xref: /openbmc/linux/drivers/md/raid5.c (revision 732a675a)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53 
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56 
57 /*
58  * Stripe cache
59  */
60 
61 #define NR_STRIPES		256
62 #define STRIPE_SIZE		PAGE_SIZE
63 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
65 #define	IO_THRESHOLD		1
66 #define BYPASS_THRESHOLD	1
67 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK		(NR_HASH - 1)
69 
70 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA	1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91 
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96 
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98 
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103 
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106 	disk++;
107 	return (disk < raid_disks) ? disk : 0;
108 }
109 
110 static void return_io(struct bio *return_bi)
111 {
112 	struct bio *bi = return_bi;
113 	while (bi) {
114 
115 		return_bi = bi->bi_next;
116 		bi->bi_next = NULL;
117 		bi->bi_size = 0;
118 		bi->bi_end_io(bi,
119 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
120 			        ? 0 : -EIO);
121 		bi = return_bi;
122 	}
123 }
124 
125 static void print_raid5_conf (raid5_conf_t *conf);
126 
127 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
128 {
129 	if (atomic_dec_and_test(&sh->count)) {
130 		BUG_ON(!list_empty(&sh->lru));
131 		BUG_ON(atomic_read(&conf->active_stripes)==0);
132 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
133 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
134 				list_add_tail(&sh->lru, &conf->delayed_list);
135 				blk_plug_device(conf->mddev->queue);
136 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
137 				   sh->bm_seq - conf->seq_write > 0) {
138 				list_add_tail(&sh->lru, &conf->bitmap_list);
139 				blk_plug_device(conf->mddev->queue);
140 			} else {
141 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
142 				list_add_tail(&sh->lru, &conf->handle_list);
143 			}
144 			md_wakeup_thread(conf->mddev->thread);
145 		} else {
146 			BUG_ON(sh->ops.pending);
147 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
148 				atomic_dec(&conf->preread_active_stripes);
149 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
150 					md_wakeup_thread(conf->mddev->thread);
151 			}
152 			atomic_dec(&conf->active_stripes);
153 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
154 				list_add_tail(&sh->lru, &conf->inactive_list);
155 				wake_up(&conf->wait_for_stripe);
156 				if (conf->retry_read_aligned)
157 					md_wakeup_thread(conf->mddev->thread);
158 			}
159 		}
160 	}
161 }
162 static void release_stripe(struct stripe_head *sh)
163 {
164 	raid5_conf_t *conf = sh->raid_conf;
165 	unsigned long flags;
166 
167 	spin_lock_irqsave(&conf->device_lock, flags);
168 	__release_stripe(conf, sh);
169 	spin_unlock_irqrestore(&conf->device_lock, flags);
170 }
171 
172 static inline void remove_hash(struct stripe_head *sh)
173 {
174 	pr_debug("remove_hash(), stripe %llu\n",
175 		(unsigned long long)sh->sector);
176 
177 	hlist_del_init(&sh->hash);
178 }
179 
180 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
181 {
182 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
183 
184 	pr_debug("insert_hash(), stripe %llu\n",
185 		(unsigned long long)sh->sector);
186 
187 	CHECK_DEVLOCK();
188 	hlist_add_head(&sh->hash, hp);
189 }
190 
191 
192 /* find an idle stripe, make sure it is unhashed, and return it. */
193 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
194 {
195 	struct stripe_head *sh = NULL;
196 	struct list_head *first;
197 
198 	CHECK_DEVLOCK();
199 	if (list_empty(&conf->inactive_list))
200 		goto out;
201 	first = conf->inactive_list.next;
202 	sh = list_entry(first, struct stripe_head, lru);
203 	list_del_init(first);
204 	remove_hash(sh);
205 	atomic_inc(&conf->active_stripes);
206 out:
207 	return sh;
208 }
209 
210 static void shrink_buffers(struct stripe_head *sh, int num)
211 {
212 	struct page *p;
213 	int i;
214 
215 	for (i=0; i<num ; i++) {
216 		p = sh->dev[i].page;
217 		if (!p)
218 			continue;
219 		sh->dev[i].page = NULL;
220 		put_page(p);
221 	}
222 }
223 
224 static int grow_buffers(struct stripe_head *sh, int num)
225 {
226 	int i;
227 
228 	for (i=0; i<num; i++) {
229 		struct page *page;
230 
231 		if (!(page = alloc_page(GFP_KERNEL))) {
232 			return 1;
233 		}
234 		sh->dev[i].page = page;
235 	}
236 	return 0;
237 }
238 
239 static void raid5_build_block (struct stripe_head *sh, int i);
240 
241 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
242 {
243 	raid5_conf_t *conf = sh->raid_conf;
244 	int i;
245 
246 	BUG_ON(atomic_read(&sh->count) != 0);
247 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
248 	BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
249 
250 	CHECK_DEVLOCK();
251 	pr_debug("init_stripe called, stripe %llu\n",
252 		(unsigned long long)sh->sector);
253 
254 	remove_hash(sh);
255 
256 	sh->sector = sector;
257 	sh->pd_idx = pd_idx;
258 	sh->state = 0;
259 
260 	sh->disks = disks;
261 
262 	for (i = sh->disks; i--; ) {
263 		struct r5dev *dev = &sh->dev[i];
264 
265 		if (dev->toread || dev->read || dev->towrite || dev->written ||
266 		    test_bit(R5_LOCKED, &dev->flags)) {
267 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
268 			       (unsigned long long)sh->sector, i, dev->toread,
269 			       dev->read, dev->towrite, dev->written,
270 			       test_bit(R5_LOCKED, &dev->flags));
271 			BUG();
272 		}
273 		dev->flags = 0;
274 		raid5_build_block(sh, i);
275 	}
276 	insert_hash(conf, sh);
277 }
278 
279 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
280 {
281 	struct stripe_head *sh;
282 	struct hlist_node *hn;
283 
284 	CHECK_DEVLOCK();
285 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
286 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
287 		if (sh->sector == sector && sh->disks == disks)
288 			return sh;
289 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
290 	return NULL;
291 }
292 
293 static void unplug_slaves(mddev_t *mddev);
294 static void raid5_unplug_device(struct request_queue *q);
295 
296 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
297 					     int pd_idx, int noblock)
298 {
299 	struct stripe_head *sh;
300 
301 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
302 
303 	spin_lock_irq(&conf->device_lock);
304 
305 	do {
306 		wait_event_lock_irq(conf->wait_for_stripe,
307 				    conf->quiesce == 0,
308 				    conf->device_lock, /* nothing */);
309 		sh = __find_stripe(conf, sector, disks);
310 		if (!sh) {
311 			if (!conf->inactive_blocked)
312 				sh = get_free_stripe(conf);
313 			if (noblock && sh == NULL)
314 				break;
315 			if (!sh) {
316 				conf->inactive_blocked = 1;
317 				wait_event_lock_irq(conf->wait_for_stripe,
318 						    !list_empty(&conf->inactive_list) &&
319 						    (atomic_read(&conf->active_stripes)
320 						     < (conf->max_nr_stripes *3/4)
321 						     || !conf->inactive_blocked),
322 						    conf->device_lock,
323 						    raid5_unplug_device(conf->mddev->queue)
324 					);
325 				conf->inactive_blocked = 0;
326 			} else
327 				init_stripe(sh, sector, pd_idx, disks);
328 		} else {
329 			if (atomic_read(&sh->count)) {
330 			  BUG_ON(!list_empty(&sh->lru));
331 			} else {
332 				if (!test_bit(STRIPE_HANDLE, &sh->state))
333 					atomic_inc(&conf->active_stripes);
334 				if (list_empty(&sh->lru) &&
335 				    !test_bit(STRIPE_EXPANDING, &sh->state))
336 					BUG();
337 				list_del_init(&sh->lru);
338 			}
339 		}
340 	} while (sh == NULL);
341 
342 	if (sh)
343 		atomic_inc(&sh->count);
344 
345 	spin_unlock_irq(&conf->device_lock);
346 	return sh;
347 }
348 
349 /* test_and_ack_op() ensures that we only dequeue an operation once */
350 #define test_and_ack_op(op, pend) \
351 do {							\
352 	if (test_bit(op, &sh->ops.pending) &&		\
353 		!test_bit(op, &sh->ops.complete)) {	\
354 		if (test_and_set_bit(op, &sh->ops.ack)) \
355 			clear_bit(op, &pend);		\
356 		else					\
357 			ack++;				\
358 	} else						\
359 		clear_bit(op, &pend);			\
360 } while (0)
361 
362 /* find new work to run, do not resubmit work that is already
363  * in flight
364  */
365 static unsigned long get_stripe_work(struct stripe_head *sh)
366 {
367 	unsigned long pending;
368 	int ack = 0;
369 
370 	pending = sh->ops.pending;
371 
372 	test_and_ack_op(STRIPE_OP_BIOFILL, pending);
373 	test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
374 	test_and_ack_op(STRIPE_OP_PREXOR, pending);
375 	test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
376 	test_and_ack_op(STRIPE_OP_POSTXOR, pending);
377 	test_and_ack_op(STRIPE_OP_CHECK, pending);
378 	if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
379 		ack++;
380 
381 	sh->ops.count -= ack;
382 	if (unlikely(sh->ops.count < 0)) {
383 		printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
384 			"ops.complete: %#lx\n", pending, sh->ops.pending,
385 			sh->ops.ack, sh->ops.complete);
386 		BUG();
387 	}
388 
389 	return pending;
390 }
391 
392 static void
393 raid5_end_read_request(struct bio *bi, int error);
394 static void
395 raid5_end_write_request(struct bio *bi, int error);
396 
397 static void ops_run_io(struct stripe_head *sh)
398 {
399 	raid5_conf_t *conf = sh->raid_conf;
400 	int i, disks = sh->disks;
401 
402 	might_sleep();
403 
404 	set_bit(STRIPE_IO_STARTED, &sh->state);
405 	for (i = disks; i--; ) {
406 		int rw;
407 		struct bio *bi;
408 		mdk_rdev_t *rdev;
409 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
410 			rw = WRITE;
411 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
412 			rw = READ;
413 		else
414 			continue;
415 
416 		bi = &sh->dev[i].req;
417 
418 		bi->bi_rw = rw;
419 		if (rw == WRITE)
420 			bi->bi_end_io = raid5_end_write_request;
421 		else
422 			bi->bi_end_io = raid5_end_read_request;
423 
424 		rcu_read_lock();
425 		rdev = rcu_dereference(conf->disks[i].rdev);
426 		if (rdev && test_bit(Faulty, &rdev->flags))
427 			rdev = NULL;
428 		if (rdev)
429 			atomic_inc(&rdev->nr_pending);
430 		rcu_read_unlock();
431 
432 		if (rdev) {
433 			if (test_bit(STRIPE_SYNCING, &sh->state) ||
434 				test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
435 				test_bit(STRIPE_EXPAND_READY, &sh->state))
436 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
437 
438 			bi->bi_bdev = rdev->bdev;
439 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
440 				__func__, (unsigned long long)sh->sector,
441 				bi->bi_rw, i);
442 			atomic_inc(&sh->count);
443 			bi->bi_sector = sh->sector + rdev->data_offset;
444 			bi->bi_flags = 1 << BIO_UPTODATE;
445 			bi->bi_vcnt = 1;
446 			bi->bi_max_vecs = 1;
447 			bi->bi_idx = 0;
448 			bi->bi_io_vec = &sh->dev[i].vec;
449 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
450 			bi->bi_io_vec[0].bv_offset = 0;
451 			bi->bi_size = STRIPE_SIZE;
452 			bi->bi_next = NULL;
453 			if (rw == WRITE &&
454 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
455 				atomic_add(STRIPE_SECTORS,
456 					&rdev->corrected_errors);
457 			generic_make_request(bi);
458 		} else {
459 			if (rw == WRITE)
460 				set_bit(STRIPE_DEGRADED, &sh->state);
461 			pr_debug("skip op %ld on disc %d for sector %llu\n",
462 				bi->bi_rw, i, (unsigned long long)sh->sector);
463 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
464 			set_bit(STRIPE_HANDLE, &sh->state);
465 		}
466 	}
467 }
468 
469 static struct dma_async_tx_descriptor *
470 async_copy_data(int frombio, struct bio *bio, struct page *page,
471 	sector_t sector, struct dma_async_tx_descriptor *tx)
472 {
473 	struct bio_vec *bvl;
474 	struct page *bio_page;
475 	int i;
476 	int page_offset;
477 
478 	if (bio->bi_sector >= sector)
479 		page_offset = (signed)(bio->bi_sector - sector) * 512;
480 	else
481 		page_offset = (signed)(sector - bio->bi_sector) * -512;
482 	bio_for_each_segment(bvl, bio, i) {
483 		int len = bio_iovec_idx(bio, i)->bv_len;
484 		int clen;
485 		int b_offset = 0;
486 
487 		if (page_offset < 0) {
488 			b_offset = -page_offset;
489 			page_offset += b_offset;
490 			len -= b_offset;
491 		}
492 
493 		if (len > 0 && page_offset + len > STRIPE_SIZE)
494 			clen = STRIPE_SIZE - page_offset;
495 		else
496 			clen = len;
497 
498 		if (clen > 0) {
499 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
500 			bio_page = bio_iovec_idx(bio, i)->bv_page;
501 			if (frombio)
502 				tx = async_memcpy(page, bio_page, page_offset,
503 					b_offset, clen,
504 					ASYNC_TX_DEP_ACK,
505 					tx, NULL, NULL);
506 			else
507 				tx = async_memcpy(bio_page, page, b_offset,
508 					page_offset, clen,
509 					ASYNC_TX_DEP_ACK,
510 					tx, NULL, NULL);
511 		}
512 		if (clen < len) /* hit end of page */
513 			break;
514 		page_offset +=  len;
515 	}
516 
517 	return tx;
518 }
519 
520 static void ops_complete_biofill(void *stripe_head_ref)
521 {
522 	struct stripe_head *sh = stripe_head_ref;
523 	struct bio *return_bi = NULL;
524 	raid5_conf_t *conf = sh->raid_conf;
525 	int i;
526 
527 	pr_debug("%s: stripe %llu\n", __func__,
528 		(unsigned long long)sh->sector);
529 
530 	/* clear completed biofills */
531 	for (i = sh->disks; i--; ) {
532 		struct r5dev *dev = &sh->dev[i];
533 
534 		/* acknowledge completion of a biofill operation */
535 		/* and check if we need to reply to a read request,
536 		 * new R5_Wantfill requests are held off until
537 		 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
538 		 */
539 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
540 			struct bio *rbi, *rbi2;
541 
542 			/* The access to dev->read is outside of the
543 			 * spin_lock_irq(&conf->device_lock), but is protected
544 			 * by the STRIPE_OP_BIOFILL pending bit
545 			 */
546 			BUG_ON(!dev->read);
547 			rbi = dev->read;
548 			dev->read = NULL;
549 			while (rbi && rbi->bi_sector <
550 				dev->sector + STRIPE_SECTORS) {
551 				rbi2 = r5_next_bio(rbi, dev->sector);
552 				spin_lock_irq(&conf->device_lock);
553 				if (--rbi->bi_phys_segments == 0) {
554 					rbi->bi_next = return_bi;
555 					return_bi = rbi;
556 				}
557 				spin_unlock_irq(&conf->device_lock);
558 				rbi = rbi2;
559 			}
560 		}
561 	}
562 	set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
563 
564 	return_io(return_bi);
565 
566 	set_bit(STRIPE_HANDLE, &sh->state);
567 	release_stripe(sh);
568 }
569 
570 static void ops_run_biofill(struct stripe_head *sh)
571 {
572 	struct dma_async_tx_descriptor *tx = NULL;
573 	raid5_conf_t *conf = sh->raid_conf;
574 	int i;
575 
576 	pr_debug("%s: stripe %llu\n", __func__,
577 		(unsigned long long)sh->sector);
578 
579 	for (i = sh->disks; i--; ) {
580 		struct r5dev *dev = &sh->dev[i];
581 		if (test_bit(R5_Wantfill, &dev->flags)) {
582 			struct bio *rbi;
583 			spin_lock_irq(&conf->device_lock);
584 			dev->read = rbi = dev->toread;
585 			dev->toread = NULL;
586 			spin_unlock_irq(&conf->device_lock);
587 			while (rbi && rbi->bi_sector <
588 				dev->sector + STRIPE_SECTORS) {
589 				tx = async_copy_data(0, rbi, dev->page,
590 					dev->sector, tx);
591 				rbi = r5_next_bio(rbi, dev->sector);
592 			}
593 		}
594 	}
595 
596 	atomic_inc(&sh->count);
597 	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
598 		ops_complete_biofill, sh);
599 }
600 
601 static void ops_complete_compute5(void *stripe_head_ref)
602 {
603 	struct stripe_head *sh = stripe_head_ref;
604 	int target = sh->ops.target;
605 	struct r5dev *tgt = &sh->dev[target];
606 
607 	pr_debug("%s: stripe %llu\n", __func__,
608 		(unsigned long long)sh->sector);
609 
610 	set_bit(R5_UPTODATE, &tgt->flags);
611 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
612 	clear_bit(R5_Wantcompute, &tgt->flags);
613 	set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
614 	set_bit(STRIPE_HANDLE, &sh->state);
615 	release_stripe(sh);
616 }
617 
618 static struct dma_async_tx_descriptor *
619 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
620 {
621 	/* kernel stack size limits the total number of disks */
622 	int disks = sh->disks;
623 	struct page *xor_srcs[disks];
624 	int target = sh->ops.target;
625 	struct r5dev *tgt = &sh->dev[target];
626 	struct page *xor_dest = tgt->page;
627 	int count = 0;
628 	struct dma_async_tx_descriptor *tx;
629 	int i;
630 
631 	pr_debug("%s: stripe %llu block: %d\n",
632 		__func__, (unsigned long long)sh->sector, target);
633 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
634 
635 	for (i = disks; i--; )
636 		if (i != target)
637 			xor_srcs[count++] = sh->dev[i].page;
638 
639 	atomic_inc(&sh->count);
640 
641 	if (unlikely(count == 1))
642 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
643 			0, NULL, ops_complete_compute5, sh);
644 	else
645 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
646 			ASYNC_TX_XOR_ZERO_DST, NULL,
647 			ops_complete_compute5, sh);
648 
649 	/* ack now if postxor is not set to be run */
650 	if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
651 		async_tx_ack(tx);
652 
653 	return tx;
654 }
655 
656 static void ops_complete_prexor(void *stripe_head_ref)
657 {
658 	struct stripe_head *sh = stripe_head_ref;
659 
660 	pr_debug("%s: stripe %llu\n", __func__,
661 		(unsigned long long)sh->sector);
662 
663 	set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
664 }
665 
666 static struct dma_async_tx_descriptor *
667 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
668 {
669 	/* kernel stack size limits the total number of disks */
670 	int disks = sh->disks;
671 	struct page *xor_srcs[disks];
672 	int count = 0, pd_idx = sh->pd_idx, i;
673 
674 	/* existing parity data subtracted */
675 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
676 
677 	pr_debug("%s: stripe %llu\n", __func__,
678 		(unsigned long long)sh->sector);
679 
680 	for (i = disks; i--; ) {
681 		struct r5dev *dev = &sh->dev[i];
682 		/* Only process blocks that are known to be uptodate */
683 		if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
684 			xor_srcs[count++] = dev->page;
685 	}
686 
687 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
688 		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
689 		ops_complete_prexor, sh);
690 
691 	return tx;
692 }
693 
694 static struct dma_async_tx_descriptor *
695 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
696 		 unsigned long pending)
697 {
698 	int disks = sh->disks;
699 	int pd_idx = sh->pd_idx, i;
700 
701 	/* check if prexor is active which means only process blocks
702 	 * that are part of a read-modify-write (Wantprexor)
703 	 */
704 	int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
705 
706 	pr_debug("%s: stripe %llu\n", __func__,
707 		(unsigned long long)sh->sector);
708 
709 	for (i = disks; i--; ) {
710 		struct r5dev *dev = &sh->dev[i];
711 		struct bio *chosen;
712 		int towrite;
713 
714 		towrite = 0;
715 		if (prexor) { /* rmw */
716 			if (dev->towrite &&
717 			    test_bit(R5_Wantprexor, &dev->flags))
718 				towrite = 1;
719 		} else { /* rcw */
720 			if (i != pd_idx && dev->towrite &&
721 				test_bit(R5_LOCKED, &dev->flags))
722 				towrite = 1;
723 		}
724 
725 		if (towrite) {
726 			struct bio *wbi;
727 
728 			spin_lock(&sh->lock);
729 			chosen = dev->towrite;
730 			dev->towrite = NULL;
731 			BUG_ON(dev->written);
732 			wbi = dev->written = chosen;
733 			spin_unlock(&sh->lock);
734 
735 			while (wbi && wbi->bi_sector <
736 				dev->sector + STRIPE_SECTORS) {
737 				tx = async_copy_data(1, wbi, dev->page,
738 					dev->sector, tx);
739 				wbi = r5_next_bio(wbi, dev->sector);
740 			}
741 		}
742 	}
743 
744 	return tx;
745 }
746 
747 static void ops_complete_postxor(void *stripe_head_ref)
748 {
749 	struct stripe_head *sh = stripe_head_ref;
750 
751 	pr_debug("%s: stripe %llu\n", __func__,
752 		(unsigned long long)sh->sector);
753 
754 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
755 	set_bit(STRIPE_HANDLE, &sh->state);
756 	release_stripe(sh);
757 }
758 
759 static void ops_complete_write(void *stripe_head_ref)
760 {
761 	struct stripe_head *sh = stripe_head_ref;
762 	int disks = sh->disks, i, pd_idx = sh->pd_idx;
763 
764 	pr_debug("%s: stripe %llu\n", __func__,
765 		(unsigned long long)sh->sector);
766 
767 	for (i = disks; i--; ) {
768 		struct r5dev *dev = &sh->dev[i];
769 		if (dev->written || i == pd_idx)
770 			set_bit(R5_UPTODATE, &dev->flags);
771 	}
772 
773 	set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
774 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
775 
776 	set_bit(STRIPE_HANDLE, &sh->state);
777 	release_stripe(sh);
778 }
779 
780 static void
781 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
782 		unsigned long pending)
783 {
784 	/* kernel stack size limits the total number of disks */
785 	int disks = sh->disks;
786 	struct page *xor_srcs[disks];
787 
788 	int count = 0, pd_idx = sh->pd_idx, i;
789 	struct page *xor_dest;
790 	int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
791 	unsigned long flags;
792 	dma_async_tx_callback callback;
793 
794 	pr_debug("%s: stripe %llu\n", __func__,
795 		(unsigned long long)sh->sector);
796 
797 	/* check if prexor is active which means only process blocks
798 	 * that are part of a read-modify-write (written)
799 	 */
800 	if (prexor) {
801 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
802 		for (i = disks; i--; ) {
803 			struct r5dev *dev = &sh->dev[i];
804 			if (dev->written)
805 				xor_srcs[count++] = dev->page;
806 		}
807 	} else {
808 		xor_dest = sh->dev[pd_idx].page;
809 		for (i = disks; i--; ) {
810 			struct r5dev *dev = &sh->dev[i];
811 			if (i != pd_idx)
812 				xor_srcs[count++] = dev->page;
813 		}
814 	}
815 
816 	/* check whether this postxor is part of a write */
817 	callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
818 		ops_complete_write : ops_complete_postxor;
819 
820 	/* 1/ if we prexor'd then the dest is reused as a source
821 	 * 2/ if we did not prexor then we are redoing the parity
822 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
823 	 * for the synchronous xor case
824 	 */
825 	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
826 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
827 
828 	atomic_inc(&sh->count);
829 
830 	if (unlikely(count == 1)) {
831 		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
832 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
833 			flags, tx, callback, sh);
834 	} else
835 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
836 			flags, tx, callback, sh);
837 }
838 
839 static void ops_complete_check(void *stripe_head_ref)
840 {
841 	struct stripe_head *sh = stripe_head_ref;
842 	int pd_idx = sh->pd_idx;
843 
844 	pr_debug("%s: stripe %llu\n", __func__,
845 		(unsigned long long)sh->sector);
846 
847 	if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
848 		sh->ops.zero_sum_result == 0)
849 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
850 
851 	set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
852 	set_bit(STRIPE_HANDLE, &sh->state);
853 	release_stripe(sh);
854 }
855 
856 static void ops_run_check(struct stripe_head *sh)
857 {
858 	/* kernel stack size limits the total number of disks */
859 	int disks = sh->disks;
860 	struct page *xor_srcs[disks];
861 	struct dma_async_tx_descriptor *tx;
862 
863 	int count = 0, pd_idx = sh->pd_idx, i;
864 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
865 
866 	pr_debug("%s: stripe %llu\n", __func__,
867 		(unsigned long long)sh->sector);
868 
869 	for (i = disks; i--; ) {
870 		struct r5dev *dev = &sh->dev[i];
871 		if (i != pd_idx)
872 			xor_srcs[count++] = dev->page;
873 	}
874 
875 	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
876 		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
877 
878 	if (tx)
879 		set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
880 	else
881 		clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
882 
883 	atomic_inc(&sh->count);
884 	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
885 		ops_complete_check, sh);
886 }
887 
888 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
889 {
890 	int overlap_clear = 0, i, disks = sh->disks;
891 	struct dma_async_tx_descriptor *tx = NULL;
892 
893 	if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
894 		ops_run_biofill(sh);
895 		overlap_clear++;
896 	}
897 
898 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
899 		tx = ops_run_compute5(sh, pending);
900 
901 	if (test_bit(STRIPE_OP_PREXOR, &pending))
902 		tx = ops_run_prexor(sh, tx);
903 
904 	if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
905 		tx = ops_run_biodrain(sh, tx, pending);
906 		overlap_clear++;
907 	}
908 
909 	if (test_bit(STRIPE_OP_POSTXOR, &pending))
910 		ops_run_postxor(sh, tx, pending);
911 
912 	if (test_bit(STRIPE_OP_CHECK, &pending))
913 		ops_run_check(sh);
914 
915 	if (test_bit(STRIPE_OP_IO, &pending))
916 		ops_run_io(sh);
917 
918 	if (overlap_clear)
919 		for (i = disks; i--; ) {
920 			struct r5dev *dev = &sh->dev[i];
921 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
922 				wake_up(&sh->raid_conf->wait_for_overlap);
923 		}
924 }
925 
926 static int grow_one_stripe(raid5_conf_t *conf)
927 {
928 	struct stripe_head *sh;
929 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
930 	if (!sh)
931 		return 0;
932 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
933 	sh->raid_conf = conf;
934 	spin_lock_init(&sh->lock);
935 
936 	if (grow_buffers(sh, conf->raid_disks)) {
937 		shrink_buffers(sh, conf->raid_disks);
938 		kmem_cache_free(conf->slab_cache, sh);
939 		return 0;
940 	}
941 	sh->disks = conf->raid_disks;
942 	/* we just created an active stripe so... */
943 	atomic_set(&sh->count, 1);
944 	atomic_inc(&conf->active_stripes);
945 	INIT_LIST_HEAD(&sh->lru);
946 	release_stripe(sh);
947 	return 1;
948 }
949 
950 static int grow_stripes(raid5_conf_t *conf, int num)
951 {
952 	struct kmem_cache *sc;
953 	int devs = conf->raid_disks;
954 
955 	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
956 	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
957 	conf->active_name = 0;
958 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
959 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
960 			       0, 0, NULL);
961 	if (!sc)
962 		return 1;
963 	conf->slab_cache = sc;
964 	conf->pool_size = devs;
965 	while (num--)
966 		if (!grow_one_stripe(conf))
967 			return 1;
968 	return 0;
969 }
970 
971 #ifdef CONFIG_MD_RAID5_RESHAPE
972 static int resize_stripes(raid5_conf_t *conf, int newsize)
973 {
974 	/* Make all the stripes able to hold 'newsize' devices.
975 	 * New slots in each stripe get 'page' set to a new page.
976 	 *
977 	 * This happens in stages:
978 	 * 1/ create a new kmem_cache and allocate the required number of
979 	 *    stripe_heads.
980 	 * 2/ gather all the old stripe_heads and tranfer the pages across
981 	 *    to the new stripe_heads.  This will have the side effect of
982 	 *    freezing the array as once all stripe_heads have been collected,
983 	 *    no IO will be possible.  Old stripe heads are freed once their
984 	 *    pages have been transferred over, and the old kmem_cache is
985 	 *    freed when all stripes are done.
986 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
987 	 *    we simple return a failre status - no need to clean anything up.
988 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
989 	 *    If this fails, we don't bother trying the shrink the
990 	 *    stripe_heads down again, we just leave them as they are.
991 	 *    As each stripe_head is processed the new one is released into
992 	 *    active service.
993 	 *
994 	 * Once step2 is started, we cannot afford to wait for a write,
995 	 * so we use GFP_NOIO allocations.
996 	 */
997 	struct stripe_head *osh, *nsh;
998 	LIST_HEAD(newstripes);
999 	struct disk_info *ndisks;
1000 	int err = 0;
1001 	struct kmem_cache *sc;
1002 	int i;
1003 
1004 	if (newsize <= conf->pool_size)
1005 		return 0; /* never bother to shrink */
1006 
1007 	md_allow_write(conf->mddev);
1008 
1009 	/* Step 1 */
1010 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1011 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1012 			       0, 0, NULL);
1013 	if (!sc)
1014 		return -ENOMEM;
1015 
1016 	for (i = conf->max_nr_stripes; i; i--) {
1017 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1018 		if (!nsh)
1019 			break;
1020 
1021 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1022 
1023 		nsh->raid_conf = conf;
1024 		spin_lock_init(&nsh->lock);
1025 
1026 		list_add(&nsh->lru, &newstripes);
1027 	}
1028 	if (i) {
1029 		/* didn't get enough, give up */
1030 		while (!list_empty(&newstripes)) {
1031 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1032 			list_del(&nsh->lru);
1033 			kmem_cache_free(sc, nsh);
1034 		}
1035 		kmem_cache_destroy(sc);
1036 		return -ENOMEM;
1037 	}
1038 	/* Step 2 - Must use GFP_NOIO now.
1039 	 * OK, we have enough stripes, start collecting inactive
1040 	 * stripes and copying them over
1041 	 */
1042 	list_for_each_entry(nsh, &newstripes, lru) {
1043 		spin_lock_irq(&conf->device_lock);
1044 		wait_event_lock_irq(conf->wait_for_stripe,
1045 				    !list_empty(&conf->inactive_list),
1046 				    conf->device_lock,
1047 				    unplug_slaves(conf->mddev)
1048 			);
1049 		osh = get_free_stripe(conf);
1050 		spin_unlock_irq(&conf->device_lock);
1051 		atomic_set(&nsh->count, 1);
1052 		for(i=0; i<conf->pool_size; i++)
1053 			nsh->dev[i].page = osh->dev[i].page;
1054 		for( ; i<newsize; i++)
1055 			nsh->dev[i].page = NULL;
1056 		kmem_cache_free(conf->slab_cache, osh);
1057 	}
1058 	kmem_cache_destroy(conf->slab_cache);
1059 
1060 	/* Step 3.
1061 	 * At this point, we are holding all the stripes so the array
1062 	 * is completely stalled, so now is a good time to resize
1063 	 * conf->disks.
1064 	 */
1065 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1066 	if (ndisks) {
1067 		for (i=0; i<conf->raid_disks; i++)
1068 			ndisks[i] = conf->disks[i];
1069 		kfree(conf->disks);
1070 		conf->disks = ndisks;
1071 	} else
1072 		err = -ENOMEM;
1073 
1074 	/* Step 4, return new stripes to service */
1075 	while(!list_empty(&newstripes)) {
1076 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1077 		list_del_init(&nsh->lru);
1078 		for (i=conf->raid_disks; i < newsize; i++)
1079 			if (nsh->dev[i].page == NULL) {
1080 				struct page *p = alloc_page(GFP_NOIO);
1081 				nsh->dev[i].page = p;
1082 				if (!p)
1083 					err = -ENOMEM;
1084 			}
1085 		release_stripe(nsh);
1086 	}
1087 	/* critical section pass, GFP_NOIO no longer needed */
1088 
1089 	conf->slab_cache = sc;
1090 	conf->active_name = 1-conf->active_name;
1091 	conf->pool_size = newsize;
1092 	return err;
1093 }
1094 #endif
1095 
1096 static int drop_one_stripe(raid5_conf_t *conf)
1097 {
1098 	struct stripe_head *sh;
1099 
1100 	spin_lock_irq(&conf->device_lock);
1101 	sh = get_free_stripe(conf);
1102 	spin_unlock_irq(&conf->device_lock);
1103 	if (!sh)
1104 		return 0;
1105 	BUG_ON(atomic_read(&sh->count));
1106 	shrink_buffers(sh, conf->pool_size);
1107 	kmem_cache_free(conf->slab_cache, sh);
1108 	atomic_dec(&conf->active_stripes);
1109 	return 1;
1110 }
1111 
1112 static void shrink_stripes(raid5_conf_t *conf)
1113 {
1114 	while (drop_one_stripe(conf))
1115 		;
1116 
1117 	if (conf->slab_cache)
1118 		kmem_cache_destroy(conf->slab_cache);
1119 	conf->slab_cache = NULL;
1120 }
1121 
1122 static void raid5_end_read_request(struct bio * bi, int error)
1123 {
1124  	struct stripe_head *sh = bi->bi_private;
1125 	raid5_conf_t *conf = sh->raid_conf;
1126 	int disks = sh->disks, i;
1127 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1128 	char b[BDEVNAME_SIZE];
1129 	mdk_rdev_t *rdev;
1130 
1131 
1132 	for (i=0 ; i<disks; i++)
1133 		if (bi == &sh->dev[i].req)
1134 			break;
1135 
1136 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1137 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1138 		uptodate);
1139 	if (i == disks) {
1140 		BUG();
1141 		return;
1142 	}
1143 
1144 	if (uptodate) {
1145 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1146 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1147 			rdev = conf->disks[i].rdev;
1148 			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1149 				  " (%lu sectors at %llu on %s)\n",
1150 				  mdname(conf->mddev), STRIPE_SECTORS,
1151 				  (unsigned long long)(sh->sector
1152 						       + rdev->data_offset),
1153 				  bdevname(rdev->bdev, b));
1154 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1155 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1156 		}
1157 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1158 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1159 	} else {
1160 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1161 		int retry = 0;
1162 		rdev = conf->disks[i].rdev;
1163 
1164 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1165 		atomic_inc(&rdev->read_errors);
1166 		if (conf->mddev->degraded)
1167 			printk_rl(KERN_WARNING
1168 				  "raid5:%s: read error not correctable "
1169 				  "(sector %llu on %s).\n",
1170 				  mdname(conf->mddev),
1171 				  (unsigned long long)(sh->sector
1172 						       + rdev->data_offset),
1173 				  bdn);
1174 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1175 			/* Oh, no!!! */
1176 			printk_rl(KERN_WARNING
1177 				  "raid5:%s: read error NOT corrected!! "
1178 				  "(sector %llu on %s).\n",
1179 				  mdname(conf->mddev),
1180 				  (unsigned long long)(sh->sector
1181 						       + rdev->data_offset),
1182 				  bdn);
1183 		else if (atomic_read(&rdev->read_errors)
1184 			 > conf->max_nr_stripes)
1185 			printk(KERN_WARNING
1186 			       "raid5:%s: Too many read errors, failing device %s.\n",
1187 			       mdname(conf->mddev), bdn);
1188 		else
1189 			retry = 1;
1190 		if (retry)
1191 			set_bit(R5_ReadError, &sh->dev[i].flags);
1192 		else {
1193 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1194 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1195 			md_error(conf->mddev, rdev);
1196 		}
1197 	}
1198 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1199 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1200 	set_bit(STRIPE_HANDLE, &sh->state);
1201 	release_stripe(sh);
1202 }
1203 
1204 static void raid5_end_write_request (struct bio *bi, int error)
1205 {
1206  	struct stripe_head *sh = bi->bi_private;
1207 	raid5_conf_t *conf = sh->raid_conf;
1208 	int disks = sh->disks, i;
1209 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1210 
1211 	for (i=0 ; i<disks; i++)
1212 		if (bi == &sh->dev[i].req)
1213 			break;
1214 
1215 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1216 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1217 		uptodate);
1218 	if (i == disks) {
1219 		BUG();
1220 		return;
1221 	}
1222 
1223 	if (!uptodate)
1224 		md_error(conf->mddev, conf->disks[i].rdev);
1225 
1226 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1227 
1228 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1229 	set_bit(STRIPE_HANDLE, &sh->state);
1230 	release_stripe(sh);
1231 }
1232 
1233 
1234 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1235 
1236 static void raid5_build_block (struct stripe_head *sh, int i)
1237 {
1238 	struct r5dev *dev = &sh->dev[i];
1239 
1240 	bio_init(&dev->req);
1241 	dev->req.bi_io_vec = &dev->vec;
1242 	dev->req.bi_vcnt++;
1243 	dev->req.bi_max_vecs++;
1244 	dev->vec.bv_page = dev->page;
1245 	dev->vec.bv_len = STRIPE_SIZE;
1246 	dev->vec.bv_offset = 0;
1247 
1248 	dev->req.bi_sector = sh->sector;
1249 	dev->req.bi_private = sh;
1250 
1251 	dev->flags = 0;
1252 	dev->sector = compute_blocknr(sh, i);
1253 }
1254 
1255 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1256 {
1257 	char b[BDEVNAME_SIZE];
1258 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1259 	pr_debug("raid5: error called\n");
1260 
1261 	if (!test_bit(Faulty, &rdev->flags)) {
1262 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1263 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1264 			unsigned long flags;
1265 			spin_lock_irqsave(&conf->device_lock, flags);
1266 			mddev->degraded++;
1267 			spin_unlock_irqrestore(&conf->device_lock, flags);
1268 			/*
1269 			 * if recovery was running, make sure it aborts.
1270 			 */
1271 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1272 		}
1273 		set_bit(Faulty, &rdev->flags);
1274 		printk (KERN_ALERT
1275 			"raid5: Disk failure on %s, disabling device.\n"
1276 			"raid5: Operation continuing on %d devices.\n",
1277 			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1278 	}
1279 }
1280 
1281 /*
1282  * Input: a 'big' sector number,
1283  * Output: index of the data and parity disk, and the sector # in them.
1284  */
1285 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1286 			unsigned int data_disks, unsigned int * dd_idx,
1287 			unsigned int * pd_idx, raid5_conf_t *conf)
1288 {
1289 	long stripe;
1290 	unsigned long chunk_number;
1291 	unsigned int chunk_offset;
1292 	sector_t new_sector;
1293 	int sectors_per_chunk = conf->chunk_size >> 9;
1294 
1295 	/* First compute the information on this sector */
1296 
1297 	/*
1298 	 * Compute the chunk number and the sector offset inside the chunk
1299 	 */
1300 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1301 	chunk_number = r_sector;
1302 	BUG_ON(r_sector != chunk_number);
1303 
1304 	/*
1305 	 * Compute the stripe number
1306 	 */
1307 	stripe = chunk_number / data_disks;
1308 
1309 	/*
1310 	 * Compute the data disk and parity disk indexes inside the stripe
1311 	 */
1312 	*dd_idx = chunk_number % data_disks;
1313 
1314 	/*
1315 	 * Select the parity disk based on the user selected algorithm.
1316 	 */
1317 	switch(conf->level) {
1318 	case 4:
1319 		*pd_idx = data_disks;
1320 		break;
1321 	case 5:
1322 		switch (conf->algorithm) {
1323 		case ALGORITHM_LEFT_ASYMMETRIC:
1324 			*pd_idx = data_disks - stripe % raid_disks;
1325 			if (*dd_idx >= *pd_idx)
1326 				(*dd_idx)++;
1327 			break;
1328 		case ALGORITHM_RIGHT_ASYMMETRIC:
1329 			*pd_idx = stripe % raid_disks;
1330 			if (*dd_idx >= *pd_idx)
1331 				(*dd_idx)++;
1332 			break;
1333 		case ALGORITHM_LEFT_SYMMETRIC:
1334 			*pd_idx = data_disks - stripe % raid_disks;
1335 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1336 			break;
1337 		case ALGORITHM_RIGHT_SYMMETRIC:
1338 			*pd_idx = stripe % raid_disks;
1339 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1340 			break;
1341 		default:
1342 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1343 				conf->algorithm);
1344 		}
1345 		break;
1346 	case 6:
1347 
1348 		/**** FIX THIS ****/
1349 		switch (conf->algorithm) {
1350 		case ALGORITHM_LEFT_ASYMMETRIC:
1351 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352 			if (*pd_idx == raid_disks-1)
1353 				(*dd_idx)++; 	/* Q D D D P */
1354 			else if (*dd_idx >= *pd_idx)
1355 				(*dd_idx) += 2; /* D D P Q D */
1356 			break;
1357 		case ALGORITHM_RIGHT_ASYMMETRIC:
1358 			*pd_idx = stripe % raid_disks;
1359 			if (*pd_idx == raid_disks-1)
1360 				(*dd_idx)++; 	/* Q D D D P */
1361 			else if (*dd_idx >= *pd_idx)
1362 				(*dd_idx) += 2; /* D D P Q D */
1363 			break;
1364 		case ALGORITHM_LEFT_SYMMETRIC:
1365 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1366 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1367 			break;
1368 		case ALGORITHM_RIGHT_SYMMETRIC:
1369 			*pd_idx = stripe % raid_disks;
1370 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1371 			break;
1372 		default:
1373 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1374 				conf->algorithm);
1375 		}
1376 		break;
1377 	}
1378 
1379 	/*
1380 	 * Finally, compute the new sector number
1381 	 */
1382 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1383 	return new_sector;
1384 }
1385 
1386 
1387 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1388 {
1389 	raid5_conf_t *conf = sh->raid_conf;
1390 	int raid_disks = sh->disks;
1391 	int data_disks = raid_disks - conf->max_degraded;
1392 	sector_t new_sector = sh->sector, check;
1393 	int sectors_per_chunk = conf->chunk_size >> 9;
1394 	sector_t stripe;
1395 	int chunk_offset;
1396 	int chunk_number, dummy1, dummy2, dd_idx = i;
1397 	sector_t r_sector;
1398 
1399 
1400 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1401 	stripe = new_sector;
1402 	BUG_ON(new_sector != stripe);
1403 
1404 	if (i == sh->pd_idx)
1405 		return 0;
1406 	switch(conf->level) {
1407 	case 4: break;
1408 	case 5:
1409 		switch (conf->algorithm) {
1410 		case ALGORITHM_LEFT_ASYMMETRIC:
1411 		case ALGORITHM_RIGHT_ASYMMETRIC:
1412 			if (i > sh->pd_idx)
1413 				i--;
1414 			break;
1415 		case ALGORITHM_LEFT_SYMMETRIC:
1416 		case ALGORITHM_RIGHT_SYMMETRIC:
1417 			if (i < sh->pd_idx)
1418 				i += raid_disks;
1419 			i -= (sh->pd_idx + 1);
1420 			break;
1421 		default:
1422 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1423 			       conf->algorithm);
1424 		}
1425 		break;
1426 	case 6:
1427 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1428 			return 0; /* It is the Q disk */
1429 		switch (conf->algorithm) {
1430 		case ALGORITHM_LEFT_ASYMMETRIC:
1431 		case ALGORITHM_RIGHT_ASYMMETRIC:
1432 		  	if (sh->pd_idx == raid_disks-1)
1433 				i--; 	/* Q D D D P */
1434 			else if (i > sh->pd_idx)
1435 				i -= 2; /* D D P Q D */
1436 			break;
1437 		case ALGORITHM_LEFT_SYMMETRIC:
1438 		case ALGORITHM_RIGHT_SYMMETRIC:
1439 			if (sh->pd_idx == raid_disks-1)
1440 				i--; /* Q D D D P */
1441 			else {
1442 				/* D D P Q D */
1443 				if (i < sh->pd_idx)
1444 					i += raid_disks;
1445 				i -= (sh->pd_idx + 2);
1446 			}
1447 			break;
1448 		default:
1449 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1450 				conf->algorithm);
1451 		}
1452 		break;
1453 	}
1454 
1455 	chunk_number = stripe * data_disks + i;
1456 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1457 
1458 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1459 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1460 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1461 		return 0;
1462 	}
1463 	return r_sector;
1464 }
1465 
1466 
1467 
1468 /*
1469  * Copy data between a page in the stripe cache, and one or more bion
1470  * The page could align with the middle of the bio, or there could be
1471  * several bion, each with several bio_vecs, which cover part of the page
1472  * Multiple bion are linked together on bi_next.  There may be extras
1473  * at the end of this list.  We ignore them.
1474  */
1475 static void copy_data(int frombio, struct bio *bio,
1476 		     struct page *page,
1477 		     sector_t sector)
1478 {
1479 	char *pa = page_address(page);
1480 	struct bio_vec *bvl;
1481 	int i;
1482 	int page_offset;
1483 
1484 	if (bio->bi_sector >= sector)
1485 		page_offset = (signed)(bio->bi_sector - sector) * 512;
1486 	else
1487 		page_offset = (signed)(sector - bio->bi_sector) * -512;
1488 	bio_for_each_segment(bvl, bio, i) {
1489 		int len = bio_iovec_idx(bio,i)->bv_len;
1490 		int clen;
1491 		int b_offset = 0;
1492 
1493 		if (page_offset < 0) {
1494 			b_offset = -page_offset;
1495 			page_offset += b_offset;
1496 			len -= b_offset;
1497 		}
1498 
1499 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1500 			clen = STRIPE_SIZE - page_offset;
1501 		else clen = len;
1502 
1503 		if (clen > 0) {
1504 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1505 			if (frombio)
1506 				memcpy(pa+page_offset, ba+b_offset, clen);
1507 			else
1508 				memcpy(ba+b_offset, pa+page_offset, clen);
1509 			__bio_kunmap_atomic(ba, KM_USER0);
1510 		}
1511 		if (clen < len) /* hit end of page */
1512 			break;
1513 		page_offset +=  len;
1514 	}
1515 }
1516 
1517 #define check_xor()	do {						  \
1518 				if (count == MAX_XOR_BLOCKS) {		  \
1519 				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1520 				count = 0;				  \
1521 			   }						  \
1522 			} while(0)
1523 
1524 static void compute_parity6(struct stripe_head *sh, int method)
1525 {
1526 	raid6_conf_t *conf = sh->raid_conf;
1527 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1528 	struct bio *chosen;
1529 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1530 	void *ptrs[disks];
1531 
1532 	qd_idx = raid6_next_disk(pd_idx, disks);
1533 	d0_idx = raid6_next_disk(qd_idx, disks);
1534 
1535 	pr_debug("compute_parity, stripe %llu, method %d\n",
1536 		(unsigned long long)sh->sector, method);
1537 
1538 	switch(method) {
1539 	case READ_MODIFY_WRITE:
1540 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1541 	case RECONSTRUCT_WRITE:
1542 		for (i= disks; i-- ;)
1543 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1544 				chosen = sh->dev[i].towrite;
1545 				sh->dev[i].towrite = NULL;
1546 
1547 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1548 					wake_up(&conf->wait_for_overlap);
1549 
1550 				BUG_ON(sh->dev[i].written);
1551 				sh->dev[i].written = chosen;
1552 			}
1553 		break;
1554 	case CHECK_PARITY:
1555 		BUG();		/* Not implemented yet */
1556 	}
1557 
1558 	for (i = disks; i--;)
1559 		if (sh->dev[i].written) {
1560 			sector_t sector = sh->dev[i].sector;
1561 			struct bio *wbi = sh->dev[i].written;
1562 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1563 				copy_data(1, wbi, sh->dev[i].page, sector);
1564 				wbi = r5_next_bio(wbi, sector);
1565 			}
1566 
1567 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1568 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1569 		}
1570 
1571 //	switch(method) {
1572 //	case RECONSTRUCT_WRITE:
1573 //	case CHECK_PARITY:
1574 //	case UPDATE_PARITY:
1575 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1576 		/* FIX: Is this ordering of drives even remotely optimal? */
1577 		count = 0;
1578 		i = d0_idx;
1579 		do {
1580 			ptrs[count++] = page_address(sh->dev[i].page);
1581 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1582 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1583 			i = raid6_next_disk(i, disks);
1584 		} while ( i != d0_idx );
1585 //		break;
1586 //	}
1587 
1588 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1589 
1590 	switch(method) {
1591 	case RECONSTRUCT_WRITE:
1592 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1593 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1594 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1595 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1596 		break;
1597 	case UPDATE_PARITY:
1598 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1599 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1600 		break;
1601 	}
1602 }
1603 
1604 
1605 /* Compute one missing block */
1606 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1607 {
1608 	int i, count, disks = sh->disks;
1609 	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1610 	int pd_idx = sh->pd_idx;
1611 	int qd_idx = raid6_next_disk(pd_idx, disks);
1612 
1613 	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1614 		(unsigned long long)sh->sector, dd_idx);
1615 
1616 	if ( dd_idx == qd_idx ) {
1617 		/* We're actually computing the Q drive */
1618 		compute_parity6(sh, UPDATE_PARITY);
1619 	} else {
1620 		dest = page_address(sh->dev[dd_idx].page);
1621 		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1622 		count = 0;
1623 		for (i = disks ; i--; ) {
1624 			if (i == dd_idx || i == qd_idx)
1625 				continue;
1626 			p = page_address(sh->dev[i].page);
1627 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1628 				ptr[count++] = p;
1629 			else
1630 				printk("compute_block() %d, stripe %llu, %d"
1631 				       " not present\n", dd_idx,
1632 				       (unsigned long long)sh->sector, i);
1633 
1634 			check_xor();
1635 		}
1636 		if (count)
1637 			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1638 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1639 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1640 	}
1641 }
1642 
1643 /* Compute two missing blocks */
1644 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1645 {
1646 	int i, count, disks = sh->disks;
1647 	int pd_idx = sh->pd_idx;
1648 	int qd_idx = raid6_next_disk(pd_idx, disks);
1649 	int d0_idx = raid6_next_disk(qd_idx, disks);
1650 	int faila, failb;
1651 
1652 	/* faila and failb are disk numbers relative to d0_idx */
1653 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1654 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1655 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1656 
1657 	BUG_ON(faila == failb);
1658 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1659 
1660 	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1661 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1662 
1663 	if ( failb == disks-1 ) {
1664 		/* Q disk is one of the missing disks */
1665 		if ( faila == disks-2 ) {
1666 			/* Missing P+Q, just recompute */
1667 			compute_parity6(sh, UPDATE_PARITY);
1668 			return;
1669 		} else {
1670 			/* We're missing D+Q; recompute D from P */
1671 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1672 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1673 			return;
1674 		}
1675 	}
1676 
1677 	/* We're missing D+P or D+D; build pointer table */
1678 	{
1679 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1680 		void *ptrs[disks];
1681 
1682 		count = 0;
1683 		i = d0_idx;
1684 		do {
1685 			ptrs[count++] = page_address(sh->dev[i].page);
1686 			i = raid6_next_disk(i, disks);
1687 			if (i != dd_idx1 && i != dd_idx2 &&
1688 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1689 				printk("compute_2 with missing block %d/%d\n", count, i);
1690 		} while ( i != d0_idx );
1691 
1692 		if ( failb == disks-2 ) {
1693 			/* We're missing D+P. */
1694 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1695 		} else {
1696 			/* We're missing D+D. */
1697 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1698 		}
1699 
1700 		/* Both the above update both missing blocks */
1701 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1702 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1703 	}
1704 }
1705 
1706 static int
1707 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1708 {
1709 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1710 	int locked = 0;
1711 
1712 	if (rcw) {
1713 		/* if we are not expanding this is a proper write request, and
1714 		 * there will be bios with new data to be drained into the
1715 		 * stripe cache
1716 		 */
1717 		if (!expand) {
1718 			set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1719 			sh->ops.count++;
1720 		}
1721 
1722 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1723 		sh->ops.count++;
1724 
1725 		for (i = disks; i--; ) {
1726 			struct r5dev *dev = &sh->dev[i];
1727 
1728 			if (dev->towrite) {
1729 				set_bit(R5_LOCKED, &dev->flags);
1730 				if (!expand)
1731 					clear_bit(R5_UPTODATE, &dev->flags);
1732 				locked++;
1733 			}
1734 		}
1735 		if (locked + 1 == disks)
1736 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1737 				atomic_inc(&sh->raid_conf->pending_full_writes);
1738 	} else {
1739 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1740 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1741 
1742 		set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1743 		set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1744 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1745 
1746 		sh->ops.count += 3;
1747 
1748 		for (i = disks; i--; ) {
1749 			struct r5dev *dev = &sh->dev[i];
1750 			if (i == pd_idx)
1751 				continue;
1752 
1753 			/* For a read-modify write there may be blocks that are
1754 			 * locked for reading while others are ready to be
1755 			 * written so we distinguish these blocks by the
1756 			 * R5_Wantprexor bit
1757 			 */
1758 			if (dev->towrite &&
1759 			    (test_bit(R5_UPTODATE, &dev->flags) ||
1760 			    test_bit(R5_Wantcompute, &dev->flags))) {
1761 				set_bit(R5_Wantprexor, &dev->flags);
1762 				set_bit(R5_LOCKED, &dev->flags);
1763 				clear_bit(R5_UPTODATE, &dev->flags);
1764 				locked++;
1765 			}
1766 		}
1767 	}
1768 
1769 	/* keep the parity disk locked while asynchronous operations
1770 	 * are in flight
1771 	 */
1772 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1773 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1774 	locked++;
1775 
1776 	pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1777 		__func__, (unsigned long long)sh->sector,
1778 		locked, sh->ops.pending);
1779 
1780 	return locked;
1781 }
1782 
1783 /*
1784  * Each stripe/dev can have one or more bion attached.
1785  * toread/towrite point to the first in a chain.
1786  * The bi_next chain must be in order.
1787  */
1788 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1789 {
1790 	struct bio **bip;
1791 	raid5_conf_t *conf = sh->raid_conf;
1792 	int firstwrite=0;
1793 
1794 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1795 		(unsigned long long)bi->bi_sector,
1796 		(unsigned long long)sh->sector);
1797 
1798 
1799 	spin_lock(&sh->lock);
1800 	spin_lock_irq(&conf->device_lock);
1801 	if (forwrite) {
1802 		bip = &sh->dev[dd_idx].towrite;
1803 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1804 			firstwrite = 1;
1805 	} else
1806 		bip = &sh->dev[dd_idx].toread;
1807 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1808 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1809 			goto overlap;
1810 		bip = & (*bip)->bi_next;
1811 	}
1812 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1813 		goto overlap;
1814 
1815 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1816 	if (*bip)
1817 		bi->bi_next = *bip;
1818 	*bip = bi;
1819 	bi->bi_phys_segments ++;
1820 	spin_unlock_irq(&conf->device_lock);
1821 	spin_unlock(&sh->lock);
1822 
1823 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1824 		(unsigned long long)bi->bi_sector,
1825 		(unsigned long long)sh->sector, dd_idx);
1826 
1827 	if (conf->mddev->bitmap && firstwrite) {
1828 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1829 				  STRIPE_SECTORS, 0);
1830 		sh->bm_seq = conf->seq_flush+1;
1831 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1832 	}
1833 
1834 	if (forwrite) {
1835 		/* check if page is covered */
1836 		sector_t sector = sh->dev[dd_idx].sector;
1837 		for (bi=sh->dev[dd_idx].towrite;
1838 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1839 			     bi && bi->bi_sector <= sector;
1840 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1841 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1842 				sector = bi->bi_sector + (bi->bi_size>>9);
1843 		}
1844 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1845 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1846 	}
1847 	return 1;
1848 
1849  overlap:
1850 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1851 	spin_unlock_irq(&conf->device_lock);
1852 	spin_unlock(&sh->lock);
1853 	return 0;
1854 }
1855 
1856 static void end_reshape(raid5_conf_t *conf);
1857 
1858 static int page_is_zero(struct page *p)
1859 {
1860 	char *a = page_address(p);
1861 	return ((*(u32*)a) == 0 &&
1862 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1863 }
1864 
1865 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1866 {
1867 	int sectors_per_chunk = conf->chunk_size >> 9;
1868 	int pd_idx, dd_idx;
1869 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1870 
1871 	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1872 			     *sectors_per_chunk + chunk_offset,
1873 			     disks, disks - conf->max_degraded,
1874 			     &dd_idx, &pd_idx, conf);
1875 	return pd_idx;
1876 }
1877 
1878 static void
1879 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1880 				struct stripe_head_state *s, int disks,
1881 				struct bio **return_bi)
1882 {
1883 	int i;
1884 	for (i = disks; i--; ) {
1885 		struct bio *bi;
1886 		int bitmap_end = 0;
1887 
1888 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1889 			mdk_rdev_t *rdev;
1890 			rcu_read_lock();
1891 			rdev = rcu_dereference(conf->disks[i].rdev);
1892 			if (rdev && test_bit(In_sync, &rdev->flags))
1893 				/* multiple read failures in one stripe */
1894 				md_error(conf->mddev, rdev);
1895 			rcu_read_unlock();
1896 		}
1897 		spin_lock_irq(&conf->device_lock);
1898 		/* fail all writes first */
1899 		bi = sh->dev[i].towrite;
1900 		sh->dev[i].towrite = NULL;
1901 		if (bi) {
1902 			s->to_write--;
1903 			bitmap_end = 1;
1904 		}
1905 
1906 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1907 			wake_up(&conf->wait_for_overlap);
1908 
1909 		while (bi && bi->bi_sector <
1910 			sh->dev[i].sector + STRIPE_SECTORS) {
1911 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1912 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1913 			if (--bi->bi_phys_segments == 0) {
1914 				md_write_end(conf->mddev);
1915 				bi->bi_next = *return_bi;
1916 				*return_bi = bi;
1917 			}
1918 			bi = nextbi;
1919 		}
1920 		/* and fail all 'written' */
1921 		bi = sh->dev[i].written;
1922 		sh->dev[i].written = NULL;
1923 		if (bi) bitmap_end = 1;
1924 		while (bi && bi->bi_sector <
1925 		       sh->dev[i].sector + STRIPE_SECTORS) {
1926 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1927 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1928 			if (--bi->bi_phys_segments == 0) {
1929 				md_write_end(conf->mddev);
1930 				bi->bi_next = *return_bi;
1931 				*return_bi = bi;
1932 			}
1933 			bi = bi2;
1934 		}
1935 
1936 		/* fail any reads if this device is non-operational and
1937 		 * the data has not reached the cache yet.
1938 		 */
1939 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1940 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1941 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
1942 			bi = sh->dev[i].toread;
1943 			sh->dev[i].toread = NULL;
1944 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1945 				wake_up(&conf->wait_for_overlap);
1946 			if (bi) s->to_read--;
1947 			while (bi && bi->bi_sector <
1948 			       sh->dev[i].sector + STRIPE_SECTORS) {
1949 				struct bio *nextbi =
1950 					r5_next_bio(bi, sh->dev[i].sector);
1951 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1952 				if (--bi->bi_phys_segments == 0) {
1953 					bi->bi_next = *return_bi;
1954 					*return_bi = bi;
1955 				}
1956 				bi = nextbi;
1957 			}
1958 		}
1959 		spin_unlock_irq(&conf->device_lock);
1960 		if (bitmap_end)
1961 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1962 					STRIPE_SECTORS, 0, 0);
1963 	}
1964 
1965 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1966 		if (atomic_dec_and_test(&conf->pending_full_writes))
1967 			md_wakeup_thread(conf->mddev->thread);
1968 }
1969 
1970 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1971  * to process
1972  */
1973 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1974 			struct stripe_head_state *s, int disk_idx, int disks)
1975 {
1976 	struct r5dev *dev = &sh->dev[disk_idx];
1977 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
1978 
1979 	/* don't schedule compute operations or reads on the parity block while
1980 	 * a check is in flight
1981 	 */
1982 	if ((disk_idx == sh->pd_idx) &&
1983 	     test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1984 		return ~0;
1985 
1986 	/* is the data in this block needed, and can we get it? */
1987 	if (!test_bit(R5_LOCKED, &dev->flags) &&
1988 	    !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1989 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1990 	     s->syncing || s->expanding || (s->failed &&
1991 	     (failed_dev->toread || (failed_dev->towrite &&
1992 	     !test_bit(R5_OVERWRITE, &failed_dev->flags)
1993 	     ))))) {
1994 		/* 1/ We would like to get this block, possibly by computing it,
1995 		 * but we might not be able to.
1996 		 *
1997 		 * 2/ Since parity check operations potentially make the parity
1998 		 * block !uptodate it will need to be refreshed before any
1999 		 * compute operations on data disks are scheduled.
2000 		 *
2001 		 * 3/ We hold off parity block re-reads until check operations
2002 		 * have quiesced.
2003 		 */
2004 		if ((s->uptodate == disks - 1) &&
2005 		    (s->failed && disk_idx == s->failed_num) &&
2006 		    !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2007 			set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2008 			set_bit(R5_Wantcompute, &dev->flags);
2009 			sh->ops.target = disk_idx;
2010 			s->req_compute = 1;
2011 			sh->ops.count++;
2012 			/* Careful: from this point on 'uptodate' is in the eye
2013 			 * of raid5_run_ops which services 'compute' operations
2014 			 * before writes. R5_Wantcompute flags a block that will
2015 			 * be R5_UPTODATE by the time it is needed for a
2016 			 * subsequent operation.
2017 			 */
2018 			s->uptodate++;
2019 			return 0; /* uptodate + compute == disks */
2020 		} else if ((s->uptodate < disks - 1) &&
2021 			test_bit(R5_Insync, &dev->flags)) {
2022 			/* Note: we hold off compute operations while checks are
2023 			 * in flight, but we still prefer 'compute' over 'read'
2024 			 * hence we only read if (uptodate < * disks-1)
2025 			 */
2026 			set_bit(R5_LOCKED, &dev->flags);
2027 			set_bit(R5_Wantread, &dev->flags);
2028 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2029 				sh->ops.count++;
2030 			s->locked++;
2031 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2032 				s->syncing);
2033 		}
2034 	}
2035 
2036 	return ~0;
2037 }
2038 
2039 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2040 			struct stripe_head_state *s, int disks)
2041 {
2042 	int i;
2043 
2044 	/* Clear completed compute operations.  Parity recovery
2045 	 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2046 	 * later on in this routine
2047 	 */
2048 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2049 		!test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2050 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2051 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2052 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2053 	}
2054 
2055 	/* look for blocks to read/compute, skip this if a compute
2056 	 * is already in flight, or if the stripe contents are in the
2057 	 * midst of changing due to a write
2058 	 */
2059 	if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2060 		!test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2061 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2062 		for (i = disks; i--; )
2063 			if (__handle_issuing_new_read_requests5(
2064 				sh, s, i, disks) == 0)
2065 				break;
2066 	}
2067 	set_bit(STRIPE_HANDLE, &sh->state);
2068 }
2069 
2070 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2071 			struct stripe_head_state *s, struct r6_state *r6s,
2072 			int disks)
2073 {
2074 	int i;
2075 	for (i = disks; i--; ) {
2076 		struct r5dev *dev = &sh->dev[i];
2077 		if (!test_bit(R5_LOCKED, &dev->flags) &&
2078 		    !test_bit(R5_UPTODATE, &dev->flags) &&
2079 		    (dev->toread || (dev->towrite &&
2080 		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2081 		     s->syncing || s->expanding ||
2082 		     (s->failed >= 1 &&
2083 		      (sh->dev[r6s->failed_num[0]].toread ||
2084 		       s->to_write)) ||
2085 		     (s->failed >= 2 &&
2086 		      (sh->dev[r6s->failed_num[1]].toread ||
2087 		       s->to_write)))) {
2088 			/* we would like to get this block, possibly
2089 			 * by computing it, but we might not be able to
2090 			 */
2091 			if ((s->uptodate == disks - 1) &&
2092 			    (s->failed && (i == r6s->failed_num[0] ||
2093 					   i == r6s->failed_num[1]))) {
2094 				pr_debug("Computing stripe %llu block %d\n",
2095 				       (unsigned long long)sh->sector, i);
2096 				compute_block_1(sh, i, 0);
2097 				s->uptodate++;
2098 			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2099 				/* Computing 2-failure is *very* expensive; only
2100 				 * do it if failed >= 2
2101 				 */
2102 				int other;
2103 				for (other = disks; other--; ) {
2104 					if (other == i)
2105 						continue;
2106 					if (!test_bit(R5_UPTODATE,
2107 					      &sh->dev[other].flags))
2108 						break;
2109 				}
2110 				BUG_ON(other < 0);
2111 				pr_debug("Computing stripe %llu blocks %d,%d\n",
2112 				       (unsigned long long)sh->sector,
2113 				       i, other);
2114 				compute_block_2(sh, i, other);
2115 				s->uptodate += 2;
2116 			} else if (test_bit(R5_Insync, &dev->flags)) {
2117 				set_bit(R5_LOCKED, &dev->flags);
2118 				set_bit(R5_Wantread, &dev->flags);
2119 				s->locked++;
2120 				pr_debug("Reading block %d (sync=%d)\n",
2121 					i, s->syncing);
2122 			}
2123 		}
2124 	}
2125 	set_bit(STRIPE_HANDLE, &sh->state);
2126 }
2127 
2128 
2129 /* handle_completed_write_requests
2130  * any written block on an uptodate or failed drive can be returned.
2131  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2132  * never LOCKED, so we don't need to test 'failed' directly.
2133  */
2134 static void handle_completed_write_requests(raid5_conf_t *conf,
2135 	struct stripe_head *sh, int disks, struct bio **return_bi)
2136 {
2137 	int i;
2138 	struct r5dev *dev;
2139 
2140 	for (i = disks; i--; )
2141 		if (sh->dev[i].written) {
2142 			dev = &sh->dev[i];
2143 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2144 				test_bit(R5_UPTODATE, &dev->flags)) {
2145 				/* We can return any write requests */
2146 				struct bio *wbi, *wbi2;
2147 				int bitmap_end = 0;
2148 				pr_debug("Return write for disc %d\n", i);
2149 				spin_lock_irq(&conf->device_lock);
2150 				wbi = dev->written;
2151 				dev->written = NULL;
2152 				while (wbi && wbi->bi_sector <
2153 					dev->sector + STRIPE_SECTORS) {
2154 					wbi2 = r5_next_bio(wbi, dev->sector);
2155 					if (--wbi->bi_phys_segments == 0) {
2156 						md_write_end(conf->mddev);
2157 						wbi->bi_next = *return_bi;
2158 						*return_bi = wbi;
2159 					}
2160 					wbi = wbi2;
2161 				}
2162 				if (dev->towrite == NULL)
2163 					bitmap_end = 1;
2164 				spin_unlock_irq(&conf->device_lock);
2165 				if (bitmap_end)
2166 					bitmap_endwrite(conf->mddev->bitmap,
2167 							sh->sector,
2168 							STRIPE_SECTORS,
2169 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2170 							0);
2171 			}
2172 		}
2173 
2174 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2175 		if (atomic_dec_and_test(&conf->pending_full_writes))
2176 			md_wakeup_thread(conf->mddev->thread);
2177 }
2178 
2179 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2180 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2181 {
2182 	int rmw = 0, rcw = 0, i;
2183 	for (i = disks; i--; ) {
2184 		/* would I have to read this buffer for read_modify_write */
2185 		struct r5dev *dev = &sh->dev[i];
2186 		if ((dev->towrite || i == sh->pd_idx) &&
2187 		    !test_bit(R5_LOCKED, &dev->flags) &&
2188 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2189 		      test_bit(R5_Wantcompute, &dev->flags))) {
2190 			if (test_bit(R5_Insync, &dev->flags))
2191 				rmw++;
2192 			else
2193 				rmw += 2*disks;  /* cannot read it */
2194 		}
2195 		/* Would I have to read this buffer for reconstruct_write */
2196 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2197 		    !test_bit(R5_LOCKED, &dev->flags) &&
2198 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2199 		    test_bit(R5_Wantcompute, &dev->flags))) {
2200 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2201 			else
2202 				rcw += 2*disks;
2203 		}
2204 	}
2205 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2206 		(unsigned long long)sh->sector, rmw, rcw);
2207 	set_bit(STRIPE_HANDLE, &sh->state);
2208 	if (rmw < rcw && rmw > 0)
2209 		/* prefer read-modify-write, but need to get some data */
2210 		for (i = disks; i--; ) {
2211 			struct r5dev *dev = &sh->dev[i];
2212 			if ((dev->towrite || i == sh->pd_idx) &&
2213 			    !test_bit(R5_LOCKED, &dev->flags) &&
2214 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2215 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2216 			    test_bit(R5_Insync, &dev->flags)) {
2217 				if (
2218 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2219 					pr_debug("Read_old block "
2220 						"%d for r-m-w\n", i);
2221 					set_bit(R5_LOCKED, &dev->flags);
2222 					set_bit(R5_Wantread, &dev->flags);
2223 					if (!test_and_set_bit(
2224 						STRIPE_OP_IO, &sh->ops.pending))
2225 						sh->ops.count++;
2226 					s->locked++;
2227 				} else {
2228 					set_bit(STRIPE_DELAYED, &sh->state);
2229 					set_bit(STRIPE_HANDLE, &sh->state);
2230 				}
2231 			}
2232 		}
2233 	if (rcw <= rmw && rcw > 0)
2234 		/* want reconstruct write, but need to get some data */
2235 		for (i = disks; i--; ) {
2236 			struct r5dev *dev = &sh->dev[i];
2237 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2238 			    i != sh->pd_idx &&
2239 			    !test_bit(R5_LOCKED, &dev->flags) &&
2240 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2241 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2242 			    test_bit(R5_Insync, &dev->flags)) {
2243 				if (
2244 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2245 					pr_debug("Read_old block "
2246 						"%d for Reconstruct\n", i);
2247 					set_bit(R5_LOCKED, &dev->flags);
2248 					set_bit(R5_Wantread, &dev->flags);
2249 					if (!test_and_set_bit(
2250 						STRIPE_OP_IO, &sh->ops.pending))
2251 						sh->ops.count++;
2252 					s->locked++;
2253 				} else {
2254 					set_bit(STRIPE_DELAYED, &sh->state);
2255 					set_bit(STRIPE_HANDLE, &sh->state);
2256 				}
2257 			}
2258 		}
2259 	/* now if nothing is locked, and if we have enough data,
2260 	 * we can start a write request
2261 	 */
2262 	/* since handle_stripe can be called at any time we need to handle the
2263 	 * case where a compute block operation has been submitted and then a
2264 	 * subsequent call wants to start a write request.  raid5_run_ops only
2265 	 * handles the case where compute block and postxor are requested
2266 	 * simultaneously.  If this is not the case then new writes need to be
2267 	 * held off until the compute completes.
2268 	 */
2269 	if ((s->req_compute ||
2270 	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2271 		(s->locked == 0 && (rcw == 0 || rmw == 0) &&
2272 		!test_bit(STRIPE_BIT_DELAY, &sh->state)))
2273 		s->locked += handle_write_operations5(sh, rcw == 0, 0);
2274 }
2275 
2276 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2277 		struct stripe_head *sh,	struct stripe_head_state *s,
2278 		struct r6_state *r6s, int disks)
2279 {
2280 	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2281 	int qd_idx = r6s->qd_idx;
2282 	for (i = disks; i--; ) {
2283 		struct r5dev *dev = &sh->dev[i];
2284 		/* Would I have to read this buffer for reconstruct_write */
2285 		if (!test_bit(R5_OVERWRITE, &dev->flags)
2286 		    && i != pd_idx && i != qd_idx
2287 		    && (!test_bit(R5_LOCKED, &dev->flags)
2288 			    ) &&
2289 		    !test_bit(R5_UPTODATE, &dev->flags)) {
2290 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2291 			else {
2292 				pr_debug("raid6: must_compute: "
2293 					"disk %d flags=%#lx\n", i, dev->flags);
2294 				must_compute++;
2295 			}
2296 		}
2297 	}
2298 	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2299 	       (unsigned long long)sh->sector, rcw, must_compute);
2300 	set_bit(STRIPE_HANDLE, &sh->state);
2301 
2302 	if (rcw > 0)
2303 		/* want reconstruct write, but need to get some data */
2304 		for (i = disks; i--; ) {
2305 			struct r5dev *dev = &sh->dev[i];
2306 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2307 			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2308 			    && !test_bit(R5_LOCKED, &dev->flags) &&
2309 			    !test_bit(R5_UPTODATE, &dev->flags) &&
2310 			    test_bit(R5_Insync, &dev->flags)) {
2311 				if (
2312 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2313 					pr_debug("Read_old stripe %llu "
2314 						"block %d for Reconstruct\n",
2315 					     (unsigned long long)sh->sector, i);
2316 					set_bit(R5_LOCKED, &dev->flags);
2317 					set_bit(R5_Wantread, &dev->flags);
2318 					s->locked++;
2319 				} else {
2320 					pr_debug("Request delayed stripe %llu "
2321 						"block %d for Reconstruct\n",
2322 					     (unsigned long long)sh->sector, i);
2323 					set_bit(STRIPE_DELAYED, &sh->state);
2324 					set_bit(STRIPE_HANDLE, &sh->state);
2325 				}
2326 			}
2327 		}
2328 	/* now if nothing is locked, and if we have enough data, we can start a
2329 	 * write request
2330 	 */
2331 	if (s->locked == 0 && rcw == 0 &&
2332 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2333 		if (must_compute > 0) {
2334 			/* We have failed blocks and need to compute them */
2335 			switch (s->failed) {
2336 			case 0:
2337 				BUG();
2338 			case 1:
2339 				compute_block_1(sh, r6s->failed_num[0], 0);
2340 				break;
2341 			case 2:
2342 				compute_block_2(sh, r6s->failed_num[0],
2343 						r6s->failed_num[1]);
2344 				break;
2345 			default: /* This request should have been failed? */
2346 				BUG();
2347 			}
2348 		}
2349 
2350 		pr_debug("Computing parity for stripe %llu\n",
2351 			(unsigned long long)sh->sector);
2352 		compute_parity6(sh, RECONSTRUCT_WRITE);
2353 		/* now every locked buffer is ready to be written */
2354 		for (i = disks; i--; )
2355 			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2356 				pr_debug("Writing stripe %llu block %d\n",
2357 				       (unsigned long long)sh->sector, i);
2358 				s->locked++;
2359 				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2360 			}
2361 		if (s->locked == disks)
2362 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2363 				atomic_inc(&conf->pending_full_writes);
2364 		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2365 		set_bit(STRIPE_INSYNC, &sh->state);
2366 
2367 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2368 			atomic_dec(&conf->preread_active_stripes);
2369 			if (atomic_read(&conf->preread_active_stripes) <
2370 			    IO_THRESHOLD)
2371 				md_wakeup_thread(conf->mddev->thread);
2372 		}
2373 	}
2374 }
2375 
2376 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2377 				struct stripe_head_state *s, int disks)
2378 {
2379 	int canceled_check = 0;
2380 
2381 	set_bit(STRIPE_HANDLE, &sh->state);
2382 
2383 	/* complete a check operation */
2384 	if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2385 		clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2386 		clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2387 		if (s->failed == 0) {
2388 			if (sh->ops.zero_sum_result == 0)
2389 				/* parity is correct (on disc,
2390 				 * not in buffer any more)
2391 				 */
2392 				set_bit(STRIPE_INSYNC, &sh->state);
2393 			else {
2394 				conf->mddev->resync_mismatches +=
2395 					STRIPE_SECTORS;
2396 				if (test_bit(
2397 				     MD_RECOVERY_CHECK, &conf->mddev->recovery))
2398 					/* don't try to repair!! */
2399 					set_bit(STRIPE_INSYNC, &sh->state);
2400 				else {
2401 					set_bit(STRIPE_OP_COMPUTE_BLK,
2402 						&sh->ops.pending);
2403 					set_bit(STRIPE_OP_MOD_REPAIR_PD,
2404 						&sh->ops.pending);
2405 					set_bit(R5_Wantcompute,
2406 						&sh->dev[sh->pd_idx].flags);
2407 					sh->ops.target = sh->pd_idx;
2408 					sh->ops.count++;
2409 					s->uptodate++;
2410 				}
2411 			}
2412 		} else
2413 			canceled_check = 1; /* STRIPE_INSYNC is not set */
2414 	}
2415 
2416 	/* start a new check operation if there are no failures, the stripe is
2417 	 * not insync, and a repair is not in flight
2418 	 */
2419 	if (s->failed == 0 &&
2420 	    !test_bit(STRIPE_INSYNC, &sh->state) &&
2421 	    !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2422 		if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2423 			BUG_ON(s->uptodate != disks);
2424 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2425 			sh->ops.count++;
2426 			s->uptodate--;
2427 		}
2428 	}
2429 
2430 	/* check if we can clear a parity disk reconstruct */
2431 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2432 	    test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2433 
2434 		clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2435 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2436 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2437 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2438 	}
2439 
2440 
2441 	/* Wait for check parity and compute block operations to complete
2442 	 * before write-back.  If a failure occurred while the check operation
2443 	 * was in flight we need to cycle this stripe through handle_stripe
2444 	 * since the parity block may not be uptodate
2445 	 */
2446 	if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2447 	    !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2448 	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2449 		struct r5dev *dev;
2450 		/* either failed parity check, or recovery is happening */
2451 		if (s->failed == 0)
2452 			s->failed_num = sh->pd_idx;
2453 		dev = &sh->dev[s->failed_num];
2454 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2455 		BUG_ON(s->uptodate != disks);
2456 
2457 		set_bit(R5_LOCKED, &dev->flags);
2458 		set_bit(R5_Wantwrite, &dev->flags);
2459 		if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2460 			sh->ops.count++;
2461 
2462 		clear_bit(STRIPE_DEGRADED, &sh->state);
2463 		s->locked++;
2464 		set_bit(STRIPE_INSYNC, &sh->state);
2465 	}
2466 }
2467 
2468 
2469 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2470 				struct stripe_head_state *s,
2471 				struct r6_state *r6s, struct page *tmp_page,
2472 				int disks)
2473 {
2474 	int update_p = 0, update_q = 0;
2475 	struct r5dev *dev;
2476 	int pd_idx = sh->pd_idx;
2477 	int qd_idx = r6s->qd_idx;
2478 
2479 	set_bit(STRIPE_HANDLE, &sh->state);
2480 
2481 	BUG_ON(s->failed > 2);
2482 	BUG_ON(s->uptodate < disks);
2483 	/* Want to check and possibly repair P and Q.
2484 	 * However there could be one 'failed' device, in which
2485 	 * case we can only check one of them, possibly using the
2486 	 * other to generate missing data
2487 	 */
2488 
2489 	/* If !tmp_page, we cannot do the calculations,
2490 	 * but as we have set STRIPE_HANDLE, we will soon be called
2491 	 * by stripe_handle with a tmp_page - just wait until then.
2492 	 */
2493 	if (tmp_page) {
2494 		if (s->failed == r6s->q_failed) {
2495 			/* The only possible failed device holds 'Q', so it
2496 			 * makes sense to check P (If anything else were failed,
2497 			 * we would have used P to recreate it).
2498 			 */
2499 			compute_block_1(sh, pd_idx, 1);
2500 			if (!page_is_zero(sh->dev[pd_idx].page)) {
2501 				compute_block_1(sh, pd_idx, 0);
2502 				update_p = 1;
2503 			}
2504 		}
2505 		if (!r6s->q_failed && s->failed < 2) {
2506 			/* q is not failed, and we didn't use it to generate
2507 			 * anything, so it makes sense to check it
2508 			 */
2509 			memcpy(page_address(tmp_page),
2510 			       page_address(sh->dev[qd_idx].page),
2511 			       STRIPE_SIZE);
2512 			compute_parity6(sh, UPDATE_PARITY);
2513 			if (memcmp(page_address(tmp_page),
2514 				   page_address(sh->dev[qd_idx].page),
2515 				   STRIPE_SIZE) != 0) {
2516 				clear_bit(STRIPE_INSYNC, &sh->state);
2517 				update_q = 1;
2518 			}
2519 		}
2520 		if (update_p || update_q) {
2521 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2522 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2523 				/* don't try to repair!! */
2524 				update_p = update_q = 0;
2525 		}
2526 
2527 		/* now write out any block on a failed drive,
2528 		 * or P or Q if they need it
2529 		 */
2530 
2531 		if (s->failed == 2) {
2532 			dev = &sh->dev[r6s->failed_num[1]];
2533 			s->locked++;
2534 			set_bit(R5_LOCKED, &dev->flags);
2535 			set_bit(R5_Wantwrite, &dev->flags);
2536 		}
2537 		if (s->failed >= 1) {
2538 			dev = &sh->dev[r6s->failed_num[0]];
2539 			s->locked++;
2540 			set_bit(R5_LOCKED, &dev->flags);
2541 			set_bit(R5_Wantwrite, &dev->flags);
2542 		}
2543 
2544 		if (update_p) {
2545 			dev = &sh->dev[pd_idx];
2546 			s->locked++;
2547 			set_bit(R5_LOCKED, &dev->flags);
2548 			set_bit(R5_Wantwrite, &dev->flags);
2549 		}
2550 		if (update_q) {
2551 			dev = &sh->dev[qd_idx];
2552 			s->locked++;
2553 			set_bit(R5_LOCKED, &dev->flags);
2554 			set_bit(R5_Wantwrite, &dev->flags);
2555 		}
2556 		clear_bit(STRIPE_DEGRADED, &sh->state);
2557 
2558 		set_bit(STRIPE_INSYNC, &sh->state);
2559 	}
2560 }
2561 
2562 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2563 				struct r6_state *r6s)
2564 {
2565 	int i;
2566 
2567 	/* We have read all the blocks in this stripe and now we need to
2568 	 * copy some of them into a target stripe for expand.
2569 	 */
2570 	struct dma_async_tx_descriptor *tx = NULL;
2571 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2572 	for (i = 0; i < sh->disks; i++)
2573 		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2574 			int dd_idx, pd_idx, j;
2575 			struct stripe_head *sh2;
2576 
2577 			sector_t bn = compute_blocknr(sh, i);
2578 			sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2579 						conf->raid_disks -
2580 						conf->max_degraded, &dd_idx,
2581 						&pd_idx, conf);
2582 			sh2 = get_active_stripe(conf, s, conf->raid_disks,
2583 						pd_idx, 1);
2584 			if (sh2 == NULL)
2585 				/* so far only the early blocks of this stripe
2586 				 * have been requested.  When later blocks
2587 				 * get requested, we will try again
2588 				 */
2589 				continue;
2590 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2591 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2592 				/* must have already done this block */
2593 				release_stripe(sh2);
2594 				continue;
2595 			}
2596 
2597 			/* place all the copies on one channel */
2598 			tx = async_memcpy(sh2->dev[dd_idx].page,
2599 				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2600 				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2601 
2602 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2603 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2604 			for (j = 0; j < conf->raid_disks; j++)
2605 				if (j != sh2->pd_idx &&
2606 				    (!r6s || j != raid6_next_disk(sh2->pd_idx,
2607 								 sh2->disks)) &&
2608 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2609 					break;
2610 			if (j == conf->raid_disks) {
2611 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2612 				set_bit(STRIPE_HANDLE, &sh2->state);
2613 			}
2614 			release_stripe(sh2);
2615 
2616 		}
2617 	/* done submitting copies, wait for them to complete */
2618 	if (tx) {
2619 		async_tx_ack(tx);
2620 		dma_wait_for_async_tx(tx);
2621 	}
2622 }
2623 
2624 
2625 /*
2626  * handle_stripe - do things to a stripe.
2627  *
2628  * We lock the stripe and then examine the state of various bits
2629  * to see what needs to be done.
2630  * Possible results:
2631  *    return some read request which now have data
2632  *    return some write requests which are safely on disc
2633  *    schedule a read on some buffers
2634  *    schedule a write of some buffers
2635  *    return confirmation of parity correctness
2636  *
2637  * buffers are taken off read_list or write_list, and bh_cache buffers
2638  * get BH_Lock set before the stripe lock is released.
2639  *
2640  */
2641 
2642 static void handle_stripe5(struct stripe_head *sh)
2643 {
2644 	raid5_conf_t *conf = sh->raid_conf;
2645 	int disks = sh->disks, i;
2646 	struct bio *return_bi = NULL;
2647 	struct stripe_head_state s;
2648 	struct r5dev *dev;
2649 	unsigned long pending = 0;
2650 	mdk_rdev_t *blocked_rdev = NULL;
2651 	int prexor;
2652 
2653 	memset(&s, 0, sizeof(s));
2654 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2655 		"ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2656 		atomic_read(&sh->count), sh->pd_idx,
2657 		sh->ops.pending, sh->ops.ack, sh->ops.complete);
2658 
2659 	spin_lock(&sh->lock);
2660 	clear_bit(STRIPE_HANDLE, &sh->state);
2661 	clear_bit(STRIPE_DELAYED, &sh->state);
2662 
2663 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2664 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2665 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2666 	/* Now to look around and see what can be done */
2667 
2668 	/* clean-up completed biofill operations */
2669 	if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2670 		clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2671 		clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2672 		clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2673 	}
2674 
2675 	rcu_read_lock();
2676 	for (i=disks; i--; ) {
2677 		mdk_rdev_t *rdev;
2678 		struct r5dev *dev = &sh->dev[i];
2679 		clear_bit(R5_Insync, &dev->flags);
2680 
2681 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2682 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2683 			dev->towrite, dev->written);
2684 
2685 		/* maybe we can request a biofill operation
2686 		 *
2687 		 * new wantfill requests are only permitted while
2688 		 * STRIPE_OP_BIOFILL is clear
2689 		 */
2690 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2691 			!test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2692 			set_bit(R5_Wantfill, &dev->flags);
2693 
2694 		/* now count some things */
2695 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2696 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2697 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2698 
2699 		if (test_bit(R5_Wantfill, &dev->flags))
2700 			s.to_fill++;
2701 		else if (dev->toread)
2702 			s.to_read++;
2703 		if (dev->towrite) {
2704 			s.to_write++;
2705 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2706 				s.non_overwrite++;
2707 		}
2708 		if (dev->written)
2709 			s.written++;
2710 		rdev = rcu_dereference(conf->disks[i].rdev);
2711 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2712 			blocked_rdev = rdev;
2713 			atomic_inc(&rdev->nr_pending);
2714 			break;
2715 		}
2716 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2717 			/* The ReadError flag will just be confusing now */
2718 			clear_bit(R5_ReadError, &dev->flags);
2719 			clear_bit(R5_ReWrite, &dev->flags);
2720 		}
2721 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2722 		    || test_bit(R5_ReadError, &dev->flags)) {
2723 			s.failed++;
2724 			s.failed_num = i;
2725 		} else
2726 			set_bit(R5_Insync, &dev->flags);
2727 	}
2728 	rcu_read_unlock();
2729 
2730 	if (unlikely(blocked_rdev)) {
2731 		set_bit(STRIPE_HANDLE, &sh->state);
2732 		goto unlock;
2733 	}
2734 
2735 	if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2736 		sh->ops.count++;
2737 
2738 	pr_debug("locked=%d uptodate=%d to_read=%d"
2739 		" to_write=%d failed=%d failed_num=%d\n",
2740 		s.locked, s.uptodate, s.to_read, s.to_write,
2741 		s.failed, s.failed_num);
2742 	/* check if the array has lost two devices and, if so, some requests might
2743 	 * need to be failed
2744 	 */
2745 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2746 		handle_requests_to_failed_array(conf, sh, &s, disks,
2747 						&return_bi);
2748 	if (s.failed > 1 && s.syncing) {
2749 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2750 		clear_bit(STRIPE_SYNCING, &sh->state);
2751 		s.syncing = 0;
2752 	}
2753 
2754 	/* might be able to return some write requests if the parity block
2755 	 * is safe, or on a failed drive
2756 	 */
2757 	dev = &sh->dev[sh->pd_idx];
2758 	if ( s.written &&
2759 	     ((test_bit(R5_Insync, &dev->flags) &&
2760 	       !test_bit(R5_LOCKED, &dev->flags) &&
2761 	       test_bit(R5_UPTODATE, &dev->flags)) ||
2762 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2763 		handle_completed_write_requests(conf, sh, disks, &return_bi);
2764 
2765 	/* Now we might consider reading some blocks, either to check/generate
2766 	 * parity, or to satisfy requests
2767 	 * or to load a block that is being partially written.
2768 	 */
2769 	if (s.to_read || s.non_overwrite ||
2770 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2771 	    test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2772 		handle_issuing_new_read_requests5(sh, &s, disks);
2773 
2774 	/* Now we check to see if any write operations have recently
2775 	 * completed
2776 	 */
2777 
2778 	/* leave prexor set until postxor is done, allows us to distinguish
2779 	 * a rmw from a rcw during biodrain
2780 	 */
2781 	prexor = 0;
2782 	if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2783 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2784 
2785 		prexor = 1;
2786 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2787 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2788 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2789 
2790 		for (i = disks; i--; )
2791 			clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2792 	}
2793 
2794 	/* if only POSTXOR is set then this is an 'expand' postxor */
2795 	if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2796 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2797 
2798 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2799 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2800 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2801 
2802 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2803 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2804 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2805 
2806 		/* All the 'written' buffers and the parity block are ready to
2807 		 * be written back to disk
2808 		 */
2809 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2810 		for (i = disks; i--; ) {
2811 			dev = &sh->dev[i];
2812 			if (test_bit(R5_LOCKED, &dev->flags) &&
2813 				(i == sh->pd_idx || dev->written)) {
2814 				pr_debug("Writing block %d\n", i);
2815 				set_bit(R5_Wantwrite, &dev->flags);
2816 				if (!test_and_set_bit(
2817 				    STRIPE_OP_IO, &sh->ops.pending))
2818 					sh->ops.count++;
2819 				if (prexor)
2820 					continue;
2821 				if (!test_bit(R5_Insync, &dev->flags) ||
2822 				    (i == sh->pd_idx && s.failed == 0))
2823 					set_bit(STRIPE_INSYNC, &sh->state);
2824 			}
2825 		}
2826 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2827 			atomic_dec(&conf->preread_active_stripes);
2828 			if (atomic_read(&conf->preread_active_stripes) <
2829 				IO_THRESHOLD)
2830 				md_wakeup_thread(conf->mddev->thread);
2831 		}
2832 	}
2833 
2834 	/* Now to consider new write requests and what else, if anything
2835 	 * should be read.  We do not handle new writes when:
2836 	 * 1/ A 'write' operation (copy+xor) is already in flight.
2837 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2838 	 *    block.
2839 	 */
2840 	if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2841 			  !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2842 		handle_issuing_new_write_requests5(conf, sh, &s, disks);
2843 
2844 	/* maybe we need to check and possibly fix the parity for this stripe
2845 	 * Any reads will already have been scheduled, so we just see if enough
2846 	 * data is available.  The parity check is held off while parity
2847 	 * dependent operations are in flight.
2848 	 */
2849 	if ((s.syncing && s.locked == 0 &&
2850 	     !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2851 	     !test_bit(STRIPE_INSYNC, &sh->state)) ||
2852 	      test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2853 	      test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2854 		handle_parity_checks5(conf, sh, &s, disks);
2855 
2856 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2857 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2858 		clear_bit(STRIPE_SYNCING, &sh->state);
2859 	}
2860 
2861 	/* If the failed drive is just a ReadError, then we might need to progress
2862 	 * the repair/check process
2863 	 */
2864 	if (s.failed == 1 && !conf->mddev->ro &&
2865 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2866 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2867 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2868 		) {
2869 		dev = &sh->dev[s.failed_num];
2870 		if (!test_bit(R5_ReWrite, &dev->flags)) {
2871 			set_bit(R5_Wantwrite, &dev->flags);
2872 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2873 				sh->ops.count++;
2874 			set_bit(R5_ReWrite, &dev->flags);
2875 			set_bit(R5_LOCKED, &dev->flags);
2876 			s.locked++;
2877 		} else {
2878 			/* let's read it back */
2879 			set_bit(R5_Wantread, &dev->flags);
2880 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2881 				sh->ops.count++;
2882 			set_bit(R5_LOCKED, &dev->flags);
2883 			s.locked++;
2884 		}
2885 	}
2886 
2887 	/* Finish postxor operations initiated by the expansion
2888 	 * process
2889 	 */
2890 	if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2891 		!test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2892 
2893 		clear_bit(STRIPE_EXPANDING, &sh->state);
2894 
2895 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2896 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2897 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2898 
2899 		for (i = conf->raid_disks; i--; ) {
2900 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2901 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2902 				sh->ops.count++;
2903 		}
2904 	}
2905 
2906 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2907 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2908 		/* Need to write out all blocks after computing parity */
2909 		sh->disks = conf->raid_disks;
2910 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2911 			conf->raid_disks);
2912 		s.locked += handle_write_operations5(sh, 1, 1);
2913 	} else if (s.expanded &&
2914 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2915 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2916 		atomic_dec(&conf->reshape_stripes);
2917 		wake_up(&conf->wait_for_overlap);
2918 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2919 	}
2920 
2921 	if (s.expanding && s.locked == 0 &&
2922 	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2923 		handle_stripe_expansion(conf, sh, NULL);
2924 
2925 	if (sh->ops.count)
2926 		pending = get_stripe_work(sh);
2927 
2928  unlock:
2929 	spin_unlock(&sh->lock);
2930 
2931 	/* wait for this device to become unblocked */
2932 	if (unlikely(blocked_rdev))
2933 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2934 
2935 	if (pending)
2936 		raid5_run_ops(sh, pending);
2937 
2938 	return_io(return_bi);
2939 
2940 }
2941 
2942 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2943 {
2944 	raid6_conf_t *conf = sh->raid_conf;
2945 	int disks = sh->disks;
2946 	struct bio *return_bi = NULL;
2947 	int i, pd_idx = sh->pd_idx;
2948 	struct stripe_head_state s;
2949 	struct r6_state r6s;
2950 	struct r5dev *dev, *pdev, *qdev;
2951 	mdk_rdev_t *blocked_rdev = NULL;
2952 
2953 	r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2954 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2955 		"pd_idx=%d, qd_idx=%d\n",
2956 	       (unsigned long long)sh->sector, sh->state,
2957 	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2958 	memset(&s, 0, sizeof(s));
2959 
2960 	spin_lock(&sh->lock);
2961 	clear_bit(STRIPE_HANDLE, &sh->state);
2962 	clear_bit(STRIPE_DELAYED, &sh->state);
2963 
2964 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2965 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2966 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2967 	/* Now to look around and see what can be done */
2968 
2969 	rcu_read_lock();
2970 	for (i=disks; i--; ) {
2971 		mdk_rdev_t *rdev;
2972 		dev = &sh->dev[i];
2973 		clear_bit(R5_Insync, &dev->flags);
2974 
2975 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2976 			i, dev->flags, dev->toread, dev->towrite, dev->written);
2977 		/* maybe we can reply to a read */
2978 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2979 			struct bio *rbi, *rbi2;
2980 			pr_debug("Return read for disc %d\n", i);
2981 			spin_lock_irq(&conf->device_lock);
2982 			rbi = dev->toread;
2983 			dev->toread = NULL;
2984 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2985 				wake_up(&conf->wait_for_overlap);
2986 			spin_unlock_irq(&conf->device_lock);
2987 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2988 				copy_data(0, rbi, dev->page, dev->sector);
2989 				rbi2 = r5_next_bio(rbi, dev->sector);
2990 				spin_lock_irq(&conf->device_lock);
2991 				if (--rbi->bi_phys_segments == 0) {
2992 					rbi->bi_next = return_bi;
2993 					return_bi = rbi;
2994 				}
2995 				spin_unlock_irq(&conf->device_lock);
2996 				rbi = rbi2;
2997 			}
2998 		}
2999 
3000 		/* now count some things */
3001 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3002 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3003 
3004 
3005 		if (dev->toread)
3006 			s.to_read++;
3007 		if (dev->towrite) {
3008 			s.to_write++;
3009 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3010 				s.non_overwrite++;
3011 		}
3012 		if (dev->written)
3013 			s.written++;
3014 		rdev = rcu_dereference(conf->disks[i].rdev);
3015 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3016 			blocked_rdev = rdev;
3017 			atomic_inc(&rdev->nr_pending);
3018 			break;
3019 		}
3020 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3021 			/* The ReadError flag will just be confusing now */
3022 			clear_bit(R5_ReadError, &dev->flags);
3023 			clear_bit(R5_ReWrite, &dev->flags);
3024 		}
3025 		if (!rdev || !test_bit(In_sync, &rdev->flags)
3026 		    || test_bit(R5_ReadError, &dev->flags)) {
3027 			if (s.failed < 2)
3028 				r6s.failed_num[s.failed] = i;
3029 			s.failed++;
3030 		} else
3031 			set_bit(R5_Insync, &dev->flags);
3032 	}
3033 	rcu_read_unlock();
3034 
3035 	if (unlikely(blocked_rdev)) {
3036 		set_bit(STRIPE_HANDLE, &sh->state);
3037 		goto unlock;
3038 	}
3039 	pr_debug("locked=%d uptodate=%d to_read=%d"
3040 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3041 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3042 	       r6s.failed_num[0], r6s.failed_num[1]);
3043 	/* check if the array has lost >2 devices and, if so, some requests
3044 	 * might need to be failed
3045 	 */
3046 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3047 		handle_requests_to_failed_array(conf, sh, &s, disks,
3048 						&return_bi);
3049 	if (s.failed > 2 && s.syncing) {
3050 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3051 		clear_bit(STRIPE_SYNCING, &sh->state);
3052 		s.syncing = 0;
3053 	}
3054 
3055 	/*
3056 	 * might be able to return some write requests if the parity blocks
3057 	 * are safe, or on a failed drive
3058 	 */
3059 	pdev = &sh->dev[pd_idx];
3060 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3061 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3062 	qdev = &sh->dev[r6s.qd_idx];
3063 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3064 		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3065 
3066 	if ( s.written &&
3067 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3068 			     && !test_bit(R5_LOCKED, &pdev->flags)
3069 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3070 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3071 			     && !test_bit(R5_LOCKED, &qdev->flags)
3072 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3073 		handle_completed_write_requests(conf, sh, disks, &return_bi);
3074 
3075 	/* Now we might consider reading some blocks, either to check/generate
3076 	 * parity, or to satisfy requests
3077 	 * or to load a block that is being partially written.
3078 	 */
3079 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3080 	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3081 		handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3082 
3083 	/* now to consider writing and what else, if anything should be read */
3084 	if (s.to_write)
3085 		handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3086 
3087 	/* maybe we need to check and possibly fix the parity for this stripe
3088 	 * Any reads will already have been scheduled, so we just see if enough
3089 	 * data is available
3090 	 */
3091 	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3092 		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3093 
3094 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3095 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3096 		clear_bit(STRIPE_SYNCING, &sh->state);
3097 	}
3098 
3099 	/* If the failed drives are just a ReadError, then we might need
3100 	 * to progress the repair/check process
3101 	 */
3102 	if (s.failed <= 2 && !conf->mddev->ro)
3103 		for (i = 0; i < s.failed; i++) {
3104 			dev = &sh->dev[r6s.failed_num[i]];
3105 			if (test_bit(R5_ReadError, &dev->flags)
3106 			    && !test_bit(R5_LOCKED, &dev->flags)
3107 			    && test_bit(R5_UPTODATE, &dev->flags)
3108 				) {
3109 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3110 					set_bit(R5_Wantwrite, &dev->flags);
3111 					set_bit(R5_ReWrite, &dev->flags);
3112 					set_bit(R5_LOCKED, &dev->flags);
3113 				} else {
3114 					/* let's read it back */
3115 					set_bit(R5_Wantread, &dev->flags);
3116 					set_bit(R5_LOCKED, &dev->flags);
3117 				}
3118 			}
3119 		}
3120 
3121 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3122 		/* Need to write out all blocks after computing P&Q */
3123 		sh->disks = conf->raid_disks;
3124 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3125 					     conf->raid_disks);
3126 		compute_parity6(sh, RECONSTRUCT_WRITE);
3127 		for (i = conf->raid_disks ; i-- ;  ) {
3128 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3129 			s.locked++;
3130 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3131 		}
3132 		clear_bit(STRIPE_EXPANDING, &sh->state);
3133 	} else if (s.expanded) {
3134 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3135 		atomic_dec(&conf->reshape_stripes);
3136 		wake_up(&conf->wait_for_overlap);
3137 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3138 	}
3139 
3140 	if (s.expanding && s.locked == 0 &&
3141 	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3142 		handle_stripe_expansion(conf, sh, &r6s);
3143 
3144  unlock:
3145 	spin_unlock(&sh->lock);
3146 
3147 	/* wait for this device to become unblocked */
3148 	if (unlikely(blocked_rdev))
3149 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3150 
3151 	return_io(return_bi);
3152 
3153 	for (i=disks; i-- ;) {
3154 		int rw;
3155 		struct bio *bi;
3156 		mdk_rdev_t *rdev;
3157 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3158 			rw = WRITE;
3159 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3160 			rw = READ;
3161 		else
3162 			continue;
3163 
3164 		set_bit(STRIPE_IO_STARTED, &sh->state);
3165 
3166 		bi = &sh->dev[i].req;
3167 
3168 		bi->bi_rw = rw;
3169 		if (rw == WRITE)
3170 			bi->bi_end_io = raid5_end_write_request;
3171 		else
3172 			bi->bi_end_io = raid5_end_read_request;
3173 
3174 		rcu_read_lock();
3175 		rdev = rcu_dereference(conf->disks[i].rdev);
3176 		if (rdev && test_bit(Faulty, &rdev->flags))
3177 			rdev = NULL;
3178 		if (rdev)
3179 			atomic_inc(&rdev->nr_pending);
3180 		rcu_read_unlock();
3181 
3182 		if (rdev) {
3183 			if (s.syncing || s.expanding || s.expanded)
3184 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3185 
3186 			bi->bi_bdev = rdev->bdev;
3187 			pr_debug("for %llu schedule op %ld on disc %d\n",
3188 				(unsigned long long)sh->sector, bi->bi_rw, i);
3189 			atomic_inc(&sh->count);
3190 			bi->bi_sector = sh->sector + rdev->data_offset;
3191 			bi->bi_flags = 1 << BIO_UPTODATE;
3192 			bi->bi_vcnt = 1;
3193 			bi->bi_max_vecs = 1;
3194 			bi->bi_idx = 0;
3195 			bi->bi_io_vec = &sh->dev[i].vec;
3196 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3197 			bi->bi_io_vec[0].bv_offset = 0;
3198 			bi->bi_size = STRIPE_SIZE;
3199 			bi->bi_next = NULL;
3200 			if (rw == WRITE &&
3201 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
3202 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3203 			generic_make_request(bi);
3204 		} else {
3205 			if (rw == WRITE)
3206 				set_bit(STRIPE_DEGRADED, &sh->state);
3207 			pr_debug("skip op %ld on disc %d for sector %llu\n",
3208 				bi->bi_rw, i, (unsigned long long)sh->sector);
3209 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
3210 			set_bit(STRIPE_HANDLE, &sh->state);
3211 		}
3212 	}
3213 }
3214 
3215 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3216 {
3217 	if (sh->raid_conf->level == 6)
3218 		handle_stripe6(sh, tmp_page);
3219 	else
3220 		handle_stripe5(sh);
3221 }
3222 
3223 
3224 
3225 static void raid5_activate_delayed(raid5_conf_t *conf)
3226 {
3227 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3228 		while (!list_empty(&conf->delayed_list)) {
3229 			struct list_head *l = conf->delayed_list.next;
3230 			struct stripe_head *sh;
3231 			sh = list_entry(l, struct stripe_head, lru);
3232 			list_del_init(l);
3233 			clear_bit(STRIPE_DELAYED, &sh->state);
3234 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3235 				atomic_inc(&conf->preread_active_stripes);
3236 			list_add_tail(&sh->lru, &conf->hold_list);
3237 		}
3238 	} else
3239 		blk_plug_device(conf->mddev->queue);
3240 }
3241 
3242 static void activate_bit_delay(raid5_conf_t *conf)
3243 {
3244 	/* device_lock is held */
3245 	struct list_head head;
3246 	list_add(&head, &conf->bitmap_list);
3247 	list_del_init(&conf->bitmap_list);
3248 	while (!list_empty(&head)) {
3249 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3250 		list_del_init(&sh->lru);
3251 		atomic_inc(&sh->count);
3252 		__release_stripe(conf, sh);
3253 	}
3254 }
3255 
3256 static void unplug_slaves(mddev_t *mddev)
3257 {
3258 	raid5_conf_t *conf = mddev_to_conf(mddev);
3259 	int i;
3260 
3261 	rcu_read_lock();
3262 	for (i=0; i<mddev->raid_disks; i++) {
3263 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3264 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3265 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3266 
3267 			atomic_inc(&rdev->nr_pending);
3268 			rcu_read_unlock();
3269 
3270 			blk_unplug(r_queue);
3271 
3272 			rdev_dec_pending(rdev, mddev);
3273 			rcu_read_lock();
3274 		}
3275 	}
3276 	rcu_read_unlock();
3277 }
3278 
3279 static void raid5_unplug_device(struct request_queue *q)
3280 {
3281 	mddev_t *mddev = q->queuedata;
3282 	raid5_conf_t *conf = mddev_to_conf(mddev);
3283 	unsigned long flags;
3284 
3285 	spin_lock_irqsave(&conf->device_lock, flags);
3286 
3287 	if (blk_remove_plug(q)) {
3288 		conf->seq_flush++;
3289 		raid5_activate_delayed(conf);
3290 	}
3291 	md_wakeup_thread(mddev->thread);
3292 
3293 	spin_unlock_irqrestore(&conf->device_lock, flags);
3294 
3295 	unplug_slaves(mddev);
3296 }
3297 
3298 static int raid5_congested(void *data, int bits)
3299 {
3300 	mddev_t *mddev = data;
3301 	raid5_conf_t *conf = mddev_to_conf(mddev);
3302 
3303 	/* No difference between reads and writes.  Just check
3304 	 * how busy the stripe_cache is
3305 	 */
3306 	if (conf->inactive_blocked)
3307 		return 1;
3308 	if (conf->quiesce)
3309 		return 1;
3310 	if (list_empty_careful(&conf->inactive_list))
3311 		return 1;
3312 
3313 	return 0;
3314 }
3315 
3316 /* We want read requests to align with chunks where possible,
3317  * but write requests don't need to.
3318  */
3319 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3320 {
3321 	mddev_t *mddev = q->queuedata;
3322 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3323 	int max;
3324 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3325 	unsigned int bio_sectors = bio->bi_size >> 9;
3326 
3327 	if (bio_data_dir(bio) == WRITE)
3328 		return biovec->bv_len; /* always allow writes to be mergeable */
3329 
3330 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3331 	if (max < 0) max = 0;
3332 	if (max <= biovec->bv_len && bio_sectors == 0)
3333 		return biovec->bv_len;
3334 	else
3335 		return max;
3336 }
3337 
3338 
3339 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3340 {
3341 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3342 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3343 	unsigned int bio_sectors = bio->bi_size >> 9;
3344 
3345 	return  chunk_sectors >=
3346 		((sector & (chunk_sectors - 1)) + bio_sectors);
3347 }
3348 
3349 /*
3350  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3351  *  later sampled by raid5d.
3352  */
3353 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3354 {
3355 	unsigned long flags;
3356 
3357 	spin_lock_irqsave(&conf->device_lock, flags);
3358 
3359 	bi->bi_next = conf->retry_read_aligned_list;
3360 	conf->retry_read_aligned_list = bi;
3361 
3362 	spin_unlock_irqrestore(&conf->device_lock, flags);
3363 	md_wakeup_thread(conf->mddev->thread);
3364 }
3365 
3366 
3367 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3368 {
3369 	struct bio *bi;
3370 
3371 	bi = conf->retry_read_aligned;
3372 	if (bi) {
3373 		conf->retry_read_aligned = NULL;
3374 		return bi;
3375 	}
3376 	bi = conf->retry_read_aligned_list;
3377 	if(bi) {
3378 		conf->retry_read_aligned_list = bi->bi_next;
3379 		bi->bi_next = NULL;
3380 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3381 		bi->bi_hw_segments = 0; /* count of processed stripes */
3382 	}
3383 
3384 	return bi;
3385 }
3386 
3387 
3388 /*
3389  *  The "raid5_align_endio" should check if the read succeeded and if it
3390  *  did, call bio_endio on the original bio (having bio_put the new bio
3391  *  first).
3392  *  If the read failed..
3393  */
3394 static void raid5_align_endio(struct bio *bi, int error)
3395 {
3396 	struct bio* raid_bi  = bi->bi_private;
3397 	mddev_t *mddev;
3398 	raid5_conf_t *conf;
3399 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3400 	mdk_rdev_t *rdev;
3401 
3402 	bio_put(bi);
3403 
3404 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3405 	conf = mddev_to_conf(mddev);
3406 	rdev = (void*)raid_bi->bi_next;
3407 	raid_bi->bi_next = NULL;
3408 
3409 	rdev_dec_pending(rdev, conf->mddev);
3410 
3411 	if (!error && uptodate) {
3412 		bio_endio(raid_bi, 0);
3413 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3414 			wake_up(&conf->wait_for_stripe);
3415 		return;
3416 	}
3417 
3418 
3419 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3420 
3421 	add_bio_to_retry(raid_bi, conf);
3422 }
3423 
3424 static int bio_fits_rdev(struct bio *bi)
3425 {
3426 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3427 
3428 	if ((bi->bi_size>>9) > q->max_sectors)
3429 		return 0;
3430 	blk_recount_segments(q, bi);
3431 	if (bi->bi_phys_segments > q->max_phys_segments ||
3432 	    bi->bi_hw_segments > q->max_hw_segments)
3433 		return 0;
3434 
3435 	if (q->merge_bvec_fn)
3436 		/* it's too hard to apply the merge_bvec_fn at this stage,
3437 		 * just just give up
3438 		 */
3439 		return 0;
3440 
3441 	return 1;
3442 }
3443 
3444 
3445 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3446 {
3447 	mddev_t *mddev = q->queuedata;
3448 	raid5_conf_t *conf = mddev_to_conf(mddev);
3449 	const unsigned int raid_disks = conf->raid_disks;
3450 	const unsigned int data_disks = raid_disks - conf->max_degraded;
3451 	unsigned int dd_idx, pd_idx;
3452 	struct bio* align_bi;
3453 	mdk_rdev_t *rdev;
3454 
3455 	if (!in_chunk_boundary(mddev, raid_bio)) {
3456 		pr_debug("chunk_aligned_read : non aligned\n");
3457 		return 0;
3458 	}
3459 	/*
3460  	 * use bio_clone to make a copy of the bio
3461 	 */
3462 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3463 	if (!align_bi)
3464 		return 0;
3465 	/*
3466 	 *   set bi_end_io to a new function, and set bi_private to the
3467 	 *     original bio.
3468 	 */
3469 	align_bi->bi_end_io  = raid5_align_endio;
3470 	align_bi->bi_private = raid_bio;
3471 	/*
3472 	 *	compute position
3473 	 */
3474 	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3475 					raid_disks,
3476 					data_disks,
3477 					&dd_idx,
3478 					&pd_idx,
3479 					conf);
3480 
3481 	rcu_read_lock();
3482 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3483 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3484 		atomic_inc(&rdev->nr_pending);
3485 		rcu_read_unlock();
3486 		raid_bio->bi_next = (void*)rdev;
3487 		align_bi->bi_bdev =  rdev->bdev;
3488 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3489 		align_bi->bi_sector += rdev->data_offset;
3490 
3491 		if (!bio_fits_rdev(align_bi)) {
3492 			/* too big in some way */
3493 			bio_put(align_bi);
3494 			rdev_dec_pending(rdev, mddev);
3495 			return 0;
3496 		}
3497 
3498 		spin_lock_irq(&conf->device_lock);
3499 		wait_event_lock_irq(conf->wait_for_stripe,
3500 				    conf->quiesce == 0,
3501 				    conf->device_lock, /* nothing */);
3502 		atomic_inc(&conf->active_aligned_reads);
3503 		spin_unlock_irq(&conf->device_lock);
3504 
3505 		generic_make_request(align_bi);
3506 		return 1;
3507 	} else {
3508 		rcu_read_unlock();
3509 		bio_put(align_bi);
3510 		return 0;
3511 	}
3512 }
3513 
3514 /* __get_priority_stripe - get the next stripe to process
3515  *
3516  * Full stripe writes are allowed to pass preread active stripes up until
3517  * the bypass_threshold is exceeded.  In general the bypass_count
3518  * increments when the handle_list is handled before the hold_list; however, it
3519  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3520  * stripe with in flight i/o.  The bypass_count will be reset when the
3521  * head of the hold_list has changed, i.e. the head was promoted to the
3522  * handle_list.
3523  */
3524 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3525 {
3526 	struct stripe_head *sh;
3527 
3528 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3529 		  __func__,
3530 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3531 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3532 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3533 
3534 	if (!list_empty(&conf->handle_list)) {
3535 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3536 
3537 		if (list_empty(&conf->hold_list))
3538 			conf->bypass_count = 0;
3539 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3540 			if (conf->hold_list.next == conf->last_hold)
3541 				conf->bypass_count++;
3542 			else {
3543 				conf->last_hold = conf->hold_list.next;
3544 				conf->bypass_count -= conf->bypass_threshold;
3545 				if (conf->bypass_count < 0)
3546 					conf->bypass_count = 0;
3547 			}
3548 		}
3549 	} else if (!list_empty(&conf->hold_list) &&
3550 		   ((conf->bypass_threshold &&
3551 		     conf->bypass_count > conf->bypass_threshold) ||
3552 		    atomic_read(&conf->pending_full_writes) == 0)) {
3553 		sh = list_entry(conf->hold_list.next,
3554 				typeof(*sh), lru);
3555 		conf->bypass_count -= conf->bypass_threshold;
3556 		if (conf->bypass_count < 0)
3557 			conf->bypass_count = 0;
3558 	} else
3559 		return NULL;
3560 
3561 	list_del_init(&sh->lru);
3562 	atomic_inc(&sh->count);
3563 	BUG_ON(atomic_read(&sh->count) != 1);
3564 	return sh;
3565 }
3566 
3567 static int make_request(struct request_queue *q, struct bio * bi)
3568 {
3569 	mddev_t *mddev = q->queuedata;
3570 	raid5_conf_t *conf = mddev_to_conf(mddev);
3571 	unsigned int dd_idx, pd_idx;
3572 	sector_t new_sector;
3573 	sector_t logical_sector, last_sector;
3574 	struct stripe_head *sh;
3575 	const int rw = bio_data_dir(bi);
3576 	int remaining;
3577 
3578 	if (unlikely(bio_barrier(bi))) {
3579 		bio_endio(bi, -EOPNOTSUPP);
3580 		return 0;
3581 	}
3582 
3583 	md_write_start(mddev, bi);
3584 
3585 	disk_stat_inc(mddev->gendisk, ios[rw]);
3586 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3587 
3588 	if (rw == READ &&
3589 	     mddev->reshape_position == MaxSector &&
3590 	     chunk_aligned_read(q,bi))
3591             	return 0;
3592 
3593 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3594 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3595 	bi->bi_next = NULL;
3596 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3597 
3598 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3599 		DEFINE_WAIT(w);
3600 		int disks, data_disks;
3601 
3602 	retry:
3603 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3604 		if (likely(conf->expand_progress == MaxSector))
3605 			disks = conf->raid_disks;
3606 		else {
3607 			/* spinlock is needed as expand_progress may be
3608 			 * 64bit on a 32bit platform, and so it might be
3609 			 * possible to see a half-updated value
3610 			 * Ofcourse expand_progress could change after
3611 			 * the lock is dropped, so once we get a reference
3612 			 * to the stripe that we think it is, we will have
3613 			 * to check again.
3614 			 */
3615 			spin_lock_irq(&conf->device_lock);
3616 			disks = conf->raid_disks;
3617 			if (logical_sector >= conf->expand_progress)
3618 				disks = conf->previous_raid_disks;
3619 			else {
3620 				if (logical_sector >= conf->expand_lo) {
3621 					spin_unlock_irq(&conf->device_lock);
3622 					schedule();
3623 					goto retry;
3624 				}
3625 			}
3626 			spin_unlock_irq(&conf->device_lock);
3627 		}
3628 		data_disks = disks - conf->max_degraded;
3629 
3630  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3631 						  &dd_idx, &pd_idx, conf);
3632 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3633 			(unsigned long long)new_sector,
3634 			(unsigned long long)logical_sector);
3635 
3636 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3637 		if (sh) {
3638 			if (unlikely(conf->expand_progress != MaxSector)) {
3639 				/* expansion might have moved on while waiting for a
3640 				 * stripe, so we must do the range check again.
3641 				 * Expansion could still move past after this
3642 				 * test, but as we are holding a reference to
3643 				 * 'sh', we know that if that happens,
3644 				 *  STRIPE_EXPANDING will get set and the expansion
3645 				 * won't proceed until we finish with the stripe.
3646 				 */
3647 				int must_retry = 0;
3648 				spin_lock_irq(&conf->device_lock);
3649 				if (logical_sector <  conf->expand_progress &&
3650 				    disks == conf->previous_raid_disks)
3651 					/* mismatch, need to try again */
3652 					must_retry = 1;
3653 				spin_unlock_irq(&conf->device_lock);
3654 				if (must_retry) {
3655 					release_stripe(sh);
3656 					goto retry;
3657 				}
3658 			}
3659 			/* FIXME what if we get a false positive because these
3660 			 * are being updated.
3661 			 */
3662 			if (logical_sector >= mddev->suspend_lo &&
3663 			    logical_sector < mddev->suspend_hi) {
3664 				release_stripe(sh);
3665 				schedule();
3666 				goto retry;
3667 			}
3668 
3669 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3670 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3671 				/* Stripe is busy expanding or
3672 				 * add failed due to overlap.  Flush everything
3673 				 * and wait a while
3674 				 */
3675 				raid5_unplug_device(mddev->queue);
3676 				release_stripe(sh);
3677 				schedule();
3678 				goto retry;
3679 			}
3680 			finish_wait(&conf->wait_for_overlap, &w);
3681 			set_bit(STRIPE_HANDLE, &sh->state);
3682 			clear_bit(STRIPE_DELAYED, &sh->state);
3683 			release_stripe(sh);
3684 		} else {
3685 			/* cannot get stripe for read-ahead, just give-up */
3686 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3687 			finish_wait(&conf->wait_for_overlap, &w);
3688 			break;
3689 		}
3690 
3691 	}
3692 	spin_lock_irq(&conf->device_lock);
3693 	remaining = --bi->bi_phys_segments;
3694 	spin_unlock_irq(&conf->device_lock);
3695 	if (remaining == 0) {
3696 
3697 		if ( rw == WRITE )
3698 			md_write_end(mddev);
3699 
3700 		bi->bi_end_io(bi,
3701 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
3702 			        ? 0 : -EIO);
3703 	}
3704 	return 0;
3705 }
3706 
3707 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3708 {
3709 	/* reshaping is quite different to recovery/resync so it is
3710 	 * handled quite separately ... here.
3711 	 *
3712 	 * On each call to sync_request, we gather one chunk worth of
3713 	 * destination stripes and flag them as expanding.
3714 	 * Then we find all the source stripes and request reads.
3715 	 * As the reads complete, handle_stripe will copy the data
3716 	 * into the destination stripe and release that stripe.
3717 	 */
3718 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3719 	struct stripe_head *sh;
3720 	int pd_idx;
3721 	sector_t first_sector, last_sector;
3722 	int raid_disks = conf->previous_raid_disks;
3723 	int data_disks = raid_disks - conf->max_degraded;
3724 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3725 	int i;
3726 	int dd_idx;
3727 	sector_t writepos, safepos, gap;
3728 
3729 	if (sector_nr == 0 &&
3730 	    conf->expand_progress != 0) {
3731 		/* restarting in the middle, skip the initial sectors */
3732 		sector_nr = conf->expand_progress;
3733 		sector_div(sector_nr, new_data_disks);
3734 		*skipped = 1;
3735 		return sector_nr;
3736 	}
3737 
3738 	/* we update the metadata when there is more than 3Meg
3739 	 * in the block range (that is rather arbitrary, should
3740 	 * probably be time based) or when the data about to be
3741 	 * copied would over-write the source of the data at
3742 	 * the front of the range.
3743 	 * i.e. one new_stripe forward from expand_progress new_maps
3744 	 * to after where expand_lo old_maps to
3745 	 */
3746 	writepos = conf->expand_progress +
3747 		conf->chunk_size/512*(new_data_disks);
3748 	sector_div(writepos, new_data_disks);
3749 	safepos = conf->expand_lo;
3750 	sector_div(safepos, data_disks);
3751 	gap = conf->expand_progress - conf->expand_lo;
3752 
3753 	if (writepos >= safepos ||
3754 	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3755 		/* Cannot proceed until we've updated the superblock... */
3756 		wait_event(conf->wait_for_overlap,
3757 			   atomic_read(&conf->reshape_stripes)==0);
3758 		mddev->reshape_position = conf->expand_progress;
3759 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3760 		md_wakeup_thread(mddev->thread);
3761 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3762 			   kthread_should_stop());
3763 		spin_lock_irq(&conf->device_lock);
3764 		conf->expand_lo = mddev->reshape_position;
3765 		spin_unlock_irq(&conf->device_lock);
3766 		wake_up(&conf->wait_for_overlap);
3767 	}
3768 
3769 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3770 		int j;
3771 		int skipped = 0;
3772 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3773 		sh = get_active_stripe(conf, sector_nr+i,
3774 				       conf->raid_disks, pd_idx, 0);
3775 		set_bit(STRIPE_EXPANDING, &sh->state);
3776 		atomic_inc(&conf->reshape_stripes);
3777 		/* If any of this stripe is beyond the end of the old
3778 		 * array, then we need to zero those blocks
3779 		 */
3780 		for (j=sh->disks; j--;) {
3781 			sector_t s;
3782 			if (j == sh->pd_idx)
3783 				continue;
3784 			if (conf->level == 6 &&
3785 			    j == raid6_next_disk(sh->pd_idx, sh->disks))
3786 				continue;
3787 			s = compute_blocknr(sh, j);
3788 			if (s < (mddev->array_size<<1)) {
3789 				skipped = 1;
3790 				continue;
3791 			}
3792 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3793 			set_bit(R5_Expanded, &sh->dev[j].flags);
3794 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3795 		}
3796 		if (!skipped) {
3797 			set_bit(STRIPE_EXPAND_READY, &sh->state);
3798 			set_bit(STRIPE_HANDLE, &sh->state);
3799 		}
3800 		release_stripe(sh);
3801 	}
3802 	spin_lock_irq(&conf->device_lock);
3803 	conf->expand_progress = (sector_nr + i) * new_data_disks;
3804 	spin_unlock_irq(&conf->device_lock);
3805 	/* Ok, those stripe are ready. We can start scheduling
3806 	 * reads on the source stripes.
3807 	 * The source stripes are determined by mapping the first and last
3808 	 * block on the destination stripes.
3809 	 */
3810 	first_sector =
3811 		raid5_compute_sector(sector_nr*(new_data_disks),
3812 				     raid_disks, data_disks,
3813 				     &dd_idx, &pd_idx, conf);
3814 	last_sector =
3815 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3816 				     *(new_data_disks) -1,
3817 				     raid_disks, data_disks,
3818 				     &dd_idx, &pd_idx, conf);
3819 	if (last_sector >= (mddev->size<<1))
3820 		last_sector = (mddev->size<<1)-1;
3821 	while (first_sector <= last_sector) {
3822 		pd_idx = stripe_to_pdidx(first_sector, conf,
3823 					 conf->previous_raid_disks);
3824 		sh = get_active_stripe(conf, first_sector,
3825 				       conf->previous_raid_disks, pd_idx, 0);
3826 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3827 		set_bit(STRIPE_HANDLE, &sh->state);
3828 		release_stripe(sh);
3829 		first_sector += STRIPE_SECTORS;
3830 	}
3831 	/* If this takes us to the resync_max point where we have to pause,
3832 	 * then we need to write out the superblock.
3833 	 */
3834 	sector_nr += conf->chunk_size>>9;
3835 	if (sector_nr >= mddev->resync_max) {
3836 		/* Cannot proceed until we've updated the superblock... */
3837 		wait_event(conf->wait_for_overlap,
3838 			   atomic_read(&conf->reshape_stripes) == 0);
3839 		mddev->reshape_position = conf->expand_progress;
3840 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3841 		md_wakeup_thread(mddev->thread);
3842 		wait_event(mddev->sb_wait,
3843 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3844 			   || kthread_should_stop());
3845 		spin_lock_irq(&conf->device_lock);
3846 		conf->expand_lo = mddev->reshape_position;
3847 		spin_unlock_irq(&conf->device_lock);
3848 		wake_up(&conf->wait_for_overlap);
3849 	}
3850 	return conf->chunk_size>>9;
3851 }
3852 
3853 /* FIXME go_faster isn't used */
3854 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3855 {
3856 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3857 	struct stripe_head *sh;
3858 	int pd_idx;
3859 	int raid_disks = conf->raid_disks;
3860 	sector_t max_sector = mddev->size << 1;
3861 	int sync_blocks;
3862 	int still_degraded = 0;
3863 	int i;
3864 
3865 	if (sector_nr >= max_sector) {
3866 		/* just being told to finish up .. nothing much to do */
3867 		unplug_slaves(mddev);
3868 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3869 			end_reshape(conf);
3870 			return 0;
3871 		}
3872 
3873 		if (mddev->curr_resync < max_sector) /* aborted */
3874 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3875 					&sync_blocks, 1);
3876 		else /* completed sync */
3877 			conf->fullsync = 0;
3878 		bitmap_close_sync(mddev->bitmap);
3879 
3880 		return 0;
3881 	}
3882 
3883 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3884 		return reshape_request(mddev, sector_nr, skipped);
3885 
3886 	/* No need to check resync_max as we never do more than one
3887 	 * stripe, and as resync_max will always be on a chunk boundary,
3888 	 * if the check in md_do_sync didn't fire, there is no chance
3889 	 * of overstepping resync_max here
3890 	 */
3891 
3892 	/* if there is too many failed drives and we are trying
3893 	 * to resync, then assert that we are finished, because there is
3894 	 * nothing we can do.
3895 	 */
3896 	if (mddev->degraded >= conf->max_degraded &&
3897 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3898 		sector_t rv = (mddev->size << 1) - sector_nr;
3899 		*skipped = 1;
3900 		return rv;
3901 	}
3902 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3903 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3904 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3905 		/* we can skip this block, and probably more */
3906 		sync_blocks /= STRIPE_SECTORS;
3907 		*skipped = 1;
3908 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3909 	}
3910 
3911 
3912 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3913 
3914 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3915 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3916 	if (sh == NULL) {
3917 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3918 		/* make sure we don't swamp the stripe cache if someone else
3919 		 * is trying to get access
3920 		 */
3921 		schedule_timeout_uninterruptible(1);
3922 	}
3923 	/* Need to check if array will still be degraded after recovery/resync
3924 	 * We don't need to check the 'failed' flag as when that gets set,
3925 	 * recovery aborts.
3926 	 */
3927 	for (i=0; i<mddev->raid_disks; i++)
3928 		if (conf->disks[i].rdev == NULL)
3929 			still_degraded = 1;
3930 
3931 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3932 
3933 	spin_lock(&sh->lock);
3934 	set_bit(STRIPE_SYNCING, &sh->state);
3935 	clear_bit(STRIPE_INSYNC, &sh->state);
3936 	spin_unlock(&sh->lock);
3937 
3938 	handle_stripe(sh, NULL);
3939 	release_stripe(sh);
3940 
3941 	return STRIPE_SECTORS;
3942 }
3943 
3944 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3945 {
3946 	/* We may not be able to submit a whole bio at once as there
3947 	 * may not be enough stripe_heads available.
3948 	 * We cannot pre-allocate enough stripe_heads as we may need
3949 	 * more than exist in the cache (if we allow ever large chunks).
3950 	 * So we do one stripe head at a time and record in
3951 	 * ->bi_hw_segments how many have been done.
3952 	 *
3953 	 * We *know* that this entire raid_bio is in one chunk, so
3954 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3955 	 */
3956 	struct stripe_head *sh;
3957 	int dd_idx, pd_idx;
3958 	sector_t sector, logical_sector, last_sector;
3959 	int scnt = 0;
3960 	int remaining;
3961 	int handled = 0;
3962 
3963 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3964 	sector = raid5_compute_sector(	logical_sector,
3965 					conf->raid_disks,
3966 					conf->raid_disks - conf->max_degraded,
3967 					&dd_idx,
3968 					&pd_idx,
3969 					conf);
3970 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3971 
3972 	for (; logical_sector < last_sector;
3973 	     logical_sector += STRIPE_SECTORS,
3974 		     sector += STRIPE_SECTORS,
3975 		     scnt++) {
3976 
3977 		if (scnt < raid_bio->bi_hw_segments)
3978 			/* already done this stripe */
3979 			continue;
3980 
3981 		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3982 
3983 		if (!sh) {
3984 			/* failed to get a stripe - must wait */
3985 			raid_bio->bi_hw_segments = scnt;
3986 			conf->retry_read_aligned = raid_bio;
3987 			return handled;
3988 		}
3989 
3990 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3991 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3992 			release_stripe(sh);
3993 			raid_bio->bi_hw_segments = scnt;
3994 			conf->retry_read_aligned = raid_bio;
3995 			return handled;
3996 		}
3997 
3998 		handle_stripe(sh, NULL);
3999 		release_stripe(sh);
4000 		handled++;
4001 	}
4002 	spin_lock_irq(&conf->device_lock);
4003 	remaining = --raid_bio->bi_phys_segments;
4004 	spin_unlock_irq(&conf->device_lock);
4005 	if (remaining == 0) {
4006 
4007 		raid_bio->bi_end_io(raid_bio,
4008 			      test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
4009 			        ? 0 : -EIO);
4010 	}
4011 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4012 		wake_up(&conf->wait_for_stripe);
4013 	return handled;
4014 }
4015 
4016 
4017 
4018 /*
4019  * This is our raid5 kernel thread.
4020  *
4021  * We scan the hash table for stripes which can be handled now.
4022  * During the scan, completed stripes are saved for us by the interrupt
4023  * handler, so that they will not have to wait for our next wakeup.
4024  */
4025 static void raid5d(mddev_t *mddev)
4026 {
4027 	struct stripe_head *sh;
4028 	raid5_conf_t *conf = mddev_to_conf(mddev);
4029 	int handled;
4030 
4031 	pr_debug("+++ raid5d active\n");
4032 
4033 	md_check_recovery(mddev);
4034 
4035 	handled = 0;
4036 	spin_lock_irq(&conf->device_lock);
4037 	while (1) {
4038 		struct bio *bio;
4039 
4040 		if (conf->seq_flush != conf->seq_write) {
4041 			int seq = conf->seq_flush;
4042 			spin_unlock_irq(&conf->device_lock);
4043 			bitmap_unplug(mddev->bitmap);
4044 			spin_lock_irq(&conf->device_lock);
4045 			conf->seq_write = seq;
4046 			activate_bit_delay(conf);
4047 		}
4048 
4049 		while ((bio = remove_bio_from_retry(conf))) {
4050 			int ok;
4051 			spin_unlock_irq(&conf->device_lock);
4052 			ok = retry_aligned_read(conf, bio);
4053 			spin_lock_irq(&conf->device_lock);
4054 			if (!ok)
4055 				break;
4056 			handled++;
4057 		}
4058 
4059 		sh = __get_priority_stripe(conf);
4060 
4061 		if (!sh) {
4062 			async_tx_issue_pending_all();
4063 			break;
4064 		}
4065 		spin_unlock_irq(&conf->device_lock);
4066 
4067 		handled++;
4068 		handle_stripe(sh, conf->spare_page);
4069 		release_stripe(sh);
4070 
4071 		spin_lock_irq(&conf->device_lock);
4072 	}
4073 	pr_debug("%d stripes handled\n", handled);
4074 
4075 	spin_unlock_irq(&conf->device_lock);
4076 
4077 	unplug_slaves(mddev);
4078 
4079 	pr_debug("--- raid5d inactive\n");
4080 }
4081 
4082 static ssize_t
4083 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4084 {
4085 	raid5_conf_t *conf = mddev_to_conf(mddev);
4086 	if (conf)
4087 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4088 	else
4089 		return 0;
4090 }
4091 
4092 static ssize_t
4093 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4094 {
4095 	raid5_conf_t *conf = mddev_to_conf(mddev);
4096 	unsigned long new;
4097 	if (len >= PAGE_SIZE)
4098 		return -EINVAL;
4099 	if (!conf)
4100 		return -ENODEV;
4101 
4102 	if (strict_strtoul(page, 10, &new))
4103 		return -EINVAL;
4104 	if (new <= 16 || new > 32768)
4105 		return -EINVAL;
4106 	while (new < conf->max_nr_stripes) {
4107 		if (drop_one_stripe(conf))
4108 			conf->max_nr_stripes--;
4109 		else
4110 			break;
4111 	}
4112 	md_allow_write(mddev);
4113 	while (new > conf->max_nr_stripes) {
4114 		if (grow_one_stripe(conf))
4115 			conf->max_nr_stripes++;
4116 		else break;
4117 	}
4118 	return len;
4119 }
4120 
4121 static struct md_sysfs_entry
4122 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4123 				raid5_show_stripe_cache_size,
4124 				raid5_store_stripe_cache_size);
4125 
4126 static ssize_t
4127 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4128 {
4129 	raid5_conf_t *conf = mddev_to_conf(mddev);
4130 	if (conf)
4131 		return sprintf(page, "%d\n", conf->bypass_threshold);
4132 	else
4133 		return 0;
4134 }
4135 
4136 static ssize_t
4137 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4138 {
4139 	raid5_conf_t *conf = mddev_to_conf(mddev);
4140 	unsigned long new;
4141 	if (len >= PAGE_SIZE)
4142 		return -EINVAL;
4143 	if (!conf)
4144 		return -ENODEV;
4145 
4146 	if (strict_strtoul(page, 10, &new))
4147 		return -EINVAL;
4148 	if (new > conf->max_nr_stripes)
4149 		return -EINVAL;
4150 	conf->bypass_threshold = new;
4151 	return len;
4152 }
4153 
4154 static struct md_sysfs_entry
4155 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4156 					S_IRUGO | S_IWUSR,
4157 					raid5_show_preread_threshold,
4158 					raid5_store_preread_threshold);
4159 
4160 static ssize_t
4161 stripe_cache_active_show(mddev_t *mddev, char *page)
4162 {
4163 	raid5_conf_t *conf = mddev_to_conf(mddev);
4164 	if (conf)
4165 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4166 	else
4167 		return 0;
4168 }
4169 
4170 static struct md_sysfs_entry
4171 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4172 
4173 static struct attribute *raid5_attrs[] =  {
4174 	&raid5_stripecache_size.attr,
4175 	&raid5_stripecache_active.attr,
4176 	&raid5_preread_bypass_threshold.attr,
4177 	NULL,
4178 };
4179 static struct attribute_group raid5_attrs_group = {
4180 	.name = NULL,
4181 	.attrs = raid5_attrs,
4182 };
4183 
4184 static int run(mddev_t *mddev)
4185 {
4186 	raid5_conf_t *conf;
4187 	int raid_disk, memory;
4188 	mdk_rdev_t *rdev;
4189 	struct disk_info *disk;
4190 	struct list_head *tmp;
4191 	int working_disks = 0;
4192 
4193 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4194 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4195 		       mdname(mddev), mddev->level);
4196 		return -EIO;
4197 	}
4198 
4199 	if (mddev->reshape_position != MaxSector) {
4200 		/* Check that we can continue the reshape.
4201 		 * Currently only disks can change, it must
4202 		 * increase, and we must be past the point where
4203 		 * a stripe over-writes itself
4204 		 */
4205 		sector_t here_new, here_old;
4206 		int old_disks;
4207 		int max_degraded = (mddev->level == 5 ? 1 : 2);
4208 
4209 		if (mddev->new_level != mddev->level ||
4210 		    mddev->new_layout != mddev->layout ||
4211 		    mddev->new_chunk != mddev->chunk_size) {
4212 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4213 			       "required - aborting.\n",
4214 			       mdname(mddev));
4215 			return -EINVAL;
4216 		}
4217 		if (mddev->delta_disks <= 0) {
4218 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4219 			       "(reduce disks) required - aborting.\n",
4220 			       mdname(mddev));
4221 			return -EINVAL;
4222 		}
4223 		old_disks = mddev->raid_disks - mddev->delta_disks;
4224 		/* reshape_position must be on a new-stripe boundary, and one
4225 		 * further up in new geometry must map after here in old
4226 		 * geometry.
4227 		 */
4228 		here_new = mddev->reshape_position;
4229 		if (sector_div(here_new, (mddev->chunk_size>>9)*
4230 			       (mddev->raid_disks - max_degraded))) {
4231 			printk(KERN_ERR "raid5: reshape_position not "
4232 			       "on a stripe boundary\n");
4233 			return -EINVAL;
4234 		}
4235 		/* here_new is the stripe we will write to */
4236 		here_old = mddev->reshape_position;
4237 		sector_div(here_old, (mddev->chunk_size>>9)*
4238 			   (old_disks-max_degraded));
4239 		/* here_old is the first stripe that we might need to read
4240 		 * from */
4241 		if (here_new >= here_old) {
4242 			/* Reading from the same stripe as writing to - bad */
4243 			printk(KERN_ERR "raid5: reshape_position too early for "
4244 			       "auto-recovery - aborting.\n");
4245 			return -EINVAL;
4246 		}
4247 		printk(KERN_INFO "raid5: reshape will continue\n");
4248 		/* OK, we should be able to continue; */
4249 	}
4250 
4251 
4252 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4253 	if ((conf = mddev->private) == NULL)
4254 		goto abort;
4255 	if (mddev->reshape_position == MaxSector) {
4256 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4257 	} else {
4258 		conf->raid_disks = mddev->raid_disks;
4259 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4260 	}
4261 
4262 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4263 			      GFP_KERNEL);
4264 	if (!conf->disks)
4265 		goto abort;
4266 
4267 	conf->mddev = mddev;
4268 
4269 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4270 		goto abort;
4271 
4272 	if (mddev->level == 6) {
4273 		conf->spare_page = alloc_page(GFP_KERNEL);
4274 		if (!conf->spare_page)
4275 			goto abort;
4276 	}
4277 	spin_lock_init(&conf->device_lock);
4278 	mddev->queue->queue_lock = &conf->device_lock;
4279 	init_waitqueue_head(&conf->wait_for_stripe);
4280 	init_waitqueue_head(&conf->wait_for_overlap);
4281 	INIT_LIST_HEAD(&conf->handle_list);
4282 	INIT_LIST_HEAD(&conf->hold_list);
4283 	INIT_LIST_HEAD(&conf->delayed_list);
4284 	INIT_LIST_HEAD(&conf->bitmap_list);
4285 	INIT_LIST_HEAD(&conf->inactive_list);
4286 	atomic_set(&conf->active_stripes, 0);
4287 	atomic_set(&conf->preread_active_stripes, 0);
4288 	atomic_set(&conf->active_aligned_reads, 0);
4289 	conf->bypass_threshold = BYPASS_THRESHOLD;
4290 
4291 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4292 
4293 	rdev_for_each(rdev, tmp, mddev) {
4294 		raid_disk = rdev->raid_disk;
4295 		if (raid_disk >= conf->raid_disks
4296 		    || raid_disk < 0)
4297 			continue;
4298 		disk = conf->disks + raid_disk;
4299 
4300 		disk->rdev = rdev;
4301 
4302 		if (test_bit(In_sync, &rdev->flags)) {
4303 			char b[BDEVNAME_SIZE];
4304 			printk(KERN_INFO "raid5: device %s operational as raid"
4305 				" disk %d\n", bdevname(rdev->bdev,b),
4306 				raid_disk);
4307 			working_disks++;
4308 		}
4309 	}
4310 
4311 	/*
4312 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4313 	 */
4314 	mddev->degraded = conf->raid_disks - working_disks;
4315 	conf->mddev = mddev;
4316 	conf->chunk_size = mddev->chunk_size;
4317 	conf->level = mddev->level;
4318 	if (conf->level == 6)
4319 		conf->max_degraded = 2;
4320 	else
4321 		conf->max_degraded = 1;
4322 	conf->algorithm = mddev->layout;
4323 	conf->max_nr_stripes = NR_STRIPES;
4324 	conf->expand_progress = mddev->reshape_position;
4325 
4326 	/* device size must be a multiple of chunk size */
4327 	mddev->size &= ~(mddev->chunk_size/1024 -1);
4328 	mddev->resync_max_sectors = mddev->size << 1;
4329 
4330 	if (conf->level == 6 && conf->raid_disks < 4) {
4331 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4332 		       mdname(mddev), conf->raid_disks);
4333 		goto abort;
4334 	}
4335 	if (!conf->chunk_size || conf->chunk_size % 4) {
4336 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4337 			conf->chunk_size, mdname(mddev));
4338 		goto abort;
4339 	}
4340 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4341 		printk(KERN_ERR
4342 			"raid5: unsupported parity algorithm %d for %s\n",
4343 			conf->algorithm, mdname(mddev));
4344 		goto abort;
4345 	}
4346 	if (mddev->degraded > conf->max_degraded) {
4347 		printk(KERN_ERR "raid5: not enough operational devices for %s"
4348 			" (%d/%d failed)\n",
4349 			mdname(mddev), mddev->degraded, conf->raid_disks);
4350 		goto abort;
4351 	}
4352 
4353 	if (mddev->degraded > 0 &&
4354 	    mddev->recovery_cp != MaxSector) {
4355 		if (mddev->ok_start_degraded)
4356 			printk(KERN_WARNING
4357 			       "raid5: starting dirty degraded array: %s"
4358 			       "- data corruption possible.\n",
4359 			       mdname(mddev));
4360 		else {
4361 			printk(KERN_ERR
4362 			       "raid5: cannot start dirty degraded array for %s\n",
4363 			       mdname(mddev));
4364 			goto abort;
4365 		}
4366 	}
4367 
4368 	{
4369 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4370 		if (!mddev->thread) {
4371 			printk(KERN_ERR
4372 				"raid5: couldn't allocate thread for %s\n",
4373 				mdname(mddev));
4374 			goto abort;
4375 		}
4376 	}
4377 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4378 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4379 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4380 		printk(KERN_ERR
4381 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4382 		shrink_stripes(conf);
4383 		md_unregister_thread(mddev->thread);
4384 		goto abort;
4385 	} else
4386 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4387 			memory, mdname(mddev));
4388 
4389 	if (mddev->degraded == 0)
4390 		printk("raid5: raid level %d set %s active with %d out of %d"
4391 			" devices, algorithm %d\n", conf->level, mdname(mddev),
4392 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4393 			conf->algorithm);
4394 	else
4395 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4396 			" out of %d devices, algorithm %d\n", conf->level,
4397 			mdname(mddev), mddev->raid_disks - mddev->degraded,
4398 			mddev->raid_disks, conf->algorithm);
4399 
4400 	print_raid5_conf(conf);
4401 
4402 	if (conf->expand_progress != MaxSector) {
4403 		printk("...ok start reshape thread\n");
4404 		conf->expand_lo = conf->expand_progress;
4405 		atomic_set(&conf->reshape_stripes, 0);
4406 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4407 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4408 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4409 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4410 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4411 							"%s_reshape");
4412 	}
4413 
4414 	/* read-ahead size must cover two whole stripes, which is
4415 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4416 	 */
4417 	{
4418 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4419 		int stripe = data_disks *
4420 			(mddev->chunk_size / PAGE_SIZE);
4421 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4422 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4423 	}
4424 
4425 	/* Ok, everything is just fine now */
4426 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4427 		printk(KERN_WARNING
4428 		       "raid5: failed to create sysfs attributes for %s\n",
4429 		       mdname(mddev));
4430 
4431 	mddev->queue->unplug_fn = raid5_unplug_device;
4432 	mddev->queue->backing_dev_info.congested_data = mddev;
4433 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4434 
4435 	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4436 					    conf->max_degraded);
4437 
4438 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4439 
4440 	return 0;
4441 abort:
4442 	if (conf) {
4443 		print_raid5_conf(conf);
4444 		safe_put_page(conf->spare_page);
4445 		kfree(conf->disks);
4446 		kfree(conf->stripe_hashtbl);
4447 		kfree(conf);
4448 	}
4449 	mddev->private = NULL;
4450 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4451 	return -EIO;
4452 }
4453 
4454 
4455 
4456 static int stop(mddev_t *mddev)
4457 {
4458 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4459 
4460 	md_unregister_thread(mddev->thread);
4461 	mddev->thread = NULL;
4462 	shrink_stripes(conf);
4463 	kfree(conf->stripe_hashtbl);
4464 	mddev->queue->backing_dev_info.congested_fn = NULL;
4465 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4466 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4467 	kfree(conf->disks);
4468 	kfree(conf);
4469 	mddev->private = NULL;
4470 	return 0;
4471 }
4472 
4473 #ifdef DEBUG
4474 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4475 {
4476 	int i;
4477 
4478 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4479 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4480 	seq_printf(seq, "sh %llu,  count %d.\n",
4481 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4482 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4483 	for (i = 0; i < sh->disks; i++) {
4484 		seq_printf(seq, "(cache%d: %p %ld) ",
4485 			   i, sh->dev[i].page, sh->dev[i].flags);
4486 	}
4487 	seq_printf(seq, "\n");
4488 }
4489 
4490 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4491 {
4492 	struct stripe_head *sh;
4493 	struct hlist_node *hn;
4494 	int i;
4495 
4496 	spin_lock_irq(&conf->device_lock);
4497 	for (i = 0; i < NR_HASH; i++) {
4498 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4499 			if (sh->raid_conf != conf)
4500 				continue;
4501 			print_sh(seq, sh);
4502 		}
4503 	}
4504 	spin_unlock_irq(&conf->device_lock);
4505 }
4506 #endif
4507 
4508 static void status (struct seq_file *seq, mddev_t *mddev)
4509 {
4510 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4511 	int i;
4512 
4513 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4514 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4515 	for (i = 0; i < conf->raid_disks; i++)
4516 		seq_printf (seq, "%s",
4517 			       conf->disks[i].rdev &&
4518 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4519 	seq_printf (seq, "]");
4520 #ifdef DEBUG
4521 	seq_printf (seq, "\n");
4522 	printall(seq, conf);
4523 #endif
4524 }
4525 
4526 static void print_raid5_conf (raid5_conf_t *conf)
4527 {
4528 	int i;
4529 	struct disk_info *tmp;
4530 
4531 	printk("RAID5 conf printout:\n");
4532 	if (!conf) {
4533 		printk("(conf==NULL)\n");
4534 		return;
4535 	}
4536 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4537 		 conf->raid_disks - conf->mddev->degraded);
4538 
4539 	for (i = 0; i < conf->raid_disks; i++) {
4540 		char b[BDEVNAME_SIZE];
4541 		tmp = conf->disks + i;
4542 		if (tmp->rdev)
4543 		printk(" disk %d, o:%d, dev:%s\n",
4544 			i, !test_bit(Faulty, &tmp->rdev->flags),
4545 			bdevname(tmp->rdev->bdev,b));
4546 	}
4547 }
4548 
4549 static int raid5_spare_active(mddev_t *mddev)
4550 {
4551 	int i;
4552 	raid5_conf_t *conf = mddev->private;
4553 	struct disk_info *tmp;
4554 
4555 	for (i = 0; i < conf->raid_disks; i++) {
4556 		tmp = conf->disks + i;
4557 		if (tmp->rdev
4558 		    && !test_bit(Faulty, &tmp->rdev->flags)
4559 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4560 			unsigned long flags;
4561 			spin_lock_irqsave(&conf->device_lock, flags);
4562 			mddev->degraded--;
4563 			spin_unlock_irqrestore(&conf->device_lock, flags);
4564 		}
4565 	}
4566 	print_raid5_conf(conf);
4567 	return 0;
4568 }
4569 
4570 static int raid5_remove_disk(mddev_t *mddev, int number)
4571 {
4572 	raid5_conf_t *conf = mddev->private;
4573 	int err = 0;
4574 	mdk_rdev_t *rdev;
4575 	struct disk_info *p = conf->disks + number;
4576 
4577 	print_raid5_conf(conf);
4578 	rdev = p->rdev;
4579 	if (rdev) {
4580 		if (test_bit(In_sync, &rdev->flags) ||
4581 		    atomic_read(&rdev->nr_pending)) {
4582 			err = -EBUSY;
4583 			goto abort;
4584 		}
4585 		/* Only remove non-faulty devices if recovery
4586 		 * isn't possible.
4587 		 */
4588 		if (!test_bit(Faulty, &rdev->flags) &&
4589 		    mddev->degraded <= conf->max_degraded) {
4590 			err = -EBUSY;
4591 			goto abort;
4592 		}
4593 		p->rdev = NULL;
4594 		synchronize_rcu();
4595 		if (atomic_read(&rdev->nr_pending)) {
4596 			/* lost the race, try later */
4597 			err = -EBUSY;
4598 			p->rdev = rdev;
4599 		}
4600 	}
4601 abort:
4602 
4603 	print_raid5_conf(conf);
4604 	return err;
4605 }
4606 
4607 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4608 {
4609 	raid5_conf_t *conf = mddev->private;
4610 	int found = 0;
4611 	int disk;
4612 	struct disk_info *p;
4613 
4614 	if (mddev->degraded > conf->max_degraded)
4615 		/* no point adding a device */
4616 		return 0;
4617 
4618 	/*
4619 	 * find the disk ... but prefer rdev->saved_raid_disk
4620 	 * if possible.
4621 	 */
4622 	if (rdev->saved_raid_disk >= 0 &&
4623 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4624 		disk = rdev->saved_raid_disk;
4625 	else
4626 		disk = 0;
4627 	for ( ; disk < conf->raid_disks; disk++)
4628 		if ((p=conf->disks + disk)->rdev == NULL) {
4629 			clear_bit(In_sync, &rdev->flags);
4630 			rdev->raid_disk = disk;
4631 			found = 1;
4632 			if (rdev->saved_raid_disk != disk)
4633 				conf->fullsync = 1;
4634 			rcu_assign_pointer(p->rdev, rdev);
4635 			break;
4636 		}
4637 	print_raid5_conf(conf);
4638 	return found;
4639 }
4640 
4641 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4642 {
4643 	/* no resync is happening, and there is enough space
4644 	 * on all devices, so we can resize.
4645 	 * We need to make sure resync covers any new space.
4646 	 * If the array is shrinking we should possibly wait until
4647 	 * any io in the removed space completes, but it hardly seems
4648 	 * worth it.
4649 	 */
4650 	raid5_conf_t *conf = mddev_to_conf(mddev);
4651 
4652 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4653 	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4654 	set_capacity(mddev->gendisk, mddev->array_size << 1);
4655 	mddev->changed = 1;
4656 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4657 		mddev->recovery_cp = mddev->size << 1;
4658 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4659 	}
4660 	mddev->size = sectors /2;
4661 	mddev->resync_max_sectors = sectors;
4662 	return 0;
4663 }
4664 
4665 #ifdef CONFIG_MD_RAID5_RESHAPE
4666 static int raid5_check_reshape(mddev_t *mddev)
4667 {
4668 	raid5_conf_t *conf = mddev_to_conf(mddev);
4669 	int err;
4670 
4671 	if (mddev->delta_disks < 0 ||
4672 	    mddev->new_level != mddev->level)
4673 		return -EINVAL; /* Cannot shrink array or change level yet */
4674 	if (mddev->delta_disks == 0)
4675 		return 0; /* nothing to do */
4676 
4677 	/* Can only proceed if there are plenty of stripe_heads.
4678 	 * We need a minimum of one full stripe,, and for sensible progress
4679 	 * it is best to have about 4 times that.
4680 	 * If we require 4 times, then the default 256 4K stripe_heads will
4681 	 * allow for chunk sizes up to 256K, which is probably OK.
4682 	 * If the chunk size is greater, user-space should request more
4683 	 * stripe_heads first.
4684 	 */
4685 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4686 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4687 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4688 		       (mddev->chunk_size / STRIPE_SIZE)*4);
4689 		return -ENOSPC;
4690 	}
4691 
4692 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4693 	if (err)
4694 		return err;
4695 
4696 	if (mddev->degraded > conf->max_degraded)
4697 		return -EINVAL;
4698 	/* looks like we might be able to manage this */
4699 	return 0;
4700 }
4701 
4702 static int raid5_start_reshape(mddev_t *mddev)
4703 {
4704 	raid5_conf_t *conf = mddev_to_conf(mddev);
4705 	mdk_rdev_t *rdev;
4706 	struct list_head *rtmp;
4707 	int spares = 0;
4708 	int added_devices = 0;
4709 	unsigned long flags;
4710 
4711 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4712 		return -EBUSY;
4713 
4714 	rdev_for_each(rdev, rtmp, mddev)
4715 		if (rdev->raid_disk < 0 &&
4716 		    !test_bit(Faulty, &rdev->flags))
4717 			spares++;
4718 
4719 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4720 		/* Not enough devices even to make a degraded array
4721 		 * of that size
4722 		 */
4723 		return -EINVAL;
4724 
4725 	atomic_set(&conf->reshape_stripes, 0);
4726 	spin_lock_irq(&conf->device_lock);
4727 	conf->previous_raid_disks = conf->raid_disks;
4728 	conf->raid_disks += mddev->delta_disks;
4729 	conf->expand_progress = 0;
4730 	conf->expand_lo = 0;
4731 	spin_unlock_irq(&conf->device_lock);
4732 
4733 	/* Add some new drives, as many as will fit.
4734 	 * We know there are enough to make the newly sized array work.
4735 	 */
4736 	rdev_for_each(rdev, rtmp, mddev)
4737 		if (rdev->raid_disk < 0 &&
4738 		    !test_bit(Faulty, &rdev->flags)) {
4739 			if (raid5_add_disk(mddev, rdev)) {
4740 				char nm[20];
4741 				set_bit(In_sync, &rdev->flags);
4742 				added_devices++;
4743 				rdev->recovery_offset = 0;
4744 				sprintf(nm, "rd%d", rdev->raid_disk);
4745 				if (sysfs_create_link(&mddev->kobj,
4746 						      &rdev->kobj, nm))
4747 					printk(KERN_WARNING
4748 					       "raid5: failed to create "
4749 					       " link %s for %s\n",
4750 					       nm, mdname(mddev));
4751 			} else
4752 				break;
4753 		}
4754 
4755 	spin_lock_irqsave(&conf->device_lock, flags);
4756 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4757 	spin_unlock_irqrestore(&conf->device_lock, flags);
4758 	mddev->raid_disks = conf->raid_disks;
4759 	mddev->reshape_position = 0;
4760 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4761 
4762 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4763 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4764 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4765 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4766 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4767 						"%s_reshape");
4768 	if (!mddev->sync_thread) {
4769 		mddev->recovery = 0;
4770 		spin_lock_irq(&conf->device_lock);
4771 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4772 		conf->expand_progress = MaxSector;
4773 		spin_unlock_irq(&conf->device_lock);
4774 		return -EAGAIN;
4775 	}
4776 	md_wakeup_thread(mddev->sync_thread);
4777 	md_new_event(mddev);
4778 	return 0;
4779 }
4780 #endif
4781 
4782 static void end_reshape(raid5_conf_t *conf)
4783 {
4784 	struct block_device *bdev;
4785 
4786 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4787 		conf->mddev->array_size = conf->mddev->size *
4788 			(conf->raid_disks - conf->max_degraded);
4789 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4790 		conf->mddev->changed = 1;
4791 
4792 		bdev = bdget_disk(conf->mddev->gendisk, 0);
4793 		if (bdev) {
4794 			mutex_lock(&bdev->bd_inode->i_mutex);
4795 			i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4796 			mutex_unlock(&bdev->bd_inode->i_mutex);
4797 			bdput(bdev);
4798 		}
4799 		spin_lock_irq(&conf->device_lock);
4800 		conf->expand_progress = MaxSector;
4801 		spin_unlock_irq(&conf->device_lock);
4802 		conf->mddev->reshape_position = MaxSector;
4803 
4804 		/* read-ahead size must cover two whole stripes, which is
4805 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4806 		 */
4807 		{
4808 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4809 			int stripe = data_disks *
4810 				(conf->mddev->chunk_size / PAGE_SIZE);
4811 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4812 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4813 		}
4814 	}
4815 }
4816 
4817 static void raid5_quiesce(mddev_t *mddev, int state)
4818 {
4819 	raid5_conf_t *conf = mddev_to_conf(mddev);
4820 
4821 	switch(state) {
4822 	case 2: /* resume for a suspend */
4823 		wake_up(&conf->wait_for_overlap);
4824 		break;
4825 
4826 	case 1: /* stop all writes */
4827 		spin_lock_irq(&conf->device_lock);
4828 		conf->quiesce = 1;
4829 		wait_event_lock_irq(conf->wait_for_stripe,
4830 				    atomic_read(&conf->active_stripes) == 0 &&
4831 				    atomic_read(&conf->active_aligned_reads) == 0,
4832 				    conf->device_lock, /* nothing */);
4833 		spin_unlock_irq(&conf->device_lock);
4834 		break;
4835 
4836 	case 0: /* re-enable writes */
4837 		spin_lock_irq(&conf->device_lock);
4838 		conf->quiesce = 0;
4839 		wake_up(&conf->wait_for_stripe);
4840 		wake_up(&conf->wait_for_overlap);
4841 		spin_unlock_irq(&conf->device_lock);
4842 		break;
4843 	}
4844 }
4845 
4846 static struct mdk_personality raid6_personality =
4847 {
4848 	.name		= "raid6",
4849 	.level		= 6,
4850 	.owner		= THIS_MODULE,
4851 	.make_request	= make_request,
4852 	.run		= run,
4853 	.stop		= stop,
4854 	.status		= status,
4855 	.error_handler	= error,
4856 	.hot_add_disk	= raid5_add_disk,
4857 	.hot_remove_disk= raid5_remove_disk,
4858 	.spare_active	= raid5_spare_active,
4859 	.sync_request	= sync_request,
4860 	.resize		= raid5_resize,
4861 #ifdef CONFIG_MD_RAID5_RESHAPE
4862 	.check_reshape	= raid5_check_reshape,
4863 	.start_reshape  = raid5_start_reshape,
4864 #endif
4865 	.quiesce	= raid5_quiesce,
4866 };
4867 static struct mdk_personality raid5_personality =
4868 {
4869 	.name		= "raid5",
4870 	.level		= 5,
4871 	.owner		= THIS_MODULE,
4872 	.make_request	= make_request,
4873 	.run		= run,
4874 	.stop		= stop,
4875 	.status		= status,
4876 	.error_handler	= error,
4877 	.hot_add_disk	= raid5_add_disk,
4878 	.hot_remove_disk= raid5_remove_disk,
4879 	.spare_active	= raid5_spare_active,
4880 	.sync_request	= sync_request,
4881 	.resize		= raid5_resize,
4882 #ifdef CONFIG_MD_RAID5_RESHAPE
4883 	.check_reshape	= raid5_check_reshape,
4884 	.start_reshape  = raid5_start_reshape,
4885 #endif
4886 	.quiesce	= raid5_quiesce,
4887 };
4888 
4889 static struct mdk_personality raid4_personality =
4890 {
4891 	.name		= "raid4",
4892 	.level		= 4,
4893 	.owner		= THIS_MODULE,
4894 	.make_request	= make_request,
4895 	.run		= run,
4896 	.stop		= stop,
4897 	.status		= status,
4898 	.error_handler	= error,
4899 	.hot_add_disk	= raid5_add_disk,
4900 	.hot_remove_disk= raid5_remove_disk,
4901 	.spare_active	= raid5_spare_active,
4902 	.sync_request	= sync_request,
4903 	.resize		= raid5_resize,
4904 #ifdef CONFIG_MD_RAID5_RESHAPE
4905 	.check_reshape	= raid5_check_reshape,
4906 	.start_reshape  = raid5_start_reshape,
4907 #endif
4908 	.quiesce	= raid5_quiesce,
4909 };
4910 
4911 static int __init raid5_init(void)
4912 {
4913 	int e;
4914 
4915 	e = raid6_select_algo();
4916 	if ( e )
4917 		return e;
4918 	register_md_personality(&raid6_personality);
4919 	register_md_personality(&raid5_personality);
4920 	register_md_personality(&raid4_personality);
4921 	return 0;
4922 }
4923 
4924 static void raid5_exit(void)
4925 {
4926 	unregister_md_personality(&raid6_personality);
4927 	unregister_md_personality(&raid5_personality);
4928 	unregister_md_personality(&raid4_personality);
4929 }
4930 
4931 module_init(raid5_init);
4932 module_exit(raid5_exit);
4933 MODULE_LICENSE("GPL");
4934 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4935 MODULE_ALIAS("md-raid5");
4936 MODULE_ALIAS("md-raid4");
4937 MODULE_ALIAS("md-level-5");
4938 MODULE_ALIAS("md-level-4");
4939 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4940 MODULE_ALIAS("md-raid6");
4941 MODULE_ALIAS("md-level-6");
4942 
4943 /* This used to be two separate modules, they were: */
4944 MODULE_ALIAS("raid5");
4945 MODULE_ALIAS("raid6");
4946