1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 59 #include <trace/events/block.h> 60 #include <linux/list_sort.h> 61 62 #include "md.h" 63 #include "raid5.h" 64 #include "raid0.h" 65 #include "md-bitmap.h" 66 #include "raid5-log.h" 67 68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 69 70 #define cpu_to_group(cpu) cpu_to_node(cpu) 71 #define ANY_GROUP NUMA_NO_NODE 72 73 static bool devices_handle_discard_safely = false; 74 module_param(devices_handle_discard_safely, bool, 0644); 75 MODULE_PARM_DESC(devices_handle_discard_safely, 76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 77 static struct workqueue_struct *raid5_wq; 78 79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 80 { 81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 82 return &conf->stripe_hashtbl[hash]; 83 } 84 85 static inline int stripe_hash_locks_hash(sector_t sect) 86 { 87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 88 } 89 90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 91 { 92 spin_lock_irq(conf->hash_locks + hash); 93 spin_lock(&conf->device_lock); 94 } 95 96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 97 { 98 spin_unlock(&conf->device_lock); 99 spin_unlock_irq(conf->hash_locks + hash); 100 } 101 102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 103 { 104 int i; 105 spin_lock_irq(conf->hash_locks); 106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 108 spin_lock(&conf->device_lock); 109 } 110 111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 112 { 113 int i; 114 spin_unlock(&conf->device_lock); 115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 116 spin_unlock(conf->hash_locks + i); 117 spin_unlock_irq(conf->hash_locks); 118 } 119 120 /* Find first data disk in a raid6 stripe */ 121 static inline int raid6_d0(struct stripe_head *sh) 122 { 123 if (sh->ddf_layout) 124 /* ddf always start from first device */ 125 return 0; 126 /* md starts just after Q block */ 127 if (sh->qd_idx == sh->disks - 1) 128 return 0; 129 else 130 return sh->qd_idx + 1; 131 } 132 static inline int raid6_next_disk(int disk, int raid_disks) 133 { 134 disk++; 135 return (disk < raid_disks) ? disk : 0; 136 } 137 138 /* When walking through the disks in a raid5, starting at raid6_d0, 139 * We need to map each disk to a 'slot', where the data disks are slot 140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 141 * is raid_disks-1. This help does that mapping. 142 */ 143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 144 int *count, int syndrome_disks) 145 { 146 int slot = *count; 147 148 if (sh->ddf_layout) 149 (*count)++; 150 if (idx == sh->pd_idx) 151 return syndrome_disks; 152 if (idx == sh->qd_idx) 153 return syndrome_disks + 1; 154 if (!sh->ddf_layout) 155 (*count)++; 156 return slot; 157 } 158 159 static void print_raid5_conf (struct r5conf *conf); 160 161 static int stripe_operations_active(struct stripe_head *sh) 162 { 163 return sh->check_state || sh->reconstruct_state || 164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 165 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 166 } 167 168 static bool stripe_is_lowprio(struct stripe_head *sh) 169 { 170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 172 !test_bit(STRIPE_R5C_CACHING, &sh->state); 173 } 174 175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 176 { 177 struct r5conf *conf = sh->raid_conf; 178 struct r5worker_group *group; 179 int thread_cnt; 180 int i, cpu = sh->cpu; 181 182 if (!cpu_online(cpu)) { 183 cpu = cpumask_any(cpu_online_mask); 184 sh->cpu = cpu; 185 } 186 187 if (list_empty(&sh->lru)) { 188 struct r5worker_group *group; 189 group = conf->worker_groups + cpu_to_group(cpu); 190 if (stripe_is_lowprio(sh)) 191 list_add_tail(&sh->lru, &group->loprio_list); 192 else 193 list_add_tail(&sh->lru, &group->handle_list); 194 group->stripes_cnt++; 195 sh->group = group; 196 } 197 198 if (conf->worker_cnt_per_group == 0) { 199 md_wakeup_thread(conf->mddev->thread); 200 return; 201 } 202 203 group = conf->worker_groups + cpu_to_group(sh->cpu); 204 205 group->workers[0].working = true; 206 /* at least one worker should run to avoid race */ 207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 208 209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 210 /* wakeup more workers */ 211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 212 if (group->workers[i].working == false) { 213 group->workers[i].working = true; 214 queue_work_on(sh->cpu, raid5_wq, 215 &group->workers[i].work); 216 thread_cnt--; 217 } 218 } 219 } 220 221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 222 struct list_head *temp_inactive_list) 223 { 224 int i; 225 int injournal = 0; /* number of date pages with R5_InJournal */ 226 227 BUG_ON(!list_empty(&sh->lru)); 228 BUG_ON(atomic_read(&conf->active_stripes)==0); 229 230 if (r5c_is_writeback(conf->log)) 231 for (i = sh->disks; i--; ) 232 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 233 injournal++; 234 /* 235 * In the following cases, the stripe cannot be released to cached 236 * lists. Therefore, we make the stripe write out and set 237 * STRIPE_HANDLE: 238 * 1. when quiesce in r5c write back; 239 * 2. when resync is requested fot the stripe. 240 */ 241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 242 (conf->quiesce && r5c_is_writeback(conf->log) && 243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 244 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 245 r5c_make_stripe_write_out(sh); 246 set_bit(STRIPE_HANDLE, &sh->state); 247 } 248 249 if (test_bit(STRIPE_HANDLE, &sh->state)) { 250 if (test_bit(STRIPE_DELAYED, &sh->state) && 251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 252 list_add_tail(&sh->lru, &conf->delayed_list); 253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 254 sh->bm_seq - conf->seq_write > 0) 255 list_add_tail(&sh->lru, &conf->bitmap_list); 256 else { 257 clear_bit(STRIPE_DELAYED, &sh->state); 258 clear_bit(STRIPE_BIT_DELAY, &sh->state); 259 if (conf->worker_cnt_per_group == 0) { 260 if (stripe_is_lowprio(sh)) 261 list_add_tail(&sh->lru, 262 &conf->loprio_list); 263 else 264 list_add_tail(&sh->lru, 265 &conf->handle_list); 266 } else { 267 raid5_wakeup_stripe_thread(sh); 268 return; 269 } 270 } 271 md_wakeup_thread(conf->mddev->thread); 272 } else { 273 BUG_ON(stripe_operations_active(sh)); 274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 275 if (atomic_dec_return(&conf->preread_active_stripes) 276 < IO_THRESHOLD) 277 md_wakeup_thread(conf->mddev->thread); 278 atomic_dec(&conf->active_stripes); 279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 280 if (!r5c_is_writeback(conf->log)) 281 list_add_tail(&sh->lru, temp_inactive_list); 282 else { 283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 284 if (injournal == 0) 285 list_add_tail(&sh->lru, temp_inactive_list); 286 else if (injournal == conf->raid_disks - conf->max_degraded) { 287 /* full stripe */ 288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 289 atomic_inc(&conf->r5c_cached_full_stripes); 290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 291 atomic_dec(&conf->r5c_cached_partial_stripes); 292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 293 r5c_check_cached_full_stripe(conf); 294 } else 295 /* 296 * STRIPE_R5C_PARTIAL_STRIPE is set in 297 * r5c_try_caching_write(). No need to 298 * set it again. 299 */ 300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 301 } 302 } 303 } 304 } 305 306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 307 struct list_head *temp_inactive_list) 308 { 309 if (atomic_dec_and_test(&sh->count)) 310 do_release_stripe(conf, sh, temp_inactive_list); 311 } 312 313 /* 314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 315 * 316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 317 * given time. Adding stripes only takes device lock, while deleting stripes 318 * only takes hash lock. 319 */ 320 static void release_inactive_stripe_list(struct r5conf *conf, 321 struct list_head *temp_inactive_list, 322 int hash) 323 { 324 int size; 325 bool do_wakeup = false; 326 unsigned long flags; 327 328 if (hash == NR_STRIPE_HASH_LOCKS) { 329 size = NR_STRIPE_HASH_LOCKS; 330 hash = NR_STRIPE_HASH_LOCKS - 1; 331 } else 332 size = 1; 333 while (size) { 334 struct list_head *list = &temp_inactive_list[size - 1]; 335 336 /* 337 * We don't hold any lock here yet, raid5_get_active_stripe() might 338 * remove stripes from the list 339 */ 340 if (!list_empty_careful(list)) { 341 spin_lock_irqsave(conf->hash_locks + hash, flags); 342 if (list_empty(conf->inactive_list + hash) && 343 !list_empty(list)) 344 atomic_dec(&conf->empty_inactive_list_nr); 345 list_splice_tail_init(list, conf->inactive_list + hash); 346 do_wakeup = true; 347 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 348 } 349 size--; 350 hash--; 351 } 352 353 if (do_wakeup) { 354 wake_up(&conf->wait_for_stripe); 355 if (atomic_read(&conf->active_stripes) == 0) 356 wake_up(&conf->wait_for_quiescent); 357 if (conf->retry_read_aligned) 358 md_wakeup_thread(conf->mddev->thread); 359 } 360 } 361 362 /* should hold conf->device_lock already */ 363 static int release_stripe_list(struct r5conf *conf, 364 struct list_head *temp_inactive_list) 365 { 366 struct stripe_head *sh, *t; 367 int count = 0; 368 struct llist_node *head; 369 370 head = llist_del_all(&conf->released_stripes); 371 head = llist_reverse_order(head); 372 llist_for_each_entry_safe(sh, t, head, release_list) { 373 int hash; 374 375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 376 smp_mb(); 377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 378 /* 379 * Don't worry the bit is set here, because if the bit is set 380 * again, the count is always > 1. This is true for 381 * STRIPE_ON_UNPLUG_LIST bit too. 382 */ 383 hash = sh->hash_lock_index; 384 __release_stripe(conf, sh, &temp_inactive_list[hash]); 385 count++; 386 } 387 388 return count; 389 } 390 391 void raid5_release_stripe(struct stripe_head *sh) 392 { 393 struct r5conf *conf = sh->raid_conf; 394 unsigned long flags; 395 struct list_head list; 396 int hash; 397 bool wakeup; 398 399 /* Avoid release_list until the last reference. 400 */ 401 if (atomic_add_unless(&sh->count, -1, 1)) 402 return; 403 404 if (unlikely(!conf->mddev->thread) || 405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 406 goto slow_path; 407 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 408 if (wakeup) 409 md_wakeup_thread(conf->mddev->thread); 410 return; 411 slow_path: 412 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 413 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 414 INIT_LIST_HEAD(&list); 415 hash = sh->hash_lock_index; 416 do_release_stripe(conf, sh, &list); 417 spin_unlock_irqrestore(&conf->device_lock, flags); 418 release_inactive_stripe_list(conf, &list, hash); 419 } 420 } 421 422 static inline void remove_hash(struct stripe_head *sh) 423 { 424 pr_debug("remove_hash(), stripe %llu\n", 425 (unsigned long long)sh->sector); 426 427 hlist_del_init(&sh->hash); 428 } 429 430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 431 { 432 struct hlist_head *hp = stripe_hash(conf, sh->sector); 433 434 pr_debug("insert_hash(), stripe %llu\n", 435 (unsigned long long)sh->sector); 436 437 hlist_add_head(&sh->hash, hp); 438 } 439 440 /* find an idle stripe, make sure it is unhashed, and return it. */ 441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 442 { 443 struct stripe_head *sh = NULL; 444 struct list_head *first; 445 446 if (list_empty(conf->inactive_list + hash)) 447 goto out; 448 first = (conf->inactive_list + hash)->next; 449 sh = list_entry(first, struct stripe_head, lru); 450 list_del_init(first); 451 remove_hash(sh); 452 atomic_inc(&conf->active_stripes); 453 BUG_ON(hash != sh->hash_lock_index); 454 if (list_empty(conf->inactive_list + hash)) 455 atomic_inc(&conf->empty_inactive_list_nr); 456 out: 457 return sh; 458 } 459 460 static void shrink_buffers(struct stripe_head *sh) 461 { 462 struct page *p; 463 int i; 464 int num = sh->raid_conf->pool_size; 465 466 for (i = 0; i < num ; i++) { 467 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 468 p = sh->dev[i].page; 469 if (!p) 470 continue; 471 sh->dev[i].page = NULL; 472 put_page(p); 473 } 474 } 475 476 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 477 { 478 int i; 479 int num = sh->raid_conf->pool_size; 480 481 for (i = 0; i < num; i++) { 482 struct page *page; 483 484 if (!(page = alloc_page(gfp))) { 485 return 1; 486 } 487 sh->dev[i].page = page; 488 sh->dev[i].orig_page = page; 489 } 490 491 return 0; 492 } 493 494 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 495 struct stripe_head *sh); 496 497 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 498 { 499 struct r5conf *conf = sh->raid_conf; 500 int i, seq; 501 502 BUG_ON(atomic_read(&sh->count) != 0); 503 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 504 BUG_ON(stripe_operations_active(sh)); 505 BUG_ON(sh->batch_head); 506 507 pr_debug("init_stripe called, stripe %llu\n", 508 (unsigned long long)sector); 509 retry: 510 seq = read_seqcount_begin(&conf->gen_lock); 511 sh->generation = conf->generation - previous; 512 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 513 sh->sector = sector; 514 stripe_set_idx(sector, conf, previous, sh); 515 sh->state = 0; 516 517 for (i = sh->disks; i--; ) { 518 struct r5dev *dev = &sh->dev[i]; 519 520 if (dev->toread || dev->read || dev->towrite || dev->written || 521 test_bit(R5_LOCKED, &dev->flags)) { 522 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 523 (unsigned long long)sh->sector, i, dev->toread, 524 dev->read, dev->towrite, dev->written, 525 test_bit(R5_LOCKED, &dev->flags)); 526 WARN_ON(1); 527 } 528 dev->flags = 0; 529 dev->sector = raid5_compute_blocknr(sh, i, previous); 530 } 531 if (read_seqcount_retry(&conf->gen_lock, seq)) 532 goto retry; 533 sh->overwrite_disks = 0; 534 insert_hash(conf, sh); 535 sh->cpu = smp_processor_id(); 536 set_bit(STRIPE_BATCH_READY, &sh->state); 537 } 538 539 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 540 short generation) 541 { 542 struct stripe_head *sh; 543 544 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 545 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 546 if (sh->sector == sector && sh->generation == generation) 547 return sh; 548 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 549 return NULL; 550 } 551 552 /* 553 * Need to check if array has failed when deciding whether to: 554 * - start an array 555 * - remove non-faulty devices 556 * - add a spare 557 * - allow a reshape 558 * This determination is simple when no reshape is happening. 559 * However if there is a reshape, we need to carefully check 560 * both the before and after sections. 561 * This is because some failed devices may only affect one 562 * of the two sections, and some non-in_sync devices may 563 * be insync in the section most affected by failed devices. 564 */ 565 int raid5_calc_degraded(struct r5conf *conf) 566 { 567 int degraded, degraded2; 568 int i; 569 570 rcu_read_lock(); 571 degraded = 0; 572 for (i = 0; i < conf->previous_raid_disks; i++) { 573 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 574 if (rdev && test_bit(Faulty, &rdev->flags)) 575 rdev = rcu_dereference(conf->disks[i].replacement); 576 if (!rdev || test_bit(Faulty, &rdev->flags)) 577 degraded++; 578 else if (test_bit(In_sync, &rdev->flags)) 579 ; 580 else 581 /* not in-sync or faulty. 582 * If the reshape increases the number of devices, 583 * this is being recovered by the reshape, so 584 * this 'previous' section is not in_sync. 585 * If the number of devices is being reduced however, 586 * the device can only be part of the array if 587 * we are reverting a reshape, so this section will 588 * be in-sync. 589 */ 590 if (conf->raid_disks >= conf->previous_raid_disks) 591 degraded++; 592 } 593 rcu_read_unlock(); 594 if (conf->raid_disks == conf->previous_raid_disks) 595 return degraded; 596 rcu_read_lock(); 597 degraded2 = 0; 598 for (i = 0; i < conf->raid_disks; i++) { 599 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 600 if (rdev && test_bit(Faulty, &rdev->flags)) 601 rdev = rcu_dereference(conf->disks[i].replacement); 602 if (!rdev || test_bit(Faulty, &rdev->flags)) 603 degraded2++; 604 else if (test_bit(In_sync, &rdev->flags)) 605 ; 606 else 607 /* not in-sync or faulty. 608 * If reshape increases the number of devices, this 609 * section has already been recovered, else it 610 * almost certainly hasn't. 611 */ 612 if (conf->raid_disks <= conf->previous_raid_disks) 613 degraded2++; 614 } 615 rcu_read_unlock(); 616 if (degraded2 > degraded) 617 return degraded2; 618 return degraded; 619 } 620 621 static int has_failed(struct r5conf *conf) 622 { 623 int degraded; 624 625 if (conf->mddev->reshape_position == MaxSector) 626 return conf->mddev->degraded > conf->max_degraded; 627 628 degraded = raid5_calc_degraded(conf); 629 if (degraded > conf->max_degraded) 630 return 1; 631 return 0; 632 } 633 634 struct stripe_head * 635 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 636 int previous, int noblock, int noquiesce) 637 { 638 struct stripe_head *sh; 639 int hash = stripe_hash_locks_hash(sector); 640 int inc_empty_inactive_list_flag; 641 642 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 643 644 spin_lock_irq(conf->hash_locks + hash); 645 646 do { 647 wait_event_lock_irq(conf->wait_for_quiescent, 648 conf->quiesce == 0 || noquiesce, 649 *(conf->hash_locks + hash)); 650 sh = __find_stripe(conf, sector, conf->generation - previous); 651 if (!sh) { 652 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 653 sh = get_free_stripe(conf, hash); 654 if (!sh && !test_bit(R5_DID_ALLOC, 655 &conf->cache_state)) 656 set_bit(R5_ALLOC_MORE, 657 &conf->cache_state); 658 } 659 if (noblock && sh == NULL) 660 break; 661 662 r5c_check_stripe_cache_usage(conf); 663 if (!sh) { 664 set_bit(R5_INACTIVE_BLOCKED, 665 &conf->cache_state); 666 r5l_wake_reclaim(conf->log, 0); 667 wait_event_lock_irq( 668 conf->wait_for_stripe, 669 !list_empty(conf->inactive_list + hash) && 670 (atomic_read(&conf->active_stripes) 671 < (conf->max_nr_stripes * 3 / 4) 672 || !test_bit(R5_INACTIVE_BLOCKED, 673 &conf->cache_state)), 674 *(conf->hash_locks + hash)); 675 clear_bit(R5_INACTIVE_BLOCKED, 676 &conf->cache_state); 677 } else { 678 init_stripe(sh, sector, previous); 679 atomic_inc(&sh->count); 680 } 681 } else if (!atomic_inc_not_zero(&sh->count)) { 682 spin_lock(&conf->device_lock); 683 if (!atomic_read(&sh->count)) { 684 if (!test_bit(STRIPE_HANDLE, &sh->state)) 685 atomic_inc(&conf->active_stripes); 686 BUG_ON(list_empty(&sh->lru) && 687 !test_bit(STRIPE_EXPANDING, &sh->state)); 688 inc_empty_inactive_list_flag = 0; 689 if (!list_empty(conf->inactive_list + hash)) 690 inc_empty_inactive_list_flag = 1; 691 list_del_init(&sh->lru); 692 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 693 atomic_inc(&conf->empty_inactive_list_nr); 694 if (sh->group) { 695 sh->group->stripes_cnt--; 696 sh->group = NULL; 697 } 698 } 699 atomic_inc(&sh->count); 700 spin_unlock(&conf->device_lock); 701 } 702 } while (sh == NULL); 703 704 spin_unlock_irq(conf->hash_locks + hash); 705 return sh; 706 } 707 708 static bool is_full_stripe_write(struct stripe_head *sh) 709 { 710 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 711 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 712 } 713 714 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 715 { 716 if (sh1 > sh2) { 717 spin_lock_irq(&sh2->stripe_lock); 718 spin_lock_nested(&sh1->stripe_lock, 1); 719 } else { 720 spin_lock_irq(&sh1->stripe_lock); 721 spin_lock_nested(&sh2->stripe_lock, 1); 722 } 723 } 724 725 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 726 { 727 spin_unlock(&sh1->stripe_lock); 728 spin_unlock_irq(&sh2->stripe_lock); 729 } 730 731 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 732 static bool stripe_can_batch(struct stripe_head *sh) 733 { 734 struct r5conf *conf = sh->raid_conf; 735 736 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 737 return false; 738 return test_bit(STRIPE_BATCH_READY, &sh->state) && 739 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 740 is_full_stripe_write(sh); 741 } 742 743 /* we only do back search */ 744 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 745 { 746 struct stripe_head *head; 747 sector_t head_sector, tmp_sec; 748 int hash; 749 int dd_idx; 750 int inc_empty_inactive_list_flag; 751 752 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 753 tmp_sec = sh->sector; 754 if (!sector_div(tmp_sec, conf->chunk_sectors)) 755 return; 756 head_sector = sh->sector - STRIPE_SECTORS; 757 758 hash = stripe_hash_locks_hash(head_sector); 759 spin_lock_irq(conf->hash_locks + hash); 760 head = __find_stripe(conf, head_sector, conf->generation); 761 if (head && !atomic_inc_not_zero(&head->count)) { 762 spin_lock(&conf->device_lock); 763 if (!atomic_read(&head->count)) { 764 if (!test_bit(STRIPE_HANDLE, &head->state)) 765 atomic_inc(&conf->active_stripes); 766 BUG_ON(list_empty(&head->lru) && 767 !test_bit(STRIPE_EXPANDING, &head->state)); 768 inc_empty_inactive_list_flag = 0; 769 if (!list_empty(conf->inactive_list + hash)) 770 inc_empty_inactive_list_flag = 1; 771 list_del_init(&head->lru); 772 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 773 atomic_inc(&conf->empty_inactive_list_nr); 774 if (head->group) { 775 head->group->stripes_cnt--; 776 head->group = NULL; 777 } 778 } 779 atomic_inc(&head->count); 780 spin_unlock(&conf->device_lock); 781 } 782 spin_unlock_irq(conf->hash_locks + hash); 783 784 if (!head) 785 return; 786 if (!stripe_can_batch(head)) 787 goto out; 788 789 lock_two_stripes(head, sh); 790 /* clear_batch_ready clear the flag */ 791 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 792 goto unlock_out; 793 794 if (sh->batch_head) 795 goto unlock_out; 796 797 dd_idx = 0; 798 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 799 dd_idx++; 800 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 801 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 802 goto unlock_out; 803 804 if (head->batch_head) { 805 spin_lock(&head->batch_head->batch_lock); 806 /* This batch list is already running */ 807 if (!stripe_can_batch(head)) { 808 spin_unlock(&head->batch_head->batch_lock); 809 goto unlock_out; 810 } 811 /* 812 * We must assign batch_head of this stripe within the 813 * batch_lock, otherwise clear_batch_ready of batch head 814 * stripe could clear BATCH_READY bit of this stripe and 815 * this stripe->batch_head doesn't get assigned, which 816 * could confuse clear_batch_ready for this stripe 817 */ 818 sh->batch_head = head->batch_head; 819 820 /* 821 * at this point, head's BATCH_READY could be cleared, but we 822 * can still add the stripe to batch list 823 */ 824 list_add(&sh->batch_list, &head->batch_list); 825 spin_unlock(&head->batch_head->batch_lock); 826 } else { 827 head->batch_head = head; 828 sh->batch_head = head->batch_head; 829 spin_lock(&head->batch_lock); 830 list_add_tail(&sh->batch_list, &head->batch_list); 831 spin_unlock(&head->batch_lock); 832 } 833 834 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 835 if (atomic_dec_return(&conf->preread_active_stripes) 836 < IO_THRESHOLD) 837 md_wakeup_thread(conf->mddev->thread); 838 839 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 840 int seq = sh->bm_seq; 841 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 842 sh->batch_head->bm_seq > seq) 843 seq = sh->batch_head->bm_seq; 844 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 845 sh->batch_head->bm_seq = seq; 846 } 847 848 atomic_inc(&sh->count); 849 unlock_out: 850 unlock_two_stripes(head, sh); 851 out: 852 raid5_release_stripe(head); 853 } 854 855 /* Determine if 'data_offset' or 'new_data_offset' should be used 856 * in this stripe_head. 857 */ 858 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 859 { 860 sector_t progress = conf->reshape_progress; 861 /* Need a memory barrier to make sure we see the value 862 * of conf->generation, or ->data_offset that was set before 863 * reshape_progress was updated. 864 */ 865 smp_rmb(); 866 if (progress == MaxSector) 867 return 0; 868 if (sh->generation == conf->generation - 1) 869 return 0; 870 /* We are in a reshape, and this is a new-generation stripe, 871 * so use new_data_offset. 872 */ 873 return 1; 874 } 875 876 static void dispatch_bio_list(struct bio_list *tmp) 877 { 878 struct bio *bio; 879 880 while ((bio = bio_list_pop(tmp))) 881 generic_make_request(bio); 882 } 883 884 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b) 885 { 886 const struct r5pending_data *da = list_entry(a, 887 struct r5pending_data, sibling); 888 const struct r5pending_data *db = list_entry(b, 889 struct r5pending_data, sibling); 890 if (da->sector > db->sector) 891 return 1; 892 if (da->sector < db->sector) 893 return -1; 894 return 0; 895 } 896 897 static void dispatch_defer_bios(struct r5conf *conf, int target, 898 struct bio_list *list) 899 { 900 struct r5pending_data *data; 901 struct list_head *first, *next = NULL; 902 int cnt = 0; 903 904 if (conf->pending_data_cnt == 0) 905 return; 906 907 list_sort(NULL, &conf->pending_list, cmp_stripe); 908 909 first = conf->pending_list.next; 910 911 /* temporarily move the head */ 912 if (conf->next_pending_data) 913 list_move_tail(&conf->pending_list, 914 &conf->next_pending_data->sibling); 915 916 while (!list_empty(&conf->pending_list)) { 917 data = list_first_entry(&conf->pending_list, 918 struct r5pending_data, sibling); 919 if (&data->sibling == first) 920 first = data->sibling.next; 921 next = data->sibling.next; 922 923 bio_list_merge(list, &data->bios); 924 list_move(&data->sibling, &conf->free_list); 925 cnt++; 926 if (cnt >= target) 927 break; 928 } 929 conf->pending_data_cnt -= cnt; 930 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 931 932 if (next != &conf->pending_list) 933 conf->next_pending_data = list_entry(next, 934 struct r5pending_data, sibling); 935 else 936 conf->next_pending_data = NULL; 937 /* list isn't empty */ 938 if (first != &conf->pending_list) 939 list_move_tail(&conf->pending_list, first); 940 } 941 942 static void flush_deferred_bios(struct r5conf *conf) 943 { 944 struct bio_list tmp = BIO_EMPTY_LIST; 945 946 if (conf->pending_data_cnt == 0) 947 return; 948 949 spin_lock(&conf->pending_bios_lock); 950 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 951 BUG_ON(conf->pending_data_cnt != 0); 952 spin_unlock(&conf->pending_bios_lock); 953 954 dispatch_bio_list(&tmp); 955 } 956 957 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 958 struct bio_list *bios) 959 { 960 struct bio_list tmp = BIO_EMPTY_LIST; 961 struct r5pending_data *ent; 962 963 spin_lock(&conf->pending_bios_lock); 964 ent = list_first_entry(&conf->free_list, struct r5pending_data, 965 sibling); 966 list_move_tail(&ent->sibling, &conf->pending_list); 967 ent->sector = sector; 968 bio_list_init(&ent->bios); 969 bio_list_merge(&ent->bios, bios); 970 conf->pending_data_cnt++; 971 if (conf->pending_data_cnt >= PENDING_IO_MAX) 972 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 973 974 spin_unlock(&conf->pending_bios_lock); 975 976 dispatch_bio_list(&tmp); 977 } 978 979 static void 980 raid5_end_read_request(struct bio *bi); 981 static void 982 raid5_end_write_request(struct bio *bi); 983 984 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 985 { 986 struct r5conf *conf = sh->raid_conf; 987 int i, disks = sh->disks; 988 struct stripe_head *head_sh = sh; 989 struct bio_list pending_bios = BIO_EMPTY_LIST; 990 bool should_defer; 991 992 might_sleep(); 993 994 if (log_stripe(sh, s) == 0) 995 return; 996 997 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 998 999 for (i = disks; i--; ) { 1000 int op, op_flags = 0; 1001 int replace_only = 0; 1002 struct bio *bi, *rbi; 1003 struct md_rdev *rdev, *rrdev = NULL; 1004 1005 sh = head_sh; 1006 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1007 op = REQ_OP_WRITE; 1008 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1009 op_flags = REQ_FUA; 1010 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1011 op = REQ_OP_DISCARD; 1012 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1013 op = REQ_OP_READ; 1014 else if (test_and_clear_bit(R5_WantReplace, 1015 &sh->dev[i].flags)) { 1016 op = REQ_OP_WRITE; 1017 replace_only = 1; 1018 } else 1019 continue; 1020 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1021 op_flags |= REQ_SYNC; 1022 1023 again: 1024 bi = &sh->dev[i].req; 1025 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1026 1027 rcu_read_lock(); 1028 rrdev = rcu_dereference(conf->disks[i].replacement); 1029 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1030 rdev = rcu_dereference(conf->disks[i].rdev); 1031 if (!rdev) { 1032 rdev = rrdev; 1033 rrdev = NULL; 1034 } 1035 if (op_is_write(op)) { 1036 if (replace_only) 1037 rdev = NULL; 1038 if (rdev == rrdev) 1039 /* We raced and saw duplicates */ 1040 rrdev = NULL; 1041 } else { 1042 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1043 rdev = rrdev; 1044 rrdev = NULL; 1045 } 1046 1047 if (rdev && test_bit(Faulty, &rdev->flags)) 1048 rdev = NULL; 1049 if (rdev) 1050 atomic_inc(&rdev->nr_pending); 1051 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1052 rrdev = NULL; 1053 if (rrdev) 1054 atomic_inc(&rrdev->nr_pending); 1055 rcu_read_unlock(); 1056 1057 /* We have already checked bad blocks for reads. Now 1058 * need to check for writes. We never accept write errors 1059 * on the replacement, so we don't to check rrdev. 1060 */ 1061 while (op_is_write(op) && rdev && 1062 test_bit(WriteErrorSeen, &rdev->flags)) { 1063 sector_t first_bad; 1064 int bad_sectors; 1065 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 1066 &first_bad, &bad_sectors); 1067 if (!bad) 1068 break; 1069 1070 if (bad < 0) { 1071 set_bit(BlockedBadBlocks, &rdev->flags); 1072 if (!conf->mddev->external && 1073 conf->mddev->sb_flags) { 1074 /* It is very unlikely, but we might 1075 * still need to write out the 1076 * bad block log - better give it 1077 * a chance*/ 1078 md_check_recovery(conf->mddev); 1079 } 1080 /* 1081 * Because md_wait_for_blocked_rdev 1082 * will dec nr_pending, we must 1083 * increment it first. 1084 */ 1085 atomic_inc(&rdev->nr_pending); 1086 md_wait_for_blocked_rdev(rdev, conf->mddev); 1087 } else { 1088 /* Acknowledged bad block - skip the write */ 1089 rdev_dec_pending(rdev, conf->mddev); 1090 rdev = NULL; 1091 } 1092 } 1093 1094 if (rdev) { 1095 if (s->syncing || s->expanding || s->expanded 1096 || s->replacing) 1097 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1098 1099 set_bit(STRIPE_IO_STARTED, &sh->state); 1100 1101 bio_set_dev(bi, rdev->bdev); 1102 bio_set_op_attrs(bi, op, op_flags); 1103 bi->bi_end_io = op_is_write(op) 1104 ? raid5_end_write_request 1105 : raid5_end_read_request; 1106 bi->bi_private = sh; 1107 1108 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1109 __func__, (unsigned long long)sh->sector, 1110 bi->bi_opf, i); 1111 atomic_inc(&sh->count); 1112 if (sh != head_sh) 1113 atomic_inc(&head_sh->count); 1114 if (use_new_offset(conf, sh)) 1115 bi->bi_iter.bi_sector = (sh->sector 1116 + rdev->new_data_offset); 1117 else 1118 bi->bi_iter.bi_sector = (sh->sector 1119 + rdev->data_offset); 1120 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1121 bi->bi_opf |= REQ_NOMERGE; 1122 1123 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1124 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1125 1126 if (!op_is_write(op) && 1127 test_bit(R5_InJournal, &sh->dev[i].flags)) 1128 /* 1129 * issuing read for a page in journal, this 1130 * must be preparing for prexor in rmw; read 1131 * the data into orig_page 1132 */ 1133 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1134 else 1135 sh->dev[i].vec.bv_page = sh->dev[i].page; 1136 bi->bi_vcnt = 1; 1137 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1138 bi->bi_io_vec[0].bv_offset = 0; 1139 bi->bi_iter.bi_size = STRIPE_SIZE; 1140 bi->bi_write_hint = sh->dev[i].write_hint; 1141 if (!rrdev) 1142 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; 1143 /* 1144 * If this is discard request, set bi_vcnt 0. We don't 1145 * want to confuse SCSI because SCSI will replace payload 1146 */ 1147 if (op == REQ_OP_DISCARD) 1148 bi->bi_vcnt = 0; 1149 if (rrdev) 1150 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1151 1152 if (conf->mddev->gendisk) 1153 trace_block_bio_remap(bi->bi_disk->queue, 1154 bi, disk_devt(conf->mddev->gendisk), 1155 sh->dev[i].sector); 1156 if (should_defer && op_is_write(op)) 1157 bio_list_add(&pending_bios, bi); 1158 else 1159 generic_make_request(bi); 1160 } 1161 if (rrdev) { 1162 if (s->syncing || s->expanding || s->expanded 1163 || s->replacing) 1164 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1165 1166 set_bit(STRIPE_IO_STARTED, &sh->state); 1167 1168 bio_set_dev(rbi, rrdev->bdev); 1169 bio_set_op_attrs(rbi, op, op_flags); 1170 BUG_ON(!op_is_write(op)); 1171 rbi->bi_end_io = raid5_end_write_request; 1172 rbi->bi_private = sh; 1173 1174 pr_debug("%s: for %llu schedule op %d on " 1175 "replacement disc %d\n", 1176 __func__, (unsigned long long)sh->sector, 1177 rbi->bi_opf, i); 1178 atomic_inc(&sh->count); 1179 if (sh != head_sh) 1180 atomic_inc(&head_sh->count); 1181 if (use_new_offset(conf, sh)) 1182 rbi->bi_iter.bi_sector = (sh->sector 1183 + rrdev->new_data_offset); 1184 else 1185 rbi->bi_iter.bi_sector = (sh->sector 1186 + rrdev->data_offset); 1187 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1188 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1189 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1190 rbi->bi_vcnt = 1; 1191 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1192 rbi->bi_io_vec[0].bv_offset = 0; 1193 rbi->bi_iter.bi_size = STRIPE_SIZE; 1194 rbi->bi_write_hint = sh->dev[i].write_hint; 1195 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; 1196 /* 1197 * If this is discard request, set bi_vcnt 0. We don't 1198 * want to confuse SCSI because SCSI will replace payload 1199 */ 1200 if (op == REQ_OP_DISCARD) 1201 rbi->bi_vcnt = 0; 1202 if (conf->mddev->gendisk) 1203 trace_block_bio_remap(rbi->bi_disk->queue, 1204 rbi, disk_devt(conf->mddev->gendisk), 1205 sh->dev[i].sector); 1206 if (should_defer && op_is_write(op)) 1207 bio_list_add(&pending_bios, rbi); 1208 else 1209 generic_make_request(rbi); 1210 } 1211 if (!rdev && !rrdev) { 1212 if (op_is_write(op)) 1213 set_bit(STRIPE_DEGRADED, &sh->state); 1214 pr_debug("skip op %d on disc %d for sector %llu\n", 1215 bi->bi_opf, i, (unsigned long long)sh->sector); 1216 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1217 set_bit(STRIPE_HANDLE, &sh->state); 1218 } 1219 1220 if (!head_sh->batch_head) 1221 continue; 1222 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1223 batch_list); 1224 if (sh != head_sh) 1225 goto again; 1226 } 1227 1228 if (should_defer && !bio_list_empty(&pending_bios)) 1229 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1230 } 1231 1232 static struct dma_async_tx_descriptor * 1233 async_copy_data(int frombio, struct bio *bio, struct page **page, 1234 sector_t sector, struct dma_async_tx_descriptor *tx, 1235 struct stripe_head *sh, int no_skipcopy) 1236 { 1237 struct bio_vec bvl; 1238 struct bvec_iter iter; 1239 struct page *bio_page; 1240 int page_offset; 1241 struct async_submit_ctl submit; 1242 enum async_tx_flags flags = 0; 1243 1244 if (bio->bi_iter.bi_sector >= sector) 1245 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1246 else 1247 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1248 1249 if (frombio) 1250 flags |= ASYNC_TX_FENCE; 1251 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1252 1253 bio_for_each_segment(bvl, bio, iter) { 1254 int len = bvl.bv_len; 1255 int clen; 1256 int b_offset = 0; 1257 1258 if (page_offset < 0) { 1259 b_offset = -page_offset; 1260 page_offset += b_offset; 1261 len -= b_offset; 1262 } 1263 1264 if (len > 0 && page_offset + len > STRIPE_SIZE) 1265 clen = STRIPE_SIZE - page_offset; 1266 else 1267 clen = len; 1268 1269 if (clen > 0) { 1270 b_offset += bvl.bv_offset; 1271 bio_page = bvl.bv_page; 1272 if (frombio) { 1273 if (sh->raid_conf->skip_copy && 1274 b_offset == 0 && page_offset == 0 && 1275 clen == STRIPE_SIZE && 1276 !no_skipcopy) 1277 *page = bio_page; 1278 else 1279 tx = async_memcpy(*page, bio_page, page_offset, 1280 b_offset, clen, &submit); 1281 } else 1282 tx = async_memcpy(bio_page, *page, b_offset, 1283 page_offset, clen, &submit); 1284 } 1285 /* chain the operations */ 1286 submit.depend_tx = tx; 1287 1288 if (clen < len) /* hit end of page */ 1289 break; 1290 page_offset += len; 1291 } 1292 1293 return tx; 1294 } 1295 1296 static void ops_complete_biofill(void *stripe_head_ref) 1297 { 1298 struct stripe_head *sh = stripe_head_ref; 1299 int i; 1300 1301 pr_debug("%s: stripe %llu\n", __func__, 1302 (unsigned long long)sh->sector); 1303 1304 /* clear completed biofills */ 1305 for (i = sh->disks; i--; ) { 1306 struct r5dev *dev = &sh->dev[i]; 1307 1308 /* acknowledge completion of a biofill operation */ 1309 /* and check if we need to reply to a read request, 1310 * new R5_Wantfill requests are held off until 1311 * !STRIPE_BIOFILL_RUN 1312 */ 1313 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1314 struct bio *rbi, *rbi2; 1315 1316 BUG_ON(!dev->read); 1317 rbi = dev->read; 1318 dev->read = NULL; 1319 while (rbi && rbi->bi_iter.bi_sector < 1320 dev->sector + STRIPE_SECTORS) { 1321 rbi2 = r5_next_bio(rbi, dev->sector); 1322 bio_endio(rbi); 1323 rbi = rbi2; 1324 } 1325 } 1326 } 1327 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1328 1329 set_bit(STRIPE_HANDLE, &sh->state); 1330 raid5_release_stripe(sh); 1331 } 1332 1333 static void ops_run_biofill(struct stripe_head *sh) 1334 { 1335 struct dma_async_tx_descriptor *tx = NULL; 1336 struct async_submit_ctl submit; 1337 int i; 1338 1339 BUG_ON(sh->batch_head); 1340 pr_debug("%s: stripe %llu\n", __func__, 1341 (unsigned long long)sh->sector); 1342 1343 for (i = sh->disks; i--; ) { 1344 struct r5dev *dev = &sh->dev[i]; 1345 if (test_bit(R5_Wantfill, &dev->flags)) { 1346 struct bio *rbi; 1347 spin_lock_irq(&sh->stripe_lock); 1348 dev->read = rbi = dev->toread; 1349 dev->toread = NULL; 1350 spin_unlock_irq(&sh->stripe_lock); 1351 while (rbi && rbi->bi_iter.bi_sector < 1352 dev->sector + STRIPE_SECTORS) { 1353 tx = async_copy_data(0, rbi, &dev->page, 1354 dev->sector, tx, sh, 0); 1355 rbi = r5_next_bio(rbi, dev->sector); 1356 } 1357 } 1358 } 1359 1360 atomic_inc(&sh->count); 1361 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1362 async_trigger_callback(&submit); 1363 } 1364 1365 static void mark_target_uptodate(struct stripe_head *sh, int target) 1366 { 1367 struct r5dev *tgt; 1368 1369 if (target < 0) 1370 return; 1371 1372 tgt = &sh->dev[target]; 1373 set_bit(R5_UPTODATE, &tgt->flags); 1374 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1375 clear_bit(R5_Wantcompute, &tgt->flags); 1376 } 1377 1378 static void ops_complete_compute(void *stripe_head_ref) 1379 { 1380 struct stripe_head *sh = stripe_head_ref; 1381 1382 pr_debug("%s: stripe %llu\n", __func__, 1383 (unsigned long long)sh->sector); 1384 1385 /* mark the computed target(s) as uptodate */ 1386 mark_target_uptodate(sh, sh->ops.target); 1387 mark_target_uptodate(sh, sh->ops.target2); 1388 1389 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1390 if (sh->check_state == check_state_compute_run) 1391 sh->check_state = check_state_compute_result; 1392 set_bit(STRIPE_HANDLE, &sh->state); 1393 raid5_release_stripe(sh); 1394 } 1395 1396 /* return a pointer to the address conversion region of the scribble buffer */ 1397 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1398 struct raid5_percpu *percpu, int i) 1399 { 1400 void *addr; 1401 1402 addr = flex_array_get(percpu->scribble, i); 1403 return addr + sizeof(struct page *) * (sh->disks + 2); 1404 } 1405 1406 /* return a pointer to the address conversion region of the scribble buffer */ 1407 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1408 { 1409 void *addr; 1410 1411 addr = flex_array_get(percpu->scribble, i); 1412 return addr; 1413 } 1414 1415 static struct dma_async_tx_descriptor * 1416 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1417 { 1418 int disks = sh->disks; 1419 struct page **xor_srcs = to_addr_page(percpu, 0); 1420 int target = sh->ops.target; 1421 struct r5dev *tgt = &sh->dev[target]; 1422 struct page *xor_dest = tgt->page; 1423 int count = 0; 1424 struct dma_async_tx_descriptor *tx; 1425 struct async_submit_ctl submit; 1426 int i; 1427 1428 BUG_ON(sh->batch_head); 1429 1430 pr_debug("%s: stripe %llu block: %d\n", 1431 __func__, (unsigned long long)sh->sector, target); 1432 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1433 1434 for (i = disks; i--; ) 1435 if (i != target) 1436 xor_srcs[count++] = sh->dev[i].page; 1437 1438 atomic_inc(&sh->count); 1439 1440 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1441 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1442 if (unlikely(count == 1)) 1443 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1444 else 1445 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1446 1447 return tx; 1448 } 1449 1450 /* set_syndrome_sources - populate source buffers for gen_syndrome 1451 * @srcs - (struct page *) array of size sh->disks 1452 * @sh - stripe_head to parse 1453 * 1454 * Populates srcs in proper layout order for the stripe and returns the 1455 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1456 * destination buffer is recorded in srcs[count] and the Q destination 1457 * is recorded in srcs[count+1]]. 1458 */ 1459 static int set_syndrome_sources(struct page **srcs, 1460 struct stripe_head *sh, 1461 int srctype) 1462 { 1463 int disks = sh->disks; 1464 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1465 int d0_idx = raid6_d0(sh); 1466 int count; 1467 int i; 1468 1469 for (i = 0; i < disks; i++) 1470 srcs[i] = NULL; 1471 1472 count = 0; 1473 i = d0_idx; 1474 do { 1475 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1476 struct r5dev *dev = &sh->dev[i]; 1477 1478 if (i == sh->qd_idx || i == sh->pd_idx || 1479 (srctype == SYNDROME_SRC_ALL) || 1480 (srctype == SYNDROME_SRC_WANT_DRAIN && 1481 (test_bit(R5_Wantdrain, &dev->flags) || 1482 test_bit(R5_InJournal, &dev->flags))) || 1483 (srctype == SYNDROME_SRC_WRITTEN && 1484 (dev->written || 1485 test_bit(R5_InJournal, &dev->flags)))) { 1486 if (test_bit(R5_InJournal, &dev->flags)) 1487 srcs[slot] = sh->dev[i].orig_page; 1488 else 1489 srcs[slot] = sh->dev[i].page; 1490 } 1491 i = raid6_next_disk(i, disks); 1492 } while (i != d0_idx); 1493 1494 return syndrome_disks; 1495 } 1496 1497 static struct dma_async_tx_descriptor * 1498 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1499 { 1500 int disks = sh->disks; 1501 struct page **blocks = to_addr_page(percpu, 0); 1502 int target; 1503 int qd_idx = sh->qd_idx; 1504 struct dma_async_tx_descriptor *tx; 1505 struct async_submit_ctl submit; 1506 struct r5dev *tgt; 1507 struct page *dest; 1508 int i; 1509 int count; 1510 1511 BUG_ON(sh->batch_head); 1512 if (sh->ops.target < 0) 1513 target = sh->ops.target2; 1514 else if (sh->ops.target2 < 0) 1515 target = sh->ops.target; 1516 else 1517 /* we should only have one valid target */ 1518 BUG(); 1519 BUG_ON(target < 0); 1520 pr_debug("%s: stripe %llu block: %d\n", 1521 __func__, (unsigned long long)sh->sector, target); 1522 1523 tgt = &sh->dev[target]; 1524 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1525 dest = tgt->page; 1526 1527 atomic_inc(&sh->count); 1528 1529 if (target == qd_idx) { 1530 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1531 blocks[count] = NULL; /* regenerating p is not necessary */ 1532 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1533 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1534 ops_complete_compute, sh, 1535 to_addr_conv(sh, percpu, 0)); 1536 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1537 } else { 1538 /* Compute any data- or p-drive using XOR */ 1539 count = 0; 1540 for (i = disks; i-- ; ) { 1541 if (i == target || i == qd_idx) 1542 continue; 1543 blocks[count++] = sh->dev[i].page; 1544 } 1545 1546 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1547 NULL, ops_complete_compute, sh, 1548 to_addr_conv(sh, percpu, 0)); 1549 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1550 } 1551 1552 return tx; 1553 } 1554 1555 static struct dma_async_tx_descriptor * 1556 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1557 { 1558 int i, count, disks = sh->disks; 1559 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1560 int d0_idx = raid6_d0(sh); 1561 int faila = -1, failb = -1; 1562 int target = sh->ops.target; 1563 int target2 = sh->ops.target2; 1564 struct r5dev *tgt = &sh->dev[target]; 1565 struct r5dev *tgt2 = &sh->dev[target2]; 1566 struct dma_async_tx_descriptor *tx; 1567 struct page **blocks = to_addr_page(percpu, 0); 1568 struct async_submit_ctl submit; 1569 1570 BUG_ON(sh->batch_head); 1571 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1572 __func__, (unsigned long long)sh->sector, target, target2); 1573 BUG_ON(target < 0 || target2 < 0); 1574 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1575 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1576 1577 /* we need to open-code set_syndrome_sources to handle the 1578 * slot number conversion for 'faila' and 'failb' 1579 */ 1580 for (i = 0; i < disks ; i++) 1581 blocks[i] = NULL; 1582 count = 0; 1583 i = d0_idx; 1584 do { 1585 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1586 1587 blocks[slot] = sh->dev[i].page; 1588 1589 if (i == target) 1590 faila = slot; 1591 if (i == target2) 1592 failb = slot; 1593 i = raid6_next_disk(i, disks); 1594 } while (i != d0_idx); 1595 1596 BUG_ON(faila == failb); 1597 if (failb < faila) 1598 swap(faila, failb); 1599 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1600 __func__, (unsigned long long)sh->sector, faila, failb); 1601 1602 atomic_inc(&sh->count); 1603 1604 if (failb == syndrome_disks+1) { 1605 /* Q disk is one of the missing disks */ 1606 if (faila == syndrome_disks) { 1607 /* Missing P+Q, just recompute */ 1608 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1609 ops_complete_compute, sh, 1610 to_addr_conv(sh, percpu, 0)); 1611 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1612 STRIPE_SIZE, &submit); 1613 } else { 1614 struct page *dest; 1615 int data_target; 1616 int qd_idx = sh->qd_idx; 1617 1618 /* Missing D+Q: recompute D from P, then recompute Q */ 1619 if (target == qd_idx) 1620 data_target = target2; 1621 else 1622 data_target = target; 1623 1624 count = 0; 1625 for (i = disks; i-- ; ) { 1626 if (i == data_target || i == qd_idx) 1627 continue; 1628 blocks[count++] = sh->dev[i].page; 1629 } 1630 dest = sh->dev[data_target].page; 1631 init_async_submit(&submit, 1632 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1633 NULL, NULL, NULL, 1634 to_addr_conv(sh, percpu, 0)); 1635 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1636 &submit); 1637 1638 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1639 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1640 ops_complete_compute, sh, 1641 to_addr_conv(sh, percpu, 0)); 1642 return async_gen_syndrome(blocks, 0, count+2, 1643 STRIPE_SIZE, &submit); 1644 } 1645 } else { 1646 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1647 ops_complete_compute, sh, 1648 to_addr_conv(sh, percpu, 0)); 1649 if (failb == syndrome_disks) { 1650 /* We're missing D+P. */ 1651 return async_raid6_datap_recov(syndrome_disks+2, 1652 STRIPE_SIZE, faila, 1653 blocks, &submit); 1654 } else { 1655 /* We're missing D+D. */ 1656 return async_raid6_2data_recov(syndrome_disks+2, 1657 STRIPE_SIZE, faila, failb, 1658 blocks, &submit); 1659 } 1660 } 1661 } 1662 1663 static void ops_complete_prexor(void *stripe_head_ref) 1664 { 1665 struct stripe_head *sh = stripe_head_ref; 1666 1667 pr_debug("%s: stripe %llu\n", __func__, 1668 (unsigned long long)sh->sector); 1669 1670 if (r5c_is_writeback(sh->raid_conf->log)) 1671 /* 1672 * raid5-cache write back uses orig_page during prexor. 1673 * After prexor, it is time to free orig_page 1674 */ 1675 r5c_release_extra_page(sh); 1676 } 1677 1678 static struct dma_async_tx_descriptor * 1679 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1680 struct dma_async_tx_descriptor *tx) 1681 { 1682 int disks = sh->disks; 1683 struct page **xor_srcs = to_addr_page(percpu, 0); 1684 int count = 0, pd_idx = sh->pd_idx, i; 1685 struct async_submit_ctl submit; 1686 1687 /* existing parity data subtracted */ 1688 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1689 1690 BUG_ON(sh->batch_head); 1691 pr_debug("%s: stripe %llu\n", __func__, 1692 (unsigned long long)sh->sector); 1693 1694 for (i = disks; i--; ) { 1695 struct r5dev *dev = &sh->dev[i]; 1696 /* Only process blocks that are known to be uptodate */ 1697 if (test_bit(R5_InJournal, &dev->flags)) 1698 xor_srcs[count++] = dev->orig_page; 1699 else if (test_bit(R5_Wantdrain, &dev->flags)) 1700 xor_srcs[count++] = dev->page; 1701 } 1702 1703 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1704 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1705 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1706 1707 return tx; 1708 } 1709 1710 static struct dma_async_tx_descriptor * 1711 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1712 struct dma_async_tx_descriptor *tx) 1713 { 1714 struct page **blocks = to_addr_page(percpu, 0); 1715 int count; 1716 struct async_submit_ctl submit; 1717 1718 pr_debug("%s: stripe %llu\n", __func__, 1719 (unsigned long long)sh->sector); 1720 1721 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1722 1723 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1724 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1725 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1726 1727 return tx; 1728 } 1729 1730 static struct dma_async_tx_descriptor * 1731 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1732 { 1733 struct r5conf *conf = sh->raid_conf; 1734 int disks = sh->disks; 1735 int i; 1736 struct stripe_head *head_sh = sh; 1737 1738 pr_debug("%s: stripe %llu\n", __func__, 1739 (unsigned long long)sh->sector); 1740 1741 for (i = disks; i--; ) { 1742 struct r5dev *dev; 1743 struct bio *chosen; 1744 1745 sh = head_sh; 1746 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1747 struct bio *wbi; 1748 1749 again: 1750 dev = &sh->dev[i]; 1751 /* 1752 * clear R5_InJournal, so when rewriting a page in 1753 * journal, it is not skipped by r5l_log_stripe() 1754 */ 1755 clear_bit(R5_InJournal, &dev->flags); 1756 spin_lock_irq(&sh->stripe_lock); 1757 chosen = dev->towrite; 1758 dev->towrite = NULL; 1759 sh->overwrite_disks = 0; 1760 BUG_ON(dev->written); 1761 wbi = dev->written = chosen; 1762 spin_unlock_irq(&sh->stripe_lock); 1763 WARN_ON(dev->page != dev->orig_page); 1764 1765 while (wbi && wbi->bi_iter.bi_sector < 1766 dev->sector + STRIPE_SECTORS) { 1767 if (wbi->bi_opf & REQ_FUA) 1768 set_bit(R5_WantFUA, &dev->flags); 1769 if (wbi->bi_opf & REQ_SYNC) 1770 set_bit(R5_SyncIO, &dev->flags); 1771 if (bio_op(wbi) == REQ_OP_DISCARD) 1772 set_bit(R5_Discard, &dev->flags); 1773 else { 1774 tx = async_copy_data(1, wbi, &dev->page, 1775 dev->sector, tx, sh, 1776 r5c_is_writeback(conf->log)); 1777 if (dev->page != dev->orig_page && 1778 !r5c_is_writeback(conf->log)) { 1779 set_bit(R5_SkipCopy, &dev->flags); 1780 clear_bit(R5_UPTODATE, &dev->flags); 1781 clear_bit(R5_OVERWRITE, &dev->flags); 1782 } 1783 } 1784 wbi = r5_next_bio(wbi, dev->sector); 1785 } 1786 1787 if (head_sh->batch_head) { 1788 sh = list_first_entry(&sh->batch_list, 1789 struct stripe_head, 1790 batch_list); 1791 if (sh == head_sh) 1792 continue; 1793 goto again; 1794 } 1795 } 1796 } 1797 1798 return tx; 1799 } 1800 1801 static void ops_complete_reconstruct(void *stripe_head_ref) 1802 { 1803 struct stripe_head *sh = stripe_head_ref; 1804 int disks = sh->disks; 1805 int pd_idx = sh->pd_idx; 1806 int qd_idx = sh->qd_idx; 1807 int i; 1808 bool fua = false, sync = false, discard = false; 1809 1810 pr_debug("%s: stripe %llu\n", __func__, 1811 (unsigned long long)sh->sector); 1812 1813 for (i = disks; i--; ) { 1814 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1815 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1816 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1817 } 1818 1819 for (i = disks; i--; ) { 1820 struct r5dev *dev = &sh->dev[i]; 1821 1822 if (dev->written || i == pd_idx || i == qd_idx) { 1823 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1824 set_bit(R5_UPTODATE, &dev->flags); 1825 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1826 set_bit(R5_Expanded, &dev->flags); 1827 } 1828 if (fua) 1829 set_bit(R5_WantFUA, &dev->flags); 1830 if (sync) 1831 set_bit(R5_SyncIO, &dev->flags); 1832 } 1833 } 1834 1835 if (sh->reconstruct_state == reconstruct_state_drain_run) 1836 sh->reconstruct_state = reconstruct_state_drain_result; 1837 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1838 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1839 else { 1840 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1841 sh->reconstruct_state = reconstruct_state_result; 1842 } 1843 1844 set_bit(STRIPE_HANDLE, &sh->state); 1845 raid5_release_stripe(sh); 1846 } 1847 1848 static void 1849 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1850 struct dma_async_tx_descriptor *tx) 1851 { 1852 int disks = sh->disks; 1853 struct page **xor_srcs; 1854 struct async_submit_ctl submit; 1855 int count, pd_idx = sh->pd_idx, i; 1856 struct page *xor_dest; 1857 int prexor = 0; 1858 unsigned long flags; 1859 int j = 0; 1860 struct stripe_head *head_sh = sh; 1861 int last_stripe; 1862 1863 pr_debug("%s: stripe %llu\n", __func__, 1864 (unsigned long long)sh->sector); 1865 1866 for (i = 0; i < sh->disks; i++) { 1867 if (pd_idx == i) 1868 continue; 1869 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1870 break; 1871 } 1872 if (i >= sh->disks) { 1873 atomic_inc(&sh->count); 1874 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1875 ops_complete_reconstruct(sh); 1876 return; 1877 } 1878 again: 1879 count = 0; 1880 xor_srcs = to_addr_page(percpu, j); 1881 /* check if prexor is active which means only process blocks 1882 * that are part of a read-modify-write (written) 1883 */ 1884 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1885 prexor = 1; 1886 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1887 for (i = disks; i--; ) { 1888 struct r5dev *dev = &sh->dev[i]; 1889 if (head_sh->dev[i].written || 1890 test_bit(R5_InJournal, &head_sh->dev[i].flags)) 1891 xor_srcs[count++] = dev->page; 1892 } 1893 } else { 1894 xor_dest = sh->dev[pd_idx].page; 1895 for (i = disks; i--; ) { 1896 struct r5dev *dev = &sh->dev[i]; 1897 if (i != pd_idx) 1898 xor_srcs[count++] = dev->page; 1899 } 1900 } 1901 1902 /* 1/ if we prexor'd then the dest is reused as a source 1903 * 2/ if we did not prexor then we are redoing the parity 1904 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1905 * for the synchronous xor case 1906 */ 1907 last_stripe = !head_sh->batch_head || 1908 list_first_entry(&sh->batch_list, 1909 struct stripe_head, batch_list) == head_sh; 1910 if (last_stripe) { 1911 flags = ASYNC_TX_ACK | 1912 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1913 1914 atomic_inc(&head_sh->count); 1915 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1916 to_addr_conv(sh, percpu, j)); 1917 } else { 1918 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1919 init_async_submit(&submit, flags, tx, NULL, NULL, 1920 to_addr_conv(sh, percpu, j)); 1921 } 1922 1923 if (unlikely(count == 1)) 1924 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1925 else 1926 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1927 if (!last_stripe) { 1928 j++; 1929 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1930 batch_list); 1931 goto again; 1932 } 1933 } 1934 1935 static void 1936 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1937 struct dma_async_tx_descriptor *tx) 1938 { 1939 struct async_submit_ctl submit; 1940 struct page **blocks; 1941 int count, i, j = 0; 1942 struct stripe_head *head_sh = sh; 1943 int last_stripe; 1944 int synflags; 1945 unsigned long txflags; 1946 1947 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1948 1949 for (i = 0; i < sh->disks; i++) { 1950 if (sh->pd_idx == i || sh->qd_idx == i) 1951 continue; 1952 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1953 break; 1954 } 1955 if (i >= sh->disks) { 1956 atomic_inc(&sh->count); 1957 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1958 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1959 ops_complete_reconstruct(sh); 1960 return; 1961 } 1962 1963 again: 1964 blocks = to_addr_page(percpu, j); 1965 1966 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1967 synflags = SYNDROME_SRC_WRITTEN; 1968 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1969 } else { 1970 synflags = SYNDROME_SRC_ALL; 1971 txflags = ASYNC_TX_ACK; 1972 } 1973 1974 count = set_syndrome_sources(blocks, sh, synflags); 1975 last_stripe = !head_sh->batch_head || 1976 list_first_entry(&sh->batch_list, 1977 struct stripe_head, batch_list) == head_sh; 1978 1979 if (last_stripe) { 1980 atomic_inc(&head_sh->count); 1981 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1982 head_sh, to_addr_conv(sh, percpu, j)); 1983 } else 1984 init_async_submit(&submit, 0, tx, NULL, NULL, 1985 to_addr_conv(sh, percpu, j)); 1986 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1987 if (!last_stripe) { 1988 j++; 1989 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1990 batch_list); 1991 goto again; 1992 } 1993 } 1994 1995 static void ops_complete_check(void *stripe_head_ref) 1996 { 1997 struct stripe_head *sh = stripe_head_ref; 1998 1999 pr_debug("%s: stripe %llu\n", __func__, 2000 (unsigned long long)sh->sector); 2001 2002 sh->check_state = check_state_check_result; 2003 set_bit(STRIPE_HANDLE, &sh->state); 2004 raid5_release_stripe(sh); 2005 } 2006 2007 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2008 { 2009 int disks = sh->disks; 2010 int pd_idx = sh->pd_idx; 2011 int qd_idx = sh->qd_idx; 2012 struct page *xor_dest; 2013 struct page **xor_srcs = to_addr_page(percpu, 0); 2014 struct dma_async_tx_descriptor *tx; 2015 struct async_submit_ctl submit; 2016 int count; 2017 int i; 2018 2019 pr_debug("%s: stripe %llu\n", __func__, 2020 (unsigned long long)sh->sector); 2021 2022 BUG_ON(sh->batch_head); 2023 count = 0; 2024 xor_dest = sh->dev[pd_idx].page; 2025 xor_srcs[count++] = xor_dest; 2026 for (i = disks; i--; ) { 2027 if (i == pd_idx || i == qd_idx) 2028 continue; 2029 xor_srcs[count++] = sh->dev[i].page; 2030 } 2031 2032 init_async_submit(&submit, 0, NULL, NULL, NULL, 2033 to_addr_conv(sh, percpu, 0)); 2034 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 2035 &sh->ops.zero_sum_result, &submit); 2036 2037 atomic_inc(&sh->count); 2038 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2039 tx = async_trigger_callback(&submit); 2040 } 2041 2042 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2043 { 2044 struct page **srcs = to_addr_page(percpu, 0); 2045 struct async_submit_ctl submit; 2046 int count; 2047 2048 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2049 (unsigned long long)sh->sector, checkp); 2050 2051 BUG_ON(sh->batch_head); 2052 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 2053 if (!checkp) 2054 srcs[count] = NULL; 2055 2056 atomic_inc(&sh->count); 2057 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2058 sh, to_addr_conv(sh, percpu, 0)); 2059 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 2060 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 2061 } 2062 2063 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2064 { 2065 int overlap_clear = 0, i, disks = sh->disks; 2066 struct dma_async_tx_descriptor *tx = NULL; 2067 struct r5conf *conf = sh->raid_conf; 2068 int level = conf->level; 2069 struct raid5_percpu *percpu; 2070 unsigned long cpu; 2071 2072 cpu = get_cpu(); 2073 percpu = per_cpu_ptr(conf->percpu, cpu); 2074 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2075 ops_run_biofill(sh); 2076 overlap_clear++; 2077 } 2078 2079 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2080 if (level < 6) 2081 tx = ops_run_compute5(sh, percpu); 2082 else { 2083 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2084 tx = ops_run_compute6_1(sh, percpu); 2085 else 2086 tx = ops_run_compute6_2(sh, percpu); 2087 } 2088 /* terminate the chain if reconstruct is not set to be run */ 2089 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2090 async_tx_ack(tx); 2091 } 2092 2093 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2094 if (level < 6) 2095 tx = ops_run_prexor5(sh, percpu, tx); 2096 else 2097 tx = ops_run_prexor6(sh, percpu, tx); 2098 } 2099 2100 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2101 tx = ops_run_partial_parity(sh, percpu, tx); 2102 2103 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2104 tx = ops_run_biodrain(sh, tx); 2105 overlap_clear++; 2106 } 2107 2108 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2109 if (level < 6) 2110 ops_run_reconstruct5(sh, percpu, tx); 2111 else 2112 ops_run_reconstruct6(sh, percpu, tx); 2113 } 2114 2115 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2116 if (sh->check_state == check_state_run) 2117 ops_run_check_p(sh, percpu); 2118 else if (sh->check_state == check_state_run_q) 2119 ops_run_check_pq(sh, percpu, 0); 2120 else if (sh->check_state == check_state_run_pq) 2121 ops_run_check_pq(sh, percpu, 1); 2122 else 2123 BUG(); 2124 } 2125 2126 if (overlap_clear && !sh->batch_head) 2127 for (i = disks; i--; ) { 2128 struct r5dev *dev = &sh->dev[i]; 2129 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2130 wake_up(&sh->raid_conf->wait_for_overlap); 2131 } 2132 put_cpu(); 2133 } 2134 2135 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2136 { 2137 if (sh->ppl_page) 2138 __free_page(sh->ppl_page); 2139 kmem_cache_free(sc, sh); 2140 } 2141 2142 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2143 int disks, struct r5conf *conf) 2144 { 2145 struct stripe_head *sh; 2146 int i; 2147 2148 sh = kmem_cache_zalloc(sc, gfp); 2149 if (sh) { 2150 spin_lock_init(&sh->stripe_lock); 2151 spin_lock_init(&sh->batch_lock); 2152 INIT_LIST_HEAD(&sh->batch_list); 2153 INIT_LIST_HEAD(&sh->lru); 2154 INIT_LIST_HEAD(&sh->r5c); 2155 INIT_LIST_HEAD(&sh->log_list); 2156 atomic_set(&sh->count, 1); 2157 sh->raid_conf = conf; 2158 sh->log_start = MaxSector; 2159 for (i = 0; i < disks; i++) { 2160 struct r5dev *dev = &sh->dev[i]; 2161 2162 bio_init(&dev->req, &dev->vec, 1); 2163 bio_init(&dev->rreq, &dev->rvec, 1); 2164 } 2165 2166 if (raid5_has_ppl(conf)) { 2167 sh->ppl_page = alloc_page(gfp); 2168 if (!sh->ppl_page) { 2169 free_stripe(sc, sh); 2170 sh = NULL; 2171 } 2172 } 2173 } 2174 return sh; 2175 } 2176 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2177 { 2178 struct stripe_head *sh; 2179 2180 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2181 if (!sh) 2182 return 0; 2183 2184 if (grow_buffers(sh, gfp)) { 2185 shrink_buffers(sh); 2186 free_stripe(conf->slab_cache, sh); 2187 return 0; 2188 } 2189 sh->hash_lock_index = 2190 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2191 /* we just created an active stripe so... */ 2192 atomic_inc(&conf->active_stripes); 2193 2194 raid5_release_stripe(sh); 2195 conf->max_nr_stripes++; 2196 return 1; 2197 } 2198 2199 static int grow_stripes(struct r5conf *conf, int num) 2200 { 2201 struct kmem_cache *sc; 2202 size_t namelen = sizeof(conf->cache_name[0]); 2203 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2204 2205 if (conf->mddev->gendisk) 2206 snprintf(conf->cache_name[0], namelen, 2207 "raid%d-%s", conf->level, mdname(conf->mddev)); 2208 else 2209 snprintf(conf->cache_name[0], namelen, 2210 "raid%d-%p", conf->level, conf->mddev); 2211 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2212 2213 conf->active_name = 0; 2214 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2215 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2216 0, 0, NULL); 2217 if (!sc) 2218 return 1; 2219 conf->slab_cache = sc; 2220 conf->pool_size = devs; 2221 while (num--) 2222 if (!grow_one_stripe(conf, GFP_KERNEL)) 2223 return 1; 2224 2225 return 0; 2226 } 2227 2228 /** 2229 * scribble_len - return the required size of the scribble region 2230 * @num - total number of disks in the array 2231 * 2232 * The size must be enough to contain: 2233 * 1/ a struct page pointer for each device in the array +2 2234 * 2/ room to convert each entry in (1) to its corresponding dma 2235 * (dma_map_page()) or page (page_address()) address. 2236 * 2237 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2238 * calculate over all devices (not just the data blocks), using zeros in place 2239 * of the P and Q blocks. 2240 */ 2241 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2242 { 2243 struct flex_array *ret; 2244 size_t len; 2245 2246 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2247 ret = flex_array_alloc(len, cnt, flags); 2248 if (!ret) 2249 return NULL; 2250 /* always prealloc all elements, so no locking is required */ 2251 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2252 flex_array_free(ret); 2253 return NULL; 2254 } 2255 return ret; 2256 } 2257 2258 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2259 { 2260 unsigned long cpu; 2261 int err = 0; 2262 2263 /* 2264 * Never shrink. And mddev_suspend() could deadlock if this is called 2265 * from raid5d. In that case, scribble_disks and scribble_sectors 2266 * should equal to new_disks and new_sectors 2267 */ 2268 if (conf->scribble_disks >= new_disks && 2269 conf->scribble_sectors >= new_sectors) 2270 return 0; 2271 mddev_suspend(conf->mddev); 2272 get_online_cpus(); 2273 for_each_present_cpu(cpu) { 2274 struct raid5_percpu *percpu; 2275 struct flex_array *scribble; 2276 2277 percpu = per_cpu_ptr(conf->percpu, cpu); 2278 scribble = scribble_alloc(new_disks, 2279 new_sectors / STRIPE_SECTORS, 2280 GFP_NOIO); 2281 2282 if (scribble) { 2283 flex_array_free(percpu->scribble); 2284 percpu->scribble = scribble; 2285 } else { 2286 err = -ENOMEM; 2287 break; 2288 } 2289 } 2290 put_online_cpus(); 2291 mddev_resume(conf->mddev); 2292 if (!err) { 2293 conf->scribble_disks = new_disks; 2294 conf->scribble_sectors = new_sectors; 2295 } 2296 return err; 2297 } 2298 2299 static int resize_stripes(struct r5conf *conf, int newsize) 2300 { 2301 /* Make all the stripes able to hold 'newsize' devices. 2302 * New slots in each stripe get 'page' set to a new page. 2303 * 2304 * This happens in stages: 2305 * 1/ create a new kmem_cache and allocate the required number of 2306 * stripe_heads. 2307 * 2/ gather all the old stripe_heads and transfer the pages across 2308 * to the new stripe_heads. This will have the side effect of 2309 * freezing the array as once all stripe_heads have been collected, 2310 * no IO will be possible. Old stripe heads are freed once their 2311 * pages have been transferred over, and the old kmem_cache is 2312 * freed when all stripes are done. 2313 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2314 * we simple return a failure status - no need to clean anything up. 2315 * 4/ allocate new pages for the new slots in the new stripe_heads. 2316 * If this fails, we don't bother trying the shrink the 2317 * stripe_heads down again, we just leave them as they are. 2318 * As each stripe_head is processed the new one is released into 2319 * active service. 2320 * 2321 * Once step2 is started, we cannot afford to wait for a write, 2322 * so we use GFP_NOIO allocations. 2323 */ 2324 struct stripe_head *osh, *nsh; 2325 LIST_HEAD(newstripes); 2326 struct disk_info *ndisks; 2327 int err = 0; 2328 struct kmem_cache *sc; 2329 int i; 2330 int hash, cnt; 2331 2332 md_allow_write(conf->mddev); 2333 2334 /* Step 1 */ 2335 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2336 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2337 0, 0, NULL); 2338 if (!sc) 2339 return -ENOMEM; 2340 2341 /* Need to ensure auto-resizing doesn't interfere */ 2342 mutex_lock(&conf->cache_size_mutex); 2343 2344 for (i = conf->max_nr_stripes; i; i--) { 2345 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2346 if (!nsh) 2347 break; 2348 2349 list_add(&nsh->lru, &newstripes); 2350 } 2351 if (i) { 2352 /* didn't get enough, give up */ 2353 while (!list_empty(&newstripes)) { 2354 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2355 list_del(&nsh->lru); 2356 free_stripe(sc, nsh); 2357 } 2358 kmem_cache_destroy(sc); 2359 mutex_unlock(&conf->cache_size_mutex); 2360 return -ENOMEM; 2361 } 2362 /* Step 2 - Must use GFP_NOIO now. 2363 * OK, we have enough stripes, start collecting inactive 2364 * stripes and copying them over 2365 */ 2366 hash = 0; 2367 cnt = 0; 2368 list_for_each_entry(nsh, &newstripes, lru) { 2369 lock_device_hash_lock(conf, hash); 2370 wait_event_cmd(conf->wait_for_stripe, 2371 !list_empty(conf->inactive_list + hash), 2372 unlock_device_hash_lock(conf, hash), 2373 lock_device_hash_lock(conf, hash)); 2374 osh = get_free_stripe(conf, hash); 2375 unlock_device_hash_lock(conf, hash); 2376 2377 for(i=0; i<conf->pool_size; i++) { 2378 nsh->dev[i].page = osh->dev[i].page; 2379 nsh->dev[i].orig_page = osh->dev[i].page; 2380 } 2381 nsh->hash_lock_index = hash; 2382 free_stripe(conf->slab_cache, osh); 2383 cnt++; 2384 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2385 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2386 hash++; 2387 cnt = 0; 2388 } 2389 } 2390 kmem_cache_destroy(conf->slab_cache); 2391 2392 /* Step 3. 2393 * At this point, we are holding all the stripes so the array 2394 * is completely stalled, so now is a good time to resize 2395 * conf->disks and the scribble region 2396 */ 2397 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2398 if (ndisks) { 2399 for (i = 0; i < conf->pool_size; i++) 2400 ndisks[i] = conf->disks[i]; 2401 2402 for (i = conf->pool_size; i < newsize; i++) { 2403 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2404 if (!ndisks[i].extra_page) 2405 err = -ENOMEM; 2406 } 2407 2408 if (err) { 2409 for (i = conf->pool_size; i < newsize; i++) 2410 if (ndisks[i].extra_page) 2411 put_page(ndisks[i].extra_page); 2412 kfree(ndisks); 2413 } else { 2414 kfree(conf->disks); 2415 conf->disks = ndisks; 2416 } 2417 } else 2418 err = -ENOMEM; 2419 2420 mutex_unlock(&conf->cache_size_mutex); 2421 2422 conf->slab_cache = sc; 2423 conf->active_name = 1-conf->active_name; 2424 2425 /* Step 4, return new stripes to service */ 2426 while(!list_empty(&newstripes)) { 2427 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2428 list_del_init(&nsh->lru); 2429 2430 for (i=conf->raid_disks; i < newsize; i++) 2431 if (nsh->dev[i].page == NULL) { 2432 struct page *p = alloc_page(GFP_NOIO); 2433 nsh->dev[i].page = p; 2434 nsh->dev[i].orig_page = p; 2435 if (!p) 2436 err = -ENOMEM; 2437 } 2438 raid5_release_stripe(nsh); 2439 } 2440 /* critical section pass, GFP_NOIO no longer needed */ 2441 2442 if (!err) 2443 conf->pool_size = newsize; 2444 return err; 2445 } 2446 2447 static int drop_one_stripe(struct r5conf *conf) 2448 { 2449 struct stripe_head *sh; 2450 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2451 2452 spin_lock_irq(conf->hash_locks + hash); 2453 sh = get_free_stripe(conf, hash); 2454 spin_unlock_irq(conf->hash_locks + hash); 2455 if (!sh) 2456 return 0; 2457 BUG_ON(atomic_read(&sh->count)); 2458 shrink_buffers(sh); 2459 free_stripe(conf->slab_cache, sh); 2460 atomic_dec(&conf->active_stripes); 2461 conf->max_nr_stripes--; 2462 return 1; 2463 } 2464 2465 static void shrink_stripes(struct r5conf *conf) 2466 { 2467 while (conf->max_nr_stripes && 2468 drop_one_stripe(conf)) 2469 ; 2470 2471 kmem_cache_destroy(conf->slab_cache); 2472 conf->slab_cache = NULL; 2473 } 2474 2475 static void raid5_end_read_request(struct bio * bi) 2476 { 2477 struct stripe_head *sh = bi->bi_private; 2478 struct r5conf *conf = sh->raid_conf; 2479 int disks = sh->disks, i; 2480 char b[BDEVNAME_SIZE]; 2481 struct md_rdev *rdev = NULL; 2482 sector_t s; 2483 2484 for (i=0 ; i<disks; i++) 2485 if (bi == &sh->dev[i].req) 2486 break; 2487 2488 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2489 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2490 bi->bi_status); 2491 if (i == disks) { 2492 bio_reset(bi); 2493 BUG(); 2494 return; 2495 } 2496 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2497 /* If replacement finished while this request was outstanding, 2498 * 'replacement' might be NULL already. 2499 * In that case it moved down to 'rdev'. 2500 * rdev is not removed until all requests are finished. 2501 */ 2502 rdev = conf->disks[i].replacement; 2503 if (!rdev) 2504 rdev = conf->disks[i].rdev; 2505 2506 if (use_new_offset(conf, sh)) 2507 s = sh->sector + rdev->new_data_offset; 2508 else 2509 s = sh->sector + rdev->data_offset; 2510 if (!bi->bi_status) { 2511 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2512 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2513 /* Note that this cannot happen on a 2514 * replacement device. We just fail those on 2515 * any error 2516 */ 2517 pr_info_ratelimited( 2518 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2519 mdname(conf->mddev), STRIPE_SECTORS, 2520 (unsigned long long)s, 2521 bdevname(rdev->bdev, b)); 2522 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2523 clear_bit(R5_ReadError, &sh->dev[i].flags); 2524 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2525 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2526 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2527 2528 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2529 /* 2530 * end read for a page in journal, this 2531 * must be preparing for prexor in rmw 2532 */ 2533 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2534 2535 if (atomic_read(&rdev->read_errors)) 2536 atomic_set(&rdev->read_errors, 0); 2537 } else { 2538 const char *bdn = bdevname(rdev->bdev, b); 2539 int retry = 0; 2540 int set_bad = 0; 2541 2542 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2543 atomic_inc(&rdev->read_errors); 2544 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2545 pr_warn_ratelimited( 2546 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2547 mdname(conf->mddev), 2548 (unsigned long long)s, 2549 bdn); 2550 else if (conf->mddev->degraded >= conf->max_degraded) { 2551 set_bad = 1; 2552 pr_warn_ratelimited( 2553 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2554 mdname(conf->mddev), 2555 (unsigned long long)s, 2556 bdn); 2557 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2558 /* Oh, no!!! */ 2559 set_bad = 1; 2560 pr_warn_ratelimited( 2561 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2562 mdname(conf->mddev), 2563 (unsigned long long)s, 2564 bdn); 2565 } else if (atomic_read(&rdev->read_errors) 2566 > conf->max_nr_stripes) 2567 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2568 mdname(conf->mddev), bdn); 2569 else 2570 retry = 1; 2571 if (set_bad && test_bit(In_sync, &rdev->flags) 2572 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2573 retry = 1; 2574 if (retry) 2575 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2576 set_bit(R5_ReadError, &sh->dev[i].flags); 2577 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2578 } else 2579 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2580 else { 2581 clear_bit(R5_ReadError, &sh->dev[i].flags); 2582 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2583 if (!(set_bad 2584 && test_bit(In_sync, &rdev->flags) 2585 && rdev_set_badblocks( 2586 rdev, sh->sector, STRIPE_SECTORS, 0))) 2587 md_error(conf->mddev, rdev); 2588 } 2589 } 2590 rdev_dec_pending(rdev, conf->mddev); 2591 bio_reset(bi); 2592 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2593 set_bit(STRIPE_HANDLE, &sh->state); 2594 raid5_release_stripe(sh); 2595 } 2596 2597 static void raid5_end_write_request(struct bio *bi) 2598 { 2599 struct stripe_head *sh = bi->bi_private; 2600 struct r5conf *conf = sh->raid_conf; 2601 int disks = sh->disks, i; 2602 struct md_rdev *uninitialized_var(rdev); 2603 sector_t first_bad; 2604 int bad_sectors; 2605 int replacement = 0; 2606 2607 for (i = 0 ; i < disks; i++) { 2608 if (bi == &sh->dev[i].req) { 2609 rdev = conf->disks[i].rdev; 2610 break; 2611 } 2612 if (bi == &sh->dev[i].rreq) { 2613 rdev = conf->disks[i].replacement; 2614 if (rdev) 2615 replacement = 1; 2616 else 2617 /* rdev was removed and 'replacement' 2618 * replaced it. rdev is not removed 2619 * until all requests are finished. 2620 */ 2621 rdev = conf->disks[i].rdev; 2622 break; 2623 } 2624 } 2625 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2626 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2627 bi->bi_status); 2628 if (i == disks) { 2629 bio_reset(bi); 2630 BUG(); 2631 return; 2632 } 2633 2634 if (replacement) { 2635 if (bi->bi_status) 2636 md_error(conf->mddev, rdev); 2637 else if (is_badblock(rdev, sh->sector, 2638 STRIPE_SECTORS, 2639 &first_bad, &bad_sectors)) 2640 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2641 } else { 2642 if (bi->bi_status) { 2643 set_bit(STRIPE_DEGRADED, &sh->state); 2644 set_bit(WriteErrorSeen, &rdev->flags); 2645 set_bit(R5_WriteError, &sh->dev[i].flags); 2646 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2647 set_bit(MD_RECOVERY_NEEDED, 2648 &rdev->mddev->recovery); 2649 } else if (is_badblock(rdev, sh->sector, 2650 STRIPE_SECTORS, 2651 &first_bad, &bad_sectors)) { 2652 set_bit(R5_MadeGood, &sh->dev[i].flags); 2653 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2654 /* That was a successful write so make 2655 * sure it looks like we already did 2656 * a re-write. 2657 */ 2658 set_bit(R5_ReWrite, &sh->dev[i].flags); 2659 } 2660 } 2661 rdev_dec_pending(rdev, conf->mddev); 2662 2663 if (sh->batch_head && bi->bi_status && !replacement) 2664 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2665 2666 bio_reset(bi); 2667 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2668 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2669 set_bit(STRIPE_HANDLE, &sh->state); 2670 raid5_release_stripe(sh); 2671 2672 if (sh->batch_head && sh != sh->batch_head) 2673 raid5_release_stripe(sh->batch_head); 2674 } 2675 2676 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2677 { 2678 char b[BDEVNAME_SIZE]; 2679 struct r5conf *conf = mddev->private; 2680 unsigned long flags; 2681 pr_debug("raid456: error called\n"); 2682 2683 spin_lock_irqsave(&conf->device_lock, flags); 2684 2685 if (test_bit(In_sync, &rdev->flags) && 2686 mddev->degraded == conf->max_degraded) { 2687 /* 2688 * Don't allow to achieve failed state 2689 * Don't try to recover this device 2690 */ 2691 conf->recovery_disabled = mddev->recovery_disabled; 2692 spin_unlock_irqrestore(&conf->device_lock, flags); 2693 return; 2694 } 2695 2696 set_bit(Faulty, &rdev->flags); 2697 clear_bit(In_sync, &rdev->flags); 2698 mddev->degraded = raid5_calc_degraded(conf); 2699 spin_unlock_irqrestore(&conf->device_lock, flags); 2700 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2701 2702 set_bit(Blocked, &rdev->flags); 2703 set_mask_bits(&mddev->sb_flags, 0, 2704 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2705 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2706 "md/raid:%s: Operation continuing on %d devices.\n", 2707 mdname(mddev), 2708 bdevname(rdev->bdev, b), 2709 mdname(mddev), 2710 conf->raid_disks - mddev->degraded); 2711 r5c_update_on_rdev_error(mddev, rdev); 2712 } 2713 2714 /* 2715 * Input: a 'big' sector number, 2716 * Output: index of the data and parity disk, and the sector # in them. 2717 */ 2718 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2719 int previous, int *dd_idx, 2720 struct stripe_head *sh) 2721 { 2722 sector_t stripe, stripe2; 2723 sector_t chunk_number; 2724 unsigned int chunk_offset; 2725 int pd_idx, qd_idx; 2726 int ddf_layout = 0; 2727 sector_t new_sector; 2728 int algorithm = previous ? conf->prev_algo 2729 : conf->algorithm; 2730 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2731 : conf->chunk_sectors; 2732 int raid_disks = previous ? conf->previous_raid_disks 2733 : conf->raid_disks; 2734 int data_disks = raid_disks - conf->max_degraded; 2735 2736 /* First compute the information on this sector */ 2737 2738 /* 2739 * Compute the chunk number and the sector offset inside the chunk 2740 */ 2741 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2742 chunk_number = r_sector; 2743 2744 /* 2745 * Compute the stripe number 2746 */ 2747 stripe = chunk_number; 2748 *dd_idx = sector_div(stripe, data_disks); 2749 stripe2 = stripe; 2750 /* 2751 * Select the parity disk based on the user selected algorithm. 2752 */ 2753 pd_idx = qd_idx = -1; 2754 switch(conf->level) { 2755 case 4: 2756 pd_idx = data_disks; 2757 break; 2758 case 5: 2759 switch (algorithm) { 2760 case ALGORITHM_LEFT_ASYMMETRIC: 2761 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2762 if (*dd_idx >= pd_idx) 2763 (*dd_idx)++; 2764 break; 2765 case ALGORITHM_RIGHT_ASYMMETRIC: 2766 pd_idx = sector_div(stripe2, raid_disks); 2767 if (*dd_idx >= pd_idx) 2768 (*dd_idx)++; 2769 break; 2770 case ALGORITHM_LEFT_SYMMETRIC: 2771 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2772 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2773 break; 2774 case ALGORITHM_RIGHT_SYMMETRIC: 2775 pd_idx = sector_div(stripe2, raid_disks); 2776 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2777 break; 2778 case ALGORITHM_PARITY_0: 2779 pd_idx = 0; 2780 (*dd_idx)++; 2781 break; 2782 case ALGORITHM_PARITY_N: 2783 pd_idx = data_disks; 2784 break; 2785 default: 2786 BUG(); 2787 } 2788 break; 2789 case 6: 2790 2791 switch (algorithm) { 2792 case ALGORITHM_LEFT_ASYMMETRIC: 2793 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2794 qd_idx = pd_idx + 1; 2795 if (pd_idx == raid_disks-1) { 2796 (*dd_idx)++; /* Q D D D P */ 2797 qd_idx = 0; 2798 } else if (*dd_idx >= pd_idx) 2799 (*dd_idx) += 2; /* D D P Q D */ 2800 break; 2801 case ALGORITHM_RIGHT_ASYMMETRIC: 2802 pd_idx = sector_div(stripe2, raid_disks); 2803 qd_idx = pd_idx + 1; 2804 if (pd_idx == raid_disks-1) { 2805 (*dd_idx)++; /* Q D D D P */ 2806 qd_idx = 0; 2807 } else if (*dd_idx >= pd_idx) 2808 (*dd_idx) += 2; /* D D P Q D */ 2809 break; 2810 case ALGORITHM_LEFT_SYMMETRIC: 2811 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2812 qd_idx = (pd_idx + 1) % raid_disks; 2813 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2814 break; 2815 case ALGORITHM_RIGHT_SYMMETRIC: 2816 pd_idx = sector_div(stripe2, raid_disks); 2817 qd_idx = (pd_idx + 1) % raid_disks; 2818 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2819 break; 2820 2821 case ALGORITHM_PARITY_0: 2822 pd_idx = 0; 2823 qd_idx = 1; 2824 (*dd_idx) += 2; 2825 break; 2826 case ALGORITHM_PARITY_N: 2827 pd_idx = data_disks; 2828 qd_idx = data_disks + 1; 2829 break; 2830 2831 case ALGORITHM_ROTATING_ZERO_RESTART: 2832 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2833 * of blocks for computing Q is different. 2834 */ 2835 pd_idx = sector_div(stripe2, raid_disks); 2836 qd_idx = pd_idx + 1; 2837 if (pd_idx == raid_disks-1) { 2838 (*dd_idx)++; /* Q D D D P */ 2839 qd_idx = 0; 2840 } else if (*dd_idx >= pd_idx) 2841 (*dd_idx) += 2; /* D D P Q D */ 2842 ddf_layout = 1; 2843 break; 2844 2845 case ALGORITHM_ROTATING_N_RESTART: 2846 /* Same a left_asymmetric, by first stripe is 2847 * D D D P Q rather than 2848 * Q D D D P 2849 */ 2850 stripe2 += 1; 2851 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2852 qd_idx = pd_idx + 1; 2853 if (pd_idx == raid_disks-1) { 2854 (*dd_idx)++; /* Q D D D P */ 2855 qd_idx = 0; 2856 } else if (*dd_idx >= pd_idx) 2857 (*dd_idx) += 2; /* D D P Q D */ 2858 ddf_layout = 1; 2859 break; 2860 2861 case ALGORITHM_ROTATING_N_CONTINUE: 2862 /* Same as left_symmetric but Q is before P */ 2863 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2864 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2865 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2866 ddf_layout = 1; 2867 break; 2868 2869 case ALGORITHM_LEFT_ASYMMETRIC_6: 2870 /* RAID5 left_asymmetric, with Q on last device */ 2871 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2872 if (*dd_idx >= pd_idx) 2873 (*dd_idx)++; 2874 qd_idx = raid_disks - 1; 2875 break; 2876 2877 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2878 pd_idx = sector_div(stripe2, raid_disks-1); 2879 if (*dd_idx >= pd_idx) 2880 (*dd_idx)++; 2881 qd_idx = raid_disks - 1; 2882 break; 2883 2884 case ALGORITHM_LEFT_SYMMETRIC_6: 2885 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2886 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2887 qd_idx = raid_disks - 1; 2888 break; 2889 2890 case ALGORITHM_RIGHT_SYMMETRIC_6: 2891 pd_idx = sector_div(stripe2, raid_disks-1); 2892 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2893 qd_idx = raid_disks - 1; 2894 break; 2895 2896 case ALGORITHM_PARITY_0_6: 2897 pd_idx = 0; 2898 (*dd_idx)++; 2899 qd_idx = raid_disks - 1; 2900 break; 2901 2902 default: 2903 BUG(); 2904 } 2905 break; 2906 } 2907 2908 if (sh) { 2909 sh->pd_idx = pd_idx; 2910 sh->qd_idx = qd_idx; 2911 sh->ddf_layout = ddf_layout; 2912 } 2913 /* 2914 * Finally, compute the new sector number 2915 */ 2916 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2917 return new_sector; 2918 } 2919 2920 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2921 { 2922 struct r5conf *conf = sh->raid_conf; 2923 int raid_disks = sh->disks; 2924 int data_disks = raid_disks - conf->max_degraded; 2925 sector_t new_sector = sh->sector, check; 2926 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2927 : conf->chunk_sectors; 2928 int algorithm = previous ? conf->prev_algo 2929 : conf->algorithm; 2930 sector_t stripe; 2931 int chunk_offset; 2932 sector_t chunk_number; 2933 int dummy1, dd_idx = i; 2934 sector_t r_sector; 2935 struct stripe_head sh2; 2936 2937 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2938 stripe = new_sector; 2939 2940 if (i == sh->pd_idx) 2941 return 0; 2942 switch(conf->level) { 2943 case 4: break; 2944 case 5: 2945 switch (algorithm) { 2946 case ALGORITHM_LEFT_ASYMMETRIC: 2947 case ALGORITHM_RIGHT_ASYMMETRIC: 2948 if (i > sh->pd_idx) 2949 i--; 2950 break; 2951 case ALGORITHM_LEFT_SYMMETRIC: 2952 case ALGORITHM_RIGHT_SYMMETRIC: 2953 if (i < sh->pd_idx) 2954 i += raid_disks; 2955 i -= (sh->pd_idx + 1); 2956 break; 2957 case ALGORITHM_PARITY_0: 2958 i -= 1; 2959 break; 2960 case ALGORITHM_PARITY_N: 2961 break; 2962 default: 2963 BUG(); 2964 } 2965 break; 2966 case 6: 2967 if (i == sh->qd_idx) 2968 return 0; /* It is the Q disk */ 2969 switch (algorithm) { 2970 case ALGORITHM_LEFT_ASYMMETRIC: 2971 case ALGORITHM_RIGHT_ASYMMETRIC: 2972 case ALGORITHM_ROTATING_ZERO_RESTART: 2973 case ALGORITHM_ROTATING_N_RESTART: 2974 if (sh->pd_idx == raid_disks-1) 2975 i--; /* Q D D D P */ 2976 else if (i > sh->pd_idx) 2977 i -= 2; /* D D P Q D */ 2978 break; 2979 case ALGORITHM_LEFT_SYMMETRIC: 2980 case ALGORITHM_RIGHT_SYMMETRIC: 2981 if (sh->pd_idx == raid_disks-1) 2982 i--; /* Q D D D P */ 2983 else { 2984 /* D D P Q D */ 2985 if (i < sh->pd_idx) 2986 i += raid_disks; 2987 i -= (sh->pd_idx + 2); 2988 } 2989 break; 2990 case ALGORITHM_PARITY_0: 2991 i -= 2; 2992 break; 2993 case ALGORITHM_PARITY_N: 2994 break; 2995 case ALGORITHM_ROTATING_N_CONTINUE: 2996 /* Like left_symmetric, but P is before Q */ 2997 if (sh->pd_idx == 0) 2998 i--; /* P D D D Q */ 2999 else { 3000 /* D D Q P D */ 3001 if (i < sh->pd_idx) 3002 i += raid_disks; 3003 i -= (sh->pd_idx + 1); 3004 } 3005 break; 3006 case ALGORITHM_LEFT_ASYMMETRIC_6: 3007 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3008 if (i > sh->pd_idx) 3009 i--; 3010 break; 3011 case ALGORITHM_LEFT_SYMMETRIC_6: 3012 case ALGORITHM_RIGHT_SYMMETRIC_6: 3013 if (i < sh->pd_idx) 3014 i += data_disks + 1; 3015 i -= (sh->pd_idx + 1); 3016 break; 3017 case ALGORITHM_PARITY_0_6: 3018 i -= 1; 3019 break; 3020 default: 3021 BUG(); 3022 } 3023 break; 3024 } 3025 3026 chunk_number = stripe * data_disks + i; 3027 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3028 3029 check = raid5_compute_sector(conf, r_sector, 3030 previous, &dummy1, &sh2); 3031 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3032 || sh2.qd_idx != sh->qd_idx) { 3033 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3034 mdname(conf->mddev)); 3035 return 0; 3036 } 3037 return r_sector; 3038 } 3039 3040 /* 3041 * There are cases where we want handle_stripe_dirtying() and 3042 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3043 * 3044 * This function checks whether we want to delay the towrite. Specifically, 3045 * we delay the towrite when: 3046 * 3047 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3048 * stripe has data in journal (for other devices). 3049 * 3050 * In this case, when reading data for the non-overwrite dev, it is 3051 * necessary to handle complex rmw of write back cache (prexor with 3052 * orig_page, and xor with page). To keep read path simple, we would 3053 * like to flush data in journal to RAID disks first, so complex rmw 3054 * is handled in the write patch (handle_stripe_dirtying). 3055 * 3056 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3057 * 3058 * It is important to be able to flush all stripes in raid5-cache. 3059 * Therefore, we need reserve some space on the journal device for 3060 * these flushes. If flush operation includes pending writes to the 3061 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3062 * for the flush out. If we exclude these pending writes from flush 3063 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3064 * Therefore, excluding pending writes in these cases enables more 3065 * efficient use of the journal device. 3066 * 3067 * Note: To make sure the stripe makes progress, we only delay 3068 * towrite for stripes with data already in journal (injournal > 0). 3069 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3070 * no_space_stripes list. 3071 * 3072 * 3. during journal failure 3073 * In journal failure, we try to flush all cached data to raid disks 3074 * based on data in stripe cache. The array is read-only to upper 3075 * layers, so we would skip all pending writes. 3076 * 3077 */ 3078 static inline bool delay_towrite(struct r5conf *conf, 3079 struct r5dev *dev, 3080 struct stripe_head_state *s) 3081 { 3082 /* case 1 above */ 3083 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3084 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3085 return true; 3086 /* case 2 above */ 3087 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3088 s->injournal > 0) 3089 return true; 3090 /* case 3 above */ 3091 if (s->log_failed && s->injournal) 3092 return true; 3093 return false; 3094 } 3095 3096 static void 3097 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3098 int rcw, int expand) 3099 { 3100 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3101 struct r5conf *conf = sh->raid_conf; 3102 int level = conf->level; 3103 3104 if (rcw) { 3105 /* 3106 * In some cases, handle_stripe_dirtying initially decided to 3107 * run rmw and allocates extra page for prexor. However, rcw is 3108 * cheaper later on. We need to free the extra page now, 3109 * because we won't be able to do that in ops_complete_prexor(). 3110 */ 3111 r5c_release_extra_page(sh); 3112 3113 for (i = disks; i--; ) { 3114 struct r5dev *dev = &sh->dev[i]; 3115 3116 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3117 set_bit(R5_LOCKED, &dev->flags); 3118 set_bit(R5_Wantdrain, &dev->flags); 3119 if (!expand) 3120 clear_bit(R5_UPTODATE, &dev->flags); 3121 s->locked++; 3122 } else if (test_bit(R5_InJournal, &dev->flags)) { 3123 set_bit(R5_LOCKED, &dev->flags); 3124 s->locked++; 3125 } 3126 } 3127 /* if we are not expanding this is a proper write request, and 3128 * there will be bios with new data to be drained into the 3129 * stripe cache 3130 */ 3131 if (!expand) { 3132 if (!s->locked) 3133 /* False alarm, nothing to do */ 3134 return; 3135 sh->reconstruct_state = reconstruct_state_drain_run; 3136 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3137 } else 3138 sh->reconstruct_state = reconstruct_state_run; 3139 3140 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3141 3142 if (s->locked + conf->max_degraded == disks) 3143 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3144 atomic_inc(&conf->pending_full_writes); 3145 } else { 3146 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3147 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3148 BUG_ON(level == 6 && 3149 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3150 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3151 3152 for (i = disks; i--; ) { 3153 struct r5dev *dev = &sh->dev[i]; 3154 if (i == pd_idx || i == qd_idx) 3155 continue; 3156 3157 if (dev->towrite && 3158 (test_bit(R5_UPTODATE, &dev->flags) || 3159 test_bit(R5_Wantcompute, &dev->flags))) { 3160 set_bit(R5_Wantdrain, &dev->flags); 3161 set_bit(R5_LOCKED, &dev->flags); 3162 clear_bit(R5_UPTODATE, &dev->flags); 3163 s->locked++; 3164 } else if (test_bit(R5_InJournal, &dev->flags)) { 3165 set_bit(R5_LOCKED, &dev->flags); 3166 s->locked++; 3167 } 3168 } 3169 if (!s->locked) 3170 /* False alarm - nothing to do */ 3171 return; 3172 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3173 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3174 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3175 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3176 } 3177 3178 /* keep the parity disk(s) locked while asynchronous operations 3179 * are in flight 3180 */ 3181 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3182 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3183 s->locked++; 3184 3185 if (level == 6) { 3186 int qd_idx = sh->qd_idx; 3187 struct r5dev *dev = &sh->dev[qd_idx]; 3188 3189 set_bit(R5_LOCKED, &dev->flags); 3190 clear_bit(R5_UPTODATE, &dev->flags); 3191 s->locked++; 3192 } 3193 3194 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3195 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3196 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3197 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3198 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3199 3200 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3201 __func__, (unsigned long long)sh->sector, 3202 s->locked, s->ops_request); 3203 } 3204 3205 /* 3206 * Each stripe/dev can have one or more bion attached. 3207 * toread/towrite point to the first in a chain. 3208 * The bi_next chain must be in order. 3209 */ 3210 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3211 int forwrite, int previous) 3212 { 3213 struct bio **bip; 3214 struct r5conf *conf = sh->raid_conf; 3215 int firstwrite=0; 3216 3217 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3218 (unsigned long long)bi->bi_iter.bi_sector, 3219 (unsigned long long)sh->sector); 3220 3221 spin_lock_irq(&sh->stripe_lock); 3222 sh->dev[dd_idx].write_hint = bi->bi_write_hint; 3223 /* Don't allow new IO added to stripes in batch list */ 3224 if (sh->batch_head) 3225 goto overlap; 3226 if (forwrite) { 3227 bip = &sh->dev[dd_idx].towrite; 3228 if (*bip == NULL) 3229 firstwrite = 1; 3230 } else 3231 bip = &sh->dev[dd_idx].toread; 3232 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3233 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3234 goto overlap; 3235 bip = & (*bip)->bi_next; 3236 } 3237 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3238 goto overlap; 3239 3240 if (forwrite && raid5_has_ppl(conf)) { 3241 /* 3242 * With PPL only writes to consecutive data chunks within a 3243 * stripe are allowed because for a single stripe_head we can 3244 * only have one PPL entry at a time, which describes one data 3245 * range. Not really an overlap, but wait_for_overlap can be 3246 * used to handle this. 3247 */ 3248 sector_t sector; 3249 sector_t first = 0; 3250 sector_t last = 0; 3251 int count = 0; 3252 int i; 3253 3254 for (i = 0; i < sh->disks; i++) { 3255 if (i != sh->pd_idx && 3256 (i == dd_idx || sh->dev[i].towrite)) { 3257 sector = sh->dev[i].sector; 3258 if (count == 0 || sector < first) 3259 first = sector; 3260 if (sector > last) 3261 last = sector; 3262 count++; 3263 } 3264 } 3265 3266 if (first + conf->chunk_sectors * (count - 1) != last) 3267 goto overlap; 3268 } 3269 3270 if (!forwrite || previous) 3271 clear_bit(STRIPE_BATCH_READY, &sh->state); 3272 3273 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3274 if (*bip) 3275 bi->bi_next = *bip; 3276 *bip = bi; 3277 bio_inc_remaining(bi); 3278 md_write_inc(conf->mddev, bi); 3279 3280 if (forwrite) { 3281 /* check if page is covered */ 3282 sector_t sector = sh->dev[dd_idx].sector; 3283 for (bi=sh->dev[dd_idx].towrite; 3284 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3285 bi && bi->bi_iter.bi_sector <= sector; 3286 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3287 if (bio_end_sector(bi) >= sector) 3288 sector = bio_end_sector(bi); 3289 } 3290 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3291 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3292 sh->overwrite_disks++; 3293 } 3294 3295 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3296 (unsigned long long)(*bip)->bi_iter.bi_sector, 3297 (unsigned long long)sh->sector, dd_idx); 3298 3299 if (conf->mddev->bitmap && firstwrite) { 3300 /* Cannot hold spinlock over bitmap_startwrite, 3301 * but must ensure this isn't added to a batch until 3302 * we have added to the bitmap and set bm_seq. 3303 * So set STRIPE_BITMAP_PENDING to prevent 3304 * batching. 3305 * If multiple add_stripe_bio() calls race here they 3306 * much all set STRIPE_BITMAP_PENDING. So only the first one 3307 * to complete "bitmap_startwrite" gets to set 3308 * STRIPE_BIT_DELAY. This is important as once a stripe 3309 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3310 * any more. 3311 */ 3312 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3313 spin_unlock_irq(&sh->stripe_lock); 3314 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3315 STRIPE_SECTORS, 0); 3316 spin_lock_irq(&sh->stripe_lock); 3317 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3318 if (!sh->batch_head) { 3319 sh->bm_seq = conf->seq_flush+1; 3320 set_bit(STRIPE_BIT_DELAY, &sh->state); 3321 } 3322 } 3323 spin_unlock_irq(&sh->stripe_lock); 3324 3325 if (stripe_can_batch(sh)) 3326 stripe_add_to_batch_list(conf, sh); 3327 return 1; 3328 3329 overlap: 3330 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3331 spin_unlock_irq(&sh->stripe_lock); 3332 return 0; 3333 } 3334 3335 static void end_reshape(struct r5conf *conf); 3336 3337 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3338 struct stripe_head *sh) 3339 { 3340 int sectors_per_chunk = 3341 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3342 int dd_idx; 3343 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3344 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3345 3346 raid5_compute_sector(conf, 3347 stripe * (disks - conf->max_degraded) 3348 *sectors_per_chunk + chunk_offset, 3349 previous, 3350 &dd_idx, sh); 3351 } 3352 3353 static void 3354 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3355 struct stripe_head_state *s, int disks) 3356 { 3357 int i; 3358 BUG_ON(sh->batch_head); 3359 for (i = disks; i--; ) { 3360 struct bio *bi; 3361 int bitmap_end = 0; 3362 3363 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3364 struct md_rdev *rdev; 3365 rcu_read_lock(); 3366 rdev = rcu_dereference(conf->disks[i].rdev); 3367 if (rdev && test_bit(In_sync, &rdev->flags) && 3368 !test_bit(Faulty, &rdev->flags)) 3369 atomic_inc(&rdev->nr_pending); 3370 else 3371 rdev = NULL; 3372 rcu_read_unlock(); 3373 if (rdev) { 3374 if (!rdev_set_badblocks( 3375 rdev, 3376 sh->sector, 3377 STRIPE_SECTORS, 0)) 3378 md_error(conf->mddev, rdev); 3379 rdev_dec_pending(rdev, conf->mddev); 3380 } 3381 } 3382 spin_lock_irq(&sh->stripe_lock); 3383 /* fail all writes first */ 3384 bi = sh->dev[i].towrite; 3385 sh->dev[i].towrite = NULL; 3386 sh->overwrite_disks = 0; 3387 spin_unlock_irq(&sh->stripe_lock); 3388 if (bi) 3389 bitmap_end = 1; 3390 3391 log_stripe_write_finished(sh); 3392 3393 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3394 wake_up(&conf->wait_for_overlap); 3395 3396 while (bi && bi->bi_iter.bi_sector < 3397 sh->dev[i].sector + STRIPE_SECTORS) { 3398 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3399 3400 md_write_end(conf->mddev); 3401 bio_io_error(bi); 3402 bi = nextbi; 3403 } 3404 if (bitmap_end) 3405 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3406 STRIPE_SECTORS, 0, 0); 3407 bitmap_end = 0; 3408 /* and fail all 'written' */ 3409 bi = sh->dev[i].written; 3410 sh->dev[i].written = NULL; 3411 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3412 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3413 sh->dev[i].page = sh->dev[i].orig_page; 3414 } 3415 3416 if (bi) bitmap_end = 1; 3417 while (bi && bi->bi_iter.bi_sector < 3418 sh->dev[i].sector + STRIPE_SECTORS) { 3419 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3420 3421 md_write_end(conf->mddev); 3422 bio_io_error(bi); 3423 bi = bi2; 3424 } 3425 3426 /* fail any reads if this device is non-operational and 3427 * the data has not reached the cache yet. 3428 */ 3429 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3430 s->failed > conf->max_degraded && 3431 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3432 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3433 spin_lock_irq(&sh->stripe_lock); 3434 bi = sh->dev[i].toread; 3435 sh->dev[i].toread = NULL; 3436 spin_unlock_irq(&sh->stripe_lock); 3437 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3438 wake_up(&conf->wait_for_overlap); 3439 if (bi) 3440 s->to_read--; 3441 while (bi && bi->bi_iter.bi_sector < 3442 sh->dev[i].sector + STRIPE_SECTORS) { 3443 struct bio *nextbi = 3444 r5_next_bio(bi, sh->dev[i].sector); 3445 3446 bio_io_error(bi); 3447 bi = nextbi; 3448 } 3449 } 3450 if (bitmap_end) 3451 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3452 STRIPE_SECTORS, 0, 0); 3453 /* If we were in the middle of a write the parity block might 3454 * still be locked - so just clear all R5_LOCKED flags 3455 */ 3456 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3457 } 3458 s->to_write = 0; 3459 s->written = 0; 3460 3461 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3462 if (atomic_dec_and_test(&conf->pending_full_writes)) 3463 md_wakeup_thread(conf->mddev->thread); 3464 } 3465 3466 static void 3467 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3468 struct stripe_head_state *s) 3469 { 3470 int abort = 0; 3471 int i; 3472 3473 BUG_ON(sh->batch_head); 3474 clear_bit(STRIPE_SYNCING, &sh->state); 3475 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3476 wake_up(&conf->wait_for_overlap); 3477 s->syncing = 0; 3478 s->replacing = 0; 3479 /* There is nothing more to do for sync/check/repair. 3480 * Don't even need to abort as that is handled elsewhere 3481 * if needed, and not always wanted e.g. if there is a known 3482 * bad block here. 3483 * For recover/replace we need to record a bad block on all 3484 * non-sync devices, or abort the recovery 3485 */ 3486 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3487 /* During recovery devices cannot be removed, so 3488 * locking and refcounting of rdevs is not needed 3489 */ 3490 rcu_read_lock(); 3491 for (i = 0; i < conf->raid_disks; i++) { 3492 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3493 if (rdev 3494 && !test_bit(Faulty, &rdev->flags) 3495 && !test_bit(In_sync, &rdev->flags) 3496 && !rdev_set_badblocks(rdev, sh->sector, 3497 STRIPE_SECTORS, 0)) 3498 abort = 1; 3499 rdev = rcu_dereference(conf->disks[i].replacement); 3500 if (rdev 3501 && !test_bit(Faulty, &rdev->flags) 3502 && !test_bit(In_sync, &rdev->flags) 3503 && !rdev_set_badblocks(rdev, sh->sector, 3504 STRIPE_SECTORS, 0)) 3505 abort = 1; 3506 } 3507 rcu_read_unlock(); 3508 if (abort) 3509 conf->recovery_disabled = 3510 conf->mddev->recovery_disabled; 3511 } 3512 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3513 } 3514 3515 static int want_replace(struct stripe_head *sh, int disk_idx) 3516 { 3517 struct md_rdev *rdev; 3518 int rv = 0; 3519 3520 rcu_read_lock(); 3521 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3522 if (rdev 3523 && !test_bit(Faulty, &rdev->flags) 3524 && !test_bit(In_sync, &rdev->flags) 3525 && (rdev->recovery_offset <= sh->sector 3526 || rdev->mddev->recovery_cp <= sh->sector)) 3527 rv = 1; 3528 rcu_read_unlock(); 3529 return rv; 3530 } 3531 3532 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3533 int disk_idx, int disks) 3534 { 3535 struct r5dev *dev = &sh->dev[disk_idx]; 3536 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3537 &sh->dev[s->failed_num[1]] }; 3538 int i; 3539 3540 3541 if (test_bit(R5_LOCKED, &dev->flags) || 3542 test_bit(R5_UPTODATE, &dev->flags)) 3543 /* No point reading this as we already have it or have 3544 * decided to get it. 3545 */ 3546 return 0; 3547 3548 if (dev->toread || 3549 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3550 /* We need this block to directly satisfy a request */ 3551 return 1; 3552 3553 if (s->syncing || s->expanding || 3554 (s->replacing && want_replace(sh, disk_idx))) 3555 /* When syncing, or expanding we read everything. 3556 * When replacing, we need the replaced block. 3557 */ 3558 return 1; 3559 3560 if ((s->failed >= 1 && fdev[0]->toread) || 3561 (s->failed >= 2 && fdev[1]->toread)) 3562 /* If we want to read from a failed device, then 3563 * we need to actually read every other device. 3564 */ 3565 return 1; 3566 3567 /* Sometimes neither read-modify-write nor reconstruct-write 3568 * cycles can work. In those cases we read every block we 3569 * can. Then the parity-update is certain to have enough to 3570 * work with. 3571 * This can only be a problem when we need to write something, 3572 * and some device has failed. If either of those tests 3573 * fail we need look no further. 3574 */ 3575 if (!s->failed || !s->to_write) 3576 return 0; 3577 3578 if (test_bit(R5_Insync, &dev->flags) && 3579 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3580 /* Pre-reads at not permitted until after short delay 3581 * to gather multiple requests. However if this 3582 * device is no Insync, the block could only be computed 3583 * and there is no need to delay that. 3584 */ 3585 return 0; 3586 3587 for (i = 0; i < s->failed && i < 2; i++) { 3588 if (fdev[i]->towrite && 3589 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3590 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3591 /* If we have a partial write to a failed 3592 * device, then we will need to reconstruct 3593 * the content of that device, so all other 3594 * devices must be read. 3595 */ 3596 return 1; 3597 } 3598 3599 /* If we are forced to do a reconstruct-write, either because 3600 * the current RAID6 implementation only supports that, or 3601 * because parity cannot be trusted and we are currently 3602 * recovering it, there is extra need to be careful. 3603 * If one of the devices that we would need to read, because 3604 * it is not being overwritten (and maybe not written at all) 3605 * is missing/faulty, then we need to read everything we can. 3606 */ 3607 if (sh->raid_conf->level != 6 && 3608 sh->sector < sh->raid_conf->mddev->recovery_cp) 3609 /* reconstruct-write isn't being forced */ 3610 return 0; 3611 for (i = 0; i < s->failed && i < 2; i++) { 3612 if (s->failed_num[i] != sh->pd_idx && 3613 s->failed_num[i] != sh->qd_idx && 3614 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3615 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3616 return 1; 3617 } 3618 3619 return 0; 3620 } 3621 3622 /* fetch_block - checks the given member device to see if its data needs 3623 * to be read or computed to satisfy a request. 3624 * 3625 * Returns 1 when no more member devices need to be checked, otherwise returns 3626 * 0 to tell the loop in handle_stripe_fill to continue 3627 */ 3628 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3629 int disk_idx, int disks) 3630 { 3631 struct r5dev *dev = &sh->dev[disk_idx]; 3632 3633 /* is the data in this block needed, and can we get it? */ 3634 if (need_this_block(sh, s, disk_idx, disks)) { 3635 /* we would like to get this block, possibly by computing it, 3636 * otherwise read it if the backing disk is insync 3637 */ 3638 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3639 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3640 BUG_ON(sh->batch_head); 3641 3642 /* 3643 * In the raid6 case if the only non-uptodate disk is P 3644 * then we already trusted P to compute the other failed 3645 * drives. It is safe to compute rather than re-read P. 3646 * In other cases we only compute blocks from failed 3647 * devices, otherwise check/repair might fail to detect 3648 * a real inconsistency. 3649 */ 3650 3651 if ((s->uptodate == disks - 1) && 3652 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3653 (s->failed && (disk_idx == s->failed_num[0] || 3654 disk_idx == s->failed_num[1])))) { 3655 /* have disk failed, and we're requested to fetch it; 3656 * do compute it 3657 */ 3658 pr_debug("Computing stripe %llu block %d\n", 3659 (unsigned long long)sh->sector, disk_idx); 3660 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3661 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3662 set_bit(R5_Wantcompute, &dev->flags); 3663 sh->ops.target = disk_idx; 3664 sh->ops.target2 = -1; /* no 2nd target */ 3665 s->req_compute = 1; 3666 /* Careful: from this point on 'uptodate' is in the eye 3667 * of raid_run_ops which services 'compute' operations 3668 * before writes. R5_Wantcompute flags a block that will 3669 * be R5_UPTODATE by the time it is needed for a 3670 * subsequent operation. 3671 */ 3672 s->uptodate++; 3673 return 1; 3674 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3675 /* Computing 2-failure is *very* expensive; only 3676 * do it if failed >= 2 3677 */ 3678 int other; 3679 for (other = disks; other--; ) { 3680 if (other == disk_idx) 3681 continue; 3682 if (!test_bit(R5_UPTODATE, 3683 &sh->dev[other].flags)) 3684 break; 3685 } 3686 BUG_ON(other < 0); 3687 pr_debug("Computing stripe %llu blocks %d,%d\n", 3688 (unsigned long long)sh->sector, 3689 disk_idx, other); 3690 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3691 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3692 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3693 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3694 sh->ops.target = disk_idx; 3695 sh->ops.target2 = other; 3696 s->uptodate += 2; 3697 s->req_compute = 1; 3698 return 1; 3699 } else if (test_bit(R5_Insync, &dev->flags)) { 3700 set_bit(R5_LOCKED, &dev->flags); 3701 set_bit(R5_Wantread, &dev->flags); 3702 s->locked++; 3703 pr_debug("Reading block %d (sync=%d)\n", 3704 disk_idx, s->syncing); 3705 } 3706 } 3707 3708 return 0; 3709 } 3710 3711 /** 3712 * handle_stripe_fill - read or compute data to satisfy pending requests. 3713 */ 3714 static void handle_stripe_fill(struct stripe_head *sh, 3715 struct stripe_head_state *s, 3716 int disks) 3717 { 3718 int i; 3719 3720 /* look for blocks to read/compute, skip this if a compute 3721 * is already in flight, or if the stripe contents are in the 3722 * midst of changing due to a write 3723 */ 3724 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3725 !sh->reconstruct_state) { 3726 3727 /* 3728 * For degraded stripe with data in journal, do not handle 3729 * read requests yet, instead, flush the stripe to raid 3730 * disks first, this avoids handling complex rmw of write 3731 * back cache (prexor with orig_page, and then xor with 3732 * page) in the read path 3733 */ 3734 if (s->injournal && s->failed) { 3735 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3736 r5c_make_stripe_write_out(sh); 3737 goto out; 3738 } 3739 3740 for (i = disks; i--; ) 3741 if (fetch_block(sh, s, i, disks)) 3742 break; 3743 } 3744 out: 3745 set_bit(STRIPE_HANDLE, &sh->state); 3746 } 3747 3748 static void break_stripe_batch_list(struct stripe_head *head_sh, 3749 unsigned long handle_flags); 3750 /* handle_stripe_clean_event 3751 * any written block on an uptodate or failed drive can be returned. 3752 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3753 * never LOCKED, so we don't need to test 'failed' directly. 3754 */ 3755 static void handle_stripe_clean_event(struct r5conf *conf, 3756 struct stripe_head *sh, int disks) 3757 { 3758 int i; 3759 struct r5dev *dev; 3760 int discard_pending = 0; 3761 struct stripe_head *head_sh = sh; 3762 bool do_endio = false; 3763 3764 for (i = disks; i--; ) 3765 if (sh->dev[i].written) { 3766 dev = &sh->dev[i]; 3767 if (!test_bit(R5_LOCKED, &dev->flags) && 3768 (test_bit(R5_UPTODATE, &dev->flags) || 3769 test_bit(R5_Discard, &dev->flags) || 3770 test_bit(R5_SkipCopy, &dev->flags))) { 3771 /* We can return any write requests */ 3772 struct bio *wbi, *wbi2; 3773 pr_debug("Return write for disc %d\n", i); 3774 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3775 clear_bit(R5_UPTODATE, &dev->flags); 3776 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3777 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3778 } 3779 do_endio = true; 3780 3781 returnbi: 3782 dev->page = dev->orig_page; 3783 wbi = dev->written; 3784 dev->written = NULL; 3785 while (wbi && wbi->bi_iter.bi_sector < 3786 dev->sector + STRIPE_SECTORS) { 3787 wbi2 = r5_next_bio(wbi, dev->sector); 3788 md_write_end(conf->mddev); 3789 bio_endio(wbi); 3790 wbi = wbi2; 3791 } 3792 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3793 STRIPE_SECTORS, 3794 !test_bit(STRIPE_DEGRADED, &sh->state), 3795 0); 3796 if (head_sh->batch_head) { 3797 sh = list_first_entry(&sh->batch_list, 3798 struct stripe_head, 3799 batch_list); 3800 if (sh != head_sh) { 3801 dev = &sh->dev[i]; 3802 goto returnbi; 3803 } 3804 } 3805 sh = head_sh; 3806 dev = &sh->dev[i]; 3807 } else if (test_bit(R5_Discard, &dev->flags)) 3808 discard_pending = 1; 3809 } 3810 3811 log_stripe_write_finished(sh); 3812 3813 if (!discard_pending && 3814 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3815 int hash; 3816 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3817 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3818 if (sh->qd_idx >= 0) { 3819 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3820 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3821 } 3822 /* now that discard is done we can proceed with any sync */ 3823 clear_bit(STRIPE_DISCARD, &sh->state); 3824 /* 3825 * SCSI discard will change some bio fields and the stripe has 3826 * no updated data, so remove it from hash list and the stripe 3827 * will be reinitialized 3828 */ 3829 unhash: 3830 hash = sh->hash_lock_index; 3831 spin_lock_irq(conf->hash_locks + hash); 3832 remove_hash(sh); 3833 spin_unlock_irq(conf->hash_locks + hash); 3834 if (head_sh->batch_head) { 3835 sh = list_first_entry(&sh->batch_list, 3836 struct stripe_head, batch_list); 3837 if (sh != head_sh) 3838 goto unhash; 3839 } 3840 sh = head_sh; 3841 3842 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3843 set_bit(STRIPE_HANDLE, &sh->state); 3844 3845 } 3846 3847 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3848 if (atomic_dec_and_test(&conf->pending_full_writes)) 3849 md_wakeup_thread(conf->mddev->thread); 3850 3851 if (head_sh->batch_head && do_endio) 3852 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3853 } 3854 3855 /* 3856 * For RMW in write back cache, we need extra page in prexor to store the 3857 * old data. This page is stored in dev->orig_page. 3858 * 3859 * This function checks whether we have data for prexor. The exact logic 3860 * is: 3861 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 3862 */ 3863 static inline bool uptodate_for_rmw(struct r5dev *dev) 3864 { 3865 return (test_bit(R5_UPTODATE, &dev->flags)) && 3866 (!test_bit(R5_InJournal, &dev->flags) || 3867 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 3868 } 3869 3870 static int handle_stripe_dirtying(struct r5conf *conf, 3871 struct stripe_head *sh, 3872 struct stripe_head_state *s, 3873 int disks) 3874 { 3875 int rmw = 0, rcw = 0, i; 3876 sector_t recovery_cp = conf->mddev->recovery_cp; 3877 3878 /* Check whether resync is now happening or should start. 3879 * If yes, then the array is dirty (after unclean shutdown or 3880 * initial creation), so parity in some stripes might be inconsistent. 3881 * In this case, we need to always do reconstruct-write, to ensure 3882 * that in case of drive failure or read-error correction, we 3883 * generate correct data from the parity. 3884 */ 3885 if (conf->rmw_level == PARITY_DISABLE_RMW || 3886 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3887 s->failed == 0)) { 3888 /* Calculate the real rcw later - for now make it 3889 * look like rcw is cheaper 3890 */ 3891 rcw = 1; rmw = 2; 3892 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3893 conf->rmw_level, (unsigned long long)recovery_cp, 3894 (unsigned long long)sh->sector); 3895 } else for (i = disks; i--; ) { 3896 /* would I have to read this buffer for read_modify_write */ 3897 struct r5dev *dev = &sh->dev[i]; 3898 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3899 i == sh->pd_idx || i == sh->qd_idx || 3900 test_bit(R5_InJournal, &dev->flags)) && 3901 !test_bit(R5_LOCKED, &dev->flags) && 3902 !(uptodate_for_rmw(dev) || 3903 test_bit(R5_Wantcompute, &dev->flags))) { 3904 if (test_bit(R5_Insync, &dev->flags)) 3905 rmw++; 3906 else 3907 rmw += 2*disks; /* cannot read it */ 3908 } 3909 /* Would I have to read this buffer for reconstruct_write */ 3910 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3911 i != sh->pd_idx && i != sh->qd_idx && 3912 !test_bit(R5_LOCKED, &dev->flags) && 3913 !(test_bit(R5_UPTODATE, &dev->flags) || 3914 test_bit(R5_Wantcompute, &dev->flags))) { 3915 if (test_bit(R5_Insync, &dev->flags)) 3916 rcw++; 3917 else 3918 rcw += 2*disks; 3919 } 3920 } 3921 3922 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 3923 (unsigned long long)sh->sector, sh->state, rmw, rcw); 3924 set_bit(STRIPE_HANDLE, &sh->state); 3925 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3926 /* prefer read-modify-write, but need to get some data */ 3927 if (conf->mddev->queue) 3928 blk_add_trace_msg(conf->mddev->queue, 3929 "raid5 rmw %llu %d", 3930 (unsigned long long)sh->sector, rmw); 3931 for (i = disks; i--; ) { 3932 struct r5dev *dev = &sh->dev[i]; 3933 if (test_bit(R5_InJournal, &dev->flags) && 3934 dev->page == dev->orig_page && 3935 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 3936 /* alloc page for prexor */ 3937 struct page *p = alloc_page(GFP_NOIO); 3938 3939 if (p) { 3940 dev->orig_page = p; 3941 continue; 3942 } 3943 3944 /* 3945 * alloc_page() failed, try use 3946 * disk_info->extra_page 3947 */ 3948 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 3949 &conf->cache_state)) { 3950 r5c_use_extra_page(sh); 3951 break; 3952 } 3953 3954 /* extra_page in use, add to delayed_list */ 3955 set_bit(STRIPE_DELAYED, &sh->state); 3956 s->waiting_extra_page = 1; 3957 return -EAGAIN; 3958 } 3959 } 3960 3961 for (i = disks; i--; ) { 3962 struct r5dev *dev = &sh->dev[i]; 3963 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3964 i == sh->pd_idx || i == sh->qd_idx || 3965 test_bit(R5_InJournal, &dev->flags)) && 3966 !test_bit(R5_LOCKED, &dev->flags) && 3967 !(uptodate_for_rmw(dev) || 3968 test_bit(R5_Wantcompute, &dev->flags)) && 3969 test_bit(R5_Insync, &dev->flags)) { 3970 if (test_bit(STRIPE_PREREAD_ACTIVE, 3971 &sh->state)) { 3972 pr_debug("Read_old block %d for r-m-w\n", 3973 i); 3974 set_bit(R5_LOCKED, &dev->flags); 3975 set_bit(R5_Wantread, &dev->flags); 3976 s->locked++; 3977 } else { 3978 set_bit(STRIPE_DELAYED, &sh->state); 3979 set_bit(STRIPE_HANDLE, &sh->state); 3980 } 3981 } 3982 } 3983 } 3984 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3985 /* want reconstruct write, but need to get some data */ 3986 int qread =0; 3987 rcw = 0; 3988 for (i = disks; i--; ) { 3989 struct r5dev *dev = &sh->dev[i]; 3990 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3991 i != sh->pd_idx && i != sh->qd_idx && 3992 !test_bit(R5_LOCKED, &dev->flags) && 3993 !(test_bit(R5_UPTODATE, &dev->flags) || 3994 test_bit(R5_Wantcompute, &dev->flags))) { 3995 rcw++; 3996 if (test_bit(R5_Insync, &dev->flags) && 3997 test_bit(STRIPE_PREREAD_ACTIVE, 3998 &sh->state)) { 3999 pr_debug("Read_old block " 4000 "%d for Reconstruct\n", i); 4001 set_bit(R5_LOCKED, &dev->flags); 4002 set_bit(R5_Wantread, &dev->flags); 4003 s->locked++; 4004 qread++; 4005 } else { 4006 set_bit(STRIPE_DELAYED, &sh->state); 4007 set_bit(STRIPE_HANDLE, &sh->state); 4008 } 4009 } 4010 } 4011 if (rcw && conf->mddev->queue) 4012 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4013 (unsigned long long)sh->sector, 4014 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4015 } 4016 4017 if (rcw > disks && rmw > disks && 4018 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4019 set_bit(STRIPE_DELAYED, &sh->state); 4020 4021 /* now if nothing is locked, and if we have enough data, 4022 * we can start a write request 4023 */ 4024 /* since handle_stripe can be called at any time we need to handle the 4025 * case where a compute block operation has been submitted and then a 4026 * subsequent call wants to start a write request. raid_run_ops only 4027 * handles the case where compute block and reconstruct are requested 4028 * simultaneously. If this is not the case then new writes need to be 4029 * held off until the compute completes. 4030 */ 4031 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4032 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4033 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4034 schedule_reconstruction(sh, s, rcw == 0, 0); 4035 return 0; 4036 } 4037 4038 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4039 struct stripe_head_state *s, int disks) 4040 { 4041 struct r5dev *dev = NULL; 4042 4043 BUG_ON(sh->batch_head); 4044 set_bit(STRIPE_HANDLE, &sh->state); 4045 4046 switch (sh->check_state) { 4047 case check_state_idle: 4048 /* start a new check operation if there are no failures */ 4049 if (s->failed == 0) { 4050 BUG_ON(s->uptodate != disks); 4051 sh->check_state = check_state_run; 4052 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4053 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4054 s->uptodate--; 4055 break; 4056 } 4057 dev = &sh->dev[s->failed_num[0]]; 4058 /* fall through */ 4059 case check_state_compute_result: 4060 sh->check_state = check_state_idle; 4061 if (!dev) 4062 dev = &sh->dev[sh->pd_idx]; 4063 4064 /* check that a write has not made the stripe insync */ 4065 if (test_bit(STRIPE_INSYNC, &sh->state)) 4066 break; 4067 4068 /* either failed parity check, or recovery is happening */ 4069 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4070 BUG_ON(s->uptodate != disks); 4071 4072 set_bit(R5_LOCKED, &dev->flags); 4073 s->locked++; 4074 set_bit(R5_Wantwrite, &dev->flags); 4075 4076 clear_bit(STRIPE_DEGRADED, &sh->state); 4077 set_bit(STRIPE_INSYNC, &sh->state); 4078 break; 4079 case check_state_run: 4080 break; /* we will be called again upon completion */ 4081 case check_state_check_result: 4082 sh->check_state = check_state_idle; 4083 4084 /* if a failure occurred during the check operation, leave 4085 * STRIPE_INSYNC not set and let the stripe be handled again 4086 */ 4087 if (s->failed) 4088 break; 4089 4090 /* handle a successful check operation, if parity is correct 4091 * we are done. Otherwise update the mismatch count and repair 4092 * parity if !MD_RECOVERY_CHECK 4093 */ 4094 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4095 /* parity is correct (on disc, 4096 * not in buffer any more) 4097 */ 4098 set_bit(STRIPE_INSYNC, &sh->state); 4099 else { 4100 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4101 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4102 /* don't try to repair!! */ 4103 set_bit(STRIPE_INSYNC, &sh->state); 4104 pr_warn_ratelimited("%s: mismatch sector in range " 4105 "%llu-%llu\n", mdname(conf->mddev), 4106 (unsigned long long) sh->sector, 4107 (unsigned long long) sh->sector + 4108 STRIPE_SECTORS); 4109 } else { 4110 sh->check_state = check_state_compute_run; 4111 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4112 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4113 set_bit(R5_Wantcompute, 4114 &sh->dev[sh->pd_idx].flags); 4115 sh->ops.target = sh->pd_idx; 4116 sh->ops.target2 = -1; 4117 s->uptodate++; 4118 } 4119 } 4120 break; 4121 case check_state_compute_run: 4122 break; 4123 default: 4124 pr_err("%s: unknown check_state: %d sector: %llu\n", 4125 __func__, sh->check_state, 4126 (unsigned long long) sh->sector); 4127 BUG(); 4128 } 4129 } 4130 4131 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4132 struct stripe_head_state *s, 4133 int disks) 4134 { 4135 int pd_idx = sh->pd_idx; 4136 int qd_idx = sh->qd_idx; 4137 struct r5dev *dev; 4138 4139 BUG_ON(sh->batch_head); 4140 set_bit(STRIPE_HANDLE, &sh->state); 4141 4142 BUG_ON(s->failed > 2); 4143 4144 /* Want to check and possibly repair P and Q. 4145 * However there could be one 'failed' device, in which 4146 * case we can only check one of them, possibly using the 4147 * other to generate missing data 4148 */ 4149 4150 switch (sh->check_state) { 4151 case check_state_idle: 4152 /* start a new check operation if there are < 2 failures */ 4153 if (s->failed == s->q_failed) { 4154 /* The only possible failed device holds Q, so it 4155 * makes sense to check P (If anything else were failed, 4156 * we would have used P to recreate it). 4157 */ 4158 sh->check_state = check_state_run; 4159 } 4160 if (!s->q_failed && s->failed < 2) { 4161 /* Q is not failed, and we didn't use it to generate 4162 * anything, so it makes sense to check it 4163 */ 4164 if (sh->check_state == check_state_run) 4165 sh->check_state = check_state_run_pq; 4166 else 4167 sh->check_state = check_state_run_q; 4168 } 4169 4170 /* discard potentially stale zero_sum_result */ 4171 sh->ops.zero_sum_result = 0; 4172 4173 if (sh->check_state == check_state_run) { 4174 /* async_xor_zero_sum destroys the contents of P */ 4175 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4176 s->uptodate--; 4177 } 4178 if (sh->check_state >= check_state_run && 4179 sh->check_state <= check_state_run_pq) { 4180 /* async_syndrome_zero_sum preserves P and Q, so 4181 * no need to mark them !uptodate here 4182 */ 4183 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4184 break; 4185 } 4186 4187 /* we have 2-disk failure */ 4188 BUG_ON(s->failed != 2); 4189 /* fall through */ 4190 case check_state_compute_result: 4191 sh->check_state = check_state_idle; 4192 4193 /* check that a write has not made the stripe insync */ 4194 if (test_bit(STRIPE_INSYNC, &sh->state)) 4195 break; 4196 4197 /* now write out any block on a failed drive, 4198 * or P or Q if they were recomputed 4199 */ 4200 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 4201 if (s->failed == 2) { 4202 dev = &sh->dev[s->failed_num[1]]; 4203 s->locked++; 4204 set_bit(R5_LOCKED, &dev->flags); 4205 set_bit(R5_Wantwrite, &dev->flags); 4206 } 4207 if (s->failed >= 1) { 4208 dev = &sh->dev[s->failed_num[0]]; 4209 s->locked++; 4210 set_bit(R5_LOCKED, &dev->flags); 4211 set_bit(R5_Wantwrite, &dev->flags); 4212 } 4213 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4214 dev = &sh->dev[pd_idx]; 4215 s->locked++; 4216 set_bit(R5_LOCKED, &dev->flags); 4217 set_bit(R5_Wantwrite, &dev->flags); 4218 } 4219 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4220 dev = &sh->dev[qd_idx]; 4221 s->locked++; 4222 set_bit(R5_LOCKED, &dev->flags); 4223 set_bit(R5_Wantwrite, &dev->flags); 4224 } 4225 clear_bit(STRIPE_DEGRADED, &sh->state); 4226 4227 set_bit(STRIPE_INSYNC, &sh->state); 4228 break; 4229 case check_state_run: 4230 case check_state_run_q: 4231 case check_state_run_pq: 4232 break; /* we will be called again upon completion */ 4233 case check_state_check_result: 4234 sh->check_state = check_state_idle; 4235 4236 /* handle a successful check operation, if parity is correct 4237 * we are done. Otherwise update the mismatch count and repair 4238 * parity if !MD_RECOVERY_CHECK 4239 */ 4240 if (sh->ops.zero_sum_result == 0) { 4241 /* both parities are correct */ 4242 if (!s->failed) 4243 set_bit(STRIPE_INSYNC, &sh->state); 4244 else { 4245 /* in contrast to the raid5 case we can validate 4246 * parity, but still have a failure to write 4247 * back 4248 */ 4249 sh->check_state = check_state_compute_result; 4250 /* Returning at this point means that we may go 4251 * off and bring p and/or q uptodate again so 4252 * we make sure to check zero_sum_result again 4253 * to verify if p or q need writeback 4254 */ 4255 } 4256 } else { 4257 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4258 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4259 /* don't try to repair!! */ 4260 set_bit(STRIPE_INSYNC, &sh->state); 4261 pr_warn_ratelimited("%s: mismatch sector in range " 4262 "%llu-%llu\n", mdname(conf->mddev), 4263 (unsigned long long) sh->sector, 4264 (unsigned long long) sh->sector + 4265 STRIPE_SECTORS); 4266 } else { 4267 int *target = &sh->ops.target; 4268 4269 sh->ops.target = -1; 4270 sh->ops.target2 = -1; 4271 sh->check_state = check_state_compute_run; 4272 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4273 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4274 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4275 set_bit(R5_Wantcompute, 4276 &sh->dev[pd_idx].flags); 4277 *target = pd_idx; 4278 target = &sh->ops.target2; 4279 s->uptodate++; 4280 } 4281 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4282 set_bit(R5_Wantcompute, 4283 &sh->dev[qd_idx].flags); 4284 *target = qd_idx; 4285 s->uptodate++; 4286 } 4287 } 4288 } 4289 break; 4290 case check_state_compute_run: 4291 break; 4292 default: 4293 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4294 __func__, sh->check_state, 4295 (unsigned long long) sh->sector); 4296 BUG(); 4297 } 4298 } 4299 4300 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4301 { 4302 int i; 4303 4304 /* We have read all the blocks in this stripe and now we need to 4305 * copy some of them into a target stripe for expand. 4306 */ 4307 struct dma_async_tx_descriptor *tx = NULL; 4308 BUG_ON(sh->batch_head); 4309 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4310 for (i = 0; i < sh->disks; i++) 4311 if (i != sh->pd_idx && i != sh->qd_idx) { 4312 int dd_idx, j; 4313 struct stripe_head *sh2; 4314 struct async_submit_ctl submit; 4315 4316 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4317 sector_t s = raid5_compute_sector(conf, bn, 0, 4318 &dd_idx, NULL); 4319 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4320 if (sh2 == NULL) 4321 /* so far only the early blocks of this stripe 4322 * have been requested. When later blocks 4323 * get requested, we will try again 4324 */ 4325 continue; 4326 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4327 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4328 /* must have already done this block */ 4329 raid5_release_stripe(sh2); 4330 continue; 4331 } 4332 4333 /* place all the copies on one channel */ 4334 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4335 tx = async_memcpy(sh2->dev[dd_idx].page, 4336 sh->dev[i].page, 0, 0, STRIPE_SIZE, 4337 &submit); 4338 4339 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4340 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4341 for (j = 0; j < conf->raid_disks; j++) 4342 if (j != sh2->pd_idx && 4343 j != sh2->qd_idx && 4344 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4345 break; 4346 if (j == conf->raid_disks) { 4347 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4348 set_bit(STRIPE_HANDLE, &sh2->state); 4349 } 4350 raid5_release_stripe(sh2); 4351 4352 } 4353 /* done submitting copies, wait for them to complete */ 4354 async_tx_quiesce(&tx); 4355 } 4356 4357 /* 4358 * handle_stripe - do things to a stripe. 4359 * 4360 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4361 * state of various bits to see what needs to be done. 4362 * Possible results: 4363 * return some read requests which now have data 4364 * return some write requests which are safely on storage 4365 * schedule a read on some buffers 4366 * schedule a write of some buffers 4367 * return confirmation of parity correctness 4368 * 4369 */ 4370 4371 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4372 { 4373 struct r5conf *conf = sh->raid_conf; 4374 int disks = sh->disks; 4375 struct r5dev *dev; 4376 int i; 4377 int do_recovery = 0; 4378 4379 memset(s, 0, sizeof(*s)); 4380 4381 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4382 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4383 s->failed_num[0] = -1; 4384 s->failed_num[1] = -1; 4385 s->log_failed = r5l_log_disk_error(conf); 4386 4387 /* Now to look around and see what can be done */ 4388 rcu_read_lock(); 4389 for (i=disks; i--; ) { 4390 struct md_rdev *rdev; 4391 sector_t first_bad; 4392 int bad_sectors; 4393 int is_bad = 0; 4394 4395 dev = &sh->dev[i]; 4396 4397 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4398 i, dev->flags, 4399 dev->toread, dev->towrite, dev->written); 4400 /* maybe we can reply to a read 4401 * 4402 * new wantfill requests are only permitted while 4403 * ops_complete_biofill is guaranteed to be inactive 4404 */ 4405 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4406 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4407 set_bit(R5_Wantfill, &dev->flags); 4408 4409 /* now count some things */ 4410 if (test_bit(R5_LOCKED, &dev->flags)) 4411 s->locked++; 4412 if (test_bit(R5_UPTODATE, &dev->flags)) 4413 s->uptodate++; 4414 if (test_bit(R5_Wantcompute, &dev->flags)) { 4415 s->compute++; 4416 BUG_ON(s->compute > 2); 4417 } 4418 4419 if (test_bit(R5_Wantfill, &dev->flags)) 4420 s->to_fill++; 4421 else if (dev->toread) 4422 s->to_read++; 4423 if (dev->towrite) { 4424 s->to_write++; 4425 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4426 s->non_overwrite++; 4427 } 4428 if (dev->written) 4429 s->written++; 4430 /* Prefer to use the replacement for reads, but only 4431 * if it is recovered enough and has no bad blocks. 4432 */ 4433 rdev = rcu_dereference(conf->disks[i].replacement); 4434 if (rdev && !test_bit(Faulty, &rdev->flags) && 4435 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4436 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4437 &first_bad, &bad_sectors)) 4438 set_bit(R5_ReadRepl, &dev->flags); 4439 else { 4440 if (rdev && !test_bit(Faulty, &rdev->flags)) 4441 set_bit(R5_NeedReplace, &dev->flags); 4442 else 4443 clear_bit(R5_NeedReplace, &dev->flags); 4444 rdev = rcu_dereference(conf->disks[i].rdev); 4445 clear_bit(R5_ReadRepl, &dev->flags); 4446 } 4447 if (rdev && test_bit(Faulty, &rdev->flags)) 4448 rdev = NULL; 4449 if (rdev) { 4450 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4451 &first_bad, &bad_sectors); 4452 if (s->blocked_rdev == NULL 4453 && (test_bit(Blocked, &rdev->flags) 4454 || is_bad < 0)) { 4455 if (is_bad < 0) 4456 set_bit(BlockedBadBlocks, 4457 &rdev->flags); 4458 s->blocked_rdev = rdev; 4459 atomic_inc(&rdev->nr_pending); 4460 } 4461 } 4462 clear_bit(R5_Insync, &dev->flags); 4463 if (!rdev) 4464 /* Not in-sync */; 4465 else if (is_bad) { 4466 /* also not in-sync */ 4467 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4468 test_bit(R5_UPTODATE, &dev->flags)) { 4469 /* treat as in-sync, but with a read error 4470 * which we can now try to correct 4471 */ 4472 set_bit(R5_Insync, &dev->flags); 4473 set_bit(R5_ReadError, &dev->flags); 4474 } 4475 } else if (test_bit(In_sync, &rdev->flags)) 4476 set_bit(R5_Insync, &dev->flags); 4477 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4478 /* in sync if before recovery_offset */ 4479 set_bit(R5_Insync, &dev->flags); 4480 else if (test_bit(R5_UPTODATE, &dev->flags) && 4481 test_bit(R5_Expanded, &dev->flags)) 4482 /* If we've reshaped into here, we assume it is Insync. 4483 * We will shortly update recovery_offset to make 4484 * it official. 4485 */ 4486 set_bit(R5_Insync, &dev->flags); 4487 4488 if (test_bit(R5_WriteError, &dev->flags)) { 4489 /* This flag does not apply to '.replacement' 4490 * only to .rdev, so make sure to check that*/ 4491 struct md_rdev *rdev2 = rcu_dereference( 4492 conf->disks[i].rdev); 4493 if (rdev2 == rdev) 4494 clear_bit(R5_Insync, &dev->flags); 4495 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4496 s->handle_bad_blocks = 1; 4497 atomic_inc(&rdev2->nr_pending); 4498 } else 4499 clear_bit(R5_WriteError, &dev->flags); 4500 } 4501 if (test_bit(R5_MadeGood, &dev->flags)) { 4502 /* This flag does not apply to '.replacement' 4503 * only to .rdev, so make sure to check that*/ 4504 struct md_rdev *rdev2 = rcu_dereference( 4505 conf->disks[i].rdev); 4506 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4507 s->handle_bad_blocks = 1; 4508 atomic_inc(&rdev2->nr_pending); 4509 } else 4510 clear_bit(R5_MadeGood, &dev->flags); 4511 } 4512 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4513 struct md_rdev *rdev2 = rcu_dereference( 4514 conf->disks[i].replacement); 4515 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4516 s->handle_bad_blocks = 1; 4517 atomic_inc(&rdev2->nr_pending); 4518 } else 4519 clear_bit(R5_MadeGoodRepl, &dev->flags); 4520 } 4521 if (!test_bit(R5_Insync, &dev->flags)) { 4522 /* The ReadError flag will just be confusing now */ 4523 clear_bit(R5_ReadError, &dev->flags); 4524 clear_bit(R5_ReWrite, &dev->flags); 4525 } 4526 if (test_bit(R5_ReadError, &dev->flags)) 4527 clear_bit(R5_Insync, &dev->flags); 4528 if (!test_bit(R5_Insync, &dev->flags)) { 4529 if (s->failed < 2) 4530 s->failed_num[s->failed] = i; 4531 s->failed++; 4532 if (rdev && !test_bit(Faulty, &rdev->flags)) 4533 do_recovery = 1; 4534 else if (!rdev) { 4535 rdev = rcu_dereference( 4536 conf->disks[i].replacement); 4537 if (rdev && !test_bit(Faulty, &rdev->flags)) 4538 do_recovery = 1; 4539 } 4540 } 4541 4542 if (test_bit(R5_InJournal, &dev->flags)) 4543 s->injournal++; 4544 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4545 s->just_cached++; 4546 } 4547 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4548 /* If there is a failed device being replaced, 4549 * we must be recovering. 4550 * else if we are after recovery_cp, we must be syncing 4551 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4552 * else we can only be replacing 4553 * sync and recovery both need to read all devices, and so 4554 * use the same flag. 4555 */ 4556 if (do_recovery || 4557 sh->sector >= conf->mddev->recovery_cp || 4558 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4559 s->syncing = 1; 4560 else 4561 s->replacing = 1; 4562 } 4563 rcu_read_unlock(); 4564 } 4565 4566 static int clear_batch_ready(struct stripe_head *sh) 4567 { 4568 /* Return '1' if this is a member of batch, or 4569 * '0' if it is a lone stripe or a head which can now be 4570 * handled. 4571 */ 4572 struct stripe_head *tmp; 4573 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4574 return (sh->batch_head && sh->batch_head != sh); 4575 spin_lock(&sh->stripe_lock); 4576 if (!sh->batch_head) { 4577 spin_unlock(&sh->stripe_lock); 4578 return 0; 4579 } 4580 4581 /* 4582 * this stripe could be added to a batch list before we check 4583 * BATCH_READY, skips it 4584 */ 4585 if (sh->batch_head != sh) { 4586 spin_unlock(&sh->stripe_lock); 4587 return 1; 4588 } 4589 spin_lock(&sh->batch_lock); 4590 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4591 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4592 spin_unlock(&sh->batch_lock); 4593 spin_unlock(&sh->stripe_lock); 4594 4595 /* 4596 * BATCH_READY is cleared, no new stripes can be added. 4597 * batch_list can be accessed without lock 4598 */ 4599 return 0; 4600 } 4601 4602 static void break_stripe_batch_list(struct stripe_head *head_sh, 4603 unsigned long handle_flags) 4604 { 4605 struct stripe_head *sh, *next; 4606 int i; 4607 int do_wakeup = 0; 4608 4609 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4610 4611 list_del_init(&sh->batch_list); 4612 4613 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4614 (1 << STRIPE_SYNCING) | 4615 (1 << STRIPE_REPLACED) | 4616 (1 << STRIPE_DELAYED) | 4617 (1 << STRIPE_BIT_DELAY) | 4618 (1 << STRIPE_FULL_WRITE) | 4619 (1 << STRIPE_BIOFILL_RUN) | 4620 (1 << STRIPE_COMPUTE_RUN) | 4621 (1 << STRIPE_OPS_REQ_PENDING) | 4622 (1 << STRIPE_DISCARD) | 4623 (1 << STRIPE_BATCH_READY) | 4624 (1 << STRIPE_BATCH_ERR) | 4625 (1 << STRIPE_BITMAP_PENDING)), 4626 "stripe state: %lx\n", sh->state); 4627 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4628 (1 << STRIPE_REPLACED)), 4629 "head stripe state: %lx\n", head_sh->state); 4630 4631 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4632 (1 << STRIPE_PREREAD_ACTIVE) | 4633 (1 << STRIPE_DEGRADED) | 4634 (1 << STRIPE_ON_UNPLUG_LIST)), 4635 head_sh->state & (1 << STRIPE_INSYNC)); 4636 4637 sh->check_state = head_sh->check_state; 4638 sh->reconstruct_state = head_sh->reconstruct_state; 4639 spin_lock_irq(&sh->stripe_lock); 4640 sh->batch_head = NULL; 4641 spin_unlock_irq(&sh->stripe_lock); 4642 for (i = 0; i < sh->disks; i++) { 4643 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4644 do_wakeup = 1; 4645 sh->dev[i].flags = head_sh->dev[i].flags & 4646 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4647 } 4648 if (handle_flags == 0 || 4649 sh->state & handle_flags) 4650 set_bit(STRIPE_HANDLE, &sh->state); 4651 raid5_release_stripe(sh); 4652 } 4653 spin_lock_irq(&head_sh->stripe_lock); 4654 head_sh->batch_head = NULL; 4655 spin_unlock_irq(&head_sh->stripe_lock); 4656 for (i = 0; i < head_sh->disks; i++) 4657 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4658 do_wakeup = 1; 4659 if (head_sh->state & handle_flags) 4660 set_bit(STRIPE_HANDLE, &head_sh->state); 4661 4662 if (do_wakeup) 4663 wake_up(&head_sh->raid_conf->wait_for_overlap); 4664 } 4665 4666 static void handle_stripe(struct stripe_head *sh) 4667 { 4668 struct stripe_head_state s; 4669 struct r5conf *conf = sh->raid_conf; 4670 int i; 4671 int prexor; 4672 int disks = sh->disks; 4673 struct r5dev *pdev, *qdev; 4674 4675 clear_bit(STRIPE_HANDLE, &sh->state); 4676 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4677 /* already being handled, ensure it gets handled 4678 * again when current action finishes */ 4679 set_bit(STRIPE_HANDLE, &sh->state); 4680 return; 4681 } 4682 4683 if (clear_batch_ready(sh) ) { 4684 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4685 return; 4686 } 4687 4688 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4689 break_stripe_batch_list(sh, 0); 4690 4691 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4692 spin_lock(&sh->stripe_lock); 4693 /* 4694 * Cannot process 'sync' concurrently with 'discard'. 4695 * Flush data in r5cache before 'sync'. 4696 */ 4697 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4698 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4699 !test_bit(STRIPE_DISCARD, &sh->state) && 4700 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4701 set_bit(STRIPE_SYNCING, &sh->state); 4702 clear_bit(STRIPE_INSYNC, &sh->state); 4703 clear_bit(STRIPE_REPLACED, &sh->state); 4704 } 4705 spin_unlock(&sh->stripe_lock); 4706 } 4707 clear_bit(STRIPE_DELAYED, &sh->state); 4708 4709 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4710 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4711 (unsigned long long)sh->sector, sh->state, 4712 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4713 sh->check_state, sh->reconstruct_state); 4714 4715 analyse_stripe(sh, &s); 4716 4717 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4718 goto finish; 4719 4720 if (s.handle_bad_blocks || 4721 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4722 set_bit(STRIPE_HANDLE, &sh->state); 4723 goto finish; 4724 } 4725 4726 if (unlikely(s.blocked_rdev)) { 4727 if (s.syncing || s.expanding || s.expanded || 4728 s.replacing || s.to_write || s.written) { 4729 set_bit(STRIPE_HANDLE, &sh->state); 4730 goto finish; 4731 } 4732 /* There is nothing for the blocked_rdev to block */ 4733 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4734 s.blocked_rdev = NULL; 4735 } 4736 4737 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4738 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4739 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4740 } 4741 4742 pr_debug("locked=%d uptodate=%d to_read=%d" 4743 " to_write=%d failed=%d failed_num=%d,%d\n", 4744 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4745 s.failed_num[0], s.failed_num[1]); 4746 /* 4747 * check if the array has lost more than max_degraded devices and, 4748 * if so, some requests might need to be failed. 4749 * 4750 * When journal device failed (log_failed), we will only process 4751 * the stripe if there is data need write to raid disks 4752 */ 4753 if (s.failed > conf->max_degraded || 4754 (s.log_failed && s.injournal == 0)) { 4755 sh->check_state = 0; 4756 sh->reconstruct_state = 0; 4757 break_stripe_batch_list(sh, 0); 4758 if (s.to_read+s.to_write+s.written) 4759 handle_failed_stripe(conf, sh, &s, disks); 4760 if (s.syncing + s.replacing) 4761 handle_failed_sync(conf, sh, &s); 4762 } 4763 4764 /* Now we check to see if any write operations have recently 4765 * completed 4766 */ 4767 prexor = 0; 4768 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4769 prexor = 1; 4770 if (sh->reconstruct_state == reconstruct_state_drain_result || 4771 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4772 sh->reconstruct_state = reconstruct_state_idle; 4773 4774 /* All the 'written' buffers and the parity block are ready to 4775 * be written back to disk 4776 */ 4777 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4778 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4779 BUG_ON(sh->qd_idx >= 0 && 4780 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4781 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4782 for (i = disks; i--; ) { 4783 struct r5dev *dev = &sh->dev[i]; 4784 if (test_bit(R5_LOCKED, &dev->flags) && 4785 (i == sh->pd_idx || i == sh->qd_idx || 4786 dev->written || test_bit(R5_InJournal, 4787 &dev->flags))) { 4788 pr_debug("Writing block %d\n", i); 4789 set_bit(R5_Wantwrite, &dev->flags); 4790 if (prexor) 4791 continue; 4792 if (s.failed > 1) 4793 continue; 4794 if (!test_bit(R5_Insync, &dev->flags) || 4795 ((i == sh->pd_idx || i == sh->qd_idx) && 4796 s.failed == 0)) 4797 set_bit(STRIPE_INSYNC, &sh->state); 4798 } 4799 } 4800 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4801 s.dec_preread_active = 1; 4802 } 4803 4804 /* 4805 * might be able to return some write requests if the parity blocks 4806 * are safe, or on a failed drive 4807 */ 4808 pdev = &sh->dev[sh->pd_idx]; 4809 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4810 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4811 qdev = &sh->dev[sh->qd_idx]; 4812 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4813 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4814 || conf->level < 6; 4815 4816 if (s.written && 4817 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4818 && !test_bit(R5_LOCKED, &pdev->flags) 4819 && (test_bit(R5_UPTODATE, &pdev->flags) || 4820 test_bit(R5_Discard, &pdev->flags))))) && 4821 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4822 && !test_bit(R5_LOCKED, &qdev->flags) 4823 && (test_bit(R5_UPTODATE, &qdev->flags) || 4824 test_bit(R5_Discard, &qdev->flags)))))) 4825 handle_stripe_clean_event(conf, sh, disks); 4826 4827 if (s.just_cached) 4828 r5c_handle_cached_data_endio(conf, sh, disks); 4829 log_stripe_write_finished(sh); 4830 4831 /* Now we might consider reading some blocks, either to check/generate 4832 * parity, or to satisfy requests 4833 * or to load a block that is being partially written. 4834 */ 4835 if (s.to_read || s.non_overwrite 4836 || (conf->level == 6 && s.to_write && s.failed) 4837 || (s.syncing && (s.uptodate + s.compute < disks)) 4838 || s.replacing 4839 || s.expanding) 4840 handle_stripe_fill(sh, &s, disks); 4841 4842 /* 4843 * When the stripe finishes full journal write cycle (write to journal 4844 * and raid disk), this is the clean up procedure so it is ready for 4845 * next operation. 4846 */ 4847 r5c_finish_stripe_write_out(conf, sh, &s); 4848 4849 /* 4850 * Now to consider new write requests, cache write back and what else, 4851 * if anything should be read. We do not handle new writes when: 4852 * 1/ A 'write' operation (copy+xor) is already in flight. 4853 * 2/ A 'check' operation is in flight, as it may clobber the parity 4854 * block. 4855 * 3/ A r5c cache log write is in flight. 4856 */ 4857 4858 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 4859 if (!r5c_is_writeback(conf->log)) { 4860 if (s.to_write) 4861 handle_stripe_dirtying(conf, sh, &s, disks); 4862 } else { /* write back cache */ 4863 int ret = 0; 4864 4865 /* First, try handle writes in caching phase */ 4866 if (s.to_write) 4867 ret = r5c_try_caching_write(conf, sh, &s, 4868 disks); 4869 /* 4870 * If caching phase failed: ret == -EAGAIN 4871 * OR 4872 * stripe under reclaim: !caching && injournal 4873 * 4874 * fall back to handle_stripe_dirtying() 4875 */ 4876 if (ret == -EAGAIN || 4877 /* stripe under reclaim: !caching && injournal */ 4878 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 4879 s.injournal > 0)) { 4880 ret = handle_stripe_dirtying(conf, sh, &s, 4881 disks); 4882 if (ret == -EAGAIN) 4883 goto finish; 4884 } 4885 } 4886 } 4887 4888 /* maybe we need to check and possibly fix the parity for this stripe 4889 * Any reads will already have been scheduled, so we just see if enough 4890 * data is available. The parity check is held off while parity 4891 * dependent operations are in flight. 4892 */ 4893 if (sh->check_state || 4894 (s.syncing && s.locked == 0 && 4895 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4896 !test_bit(STRIPE_INSYNC, &sh->state))) { 4897 if (conf->level == 6) 4898 handle_parity_checks6(conf, sh, &s, disks); 4899 else 4900 handle_parity_checks5(conf, sh, &s, disks); 4901 } 4902 4903 if ((s.replacing || s.syncing) && s.locked == 0 4904 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4905 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4906 /* Write out to replacement devices where possible */ 4907 for (i = 0; i < conf->raid_disks; i++) 4908 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4909 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4910 set_bit(R5_WantReplace, &sh->dev[i].flags); 4911 set_bit(R5_LOCKED, &sh->dev[i].flags); 4912 s.locked++; 4913 } 4914 if (s.replacing) 4915 set_bit(STRIPE_INSYNC, &sh->state); 4916 set_bit(STRIPE_REPLACED, &sh->state); 4917 } 4918 if ((s.syncing || s.replacing) && s.locked == 0 && 4919 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4920 test_bit(STRIPE_INSYNC, &sh->state)) { 4921 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4922 clear_bit(STRIPE_SYNCING, &sh->state); 4923 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4924 wake_up(&conf->wait_for_overlap); 4925 } 4926 4927 /* If the failed drives are just a ReadError, then we might need 4928 * to progress the repair/check process 4929 */ 4930 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4931 for (i = 0; i < s.failed; i++) { 4932 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4933 if (test_bit(R5_ReadError, &dev->flags) 4934 && !test_bit(R5_LOCKED, &dev->flags) 4935 && test_bit(R5_UPTODATE, &dev->flags) 4936 ) { 4937 if (!test_bit(R5_ReWrite, &dev->flags)) { 4938 set_bit(R5_Wantwrite, &dev->flags); 4939 set_bit(R5_ReWrite, &dev->flags); 4940 set_bit(R5_LOCKED, &dev->flags); 4941 s.locked++; 4942 } else { 4943 /* let's read it back */ 4944 set_bit(R5_Wantread, &dev->flags); 4945 set_bit(R5_LOCKED, &dev->flags); 4946 s.locked++; 4947 } 4948 } 4949 } 4950 4951 /* Finish reconstruct operations initiated by the expansion process */ 4952 if (sh->reconstruct_state == reconstruct_state_result) { 4953 struct stripe_head *sh_src 4954 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4955 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4956 /* sh cannot be written until sh_src has been read. 4957 * so arrange for sh to be delayed a little 4958 */ 4959 set_bit(STRIPE_DELAYED, &sh->state); 4960 set_bit(STRIPE_HANDLE, &sh->state); 4961 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4962 &sh_src->state)) 4963 atomic_inc(&conf->preread_active_stripes); 4964 raid5_release_stripe(sh_src); 4965 goto finish; 4966 } 4967 if (sh_src) 4968 raid5_release_stripe(sh_src); 4969 4970 sh->reconstruct_state = reconstruct_state_idle; 4971 clear_bit(STRIPE_EXPANDING, &sh->state); 4972 for (i = conf->raid_disks; i--; ) { 4973 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4974 set_bit(R5_LOCKED, &sh->dev[i].flags); 4975 s.locked++; 4976 } 4977 } 4978 4979 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4980 !sh->reconstruct_state) { 4981 /* Need to write out all blocks after computing parity */ 4982 sh->disks = conf->raid_disks; 4983 stripe_set_idx(sh->sector, conf, 0, sh); 4984 schedule_reconstruction(sh, &s, 1, 1); 4985 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4986 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4987 atomic_dec(&conf->reshape_stripes); 4988 wake_up(&conf->wait_for_overlap); 4989 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4990 } 4991 4992 if (s.expanding && s.locked == 0 && 4993 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4994 handle_stripe_expansion(conf, sh); 4995 4996 finish: 4997 /* wait for this device to become unblocked */ 4998 if (unlikely(s.blocked_rdev)) { 4999 if (conf->mddev->external) 5000 md_wait_for_blocked_rdev(s.blocked_rdev, 5001 conf->mddev); 5002 else 5003 /* Internal metadata will immediately 5004 * be written by raid5d, so we don't 5005 * need to wait here. 5006 */ 5007 rdev_dec_pending(s.blocked_rdev, 5008 conf->mddev); 5009 } 5010 5011 if (s.handle_bad_blocks) 5012 for (i = disks; i--; ) { 5013 struct md_rdev *rdev; 5014 struct r5dev *dev = &sh->dev[i]; 5015 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5016 /* We own a safe reference to the rdev */ 5017 rdev = conf->disks[i].rdev; 5018 if (!rdev_set_badblocks(rdev, sh->sector, 5019 STRIPE_SECTORS, 0)) 5020 md_error(conf->mddev, rdev); 5021 rdev_dec_pending(rdev, conf->mddev); 5022 } 5023 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5024 rdev = conf->disks[i].rdev; 5025 rdev_clear_badblocks(rdev, sh->sector, 5026 STRIPE_SECTORS, 0); 5027 rdev_dec_pending(rdev, conf->mddev); 5028 } 5029 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5030 rdev = conf->disks[i].replacement; 5031 if (!rdev) 5032 /* rdev have been moved down */ 5033 rdev = conf->disks[i].rdev; 5034 rdev_clear_badblocks(rdev, sh->sector, 5035 STRIPE_SECTORS, 0); 5036 rdev_dec_pending(rdev, conf->mddev); 5037 } 5038 } 5039 5040 if (s.ops_request) 5041 raid_run_ops(sh, s.ops_request); 5042 5043 ops_run_io(sh, &s); 5044 5045 if (s.dec_preread_active) { 5046 /* We delay this until after ops_run_io so that if make_request 5047 * is waiting on a flush, it won't continue until the writes 5048 * have actually been submitted. 5049 */ 5050 atomic_dec(&conf->preread_active_stripes); 5051 if (atomic_read(&conf->preread_active_stripes) < 5052 IO_THRESHOLD) 5053 md_wakeup_thread(conf->mddev->thread); 5054 } 5055 5056 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5057 } 5058 5059 static void raid5_activate_delayed(struct r5conf *conf) 5060 { 5061 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5062 while (!list_empty(&conf->delayed_list)) { 5063 struct list_head *l = conf->delayed_list.next; 5064 struct stripe_head *sh; 5065 sh = list_entry(l, struct stripe_head, lru); 5066 list_del_init(l); 5067 clear_bit(STRIPE_DELAYED, &sh->state); 5068 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5069 atomic_inc(&conf->preread_active_stripes); 5070 list_add_tail(&sh->lru, &conf->hold_list); 5071 raid5_wakeup_stripe_thread(sh); 5072 } 5073 } 5074 } 5075 5076 static void activate_bit_delay(struct r5conf *conf, 5077 struct list_head *temp_inactive_list) 5078 { 5079 /* device_lock is held */ 5080 struct list_head head; 5081 list_add(&head, &conf->bitmap_list); 5082 list_del_init(&conf->bitmap_list); 5083 while (!list_empty(&head)) { 5084 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5085 int hash; 5086 list_del_init(&sh->lru); 5087 atomic_inc(&sh->count); 5088 hash = sh->hash_lock_index; 5089 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5090 } 5091 } 5092 5093 static int raid5_congested(struct mddev *mddev, int bits) 5094 { 5095 struct r5conf *conf = mddev->private; 5096 5097 /* No difference between reads and writes. Just check 5098 * how busy the stripe_cache is 5099 */ 5100 5101 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 5102 return 1; 5103 5104 /* Also checks whether there is pressure on r5cache log space */ 5105 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 5106 return 1; 5107 if (conf->quiesce) 5108 return 1; 5109 if (atomic_read(&conf->empty_inactive_list_nr)) 5110 return 1; 5111 5112 return 0; 5113 } 5114 5115 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5116 { 5117 struct r5conf *conf = mddev->private; 5118 sector_t sector = bio->bi_iter.bi_sector; 5119 unsigned int chunk_sectors; 5120 unsigned int bio_sectors = bio_sectors(bio); 5121 5122 WARN_ON_ONCE(bio->bi_partno); 5123 5124 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5125 return chunk_sectors >= 5126 ((sector & (chunk_sectors - 1)) + bio_sectors); 5127 } 5128 5129 /* 5130 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5131 * later sampled by raid5d. 5132 */ 5133 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5134 { 5135 unsigned long flags; 5136 5137 spin_lock_irqsave(&conf->device_lock, flags); 5138 5139 bi->bi_next = conf->retry_read_aligned_list; 5140 conf->retry_read_aligned_list = bi; 5141 5142 spin_unlock_irqrestore(&conf->device_lock, flags); 5143 md_wakeup_thread(conf->mddev->thread); 5144 } 5145 5146 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5147 unsigned int *offset) 5148 { 5149 struct bio *bi; 5150 5151 bi = conf->retry_read_aligned; 5152 if (bi) { 5153 *offset = conf->retry_read_offset; 5154 conf->retry_read_aligned = NULL; 5155 return bi; 5156 } 5157 bi = conf->retry_read_aligned_list; 5158 if(bi) { 5159 conf->retry_read_aligned_list = bi->bi_next; 5160 bi->bi_next = NULL; 5161 *offset = 0; 5162 } 5163 5164 return bi; 5165 } 5166 5167 /* 5168 * The "raid5_align_endio" should check if the read succeeded and if it 5169 * did, call bio_endio on the original bio (having bio_put the new bio 5170 * first). 5171 * If the read failed.. 5172 */ 5173 static void raid5_align_endio(struct bio *bi) 5174 { 5175 struct bio* raid_bi = bi->bi_private; 5176 struct mddev *mddev; 5177 struct r5conf *conf; 5178 struct md_rdev *rdev; 5179 blk_status_t error = bi->bi_status; 5180 5181 bio_put(bi); 5182 5183 rdev = (void*)raid_bi->bi_next; 5184 raid_bi->bi_next = NULL; 5185 mddev = rdev->mddev; 5186 conf = mddev->private; 5187 5188 rdev_dec_pending(rdev, conf->mddev); 5189 5190 if (!error) { 5191 bio_endio(raid_bi); 5192 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5193 wake_up(&conf->wait_for_quiescent); 5194 return; 5195 } 5196 5197 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5198 5199 add_bio_to_retry(raid_bi, conf); 5200 } 5201 5202 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5203 { 5204 struct r5conf *conf = mddev->private; 5205 int dd_idx; 5206 struct bio* align_bi; 5207 struct md_rdev *rdev; 5208 sector_t end_sector; 5209 5210 if (!in_chunk_boundary(mddev, raid_bio)) { 5211 pr_debug("%s: non aligned\n", __func__); 5212 return 0; 5213 } 5214 /* 5215 * use bio_clone_fast to make a copy of the bio 5216 */ 5217 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set); 5218 if (!align_bi) 5219 return 0; 5220 /* 5221 * set bi_end_io to a new function, and set bi_private to the 5222 * original bio. 5223 */ 5224 align_bi->bi_end_io = raid5_align_endio; 5225 align_bi->bi_private = raid_bio; 5226 /* 5227 * compute position 5228 */ 5229 align_bi->bi_iter.bi_sector = 5230 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5231 0, &dd_idx, NULL); 5232 5233 end_sector = bio_end_sector(align_bi); 5234 rcu_read_lock(); 5235 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5236 if (!rdev || test_bit(Faulty, &rdev->flags) || 5237 rdev->recovery_offset < end_sector) { 5238 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5239 if (rdev && 5240 (test_bit(Faulty, &rdev->flags) || 5241 !(test_bit(In_sync, &rdev->flags) || 5242 rdev->recovery_offset >= end_sector))) 5243 rdev = NULL; 5244 } 5245 5246 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5247 rcu_read_unlock(); 5248 bio_put(align_bi); 5249 return 0; 5250 } 5251 5252 if (rdev) { 5253 sector_t first_bad; 5254 int bad_sectors; 5255 5256 atomic_inc(&rdev->nr_pending); 5257 rcu_read_unlock(); 5258 raid_bio->bi_next = (void*)rdev; 5259 bio_set_dev(align_bi, rdev->bdev); 5260 bio_clear_flag(align_bi, BIO_SEG_VALID); 5261 5262 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5263 bio_sectors(align_bi), 5264 &first_bad, &bad_sectors)) { 5265 bio_put(align_bi); 5266 rdev_dec_pending(rdev, mddev); 5267 return 0; 5268 } 5269 5270 /* No reshape active, so we can trust rdev->data_offset */ 5271 align_bi->bi_iter.bi_sector += rdev->data_offset; 5272 5273 spin_lock_irq(&conf->device_lock); 5274 wait_event_lock_irq(conf->wait_for_quiescent, 5275 conf->quiesce == 0, 5276 conf->device_lock); 5277 atomic_inc(&conf->active_aligned_reads); 5278 spin_unlock_irq(&conf->device_lock); 5279 5280 if (mddev->gendisk) 5281 trace_block_bio_remap(align_bi->bi_disk->queue, 5282 align_bi, disk_devt(mddev->gendisk), 5283 raid_bio->bi_iter.bi_sector); 5284 generic_make_request(align_bi); 5285 return 1; 5286 } else { 5287 rcu_read_unlock(); 5288 bio_put(align_bi); 5289 return 0; 5290 } 5291 } 5292 5293 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5294 { 5295 struct bio *split; 5296 sector_t sector = raid_bio->bi_iter.bi_sector; 5297 unsigned chunk_sects = mddev->chunk_sectors; 5298 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5299 5300 if (sectors < bio_sectors(raid_bio)) { 5301 struct r5conf *conf = mddev->private; 5302 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5303 bio_chain(split, raid_bio); 5304 generic_make_request(raid_bio); 5305 raid_bio = split; 5306 } 5307 5308 if (!raid5_read_one_chunk(mddev, raid_bio)) 5309 return raid_bio; 5310 5311 return NULL; 5312 } 5313 5314 /* __get_priority_stripe - get the next stripe to process 5315 * 5316 * Full stripe writes are allowed to pass preread active stripes up until 5317 * the bypass_threshold is exceeded. In general the bypass_count 5318 * increments when the handle_list is handled before the hold_list; however, it 5319 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5320 * stripe with in flight i/o. The bypass_count will be reset when the 5321 * head of the hold_list has changed, i.e. the head was promoted to the 5322 * handle_list. 5323 */ 5324 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5325 { 5326 struct stripe_head *sh, *tmp; 5327 struct list_head *handle_list = NULL; 5328 struct r5worker_group *wg; 5329 bool second_try = !r5c_is_writeback(conf->log) && 5330 !r5l_log_disk_error(conf); 5331 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5332 r5l_log_disk_error(conf); 5333 5334 again: 5335 wg = NULL; 5336 sh = NULL; 5337 if (conf->worker_cnt_per_group == 0) { 5338 handle_list = try_loprio ? &conf->loprio_list : 5339 &conf->handle_list; 5340 } else if (group != ANY_GROUP) { 5341 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5342 &conf->worker_groups[group].handle_list; 5343 wg = &conf->worker_groups[group]; 5344 } else { 5345 int i; 5346 for (i = 0; i < conf->group_cnt; i++) { 5347 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5348 &conf->worker_groups[i].handle_list; 5349 wg = &conf->worker_groups[i]; 5350 if (!list_empty(handle_list)) 5351 break; 5352 } 5353 } 5354 5355 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5356 __func__, 5357 list_empty(handle_list) ? "empty" : "busy", 5358 list_empty(&conf->hold_list) ? "empty" : "busy", 5359 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5360 5361 if (!list_empty(handle_list)) { 5362 sh = list_entry(handle_list->next, typeof(*sh), lru); 5363 5364 if (list_empty(&conf->hold_list)) 5365 conf->bypass_count = 0; 5366 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5367 if (conf->hold_list.next == conf->last_hold) 5368 conf->bypass_count++; 5369 else { 5370 conf->last_hold = conf->hold_list.next; 5371 conf->bypass_count -= conf->bypass_threshold; 5372 if (conf->bypass_count < 0) 5373 conf->bypass_count = 0; 5374 } 5375 } 5376 } else if (!list_empty(&conf->hold_list) && 5377 ((conf->bypass_threshold && 5378 conf->bypass_count > conf->bypass_threshold) || 5379 atomic_read(&conf->pending_full_writes) == 0)) { 5380 5381 list_for_each_entry(tmp, &conf->hold_list, lru) { 5382 if (conf->worker_cnt_per_group == 0 || 5383 group == ANY_GROUP || 5384 !cpu_online(tmp->cpu) || 5385 cpu_to_group(tmp->cpu) == group) { 5386 sh = tmp; 5387 break; 5388 } 5389 } 5390 5391 if (sh) { 5392 conf->bypass_count -= conf->bypass_threshold; 5393 if (conf->bypass_count < 0) 5394 conf->bypass_count = 0; 5395 } 5396 wg = NULL; 5397 } 5398 5399 if (!sh) { 5400 if (second_try) 5401 return NULL; 5402 second_try = true; 5403 try_loprio = !try_loprio; 5404 goto again; 5405 } 5406 5407 if (wg) { 5408 wg->stripes_cnt--; 5409 sh->group = NULL; 5410 } 5411 list_del_init(&sh->lru); 5412 BUG_ON(atomic_inc_return(&sh->count) != 1); 5413 return sh; 5414 } 5415 5416 struct raid5_plug_cb { 5417 struct blk_plug_cb cb; 5418 struct list_head list; 5419 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5420 }; 5421 5422 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5423 { 5424 struct raid5_plug_cb *cb = container_of( 5425 blk_cb, struct raid5_plug_cb, cb); 5426 struct stripe_head *sh; 5427 struct mddev *mddev = cb->cb.data; 5428 struct r5conf *conf = mddev->private; 5429 int cnt = 0; 5430 int hash; 5431 5432 if (cb->list.next && !list_empty(&cb->list)) { 5433 spin_lock_irq(&conf->device_lock); 5434 while (!list_empty(&cb->list)) { 5435 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5436 list_del_init(&sh->lru); 5437 /* 5438 * avoid race release_stripe_plug() sees 5439 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5440 * is still in our list 5441 */ 5442 smp_mb__before_atomic(); 5443 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5444 /* 5445 * STRIPE_ON_RELEASE_LIST could be set here. In that 5446 * case, the count is always > 1 here 5447 */ 5448 hash = sh->hash_lock_index; 5449 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5450 cnt++; 5451 } 5452 spin_unlock_irq(&conf->device_lock); 5453 } 5454 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5455 NR_STRIPE_HASH_LOCKS); 5456 if (mddev->queue) 5457 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5458 kfree(cb); 5459 } 5460 5461 static void release_stripe_plug(struct mddev *mddev, 5462 struct stripe_head *sh) 5463 { 5464 struct blk_plug_cb *blk_cb = blk_check_plugged( 5465 raid5_unplug, mddev, 5466 sizeof(struct raid5_plug_cb)); 5467 struct raid5_plug_cb *cb; 5468 5469 if (!blk_cb) { 5470 raid5_release_stripe(sh); 5471 return; 5472 } 5473 5474 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5475 5476 if (cb->list.next == NULL) { 5477 int i; 5478 INIT_LIST_HEAD(&cb->list); 5479 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5480 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5481 } 5482 5483 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5484 list_add_tail(&sh->lru, &cb->list); 5485 else 5486 raid5_release_stripe(sh); 5487 } 5488 5489 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5490 { 5491 struct r5conf *conf = mddev->private; 5492 sector_t logical_sector, last_sector; 5493 struct stripe_head *sh; 5494 int stripe_sectors; 5495 5496 if (mddev->reshape_position != MaxSector) 5497 /* Skip discard while reshape is happening */ 5498 return; 5499 5500 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5501 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5502 5503 bi->bi_next = NULL; 5504 5505 stripe_sectors = conf->chunk_sectors * 5506 (conf->raid_disks - conf->max_degraded); 5507 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5508 stripe_sectors); 5509 sector_div(last_sector, stripe_sectors); 5510 5511 logical_sector *= conf->chunk_sectors; 5512 last_sector *= conf->chunk_sectors; 5513 5514 for (; logical_sector < last_sector; 5515 logical_sector += STRIPE_SECTORS) { 5516 DEFINE_WAIT(w); 5517 int d; 5518 again: 5519 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5520 prepare_to_wait(&conf->wait_for_overlap, &w, 5521 TASK_UNINTERRUPTIBLE); 5522 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5523 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5524 raid5_release_stripe(sh); 5525 schedule(); 5526 goto again; 5527 } 5528 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5529 spin_lock_irq(&sh->stripe_lock); 5530 for (d = 0; d < conf->raid_disks; d++) { 5531 if (d == sh->pd_idx || d == sh->qd_idx) 5532 continue; 5533 if (sh->dev[d].towrite || sh->dev[d].toread) { 5534 set_bit(R5_Overlap, &sh->dev[d].flags); 5535 spin_unlock_irq(&sh->stripe_lock); 5536 raid5_release_stripe(sh); 5537 schedule(); 5538 goto again; 5539 } 5540 } 5541 set_bit(STRIPE_DISCARD, &sh->state); 5542 finish_wait(&conf->wait_for_overlap, &w); 5543 sh->overwrite_disks = 0; 5544 for (d = 0; d < conf->raid_disks; d++) { 5545 if (d == sh->pd_idx || d == sh->qd_idx) 5546 continue; 5547 sh->dev[d].towrite = bi; 5548 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5549 bio_inc_remaining(bi); 5550 md_write_inc(mddev, bi); 5551 sh->overwrite_disks++; 5552 } 5553 spin_unlock_irq(&sh->stripe_lock); 5554 if (conf->mddev->bitmap) { 5555 for (d = 0; 5556 d < conf->raid_disks - conf->max_degraded; 5557 d++) 5558 md_bitmap_startwrite(mddev->bitmap, 5559 sh->sector, 5560 STRIPE_SECTORS, 5561 0); 5562 sh->bm_seq = conf->seq_flush + 1; 5563 set_bit(STRIPE_BIT_DELAY, &sh->state); 5564 } 5565 5566 set_bit(STRIPE_HANDLE, &sh->state); 5567 clear_bit(STRIPE_DELAYED, &sh->state); 5568 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5569 atomic_inc(&conf->preread_active_stripes); 5570 release_stripe_plug(mddev, sh); 5571 } 5572 5573 bio_endio(bi); 5574 } 5575 5576 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5577 { 5578 struct r5conf *conf = mddev->private; 5579 int dd_idx; 5580 sector_t new_sector; 5581 sector_t logical_sector, last_sector; 5582 struct stripe_head *sh; 5583 const int rw = bio_data_dir(bi); 5584 DEFINE_WAIT(w); 5585 bool do_prepare; 5586 bool do_flush = false; 5587 5588 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5589 int ret = log_handle_flush_request(conf, bi); 5590 5591 if (ret == 0) 5592 return true; 5593 if (ret == -ENODEV) { 5594 md_flush_request(mddev, bi); 5595 return true; 5596 } 5597 /* ret == -EAGAIN, fallback */ 5598 /* 5599 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5600 * we need to flush journal device 5601 */ 5602 do_flush = bi->bi_opf & REQ_PREFLUSH; 5603 } 5604 5605 if (!md_write_start(mddev, bi)) 5606 return false; 5607 /* 5608 * If array is degraded, better not do chunk aligned read because 5609 * later we might have to read it again in order to reconstruct 5610 * data on failed drives. 5611 */ 5612 if (rw == READ && mddev->degraded == 0 && 5613 mddev->reshape_position == MaxSector) { 5614 bi = chunk_aligned_read(mddev, bi); 5615 if (!bi) 5616 return true; 5617 } 5618 5619 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5620 make_discard_request(mddev, bi); 5621 md_write_end(mddev); 5622 return true; 5623 } 5624 5625 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5626 last_sector = bio_end_sector(bi); 5627 bi->bi_next = NULL; 5628 5629 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5630 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5631 int previous; 5632 int seq; 5633 5634 do_prepare = false; 5635 retry: 5636 seq = read_seqcount_begin(&conf->gen_lock); 5637 previous = 0; 5638 if (do_prepare) 5639 prepare_to_wait(&conf->wait_for_overlap, &w, 5640 TASK_UNINTERRUPTIBLE); 5641 if (unlikely(conf->reshape_progress != MaxSector)) { 5642 /* spinlock is needed as reshape_progress may be 5643 * 64bit on a 32bit platform, and so it might be 5644 * possible to see a half-updated value 5645 * Of course reshape_progress could change after 5646 * the lock is dropped, so once we get a reference 5647 * to the stripe that we think it is, we will have 5648 * to check again. 5649 */ 5650 spin_lock_irq(&conf->device_lock); 5651 if (mddev->reshape_backwards 5652 ? logical_sector < conf->reshape_progress 5653 : logical_sector >= conf->reshape_progress) { 5654 previous = 1; 5655 } else { 5656 if (mddev->reshape_backwards 5657 ? logical_sector < conf->reshape_safe 5658 : logical_sector >= conf->reshape_safe) { 5659 spin_unlock_irq(&conf->device_lock); 5660 schedule(); 5661 do_prepare = true; 5662 goto retry; 5663 } 5664 } 5665 spin_unlock_irq(&conf->device_lock); 5666 } 5667 5668 new_sector = raid5_compute_sector(conf, logical_sector, 5669 previous, 5670 &dd_idx, NULL); 5671 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5672 (unsigned long long)new_sector, 5673 (unsigned long long)logical_sector); 5674 5675 sh = raid5_get_active_stripe(conf, new_sector, previous, 5676 (bi->bi_opf & REQ_RAHEAD), 0); 5677 if (sh) { 5678 if (unlikely(previous)) { 5679 /* expansion might have moved on while waiting for a 5680 * stripe, so we must do the range check again. 5681 * Expansion could still move past after this 5682 * test, but as we are holding a reference to 5683 * 'sh', we know that if that happens, 5684 * STRIPE_EXPANDING will get set and the expansion 5685 * won't proceed until we finish with the stripe. 5686 */ 5687 int must_retry = 0; 5688 spin_lock_irq(&conf->device_lock); 5689 if (mddev->reshape_backwards 5690 ? logical_sector >= conf->reshape_progress 5691 : logical_sector < conf->reshape_progress) 5692 /* mismatch, need to try again */ 5693 must_retry = 1; 5694 spin_unlock_irq(&conf->device_lock); 5695 if (must_retry) { 5696 raid5_release_stripe(sh); 5697 schedule(); 5698 do_prepare = true; 5699 goto retry; 5700 } 5701 } 5702 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5703 /* Might have got the wrong stripe_head 5704 * by accident 5705 */ 5706 raid5_release_stripe(sh); 5707 goto retry; 5708 } 5709 5710 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5711 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5712 /* Stripe is busy expanding or 5713 * add failed due to overlap. Flush everything 5714 * and wait a while 5715 */ 5716 md_wakeup_thread(mddev->thread); 5717 raid5_release_stripe(sh); 5718 schedule(); 5719 do_prepare = true; 5720 goto retry; 5721 } 5722 if (do_flush) { 5723 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5724 /* we only need flush for one stripe */ 5725 do_flush = false; 5726 } 5727 5728 set_bit(STRIPE_HANDLE, &sh->state); 5729 clear_bit(STRIPE_DELAYED, &sh->state); 5730 if ((!sh->batch_head || sh == sh->batch_head) && 5731 (bi->bi_opf & REQ_SYNC) && 5732 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5733 atomic_inc(&conf->preread_active_stripes); 5734 release_stripe_plug(mddev, sh); 5735 } else { 5736 /* cannot get stripe for read-ahead, just give-up */ 5737 bi->bi_status = BLK_STS_IOERR; 5738 break; 5739 } 5740 } 5741 finish_wait(&conf->wait_for_overlap, &w); 5742 5743 if (rw == WRITE) 5744 md_write_end(mddev); 5745 bio_endio(bi); 5746 return true; 5747 } 5748 5749 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5750 5751 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5752 { 5753 /* reshaping is quite different to recovery/resync so it is 5754 * handled quite separately ... here. 5755 * 5756 * On each call to sync_request, we gather one chunk worth of 5757 * destination stripes and flag them as expanding. 5758 * Then we find all the source stripes and request reads. 5759 * As the reads complete, handle_stripe will copy the data 5760 * into the destination stripe and release that stripe. 5761 */ 5762 struct r5conf *conf = mddev->private; 5763 struct stripe_head *sh; 5764 struct md_rdev *rdev; 5765 sector_t first_sector, last_sector; 5766 int raid_disks = conf->previous_raid_disks; 5767 int data_disks = raid_disks - conf->max_degraded; 5768 int new_data_disks = conf->raid_disks - conf->max_degraded; 5769 int i; 5770 int dd_idx; 5771 sector_t writepos, readpos, safepos; 5772 sector_t stripe_addr; 5773 int reshape_sectors; 5774 struct list_head stripes; 5775 sector_t retn; 5776 5777 if (sector_nr == 0) { 5778 /* If restarting in the middle, skip the initial sectors */ 5779 if (mddev->reshape_backwards && 5780 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5781 sector_nr = raid5_size(mddev, 0, 0) 5782 - conf->reshape_progress; 5783 } else if (mddev->reshape_backwards && 5784 conf->reshape_progress == MaxSector) { 5785 /* shouldn't happen, but just in case, finish up.*/ 5786 sector_nr = MaxSector; 5787 } else if (!mddev->reshape_backwards && 5788 conf->reshape_progress > 0) 5789 sector_nr = conf->reshape_progress; 5790 sector_div(sector_nr, new_data_disks); 5791 if (sector_nr) { 5792 mddev->curr_resync_completed = sector_nr; 5793 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5794 *skipped = 1; 5795 retn = sector_nr; 5796 goto finish; 5797 } 5798 } 5799 5800 /* We need to process a full chunk at a time. 5801 * If old and new chunk sizes differ, we need to process the 5802 * largest of these 5803 */ 5804 5805 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5806 5807 /* We update the metadata at least every 10 seconds, or when 5808 * the data about to be copied would over-write the source of 5809 * the data at the front of the range. i.e. one new_stripe 5810 * along from reshape_progress new_maps to after where 5811 * reshape_safe old_maps to 5812 */ 5813 writepos = conf->reshape_progress; 5814 sector_div(writepos, new_data_disks); 5815 readpos = conf->reshape_progress; 5816 sector_div(readpos, data_disks); 5817 safepos = conf->reshape_safe; 5818 sector_div(safepos, data_disks); 5819 if (mddev->reshape_backwards) { 5820 BUG_ON(writepos < reshape_sectors); 5821 writepos -= reshape_sectors; 5822 readpos += reshape_sectors; 5823 safepos += reshape_sectors; 5824 } else { 5825 writepos += reshape_sectors; 5826 /* readpos and safepos are worst-case calculations. 5827 * A negative number is overly pessimistic, and causes 5828 * obvious problems for unsigned storage. So clip to 0. 5829 */ 5830 readpos -= min_t(sector_t, reshape_sectors, readpos); 5831 safepos -= min_t(sector_t, reshape_sectors, safepos); 5832 } 5833 5834 /* Having calculated the 'writepos' possibly use it 5835 * to set 'stripe_addr' which is where we will write to. 5836 */ 5837 if (mddev->reshape_backwards) { 5838 BUG_ON(conf->reshape_progress == 0); 5839 stripe_addr = writepos; 5840 BUG_ON((mddev->dev_sectors & 5841 ~((sector_t)reshape_sectors - 1)) 5842 - reshape_sectors - stripe_addr 5843 != sector_nr); 5844 } else { 5845 BUG_ON(writepos != sector_nr + reshape_sectors); 5846 stripe_addr = sector_nr; 5847 } 5848 5849 /* 'writepos' is the most advanced device address we might write. 5850 * 'readpos' is the least advanced device address we might read. 5851 * 'safepos' is the least address recorded in the metadata as having 5852 * been reshaped. 5853 * If there is a min_offset_diff, these are adjusted either by 5854 * increasing the safepos/readpos if diff is negative, or 5855 * increasing writepos if diff is positive. 5856 * If 'readpos' is then behind 'writepos', there is no way that we can 5857 * ensure safety in the face of a crash - that must be done by userspace 5858 * making a backup of the data. So in that case there is no particular 5859 * rush to update metadata. 5860 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5861 * update the metadata to advance 'safepos' to match 'readpos' so that 5862 * we can be safe in the event of a crash. 5863 * So we insist on updating metadata if safepos is behind writepos and 5864 * readpos is beyond writepos. 5865 * In any case, update the metadata every 10 seconds. 5866 * Maybe that number should be configurable, but I'm not sure it is 5867 * worth it.... maybe it could be a multiple of safemode_delay??? 5868 */ 5869 if (conf->min_offset_diff < 0) { 5870 safepos += -conf->min_offset_diff; 5871 readpos += -conf->min_offset_diff; 5872 } else 5873 writepos += conf->min_offset_diff; 5874 5875 if ((mddev->reshape_backwards 5876 ? (safepos > writepos && readpos < writepos) 5877 : (safepos < writepos && readpos > writepos)) || 5878 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5879 /* Cannot proceed until we've updated the superblock... */ 5880 wait_event(conf->wait_for_overlap, 5881 atomic_read(&conf->reshape_stripes)==0 5882 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5883 if (atomic_read(&conf->reshape_stripes) != 0) 5884 return 0; 5885 mddev->reshape_position = conf->reshape_progress; 5886 mddev->curr_resync_completed = sector_nr; 5887 if (!mddev->reshape_backwards) 5888 /* Can update recovery_offset */ 5889 rdev_for_each(rdev, mddev) 5890 if (rdev->raid_disk >= 0 && 5891 !test_bit(Journal, &rdev->flags) && 5892 !test_bit(In_sync, &rdev->flags) && 5893 rdev->recovery_offset < sector_nr) 5894 rdev->recovery_offset = sector_nr; 5895 5896 conf->reshape_checkpoint = jiffies; 5897 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5898 md_wakeup_thread(mddev->thread); 5899 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 5900 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5901 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5902 return 0; 5903 spin_lock_irq(&conf->device_lock); 5904 conf->reshape_safe = mddev->reshape_position; 5905 spin_unlock_irq(&conf->device_lock); 5906 wake_up(&conf->wait_for_overlap); 5907 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5908 } 5909 5910 INIT_LIST_HEAD(&stripes); 5911 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5912 int j; 5913 int skipped_disk = 0; 5914 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5915 set_bit(STRIPE_EXPANDING, &sh->state); 5916 atomic_inc(&conf->reshape_stripes); 5917 /* If any of this stripe is beyond the end of the old 5918 * array, then we need to zero those blocks 5919 */ 5920 for (j=sh->disks; j--;) { 5921 sector_t s; 5922 if (j == sh->pd_idx) 5923 continue; 5924 if (conf->level == 6 && 5925 j == sh->qd_idx) 5926 continue; 5927 s = raid5_compute_blocknr(sh, j, 0); 5928 if (s < raid5_size(mddev, 0, 0)) { 5929 skipped_disk = 1; 5930 continue; 5931 } 5932 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5933 set_bit(R5_Expanded, &sh->dev[j].flags); 5934 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5935 } 5936 if (!skipped_disk) { 5937 set_bit(STRIPE_EXPAND_READY, &sh->state); 5938 set_bit(STRIPE_HANDLE, &sh->state); 5939 } 5940 list_add(&sh->lru, &stripes); 5941 } 5942 spin_lock_irq(&conf->device_lock); 5943 if (mddev->reshape_backwards) 5944 conf->reshape_progress -= reshape_sectors * new_data_disks; 5945 else 5946 conf->reshape_progress += reshape_sectors * new_data_disks; 5947 spin_unlock_irq(&conf->device_lock); 5948 /* Ok, those stripe are ready. We can start scheduling 5949 * reads on the source stripes. 5950 * The source stripes are determined by mapping the first and last 5951 * block on the destination stripes. 5952 */ 5953 first_sector = 5954 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5955 1, &dd_idx, NULL); 5956 last_sector = 5957 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5958 * new_data_disks - 1), 5959 1, &dd_idx, NULL); 5960 if (last_sector >= mddev->dev_sectors) 5961 last_sector = mddev->dev_sectors - 1; 5962 while (first_sector <= last_sector) { 5963 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5964 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5965 set_bit(STRIPE_HANDLE, &sh->state); 5966 raid5_release_stripe(sh); 5967 first_sector += STRIPE_SECTORS; 5968 } 5969 /* Now that the sources are clearly marked, we can release 5970 * the destination stripes 5971 */ 5972 while (!list_empty(&stripes)) { 5973 sh = list_entry(stripes.next, struct stripe_head, lru); 5974 list_del_init(&sh->lru); 5975 raid5_release_stripe(sh); 5976 } 5977 /* If this takes us to the resync_max point where we have to pause, 5978 * then we need to write out the superblock. 5979 */ 5980 sector_nr += reshape_sectors; 5981 retn = reshape_sectors; 5982 finish: 5983 if (mddev->curr_resync_completed > mddev->resync_max || 5984 (sector_nr - mddev->curr_resync_completed) * 2 5985 >= mddev->resync_max - mddev->curr_resync_completed) { 5986 /* Cannot proceed until we've updated the superblock... */ 5987 wait_event(conf->wait_for_overlap, 5988 atomic_read(&conf->reshape_stripes) == 0 5989 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5990 if (atomic_read(&conf->reshape_stripes) != 0) 5991 goto ret; 5992 mddev->reshape_position = conf->reshape_progress; 5993 mddev->curr_resync_completed = sector_nr; 5994 if (!mddev->reshape_backwards) 5995 /* Can update recovery_offset */ 5996 rdev_for_each(rdev, mddev) 5997 if (rdev->raid_disk >= 0 && 5998 !test_bit(Journal, &rdev->flags) && 5999 !test_bit(In_sync, &rdev->flags) && 6000 rdev->recovery_offset < sector_nr) 6001 rdev->recovery_offset = sector_nr; 6002 conf->reshape_checkpoint = jiffies; 6003 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6004 md_wakeup_thread(mddev->thread); 6005 wait_event(mddev->sb_wait, 6006 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6007 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6008 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6009 goto ret; 6010 spin_lock_irq(&conf->device_lock); 6011 conf->reshape_safe = mddev->reshape_position; 6012 spin_unlock_irq(&conf->device_lock); 6013 wake_up(&conf->wait_for_overlap); 6014 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6015 } 6016 ret: 6017 return retn; 6018 } 6019 6020 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6021 int *skipped) 6022 { 6023 struct r5conf *conf = mddev->private; 6024 struct stripe_head *sh; 6025 sector_t max_sector = mddev->dev_sectors; 6026 sector_t sync_blocks; 6027 int still_degraded = 0; 6028 int i; 6029 6030 if (sector_nr >= max_sector) { 6031 /* just being told to finish up .. nothing much to do */ 6032 6033 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6034 end_reshape(conf); 6035 return 0; 6036 } 6037 6038 if (mddev->curr_resync < max_sector) /* aborted */ 6039 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6040 &sync_blocks, 1); 6041 else /* completed sync */ 6042 conf->fullsync = 0; 6043 md_bitmap_close_sync(mddev->bitmap); 6044 6045 return 0; 6046 } 6047 6048 /* Allow raid5_quiesce to complete */ 6049 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6050 6051 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6052 return reshape_request(mddev, sector_nr, skipped); 6053 6054 /* No need to check resync_max as we never do more than one 6055 * stripe, and as resync_max will always be on a chunk boundary, 6056 * if the check in md_do_sync didn't fire, there is no chance 6057 * of overstepping resync_max here 6058 */ 6059 6060 /* if there is too many failed drives and we are trying 6061 * to resync, then assert that we are finished, because there is 6062 * nothing we can do. 6063 */ 6064 if (mddev->degraded >= conf->max_degraded && 6065 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6066 sector_t rv = mddev->dev_sectors - sector_nr; 6067 *skipped = 1; 6068 return rv; 6069 } 6070 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6071 !conf->fullsync && 6072 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6073 sync_blocks >= STRIPE_SECTORS) { 6074 /* we can skip this block, and probably more */ 6075 sync_blocks /= STRIPE_SECTORS; 6076 *skipped = 1; 6077 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 6078 } 6079 6080 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6081 6082 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6083 if (sh == NULL) { 6084 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6085 /* make sure we don't swamp the stripe cache if someone else 6086 * is trying to get access 6087 */ 6088 schedule_timeout_uninterruptible(1); 6089 } 6090 /* Need to check if array will still be degraded after recovery/resync 6091 * Note in case of > 1 drive failures it's possible we're rebuilding 6092 * one drive while leaving another faulty drive in array. 6093 */ 6094 rcu_read_lock(); 6095 for (i = 0; i < conf->raid_disks; i++) { 6096 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6097 6098 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6099 still_degraded = 1; 6100 } 6101 rcu_read_unlock(); 6102 6103 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6104 6105 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6106 set_bit(STRIPE_HANDLE, &sh->state); 6107 6108 raid5_release_stripe(sh); 6109 6110 return STRIPE_SECTORS; 6111 } 6112 6113 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6114 unsigned int offset) 6115 { 6116 /* We may not be able to submit a whole bio at once as there 6117 * may not be enough stripe_heads available. 6118 * We cannot pre-allocate enough stripe_heads as we may need 6119 * more than exist in the cache (if we allow ever large chunks). 6120 * So we do one stripe head at a time and record in 6121 * ->bi_hw_segments how many have been done. 6122 * 6123 * We *know* that this entire raid_bio is in one chunk, so 6124 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6125 */ 6126 struct stripe_head *sh; 6127 int dd_idx; 6128 sector_t sector, logical_sector, last_sector; 6129 int scnt = 0; 6130 int handled = 0; 6131 6132 logical_sector = raid_bio->bi_iter.bi_sector & 6133 ~((sector_t)STRIPE_SECTORS-1); 6134 sector = raid5_compute_sector(conf, logical_sector, 6135 0, &dd_idx, NULL); 6136 last_sector = bio_end_sector(raid_bio); 6137 6138 for (; logical_sector < last_sector; 6139 logical_sector += STRIPE_SECTORS, 6140 sector += STRIPE_SECTORS, 6141 scnt++) { 6142 6143 if (scnt < offset) 6144 /* already done this stripe */ 6145 continue; 6146 6147 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6148 6149 if (!sh) { 6150 /* failed to get a stripe - must wait */ 6151 conf->retry_read_aligned = raid_bio; 6152 conf->retry_read_offset = scnt; 6153 return handled; 6154 } 6155 6156 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6157 raid5_release_stripe(sh); 6158 conf->retry_read_aligned = raid_bio; 6159 conf->retry_read_offset = scnt; 6160 return handled; 6161 } 6162 6163 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6164 handle_stripe(sh); 6165 raid5_release_stripe(sh); 6166 handled++; 6167 } 6168 6169 bio_endio(raid_bio); 6170 6171 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6172 wake_up(&conf->wait_for_quiescent); 6173 return handled; 6174 } 6175 6176 static int handle_active_stripes(struct r5conf *conf, int group, 6177 struct r5worker *worker, 6178 struct list_head *temp_inactive_list) 6179 { 6180 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6181 int i, batch_size = 0, hash; 6182 bool release_inactive = false; 6183 6184 while (batch_size < MAX_STRIPE_BATCH && 6185 (sh = __get_priority_stripe(conf, group)) != NULL) 6186 batch[batch_size++] = sh; 6187 6188 if (batch_size == 0) { 6189 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6190 if (!list_empty(temp_inactive_list + i)) 6191 break; 6192 if (i == NR_STRIPE_HASH_LOCKS) { 6193 spin_unlock_irq(&conf->device_lock); 6194 log_flush_stripe_to_raid(conf); 6195 spin_lock_irq(&conf->device_lock); 6196 return batch_size; 6197 } 6198 release_inactive = true; 6199 } 6200 spin_unlock_irq(&conf->device_lock); 6201 6202 release_inactive_stripe_list(conf, temp_inactive_list, 6203 NR_STRIPE_HASH_LOCKS); 6204 6205 r5l_flush_stripe_to_raid(conf->log); 6206 if (release_inactive) { 6207 spin_lock_irq(&conf->device_lock); 6208 return 0; 6209 } 6210 6211 for (i = 0; i < batch_size; i++) 6212 handle_stripe(batch[i]); 6213 log_write_stripe_run(conf); 6214 6215 cond_resched(); 6216 6217 spin_lock_irq(&conf->device_lock); 6218 for (i = 0; i < batch_size; i++) { 6219 hash = batch[i]->hash_lock_index; 6220 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6221 } 6222 return batch_size; 6223 } 6224 6225 static void raid5_do_work(struct work_struct *work) 6226 { 6227 struct r5worker *worker = container_of(work, struct r5worker, work); 6228 struct r5worker_group *group = worker->group; 6229 struct r5conf *conf = group->conf; 6230 struct mddev *mddev = conf->mddev; 6231 int group_id = group - conf->worker_groups; 6232 int handled; 6233 struct blk_plug plug; 6234 6235 pr_debug("+++ raid5worker active\n"); 6236 6237 blk_start_plug(&plug); 6238 handled = 0; 6239 spin_lock_irq(&conf->device_lock); 6240 while (1) { 6241 int batch_size, released; 6242 6243 released = release_stripe_list(conf, worker->temp_inactive_list); 6244 6245 batch_size = handle_active_stripes(conf, group_id, worker, 6246 worker->temp_inactive_list); 6247 worker->working = false; 6248 if (!batch_size && !released) 6249 break; 6250 handled += batch_size; 6251 wait_event_lock_irq(mddev->sb_wait, 6252 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6253 conf->device_lock); 6254 } 6255 pr_debug("%d stripes handled\n", handled); 6256 6257 spin_unlock_irq(&conf->device_lock); 6258 6259 flush_deferred_bios(conf); 6260 6261 r5l_flush_stripe_to_raid(conf->log); 6262 6263 async_tx_issue_pending_all(); 6264 blk_finish_plug(&plug); 6265 6266 pr_debug("--- raid5worker inactive\n"); 6267 } 6268 6269 /* 6270 * This is our raid5 kernel thread. 6271 * 6272 * We scan the hash table for stripes which can be handled now. 6273 * During the scan, completed stripes are saved for us by the interrupt 6274 * handler, so that they will not have to wait for our next wakeup. 6275 */ 6276 static void raid5d(struct md_thread *thread) 6277 { 6278 struct mddev *mddev = thread->mddev; 6279 struct r5conf *conf = mddev->private; 6280 int handled; 6281 struct blk_plug plug; 6282 6283 pr_debug("+++ raid5d active\n"); 6284 6285 md_check_recovery(mddev); 6286 6287 blk_start_plug(&plug); 6288 handled = 0; 6289 spin_lock_irq(&conf->device_lock); 6290 while (1) { 6291 struct bio *bio; 6292 int batch_size, released; 6293 unsigned int offset; 6294 6295 released = release_stripe_list(conf, conf->temp_inactive_list); 6296 if (released) 6297 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6298 6299 if ( 6300 !list_empty(&conf->bitmap_list)) { 6301 /* Now is a good time to flush some bitmap updates */ 6302 conf->seq_flush++; 6303 spin_unlock_irq(&conf->device_lock); 6304 md_bitmap_unplug(mddev->bitmap); 6305 spin_lock_irq(&conf->device_lock); 6306 conf->seq_write = conf->seq_flush; 6307 activate_bit_delay(conf, conf->temp_inactive_list); 6308 } 6309 raid5_activate_delayed(conf); 6310 6311 while ((bio = remove_bio_from_retry(conf, &offset))) { 6312 int ok; 6313 spin_unlock_irq(&conf->device_lock); 6314 ok = retry_aligned_read(conf, bio, offset); 6315 spin_lock_irq(&conf->device_lock); 6316 if (!ok) 6317 break; 6318 handled++; 6319 } 6320 6321 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6322 conf->temp_inactive_list); 6323 if (!batch_size && !released) 6324 break; 6325 handled += batch_size; 6326 6327 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6328 spin_unlock_irq(&conf->device_lock); 6329 md_check_recovery(mddev); 6330 spin_lock_irq(&conf->device_lock); 6331 } 6332 } 6333 pr_debug("%d stripes handled\n", handled); 6334 6335 spin_unlock_irq(&conf->device_lock); 6336 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6337 mutex_trylock(&conf->cache_size_mutex)) { 6338 grow_one_stripe(conf, __GFP_NOWARN); 6339 /* Set flag even if allocation failed. This helps 6340 * slow down allocation requests when mem is short 6341 */ 6342 set_bit(R5_DID_ALLOC, &conf->cache_state); 6343 mutex_unlock(&conf->cache_size_mutex); 6344 } 6345 6346 flush_deferred_bios(conf); 6347 6348 r5l_flush_stripe_to_raid(conf->log); 6349 6350 async_tx_issue_pending_all(); 6351 blk_finish_plug(&plug); 6352 6353 pr_debug("--- raid5d inactive\n"); 6354 } 6355 6356 static ssize_t 6357 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6358 { 6359 struct r5conf *conf; 6360 int ret = 0; 6361 spin_lock(&mddev->lock); 6362 conf = mddev->private; 6363 if (conf) 6364 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6365 spin_unlock(&mddev->lock); 6366 return ret; 6367 } 6368 6369 int 6370 raid5_set_cache_size(struct mddev *mddev, int size) 6371 { 6372 struct r5conf *conf = mddev->private; 6373 6374 if (size <= 16 || size > 32768) 6375 return -EINVAL; 6376 6377 conf->min_nr_stripes = size; 6378 mutex_lock(&conf->cache_size_mutex); 6379 while (size < conf->max_nr_stripes && 6380 drop_one_stripe(conf)) 6381 ; 6382 mutex_unlock(&conf->cache_size_mutex); 6383 6384 md_allow_write(mddev); 6385 6386 mutex_lock(&conf->cache_size_mutex); 6387 while (size > conf->max_nr_stripes) 6388 if (!grow_one_stripe(conf, GFP_KERNEL)) 6389 break; 6390 mutex_unlock(&conf->cache_size_mutex); 6391 6392 return 0; 6393 } 6394 EXPORT_SYMBOL(raid5_set_cache_size); 6395 6396 static ssize_t 6397 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6398 { 6399 struct r5conf *conf; 6400 unsigned long new; 6401 int err; 6402 6403 if (len >= PAGE_SIZE) 6404 return -EINVAL; 6405 if (kstrtoul(page, 10, &new)) 6406 return -EINVAL; 6407 err = mddev_lock(mddev); 6408 if (err) 6409 return err; 6410 conf = mddev->private; 6411 if (!conf) 6412 err = -ENODEV; 6413 else 6414 err = raid5_set_cache_size(mddev, new); 6415 mddev_unlock(mddev); 6416 6417 return err ?: len; 6418 } 6419 6420 static struct md_sysfs_entry 6421 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6422 raid5_show_stripe_cache_size, 6423 raid5_store_stripe_cache_size); 6424 6425 static ssize_t 6426 raid5_show_rmw_level(struct mddev *mddev, char *page) 6427 { 6428 struct r5conf *conf = mddev->private; 6429 if (conf) 6430 return sprintf(page, "%d\n", conf->rmw_level); 6431 else 6432 return 0; 6433 } 6434 6435 static ssize_t 6436 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6437 { 6438 struct r5conf *conf = mddev->private; 6439 unsigned long new; 6440 6441 if (!conf) 6442 return -ENODEV; 6443 6444 if (len >= PAGE_SIZE) 6445 return -EINVAL; 6446 6447 if (kstrtoul(page, 10, &new)) 6448 return -EINVAL; 6449 6450 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6451 return -EINVAL; 6452 6453 if (new != PARITY_DISABLE_RMW && 6454 new != PARITY_ENABLE_RMW && 6455 new != PARITY_PREFER_RMW) 6456 return -EINVAL; 6457 6458 conf->rmw_level = new; 6459 return len; 6460 } 6461 6462 static struct md_sysfs_entry 6463 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6464 raid5_show_rmw_level, 6465 raid5_store_rmw_level); 6466 6467 6468 static ssize_t 6469 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6470 { 6471 struct r5conf *conf; 6472 int ret = 0; 6473 spin_lock(&mddev->lock); 6474 conf = mddev->private; 6475 if (conf) 6476 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6477 spin_unlock(&mddev->lock); 6478 return ret; 6479 } 6480 6481 static ssize_t 6482 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6483 { 6484 struct r5conf *conf; 6485 unsigned long new; 6486 int err; 6487 6488 if (len >= PAGE_SIZE) 6489 return -EINVAL; 6490 if (kstrtoul(page, 10, &new)) 6491 return -EINVAL; 6492 6493 err = mddev_lock(mddev); 6494 if (err) 6495 return err; 6496 conf = mddev->private; 6497 if (!conf) 6498 err = -ENODEV; 6499 else if (new > conf->min_nr_stripes) 6500 err = -EINVAL; 6501 else 6502 conf->bypass_threshold = new; 6503 mddev_unlock(mddev); 6504 return err ?: len; 6505 } 6506 6507 static struct md_sysfs_entry 6508 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6509 S_IRUGO | S_IWUSR, 6510 raid5_show_preread_threshold, 6511 raid5_store_preread_threshold); 6512 6513 static ssize_t 6514 raid5_show_skip_copy(struct mddev *mddev, char *page) 6515 { 6516 struct r5conf *conf; 6517 int ret = 0; 6518 spin_lock(&mddev->lock); 6519 conf = mddev->private; 6520 if (conf) 6521 ret = sprintf(page, "%d\n", conf->skip_copy); 6522 spin_unlock(&mddev->lock); 6523 return ret; 6524 } 6525 6526 static ssize_t 6527 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6528 { 6529 struct r5conf *conf; 6530 unsigned long new; 6531 int err; 6532 6533 if (len >= PAGE_SIZE) 6534 return -EINVAL; 6535 if (kstrtoul(page, 10, &new)) 6536 return -EINVAL; 6537 new = !!new; 6538 6539 err = mddev_lock(mddev); 6540 if (err) 6541 return err; 6542 conf = mddev->private; 6543 if (!conf) 6544 err = -ENODEV; 6545 else if (new != conf->skip_copy) { 6546 mddev_suspend(mddev); 6547 conf->skip_copy = new; 6548 if (new) 6549 mddev->queue->backing_dev_info->capabilities |= 6550 BDI_CAP_STABLE_WRITES; 6551 else 6552 mddev->queue->backing_dev_info->capabilities &= 6553 ~BDI_CAP_STABLE_WRITES; 6554 mddev_resume(mddev); 6555 } 6556 mddev_unlock(mddev); 6557 return err ?: len; 6558 } 6559 6560 static struct md_sysfs_entry 6561 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6562 raid5_show_skip_copy, 6563 raid5_store_skip_copy); 6564 6565 static ssize_t 6566 stripe_cache_active_show(struct mddev *mddev, char *page) 6567 { 6568 struct r5conf *conf = mddev->private; 6569 if (conf) 6570 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6571 else 6572 return 0; 6573 } 6574 6575 static struct md_sysfs_entry 6576 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6577 6578 static ssize_t 6579 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6580 { 6581 struct r5conf *conf; 6582 int ret = 0; 6583 spin_lock(&mddev->lock); 6584 conf = mddev->private; 6585 if (conf) 6586 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6587 spin_unlock(&mddev->lock); 6588 return ret; 6589 } 6590 6591 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6592 int *group_cnt, 6593 int *worker_cnt_per_group, 6594 struct r5worker_group **worker_groups); 6595 static ssize_t 6596 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6597 { 6598 struct r5conf *conf; 6599 unsigned int new; 6600 int err; 6601 struct r5worker_group *new_groups, *old_groups; 6602 int group_cnt, worker_cnt_per_group; 6603 6604 if (len >= PAGE_SIZE) 6605 return -EINVAL; 6606 if (kstrtouint(page, 10, &new)) 6607 return -EINVAL; 6608 /* 8192 should be big enough */ 6609 if (new > 8192) 6610 return -EINVAL; 6611 6612 err = mddev_lock(mddev); 6613 if (err) 6614 return err; 6615 conf = mddev->private; 6616 if (!conf) 6617 err = -ENODEV; 6618 else if (new != conf->worker_cnt_per_group) { 6619 mddev_suspend(mddev); 6620 6621 old_groups = conf->worker_groups; 6622 if (old_groups) 6623 flush_workqueue(raid5_wq); 6624 6625 err = alloc_thread_groups(conf, new, 6626 &group_cnt, &worker_cnt_per_group, 6627 &new_groups); 6628 if (!err) { 6629 spin_lock_irq(&conf->device_lock); 6630 conf->group_cnt = group_cnt; 6631 conf->worker_cnt_per_group = worker_cnt_per_group; 6632 conf->worker_groups = new_groups; 6633 spin_unlock_irq(&conf->device_lock); 6634 6635 if (old_groups) 6636 kfree(old_groups[0].workers); 6637 kfree(old_groups); 6638 } 6639 mddev_resume(mddev); 6640 } 6641 mddev_unlock(mddev); 6642 6643 return err ?: len; 6644 } 6645 6646 static struct md_sysfs_entry 6647 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6648 raid5_show_group_thread_cnt, 6649 raid5_store_group_thread_cnt); 6650 6651 static struct attribute *raid5_attrs[] = { 6652 &raid5_stripecache_size.attr, 6653 &raid5_stripecache_active.attr, 6654 &raid5_preread_bypass_threshold.attr, 6655 &raid5_group_thread_cnt.attr, 6656 &raid5_skip_copy.attr, 6657 &raid5_rmw_level.attr, 6658 &r5c_journal_mode.attr, 6659 NULL, 6660 }; 6661 static struct attribute_group raid5_attrs_group = { 6662 .name = NULL, 6663 .attrs = raid5_attrs, 6664 }; 6665 6666 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6667 int *group_cnt, 6668 int *worker_cnt_per_group, 6669 struct r5worker_group **worker_groups) 6670 { 6671 int i, j, k; 6672 ssize_t size; 6673 struct r5worker *workers; 6674 6675 *worker_cnt_per_group = cnt; 6676 if (cnt == 0) { 6677 *group_cnt = 0; 6678 *worker_groups = NULL; 6679 return 0; 6680 } 6681 *group_cnt = num_possible_nodes(); 6682 size = sizeof(struct r5worker) * cnt; 6683 workers = kcalloc(size, *group_cnt, GFP_NOIO); 6684 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 6685 GFP_NOIO); 6686 if (!*worker_groups || !workers) { 6687 kfree(workers); 6688 kfree(*worker_groups); 6689 return -ENOMEM; 6690 } 6691 6692 for (i = 0; i < *group_cnt; i++) { 6693 struct r5worker_group *group; 6694 6695 group = &(*worker_groups)[i]; 6696 INIT_LIST_HEAD(&group->handle_list); 6697 INIT_LIST_HEAD(&group->loprio_list); 6698 group->conf = conf; 6699 group->workers = workers + i * cnt; 6700 6701 for (j = 0; j < cnt; j++) { 6702 struct r5worker *worker = group->workers + j; 6703 worker->group = group; 6704 INIT_WORK(&worker->work, raid5_do_work); 6705 6706 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6707 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6708 } 6709 } 6710 6711 return 0; 6712 } 6713 6714 static void free_thread_groups(struct r5conf *conf) 6715 { 6716 if (conf->worker_groups) 6717 kfree(conf->worker_groups[0].workers); 6718 kfree(conf->worker_groups); 6719 conf->worker_groups = NULL; 6720 } 6721 6722 static sector_t 6723 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6724 { 6725 struct r5conf *conf = mddev->private; 6726 6727 if (!sectors) 6728 sectors = mddev->dev_sectors; 6729 if (!raid_disks) 6730 /* size is defined by the smallest of previous and new size */ 6731 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6732 6733 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6734 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6735 return sectors * (raid_disks - conf->max_degraded); 6736 } 6737 6738 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6739 { 6740 safe_put_page(percpu->spare_page); 6741 if (percpu->scribble) 6742 flex_array_free(percpu->scribble); 6743 percpu->spare_page = NULL; 6744 percpu->scribble = NULL; 6745 } 6746 6747 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6748 { 6749 if (conf->level == 6 && !percpu->spare_page) 6750 percpu->spare_page = alloc_page(GFP_KERNEL); 6751 if (!percpu->scribble) 6752 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6753 conf->previous_raid_disks), 6754 max(conf->chunk_sectors, 6755 conf->prev_chunk_sectors) 6756 / STRIPE_SECTORS, 6757 GFP_KERNEL); 6758 6759 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6760 free_scratch_buffer(conf, percpu); 6761 return -ENOMEM; 6762 } 6763 6764 return 0; 6765 } 6766 6767 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 6768 { 6769 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6770 6771 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6772 return 0; 6773 } 6774 6775 static void raid5_free_percpu(struct r5conf *conf) 6776 { 6777 if (!conf->percpu) 6778 return; 6779 6780 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6781 free_percpu(conf->percpu); 6782 } 6783 6784 static void free_conf(struct r5conf *conf) 6785 { 6786 int i; 6787 6788 log_exit(conf); 6789 6790 unregister_shrinker(&conf->shrinker); 6791 free_thread_groups(conf); 6792 shrink_stripes(conf); 6793 raid5_free_percpu(conf); 6794 for (i = 0; i < conf->pool_size; i++) 6795 if (conf->disks[i].extra_page) 6796 put_page(conf->disks[i].extra_page); 6797 kfree(conf->disks); 6798 bioset_exit(&conf->bio_split); 6799 kfree(conf->stripe_hashtbl); 6800 kfree(conf->pending_data); 6801 kfree(conf); 6802 } 6803 6804 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 6805 { 6806 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6807 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6808 6809 if (alloc_scratch_buffer(conf, percpu)) { 6810 pr_warn("%s: failed memory allocation for cpu%u\n", 6811 __func__, cpu); 6812 return -ENOMEM; 6813 } 6814 return 0; 6815 } 6816 6817 static int raid5_alloc_percpu(struct r5conf *conf) 6818 { 6819 int err = 0; 6820 6821 conf->percpu = alloc_percpu(struct raid5_percpu); 6822 if (!conf->percpu) 6823 return -ENOMEM; 6824 6825 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6826 if (!err) { 6827 conf->scribble_disks = max(conf->raid_disks, 6828 conf->previous_raid_disks); 6829 conf->scribble_sectors = max(conf->chunk_sectors, 6830 conf->prev_chunk_sectors); 6831 } 6832 return err; 6833 } 6834 6835 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6836 struct shrink_control *sc) 6837 { 6838 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6839 unsigned long ret = SHRINK_STOP; 6840 6841 if (mutex_trylock(&conf->cache_size_mutex)) { 6842 ret= 0; 6843 while (ret < sc->nr_to_scan && 6844 conf->max_nr_stripes > conf->min_nr_stripes) { 6845 if (drop_one_stripe(conf) == 0) { 6846 ret = SHRINK_STOP; 6847 break; 6848 } 6849 ret++; 6850 } 6851 mutex_unlock(&conf->cache_size_mutex); 6852 } 6853 return ret; 6854 } 6855 6856 static unsigned long raid5_cache_count(struct shrinker *shrink, 6857 struct shrink_control *sc) 6858 { 6859 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6860 6861 if (conf->max_nr_stripes < conf->min_nr_stripes) 6862 /* unlikely, but not impossible */ 6863 return 0; 6864 return conf->max_nr_stripes - conf->min_nr_stripes; 6865 } 6866 6867 static struct r5conf *setup_conf(struct mddev *mddev) 6868 { 6869 struct r5conf *conf; 6870 int raid_disk, memory, max_disks; 6871 struct md_rdev *rdev; 6872 struct disk_info *disk; 6873 char pers_name[6]; 6874 int i; 6875 int group_cnt, worker_cnt_per_group; 6876 struct r5worker_group *new_group; 6877 int ret; 6878 6879 if (mddev->new_level != 5 6880 && mddev->new_level != 4 6881 && mddev->new_level != 6) { 6882 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6883 mdname(mddev), mddev->new_level); 6884 return ERR_PTR(-EIO); 6885 } 6886 if ((mddev->new_level == 5 6887 && !algorithm_valid_raid5(mddev->new_layout)) || 6888 (mddev->new_level == 6 6889 && !algorithm_valid_raid6(mddev->new_layout))) { 6890 pr_warn("md/raid:%s: layout %d not supported\n", 6891 mdname(mddev), mddev->new_layout); 6892 return ERR_PTR(-EIO); 6893 } 6894 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6895 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6896 mdname(mddev), mddev->raid_disks); 6897 return ERR_PTR(-EINVAL); 6898 } 6899 6900 if (!mddev->new_chunk_sectors || 6901 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6902 !is_power_of_2(mddev->new_chunk_sectors)) { 6903 pr_warn("md/raid:%s: invalid chunk size %d\n", 6904 mdname(mddev), mddev->new_chunk_sectors << 9); 6905 return ERR_PTR(-EINVAL); 6906 } 6907 6908 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6909 if (conf == NULL) 6910 goto abort; 6911 INIT_LIST_HEAD(&conf->free_list); 6912 INIT_LIST_HEAD(&conf->pending_list); 6913 conf->pending_data = kcalloc(PENDING_IO_MAX, 6914 sizeof(struct r5pending_data), 6915 GFP_KERNEL); 6916 if (!conf->pending_data) 6917 goto abort; 6918 for (i = 0; i < PENDING_IO_MAX; i++) 6919 list_add(&conf->pending_data[i].sibling, &conf->free_list); 6920 /* Don't enable multi-threading by default*/ 6921 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6922 &new_group)) { 6923 conf->group_cnt = group_cnt; 6924 conf->worker_cnt_per_group = worker_cnt_per_group; 6925 conf->worker_groups = new_group; 6926 } else 6927 goto abort; 6928 spin_lock_init(&conf->device_lock); 6929 seqcount_init(&conf->gen_lock); 6930 mutex_init(&conf->cache_size_mutex); 6931 init_waitqueue_head(&conf->wait_for_quiescent); 6932 init_waitqueue_head(&conf->wait_for_stripe); 6933 init_waitqueue_head(&conf->wait_for_overlap); 6934 INIT_LIST_HEAD(&conf->handle_list); 6935 INIT_LIST_HEAD(&conf->loprio_list); 6936 INIT_LIST_HEAD(&conf->hold_list); 6937 INIT_LIST_HEAD(&conf->delayed_list); 6938 INIT_LIST_HEAD(&conf->bitmap_list); 6939 init_llist_head(&conf->released_stripes); 6940 atomic_set(&conf->active_stripes, 0); 6941 atomic_set(&conf->preread_active_stripes, 0); 6942 atomic_set(&conf->active_aligned_reads, 0); 6943 spin_lock_init(&conf->pending_bios_lock); 6944 conf->batch_bio_dispatch = true; 6945 rdev_for_each(rdev, mddev) { 6946 if (test_bit(Journal, &rdev->flags)) 6947 continue; 6948 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6949 conf->batch_bio_dispatch = false; 6950 break; 6951 } 6952 } 6953 6954 conf->bypass_threshold = BYPASS_THRESHOLD; 6955 conf->recovery_disabled = mddev->recovery_disabled - 1; 6956 6957 conf->raid_disks = mddev->raid_disks; 6958 if (mddev->reshape_position == MaxSector) 6959 conf->previous_raid_disks = mddev->raid_disks; 6960 else 6961 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6962 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6963 6964 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 6965 GFP_KERNEL); 6966 6967 if (!conf->disks) 6968 goto abort; 6969 6970 for (i = 0; i < max_disks; i++) { 6971 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 6972 if (!conf->disks[i].extra_page) 6973 goto abort; 6974 } 6975 6976 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 6977 if (ret) 6978 goto abort; 6979 conf->mddev = mddev; 6980 6981 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6982 goto abort; 6983 6984 /* We init hash_locks[0] separately to that it can be used 6985 * as the reference lock in the spin_lock_nest_lock() call 6986 * in lock_all_device_hash_locks_irq in order to convince 6987 * lockdep that we know what we are doing. 6988 */ 6989 spin_lock_init(conf->hash_locks); 6990 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6991 spin_lock_init(conf->hash_locks + i); 6992 6993 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6994 INIT_LIST_HEAD(conf->inactive_list + i); 6995 6996 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6997 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6998 6999 atomic_set(&conf->r5c_cached_full_stripes, 0); 7000 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7001 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7002 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7003 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7004 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7005 7006 conf->level = mddev->new_level; 7007 conf->chunk_sectors = mddev->new_chunk_sectors; 7008 if (raid5_alloc_percpu(conf) != 0) 7009 goto abort; 7010 7011 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7012 7013 rdev_for_each(rdev, mddev) { 7014 raid_disk = rdev->raid_disk; 7015 if (raid_disk >= max_disks 7016 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7017 continue; 7018 disk = conf->disks + raid_disk; 7019 7020 if (test_bit(Replacement, &rdev->flags)) { 7021 if (disk->replacement) 7022 goto abort; 7023 disk->replacement = rdev; 7024 } else { 7025 if (disk->rdev) 7026 goto abort; 7027 disk->rdev = rdev; 7028 } 7029 7030 if (test_bit(In_sync, &rdev->flags)) { 7031 char b[BDEVNAME_SIZE]; 7032 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7033 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7034 } else if (rdev->saved_raid_disk != raid_disk) 7035 /* Cannot rely on bitmap to complete recovery */ 7036 conf->fullsync = 1; 7037 } 7038 7039 conf->level = mddev->new_level; 7040 if (conf->level == 6) { 7041 conf->max_degraded = 2; 7042 if (raid6_call.xor_syndrome) 7043 conf->rmw_level = PARITY_ENABLE_RMW; 7044 else 7045 conf->rmw_level = PARITY_DISABLE_RMW; 7046 } else { 7047 conf->max_degraded = 1; 7048 conf->rmw_level = PARITY_ENABLE_RMW; 7049 } 7050 conf->algorithm = mddev->new_layout; 7051 conf->reshape_progress = mddev->reshape_position; 7052 if (conf->reshape_progress != MaxSector) { 7053 conf->prev_chunk_sectors = mddev->chunk_sectors; 7054 conf->prev_algo = mddev->layout; 7055 } else { 7056 conf->prev_chunk_sectors = conf->chunk_sectors; 7057 conf->prev_algo = conf->algorithm; 7058 } 7059 7060 conf->min_nr_stripes = NR_STRIPES; 7061 if (mddev->reshape_position != MaxSector) { 7062 int stripes = max_t(int, 7063 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, 7064 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); 7065 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7066 if (conf->min_nr_stripes != NR_STRIPES) 7067 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7068 mdname(mddev), conf->min_nr_stripes); 7069 } 7070 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7071 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7072 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7073 if (grow_stripes(conf, conf->min_nr_stripes)) { 7074 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7075 mdname(mddev), memory); 7076 goto abort; 7077 } else 7078 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7079 /* 7080 * Losing a stripe head costs more than the time to refill it, 7081 * it reduces the queue depth and so can hurt throughput. 7082 * So set it rather large, scaled by number of devices. 7083 */ 7084 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7085 conf->shrinker.scan_objects = raid5_cache_scan; 7086 conf->shrinker.count_objects = raid5_cache_count; 7087 conf->shrinker.batch = 128; 7088 conf->shrinker.flags = 0; 7089 if (register_shrinker(&conf->shrinker)) { 7090 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7091 mdname(mddev)); 7092 goto abort; 7093 } 7094 7095 sprintf(pers_name, "raid%d", mddev->new_level); 7096 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7097 if (!conf->thread) { 7098 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7099 mdname(mddev)); 7100 goto abort; 7101 } 7102 7103 return conf; 7104 7105 abort: 7106 if (conf) { 7107 free_conf(conf); 7108 return ERR_PTR(-EIO); 7109 } else 7110 return ERR_PTR(-ENOMEM); 7111 } 7112 7113 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7114 { 7115 switch (algo) { 7116 case ALGORITHM_PARITY_0: 7117 if (raid_disk < max_degraded) 7118 return 1; 7119 break; 7120 case ALGORITHM_PARITY_N: 7121 if (raid_disk >= raid_disks - max_degraded) 7122 return 1; 7123 break; 7124 case ALGORITHM_PARITY_0_6: 7125 if (raid_disk == 0 || 7126 raid_disk == raid_disks - 1) 7127 return 1; 7128 break; 7129 case ALGORITHM_LEFT_ASYMMETRIC_6: 7130 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7131 case ALGORITHM_LEFT_SYMMETRIC_6: 7132 case ALGORITHM_RIGHT_SYMMETRIC_6: 7133 if (raid_disk == raid_disks - 1) 7134 return 1; 7135 } 7136 return 0; 7137 } 7138 7139 static int raid5_run(struct mddev *mddev) 7140 { 7141 struct r5conf *conf; 7142 int working_disks = 0; 7143 int dirty_parity_disks = 0; 7144 struct md_rdev *rdev; 7145 struct md_rdev *journal_dev = NULL; 7146 sector_t reshape_offset = 0; 7147 int i; 7148 long long min_offset_diff = 0; 7149 int first = 1; 7150 7151 if (mddev_init_writes_pending(mddev) < 0) 7152 return -ENOMEM; 7153 7154 if (mddev->recovery_cp != MaxSector) 7155 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7156 mdname(mddev)); 7157 7158 rdev_for_each(rdev, mddev) { 7159 long long diff; 7160 7161 if (test_bit(Journal, &rdev->flags)) { 7162 journal_dev = rdev; 7163 continue; 7164 } 7165 if (rdev->raid_disk < 0) 7166 continue; 7167 diff = (rdev->new_data_offset - rdev->data_offset); 7168 if (first) { 7169 min_offset_diff = diff; 7170 first = 0; 7171 } else if (mddev->reshape_backwards && 7172 diff < min_offset_diff) 7173 min_offset_diff = diff; 7174 else if (!mddev->reshape_backwards && 7175 diff > min_offset_diff) 7176 min_offset_diff = diff; 7177 } 7178 7179 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7180 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7181 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7182 mdname(mddev)); 7183 return -EINVAL; 7184 } 7185 7186 if (mddev->reshape_position != MaxSector) { 7187 /* Check that we can continue the reshape. 7188 * Difficulties arise if the stripe we would write to 7189 * next is at or after the stripe we would read from next. 7190 * For a reshape that changes the number of devices, this 7191 * is only possible for a very short time, and mdadm makes 7192 * sure that time appears to have past before assembling 7193 * the array. So we fail if that time hasn't passed. 7194 * For a reshape that keeps the number of devices the same 7195 * mdadm must be monitoring the reshape can keeping the 7196 * critical areas read-only and backed up. It will start 7197 * the array in read-only mode, so we check for that. 7198 */ 7199 sector_t here_new, here_old; 7200 int old_disks; 7201 int max_degraded = (mddev->level == 6 ? 2 : 1); 7202 int chunk_sectors; 7203 int new_data_disks; 7204 7205 if (journal_dev) { 7206 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7207 mdname(mddev)); 7208 return -EINVAL; 7209 } 7210 7211 if (mddev->new_level != mddev->level) { 7212 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7213 mdname(mddev)); 7214 return -EINVAL; 7215 } 7216 old_disks = mddev->raid_disks - mddev->delta_disks; 7217 /* reshape_position must be on a new-stripe boundary, and one 7218 * further up in new geometry must map after here in old 7219 * geometry. 7220 * If the chunk sizes are different, then as we perform reshape 7221 * in units of the largest of the two, reshape_position needs 7222 * be a multiple of the largest chunk size times new data disks. 7223 */ 7224 here_new = mddev->reshape_position; 7225 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7226 new_data_disks = mddev->raid_disks - max_degraded; 7227 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7228 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7229 mdname(mddev)); 7230 return -EINVAL; 7231 } 7232 reshape_offset = here_new * chunk_sectors; 7233 /* here_new is the stripe we will write to */ 7234 here_old = mddev->reshape_position; 7235 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7236 /* here_old is the first stripe that we might need to read 7237 * from */ 7238 if (mddev->delta_disks == 0) { 7239 /* We cannot be sure it is safe to start an in-place 7240 * reshape. It is only safe if user-space is monitoring 7241 * and taking constant backups. 7242 * mdadm always starts a situation like this in 7243 * readonly mode so it can take control before 7244 * allowing any writes. So just check for that. 7245 */ 7246 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7247 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7248 /* not really in-place - so OK */; 7249 else if (mddev->ro == 0) { 7250 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7251 mdname(mddev)); 7252 return -EINVAL; 7253 } 7254 } else if (mddev->reshape_backwards 7255 ? (here_new * chunk_sectors + min_offset_diff <= 7256 here_old * chunk_sectors) 7257 : (here_new * chunk_sectors >= 7258 here_old * chunk_sectors + (-min_offset_diff))) { 7259 /* Reading from the same stripe as writing to - bad */ 7260 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7261 mdname(mddev)); 7262 return -EINVAL; 7263 } 7264 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7265 /* OK, we should be able to continue; */ 7266 } else { 7267 BUG_ON(mddev->level != mddev->new_level); 7268 BUG_ON(mddev->layout != mddev->new_layout); 7269 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7270 BUG_ON(mddev->delta_disks != 0); 7271 } 7272 7273 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7274 test_bit(MD_HAS_PPL, &mddev->flags)) { 7275 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7276 mdname(mddev)); 7277 clear_bit(MD_HAS_PPL, &mddev->flags); 7278 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7279 } 7280 7281 if (mddev->private == NULL) 7282 conf = setup_conf(mddev); 7283 else 7284 conf = mddev->private; 7285 7286 if (IS_ERR(conf)) 7287 return PTR_ERR(conf); 7288 7289 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7290 if (!journal_dev) { 7291 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7292 mdname(mddev)); 7293 mddev->ro = 1; 7294 set_disk_ro(mddev->gendisk, 1); 7295 } else if (mddev->recovery_cp == MaxSector) 7296 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7297 } 7298 7299 conf->min_offset_diff = min_offset_diff; 7300 mddev->thread = conf->thread; 7301 conf->thread = NULL; 7302 mddev->private = conf; 7303 7304 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7305 i++) { 7306 rdev = conf->disks[i].rdev; 7307 if (!rdev && conf->disks[i].replacement) { 7308 /* The replacement is all we have yet */ 7309 rdev = conf->disks[i].replacement; 7310 conf->disks[i].replacement = NULL; 7311 clear_bit(Replacement, &rdev->flags); 7312 conf->disks[i].rdev = rdev; 7313 } 7314 if (!rdev) 7315 continue; 7316 if (conf->disks[i].replacement && 7317 conf->reshape_progress != MaxSector) { 7318 /* replacements and reshape simply do not mix. */ 7319 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7320 goto abort; 7321 } 7322 if (test_bit(In_sync, &rdev->flags)) { 7323 working_disks++; 7324 continue; 7325 } 7326 /* This disc is not fully in-sync. However if it 7327 * just stored parity (beyond the recovery_offset), 7328 * when we don't need to be concerned about the 7329 * array being dirty. 7330 * When reshape goes 'backwards', we never have 7331 * partially completed devices, so we only need 7332 * to worry about reshape going forwards. 7333 */ 7334 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7335 if (mddev->major_version == 0 && 7336 mddev->minor_version > 90) 7337 rdev->recovery_offset = reshape_offset; 7338 7339 if (rdev->recovery_offset < reshape_offset) { 7340 /* We need to check old and new layout */ 7341 if (!only_parity(rdev->raid_disk, 7342 conf->algorithm, 7343 conf->raid_disks, 7344 conf->max_degraded)) 7345 continue; 7346 } 7347 if (!only_parity(rdev->raid_disk, 7348 conf->prev_algo, 7349 conf->previous_raid_disks, 7350 conf->max_degraded)) 7351 continue; 7352 dirty_parity_disks++; 7353 } 7354 7355 /* 7356 * 0 for a fully functional array, 1 or 2 for a degraded array. 7357 */ 7358 mddev->degraded = raid5_calc_degraded(conf); 7359 7360 if (has_failed(conf)) { 7361 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7362 mdname(mddev), mddev->degraded, conf->raid_disks); 7363 goto abort; 7364 } 7365 7366 /* device size must be a multiple of chunk size */ 7367 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7368 mddev->resync_max_sectors = mddev->dev_sectors; 7369 7370 if (mddev->degraded > dirty_parity_disks && 7371 mddev->recovery_cp != MaxSector) { 7372 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7373 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7374 mdname(mddev)); 7375 else if (mddev->ok_start_degraded) 7376 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7377 mdname(mddev)); 7378 else { 7379 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7380 mdname(mddev)); 7381 goto abort; 7382 } 7383 } 7384 7385 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7386 mdname(mddev), conf->level, 7387 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7388 mddev->new_layout); 7389 7390 print_raid5_conf(conf); 7391 7392 if (conf->reshape_progress != MaxSector) { 7393 conf->reshape_safe = conf->reshape_progress; 7394 atomic_set(&conf->reshape_stripes, 0); 7395 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7396 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7397 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7398 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7399 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7400 "reshape"); 7401 } 7402 7403 /* Ok, everything is just fine now */ 7404 if (mddev->to_remove == &raid5_attrs_group) 7405 mddev->to_remove = NULL; 7406 else if (mddev->kobj.sd && 7407 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7408 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7409 mdname(mddev)); 7410 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7411 7412 if (mddev->queue) { 7413 int chunk_size; 7414 /* read-ahead size must cover two whole stripes, which 7415 * is 2 * (datadisks) * chunksize where 'n' is the 7416 * number of raid devices 7417 */ 7418 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7419 int stripe = data_disks * 7420 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7421 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7422 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7423 7424 chunk_size = mddev->chunk_sectors << 9; 7425 blk_queue_io_min(mddev->queue, chunk_size); 7426 blk_queue_io_opt(mddev->queue, chunk_size * 7427 (conf->raid_disks - conf->max_degraded)); 7428 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7429 /* 7430 * We can only discard a whole stripe. It doesn't make sense to 7431 * discard data disk but write parity disk 7432 */ 7433 stripe = stripe * PAGE_SIZE; 7434 /* Round up to power of 2, as discard handling 7435 * currently assumes that */ 7436 while ((stripe-1) & stripe) 7437 stripe = (stripe | (stripe-1)) + 1; 7438 mddev->queue->limits.discard_alignment = stripe; 7439 mddev->queue->limits.discard_granularity = stripe; 7440 7441 blk_queue_max_write_same_sectors(mddev->queue, 0); 7442 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7443 7444 rdev_for_each(rdev, mddev) { 7445 disk_stack_limits(mddev->gendisk, rdev->bdev, 7446 rdev->data_offset << 9); 7447 disk_stack_limits(mddev->gendisk, rdev->bdev, 7448 rdev->new_data_offset << 9); 7449 } 7450 7451 /* 7452 * zeroing is required, otherwise data 7453 * could be lost. Consider a scenario: discard a stripe 7454 * (the stripe could be inconsistent if 7455 * discard_zeroes_data is 0); write one disk of the 7456 * stripe (the stripe could be inconsistent again 7457 * depending on which disks are used to calculate 7458 * parity); the disk is broken; The stripe data of this 7459 * disk is lost. 7460 * 7461 * We only allow DISCARD if the sysadmin has confirmed that 7462 * only safe devices are in use by setting a module parameter. 7463 * A better idea might be to turn DISCARD into WRITE_ZEROES 7464 * requests, as that is required to be safe. 7465 */ 7466 if (devices_handle_discard_safely && 7467 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7468 mddev->queue->limits.discard_granularity >= stripe) 7469 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 7470 mddev->queue); 7471 else 7472 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 7473 mddev->queue); 7474 7475 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7476 } 7477 7478 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7479 goto abort; 7480 7481 return 0; 7482 abort: 7483 md_unregister_thread(&mddev->thread); 7484 print_raid5_conf(conf); 7485 free_conf(conf); 7486 mddev->private = NULL; 7487 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7488 return -EIO; 7489 } 7490 7491 static void raid5_free(struct mddev *mddev, void *priv) 7492 { 7493 struct r5conf *conf = priv; 7494 7495 free_conf(conf); 7496 mddev->to_remove = &raid5_attrs_group; 7497 } 7498 7499 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7500 { 7501 struct r5conf *conf = mddev->private; 7502 int i; 7503 7504 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7505 conf->chunk_sectors / 2, mddev->layout); 7506 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7507 rcu_read_lock(); 7508 for (i = 0; i < conf->raid_disks; i++) { 7509 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7510 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7511 } 7512 rcu_read_unlock(); 7513 seq_printf (seq, "]"); 7514 } 7515 7516 static void print_raid5_conf (struct r5conf *conf) 7517 { 7518 int i; 7519 struct disk_info *tmp; 7520 7521 pr_debug("RAID conf printout:\n"); 7522 if (!conf) { 7523 pr_debug("(conf==NULL)\n"); 7524 return; 7525 } 7526 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7527 conf->raid_disks, 7528 conf->raid_disks - conf->mddev->degraded); 7529 7530 for (i = 0; i < conf->raid_disks; i++) { 7531 char b[BDEVNAME_SIZE]; 7532 tmp = conf->disks + i; 7533 if (tmp->rdev) 7534 pr_debug(" disk %d, o:%d, dev:%s\n", 7535 i, !test_bit(Faulty, &tmp->rdev->flags), 7536 bdevname(tmp->rdev->bdev, b)); 7537 } 7538 } 7539 7540 static int raid5_spare_active(struct mddev *mddev) 7541 { 7542 int i; 7543 struct r5conf *conf = mddev->private; 7544 struct disk_info *tmp; 7545 int count = 0; 7546 unsigned long flags; 7547 7548 for (i = 0; i < conf->raid_disks; i++) { 7549 tmp = conf->disks + i; 7550 if (tmp->replacement 7551 && tmp->replacement->recovery_offset == MaxSector 7552 && !test_bit(Faulty, &tmp->replacement->flags) 7553 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7554 /* Replacement has just become active. */ 7555 if (!tmp->rdev 7556 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7557 count++; 7558 if (tmp->rdev) { 7559 /* Replaced device not technically faulty, 7560 * but we need to be sure it gets removed 7561 * and never re-added. 7562 */ 7563 set_bit(Faulty, &tmp->rdev->flags); 7564 sysfs_notify_dirent_safe( 7565 tmp->rdev->sysfs_state); 7566 } 7567 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7568 } else if (tmp->rdev 7569 && tmp->rdev->recovery_offset == MaxSector 7570 && !test_bit(Faulty, &tmp->rdev->flags) 7571 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7572 count++; 7573 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7574 } 7575 } 7576 spin_lock_irqsave(&conf->device_lock, flags); 7577 mddev->degraded = raid5_calc_degraded(conf); 7578 spin_unlock_irqrestore(&conf->device_lock, flags); 7579 print_raid5_conf(conf); 7580 return count; 7581 } 7582 7583 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7584 { 7585 struct r5conf *conf = mddev->private; 7586 int err = 0; 7587 int number = rdev->raid_disk; 7588 struct md_rdev **rdevp; 7589 struct disk_info *p = conf->disks + number; 7590 7591 print_raid5_conf(conf); 7592 if (test_bit(Journal, &rdev->flags) && conf->log) { 7593 /* 7594 * we can't wait pending write here, as this is called in 7595 * raid5d, wait will deadlock. 7596 * neilb: there is no locking about new writes here, 7597 * so this cannot be safe. 7598 */ 7599 if (atomic_read(&conf->active_stripes) || 7600 atomic_read(&conf->r5c_cached_full_stripes) || 7601 atomic_read(&conf->r5c_cached_partial_stripes)) { 7602 return -EBUSY; 7603 } 7604 log_exit(conf); 7605 return 0; 7606 } 7607 if (rdev == p->rdev) 7608 rdevp = &p->rdev; 7609 else if (rdev == p->replacement) 7610 rdevp = &p->replacement; 7611 else 7612 return 0; 7613 7614 if (number >= conf->raid_disks && 7615 conf->reshape_progress == MaxSector) 7616 clear_bit(In_sync, &rdev->flags); 7617 7618 if (test_bit(In_sync, &rdev->flags) || 7619 atomic_read(&rdev->nr_pending)) { 7620 err = -EBUSY; 7621 goto abort; 7622 } 7623 /* Only remove non-faulty devices if recovery 7624 * isn't possible. 7625 */ 7626 if (!test_bit(Faulty, &rdev->flags) && 7627 mddev->recovery_disabled != conf->recovery_disabled && 7628 !has_failed(conf) && 7629 (!p->replacement || p->replacement == rdev) && 7630 number < conf->raid_disks) { 7631 err = -EBUSY; 7632 goto abort; 7633 } 7634 *rdevp = NULL; 7635 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7636 synchronize_rcu(); 7637 if (atomic_read(&rdev->nr_pending)) { 7638 /* lost the race, try later */ 7639 err = -EBUSY; 7640 *rdevp = rdev; 7641 } 7642 } 7643 if (!err) { 7644 err = log_modify(conf, rdev, false); 7645 if (err) 7646 goto abort; 7647 } 7648 if (p->replacement) { 7649 /* We must have just cleared 'rdev' */ 7650 p->rdev = p->replacement; 7651 clear_bit(Replacement, &p->replacement->flags); 7652 smp_mb(); /* Make sure other CPUs may see both as identical 7653 * but will never see neither - if they are careful 7654 */ 7655 p->replacement = NULL; 7656 7657 if (!err) 7658 err = log_modify(conf, p->rdev, true); 7659 } 7660 7661 clear_bit(WantReplacement, &rdev->flags); 7662 abort: 7663 7664 print_raid5_conf(conf); 7665 return err; 7666 } 7667 7668 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7669 { 7670 struct r5conf *conf = mddev->private; 7671 int err = -EEXIST; 7672 int disk; 7673 struct disk_info *p; 7674 int first = 0; 7675 int last = conf->raid_disks - 1; 7676 7677 if (test_bit(Journal, &rdev->flags)) { 7678 if (conf->log) 7679 return -EBUSY; 7680 7681 rdev->raid_disk = 0; 7682 /* 7683 * The array is in readonly mode if journal is missing, so no 7684 * write requests running. We should be safe 7685 */ 7686 log_init(conf, rdev, false); 7687 return 0; 7688 } 7689 if (mddev->recovery_disabled == conf->recovery_disabled) 7690 return -EBUSY; 7691 7692 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7693 /* no point adding a device */ 7694 return -EINVAL; 7695 7696 if (rdev->raid_disk >= 0) 7697 first = last = rdev->raid_disk; 7698 7699 /* 7700 * find the disk ... but prefer rdev->saved_raid_disk 7701 * if possible. 7702 */ 7703 if (rdev->saved_raid_disk >= 0 && 7704 rdev->saved_raid_disk >= first && 7705 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7706 first = rdev->saved_raid_disk; 7707 7708 for (disk = first; disk <= last; disk++) { 7709 p = conf->disks + disk; 7710 if (p->rdev == NULL) { 7711 clear_bit(In_sync, &rdev->flags); 7712 rdev->raid_disk = disk; 7713 if (rdev->saved_raid_disk != disk) 7714 conf->fullsync = 1; 7715 rcu_assign_pointer(p->rdev, rdev); 7716 7717 err = log_modify(conf, rdev, true); 7718 7719 goto out; 7720 } 7721 } 7722 for (disk = first; disk <= last; disk++) { 7723 p = conf->disks + disk; 7724 if (test_bit(WantReplacement, &p->rdev->flags) && 7725 p->replacement == NULL) { 7726 clear_bit(In_sync, &rdev->flags); 7727 set_bit(Replacement, &rdev->flags); 7728 rdev->raid_disk = disk; 7729 err = 0; 7730 conf->fullsync = 1; 7731 rcu_assign_pointer(p->replacement, rdev); 7732 break; 7733 } 7734 } 7735 out: 7736 print_raid5_conf(conf); 7737 return err; 7738 } 7739 7740 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7741 { 7742 /* no resync is happening, and there is enough space 7743 * on all devices, so we can resize. 7744 * We need to make sure resync covers any new space. 7745 * If the array is shrinking we should possibly wait until 7746 * any io in the removed space completes, but it hardly seems 7747 * worth it. 7748 */ 7749 sector_t newsize; 7750 struct r5conf *conf = mddev->private; 7751 7752 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 7753 return -EINVAL; 7754 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7755 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7756 if (mddev->external_size && 7757 mddev->array_sectors > newsize) 7758 return -EINVAL; 7759 if (mddev->bitmap) { 7760 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 7761 if (ret) 7762 return ret; 7763 } 7764 md_set_array_sectors(mddev, newsize); 7765 if (sectors > mddev->dev_sectors && 7766 mddev->recovery_cp > mddev->dev_sectors) { 7767 mddev->recovery_cp = mddev->dev_sectors; 7768 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7769 } 7770 mddev->dev_sectors = sectors; 7771 mddev->resync_max_sectors = sectors; 7772 return 0; 7773 } 7774 7775 static int check_stripe_cache(struct mddev *mddev) 7776 { 7777 /* Can only proceed if there are plenty of stripe_heads. 7778 * We need a minimum of one full stripe,, and for sensible progress 7779 * it is best to have about 4 times that. 7780 * If we require 4 times, then the default 256 4K stripe_heads will 7781 * allow for chunk sizes up to 256K, which is probably OK. 7782 * If the chunk size is greater, user-space should request more 7783 * stripe_heads first. 7784 */ 7785 struct r5conf *conf = mddev->private; 7786 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7787 > conf->min_nr_stripes || 7788 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7789 > conf->min_nr_stripes) { 7790 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7791 mdname(mddev), 7792 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7793 / STRIPE_SIZE)*4); 7794 return 0; 7795 } 7796 return 1; 7797 } 7798 7799 static int check_reshape(struct mddev *mddev) 7800 { 7801 struct r5conf *conf = mddev->private; 7802 7803 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 7804 return -EINVAL; 7805 if (mddev->delta_disks == 0 && 7806 mddev->new_layout == mddev->layout && 7807 mddev->new_chunk_sectors == mddev->chunk_sectors) 7808 return 0; /* nothing to do */ 7809 if (has_failed(conf)) 7810 return -EINVAL; 7811 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7812 /* We might be able to shrink, but the devices must 7813 * be made bigger first. 7814 * For raid6, 4 is the minimum size. 7815 * Otherwise 2 is the minimum 7816 */ 7817 int min = 2; 7818 if (mddev->level == 6) 7819 min = 4; 7820 if (mddev->raid_disks + mddev->delta_disks < min) 7821 return -EINVAL; 7822 } 7823 7824 if (!check_stripe_cache(mddev)) 7825 return -ENOSPC; 7826 7827 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7828 mddev->delta_disks > 0) 7829 if (resize_chunks(conf, 7830 conf->previous_raid_disks 7831 + max(0, mddev->delta_disks), 7832 max(mddev->new_chunk_sectors, 7833 mddev->chunk_sectors) 7834 ) < 0) 7835 return -ENOMEM; 7836 7837 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 7838 return 0; /* never bother to shrink */ 7839 return resize_stripes(conf, (conf->previous_raid_disks 7840 + mddev->delta_disks)); 7841 } 7842 7843 static int raid5_start_reshape(struct mddev *mddev) 7844 { 7845 struct r5conf *conf = mddev->private; 7846 struct md_rdev *rdev; 7847 int spares = 0; 7848 unsigned long flags; 7849 7850 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7851 return -EBUSY; 7852 7853 if (!check_stripe_cache(mddev)) 7854 return -ENOSPC; 7855 7856 if (has_failed(conf)) 7857 return -EINVAL; 7858 7859 rdev_for_each(rdev, mddev) { 7860 if (!test_bit(In_sync, &rdev->flags) 7861 && !test_bit(Faulty, &rdev->flags)) 7862 spares++; 7863 } 7864 7865 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7866 /* Not enough devices even to make a degraded array 7867 * of that size 7868 */ 7869 return -EINVAL; 7870 7871 /* Refuse to reduce size of the array. Any reductions in 7872 * array size must be through explicit setting of array_size 7873 * attribute. 7874 */ 7875 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7876 < mddev->array_sectors) { 7877 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 7878 mdname(mddev)); 7879 return -EINVAL; 7880 } 7881 7882 atomic_set(&conf->reshape_stripes, 0); 7883 spin_lock_irq(&conf->device_lock); 7884 write_seqcount_begin(&conf->gen_lock); 7885 conf->previous_raid_disks = conf->raid_disks; 7886 conf->raid_disks += mddev->delta_disks; 7887 conf->prev_chunk_sectors = conf->chunk_sectors; 7888 conf->chunk_sectors = mddev->new_chunk_sectors; 7889 conf->prev_algo = conf->algorithm; 7890 conf->algorithm = mddev->new_layout; 7891 conf->generation++; 7892 /* Code that selects data_offset needs to see the generation update 7893 * if reshape_progress has been set - so a memory barrier needed. 7894 */ 7895 smp_mb(); 7896 if (mddev->reshape_backwards) 7897 conf->reshape_progress = raid5_size(mddev, 0, 0); 7898 else 7899 conf->reshape_progress = 0; 7900 conf->reshape_safe = conf->reshape_progress; 7901 write_seqcount_end(&conf->gen_lock); 7902 spin_unlock_irq(&conf->device_lock); 7903 7904 /* Now make sure any requests that proceeded on the assumption 7905 * the reshape wasn't running - like Discard or Read - have 7906 * completed. 7907 */ 7908 mddev_suspend(mddev); 7909 mddev_resume(mddev); 7910 7911 /* Add some new drives, as many as will fit. 7912 * We know there are enough to make the newly sized array work. 7913 * Don't add devices if we are reducing the number of 7914 * devices in the array. This is because it is not possible 7915 * to correctly record the "partially reconstructed" state of 7916 * such devices during the reshape and confusion could result. 7917 */ 7918 if (mddev->delta_disks >= 0) { 7919 rdev_for_each(rdev, mddev) 7920 if (rdev->raid_disk < 0 && 7921 !test_bit(Faulty, &rdev->flags)) { 7922 if (raid5_add_disk(mddev, rdev) == 0) { 7923 if (rdev->raid_disk 7924 >= conf->previous_raid_disks) 7925 set_bit(In_sync, &rdev->flags); 7926 else 7927 rdev->recovery_offset = 0; 7928 7929 if (sysfs_link_rdev(mddev, rdev)) 7930 /* Failure here is OK */; 7931 } 7932 } else if (rdev->raid_disk >= conf->previous_raid_disks 7933 && !test_bit(Faulty, &rdev->flags)) { 7934 /* This is a spare that was manually added */ 7935 set_bit(In_sync, &rdev->flags); 7936 } 7937 7938 /* When a reshape changes the number of devices, 7939 * ->degraded is measured against the larger of the 7940 * pre and post number of devices. 7941 */ 7942 spin_lock_irqsave(&conf->device_lock, flags); 7943 mddev->degraded = raid5_calc_degraded(conf); 7944 spin_unlock_irqrestore(&conf->device_lock, flags); 7945 } 7946 mddev->raid_disks = conf->raid_disks; 7947 mddev->reshape_position = conf->reshape_progress; 7948 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7949 7950 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7951 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7952 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7953 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7954 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7955 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7956 "reshape"); 7957 if (!mddev->sync_thread) { 7958 mddev->recovery = 0; 7959 spin_lock_irq(&conf->device_lock); 7960 write_seqcount_begin(&conf->gen_lock); 7961 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7962 mddev->new_chunk_sectors = 7963 conf->chunk_sectors = conf->prev_chunk_sectors; 7964 mddev->new_layout = conf->algorithm = conf->prev_algo; 7965 rdev_for_each(rdev, mddev) 7966 rdev->new_data_offset = rdev->data_offset; 7967 smp_wmb(); 7968 conf->generation --; 7969 conf->reshape_progress = MaxSector; 7970 mddev->reshape_position = MaxSector; 7971 write_seqcount_end(&conf->gen_lock); 7972 spin_unlock_irq(&conf->device_lock); 7973 return -EAGAIN; 7974 } 7975 conf->reshape_checkpoint = jiffies; 7976 md_wakeup_thread(mddev->sync_thread); 7977 md_new_event(mddev); 7978 return 0; 7979 } 7980 7981 /* This is called from the reshape thread and should make any 7982 * changes needed in 'conf' 7983 */ 7984 static void end_reshape(struct r5conf *conf) 7985 { 7986 7987 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7988 struct md_rdev *rdev; 7989 7990 spin_lock_irq(&conf->device_lock); 7991 conf->previous_raid_disks = conf->raid_disks; 7992 md_finish_reshape(conf->mddev); 7993 smp_wmb(); 7994 conf->reshape_progress = MaxSector; 7995 conf->mddev->reshape_position = MaxSector; 7996 rdev_for_each(rdev, conf->mddev) 7997 if (rdev->raid_disk >= 0 && 7998 !test_bit(Journal, &rdev->flags) && 7999 !test_bit(In_sync, &rdev->flags)) 8000 rdev->recovery_offset = MaxSector; 8001 spin_unlock_irq(&conf->device_lock); 8002 wake_up(&conf->wait_for_overlap); 8003 8004 /* read-ahead size must cover two whole stripes, which is 8005 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 8006 */ 8007 if (conf->mddev->queue) { 8008 int data_disks = conf->raid_disks - conf->max_degraded; 8009 int stripe = data_disks * ((conf->chunk_sectors << 9) 8010 / PAGE_SIZE); 8011 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 8012 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 8013 } 8014 } 8015 } 8016 8017 /* This is called from the raid5d thread with mddev_lock held. 8018 * It makes config changes to the device. 8019 */ 8020 static void raid5_finish_reshape(struct mddev *mddev) 8021 { 8022 struct r5conf *conf = mddev->private; 8023 8024 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8025 8026 if (mddev->delta_disks <= 0) { 8027 int d; 8028 spin_lock_irq(&conf->device_lock); 8029 mddev->degraded = raid5_calc_degraded(conf); 8030 spin_unlock_irq(&conf->device_lock); 8031 for (d = conf->raid_disks ; 8032 d < conf->raid_disks - mddev->delta_disks; 8033 d++) { 8034 struct md_rdev *rdev = conf->disks[d].rdev; 8035 if (rdev) 8036 clear_bit(In_sync, &rdev->flags); 8037 rdev = conf->disks[d].replacement; 8038 if (rdev) 8039 clear_bit(In_sync, &rdev->flags); 8040 } 8041 } 8042 mddev->layout = conf->algorithm; 8043 mddev->chunk_sectors = conf->chunk_sectors; 8044 mddev->reshape_position = MaxSector; 8045 mddev->delta_disks = 0; 8046 mddev->reshape_backwards = 0; 8047 } 8048 } 8049 8050 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8051 { 8052 struct r5conf *conf = mddev->private; 8053 8054 if (quiesce) { 8055 /* stop all writes */ 8056 lock_all_device_hash_locks_irq(conf); 8057 /* '2' tells resync/reshape to pause so that all 8058 * active stripes can drain 8059 */ 8060 r5c_flush_cache(conf, INT_MAX); 8061 conf->quiesce = 2; 8062 wait_event_cmd(conf->wait_for_quiescent, 8063 atomic_read(&conf->active_stripes) == 0 && 8064 atomic_read(&conf->active_aligned_reads) == 0, 8065 unlock_all_device_hash_locks_irq(conf), 8066 lock_all_device_hash_locks_irq(conf)); 8067 conf->quiesce = 1; 8068 unlock_all_device_hash_locks_irq(conf); 8069 /* allow reshape to continue */ 8070 wake_up(&conf->wait_for_overlap); 8071 } else { 8072 /* re-enable writes */ 8073 lock_all_device_hash_locks_irq(conf); 8074 conf->quiesce = 0; 8075 wake_up(&conf->wait_for_quiescent); 8076 wake_up(&conf->wait_for_overlap); 8077 unlock_all_device_hash_locks_irq(conf); 8078 } 8079 log_quiesce(conf, quiesce); 8080 } 8081 8082 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8083 { 8084 struct r0conf *raid0_conf = mddev->private; 8085 sector_t sectors; 8086 8087 /* for raid0 takeover only one zone is supported */ 8088 if (raid0_conf->nr_strip_zones > 1) { 8089 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8090 mdname(mddev)); 8091 return ERR_PTR(-EINVAL); 8092 } 8093 8094 sectors = raid0_conf->strip_zone[0].zone_end; 8095 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8096 mddev->dev_sectors = sectors; 8097 mddev->new_level = level; 8098 mddev->new_layout = ALGORITHM_PARITY_N; 8099 mddev->new_chunk_sectors = mddev->chunk_sectors; 8100 mddev->raid_disks += 1; 8101 mddev->delta_disks = 1; 8102 /* make sure it will be not marked as dirty */ 8103 mddev->recovery_cp = MaxSector; 8104 8105 return setup_conf(mddev); 8106 } 8107 8108 static void *raid5_takeover_raid1(struct mddev *mddev) 8109 { 8110 int chunksect; 8111 void *ret; 8112 8113 if (mddev->raid_disks != 2 || 8114 mddev->degraded > 1) 8115 return ERR_PTR(-EINVAL); 8116 8117 /* Should check if there are write-behind devices? */ 8118 8119 chunksect = 64*2; /* 64K by default */ 8120 8121 /* The array must be an exact multiple of chunksize */ 8122 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8123 chunksect >>= 1; 8124 8125 if ((chunksect<<9) < STRIPE_SIZE) 8126 /* array size does not allow a suitable chunk size */ 8127 return ERR_PTR(-EINVAL); 8128 8129 mddev->new_level = 5; 8130 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8131 mddev->new_chunk_sectors = chunksect; 8132 8133 ret = setup_conf(mddev); 8134 if (!IS_ERR(ret)) 8135 mddev_clear_unsupported_flags(mddev, 8136 UNSUPPORTED_MDDEV_FLAGS); 8137 return ret; 8138 } 8139 8140 static void *raid5_takeover_raid6(struct mddev *mddev) 8141 { 8142 int new_layout; 8143 8144 switch (mddev->layout) { 8145 case ALGORITHM_LEFT_ASYMMETRIC_6: 8146 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8147 break; 8148 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8149 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8150 break; 8151 case ALGORITHM_LEFT_SYMMETRIC_6: 8152 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8153 break; 8154 case ALGORITHM_RIGHT_SYMMETRIC_6: 8155 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8156 break; 8157 case ALGORITHM_PARITY_0_6: 8158 new_layout = ALGORITHM_PARITY_0; 8159 break; 8160 case ALGORITHM_PARITY_N: 8161 new_layout = ALGORITHM_PARITY_N; 8162 break; 8163 default: 8164 return ERR_PTR(-EINVAL); 8165 } 8166 mddev->new_level = 5; 8167 mddev->new_layout = new_layout; 8168 mddev->delta_disks = -1; 8169 mddev->raid_disks -= 1; 8170 return setup_conf(mddev); 8171 } 8172 8173 static int raid5_check_reshape(struct mddev *mddev) 8174 { 8175 /* For a 2-drive array, the layout and chunk size can be changed 8176 * immediately as not restriping is needed. 8177 * For larger arrays we record the new value - after validation 8178 * to be used by a reshape pass. 8179 */ 8180 struct r5conf *conf = mddev->private; 8181 int new_chunk = mddev->new_chunk_sectors; 8182 8183 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8184 return -EINVAL; 8185 if (new_chunk > 0) { 8186 if (!is_power_of_2(new_chunk)) 8187 return -EINVAL; 8188 if (new_chunk < (PAGE_SIZE>>9)) 8189 return -EINVAL; 8190 if (mddev->array_sectors & (new_chunk-1)) 8191 /* not factor of array size */ 8192 return -EINVAL; 8193 } 8194 8195 /* They look valid */ 8196 8197 if (mddev->raid_disks == 2) { 8198 /* can make the change immediately */ 8199 if (mddev->new_layout >= 0) { 8200 conf->algorithm = mddev->new_layout; 8201 mddev->layout = mddev->new_layout; 8202 } 8203 if (new_chunk > 0) { 8204 conf->chunk_sectors = new_chunk ; 8205 mddev->chunk_sectors = new_chunk; 8206 } 8207 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8208 md_wakeup_thread(mddev->thread); 8209 } 8210 return check_reshape(mddev); 8211 } 8212 8213 static int raid6_check_reshape(struct mddev *mddev) 8214 { 8215 int new_chunk = mddev->new_chunk_sectors; 8216 8217 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8218 return -EINVAL; 8219 if (new_chunk > 0) { 8220 if (!is_power_of_2(new_chunk)) 8221 return -EINVAL; 8222 if (new_chunk < (PAGE_SIZE >> 9)) 8223 return -EINVAL; 8224 if (mddev->array_sectors & (new_chunk-1)) 8225 /* not factor of array size */ 8226 return -EINVAL; 8227 } 8228 8229 /* They look valid */ 8230 return check_reshape(mddev); 8231 } 8232 8233 static void *raid5_takeover(struct mddev *mddev) 8234 { 8235 /* raid5 can take over: 8236 * raid0 - if there is only one strip zone - make it a raid4 layout 8237 * raid1 - if there are two drives. We need to know the chunk size 8238 * raid4 - trivial - just use a raid4 layout. 8239 * raid6 - Providing it is a *_6 layout 8240 */ 8241 if (mddev->level == 0) 8242 return raid45_takeover_raid0(mddev, 5); 8243 if (mddev->level == 1) 8244 return raid5_takeover_raid1(mddev); 8245 if (mddev->level == 4) { 8246 mddev->new_layout = ALGORITHM_PARITY_N; 8247 mddev->new_level = 5; 8248 return setup_conf(mddev); 8249 } 8250 if (mddev->level == 6) 8251 return raid5_takeover_raid6(mddev); 8252 8253 return ERR_PTR(-EINVAL); 8254 } 8255 8256 static void *raid4_takeover(struct mddev *mddev) 8257 { 8258 /* raid4 can take over: 8259 * raid0 - if there is only one strip zone 8260 * raid5 - if layout is right 8261 */ 8262 if (mddev->level == 0) 8263 return raid45_takeover_raid0(mddev, 4); 8264 if (mddev->level == 5 && 8265 mddev->layout == ALGORITHM_PARITY_N) { 8266 mddev->new_layout = 0; 8267 mddev->new_level = 4; 8268 return setup_conf(mddev); 8269 } 8270 return ERR_PTR(-EINVAL); 8271 } 8272 8273 static struct md_personality raid5_personality; 8274 8275 static void *raid6_takeover(struct mddev *mddev) 8276 { 8277 /* Currently can only take over a raid5. We map the 8278 * personality to an equivalent raid6 personality 8279 * with the Q block at the end. 8280 */ 8281 int new_layout; 8282 8283 if (mddev->pers != &raid5_personality) 8284 return ERR_PTR(-EINVAL); 8285 if (mddev->degraded > 1) 8286 return ERR_PTR(-EINVAL); 8287 if (mddev->raid_disks > 253) 8288 return ERR_PTR(-EINVAL); 8289 if (mddev->raid_disks < 3) 8290 return ERR_PTR(-EINVAL); 8291 8292 switch (mddev->layout) { 8293 case ALGORITHM_LEFT_ASYMMETRIC: 8294 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8295 break; 8296 case ALGORITHM_RIGHT_ASYMMETRIC: 8297 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8298 break; 8299 case ALGORITHM_LEFT_SYMMETRIC: 8300 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8301 break; 8302 case ALGORITHM_RIGHT_SYMMETRIC: 8303 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8304 break; 8305 case ALGORITHM_PARITY_0: 8306 new_layout = ALGORITHM_PARITY_0_6; 8307 break; 8308 case ALGORITHM_PARITY_N: 8309 new_layout = ALGORITHM_PARITY_N; 8310 break; 8311 default: 8312 return ERR_PTR(-EINVAL); 8313 } 8314 mddev->new_level = 6; 8315 mddev->new_layout = new_layout; 8316 mddev->delta_disks = 1; 8317 mddev->raid_disks += 1; 8318 return setup_conf(mddev); 8319 } 8320 8321 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8322 { 8323 struct r5conf *conf; 8324 int err; 8325 8326 err = mddev_lock(mddev); 8327 if (err) 8328 return err; 8329 conf = mddev->private; 8330 if (!conf) { 8331 mddev_unlock(mddev); 8332 return -ENODEV; 8333 } 8334 8335 if (strncmp(buf, "ppl", 3) == 0) { 8336 /* ppl only works with RAID 5 */ 8337 if (!raid5_has_ppl(conf) && conf->level == 5) { 8338 err = log_init(conf, NULL, true); 8339 if (!err) { 8340 err = resize_stripes(conf, conf->pool_size); 8341 if (err) 8342 log_exit(conf); 8343 } 8344 } else 8345 err = -EINVAL; 8346 } else if (strncmp(buf, "resync", 6) == 0) { 8347 if (raid5_has_ppl(conf)) { 8348 mddev_suspend(mddev); 8349 log_exit(conf); 8350 mddev_resume(mddev); 8351 err = resize_stripes(conf, conf->pool_size); 8352 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8353 r5l_log_disk_error(conf)) { 8354 bool journal_dev_exists = false; 8355 struct md_rdev *rdev; 8356 8357 rdev_for_each(rdev, mddev) 8358 if (test_bit(Journal, &rdev->flags)) { 8359 journal_dev_exists = true; 8360 break; 8361 } 8362 8363 if (!journal_dev_exists) { 8364 mddev_suspend(mddev); 8365 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8366 mddev_resume(mddev); 8367 } else /* need remove journal device first */ 8368 err = -EBUSY; 8369 } else 8370 err = -EINVAL; 8371 } else { 8372 err = -EINVAL; 8373 } 8374 8375 if (!err) 8376 md_update_sb(mddev, 1); 8377 8378 mddev_unlock(mddev); 8379 8380 return err; 8381 } 8382 8383 static int raid5_start(struct mddev *mddev) 8384 { 8385 struct r5conf *conf = mddev->private; 8386 8387 return r5l_start(conf->log); 8388 } 8389 8390 static struct md_personality raid6_personality = 8391 { 8392 .name = "raid6", 8393 .level = 6, 8394 .owner = THIS_MODULE, 8395 .make_request = raid5_make_request, 8396 .run = raid5_run, 8397 .start = raid5_start, 8398 .free = raid5_free, 8399 .status = raid5_status, 8400 .error_handler = raid5_error, 8401 .hot_add_disk = raid5_add_disk, 8402 .hot_remove_disk= raid5_remove_disk, 8403 .spare_active = raid5_spare_active, 8404 .sync_request = raid5_sync_request, 8405 .resize = raid5_resize, 8406 .size = raid5_size, 8407 .check_reshape = raid6_check_reshape, 8408 .start_reshape = raid5_start_reshape, 8409 .finish_reshape = raid5_finish_reshape, 8410 .quiesce = raid5_quiesce, 8411 .takeover = raid6_takeover, 8412 .congested = raid5_congested, 8413 .change_consistency_policy = raid5_change_consistency_policy, 8414 }; 8415 static struct md_personality raid5_personality = 8416 { 8417 .name = "raid5", 8418 .level = 5, 8419 .owner = THIS_MODULE, 8420 .make_request = raid5_make_request, 8421 .run = raid5_run, 8422 .start = raid5_start, 8423 .free = raid5_free, 8424 .status = raid5_status, 8425 .error_handler = raid5_error, 8426 .hot_add_disk = raid5_add_disk, 8427 .hot_remove_disk= raid5_remove_disk, 8428 .spare_active = raid5_spare_active, 8429 .sync_request = raid5_sync_request, 8430 .resize = raid5_resize, 8431 .size = raid5_size, 8432 .check_reshape = raid5_check_reshape, 8433 .start_reshape = raid5_start_reshape, 8434 .finish_reshape = raid5_finish_reshape, 8435 .quiesce = raid5_quiesce, 8436 .takeover = raid5_takeover, 8437 .congested = raid5_congested, 8438 .change_consistency_policy = raid5_change_consistency_policy, 8439 }; 8440 8441 static struct md_personality raid4_personality = 8442 { 8443 .name = "raid4", 8444 .level = 4, 8445 .owner = THIS_MODULE, 8446 .make_request = raid5_make_request, 8447 .run = raid5_run, 8448 .start = raid5_start, 8449 .free = raid5_free, 8450 .status = raid5_status, 8451 .error_handler = raid5_error, 8452 .hot_add_disk = raid5_add_disk, 8453 .hot_remove_disk= raid5_remove_disk, 8454 .spare_active = raid5_spare_active, 8455 .sync_request = raid5_sync_request, 8456 .resize = raid5_resize, 8457 .size = raid5_size, 8458 .check_reshape = raid5_check_reshape, 8459 .start_reshape = raid5_start_reshape, 8460 .finish_reshape = raid5_finish_reshape, 8461 .quiesce = raid5_quiesce, 8462 .takeover = raid4_takeover, 8463 .congested = raid5_congested, 8464 .change_consistency_policy = raid5_change_consistency_policy, 8465 }; 8466 8467 static int __init raid5_init(void) 8468 { 8469 int ret; 8470 8471 raid5_wq = alloc_workqueue("raid5wq", 8472 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8473 if (!raid5_wq) 8474 return -ENOMEM; 8475 8476 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8477 "md/raid5:prepare", 8478 raid456_cpu_up_prepare, 8479 raid456_cpu_dead); 8480 if (ret) { 8481 destroy_workqueue(raid5_wq); 8482 return ret; 8483 } 8484 register_md_personality(&raid6_personality); 8485 register_md_personality(&raid5_personality); 8486 register_md_personality(&raid4_personality); 8487 return 0; 8488 } 8489 8490 static void raid5_exit(void) 8491 { 8492 unregister_md_personality(&raid6_personality); 8493 unregister_md_personality(&raid5_personality); 8494 unregister_md_personality(&raid4_personality); 8495 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8496 destroy_workqueue(raid5_wq); 8497 } 8498 8499 module_init(raid5_init); 8500 module_exit(raid5_exit); 8501 MODULE_LICENSE("GPL"); 8502 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8503 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8504 MODULE_ALIAS("md-raid5"); 8505 MODULE_ALIAS("md-raid4"); 8506 MODULE_ALIAS("md-level-5"); 8507 MODULE_ALIAS("md-level-4"); 8508 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8509 MODULE_ALIAS("md-raid6"); 8510 MODULE_ALIAS("md-level-6"); 8511 8512 /* This used to be two separate modules, they were: */ 8513 MODULE_ALIAS("raid5"); 8514 MODULE_ALIAS("raid6"); 8515