_unlock(); 3088 if (rdev) { 3089 if (!rdev_set_badblocks( 3090 rdev, 3091 sh->sector, 3092 STRIPE_SECTORS, 0)) 3093 md_error(conf->mddev, rdev); 3094 rdev_dec_pending(rdev, conf->mddev); 3095 } 3096 } 3097 spin_lock_irq(&sh->stripe_lock); 3098 /* fail all writes first */ 3099 bi = sh->dev[i].towrite; 3100 sh->dev[i].towrite = NULL; 3101 sh->overwrite_disks = 0; 3102 spin_unlock_irq(&sh->stripe_lock); 3103 if (bi) 3104 bitmap_end = 1; 3105 3106 r5l_stripe_write_finished(sh); 3107 3108 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3109 wake_up(&conf->wait_for_overlap); 3110 3111 while (bi && bi->bi_iter.bi_sector < 3112 sh->dev[i].sector + STRIPE_SECTORS) { 3113 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3114 3115 bi->bi_error = -EIO; 3116 if (!raid5_dec_bi_active_stripes(bi)) { 3117 md_write_end(conf->mddev); 3118 bio_list_add(return_bi, bi); 3119 } 3120 bi = nextbi; 3121 } 3122 if (bitmap_end) 3123 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3124 STRIPE_SECTORS, 0, 0); 3125 bitmap_end = 0; 3126 /* and fail all 'written' */ 3127 bi = sh->dev[i].written; 3128 sh->dev[i].written = NULL; 3129 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3130 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3131 sh->dev[i].page = sh->dev[i].orig_page; 3132 } 3133 3134 if (bi) bitmap_end = 1; 3135 while (bi && bi->bi_iter.bi_sector < 3136 sh->dev[i].sector + STRIPE_SECTORS) { 3137 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3138 3139 bi->bi_error = -EIO; 3140 if (!raid5_dec_bi_active_stripes(bi)) { 3141 md_write_end(conf->mddev); 3142 bio_list_add(return_bi, bi); 3143 } 3144 bi = bi2; 3145 } 3146 3147 /* fail any reads if this device is non-operational and 3148 * the data has not reached the cache yet. 3149 */ 3150 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3151 s->failed > conf->max_degraded && 3152 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3153 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3154 spin_lock_irq(&sh->stripe_lock); 3155 bi = sh->dev[i].toread; 3156 sh->dev[i].toread = NULL; 3157 spin_unlock_irq(&sh->stripe_lock); 3158 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3159 wake_up(&conf->wait_for_overlap); 3160 if (bi) 3161 s->to_read--; 3162 while (bi && bi->bi_iter.bi_sector < 3163 sh->dev[i].sector + STRIPE_SECTORS) { 3164 struct bio *nextbi = 3165 r5_next_bio(bi, sh->dev[i].sector); 3166 3167 bi->bi_error = -EIO; 3168 if (!raid5_dec_bi_active_stripes(bi)) 3169 bio_list_add(return_bi, bi); 3170 bi = nextbi; 3171 } 3172 } 3173 if (bitmap_end) 3174 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3175 STRIPE_SECTORS, 0, 0); 3176 /* If we were in the middle of a write the parity block might 3177 * still be locked - so just clear all R5_LOCKED flags 3178 */ 3179 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3180 } 3181 s->to_write = 0; 3182 s->written = 0; 3183 3184 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3185 if (atomic_dec_and_test(&conf->pending_full_writes)) 3186 md_wakeup_thread(conf->mddev->thread); 3187 } 3188 3189 static void 3190 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3191 struct stripe_head_state *s) 3192 { 3193 int abort = 0; 3194 int i; 3195 3196 BUG_ON(sh->batch_head); 3197 clear_bit(STRIPE_SYNCING, &sh->state); 3198 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3199 wake_up(&conf->wait_for_overlap); 3200 s->syncing = 0; 3201 s->replacing = 0; 3202 /* There is nothing more to do for sync/check/repair. 3203 * Don't even need to abort as that is handled elsewhere 3204 * if needed, and not always wanted e.g. if there is a known 3205 * bad block here. 3206 * For recover/replace we need to record a bad block on all 3207 * non-sync devices, or abort the recovery 3208 */ 3209 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3210 /* During recovery devices cannot be removed, so 3211 * locking and refcounting of rdevs is not needed 3212 */ 3213 for (i = 0; i < conf->raid_disks; i++) { 3214 struct md_rdev *rdev = conf->disks[i].rdev; 3215 if (rdev 3216 && !test_bit(Faulty, &rdev->flags) 3217 && !test_bit(In_sync, &rdev->flags) 3218 && !rdev_set_badblocks(rdev, sh->sector, 3219 STRIPE_SECTORS, 0)) 3220 abort = 1; 3221 rdev = conf->disks[i].replacement; 3222 if (rdev 3223 && !test_bit(Faulty, &rdev->flags) 3224 && !test_bit(In_sync, &rdev->flags) 3225 && !rdev_set_badblocks(rdev, sh->sector, 3226 STRIPE_SECTORS, 0)) 3227 abort = 1; 3228 } 3229 if (abort) 3230 conf->recovery_disabled = 3231 conf->mddev->recovery_disabled; 3232 } 3233 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3234 } 3235 3236 static int want_replace(struct stripe_head *sh, int disk_idx) 3237 { 3238 struct md_rdev *rdev; 3239 int rv = 0; 3240 /* Doing recovery so rcu locking not required */ 3241 rdev = sh->raid_conf->disks[disk_idx].replacement; 3242 if (rdev 3243 && !test_bit(Faulty, &rdev->flags) 3244 && !test_bit(In_sync, &rdev->flags) 3245 && (rdev->recovery_offset <= sh->sector 3246 || rdev->mddev->recovery_cp <= sh->sector)) 3247 rv = 1; 3248 3249 return rv; 3250 } 3251 3252 /* fetch_block - checks the given member device to see if its data needs 3253 * to be read or computed to satisfy a request. 3254 * 3255 * Returns 1 when no more member devices need to be checked, otherwise returns 3256 * 0 to tell the loop in handle_stripe_fill to continue 3257 */ 3258 3259 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3260 int disk_idx, int disks) 3261 { 3262 struct r5dev *dev = &sh->dev[disk_idx]; 3263 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3264 &sh->dev[s->failed_num[1]] }; 3265 int i; 3266 3267 3268 if (test_bit(R5_LOCKED, &dev->flags) || 3269 test_bit(R5_UPTODATE, &dev->flags)) 3270 /* No point reading this as we already have it or have 3271 * decided to get it. 3272 */ 3273 return 0; 3274 3275 if (dev->toread || 3276 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3277 /* We need this block to directly satisfy a request */ 3278 return 1; 3279 3280 if (s->syncing || s->expanding || 3281 (s->replacing && want_replace(sh, disk_idx))) 3282 /* When syncing, or expanding we read everything. 3283 * When replacing, we need the replaced block. 3284 */ 3285 return 1; 3286 3287 if ((s->failed >= 1 && fdev[0]->toread) || 3288 (s->failed >= 2 && fdev[1]->toread)) 3289 /* If we want to read from a failed device, then 3290 * we need to actually read every other device. 3291 */ 3292 return 1; 3293 3294 /* Sometimes neither read-modify-write nor reconstruct-write 3295 * cycles can work. In those cases we read every block we 3296 * can. Then the parity-update is certain to have enough to 3297 * work with. 3298 * This can only be a problem when we need to write something, 3299 * and some device has failed. If either of those tests 3300 * fail we need look no further. 3301 */ 3302 if (!s->failed || !s->to_write) 3303 return 0; 3304 3305 if (test_bit(R5_Insync, &dev->flags) && 3306 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3307 /* Pre-reads at not permitted until after short delay 3308 * to gather multiple requests. However if this 3309 * device is no Insync, the block could only be be computed 3310 * and there is no need to delay that. 3311 */ 3312 return 0; 3313 3314 for (i = 0; i < s->failed && i < 2; i++) { 3315 if (fdev[i]->towrite && 3316 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3317 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3318 /* If we have a partial write to a failed 3319 * device, then we will need to reconstruct 3320 * the content of that device, so all other 3321 * devices must be read. 3322 */ 3323 return 1; 3324 } 3325 3326 /* If we are forced to do a reconstruct-write, either because 3327 * the current RAID6 implementation only supports that, or 3328 * or because parity cannot be trusted and we are currently 3329 * recovering it, there is extra need to be careful. 3330 * If one of the devices that we would need to read, because 3331 * it is not being overwritten (and maybe not written at all) 3332 * is missing/faulty, then we need to read everything we can. 3333 */ 3334 if (sh->raid_conf->level != 6 && 3335 sh->sector < sh->raid_conf->mddev->recovery_cp) 3336 /* reconstruct-write isn't being forced */ 3337 return 0; 3338 for (i = 0; i < s->failed && i < 2; i++) { 3339 if (s->failed_num[i] != sh->pd_idx && 3340 s->failed_num[i] != sh->qd_idx && 3341 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3342 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3343 return 1; 3344 } 3345 3346 return 0; 3347 } 3348 3349 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3350 int disk_idx, int disks) 3351 { 3352 struct r5dev *dev = &sh->dev[disk_idx]; 3353 3354 /* is the data in this block needed, and can we get it? */ 3355 if (need_this_block(sh, s, disk_idx, disks)) { 3356 /* we would like to get this block, possibly by computing it, 3357 * otherwise read it if the backing disk is insync 3358 */ 3359 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3360 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3361 BUG_ON(sh->batch_head); 3362 if ((s->uptodate == disks - 1) && 3363 (s->failed && (disk_idx == s->failed_num[0] || 3364 disk_idx == s->failed_num[1]))) { 3365 /* have disk failed, and we're requested to fetch it; 3366 * do compute it 3367 */ 3368 pr_debug("Computing stripe %llu block %d\n", 3369 (unsigned long long)sh->sector, disk_idx); 3370 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3371 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3372 set_bit(R5_Wantcompute, &dev->flags); 3373 sh->ops.target = disk_idx; 3374 sh->ops.target2 = -1; /* no 2nd target */ 3375 s->req_compute = 1; 3376 /* Careful: from this point on 'uptodate' is in the eye 3377 * of raid_run_ops which services 'compute' operations 3378 * before writes. R5_Wantcompute flags a block that will 3379 * be R5_UPTODATE by the time it is needed for a 3380 * subsequent operation. 3381 */ 3382 s->uptodate++; 3383 return 1; 3384 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3385 /* Computing 2-failure is *very* expensive; only 3386 * do it if failed >= 2 3387 */ 3388 int other; 3389 for (other = disks; other--; ) { 3390 if (other == disk_idx) 3391 continue; 3392 if (!test_bit(R5_UPTODATE, 3393 &sh->dev[other].flags)) 3394 break; 3395 } 3396 BUG_ON(other < 0); 3397 pr_debug("Computing stripe %llu blocks %d,%d\n", 3398 (unsigned long long)sh->sector, 3399 disk_idx, other); 3400 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3401 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3402 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3403 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3404 sh->ops.target = disk_idx; 3405 sh->ops.target2 = other; 3406 s->uptodate += 2; 3407 s->req_compute = 1; 3408 return 1; 3409 } else if (test_bit(R5_Insync, &dev->flags)) { 3410 set_bit(R5_LOCKED, &dev->flags); 3411 set_bit(R5_Wantread, &dev->flags); 3412 s->locked++; 3413 pr_debug("Reading block %d (sync=%d)\n", 3414 disk_idx, s->syncing); 3415 } 3416 } 3417 3418 return 0; 3419 } 3420 3421 /** 3422 * handle_stripe_fill - read or compute data to satisfy pending requests. 3423 */ 3424 static void handle_stripe_fill(struct stripe_head *sh, 3425 struct stripe_head_state *s, 3426 int disks) 3427 { 3428 int i; 3429 3430 /* look for blocks to read/compute, skip this if a compute 3431 * is already in flight, or if the stripe contents are in the 3432 * midst of changing due to a write 3433 */ 3434 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3435 !sh->reconstruct_state) 3436 for (i = disks; i--; ) 3437 if (fetch_block(sh, s, i, disks)) 3438 break; 3439 set_bit(STRIPE_HANDLE, &sh->state); 3440 } 3441 3442 static void break_stripe_batch_list(struct stripe_head *head_sh, 3443 unsigned long handle_flags); 3444 /* handle_stripe_clean_event 3445 * any written block on an uptodate or failed drive can be returned. 3446 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3447 * never LOCKED, so we don't need to test 'failed' directly. 3448 */ 3449 static void handle_stripe_clean_event(struct r5conf *conf, 3450 struct stripe_head *sh, int disks, struct bio_list *return_bi) 3451 { 3452 int i; 3453 struct r5dev *dev; 3454 int discard_pending = 0; 3455 struct stripe_head *head_sh = sh; 3456 bool do_endio = false; 3457 3458 for (i = disks; i--; ) 3459 if (sh->dev[i].written) { 3460 dev = &sh->dev[i]; 3461 if (!test_bit(R5_LOCKED, &dev->flags) && 3462 (test_bit(R5_UPTODATE, &dev->flags) || 3463 test_bit(R5_Discard, &dev->flags) || 3464 test_bit(R5_SkipCopy, &dev->flags))) { 3465 /* We can return any write requests */ 3466 struct bio *wbi, *wbi2; 3467 pr_debug("Return write for disc %d\n", i); 3468 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3469 clear_bit(R5_UPTODATE, &dev->flags); 3470 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3471 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3472 } 3473 do_endio = true; 3474 3475 returnbi: 3476 dev->page = dev->orig_page; 3477 wbi = dev->written; 3478 dev->written = NULL; 3479 while (wbi && wbi->bi_iter.bi_sector < 3480 dev->sector + STRIPE_SECTORS) { 3481 wbi2 = r5_next_bio(wbi, dev->sector); 3482 if (!raid5_dec_bi_active_stripes(wbi)) { 3483 md_write_end(conf->mddev); 3484 bio_list_add(return_bi, wbi); 3485 } 3486 wbi = wbi2; 3487 } 3488 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3489 STRIPE_SECTORS, 3490 !test_bit(STRIPE_DEGRADED, &sh->state), 3491 0); 3492 if (head_sh->batch_head) { 3493 sh = list_first_entry(&sh->batch_list, 3494 struct stripe_head, 3495 batch_list); 3496 if (sh != head_sh) { 3497 dev = &sh->dev[i]; 3498 goto returnbi; 3499 } 3500 } 3501 sh = head_sh; 3502 dev = &sh->dev[i]; 3503 } else if (test_bit(R5_Discard, &dev->flags)) 3504 discard_pending = 1; 3505 } 3506 3507 r5l_stripe_write_finished(sh); 3508 3509 if (!discard_pending && 3510 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3511 int hash; 3512 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3513 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3514 if (sh->qd_idx >= 0) { 3515 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3516 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3517 } 3518 /* now that discard is done we can proceed with any sync */ 3519 clear_bit(STRIPE_DISCARD, &sh->state); 3520 /* 3521 * SCSI discard will change some bio fields and the stripe has 3522 * no updated data, so remove it from hash list and the stripe 3523 * will be reinitialized 3524 */ 3525 unhash: 3526 hash = sh->hash_lock_index; 3527 spin_lock_irq(conf->hash_locks + hash); 3528 remove_hash(sh); 3529 spin_unlock_irq(conf->hash_locks + hash); 3530 if (head_sh->batch_head) { 3531 sh = list_first_entry(&sh->batch_list, 3532 struct stripe_head, batch_list); 3533 if (sh != head_sh) 3534 goto unhash; 3535 } 3536 sh = head_sh; 3537 3538 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3539 set_bit(STRIPE_HANDLE, &sh->state); 3540 3541 } 3542 3543 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3544 if (atomic_dec_and_test(&conf->pending_full_writes)) 3545 md_wakeup_thread(conf->mddev->thread); 3546 3547 if (head_sh->batch_head && do_endio) 3548 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3549 } 3550 3551 static void handle_stripe_dirtying(struct r5conf *conf, 3552 struct stripe_head *sh, 3553 struct stripe_head_state *s, 3554 int disks) 3555 { 3556 int rmw = 0, rcw = 0, i; 3557 sector_t recovery_cp = conf->mddev->recovery_cp; 3558 3559 /* Check whether resync is now happening or should start. 3560 * If yes, then the array is dirty (after unclean shutdown or 3561 * initial creation), so parity in some stripes might be inconsistent. 3562 * In this case, we need to always do reconstruct-write, to ensure 3563 * that in case of drive failure or read-error correction, we 3564 * generate correct data from the parity. 3565 */ 3566 if (conf->rmw_level == PARITY_DISABLE_RMW || 3567 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3568 s->failed == 0)) { 3569 /* Calculate the real rcw later - for now make it 3570 * look like rcw is cheaper 3571 */ 3572 rcw = 1; rmw = 2; 3573 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3574 conf->rmw_level, (unsigned long long)recovery_cp, 3575 (unsigned long long)sh->sector); 3576 } else for (i = disks; i--; ) { 3577 /* would I have to read this buffer for read_modify_write */ 3578 struct r5dev *dev = &sh->dev[i]; 3579 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3580 !test_bit(R5_LOCKED, &dev->flags) && 3581 !(test_bit(R5_UPTODATE, &dev->flags) || 3582 test_bit(R5_Wantcompute, &dev->flags))) { 3583 if (test_bit(R5_Insync, &dev->flags)) 3584 rmw++; 3585 else 3586 rmw += 2*disks; /* cannot read it */ 3587 } 3588 /* Would I have to read this buffer for reconstruct_write */ 3589 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3590 i != sh->pd_idx && i != sh->qd_idx && 3591 !test_bit(R5_LOCKED, &dev->flags) && 3592 !(test_bit(R5_UPTODATE, &dev->flags) || 3593 test_bit(R5_Wantcompute, &dev->flags))) { 3594 if (test_bit(R5_Insync, &dev->flags)) 3595 rcw++; 3596 else 3597 rcw += 2*disks; 3598 } 3599 } 3600 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3601 (unsigned long long)sh->sector, rmw, rcw); 3602 set_bit(STRIPE_HANDLE, &sh->state); 3603 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) { 3604 /* prefer read-modify-write, but need to get some data */ 3605 if (conf->mddev->queue) 3606 blk_add_trace_msg(conf->mddev->queue, 3607 "raid5 rmw %llu %d", 3608 (unsigned long long)sh->sector, rmw); 3609 for (i = disks; i--; ) { 3610 struct r5dev *dev = &sh->dev[i]; 3611 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3612 !test_bit(R5_LOCKED, &dev->flags) && 3613 !(test_bit(R5_UPTODATE, &dev->flags) || 3614 test_bit(R5_Wantcompute, &dev->flags)) && 3615 test_bit(R5_Insync, &dev->flags)) { 3616 if (test_bit(STRIPE_PREREAD_ACTIVE, 3617 &sh->state)) { 3618 pr_debug("Read_old block %d for r-m-w\n", 3619 i); 3620 set_bit(R5_LOCKED, &dev->flags); 3621 set_bit(R5_Wantread, &dev->flags); 3622 s->locked++; 3623 } else { 3624 set_bit(STRIPE_DELAYED, &sh->state); 3625 set_bit(STRIPE_HANDLE, &sh->state); 3626 } 3627 } 3628 } 3629 } 3630 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) { 3631 /* want reconstruct write, but need to get some data */ 3632 int qread =0; 3633 rcw = 0; 3634 for (i = disks; i--; ) { 3635 struct r5dev *dev = &sh->dev[i]; 3636 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3637 i != sh->pd_idx && i != sh->qd_idx && 3638 !test_bit(R5_LOCKED, &dev->flags) && 3639 !(test_bit(R5_UPTODATE, &dev->flags) || 3640 test_bit(R5_Wantcompute, &dev->flags))) { 3641 rcw++; 3642 if (test_bit(R5_Insync, &dev->flags) && 3643 test_bit(STRIPE_PREREAD_ACTIVE, 3644 &sh->state)) { 3645 pr_debug("Read_old block " 3646 "%d for Reconstruct\n", i); 3647 set_bit(R5_LOCKED, &dev->flags); 3648 set_bit(R5_Wantread, &dev->flags); 3649 s->locked++; 3650 qread++; 3651 } else { 3652 set_bit(STRIPE_DELAYED, &sh->state); 3653 set_bit(STRIPE_HANDLE, &sh->state); 3654 } 3655 } 3656 } 3657 if (rcw && conf->mddev->queue) 3658 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3659 (unsigned long long)sh->sector, 3660 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3661 } 3662 3663 if (rcw > disks && rmw > disks && 3664 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3665 set_bit(STRIPE_DELAYED, &sh->state); 3666 3667 /* now if nothing is locked, and if we have enough data, 3668 * we can start a write request 3669 */ 3670 /* since handle_stripe can be called at any time we need to handle the 3671 * case where a compute block operation has been submitted and then a 3672 * subsequent call wants to start a write request. raid_run_ops only 3673 * handles the case where compute block and reconstruct are requested 3674 * simultaneously. If this is not the case then new writes need to be 3675 * held off until the compute completes. 3676 */ 3677 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3678 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3679 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3680 schedule_reconstruction(sh, s, rcw == 0, 0); 3681 } 3682 3683 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3684 struct stripe_head_state *s, int disks) 3685 { 3686 struct r5dev *dev = NULL; 3687 3688 BUG_ON(sh->batch_head); 3689 set_bit(STRIPE_HANDLE, &sh->state); 3690 3691 switch (sh->check_state) { 3692 case check_state_idle: 3693 /* start a new check operation if there are no failures */ 3694 if (s->failed == 0) { 3695 BUG_ON(s->uptodate != disks); 3696 sh->check_state = check_state_run; 3697 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3698 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3699 s->uptodate--; 3700 break; 3701 } 3702 dev = &sh->dev[s->failed_num[0]]; 3703 /* fall through */ 3704 case check_state_compute_result: 3705 sh->check_state = check_state_idle; 3706 if (!dev) 3707 dev = &sh->dev[sh->pd_idx]; 3708 3709 /* check that a write has not made the stripe insync */ 3710 if (test_bit(STRIPE_INSYNC, &sh->state)) 3711 break; 3712 3713 /* either failed parity check, or recovery is happening */ 3714 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3715 BUG_ON(s->uptodate != disks); 3716 3717 set_bit(R5_LOCKED, &dev->flags); 3718 s->locked++; 3719 set_bit(R5_Wantwrite, &dev->flags); 3720 3721 clear_bit(STRIPE_DEGRADED, &sh->state); 3722 set_bit(STRIPE_INSYNC, &sh->state); 3723 break; 3724 case check_state_run: 3725 break; /* we will be called again upon completion */ 3726 case check_state_check_result: 3727 sh->check_state = check_state_idle; 3728 3729 /* if a failure occurred during the check operation, leave 3730 * STRIPE_INSYNC not set and let the stripe be handled again 3731 */ 3732 if (s->failed) 3733 break; 3734 3735 /* handle a successful check operation, if parity is correct 3736 * we are done. Otherwise update the mismatch count and repair 3737 * parity if !MD_RECOVERY_CHECK 3738 */ 3739 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3740 /* parity is correct (on disc, 3741 * not in buffer any more) 3742 */ 3743 set_bit(STRIPE_INSYNC, &sh->state); 3744 else { 3745 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3746 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3747 /* don't try to repair!! */ 3748 set_bit(STRIPE_INSYNC, &sh->state); 3749 else { 3750 sh->check_state = check_state_compute_run; 3751 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3752 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3753 set_bit(R5_Wantcompute, 3754 &sh->dev[sh->pd_idx].flags); 3755 sh->ops.target = sh->pd_idx; 3756 sh->ops.target2 = -1; 3757 s->uptodate++; 3758 } 3759 } 3760 break; 3761 case check_state_compute_run: 3762 break; 3763 default: 3764 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3765 __func__, sh->check_state, 3766 (unsigned long long) sh->sector); 3767 BUG(); 3768 } 3769 } 3770 3771 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3772 struct stripe_head_state *s, 3773 int disks) 3774 { 3775 int pd_idx = sh->pd_idx; 3776 int qd_idx = sh->qd_idx; 3777 struct r5dev *dev; 3778 3779 BUG_ON(sh->batch_head); 3780 set_bit(STRIPE_HANDLE, &sh->state); 3781 3782 BUG_ON(s->failed > 2); 3783 3784 /* Want to check and possibly repair P and Q. 3785 * However there could be one 'failed' device, in which 3786 * case we can only check one of them, possibly using the 3787 * other to generate missing data 3788 */ 3789 3790 switch (sh->check_state) { 3791 case check_state_idle: 3792 /* start a new check operation if there are < 2 failures */ 3793 if (s->failed == s->q_failed) { 3794 /* The only possible failed device holds Q, so it 3795 * makes sense to check P (If anything else were failed, 3796 * we would have used P to recreate it). 3797 */ 3798 sh->check_state = check_state_run; 3799 } 3800 if (!s->q_failed && s->failed < 2) { 3801 /* Q is not failed, and we didn't use it to generate 3802 * anything, so it makes sense to check it 3803 */ 3804 if (sh->check_state == check_state_run) 3805 sh->check_state = check_state_run_pq; 3806 else 3807 sh->check_state = check_state_run_q; 3808 } 3809 3810 /* discard potentially stale zero_sum_result */ 3811 sh->ops.zero_sum_result = 0; 3812 3813 if (sh->check_state == check_state_run) { 3814 /* async_xor_zero_sum destroys the contents of P */ 3815 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3816 s->uptodate--; 3817 } 3818 if (sh->check_state >= check_state_run && 3819 sh->check_state <= check_state_run_pq) { 3820 /* async_syndrome_zero_sum preserves P and Q, so 3821 * no need to mark them !uptodate here 3822 */ 3823 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3824 break; 3825 } 3826 3827 /* we have 2-disk failure */ 3828 BUG_ON(s->failed != 2); 3829 /* fall through */ 3830 case check_state_compute_result: 3831 sh->check_state = check_state_idle; 3832 3833 /* check that a write has not made the stripe insync */ 3834 if (test_bit(STRIPE_INSYNC, &sh->state)) 3835 break; 3836 3837 /* now write out any block on a failed drive, 3838 * or P or Q if they were recomputed 3839 */ 3840 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3841 if (s->failed == 2) { 3842 dev = &sh->dev[s->failed_num[1]]; 3843 s->locked++; 3844 set_bit(R5_LOCKED, &dev->flags); 3845 set_bit(R5_Wantwrite, &dev->flags); 3846 } 3847 if (s->failed >= 1) { 3848 dev = &sh->dev[s->failed_num[0]]; 3849 s->locked++; 3850 set_bit(R5_LOCKED, &dev->flags); 3851 set_bit(R5_Wantwrite, &dev->flags); 3852 } 3853 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3854 dev = &sh->dev[pd_idx]; 3855 s->locked++; 3856 set_bit(R5_LOCKED, &dev->flags); 3857 set_bit(R5_Wantwrite, &dev->flags); 3858 } 3859 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3860 dev = &sh->dev[qd_idx]; 3861 s->locked++; 3862 set_bit(R5_LOCKED, &dev->flags); 3863 set_bit(R5_Wantwrite, &dev->flags); 3864 } 3865 clear_bit(STRIPE_DEGRADED, &sh->state); 3866 3867 set_bit(STRIPE_INSYNC, &sh->state); 3868 break; 3869 case check_state_run: 3870 case check_state_run_q: 3871 case check_state_run_pq: 3872 break; /* we will be called again upon completion */ 3873 case check_state_check_result: 3874 sh->check_state = check_state_idle; 3875 3876 /* handle a successful check operation, if parity is correct 3877 * we are done. Otherwise update the mismatch count and repair 3878 * parity if !MD_RECOVERY_CHECK 3879 */ 3880 if (sh->ops.zero_sum_result == 0) { 3881 /* both parities are correct */ 3882 if (!s->failed) 3883 set_bit(STRIPE_INSYNC, &sh->state); 3884 else { 3885 /* in contrast to the raid5 case we can validate 3886 * parity, but still have a failure to write 3887 * back 3888 */ 3889 sh->check_state = check_state_compute_result; 3890 /* Returning at this point means that we may go 3891 * off and bring p and/or q uptodate again so 3892 * we make sure to check zero_sum_result again 3893 * to verify if p or q need writeback 3894 */ 3895 } 3896 } else { 3897 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3898 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3899 /* don't try to repair!! */ 3900 set_bit(STRIPE_INSYNC, &sh->state); 3901 else { 3902 int *target = &sh->ops.target; 3903 3904 sh->ops.target = -1; 3905 sh->ops.target2 = -1; 3906 sh->check_state = check_state_compute_run; 3907 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3908 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3909 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3910 set_bit(R5_Wantcompute, 3911 &sh->dev[pd_idx].flags); 3912 *target = pd_idx; 3913 target = &sh->ops.target2; 3914 s->uptodate++; 3915 } 3916 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3917 set_bit(R5_Wantcompute, 3918 &sh->dev[qd_idx].flags); 3919 *target = qd_idx; 3920 s->uptodate++; 3921 } 3922 } 3923 } 3924 break; 3925 case check_state_compute_run: 3926 break; 3927 default: 3928 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3929 __func__, sh->check_state, 3930 (unsigned long long) sh->sector); 3931 BUG(); 3932 } 3933 } 3934 3935 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3936 { 3937 int i; 3938 3939 /* We have read all the blocks in this stripe and now we need to 3940 * copy some of them into a target stripe for expand. 3941 */ 3942 struct dma_async_tx_descriptor *tx = NULL; 3943 BUG_ON(sh->batch_head); 3944 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3945 for (i = 0; i < sh->disks; i++) 3946 if (i != sh->pd_idx && i != sh->qd_idx) { 3947 int dd_idx, j; 3948 struct stripe_head *sh2; 3949 struct async_submit_ctl submit; 3950 3951 sector_t bn = raid5_compute_blocknr(sh, i, 1); 3952 sector_t s = raid5_compute_sector(conf, bn, 0, 3953 &dd_idx, NULL); 3954 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 3955 if (sh2 == NULL) 3956 /* so far only the early blocks of this stripe 3957 * have been requested. When later blocks 3958 * get requested, we will try again 3959 */ 3960 continue; 3961 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3962 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3963 /* must have already done this block */ 3964 raid5_release_stripe(sh2); 3965 continue; 3966 } 3967 3968 /* place all the copies on one channel */ 3969 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3970 tx = async_memcpy(sh2->dev[dd_idx].page, 3971 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3972 &submit); 3973 3974 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3975 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3976 for (j = 0; j < conf->raid_disks; j++) 3977 if (j != sh2->pd_idx && 3978 j != sh2->qd_idx && 3979 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3980 break; 3981 if (j == conf->raid_disks) { 3982 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3983 set_bit(STRIPE_HANDLE, &sh2->state); 3984 } 3985 raid5_release_stripe(sh2); 3986 3987 } 3988 /* done submitting copies, wait for them to complete */ 3989 async_tx_quiesce(&tx); 3990 } 3991 3992 /* 3993 * handle_stripe - do things to a stripe. 3994 * 3995 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3996 * state of various bits to see what needs to be done. 3997 * Possible results: 3998 * return some read requests which now have data 3999 * return some write requests which are safely on storage 4000 * schedule a read on some buffers 4001 * schedule a write of some buffers 4002 * return confirmation of parity correctness 4003 * 4004 */ 4005 4006 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4007 { 4008 struct r5conf *conf = sh->raid_conf; 4009 int disks = sh->disks; 4010 struct r5dev *dev; 4011 int i; 4012 int do_recovery = 0; 4013 4014 memset(s, 0, sizeof(*s)); 4015 4016 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4017 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4018 s->failed_num[0] = -1; 4019 s->failed_num[1] = -1; 4020 s->log_failed = r5l_log_disk_error(conf); 4021 4022 /* Now to look around and see what can be done */ 4023 rcu_read_lock(); 4024 for (i=disks; i--; ) { 4025 struct md_rdev *rdev; 4026 sector_t first_bad; 4027 int bad_sectors; 4028 int is_bad = 0; 4029 4030 dev = &sh->dev[i]; 4031 4032 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4033 i, dev->flags, 4034 dev->toread, dev->towrite, dev->written); 4035 /* maybe we can reply to a read 4036 * 4037 * new wantfill requests are only permitted while 4038 * ops_complete_biofill is guaranteed to be inactive 4039 */ 4040 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4041 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4042 set_bit(R5_Wantfill, &dev->flags); 4043 4044 /* now count some things */ 4045 if (test_bit(R5_LOCKED, &dev->flags)) 4046 s->locked++; 4047 if (test_bit(R5_UPTODATE, &dev->flags)) 4048 s->uptodate++; 4049 if (test_bit(R5_Wantcompute, &dev->flags)) { 4050 s->compute++; 4051 BUG_ON(s->compute > 2); 4052 } 4053 4054 if (test_bit(R5_Wantfill, &dev->flags)) 4055 s->to_fill++; 4056 else if (dev->toread) 4057 s->to_read++; 4058 if (dev->towrite) { 4059 s->to_write++; 4060 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4061 s->non_overwrite++; 4062 } 4063 if (dev->written) 4064 s->written++; 4065 /* Prefer to use the replacement for reads, but only 4066 * if it is recovered enough and has no bad blocks. 4067 */ 4068 rdev = rcu_dereference(conf->disks[i].replacement); 4069 if (rdev && !test_bit(Faulty, &rdev->flags) && 4070 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4071 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4072 &first_bad, &bad_sectors)) 4073 set_bit(R5_ReadRepl, &dev->flags); 4074 else { 4075 if (rdev && !test_bit(Faulty, &rdev->flags)) 4076 set_bit(R5_NeedReplace, &dev->flags); 4077 else 4078 clear_bit(R5_NeedReplace, &dev->flags); 4079 rdev = rcu_dereference(conf->disks[i].rdev); 4080 clear_bit(R5_ReadRepl, &dev->flags); 4081 } 4082 if (rdev && test_bit(Faulty, &rdev->flags)) 4083 rdev = NULL; 4084 if (rdev) { 4085 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4086 &first_bad, &bad_sectors); 4087 if (s->blocked_rdev == NULL 4088 && (test_bit(Blocked, &rdev->flags) 4089 || is_bad < 0)) { 4090 if (is_bad < 0) 4091 set_bit(BlockedBadBlocks, 4092 &rdev->flags); 4093 s->blocked_rdev = rdev; 4094 atomic_inc(&rdev->nr_pending); 4095 } 4096 } 4097 clear_bit(R5_Insync, &dev->flags); 4098 if (!rdev) 4099 /* Not in-sync */; 4100 else if (is_bad) { 4101 /* also not in-sync */ 4102 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4103 test_bit(R5_UPTODATE, &dev->flags)) { 4104 /* treat as in-sync, but with a read error 4105 * which we can now try to correct 4106 */ 4107 set_bit(R5_Insync, &dev->flags); 4108 set_bit(R5_ReadError, &dev->flags); 4109 } 4110 } else if (test_bit(In_sync, &rdev->flags)) 4111 set_bit(R5_Insync, &dev->flags); 4112 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4113 /* in sync if before recovery_offset */ 4114 set_bit(R5_Insync, &dev->flags); 4115 else if (test_bit(R5_UPTODATE, &dev->flags) && 4116 test_bit(R5_Expanded, &dev->flags)) 4117 /* If we've reshaped into here, we assume it is Insync. 4118 * We will shortly update recovery_offset to make 4119 * it official. 4120 */ 4121 set_bit(R5_Insync, &dev->flags); 4122 4123 if (test_bit(R5_WriteError, &dev->flags)) { 4124 /* This flag does not apply to '.replacement' 4125 * only to .rdev, so make sure to check that*/ 4126 struct md_rdev *rdev2 = rcu_dereference( 4127 conf->disks[i].rdev); 4128 if (rdev2 == rdev) 4129 clear_bit(R5_Insync, &dev->flags); 4130 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4131 s->handle_bad_blocks = 1; 4132 atomic_inc(&rdev2->nr_pending); 4133 } else 4134 clear_bit(R5_WriteError, &dev->flags); 4135 } 4136 if (test_bit(R5_MadeGood, &dev->flags)) { 4137 /* This flag does not apply to '.replacement' 4138 * only to .rdev, so make sure to check that*/ 4139 struct md_rdev *rdev2 = rcu_dereference( 4140 conf->disks[i].rdev); 4141 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4142 s->handle_bad_blocks = 1; 4143 atomic_inc(&rdev2->nr_pending); 4144 } else 4145 clear_bit(R5_MadeGood, &dev->flags); 4146 } 4147 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4148 struct md_rdev *rdev2 = rcu_dereference( 4149 conf->disks[i].replacement); 4150 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4151 s->handle_bad_blocks = 1; 4152 atomic_inc(&rdev2->nr_pending); 4153 } else 4154 clear_bit(R5_MadeGoodRepl, &dev->flags); 4155 } 4156 if (!test_bit(R5_Insync, &dev->flags)) { 4157 /* The ReadError flag will just be confusing now */ 4158 clear_bit(R5_ReadError, &dev->flags); 4159 clear_bit(R5_ReWrite, &dev->flags); 4160 } 4161 if (test_bit(R5_ReadError, &dev->flags)) 4162 clear_bit(R5_Insync, &dev->flags); 4163 if (!test_bit(R5_Insync, &dev->flags)) { 4164 if (s->failed < 2) 4165 s->failed_num[s->failed] = i; 4166 s->failed++; 4167 if (rdev && !test_bit(Faulty, &rdev->flags)) 4168 do_recovery = 1; 4169 } 4170 } 4171 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4172 /* If there is a failed device being replaced, 4173 * we must be recovering. 4174 * else if we are after recovery_cp, we must be syncing 4175 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4176 * else we can only be replacing 4177 * sync and recovery both need to read all devices, and so 4178 * use the same flag. 4179 */ 4180 if (do_recovery || 4181 sh->sector >= conf->mddev->recovery_cp || 4182 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4183 s->syncing = 1; 4184 else 4185 s->replacing = 1; 4186 } 4187 rcu_read_unlock(); 4188 } 4189 4190 static int clear_batch_ready(struct stripe_head *sh) 4191 { 4192 /* Return '1' if this is a member of batch, or 4193 * '0' if it is a lone stripe or a head which can now be 4194 * handled. 4195 */ 4196 struct stripe_head *tmp; 4197 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4198 return (sh->batch_head && sh->batch_head != sh); 4199 spin_lock(&sh->stripe_lock); 4200 if (!sh->batch_head) { 4201 spin_unlock(&sh->stripe_lock); 4202 return 0; 4203 } 4204 4205 /* 4206 * this stripe could be added to a batch list before we check 4207 * BATCH_READY, skips it 4208 */ 4209 if (sh->batch_head != sh) { 4210 spin_unlock(&sh->stripe_lock); 4211 return 1; 4212 } 4213 spin_lock(&sh->batch_lock); 4214 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4215 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4216 spin_unlock(&sh->batch_lock); 4217 spin_unlock(&sh->stripe_lock); 4218 4219 /* 4220 * BATCH_READY is cleared, no new stripes can be added. 4221 * batch_list can be accessed without lock 4222 */ 4223 return 0; 4224 } 4225 4226 static void break_stripe_batch_list(struct stripe_head *head_sh, 4227 unsigned long handle_flags) 4228 { 4229 struct stripe_head *sh, *next; 4230 int i; 4231 int do_wakeup = 0; 4232 4233 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4234 4235 list_del_init(&sh->batch_list); 4236 4237 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4238 (1 << STRIPE_SYNCING) | 4239 (1 << STRIPE_REPLACED) | 4240 (1 << STRIPE_DELAYED) | 4241 (1 << STRIPE_BIT_DELAY) | 4242 (1 << STRIPE_FULL_WRITE) | 4243 (1 << STRIPE_BIOFILL_RUN) | 4244 (1 << STRIPE_COMPUTE_RUN) | 4245 (1 << STRIPE_OPS_REQ_PENDING) | 4246 (1 << STRIPE_DISCARD) | 4247 (1 << STRIPE_BATCH_READY) | 4248 (1 << STRIPE_BATCH_ERR) | 4249 (1 << STRIPE_BITMAP_PENDING)), 4250 "stripe state: %lx\n", sh->state); 4251 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4252 (1 << STRIPE_REPLACED)), 4253 "head stripe state: %lx\n", head_sh->state); 4254 4255 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4256 (1 << STRIPE_PREREAD_ACTIVE) | 4257 (1 << STRIPE_DEGRADED)), 4258 head_sh->state & (1 << STRIPE_INSYNC)); 4259 4260 sh->check_state = head_sh->check_state; 4261 sh->reconstruct_state = head_sh->reconstruct_state; 4262 for (i = 0; i < sh->disks; i++) { 4263 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4264 do_wakeup = 1; 4265 sh->dev[i].flags = head_sh->dev[i].flags & 4266 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4267 } 4268 spin_lock_irq(&sh->stripe_lock); 4269 sh->batch_head = NULL; 4270 spin_unlock_irq(&sh->stripe_lock); 4271 if (handle_flags == 0 || 4272 sh->state & handle_flags) 4273 set_bit(STRIPE_HANDLE, &sh->state); 4274 raid5_release_stripe(sh); 4275 } 4276 spin_lock_irq(&head_sh->stripe_lock); 4277 head_sh->batch_head = NULL; 4278 spin_unlock_irq(&head_sh->stripe_lock); 4279 for (i = 0; i < head_sh->disks; i++) 4280 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4281 do_wakeup = 1; 4282 if (head_sh->state & handle_flags) 4283 set_bit(STRIPE_HANDLE, &head_sh->state); 4284 4285 if (do_wakeup) 4286 wake_up(&head_sh->raid_conf->wait_for_overlap); 4287 } 4288 4289 static void handle_stripe(struct stripe_head *sh) 4290 { 4291 struct stripe_head_state s; 4292 struct r5conf *conf = sh->raid_conf; 4293 int i; 4294 int prexor; 4295 int disks = sh->disks; 4296 struct r5dev *pdev, *qdev; 4297 4298 clear_bit(STRIPE_HANDLE, &sh->state); 4299 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4300 /* already being handled, ensure it gets handled 4301 * again when current action finishes */ 4302 set_bit(STRIPE_HANDLE, &sh->state); 4303 return; 4304 } 4305 4306 if (clear_batch_ready(sh) ) { 4307 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4308 return; 4309 } 4310 4311 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4312 break_stripe_batch_list(sh, 0); 4313 4314 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4315 spin_lock(&sh->stripe_lock); 4316 /* Cannot process 'sync' concurrently with 'discard' */ 4317 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4318 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4319 set_bit(STRIPE_SYNCING, &sh->state); 4320 clear_bit(STRIPE_INSYNC, &sh->state); 4321 clear_bit(STRIPE_REPLACED, &sh->state); 4322 } 4323 spin_unlock(&sh->stripe_lock); 4324 } 4325 clear_bit(STRIPE_DELAYED, &sh->state); 4326 4327 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4328 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4329 (unsigned long long)sh->sector, sh->state, 4330 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4331 sh->check_state, sh->reconstruct_state); 4332 4333 analyse_stripe(sh, &s); 4334 4335 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4336 goto finish; 4337 4338 if (s.handle_bad_blocks) { 4339 set_bit(STRIPE_HANDLE, &sh->state); 4340 goto finish; 4341 } 4342 4343 if (unlikely(s.blocked_rdev)) { 4344 if (s.syncing || s.expanding || s.expanded || 4345 s.replacing || s.to_write || s.written) { 4346 set_bit(STRIPE_HANDLE, &sh->state); 4347 goto finish; 4348 } 4349 /* There is nothing for the blocked_rdev to block */ 4350 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4351 s.blocked_rdev = NULL; 4352 } 4353 4354 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4355 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4356 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4357 } 4358 4359 pr_debug("locked=%d uptodate=%d to_read=%d" 4360 " to_write=%d failed=%d failed_num=%d,%d\n", 4361 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4362 s.failed_num[0], s.failed_num[1]); 4363 /* check if the array has lost more than max_degraded devices and, 4364 * if so, some requests might need to be failed. 4365 */ 4366 if (s.failed > conf->max_degraded || s.log_failed) { 4367 sh->check_state = 0; 4368 sh->reconstruct_state = 0; 4369 break_stripe_batch_list(sh, 0); 4370 if (s.to_read+s.to_write+s.written) 4371 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4372 if (s.syncing + s.replacing) 4373 handle_failed_sync(conf, sh, &s); 4374 } 4375 4376 /* Now we check to see if any write operations have recently 4377 * completed 4378 */ 4379 prexor = 0; 4380 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4381 prexor = 1; 4382 if (sh->reconstruct_state == reconstruct_state_drain_result || 4383 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4384 sh->reconstruct_state = reconstruct_state_idle; 4385 4386 /* All the 'written' buffers and the parity block are ready to 4387 * be written back to disk 4388 */ 4389 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4390 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4391 BUG_ON(sh->qd_idx >= 0 && 4392 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4393 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4394 for (i = disks; i--; ) { 4395 struct r5dev *dev = &sh->dev[i]; 4396 if (test_bit(R5_LOCKED, &dev->flags) && 4397 (i == sh->pd_idx || i == sh->qd_idx || 4398 dev->written)) { 4399 pr_debug("Writing block %d\n", i); 4400 set_bit(R5_Wantwrite, &dev->flags); 4401 if (prexor) 4402 continue; 4403 if (s.failed > 1) 4404 continue; 4405 if (!test_bit(R5_Insync, &dev->flags) || 4406 ((i == sh->pd_idx || i == sh->qd_idx) && 4407 s.failed == 0)) 4408 set_bit(STRIPE_INSYNC, &sh->state); 4409 } 4410 } 4411 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4412 s.dec_preread_active = 1; 4413 } 4414 4415 /* 4416 * might be able to return some write requests if the parity blocks 4417 * are safe, or on a failed drive 4418 */ 4419 pdev = &sh->dev[sh->pd_idx]; 4420 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4421 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4422 qdev = &sh->dev[sh->qd_idx]; 4423 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4424 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4425 || conf->level < 6; 4426 4427 if (s.written && 4428 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4429 && !test_bit(R5_LOCKED, &pdev->flags) 4430 && (test_bit(R5_UPTODATE, &pdev->flags) || 4431 test_bit(R5_Discard, &pdev->flags))))) && 4432 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4433 && !test_bit(R5_LOCKED, &qdev->flags) 4434 && (test_bit(R5_UPTODATE, &qdev->flags) || 4435 test_bit(R5_Discard, &qdev->flags)))))) 4436 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4437 4438 /* Now we might consider reading some blocks, either to check/generate 4439 * parity, or to satisfy requests 4440 * or to load a block that is being partially written. 4441 */ 4442 if (s.to_read || s.non_overwrite 4443 || (conf->level == 6 && s.to_write && s.failed) 4444 || (s.syncing && (s.uptodate + s.compute < disks)) 4445 || s.replacing 4446 || s.expanding) 4447 handle_stripe_fill(sh, &s, disks); 4448 4449 /* Now to consider new write requests and what else, if anything 4450 * should be read. We do not handle new writes when: 4451 * 1/ A 'write' operation (copy+xor) is already in flight. 4452 * 2/ A 'check' operation is in flight, as it may clobber the parity 4453 * block. 4454 */ 4455 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 4456 handle_stripe_dirtying(conf, sh, &s, disks); 4457 4458 /* maybe we need to check and possibly fix the parity for this stripe 4459 * Any reads will already have been scheduled, so we just see if enough 4460 * data is available. The parity check is held off while parity 4461 * dependent operations are in flight. 4462 */ 4463 if (sh->check_state || 4464 (s.syncing && s.locked == 0 && 4465 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4466 !test_bit(STRIPE_INSYNC, &sh->state))) { 4467 if (conf->level == 6) 4468 handle_parity_checks6(conf, sh, &s, disks); 4469 else 4470 handle_parity_checks5(conf, sh, &s, disks); 4471 } 4472 4473 if ((s.replacing || s.syncing) && s.locked == 0 4474 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4475 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4476 /* Write out to replacement devices where possible */ 4477 for (i = 0; i < conf->raid_disks; i++) 4478 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4479 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4480 set_bit(R5_WantReplace, &sh->dev[i].flags); 4481 set_bit(R5_LOCKED, &sh->dev[i].flags); 4482 s.locked++; 4483 } 4484 if (s.replacing) 4485 set_bit(STRIPE_INSYNC, &sh->state); 4486 set_bit(STRIPE_REPLACED, &sh->state); 4487 } 4488 if ((s.syncing || s.replacing) && s.locked == 0 && 4489 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4490 test_bit(STRIPE_INSYNC, &sh->state)) { 4491 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4492 clear_bit(STRIPE_SYNCING, &sh->state); 4493 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4494 wake_up(&conf->wait_for_overlap); 4495 } 4496 4497 /* If the failed drives are just a ReadError, then we might need 4498 * to progress the repair/check process 4499 */ 4500 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4501 for (i = 0; i < s.failed; i++) { 4502 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4503 if (test_bit(R5_ReadError, &dev->flags) 4504 && !test_bit(R5_LOCKED, &dev->flags) 4505 && test_bit(R5_UPTODATE, &dev->flags) 4506 ) { 4507 if (!test_bit(R5_ReWrite, &dev->flags)) { 4508 set_bit(R5_Wantwrite, &dev->flags); 4509 set_bit(R5_ReWrite, &dev->flags); 4510 set_bit(R5_LOCKED, &dev->flags); 4511 s.locked++; 4512 } else { 4513 /* let's read it back */ 4514 set_bit(R5_Wantread, &dev->flags); 4515 set_bit(R5_LOCKED, &dev->flags); 4516 s.locked++; 4517 } 4518 } 4519 } 4520 4521 /* Finish reconstruct operations initiated by the expansion process */ 4522 if (sh->reconstruct_state == reconstruct_state_result) { 4523 struct stripe_head *sh_src 4524 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4525 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4526 /* sh cannot be written until sh_src has been read. 4527 * so arrange for sh to be delayed a little 4528 */ 4529 set_bit(STRIPE_DELAYED, &sh->state); 4530 set_bit(STRIPE_HANDLE, &sh->state); 4531 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4532 &sh_src->state)) 4533 atomic_inc(&conf->preread_active_stripes); 4534 raid5_release_stripe(sh_src); 4535 goto finish; 4536 } 4537 if (sh_src) 4538 raid5_release_stripe(sh_src); 4539 4540 sh->reconstruct_state = reconstruct_state_idle; 4541 clear_bit(STRIPE_EXPANDING, &sh->state); 4542 for (i = conf->raid_disks; i--; ) { 4543 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4544 set_bit(R5_LOCKED, &sh->dev[i].flags); 4545 s.locked++; 4546 } 4547 } 4548 4549 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4550 !sh->reconstruct_state) { 4551 /* Need to write out all blocks after computing parity */ 4552 sh->disks = conf->raid_disks; 4553 stripe_set_idx(sh->sector, conf, 0, sh); 4554 schedule_reconstruction(sh, &s, 1, 1); 4555 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4556 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4557 atomic_dec(&conf->reshape_stripes); 4558 wake_up(&conf->wait_for_overlap); 4559 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4560 } 4561 4562 if (s.expanding && s.locked == 0 && 4563 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4564 handle_stripe_expansion(conf, sh); 4565 4566 finish: 4567 /* wait for this device to become unblocked */ 4568 if (unlikely(s.blocked_rdev)) { 4569 if (conf->mddev->external) 4570 md_wait_for_blocked_rdev(s.blocked_rdev, 4571 conf->mddev); 4572 else 4573 /* Internal metadata will immediately 4574 * be written by raid5d, so we don't 4575 * need to wait here. 4576 */ 4577 rdev_dec_pending(s.blocked_rdev, 4578 conf->mddev); 4579 } 4580 4581 if (s.handle_bad_blocks) 4582 for (i = disks; i--; ) { 4583 struct md_rdev *rdev; 4584 struct r5dev *dev = &sh->dev[i]; 4585 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4586 /* We own a safe reference to the rdev */ 4587 rdev = conf->disks[i].rdev; 4588 if (!rdev_set_badblocks(rdev, sh->sector, 4589 STRIPE_SECTORS, 0)) 4590 md_error(conf->mddev, rdev); 4591 rdev_dec_pending(rdev, conf->mddev); 4592 } 4593 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4594 rdev = conf->disks[i].rdev; 4595 rdev_clear_badblocks(rdev, sh->sector, 4596 STRIPE_SECTORS, 0); 4597 rdev_dec_pending(rdev, conf->mddev); 4598 } 4599 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4600 rdev = conf->disks[i].replacement; 4601 if (!rdev) 4602 /* rdev have been moved down */ 4603 rdev = conf->disks[i].rdev; 4604 rdev_clear_badblocks(rdev, sh->sector, 4605 STRIPE_SECTORS, 0); 4606 rdev_dec_pending(rdev, conf->mddev); 4607 } 4608 } 4609 4610 if (s.ops_request) 4611 raid_run_ops(sh, s.ops_request); 4612 4613 ops_run_io(sh, &s); 4614 4615 if (s.dec_preread_active) { 4616 /* We delay this until after ops_run_io so that if make_request 4617 * is waiting on a flush, it won't continue until the writes 4618 * have actually been submitted. 4619 */ 4620 atomic_dec(&conf->preread_active_stripes); 4621 if (atomic_read(&conf->preread_active_stripes) < 4622 IO_THRESHOLD) 4623 md_wakeup_thread(conf->mddev->thread); 4624 } 4625 4626 if (!bio_list_empty(&s.return_bi)) { 4627 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) { 4628 spin_lock_irq(&conf->device_lock); 4629 bio_list_merge(&conf->return_bi, &s.return_bi); 4630 spin_unlock_irq(&conf->device_lock); 4631 md_wakeup_thread(conf->mddev->thread); 4632 } else 4633 return_io(&s.return_bi); 4634 } 4635 4636 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4637 } 4638 4639 static void raid5_activate_delayed(struct r5conf *conf) 4640 { 4641 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4642 while (!list_empty(&conf->delayed_list)) { 4643 struct list_head *l = conf->delayed_list.next; 4644 struct stripe_head *sh; 4645 sh = list_entry(l, struct stripe_head, lru); 4646 list_del_init(l); 4647 clear_bit(STRIPE_DELAYED, &sh->state); 4648 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4649 atomic_inc(&conf->preread_active_stripes); 4650 list_add_tail(&sh->lru, &conf->hold_list); 4651 raid5_wakeup_stripe_thread(sh); 4652 } 4653 } 4654 } 4655 4656 static void activate_bit_delay(struct r5conf *conf, 4657 struct list_head *temp_inactive_list) 4658 { 4659 /* device_lock is held */ 4660 struct list_head head; 4661 list_add(&head, &conf->bitmap_list); 4662 list_del_init(&conf->bitmap_list); 4663 while (!list_empty(&head)) { 4664 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4665 int hash; 4666 list_del_init(&sh->lru); 4667 atomic_inc(&sh->count); 4668 hash = sh->hash_lock_index; 4669 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4670 } 4671 } 4672 4673 static int raid5_congested(struct mddev *mddev, int bits) 4674 { 4675 struct r5conf *conf = mddev->private; 4676 4677 /* No difference between reads and writes. Just check 4678 * how busy the stripe_cache is 4679 */ 4680 4681 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4682 return 1; 4683 if (conf->quiesce) 4684 return 1; 4685 if (atomic_read(&conf->empty_inactive_list_nr)) 4686 return 1; 4687 4688 return 0; 4689 } 4690 4691 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4692 { 4693 struct r5conf *conf = mddev->private; 4694 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4695 unsigned int chunk_sectors; 4696 unsigned int bio_sectors = bio_sectors(bio); 4697 4698 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 4699 return chunk_sectors >= 4700 ((sector & (chunk_sectors - 1)) + bio_sectors); 4701 } 4702 4703 /* 4704 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4705 * later sampled by raid5d. 4706 */ 4707 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4708 { 4709 unsigned long flags; 4710 4711 spin_lock_irqsave(&conf->device_lock, flags); 4712 4713 bi->bi_next = conf->retry_read_aligned_list; 4714 conf->retry_read_aligned_list = bi; 4715 4716 spin_unlock_irqrestore(&conf->device_lock, flags); 4717 md_wakeup_thread(conf->mddev->thread); 4718 } 4719 4720 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4721 { 4722 struct bio *bi; 4723 4724 bi = conf->retry_read_aligned; 4725 if (bi) { 4726 conf->retry_read_aligned = NULL; 4727 return bi; 4728 } 4729 bi = conf->retry_read_aligned_list; 4730 if(bi) { 4731 conf->retry_read_aligned_list = bi->bi_next; 4732 bi->bi_next = NULL; 4733 /* 4734 * this sets the active strip count to 1 and the processed 4735 * strip count to zero (upper 8 bits) 4736 */ 4737 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4738 } 4739 4740 return bi; 4741 } 4742 4743 /* 4744 * The "raid5_align_endio" should check if the read succeeded and if it 4745 * did, call bio_endio on the original bio (having bio_put the new bio 4746 * first). 4747 * If the read failed.. 4748 */ 4749 static void raid5_align_endio(struct bio *bi) 4750 { 4751 struct bio* raid_bi = bi->bi_private; 4752 struct mddev *mddev; 4753 struct r5conf *conf; 4754 struct md_rdev *rdev; 4755 int error = bi->bi_error; 4756 4757 bio_put(bi); 4758 4759 rdev = (void*)raid_bi->bi_next; 4760 raid_bi->bi_next = NULL; 4761 mddev = rdev->mddev; 4762 conf = mddev->private; 4763 4764 rdev_dec_pending(rdev, conf->mddev); 4765 4766 if (!error) { 4767 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4768 raid_bi, 0); 4769 bio_endio(raid_bi); 4770 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4771 wake_up(&conf->wait_for_quiescent); 4772 return; 4773 } 4774 4775 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4776 4777 add_bio_to_retry(raid_bi, conf); 4778 } 4779 4780 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 4781 { 4782 struct r5conf *conf = mddev->private; 4783 int dd_idx; 4784 struct bio* align_bi; 4785 struct md_rdev *rdev; 4786 sector_t end_sector; 4787 4788 if (!in_chunk_boundary(mddev, raid_bio)) { 4789 pr_debug("%s: non aligned\n", __func__); 4790 return 0; 4791 } 4792 /* 4793 * use bio_clone_mddev to make a copy of the bio 4794 */ 4795 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4796 if (!align_bi) 4797 return 0; 4798 /* 4799 * set bi_end_io to a new function, and set bi_private to the 4800 * original bio. 4801 */ 4802 align_bi->bi_end_io = raid5_align_endio; 4803 align_bi->bi_private = raid_bio; 4804 /* 4805 * compute position 4806 */ 4807 align_bi->bi_iter.bi_sector = 4808 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4809 0, &dd_idx, NULL); 4810 4811 end_sector = bio_end_sector(align_bi); 4812 rcu_read_lock(); 4813 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4814 if (!rdev || test_bit(Faulty, &rdev->flags) || 4815 rdev->recovery_offset < end_sector) { 4816 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4817 if (rdev && 4818 (test_bit(Faulty, &rdev->flags) || 4819 !(test_bit(In_sync, &rdev->flags) || 4820 rdev->recovery_offset >= end_sector))) 4821 rdev = NULL; 4822 } 4823 if (rdev) { 4824 sector_t first_bad; 4825 int bad_sectors; 4826 4827 atomic_inc(&rdev->nr_pending); 4828 rcu_read_unlock(); 4829 raid_bio->bi_next = (void*)rdev; 4830 align_bi->bi_bdev = rdev->bdev; 4831 bio_clear_flag(align_bi, BIO_SEG_VALID); 4832 4833 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 4834 bio_sectors(align_bi), 4835 &first_bad, &bad_sectors)) { 4836 bio_put(align_bi); 4837 rdev_dec_pending(rdev, mddev); 4838 return 0; 4839 } 4840 4841 /* No reshape active, so we can trust rdev->data_offset */ 4842 align_bi->bi_iter.bi_sector += rdev->data_offset; 4843 4844 spin_lock_irq(&conf->device_lock); 4845 wait_event_lock_irq(conf->wait_for_quiescent, 4846 conf->quiesce == 0, 4847 conf->device_lock); 4848 atomic_inc(&conf->active_aligned_reads); 4849 spin_unlock_irq(&conf->device_lock); 4850 4851 if (mddev->gendisk) 4852 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4853 align_bi, disk_devt(mddev->gendisk), 4854 raid_bio->bi_iter.bi_sector); 4855 generic_make_request(align_bi); 4856 return 1; 4857 } else { 4858 rcu_read_unlock(); 4859 bio_put(align_bi); 4860 return 0; 4861 } 4862 } 4863 4864 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 4865 { 4866 struct bio *split; 4867 4868 do { 4869 sector_t sector = raid_bio->bi_iter.bi_sector; 4870 unsigned chunk_sects = mddev->chunk_sectors; 4871 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 4872 4873 if (sectors < bio_sectors(raid_bio)) { 4874 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); 4875 bio_chain(split, raid_bio); 4876 } else 4877 split = raid_bio; 4878 4879 if (!raid5_read_one_chunk(mddev, split)) { 4880 if (split != raid_bio) 4881 generic_make_request(raid_bio); 4882 return split; 4883 } 4884 } while (split != raid_bio); 4885 4886 return NULL; 4887 } 4888 4889 /* __get_priority_stripe - get the next stripe to process 4890 * 4891 * Full stripe writes are allowed to pass preread active stripes up until 4892 * the bypass_threshold is exceeded. In general the bypass_count 4893 * increments when the handle_list is handled before the hold_list; however, it 4894 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4895 * stripe with in flight i/o. The bypass_count will be reset when the 4896 * head of the hold_list has changed, i.e. the head was promoted to the 4897 * handle_list. 4898 */ 4899 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4900 { 4901 struct stripe_head *sh = NULL, *tmp; 4902 struct list_head *handle_list = NULL; 4903 struct r5worker_group *wg = NULL; 4904 4905 if (conf->worker_cnt_per_group == 0) { 4906 handle_list = &conf->handle_list; 4907 } else if (group != ANY_GROUP) { 4908 handle_list = &conf->worker_groups[group].handle_list; 4909 wg = &conf->worker_groups[group]; 4910 } else { 4911 int i; 4912 for (i = 0; i < conf->group_cnt; i++) { 4913 handle_list = &conf->worker_groups[i].handle_list; 4914 wg = &conf->worker_groups[i]; 4915 if (!list_empty(handle_list)) 4916 break; 4917 } 4918 } 4919 4920 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4921 __func__, 4922 list_empty(handle_list) ? "empty" : "busy", 4923 list_empty(&conf->hold_list) ? "empty" : "busy", 4924 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4925 4926 if (!list_empty(handle_list)) { 4927 sh = list_entry(handle_list->next, typeof(*sh), lru); 4928 4929 if (list_empty(&conf->hold_list)) 4930 conf->bypass_count = 0; 4931 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4932 if (conf->hold_list.next == conf->last_hold) 4933 conf->bypass_count++; 4934 else { 4935 conf->last_hold = conf->hold_list.next; 4936 conf->bypass_count -= conf->bypass_threshold; 4937 if (conf->bypass_count < 0) 4938 conf->bypass_count = 0; 4939 } 4940 } 4941 } else if (!list_empty(&conf->hold_list) && 4942 ((conf->bypass_threshold && 4943 conf->bypass_count > conf->bypass_threshold) || 4944 atomic_read(&conf->pending_full_writes) == 0)) { 4945 4946 list_for_each_entry(tmp, &conf->hold_list, lru) { 4947 if (conf->worker_cnt_per_group == 0 || 4948 group == ANY_GROUP || 4949 !cpu_online(tmp->cpu) || 4950 cpu_to_group(tmp->cpu) == group) { 4951 sh = tmp; 4952 break; 4953 } 4954 } 4955 4956 if (sh) { 4957 conf->bypass_count -= conf->bypass_threshold; 4958 if (conf->bypass_count < 0) 4959 conf->bypass_count = 0; 4960 } 4961 wg = NULL; 4962 } 4963 4964 if (!sh) 4965 return NULL; 4966 4967 if (wg) { 4968 wg->stripes_cnt--; 4969 sh->group = NULL; 4970 } 4971 list_del_init(&sh->lru); 4972 BUG_ON(atomic_inc_return(&sh->count) != 1); 4973 return sh; 4974 } 4975 4976 struct raid5_plug_cb { 4977 struct blk_plug_cb cb; 4978 struct list_head list; 4979 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4980 }; 4981 4982 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4983 { 4984 struct raid5_plug_cb *cb = container_of( 4985 blk_cb, struct raid5_plug_cb, cb); 4986 struct stripe_head *sh; 4987 struct mddev *mddev = cb->cb.data; 4988 struct r5conf *conf = mddev->private; 4989 int cnt = 0; 4990 int hash; 4991 4992 if (cb->list.next && !list_empty(&cb->list)) { 4993 spin_lock_irq(&conf->device_lock); 4994 while (!list_empty(&cb->list)) { 4995 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4996 list_del_init(&sh->lru); 4997 /* 4998 * avoid race release_stripe_plug() sees 4999 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5000 * is still in our list 5001 */ 5002 smp_mb__before_atomic(); 5003 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5004 /* 5005 * STRIPE_ON_RELEASE_LIST could be set here. In that 5006 * case, the count is always > 1 here 5007 */ 5008 hash = sh->hash_lock_index; 5009 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5010 cnt++; 5011 } 5012 spin_unlock_irq(&conf->device_lock); 5013 } 5014 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5015 NR_STRIPE_HASH_LOCKS); 5016 if (mddev->queue) 5017 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5018 kfree(cb); 5019 } 5020 5021 static void release_stripe_plug(struct mddev *mddev, 5022 struct stripe_head *sh) 5023 { 5024 struct blk_plug_cb *blk_cb = blk_check_plugged( 5025 raid5_unplug, mddev, 5026 sizeof(struct raid5_plug_cb)); 5027 struct raid5_plug_cb *cb; 5028 5029 if (!blk_cb) { 5030 raid5_release_stripe(sh); 5031 return; 5032 } 5033 5034 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5035 5036 if (cb->list.next == NULL) { 5037 int i; 5038 INIT_LIST_HEAD(&cb->list); 5039 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5040 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5041 } 5042 5043 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5044 list_add_tail(&sh->lru, &cb->list); 5045 else 5046 raid5_release_stripe(sh); 5047 } 5048 5049 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5050 { 5051 struct r5conf *conf = mddev->private; 5052 sector_t logical_sector, last_sector; 5053 struct stripe_head *sh; 5054 int remaining; 5055 int stripe_sectors; 5056 5057 if (mddev->reshape_position != MaxSector) 5058 /* Skip discard while reshape is happening */ 5059 return; 5060 5061 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5062 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5063 5064 bi->bi_next = NULL; 5065 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5066 5067 stripe_sectors = conf->chunk_sectors * 5068 (conf->raid_disks - conf->max_degraded); 5069 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5070 stripe_sectors); 5071 sector_div(last_sector, stripe_sectors); 5072 5073 logical_sector *= conf->chunk_sectors; 5074 last_sector *= conf->chunk_sectors; 5075 5076 for (; logical_sector < last_sector; 5077 logical_sector += STRIPE_SECTORS) { 5078 DEFINE_WAIT(w); 5079 int d; 5080 again: 5081 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5082 prepare_to_wait(&conf->wait_for_overlap, &w, 5083 TASK_UNINTERRUPTIBLE); 5084 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5085 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5086 raid5_release_stripe(sh); 5087 schedule(); 5088 goto again; 5089 } 5090 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5091 spin_lock_irq(&sh->stripe_lock); 5092 for (d = 0; d < conf->raid_disks; d++) { 5093 if (d == sh->pd_idx || d == sh->qd_idx) 5094 continue; 5095 if (sh->dev[d].towrite || sh->dev[d].toread) { 5096 set_bit(R5_Overlap, &sh->dev[d].flags); 5097 spin_unlock_irq(&sh->stripe_lock); 5098 raid5_release_stripe(sh); 5099 schedule(); 5100 goto again; 5101 } 5102 } 5103 set_bit(STRIPE_DISCARD, &sh->state); 5104 finish_wait(&conf->wait_for_overlap, &w); 5105 sh->overwrite_disks = 0; 5106 for (d = 0; d < conf->raid_disks; d++) { 5107 if (d == sh->pd_idx || d == sh->qd_idx) 5108 continue; 5109 sh->dev[d].towrite = bi; 5110 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5111 raid5_inc_bi_active_stripes(bi); 5112 sh->overwrite_disks++; 5113 } 5114 spin_unlock_irq(&sh->stripe_lock); 5115 if (conf->mddev->bitmap) { 5116 for (d = 0; 5117 d < conf->raid_disks - conf->max_degraded; 5118 d++) 5119 bitmap_startwrite(mddev->bitmap, 5120 sh->sector, 5121 STRIPE_SECTORS, 5122 0); 5123 sh->bm_seq = conf->seq_flush + 1; 5124 set_bit(STRIPE_BIT_DELAY, &sh->state); 5125 } 5126 5127 set_bit(STRIPE_HANDLE, &sh->state); 5128 clear_bit(STRIPE_DELAYED, &sh->state); 5129 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5130 atomic_inc(&conf->preread_active_stripes); 5131 release_stripe_plug(mddev, sh); 5132 } 5133 5134 remaining = raid5_dec_bi_active_stripes(bi); 5135 if (remaining == 0) { 5136 md_write_end(mddev); 5137 bio_endio(bi); 5138 } 5139 } 5140 5141 static void raid5_make_request(struct mddev *mddev, struct bio * bi) 5142 { 5143 struct r5conf *conf = mddev->private; 5144 int dd_idx; 5145 sector_t new_sector; 5146 sector_t logical_sector, last_sector; 5147 struct stripe_head *sh; 5148 const int rw = bio_data_dir(bi); 5149 int remaining; 5150 DEFINE_WAIT(w); 5151 bool do_prepare; 5152 5153 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 5154 int ret = r5l_handle_flush_request(conf->log, bi); 5155 5156 if (ret == 0) 5157 return; 5158 if (ret == -ENODEV) { 5159 md_flush_request(mddev, bi); 5160 return; 5161 } 5162 /* ret == -EAGAIN, fallback */ 5163 } 5164 5165 md_write_start(mddev, bi); 5166 5167 /* 5168 * If array is degraded, better not do chunk aligned read because 5169 * later we might have to read it again in order to reconstruct 5170 * data on failed drives. 5171 */ 5172 if (rw == READ && mddev->degraded == 0 && 5173 mddev->reshape_position == MaxSector) { 5174 bi = chunk_aligned_read(mddev, bi); 5175 if (!bi) 5176 return; 5177 } 5178 5179 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 5180 make_discard_request(mddev, bi); 5181 return; 5182 } 5183 5184 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5185 last_sector = bio_end_sector(bi); 5186 bi->bi_next = NULL; 5187 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5188 5189 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5190 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5191 int previous; 5192 int seq; 5193 5194 do_prepare = false; 5195 retry: 5196 seq = read_seqcount_begin(&conf->gen_lock); 5197 previous = 0; 5198 if (do_prepare) 5199 prepare_to_wait(&conf->wait_for_overlap, &w, 5200 TASK_UNINTERRUPTIBLE); 5201 if (unlikely(conf->reshape_progress != MaxSector)) { 5202 /* spinlock is needed as reshape_progress may be 5203 * 64bit on a 32bit platform, and so it might be 5204 * possible to see a half-updated value 5205 * Of course reshape_progress could change after 5206 * the lock is dropped, so once we get a reference 5207 * to the stripe that we think it is, we will have 5208 * to check again. 5209 */ 5210 spin_lock_irq(&conf->device_lock); 5211 if (mddev->reshape_backwards 5212 ? logical_sector < conf->reshape_progress 5213 : logical_sector >= conf->reshape_progress) { 5214 previous = 1; 5215 } else { 5216 if (mddev->reshape_backwards 5217 ? logical_sector < conf->reshape_safe 5218 : logical_sector >= conf->reshape_safe) { 5219 spin_unlock_irq(&conf->device_lock); 5220 schedule(); 5221 do_prepare = true; 5222 goto retry; 5223 } 5224 } 5225 spin_unlock_irq(&conf->device_lock); 5226 } 5227 5228 new_sector = raid5_compute_sector(conf, logical_sector, 5229 previous, 5230 &dd_idx, NULL); 5231 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5232 (unsigned long long)new_sector, 5233 (unsigned long long)logical_sector); 5234 5235 sh = raid5_get_active_stripe(conf, new_sector, previous, 5236 (bi->bi_rw&RWA_MASK), 0); 5237 if (sh) { 5238 if (unlikely(previous)) { 5239 /* expansion might have moved on while waiting for a 5240 * stripe, so we must do the range check again. 5241 * Expansion could still move past after this 5242 * test, but as we are holding a reference to 5243 * 'sh', we know that if that happens, 5244 * STRIPE_EXPANDING will get set and the expansion 5245 * won't proceed until we finish with the stripe. 5246 */ 5247 int must_retry = 0; 5248 spin_lock_irq(&conf->device_lock); 5249 if (mddev->reshape_backwards 5250 ? logical_sector >= conf->reshape_progress 5251 : logical_sector < conf->reshape_progress) 5252 /* mismatch, need to try again */ 5253 must_retry = 1; 5254 spin_unlock_irq(&conf->device_lock); 5255 if (must_retry) { 5256 raid5_release_stripe(sh); 5257 schedule(); 5258 do_prepare = true; 5259 goto retry; 5260 } 5261 } 5262 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5263 /* Might have got the wrong stripe_head 5264 * by accident 5265 */ 5266 raid5_release_stripe(sh); 5267 goto retry; 5268 } 5269 5270 if (rw == WRITE && 5271 logical_sector >= mddev->suspend_lo && 5272 logical_sector < mddev->suspend_hi) { 5273 raid5_release_stripe(sh); 5274 /* As the suspend_* range is controlled by 5275 * userspace, we want an interruptible 5276 * wait. 5277 */ 5278 flush_signals(current); 5279 prepare_to_wait(&conf->wait_for_overlap, 5280 &w, TASK_INTERRUPTIBLE); 5281 if (logical_sector >= mddev->suspend_lo && 5282 logical_sector < mddev->suspend_hi) { 5283 schedule(); 5284 do_prepare = true; 5285 } 5286 goto retry; 5287 } 5288 5289 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5290 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5291 /* Stripe is busy expanding or 5292 * add failed due to overlap. Flush everything 5293 * and wait a while 5294 */ 5295 md_wakeup_thread(mddev->thread); 5296 raid5_release_stripe(sh); 5297 schedule(); 5298 do_prepare = true; 5299 goto retry; 5300 } 5301 set_bit(STRIPE_HANDLE, &sh->state); 5302 clear_bit(STRIPE_DELAYED, &sh->state); 5303 if ((!sh->batch_head || sh == sh->batch_head) && 5304 (bi->bi_rw & REQ_SYNC) && 5305 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5306 atomic_inc(&conf->preread_active_stripes); 5307 release_stripe_plug(mddev, sh); 5308 } else { 5309 /* cannot get stripe for read-ahead, just give-up */ 5310 bi->bi_error = -EIO; 5311 break; 5312 } 5313 } 5314 finish_wait(&conf->wait_for_overlap, &w); 5315 5316 remaining = raid5_dec_bi_active_stripes(bi); 5317 if (remaining == 0) { 5318 5319 if ( rw == WRITE ) 5320 md_write_end(mddev); 5321 5322 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5323 bi, 0); 5324 bio_endio(bi); 5325 } 5326 } 5327 5328 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5329 5330 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5331 { 5332 /* reshaping is quite different to recovery/resync so it is 5333 * handled quite separately ... here. 5334 * 5335 * On each call to sync_request, we gather one chunk worth of 5336 * destination stripes and flag them as expanding. 5337 * Then we find all the source stripes and request reads. 5338 * As the reads complete, handle_stripe will copy the data 5339 * into the destination stripe and release that stripe. 5340 */ 5341 struct r5conf *conf = mddev->private; 5342 struct stripe_head *sh; 5343 sector_t first_sector, last_sector; 5344 int raid_disks = conf->previous_raid_disks; 5345 int data_disks = raid_disks - conf->max_degraded; 5346 int new_data_disks = conf->raid_disks - conf->max_degraded; 5347 int i; 5348 int dd_idx; 5349 sector_t writepos, readpos, safepos; 5350 sector_t stripe_addr; 5351 int reshape_sectors; 5352 struct list_head stripes; 5353 sector_t retn; 5354 5355 if (sector_nr == 0) { 5356 /* If restarting in the middle, skip the initial sectors */ 5357 if (mddev->reshape_backwards && 5358 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5359 sector_nr = raid5_size(mddev, 0, 0) 5360 - conf->reshape_progress; 5361 } else if (mddev->reshape_backwards && 5362 conf->reshape_progress == MaxSector) { 5363 /* shouldn't happen, but just in case, finish up.*/ 5364 sector_nr = MaxSector; 5365 } else if (!mddev->reshape_backwards && 5366 conf->reshape_progress > 0) 5367 sector_nr = conf->reshape_progress; 5368 sector_div(sector_nr, new_data_disks); 5369 if (sector_nr) { 5370 mddev->curr_resync_completed = sector_nr; 5371 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5372 *skipped = 1; 5373 retn = sector_nr; 5374 goto finish; 5375 } 5376 } 5377 5378 /* We need to process a full chunk at a time. 5379 * If old and new chunk sizes differ, we need to process the 5380 * largest of these 5381 */ 5382 5383 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5384 5385 /* We update the metadata at least every 10 seconds, or when 5386 * the data about to be copied would over-write the source of 5387 * the data at the front of the range. i.e. one new_stripe 5388 * along from reshape_progress new_maps to after where 5389 * reshape_safe old_maps to 5390 */ 5391 writepos = conf->reshape_progress; 5392 sector_div(writepos, new_data_disks); 5393 readpos = conf->reshape_progress; 5394 sector_div(readpos, data_disks); 5395 safepos = conf->reshape_safe; 5396 sector_div(safepos, data_disks); 5397 if (mddev->reshape_backwards) { 5398 BUG_ON(writepos < reshape_sectors); 5399 writepos -= reshape_sectors; 5400 readpos += reshape_sectors; 5401 safepos += reshape_sectors; 5402 } else { 5403 writepos += reshape_sectors; 5404 /* readpos and safepos are worst-case calculations. 5405 * A negative number is overly pessimistic, and causes 5406 * obvious problems for unsigned storage. So clip to 0. 5407 */ 5408 readpos -= min_t(sector_t, reshape_sectors, readpos); 5409 safepos -= min_t(sector_t, reshape_sectors, safepos); 5410 } 5411 5412 /* Having calculated the 'writepos' possibly use it 5413 * to set 'stripe_addr' which is where we will write to. 5414 */ 5415 if (mddev->reshape_backwards) { 5416 BUG_ON(conf->reshape_progress == 0); 5417 stripe_addr = writepos; 5418 BUG_ON((mddev->dev_sectors & 5419 ~((sector_t)reshape_sectors - 1)) 5420 - reshape_sectors - stripe_addr 5421 != sector_nr); 5422 } else { 5423 BUG_ON(writepos != sector_nr + reshape_sectors); 5424 stripe_addr = sector_nr; 5425 } 5426 5427 /* 'writepos' is the most advanced device address we might write. 5428 * 'readpos' is the least advanced device address we might read. 5429 * 'safepos' is the least address recorded in the metadata as having 5430 * been reshaped. 5431 * If there is a min_offset_diff, these are adjusted either by 5432 * increasing the safepos/readpos if diff is negative, or 5433 * increasing writepos if diff is positive. 5434 * If 'readpos' is then behind 'writepos', there is no way that we can 5435 * ensure safety in the face of a crash - that must be done by userspace 5436 * making a backup of the data. So in that case there is no particular 5437 * rush to update metadata. 5438 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5439 * update the metadata to advance 'safepos' to match 'readpos' so that 5440 * we can be safe in the event of a crash. 5441 * So we insist on updating metadata if safepos is behind writepos and 5442 * readpos is beyond writepos. 5443 * In any case, update the metadata every 10 seconds. 5444 * Maybe that number should be configurable, but I'm not sure it is 5445 * worth it.... maybe it could be a multiple of safemode_delay??? 5446 */ 5447 if (conf->min_offset_diff < 0) { 5448 safepos += -conf->min_offset_diff; 5449 readpos += -conf->min_offset_diff; 5450 } else 5451 writepos += conf->min_offset_diff; 5452 5453 if ((mddev->reshape_backwards 5454 ? (safepos > writepos && readpos < writepos) 5455 : (safepos < writepos && readpos > writepos)) || 5456 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5457 /* Cannot proceed until we've updated the superblock... */ 5458 wait_event(conf->wait_for_overlap, 5459 atomic_read(&conf->reshape_stripes)==0 5460 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5461 if (atomic_read(&conf->reshape_stripes) != 0) 5462 return 0; 5463 mddev->reshape_position = conf->reshape_progress; 5464 mddev->curr_resync_completed = sector_nr; 5465 conf->reshape_checkpoint = jiffies; 5466 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5467 md_wakeup_thread(mddev->thread); 5468 wait_event(mddev->sb_wait, mddev->flags == 0 || 5469 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5470 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5471 return 0; 5472 spin_lock_irq(&conf->device_lock); 5473 conf->reshape_safe = mddev->reshape_position; 5474 spin_unlock_irq(&conf->device_lock); 5475 wake_up(&conf->wait_for_overlap); 5476 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5477 } 5478 5479 INIT_LIST_HEAD(&stripes); 5480 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5481 int j; 5482 int skipped_disk = 0; 5483 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5484 set_bit(STRIPE_EXPANDING, &sh->state); 5485 atomic_inc(&conf->reshape_stripes); 5486 /* If any of this stripe is beyond the end of the old 5487 * array, then we need to zero those blocks 5488 */ 5489 for (j=sh->disks; j--;) { 5490 sector_t s; 5491 if (j == sh->pd_idx) 5492 continue; 5493 if (conf->level == 6 && 5494 j == sh->qd_idx) 5495 continue; 5496 s = raid5_compute_blocknr(sh, j, 0); 5497 if (s < raid5_size(mddev, 0, 0)) { 5498 skipped_disk = 1; 5499 continue; 5500 } 5501 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5502 set_bit(R5_Expanded, &sh->dev[j].flags); 5503 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5504 } 5505 if (!skipped_disk) { 5506 set_bit(STRIPE_EXPAND_READY, &sh->state); 5507 set_bit(STRIPE_HANDLE, &sh->state); 5508 } 5509 list_add(&sh->lru, &stripes); 5510 } 5511 spin_lock_irq(&conf->device_lock); 5512 if (mddev->reshape_backwards) 5513 conf->reshape_progress -= reshape_sectors * new_data_disks; 5514 else 5515 conf->reshape_progress += reshape_sectors * new_data_disks; 5516 spin_unlock_irq(&conf->device_lock); 5517 /* Ok, those stripe are ready. We can start scheduling 5518 * reads on the source stripes. 5519 * The source stripes are determined by mapping the first and last 5520 * block on the destination stripes. 5521 */ 5522 first_sector = 5523 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5524 1, &dd_idx, NULL); 5525 last_sector = 5526 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5527 * new_data_disks - 1), 5528 1, &dd_idx, NULL); 5529 if (last_sector >= mddev->dev_sectors) 5530 last_sector = mddev->dev_sectors - 1; 5531 while (first_sector <= last_sector) { 5532 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5533 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5534 set_bit(STRIPE_HANDLE, &sh->state); 5535 raid5_release_stripe(sh); 5536 first_sector += STRIPE_SECTORS; 5537 } 5538 /* Now that the sources are clearly marked, we can release 5539 * the destination stripes 5540 */ 5541 while (!list_empty(&stripes)) { 5542 sh = list_entry(stripes.next, struct stripe_head, lru); 5543 list_del_init(&sh->lru); 5544 raid5_release_stripe(sh); 5545 } 5546 /* If this takes us to the resync_max point where we have to pause, 5547 * then we need to write out the superblock. 5548 */ 5549 sector_nr += reshape_sectors; 5550 retn = reshape_sectors; 5551 finish: 5552 if (mddev->curr_resync_completed > mddev->resync_max || 5553 (sector_nr - mddev->curr_resync_completed) * 2 5554 >= mddev->resync_max - mddev->curr_resync_completed) { 5555 /* Cannot proceed until we've updated the superblock... */ 5556 wait_event(conf->wait_for_overlap, 5557 atomic_read(&conf->reshape_stripes) == 0 5558 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5559 if (atomic_read(&conf->reshape_stripes) != 0) 5560 goto ret; 5561 mddev->reshape_position = conf->reshape_progress; 5562 mddev->curr_resync_completed = sector_nr; 5563 conf->reshape_checkpoint = jiffies; 5564 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5565 md_wakeup_thread(mddev->thread); 5566 wait_event(mddev->sb_wait, 5567 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 5568 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5569 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5570 goto ret; 5571 spin_lock_irq(&conf->device_lock); 5572 conf->reshape_safe = mddev->reshape_position; 5573 spin_unlock_irq(&conf->device_lock); 5574 wake_up(&conf->wait_for_overlap); 5575 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5576 } 5577 ret: 5578 return retn; 5579 } 5580 5581 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 5582 int *skipped) 5583 { 5584 struct r5conf *conf = mddev->private; 5585 struct stripe_head *sh; 5586 sector_t max_sector = mddev->dev_sectors; 5587 sector_t sync_blocks; 5588 int still_degraded = 0; 5589 int i; 5590 5591 if (sector_nr >= max_sector) { 5592 /* just being told to finish up .. nothing much to do */ 5593 5594 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5595 end_reshape(conf); 5596 return 0; 5597 } 5598 5599 if (mddev->curr_resync < max_sector) /* aborted */ 5600 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5601 &sync_blocks, 1); 5602 else /* completed sync */ 5603 conf->fullsync = 0; 5604 bitmap_close_sync(mddev->bitmap); 5605 5606 return 0; 5607 } 5608 5609 /* Allow raid5_quiesce to complete */ 5610 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5611 5612 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5613 return reshape_request(mddev, sector_nr, skipped); 5614 5615 /* No need to check resync_max as we never do more than one 5616 * stripe, and as resync_max will always be on a chunk boundary, 5617 * if the check in md_do_sync didn't fire, there is no chance 5618 * of overstepping resync_max here 5619 */ 5620 5621 /* if there is too many failed drives and we are trying 5622 * to resync, then assert that we are finished, because there is 5623 * nothing we can do. 5624 */ 5625 if (mddev->degraded >= conf->max_degraded && 5626 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5627 sector_t rv = mddev->dev_sectors - sector_nr; 5628 *skipped = 1; 5629 return rv; 5630 } 5631 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5632 !conf->fullsync && 5633 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5634 sync_blocks >= STRIPE_SECTORS) { 5635 /* we can skip this block, and probably more */ 5636 sync_blocks /= STRIPE_SECTORS; 5637 *skipped = 1; 5638 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5639 } 5640 5641 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 5642 5643 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 5644 if (sh == NULL) { 5645 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 5646 /* make sure we don't swamp the stripe cache if someone else 5647 * is trying to get access 5648 */ 5649 schedule_timeout_uninterruptible(1); 5650 } 5651 /* Need to check if array will still be degraded after recovery/resync 5652 * Note in case of > 1 drive failures it's possible we're rebuilding 5653 * one drive while leaving another faulty drive in array. 5654 */ 5655 rcu_read_lock(); 5656 for (i = 0; i < conf->raid_disks; i++) { 5657 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5658 5659 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5660 still_degraded = 1; 5661 } 5662 rcu_read_unlock(); 5663 5664 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5665 5666 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5667 set_bit(STRIPE_HANDLE, &sh->state); 5668 5669 raid5_release_stripe(sh); 5670 5671 return STRIPE_SECTORS; 5672 } 5673 5674 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5675 { 5676 /* We may not be able to submit a whole bio at once as there 5677 * may not be enough stripe_heads available. 5678 * We cannot pre-allocate enough stripe_heads as we may need 5679 * more than exist in the cache (if we allow ever large chunks). 5680 * So we do one stripe head at a time and record in 5681 * ->bi_hw_segments how many have been done. 5682 * 5683 * We *know* that this entire raid_bio is in one chunk, so 5684 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5685 */ 5686 struct stripe_head *sh; 5687 int dd_idx; 5688 sector_t sector, logical_sector, last_sector; 5689 int scnt = 0; 5690 int remaining; 5691 int handled = 0; 5692 5693 logical_sector = raid_bio->bi_iter.bi_sector & 5694 ~((sector_t)STRIPE_SECTORS-1); 5695 sector = raid5_compute_sector(conf, logical_sector, 5696 0, &dd_idx, NULL); 5697 last_sector = bio_end_sector(raid_bio); 5698 5699 for (; logical_sector < last_sector; 5700 logical_sector += STRIPE_SECTORS, 5701 sector += STRIPE_SECTORS, 5702 scnt++) { 5703 5704 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5705 /* already done this stripe */ 5706 continue; 5707 5708 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 5709 5710 if (!sh) { 5711 /* failed to get a stripe - must wait */ 5712 raid5_set_bi_processed_stripes(raid_bio, scnt); 5713 conf->retry_read_aligned = raid_bio; 5714 return handled; 5715 } 5716 5717 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 5718 raid5_release_stripe(sh); 5719 raid5_set_bi_processed_stripes(raid_bio, scnt); 5720 conf->retry_read_aligned = raid_bio; 5721 return handled; 5722 } 5723 5724 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5725 handle_stripe(sh); 5726 raid5_release_stripe(sh); 5727 handled++; 5728 } 5729 remaining = raid5_dec_bi_active_stripes(raid_bio); 5730 if (remaining == 0) { 5731 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5732 raid_bio, 0); 5733 bio_endio(raid_bio); 5734 } 5735 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5736 wake_up(&conf->wait_for_quiescent); 5737 return handled; 5738 } 5739 5740 static int handle_active_stripes(struct r5conf *conf, int group, 5741 struct r5worker *worker, 5742 struct list_head *temp_inactive_list) 5743 { 5744 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5745 int i, batch_size = 0, hash; 5746 bool release_inactive = false; 5747 5748 while (batch_size < MAX_STRIPE_BATCH && 5749 (sh = __get_priority_stripe(conf, group)) != NULL) 5750 batch[batch_size++] = sh; 5751 5752 if (batch_size == 0) { 5753 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5754 if (!list_empty(temp_inactive_list + i)) 5755 break; 5756 if (i == NR_STRIPE_HASH_LOCKS) { 5757 spin_unlock_irq(&conf->device_lock); 5758 r5l_flush_stripe_to_raid(conf->log); 5759 spin_lock_irq(&conf->device_lock); 5760 return batch_size; 5761 } 5762 release_inactive = true; 5763 } 5764 spin_unlock_irq(&conf->device_lock); 5765 5766 release_inactive_stripe_list(conf, temp_inactive_list, 5767 NR_STRIPE_HASH_LOCKS); 5768 5769 r5l_flush_stripe_to_raid(conf->log); 5770 if (release_inactive) { 5771 spin_lock_irq(&conf->device_lock); 5772 return 0; 5773 } 5774 5775 for (i = 0; i < batch_size; i++) 5776 handle_stripe(batch[i]); 5777 r5l_write_stripe_run(conf->log); 5778 5779 cond_resched(); 5780 5781 spin_lock_irq(&conf->device_lock); 5782 for (i = 0; i < batch_size; i++) { 5783 hash = batch[i]->hash_lock_index; 5784 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5785 } 5786 return batch_size; 5787 } 5788 5789 static void raid5_do_work(struct work_struct *work) 5790 { 5791 struct r5worker *worker = container_of(work, struct r5worker, work); 5792 struct r5worker_group *group = worker->group; 5793 struct r5conf *conf = group->conf; 5794 int group_id = group - conf->worker_groups; 5795 int handled; 5796 struct blk_plug plug; 5797 5798 pr_debug("+++ raid5worker active\n"); 5799 5800 blk_start_plug(&plug); 5801 handled = 0; 5802 spin_lock_irq(&conf->device_lock); 5803 while (1) { 5804 int batch_size, released; 5805 5806 released = release_stripe_list(conf, worker->temp_inactive_list); 5807 5808 batch_size = handle_active_stripes(conf, group_id, worker, 5809 worker->temp_inactive_list); 5810 worker->working = false; 5811 if (!batch_size && !released) 5812 break; 5813 handled += batch_size; 5814 } 5815 pr_debug("%d stripes handled\n", handled); 5816 5817 spin_unlock_irq(&conf->device_lock); 5818 blk_finish_plug(&plug); 5819 5820 pr_debug("--- raid5worker inactive\n"); 5821 } 5822 5823 /* 5824 * This is our raid5 kernel thread. 5825 * 5826 * We scan the hash table for stripes which can be handled now. 5827 * During the scan, completed stripes are saved for us by the interrupt 5828 * handler, so that they will not have to wait for our next wakeup. 5829 */ 5830 static void raid5d(struct md_thread *thread) 5831 { 5832 struct mddev *mddev = thread->mddev; 5833 struct r5conf *conf = mddev->private; 5834 int handled; 5835 struct blk_plug plug; 5836 5837 pr_debug("+++ raid5d active\n"); 5838 5839 md_check_recovery(mddev); 5840 5841 if (!bio_list_empty(&conf->return_bi) && 5842 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5843 struct bio_list tmp = BIO_EMPTY_LIST; 5844 spin_lock_irq(&conf->device_lock); 5845 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5846 bio_list_merge(&tmp, &conf->return_bi); 5847 bio_list_init(&conf->return_bi); 5848 } 5849 spin_unlock_irq(&conf->device_lock); 5850 return_io(&tmp); 5851 } 5852 5853 blk_start_plug(&plug); 5854 handled = 0; 5855 spin_lock_irq(&conf->device_lock); 5856 while (1) { 5857 struct bio *bio; 5858 int batch_size, released; 5859 5860 released = release_stripe_list(conf, conf->temp_inactive_list); 5861 if (released) 5862 clear_bit(R5_DID_ALLOC, &conf->cache_state); 5863 5864 if ( 5865 !list_empty(&conf->bitmap_list)) { 5866 /* Now is a good time to flush some bitmap updates */ 5867 conf->seq_flush++; 5868 spin_unlock_irq(&conf->device_lock); 5869 bitmap_unplug(mddev->bitmap); 5870 spin_lock_irq(&conf->device_lock); 5871 conf->seq_write = conf->seq_flush; 5872 activate_bit_delay(conf, conf->temp_inactive_list); 5873 } 5874 raid5_activate_delayed(conf); 5875 5876 while ((bio = remove_bio_from_retry(conf))) { 5877 int ok; 5878 spin_unlock_irq(&conf->device_lock); 5879 ok = retry_aligned_read(conf, bio); 5880 spin_lock_irq(&conf->device_lock); 5881 if (!ok) 5882 break; 5883 handled++; 5884 } 5885 5886 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5887 conf->temp_inactive_list); 5888 if (!batch_size && !released) 5889 break; 5890 handled += batch_size; 5891 5892 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5893 spin_unlock_irq(&conf->device_lock); 5894 md_check_recovery(mddev); 5895 spin_lock_irq(&conf->device_lock); 5896 } 5897 } 5898 pr_debug("%d stripes handled\n", handled); 5899 5900 spin_unlock_irq(&conf->device_lock); 5901 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 5902 mutex_trylock(&conf->cache_size_mutex)) { 5903 grow_one_stripe(conf, __GFP_NOWARN); 5904 /* Set flag even if allocation failed. This helps 5905 * slow down allocation requests when mem is short 5906 */ 5907 set_bit(R5_DID_ALLOC, &conf->cache_state); 5908 mutex_unlock(&conf->cache_size_mutex); 5909 } 5910 5911 r5l_flush_stripe_to_raid(conf->log); 5912 5913 async_tx_issue_pending_all(); 5914 blk_finish_plug(&plug); 5915 5916 pr_debug("--- raid5d inactive\n"); 5917 } 5918 5919 static ssize_t 5920 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5921 { 5922 struct r5conf *conf; 5923 int ret = 0; 5924 spin_lock(&mddev->lock); 5925 conf = mddev->private; 5926 if (conf) 5927 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 5928 spin_unlock(&mddev->lock); 5929 return ret; 5930 } 5931 5932 int 5933 raid5_set_cache_size(struct mddev *mddev, int size) 5934 { 5935 struct r5conf *conf = mddev->private; 5936 int err; 5937 5938 if (size <= 16 || size > 32768) 5939 return -EINVAL; 5940 5941 conf->min_nr_stripes = size; 5942 mutex_lock(&conf->cache_size_mutex); 5943 while (size < conf->max_nr_stripes && 5944 drop_one_stripe(conf)) 5945 ; 5946 mutex_unlock(&conf->cache_size_mutex); 5947 5948 5949 err = md_allow_write(mddev); 5950 if (err) 5951 return err; 5952 5953 mutex_lock(&conf->cache_size_mutex); 5954 while (size > conf->max_nr_stripes) 5955 if (!grow_one_stripe(conf, GFP_KERNEL)) 5956 break; 5957 mutex_unlock(&conf->cache_size_mutex); 5958 5959 return 0; 5960 } 5961 EXPORT_SYMBOL(raid5_set_cache_size); 5962 5963 static ssize_t 5964 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5965 { 5966 struct r5conf *conf; 5967 unsigned long new; 5968 int err; 5969 5970 if (len >= PAGE_SIZE) 5971 return -EINVAL; 5972 if (kstrtoul(page, 10, &new)) 5973 return -EINVAL; 5974 err = mddev_lock(mddev); 5975 if (err) 5976 return err; 5977 conf = mddev->private; 5978 if (!conf) 5979 err = -ENODEV; 5980 else 5981 err = raid5_set_cache_size(mddev, new); 5982 mddev_unlock(mddev); 5983 5984 return err ?: len; 5985 } 5986 5987 static struct md_sysfs_entry 5988 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5989 raid5_show_stripe_cache_size, 5990 raid5_store_stripe_cache_size); 5991 5992 static ssize_t 5993 raid5_show_rmw_level(struct mddev *mddev, char *page) 5994 { 5995 struct r5conf *conf = mddev->private; 5996 if (conf) 5997 return sprintf(page, "%d\n", conf->rmw_level); 5998 else 5999 return 0; 6000 } 6001 6002 static ssize_t 6003 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6004 { 6005 struct r5conf *conf = mddev->private; 6006 unsigned long new; 6007 6008 if (!conf) 6009 return -ENODEV; 6010 6011 if (len >= PAGE_SIZE) 6012 return -EINVAL; 6013 6014 if (kstrtoul(page, 10, &new)) 6015 return -EINVAL; 6016 6017 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6018 return -EINVAL; 6019 6020 if (new != PARITY_DISABLE_RMW && 6021 new != PARITY_ENABLE_RMW && 6022 new != PARITY_PREFER_RMW) 6023 return -EINVAL; 6024 6025 conf->rmw_level = new; 6026 return len; 6027 } 6028 6029 static struct md_sysfs_entry 6030 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6031 raid5_show_rmw_level, 6032 raid5_store_rmw_level); 6033 6034 6035 static ssize_t 6036 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6037 { 6038 struct r5conf *conf; 6039 int ret = 0; 6040 spin_lock(&mddev->lock); 6041 conf = mddev->private; 6042 if (conf) 6043 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6044 spin_unlock(&mddev->lock); 6045 return ret; 6046 } 6047 6048 static ssize_t 6049 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6050 { 6051 struct r5conf *conf; 6052 unsigned long new; 6053 int err; 6054 6055 if (len >= PAGE_SIZE) 6056 return -EINVAL; 6057 if (kstrtoul(page, 10, &new)) 6058 return -EINVAL; 6059 6060 err = mddev_lock(mddev); 6061 if (err) 6062 return err; 6063 conf = mddev->private; 6064 if (!conf) 6065 err = -ENODEV; 6066 else if (new > conf->min_nr_stripes) 6067 err = -EINVAL; 6068 else 6069 conf->bypass_threshold = new; 6070 mddev_unlock(mddev); 6071 return err ?: len; 6072 } 6073 6074 static struct md_sysfs_entry 6075 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6076 S_IRUGO | S_IWUSR, 6077 raid5_show_preread_threshold, 6078 raid5_store_preread_threshold); 6079 6080 static ssize_t 6081 raid5_show_skip_copy(struct mddev *mddev, char *page) 6082 { 6083 struct r5conf *conf; 6084 int ret = 0; 6085 spin_lock(&mddev->lock); 6086 conf = mddev->private; 6087 if (conf) 6088 ret = sprintf(page, "%d\n", conf->skip_copy); 6089 spin_unlock(&mddev->lock); 6090 return ret; 6091 } 6092 6093 static ssize_t 6094 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6095 { 6096 struct r5conf *conf; 6097 unsigned long new; 6098 int err; 6099 6100 if (len >= PAGE_SIZE) 6101 return -EINVAL; 6102 if (kstrtoul(page, 10, &new)) 6103 return -EINVAL; 6104 new = !!new; 6105 6106 err = mddev_lock(mddev); 6107 if (err) 6108 return err; 6109 conf = mddev->private; 6110 if (!conf) 6111 err = -ENODEV; 6112 else if (new != conf->skip_copy) { 6113 mddev_suspend(mddev); 6114 conf->skip_copy = new; 6115 if (new) 6116 mddev->queue->backing_dev_info.capabilities |= 6117 BDI_CAP_STABLE_WRITES; 6118 else 6119 mddev->queue->backing_dev_info.capabilities &= 6120 ~BDI_CAP_STABLE_WRITES; 6121 mddev_resume(mddev); 6122 } 6123 mddev_unlock(mddev); 6124 return err ?: len; 6125 } 6126 6127 static struct md_sysfs_entry 6128 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6129 raid5_show_skip_copy, 6130 raid5_store_skip_copy); 6131 6132 static ssize_t 6133 stripe_cache_active_show(struct mddev *mddev, char *page) 6134 { 6135 struct r5conf *conf = mddev->private; 6136 if (conf) 6137 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6138 else 6139 return 0; 6140 } 6141 6142 static struct md_sysfs_entry 6143 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6144 6145 static ssize_t 6146 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6147 { 6148 struct r5conf *conf; 6149 int ret = 0; 6150 spin_lock(&mddev->lock); 6151 conf = mddev->private; 6152 if (conf) 6153 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6154 spin_unlock(&mddev->lock); 6155 return ret; 6156 } 6157 6158 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6159 int *group_cnt, 6160 int *worker_cnt_per_group, 6161 struct r5worker_group **worker_groups); 6162 static ssize_t 6163 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6164 { 6165 struct r5conf *conf; 6166 unsigned long new; 6167 int err; 6168 struct r5worker_group *new_groups, *old_groups; 6169 int group_cnt, worker_cnt_per_group; 6170 6171 if (len >= PAGE_SIZE) 6172 return -EINVAL; 6173 if (kstrtoul(page, 10, &new)) 6174 return -EINVAL; 6175 6176 err = mddev_lock(mddev); 6177 if (err) 6178 return err; 6179 conf = mddev->private; 6180 if (!conf) 6181 err = -ENODEV; 6182 else if (new != conf->worker_cnt_per_group) { 6183 mddev_suspend(mddev); 6184 6185 old_groups = conf->worker_groups; 6186 if (old_groups) 6187 flush_workqueue(raid5_wq); 6188 6189 err = alloc_thread_groups(conf, new, 6190 &group_cnt, &worker_cnt_per_group, 6191 &new_groups); 6192 if (!err) { 6193 spin_lock_irq(&conf->device_lock); 6194 conf->group_cnt = group_cnt; 6195 conf->worker_cnt_per_group = worker_cnt_per_group; 6196 conf->worker_groups = new_groups; 6197 spin_unlock_irq(&conf->device_lock); 6198 6199 if (old_groups) 6200 kfree(old_groups[0].workers); 6201 kfree(old_groups); 6202 } 6203 mddev_resume(mddev); 6204 } 6205 mddev_unlock(mddev); 6206 6207 return err ?: len; 6208 } 6209 6210 static struct md_sysfs_entry 6211 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6212 raid5_show_group_thread_cnt, 6213 raid5_store_group_thread_cnt); 6214 6215 static struct attribute *raid5_attrs[] = { 6216 &raid5_stripecache_size.attr, 6217 &raid5_stripecache_active.attr, 6218 &raid5_preread_bypass_threshold.attr, 6219 &raid5_group_thread_cnt.attr, 6220 &raid5_skip_copy.attr, 6221 &raid5_rmw_level.attr, 6222 NULL, 6223 }; 6224 static struct attribute_group raid5_attrs_group = { 6225 .name = NULL, 6226 .attrs = raid5_attrs, 6227 }; 6228 6229 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6230 int *group_cnt, 6231 int *worker_cnt_per_group, 6232 struct r5worker_group **worker_groups) 6233 { 6234 int i, j, k; 6235 ssize_t size; 6236 struct r5worker *workers; 6237 6238 *worker_cnt_per_group = cnt; 6239 if (cnt == 0) { 6240 *group_cnt = 0; 6241 *worker_groups = NULL; 6242 return 0; 6243 } 6244 *group_cnt = num_possible_nodes(); 6245 size = sizeof(struct r5worker) * cnt; 6246 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6247 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6248 *group_cnt, GFP_NOIO); 6249 if (!*worker_groups || !workers) { 6250 kfree(workers); 6251 kfree(*worker_groups); 6252 return -ENOMEM; 6253 } 6254 6255 for (i = 0; i < *group_cnt; i++) { 6256 struct r5worker_group *group; 6257 6258 group = &(*worker_groups)[i]; 6259 INIT_LIST_HEAD(&group->handle_list); 6260 group->conf = conf; 6261 group->workers = workers + i * cnt; 6262 6263 for (j = 0; j < cnt; j++) { 6264 struct r5worker *worker = group->workers + j; 6265 worker->group = group; 6266 INIT_WORK(&worker->work, raid5_do_work); 6267 6268 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6269 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6270 } 6271 } 6272 6273 return 0; 6274 } 6275 6276 static void free_thread_groups(struct r5conf *conf) 6277 { 6278 if (conf->worker_groups) 6279 kfree(conf->worker_groups[0].workers); 6280 kfree(conf->worker_groups); 6281 conf->worker_groups = NULL; 6282 } 6283 6284 static sector_t 6285 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6286 { 6287 struct r5conf *conf = mddev->private; 6288 6289 if (!sectors) 6290 sectors = mddev->dev_sectors; 6291 if (!raid_disks) 6292 /* size is defined by the smallest of previous and new size */ 6293 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6294 6295 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6296 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6297 return sectors * (raid_disks - conf->max_degraded); 6298 } 6299 6300 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6301 { 6302 safe_put_page(percpu->spare_page); 6303 if (percpu->scribble) 6304 flex_array_free(percpu->scribble); 6305 percpu->spare_page = NULL; 6306 percpu->scribble = NULL; 6307 } 6308 6309 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6310 { 6311 if (conf->level == 6 && !percpu->spare_page) 6312 percpu->spare_page = alloc_page(GFP_KERNEL); 6313 if (!percpu->scribble) 6314 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6315 conf->previous_raid_disks), 6316 max(conf->chunk_sectors, 6317 conf->prev_chunk_sectors) 6318 / STRIPE_SECTORS, 6319 GFP_KERNEL); 6320 6321 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6322 free_scratch_buffer(conf, percpu); 6323 return -ENOMEM; 6324 } 6325 6326 return 0; 6327 } 6328 6329 static void raid5_free_percpu(struct r5conf *conf) 6330 { 6331 unsigned long cpu; 6332 6333 if (!conf->percpu) 6334 return; 6335 6336 #ifdef CONFIG_HOTPLUG_CPU 6337 unregister_cpu_notifier(&conf->cpu_notify); 6338 #endif 6339 6340 get_online_cpus(); 6341 for_each_possible_cpu(cpu) 6342 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6343 put_online_cpus(); 6344 6345 free_percpu(conf->percpu); 6346 } 6347 6348 static void free_conf(struct r5conf *conf) 6349 { 6350 if (conf->log) 6351 r5l_exit_log(conf->log); 6352 if (conf->shrinker.seeks) 6353 unregister_shrinker(&conf->shrinker); 6354 6355 free_thread_groups(conf); 6356 shrink_stripes(conf); 6357 raid5_free_percpu(conf); 6358 kfree(conf->disks); 6359 kfree(conf->stripe_hashtbl); 6360 kfree(conf); 6361 } 6362 6363 #ifdef CONFIG_HOTPLUG_CPU 6364 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 6365 void *hcpu) 6366 { 6367 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 6368 long cpu = (long)hcpu; 6369 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6370 6371 switch (action) { 6372 case CPU_UP_PREPARE: 6373 case CPU_UP_PREPARE_FROZEN: 6374 if (alloc_scratch_buffer(conf, percpu)) { 6375 pr_err("%s: failed memory allocation for cpu%ld\n", 6376 __func__, cpu); 6377 return notifier_from_errno(-ENOMEM); 6378 } 6379 break; 6380 case CPU_DEAD: 6381 case CPU_DEAD_FROZEN: 6382 case CPU_UP_CANCELED: 6383 case CPU_UP_CANCELED_FROZEN: 6384 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6385 break; 6386 default: 6387 break; 6388 } 6389 return NOTIFY_OK; 6390 } 6391 #endif 6392 6393 static int raid5_alloc_percpu(struct r5conf *conf) 6394 { 6395 unsigned long cpu; 6396 int err = 0; 6397 6398 conf->percpu = alloc_percpu(struct raid5_percpu); 6399 if (!conf->percpu) 6400 return -ENOMEM; 6401 6402 #ifdef CONFIG_HOTPLUG_CPU 6403 conf->cpu_notify.notifier_call = raid456_cpu_notify; 6404 conf->cpu_notify.priority = 0; 6405 err = register_cpu_notifier(&conf->cpu_notify); 6406 if (err) 6407 return err; 6408 #endif 6409 6410 get_online_cpus(); 6411 for_each_present_cpu(cpu) { 6412 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6413 if (err) { 6414 pr_err("%s: failed memory allocation for cpu%ld\n", 6415 __func__, cpu); 6416 break; 6417 } 6418 } 6419 put_online_cpus(); 6420 6421 if (!err) { 6422 conf->scribble_disks = max(conf->raid_disks, 6423 conf->previous_raid_disks); 6424 conf->scribble_sectors = max(conf->chunk_sectors, 6425 conf->prev_chunk_sectors); 6426 } 6427 return err; 6428 } 6429 6430 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6431 struct shrink_control *sc) 6432 { 6433 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6434 unsigned long ret = SHRINK_STOP; 6435 6436 if (mutex_trylock(&conf->cache_size_mutex)) { 6437 ret= 0; 6438 while (ret < sc->nr_to_scan && 6439 conf->max_nr_stripes > conf->min_nr_stripes) { 6440 if (drop_one_stripe(conf) == 0) { 6441 ret = SHRINK_STOP; 6442 break; 6443 } 6444 ret++; 6445 } 6446 mutex_unlock(&conf->cache_size_mutex); 6447 } 6448 return ret; 6449 } 6450 6451 static unsigned long raid5_cache_count(struct shrinker *shrink, 6452 struct shrink_control *sc) 6453 { 6454 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6455 6456 if (conf->max_nr_stripes < conf->min_nr_stripes) 6457 /* unlikely, but not impossible */ 6458 return 0; 6459 return conf->max_nr_stripes - conf->min_nr_stripes; 6460 } 6461 6462 static struct r5conf *setup_conf(struct mddev *mddev) 6463 { 6464 struct r5conf *conf; 6465 int raid_disk, memory, max_disks; 6466 struct md_rdev *rdev; 6467 struct disk_info *disk; 6468 char pers_name[6]; 6469 int i; 6470 int group_cnt, worker_cnt_per_group; 6471 struct r5worker_group *new_group; 6472 6473 if (mddev->new_level != 5 6474 && mddev->new_level != 4 6475 && mddev->new_level != 6) { 6476 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6477 mdname(mddev), mddev->new_level); 6478 return ERR_PTR(-EIO); 6479 } 6480 if ((mddev->new_level == 5 6481 && !algorithm_valid_raid5(mddev->new_layout)) || 6482 (mddev->new_level == 6 6483 && !algorithm_valid_raid6(mddev->new_layout))) { 6484 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 6485 mdname(mddev), mddev->new_layout); 6486 return ERR_PTR(-EIO); 6487 } 6488 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6489 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6490 mdname(mddev), mddev->raid_disks); 6491 return ERR_PTR(-EINVAL); 6492 } 6493 6494 if (!mddev->new_chunk_sectors || 6495 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6496 !is_power_of_2(mddev->new_chunk_sectors)) { 6497 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 6498 mdname(mddev), mddev->new_chunk_sectors << 9); 6499 return ERR_PTR(-EINVAL); 6500 } 6501 6502 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6503 if (conf == NULL) 6504 goto abort; 6505 /* Don't enable multi-threading by default*/ 6506 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6507 &new_group)) { 6508 conf->group_cnt = group_cnt; 6509 conf->worker_cnt_per_group = worker_cnt_per_group; 6510 conf->worker_groups = new_group; 6511 } else 6512 goto abort; 6513 spin_lock_init(&conf->device_lock); 6514 seqcount_init(&conf->gen_lock); 6515 mutex_init(&conf->cache_size_mutex); 6516 init_waitqueue_head(&conf->wait_for_quiescent); 6517 init_waitqueue_head(&conf->wait_for_stripe); 6518 init_waitqueue_head(&conf->wait_for_overlap); 6519 INIT_LIST_HEAD(&conf->handle_list); 6520 INIT_LIST_HEAD(&conf->hold_list); 6521 INIT_LIST_HEAD(&conf->delayed_list); 6522 INIT_LIST_HEAD(&conf->bitmap_list); 6523 bio_list_init(&conf->return_bi); 6524 init_llist_head(&conf->released_stripes); 6525 atomic_set(&conf->active_stripes, 0); 6526 atomic_set(&conf->preread_active_stripes, 0); 6527 atomic_set(&conf->active_aligned_reads, 0); 6528 conf->bypass_threshold = BYPASS_THRESHOLD; 6529 conf->recovery_disabled = mddev->recovery_disabled - 1; 6530 6531 conf->raid_disks = mddev->raid_disks; 6532 if (mddev->reshape_position == MaxSector) 6533 conf->previous_raid_disks = mddev->raid_disks; 6534 else 6535 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6536 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6537 6538 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6539 GFP_KERNEL); 6540 if (!conf->disks) 6541 goto abort; 6542 6543 conf->mddev = mddev; 6544 6545 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6546 goto abort; 6547 6548 /* We init hash_locks[0] separately to that it can be used 6549 * as the reference lock in the spin_lock_nest_lock() call 6550 * in lock_all_device_hash_locks_irq in order to convince 6551 * lockdep that we know what we are doing. 6552 */ 6553 spin_lock_init(conf->hash_locks); 6554 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6555 spin_lock_init(conf->hash_locks + i); 6556 6557 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6558 INIT_LIST_HEAD(conf->inactive_list + i); 6559 6560 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6561 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6562 6563 conf->level = mddev->new_level; 6564 conf->chunk_sectors = mddev->new_chunk_sectors; 6565 if (raid5_alloc_percpu(conf) != 0) 6566 goto abort; 6567 6568 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6569 6570 rdev_for_each(rdev, mddev) { 6571 raid_disk = rdev->raid_disk; 6572 if (raid_disk >= max_disks 6573 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6574 continue; 6575 disk = conf->disks + raid_disk; 6576 6577 if (test_bit(Replacement, &rdev->flags)) { 6578 if (disk->replacement) 6579 goto abort; 6580 disk->replacement = rdev; 6581 } else { 6582 if (disk->rdev) 6583 goto abort; 6584 disk->rdev = rdev; 6585 } 6586 6587 if (test_bit(In_sync, &rdev->flags)) { 6588 char b[BDEVNAME_SIZE]; 6589 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 6590 " disk %d\n", 6591 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6592 } else if (rdev->saved_raid_disk != raid_disk) 6593 /* Cannot rely on bitmap to complete recovery */ 6594 conf->fullsync = 1; 6595 } 6596 6597 conf->level = mddev->new_level; 6598 if (conf->level == 6) { 6599 conf->max_degraded = 2; 6600 if (raid6_call.xor_syndrome) 6601 conf->rmw_level = PARITY_ENABLE_RMW; 6602 else 6603 conf->rmw_level = PARITY_DISABLE_RMW; 6604 } else { 6605 conf->max_degraded = 1; 6606 conf->rmw_level = PARITY_ENABLE_RMW; 6607 } 6608 conf->algorithm = mddev->new_layout; 6609 conf->reshape_progress = mddev->reshape_position; 6610 if (conf->reshape_progress != MaxSector) { 6611 conf->prev_chunk_sectors = mddev->chunk_sectors; 6612 conf->prev_algo = mddev->layout; 6613 } else { 6614 conf->prev_chunk_sectors = conf->chunk_sectors; 6615 conf->prev_algo = conf->algorithm; 6616 } 6617 6618 conf->min_nr_stripes = NR_STRIPES; 6619 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6620 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6621 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6622 if (grow_stripes(conf, conf->min_nr_stripes)) { 6623 printk(KERN_ERR 6624 "md/raid:%s: couldn't allocate %dkB for buffers\n", 6625 mdname(mddev), memory); 6626 goto abort; 6627 } else 6628 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 6629 mdname(mddev), memory); 6630 /* 6631 * Losing a stripe head costs more than the time to refill it, 6632 * it reduces the queue depth and so can hurt throughput. 6633 * So set it rather large, scaled by number of devices. 6634 */ 6635 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6636 conf->shrinker.scan_objects = raid5_cache_scan; 6637 conf->shrinker.count_objects = raid5_cache_count; 6638 conf->shrinker.batch = 128; 6639 conf->shrinker.flags = 0; 6640 register_shrinker(&conf->shrinker); 6641 6642 sprintf(pers_name, "raid%d", mddev->new_level); 6643 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6644 if (!conf->thread) { 6645 printk(KERN_ERR 6646 "md/raid:%s: couldn't allocate thread.\n", 6647 mdname(mddev)); 6648 goto abort; 6649 } 6650 6651 return conf; 6652 6653 abort: 6654 if (conf) { 6655 free_conf(conf); 6656 return ERR_PTR(-EIO); 6657 } else 6658 return ERR_PTR(-ENOMEM); 6659 } 6660 6661 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6662 { 6663 switch (algo) { 6664 case ALGORITHM_PARITY_0: 6665 if (raid_disk < max_degraded) 6666 return 1; 6667 break; 6668 case ALGORITHM_PARITY_N: 6669 if (raid_disk >= raid_disks - max_degraded) 6670 return 1; 6671 break; 6672 case ALGORITHM_PARITY_0_6: 6673 if (raid_disk == 0 || 6674 raid_disk == raid_disks - 1) 6675 return 1; 6676 break; 6677 case ALGORITHM_LEFT_ASYMMETRIC_6: 6678 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6679 case ALGORITHM_LEFT_SYMMETRIC_6: 6680 case ALGORITHM_RIGHT_SYMMETRIC_6: 6681 if (raid_disk == raid_disks - 1) 6682 return 1; 6683 } 6684 return 0; 6685 } 6686 6687 static int raid5_run(struct mddev *mddev) 6688 { 6689 struct r5conf *conf; 6690 int working_disks = 0; 6691 int dirty_parity_disks = 0; 6692 struct md_rdev *rdev; 6693 struct md_rdev *journal_dev = NULL; 6694 sector_t reshape_offset = 0; 6695 int i; 6696 long long min_offset_diff = 0; 6697 int first = 1; 6698 6699 if (mddev->recovery_cp != MaxSector) 6700 printk(KERN_NOTICE "md/raid:%s: not clean" 6701 " -- starting background reconstruction\n", 6702 mdname(mddev)); 6703 6704 rdev_for_each(rdev, mddev) { 6705 long long diff; 6706 6707 if (test_bit(Journal, &rdev->flags)) { 6708 journal_dev = rdev; 6709 continue; 6710 } 6711 if (rdev->raid_disk < 0) 6712 continue; 6713 diff = (rdev->new_data_offset - rdev->data_offset); 6714 if (first) { 6715 min_offset_diff = diff; 6716 first = 0; 6717 } else if (mddev->reshape_backwards && 6718 diff < min_offset_diff) 6719 min_offset_diff = diff; 6720 else if (!mddev->reshape_backwards && 6721 diff > min_offset_diff) 6722 min_offset_diff = diff; 6723 } 6724 6725 if (mddev->reshape_position != MaxSector) { 6726 /* Check that we can continue the reshape. 6727 * Difficulties arise if the stripe we would write to 6728 * next is at or after the stripe we would read from next. 6729 * For a reshape that changes the number of devices, this 6730 * is only possible for a very short time, and mdadm makes 6731 * sure that time appears to have past before assembling 6732 * the array. So we fail if that time hasn't passed. 6733 * For a reshape that keeps the number of devices the same 6734 * mdadm must be monitoring the reshape can keeping the 6735 * critical areas read-only and backed up. It will start 6736 * the array in read-only mode, so we check for that. 6737 */ 6738 sector_t here_new, here_old; 6739 int old_disks; 6740 int max_degraded = (mddev->level == 6 ? 2 : 1); 6741 int chunk_sectors; 6742 int new_data_disks; 6743 6744 if (journal_dev) { 6745 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n", 6746 mdname(mddev)); 6747 return -EINVAL; 6748 } 6749 6750 if (mddev->new_level != mddev->level) { 6751 printk(KERN_ERR "md/raid:%s: unsupported reshape " 6752 "required - aborting.\n", 6753 mdname(mddev)); 6754 return -EINVAL; 6755 } 6756 old_disks = mddev->raid_disks - mddev->delta_disks; 6757 /* reshape_position must be on a new-stripe boundary, and one 6758 * further up in new geometry must map after here in old 6759 * geometry. 6760 * If the chunk sizes are different, then as we perform reshape 6761 * in units of the largest of the two, reshape_position needs 6762 * be a multiple of the largest chunk size times new data disks. 6763 */ 6764 here_new = mddev->reshape_position; 6765 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 6766 new_data_disks = mddev->raid_disks - max_degraded; 6767 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 6768 printk(KERN_ERR "md/raid:%s: reshape_position not " 6769 "on a stripe boundary\n", mdname(mddev)); 6770 return -EINVAL; 6771 } 6772 reshape_offset = here_new * chunk_sectors; 6773 /* here_new is the stripe we will write to */ 6774 here_old = mddev->reshape_position; 6775 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 6776 /* here_old is the first stripe that we might need to read 6777 * from */ 6778 if (mddev->delta_disks == 0) { 6779 /* We cannot be sure it is safe to start an in-place 6780 * reshape. It is only safe if user-space is monitoring 6781 * and taking constant backups. 6782 * mdadm always starts a situation like this in 6783 * readonly mode so it can take control before 6784 * allowing any writes. So just check for that. 6785 */ 6786 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6787 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6788 /* not really in-place - so OK */; 6789 else if (mddev->ro == 0) { 6790 printk(KERN_ERR "md/raid:%s: in-place reshape " 6791 "must be started in read-only mode " 6792 "- aborting\n", 6793 mdname(mddev)); 6794 return -EINVAL; 6795 } 6796 } else if (mddev->reshape_backwards 6797 ? (here_new * chunk_sectors + min_offset_diff <= 6798 here_old * chunk_sectors) 6799 : (here_new * chunk_sectors >= 6800 here_old * chunk_sectors + (-min_offset_diff))) { 6801 /* Reading from the same stripe as writing to - bad */ 6802 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6803 "auto-recovery - aborting.\n", 6804 mdname(mddev)); 6805 return -EINVAL; 6806 } 6807 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6808 mdname(mddev)); 6809 /* OK, we should be able to continue; */ 6810 } else { 6811 BUG_ON(mddev->level != mddev->new_level); 6812 BUG_ON(mddev->layout != mddev->new_layout); 6813 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6814 BUG_ON(mddev->delta_disks != 0); 6815 } 6816 6817 if (mddev->private == NULL) 6818 conf = setup_conf(mddev); 6819 else 6820 conf = mddev->private; 6821 6822 if (IS_ERR(conf)) 6823 return PTR_ERR(conf); 6824 6825 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) { 6826 printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n", 6827 mdname(mddev)); 6828 mddev->ro = 1; 6829 set_disk_ro(mddev->gendisk, 1); 6830 } 6831 6832 conf->min_offset_diff = min_offset_diff; 6833 mddev->thread = conf->thread; 6834 conf->thread = NULL; 6835 mddev->private = conf; 6836 6837 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6838 i++) { 6839 rdev = conf->disks[i].rdev; 6840 if (!rdev && conf->disks[i].replacement) { 6841 /* The replacement is all we have yet */ 6842 rdev = conf->disks[i].replacement; 6843 conf->disks[i].replacement = NULL; 6844 clear_bit(Replacement, &rdev->flags); 6845 conf->disks[i].rdev = rdev; 6846 } 6847 if (!rdev) 6848 continue; 6849 if (conf->disks[i].replacement && 6850 conf->reshape_progress != MaxSector) { 6851 /* replacements and reshape simply do not mix. */ 6852 printk(KERN_ERR "md: cannot handle concurrent " 6853 "replacement and reshape.\n"); 6854 goto abort; 6855 } 6856 if (test_bit(In_sync, &rdev->flags)) { 6857 working_disks++; 6858 continue; 6859 } 6860 /* This disc is not fully in-sync. However if it 6861 * just stored parity (beyond the recovery_offset), 6862 * when we don't need to be concerned about the 6863 * array being dirty. 6864 * When reshape goes 'backwards', we never have 6865 * partially completed devices, so we only need 6866 * to worry about reshape going forwards. 6867 */ 6868 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6869 if (mddev->major_version == 0 && 6870 mddev->minor_version > 90) 6871 rdev->recovery_offset = reshape_offset; 6872 6873 if (rdev->recovery_offset < reshape_offset) { 6874 /* We need to check old and new layout */ 6875 if (!only_parity(rdev->raid_disk, 6876 conf->algorithm, 6877 conf->raid_disks, 6878 conf->max_degraded)) 6879 continue; 6880 } 6881 if (!only_parity(rdev->raid_disk, 6882 conf->prev_algo, 6883 conf->previous_raid_disks, 6884 conf->max_degraded)) 6885 continue; 6886 dirty_parity_disks++; 6887 } 6888 6889 /* 6890 * 0 for a fully functional array, 1 or 2 for a degraded array. 6891 */ 6892 mddev->degraded = calc_degraded(conf); 6893 6894 if (has_failed(conf)) { 6895 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6896 " (%d/%d failed)\n", 6897 mdname(mddev), mddev->degraded, conf->raid_disks); 6898 goto abort; 6899 } 6900 6901 /* device size must be a multiple of chunk size */ 6902 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6903 mddev->resync_max_sectors = mddev->dev_sectors; 6904 6905 if (mddev->degraded > dirty_parity_disks && 6906 mddev->recovery_cp != MaxSector) { 6907 if (mddev->ok_start_degraded) 6908 printk(KERN_WARNING 6909 "md/raid:%s: starting dirty degraded array" 6910 " - data corruption possible.\n", 6911 mdname(mddev)); 6912 else { 6913 printk(KERN_ERR 6914 "md/raid:%s: cannot start dirty degraded array.\n", 6915 mdname(mddev)); 6916 goto abort; 6917 } 6918 } 6919 6920 if (mddev->degraded == 0) 6921 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6922 " devices, algorithm %d\n", mdname(mddev), conf->level, 6923 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6924 mddev->new_layout); 6925 else 6926 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6927 " out of %d devices, algorithm %d\n", 6928 mdname(mddev), conf->level, 6929 mddev->raid_disks - mddev->degraded, 6930 mddev->raid_disks, mddev->new_layout); 6931 6932 print_raid5_conf(conf); 6933 6934 if (conf->reshape_progress != MaxSector) { 6935 conf->reshape_safe = conf->reshape_progress; 6936 atomic_set(&conf->reshape_stripes, 0); 6937 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6938 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6939 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6940 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6941 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6942 "reshape"); 6943 } 6944 6945 /* Ok, everything is just fine now */ 6946 if (mddev->to_remove == &raid5_attrs_group) 6947 mddev->to_remove = NULL; 6948 else if (mddev->kobj.sd && 6949 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6950 printk(KERN_WARNING 6951 "raid5: failed to create sysfs attributes for %s\n", 6952 mdname(mddev)); 6953 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6954 6955 if (mddev->queue) { 6956 int chunk_size; 6957 bool discard_supported = true; 6958 /* read-ahead size must cover two whole stripes, which 6959 * is 2 * (datadisks) * chunksize where 'n' is the 6960 * number of raid devices 6961 */ 6962 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6963 int stripe = data_disks * 6964 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6965 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6966 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6967 6968 chunk_size = mddev->chunk_sectors << 9; 6969 blk_queue_io_min(mddev->queue, chunk_size); 6970 blk_queue_io_opt(mddev->queue, chunk_size * 6971 (conf->raid_disks - conf->max_degraded)); 6972 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6973 /* 6974 * We can only discard a whole stripe. It doesn't make sense to 6975 * discard data disk but write parity disk 6976 */ 6977 stripe = stripe * PAGE_SIZE; 6978 /* Round up to power of 2, as discard handling 6979 * currently assumes that */ 6980 while ((stripe-1) & stripe) 6981 stripe = (stripe | (stripe-1)) + 1; 6982 mddev->queue->limits.discard_alignment = stripe; 6983 mddev->queue->limits.discard_granularity = stripe; 6984 /* 6985 * unaligned part of discard request will be ignored, so can't 6986 * guarantee discard_zeroes_data 6987 */ 6988 mddev->queue->limits.discard_zeroes_data = 0; 6989 6990 blk_queue_max_write_same_sectors(mddev->queue, 0); 6991 6992 rdev_for_each(rdev, mddev) { 6993 disk_stack_limits(mddev->gendisk, rdev->bdev, 6994 rdev->data_offset << 9); 6995 disk_stack_limits(mddev->gendisk, rdev->bdev, 6996 rdev->new_data_offset << 9); 6997 /* 6998 * discard_zeroes_data is required, otherwise data 6999 * could be lost. Consider a scenario: discard a stripe 7000 * (the stripe could be inconsistent if 7001 * discard_zeroes_data is 0); write one disk of the 7002 * stripe (the stripe could be inconsistent again 7003 * depending on which disks are used to calculate 7004 * parity); the disk is broken; The stripe data of this 7005 * disk is lost. 7006 */ 7007 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 7008 !bdev_get_queue(rdev->bdev)-> 7009 limits.discard_zeroes_data) 7010 discard_supported = false; 7011 /* Unfortunately, discard_zeroes_data is not currently 7012 * a guarantee - just a hint. So we only allow DISCARD 7013 * if the sysadmin has confirmed that only safe devices 7014 * are in use by setting a module parameter. 7015 */ 7016 if (!devices_handle_discard_safely) { 7017 if (discard_supported) { 7018 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 7019 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 7020 } 7021 discard_supported = false; 7022 } 7023 } 7024 7025 if (discard_supported && 7026 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7027 mddev->queue->limits.discard_granularity >= stripe) 7028 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7029 mddev->queue); 7030 else 7031 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7032 mddev->queue); 7033 } 7034 7035 if (journal_dev) { 7036 char b[BDEVNAME_SIZE]; 7037 7038 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7039 mdname(mddev), bdevname(journal_dev->bdev, b)); 7040 r5l_init_log(conf, journal_dev); 7041 } 7042 7043 return 0; 7044 abort: 7045 md_unregister_thread(&mddev->thread); 7046 print_raid5_conf(conf); 7047 free_conf(conf); 7048 mddev->private = NULL; 7049 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7050 return -EIO; 7051 } 7052 7053 static void raid5_free(struct mddev *mddev, void *priv) 7054 { 7055 struct r5conf *conf = priv; 7056 7057 free_conf(conf); 7058 mddev->to_remove = &raid5_attrs_group; 7059 } 7060 7061 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7062 { 7063 struct r5conf *conf = mddev->private; 7064 int i; 7065 7066 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7067 conf->chunk_sectors / 2, mddev->layout); 7068 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7069 for (i = 0; i < conf->raid_disks; i++) 7070 seq_printf (seq, "%s", 7071 conf->disks[i].rdev && 7072 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 7073 seq_printf (seq, "]"); 7074 } 7075 7076 static void print_raid5_conf (struct r5conf *conf) 7077 { 7078 int i; 7079 struct disk_info *tmp; 7080 7081 printk(KERN_DEBUG "RAID conf printout:\n"); 7082 if (!conf) { 7083 printk("(conf==NULL)\n"); 7084 return; 7085 } 7086 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 7087 conf->raid_disks, 7088 conf->raid_disks - conf->mddev->degraded); 7089 7090 for (i = 0; i < conf->raid_disks; i++) { 7091 char b[BDEVNAME_SIZE]; 7092 tmp = conf->disks + i; 7093 if (tmp->rdev) 7094 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 7095 i, !test_bit(Faulty, &tmp->rdev->flags), 7096 bdevname(tmp->rdev->bdev, b)); 7097 } 7098 } 7099 7100 static int raid5_spare_active(struct mddev *mddev) 7101 { 7102 int i; 7103 struct r5conf *conf = mddev->private; 7104 struct disk_info *tmp; 7105 int count = 0; 7106 unsigned long flags; 7107 7108 for (i = 0; i < conf->raid_disks; i++) { 7109 tmp = conf->disks + i; 7110 if (tmp->replacement 7111 && tmp->replacement->recovery_offset == MaxSector 7112 && !test_bit(Faulty, &tmp->replacement->flags) 7113 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7114 /* Replacement has just become active. */ 7115 if (!tmp->rdev 7116 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7117 count++; 7118 if (tmp->rdev) { 7119 /* Replaced device not technically faulty, 7120 * but we need to be sure it gets removed 7121 * and never re-added. 7122 */ 7123 set_bit(Faulty, &tmp->rdev->flags); 7124 sysfs_notify_dirent_safe( 7125 tmp->rdev->sysfs_state); 7126 } 7127 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7128 } else if (tmp->rdev 7129 && tmp->rdev->recovery_offset == MaxSector 7130 && !test_bit(Faulty, &tmp->rdev->flags) 7131 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7132 count++; 7133 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7134 } 7135 } 7136 spin_lock_irqsave(&conf->device_lock, flags); 7137 mddev->degraded = calc_degraded(conf); 7138 spin_unlock_irqrestore(&conf->device_lock, flags); 7139 print_raid5_conf(conf); 7140 return count; 7141 } 7142 7143 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7144 { 7145 struct r5conf *conf = mddev->private; 7146 int err = 0; 7147 int number = rdev->raid_disk; 7148 struct md_rdev **rdevp; 7149 struct disk_info *p = conf->disks + number; 7150 7151 print_raid5_conf(conf); 7152 if (test_bit(Journal, &rdev->flags) && conf->log) { 7153 struct r5l_log *log; 7154 /* 7155 * we can't wait pending write here, as this is called in 7156 * raid5d, wait will deadlock. 7157 */ 7158 if (atomic_read(&mddev->writes_pending)) 7159 return -EBUSY; 7160 log = conf->log; 7161 conf->log = NULL; 7162 synchronize_rcu(); 7163 r5l_exit_log(log); 7164 return 0; 7165 } 7166 if (rdev == p->rdev) 7167 rdevp = &p->rdev; 7168 else if (rdev == p->replacement) 7169 rdevp = &p->replacement; 7170 else 7171 return 0; 7172 7173 if (number >= conf->raid_disks && 7174 conf->reshape_progress == MaxSector) 7175 clear_bit(In_sync, &rdev->flags); 7176 7177 if (test_bit(In_sync, &rdev->flags) || 7178 atomic_read(&rdev->nr_pending)) { 7179 err = -EBUSY; 7180 goto abort; 7181 } 7182 /* Only remove non-faulty devices if recovery 7183 * isn't possible. 7184 */ 7185 if (!test_bit(Faulty, &rdev->flags) && 7186 mddev->recovery_disabled != conf->recovery_disabled && 7187 !has_failed(conf) && 7188 (!p->replacement || p->replacement == rdev) && 7189 number < conf->raid_disks) { 7190 err = -EBUSY; 7191 goto abort; 7192 } 7193 *rdevp = NULL; 7194 synchronize_rcu(); 7195 if (atomic_read(&rdev->nr_pending)) { 7196 /* lost the race, try later */ 7197 err = -EBUSY; 7198 *rdevp = rdev; 7199 } else if (p->replacement) { 7200 /* We must have just cleared 'rdev' */ 7201 p->rdev = p->replacement; 7202 clear_bit(Replacement, &p->replacement->flags); 7203 smp_mb(); /* Make sure other CPUs may see both as identical 7204 * but will never see neither - if they are careful 7205 */ 7206 p->replacement = NULL; 7207 clear_bit(WantReplacement, &rdev->flags); 7208 } else 7209 /* We might have just removed the Replacement as faulty- 7210 * clear the bit just in case 7211 */ 7212 clear_bit(WantReplacement, &rdev->flags); 7213 abort: 7214 7215 print_raid5_conf(conf); 7216 return err; 7217 } 7218 7219 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7220 { 7221 struct r5conf *conf = mddev->private; 7222 int err = -EEXIST; 7223 int disk; 7224 struct disk_info *p; 7225 int first = 0; 7226 int last = conf->raid_disks - 1; 7227 7228 if (test_bit(Journal, &rdev->flags)) { 7229 char b[BDEVNAME_SIZE]; 7230 if (conf->log) 7231 return -EBUSY; 7232 7233 rdev->raid_disk = 0; 7234 /* 7235 * The array is in readonly mode if journal is missing, so no 7236 * write requests running. We should be safe 7237 */ 7238 r5l_init_log(conf, rdev); 7239 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7240 mdname(mddev), bdevname(rdev->bdev, b)); 7241 return 0; 7242 } 7243 if (mddev->recovery_disabled == conf->recovery_disabled) 7244 return -EBUSY; 7245 7246 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7247 /* no point adding a device */ 7248 return -EINVAL; 7249 7250 if (rdev->raid_disk >= 0) 7251 first = last = rdev->raid_disk; 7252 7253 /* 7254 * find the disk ... but prefer rdev->saved_raid_disk 7255 * if possible. 7256 */ 7257 if (rdev->saved_raid_disk >= 0 && 7258 rdev->saved_raid_disk >= first && 7259 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7260 first = rdev->saved_raid_disk; 7261 7262 for (disk = first; disk <= last; disk++) { 7263 p = conf->disks + disk; 7264 if (p->rdev == NULL) { 7265 clear_bit(In_sync, &rdev->flags); 7266 rdev->raid_disk = disk; 7267 err = 0; 7268 if (rdev->saved_raid_disk != disk) 7269 conf->fullsync = 1; 7270 rcu_assign_pointer(p->rdev, rdev); 7271 goto out; 7272 } 7273 } 7274 for (disk = first; disk <= last; disk++) { 7275 p = conf->disks + disk; 7276 if (test_bit(WantReplacement, &p->rdev->flags) && 7277 p->replacement == NULL) { 7278 clear_bit(In_sync, &rdev->flags); 7279 set_bit(Replacement, &rdev->flags); 7280 rdev->raid_disk = disk; 7281 err = 0; 7282 conf->fullsync = 1; 7283 rcu_assign_pointer(p->replacement, rdev); 7284 break; 7285 } 7286 } 7287 out: 7288 print_raid5_conf(conf); 7289 return err; 7290 } 7291 7292 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7293 { 7294 /* no resync is happening, and there is enough space 7295 * on all devices, so we can resize. 7296 * We need to make sure resync covers any new space. 7297 * If the array is shrinking we should possibly wait until 7298 * any io in the removed space completes, but it hardly seems 7299 * worth it. 7300 */ 7301 sector_t newsize; 7302 struct r5conf *conf = mddev->private; 7303 7304 if (conf->log) 7305 return -EINVAL; 7306 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7307 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7308 if (mddev->external_size && 7309 mddev->array_sectors > newsize) 7310 return -EINVAL; 7311 if (mddev->bitmap) { 7312 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7313 if (ret) 7314 return ret; 7315 } 7316 md_set_array_sectors(mddev, newsize); 7317 set_capacity(mddev->gendisk, mddev->array_sectors); 7318 revalidate_disk(mddev->gendisk); 7319 if (sectors > mddev->dev_sectors && 7320 mddev->recovery_cp > mddev->dev_sectors) { 7321 mddev->recovery_cp = mddev->dev_sectors; 7322 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7323 } 7324 mddev->dev_sectors = sectors; 7325 mddev->resync_max_sectors = sectors; 7326 return 0; 7327 } 7328 7329 static int check_stripe_cache(struct mddev *mddev) 7330 { 7331 /* Can only proceed if there are plenty of stripe_heads. 7332 * We need a minimum of one full stripe,, and for sensible progress 7333 * it is best to have about 4 times that. 7334 * If we require 4 times, then the default 256 4K stripe_heads will 7335 * allow for chunk sizes up to 256K, which is probably OK. 7336 * If the chunk size is greater, user-space should request more 7337 * stripe_heads first. 7338 */ 7339 struct r5conf *conf = mddev->private; 7340 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7341 > conf->min_nr_stripes || 7342 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7343 > conf->min_nr_stripes) { 7344 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7345 mdname(mddev), 7346 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7347 / STRIPE_SIZE)*4); 7348 return 0; 7349 } 7350 return 1; 7351 } 7352 7353 static int check_reshape(struct mddev *mddev) 7354 { 7355 struct r5conf *conf = mddev->private; 7356 7357 if (conf->log) 7358 return -EINVAL; 7359 if (mddev->delta_disks == 0 && 7360 mddev->new_layout == mddev->layout && 7361 mddev->new_chunk_sectors == mddev->chunk_sectors) 7362 return 0; /* nothing to do */ 7363 if (has_failed(conf)) 7364 return -EINVAL; 7365 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7366 /* We might be able to shrink, but the devices must 7367 * be made bigger first. 7368 * For raid6, 4 is the minimum size. 7369 * Otherwise 2 is the minimum 7370 */ 7371 int min = 2; 7372 if (mddev->level == 6) 7373 min = 4; 7374 if (mddev->raid_disks + mddev->delta_disks < min) 7375 return -EINVAL; 7376 } 7377 7378 if (!check_stripe_cache(mddev)) 7379 return -ENOSPC; 7380 7381 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7382 mddev->delta_disks > 0) 7383 if (resize_chunks(conf, 7384 conf->previous_raid_disks 7385 + max(0, mddev->delta_disks), 7386 max(mddev->new_chunk_sectors, 7387 mddev->chunk_sectors) 7388 ) < 0) 7389 return -ENOMEM; 7390 return resize_stripes(conf, (conf->previous_raid_disks 7391 + mddev->delta_disks)); 7392 } 7393 7394 static int raid5_start_reshape(struct mddev *mddev) 7395 { 7396 struct r5conf *conf = mddev->private; 7397 struct md_rdev *rdev; 7398 int spares = 0; 7399 unsigned long flags; 7400 7401 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7402 return -EBUSY; 7403 7404 if (!check_stripe_cache(mddev)) 7405 return -ENOSPC; 7406 7407 if (has_failed(conf)) 7408 return -EINVAL; 7409 7410 rdev_for_each(rdev, mddev) { 7411 if (!test_bit(In_sync, &rdev->flags) 7412 && !test_bit(Faulty, &rdev->flags)) 7413 spares++; 7414 } 7415 7416 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7417 /* Not enough devices even to make a degraded array 7418 * of that size 7419 */ 7420 return -EINVAL; 7421 7422 /* Refuse to reduce size of the array. Any reductions in 7423 * array size must be through explicit setting of array_size 7424 * attribute. 7425 */ 7426 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7427 < mddev->array_sectors) { 7428 printk(KERN_ERR "md/raid:%s: array size must be reduced " 7429 "before number of disks\n", mdname(mddev)); 7430 return -EINVAL; 7431 } 7432 7433 atomic_set(&conf->reshape_stripes, 0); 7434 spin_lock_irq(&conf->device_lock); 7435 write_seqcount_begin(&conf->gen_lock); 7436 conf->previous_raid_disks = conf->raid_disks; 7437 conf->raid_disks += mddev->delta_disks; 7438 conf->prev_chunk_sectors = conf->chunk_sectors; 7439 conf->chunk_sectors = mddev->new_chunk_sectors; 7440 conf->prev_algo = conf->algorithm; 7441 conf->algorithm = mddev->new_layout; 7442 conf->generation++; 7443 /* Code that selects data_offset needs to see the generation update 7444 * if reshape_progress has been set - so a memory barrier needed. 7445 */ 7446 smp_mb(); 7447 if (mddev->reshape_backwards) 7448 conf->reshape_progress = raid5_size(mddev, 0, 0); 7449 else 7450 conf->reshape_progress = 0; 7451 conf->reshape_safe = conf->reshape_progress; 7452 write_seqcount_end(&conf->gen_lock); 7453 spin_unlock_irq(&conf->device_lock); 7454 7455 /* Now make sure any requests that proceeded on the assumption 7456 * the reshape wasn't running - like Discard or Read - have 7457 * completed. 7458 */ 7459 mddev_suspend(mddev); 7460 mddev_resume(mddev); 7461 7462 /* Add some new drives, as many as will fit. 7463 * We know there are enough to make the newly sized array work. 7464 * Don't add devices if we are reducing the number of 7465 * devices in the array. This is because it is not possible 7466 * to correctly record the "partially reconstructed" state of 7467 * such devices during the reshape and confusion could result. 7468 */ 7469 if (mddev->delta_disks >= 0) { 7470 rdev_for_each(rdev, mddev) 7471 if (rdev->raid_disk < 0 && 7472 !test_bit(Faulty, &rdev->flags)) { 7473 if (raid5_add_disk(mddev, rdev) == 0) { 7474 if (rdev->raid_disk 7475 >= conf->previous_raid_disks) 7476 set_bit(In_sync, &rdev->flags); 7477 else 7478 rdev->recovery_offset = 0; 7479 7480 if (sysfs_link_rdev(mddev, rdev)) 7481 /* Failure here is OK */; 7482 } 7483 } else if (rdev->raid_disk >= conf->previous_raid_disks 7484 && !test_bit(Faulty, &rdev->flags)) { 7485 /* This is a spare that was manually added */ 7486 set_bit(In_sync, &rdev->flags); 7487 } 7488 7489 /* When a reshape changes the number of devices, 7490 * ->degraded is measured against the larger of the 7491 * pre and post number of devices. 7492 */ 7493 spin_lock_irqsave(&conf->device_lock, flags); 7494 mddev->degraded = calc_degraded(conf); 7495 spin_unlock_irqrestore(&conf->device_lock, flags); 7496 } 7497 mddev->raid_disks = conf->raid_disks; 7498 mddev->reshape_position = conf->reshape_progress; 7499 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7500 7501 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7502 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7503 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7504 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7505 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7506 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7507 "reshape"); 7508 if (!mddev->sync_thread) { 7509 mddev->recovery = 0; 7510 spin_lock_irq(&conf->device_lock); 7511 write_seqcount_begin(&conf->gen_lock); 7512 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7513 mddev->new_chunk_sectors = 7514 conf->chunk_sectors = conf->prev_chunk_sectors; 7515 mddev->new_layout = conf->algorithm = conf->prev_algo; 7516 rdev_for_each(rdev, mddev) 7517 rdev->new_data_offset = rdev->data_offset; 7518 smp_wmb(); 7519 conf->generation --; 7520 conf->reshape_progress = MaxSector; 7521 mddev->reshape_position = MaxSector; 7522 write_seqcount_end(&conf->gen_lock); 7523 spin_unlock_irq(&conf->device_lock); 7524 return -EAGAIN; 7525 } 7526 conf->reshape_checkpoint = jiffies; 7527 md_wakeup_thread(mddev->sync_thread); 7528 md_new_event(mddev); 7529 return 0; 7530 } 7531 7532 /* This is called from the reshape thread and should make any 7533 * changes needed in 'conf' 7534 */ 7535 static void end_reshape(struct r5conf *conf) 7536 { 7537 7538 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7539 struct md_rdev *rdev; 7540 7541 spin_lock_irq(&conf->device_lock); 7542 conf->previous_raid_disks = conf->raid_disks; 7543 rdev_for_each(rdev, conf->mddev) 7544 rdev->data_offset = rdev->new_data_offset; 7545 smp_wmb(); 7546 conf->reshape_progress = MaxSector; 7547 conf->mddev->reshape_position = MaxSector; 7548 spin_unlock_irq(&conf->device_lock); 7549 wake_up(&conf->wait_for_overlap); 7550 7551 /* read-ahead size must cover two whole stripes, which is 7552 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7553 */ 7554 if (conf->mddev->queue) { 7555 int data_disks = conf->raid_disks - conf->max_degraded; 7556 int stripe = data_disks * ((conf->chunk_sectors << 9) 7557 / PAGE_SIZE); 7558 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 7559 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 7560 } 7561 } 7562 } 7563 7564 /* This is called from the raid5d thread with mddev_lock held. 7565 * It makes config changes to the device. 7566 */ 7567 static void raid5_finish_reshape(struct mddev *mddev) 7568 { 7569 struct r5conf *conf = mddev->private; 7570 7571 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7572 7573 if (mddev->delta_disks > 0) { 7574 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7575 if (mddev->queue) { 7576 set_capacity(mddev->gendisk, mddev->array_sectors); 7577 revalidate_disk(mddev->gendisk); 7578 } 7579 } else { 7580 int d; 7581 spin_lock_irq(&conf->device_lock); 7582 mddev->degraded = calc_degraded(conf); 7583 spin_unlock_irq(&conf->device_lock); 7584 for (d = conf->raid_disks ; 7585 d < conf->raid_disks - mddev->delta_disks; 7586 d++) { 7587 struct md_rdev *rdev = conf->disks[d].rdev; 7588 if (rdev) 7589 clear_bit(In_sync, &rdev->flags); 7590 rdev = conf->disks[d].replacement; 7591 if (rdev) 7592 clear_bit(In_sync, &rdev->flags); 7593 } 7594 } 7595 mddev->layout = conf->algorithm; 7596 mddev->chunk_sectors = conf->chunk_sectors; 7597 mddev->reshape_position = MaxSector; 7598 mddev->delta_disks = 0; 7599 mddev->reshape_backwards = 0; 7600 } 7601 } 7602 7603 static void raid5_quiesce(struct mddev *mddev, int state) 7604 { 7605 struct r5conf *conf = mddev->private; 7606 7607 switch(state) { 7608 case 2: /* resume for a suspend */ 7609 wake_up(&conf->wait_for_overlap); 7610 break; 7611 7612 case 1: /* stop all writes */ 7613 lock_all_device_hash_locks_irq(conf); 7614 /* '2' tells resync/reshape to pause so that all 7615 * active stripes can drain 7616 */ 7617 conf->quiesce = 2; 7618 wait_event_cmd(conf->wait_for_quiescent, 7619 atomic_read(&conf->active_stripes) == 0 && 7620 atomic_read(&conf->active_aligned_reads) == 0, 7621 unlock_all_device_hash_locks_irq(conf), 7622 lock_all_device_hash_locks_irq(conf)); 7623 conf->quiesce = 1; 7624 unlock_all_device_hash_locks_irq(conf); 7625 /* allow reshape to continue */ 7626 wake_up(&conf->wait_for_overlap); 7627 break; 7628 7629 case 0: /* re-enable writes */ 7630 lock_all_device_hash_locks_irq(conf); 7631 conf->quiesce = 0; 7632 wake_up(&conf->wait_for_quiescent); 7633 wake_up(&conf->wait_for_overlap); 7634 unlock_all_device_hash_locks_irq(conf); 7635 break; 7636 } 7637 r5l_quiesce(conf->log, state); 7638 } 7639 7640 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7641 { 7642 struct r0conf *raid0_conf = mddev->private; 7643 sector_t sectors; 7644 7645 /* for raid0 takeover only one zone is supported */ 7646 if (raid0_conf->nr_strip_zones > 1) { 7647 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7648 mdname(mddev)); 7649 return ERR_PTR(-EINVAL); 7650 } 7651 7652 sectors = raid0_conf->strip_zone[0].zone_end; 7653 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7654 mddev->dev_sectors = sectors; 7655 mddev->new_level = level; 7656 mddev->new_layout = ALGORITHM_PARITY_N; 7657 mddev->new_chunk_sectors = mddev->chunk_sectors; 7658 mddev->raid_disks += 1; 7659 mddev->delta_disks = 1; 7660 /* make sure it will be not marked as dirty */ 7661 mddev->recovery_cp = MaxSector; 7662 7663 return setup_conf(mddev); 7664 } 7665 7666 static void *raid5_takeover_raid1(struct mddev *mddev) 7667 { 7668 int chunksect; 7669 7670 if (mddev->raid_disks != 2 || 7671 mddev->degraded > 1) 7672 return ERR_PTR(-EINVAL); 7673 7674 /* Should check if there are write-behind devices? */ 7675 7676 chunksect = 64*2; /* 64K by default */ 7677 7678 /* The array must be an exact multiple of chunksize */ 7679 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7680 chunksect >>= 1; 7681 7682 if ((chunksect<<9) < STRIPE_SIZE) 7683 /* array size does not allow a suitable chunk size */ 7684 return ERR_PTR(-EINVAL); 7685 7686 mddev->new_level = 5; 7687 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7688 mddev->new_chunk_sectors = chunksect; 7689 7690 return setup_conf(mddev); 7691 } 7692 7693 static void *raid5_takeover_raid6(struct mddev *mddev) 7694 { 7695 int new_layout; 7696 7697 switch (mddev->layout) { 7698 case ALGORITHM_LEFT_ASYMMETRIC_6: 7699 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7700 break; 7701 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7702 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7703 break; 7704 case ALGORITHM_LEFT_SYMMETRIC_6: 7705 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7706 break; 7707 case ALGORITHM_RIGHT_SYMMETRIC_6: 7708 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7709 break; 7710 case ALGORITHM_PARITY_0_6: 7711 new_layout = ALGORITHM_PARITY_0; 7712 break; 7713 case ALGORITHM_PARITY_N: 7714 new_layout = ALGORITHM_PARITY_N; 7715 break; 7716 default: 7717 return ERR_PTR(-EINVAL); 7718 } 7719 mddev->new_level = 5; 7720 mddev->new_layout = new_layout; 7721 mddev->delta_disks = -1; 7722 mddev->raid_disks -= 1; 7723 return setup_conf(mddev); 7724 } 7725 7726 static int raid5_check_reshape(struct mddev *mddev) 7727 { 7728 /* For a 2-drive array, the layout and chunk size can be changed 7729 * immediately as not restriping is needed. 7730 * For larger arrays we record the new value - after validation 7731 * to be used by a reshape pass. 7732 */ 7733 struct r5conf *conf = mddev->private; 7734 int new_chunk = mddev->new_chunk_sectors; 7735 7736 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 7737 return -EINVAL; 7738 if (new_chunk > 0) { 7739 if (!is_power_of_2(new_chunk)) 7740 return -EINVAL; 7741 if (new_chunk < (PAGE_SIZE>>9)) 7742 return -EINVAL; 7743 if (mddev->array_sectors & (new_chunk-1)) 7744 /* not factor of array size */ 7745 return -EINVAL; 7746 } 7747 7748 /* They look valid */ 7749 7750 if (mddev->raid_disks == 2) { 7751 /* can make the change immediately */ 7752 if (mddev->new_layout >= 0) { 7753 conf->algorithm = mddev->new_layout; 7754 mddev->layout = mddev->new_layout; 7755 } 7756 if (new_chunk > 0) { 7757 conf->chunk_sectors = new_chunk ; 7758 mddev->chunk_sectors = new_chunk; 7759 } 7760 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7761 md_wakeup_thread(mddev->thread); 7762 } 7763 return check_reshape(mddev); 7764 } 7765 7766 static int raid6_check_reshape(struct mddev *mddev) 7767 { 7768 int new_chunk = mddev->new_chunk_sectors; 7769 7770 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 7771 return -EINVAL; 7772 if (new_chunk > 0) { 7773 if (!is_power_of_2(new_chunk)) 7774 return -EINVAL; 7775 if (new_chunk < (PAGE_SIZE >> 9)) 7776 return -EINVAL; 7777 if (mddev->array_sectors & (new_chunk-1)) 7778 /* not factor of array size */ 7779 return -EINVAL; 7780 } 7781 7782 /* They look valid */ 7783 return check_reshape(mddev); 7784 } 7785 7786 static void *raid5_takeover(struct mddev *mddev) 7787 { 7788 /* raid5 can take over: 7789 * raid0 - if there is only one strip zone - make it a raid4 layout 7790 * raid1 - if there are two drives. We need to know the chunk size 7791 * raid4 - trivial - just use a raid4 layout. 7792 * raid6 - Providing it is a *_6 layout 7793 */ 7794 if (mddev->level == 0) 7795 return raid45_takeover_raid0(mddev, 5); 7796 if (mddev->level == 1) 7797 return raid5_takeover_raid1(mddev); 7798 if (mddev->level == 4) { 7799 mddev->new_layout = ALGORITHM_PARITY_N; 7800 mddev->new_level = 5; 7801 return setup_conf(mddev); 7802 } 7803 if (mddev->level == 6) 7804 return raid5_takeover_raid6(mddev); 7805 7806 return ERR_PTR(-EINVAL); 7807 } 7808 7809 static void *raid4_takeover(struct mddev *mddev) 7810 { 7811 /* raid4 can take over: 7812 * raid0 - if there is only one strip zone 7813 * raid5 - if layout is right 7814 */ 7815 if (mddev->level == 0) 7816 return raid45_takeover_raid0(mddev, 4); 7817 if (mddev->level == 5 && 7818 mddev->layout == ALGORITHM_PARITY_N) { 7819 mddev->new_layout = 0; 7820 mddev->new_level = 4; 7821 return setup_conf(mddev); 7822 } 7823 return ERR_PTR(-EINVAL); 7824 } 7825 7826 static struct md_personality raid5_personality; 7827 7828 static void *raid6_takeover(struct mddev *mddev) 7829 { 7830 /* Currently can only take over a raid5. We map the 7831 * personality to an equivalent raid6 personality 7832 * with the Q block at the end. 7833 */ 7834 int new_layout; 7835 7836 if (mddev->pers != &raid5_personality) 7837 return ERR_PTR(-EINVAL); 7838 if (mddev->degraded > 1) 7839 return ERR_PTR(-EINVAL); 7840 if (mddev->raid_disks > 253) 7841 return ERR_PTR(-EINVAL); 7842 if (mddev->raid_disks < 3) 7843 return ERR_PTR(-EINVAL); 7844 7845 switch (mddev->layout) { 7846 case ALGORITHM_LEFT_ASYMMETRIC: 7847 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7848 break; 7849 case ALGORITHM_RIGHT_ASYMMETRIC: 7850 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7851 break; 7852 case ALGORITHM_LEFT_SYMMETRIC: 7853 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7854 break; 7855 case ALGORITHM_RIGHT_SYMMETRIC: 7856 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7857 break; 7858 case ALGORITHM_PARITY_0: 7859 new_layout = ALGORITHM_PARITY_0_6; 7860 break; 7861 case ALGORITHM_PARITY_N: 7862 new_layout = ALGORITHM_PARITY_N; 7863 break; 7864 default: 7865 return ERR_PTR(-EINVAL); 7866 } 7867 mddev->new_level = 6; 7868 mddev->new_layout = new_layout; 7869 mddev->delta_disks = 1; 7870 mddev->raid_disks += 1; 7871 return setup_conf(mddev); 7872 } 7873 7874 static struct md_personality raid6_personality = 7875 { 7876 .name = "raid6", 7877 .level = 6, 7878 .owner = THIS_MODULE, 7879 .make_request = raid5_make_request, 7880 .run = raid5_run, 7881 .free = raid5_free, 7882 .status = raid5_status, 7883 .error_handler = raid5_error, 7884 .hot_add_disk = raid5_add_disk, 7885 .hot_remove_disk= raid5_remove_disk, 7886 .spare_active = raid5_spare_active, 7887 .sync_request = raid5_sync_request, 7888 .resize = raid5_resize, 7889 .size = raid5_size, 7890 .check_reshape = raid6_check_reshape, 7891 .start_reshape = raid5_start_reshape, 7892 .finish_reshape = raid5_finish_reshape, 7893 .quiesce = raid5_quiesce, 7894 .takeover = raid6_takeover, 7895 .congested = raid5_congested, 7896 }; 7897 static struct md_personality raid5_personality = 7898 { 7899 .name = "raid5", 7900 .level = 5, 7901 .owner = THIS_MODULE, 7902 .make_request = raid5_make_request, 7903 .run = raid5_run, 7904 .free = raid5_free, 7905 .status = raid5_status, 7906 .error_handler = raid5_error, 7907 .hot_add_disk = raid5_add_disk, 7908 .hot_remove_disk= raid5_remove_disk, 7909 .spare_active = raid5_spare_active, 7910 .sync_request = raid5_sync_request, 7911 .resize = raid5_resize, 7912 .size = raid5_size, 7913 .check_reshape = raid5_check_reshape, 7914 .start_reshape = raid5_start_reshape, 7915 .finish_reshape = raid5_finish_reshape, 7916 .quiesce = raid5_quiesce, 7917 .takeover = raid5_takeover, 7918 .congested = raid5_congested, 7919 }; 7920 7921 static struct md_personality raid4_personality = 7922 { 7923 .name = "raid4", 7924 .level = 4, 7925 .owner = THIS_MODULE, 7926 .make_request = raid5_make_request, 7927 .run = raid5_run, 7928 .free = raid5_free, 7929 .status = raid5_status, 7930 .error_handler = raid5_error, 7931 .hot_add_disk = raid5_add_disk, 7932 .hot_remove_disk= raid5_remove_disk, 7933 .spare_active = raid5_spare_active, 7934 .sync_request = raid5_sync_request, 7935 .resize = raid5_resize, 7936 .size = raid5_size, 7937 .check_reshape = raid5_check_reshape, 7938 .start_reshape = raid5_start_reshape, 7939 .finish_reshape = raid5_finish_reshape, 7940 .quiesce = raid5_quiesce, 7941 .takeover = raid4_takeover, 7942 .congested = raid5_congested, 7943 }; 7944 7945 static int __init raid5_init(void) 7946 { 7947 raid5_wq = alloc_workqueue("raid5wq", 7948 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7949 if (!raid5_wq) 7950 return -ENOMEM; 7951 register_md_personality(&raid6_personality); 7952 register_md_personality(&raid5_personality); 7953 register_md_personality(&raid4_personality); 7954 return 0; 7955 } 7956 7957 static void raid5_exit(void) 7958 { 7959 unregister_md_personality(&raid6_personality); 7960 unregister_md_personality(&raid5_personality); 7961 unregister_md_personality(&raid4_personality); 7962 destroy_workqueue(raid5_wq); 7963 } 7964 7965 module_init(raid5_init); 7966 module_exit(raid5_exit); 7967 MODULE_LICENSE("GPL"); 7968 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7969 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7970 MODULE_ALIAS("md-raid5"); 7971 MODULE_ALIAS("md-raid4"); 7972 MODULE_ALIAS("md-level-5"); 7973 MODULE_ALIAS("md-level-4"); 7974 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7975 MODULE_ALIAS("md-raid6"); 7976 MODULE_ALIAS("md-level-6"); 7977 7978 /* This used to be two separate modules, they were: */ 7979 MODULE_ALIAS("raid5"); 7980 MODULE_ALIAS("raid6"); 7981